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INTRODUCTION

Seakeeping is a predominant issue for engineering offices, shipyards, and classification companies. The predictions of motions in waves and additional resistance due to waves are key elements of ship design. It comes into play for performance analyses, ship consumption optimization in order to limit greenhouse gas emissions, and equipment and personnel safety improvement. Both experimental and numerical studies can be used for ship-performance evaluation. Nowadays, naval architects are increasingly using numerical simulations for ship design and experimental data are largely used as references for numerical validation. Two main types of numerical methods can be distinguished. The first category is the low-fidelity one. This category encompasses methods based on simplified mathematical model for which analytic solutions exist or which can be numerically solved with small computational cost. The second category is the high-fidelity one. High-fidelity methods require the use of costly numerical solver but they provide an higher accuracy in modeling complex flows, with no simplification of the mathematical model. The term Computational Fluid Dynamics (CFD) is commonly used to name the high-fidelity methods.

First industrial application of CFD in the marine industry was the evaluation of calm water resistance. Thanks to advances in computer technology, and the improvement of numerical solvers, the CFD is now commonly used for problems with waves such as seakeeping and in particular the evaluation of added resistance. Today, for naval industry, the objective is to get efficient numerical models able to simulate the ships motions and loads from the calm water condition to complex irregular sea-states condition. The work done by [START_REF] Sigmund | Performance of Ships in Waves[END_REF] and Kim et al. (2022b) are some examples of what is at stake in this PhD. In order to meet the objective, one can identify three key points for the evaluation of computational methods. The first one is the efficiency of the codes for both ship motion and sea-state modeling. The second one is the adequacy of the software's capabilities with the industry's needs. And the last one is the need for clear recommendations and procedures for targeted applications.

Previous and related researches

The definition of the scope of this Ph.D. starts by the choice of the numerical solvers. This choice is motivated by the industrial context of the present work and by the previous and related research in the fields of added resistance evaluation and seakeeping. A brief introduction to the mathematical and numerical models from the literature is given in the following. Besides, an overview of the solver used along this Ph.D. is done. Finally, this section ends with specifications on the Verification and Validation process needed for the evaluation of the selected mathematical model and numerical method.

Choice of mathematical models

The first step towards numerical simulation is the choice of a mathematical model describing the physics of the studied problem. In naval engineering the models used are derived from Navier-Stokes equations. The first mathematical model used for seakeeping, calm water resistance and added resistance was the potential flow theory. Numerical methods based on the potential flow theory were developed from the 1960's, they fall into the low-fidelity category.

Nowadays, the potential flow theory is still used for a wide range of applications: added resistance (see e.g. [START_REF] Simonsen | Efd and cfd for kcs heaving and pitching in regular head waves[END_REF][START_REF] Hizir | Numerical studies on non-linearity of added resistance and ship motions of kvlcc2 in short and long waves[END_REF]Zhang and El Moctar, 2019); seakeeping and maneuvering [START_REF] Skejic | A unified seakeeping and maneuvering analysis of ships in regular waves[END_REF][START_REF] Subramanian | A time-domain strip theory approach to maneuvering in a seaway[END_REF][START_REF] Kianejad | Prediction of a ship roll added mass moment of inertia using numerical simulation[END_REF], see e.g.); self propulsion [START_REF] Mofidi | Propeller/rudder interaction with direct and coupled cfd/potential flow propeller approaches, and application to a zigzag manoeuvre[END_REF], see e.g.) ... For instance, due to its low computational cost, the potential flow method is suitable for hull optimization process. In fact, optimization process leads to numerous simulations so the exclusive use of costly CFD methods is yet generally too expensive for industrial applications. Some methods use potential flow solvers based on boundary element methods with optimization algorithms (see e.g. [START_REF] Feng | Parametric hull form optimization of containerships for minimum resistance in calm water and in waves[END_REF]. Some other methods, coupling high and low-fidelity codes, benefit from the reduced computational cost of potential flow models using it as the low-fidelity component in the optimization process (see e.g. [START_REF] Serani | Hull-form stochastic optimization via computational-cost reduction methods[END_REF].

For both model and full-scale ships, the flow around the hulls is turbulent. So, for high-fidelity naval simulations, the Reynolds Averaged Navier Stokes (RANS) model is commonly used. This model allows more reliable predictions thanks to the direct evaluation of viscous drag for the ship resistance problem and the inclusion of additional physical phenomena linked to viscosity such as the influence of vorticity or the interactions between the viscous wake and the waves. The first solvers based on RANS Equations (RANSE) have been developed in the 1990's, initially for the ship resistance problem in calm water (see e.g. [START_REF] Kodama | Proceedings of the 1994 cfd workshop[END_REF], and later in the 2000's for the seakeeping problem (see e.g. [START_REF] Hino | Proceedings of cfd workshop tokyo 2005[END_REF]).

An alternative model called Large Eddy Simulation (LES) is sometimes used in order to model accurately turbulent phenomena in the air and massively separated flows. As the LES simulation imposes very high computational cost, the Detached-Eddy Simulation (DES) method can be used. It combinesthe LES method far from the body and the RANS method near to it (see e.g. [START_REF] Spalart | Detached-eddy simulation[END_REF]. It is employed for instance for accurate ship airwake computations (see e.g. [START_REF] Forrest | An investigation of ship airwakes using detached-eddy simulation[END_REF]. The application of Navier-Stokes equations without specific models for the turbulence is called the Direct Numerical Simulation (DNS). In such a case, the cell size must be sufficiently small to track all vortices. For naval applications, this method would imply an enormous and unachievable computational cost.

For the present work, because of the objectives and the physical phenomena of interest, the RANS model applied to multi-phase incompressible flow has been chosen.

Choice of the numerical solver

For the numerical resolution of the RANSE, several methods of discretisation are existing. The two principal are the Finite Difference (FDM) and the Finite Volume Methods (FVM). A third one is the Finite Element Method (FEM) that is nowadays not often used for RANSE resolution. Over the past few years, FVM has become the standard of CFD for naval applications. This method appears to be well adapted for complex flow simulations around offshore structures or ships mixing accuracy and reasonable computational cost. Major commercial CFD codes such as Simcenter STAR-CCM+ ® , Ansys fluent ® or Fine/Marine ® are based on FVM. For academic research but also more and more in the industry, the open-source library solver OpenFOAM ® is widely used. This open-source library is developed since the beginning of the 2000's (OpenFOAM, 2022b;[START_REF] Jasak | Openfoam: A c++ library for complex physics simulations[END_REF]. Different versions of this solver are available. The two main structures providing releases of OpenFOAM ® are OpenCFD Limited and OpenFOAM Foundation. The main developer and manager of OpenFoam ® on behalf of the OpenFOAM Foudation is CFD Direct. Bureau Veritas Marine&Offshore (BV-M&O) and the research Laboratory in Hydrodynamics, Energetics and Atmospheric Environment (LHEEA) have co-developed for a few years a solver named foamStar based on the interDymFOAM, the multi-phase flow model is based on the Volume-Of-Fluid (VOF) method proposed by [START_REF] Hirt | Volume of fluid (VOF) method for the dynamics of free boundaries[END_REF]. Recent works are done using solvers based on interDymFoam1 . To name but a few, [START_REF] Hu | Numerical wave tank study of extreme waves and wave-structure interaction using openfoam®[END_REF] deals with numerical wave tank and wave-structure interaction, [START_REF] Larsen | On the over-production of turbulence beneath surface waves in reynolds-averaged navier-stokes models[END_REF] addresses turbulence models and wave propagation, Li et al. (2018a) is about wave-structure interaction, [START_REF] Larsen | Performance of interFoam on the simulation of progressive waves[END_REF] addresses the accuracy of interFoam for wave-propagation simulations.

To fullfill the objectives the solver has to allow accurate wave generation and body motions calculations. These features are provided by foamStar.

Wave generation Efficient seakeeping analyses and added resistance evaluation require efficient numerical wave generation. The forcing/relaxing zone method is implemented in foamStar. Its implementation is based on the wave2foam library [START_REF] Jacobsen | A wave generation toolbox for the open-source CFD library: OpenFoam®[END_REF]. Waves profile can be generated with several potential flow models. Analytical regular waves are directly computed in foamStar's code using the stream-function theory [START_REF] Rienecker | A Fourier approximation method for steady water waves[END_REF] and irregular sea-states are generated using external tools HOS-NWT [START_REF] Ducrozet | A modified high-order spectral method for wavemaker modeling in a numerical wave tank[END_REF] and HOS-Ocean [START_REF] Ducrozet | HOS-ocean: Open-source solver for nonlinear waves in open ocean based on High-Order Spectral method[END_REF] developed by the LHEEA. These tools are based on the High-Order-Spectral (HOS) method [START_REF] West | A new numerical method for surface hydrodynamics[END_REF][START_REF] Dommermuth | A high-order spectral method for the study of nonlinear gravity waves[END_REF].

The evaluation of the accuracy of foamStar for wave generation has been done by [START_REF] Choi | Performance of different techniques of generation and absorption of free-surface waves in computational fluid dynamics[END_REF] and more recently by Kim et al. (2022a).

Body motions and wave structure interactions The coupling of the fluid solver with 6 Degrees of Freedom (DoF) body motion exists in OpenFOAM-5 but some modifications and improvements have been done in foamStar to take into account hydro-elastic fluid-structure interactions for slamming, springing, and whipping study (see e.g. [START_REF] Seng | Slamming and Whipping Analysis of Ships[END_REF][START_REF] Seng | Global hydroelastic model for springing and whipping based on a free-surface CFD code (OpenFOAM)[END_REF][START_REF] Benhamou | Hydroelastic simulations in openfoam®: A case study on a 4400teu containership[END_REF]. That foamStar 6 DoFs solver is also well adapted for seakeeping studies and wave structure interactions (see e.g. [START_REF] Seng | On the use of euler and crank-nicolson time-stepping schemes for seakeeping simulations in openfoam[END_REF][START_REF] Kim | Numerical improvement and validation of a naval hydrodynamics CFD solver in view of performing fast and accurate simulation of complex ship-wave interaction[END_REF][START_REF] Aliyar | Breaking focused wave interaction with cylinder using hos-openfoam coupling[END_REF]. For the present work, the bodies are assumed to be rigid. SWENSE method and foamStar-SWENSE For naval simulation with waves, another method has to be distinguished from standard RANSE resolution. This method is based on the Spectral Wave Explicit Navier-Stokes Equations (SWENSE). It consists of decomposing RANSE into an incident part and a complementary part. The incident part represents the incident nonlinear wave field based on an inviscid flow model solving the potential flow equations. The complementary part encompasses all the radiation and diffraction phenomena including the viscous flow effects. Thanks to this decomposition, the solution of the incident part of the equations is obtained by potential flow theory with already mentioned stream functions and HOS methods. Only the complementary part is solved using CFD methods. foamStar-SWENSE is the solver based on foamStar using the SWENSE method. The benefit of such a method is that the discretization of the simulation domain is only dedicated to the solution of the complementary field and even with coarse meshes, the incident field propagates efficiently. Consequently, mesh refinement far from the body can be coarser than the one required by a standard RANSE implementation. This leads to a significant reduction in computational cost. Works on SWENSE implementation into CFD solvers have been done in the past on single-phase FDM solver named ICARE-CFD [START_REF] Ferrant | A potential/RANSE approach for regular water wave diffraction about 2-D structures[END_REF][START_REF] Luquet | Applications of the swense method to seakeeping simulations in irregular waves[END_REF][START_REF] Monroy | RANS simulations of CALM buoy in regular and irregular seas using SWENSE method[END_REF][START_REF] Reliquet | Simulation of wave-ship interaction in regular and irregular seas under viscous flow theory using the swense method[END_REF]. More recently, the SWENSE method was first and partly adapted to the two-phase FVM solver by [START_REF] Vukcevic | Numerical Modelling of Coupled Potential and Viscous Flow for Marine Applications[END_REF] in foam-extend 3. 1 (2004), an add-on library of OpenFOAM. The implementation of foamStar-SWENSE was carried out by [START_REF] Li | Two-phase spectral wave explicit Navier-Stokes equations method for wave-structure interactions[END_REF]. [START_REF] Choi | Two-way coupling between potential and viscous flows for a marine application[END_REF], [START_REF] Li | Spectral Wave Explicit Navier-Stokes Equations for wave-structure interactions using two-phase Computational Fluid Dynamics solvers[END_REF] studied the efficiency of foamStar-SWENSE for regular wave generation and fluid-structure interactions in regular waves without forward speed. Irregular wave propagation, naval seakeeping with 2 DoFs, and added resistance studies have been successfully performed by [START_REF] Kim | Numerical improvement and validation of a naval hydrodynamics CFD solver in view of performing fast and accurate simulation of complex ship-wave interaction[END_REF] using Diagonally Implicit Runge-Kutta (DIRK) schemes implemented by him in both foamStar and foamStar-SWENSE.

Evaluation of the performances of a solver

In order to evaluate both the mathematical models and numerical methods considered in the thesis, several Verification and Validation processes exist in the literature. Firstly, the selection of mathematical models depends on the studied physics, so, considering specific applications, some specificity in the models influence their validity a lot. For instance, with the RANSE model, several turbulence models are available and for a given study, it is necessary to select the most appropriate through validation procedures. As the models are coded in a numerical solver, the method of implementation impacts the accuracy of the simulation. Even with a theoretically valid physical model, it is necessary to verify the numerical implementation and the case-designing method. So, hand in hand with the validation, the verification process has to be conducted. This Verification and Validation procedure (V&V) is a keystone of CFD. For numerical simulations, V&V procedures have been discussed over the last three decades. Several approaches have been established, depending on the factors of errors taken into account and the used statistical models. One of the pioneering article of the definition and application of V&V procedures for naval CFD was [START_REF] Coleman | Uncertainties and cfd code validation[END_REF]. This work was motivated by the growth of interest in editorial policies of scientific journals or international research organizations about the quantification of uncertainties and errors in CFD. The objective was to reach a more rigorous methodology for the accuracy assessment, see [START_REF] Celik | Numerical uncertainty in fluid flow calculations: needs for future research[END_REF]. Another significant actor in the development of V&V standards is Patrick J. Roache. He was one of the first to clarify the methodologies of Verification and Validation [START_REF] Roache | Verification and validation in computational science and engineering[END_REF]. Nowadays, a standard validation process can be found in [START_REF] Mchale | Standard for verification and validation in computational fluid dynamics and heat transfer[END_REF] with additional commonly used simplifications. Various recent discussions on this process can be found in the literature, the V&V procedure proposed by [START_REF] Eça | A procedure for the estimation of the numerical uncertainty of CFD calculations based on grid refinement studies[END_REF] is frequently used for naval CFD.

Present Contributions

This Ph.D. is part of the research conducted by the Bureau Veritas Marine&Offshore and Ecole Centrale Nantes. The objective of the present work is to develop solvers and methodologies in order to improve computational time and accuracy with regard to seakeeping and added resistance.

foamStar algorithm exploration The first contribution is the production of a synthetic workflow of the algorithm of foamStar. This workflow refers to the expanded implemented equations, and the structure of the implemented discretization is detailed. The corresponding section is expected to be the initial support for a clear documentation that would be used by the co-workers from of BV-M&O, BVS-M&O and the LHEEA.

Numerical improvement

The present work proposes an extension of a numerical method dedicated to the resolution of the VOF equations. This development allows the use of second-order backward schemes for VOF convection. This improvement raises of the accuracy and/or numerical stability of foamStar for wave propagation and ship-wave interactions.

Best practices for industrial naval applications A progressive step by step analysis of foamStar accuracy is conducted all along the numerical studies reported in this document. This leads to the definition of best practices for naval simulations in waves matching with the industrial expectation for accuracy and computational cost.

Assement of foamStar accuracy for naval simulation in head wave A preliminary study of the solver performances simulating ship motions in head regular and irregular waves is performed.

Thesis outline

Chapter 2 This chapter presents the mathematical models describing the physics that is simulated with foamStar. The two-phase RANSE and SWENSE are described as well as the body motions and the wave generation models.

Chapter 3 This chapter details the numerical implementation of foamStar. The numerical schemes necessary to the resolution are described. Then, the foamStar algorithm solving the set of equations exposed in Chapter 2 is explained and a representation of the foamStar flow-chart is built. Finally, the implementation of a second-order backward time scheme dedicated to the VOF resolution is presented. At the end of this chapter the reference numerical set-up studied in this document is defined.

Chapter 4 This chapter presents a study on Taylor-Green vortices simulation with single-phase Navier-Stokes model (so without turbulent models). An analysis is done on the accuracy of foamStar with the reference numerical set-up and different time schemes. The study also focuses on the influence of some mesh deformations generating stretched, non-orthogonal and skewed cells.

Chapter 5 This chapter presents a study of the accuracy of foamStar simulating nonlinear regular wave propagation in periodic bi-dimensional domain of one wavelength. Simulations are done using two-phases VOF-Navier-Stokes equations. The newly implemented second order backward scheme is compared to the existing Crank-Nicolson one. Various configurations of mesh refinements are compared and some recommendations are made on how to accurately simulate regular wave propagation with foamStar.

Chapter 6 This chapter presents a study of nonlinear regular wave propagation in a bi-dimensional long domain of several wavelengths with relaxation zones. The newly implemented second-order backward scheme is once again compared to the existing Crank-Nicolson one and the recommendations made in Chapter 5 are verified. To reach progressively the numerical configuration dedicated to naval simulation, two-phases VOF Reynolds-Averaged Navier-Stokes model and moving reference frame are considered.

Chapter 7 This chapter presents some analysis on the accuracy of foamStar and foamStar-SWENSE simulating scale model KRISO container ship moving in head regular and irregular waves. This chapter is a preliminary study intending to asses the ability of both foamStar and foamStar-SWENSE to compute ship motion and wave added resistance in head waves.

Chapter 8 This chapter connects the work done during this Ph.D. and the industrial needs. It describes some actions done in order to ease the industrialization of foamStar.

Chapter 9 This chapter concludes the present work. The results obtained throughout this Ph.D. are put in perspective with various current and potential future works.

PART I

Theoretical and numerical modeling

This part presents the background of the works detailed in the rest of this document. The first section deals with the mathematical models, while the second section focuses on the numerical discretization methods.

CHAPTER 2

MATHEMATICAL MODELS

Two phase incompressible flow

Single-phase Navier-Stokes equations

In a fluid domain, the local Navier-Stokes (NS) equations in Lagrangian form are expressed in a Galilean reference frame R 0 as:

dρ dt + ρ∇ • u = 0 (2.1a) d(ρu) dt = ρg + ∇ • Σ (2.1b)
with u the fluid velocity vector, ρ the density, g the gravitational acceleration vector, and Σ the stress tensor. Eq. 2.1a is the continuity equation and Eq. 2.1b is the momentum equation. For a Newtonian fluid with the Stokes hypothesis, the viscous stress tensor is:

Σ = -P + 2 3 µ∇ • u I + µ ∇u + ∇u T (2.2)
with µ the dynamic viscosity coefficient and P the total pressure. Defining the dynamic pressure p d , at a position x and time t,

p d (x,t) = P(x,t) -ρ(x,t)g • x (2.3)
the resulting NS equations under Eulerian conservative form are:

∂ ρ ∂t + ∇ • (ρu) = 0 (2.4a) ∂ (ρu) ∂t + ∇ • (ρuu) = -∇p d - 2 3 ∇(µ∇ • u) -g • x∇ρ + ∇ • µ ∇u + ∇u T (2.4b)

Two-phase single-field Navier-Stokes equations

The managment of multiphase flow can be done with several numerical methods and mathematical models. The formulation adopted is the single-field volume of fluid (VOF) method [START_REF] Hirt | Volume of fluid (VOF) method for the dynamics of free boundaries[END_REF] for the studies presented in this document. Details of such a formulation and discussions about multi-phase formulations can be found in [START_REF] Rusche | Computational Fluid Dynamics of Dispersed Two-Phase Flows at High Phase Fractions[END_REF] and [START_REF] Marschall | Towards the numerical simulation of multi-scale two-phase flows[END_REF].

The water volume fraction α is defined with α = 1 in water phase and α = 0 in air phase. The interface between water and air is a continuous transition zone with 0 < α < 1. The local density ρ, kinematic viscosity ν and dynamic viscosity µ are defined as:

ρ = αρ w + (1 -α)ρ a (2.5a) µ = α µ w + (1 -α)µ a (2.5b) ν = µ ρ (2.5c)
with 'w' and 'a' subscripts referring to water and air fields, respectively.

The single-field hypothesis is that velocity of air and water are equal in transition zones (0 < α < 1), this unique velocity is denoted with u. Averaging the continuity equations in both air and water phase [START_REF] Rusche | Computational Fluid Dynamics of Dispersed Two-Phase Flows at High Phase Fractions[END_REF] and writing them in Eulerian form, it results the following equations:

∂ (αρ w ) ∂t + ∇ • (αρ w u) = 0 (2.6a) ∂ ([1 -α] ρ a ) ∂t + ∇ • ([1 -α] ρ a u) = 0 (2.6b)
Considering both the air and water phases as incompressible flows, dividing Eq. 2.6a by ρ w and Eq. 2.6b by ρ a and then summing them, the resulting continuity equation is:

∇ • u = 0 (2.7)
Besides, dividing Eq. 2.6a by the ρ w , it becomes:

∂ α ∂t + ∇ • (αu) = 0 (2.8)
Due to the continuity equation (Eq. 2.7) and the formulation of ρ and µ, the resulting VOF-NS momentum equation is:

∂ (ρu) ∂t + ∇ • (ρuu) = -∇p d -g • x∇ρ + ∇ • (µ∇u) + ∇µ • ∇u T (2.9)
Two-field formulation and compression term For a two-field VOF formulation, the velocity are not continuous at the interface between air and water. Then, a relative velocity u r can be defined as:

u r := u w -u a (2.10)
And a mean field velocity u as:

u = αu w + (1 -α)u a , (2.11)
Once again, averaging the continuity equations in both air and water phase [START_REF] Rusche | Computational Fluid Dynamics of Dispersed Two-Phase Flows at High Phase Fractions[END_REF] with an Eulerian form and dividing by the constant ρ w and ρ a respectively, gives:

∂ α ∂t + ∇ • αu w = 0 (2.12a) - ∂ α ∂t + ∇ • [1 -α] u a = 0 (2.12b)
Summing Eq. 2.12a to Eq. 2.12b and using Eq. 2.11 still gives the continuity equation Eq. 2.8. Besides, From Eq. 2.10 and Eq. 2.11, the following relation can be set:

u = u w -(1 -α)u r (2.13)
Multiplying by alpha and rearranging it becomes:

αu w = αu + α(1 -α)u r (2.14)
Finally, injecting Eq. 2.14 in Eq. 2.12a gives the following volume-fraction convection law:

∂ α ∂t + ∇ • (αu) + ∇ • (α(1 -α)u r ) = 0 (2.15)
With the definition of the density (Eq. 2.5a), the resulting mass conservation is:

∂ ρ ∂t + ∇ • (ρu + [(ρ w -ρ a )(1 -α)αu r ]) = 0 (2.16)
As mentioned, with interDymFOAM and foamStar, the VOF formulation is a single-field one. Then, no distinction is made between water and air velocity. However, in order to limit the smearing of the transition zone of the interface, [START_REF] Rusche | Computational fluid dynamics of dispersed two-phase flows at high phase fractions[END_REF] proposed the addition of a compression term inspired by this two-field consideration. Defining:

u comp = (1 -α)αu r
(2.17) with u r a vector field term1 , the convection equation of compressed single-field VOF becomes:

∂ α ∂t + ∇ • (αu) + ∇ • u comp compression term = 0 (2.18)
and the mass conservation:

∂ ρ ∂t + ∇ • ρu + (ρ w -ρ a )u comp = 0 (2.19)
Using a compression term but keeping a pure single-field formulation for the momentum equation (Eq. 2.9) results in breaking the momentum conservation in the transition zone at the interface. In OpenFOAM, this additional term is partially taken into account in the momentum equation using it as an additional convective term in an analogous way to Eq. 2.19. The resulting equation is:

∂ ρu ∂t + ∇ • ρuu + (ρ w -ρ a )u comp u = -∇p d -g • x∇ρ + ∇ • (µ∇u) + ∇µ • ∇u T (2.20)

Two phase single-field Reynolds Average Navier-Stokes equations

For naval applications, the Navier-Stokes equations are often used in a transformed form called Reynolds Averaged Navier-Stokes Equations (RANSE). This model consists of using the Reynolds statistical decomposition and modelling the average turbulence effect with the Eddy-Viscosity method. In the resulting equation, the turbulent kinematic viscosity ν t and the turbulent kinetic energy k are additional terms modelling the small-scale phenomena related to velocity fluctuations. From the turbulent kinematic viscosity ν t and the density ρ, the effective dynamic viscosity µ eff can be defined as follows:

µ eff = µ + ρν t ,
(2.21) and a pressure p as,

p = p d + 2 3 ρ k (2.22)
Then, the VOF-RANS momentum equation becomes:

∂ (ρu) ∂t + ∇ • (ρuu + (ρ w -ρ a )u comp u) = -∇p -g • x∇ρ + ∇ • (µ eff ∇u) + ∇µ eff • ∇u T (2.23)
This equation is convenient for naval applications because it models unsteady flow taking into account inertial, volumic, pressure and viscous forces. The small scale turbulent phenomena are only considered through their average influence, so RANSE resolution has a significantly smaller computational cost than DNS.

In the following, the symbol p is used for both Navier-Stokes and RANS models. With Navier-Stokes model, as no turbulent model are used, k is null so p = p d .

Turbulence model

The closure of the RANSE system implies the choice of a turbulence model. The k-ω-SST model [START_REF] Menter | Two-equation eddy-viscosity turbulence models for engineering applications[END_REF] is widely used in naval CFD literature. In order to stabilize the model in nearly potential flow regions, especially close to the free surface and limit the turbulent exponential growth a modified kω closure was proposed by [START_REF] Larsen | On the over-production of turbulence beneath surface waves in reynolds-averaged navier-stokes models[END_REF]. In foamStar this model is adapted to a SST formulation with the following equations:

∂ ρk ∂t + ∇ • (ρuk) -∇ • ((µ + ρα k ν t )∇k) = ρν t p 0 - 2 3 ρk∇ • u -ρβ * kω -ρP b (2.24a) ∂ ρω ∂t + ∇ • (ρuω) -∇ • ((µ + ρα ω ν t )∇ω) = γρ p 0 - 2 3 ργω∇ • u -ρβ * ω 2 -ρ(F 1 -1)C D kω (2.24b) with, ν t = a 1 k max (a 1 ω, b 1 F 2 p 0 )
(2.25)

P b = α * b ν t g • ∇ρ (2.26) p 0 = 1 2 , ∇(u) + ∇(u) T • • ∇(u) + ∇(u) T (2.27) (2.28)
The formulations of the coefficients [START_REF] Kim | Numerical improvement and validation of a naval hydrodynamics CFD solver in view of performing fast and accurate simulation of complex ship-wave interaction[END_REF]. In the present document, this turbulent model is called fs-k-ω-SST.

F 1 , F 2 , a 1 , a 2 , b 1 , b 2 α k , γ, α ω , α * b , β * andCD kω are detailed in

VOF-RANSE equations with a moving referential

In foamStar, the earth reference frame is assumed to be Galilean. With the foamStar version used in the present document, the equations are written in the moving-domain reference frame R D . The considered motion of the domain can only be rectilinear regarding to the earth reference frame, its velocity is noted v 0 and its acceleration is noted a cc 0 . Because of the rectilinear motion, all the VOF-RANSE equations previously defined keep the same formulation in R D except the momentum equation in which an additional acceleration appears. The momentum equation in R D is:

∂ (ρu) ∂t + ∇ • (ρuu + (ρ w -ρ a )u comp u) = -∇p -g • x∇ρ + ∇ • (µ eff ∇u) + ∇µ eff • ∇u T -ρ a cc 0 (2.29)

Fluid-structure interactions

The previous section describes the equations for an infinite fluid domain. In order to compute the solutions with a moving body as it is the case in naval simulations, two further aspects should be considered. Firstly various kinds of boundaries need to be defined around the fluid domain, and secondly the loads acting on the boundaries need to be evaluated together with the solid dynamics.

Wall boundary

For naval simulations, boundaries such as solid bodies and walls have to be modeled. The mathematical model presented before for the inner fluid is still available but an additional boundary equation is added. Given a fluid domain Ω, ∂ Ω defines the physical non-porous boundary of the domain and u wall defines the local wall velocity. Keeping u the fluid velocity, with the hypothesis of adherence of the fluid to the wall results in:

∀M ∈ ∂ Ω, u(M) = u wall (M)
(2.30)

Rigid body motions

On the body side, for walls moving with a prescribed velocity, nothing is to solve and u wall is imposed. However, for naval simulations, the ship motions have to be modeled. In the present work the free bodies are assumed to be rigid and moving with up to six degrees of freedom (6 DoFs). To represent the ship's motions, an orthogonal Galilean reference frame R 0 = (O, e x , e y , e z )2 and an orthonormal boat reference frame R b (C g , ε x ε y , ε z ) are defined. The directions of ε x , ε y , ε z are fixed regarding to the boat orientation. C g is the center of gravity of the ship. The rotations angles of the ship are the roll, pitch and yaw Tait-Bryan Euler angles, respectively noted φ , θ , ψ. 

R 0 b = R b 0 -1 = R b 0 T (2.32)
Consequently, given a vector v expressed in B 0 coordinates and the same vector

v b expressed in B b coordinates, v b = R b 0 v (2.33) Given a point M, its position in R 0 is X M = OM and ξ b M = C g M b in R b . X M and ξ b M
are linked by the following relation:

ξ b M = R b 0 X M -X Cg (2.34)
with X Cg the position of C g which is OC g expressed in R 0 . The velocity of C g in R 0 is:

ẊCg = dX Cg dt R 0 (2.35)
and its acceleration is:

ẌCg = dX 2 Cg dt 2 R 0 (2.36)
The rotation vector of R b regarding to R 0 and expressed in B b is noted ω b . Its derivation in the R b is:

ωb = dω b dt R b (2.37)
The Euler angles are regrouped as a vector:

Θ =    φ θ ψ    (2.38)
and the variation rate of these angles is noted:

Θ =    φ θ ψ   (2.39)
The relation between ω b and Θ is as follows:

Θ = Tω b with T =    1 sin φ tan θ cos φ tan θ 0 cos φ -sin φ 0 sin φ / cos θ cos φ / cos θ    (2.40)
Using the introduced notations, the Newton second law can be written in the Galilean reference frame R 0 . With the body mass m, the relation between the linear momentum and the external forces is:

m ẌCg = mg + F fluid + F add + F c (2.41)
where F fluid are the fluid forces, F add are additional forces depending on the loads taken into account, F c are the constraint forces relative to the imposed motions. The expression of these constraints in foamStar is detailed in Section 3.3.1.

Defining I g the inertia matrix of the boat in R b , the relation between the angular momentum and the external moments is:

I g ωb = M b fluid + M b add + M b c + ω b ∧ I g ω b (2.42)
where 

F fluid = δ Ω body dS • Σ (2.43a) M b fluid = R b 0 M∈δ Ω body dS • Σ ∧ C g M (2.43b) with, Σ = -[p + ρg • x] I + µ eff ∇u + ∇u T (2.44)
Finally, because of the rigid motions, the body wall velocity u wall is related to X Cg and ω b by:

∀M ∈ ∂ Ω body , X M = X Cg + R 0 b C g M b (2.45a) u wall (M) = ẊCg + R 0 b C g M b ∧ ω b (2.45b)
With this last equation, the FSI system is closed.

Wave generation

Wave model a) Regular wave model

For naval simulations with waves, without wavemaker the generation of wave fields often needs analytical solutions. For regular waves modeling, the widely used model is the stream-function theory established by [START_REF] Rienecker | A Fourier approximation method for steady water waves[END_REF]. In the following, the stream-function model is briefly described using the notations from [START_REF] Ducrozet | CN-Stream: Open-source library for nonlinear regular waves using stream function theory[END_REF].

Given a 2D periodic regular wave with a constant phase velocity c a period T and a wavelength λ , defining a reference frame R w moving at c, in the direction of the wave propagation, the wave profile is constant in R w . Assuming an irrotational divergence-free flow with a velocity field u(x, z) = (u(x, z), w(x, z)) in R w , a stream-function ψ(x, z) can be defined as:

u = ∂ ψ ∂ z , w = - ∂ ψ ∂ x (2.46)
Within potential flow theory, the irrotational hypothesis implies the Laplace equation:

∆ψ = 0 (2.47)
and the Bernoulli equation is verified:

P ρ = -gz - 1 2 ∂ ψ ∂ x 2 + ∂ ψ ∂ z 2 + R (2.48)
where R is the so-called Bernoulli constant.

Defining the free surface elevation η(x), and fixing a null pressure at the free surface, the Bernoulli equation expressed at the free surface gives the following dynamic free surface boundary condition:

∀ (x, z) = (x, η(x)), gη + 1 2 ∂ ψ ∂ x 2 + ∂ ψ ∂ z 2 = R (2.49)
Using Fourier series decompositions, this model provides accurate low-cost resolution of the velocity and pressure fields in a single-field domain.

b) Irregular wave model

The analytical model used for irregular wave generation is the High Order Spectral (HOS) model initially developed by [START_REF] West | A new numerical method for surface hydrodynamics[END_REF] and [START_REF] Dommermuth | A high-order spectral method for the study of nonlinear gravity waves[END_REF]. As for the regular wave model previously described, the HOS model is a spectral decomposition non-breaking nonlinear wave fields respecting potential flow theory.

For this method, the 3D fields are defined in the fixed Galilean reference frame R 0 . The irrotational-flow hypothesis allows the definition of the potential φ (x, y, z,t) with the following equation, u(x, y, z,t) = ∇φ (2.50)

The potential flow model implies the following equations:

∆φ = 0 (2.51) P ρ = - ∂ φ ∂t -gz - 1 2 ∇φ 2 + P atm ρ (2.52)
In Eq. 2.52, the Bernoulli constant is chosen equal to the atmospheric pressure at the free surface P atm .

Defining the free surface elevation η(x, y,t) in referential R 0 , the kinematic and normal dynamic free surface boundary conditions are,

∂ η ∂t = ∂ φ ∂ z - ∂ φ ∂ x ∂ η ∂ x - ∂ φ ∂ y ∂ η ∂ y (2.53) ∂ φ ∂t = -gη - 1 2 ∇φ 2 (2.54)
Following the method proposed by [START_REF] West | A new numerical method for surface hydrodynamics[END_REF], the HOS method consists in defining the following 2D field:

φ (x, y,t) = φ (x, y, η(x, y,t),t) (2.55)
and noting W the vertical velocity at the free surface:

W (x, y,t) = ∂ φ ∂ z (x, y, η(x, y,t),t) (2.56)
With these notations, the free surface boundary conditions can be rewritten as follows:

∂ η ∂t = 1 + ∂ η ∂ x 2 + ∂ η ∂ y 2 W - ∂ φ ∂ x ∂ η ∂ x - ∂ η ∂ y ∂ φ ∂ y (2.57) ∂ φ ∂t = -gη - 1 2 ∇ φ 2 + 1 2 1 + ∂ η ∂ x 2 + ∂ η ∂ y 2 W 2 (2.58)
Using Fourier series decompositions and Taylor expansions, this model provides accurate moderate-cost resolution of the velocity and pressure fields in a single-field domain. The open-source solvers HOS-NWT [START_REF] Ducrozet | A modified high-order spectral method for wavemaker modeling in a numerical wave tank[END_REF] and HOS-Ocean [START_REF] Ducrozet | HOS-ocean: Open-source solver for nonlinear waves in open ocean based on High-Order Spectral method[END_REF] are both based on HOS model for wave tank and open ocean simulations.

To take into account wave-breaking phenomenon, some additional models can be used. A wave-breaking criterion was defined by [START_REF] Barthelemy | On a unified breaking onset threshold for gravity waves in deep and intermediate depth water[END_REF] and energy loss through additional viscous term was proposed by [START_REF] Tian | An eddy viscosity model for two-dimensional breaking waves and its validation with laboratory experiments[END_REF]. An implementation of these models into HOS-NWT was proposed by [START_REF] Seiffert | Simulation of breaking waves using the high-order spectral method with laboratory experiments: Wave-breaking onset[END_REF].

c) Relaxation zone

The relaxation zone approach is used to efficiently generate and absorb waves in the computational domain [START_REF] Jacobsen | A wave generation toolbox for the open-source CFD library: OpenFoam®[END_REF][START_REF] Li | Spectral Wave Explicit Navier-Stokes Equations for wave-structure interactions using two-phase Computational Fluid Dynamics solvers[END_REF]. A generic field ψ in the relaxation zone is defined as,

ψ = (1 -w)ψ CFD + wψ Target (2.59)
where 0 ≤ w ≤ 1 is a weight coefficient, ψ CFD the flow field from the chosen CFD model, and ψ target the target field. Through this formulation, the resulting field ψ is a blended solution between ψ CFD and ψ target . In foamStar, the targeted field ψ target can be computed using the previously mentioned wave-models. In Figure 2.2 the red line represents the distribution of w over a computational domain. Given a 2D domain Ω in the (X,Y) plane defined by:

Ω = (x, y) ∈ R 2 |X min ≤ x ≤ X max , and Y min ≤ y ≤ Y max
Then, considering a relaxation zone from X 0 to X 1 , a normalized coordinate ξ is defined as:

ξ : Ω -→ [0, 1] x -→ 1 if x ≤ X 0 x -→ x -X 0 X 1 -X 0 if X 0 ≤ x ≤ X 1 x -→ 0 if X 1 ≤ x (2.60)
By default, in foamStar, w is an exponential weight function defined as,

w : [0, 1] -→ [0, 1] ξ -→ e ξ 3.5 -1 e -1
(2.61)

The Spectral Wave Explicit Navier-Stokes Equations (SWENSE)

The Spectral Wave Explicit Navier-Stokes (SWENS) method [START_REF] Ferrant | A potential/RANSE approach for regular water wave diffraction about 2-D structures[END_REF] was developed in the LHEEA in order to accurately simulate wave-structure interactions with complex sea states. The main idea is to solve the incident fields, mainly corresponding to the wave field, and the complementary fields separately (Fig. 2.3). Complementary fields are defined as the difference between the total fields and the incident ones, so they takes into account the diffracted fields but also all the corrections implied by the chosen incident fields. For example, they encompasses phenomena neglected in the incident fields and if necessary some non-physical numerical considerations related to the incident fields solving method.

Mathematically, the SWENS method is based on the hypothesis that the incident velocity and pressure fields verify the Euler equations and the total fields the RANS equations. Actually, for nonbreaking wave propagation in open field (no body presence), viscosity is negligible in the Navier-Stokes equations. These Euler equations write:

∇ • u = 0 (2.62a) ∂ (ρu) ∂t + ∇ • (ρuu) = -∇P + ρ g (2.62b)
The governing equations of the complementary field are called Spectral Wave Explicit Navier-Stokes equations (SWENSE).

With SWENSE, only the complementary part is solved using a CFD solver. The incident fields are already known before the simulation using a spectral approach (Sec. 2.3.1) and appeared as forcing terms during the computation. The most accurate method to get these initial fields is to compute them using potential flow theory. Those methods are discussed in the following. 

∇ • u I = 0 (2.63a) ∂ (ρ water u I ) ∂t + ∇ • (ρ water u I u I ) = -∇P I + ρ water g (2.63b)
The SWENSE formulation subtracts the incident Euler equation (Eq. 2.63b) from the original RANS momentum equation (Eq. 2.23). As shown by [START_REF] Li | Two-phase spectral wave explicit Navier-Stokes equations method for wave-structure interactions[END_REF] the standard SWENSE formulation is convenient for single-phase flow but quite problematic for two-phase flow approach. Thanks to the spectral methods, the incident wave fields can be extended in the entire computational domain directly. From this extension, Euler equation (Eq. 2.63b) is valid in the entire domain. Consequently, subtracting Eq. 2.63b from Eq. 2.23 generates an extra pressure term that cannot be neglected in air and causes stability issues. To solve this issue, [START_REF] Li | Two-phase spectral wave explicit Navier-Stokes equations method for wave-structure interactions[END_REF] proposed the modified incident pressure using mixture density:

P * I = ρ P I ρ I , (2.64)
where p * I is the modified incident pressure, ρ is the density of the considered fluid phase and ρ I is the density of the incident field solution (ρ I = ρ water ). The modified Euler's equation for incident terms reads:

∂ u I ∂t + ∇ • (u I u I ) = - ∇P * I ρ + P I ρ I ∇ρ ρ + g (2.65)
Eq. (2.66) presents the wave field decomposition. The VOF field is not decomposed in this formulation and uses the same VOF convection equation as the classic two-phase flow solver.

u = u I + u C P = P * I + P C (2.66)
Using this decomposition and the continuity equation:

∂ ρ ∂t + ∇ • (ρu) = 0 (2.67)
the Eq. 2.65 can be transform into:

∂ ρu I ∂t + ∇ • (ρu I u I ) + u I ∇ • (ρu C ) = -∇P * I + P I ρ I ∇ρ + ρg (2.68)
Then, the subtraction of the incident flow equations from the original RANSE yields a new set of equations for the complementary flow, namely the continuity equation (Eq. 2.69) and the momentum equation (Eq. 2.70):

∇ • u C = 0 (2.69) ∂ (ρu C ) ∂t + ∇ • (ρu C u) + ρu C • ∇u I = -∇P C - P I ρ I ∇ρ + ∇ • (µ eff ∇u C ) + ∇u C • ∇µ eff - 2 3 ∇(ρ k) (2.70)
Note that the viscous term ∇ • (µ eff (∇u I + ∇u T I )) is considered negligible and it is not included in Eq. (2.70). See [START_REF] Li | Two-phase spectral wave explicit Navier-Stokes equations method for wave-structure interactions[END_REF] for more details.

Since this incident wave field is not computed by the SWENSE solver some advantages are expected. Firstly, only the complementary field has to be damped in the outer region. This is a smaller magnitude field, easier to absorb than the total field including incident waves.

Secondly, the mesh has to be designed for the complementary field and this gives the opportunity for reducing the cells number by using a coarser resolution in the far field and consequently reducing the computation time (typically by using similar meshes as for calm water ship resistance problems.

Finite Volume spatial discretisation

Solving partial differential equations over a finite computational domain requires spatial and temporal discretization. This section gives an overview of the spatial discretization implemented in OpenFOAM.

Mesh characteristics

The spatial discretization method employed in OpenFOAM is the Finite Volume method. It consists in discretizing the computational domain into cells considered as elementary volumes. In OpenFOAM, the mesh has to respect some properties:

-the cells have to cover the entire numerical domain; -cells must not overlap; -cells have to be convex; -cells have to be closed by an arbitrary number of faces; -The volume of cells cannot be zero; -A face cannot belong to more than two cells. A boundary face belong to one cell when an internal face belongs to two cells.

Each cell is identified by its geometric center. Figure 3.1 represents two contiguous cells sharing a face f where P and N are the two centers. By extension, the P and N indexes identify the cells with P and N as geometric centers respectively. V P is the volume of the cell P, S f is the surface of the face f and n f its outer normal vector. For more clarity in the following the vector S f = S f n f will also be used. In the following, P index identifies the cell of interest and N index for the neighbor cells. 

Cell and face center values

Considering a cell volume V P with its geometric center P defined as V P PM dV (M) = 0, we have for a generic field ψ the following second-order approximation:

V P ψ dV ≈ V P ψ(P) (3.1)
where ψ(P) is the exact value of ψ at P. It is important to keep in mind that this exact value ψ(P) is not the calculated one. In the following, the value obtained by the resolution of the discretized system is ψ P = ψ(P) + O(ε(dx, dt)), with O(ε(dx, dt)) the discretization error depending on the chosen method.

The same approximation can be done considering a face f and its geometric center F:

S f ψ dS ≈ S f ψ(F) (3.2)
where ψ(F) is the value of ψ at F.

Cell to Face center interpolation

Locally, the fluid velocity allows to define an upwind and a downwind direction. To introduce the face interpolation schemes properly, it is assumed here as a convention that the point N is located downwind the point P. The upwind point U is located such that UP = PN (Fig. 3.1).

Given a volumic field ψ, a f and face separating a cell P and a cell N, evaluating ψ(F) is done using a face interpolation scheme. These interpolations are especially used for the discretisation of the advection term (see Sec. 3.1.5).

The face interpolation is done using the High Resolution Schemes (HRS). In the context of unstructured three-dimensional meshes as the ones used in OpenFOAM, a typical HRS formulation is the "inverse-distance weighting flux-limiter" formulation as proposed by [START_REF] Hou | Improved total variation diminishing schemes for advection simulation on arbitrary grids[END_REF]. In this formulation, the approximated value ψ f of the quantity ψ(F) is defined as:

ψ(F) ≈ ψ f = ψ P + Ξ(r) L (ψ N -ψ P ) (3.3)
where L is the weight defined as

L := |PF • n f | + |NF • n f | |PF • n f | (3.4)
Ξ(r) is the so-called flux-limiter function of r the gradient ratio defined as:

r := ψ P -ψ U ψ N -ψ P (3.5)
The value of ψ U is the virtual value of the virtual upwind point U (Fig. 3.1). On unstructured meshes, the value of ψ U can be approximated using the second-order method proposed by [START_REF] Darwish | Tvd schemes for unstructured grids[END_REF]. This method is based on the evaluation of the gradient of ψ at P,

∇(ψ)(P) ≈ ∇ψ| P (3.6)
This results in the following definition:

ψ U = ψ N -2 ∇ψ| P • PN (3.7)
and then:

r = 2 ∇ψ| P • PN ψ N -ψ P -1 (3.8)
which is the formulation used in the solver. In this approximation, the quantity ∇ψ| P has to be explicitly expressed.

The discretisation scheme depends on the choice of the limiter in Eq. 3.3.

a) Convection Boundedness Criterion

In order to guarantee the boundedness of a solution of advective terms using a discretization scheme [START_REF] Gaskell | Curvature-compensated convective transport: Smart, a new boundedness-preserving transport algorithm[END_REF] formulated the Convection Boundedness Criterion (CBC). First, it is useful to introduce the normalized variable ψ = ψ-ψ U ψ N -ψ U . Then, the CBC assumes that a normalized variable ψf (a numerical approximation of ψ(F)) is bounded if:

ψP < ψf < 1 if 0 < ψP < 1 (3.9a) ψf = ψP if ψP < 0 or ψP > 1 (3.9b) ψf = 0 if ψP ≤ 0 (3.9c) ψf = 1 if ψP ≥ 1 (3.9d)
Using the flux-limiter formulation (Eq. 3.3), a sufficient condition for the CBC is:

0 < Ξ(r) ≤ L if r > 0 (3.10a) Ξ(r) = 0 if r ≤ 0 (3.10b) (3.10c) b) Total variation diminishing criterium
The Total Variation Diminishing (TVD) criterion is based on the articles of [START_REF] Harten | On a class of high resolution total-variation-stable finite-difference schemes[END_REF] and [START_REF] Sweby | High resolution schemes using flux limiters for hyperbolic conservation laws[END_REF]. The objective was, first, to prevent the solution from unstable oscillations that can occur using some second-order schemes, and then, to preserve the monotonicity 1 . Consequently, the TVD criterion prevents the creation of new local extrema. Using the [START_REF] Sweby | High resolution schemes using flux limiters for hyperbolic conservation laws[END_REF] flux-limiter formulation combined with the [START_REF] Hou | Improved total variation diminishing schemes for advection simulation on arbitrary grids[END_REF] inverse-distance weighting, the TVD criterion results is formulated as follows:

0 < Ξ(r) ≤ Lr if 0 < r < 1 (3.11a) 0 < Ξ(r) ≤ L if r ≥ 1 (3.11b) Ξ(r) = 0 if r ≤ 0 (3.11c)
It can be noted that these criteria on flux-limiter encompass the CBC. Furthermore, the following additional conditions ensure second-order accuracy of the schemes for regular meshes:

r ≤ Ξ(r) ≤ Lr if 0 < r ≤ 1/2 (3.12a) r ≤ Ξ(r) ≤ 1 if 1/2 ≤ r ≤ 1 (3.12b) 1 ≤ Ξ(r) ≤ r if 1 ≤ r ≤ L (3.12c) 1 ≤ Ξ(r) ≤ L if r ≥ L (3.12d) Ξ(r) = 0 if r ≤ 0 (3.12e)
These conditions can be illustrated on the [START_REF] Sweby | High resolution schemes using flux limiters for hyperbolic conservation laws[END_REF] diagram (Fig. 3.2) where the TVD region is shaded in gray. Light gray represents the first-order regions and dark gray the second-order regions. 

ψ f = ψ P (3.13)
This scheme is unconditionally stable for the resolution of convective terms but it is a formally a first-order accurate scheme.

Central differencing scheme (CD) With Ξ(r) = 1 the resulting scheme is the central differencing:

ψ f = 1 - 1 L ψ P + ψ N L (3.14)
For meshes where the points P, F and N are aligned, this CD scheme is formally second-order accurate but can lead to instabilities in the implicit resolution of convective terms.

d) Mesh skewness

Unstructured meshes do not necessarily respect the property of P, F and N alignment. Figure 3.1 is an example of such a non-alignment. This non-alignment is often referred to as the skewness [START_REF] Jasak | Error analysis and estimation for the finite volume method with applications to fluid flows[END_REF]. The point F' in Figure 3.1 is the intersection of the segment PN and face f. The vector F'F is the skewness correction vector of the face f. As mentioned, the face integral approximation (Eq. 3.2) reaches a second-order accuracy if ψ f is a second-order approximation of ψ(F). However, with skewed unstructured meshes, the CD scheme gives formally a second-order approximation of ψ(F ′ ) but not of ψ(F). Consequently, with skewed faces, using Eq. 3.14 for ψ f formulation comes to consider Eq. 3.2 with the first-order approximation that ψ(F) ≈ ψ(F ′ ). Finally, with skewed cells, the following approximation:

S f ψ dS ≈ S f 1 - 1 L ψ P + ψ N L (3.15)
is formally a first-order approximation.

The given example with CD scheme can be extended to any other HRS formulated with Eq. 3.3 evaluation and then, without using corrector terms, the skewness of a mesh reduces the face integral approximation to first-order accuracy.

In order to keep a second-order formulation a skew-corrector can be formulated. To do so, the gradient of ψ has to be evaluated at P with:

∇(ψ)(F) ≈ ∇ψ| f (3.16)
The resulting second-order approximation is:

ψ(F) ≈ ψ(F') + ∇ψ| f • F'F (3.17)
Finally, with a skew-corrected CD scheme for instance, the following second-order approximation can be made:

S f ψ dS ≈ S f   1 - 1 L ψ P + ψ N L + ∇ψ| f • F'F skew-corrector   (3.18)
In this formulation the ∇ψ| f has to be known before solving the equation.

Face to Cell center reconstruction

For a vector field ψ, with ψ f the quantity ψ(F) evaluated at the face center, a second order approximation of the cell-center value ψ P can be constructed using the method proposed by [START_REF] Weller | Curl-free pressure gradients over orography in a solution of the fully compressible euler equations with implicit treatment of acoustic and gravity waves[END_REF]:

ψ P = ∑ f n f ⊗ S f -1 ∑ f (ψ f • n f ) S f (3.19)
Thanks to this equation, a second-order reconstruction of any vector field at the geometric cell center can be done using the surface normal quantities ψ f • n f .

Divergence

As mentioned, the fundamental aspect of the Finite Volume method is to consider elementary volumes rather than local nodes. Consequently, for a vector field ψ, the Gauss theorem is applied in order to transform the volumic integration over a cell of ∇ • ψ into a surface integration as follows:

V P ∇ • ψdV = ∑ f S ψ • dS (3.20)
Then, using the cell and face-center approximation results in the second-order approximation:

∇ • ψ| P ≈ 1 V P ∑ f ψ f • S f (3.21)
With this formulation of the divergence, when the field is a velocity field u it is convenient to introduce a dedicated notation of the flux φ f such that for a face f

φ f = u f • S f ≈ f u • dS, (3.22)
and then

∇ • u| P ≈ 1 V P ∑ f φ f (3.23)

Surface normal gradient

The Figure 3.3 shows a cell face from a non-orthogonal mesh. In OpenFOAM, a mesh is said to be orthogonal if and only if the line joining the centers of neighboring cells (here P and N) and the shared face f are orthogonal. Figure 3.3 illustrates the following decomposition:

S f = ∆ + k (3.24)
Different expressions of ∆ can be chosen. The one used in the presented work is named "over relaxed approach" in [START_REF] Jasak | Error analysis and estimation for the finite volume method with applications to fluid flows[END_REF] and is defined as follows:

∆ = |S f | 2 PN • S f PN (3.25) P F F' N x y z S f Δ k n f Sf Figure 3.3 -A cell face of a non-orthogonal mesh
Using this decomposition of S f , the quantity ∇ψ| f

• S f for a field ψ can be decomposed as a orthogonal part and an non-orthogonal part:

∇ψ| f • S f = ∇ψ| f • ∆ orthogonal part + ∇ψ| f • k non-orthogonal part (3.26)
Using the Eq. 3.25 and the second-order approximation:

∇ψ • PN ≈ ψ N -ψ P (3.27)
the following approximation can be done:

∇ψ| f • S f ≈ |S f | 2 PN • S f (ψ N -ψ P ) orthogonal part + ∇ψ| f • (S f -∆) non-orthogonal part
(3.28)

Non-orthogonal correction

During the resolution of the discretized system, the use of Eq. 3.28 to evaluate ∇ψ| f

• S f implies the use of an explicitly known approximation of ∇ψ| f in the right-hand member. Similarly to the skew-correction seen in Section 3.1.3, because of its explicit aspect, the non-orthogonal part of the Eq. 3.28 will be considered as a non-orthogonal-corrector. Some other discretization schemes that would not imposed the use of explicit terms could have been chosen but as explained by [START_REF] Jasak | Error analysis and estimation for the finite volume method with applications to fluid flows[END_REF], the use of this scheme is justified by a reduced size of the discretization molecule and a reduced error.

Cell center gradient

For a scalar field ψ the value of the cell center gradient ∇ψ| P can be approximated using several methods.

Gauss linear

V P ∇ψdV = ∑ f S ψdS (3.29)
then, using the cell and face-center approximations:

∇ψ| P ≈ 1 V P ∑ f ψ f S f (3.30)
Least Square This method consists in minimizing the square of the weighted error defined as:

e 2 = ∑ N ψ N -ψ P |PN| - PN |PN| • ∇ψ| P (3.31)
The resulting solution is:

∇ψ| P ≈ ∑ N G -1 • PN |PN| 2 (ψ N -ψ P ) (3.32)
with:

G = ∑ N PN ⊗ PN |PN| 2 (3.33)
The interest of this scheme is the minimisation of the error.

Time discretisation

The equations with time derivative terms of a field ψ can be presented under the following form:

∂ ψ ∂t t = G (ψ, x,t) (3.34)
where G is a function of ψ, x and t, free of time derivative terms.

Then the discretization of Eq. 3.34 can be written as follows:

∂ ψ ∂t

(n) = c (n) n ψ (n) + c (n) n-1 ψ (n-1) + c (n) n-2 ψ (n-2) + γ (n) ψ S (n) ddtψ (3.35)
The term ψ (n) identifies the computed value of ψ at the n th time-step. The coefficients c

(n) n , c (n) n-1 , c (n)
n-2 depend on the discretisation scheme used at the n th time-step. γ

(n)
ψ is an additional explicit term depending on both the selected time schemes and the variable ψ. The order of accuracy of the time approximation (Eq. 3.35) depends on the choice of the coefficients c

(n) n , c (n) n-1 , c (n) n-2
and γ ψ . For ease the explicit part of this formulation can occasionally be grouped as a temporal discretization source term S (n) ddtψ :

S (n) ddtψ := c (n) n-1 ψ (n-1) + c (n) n-2 ψ (n-2) + γ (n) ψ (3.36)
Eq. 3.35 and Eq. 3.36 are the general form of any temporal discretization scheme that are used in this document.

Implicit Euler and second-order Backward schemes a) Implicit Euler

Using the Implicit Euler scheme, Eq. 3.34 can be discretized as follows:

ψ (n) -ψ (n-1) ∆t (n) = G (n) (3.37)
With G (n) the numerical approximation of G (t(n)), and ∆t (n) := t(n) -t(n -1) the time interval between the (n-1) th and n th time step. This time step size is not necessarily constant all along the simulation. Then, the following identification can be done:

c (n) n := 1 ∆t (n) (3.38a) c (n) n-1 := - 1 ∆t (n) (3.38b) c (n) n-2 := 0 (3.38c) γ (n) ψ := 0 (3.38d)
This numerical scheme is non-conditionally stable and is first-order accurate. Consequently, it will generate significant numerical damping.

b) Second-order Backward

Using the Second-order Backward scheme, Eq. 3.34 can be discretized as follows:

∆t (n-1) (2∆t (n) + ∆t (n-1) ) ψ (n) -(∆t (n) + ∆t (n-1) ) 2 ψ (n-1) + ∆t (n) 2 ψ (n-2) ∆t (n-1) (∆t (n) + ∆t (n-1) ) = G (n) (3.39) with ∆t (n) := t(n) -t(n -1) (3.40a) ∆t (n-1) := t(n -1) -t(n -2) (3.40b)
Using the Second-order Backward scheme, the following identification can be done:

c (n) n := 1 ∆t (n) + 1 ∆t (n) + ∆t (n-1) (3.41a) c (n) n-1 := - ∆t (n) + ∆t (n-1) ∆t (n) ∆t (n-1) (3.41b) c (n) n-2 := ∆t (n) ∆t (n-1) (∆t (n) + ∆t (n-1) ) (3.41c) γ (n) ψ := 0 (3.41d)
This scheme is a second-order accuracy one and is unconditionally stable.

Crank-Nicolson schemes

The Crank-Nicolson method is the name given to a second-order approximation of Eq. 3.34:

ψ (n) -ψ (n-1) ∆t (n) = 1 2 G (n) + G (n-1) , (3.42) 
In the literature, it is said that this trapezoïd rule method applied to Navier-Stokes equations can lead to oscillatory behavior during the computation. Those instabilities can be reduced by introducing a blending factor C CN ∈ [0.5, 1] to Eq. 3.42. It results in the following formulation:

ψ (n) -ψ (n-1) ∆t (n) = C CN G (n) + (1 -C CN )G (n-1) (3.43)
This equation can be rearranged as follow:

ψ (n) -ψ (n-1) C CN ∆t (n) - 1 -C CN C CN G (n-1) = G (n) (3.44)
Finally, considering Eq. 3.43,Def. 3.35 and Def. 3.36, the following identification can be done:

c (n) n := 1 C CN ∆t (n) (3.45a) c (n) n-1 := - 1 C CN ∆t (n) (3.45b) c (n) n-2 := 0 (3.45c) γ (n) ψ := - 1 -C CN C CN G (n-1) (3.45d)
The blending factor C CN controls the weight of the implicit term G (n) with respect to the explicit term G (n-1) in Eq. 3.42. This Crank-Nicolson formulation is formally second-order accurate only if C CN = 0.5. With C CN = 1, Eq. 3.42 is equivalent to the implicit Euler method.

OpenFOAM formulation In the discretization process of OpenFOAM (except for the VOF equation) the term G (n-1) is generally difficult to estimate in the time discretization algorithm. An alternative is used by getting access to the values of ψ (n-1) and ψ (n-2) . This is obtained applying Eq. 3.44 at the time-step (n -1):

ψ (n-1) -ψ (n-2) C CN ∆t (n-1) - 1 -C CN C CN G (n-2) = G (n-1) (3.46)
and identifying the recursive relation:

γ (n) := - 1 -C CN C CN ψ (n-1) -ψ (n-2) C CN ∆t (n-1) + γ (n-1) (3.47)
For more clarity, a so-called Crank-Nicolson off-centre coefficient C OC ∈ [0, 1] is defined as:

C OC := 1 -C CN C CN (3.48)
This results in the following definition: 1) .

c (n) n := 1 +C OC ∆t (n) (3.49a) c (n) n-1 := - 1 +C OC ∆t (n) (3.49b) c (n) n-2 := 0 (3.49c) γ (n) ψ := -C OC 1 +C OC ∆t (n-1) ψ (n-1) -ψ (n-2) + γ (n-
(3.49d) using the finite-volume method.

Finite-volume method and moving meshes

The Navier-Stokes equations with or without turbulence model are unsteady and comprise a first-order time derivative. In the domain reference-frame R 0 , considering a generic field ψ, using Finite Volume Method (FVM), the following integral form has to be approximated:

V P ∂ ψ ∂t R 0 dV
To take into account a possible mesh motion, this term becomes:

V P ∂ ψ ∂t R 0 dV = d dt V P (t) ψ dV R 0 -∑ f(t) S f ψ v m • dS (3.50)
where v m represents the velocity of the elementary surface of integration on S f in R 0 . This velocity is induced by the mesh motion. Besides, using the spatial discretization mentioned previously, the following approximation can be done:

∂ ψ P ∂t R 0 (t (n) ) ≈ ∂ ψ P ∂t (n) R 0 = 1 V P dψ P V P dt (n) -∑ f ψ (n) f φ (n) mf (3.51)
where φ mf is the mesh velocity flux at the face f. Then, using the previously defined formulation for the time discretization schemes (Eq. 3.35):

∂ ψ P ∂t (n) R 0 = c (n) n ψ (n) + c (n) n-1 ψ (n-1) V (n-1) P V (n) P + c (n) n-2 ψ (n-2) V (n-2) P V (n) P + γ (n) ψV P V (n) P - 1 V (n) P ∑ f ψ (n) f φ (n) mf (3.52)
Given a constant field ψ in space and time, Eq. 3.51 implies the following conservation law:

dV P dt

(n) = ∑ f φ (n) mf (3.53)
and using the coefficients of the selected time-scheme:

c (n) n V (n) P + c (n) n-1 V (n-1) P + c (n) n-2 V (n-2) P + γ (n) V P = ∑ f φ (n) mf (3.54)
Consequently, respecting the conservation law, φ

mf formulation depends on the chosen time scheme.

Solver algorithm

The foamStar algorithm is detailed in this section. For simulations with bodies, only rigid body motions are considered here2 . The physical system of equations solved by foamStar is the one established in Section 2.1. Table 3.1 indicates the modeled quantities to be solved and the set of equations is recalled in the following. 

∂ α ∂t + ∇ • (αu) + ∇ • u comp = 0 (2.18)
and the mixture equations are:

ρ = αρ w + (1 -α)ρ a (2.5a) µ = α µ w + (1 -α)µ a (2.5b) ν = µ ρ (2.5c)
RANSE The internal flow model is based on RANSE with the following continuity equation:

∇ • u = 0 (2.7)
and momentum equation:

∂ (ρu) ∂t + ∇ • (ρuu + (ρ w -ρ a )u comp u) -∇p = -g • x∇ρ + ∇ • (µ eff ∇u) + ∇µ eff • ∇u T -ρ a cc 0
(2.29) with

µ eff = µ + ρν t (2.21) and p = p d + 2 3 ρ k (2.22)
Turbulent Model (TM) The two-equation fs-k-ω-SST model is:

∂ ρk ∂t + ∇ • ρuk -∇ • ((µ + ρα k ν t )∇k) = ρν t p 0 - 2 3 ρk∇ • u -ρβ * kω -ρP b (2.24a) ∂ ρω ∂t + ∇ • ρuω -∇ • ((µ + ρα ω ν t )∇ω) = γρ p 0 - 2 3 ργω∇ • u -ρβ * ω 2 -ρ(F 1 -1)C D kω (2.24b)
FSI For a rigid body, the equations given by the FSI are:

Σ = -[p + ρg • x] I + µ eff ∇u + ∇u T (2.44) F fluid = δ Ω body dS • Σ (2.43a) M b fluid = R b 0 M∈δ Ω body dS • Σ ∧ C g M (2.43b) m ẌCg = mg + F fluid + F add + F c
(2.41)

I g ωb = M b fluid + M b add + ω b ∧ I g ω b (2.42) ∀M ∈ ∂ Ω body , X M = X Cg + R 0 b C g M b (2.45a) u(M) = u wall (M) = ẊCg + R 0 b C g M b ∧ ω b (2.45b)
Iterative resolution Several iterative loops are used in order to solve this unsteady nonlinear coupled system. As shown in Figure 3.4, the first iterative loop to consider is the TIME loop (time-stepping). It uses the n-indexing. The loop starts with the knowledge of the numerical field solved at the previous (n-1) th time-step and ends with the numerical solution at the current n th time-step. During one temporal iteration, several iterative loops are needed for solving the coupled equations. The main one is the PIMPLE loop. It uses the m-indexing. It contains the second one that is the PISO loop that uses the k-indexing. Each loop is divided into different steps. At any step of the resolution, all fields, excepted the calculated one, are considered as fixed terms inside the treated equations. To perform the numerical resolution, the discretization schemes introduced in Section 3.1 and Section 3.2 are used. All the steps identified in Fig. 3.4 are detailed in the following sub-sections.

Notations used Table 3.2 indicates the notations that will be used in this section. Given a field ψ, I ψ P f represent the discretization scheme used to interpolate the numerical value ψ P at the center of a face f (see Sec. 3.1.3). ψ f refers to the numerical value obtained at the center of f. Defining ψ f = I ψ P f , in most cases ψ f ̸ = ψ f because of some additional numerical corrections 3 . The schemes related to the operator I f are chosen by the user. The schemes are chosen according to the equation in which they are used and the fields to which they are applied. The same remark can be made for ψ P and I ψ f P . The schemes are those presented in Sec. 3.1.

In this document, the indexes used for the iterative loops obey to specific rules. Given an iterative loop using an a-indexing:

-the initial value of the loop gets the 0 th index; -the first step of a loop gets the 1 st index; -the last step of a loop gets the a last th index; -given sub-loop using the b-indexing and given a numerical field ψ, without additional indication, the updated value of ψ in the a-loop equals the last update of ψ in the b-loop ψ (...,a) = ψ (...,a,b last ) ; -without additional indication, the initial value of ψ in sub-loop equals the value of ψ at the end of the previous a-loop ψ (...,a,0) = ψ (...,a-1) .

As mentioned, the main iterative loops are the the Time-loop with n-indexing, PIMPLE-loop with m-indexing and the PISO loop with k-indexing. For other loops described in this document, the q-indexing will be used. With q only referring to the considered loop in the corresponding section. 

∇ • ψ| P ∇ • ψ at cell-center P Sec. 3.1.5 ψ P , ψ N (all neighbours of cell P) ∂ ψ P ∂t ∂ ψ ∂t at cell-center P Sec. 3.2 ψ (n) P , ψ (n-1) P , ψ (n-2) P I ψ P f ψ at a face-center Sec. 3.1.3 ψ P , ψ N (neighbour sharing face f) I ψ f P ψ at cell-center P Sec. 3.1.4 ψ f (all faces of cell P)
In the following, the equations used for the update of main fields are identified by red or blue terms. The colored term is the one that is calculated by the equation. The blue color is used when the equation directly gives a definition of the numerical variable. The red color is used when the equation leads to a matrix system that is solved with a linear solver as detailed in Section 3.3.7.

Step one of PIMPLE loop: Body and mesh motion calculation

The first step of the PIMPLE loop is the body motion calculation and the resulting mesh motion. Table 3.3 indicates the main fields updated during this step.

Table 3.3 -Numerical fields updated by the FSI resolution

Numerical values Description

F (n,m) body External forces over the body

∀ f ∈ ∂ Ω body , u f
Velocity of the faces of the body

X (n,m) c , X (n,m) P , X (n,m) F
Positions of mesh points (cell corners, cell centers, face centers)

V (n,m) P Cells volume n f (n,m) , S (n,m) f , S (n,m) f
Normal vector, area and surface vector of faces

φ (n,m) mf
Faces flux due to mesh motion a) FSI resolution with 6 DoFs rigid body motion

The equations needed for the body motion resolution are recalled here:

Σ = -[p + ρg • x] I + µ eff ∇u + ∇u T (2.44) F fluid = δ Ω body dS • Σ (2.43a) M b fluid = R b 0 M∈δ Ω body dS • Σ ∧ C g M (2.43b) m ẌCg = mg + F fluid + F add + F c (2.41) I g ωb = M b fluid + M b add + ω b ∧ I g ω b (2.42) ∀M ∈ ∂ Ω body , X M = X Cg + R 0 b C g M b (2.45a) u wall (M) = ẊCg + R 0 b C g M b ∧ ω b (2.45b)
The second Newton law (Eq. 2.41) is valid in a Galilean reference frame. However, in foamStar, the motions, velocities and accelerations X, Ẋ, Ẍ are written and derivated in the moving-domain reference frame R D . Consequently, this equation is only valid for constant domain-velocity v 0 or for imposed acceleration in the v 0 direction. The discretized forms of these equation are,

∀ f ∈ ∂ Ω body , Σ f (n,m) = -[p f + ρ f g • X f ] I + µ eff f ∇u| f + ∇u| T f (n,m) (3.55) F (n,m) fluid = ∑ f ∈∂ Ω body S f • Σ f (n,m-1) (3.56) M b fluid (n,m) = R b 0 (n,m)   ∑ f ∈∂ Ω body S f • Σ ∧ C g M   (n,m-1)
(3.57)

F (n,m) tot = mg + F (n,m) fluid + F (n,m) add (3.58) M b tot (n,m) = M b fluid (n,m) + M b add (n,m) + ω b (n,m) ∧ ω b (n,m) I g (3.59) m Ẍ(n,m) Cg = F (n,m) tot + F (n,m) c (3.60) ωb (n,m) I g = M b tot (n,m) + M b c (n,m) (3.61)
Constraints To take into account constraints and evaluate F c (n,m) , a method based on Lagrange multipliers is used. It consists in constraining the direction of accelerations ẌCg and ωb . From the 0 th time-step to the N th time-step, a system of constraints is defined as two vector functions defining the directions of the constraints,

C F : [|0, N|] -→ R 3 and C M : [|0, N|] -→ R 3 n -→ C (n) F n -→ C (n) M (3.62)
and two scalar functions defining the magnitudes of the constraints,

γ F : [|0, N|] -→ R and γ M : [|0, N|] -→ R n -→ γ (n) F n -→ γ (n) M (3.63)
With these imposed quantities, the constraints are represented by the following relations,

∀n ∈ [|0, N|], C (n) F C (n) F • Ẍ(n,m) Cg = γ (n) F and C (n) M C (n) M • ωb (n,m) = γ (n) M (3.64)
To impose the constraints in Eq. 2.41 and Eq. 2.42, the constraints force

F (n,m) c
and moments M b c (n,m) are defined so that they force the components of the total forces F (n,m) tot and moments M b tot (n,m) to be along the constraint directions. This results in the following formulation,

F (n,m) c =   mγ (n) F -F (n,m) tot • C (n) M C (n) M   C (n) M C (n) M (3.65a) M b c (n,m) = I g   γ (n) M -I -1 g M b tot (n,m) • C (n) M C (n) M   C (n) M C (n) M (3.65b)
Resolution The resolution of the system of equations is done defining a vector Y and its time derivative Ẏ as,

Y (n,m) =       X Cg ẊCg ω b Θ       (n,m) , Ẏ(n,m) =       ẊCg ẌCg ωb Θ       (n,m) (3.66)
Then, the equations are set into matrix M (n,m) and vector S (n,m) defined by,

M (n,m) =       0 I 0 0 0 0 0 0 0 0 0 0 0 0 T (n,m) 0       , S (n,m) =       0 1 m [F tot + F c ] (n,m) I -1 g M b tot + M b c (n,m) 0       (3.67)
where,

T (n,m) =    1 sin φ (n,m) tan θ (n,m) cos φ (n,m) tan θ (n,m) 0 cos φ (n,m) -sin φ (n,m) 0 sin φ (n,m) / cos θ (n,m) cos φ (n,m) / cos θ (n,m)    (3.68)
With this formulation, the system of equation becomes,

Ẏ(n,m) = M (n,m) Y (n,m) + S (n,m) (3.69)
Finally after the resolution of this system 4 , the updated positions of all the mesh corners c and face centers F on the body-wall are,

∀c ∈ ∂ Ω body , X (n,m) c = X (n,m) Cg + R 0 b (n,m) ξ b c (3.70a) ∀ f ∈ ∂ Ω body , X (n,m) F = X (n,m) Cg + R 0 b (n,m) ξ b F (3.70b) (3.70c)
and the velocities at the face center are imposed by:

∀ f ∈ ∂ Ω body , u (n,m) f = Ẋ(n,m) Cg + R 0 b (n,m) ξ b F ∧ ω b (n,m) (3.71) b) Mesh morphing
At this step, the positions X c of mesh-points and X F of faces are known on the body-walls ∂ Ω body . Using these boundary conditions, the entire mesh is morphed in order to smooth the deformation from the body to the exterior boundaries. The exterior boundaries are kept fixed in reference frame R 0 . For all faces f on boundaries, the displacement of their face centers and face corners c are defined as,

δ (n,m) F = X (n,m) F -X (n,m-1) F (3.72a) δ (n,m) c = X (n,m) c -X (n,m-1) c (3.72b)
Then, the cell centers displacements δ (n,m) P are computed solving the following Poisson equation:

∇ • Γ(X (n,m-1) P ) ∇δ | (n,m) P = 0 (3.73)
with Γ(X (n,m-1) P

) the diffusion coefficient that can take several forms depending on the desired aspect of the mesh deformation propagation. In foamStar, this coefficient is the square of the inverse distance r

(n,m-1) P from the body-wall to the point P by default:

Γ(X (n,m-1) P ) = 1 r (n,m-1) P 2 (3.74)
After the resolution of this Poisson equation, the cell corners displacements are obtained 4. In foamStar, a Runge-Kutta-like algorithm is commonly used.

interpolating the cell centers displacements. Finally, the positions of all the inner cell corners are obtained applying Eq. 3.72b. After this update, the cells corner are kept fixed for the rest of the PIMPLE iteration.

Knowing the new positions of the cell corners, the positions X F , X P and the variables S

(n,m) f , n f (n,m) , S (n,m) f , V (n,m) P , φ
(n,m) mf can be updated. Firstly, as shown in the Figure 3.5, to get the position of the geometrical face center F and the surface vector S f , the considered face f is divided into triangles formed by each edge of the face and the barycenter F of the N V vertexes V i defined as:

X F = 1 N V N V ∑ i=1 X V i (3.75)
Then, the positions of geometrical centers T i and surface vectors S fi of each triangle are obtained as follows: To compute the position of the cell center P and the cell volume V P , a similar approach is done decomposing the cell into pyramids for which, the base is a face f i and the apex is the barycentrer P of the N f faces center F i . This decomposition is shown in Figure 3.6. The resulting equation is:

with V N V +1 ≡ V 1 ∀i ∈ [|1, N V |], X T i = 1 3 X F + X V i + X V i+1 (3.76a) ∀i ∈ [|1, N V |], S fi = 1 2 FV i ∧ FV i+1 (3.76b) Finally, S f = N V ∑ i=1 S fi (3.77a) S f = |S f | (3.77b) n f = S f S f (3.77c) X F = 1 S f N V ∑ i=1 |S fi | X T i (3.77d) (3.77e) P S f V1 V1 V4 V2 V3 sf1 
X P = 1 N f N f ∑ i=1 X F i (3.78)
Then, the geometrical center P i and volume V i of each pyramid are obtained with,

∀i ∈ [|1, N f |], X P i = X P + 3 4 PF i (3.79a) ∀i ∈ [|1, N f |], V i = 1 3 PF i • S fi (3.79b)
Finally, As seen previously with Eq. 3.54, the mesh flux φ (n,m) mf of a face f depends on the variation of the cell volume. Consequently, to evaluate φ (n,m) mf , the "swept volume" V s f of the face has to be estimated. To do so, the face is decomposed into triangles formed by each edge and the geometrical center F of the face. This decomposition is done for the face at the previous time-step (n-1) and at the current time-step and PIMPLE-step (n,m) as shown in Figure 3.7. In the 4D space (t,x,y,z) the volume formed by a sweeping triangle between steps (n-1) and (n,m) is not know so it has to be approximated. Figure 3.8 shows a representation of this volume. The triangles considered here are FV 1 V 2 at steps (n-1) and (n,m). The swept volume V s T of the considered triangle is evaluated considering 3 tetrahedrons. Such a structure is not unique and because the lateral quadrilateral faces are not necessarily planar, the sum of the volumes of the tetrahedrons would depend on the chosen structure. To manage this problem, the swept volume V s T is the mean of the volumes of two structures of tetrahedrons. For the first one shown in Figure 3 (n,m) . For the second one it is the edge V 2 (n-1) V 1 (n,m) that is involved. Such an alternative tetrahedrons organization is not needed for the other lateral faces because they are internal faces from decomposition of the face-swept volume shown in Figure 3.8(b).

V P = N f ∑ i=1 V i (3.80a) X P = 1 V P N f ∑ i=1 V i X P i (3.80b) (3.80c)
V1 (n-1) V2 (n-1) V4 (n-1) V3 (n-1) F (n-1) V1 (n,m) V2 (n,m) V4 (n,m) V3 (n,m) F (n,m)
.8(a) the face V 1 (n-1) V 2 (n-1) V 2 (n,m) V 1 (n,m) is decomposed considering the edge V 1 (n-1) V 2
V N V +1 ≡ V 1 (3.81a) ∀i ∈ [|1, N V |], V s T i = 1 6 F (n-1) F (n,m) • F (n-1) V (n-1) i ∧ F (n-1) V (n-1) i+1 + 1 12 V (n-1) i+1 V (n,m) i+1 • V i+1 F (n,m) ∧ V (n,m) i+1 V (n,m) i + 1 12 V (n-1) i V (n-1) i+1 • V (n-1) i F (n,m) ∧ V (n-1) i V (n,m) i + 1 12 V (n-1) i V (n,m) i • V (n,m) i V (n,m) i+1 ∧ V 1 F (n,m) + 1 12 V (n-1) i+1 V (n-1) i • V (n-1) i+1 V (n,m) i+1 ∧ V (n-1) i+1 F (n,m) (3.81b) V s f = N V ∑ i=1 V s T i (3.81c)
With this formulation of V s f and the cell volume V P , the following relation is verified:

V (n,m) P -V (n-1) P = ∑ f V s (n,m) f (3.82)
Consequently, the discretized geometric conservation law (Eq. 3.54) implies the following expression of the mesh flux φ

(n,m) mf for the face f:

φ (n,m) mf = c (n) n V s (n,m) f -c (n) n-2 V s (n-2) f + γ (n,m) V s f (3.83)
As mentioned in Section 3.2.3 the coefficients expression depends on the choice of the temporal discretization scheme. 

F (n-1) V1 (n-1) V2 (n-1)
V1 (n,m) V2 (n,m) F (n,m) x y z (b)

F (n-1) V1 (n-1) V2 (n-1)
V1 (n,m) V2 (n,m) F (n,m) x y z

Step two of PIMPLE loop: VOF resolution

Once the mesh morphing is updated, equations of the VOF model are solved. The set of equations in the moving-domain reference frame R D is,

∂ α ∂t + ∇ • (αu) + ∇ • u comp = 0 (2.18) ρ = αρ w + (1 -α)ρ a (2.5a) µ = α µ w + (1 -α)µ a (2.5b) ν = µ ρ (2.5c)
Table 3.4 indicates the main fields updated during this step. Firstly, with the Finite Volume formulation, the discretized form of Eq. 2.18 at the n th time-step is:

c (n) n α (n,m) P + S (n) ddtα + ∑ f I α (n,m) P f φ (n,m-1) f + φ (n,m-1) mf + φ (n,m) comp.f = 0 (3.84)
where φ

(n,m) comp.f is the additional compression flux at the face f. Its formulation is discussed in the following.

As defined in Section 3.2, the source term computed for the time derivative S (n) ddt corresponds to:

S (n) ddtα = c (n) n-1 V (n-1) P α (n-1) P + c (n) n-2 V (n-2) P α (n-1) + γ (n) α
In foamStar, the VOF is solved by a recursive algorithm depending on the selected time-scheme. At the end of the resolution, the numerical α field respects the following equation:

c (n) n V (n) P α (n,m) P + S (n) ddtα + ∑ f F (n,m) α f = 0 (3.85)
The volume fraction flux F α f is computed by the algorithm detailed in the following.

Considering the density field ρ defined by Eq. 2.5a a density-flux can be defined as:

F (n,m) ρ f = (ρ w -ρ a )F (n,m) α f + ρ a φ (n,m-1) f + φ (n,m-1) mf (3.86)
This density flux is consistent with a simplified volume fraction flux:

F α f (n,m) = α (n,m) f φ (n,m-1) f + φ (n,m-1) mf resulting in: F ρ f (n,m) = ρ (n,m) f φ (n,m-1) f + φ (n,m-1) mf Even with F (n,m) α f ̸ = F α f (n,m)
(among other things because of the use of a compression term 5 ) Eq. 3.85, Eq. 3.86 and Eq. 3.54 imply:

c (n) n V (n) P ρ (n,m) P + S (n) ddtρ + ∑ f F (n,m) ρ f = 0 (3.87)
that is then used as the discretized form of the mass conservation equation with compression term (Eq. 2.19).

In the following, the general resolution method is presented. Besides, the specific 5. More details can be found in the following.

implementations are detailed. Some discussions on the algorithm are provided in the next section (Sec. 3.3.3).

a) General formulation of the VOF resolution with foamStar

The numerical algorithm consists in solving the equations for the volume fraction with a q-indexed iterative procedure. It is initialized with the following predictor step:

c (n) n α (n,m,0) P + 1 V (n,m) P ∑ f I α (n,m,0) P f(UD) φ (n,m-1) f -φ (n,m-1) mf = - S (n) ddtα V (n,m) P (3.88a) F (0) L = I UD α (n,m,0) P f φ (n,m-1) f -φ (n,m-1) mf (3.88b)
At the initialisation step (q=0), α is predicted with the resolution of Eq. 3.88a. In this equation, the operator I UD (.) f represents an upwind spatial scheme (see Section 3.1.3). An initial low order flux F

L is defined by Eq. 3.88b. No VOF compression terms are used during this initialization step.

For q > 0, the recursive Algorithm 3.89 consists in updating the flux F (q) L as a weighted sum of an high-order compressed volume fraction flux and the flux F (q-1) L calculated at the previous step. This step involves the weight factor λ (q) computed using Multidimensional Universal Limiter for Explicit Solution (MULES) algorithm detailed by Márquez [START_REF] Damián | An extended mixture model for the simultaneous treatment of short and long scale interfaces[END_REF]. This method ensures the TVD criterion introduced in Section 3.1.3.

During the VOF resolution, α (n,m,q) is computed with the following recursive formulation:

φ (n,m,q) comp.f = I α (n,m,q-1) P f 1 -I α (n,q-1) P f φ (n,m) r (3.89a) F (q) H = I α (n,m,q-1) P f φ (n,m-1) f -φ (n,m-1) mf + φ (n,m,q) comp.f (3.89b) F (q) L = (1 -λ (q) )F (q-1) L + λ (q) F (q) H (3.89c) α (n,m,q) P = α (n,m,q-1) P - 1 c (n) n V (n,m) P ∑ f λ (q) (F (q) H -F (q-1) L ) (3.89d) with φ (n,m) r defined as, φ (n,m) r = γ comp φ (n,m-1) f -φ (n,m-1) mf ∇α| (n,m,q-1) f ∇α| (n,m,q-1) f • n f (n,m) , (3.90)
and γ comp a positive constant.

As mentioned in Section 2.1.2, the compression term in Eq. 3.89b will only get non null value in the free-surface zone with 0 < α (n,m,q) < 1 and still verifies the mass conservation. However, because of the its nonlinear aspect, it has to be evaluate explicitly. This explicit formulation implies some instabilities for high values of γ comp . The literature suggests to use γ comp ≤ 1 to preserve the numerical stability (OpenFOAM, 2022a;[START_REF] Choi | Generation of regular and irregular waves in Navier-Stokes CFD solvers by matching with the nonlinear potential wave solution at the boundaries[END_REF]. With γ comp = 0, no additional compression term is used.

With this general formulation of the VOF resolution 6 the volume fraction flux F α f is:

F (n,m) α f = F (q last ) L (3.91)
Using the computed volume fraction, the density is updated as follows 7 :

ρ (n,m) = α P (n,m) ρ w + (1 -α P (n,m) )ρ a (3.92)
with:

α P (n,m) = min max α (n,m,q last ) P , 0 , 1 (3.93)
At the end of the VOF resolution, with the relaxation zone activated, according to Eq. 2.61, the volume fraction is corrected as follows:

α (n,m) P = (1 -w)α (n,m,q last ) P + w α (n,m-1) P target (3.94)
And finally, the kinetic and dynamic viscosity are calculated:

µ (n,m) = α (n,m) P ρ w + (1 -α (n,m) P )ρ a (3.95a) µ (n,m) eff = µ (n,m) + µ (n,m-1) t (3.95b) ν (n,m) = µ (n,m) ρ (n,m) (3.95c) b) Euler MULES
The MULES algorithm aims to ensure TVD criterion for the spatial schemes even adding the compression term and then does not create new maximum and minimum terms. However, this notion of maximum and minimum is relative to the first estimation α (n,m,0) P of the volume fraction (Eq. 3.88a). Thanks to the MULES algorithm, the converged result α (n,m,q last ) P is bounded by α (n,m,0) P min and α (n,m,0) P max . So, α (n,m,q last ) P between 0 and 1 is only ensured if α (n,m,0) P 6. The expression of F α f depends on the selected method 7. This equation is discussed in Sec. 3.3.3 obtained by the predictor step is between 0 and 1. Only the Euler time scheme ensures this property. In the MULES algorithm, some limit values can be imposed but nothing ensures that the algorithm will converge within these limits if α (n,m,0) P does not respect them.

With the Euler implicit scheme the predictor step (3.88) can be written as:

α (n,m,0) P ∆t + 1 V (n,m) P ∑ f I α (n,m,0) P f(UD) φ (n,m-1) f -φ (n,m-1) mf = α (n-1) P V (n-1) P ∆t V (n,m) P (3.96a) F (0) L = I UD α (n,m,0) P f φ (n,m-1) f -φ (n,m-1) mf (3.96b)
and the correction step as:

F (q) H = I α (n,m,q-1) P f φ (n,m-1) f -φ (n,m-1) mf + φ (n,m,q) comp.f (3.97a) F (q) L = (1 -λ (q) )F (q-1) L + λ (q) F (q) H (3.97b) α (n,m,q) = α (n,m,q-1) - ∆t V (n,m) P ∑ f λ (q) (F (q) H -F (q-1) L ) (3.97c)
Finally, the volume fraction flux F α f is respecting the same definition as in the general formulation previously defined (Eq. 3.91).

c) Crank-Nicolson MULES

In OpenFOAM-5 the implicit Crank-Nicolson can be used for the VOF resolution with the MULES algorithm. For the predictor step, the Crank-Nicolson scheme presented in Section 3.2 could be used directly with the general formulation (see in (a)) but it would not ensure 0 ≤ α P ≤ 1. The reason is the contribution of other terms than α (n-1) P in the source term. Then, the predictor step is formulated in OpenFOAM-5 with an Euler-like scheme introducing a mixed flux Φ CN f :

Φ (n,m-1) CN f = C CN φ (n,m-1) f -φ (n,m-1) mf + (1 -C CN ) φ (n-1) f -φ (n-1) mf .
(3.98)

The resulting predictor step is defined as follows:

α (n,m,0) P ∆t + 1 V (n,m) P ∑ f I α (n,m,0) P f(UD) Φ (n,m-1) CN f = α (n-1) P V (n-1) P ∆t V (n,m) P (3.99a) F (0) L = I UD α (n,m,0) P f Φ (n,m-1) CN f (3.99b)
This formulation of F (0) L can be seen as writing the diffusive part obtained with Crank-Nicolson time-scheme:

α (n,m,0) P ∆t + 1 V (n,m) P ∑ f [C CN I α (n,m,0) P f(UD) φ (n,m-1) f -φ (n,m-1) mf + 1 V (n,m) P ∑ f (1 -C CN )I α (n-1) P f(UD) φ (n-1) f -φ (n-1) mf = α (n-1) P V (n-1) P ∆t V (n,m) P (3.100)
but making the approximation α

(n-1) P ≈ α (n,m,0) P in the convection term.
The resulting predictor is first-order accurate as would be an Euler one. Consequently, using this predictor, the MULES algorithm aims to reach both spatial and temporal second-order accuracy. The side effect is that second-order time accuracy can be achieved if and only if the second-order spatial accuracy is reached.

Using the Crank-Nicolson time scheme, the targeted high-order flux is formulated as follows:

F (q) H = C CN I α (n,m,q-1) P f φ (n,m-1) f -φ (n,m-1) mf + (1 -C CN )F (n-1) α f Crank-Nicolson f ormulation +φ (n,m,q) comp.f (3.101)
and the correction step:

F (q) L = (1 -λ (q) )F (q-1) L + λ (q) F (q) H (3.102a) α (n,m,q) = α (n,m,q-1) - ∆t V (n,m) P ∑ f λ (q) (F (q) H -F (q-1) L ) (3.102b)
Using the off-centering coefficient C OC (Eq. 3.48), F α f is computed as:

F (n,m) α f = (1 +C OC )F (q last ) L -C OC F (n-1) α f (3.103)
In Chapter 4, the general MULES formulation keeping a time second-order predictor is tested in spite of the potential loss of TVD behavior. This MULES method only dealing with the spatial discretization is denoted S-MULES in this document.

Discussion on VOF resolution

The previous section details how the VOF algorithm is implemented in foamStar. Some parts of this implementation are discussed here.

a) The density-flux expression

As mentioned, one important updated field during the VOF resolution is the density-flux F (n,m) ρ f (Eq. 3.86). This density flux is the one used for the momentum convection detailed in Section 3.3.4. It implies some discussion on the consistency of its expression.

Time-scheme consistency As mentioned, because of its definition, F

(n,m) ρ f does respect the mass conservation equation (Eq. 3.87). However, the time-scheme coefficients are those imposed by the selected scheme. Consequently, using another time-scheme for the momentum equation would lead to an inconsistent density-flux regarding to the momentum convection and the geometric-conservation law.

Clipping of the volume fraction As detailed, the VOF-MULES algorithm aims to keep 0 ≤ α ≤ 1. However, because of the resolution errors, a non-converged MULES step or the use of an non-Euler-like predictor, the updated volume fraction field α (n,m,q last ) can eventually get some values out of the prescribed interval [0, 1]. Such values could significantly impair the simulation if they were directly used for ρ and µ calculation. It explains why, in Eq. 3.92, ρ (n,m) is not calculated with α P (n,m,q last ) but with the clipped volume fraction α P (n,m) . The consequence of this clipping is that using this formulation of ρ (n,m) , the mass conservation equation Eq. 3.87 is not truly verified. Then, if the clipping implies a too large change in the volume fraction, some spurious velocities could occur during the the resolution of the momentum-equation.

b) Predictor step for Crank-Nicolson MULES

With Crank-Nicolson MULES, it can be interesting to question the use of Eq. 3.99 for the predictor step rather than the standard Euler predictor Eq. 3.96. No reference where found in the literature, so looking at the equations, two reasons could explain this choice.

The first one is the respect of the geometric conservation law. Using the currently implemented predictor (Eq. 3.99), the coefficient of the mesh flux is the same as with the Crank-Nicolson scheme. So, the geometric-conservation law is still respected if the field F (n,m) ρ f is used for the momentum convection with a Crank-Nicolson scheme and a same off-centering coefficient.

The second, and probably the main reason, is the error implied by the formulation of F (n,m) α f . In the following, the coefficients resulting from the MULES correction at a face f is λ f and the Crank-Nicolson off-centering coefficient is C OC . For more simplicity, we assume here a fixed mesh, only one VOF correction loop, no compression term, and a previous time-step solution obtained with a "perfect" MULES correction λ

(n-1) f = 1.
Using Φ CN f as defined in foamStar, the resulting F (n,m) α f flux at a face f is:

F (n,m) α f = φ (n,m) f (1 -λ f )I UD α (n,m,0) P f + λ f I α (n,m) P f +C OC φ (n-1) f (1 -λ f ) I UD α (n,m,0) P f -I α (n-1) P f (3.104)
As expected, when λ f = 1 the impact of this formulation is:

F (n,m) α f = φ (n,m) f I UD α (n,m) P f (3.105)
The issue occurs with λ f ̸ = 1. It implies additional terms in the VOF flux formulation with a contribution of the previous time-step fields α In the same situation but considering the initialization with the Euler approach, the resulting F (n,m) α f flux at a face f is:

F (n,m) α f = φ (n,m) f (1 -λ f )I UD α (n,m,0) P f + λ f I α (n,m) P f +C OC φ (n-1) f (1 -λ f ) I α (n-1) P f (3.106)
When λ f = 1 the impact of this formulation is the same as previously. But now, with λ f ̸ = 1, the contribution of α In regions where the volume fraction is locally constant (far from the free surface), the MULES coefficient λ f will not converge to 1 so the exposed situation with λ f ̸ = 1 concerns a majority of the cell faces of the domain.

Finally, both Euler and Crank-Nicolson approach are first-order predictor, the Crank-Nicolson introducing Φ CN f is the default implementation in OpenFOAM and, as mentioned, Euler approach can impose strong modifications of the flux even with constant volume fraction. Consequently, only the Crank-Nicolson approach will be considered in the following.

c) The relaxation zone

The corrections induced by the relaxation zone are made at the end of the VOF resolution but only impact the expression of α (n,m) , µ (n,m) and ν (n,m) . The first remark is that the density field ρ and the viscosity field µ are not calculated with the same volume fraction. Consequently, some inconsistencies exist between the volume fraction and the density and density-flux. The second remark is that the numerical volume fraction α (n,m) is not used in the foamStar code except in the time scheme applied to the next time-step (n+1) with the source field α (n) = α (n,m last ) . Consequently, it could be interesting to apply the relaxation zone constraint on the volume fraction only at the end of the time-step rather than inside the PIMPLE loop.

PISO loop: RANSE resolution

At this step, the mesh motion is known and the VOF has been updated. In the moving-domain R D , the set of equations that are solved in this section is:

∇ • u = 0 (2.7) ∂ (ρu) ∂t + ∇ • (ρuu + (ρ w -ρ a )u comp u) = -∇p -g • x∇ρ + ∇ • (µ eff ∇u) + ∇µ eff • ∇u T -ρ a cc 0
(2.29) Table 3.5 indicates the main fields updated during this step.

Table 3.5 -Numerical fields updated by the RANSE resolution The pressure at cell centers The velocity and pressure variables are computed at the center of cells. So, in order to avoid pressure oscillations solving RANSE with collocated variables, the OpenFOAM algorithm is using a variant the [START_REF] Rhie | Numerical study of the turbulent flow past an airfoil with trailing edge separation[END_REF] method in the PISO loop. Figure 3.9 gives a schematic view of the PISO loop. First the loop starts with a predictor step where the velocity field u is estimated solving the momentum equation (Eq. 2.29). Then at each iteration of a recursive PISO loop, the pressure field p is updated using both the momentum and continuity equations (Eq. 2.29, Eq. 2.7) followed by the update of the u according to the momentum equation. In foamStar, the relaxation zone constraint is applied to the velocity field after the last PISO iteration. The first step is the initialization of the PISO loop with an estimation of the velocity u (n,m,0) P . To do so the momentum equation 2.29 is discretized as follow,

PISO LOOP

c (n) n ρ (n,m) P u (n,m,0) P + 1 V (n,m) P ∑ f I u (n,m,0) P f F (n,m) ρ f -µ (n,m) eff S f • ∇u| f (n,m,0) = ∇u| (n,m-1) P • ∇µ eff | (n,m) P + I gz (n,m) P ∇ρ| (n,m) f -∇p| (n,m-1) f P - 1 V (n,m) P c (n) n-1 (ρu P V P ) (n-1) + c (n) n-2 (ρu P V P ) (n-2) + γ (n) ρu -ρ (n,m) a (n) cc 0 (3.107) With µ (n,m) eff = µ (n,m) + ρ (n,m) ν (n-1,m) t (3.108)
In this equation only u

(n,m,0) P is unknown. The resulting linear system is solved using matrix resolution algorithm as mentioned in Section 3.3.7.

b) PISO loop

For this part some new notations have to be introduced in order to decompose the interpolation operator I u P f and gradient operator S f • ∇u| f . The decompositions consist in identifying the coefficients γ N I f , γ N ∆ f , γ P I f , γ P ∆ f , γ S I f and γ S ∆ f associated to the neighbour cell N, the principal cell P and additional source S relative to the considered operators.

I u P f = γ N I f u N + γ P I f u P + γ S I f (3.109a) S f • ∇u| f = γ N ∆ f u N + γ P ∆ f u P + γ S ∆ f (3.109b)
As seen in Section 3.1, these coefficients depend on the cells geometry and the chosen numerical schemes.

In the PISO loop, the momentum equation is decomposed introducing the fields D

(n,m) u P and H

(n,m,k) P

. A common way to introduce these fields is to use matrix formulation. Given the matrix system built with Eq. 3.107 applied at each cell center of the numerical domain:

M (n,m) [u] (n,m,0) = S (n,m) + G (n,m) ρ + G (n,m-1) p (3.110)
with M (n,m) the matrix of the system, G (n,m) ρ and G

(n,m) p the vectors containing the source terms associated with the gradients of density and pressure, respectively, and S (n,m) the vector containing the other source terms.

Defining D (n,m) the diagonal matrix from M (n,m) and O (n,m) the matrix built with its outer-diagonal coefficients, the matrix system becomes:

D (n,m) [u] (n,m,0) + O (n,m) [u] (n,m,0) = S (n,m) + G (n,m) ρ + G (n,m-1) p (3.111)
Then, defining the vector:

H (n,m,k) = -O (n,m) [u] (n,m,k) + S (n,m)
(3.112) the following matrix system can be built:

D (n,m) [u] (n,m,0) = H (n,m,k) + G (n,m) ρ + G (n,m,k) p (3.113)
For k=0, this matrix system is equivalent to Eq. 3.110.

Finally, D

(n,m) u P and H

(n,m,k) P are the coefficients of D (n,m) and H (n,m,k) , and their expressions are:

D (n,m) u P = 1 V (n,m) P ∑ f γ P I f F (n,m) ρ f - µ (n,m) eff V (n,m) P ∑ f γ P I f + c (n) n ρ (n,m) (3.114) H (n,m,k) P = - 1 V (n,m) P ∑ f γ N I f u (n,m,k-1) N + γ N I f F (n,m) ρ f -µ (n,m) eff γ N ∆ f u (n,m,k-1) N + γ S ∆ f + ∇u| (n,m-1) P • ∇µ eff | (n,m) P - 1 V (n,m) P c (n) n-1 (ρu P V P ) (n-1) + c (n) n-2 (ρu P V P ) (n-2) + γ (n) ρu -ρ (n,m) a (n) cc 0 (3.115)
With such a formulation, the following discretized form of the momentum equation can be written:

u (n,m,k) P = H (n,m,k) P D (n,m) u P + I gz (n,m) P ∇ρ| (n,m) f -∇p| (n,m,k) f P D (n,m) u P (3.116)
To use this formulation, ∇p|

(n,m,k) f
requires the calculation of p (n,m,k) P . To do so, φ f representing the velocity flux at face, the following equation is built:

φ (n,m,k) f =   I H (n,m,k) P D (n,m) u P f + gz (n,m) f ∇ρ| (n,m) f I D (n,m) u P f - ∇p| (n,m,k) f I D (n,m) u P f   • S f (3.117)
On the other hand, using φ 

∑ f   ∇p| f (n,m,k) I D (n,m) u P f   • S f = ∑ f   I H (n,m,k) P D (n,m) u P f + gz (n,m) f ∇ρ| (n,m) f I D (n,m) u P f   • S f (3.119)
The cell-center values p (n,m,k) P are obtained solving this linear system with the matrix resolution algorithm as defined in Sec. 3.3.7. [START_REF] Rhie | Numerical study of the turbulent flow past an airfoil with trailing edge separation[END_REF].

Besides, based on the [START_REF] Rhie | Numerical study of the turbulent flow past an airfoil with trailing edge separation[END_REF] method, the updated pressure field p 

u (n,m,k) f = φ (n,m,k) f |S f | n f f ace-normal part + I u (n,m,k) P f • [I -n f n f ] tangential part (3.120)
With this formulation, the face-normal part of u

(n,m,k) f verifies the relation φ (n,m,k) f = u (n,m,k) f • S f but the tangential part is the tangential part of the interpolated value of u (n,m,k) P . The consequence is that in general, I u (n) P f ̸ = u (n) f
After a user-specified number of PISO iteration, the fluid velocity is corrected in the relaxation zone as follows:

u (n,m) P = (1 -w)u (n,m,k last ) P + w u (n,m-1) P target , (3.121)
and the other fields are defined with the relations,

u (n,m) f = u (n,m,k last ) f (3.122a) φ (n,m) f = φ (n,m,k last ) f (3.122b) p (n,m) P = p (n,m,k last ) P (3.122c)
If the user-specified number of PIMPLE iterations is reached, all the fields except the kinematic viscosity and the turbulent kinetic energy are considered as solved for the time-step n. The following update can be done for each solved field,

ψ (n) = ψ (n,m last )
(3.123)

Turbulence model resolution

At the end of a time-step and before starting the next one, the turbulence model is solved. The turbulence model detailed here is the k-ω model described in Sec. 2.1.3. In the moving reference frame R 0 , the two equations evaluated in P are:

∂ ρk ∂t + ∇ • ρuk -∇ • ((µ + ρα k ν t )∇k) = ρν t p 0 - 2 3 ρk∇ • u -ρβ * kω -ρP b (2.24a) ∂ ρω ∂t + ∇ • ρuω -∇ • ((µ + ρα ω ν t )∇ω) = γρ p 0 - 2 3 ργω∇ • u -ρβ * ω 2 -ρ(F 1 -1)C D kω (2.24b) with ν t = k ω (3.124)
The updated numerical fields at this step are listed in Table 3.6

Table 3.6 -Numerical fields updated by the turbulence model resolution

Numerical values Description

k (n)
The turbulent kinetic energy at cell centers

ω (n)
The turbulent dissipation rate at cell centers

ν (n) t
The turbulent viscosity at cell centers

The discretized equations of the turbulence model are:

c (n) n ρω (n) + 1 V (n) P ∑ f ω (n) F (n) ρ f -ρ(ν w + α k ν (n-1) t )S f • ∇ω| f (n) = γρ p 0 ω (n) k (n-1) - 2 3 ργω (n) ∇ • u| (n) P -ρβ * ω (n-1) ω (n) -ρ(F 1 -1)C D kω -S (n) ddt ω (3.125) and c (n) n ρk (n) + 1 V (n) P ∑ f k (n) F (n) ρ f -ρ(ν w + α k ν (n-1) t )S f • ∇k| f (n) = ρ p 0 - 2 3 ρk (n) ∇ • u| (n) P -ρβ * k (n) ω (n) -ρP b -S (n) ddt k (3.126)
The resulting linear matrix systems are solved successively and then the turbulent kinematic viscosity is updated as follows:

ν (n) t = a 1 k (n) max (a 1 ω (n) , b 1 F 2 p 0 ) (3.127)

Boundary conditions

Solving numerical equations implies the definition of boundary conditions for the different fields. These boundary conditions are related to the physical model. In this section the boundary conditions (BCs) available in foamStar are presented. More information can be found in the OpenFOAM documentation OpenFOAM (2022a) and [START_REF] Greenshields | Notes on Computational Fluid Dynamics: General Principles[END_REF].

a) Dirichlet boundary conditions

The first category of BCs is the Dirichlet's one. It consists in imposing a value of the field at the boundary. In OpenFOAM, the surface normal gradient of a field φ at face f on a boundary with Dirichlet BC is computed as follows:

∇φ f • n f = φ f -φ P PF • n f . (3.128)
Where PF is the vector from the cell center P to the face center F and n f is the face normal.

In this document the following Dirichlet's BCs provided by OpenFOAM are used:

-fixedValue: This BC imposes a user-defined value at the boundary.

-movingWallVelocity: This BC is used for the velocity field at walls, it forces the velocity on the wall patch to be equal to the wall velocity obtained solving the body motions. -totalPressure: This BC imposes a user-defined value p 0 minus a dynamic term p BC = p 0 -1 2 ρu 2 -kLowReWallFunction: This BC imposes the value for the turbulent kinetic energy k according to a two-equation turbulence model adapting the boundary condition to the wall distance and fluid velocity. -omegaWallFunction: This BC imposes the value for the turbulent dissipation rate ω according to a two-equation turbulence model.

Some additional boundary conditions are available in foamStar 8 :

-waveVelocity: It imposes the velocity field at the boundary to be equal to the analytical solution of the user-defined wave-field. -waveAlpha: It imposes the volume fraction at the boundary to be equal to the analytical solution of the user-defined wave-field.

b) Neumann boundary conditions

The second category is the Neumann's one. It consists in imposing the spatial derivation of the field. In this document, the most used Neumann's BC of OpenFOAM is the zeroGradient. With this BC, the face value located at a boundary is equal to the center value 8. In OpenFOAM, namesake exists but the implementation is quite different of the owner cell and the surface normal gradient is equal to zero. Similarly, fixedGradient BC allows to impose a certain value for the surface normal gradient on the boundary face.

Two other particular Neumann's BCs are the fixedFluxPressure and fixedFluxExtrapolatedPressure. These particular BCs are used to impose a consistent surface normal gradient for the pressure field according to RANSE.

c) Special boundary conditions

-symmetryPlane: This BC is similar to a zeroGradient boundary condition but applying it to a vector field, the component orthogonal to the symmetry plane is removed.

cyclic: This BC is used to link two boundaries as it will be an internal patch.

A face with a cyclic boundary condition is connected to two cells similarly to an internal face 9 . The main difference with an internal face is that the neighbour values owned by the linked cell are expressed explicitly during the iterative resolution. processor: This BC is a particular one as it is not strictly speaking a condition applied to a boundary of the CFD domain. This condition is used to define the boundaries of the sub-domains created for parallel simulation. Parallelizing the computation, each sub-domain is affected to one CPU. This processor BC is located at the boundary between two sub-domains linking the values between cells sharing the same face. It allows the transfer of values between processors during the resolution of the equations. As for cyclic BC, the behaviour of a face with processor BC is similar to the one of an internal cell but with the explicit formulation of neighbours values. calculated: With this BC, the value of the fields are calculated during the simulation.

Matrix equation resolution

For a domain with N cells, combination of linear equations involving unknowns ψ i from several adjacent cells (equations with red terms) result in a N-by-N matrix system with the following form:

AΨ = S, with Ψ = [ψ i ] N i=1 (3.129)
9. An other BC is available for meshes with non-matching boundary mesh requiring interpolations (CyclicAMI)

This matrix system can be solved with different algorithms whose efficiency depends on the structure of A that is directly linked to the equation type. For instance, a Poisson equation leads to other matrix characteristics than a pure convection equation. In the literature a large panel of solvers can be found and some are commonly used for CFD equations. Overviews of the different solvers can be found in [START_REF] Ferziger | Computational methods for fluid dynamics[END_REF] or more specifically for OpenFOAM in [START_REF] Greenshields | Notes on Computational Fluid Dynamics: General Principles[END_REF]. The linear solvers used in this document are:

-smoothSolver with symGaussSeidel: This type of solver is based on the Gauss-Seidel method. -PBiCGStab: This is a preconditioned Bi-Conjugate Gradient Stabilized method [START_REF] Van Der | Bi-cgstab: A fast and smoothly converging variant of bi-cg for the solution of nonsymmetric linear systems[END_REF]. It is a commonly used in CFD as a robust method for asymmetric matrix system resolution. -GAMG: It is a Geometric Algebraic Multi-Grid solver. This method can potentially provide faster resolution than others but it will depend on the chosen controlled parameter. [START_REF] Jemcov | Performance improvement of algebraic multigrid solver by vector sequence extrapolation[END_REF]Jasak et al., 2007a) Residuals Any of the mentioned linear solver is based on iterative algorithms. Conditions have to be specified to stop the algorithm when the error of the solution is deemed to be satisfactory. These conditions are named "tolerance" and the error measurement is done defining the "residual".

For an equation AΨ = S, at the q th iteration of the linear solver, the OpenFOAM formulation of the residual vector R (q) and the normalized residual r (q) is as follows:

R (q) = S -AΨ (q) (3.130a) n = N ∑ i=1 AΨ (0) i -AΨ (0) i + S i -AΨ (0) i (3.130b) r (q) = 1 n N ∑ i=1 R (q) i (3.130c)
Where Ψ (0) is the average of the solution. Its components are defined by:

∀i ∈ [|1, N|], Ψ (0) i = 1 N N ∑ j=1 Ψ (0) j (3.131)
It is a measure of the distance between the exact solution of the matrix system Ψ and the approximated one Ψ (q) . With the OpenFOAM's formulation, the normalized residual r (q) is normalised by a quantity n relative to the initial solution Ψ (0) used in the linear solver loop. This normalized residual is kept between 0 and 1 and its value depends on the initial solution. A particular case is the one with a uniform initial solution, Ψ (0) = Ψ (0) , matching with the approximated solution Ψ (q) . In this situation the normalized residual is equal to 1. Then, if in addition these quantities are equal to the exact solution Ψ, n = 0, R (q) = 0. To remain consistent and avoiding to divide by 0 thanks to limiters, the output normalized residual remains r (q) = 1.

Using the normalized residual formulation, two tolerance parameters are available in order to control the stopping condition of the linear solver. The first one is the absolute tolerance ρ err and the second one is the relative tolerance ε err . With these quantities, and an additional limit number of iterations q lim , the linear solver ends after the q th last step if, r (q last ) < ρ err or r (q last ) r (0) < ε err or q last = q lim (3.132)

Thus, the approximated solution resulting from the linear solver is Ψ (q last ) .

In the following, an alternative notation Res A, S, ψ (q) = r (q) can be used in order to clarify the matrix system and approximated solution used to compute the normalized residual.

Flow chart

In the previous sections, all the steps of the resolution process have been detailed. It is now possible to build a flow-chart representing all the foamStar algorithm with more details than the one presented in Figure 3.4. The structure of the flow-chart shown in Figure 3.10 is as built as follows:

Colorized loop-boxes Four main loops were previously identified:

-The green Time-Loop that is the global loop of the algorithm; -The yellow PIMPLE-Loop described along this current section (3.3); -The blue VOF-Loop described in Section 3.3.2 -The purple PISO-Loop described in Section 3.3.4

White boxes with colored edges These boxes contain the numerical recursive variables from the previous iteration of the corresponding Loop (with same color). Colored boxes with text Those boxes represent a sub-algorithm used for some variables update. The corresponding algorithm is detailed in the previous sections. The red boxes correspond to the use of linear solver for matrix system resolution. In previous sections, the equations related to these boxes are identifiable by the red color of the updated variable.

Diamond shape START boxes

White boxes with thin black edge These boxes only contain one variable and correspond to the update of it. In previous sections, the equations related to this variable update are identifiable by the red color of the updated variable.

Solid arrows These arrows are the structure of the algorithm and are used to identify the sequence.

Dashed arrows These arrow identify the use of some variables inside equations. When the arrow is connected to a loop-box it means that the variable is used in almost all the equations of the loop. 

Iterative error

In the previous sections of this chapter the system of equations and the iterative algorithms have been defined. In order to control the quality of the resolution it is needed to define a metric reflecting the error between the approximated solutions of the discretized equations and their exact values. This error is commonly named the "iterative error". The choice of the error estimator has been discussed in [START_REF] Jasak | Error analysis and estimation for the finite volume method with applications to fluid flows[END_REF]. With OpenFOAM the convenient error estimator for unsteady problem resolution is based on the normalized residual calculation exposed in Section 3.3.7. As previously mentioned, in foamStar matrix systems are used to solve the VOF convection, the momentum predictor, the pressure equation and the two equations of the turbulence model. Due to the PIMPLE and PISO algorithms (Sec. 3.3.4), successive matrix resolutions are made. As the equations are coupled, at a given time-step n and PIMPLE iteration m, the update of the solution ψ

(n,m) a solving a matrix system A (n,m) a , S (n,m) a implies the creation of a new matrix system A (n,m) b , S (n,m) b for the field ψ b with A (n,m) b , S (n,m) b ̸ = A (n,m-1) b , S (n,m-1) b
. Consequently the initial normalized residual for the matrix system b:

r (n,m,0) ψ b = Res A (n,m) b , S b (n,m) , ψ (n,m,0) b = Res A (n,m) b , S b (n,m) , ψ (n,m-1,q last ) b
can be used to quantify the distance between the two matrix systems A and then for the estimation of the iterative error [START_REF] Jasak | Error analysis and estimation for the finite volume method with applications to fluid flows[END_REF].

Iterative error in V&V procedure

V&V procedure

The Verification consists of verifying the code implementation. A solver is verified when, reducing the discretization step, the numerical uncertainty evolves consistently with the numerical schemes which were implemented and the expected mathematical solution. On the other part, the validation consists of verifying the agreement between the mathematical model and the experimental results. When the exact mathematical solution is not analytically reachable. Thus, the validation has to be discussed relatively to the numerical and experimental uncertainty. In the following, a simplified presentation of a standard validation process [START_REF] Mchale | Standard for verification and validation in computational fluid dynamics and heat transfer[END_REF] is set out.

For the simulation of a physical problem, if n numerical results (Φ i ) n 1 are obtained, the general concept of V&V is to evaluate the numerical and the experimental uncertainties respectively noted U CFD,i and U EFD and to compare them to the experimental results Φ EFD . Defining E i = Φ i -Φ EFD the error between the CFD and EFD results, the validation is assumed

achieved if U CFD,i +U EFD > |E i |.
The problem stays in the fact that the validation assessment depends on the quantification method of U CFD,i and U EFD . The quantification method of the uncertainty U CFD,i depends on the numerical results sampling (solver implementations, inputs, discretizations ...). The procedure proposed by [START_REF] Eça | A procedure for the estimation of the numerical uncertainty of CFD calculations based on grid refinement studies[END_REF] is well adapted to a single quantity verification, for instance, a drag force. For multiple quantities, for instance, series of probes, multivariate-metric approaches exist. An example is the one proposed by [START_REF] Hills | Model validation: model parameter and measurement uncertainty[END_REF] and used by [START_REF] Pereira | Verification and validation exercises for the flow around the kvlcc2 tanker at model and full-scale reynolds numbers[END_REF].

As mentioned in [START_REF] Stern | Statistical approach for computational fluid dynamics state-of-the-art assessment: N-version verification and validation[END_REF] and [START_REF] Roache | Validation in fluid dynamics and related fields[END_REF], some bias can exist with the Validation process. In fact, only considering the criterion U CFD,i + U EFD > |E i |, small uncertainties can lead to U CFD,i +U EFD << |E i |, meaning that the numerical and mathematical models fail to model the physics with a modeling error δ M ≈ |E i |. However, this modeling error can be small enough to reach the expectations of any industrial or research team. In practice, for specific applications, it can be more consistent to define a target error δ T such as the models are still assumed valid if

U CFD,i +U EFD < |E i | but δ T > |E i |.
On the other side, with such Validation criterion a large uncertainty would easily lead to U CFD,i +U EFD > |E i |. It means that the coarser the simulations, the more valid they are. The reason is the term "valid" can be understood as follows: For the application in question, the mathematical and numerical models are not invalidated by the numerical test cases and the method used to quantify uncertainties. The modeling error δ M cannot be estimated. For industrial processes, it is needed to compare the benefit of discretizing more with the induced additional computational cost. Some numerical models potentially have a better ratio between modeling errors and computational cost than others. Consequently, for the present work, the analyses of solver performances have to remain consistent with the scope of application of foamStar and the accuracy expected by the naval industry. Discussion of this question can be found in [START_REF] Larsson | Numerical ship hydrodynamics: an assessment of the Gothenburg 2010 workshop[END_REF].

Iterative error consideration

As detailed in [START_REF] Eça | Verification and validation for marine applications of cfd[END_REF], the Verification relies on the evaluation of the numerical error that can be decomposed into three different types:

Round-off error This error is due to the zero machine and is deeply negligible for RANSE-CFD naval application.

Iterative error As mentioned above, this error is the error between the approximated solutions of the discretized equations and their exact values.

Discretisation error This error is the error between the exact solution of the discretized system and the analytical solution of the mathematical model.

For common Verification procedure, the numerical error estimation is based on the study of the convergence of the numerical solver according to the discretization level. As the accessible data is not the exact solution of the discretized system but the approximated one, it is commonly required to get a negligible iterative error regarding to the total numerical error so that the numerical error is dominated by the discretization error [START_REF] Larsson | Numerical ship hydrodynamics: an assessment of the Gothenburg 2010 workshop[END_REF]. With the current OpenFOAM implementation, the second-order implicit backward scheme (named "backward" in this document for simplicity) is available. However, it cannot be used for the VOF resolution with MULES. So, the only second-order implicit scheme with MULES is the Crank-Nicolson one. Using Crank-Nicolson for the VOF resolution while Backard is used for the momentum equation, causes some inconsistencies between the mass flux obtained during the VOF resolution and its use in the momentum equation (see Section 3.3.3 for more details). To fix this, some modifications were done in order to use in order to use backward formulation with the MULES algorithm.

As mentioned in Section 3.3.2, the MULES algorithm is based on the flux correction method, starting the resolution with a predictor step and an initial low-order flux that would be iteratively corrected using an high-order flux as a target. As mentioned, with the Crank-Nicolson MULES those low-order and high-order blendings can be done with both spatial and temporal schemes.

As for the Crank-Nicolson scheme, using the MULES algorithm only for the spatial accuracy and keeping a second-order accurate time scheme is possible. However, by doing so, the predictor step will not ensure 0 ≤ α P ≤ 1. . The problem is that this additional source term is not a flux and then cannot be treated directly by the MULES algorithm 10 . Then the idea is to express this cell-center source term as a flux and apply an analog method as the one used for the Crank-Nicolson algorithm.

As detailed in

To express a flux equivalent to the standard backward formulation the following discretized VOF equation is assumed to be verified:

c (n) n α (n) P V (n) P + c (n) n-1 α (n-1) P V (n-1) P + c (n) n-2 α (n-2) P V (n-2) P + ∑ f F (n) α f = 0 (3.133) with c (n) n := 1 ∆t n + 1 ∆t n + ∆t n-1 (3.134a) c (n) n-1 := - ∆t n + ∆t n-1 ∆t n ∆t n-1 (3.134b) c (n) n-2 := ∆t n ∆t n-1 (∆t n + ∆t n-1 ) (3.134c) As c (n) n + c (n) n-1 + c (n)
n-2 = 0, this equation can be rearranged as follows:

c (n) n α (n) P V (n) P -α (n-1) P V (n-1) P -c (n) n-2 α (n-1) P V (n-1) P -α (n-2) P V (n-2) P + ∑ f F (n) α f = 0 (3.135)
10. An option exists in order to add such source terms in the MULES algorithm. However, it will not ensure 0 ≤ α P ≤ 1 Then, for a face f , introducing F (n) bck f recursively defined as:

F (0) bck f = 0 (3.136a) F (n) bck f = c (n) n-2 c (n-1) n F (n-1) α f + F (n-1) bck f (3.136b)
the discretized VOF equation becomes:

c (n) n α (n) P + 1 V (n) P ∑ f F (n) α f + 1 V (n) P ∑ f F (n) bck f = c n α (n-1) P V (n-1) P V (n) P (3.137)
For more visibility the coefficient C BCK is introduced as follow:

C BCK = 1 c n ∆t (3.138a) α (n) P ∆t + C BCK V (n) P ∑ f F (n) α f + ∑ f F (n) bck f = α (n-1) P V (n-1) P ∆t V (n) P (3.138b)
It is important to mention that Eq. 3.133 is not really at the end of a time-step because of the approximation of the matrix resolution and additional corrections (relaxation zone, volume-fraction clipping ...) that are not introduced in F (n) α f . Consequently, using the presented backward-Flux formulation is not numerically equivalent to the standard one. However, this error exists despite the use of the presented formulation.

Thanks to this formulation, the backward MULES can be implemented as it was done for Crank-Nicolson MULES but with C BCK coefficient instead of C CN and (1 -C BCK ) and

F (n) bck f instead of F (n-1) α f .
For the following, the introduction of a recursive flux φ bck f is needed:

φ (0) bck f = 0 (3.139a) φ (n) bck f = c (n) n-2 c (n-1) n φ (n-1) f -φ (n-1) mf + φ (n-1) bck f (3.139b)
As for the Crank-Nicolson MULES, in order to ensure 0 ≤ α P ≤ 1, a mixed flux Φ BCK f is introduced in the predictor step:

Φ (n,m-1) BCK f = C BCK φ (n,m-1) f -φ (n,m-1) mf +C BCK φ (n) bck f (3.140)
The resulting predictor step is as follows:

α (n,m,0) P ∆t + 1 V (n,m) P ∑ f I α (n,m,0) P f(UD) Φ (n,m-1) BCK f = - α (n-1) P V (n-1) P ∆t V (n,m) P (3.141a) F (0) L = I UD α (n,m,0) P f Φ (n,m-1) BCK f (3.141b)
The backward MULES predictor is built using the recursive flux φ bck f whereas the Crank-Nicolson MULES predictor is created using only the face flux and mesh flux at the previous time-step. Then, for Crank-Nicolson MULES, it is correct to consider the error

φ (n-1) f -φ (n-1) mf I α (n,m,0) P f -F (n-1) α f
= O(∆t) directly whereas for backward MULES it is necessary to verify the order of the error φ

(n) bck f I α (n,m,0) P f -F (n-1) α f
. The verification of

φ (n) bck f I α (n,m,0) P f -F (n-1) α f = O(∆t
) is done at the end of this section.

Finally, the resulting predictor is first-order accurate as for Crank-Nicolson MULES.

Using the backward-Flux formulation, the targeted high order flux is formulated as follows:

F (q) H = C BCK I α (n,m,q-1) P f φ (n,m-1) f -φ (n,m-1) mf +C BCK F (n) bck f Backward-Flux f ormulation + φ (n,m,q) comp.f Comp. term (3.142)
and the correction step remains the same:

F (q) L = (1 -λ (q) )F (q-1) L + λ (q) F (q) H (3.143a) α (n,m,q) = α (n,m,q-1) - ∆t V (n,m) P ∑ f λ (q) (F (q) H -F (q-1) L ) (3.143b)
Then, F α f is computed as:

F (n,m) α f = 1 C BCK F (q last ) L -F (n) bck f (3.144)
Finally, thanks to this implementation, using F

(n,m) ρ f definition introduced in Section 3.3.2 and renamed here:

F (n,m) ρ f = (ρ w -ρ a )F (n,m) α f + ρ a φ (n,m-1) f + φ (n,m-1) mf , (3.86)
the discretized form of the mass conservation with Backard scheme is ensured 11 .

11. The same discussion on alpha clipping as it is done with Crank-Nicolson in Sec. 3.3.2 can be done here.

Verification of the predictor error Consider that for n ∈ I + * and for all a ∈ [|0, n -1|], the following relation is verified 12 :

φ (a) f -φ (a) mf I α (a) P f -F (a) α f = O(∆t)
Besides, because of the Taylor-Young theorem:

φ (a) f -φ (a) mf I α (a+1) P f -φ (a) f -φ (a) mf I α (a) P f = O(∆t)
So, there is M ∈ R * such that, for all a ∈ [|0, n -1|], the volume-fraction flux verifies:

φ (a) f -φ (a) mf I α (a+1) P f -F (a) α f ≤ M ∆t and φ (a) f -φ (a) mf I α (a+1) P f -φ (a) f -φ (a) mf I α (a) P f ≤ M ∆t
Then, the following relation is verified:

∀a ∈ [|0, n -1|], φ (a) 
fφ 

(a) mf I α (n,m,0) P f -F (a) α f ≤ (n -a) M ∆t
F (n) bck f = n ∑ k=1 γ k F (n-k) α f and φ (n) bck f = n ∑ k=1 γ k φ (n-k) f -φ (n-k) mf
Consequently:

φ (n) bck f I α (n,m,0) P f -F (n-1) α f = n ∑ k=1 γ k φ (n-k) f -φ (n-k) mf I α (n,m,0) P f -F (n-k) α f
12. It means that the algorithm used for the resolution for previous time steps remains at least first-order.

and then:

φ (n) bck f I α (n,m,0) P f -F (n-1) α f ≤ n ∑ k=1 γ k φ (n-k) f -φ (n-k) mf I α (n,m,0) P f -F (n-k) α f φ (n) bck f I α (n,m,0) P f -F (n-1) α f ≤ M ∆t n ∑ k=1 k γ k φ (n) bck f I α (n,m,0) P f -F (n-1) α f ≤ M γ -γ n+1 (1 -γ) 2 - n γ n+1 1 -γ ∆t
With a constant time step γ = 1/3 so:

lim n→+∞ γ -γ n+1 (1 -γ) 2 - n γ n+1 1 -γ = 3 4
and:

φ (n) bck f I α (n,m,0) P f -F (n-1) α f = O(∆t)

Reference numerical set-up

This section synthesizes the reference numerical parameters used in this document. They are based on the best OpenFOAM practices used in the literature. In the following of the document, each study takes this numerical set-up as a reference with few modifications depending on the objective. PART II

foamStar numerical model accuracy

This part presents an analysis of some specific features of the numerical model previously described. It is a continuation of the work done by [START_REF] Kim | Numerical improvement and validation of a naval hydrodynamics CFD solver in view of performing fast and accurate simulation of complex ship-wave interaction[END_REF]. In order to progressively reach naval simulations with waves, the successively studied cases are, 2D Taylor-Green vortices to check the behavior without air/water interface, the 2D wave regular wave propagation in periodic domain to check the behavior without relaxation zones, and finally 2D wave propagation with relaxation zones at the inlet and outlet. The objectives are to verify the selected models, to compare the time schemes and to establish some recommendations on the mesh structure. In order to maintain consistency, the resolution algorithm presented in Section 3.3 is used all along this part.

In the following the reference quantities are L = 2π m, U ref = 1 m.s -1 and p ref = 1 Pa.

a) Error definition

For this study, the error E (t) is defined using the L 2 norm of the weighted errors at cell-centers positions (x i ) N cells i=1 compared to the analytical solution ψ a . To take into account the non-uniformity of the mesh, the errors are weighted by the volume of the cells. The total error is normalized using the analytical maximal value over the domain. The mathematical formulation of the error is:

E (t) = ∑ N cells i=1 [ψ(x i ,t) -ψ A (x i ,t)] 2 V 2 i max 1≤i≤N cells |ψ A (x i ,t)| V Ω (4.3)
with V Ω the volume of the numerical domain 1 :

V Ω = N cells ∑ i=1 V i (4.4)
In the following, a particular notation E f (t) is used in order to identify the error obtained with the finest refinement. The related refinement is to be specified case by case when the notation is used. This finest error is used to calculate an intrinsic error E (t) -E f (t). Assuming that the numerical error converges towards a non-zero value E ∞ (t) ̸ = 0, the intrinsic error is used to remove this non-null limit form the error E . This "intrinsic" error will especially be useful to study separately the time and space convergence, making disappear the potential saturation error due to the fixed space resolution when looking at the time convergence or, respectively, due to the fixed time resolution when looking at the space convergence. Note that in this context where the analytical solution is known and its frequency content simple, it is not necessary to use an advanced V$V procedure to study the convergence.

Influence of the time schemes on the convergence

The objective is to compare the accuracy of three time schemes available within OpenFOAM-5 implicit Euler (EULER), Crank-Nicolson (CN1), and second-order backward2 1. Even if the simulation is done with a 2D assumption, with OpenFOAM implementation, the mesh has to be a 3D mesh, so an arbitrary thickness is given along the z direction. The weighting process using the resulting volume is equivalent to a surface weighting in the (x, y) plane.

(BCK). In the following the term backward is used to name the second-order backward. As mentioned in Section 3.2, the theoretical order of convergence for these schemes are one for Euler and two for Crank-Nicolson and backward. To control the convergence of the scheme a regular mesh with 256 by 256 squared cells of size ∆x = 2π 256 is used. For this study the mesh is labeled U256x256. The velocity and pressure errors at t = 1 s are plotted with respect to the Cfl x in Figure 4.1. The logarithmic scale is used for both the vertical and horizontal axis. The finest resolution used for the evaluation of E f is ∆t = 0.004 s. Each data series corresponds to one time scheme and the dotted lines show the expected slopes for a first and a second-order convergence. The results obtained using Euler and CN1 are consistent with [START_REF] Kim | Numerical improvement and validation of a naval hydrodynamics CFD solver in view of performing fast and accurate simulation of complex ship-wave interaction[END_REF]. The saturation phenomenon occurring for Cfl x < 0.5 in the top plots is due to the prevalence of the spatial-discretization error. In the zone where the temporal-discretization error is dominant the slopes of the straight part are consistent with the theoretical order of the studied numerical schemes. The slope of the series obtained with Euler scheme fits with the first order slope. For BCK and CN1 series, the trend in the zone Cfl x > 0.5 is close to the expected second-order slope but some irregularities can be noticed. For the CN1 series, the irregularities close to Cfl x = 1 on the pressure-convergence plot were noted by [START_REF] Kim | Numerical improvement and validation of a naval hydrodynamics CFD solver in view of performing fast and accurate simulation of complex ship-wave interaction[END_REF] already. The intrinsic error is used to remove the spatial-discretization error assumed to be constant regardless of the temporal discretization. The intrinsic error confirms the accordance between the theoretical order of convergence and the numerical results. The errors obtained with CN1 and BCK schemes are close to each other.

Influence of mesh deformations on the spatial convergence with and without skewness corrector

The next step is to verify the accuracy of a given numerical set of spatial schemes taking into account the mesh quality. In this section, the skewCorrector option is tested to see potential improvements. As developed in Section 3.1.3, the skewness correction theoretically reduces the loss of accuracy for face center interpolations. Moreover, some past attempts to run naval simulation with foamStar indicate that the skewness is a tricky issue especially with viscous boundary layers.

Mesh types

Four mesh types are studied: regular, stretch, twist and zigZag. The regular meshes are built with a uniform grid of Cartesian square cells as the one used in the previous section. The stretch mesh is built with a uniform grid of Cartesian cells with an aspect ratio AR = ∆x ∆z above one. The twist and zigZag meshes consist in applying a specific transformation to the nodes coordinates of a regular mesh. In order to assess the quality of the meshes, three characteristics are controlled: the aspect ratio, the non-orthogonality (Sec. 3.1.6) and the skewness (Sec. 3.1.3).

a) Regular mesh

The regular meshes are used as references in order to control the accuracy and the convergence order of the spatial discretization. In order to remain consistent with the time integration, it was decided to run the spatial convergence at fixed Cfl x and only with the Crank-Nicolson scheme. For a deformed mesh the reference Cfl x is the one calculated with the non-deformed regular mesh. Table 4.2 gives the list of the spacial discretization studied and the associated time discretization. The horizontal and vertical resolutions N x and N y are related to the cell size by the relations 

N x = 2 π ∆x (4.5a) N y = 2 π ∆y (4.5b)

b) Stretched mesh

The stretch type is used in order to control the influence of the cells aspect ratio on the accuracy of a simulation without interface. Table 4.3 lists the different meshes used in this study. The aspect ratio is kept above one, it means that the smaller dimension between ∆x and ∆y is always the vertical one ∆y. A representation of the mesh U16X64 is shown in Figure 4.2. 

c) Twisted mesh

The twist deformation aims to reproduce a strong mesh deformation that could be induced by a pitching body with a morphing mesh. In the deformation equations, (x 0 , y 0 ) are the coordinates of a mesh node before the deformation when (x, y) are the coordinates of the same mesh node after the deformation.

For simplicity and because of the absence of body, the mesh morphing algorithm is not used. The deformation consists in rotating the mesh nodes around the center of the domain with a maximal rotation angle θ max at the center (x 0 , y 0 ) = (0, 0) and an angle θ = 0 • at the boundaries of the domain (x 0 , y 0 ) ∈ {-π, π} 2 . Along both vertical and horizontal axis the rotation angle follows a sinusoidal law relatively to the position (x 0 , y 0 ) in the non-deformed mesh. The coordinates (x, y) of deformed-mesh nodes follow the equations:

θ (x 0 , y 0 ) = θ max 4 1 + cos 2π x 0 L 1 + cos 2π y 0 L (4.6a)
x(x 0 , y 0 ) = x 0 cos (θ (x 0 , y 0 ))y 0 sin (θ (x 0 , y 0 )) (4.6b) y(x 0 , y 0 ) = -x 0 sin (θ (x 0 , y 0 )) + y 0 cos (θ (x 0 , y 0 )) (4.6c)

For each uniform regular mesh from Tab. 4.2, the tested deformations are θ max ∈ kπ 8 with k = 1..8 . A representation of the mesh U64X64 twisted with θ max = π is shown in Figure 4.3. The maximal value θ max = π is voluntary extreme as it would correspond to a ship flipped upside-down. However, it is interesting to study the convergence of the scheme with highly deformed cells. As mentioned, in this study, the quality of a twisted mesh is measured calculating the average and maximal values of three quantities: aspect ratio, non-orthogonality and skewness. For a spatial convergence study, it is expected that for a given level of deformation, the three quantities remain as similar as possible regardless of the spatial resolution. Figure 4.4 shows the aspect ratio evolution for different twist angles and mesh resolutions. The maximal aspect ratio increases significantly with the mesh refinement and the twist angle, reaching a value of 11.1 for the mesh U256X256 twisted with Θ max = π. The average aspect ratio increases with the twist angle but remains quite stable with resolutions above N x = 16, reaching a value of 2.3 for the mesh U256X256 twisted with Θ max = π.

Figure 4.5 shows the non-orthogonality evolution for different twist angles and mesh resolutions. The maximal and average values increase with the twist angle. With OpenFOAM it is commonly admitted that cells with a non-orthogonality above 70 • are highly non-orthogonal and of bad quality (OpenFOAM, 2022c). Within the range of considered twist angles, the maximal local non-orthogonality reaches 81 • and the maximal average is 49 • for the largest twist angle Θ max . However, the maximal local non-orthogonality and the average non orthogonality are reasonably constant regardless of the spatial resolution so it means that the twist deformation is adequate to investigate the effect of non orthogonality.

Finally, Figure 4.6 shows the skewness evolution. Both the maximal and average skewness increase when the twist angle increases and decrease when the refinement increases. With OpenFOAM, a skewness above 4 is assumed to badly impair the simulation (OpenFOAM, 2022c). This limit is never reached and the averaged skewness reaches values below 0.1 for mesh resolutions above N x = 32. Consequently, the selected twist deformation is assumed to keep the skewness small. 

d) Zig-zag mesh

The zigZag deformation is used to highlight the influence of the skewness on the spatial schemes accuracy. It consists in moving alternatively up and down the mesh nodes along the vertical axis. The largest amplitude of this oscillation is noted A max and is applied along the median line y = 0 m. No displacement is applied to the boundary nodes. The oscillation amplitude follows a sinusoidal law along the vertical axis and remains constant along the horizontal one. The coordinates (x, y) of the deformed-mesh nodes follow the equations:

A max = η∆x (4.7a) A(x 0 , y 0 ) = A max 2 1 + cos 2π y 0 L (4.7b)
x(x 0 , y 0 ) = x 0 (4.7c)

y(x 0 , y 0 ) = A(x 0 , y 0 ) cos π y 0 ∆x (4.7d)
In order to maintain the consistency between the mesh resolutions, the amount of deformation is characterized by the non-dimensional coefficient η equal to the ratio between the maximal point displacement and the cell size ∆x as follows: As for the twist deformation, the impact of zigZag deformation on the mesh quality is measured using the aspect ratio, the non-orthogonality and the skewness. Figure 4.8 shows the evolution of the maximal and average aspect ratios depending on the mesh resolution for several amplitudes of zigZag deformations. For a given amplitude both the maximal and average values are rather independent of the mesh resolution. The aspect ratios increase with the amplitude of the deformation but the maximal local value remains below 5 and the maximal average below 3. Figure 4.9 shows the impact of the zigZag deformation over the non-orthogonality. Within the selected range of zigZag amplitudes, the evolution of the maximal non-orthogonality is similar to the one observed with the twist deformation (Fig. 4.5). The average value respects the expected independence of the mesh resolution and remains below 40 • .

Finally, Figure 4.10 shows the impact of the zigZag deformation on the skewness. Compared to the mesh analysis done with the twist deformation (Fig. 4.6), the zigZag deformation meets the objective of getting a sufficiently constant evolution for resolutions above N x = 32. However, because of the progressive deformation from the boundaries to the center of the mesh, the average skewness remains below 0.5 with resolutions above N x = 32. For the finest mesh (N x = 256), the maximal local skewness reaches the targeted value of 4. 

e) Summary

Three mesh deformations have been designed to affect specific characteristics of the mesh quality. Table 4.4 synthesizes the influence of each deformation. In the following the stretch deformation is used to highlight the impact of the aspect ratio on the mesh convergence. The twist deformation is convenient to highlight the influence of non-orthogonality. Finally, only the zigZag deformation has a strong influence on the skewness. The set of stretch meshes is considered first to isolate the effect of the aspect ratio. Figure 4.11 shows the effect of stretching the mesh on the spatial convergence of the error E on the velocity plot (a) and the pressure field plot (b). For a given longitudinal cell size, the velocity error remains similar regardless of the cell aspect ratio. For the pressure (b), high aspect ratio tends to increase the error. For aspect ratios AR ≤ 8, at least three vertical refinements are tested. The slopes are consistent with the expected second-order. Finally, this study shows that for the simulation of Taylor-Green vortices, with the selected numerical setup, foamStar remains of second-order in space, at least when AR ≤ 8 and the impact of the stretched mesh on the numerical error is weak. 

b) Twisted mesh (non-orthogonality influence)

As seen previously the twist deformation generates locally some high aspect ratio and a significant maximal and average non-orthogonality in the meshes. Thanks to the result of the previous paragraph, the impact of the aspect ratio can be neglected and the prevalent mesh characteristics impacting the accuracy is most probably the non-orthogonality (with eventually also the local skewness for coarse meshes). Figure 4.12 shows the velocity and pressure errors for several twist angles and mesh resolutions. The error increases significantly with the twist angle. Nevertheless, whatever the deformation angle is, the slope of the curve is close to the expected second-order slope. Some spatial refinements are not plotted for high twist angles (Θ ≥ 3π 8 ) because those simulations stopped with computational error before the targeted t = 1 s. As shown, both the aspect ratio and the skewness decrease when the mesh resolutions increases whereas the non-orthogonality remains constant. Then, the failed simulations are probably caused by other mesh characteristics badly impaired by the twist deformation which have not been identified in this study. However, it can be assessed that with the current numerical setup, the non-orthogonality caused by the tested ranges of twist deformations and the small skewness do not affect the spatial order of convergence. Note that the current numerical setup includes a non-orthogonal correction. The effect of this non-orthogonal corrector is not studied in this section and it is kept as the default parameter. The third deformation studied is the zigZag, dedicated to the analysis of the impact of the cell skewness. Figure 4.13 shows the velocity and pressure error for several mesh resolutions and zigZag coefficients. The OpenFOAM skewness corrector is also tested. Fig. 4.12(a) and Fig. 4.12(b) show the results obtained without skewness correctors when Fig. 4.12(c) and Fig. 4.12(d) show the results with the skewness corrector.

Without skewness corrector, the numerical values obtained with this type of deformation do not converge towards the targeted analytical field. Even for the smallest zigZag coefficient η = 0.1, the deformations impair significantly the simulations. With the finest resolutions, the velocity error is more than 100 times larger with η = 0.1 than with the non-deformed mesh. About the pressure, for any tested deformation and mesh resolution, the error remains larger than 100%. Moreover, without the skewness corrector, the largest deformations cause the simulations failure before reaching the targeted t = 1 s.

Using a skewness corrector improves significantly the results. With this corrector the errors obtained with η = 0.1 are close to the ones obtained without deformations and the pressure error for the finest meshes remains below 10% up to η = 0.3. However, the saturation of the error is still noticeable.

It have been shown that the zigZag deformation induces some non-orthogonality. Comparing to the results obtained with twist deformation, the error obtained with the zigZag deformation is significantly higher than the error obtained with twist deformation. For instance, the non-orthogonality induced by a zigZag coeficient η = 0.5 is of the same order as the non-orthogonality obtained with a twist angle θ max = π/2 but the velocity error using the first mesh is about 10 times larger for the coarser meshes and more than 100 times larger with the resolution N x = 128. So it is assumed that with zigZag deformation the error induced by the skewness prevails on the one induced by the non-orthogonality.

Figure 4.14 shows the corresponding velocity and pressure intrinsic errors (E -E f ). This removes the saturated error and it eases the qualitative observation of the order of convergence of the spatial discretization with the zigZag deformation. Given a zigZag coefficient, E f represents the error obtained at t = 1 s with respect to the result using for the finest longitudinal refinement. With this intrinsic error it appears that the slopes remain consistent with the second-order accuracy. However, as mentioned, even with small deformations, the errors E are large, so it seems questionable to establish a second-order accuracy using this intrinsic error. It just implies that the scheme behaves as expected for the rest of the numerical errors but the global error is largely dominated byt the mesh skewness-induced error. It has to be kept in mind that the chosen deformations are rather extreme both in amplitude and spatial frequency.

Finally, with the zigZag deformation, the main conclusion is that the error is significant even with small deformations. With foamStar, the zigZag-like cells thus impair a lot the simulation compared to twisted cells or stretched ones. The second point to highlight is the efficiency of the skewness corrector when the zigZag distortion is moderate. 

Conclusion

In this chapter, the accuracy of three time schemes has been studied. The order of convergence of the time schemes has been checked and then the effect of three mesh deformations on the spatial convergence has been investigated. It appears that for a Navier-Stokes simulation of Taylor-green vortices, both the temporal and spatial convergences are in accordance with the theoretical order of convergence of the tested schemes. It also results that, as expected, the Euler scheme is significantly less accurate than the Crank-Nicolson and second-order backward. Those two last second-order schemes have very similar accuracy.

Concerning the mesh deformations, stretch deformation with aspect ratios below 8

or 16 and reasonable twist deformation (Θ ≤ 3π 8 ) do not impair significantly the simulations whereas even a small zigZag deformation drops down largely the accuracy. The skewness corrector limits a lot the influence of such a zigZag deformation when it remains of small amplitude.

PERIODIC REGULAR WAVE

The previous analysis was dedicated to investigate the behavior of the numerical schemes in a periodic monofluid domain. The next step towards a naval simulation is to consider a set of multi-phase flow problems. The case exposed in this chapter is a regular wave propagating in a one wavelength long periodic bi-dimensional domain. This study completes the work done by [START_REF] Choi | Performance of different techniques of generation and absorption of free-surface waves in computational fluid dynamics[END_REF] and Kim et al. (2022a) based on the same problem. As mentioned in Section 3.3.2, the MULES algorithm is used for the VOF resolution. The objective is to compare the accuracy of the Crank-Nicolson MULES model with the newly implemented backward MULES model (Sec. 3.5.1) for 2D pure wave propagation. In order to progressively reach a mesh design commonly used for naval applications, some non-uniform meshes are tested with progressive cell refinements from the bottom and top boundaries towards the free surface.

The characteristics of the simulated waves are synthesized in Table 5.1. In the following the labels H01, H005 and H001 refer to the selected waves with the wave height H = 0.1 m, H = 0.05 m and H = 0.01 m, respectively. Within the fully nonlinear wave framework, imposing the depth D, the wave height H and the wavelength λ characterizes completely the wave. The wave periods in Table 5.1 are obtained using the stream function wave theory [START_REF] Rienecker | A Fourier approximation method for steady water waves[END_REF] formulation implemented in the in-house tool CN-Stream [START_REF] Ducrozet | CN-Stream: Open-source library for nonlinear regular waves using stream function theory[END_REF]. For a given simulation, the selected wave field is imposed as an initial condition at t = 0 s. This initial field is based on the potential stream-theory solution and is only is imposed in the water phase. In the air (α = 0), the velocity and pressure are null at t = 0 s. The 2D-domain configuration is illustrated by Figure 5.1. For all meshes, the mean free-surface level is located at z = 0 m. The simulations are conducted in the fixed-frame referential from t = 0 s to t = 40T , T being the considered wave period. No turbulent model is applied. In the following, in order to evaluate a Courant number Cfl x , the reference velocity for a given wave is

u ref = π H T .
(5.1)

The boundary conditions are synthesized in Table 5.2. For more details on these BCs see Section 3.3.6. 

Error definition

The accuracy of the numerical simulations is evaluated analyzing the damping in time of the wave elevation. The wave elevation is obtained by probes evenly spaced all along the simulation domain in x-direction. For a given probe located at the position x, and for the i th time step, OpenFOAM returns the interpolated vertical position z verifying α (i) (x, z) = 0.5. This point is assumed to be the surface elevation η(x,t (i) ). For a given time t, a discrete Fourier transformation is applied on the sampled surface elevation at x = 0 m between t 0 = t -2.5T and t 1 = t + 2.5T . The resulting first harmonic amplitude is noted A CFD 1 (t). This first harmonic amplitude of the surface elevation is compared to the analytic first harmonic amplitude obtained with CN-Stream and noted1 A SF 1 . Then, the numerical error used in this section is defined as

E (t) = A CFD 1 (t) -A SF 1 (t) A SF 1 (t)
.

(5.2)

As in Sec. a), the intrinsic errors E (t) -E f (t) are occasionally used.

Numerical set-up

The reference numerical set-up (Sec. 3.6) is used. The investigation regards some parameters relative to the VOF resolution and the time step, which are synthesized in Table 5.3. The numerical parameter ddtScheme {default} corresponds to the time scheme used for all the equations. Concerning the MULES type (MULESType), the MULES option refers to the full space and time MULES algorithm whereas the S-MULES option refers to the MULES algorithm applied on spatial schemes (see Sec. 3.3.2 for more details). Crank-Nicolson schemes are tested with two different off-center coefficients, 1 (CN1) and 0.95 (CN95). A range of time step (deltaT) from t = T /25 to t = T /1600 is tested. 

T 25 × 2 k | k ∈ [|1, 6|]

Meshes

Two types of meshes are designed:

Uniform regular mesh (U) A mesh of this type is perfectly uniform with isometric cells. The cell dimensions ∆x and ∆z are equal and constant over the mesh. As mentioned, the domain is one λ long in x-direction. In z-direction, the bottom boundary is located one λ below the mean free-surface level and the top boundary one λ above. The left plot of Figure 5.2 displays an example of uniform mesh with ∆x = 64 (U64x64).

Non-uniform mesh (NU) A mesh of this type is divided into seven refinement zones 2 . The characteristics of the meshes are controlled by the cell dimensions ∆x and ∆z in the free surface zone (ZONE 0) and by the specific wave height H. In z-direction, the bottom boundary is located one λ below the mean free-surface level but the top boundary is λ /2 above. This limitation of the mesh high is motivated by the work presented by [START_REF] Kim | Numerical improvement and validation of a naval hydrodynamics CFD solver in view of performing fast and accurate simulation of complex ship-wave interaction[END_REF] and Kim et al. (2022a). The cells inside the free-surface zone are not necessarily isometric whereas all the cells outside the free-surface zone are isometric. In the free-surface zone, if the cells are non-isometric, the mesh is named non-uniform stretched mesh. The quantity AR FS = ∆x/∆z is the cell aspect ratio in the free-surface zone. Figure 5.3 is an example of non-uniform stretched mesh on which the refinement zones are identified. The geometrical characteristics of these zones are given in Table 5.4. When ∆z = ∆x in the free-surface zone 0, the zones 0, 1 and 4 are mixed up and the mesh is named non-uniform regular mesh, see, e.g. right plot of Fig. 5.2.

In the following, the different types of meshes are tested with one or several of the 2. Tiny transition zones can be noticed between two neighboring zones. For instance, this is visible in Fig. 5.3 between the zones 0 and 1, and between the zones 0 and 4. three studied waves. The objectives are to conduct mesh convergence analyses and to evaluate the influence of the non-conform refinement with various free-surface cell aspect ratio AR FS . Table 5.5 gives a synthesis of the configurations. Table 5.4 -Characteristics of refinement zones used composing non-uniform meshes used for the regular wave propagation in periodic domain.

Zone index zone size

Cell size

z min z max x-direction z-direction 0 -H H ∆x ∆z 1 -1 3 λ -H ∆x ∆x 2 -2 3 λ -1 3 λ 2∆x 2∆x 3 -λ -2 3 λ 4∆x 4∆x 4 H 1 5 λ ∆x ∆x 5 1 5 λ 2 5 λ 2∆x 2∆x 6 2 5 λ 1 2 λ 4∆x 4∆x
Table 5.5 -Studied configurations for the regular wave propagation in periodic domain. 

Steep regular wave propagation accuracy with backward and Crank-Nicolson MULES

The first analysis focuses on the accuracy of the newly implemented backward MULES compared to the Crank-Nicolson MULES on uniform regular meshes. The choice of uniform regular meshes is to avoid the errors and instabilities that non-uniform meshes could create. This first analysis is conducted on the steepest wave H = 0.1 m because the steepest the wave is, the more unstable and the less accurate the simulation tends to be [START_REF] Choi | Performance of different techniques of generation and absorption of free-surface waves in computational fluid dynamics[END_REF]. With isometric cells, the mesh is representative for this wave steepness in terms of number of cells per wave height and cells per wavelength with respect to the litterature.

As presented in Tab. 5.3, the tested time schemes are Crank-Nicolson with an off-centering coefficient of 1 (CN1) that corresponds to the standard Crank-Nicolson scheme, Crank-Nicolson with an off-centering coefficient of 0.95 (CN95) that is commonly assumed to be more stable and second-order backward (BCK). The tested MULES configurations are the standard one with a temporal and spacial first-order predictor and the S-MULES with the temporal high-order3 and spatial first-order predictor. By default, when it is not specified, the standard MULES is used.

Field convergence a) Wave elevation profile

First, the convergence of the simulation is controlled plotting the wave elevation profile along the longitudinal axis at t = 10 T . Figure 5.4 shows these profiles obtained with a constant Courant number (Cfl ≈ 0.05) and several time and space resolutions. The analytical, CN1, CN95, and BCK results are presented with black dash-dotted line, solid line and dotted line, respectively. Only BCK were tested with ∆t = T /3200 and ∆t = T /6400. Qualitatively, it seems that the wave amplitude converges quicker towards the analytical solution than the phase shift. The latter remains noticeably far from the analytical one even with a small time step ∆t = T /6400 and cell size ∆x = λ /1024. Because of the computational cost, these fine parameters is not realistic for naval applications. In the literature, common values used for naval applications are T /800 ≤ ∆t ≤ T /200 and λ /200 ≤ ∆t ≤ λ /50. Besides, CN1, CN95 and BCK provide very comparable results for each resolution used. This is all the more true comparing only CN1 and BCK which are barely distinguishable from each other in Fig. 5.4. Finally a small distortion of the wave elevation profile is noticeable close to the crest with both CN1 and BCK for ∆ = T /800 (green lines). A thin transition zone is noticeable across the air/water interface in Figure 5.5. As mentioned, the initial field is only computed in the water, with a single phase potential modelling, this is the reason why the velocity and dynamic pressure fields are null in the air at t = 0 s. The proposed potential flow solution is mono-fluid whereas the CFD model used in the present study is based on a single-field two-phase formulation with a compression term at the interface. The model is not developed to study this kind of interface flow but it imposes continuity of the velocity field accross the interface and it is then natural that the solution implies a boundary layer between the phases. Figure 5.7 presents the horizontal velocity profile along the z-axis at t = 10T and at the horizontal location of the crest of the wave, for the same set of simulations presented earlier. The convergence of the velocity in air is slower than what can be observed in the water and the solution is very different for the coarser mesh than for the other refinements, whatever is the time scheme used. This change appears between the resolution λ /32 and λ /64, which are grid resolutions not far from the typical values used in naval simulations. The horizontal velocity profile imposed as an initial field is plotted with bold black dash-dotted line. The initial unphysical null velocity in air is far from the converged value and a better initialization field could ease the convergence in the air. Another point that can be emphasized from Figure 5.7 is that the position of the top boundary seems sensitive because the solutions varies significantly around the boundary when changing the mesh. The solutions with the two most refined meshes show that the mesh U256x256 can be considered converged. In the following the focus is on the amplitude error (Sec. 5.1) obtained with second-order backward and Crank-Nicolson schemes. First, BCK is compared with CN1 and then for robustness reason only the CN95 scheme is considered. The same data are plotted under several views in order to identify multiple aspects of the numerical convergence.

Error in amplitude within the tested time and space resolution range with Crank-Nicolson 1 and backward time schemes

Figure 5.8 shows the absolute error of the first harmonic amplitude at t = 37.5T depending on the Courant numbers in x-direction (Cfl x ) obtained for various time steps ∆t. The colors represent the time step and the marker styles represent the cell size. The solid lines connect the points obtained with CN1 with a same ∆t. The dotted lines do the same but with BCK. The logarithm scale is used on both the vertical and horizontal axis. The filled markers represent a positive error (overshoot of the analytic amplitude) when the empty markers represents a negative error (wave damping). This type of representation is frequently used in the following and is denoted by iso-time-step view.

All the meshes and time steps configuration tested with BCK are also tested with CN1. However, only the simulation reaching the targeted time t = 40T are plotted. For the non-failed simulations with Crank-Nicolson 1, the results from BCK and CN1 are close to each other. A large part of the simulations with CN1 failed due to instabilities not well identified yet. Then, this scheme is assumed as not stable enough to be used for such simulations. Consequently, CN95 is taken as reference scheme for the comparison with backward in the following. This choice of an off-centering coefficient below one is often done in the OpenFOAM literature. More detailed analysis of the the BCK results is done in the following. Firstly, most simulations done with CN95 reach t = 40T , indicating a significant 123 increase in robustness with respect to what was observed using CN1. With reaching t = 40T as a robustness criterion, the stability of BCK and CN95 is similar. Besides, some tested resolutions are too coarse to propagate the waves over forty periods because of the numerical damping. Using CN95 gives 100% of error (flat free surface) for ∆t ≥ T /100 or ∆x ≥ λ /32. Using BCK, this 100% damping is reached for ∆t ≥ T /25 or ∆x ≥ λ /32. With BCK and ∆t = T /50 the wave remains identifiable after forty periods but the free surface is deeply perturbated. This is consistent with the observations made in Figure 5.7 showing that a refinement ∆x = λ /32 leads to a wrong air velocity field and a significant damping.

The general aspect of the convergence is more complicated than what was observed with the Taylor-Green test case. Looking at the BCK plots with time steps ∆t ≤ T /200 in Fig. 5.9, the error decreases faster than what it is expected with a second-order scheme and then increases back. This behavior is only noticeable using CN95 for ∆t ≤ T /800. Visualizing the errors with the iso-cell-size view in Fig. 5.10 conducts to the same observations with a significantly non-monotonous temporal convergence with ∆x = λ /256. With the finest meshes, the amplitude of the CFD wave tends to overshoot the analytic one. This phenomenon is likely to be the consequence of a convergence towards a result which is not the analytical one. This might be due to the bad accordance between the single-phase potential-flow initialization and the Navier-Stokes two-phase solution discussed earlier. Additionally to the initialization, the use of non energy-conservative numerical schemes might cause a gain of energy all along the simulation. When both the temporal and spatial refinement are fine enough, this gain of energy is not compensated by the numerical damping.

b) The energy gain

To verify the hypothesis of a gain of energy affecting the convergence, the time histories of both the kinetic (a) and potential energy (b) obtained with the finest mesh U256x256 are plotted in Figure 5.11. Both BCK and CN95 simulations gain energy over time with the smallest time step ∆t = T /800. As the energy of a wave is directly correlated to the wave height, this observation is consistent with the hypothesis formulated in the comment of Fig. 5.9 and Fig. 5.10. This energy gain tends to converge toward a certain rate. This phenomenon explains the non-monotonic temporal convergence with the mesh U256x256 in Fig. 5.10. The problem of energy conservation solving the Navier-Stokes equations is well known. The use of collocated grid and face interpolation can lead to a non-conservative resolution in terms of energy [START_REF] Ferziger | Computational methods for fluid dynamics[END_REF] and it is quite hard to predict the evolution of this non-conservation (gain or loss). Some discretization methods ensure the kinetic energy conservation [START_REF] Felten | Kinetic energy conservation issues associated with the collocated mesh scheme for incompressible flow[END_REF] but they are not used in this work. To go further in the analysis, the main origin of the gain of energy should be identified (flow of energy at the bottom and top boundaries, non-conservation due to face interpolations and PISO algorithm ...) and more refinements should be tested. This is not carried out in this document.

c) Convergence order verification

To remove the effect of the offset between the converged numerical and the analytical solution, the intrinsic errors are plotted in Figure 5.12 and Figure 5.13. The difference between these figures and Fig. 5.9 and Fig. 5.10 is the use of the finest discretization to evaluate E f . For a given plot in Fig. 5.12 corresponding to a given time scheme and time step, E f is the error obtained with the same time scheme and time step but with the finest spatial discretization ∆x = λ /256. Figure 5.13 shows the same data in iso-cell-size view where this time, the case with the smallest time step ∆t = T /1600 is used as reference.

The use of intrinsic error improves the visualization of the convergence. However, the convergence order cannot be clearly identified. In Fig. 5.12, the slopes are between order 3 and 4 whereas the expected order is 2. In Fig. 5.12, the slopes are even less identifiable and seems to be between order 1 and 2. With BCK and ∆x = 256, the convergence is non-monotonous whereas with CN95 it remains monotonous within the tested resolution range.

It appears that some phenomena influence significantly the convergence order and cause some overshooting of the wave elevation with some space and time resolution. In the following, to visualize the error regarding to the targeted value, and clearly expose overshoots, the intrinsic error is no longer analyses but only the error. As mentioned, plotting the absolute error with logarithm scale, the overshoot (positive error) are symbolized with a full color marker when the negative error are symbolized with an empty marker with colored edges. With this representation, a converging wave-elevation toward an higher value than the targeted one implies a fast decrease of the absolute error toward 0 followed by an increase up to the converged error. Plotting the error at fixed Courant number is a convenient way to verify the convergence order of the simulations. Figure 5.14 shows the evolution of the error over different cell refinements for two fixed Courant numbers, Cfl x ≈ 0.1 (a) and Cfl x ≈ 0.2 (b). The results with CN95 are represented with a solid black line and those with BCK are represented with a dashed black line. Colors and marker styles represent as before specific time step and cell size, respectively. The slopes corresponding to order 1 and 2 are represented with dashed grey lines. With such a representation, both simulations with CN95 and BCK behaves as second-order. 

Spatial and temporal MULES

As detailed in Section 3.3.2, the MULES algorithm can be applied simultaneously on temporal and spatial schemes (MULES) or only on the spatial one (S-MULES). The Crank-Nicolson 0.95 MULES and Crank-Nicolson 0.95 S-MULES are compared using the iso-time-step view in Figure 5.15. Some S-MULES simulations are not represented as they have failed before reaching the targeted end. This indicates that S-MULES is less stable than the standard MULES. Besides, the completed S-MULES simulations give really close results to the ones obtained with MULES except for ∆t = T /100 where S-MULES appears to be significantly more accurate.

The backward MULES and backward S-MULES are compared in Figure 5.16 using iso-time-step view. Unlike for CN95, BCK S-MULES has only encountered failures with really coarse temporal and spatial discretizations. However, the results between MULES and S-MULES significantly differ for some configurations. The phenomenon of getting higher accuracy with ∆x = λ /128 than with ∆x = λ /256 is amplified with S-MULES revealing possibly a faster energy gain with S-MULES than with MULES. Once again, this energy gain can be due to both the increasing of the non-conservative effect or the decreasing of the numerical damping. As the MULES algorithm was initially built for both spatial and time schemes during the VOF resolution, in the following the S-MULES version is abandoned. 

Simulation with non-uniform mesh

In the work exposed in the previous paragraphs, the meshes were uniform with isometric cells. In a regular wave field, the magnitude of the velocity and the pressure decreases exponentially with the distance to the free surface. Consequently, in the literature and for naval industrial application, the meshes are progressively unrefined from the free surface to the bottom and top boundaries. The main interest of such a structure of mesh is to decrease the computational cost avoiding unnecessary fine zones. In this section, the simulations with non-uniform meshes presented in Section 5.3 are compared to the ones with uniform mesh.

a) Comparison of fields

Figure 5.17 shows the horizontal velocity map obtained with backward method with uniform mesh U128x128 and non-uniform mesh NU128x128 and ∆t = T /400. The use of a non-uniform mesh with smaller air domain does not create visible spurious velocities and both configuration seem to provide a well established field. However, even though the smaller density of air leads to a smaller energy in the air field, it can be seen in Figure 5.17 that velocity gradients are present high in the air part where a degraded resolution is used. In the present case, the used non-uniform mesh is not unrefined symmetrically in the vertical direction (see Fig. 5.3) The use of the present version of non-uniform meshes could lead to some disturbances at the free surface and finally impair the simulations. Using a symmetric refinement between air and water could be beneficial and subject of a dedicated study. .18 shows an iso-time-step view of the errors obtained with CN95 on uniform and non-uniform meshes with the wave H01. Results between uniform and non-uniform meshes are really close, the accuracy is not significantly impacted by the change in the mesh structure.

Figure 5.19 shows the same analyses but using BCK. In this case the use of a non-uniform mesh tends to change the error amplifying the overshoot of the targeting wave elevation. This is particularly visible with ∆t = T /200 and ∆t = T /400. Even if the use of non-uniform mesh might slightly negatively impact the accuracy using backward scheme, the computational cost benefit of non-uniform mesh largely justifies its use for industrial naval applications. Consequently, in the following non-uniform refinement as defined in Table 5.4 are used.

Regular wave propagation accuracy depending on the wave steepness and the cell aspect ratio

For the steepest wave, the efficiency of non-uniform meshes built with the method described in Section 5.3 was shown. The next step is to study the influence of cell aspect ratio at the free surface (ZONE 0) for various wave steepnesses.

Optimal free-surface aspect ratio

In the present case, as seen with the steepest wave, verifying the numerical errors is conveniently done analyzing convergences at fixed Courant numbers. Figure 5.20 shows the evolution of the error depending on cell size for each studied steepness. Two ratio between time d), (f). For a given wave height it corresponds to two distinct Courant numbers. These Cfl x are different from a wave height to another because of a distinct reference velocity (Eq. 5.1). In these figures the Crank-Nicolson 0.95 and backward time schemes are represented with solid and dotted lines, respectively. A given colors is assigned to a given free-surface cell aspect ratio AR FS . The markers shapes keep the same signification as in this whole chapter, representing the cell sizes.

In Fig. 5.20, the slopes of the plots are between first and second-order. The order seems to drop as the wave heigth/steepness decreases. A significant impact of the free-surface cell aspect ratio is seen. For a given wave height, an optimal AR FS provides errors in accordance with the second-order behavior.

The key point here is that the most accurate aspect ratio depends on the steepness. Table 5.6 synthesizes the optimal AR FS identified using Fig. 5.20. The choice between CN95 and BCK scheme does not change these optimal free-surface cell aspect ratios.

Because of the choice made to limit the vertical cell size to ∆z = λ /512, only few simulations are done using AR FS = 8 . To complete the results, thinner vertical refinements should be tested. To compare the errors get using backward and Crank-Nicolson 0.95, iso-time-step views are plotted in Figure 5.21, Figure 5.22 and Figure 5.23 for the wave heights H=0.1, H=0.05, H=0.01, respectively. For each wave, AR FS is the one prescribed previously (Tab. 5.6).

In each figure, The BCK provides more accurate results than CN95. For the steepest wave (Fig. 5.21), the results were already presented in Section 5.4.

Then, it can be noticed that the higher the steepness, the higher the error for low resolutions and the higher the apparent convergence order. Once again, finer resolution, other mesh structures and energy gain control could explain these observations. 

Comparison of the efficiency of various discretizations

The last point to analyze is the efficiency. Figures 5.24, 5.25 and 5.26 show iso-cell-size views of the error but using the CPU time for the abscissa rather than the Courant number. The logarithm scale is still used. The figures concern the waves H01, H005 and H001, respectively. The meshes respect the optimal AR FS previously identified.

In these figures, taking into account the computational cost (CPU time), it appears that for a same spatial and temporal resolution, both the simulation using BCK and CN95 are achieved with a similar CPU time. However, there are some exceptions for which the backward scheme induced an over-cost. For instance, in Fig. 5.24, with ∆t = T /200 and ∆x = λ /256 (yellow star), the simulation with BCK is significantly less accurate and slower than the one with CN95. This loss of efficiency could be linked to a field perturbation caused by a non well-design mesh or numerical set-up. The problem of the resolution of the air phase exposed in Sec. 5.4 Sec. 5.4.1 and Sec. 5.4.5 is potentially involved. Some other points show a similar loss of efficiency using backward especially with the finest resolution. Except for these local issues, the backward scheme shows a clear global improvement of the efficiency compared to the Crank-Nicolson 0.95 time scheme. Finally, Figure 5.27 shows the impact of the AR FS choice. In this figure, the results are from the simulations of wave H001. Meshes with AR FS = 4 and AR FS = 8 are compared. For this wave, the previously identified optimal AR FS in terms of accuracy is 8. On one hand, increasing the vertical refinement (reducing the cell size ∆z) implies an increase of the number of cells and therefore an increase of the computational cost. On the other hand, for a given space and time refinement, the accuracy with AR FS = 8 is higher than with AR FS = 4. Fig. 5.27 shows that for this type of simulation the choice of AR FS = 8 is still more efficient and the gain of accuracy compensates the small increase of computation cost. For a same error, using a convenient free-surface cell aspect ratio leads to a reduction of the computational cost by a factor 3. .27 -Iso-cell-size view of the surface-elevation first-harmonic amplitude error at t = 37.5T and CPU time for various cell sizes ∆x with AR FS =4 and AR FS =8; periodic wave H001; non-uniform mesh; backward.

Conclusion

In this chapter, it was shown that with foamStar, both Crank-Nicolson 0.95 and backward time scheme are accurate for approximately second-order simulations of regular waves propagating in periodic bi-dimensional domain with various wave steepnesses, 1%, 5% and 10%. Within a range of time and space resolution commonly used for naval simulations, the MULES implementation of second-order backward scheme is slightly more accurate and efficient than the Crank-Nicolson 0.95 MULES. Some recommendations have been made for the structure of meshes. Firstly, the mesh structure established in Sec. 5.3 is convenient for efficient simulations. Then, a strong correlation between optimal free-surface cell aspect ratios and wave steepnesses have been identified. About a factor 5 to 10 between this aspect ratio and the wave steepness seems to be convenient. For a given regular wave with a wavelength λ and a wave height H, an optimal aspect ratio can be written as

λ 5 H ≤ AR FS Opti ≤ λ 10 H . (5.3) CHAPTER 6

WAVE PROPAGATION WITH RELAXATION ZONES

The next step toward a proper naval simulation is the use of realistic domains, several wavelengths long, with relaxation zones and RANS model. The study presented in this chapter is in line with the work done in the Numerical Wave Tank (NWT) working group of the Reproducible CFD Modeling Practice for Offshore Applications Joint Industrial Project (JIP) led by Technip Energies. This work is the continuation of the previous section where periodic waves were studied. The same three wave conditions are studied with the same meshing method. The difference lies in the domain configuration and the wave generation. In the previous section, the wave fields were set at the initialization and then freely propagated in a periodic domain. In this chapter, waves are generated and absorbed using relaxation zones. In order to progressively get closer to the naval simulations, the first configuration studied here uses the Navier-Stokes model (NS) as in the previous chapter. Then, a turbulent RANS model is introduced and finally simulations are perfomed in a moving frame as it is done for the case of a moving ship. The following analyses do not go deep into the Verification procedure. The objectives are to identify some potential issues induced by the introduced features and to build recommendations on how to use the current foamStar implementation to perform naval simulations in waves.

Remark: The following work is done using a modified foamStar version in witch the relaxation zone updates are organized differently compared to the flow chart presented in Figure 3.10. For the version used in the following the velocity update is done between the "u estimation step" and the PISO loop start.

Case definition

The numerical domain configuration and the wave characteristics are defined according to the JIP procedure [START_REF] Bouscasse | Qualification criteria and the verification of numerical waves: Part 2: Cfd-based numerical wave tank[END_REF]. The characteristics of the simulated waves are recalled in Table 6.1. As for the periodic waves study, in the following the labels H01, H005 and H001 refer to the selected waves with the wave heights H = 0.1 m, H = 0.05 m and H = 0.01 m, respectively. Those waves are the same as the previously used ones (Sec. 5). The stream theory model implemented in foamStar is used in the relaxation zones to impose the wave fields 1 .

Two domain configurations are used in this section. One with an inlet and outlet relaxation zone and another with only an outlet relaxation zone. Figure 6.1 shows the first configuration. The size of the relaxation zones follows the recommendations established by [START_REF] Choi | Performance of different techniques of generation and absorption of free-surface waves in computational fluid dynamics[END_REF]. The inlet relaxation zone is 1λ long and the outlet one is 2λ long. The so-called pure CFD domain is 7λ long and centered at the position x = 0. This domain configuration is denoted by RZi1o2. Figure 6.2 shows the second configuration for which the relaxation zone is only located at the outlet 2 . The outlet relaxation zone is 3λ long and the pure-CFD-domain is 7λ long with a central position x = -λ . This domain configuration is denoted by RZo3.

As indicated in Fig. 6.1 and Fig. 6.2, for both configurations the wave direction is toward positive x-direction (orange arrow) and the frame velocity is toward negative x-direction (white arrow). The moving frame direction corresponds to a simulation of a boat moving with forward speed in head waves.

For applications such as the added resistance in head waves, the simulation domain geometry is often not based on the wavelength but on the ship length (L PP ) in order to solve the diffracted field accurately. In the literature (see e.g. [START_REF] Simonsen | Efd and cfd for kcs heaving and pitching in regular head waves[END_REF][START_REF] Kim | Estimation of added resistance and ship speed loss in a seaway[END_REF][START_REF] Mofidi | Propeller/rudder interaction with direct and coupled cfd/potential flow propeller approaches, and application to a zigzag manoeuvre[END_REF] a standard recommendation is to define a domain length of about 4 to 6 L PP . One example of standard naval domain can be found in Chapter 7. Besides, wavelengths between 0.5 L PP and 2 L PP are commonly encountered in naval simulations [START_REF] Fujii | Experimental study on the resistance increase of a ship in regular oblique waves[END_REF], Larsson et al. (2010), [START_REF] Larsson | A workshop on CFD in ship hydrodynamics[END_REF]...). Consequently, the domain configurations studied in this section are relevant to naval simulations with short wavelengths and a fictive scale model boat for which L PP ≈ 2 m.

In the following, in order to evaluate a longitudinal Courant number Cfl x , the reference velocity for a given wave is still:

u ref = π H T . (6.1)
Table 6.1 -Regular wave characteristics. The boundary conditions in RZi1o2 and RZo3 are synthesized in Table 6.2. For more details on these BCs see Section 3.3.6. These BCs are used for both NS and RANS simulations done along this study. For NS simulations modelling of the turbulence is not taken into account, so the turbulent fields k, omega and nut are not activated. As for the wave propagation in a periodic domain (Sec. 5), the accuracy of the numerical simulations is evaluated analyzing the damping in time of the wave elevation. The wave elevation is measured at the center of the pure CFD domain. For a given time t a discrete Fourier transform is applied to the sampled surface elevation between t 0 = t -2.5T and t 1 = t + 2.5T . The resulting first-harmonic amplitude is noted A CFD 1 (t). This first-harmonic amplitude of the surface elevation is compared to the analytic first-harmonic amplitude obtained with CN-Stream and noted A SF 1 . Then, the numerical error used in this section is defined as:

Item

E (t) = A CFD 1 (t) -A SF 1 (t) A SF 1 (t) (6.2)

Phase shift

The phase is evaluated using the same sliding-window discrete Fourier transform. The phase of the first-harmonic error at the center of the domain is noted φ CFD when the reference analytical phase is noted φ SF and obtained using CN-Stream.

Wave period

For the wave period, another method is used. A period T CFD at a given instant t is defined as the average between two successive zero crossing in the same direction over a window of 5 periods between t 0 = t -2.5T and t 1 = t + 2.5T . T SF is the analytical period obtained with CN-Stream.

Numerical setup

The reference numerical set-up (Sec. 3.6) is used. The investigation regards the temporal discretization, the mathematical models (NS or RANS) and the moving frame velocity. Table 6.3 synthesizes the tested configurations. Only the backward (BCK) and the Crank-Nicolson 0.95 (CN95) time schemes are tested. With RANSE resolution, the turbulent models k-ω-SST (kOmegaSST) and fs-k-ω-SST (fsKOmegaSST) are tested. 

fwdVelocity (Frame velocity) (0, 0, 0) (-λ /T , 0, 0) deltaT T 25 × 2 k | k ∈ [|1, 4|]

Meshes

The meshes used in this study are the non-uniform meshes presented in Section 5.3 extended along the x-direction. Figure 6.3 shows a view of mesh NU32x128 and Table 6.4 synthesizes the studied mesh configurations. First, the time histories of the amplitude error in Fig. 6.4 show that the evolution of the error is non constant. With some discretizations, the amplitude increases whereas with some others it decreases. For all the curves is that even if the amplitude decreases during the first periods, it tends to progressively increase after a certain time. Several causes could be involved in this phenomenon. The first one is the energy non-conservative resolution highlighted in Section 5. An other possible cause could be the presence of disturbance caused by the relaxation zones (this point is discussed in the following). Finally, both time schemes convergence is globally observed with a smaller damping of the wave elevation using BCK an some larger overshoots.

Then, the phase shift plotted in (c) and (d) reveals two things. The first one is a phase shift about 0.25 rad (about 4%) during the first periods. This shift is probably due to the initialization using a non physical velocity profile as discussed in Sec. 5. Besides, as for the amplitude error, the discretization influences significantly the evolution of the phase shift in manners that are not easily explainable. The only identifiable trend is that BCK causes larger phase shift than CN95.

Finally, the last two figures (e) and (f) show the time history of the wave period error. Unlike the wave amplitude error and the phase shift, the period error stays between -1% and 1% regardless of the discretization.

Generation of vortices in the air

In this section, investigation is done on the velocity fields in order to evaluate the impact of the relaxation zones. The studied wave is the steepest one H = 0.1 m; the mesh used is NU256x256 and the time step of the simulation is ∆t = T /400. In the following, the mainly observed phenomenon are noticeable using both CN95 and BCK, so only the BCK scheme is investigated. Figure 6.5 shows the map of the horizontal velocity field after 10 periods and Figure 6.6 shows the norm of the vorticity. As the total size of the domain in 10λ , at t = 10T the waves imposed at the initialization are supposed to be out of the domain so all the fields are depending from the inlet and outlet boundaries, and the relaxation zones. Some disturbances in the air are observed in Fig. 6.5 and Fig. 6.6 between x = -4.5 m and x ≈ 0 m. In this part of the domain vortices are visible and comparing to what has been observed in Sec. 5.4, the horizontal velocity reaches high values. Looking at Fig. 6.6, the source of the vortices seems to be the transition zone at the free surface in the inlet relaxation zone. In the remaining part of the pure CFD domain between x ≈ 0 m and x ≈ 3.5 m, the steady-state-like velocity field is progressively established and is consistent with the expected one (see Fig. 5.5). In the outlet relaxation zone, the air field is once again disturbed but with smaller vorticity than in the inlet zone.

This behavior is explained by the way the relaxation zone works. As detailed in Sec. 2.3.1, the relaxation imposes progressively the targeted values to the field, however, the imposed velocity is a null vector in the air. This null velocity is far from the one obtained with Navier-Stokes equations, consequently some large numerical corrections are applied by the solver in the relaxation zones. At the inlet side, the null velocity in air and the non-null wave velocity in water cause Kelvin-Helmholtz instabilities. These instabilities are then propagated in the domain. The vortices are progressively damped. However, in absence of turbulence model and due to the lower Reynolds number in the air than in the water, the damping of these vortices remains small. After a few periods, the disturbed air is all along the domain. This phenomenon explains the noticed changes for the amplitude and phases after a certain period of time. First, the first-harmonic wave amplitude tends to decrease and the air velocity fields is converged. Then, the first-harmonic wave amplitude progressively increases. The hypothesis that should be explored is that the disturbances in the air phase cause an unsteady interaction with waves elevation when the vortices reach the measuring point.

Optimal free-surface cell aspect ratio and order of convergence

Despite the disturbance caused by the inlet relaxation zone, a convergence analysis is carried out over the three tested waves within the discretization range. 

. Because of the reference velocity (Eq. 6.1) used for the Courant number calculation, the selected Cfl x are different from one wave height to another. Solid and dotted lines represent Crank-Nicolson 0.95 and backward time schemes, respectively. Each color is associated to a free-surface cell aspect ratio AR FS and each marker style corresponds to a cell size ∆x. The gray dashed lines represent the first-order and second-order slopes.

Similar to the periodic waves, changes of AR FS induce a modification of the accuracy. For a given wave height, some AR FS with an optimal accuracy can be identified. Table 6.5 synthesizes these optimum values within the tested range. The results are close to the ones obtained with periodic waves (Tab. 5.6). Within the restricted range of spatial discretization only one point is plotted with AR FS = 16. It does not allow to conclude about the accuracy of this aspect ratio. Nevertheless, in accordance with the periodic wave analyses, for H001 the value 16 is still indicated.

For a large part of the plots, the slopes are between first and second-order. A clear second-order behavior is hard to identify because of the previously identified perturbed air field. The damping of the perturbations in air decreases as the refinement increases and it paradoxically reduces the accuracy of the simulations.

Finally, even if for the finest spatial resolution ∆x = λ /256 NU256x256, the backward scheme is more sensible than the Crank-Nicolson 0.95 to the perturbations in air, BCK is globally more accurate than the CN95. These optimal aspect ratios follow the same conclusion as the one made in with the periodic waves analyses. So, the general recommendation for the free-surface cell aspect ratio simulating regular waves with relaxation zones is also:

λ 5 H ≤ AR FS Opti ≤ λ 10 H (5.3) (a) Cfl x ≈ 0.1; H=0.1 10 1 10 2 λ/∆x 10 -3 10 -2 10 -1 10 0 |E| Order 1
Order 2 (b) Cfl x ≈ 0.2; H=0.1 At this stage, the accuracy of foamStar simulating nonlinear regular waves with a backward time scheme and the MULES algorithm has been shown. However, the NS model is insufficient for naval applications because of the very high Reynolds number at stake, implying very thin boundary layers and the turbulent flow around the hulls. So, in this section, using BCK, the results with the two RANS models are compared to the NS one. A discussion about the undesirable vortices management is done, firstly considering the turbulent models and then the domain configurations. Besides, the surface elevation errors are examined. The reason is the turbulence production by the model where the vortices are created. The side effect is that this turbulent production damps the wave such that in the pure CFD zone the wave elevation is 70% damped after only ten periods, see Figure 6.9 As detailed in Section 2.1.3 an alternative to the OpenFOAM k-ω-SST model is the fs-k-ω-SST implemented in foamStar. Figure 6.10 shows the map of the norm of the vorticity field after 10 periods using the fs-k-ω-SST RANS turbulence model. Figure 6.11 shows the corresponding horizontal velocity field. The magnitude of the vorticity is smaller than with NS simulations (Fig. 6.6). However, vortices are still present and disturb the horizontal velocity field. Compared to the OpenFOAM k-ω-SST turbulence model, the fs-k-ω-SST model limits the turbulence production and therefore the damping.

10 1 10 2 λ/∆x 10 -3 10 -2 10 -1 10 0 |E| Order 1 Order 2 BCK CN95 ARfs =1 ARfs =2 ARfs =4 ARfs =8 ARfs =16 ( 
As a conclusion, at this point none of the three options is satisfactory. First, by construction the NS model does not model correctly the turbulent part of the flow and the large spurious vortices created in the inlet zone degrade the wave propagation quality. Then, a standard turbulence model damps those vortices but at the cost of damping also the gravity waves , since the free-surface boundary layer is not correctly accounted for in that model. Finally, the free-surface turbulent model, which is the most physically correct, does not damp much the spuriously created inlet vortices.

Remark: Additionnal works have shown that applying the relaxation update of the velocity field after the PISO loop, as it is done in the current foamStar version, significantly reduces the vorticies generation. This effect has been noticed after the present study so this solution is not explored in this document. speed, in order to avoid both the perturbation of the free surface and an additional drag in the air, using only an outlet zone could be convenient. The relaxation zones are used to damp the diffracted fields, so with a body, the inlet relaxation zone is designed to avoid reflections of the diffracted fields on the inlet boundary. For a floating body without forward speed this diffracted field could be non-negligible. However, thanks to the target naval applications, in the following the selected configuration is RZo3 with fs-k-ω-SST turbulent model. 

Simulation in moving frame with RANS model

The next step toward naval simulations is to test the influence of moving frames with imposed forward speed. For the computation of added resistance and ship motions, the waves are simulated in a moving frame. This section presents a qualitative error comparison between fixed and moving-frame simulations.

Firstly, the map of the vorticity norm after ten periods shown in Figure 6.14 reveals an higher vortices productions with forward speed. Even if no inlet relaxation zone is used, votrices are distributed all along the domain. The boundary condition at the inlet could be a cause of this. An other reason could be the higher Courant number caused by the forward velocity and inducing some spurious vortices. Finally, the vortices generated in the outlet zone could be reversely propagated because of some reflections at outlet boundary. In such a case, potential reflections at the inlet should also be discussed. 6.15,Fig. 6.16 and Fig. 6.17 are iso-time-step views of the surface elevation first-harmonic amplitude error from simulations of nonlinear regular waves with a steepness of 10%, 5% and 1%, respectively. In Fig. 6.15 and Fig. 6.16, the free surface cell aspect ratio are AR FS = 2 and AR FS = 4, respectively. They correspond to the recommendation from Tab. 6.5. For H001, because of the lack of spatial discretization with AR FS ≥ 8 is not convenient for the accuracy visualization. So, though it is not in the optimal range previously defined, AR FS = 4 is used in Fig. 6.17. All the simulations are done using RANS fs-k-ω-SST models and the domain configuration RZo3. The colors represent the time resolution with respect to the encountered wave period T e . In these figures, for a given wave, V0 denotes the fixed frame with a null velocity V 0 = 0 m.s -1 and V1 denotes the frame moving toward negative

x-direction at the phase velocity V speed is larger than the error with fixed frame. This different behavior might be due to the choice of AR FS that is not assessed as an optimal one.

Efficiency

The comparison of the efficiency is the final step of the analyses of the wave generation in a domain using relaxation zones with RANS model. Figure 6. 18,Fig. 6.19 and Fig. 6.20 show the iso-cell-size views of the error but using the CPU time for the abscissa rather than Cfl x . The figures concern the waves H01, H005 and H001, respectively. The free-surface cell aspect ratios are AR FS = 2, AR FS = 4 and AR FS = 4, respectively. The scheme used is still the fs-k-ω-SST. The errors are the same as the ones shown in Fig. 6.15,Fig. 6.16 and Fig. 6.17, so the saturation of the error with V1 is still noticeable. The objective here is to identify some guidelines that could be convenient for simulations with forward speeds between V0 and V1. The apparent efficiency of ∆x = λ /32 for simulations with V1 cannot be taken as a reference as it is not the case with V0. Besides, with the current foamStar implementation, the increase of perturbations reducing the time step and the cell size implies that taking a too small refinement would not be cost effective. Consequently, the recommendation is to use ∆x Opti ≈ λ /64 and ∆t Opti ≈ T e /200 with configurations and mesh similar to those used in this study. Note that, contrary to the other previous recommendations, that one should be taken with caution, and is likely to evolve with future studies.

Conclusion

For simulations of regular wave inside domains with relaxation zone it has been shown that the relaxation zone technique currently implemented in foamStar generates some spurious vortices in the air that can disturb the water field and affect the convergence. These vortices are caused by the targeted null air velocity inside the relaxation zones that is far from the converged Navier-Stokes physical solution in the pure CFD domain. These vortices are attenuated using RANSE with fs-k-ω-SST turbulent model and a convenient option for a simualtion with forward speed is to remove the inlet relaxation zones only using the boundary condition to generate the waves. This solution could be further be discussed evaluating its consequence on the reflections of diffracted waves on the inlet boundary. Besides, the influence of the free surface cell aspect ratio as been shown and the recommendations made with the periodic wave study are confirmed. It also has been shown that the use of moving frame leads to additional errors and non clear convergence within the tested range of discretization. The following time and space resolution recommendations have been made:

∆x Opti ≥ λ 64 (6.4a) ∆t Opti ≥ T e 200 (6.4b) 5 ≤ λ ∆z Opti H ∆x Opti ≤ 10 (6.4c)
Finally, comparing to the work done in [START_REF] Kim | Numerical improvement and validation of a naval hydrodynamics CFD solver in view of performing fast and accurate simulation of complex ship-wave interaction[END_REF] and Kim et al. (2022a), some conclusions are quite different. For instance the influence of the choice of RANS or NS model is less noticeable in Y.J, Kim's work. Then, the problem of vortices disturbing the wave propagation when inlet relaxation zones are used was not encountered to such an extent. A major difference between the presented work and Kim's work is the mesh refinement method. In this work both the longitudinal and vertical cell refinement become coarser close to the upper and lower boundaries and the refinement coefficient3 is 2. In Kim's work, the horizontal cell size is constant and the vertical refinement is progressively changed using grading methods and coefficients between 1.01 to 1.1. This might be a one cause of the noted differences, so for future work the numerical set-up tested in this chapter should also be tested with Kim's meshes.

DISCUSSION ON THE NUMERICAL STUDY

Over this part, a progressive analysis has been done from the Navier-Stokes simulation of the analytic mono-fluid Taylor-Green vortices to RANS-VOF simulations of nonlinear regular waves with relaxation zones and forward speed. The objectives of these studies were to assess the accuracy and the efficiency of foamStar with the new second-order backward MULES implementation, to identify the influence of the VOF, the turbulence model and the frame velocity on the accuracy and to define some best practices for naval simulations with regular waves.

First, the accuracy of the second-order backward scheme has been verified, first in mono-fluid domain and then with the multi-phase simulations of regular waves using the bakward MULES. Comparing it to the commonly used Crank-Nicolson 0.95, the backward scheme shows better accuracy.

Besides, the ability of foamStar to simulate nonlinear regular waves with RANS has been assessed. it has been especially shown that using a modified standard turbulence solver to account for the free-surface presence is highly beneficial. However, issues have been identified with the model used for the wave generation. Using relaxation zones, a targeted null velocity in air causes some spurious vortices in the air. Some other kinds of extrapolations have been proposed by [START_REF] Choi | Two-way coupling between potential and viscous flows for a marine application[END_REF] for irregular wave propagation. However, the latter methodss have not been tested with regular waves and some air solutions could be established more accurately (potential solution in the air, pre-solving of a 2D NS solution ...). Using the currently implemented relaxation zones, using only an outlet one with just enforcing the BCs at inlet has shown some improvements and would be convenient for naval simulation with forward speed.

Finally over all the studied cases, a common observation was the strong influence of the mesh structure on the accuracy. The influence of some mesh deformations have been measured and showed that with foamStar, some shapes of cells decrease a lot the accuracy when others are well managed. For mono-fluid cases using non-orthogonal corrections, the cell aspect ratio and the non-orthogonality cause only small disturbances whereas the skewness from tested zigZag deformation induces significant error. For mono-fluid cases, the skewness corrector has been tested and has shown a significant improvement of the accuracy. For the simulation of regular waves with VOF, only the aspect ratio close to the free-surface has been studied PART III

Naval application

foamStar is already used by Bureau Veritas Marine & Offshore (BV-M&O) for some naval applications. However, the company supervising this Ph.D., Bureau Veritas Solutions Marine & Offshore (BVS-M&O), did not use foamStar in their industrial process at the start of the PhD. This part presents the work done in order to qualify and improve the accuracy of foamStar for some naval simulations and its ability to be used in an industrial context. The first chapter presents a comparison between foamStar and foamStar-SWENSE to evaluate added wave resistance and ship motions in head waves. The content of this chapter was generated during the first year of the PhD, as an initial assessment of the capability of the code. The last section present some results obtained at the very end of the PhD, after the work on the code and the learning from the dedicated systematic numerical study. The second chapter details the work done in order to ease the industrial use of foamStar. The experimental data relevant to the studied cases were provided for the Tokyo 2015 Workshop. It was issued from the towing tank experiments realised by [START_REF] Van | Experimental investigation of the flow characteristics around practical hull forms[END_REF], [START_REF] Kim | Measurement of flows around modern commercial ship models[END_REF] and updated by [START_REF] Larsson | Numerical ship hydrodynamics: an assessment of the Gothenburg 2010 workshop[END_REF]. 

Numerical Setup

First assessment with regular head waves

This section presents a study carried out before the improvements of the numerical accuracy of foamStar. The following is extracted from the paper "Seakeeping in regular and irregular waves with forward speed using a two-phase functional coupling based SWENSE solver" presented during the 33 rd Symposium on Naval Hydrodynamics in October 2020.

The objective is to qualify the ability of the solver to handle naval simulations of ship with forward speed in head regular and irregular waves. Both foamStar and foamStar-SWENSE are tested in this section. The SWENSE method tested in this section is the one exposed in [START_REF] Li | Spectral Wave Explicit Navier-Stokes Equations for wave-structure interactions using two-phase Computational Fluid Dynamics solvers[END_REF]. This method has shown some efficiency gains by reducing the mesh refinement requirements and consequently the computational cost (Li et al., 2018b;[START_REF] Kim | Numerical improvement and validation of a naval hydrodynamics CFD solver in view of performing fast and accurate simulation of complex ship-wave interaction[END_REF].

Settings

The configuration of the relaxation zones is shown in Figure 7.2. Relaxation zones are used at the inlet, outlet and on the side of the ship. The width of the relaxation zones is one L PP . This configuration, used for an initial assessment, differs from the one prescribed in the previous chapters of this document. For this first assessment, the meshes are generated thanks to the Simcenter STAR-CCM+ ® . Figure 7.3 shows a side view of a the mesh configuration used. And Figure 7.4 shows a top view of the mesh at z = 0 m. First, a free-surface refinement zone is set with refinement depending on the wave condition (red box in Fig. 7.3). Then, a triangular refinement box is added in the free-surface zone close to the hull in order to simulate more accurately the wake (orange zone in Fig. 7.4). The near-field refinement is managed with some automatic refinement on the hull relatively to the surface curvature and adding some refinements near to the edges of the rudder, bow and transom. The view in the blue box in Fig. 7.3 shows the mesh aspect at the rear part of the ship. The diffusion of this hull refinement creates the refinement zone colored in green in Fig. 7.4. Finally, for the simulation of the turbulence, a wall function is applied, so a viscous layer with a first cell thickness ∆ VL = 0.002 m is inserted in the mesh.

Meshes configuration

A first study of the mesh convergence in calm water is done in order to identify an accurate mesh refinement near the body and over the domain. Then, based on a selected mesh density, the five meshes used for the five wave conditions are built.

Each resulting mesh is mainly composed of hexahedral cells, nevertheless, in order to improve the mesh alignment and the viscous layer insertion, other cell shapes can occasionally be generated.

a) Mesh convergence in calm water

Before building the meshes used for the simulation with waves, three mesh densities, "Coarse", "Medium" and "Fine" are tested in calm water in order to identify an accurate mesh refinement near the body and in the domain. Figure 7.5 shows a view of the mesh at the rear part of the ship for the "Coarse" (a), "Medium" (b) and "Fine" (c) meshes. Table 7.7 gives some information on theses three meshes. The characteristic size of the cells are noted: ∆x FF for the far-field cells, ∆x WF for the wake-field cells and ∆x NF for the smallest near-field cells. The cell size of each zone is based on the far-field cell size ∆x FF , so for a given zone, the ratios ∆x FF /∆x are the same for the three meshes "Coarse", "Medium" and "Fine". The converged results of the total resistance (R T ) coefficient C x = 2R T /(ρS w U 2 0 ) are shown in Table 7.8. The three meshes give results within 4% of the experiment. As a compromise between accuracy and mesh size, the medium mesh refinement is chosen as a base for the generation of every other mesh used to carry out the rest of the study. b) Meshes for simulations with regular waves A set of meshes, is generated using the medium mesh density and adapting the free-surface refinement for each of the five regular wave conditions (Table 7.4). The free-surface box refinement is adapted to the wavelengths and wave heights which are considered. A synthesis of used meshes is provided in Table 7.9 in which ∆x, ∆y, ∆z denote the dimensions of the cells in the free-surface zone.

The mesh refinement chosen at the free surface is motivated by the studies conducted by [START_REF] Li | Two-phase spectral wave explicit Navier-Stokes equations method for wave-structure interactions[END_REF] and [START_REF] Choi | Two-way coupling between potential and viscous flows for a marine application[END_REF]. In order to propagate the waves using as well foamStar as foamStar-SWENSE, the criterion for the vertical refinement is around twenty cells per wave height and for the longitudinal refinement above fifty cells per wavelength.

Comparing to the recommendations made in Chapter 6, the ratio λ ∆z H∆x is not between the prescribed bounds of 5 to 10. The free-surface cell aspect ratio (AR FS = ∆x/∆z) is higher than the recommendations. For this study, the meshes used for the simulations with waves are assumed to be consistent with the mesh used for the calm water simulation. So, in the following the total resistance obtained from the calm water case is used to determine the added wave resistance for all the wave cases. This is a strong assumption and using the same mesh at least in a defined zone close to the ship might have be more relevant for the following analyses.

Regular head waves numerical results a) Wave field damping

Because of the use of a first-order time scheme, a significant wave damping is noticeable. Figure 7.6 shows the wave elevation profile obtained for the case C1 at the symmetry plane y = 0 (lower plot) and at a y = L PP (upper plot). This cutting planes are identified by dashed black lines in Figure 7.2. The profiles obtained using foamStar are colored in red and the one obtained using foamStar-SWENSE is colored in blue. The dark dashed line represents the wave profile obtained with the stream-function (waveSF) used to define the targeted field in the relaxation zones and at the boundaries of the domain. At y = L PP , the wave are noticeably damped. This damping is less important with foamStar-SWENSE than with foamStar. 7.10 synthesizes the ratios H CFD /H measured at the longitudinal location of the ship center of gravity (CoG) in the plane y = L pp . H CFD is the vertical distance between a crest and the trough of a wave that are equidistant from the CoG along the x-direction. Whatever the wave condition the use of foamStar-SWENSE limits the wave damping. The shorter the wavelength, the more damped the wave is because the propagation distance is larger with respect to the wavelength. 

b) Forces and motions

The experimental data is provided in the form of RAOs computed with the 0 th , 1 st and 2 nd harmonics. To compute the same quantities with the numerical data, a spectral analysis is conducted on the total resistance, heave and pitch time histories for the five wave conditions studied. In the present section the wave amplitude A used for the nondimensionalization is the prescribed wave height H divided by two for the EFD and half of the measured wave height at the CoG for the CFD results. Because of the significant damping noticeable in foamStar simulations, this choice could be discussed. The 0 th , 1 st and 2 nd harmonic motion RAOs are respectively presented in Fig. 7.7. The mean and first harmonic amplitude of the heave and pitch motions obtained with foamStar and foamStar-SWENSE reveal some differences between the two solvers. The motion amplitude seems to be slightly smaller for the simulations done with foamStar, especially close to the resonance (case C3). This difference might be induced by the significant damping previously mentioned. Nevertheless, with the used nondimensionalization, both foamStar and foamStar-SWENSE provide resuslts close to the experimental data. On Fig. 7.7 (e) and (f) it can be seen that also the motion second harmonic amplitudes computed with foamStar and foamStar-SWENSE are close to each other and follow the experimental data. The major difference between both remains the undervalued motion amplitude with foamStar for the case C3. In Fig. 7.8, the resistance is also compared with experimental results in terms of total resistance (a) and added resistance (b). The total resistance coefficients computed with foamStar and foamStar-SWENSE are close to the experimental results with still the undervalued coeficient with foamStar simulating C3. The added resistance values computed with foamStar and foamStar-SWENSE are quite different for short wavelengths. For those conditions the added resistance magnitude is very small with respect to the calm water resistance and the uncertainty on the added resistance computation is high. The noticed damping is likely also involved. The numerical values of the total resistance and differences relative to the experimental data are detailed in Table 7.11. The first and second harmonics of the total resistance time signal are presented in Fig. 7.8 (c) and (d), respectively. The first and second harmonic analysis confirms the closeness of the foamStar and foamStar-SWENSE results and the general agreement with the experiments. The wave elevation field obtained from foamStar and foamStar-SWENSE for the C4 condition is presented in Fig. 7.9. The wave patterns are globally similar but some differences can be observed, foamStar-SWENSE magnitudes being a bit larger. 
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Ship in long crested irregular waves

In the work presented during the 33 rd Symposium on Naval Hydrodynamics, a study of the capability of foamStar-SWENSE was also carried out on one rough irregular sea sate with forward speed. The chosen sea state is classified with the code six in the World Meteorological Organization. The chosen sea state follows a Pierson-Moskowitz spectrum, the characteristics of which are shown in the Table 7.12. The KCS model scale and the mesh generation strategy are the same as for the previous study in regular waves. The free surface refinement is adapted with 33 cells per significant wave height (H s ) and 100 cells per peak wavelength (λ p ). The time step is also adapted so that 500 time steps are computed per encounter peak period (T e = 1.23 s). This simulation is conducted using the same degrees of freedom and forward speed conditions as for the study in regular waves (Table 7.2 and Table 7.3). Figure 7.10 shows the interaction between the wake generated by the ship and the incident waves. Figure 7.11 shows time histories for the heave and pitch responses as well as the total resistance. These preliminary results show the stability and the ability of the recent foamStar-SWENSE implementation to compute such seakeeping problems. The duration of presented simulation was to short to conduct some spectral and stockastic analysis for instance measuring the heights probability of exceedance. Because of the weak accuracy of the first order Euler time scheme, before carrying out more studies with ship in irregular sea states, some improvements such as the one presented in the following are needed. 

Application of the recommendations

The previous study was done before establishing some recommendations for the mesh generation and numerical setup. The objective is now to apply these recommendations in order to improve the accuracy of the simulations. To this aim, case C1 is considered in this section, as its wave characteristics and the size of the simulation domain are close to the studied ones in Chapt. 4. Both the mesh and the numerical setup are changed compared to the simulation made previously in Sec. 7.2.

Mesh configuration

First, in Chapt. 4 it is shown that the mesh characteristics influences a lot the accuracy of foamStar. The skewness of the cells seems to be the most problematic one. It was also shown that using a cell skewness corrector improves the solver accuracy in case of some skewed cells. However, some trials were made and no simulation with ship presence was successfully run with this skewness corrector. The reason is not yet identified, so it was decided not to use this corrector but to limit the skewness thanks to the use of snappyHexMesh program. This mesh generator is dedicated to OpenFOAM simulation, so it allows a better control of some mesh characteristics such as the skewness.

Then, the mesh characteristics are built following the recommendations made in Chapt. 6. A background mesh is firstly built, with these recommendations in mind and then snappyHexMesh is used to add cell refinements close to the hull and to snap the cells to it. Figure 7.12 shows a view of the background mesh with the prescribed refinement zones and a zoom on the refinements applied close to the ship. The sizing of the cells in each zone (from 0 to 6) follows the method described in Sec. 5.3. As for the meshes generated using Simcenter STAR-CCM+, additional refinements are made close to the edges of the rudder, bow and transom. Figure 7.13 shows a top view of the mesh at z = 0 m. The wake refinement is made using two boxes near to the hull (orange and yellow colored). The refinement zone close to the hull is colored in green on the figure. 

Settings

In this section the numerical set-up is the reference one detailed in Sec. 3.6. Three different time schemes are tested: implicit Euler, second-order backward and Crank-Nicolson 0.95, and the turbulent model used is fs-k-ω-SST. Table 7.13 gives a synthesis of these parameters.

Following the recommendations, no inlet relaxation zone is used. Figure 7.14 shows the used configuration. 

Results

No added resistance or RAO analyses are done in this section. The objective here is to verify the ability of the new setup to run second-order time schemes and then to observe the differences in the wave field and time traces when using Euler (EULER), second-order backward (BCK) and Crank-Nicolson 0.95 (CN95). a) Wave field damping Figure 7.15 shows the wave elevation profile obtained at the symmetry plane y = 0 (lower plot) and at y = L PP (upper plot). The profiles obtained using EULER, BCK and CN95 are colored in blue, red and green, respectively and the dark dashed line represents the wave profile obtained with the stream-function (waveSF) used to define the targeted field in the relaxation zones and at the boundaries of the domain. At y = L PP , the waves are significantly damped with EULER compared to the waves obtained with BCK and CN95. Still at y = L PP , the profiles with BCK and CN95 are close to each other, some wave amplitudes are larger than the analytic solution and a non regular profile is noticeable at the starting of the damping zone. 3D simulations with a similar mesh but without ship should be done to investigate which of these perturbations are due to the ship and which are not. For the wave-elevation profiles at the symmetry plane, the EULER scheme shows damping and the profiles with BCK and CN95 are still close to each other. Table 7.14 synthesizes the ratios H CFD /H measured at the longitudinal location of the ship center of gravity (CoG) in the plane y = L pp , with this improved configuration. With both CN95 and BCK this ratio remains close to one so the damping can be assumed to be negligible. A major improvement is thus obtained compared to the simulation results of the first assessment made at the beginning of the thesis (see Tab. 7.10 in Sec. 7.2). Using EULER, the damping of the wave elevation is about 32% that is comparable with the 30% damping observed with the configuration used in that first assessment (Tab. 7.10). 7.16 shows the top views of the wave elevation map obtained simulating with Euler and second-order backward time schemes at t = 20T e . Dark lines represent the iso-wave-elevation with η ∈ {-0.1, -0.09, -0.08 .. 0.09, 0.1} The damping of the wave field with the Euler scheme is clearly visible. Figure 7.17 shows the same view but using Crank-Nicolson 0.95 rather than Euler. The wave elevation obtained with BCK and CN95 are really close to each other but some slightly steeper wave field can be identified with BCK.

b) Forces and motions

The time trace of the non-dimensional longitudinal pressure and viscous forces are plotted on Fig. 7.18 and the time trace of the non-dimensional heave and pitch motions in Fig. 7.19. EULER, CN95 and BCK are represented in blue, red and green, respectively. At a given time t, the mean forces are calculated using a three encountered period long sliding window between t 0 = t -1.5 s and t 1 = t + 1.5 s. These mean forces are represented with dotted lines of the same color as the corresponding simulations. First, looking at the longitudinal forces (Fig. 7.18), the amplitude of the forces with EULER are smaller than the ones obtained with CN95 and BCK. This is due to the smaller wave amplitude of the waves around the ship with EULER time scheme that is itself due to the the numerical damping. The time traces obtained with CN95 and BCK are superimposed for the pressure force but differ for the viscous force. The viscous force obtained with CN95 is below the BCK one during several periods before converging progressively to the same value.

The results from the BCK simulation can be assumed as converged after 10 periods when the simulation with CN95 takes about 18 period to converge. With EULER, the viscous force also converges within 10 periods but to a value 3% smaller than the converged value of BCK and CN95 simulations. To explain these differences, further investigation are needed. This viscous force depends strongly on the mesh quality close to the hull and on the size of the first mesh layers. This aspect is not investigated in this section. It can be noticed that the mean pressure forces are really close to each other regardless of the scheme used.

Besides, looking at the motions, the amplitudes of both heave and pitch motions obtained with EULER are smaller than the ones obtained with CN95 and BCK. Moreover, with EULER on one side and BCK and CN95 on the other side, a phase shift of the pitch motion is noticeable. The wave damping explains probably most of these differences and investigations of the evolution of the motions depending on the prescribed wave height should be carried out.

No differences can be noticed from the motion time traces between CN95 and BCK.

Overview of the simulation improvements

First, applying the new recommendations, simulations using the Crank-Nicolson 0.95 time scheme have been run successfully, whereas using the configuration tried at the beginning of this thesis, simulations with Crank-Nicolson 0.95 were not stable and used to fail. The free-surface cells aspect ratio, the location and the size of the refinement boxes, or the use of Simcenter STAR-CCM+ non-taking into account some OpenFOAM mesh requirements could be reasons explaining the troubles encountered with the firstly tried configuration and Crank-Nicolson 0.95. Some improvements on the parameters choice are also likely to be involved.

Besides, the new second-order backward MULES version seems to show consistent results compared with the Crank-Nicolson MULES so it corroborates the validity1 of its implementation.

Conclusion

The first assessment presented in this section reported on the first results obtained at the beginning of the thesis, and based on some developments in the foamStar-SWENSE solver presented by [START_REF] Li | Two-phase spectral wave explicit Navier-Stokes equations method for wave-structure interactions[END_REF]. This study has been the first application of foamStar-SWENSE toward the resolution of naval seakeeping problems with forward speed and has been completed by [START_REF] Kim | Numerical improvement and validation of a naval hydrodynamics CFD solver in view of performing fast and accurate simulation of complex ship-wave interaction[END_REF]. As a first approach these Z. Li's developments appeared to be able to reach the objective.

In this study, the comparison of results obtained with foamStar and foamStar-SWENSE on the same meshes does not highlight the capabilities of the SWENSE method but allows to assess its implementation.

It must be verified that the foamStar-SWENSE solver is able to keep a good accuracy for lighter meshes in the far-field region. This will be the next step together with further numerical improvements in the implementation of high-order discretisation schemes. As shown, some numerical parameters, domain configuration and meshes used in this first assessment did not correspond to the recommendations made in Chapter 6. A first application of the newly implemented schemes and setup recommendations has been done at the end of the thesis and is reported in the last part of this chapter. It shows improvements compared to the first assessment. This shall be extended with future works through a more detailed mesh convergence analysis and applying V&V procedures. CHAPTER 8

APPLICATION IN THE INDUSTRIAL CONTEXT

One of the main objectives of this Ph.D. is to meet the expectations of BVS-M&O regarding the optimization of naval simulations in waves. To reach this objective, the study of the accuracy of the foamStar solver, the implementation of optimized methods and building up a methodology are required. In order to keep close to this industrial objective, during this Ph.D., I brought my help on the first industrial applications of foamStar at BVS-M&O. Some applications were done this year by the company and Hein Kyaw Swa, an intern at BVS-M&O, has started to work on the validation of foamStar on several industrial cases close to the one studied in this Ph.D. This section describes the work done about the integration of foamStar into the industrial context.

Quick integration with applicable guidelines

The first issue with the use of foamStar in an industrial context with several co-workers is to form them to the use of the solver. From a research perspective, an OpenFOAM based code has the strong advantage to give access to a very large amount of numerical schemes and parameters and a lot of flexibility. Nevertheless, this becomes detrimental when it comes for a company to use the solver on tested and validated cases with well defined recommendations. In this situation the flexibility of the solver slows the handling and turns into a source of errors.

Consequently the strategy chosen in order to ease the industrialization was as follow:

1. To identify the fields of application of foamStar and define recommendations for some specific cases.

2. To provide a simplified set of modifiable parameters.

3. To provide some user guides.

Fields of application and recommendations

This first step is based on the sharing of the conclusions established by the researchers working and having worked on the software with the members of BVS M&O.

Wave generation This has been studied by several Ph.D. students at the LHEEA in recent years. [START_REF] Li | Two-phase spectral wave explicit Navier-Stokes equations method for wave-structure interactions[END_REF], [START_REF] Choi | Two-way coupling between potential and viscous flows for a marine application[END_REF], [START_REF] Kim | Numerical improvement and validation of a naval hydrodynamics CFD solver in view of performing fast and accurate simulation of complex ship-wave interaction[END_REF] and the work developed in Chapter 6 provide some recommendations on the current optimal setup for pure wave propagation with regular and irregular waves.

Naval simulation in calm water A part of the work in Chapt. 7 has led to the conclusion that foamStar can be applicable to resistance calculation in calm water with forward speed.

Naval simulation in waves

The work done on the Tokyo 2015 case 2.10 (Sec. 7.2) has led to the conclusion that both the foamStar-SWENSE and the standard foamStar (RANSE) can eventually be used for naval simulations. Kim (2021) also provides similar conclusions. For short term simulations with fixed bodies the SWENSE method also appears to be more efficient than the RANSE one [START_REF] Li | Two-phase spectral wave explicit Navier-Stokes equations method for wave-structure interactions[END_REF], [START_REF] Li | Spectral Wave Explicit Navier-Stokes Equations for wave-structure interactions using two-phase Computational Fluid Dynamics solvers[END_REF] and S. Aliyar current Ph.D.). However, for complex geometry, forward speed and non homogeneous refinements, the current implementation of SWENSE turns out to be unstable. The preliminary simulations reported in Chapter 7 and in [START_REF] Kim | Numerical improvement and validation of a naval hydrodynamics CFD solver in view of performing fast and accurate simulation of complex ship-wave interaction[END_REF] show the feasibility of naval simulation with forward speed in head long-crested irregular waves using foamStar-SWENSE but further and more systematic investigations are still to be done before the introduction of it in the industrial process.

Simplified setup

The creation of a simplified setup with a reduced number of parameters encompasses several objectives. The first one is to speed up the handling of foamStar by the BVS M&O members. The second one is to prevent the modification of parameters that have been considered as the optimal ones. At the center of the procedure, a script is used to read the simplified set of parameters. This set is made to be close to the set of parameters usually modified by BVS M&O in other industrial solvers such as ISIS-CFD and STAR-CCM+. It was important to be as close as possible to the parameters the members of the company are used to manipulate in terms of names, significations, and organization but without hiding the foamStar particularities. Then the script identifies the simulation type required by the user (Symetric simulations, multiphase, calm water etc ...) and uses reference foamStar parameters that have been fixed according to the established recommendations. The output is the complete foamStar setup and running scripts can be launched.

Simplified parameters description:

physicsDict In this file are indicated the physical conditions in the domain and the wave fields.

bodyDict In this file are indicated the bodies and the imposed motion of the whole domain.

boundaryConditionsDict In this file are indicated the boundary-conditions types.

paramDict In this file are indicated some parameters of the computation.

optionDict In this file are indicated the additional options (for instance Actuator disk).

addParamDict In this file are written all the additional parameters that we want to add or modify in relation to the reference case.

User guides

Several user guides or presentations have been made in order to circulate them inside BVS M&O. Special attention has been paid to the mesh generation process and mesh generation recommendations have been established. The mesh generation is a crucial step of CFD but it is above all the case with foamStar that is strongly sensitive to mesh quality. Those recommendations have been tested by Kyaw Swa Hein.

Computational cost managment through the control of the residuals

Aside from the numerical optimization of the code, the choice of convenient numerical parameters is crucial for the computational cost. One of the key parameters is the number of PIMPLE and PISO iterations. Imposing more PIMPLE iteration implies more VOF, motion (in case of moving body) and PISO resolutions. As seen in Section 3.3, each operation is related to one or several time-consuming linear systems resolutions. Increasing the number of PISO iterations increases the number of times the pressure equation is solved (Eq. 3.119), this being the more costly operation in the code.

The duration of one linear system resolution depends on the difference between the known approximation of the solution and the solution itself. This difference is measured with the initial residual (more details can be found in Sec. 3.3.7 and Sec. 3.4). If this initial residual is close to the chosen absolute tolerance (ρ err ) of the system resolution, only few iterations are needed. However, when this initial residual is high the linear solvers require a large number of iterations before reaching the expected tolerance.

At the m th PIMPLE iteration in the n th time step, the convergence is optimal if a m+1 PIMPLE iteration would not change significantly the matrix systems. In other terms, whatever the solved variable ψ and its associated system AΨ = B, the residual of the system verifies: r (n,m+1,0) ψ := Res A (n,m+1) , S (n,m+1) , ψ (n,m,q last ) < ρ err Getting an initial residual below the tolerance, the linear system is already assumed as "solved", so no solver iteration is needed. The computational cost of such an m+1 PIMPLE iteration is reduced to the matrices building and additional numerical corrections, so adding unnecessary PIMPLE iteration does not increase a lot the computational cost.

Because of the spatial discretization process (schemes choice, mesh structure etc ...), for some fields the initial residual at the beginning of a PIMPLE iteration may saturate and it implies costly linear resolutions at each PIMPLE loop without reducing the apparent iterative error. An example of such a situation is the simulation presented in Section 7.4. For this simulation, in order to ensure the convergence and to minimize the iterative error, 5 PISO iterations within 10 PIMPLE iterations are used and the absolute tolerance is set to 10 -10 . Figure 8.2 shows the initial pressure residual coming from the resolution of Eq. 3.119. The GAMG solver is used for the linear system resolution and the horizontal axis represents the the total number of GAMG iterations from the beginning of a given time step. The beginning of a given time step is identified by a red stem with a height equal to the initial residual at this step of the simulation. Yellow stems identify the beginning of each PIMPLE iterations. Blue bars represent the initial residual of PISO iterations (height of the bar) and the number of linear solver iterations used all along a given PISO iteration (width of the bar). The green bars represent the initial residual and the total number of linear solver iterations for a given PIMPLE loop.

In Fig. 8.2, the initial residual saturates above 10 -2 , so each additional PIMPLE iteration in the saturation zone (4 ≤ PIMPLE iter. ≤ 10) requires about the same number of GAMG iterations. The width of the bars are proportional to the number of GAMG iterations, so a same number of GAMG iterationsfor two PIMPLE iterations means a similar computation cost. Consequently, assuming that the pressure residual is a relevant indicator of the iterative error, the figure shows that the computational cost of the time step might have been reduced by a factor 2 or 3 removing some apparently unnecessary PIMPLE iterations. 

Existing PIMPLE residual controllers

In order to control the number of PIMPLE iterations and therefore reduce the computational cost, several methods exist. A first one, available in OpenFOAM, consists in defining an absolute threshold value ρ PIM err for the initial residual of a given field φ such that if the initial residual r (n,m,0) φ at the beginning of a PIMPLE iteration is below this threshold, the current PIMPLE iteration is set as the final one for the current time step. With this method, it is possible to define a clear target value for the selected initial residual and to assume that the solution is converged when this value is reached. The problem of this method is that if the error saturates at an higher value than the expected one (as in Fig. 8.2), then the number of PIMPLE iterations is the user-defined maximal number of PIMPLE iterations.

Another method also available in OpenFOAM is the definition of a relative threshold value ε PIM err such that, for the m th PIMPLE iteration in the n th time step, if Finally, a third method implemented in foamStar consists in controlling the number of PIMPLE iterations with the initial residual r (n,m,0) fsi extracted from the body motion solver. If this residual is below a user-defined absolute threshold value ρ FSI err then the current PIMPLE iteration is set as the final one for the current time step. With this method, the convergence of the body motion solver is well controlled. However some unwanted non-well solved fields far from the body could not be captured by the body motion residual and then affect the global convergence of the simulation. The other default of this PIMPLE controller is that it can only be used considering moving body simulations.

Proposition of a new PIMPLE controller

In order to improve the control of the number of PIMPLE iterations, another PIMPLE controller is proposed in this section. The idea is to identify the saturation of the initial residual of the pressure by calculating the relative residual between two successive PIMPLE iterations as follows: The current PIMPLE iteration is set as the final one for the current time step if ε (n,m) < ε SPIM err where ε SPIM err is a user-defined relative threshold value 1 . With such a PIMPLE controller, any stagnation of the pressure initial residual between two successive PIMPLE iterations implies the end of the PIMPLE loop, so no "unnecessary" PIMPLE iterations are run. The potential issue is that a transient stagnation of the initial residual even at an high value causes the stop of the PIMPLE loop while some additional iterations might have led to a better convergence. 2. With the present simulation this phenomenon was expected because a specific behavior is implemented for the body motion resolution. In fact no body motions are calculated at the second PIMPLE iteration in order to stabilize the computation. So, only using two PIMPLE iterations implies a single body motion resolution at the beginning of the time step. Consequently, with only two PIMPLE iterations, the body motion residual tolerance cannot be satisfied. For all the presented simulations, the simulated time interval is from t 0 = 0 s to t n = 5 s. Table 8.1 synthesizes the computational cost of each simulation. As expected the computational cost is approximately reduced proportionally to the number of PIMPLE iterations avoided. Finally, it is now needed to assess the effect of reducing the number of PIMPLE iterations on the simulation results. For this simulation, the quantities of interest are the longitudinal resistance and the heave and pitch motions. Fig. 8.6 shows the time traces of the longitudinal pressure and viscous resistance coefficient when Fig. 8.7 shows the time traces of non-dimensionalized heave and pitch motions. Among all the curves only the method using ε SPIM err = 1 without defining ρ FSI err differs slightly from the others during the time window simulated. Some non-well converged PIMPLE loops may be the cause of this phenomenon and the criterion ε SPIM err = 1 is probably a too high value to select. However, adding the second criterion on ρ FSI err seems to solve this issue. For this test case, the use of a body motion control ρ FSI err has shown the best efficiency among all the tested methods. As mentioned, this PIMPLE controller is only applicable to simulations with a body motion and may not take into account some non-converged fields far from the body. The newly implemented PIMPLE controller has also shown good results. Keeping in mind the objective of efficiency, a wider range of test cases and more precise convergence analyses have to be done in order to define robust recommendations.

ε (n,m) = |r
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CHAPTER 9

CONCLUSION

Overview of the present work

The objectives of this PhD were to study and improve both the accuracy and efficiency of the in-house solver foamStar. The targeted applications were the computation of added wave resistance and ship motions in waves. To do so, work has been done looking at the code implementation, describing it in detail and doing some modifications intending to ease second-order accurate naval simulations. Besides, a progressive analysis was carried out, starting from mono-fluid Navier-Stokes simulations up to two-phase RANS simulations, in order to identify best practices for naval simulations with waves. Finally, some preliminary work was done qualifying the ability of foamStar and foamStar-SWENSE to run naval simulations with head waves.

Analysis of the numerical implementation

In the first part of this document a description of the implementation of foamStar is done. Chapter 2 presents the mathematical model used into foamStar and foamStar-SWENSE and then Chapter 3 gives a detailed description of the numerical implementation. Descriptions of the algorithms of foamStar were already done in [START_REF] Li | Spectral Wave Explicit Navier-Stokes Equations for wave-structure interactions using two-phase Computational Fluid Dynamics solvers[END_REF], [START_REF] Choi | Generation of regular and irregular waves in Navier-Stokes CFD solvers by matching with the nonlinear potential wave solution at the boundaries[END_REF] and [START_REF] Kim | Numerical improvement and validation of a naval hydrodynamics CFD solver in view of performing fast and accurate simulation of complex ship-wave interaction[END_REF]. However, the objective during this Ph.D. was to describe as precisely as possible the numerical implementation and to build a complete flow-chart. The interest of such a flow-chart is to summarize the main algorithm of foamStar identifying each step of the numerical resolution and connecting them to the numerical equations.

After these investigations, some new implementations have been made. One of the key features of foamStar is the Multidimensional Universal Limiter for Explicit Solution (MULES) that is used solving the convective equation of the volume fraction with the VOF model. This method directly comes from the solver interDymFoam taken in its OpenFOAM-5 version. Initially, using the MULES algorithm only the first-order implicit Euler or a Crank-Nicolson time scheme could be used. Some modifications were done in order to use the second-order backward time scheme with MULES.

Accuracy simulating nonlinear regular waves

The second part of this document presents a progressive analysis of the accuracy of foamStar. The objective was to propose a reference numerical set-up and mesh generation method targeting simulations of ship in waves with forward speed. A large part of this work is the direct continuation of studies done by Kim Y.J. [START_REF] Kim | Numerical improvement and validation of a naval hydrodynamics CFD solver in view of performing fast and accurate simulation of complex ship-wave interaction[END_REF]Kim et al., 2022a).

The reference numerical set-up used for this work was based on some recommendations made by previous works [START_REF] Seng | Slamming and Whipping Analysis of Ships[END_REF][START_REF] Li | Two-phase spectral wave explicit Navier-Stokes equations method for wave-structure interactions[END_REF][START_REF] Choi | Generation of regular and irregular waves in Navier-Stokes CFD solvers by matching with the nonlinear potential wave solution at the boundaries[END_REF][START_REF] Kim | Numerical improvement and validation of a naval hydrodynamics CFD solver in view of performing fast and accurate simulation of complex ship-wave interaction[END_REF] and the OpenFOAM literature. The time scheme was the main parameter to be studied comparing the second-order backward and the Crank-Nicolson time schemes. Verifying the spatial convergence, some specific mesh structures were also studied in order to quantify the impact of some mesh deformations and make recommendations for wave simulations.

The first study-case described was the Taylor-Green vortices. The objective was to verify the time schemes accuracy on mono-fluid Navier-Stokes simulations and then to identify the influence of cell aspect ratio, non-orthogonality and skewness on the solver accuracy. This study showed that for such simulations both the second-order backward and Crank-Nicolson schemes verify the second-order accuracy. Moreover, they both produced similar errors. Besides, the study showed that both the cell aspect ratio and non-orthogonality are accurately managed by foamStar for values remaining in an acceptable range from the OpenFOAM literature. However, with the studied cases, the cell skewness impaired significantly the accuracy. It was shown that the use of a skewness corrector implemented in OpenFOAM and usable in foamStar could be a convenient solution.

The next study-case was the nonlinear regular wave propagation in a periodic bi-dimensional domain of one wavelength. Only the wavelength λ = 1 m was considered but three wave steepnesses were studied: 1%, 5% and 10%. This study raised four points. First, for simulations of regular waves using the Navier-Stokes equations, a converged air velocity field can be identified and it is far from the null velocity profile commonly imposed using foamStar. Besides, using MULES, the accuracy of both the newly implemented second-order backward and Crank-Nicolson schemes is consistent with what would be expected from a second-order scheme. Then, some gain of energy with time was identified. The backward scheme tended to show a larger sensibility to this phenomenon. An assumption was that the selected numerical set-up and its use with foamStar leads to non-conservative simulations in terms of energy. Some future work on the energy conservation in foamStar could answer this potential issue. Finally, a important part of Chapt. 5 was dedicated to the comparison of the numerical errors obtained using different mesh refinements and cell aspect ratio at the free surface. With the studied mesh generation method, an optimal range of free-surface cell aspect ratios was defined. This optimal range depends on the wave steepness.

The last study-case of this part was the nonlinear regular wave propagation in a long bi-dimensional domain of several wavelengths. The same waves as for the periodic domain were studied. The objectives were to verify the accuracy of both the second-order backward and Crank-Nicolson schemes and to control if the mesh refinement recommendations made for periodic domains remain convenient with a long simulation domain, relaxation zones, RANS model and a moving reference frame. The results showed a good agreement between the error of both the backward and Crank-Nicolson schemes and the expected second-order accuracy. Besides, the mesh recommendations remained valid with the tested cases. However, adding relaxation zones generated perturbations in the air. The reason is that to impose a null air velocity as a targeted value leads to the spurious vortices generation in the air. Removing relaxation zone at the inlet of the domain gave some improvements of the results. This modification had to be discussed regarding to the need of damping some diffracted field for simulations with bodies. Finally, using a moving reference frame also changed the accuracy of foamStar and, clear numerical convergence was no more identified.

Naval applications

During this Ph.D. a preliminary study assessed the ability of foamStar and foamStar-SWENSE to manage simulation of a ship moving with forward speed in head regular waves. The study was based on the Tokyo 2015 workshop simulating a scale model of a KRISO container ship with forward speed and five different regular head wave conditions. foamStar and foamStar-SWENSE were compared but no mesh convergence and efficiency analyses were done.

The result were in good agreement with the experiments but a complete validation procedure remains to do. A simulation of ship in long-crested irregular head waves was also performed, however, no validation or comparison with other numerical results were done. These studies were carried out using the first-order Euler time scheme because of stability reasons. When these studies were conducted, the second-order backward MULES were not implemented and some recommendations concerning the numerical set up and the mesh structure were not established yet. One of the test cases initially simulated was thus simulated again using those backward scheme and configuration recommendations. They provided clear enhancement of the previous results. This was the last work of the thesis and more detailed and exhaustive future work have to be done in order to validate foamStar using the recommendations made all along this Ph.D.

The last chapter of this document gives a synthesis of the work done in order to integrate foamStar into the industrial process of BVS-M&O. Some user-guides are tutorial were made and a scripts was implemented in order to help the preparation of numerical set up following the selected recommendations.

Perspectives and proposal for future works

This Ph.D. took place in the context of a research Chair. established by BV and École Central Nantes in partnership with BVS-M&O. Consequently, the work presented was in the continuity of the work done by the other members of the Chair. also working on the development of foamStar. The following presents some future work proposal on the improvement of the foamStar accuracy/efficiency and its use for naval simulation in an industrial context.

In the direct continuity of the Ph.D., validations of the selected numerical set-up with naval simulation in head and oblique regular waves have to be done. Some work on the efficiency not presented in this document also has to be continued in order to optimize the numerical set-up reducing the computational costs. For instance, some directions are: optimizing the number of PIMPLE and PISO iterations, adding or modifying some numerical correctors or optimizing the choice of the linear solvers used for the matrix resolutions.

Another aspect that was not studied deeply during this Ph.D. is the optimization and improvement of foamStar-SWENSE. Because of some promising results shown in [START_REF] Li | Spectral Wave Explicit Navier-Stokes Equations for wave-structure interactions using two-phase Computational Fluid Dynamics solvers[END_REF] and [START_REF] Kim | Numerical improvement and validation of a naval hydrodynamics CFD solver in view of performing fast and accurate simulation of complex ship-wave interaction[END_REF] some future work should be done on this topic.

Besides, the current implementation of the relaxation zones has shown some problematic aspects and alternative implementations of the relaxation zone should be studied with possibly some other form of field extrapolation in the air for the targeted wave. Some extrapolation techniques avoiding a null air velocity were already proposed in [START_REF] Li | Two-phase spectral wave explicit Navier-Stokes equations method for wave-structure interactions[END_REF] and [START_REF] Choi | Two-way coupling between potential and viscous flows for a marine application[END_REF].

Finally, an important objective for the future of foamStar is to simulate ship moving in complex irregular sea states. The work presented in [START_REF] Kim | Numerical improvement and validation of a naval hydrodynamics CFD solver in view of performing fast and accurate simulation of complex ship-wave interaction[END_REF] already assesses the ability of foamStar to simulate such sea states without ship. The next step is to complete the preliminary trials shown in this document carrying out some studies on the ship response with simulations of long and short-crested irregular waves from various directions. 

Abstract:

The objective of the present thesis is to develop solvers and methodologies in order to improve the computational cost and the accuracy with regard to the thematics of seakeeping and added resistance. First, a synthetic workflow of the algorithm of the in-house solver foamStar is proposed. From this analysis a modification is proposed in order to use the Multidimensional Universal Limiter for Explicit Solution (MULES) with a second-order backward time scheme. Then, successive studies are done in order to: verify the implementation of the backward scheme; define an efficient numerical set-up and adequate mesh structures for numerical wave simulations. The case studies are, Taylor-Green vortices, nonlinear regular wave propagating in a periodic domain, and finally, regular waves generated with relaxation zones considering numerical configurations close to what is used for naval applications. In the last part of this Thesis, a preliminary study is done simulating a containership with forward speed in head regular waves. The recommendations derived all along this thesis are also evaluated.
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 21 Figure 2.1 -Representation of the roll, pitch and yaw (φ , θ , ψ) rotations of boat referential (C g , ε x , ε y , ε z ) regarding to Galilean referential (O, e x , e y , e z )

  M b fluid , M b add , M b c are respectively the fluid, additional and constraint moments about C g expressed in B b . Defining the body wall δ Ω body , the formulations of the fluid force and moments in R b are:
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 22 Figure 2.2 -Relaxation-zone weight (w) distribution along a simulation domain

Figure 2

 2 Figure 2.3 -The SWENSE method decomposes the total field into an incident part and a complementary part
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 31 Figure 3.1 -Two neighboring control volumes sharing a face f from an unstructured 3D mesh
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 32 Figure 3.2 -Flux limiter Ξ as a function of r with TVD first-order and second-order regions

Figure 3 . 5 -

 35 Figure 3.5 -Face decomposition used for the calculations of surface areas and geometric-center of faces. With F the geometric center and F the barycenter of vertices.
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 36 Figure 3.6 -Cell decomposition used for the calculations of volume and geometric-center of cells. With P the geometric center and P the barycenter of face centers.

  Figure 3.7 -Face-swept volume decomposition used for mesh flux computation
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 38 Figure 3.8 -Two sub-face-swept decomposition required for mesh flux computation

  no additional terms are added in regions outside the transition zone.

  in the wet region (α > 0), even with a constant volume fraction, the flux used for the convection term in the momentum equation includes the contributions of α
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 3 Figure 3.9 -Simplified flowchart of the PISO loop

  results in the following equation where the values of p (n,m,k) P are the only unknowns:

  (n,m,k) P is used for the calculation of the velocity-flux φ (n,m,k) f and u (n,m,k) P using Eq. 3.117 and Eq. 3.116. Finally, at the end of a PISO iteration, the quantities u (n,m,k) f are calculated with the following relation:

  These boxes indicate the starting point of a given loop. The list of initial values used by the Loop (index 0) are connected to the corresponding box. {END, YES, NO} structures They correspond to steps verifying the end condition of a given loop. The variables connected to the YES box are the variables updated by the loop.
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 3 Figure 3.10 -foamStar global flowchart 76

  As explained, in OpenFOAM, the VOF propagation allows the use of Crank-Nicolson scheme with the MULES algorithm. The implementation of the Crank-Nicolson MULES consists in using the same method as for Euler MULES but defining differently the initial flux and the corrected flux. The initial flux is built introducing a mixed flux Φ CN f based on the idea of considering α equation with Crank-Nicolson time-scheme (seeSec. 3.3.2).

  Section 3.2, for the VOF equation resolution the Crank-Nicolson formulation differs from an implicit Euler formulation because of an explicit contribution of the volume-fraction flux of the previous time-step F (n-1) α f . On the other side, the backward formulation differs from Euler because of a contribution of the cell-center volume fraction of the penultimate computed time-step α (n-2) P

  Beside, considering a constant time step, the backward coefficients c n , and c n-2 are positive constants. Defining the positive constant γ = c n-2 c n , according to Def. 3.136 and Def. 3.139:
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 41 Figure 4.1 -Temporal convergence of the velocity and pressure error for various temporal schemes at t = 1 s with U256x256.
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 4 Figure 4.2stretch type mesh U16X64.
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 43 Figure 4.3twist deformation θ max = π applied on a U64X64 mesh.

  Figure 4.4 -Evolution of the maximal and average aspect ratios depending on the mesh resolution for various maximal angles of twist deformation.
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 45 Figure 4.5 -Evolution of the maximal and average non-orthogonality angle depending on the mesh resolution for various maximal angles of twist deformation.

  Figure 4.6 -Evolution of the maximal and average mesh skewness depending on the mesh resolution for various maximal angles of twist deformation.

  regular mesh from Tab. 4.2, the tested deformations are η ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.75, 1}. A representation of the mesh U32X32 deformed with η = 0.75 is shown in Figure 4.7.
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 4 Figure 4.7 -zigZag deformation applied on a U32X32 mesh.
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 48 Figure 4.8 -Evolution of the maximal and average aspect ratio depending on the mesh resolution for various coefficients of zigZag deformation.
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 49 Figure 4.9 -Evolution of the maximal and average non-orthogonality angle depending on the mesh resolution for various coefficients of zigZag deformation.
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 410 Figure 4.10 -Evolution of the maximal and average mesh shewness depending on the mesh resolution for various coefficients of zigZag deformation.
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 4 Figure 4.11 -Spatial convergence of the velocity and pressure error for various aspect ratios AR using the stretch deformation.

  Figure 4.12 -Spatial convergence of the velocity and pressure error for various maximal angles of twist deformation.
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 413 Figure 4.13 -Spatial convergence of the velocity and pressure error with and without OpenFOAM skewness corrector for various coefficients of zigZag.
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 414 Figure 4.14 -Spatial convergence of the velocity and pressure intrinsic error with and without OpenFOAM skewness corrector for various coefficients of zigZag.
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 51 Figure 5.1 -2D Periodic domain configuration for regular wave propagation.

  (a) Uniform regular mesh U64x64 (b) non-uniform regular mesh NU64x64
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 52 Figure 5.2 -Uniform and non-uniform mesh profiles used for periodic-wave propagation in periodic domain.
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 53 Figure 5.3 -Non-uniform stretched mesh NU65x256 with refinement zones identification.

  Figure 5.4 -Surface elevation profile with backward, Crank-Nicolson 0.95 and Crank-Nicolson 1 at t = 10T ; depending on the discretization with Cfl x ≈ 0.05; periodic wave H01; uniform mesh.

  Figure 5.5 -Regular wave horizontal velocity field in periodic domain with uniform mesh U256x256; ∆t = T /800.
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 56 Figure 5.6 -Regular wave dynamic pressure field in periodic domain with uniform mesh U256x256; ∆t = T /800.

  Figure 5.7 -Horizontal velocity profile with backward, Crank-Nicolson 0.95 and Crank-Nicolson 1 at t = 10T and at the crest of the wave; depending on the discretization with Cfl x ≈ 0.05; periodic wave H01; uniform mesh

  Figure5.9 -Iso-time-step view of the surface-elevation first-harmonic amplitude error at t = 37.5T depending on Courant number Cfl x for various time steps ∆t with backward and Crank-Nicolson 0.95; periodic wave H01; uniform mesh.

  Figure 5.10 -Iso-cell-size view of the surface-elevation first-harmonic amplitude error at t = 37.5T depending on Courant number Cfl x for various cell sizes ∆x with backward and Crank-Nicolson 0.95; periodic wave H01; uniform mesh.
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 5 Figure 5.11 -Total kinetic and potential energy in the domain over time with backward and Crank-Nicolson 0.95 for several time steps; periodic wave H01; uniform mesh U256x256.
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 5 Figure5.12 -Iso-time-step view of the surface-elevation first-harmonic amplitude intrinsic error at t = 37.5T depending on Courant number Cfl x for various time steps ∆t with backward and Crank-Nicolson 0.95; periodic wave H01; uniform mesh.

  Figure5.13 -Iso-cell-size view of the surface-elevation first-harmonic amplitude intrinsic error at t = 37.5T depending on Courant number Cfl x for various cell sizes ∆x with backward and Crank-Nicolson 0.95; periodic wave H01; uniform mesh.
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 5 Figure 5.14 -Surface-elevation first-harmonic amplitude error at t = 37.5T depending on cell discretization at fixed Courant number with backward and Crank-Nicolson 0.95; periodic wave H01; uniform mesh.

  Figure 5.15 -Iso-time-step view of the surface-elevation first-harmonic amplitude error at t = 37.5T depending on Courant number Cfl x for various time steps ∆t with Crank-Nicolson 0.95 MULES and S-MULES algorithms; periodic wave H01; uniform mesh.

  Figure 5.16 -Iso-time-step view of the surface-elevation first-harmonic amplitude error at t = 37.5T depending on Courant number Cfl x for various time steps ∆t with backward MULES and S-MULES algorithms; periodic wave H01; uniform mesh.

  Figure 5.17 -Regular wave horizontal velocity field in periodic domain with uniform and non-uniform meshes U128x128 and NU128x128; backward MULES; ∆t = T /400.

  Figure5.18 -Iso-time-step view of the surface-elevation first-harmonic amplitude error at t = 37.5T depending on Courant number Cfl x for various time steps ∆t for CrankNicolson 0.95 with Uniform mesh and non-uniform refined mesh; periodic wave H01; uniform mesh.

  Figure5.19 -Iso-time-step view of the surface-elevation first-harmonic amplitude error at t = 37.5T depending on Courant number Cfl x for various time steps ∆t for backward with uniform and non-uniform mesh; periodic wave H01; AR FS =1.

Figure 5

 5 Figure5.20 -Surface-elevation first-harmonic amplitude error at t = 37.5T depending on cell aspect ratio at free-surface (AR FS ) at various Courant number Cfl x for backward and Crank-Nicolson 0.95; periodic wave; non-uniform mesh.

  Figure 5.21 -Iso-time-step view of the surface-elevation first-harmonic amplitude error at t = 37.5T depending on Courant number Cfl x for various time steps ∆t with backward and Crank-Nicolson 0.95; periodic wave H01; uniform mesh; AR FS =1.

  Figure 5.22 -Iso-time-step view of the surface-elevation first-harmonic amplitude error at t = 37.5T depending on Courant number Cfl x for various time steps ∆t with backward and Crank-Nicolson 0.95; periodic wave H005; uniform mesh; AR FS =4.

  Figure 5.23 -Iso-time-step view of the surface-elevation first-harmonic amplitude error at t = 37.5T depending on Courant number Cfl x for various time steps ∆t with backward and Crank-Nicolson 0.95; periodic wave H001; uniform mesh; AR FS =8.

  Figure5.24 -Iso-cell-size view of the surface-elevation first-harmonic amplitude error at t = 37.5T and CPU time for various cell sizes ∆x with backward and Crank-Nicolson 0.95; periodic wave H01; non-uniform mesh; AR FS =1.

  Figure5.25 -Iso-cell-size view of the surface-elevation first-harmonic amplitude error at t = 37.5T and CPU time for various cell sizes ∆x with backward and Crank-Nicolson 0.95; periodic wave H005; non-uniform mesh; AR FS =4.

  Figure5.26 -Iso-cell-size view of the surface-elevation first-harmonic amplitude error at t = 37.5T and CPU time for various cell sizes ∆x with backward and Crank-Nicolson 0.95; periodic wave H001; non-uniform mesh; AR FS =8.

  Figure5.27 -Iso-cell-size view of the surface-elevation first-harmonic amplitude error at t = 37.5T and CPU time for various cell sizes ∆x with AR FS =4 and AR FS =8; periodic wave H001; non-uniform mesh; backward.
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 616 Figure 6.1 -2D domain dimensions used for pure wave propagation with Navier-Stokes model. (RZi1o2)

Figure 6

 6 Figure 6.3non-uniform stretched mesh NU32x128 used for wave propagation with relaxation zones.

Figure 6 . 4 -

 64 Figure 6.4 -Time histories of the surface elevation first-harmonic amplitude error, phase shift and wave periods for various time steps ∆t with backward and Crank-Nicolson 0.95; regular wave; H01; NU256x256 and NU128x128; Navier-Stokes model; domain RZi1o2.

Figure 6 . 5 -

 65 Figure 6.5 -Regular wave horizontal velocity field with backward time scheme at t = 10T ; NU256x256; ∆t = T /400; Navier-Stokes model; domain RZi1o2.

Figure 6 . 6 -

 66 Figure 6.6 -Regular wave vorticity magnitude field with backward time scheme at t = 10T ; NU256x256; ∆t = T /400; Navier-Stokes model; domain RZi1o2.

  Figure 6.7 shows the convergence of the first-harmonic amplitude error at fixed Courant numbers. As for the periodic wave study, two time-step/cell-size ratios are analyzed. Results with ∆t

Figure 6 . 7 -

 67 Figure 6.7 -Surface elevation first-harmonic amplitude error at t = 37.5T depending on cell aspect ratio at the free surface (AR FS ) for two Courant number Cfl x and for backward and Crank-Nicolson 0.95; Navier-Stokes model, domain RZi1o2.

6. 6 . 1

 61 Figure 6.8 shows a map of the norm of the vorticity field after ten periods using RANS with the k-ω-SST turbulence model from OpenFOAM. In this figure no vortices are noticeable.The reason is the turbulence production by the model where the vortices are created. The side effect is that this turbulent production damps the wave such that in the pure CFD zone the wave elevation is 70% damped after only ten periods, see Figure6.9

Figure 6 . 8 -

 68 Figure 6.8 -Regular wave vorticity magnitude field with backward time scheme at t = 10T ; NU256x256; ∆t = T /400, RANSE kω SST; domain RZi1o2.

Figure 6 . 9 -

 69 Figure 6.9 -Regular wave volume-fraction field with backward time scheme at t = 10T ; NU256x256; ∆t = T /400, RANS k-ω-SST; domain RZi1o2.

Figure 6 .

 6 Figure 6.12 -Regular wave vorticity magnitude field with backward time scheme at t = 10T ; NU256x256; ∆t = T /400, RANS fs-k-ω-SST; domain RZo3 (no inlet relaxation zone).

Figure 6 .

 6 Figure 6.13 -Regular wave vorticity magnitude field with backward time scheme at t = 10T ; NU256x256; ∆t = T /400, RANS fs-k-ω-SST, without inlet relaxation zone; domain RZo3.

Figure 6 .

 6 Figure 6.14 -Regular wave vorticity magnitude field with backward time scheme at t = 20Te; NU256x256; ∆t = T /400, RANS fs-k-ω-SST; domain RZo3.

Figure

  Figure 6.15, Fig. 6.16 and Fig. 6.17 are iso-time-step views of the surface elevation first-harmonic amplitude error from simulations of nonlinear regular waves with a steepness of 10%, 5% and 1%, respectively. In Fig.6.15 and Fig.6.16, the free surface cell aspect ratio are AR FS = 2 and AR FS = 4, respectively. They correspond to the recommendation from Tab. 6.5. For H001, because of the lack of spatial discretization with AR FS ≥ 8 is not convenient for the accuracy visualization. So, though it is not in the optimal range previously defined, AR FS = 4 is used in Fig.6.17. All the simulations are done using RANS fs-k-ω-SST models and the domain configuration RZo3. The colors represent the time resolution with respect to the encountered wave period T e . In these figures, for a given wave, V0 denotes the fixed frame with a null velocity V 0 = 0 m.s -1 and V1 denotes the frame moving toward negative

  Figure 6.15 -Iso-time-step view of the surface elevation first-harmonic amplitude error at t = 37.5T depending on Courant number Cfl x for various time steps ∆t with fixed and moving frame; RANS fs-k-ω-SST; H01; AR FS =2; backward.

  Figure 6.16 -Iso-time-step view of the surface elevation first-harmonic amplitude error at t = 37.5T depending on Courant number Cfl x for various time steps ∆t with fixed and moving frame; RANS fs-k-ω-SST; H005; AR FS =4; backward.

  Figure6.18 -Iso-cell-size view of the surface elevation first-harmonic amplitude error at t = 37.5T and CPU time for various cell sizes ∆x with fixed and moving frame; RANS fs-k-ω-SST; H01; AR FS =2; backward.

  Figure6.20 -Iso-cell-size view of the surface elevation first-harmonic amplitude error at t = 37.5T and CPU time for various cell sizes ∆x with fixed and moving frame; RANS fs-k-ω-SST; H001; AR FS =8; backward.

Figure 7 .

 7 Figure 7.1 illustrates the computational domain geometry and the boundaries used in the KCS study. The boundary conditions are specified in Table 7.5.

Figure 7 . 1 -

 71 Figure 7.1 -Numerical domain for KCS simulations

Figure 7 . 3 -

 73 Figure 7.3 -Side view of the mesh at the symmetry plane and on the hull; KCS simulation; The red box identifies the free-surface zone. Blue box is a zoom on the stern of the ship.

Figure 7 . 4 -

 74 Figure 7.4 -Top view of the mesh at z = 0 m; KCS simulation; colors identify some refinement zones.

Figure 7 . 5 -

 75 Figure 7.5 -Side views of the meshes used for simulations with calm water ; KCS; Fr=0.26

  Figure 7.6 -Wave elevation profile at y = L PP and at the symmetry plane (y = 0); KCS Fr = 0.26; regular head wave λ = 0.65L PP ; steepness ε = 1.6%

Figure 7 . 7 -

 77 Figure 7.7 -KCS heave and pitch 0 th , 1 st and 2 nd harmonic amplitude, Fr=0.26, head waves

Figure 7

 7 Figure 7.8 -KCS total resistance and added resistance, Fr=0.26, head waves

Figure 7 . 9 -

 79 Figure 7.9 -Comparison of the KCS wake in head wave (C4) using foamStar and foamStar-SWENSE

Figure 7 .

 7 Figure 7.10 -KCS wake in irregular head wave (SS6), Fr=0.26

Figure 7

 7 Figure 7.12 -Side view of the improved mesh at the symmetry plane and on the hull; KCS simulation; The red box identifies the free-surface zones. Blue box is a zoom on the stern of the ship.

Figure 7 .

 7 Figure 7.13 -Top view of the improved mesh at z = 0 m; KCS simulation; colors identify some refinement zones.

Figure 7

 7 Figure 7.14 -Relaxation zone configuration for KCS simulations without inlet forcing zone

  Figure 7.15 -Wave elevation profile at y = L PP and at the symmetry plane (y = 0) using Euler, second-order backward and Crank-Nicolson 0.95 time schemes; KCS Fr = 0.26; regular head wave λ = 0.65L PP ; steepness ε = 1.6%; Improved configuration.
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 718 Figure 7.18 -Time history of the pressure resistance and viscous resistance coefficients using Euler, second-order backward and Crank-Nicolson 0.95; KCS Fr = 0.26; regular head wave λ = 0.65L PP ; steepness ε = 1.6%.

Figure 7 . 19 -

 719 Figure 7.19 -Time history of the heave and pitch using Euler, second-order backward and Crank-Nicolson 0.95; KCS Fr = 0.26; regular head wave λ = 0.65L PP ; steepness ε = 1.6%.
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 81 Figure 8.1 -BVS M&O foamStar setup procedure

Figure 8 . 2 -

 82 Figure 8.2 -Initial residual of the pressure equation and linear solver iteration distribution along two time steps; KCS in head regular wave; Fr=0.26; 10 PIMPLE iter.; 5 PISO iter.

  PIMPLE iteration is set as the final one for the current time step.

Figure 8 .Figure 8 . 3 -

 883 Figure 8.3 shows the initial residuals of the pressure equation at the same time step than in Fig. 8.2 but using the new PIMPLE controller with ε SPIM err

Figure 8 .= 1 .

 81 Figure 8.4 shows the initial residuals of the pressure equation obtained by using the new PIMPLE controller with ε SPIM err

Figure 8 . 4 -

 84 Figure 8.4 -Initial residual of the pressure equation and linear solver iteration distribution along two time steps; KCS in head regular wave; Fr=0.26; ε SPIM err

Figure 8 . 5 -= 1 ;

 851 Figure 8.5 -Initial residual of the pressure equation and linear solver iteration distribution along two time steps; KCS in head regular wave; Fr=0.26; ε SPIM err = 1; ρerr FSI = 0.001; 5 PISO iter.

Figure 8 . 6 -Figure 8 . 7 -

 8687 Figure 8.6 -Time history of the pressure resistance and viscous resistance coefficients using various PIMPLE controllers; KCS Fr = 0.26; regular head wave λ = 0.65L PP ; steepness ε = 1.6%.
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 31 Modeled quantities evaluated with VOF-RANSE resolution

	Physical quantity	Description	Unit	foamStar notation
	u	Fluid velocity	[m.s -1 ]	U
	p	Pressure	[Pa]	p_rgh
	α	Volume-fraction	[ ]	alpha
	ρ	Volumetric mass density	[kg.m -3 ]	rho
	ν	Kinematic viscosity	[m 2 .s -1 ]	nu
	ν t	Turbulent kinematic viscosity [m 2 .s -1 ]	nut
	k	Turbulent kinetic energy	[m 2 .s -2 ]	k
	ω	Turbulent dissipation rate	[s -1 ]	omega
	VOF The VOF convection equation is:		

Table 3 .

 3 2 -Synthesis of notations used for the spatial discretization of a field ψ at a cell P

	Numerical values	Approximated physical values	Schemes	Involved variables
	ψ P	ψ at cell-center P		
	ψ f	ψ at a face-center		
	∇ψ|			

P ∇ψ at cell-center P Sec. 3.1.8 ψ P , ψ N (all neighbours of cell P) ∇ψ| f ∇ψ at a face-center Sec. 3.1.6 ψ P , ψ N (neighbour sharing face f)

Table 3

 3 

.4 -Numerical fields updated by the VOF resolution

Table 3 .

 3 7 -Tested temporal time schemes along the numerical studies. Tested surface normal gradient schemes along the numerical studies.

	Numerical parameter	Reference values
	interpolationSchemes	default	linear
		default	Gauss linear
		div(rhoPhi,U)	Gauss linearUpwindV grad(U)
	divSchemes	div(phi,alpha)	Gauss vanLeer
		div(phir,alpha)	Gauss upwind
		div(rhoPhi,k)	Gauss linearUpwind limitedGrad
		div(rhoPhi,omega)	Gauss linearUpwind limitedGrad
	laplacianSchemes	default	Gauss linear corrected
	Numerical parameter	Reference values
	gradSchemes	default	cellLimited leastSquares 1
	d) Surface normal gradient schemes	
	Table 3.9 -Numerical parameter	Reference values
	snGradSchemes	default	corrected
	laplacianSchemes	default	Gauss linear corrected
	3.6.2 Numerical algorithms	
	a) Matrix-system resolution		

c) Cell-centered gradient schemes Table

3

.8 -Tested cell-centered gradient schemes along the numerical studies.

Table 3 .

 3 10 -Tested matrix-system resolution parameters along the numerical studies.

	Solved field	Parameter	Reference values
		solver	GAMG
	p_rgh	smoother	DIC
		tolerance	1e-10
		relTol	0
		solver	PBiCGStab
	U; k; omega	preconditioner	DILU
		tolerance	1e-10
		relTol	0
		solver	smoothSolver
	alpha	smoother	symGaussSeidel
		tolerance	1e-10
		relTol	0
		solver	GAMG
	cellDisplacement	preconditioner	GaussSeidel
		tolerance	1e-7
		relTol	0
	b) PIMPLE and PISO algorithm	

Table 3 .

 3 11 -Tested PIMPLE and PISO parameters along the numerical studies.

	Parameter	Reference values
	momentumPredictor	yes
	nOuterCorrectors	10
	nCorrectors	3
	nNonOrthogonalCorrectors	1
	correctPhi	no
	c) VOF resolution	

Table 4 . 1 -

 41 Table 4.1 synthesizes the set of time steps (from 0.004 s to 0.4 s) with the associated Courant Number Cfl x = U ref ∆t ∆x . This test matrix is directly extracted from the work of[START_REF] Kim | Numerical improvement and validation of a naval hydrodynamics CFD solver in view of performing fast and accurate simulation of complex ship-wave interaction[END_REF]. Test matrix for Taylor-Green time-convergence study with U256x256 mesh.

	Time step ∆t [s] Courant Number Cfl x
	0.004	0.16
	0.01	0.41
	0.02	0.81
	0.04	1.63
	0.08	3.24
	0.1	4.07
	0.125	5.09
	0.2	8.15
	0.25	10.2
	0.4	16.3

Table 4 .

 4 2 -Regular meshes used on the Taylor-Green vortices case.

	Name	Horizontal discretization N x Vertical discretization N y ∆t [s]
	U8X8	8	8	0.016
	U16X16	16	16	0.008
	U32X32	32	32	0.004
	U64X64	64	64	0.002
	U128X128	128	128	0.001
	U256X256	256	256	0.0005

Table 4 .

 4 3 -Stretch meshes used on the Taylor-Green vortices case.

	Name	N x	N y AR ∆t [s]
	U8X16	8	8	2	0.016
	U16X132	16	32	2	0.008
	U32X64	32	64	2	0.004
	U64X128	64 128	2	0.002
	U128X256 128 256	2	0.001
	U8X32	8	32	4	0.016
	U16X64	16	64	4	0.008
	U32X128	32 128	4	0.004
	U64X256	64 256	4	0.002
	U8X64	8	64	8	0.016
	U16X128	16 128	8	0.008
	U32X256	32 256	8	0.004
	U8X128	8	128 16 0.016
	U16X256	16 256 16 0.008
	U8X256	8	256 32 0.016

Table 4 .

 4 4 -Influence of the mesh deformations on the mesh quality

	Deformation Aspect ratio Non-orthogonality Skewness
	stretch	High	0	0
	twist	Small	High	Small
	zigZag	Small	High	High
	4.3.2 Results			

a) Stretched mesh (aspect ratio influence)

Table 5 . 1 -

 51 Regular wave characteristics.

	Item	Unit H001 H005 H01
	Depth (D)	[m]	1	1	1
	Wavelength (λ )	[m]	1	1	1
	Wave period (T )	[s]	0.80	0.79	0.76
	Wave height (H)	[m]	0.01	0.05	0.1
	Wave steepness (ε = H/λ )		1 %	5 % 10 %

Inlet Outlet Top B o t t o m W av e di re ct io n

  

Table 5 .

 5 

	Field	Inlet\Outlet	Bottom	Top
	U	cyclic	slip	pressureInletOutletVelocity
	p_rgh	cyclic	fixedFluxPressure	totalPressure
	alpha	cyclic	zeroGradient	inletOutlet

2 -Boundary conditions used for wave propagation in periodic domain.

Table 5 .

 5 3 -Numerical parameters studied with regular wave propagation in periodic domain.

	Numerical parameter	Tested values
		CranckNicolson 1
	ddtScheme {default}	CranckNicolson 0.95
		backward
	MULESType	MULES S-MULES
	deltaT	

Table 5 .

 5 6 -Optimal aspect ratio for various wave steepness.

	Wave Steepness Optimal aspect ratio
	H001	1%	8 or 16
	H005	5%	4 or 8
	H01	10%	1 or 2
	5.5.2 Comparison of the errors with backward and Crank-Nicolson 0.95
	schemes		

Table 6 .

 6 2 -Boundary conditions used for wave propagation with relaxation zones.

	Field	Inlet\Outlet	Bottom	Top
	U	waveVelocity	slip	pressureInletOutletVelocity
	p_rgh fixedFluxPressure fixedFluxPressure;	totalPressure
	alpha	waveAlpha	zeroGradient	inletOutlet
	k	zeroGradient	zeroGradient	zeroGradient
	omega	zeroGradient	zeroGradient	zeroGradient
	nut	calculated	calculated	calculated
	6.2 Error definition		
	6.2.1 Amplitude error		

Table 6 .

 6 3 -Numerical parameters studied with regular wave propagation with relaxation zones.

	Numerical parameter	Tested values
		CranckNicolson 0.95
	ddtScheme {default}	backward
		laminar (NS)
	simulationType (Model)	RAS kOmegaSST (RANS)
		RAS fsKOmegaSST (RANS)

Table 6 .

 6 4 -Studied configuration of meshes for the regular wave propagation with relaxation zones.

	Wave heights	T /∆t	Mesh type	Mesh label	λ /∆x λ /∆z AR FS
				NU32x32	32	32
			Non-uniform	NU64x64	64	64
			regular			1
	H = 0.1 m H = 0.05 m H = 0.01 m	{25, 50, 100, 100, 200, 400}			

Table 6 .

 6 5 -Optimal aspect ratio for various wave steepness with relaxation zone and Navier-Stokes model.

	Wave Steepness Optimal aspect ratio
	H001	1%	8 or (16)
	H005	5%	4
	H01	10%	2

Table 7 .

 7 4 -Regular Waves conditions for KCS model scale hull

	Case λ [m]	λ L PP	H [m] T [s] T e [s]	ε
	C0			Calm water
	C1	3.949 0.651 0.062 1.591 0.878 0.016
	C2	5.164 0.851 0.078 1.819 1.063 0.015
	C3	6.979 1.150 0.123 2.115 1.311 0.018
	C4	8.321 1.371 0.149 2.309 1.479 0.018
	C5	11.840 1.951 0.196 2.754 1.873 0.017

Table 7 .

 7 5 -Boundary conditions used for naval simulation in head waves.

	Field	Inlet\Outlet	Bottom	Top
	U	waveVelocity	slip	pressureInletOutletVelocity
	alpha	waveAlpha	zeroGradient	inletOutlet
	p_rgh fixedFluxExtrapolatedPressure	totalPressure
	k		zeroGradient
	omega		zeroGradient
	nut		calculated

Table 7 .

 7 7 -Mesh information for KCS in calm water casesL PP /∆x FF ∆x FF /∆x WF ∆x FF /∆x NF L PP /∆ VL Nb Cells

	Coarse	4	32	256	3035	1.7M
	Medium	6	32	256	3035	3.7M
	Fine	8	32	256	3035	6.7M

Table 7 .

 7 8 -Calm Water results comparison

		Coarse Medium	Fine	EFD
	C x × 10 3 Err	3.973 +3.60% +2.88% +2.44% 3.946 3.929	3.835

Table 7 .

 7 9 -Mesh information for KCS in head regular waves

	Mesh λ /∆x λ /∆y H/∆z	λ ∆z H∆x	Nb Cells Related case
	M1	62	8	16	3.9	3.7M	C1
	M2	82	10	20	4.1	3.7M	C2
	M3	55	14	31	1.8	4.3M	C3
	M4	66	16	19	3.5	3.4M	C4
	M5	47	23	25	1.9	3.3M	C5

Table 7 .

 7 10 -Ratio H CFD /H at the CoG

		C1	C2	C3	C4	C5
	foamStar	0.60 0.66 0.75 0.80 0.84
	foamStar-SWENSE 0.84 0.87 0.88 0.92 0.94

Table 7 .

 7 11 -KCS Total resistance results, (FSS) exponent stands for foamStar-SWENSE and (FS) exponent for foamStar solver

	Case C

Table 7 .

 7 12 -Irregular sea state (SS6) characteristics Scale H s [m] T p [s] H s /λ p

	Full Model 0.132 2.0145 5.0 12.4	0.021

Table 7 .

 7 

	Numerical parameter	Tested values
			Euler
		ddt(U)	
			CranckNicolson 0.95
	ddtScheme	ddt(rho,U)	backward
		ddt(rhoPhi,omega)	Euler
		ddt(rhoPhi,k)	
	simulationType	RAS kOmegaSST
		deltaT	T e /200

13 -Improved numerical configuration parameters for the KCS in head regular wave

Table 7 .

 7 14 -Ratio H CFD /H at the CoG in the case C1 using the improved configuration

	EULER CN95 BCK
	H CFD /H 0.577 1.004 0.997
	Figure

Table 8 . 1 -

 81 Computational cost of simulations using various PIMPLE controller methods and with a maximum of 10 PIMPLE iterations per time step.

		No control ε SPIM err	= 0.1 ε SPIM err	= 1	ε SPIM err and ρ FSI err = 0.001 = 1
	CPU time (×10 4 ) [s]	5.512	2.254	1.086	1.882

or interFoam that is a twin solver. interDymFoam and interFoam are joined under the name interFOAM for recent OpenFOAM versions

In practice u r is used as a numerical corrector and its definition depends on the needs. (see Sec. a))

In the current foamStar implementation, for a moving referential, the acceleration is not taken into account during the body motion resolution. The reference frame R D is assimilated to a Galilean reference frame R 0 . Consequently the body motion calculation is only valid out off acceleration phases.

a monotonic function in space at time t remains monotonic at time t + ∆t

An hydroelastic model is also implemented in foamStar[START_REF] Seng | Global hydroelastic model for springing and whipping based on a free-surface CFD code (OpenFOAM)[END_REF] 

More details are given in the following.

The OpenFOAM-5 backward scheme was slightly modified due to a non-accurate scheme formulation for the first time-step in the context of this study.

SF exponent denotes the Stream-Function term

It is not formally second-order because Crank-Nicolson 0.95 is not (see Sec. 3.2 for more details)

for more detail see Sec.

2.3.1 2. The reasons behind this choice are detailed in the following.

The ratio between the size of two neighboring cells.

Here "validity" does not refer to "Validation" from V&V procedures

SPIM exponent stands for "Successive PIMPLE".

.D. coasts closer to the Sea Shanty world. More generally, I would like to thank the LHEEA members for their kindness and the warm atmosphere in the laboratory. And thank you to the BV-M&O team for the time spent working together with the research Chair ECN-BV.

our successes in this long trip that is the Ph

TAYLOR-GREEN VORTICES

The objective this first study is to verify the order of convergence of a set of temporal and spatial schemes using a 2D mono-fluid problem and for various mesh characteristics. The 2D viscous Taylor-Green vortices is a standard unsteady mono-fluid case commonly used for the qualitative analysis of numerical schemes; this is because, with a given initial condition, the analytic solution of the incompressible Navier-Stokes equations is known for this problem, in which the field is unsteady and rotational.

Case definition

The simulated case is the same as the one used by [START_REF] Kim | Numerical improvement and validation of a naval hydrodynamics CFD solver in view of performing fast and accurate simulation of complex ship-wave interaction[END_REF]. The 2D computational domain is in the (x,y) plane with coordinates x, y ∈ [-π, π]. The boundary conditions are periodic (cyclic type) at each side of the domain. The kinematic viscosity of the fluid is given as ν = 2π m 2 .s -1 and the density as ρ = 1 kg.m -3 . Defining u x and u y as the components coordinates of the velocity u, respectively along x and y axis, the initial conditions are:

With these initial conditions, the analytical solution at time t is: 5.9 is an iso-time-step view when Fig. 5.10 is an iso-cell-size view. In Fig. 5.9, the solid dark lines connect the Crank-Nicolson 0.95 data corresponding to a same time step when in Fig. 5.9, they connect the data corresponding to a same cell size. The same applies with the dark dotted lines and the backward scheme. These two iso-time-step view and iso-cell-size view representations highlight the spatial and temporal convergence, respectively. In these figures, two grey dashed lines represent the order-one and order-two slopes. 

Simulation in fixed frame with Navier-Stokes model

The first analysis is carried out using the Navier-stokes (NS) model, i.e. direct use of the Navier-Stokes equations without any turbulence modeling, and the domain configuration RZi1o2. The time histories are discussed first, then the phenomenon of vortices generation due to the relaxation zone and finally the error convergence and the influence of the free-surface cell aspect ratio (AR FS ) are analyzed. 

Time histories

Removing the inlet relaxation zone

In order to remove the perturbations induced by the inlet relaxation zone, the domain RZo3 is tested. With RZo3 there is no inlet relaxation zone and the wave is only generated by the inlet boundary condition. The air velocity field imposed at the boundary is still null but it is expected that the Kelvin-Helmholtz instabilities and thus the vortices production would be limited. Since shearing between waves and the incorrect zero-velocity condition in air is only acting on one boundary point rather than on a contact surface.

Figure 6.12 and Figure 6.13 show the norm of the vorticity and the horizontal wave field, respectively, after ten periods. The simulations are done using RANS fs-k-ω-SST turbulent model. Fig. 6.12 shows the absence of vortices production at the inlet. Some are still produced at the outlet. In Fig. 6.13 the steady-state-like horizontal velocity field is established from x = -4.5 m to x ≈ 3 m.

Removing the inlet relaxation zone prevents the production of non-physical vortices and then the turbulence production at the inlet of the domain. So, for naval applications with forward In Fig. 6.15 presenting the wave H01, an increase of the error is noticeable when the cell size decreases for ∆t ≥ T e /100, with both the fixed and moving frame. With the moving frame the accuracy of ∆x = λ /32 is greater than with a fixed frame. Nevertheless, with ∆t ≤ T e /200 the error stagnates regardless of the time and space resolutions, for this moving frame. An hypothesis that might explain this phenomenon is that the gain of energy identified in Sec. 5.4 could be amplified by the increase velocity magnitude due to the forward speed. Then, this gain of energy due to non-conservation would counterbalance the numerical damping. The saturation of the error might also be caused by an increase of the Courant number due to the forward speed. The vortices production amplified with the forward speed is also likely to be involved. Exploring these tracks is left to future work.

Overall, the error with the forward speed V1 is smaller than the error with fixed frame V0 for more than 80 % of the tests. However, as all the identified effects are not well quantified, no conclusions about the accuracy gain can be done. With H005 (Fig. 6.16) as with the other waves, for a given time step the error with moving frame simulation does not decrease when the cell size decreases. However, the time step influences are closer to the expectations, the smaller the time step the smaller the erro is.

Finally, with H001 (Fig. 6.17) the non decreasing error regardless of the time and space resolution can be noticed and with this wave, for the finest resolutions the error with forward revealing its significant influence on the accuracy of the wave propagation. Some optimal aspect ratios depending on the wave steepness have been identified. CHAPTER 7

NAVAL SIMULATION IN HEAD WAVES

In this chapter the numerical analysis are conducted using the Korea Research Institute for Ships and Ocean Engineering (KRISO) Container Ship (KCS). Numerical results obtained with the foamStar and foamStar-SWENSE solvers are compared to experimental data in regular wave conditions with 3DoF motions and forward speed. A seakeeping simulation in a rough irregular sea state is conducted using foamStar-SWENSE in order to highlight the robustness of the solver.

Case definition

This section presents the cases studied all along this chapter. Both the geometry and the regular wave conditions come from the case 2.10 of the CFD Tokyo 2015 Workshop [START_REF] Larsson | A workshop on CFD in ship hydrodynamics[END_REF].

Geometry and test conditions

The studied geometry is a scaled model (1:37.89) of the KCS. This ship is a modern container ship with a bulbous bow used in many numerical and experimental investigations. The main features of the KCS geometry at full and model scale are given in Table 7.1. The forward speed condition is presented in Tab. 7.2 together with the associated non dimensional numbers computed in the experimental conditions. The six sea conditions from case 2.10 of the Tokyo 2015 workshop are treated. One is a calm water condition and five are regular head waves. These conditions are detailed and labeled in Table 7.4 where notations are λ for the wavelength, T for the period, T e for the encountered the wave period, H for wave height and ε = H/λ for the steepness. 7.6 presents some numerical parameters selected for this study. When this study was conducted, the backward MULES scheme was not available and the Crank-Nicolson 0.95 scheme caused some simulations to fail. Consequently, for all the simulations presented in this section, only the Euler time scheme is used. Besides, the turbulent model used is not fs-k-ω-SST but k-ω-SST. The time steps are fixed to ∆t = T e /200.