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This introductory chapter to the thesis is divided in four sections. The appetiser is meant to provide a direction and a possible frame of mind for reading the thesis. It is by no means exhaustive as it omits some of its main ideas and results. The second section provides some background explaining the relationships between the various interpretations of modular conjugacy classes. The third section explains most of the main ideas and results, and it is divided in two parts reflecting the structure of the thesis as a whole. After that the thesis is divided in five chapters which, besides a few detours, are meant to be read in this order, as each one contains sections building on the previous. Every chapter is preceded by a specific introduction indicating its relation to the others, its internal structure, and containing its relevant bibliography. 1

Appetiser

This thesis is dedicated to the investigation of various structures underlying the set of conjugacy classes in the modular group PSL 2 (Z), arising from arithmetic or geometry and topology or combinatorics, such as equivalence relations and bilinear pairings.

The geometrical structures arise from the fact that PSL 2 (Z) is a Fuchsian group, that is a finite type discrete subgroup of PSL 2 (R). Thus PSL 2 (Z) acts properly discontinuously on the upper half-plane HP with quotient the modular orbifold M, a hyperbolic surface with conical singularities i & j of order 2 & 3, and a cusp ∞. The orbifold homotopy classes of loops in M correspond to the conjugacy classes in its orbifold fundamental group π 1 (M) = PSL 2 (Z).

A primitive hyperbolic A ∈ PSL 2 (Z) acts by translation along an axis γ A ⊂ HP which projects to a closed oriented primitive geodesic [γ A ] ⊂ M. Conversely, a closed oriented primitive geodesic in M lifts to a set of bi-infinite oriented geodesics in HP; each one is the translation axis of a unique primitive hyperbolic element in PSL 2 (Z), and all these elements are conjugate. Consequently, primitive hyperbolic conjugacy classes of PSL 2 (Z) correspond to primitive closed oriented geodesics in M.

The complexity of a modular geodesic [γ A ] can be measured by its length λ A , equal to the logarithm of the ratio between the eigenvalues of ±A, in other terms:

1 2 |Tr(A)| = cosh 1 2 λ A or disc(A) := Tr(A) 2 -4 = 4 sinh 1 2 λ A 2
Observe that modular geodesics have the same length if and only if the corresponding conjugacy classes of PSL 2 (Z) are conjugate in PSL 2 (Q( √ Z)) where Q( √ Z) is the field extension of Q obtained by adjoining the square roots of all integers. This equivalence relation, admitting both geometric and arithmetic interpretations, turns out to be non-trivial and groups the modular geodesics into finite classes.

We are thus led to consider a field K containing Q, and ask: when are conjugacy classes of PSL 2 (Z) conjugate in PSL 2 (K), and how to measure this K-equivalence geometrically? To address these questions, we shall study the adjoint action of the arithmetic group PSL 2 (K) on its Lie algebra sl 2 (K), and derive the following.

Proposition (Arithmetic equivalence of modular geodesics). Two conjugacy classes of PSL 2 (Z) with discriminant ∆ > 0 are K-equivalent if and only if the corresponding modular geodesics satisfy the following equivalent conditions:

θ There exists one intersection point with angle θ ∈ ]0, π[ such that cos θ 2 2 = 1 (2x) 2 -∆y 2 for x, y ∈ K, in which case all intersections have this property.

λ There exists one co-oriented ortho-geodesic of length λ such that cosh λ 2 2 = 1 (2x) 2 -∆y 2 for x, y ∈ K, in which case all such ortho-geodesics have this property.

We now recall a combinatorial parametrization of infinite order conjugacy classes of PSL 2 (Z). The euclidean algorithm shows that the group SL 2 (Z) is generated by the transvections L&R, and more precisely that its submonoid SL 2 (N) of matrices with non-negative entries is freely generated by L&R. This submonoid can be identified with its image PSL 2 (N) ⊂ PSL 2 (Z).

L = 1 0 1 1 R = 1 1 0 1
In PSL 2 (Z), the conjugacy class of an infinite order element intersects PSL 2 (N) along all cyclic permutations of a non-empty L&R-word. The primitivity of the conjugacy class is equivalent to the primitivity of those cyclic words, and the conjugacy class is hyperbolic exactly when both letters L and R appear.

We may wonder how to decipher the precise geometry of modular geodesics and in particular their isotopy classes from the combinatorics of these cyclic binary words. The most immediate measures of complexity of a binary word are given by the numbers of letters of each sort. For a primitive hyperbolic A ∈ PSL 2 (Z) we call Rad([A]) = #R -#L the Rademacher number of its conjugacy class. In his paper [START_REF] Atiyah | The logarithm of the Dedekind η-function[END_REF] on the Logarithm of the Dedekind eta function, M. Atiyah identified the Rademacher function with no less than six other important functions appearing in diverse areas of mathematics, showing how omnipresent it is. In [START_REF] Ghys | Knots and dynamics[END_REF] É. Ghys added a topological interpretation in terms of modular knots which we now explain.

The unit tangent bundle U = PSL 2 (Z)\ PSL 2 (R) of M = PSL 2 (Z)\HP is a three-manifold, and the structure of the Seifert fibration U → M reveals that it is homeomorphic to the complement of a trefoil knot in the sphere. The primitive closed oriented geodesics in M lift to the primitive periodic orbits for the geodesic flow in U which are the so called modular knots. Hence the primitive hyperbolic conjugacy classes in the modular group index the components of a link in the complement of a trefoil, and one may ask about their linking numbers.

In [START_REF] Ghys | Knots and dynamics[END_REF], É. Ghys showed that the linking number of a modular knot with the trefoil is equal to its Rademacher invariant, and concluded by asking for an arithmetic interpretation of the linking pairing between modular knots.

For this, we introduce for any pair of modular geodesics [γ A ], [γ B ], the sum over their oriented intersection angles θ ∈ ]0, π[ of the quantities which appeared in our previous arithmetic interpretation:

L 1 ([A], [B]) := cos θ 2 2
and study its variations as we deform the metric on M by opening the cusp.

The complete hyperbolic metrics on the orbifold M correspond to the faithful and discrete representations ρ : PSL 2 (Z) → PSL 2 (R) up to conjugacy. They form a 1-dimensional real algebraic set parametrized by q ∈ R * and the matrix A q = ρ q (A) is obtained from any L&R-factorisation of A by replacing L → L q and R → R q , where:

L q =
q 0 1 q -1 and R q = q 1 0 q -1 .

The primitive hyperbolic conjugacy classes of PSL 2 (Z) still index the hyperbolic geodesics in the quotient M q = ρ q (PSL 2 (Z))\HP which do not surround the cusp. We may thus define the analogous sum L q ([A], [B]) over the intersection angles θ q ∈ ]0, π[ between the q-modular geodesics [γ Aq ], [γ Bq ] ⊂ M * q of the cos 1 2 θ q 2 .

As q → ∞, the hyperbolic orbifold M q has a convex core which retracts onto a thin neighbourhood of the long geodesic arc connecting its conical singularities, whose preimage in the universal cover HP is a trivalent tree. In the limit we recover the action of PSL 2 (Z) on the infinite planar trivalent tree, and by studying its combinatorics we shall prove the following.

Theorem (Linking numbers from boundary evaluations). For primitive hyperbolic A, B ∈ PSL 2 (Z), the limit of the function L q ([A], [B]) at the boundary point of the PSL 2 (R)-character variety of PSL 2 (Z) recovers their linking number: L q ([A], [B]) ---→ q→∞ 2 lk([A], [B]).

This deformation of the hyperbolic metric provides another way to refine the partition of modular geodesics [γ A ] according to their geometric length λ A . It amounts to asking for the equality of the trace functions Tr(A q ) ∈ Z[q, q -1 ] on the character variety. This algebraic equivalence implies the equality of geometric lengths λ A and of combinatorial lengths #R + #L (which count the geometric intersection number of modular geodesics with the infinite geodesic arc [i, ∞) ⊂ M). However it is not trivial, and to understand it better we propose a topological interpretation.

The modular knot associated to a (primitive) hyperbolic A ∈ PSL 2 (Z) defines a conjugacy class in the fundamental group π 1 (U) of the complement of the trefoil. This group is isomorphic to the braid group on three strands B 3 , and to the conjugacy class of a braid is associated the link obtained as its closure. We shall relate ρ q to the reduced Burau-Squier representation B 3 → SL 2 (Z[t, t -1 ]) to deduce the following.

Aims of the thesis

This thesis is dedicated to the investigation of topological and arithmetical structures on the set of conjugacy classes in the modular group PSL 2 (Z). These structures will consist in various equivalence relations or functions on pairs of conjugacy classes.

Several questions arise. What is the modular group, and why is it interesting? How to study this group, and which role is played by its conjugacy classes?

The modular quadratic dictionary

To fix some notations and a common ground, let us briefly retrace the emergence of the modular group in the history of mathematics, without shying the introduction of the matrix formalism even when it is anachronistic. We refer to [START_REF] Weil | Number theory: An approach through history From Hammurapi to Legendre[END_REF][START_REF] Klein | Development of mathematics in the 19th century[END_REF] and [START_REF] Knoebel | Mathematical masterpieces. Further chronicles by the explorers[END_REF] for much more depth and accuracy concerning historical matters.

Euclidean monoid & continued fractions

Denote N = {0, 1, . . . } the monoid of non-negative integers, Z the ring of integers and Q its field of fractions. The rational field was the realm of Pythagorean arithmetic: all numbers were given by the ratio of two commensurable lengths.

The common measure of two commensurable lengths can be computed from a repeated application of the transformations J : z → z -1 and R -1 : z → z -1 to their ratio r ∈ Q according to the Euclidean division algorithm. This leads to the sequence of partial quotients q i ∈ N * appearing in its continued fraction expansion: r = q 0 , q 1 , . . . , q k := q 0 + 1 q 1 + 1

•••+ 1 q k = (R q 0 JR q 1 J . . . R q k J) • ∞
The transformations J&R generate the group PGL 2 (Z) which acts on the rational projective line QP 1 by linear fractional transformations. Its index two subgroup which preserves the cyclic order of QP 1 is the modular group PSL 2 (Z), generated by R : z → z + 1 and L = JRJ : z → (z -1 + 1) -1 . Over any ring, the action of PGL 2 on P 1 is given by linear fractional transformations as follows:

A = ( a b c d ) A • z = az+b cz+d so we lift J = ( 0 1 1 0 ), R = ( 1 1 0 1 ), L = ( 1 0 1 1 ).
The Euclidean algorithm leads to considering only those elements in the euclidean monoid freely generated by L&R, which gets identified both to SL 2 (N) and to its projectivization PSL 2 (N). Thus in Antiquity the modular group was not yet an object of study.

The next two thousand years saw no change in the use of the Euclidean algorithm, although it was extended to numbers with no common measure around the turn of the XVII th century (by Bombelli, Brouncker, Wallis, Huygens and Euler among others). This led to the decomposition of irrational numbers into infinite continued fractions: √ 2 = 1, 3, 1, 5, 1, 1, . . . π = 3, 7, 15, 1, 292, . . . Now instead of considering the common measure of two rationals, we focus on the successive tails r k = q k , q k+1 , . . . of the continued fraction expansion of a real number r = r 0 ∈ R.

We thus consider equivalent those numbers whose continued fraction expansions eventually coincide, in other terms whose orbits under the action of the aforementioned monoid have a non-empty intersection. By doing so we are secretly considering the action of the group generated by the monoid.

If

r 0 = n 0 , n 1 , . . . . . . . . . , n k-1 , n k , r k+1 then

r 0 = (R n 0 J R n 1 J . . . R n k-1 J R n k J) • r k+1 for all k ∈ N whence r 0 = (R n 0 L n 1 ) . . . . . . . . . (R n k-1 L n k ) • r k+1 when k is odd as JR n J = L n .
Hence we find that x, y ∈ RP 1 belong to the same PGL 2 (Z)-orbit when some tails x i and y j of their continued fractions coincide, and they belong to the same PSL 2 (Z)orbit when there exist i, j ∈ 2N such that the tails x i and y j coincide.

The rational numbers are those for which this tail is eventually empty. After that, the simplest numbers are those whose continued fraction expansions have periodic tails. Their study reached an effervescence in the works of Euler, Lagrange, Legendre, Galois and Gauss, in connection with the arithmetic of quadratic forms. Indeed, these preperiodic irrational numbers correspond to the roots of irreducible quadratic polynomials with integral coefficients and positive discriminant. They also correspond to primitive hyperbolic elements in the modular group.

One may learn more about continued fractions and diophantine approximation in [START_REF] Hardy | An Introduction to the Theory of Numbers[END_REF][START_REF] Khrushchev | Encyclopedia of Mathematics and its Applications[END_REF], and about their relation to quadratic forms in [START_REF] Series | The geometry of Markov numbers[END_REF][START_REF] Hatcher | Topology of numbers. CUP?[END_REF].

Arithmetic dictionary: primitive hyperbolic matrices in PSL 2 (Z)

The continued fraction expansion of an irrational preperiodic number α admits a unique factorisation into a mantissa of length 2i and a period of length 2j with minimal i, j ∈ N: α = c 1 , . . . , c 2i , b 1 , . . . , b 2j .

Since α is irrational we have j > 0, and α is called purely periodic when i = 0.

We have α = C • β for C = R c 1 L c 2 . . . R c 2i-1 L c 2i and β = B • β is purely periodic with monodromy B = R b 1 . . . L b 2j ∈ PSL 2 (N), so α is fixed under

A = CBC -1 ∈ PSL 2 (Z).
Since j is positive and minimal, the element B is hyperbolic and primitive: it satisfies disc(B) := Tr(B) 2 -4 > 0 and is not the power of another matrix in PSL 2 (Z). Exactly the same goes for A, which satisfies disc(A) = disc (B).

The fixed point α of A satisfies the quadratic relation cα 2 +(d-a)α-b = 0 where a, b, c, d are the entries for a lift of A in SL 2 (Z). Dividing this by u = gcd(c, d-a, -b) and by sign Tr(A) yields a primitive integral binary quadratic form Q(x, y) = lx 2 + mxy + ry 2 which is indefinite, meaning that its discriminant disc(Q) = m 2 -4lr = disc(A)/u 2 is positive and non-square.

This quadratic form can be polarised with respect to the determinant as follows. Denote by sl 2 (Q) the Lie algebra of rational 2 × 2 matrices with trace 0. There exists a unique a ∈ sl 2 (Q) such that Q(v) = det(v, av) and disc(a) := -4 det(a) = disc(Q). It is given by the formula:

a = 1 2 -m -2r 2l m .
The Q-vector space sl 2 (Q) is endowed with the non-degenerate quadratic form det of real signature (1, 2). The dual lattice sl 2 (Z) ∨ = 1 2 Z1 + sl 2 (Z) to sl 2 (Z) with respect to det contains a as a primitive vector. Moreover a is space-like as det(a) < 0. Dictionary: objects. We have introduced the entries of the arithmetic dictionary: The extended modular group PGL 2 (Z) acts on each entry: by linear fractional transformation α → C •α, by conjugacy A → CAC -1 , by change of variables

Q → Q•C -1
and by the adjoint action a → CaC -1 . We also have an action of Z/2 on these entries given by Galois conjugacy α → α ′ , by inversion A → A -1 , by change of sign Q → -Q and a → -a. Note that it coincides with the operation of taking the transpose comatrix A → A # and a → a # . Dictionary: morphisms. We have an explicit correspondence between the entries Q, a, α, A of the arithmetic dictionary, that is a commutative diagram of 4 2 = 16 bijective maps between any two of these families, which is equivariant under the extended modular group PGL 2 (Z) as well as under the Z/2-involution.

Some of them can be abbreviated by the following formulae, where we denote v = t (x, y) and v α = t (x α , y α ) such that x α /y α = α, as well as t = 1 2 Tr(A) > 0, u = gcd(c, d -a, -b) and ∆ = disc(Q) = -disc(a) = disc(A)/u 2 :

Q ↔ a : Q = lx 2 + mxy + ry 2 Q(v) = det(v, av) a = -m/2 -r l m/2 {Q, a} ↔ α : Q(x, y) = l(x -αy)(x -α ′ y) α = -m + √ ∆ 2l av α = √ ∆ 2 v α {Q, a, α} ← A : Q(v) = 1 u det(v, Av) A = t.1 + u.a Av α = Tr(A) + u √ ∆ 2 v α
From now on we shall voyage fluently between the various entries of the dictionary. Out of all these, we prefer to work with matrices a in the lattice sl 2 (Z) ∨ of sl 2 (Q). Indeed, the space sl 2 (Q) has the structure of a Lie algebra, which is preserved by the adjoint action of PSL 2 (Q): the tools available for such a study are classical, allying geometrical insight with efficient linear algebra.

We refer to [START_REF] Lachaud | Continued fractions, binary quadratic forms, quadratic fields, and zeta functions[END_REF] and [START_REF] Cohn | Connections between algebraic number theory and integral matrices[END_REF]Chapter 14 & Appendix B] for the correspondence between preperiodic continued fractions, real quadratic irrationals, quadratic forms and matrices in the modular group. The originality in our approach, inspired by [Thu97, Section 2.6] and [START_REF] Bhargava | Higher composition laws. II. On cubic analogues of Gauss composition[END_REF], is to consider matrices in lattices of the quadratic space (sl 2 (Q), det) in order to focus on their geometric study.

Remark (Algorithmic). It is straightforward to voyage between any two of {Q, a, α}, and to deduce those from A; but computing A from α is rather delicate as it involves extracting the mantissa and period of a continued fraction. The mantissa could be long and contain periodic subwords beluding us into thinking we found the period (unless we keep an eye on the periodicity of the "quadratic left overs").

However, we may express A = t1 + ua by computing the smallest positive element t + u √ δ ∈ Z[ √ δ] of norm t 2 -δu 2 = 1 where δ = 1 4 ∆ (defining the fundamental solution (t, u) to the Pell-Fermat equation t 2 -δu 2 = 1), and replacing √ δ by the square root a ∈ sl 2 (Z) ∨ of δ1.

Remark (Negative discriminants). This dictionary can be extended to objects with negative discriminants:

α imaginary quadratic irrationals α = -m+ √ ∆ 2l
Q primitive definite integral binary quadratic forms Q(x, y) = lx 2 + mxy + ry 2 a primitive integral time-like vectors a = 1 2 ( -m -2r 2l m ) ∈ sl 2 (Z) ∨

Another reference about integral binary quadratic forms which eventually focuses on the case of negative discriminants is [START_REF] Cox | Primes of the form x 2 + ny 2[END_REF].

Class groups and genera

Notice that two matrices A, B ∈ PSL 2 (Z) have the same discriminant ∆ if and only if they are conjugate in PSL 2 (C), or even in PSL 2 (Q( √ Z)). Fix a positive non-square discriminant ∆ and consider the set Cl(∆) of PSL 2 (Z)-equivalence classes of primitive integral binary quadratic forms with that discriminant. This set is finite because one may represent a class by a purely periodic number α, implying that -1/α ′ is purely periodic (with reverse period), so both of these real numbers are > 1. In particular α ′ < 0 < α so the corresponding quadratic form Q satisfies -lr > 0 and there is a finite number of solutions to ∆ = m 2 -4lr.

A class [Q] ∈ Cl(∆) is uniquely determined by its set of values [Q](Z 2 ). Indeed [Hat22, Proposition 6.7] says that if two forms of the same discriminant represent the same prime number or both represent 1 then they are equivalent, and by [START_REF] Meyer | Ueber einen Satz von Dirichlet[END_REF] every primitive form represents at least one prime. In [START_REF] Friedrich | Recherches Arithmétiques[END_REF] C.-F. Gauss showed that there is a well defined composition of classes corresponding to the multiplication of the associated sets of values, endowing Cl(∆) with the structure of a finite abelian group. It was later reformulated by Dirichlet as follows [START_REF] Weil | Number theory: An approach through history From Hammurapi to Legendre[END_REF]. One may represent two elements in Cl(∆) by forms Q 1 and Q 2 whose first coefficients l 1 and l 2 are coprime, and with the same middle coefficient m. Then their composition Q 3 of the same discriminant is determined by its first coefficient l 3 = l 1 l 2 and middle coefficient m.

Two classes have same genus when they represent the same values in (Z/∆) × . By [START_REF] Cox | Primes of the form x 2 + ny 2[END_REF]Theorem 3.21] this is equivalent to saying that they are conjugate by a matrix C ∈ GL 2 (Q) with denominators coprime to 2∆. The genera form a group Gen(∆) given by the multiplication of their sets of values in (Z/∆) × . Gauss identified it with the quotient of his class group by the subgroup of squares. Moreover the kernel of the squaring map consists in the subgroup Sym(∆) of classes invariant by the Galois involution. In other terms we have a short exact sequence of abelian groups:

1 → Sym(∆) → Cl(∆) square ----→ Cl(∆) → Gen(∆) → 1.

Topological dictionary for conjugacy classes

The modular dictionary descends to classes under the action of the modular group. The dictionary of PSL 2 (Z)-classes can be extended to include topological entries, in particular modular geodesics and modular knots, which we now briefly describe.

In this subsection, we refer to [START_REF] Thurston | Three-dimensional geometry and topology[END_REF][START_REF] Scott | The geometries of three manifolds[END_REF][START_REF] María | Classical tessellations and three-manifolds[END_REF] for more about hyperbolic geometry and geometric structures on orbifolds or their unit tangent bundles; to [START_REF] Serre | arbres, amalgammes[END_REF][START_REF] Hatcher | Topology of numbers. CUP?[END_REF] for the action of the modular group on the trivalent tree.

The modular orbifold and the associated trivalent tree

The automorphism group PGL 2 (C) of the complex projective line CP 1 contains PGL 2 (R) as the stabiliser of the real projective line RP 1 . The index-two subgroup PSL 2 (R) also preserves the upper half-plane HP = {z ∈ C | (z) > 0} ⊂ CP 1 , or equivalently the orientation induced on its boundary ∂HP = RP 1 .

The complex structure on HP is conformal to a unique hyperbolic metric. The hyperbolic distance λ between w, z ∈ HP can be deduced from the cross-ratio by:

1 bir(z, z, w, w) = cosh λ 2 2
This realizes PSL 2 (R) as the positive isometry group of the hyperbolic plane: it preserves the previous cross-ratio and acts simply-transitively on positive triples of distinct points of RP 1 , thus it preserves the hyperbolic metric and acts simply transitively on the unit tangent bundle of HP.

The subgroup PSL 2 (Q) is the stabiliser of the rational projective line QP 1 . The discrete subgroup PSL 2 (Z) is the stabiliser of the ideal triangulation of HP with vertex set QP 1 and edges all geodesics whose endpoints p q , r s satisfy |ps -qr| = 1. Consider the action of the modular group PSL 2 (Z) on this ideal triangulation. It is transitive on the set of edges, which is in bijection with the orbit of i ∈ (0, ∞). The stabiliser of i is the subgroup of order 2 generated by S. It is transitive on the set of triangles, which is in bijection with the orbit of j = exp(iπ/3) ∈ (0, 1, ∞). The stabiliser of j is the subgroup of order 3 generated by T . Thus it is freely transitive on the flags, or equivalently on the oriented edges, and we deduce that PSL 2 (Z) = Z/2 * Z/3 is the free amalgam of its subgroups generated by S and T .

S = 0 -1 1 0 T = 1 -1 1 0
We also find that PSL 2 (Z) acts properly discontinuously on HP with fundamental domain the triangle (∞, 0, j). We may cut it along the geodesic arc (i, j) to obtain a pair of isometric triangles (i, j, ∞) and (i, j, 0). Identifying them along their isometric edges yields the quotient M = PSL 2 (Z)\HP.

It is a hyperbolic two-dimensional orbifold, with conical singularities [i] & [j] of order 2 & 3 respectively associated to the fixed points i & j of S & T , and a cusp associated to the fixed point ∞ of R acting on ∂HP. We call M the modular orbifold.

The preimage of the segment ([i], [j]) ⊂ M in HP forms a bipartite tree T ′ , the first barycentric subdivision of a trivalent tree T which is dual to the ideal triangulation. The group PSL 2 (Z) acts freely transitively on the set of edges of T ′ , or the set of oriented edges of T . The base edge (i, j) of T ′ defines the oriented base edge ⃗ e i of T .

Lyndon cycles and modular geodesics

A primitive hyperbolic A ∈ PSL 2 (Z) acts on T by translation along an oriented geodesic g A called its combinatorial axis. Since g A has endpoints α ′ , α ∈ ∂T = RP 1 , it uniquely determines A. The conjugacy class of A corresponds to the orbit of g A under the action of PSL 2 (Z) on T , denoted [g A ] = g A mod PSL 2 (Z).

Observe that g A passes through the oriented base edge ⃗ e i of T exactly when its endpoints satisfy α ′ < 0 < α, that is when A ∈ PSL 2 (N). In that case, it follows a periodic sequence of left and right turns given by the L&R-factorisation of A, or the continued fraction expansion of the periodic number α.

Consequently, the conjugacy classes of primitive hyperbolic matrices in PSL 2 (Z) correspond to the primitive cyclic words on the alphabet {L, R} with at least one occurrence of each letter. The linear representatives of such an L&R-cycle parametrize the intersection of the corresponding conjugacy class with PSL 2 (N), whose elements are called its Lyndon representatives. Lyndon words have appeared in the study of free Lie algebras [START_REF] Lyndon | On Burnside's problem[END_REF][START_REF] Chen | Free differential calculus. IV. The quotient groups of the lower central series[END_REF][START_REF] Berstel | The origins of combinatorics on words[END_REF] and [START_REF] Reutenauer | Free Lie algebras[END_REF] remarks that they index conjugacy classes in the modular group.

A hyperbolic A ∈ PSL 2 (Z) acts on HP by translation along an oriented geodesic γ A ⊂ HP with endpoints α ′ , α ∈ RP 1 , called its geometric axis. Its projection in M is an oriented closed geodesic [γ A ] = γ A mod PSL 2 (Z) for the hyperbolic metric whose hyperbolic length λ A is given by:

1 2 Tr(A) = cosh 1 2 λ A thus disc(A) = 4 sinh 1 2 λ A 2
Conversely, an oriented closed geodesic lifts to a set of bi-infinite oriented geodesics in HP, each one being the translation axis of a unique primitive element in PSL 2 (Z), and all these elements are conjugate. Consequently, primitive hyperbolic conjugacy classes of PSL 2 (Z) correspond to primitive closed geodesics in M.

Notice that the combinatorial and geodesic axes of A ∈ PSL 2 (Z) have the same endpoints α ′ , α ∈ RP 1 = ∂HP = ∂T . More precisely, the geometric axis γ A lies inside a (log √ ∆)-neighbourhood of the combinatorial axis g A , where ∆ = disc(A). In Section 3.1, we investigate the isotopy class of [γ A ] ⊂ M in terms of the corresponding L&R-cycle.

-2 -1 0 1 2 J I -2 -1 0 1 2 J I

Ideal triangulation

of HP, its dual trivalent tree T , and the modular tesselation. Geometric axis γ A inside a (log √ ∆)-neighbourhood of the combinatorial axis g A .

Modular knots and torus bundles

The Lie group PSL 2 (R) identifies with the unit tangent bundle to the hyperbolic plane HP. Its lattice PSL 2 (Z) acts on the left with quotient U = PSL 2 (Z)\ PSL 2 (R) the unit tangent bundle to the modular orbifold M = PSL 2 (Z)\HP.

The structure of the Seifert fibration U → M reveals that U is homeomorphic to the complement of a trefoil knot in the sphere. This was proved in [START_REF] Pourezza | The space of closed subgroups of R 2[END_REF][START_REF] Kloeckner | The space of closed subgroups of R 2 and Seifert invariants[END_REF]. In particular, one may speak of linking numbers between disjoint loops in U.

The closed hyperbolic geodesics [γ A ] in M lift to the primitive periodic orbits for the geodesic flow in its unit tangent bundle U. These modular knots form a second entry in our topological dictionary. The online article [START_REF] Ghys | Lorenz and modular flows: a visual introduction[END_REF] proposes an animated introduction to the topology and dynamics of U.

The fundamental group π 1 (U) is isomorphic to the braid group on three strands. We characterise in Chapter 4 which of its conjugacy classes correspond to homotopy classes of modular knots and describe the isotopy classes of these modular knots.

The conjugacy class of a braid β in B 3 yields, by taking its closure, a link in the solid torus D 2 × S 1 with three strands which are transverse to the disc fibration. The ramified double cover of that solid torus over the link yields a punctured torus bundle over the circle whose monodromy is the projection β ∈ B 3 → A ∈ SL 2 (Z).

A modular geodesic in M, lifted as a modular knot in U, Seifert fibration U → M. Images produced by Constantin Kogler and Jos Leys with Étienne Ghys.

The homeomorphism classes of oriented punctured torus bundles with an oriented base and primitive hyperbolic monodromy A ∈ SL 2 (Z) form a third entry of the topological dictionary. However it will play a secondary role in this thesis.

The Lorenz template and the modular link

To describe the isotopy class of the master modular link consisting in all modular knots, we rely on the construction of the Lorenz template and its embedding in U.

The Lorenz template Y is the branched surface obtained from the triangle ▽ 1 ⊂ R 2 with vertices R -1 v 1 = (0, 1), v 1 = (1, 1), L -1 v 1 = (1, 0) by identifying its right side with the hypotenuse through R -1 and its top side with the hypotenuse through L -1 . The radial vector field on R 2 intersected with ▽ 1 descends on Y to define a semi-flow. The lines with rational inclination project to the orbit with finite future, forming the past of the vertex (1, 1). Now consider a primitive hyperbolic conjugacy class in PSL 2 (Z). The lifts of its Lyndon representatives in SL 2 (N) act on R 2 as hyperbolic transformations. Their stable eigen-directions intersect the triangle ▽ 1 in a collection of disjoint segments which quotient to a closed loop in Y. These are the primitive periodic orbits of the Lorenz semi-flow.

In [START_REF] Ghys | Knots and dynamics[END_REF], Ghys isotoped the master modular link formed by all modular knots, to the master Lorenz link formed by the primitive periodic orbits of the semi-flow on the Lorenz template, after its embedding in U as suggested in the figure below. The Lorenz template was introduced by Birman-Williams in [START_REF] Birman | Knotted periodic orbits in dynamical systems. I. Lorenz's equations[END_REF] to study the periodic orbits for the dynamical system arising from Lorenz' equations.

The Rademacher number of a primitive hyperbolic conjugacy class of PSL 2 (Z) is computed from any Lyndon representative A ∈ PSL 2 (N) as Rad([A]) = #R-#L. In his paper [START_REF] Atiyah | The logarithm of the Dedekind η-function[END_REF] on the Logarithm of the Dedekind eta function, M. Atiyah identified

1 1 T R L 0 v 0 v 1 v ∞ 1 1 A 2 (1) = 15 11 A = RLL v 1 v 0 v ∞ 0 1 2 2 3 4 4 5 6
Identifications of ▽ 1 yielding the Lorenz template. From an L&R-cycle to the cycle of segments in the base triangle of 1 .

the Rademacher function with no less than six other important functions appearing in diverse areas of mathematics, showing how omnipresent it is.

In [START_REF] Ghys | Knots and dynamics[END_REF], É. Ghys showed that the linking number of a modular knot with the trefoil is equal to its Rademacher invariant, and concluded by asking for an arithmetic interpretation of the linking pairing between modular knots.

The Lorenz template Y and the trefoil. Modular knot in Y and a crossing.

Structures on conjugacy classes: equivalence & pairings

We have given our first motivation to study conjugacy classes in the modular group: they parametrize various kinds of mathematical objects.

The main questions about them depend on the objects under consideration and the frame of mind. One may ask about the numbers represented by quadratic forms, about the arithmetic of the quadratic rings generated by their roots, about the periods of their continued fraction expansions. We may care about the algebraic structures or the asymptotic distribution of their PSL 2 (Z)-classes.

The dictionary prompts us to translate structures from one entry to the other. In this thesis we focus on two such questions, namely we want to understand:

• arithmetic equivalence relations defined over the set of binary quadratic forms in terms of the geometry of the modular geodesics

• intersection and linking numbers of modular geodesics and modular knots in terms of the arithmetic of real quadratic irrationalities

We have presented those arithmetic equivalence relations and the linking numbers of modular knots in the introduction. In the next section we will say more about them as we present the main results of the thesis.

Before going on, let us collect here some of the equivalence relations we have already encountered on the set of hyperbolic conjugacy classes in the modular group. For this we consider Lyndon representatives A, B ∈ PSL 2 (N) of the conjugacy classes and freely use the arithmetic dictionary. In particular we denote by α = a 0 , . . . , a m and β = b 0 , . . . , b n the corresponding real quadratic irrationals.

PSL 2 (Q) Arithmetic Q-equivalence: ∃C ∈ PSL 2 (Q) : CAC -1 = B
Cl / Cl 2 Genus equivalence of Q A and Q B Tr(A q ) Algebraic trace equivalence: Tr(A q ) = Tr(B q ) λ A Geometric length equivalence: λ A = λ B , that is Tr(A) = Tr (B) len(A) Combinatorial length equivalence: len(A) = len (B), that is a k = b k len(α) Arithmetic length equivalence: len(α) = len(β), that is m = n Rad(A) Rademacher equivalence: Rad(A) = Rad (B), that is (-1) k a k = (-1) k b k Conjecture 0.1. Our main conjectures are that arithmetic Q-equivalence implies genus equivalence, as well as trace equivalence and Rademacher equivalence.

Main results of the thesis 0.3.1 Arithmetic equivalence of modular geodesics

The adjoint action of PSL 2 (K) on sl 2 (K)

Let K be a field of characteristic different from 2. In the sequel, we specialize K = Q.

On the 3-dimensional associative K-algebra sl 2 (K), the commutator

{a, b} = 1 2 (ab -ba)
defines a Lie bracket. Its Killing form multiplied by -1 8 recovers the polarisation

a, b = 1 2 Tr(ab)
of the non-degenerate quadratic form det.

The adjoint action of GL 2 (K) on sl 2 (K) preserves all this structure and yields a representation PGL 2 (K) → SO(sl 2 (K), det) which turns out to be an isomorphism, as we recall in Proposition 1.54. The main achievement of Chapter 1 is to describe the structure of the orbits for the action of PSL 2 (K) on sl 2 (K).

Lemma (Parametrizing the cone). Denote by X the isotropic cone of (sl 2 (K), det). We define the quadratic map ψ :

K 2 → sl 2 (K) by ψ(v) = -v • t (Sv) where S = ( 0 -1 1 0 ). It has image X S = {p ∈ X | ∃ x, y ∈ K : p, S = x 2 + y 2 }
and is two-to-one outside the origin. For all u, v ∈ K 2 we have 2 ψ(u), ψ(v) = det(u, v) 2 . The map ψ intertwines the tautological action of SL 2 (K) on K 2 with its adjoint action on X.

Corollary (Actions on KP 1 ). The projectivised map P(ψ) : P(K 2 ) → P(X) is an isomorphism of projective lines which intertwines the tautological action of PSL 2 (K) on the projective line P(K 2 ) to its adjoint action on the projective conic P(X).

We deduce that the action of PGL 2 (K) on P(X) is simply-transitive on triples of distinct lines. Moreover, after defining the Maslov index of three lines in KP 1 as an element of {0} ∪ K × /(K × ) 2 , we shall deduce that the action of PSL 2 (K) on P(X) preserves the Maslov index and is simply-transitive on triples of distinct lines with a given Maslov index. This is Proposition 1.39 but we don't emphasise it here.

The map ψ : Q 2 → X and the isomorphism Pψ : P(Q 2 ) → P(X) of projective lines.

For a ∈ sl 2 (K) \ X, choose a square root of ∆ := disc(a) = -4 det(a) and extend the scalars to the field

K ′ = K[ √ ∆].
The tautological action of a on the plane K ′2 has two eigendirections for the eigenvalues ± 1 2 √ ∆. These lines map under ψ ⊗ K ′ to the intersection of the cone X ⊗ K ′ with the orthogonal plane a ⊥ . We deduce an ordered pair of points α ′ , α ∈ K ′ P 1 .

We may now define the cosine cos(a, b) and cross-ratio bir(a, b) of a, b ∈ sl 2 (K)\X, and relate them. These quantities play important roles throughout the whole thesis. 

:= bir(α ′ , α, β ′ , β) = (α -α ′ )(β -β ′ ) (α -β ′ )(β -α ′ )
For a same choice of det(ab), these quantities are related by:

1 bir(a, b) = 1 + cos(a, b) 2 = det(a + b) 4 det(ab)
The following Proposition (which is 1.57 in Chapter 1) implies that PGL 2 (K) acts transitively on each level set of the determinant.

Proposition 0.3. Let a, b ∈ sl 2 (K) have determinant d = 0 and bir(a, b) = 0.
The quadratic subalgebra K[{a, b}] of gl 2 (K) contains a unique M ∈ GL 2 (K) with Tr(M ) = 2 which conjugates a to b. It is given by:

M = 1 + bir(a,b) 2d • {a, b} = (d + a, b )1 + {a, b} d + a, b and det(M ) = bir(a, b).
We recall in Proposition 1.24 why the centralizer of a ∈ sl 2 (K) \ X in gl 2 (K) is reduced to the quadratic subalgebra K[a]. We thus deduce the following Corollary which will have arithmetic applications bearing to the genus of quadratic forms. Adjoint ation of A on Qa ⊕ a ⊥ for elliptic, parabolic and hyperbolic A ∈ PSL 2 (Z).

Here is the main theorem of Chapter 1 describing the structure of the orbits for the adjoint action of PSL 2 (K) on the non-zero level sets {disc = ∆} ⊂ sl 2 (K). 

(x, y) ∈ K × K : (2x) 2 -∆y 2 = bir(a, b) by C = x(1 + ba -1 ) + y(a + b)
In particular, a and b are conjugate by an element of PSL 2 (K) if and only if the Pell-Fermat equation (2x

) 2 -∆y 2 = bir(a, b) has a solution in K × K. Remark 0.6. For a, b ∈ sl 2 (K) \ X we have bir(a, b) / ∈ {1, ∞} ⇐⇒ det{a, b} = 0.
Scholium 0.7. Of course, we may recast the previous discussion to characterise the orbits for the action of PSL 2 (K) by conjugacy on itself, but we prefer to study the adjoint action of PSL 2 (K) on its Lie algebra. Indeed, the linear algebra and geometry of the adjoint action are much more developed and fathomable than the corresponding features for the conjugacy action. Moreover, in the arithmetic dictionary, the elements of the lattice sl 2 (Z) are the bridge between hyperbolic matrices in the modular group and binary quadratic forms. This also has the advantage of avoiding many confusions which may arise between the group which acts and the space which is acted upon.

All this will become apparent inside the quaternion algebra gl 2 (K): the group of units SL 2 (K), kernel of the determinant morphism det : GL 2 (K) → K × , acts on the hyperplane of pure quaternions sl 2 (K), kernel of the trace form tr : gl 2 (K) → K.

Arithmetic implications for binary quadratic forms

The field K has characteristic different from 2, so we may consider the extension of scalars sl 2 (Z[1/2]) → sl 2 (K), and its restriction to the lattice sl 2 (Z) ∨ = 1 2 Z ⊕ sl 2 (Z).

We say that a, b ∈ sl 2 (Z) ∨ are K-equivalent when their images in sl 2 (K) belong to the same orbit under the adjoint action of PSL 2 (K). We may thus group the PSL 2 (Z)-classes of our dictionary into K-classes and observe how this varies with K.

When K is an extension of Q, that is when it has characteristic zero, the extension of scalars sl 2 (Q) → sl 2 (K) is injective so the K-equivalence implies the equality of discriminants. When K = C, this groups the integral binary quadratic forms according to their discriminant, and we find the finite class groups. Geometrically, we are considering modular geodesics of the same length. When K = Q, this defines for each discriminant ∆ a partition of the class group Cl(∆) into Q-classes.

Let us reformulate the results of the previous section in terms of Q-equivalence of binary quadratic forms using the quadratic dictionary

Q a ∈ Q(Z) ↔ a ∈ sl 2 (Z) ∨ .
Corollary 0.8 (Reformulation). Consider primitive binary quadratic forms Q a , Q b with the same non-square discriminant ∆ ∈ Z. Assume that they are not opposite (after conjugating one by

PSL 2 (Z) if necessary), so that bir(Q a , Q b ) is finite. By Corollary 0.4 the class bir(Q a , Q b ) mod Norm Q (Q( √ ∆) ×
) only depends on the Q-classes of Q a and Q b and by Theorem 0.5 it is trivial if and only if those coincide.

The matrices

C ∈ PSL 2 (Q) conjugating Q a to Q b are parametrized by the rational points of the Pell-Fermat conic (2x) 2 -∆y 2 = bir(Q a , Q b ) with an explicit formula.
We also provide a computable criterion for determining the partition of Cl(∆) into Q-equivalence classes.

Denote P = {-1, 2} ∪ {3, 5, 7, . . . } the set of rational primes, and Q p the p-adic completion of Q. The prime -1 refers (following Conway [START_REF] Conway | The sensual (quadratic) form[END_REF]) to the place at which the completion of Q is the Archimedian field

Q -1 = R.
For δ, χ ∈ Q × p the Hilbert symbol (δ, χ) p takes the value 1 or -1 according to whether the Pell-Fermat equation X 2 -δY 2 = χZ 2 admits a solution in Q p P 2 or not. Thus we have (δ, χ) p = 1 if and only if χ is the norm of an element in Q p ( √ δ). Let us define the set of prime obstructions to solving the Pell-Fermat equation

(2x) 2 -∆y 2 = bir(Q a , Q b ) by P(Q a , Q b ) = {p ∈ P | (∆, bir(Q a , Q b )) p = -1}.
Proposition 0.9. Consider primitive integral binary quadratic forms Q a , Q b , Q 0 of discriminant ∆ a non-square integer. Then:

• P(Q a , Q b ) \ {2} is contained in the set of primes dividing ∆ to an odd power. • Q a is Q-equivalent to Q b ⇐⇒ P(Q a , Q b ) = ∅ ⇐⇒ P(Q a , Q 0 ) = P(Q 0 , Q b ).
We apply Proposition 0.9 to determine the partition of Cl(∆) into Q-classes in a few relevant examples involving positive discriminants (which are all fundamental). Observing the following tables, we are led to discover counter examples and formulate a conjecture, for which we provide further evidence in Section 1.5.

Cl(∆) = Z/4 for ∆ = 4 × 2022. Since δ = 2022 = 2 × 3 × 337 is square-free and ≡ 2 mod 4, the ring of integers of the field Q( √ 2022) has discriminant ∆ = 4×δ. The fundamental solution to the Pell-Fermat equation t 2 -δu 2 = 1 is (t, u) = (1349, 30).

The ideal class group Cl(∆) is isomorphic to Z/4. Its partition into genera is {α 0 , α 2 }, {α 1 , α 3 } and this coincides with its partition into Q-classes as shown by the following table.

Q j = (l j , m j , r j ) Period of α j P(Q 0 , Q j ) (1, -88, -86) [88, 1, 28, 1] ∅ (66, -72, -11) [1, 4, 2, 2, 3, 1, 2, 7] {2, 337} (43, -84, -6) [2, 44, 2, 14] ∅ (34, -60, -33) [2, 4, 1, 7, 2, 1, 3, 2] {2, 337}
Cl(∆) = Z/5 for ∆ = 4 × 439. Since δ = 439 is square-free and ≡ 3 mod 4 the ring of integers of the field

Q( √ 439) has discriminant ∆ = 4 × δ. The fundamental solution to the Pell-Fermat equation t 2 -δu 2 = 1 is (t, u) = (440, 21).
The ideal class group Cl(∆) is isomorphic to Z/5. Its partition into genera is trivial: there is only one genus since all elements of Z/5 are squares. The partition into Q-classes is {α 0 , α 2 , α 4 }, {α 1 , α 3 } as shown by the following table. More precisely, the Q-equivalence classes seem to be described as follows. Decompose the class group into a product of primary cyclic groups:

Q j = (l j , m j , r j ) Period of α j P(Q 0 , Q j ) (2,
Cl(∆) = p∈P j∈N (Z/p e ) np,e
and denote Q p,e,k ∈ Z/p e where 1 ≤ k ≤ n p,e the coordinates of Q. Then the Q p,e,k mod 2 provide a complete set of invariants for the Q-classes. Remark 0.12. Our initial motivation only involved positive discriminants, but Corollary 0.8 and Proposition 0.9 remain true for negative discriminants.

Geometric interpretation in terms of modular geodesics

Let us derive from Theorem 0.5 a geometric interpretation of Q-equivalence in terms of the modular geodesics.

Consider two elements (α, A, Q a , a) and (β, A, Q b , b) in our modular dictionary with the same discriminant disc(a) = ∆ = disc(b). They define oriented geodesics (α ′ , α), (β ′ , β) in the hyperbolic plane which either intersect at a point with a well defined angle θ ∈ ]0, π[ or have a unique common perpendicular geodesic arc of length λ and whose co-orientations inherited by each axis may coincide or not. The quantities θ, λ are given in terms of the cross-ratio bir(a, b) = bir(α ′ , α, β ′ , β) by:

cos θ 2 2 = 1 + cos(θ) 2 = 1 bir(a, b) cosh λ 2 2 = 1 + cosh(λ) 2 = 1 bir(a, b) Corollary 0.13. Two PSL 2 (Z)-classes of disc = ∆ are Q-equivalent if

and only if the corresponding modular geodesics satisfy the following equivalent conditions:

θ There exists one intersection point with angle θ ∈ ]0, π[ such that:

cos θ 2 2 = 1 (2x) 2 -∆y 2 for x, y ∈ Q

in which case all intersection points have this property.

λ There exists one co-oriented ortho-geodesic of length λ such that:

cosh λ 2 2 = 1 (2x) 2 -∆y 2 for x, y ∈ Q
in which case all co-oriented ortho-geodesics have this property.

In other terms, the geometric quantities on the left hand sides belong to the group of norms of the quadratic extension

Q( √ ∆)/Q (which is stable under inversion). α ′ α β ′ β θ α ′ β β ′ α λ Angle at intersection 1 bir = cos θ 2 2 . Length of ortho-geodesic 1 bir = cosh λ 2 2 .

Linking numbers of modular knots

Our starting point for computing linking numbers is an algorithmic formula, which was used by Pierre Dehornoy in [START_REF] Dehornoy | Les noeuds de Lorenz[END_REF]. It relies on the description of the modular link in terms of the Lorenz template explained at the end of Section 0.2. We endow the submonoid PSL 2 (N) of PSL 2 (Z), which is freely generated by L&R, with the lexicographic order extending L < R.

In the group PSL 2 (Z) the conjugacy class of an infinite order element intersects the monoid PSL 2 (N) along its Lyndon representatives, which consist in all cyclic permutations of a non-empty L&R-word. The primitivity of the conjugacy class is equivalent to the primitivity of the cyclic words, and the conjugacy class is hyperbolic when both letters L and R appear.

The set {L, R} N of infinite binary sequences on the letters L&R is given the lexicographic order extending L < R. The monoid PSL 2 (N) maps to {L, R} N by sending a finite word A to its periodisation A ∞ . This map is increasing, and injective in restriction to primitive elements.

We use σ to denote the Bernoulli shift on {L, R} N which removes the first letter, as well as the cyclic shift on PSL 2 (N) which moves the first letter at the end. These shifts are intertwined by the periodisation map

A → A ∞ , namely for all A ∈ PSL 2 (N) we have (σ j A) ∞ = σ j (A ∞ ).
In particular, the Lyndon representatives for the conjugacy class of A ∈ PSL 2 (N) are the cyclic permutations σ i A for 1 ≤ i ≤ len(A), and we shall consider them with multiplicity when A is not primitive.

Denote by W [-1] ∈ {L, R} the last letter of a non-empty word W ∈ PSL 2 (N). Thus for instance, (σ 1 W )[-1] is the first letter of W .

Following Iverson [START_REF] Knuth | Two notes on notation[END_REF], denote [ [P ]] ∈ {0, 1} the truth value of a property P .

Proposition 0.14. For primitive hyperbolic matrices A, B ∈ PSL 2 (Z) we have:

lk(A, B) = 1 2 len(A) i=1 len(B) j=1   [[(σ i A)[-1] > (σ j B)[-1]]] [[σ i A ∞ < σ j B ∞ ]] + [[(σ i A)[-1] < (σ j B)[-1]]] [[σ i A ∞ > σ j B ∞ ]]   (Algo-Sum)
This Algo-Sum counts the pairs of Lyndon representatives whose periodisations are ordered in the opposite way to their last letters. Remark 0.15. When A and B are conjugate, this Algo-Sum returns the self-linking number of the modular knot for the framing defined by the Lorenz template.

Example 0.16. The linking number between the knots associated to the primitive hyperbolic matrices RLL, RRL ∈ PSL 2 (N) is 1. Indeed, the only pairs of Lyndon representatives which add 1 to the Algo-Sum are (RLL, LRR) and (LLR, RRL).

In Section 4.2 we propose a variation on this summation formula, but we will not relate its exploration to the core of the thesis. It can be interpreted as a factorisation (or polarisation) of the quadratic linking form, thus opening a door onto its Hilbertian analysis, and the investigation of its binomial statistics.

For a pattern P ∈ PSL 2 (N) and a hyperbolic

A ∈ PSL 2 (N), let pref(P, A ∞ ) = [[A ∞ ∈ P • PSL 2 (N)]] ∈ {0, 1} tell whether P is a prefix of A ∞ , and occ(P, A) = len A j=1 pref P, A ∞ j count the number of cyclic occurrences of P in A mod σ.
Proposition 0.17 (Sum of linked patterns). For coprime hyperbolic A, B ∈ PSL 2 (N) the corresponding modular knots have linking number:

lk(A, B) = 1 2 w   occ(RwL, A) • occ(LwR, B) + occ(RwL, B) • occ(LwR, A)  
where the summation extends over all words w ∈ PSL 2 (N) including the empty one.

Consider the free Z-module generated by the set PSL 2 (N)/σ of all cyclic words, endowed with the symmetric bilinear form lk. Let us reformulate Proposition 4.34 as a factorisation of the corresponding symmetric matrix. Definition 0.18 (Occurrence matrices). Denote P (w, A) the infinite "rectangular matrix" with entries occ(RwL, A) indexed by w ∈ PSL 2 (N) and A ∈ PSL 2 (N)/σ.

Denote P # (w, A) = P (w # , A # ) where w # &A # are the mirror images of w&A. Its entries are given by occ(LwR, A) = occ(Lw # R, A # ).

Finally we define Z = P + iP # over the ring Z[i] of Gaussian integers.

Corollary 0.19 (Factorising the linking matrix). The matrix of the bilinear form lk(A, B) is the imaginary part of the product t ZZ # .

Invariants on pairs of conjugacy classes

We wish to compute functions of pairs of conjugacy classes in PSL 2 (Z), such as linking numbers of modular knots. For this we now explain how to average conjugacy invariants for pairs of matrices to obtain functions of pairs of conjugacy classes. Consider a group Γ acting on a space Σ and a function f defined on Σ × Σ with values in a commutative group Λ which is invariant under the diagonal action of Γ:

f : Σ × Σ → Λ ∀W ∈ Γ, ∀a, b ∈ Σ : f (a, b) = f (W • a, W • b)
We define an invariant F for pairs of Γ-orbits [a], [b] by summing f over all pairs of representatives of the orbits considered modulo the diagonal action of Γ.

The pairs of representatives for the orbits are parametrized by the Consequently, the sum indexed by

(U • a, V • b) for (U, V ) ∈ Γ/(Stab a) × Γ/(
(U, V ) ∈ (Γ/ Stab a) × Γ (Γ/ Stab b) defines our desired invariant: F ([a], [b]) = (U,V ) f (U • A, V • b)
This can also be written as the sum over double cosets W ∈ (Stab a)\Γ/(Stab b):

F ([a], [b]) = W f (a, W • b) because the map (Γ/ Stab a) × (Γ/ Stab b) → (Stab a)\Γ/(Stab b) sending (U, V ) to W = U -1
V is surjective, and its fibers are the orbits under the diagonal action of Γ by left translations. We shall apply this discussion to the action of Γ = PSL 2 (Z) on the group PSL 2 (R) or the lattice PSL 2 (Z), on its Lie algebra sl 2 (R) or the lattice sl 2 (Z), on the symmetric space H ∪ H ′ or the trivalent tree T and thus on its bi-infinite oriented geodesics G. These actions are closely related, for instance we may associate to A ∈ PSL 2 (R) its projection in P(sl 2 (R)), and to

A ∈ PSL 2 (Z) a point in T ∪ ∂T ∪ G.
Of course when PSL 2 (Z) acts on itself by conjugacy, we obtain invariants for pairs of conjugacy classes. We will explain how to compute them on pairs of hyperbolic conjugacy classes in Section 2.3, after recalling why the centraliser of a hyperbolic matrix in PSL 2 (Z) is the subgroup generated by its primitive root.

The function f (a, b) could be obtained from geometrical invariants such as the scalar product a, b , like the cross-ratio bir(α ′ , α, β ′ , β), as well as combinatorial invariants like cross(g a , g b ) or cosign(g a , g b ) introduced in the next paragraph.

Linking and intersection numbers from the action on (T , cord)

The group Γ = PSL 2 (Z) acts on Σ = T preserving its cyclic order structure, defined on the set of edges incident to each vertex (given by the surface embedding T ⊂ HP). This is equivalent to the cyclic order function cord(x, y, z) ∈ {-1, 1} of three distinct points x, y, z ∈ T ∪ ∂T , or to the crossing function cross(u, v, x, y) ∈ {-1, 0, 1} of four distinct points u, v, x, y ∈ T ∪ ∂T defined by:

cross(u, v, x, y) = 1 2 (cord(u, x, v) -cord(u, y, v))
that is the algebraic intersection number of the oriented geodesics (u, v) and (x, y).

We denote |cross|(u, v, x, y) ∈ {0, 1} the absolute value of cross(u, v, x, y) which is the linking number of the cycles (u, v), (x, y) in the cyclically ordered boundary ∂T . The intersection of two oriented bi-infinite geodesics g a = (α ′ , α) and g b = (β ′ , β) of T is either empty in which case we define cosign(g A , g b ) = 0, or else it consists in a geodesic containing at least one edge along which we may thus compare their orientations by cosign(g a , g b ) ∈ {-1, +1}.

The functions cross and cosign are PSL 2 (Z)-invariant, symmetric, and inverting the orientation of one argument results in a change of sign.

cosign cross +1 0 -1 +1 α ′ β ′ β α β ′ α ′ β α β ′ α ′ α β -1 β α ′ α β ′ α ′ β α β ′ α ′ β β ′ α
Configurations of axes: cross and cosign. Note that cross = 0 =⇒ cosign = ±1.

For coprime hyperbolic A, B ∈ PSL 2 (Z) with axes g A = (α ′ , α) and g B = (β ′ , β) in T , we write cross(A, B) = cross(α ′ , α, β ′ , β) and cosign(A, B) = cosign(g A , g B ).
Lemma 0.20 (cosign = 1). Consider infinite order A, B ∈ PSL 2 (Z). There exists C ∈ PSL 2 (Z) such that CAC -1 , CBC -1 ∈ PSL 2 (N) if and only if the combinatorial axes g A , g B ⊂ T share an oriented edge, that is when cosign(A, B) = 1.

Template crossings ↔ {(g

A , g B ) : |cross|(g A , g B ) = 1 = cosign(g A , g B )} mod Γ × Γ.
We shall use this important observation to recast the algorithmic formula (Algo-Sum) according to the general framework introduced in the previous paragraph.

Theorem 0.21. For coprime hyperbolic matrices A, B ∈ Γ = PSL 2 (Z) we have:

lk(A, B) = 1 2 |cross| × 1 + cosign 2 (A u , B v )
where the sum extends over pairs of representatives

A u = U AU -1 and B v = V BV -1 for the conjugacy classes with (U, V ) ∈ Γ/ Stab(A) × Γ Γ/ Stab(B).
In particular, we recover the intersection number between modular geodesics as:

lk(A, B) + lk(A, B -1 ) = 1 2 |cross|(A u , B v ) = 1 2 • I(A, B)
whereas the sum of the cosign over pairs of intersecting axes yields:

lk(A, B) -lk(A, B -1 ) = 1 2 (|cross| × cosign) (A u , B v ).
We deduce an efficient algorithm computing the intersection number I(A, B) from the L&R-factorisation of A, B by applying Algo-Sum formula to the linking numbers lk(A, B) and lk(A, B -1 ).

Remark 0.22. Note that if A is conjugate to B, then I(A, B) is the intersection number between two parallel copies of the corresponding modular geodesic, which is twice its self-intersection number (counted as the number of double points).

For instance, the modular geodesic corresponding to RLL has self-intersection

1 2 I([RLL], [RLL]) = lk([RLL], [RLL]) + lk([RLL], [LLR]) = 1 2 4 + 1 2 2 = 3.
Deforming the PSL 2 (Z)-action on HP to the PSL 2 (Z)-action on T

Let us finally show how to recover the linking number of two modular knots as the limiting value of a function defined on the character variety of the modular group.

We first define a one parameter family of representations ρ q : SL 2 (Z) → SL 2 (R) depending algebraically on the parameter q ∈ R * and with integral coefficients. Fix S q = S and let T q be the conjugate of T by exp 1 2 log(q)( 1 0 0 -1 ). Given A ∈ PSL 2 (Z), we deduce A q = ρ q (A) from any S&T -factorisation by replacing T → T q , for instance:

R q = q 1 0 q -1 and L q = q 0 1 q -1 .
This descends to a representation ρq : PSL 2 (Z) → PSL 2 (R) which is faithful and discrete (this follows from the positivity of disc(R q ) = (q -q -1 ) 2 ), and positive in the sense that T q is a 2π/3-rotation of HP in the positive direction. Conversely, every such representation is conjugate to ρq for a unique q > 0, so we have parametrized the Teichmüller space of PSL 2 (Z) by the real algebraic set R * + . As q → ∞, the hyperbolic orbifold M q = ρ q (Γ)\HP has a convex core which retracts onto the long geodesic arc (i, j q ) connecting the conical singularities. The hyperbolic geodesics of M q remain in this convex core, so their angles tend to 0 mod π.

Proposition 0.23. Consider hyperbolic

A, B ∈ PSL 2 (Z) such that |cross|(A, B) = 1.
For all q > 0 the elements A q , B q ∈ PSL 2 (R) are hyperbolic, and their oriented geometric axes intersect at an angle whose cosine is given by:

cos(A q , B q ) = Tr(A q B q ) -Tr(A q B -1 q ) disc(A q ) disc(B q )
which is an algebraic function of q with limit cos(A q , B q ) ---→ q→∞ cosign(A, B).

The formula for the cosine is derived from Lemma 0.2 and some trace identities. To find the limit as q → ∞ we compute the degrees and dominant terms of the polynomials involved in this expression as follows.

For C ∈ PSL 2 (Z), denote len(C) ∈ N the minimum displacement length d(e, C •e) of an edge e ∈ T . When C has infinite order, it is the L&R-length of a Lyndon representative, and when C has finite order it is zero.

For all C ∈ PSL 2 (Z) the Laurent polynomial Tr(C q ) is reciprocal of degree len(C). To identify the limit, we show that for infinite order elements A, B ∈ PSL 2 (Z) whose axes intersect, we have cosign(A, B) = sign (len(AB) -len(AB -1 )).

This should not surprise someone acquainted with compactifications of Teichmüller space by actions on trees or by valuations [START_REF] Otal | Compactification of spaces of representations after Culler[END_REF][START_REF] Marché | Automorphisms of character varieties[END_REF]. Here the unique boundary point q = ∞ corresponds to the action on T or to the valuation -deg q .

The convex core of M q lifts in HP to an ϵ-neighbourhood of T q with ϵ = Θ (1/q 2 ). Definition 0.24. For conjugacy classes [A], [B] of hyperbolic elements in PSL 2 (Z), consider the algebraic functions of q defined by:

L q ([A], [B]) = [[bir > 1]] bir Ãq , Bq (L q ) C q ([A], [B]) = (|cross| × cos) Ãq , Bq (C q )
where the sums extend over pairs of representatives à = U AU -1 and B = V BV -1 for the conjugacy classes with (U, V ) ∈ Γ/ Stab(A) × Γ Γ/ Stab (B).

The appearance of [[bir > 1]] = |cross| as a factor in the terms of L q and C q amounts to restricting the summations over pairs of matrices whose axes intersect. Hence the support of the sums corresponds to the intersection points of the modular geodesics [γ A ] and [γ B ] associated to the conjugacy classes, which must be counted with appropriate multiplicity when A or B is not primitive, and we have:

L q ([A], [B]) = cos θ 2 2 and C q ([A], [B]) = (cos θ) .
Theorem 0.25. For conjugacy classes [A], [B] of hyperbolic elements in PSL 2 (Z), the functions L q ([A], [B]) and C q ([A], [B]) have limits at the boundary point of the PSL 2 (R)-character variety of PSL 2 (Z), which recover the linking and intersection numbers of the corresponding modular knots and modular geodesics:

1 2 L q ([A], [B]) ---→ q→∞ lk(A, B) 1 2 C q ([A], [B]) ---→ q→∞ 2 lk(A, B) -1 2 I(A, B)
Let us display here some graphs of q → L q (A, B) for a few pairs (A, B), and refer to the end of Section 5.3 for more.

The graphs of L q (A, B) & L q (A, B -1 ) and their average I(A, B) = I(A, B -1 ).

Graphs of L q (A, B) for q ∈ C and |q| < 1.6.

Further directions of research 0.4.1 Linking forms of Fuchsian groups

To begin with, we compare the definitions of the functions L q and C q and their limiting behaviour at q = ∞ with similar considerations which have been made for non-oriented loops in a closed surface S of genus g ≥ 2. Such loops, corresponding to the conjugacy classes of α, β ∈ π 1 (S) up to inversion, define trace functions Tr(α), Tr(β) on the SL 2 (C)-character variety of π 1 (S) (whose real locus contains the Teichmüller space of S as a Zariski dense open set). This character variety carries a natural symplectic structure [START_REF] William | The symplectic nature of fundamental groups of surfaces[END_REF], given by the Weil-Petersson symplectic form.

The sum C q (A, B) looks very much like Wolpert's cosine formula [Wol82, Wol81] computing the Poisson bracket {Tr(α), Tr(β)} of the trace functions. The major difference is that Wolpert's formula is a skew-symmetric expression in two nonoriented loops. In fact, we are able to define an analog of Wolpert's formula by summing the product cross(A, B)×cos(A, B). However, the Teichmüller space of M is reduced to a point so any Poisson structure in the usual sense would be trivial, and we expect this function to be zero (as corroborated by our computer experimentation).

Moreover, the Weil-Petersson symplectic form has been extended to several compactifications of the character variety [START_REF] Papadopoulos | La forme symplectique de Weil-Petersson et le bord de Thurston de l'espace de Teichmüller[END_REF][START_REF] Sözen | The Weil-Petersson and Thurston symplectic forms[END_REF][START_REF] Marché | Valuations on the character variety: Newton polytopes and residual poisson bracket[END_REF]. The limits of the Poisson bracket {Tr(α), Tr(β)} at the respective boundary points have been interpreted in [Bon92, Proposition 6] and [MS]. Thus, we may generalise the definitions of our functions L q & C q to oriented geodesics in hyperbolic surfaces and ask for an interpretation of their limits at boundary points of the Teichmüller space.

Pursuing this direction, one may ask for extension of L q & C q to pairs A, B of oriented geodesic currents. This should be analogous to the extension of the intersection form described in Bonahon [START_REF] Bonahon | The geometry of Teichmüller space via geodesic currents[END_REF]. One may also wish to replace ρ with a semi-conjugacy class of representations Γ → Homeo(S 1 ) or a generalised cross-ratio [START_REF] Otal | Sur la géometrie symplectique de l'espace des géodésiques d'une variété à courbure négative[END_REF]. The aim would be to think of L q & C q as differential forms on the "tangent bundle" to these spaces of representations or generalized cross-ratios. The semi-conjugacy class of representations Γ → Homeo(S 1 ) form a cone in the first bounded cohomology group H 1 b (Γ; R), and we suspect that something similar is true for some spaces of general cross-ratios. Thus we ask Question 0.26. How to interpret L ρ (A, B) as a "differential form" on (an appropriate subspace in) the first bounded cohomology group H 1 b (Γ; R) ?

Besides, we believe that the functions L q would yield some kind of Killing form on Goldman's Lie algebra of oriented loops [START_REF] William | Invariant functions on Lie groups and Hamiltonian flows of surface group representations[END_REF].

Arithmetic and Geometric deformations

Let us mention another general context in which our definitions L q & C q seem to apply with almost no changes. Recall that our definitions of the cross-ratios and cosine in Lemma 0.2 hold for pairs of semi-simple elements in PGL 2 (K). Thus for any faithful representation of a group ρ : Γ → PSL 2 (K) sending A, B ∈ Γ to semisimple elements, one may try define the following invariants for the pair of conjugacy classes:

L ρ (A, B) = bir(ρ Ã, ρ B) -1 C ρ (A, B) = cos(ρ Ã, ρ B)
where the sum is indexed by the double-coset space Stab A\Γ/ Stab B with some restrictions analog to

[[bir > 1]] and [[|cross| > 1]]
ensuring that it has finite support, which we shall comment later on. These define functions on (a subset in) the space of representations Hom(Γ, PSL 2 (K)) considered up to PSL 2 (K)-conjugacy at the target. One may ask for interpretations of their limiting values at special points in its appropriate compactifications.

As suggested above, this construction works in particular for discrete subgroups of PSL 2 (R) called Fuchsian groups. In general, we may want to specify that ρ(Γ) is a discrete subgroup of PSL 2 (K) after K has been given a topology, or furthermore that ρ(Γ) has finite covolume for the Haar measure on PSL 2 (K) with respect to a measure on K. In that case, one may consider the quotient of the symmetric space P(sl 2 (K) \ X) of PSL 2 (K) by ρ(Γ), and observe the relative position between the "cycles" corresponding to A, B in that quotient.

We may now suggest some tantalising connections between arithmetic and topology. For this, we should compare our summations (L q ) and (C q ) with the modular cocycles introduced in [DIT17] and the products appearing in [START_REF] Darmon | Arithmetic intersections of modular geodesics[END_REF].

Let us note however that [START_REF] Duke | Modular cocycles and linking numbers[END_REF] considers the linking numbers lk(A + A -1 , B + B -1 ) between cycles obtained by lifting a geodesic and its inverse: this number amounts to the geometric intersection I(A, B) of the modular geodesics. Furthermore [START_REF] Darmon | Arithmetic intersections of modular geodesics[END_REF] considers deformations of an arithmetic nature for these intersection numbers.

None of these address the actual linking numbers, and their approach is motivated by the arithmetic of modular forms, while ours will be inspired by the geometry of the character variety. Thus it would be interesting on the one hand to understand the arithmetic of linking numbers in terms of the modular forms appearing in [START_REF] Katok | Modular forms associated to closed geodesics and arithmetic applications[END_REF] or the modular cocycles in [START_REF] Duke | Modular cocycles and linking numbers[END_REF], and on the other hand to relate the p-arithmetic intersections numbers considered in [START_REF] Darmon | Arithmetic intersections of modular geodesics[END_REF] to the special values of functions L ρ & C ρ defined for representations ρ : PSL 2 (Z) → PSL 2 (Q p ) as suggested above.

Special values of Poincaré Series

We may apply the general averaging procedure explained at the beginning of subsection 0.3.2 to other conjugacy invariants f q (A, B) and define new functions F q (A, B) on the character variety of PSL 2 (Z). Their limit at the boundary point q = ∞ will be expressed in terms of the linking number lk(A, B) as soon as f q (A, B) converges to an expression of cosign(A, B) as q → ∞.

Various motivations (including special values for Poincaré series [START_REF] Carl | Lectures on advanced analytic number theory[END_REF][START_REF] Peter | Recherches sur les formes quadratiques à coëfficients et à indéterminées complexes[END_REF], and McShane's identity [START_REF] Bowditch | A proof of McShane's identity via Markoff triples[END_REF]) suggest to choose f q (A, B) = (x + √ x 2 -1) -s for some complexe variable s ∈ C where x = -1 2 tr(a q b q ) is the numerator of cos(A q , B q ) in the formula of Proposition 0.23.

This summand f q (A, B) can also be written e -siθ where θ is the angle between the oriented geometric axes of A q and B q when they intersect and e -sl where l is the length of the ortho-geodesic arc γ connecting the geometric axes of A q and B q when they are disjoint. In formula:

F q (A, B) = (x + √ x 2 -1) -s = [γ A ]⊥γ⊥[γ B ] exp(-sl γ ) - p∈[γ A ]∩[γ B ]
exp(-siθ p ).

So the sum over all double cosets splits as a finite sum computable in a similar way to the Algo-Sum, and an infinite series which converges for (s) > 1 (the topological entropy for the action of PSL 2 (Z) on the hyperbolic plane). The infinite sum is a bivariate analog (in (A, B)) of the univariate Poincaré "theta-series" which appeared in the works of Eisenstein: those admit meromorphic continuation to s ∈ C and their special values in the variable s have been of interest for arithmetics and dynamics. Similar Poincaré series associated to one modular geodesic are also defined in [START_REF] Katok | Modular forms associated to closed geodesics and arithmetic applications[END_REF]. The earliest appearance we found for such bivariate series is in [For23, Section 50], and the only other one is [START_REF] Paulin | Regards croisés sur les séries de Poincaré et leurs applications[END_REF].

When q = ∞ and s = 1, the real part of the finite sum evaluates to 2 lk(A, B) -I(A, B), but one may wonder about the infinite series (now the order in which we take limits in s and q may import). More generally, one strategy to relate modular topology and quadratic arithmetic is to choose f with appropriate symmetries and analyticity properties so that the sum over all double cosets can be understood: then one deduces a relationship between a topologically meaningful finite sum, and the infinite series whose special values may be of interest in arithmetic.

Chapter 1

Geometric algebra of gl 2

Outline of the chapter

In this chapter K is a field of characteristic different from 2. A good example to keep in mind is the field of rational numbers, as one can both visualise the geometry and wonder about the arithmetic. Many statements will remain true over a subring containing 1/2, which can be any commutative integral ring in which 2 is invertible. Let √ K be a universal quadratic closure. For instance √ Q is the venerable field of numbers constructible by ruler and compas.

We consider a K-vector space V of dimension 2 with no additional structure, and denote gl(V) its K-algebra of linear endomorphisms, whose invertible elements form the group GL(V). Only after choosing a basis of V do we have the identifications V = K 2 as well as gl(V) = gl 2 (K) and GL(V) = GL 2 (K).

Involutive algebra : Quaternion algebra and Lie algebra

In the first two sections, we describe from a synthetic viewpoint the algebra and geometry underlying the space gl(V), emphasizing the role played by the canonical involution M → M # given by the transpose comatrix. One guiding thread is the interplay of two algebraic structures characterising gl 2 (V) over its underlying fourdimensional vector space: a quaternion algebra and a Lie algebra. Both yield the non degenerate quadratic form det with which they bare tight relations. In short, commutativity rhymes with colinearity whereas anti-commutativity rhymes with orthogonality. The orthogonal decomposition gl(V) = K1 ⊕ sl(V) with respect to det will also play an important role. The orthogonal projections are given by the half-trace tr : gl(V) → K, and the quotient pr : gl(V) → sl(V).

Along the way we derive various identities involving tr & pr which serve as stepping stones in the current chapter as well as the future ones. Most of them are probably well known, but let us highlight the presumably new identities in Lemma 1.30, for which lots of effort was spent in devising an ingenious proof. It relates the projection of the commutator pr[M, N ] of elements M, N ∈ GL(V) to the commutator of their projection [pr M, pr N ] ∈ sl(V). The idea behind those identities is to use the orthogonal projections tr : GL(V) → K and pr : SL(V) → sl(V) which satisfy tr 2 -pr 2 = det by the Pythagorean theorem, and invert them by solving such Pell-Fermat equations. This "quadratic algebra" replaces the "infinitesimal analysis" involved in the use of the transcendental function exp : gl(V) → GL(V).

Let us mention that a basis of V yields a canonical way to choose a basis (1, S, J, K) for gl(V). This relies on the representation of the dihedral group D 4 ⊂ GL(V) acting by symmetries of the square. We shall often use this basis, once it will be clear what depends on this coordinate system.

This forms the content of the first two sections, which is mostly basic. The core of the material can be found in [START_REF] Cartan | Leçons sur la géométrie projective complexe. La théorie des groupes finis et continus et la géométrie différentielle traitées par la méthode du repère mobile[END_REF][START_REF] Artin | Geometric algebra[END_REF][START_REF] Dieudonné | La géometrie des groupes classiques[END_REF] for the geometry of Lie groups and Lie algebras, and [START_REF] Vigneras | Arithmétique des algèbres de quaternions[END_REF][START_REF] Shafarevich | Basic notions of algebra[END_REF][START_REF] Maclachlan | Arithmetic of Hyperbolic Three-Manifolds[END_REF] for the arithmetic of quaternion algebras. The trace identities also have a long history, for which we refer to [START_REF] Magnus | The uses of 2 by 2 matrices in combinatorial group theory[END_REF].

Geometry of the isotropic cone

The structures of quaternion algebra and Lie algebra on gl 2 (V) yield complementary insights on the geometry of its isotropic cone for the quadratic form det, which we investigate in a third section. We shall provide a parametrization for the projectivized isotropic cone of (gl(V), det) in 1.11 and 1.37.

More importantly, we also define a parametrization ψ : K 2 → X for the isotropic cone of (sl 2 (K), det) in Lemma 1.33. This map ψ is responsible for some of the originality and coherence in our presentation: it will serve repeatedly, including in the future chapters. As suggested by its notation, it is expressed in our favourite coordinate system (S, J, K) obtained after choosing a basis of V. Yet one only needs to fix a symplectic form on V, so we also explain its (not so obvious) intrinsic counterpart in Lemma 1.36.

Then we recall the definition and properties of the cross-ratio between four elements in KP 1 . As an amusing curiosity, we apply the parametrization ψ to derive an analog of Ptolemy's theorem for quadruples of lines in the cone. When K = R, such a quadruple of lines corresponds to an ideal quadrilateral in the hyperbolic plane. This Proposition 1.40 relies on the identity (CRS) relating the cross-ratio between lines in X to the scalar product of vectors sl 2 (K), which may be of independent interest. Finally, we define and relate the ubiquitous notions of cross-ratio and cosine between two semi-simple elements of PGL(V) (e.g. hyperbolic matrices in SL 2 (R)). The important statements are summed up in Lemma 0.2. Those relations are crucial ingredients in our Theorem 0.25 expressing linking numbers of modular knots as limits of functions on the character variety of the modular group. In fact, the cosine identity in Remark 1.51 was used in [START_REF] Wolpert | An elementary formula for the Fenchel-Nielsen twist[END_REF][START_REF] Wolpert | The Fenchel-Nielsen deformation[END_REF] to express the Weil-Petersson scalar product of certain functions on character varieties of closed hyperbolic surfaces. We believe that our presentation sheds light on the geometric nature of this identity.

Adjoint action and equivalence of binary quadratic forms

This brings us to the culminating point of the chapter: in the fourth section we study the adjoint action of PGL(V) on its symmetric space, defined as its subset of elements having order two, which is in correspondence with P(sl(V) \ X). The aim is to describe the conjugacy classes in PGL(V) and in PSL(V). More precisely, for a, b ∈ sl(V) of the same determinant such that det{a, b}, we parametrize the set of C ∈ PSL(V) which conjugate a to b. This is the content of Theorem 0.5 = 1.64 which can be considered as the main result in this chapter.

In a fifth section, which is independent from the sequel, we apply this main theorem over the fields Q and its completions Q p . The goal is to describe certain "arithmetic K-equivalence relations" on the set of integral binary quadratic forms, which arise naturally in this context, and seem to be new. For this we will need to solve Pell-Fermat equations using the notion of Hilbert symbol which we briefly recall from [START_REF] Serre | Cours d'arithmétique[END_REF]. After displaying some experimental data concerning this Q-equivalence, we comment on its relation to genus equivalence. One may find background concerning binary quadratic forms and their genera in [START_REF] Serre | Cours d'arithmétique[END_REF][START_REF] Cohn | Connections between algebraic number theory and integral matrices[END_REF][START_REF] Cox | Primes of the form x 2 + ny 2[END_REF][START_REF] Hatcher | Topology of numbers. CUP?[END_REF].

Hyperbolic geometry

In a last section we focus on the case K = R and investigate the geometry of the Lorentz space sl 2 (R) with a special emphasis on orientation matters. We made our best to make this last section accessible for the geometer who has not assimilated the algebraic results accumulated until then, by recalling the basic facts in this context, and proposing alternative arguments or geometric intuition instead of systematically referring to the first two sections. One may benefit from reading this section first to gain some geometric intuition before starting afresh. This projective perspective on hyperbolic geometry is akin to [Thu97, Chapter 2] and [Mon87, Appendix B].

We end with the geometric interpretation 0.13 = 0.13 of our main theorem.

Quaternion algebra of gl(V)

Central algebra with involution

On a finite dimensional vector space, the set of alternate multilinear forms of top degree constitutes a one-dimensional vector space, which is generated by the determinant in some basis. Thus in dimension two we have, up to scalar multiplication, a unique anti-symmetric non-degenerate bilinear form, also called a symplectic form.

The adjoint of an endomorphism M ∈ gl(V) for such a form ω on V is the unique endomorphism

M # ∈ gl(V) satisfying ω(u, M v) = ω(M # u, v) for all u, v ∈ V. The adjoint map M → M # is invariant under scaling of the symplectic form ω.
To insist, if we consider a two-dimensional K-vector space V with no additional structure, then its algebra of endomorphisms gl(V) admits a canonically defined adjoint map, which we use as a starting point to investigate its algebra and geometry.

Proposition 1.1. The adjoint map M → M # is an involution of the algebra gl(V), meaning that for all M, N ∈ gl(V) and λ ∈ K we have:

Linear map: (λM + N ) # = λM # + N # Anti-multiplicative: (M N ) # = N # M # Order two: (M # ) # = M
The fixed points of # consist in K1, that is the center of gl(V).

Proof. Suppose M = M # . Then for all v ∈ V we have det(v, M v) = det(M # v, v) equal to det(M v, v) = -det(v, M v) thus 2 det(v, M v) = 0. Since the characterstic is different from 2 we deduce that M v = λ v • v for some λ v ∈ K. If there exist u, v ∈ V for which λ u = λ v then λ u u + λ v v = M (u + v) = λ u+v (u + v) yields a linear relation between them so λ u = λ v which is a contradiction. Hence M ∈ K1.
The center of gl(V) contains K1. Conversely, the previous argument shows that if M / ∈ K1 then it sends a line L 0 ⊂ V to a distinct line L 1 ⊂ V. Then the projection P on L 0 parallel to L 1 does not commute with M . Remark 1.2. Notice that the determinant det(M ) of an endomorphism is invariant by rescaling the symplectic form ω on V.

Composing (M, M # ) with addition or multiplication yields the central elements:

Tr(M )1 := M + M # det(M )1 := M M #
which define the linear map Tr : gl(V) → K called the trace, and the multiplicative map det : gl(V) → K called the determinant.

Remark 1.3. The maps Tr and det can be defined intrinsically in terms of tensor algebra as follows.

Using the canonical isomorphism V ⊗ V * → gl(V) sending a pure tensor f ⊗ v to the projector p :

u → f (u)v we have Tr(f ⊗ v) = f (v).
The action of m ∈ gl(V) on the 1-dimensional vector space Λ 2 V is the multiplication by a scalar det(m).

We leave it as an exercise to define the adjoint action in terms of tensor powers.

Developing the relation

M 2 -(M + M # )M + (M M # ) = 0 yields the Cayley- Hamilton identity χ M (M ) = 0 for χ M (X) = X 2 -Tr(M )X + det(M ) ∈ K[X] the characteristic polynomial of M . Hence an element M ∈ gl 2 (K) generates a commu- tative subalgebra K[M ]
which has dimension at most 2, and equals Span(1, M ).

Moreover, if M / ∈ K1 then this subalgebra K[M ] has dimension at least 2 and is thus isomorphic to the quadratic extension K[X]/(χ M ) of K. Hence when M is not central, its minimal polynomial equals its characteristic polynomial. In any case, the involution # restricts on K[M ] to the Galois involution of this K-extension. Scholium 1.4. We shall see, by studying the adjoint action that M, N ∈ gl(V) are conjugate by GL(V) if and only if they have the same characteristic polynomial.

The discriminant of M ∈ gl(V) is defined as that of its characteristic polynomial, equal to disc(M ) = Tr(M ) 2 -4 det(M ).

We call M semi-simple when disc(M ) = 0, that is when χ M has simple roots in √ K. If these roots belong to K the algebra K[M ] is isomorphic to the direct product K × K, otherwise K[M ] is a simple K-algebra (no proper ideals). In both cases K[M ] is a semi-simple K-algebra (a product of simple algebras).

When disc(M ) = 0 we have χ M (X) = (X -λ) 2 for λ ∈ K so the algebra K[M ] is not integral (it has zero divisors). Either λ = 0 in which case M is nipotent, otherwize M/λ is idempotent.

Remark 1.5. In general for F ∈ K[X] the condition disc(P ) = 0 is equivalent to saying that F has simple roots in an algebraic closure of K. Hence the K-algebra K[X]/(F ) is semi-simple if and only if disc(F ) = 0.

Indeed, it splits as the direct product of the K[X]/(P k ) where P ∈ K[X] range over the irreducible factors of F . If disc(P ) = 0 then K[X]/(P k ) defines a simple algebra (with no proper ideals) if and only if k = 1.

Note that the irreducibly of P does not imply that disc(P ) = 0. However it does provided that deg(P ) is prime to the characteristic of the field (which is always the case when deg P = 2 and K has characteristic different from 2) or when the field K is assumed to be perfect (which we do not need to assume).

The involution # preserves the group GL(V) of invertible elements. It consists in those A ∈ gl(V) such that det(A) ∈ K × , in which case A -1 = det(A) -1 A # .

For A ∈ GL(V) and M ∈ gl(V) we have (AM A -1 ) # = AM # A -1 , so the left adjoint linear action of GL(V) on gl(V) preserves the involution, whence the trace and determinant.

Dihedral basis for the quaternion algebra

A choice of basis for V amounts to an isomorphism with the numerical space K 2 , this identifies its endomorphism algebra gl(V) with the algebra gl 2 (K) of 2 × 2 matrices.

In such coordinates, the adjoint corresponds to the transpose comatrix, while the determinant and trace have their usual expressions:

M = a b c d M # = d -b -c a Tr(M ) = a + d det(M ) = ad -bd
Remark 1.6. Note that choosing a basis (u 0 , v 0 ) of V yields a preferred normalisation of the area form so that ω(u 0 , v 0 ) = 1. Then the area ω(u, v) of the parallelogram spanned by two vectors is the determinant of the endomorphism sending the basis (u 0 , v 0 ) to (u, v) and one may use det(u, v) to denote both of these. More importantly a basis defines a unique euclidean structure, that is a symmetric non-degenerate bilinear form β, for which this basis is orthonormal. In gl 2 (K), the adjoint with respect to that symmetric bilinear form is the transposition M → t M .

If we have a Euclidean scalar product β, hence a symplectic form ω one may polarise the latter with respect to the former and find the unique element S ∈ gl(V) such that β(u, v) = ω(u, Sv) for all u, v ∈ V. This is nothing else than the rotation S ∈ SO(V, β) of order 4 in the positive direction.

In fact, given a symplectic form, it is equivalent to fix an element of order 4 up to inversion and a euclidean metric inducing the same area. (But one must be careful about the notion of orientation over general fields.)

Let us explain why choosing a basis of V leads to a preferred basis for gl 2 (V), in other terms we exhibit a favourite basis for gl 2 (K). The following elements form, together with their opposites, the dihedral group D 4 of order 8 which acts faithfully on the square in K 2 whose vertices have coordinates ±1, as in Figure 1.1.

1 = 1 0 0 1 S = 0 -1 1 0 J = 0 1 1 0 K = -1 0 0 1
Having coordinates in {-1, 0, 1}, these elements are defined over any field of characteristic different from 2, and they form a basis for gl 2 (K). In particular, we can present gl 2 (K) as the group algebra K[D 4 ] quotiented by the identification between the units {±1} ∈ K × and the central elements {±1} ⊂ D 4 . For future reference, we display some of the relations satisfied between S, J, K. Geometrically, the dihedral group D 4 is generated by two reflections J, K whose product KJ = S is a rotation of order 4. In particular we have the squaring relations:

1 ◁ S ▷ ◁ -1 ▷ < J > < -J > < K > < -K > ◁ -1, K ▷ ◁ -1, J ▷ D 4
J 2 = 1 K 2 = 1 S 2 = -1
Algebraically, the trace relations Tr(S) = Tr(J) = Tr(K) = 0 imply that # changes S, J, K in their opposite, and then det(S) = -det(J) = -det(K) = 1 recover the squaring relations.

Combining them with KJ = S yields the cyclic permutation relations:

SJ = K JK = S -1 KS = J
Combining those with Tr(K) = Tr(S) = Tr(J) = 0 yields the anti-commutation relations: SJ = -JS JK = -KJ KS = -SK which imply that every element S, J, K conjugates any other in its opposite. We may recombine those anti-commutation relations with the cyclic permutation relations to yield the following commutator relations, which only make sense in the group algebra:

SJ -JK = 2K JK -KJ = -2S KS -SK = 2J.
Scholium 1.7. A quaternion algebra over K is a 4-dimensional K-algebra spanned by elements (1, jk, j, k) satisfying j 2 = x1, k 2 = y1 and kj = -jk for x, y ∈ K × . For x = y = 1 we recover gl 2 (K) whereas for x = y = -1 and K = R we find Hamilton's algebra of quaternions. Over K, the only quaternion algebra which is not a division algebra is gl 2 (K). On may consult [START_REF] Shafarevich | Basic notions of algebra[END_REF][START_REF] Vigneras | Arithmétique des algèbres de quaternions[END_REF][START_REF] Maclachlan | Arithmetic of Hyperbolic Three-Manifolds[END_REF] for much more about quaternion algebras.

We can also present the four-dimensional K-algebra gl 2 (K) as a non-commutative multiquadratic extension of K, or as a hermitian extension of a quadratic extension:

gl 2 (K) K[J, K] (J 2 = K 2 = 1, JK = -KJ) K[J][K] (K 2 = 1, KJ = J # K)
Such a definition extends to quaternion algebras over fields of characteristic 2.

Structure of the dihedral group

Let us investigate the structure of D 4 , starting with its poset of subgroups, depicted in 1.1. Recall that a subgroup is normal if it is invariant by inner-automorphism, and characteristic if it is invariant by every automorphism.

Since every element S, J, K conjugates any other in its opposite, we deduce on the one hand that its center equals {±1}, and on the other hand that its normal subgroups must contain {±1}. Hence the normal subgroups are given by:

{±1} {±1, ±S} ≈ Z/4 {±1, ±J} ≈ Z/2 × Z/2 {±1, ±K} ≈ Z/2 × Z/2
The center {±1} is characteristic (as always), and so is {±1, ±S} since ±S are the only elements of order 4. The automorphism Φ swapping the generators J ↔ K (and thus changing S into S -1 ) exchanges the two other normal subgroups, which are thus not characteristic.

Since an automorphism must preserve the non-central elements of order two {±J, ±K}, it must equal Φ up to composition with an inner-automorphism (corresponding to the quotient D 4 /{±1}).

Remark 1.8. We have just seen that J and K are not conjugate in D 4 . Still, as elements of GL 2 (K) they have the same trace and determinant, so Corollary 1.52 should imply that they are conjugate.

A straightforward computation shows that C ∈ GL 2 (K) satisfies CJ = KC if and only if it has the form:

C = x -x y y for x, y ∈ K with det(C) = 2xy = 0.
Thus by taking x = 1 and y = 1 we have an element in GL 2 (K) defined over any field K of characteristic different from 2 which conjugates J to K as desired. They are also conjugate by the rotation of π/4 which belongs to SO 2 (K) ⊂ SL 2 (K) provided that K contains cos(π/4) = √ 2/2, that is a root to the equation z 2 = 1/2. In fact, the matrix C with x = y = 1 is nothing else than the rotation of π/4 multiplied by √ 2. We are lucky enough that its multiples in gl 2 (R) contains such a primitive vector C of the lattice gl 2 (Z) whose entries are defined over any field K of characteristic different from 2.

Notice that J and K are also conjugate by an element SL 2 (K) by choosing 2x = y = 1. We shall come back to this example in Remark 1.63 and Corollary 1.62. Now let us describe the quotients of D 4 by its normal subgroups and analyse the corresponding short exact sequences

The quotient of D 4 by its center {±1} is the Klein four group Z/2×Z/2, generated by the classes of J, K, S. Thus we have a central extension:

1 → {±1} → D 2 → Z/2 × Z/2 → 1
We may compute the classifying cohomology class H 2 (Z/2 × Z/2; {±1}) from the squaring relations and the anti-commutation relations. A representative is given by:

c(J, J) = c(K, K) = 1 c(S, S) = -1 c(S, J) = -c(J, S) = 1 -c(J, K) = c(K, J) = 1 c(K, S) = -c(S, K) = 1
We may further quotient by S to find an extension whose quotient Z/2 is generated by the class of J or K.

1 → Z/4 → D 4 → Z/2 → 1
The quotient acts on the kernel by its only non trivial automorphism (equal to inversion, which is trivial only in restriction to the {±1} central subgroup). Since the sequence is split, it gives rise to a semi-direct product D 4 = Z/4 Z/2.

If we quotient by the center and either J or K we find two extensions, which are isomorphic by Φ:

1

→ {±1} × Z/2 → D 4 → Z/2 → 1 (1.1)
The quotient Z/2 is generated by the class of S, which has order 4 in D 4 , so the sequence cannot be split. The quotient acts on the kernel by its only non trivial automorphism (equal to inversion, which is trivial only in restriction to the {±1} central subgroup). Denoting ϕ : Z/2 → Out(Z/2 × Z/2) = Aut(Z/2 × Z/2) the corresponding representation, we may compute classifying twisted cohomology class in H 2 (Z/2; (Z/2 × Z/2) ϕ ), but we already know it is a non trivial element (because the sequence is not split), and its explicit computation follows from that for the central extension: c(S, S) = -1. Finally, we described the inner-automorphisms Int(D 4 ) = D 4 /{±1} ≈ Z/2 × Z/2 and the outer-automorphisms Out(D 4 ) = Aut(D D )/ Int(D 4 ) ≈ Z/2 generated by Φ. They fit into the following extension:

1 → Int(D 4 ) → Aut(D 4 ) → Out(D 4 ) → 1 Since Φ • Int J = Int K •Φ
and Φ commutes with Int S we find that the corresponding representation is the same ϕ : Z/2 → Out(Z/2 × Z/2) as the previous extension 1.1. But this time the sequence is split, in other terms Aut(D 4 ) ≈ (Z/2 × Z/2) ϕ Z/2. Remark 1.9. The transcomatrix M → M # and the tranpose M → t M restrict to anti-automorphisms of D 4 . The former changes S, J, K in their opposite, while the latter changes S in its opposite. (In particular the restriction of the transpose is equal to the inversion map M → M -1 .)

Their composition yields the comatrix, which is thus an automorphism of D 4 . It changes K and J in their opposites while leaving S invariant, that is Int S .

In Chapter 2, we will often use the fact that S t M S -1 = M # for all M ∈ gl(V).

Scholium 1.10. For a group G denote Aut ± (G) be its group of automorphisms and anti-automorphisms. If G is abelian then

Aut ± (G) = Aut(G). If G is not abelian then Aut ± (G) = Aut(G) × Z/2
where the second factor is generated by the inversion. Indeed, in the non-abelian case, the inversion is an anti-automorphism, and by definition every automorphism commutes with it. Moreover, since the product of two anti-automorphisms is an automorphism, there is a unique anti-automorphism up to multiplication by an automorphism.

Quadratic space

On the vector space gl(V) the determinant is a non degenerate quadratic form, and as det(M +N )1 = (M +N )(M +N ) # = det(M ) + Tr(M N # ) + det(N ) 1, its polar symmetric bilinear form is: M, N = tr(M N # ) where tr(P ) := 1 2 Tr(P )

(1.2)

The isotropic cone of gl(V) is the set gl(V)\GL(V) of non invertible elements, and it is a cone over non-degenerate projective quadric in the projective space P(gl(V)).

The units

SL(V) = {A ∈ gl(V) | det(A) = 1} form a subgroup of GL(V), kernel of the determinant morphism det : GL(V) → K × , thus A ∈ SL(V) ⇐⇒ A # = A -1 .
Denote sl(V) the kernel of the trace form, or the anti-symmetric part for the involution, thus a ∈ sl(V) ⇐⇒ tr(a) = 0 ⇐⇒ a # = -a.

The involution # has eigenvalues ±1 and its eigenspaces provide a decomposition gl(V) = K1 ⊕ sl(V) which is orthogonal with respect to the determinant form, thus every element M ∈ gl(V) splits as the sum of its symmetric and anti-symmetric parts with respect to the involution:

M = tr(M )1 + pr(M )
where tr(M )

1 = M + M # 2 and pr(M ) := M -M # 2 .
In particular det(M )1 = tr(M ) 2 1 -pr(M ) 2 which we may write det = tr 2 -pr 2 . The 4-dimensional space gl(V), which contains the isotropic cone gl(V) \ GL(V) defined by det(M ) = M, M = 0, decomposes as the direct sum of the anistropic line K1 and its orthogonal hyperplane sl(V) defined by tr(M ) = 1, M = 0. Denote X = {M ∈ gl(V) | M, M = 0 = 1, M } the isotropic cone for the determinant restricted to the kernel of the trace.

In the projective 3-space P(gl(V)), the point P(K1) and the plane P(sl(V)) are mutually polar with respect the non-degenerate quadric P(gl(V)\GL(V)). The point does not lie on the quadric and its polar plane intersects the quadric transversely, in the non-degenerate conic P(X).

In projective coordinates, this conic consists in the set of points p ∈ gl(V) such that p, p = 0 = 1, p , or equivalently det(x1 + yp) = x 2 for all [x : y] ∈ KP 1 , which means that the restriction of the quadratic form on the line (1, p) vanishes to the second order at p.

Hence the conic P(X) consists in the set of tangency points between the quadric P({det = 0}) and the pencil of lines through P(1). Figure 1.2 provides a schematic picture (recall that this is valid over any field of characteristic different from 2). The isomorphism types of quadrics over K are given, in terms of the diagonalisation of the quadratic form, by the classes of the diagonal elements in K × /(K × ) 2 .

Proposition 1.11. The map Ψ : M → (ker M, im M ) defines a bijective algebraic correspondence between the projective quadric P({det = 0}) and P(V)×P(V) sending the conic projective conic P(X) to the diagonal P(V).

It conjugates the adjoint action of PGL(V) restricted to P({det = 0}) with its tautological diagonal action on P(V) × P(V).

Proof. Notice that in terms of endomorphisms, an element M ∈ gl(V) in the isotropic cone if and only if its rank is either 0 or rank 1.

If M has rank 0 then it is nilpotent, and the line im(M ) = ker(M ) ⊂ V uniquely determines P(M ). In this case we have tr(M ) = 0. We recover the fact that the cone P(X) is parametrized by P(V).

Otherwize M has rank 1, so it is the multiple of an idempotent element, that is the projector on one line im(M ) parallel to another ker(M ). In this case it has tr(M ) = 0. Thus P({det = 0} \ X) corresponds to pairs of distinct lines in V.

If A ∈ GL(V) then im(AM A -1 ) = A(im M ) and ker(AM A -1 ) = A(ker M ).

Scholium 1.12. In Section 1.3 we shall parametrize the istropic quadric and cone providing an inverse to the map Ψ.

Quadratic identities: trace, projection and discriminant

Recall that for all M ∈ gl(V) = K1 ⊕ sl(V) we have det(M )1 = tr(M ) 2 1 -pr(M ) 2 which we may write det = tr 2 -pr 2 .

Proposition 1.13. For all M, N ∈ gl(V) we have the following trace identity:

tr(M N ) = tr(M ) tr(N ) -pr M, pr N (1.3)
This implies in particular:

tr(M N ) = tr(N M ) (1.4) tr(M N ) + tr(M N # ) = 2 tr(M ) tr(N ) (1.5) tr(M N ) -tr(M N # ) = -2 pr(M ), pr(N ) (1.6)
Finally Tr(M N M # N # ) equals:

det(M ) Tr(N ) 2 + det(N ) Tr(M ) 2 + Tr(M N ) 2 -Tr(M ) Tr(N ) Tr(M N ) -2 det(M N ).
Proof. We obtain identity (1.3) by multiplying the orthogonal decompositions of M, N into K1 ⊕ sl(V) and projecting on K1. Then (1.4), (1.5), (1.6) follow easily.

To show the last identity we apply the identities (1.4) and (1.5) several times: The discriminant of M ∈ gl(V) was defined as that of its characteristic polynomial

Tr(M N M # N # ) = Tr(M N M # ) Tr(N # ) -Tr(M N M # N ) = det(M ) Tr(N ) 2 -(Tr(M N ) Tr(M # N ) -Tr(M N N # M )) = det(M ) Tr(N ) 2 + det(N ) Tr(M 2 ) -Tr(M N ) Tr(M # N ) Substituting Tr(M 2 ) =
X 2 -Tr(M )X + det(M ), equal to disc(M ) = 4 (tr(M ) 2 -det(M )). Thus A ∈ SL(V) has disc(A) = 4 tr(M ) 2 -4 and a ∈ sl(V) has disc(a) = -4 det(a).
The orthogonal projection pr : gl(V) → sl(V) preserves the discriminant since the characteristic polynomial of t1 + u is that of u shifted by t.

Corollary 1.15. For all M, N ∈ gl(V) we have:

-pr M, pr N = Tr(M N ) 2 -Tr(M N # ) 2 Tr(M ) Tr(N ) = disc(M N ) -disc(M N # ) Tr(M ) Tr(N )
Proof. Multiply relations (1.5) & (1.6), and notice that det(M N ) = det(M N # ).

Scholium 1.16. We will apply Lemma 1.15 in Propositions 1.89 and 1.94 to hyperbolic elements M, N ∈ SL 2 (R) acting on the hyperbolic plane. The left hand side will have a geometric interpretation in terms of the translation axes of M and N whereas the right hand side will have a dynamical interpretation in terms of the translation lengths of M N and M N -1 .

The Lie algebra sl(V)

Lie algebra and Killing form

The kernel sl(V) of the trace form is a 3-dimensional Lie algebra for the bracket {a, b} = 1 2 (ab-ba), that of the Lie group SL(V), kernel of the determinant morphism. Notice that if M, N ∈ gl(V) have orthogonal projections pr M = a, pr N = b ∈ sl(V) then 1 2 (M N -N M ) = {a, b}, which explains why we restrict our attention to sl(V). For a, b ∈ sl(V), the decomposition ab = tr(ab)1 + pr(ab) rewrites as

ab = -a, b 1 + {a, b} (1.7)
hence a, b are orthogonal if and only if they anticommute, in which case {a, b} = ab.

The Jacobi relation implies that {a, b} ⊥ Span(a, b) for all a, b ∈ sl(V).

Remark 1.17. The squaring and anti-commutation relations imply that (1, S, J, K) is an orthonormal basis of gl 2 (K) respecting the decomposition K1⊕sl 2 (K). We have:

det(t1 + sS + jJ + kK) = t 2 + s 2 -j 2 -k 2
Moreover, we combined the anti-commutation and permutation relations to find:

{S, J} = K {J, K} = -S {K, S} = J
The Killing form associated to the bracket is proportional to the scalar product:

-1 8 Tr(c → 2{a, 2{b, c}}) = -tr(c → {a, {b, c}}) = -tr(ab) = tr(ab # ) = a, b
The non degeneracy of the polar form •, • , implies that of the Killing form, hence of the bracket {•, •} (we thus recover the fact the center of gl(V) is precisely K1). 

Q R p q r O r ⊥ a b b ⊥ a ⊥ Figure 1
.3: Constructing polarities with respect to a conic.It relies on choosing projective basis O, P, Q, R on the conic, to exploit the following property. The pencil of conics passing through such base points contains three singular members: the pairs of lines (OP )∪(QR), (OQ)∪(P R), (OR)∪(P Q), with intersection points p, q, r. The polarity relations p ⊥ = (qr), q ⊥ = (pr), r ⊥ = (pq) hold for any conic of the pencil.

When a, b ∈ sl(V) are not colinear, they span a plane Span(a, b) which is orthogonal to {a, b} and thus equal to {a, b} ⊥ . In the projective plane P(sl(V)) the line through the distinct points P(a), P(b) is polar to the point P({a, b}) with respect to the conic P(X).

When det{a, b} = 0 the restriction of det to the plane Span(a, b) is a non degenerate quadratic form. In this case the point P({a, b}) lies off the conic and its polar line P{a, b} ⊥ is transverse to the conic (but their intersection may be empty over K). Notice that the points P(a) and P(b) could either be on or off the conic, and this independently of one another.

When det{a, b} = 0 the restriction of det to the plane Span(a, b) is a degenerate quadratic form. In this case the point {a, b} lies on the conic P(X) and its polar line P{a, b} ⊥ is tangent to the conic. Notice that at most one among P(a) and P(b) can lie on the conic, in which case it equals P{a, b}.

These configurations have been represented in Figure 1.4.

Remark 1.19. As there may exist non-colinear a, b ∈ sl(V) such that det{a, b} = 0, one may thus think of (a, b) → det{a, b} as the square of a degenerate area form.

Corollary 1.20. The quantity [a, b, c] := {a, b}, c = 1 2 (tr(bac) -tr(abc)) defines a volume form on sl(V), that is an alternate non-degenerate trilinear form. There are four possibilities for the isomorphism type of L(a, b) given by the relative position of a, b, {a, b} with respect to the isotropic cone X ⊂ sl(V), as follows.

Subalgebras and their commutants

0 If a = 0 = b, then L(a, b) = {0}. 1 If {a, b} = 0 but det(a) = 0 then L(a, b) is the abelian Lie algebra of dim = 1. 2 If {a, b} = 0 but det{a, b} = 0 then L(a, b) is the affine Lie algebra of dim = 2. 3 If det{a, b} = 0 then L(a, b) = sl(V).
Over every field K of characteristic different from 2, each of these cases can be realised by choosing a, b appropriately.

Remark 1.23. The previous corollary could have been formulated for M, N ∈ gl(V).

Indeed, the algebra generated by M, N ∈ gl(V) is the same as that generated by their projections a, b ∈ sl(V), and we already saw that {a, b} = 1 2 (M N -N M ).

Proof. After permuting a and b we are in one of the four cases, and these are mutually exclusive. The analysis of each case will show that

K[a, b] = K ⊕ L(a, b).
The case 0 is obvious. The case 1 follows from Lemma 1.18; it includes the possibility b = 0, and we could have either det(a) = 0 or det(a) = 0.

To prove the others, suppose that a, b are not colinear, and recall that {a, b} is a non zero vector orthogonal vector to the plane Span(a, b).

If det{a, b} = 0 then (a, b, {a, b}) is a basis of sl(V) and we have shown case 4.

Otherwize {a, b} generates the unique isotropic line in Span(a, b), and we may decompose {a, b} = xa + yb for x, y ∈ K. At least one of the vectors a, b is not isotropic (as they are not colinear), say det(a) = 0. In particular we have a = {a, b} and y = 0. Thus (a, {a, b}) form a linear basis of L(a, b) and {a, {a, b}} = y{a, b}. This proves the isomorphism with the affine Lie algebra of dimension 2.

Notice that in case 2, the pair To realise each of these configurations, we explicit pairs of elements of sl 2 (K) with coefficients in {-1, 0, 1} so that everything makes sense over all K characteristic different from 2. It is clear how one may realise cases 0, 1. An instance of case 2 is obtained by choosing a = K diagonal and b = 1 2 (J -S) upper triangular such that {a, b} = b. An instance of 3 is given by choosing two elements in an orthogonal basis of sl 2 (K), such as the one appearing the next paragraph.

In the next two corollaries the symbol ⊥ refers to orthogonality in (gl(V), det). Proposition 1.24. Consider the adjoint actions of the groups GL(V) and SL(V) on the space sl(V) and its projectivisation P(sl(V)).

The

stabilizer of p ∈ sl(V) \ X under GL(V) is (K[p]) × , which is the complement of the degenerate conic x 2 + y 2 det(p) = 0 in the plane K[p] = {x1 + yp}. The stabilizer of p ∈ sl(V) \ X under SL(V) is (K[p]) × ∩ sl(V), which is the non-degenerate conic x 2 + y 2 det(p) = 1 in the plane K[p] = {x1 + yp}.
The stabiliser of P(p

) ∈ P(sl(V) \ X) under GL(V) is the Z/2-graded subgroup (K[p]) × (K[p] ⊥ ) × formed

by the union of the complements of two degenerate conics.

The stabiliser of P(p

) ∈ P(sl(V) \ X) under SL(V) is the Z/2-graded subgroup (K[p] ∩ SL(V)) (K[p] ⊥ ∩ sl(V))
formed by the union of two non-degenerate conics.

Proof. Let p ∈ sl(V) \ X and C ∈ GL(V) and suppose CpC -1 = λp for some λ ∈ K.

Then 0 = det(p) = det(CpC -1 ) = λ 2 det(p) so λ 2 = 1. The first two statements correspond to the case λ = 1, and the analysis for the last two statements is completed by considering the case λ = -1.

Denoting z + c the decomposition of C according to K1 ⊕ sl(V) we have:

CpC -1 = p ⇐⇒ (z + c)p = p(z + c) ⇐⇒ {c, p} = 0 and by Lemma 1.18 this is equivalent to C ∈ K[p] × , CpC -1 = -p ⇐⇒ (z + c)p = -p(z + c) ⇐⇒ 2zp = 2 c, p ⇐⇒ z = 0 = c, p which is equivalent to C ∈ sl(V) ∩ (K[p] ⊥ ) × . Remark 1.25. The Z/2-graded group (K[p]) × (K[p] ⊥ ) × is a non trivial extension of Z/2 by K[p]. Hence the Z/2-graded group (K[p] ∩ SL(V)) (K[p] ⊥ ∩ sl(V)) is a non trivial extension of Z/2 by K[p] ∩ SL(V).

Question 1.26 (Exercise). Describe the isomorphism types of the stabilisers in the previous proposition in terms of

K and K × and disc(p) ∈ (K × )/(K × ) 2 . Example 1.27. The stabiliser of S by GL 2 (K) is {t1 + sS | t 2 + s 2 = 0} and by SL 2 (K) is {t1 + sS | t 2 + s 2 = 1}.
The latter is also equal to the stabiliser of P(S) by SL 2 (K). However, the stabiliser of

P(S) by GL 2 (K) is {t1 + sS | t 2 + s 2 = 1} {jJ + kK | j 2 + k 2 = 1}.
For completeness, and to compare with the previous proposition, we also describe the stabiliser of an isotropic vector p ∈ sl(V) and a its projectivisation P(p) ∈ P(X), but we will not make much use of this result.

Proposition 1.28. Consider the adjoint actions of the groups GL(V) and SL(V) on the space sl(V) and its projectivisation P(sl(V)), and assume p ∈ X \ {0}.

The stabilizer of p

∈ X ⊂ sl(V) under GL(V) is (K[p]) × , which is the complement of the very degenerate conic x 2 = 0 in the plane K[p] = {x1 + yp}. The stabilizer of p ∈ X ⊂ sl(V) under SL(V) is (K[p]) × ∩ sl(V), which is the degenerate conic x 2 = 1 in the plane K[p] = {x1 + yp}.
The stabiliser of P(p

) ∈ P(sl(V) \ X) under GL(V) is (p ⊥ ) × which is the comple- ment of a degenerate quadric in the hyperplane p ⊥ ⊂ gl(V).
The stabiliser of P(p

) ∈ P(sl(V) \ X) under SL(V) is sl(V) ∩ (p ⊥ ) × which is a degenerate quadric in the hyperplane p ⊥ ⊂ gl(V).
Proof. We use the same notations as in the previous proof. The first two statements follow from Cp = pC ⇐⇒ {c, p} = 0. As for the last two statements, notice first that by Proposition 1.22 for c ∈ sl(V) we have {c,

p} ∈ Kp ⇐⇒ c ∈ p ⊥ . Now Cp = λpC ⇐⇒ (z -λ)p + λ{c, p} = (1 -λ) c, p 1 which is equivalent to (x -λ)p + λ{c, p} = 0 = c, p , whether λ = 1 or λ = 1 by the previous remark. But for every c ∈ sl(V) ∩ p ⊥ and z ∈ K1 there exists some λ ∈ K such that λ{c, p} = (λ -z)p hence Cp = λpC ⇐⇒ c ⊥ p ⇐⇒ C ⊥ p.
Question 1.29 (Exercise). Describe the isomorphism types of the stabilisers in the previous proposition in terms of K and K × .

We may define the one parameter subgroup of SL(V) generated by c ∈ sl(V) as the intersection

K[c] ∩ sl(V). It consists in the set of elements C = x + yc satisfying x 2 + y 2 det(c) = 1, a conic in Span(1, c) defined by the Pell-Fermat equation of parameter -det(c) = c 2 .
We have not defined the exponential map because it would lead to considering transcendental elements over K. Instead, one may think of the (restricted) projection pr : SL(V) → sl(V) as a renormalised version of the logarithm.

Computing with the orthogonal decomposition gl(V) = K1 ⊕ sl(V) and the relation det = tr 2 -pr 2 remains in the realm of quadratic algebra over K.

Quadratic identities and commutators

Lemma 1.30. Let A, B ∈ SL(V) and a = pr A, b = pr B their projections in sl(V). Then their commutator [A, B] = ABA -1 B -1 has projection and discriminant: pr[A, B] = 2 (AB -{a, b}) {a, b} (1.8) disc[A, B] = 2 tr([A, B]) disc{a, b}
(1.9)

The second formula implies that t = tr[A, B] = 0, and can then be rewritten as:

det{a, b} = -1 2 (t -t -1 ) In particular det{a, b} = 0 ⇐⇒ tr[A, B] = ±1. Proof. If A = x + a, B = y + b, then AB = z + (u + v) where z = xy -a, b , u = xb + ya and v = {a, b}, while BA = z + u -v whence (BA) # = z -u + v. Now [A, B] = (AB)(BA) # = (z 2 + v + u, v -u ) + (2zv + {v + u, v -u}), so [A, B] = (z 2 + u 2 -v 2 ) + pr[A, B] with pr[A, B] = 2zv + 2{u, v}. But u ∈ Span(a, b) and v = {a, b} imply u ⊥ v, whence uv = {u, v}. Consequently pr[A, B] = (z + u)2v. Now focus on disc[A, B] = disc pr[A, B] = -4 det pr[A, B] = 4 det(z + u) disc(v). Develop det(z + u) = a, b 2 -(xy) 2 + x 2 det(b) + y 2 det(a) and replace det(a) = 1 -x 2 , det(b) = 1 -y 2 . Then notice that tr(AB) tr(AB # ) = (xy) 2 -a, b 2 . Thus 4 det(z + u) = 4 (tr(A) 2 + tr(B) 2 -tr(AB) tr(AB -1 )) = 2 tr([A, B]). Finally for t = tr[A, B] we have 4(t 2 -1) = disc[A, B] = 2t disc{a, b}.
Scholium 1.31 (Motivation). Let A, B, ∈ SL(V) and C = AB. Denote x + a, y + b and z + c their decomposition according to K1 ⊕ sl(V).

The lemma expresses disc{a, b} = 2(t -t -1 ) in terms of 2t = tr[A, B] which is in turn given in terms of x, y, z by the trace formula t/2 = x 2 + y 2 + z 2 -2xyz.

The motivation which led to proving such a lemma was to show that when

K ⊂ R, sign disc{a, b} is positive for t ∈] -1, 0[∪]1, ∞[ and negative for t ∈] -∞, -1[∪]0, 1[.
Let us apply identity 1.8 to describe the pairs of elements A, B ∈ SL(V) whose commutator [A, B] belongs to the center {±1} of SL(V).

Clearly we have [A, B] = 1 ⇐⇒ {a, b} = 0 and this situation has already been described in Lemma 1.18 and its Corollary 1.22 Corollary 1.32. Let A, B ∈ SL(V). We have [A, B] = -1 if and only if A and B belong to sl(V) and are orthogonal. This can be written:

[A, B] = -1 ⇐⇒ tr(A) = tr(B) = tr(AB) = 0 Proof. Denote x + a, y + b the decompositions of A, B according to K1 ⊕ sl(V).
Since A, B do not commute we have {a, b} = 0. Identity 1.8 implies AB = {a, b}. This yields tr(AB) = 0 along with xy = a, b and xb + ya = 0.

Suppose by contradiction that xy = 0. Then the previous equalities imply that xy = a, -ay/x whence x 2 + a, a = 0 which is det(A) = 0, a contradiction.

The relation xb + ya = 0 reveals, together with the non commutativity of a&b, that x = 0 ⇐⇒ y = 0. We have thus shown that x = y = 0, as desired.

The projective conic P(X) and cross-ratios

Parametrizing the isotropic cone X of sl(V)

In this paragraph we parametrize the isotropic cone X, and construct an explicit inverse to the map Ψ appearing in Proposition 1.11.

For sake of clarity we start with the case of sl 2 (K) using our preferred basis, before providing an intrinsic formulation in the case of sl(V) which has the advantage of revealing the nature of the parametrization.

Thus we choose a basis of V identifying it with K 2 , which yields one for gl(V) as we saw by exhibiting our favourite basis {1, S, J, K} of gl 2 (K).

Lemma 1.33. Define the quadratic map ψ :

K 2 → sl 2 (K) by ψ(v) = v • t vS, whose matrix expression is given for v = t (x y) by: ψ x y = x y • y -x = xy -x 2 y 2 -yx = (y 2 -x 2 )J -2xyK + (x 2 + y 2 )S 2 It has image the set X S = {a ∈ X | a, S = x 2 + y 2 } of

elements in the cone whose scalar product with S is a sum of squares, and is two-to-one outside the origin.

The map ψ sends the determinant square to the scalar product:

for all u, v ∈ K 2 we have 2 ψ(u), ψ(v) = det(u, v) 2 .
Finally, the map ψ intertwines the tautological action of SL 2 (K) on K 2 to the restriction of its adjoint to X.

Proof. If A ∈ SL 2 (K) then t AS = SA -1 , so ψ(Av) = (Av) • t (Av)S = Aψ(v)A -1 .
The quadratic map ψ : K 2 → X S is in particular homogeneous and does not vanish outside the origin, so it has a well defined projectivization P(ψ) : P(K 2 ) → P(X S ), which (from the polynomial nature of ψ) defines an algebraic morphism.

Notice that P(X S ) equals P(X) because one can lift a representative of the later in X to obtain an element p whose entries satisfy p 11 = -p 22 and p 2 11 = -p 12 p 21 so multiplying p by p 21 will sent it to X S .

Since P(ψ) is one-to-one, it defines an isomorphism of projective lines. Thus, cross-ratios of lines in K 2 correspond to cross-ratios of points on the conic P(X).

Corollary 1.34. The isomorphism of projective lines P(ψ) : P(K 2 ) → P(X) intertwines the tautological action of PSL 2 (K) on P(K 2 ) to its adjoint action on P(X).

We now provide an intrinsic formulation for the map ψ.

Consider a non degenerate bilinear form ω on V. Being non degenerate, it amounts to the isomorphism Ω :

V → V * given by Ω(v) : u → ω(u, v). The diagonal map 1 ⊗ Ω : V → V ⊗ V * given by v → v ⊗ Ω(v) can be composed with the natural isomorphism gl(V) → V ⊗ V * to yield a map ψ : V → gl(V). The map ψ is quadratic, in the sense that ψ(λv) = λ 2 ψ(v) for all λ ∈ K.
By definition, for v ∈ V the element ψ(v) ∈ gl(V) has image Kv and kernel the ω-orthogonal v ⊥ . In particular det ψ(v) = 0 and ψ

(v) = 0 ⇐⇒ v = 0. Moreover Tr ψ(v) = ω(v, v) as one can see either from the intrinsic definitions of Tr •ψ : V → V ⊗ V * → K or by completing v in a basis of V.
Remark 1.35. Suppose ω is symmetric and anisotropic.

Then

det ψ(v) = 0 and Tr ψ(v) = ω(v, v) = 0 so ψ(v)
has rank one and equals ω(v, v) times the ω-orthogonal projection on v (the unique idempotent element with image Kv and kernel v ⊥ ). It belongs to the complement of the cone X in {det = 0}.

From now on we suppose that ω is symplectic, it is unique to scaling by a factor. Its group of linear automorphisms Sp(V, ω) is naturally isomorphic to SL(V).

A symplectic basis of (

V, ω) is a pair (u, v) ∈ V × V such that ω(u, v) = 1. Denote S u,v ∈ GL(V) the unique element of order 4 sending u to v. Since det S u,v = 1 and Tr S u,v = 0 we have S u,v ∈ SL(V) ∩ sl(V). Denote H ω the set of such elements S u,v .
Lemma 1.36. Let ω be a symplectic form on V and consider the quadratic map ψ : V → gl(V) defined above. If we choose a symplectic basis (u, v) of (V, ω) then we recover the map ψ in Lemma 1.33 with S = S u,v .

The map ψ has image the set X ω of elements p ∈ X such that for all S u,v ∈ H ω the scalar product p, S u,v = x 2 + y 2 is a sum of squares of elements x, y ∈ K. It is two-to-one outside the origin. For all u, v ∈ V we have

2 ψ(u), ψ(v) = ω(u, v) 2 .
The map ψ intertwines the tautological action of SL(V) on V with the restriction of its adjoint action on X ω .

Proof. The first statement follows from the Remark 1.6: a basis (u, v) of V yields canonical euclidean and symplectic forms, and the element S u,v is the polarisation of the later with respect to the former.

The rest follows from 1.33, but let us prove the second paragraph to add some geometric insight and make sure the signs are correct.

If v = 0 then ψ(v) has image and kernel equal to Kv, therefore ψ(v) ∈ X. Alternatively we already computed det ψ(v) = 0 and Tr

ψ(v) = ω(v, v) = 0, thus ψ(v) is nilpotent, that is ψ(v) 2 = 0, and Proposition 1.11 says that ψ(v) ∈ X. Now consider w ∈ V and let us compute ψ(w), S u,v = -1 2 Tr(ψ(w) • S u,v ). Decomposing w = xu + yv in the basis (u, v) we have ω(w, S u,v u) = (xu + yv)x and ω(w, S u,v v) = (xu + yv)y. Thus, remembering that ψ(w) = w.ω(•, w), we have Tr(-ψ(w) • S u,v ) = x 2 + y 2 . Hence im ψ ⊂ X ω . Conversely, let p ∈ X ω . There exists a pair u, v ∈ V defined over K such that ω(u, v) = 1, so there exist x, y ∈ K such that p, S u,v = x 2 + y 2 . Then w = xu + yv has image ψ(w) = p hence im(ψ) ⊃ X ω . We notice that if p, S u,v is a sum of squares for one element S u,v ∈ H ω then it is a sum of squares for all S u ′ ,v ′ ∈ H ω . For distinct u, v ∈ V the composition ψ(u) • ψ(v) is the projector on Ku parallel to Kv multiplied by Tr(ψ(v) • ψ(u)) = ω(u, v)ω(v, u) = -ω(u, v) 2 . In particular 2 ψ(u), ψ(v) = ω(u, v) 2 .
Note, as in the previous paragraph, that P(X ω ) = P(X). Recall that the algebraic correspondence Ψ : P(V × V) → {det = 0} from Proposition 1.11 maps the diagonal . One may restrict Ψ to the diagonal P(V) and its image P(X), or to their complements. This expresses Ψ as the disjoint union of two maps Ψ = Ψ 1 Ψ 2 .

Corollary 1.37. The projectivized map P(ψ) : P(V) → P(X) is the inverse of the isomorphism Ψ 1 of projective lines. In particular it conjugates the adjoint action of PGL(V) on P(X) to its tautological action on P(V) which are 3-transitive.

The bi-quadratic map ψ

• ψ : v, w → ψ(v) • ψ(w) from (V × V) \ {(v, v) | v ∈ V} to {det = 0} \ X has a well defined projectivization: P(ψ • ψ) is the inverse of Ψ 2 . The disjoint union P(ψ) P(ψ • ψ) is inverse to Ψ = Ψ 1 Ψ 2 .
In particular it defines an isomorphism of projective quadrics and conjugates the adjoint action of PSL(V) on P({det = 0}) to its tautological diagonal action on P(V) × P(V).

Remark 1.38. For u, v ∈ V the element {ψ(u), ψ(v)} ∈ sl(V) is -1 2 ω(u, v
) 2 times the symmetry with respect to the line Ku parallel to the line Kv. In formula:

ψ(u)ψ(v) = -ω(u, v) 2 • Proj u/v {ψ(u), ψ(v)} = -1 4 ω(u, v) 2 • Sym u/v This follows from 1 + Sym u/v = 2Proj u/v and Sym v/u = -Sym u/v .

Maslov index of 3 lines and cross-ratio of 4 lines

We define the Maslov index ϵ :

P(V) × P(V) × P(V) → {0} ∪ K × /(K × ) 2 as follows.
It is alternate and non degenerate in the sense that ϵ(L u , L v , L w ) = 0 if and only if at least two lines coincide. Let L u , L v , L w be three distinct lines in K 2 generated by u, v, w. We may suppose u + v + w = 0 by considering a linear dependance relation xu + yv + zw = 0 and replacing u, v, w by xu, yv, zw; such a triple is unique up to multiplication by a scalar. Then we have ω(u, v) = ω(v, w) = ω(w, u) and this yields a well defined quantity

ϵ(L u , L v , L w ) ∈ K × /(K × ) 2 .
We say that the triple of lines is ordered when ϵ(L u , L v , L w ) = 1. Notice that there exists a triple of distinct lines such that ϵ

(L u , L v , L w ) = ϵ(L w , L v , L u ) if and only if -1 ∈ (K × ) 2 .
Proposition 1.39. The action of PGL(V) on P(V) is simply-transitive on triples of distinct lines. The action of PSL(V) on P(V) preserves the Maslov index ϵ and is simply-transitive on triples of distinct lines with a given Maslov index.

Proof. Fix a symplectic basis of V in order to identify P(V) with KP 1 . Let L u , L v , L w be three distinct lines in K 2 and choose generators u, v, w such that u+v+w = 0. The matrices of GL 2 (K) sending the lines with inclinations (0, 1, ∞) ∈ KP 1 to (L u , L v , L w ) are the scalar multiples of the matrix with columns (u, w).

The cross-ratio of four points α ′ , β ′ , α, β on a projective line (with respect to any affine chart yielding coordinates KP 1 = K ∪ {∞}) is given by:

bir(α ′ , α, β ′ , β) = (α -α ′ )(β -β ′ ) (α -β ′ )(β -α ′ ) (bir) which specializes to bir(z, 0, 1, ∞) = z and bir(∞, w, 0, z) = z/w. Z = (α -α ′ ) (α -β ′ ) (β -β ′ ) (β -α ′ ) 1 -Z = (α -β) (α -β ′ ) (β ′ -α ′ ) (α ′ -β) 1 1 -1 Z = (α -α ′ ) (α -β) (β ′ -β) (β ′ -α ′ ) 1 1-Z = (α -β ′ ) (α -β) (α ′ -β) (β ′ -α ′ ) β 1 - 1 Z = (α -β) (α -α ′ ) (β ′ -α ′ ) (β ′ -β) β ′ β α α ′ 1 Z = (α -β ′ ) (α -α ′ ) (β -α ′ ) (β -β ′ ) α α ′ β ′ β α α ′ β ′ β α α ′ β ′ α α ′ β ′ β α α ′ β ′ β T T T T T T J Figure 1
.5: The cross-ratio and its tetrahedral group of transformations.

It satisfies the following symmetries, which we express as L •σ = Σ•L where σ is a permutation of the four entries and Σ ∈ PGL 2 (Z) is a linear fractional transformation belonging to the subgroup generated by J : z → 1/z and RK :

z → 1 -z. bir(β ′ , β, α ′ , α) = bir(α ′ , α, β ′ , β) (α ′ β ′ )(αβ) → 1 bir(α, α ′ , β, β ′ ) = bir(α ′ , α, β ′ , β) (α ′ α)(ββ ′ ) → 1 bir(α ′ , β, β ′ , α) = 1/ bir(α ′ , α, β ′ , β) (αβ) → J bir(α ′ , β ′ , α, β) = 1 -bir(α ′ , α, β ′ , β) (αβ ′ ) → RK
This map σ → Σ described on the right yields the famous representation S 4 → S 3 . Note that the subgroup Σ ⊂ PSL 2 (Z) generated by J and RK in PSL 2 (Z) maps isomorphically onto PSL 2 (Z/2). These symmetries imply that the cross-ratio also satisfies the addition rule:

1 bir(α ′ , α, β ′ , β) + 1 bir(α ′ , α, β, β ′ ) = 1.
(1.10)

The formula for the cross-ratio is designed to be equivariant under perspectives between projective lines in a projective space. In particular, it does not depend on the choice of affine coordinates, and is equivariant under the triply-transitive action of PGL 2 (K) on KP 1 .

The division of two points in the affine line K satisfies a multiplicative cocycle identity on three points, namely for all x, y, z ∈ K we have (z/x) = (z/y)(y/x). Using bir(∞, x, 0, z) = z/x and the aforementioned triple transitivity, we find that the cross-ratio of four points in the projective line KP 1 satisfies a multiplicative cocycle relation on five points, which is depicted in Figure 1.6:

∀u, v, x, y, z ∈ KP 1 bir(u, x, v, y) × bir(u, y, v, z) = bir(u, x, v, z) (1.11)

Ptolemy's theorem for quadrilaterals inscribed in P(X)

In this paragraph which is not necessary for the sequel, the tools developed to describe the quadratic geometry of (sl(V), det) are applied to show the following analogue of Ptolemy's theorem for quadrilaterals inscribed in the projective conic P(X).

In fact, it is better formulated if we fix a symplectic form ω on V and consider vectors in the subset X ω of the isotropic cone X. Since P(X ω ) = P(X) we may always lift a quadrilateral to such a quadruple, and any lift will satisfy the identity.

U V X Y Z U V X Y Z U V X Y Z Figure 1.6:
The cross-ratio satisfies a multiplicative cocyle property.

Proposition 1.40. For distinct u, v, x, y ∈ X ω , the following identity holds in √ K:

u, v • x, y = u, y • x, v + u, x • v, y (IPS)
Remark 1.41. Formula IPS is invariant under the action of (K × ) 2 by individual dilatation of u, v, x, y, so we may suppose they lie on a conic {p ∈ X ω | S u,v , p = 1}.

Proof. The identity IPS is equivalent, after dividing by the left hand side, to:

u, v • x, y u, y • x, v - 1 2 + u, v • x, y u, x • v, y - 1 2 = 1.
But we know from the addition rule that bir(u, v, x, y) -1 + bir(u, v, y, x) -1 = 1 so the identity follows from the following lemma.

Lemma 1.42. For distinct u, v, x, y ∈ X ω we have in

√ K: bir(u, v, x, y) = u, v • x, y u, y • x, v . (CRS)
Proof. We use the map ψ : V → X ω which preserves the cross-ratios of four lines and satisfies

2 ψ(⃗ u) | ψ(⃗ v) = ω(⃗ u, ⃗ v) 2 for all ⃗ u, ⃗ v ∈ V. Thus denoting w = ψ( ⃗ w): u, v • x, y u, y • x, v = ω(⃗ u, ⃗ v) • ω(⃗ x, ⃗ y) ω(⃗ u, ⃗ y) • ω(⃗ x, ⃗ v)
But the last equality equals the cross-ratio of the four lines generated by ⃗ u, ⃗ v, ⃗ x, ⃗ y as one can see in the following Figure 1.7, which is equal to bir(u, v, x, y).

⃗ x ⃗ v ⃗ y ⃗ u O XY XV = det(⃗ x, ⃗ y) det(⃗ x, ⃗ v) U V U Y = det(⃗ u, ⃗ v) det(⃗ u, ⃗ y) Figure 1.7:
The cross-ratio of four lines in (V, ω) in terms of the area form.

Ordering fixed points of a, b ∈ sl(V) \ X and cross-ratio bir(a, b)

The object of this paragraph is to define the cross-ratio bir(a, b) of two elements a, b ∈ sl(V) \ X with the same determinant and find its expression in terms of a, b . Let a ∈ sl(V)\X and fix the choice of a square root for its discriminant disc(a). Since a 2 = -det(a)1 = 1 4 disc(a)1, the eigen-values of a for its action on V are ± 1 2 disc(a) and we may denote α ± ∈ P(V) the corresponding eigen-directions. Now fix a symplectic form ω on V. One may choose eigenvectors v ± of a for the eigenvalues ± 1 2 disc(a) such that ω(v -, v + ) = disc(a) and which are defined over

V ⊗ K[ disc(a)]. Any other basis is obtained by the transformation (λ -1 v -, λ +1 v + )
for λ = 0. Besides, multiplying ω by µ = 0 has the effect of multiplying ψ by µ and dividing v ± by a same square root √ µ. Since ψ is quadratic, we find that ψ(v ± ) ∈ X ω are invariant under multiplication of ω by any scalar µ. Moreover, the quantitity {ψ(v -), ψ(v + )} does not depend on the choice of normalised eigen-basis since {ψ(λ

-1 v -), ψ(λ +1 v + )} = {ψ(v -), ψ(v + )}, it only depends on the normalisation. The intersection a ⊥ ∩ X ⊗ K[ disc(a)
] consists in two lines spanned by ψ(v ± ) hence the well defined quantity {ψ(v -), ψ(v + )} belongs to the line K[ √ disc a] • a. This scalar multiple is equal to that ω(v -, v + ) appearing in the normalisation of the basis, that is the the square root disc(a) chosen at the beginning:

{ψ(v -), ψ(v + )} = ω(v -, v + ) • a = disc(a) • a Computation. We work on K 2 with the standard symplectic form u, v → det(u, v).
Let a ∈ sl 2 (K) be given by the following expression, so that disc(a) = m 2 -4lr and choose the following eigen-vectors

v ± normalised such that det(v + , v -) = disc(a). a = -m/2 -r l m/2 α ± = -m ± disc(a) 2l v ± = √ l α ± 1
Their images by ψ are given, according to Lemma 1.33, by:

ψ(v ± ) = l α ± -α 2 ± 1 -α ± so using l(α + -α -) = disc(a)
and l(α + + α -) = -m and lα + α -= r, we find:

{ψ(v -), ψ(v + )} = 1 2 l 2 (α + -α -) (α + + α -) -2α + α - 2 -(α + + α -) = disc(a) • a.
We recover the fact that given a ∈ sl(V) \ X, it is equivalent to choose a square root disc(a), to order its fixed points α -, α + ∈ P(V), or to order its fixed points P(ψ(v -)), P(ψ(v + )) ∈ P(X) which are well defined independently of ω.

Remark 1.43. In some cases there is a preferred choice for the square root of d ∈ K.

This happens for instance when the field K[ √ d] is totally ordered. A theorem of Artin-Schreier says that a field admits a total order if and only if -1 is not a sum of squares (see [MH73, Chapter III, ğ2] for a proof).

Now given two elements a, b ∈ sl(V) \ X, we wish to order the sets of points P(a ⊥ ∩ X) = {α ′ , α} and P(b ⊥ ∩ X) = {β ′ , β} up to simultaneous inversion.

The square roots of two elements From the previous remarks we may order their fixed points (α ′ , α) and (β ′ , β) up to simultaneous inversion. Thus we may define their cross-ratio:

d a , d b ∈ K × generate isomorphic extensions when d a d b ∈ (K × ) 2 . In that case the choice of a square root √ d a d b ∈ K × determines √ d a and √ d b up to simultaneous change of sign, by imposing √ d a √ d a = √ d a d b . This yields an identification between the extensions K[ √ d a ] = K[ √ d b ]. Note that if
bir(a, b) ∈ √ KP 1 by bir(a, b) = bir(α ′ , α, β ′ , β).
When det(a) = d = det(b) we define this value as the preferred choice d = det(ab).

We have bir(a, b)

∈ KP 1 ⇐⇒ det(ab) ∈ (K × ) 2 .
The cross-ratio satisfies the symmetry relations bir(b, a) = bir(a, b) = bir(a # , b # ) and the addition rule:

1 bir(a, b) + 1 bir(a, b # ) = 1.
which reflects the Galois symmetry acting on det(ab). 

1 bir(a, b) = 1 + cos(a, b) 2 = d + a, b 2d We have bir(a, b) = ∞ ⇐⇒ a, b = -d and bir(a, b) = 1 ⇐⇒ a, b = d. In particular det{a, b} = d 2 -a, b 2 is non zero if and only if bir(a, b) / ∈ {∞, 1}.
Proof. The statement is invariant under multiplication of a, b by a common factor.

To avoid ambiguity, we prove it in the case det(a

) = d = det(b) and choose a branch of √ • over √ K such that √ d 2 = d.
We fix a symplectic form on V and a symplectic basis to work in sl 2 ( √ K). The action of PGL 2 on P 1 is triply transitive and preserves the cross-ratio so we may assume We must set a = {ψ(u -), ψ(u

(α ′ , α, β ′ , β) = (∞, 1, 0, β).
+ )} and b = {ψ(v -), ψ(v + )} for u ± , v ± such that P(u -) = ∞, P(u + ) = 1, P(v -) = 0, P(v + ) = β and det(u -, u + ) = det(v -, v + ).
The latter determinant equals disc(a) = disc(b) and we normalise it to 1, choosing:

u -= 0 -1 u + = 1 1 v -= 0 -1/ √ β v + = √ β 1/ √ β We compute a = 1 2 (S -J -K) and b = 1 2 ((S +J)/β -K), whence a, b = 1 4 (1-2/β). Since det(a) = -1/4 = det(b) we have cos(a, b) = -1 + 2/β as desired.

Ordering fixed points of A, B ∈ PGL(V) and cross-ratio bir(A, B)

Now let us extend the previous discussion concerning the ordering of fixed points and cross-ratios to elements in PGL(V).

An

M ∈ P(gl(V)) has a well defined discriminant disc(M ) ∈ {0} ∪ K × /(K × ) 2 . We call M semi-simple when disc(M ) = 0. Also M ∈ P(gl(V)) has a well defined determinant det(M ) ∈ {0} ∪ (K) × /(K × ) 2 . We have M ∈ PGL(V) when det(M ) = 0. Definition 1.47. For A ∈ PGL(V) we define δ(A) := disc(A)/(Tr A) 2 ∈ KP 1 . We have δ(A) = ∞ if and only if A ∈ P(sl(V) \ X), if and only if A 2 ∈ K × 1

, in other terms when A ∈ PGL(V) has order exactly two in the ring.

Let A ∈ PGL(V) with δ(A) = ∞ and consider its action on P(V). Its fixed points correspond to the eigen-directions in V of a lift in GL(V). If δ(A) = 0 then A has only one fixed point. If δ(A) = 0 then A has exactly two distinct fixed points, which can be defined over K[ δ(A)].

We wish to distinguish, among its fixed points in P(V), one which is "repulsive" and one which is "attractive", in such a way that their roles are interchanged when A is inverted. As we shall see, this is equivalent to choosing a square root δ(A). For this we shall reduce the problem to the previous discussion w had for a ∈ sl(V) \ X.

Let us assign to an element A ∈ PGL(V) such that disc(A) = 0 and tr(A) = 0 modulo (K × ) 2 , a canonical element a 0 ∈ sl(V)\X with the same fixed points in P(V).

Definition 1.48 (Normalised projection). For a semi-simple A ∈ PGL(V) which is not an involution, we define its normalised projection a 0 ∈ sl(V) \ X as follows. Choose a lift still denoted A ∈ GL(V), and set:

a 0 = pr(A) tr(A)
We have A ⊥ ∩ X = a ⊥ 0 ∩ X so A and a 0 act on P(V) with the same fixed points. Moreover disc(a 0 ) = disc(A)/(tr A) 2 = 4δ(A) thus det(a 0 ) = -δ(A).

The normalised projection commutes with the involution #, in other terms inverting A changes a 0 in its opposite.

Remark 1.49. Note that a semi-simple non involutive A ∈ PGL(V) has always exactly two lifts in

±A ∈ SL(V) defined over K[ det(A)].
Consider semi-simple non-involutive A, B ∈ PGL(V) and a choice of δ(A)δ (B).

Denote a 0 , b 0 ∈ sl(V) their normalised projections. Since det(a 0 ) = -δ(A) and det(b 0 ) = -δ(B) we make opposite choices for d = det(ab) = -δ(A)δ(B) = -δ.
We may thus define:

bir(A, B) = bir(a 0 , b 0 ) and cos(A, B) = cos(a 0 , b 0 )
The cross-ratio satisfies the relations bir(A, B) = bir(B, A) = bir(A -1 , B -1 ) and the addition rule:

1 bir(A, B) + 1 bir(A, B -1 ) = 1
Corollary 1.50. Consider semi-simple non involutive A, B ∈ PGL(V) and a choice for δ = δ(A)δ (B). Denoting a 0 and b 0 their normalised projections, we have:

1 bir(A, B) = 1 + cos(A, B) 2 = δ -a 0 , b 0 2δ
Remark 1.51. We may use Corollary 1.15 to express the cosine after choosing lifts A, B ∈ GL(V) and the square root disc(A) disc(B) = Tr(A) Tr(B) δ(A)δ(B) as:

cos(A, B) = Tr(AB) -Tr(AB # ) disc(A) disc(B) = disc(AB) -disc(AB # ) Tr(A) Tr(B) disc(A) disc(B)
Loosely speaking, the cosine cos(A, B) measures the parallelism between the oneparameter subgroups of PGL(V) containing A and B.

Adjoint action of PSL

2 (K) on sl 2 (K)

Groups of units and their conjugacy classes

The central quotient GL(V) → PGL(V) and the determinant GL(V) → K × fit into the following commutative diagram in which both columns and lines are short exact sequences (we omitted the trivial groups for presentation purposes).

{±1} / / K × 1 / / (K × ) 2 SL(V) / / GL(V) / / K × PSL(V) / / PGL(V) / / K × /(K × ) 2
Let us recall the description of conjugacy classes in GL 2 (K) and PGL 2 (K), starting with the classical invariant theory of gl n (K) under the action of GL n (K).

First recall that finite type modules over the principal ring K[X] are classified up to isomorphism by their unique invariant form:

K[X]/(d 1 ) ⊕ • • • ⊕ K[X]/(d l ) where the so called invariant factors d k ∈ K[X] are unitary, and satisfy d 1 | • • • | d l .
An endomorphism M ∈ gl n (K) endows the vector space K n with the structure of a K[X]-module. In this GL n (K)-equivariant correspondence, the characteristic polynomial of M is the order of the K[X]-module, that is the product of all invariant factors, while its minimal polynomial is the exponent of the K[X]-module, that is the last invariant factor.

In particular, conjugacy classes of semi-simple matrices in GL 2 (K) correspond to equivalence classes of semi-simple torsion K[X]-modules with length l = 1 (since the order, which is a degree two polynomial, must equal the exponent), so they are uniquely characterised by the determinant and trace.

Proposition 1.52. The semi-simple conjugacy classes in PGL(V) are parametrized by the well defined quantity A → disc(A)/ det(A) ∈ K.

We will recover this fact by studying the adjoint action of PGL(V) on sl(V), without needing the classification of finite type modules over a principal ideal ring.

Moreover, we shall describe the conjugacy classes in PSL(V), while the classification of finite type modules over a principal ideal ring says nothing about those.

Adjoint action

We saw that the left adjoint linear action of GL(V) on gl(V) preserves the involution, thus every structure which derives from it. It preserves in particular the restriction of the determinant form to the kernel sl(V) of trace, hence its level sets like the isotropic cone X and the unit hyperboloid H:

X = sl(V) ∩ {det = 0} H = sl(V) ∩ {det = 1}.
Remark 1.53. The adjoint action GL(V) → End(sl(V)) is the composition of left multiplication and right multiplication by the inverse, and these operations are conjugate (by the right adjoint action). In particular the adjoint action preserves the orientations of sl(V) defined for a basis as the class of its determinant in

K × /(K × ) 2 .
Only the scalar matrices act trivially, and the maximal subspace on which the action is trivial equals K1. Therefore no information is lost after quotienting by these centers, and this yields a faithful representation PGL 2 (K) → SO(sl 2 (K), det) into the group of orientation preserving isometries of (sl 2 (K), det).

Proposition 1.54. For a plane V over a field K of characteristic different from 2, the adjoint action yields an isomorphism PGL(V) → SO(sl(V), det).

Proof. To prove surjectivity, we use a theorem of Cartan-Dieudonné [START_REF] Dieudonné | La géometrie des groupes classiques[END_REF]. It states that every isometry of a symmetric non-degenerate bilinear form over a ddimensional K-vector space is a product of at most d reflections. In particular, an element of SO(sl 2 (K), det) is a product of at most 3 reflections, but since it has determinant 1 it is in fact a product of exactly two reflections. Thus we must express all products of two reflections as the conjugacy for some element.

If q ∈ gl(V) is not isotropic, that is det(q) = 0, then the orthogonal reflection σ q ∈ End(gl(V)) of vector q across q ⊥ is given by:

σ q (m) = m -2 q, m q, q • q
Notice that the orthogonal reflection of vector 1 across sl(V) equals σ 1 : m → -m # . The endomorphism µ q ∈ End(gl(V)) corresponding to left multiplication by q, left conjugates σ 1 to σ q . In formulae, we have µ q : m → qm and

σ q = µ q • σ 1 • µ q -1 . Thus σ q (m) = -q(qm) # = - qm # q det(q)
We now restrict our attention to End(sl(V)) and notice that for q, m ∈ sl(V) this formula becomes σ q (m) = -qmq -1 . Hence for p, q ∈ sl(V) \ X the reflection σ p • σ q ∈ SO(sl(V), det) coincides with the left adjoint action of pq ∈ GL(V).

The adjoint action commutes with the projectivization map sl(V) → P(sl(V)). This realizes PGL(V) as a subgroup inside the automorphism group PGL(sl(V)) of the projective plane P(sl(V)), namely the stabiliser of the non-degenerate conic P(X).

The actions of PGL(V) and PSL(V) on P(X) follow from Corollary 1.37 & 1.39.

Action of A on (pr A) ⊥

Let us describe the adjoint action of a non scalar element A ∈ GL(V) on sl(V), which only depends on its class in PGL(V). It fixes the line through pr(A) on which it acts identically, and stabilizes the plane pr(A) ⊥ . Restricted to that orthogonal plane, it stabilizes the degenerate conic section (pr A) ⊥ ∩ X as well as the quadric section (pr A) ⊥ ∩ H, the former being asymptotic to the latter. If disc(A) = 0, then pr A is an isotropic vector for the determinant and pr(A) ⊥ is tangent to the cone X along the line K • pr(A), hence the conic section is a degenerate double line while the quadric section is empty. Otherwize disc(A) = 0, and the shape of the conic and quadric sections depend on the class of disc(A) in

K × /(K × ) 2 .
Corollary 1.55. For A ∈ SL(V), the adjoint action of A on sl(V) restricted to the plane (pr A) ⊥ is equivalent over K to the tautological action of A 2 on V.

Remark 1.56. The hypothesis that A ∈ SL(V) is important when considering the tautological action on V.

Proof 1. The line through (pr A) and its orthogonal plane (pr A) ⊥ project to a point and a line in P(sl(V)) which are polars to one another with respect to the conic P(X) and are both fixed by the adjoint action of A.

Consider the map P(X) → P((pr A) ⊥ ) sending p to p ⊥ ∩ (pr A) ⊥ , as depicted in Figure 1.8. Being projective, it conjugates the adjoint actions of PSL(V) restricted to P(X) and restricted to P((pr

A) ⊥ ). Notice that it is two-to-one if pr A / ∈ X, but one-to-one if pr A ∈ X in which case disc(A) = 0 and A 2 is conjugate to A in PGL(V).
Precomposing with the quadratic map ψ, and the projectivization, we obtain a map V → X ω → P(X) → P((pr A) ⊥ ) which admits a unique lift V → (pr A) ⊥ conjugating the tautological action of A 2 to the adjoint action of A.

Proof 2. The Lemma 1.33 is valid over field of characteristic different from 2, so one may extend the scalars to any K-algebra, including K and its quadratic closure √ K. Over √ K, the fixed subspaces for the adjoint action of A on the plane (pr A) ⊥ are precisely those obtained by intersecting it with X. From Lemma 1.33, these eigenspaces pull back by ψ ⊗ √ K to those of A acting on the plane V ⊗ √ K, and since ψ is quadratic the corresponding eigenvalues for the adjoint action are the squares of those for the tautological action. Thus the adjoint action of A on (pr A) ⊥ endows the later with the structure of a √ K[A 2 ]-module. Since A 2 is defined over K, one may restrict the scalars to that field and obtain equivalent K[A 2 ]-modules, and this proves the corollary.

P(X) pr(H) ∩ pr(A) ⊥ pr A (pr A) ⊥

Symmetries

We call symmetry of PGL(V) an element of order two (since it maps to an orthogonal symmetry in SO(sl(V), det) under the adjoint action).

A symmetry of PGL(V) is represented by a non-scalar s ∈ GL(V) such that s 2 belongs to the center, say s 2 = λ1. This implies that det(s) 2 = λ 2 so det(s) = ±λ, and dividing by s yields s # = ±s, whence s ∈ sl(V). Conversely, only those elements in GL(V) ∩ sl(V) represent symmetries of PGL(V).

Notice that GL(V) ∩ sl(V) = sl(V) \ X, so the symmetries of PGL(V) correspond by the projectivisation map to the complement P(sl(V) \ X) of the projective conic. This is an open projective variety whose irreducible components over K are indexed by the values of det :

GL(V) ∩ sl(V) → K × /(K × ) 2 .
We call this variety P(sl(X) \ X) the symmetric space of PGL(V). Hence the group PGL(V) acts on its symmetric space P(sl(V) \ X) by the projectivised adjoint representation, and the elements of order two are the symmetries.

Since s ∈ GL(V) ∩ sl(V) maps to an element of order two in SO(sl(V), det) which fixes the line Ks, it acts like minus the identity on the orthogonal plane s ⊥ , which may be called an orthogonal symmetry across the line Ks. In formula:

∀x ∈ sl(V) : sxs -1 + x = 2 s, x s, s • s
and one may recognise from the proof of Proposition 1.54, the expression for the composition of reflections σ s • σ 1 ∈ SO(gl(V), det) restricted to sl(V).

The elements S, J, K of our favourite basis for sl 2 (K) have order two in PGL 2 (K), so they are symmetries. Being orthogonal in sl 2 (K), each one conjugates the others in their opposites. In other terms the projective classes of S, J, K in P(sl 2 (K) \ X) are fixed under the adjoint actions of S, J, K ∈ PGL 2 (K).

Acting on the symmetric space P(sl(V) \ X)

The following proposition is the key to understanding the action of the group PGL(V) on its symmetric space P(sl(V) \ X) and will be used extensively in the following chapters, in particular to derive Propositions 1.82, 1.89 and 5. There exists a unique pair of opposite elements ±C with determinant 1 in the quadratic subalgebra K ′ [{a, b}] of gl(V ⊗ K ′ ) which conjugate a to b. They are:

C = 1 bir(a, b) • 1 + bir(a, b) 2 • {a, b} d = (d + a, b )1 + {a, b} 2d(d + a, b ) (1.12)
There exists a unique element M in the quadratic subalgebra K[{a, b}] of gl(V) with tr(M ) = 1/ bir(a, b) which conjugates a to b, it is given by:

M = C bir(a, b) = (d + a, b )1 + {a, b} 2d and det(M ) = 1 bir(a, b) .
Idea of the Proof. The computational proof translates the geometrical reasoning suggested (over the real field) in Figure 1.9, and relies on the following observations. The plane through a, b ∈ sl(V) is {a, b} ⊥ and it intersects the quadric {det = d} in a conic. (The projective line P(a, b) ⊂ P(sl(V)) is polar to the point P({a, b}).)

For the adjoint action of SL(V) on sl(V) the stabiliser of {a, b} ⊥ is the stabiliser of K{a, b}. This contains K[{a, b}] ∩ SL(V) which forms a conic in Span(1, {a, b}), consisting of all matrices C = t1 + u{a, b} such that t 2 + u 2 det({a, b}) = 1. 

C = t + u{a, b} ∈ SL(V) ⇐⇒ t 2 + u 2 (1 -a, b 2 ) = 1
Now Ca = bC ⇐⇒ ta + u{a, b}a = tb + ub{a, b}. But {a, b}a = 1 2 (aba + b), and since a ∈ H acts like a symmetry across Ka, we have aba

= -aba -1 = b -2 a, b a so {a, b}a = b -a, b a. Similarly b{a, b} = a -a, b b. Thus Ca = bC is equivalent to (a -b)(t -u(1 + a, b )) = 0 and since a -b = 0 we find Ca = bC ⇐⇒ t = u(1 + a, b )
The conditions C ∈ SL(V) and Ca = bC translate into a system of equations in (t, u) which has no solutions if 1 + a, b = 0 and otherwise it has a unique solution ±(t, u) up to simultaneous change of sign of the entries, given by: Remark 1.58. Notice that, using the notations of Lemma 1.57, we have:

t = 1 + a, b 2 = 1 bir(a, b) u = 1 2 + 2 a, b = bir(a,
dC 2 = a, b + {a, b} = -ba thus C 2 = ba -1 .
Consequently ±C are the unique square roots of the product of symmetries ba -1 in the extended quadratic algebra

K ′ [{a, b}].
Proof. Since det(ab) = a, b 2 +det{a, b} 2 , we have {a, b} 2 = -det{a, b} = a, b 2 -d 2 thus using the right hand side of identity 1.12 we develop: Let us reap our first fruit from (the second part of) Lemma 1.57. This will enable us to describe the conjugacy classes in PGL(V).

C 2 = d + a, b 2d + {a, b} d + a, b -d 2d = a, b + {a, b} d Then use ba = -a, b -{a, b} and a -1 = a # /d = -a/d to rewrite this C 2 = ba -1 .
Corollary 1.60. Over a field K if characteristic different from 2, the group PGL 2 (K) acts transitively on each irreducible component of P(sl 2 (K) \ X). Now we focus on the action of PSL 2 (K) on the components of P(sl 2 (K) \ X). There is a class of fields K over which we may immediately deduce the transitivity: those which are closed under square roots.

Corollary 1.62. If K × /(K × ) 2 = {1} then PSL 2 (K) acts transitively on P(sl 2 (K)\X).
The most general examples of such fields are obtained from an arbitrary given field with characteristic different from 2 by taking its universal quadratic closure: starting with Q we obtain the venerable field of numbers constructible by ruler and compas. Other examples include algebraically closed fields.

Remark 1.63. We noticed in Remark 1.8 that J and K are conjugate by C ∈ GL 2 (K) if and only if:

C(x, y) = x -x y y for x, y ∈ K with det(C) = 2xy = 0.
Applying Lemma 1.57 to J, K of determinant -1 with J, K = 0 and {J,

K} = -S yields C = 1 √ 2 C(1, 1) ∈ SL 2 (K[ √ 2]
). Yet, one may avoid the need of extending the field by choosing any x, y ∈ K such that 2xy = 1, for instance

C(1/2, 1) ∈ SL 2 (K) is valid over all K. Notice that C(1/2, 1) = 3 4 (1 + S) + 1 4 (J + K)
has a balanced decomposition according to K[{J, K}] ⊕ {J, K} ⊥ , the summands being respectively the commutator and the anti-commutator of {J, K} in GL(V) by 1.24.

Consequently, Corollary 1.62 which only focuses on the transitivity of the action, is unsatisfying. The reason is that Lemma 1.57 only searches

C ∈ K[{a, b}]. Theorem 1.64. Consider a, b ∈ H such that det{a, b} = 0, that is bir(a, b) / ∈ {0, ∞}. The elements C ∈ SL(V) conjugating a to b correspond to the pairs (x, y) ∈ K × K such that bir(a, b) = 4(x 2 + y 2 ) by the formula: C(x, y) = x(1 -ba) + y(a + b) (1.13)
In particular, a and b are conjugate by an element of PSL(V) defined over K if and only if bir(a, b) is a sum of squares of two elements in K.

Proof. Since det{a, b} = 0 the elements 1, a, b, {a, b} form a basis of gl(V). Notice moreover that the planes K[{a, b}] and Span(a, b) are orthogonal. Let C ∈ gl(V) decomposed as C = t1 + x{a, b} + ya + zb for t, x, y, z ∈ K.

The condition Ca = bC can be rewritten using a 2 = -1 = b 2 as well as {a, b}a = b -a, b a and b{a, b} = a -a, b b. After grouping terms according to the basis (1, a, b, ab) we find: 

Ca = bC ⇐⇒ (t -x(1 + a, b )) • (a -b) + (z -y) • (1 + ba) = 0 But ba = -a, b -{a, b} ∈ K[{a, b}] \ {0}
det(C) = (x 2 + y 2 ) • (2 + 2 a, b ) = 4(x 2 + y 2 ) bir(a, b) so C ∈ SL(V) ⇐⇒ bir(a, b) = (2x) 2 + (2y) 2 .
Remark 1.65. The expression obtained for y = 0 recovers an alternative expression of 1.12 which is valid for all a, b ∈ sl(V) \ X with the same determinant, namely:

C = 1 2 bir(a, b) 1 + ba -1 .
Corollary 1.66. Consider a, b ∈ sl(V) \ X defined over K, of the same determinant d, such that det{a, b} = 0. The elements C ∈ SL(V) defined over K which conjugate a to b correspond to the pairs (x, y) ∈ K × K such that:

x 2 + dy 2 = 1 4 bir(a, b) by C = x(1 + ba -1 ) + y(a + b)
In particular, a and b are conjugate by an element of PSL(V) defined over K if and only if the Pell-Fermat equation x 2 + dy 2 = 1 4 bir(a, b) has a solution in K.

Proof. The points a

′ = a/ √ d and b ′ = b/ √ d satisfy bir(a, b) = bir(a ′ , b ′ ) and the endomorphisms C ∈ SL(V) defined over K ′ = K[ √ d] conjugating a to b are the same as those conjugating a ′ to b ′ .
By Theorem 1.64 these elements C correspond to the pairs (x, y)

∈ K ′ × K ′ such that bir(a, b) = 4(x ′2 + y ′2 ) by the formula C = x ′ (1 + b ′ a ′-1 ) + y ′ (a ′ + b ′ ).
Setting x = x ′ and y = y ′ 1 √ d which satisfy 4(x 2 + dy 2 ) = bir(a, b), we may rewrite:

C = x(1 + ba -1 ) + y(a + b)
Now recall that a and b are defined over K and that a + b = 0 is orthogonal to 1 + ba -1 = 0. Hence C is defined over K if and only if x, y ∈ K.

Remark 1.67. If we are given C ∈ SL 2 (K) conjugating a to b then the quickest way of computing its decomposition C = x(1 + ba -1 ) + y(a + b) is to notice that:

x = Tr(C) 1 4 bir(a, b)
and then solve x 2 + dy 2 = 1 4 bir(a, b).

By definition, the Hilbert symbol (δ, χ) K of δ, χ ∈ K × takes the value 1 or -1 according to whether the equation x 2 = δy 2 + χz 2 admits a solution in KP 2 or not. Thus we have (δ, χ) K = 1 if and only if χ is the norm of an element in K( √ δ). b) are represented by the form (2x) 2 -∆y 2 , then so is bir(a, b). This can be written using the Hilbert symbol as:

(∆, bir(b, b)) K = 1 =⇒ (∆, bir(a, b)) K = (∆, bir(b, a)) K
If we express the cross-ratio in terms of the fixed points using formula bir, we find that bir(a, b) bir(b, b) bir(a, b) equals -∆ times the norm of an element K( √ ∆). This can be rewritten in terms of the Hilbert symbol as:

(∆, bir(a, b) bir(b, b) bir(a, b)) K = 1
We shall say more about the Hilbert symbol and this identity in the next section.

Remark 1.69. Theorem 1.64 and its Corollary 1.66 provide a first step towards describing the orbits for the action on PSL(V) on the symmetric space P(sl(V) \ X) and the conjugacy classes in PSL(V).

To complete such a description we must characterise the classes under the equivalence relation "bir(a, b) is a sum of squares", and more generally (∆, bir(a, b)) = 1.

This depends on the arithmetic of K as we shall see for Q in the next section.

Application: binary quadratic forms & genera

In this section we reformulate the previous results in terms of binary quadratic forms, and apply them to study the group of genera.

Binary quadratic forms over K as elements of sl 2 (K)

Let Q : V → K be a quadratic form. After choosing a basis of V this amounts to a homogeneous polynomial in two ordered variables with coefficients in K.

One may polarise Q with respect to any non degenerate bilinear form on the plane V, and one usually learns this for some euclidean scalar product, but we may also use a symplectic form: there exists a unique q ∈ sl 2 (K) such that

Q(v) = ω(v, qv).
If we fix a basis V = K 2 and ω = det we have the formula:

Q = lx 2 + mxy + ry 2 ∈ Q(K) ←→ q = 1 2 -m -2r 2l m ∈ sl 2 (K)
This yields a one to one correspondence between Q(K) and sl 2 (K) through which the adjoint action of PGL 2 (K) corresponds to the action by change of variables. It preserves the discriminant m 2 -4lr and sends the Lie bracket {q 1 , q 2 } = 1 2 (q 1 q 2 -q 2 q 1 ) to the Poisson bracket of functions, under which quadratic forms are closed:

{Q 1 , Q 2 } = 1 4 ((∂ x Q 1 )(∂ y Q 2 ) -(∂ x Q 2 )(∂ y Q 1 )) = {q 1 , q 2 }.
Consequently, all the notions defined for single elements q ∈ sl 2 (K) or pairs of element a, b ∈ sl 2 (K) can be translated in terms of the corresponding binary quadratic forms

Q, Q a , Q b ∈ Q(K).
Cross-ratio and cosine. After choosing a root disc(A) disc(B) = -4 det(ab), we may define the cosine:

cos(Q a , Q b ) = disc(Q a + Q b ) -(disc(Q a ) + disc(Q b )) 2 disc(A) disc(B) = cos(a, b)
and the cross-ratio of their roots, which are ordered up to simultaneous inversion:

bir(Q a , Q b ) = bir(α ′ , α, β ′ , β) = (α ′ -α)(β ′ -β) (α -β ′ )(β -α ′ ) = bir(a, b)
For a common choice of root these are related by:

1 bir(Q a , Q b ) = 1 + cos(Q a , Q b ) 2 In particular if Q a , Q b have the same discriminant ∆ which is to be chosen as root of disc(Q a ) disc(Q b ), we have: 1 bir(Q a , Q b ) = disc(Q a + Q b ) 4∆ As for matrices, it is equivalent to say that Q a and Q b have non-degenerate cross- ratio bir(Q a , Q b ) / ∈ {0, ∞} or non-degenerate Poisson bracket disc{Q a , Q b } = 0.
The variables live in the cone. Conversely one may try to recover some notions defined for binary quadratic form in terms of the corresponding matrices. Let us explain the initial motivation leading to lemma 1.33, which was to recover the values that a form Q takes on V in terms of the geometry of q with respect to X. Consider a binary quadratic form Q as above, and its corresponding q ∈ sl 2 (R)

such that Q(v) = det(v, qv). Then Lemma 1.33 expresses Q(v) only in terms of the geometry of sl 2 (R) as Q(v) = q, ψ(v) .
Hence the elements of the cone v ∈ X play the role of the vector of variables (x, y) whereas the other elements q ∈ sl(V) \ X are the non degenerate binary quadratic forms. The value of q at v is given by the scalar product, which may be interpreted in terms of the "distance" from v ∈ X to q ⊥ , or the geometry of the pencil of degenerate conics generated by q ⊥ taken twice and X.

Question 1.70. One may hope to understand the geometry of the Gauss composition written as Q 1 (p 1 ) × Q 2 (p 2 ) = q 1 , p 1 q 2 , p 2 using an analog in Minkowski space of an appropriate "classical geometric theorem" on scalar products, to express this as q 3 , p 3 for some

Q 3 = G(Q 1 , Q 2 ) and a bilinear expression p 3 = F Q 1 ,Q 2 (p 1 , p 2 ).
Question 1.71. How to interpret the associative product of sl 2 (K) in terms of Q(K)?

PSL 2 (K)-equivalence of binary quadratic forms

Let Q a , Q b ∈ Q(K)
and denote a, b ∈ sl 2 (K) the corresponding matrices. We call them K-equivalent when there exists

C ∈ PSL 2 (K) such that Q a • C -1 = Q b . This amounts to saying that CaC -1 = b. Remark 1.72. If K is a subfield of K ′ then K-equivalence implies K ′ -equivalence. Over a field K such that K × /(K × ) 2 = 1, two non-degenerate forms Q a , Q b are K- equivalent if and only if they have the same discriminant. Corollary 1.73. Consider Q a , Q b ∈ Q(K) with discriminant 4δ = 0 and cross-ratio 4χ / ∈ {0, ∞}. The C ∈ PSL 2 (K) such that Q a = Q b • C are parametrized by: (x, y) ∈ K × K : x 2 -δy 2 = χ (Pell-Fermat)
according to the formula:

C(x, y) = x(1 + ba -1 ) + y(a + b)
where as usual:

a = 1 2 -ma -2ra 2la ma b = 1 2 -m b -2r b 2l b m b .
Example 1.74. The purely periodic irrational α = 44 + √ 2022 = 88, 1, 28, 1 is the first root of the primitive indefinite binary quadratic form Q a = x 2 -88xy -86y 2 discriminant 4 × δ with δ = 2022. It corresponds to the matrix a = ( 44 86 1 -44 ). Performing a cyclic permutation of its period yields another purely periodic irrational β = 28, 1, 88, 1

satisfying β = C 1 • α for C 1 = R 28 L =∈ PSL 2 (Z), which is the first root of Q b = 3x 2 -84xy -86y 2 . It corresponds to the matrix b = ( 42 86
3 -44 ). Their cross-ratio is 4χ = 2022/2021. Let us test the theorem in both directions. In one direction, setting x 1 = Tr(C 1 )χ and solving x 2 1 -δy 2 1 = χ in y 1 we recover:

C 1 = 30 × 1 4 × 2022 2021 × (1 + ba -1 ) + 673 2×2021 × (a + b) = ( 29 28 1 1 ).
Notice that (x 1 , y 1 ) become integral after multiplying by the denominator of χ.

In the other direction, notice that x 2 -2022y 2 takes the values -2022, -2021, 4 on the pairs (0, 1), (1, 1), (2, 0). We deduce a solution x 2 2 -2022 y 2 2 = -2022 -2021×4 by multiplying or dividing the corresponding numbers x + y √ 2022. This yields a matrix C 2 = 1 0 1/43 1 and we may indeed check that C 2 a = bC 2 , in other terms β = 43α α+43 .

Characterisation of Q-equivalence

Now consider the set of PSL 2 (Z)-equivalence classes of primitive integral binary quadratic forms with non-square discriminant. Every field K yields a partition of this set into K-classes, and we may observe how this partition varies with K. This is true in particular for extensions of Q. When K = R we are considering binary quadratic forms with a same discriminant ∆, that is the class group Cl(∆).

Until the end of this paragraph we fix ∆ a non-square discriminant, and let us investigate the partition of Cl(∆) given by Q-equivalence. We abuse notations and identify classes in Cl(∆) with their representatives. Let Q a , Q b represent variable classes in Cl(∆) and Q 0 represent the principal class, that is the neutral element.

To characterise Q-equivalence we look for obstructions to solving the Pell-Fermat equation locally at the various places of Q, and if there are no obstructions then the local-to-global principle will ensure a solution exists over Q. We describe an explicit method to compute some examples.

Method: local-to-global principle.

Denote P = {-1, 2} ∪ {3, 5, 7, . . . } the set of rational primes, and Q p the p-adic completion of Q. The prime -1 refers (following Conway [START_REF] Conway | The sensual (quadratic) form[END_REF]) to the place at which the completion of Q is the Archimedian field

Q -1 = R.
In what follows we rely on several properties of the Hilbert symbol, which we recall from [Ser70, Chapter III] when needed.

For δ, χ ∈ Q × p , the Hilbert symbol (δ, χ) p equals 1 or -1 according to whether the homogenised Pell-Fermat equation x 2 -δy 2 = χz 2 admits a solution in Q p P 2 or not. Thus (δ, χ) p = 1 if and only if χ is the norm of an element in Q p ( √ δ). Let us define the set of prime obstructions to solving the Pell-Fermat equation

(2x) 2 -∆y 2 = bir(Q a , Q b ) by P(Q a , Q b ) = {p ∈ P | (∆, bir(Q a , Q b )) p = -1}. Theorem 1.75. Q a , Q b ∈ Cl(∆) are Q-equivalent if and only if P(Q a , Q b ) = ∅.
Proof. Apply the Hasse-Minkowski theorem [Ser70, Chapter IV, Theorème 8] to the ternary quadratic form (2x) 2 -∆y 2 -bir(Q a , Q b )z 2 : it represents 0 over QP 2 if and only if it represents 0 over Q p P 2 for all p ∈ P.

The following Lemma enable us to turn the previous proposition into an explicit method for computing Q-classes.

Lemma 1.76. If p ∈ P \ {2} divides δ and χ to even powers, then (δ, χ) p = 0.

In other terms P(Q a , Q b ) \ {2} is contained in the set of primes appearing with odd valuations in the factorisation of ∆ or bir(Q a , Q b ). In particular it is finite.

Proof. A pedestrian method is to reduce the equation mod p, argue that there exists a solution by a counting procedure, and lift it to Q p using Hensel's lemma.

Alternatively, one may use the explicit formulae [Ser70, Theorem III.1] of the Hilbert symbol at p in terms of the Legendre symbols of δ, χ ∈ Q p at -1 and p.

Remark 1.77. The set

P(Q a , Q b ) \ {2} determines P(Q a , Q b ).
Proof. Hilbert proved a global relation among the local symbols: p∈P (δ, χ) p = 1, which is a reformulation of the quadratic reciprocity law. Hence if we know the symbols at all primes except one of them, then we know the last one.

Our final Proposition implies that Q a and Q b are Q-equivalent if and only if

P(Q 0 , Q a ) = P(Q 0 , Q b ). This simplifies the determination of all sets P(Q a , Q b ) to those involving Q 0 . Proposition 1.78. For Q a , Q b , Q c ∈ Cl(∆) the set P(Q a , Q b ) is equal to the sym- metric difference of P(Q c , Q a ) and P(Q b , Q c ).
Proof. The Hilbert symbol of Q p defines, by [Ser70, Theorem III.2], a non-degenerate symmetric bilinear form on the F 2 -vector space

(Q × p )/(Q × p ) 2 . The Lemma can thus be reformulated as (∆, χ a,b,c ) p = 1 where χ a,b,c = bir(Q c , Q a ) bir(Q a , Q b ) bir(Q b , Q c ).
We must therefore compare χ a,b,c ∈ Q × with the subgroup generated by the norms of elements in Q( √ ∆) × . Using the explicit formula for the cross-ratio we find that:

bir(Q a , Q b ) = -∆/(l a l b ) Norm ∆ (α ′ -β) hence χ a,b,c = -∆ 3 /(l a l b l c ) 2 Norm ∆ ((γ ′ -α)(α ′ -β)(β ′ -γ))
Consequently (∆, χ a,b,c ) = (∆, -∆) p = 1 as desired.

Examples for fundamental ∆ > 0.

In the following examples, we fix a positive non-square discriminant ∆ and describe the partition of Cl(∆) into Q-classes.

For this we choose a set of reduced representatives Q j = l j x 2 + m j xy + r j y 2 so that the roots α j = (-m j + √ ∆)/(2r j ) have purely periodic continued fraction expansions and for each j we compute the set P ′ (Q j , Q 0 ). The indices j are meant to reflect the structure of the class group, in particular 0 refers to the neutral element.

Cl(∆) = Z/4 for ∆ = 4 × 2022. Since δ = 2022 = 2 × 3 × 337 is square-free and ≡ 2 mod 4 the ring of integers of the field Q( √ 2022) has discriminant ∆ = 4×δ. The fundamental solution to the Pell-Fermat equation t 2 -δu 2 = 1 is (t, u) = (1349, 30).
The ideal class group Cl(∆) is isomorphic to Z/4. Its partition into genera is {α 0 , α 2 }, {α 1 , α 3 } and this coincides with its partition into Q-classes as shown by the following table.

Q j = (l j , m j , r j ) Period of α j P(Q 0 , Q j ) (1, -88, -86) [88, 1, 28, 1] ∅ (66, -72, -11) [1, 4, 2, 2, 3, 1, 2, 7] {2, 337} (43, -84, -6) [2, 44, 2, 14] ∅ (34, -60, -33) [2, 4, 1, 7, 2, 1, 3, 2] {2, 337} Partition of Cl(8088) = Z/4 into Q-classes: {0, 2}, {1, 3}. Cl(∆) = Z/5 for ∆ = 4 × 439. Since δ = 439 is square-free and ≡ 3 mod 4 the ring of integers of the field Q( √ 439) has discriminant ∆ = 4 × δ. The fundamental solution to the Pell-Fermat equation t 2 -δu 2 = 1 is (t, u) = (440, 21).
The ideal class group Cl(∆) is isomorphic to Z/5. Its partition into genera is trivial: there is only one genus since all elements of Z/5 are squares. The partition into Q-classes is {α 0 , α 2 , α 4 }, {α 1 , α 3 } as shown by the following table.

Q j = (l j , m j , r j ) Period of α j P(Q 0 , Q j ) (2, -38, -39) [19, 1, 40, 1] ∅ (15, -14, -26) [1, 1, 6, 3, 13, 1] {2, 439} (18, -10, -23) [1, 2, 3, 1, 3, 1, 7, 1] ∅ (30, -34, -5) [1, 3, 1, 3, 2, 1, 1, 7] {2, 439} (13, -40, -3) [3, 6, 1, 1, 1, 13] ∅ Partition of Cl(1756) = Z/5 into Q-classes: {0, 2}, {1, 3, 5}. Cl(∆) = Z/2 × Z/3 for ∆ = 4 × 427. Since δ = 7 × 61 is square-free and ≡ 3 mod 4 the ring of integers of the field Q( √ 427) has discriminant ∆ = 4×δ. The fundamental solution to the Pell-Fermat equation t 2 -δu 2 = 1 is (t, u) = (62, 3).
The ideal class group Cl(∆) is isomorphic to Z/4. Its partition into genera is {α 0 , α 2 }, {α 1 , α 3 } and this coincides with its partition into Q-classes as shown by the following table.

Q j = (l j , m j , r j ) Period of α j P(Q 0 , Q j ) (14, -14, -27) [1, 1, 40, 1] ∅ (23, -34, -6) [1, 1, 1, 1, 3, 6] {2, 61} (9, -32, -19) [4, 13, 1, 1] ∅ (7, -28, -33) [4, 1, 19, 1] {2, 61} (22, -6, -19) [1, 13, 4, 1] ∅ (11, -38, -6) [3, 1, 1, 1, 1, 6] {2, 61}
Partition of Cl(1708) = Z/6 into Q-classes: {0, 2, 4}, {1, 3, 5}.

Cl(∆) = Z/7 for ∆ = 4 × 1087. Since δ = 1087 is square-free and ≡ 1 mod 4 the ring of integers of the field

Q( √ 1087) has discriminant ∆ = 4 × δ. The fundamental solution to the Pell-Fermat equation t 2 -δu 2 = 1 is (t, u) = (1088, 33).
The ideal class group Cl(∆) is isomorphic to Z/7. Its partition into genera is trivial: there is only one genus since all elements in Z/7 are squares. Its partition into Q-classes is {α 0 , α 2 , α 4 , α 6 }, {α 1 , α 3 , α 5 } as shown by the following table.

Cl(∆) = Z/2 × Z/2 for ∆ = 4 × 195. Since δ = 195 = 3 × 5 × 13 is square-free and ≡ 3 mod 4 the ring of integers of the field Q( √ 195) has discriminant ∆ = 4 × δ. The fundamental solution to the Pell-Fermat equation t 2 -δu 2 = 1 is (t, u) = (14, 1). Q j = (l j , m j , r j ) Period of α j P(Q 0 , Q j ) (2, -62, -63) [31, 1, 64, 1] ∅ (23, -22, -42) [1, 1, 10, 3, 21, 1] {2, 1087} (18, -46, -31) [3, 9, 7, 4, 1, 1] ∅ (11, -50, -42) [5, 3, 1, 2, 2, 1, 1, 1, 2, 1] {2, 1087} (34, -42, -19) [1, 1, 1, 2, 2, 1, 3, 5, 2, 1] ∅ (7, -64, -9) [9, 3, 1, 1, 4, 7] {2, 1087} (41, -58, -6) [1, 1, 1, 21, 1, 10] ∅ Partition of Cl(4348) = Z/7 into Q-classes: {0, 2, 4, 6}, {1, 3, 5}.
The ideal class group Cl(∆) is isomorphic to Z/2 × Z/2. Its partition into genera corresponds to the cosets for the subgroup of squares which is trivial: each genus is represented by one class. This coincides with the partition into Q-classes as shown by the following table.

(1, -26, -26) (19, -18, -6)

[26, 1] [1, 4, 1, 3] ∅ {2, 13} (17, -10, -10) (2, -26, -13) [1, 8, 1, 1] [13, 2] {3, 5} {2, 3, 5, 13} Partition of Cl(780) = Z/2 × Z/2 into Q-classes: {00}, {01}, {10}, {11}.
Cl(∆) = Z/2 × Z/4 for ∆ = 4 × 399. Since δ = 399 = 3 × 7 × 19 is square-free and ≡ 3 mod 4 the ring of integers of the field Q( √ 399) has discriminant ∆ = 4 × δ. The fundamental solution to the Pell-Fermat equation t 2 -δu 2 = 1 is (t, u) = (20, 1).

The ideal class group Cl(∆) is isomorphic to Z/2 × Z/4. Its partition into genera corresponds to the cosets for the subgroup of squares {α 00 , α 02 }. This coincides with the partition into Q-classes as shown by the following table.

Remark 1.79 (Observations). Genus equivalence does not imply Q-equivalence: there exist forms of the same genus which are not Q-equivalent.

The Q-equivalence does not control the period lengths: there exist Q-equivalent forms whose roots have euclidean periods of different length.

Inverse elements in the class group can remain in different Q-classes.

(1, -38, -38) (10, -34, -11) (25, -14, -14) (10, -26, -23)

[38, 1] [3, 1, 2, 3] [1, 12, 1, 1] [3, 3, 2, 1] ∅ {7, 19} ∅ {7, 19} (2, -38, -19) (5, -34, -22) (29, -30, -6) (5, -36, -15) [19, 2] [7, 2, 2, 1] [1, 4, 1, 5] [7, 1, 1, 2] {3, 19} {3, 7} {3, 19} {3, 7} Partition of Cl(1596) = Z/2 × Z/4 in Q-classes: {00, 02}, {01, 03}, {10, 12}, {11, 13}.
Question 1.80 (Conjecture). The Q-equivalence implies genus-equivalence. More precisely, the Q-equivalence classes seem to be described as follows. Decompose the class group into a product of primary cyclic groups:

Cl(∆) = p∈P j∈N (Z/p e ) np,e
and denote Q p,e,k ∈ Z/p e where 1 ≤ k ≤ n p,e the coordinates of Q. Then the Q p,e,k mod 2 provide a complete set of invariants for the Q-classes.

Hyperbolic geometry of PSL 2 (R)

In this section, we apply the previous results to the the field R of real numbers, to expand them in this geometrical setting. We provide a few alternative proofs by recasting them in the language of hyperbolic geometry.

Almost everything can be adapted to real closed fields (ordered fields in which all positive elements are squares, like the set of real numbers constructible by ruler and compass) and even to formally real fields (fields which admit an order, which is equivalent to saying that -1 is not a sum of squares).

Consider a two-dimensional real vector space endowed with a basis denoted R 2 and write gl 2 (R) its algebra of endomorphisms.

Topology of the quadratic space

Quadratic form. On gl 2 (R) the determinant form det has signature (2, 2), in particular the isotropic vectors form a cone over a torus, and the set of units SL 2 (R) is an affine quadric which is homeomorphic to a solid torus.

The restriction of the determinant to sl 2 (R) has signature (1, 2), the isotropic vectors form a cone X over the circle, and the set of units, that is the intersection

H = {det = 1} ∩ sl 2 (R), consists in a double-sheeted hyperboloid.
The upper and lower connected components of H refer to the subsets of elements whose scalar product with S are respectively positive and negative. We denote

H ′ = {det = -1} ∩ sl 2 (R), it is a single-sheeted hyperboloid.
Adjoint action. By Proposition 1.54, the adjoint action provides an isomorphism

PGL 2 (R) → SO(sl 2 (R), det)
to the group of orientation preserving isometries for the determinant form over sl 2 (R), which is isomorphic to SO(1, 2). As we shall see, the subgroup PSL 2 (R) maps to the connected component SO + (1, 2) of the identity which preserves the connected components of X \ {0} or of the double-sheeted hyperboloid H.

The adjoint actions commute with the projectivization map sl 2 (R) → P(sl 2 (R)). This represents PGL 2 (R) ⊂ PGL 3 (R) as the stabiliser of the non-degenerate conic P(X) which is homeomorphic to a circle, the subgroup PSL 2 (R) corresponds to the elements preserving each orientation of the circle. The interior of the conic is P(H), homeomorphic to a disc, and inherits the orientation from sl 2 (R) restricted to the upper component of the double-sheeted hyperboloid.

Group of units. Denote SL ±

2 (R) the preimage of {±1} under the morphism det : GL 2 (R) → R * . This gives the short exact sequence SL 2 (R) → SL ± 2 (R) → {±1}, which is split: the element -1 in the cokernel is represented by any matrix of determinant -1, like J.

The central extension R * 1 → GL 2 (R) → PGL 2 (R) restricts to give a double cover {±1} → SL ± 2 (R) → PGL 2 (R).
Symmetries. The elements of PGL 2 (R) acting as symmetries on sl 2 (R) correspond to those in

SL ± 2 (R) ∩ sl 2 (R) = H ∪ H ′ .
Hence there are two types of symmetries depending on the sign of their determinant, or on the relative position of their axis with respect to X. Accordingly, they preserve or exchange the components of X\{0}. For instance the element S ∈ H preserves them, whereas J ∈ H ′ exchanges them.

The action on P(H) is obtained by composing the action on H with H → P(H). If det(a) = 1, then a ∈ H projects to a point in P(H) through which it acts by symmetry, preserving the orientation. If det(a) = -1, then P(a ⊥ ) intersects P(H) along a line, across which a acts by reflection, reversing the orientation.

Exponential mapping.

Let us describe the adjoint actions of the one parameter subgroups of SL 2 (R) generated by S, K, S + J ∈ sl 2 (R).

As S 2 = -1, we have A := exp(θS) = x + yS with x = cos(θ) and y = sin(θ). We have ASA -1 = S and AJA -1 = (x 2 -y 2 )J + 2xyK = cos(2θ)J + sin(2θ)K, AKA -1 = (x 2 -y 2 )K -2xyJ = cos(2θ)K -sin(2θ)J, so A acts by an elliptic rotation of angle 2θ on the plane S ⊥ oriented by (J, K).

As K 2 = 1 we have A := exp(λK) = x + yK with x = cosh(λ) and y = sinh(λ). We have AKA -1 = K and ASA -1 = (x 2 + y 2 )S + 2xyJ = cosh(2λ)S + sinh(2λ)J, AJA -1 = (x 2 + y 2 )J + 2xyS = cosh(2λ)J + sinh(2λ)S, so A acts like a hyperbolic rotation of angle 2λ on K ⊥ with stable and unstable eigenvectors S + J and S -J.

Let L = 1 + 1 2 (S + J). As (L -1) 2 = 0 we have exp (t(L -1)) = 1 + t(L -1) = L t . We leave it as an exercise to contemplate the adjoint action of L t on 1 2 (S ± K). Remark 1.81. For a ∈ sl 2 (R) and t ∈ R, the adjoint action of the exponential exp(ta) on sl 2 (R) expands like:

exp(ta) • exp(-ta) = 1 + t{a, •} + o(t) thus {a, b} = d dt [exp(ta)b exp(-ta)] t=0
as expected from the classical relationship between a Lie group and its Lie algebra. This enables one to guess the orientation of the rotation under the adjoint action of exp(θS) from the relations {S, J} = K and {S, K} = -J.

Similarly, the expanding an contracting directions under the adjoint action of exp(λK) follow from the relations {K, S} = J and {K, J} = S.

Action on the symmetric space

Proposition 1.82. The adjoint action of PGL 2 (R) is free and transitive on the unit tangent bundle of H. The isomorphism PGL 2 (R) → SO(1, 2) sends the subgroup PSL 2 (R) to the connected component of the identity SO + (1, 2) preserving each component of H.

The restriction of det to the tangent planes of H defines a metric with constant curvature -1 for which PGL 2 (R) is the group of orientation preserving isometries. This is the linear or hyperboloid model for (a double copy of) the hyperbolic plane.

The disc P(H) inherits the metric pushforewarded by the projection map: this is the projective model for the hyperbolic plane.

Proof. We first prove that PGL 2 (R) acts transitively on H. As JSJ -1 = -S, the action of J exchanges both components of H, so we may restrict to the action of PSL 2 (R) on a single component. Since two element a, b ∈ H belonging to a same component have a, b ≥ 1, the Lemma 1.57 provides C conjugating a to b.

The stabiliser of S is its centraliser, that is the subgroup PSO(2) ⊂ PSL 2 (R), and it acts freely transitively on the unit vectors of T S H = Span(J, K). This shows that the action is free and transitive on the unit tangent bundle. Moreover PGL 2 (R) preserves the determinant, hence the metric induced on H, of which it is thus the group of all orientation preserving isometries.

We are left to compute the curvature of H at S. The tangent space T S H is spanned by J, K on which the first fundamental form has determinant -1. If we parametrize the neighbourhood of S by x = (1 + y 2 + z 2 ) 1/2 we find that the second fundamental form has determinant 1. The curvature is by definition the ratio of these determinants which is therefore -1.

Proposition 1.83. The group PSL 2 (R) acts transitively on the single-sheeted hyperboloid H ′ . The stabiliser of K is the subgroup of diagonal matrices.

The restriction of det to the tangent planes of H defines a metric with constant curvature +1 for which PGL 2 (R) is the group of orientation preserving isometries.

Proof. It is clear from the description of the one parameter subgroups generated by S and K that every element in H ′ is the image of J by an element of the form exp(θS) exp(λK). Note that J acts on H ′ by orientation preserving isometries.

The computation of the curvature is similar. The tangent space T J H ′ is spanned by S, K on which the first fundamental form has determinant +1. If we parametrize the neighbourhood of S by y = (x 2 -z 2 -1) 1/2 we find that the second fundamental form has determinant +1. The ratio yields the curvature. 

Discriminant and projection

The matrix A ∈ SL 2 (R) is called elliptic, parabolic or hyperbolic according to the sign of its discriminant. Recall that disc(pr A) = -4 det(pr A) whose sign can be read off the relative position of pr A with respect to the isotropic cone X = sl 2 (R)∩{det = 0}, or the intersection of (pr A) ⊥ with X, as in Figure 1.12. We say that A ∈ SL 2 (R) is semi-simple when disc(A) = 0, thus when A is not parabolic.

Remark 1.84. The projection pr : SL 2 (R) → sl 2 (R) is not surjective. Its image is the region {det ≤ 1} outside the hyperboloid H. It is a regular degree two covering above {det < 1}, and presents fold singularities above H. The parabolic elements map to the cone, the hyperbolic elements cover the outside of the cone, and the elliptic elements map to the region between the cone and the hyperboloid.

Notice that for A ∈ PSL 2 (R), its discriminant makes sense independently of its lift in SL 2 (R), and so does the point sign(tr A)(pr A) ∈ sl 2 (R) which changes into its opposite under inversion of A. For the special case where A is involutive, we have two possible lifts with tr A = 0 which coincide with their projections ±A = ± pr A ∈ H.

The discriminant defines an algebraic stratification of the space sl 2 (R) consisting in its regular levels, along with X \ {0} and {0}. We may refine this into a semi-algebraic stratification using the sign of the scalar product with S, which distinguishes the connected components of a double-sheeted hyperboloid and of X \ {0}.

Corollary 1.85 (Conjugacy classes in PSL

2 (R)). Let A ∈ PSL 2 (

R). If A is an involution it is conjugate to ±S. Otherwize its conjugacy class corresponds to the semi-algebraic stratum containing sign(tr A) pr(A).

Proof. Suppose A is non trivial (for which the statement is obvious), and not an involution (for which the statement is contained in Proposition 1.82).

Recall from Proposition 1.52 that the conjugacy class of A ∈ PSL 2 (R) \ {1} inside PGL 2 (R) is characterised by its discriminant. The map A → sign(tr A) pr A preserves the discriminant and is equivariant under conjugacy. Consequently, the statement is a corollary of the descriptions of the orbits under the adjoint action of PSL 2 (R) on sl 2 (R), given in 1.82 for disc(A) < 0, and in 1.83 for disc(A) > 0.

For disc(A) = 0, the action of PSL 2 (R) preserves the components of X \ {0}, and the one parameter groups generated by S, K show that it is transitive on each.

Explicitly, if A ∈ PSL 2 (R) is neither trivial nor involutive, then one may lift it to SL 2 (R) and decompose it as x + ya with x, y > 0 and a ∈ sl 2 (R) such that det(a) = -1 or det(a) = 1. Thus sign(tr A)(pr A) = |det(pr A)|a.

Then there exists P ∈ PSL 2 (R) whose adjoint action sends a to K or ±S, and thus conjugates A to exp(λK) for λ ∈ R or to exp(±θS) for θ ∈]0, π[.

Orientations

We orient sl 2 (R) according to the sign of the volume form defined in Corollary 1.20. Thus [K, S, J] = {K, J}, S = det(S) = 1 implies that (S, J, K) is a positive basis.

Consider a semi-simple A ∈ PSL 2 (R). We wish to explicit the orientations involved in the action of A on sl 2 (R) in terms of the decomposition R • (pr A) ⊕ (pr A) ⊥ .

We know that it restricts to the identity on R • (pr A) and its action on (pr A) ⊥ is equivalent to the tautological action of A 2 on R 2 .

The following proposition says that for disc(A) > 0, the orientation of the rotation is positive on H ∩ (pr A) ⊥ when the plane is seen from the point sign(tr A)(pr A). The plane a ⊥ intersects the cone in two lines L ± which are the eigenspaces for the action of A, denote L + and L -the expanding and contracting directions respectively. If v ± ∈ L ± are eigenvectors in the same half-cone, the proposition amounts to showing that

Proposition 1.86. Let A ∈ PSL 2 (R) have disc A > 0. Then for all v ∈ (pr A) ⊥ ∩ H the triple (v, AvA -1 , sign(tr A) pr A) forms a positive basis of sl 2 (R). Proof. Lift A ∈ SL 2 (R)
(v -, v + , a) is a positive basis for sl 2 (R), that is [v + , a, v -] = {v + , v -}, a > 0.
From Corollary 1.85, we have some P ∈ PSL 2 (R) diagonalising A to B = x + yK. Since the adjoint action of PSL 2 (R) preserves both the orientation of sl 2 (R) and the components of H, it conjugates the action of A on a ⊥ to that of B on b ⊥ , preserving the orientations on a ⊥ and b ⊥ . Hence the proposition is equivariant under conjugacy by P ∈ PSL 2 (R) and we are reduced to showing it for B.

For b = K, the point S ∈ b ⊥ ∩ H is conjugated by B = x + yK to the element (x 2 + y 2 )S + (2xy)J, which is between S and J since xy > 0. More precisely, B = x + yK has eigenvectors v ± = S ± J for the eigenvalues x ± y > 0 and the basis (v -, v + , K) is positive indeed.

Proposition 1.87. One may similarly prove that an elliptic element A which is not an involution acts like a rotation on (pr A) ⊥ turning in the trigonometric direction: (v, AvA -1 , sign(tr A) pr A) is a positive basis for all non zero v ∈ (pr A) ⊥ .

Finally if A = pr A is an involution, then the infinitesimal action v → {A, v} preserves A ⊥ and acts in like a rotation of order four in the trigonometric direction: for all non zero v ∈ A ⊥ , the triple (v, {A, v}, A) is a positive basis. 

The sign of the cosine

A hyperbolic A ∈ PSL 2 (R) acts by translation on the hyperbolic plane P(H) along an axis which we orient from the repulsive to the attractive fixed point of A on the boundary P(X). We may define the normalised projection a ∈ H ′ of A as: Then θ is determined by sign(θ) given by the orientation of the basis (a, b, {a, b}), and cos(θ) which we denote cos(A, B). Those are given by:

a =
cos(A, B) = -a, b
and sign cos(A, B) = sign disc (AB) -disc AB -1 .

Proof. Lemma 1.57 provides a square root of ba -1 in SL 2 (R) ∩ Span(1, {a, b}) which conjugates a to b while fixing {a, b}. The restriction of this adjoint action to {a, b} ⊥ must be a rotation of angle θ, but by Corollary 1.55 it is conjugate to the action of its square ba on R 2 : hence the half-trace cos θ of that rotation must equal tr ba = -a, b . The first part of Proposition 1.87 applied to the square root of ba provided in Lemma 1.57 says that (a, b, {a, b}) forms a positive basis if and only if 0 < θ < π.

Corollary 1.15 implies that sign(-a, b ) = sign (disc AB -disc AB -1 ).

Intuitive proofs. Let us provide some other geometric intuitions supporting the proof. Conjugation by ba is the composition of two symmetries across the axes a ⊥ and b ⊥ which meet in a point a ⊥ ∩ b ⊥ , yielding a rotation of angle 2θ around that point. This conjugation is quadratic in ba so one must have tr ba = cos θ.

Here is another geometric explanation for why sign(cos θ) = sign(-a, b ), relying on Figure 1 Then according to whether a ⊥ ∩ b ⊥ lies inside or outside the conic and denoting θ or λ the angle or distance between their oriented axes respectively, we have:

1 bir(A, B) = cos(θ/2) 2 = 1 + cos(θ) 2 1 bir(A, B) = cosh(λ/2) 2 = 1 + cosh(λ) 2 
Proof. Since PGL 2 (R) acts on RP 1 triple-transitively, and preserving the cross-ratio of quadruples of points, we are reduced to expressing the angle θ or distance d between the geodesics (0z) and (∞1) in terms of bir(z, 0, 1, ∞) = z.

Working in the half plane model for hyperbolic geometry, we may compute cos(θ) from the conformal property and trigonometric geometry, and cosh(d) from a trigonometric integral involving the explicit metric. We find -1 + 2/z in both cases.

Scholium 1.92. We provided several proofs for Proposition 1.89 because it will play a key role in what follows, especially to relate the hyperbolic geometry and combinatorics of translation axes for pairs of matrices A, B ∈ PSL 2 (Z). In particular, it must be compared with Proposition 2.44.

We could have derived it independently from Propositions 1.91 and 1.46, implying that for hyperbolic A, B ∈ PSL 2 (R) with normalised projections a, b ∈ H ′ we have:

1 bir(A, B) = 1 -a, b 2 .

The crossing function

Definition 1.93. Let cord : S 1 × S 1 × S 1 → {-1, 0, 1} be the cyclic order function of three points in an oriented circle S 1 . Define cross :

(S 1 × S 1 \ ∆) 2 → ±{0, 1/2, 1} by cross(u, v, x, y) = 1 2 (cord(u, x, v) -cord(u, y, v))
which takes the values ±1 when the chords uv and xy are linked on the boundary, ±1/2 if they share one extremity, and 0 otherwize.

If the circle is realised as the boundary of the hyperbolic plane S 1 = ∂H, then cross(u, v, x, y) is the oriented intersection number of the geodesics uv and xy, which is ±1 when they intersect inside H, ±1/2 when they meet on the boundary ∂H at one point, and 0 otherwize.

We denote |cross|(u, v, x, y) ∈ {0, 1/2, 1} the absolute value of cross(u, v, x, y). When A, B ∈ PSL 2 (R) are hyperbolic with fixed points (α ′ , α) and (β ′ , β), we also write cross(A, B) = cross(α ′ , α, β ′ , β) and |cross|(A, B) = |cross|(α ′ , α, β ′ , β).

Following Iverson [START_REF] Knuth | Two notes on notation[END_REF], denote [ [P ]] ∈ {0, 1} the truth value of a property P , it satisfies the usual rules of boolean algebra. 

|cross|(A, B) = [[bir(α ′ , α, β ′ , β) > 1]] = 1 + sign det{a, b} 2 = 1 -sign(t -t -1 ) 2 
Proof. The first three quantities equal 0 or 1 according to whether (α ′ , α) and (β ′ , β) cross inside or outside the conic. The last equality follows from Corollary 1.15.

Scholium 1.95. For hyperbolic elements A, B ∈ PSL 2 (R) with normalised projections a, b ∈ sl 2 (R), we shall make use of the function:

[[bir(A, B) > 1]] bir(A, B) = 1 + sign det{a, b} 2 × 1 -a, b 2
which equals 0 unless the oriented axes of A and B intersect in the hyperbolic plane.

If the oriented axes a ⊥ and b ⊥ intersect at an angle θ approaching to 0 mod π, meaning that a ± b → 0, then this quantity approaches:

|cross|(A, B) × sign cos(A, B) = 1 + sign det{a, b} 2 × 1 -sign a, b 2 sign cos cross +1 0 -1 +1 B A B A B A -1 B A B A B A
Figure 1.15: Drawing configurations: cross and sign cos.

Composing symmetries

Let us compose the symmetries of PGL 2 (R) acting on P(H) to express distances and angles between fixed points and lines of isometries in terms of scalar products. Before describing the geometry, we recall the algebra. We saw that symmetries lift to (pairs of opposite) elements in

H ∪ H ′ = SL ± 2 (R) ∩ sl 2 (R).
In particular a, b ∈ H ∪ H ′ have product ab = -a, b + {a, b}, which belongs to SL ± 2 (R). We shall assume det(a) = det(b) and a = ±b, so that ab ∈ SL 2 (R) fixes only P({a, b}) = a ⊥ ∩ b ⊥ and is either elliptic, parabolic or hyperbolic depending on sign disc{a, b}.

Composing symmetries in H. The adjoint action of a ∈ H is by hyperbolic reflection through a, also an order two rotation around a. Figure 1.17 represents such an action on the conic P(X). The elements a, b ∈ H compose to give a hyperbolic element, acting by translation along the axis passing through them, that is the line {a, b} ⊥ . Figure 1.17 represents such a composition acting on the conic P(X). The displacement length of ab is twice the distance d(a, b) separating them:

a, b = -tr(ab) = ± cosh d(a, b)
the last sign being +1 if a and b belong to the same connected component of H and -1 otherwize. Note in passing that Lemma 1.57 provides an element sending a to b, which can be characterised as the unique square root of ba in PSL 2 (R). If disc{a, b} < 0, then ab acts by rotation around their intersection a ⊥ ∩ b ⊥ . The angle of rotation is twice the angle θ at which a ⊥ and b ⊥ meet, and given by:

a, b = -tr(ab) = ± cos(θ)
where again the sign is -1 if (a, b) intersects both components of H and +1 otherwize.

We leave the case disc{a, b} = 0 as an exercise (see Figure 1.18).

Decomposing products of translations

Let us now decompose the product of two hyperbolic translations A, B ∈ PSL 2 (R) in products of symmetries. Denote c the intersection of their axes (pr A) ⊥ ∩ (pr B) ⊥ in P(sl 2 (R)), and suppose it does not lie on the conic P(X). Remark 1.96. The aforementioned "parallelogram" refers to the notion which makes sense in a uniquely geodesic metric space: a quadrilateral whose diagonals intersect in their midpoint. In the hyperbolic metric space P(H), the sides of such parallelograms may well intersect inside the conic P(X), once extended in both directions. 

Axes

Geometric interpretations of the main theorem

Consider primitive integral binary quadratic forms Q a , Q b with non-square discriminant ∆.

If ∆ > 0 then they correspond to pairs of complex conjugate points in C or equivalently (by ordering the roots up to simultaneous inversion) to points α, β in the upper half plane HP. The PSL 2 (Z)-classes correspond to points [α], [β] modular orbifold M = PSL 2 (Z)\HP often called singular moduli in the study of elliptic curves.

The geodesic arc from α to β in HP has length λ given in terms of the cross-ratio bir(α ′ , α, β ′ , β) by the formula:

cosh λ 2 2 = 1 + cosh(λ) 2 = 1 bir(Q a , Q b )
The Corollary 1.73 implies the following. Consider the oriented hyperbolic axes (α ′ , α) and (β ′ , β) in HP. If they intersect, then their angle θ is given in terms of the cross-ratio bir(α ′ , α, β ′ , β) by the formula:

cos θ 2 2 = 1 + cos(θ) 2 = 1 bir(Q a , Q b )
If they do not intersect, then they have a unique common perpendicular geodesic arc, which may receive compatible co-orientations from each axis or not. When it is the case, its length λ is given in terms of the cross-ratio bir(α ′ , α, β ′ , β) by the formula:

cosh λ 2 2 = 1 + cosh(λ) 2 = 1 bir(Q a , Q b )
The Corollary 1.73 implies the following.

Corollary 1.98. Two modular geodesics are Q-equivalent if and only if we have one of the following equivalent conditions:

θ There exists one intersection point with angle θ ∈ ]0, π[ such that:

cos θ 2 2 = 1 (2x) 2 -∆y 2 for x, y ∈ Q
in which case all intersection points have this property.

λ There exists one co-oriented ortho-geodesic of length λ such that:

cosh λ 2 2 = 1 (2x) 2 -∆y 2 for x, y ∈ Q
in which case all co-oriented ortho-geodesics have this property.

In other terms, the geometric quantities on the left hand sides belong to the group of norms of the quadratic extension Q( √ ∆)/Q (which is stable by inversion). 

Chapter 2

The modular group PSL 2 (Z)

Outline of the chapter

This chapter concerns the combinatorics of the modular group PSL 2 (Z), represented as the automorphism group of a planar trivalent tree. The aim is to describe its conjugacy classes and define functions of pairs of conjugacy classes. It is divided in three sections, all of which are highly connected to the rest of the thesis. The first one constructs the action of PSL 2 (Z) on the infinite planar trivalent tree T from an intrinsic viewpoint, in the spirit of the Bruhat-Tits theory of buildings.

The second one concerns hyperbolic matrices in SL 2 (Z) and takes advantage of their relation with real quadratic irrationals to compare their action on the euclidean plane R 2 and the hyperbolic plane HP. In particular we determine the intersection patterns of their eigen-directions and their translation axes with certain triangulations of those planes. This will serve in Chapter 3 to describe the geometry of modular geodesics.

The third one exploits the combinatorial action of PSL 2 (Z) on T to extract conjugacy-invariants for pairs of hyperbolic matrices. It ends with a general method for constructing functions of pairs of conjugacy classes by averaging such invariants. We shall specify those functions in later chapters to recover intersection numbers of modular geodesics and linking numbers of modular knots.

Action of PSL 2 (Z) on the space of lines P(Z 2 )

The first section provides an intrinsic construction of the trivalent tree T . For this we consider the following simplicial complex 2 of dimension 2. Its vertex set is the space of lines P(Z 2 ) of the plane Z 2 . Two vertices are connected by an edge when the corresponding lines generate Z 2 . Then we fill in each triangle by a face. The dual graph to the 1-skeleton of 2 is the first barycentric subdivision T ′ of the trivalent tree T . The group PSL 2 (Q) acts on QP 1 and the stabiliser of the incidence relation defining 2 is PSL 2 (Z). In fact, PSL 2 (Z) acts freely transitively on the edges of T ′ , from which we deduce that it is isomorphic to the free amalgam Z/2 * Z/3.

All this is well known. One may consult [START_REF] Conway | The sensual (quadratic) form[END_REF][START_REF] Hatcher | Topology of numbers. CUP?[END_REF] for similar descriptions of the trivalent tree (and much more concerning its relation to binary quadratic forms). The intrinsic construction of the complex 2 is inspired by the book [START_REF] Serre | arbres, amalgammes[END_REF] which christened the Bass-Serre theory of groups acting on trees.

We also propose a geometric realisation of 2 as an ideal triangulation of the hyperbolic plane HP. For this we construct another triangle complex ∆ 4 ⊂ R 2 whose vertices are the primitive vectors of the lattice Z 2 , the edges connect pairs of primitive vectors forming a basis of Z 2 , and three vertices form a triangle when the corresponding vectors have an alternating sum equal to zero. Then we use the quadratic map ψ : R 2 → X from 1.33 to send 4 into the isotropic cone of (sl 2 (R), det). After "rectifying the edges" of ψ( 4 ) we obtain a polytope ψ( 4 ) inscribed in the double sheeted hyperboloid H, which is isomorphic to the simplicial complex 2 2 . Finally we projectify to obtain an ideal triangulation of the hyperbolic plane HP by 2 . The first barycentric subdivision ′ 4 maps to a tesselation of HP under PSL 2 (Z), which is thus a geometric realisation of the first barycentric subdivision ′ 2 . This construction connects the geometric study of sl 2 (R) and its symmetric space HP of Chapter 1 with the combinatorics of T ′ and the arithmetics of 4 . If the details are original, the ideas are largely superseded by the Bruhat-Tits theory of buildings, to which [START_REF] Serre | arbres, amalgammes[END_REF] can again serve as a reference for the case of SL 2 .

Conjugacy classes of matrices in PSL 2 (Z)

The second section opens with the dictionary between hyperbolic matrices in PSL 2 (Z) and real quadratic irrationals, as briefly summarised in the introductory Section 0.2. We emphasize the importance of the elements A in the euclidean monoid PSL 2 (N) which is freely generated by the parabolic matrices L&R. They correspond to the real numbers α whose continued fraction expansions are periodic from the first or second entry onward (the numbers -1/α ′ also have the same form, with mirror image periods). The article [START_REF] Lachaud | Continued fractions, binary quadratic forms, quadratic fields, and zeta functions[END_REF] surveys this arithmetic dictionary in detail.

A hyperbolic A ∈ PSL 2 (Z) acts on HP by translation along its geometric axis γ A and on T by translation along its combinatorial axis g A . Both axes join the boundary points α ′ , α ∈ ∂T = ∂HP = RP 1 . Besides, the lifts of a hyperbolic A ∈ PSL 2 (Z) to SL 2 (Z) acts on R 2 with stable eigen-direction V α . We recall in Proposition 2.28 why the intersections of V α with 4 ⊂ R 2 and of γ A with 2 ⊂ HP follow the same patterns, given by the continued fraction expansion of α. Finally, we describe the intersection patterns of V α with ′ 4 in Proposition 2.33 and of γ A with 2 ⊂ HP in Proposition 2.40. These patterns are different, and both will serve in Chapter 3 to describe the geometry of modular geodesics.

One may consult [START_REF] John | Mémoire sur les équations modulaires[END_REF][START_REF] Humbert | Sur les fractions continues ordinaires et les formes quadratiques binaires indéfinies[END_REF] and [START_REF] Series | The modular surface and continued fractions[END_REF][START_REF] Katok | Symbolic dynamics for the modular surface and beyond[END_REF] for related discussions concerning various continued fraction expansions of real numbers, and the intersection patterns of hyperbolic geodesics with the modular tessellations of HP under (certain subgroups of) the modular group.

Conjugacy invariants of matrices in PSL 2 (Z)

In the third section, we construct conjugacy invariants for pairs of hyperbolic matrices A, B ∈ PSL 2 (Z) by studying the relative positions of their combinatorial axes g A , g B in the trivalent tree T . One invariant is given by the order of their endpoints on the boundary. Another is given by the length of their intersection, or of the combinatorial geodesic which connects them. We combine these two invariants to form the relevant quantities cross(g A , g B ) and cosign(g A , g B ) for computing intersection numbers and linking numbers later on. The important facts are Lemma 2.43 saying that A, B can be simultaneously conjugated in PSL 2 (N) if and only if cosign(A, B) = 1, and Proposition 2.44 which computes cosign(A, B) = len(AB) -len(AB -1 ). The latter proposition refers to [Pau89, CP20], which one may consult for similar discussions of groups acting on trees, and much more can be found in [START_REF] Ghys | Sur les groupes hyperboliques d'après Mikhael Gromov[END_REF][START_REF] Paulin | Actions de groupes sur les arbres[END_REF].

Then we recall in Proposition 2.48 that hyperbolic matrices commute if and only if their non-oriented combinatorial axes coincide, if and only if they are integral powers of a same element in PSL 2 (Z). This enables us to describe the stabiliser of hyperbolic matrices under conjugacy. Finally, we provide a general method for constructing functions F ([A], [B]) of pairs of conjugacy classes in PSL 2 (Z) by summing conjugacy invariants f (A, B) of pairs in PSL 2 (Z). The sum is performed over all representatives A, B modulo the diagonal action of PSL 2 (Z) by conjugacy, and modulo the stabilisers of A and B. This construction will serve in Chapters 3 and 4 where we shall specify the function f as linear combinations of cross & cosign to recover functions F computing the intersection numbers of modular geodesics and linking numbers of modular knots. It will serve again in Chapter 5 where f will be given by bir(A, B).

The functions F can be considered as Poincaré series in two variables, especially when f is a function of Tr(A), Tr (B), Tr(AB), such as bir(A, B). Special cases of such bivariate Poincaré series have appeared in [For23, Chapter V] and [START_REF] Paulin | Regards croisés sur les séries de Poincaré et leurs applications[END_REF].

Action of PSL 2 (Z) on the space of lines P(Z 2 )

Let us recall here the following elements of GL 2 (Z), all in SL 2 (Z) except J. They satisfy the relations S 2 = T 3 = -1 and J 2 = 1 as well as L = T -1 S and R = T S -1 .

S = 0 -1 1 0 T = 1 -1 1 0 J = 0 1 1 0 L = 1 0 1 1 R = 1 1 0 1
To prevent confusion, notice that although L and R are not conjugate in PSL 2 (Z), the identities LJ = JR, and

LS = SR -1 show that L is conjugate to R in PGL 2 (Z) and to R -1 in PSL 2 (Z).

The Lagrangian complex 2

Consider an integral plane with a fixed basis (v ∞ , v 0 ), that is a free Z-module of rank 2 decomposed as Zv ∞ ⊕ Zv 0 , which we can write as Z 2 . In particular the basis induces an orientation and a symplectic form (u, v) → det(u, v).

A line V ⊂ Z 2 is a maximal submodule of rank 1, that is a lagrangian subspace. The set of lines P(Z 2 ) forms a rational projective line, which is cyclically ordered by the symplectic form on Z 2 so that if three lines U, V, W ∈ QP 1 are generated by vectors u, v, w ∈ Q 2 with sum u + v + w = 0, the cyclic order cord(U, V, W ) is given by the common value sign det(u, v) = sign det(v, w) = sign det(w, u).

Remark 2.1. As a matter of convention, we represent oriented planes in such a way that the positive direction induced on their unit circle is the trigonometric one, but we represent the associated projective lines with the induced cyclic order so that the positive direction is the clockwise one. This is because we parametrize the set of lines according to their inclination using the affine chart x ∈ Q → [x : 1] ∈ QP 1 instead of their slope which is given by the affine chart y ∈ Q → [1 : y] ∈ QP 1 . We will often denote V x the line of inclination [x : 1] and v x a primitive vector on this line.

The Lagrangian complex 2 is the simplicial complex of dimension two whose vertices are the lines in Z 2 , whose edges are the pairs of lines whose sum is Z 2 , and such that every triangle is filled by a face. Its orientation is given by the cyclic order on P(Z 2 ). The base edge of 2 connects the lines generated by the basis vectors.

A simplex is labelled when we fix a linear order on its vertices. An oriented triangle has three positive labellings and three negative labellings.

Proposition 2.2. The group PSL 2 (Z) acts on the Lagrangian complex 2 , freely transitively on the labelled edges, as well as on the positively labelled triangles. The stabilisers of an edge or triangle permute their labels cyclically and are respectively conjugate to the subgroups Z/2 or Z/3 generated by S or T .

Proof. The group PSL 2 (Z) acts on the space of lines P(Z 2 ), hence on its cartesian products P(Z 2 ) k modulo the alternate groups A k . We must check that the simplices of ∆ 2 are preserved under these actions.

A line is generated by a unique vector up to change of sign (this vector is primitive, meaning not a non trivial multiple of another one, or visible from the origin). The group SL 2 (Z) acts transitively on the set of primitive vectors, so PSL 2 (Z) acts transitively on the space of lines.

The lines U 1 , U 2 generate a submodule U 1 + U 2 equal to Z 2 if and only if they admit generators u j forming a positive basis, in which case the tuple (u 1 , u 2 ) is unique up to change of sign. The group SL 2 (Z) acts freely transitively on the set of oriented bases, so PSL 2 (Z) acts freely transitively on the set of ordered pairs of lines.

In particular PSL 2 (Z) preserves the set of vertices and edges of 2 so it acts by simplicial automorphisms.

Recall the basis

(v ∞ , v 0 ) and let v ±1 = v ∞ ± v 0 . Denote V j the line Zv j . The triples (V 0 , V 1 , V ∞ ) and (V 0 , V -1 , V ∞ )
form positive and negative triangles in 2 . Up to relabelling, these are the only triangles containing the base edge (because the only solutions to the system det(v

∞ , v) 2 = 1 = det(v, v 0 ) 2 are v ±1 ).
We deduce from the transitive action on labelled edges that each one is the first of a unique positively labelled triangle, thus PSL 2 (Z) acts transitively on positively labelled triangles. The assertion about stabilisers follows from the fact that the order two matrix S acts by switching the labels of the edge (V ∞ , V 0 ), whereas the order three matrix T acts by cyclically permuting the labels of the triangle

(V 0 , V 1 , V ∞ ).
Remark 2.3. The action of PGL 2 (Z) on 2 is freely transitive on labelled triangles, and its elements preserve or reverse the orientation according to the sign of their determinant. Indeed, the matrix J generates the kernel of det : PGL 2 (Z) → {±1} and acts like a symmetry of P(Z 2 ) exchanging v ∞ and v 0 while fixing v ±1 .

The lotus and the spiderweb

The universal lotus 1 is an oriented simplicial complex with a base edge (v ∞ , v 0 ), which can be embedded in R 2 as represented in figure 2.1, and constructed as follows.

The vertices are all primitive vectors in N 2 , every pair of vertices forming a basis of Z 2 yields an edge, and every edge (u, v) yields a positively oriented triangle (u, u + v, v). The boundary of 1 consists in the base edge (v ∞ , v 0 ) and the set of all vertices. Scholium 2.4. P. Popescu-Pampu baptised the universal Lotus in [START_REF] Popescu-Pampu | Le cerf-volant d'une constellation[END_REF] while investigating resolutions of plane curve singularities, and used it to relate several of their combinatorial invariants (see [START_REF] García | The combinatorics of plane curve singularities: how Newton polygons blossom into lotuses[END_REF] for a recent account).

We define the oriented simplicial complex 4 from the embedding 1 ⊂ R 2 by taking symmetries in the axes. The quotient by the antipodal map of R 2 sends it to an oriented CW-complex which is not simplicial, but after identifying the base edges one recovers an oriented simplicial complex obtained by attaching two copies of the lotus along their base edges, which is isomorphic to the Lagrangian complex 2 .

The map P(ψ) : P(R 2 ) → P(X) in Corollary 1.34 which intertwines the tautological and adjoint actions of PSL 2 (Z) on P(R 2 ) and P(X), quotients 4 to 2 . As before, this quotient is in the category of cell complexes: let us rectify ψ( 4 ) to obtain a geometric realisation of 4 in sl 2 (R), which projectivizes to a geometric realisation of 2 in sl 2 (R). The piecewize linear map ψ : 4 → sl 2 (R) is defined like ψ on the vertices of 4 and extends linearly on each triangle. The spiderweb is the simplicial complex embedded in sl 2 (R) as represented in figure 2.2, and constructed as follows. Vertices are all primitive vectors of sl 2 (Z) belonging to the isotropic cone X, edges are all segments connecting pairs of vertices p, q such that p, q = 1, and every triangle is filled by a face.

Proposition 2.5. The spiderweb is a geometric realisation of 2 2 , whose upper half-component is ψ( 4 ), obtained from ψ( 4 ) by rectifying its edges.

The map sl 2 (Z) → P(sl 2 (Z)) sends the spiderweb to a geometric realisation of 2 yielding an ideal triangulation of the projective model for the hyperbolic plane HP.

We deduce an adjoint action of PGL 2 (Z) on the geometric realisation of 2 . It is equivalent to its tautological action on the Lagrangian complex 2 .

Proof. Recall the quadratic map ψ : R 2 → X from Lemma 1.33 whose image is the upper half cone, and which sends det(u, v) 2 to ψ(u), ψ(v) .

The image of 4 by ψ defines a simplicial complex in the upper half cone: the vertices are the primitive vectors of sl 2 (Z) lying in the upper half cone, and the edges connect the pairs of vertices p, q such that p, q = 1. If the arcs of ellipses forming its edges are rectified to segments with the same endpoints, we obtain a new simplicial complex which is the one defining the upper half component of the spiderweb.

Notice that the image by ψ of the square formed by the base edges of 4 consists in a circular bigon: after rectification it gets folded on the segment between its vertices ψ(v ∞ ) = ψ(1, 0) = -pr(R) and ψ(v 0 ) = ψ(0, 1) = pr(L). Hence the upper half component of the spiderweb, which we know equal to the rectification of ψ( 4 ), is the quotient of ψ( 4 ) by the identification of the two base edges, that is 2 .

The adjoint action of PGL 2 (Z) on sl 2 (Q) preserves the lattice sl 2 (Z) and its subset of primitive vectors, as well as the isotropic cone X and the scalar product. Consequently, PGL 2 (Z) acts on the spiderweb and its projectivization, that is the geometric realisation of 2 in P(sl 2 (R)).

It follows from Corollary 1.34 to Lemma 1.33 that this adjoint action is equivalent to the tautological action of PGL 2 (Z) on the Lagrangian complex. Remark 2.6. Our conventions concerning the orientations of P(R 2 ) and P(H ∪ X)

imply that P( ψ) : 4 ⊂ R 2 → 2 ⊂ P(H ∪ X) is orientation reversing. 3 1 1 3 -1 3 -3 1 3 2 2 3 -3 2 -2 3 -2 1 1 0 1 1 0 1 -1 1 2 1 -1 2 1 2 -2 1 1 0 1 1 0 1 -1 1 2 1 -1 2 1 2
Figure 2.3: The lagrangian complex 2 and its first barycentric subdivision ′ 2 .

The trivalent tree T

Let us construct the first barycentric subdivision ′ 2 of the Lagrangian complex, represented in figure 2.3. The aim is to derive a corollary to Proposition 2.2, which will be our starting point to classify conjugacy classes in PSL 2 (Z).

The k-simplices of ′ 2 correspond to the (k + 1)-flags of simplices in 2 , and their incidence relations are given by the inclusion of flags. In particular there is one vertex per simplex of 2 called its barycenter. Therefore ′ 2 has three kinds of vertices, three kinds of edges and one kind of face. Its vertices correspond to barycenters of vertices, edges or faces; its edges connect the barycenters of vertices and edges, of edges and faces, or of vertices and faces; its faces are triangles with one vertex and one edge of each kind.

Remark 2.7. To draw the first barycentric subdivision ′

2 , consider each edge of 2 in turn and join the two vertices forming its adjacent triangles. In this way, every triangle of 2 gets cut by three medians to the mid-point of the edge, and concurrent at the barycenter of the triangle. For instance the edge (∞, 0) is incident to the triangles (0, 1, ∞) and (0, -1, ∞) so one must join the vertices -1 and 1.

One may also construct ′ 2 using the geometric realisation of 2 in HP. The hyperbolic ideal triangle (0, 1, ∞) has a unique inscribed circle tangent at each edge: it is centered at the fixed point of T and tangent to (∞, 0) at the fixed points of S.

The edges of ′ tree T ′ . This tree T ′ is the first barycentric subdivision of a trivalent tree T , which is by construction the dual graph to the 1-skeletton of 2 . Those trees inherit a cyclic order from their planar embeddings, meaning that around each vertex, the set of its incident edges has a cyclic order. We endow them with simplicial metrics for which all edges are isometric to a segment of the same length.

Corollary 2.8. The action of PSL 2 (Z) on T ′ is freely transitive on its set of edges. The stabilisers of vertices with degree 2 and 3 are cyclic groups of order 2 and 3, conjugate to those generated by S and T respectively. Thus PSL 2 (Z) = Z/2 * Z/3. Remark 2.9. We may define the sign of an order 3 element A ∈ PSL 2 (Z) according to the cyclic order of (x, Ax, A 2 x) for any x ∈ QP 1 , or equivalently for any edge x incident to the vertex of T stabilized by A. For instance T is a positive rotation whereas -T 2 = T -1 is a negative rotation.

The sign of an order 3 rotation is invariant by conjugation, and the cyclic groups appearing in the presentation of PSL 2 (Z) are cyclically ordered.

In T ′ we define an edge-path to be a sequence of edges, indexed by an interval of Z whose length may be finite or infinite, such that any two successive elements share an extremity. When such adjacent edges are distinct, they share exactly one extremity (at which point one may describe the edge-path as being locally non-constant). An edge-path yields a sequence of S and T ±1 indicating how to turn the edges around their bivalent and trivalent vertices to get from one to the next.

An edge-path of T ′ is called locally geodesic when the corresponding sequence of S and T ±1 alternates between both letters (so we are never turning around vertices). This amounts to saying that any three consecutive edges in the sequence are such that the first and the last share no common extremities (neither equal nor adjacent). Since T ′ is a tree, all edges in a local geodesic are distinct.

Any two edges e 0 , e l are connected by a unique edge-path (e 0 , . . . , e l ) that is locally geodesic: it is the shortest of them all so we may call it a global geodesic, denote it (e 0 , e l ). The distance d(e 0 , e l ) = l is the length of the corresponding S&T ±1 -sequence. There is a unique shortest path connecting an edge to (an edge in) a geodesic, or to (an edge around) a given vertex. There is a unique semi-infinite geodesic leading from an edge to a boundary point and any two boundary points are connected by a unique bi-infinite geodesic.

A horocycle of T ′ is a bi-infinite geodesic which bounds a connected component of \ T . These connected components are indexed by the vertices of , and the horocycle corresponding to p/q ∈ QP 1 = ∂ converges either way to that point. A geodesic is a horocycle when it turns the same way at every trivalent vertex, that is when the elements T ±1 always appear with the same power in the corresponding sequence of S&T ±1 . Remark 2.10. One may also define paths of oriented edges in T , and consider the corresponding sequences of L, R and S. A locally geodesic oriented edge-path of T can only contain S at its extremities. 
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Conjugacy classes in the modular group PSL 2 (Z)

We now show the structure theorems for the amalgam Z/2 * Z/3, providing a reduced factorisation of elements and normal forms for their conjugacy classes.

Theorem 2.11. Every element in PSL 2 (Z) has a unique factorisation as a product of the form k T σ k S, where σ k ∈ {±1} except the first and last which may also be 0.

An element of finite order is conjugate to a power of S or T , whereas an element of infinite order is conjugate to a non-empty product of L = T -1 S and R = T S -1 which is unique up to cyclic permutation. Remark 2.12. Recall the partition of non trivial matrices A ∈ PSL 2 (Z) into three types: elliptic, parabolic, hyperbolic. These have been defined by the sign of the discriminant of their characteristic polynomial which equals disc(A) = Tr(A) 2 -4.

The non-trivial elements of finite order are the elliptic ones whereas those of infinite order partition into parabolic and hyperbolic.

A trace computation shows that parabolic elements are conjugate to positive powers of L or R whereas hyperbolic elements are conjugate to products of L and R in which each letter appears at least once. Remark 2.13 (Unicity of elliptic generators). The structure theorem implies that {S, T } is the unique pair, up to independent inversions and simultaneous conjugation, of torsion elements which generate the modular group. Scholium 2.14. In fact we shall later see that if a pair of elliptic elements in PSL 2 (R) generates a subgroup conjugate to PSL 2 (Z), then up to independent inversions and simultaneous conjugation, it is {S, T }.

Proof of Theorem 2.11. The action of PSL 2 (Z) on T ′ is freely transitive on its edges, so every A is identified with e A = A • e 1 where e 1 denotes the base edge. The geodesic (e 1 , e A ) yields the unique reduced sequence of S&T ±1 whose product equals A. Now conjugate this reduced S&T ±1 factorisation by the longest suffix whose inverse appears as a prefix (they cannot overlap nor meet half way because the word is reduced). If we obtain S or T ±1 then we are done, otherwize we find a new sequence whose first and last letters are not mutually inverse.

Notice that if this sequence starts with T ±1 and ends with S then the geodesic in T ′ can be read as a geodesic in T yielding a sequence of L&R. Similarly if it starts with an S and ends with a T ±1 then one may read it in T and find a sequence of L -1 and R -1 , but this is conjugate by S to the transpose of its inverse which is a sequence in L and R. If it starts and ends with the same letter T ±1 then one may conjugate by that element T ±1 to obtain one of the above.

Proposition 2.15. Consider the action of a non trivial

A ∈ PSL 2 (Z) on T ′ .
If A has finite order then it fixes a unique vertex in T ′ whose valence 2 or 3 equals the order of the element.

If A has infinite order then it stabilises a unique bi-infinite geodesic of T ′ on which it acts by translation.

Proof. For A ∈ PSL 2 (Z), let l A be the minimum distance d(e, A • e) over all edges e. We have l A = 0 if and only if A = 1.

If l A > 0 then l A = 1 if and only if A fixes exactly one vertex. The geodesic leading from the base edge to (an appropriate edge belong to the link of) that vertex yields a matrix which conjugates A to S or T ±1 .

If l A > 1 then the edges e such that d(e, A • e) = l A form a bi-infinite geodesic, which can be obtained as the limit when n goes to infinity of the intersection (e A -n , e A n ) ∩ (e A -n-1 , e A n+1 ). Indeed this defines a stable geodesic g A under the action of A along which it acts by translation, and every edge e of T ′ is sent to an edge A • e at distance d(e, A • e) = l A + 2 • d(e, g A ). A geodesic from the base edge to (an appropriate edge in) the geodesic g A yields a matrix which conjugates A to a matrix whose axis passes through the base edge, and which factorises as a product of L = T -1 S and R = T S -1 .

Note that one must be a little careful in adjusting the edge-paths leading from the base edge to the link of a vertex or to a geodesic, in order to yield the matrix conjugating A to S, T ±1 or a product of L&R.

Gromov boundary of the tree T

The technical details in this subsection will not be needed in the sequel so we refer to [START_REF] Ghys | Sur les groupes hyperboliques d'après Mikhael Gromov[END_REF] for background about Gromov hyperbolic spaces and their boundaries.

A graph becomes a metric space by declaring that all its edges are isometric to a given segment of R. In this way T and T ′ become real trees, the latter being identified with the former after subdividing each edge in two edges of equal length.

The automorphism group of a simplicial graph equals the isometry group of the corresponding metric graph, so the isomorphism group of the cyclically ordered trivalent real tree T is PSL 2 (Z).

A real tree is a 0-hyperbolic space, meaning that for any triangle every edge is contained in the union of the other two. One may define its Gromov boundary: its elements are the classes of half-infinite geodesics modulo the equivalence relation of admitting equal tails; and to describe its topology it is convenient to take advantage of the identification with its space of ends.

The space of ends of a topological space is the direct limit with respect to inclusion of the connected components in the complement of compact sets, endowed with the direct limit topology. The ends of T form a totally disconnected compact space ∂T .

Denote G the product ∂T × ∂T minus the diagonal, which corresponds to the set of bi-infinite oriented geodesics in T . Notice that the set of primitive infinite order elements of PSL 2 (Z) injects in G by the map A → g A . Those are precisely the bi-infinite periodic geodesics.

The isometric action of PSL 2 (Z) on T extends to a continuous action on ∂T . A non trivial element A has 0 fixed points if it has finite order, and 2 fixed points if it has infinite order given by the endpoints of its translation axis.

If A is parabolic then its axis is a horocycle, which as a subset of ′ 2 converges both ways to the same vertex of 2 . If A is hyperbolic its axis has two distinct endpoints in the completion of 2 by ∂T , which do not belong to 2 .

Conjugacy classes of matrices in PSL 2 (Z)

Continued fractions, Euclidean monoid, Binary tree

Every positive real number x admits a Euclidean continued fraction expansion:

n 0 , n 1 , n 2 , . . . = n 0 + 1 n 1 + 1 n 2 +...
with n j ∈ N and ∀j > 0, n j > 0.

Such an expansion is infinite if and only if x is irrational, in which case it is unique. A rational x has two expansions x = n 0 , . . . , n k : one for which n k = 1, the other for which n k > 1, and exactly one of these has even length k + 1.

To represent negative real numbers we apply the involution x → S(x) = -1/x. Thus every number x ∈ RP 1 admits exactly one representation x = n 0 , . . . or x = -1/ n 0 , . . . , except for the rationals which have two, including 0 = = 0 and ∞ = -1/ = -1/ 0 . This corresponds to the partition

RP 1 = [0, ∞[ S • [0, ∞[.

Remark 2.16. If we wished to work only with

x > 1 so that all n j ∈ N * , then we must use both involutions x → -x and x → 1/x to obtain the four intervals of RP 1 . This corresponds to the partition

RP 1 = 1•]1, ∞] S•]1, ∞] J•]1, ∞] K•]1, ∞].
Then every number x ∈ RP 1 admits exactly one of the four representations x = ± n 0 , . . . ±1 with all n j ∈ N * , except for the rationals which have two, except again for the fixed points under the additive or multiplicative inverses which have four.

While the extended modular group PGL 2 (Z) acts on RP 1 , its extended euclidean submonoid generated by J&R preserves [0, ∞]. If x i denotes the i th remainder of x, given by the tail n i , . . . of its continued fraction expansion, then x 0 = (R n 0 J)x 1 . So the orbits of x, y ∈ [0, ∞] under the extended euclidean monoid have non-empty intersection if and only if some tails x i and y j of their continued fractions coincide. Since J&R generate the group PGL 2 (Z), we deduce that x, y ∈ RP 1 belong to the same PGL 2 (Z)-orbit if and only if some tails of their continued fractions coincide. Now consider the action of the modular group PSL 2 (Z) on RP 1 and of its euclidean submonoid generated by L&R on [0, ∞]. As JRJ = L we have R n 0 JR n 1 J = R n 0 L n 1 , so assembling the R n k J by pairs reveals the action of L&R as x = R n 0 L n 1 x 2 . Hence the orbits of x, y ∈ [0, ∞] under the euclidean monoid have non-empty intersection if and only if there exist even starting points i, j at which the tails x i and y j coincide. Since L&R generate the group PSL 2 (Z), we deduce that x, y ∈ RP 1 belong to the same PSL 2 (Z)-orbit if and only if there exist even starting points i, j at which the tails x i and y j coincide.

Remark 2.17. We are interested in the action of the modular group PSL 2 (Z) so we must keep an eye on the parity of the indices in the continued fractions.

A real number is called purely periodic if its continued fraction expansion is periodic from n 0 onward ("immédiatement périodique" in [START_REF] Galois | Analyse algébrique. Démonstration d'un théorème sur les fractions continues périodiques[END_REF]). We call periodic a real number whose continued fraction expansion is periodic either from n 0 onward if n 0 > 0, or else from n 1 onward.

For us, the period will always have an even length, and we shall retain the earliest possible starting point (which may be even or odd). The positive and negative periodic irrationals are precisely attractive and repulsive fixed points of matrices which are products of L and R, with at least one occurrence of each.

Denote SL 2 (N) ⊂ SL 2 (Z) the submonoid of matrices with non-negative entries, which we identify with its image PSL 2 (N) in PSL 2 (Z). It contains the parabolic matrices L, R, and every element in the monoid that they generate.

Lemma 2.18. The submonoid of PSL 2 (N) generated by L and R is free, and it coincides with PSL 2 (N).

The orbit map A → A(1) defines a bijection PSL 2 (N) →]0, ∞[∩Q which is increasing when PSL 2 (N) is endowed with the lexicographic order extending L < R.

Proof. The action of PSL 2 (N) on QP 1 preserves the interval ]0, ∞[. The element R maps it into ]1, ∞[ whereas L maps it into ]0, 1[, so they generate a free submonoid.

The orbit map A → A(1) defines a bijection PSL 2 (N) →]0, ∞[∩QP 1 since the reciprocal map consists in decomposing a fraction p q > 0 as a Farey sum a+b c+d , which is unique: it reduces to finding the minimal Bezout relations aq -cp = 1 = pd -qb.

A positive rational p q has a unique continued fraction expansion finishing by 1, and ignoring the last 1, this decomposes the corresponding matrix A ∈ PSL 2 (N) as a product of positive powers of L and R, hence these generate PSL 2 (N).

In particular, PSL 2 (N) has no elliptic elements, its parabolic elements are powers of L or R, and its hyperbolic elements are products containing both L and R.

The normal form for conjugacy classes in the amalgam PSL 2 (Z) = Z/2 * Z/3 provided in Theorem 2.11, and the previous Lemma 2.18 imply the following.

Corollary 2.19. Suppose A ∈ PSL 2 (Z) is not elliptic. Then the intersection of its conjugacy class with PSL 2 (N) is non empty, and consists in all cyclic permutations of a same word in the L&R alphabet. We call them its Lyndon conjugates.

Thus every non elliptic conjugacy class in PSL 2 (Z) is represented by a unique maximal element in PSL 2 (N) for the lexicographic order, which we call the maximal Lyndon representative.

We also deduce that those real irrationals with eventually periodic expansions are precisely the fixed points of hyperbolic matrices A ∈ PSL 2 (Z), hence the roots of integral quadratic polynomials lX 2 + mX + r with positive discriminant m 2 -4lr, also known as real quadratic irrationalities.

Lemma 2.20. Let A ∈ PSL 2 (Z) be a hyperbolic matrix with attractive and repulsive fixed points α and α ′ in RP 1 .

The fact that A ∈ PSL 2 (N) is equivalent to each of the following:

A -1 (-1) < 0 < A(1) ⇐⇒ α ′ < 0 < α ⇐⇒ |cross|(α ′ , α, 0, ∞) = 1 Now supposing A ∈ PSL 2 (N), the fact that A ∈ R • PSL 2 (N) is equivalent to: A(1) > 1 ⇐⇒ α > 1 ⇐⇒ |cross|(α ′ , α, 1, ∞) = 1 Still supposing A ∈ PSL 2 (N), the fact that A ∈ PSL 2 (N) • L is equivalent to: A -1 (-1) > -1 ⇐⇒ α ′ > -1 ⇐⇒ |cross|(α ′ , α, 0, -1) = 1
The set {L, R} N of infinite binary sequences on the letters L&R is given the lexicographic order extending L < R. The monoid PSL 2 (N) maps to {L, R} N by sending a finite word A to its periodisation A ∞ . This map is increasing, and injective in restriction to primitive elements.

To a primitive hyperbolic matrix A ∈ PSL 2 (N) corresponds a real quadratic irrationality α ∈]0, ∞[ given by its attractive fixed point. Its continued fraction is periodic and corresponds to the binary sequence A ∞ ∈ {L, R} N , which uses both letters L&R. Conversely, such a periodic sequence has a smallest period of even length and this yields a matrix A and a real quadratic surd α.

Corollary 2.21. The maps between primitive hyperbolic matrices A ∈ PSL 2 (N), periodic real quadratic irrationalities α > 0, and periodic binary sequences using both letters A ∞ ∈ {L, R} N , are bijective and order preserving.

Note that for all A ∈ SL 2 we have t AS = SA -1 . If A ∈ PSL 2 (N) is hyperbolic with attractive fixed point α > 0, then the attractive fixed point of A -1 is the Galois conjugate α ′ < 0, so the attractive fixed point of t A is S(α ′ ) = -1/α ′ > 0. Thus the transposition involution A → t A which preserves PSL 2 (N) corresponds to the involution α → -1/α ′ on positive periodic quadratic irrationalities.

Remark 2.22 (Application to a theorem of Galois [Gal29]

). A real number α = 0 is purely periodic, meaning it has a periodic continued fraction expansion as from n 0 , if and only if it is a real quadratic surd such that α > 1 and -1/α ′ > 1. If so, then -1/α ′ is purely periodic with the mirror image period. This should now be clear.

Symmetric classes of real quadratic irrationalities

Recall from Section 0.2 the dictionary between primitive hyperbolic A ∈ PSL 2 (Z), quadratic irrationals α ∈ R, primitive indefinite Q(x, y) = lx 2 + mxy + ry 2 ∈ Q(Z), and primitive space-like a = 1 2 ( -m -2r 2l m ) ∈ sl 2 (Z) ∨ . In particular if A = ( a b c d ) then (l, m, r) is proportional to (c, d -a, -b) by the factor sign(a + d)/ gcd(c, d -a, -b).

Recall from Section 1.1 the orthogonal decomposition gl 2 (Q) = Q1 ⊕ sl 2 (Q) with repesct to the scalar product M, N = 1 2 Tr(M N # ). Proposition 2.23. Consider a primitive hyperbolic A = ( a b c d ) ∈ PSL 2 (Z), denote by γ A = (α ′ , α) its geometric translation axis in HP, and by (l, m, r) the coefficients of the corresponding primitive indefinite Q ∈ Q(Z) or primitive space-like a ∈ sl 2 (Z) ∨ .

The axis γ A passes through i ∈ HP if and only if equivalently:

α : 1 + αα ′ = 0 a : r + l = 0 or equivalently a, S = 0 A : b = c or equivalently Tr(AS) = Tr(AS -1 ) or equivalently A = t A Q : α = x + √ 1 + x 2 for some x ∈ Q * such that 1 + x 2 / ∈ (Q * ) 2
The axis γ A passes through j ∈ HP if and only if equivalently: 

α : α ′ +α 2 = 1 +
Q : α = (1 + x) + √ 1 + x + x 2 for some x ∈ Q * such that 1 + x + x 2 / ∈ (Q * ) 2
Proof. The axis γ A passes through i ∈ HP if and only if α = Sα ′ = -1/α ′ , which is equivalent to A = SA -1 S -1 = t A by identifying the attractive fixed points. In terms of the quadratic form Q the condition αα ′ = -1 rewrites as r/l = -1, but one may also use the condition t a = a to deduce that r = -l. In any case we have

α = -m+ √ m 2 +4l 2 2l
, and setting x = -m/(2l) yields the last condition. The axis γ A passes through j if and only if the points α ′ , α, T α, T -1 α are conjugate to (-1, 1, 0, ∞), that is when bir(T -1 α, α, T α, α ′ ) = 1+αα ′ -α 1+αα ′ -α ′ is equal to -1. This equality can be rewritten α + α ′ = 2 + 2αα ′ , or in terms of Q as m/l = 2 + 2r/l. This amounts to the existence coprime l, r ∈ Z such that α = (l+r)+ √ l 2 +lr+r 2 l , and setting x = r/l yields the last condition.

Remark 2.24. In particular, γ A cannot pass through i and j, as this would imply m = 0 and r = -l = ±1, contradicting the fact that disc(Q) = 4 is not a square.

However can γ A pass through points in the orbit of i and j ?

Remark 2.25. If the geometric axis (α ′ , α) ⊂ HP of A ∈ PSL 2 (Z) passes through i, then there is a unique element in {A, SAS -1 } which belongs to PSL 2 (N). Conversely, given A ∈ PSL 2 (N) it is an easy matter to read from is L&Rfactorisation if it is symmetric.

If the geometric axis (α ′ , α) ⊂ HP of A ∈ PSL 2 (Z) passes through j, then there is a unique B ∈ {A, T AT -1 , T -1 AT } which belongs to PSL 2 (N). Furthermore, there is a unique

C ∈ {T B -1 T -1 , T B -1 T -1 } which belongs to PSL 2 (N).
Conversely, given B, C ∈ PSL 2 (N) related as such, can one read from their L&Rfactorisation if their axes pass through j ? Definition 2.26. A matrix of SL 2 (Z) is symmetric when it equals its transpose. This relation descends to PSL 2 (Z). We define a conjugacy class in PSL 2 (Z) to be symmetric when it is globally preserved by inversion or transposition.

Lemma 2.27. A symmetric hyperbolic conjugacy class admits a symmetric Lyndon representative A ∈ PSL 2 (N), it may thus be written

A = t BB for some B ∈ PSL 2 (N).
A primitive symmetric hyperbolic conjugacy class admits exactly two symmetric Lyndon representatives, they are of the form t BB and B t B for some B ∈ PSL 2 (N).

If a hyperbolic A ∈ PSL 2 (Z) is symmetric, then A or A -1 belongs to PSL 2 (N), so up to inversion all symmetric representatives of a hyperbolic class are Lyndon. Proof. Consider a symmetric hyperbolic conjugacy class. Transposition preserves the set of Lyndon representatives, which are all cyclic permutations of some word in L&R. Let A be one of them: its transpose is equal to a cyclic permutation, so one may write A = U V and t A = V U for U, V ∈ PSL 2 (N), which implies that U and V are symmetric. But transposition exchanges L and R, which freely generate the monoid PSL 2 (N), so U = t XX and

V = t Y Y for some X, Y ∈ PSL 2 (N). Hence A = ( t XX)( t Y Y ) is conjugate to t BB for B = X t Y .
For a symmetric hyperbolic conjugacy class, consider two representatives written as t BB = U V and t CC = V U for B, C, U, V ∈ PSL 2 (N), and suppose we may find U such that 0 < len U < len V . Then t B = U W with W ∈ PSL 2 (N) non trivial, so t BB = U W t W t U whence t CC = W t W t U U . The latter also equals its transpose t CC = t U U W t W from which we deduce that U = t U U and W = W t W commute. Consequently, there is some non trivial X ∈ PSL 2 (N) such that U = X u and W = X w with u, w > 0, from which we deduce that t CC = X u+w is not primitive. By contraposition, if the symmetric conjugacy class were primitive, then we should have either len U = 0 in which case B = C or len U = len V in which case B = t C.

Intersection patterns of lines with simplicial complexes

We now relate the continued fraction expansions of real numbers to the combinatorics of the Lagrangian complex, the lotus and the spiderweb.

Recall that Proposition 2.5 defined an isomorphism P( ψ) from the geometric realisation of 4 in R 2 to the geometric realisation of 2 in RP 2 , which is projective linear in restriction to each triangle, in particular it defines an isomorphism between their first barycentric subdivisions. (Beware that is reverses orientations.)

The group SL 2 (Z) acts on R 2 , and the matrices sending the lotus 1 into itself form the submonoid SL 2 (N). The group PSL 2 (Z) acts on HP and the matrices sending the right half of its ideal triangulation 2 into itself form the submonoid PSL 2 (N). By proposition 2.5, these actions are isomorphic under P( ψ).

In this paragraph, the continued fraction expansion of a positive rational number is always chosen to be the one with even length, hence given by an L&R-sequence as explained in the first paragraph of this Section 2.2.

Proposition 2.28. The (even) continued fraction expansion of α ∈]0, ∞[ encodes the sequence of triangles in the following simplicial complexes intersected by lines.

1. The lotus 1 intersected by the line V α of inclination α ∈ RP 1 .

The ideal triangulation 2 of HP intersected by the hyperbolic geodesic from

i ∈ HP to α ∈ ∂HP.

3. The Lagrangian complex 2 intersected by the combinatorial geodesic of T from the barycenter i ∈ T ′ of the base edge to the boundary point α ∈ ∂T .

In the last two items we may replace i by any real α -< 0 and restrict attention to the intersection of the geodesic (α -, α) with the right hand side of 2 .

Proof.

(1). The euclidean algorithm implies that the line V α ⊂ R 2 of inclination α ∈ RP 1 intersects the triangles of 1 according to its continued fraction expansion.

(1 ⇐⇒ 2). The map ψ : R 2 → X sends 4 to a simplicial complex ψ( 4 ) in X, which intersects the line ψ(V α ) in the same way as V α intersects 1 . The plane of sl 2 (R) generated by the lines R.S and ψ(V α ) intersects the edges of the spiderweb according to the same pattern. Projectifying sends the spiderweb to the ideal triangulation 2 of HP, the line R.S to i ∈ HP and the line ψ(V α ) to α ∈ ∂HP.

(2 ⇐⇒ 3). This follows from the PSL 2 (Z)-equivariant identification of the Lagrangian complex 2 with its geometric realisation 2 in HP ∪ QP 1 . Indeed, the combinatorial and hyperbolic geodesics from i ∈ T ′ ⊂ HP to the same point α ∈ ∂T ′ = ∂HP stay a bounded distance from one another, and this implies that they intersect the same triangles because the triangulation of HP by 2 is ideal.

Remark 2.29. In the dual tree T of the complex 2 , the geodesic from the base edge to the boundary point α ∈ ∂T cuts a sequence of edges in 2 whose extremities in QP 1 are the successive slow convergents to the continued fraction expansion of α.

Remark 2.30. Recall that S acts on RP 1 by S(α) = -1/α, on 4 ⊂ R2 by linear (π/4)-rotation, and on T ⊂ HP by hyperbolic (π/2)-rotation around i.

So for α < 0, to read the intersection patterns V α ∩ S 1 or (α, 0) ∩ 2 coming from infinity, one must transpose the L&R-word of -1/α, which means exchanging L&R and reversing the order of lecture so that it becomes infinite to the left.

Corollary 2.31. For distinct α -, α + ∈ RP 1 , the oriented bi-infinite geodesics (α -, α + ) connecting those boundary points, combinatorial in T and hyperbolic in HP, intersect

Intersection of V α with the first barycentric subdivision of 1

Every triangle of 1 is cut by the long legs of it medians into three triangles which we call gliders: in the first barycentric subdivision ′ 1 they are formed by unions of two triangles, adjacent along an edge connecting the barycenters of an edge and a face. They map by P( ψ) and SP( ψ) to similarly defined gliders in ′ 2 , which are in bijection with the edges of T ′ , and form a free transitive set under PSL 2 (Z).

The line V α ⊂ R 2 of irrational inclination α ∈]0, ∞[ avoids the vertices of ′ 1 and intersects it in a connected sequence of gliders. We encode this by the sequence of s ±1 &t ±1 describing how to rotate the gliders around their bases or tips to pass from one to the next, with positive or negative exponents when V α passes to the right or left of the center of rotation, as in figure 2.5. Scholium 2.32. The letters s and t are meant to evoke the actions of S and T on the gliders, or the edges of T ′ . However we chose different symbols s, t to avoid confusion with the elements S, T ∈ SL 2 (Z) or their classes in PSL 2 (Z). In particular we should not confuse the symbol s -1 with the element S -1 = -S ∈ SL 2 (Z).

Besides, in Chapter 3, the letters s, t will be identified with the generators of a free group Z * Z, the fundamental group the disc with two punctures obtained from the modular orbifold by removing its conical singularities. There again we will have to be careful about avoiding some confusions, and tracking orientation conventions.

Proposition 2.33. The line V α ⊂ R 2 of irrational inclination α ∈]0, ∞[ intersects a sequence of gliders in ′ 1 whose t&s-encoding is deduced from the continued fraction expansion of α by the following translation rules:

LL ⇝ (t -1 s -1 )L RR ⇝ (t +1 s +1 )R LR ⇝ (t -1 s +1 )R RL ⇝ (t +1 s -1 )L
Up to a cyclic permutation (corresponding to a conjugacy by s ±1 ), these translations amount to L ⇝ s -1 t -1 and R ⇝ s +1 t +1 .

Remark 2.34. The line V α ⊂ R 2 passes through a vertex of 1 if and only if α ∈ Q, in which case it passes through exactly one vertex of each type in ′ 1 . Remark 2.35. Remember that P ψ sends the orientation of ∆ 4 ⊂ R 2 to the opposite orientation of ∆ 2 ⊂ P(H∪X). The cone X is seen from beneath or above respectively. However it is the orientation of the cell complex ∆ 4 or ∆ 2 which determines the meaning of expressions like "a line passes to the right or to the left of a vertex", or "turning a glider around a vertex in the positive or negative direction".

Intersection of (α ′ , α) with the first barycentric subdivision of 2

For distinct α -, α + ∈ RP 1 , the geodesic (α -, α + ) ⊂ HP intersects a sequence of gliders in ′ 2 encoded by a word alternating a letter in {s -1 , s • , s +1 } and a letter in {t -2 , t -1 , t • , t +1 , t +1 } describing how to rotate them around the bivalent and trivalent vertices of T ′ . The exponents are positive, negative or • when (α -, α + ) passes to the left, to the right or through the vertex. The letters t ±2 appear when a glider must be turned twice around its trivalent vertex in the direction given by the sign. 

1 0 1 1 0 1 -1 1 -2 1 2 1 -1 2 1 2 -1 β = RLRR . . . β α = RLRL . . .
. . t -2 s -1 t -1 s -1 | t +1 s -1 t -1 s -1 .
. . , the separation marks the intersection with the base glider. Now suppose that α -, α + ∈ R are such that α -< 0 < α + . Then (α -, α + ) intersects positively the edge (0, ∞), whence the glider containing the base edge (i, j) of T ′ , so the s&t-word contains a subword of the form s ? t ? characterising the intersection of (α -, α + ) with the first barycentric subdivision ▽ ′ 2 . The signs of the exponents correspond to the position of (α -, α + ) with respect to the points i and j.

The position of (α -, α + ) with respect to i is obtained by comparing α + with -1 α -. The exponent of s is given by -sign(1 + α + α -). Thus (α -, α + ) passes:

+ to the left of i if 1 + α + α -< 0, in which case we have s +1 • through i if 1 + α + α -= 0, in which case we have s • -to the right of i if 1 + α + α -> 0, in which case we have s -1
The position of (α -, α + ) with respect to j is obtained by comparing the crossratio bir(α

-, α + , T +1 α -, T -1 α -) = α + -α - 1+α + α --α -with 2, or equivalently α + +α - 2 with 1 + α + α -. The exponent of t has sign α + +α - 2 -(1 + α + α -) . Thus (α -, α + ) passes: + to the left of j if 1 + α + α -< α + +α - 2 , in which case we have t +1 or t +2 • through j if 1 + α + α -= α + +α - 2 , in which case we have t • -to the right of j if 1 + α + α -> α + +α - 2 , in which case we have t -1 or t -2 T +1 α - T -1 α - α - bir(α -, α + , T +1 α -, T -1 α -) = 2 bir(α -, α + , T +1 α -, T -1 α -) > 2 bir(α -, α + , T +1 α -, T -1 α -) < 2 Figure 2.7: Find the exponent of t by comparing bir(α + , α -, T -1 α -, T +1 α -) with 2.
We may recast this discussion in terms of the L&R-words w -and w + corresponding to the continued fractions of Sα -and α + . Recall that w -and w + describe the intersection patterns of (i, Sα -) and (i, α + ) with 2 , and that w = t w -w + describes the intersection pattern of (α -, α + ) with 2 . After replacing the letters L&R by t ? s ? , we are focusing on the exponents of the last s ? of t w -and the first t ? of w + .

The exponent of s ? is obtained by comparing w -and w + for the lexicographic order on L&R, and is given by the sign(w + -w -). To compute the sign of the exponent of t ? , first note that the continued fractions of T -1 α -and T +1 α -are obtained by conjugating the continued fraction w -of Sα -= S -1 α -by T -1 S +1 = L and T +1 S -1 = R. When α -is irrational, the word w -is infinite and such conjugations amount to left multiplications by L and R. In that case the sign of the exponent of t ? would be given by comparing the cross-ratio bir(w + , Sw -, Lw -, Rw -) with 2. However this cross-ratio is not well defined in purely combinatorial terms and one has to compute it in terms of the endpoints α -, α + (or sufficiently good rational approximations obtained by truncating the words w -and w + far enough).

Proposition 2.36. Consider irrational real numbers α -, α + such that α -< 0 < α 0 .

The geodesic (α -, α + ) ⊂ HP intersects 2 in a sequence of triangles encoded by a bi-infinite L&R-word w obtained by concatenating the transpose of the L&R-word of -1 αwith the L&R-word of α + .

The geodesic (α -, α + ) ⊂ HP intersects ′ 2 in a sequence of gliders encoded by a bi-infinite s&t-word obtained from its L&R-word as follows.

First create a word by the translation rules L ⇝ t ? s ? and R ⇝ t ? s ? , retaining for each s ? &t ? the position of the L or R which gave rise to it. Every subword s ? t ? corresponds to a factorisation w = t w -w + and the signs of those exponents ? are obtained by comparing t w -and w + as explained above. Besides, the exact translation rules must be chosen among:

L ⇝ {t -1 s ? , t • s ? , t +2 s ? } R ⇝ {t +1 s ? , t • s ? , t -2 s ? }
The sign computations together with these multi-valued translation rules for L&R determine a unique s&t-word.

Remark 2.37. One may accelerate the translation process by noticing the that we must have the local translation rules LL ⇝ t ? s -1 t -1 s ? and RR ⇝ t ? s +1 t +1 s ? , thus

∀m, n ∈ N : L m ⇝ t ? (s -1 t -1 ) m-1 s ? R n ⇝ t ? (s +1 t +1 ) n-1 s ?
After that it remains to determine the signs in exponents of the s and t in portions coming from alternations between L and R.

One may provide local translation rules for portions of the form L m (RL) k R n and R n (LR) k L m in terms of inequalities on the triples (k, m, n), but those will depend on the (unbounded) quantity k, so the translation process is ultimately non-local.

Remark 2.38. We wish to lift the ambiguity on the exponents of the t • and s • .

Notice that every t • must be surrounded by equal powers of s ±1 . In particular we deduce a canonical way of replacing its exponent, to equal either ±2 or ∓1, and we shall systematically choose the latter. This corresponds to a slight perturbation of the geodesic (α -, α + ) in such a way as to avoid the orbit of j, as depicted in figure 2.8. Notice that every s • is must be surrounded by opposite powers of t ±1 . In particular we deduce a canonical way of replacing its exponent, to equal that of the t just before or just after, and we shall systematically choose the latter. Hence every subword of the form t -1 s • t +1 or t +1 s • t -1 gets replaced by t -1 s +1 t +1 or t +1 s -1 t -1 respectively. This corresponds to a slight perturbation of the geodesic (α -, α + ) in such a way as to avoid the orbit of i, as depicted in figure 2.10. The position of γ A with respect to i is given by comparing Tr(AS -1 ) and Tr(AS), and the exponent of s equals sign Tr(A(S -S -1 )) = sign Tr(AS). Thus γ A passes: + to the left of i if Tr(AS) > 0, in which case we have s +1

-2 1 1 0 1 1 0 1 -1 1 2 1 -1 2 1 2 s -1 t • s -1 -2 1 1 0 1 1 0 1 -1 1 2 1 -1 2 1 2 s -1 t +1 s -1
• through i if Tr(AS) = 0, in which case we have s • -to the right of i if Tr(AS) < 0, in which case we have s -1

The position of γ A with respect to j is given by comparing Tr(AT ) and Tr(AT -1 ), and the sign in the exponent of t equals sign Tr(A(T -T -1 )). Thus γ A passes: + to the left of j if Tr(AT ) > Tr(AT -1 ), in which case we have t +1 or t +2

-2 1 1 0 1 1 0 1 -1 1 2 1 -1 2 1 2 . . . LR LR LR. . . -2 1 1 0 1 1 0 1 -1 1 2 1 -1 2 1 2 . . . s -1 t -1 s +1 t +1 s -1 t -1 . . .
• through j if Tr(AT = Tr(AT -1 ), in which case we have t • -to the right of j if Tr(AT ) < Tr(AT -1 ), in which case we have t -1 or t -2 Remark 2.39. In view of Chapter 1, the signs in the exponents of s and t equal:

Tr(A(S -S -1 )) = -2 A, pr S = -2 A, S Tr(A(T -T -1 )) = -2 A, pr T = -2 A, S -1 2 K
We may also propose an equivariant formulation in terms of A ∈ PSL 2 (R), that is independent of its lift A ∈ SL 2 (R), by noticing that c + b = Tr(AJ) = -2 A, J . Hence the signs in the exponents of s and t are respectively equal to the signs of:

Tr(AJ) • Tr(A pr(S)) = 4 • A, J • A, S Tr(AJ) • Tr(A pr(T )) = 4 • A, J • A, S -1 2 K Proposition 2.40. Consider a primitive hyperbolic element A ∈ PSL 2 (N) and let A k = σ k A ∈ PSL 2 (N) be its Lyndon conjugates. The translation axis (α ′ , α) ⊂ HP LR ⇝ t -1 s ±1 t +1 ⇝ t -1 s +1 t +1 RL ⇝ t +1 s ±1 t -1 ⇝ t +1 s -1 t -1
Figure 2.10: Canonical choice for perturbing the axes passing through i.

of A intersects ′ 2 according to a sequence of gliders encoded by a bi-finite periodic s&t-word determined from the L&R-factorisation of A as follows.

First apply the replacement rules L ⇝ t {-1,•,2} s {1,•,-1} and R ⇝ t {1,•,-2} s {1,•,-1} . Then for every k ∈ [0, len(A)[, the s ? at the end of A k has exponent sign Tr(AS), and the t ? at the beginning of A k has exponent of the sign Tr(A(T -T -1 )).

Example 2.41. The translation axis of RL intersects ′ 2 in the sequence of gliders encoded by the word w

∞ where w = (t +1 s • )(t -1 s • ).
The translation axis of RLL intersects ′ 2 in the sequence of gliders encoded by the word w ∞ where w = (t • s -1 )(t -1 s -1 )(t -1 s -1 ).

The translation axis of RLLL intersects ′ 2 in the sequence of gliders encoded by the word w ∞ where w = (t -2 s -1 )(t -1 s -1 )(t -1 s -1 )(t -1 s -1 ).

It may be amusing to find the s&t translations of L&R-sequences encoding Markov irrationals [START_REF] Series | The geometry of Markov numbers[END_REF].

Invariants of two conjugacy classes in PSL 2 (Z)

The previous section described conjugacy classes of hyperbolic matrices in PSL 2 (Z) in terms of their intersection with PSL 2 (N) and their combinatorial axes in T .

We now turn to the conjugacy classes of pairs of matrices in PSL 2 (Z). At the end of this section, we shall average conjugacy invariants for pairs of matrices to obtain functions of pairs of conjugacy classes.

Combinatorics of the crossing and cosign functions

The main idea is to consider the relative position of the oriented tree-axes, and there are two features to take into account: if they share an oriented edge, and if their endpoints are linked on the boundary.

Recall the discussion following Corollary 2.8 which introduced geodesics in T . The tree property implies that two geodesics of T intersect along a geodesic: it may be empty, but otherwise it has positive length so one my compare their orientations. Definition 2.42. For oriented geodesics g a and g b in T , let sinc(g a , g b ) ∈ Z ∪ {±∞} be the length of their intersection, whose sign given by cosign(g a , g b ) ∈ {-1, 0, +1} compares their orientations along their intersection when it is not empty.

These functions are symmetric, invariant under the action of C ∈ PSL 2 (Z) on T :

sinc(C • g a , C • g b ) = sinc(g a , g b ) cosign(C • g a , C • g b ) = cosign(g a , g b )
and inverting the orientation of one of their arguments results in a change of sign. The previous definition holds for any two oriented geodesics: they could be finite, half-infinite or bi-infinite; and periodic or aperiodic. However, we shall only consider those in the set G of oriented bi-infinite geodesics. The translation axes g A of infinite order elements A ∈ PSL 2 (Z) are precisely the bi-infinite periodic geodesics in G.

For infinite order elements A, B ∈ PSL 2 (Z) we denote sinc(A, B) = sinc(g A , g B ) and cosign(A, B) = cosign(g A , g B ). Now we have invariance under the conjugacy action of C ∈ PSL 2 (Z) on its subset of infinite order elements:

sinc(CAC -1 , CBC -1 ) = sinc(A, B) cosign(CAC -1 , CBC -1 ) = cosign(A, B)
Lemma 2.43. Two infinite order elements A, B ∈ PSL 2 (Z) can be simultaneously conjugated in PSL 2 (N) if and only if their combinatorial axes share an oriented edge, that is when cosign(A, B) = 1.

More precisely the set of edges belonging to the intersection of their oriented Taxes corresponds to the set {C ∈ PSL

2 (Z) | CAC -1 , CBC -1 ∈ PSL 2 (N)},

whose cardinal equals the positive part of sinc(A, B).

Proof. Recall that the automorphism group PSL 2 (Z) of the cyclically oriented T acts freely transitively on its oriented edges: the base edge provides an identification between the two sets. Moreover, a matrix belongs to PSL 2 (N) if and only if its combinatorial translation axis passes through the base edge. Hence the matrices C which simultaneously conjugate A and B in PSL 2 (N) are in bijection with the oriented edges belonging to the intersection of g A and g B .

Let us represent the different configurations for pairs of axes g A , g B and provide the values for the invariants cross and cosign. Note that cosign and cross can take their values independently, except for the implication cosign = 0 =⇒ cross = 0. For A ∈ PSL 2 (Z), denote len(A) ∈ N the minimum displacement length d(e, A•e) of an edge e ∈ T (this quantity was denoted l A in the proof of Proposition 2.15). When A has infinite order, it is the L&R-length of a Lyndon conjugate, and when A has finite order it is zero. Proposition 2.44. For hyperbolic A, B ∈ PSL 2 (Z) such that g A ∩ g B = ∅, we have:

cosign cross +1 0 -1 +1 α ′ β ′ β α β ′ α ′ β α β ′ α ′ α β -1 β α ′ α β ′ α ′ β α β ′ α ′ β β ′ α
cosign(A, B) = sign len(AB) -len(AB -1 ) .

Moreover, if n, m ∈ N satisfy min{n len(A), m len(B)} > |sinc(A, B)|, we have:

sinc(A m , B n ) = len(A m B n ) -len(A m B -n ).
Proof. These identities follow from [START_REF] Conder | Discrete and free two-generated subgroups of SL 2 over non-archimedean local fields[END_REF], but let us prove the first one to explain an idea which will serve in 2.48. We will not use the second, but the first will play a crucial role in Theorem 5.24.

Since both sides of the formula change of sign under inversion of A or B, we may suppose that cosign(A, B) > 0.

We have len(AB) = len(A) + len (B) because if e ∈ g A ∩ g B then AB sends B -1 • e to A • e, but the geodesic (B -1 (e), A(e)) consists in a sequence of len(A) + len(B) oriented edges of T following one another so AB is the a hyperbolic translation along an axis which contains that segment as fundamental domain.

To see why len(AB -1 ) < len(A)+len (B), notice that AB sends B(e) to a A(e) and for e ∈ g A ∩ g B the geodesic (B(e), A(e)) has length at most len(A) + len(B) -1. Corollary 2.49. If A ∈ PSL 2 (Z) has infinite order, then its centraliser is the infinite cyclic subgroup generated by its primitive root.

Proof. We just that saw that the infinite order elements which commute with A form the subgroup generated by its primitive root.

All we need to show is that A cannot commute with an element of finite order, that is a conjugate of S or T by Theorem 2.11. If A is conjugate to itself by CSC -1 or CT C -1 for some C ∈ PSL 2 (Z) then B = C -1 AC is conjugate to itself by S or T , which is impossible from the normal form of elements in Z/2 * Z/3.

Alternatively, the actions of PSL 2 (Z) by conjugacy on its primitive infinite order elements and on the periodic axes of T are equivalent by the map W → g W . Hence the centraliser of A is the stabiliser of its axis g A which is reduced to the infinite cyclic subgroup generated by its primitive root.

Functions of two conjugacy classes: sum over double cosets

Consider a group Γ acting on a space Σ and a function f defined on Σ × Σ with values in a commutative group Λ which is invariant under the diagonal action of Γ:

f : Σ × Σ → Λ ∀W ∈ Γ, ∀a, b ∈ Σ : f (a, b) = f (W • a, W • b)
We define an invariant F for pairs of Γ-orbits [a], [b] by summing f over all pairs of representatives of the orbits considered modulo the diagonal action of Γ.

The pairs of representatives for the orbits are parametrized by the Consequently, the sum indexed by

(U • a, V • b) for (U, V ) ∈ Γ/(
(U, V ) ∈ (Γ/ Stab a) × Γ (Γ/ Stab b) defines our desired invariant: F ([a], [b]) := (U,V ) f (U • A, V • b)
This can also be written as the sum over double cosets W ∈ (Stab a)\Γ/(Stab b):

F ([a], [b]) = W f (a, W • b) because the map (Γ/ Stab a) × (Γ/ Stab b) → (Stab a)\Γ/(Stab b) sending (U, V ) to W = U -1
V is surjective, and its fibers are the orbits under the diagonal action of Γ by left translations.

Remark 2.50. To ensure that the sum is well defined, it must have finite support or converge in a completion of Λ for an appropriate norm, and that depends on the behaviour of f . (We can always bypass this problem by adding formal variables in the sum at the expense of finding an invariant F which is too rich to be computable.)

We shall apply this discussion to the actions of Γ = PSL 2 (Z): on the group PSL 2 (R) or its lattice PSL 2 (Z); on the Lie algebra sl 2 (R), its lattice sl 2 (Z), or the symmetric space H ∪ H ′ ; on the trivalent tree T or its infinite oriented geodesics G.

We have seen that several of these actions are closely related. For instance to an element A ∈ PSL 2 (R) one may associate its projection pr(A) ∈ sl 2 (R), and its projectivization P(pr A) ∈ P(sl 2 (R)). One can make a similar correspondence between elements in PSL 2 (Z) and their (weighted) fixed points in T ∪ ∂T ∪ G.

The function f (a, b) could be obtained from geometrical invariants such as the scalar product a, b , like the cross-ratio bir(α ′ , α, β ′ , β), as well as combinatorial invariants related to sinc(g a , g b ) and cross(g a , g b ), like cosign(g A , g B ) × cross(g a , g b ).

Of course when PSL 2 (Z) acts on itself by conjugacy, we obtain invariants for pairs of conjugacy classes, and when they are hyperbolic the stabilisers have been described in Corollary 2.49.

Functions of conjugacy classes: sum over Lyndon cycles

Consider a function f defined on pairs of coprime primitive infinite order elements A, B ∈ PSL 2 (Z), which is invariant under the diagonal action of PSL 2 (Z) on itself by left conjugacy. This amounts to a function defined on pairs of geodesics g A , g B ⊂ T with distinct fixed points, which is invariant under the diagonal action of PSL 2 (Z).

In order to compute the sum defining F ([A], [B]), we may group the terms f (U AU -1 , V BV -1 ) according to the cosign(U AU -1 , V BV -1 ) ∈ {-1, 0, 1} to obtain:

F = F -+ F 0 + F +
The sum F + has finite support, contained in the set of pairs (σ i A, σ j B) of Lyndon representatives for the conjugacy classes of A, B ∈ PSL 2 (N), thus:

F + ([A], [B]) = len(A) i=1 len(B) j=1 f σ i A, σ j B
Similarly the sum F -has finite support, which we may also index by pairs of Lyndon representatives (σ i A, σ j B) for the conjugacy classes of A, B ∈ PSL 2 (N) using the fact that cosign(A, B) = -cosign(A, SBS -1 ), thus:

F -([A], [B]) = len(A) i=1 len(B) j=1 f σ i A, S(σ j B)S -1
These sums are easy to compute, either by hand or with the help of a computer, given Lyndon representatives A, B ∈ PSL 2 (N) and an expression for f . Remark 2.51. One may similarly decompose the sum F 0 in two parts depending on the relative orientations of the axes, which are interchanged by the action of S on one of the components of f . However their index sets are infinite. Now suppose that for all A, B we have cosign(A, B) = 0 =⇒ f (A, B) = 0 and f (A, B -1 ) = ϵf (A, B) with ϵ ∈ {±1}. This holds for cross and cosign with ϵ = -1, and for their product or their absolute values with ϵ = 1. Then F 0 = 0 and using

SCS -1 = t C -1 we find that F -([A], [B]) = ϵ • F + ([A], [ t B]
). Thus we may compute F from the expression of f on pairs of Lyndon representatives:

F ([A], [B]) = F + ([A], [B]) + ϵ • F + ([A], [ t B])
Scholium 2.52. In the second part of this thesis we will compute intersection numbers of modular geodesics and linking numbers of modular knots, and recover the sums F or F + associated to functions f involving cross & cosign.

Part II

Linking numbers of modular knots

Chapter 3

Modular geodesics

Outline of the chapter

This chapter is divided in two sections, both of which will serve in the next chapter.

Geometry of modular geodesics

The first section concerns the topology and combinatorics of modular geodesics.

We first define the modular orbifold M = PSL 2 (Z)\HP which has two conical singularities i&j of order 2&3 and a hyperbolic metric. We also define a "projective linear structure" on M using the map P ψ from proposition 2.5.

Then we discuss the topology of its closed hyperbolic geodesics. Proposition 2.23 characterises those which pass through i or j in terms of their Lyndon representatives, and we use 2.38 to define their canonical perturbations. This is the content of Corollary 3.4. Let us mention that Sarnak estimated in [START_REF] Sarnak | Reciprocal geodesics[END_REF] the asymptotic number of geodesics containing i in order to investigate their distribution.

The (perturbed) modular geodesics lift in the thrice punctured sphere M \ {i, j} whose fundamental group is freely generated by s&t. We describe their homotopy classes in terms of the corresponding cycles of s ±1 &t ±1 . This relies on Proposition 2.40 and Remark 2.38 and forms the content of Corollary 3.8.

Then we express in Proposition 3.10 the intersection numbers between hyperbolic geodesics using the formalism developed in the last paragraphs of chapter 2. We also show that the lifts of (perturbed) modular geodesics in M \ {i, j} are taut, that is minimally intersecting in their homotopy class (the same holds for finite collections). We mention that Birman and Series [START_REF] Birman | An algorithm for simple curves on surfaces[END_REF] have an algorithm for computing selfintersection numbers of taut loops in a smooth surface of negative euler characteristic.

Finally, we define in 3.17 the linear representative of hyperbolic conjugacy class in π 1 (M) as a loop in the projective linear model of M. It avoids the singularities and we describe the homotopy class of its lift in M \ {i, j} using Proposition 2.33. We also provide practical algorithms to draw those linear representatives. The hyperbolic and linear representatives are homotopic in the orbifold M but they may have nonhomotopic lifts in M \ {i, j}, and different self-intersection numbers. We explain why (finite collections of) linear representatives in M \ {i, j} are taut, so that one may compute their self-intersection numbers using the algorithm of Birman-Series.

Lifting geodesics in Galois covers

In the second section we first describe the covers M 0 of the modular orbifold M through their Galois correspondence with the subgroups Γ 0 of its fundamental group Γ = Z/2 * Z/3. They lead to the "dessins d'enfants" introduced by A. Grothendieck in [START_REF] Grothendieck | Esquisse d'un programme[END_REF], to which [SV90, LZ04] may serve as nice introductions. Those are embedded graphs in the cover M 0 → M obtained as pull back of the geodesic arc (i, j) ⊂ M.

In particular, we focus on the Galois cover T * → M by the punctured torus which corresponds to the first derived subgroup Γ ′ , or equivalently to the abelianisation morphism Z/2 * Z/3 → Z/2 × Z/3. The Galois action of a generator for the quotient Γ/Γ ′ = Z/6 on the cover T * is by rotation of order 6. This is well known (see [START_REF] Ghys | A singular mathematical promenade[END_REF] for instance), and forms the content of Proposition 3.26. Then we consider the universal abelian cover of this punctured torus T * , corresponding to the second derived subgroup Γ ′′ . The Galois action of the quotient Γ ′ /Γ ′′ = Z 2 is by translation. Putting those constructions together we find that Γ/Γ ′′ is canonically isomorphic to the semi-direct product Γ/Γ ′ Γ ′ /Γ ′′ = Z/6 Z 2 , realised as the isometry group of a hexagonal lattice Γ ′ /Γ ′′ = Z 2 in the plane. These (presumably new) results are contained in Proposition 3.29 and its Corollary 3.31, but they can be considered as excursions.

Finally we consider the lifts of modular geodesics in Galois covers, in order to "simplify" them and define several topological quantities. We show in Proposition 3.36 that the lifts of homotopic and linear representatives in finite Galois covers with no orbifold singularities are connected by isotopies and Reidemeister triangle moves. Then we focus on the lifts of combinatorial axes in the dessin d'enfant, especially in that corresponding to the second derived subgroup Γ ′′ which is a hexagonal graph embedded in the punctured plane R 2 \ Z 2 forming the universal abelian cover of T * . In particular, we recover the Rademacher invariant as an asymptotic winding number of combinatorial paths in this hexagonal graph.

Loops in the modular orbifold

The modular orbifold

We denote Γ = PSL 2 (Z). Recall Proposition 2.2 describing the action of Γ on 2 and Proposition 2.5 providing an ideal triangulation of HP by the interior of 2 . We deduce that the subgroup Γ of PSL 2 (R) acts properly discontinuously on HP, with fundamental domain the triangle (∞, 0, j) formed by the fixed points of L and R on the boundary and of T inside. We let M = 2 /Γ and M = HP/Γ.

This fundamental domain (∞, 0, j) can be cut along the geodesic arc joining i and j to obtain a pair of isometric triangles (i, j, ∞) and (i, j, 0): identifying them along their isometric edges yields the quotient M. It is a hyperbolic two-dimensional orbifold, with two conical points of order 2 and 3 respectively associated to the fixed points i and j for the elliptic elements S and T , and a cusp associated to the fixed point ∞ for the parabolic element R. It is homotopically equivalent to a three-holed sphere with discs attached along two boundary components by homeomorphisms of the circle having degrees 2 and 3. See [START_REF] Haefliger | Orbi-espaces[END_REF] for homotopies in the orbifold category.

- The hyperbolic metric descending on M has finite area π/3 since three Γ-translates of the fundamental triangle pave an ideal triangle (whose area equals π by the Gauss-Bonnet theorem, because its angles add up to zero). This shows that Γ is a lattice in PSL 2 (R), that is a discrete subgroup with finite covolume. 
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Projective model for the modular orbifold

Recall that Proposition 2.5 defined an isomorphism P( ψ) from the geometric realisation of 4 in R 2 to the geometric realisation of 2 in RP 2 which reverses their orientation. It sends the base triangle ▽ 1 = (v 0 , v 1 , v ∞ ) of the lotus to the base triangle ▽ 2 = (0, 1, ∞) in the ideal triangulation of the hyperbolic plane. It also conjugates the actions of the monoid PSL 2 (N) on the lotus and its image.

The map P( ψ) is projective linear in restriction to each triangle, so it matches their first barycentric subdivisions: the center of gravity of ▽ 1 is sent to the incenter of ▽ 2 . Hence ▽ 1 is cut into three triangles by the long legs of its medians, each one mapping to a fundamental domain for the action of Γ on 2 .

At the target, the triangle ▽ 2 quotients to M under the action of T by hyperbolic rotation of order three around its incenter, and after the identification of the edge (0, ∞) with (0, 1) and (1, ∞) by L and R. Let us pull these back on ▽ 1 to obtain (after removing its vertices) a projective model of the modular orbifold M.

The action of T pulls back on ▽ 1 to the unique projective transformation which cyclically permutes the vertices (v ∞ , v 1 , v 0 ) and fixes the barycenter. The actions of L and R identify hypothenuse of ▽ 1 with its vertical and horizontal edges. Notice that the transformation T restricted to the segments of the base glider joining j to ∞ corresponds to the euclidean reflection across the diagonal. Moreover, in restriction to the hypothenuse of ▽ 1 , we may compose the transformations T L = S = R -1 T and find the symmetry across its barycenter. For the euclidean metric on ▽ 1 , the pairs of equidistant points on the edges

(v ∞ , i)&(i, v 0 ) and (v ∞ , j)&(j, v 0 ) are identified.
This metric descends on M to a flat metric with conical singularities at i and j. Remark 3.2. Recall that P( ψ) : 4 ⊂ R 2 → 2 ⊂ P(H∪X) is orientation reversing, and ▽ 2 → M is orientation preserving, thus ▽ 1 → M is orientation reversing.

1 1 0 v 0 = (0, 1) v 1 = (1, 1) v ∞ = (1, 0) T R L 1 1 | | | | | | 0 v 0 = (0, 1) v 1 = (1, 1) v ∞ = (1, 0) ∥ ∥ × × Figure 3
.2: Identifications of ▽ 1 yielding the projective model for M.

Modular geodesics: homotopy classes of their lifts in M \ {i, j}

A geodesic in M lifts to a geodesic in HP which is the translation axis of a unique one parameter subgroup of hyperbolic matrices in PSL 2 (R), and two geodesics in HP project to the same geodesic in M if and only if the corresponding one parameter subgroups generated by those matrices are conjugate by an element of PSL 2 (Z).

We are exclusively interested in closed geodesics: they correspond to conjugacy classes of hyperbolic matrices in PSL 2 (Z). Taking a power of a closed geodesic, that is winding several times around it (and inverting its direction if the exponent is negative), has the same effect on (any representative of) the conjugacy class. The length λ A of the closed geodesic γ A associated to A ∈ PSL 2 (Z) is the translation length of A given by Tr(A)/2 = cosh (λ A /2).

One may ask how many closed geodesics there are of length at most λ, or how are they distributed in the orbifold. In this chapter we investigate how to draw them, what are their intersection numbers, and how do they lift in Galois covers.

We first describe their relative position with respect to the conical singularities.

Remark 3.3. A neighbourhood of i ∈ M is the quotient of a neighbourhood of i ∈ HP by the action of S, so an arc through i ∈ HP projects to an arc which reaches i in M, and leaves with an angle ±π ≡ 0 mod π, in the opposite direction. Similarly, a neighbourhood of j ∈ M is the quotient of a neighbourhood of j ∈ HP by the action of J, so an arc through j ∈ HP projects to an arc which reaches j in M, and leaves with an angle ±π ≡ ±π/3 mod 2π/3.

Corollary 3.4. A closed geodesic in M contains i if and only if the corresponding conjugacy class in PSL 2 (Z) is symmetric (2.26).

If it is furthermore primitive then it reaches and leaves i twice, making an angle 2(arctan(α) -arctan(1/α ′ )) mod π.

A closed geodesic in M contains j if and only if it admits a Lyndon representative

A ∈ PSL 2 (N) such that Tr(AT ) = Tr(AT -1 ).

Proof. Consider a primitive closed geodesic γ : S 1 → M.

The moments γ reaches i ∈ M are defined as the preimages γ -1 (i) ⊂ S 1 . They are in bijection with the lifts of γ passing through i ∈ HP, modulo the action of the stabiliser of i ∈ HP, which is generated by S. By Proposition 2.23, these lifts are the translation axes of the symmetric representatives in the conjugacy class. By Lemma 2.27 such symmetric representatives belong to PSL 2 (Z) up to conjugacy by S, an there are two of them: they are of the form t BB and B t B for some B ∈ PSL 2 (N). The angle in R/2π made by two geodesics of HP intersecting at i is deduced from their attractive fixed points by stereographic projection.

The moments γ reaches j ∈ M are described similarly using Proposition 2.23.

Definition 3.5. Consider a modular geodesic in M, and let us define its privileged perturbation in M \ {i, j}.

If the geodesic avoids i and j, then it equals its privileged perturbation. Otherwise, choose a lift γ ⊂ HP and perturb it slightly off each point in the orbits of i and j as prescribed by the canonical choices of Remark 2.38, and project it down to M \ {i, j}.

Remark 3.6. The canonical choices of 2.38 imply that the axis of a symmetric A ∈ PSL 2 (N) is perturbed in the neighbourhood of i so that it surrounds it clockwize if A starts with an L, and couter-clockwize if A starts with an R. The opposite choice would lead to a perturbed loop in M \ {i, j} with the inverse homotopy class. Definition 3.7. A multiloop in M with k ∈ N components is a smooth map from the disjoint union of k oriented circles whose components are labelled, considered up to individual reparametrizations. A loop is a multiloop with one component.

We base the orbifold fundamental group of M at a point very close to i on the geodesic arc towards j. It is isomorphic to Γ.

One should be carefull with homotopies in orbifolds. For instance a loop which circles n times around a cyclic singularity of order n is contractible in the orbifold. More generally, various representatives of the same homotopy class in M may lift to different homotopy classes in M \ {i, j}. The inclusion of this three-holed sphere in the modular orbifold yields a surjection π 1 (M \ {i, j}) → π 1 (M) and a single conjugacy class of the target may lift to several conjugacy classes of the source.

Still, the algebraic simplifications in the modular group mirror the loop simplifications in the modular orbifold, hence conjugacy classes in Γ correspond to free homotopy classes of loops in M. Accordingly a closed loop has the same attributes as a conjugacy class. It is trivial if it bounds a disc with no singularities, elliptic if it circles around a conical singularity, parabolic if it circles around the cusp, and hyperbolic otherwize. Moreover, a non elliptic loop is primitive unless it is homotopic to a loop wrapping several times around the same path.
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To summarize, the hyperbolic conjugacy classes in the modular group parametrize the homotopy classes of hyperbolic loops as well as the closed geodesics in M. In other terms, every free homotopy class of hyperbolic loop contains a unique geodesic.

Consider the free homotopy class of a hyperbolic loop in M. Its unique geodesic representative has a privileged perturbation in M\{i, j}: what is its homotopy class?

Recall that Theorem 2.11 used the presentation of π 1 (M) = Z/2 * Z/3 as the free amalgam of its subgroups generated by S&T to derive a normal form for its The inclusion M\{i, j} ⊂ M induces the morphism of fundamental groups Z * Z → Z/2 * Z/3 defined by s → S and t → T . The question amounts to finding a "geodesic section" of this morphism at the level of conjugacy classes.

s +1 s -1 t +1 t -1 ▽ 2 → M L R s t

Corollary 3.8. A closed geodesic in M encoded by an L&R-cycle lifts in M\{i, j} to a homotopy class encoded by an s&t-cycle computed using the translation algorithm of Proposition 2.40 and applying the canonical perturbations of Remark 2.38.

Scholium 3.9. The algorithm of Proposition 2.40 is rather cumbersome because it does not provide local translation rules L&R ⇝ s&t, as explained in Remark 2.37.

In a later subsection, we will use the projective model of the orbifold to define a loop which is homotopic to our modular geodesic, and which lifts in M \ {i, j} according to the simpler algorithm of 2.33.

Proof. Consider a closed geodesic in M corresponding to a conjugacy class in π 1 (M). Among its lifts in HP, those which intersect (0, ∞) positively are the translation axes

(α ′ k , α k ) of its Lyndon representatives A k ∈ PSL 2 (N).
The translation axis (α ′ k , α k ) intersects the base triangle ▽ 2 ⊂ 2 along a segment, which equals the inverse image by an element in PSL 2 (N) of the intersection between (α ′ 0 , α 0 ) and the k-th triangle of 2 from the base edge. We obtain a union of n segments in ▽ 2 which intersect its first barycentric subdivision ▽ ′ 2 as described by the algorithm of Proposition 2.40 translating L&R-words into s&t-words (which tells in particular whether each segment passes to the left or right of the points i and j). (We some axes pass through any of {i, T i, T -1 i}, the same holds for their canonical perturbations.)

These (perturbed) segments project to the (perturbed) modular geodesic under the action of T by rotation of order 3 which cyclically permutes the three gliders in ▽ ′ 2 , and the identifications of the edges by L&R. Consequently, this (perturbed) geodesic lifts in M \ {i, j} to a loop whose homotopy class is described by an s&t cycle, obtained by translating the L&R-cycle according to Proposition 2.40. 

Intersection numbers of modular geodesics

Recall we learnt at the end of Section 2.3 how to construct invariants of two conjugacy classes in the modular group. One of them, well defined for primitive hyperbolic classes, is the intersection number between the corresponding modular geodesics. Of course, this intersection number extends to non primitive hyperbolic conjugacy classes provided we count intersection numbers with the appropriate multiplicities.

Proposition 3.10. The geometric intersection of the closed geodesics in M associated to the hyperbolic elements A, B ∈ Γ = π 1 (M) is equal to the finite sum: This sum has finite support, and can be computed as :

I([A], [B]) = (U,V ) |cross|(U AU -1 , V BV -1 ) indexed by the (U, V ) ∈ (Γ/ Stab A) × Γ (Γ/ Stab
I([A], [B]) = I + ([A], [B]) + I + ([A], [ t B])
where we define I + ([A], [B]) as the same sum restricted over the pairs (σ i A, σ j B) of Lyndon representatives for the conjugacy classes of A, B ∈ PSL 2 (N), that is:

I + ([A], [B]) = len(A) i=1 len(B) j=1 |cross| σ i A, σ j B
Remark 3.11. The topological space underlying the modular orbifold has trivial homology, so the algebraic intersection numbers between modular geodesics are trivial. Hence for all hyperbolic A, B ∈ PSL 2 (Z), the cross function satisfies the identity:

(U,V ) cross(U AU -1 , V BV -1 ) = 0.
Remark 3.12. One may also compute the intersection numbers between (perturbed) modular geodesics using the s&t-cycles of their lifts in M \ {i, j}.

This relies on the algorithm of Birman-Series [BS84] which computes the minimal intersection numbers between homotopy classes of loops in a compact surface of negative euler characteristic with non-empty boundary. The fundamental group of such a surface is free of finite type. The algorithm takes as input a free cyclically ordered set of generators, and the description of loops as cyclic words in those generators.

Example 3.13. The formulae of Proposition 3.10 are valid even when A, B are equal or opposite, in which case they count the intersection number between two parallel copies of a same loop, which is twice its self-intersection. More generally they are valid when A, B are not coprime, that is equal to powers of a same element.

For instance the loop corresponding to RLL has self-intersection 3 since: 

I([RLL], [RLL]) = I + ([RLL], [RLL]) + I + ([RLL], [RRL]) = 4 + 2 = 2 × 3.
(t +1 s -1 )(t -1 s -1 )(t +1 s -1 ) and (t -2 s -1 )(t -1 s -1 )(t -1 s -1 )(t -1 s -1 ).
By Corollary 3.8 the modular geodesic lifts in M \ {i, j} to the homotopy class of (t +1 s -1 )(t -1 s -1 )(t +1 s -1 ), of which a representative is depicted in Figure 3.6.

For another example, the loop corresponding to RLLL has self-intersection 4 as:

I([RLLL], [RLLL]) = I + ([RLLL], [RLLL]) + I + ([RLLL], [RRRL]) = 6 + 2 = 2 × 4.
By Corollary 3.8 the modular geodesic lifts in M \ {i, j} to the homotopy class of (t -2 s -1 )(t -1 s -1 )(t -1 s -1 )(t -1 s -1 ) of which a representative is depicted in Figure 3.6.

Definition 3.14. A multiloop in an orientable orbifold is called taut when it is minimally self-intersecting in its homotopy class. It is called essential when none of its components can be homotoped to a point whether smooth or singular, into a boundary component, or into a cusp.

Freedman-Hass-Scott have shown [START_REF] Freedman | Closed geodesics on surfaces[END_REF] that in a compact orientable riemannian surface, a finite collection of essential geodesics which remain in the interior defines a taut multiloop. (If the boundary is convex, and in particular if it is geodesic, then any essential geodesic must remain in the interior). Proposition 3.15. Any collection of (perturbed) modular geodesics defines a multiloop in M \ {i, j} which is taut.

Proof. The perturbed modular geodesic remains in the complement of two disjoint disc neighbourhoods D i , D j of i, j in M. Consider the restriction of the hyperbolic metric of M to M \ (D i ∪ D j ). If the modular geodesic avoids i&j, then we are done. Otherwize, provided its perturbation and the disc neighbourhoods D i , D j are chosen small enough, one may slightly increase the metric in the collar neighbourhoods of the boundaries ∂D i and ∂D j so that the unique geodesic of M\(D i ∪D j ) in the homotopy class of the perturbed geodesic lies inside M \ (D i ∪ D j ) and remains isotopic to the perturbed modular geodesic. Question 3.16. We conjecture that modular geodesics are minimally intersecting in their orbifold homotopy class (which is a stronger statement than Proposition 3.15).

In other terms, we believe that among all homotopy classes in the surface M\{i, j} which map to a given hyperbolic homotopy class in the orbifold M, the one defined by the lift of the (perturbed) modular geodesic has minimal self-intersection.

Linear representatives for hyperbolic conjugacy classes in π 1 (M)

Let us now define the linear representative of a hyperbolic conjugacy class in the modular group. It is a loop in the projective model of the modular orbifold described at the beginning of this section. In particular it will have a well defined isotopy class. Definition 3.17. Fix a conjugacy class in PSL 2 (Z) and let A k = σ k A ∈ PSL 2 (N) be its n Lyndon representatives: their stable eigen-directions intersect the base triangle ▽ 1 of the lotus 1 in n disjoint segments avoiding all the vertices of ▽ ′ 1 . After quotienting ▽ 1 by the L&R&T -identifications yielding the projective model of M, we obtain a loop which we call the linear representative of the conjugacy class.

This linear representative lifts in M \ {i, j} to a homotopy class whose s&t-cycle is obtained from the L&R-cycle of the A j by the translation rules of Proposition 2.33:

LL ⇝ (t -1 s -1 )L RR ⇝ (t +1 s +1 )R LR ⇝ (t -1 s +1 )R RL ⇝ (t +1 s -1 )L
which up to a cyclic permutation corresponding to a conjugacy by s +1 or s -1 amount to L ⇝ s -1 t -1 and R ⇝ s +1 t +1 .

Remark 3.18. Since ▽ 1 → M is orientation reversing, the rules L ⇝ s -1 t -1 and R ⇝ s +1 t +1 tell us how the axis of an L&R-word in 1 projects to M seen from beneath. From this perspective, the loops s, t ⊂ M\{i, j} appear to turn anti-clockwize around the singularities, as in Figure 3.7 (contrary to 3.4).

Let us propose practical algorithms to draw from a primitive L&R-cycle of length n, the stable eigendirections of its Lyndon representatives A k intersected with ▽ ′ 1 , with enough precision. The required precision will be such that the translates under the projective action of T provides a faithful picture of its isotopy class in the base glider , and we shall explain how to report all segments in the base glider just after.

Arithmetic algorithm. Recall the increasing bijections A

k ↔ A k (1) ↔ α k = A ∞ k (1)
, and note that the lines of inclination α k and A 2 k (1) intersect the gliders in the first n triangles in the lotus according to the same pattern. This yields the first algorithm: for each k, intersect the base triangle of the lotus with the line of inclination A 2 k (1) to obtain a segment, and label its initial and endpoint by k and k + 1.

▽ 1 → M op t +1 t -1 s -1 s +1 s +1 s -1 R L s t
Combinatorial algorithm. The k-th segment goes from the hypothenuse (v ∞ , v 0 ) to either (v 1 , v 0 ) or (v ∞ , v 1 ) depending on whether A k starts with an L or an R, the relative position of its endpoint with respect to the middle of the edges depends on the second letter. This determines the individual positions of the segments with respect to the first barycentric subdivision ′ 1 , and we know they are disjoint. Let n w be the number of cyclic permutations of the L&R-word with prefix w. Place n points on the base edge, partitioned as n L + n R on the left & right of its midpoint, and label them by the L&R-factorisations of the A k in lexicographic order.

Trace a segment from each of the n R points on the left to a point on the horizontal edge, with n RR landing to the left and n RL landing to the right of its barycenter. Trace a segment from each of the n L points on the right to a point on the vertical edge, with n LR landing to the left and n LL landing to the right of its barycenter.

Hybrid algorithm.

In the linear model, the endpoint of one segment determines the starting point of the next as suggested in figure 3.9, whence a third algorithm.

Find an approximation of the first point on (v 0 , v ∞ ) by intersecting with the rational line through A 2 0 (1). Then follow the radial flow and return to (v 0 , v ∞ ) each time leaving the exiting the base triangle using the L&R identifications. Stop when the L&R-factorisation of A 0 has been read: the loop almost closes up.

Drawing the loop after projection ▽ 1 → M. Now that we can draw the linear representative in ▽ 1 , we may report all segments in the base glider using the identifications of its edges with those of the other two gliders provided by L&R&T .

In fact, it is enough to consider the identifications given by L&R, and of the pairs of equidistant points on the edges (v ∞ , i)&(i, v 0 ) as well as (v ∞ , j)&(j, v 0 ). This is because the lines under consideration will never cross the edge (j, v 1 ).

We may thus report all segments in the base glider and obtain a configuration of segments providing a faithful picture for the isotopy class of the linear representative. Figure 3.9: Apply the hybrid algorithm to RLL, report the segments in the base glider and project by ▽ 1 → M to recover the homotopy class of s +1 t +1 s -1 t -1 s -1 t -1 . Compare Figure 3.6.

Remark 3.19. The linear representatives for a finite set of primitive hyperbolic conjugacy classes of π 1 (M) defines a multiloop in M.

In particular, it has a well defined isotopy class which we may draw using the previous algorithms provided we adjust some precision issues to take into account the relative positions between the various components.

Remark 3.20. Using these drawing algorithms, we may observe on figure 3.9 that the linear representative of RLL has self-intersection 4. However, we showed in Example 3.13 that the corresponding modular geodesic has self-intersection 3.

Consequently, the linear representatives are not always minimally intersecting in their orbifold homotopy class.

Proposition 3.21. The linear representative of a primitive hyperbolic conjugacy class in π 1 (M) defines a loop in M \ {i, j} which is minimally intersecting in its homotopy class. In M \ {i, j}, any two linear representatives realise the minimal intersection number between loops in their homotopy classes.

Proof. The euclidean metric on the base triangle ▽ 1 of the lotus minus its barycenters (of face, edges and vertices) descends to a flat metric on M \ {i, j}, for which the linear representatives are closed geodesics. We conclude as in Proposition 3.15 that they must be minimally intersecting. [START_REF] Birman | An algorithm for simple curves on surfaces[END_REF] to the s&t-cycles encoding their homotopy classes in M \ {i, j}.

Remark 3.22. The intersection numbers between linear representatives may thus be computed by applying the algorithm of Birman-Series

For example, the linear representative of RLL has homotopy class in M \ {i, j} given by t +1 s -1 t -1 s -1 t -1 s +1 , and the Birman-Series algorithm confirms that it has self-intersection 4. Scholium 3.23. The linear representative and the perturbed hyperbolic representative of a same hyperbolic conjugacy class in π 1 (M) are homotopic loops in the orbifold M, but they often lift to non homotopic loops in the surface M \ {i, j}. In algorithms terms, the Propositions 2.33 and 2.40 translate L&R-cycles into s&t-cycles which have the same exponents of s modulo 2 and of t modulo 3, but may well be different.

Can we improve the orbifold-homotopy to a stronger equivalence relation, for instance corresponding to homotopy of the lifted loops in the unit tangent bundle ? We will address such questions in Section 4.1.

Lifting geodesics to Galois covers

We wish to lift closed geodesics from the modular orbifold to Galois covers, in order to simplify their topology, construct tractable invariants and reveal hidden structures.

Covers and Galois covers

We mark the hyperbolic plane HP at a point infinitely close to the fixed point i of S and on the geodesic towards the fixed point j of T . The quotient orbifold M = H/ PSL 2 (Z) is thus pointed accordingly, and this identifies its loop fundamental group π 1 (M) with the Galois group PSL 2 (Z) of its universal cover HP → M.

Every cover M 0 of M is obtained by quotienting the universal cover HP of M by the action of a subgroup of its fundamental group π 1 (M) = Gal(HP/M), that is the fundamental group π 1 (M 0 ) = Gal(HP/M).

The cover is Galois when the subgroup is normal, so the quotient is a group. Thus a Galois cover M 0 → M corresponds to a morphism from the fundamental group of the base π 1 (M) = Gal(HP/M) onto the symmetry group of the cover Gal(M 0 /M), and the kernel is the fundamental group of the total space π 1 (M 0 ) = Gal(HP/M 0 ).

Dessin d'enfants in general covers

Now fix a cover M 0 → M and denote Γ 0 → Γ the corresponding inclusion of fundamental groups. The cusps of M 0 lie above the cusp of M and are parametrized by the orbits under Γ 0 of the ideal vertices QP 1 ⊂ ∂HP for the triangulation 2 ⊂ HP.

Consider the graph T ′ /Γ in M = HP/Γ whose vertices are the orbifold singularities and whose only edge is the geodesic arc between them. Its preimage in M 0 = HP/Γ 0 is a graph T ′ /Γ 0 homotopically embedded in the topological space underlying the orbifold structure of M 0 . Every connected component of the complement contains a unique cusp of M 0 . The graph is bipartite since every edge connects one vertex covering i to another covering j, and their degrees divide 2 and 3 respectively. Note that the edges of T ′ /Γ 0 are in bijection with the cosets of Γ/Γ 0 .

The vertices of degree one in T ′ /Γ 0 are (all) the orbifold singularities of M 0 , they correspond to the conjugacy classes of torsion subgroups in Γ 0 , which are necessarily isomorphic to Z/2 or Z/3. Indeed, an orbifold singularity of M 0 is the projections of a point p ∈ HP with non-trivial stabiliser Stab(p) ⊂ Γ 0 , and the singularity p mod Γ 0 corresponds to the conjugacy class of Stab(p) in Γ 0 . Since Γ 0 ⊂ Γ, the point p ∈ HP must be a vertex of T ′ , and its stabiliser must be either Z/2 or Z/3. Accordingly, it projects to either i or j under the cover M 0 → M.

In particular Γ 0 is torsion-free if and only if M 0 is a smooth Riemann surface. In that case every edge of T ′ /Γ 0 has an extremity of degree 2 and an extremity of degree 3, and this quotient graph is the first barycentric subdivision of a trivalent graph T /Γ 0 . The surface M 0 retracts by deformation on this embedded trivalent graph, so its fundamental group Γ 0 is free.

Remark 3.24. The previous discussion implies that if a subgroup Γ 0 ⊂ Γ is torsionfree then it is free. If moreover it has finite index, then the graph T /Γ 0 has twice that amount of edges and is thus finite, so its euler characteristic equals that of M 0 . Hence the rank of Γ 0 equals the abelian rank of H 1 (M 0 ; Z) which is one minus the number of vertices plus the number of edges in T /Γ 0 .

Corollary 3.25. The modular group has exactly two free subgroups of rank 2, or equivalently with index 6. They correspond to covers of the modular orbifold by a surface homeomorphic to a sphere with three punctures and a torus with one puncture.

Since these surfaces are not homeomorphic, these two subgroups are not conjugate, hence they are normal by unicity, and the covers are Galoisian.

The Galois covers with conical singularities

Now suppose the covering M 0 → M is Galois and denote 1 → Γ 0 → Γ → Π → 1 the corresponding short exact sequence of Galois groups. The Galois action of Π is freely transitive on the edges of T ′ /Γ 0 since the quotient is T ′ /Γ.

In particular the vertices above i all have degree 1 or 2 and those above j all have degree 1 or 3. Since the graph is connected, there is at most one vertex of degree 1, so there are only two Galois covers of M which have singularities, pictured in 3.10.

The first has two singularities of order 3, it corresponds to the kernel of the morphism Z/2 * Z/3 → Z/2 counting the number of S modulo 2. The second has three singularities of order 2, it corresponds to the kernel of the morphism Z/2 * Z/3 → Z/3 counting the number of T modulo 3. The corresponding galois cover of the modular orbifold is a punctured torus T * , the action of the Galois group Z/6 is represented in figure 3.11. Proof. The abelianisation functor from the category of groups to the category of abelian groups (sending a group to its largest abelian quotient) is defined by a universal initial property, so it maps the sum in the category of groups (free amalgam) to the sum in the category of abelian groups (equal to the product).

The derived subgroup and the punctured torus
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The derived subgroup of Γ, defined as the kernel Γ ′ of its abelianisation map, is generated by all its commutators

[A, B] = ABA -1 B -1 for A, B ∈ Γ.
The elements RL = [T, S -1 ] and LR = [T -1 , S] generate a subgroup of Γ ′ acting on 2 with fundamental domain a quadrilateral obtained as the union of the two adjacent triangles (∞, 0, 1) and (0, ∞, -1).

In the first barycentric subdivision ′ 2 , this quadrilateral is covered by 6 copies

LR RL 1 0 1 1 0 1 -1 1 Z/6 ⇝ Figure 3
.11: The group Γ ′ acts on (the inside of) 2 with quotient a (punctured) torus. The Galois action of Γ/Γ ′ = Z/6 on the torus covering the modular orbifold.

of a fundamental domain for Γ, so the group generated by RL and LR has index 6 in Γ, and therefore equals Γ ′ .

As RL and LR match the opposite edges of this quadrilateral, the quotient HP/Γ ′ is a punctured torus T * whose fundamental group is free on those two generators.

Remark 3.27. The derived subgroup Γ ′ is the intersection of the kernels of the maps Γ → Z/2 and Γ → Z/3. These count the (signed) number of occurrences of the letters S and T modulo 2 and 3 respectively.

Remark 3.28. The vertices P(Z 2 ) of 2 correspond to the horocycles Γ/ R of T . They can also be visualised in HP as the components of the complement HP \ T . What we just saw implies that Γ ′ acts transitively on P(Z 2 ), and the unique orbit corresponds to the puncture of the torus, so Γ ′ acts on 2 with quotient T.

The second derived subgroup and the hexagonal graph

Finally we study the Galois cover of M corresponding to the second derived subgroup

Γ ′′ = [Γ ′ , Γ ′ ] of Γ, or the metabelianisation morphism Γ → Γ/Γ ′′ .
We have already covered M by T * using the abelianisation morphism Γ → Γ/Γ ′ , and we now investigate the Galois cover of T * corresponding to the abelianisation morphism Γ ′ → Γ ′ /Γ ′′ (whose compactification yields the universal cover of T).

Proposition 3.29. The abelianitation Γ ′ → Γ ′ /Γ ′′ corresponds to the Hurwicz map π 1 (T * ) → H 1 (T * ; Z) of the punctured torus, and is thus given by Z * Z → Z × Z.

It corresponds to a Galois covering of the punctured torus T * by a punctured plane along a lattice R 2 \ Z 2 , identified (by the Jacobian map) with H 1 (T * ; R) \ H 1 (T * ; Z).

Its kernel

Γ ′′ = π 1 (R 2 \ Z 2
) is freely generated by an infinite set of elements (whose conjugacy classes in Γ ′ are) indexed by H 1 (T * ; Z) = Γ ′ /Γ ′′ . For example, the conjugates of [RL, LR] by all (RL) m (LR) n ∈ Γ ′ with m, n ∈ Z 2 freely generate Γ ′′ .

Remark 3.30. The vertices P(Z 2 ) of 2 parametrize the horocycles Γ/ R of T . They can also be visualised in HP as the components of the complement HP \ T .

Proposition 3.29 implies that the group Γ ′′ acts on P(Z 2 ) with quotient a lattice Z 2 corresponding to the punctures in R 2 \ Z 2 . In particular it acts on 2 with quotient the universal cover R 2 of T.

We now deduce the Galois action of

Γ/Γ ′′ on R 2 \ Z 2 → M by combining the action of Γ/Γ ′ on R 2 \ Z 2 → T * with the action of Γ/Γ ′ on T * → M.
The group Γ ′′ acts on the trivalent tree T ⊂ 2 \ QP 1 with quotient a trivalent graph H ⊂ R 2 \ Z 2 . The latter inclusion a homotopy equivalence, and the regions in the complement (R 2 \ Z 2 ) \ H are punctured hexagons (for the hyperbolic metric).

Corollary 3.31. The group Γ/Γ ′′ acts freely transitively on the oriented edges of H, or equivalently on the edges of its first barycentric subdivision H ′ . The subgroup Γ ′ /Γ ′′ acts by translation of H ⊂ R 2 \ Z 2 with fundamental domain a tripod formed by 3 incident edges of H as in figure 3.12. This represents Γ/Γ ′′ as the affine isometry group of a hexagonal lattice in the oriented euclidean plane. More precisely Γ/Γ ′′ = Γ ′ /Γ ′′ Γ ′ /Γ where the action of Γ/Γ ′ = Z/2 × Z/3 on Γ ′ /Γ ′′ = Z 2 is generated by the rotations S and T of order 2 and 3 around the 2-valent and 3-valent vertices of H as in figure 3.12. Remark 3.32. Notice that Γ ′ /Γ ′′ identifies canonically with the edges of H, which are parallel to the base edge. On the other hand the set QP 1 /Γ ′′ identifies canonically with the regions of R 2 \ H.

The group Γ ′ /Γ ′′ acts freely transitively on the set QP 1 /Γ ′′ , and one may fix a bijection sending an edge of H to the region of R 2 \ H placed immediately on its right (this is not quite canonical as one may have chosen the region above or under).

Corollary 3.33. The set QP 1 / PSL 2 (Z) ′′ is a free module of rank one over the ring of integers Z[j].

The addition of two (classes of) rational numbers is obtained by concatenating their even continued fraction expansions.

T -1 T S -1 S R L RL LR Figure 3.12: Action of Γ/Γ ′′ = Γ ′ /Γ ′′ Γ/Γ ′ on the hexagonal graph H.
The metabelian cover HP/Γ ′′ is naturally endowed with the hyperbolic metric, but also with the unique euclidean metric which is invariant by the automorphism action of Γ/Γ ′′ , for which the hexagonal lattice H ⊂ R 2 \ Z 2 is regular.

Question 3.34. The discovery of this hexagonal lattice structure on QP 1 /Γ ′′ with automorphism group Γ/Γ ′′ is very intriguing.

In particular, many questions arise concerning the group structure of QP 1 /Γ ′ , namely the arithmetics underlying the addition of such classes of fractions...

For instance can we complete this addition to Γ ′′ -classes of quadratic irrationals, or to RP 1 /Γ ′′ ? How to interpret alignment in Γ ′ /Γ ′′ in terms of QP 1 /Γ ′′ ?

Lifting geodesics in Galois covers

Consider first a finite Galois covering M 0 → M whose total space is non singular, and denote Γ 0 → Γ the corresponding finite index normal subgroup which is free.

The action of Γ by inner automorphisms restricts to an action by automorphisms on Γ 0 , which corresponds to projecting a loop γ 0 ∈ π 1 (M 0 ) into π 1 (M), conjugating it by γ ∈ π 1 (M) and lifting it back into π 1 (M 0 ). On the one hand this restricts to the inner automorphism action of Γ 0 , which corresponds to conjugating by those loops in π 1 (M) which lift to loops in π 1 (M 0 ); on the other hand it quotients to the action of Γ/Γ 0 by outer automorphism on Γ 0 , that is by monodromy on the fiber of M 0 above the base point of M, or by Galois transformations of M 0 → M.

For γ ∈ Γ and n ∈ Z, the conjugacy class of γ n is either disjoint or contained in the normal subgroup Γ 0 , and the latter happens when n belongs to the ideal mZ generated by the order of γ mod Γ 0 . Topologically, the loop γ n ∈ π 1 (M) lifts to an arc which is a loop in π 1 (M 0 ) when n ∈ mZ. The Γ-conjugacy class γ m splits modulo Γ 0 -conjugacy into the disjoint union of k classes α 1 , . . . , α k . The conjugacy action of Γ/Γ 0 on the set {α 1 , . . . , α k } is transitive, and the stabiliser of α 1 is the cyclic subgroup of order m generated by γ mod Γ 0 .

To recast this dicussion geometrically, let γ ∈ Γ be a hyperbolic conjugacy class. A closed geodesic γ of length l in the base M has preimage in M 0 a finite union of closed geodesics α 1 ∪• • •∪α k which all have the same length ml with mk = Card Γ/Γ 0 . Indeed, the Galois group Γ/Γ 0 acts transitively on the α j and the stabiliser of each α j is a cyclic group of order m. The integer m is minimal such that γ m lifts to a closed loop in M 0 , and together with the degree Card Π of the covering, it determines the number of components k in the preimage. Remark 3.35. Most of this discussion can be adapted to infinite Galois covers, but now the preimages of loops in M may by infinite arcs in M 0 , and one must be careful to consider the right notions of homotopy adapted to the context (either equivariant with respect to the cover, with compact support, or relative to the ends).

Recall from Section 3.1 that a hyperbolic conjugacy class in π 1 (M) encodes the homotopy class of two loops in the orbifold M, namely its hyperbolic representative and its linear representative. More generally, a finite collection of hyperbolic conjugacy classes in π 1 (M) has hyperbolic and linear representatives, which are multiloops in M whose isotopy classes are well defined.

Recall from Example 3.13 that the (perturbed) hyperbolic and linear representatives may have distinct homotopy classes in M \ {i, j}. However, they are homotopic in the orbifold M, and so are their preimages in any Galois cover M 0 . If we assume that the Galois cover has no orbifold singularities, then one can say more. Proposition 3.36. Consider a normal subgroup Γ 0 ⊂ Γ of finite index which is torsion free, and let M 0 → M be the corresponding finite Galois cover.

Consider the preimage in M 0 of the hyperbolic and linear representatives associated to a finite collection of hyperbolic conjugacy classes in Γ.

Both of these multiloops are taut, and they are connected by a sequence of isotopies and Reidemeister triangle moves RIII.

Proof. First we lift the hyperbolic and flat metrics from M to M 0 . The preimages of the hyperbolic and linear representatives are collections of geodesics for those lifted metrics. We deduce, using [START_REF] Freedman | Closed geodesics on surfaces[END_REF] as in Propositions 3.15 and 3.21, that these multiloops be taut. Hass and Scott [START_REF] Hass | Shortening curves on surfaces[END_REF] proved that in a smooth surface with negative euler characteristic, all minimally intersecting multiloops in a same homotopy class are connected by a sequence of isotopies and triangle moves.

Remark 3.37. Since a sub-multiloop of a taut multiloop is taut, the previous result applies equally well to sub-multiloops of the preimage in M 0 of the hyperbolic and linear representatives, labelled by the same subsets of conjugacy classes in Γ 0 . Scholium 3.38. We may apply this proposition to the case of the finite Galois cover

T * → M associated to the derived subgroup [Γ, Γ] ⊂ Γ.
We will do this in Section 4.1 to deduce that the hyperbolic and linear representatives have isotopic lifts in the unit tangent bundle of M. Question 3.39. We may now ask: which loops in M pull-back in M 0 to simple multiloops, that is with disjoint and simple components? More generally, what are the intersection numbers between these components?

Lifting combinatorial paths and geodesics

Let us define edge-paths and local geodesics in T ′ 0 = T ′ /Γ 0 as we did in T ′ between statements 2.8 and 2.11. An edge-path in T ′ 0 is a sequence of edges indexed by an interval of Z whose length may be finite or infinite, such that two successive elements share an extremity. This yields a sequence of S and T ±1 indicating how to turn the edges around their bivalent and trivalent vertices to get from one to the next (which is unique if Γ 0 = Γ). An edge-path is locally geodesic when this sequence of S and T ±1 alternates between both letters (so we are never turning around vertices).

The projection T ′ → T ′ 0 between cyclically oriented based graphs sends local geodesics of T ′ to local geodesics in T ′ 0 . Conversely, if Γ 0 is torsion free, then every local geodesic in T ′ 0 lifts to a unique local geodesic in T ′ once we have lifted one edge. Note that in T ′ 0 the locally geodesic edge-paths may not be injective, and that two edges may be connected by several global geodesics.

Lifting geodesics in the hexagonal graph

We now specialise to the discussion of the previous paragraph to case Γ 0 = Γ ′′ so that T ′ 0 = H ′ . (The primes denoting the derived subgroups and the primes denoting the first barycentric subdivisions are unrelated, but no confusion should arise.) The projection T ′ → H ′ between cyclically oriented based graphs sends local geodesics of T ′ to local geodesics in H ′ . Conversely, every local geodesic in H ′ lifts to a unique local geodesic in T ′ once we have lifted one edge.

In particular, an element of A ∈ Γ corresponds to a finite local geodesic segment starting from the base edge of H ′ . Notice how the last edge e A mod Γ ′′ encodes the metabelianisation A mod Γ ′′ as an automorphism of H ′ . In particular we may read the abelianisation A mod Γ ′ by comparing the angle made between the last edge and the first edge which lies in 2πZ/6, and if A ∈ Γ ′ we may read the metabelianisation A mod Γ ′′ from the difference between the last and first edge which is a vector in Z 2 .

Moreover, the translation axis in T ′ of a primitive hyperbolic A ∈ Γ projects to a local geodesic g A mod Γ ′′ in H ′ which uniquely determines A. Indeed this amounts to choosing a local geodesic from the base edge to that local geodesic, and extracting from there its minimal period (being careful that the first and last edge of the period may not be aligned, this depends on the abelianisation of A in Z/6).

Conversely, two primitive hyperbolic elements are conjugate in Γ if and only if the projections of their translation axes in H ′ belong to the same orbit under the automorphism action of Γ/Γ ′′ . We may thus define invariants of a primitive hyperbolic conjugacy class A ∈ Γ using the shape of the periodic (bi-infinite or closed) local geodesic g A mod Γ ′′ in H ′ . Of course, we know how to extract the period of g A mod Γ ′′ which encodes everything (such as the conjugacy class of A mod Γ ′′ ), but let us show how to read off simpler invariants from its geometry. Proposition 3.40. For a hyperbolic A ∈ Γ, the hyperbolic geodesic γ A mod Γ ′′ in HP/Γ ′′ and the combinatorial geodesic g A mod Γ ′′ in T /Γ ′′ avoid the vertices P(Z 2 )/Γ ′′ and intersect the same sequence of triangles in 2 /Γ ′′ ; in particular they are homotopic in R 2 \ Z 2 relative to the complement of large euclidean balls.
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Proof. The proof follows from Proposition 2.28 and Corollary 2.31 which identify the sequences of triangles in 2 intersected by γ A and g A .

Remark 3.41. In chapter 5, we shall deform the inclusion PSL 2 (Z) ⊂ PSL 2 (R) to a one parameter family of discrete and faithful representations ρ q : Γ → PSL 2 (R) such that the quotient ρ q (Γ)\HP corresponds to opening the cusp of M.

In HP/ρ q (Γ ′′ ) this yields a homotopy from the hyperbolic geodesic γ A mod Γ ′′ when q = 0 to the combinatorial geodesic g A mod Γ ′′ when q → ∞.

Until the end of this subsection, for A ∈ Γ, let a be its order in Γ/Γ ′ , and A ′ = A a its smallest power which belongs to Γ ′ . The (geometric or combinatorial) translation axes of A and A ′ coincide in T , hence so do their projections in H.

Note that A ′ acts by translation on H ⊂ HP/Γ ′′ and preserves the projected axes g A mod Γ ′′ or γ A mod Γ ′′ . (When A ′ ∈ Γ ′′ the translation is trivial and these projected axes are closed.) A fundamental domain for these projected axes under A ′ consists in na periods where na is the primitivity exponent of A ′ ∈ Γ, thus n is the primitivity exponent of A ∈ Γ.

Length and distance.

For an infinite order primitive A ∈ Γ, let len(A) ∈ N * be the period length of g A in T , and set len(A n ) = n len(A). If A ∈ PSL 2 (N) then len(A) = #L + #R counts the sum of the numbers of L&R in its factorisation. Since len is invariant by conjugacy we can always compute on those Lyndon representatives. For any A ∈ Γ with infinite order, len(A) is read off a fundamental domain for g A mod Γ ′′ under the translation action of A ′ mod Γ ′′ as half the length of its S&T ±1 factorisation divided by the order a of A ∈ Γ/Γ ′ .

Recall that if λ A denotes the hyperbolic translation length of A, that is the hyperbolic length of a fundamental domain for γ A mod A then Tr(A)/2 = cosh λ A /2 where λ A is the hyperbolic length. One may ask for the relationship between the integers l = len(A) and t = Tr(A). In terms of bounds we have l + 1 ≤ t ≤ F ib(l) where the left term is attained for A = RL l and the right one is attained for A = (RL) l , and we expect the normalised statistics of Tr given len to approach a Gaussian. In terms of deformations of representations ρ q : Γ → PSL 2 (R), we shall see that the hyperbolic length λ Aq converges to the combinatorial length len(A) as q → ∞.

Another invariant of the conjugacy class of A mod Γ ′′ is the euclidean distance in 2 /Γ ′′ between the cusps indexed by 1(1) and A(1). This is easy to read off the geometry of g A mod Γ ′′ provided we know len(A).

We may also define the breadth of A as the length of the smallest B ∈ Γ such that g A mod Γ ′′ and g BAB -1 mod Γ ′′ are disjoint. Alternatively we may consider the norm of the smallest translation B ∈ Γ ′ /Γ ′′ such that g A mod Γ ′′ and B • (g A mod Γ ′′ ) are disjoint.

Rademacher cocycle and the index function. For an infinite order A ∈ Γ, consider a fundamental domain for g A mod Γ ′′ under the translation action of A ′ , and let a Rad(A) ∈ Z be its winding number counted in multiples of 2π/6. Of course Rad(A) is invariant by conjugacy and Rad(A n ) = n Rad(A). We may also define Rad(S ±1 ) = ±3 and Rad(T ±1 ) = ±2.

Note that if A ∈ PSL 2 (N) then Rad(A) = #R-#L counts the difference between the numbers of L&R in its factorisation, so the restriction Rad : PSL 2 (N) → Z is a morphism of monoids. Now for a infinite order element A ∈ Γ we define its asymptotic index function

Ind A : QP 1 /Γ ′′ → Z
which to a cusp of HP/Γ ′′ associates the index of the hyperbolic geodesic γ A mod Γ ′′ , or equivalently of the combinatorial geodesic g A mod Γ ′′ . If A ∈ Γ ′′ then the projected geodesics are closed, and we must travel around them once. The index function of A n is equal to that of A, so we might as well suppose A primitive. The index function of a conjugacy class is well defined only modulo the action of Γ/Γ ′′ at the source, because

Ind CAC -1 = Ind A •C.
This defines a "frieze pattern" with integers decorating the points of the hexagonal lattice which is periodic under the action of A ′ mod Γ ′′ . Then Rad(A ′ ) is equal to the eulerian integral of Ind A along a period.

Chapter 4

Modular knots

Outline of the chapter

Let us recall a few facts (contained in Proposition 1.82) concerning the action of PSL 2 (R) on the hyperbolic plane HP, its unit tangent bundle, and its boundary RP 1 . The group PSL 2 (R) acts freely transitively on the unit tangent bundle of HP, with which it therefore identifies once we have chosen a base point such as the unit vector based at the fixed point i of S and pointing towards the fixed point j of T .

As PSL 2 (R) is the unit tangent bundle to the hyperbolic plane PSL 2 (R)/ PSO 2 (R), the quotient U := PSL 2 (Z)\ PSL 2 (R) is the unit tangent bundle to the modular orbifold M = PSL 2 (Z)\ PSL 2 (R)/ PSO 2 (R). The left action of PSL 2 (Z) on PSL 2 (R) is free, so the quotient U is a 3-manifold. It is filled by the circular orbits for the right action of PSO 2 (R), and the space of orbits is the two-dimensional orbifold M.

The primitive closed hyperbolic geodesics in M, also known as modular geodesics, lift in U to the primitive periodic orbits for the geodesic flow, called modular knots. Let us recall from Section 2.2 that these correspond to the primitive hyperbolic conjugacy classes in the modular group. Such a conjugacy class intersects the monoid PSL 2 (N) freely generated by L&R along its Lyndon representatives: those are the cyclic permutations of a primitive L&R-word in which both letters occur.

This chapter is divided in two sections. The first describes the topology of the Seifert fibration U → M and the homotopy classes of modular knots and does not contain many new results. The second expresses the linking numbers between modular knots by various formulae with combinatorial, dynamical or group theoretical flavour.

The unit tangent bundle of the modular orbifold

The first section opens with a short discussion concerning orientation matters (which one may skip as it mostly serves to disentangle the canonical choices and conventions on which depend some chirality issues encountered along the way).

To describe the topology of the Seifert fibration U → M with generic fibers S 1 , we first study the corresponding exact sequence of fundamental groups, which is a central extension 1 → π 1 (S 1 ) → π 1 (U) → π 1 (M) → 1. Here we find it instructive to treat it as a special case of unit tangent bundle to a Fuchsian orbifold (the quotient of HP by a discrete subgroup of PSL 2 (R)).

Then we describe the Seifert parameters of the fibration, following [START_REF] Scott | The geometries of three manifolds[END_REF] and [START_REF] María | Classical tessellations and three-manifolds[END_REF]. We recover the fact that U is homeomorphic to the complement of a trefoil knot in the sphere. This had been shown in [START_REF] Milnor | Introduction to algebraic K-theory[END_REF]ğ10] and more precisely concerning compactification matters in [START_REF] Pourezza | The space of closed subgroups of R 2[END_REF]. We also refer to [START_REF] Pinsky | Templates for geodesic flows[END_REF] and [START_REF] Kloeckner | The space of closed subgroups of R 2 and Seifert invariants[END_REF]. Its chirality (which seems to have never been considered), depends on the orientation matters discussed at the beginning. In any case, this homeomorphism yields an isomorphism π 1 (U) B 3 with the braid group on 3 strands.

Recall from Chapter 3 that a collection of hyperbolic conjugacy classes in π 1 (M) has a hyperbolic representative and a linear representative, which are two immersed multiloops with no self-tangencies in M. We claim in Theorem 4.13 that their tangent lifts in U are isotopic links and provide an incomplete proof relying on Proposition 3.36. An alternative proof, referring to [Ghy07, ğ3.4], will be given in Theorem 4.24.

The homotopy classes of modular knots correspond to conjugacy classes in B 3 . To describe which ones, we first explain why a conjugacy class in B 3 is uniquely characterised by that of its projection in PSL 2 (Z) and of its abelianisation in Z. Then we show that the modular knot associated to a hyperbolic conjugacy class in PSL 2 (Z) has abelianisation given by the Rademacher invariant Rad(A) = #R -#L.

The proof relies on the homotopy equivalence of modular knots and Lorenz knots implied by Theorem 4.13. Indeed, unlike the hyperbolic representatives, the linear representatives have a straightforward description in terms of the L&R-cycle encoding the PSL 2 (Z)-conjugacy class. The tangent lift of linear representatives as Lorenz knots can be realised algebraically as a partial section of the projection

B 3 → PSL 2 (Z), which is a morphism of monoids PSL 2 (N) → B 3 sending L&R to σ -1
1 &σ 2 where σ j are the Artin generators of B 3 . Since the abelianisation of π 1 (U) is given by the linking number with the trefoil, we recover the fact that the Rademacher invariant of a hyperbolic conjugacy class is the linking number with the trefoil knot. This was discovered by É. Ghys in [START_REF] Ghys | Knots and dynamics[END_REF] where he gave three proofs relying on various other interpretations of the Rademacher invariant.

Finally we describe a fibration U → S 1 , whose pages are punctured tori T * transverse to the fibers S 1 of the Seifert fibration U → M. We take an algebraic standpoint, examining the corresponding diagrams between fundamental groups. This investigation could be generalised to unit tangent bundles of Fuchsian orbifolds with one cusp (their fundamental groups are free amalgams of cyclic groups), but we have not pushed the study in that direction. We refer to [Ghy17, Chapter on The cusp and the trefoil] and [START_REF] Milnor | Singular points of complex hypersurfaces[END_REF] for a geometric point of view on those structures.

Linking numbers of modular knots

In this section we provide several formulae for computing the linking numbers of modular knots.

We first recall [START_REF] Ghys | Knots and dynamics[END_REF]ğ3.4] which isotopes the master modular braid consisting of all modular knots into a branched surface Y ⊂ U called the Lorenz template. This yields a diagram for modular links, in which all crossings are positive. We deduce an algorithmic formula (Proposition 4.27) for computing linking numbers between modular knots, which was used by P. Dehornoy in [START_REF] Dehornoy | Les noeuds de Lorenz[END_REF]. This is a finite sum on the set of all pairs of Lyndon representatives for the hyperbolic conjugacy classes.

As an excursion, we show a variation on this formula (in Proposition 4.34) involving an infinite sum, which amounts to reordering the crossings. The idea consists in cutting the Lorenz template to identify the regions containing the crossings between modular knots with the occurrence of certain patterns in their corresponding L&R-cycles. We reformulate this as a factorisation of the infinite square matrix representing the linking form into a product of two infinite rectangular matrices counting the occurrences of patterns in L&R-words. This opens a door onto the Hilbertian and statistical analysis of the linking form, although we do not pursue those directions here.

The linking pairing is a function defined on pairs of conjugacy classes in the modular group: we wish to express it in terms of the intrinsic algebra of PSL 2 (Z). This is why we introduced the general formalism developed at the end of Section 2.3 to construct functions of pairs of conjugacy classes by averaging conjugacy invariants of pairs of elements. Indeed, we are able to recast the algorithmic formula in this formalism, using Lemma 2.43 which says when two matrices A, B ∈ PSL 2 (Z) can be simultaneously conjugated into PSL 2 (N), and the quantities cross & cosign which describe the relative position of the combinatorial axes g A , g B ⊂ T as in Figure 2.11. Thus we arrive to the main Theorem 4.44 in this section, which expresses the linking number lk(A, B) between primitive hyperbolic matrices as the sum over double cosets A \Γ/ B of (1 + cross)(1 + cosign).

Unit tangent bundle of the modular orbifold

As PSL 2 (R) is the unit tangent bundle to the hyperbolic plane PSL 2 (R)/ PSO 2 (R), the quotient U = PSL 2 (Z)\ PSL 2 (R) is the unit tangent bundle to the modular orbifold M = PSL 2 (Z)\ PSL 2 (R)/ PSO 2 (R).

We can also write HP = SL 2 (R)/ SO 2 (R) and U = SL 2 (Z)\ SL 2 (R) because the center {±1} ⊂ SL 2 (R) belongs both to SO 2 (R) and to SL 2 (Z), each of which implies that M = SL 2 (Z)\ SL 2 (R)/ SO 2 (R).

Since the left action of PSL 2 (Z) on PSL 2 (R) is free, the left quotient U is a threemanifold. It is filled by the circular orbits for the right action of PSO 2 (R), and the space of orbits is the two-dimensional orbifold M.

In this section we intend to describe the topology of this fibration U → M, introduce a transverse fibration T * → U → S 1 , and understand the position of their fibers with respect to periodic orbits for the geodesic flow in U.

Orientation of U

It is equivalent to orient PSL 2 (R), its tangent space sl 2 (R) at the identity, or its quotient U under the left action of its lattice PSL 2 (Z).

Note that the left action is isomorphic to the right action by the inversion map, which reverses the orientation of PSL 2 (R), because its differential acts like minus the identity on the tangent space sl 2 (R) at 1 ∈ PSL 2 (R), whose dimension is odd. We have chosen to let PSL 2 (Z) act on the left to stay coherent with the left action on the boundary of the hyperbolic plane and on continued fractions.

The real semi-simple Lie algebra sl 2 (R) is canonically oriented by the sign of a volume form associated to the non-degenerate Killing form. In Chapter 1 we worked with a metric which is -1/8 times the Killing form. Moreover, we defined our volume form in Corollary 1.20 so that [K, J, S] = {K, J}, S = det(S) = 1 and (K, J, S) is a positive basis, whereas it is negative for the Killing form.

The Killing convention defines a preferred orientation on PSL 2 (R) whence on U. Let us now provide a differential viewpoint on that matter. Remark 4.1. Let M be a differentiable manifold, and T its tangent bundle.

A Riemannian (or Finslerian) metric on M defines a unit tubular neighbourhood of the trivial section M ⊂ T , whose boundary is the unit tangent bundle U for that metric. Hence the homeomorphism type of the unit tangent bundle does not depend on the metric. Intrinsically, one can define U = (T \ M )/ ∼ as the complement of the trivial section modulo the equivalence relation (p, v) ∼ (p, λv) for λ ∈ R * + .

Now the tangent space at a point (p, v) ∈ T in the total space contains the tangent space to the fiber T p M , which is identified with T 0 (T p M ) = T p M , and the quotient is isomorphic to the tangent space T p M of the base at the projected point. Hence the canonical short exact sequence of vector spaces 0

→ T p M → T (p,v) T M → T p M → 0.
Consequently, T is globally oriented by concatenating the orientations given by the base followed by the fiber, independently on the initial choice for the orientation of M . The orientation of U , thought as the boundary of a tubular neighbourhood of M ⊂ T , is chosen so that when preceded by the outwards normal vectors, one recovers the orientation of the total space T . This convention is employed to enhance the signs in the formulation of Stokes theorem, which can thus be written N dω = ∂N ω.

If M has odd dimension then it is important to respect the convention "base followed by fiber" to orient T , and if M has even dimension it is important to respect the convention "outwards normal first" to orient U .

The upshot of the previous remark is that Stokes convention yields a preferred orientation on PSL 2 (R) as unit tangent bundle of HP = PSL 2 (R)/ PSO 2 (R). This amounts to declaring that the right adjoint action of the one parameter subgroup PSO 2 (R) generated by S acts positively on the tangent plane T S H = S ⊥ = Span(J, K). One may recall Section 1.6, especially Propositions 1.82 and 1.87 for such discussions. As {K, S} = J and {J, S} = -K, we recover the orientation of sl 2 (R) defined by the basis (K, J, S), which coincides with the one derived from minus the Killing form. Remark 4.2. If we had defined HP as the left quotient by the maximal compact subgroup, then Stokes condition would have asked for the left adjoint action of PSO 2 (R) to act positively on the plane S ⊥ , and we would have obtained the opposite orientation on PSL 2 (R), that is the one derived from the Killing form.

Remark 4.3. Note the distinction between the canonical structures which enable to compare different choices, and the conventions which suggest preferred choices.

It is the sign conventions employed in the definition of the Killing form and its associated volume which orient a real semi-simple Lie algebra.

It is the sign conventions involved in the graded commutativity of alternate products which suggest using Stokes convention to orient boundaries.

To sum up, the orientation of sl 2 (R) given by the opposite of the Killing volume matches the orientation of PSL 2 (R) arising from Stokes convention when it is identified with the unit tangent bundle to the right quotient HP = PSL 2 (R)/ PSO 2 (R).

We chose to define U as the left quotient of the Lie group PSL 2 (R) by the lattice PSL 2 (Z), and its orientation is equivalent to the previous. This discussion about the orientation of U will have implications on the signs of linking numbers and the chirality of certain knots.

The fundamental group of U

Proposition 4.4. The group PSL 2 (R) retracts by deformation on PSO 2 (R) which is a maximal compact subgroup, in particular its fundamental group is Z.

Proof. PSL 2 (R) acts transitively on its symmetric space HP with stabiliser PSO 2 (R), so we have a locally trivial fibration PSL 2 (R) → HP, which is globally trivial because the base is contractible, whence the homeomorphism PSL 2 (R) HP × PSO 2 (R).

Remark 4.5. More generally, every connected linear Lie group G has a unique maximal compact subgroup K up to conjugacy, on which it retracts by deformation. Proposition 4.6. In a connected Lie group, a discrete normal subgroup is central. Thus a cover in the category of connected Lie groups is a central extension.

In particular the universal cover of PSL 2 (R) yields a central extension:

1 → Z → P SL 2 (R) → PSL 2 (R) → 1.
Proof. Denote G the connected Lie group, and C its discrete normal subgroup. Fix (g, c) ∈ G × C and let us show that c = gcg -1 . For this consider a continuous path γ : [0, 1] → G connecting 1 to g. Since C is normal, the path s → γ(s).c.γ(s) -1 remains in C. Since C is discrete this continuous path is constant. In particular the fundamental group P SL 2 (Z) of U fits in a central extension:

1 → Z → PSL 2 (Z) → PSL 2 (Z) → 1
Proof. The group Γ fits in the following commutative diagram of covering maps (as quotients by discrete groups), in which the first two columns are central extensions:

C / / C / / 0 Γ / / G / / Γ\ G Γ / / G / / Γ\G
The last column shows that Γ\ G → Γ\G is a covering with trivial group, hence a homeomorphism, so Γ = π 1 ( Γ\ G) = π 1 (Γ\G). 

C / / K / / K Γ / / G / / U Γ / / S / / M
Observe the columns: the first is a short exact sequences of groups, the second is a trivial fibration between contractible spaces, and the last is a non-trivial fibration.

The lines are all universal covers, and the first one is a short exact sequence of groups.

The Lie group G = PSL 2 (R) has maximal compact subgroup K = PSO 2 (R) which is homeomorphic to a circle, so they have fundamental group C = Z.

The symmetric space is S = HP and the fibration PSO 2 (R) → PSL 2 (R) → HP corresponds to its unit tangent bundle.

The lattice Γ = PSL 2 (Z) acts on the symmetric space S = HP with quotient M. Its premiage PSL 2 (Z) acts on the left of PSL 2 (R) with quotient U = U the unit tangent bundle of M.

We find the diagram of fibrations and covers:

Z / / R / / S 1 PSL 2 (Z) / / PSL 2 (R) / / U PSL 2 (Z) / / HP / / M
We recover the fibration S 1 → U → M, which corresponds to the central extension of fundamental groups

1 → Z → PSL 2 (Z) → PSL 2 (Z) → 1.

Topology of the Seifert fibered space

In the Lie group PSL 2 (R), the discrete subgroup PSL 2 (Z) acts freely and properly discontinuously by left translation, preserving the right PSO 2 (R)-cosets which form the fibration S 1 → PSL 2 (R) → HP.

The fibers have trivial stabilisers, except for those above (a point in the orbit of) i or j with stabilisers isomorphic to Z/2 or Z/3 and generated by (a conjugate of) S or T . In a saturated tubular neighbourhood of such a fiber, homeomorphic to a solid torus D 2 × S 1 , the elements S and T acts by diagonal-rotation of 2π/2 and 2π/3.

Hence the circle fibration quotients to a Seifert fibration U → M. Our goal is to describe its topology and in particular the homotopy type of the pair (U, S i ∪ S j ).

Recall that we work in the category of smooth oriented orbifolds, and that a loop is an smooth map from the oriented circle. As explained in the paragraph following Definition 4.12, a loop in the total space of a unit tangent bundle is homotopic to a unit vector field carried by a loop in the base, and even to the tangent unit vector field along a an immersed loop in the base. Two vector fields along a loop in an oriented surface differ up to homotopy by multiple of the circular fiber, called their relative index.

Trivialising the unit tangent bundle of M \ {i, j}.

Let D i , D j be disjoint closed disc neighbourhoods of i, j in M. In their complement, consider two based simple loops s, t which are homotopic to the oriented boundaries -∂D i , -∂D j : they freely generate the fundamental group of M \ (D i ∪ D j ).

Denote U i , U j the solid tori of U consisting in the union of fibers above D i , D j . Since the unit tangent bundle U \ (U i ∪ U j ) of the surface M \ (D i ∪ D j ) is trivial, we may choose a section such as the horizontal vector field depicted on figure 4.1. Restricting this section to a loop in the base M \ (D i ∪ D j ) defines its horizontal lift in the total space U \ (U i ∪ U j ). We thus have a split short exact sequence between their fundamental groups 1 → Z → (Z * Z) × Z → Z * Z → 1 whose section is defined by the horizontal lifts. In particular, we may unambiguously use the same letters s, t in a presentation for the fundamental group of U \ (U i ∪ U j ), and denoting u a based simple loop winding once around the fiber we have:

π 1 (U \ (U i ∪ U j )) = s, t, u | [u, s] = 1 = [u, t] .
The trivialisation of U \ (U i ∪ U j ) → M \ (U i ∪ U j ) provides a presentation for the homology of the toric boundaries ∂U i , ∂U j given by restricting the section to the oriented boundaries ∂U i , ∂U j followed by any fiber contained in those boundaries. Since s, t are homotopic to -∂D i , -∂D j , and all fibers are homotopic to u we have:

H 1 (∂U i ; Z) = Z • [s -1 ] ⊕ Z[u] H 1 (∂U j ; Z) = Z • [t -1 ] ⊕ Z[u]
For any smoothly immersed loop in M \ (D i ∪ D j ), its tangent lift in U \ (U i ∪ U j ) is homotopic to its horizontal lift multiplied by u k , where where k is the index of its unit tangent vector with respect to the horizontal section. For instance the loops corresponding to s and t have tangent lifts su -1 and tu -1 .

Presenting U as a Dehn filling U \ (U i ∪ U j )

In U we denote a, b the unit tangent vector fields of the loops s -1 , t -1 , and c the fiber of the base point. The inclusion U \ (S i ∪ S j ) → U induces a surjective map:

π 1 (U \ (U i ∪ U j )) → π 1 (U) defined by s -1 u → a t -1 u → b u → c
Notice that a 2 , b 3 are homotopic to a regular fiber c in U since they lift in the universal cover (which is the unit tangent bundle of HP) to closed loops homotopic to a fiber. The relations a 2 = c and b 3 = c imply that s -2 u → 1 and t -3 u 2 → 1.

The loops s -2 u and t -3 u 2 represent the primitive vectors (2, 1) ∈ H 1 (∂U i ) and (3, 2) ∈ H 1 (∂U j ), so they are meridians of the solid tori U i and U j . This describes U as a Dehn filling of U \ (U i ∪ U j ). In particular the vanishing loops s -2 u and t -3 u 2 generate the kernel of π 1 (U \ (U i ∪ U j )) → π 1 (U), so we have the presentation:

π 1 (U) = a, b | a 2 = b 3
Remark 4.9. Consider a 3-manifold U whose boundary contains a component homeomorphic to a torus S 1 × S 1 . One may perform a Dehn filling of this component by attaching a solid torus D 2 × S 1 . Such Dehn fillings, well defined up to homeomorphism, are indexed by their slope in QP 1 , defined as the image of an unoriented meridian ∂D 2 × {x} in P(H 1 (S 1 × S 1 ; Z)) = QP 1 . Suppose that U is Seifert-fibered. The fibers in the boundary torus are given by a class in P(H 1 (S 1 × S 1 ; Z)) which one may suppose to be that of ±1/0. The Dehn fillings yielding a 3-manifold to which the Seifert fibration can be extended are those with finite slope ±p/q ∈ Q/(±1). Such an extension is unique, and it has no additional singular fibers only when q = ±1, that is for a finite slope ±p/q ∈ Z/(±1).

Let D *

∞ ⊂ M be a closed punctured disc neighbourhood of the cusp ∞ which is disjoint from D i ∪ D j , and denote by U ∞ ⊂ U the union of fibers above it. Then s -1 t -1 is homotopic to -∂D * ∞ so the trivialisation presents its homology as:

H 1 (U ∞ ) = Z • [s -1 t -1 ] + Z • [u]
The unique Dehn filling of U\U ∞ which yields S 3 is obtained by adding the meridian of ∂U ∞ which, according to [Pin14, Corollary 3.4] or [BP21, Section 3], is the class of [stu] ∈ H 1 (∂U ∞ ) (it may be useful to notice that stu → a -1 b -1 c = ab -1 ).

In H 1 (∂U ∞ ), this meridian class intersects once the class [u] of the Seifert fibers, so the fibration extends smoothly to a Seifert fibration U → M.

Recovering U as the complement of a trefoil knot in S 3 .

The Seifert fibered manifold U can be recovered by attaching the Seifert fibered solid tori U i and U j along their boundary in such a way that the classes of the boundary fibers get identified, and removing one of those common boundary fibers.

In H 1 (∂U i ) and H 1 (∂U j ) the meridians m i = (2, 1) and m j = (3, 2) have oriented intersection number 1 with [a] = (1, 1) and [b] = (1, 1), so ([m i ], [a]) and (m j , [b]) form oriented bases of these homology groups. In those coordinates the inclusion maps H 1 (∂U i ) → H 1 (U i ) and H 1 (∂U j ) → H 1 (U j ) correspond to projecting onto the second factor

[m i ] → 0, [a] → 1 and [m j ] → 0, [b] → 1.
The fiber u = (0, 1) has intersection numbers -2 and -3 with the meridians (2, 1) and (3, 2), and intersection number -1 with [a] = (1, 1) and [b] = (1, 1) so it decomposes as

[u] = -[m i ] + 2[a] and [u] = -[m j ] + 3[b]. In particular it has image 2[a] ∈ H 1 (U i ) and 3[b] ∈ H 1 (U j ).
Now let us attach the fibered solid tori U i and U j along their boundary. Since [a] and [b] generate H 1 (U i ) and H 1 (U j ) we may use them as generators for the common torus boundary. The common fibers We may sum up part of the previous discussion in the following proposition.

[u] represent 2[a] + 3[b], that is a (2, 3) torus knot of U i ∩ U j .
Proposition 4.11. The space U is homeomorphic to the sphere S 3 and contains S i ∪ S j as a Hopf link, that is a pair of trivial knots such that lk(S i , S j ) = 1.

The complement U \ (S i ∪ S j ) retracts by deformation on a torus containing S ∞ as a (2, 3)-torus knot in the base (S i , S j ), so that lk(S ∞ , S i ) = 3 and lk(S ∞ , S j ) = 2.

In U \ (S i ∪ S j ) the loops a, b are (1, 1)-torus knots, so lk(a, S i ) = 1 = lk(b, S j ).

Lifting loops in the unit tangent bundle

Definition 4.12. In a 3-manifold, a link with k ∈ N components is an embedding of the disjoint union of k oriented circles whose components are labelled, considered up to individual reparametrizations. A knot is a link with one connected component.

A knot in U can be smoothly perturbed to an isotopic knot which is transverse to the fibers of the projection U → M, or to a unit vector field carried by an immersed loop in M. It can also be isotoped to a Legendrian knot, that is the unit tangent vector field along an immersed loop in M. This can be achieved by smoothly combing the field along the loop; if a vortex appears, then introducing a twiddle in the loop will accommodate it. We refer to [Gei08, Chapter 3] for an introduction to Legendrian knots and their properties. Recall from Section 3.1 that a hyperbolic conjugacy class in π 1 (M) encodes the homotopy class of two loops in the orbifold M, namely its hyperbolic representative and its linear representative. These representatives are closed geodesics for the hyperbolic and flat metrics on M. They lift in U to the periodic orbits for the corresponding geodesic flows, which (when they are primitive) are called modular knots and Lorenz knots.

Any finite collection of modular knots is called a modular link, and the collection of all modular knots is called the master modular link. Any finite collection of Lorenz knots is called a Lorenz link, and the collection of all modular knots is called the master Lorenz link. By collection we mean here that the components are labelled by the corresponding primitive hyperbolic conjugacy classes.

Theorem 4.13. The modular link and Lorenz link associated to a finite number of primitive hyperbolic conjugacy classes in the modular group are isotopic in U.

Incomplete Proof. Consider the hyperbolic and linear representatives associated to this finite collection of primitive hyperbolic conjugacy classes in the modular group.

By Proposition 3.36, the multiloops obtained as their preimages in the finite Galois cover T * → M are connected by isotopies and Reidemeister moves RIII. Therefore these preimages have isotopic lifts in the unit tangent bundle of T * .

Unable to finish the proof, we refer to Theorem 4.24 which cites [START_REF] Ghys | Knots and dynamics[END_REF]ğ3.4].

In particular, the homotopy classes of modular knots and Lorenz knots correspond to the same conjugacy classes in the fundamental group π 1 (U), and we will now describe which ones.

Conjugacy classes of modular knots

The Seifert fibration U → M induces an extension of the fundamental group of the orbifold base by the fundamental group of a generic fiber:

1 → π 1 (S 1 ) → π 1 (U) → π 1 (M) → 1
It is central (the kernel is contained in the center) because composing by a loop going around the fiber in the total space corresponds after projection in the base to composing with a twiddle, which can be sled along the projected loop without changing its regular homotopy class.

Consider preimages a, b ∈ π 1 (U) of S -1 , T -1 ∈ π 1 (M) obtained by lifting in U simple embedded based loops in M which circle once around the conical points. This yields the usual presentation for the fundamental group of a (2, 3) torus knot:

π 1 (U) = a, b | a 2 = b 3
Observe that c = a 2 = b 3 generates the center of π 1 (U), and since it represents a generic fiber of the projection, the center equals the kernel Z of the projection.

If in the presentation of π 1 (U) we change the variables a → σ 1 σ 2 σ 1 and b → σ 1 σ 2 , then we find Artin's presentation for the braid group on three strands:

B 3 = σ 1 , σ 2 | σ 1 σ 2 σ 1 = σ 2 σ 1 σ 2
The inverse isomorphism is given by σ 1 → b -1 a and σ 2 → ab -1 .

Proposition 4.14. The braid group has abelianisation lk : B 3 → Z defined by σ j → 1 on the generators of the Artin presentation. The abelianisation injects the kernel Z of the central extension π 1 (S 1 ) → π 1 (U) → π 1 (M) to the subgroup of index 6 in Z.

Proof. To obtain the abelianisation from a group presentation, first abelianise the free group on the generators and then quotient by the image of the relations. Using Artin's presentation, this amounts to letting the σ j commute so we are left with words in σ n 1 1 σ n 2 2 , and the relation σ 1 σ 2 σ 1 = σ 2 σ 1 σ 2 yields σ 2 1 σ 2 = σ 1 σ 2 2 which further identifies σ 1 and σ 2 , so we are left with the sum n 1 + n 2 of all exponents.

We obtain a central extension Z → B 3 → SL 2 (Z) by imposing the relation c 2 = 1. It is defined (up to an automorphism of the target) by Proof. The implication is obvious. Suppose x, y ∈ B 3 have the same abelianisation, and project to X, Y ∈ PSL 2 (Z) which are conjugate by Z. Choose a lift z ∈ B 3 of Z and consider the element zxz -1 y -1 . It projects to the identity in PSL 2 (Z) so it must belong to the center. It also abelianises to the identity, but Proposition 4.14 says that the center injects into the abelianisation, so it must be trivial.

a → S -1 , b → T -1 , c → -1 so it sends σ 1 = b -1 a to R = T S -1 and σ -1 2 = ba -1 to L = T -1 S. Composing with the central extension {±1} → SL 2 (Z) → PSL 2 (Z) recovers Z → B 3 → PSL 2 (Z).
A primitive modular geodesic in M lifts to a modular knot in U, and we shall now describe how to perform this geodesic lift at the level of conjugacy classes.

Extend the lifts L → σ -1 1 and R → σ 2 to a morphism PSL 2 (N) → B 3 from the free monoid on L&R to the free monoid on σ -1 1 &σ 2 . This yields a map σ from the set of infinite order conjugacy classes in π 1 (M) to some conjugacy classes in π 1 (U). Theorem 4.13 implies that the corresponding modular knot (defined as the lift of its hyperbolic representative), and the corresponding Lorenz knot (defined as the lift of its linear representative), are homotopic.

By Definition 3.17, its linear representative is a loop in M whose homotopy class in M \ {i, j} is encoded by the s ±1 &t ±1 -cycle obtained by the replacement rules L ⇝ s -1 t -1 and R ⇝ s +1 t +1 . It lifts in the unit tangent bundle U\(S i ∪S j ) of M\{i, j} to the loop given by the replacement rules L ⇝ s -1 t -1 u -1 and R ⇝ s +1 t +1 u +1 .

Recall that the inclusion map U \ (S i ∪ S j ) → U induces a map between the fundamental groups defined on the generators by s, t, u → a -1 c, b -1 c, c. Hence, lifting a linear representative from M to U results in translating the L&R-cycle according to the replacement rules L ⇝ abc -1 = σ -1 1 and R ⇝ a -1 b -1 c = σ 2 . We say that a conjugacy class in B 3 = PSL 2 (Z) = π 1 (U) is modular if it corresponds to a modular knot. Scholium 4.18. In terms of loops in U, the abelianisation lk : B 3 → Z of the braid group corresponds to the linking number with the trefoil given by lk π 1 (U) → H 1 (U). Hence, once the proof of Theorem 4.13 is completed independently from [START_REF] Ghys | Knots and dynamics[END_REF], its Corollary 4.17 provides an alternative explanation for the equality between the Rademacher invariant of a hyperbolic element of the modular group and the linking number of the associated modular knot with the trefoil. Remark 4.19. Note that the conjugacy class of a braid β ∈ B 3 defines, by taking its cyclic closure, a link β which has at most three components.

Hence the conjugacy class of a primitive hyperbolic A ∈ PSL 2 (N) yields a modular geodesic in M, which lifts to a modular knot in U corresponding the conjugacy class of the braid σ(A) ∈ PSL 2 (Z) described in Theorem 4.16. Its closure yields a link σ(A) in the solid tori D × S 1 , and the branched double cover of this solid tori over the link yields the punctured torus bundle (T * × [0, 1])/A with monodromy A ∈ SL 2 (N).

Let us mention here that [START_REF] Funar | Torus bundles not distinguished by TQFT invariants[END_REF] is dedicated to the investigation of such torus bundles having the same quantum invariants. This should be compared with the various equivalence relations on modular conjugacy classes mentioned in the introduction (especially at the end of Section 0.1 and 0.2).

Derived subgroup of the braid group B 3

The complement U of the trefoil knot fibers over the circle S 1 with fiber a punctured torus T * . This fibration is part of an open book decomposition of S 3 : the pages are Seifert surfaces turning around the knotted binding, in this case punctured tori with the trefoil as common boundary, as suggested in figure 4.5. The associated short exact sequence of fundamental groups:

1 → π 1 (T * ) → π 1 (U) → π 1 (S 1 ) → 1
corresponds to the abelianisation of π 1 (U), and is given by the linking number with the trefoil, or the algebraic intersection number with its Seifert surface T * . Consequently the kernel π 1 (T * ) = F 2 is the derived subgroup of π 1 (U) = B 3 .

By Lemma 4.20 The central extension π 1 (U) → π 1 (M) restricts and corestricts to an isomorphism between the derived subgroups.

Besides, Proposition 4.14 says that the abelianisation map π 1 (U) → H 1 (U) injects the kernel π 1 (S 1 ) of the central extension to its subgroup of index 6.

Corollary 4.22. We have a commutative diagram of short exact sequences (implicit trivial groups are omitted), with abeliansations for lines and central extensions for

The outer automorphism action Z → Out(F 2 ) given by the middle line factors through the outer automorphism action Z/6 → Out(F 2 ) given by the bottom line.

The euler class H 2 (Γ; Z) classifying the central extension of the middle column is the pull back by the abelianisation map Γ → Z/6 of the euler class H 2 (Z/6; Z) classifying the central extension of the right column.

The fibration T * → U → S 1 yields a monodromy action of the fundamental group of the circular base on the toral page by homeomorphisms well defined up to isotopy. The homeomorphisms of the punctured torus up to isotopy form its mapping class group, isomorphic to the automorphisms of its fundamental group up to inner-morphisms, that is Out(F 2 ) = GL 2 (Z). The monodromy representation is the geometric counterpart of the outer automorphism representation Z → Out(F 2 ) arising from the short exact sequence F 2 → B 3 → Z. The previous diagram implies that the image of the generator is an orientation preserving mapping class of the punctured torus with order 6.

Consequently, the toral page of the open book decomposition provides a geometric model for the toral cover of the modular orbifold, and the monodromy action factors through the Galois action: the quotient is the modular orbifold. 

Linking numbers of modular knots

In this section we provide several formulae for computing the linking numbers of modular knots.

We first describe the topology of the Lorenz template and the master modular link consisting of all modular knots. This yields an algorithmic formula for linking numbers counting the number of crossings in the corresponding link diagrams.

As an excursion, we show a variation on this formula which involves an infinite sum: it opens a door onto the Hilbertian analysis of linking quadratic forms, although we shall not pursue this direction here.

Then we rewrite the algorithmic formula in terms of the intrinsic algebra of PSL 2 (Z), involving a summation over double cosets (but with finite support). Thus it will recast the linking form in terms of the general formalism we developed for invariants of pairs of conjugacy classes.

The Lorenz template in the unit tangent bundle

We now use the projective model ▽ 1 → M represented in figure 3.2 to construct a multivalued section of the unit tangent bundle U → M. Its image will be a branched surface Y ⊂ U called the Lorenz template, and will carry a semi-flow which is conjugate to the geodesic flow of M. In particular the template Y will handle all periodic orbits for the geodesic flow.

Consider first the branched surface Y = 1 mod PSL 2 (N) obtained from ▽ 1 by identifying its left and right edges to its hypothenuse according to L -1 and R -1 . The branch locus is the segment formed by the identified edges, it is parametrized by

α ∈ [0, ∞] → V α ∩ [v 0 , v ∞ ].
The radial vector field on R 2 restricts to 1 and projects to Y, on which it defines a semi-flow. The branched locus provides a section of the semi-flow, on which the first return map is given by the inverse action of PSL 2 (N) on α ∈]0, ∞[ deleting the first letter of its continued fraction expansion (also known as a Bernoulli shift). Hence the orbit emerging from α is the projection of the line V α ∩ 1 in Y, and can be represented in the fundamental domain ▽ 1 as a union of disjoint segments which piece together according to the action of L&R.

The past of the vertex v 0 v 1 v ∞ in Y is formed by the union of all segments with rational inclination: let Y • be the complement of this orbit. The quadratic irrationals have ultimately periodic orbits, and the periodic numbers have periodic orbits. Every other number α ∈]0, ∞[ whose continued fraction tails are all aperiodic, has an aperiodic orbit which is an embedded half line V α ∩ 1 → Y. Moreover, its left ear (corresponding to R-turns) arrives from above, and its right ear (corresponding to L-turns) arrives from beneath.

Proof. Of course, one may push-forward the radial vector field by P ψ : ▽ 1 → ▽ 2 to work with the hyperbolic model ▽ 2 ⊂ HP.

Then up to orientation matters, the embedding of the template and its position with respect to the trefoil are shown in [START_REF] Bonatti | Lorenz attractors and the modular surface[END_REF], following the ideas of [START_REF] Ghys | Knots and dynamics[END_REF]ğ3.4]. One may also consult [START_REF] Pinsky | Templates for geodesic flows[END_REF] for more concerning templates carrying the periodic orbits for the geodesic flow on the Hecke (p, q, r)-orbifolds.

Theorem 4.24. The master modular link is isotopic to the master Lorenz link.

Proof. By Proposition 4.23, this statement is equivalent to that of Theorem 4.13, for which we only provided an incomplete proof. This time we refer to [START_REF] Ghys | Knots and dynamics[END_REF]ğ3.4].

The idea is to deform the hyperbolic metric on M in such a way to open the cusp. This yields a one-parameter family of hyperbolic orbifolds whose unit tangent bundles retract onto a Lorenz template. We do not delve upon these ideas since they will be the subject of Chapter 5 as we deform the representation PSL 2 (Z) → PSL 2 (R).

Linking numbers between all pairs of hyperbolic matrices

Since U is homeomorphic to the complement of a trefoil knot in the sphere, any two components of a link have a well defined linking number.

Let us define the linking number between any two hyperbolic matrices of PSL 2 (Z). Such hyperbolic matrices correspond to periodic orbits for the modular flow.

This orbit is a knot when the matrix is primitive, otherwise the orbit travels several times along a knot. When two matrices are coprime (meaning they are not positive powers of a same element as we saw in Proposition 2.48), their corresponding periodic orbits are disjoint. Thus coprime hyperbolic matrices correspond to disjoint periodic orbits whose linking number is well defined. Since lk(A m , B n ) = mn lk(A, B) it is enough to understand the linking number between primitive elements, but most of our formulae will be written to hold without this assumption. We finally remove the coprimality hypothesis by defining the self-linking number of a modular knot.

A band in a 3-manifold M is an embedding of the annulus S 1 × [-1, 1] in M . Up to isotopy, a band is equivalent to a knot together with a framing, that is section of its normal bundle defined up to multiplication by a scalar function. Remark 4.26. We know by Proposition 3.4 that in M, the modular geodesics avoid the point j, and we also defined a canonical perturbation of those which contain i. Besides, we also know that the linear representatives avoid both i and j.

Thus one may speak of the linking numbers between special fibers of the Seifert fibration (which form a Hopf link in the complement of the trefoil), with modular knots and Lorenz knots. However, since we showed in 3.1 that the hyperbolic and linear representatives lift to different homotopy classes in M \ {i, j}, these linking numbers may not coincide ! This implies in particular that during the deformation of the hyperbolic metric on M alluded to in the proof of Theorem 4.24, the periodic orbits for the geodesic flow will cross the singular fibres, so the projected geodesics will perform special moves to pass over the conical singularities.

Still, for every hyperbolic matrix in PSL 2 (Z), one may define two conjugacyinvariants given by the linking numbers with the special fibers: those will be combinations of the exponents appearing in the s&t-cycles encoding their hyperbolic or linear representative lifted in M \ {i, j}.

Algorithmic formula

Let us derive from Theorems 4.23 & 4.24 the algorithmic formula of Proposition 4.27 used by Pierre Dehornoy in [START_REF] Dehornoy | Les noeuds de Lorenz[END_REF] to compute linking numbers of modular knots. For this, we must introduce some notations relying on Section 2.2.

We endow the submonoid PSL 2 (N) of PSL 2 (Z), which is freely generated by L&R, with the lexicographic order extending L < R.

In the group PSL 2 (Z) the conjugacy class of an infinite order element intersects the monoid PSL 2 (N) along its Lyndon representatives, which consist in all cyclic permutations of a non-empty L&R-word. The primitivity of the conjugacy class is equivalent to the primitivity of the cyclic words, and the conjugacy class is hyperbolic when both letters L and R appear.

The set {L, R} N of infinite binary sequences on the letters L&R is given the lexicographic order extending L < R. The monoid PSL 2 (N) maps to {L, R} N by sending a finite word A to its periodisation A ∞ . This map is increasing, and injective in restriction to primitive elements.

We use σ to denote the Bernoulli shift on {L, R} N which removes the first letter, as well as the cyclic shift on PSL 2 (N) which moves the first letter at the end. These shifts are intertwined by the periodisation map A → A ∞ , namely for all A ∈ PSL 2 (N) we have (σ j A) ∞ = σ j (A ∞ ).

In particular, the Lyndon representatives for the conjugacy class of A ∈ PSL 2 (N) are the cyclic permutations σ i A for 1 ≤ i ≤ len(A), and we shall consider them with multiplicity when A is not primitive.

Denote by W [-1] ∈ {L, R} the last letter of a non-empty word W ∈ PSL 2 (N). Thus for instance, (σ 1 W )[-1] is the first letter of W .

Following Iverson [START_REF] Knuth | Two notes on notation[END_REF], denote [ [P ]] ∈ {0, 1} the truth value of a property P , which satisfies the usual rules of boolean algebra. Proposition 4.27. For all hyperbolic matrices A, B ∈ PSL 2 (Z) we have:

lk(A, B) = 1 2 len(A) i=1 len(B) j=1   [[(σ i A)[-1] > (σ j B)[-1]]] [[σ i A ∞ < σ j B ∞ ]] + [[(σ i A)[-1] < (σ j B)[-1]]] [[σ i A ∞ > σ j B ∞ ]]   (Algo-Sum)
This Algo-Sum counts the pairs of Lyndon representatives whose periodisations are ordered in the opposite way to their last letters.

Proof. First we isotope the Lorenz template to look like in Figure 4.8. The projection on the plane of the paper yields link diagrams for the collections of periodic orbits, whose crossings all contribute positively to the intersection.

Thus we must simply count these crossings and divide by two. Clearly, the crossings are in bijection with the terms of the double sum. 

Symbolic dynamics: summing occurrence of linked patterns

In this paragraph we propose a combinatorial formula for the linking number which arises from a different count of the crossings in the Lorenz template. Then we interpret it as a factorisation (or polarisation) of the quadratic linking form, thus opening a door onto its Hilbertian analysis. Definition 4.31. For a pattern P ∈ PSL 2 (N) and a hyperbolic Remark 4.32 (Long patterns). For len(P ) ≥ len(A) we have occ(P, A) > 0 if and only if A ∞ = P ∞ mod σ which is equivalent to saying that P and A are not coprime. 

A ∈ PSL 2 (N), let pref(P, A ∞ ) = [[A ∞ ∈ P • PSL 2 (N)]] ∈ {0, 1} tell whether P is a prefix of A ∞
lk(A, B) = 1 2 w   occ(RwL, A) • occ(LwR, B) + occ(RwL, B) • occ(LwR, A)   (Symb-Dyna-Sum)
where the summation extends over all words w ∈ PSL 2 (N) including the empty one.

Proof. The proof consists in rearranging the terms of the Algo-Sum rewritten as:

lk(A, B) = 1 2 len A i=1 len B j=1   [[σ i A[-1] = R]] [[σ i B[-1] = L]] [[σ i A ∞ < σ j B ∞ ]] + [[σ i B[-1] = R]] [[σ i A[-1] = L]] [[σ i B ∞ < σ j A ∞ ]]   Note that [[σ i A[-1] = R]] = pref(R, σ i-1 A) and [[σ j B[-1] = L]] = pref(L, σ j-1 B). Moreover σ i A ∞ < σ j B ∞ if
and only if the words σ i A ∞ and σ j B ∞ have prefixes of the form wL and wR for some w ∈ PSL 2 (N) which is uniquely determined, thus

σ i A ∞ < σ j B ∞ = w pref(wL, σ i A ∞ ) • pref(wR, σ j B ∞ ) Of course we have pref(R, σ i-1 A) pref(wL, σ i A ∞ ) = pref(RwL, σ i-1 A ∞ ) and pref(L, σ j-1 B) pref(wR, σ j B ∞ ) = pref(LwR, σ j-1 B ∞ ).
By replacing all terms in the Algo-Sum we find:

lk(A, B) = 1 2 len A i=1 len B j=1 w   pref(RwL, σ i-1 A ∞ ) • pref(LwR, σ j-1 B ∞ ) + pref(RwL, σ i-1 A ∞ ) • pref(LwR, σ j-1 B ∞ )  
It is then a matter of reordering terms so that sums over w appears on the outside, and recognising the definition of occ inside the sums over i, j. Remark 4.35 (Finite support). By the Remark 4.32 concerning long patterns, the coprimality assumption on A and B ensures that the support of the Symb-Dyna-Sum is contained in the set of w such that len w < max{len A, len B}.

Cut the template in the past for a finite time N counted as the number of intersections with the branching interval (which is 2, 3 in the thumbnails). The overlapping regions corresponds to the pairs of branches leading to it, and those are indexed (remounting them backwards in time) by the pairs (RwL, LwR) for words w ∈ PSL 2 (N) with length len w < N . Two coprime modular knots cross inside a certain number of overlaps with depth at most l, and this number is given by the Symb-Dyna-Sum with indices restricted to len w < N . In the limit we recover the infinite sum.

Remark 4.38 (Taylor expansion). The previous proofs also shows that the truncated Symb-Dyna-Sum indexed by len w < N yields the exact linking number provided max{len A, len B} ≤ N . This partial sum can thus be understood as Taylor approximation to the order N of the linking pairing. Scholium 4.39 (Binomial statistics). The previous analysis also has the advantage of exhibiting the statistical behaviour of the bilinear linking pairing between modular knots. One can make precise statements about the set of all modular knots whose L&R-length is bounded by a constant N , and let it go to infinity.

On the one hand the areas of the overlapping regions reflect the distribution of the number of crossings between all such modular knots. In particular the distribution of these modular knots according to the abscissa of crossing regions follows a binomial distribution. Note that this abscissa can be parametrized by the Rademacher function.

On the other hand the modular knots that spend a long time in the deepest regions of the tree which are located in the centre (such as (LR) n ) will tend to have large linking numbers with most of the other knots, whereas the modular knots which escape into the ears (such as L n R n ) will have weak intersection with all modular knots except those presenting a very similar behaviour.

Consider the free Z-module generated by the set PSL 2 (N)/σ of all cyclic words, endowed with the symmetric bilinear form lk. Let us reformulate Proposition 4.34 as a factorisation of the corresponding symmetric matrix. Proof. The Symb-Dyna-Sum amounts to the relation 2 lk = t P P # + t P # P , which is twice the imaginary part of the product t P + i • t P # • P + i • P # .

Group theory: orbit average of the meyer cocycle

The aim of this paragraph is to recast the Algo-Sum formula for linking numbers in terms of the action of the group Γ = PSL 2 (Z) on the geometree Σ = (T , cord).

Recall that the action of the group PSL 2 (Z) on the trivalent tree T preserves the cyclic order structure, and is freely transitively on the set of oriented edges.

An infinite order element A ∈ PSL 2 (Z) acts by translation of T along an oriented combinatorial axis g A with endpoints α ′ , α ∈ ∂T .

Consider two primitive hyperbolic matrices A, B ∈ PSL 2 (Z). By Proposition 2.48 they are coprime when they have distinct translation axes g A , g B ⊂ T , thus when they have distinct fixed points α ′ , α, β ′ , β.

The algebraic intersection number cross(g A , g B ) ∈ {-1, 0, 1} between their translation axes was introduced in the paragraph containing Scholia 1.95. We shall mostly need the geometric intersection number |cross|(g A , g B ) ∈ {0, 1} which takes the value 1 or 0 according to whether the fixed points α ′ , α of A and β ′ , β of B are linking on the boundary ∂T or not.

Corollary 4.42. For coprime hyperbolic matrices A, B ∈ PSL 2 (Z) we have:

lk(A, B) = 1 2 A i ∦B j |cross|(A i , B j )
where the sum extends over all Lyndon conjugates A i , B j ∈ PSL 2 (N) of A and B such that their last letters differ, which we denote A i ∦ B j .

Proof. If hyperbolic coprime matrices A, B ∈ PSL 2 (N) satisfy A ∈ PSL 2 (N).R and

B ∈ PSL 2 (N).L, then cross(A, B) = [[A ∞ < B ∞ ]]. More generally if hyperbolic coprime matrices A, B ∈ PSL 2 (N) have distinct last letters A[-1] = B[-1] then: cross(A, B) =   [[A[-1] = R]] [[B[-1] = L]] [[A ∞ < B ∞ ]] - [[B[-1] = R]] [[A[-1] = L]] [[B ∞ < A ∞ ]]  
and since at least one of the terms in this difference is 0 we have:

|cross|(A, B) =   [[A[-1] = R]] [[B[-1] = L]] [[A ∞ < B ∞ ]] + [[B[-1] = R]] [[A[-1] = L]] [[B ∞ < A ∞ ]]   which completes the proof. Template crossings ↔ {(g A , g B ) : |cross|(g A , g B ) = 1 = cosign(g A , g B )} mod Γ × Γ.
Definition 4.43. For oriented bi-infinite geodesics g A , g B ⊂ T with distinct ends we define:

coc(g A , g B ) = |cross| × 1 + cosign 2 (g A , g B ) = 1 + cross 2 × 1 + cosign 2 (g A , g B )
Theorem 4.44. For coprime hyperbolic matrices A, B ∈ Γ = PSL 2 (Z) we have:

lk(A, B) = 1 2 U,V coc(U • g A , V • g B ) (Group-Coset-Sum)
where the sum is over the product of right cosets of PSL 2 (Z) under the stabilisers of the translation axes g A and g B modulo the left action of PSL 2 (Z) by translation:

(U, V ) ∈ (Γ/ Stab g A ) × Γ (Γ/ Stab g B )
This can also be written as the sum over double cosets W ∈ Stab g A \Γ/ Stab g B :

lk(A, B) = 1 2 W coc(A, W BW -1 ) (Double-Coset-Sum)
Proof. Let us show that the sum over (U, V ) coincides with that of Proposition 4.42. Recall that by Lemma 2.43 the infinite order elements A, B ∈ PSL 2 (Z) can be simultaneously conjugated in PSL 2 (N) if and only if their combinatorial axes in T share an oriented edge, that is when cosign(A, B) = 1. Hence by Definition 4.43, the term coc(U • g A , V • g B ) is 0 unless the axes cross and their orientation coincides along the intersection, in which case it is 1, so one may restrict the sum to such pairs. Since the action of PSL 2 (Z) is freely transitive on the oriented edges of T , every coset

(U, V ) ∈ Γ/ Stab g A × Γ Γ/ Stab g B contains exactly one representative (U 0 , V ∞ ) such that the axes of U 0 AU -1 0 and V ∞ BV -1
∞ intersect along an oriented segment of T starting at the base edge ⃗ e i . This precisely means that U 0 AU -1 0 and V ∞ BV -1 ∞ belong to PSL 2 (N) and finish by different letters.

Consequently, we have a bijection between the non-zero terms of the Algo-Sum and Group-Coset-Sum, and this completes the proof.

Remark 4.45 (Stabilisers).

Recall that for infinite order A ∈ PSL 2 (Z) the stabiliser Stab g A is the cyclic subgroup generated by the primitive root of A.

Remark 4.46 (Intersection from linking). We recover in particular the intersection number of the modular geodesics as:

lk(A, B) + lk(A, B -1 ) = 1 2 |cross|(A u , B v ) = 1 2 • I(A, B)
whereas the sum of the cosign over pairs of intersecting axes yields:

lk(A, B) -lk(A, B -1 ) = 1 2 (|cross| × cosign) (A u , B v ).
Recall that B -1 and t B are conjugate by S so lk(A, B) = lk(A, t B), and given the L&R factorisation of B ∈ PSL 2 (N) it is immediate to deduce that of t B ∈ PSL 2 (N).

We deduce an efficient algorithm to compute the intersection number I(A, B) from the L&R-factorisation of A, B by applying Algo-Sum formula to the linking numbers lk(A, B) and lk(A, t B).

What about the meyer cocyle ? Let us finish this chapter with a conjectural relationship between the quantity coc(A, B) and the Meyer cocycle.

The Rademacher function Rad : Γ → Z is a non bounded function. However its formal coboundary d Rad(A, B) := Rad(B) -Rad(AB) + Rad(A) defines a bounded function on Γ × Γ. We say that Rad is a quasi-morphism.

Its formal coboundary d Rad defines a bounded 2-cocycle, namely an element of H 2 b (Γ; R), called the Meyer cocycle.

One may consult to [START_REF] Barge | Cocycle d'Euler et de Maslov[END_REF][START_REF] Bourrigan | Quasimorphismes sur les groupes de tresses et forme de blanchfield[END_REF] for much more concerning the Meyer cocycle, bounded cohomology and quasimorphisms. Conjecture 4.47 (Meyer cocycle). We believe that coc(A, B) is strongly related to the Meyer cocycle d Rad(A, B -1 ). Indeed, for A, B ∈ PSL 2 (N) we observe that:

coc(A, B) = Rad(B) + Rad(AB -1 ) -Rad(A) if A < B Rad(A) + Rad(A -1 B) -Rad(B) if A > B
where as usual PSL 2 (N) is endowed with the lexicographic order extending L < R.

Chapter 5

Bilinear forms on the PSL 2 (R)-character variety of PSL 2 (Z)

Outline of the chapter

In this chapter we denote the modular group by Γ = PSL 2 (Z), which Theorem 2.11 presented as the free amalgam of its subgroups Z/2 and Z/3 generated by S and T . Let us recall the following elements of GL 2 (Z), all in SL 2 (Z) except J and K. They satisfy S 2 = T 3 = -1 and

J 2 = K 2 = 1 as well as T -1 S = L and T S -1 = R. S = ( 0 -1 1 0 ) T = ( 1 -1 1 0 ) J = ( 0 1 1 0 ) K = ( -1 0 0 1 ) L = ( 1 0 1 1 ) R = ( 1 1 0 1 )
Although T and T -1 are not conjugate in PSL 2 (Z), they are conjugate by J.

The space of representations PSL 2 (Z) → PSL 2 (R)

The first section describes the PSL 2 (R)-character variety of Γ, defined as the space of representations Hom(Γ, PSL 2 (R)) considered up to PSL 2 (R)-conjugacy at the target. A representation ρ : Γ → PSL 2 (R) is uniquely determined by a pair ρ(S), ρ(T ) such that ρ(S) 2 = 1 = ρ(T ) 3 . We are mostly interested in those which are both faithful and discrete, called Fuchsian representations, because they correspond to the holonomy maps of hyperbolic orbifolds with the same two conical singularities as M.

They are characterised by the condition that ρ(S) and ρ(T ) act on HP as rotations of order 2 and 3 whose fixed points are separated by a distance λ ≥ λ 0 = d(i, j). This distance λ, together with the orientation of ρ(T ), determine a unique Fuchsian representation up to conjugacy.

Geometrically, the positively oriented Fuschsian representations are the holonomy maps of hyperbolic orbifolds with conical singularities of order 2 and 3, so their conjugacy classes they form the Teichmüller space of complete hyperbolic metrics on such an orbifold. As soon as λ > λ 0 the quotient orbifold has a funnel with a unique collar geodesic, and all other geodesics remain beneath it, in the so called convex core. This is the deformation which was used by É. Ghys in [Ghy07, ğ3.6] to isotope the master modular link into the Lorenz template (Theorem 4.24).

We then provide an algebraic parametrization by q ∈ R * + for the set of positively oriented Fuchsian representations up to conjugacy. It is obtained by fixing S q = S, and considering for T q the conjugate of T by exp l 2 ( 1 0 0 -1 ) where q = exp(l):

T q = 1 -q q -1 0 so R q = T q S -1 q = q 1 0 q -1 and L q = T -1 q S q = q 0 1 q -1
In particular, the Teichmüller space of the abstract orbifold M is a closed connected real semi-algebraic set parametrized by q ∈ R * + , and we denote M q = ρ q (Γ)\HP. One may consult [START_REF] Thurston | Three-dimensional geometry and topology[END_REF][START_REF] Fathi | Thurston's work on surfaces[END_REF][START_REF] Buser | Geometry and spectra of compact Riemann surfaces[END_REF] to learn about the Teichmüller space of (mostly compact) Riemann surfaces.

The Universal and the Burau representations

Actually, we have just defined a representation SL 2 (Z) → SL 2 (Z[q, q -1 ]) denoted A → A q which we call the universal representation. The matrix A q is obtained from any S&T -factorisation of A by replacing T → T q , or equivalently from any L&R-factorisation of A by replacing L → L q and R → R q . Since every irreducible representation PSL 2 (Z) → PSL 2 (R) can be lifted to SL 2 (Z) → SL 2 (R), this universal representation actually contains the information of all irreducible representations PSL 2 (Z) → SL 2 (C) up to conjugacy. In other terms the irreducible component of the SL 2 (C)-character variety of PSL 2 (Z) is an affine line parametrized by q ∈ C.

Every element A ∈ Γ defines a function disc(A q ) = Tr(A q ) 2 -4 ∈ Z[q, q -1 ] on the Teichmüller space of M, which is a reciprocal Laurent polynomial. When A is hyperbolic, this yields the length of the corresponding hyperbolic geodesic in M q . In that case, we show (in 5.10) that disc(A q ) is unitary of degree 2 len(A), that is twice the minimum displacement length for the action of A on the trivalent tree T . This computation, which will serve in the next section, is a manifestation of the fact that as q → ∞, the action of Γ on the hyperbolic plane HP through the representation ρ q : Γ → PSL 2 (R) converges in a suitable sense to its action on the trivalent tree T .

Let us explain how one can make sense of this convergence, even though we will not need it here. Geometrically, the convex core of the orbifold M q lifts in HP to an ϵ-tubular neighbourhood of T with ϵ = Θ(1/q 2 ) as q → ∞. A dynamical viewpoint is to consider the actions of Γ on the boundaries ∂HP & ∂T : this leads to the study of groups acting on the circle, for which we refer to [START_REF] Ghys | Groups acting on the circle[END_REF]. An algebraic viewpoint, which is more in the spirit of this work, is to consider the Riemann-Zariski compactification of the character variety: the point q = ∞ corresponds to the valuation -deg q centered at infinity. This approach for studying degenerations of hyperbolic structures was developped by Culler, Morgan and Shalen in [START_REF] Culler | Varieties of group representations and splittings of 3-manifolds[END_REF][START_REF] Morgan | Valuations, trees, and degenerations of hyperbolic structures[END_REF], for which we refer to [START_REF] Otal | Compactification of spaces of representations after Culler[END_REF].

We saw in Chapter 4 that the unit tangent bundle U → M of the modular orbifold has total space homeomorphic to the trefoil complement, and this yields a central extension B 3 → PSL 2 (Z) of the modular group by the braid group on three strands. As for PSL 2 (Z), the SL 2 (C)-character variety of B 3 has its irreducible component (coming from irreducible representations, but which turns out to be irreducible as an algebraic variety) equal to an affine line. Hence it is not a surprise that we may relate the universal representation PSL 2 (Z) → SL 2 (Z[q, q -1 ]) to the Burau representation B 3 → GL 2 (Z[t, t -1 ]) of the braid group on three strands.

Indeed, we explicit a representation Sq : B 3 → SL 2 (Z[q, q -1 ]) which is conjugate to the Burau representation with q = √ -t, defined on the Artin generators by Sq(σ -1 1 ) = q -1 • L q and Sq(σ 2 ) = q • R q . In particular, we find that for A ∈ PSL 2 (N) we have Sq(A) = q Rad(A) A q where Rad(A) = #R -#L is its Rademacher invariant. Now recall from Chapter 4 that lifting modular geodesics to modular knots associates to the conjugacy class of a hyperbolic A ∈ PSL 2 (Z) the conjugacy class of a braid σ A ∈ B 3 , whose closure is a well defined link in the solid torus. We deduce that the Alexander polynomial of this link [σ A ] is equal to

∆([σ A ]) = q Rad(A) -Tr(Aq)+q -Rad(A) (q-q -1 ) 2
This formula should be confronted with the observations in [START_REF] Birman | On the Jones polynomial of closed 3-braids[END_REF] and the investigations of [START_REF] Funar | Torus bundles not distinguished by TQFT invariants[END_REF]. Altogether, they support the conjecture 0.1 advanced at the end of Sections 0.1 & 0.2, namely that the arithmetic Q-equivalence of A, B ∈ PSL 2 (Z) implies the "quantum equivalence" given by Tr(A q ) = Tr(B q ) & Rad(A) = Rad(B). More recently, the polynomials Tr(A q ) have been studied (after a change of variables) in [START_REF] Morier | q-deformed rationals and q-continued fractions[END_REF], and related to the Jones polynomials of certain knots.

In spite of the fully fledged theories concerning character varieties of Fuchsian groups and their compactifications, it seems that no one had bothered focusing on the character variety of the modular group, to recognise its unique boundary point as the well known action on the trivalent tree, and relate the universal representation of the modular group to the Burau representation of the braid group.

Asymptotic values of functions on the character variety

In this last section we prove Theorem 0.25 expressing the linking numbers between modular knots in terms of functions defined on the character variety of PSL 2 (Z), by taking their limits at the boundary point q = ∞.

Fix two hyperbolic matrices A, B ∈ PSL 2 (Z). Recalling the formalism developed at the end of Section 2.3, we define functions L q ([A], [B]) and C q ([A], [B]) of their conjugacy classes, by averaging conjugacy-invariants of pairs of conjugacy classes obtained from bir(A q , B q ) and cos(A q , B q ). Geometrically, they can be expressed as the following sums extending over the oriented intersection angles θ between the geodesics of M q associated to A and B:

L q ([A], [B]) = cos θ 2 2 C q ([A], [B]) = (cos θ) .
In Section 2.3, we described the relative positions between the combinatorial axes of hyperbolic A, B ∈ PSL 2 (Z) acting on T . In particular we introduced the cosign(A, B) to compare their orientations along their intersection when it is not empty, and Proposition 2.44 showed that cosign(A, B) = len(AB) -len(AB -1 ). Using Proposition 5.10 computing deg Tr(C q ) = len(C) we deduce in Corollary 5.19 that cos(A q , B q ) → cosign(A, B). Combining this with Theorem 4.44 expressing the linking number in terms of cosign, we find our Theorem 5.24, saying that:

1 2 L q ([A], [B]) ---→ q→∞ lk(A, B) 1 2 C q ([A], [B]) ---→ q→∞ 2 lk(A, B) -1 2 I(A, B).
To finish, let us compare the definitions of the functions L q and C q and their limiting behaviour at q = ∞ with similar considerations which have been made for non-oriented loops in a closed surface S of genus g ≥ 2. Such loops, corresponding to the conjugacy classes of α, β ∈ π 1 (S) up to inversion, define trace functions Tr(α), Tr(β) on the SL 2 (C)-character variety of π 1 (S) (whose real locus contains the Teichmüller space of S as a Zariski dense open set). This character variety carries a natural symplectic structure [START_REF] William | The symplectic nature of fundamental groups of surfaces[END_REF], given by the Weil-Petersson symplectic form.

The sum C q (A, B) looks very much like Wolpert's cosine formula [Wol82, Wol81] computing the Poisson bracket {Tr(α), Tr(β)} of the trace functions. The major difference is that Wolpert's formula is a skew-symmetric expression in two nonoriented loops. In fact, we are able to define an analog of Wolpert's formula by summing the product cross(A, B) × cos(A, B). However, the character variety of PSL 2 (Z) being one-dimensional, any Poisson structure in the usual sense would be trivial, so we expect this function to be zero (and this is confirmed by our computer experimentation).

Moreover, the Weil-Petersson symplectic form has been extended to several compactifications of the character variety [PP91, SB01, MS]. The limits of the Poisson bracket {Tr(α), Tr(β)} at the respective boundary points have been interpreted in [Bon92, Proposition 6] and [MS]. Let us also mention [START_REF] Otal | Sur la géometrie symplectique de l'espace des géodésiques d'une variété à courbure négative[END_REF] which was a source of inspiration in his understanding of cross-ratios.

Still, the definitions of our functions L q & C q may be generalised to oriented geodesics in hyperbolic surfaces, and we may wonder about their limits at the boundary points of Teichmüller space. Besides, we believe that the functions L q would yield some kind of Killing form on Goldman's Lie algebra of oriented loops [START_REF] William | Invariant functions on Lie groups and Hamiltonian flows of surface group representations[END_REF].

5.1

The space of representations PSL 2 (Z) → PSL 2 (R)

In this section, we describe the PSL 2 (R)-character variety of Γ, defined as the space of representations Hom(Γ, PSL 2 (R)) considered up to PSL 2 (R)-conjugacy at the target.

Theorem 2.11 presented Γ as the free amalgam of its (cyclically ordered) subgroups Z/2 and Z/3 generated by S and T respectively. Consequently, a representation ρ : Γ → PSL 2 (R) is uniquely determined by a pair ρ(S), ρ(T ) such that ρ(S) 2 = 1 = ρ(T ) 3 , so their collection Hom(Γ, PSL 2 (R)) is a real algebraic subvariety of PSL 2 (R) × PSL 2 (R).

Among all representations, some are faithful, some are discrete, and we are mostly interested in those matching both conditions called Fuchsian representations.

Abelian representations

Let us first describe those representations ρ for which ρ(S) and ρ(T ) have a common fixed point for their action on the hyperbolic plane. The image of ρ is thus contained in an abelian subgroup of PSL 2 (R), thus in a conjugate of PSO 2 (R), and factors through the abelianisation Γ/[Γ, Γ] = Z/2 × Z/3 = Z/6. Such representations belong to six conjugacy classes enumerated as follows.

One may have the trivial representation for which both ρ(S) and ρ(T ) trivial, or else only ρ(S) trivial in which case ρ(Γ) Z/3 and there are two possibilities given by the orientation of rotation, or else only ρ(T ) trivial in which case ρ(Γ) Z/2, or neither of them trivial in which case ρ(Γ) Z/6 and again there are two possibilities given by the orientation of ρ(T ).

Non-abelian representations

From now on, the representation ρ is non-abelian, so ρ(S) and ρ(T ) are rotations of order 2 and 3 around distinct fixed points. Then ρ is uniquely described by those fixed points, along with the orientation of the order three rotation. Its conjugacy class is uniquely determined by the distance λ ∈]0, ∞[ between those fixed points, along with the orientation of ρ(T ).

The space of representations admits an involution (conjugating by J) exchanging the orientation of ρ(T ), whose only fixed points are the two abelian representations with ρ(T ) = 1. The same goes for the character variety since T and T -1 are not conjugate in PSL 2 (R). We speak of (conjugacy classes of) positive and negative non-abelian representations.

Hence there are two components in the space of non-abelian representations, and the same goes for the character variety which is thus homeomorphic to R * + × {±1}. This homeomorphism is analytic but not algebraic.

Proposition 5.1. Let ρ : Γ → PSL 2 (R) be a positive representation, and λ 0 be the hyperbolic distance between the fixed points of ρ(S) and ρ(T ), given by cosh λ 0 = 2.

If λ ∈ [λ 0 , ∞[ then the representation is faithful and discrete, that is Fuchsian. If λ ∈ ]0, λ 0 [ then the representation is not Fuchsian. If λ = 0 then the representation is abelian, thus discrete but not faithful.

Proof. The image ρ(Γ) is generated by ρ(L) and ρ(R), whose trace equal cosh(λ).

Hence the result follows from the classification of Fuchsian groups [dSG10, VI].

One may replace the analytic parameter given by the hyperbolic distance λ between the fixed points of ρ(S) and ρ(T ), by the algebraic parameter given by the discriminant of their product δ = disc ρ(R). Recall that disc = Tr 2 -4, so to change parameters we must relate |Tr ρ(R)| to λ. As we shall see, this relation is given by Tr ρ(R) = 2 cosh λ ′ + sinh λ ′ with λ ′ = λ -λ 0 .

Corollary 5.2. The non-abelian representations are determined by their orientation and discriminant δ > -4; they satisfy the following dichotomy.

If δ ∈ ] -4, 0[ then the representation is not Fuchsian. If δ ∈ [0, ∞[ then the representation is Fuchsian.

The value δ = 0 for the algebraic parameter corresponds either to an abelian representation or to the inclusion PSL 2 (Z) ⊂ PSL 2 (R) which is Fuchsian.

Remark 5.3 (Non-faithful). The non-abelian and non-faitfull representations form a countable set of points in the interval parametrized either by λ ∈]0, λ 0 [ or by δ = disc ρ(R) ∈] -4, 0[ indexed by the integers n > 6. More precesely, the image of such a representation ρ is a hyperbolic triangle group (2, 3, n) for some n > 6 which is minimal with the property that ρ(R) n = 1.

Analytic parametrization by the distance

The subset of non-abelian positive representations projects onto the character variety: let us parametrize a section, first analytically using the distance λ ′ = λ -λ 0 .

Proposition 5.4. For λ ′ ∈ R, define the representation ρ λ ′ : PSL 2 (Z) → PSL 2 (R) by

T λ ′ = T S λ ′ = sinh λ ′ -cosh λ ′ cosh λ ′ -sinh λ ′ .
The family of representations ρ λ ′ analytically parametrized by λ ′ ∈] -λ 0 , ∞[ projects to all positive non-abelian representations up to conjuacy, and λ ′ ≥ 0 if and only if the representation is Fuchsian.

Proof. Consider a positive non-abelian representation ρ. Up to conjugacy, we may fix ρ(T ) = T λ ′ = T and let the center of ρ(S) vary along the half geodesic extending from the fixed point of T towards the fixed point of S. Let us show that when it reaches a distance λ ′ from S we have ρ(S) = S λ ′ .

For this we work in the linear and projective models of the hyperbolic plane described in Section 1.6. The fixed points of S and T in P(H) lift to pr S = S and pr T in the hyperboloid H. The line passing through them is {pr S, pr T } ⊥ .

Since T = S + 1 2 (1 -K), we have pr T = S -1 2 K, so {pr S, pr T } = + 1 2 J. Consequently, by Proposition 1.57, the hyperbolic translation of distance λ ′ along the oriented axis from the center of T to the center of S is:

exp λ ′
2 J = cosh(λ ′ /2)1 + sinh(λ ′ /2)J = cosh λ ′ /2 sinh λ ′ /2 sinh λ ′ /2 cosh λ ′ /2 and this matrix conjugates S to the matrix S λ ′ . The rest of the statement now follows from Proposition 5.1.

Remark 5.5. Notice that, denoting c = cosh λ ′ and s = sinh λ ′ , the values of

L λ ′ = T -1 λ ′ S λ ′ = c -s c -s c -s and R λ ′ = T λ ′ S -1 λ ′ = c -s c -s -s c
are still conjugate by J, but are transpose to one another only when sinh λ ′ = 0. 

Algebraic parametrization by the discriminant

The set of Fuchsian representations projects to (an open in) the character variety: let us parametrize a section by q ∈ R * algebraically related to δ = (q -q -1 ) 2 . This time we let S vary along the geodesic pr K ⊥ joining the centers of S and T (that is the orthogonal to pr J ⊥ passing through pr S). This amounts to conjugating S by exp l 2 K for some l ∈ R given by the distance to S. For more symmetric formulae, we conjugate this whole family of representations to fix S q = S and let T q be the conjugate of T by exp -l 2 K where q = exp(l):

T q = 1 -q q -1 0 so R q = T q S -1 q = q 1 0 q -1 and L q = T -1 q S q = q 0 1 q -1 which implies in particular that δ = disc R q = (q -q -1 ) 2 . This defines for every q ∈ R * + a representation ρq : PSL 2 (Z) → PSL 2 (R)

which is Fuchsian since δ > 0. Note that ρq still makes sense for q ∈ R * -. Proposition 5.6. The conjugacy classes of Fuchsian representations PSL 2 (Z) → PSL 2 (R) form a closed real semi-algebraic set parametrized by (sign(q), (q -q -1 ) 2 ) for q ∈ R * whose sign provides the orientation of the action on HP.

Proof. By Corollary 5.2, a value of δ = (q -q -1 ) > 0 determines a unique Fuchsian representation up to change of orientation, and it determines a unique value of q up to change of sign and inversion.

If q > 0 then T q acts like a positive rotation since it is conjugate to T in SL 2 (R). If q < 0 then T q acts like a negative rotation since T -q = KT q K -1 and det(K) = -1.

The representations ρq and ρq -1 are conjugate in PSL 2 (R) since T q -1 = JT -1 q J -1 and T q acts with the same orientation as det(J) = -1. Explicitly T q -1 and T q are conjugate by exp(θS) for a unique -π/4 < θ < π/4 solving tan(θ) = q -q -1 .

The matrices S, T ∈ PSL 2 (Z) are the unique lifts of S, T ∈ SL 2 (Z) which act as positive orientations on the plane Z 2 : this fixes the projection SL 2 (Z) → PSL 2 (Z). The group SL 2 (Z) is the amalgam of its (oriented) cyclic subgroups Z/4 and Z/6 generated by S and T over their intersection Z/2 generated by S 2 = T 3 = -1.

We actually defined for every q ∈ R * a representation ρ q : SL 2 (Z) → SL 2 (R)

Corollary 5.7. The conjugacy classes of faithful discrete representations SL 2 (Z) → SL 2 (R) form a closed semi-algebraic set parametrized by q + q -1 for q ∈ R * whose sign determines the orientation of the action on R 2 .

Proof. A faithful discrete representation ρ : SL 2 (Z) → SL 2 (R) projects to a Fuchsian representation ρ : PSL 2 (Z) → PSL 2 (R) which is conjugate to ρq for some q ∈ R * which is unique up to inversion. Conversely for all q ∈ R * , the lift of ρq to a representation SL 2 (Z) → PSL 2 (R) is uniquely determined by the choices we made for the lifts of S&T This further lifts the double cover SL 2 (R) → PSL 2 (R) in at most two ways ρ q and ρ -q , each one being determined by the orientation of the action of ρ q (S) on R 2 .

Finally ρ q and ρ q -1 are conjugate by exp(θS) ∈ SL 2 (R) for tan(θ) = q -q -1 .

The Universal and the Burau representations

The universal representation SL 2 (Z) → SL 2 (Z[q, q -1 ])

We just introduced a one parameter family of representations ρ q : SL 2 (Z) → SL 2 (R) depending algebraically on the parameter q ∈ R * and with integral coefficients. This leads to the definition of the universal representation.

Definition 5.8. The universal representation SL 2 (Z) → SL 2 (Z[q, q -1 ]) denoted A → A q is defined by S → S q and T → T q , or equivalently by L → L q and R → R q where: S q = 0 -1 1 0 T q = 1 -q q -1 0 R q = q 1 0 q -1 L q = q 0 1 q -1 Hence A q is obtained from any S&T -factorisation of A by replacing T → T q , or equivalently from any L&R-factorisation of A by replacing L → L q and R → R q .

Definition 5.9. The Fricke polynomial of A ∈ SL 2 (Z) is F A (q) = Tr(A q ) ∈ Z[q, q -1 ].

The discriminant polynomial of A ∈ PSL 2 (Z) is disc(A q ) = (Tr A q ) 2 -4 ∈ Z[q, q -1 ].

Of course F A is invariant by conjugacy and inversion of A, hence by transposition. Since ρ q and ρ q -1 are conjugate, the polynomial F A is reciprocal F A (q) = F A (q -1 ), so its degree deg(F A ) is unambiguously defined by its highest monomial in q or q -1 . For instance F L n = q n + q -n = F R n has degree n.

If A ∈ SL 2 (Z) has finite order then it is conjugate to a power of S or T , so F A is a constant determined by its order according to F ±1 = ±2, F S ±1 = 0, F T ±1 = 1.

Recall that len(A) is the minimum displacement length of A acting on T .

Proposition 5.10. If A ∈ SL 2 (N) then Tr(A q ) is unitary of degree len(A), with non-negative coefficients and constant term Tr(A) ≥ 2. Hence, if A ∈ PSL 2 (Z) has infinite order, then disc(A q ) is unitary of degree 2 len(A), with positive coefficients and constant term disc(A) ≥ 0.

Proof. Let us prove the first assertion, the second follows immediately. Recall that the monoid SL 2 (N) is freely generated by L&R. The non-negativity of the coefficients is obvious and so is Tr(A) ≥ 2, so we are left to compute the degree and leading coefficient of Tr(A q ).

We reason by induction on len(A) using the trace relation F U V = F U F V -F U V -1 which was equation 1.5 in Chapter 1. It is true for len(A) ≤ 1.

An astute way of performing the inductive step is to successively reduce the number of L's appearing in the factorisation of A to show that:

Tr(A q ) = Tr R len(A) q + o q len(A) + q -len(A) .

If A = R len(A) then we are done. Otherwize we may assume (after conjugating) that A = LA ′ = T -1 SA ′ with len(A ′ ) = len(A) -1, and apply the trace relation:

Tr T q S -1 q A ′ q = Tr(T q ) Tr(S -1 q A ′ q ) -Tr(T q S -1 q A ′ q ) = Tr(T q SA ′ q ) -Tr(A ′ q S) and the first term is Tr(R q A ′ q ) and len(A ′ S) < len(A) as reveals a simplification of the last two S's and a combination of the remaining extremal T 's.

Corollary 5.11. If A ∈ PSL 2 (Z) has infinite order, then for all q ∈ R * \ {1} the element A q ∈ PSL 2 (R) is hyperbolic.

The character ring: algebraic presentation & linear basis

This paragraph is not needed in what follows, but is meant show some properties of the character variety of PSL 2 (Z) which can be generalised to other of other Fuchsian groups, while shedding light on its specificity.

Proposition 5.12. The F A generate the subring of reciprocal polynomials in Z[q, q -1 ]. The ideal of relations satisfied between them is generated by the trace relations: ∀A, B ∈ SL 2 (Z) :

F AB + F AB -1 = F A F B and
F S = 0, F T = 1.

Proof. The first sentence is now obvious: in fact the F R n provide a linear basis for the sub-algebra of reciprocal Laurent polynomials, which is graded by the degree. Note that the (F R ) n provides another graded basis, in which the expression for the F R n is given by a family of Chebychev polynomials since they satisfy the recurrence relations

F R n = F R F R n-1 -F R n-2 .
To prove that the ideal of relations satisfied by the F A is generated by the trace and unit relations, it is enough to show how they enable to decompose F A in the linear basis spanned by the F R n . This follows by induction as in the previous proof.

Let us simply enunciate the following description for the algebra of functions on the SL 2 (R)-character variety of a finitely generated group Γ in terms of the trace functions 

The Burau representation

Recall from [START_REF] Squier | The Burau representation is unitary[END_REF] that the reduced Burau representation Br : B 3 → GL 2 (Z[t, t -1 ]) is defined on the Artin generators by:

σ 1 → -t 1 0 1 σ 2 → 1 0 t -t
Conjugating by S, then setting q = √ -t and conjugating by the diagonal matrix with entries 1, q we obtain a similar representation Sq : B 3 → GL 2 (Z[q, q -1 ]) defined on the Artin generators by:

Sq : σ -1 1 → 1 q × L q Sq : σ 2 → q × R q
Thus for all β ∈ B 3 we have q -lk(β) Sq(β) ∈ SL 2 (Z[q, q -1 ]).

Remark 5.15. The name Sq refers to SL 2 (Z[q, q -1 ]) and is meant to recall the similarity with the (slightly different) symplectic representation of Squier [START_REF] Squier | The Burau representation is unitary[END_REF].

Recall the discussion in Section 4.1 concerning the abelianisation map lk : B 3 → Z, where we defined a morphism of monoids σ : PSL 2 (N) → B 3 by σ(L) = σ -1 1 and σ(R) = σ 2 which satisfies lk σ(A) = Rad(A).

Proposition 5.16. For all A ∈ PSL 2 (N) we have Sq(σ(A)) = q Rad(A) A q .

The link σ(A) obtained from the cyclic closure of the braid σ A has Alexander polynomial ∆(σ A )(t) ∈ Z[t, t -1 ] given, up to a multiple of the unit q = √ -t, by: ∆(σ A )(q) = q Rad(A) -Tr(A q ) + q -Rad(A) (q -q -1 ) 2

Proof. The first assertion is immediate. Following [BB05, 4.2], the Alexander polynomial of a braid β ∈ B 3 is given in terms of the reduced Burau representation by ∆(β)(t) = det(Br(β) -1)

1 + t + t 2
By the Cayley-Hamilton identity, for M ∈ gl 2 : det(M -1) = det(M )-Tr(M )+1. Besides 1 + t + t 2 = q 2 (q -q -1 ) 2 . Thus: ∆(β)(q) = det(q Rad(A) A q ) -Tr(q Rad(A) A q ) + 1 q(q -q -1 ) 2 = q 2 Rad(A) -q Rad(A) Tr(A q ) + 1 q(q -q -1 ) 2

The Alexander polynomial is only defind up to multiplication by a unit of the ring, and dividing the last expression by q Rad(A)-1 yields the desired result.

Asymptotic values of functions in q ∈ R *

Before embarking on the algebraic discussion, let us think geometrically about the deformation of the hyperbolic metric of the orbifold M q as q → ∞.

The hyperbolic orbifold M q = ρ q (Γ)\HP has a convex core which retracts onto a thin neighbourhood of the long geodesic arc (i, j q ) connecting the conical singularities. It lifts in HP to an ϵ-neighbourhood of T q with ϵ = Θ (1/q 2 ), and whose collar-neck has width λ equal to the distance between the translation axes of L q and R q , that is such that:

cosh λ = q+q -1 q-q -1 2
The hyperbolic geodesics γ Aq of M q becomes parallel to the edge (i, j q ) so the geometric axis γ Aq comes closer and closer to the combinatorial axis g A . In particular, the intersection angles converge to ±π and it appears that cos(A q , B b ) → cosign(g A , g B ).

The convex core of M q lifts in HP to an ϵ-neighbourhood of T q with ϵ = Θ (1/q 2 ). This should not surprise someone acquainted with compactifications of Teichmüller space by actions on trees or by valuations [START_REF] Otal | Compactification of spaces of representations after Culler[END_REF][START_REF] Marché | Automorphisms of character varieties[END_REF]. Here the unique boundary point q = ∞ corresponds to the action on T or to the valuation -deg q .

The cosign(A, B) as limit of cos(A q , B q )

Let us recall the following computations from chapter 1, in which we used to denote tr(M ) = 1 2 Tr(M ) the half-trace. Proposition 5.17. Consider A, B ∈ PSL 2 (Z) and let q ∈ R * . Denoting a q and b q the orthogonal projections of A q and B q in sl 2 (R), we have:

-a q | b q = 1 4 Tr A q B q -Tr A q B -1 q and therefore: cos(A q , B q ) = Tr(A q B q ) -Tr(A q B -1 q ) disc(A q ) disc(B q ) Proof. Denote x q = tr(A q ) and y q = tr(B q ) so that A q = x q + a q and B q = y q + b q . Then compute:

-a q | b q = tr(a q b q ) = tr ((A q -x q )(B q -y q )) = tr(A q B q ) -2x q y q + x q y q = tr(A q B q ) -x q y q = 1 4 (2 Tr A q B q -Tr A q Tr B q )

and the result follows by applying the trace identity. The formula for cos(A q , B q ) then follows from Proposition 1.89 expressing the cosine in terms of the scalar product, or more directly from Remark 1.51.

For hyperbolic A, B ∈ PSL 2 (R), we defined 1.93 the algebraic intersection number cross(A, B) ∈ {-1, 0, 1} and geometric intersection number |cross|(A, B) ∈ {0, 1} between their oriented axes γ A , γ B ⊂ HP.

For infinite order A, B ∈ PSL 2 (Z), their cosign(A, B) ∈ {-1, 0, 1} compares the orientation of their combinatorial axes g A , g B ⊂ T in the trivalent tree where they intersect, according to Definition 2.42.

The following statements are immediate corollaries to Proposition 5.10 computing the degrees of Tr(C q ) and disc(C q ). Corollary 5.18. For infinite order elements A, B ∈ PSL 2 (Z), if cosign(A, B) = 0 then F AB -F AB -1 has degree len(A) + len (B) and leading coefficient cosign(A, B).

Corollary 5.19. For hyperbolic A, B ∈ PSL 2 (Z) we have cross(A q , B q ) = cross(A, B), whence |cross|(A q , B q ) = |cross|(A, B).

If |cross|(A, B) = 1 then the hyperbolic elements A q , B q ∈ PSL 2 (R) have oriented geometric axes γ Aq and γ Bq which intersect at an angle with cosine cos(A q , B q ). In that case, this algebraic function on the PSL 2 (R)-character variety of PSL 2 (Z) has a limit at the boundary point: cos(A q , B q ) ---→ q→∞ cosign(A, B).

Linking number as limit of the cross-ratio orbital sum

Now we put into practice the general procedure explained at the end of Section 2.3 to construct invariants of pairs of conjugacy classes: it involves a summation over pairs of representatives in each conjugacy class modulo centralisers and up to the diagonal action of the group. Definition 5.20. For conjugacy classes [A], [B] of hyperbolic elements in PSL 2 (Z), consider the functions of q defined by:

L q ([A], [B]) = (U,V ) [[bir > 1]] bir Ãq , Bq (L q ) C q ([A], [B]) = (U,V ) (|cross| × cos) Ãq , Bq (C q )
where the sums extend over pairs of representatives à = U AU -1 and B = V BV -1 for the conjugacy classes with (U, V ) ∈ Γ/ Stab(A) × Γ Γ/ Stab(B).

Remark 5.21. Recall that by Corollary 1.94 for all A q , B q ∈ PSL 2 (R) we have |cross|(A q , B q ) = [[bir(A q , B q ) > 1]], and by Corollary 5.19 for all A, B ∈ PSL 2 (Z) we have |cross|(A q , B q ) = |cross|(A, B). Thus we could also have written: Theorem 5.24. For conjugacy classes of hyperbolic elements A, B ∈ PSL 2 (Z), the limits of the functions L q (A, B) and C q (A, B) at the boundary point of the PSL 2 (R)character variety of PSL 2 (Z), recover the linking and intersection function of the corresponding modular knots and modular geodesics: Proof. The first limit follows from Theorem 4.44 and replace the terms of sums defining L q and C q by the expression for cos(A q , B q ) obtained in corollary 5.19 and take the limit as q → ∞. We recover the formulae obtained for the linking and intersection numbers in Theorem 4.44 and Remark 4.46.

L q ([
Computation and analytic behaviour of L q and C q Recall the various expressions we have for the linking numbers L(A, B). From the topology of the Lorenz template Y ⊂ U we deduced the algorithmic sum in Proposition 4.27, which we reformulated in Corollary 4.42 by exploiting the combinatorics of the trivalent tree T , to finally arrive at the algebraic formulation of Theorem 4.44 in terms of the group PSL 2 (Z). Now we are facing the opposite problem: from the algebraic definition 5.20 for the q-deformed linking numbers L q (A, B) we wish to extract a combinatorial expression which lends itself to algorithmic computations.

From algebra to combinatorics

Let us provide an algorithmic expression for the function L q = 1 2 (I + C q ) which may come in handy for practical purposes such as drawing its graph. It relies on the general discussion at the very end of Section 2.3.

First choose Lyndon representatives A, B ∈ PSL 2 (N), defined in Corollary 2.19. The intersection number I([A], [B]) can be computed rapidly in terms of the Lyndon representatives using Proposition 3.10, which as remarked in 4.46 amounts to expressing it in terms of the linking numbers 1 2 I(A, B) = lk(A, B) + lk(A, t B) and applying the Algo-Sum in Proposition 4.27.

To compute C q ([A], [B]) recall the last two paragraphs of Section 2.3. We introduce the function f (A, B) = |cross|(A, B) × Tr(A q B q ) -Tr(A q B -1 q so that C q ([A], [B] which by definition equals the sum of Tr(σ i A q )(σ j B q -(σ j B q ) -1 ) over pairs of crossing Lyndon representatives. Of course one makes first the cyclic permutations and then replaces L → L q and R → R q , at the last moment changing the word into a matrix with coefficients in SL 2 (N[q, q -1 ]).

Complex graphs of L q (A, B)

Finally, we cannot resist showing the graphs of L q (A, B) for q ∈ C. Since L q = L 1/q we bound the module |q| < 1 + ϵ for a small value of ϵ > 0 chosen according to aesthetic criteria. For this we assign a colour to each point of the complex plane according to the HSV colour scheme: the hue varies according to the argument, and the brightness varies according to the module. Since a picture is worth a thousand words, we display beneath the graph of the identity map for |q| < 2.

The identity map for q ∈ C with |q| < 2.

Location of zeros and poles.

The main general observation is that the zeros and poles of L q (A, B) tend to concentrate on the unit circle.

Again this is neither surprising nor obvious. It is not surprising in view of the fact that the polynomials Tr(C q ) are closely related to Alexander polynomials of braids on three strands as we saw in Proposition 5.16. The zeros of Alexander polynomials of knots and links with braid have been subject to various studies (see for instance [START_REF] Stoimenov | Hoste's conjecture and roots of the Alexander polynomial. In Knots, low-dimensional topology and applications[END_REF] for a specific study of those with braid index 3). We should also mention that [START_REF] Dehornoy | On the zeroes of the Alexander polynomial of a Lorenz knot[END_REF] has shown such a concentration property for the zeroes of the Alexander polynomial of a Lorenz knot: they lie an annulus whose inner and outer radii are bounded in terms the genus and the braid index of the knot. Still, it would remain a challenge to generalise such localisation results to the functions L q ([A], [B]).

Symmetric matrices L q (A, B).

There are of course many other patterns to observe on the shape of L q (A, B) when we let A, B vary in special families.

For instance, one may ask about the properties of the symmetric q-linking matrix L q (A, B) for elements A, B varying in a given class group Cl(∆). H = sl(V) ∩ SL(V) ⊂ gl(V) which over R is a double-sheeted hyperboloid.

H ′ = {a ∈ sl(V) | det(a) = -1} which over R is a single-sheeted hyperboloid.

⊥ The orthogonality relation in the non-degenerate quadratic space (sl 2 (K), det)

or the corresponding polarity relation in the projective plane P(sl 2 (K)) with respect to the non degenerate conic P(X).

ψ Parametrization of the isotropic cone K 2 → X ⊂ sl 2 (K) or V → X ⊂ sl(V)). Defined using coordinates in Lemma 1.33, and intrinsically in Lemma 1.36. The function ψ is defined in Proposition 2.5 of Chapter 2.

bir The cross-ratio bir(u, v, x, y) of u, v, x, y ∈ KP 1 , the cross-ratio bir(a, b) of a, b ∈ sl(V) \ X or the cross-ratio of A, B ∈ PGL(V) are defined in Section 1.3. cord The cyclic order cord(x, y, z) ∈ {-1, 0, 1} of three points in an oriented circle.

cross ∈ {-1, -1 2 , 0, 1 2 , 1}. The algebraic intersection number cross(w, z) between two chords w = (u, v) and z = (x, y) with endpoints in an oriented circle.

In particular for geodesics in HP or T , for instance the translations axes of hyperbolic transformations acting on those spaces.

|cross| ∈ {0, 1 2 , 1}. The absolute value of cross.

Q(K)

The vector space of binary quadratic forms.

Q(Z)

The module of integral binary quadratic forms.

Cl(∆)

The class group of discriminant ∆.

Norm K The norm of an algebraic K-extension. If α is quadratic then Norm K (α) = αα ′ .

P The set of primes (with -1 as prime at infinity), see Section 1.5 for P(Q a , Q b ).

Q p Field of p-adic numbers, completion of Q at place p (δ, χ) p Hilbert symbol of (δ, χ) at prime p defined in Section 1.5. Abstract: In this work, dedicated to the modular group PSL 2 (Z), we investigate several arithmetical and topological structures underlying its set of conjugacy classes, such as equivalence relations and bilinear pairings. The modular group PSL 2 (Z) acts on the hyperbolic plane HP with quotient the modular surface M, whose unit tangent bundle U is a 3-manifold homeomorphic to the complement of the trefoil knot in the sphere S 3 . The modular knots in U are the periodic orbits for the geodesic flow, the lifts of closed oriented geodesics in M, which correspond to hyperbolic conjugacy classes in PSL 2 (Z). Their linking numbers with the trefoil is well understood. We are concerned with the linking numbers between modular knots and derive several formulae with combinatorial, dynamical or group theoretical flavour. In particular, we associate to a pair of modular knots a function defined on the character variety of PSL 2 (Z), whose limit at the boundary point recovers their linking number. The hyperbolic matrices in the modular group PSL 2 (Z) also parametrize various families of objects in arithmetics such as indefinite integral binary quadratic forms. For a field extension K of Q, we consider two matrices in PSL 2 (Z) as K-equivalent when they are conjugate by an element in PSL 2 (K). The set of PSL 2 (Z)-classes is thus partitioned into K-classes, and we describe how this varies with K. For K = C it amounts to grouping binary quadratic forms with the same discriminant and modular geodesics of the same length. For K = Q we obtain a refinement of this equivalence relation, which we relate to the arithmetic of integral binary quadratic forms (Hilbert symbols) and describe in terms of the geometry of modular geodesics (angles at intersection points, and lengths of ortho-geodesics).
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Lemma 0. 2 .

 2 For a, b ∈ sl 2 (K), if we choose a square root of det(ab) then we may define their cosine cos(a, b) ∈ K[ det(ab)]: cos(a, b) and we may order their polar points P(a ⊥ ∩ X) = {α ′ , α} and P(b ⊥ ∩ X) = {β ′ , β} up to simultaneous inversion, so as to define their cross-ratio bir(a, b) ∈ K[ det(ab)]: bir(a, b)

Corollary 0. 4 .

 4 Let a, b ∈ sl 2 (K) have discriminant ∆ = 0 and bir(a, b) = 0. The matrices M ∈ PGL 2 (K) conjugating a to b have a well defined determinant in the quotient K × / Norm K (K[ √ ∆] × ) and its is equal to the class of bir(a, b).

Theorem 0. 5 .

 5 Let a, b ∈ sl 2 (K) have discriminant ∆ = 0 and bir(a, b) / ∈ {1, ∞}. The C ∈ SL 2 (K) such that CaC -1 = b are parametrized by the Pell-Fermat conic:

  Stab b), and the quotient of this set by the diagonal action of Γ by left translations is denoted Γ/(Stab a) × Γ Γ/(Stab b).

Figure 1 . 1 :

 11 Figure 1.1: Poset of subgroups in D 4 and their action on the square.

Figure 1

 1 Figure 1.2: A non-degenerate projective quadric in P 3 . A point 1 off the quadric and its polar plane P 2 , which intersects the quadric in a non degenerate conic.

  Tr(M ) 2 -2 det(M ) and Tr(M # N ) = Tr(M ) Tr(N )-Tr(M N ) which are consequences of (1.4), yields the desired identity. Remark 1.14. We recover the usual trace relation formulated for A, B ∈ SL(V) as Tr(AB) + Tr(AB -1 ) = Tr(A) Tr(B), which implies Tr(AB) = Tr(BA) and: Tr[A, B] = Tr(A) 2 + Tr(B) 2 + Tr(AB) 2 -Tr(A) Tr(B) Tr(AB) -2.

Lemma 1. 18 .

 18 Two elements a, b ∈ sl(V) are colinear if and only if {a, b} = 0. Proof. Of course the bracket vanishes on colinear pairs. Let us prove the converse. Suppose {a, b} = 0, so that ab = -a, b . If det(a) = 0 then multiplying by a # = -a we have det(a)b = a, b a and dividing by det(a) yields the conclusion. If det(b) = 0 the argument is similar. Otherwize det(a) = 0 = det(b), whence 0 = det(ab) = a, b 2 . Thus for all x, y ∈ K we have det(xa+yb) = det(a)x 2 +2 a, b xy +det(b)y 2 = 0. But the isotropic spaces of a non degenerate quadratic form cannot exceed half the dimension hence dim Span(a, b) ≤ 3/2 and we are done.

P

  

Figure 1 . 4 :

 14 Figure 1.4: In the projective plane P(sl(V)) with the conic P(X): the line (P(a), P(b)) and its pole P{a, b}.

  Elements a, b ∈ sl(V) generate an associative subalgebra(K[a, b], •) of (gl(V), •) and generate a Lie subalgebra (L(a, b), {•, •}) of (sl(V), {•, •}).Since the Lie bracket has been defined as half the commutator of the associative product we clearly have K[a, b] ⊃ K1 ⊕ L(a, b). Proposition 1.22. Let a, b ∈ sl(V). In terms of the underlying vector spaces we have K[a, b] = K1 ⊕ L(a, b) and L(a, b) = Span(a, b, {a, b}).

  (a, b) also forms a basis of L(a, b). Besides, the relations ab = -a, b 1 + xa + yb and ba = -a, b 1 -xa -yb imply that (1, a, b) form a linear basis of the (non commutative) algebra K[a, b].

  we are given the same element d a = d b then we have a canonical choice for √ d a d b . A choice for all such pairs d a , d b amounts to a determination of the square root (K × ) 2 → K × and that is equivalent to a character of the group K × /(K × ) 2 → {±1}. Definition 1.44. Consider a, b ∈ sl(V) \ X with a preferred choice of det(ab).

Definition 1. 45 .

 45 For a, b ∈ sl(V) \ X and a choice of d = det(ab) we define: cos(a, b) When det(a) = det(b) we choose d equal to this common value. We have cos(a, b) ∈ K ⇐⇒ det(ab) ∈ (K × ) 2 . Moreover cos(a, b) is invariant when multiplying a, b by a common factor, which may belong to any extension of K. Proposition 1.46. Consider a, b ∈ sl(V) \ X with a choice for d = det(ab). Then bir(a, b) and cos(a, b) are both defined and related by:

  Our task is now to compute an corresponding pair (a, b), and express β = bir(a, b) in terms of cos(a, b).

Figure 1

 1 Figure 1.8: Projecting the conic P(X) onto the open segment pr(A) ⊥ ∩ pr(H).

  4. Recall the Definition 1.44 for the cross-ratio bir(a, b) of a, b ∈ sl(V) \ X with the same determinant d and the Proposition 1.46 expressing it in terms of a, b /d. Proposition 1.57. Consider distinct a, b ∈ sl(V) \ X with the same determinant d = 0 such that d + a, b = 0 and let us work over the extension K ′ = K[ bir(a, b)].

Figure 1

 1 Figure 1.9: The one parameter group generated by {a, b}, which is contained in Span(1, {a, b}), acts by translation along the line (a, b).

  b) This proves the Lemma for d = 1. Now suppose a, b ∈ sl(V) have the same determinant d = 0. Divide them by √ d, which may live in another quadratic extension of K, to get a ′ , b ′ ∈ H as before. Since a, b /d = a ′ , b ′ and {a, b}/d = {a ′ , d ′ } we have K ′ [{a, b}] = K ′ [{a, b}]. Now for C ∈ K ′ [{a, b}] × an invertible element of this quadratic algebra, we have Ca = bC ⇐⇒ Ca ′ = b ′ C which completes the proof for all d.

Scholium 1. 59 .

 59 If we suppose that K = R there are two cases of interest depending on the class of d ∈ R * /(R * ) 2 , which will be interpreted geometrically. If d = 1, we may write tr(C) = cosh(λ) so that a, b = k = cosh(2λ). If d = -1, we may write tr(C) = cos(θ) so that -a, b = dk = cos(2θ).

  Proof. Consider two elements of P(sl 2 (K) \ X) which lift to a, b ∈ sl 2 (K) with the same determinant d = 0. Multiplying b by -1 preserves its projective class and its determinant d, while changing a, b in its opposite so we may suppose d + a, b = 0. Lemma 1.57 constructs C ∈ PGL 2 (K) conjugating a to b. Corollary 1.61. The semi-simple conjugacy classes in PGL 2 (K) are classified by the value of 1/δ(A) = (Tr A) 2 / disc(A) ∈ K which is 0 for the class of involutions.

  and b -a ∈ Span(a, b) \ {0} so by orthogonality of these planes we have Ca = bC ⇐⇒ t = x(1 + a, b ) & y = z. Now for x, y ∈ K the determinant of C = x(1 -ba) + y(a + b) can be computed using the orthogonality of Span(1, ab) and Span(a, b) and the hypothesis a, b ∈ H:

Scholium 1 .

 1 68 (Transitivity). Let a, b, b ∈ sl 2 (K) \ X have the same discriminant ∆ = 0 and be such that bir(a, b), bir(b, b) and bir(b, a) do not belong to {0, ∞}. Corollary 1.66 implies that if bir(a, b) and bir(b,

Figure 1 Figure 1 Figure 1

 111 Figure 1.10: Inside sl 2 (R): isotropic cone, unit quadrics, and preferred basis.

  and decompose it as A = x+ya with x, y ∈ R and a ∈ sl 2 (R) such that |det(a)| = 1 and sign(x) = sign(y). Thus sign(tr A)(pr A) = |det(pr A)|a.

Figure 1

 1 Figure1.13: Orientations of (v, AvA -1 , sign(tr A) pr A) for semi-simple A.

Figure 1 .

 1 Figure 1.14: Sign of the cosine between almost parallel hyperbolic geodesics (orthogonal planes to vectors, almost equal or opposite, two extremal cases)

  .14. By Proposition 1.86 the elements a, b are close in sl 2 (R) if and only if their oriented axes a ⊥ and b ⊥ are close. If they are close enough then θ is small enough to have a positive cosine while a, b is close enough for det(a) ≈ det(b) to be negative. On the contrary, if a and -b come close then θ approaches π, so its cosine is negative, whereas a, b approaches -det(a) ≈ -det(b) which is positive. The last two paragraphs lead to another slick geometric proof that sign(cos θ) equals sign (disc(AB) -disc(AB -1 )) by composing symmetries. Remark 1.90. The Proposition 1.89 recovers the fact that the angle between the oriented axes a ⊥ and b ⊥ is equal to the angle cos(a, b) defined in 1.45. Proposition 1.91. Consider hyperbolic elements A, B ∈ PSL 2 (R) with normalised projections a, b ∈ sl 2 (R).

Proposition 1. 94 .

 94 Consider hyperbolic elements A, B ∈ PSL 2 (R) whose fixed points α ′ , α, β ′ , β are all distinct. If a, b denote their normalised projections in sl 2 (R), and t = tr[A, B] the half trace of their well defined commutator [A, B] ∈ SL 2 (R), then:

Figure 1

 1 Figure 1.16: Constructing symmetries trough points inside and outside the conic.

Figure 1 Figure 1

 11 Figure1.17: Composing symmetries trough points inside the conic.

Figure 1 +Figure 1

 11 Figure 1.19: Decomposing products of translations whose axes intersect inside P(X).

Corollary 1. 97 .

 97 Two singular moduli [α], [β] ∈ Q( √ ∆) are Q-equivalent if and only if there exists a hyperbolic geodesic arc in M from [α] to [β] whose length λ is of the form: 2 -∆y 2 for x, y ∈ Q in which case all geodesic arcs from [α] to [β] have this property. If ∆ < 0 then Q a and Q b correspond to oriented geodesic axes (α ′ , α), (β ′ , β) in the upper half-plane model HP of the hyperbolic plane. Their PSL 2 (Z)-classes correspond to the primitive closed oriented geodesics γ a , γ b in the modular orbifold M = PSL 2 (Z)\HP.

Figure 1

 1 Figure 1.21: Cross-ratios and cosines in the real case.

  Angle well defined in ]0, π[. Ortho-geodesics well and badly co-orientated.

Figure 2

 2 Figure 2.1: The lotus 1 and its quadruple 4 .

Figure 2 . 2 :

 22 Figure 2.2: The spiderweb ψ( 1 ) inscribed in the half-cone ψ(R 2 ).

Figure 2 . 4 :

 24 Figure 2.4: The action of S, T , L, R and LRL on the dual tree T of 2 .

  αα ′ a : m + 2l + 2r = 0 or equivalently a, T = 0 A : a + 2b = 2c + d or equivalently Tr(AT ) = Tr(AT -1 )

Figure 2 . 5 :

 25 Figure 2.5: The line V α intersects a sequence of gliders in ′ 1 encoded by s ±1 &t ±1 .

Figure 2 . 6 :

 26 Figure 2.6: Geodesic of P(H) intersecting the gliders of ′ 2 according to a sequence .. . t -2 s -1 t -1 s -1 | t +1 s -1 t -1 s -1 .. . , the separation marks the intersection with the base glider.

Figure 2

 2 Figure 2.8: A t • must be surrounded by equal powers ϵ = • of s. The canonical perturbation changes t • in t -ϵ .

Figure 2 . 9 :

 29 Figure 2.9: Geodesic axis of γ RL and a canonical perturbation: the s • change to s ±1 .

Figure 2 .

 2 Figure 2.11: Configurations of two geodesics: values of cross & cosign.

Figure 2 .

 2 Figure 2.12: AB sends B -1 (e) to A(e) separated by len(A) + len(B).

Figure 2 .

 2 Figure 2.13: [A, B] sends BA(e A ) to AB(e A ) separated by 2l A + 3d + l B .

  Stab a) × Γ/(Stab b), and the quotient of this set by the diagonal action of Γ by left translations is denoted Γ/(Stab a) × Γ Γ/(Stab b).

Figure 3 . 1 :

 31 Figure 3.1: The hyperbolic plane HP is triangulated by ′ 2 . The union of a grey triangle and a white triangle forms a fundamental domain under the action of Γ.

Remark 3. 1 .

 1 A finitely generated discrete subgroup of PSL 2 (R) with infinite covolume acts on HP with quotient an orbifold having ends of infinite area: they are trumpets (whose local model is the quotient of H by a hyperbolic cyclic group) instead of cusps (whose local model is the quotient of HP by a parabolic cyclic group).

Figure 3 . 3 :

 33 Figure 3.3: The geodesic axis γ RL and its canonical perturbation. Their respective projections in M and in M \ {i, j}.

Figure 3 . 4 :

 34 Figure 3.4: The loops s, t ⊂ M \ {i, j} freely generate π 1 (M \ {i, j}).

Figure 3

 3 Figure 3.5: Quotient ▽ 2 → M with the portion of an axis encoded by S -1 T -2 S -1 .

  B) with Stab(A) and Stab(B) the cyclic subgroups generated by the primitive roots of A and B.

Figure 3 . 6 :

 36 Figure3.6: Minimally intersecting representatives in M \ {i, j} for the homotopy class of (t +1 s -1 )(t -1 s -1 )(t +1 s -1 ) and (t -2 s -1 )(t -1 s -1 )(t -1 s -1 )(t -1 s -1 ).

Figure 3 . 7 :

 37 Figure 3.7: The loops s, t in M seen from beneath.

Figure 3 . 8 :

 38 Figure 3.8: Quotienting the axes of RL & LR under ▽ 1 → M. Compare Figure 3.3.

  We now consider the Galois cover of M corresponding to the derived subgroupΓ ′ = [Γ, Γ],or to the abelianisation morphism Γ → Γ/Γ ′ . Proposition 3.26. The modular group Γ has abelianisation Z/2 * Z/3 → Z/2×Z/3. The kernel Γ ′ is freely generated by RL = [T, S] and LR = [T -1 , S].

Figure 3

 3 Figure 3.10: Tilings of HP under the kernels of Γ → Z/2 and Γ → Z/3. The quotient orbifolds are the only two covers of M with conical singularities.

Figure 3 .

 3 Figure 3.13: Paths encoded by RLRLL & (RLRLL) 2 in the hexagonal graph H.

Corollary 4. 7 .

 7 Let G be a connected Lie group and Γ a discrete subgroup. The fundamental group of Γ\G is the preimage Γ of Γ in the universal cover G → G. The central extension C → G → G pulls-back to a central extension C → Γ → Γ.

Remark 4. 8 .

 8 Let Γ be a discrete subgroup of a connected semi-simple Lie group G. Let K be a maximal compact subgroup of G and S = G/K = G/ K the symmetric space. Denote C the fundamental group π 1(K) = π 1 (G), which is central in K ⊂ G. Finally denote U = Γ\G = Γ\ G and M = Γ\G/K = Γ\ G/ K.Then we have the following diagram of quotient of spaces by group actions.

Figure 4 . 1 :

 41 Figure 4.1: Horizontal vector field on M \ {i, j}: section of its unit tangent bundle.

Remark 4. 10 .

 10 For the canonical choice of orientation on U, we may ask about the chirality of the trefoil knot or equivalenty of the Hopf link formed by the singular fibers. If the singular fibers have linking number +1 then the trefoil is right handed.

Figure 4

 4 Figure 4.2: In U S 3 : Hopf link S i ∪ S j , torus knot S ∞ , and the loops a, b, c.

Figure 4 . 3 :

 43 Figure 4.3: Combing vector fields and introducing twildes to accomodate vortices.

Figure 4 . 4 :

 44 Figure 4.4: Regular homotopies in M: Reidemeister moves II & III, singular moves.

Corollary 4. 15 .

 15 Two elements in B 3 are conjugate if and only if they have the same abelianisation, and their projections in PSL 2 (Z) are conjugate.

Theorem 4. 16 .

 16 The map σ sends the conjugacy class associated to a closed geodesic in M to the conjugacy class associated the the corresponding modular knot in U.Proof. Consider a hyperbolic conjugacy class in PSL 2 (Z), encoded by an L&R-cycle.

  Corollary 4.17. A conjugacy class [β] in π 1 (U) = PSL 2 (Z) is modular if and only if it projects to a primitive hyperbolic conjugacy class [γ] in π 1 (M) = PSL 2 (Z), and abelianises to its Rademacher invariant: lk([β]) = Rad([γ]).

Figure 4 . 5 :

 45 Figure 4.5: Open book decomposition of S 3 with toric pages and trefoil binding. Those images were created by Jos-Leys and Étienne Ghys.

Z/ 6 ⇝

 6 Figure 4.6: The toric pages T * of the open book decomposition quotient to M.

Figure 4

 4 Figure 4.7: The Lorenz template with the trefoil (and the loops L&R).

Definition 4 .

 4 25 (Lorenz framing & self-linking number). The Lorenz framing of a modular knot kA ⊂ U is the band obtained from a tubular neighbourhood of k A in Y.Its boundary consists in two parallel copies of k A and their linking number defines the self-linking number of the modular knot k A for the Lorenz framing.

Figure 4

 4 Figure 4.8: Lorenz template positioned for a visual proof of the algorithmic formula.

  Remark 4.28 (Primitivity). The Algo-Sum holds without the primitivity assumption provided we sum over all cyclic permutations of the Lyndon representatives (and in the proof we must count crossing numbers with appropriate multiplicities).

Remark 4 .

 4 29 (Self-linking number). The proof shows that when A = B the Algo-Sum computes the self-linking number of the modular knot for the Lorenz framing.

Remark 4 .

 4 30 (Algorithmic). This formula, although mathematically cumbersome, yields a computation of lk(A, B) with complexity O(len A 2 B 2 ) provided we recall Proposition 2.48 saying that A ∞ = B ∞ ⇐⇒ AB = BA.

  , and:occ(P, A) = len A j=1 pref P, σ j A ∞count the number of occurrences of P in A ∞ beginning before the index len(A), or equivalently the number of cyclic occurrences of P in A mod σ.

Remark 4 .

 4 33 (Primitivity). The definition holds for non primitive A ∈ PSL 2 (N) and we have occ(P, A n ) = n occ(A).

Proposition 4 .

 4 34 (Sum of linked patterns). For coprime hyperbolic A, B ∈ PSL 2 (N) the corresponding modular knots have linking number:

Definition 4 .

 4 40 (Occurrence matrices). Denote P (w, A) the infinite rectangular matrix with entries occ(RwL, A) indexed by w ∈ PSL 2 (N) and A ∈ PSL 2 (N)/σ.Denote P # (w, A) = P (w # , A # ) where w # &A # are the mirror images of w&A. Its entries are given by occ(LwR, A) = occ(Lw # R, A # ).Finally we define Z = P + iP # over the ring Z[i] of Gaussian integers.Corollary 4.41 (Factorising the linking matrix). The matrix of the bilinear form lk(A, B) is the imaginary part of the product t ZZ # .

Figure 5

 5 Figure 5.1: Parametrizing families of representations by moving S along J ⊥ or K ⊥ .

  F C : [ρ] → Tr ρ(C) for C ∈ Γ. Theorem 5.13. The algebra of functions on the SL 2 (R)-character variety of Γ is generated by the F C for C ∈ Γ and the ideal of relations is generated by the trace relations F AB + F AB -1 = F A F B for A, B ∈ Γ along with the unit relation F 1 = 2. Remark 5.14 (Exercise). It is an amusing exercise to recover the invariance of F C by inversion and conjugacy of C from the trace relations and the unit relation.

  A], [B]) = (U,V ) [[bir(A, B) > 1]] bir( Ãq , Bq ) C q ([A], [B]) = (U,V ) |cross|(A, B) × cos( Ãq , Bq )Remark 5.22. The relation 1 bir = 1+cos 2 and Remark 4.46 imply that these functions are related through the geometric intersection function I by:L q = I + C q 2Remark 5.23. The appearance of the factors [[bir > 1]] = |cross| in the terms of L q and C q restricts the summations over the pairs of matrices whose axes intersect. Hence the support of the sums corresponds to the intersection points of the modular geodesics [γ A ] and [γ B ] associated to the conjugacy classes, which must be counted with appropriate multiplicity when A or B is not primitive, and we have:

12

  L q ([A], [B]) ---→ q→∞ lk(A, B) 1 2 C q ([A], [B]) ---→ q→∞ 2 lk(A, B) -1 2 I(A, B)

F

  ) = F ([A], [B]) disc(A q ) disc(B q ) = F -([A], [B]) + F 0 ([A], [B]) + F + ([A], [B]) disc(A q ) disc(B q ) Since f satisfies (|cross|(A, B) = 0 =⇒ f (A, B) = 0) we have F 0 = 0 and as f (A, B -1 ) = -f (A, B) we have F -([A], [B]) = F + ([A], [ t B]). We are thus reduced to computing sums of the form: i A, σ j B

cos

  The cosine cos(a, b) of a, b ∈ sl(V)\X with respect to det. The cosine cos(A, B) of A, B ∈ PGL(V) is defined in Section 1.3.

  Note that this normalised projection is a positive multiple of that in definition 1.48. This one is only defined for hyperbolic elements in PSL 2 (R) whereas the other was defined for all non involutive semi-simple elements in PGL 2 (K). Here we have no qualms about taking square roots in order to obtain an element in H ′ .

	sign(tr(A))	2 pr(A) |disc(A)|
	Scholium 1.88.	

Proposition 1.89. For hyperbolic A, B ∈ PSL 2 (R) whose axes intersect in P(H), denote a, b ∈ sl 2 (R) their normalised projections, and call θ ∈] -π, π[ the angle between their oriented axes, going from a ⊥ to b ⊥ .

  Dans cette thèse consacrée au groupe modulaire PSL 2 (Z), on étudie plusieurs structures arithmétiques et topologiques sur l'ensemble de ses classes de conjugaison, comme des relations d'équivalence ou des fonctions bilinéaires. Le groupe modulaire PSL 2 (Z) agit sur le plan hyperbolique avec pour quotient la surface modulaire M, dont le fibré tangent unitaire U est une variété de dimension 3 homéomorphe au complémentaire d'un noeud de trèfle dans la sphère. Les noeuds modulaires dans U sont les orbites périodiques du flot géodésique, relevés des géodésiques fermées orientées de M, qui correspondent aux classes de conjugaison hyperboliques dans PSL 2 (Z). Leur enlacement avec le noeud de trèfle est bien compris. On s'intéresse aux nombres d'enlacement entre ces noeuds modulaires, pour lesquels on détermine plusieurs expressions exploitant la combinatoire, la dynamique ou l'algèbre du groupe modulaire. En particulier, on associe à deux noeuds modulaires une fonction définie sur la variété des caractères de PSL 2 (Z), dont la limite au bord retrouve leur enlacement. Les matrices hyperboliques de PSL 2 (Z) indexent aussi diverses familles d'objets arithmétiques, telles que les formes quadratiques binaires entières indéfinies. Pour un corps K contenant Q, on dit que deux matrices de PSL 2 (Z) sont K-équivalentes si elles sont conjuguées par un élément de PSL 2 (K). On décrit comment le groupement des PSL 2 (Z)-classes en K-classes varie avec K. Pour K = C cela revient à regrouper les formes quadratiques d'un même discriminant, ou les géodésiques modulaires de même longueur. Pour K = Q on obtient un raffinement de cette relation d'équivalence, que l'on relie à l'arithmétique des formes quadratiques (symboles de Hilbert) et que l'on décrit en termes des géodésiques modulaires (angles aux points d'intersection et longueurs des ortho-géodésiques).
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according to the same sequence of triangles (which is empty if it is an edge). If moreover α -< 0 < α + , they intersect the base edge (0, ∞), and on each side the sequence of triangles in 2 is dictated by the continued fractions of -1 αand α + , concatenating the transpose of the former with the latter.

Remerciements

CHAPTER 5. LINKING FORM ON Hom(PSL 2 (Z), PSL 2 (R))

Graphs of L q (A, B) for complex q.

Part I Conjugacy classes in PSL 2

Commutation or Coprimality: equal or different axes

We now discuss in more detail the case when the unoriented axes are equal.

We begin with a lemma concerning elements in a free monoid, whose generators called letters form an alphabet, its elements being called words. The alphabet could be of any cardinality (even empty, in which case the monoid is reduced to the neutral element, that is the empty word) and the lemma will hold for any elements (including the neutral ones).

The primitive root of a word w is the smallest word admitting a power equal to w. The boundary of the monoid is the set of words which extend infinitely to the right. The monoid acts on its boundary by left multiplication, and the unique fixed point of w is w ∞ = ww • • • .

Lemma 2.46. For u et v in a free monoid, the following are equivalent:

1. Commutation: uv = vu.

2. Primitive roots: there is a word w and k, l ∈ N such that u = w k and v = w l .

3. Common power: u len(v) = v len(u) .

Fixed points: u

Proof. We index the letters of a word w by Z/ len(w) = {0, . . . , len(w) -1}, denote w[ : k[ its prefix of length k, and w[k : [ the word obtained by removing this prefix.

Let us first show 1 =⇒ 2: if u & v commute, then they are powers of a same w. Suppose len(u) ≥ len(v) and reason by induction on len(u) -len(v).

If u and v have the same length then u = v so u = w = v convenes. Otherwize suppose len(u) > len(v) so that vu = vmv = uv with u[ : l] = m = u[-l : ] and l = len(u) -len(v) We have mv = u = vm and len(v) -len(u) = len(m) which is strictly larger than len(v) -len(m) so the induction hypothesis applied to m, v says they are both powers of a same word w, and we deduce the same for u.

The implications 2 =⇒ 1 and 2 =⇒ 3 =⇒ 4 are clear, we are left with 4 =⇒ 1: let us show that if u ∞ and v ∞ have the same prefix of length len(u)+len(v), then u and v have a common primitive root w.

We may suppose len(u) ≥ len(v), and denoting k, s, t ∈ N satisfying s = len(v) and k.s+t = len(u)+s we have u.u[

The previous equality can also be written u

In other terms v is equal to its t-cyclic permutation so v = w l where w = v[ : t] and lt = len(v).

Consequently we have found that u[

Remark 2.47. Since u and v have a common primitive root r if and only if they have common powers u len(v) = v len(u) , we may say that in a free monoid it is equivalent to have a greatest common divisor w and to have a smallest common multiple m.

Conversely, two elements in a free monoid generate a free submonoid of rank two if and only if they do not belong to a submonoid generated by one element, if and only if they generate submonoids with intersection reduced to the neutral element.

The previous lemma applies to the free monoid PSL 2 (N) generated by L&R, and we use it to describe commuting elements in the group PSL 2 (Z).

Recall that the automorphism group of the cyclically oriented trivalent tree T is PSL 2 (Z), and that its bi-infinite periodic geodesics are precisely the translation axes of infinite order elements.

Proposition 2.48. For infinite order A, B ∈ PSL 2 (Z), the following are equivalent:

The translations axes of A and B in T are equal or mutually inverse.

We say that A and B are coprime when these conditions are not satisfied: they generate a free group of rank two.

Proof. The implications 2 =⇒ 3 =⇒ 4 are easy and 4 ⇐⇒ 5 follows from Corollary 2.31. To show that 5 =⇒ 2 consider a minimal period of the translation axes, this yields (up to inversion) the primitive root W of A and B.

Now clearly 2 =⇒ 1 and we shall conclude with 1 =⇒ 5. Assume that A and B commute. After replacing A or B by its inverse we may also assume that bir(A, B) > 0, which roughly means that g A and g B go in the same direction.

Suppose by contradiction that they are disjoint: there is a unique geodesic (e A , e B ) from g A to g B and it has positive length l ∈ N * . Then it is not hard to see, as on figure 2.13, that the commutator [A, B] sends the edge BA(e A ) to an edge AB(e A ) separated by 2l A + 3d + l B edges, so it cannot equal the identity.

The contradiction shows that g A and g B intersect along at least one edge, which we may assume to be the base edge after conjugating everything by C ∈ PSL 2 (Z). Thus A, B ∈ PSL 2 (N) by Lemma 2.43, and we may conclude with Lemma 2.46.

Abelianisation of a central sequence

In this paragraph we work in the category of groups, but we will name objects and morphisms so as to arouse the topological pictures and hint to the applications we have in mind. Proof. Choose a set theoretic section s : Base → T otal, so that every t ∈ T otal writes uniquely as t = f.s(b) for f ∈ F ibre and b ∈ Base. The equality of commutators

shows that s is a section to p ′ which is thus surjective, and that F iber ∩ T otal = 1 so p ′ is injective.

In other terms, the abelianisation functor yields a commutative diagram of short exact sequences in the category of groups, the columns being central extensions: Let us explain why we rename the groups in left diagram as those in the right. Since F ibre is contained in its own center it is abelian, equal to F ibre ab , so F ibre ′ = 0. We write P age = T otal ′ and T otal ab = Dromy in reference to an open book decomposition (the fundamental group of the binding's complement in the total space acts by monodromy on that of the page). We write Cover = Base ′ and Base ab = Galois in reference to a Galois cover with abelian symmetry group.

We just proved that P age = Cover, and we also deduce that the monodromy group of the open book decomposition is a central extension of the Galois group of the cover by the fundamental group of the fibre.

Corollary 4.21. The euler class in H 2 (Base; F ibre) classifying the central extension

is the pull-back by Abel : Base → Galois of the euler class in H 2 (Galois; F ibre) classifying the central extension Remark 4.36 (Self-linking). We may use the same sum to define lk(A, B) even when they are not coprime by imposing the bound len w < max{len A, len B} on its indices, as suggested by the previous remark.

In that case the proof shows that the Symb-Dyna-Sum returns the same number as the Algo-Sum, that is (a multiple) of the self-linking number of their common primitive root.

Remark 4.37 (Algorithmic). This formula has little algorithmic interest: first we must list for A and B all words w (enriched with two distinct letters) which appear in one of their cyclic permutations and count the number of occurrences, then compute the sum: the cost is exponential in len(AB).

We have programmed it literally to ensure the coincidence with the Algo-Sum, which is much more efficient as it is polynomial in len(AB).

The previous proof does not do justice to the way we found the formula: a clever surgery of the Lorenz pattern (the seeds of which are to be found in the original article of Birman and Williams [START_REF] Birman | Knotted periodic orbits in dynamical systems. I. Lorenz's equations[END_REF]), and a careful examination of the location of the crossings, reveals its recursive structure.

If we split the template (in its usual representation) by extending the dividing line backwards in time, as suggested in the sequence of thumbnails 4.9, we observe that the crossings occur in regions arranged according to a binary tree. As one cuts farther back in time, the binary tree becomes deeper, and the crossing regions break up into sub-regions: what is left in the limit is a fractal Cantor set. 

N, Z Monoid of non-negative integers

The invertible elements of K form a group K × with subgroup of squares (K × ) 2 .

Topological spaces and geometric constructions. The boundary operator ∂ has various meanings depending on the context: we use it mostly for the boundary of subsets in topological spaces, and the Gromov boundary of hyperbolic spaces.

P(V ) Projectivization of a vector space V .

KP n Projective space P(K n+1 ) of dimension n over the field K.

S n The n-dimensional sphere.

D n

The n-dimensional disc (sometimes the context refers to its interior).

HP The hyperbolic plane (without reference to a particular model).

Notations introduced or appearing in Chapter 1

The algebra gl 2 (Z) is a free Z-module of rank 4 with a preferred basis:

These elements form, together with their opposites, a subgroup of GL 2 (Z) isomorphic to the dihedral group D 4 . See Figure 1.1.

V Vector space of dimension 2 over the field K.

ω Often used to denote a symplectic form on V.

gl(V) Algebra of endomorphisms of V, and gl 2 (K) := gl 2 (K 2 ).

GL(V) Group of automorphisms of V and GL 2 (K) := GL(K 2 ).

sl(V) Endomorphisms of V with trace 0, and

Tr(M ) Trace of an endomorphism or matrix, given by M + M # if M ∈ gl(V).

det(M ) Determinant of an endomorphism or matrix, given by M M # of M ∈ gl(V).

M, N = 1 2 Tr(M N # ) the bilinear form polarising the quadratic form det on gl(V).

tr(M ) Orthogonal projection tr : gl 2 (K) → K1 with respect to det, which yields the half-trace also denoted tr(M ) = 1 2 Tr(M ).

pr(M ) Orthogonal projection pr : gl(V) → sl(V) with respect to det. Preserves disc.

1, S, J, K These matrices defined above, which form an orthogonal-basis of (gl 2 (K), det) respecting the decomposition gl 2 (K) = K1 ⊕ sl 2 (K).

X Isotropic cone in the quadratic space (sl(V), det).

Notations introduced or appearing in Chapter 2

Throughout the thesis, we stick to the following notations regarding special elements of SL 2 (Z). They satisfy S 2 = T 3 = -1 as well as L = T -1 S and R = T S -1 .

We denote by the same letters their classes in PSL 2 (Z). The elements S&T act on the hyperbolic plane HP with fixed points denoted i&j.

The submonoid SL 2 (N) ⊂ SL 2 (Z) of matrices with non-negative entries is freely generated by L&R and we identify it with its image PSL 2 (N) ⊂ PSL 2 (Z).

We often use A, B ∈ PSL 2 (Z) to denote hyperbolic elements with attractive fixed points α, β ∈ RP 1 and repulsive fixed points their Galois conjugates α ′ , β ′ ∈ RP 1 .

x Euclidean continued fraction expansion of x ∈ RP 1 . The Lagrangian complex 2 , the Lotus 1 and its quadruple 4 .

▽ The base triangles ▽ 2 of 2 and 1 of 1 .

′ , ▽ ′ The first barycentric subdivisions of and ▽.

ψ, P ψ Proposition 2.5 introduces a map ψ : R 2 → sl 2 (R) rectifying ψ : R 2 → X in order to define a simplicial map P ψ : 4 → 2 between geometric realisations.

T , T ′ The infinite planar trivalent tree T , with first barycentric subdivision T ′ .

∂T = ∂T ′ The boundaries of T or T ′ , which are identified with ∂HP = RP 1 .

G The subset of bi-infinite geodesics of T or equivalently of T ′ .

g A The combinatorial axis in T or T ′ of a hyperbolic translation A ∈ PSL 2 (Z).

len The minimum displacement length of A ∈ PSL 2 (Z) acting on T . For torsion A it is zero, and for A ∈ PSL 2 (N) it is the length of its L&R-factorisation.

sinc, cosign Definition 2.42: For oriented geodesics g a , g b ⊂ T , let sinc(g a , g b ) ∈ Z ∪ {±∞} be the length of their intersection, whose sign cosign(g a , g b ) ∈ {-1, 0, +1} compares their orientations along their intersection when it is not empty.

These functions are defined on G × G, whence on pairs of translations axes

Notations appearing mostly in Chapters 3, 4, 5

s&t Loops encircling the punctures i&j of the thrice punctured sphere M \ {i, j}. They freely generate its fundamental group. See figures 3.4 and 3.7.

I Geometric intersection number between loops in an orbifold or surface, or the minimal intersection number between homotopy classes thereof.

T * The 6-fold abelian Galois cover of M is a 2-dimensional punctured torus T * .

F 2 A free group on two generators, often used for π 1 (T * ).

H, H ′ The planar hexagonal graph H, with first barycentric subdivision H ′ .

Rad The Rademacher conjugacy invariant of an infinite order A ∈ PSL 2 (Z). Defined at the end of Section 3.2 as the asymptotic winding number of its combinatorial axis g A mod PSL 2 (Z) ′′ ⊂ H, which is equal to #R -#L if A ∈ PSL 2 (N). Not to be confused with the monoid of morphisms σ : PSL 2 (N) → B 3 .

A ∞ Periodisation of a finite binary sequence into an infinite binary sequence.