
HAL Id: tel-03945606
https://theses.hal.science/tel-03945606

Submitted on 18 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic algorithm multi-configuration for
combinatorial optimization

Weerapan Sae-Dan

To cite this version:
Weerapan Sae-Dan. Automatic algorithm multi-configuration for combinatorial optimization. Data
Structures and Algorithms [cs.DS]. Université de Lille, 2022. English. �NNT : 2022ULILB011�. �tel-
03945606�

https://theses.hal.science/tel-03945606
https://hal.archives-ouvertes.fr

UNIVERSITÉ DE LILLE

ÉCOLE DOCTORALE MADIS-631: MATHÉMATIQUES,

SCIENCES DU NUMÉRIQUE ET DE LEURS INTERACTIONS

Automatic Algorithm Multi-Configuration
for Combinatorial Optimization

Multi-Configuration Automatique
d’Algorithmes pour l’Optimisation

Combinatoire

Weerapan SAE-DAN

Thèse préparée et soutenue publiquement le 20 Juin 2022,

en vue de l’obtention du grade de Docteur en Informatique et Applications.

Membres du jury:

M. Nicolas JOZEFOWIEZ Professeur, Université de Lorraine Rapporteur
M. Frédéric SAUBION Professeur, Université d’Angers Rapporteur
M. Gilles GONCALVES Professeur, Université d’Artois Examinateur/Président
Mme. Laetitia JOURDAN Professeur, Université de Lille Directrice de Thèse
Mme. Marie-Eléonore KESSACI MCF (HDR), Université de Lille Co-Directrice de Thèse
M. Nadarajen VEERAPEN MCF, Université de Lille Co-Encadrant de Thèse

Centre de Recherche en Informatique, Signal et Automatique de Lille

Université de Lille - Bâtiment ESPRIT - Avenue Henri Poincaré

59655 Villeneuve d’Ascq Cedex FRANCE

ii

Acknowledgments

My three years as a doctoral student were an opportunity to meet many profes-

sional and personal professional and personal encounters. All these people have

allowed, in one way or another in one way or another, and for these reasons, I will

try to thank them all, trying not to forget anyone. I will try to thank all of them,

trying not to forget anyone.

Firstly, I’d like to thank my supervisor for everything she has accomplished for

me, Prof. Dr. Laetitia JOURDAN for providing me with such a wonderful experi-

ence and guiding me to the hall of automatic local search algorithms and parame-

ter control. Her advice, passion, deep knowledge, continuous support, encourage-

ment, and critical feedback have all made significant contributions to my thesis

and professional development throughout the years. Also, thank you so much for

all of your assistance and guidance throughout my thesis for both teaching and

research. I am delighted for the opportunity to associate with her.

I also owe a heartfelt thanks to my co-supervisor, Assoc. Prof. Dr. Marie-

Eléonore KASSECI, throughout my thesis, she provided me with constant as-

sistance and encouragement. Thank you very much for your time and effort; your

comments are always relevant and to the point. Without her assistance, having

high-quality articles and achieving the process of producing big ideas is quite dif-

ficult. Her enthusiasm for research and methodological rigor has had a significant

impact on me.

I’d also like to express my gratitude to, Assoc. Prof. Dr. Nadarajen VEERAPEN,

co-supervisor of this thesis, for advising, supporting and encouraging me through-

out these three years. Three years of doctoral studies. Even in moments of doubt,

you managed to push me to bounce back and go to the end of this adventure, and

iii

it is thanks to you that this manuscript was completed, so thank you again.

I’d also like to express my gratitude to Prof. Nicolas JOZEFOWIEZ and Prof.

Frédéric SAUBION for agreeing to review my thesis and provide helpful feed-

back. Prof. Gilles GONCALVES, a member of the jury, deserves special thanks

for agreeing to serve on the thesis committee and evaluate my work.

I also thank the members of our ORKAD team for all the advice and good times

spent together. I would like to thank Lucien MOUSIN, Camille PAGEAU, Rabin

Kumar SAHU, Sara TARI, Nicolas SZCZEPANSKI, Adan JOSE-GARCIA, Lau-

rent PARMENTIER, Mounir HAFSA, Thomas FEUTRIER, Meyssa ZOUAMBI,

Agathe MÉTAIREAU, and Clément LEGRAND, and outside of ORKAD team

who are Soheila GAMBARI and Lucas M. PAVELSKI.

I owe a debt of gratitude to many kindhearted people outside of the school who

have helped me in some manner during this incredible trip. First and foremost,

I want to express my thanks to Ramkhamhaeng University (RU), a member of

Thailand’s Office of the Civil Service Commission (OCSC), for providing me

with a complete scholarship to pursue a doctoral degree in France. Second, I’d

want to express my gratitude to Dr. Boonchauy SRITHAMMASAK (Former Di-

rector of Computer Engineering, RU, Thailand) for providing me with such a

wonderful opportunity to develop in-depth knowledge, skills, and research talents

in computer science. Third, I’d like to express my gratitude to Miss Panida RO-

JRATTANACHAI (Minister Counsellor of Education, France), Mrs. Nareenush

KAOPAIBOOL (Education senior officer, France), and Mr. Somchai INJORHOR

(Education senior officer, OCSC, Thailand) for their unwavering support over the

years, which included assisting with all services related to local law and regula-

tion, providing some guidance for health care, resident permit, and accom Thank

you for making my time in France more enjoyable.

iv

I will end this page with thanks from my family. First of all, Wirawan SAE-DAN

who has been with me every day from the beginning to the end of this thesis,

who has supported and comforted me in difficult moments, and I can’t thank her

enough for that, so I say it here, thank you! here, thank you! Then, I thank

my family: my mother and my father that my angle I missed you so much, my

brother, my sisters who have supported me since I was born and encouraged me

in my academic and professional choices.

vi

Abstract

Metaheuristics are resolution algorithms with a large number of parameters that allow

them to adapt to any type of optimization problem. In order to obtain the best perfor-

mance, the parameters must be chosen scrupulously, which generates a very tedious

parameterization work. It is in this context that parameter tuning approaches have been

developed in the literature, where a learning phase allows to explore different sets of

parameters to select the best one, and parameter control approaches where the values

change adaptively during the execution. In this thesis, we propose to use simultane-

ously these two parameterization approaches by proposing an approach called auto-

matic multi-configuration of algorithms. In particular, we explore several strategies

based on sequential or probabilistic models and compare them to classical approaches

for automatic algorithm configuration and adaptive algorithms. Experiments have been

conducted on the permutation flowshop scheduling problem and the traveling salesman

problem and show the relevance of the proposed approach.

Keywords— Automatic Algorithm Configuration - Adaptive Control - Local Search

Résumé

Les métaheuristiques sont des algorithmes de résolution présentant un grand nom-

bre de paramètres qui leur permettent de s’adapter à tout type de problème d’opti-

misation. Afin d’obtenir les meilleures performances, les paramètres doivent être

choisis scrupuleusement ce qui engendre un travail de paramétrage très fastidieux.

C’est dans ce contexte qu’ont été développées dans la littérature les approches de

réglage de paramètres où une phase d’apprentissage permet d’explorer différents

jeux de paramètres pour sélectionner le meilleur, et de contrôle de paramètres où

les valeurs changent de manière adaptative pendant l’exécution. Dans cette thèse,

nous proposons d’utiliser simultanément ces deux approches de paramétrage en

proposant une approche appelée multi-configuration automatique d’algorithmes.

En particulier, nous explorons plusieurs stratégies basées sur des modèles séquen-

tiels ou probabilistes et nous les comparons aux approches classiques de la con-

figuration automatique d’algorithmes et d’algorithmes adaptatifs. Des expérimen-

tations ont été conduites sur le problème d’ordonnancement de type flowshop de

permutation et le problème de voyageur de commerce et montrent la pertinence

de l’approche proposée.

Mots-clés — Configuration automatique des algorithmes - Contrôle adaptatif -

Recherche locale

Table of Contents

1 Introduction 1

1.1 Context . 2

1.2 Motivation . 2

1.3 Contributions . 3

1.4 Thesis Outline . 4

2 General Context 7

2.1 Introduction . 8

2.2 Local Search . 9

2.2.1 Description . 9

2.2.1.1 Initialization 10

2.2.1.2 Neighborhood 11

2.2.1.3 Neighborhood Exploration Strategies 11

2.2.2 Classical Local Search 12

2.2.2.1 Hill-Climbing (HC) 12

2.2.2.2 Simulated Annealing (SA) 16

2.2.2.3 Tabu Search (TS) 16

2.2.2.4 Variable Neighborhood Search (VNS) 17

2.2.2.5 Iterated Local Search (ILS) 18

2.2.3 Repeated Diversification 20

2.3 Automatic Design of Algorithms 23

2.3.1 Parameter Tuning . 23

2.3.2 Parameter Control . 27

2.3.3 Conclusion . 30

2.4 Framework and Experiment Management 31

iii

2.4.1 MH-Builder . 31

2.4.1.1 Hill Climbing (HC) 33

2.4.1.2 Simulated Annealing (SA) 35

2.4.1.3 Tabu Search (TS) 36

2.4.1.4 Iterated Local Search (ILS) 36

2.4.1.5 Restart Iterated Local Search (R-ILS) 37

2.4.2 Iterated Racing (Irace) 39

2.5 Problems and Instances . 40

2.5.1 Permutation Flowshop Problem (PFSP) 40

2.5.1.1 Instances . 42

2.5.1.2 Neighborhood Operator 43

2.5.2 Traveling Salesman Problem (TSP) 44

2.5.2.1 Instances . 45

2.5.2.2 Neighborhood Operator 46

3 Baseline ILS Algorithms 49

3.1 Introduction . 50

3.2 Restart-ILS . 51

3.3 Random Multi-Configuration ILS 51

3.4 Experimental Protocol . 52

3.4.1 Configuration Space . 52

3.4.2 Protocol . 52

3.5 Experimental Results . 55

3.5.1 Results on PFSP . 55

3.5.2 Results on TSP . 56

3.6 Conclusion . 58

4 Sequential Multi-Configuration ILS 61

iv

4.1 Introduction . 62

4.2 Sequential Multi-configuration ILS 62

4.3 Experimental Protocol . 63

4.3.1 Configuration Space for PFSP 64

4.3.2 Configuration Space for TSP 64

4.4 Experimental Results . 65

4.4.1 Results on PFSP . 65

4.4.2 Results on TSP . 66

4.5 Conclusion . 69

5 Probabilistic Multi-Configuration ILS 71

5.1 Introduction . 72

5.2 Probabilistic Multi-configuration ILS 72

5.2.1 Fixed Model . 73

5.2.2 Roulette Model . 74

5.3 Experimental Protocol . 75

5.3.1 Configuration Space for PFSP 76

5.3.2 Configuration Space for TSP 76

5.4 Experimental Results . 76

5.4.1 Results on PFSP . 77

5.4.2 Results on TSP . 82

5.5 Comparisons of the Automatic Multi-Configuration ILS models . 85

5.5.1 Experimental Protocol 85

5.5.2 Experimental Results . 85

5.5.2.1 Results on PFSP 86

5.5.2.2 Results on TSP 93

5.6 Conclusion . 96

v

6 Conclusion 99

6.1 Contribution Summary . 100

6.1.1 Automated Multi-Configuration ILS 100

6.1.2 Sequential and Probabilistic Frameworks 101

6.1.3 Fixed and Roulette Models 102

6.2 Future Research . 102

6.2.1 Increase the number of tuned R-ILS 103

6.2.2 Analysis of the multi-configuration ILS algorithms 103

References 105

vi

List of Figures

2.1 A search trajectory - a finite sequence of solutions guided by a

neighborhood relation. 10

2.2 The example of simple bit-flip for local search 12

2.3 The performance of neighborhood exploration strategies (first, best,

and worst improvement). 14

2.4 Local search algorithm behaviors: Hill-Climbing (HC), Simulat-

ing Annealing (SA), Tabu Search (TS), Variable Neighborhood

Search (VNS), and Iterated Local Search (ILS). 15

2.5 Example of the situation where a perturbation is too small. 19

2.6 Example behavior of combining the diversification of the search

space in order to escape the stagnation and the intensification of

the better solution found during the search process called Restart

Iterated Local Search (R-ILS). 21

2.7 Parameter Setting Model . 23

2.8 Automatic configuration of a given parameterized target algorithm

for a given set of problem instances 24

2.9 Parameter Control Taxonomy . 27

2.10 An extended version of the classification schema 28

2.11 The modules of the MH-Builder platform 32

2.12 The diagram of the Local Search implementations currently exist-

ing in MH-Builder . 33

2.13 The schematic of a Hill Climber object 34

2.14 The schematic of a Simulated Annealing object 35

2.15 The schematic of a Tabu Search object 36

2.16 The schematic of a Iterated Local Search object 37

vii

2.17 The schematic of a Restart Iterated Local Search object 38

2.18 The automated design system component and the arrows define

the information flow . 39

2.19 An example of PFSP schedule for 𝑛 = 3 jobs, 𝑚 = 4 machines . . . 42

2.20 Example of PFSP schedule for shift neighborhood operator 43

2.21 Example of PFSP schedule for swap neighborhood operator . . . 43

2.22 Example of PFSP schedule for Deconstruct and Reconstruct . . . 44

2.23 Example of the Hamiltonian cycle, in blue, in a TSP for n = 5 cities. 45

2.24 Example of 2 types of TSP instances 46

2.25 The example of 2-opt neighborhood operator. The current solu-

tion (𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5, 𝑛6) used a 2-opt operator removing edges

(𝑛1, 𝑛2) and (𝑛5, 𝑛6) that obtained a new neighbor (𝑛1, 𝑛5, 𝑛4, 𝑛3,

𝑛2, 𝑛6) . 47

2.26 Example of 3-opt neighborhood operator. The neighbors of the

solution (𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5, 𝑛6) are (𝑛1, 𝑛4, 𝑛5, 𝑛2, 𝑛3, 𝑛6), (𝑛1, 𝑛5,

𝑛4, 𝑛2, 𝑛3, 𝑛6), (𝑛1, 𝑛3, 𝑛2, 𝑛5, 𝑛4, 𝑛6), and (𝑛1, 𝑛6, 𝑛2, 𝑛3, 𝑛5, 𝑛4) . 47

2.27 Example of Double-Bridge operator. The neighbors of the solu-

tion (𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5, 𝑛6, 𝑛7, 𝑛8) used a 4-opt operator removing

edges (𝑛1, 𝑛8), (𝑛2, 𝑛3), (𝑛4, 𝑛5), and (𝑛6, 𝑛7) which is then tra-

versed in the orientation (𝑛1, 𝑛2, 𝑛7, 𝑛8, 𝑛5, 𝑛6, 𝑛3, 𝑛4) 48

3.1 Single-configuration Model . 51

3.2 Random Multi-configuration Model 52

4.1 Sequential Multi-configuration ILS 64

5.1 Fixed multi-configuration Model 74

5.2 Roulette multi-configuration Model 75

viii

List of Tables

2.1 Example of the configurator and specific features. 26

3.1 Configuration Space. Numerical values with a start (*) have been

selected for the exhaustive analysis for PFSP 53

3.2 Configuration Space. Numerical values with a start (*) have been

selected for the exhaustive analysis for TSP 53

3.3 Maximum number of evaluations per instance size for PFSP. . . . 54

3.4 Maximum number of evaluations per cities size for both instances

of TSP. 54

3.5 Best configurations of the R-ILS on Taillard instances for PFSP. . 56

3.6 Statistical comparison of R-ILS and R-MC-ILS for each scenario

on PFSP instances. 57

3.7 Statistical comparison of single-configuration models and online

multi-configuration models for each size on PFSP instances. . . . 57

3.8 Best configurations of R-ILS for TSP. 59

3.9 Statistical comparison of R-ILS and R-MC-ILS for each scenario

on TSP instances. 60

3.10 Statistical comparison of R-ILS and R-MC-ILS for each size on

TSP instances. 60

4.1 Best configurations of the S-MC-ILS for PFSP returned by irace. . 68

4.2 Best configurations of the S-MC-ILS for TSP returned by irace. . 68

5.1 Best configurations of the fixed P-MC-ILS for PFSP returned by

irace. 79

5.2 Best configurations of the roulette P-MC-ILS for PFSP returned

by irace. 81

ix

5.3 Best configurations of the fixed P-MC-ILS for TSP returned by

irace. 84

5.4 Best configurations of the roulette P-MC-ILS for TSP returned by

irace. 84

5.5 Statistical comparison of fixed P-MC-ILS and roulette P-MC-ILS

for each scenario on Taillard instances. 87

5.6 Statistical comparison of fixed P-MC-ILS and roulette P-MC-ILS

for each size on Taillard instances. 88

5.7 Statistical comparison of S-MC-ILS and P-MC-ILS for each sce-

nario on Taillard instances. 89

5.8 Statistical comparison of S-MC-ILS and P-MC-ILS for each size

on Taillard instances. 90

5.9 Statistical comparison of the automated multi-configuration mod-

els with the baseline algorithms for each scenario on Taillard in-

stances. 91

5.10 Statistical comparison of the automated multi-configuration mod-

els with the baseline algorithms for each size on Taillard instances. 92

5.11 Statistical comparison of fixed P-MC-ILS and roulette P-MC-ILS

for each scenario on TSP instances. 93

5.12 Statistical comparison of fixed P-MC-ILS and roulette P-MC-ILS

for each size on TSP instances. 94

5.13 Statistical comparison of S-MC-ILS and P-MC-ILS for each sce-

nario on TSP instances. 95

5.14 Statistical comparison of S-MC-ILS and P-MC-ILS for each in-

stance on TSP instances. 95

5.15 Statistical comparison of the automated multi-configuration mod-

els with the baseline algorithms for each scenario on TSP instances. 96

x

5.16 Statistical comparison of the automated multi-configuration mod-

els with the baseline algorithms for each size on TSP instances. . . 96

xi

xii

1 | Introduction

Contents
1.1 Context . 2

1.2 Motivation . 2

1.3 Contributions . 3

1.4 Thesis Outline . 4

1

1.1 Context

The work reported in this thesis were successfully completed within the ORKAD 1

team of the CRIStAL 2 laboratory. The ORKAD team aims to simultaneously ex-

ploit expertise in combinatorial optimization and knowledge extraction to address

optimization problems. While the two scientific areas have developed more or less

independently, the synergy between combinatorial optimization and knowledge

extraction offers an opportunity, first, to improve the performance and autonomy

of optimization methods thanks to knowledge and, secondly, to efficiently solve

knowledge extraction problems thanks to operations research methods. The opti-

mization approaches are mainly based on mono and multi-objective combinatorial

optimization and lead to the development of open source software.

1.2 Motivation

Metaheuristics, including local search algorithms, provide a good compromise be-

tween solution quality and execution time to solve NP-hard combinatorial prob-

lems. Metaheuristics are highly configurable algorithms, considering their nu-

merical parameters and/or their algorithmic components, and they can easily be

adapted to solve any combinatorial problem. However, the configuration of a

metaheuristic – the setting of the numerical parameters and algorithmic com-

ponents – influences a lot its performance and depends on the problem/instance

solved. Finding the best configuration is then a time consuming and tedious man-

ual task and, it becomes challenging to obtain the optimal solutions. Moreover,

metaheuristics evolve and move differently in the search space with local charac-

1Operational Research, Knowledge And Data: https://www.cristal.univ-lille
.fr/equipes/orkad

2Centre de Recherche en Informatique, Signal et Automatique de Lille, UMR 9189, Université
de Lille: https://www.cristal.univ-lille.fr

2

https://www.cristal.univ-lille.fr/equipes/orkad
https://www.cristal.univ-lille.fr/equipes/orkad
https://www.cristal.univ-lille.fr

teristics depending on the configurations. Thus, it may be beneficial to alter and

locally adapt the configuration during the execution. Finding such a best config-

uration may be handled through parameter tuning and parameter control (Eiben,

Hinterding, & Michalewicz, 1999).

Parameter tuning is an offline process where numerical parameters and algorith-

mic components are optimized before running the metaheuristics to obtain a fi-

nal solution (López-Ibáñez, Dubois-Lacoste, Pérez Cáceres, Birattari, & Stüt-

zle, 2016). Parameter control is an online process where numerical parame-

ters and algorithmic components are adjusted during the execution of the algo-

rithm (Karafotias, Hoogendoorn, & Eiben, 2015). In this thesis, we explore the

benefits of both methods by proposing hybrid approaches whereby we alternate

between multiple configurations tuned before the final execution.

1.3 Contributions

The iterated local search (ILS) is a metaheuristic that evolves in the search space

by moving from solution to neighboring solutions. Different strategies and neigh-

borhood operators can be considered and lead to varying ILS performance. A

perturbation strategy is applied as soon as a local optimum is found in order to

explore a new adjacent region of the search space and to hopefully reach better

quality solutions. However, in some search spaces, it is necessary to jump to a

region farther from the ones already explored. In this thesis, we focus on a restart

iterated local search (R-ILS) able to cross the search space more largely with its

restart mechanism. As mentioned before, it is beneficial to modify the param-

eter values or the strategic components of a metaheuristic during the execution.

Moreover, automatic algorithm configuration (AAC) is a parameter tuning pro-

cess that selects among a large number of parameter values and components the

3

best configurations for a problem.

The contribution of this thesis is the design of automated multi-configuration ILS.

This algorithm is based on the R-ILS and modifies the configuration during the

execution. The configurations are tuned and selected by an AAC process using

the irace configurator. We propose two multi-configuration models, namely the

sequential multi-configuration ILS and the probabilistic multi-configuration ILS.

The sequential multi-configuration ILS successively executes a predefined number

of tuned configurations while the probabilistic multi-configuration ILS modifies

the tuned configurations at each restart according to a fixed or a roulette model.

The fixed model executes the tuned configurations in sequence. The roulette

model chooses the tuned configuration following a roulette wheel selection.

These approaches are experimented on two well-known combinatorial problems:

the Permutation Flowshop Scheduling Problem (PFSP) and the Travelling Sales-

man Problem (TSP). The experiments show the ability of our approaches to com-

bine elements of both parameter tuning and parameter control.

1.4 Thesis Outline

Chapter 2 describes the context of the work in this thesis. Thus, local search, pa-

rameter setting (offline and online), and search strategies are defined. Then we

present the two problems studied in this thesis.

Chapter 3 presents the restart-ILS and the random multi-configuration ILS, our

two baseline algorithms used for experiments. The first one is the core ILS used

in our multi-configuration models and is tuned to find its best parameters. The

second one corresponds to a restart-ILS that modifies its parameters during the

4

run. Experiments are conducted on the PFSP and the TSP to obtain their perfor-

mance.

Chapter 4 presents the Sequential Multi-Configuration ILS where the tuned con-

figurations are applied successively as soon as a predefined number of evaluations

is reached. Experiments are conducted on the PFSP and the TSP. The tuned con-

figurations are presented and discussed for both problems.

Chapter 5 presents the Probabilistic Multi-Configuration ILS where the tuned con-

figurations are applied as soon as the restart mechanism is executed. Two models –

fixed and roulette – for choosing the next configuration are detailed. Experiments

are conducted on the PFSP and the TSP. The tuned configurations are presented

and discussed for both problems. Finally a comparison between the automated

multi-configuration ILS and with the baseline algorithms is presented and the re-

sults are discussed.

Chapter 6 concludes this thesis and gives some perspectives.

5

6

2 | General Context

Contents
2.1 Introduction . 8

2.2 Local Search . 9

2.2.1 Description . 9

2.2.2 Classical Local Search 12

2.2.3 Repeated Diversification 20

2.3 Automatic Design of Algorithms 23

2.3.1 Parameter Tuning . 23

2.3.2 Parameter Control 27

2.3.3 Conclusion . 30

2.4 Framework and Experiment Management 31

2.4.1 MH-Builder . 31

2.4.2 Iterated Racing (Irace) 39

2.5 Problems and Instances . 40

2.5.1 Permutation Flowshop Problem (PFSP) 40

2.5.2 Traveling Salesman Problem (TSP) 44

7

2.1 Introduction

Combinatorial optimization problems (COPs) are often NP-hard, and much work

has been devoted to the development of metaheuristic algorithms to find good

solutions in reasonable time. A powerful, yet conceptually simple, metaheuristic

algorithm is Iterated Local Search (ILS) (Lourenço, Martin, & Stützle, 2010). We

use it extensively in this work.

Metaheuristics, including the ILS algorithm, are usually composed of many strat-

egy components and parameter values that need to be carefully chosen to obtain

a good solution. There exists a set of parameter values that corresponds to the

best algorithm configuration for each instance of a problem. Hence, the problem-

specific setting of algorithm parameters is needed to achieve the best performance.

In the context of ILS, one example component is the perturbation which is meant

to allow the search to escape from the current basin of attraction, while still pre-

serving most of the solution, in the hope of ending up in a better basin of attraction.

When this strategy fails, the search can fall back to the local optimum previously

reached, remaining stuck in the current basin of attraction. The choice of pertur-

bation and, the strength parameter usually associated, is key to obtaining good

ILS performance.

In this chapter, first, we introduce local search (LS). We present different LS

strategies and variants. Then we survey multiple automatic design approaches,

considering both parameter tuning (off-line) and parameter control (on-line). We

describe MH-Builder, the metaheuristics framework upon which much of our

work is based. In our work MH-Builder is interfaced with the irace configurator.

Finally, we present the two problems that will serve to test our proposed meth-

ods: the Permutation Flowshop Scheduling Problem and the Traveling Salesman

8

Problem.

The material presented here is the basis for the following chapters: Chapter 3 to

present the classic restart LS algorithms and some first analyses, the sequential

multi-configuration ILS of Chapter 4, and the probabilistic multi-configuration

ILS of Chapter 5.

2.2 Local Search

In this section, we describe the general Local Search (LS) algorithm and how to

use LS in order to generate practical algorithms for a given problem. The section

consists of three parts. First, we describe the LS and its components. Second,

we describe some classic LS methods. Finally, we present using restarts as a

diversification mechanism.

2.2.1 Description

In brief, local search algorithms (Hoos & Stützle, 2005) follow a repeating pat-

tern where the current solution (𝑠) is replaced with a solution, usually an improv-

ing one, obtained in its neighborhood (𝑁 (𝑠)). It stops when some termination

criterion is reached, usually the impossibility of finding any further improving

solutions.

This is illustrated in Figure 2.1 where LS creates a finite sequence, or search tra-

jectory, 𝑠0, 𝑠1, 𝑠2,. . . , 𝑠𝑚 of solutions 𝑠𝑖 such that for all 𝑖 ∈ {1, . . . , 𝑚}, (𝑠𝑖−1, 𝑠𝑖)

is a search step and the neighborhoods are successively explored for the purpose

of finding a better solution. Next, we present three key components of a LS: the

initial solution, the neighborhood relation and the neighborhood exploration strat-

egy.

9

Figure 2.1: A search trajectory - a finite sequence of solutions guided by a neigh-
borhood relation.

2.2.1.1 Initialization

Initialization is the algorithmic component used to build an initial solution. It

is an important step as it defines the starting point of the search and, in many

problems, it is usually beneficial to start from a relatively good solution in order

to get a headstart on the search process. Problem-specific constructive heuristics

have been widely investigated. If no specific problem information is available

or useful, then it is always possible to use a random solution. Naturally, this

random solution should meet all the constraints of the solution representation,

e.g., a permutation or a bit string.

Many types of mechanisms are classified under the constructive approach. Con-

ceptually, the simplest of them is probably the greedy approach where a solu-

tion is iteratively constructed, choosing the best possible option at each step.

More complex constructive heuristics exist, for example the Nawas, Enscore and

Ham (NEH) heuristic (Nawaz, Enscore, & Ham, 1983) or the iterated greedy

heuristic (Ruiz & Stützle, 2007) for the permutation flowshop problem, or graph-

based heuristics for timetabling problems (Sabar, Ayob, Qu, & Kendall, 2011;

Burke, McCollum, Meisels, Petrovic, & Qu, 2007). For some problems, like the

Quadratic Assignment Problem, a random initial solution suffices.

10

2.2.1.2 Neighborhood

The concept of local search consists in the traversal of the network structure of the

search space, composed of solutions as nodes and edges given by neighborhood

relations.

Let us consider an objective or fitness function 𝑓 , a neighborhood relation 𝑁 , and

a search space Ω. The objective function quantifies the quality of a solution,

𝑓 : 𝑠 → R, where 𝑠 ∈ Ω. The neighborhood relation is defined by 𝑁 : Ω→ 2Ω,

which assigns to a solution 𝑠 ∈ Ω a set of neighboring solutions 𝑁 (𝑠) ⊆ Ω.

Starting from an initial solution, its neighborhood is searched for a better solution

according to the given objective function 𝑓 . If a better solution is achieved, the

process is repeated, starting from the better solution, and is repeated until no im-

proving solution can be obtained in a neighborhood. This solution is then called a

local optimum. Equation 2.1 formalizes the definition of the local optimum 𝑠′ in

the context of a minimization problem without loss of generality.

∀𝑠 ∈ 𝑁 (𝑠′), 𝑓 (𝑠′) ⩽ 𝑓 (𝑠) (2.1)

Neighborhoods are closely linked to the solution representation. For example, if

we consider the bit-string representation, a simple neighborhood is the bit-flip.

This consists in inverting the value of one bit from 0 to 1 and, alternatively from 1

to 0, as illustrated in Figure 2.2. In the permutation space, the swap neighborhood

involves switching the values of the 𝑖𝑡ℎ and 𝑗 𝑡ℎ elements of the permutation.

2.2.1.3 Neighborhood Exploration Strategies

The neighborhood search, or exploration, strategy is a critical component of the

local search that determines how the neighborhood is explored and which neigh-

11

Figure 2.2: The example of simple bit-flip for local search

bor to select at each search step. The strategies are usually simple, for example

choosing the first improving neighbor when the neighborhood is explored in ran-

dom order, or choosing the best neighbor when the neighborhood is explored in a

predefined order. We provide additional details on neighbor selection strategies in

the context of hill-climbing in Section 2.2.2.1.

2.2.2 Classical Local Search

There are multiple local search metaheuristics (Hoos & Stützle, 2005). Here we

present some of the most well-known algorithms: Hill-Climbing (HC) (Papadimitriou

& Steiglitz, 1982), Simulated Annealing (SA) (Kirkpatrick, Gelatt, & Vecchi,

1983), Tabu Search (TS) (Glover, 1986), Variable Neighborhood Search (VNS) (Mladenović

& Hansen, 1997), and Iterated Local Search (ILS) (Lourenço et al., 2010).

2.2.2.1 Hill-Climbing (HC)

Hill-climbing (Papadimitriou & Steiglitz, 1982) is fast and easy to use, but it

rarely yields the best result because it stops at the first local optimum found. It

is also called iterative improvement. The pseudocode for strict acceptance in the

context of a minimization problem is given in Algorithm 2.1. With strict accep-

tance, only a strictly improving neighbor can be accepted. It is also possible to use

neutral acceptance, where a neighbor can be accepted as long as it is not worse in

12

terms of the objective function. This can be useful for neutral problems.

A basin of attraction corresponds to the set of solutions that, when used as the

initial solution of hill-climbing, end up in the same local optimum 𝑠. We then say

that these solutions are in the basin of attraction of 𝑠.

There exist additional strategies that allow the search to continue even after a

locally optimal solution has been discovered. Hill-climbing can therefore be a

key component in other metaheuristics, for example in Iterated Local Search.

Algorithm 2.1: Algorithm Outline for Hill Climbing
input : 𝑠← InitialSolution(Ω)
output: 𝑠← BestSolution

1 while (𝑠 is not a local optimum) do
2 choose 𝑠′ such that 𝑓 (𝑠′) < 𝑓 (𝑠), 𝑠′ ∈ N(𝑠)
3 𝑠← 𝑠

′

4 end
5 return 𝑠

We list below different exploration strategies corresponding to how neighbors are

visited and selected, the first two being by far the most common.

1. The first-improvement selects the first neighbor that improves over the

current solution. This is usually paired with the random exploration of the

neighborhood.

2. The best-improvement explores the whole neighborhood and selects the

best. As such, the order of the exploration is not important. Some measure

of randomness may be used if any ties need to be broken.

3. The worst-improvement (Tari, Basseur, & Goëffon, 2018) also explores

the whole neighborhood and chooses the improving move with the lowest-

quality.

13

4. The late acceptance hill-climbing-improvement (Burke & Bykov, 2017)

accepts non-improving moves when a candidate cost function is better than

it was a number of iterations before.

The first- and best-improvement have been widely used in classical exploration

strategies in the literature (Ochoa, Verel, & Tomassini, 2010; Whitley, Howe, &

Hains, 2013). Best improvement is usually associated with fast convergence in

terms of number of iterations but can be slow because the whole neighborhood

has to be explored. It may gets stuck in a local optimum early on. First improve-

ment may require more iterations since the rate of improvement is usually smaller

than for best-improvement, but the end result is often a better local optimum (as

illustrated in Figure 2.3). Worst-improvement has been shown to work well in

some select cases although it converges slowly. Late acceptance hill-climbing is

better on average on some problems.

Figure 2.3: The performance of neighborhood exploration strategies (first, best,
and worst improvement).

14

Strict hill-climbing algorithms choose strictly better neighbors at each iteration

and stop when a local optimum is met. This is illustrated in Figure 2.4 where the

initial solution is shown in blue and the hill-climbing gets stuck in a relatively poor

local optimum. Employing additional or different exploration strategies can lead

to a better exploration of the search space, and thus finding better local optima

and, potentially, the global optimum.

Figure 2.4: Local search algorithm behaviors: Hill-Climbing (HC), Simulating
Annealing (SA), Tabu Search (TS), Variable Neighborhood Search (VNS), and
Iterated Local Search (ILS).

The different exploration strategies allow for the search to continue when a local

optimum is reached. For example, simulated annealing accepts worsening moves

on a current solution if no improving solution is available, while tabu search pro-

hibits coming back to previously visited solutions. VNS changes neighborhood

15

when it gets stuck, meanwhile, ILS applies a perturbation when a local optimum

is encountered. We look at each of these algorithms in the following.

2.2.2.2 Simulated Annealing (SA)

Simulated annealing (Kirkpatrick et al., 1983) employs a strategy that reduces

the risk of getting stuck in a local optimum (Algorithm 2.2). One neighbor 𝑠′

is picked at random. If it outperforms the current solution 𝑠, it is directly ac-

cepted, otherwise it is accepted with a probability equal to 𝑒𝑥𝑝(𝑓 (𝑠)− 𝑓 (𝑠
′)

𝑇
) (with

𝑇=temperature, a parameter of the algorithm). This rule is called the Metropolis

criterion and the temperature determines how likely it is to perform a worsening

choice. Thus, it gives the system a chance to extract itself from a local optimum.

Algorithm 2.2: Algorithm Outline for Simulated Annealing.
input : 𝑠← InitialSolution(Ω)
output: 𝑠← BestSolution

1 𝑘 = 1
2 while (termination condition criterion not met) do
3 𝑇 ← UpdateTemperature(𝑘, . . .)
4 choose 𝑠′ ∈ 𝑁 (𝑠)
5 if (𝑓 (𝑠′) ≤ 𝑓 (𝑠)) then
6 𝑠← 𝑠

′

7 else
8 𝑠← 𝑠

′
with probability 𝑒𝑥𝑝(𝑓 (𝑠)− 𝑓 (𝑠

′)
𝑇

)
9 end

10 𝑘 ← 𝑘 + 1
11 end
12 return 𝑠

2.2.2.3 Tabu Search (TS)

The basic concept of Tabu Search was developed by Glover (1986) for solving

optimization problems (Glover, 1989, 1990). The concept is to control a search

16

procedure using a memory structure which explicitly constrains the search direc-

tion of the procedure. In each iteration, the best move is chosen among all the

admissible solutions. Previously visited solutions (or parts of previously visited

solutions) are not admissible in order for the method not to always fall back to the

previous visited solutions thus causing inefficient loops. The admissibility of a

solution is enforced using the so-called Tabu list. Usually only previous solutions

within a specific sliding window are stored in this list. Algorithm 2.3 gives the

pseudo code of Tabu search.

Algorithm 2.3: Algorithm Outline for Tabu Search.
input : 𝑠← InitialSolution(Ω), 𝐿 ← Tabu list
output: 𝑠∗ ← BestSolution

1 𝐿 = {}
2 while (termination condition criterion not met) do
3 𝑁′← admissibleNeighbors(𝑠, 𝐿)
4 𝑠′← chooseBest(𝑁′(𝑠))
5 𝐿 ← update(𝑠′, 𝐿)
6 𝑠← 𝑠′

7 end
8 return 𝑠

2.2.2.4 Variable Neighborhood Search (VNS)

The Variable Neighborhood Search (VNS) proposed by Mladenović and Hansen

(1997) is based on several neighborhood structures. In the most basic form of

VNS, the neighborhood structures are systematically and deterministically ex-

changed in a specific order, as presented in Algorithm 2.4. First, the neighborhood

structures 𝑁𝑖 must be defined and initialized. Usually simpler/smaller neighbor-

hoods are examined first and more complex/larger neighborhoods are examined

last. The best or next improvement is chosen as the step function. If an improv-

ing solution is found, then the first neighborhood, 𝑁1, is used at the next iteration.

Otherwise, the next neighborhood is picked in order to try to escape from the local

17

optimum.

Algorithm 2.4: Algorithm Outline for Variable Neighborhood Search.
input : 𝑠← InitialSolution(Ω),

𝑁𝑘 ← a set of neighborhoods 𝑘 ∈ {1, 2, 3, . . . , 𝑘𝑚𝑎𝑥}
output: 𝑠← BestSolution

1 𝑘 = 1
2 while (termination condition criterion not met) do
3 𝑠′← 𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑁𝑘 (𝑠))
4 𝑠′′← 𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ(𝑠′, 𝑁𝑘)
5 if (𝑓 (𝑠′′) < 𝑓 (𝑠)) then
6 𝑠← 𝑠′′

7 𝑘 ← 1
8 else
9 𝑘 ← 𝑘 + 1

10 end
11 end
12 return 𝑠

2.2.2.5 Iterated Local Search (ILS)

The search method called Iterated Local Search (ILS) (Lourenço et al., 2010)

offers the possibility to escape from locally optimal solutions by applying a per-

turbation operator. The basic components of a typical ILS are shown in Algo-

rithm 2.5: (i) the function InitialSolution generates an initial solution, (ii)

a local search is applied to this initial solution using the function LocalSearch,

which generates a locally optimal solution. Within the while loop, which is ter-

minated by a termination condition (time, number of evaluation of the while loop,

etc.), (iii) the perturbation function generates a modified solution from the

locally optimal solution, (iv) apply a local search algorithm again to this solu-

tion, (vi) choose via an acceptance criterion if the new best solution becomes the

current solution and loop back to (iii) until the stopping criterion is met.

The perturbation in ILS is usually meant to allow the algorithm to escape from the

18

Algorithm 2.5: Algorithm Outline for ILS.
input : 𝑠← InitialSolution(Ω)
output: 𝑠∗ ← BestSolution

1 𝑠∗, 𝑠← LocalSearch(𝑠)
2 while termination criterion is not satisfied do
3 𝑠← Perturbation(𝑠)
4 𝑠← LocalSearch(𝑠)
5 if 𝑠 better than 𝑠∗ then
6 𝑠∗ ← 𝑠

7 end
8 end
9 return 𝑠∗

current basin of attraction, while still preserving most of the solution, in the hopes

of ending up in a more favorable basin. When this strategy fails or is too small,

as illustrated in Figure 2.5, it can get stuck in the current basin of attraction as

the current solution cost does not improve, i.e., the search stagnates. To overcome

such an issue, one method is to introduce a restart diversification strategy into the

ILS structure that forces a much larger change to be made.

Figure 2.5: Example of the situation where a perturbation is too small.

19

In the subsequent chapters of this thesis, we will use different versions of ILS,

based on hill-climbing combined with some exploration strategies:

• IHCbest – Iterated Hill-Climbing with best-improvement acceptance;

• IHCfirst – Iterated Hill-Climbing with first-improvement acceptance;

• IHCworst – Iterated Hill-Climbing with worst-improvement acceptance;

• IHClahc – Iterated Hill-Climbing with late-acceptance, and in particular

we use the parameterless version of late acceptance hill-climbing proposed

by Bazargani and Lobo (2017).

2.2.3 Repeated Diversification

Restarts in local search algorithms involves restarting the search from a new solu-

tion in an attempt to explore a different part of the search space. Restart strategies

have been explored for instance by Stützle and Hoos (2002); Hoos and Stützle

(2005). Restarts have a powerful influence on the balance of the trade-off between

diversification, in order to escape from a current basin of attraction, and intensi-

fication, the ability to improve and find better solutions, thus leading to increases

in robustness and performance of ILS. The restart can be complete, starting from

a completely new solution, or partial, starting from a solution modified with a

strong perturbation. We illustrate the behavior of the so-called restart ILS (R-ILS)

in Figure 2.6.

When perturbation fails, restarts can be used to start afresh from a new solution

and explore a different part of the search space. The deciding criterion for a restart

is often a number of stagnation steps. In the literature, common approaches in-

clude considering a fixed number of such iterations, some fraction of the total

budget (Lobo, Bazargani, & Burke, 2020), instance size (Hoos & Stützle, 2005),

20

Figure 2.6: Example behavior of combining the diversification of the search space
in order to escape the stagnation and the intensification of the better solution found
during the search process called Restart Iterated Local Search (R-ILS).

or even neighborhood size (Burke & Bykov, 2017).

A common trigger for restarts is stagnation of the ILS, i.e., failing to improve

the best found solution over a certain number of iterations. Algorithm 2.6 shows

the pseudo-code for ILS with restarts, where 𝑡𝑠 is the counter for non-improving

iterations, 𝑠𝑡𝑔 is a parameter indicating the maximum stagnation, or number of

non-improving iterations, and diversification() is the operator that car-

ries out partial or complete restarts.

21

Algorithm 2.6: Algorithm Outline for Restarts ILS
input : 𝑠← InitialSolution(Ω), 𝑡𝑠 = 0
output: 𝑠∗ ← BestSolution

1 𝑠∗, 𝑠← LocalSearch(𝑠)
2 while termination criterion is not satisfied do
3 𝑠← Perturbation(𝑠)
4 𝑠← LocalSearch(𝑠)
5 if 𝑠 better than 𝑠∗ then
6 𝑠∗ ← 𝑠

7 𝑡𝑠 = 0
8 else
9 if (ts = stg) then

10 𝑡𝑠 = 0
11 𝑠← diversification(𝑠)
12 else
13 ts++
14 end
15 end
16 end
17 return 𝑠∗

22

2.3 Automatic Design of Algorithms

As we have seen, algorithms and metaheuristics are composed of different com-

ponents and parameters. Automatic algorithm design involves choosing the right

components and parameters in some specific context, for example for a specific

problem or class of problem instances. Eiben et al. (1999) identified two main

ways of making such a choice: first tuning, an off-line process which involves

finding a configuration of well-performing components/parameters of a given al-

gorithm before execution of an algorithm; second control, an online process where

the components/parameters change on the fly (Figure 2.7).

Figure 2.7: Parameter Setting Model

2.3.1 Parameter Tuning

Parameter tuning or automatic algorithm configuration (AAC) can be considered

as an optimization problem. The objective is to identify the best configuration out

of a set of possible configurations that are assessed on a set of training instances.

The goal is to find the configuration best adapted to the instances of the problem

to solve. The basic elements for automatic configuration algorithms consist of

the five components: search space, instance set, configurator, target algorithm,

and optimization configuration. The interaction between the configurator and the

target algorithm is illustrated in Figure 2.8. The pseudocode for AAC is given in

Algorithm 2.7

23

Algorithm 2.7: Algorithm Outline for Generic AAC
input : Θ← Search Space(Θ1,Θ2, . . .)

I← Instance Set(𝐼1, 𝐼2, . . .)
output: Θ𝑒𝑙𝑖𝑡𝑒 ← Optimisation Configuration

1 Θ𝑖 ← initial configuration(s)(Θ)
2 while termination criterion is not satisfied do
3 𝐼𝑖 ← choose instance of problem(I)
4 Θ𝑒𝑙𝑖𝑡𝑒 ← evaluation(𝐼𝑖,Θ𝑖)
5 Θ𝑛𝑒𝑤 ← initial new configuration(s) ∪ Θ𝑒𝑙𝑖𝑡𝑒
6 end
7 return Θ𝑒𝑙𝑖𝑡𝑒

Figure 2.8: Automatic configuration of a given parameterized target algorithm for
a given set of problem instances

Search Space: the search space Θ is a set of configurations Θ1,Θ2, . . . ,Θ𝑖 which

a target algorithm searches. In particular, the search space may include a number

of the parameter types.

Instance Set: the instance set {𝐼1, 𝐼2, . . . , 𝐼𝑖} or single instance I of a problem is

required by the configurator, to evaluate the configurations.

Target Algorithm: the configurator optimizes a target single or multi-objective

algorithm.

Optimisation Configuration: the configurator may return one configuration or

set of configurations. Additionally, the configurator can return a policy that maps

instances to configurations.

24

Configurator: the configurator tests a number of pairs (instances and parame-

ters), measures the performance of the algorithm and then returns the best con-

figuration found. For example, we may cite from the literatur: irace based on

statistics (López-Ibáñez et al., 2016), that uses racing and Friedman tests – non-

parametric two-way analysis of variance by ranks, that was then modified into It-

erated F-race based (Balaprakash, Birattari, & Stützle, 2007); ParamILS (Hutter,

Hoos, Leyton-Brown, & Stuetzle, 2009) based on Iterated Local Search across

the space of configurations, and MO-ParamILS (Blot, Hoos, Jourdan, Marmion,

& Trautmann, 2016) its multi-objective version; SMAC (Hutter, Hoos, & Leyton-

Brown, 2012) based on random forests which is a machine learning approach

for classification using an ensemble of decision trees; GGA+ (Ansótegui, Mal-

itsky, Samulowitz, Sellmann, & Tierney, 2015; Ansótegui, Sellmann, & Tierney,

2009) based on a genetic algorithm and random forests – it accepts either Gaussian

process model or random decision tree; SPRINT-race (Zhang, Georgiopoulos, &

Anagnostopoulos, 2013) which exploits statistic racing, which involves consid-

ering two metrics for model selection in machine learning simultaneously. We

summarize the different configurators and their specific features in Table 2.1.

25

Table 2.1: Example of the configurator and specific features.

Configurator Reference Configuration Space Instance Set Target Algorithm Optimisation Configuration Specific Method

F-race Birattari, Stützle, Paquete, and Varrentrapp (2002) small set single single Racing with F-test

CALIBRA Adenso-Díaz and Laguna (2006) small set single single Factorial design with Local Search

Iterated F-race Balaprakash et al. (2007) large set single single F-race with re-sampling

ParamILS Hutter et al. (2009) large set single single Iterated Local Search

GGA Ansótegui et al. (2009) large set single single Genertic Algorithm with Racing

SMAC Bartz-Beielstein, Lasarczyk, and Preuss (2010) large set single single Gaussian process model or Random decision tree

SPRINT-race Zhang et al. (2013) small set multi set Sequential probability test with racing

GGA+ Ansótegui et al. (2015) large set single single GGA with random forest model crossover

irace López-Ibáñez et al. (2016) large set single single F-race with Racing

MO-ParamILS Blot et al. (2016) large set multi set Iterated Local Search

HORA de Moraes Barbosa and Senne (2017) small set single single Racing with Local Search

DAC Biedenkapp, Bozkurt, Eimer, Hutter, and Lindauer (2020) large set single single Reinforcement Learning

PyDGGA Ansótegui, Pon, Sellmann, and Tierney (2021) large set single single Genetic Distributed GGA

26

2.3.2 Parameter Control

Parameter control aims at adjusting parameter values during execution. Eiben et

al. (1999) describes three categories of algorithms: (1) deterministic; (2) adap-

tive; and (3) self-adaptive. Although, it was initially applied only to evolutionary

algorithms, now it is used in a broader sense.

Figure 2.9: Parameter Control Taxonomy

1. Deterministic: the parameter value changes using certain deterministic

rules (Eiben et al., 1999) such as time, time-dependent, scheduled, progress-

independent, i.e. and not any other feedback to the optimization process.

2. Adaptive: the parameter value is modified according to some pre-described

rules and uses feedback to the optimization process such as diversity of the

solutions encounterd, function value of the solutions encounterd, etc.

3. Self-adaptive: the parameter value is encoded in a new genotype and evolves

during the optimization process. The literature showed that the self-adjusting

approach can for example link fitness with crossover rate (Cheng, Li, &

Lin, 2019) or mutation rate (Doerr, Witt, & Yang, 2018; Fan & Yan, 2016;

Hevia Fajardo & Sudholt, 2021) in evolution algorithms.

Over the 20 years following Eiben et al. ’s classification in 1999, new ideas and

27

methodologies have been proposed by Doerr and Doerr (2018) across 5 subcate-

gories that had been identified: state-dependent, success-based, learning-inspired,

endogenous/self-adaptive, and hyper-heuristics. These are illustrated in Figure 2.10.

Figure 2.10: An extended version of the classification schema

1. State-Dependent Parameter Selection: it depends only on current state of

the optimization process. This approach can be split into subcategories:

(a) time-dependent corresponds to some strategy based on time where

the configuration is changed at time specific points during the run. The

time-dependent aspect can be based iteration count (Henderson, Ja-

cobson, & Johnson, 2003), fitness evaluation (Kirkpatrick et al., 1983),

CPU time, etc. It corresponds to deterministic control of parameters

in the taxonomy proposed by (Eiben et al., 1999).

(b) fitness-dependent corresponds to some strategy based on the fitness

of solutions encounterd where the configuration is changed based on

the value of said fitness (Oliveto, Lehre, & Neumann, 2009; Fialho,

Da Costa, Schoenauer, & Sebag, 2008). It corresponds to adaptive

28

parameter control in the taxonomy by Eiben et al. (1999).

(c) rank-dependent is based on fitness ranking. Böttcher, Doerr, and

Neumann (2010) proposed such a raking-based approach to select a

fitness and uses it to modify the mutation rate.

(d) diversity-dependent have been studied empirically. However, the the-

ory of evolutionary algorithms community has given them far less con-

sideration (Doerr & Doerr, 2018).

2. Success-Based Parameter Selection: it corresponds to adaptive parame-

ter control in the taxonomy of Eiben et al. (1999). The current parameter

value is adjusted depending on whether or not the last step has been suc-

cessful. For example, the current iteration is successful when it actually

produces offspring with a fitness value that has been better than the previ-

ous best (Lässig & Sudholt, 2011; Rowe & Sudholt, 2014).

3. Learning Inspired Parameter Selection: it aims at exploiting longer search

history, which most commonly involves reward or learning adjustment rule.

The process includes multi-armed bandits (MAB) (Blot, Hoos, Kessaci, &

Jourdan, 2018; DaCosta, Fialho, Schoenauer, & Sebag, 2008), reinforce-

ment learning (Karafotias et al., 2015), adaptive pursuit (Rajaraman & Sas-

try, 1996; Thierens, 2005), probability matching (Thierens, 2005), to dy-

namically find elite configurations.

4. Endogenous/self-adaptive Parameter Selection: it is the same as the self-

adaptive control systems for parameters. The name endogenous parameter

control is better known as encoding the parameters in the genotype and en-

abling them to develop through the general processes of variety and choice

of the evolutionary system (Hevia Fajardo & Sudholt, 2021).

29

5. Hyperheuristic Parameter Selection is an approac which operates on a

set of low level heuristic, selects an algorithm and executes it for a pe-

riod of time before reassessing the heuristic that is next to be used. Hy-

perheuristics are mainly intended to automate the selection and configu-

ration of algorithms, so that distinct algorithmic concepts can profit from

each step. Hyperheuristics have been applied to a metaheuristics for single-

objective (Zamli, Din, Kendall, & Ahmed, 2017; Kalender, Kheiri, Özcan,

& Burke, 2013) and multi-objective (Yang, Zhang, & Li, 2021; Guizzo,

Vergilio, Pozo, & Fritsche, 2017).

2.3.3 Conclusion

Several algorithms for solving the combinatorial optimization problems (COP),

such as local search or metaheuristic algorithms, include algorithm-specific pa-

rameters or several design choices that must be strictly set to achieve the best per-

formance. Most frequently, obtaining good values for these parameters is a time-

intensive, tedious manual task, and finally leads to a biased evaluation of their

performance. The problem of finding parameter values to achieve the best perfor-

mance can be approached through parameter tuning and parameter control (Eiben

et al., 1999).

Parameter tuning or automatic algorithm configuration (AAC) automatically de-

termines a configuration for the optimized performance of an algorithm on a given

set of training problem instances. The target algorithm is configured by a so-called

configurator such as irace (López-Ibáñez et al., 2016) or ParamILS (Hutter et al.,

2009). In this thesis, we have used irace configurator for automatic configuration.

On the other hand, parameter control is an online process, where relatively few

configurations can be explored effectively. In the following chapters in this thesis,

we will explore how multiple configurations that change during the run of an op-

30

timisation algorithm can be configured using automatic algorithm configuration.

2.4 Framework and Experiment Management

In this section, we will present the MH-Builder framework that allows us to imple-

ment metaheuristics based on combinations of components. We also present the

irace configurator that is used in this thesis. A large part of the work in this thesis

has revolved around the extension of the MH-Builder framework to accommodate

and implement the contributions we present in subsequent chapters.

2.4.1 MH-Builder

MH-Builder is an object-oriented software platform for building flexible meta-

heuristics for solving combinatorial optimization problems. The MH-Builder is

developed in C++ (C14 or higher) and it operates on UNIX systems (Linux, Ma-

cOS) and Windows. This platform is developed by the ORKAD team. The aim

is to ultimately make it publicly available. As illustrated in the Figure 2.11, it

contains four connected modules that describe an algorithm.

The modules that constitute the MH-Building platform are the following:

1. core for the implementation of fundamental aspects of metaheuristics (so-

lution, fitness, etc.)

2. opt is the implementation of metaheuristics dedicated to problem-independent

optimization, it is divided into several sub-categories:

(a) criterion for the implementation of components dedicated to the stop-

ping search algorithm (time, iteration, evaluation).

(b) single solution (Sae-Dan, Kessaci, Veerapen, & Jourdan, 2020; Clay,

31

Figure 2.11: The modules of the MH-Builder platform

Mousin, Veerapen, & Jourdan, 2021; Sae-Dan, Kessaci, Veerapen, &

Jourdan, 2021) for the implementation of metaheuristics dedicated to

single solution optimization (single-objective local search, evaluation

algorithm, etc.).

(c) many solution (Pageau, Blot, Hoos, Kessaci, & Jourdan, 2019; Szczepan-

ski, Mousin, Veerapen, & Jourdan, 2020; Szczepanski et al., 2021) for

the implementation of metaheuristics dedicated to multi-objective op-

timization.

(d) perturbation for the implementation of components dedicated to per-

turbation methods.

3. representation (Feutrier, Kessaci, & Veerapen, 2021; Tari, Hoos, Jacques,

Kessaci, & Jourdan, 2020) for the implementation of components dedicated

32

to a particular type of problem (rulemining, timetabling, etc.)

4. util for the implementation of components dedicated to useful functions:

parser, random number generator, time management, etc.

We will now take a look at the MH-Builder framework. First of all, Figure 2.12

shows the current implementations of the Local Search object in the MH-Builder

of Single Solution. We notice five algorithms, that we will detailed in previous

sections.

Figure 2.12: The diagram of the Local Search implementations currently existing
in MH-Builder

A single solution metaheuristic under MH-Builder is a Local Search object. We

explain each of these notions in the following.

2.4.1.1 Hill Climbing (HC)

As seen in section 2.2.2.1, a hill climber is a type of local search. The aim is

to improve a current solution by exploring its neighborhood. The best neighbor

replaces the current solution if it is better. Thus, each part of a local search is

symbolized by an object type. Figure 2.13 shows a schematic of the Hill Climber

class and the algorithm implemented in this class can be seen in Algorithm 2.1.

The six objects necessary for the instantiating of a Hill Climber object are :

1. InitialSolution: This object must be used to require a method to build an

initial solution.

33

Figure 2.13: The schematic of a Hill Climber object

2. Eval: This object is used to evaluate the quality of a solution. It is not the

object that will be used to evaluate the neighbors during our neighborhood

exploration. This object is of interest in the case where the algorithm is

given an initial solution or solution improved that has not yet been evalu-

ated. An incremental evaluation is used in other cases in order to make the

computation more efficient.

3. Criterion: This object handles the management of stopping an algorithm

which consists of three criteria: TimeCriterion, EvalCriterion, and IterCri-

terion.

4. Neighborhood: This object handles the management of the neighborhood.

Two exploration orders exist in MH-Builder:

(a) RndWithoutRemplNeighborhood: explore neighbor solutions uniformly

at random (random).

(b) OrderNeighborhood: always parse the neighborhood in some prede-

fined order (order).

34

5. Neighbor: Its variants are neighborhood-based algorithms and require an

operator to generate neighbor solutions from the current solution such as

shift, swap, 2-opt, 3opt, i.e. We will explain each of these notions

in Sections 2.5.1.2 and 2.5.2.2.

6. Explorer: This object allows the selection strategy of the best neighbor

to be specified such as first-improvement, best-improvement,

worst-improvement, and lahc-improvement. The four strategies

available in MH-Builder where detailed in Section 2.2.2.1.

2.4.1.2 Simulated Annealing (SA)

Simulated annealing is a local search that draws on a physical process and is de-

scribed in Section 2.2.2.2. The main advantage of simulated annealing is that,

unlike the hill climber, it allows us to go backward in obtaining better solutions.

The interest of such a possibility is to allow, if necessary, to escape local optima

during the search. Simulated annealing can be seen as a search with a diversifica-

tion phase that gradually leads to an intensification phase.

Figure 2.14: The schematic of a Simulated Annealing object

Figure 2.14 shows the simulated annealing implementation, we can notice the

SimpleCoolingSchedule object which concerns the temperature cooling principle.

35

2.4.1.3 Tabu Search (TS)

The particularity of Tabu Search is the notion of memory. In this type of local

search, a so-called tabu list is used to remember which solutions have already

been visited (see section 2.2.2.3). Tabu Search is represented in MH-Builder by a

specific object: the Tabu Search object. Figure 2.15 details how a Tabu Search is

constituted in MH-Builder. If we carefully look at this figure and compare it with

that of the Hill Climber, you can see that the objects are the same. The differences

between a Hill Climber and Tabu Search object are symbolized by one generic

object: TabuList object takes care of the management of the tabu list. In MH-

Builder, it is an object that the user must define.

Figure 2.15: The schematic of a Tabu Search object

2.4.1.4 Iterated Local Search (ILS)

This metaheuristic is one of the four that has been implemented in MH-Builder.

As its name indicates, this iterated local search is based on local search and the

addition of a perturbation mechanism (see section 2.2.2.5). Figure 2.16 shows a

diagram of an iterated local search object that represents this type of local search

in MH-Builder. The algorithm 2.5 details the implementation of iterated local

search in MH-Builder.

36

Figure 2.16: The schematic of a Iterated Local Search object

Two objects are needed to instantiate an iterated local search object:

1. Local Search: The classical ILS can use any type of local search available

in MH-Builder or even other types of local searches.

2. Perturbation: An ILS uses the perturbation to escape from a local opti-

mum. The aim is to escape from the basin of attraction of the current local

optimum, ideally to find a better optimum.

2.4.1.5 Restart Iterated Local Search (R-ILS)

Figure 2.17 shows the diagram of a R-ILS object that represents this type of local

search with restarts in MH-Builder. The algorithm 2.6 details the implementation

of this object. It is consistent with the idea to balance the trade-off between inten-

sification of the best solution and diversification of the solutions encountered.

The two objects necessary for the instantiating of a R-ILS object are:

1. diversification: It is necessary to perform a jump in the search space to find

37

Figure 2.17: The schematic of a Restart Iterated Local Search object

a better region to explore. This is achieved via a full or sometimes a partial

restart. We retain two different strategies to make a large step possible: ei-

ther the initialization is performed (equivalent to a full restart) or a (fairly

large) kick is applied in the current solution. This last strategy could con-

sist in applying the swap operator 𝑘 ∈ {3, 4, 5, 10} times for example.

2. SolContinue: This is the criterion for triggering a restart. The SolCon-

tinue object corresponds to a maximum number of stagnation (𝑡𝑠). In MH-

Builder, it is an object that the user must define.

38

2.4.2 Iterated Racing (Irace)

Irace (López-Ibáñez et al., 2016) is the configurator that we use in the subse-

quent chapters of this thesis to find good algorithm configurations. Given an al-

gorithm (A), a parameter space Θ of configurations of A, and a set of the problem

instances, irace samples the configuration space and the best configurations are

selected using racing. A race starts from a certain number of sampled configura-

tions. At each step of the race, the configurations are evaluated on the instances

and those that perform statistically worse than at least one of the others are deleted.

Friedman’s non-parametric test is used for this purpose. The race then continues

with the remaining configurations. This process is repeated until a certain number

of configurations remain, a certain number of instances have been evaluated or

the computation budget has been used up. In irace, the racing is repeated multiple

times. Each time a new race starts, elitism is used to include the best previously

found solutions in the sample of configurations used to start the race.

The irace configurator considers that only one configuration is used throughout a

single run of an algorithm on some specific instance. However, for our purposes

we will need to be able to represent that multiple configurations can occur during a

single run. This is done by re-encoding a configuration to represent multiple con-

figurations as well as the information about when to switch configurations. We use

a budget of 5000 runs. We consider a specific set of training instances and another

set of validation instances to minimize any potential overfitting (Figure 2.18).

Figure 2.18: The automated design system component and the arrows define the
information flow

39

2.5 Problems and Instances

Combinatorial optimization is a very important area in operations research, ap-

plied mathematics and computer science. It includes a large number of difficult

combinatorial optimization problems (Papadimitriou & Steiglitz, 1982) from real

world applications in different fields such as manufacturing, the financial sector

or the military (Barahona, Grötschel, Jünger, & Reinelt, 1988). The objective of

these combinatorial problems is to find a better solution in a discrete space of

feasible solutions, which respects a set of conditions, also called constraints. The

evaluation of a solution is carried out using a function known as the objective func-

tion. A better alternative (optimal solution) is a feasible solution that minimizes

or maximizes, depending on the context, the objective function.

We are going to consider a context of minimization for two combinatorial prob-

lems: the permutation flowshop scheduling problem and the traveling salesman

problem. In this section, we will also describe the instances we use and how

we group instances with similar characteristics. The groups are created in order

to allow us to study what configurations work better in different contexts in the

chapters that follow.

2.5.1 Permutation Flowshop Problem (PFSP)

The permutation flowshop problem (PFSP) is among the most well-known classi-

cal NP-hard combinatorial optimization problems. The aim of the problem is to

find an optimal sequence of jobs according to some measurement.

In the literature, Fernandez-Viagas, Ruiz, and Framinan (2017); Ruiz and Stützle

(2007) and Nawaz et al. (1983) studied the minimization of the makespan (i.e., the

total completion time of the schedule) which we use in this thesis. Other objectives

40

include minimization of total flowtime Allahverdi and Aldowaisan (2002); Fram-

inan, Leisten, and Ruiz-Usano (2005); Dong, Chen, Huang, and Nowak (2013);

Rajendran (1993) and minimization of total tardiness (Valente & Alves, 2008;

Framinan & Leisten, 2008).

PFSP consists in scheduling a set of 𝑛 jobs (𝐽1, . . . , 𝐽𝑛) jobs on a set of 𝑚 ma-

chines (𝑀1, . . . , 𝑀𝑚). Machines are so-called critical resources because at most

one task can be executed at the same time on a machine. Job 𝐽𝑖 is composed of

𝑚 consecutive tasks to be performed in order on the 𝑚 machines. Each task has

a specific execution time on each machine, with 𝐽𝑖,𝑘 indicating that 𝐽𝑖 is run on

machine 𝑘 with an associated processing time 𝑃(𝑖, 𝑘). For the permutation flow

shop, each machine processes the jobs in the same order and a solution is repre-

sented by a permutation Π = (Π1,Π2,Π3, . . . ,Π𝑛). In this thesis, we are trying to

minimize the makespan, i.e, the completion time of the latest scheduled task. The

completion times 𝐶 (Π𝑖, 𝑗) for each job on each machine for a permutation Π are

given as follows:

𝐶 (Π1, 1) = 𝑃(Π1, 1) (2.2)

𝐶 (Π𝑖 , 1) = 𝐶 (Π𝑖−1, 1) + 𝑃(Π𝑖 , 1) ∀𝑖 ∈ {2, . . . , 𝑛} (2.3)

𝐶 (Π1, 𝑗) = 𝐶 (Π1, 𝑗 − 1) + 𝑃(Π1, 𝑗) ∀ 𝑗 ∈ {2, . . . , 𝑚} (2.4)

𝐶 (Π𝑖 , 𝑗) = 𝑚𝑎𝑥(𝐶 (Π𝑖−1, 𝑗), 𝐶 (Π𝑖 , 𝑗 − 1)) + 𝑃(Π𝑖 , 𝑗) ∀𝑖 ∈ {2, . . . , 𝑛},∀ 𝑗 ∈ {2, . . . , 𝑚} (2.5)

Figure 2.19 shows the example of a solution to a permutation flowshop problem

where three jobs (𝐽1, 𝐽2, 𝐽3) are scheduled on four machines (𝑀1, 𝑀2, 𝑀3, 𝑀4).

The objective is to minimize the makespan, which is equal to 12 here.

41

Figure 2.19: An example of PFSP schedule for 𝑛 = 3 jobs, 𝑚 = 4 machines

2.5.1.1 Instances

The Taillard instances (Taillard, 1993) are widely used in the literature to assess

the performance of algorithms. Different sizes are available depending on the

number of jobs and machines. The processing times of jobs are integers uni-

formly generated in the range J1, 100K. For each size, ten instances are pro-

vided. In this study, to assess the performance, we keep only larger instances with

{50, 100, 200} jobs and {10, 20} machines as follows: 50×20, 100×10, 100×20,

200×10, and 200×20.

In addition, we generate 100 training instances per instance size for the automatic

configuration phase following the same uniform distribution of processing times.

This prevents the over-fitting of parameter values to the actual test instances and

mimics real-life situations where the one would want to apply the configuration

step infrequently and then use it the configuration multiple times on new instances.

In order to assess what the best configurations on different groups of instances, we

create instance sets, or scenarios. We have four scenarios for the PFSP: 𝑆𝑎𝑙𝑙 that

contains all instance sizes, 𝑆𝑁=100 that contains all the instances with 100 jobs,

42

𝑆𝑁=200 that contains all the instances with 200 jobs, and 𝑆𝑀=20 that contains all

the instances with 20 machines.

2.5.1.2 Neighborhood Operator

We consider two PFSP neighborhood operators in this thesis: shift and swap

neighborhood operators. The shift neighborhood consists in selecting a job and

inserting in another position in the permutation. Thus, for a job position in 𝑖, it can

be re-inserted at a position 𝑗 ≠ 𝑖. The jobs positioned between these two positions

are thus shifted. Figure 2.20 shows the shift operator.

The swap consists in exchanging the place of two jobs of the permutation. Thus,

for positions 𝑖 and 𝑗 where the position 𝑖 ≠ 𝑗 , the job in 𝑖 moves to 𝑗 and the job

in 𝑗 moves to 𝑖. Figure 2.21 shows the swap operation between positions 𝑖 = 2

and 𝑗 = 5.

Figure 2.20: Example of PFSP schedule for shift neighborhood operator

Figure 2.21: Example of PFSP schedule for swap neighborhood operator

43

There are other interesting operators for the PFSP, such as the deconstruct and

reconstruct operator (Ruiz & Stützle, 2006) used in the Iterated Greedy (IG) algo-

rithm. First, the deconstruction phase chooses randomly to reject the jobs (𝑑) for

the current solution and the reconstruction phases inserts the jobs back in different

better positions. In subsequent chapters, we will refer to this operator as IG-D/R.

As an example, Figure 2.22 shows that the current solution (𝑠) represents a job

sequence, then we reject 𝑑=2 jobs (2 and 4) from the current solution (𝑠). We

then have two job sequences: 𝑠𝑒𝑞1 with all jobs rejected and 𝑠𝑒𝑞2 is the partial

sequence. In the next step, we insert job 2 of 𝑠𝑒𝑞1 in the partial sequence so as to

obtain the best partial sequence (𝑠𝑒𝑞2). We continue the same way for other jobs.

Finally, the best partial sequence becomes the current solution (𝑠
′
).

(a) Deconstruction phase (b) Reconstruction phase

Figure 2.22: Example of PFSP schedule for Deconstruct and Reconstruct

2.5.2 Traveling Salesman Problem (TSP)

The TSP is probably the best-known example of an 𝑁𝑃-hard combinatorial prob-

lem. It is often formulated in terms of visiting a number of cities. The task is that

all cities are visited exactly once during a round trip, where the cities are all con-

nected by edges whose weights are calculated by the distances of the individual

cities from each other, and the total distance of the round trip must be minimized.

In addition, the round trip must end in the city where it began. Here, the cities are

44

considered as nodes (𝑉) and the connecting roads as edges (𝐸), with each road

having a positive weight.

More formally, the problem is described by a complete graph 𝐺 = (𝑉, 𝐸) with

edge weights 𝑑𝑖 𝑗 > 0 ∀(𝑖, 𝑗) ∈ 𝐸, 𝑖 ≠ 𝑗 . We are looking for a so-called Hamil-

tonian cycle with the lowest edge (sum) weight. Due to the fact that each vertex

may be visited exactly once, the solutions of a TSP are also called "permuta-

tions" (Jungnickel, 1999). Figure 2.23 shows an example of a Hamiltonian cycle,

in blue, in a TSP with 5 cities.

Figure 2.23: Example of the Hamiltonian cycle, in blue, in a TSP for n = 5 cities.

2.5.2.1 Instances

We use the portgen and portcgen generators of the 8th DIMACS Implemen-

tation Challenge to create two types of random instances respectively: random

uniform Euclidean, and random 10-cluster Euclidean instances. An example of

a random Euclidean and a cluster Euclidean instance is displayed in Figure 2.24.

We consider instances of size 100, 200 and 400 cities. We generate 100 training

(tuning) and 10 test instances for each size. The optimal solution for all instances

45

is computed by the Concorde 1 TSP solver.

For the instance sets, or scenarios, in this thesis, we will consider two of them:

one that contains all our Euclidian instances, 𝑆𝑢, and one that contains all our

clustered instances, 𝑆𝑐.

(a) Random Uniform Euclidean (b) Cluster Euclidean

Figure 2.24: Example of 2 types of TSP instances

2.5.2.2 Neighborhood Operator

The 𝑘 − 𝑜𝑝𝑡 family of neighborhoods is widely used for the Traveling Salesman

problem. Here we use the 2-opt, 3-opt, and double-bridge (a specific

kind of 4-opt) neighborhoods. Croes (1958) proposed the 2-opt neighbor-

hood. As shown in Figure 2.25, a pair of edges, (Π𝑖, Π𝑖+1) and (Π 𝑗 , Π 𝑗+1), are

removed. They are replaced by two new edges ((Π𝑖, Π 𝑗) and (Π𝑖+1, Π 𝑗+1) where

𝑖 ≠ 𝑗 − 1, 𝑗 , 𝑗 + 1 ∀𝑖, 𝑗 , to create a feasible Hamiltonian cycle.

The 3-opt follows a similar pattern, we delete three edges and create three new

edges to bridge the gaps (Figure 2.26).

In many ILS implementations, the so-called double-bridge (DB) move is ap-

plied as a perturbation, which is a specific kind of 4-opt neighborhood (Kernighan

& Lin, 1970). In this case 4 edges are removed from the round trip. The 4 resulting

sections are then rejoined to form a complete round trip (Figure 2.27).
1http://www.math.uwaterloo.ca/tsp/index.html

46

Figure 2.25: The example of 2-opt neighborhood operator. The current solution
(𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5, 𝑛6) used a 2-opt operator removing edges (𝑛1, 𝑛2) and (𝑛5, 𝑛6)
that obtained a new neighbor (𝑛1, 𝑛5, 𝑛4, 𝑛3, 𝑛2, 𝑛6)

Figure 2.26: Example of 3-opt neighborhood operator. The neighbors of the solu-
tion (𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5, 𝑛6) are (𝑛1, 𝑛4, 𝑛5, 𝑛2, 𝑛3, 𝑛6), (𝑛1, 𝑛5, 𝑛4, 𝑛2, 𝑛3, 𝑛6), (𝑛1,
𝑛3, 𝑛2, 𝑛5, 𝑛4, 𝑛6), and (𝑛1, 𝑛6, 𝑛2, 𝑛3, 𝑛5, 𝑛4)

47

Figure 2.27: Example of Double-Bridge operator. The neighbors of the solution
(𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5, 𝑛6, 𝑛7, 𝑛8) used a 4-opt operator removing edges (𝑛1, 𝑛8), (𝑛2,
𝑛3), (𝑛4, 𝑛5), and (𝑛6, 𝑛7) which is then traversed in the orientation (𝑛1, 𝑛2, 𝑛7, 𝑛8,
𝑛5, 𝑛6, 𝑛3, 𝑛4)

48

3 | Baseline ILS Algorithms

Contents
3.1 Introduction . 50

3.2 Restart-ILS . 51

3.3 Random Multi-Configuration ILS 51

3.4 Experimental Protocol . 52

3.4.1 Configuration Space 52

3.4.2 Protocol . 52

3.5 Experimental Results . 55

3.5.1 Results on PFSP . 55

3.5.2 Results on TSP . 56

3.6 Conclusion . 58

49

3.1 Introduction

Difficult optimisation problems are often solved by metaheuristics and hyper-

heuristics. These frequently have many parameters or strategic components that

alter their behaviour. There exists a set of parameter values / strategic compo-

nents that corresponds to the best configuration for each instance of a problem.

The problem of finding the best configuration to achieve the best performance can

be approached through parameter tuning and parameter control. Parameter tun-

ing of an algorithm involves optimizing the parameter values and the choice of

the strategic components before running the algorithm, while parameter control

is about adjusting the parameter values and modifying the strategic components

during the execution. Since parameter tuning is performed before the final execu-

tion of the algorithm, it allows the evaluation of a large number of configurations.

On the other hand, parameter control generally searches into a very few number

of configurations, mainly 2 or 3 possible values of parameters of strategic com-

ponents. In this context, we designed automatic multi-configuration algorithms,

presented in next chapters, that modify the configuration during the run where the

configurations used have been chosen by tuning in an offline process.

In this chapter we will present our baseline ILS algorithms that will be used to

evaluate the performance of our contribution. Section 3.2 presents the framework

of the R-ILS (see Chapter 2). It is the baseline for the tuning process. Section 3.3

presents the random multi-configuration ILS where a new configuration is selected

after each restart of R-ILS. It is the baseline for the control process. Section 3.4

presents the parameter values and the strategic components used in the manuscript

and we give the experimental protocol to evaluate the performance of our two

baseline algorithms. Section 3.5 shows the results of our baseline algorithms on

two permutation problems, namely the permutation flowshop scheduling problem

50

and the traveling salesman problem (see Section 2.5).

3.2 Restart-ILS

R-ILS embeds a basic hill-climbing where different exploration strategies can be

chosen (see Chapter 2). The perturbation phase of R-ILS aims to escape from

local optima. And its restart phase aims to diversify the search and to jump to new

region of the search space. R-ILS is a classical framework of local search and so,

is our baseline where only one configuration is performed during the whole run

(Figure 3.1). For this purpose, a small configuration space will be used for the

experiments.

Figure 3.1: Single-configuration Model

3.3 Random Multi-Configuration ILS

The random multi-configuration ILS (R-MC-ILS) is a Restart-ILS where a con-

figuration is randomly chosen among all possible ones after each restart. The

diversification is doubled since the restart mechanism naturally leads to other re-

gions of the search space and the search space is visited differently in each region.

In effect, this creates 𝑐𝑖 potential configurations during the execution of the algo-

rithm as illustrated in Figure 3.2.

51

Figure 3.2: Random Multi-configuration Model

3.4 Experimental Protocol

In this section, we experiment the R-ILS and the R-MC-ILS.

3.4.1 Configuration Space

Tables 3.1 and 3.2 report all the strategic components/parameters and their re-

spective values presented in Chapter 2 for PFSP and TSP respectively. It leads

to a configuration space of 1200 (2×2×4×3×(1+4)×5) different configurations of

PFSP and 3200 (4×2×4×4×(1+4)×5) different configurations of TSP.

With 1200 and 3200 configurations of PFSP and TSP respectively, the size of the

space is already too large to exhaustively test all of them within a reasonable time.

Therefore, we propose to fix 𝑑, 𝑏 = 4 and 𝑘 = 3, been the best parameter values

found in the literature respectively, and to fix 𝑠𝑡𝑔 = 100, being the middle value in

that parameter domain. It drastically reduces the size of the configuration space

to 32 and 64 of PFSP and TSP respectively, and enables to perform the exhaustive

analysis.

3.4.2 Protocol

The termination criterion of the algorithm is defined as a maximum number of

evaluations. We prefer using a maximum number of evaluations instead of a max-

52

Table 3.1: Configuration Space. Numerical values with a start (*) have been se-
lected for the exhaustive analysis for PFSP

Component/Parameter Value

Neighborhood Operator {shift, swap}
Neighborhood Order {random, order}
Exploration Strategy {IHCfirst, IHCbest, IHCworst, IHClahc}
Perturbation algo {IG-D/R}
Perturbation strength d {2, 3, 4*}
Diversification algo {init, kick}
Diversification strength k {3*, 4, 5, 10}
Stagnation criterion stg {0, 50, 100*, 150 , 200}

Table 3.2: Configuration Space. Numerical values with a start (*) have been se-
lected for the exhaustive analysis for TSP

Component/Parameter Value

Neighborhood Operator {shift, swap, 2-opt, 3-opt}
Neighborhood Order {random, order}
Exploration Strategy {IHCfirst, IHCbest, IHCworst, IHClahc}
Perturbation algo {DB}
Perturbation strength b {1, 2, 3, 4*}
Diversification algo {init, kick}
Diversification strength k {3*, 4, 5, 10}
Stagnation criterion stg {0, 50, 100*, 150 , 200}

imum run-time because counting the number of evaluations is independent from

the source code optimization, and then, the performance assessment is fairer be-

tween the algorithms. It is also independent of the machines used and of the load

of the machines. This is especially important given that we run the experiments

on a cluster with multiple concurrent users and CPUs that have TurboBoost (their

frequency changes according to their load). Tables 3.3 and 3.4 report the max-

imum number of evaluations set for each instance size. This number has been

experimentally determined in order to encounter several stagnation periods and

therefore trigger several restarts. As metaheuristics are stochastic algorithms, we

53

perform 30 independent runs for each instance for each algorithm model.

Table 3.3: Maximum number of evaluations per instance size for PFSP.

Size Evaluation number

50×20 40 × 106

100×10 60 × 106

100×20 100 × 106

200×10 200 × 106

200×20 400 × 106

Table 3.4: Maximum number of evaluations per cities size for both instances of
TSP.

Size Evaluation number

100 50 × 106

200 250 × 106

400 800 × 106

In order to compare the models on different instances, we propose to compute the

relative percentage deviation (𝑅𝑃𝐷) as follows:

RPD =
𝐶𝑚𝑎𝑥 (𝜋) − 𝐶𝑚𝑎𝑥 (𝜋∗)

𝐶𝑚𝑎𝑥 (𝜋∗)
× 100 (3.1)

where 𝐶𝑚𝑎𝑥 (𝜋∗) is the best-known values. Then, the Friedman test is used to

test the statistical equality of each model considering all instances or each size

separately.

The models are implemented using the MH-Builder, a C++ metaheuristic opti-

mization framework currently under development in our research team. The ex-

periments were executed on 80 nodes of four 20-core 2.20GHz Intel Xeon Pro-

cessor (Skylake, IBRS) with 16MB L3 cache and 500GB RAM, running Ubuntu

18.04.4 LTS.

54

3.5 Experimental Results

Let us remember that we perform two sets of experiments: first, we conduct

an exhaustive analysis of a small configuration space for the R-ILS and second,

we statistically compare the performance of R-ILS and R-MC-ILS, the baseline

algorithm that modifies the configuration on the fly at each restart.

3.5.1 Results on PFSP

Table 3.5 reports, for each size of instance, the best configurations of R-ILS where

the strength of the perturbation and the strength of the diversification have been

set to 4 and 3 respectively and the stagnation criterion in 100 in order to enable

an exhaustive exploration. The best configurations shown are the ones that are

statistically better among the 32 available ones.

Not surprisingly, the shift operator is preferred to the swap operator to gen-

erate the neighbors of the current solutions and the random exploration of the

neighborhood is chosen in each R-ILS. In these experiments, the hill climbing al-

gorithms based on the IHCfirst strategy or the IHClahc strategy applied with

a kick diversification lead to the best performance for all instances.

In the following, we will refer to these best configurations as 𝑒𝑥ℎ1 and 𝑒𝑥ℎ2 re-

spectively. For instance with 10 machines, the init diversification with the late

acceptance strategy are also equivalent to the latter. These results are those ex-

pected based on the literature. This shows that our protocol is well adjusted to

assess the performance of our models to solve the Taillard instances of the PFSP.

In the following, we compare R-ILS with R-MC-ILS. We analyze the resulting

55

Table 3.5: Best configurations of the R-ILS on Taillard instances for PFSP.

Sizes ILS Diversification stg

50×20
shift, random, IHCfirst, IG-D/R(4)
shift, random, IHClahc, IG-D/R(4)

kick(3)
kick(3)

100
100

100×10
shift, random, IHCfirst, IG-D/R(4)
shift, random, IHClahc, IG-D/R(4)
shift, random, IHClahc, IG-D/R(4)

kick(3)
kick(3)

init

100
100
100

100×20
shift, random, IHCfirst, IG-D/R(4)
shift, random, IHClahc, IG-D/R(4)

kick(3)
kick(3)

100
100

200×10
shift, random, IHCfirst, IG-D/R(4)
shift, random, IHClahc, IG-D/R(4)
shift, random, IHClahc, IG-D/R(4)

kick(3)
kick(3)

init

100
100
100

200×20
shift, random, IHCfirst, IG-D/R(4)
shift, random, IHClahc, IG-D/R(4)

kick(3)
kick(3)

100
100

All Instances
shift, random, IHCfirst, IG-D/R(4)
shift, random, IHClahc, IG-D/R(4)

kick(3)
kick(3)

100
100

algorithm configuration on the test set instances. Our finding is that R-ILS clearly

outperforms R-MC-ILS for all scenarios and instance sizes of the problem (see

also Tables 3.6-3.7).

3.5.2 Results on TSP

For the TSP, two scenarios are considered: the first one with random uniform

Euclidean instances (S𝑢) and the second one with random 10-cluster Euclidean

instances (S𝑐) as detailed in Chapter 2.5.2.

Table 3.8 gives the description of the exhaustive analysis of the R-ILS for the

56

Table 3.6: Statistical comparison of R-ILS and R-MC-ILS for each scenario on
PFSP instances.

Scenario single-config. online-multi.

𝑒𝑥ℎ1 𝑒𝑥ℎ2 𝑟𝑛𝑑

𝑆𝑎𝑙𝑙 + + −

𝑆𝑁=100 + + −

𝑆𝑁=200 + + −

𝑆𝑀=20 + + −

Table 3.7: Statistical comparison of single-configuration models and online multi-
configuration models for each size on PFSP instances.

Size single-config. online-multi.

𝑒𝑥ℎ1 𝑒𝑥ℎ2 𝑟𝑛𝑑

50×20 + + −

100×10 + + −

100×20 + + −

200×10 + + −

200×20 + + −

two scenarios (S𝑢, S𝑐) where the values of the perturbation and diversification

strengths and the stagnation criterion have been fixed to 4, 3 and 100 respec-

tively like for the experiments conducted on the FSP. The IHCbest exploration

strategy was selected for 100 cities-instances associated with the order neigh-

borhood and 2-opt neighborhood operator, while for 200 cites-instances of sce-

57

nario S𝑐 the random neighborhood order and 3-opt neighborhood operator was

preferred. In this experiment of the S𝑢 scenario and S𝑐 scenario, the two configu-

rations (𝑒𝑥ℎ1 and 𝑒𝑥ℎ2) share the three ILS-parameters namely the neighborhood

operator (3-opt), the neighborhood order (random) , and the exploration strat-

egy (IHCFirst) and both are associated with the two available diversification

(init and kick).

Then, we compare R-ILS and R-MC-ILS. The results of Tables 3.9 and 3.10 show

that R-ILS outperforms R-MC-ILS statistically.

3.6 Conclusion

In this section, we presented basic algorithms namely R-ILS and R-MC-ILS that

will be used as baselines for the next experiments . We reduced the configuration

space of R-ILS to 32 and 64 for PFSP and TSP respectively. Therefore, we were

enabled to perform an exhaustive analysis of the R-ILS configurations assessed on

the whole test instance sets. Next, we implemented the R-MC-ILS which chooses

a configuration on the fly among 1200 and 3200 configurations for PFSP and TSP

respectively. Finally, we compared our baseline algorithms, R-ILS and R-MC-

ILS, with each other, on PFSP and TSP.

For PFSP, two configurations 𝑒𝑥ℎ1 and 𝑒𝑥ℎ2 of R-ILS outperform the 32 other

ones. Both configurations use the shift operator, the random neighborhood

order and the kick(3) diversification. They differ by the exploration strategy

being IHCfirst and IHClahc respectively. These two strategies are know in

the literature to be efficient on the PFSP. For TSP, the R-ILS configurations 𝑒𝑥ℎ1

and 𝑒𝑥ℎ2 have been selected over the 64 available ones. Both configurations share

the same ILS being the 3-opt operator, the random neighborhood order, the

IHCfirst exploration and the DB(4) perturbation. However, the two possible

58

Table 3.8: Best configurations of R-ILS for TSP.

Sizes ILS Diversification stg

Random Uniform Euclidean Instances

100

2-opt, order, IHCbest, DB(4)
2-opt, order, IHCbest, DB(4)

3-opt, random, IHCfirst, DB(4)
3-opt, random, IHCfirst, DB(4)

kick(3)
init

kick(3)
init

100
100
100
100

200
3-opt, random, IHCfirst, DB(4)
3-opt, random, IHCfirst, DB(4)

kick(3)
init

100
100

400
3-opt, random, IHCfirst, DB(4)
3-opt, random, IHCfirst, DB(4)

kick(3)
init

100
100

S𝑢
3-opt, random, IHCfirst, DB(4)
3-opt, random, IHCfirst, DB(4)

kick(3)
init

100
100

Random 10-Clusters Euclidean Instances

100

2-opt, order, IHCbest, DB(4)
2-opt, order, IHCbest, DB(4)

3-opt, random, IHCfirst, DB(4)
3-opt, random, IHCfirst, DB(4)

kick(3)
init

kick(3)
init

100
100
100
100

200

3-opt, random, IHCbest, DB(4)
3-opt, random, IHCbest, DB(4)
3-opt, random, IHCfirst, DB(4)
3-opt, random, IHCfirst, DB(4)

kick(3)
init

kick(3)
init

100
100
100
100

400
3-opt, random, IHCbest, DB(4)
3-opt, random, IHCfirst, DB(4)
3-opt, random, IHCfirst, DB(4)

kick(3)
kick(3)

init

100
100
100

S𝑐
3-opt, random, IHCfirst, DB(4)
3-opt, random, IHCfirst, DB(4)

kick(3)
init

100
100

59

Table 3.9: Statistical comparison of R-ILS and R-MC-ILS for each scenario on
TSP instances.

Scenario single-config. online-multi.

𝑒𝑥ℎ1 𝑒𝑥ℎ2 𝑟𝑛𝑑

Random Uniform Euclidean Instances

S𝑐 + + −

Random 10-Cluster Euclidean Instances
S𝑢 + + −

Table 3.10: Statistical comparison of R-ILS and R-MC-ILS for each size on TSP
instances.

Size single-config. online-multi.

𝑒𝑥ℎ1 𝑒𝑥ℎ2 𝑟𝑛𝑑

Random Uniform Euclidean Instances

100 + + −

200 + + −

400 + + −

Random 10-Cluster Euclidean Instances
100 + + −

200 + + −

400 + + −

diversification strategies being init and kick(3) seem to have less impact on

performance. For both PFSP and TSP, R-ILS outperforms R-MC-ILS.

60

4 | Sequential Multi-Configuration ILS

This chapter presents the work published in international peer-reviewed confer-

ences and workshops:

- Sae-Dan, W., Kessaci, M.-E., Veerapen, N., & Jourdan, L.(2020).Time-dependent

automatic parameter configuration of a local search algorithm. In Proceedings of

the 2020 Genetic and Evolutionary Computation Conference Companion. ECADA

Workshop, p. 1898-1905.

- Sae-Dan, W., Kessaci, M.-E., Veerapen, N., & Jourdan, L. (2020, January). Con-

figuration of Time-Dependent Local Search for the Travelling Salesman Problem.

In ORBEL - The Belgian Operational Research (OR) Society.

- Sae-Dan, W., Kessaci, M.-E., Veerapen, N., & Jourdan, L. (2019, September).

Automatic Configuration of a Dynamic Hill Climbing Algorithm. In SLS - Inter-

national Workshop on Stochastic Local Search Algorithms.

Contents
4.1 Introduction . 62

4.2 Sequential Multi-configuration ILS 62

4.3 Experimental Protocol . 63

4.3.1 Configuration Space for PFSP 64

4.3.2 Configuration Space for TSP 64

4.4 Experimental Results . 65

4.4.1 Results on PFSP . 65

4.4.2 Results on TSP . 66

4.5 Conclusion . 69

61

4.1 Introduction

Automatic algorithm configuration (AAC), also known as parameter tuning, pro-

vides a single configuration of the target algorithm. On the other hand, adap-

tive algorithms evolve in the search space and modify on the fly their parame-

ters/strategic components to locally adapt to the search space regions. In Chapter

3, we saw that the adaptation is difficult when a large number of configurations is

possible. Our aim is to design algorithms able to locally adapt their configurations

by choosing among a large number of parameters/strategic components. In this

chapter, we propose a first approach where the configuration of a R-ILS is modi-

fied when a number of evaluations is reached. The configurations used during the

execution of the R-ILS are tuned using AAC on a large space of configurations.

Section 4.2 presents this approach called Sequential multi-configuration ILS since

the ordering of the configurations is predefined. Section 4.3 gives the experimen-

tal protocol we followed to conduct the experiments on the PFSP and the TSP.

Section 4.4 presents the experimental results.

4.2 Sequential Multi-configuration ILS

R-ILS is an iterated local search with a restart mechanism when stagnation (here

a certain number of evaluations without improvement) is met. We want to de-

sign a R-ILS that modifies its parameter values and strategic components dur-

ing the execution to better explore the search space. Contrary to adaptive algo-

rithms where the choice of the next configuration is made on the fly, here, we

propose to automatically configure a R-ILS to deal with a large configuration

space. Our approach is based on the dynamic framework proposed by Pageau

62

et al. (2019) for multi-objective optimization. The Sequential Multi-configuration

ILS (S-MC-ILS) is a framework based on R-ILS and is designed to be easily

tuned with AAC configurator. Indeed, considering a maximal number of evalua-

tions 𝐸 and a number of successive configurations 𝐾 , we instantiate 𝐾 successive

R-ILS. For each one, the budget 𝑒′
𝑘

(number of evaluations) has to be defined.

Figure 4.1 gives an illustration of our framework. In addition to the configura-

tion space of the original R-ILS, the S-MC-ILS has its own parameters to define

being the percentages 𝐸𝑘 (with 𝑘 ∈ {1, ..., 𝑘}) to split the total number of eval-

uations into the K configurations. In the following, we consider only 5 possible

percentages being {10, 25, 50, 75, 90}. Then, each budget is calculated as fol-

lows: 𝑒1 = (𝐸 × 𝐸1)/100; 𝑒2 = ((𝐸 − 𝑒1) × 𝐸2)/100; more generally, for 𝑘 < 𝐾 ,

𝑒𝑘 = ((𝐸 − ∑𝑘−1
𝑖=1 𝑒𝑖) × 𝐸𝑘)/100. The final split, 𝑒𝐾 = 𝐸 − ∑𝐾−1

𝑖=1 𝑒𝑖, uses up

the remaining budget. For 𝐾 splits, we therefore have {𝑒1, 𝑒2, . . . , 𝑒𝐾} associated

evaluation budgets. For example, if 𝐾 = 3, three different splits {𝑒1}, {𝑒1, 𝑒2} and

{𝑒1, 𝑒2, 𝑒3} respectively (see Figure 4.1). Note that {𝑒1} corresponds to the orig-

inal R-ILS. For example, if the maximal number of evaluations is 1000 and the

configurator sets parameters 𝐸1 = 25 % and 𝐸2 = 50 % then the budget for each

of the the 3 configurations will be 𝑒1 = 250, 𝑒2 = 375 and 𝑒3 = 375 evaluations.

4.3 Experimental Protocol

In this section, we describe the choices that lead to the configuration space used

in the experiments for the sequential multi-configuration model to optimise the

configuration of the target algorithm on given instances of PFSP and TSP.

63

Figure 4.1: Sequential Multi-configuration ILS

4.3.1 Configuration Space for PFSP

For a single time split (𝐾=1), we have 1200 (2 × 2 × 4 × 3 × (4 + 1) × 5) po-

tential configurations (see Table 3.1) of our algorithm per evaluation split. For a

single evaluation split (𝐾 = 1) therefore we have the same 1200 configurations

and the multi-configuration nature of the framework is not exploited. For 𝐾 = 2,

or 2 splits, then the fraction of the first evaluation split will be chosen among the

5 different possibilities already presented (|s| = |{10,25,50,75,90}| = 5) and the

second and final time split will take the remaining budget. This amounts to ap-

proximately 7.20 × 10+6 different configurations (1200+5×12002). When 𝐾 = 3,

or 3 evaluation splits, then we have a total of approximately 4.32× 10+10 different

configurations (1200 + 5 × 12002 + 52 × 12003).

4.3.2 Configuration Space for TSP

For a single evaluation split (𝐾 = 1), we have 3200 (4×2×4×4×(4+1)×5) potential

configurations (see Table 3.2). For 𝐾 = 2 and 𝐾 = 3, we obtain approximately

64

5.12 × 10+7 and 8.19 × 10+11 different configurations, respectively.

4.4 Experimental Results

In this section, we experiment S-MC-ILS on PFSP and TSP. First, we use the

irace configurator with a limited tuning budget of 5000 runs to identify the best

configurations of S-MC-ILS for each problem. The comparison with our baseline

algorithms presented in Chapter 3 will be presented in Chapter 5.

4.4.1 Results on PFSP

In order to tune S-MC-ILS, we have generated our own training instances. Then,

the performance of the best configurations selected by irace is compared on Tail-

lard instance. Table 4.1 reports for the four scenarios 𝑆𝑎𝑙𝑙 , 𝑆𝑁=100, 𝑆𝑁=200 and

𝑆𝑀=20 the best configurations returned by irace (𝑠𝑒𝑞𝑖) . These S-MC-ILS have

three splits, meaning that three different ILS should be performed successively

during the run. For all scenarios, the best configurations 𝑠𝑒𝑞𝑖 contain the best con-

figurations of R-ILS 𝑒𝑥ℎ1 and 𝑒𝑥ℎ2 identified in Chapter 3. The numerical values

were not available for the exhaustive exploration which were maybe increasing

the possible values would have produced some different results. The IHCbest

strategy is bigger improvements that are found in whole configurations, while

IHCworst strategy was found to be useful in one of each scenario. This is in

keeping with the literature (Tari et al., 2018) that shows that this unlikely operator

can be useful in specific situations. Surprising, 𝑆𝑁=100 in ILS1 are started with one

of the best exhaustive configuration of R-ILS. The parameters of the whole phases

are more varied, with the swap neighborhood operator, considered quite ineffi-

cient by PFSP specialists, being used here. In an overall picture, only the init

diversification is used to diversify the search for each restart (completed restart)

65

in 𝑠𝑒𝑞2 of 𝑆𝑁=200 in ILS3 while the other scenarios used the kick diversification,

it seems to be better to jump to closer locations of the search space rather than

starting a new. The stagnation criteria are at least set to 50.

4.4.2 Results on TSP

irace was performed to determine the best configurations for the TSP (Table 3.2.

In brief, Table 4.1 gives, for each scenario (𝑆𝑢, 𝑆𝑐), the sequential multi-configuration

returned over configurations space maximum 10+11 for two scenarios. The whole

scenario is composed of the best exhaustive configurations 𝑒𝑥ℎ1 and 𝑒𝑥ℎ2 of R-

ILS previously found in Chapter 3.

For the 𝑆𝑢 scenario three configurations (𝑠𝑒𝑞𝑆𝑢1 , 𝑠𝑒𝑞𝑆𝑢2 and 𝑠𝑒𝑞𝑆𝑢3) of S-MC-ILS

were returned by irace and each configuration use a different maximum split.

In addition, it seems that three splits give better results since more configura-

tions have been tested. The IHCbest strategy is selected in the whole con-

figuration and selected with a variety of neighborhood operators. On the other

hand, the IHCworst is selected only one for 𝑠𝑒𝑞𝑆𝑢3 in ILS3 and selected chosen

with order neighborhood. Moreover, the whole configuration in ILS3 uses only

kick diversification, while the other configurations have used the combination of

two available diversification components (kick, init). init jumps to a new

location in the search space (full restart). The 𝐼𝐿𝑆2 of all configurations is set to

only 50 of the stagnation criterion while other configurations are at least set to 100

stagnation.

For S𝑐 scenario, the best four (𝑠𝑒𝑞𝑆𝑐1 , 𝑠𝑒𝑞𝑆𝑐2 , 𝑠𝑒𝑞𝑆𝑐3 , and 𝑠𝑒𝑞𝑆𝑐4) configurations of

sequential multi-configurations were returned by irace. It seems that three splits

give better results since more configurations have been tested. The parameters

of the third phases is more varied with the swap operator for 𝑠𝑒𝑞𝑆𝑐1 and 𝑠𝑒𝑞𝑆𝑐2 in

66

ILS3. The neighbors generated with the swap neighborhood operator are different

from the ones generated with the shift. This choice enables new connections

between solutions it changes the search landscape. The first, best configuration in

ILS1 used kick diversification, while other configurations in ILS1 used the init

diversification.

67

Table 4.1: Best configurations of the S-MC-ILS for PFSP returned by irace.

Size Conf. 𝐾1 𝐾2 𝐾3
𝑒1 𝑒2

𝐼𝐿𝑆1 Diversification stg 𝐼𝐿𝑆2 Diversification stg 𝐼𝐿𝑆3 Diversification stg

𝑆𝑎𝑙𝑙

𝑠𝑒𝑞
𝑆1
1

𝑠𝑒𝑞
𝑆1
2

𝑠𝑒𝑞
𝑆1
3

shift, random, IHCfirst, IG-D/R(4)
shift, random, IHCfirst, IG-D/R(4)
shift, order, IHCbest, IG-D/R(4)

kick(3)
kick(5)
kick(3)

200
150
200

shift, random, IHClahc, IG-D/R(2)
shift, order, IHCbest, IG-D/R(3)

shift, random, IHCfirst, IG-D/R(3)

kick(3)
kick(3)
kick(4)

50
200
150

swap, order, IHCfirst, IG-D/R(2)
shift, order, IHCworst, IG-D/R(2)
shift, random, IHClahc, IG-D/R(4)

kick(4)
kick(4)
kick(4)

100
100
150

75
90
90

75
25
25

𝑆𝑁=100

𝑠𝑒𝑞
𝑆2
1

𝑠𝑒𝑞
𝑆2
2

𝑠𝑒𝑞
𝑆2
3

shift, random, IHCfirst, IG-D/R(3)
shift, random, IHCfirst, IG-D/R(3)
shift, random, IHCfirst, IG-D/R(4)

kick(3)
kick(10)
kick(5)

200
150
200

swap, random, IHCworst, IG-D/R(4)
shift, order, IHClahc, IG-D/R(4)
swap, order, IHCbest, IG-D/R(4)

kick(5)
kick(3)
kick(3)

150
50
100

swap, order, IHCbest, IG-D/R(4)
swap, random, IHCbest, IG-D/R(3)
shift, random, IHClahc, IG-D/R(3)

kick(4)
kick(5)
kick(5)

50
150
150

90
90
75

10
25
25

𝑆𝑁=200

𝑠𝑒𝑞
𝑆3
1

𝑠𝑒𝑞
𝑆3
2

𝑠𝑒𝑞
𝑆3
3

𝑠𝑒𝑞
𝑆3
4

shift, random, IHCfirst, IG-D/R(4)
shift, random, IHClahc, IG-D/R(4)
shift, random, IHCfirst, IG-D/R(4)
swap, random, IHClahc, IG-D/R(4)

kick(10)
init

kick(4)
kick(10)

100
200
100
200

swap, order, IHCfirst, IG-D/R(4)
shift, random, IHCfirst, IG-D/R(3)
swap, order, IHCbest, IG-D/R(4)

shift, random, IHCfirst, IG-D/R(3)

kick(3)
init

kick(10)
kick(3)

100
200
100
200

shift, order, IHClahc, IG-D/R(4)
swap, order, IHCbest, IG-D/R(3)

shift, random, IHCworst, IG-D/R(4)
shift, order, IHCbest, IG-D/R(4)

kick(10)
init

kick(4)
kick(4)

50
100
150
150

90
10
90
25

10
75
75
75

𝑆𝑀=20

𝑠𝑒𝑞
𝑆4
1

𝑠𝑒𝑞
𝑆4
2

𝑠𝑒𝑞
𝑆4
3

shift, random, IHCfirst, IG-D/R(3)
shift, random, IHCfirst, IG-D/R(3)
shift, random, IHClahc, IG-D/R(3)

kick(3)
kick(4)
kick(4)

200
150
200

shift, order, IHCbest, IG-D/R(4)
shift, order, IHCworst, IG-D/R(4)
shift, order, IHCfirst, IG-D/R(4)

kick(3)
kick(10)
kick(10)

150
100
200

swap, order, IHClahc, IG-D/R(4)
swap, order, IHCbest, IG-D/R(2)

swap, random, IHCbest, IG-D/R(3)

kick(4)
kick(10)
kick(10)

50
200
50

75
90
90

75
75
75

Table 4.2: Best configurations of the S-MC-ILS for TSP returned by irace.

Size Conf. 𝐾1 𝐾2 𝐾3
𝑒1 𝑒2

𝐼𝐿𝑆1 Diversification stg 𝐼𝐿𝑆2 Diversification stg 𝐼𝐿𝑆3 Diversification stg

𝑆𝑢

𝑠𝑒𝑞
𝑆𝑢
1

𝑠𝑒𝑞
𝑆𝑢
2

𝑠𝑒𝑞
𝑆𝑢
3

3-opt, random, IHCfirst, DB(2)
3-opt, order, IHCbest, DB(1)

3-opt, random, IHCfirst, DB(3)

kick(3)
init
init

150
200
200

shift, random, IHCbest, DB(2)
3-opt, random, IHCfirst, DB(3)
3-opt, order, IHCbest, DB(3)

init
kick(3)

init

50
50
50

3-opt, random, IHCbest, DB(4)
2-opt, order, IHCbest, DB(2)
shift, order, IHCworst, DB(1)

kick(4)
kick(10)
kick(4)

100
200
200

90
75
75

75
10
10

S𝑐

𝑠𝑒𝑞
𝑆𝑐
1

𝑠𝑒𝑞
𝑆𝑐
2

𝑠𝑒𝑞
𝑆𝑐
3

𝑠𝑒𝑞
𝑆𝑐
4

3-opt, order, IHCworst, DB(2)
3-opt, random, IHCfirst, DB(1)
3-opt, random, IHCfirst, DB(2)
3-opt, random, IHCbest, DB(2)

kick(3)
init
init
init

200
200
50

200

3-opt, random, IHCfirst, DB(1)
3-opt, order, IHCbest, DB(1)

shift, random, IHCbest, DB(1)
3-opt, random, IHCfirst, DB(1)

kick(3)
kick(10)

init
kick(10)

200
100
50
50

swap, random, IHCbest, DB(1)
swap, random, IHClahc, DB(3)
3-opt, random, IHCfirst, DB(4)
3-opt, order, IHCfirst, DB(1)

kick(10)
init

kick(4)
init

200
150
150
50

75
50
75
75

75
75
10
90

68

4.5 Conclusion

In this Chapter, we presented the Sequential Multi-configuration ILS that modi-

fies successively the configuration when a number of predefined number of eval-

uations is reached. The configurations are also tuned before the run using AAC,

and more precisely the irace configurator. The S-MC-ILS framework is a first

approach to benefit from both parameter tuning and parameter control. Indeed,

the AAC of S-MC-ILS enables to consider a large search space of parameters that

parameter control approach cannot. In the experiments, we allowed the use of up

to three configurations in sequence to solve instances of PFSP or TSP. We showed

that the best S-MC-ILS use 3 successive configurations. However, the main draw-

back of this approach is the fixed number of modification during the run which

depends on the number of evaluations. In the next chapter, we present a more

flexible approach based on probabilistic models.

69

70

5 | Probabilistic Multi-Configuration ILS

This chapter presents the work published in HIS, an international peer-reviewed

conference:

- Sae-Dan, W., Kessaci, M.-E., Veerapen, N., & Jourdan, L.(2021, December).

Automatic Algorithm Multi-Configuration Applied to an Optimization Algorithm.

In 21st International Conference on Hybrid Intelligent Systems (HIS 2021), p.

160-170.

Contents
5.1 Introduction . 72

5.2 Probabilistic Multi-configuration ILS 72

5.2.1 Fixed Model . 73

5.2.2 Roulette Model . 74

5.3 Experimental Protocol . 75

5.3.1 Configuration Space for PFSP 76

5.3.2 Configuration Space for TSP 76

5.4 Experimental Results . 76

5.4.1 Results on PFSP . 77

5.4.2 Results on TSP . 82

5.5 Comparisons of the Automatic Multi-Configuration ILS mod-

els . 85

5.5.1 Experimental Protocol 85

5.5.2 Experimental Results 85

5.6 Conclusion . 96

71

5.1 Introduction

In this chapter, we present an other approach to use both parameter tuning and

parameter control to improve the performance of the R-ILS. Contrary to the Se-

quential Multi-Configuration ILS presented in Chapter 4 where the configuration

is modified when a number of evaluations is reached, this new approach is able to

modify the configuration of the R-ILS after each restart when stagnation is met.

Then we propose two models: the first one leads to a fixed order decision while

the second one uses roulette selection to choose the next configuration to apply.

Section 5.2 presents this approach called Probabilistic Multi-Configuration ILS

and the fixed and the roulette models designed to select the next configuration

after each restart. Section 5.3 gives the experimental protocol we followed to

conduct the experiments on the PFSP and the TSP. Section 5.4 presents the ex-

perimental results of the two models of the Probabilistic Multi-Configuration ILS.

Section 5.5 reports and analyzes the results of the comparison between our two

Multi-Configuration ILS, namely Sequential and Probabilistic, and the baseline

algorithms, namely R-ILS and R-MC-ILS (see Chapter 3).

5.2 Probabilistic Multi-configuration ILS

In this chapter, we consider scenarios where offline tuning potentially determines

which algorithm configuration to apply initially, but also after a restart of some al-

gorithm. Here, we instantiate this multi-configuration model on an Iterated Local

Search as Probabilistic Multi-configuration ILS (P-MC-ILS) whose components

are detailed in Chapter 2. A restart provides a fairly intuitive point at which it

makes sense to potentially switch configuration. The type of restart operator (in-

cluding if it is a full or partial restart) is a parameter in itself, as is the condition

72

that triggers the restart.

When the ILS algorithm is stagnant, it continues to run and therefore loses time

in the search process as the current solution cost does not improve, i.e., the search

stagnates. The deciding criterion for a restart is often a number of stagnation

steps. In this thesis, we opt for the simplest option of letting the configurator

select a maximum number of stagnation steps among a discrete set of values that

triggers a restart.

Aside from the parameters related to the restart mechanism, the remaining ones

are for the ILS and its building blocks, as well as the initialization mechanism.

These are changed according to two types of scenarios that will be detailed further:

fixed multi-configuration and roulette multi-configuration.

While automatic algorithm configuration is very powerful, increasing the number

of parameters requires additional tuning time. For this reason, as well as for the

sake of simplicity, we restrict ourselves to a maximum of three different configu-

rations of P-MC-ILS that can be returned by the configurator.

The P-MC-ILS consists of two model: (1) fixed model iterates tuned ILS in a

predefined order and (2) the roulette model selects, after each restart, one of the

tuned ILS following a predefined probability.

5.2.1 Fixed Model

In fixed multi-configuration the configurations are applied in a predefined se-

quence that loops around until the total execution budget is used up as illustrated

in Figure 5.1. There can be a sequence of two or three configurations. The trivial

single-configuration variant is also there to serve as a baseline and the same con-

figuration (𝑐1) is used after each restart until the stopping criterion is reached (Fig-

ure 5.1(a)). In the two- and three-configuration versions, we start with some initial

73

configuration (𝑐1), then switch to 𝑐2 after the restart. These two configurations are

then used sequentially until the stopping criterion is met for the two-configuration

version (Figure 5.1(b)). While the three-configuration version naturally employs

a third configuration (Figure 5.1(c)).

(a) Single-configuration model

(b) Two-configuration model

(c) Three-configuration model

Figure 5.1: Fixed multi-configuration Model

5.2.2 Roulette Model

For roulette multi-configuration ILS, we consider two and three configurations

with roulette wheel selection, and dispense from using a single trivial configura-

tion as this is equivalent to the fixed single-configuration.

In this setting, the probability of applying each configuration is a parameter op-

74

timized by the configurator. The application of each configuration is illustrated

in Figure 5.2. We always start with configuration (𝑐1). Then, after each restart,

each configuration can be chosen with some fixed probability. Configuration 𝑐1 is

assigned some percentage value 𝑝1 that will trivially correspond to probability 𝑃1.

In the two-configuration case, 𝑐2 then automatically has probability 𝑃2 = 1 − 𝑃1.

In the three-configuration case, 𝑐2 is assigned some percentage value 𝑝2 of the

remaining 1 − 𝑃1, which gives a probability 𝑃2 = 𝑝2 × (1 − 𝑃1) for 𝑐2. Finally

𝑐3 automatically has probability 𝑃3 = 1 − (𝑃1 + 𝑃2). As an example, if 50 % is

chosen for both 𝑐1 and 𝑐2, then the probability of 𝑐1 will be 0.5, 𝑐2 will be 0.25

(50 % of the remaining 0.5) and 𝑐3 will be 0.25 (1 − (0.5 + 0.25)).

(a) Two-configuration model

(b) Three-configuration model

Figure 5.2: Roulette multi-configuration Model

5.3 Experimental Protocol

Tables 3.1 and 3.2 report all the search components/parameters and their respec-

tive values presented in the sections above for the PFSP and TSP respectively. It

leads to a configuration space of 1200 different configurations (2×2×4×3×(1+4)×5)

75

of PFSP and 3200 different configurations (4×2×4×4×(1+4)×5) of TSP. This

configuration space is used by the single-configuration model of fixed P-MC-ILS.

5.3.1 Configuration Space for PFSP

The other model of fixed P-MC-ILS, two configurations sequential, we have around

2.89 × 105 different configurations (240 × 5 + 2402 × 5) and three configurations

sequential, then we have around 6.94 × 107 different configurations (240 × 5 +

2402 × 5 + 2403 × 5).

The roulette P-MC-ILS uses a probability 𝑃 to select the next configuration to run.

We set 𝑃 = {25, 50, 75} and allow only three values to avoid a combinatorial ex-

plosion of the configuration space. In the two-configurations case we have around

8.64× 105 different configurations (2402 × 5×3) and three-configurations case we

have around 6.23 × 10+8 different configurations (2402 × 5 × 3 + 2403 × 5 × 32).

5.3.2 Configuration Space for TSP

For two and three configurations case of our fixed multi-configuration model, we

have approximately 2.05 × 106 different configurations (640 × 5 + 6402 × 5) and

1.31 × 109 different configurations (640 × 5 + 6402 × 5 + 6403 × 5) respectively.

We also have 6.14 × 106 different configurations (6402 × 5 × 3) and 1.18 × 1010

different configurations (6402×5×3+6403×5×32) for two and three configurations

case respectively of our roulette P-MC-ILS.

5.4 Experimental Results

In this section, we focus on the fixed and roulette P-MC-ILS. First, we present

the best configurations returned by irace among configuration spaces larger than

76

107. Then, the performance of the best configurations is compared to problem

instances of PFSP and TSP. A configuration is then composed of a maximum of

three differently tuned ILS.

5.4.1 Results on PFSP

Result of Fixed Model. Table 5.1 reports the three (𝑆𝑎𝑙𝑙 , 𝑆𝑁=200, 𝑆𝑀=20) and four

(𝑆𝑁=100) best configurations returned by irace for the fixed P-MC-ILS. The first

P-MC-ILS (𝑓 𝑖𝑥1) of 𝑆𝑁=200 is composed of three tuned ILS only, while the other

first P-MC-ILS are composed of two tuned ILS. However, the last two P-MC-ILS

(𝑓 𝑖𝑥2, 𝑓 𝑖𝑥3) in {𝑆𝑎𝑙𝑙 , 𝑆𝑁=200, 𝑆𝑀=20} and three P-MC-ILS (𝑓 𝑖𝑥2, 𝑓 𝑖𝑥3, 𝑓 𝑖𝑥4) in

{𝑆𝑁=100} are composed of three tuned ILS. All scenarios contain the best single-

configuration presented in the previous section, except for the strength of the per-

turbation algorithms and the stagnation criterion. We recall that all the numerical

values were not available for the exhaustive exploration, and maybe increasing the

possible values would have produced some different results. However, the fixed

model configuration with only one ILS was in the configuration space of irace and

no such configuration has been returned. This shows that having at least two ILS

seems to lead to better performance. Surprisingly, the 𝑆𝑁=200 used uses the swap

operator in whole tuned ILS (𝑓 𝑖𝑥2 in ILS1, 𝑓 𝑖𝑥3 in ILS2, and 𝑓 𝑖𝑥1, 𝑓 𝑖𝑥3 in ILS3),

while the other scenarios are used in only ILS3 (𝑓 𝑖𝑥2, 𝑓 𝑖𝑥3 of 𝑆𝑎𝑙𝑙 , 𝑓 𝑖𝑥3, 𝑓 𝑖𝑥4 of

𝑆𝑁=100, and 𝑓 𝑖𝑥3 of 𝑆𝑀=20). The neighbors generated with the swap operators are

different from the ones generated with the shift neighborhood operator. This

choice enables new connections between solutions as it changes the search land-

scape. The IHCfirst strategy is selected in whole scenarios with the ordered

exploration of the neighborhood. This is logical since this strategy evaluates all

the neighbors of the current solution to select the best among them. Moreover,

only the kick diversification is used to diversify the search for each restart (a

77

partial restart) and the stagnation criteria is at least set to 100.

78

Table 5.1: Best configurations of the fixed P-MC-ILS for PFSP returned by irace.

Size Conf. 𝐼𝐿𝑆1 𝐼𝐿𝑆2 𝐼𝐿𝑆3 Diversification stg

𝑆𝑎𝑙𝑙

𝑓 𝑖𝑥
𝑆1
1

𝑓 𝑖𝑥
𝑆1
2

𝑓 𝑖𝑥
𝑆1
3

shift, random, IHCfirst, IG-D/R(4)
shift, random, IHCfirst, IG-D/R(3)
shift, random, IHClahc, IG-D/R(3)

shift, random, IHClahc, IG-D/R(3)
shift, random, IHClahc, IG-D/R(4)
shift, random, IHCfirst, IG-D/R(4)

−
swap, order, IHCbest, IG-D/R(3)

swap, random, IHClahc, IG-D/R(4)

kick(3)
kick(3)
kick(5)

200
200
100

𝑆𝑁=100

𝑓 𝑖𝑥
𝑆2
1

𝑓 𝑖𝑥
𝑆2
2

𝑓 𝑖𝑥
𝑆2
3

𝑓 𝑖𝑥
𝑆2
4

shift, random, IHClahc, IG-D/R(3)
shift, random, IHCfirst, IG-D/R(4)
shift, random, IHCfirst, IG-D/R(3)
shift, random, IHClahc, IG-D/R(4)

shift, random, IHCfirst, IG-D/R(4)
shift, random, IHClahc, IG-D/R(3)
shift, random, IHClahc, IG-D/R(2)
shift, random, IHCfirst, IG-D/R(3)

−
shift, random, IHCbest, IG-D/R(2)
swap, random, IHClahc, IG-D/R(4)

swap, order, IHCbest, IG-D/R(2)

kick(5)
kick(3)
kick(3)
kick(4)

200
200
200
150

𝑆𝑁=200

𝑓 𝑖𝑥
𝑆3
1

𝑓 𝑖𝑥
𝑆3
2

𝑓 𝑖𝑥
𝑆3
3

shift, random, IHClahc, IG-D/R(4)
swap, random, IHClahc, IG-D/R(2)
shift, random, IHClahc, IG-D/R(4)

shift, random, IHCfirst, IG-D/R(2)
shift, random, IHCfirst, IG-D/R(4)

swap, random, IHCworst, IG-D/R(3)

swap, order, IHClahc, IG-D/R(2)
shift, order, IHCbest, IG-D/R(3)

swap, random, IHCfirst, IG-D/R(3)

kick(4)
kick(5)
kick(5)

200
150
150

𝑆𝑀=20

𝑓 𝑖𝑥
𝑆4
1

𝑓 𝑖𝑥
𝑆4
2

𝑓 𝑖𝑥
𝑆4
3

shift, random, IHCfirst, IG-D/R(3)
shift, random, IHCfirst, IG-D/R(4)
shift, random, IHCfirst, IG-D/R(4)

shift, random, IHCbest, IG-D/R(4)
shift, random, IHClahc, IG-D/R(4)

shift, random, IHCworst, IG-D/R(2)

−
shift, random, IHCbest, IG-D/R(3)
swap, random, IHClahc, IG-D/R(4)

kick(5)
kick(3)
kick(5)

200
200
150

79

Result of Roulette Model. Table 5.2 reports the three (𝑆𝑀=20) or four (𝑆𝑎𝑙𝑙 ,

𝑆𝑁=100, 𝑆𝑁=200) best configurations (𝑟𝑙𝑡1, 𝑟𝑙𝑡2, 𝑟𝑙𝑡3 and 𝑟𝑙𝑡4), returned by in the

irace for the roulette P-MC-ILS with a maximum of three different ILS in {𝑆𝑎𝑙𝑙 ,

𝑆𝑀=20}. However, the 𝑟𝑙𝑡3 and 𝑟𝑙𝑡4 of {𝑆𝑁=100, 𝑆𝑁=200} are composed the three

tuned ILS, while first and second P-MC-ILS are composed two tuned ILS. Even

if they are all composed in part of the best single-ILS has seen in the previous

section, the IHCbest and the IHCworst strategies are more represented. In

deeps, the IHCbest strategy is set three tuned ILS (𝑟𝑙𝑡1, 𝑟𝑙𝑡4 of 𝑆𝑎𝑙𝑙 in ILS2,

𝑟𝑙𝑡2 of 𝑆𝑁=100 in ILS2, 𝑟𝑙𝑡2 of 𝑆𝑁=200 in ILS1, and 𝑟𝑙𝑡3 of 𝑆𝑀=20 in ILS3), while

the IHCworst is preferred for ILS3 (𝑟𝑙𝑡3, 𝑟𝑙𝑡4 of 𝑆𝑎𝑙𝑙 , 𝑟𝑙𝑡3 of 𝑆𝑁=100, and 𝑟𝑙𝑡1 of

𝑆𝑀=20) and ILS2 (𝑟𝑙𝑡4 of 𝑆𝑁=200). Contrary to the fixed model, the IHCworst is

set in only ILS2. Moreover, the shift neighborhood operator is always selected

in ILS1 except 𝑟𝑙𝑡2 of 𝑆𝑁=200. For the roulette model, the stagnation criterion is

at least set to 150. This implies that the configurations leave time to the pertur-

bation IG-D/R to find a better adjacent region before restarting. In this multi-

configuration model, the probability of choosing among the three (𝑆𝑀=20) or four

(𝑆𝑎𝑙𝑙 , 𝑆𝑁=100, 𝑆𝑁=200) ILS is also tuned automatically. The four best configura-

tions of 𝑆𝑎𝑙𝑙 give 75% of chance to select ILS1, while the other scenarios give the

variety of probability 𝑝1 = {25, 50, 75}. Moreover, the three best configurations

of 𝑆𝑀=20 give 75% of chance to select ILS2 that section 5.2.2 is assigned some

percentage value 𝑝2. It seems that ILS2 and ILS3 aim at introducing diversity in

the search as well in changing the exploration strategy as modifying the definition

of the neighborhood.

80

Table 5.2: Best configurations of the roulette P-MC-ILS for PFSP returned by irace.

Size Conf. 𝐼𝐿𝑆1 𝐼𝐿𝑆2 𝐼𝐿𝑆3 Diversification stg 𝑃1 𝑃2

𝑆𝑎𝑙𝑙

𝑟𝑙𝑡
𝑆1
1

𝑟𝑙𝑡
𝑆1
2

𝑟𝑙𝑡
𝑆1
3

𝑟𝑙𝑡
𝑆1
4

shift, random, IHClahc, IG-D/R(3)
shift, random, IHClahc, IG-D/R(4)
shift, random, IHClahc, IG-D/R(4)
shift, random, IHCfirst, IG-D/R(3)

shift, random, IHCbest, IG-D/R(4)
shift, random, IHCfirst, IG-D/R(4)
shift, random, IHCfirst, IG-D/R(2)
shift, random, IHCbest, IG-D/R(4)

shift, random, IHCfirst, IG-D/R(4)
swap, random, IHClahc, IG-D/R(3)
shift, random, IHCworst, IG-D/R(2)
shift, random, IHCworst, IG-D/R(3)

kick(5)
kick(3)
kick(3)
kick(5)

150
200
150
150

75
75
75
75

25
75
75
25

𝑆𝑁=100

𝑟𝑙𝑡
𝑆2
1

𝑟𝑙𝑡
𝑆2
2

𝑟𝑙𝑡
𝑆2
3

𝑟𝑙𝑡
𝑆2
4

shift, random, IHCfirst, IG-D/R(4)
shift, random, IHCfirst, IG-D/R(2)
shift, random, IHClahc, IG-D/R(2)
shift, random, IHClahc, IG-D/R(2)

swap, random, IHClahc, IG-D/R(2)
shift, random, IHCbest, IG-D/R(2)
shift, random, IHCfirst, IG-D/R(4)
swap, order, IHCfirst, IG-D/R(2)

−
−

shift, random, IHCworst, IG-D/R(4)
shift, random, IHCfirst, IG-D/R(4)

kick(5)
kick(3)
kick(4)
kick(4)

150
150
100
200

25
50
50
50

−
−
25
25

𝑆𝑁=200

𝑟𝑙𝑡
𝑆3
1

𝑟𝑙𝑡
𝑆3
2

𝑟𝑙𝑡
𝑆3
3

𝑟𝑙𝑡
𝑆3
4

shift, random, IHClahc, IG-D/R(4)
swap, random, IHCbest, IG-D/R(3)
shift, random, IHCfirst, IG-D/R(2)
shift, random, IHClahc, IG-D/R(2)

shift, random, IHCfirst, IG-D/R(2)
shift, random, IHCfirst, IG-D/R(2)
swap, random, IHClahc, IG-D/R(4)
swap, order, IHCworst, IG-D/R(2)

−
−

swap, random, IHClahc, IG-D/R(4)
swap, order, IHCfirst, IG-D/R(2)

kick(5)
kick(5)
kick(3)
kick(4)

200
150
150
150

50
50
25
50

−
−
25
75

𝑆𝑀=20

𝑟𝑙𝑡
𝑆4
1

𝑟𝑙𝑡
𝑆4
2

𝑟𝑙𝑡
𝑆4
3

shift, random, IHCfirst, IG-D/R(2)
shift, random, IHCfirst, IG-D/R(4)
shift, random, IHCfirst, IG-D/R(4)

swap, random, IHClahc, IG-D/R(3)
swap, order, IHCfirst, IG-D/R(2)

swap, random, IHClahc, IG-D/R(3)

swap, random, IHCworst, IG-D/R(4)
shift, random, IHClahc, IG-D/R(3)
swap, random, IHCbest, IG-D/R(2)

kick(3)
kick(4)
kick(4)

200
150
150

50
75
50

75
75
75

81

5.4.2 Results on TSP

Result of Fixed Model. We present the best configurations returned by irace

over configuration space 109. Table 5.3 show the four best configurations of S𝑢

(𝑓 𝑖𝑥𝑆𝑢1 , 𝑓 𝑖𝑥𝑆𝑢2 , 𝑓 𝑖𝑥𝑆𝑢3 , 𝑓 𝑖𝑥𝑆𝑢4) scenario returned by irace for fixed P-MC-ILS and

three tuned ILS only were performing better on training instances. It is contained

the best single-configuration at present before. It appears that three ILS leads to

better performance because the one and two ILS was in the configuration space

which has not been returned. In 𝐼𝐿𝑆3 for 𝑓 𝑖𝑥𝑆𝑢1 , 𝑓 𝑖𝑥𝑆𝑢3 the swap neighborhood

operator is preferred with order neighborhood order. Surprising, IHClahc

exploration is used twice (𝑓 𝑖𝑥𝑆𝑢3 in ILS2 and 𝑓 𝑖𝑥
𝑆𝑢
1 in ILS3) which is in keeping

with the literature. However, all configurations also share the stagnation criterion

set to 150, while the kick and init diversification are used in { 𝑓 𝑖𝑥𝑆𝑢1 , 𝑓 𝑖𝑥𝑆𝑢4 }

and { 𝑓 𝑖𝑥𝑆𝑢2 , 𝑓 𝑖𝑥𝑆𝑢3 } respectively.

For S𝑐 scenario, the best four configurations have been returned by irace. All have

three tuned ILS. Analyzing the fixed P-MC-ILS, we notice that the only different

𝑓 𝑖𝑥
𝑆𝑐
3 between the other configurations are the neighborhood operator of ILS1 that

one include not the set of parameters corresponding to the best exhaustive configu-

ration 𝑒𝑥ℎ of R-ILS (see chapter 3). In 𝑓 𝑖𝑥
𝑆𝑐
2 used the kick diversification, while

the other configurations used the init diversification where is so far from the

current one in the search space. Moreover, 𝑓 𝑖𝑥𝑆𝑐1 used the stagnation criterion set

to 150, while the other configurations are share to set to 200 stagnation criterion.

Result of Roulette Model. Table 5.4 shows that the best four algorithm config-

urations of S𝑢 (𝑟𝑙𝑡𝑆𝑢1 , 𝑟𝑙𝑡𝑆𝑢2 , 𝑟𝑙𝑡𝑆𝑢3 , 𝑟𝑙𝑡𝑆𝑢4) are obtained from the irace over config-

uration space 1010. There are three tuned ILS only and also included the best

single-configuration model. Surprising, the shift neighborhood operator for

𝑟𝑙𝑡
𝑆𝑢
2 in ILS1 and 𝑟𝑙𝑡𝑆𝑢2 , 𝑟𝑙𝑡𝑆𝑢3 in ILS3 enable to roulette P-MC-ILS. This model

82

selects, after each restart, one of the tuned with 50% probability for all algorithm

configurations except of 𝑟𝑙𝑡𝑆𝑢1 gives 25% for 𝑃1, while the probability are inverted

between 𝑃1 and 𝑃2. Moreover, the 𝑓 𝑖𝑥𝑆𝑢3 used stagnation criterion sets to 150, the

other ones share to set to 200. It seems that the init diversification is one of

the best for applying to diversification and it is better for a satisfying assignment

anew from a new location so far in the search space.

For S𝑐 scenario, the four best configurations (𝑟𝑙𝑡𝑆𝑐1 , 𝑟𝑙𝑡𝑆𝑐2 , 𝑟𝑙𝑡𝑆𝑐3 , 𝑟𝑙𝑡𝑆𝑐4) are achieved

by irace and there are three tuned ILS. All algorithm configurations are con-

tained the best single-configuration model when training across all instances. The

IHCbest strategy is used, usually considered inefficient. It is beneficial to keep

a variety of operations. The kick diversification (partial restart) is used for only

𝑟𝑙𝑡
𝑆𝑐
1 , the other ones are used init diversification. Moreover, we observe the

probability of first three parameter configurations (𝑓 𝑖𝑥𝑆𝑐1 , 𝑓 𝑖𝑥𝑆𝑐2 , 𝑓 𝑖𝑥𝑆𝑐3) where are

inverted between 𝑃1 and 𝑃2 of first quartile and third quartile, while last one al-

gorithm configuration (𝑓 𝑖𝑥𝑆𝑐4) is only used 50% for 𝑃1 and 𝑃2.

83

Table 5.3: Best configurations of the fixed P-MC-ILS for TSP returned by irace.

Size Conf. 𝐼𝐿𝑆1 𝐼𝐿𝑆2 𝐼𝐿𝑆3 Diversification stg

S𝑢

𝑓 𝑖𝑥
𝑆𝑢
1

𝑓 𝑖𝑥
𝑆𝑢
2

𝑓 𝑖𝑥
𝑆𝑢
3

𝑓 𝑖𝑥
𝑆𝑢
4

3-opt, random, IHCfirst, DB(1)
3-opt, order, IHCfirst, DB(3)

3-opt, random, IHCfirst, DB(2)
2-opt, random, IHCbest, DB(1)

shift, random, IHCfirst, DB(4)
2-opt, random, IHCbest, DB(4)
shift, random, IHClahc, DB(1)

shift, random, IHCworst, DB(2)

swap, order, IHClahc, DB(1)
3-opt, random, IHCfirst, DB(2)
swap, order, IHCworst, DB(3)
3-opt, random, IHCfirst, DB(4)

kick(5)
init
init

kick(4)

150
150
150
150

S𝑐

𝑓 𝑖𝑥
𝑆𝑐
1

𝑓 𝑖𝑥
𝑆𝑐
2

𝑓 𝑖𝑥
𝑆𝑐
3

𝑓 𝑖𝑥
𝑆𝑐
4

3-opt, random, IHCfirst, DB(1)
3-opt, random, IHCfirst, DB(2)
2-opt, random, IHCbest, DB(4)
3-opt, random, IHCfirst, DB(1)

shift, order, IHCbest, DB(3)
shift, random, IHCbest, DB(4)
shift, order, IHCbest, DB(4)

shift, random, IHClahc, DB(2)

swap, random, IHCbest, DB(4)
2-opt, order, IHCbest, DB(1)

3-opt, random, IHCfirst, DB(2)
swap, order, IHCfirst, DB(1)

init
kick(5)

init
init

150
200
200
200

Table 5.4: Best configurations of the roulette P-MC-ILS for TSP returned by irace.

Size Conf. 𝐼𝐿𝑆1 𝐼𝐿𝑆2 𝐼𝐿𝑆3 Diversification stg 𝑃1 𝑃2

S𝑢

𝑟𝑙𝑡
𝑆𝑢
1

𝑟𝑙𝑡
𝑆𝑢
2

𝑟𝑙𝑡
𝑆𝑢
3

𝑟𝑙𝑡
𝑆𝑢
4

3-opt, random, IHCfirst, DB(3)
shift, order, IHCfirst, DB(2)

3-opt, random, IHCfirst, DB(3)
2-opt, order, IHCbest, DB(3)

swap, random, IHCfirst, DB(4)
3-opt, random, IHCfirst, DB(3)
2-opt, random, IHCbest, DB(3)
3-opt, random, IHCfirst, DB(3)

2-opt, random, IHCbest, DB(1)
shift, order, IHCworst, DB(4)
shift, random, IHCfirst, DB(1)
swap, order, IHCworst, DB(3)

init
init
init
init

200
200
150
200

25
50
50
50

50
25
25
25

S𝑐

𝑟𝑙𝑡
𝑆𝑐
1

𝑟𝑙𝑡
𝑆𝑐
2

𝑟𝑙𝑡
𝑆𝑐
3

𝑟𝑙𝑡
𝑆𝑐
4

2-opt, random, IHCbest, DB(3)
3-opt, random, IHCfirst, DB(1)
3-opt, order, IHCbest, DB(1)

3-opt, random, IHCfirst, DB(2)

3-opt, random, IHCfirst, DB(1)
3-opt, random, IHCbest, DB(3)
3-opt, random, IHCfirst, DB(2)
2-opt, random, IHCbest, DB(3)

2-opt, random, IHClahc, DB(4)
swap, order, IHCbest, DB(2)

shift, random, IHCworst, DB(3)
shift, order, IHClahc, DB(2)

kick(4)
init
init
init

200
200
50

150

25
75
25
50

75
25
75
50

84

5.5 Comparisons of the Automatic Multi-Configuration

ILS models

In Chapter 3, we presented our baseline algorithms, the R-ILS and the random

multi-configuration ILS (R-MC-ILS). In Chapter 4, we presented a first model of

automated design of multi-configuration ILS, the Sequential Multi-Configuration

ILS (S-MC-ILS). In this chapter, we presented a second model of automated

design of multi-configuration ILS, the Probabilistic Multi-Configuration ILS (P-

MC-ILS) with two instances being the fixed and the roulette models. Experiments

have been conducted with a maximum of three configurations of ILS returned by

irace. In this section, we compare our three automated multi-configuration ILS

models with our two baseline algorithms.

5.5.1 Experimental Protocol

First, we compare the fixed P-MC-ILS and the roulette P-MC-ILS in order to

select the best configurations. Then, we compare of the two automated multi-

configuration ILS models, the S-MC-ILS with and P-MC-ILS. Finally, we com-

pare the automated multi-configuration ILS with the two baselines algorithms,

namely the R-ILS and the random multi-configuration ILS. We give the compari-

son considering four scenarios of the PFSP (𝑆𝑎𝑙𝑙 , 𝑆𝑁=100, 𝑆𝑁=200, 𝑆𝑀=20) and two

scenarios of TSP (𝑆𝑢, 𝑆𝑐) and the comparison per size of the problem instances.

5.5.2 Experimental Results

The experiments were executed on 80 nodes of four 20-core 2.20GHz Intel Xeon

Processor (Skylake, IBRS) with 16MB L3 cache and 500GB RAM, running Ubuntu

18.04.4 LTS.

85

5.5.2.1 Results on PFSP

In order to compare our two models of P-MC-ILS, namely fixed (𝑓 𝑖𝑥) and roulette

(𝑟𝑙𝑡), we run at least six configurations of two multi-configuration models pre-

sented above on the Taillard instances. We average the 30 𝑅𝑃𝐷 per instances

and compute the Friedman test using the 10 instances per size to rank the config-

urations. Table 5.5 presents the result of the statistical comparison between the

configurations. The configurations marked with ’+’ statistically outperform the

ones with ’-’ for the considered instances. First, we give the comparison con-

sidering all the scenarios. Clearly, the roulette multi-configuration model is more

robust than the fixed model. Indeed, if we focus on all instances (𝑆𝑎𝑙𝑙) as we recall

that the tuning has been performed considering all sizes, and 𝑆𝑀=20 found that the

four best configurations and the three best configurations known for the roulette

P-MC-ILS respectively are best ranked while 𝑓 𝑖𝑥3 is less efficient. Moreover, four

best configurations of fixed P-MC-ILS are best ranked in 𝑆100, while 𝑆200 scenario

of both models are less efficient at least once.

With Table 5.6, we showed the comparison per size of the problem for different

scenario tested, the irace gives better configurations when training used similar

instance (sharing the same number of jobs or machines). If we look at the results

for each size, 𝑓 𝑖𝑥1 of fixed P-MC-ILS and 𝑟𝑙𝑡1 of roulette P-MC-ILS are always

best ranked. In these multi-ILS configurations, not only the best R-ILS configu-

rations are represented. This shows the importance of putting in the configuration

space used by the configurator all the possible components known for a problem

with no a priori knowledge.

In the following, we will compare the sequential multi-configuration ILS with the

probabilistic multi-configuration ILS. We select the best configuration to represent

the fixed P-MC-ILS and roulette P-MC-ILS where are the configurations marked

86

with ’+’ statistically outperform.

Table 5.5: Statistical comparison of fixed P-MC-ILS and roulette P-MC-ILS for
each scenario on Taillard instances.

Scenario Fixed Roulette

𝑓 𝑖𝑥1 𝑓 𝑖𝑥2 𝑓 𝑖𝑥3 𝑓 𝑖𝑥4 𝑟𝑙𝑡1 𝑟𝑙𝑡2 𝑟𝑙𝑡3 𝑟𝑙𝑡4

𝑆𝑎𝑙𝑙 + + − + + + +

𝑆𝑁=100 + + + + + + − +

𝑆𝑁=200 + + − + − + +

𝑆𝑀=20 + + − + + +

87

Table 5.6: Statistical comparison of fixed P-MC-ILS and roulette P-MC-ILS for each size on Taillard instances.

Size
Fixed Roulette

𝑆𝑎𝑙𝑙 𝑆𝑁=100 𝑆𝑁=200 𝑆𝑀=20 𝑆𝑎𝑙𝑙 𝑆𝑁=100 𝑆𝑁=200 𝑆𝑀=20

𝑓 𝑖𝑥1 𝑓 𝑖𝑥2 𝑓 𝑖𝑥3 𝑓 𝑖𝑥1 𝑓 𝑖𝑥2 𝑓 𝑖𝑥3 𝑓 𝑖𝑥4 𝑓 𝑖𝑥1 𝑓 𝑖𝑥2 𝑓 𝑖𝑥3 𝑓 𝑖𝑥1 𝑓 𝑖𝑥2 𝑓 𝑖𝑥3 𝑟𝑙𝑡1 𝑟𝑙𝑡2 𝑟𝑙𝑡3 𝑟𝑙𝑡4 𝑟𝑙𝑡1 𝑟𝑙𝑡2 𝑟𝑙𝑡3 𝑟𝑙𝑡4 𝑟𝑙𝑡1 𝑟𝑙𝑡2 𝑟𝑙𝑡3 𝑟𝑙𝑡4 𝑟𝑙𝑡1 𝑟𝑙𝑡2 𝑟𝑙𝑡3

50×20 + + − + + + + + − − + + +

100×10 + + − + + + + + + + + + + − +

100×20 + + − + − + + + + − + − + − + + − + + − +

200×10 + + − + + − + − + + + − + +

200×20 + + − + + − + + − + + + + + − + + + + −

88

Table 5.7 shows the comparison between S-MC-ILS with the best configurations

returned by irace and P-MC-ILS with the best configurations. Obviously, P-MC-

ILS is more robust than S-MC-ILS. Indeed, the performance 𝑆𝑁=100 scenario of

S-MC-ILS is equal to P-MC-ILS, while the other scenarios of P-MC-ILS are more

robust than S-MC-ILS.

Table 5.8 summarizes, for each size of PFSP, the result of the statistical tests

between the S-MC-ILS and the two models of P-MC-ILS for different size tested.

Certainly, based on these experiments, the configurations are marked with the

plus sign (+) statistically of each scenarios per size of instance that we regard the

results for each size, 𝑠𝑒𝑞2 of 𝑆𝑎𝑙𝑙 and 𝑠𝑒𝑞1 of 𝑆𝑁=100 and 𝑠𝑒𝑞1, 𝑠𝑒𝑞4 of 𝑆𝑁=200 are

best ranked, while the two configurations (𝑠𝑒𝑞1, 𝑠𝑒𝑞2) of 𝑆𝑀=20 as shared number

of machines scenario, are best ranked for S-MC-ILS. Meanwhile, the 𝑓 𝑖𝑥1 and

𝑟𝑙𝑡1 are always best ranked for P-MC-ILS.

In the following, we select the best configurations statistically (plus sign (+)),

for the automated multi-configuration ILS models to compare with the baseline

algorithms.

Table 5.7: Statistical comparison of S-MC-ILS and P-MC-ILS for each scenario
on Taillard instances.

Scenario Sequential Probabilistic

𝑠𝑒𝑞1 𝑠𝑒𝑞2 𝑠𝑒𝑞3 𝑠𝑒𝑞4 𝑓 𝑖𝑥1 𝑓 𝑖𝑥2 𝑓 𝑖𝑥3 𝑓 𝑖𝑥4 𝑟𝑙𝑡1 𝑟𝑙𝑡2 𝑟𝑙𝑡3 𝑟𝑙𝑡4

𝑆𝑎𝑙𝑙 + + − + + + + + +

𝑆𝑁=100 + + + + + + + + + +

𝑆𝑁=200 + − − + + + + + +

𝑆𝑀=20 + + − + + + + +

89

Table 5.8: Statistical comparison of S-MC-ILS and P-MC-ILS for each size on Taillard instances.

Size
Sequential Probabilistic

𝑆𝑎𝑙𝑙 𝑆𝑁=100 𝑆𝑁=200 𝑆𝑀=20 𝑆𝑎𝑙𝑙 𝑆𝑁=100 𝑆𝑁=200 𝑆𝑀=20

𝑠𝑒𝑞1 𝑠𝑒𝑞2 𝑠𝑒𝑞3 𝑠𝑒𝑞1 𝑠𝑒𝑞2 𝑠𝑒𝑞3 𝑠𝑒𝑞1 𝑠𝑒𝑞2 𝑠𝑒𝑞3 𝑠𝑒𝑞4 𝑠𝑒𝑞1 𝑠𝑒𝑞2 𝑠𝑒𝑞3 𝑓 𝑖𝑥1 𝑓 𝑖𝑥2 𝑟𝑙𝑡1 𝑟𝑙𝑡2 𝑟𝑙𝑡3 𝑟𝑙𝑡4 𝑓 𝑖𝑥1 𝑓 𝑖𝑥2 𝑓 𝑖𝑥3 𝑓 𝑖𝑥4 𝑟𝑙𝑡1 𝑟𝑙𝑡2 𝑟𝑙𝑡4 𝑓 𝑖𝑥1 𝑓 𝑖𝑥2 𝑟𝑙𝑡1 𝑟𝑙𝑡3 𝑟𝑙𝑡4 𝑓 𝑖𝑥1 𝑓 𝑖𝑥2 𝑓 𝑖𝑥3 𝑟𝑙𝑡1 𝑟𝑙𝑡2 𝑟𝑙𝑡3

50×20 + + + + + − + + + + + + − + + +

100×10 + + − + − + + + + + + − + + + − + + +

100×20 + + − + + − + + − + − + + + + + + + − + − + +

200×10 − + − + − − + + + + + + + − + + +

200×20 − + − + − − + + + − + − + + + + + + + + + + + + +

90

We compare our automated multi-configuration ILS models with baseline algo-

rithms, the random multi-configuration model and the R-ILS on the Taillard in-

stances. Table 5.9 gives, for each scenario, the result of the statistical test those.

For all scenarios, the automatic configuration model outperforms the random

multi-configuration and single-configuration model. For this problem, we de-

signed different experiment scenarios in order to see whether it is better to train

irace on rather all instances or instances sharing the same number of jobs or ma-

chines.

Table 5.10 summarises, for each size of PFSP, the results the statistical tests com-

pared of automated design of multi-configuration model always outperforms the

random multi-ILS and the best configurations previously obtained in the exhaus-

tive analysis of the single-configuration model.

Table 5.9: Statistical comparison of the automated multi-configuration models
with the baseline algorithms for each scenario on Taillard instances.

Scenario
W/O Automatic Conf. Automatic Configuration

Single-config. Random Sequential Fixed Roulette

𝑒𝑥ℎ1 𝑒𝑥ℎ2 𝑟𝑛𝑑 𝑠𝑒𝑞1 𝑠𝑒𝑞2 𝑠𝑒𝑞3 𝑠𝑒𝑞4 𝑓 𝑖𝑥1 𝑓 𝑖𝑥2 𝑓 𝑖𝑥3 𝑓 𝑖𝑥4 𝑟𝑙𝑡1 𝑟𝑙𝑡2 𝑟𝑙𝑡3 𝑟𝑙𝑡4

𝑆𝑎𝑙𝑙 − − − + + + + + + + +

𝑆𝑁=100 − − − + + + + + + + + + +

𝑆𝑁=200 − − − + + + + + + +

𝑆𝑀=20 − − − + + + + + + +

91

Table 5.10: Statistical comparison of the automated multi-configuration models with the baseline algorithms for each size
on Taillard instances.

Size

W/O Automatic Conf. Automatic Configuration

Single-config. Random 𝑆𝑎𝑙𝑙 𝑆𝑁=100 𝑆𝑁=200 𝑆𝑀=20

𝑒𝑥ℎ1 𝑒𝑥ℎ2 𝑟𝑛𝑑 𝑠𝑒𝑞1 𝑠𝑒𝑞2 𝑠𝑒𝑞3 𝑓 𝑖𝑥1 𝑓 𝑖𝑥2 𝑟𝑙𝑡1 𝑟𝑙𝑡2 𝑟𝑙𝑡3 𝑟𝑙𝑡4 𝑠𝑒𝑞1 𝑠𝑒𝑞2 𝑠𝑒𝑞3 𝑓 𝑖𝑥1 𝑓 𝑖𝑥2 𝑓 𝑖𝑥3 𝑓 𝑖𝑥4 𝑟𝑙𝑡1 𝑟𝑙𝑡2 𝑟𝑙𝑡4 𝑠𝑒𝑞1 𝑠𝑒𝑞4 𝑓 𝑖𝑥1 𝑓 𝑖𝑥2 𝑟𝑙𝑡1 𝑟𝑙𝑡3 𝑟𝑙𝑡4 𝑠𝑒𝑞1 𝑠𝑒𝑞2 𝑓 𝑖𝑥1 𝑓 𝑖𝑥2 𝑟𝑙𝑡1 𝑟𝑙𝑡2 𝑟𝑙𝑡3

50×20 − − − + + + + + + + + + + + + + +

100×10 − − − + + + + + + + + + + + + + + +

100×20 − − − + + + + + + + + + + + + + + + + +

200×10 − − − + + + + + + + + + + + +

200×20 − − − + + + + + + + + + + + + + + + + + + +

92

5.5.2.2 Results on TSP

Tables 5.11 and 5.12 report the results of the statistical Friedman test between

the performance of S-MC-ILS and P-MC-ILS on Taillard instances presented by

scenario or size respectively. The results of Table 5.11 show that the roulette P-

MC-ILS performs best on statistically test (mark ’+’) in terms of four (𝑟𝑙𝑡1, 𝑟𝑙𝑡2,

𝑟𝑙𝑡3, 𝑟𝑙𝑡4) of 𝑆𝑢 and three (𝑟𝑙𝑡1, 𝑟𝑙𝑡2, 𝑟𝑙𝑡3) of 𝑆𝑐 configurations are best ranked

while 𝑟𝑙𝑡4 of S𝑐 is less efficient. Moreover, 𝑓 𝑖𝑥2 and 𝑓 𝑖𝑥4 are best ranked for two

scenarios, nevertheless the 𝑓 𝑖𝑥1 of S𝑐 is additionally best ranked. Then, Table 5.12

shows three different instance sizes including 100, 200, and 400 cities for each

model. If we look at the results for each size, 𝑓 𝑖𝑥2, 𝑟𝑙𝑡1, and 𝑟𝑙𝑡3 of 𝑆𝑢 have

always best ranks. The best ranks, not only the best single-configuration model is

presented previously.For S𝑐, 𝑓 𝑖𝑥2, 𝑓 𝑖𝑥4, 𝑟𝑙𝑡1, 𝑟𝑙𝑡2 and 𝑟𝑙𝑡3 are best ranked.

In the following, we will compare the S-MC-ILS with the best configurations of

P-MC-ILS with fixed or roulette models.

Table 5.11: Statistical comparison of fixed P-MC-ILS and roulette P-MC-ILS for
each scenario on TSP instances.

Scenario Fixed Roulette

𝑓 𝑖𝑥1 𝑓 𝑖𝑥2 𝑓 𝑖𝑥3 𝑓 𝑖𝑥4 𝑟𝑙𝑡1 𝑟𝑙𝑡2 𝑟𝑙𝑡3 𝑟𝑙𝑡4

Random Uniform Euclidean Instances

S𝑐 − + − + + + + +

Random 10-Cluster Euclidean Instances
S𝑢 + + − + + + + −

Next, we analyzed the resulting algorithm configuration on the test set instances.

Our first finding is that the P-MC-ILS clearly outperforms the S-MC-ILS for six

configurations of 𝑆𝑢 scenario and five configurations of 𝑆𝑐 where 𝑟𝑙𝑡4 is eliminated

93

Table 5.12: Statistical comparison of fixed P-MC-ILS and roulette P-MC-ILS for
each size on TSP instances.

Size Fixed Roulette

𝑓 𝑖𝑥1 𝑓 𝑖𝑥2 𝑓 𝑖𝑥3 𝑓 𝑖𝑥4 𝑟𝑙𝑡1 𝑟𝑙𝑡2 𝑟𝑙𝑡3 𝑟𝑙𝑡4

Random Uniform Euclidean Instances

100 + + + + + + + +

200 − + − − + − + +

400 − + − + + + + −

Random 10-Cluster Euclidean Instances
100 + + − + + + + +

200 + + − + + + + −

400 − + − + + + + −

previously, while 𝑠𝑒𝑞2 of two scenarios, 𝑠𝑒𝑞1 of only 𝑆𝑢 and 𝑠𝑒𝑞4 of 𝑆𝑐 are best

ranked of sequential multi-configuration model in the Table 5.13. Thus, we focus

the results of each size (Table 5.14), we find the 𝑓 𝑖𝑥2 and 𝑟𝑙𝑡1 which are always

best ranked of the P-MC-ILS for 𝑆𝑢, while the 𝑓 𝑖𝑥2, 𝑓 𝑖𝑥4, 𝑟𝑙𝑡1, 𝑟𝑙𝑡2, and 𝑟𝑙𝑡3 are

always best ranked for 𝑆𝑐. On the other hand, the best ranks of S-MC-ILS are not

found because of the 400 cities of the two scenarios are not found the best solution

statistically.

Finally, we compare the automated multi-configuration models with our baseline

algorithms.

The results of Table 5.15 and 5.16 show that the automated design of the multi-

configuration model outperform the other ones statistically. Interestingly, it seems

94

Table 5.13: Statistical comparison of S-MC-ILS and P-MC-ILS for each scenario
on TSP instances.

Scenario Sequential Probabilistic

𝑠𝑒𝑞1 𝑠𝑒𝑞2 𝑠𝑒𝑞3 𝑠𝑒𝑞4 𝑓 𝑖𝑥1 𝑓 𝑖𝑥2 𝑓 𝑖𝑥4 𝑟𝑙𝑡1 𝑟𝑙𝑡2 𝑟𝑙𝑡3 𝑟𝑙𝑡4

Random Uniform Euclidean Instances

S𝑐 + + − + + + + + +

Random 10-Cluster Euclidean Instances
S𝑢 − + − + − + + + + +

Table 5.14: Statistical comparison of S-MC-ILS and P-MC-ILS for each instance
on TSP instances.

Size Sequential Probabilistic

𝑠𝑒𝑞1 𝑠𝑒𝑞2 𝑠𝑒𝑞3 𝑠𝑒𝑞4 𝑓 𝑖𝑥1 𝑓 𝑖𝑥2 𝑓 𝑖𝑥3 𝑓 𝑖𝑥4 𝑟𝑙𝑡1 𝑟𝑙𝑡2 𝑟𝑙𝑡3 𝑟𝑙𝑡4

Random Uniform Euclidean Instances

100 − + − + + + + + + − +

200 + + − + + + +

400 + − − + + + + +

Random 10-Cluster Euclidean Instances
100 + + + − + + + + + + +

200 − + − + − + + + + +

400 − − − + + + + + +

that, here, only the three tuned ILS of the multi-configuration ILS are preferable

for these scenarios and explored to a greater extent to the rest of the scenarios

across the 3 problems.

95

Table 5.15: Statistical comparison of the automated multi-configuration models
with the baseline algorithms for each scenario on TSP instances.

Scenario
W/O Automatic Conf. Automatic Configuration

Single-config. Random Sequential Fixed Roulette

𝑒𝑥ℎ1 𝑒𝑥ℎ2 𝑟𝑛𝑑 𝑠𝑒𝑞1 𝑠𝑒𝑞2 𝑠𝑒𝑞4 𝑓 𝑖𝑥2 𝑓 𝑖𝑥4 𝑟𝑙𝑡1 𝑟𝑙𝑡2 𝑟𝑙𝑡3 𝑟𝑙𝑡4

Random Uniform Euclidean Instances

S𝑢 − − − + + + + + + + +

Random 10-Cluster Euclidean Instances
S𝑐 − − − + + + + + + +

Table 5.16: Statistical comparison of the automated multi-configuration models
with the baseline algorithms for each size on TSP instances.

Size
W/O Automatic Conf. Automatic Configuration

Single-config. Random Sequential Fixed Roulette

𝑒𝑥ℎ1 𝑒𝑥ℎ2 𝑟𝑛𝑑 𝑠𝑒𝑞1 𝑠𝑒𝑞2 𝑠𝑒𝑞3 𝑠𝑒𝑞4 𝑓 𝑖𝑥1 𝑓 𝑖𝑥2 𝑓 𝑖𝑥3 𝑓 𝑖𝑥4 𝑟𝑙𝑡1 𝑟𝑙𝑡2 𝑟𝑙𝑡3 𝑟𝑙𝑡4

Random Uniform Euclidean Instances

100 − − − + + + + + + + +

200 − − − + + + + + +

400 − − − + + + + + +

Random 10-Cluster Euclidean Instances
100 − − − + + + + + + + + + +

200 − − − + + + + + + +

400 − − − + + + + + +

5.6 Conclusion

In this Chapter, we presented the Probabilistic Multi-configuration ILS that mod-

ifies the configuration of a R-ILS at each restart. The choice of the next config-

uration can be done following either a fixed model where a sequence of tuned

configurations are applied, or a roulette model where tuned configurations are

applied according to the roulette wheel execution. The tuned configurations are

96

selected using AAC, and more precisely the irace configurator. The P-MC-ILS

framework is then a second approach to benefit from both parameter tuning and

parameter control. In the experiments, we allowed to use up to three configura-

tions to solve instances of PFSP or TSP. The results are equivalent for both prob-

lems. We showed that both fixed and roulette models best performed using more

than 2 tuned configurations. The roulette model is also more robust than the fixed

one. The comparison with the Sequential Multi-Configuration ILS shows that the

Probabilistic Multi-Configuration ILS leads to better performance with both fixed

and roulette models. Finally, the comparison with our baseline algorithms, R-ILS

and random multi-configuration ILS, shows the advantage of using an automated

multi-configuration ILS.

97

98

6 | Conclusion

Contents
6.1 Contribution Summary . 100

6.1.1 Automated Multi-Configuration ILS 100

6.1.2 Sequential and Probabilistic Frameworks 101

6.1.3 Fixed and Roulette Models 102

6.2 Future Research . 102

6.2.1 Increase the number of tuned R-ILS 103

6.2.2 Analysis of the multi-configuration ILS algorithms . . 103

99

Automatic algorithm design and in particular automatic algorithm configuration

has been more and more studied in the literature for the last ten years. In the

majority of the cases, the tools provide a unique configuration that should be used

during the execution of the algorithm. This thesis aimed to bridge the gap between

parameter tuning and parameter control by allowing the alteration of parameter

values and the modification of strategic components during the execution. Such

mechanisms could allow for a better balance between exploitation and exploration

in local search metaheuristics when tackling complex problems.

6.1 Contribution Summary

In this thesis, we proposed automated multi-configuration models that find the

best performing hyper-parameters of a given algorithm and adapt its parameters

depending on the problem. The target algorithm chosen in this thesis is a restart

iterated local search algorithm (R-ILS). The restart mechanism is applied when

stagnation is reached. We illustrated our work on two well-known combinato-

rial problems: Permutation Flowshop Problem (PFSP) and Travelling Salesman

Problem (TSP). We defined for the R-ILS and for both problems a configuration

space with five strategic components and three parameters leading to 1200 and

3200 possible configurations respectively. We made multiple campaigns of exper-

iments that showed the interest of the multi-configuration ILS. The performance

was analyzed with the help of Friedman’s test on different scenarios or instance

sizes separately.

6.1.1 Automated Multi-Configuration ILS

We presented two algorithms to be our baselines for the experiments. We defined

a small configuration space for R-ILS by fixing the parameter values to reduce the

100

size to 32. The parameter values have been fixed according to the better values

known for each problem in the literature. Therefore, we were able to exhaustively

evaluate the performance of the 32 configurations of R-ILS. The best configura-

tions gave the first baseline. We also defined a random multi-configuration model

applied with R-ILS where a configuration is randomly selected in the original

search space of R-ILS after each restart. This algorithm represented our sec-

ond baseline. We showed that the best configurations of R-ILS outperformed the

random multi-configuration ILS. Moreover, the experimental results showed that

the automated multi-configuration ILS models presented in this thesis statistically

outperformed the baseline algorithms.

6.1.2 Sequential and Probabilistic Frameworks

We presented two different frameworks of automated multi-configuration ILS.

These multi-configuration models were tuned using AAC and more specifically

the irace configurator, without loss of generality. The combinatorics of possible

configurations is explosive with the number of tuned R-ILS. Therefore, for all ex-

periments conducted in this thesis, we allowed up to three different tuned R-ILS

configurations to keep a reasonable configuration space (about 1011 possible con-

figurations with 3 tuned R-ILS for the TSP). The sequential multi-configuration

model alters the configuration of a R-ILS when a number of evaluation with the

same configuration is reached while the Probabilistic Multi-Configuration model

alters the configuration as soon as the restart is applied. The first model exe-

cutes the tuned configurations successively and once for each while the second

model is more flexible and is able to execute multiple times each tuned config-

urations. The experiments showed that the probabilistic multi-configuration ILS

statistically outperformed the sequential multi-configuration ILS for both tackled

problems. Therefore, it seems better to modify the configuration after each restart

101

like for the baseline random multi-configuration ILS but it is essential to reduce

the choice using parameter tuning.

6.1.3 Fixed and Roulette Models

We presented two models, namely fixed and roulette, to select the R-ILS config-

uration after each restart of the Probabilistic Multi-Configuration ILS. With the

fixed model, the probabilistic Multi-Configuration ILS iterates successively the

tuned configurations in the same order during the whole run. With the roulette

model, the tuned configurations are selected following a roulette wheel mech-

anism to better handle intensification and exploration of the search space. For

example, with two tuned configurations, it would be possible to have one R-ILS

configured to intensify the search in a region while the second R-ILS configured

would be more explorative. The experiments showed that the performance of both

models are comparable but the roulette model seems to give more robust perfor-

mance than ones obtained with the fixed model.

Consequently, we investigated the benefit of using parameter tuning, through au-

tomatic algorithm configuration, and parameter control simultaneously in the de-

sign.

6.2 Future Research

The contributions detailed in this manuscript have been presented in international

workshops and conferences. In spite of this, we have not been able to study every-

thing that was initially planned. For example, we only considered a restart mecha-

nism based on the stagnation while more complex ones could be used. Moreover,

we could have studied other combinatorial problems or metaheuristics. In the

following, we propose some other future works.

102

6.2.1 Increase the number of tuned R-ILS

The automated multi-configuration model enables the use of multiple tuned R-ILS

during a whole execution. However, the number of tuned configurations exponen-

tially increases the size of the associated configuration space. That is why, we

bounded this number and we allowed a maximum of three tuned R-ILS. In fu-

ture work, the number of configurations should be increased. Experiments would

allow to analyze if our multi-configurations are still interesting with more tuned

configurations.

6.2.2 Analysis of the multi-configuration ILS algorithms

The configuration space of R-ILS was defined from strategic components with

more or less good efficiency. In the experiments, we saw the importance of keep-

ing all the component strategies in the configuration space since some automated

multi-configuration ILS used strategies known to be less efficient in the literature.

In future work, we would like to deeper analyze the components selected during

the parameter tuning in order to understand their role and impact in the global or

local performance of our multi-configuration ILS algorithms.

103

104

References

Adenso-Díaz, B., & Laguna, M. (2006). Fine-tuning of algorithms using frac-

tional experimental designs and local search. Operations Research, 54(1),

99–114.

Allahverdi, A., & Aldowaisan, T. (2002). New heuristics to minimize total com-

pletion time in m-machine flowshops. International Journal of Production

Economics, 77(1), 71-83. doi: 10.1016/S0925-5273(01)00228-6

Ansótegui, C., Malitsky, Y., Samulowitz, H., Sellmann, M., & Tierney, K.

(2015). Model-based genetic algorithms for algorithm configuration. In

Proceedings of the 24th International Conference on Artificial Intelligence

(p. 733–739). AAAI Press.

Ansótegui, C., Pon, J., Sellmann, M., & Tierney, K. (2021). Pydgga: Distributed

GGA for automatic configuration. In C. Li & F. Manyà (Eds.), Theory

and Applications of Satisfiability Testing - SAT 2021 - 24th International

Conference, Barcelona, Spain, July 5-9, 2021, Proceedings (Vol. 12831,

pp. 11–20). Springer.

Ansótegui, C., Sellmann, M., & Tierney, K. (2009). A gender-based genetic

algorithm for the automatic configuration of algorithms. In I. P. Gent (Ed.),

Principles and Practice of Constraint Programming - CP 2009 (pp. 142–

157). Berlin, Heidelberg: Springer Berlin Heidelberg.

Balaprakash, P., Birattari, M., & Stützle, T. (2007). Improvement strategies for

the f-race algorithm: Sampling design and iterative refinement. In T. Bartz-

Beielstein et al. (Eds.), Hybrid Metaheuristics (pp. 108–122). Berlin, Hei-

delberg: Springer Berlin Heidelberg.

Barahona, F., Grötschel, M., Jünger, M., & Reinelt, G. (1988). An application of

combinatorial optimization to statistical physics and circuit layout design.

105

Operations Research, 36(3), 493–513.

Bartz-Beielstein, T., Lasarczyk, C., & Preuss, M. (2010). The sequential parame-

ter optimization toolbox. In T. Bartz-Beielstein, M. Chiarandini, L. Paquete,

& M. Preuss (Eds.), Experimental methods for the Analysis of Optimization

Algorithms (pp. 337–362). Berlin, Heidelberg: Springer Berlin Heidelberg.

doi: 10.1007/978-3-642-02538-9_14

Bazargani, M., & Lobo, F. G. (2017). Parameter-less late acceptance hill-

climbing. In Proceedings of the Genetic and Evolutionary Computation

Conference (p. 219–226). New York, NY, USA: Association for Comput-

ing Machinery. doi: 10.1145/3071178.3071225

Biedenkapp, A., Bozkurt, H. F., Eimer, T., Hutter, F., & Lindauer, M. (2020).

Dynamic algorithm configuration: Foundation of a new meta-algorithmic

framework. In Proceedings of the twenty-fourth European Conference on

Artificial Intelligence (ECAI’20) (p. 427-434).

Birattari, M., Stützle, T., Paquete, L., & Varrentrapp, K. (2002). A racing al-

gorithm for configuring metaheuristics. In Proceedings of the 4th annual

Conference on Genetic and Evolutionary Computation (p. 11–18). San

Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Blot, A., Hoos, H., Jourdan, L., Marmion, M.-É., & Trautmann, H. (2016). MO-

ParamILS: A Multi-objective Automatic Algorithm Configuration Frame-

work. In Learning and Intelligent Optimization (Vol. 10079, p. 32-47).

Ischia, Italy. doi: 10.1007/978-3-319-50349-3_3

Blot, A., Hoos, H. H., Kessaci, M.-É., & Jourdan, L. (2018). Automatic configura-

tion of bi-objective optimisation algorithms: Impact of correlation between

objectives. In 2018 IEEE 30th International Conference on Tools with Arti-

ficial Intelligence (ICTAI) (p. 571-578). doi: 10.1109/ICTAI.2018.00093

Böttcher, S., Doerr, B., & Neumann, F. (2010). Optimal fixed and adaptive

106

mutation rates for the leadingones problem. In R. Schaefer, C. Cotta,

J. Kołodziej, & G. Rudolph (Eds.), Parallel Problem Solving from Nature,

PPSN xi (pp. 1–10). Berlin, Heidelberg: Springer Berlin Heidelberg.

Burke, E. K., & Bykov, Y. (2017). The late acceptance hill-climbing heuristic.

European Journal of Operational Research, 258(1), 70-78. doi: 10.1016/

j.ejor.2016.07.012

Burke, E. K., McCollum, B., Meisels, A., Petrovic, S., & Qu, R. (2007). A

graph-based hyper-heuristic for educational timetabling problems. Euro-

pean Journal of Operational Research, 176(1), 177-192. doi: 10.1016/

j.ejor.2005.08.012

Cheng, C.-Y., Li, S.-F., & Lin, Y.-C. (2019). Self-adaptive parameters in differ-

ential evolution based on fitness performance with a perturbation strategy.

Soft Comput., 23(9), 3113–3128. doi: 10.1007/s00500-017-2958-z

Clay, S., Mousin, L., Veerapen, N., & Jourdan, L. (2021). Clahc - custom late

acceptance hill climbing: First results on tsp. In Proceedings of the Genetic

and Evolutionary Computation Conference Companion (p. 1970–1973).

New York, NY, USA: Association for Computing Machinery. doi: 10.1145/

3449726.3463129

Croes, G. A. (1958). A method for solving traveling-salesman problems. Opera-

tions Research, 6(6), 791–812.

DaCosta, L., Fialho, A., Schoenauer, M., & Sebag, M. (2008). Adaptive op-

erator selection with dynamic multi-armed bandits. In Proceedings of

the 10th Annual Conference on Genetic and Evolutionary Computation

(p. 913–920). New York, NY, USA: Association for Computing Machinery.

doi: 10.1145/1389095.1389272

de Moraes Barbosa, E. B., & Senne, E. L. F. (2017). Improving the fine-tuning of

metaheuristics: An approach combining design of experiments and racing

107

algorithms. Journal of Optimization, 2017, 1-7.

Doerr, B., & Doerr, C. (2018, June). Theory of Parameter Control for Discrete

Black-Box Optimization: Provable Performance Gains Through Dynamic

Parameter Choices. arXiv:1804.05650 [cs].

Doerr, B., Witt, C., & Yang, J. (2018). Runtime analysis for self-adaptive mutation

rates. In Proceedings of the Genetic and Evolutionary Computation Con-

ference (p. 1475–1482). New York, NY, USA: Association for Computing

Machinery. doi: 10.1145/3205455.3205569

Dong, X., Chen, P., Huang, H., & Nowak, M. (2013). A multi-restart iterated

local search algorithm for the permutation flow shop problem minimizing

total flow time. Computers & Operations Research, 40(2), 627-632. doi:

10.1016/j.cor.2012.08.021

Eiben, A., Hinterding, R., & Michalewicz, Z. (1999). Parameter control in evolu-

tionary algorithms. IEEE Transactions on Evolutionary Computation, 3(2),

124–141. doi: 10.1109/4235.771166

Fan, Q., & Yan, X. (2016). Self-adaptive differential evolution algorithm with

zoning evolution of control parameters and adaptive mutation strategies.

IEEE Transactions on Cybernetics, 46(1), 219-232. doi: 10.1109/TCYB

.2015.2399478

Fernandez-Viagas, V., Ruiz, R., & Framinan, J. M. (2017). A new vision of

approximate methods for the permutation flowshop to minimise makespan:

State-of-the-art and computational evaluation. European Journal of Opera-

tional Research, 257(3), 707-721. doi: 10.1016/j.ejor.2016.09.055

Feutrier, T., Kessaci, M.-E., & Veerapen, N. (2021). Investigating the landscape

of a hybrid local search approach for a timetabling problem. In Proceed-

ings of the Genetic and Evolutionary Computation Conference Companion

(p. 1665–1673). New York, NY, USA: Association for Computing Machin-

108

ery. doi: 10.1145/3449726.3463175

Fialho, Á., Da Costa, L., Schoenauer, M., & Sebag, M. (2008). Extreme Value

Based Adaptive Operator Selection. In 10th International Conference on

Parallel Problem Solving From Nature (PPSN X) (Vol. 5199/2008, p. 175-

184). Dortmund, Germany. doi: 10.1007/978-3-540-87700-4_18

Framinan, J. M., & Leisten, R. (2008). Total tardiness minimisation in per-

mutation flow shops: a simple approach based on a variable greedy algo-

rithm. International Journal of Production Research, 46(22), 6479-6498.

doi: 10.1080/00207540701418960

Framinan, J. M., Leisten, R., & Ruiz-Usano, R. (2005). Comparison of heuristics

for flowtime minimisation in permutation flowshops. Computers & Opera-

tions Research, 32(5), 1237-1254. doi: 10.1016/j.cor.2003.11.002

Glover, F. (1986). Future paths for integer programming and links to artificial

intelligence. Computers & Operations Research, 13(5), 533-549. (Appli-

cations of Integer Programming) doi: 10.1016/0305-0548(86)90048-1

Glover, F. (1989). Tabu search—part i. ORSA Journal on Computing, 1(3),

190-206. doi: 10.1287/ijoc.1.3.190

Glover, F. (1990). Tabu search—part ii. ORSA Journal on Computing, 2(1), 4-32.

doi: 10.1287/ijoc.2.1.4

Guizzo, G., Vergilio, S. R., Pozo, A. T., & Fritsche, G. M. (2017). A multi-

objective and evolutionary hyper-heuristic applied to the integration and test

order problem. Appl. Soft Comput., 56(C), 331–344. doi: 10.1016/j.asoc

.2017.03.012

Henderson, D., Jacobson, S. H., & Johnson, A. W. (2003). The theory and practice

of simulated annealing. In F. Glover & G. A. Kochenberger (Eds.), Hand-

book of Metaheuristics (pp. 287–319). Boston, MA: Springer US. doi:

10.1007/0-306-48056-5_10

109

Hevia Fajardo, M. A., & Sudholt, D. (2021). Self-adjusting population sizes

for non-elitist evolutionary algorithms: Why success rates matter. In

Proceedings of the Genetic and Evolutionary Computation Conference

(p. 1151–1159). New York, NY, USA: Association for Computing Ma-

chinery. doi: 10.1145/3449639.3459338

Hoos, H. H., & Stützle, T. (2005). Stochastic local search: Foundations and

applications. In H. H. Hoos & T. Stützle (Eds.), . San Francisco: Morgan

Kaufmann. doi: 10.1016/B978-155860872-6/50021-4

Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2012). Parallel Algorithm Con-

figuration. In Y. Hamadi & M. Schoenauer (Eds.), Learning and Intelligent

Optimization (Vol. 7219, pp. 55–70). Berlin, Heidelberg: Springer Berlin

Heidelberg. doi: 10.1007/978-3-642-34413-8_5

Hutter, F., Hoos, H. H., Leyton-Brown, K., & Stuetzle, T. (2009, October).

ParamILS: An Automatic Algorithm Configuration Framework. Journal

of Artificial Intelligence Research, 36, 267–306. doi: 10.1613/jair.2861

Jungnickel, D. (1999). Graphs, Networks and Algorithms (Vol. 5; E. Becker,

M. Bronstein, H. Cohen, D. Eisenbud, & R. Gilman, Eds.). Berlin, Heidel-

berg: Springer Berlin Heidelberg. doi: 10.1007/978-3-662-03822-2

Kalender, M., Kheiri, A., Özcan, E., & Burke, E. K. (2013). A greedy gradient-

simulated annealing selection hyper-heuristic. Soft Computing, 17(12),

2279–2292. doi: 10.1007/s00500-013-1096-5

Karafotias, G., Hoogendoorn, M., & Eiben, A. E. (2015). Parameter control

in evolutionary algorithms: Trends and challenges. IEEE Transactions

on Evolutionary Computation, 19(2), 167-187. doi: 10.1109/TEVC.2014

.2308294

Kernighan, B. W., & Lin, S. (1970). An efficient heuristic procedure for parti-

tioning graphs. The Bell System Technical Journal, 49(2), 291-307. doi:

110

10.1002/j.1538-7305.1970.tb01770.x

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated

annealing. Science, 220(4598), 671–680. doi: 10.1126/science.220.4598

.671

Lässig, J., & Sudholt, D. (2011). Adaptive population models for offspring pop-

ulations and parallel evolutionary algorithms. In Proceedings of the 11th

Workshop Proceedings on Foundations of Genetic Algorithms (p. 181–192).

New York, NY, USA: Association for Computing Machinery. doi: 10.1145/

1967654.1967671

Lobo, F. G., Bazargani, M., & Burke, E. K. (2020). A cutoff time strategy

based on the coupon collector’s problem. European Journal of Operational

Research, 286(1), 101-114. doi: 10.1016/j.ejor.2020.03.027

Lourenço, H. R., Martin, O. C., & Stützle, T. (2010). Iterated local search:

Framework and applications. In M. Gendreau & J.-Y. Potvin (Eds.), Hand-

book of Metaheuristics (pp. 363–397). Boston, MA: Springer US. doi:

10.1007/978-1-4419-1665-5_12

López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Birattari, M., & Stüt-

zle, T. (2016). The irace package: Iterated racing for automatic algo-

rithm configuration. Operations Research Perspectives, 3, 43–58. doi:

10.1016/j.orp.2016.09.002

Mladenović, N., & Hansen, P. (1997). Variable neighborhood search. Computers

& Operations Research, 24(11), 1097-1100. doi: 10.1016/S0305-0548(97)

00031-2

Nawaz, M., Enscore, E. E., & Ham, I. (1983). A heuristic algorithm for the m-

machine, n-job flow-shop sequencing problem. Omega, 11(1), 91-95. doi:

10.1016/0305-0483(83)90088-9

Ochoa, G., Verel, S., & Tomassini, M. (2010). First-Improvement vs. Best-

111

Improvement Local Optima Networks of NK Landscapes. In R. Schaefer,

C. Cotta, J. Kołodziej, & G. Rudolph (Eds.), Parallel Problem Solving from

Nature, PPSN XI (pp. 104–113). Berlin, Heidelberg: Springer Berlin Hei-

delberg. doi: 10.1007/978-3-642-15844-5_11

Oliveto, P. S., Lehre, P. K., & Neumann, F. (2009). Theoretical analysis of rank-

based mutation - combining exploration and exploitation. In 2009 IEEE

Congress on Evolutionary Computation (p. 1455-1462). doi: 10.1109/CEC

.2009.4983114

Pageau, C., Blot, A., Hoos, H. H., Kessaci, M.-É., & Jourdan, L. (2019).

Configuration of a Dynamic MOLS Algorithm for Bi-objective Flowshop

Scheduling. In K. Deb et al. (Eds.), Evolutionary Multi-Criterion Opti-

mization (pp. 565–577). Cham: Springer International Publishing. doi:

10.1007/978-3-030-12598-1_45

Papadimitriou, C. H., & Steiglitz, K. (1982). Combinatorial optimization: Algo-

rithms and complexity. USA: Prentice-Hall, Inc.

Rajaraman, K., & Sastry, P. (1996). Finite time analysis of the pursuit algorithm

for learning automata. IEEE Transactions on Systems, Man, and Cybernet-

ics, Part B (Cybernetics), 26(4), 590-598. doi: 10.1109/3477.517033

Rajendran, C. (1993). Heuristic algorithm for scheduling in a flowshop to mini-

mize total flowtime. International Journal of Production Economics, 29(1),

65-73. doi: 10.1016/0925-5273(93)90024-F

Rowe, J. E., & Sudholt, D. (2014). The choice of the offspring population size in

the (1,lambda) evolutionary algorithm. Theoretical Computer Science, 545,

20-38. (Genetic and Evolutionary Computation) doi: 10.1016/j.tcs.2013.09

.036

Ruiz, R., & Stützle, T. (2006). A simple and effective iterated greedy algorithm

for the permutation flowshop scheduling problem. European Journal of

112

Operational Research, 177, 2033–2049.

Ruiz, R., & Stützle, T. (2007). A simple and effective iterated greedy algorithm

for the permutation flowshop scheduling problem. European Journal of Op-

erational Research, 177(3), 2033-2049. doi: 10.1016/j.ejor.2005.12.009

Sabar, N. R., Ayob, M., Qu, R., & Kendall, G. (2011). A graph coloring construc-

tive hyper-heuristic for examination timetabling problems. Applied Intelli-

gence, 37, 1-11.

Sae-Dan, W., Kessaci, M.-E., Veerapen, N., & Jourdan, L. (2020). Time-

dependent automatic parameter configuration of a local search algorithm.

In Proceedings of the 2020 Genetic and Evolutionary Computation Con-

ference Companion (p. 1898–1905). New York, NY, USA: Association for

Computing Machinery. doi: 10.1145/3377929.3398107

Sae-Dan, W., Kessaci, M.-E., Veerapen, N., & Jourdan, L. (2021, December).

Automatic Algorithm Multi-Configuration Applied to an Optimization Al-

gorithm. In 21st International Conference on Hybrid Intelligent Systems

(HIS 2021). online, United States.

Stützle, T., & Hoos, H. H. (2002). Analysing the Run-Time Behaviour of Iterated

Local Search for the Travelling Salesman Problem. In Essays and Surveys

in Metaheuristics (pp. 589–611). Boston, MA: Springer US. doi: 10.1007/

978-1-4615-1507-4_26

Szczepanski, N., Audemard, G., Jourdan, L., Lecoutre, C., Mousin, L., & Veer-

apen, N. (2021). A hybrid CP/MOLS approach for multi-objective im-

balanced classification. In Proceedings of the Genetic and Evolutionary

Computation Conference (p. 723–731). New York, NY, USA: Association

for Computing Machinery. doi: 10.1145/3449639.3459310

Szczepanski, N., Mousin, L., Veerapen, N., & Jourdan, L. (2020). Automatic con-

figuration of multi-thread local search: Preliminary results on bi-objective

113

tsp. In 2020 ieee 32nd International Conference on Tools with Artificial In-

telligence (ICTAI) (p. 1241-1248). doi: 10.1109/ICTAI50040.2020.00187

Taillard, E. (1993, January). Benchmarks for basic scheduling problems. Eu-

ropean Journal of Operational Research, 64(2), 278–285. doi: 10.1016/

0377-2217(93)90182-M

Tari, S., Basseur, M., & Goëffon, A. (2018). Worst Improvement Based Iterated

Local Search. In A. Liefooghe & M. López-Ibáñez (Eds.), Evolutionary

Computation in Combinatorial Optimization (pp. 50–66). Cham: Springer

International Publishing. doi: 10.1007/978-3-319-77449-7_4

Tari, S., Hoos, H., Jacques, J., Kessaci, M.-E., & Jourdan, L. (2020). Automatic

configuration of a multi-objective local search for imbalanced classification.

In T. Bäck et al. (Eds.), Parallel Problem Solving from Nature – PPSN XVI

(pp. 65–77). Cham: Springer International Publishing.

Thierens, D. (2005). An adaptive pursuit strategy for allocating operator proba-

bilities. In Proceedings of the 7th Annual Conference on Genetic and Evo-

lutionary Computation (p. 1539–1546). New York, NY, USA: Association

for Computing Machinery. doi: 10.1145/1068009.1068251

Valente, J. M. S., & Alves, R. A. F. S. (2008). Beam search algorithms for the

single machine total weighted tardiness scheduling problem with sequence-

dependent setups. Comput. Oper. Res., 35(7), 2388–2405. doi: 10.1016/

j.cor.2006.11.004

Whitley, D., Howe, A., & Hains, D. (2013). Greedy or not? best improving

versus first improving stochastic local search for maxsat. In Proceedings of

the twenty-seventh AAAI Conference on Artificial Intelligence (p. 940–946).

AAAI Press.

Yang, T., Zhang, S., & Li, C. (2021). A multi-objective hyper-heuristic algorithm

based on adaptive epsilon-greedy selection. Complex & Intelligent Systems,

114

7(2), 765–780. doi: 10.1007/s40747-020-00230-8

Zamli, K. Z., Din, F., Kendall, G., & Ahmed, B. S. (2017). An experimental study

of hyper-heuristic selection and acceptance mechanism for combinatorial t-

way test suite generation. Information Sciences, 399, 121-153. doi: 10

.1016/j.ins.2017.03.007

Zhang, T., Georgiopoulos, M., & Anagnostopoulos, G. C. (2013). S-race: A

multi-objective racing algorithm. In Proceedings of the 15th Annual Con-

ference on Genetic and Evolutionary Computation (p. 1565–1572). New

York, NY, USA: Association for Computing Machinery. doi: 10.1145/

2463372.2463561

115

	Introduction
	Context
	Motivation
	Contributions
	Thesis Outline

	General Context
	Introduction
	Local Search
	Description
	Initialization
	Neighborhood
	Neighborhood Exploration Strategies

	Classical Local Search
	Hill-Climbing (HC)
	Simulated Annealing (SA)
	Tabu Search (TS)
	Variable Neighborhood Search (VNS)
	Iterated Local Search (ILS)

	Repeated Diversification

	Automatic Design of Algorithms
	Parameter Tuning
	Parameter Control
	Conclusion

	Framework and Experiment Management
	MH-Builder
	Hill Climbing (HC)
	Simulated Annealing (SA)
	Tabu Search (TS)
	Iterated Local Search (ILS)
	Restart Iterated Local Search (R-ILS)

	Iterated Racing (Irace)

	Problems and Instances
	Permutation Flowshop Problem (PFSP)
	Instances
	Neighborhood Operator

	Traveling Salesman Problem (TSP)
	Instances
	Neighborhood Operator

	Baseline ILS Algorithms
	Introduction
	Restart-ILS
	Random Multi-Configuration ILS
	Experimental Protocol
	Configuration Space
	Protocol

	Experimental Results
	Results on PFSP
	Results on TSP

	Conclusion

	Sequential Multi-Configuration ILS
	Introduction
	Sequential Multi-configuration ILS
	Experimental Protocol
	Configuration Space for PFSP
	Configuration Space for TSP

	Experimental Results
	Results on PFSP
	Results on TSP

	Conclusion

	Probabilistic Multi-Configuration ILS
	Introduction
	Probabilistic Multi-configuration ILS
	Fixed Model
	Roulette Model

	Experimental Protocol
	Configuration Space for PFSP
	Configuration Space for TSP

	Experimental Results
	Results on PFSP
	Results on TSP

	Comparisons of the Automatic Multi-Configuration ILS models
	Experimental Protocol
	Experimental Results
	Results on PFSP
	Results on TSP

	Conclusion

	Conclusion
	Contribution Summary
	Automated Multi-Configuration ILS
	Sequential and Probabilistic Frameworks
	Fixed and Roulette Models

	Future Research
	Increase the number of tuned R-ILS
	Analysis of the multi-configuration ILS algorithms

	References

