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CHAPTER 1

INTRODUCTION

Seakeeping is a predominant issue for engineering offices, shipyards, and classification
companies. The predictions of motions in waves and additional resistance due to waves are
key elements of ship design. It comes into play for performance analyses, ship consumption
optimization in order to limit greenhouse gas emissions, and equipment and personnel safety
improvement. Both experimental and numerical studies can be used for ship-performance
evaluation. Nowadays, naval architects are increasingly using numerical simulations for ship
design and experimental data are largely used as references for numerical validation. Two main
types of numerical methods can be distinguished. The first category is the low-fidelity one. This
category encompasses methods based on simplified mathematical model for which analytic
solutions exist or which can be numerically solved with small computational cost. The second
category is the high-fidelity one. High-fidelity methods require the use of costly numerical
solver but they provide an higher accuracy in modeling complex flows, with no simplification
of the mathematical model. The term Computational Fluid Dynamics (CFD) is commonly used
to name the high-fidelity methods.

First industrial application of CFD in the marine industry was the evaluation of
calm water resistance. Thanks to advances in computer technology, and the improvement of
numerical solvers, the CFD is now commonly used for problems with waves such as seakeeping
and in particular the evaluation of added resistance. Today, for naval industry, the objective is
to get efficient numerical models able to simulate the ships motions and loads from the calm
water condition to complex irregular sea-states condition. The work done by Sigmund and Peric
(2018) and Kim et al. (2022b) are some examples of what is at stake in this PhD. In order to meet
the objective, one can identify three key points for the evaluation of computational methods. The
first one is the efficiency of the codes for both ship motion and sea-state modeling. The second
one is the adequacy of the software’s capabilities with the industry’s needs. And the last one is
the need for clear recommendations and procedures for targeted applications.
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1.1 Previous and related researches

The definition of the scope of this Ph.D. starts by the choice of the numerical solvers.
This choice is motivated by the industrial context of the present work and by the previous
and related research in the fields of added resistance evaluation and seakeeping. A brief
introduction to the mathematical and numerical models from the literature is given in the
following. Besides, an overview of the solver used along this Ph.D. is done. Finally, this section
ends with specifications on the Verification and Validation process needed for the evaluation of
the selected mathematical model and numerical method.

1.1.1 Choice of mathematical models

The first step towards numerical simulation is the choice of a mathematical model
describing the physics of the studied problem. In naval engineering the models used are derived
from Navier-Stokes equations. The first mathematical model used for seakeeping, calm water
resistance and added resistance was the potential flow theory. Numerical methods based on the
potential flow theory were developed from the 1960’s, they fall into the low-fidelity category.

Nowadays, the potential flow theory is still used for a wide range of applications:
added resistance (see e.g. Simonsen et al., 2013; Hizir et al., 2019; Zhang and El Moctar,
2019); seakeeping and maneuvering (Skejic and Faltinsen, 2008; Subramanian and Beck, 2015;
Kianejad et al., 2019, see e.g.); self propulsion (Mofidi et al., 2018, see e.g.) ...

For instance, due to its low computational cost, the potential flow method is suitable for
hull optimization process. In fact, optimization process leads to numerous simulations so the
exclusive use of costly CFD methods is yet generally too expensive for industrial applications.
Some methods use potential flow solvers based on boundary element methods with optimization
algorithms (see e.g. Feng et al., 2022). Some other methods, coupling high and low-fidelity
codes, benefit from the reduced computational cost of potential flow models using it as the
low-fidelity component in the optimization process (see e.g. Serani et al., 2021).

For both model and full-scale ships, the flow around the hulls is turbulent. So, for
high-fidelity naval simulations, the Reynolds Averaged Navier Stokes (RANS) model is
commonly used. This model allows more reliable predictions thanks to the direct evaluation of
viscous drag for the ship resistance problem and the inclusion of additional physical phenomena
linked to viscosity such as the influence of vorticity or the interactions between the viscous wake
and the waves. The first solvers based on RANS Equations (RANSE) have been developed in
the 1990’s, initially for the ship resistance problem in calm water (see e.g. Kodama et al., 1994),
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and later in the 2000’s for the seakeeping problem (see e.g. Hino, 2005).
An alternative model called Large Eddy Simulation (LES) is sometimes used in order

to model accurately turbulent phenomena in the air and massively separated flows. As the LES
simulation imposes very high computational cost, the Detached-Eddy Simulation (DES) method
can be used. It combinesthe LES method far from the body and the RANS method near to it (see
e.g. Spalart, 2009). It is employed for instance for accurate ship airwake computations (see e.g.
Forrest and Owen, 2010). The application of Navier-Stokes equations without specific models
for the turbulence is called the Direct Numerical Simulation (DNS). In such a case, the cell size
must be sufficiently small to track all vortices. For naval applications, this method would imply
an enormous and unachievable computational cost.

For the present work, because of the objectives and the physical phenomena of interest,
the RANS model applied to multi-phase incompressible flow has been chosen.

1.1.2 Choice of the numerical solver

For the numerical resolution of the RANSE, several methods of discretisation are
existing. The two principal are the Finite Difference (FDM) and the Finite Volume Methods
(FVM). A third one is the Finite Element Method (FEM) that is nowadays not often used
for RANSE resolution. Over the past few years, FVM has become the standard of CFD for
naval applications. This method appears to be well adapted for complex flow simulations
around offshore structures or ships mixing accuracy and reasonable computational cost. Major
commercial CFD codes such as Simcenter STAR-CCM+®, Ansys fluent® or Fine/Marine® are
based on FVM. For academic research but also more and more in the industry, the open-source
library solver OpenFOAM® is widely used. This open-source library is developed since the
beginning of the 2000’s (OpenFOAM, 2022b; Jasak et al., 2007b). Different versions of this
solver are available. The two main structures providing releases of OpenFOAM® are OpenCFD
Limited and OpenFOAM Foundation. The main developer and manager of OpenFoam®

on behalf of the OpenFOAM Foudation is CFD Direct. Bureau Veritas Marine&Offshore
(BV-M&O) and the research Laboratory in Hydrodynamics, Energetics and Atmospheric
Environment (LHEEA) have co-developed for a few years a solver named foamStar based on the
OpenFOAM® library. The current version of foamStar is based on the OpenFOAM-Foundation
OpenFOAM-5 release.

OpenFOAM software integrates different numerical solvers. foamStar is based on
the two-phase incompressible-flow RANSE solver interDymFoam. This solver is widely
used in academic research for naval applications with unsteady multi-phase flows. With
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interDymFOAM, the multi-phase flow model is based on the Volume-Of-Fluid (VOF) method
proposed by Hirt and Nichols (1981). Recent works are done using solvers based on
interDymFoam 1. To name but a few, Hu et al. (2016) deals with numerical wave tank and
wave-structure interaction, Larsen and Fuhrman (2018) addresses turbulence models and wave
propagation, Li et al. (2018a) is about wave-structure interaction, Larsen et al. (2019) addresses
the accuracy of interFoam for wave-propagation simulations.

To fullfill the objectives the solver has to allow accurate wave generation and body
motions calculations. These features are provided by foamStar.

Wave generation Efficient seakeeping analyses and added resistance evaluation require
efficient numerical wave generation. The forcing/relaxing zone method is implemented in
foamStar. Its implementation is based on the wave2foam library (Jacobsen et al., 2012). Waves
profile can be generated with several potential flow models. Analytical regular waves are
directly computed in foamStar’s code using the stream-function theory (Rienecker and Fenton,
1981) and irregular sea-states are generated using external tools HOS-NWT (Ducrozet et al.,
2012) and HOS-Ocean (Ducrozet et al., 2016) developed by the LHEEA. These tools are based
on the High-Order-Spectral (HOS) method (West et al., 1987; Dommermuth and Yue, 1987).

The evaluation of the accuracy of foamStar for wave generation has been done by Choi
et al. (2020) and more recently by Kim et al. (2022a).

Body motions and wave structure interactions The coupling of the fluid solver with 6
Degrees of Freedom (DoF) body motion exists in OpenFOAM-5 but some modifications and
improvements have been done in foamStar to take into account hydro-elastic fluid-structure
interactions for slamming, springing, and whipping study (see e.g. Seng, 2012; Seng et al.,
2014; Benhamou et al., 2018). That foamStar 6 DoFs solver is also well adapted for seakeeping
studies and wave structure interactions (see e.g. Seng et al., 2017; Kim, 2021; Aliyar et al.,
2022). For the present work, the bodies are assumed to be rigid.

SWENSE method and foamStar-SWENSE For naval simulation with waves, another
method has to be distinguished from standard RANSE resolution. This method is based on
the Spectral Wave Explicit Navier-Stokes Equations (SWENSE). It consists of decomposing
RANSE into an incident part and a complementary part. The incident part represents the

1. or interFoam that is a twin solver. interDymFoam and interFoam are joined under the name interFOAM
for recent OpenFOAM versions
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incident nonlinear wave field based on an inviscid flow model solving the potential flow
equations. The complementary part encompasses all the radiation and diffraction phenomena
including the viscous flow effects. Thanks to this decomposition, the solution of the incident
part of the equations is obtained by potential flow theory with already mentioned stream
functions and HOS methods. Only the complementary part is solved using CFD methods.
foamStar-SWENSE is the solver based on foamStar using the SWENSE method. The benefit
of such a method is that the discretization of the simulation domain is only dedicated to
the solution of the complementary field and even with coarse meshes, the incident field
propagates efficiently. Consequently, mesh refinement far from the body can be coarser than
the one required by a standard RANSE implementation. This leads to a significant reduction in
computational cost. Works on SWENSE implementation into CFD solvers have been done in
the past on single-phase FDM solver named ICARE-CFD (Ferrant et al., 2003; Luquet et al.,
2007; Monroy et al., 2011; Reliquet et al., 2014). More recently, the SWENSE method was first
and partly adapted to the two-phase FVM solver by Vukcevic (2016) in foam-extend 3.1 (2004),
an add-on library of OpenFOAM. The implementation of foamStar-SWENSE was carried out
by Li (2018). Choi (2019), (Li et al., 2021) studied the efficiency of foamStar-SWENSE for
regular wave generation and fluid-structure interactions in regular waves without forward speed.
Irregular wave propagation, naval seakeeping with 2 DoFs, and added resistance studies have
been successfully performed by Kim (2021) using Diagonally Implicit Runge-Kutta (DIRK)
schemes implemented by him in both foamStar and foamStar-SWENSE.

1.1.3 Evaluation of the performances of a solver

In order to evaluate both the mathematical models and numerical methods considered
in the thesis, several Verification and Validation processes exist in the literature. Firstly, the
selection of mathematical models depends on the studied physics, so, considering specific
applications, some specificity in the models influence their validity a lot. For instance, with
the RANSE model, several turbulence models are available and for a given study, it is necessary
to select the most appropriate through validation procedures. As the models are coded in a
numerical solver, the method of implementation impacts the accuracy of the simulation. Even
with a theoretically valid physical model, it is necessary to verify the numerical implementation
and the case-designing method. So, hand in hand with the validation, the verification process
has to be conducted. This Verification and Validation procedure (V&V) is a keystone of CFD.
For numerical simulations, V&V procedures have been discussed over the last three decades.
Several approaches have been established, depending on the factors of errors taken into account
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and the used statistical models. One of the pioneering article of the definition and application
of V&V procedures for naval CFD was Coleman and Stern (1997). This work was motivated
by the growth of interest in editorial policies of scientific journals or international research
organizations about the quantification of uncertainties and errors in CFD. The objective was
to reach a more rigorous methodology for the accuracy assessment, see Celik (1993). Another
significant actor in the development of V&V standards is Patrick J. Roache. He was one of the
first to clarify the methodologies of Verification and Validation (Roache, 1998). Nowadays, a
standard validation process can be found in McHale et al. (2009) with additional commonly
used simplifications. Various recent discussions on this process can be found in the literature,
the V&V procedure proposed by Eça and Hoekstra (2014) is frequently used for naval CFD.

1.2 Present Contributions

This Ph.D. is part of the research conducted by the Bureau Veritas Marine&Offshore
and Ecole Centrale Nantes. The objective of the present work is to develop solvers and
methodologies in order to improve computational time and accuracy with regard to seakeeping
and added resistance.

foamStar algorithm exploration The first contribution is the production of a synthetic
workflow of the algorithm of foamStar. This workflow refers to the expanded
implemented equations, and the structure of the implemented discretization is detailed.
The corresponding section is expected to be the initial support for a clear documentation
that would be used by the co-workers from of BV-M&O, BVS-M&O and the LHEEA.

Numerical improvement The present work proposes an extension of a numerical method
dedicated to the resolution of the VOF equations. This development allows the use of
second-order backward schemes for VOF convection. This improvement raises of the
accuracy and/or numerical stability of foamStar for wave propagation and ship-wave
interactions.

Best practices for industrial naval applications A progressive step by step analysis of
foamStar accuracy is conducted all along the numerical studies reported in this document.
This leads to the definition of best practices for naval simulations in waves matching with
the industrial expectation for accuracy and computational cost.

Assement of foamStar accuracy for naval simulation in head wave A preliminary study of
the solver performances simulating ship motions in head regular and irregular waves is

6
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performed.

1.3 Thesis outline

Chapter 2 This chapter presents the mathematical models describing the physics that is
simulated with foamStar. The two-phase RANSE and SWENSE are described as well
as the body motions and the wave generation models.

Chapter 3 This chapter details the numerical implementation of foamStar. The numerical
schemes necessary to the resolution are described. Then, the foamStar algorithm solving
the set of equations exposed in Chapter 2 is explained and a representation of the foamStar

flow-chart is built. Finally, the implementation of a second-order backward time scheme
dedicated to the VOF resolution is presented. At the end of this chapter the reference
numerical set-up studied in this document is defined.

Chapter 4 This chapter presents a study on Taylor-Green vortices simulation with single-phase
Navier-Stokes model (so without turbulent models). An analysis is done on the accuracy
of foamStar with the reference numerical set-up and different time schemes. The
study also focuses on the influence of some mesh deformations generating stretched,
non-orthogonal and skewed cells.

Chapter 5 This chapter presents a study of the accuracy of foamStar simulating
nonlinear regular wave propagation in periodic bi-dimensional domain of one
wavelength. Simulations are done using two-phases VOF-Navier-Stokes equations.
The newly implemented second order backward scheme is compared to the existing
Crank-Nicolson one. Various configurations of mesh refinements are compared and some
recommendations are made on how to accurately simulate regular wave propagation with
foamStar.

Chapter 6 This chapter presents a study of nonlinear regular wave propagation in a
bi-dimensional long domain of several wavelengths with relaxation zones. The newly
implemented second-order backward scheme is once again compared to the existing
Crank-Nicolson one and the recommendations made in Chapter 5 are verified. To reach
progressively the numerical configuration dedicated to naval simulation, two-phases VOF
Reynolds-Averaged Navier-Stokes model and moving reference frame are considered.

Chapter 7 This chapter presents some analysis on the accuracy of foamStar and
foamStar-SWENSE simulating scale model KRISO container ship moving in head regular

7
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and irregular waves. This chapter is a preliminary study intending to asses the ability of
both foamStar and foamStar-SWENSE to compute ship motion and wave added resistance
in head waves.

Chapter 8 This chapter connects the work done during this Ph.D. and the industrial needs. It
describes some actions done in order to ease the industrialization of foamStar.

Chapter 9 This chapter concludes the present work. The results obtained throughout this Ph.D.
are put in perspective with various current and potential future works.
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PART I

Theoretical and numerical modeling

This part presents the background of the works detailed in the rest of this document.

The first section deals with the mathematical models, while the second section focuses on the

numerical discretization methods.

9



CHAPTER 2

MATHEMATICAL MODELS

2.1 Two phase incompressible flow

2.1.1 Single-phase Navier-Stokes equations

In a fluid domain, the local Navier-Stokes (NS) equations in Lagrangian form are
expressed in a Galilean reference frame R0 as:

dρ

dt
+ρ∇•u = 0 (2.1a)

d(ρu)
dt

= ρg+∇•Σ (2.1b)

with u the fluid velocity vector, ρ the density, g the gravitational acceleration vector, and Σ the
stress tensor. Eq. 2.1a is the continuity equation and Eq. 2.1b is the momentum equation. For a
Newtonian fluid with the Stokes hypothesis, the viscous stress tensor is:

Σ =−
(

P+
2
3

µ∇•u
)

I+µ
(
∇u+∇uT) (2.2)

with µ the dynamic viscosity coefficient and P the total pressure. Defining the dynamic pressure
pd, at a position x and time t,

pd(x, t) = P(x, t)−ρ(x, t)g •x (2.3)

the resulting NS equations under Eulerian conservative form are:

∂ρ

∂ t
+∇•(ρu) = 0 (2.4a)

∂ (ρu)
∂ t

+∇•(ρuu) =−∇pd −
2
3

∇(µ∇•u)−g •x∇ρ +∇•
(
µ
(
∇u+∇uT)) (2.4b)
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2.1.2 Two-phase single-field Navier-Stokes equations

The managment of multiphase flow can be done with several numerical methods and
mathematical models. The formulation adopted is the single-field volume of fluid (VOF)
method (Hirt and Nichols, 1981) for the studies presented in this document. Details of such
a formulation and discussions about multi-phase formulations can be found in Rusche (2002)
and Marschall (2011).

The water volume fraction α is defined with α = 1 in water phase and α = 0 in air
phase. The interface between water and air is a continuous transition zone with 0 < α < 1. The
local density ρ , kinematic viscosity ν and dynamic viscosity µ are defined as:

ρ = αρw +(1−α)ρa (2.5a)

µ = αµw +(1−α)µa (2.5b)

ν =
µ

ρ
(2.5c)

with ’w’ and ’a’ subscripts referring to water and air fields, respectively.

The single-field hypothesis is that velocity of air and water are equal in transition zones
(0 < α < 1), this unique velocity is denoted with u. Averaging the continuity equations in both
air and water phase (Rusche, 2002) and writing them in Eulerian form, it results the following
equations:

∂ (αρw)

∂ t
+∇•(αρwu) = 0 (2.6a)

∂ ([1−α]ρa)

∂ t
+∇•([1−α]ρau) = 0 (2.6b)

Considering both the air and water phases as incompressible flows, dividing Eq. 2.6a
by ρw and Eq. 2.6b by ρa and then summing them, the resulting continuity equation is:

∇•u = 0 (2.7)

Besides, dividing Eq. 2.6a by the ρw, it becomes:
∂α

∂ t
+∇•(αu) = 0 (2.8)

Due to the continuity equation (Eq. 2.7) and the formulation of ρ and µ , the resulting
VOF-NS momentum equation is:
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∂ (ρu)
∂ t

+∇•(ρuu) =−∇pd −g •x∇ρ +∇•(µ∇u)+∇µ •∇uT (2.9)

Two-field formulation and compression term For a two-field VOF formulation, the velocity
are not continuous at the interface between air and water. Then, a relative velocity ur can be
defined as:

ur := uw −ua (2.10)

And a mean field velocity u as:
u = αuw +(1−α)ua, (2.11)

Once again, averaging the continuity equations in both air and water phase (Rusche, 2002) with
an Eulerian form and dividing by the constant ρw and ρa respectively, gives:

∂α

∂ t
+∇•αuw = 0 (2.12a)

− ∂α

∂ t
+∇• [1−α]ua = 0 (2.12b)

Summing Eq. 2.12a to Eq. 2.12b and using Eq. 2.11 still gives the continuity equation Eq. 2.8.
Besides, From Eq. 2.10 and Eq. 2.11, the following relation can be set:

u = uw − (1−α)ur (2.13)

Multiplying by alpha and rearranging it becomes:

αuw = αu+α(1−α)ur (2.14)

Finally, injecting Eq. 2.14 in Eq. 2.12a gives the following volume-fraction convection law:

∂α

∂ t
+∇•(αu)+∇•(α(1−α)ur) = 0 (2.15)

With the definition of the density (Eq. 2.5a), the resulting mass conservation is:

∂ρ

∂ t
+∇•(ρu+[(ρw −ρa)(1−α)αur]) = 0 (2.16)

As mentioned, with interDymFOAM and foamStar, the VOF formulation is a single-field
one. Then, no distinction is made between water and air velocity. However, in order to limit
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the smearing of the transition zone of the interface, Rusche (2003) proposed the addition of a
compression term inspired by this two-field consideration. Defining:

ucomp = (1−α)αur (2.17)

with ur a vector field term 1, the convection equation of compressed single-field VOF becomes:

∂α

∂ t
+∇•(αu)+ ∇•ucomp︸ ︷︷ ︸

compression term

= 0 (2.18)

and the mass conservation:

∂ρ

∂ t
+∇•

(
ρu+

[
(ρw −ρa)ucomp

])
= 0 (2.19)

Using a compression term but keeping a pure single-field formulation for the momentum
equation (Eq. 2.9) results in breaking the momentum conservation in the transition zone at the
interface. In OpenFOAM, this additional term is partially taken into account in the momentum
equation using it as an additional convective term in an analogous way to Eq. 2.19. The resulting
equation is:

∂ρu
∂ t

+∇•
(
ρuu+(ρw −ρa)ucompu

)
=−∇pd −g •x∇ρ +∇•(µ∇u)+∇µ •∇uT (2.20)

2.1.3 Two phase single-field Reynolds Average Navier-Stokes equations

For naval applications, the Navier-Stokes equations are often used in a transformed
form called Reynolds Averaged Navier-Stokes Equations (RANSE). This model consists of
using the Reynolds statistical decomposition and modelling the average turbulence effect with
the Eddy-Viscosity method. In the resulting equation, the turbulent kinematic viscosity νt

and the turbulent kinetic energy k are additional terms modelling the small-scale phenomena
related to velocity fluctuations. From the turbulent kinematic viscosity νt and the density ρ , the
effective dynamic viscosity µeff can be defined as follows:

µeff = µ +ρνt, (2.21)

1. In practice ur is used as a numerical corrector and its definition depends on the needs. (see Sec. a))
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and a pressure p as,

p = pd +
2
3

ρ k (2.22)

Then, the VOF-RANS momentum equation becomes:
∂ (ρu)

∂ t
+∇•(ρuu+(ρw −ρa)ucompu) =−∇p−g •x∇ρ +∇•(µeff∇u)+∇µeff •∇uT (2.23)

This equation is convenient for naval applications because it models unsteady flow
taking into account inertial, volumic, pressure and viscous forces. The small scale turbulent
phenomena are only considered through their average influence, so RANSE resolution has a
significantly smaller computational cost than DNS.

In the following, the symbol p is used for both Navier-Stokes and RANS models. With
Navier-Stokes model, as no turbulent model are used, k is null so p = pd.

Turbulence model The closure of the RANSE system implies the choice of a turbulence
model. The k-ω-SST model (Menter, 1994) is widely used in naval CFD literature. In order to
stabilize the model in nearly potential flow regions, especially close to the free surface and limit
the turbulent exponential growth a modified k−ω closure was proposed by Larsen and Fuhrman
(2018). In foamStar this model is adapted to a SST formulation with the following equations:

∂ρk
∂ t

+∇•(ρuk)−∇•((µ +ραkνt)∇k) = ρνt p0 −
2
3

ρk∇•u−ρβ
∗kω −ρPb (2.24a)

∂ρω

∂ t
+∇•(ρuω)−∇•((µ +ραωνt)∇ω) = γρ p0 −

2
3

ργω∇•u−ρβ
∗
ω

2 −ρ(F1 −1)C Dkω

(2.24b)
with,

νt =
a1k

max(a1ω, b1F2 p0)
(2.25)

Pb = α
∗
b νtg •∇ρ (2.26)

p0 =
1
2
,
(
∇(u)+∇(u)T) ••

(
∇(u)+∇(u)T) (2.27)

(2.28)

The formulations of the coefficients F1, F2, a1, a2, b1, b2 αk, γ, αω , α∗
b , β ∗ andCDkω are

detailed in Kim (2021). In the present document, this turbulent model is called fs-k-ω-SST.
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2.1.4 VOF-RANSE equations with a moving referential

In foamStar, the earth reference frame is assumed to be Galilean. With the foamStar

version used in the present document, the equations are written in the moving-domain reference
frame RD. The considered motion of the domain can only be rectilinear regarding to the
earth reference frame, its velocity is noted v0 and its acceleration is noted acc0 . Because
of the rectilinear motion, all the VOF-RANSE equations previously defined keep the same
formulation in RD except the momentum equation in which an additional acceleration appears.
The momentum equation in RD is:

∂ (ρu)
∂ t

+∇•(ρuu+(ρw −ρa)ucompu) =

−∇p−g •x∇ρ +∇•(µeff∇u)+∇µeff •∇uT −ρ acc0 (2.29)

2.2 Fluid-structure interactions

The previous section describes the equations for an infinite fluid domain. In order to
compute the solutions with a moving body as it is the case in naval simulations, two further
aspects should be considered. Firstly various kinds of boundaries need to be defined around the
fluid domain, and secondly the loads acting on the boundaries need to be evaluated together
with the solid dynamics.

2.2.1 Wall boundary

For naval simulations, boundaries such as solid bodies and walls have to be modeled.
The mathematical model presented before for the inner fluid is still available but an additional
boundary equation is added. Given a fluid domain Ω, ∂Ω defines the physical non-porous
boundary of the domain and uwall defines the local wall velocity. Keeping u the fluid velocity,
with the hypothesis of adherence of the fluid to the wall results in:

∀M ∈ ∂Ω, u(M) = uwall(M) (2.30)
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2.2.2 Rigid body motions

On the body side, for walls moving with a prescribed velocity, nothing is to solve and
uwall is imposed. However, for naval simulations, the ship motions have to be modeled. In the
present work the free bodies are assumed to be rigid and moving with up to six degrees of
freedom (6 DoFs). To represent the ship’s motions, an orthogonal Galilean reference frame R0

= (O, ex, ey, ez) 2 and an orthonormal boat reference frame Rb (Cg, εx εy, εz) are defined. The
directions of εx, εy, εz are fixed regarding to the boat orientation. Cg is the center of gravity of
the ship. The rotations angles of the ship are the roll, pitch and yaw Tait-Bryan Euler angles,
respectively noted φ , θ , ψ . Figure 2.1 illustrates these coordinate systems.

ez

ey

ex

εy
εz

ϕ

ѱ

𝜃

+

εx

+

+

Cg

O

Figure 2.1 – Representation of the roll, pitch and yaw (φ , θ , ψ) rotations of boat referential
(Cg, εx, εy, εz) regarding to Galilean referential (O, ex, ey, ez)

The transformation matrix from the base B0 = (ex, ey, ez) to the base Bb = (εx, εy, εz)

2. In the current foamStar implementation, for a moving referential, the acceleration is not taken into
account during the body motion resolution. The reference frame RD is assimilated to a Galilean reference frame
R0. Consequently the body motion calculation is only valid out off acceleration phases.
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is:

Rb
0 =

cosψ cosθ −sinψ cosφ + cosψ sinθ sinφ sinψ sinφ + cosψ cosφ sinθ

sinψ cosθ cosψ cosφ + sinφ sinθ sinψ −cosψ sinφ + sinφ cosφ sinθ

−sinθ cosθ sinφ cosθ cosφ

 (2.31)

and, from Bb to B0:
R0

b = Rb
0
−1

= Rb
0

T
(2.32)

Consequently, given a vector v expressed in B0 coordinates and the same vector vb

expressed in Bb coordinates,
vb = Rb

0v (2.33)

Given a point M, its position in R0 is XM = OM and ξb
M = CgMb in Rb. XM and ξb

M

are linked by the following relation:

ξb
M = Rb

0
(
XM −XCg

)
(2.34)

with XCg the position of Cg which is OCg expressed in R0. The velocity of Cg in R0 is:

ẊCg =
dXCg

dt

∣∣∣∣
R0

(2.35)

and its acceleration is:

ẌCg =
dX2

Cg

dt2

∣∣∣∣∣
R0

(2.36)

The rotation vector of Rb regarding to R0 and expressed in Bb is noted ωb. Its
derivation in the Rb is:

ω̇b =
dωb

dt

∣∣∣∣
Rb

(2.37)

The Euler angles are regrouped as a vector:

Θ =

φ

θ

ψ

 (2.38)
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and the variation rate of these angles is noted:

Θ̇ =

φ̇

θ̇

ψ̇

 (2.39)

The relation between ωb and Θ̇ is as follows:

Θ̇ = Tωb with T =

1 sinφ tanθ cosφ tanθ

0 cosφ −sinφ

0 sinφ/cosθ cosφ/cosθ

 (2.40)

Using the introduced notations, the Newton second law can be written in the Galilean
reference frame R0. With the body mass m, the relation between the linear momentum and the
external forces is:

mẌCg = mg+Ffluid +Fadd +Fc (2.41)

where Ffluid are the fluid forces, Fadd are additional forces depending on the loads taken
into account, Fc are the constraint forces relative to the imposed motions. The expression of
these constraints in foamStar is detailed in Section 3.3.1.

Defining Ig the inertia matrix of the boat in Rb, the relation between the angular
momentum and the external moments is:

Igω̇
b = Mb

fluid +Mb
add +Mb

c +ω
b ∧
(

Igω
b
)

(2.42)

where Mb
fluid, Mb

add, Mb
c are respectively the fluid, additional and constraint moments

about Cg expressed in Bb.

Defining the body wall δΩbody, the formulations of the fluid force and moments in Rb

are:

Ffluid =
∫

δΩbody

dS •Σ (2.43a)

Mb
fluid = Rb

0

[∫
M∈δΩbody

dS •Σ ∧ CgM
]

(2.43b)

with,
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Σ =− [p+ρg •x] I+µeff
(
∇u+∇uT) (2.44)

Finally, because of the rigid motions, the body wall velocity uwall is related to XCg and
ωb by:

∀M ∈ ∂Ωbody, XM = XCg +R0
b

(
CgMb

)
(2.45a)

uwall(M) = ẊCg +R0
b

[
CgMb ∧ωb

]
(2.45b)

With this last equation, the FSI system is closed.

2.3 Wave generation

2.3.1 Wave model

a) Regular wave model

For naval simulations with waves, without wavemaker the generation of wave fields
often needs analytical solutions. For regular waves modeling, the widely used model is the
stream-function theory established by Rienecker and Fenton (1981). In the following, the
stream-function model is briefly described using the notations from Ducrozet et al. (2019).

Given a 2D periodic regular wave with a constant phase velocity c a period T and
a wavelength λ , defining a reference frame Rw moving at c, in the direction of the wave
propagation, the wave profile is constant in Rw. Assuming an irrotational divergence-free flow
with a velocity field u(x,z) = (u(x,z), w(x,z)) in Rw, a stream-function ψ(x,z) can be defined
as:

u =
∂ψ

∂ z
, w =−∂ψ

∂x
(2.46)

Within potential flow theory, the irrotational hypothesis implies the Laplace equation:

∆ψ = 0 (2.47)
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and the Bernoulli equation is verified:

P
ρ
=−gz− 1

2

[(
∂ψ

∂x

)2

+

(
∂ψ

∂ z

)2
]
+R (2.48)

where R is the so-called Bernoulli constant.

Defining the free surface elevation η(x), and fixing a null pressure at the free surface,
the Bernoulli equation expressed at the free surface gives the following dynamic free surface
boundary condition:

∀(x,z) = (x,η(x)), gη +
1
2

[(
∂ψ

∂x

)2

+

(
∂ψ

∂ z

)2
]
= R (2.49)

Using Fourier series decompositions, this model provides accurate low-cost resolution
of the velocity and pressure fields in a single-field domain.

b) Irregular wave model

The analytical model used for irregular wave generation is the High Order Spectral
(HOS) model initially developed by West et al. (1987) and Dommermuth and Yue (1987). As
for the regular wave model previously described, the HOS model is a spectral decomposition
non-breaking nonlinear wave fields respecting potential flow theory.

For this method, the 3D fields are defined in the fixed Galilean reference frame R0. The
irrotational-flow hypothesis allows the definition of the potential φ(x,y,z, t) with the following
equation,

u(x,y,z, t) = ∇φ (2.50)

The potential flow model implies the following equations:

∆φ = 0 (2.51)

P
ρ
=−∂φ

∂ t
−gz− 1

2
∇φ

2 +
Patm

ρ
(2.52)

In Eq. 2.52, the Bernoulli constant is chosen equal to the atmospheric pressure at the free surface
Patm.

Defining the free surface elevation η(x,y, t) in referential R0, the kinematic and normal
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dynamic free surface boundary conditions are,

∂η

∂ t
=

∂φ

∂ z
− ∂φ

∂x
∂η

∂x
− ∂φ

∂y
∂η

∂y
(2.53)

∂φ

∂ t
=−gη − 1

2
∇φ

2 (2.54)

Following the method proposed by West et al. (1987), the HOS method consists in
defining the following 2D field:

φ̃(x,y, t) = φ(x,y,η(x,y, t), t) (2.55)

and noting W the vertical velocity at the free surface:

W (x,y, t) =
∂φ

∂ z
(x,y,η(x,y, t), t) (2.56)

With these notations, the free surface boundary conditions can be rewritten as follows:

∂η

∂ t
=

(
1+

∂η

∂x

2

+
∂η

∂y

2
)

W − ∂ φ̃

∂x
∂η

∂x
− ∂η

∂y
∂ φ̃

∂y
(2.57)

∂ φ̃

∂ t
=−gη − 1

2
∇φ̃

2 +
1
2

(
1+

∂η

∂x

2

+
∂η

∂y

2
)

W 2 (2.58)

Using Fourier series decompositions and Taylor expansions, this model provides accurate
moderate-cost resolution of the velocity and pressure fields in a single-field domain. The
open-source solvers HOS-NWT (Ducrozet et al., 2012) and HOS-Ocean (Ducrozet et al., 2016)
are both based on HOS model for wave tank and open ocean simulations.

To take into account wave-breaking phenomenon, some additional models can be used.
A wave-breaking criterion was defined by Barthelemy et al. (2018) and energy loss through
additional viscous term was proposed by Tian et al. (2012). An implementation of these models
into HOS-NWT was proposed by Seiffert et al. (2017).

c) Relaxation zone

The relaxation zone approach is used to efficiently generate and absorb waves in the
computational domain (Jacobsen et al., 2012; Li et al., 2021). A generic field ψ in the relaxation
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zone is defined as,

ψ = (1−w)ψCFD +wψ
Target (2.59)

where 0 ≤ w ≤ 1 is a weight coefficient, ψCFD the flow field from the chosen CFD model,
and ψ target the target field. Through this formulation, the resulting field ψ is a blended solution
between ψCFD and ψ target. In foamStar, the targeted field ψ target can be computed using the
previously mentioned wave-models.
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Figure 2.2 – Relaxation-zone weight (w) distribution along a simulation domain

In Figure 2.2 the red line represents the distribution of w over a computational domain.
Given a 2D domain Ω in the (X,Y) plane defined by:

Ω =
{
(x,y) ∈ R2|Xmin ≤ x ≤ Xmax, and Ymin ≤ y ≤ Ymax

}
Then, considering a relaxation zone from X0 to X1, a normalized coordinate ξ is defined

as:

ξ : Ω −→ [0,1]
x 7−→ 1 if x ≤ X0

x 7−→ x−X0

X1 −X0
if X0 ≤ x ≤ X1

x 7−→ 0 if X1 ≤ x

(2.60)

By default, in foamStar, w is an exponential weight function defined as,
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w : [0,1] −→ [0,1]

ξ 7−→ eξ 3.5 −1
e−1

(2.61)

2.4 The Spectral Wave Explicit Navier-Stokes Equations
(SWENSE)

The Spectral Wave Explicit Navier-Stokes (SWENS) method (Ferrant et al., 2003)
was developed in the LHEEA in order to accurately simulate wave-structure interactions with
complex sea states. The main idea is to solve the incident fields, mainly corresponding to
the wave field, and the complementary fields separately (Fig. 2.3). Complementary fields are
defined as the difference between the total fields and the incident ones, so they takes into
account the diffracted fields but also all the corrections implied by the chosen incident fields.
For example, they encompasses phenomena neglected in the incident fields and if necessary
some non-physical numerical considerations related to the incident fields solving method.

Mathematically, the SWENS method is based on the hypothesis that the incident
velocity and pressure fields verify the Euler equations and the total fields the RANS equations.
Actually, for nonbreaking wave propagation in open field (no body presence), viscosity is
negligible in the Navier-Stokes equations. These Euler equations write:

∇•u = 0 (2.62a)

∂ (ρu)
∂ t

+∇•(ρuu) =−∇P+ρ g (2.62b)

The governing equations of the complementary field are called Spectral Wave Explicit
Navier-Stokes equations (SWENSE).

With SWENSE, only the complementary part is solved using a CFD solver. The incident
fields are already known before the simulation using a spectral approach (Sec. 2.3.1) and
appeared as forcing terms during the computation. The most accurate method to get these
initial fields is to compute them using potential flow theory. Those methods are discussed in
the following.
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Figure 2.3 – The SWENSE method decomposes the total field into an incident part and a
complementary part

Assuming the incident part of the flow is inviscid and satisfying the incompressible flow
condition, the incident velocity (uI) and the incident pressure (pI) follow the continuity equation
(Eq. 2.63a) and the Euler equation (Eq. 2.63b). The Euler equation is valid only for single-phase
flow where ρ = ρwater.

∇•uI = 0 (2.63a)

∂ (ρwateruI)

∂ t
+∇•(ρwateruIuI) =−∇PI +ρwater g (2.63b)

The SWENSE formulation subtracts the incident Euler equation (Eq. 2.63b) from the
original RANS momentum equation (Eq. 2.23). As shown by Li (2018) the standard SWENSE
formulation is convenient for single-phase flow but quite problematic for two-phase flow
approach. Thanks to the spectral methods, the incident wave fields can be extended in the entire
computational domain directly. From this extension, Euler equation (Eq. 2.63b) is valid in the
entire domain. Consequently, subtracting Eq. 2.63b from Eq. 2.23 generates an extra pressure
term that cannot be neglected in air and causes stability issues. To solve this issue, Li (2018)
proposed the modified incident pressure using mixture density:

P∗
I = ρ

PI

ρI
, (2.64)
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where p∗I is the modified incident pressure, ρ is the density of the considered fluid phase and
ρI is the density of the incident field solution (ρI = ρwater). The modified Euler’s equation for
incident terms reads:

∂uI

∂ t
+∇•(uIuI) =−∇P∗

I
ρ

+
PI

ρI

∇ρ

ρ
+g (2.65)

Eq. (2.66) presents the wave field decomposition. The VOF field is not decomposed
in this formulation and uses the same VOF convection equation as the classic two-phase flow
solver.

u = uI +uC

P = P∗
I +PC

(2.66)

Using this decomposition and the continuity equation:

∂ρ

∂ t
+∇•(ρu) = 0 (2.67)

the Eq. 2.65 can be transform into:

∂ρuI

∂ t
+∇•(ρuIuI)+uI∇•(ρuC) =−∇P∗

I +
PI

ρI
∇ρ +ρg (2.68)

Then, the subtraction of the incident flow equations from the original RANSE yields a
new set of equations for the complementary flow, namely the continuity equation (Eq. 2.69) and
the momentum equation (Eq. 2.70):

∇•uC = 0 (2.69)

∂ (ρuC)

∂ t
+∇•(ρuCu)+ρuC •∇uI =−∇PC − PI

ρI
∇ρ +∇•(µeff∇uC)+∇uC •∇µeff −

2
3

∇(ρ k)

(2.70)

Note that the viscous term ∇•(µeff(∇uI +∇uT
I )) is considered negligible and it is not included

in Eq. (2.70). See Li (2018) for more details.

Since this incident wave field is not computed by the SWENSE solver some advantages
are expected. Firstly, only the complementary field has to be damped in the outer region. This
is a smaller magnitude field, easier to absorb than the total field including incident waves.
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Secondly, the mesh has to be designed for the complementary field and this gives the opportunity
for reducing the cells number by using a coarser resolution in the far field and consequently
reducing the computation time (typically by using similar meshes as for calm water ship
resistance problems.
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CHAPTER 3

NUMERICAL METHODS

This chapter details the numerical implementation of the set of equations introduced
in the previous chapter. The numerical models described here are those implemented in the
open-source libraries OpenFOAM-5 or in one derivation implemented in the code foamStar. In
the literature, details on the numerical implementation of OpenFOAM are provided by Jasak
(1996), Darwish and Moukalled (2021) and Greenshields and Weller (2022). This chapter does
not give a complete list of numerical models availlable in OpenFOAM-5 or foamStar but a
comprehensive set of the relevant options used in this document. All those models are based
on the Finite-Volume method and solved with semi-implicit schemes. The spatial discretization
schemes are detailed first, then the temporal discretization scheme, and finally the full resolution
algorithm.

3.1 Finite Volume spatial discretisation

Solving partial differential equations over a finite computational domain requires
spatial and temporal discretization. This section gives an overview of the spatial discretization
implemented in OpenFOAM.

3.1.1 Mesh characteristics

The spatial discretization method employed in OpenFOAM is the Finite Volume
method. It consists in discretizing the computational domain into cells considered as elementary
volumes. In OpenFOAM, the mesh has to respect some properties:

— the cells have to cover the entire numerical domain;
— cells must not overlap;
— cells have to be convex;
— cells have to be closed by an arbitrary number of faces;
— The volume of cells cannot be zero;
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— A face cannot belong to more than two cells. A boundary face belong to one cell
when an internal face belongs to two cells.

Each cell is identified by its geometric center. Figure 3.1 represents two contiguous cells sharing
a face f where P and N are the two centers. By extension, the P and N indexes identify the cells
with P and N as geometric centers respectively. VP is the volume of the cell P, Sf is the surface of
the face f and nf its outer normal vector. For more clarity in the following the vector Sf = Sf nf

will also be used. In the following, P index identifies the cell of interest and N index for the
neighbor cells.

P

U

F

F’

N

nf

x

y

z Vp

Sf

Figure 3.1 – Two neighboring control volumes sharing a face f from an unstructured 3D mesh
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3.1.2 Cell and face center values

Considering a cell volume VP with its geometric center P defined as
∫

VP
PMdV (M) = 0,

we have for a generic field ψ the following second-order approximation:∫∫∫
VP

ψ dV ≈VPψ(P) (3.1)

where ψ(P) is the exact value of ψ at P. It is important to keep in mind that this exact value ψ(P)
is not the calculated one. In the following, the value obtained by the resolution of the discretized
system is ψP = ψ(P)+O(ε(dx,dt)), with O(ε(dx,dt)) the discretization error depending on
the chosen method.

The same approximation can be done considering a face f and its geometric center F:∫∫
Sf

ψ dS ≈ Sfψ(F) (3.2)

where ψ(F) is the value of ψ at F.

3.1.3 Cell to Face center interpolation

Locally, the fluid velocity allows to define an upwind and a downwind direction. To
introduce the face interpolation schemes properly, it is assumed here as a convention that the
point N is located downwind the point P. The upwind point U is located such that UP = PN
(Fig. 3.1).

Given a volumic field ψ , a f and face separating a cell P and a cell N, evaluating ψ(F) is done
using a face interpolation scheme. These interpolations are especially used for the discretisation
of the advection term (see Sec. 3.1.5).

The face interpolation is done using the High Resolution Schemes (HRS). In the context
of unstructured three-dimensional meshes as the ones used in OpenFOAM, a typical HRS
formulation is the "inverse-distance weighting flux-limiter" formulation as proposed by Hou
et al. (2012). In this formulation, the approximated value ψf of the quantity ψ(F) is defined as:

ψ(F)≈ ψf = ψP +
Ξ(r)

L
(ψN −ψP) (3.3)
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where L is the weight defined as

L :=
|PF •nf|+ |NF •nf|

|PF •nf|
(3.4)

Ξ(r) is the so-called flux-limiter function of r the gradient ratio defined as:

r :=
ψP −ψU

ψN −ψP
(3.5)

The value of ψU is the virtual value of the virtual upwind point U (Fig. 3.1). On unstructured
meshes, the value of ψU can be approximated using the second-order method proposed by
Darwish and Moukalled (2003). This method is based on the evaluation of the gradient of ψ at
P,

∇(ψ)(P)≈ ∇ψ|P (3.6)

This results in the following definition:

ψU = ψN −2 ∇ψ|P •PN (3.7)

and then:
r =

2 ∇ψ|P •PN
ψN −ψP

−1 (3.8)

which is the formulation used in the solver. In this approximation, the quantity ∇ψ|P has to be
explicitly expressed.

The discretisation scheme depends on the choice of the limiter in Eq. 3.3.

a) Convection Boundedness Criterion

In order to guarantee the boundedness of a solution of advective terms using a
discretization scheme Gaskell and Lau (1988) formulated the Convection Boundedness
Criterion (CBC). First, it is useful to introduce the normalized variable ψ̂ = ψ−ψU

ψN−ψU
. Then, the

CBC assumes that a normalized variable ψ̂f (a numerical approximation of ψ̂(F)) is bounded
if:
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ψ̂P < ψ̂f < 1 if 0 < ψ̂P < 1 (3.9a)

ψ̂f = ψ̂P if ψ̂P < 0 or ψ̂P > 1 (3.9b)

ψ̂f = 0 if ψ̂P ≤ 0 (3.9c)

ψ̂f = 1 if ψ̂P ≥ 1 (3.9d)

Using the flux-limiter formulation (Eq. 3.3), a sufficient condition for the CBC is:

0 < Ξ(r)≤ L if r > 0 (3.10a)

Ξ(r) = 0 if r ≤ 0 (3.10b)

(3.10c)

b) Total variation diminishing criterium

The Total Variation Diminishing (TVD) criterion is based on the articles of Harten
(1984) and Sweby (1984). The objective was, first, to prevent the solution from unstable
oscillations that can occur using some second-order schemes, and then, to preserve the
monotonicity 1. Consequently, the TVD criterion prevents the creation of new local extrema.
Using the Sweby (1984) flux-limiter formulation combined with the Hou et al. (2012)
inverse-distance weighting, the TVD criterion results is formulated as follows:

0 < Ξ(r)≤ Lr if 0 < r < 1 (3.11a)

0 < Ξ(r)≤ L if r ≥ 1 (3.11b)

Ξ(r) = 0 if r ≤ 0 (3.11c)

It can be noted that these criteria on flux-limiter encompass the CBC. Furthermore,
the following additional conditions ensure second-order accuracy of the schemes for regular
meshes:

1. a monotonic function in space at time t remains monotonic at time t +∆t
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r ≤ Ξ(r)≤ Lr if 0 < r ≤ 1/2 (3.12a)

r ≤ Ξ(r)≤ 1 if 1/2 ≤ r ≤ 1 (3.12b)

1 ≤ Ξ(r)≤ r if 1 ≤ r ≤ L (3.12c)

1 ≤ Ξ(r)≤ L if r ≥ L (3.12d)

Ξ(r) = 0 if r ≤ 0 (3.12e)

These conditions can be illustrated on the Sweby (1984) diagram (Fig. 3.2) where the
TVD region is shaded in gray. Light gray represents the first-order regions and dark gray the
second-order regions.

0
0

Ξ

r

L

1

1 L

Ξ(r)=2r Ξ(r)=r

TVD 1st order region

TVD 2nd order region

Figure 3.2 – Flux limiter Ξ as a function of r with TVD first-order and second-order regions

c) Usual interpolation schemes

Upwind differencing scheme (UD) With Ξ(r) = 0 the resulting scheme is the upwind
differencing:

ψf = ψP (3.13)

This scheme is unconditionally stable for the resolution of convective terms but it is a formally
a first-order accurate scheme.
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Central differencing scheme (CD) With Ξ(r) = 1 the resulting scheme is the central
differencing:

ψf =

(
1− 1

L

)
ψP +

ψN

L
(3.14)

For meshes where the points P, F and N are aligned, this CD scheme is formally second-order
accurate but can lead to instabilities in the implicit resolution of convective terms.

d) Mesh skewness

Unstructured meshes do not necessarily respect the property of P, F and N alignment.
Figure 3.1 is an example of such a non-alignment. This non-alignment is often referred to as
the skewness (Jasak, 1996). The point F’ in Figure 3.1 is the intersection of the segment PN and
face f. The vector F’F is the skewness correction vector of the face f.

As mentioned, the face integral approximation (Eq. 3.2) reaches a second-order accuracy
if ψf is a second-order approximation of ψ(F). However, with skewed unstructured meshes,
the CD scheme gives formally a second-order approximation of ψ(F ′) but not of ψ(F).
Consequently, with skewed faces, using Eq. 3.14 for ψf formulation comes to consider Eq. 3.2
with the first-order approximation that ψ(F)≈ ψ(F ′). Finally, with skewed cells, the following
approximation: ∫∫

Sf

ψ dS ≈ Sf

[(
1− 1

L

)
ψP +

ψN

L

]
(3.15)

is formally a first-order approximation.

The given example with CD scheme can be extended to any other HRS formulated with
Eq. 3.3 evaluation and then, without using corrector terms, the skewness of a mesh reduces the
face integral approximation to first-order accuracy.

In order to keep a second-order formulation a skew-corrector can be formulated. To do
so, the gradient of ψ has to be evaluated at P with:

∇(ψ)(F)≈ ∇ψ|f (3.16)

The resulting second-order approximation is:

ψ(F)≈ ψ(F’)+ ∇ψ|f •F’F (3.17)

Finally, with a skew-corrected CD scheme for instance, the following second-order
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approximation can be made:

∫∫
Sf

ψ dS ≈ Sf

(1− 1
L

)
ψP +

ψN

L
+ ∇ψ|f •F’F︸ ︷︷ ︸

skew-corrector

 (3.18)

In this formulation the ∇ψ|f has to be known before solving the equation.

3.1.4 Face to Cell center reconstruction

For a vector field ψ, with ψf the quantity ψ(F) evaluated at the face center, a second
order approximation of the cell-center value ψP can be constructed using the method proposed
by Weller and Shahrokhi (2014):

ψP =

[
∑

f
nf ⊗Sf

]−1

∑
f
(ψf •nf)Sf (3.19)

Thanks to this equation, a second-order reconstruction of any vector field at the geometric cell
center can be done using the surface normal quantities ψf •nf.

3.1.5 Divergence

As mentioned, the fundamental aspect of the Finite Volume method is to consider
elementary volumes rather than local nodes. Consequently, for a vector field ψ, the Gauss
theorem is applied in order to transform the volumic integration over a cell of ∇•ψ into a
surface integration as follows: ∫∫∫

VP

∇•ψdV = ∑
f

∫∫
S
ψ •dS (3.20)

Then, using the cell and face-center approximation results in the second-order approximation:

∇•ψ|P ≈ 1
VP

∑
f
ψf •Sf (3.21)
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With this formulation of the divergence, when the field is a velocity field u it is convenient to
introduce a dedicated notation of the flux φf such that for a face f

φf = uf •Sf ≈
∫∫

f
u •dS, (3.22)

and then
∇•u|P ≈ 1

VP
∑

f
φf (3.23)

3.1.6 Surface normal gradient

The Figure 3.3 shows a cell face from a non-orthogonal mesh. In OpenFOAM, a mesh
is said to be orthogonal if and only if the line joining the centers of neighboring cells (here P
and N) and the shared face f are orthogonal. Figure 3.3 illustrates the following decomposition:

Sf = ∆+k (3.24)

Different expressions of ∆ can be chosen. The one used in the presented work is named "over
relaxed approach" in Jasak (1996) and is defined as follows:

∆ =
|Sf|2

PN •Sf
PN (3.25)
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P
F

F’

N

x

y

z

Sf

Δ
k

nf

Sf

Figure 3.3 – A cell face of a non-orthogonal mesh

Using this decomposition of Sf, the quantity ∇ψ|
f
•Sf for a field ψ can be decomposed

as a orthogonal part and an non-orthogonal part:

∇ψ|
f
•Sf = ∇ψ|

f
•∆︸ ︷︷ ︸

orthogonal part

+ ∇ψ|
f
•k︸ ︷︷ ︸

non−orthogonal part

(3.26)

Using the Eq. 3.25 and the second-order approximation:

∇ψ •PN ≈ ψN −ψP (3.27)
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the following approximation can be done:

∇ψ|
f
•Sf ≈

|Sf|2
PN •Sf

(ψN −ψP)︸ ︷︷ ︸
orthogonal part

+ ∇ψ|
f
• (Sf −∆)︸ ︷︷ ︸

non−orthogonal part

(3.28)

3.1.7 Non-orthogonal correction

During the resolution of the discretized system, the use of Eq. 3.28 to evaluate ∇ψ|
f
•Sf

implies the use of an explicitly known approximation of ∇ψ|
f

in the right-hand member.
Similarly to the skew-correction seen in Section 3.1.3, because of its explicit aspect, the
non-orthogonal part of the Eq. 3.28 will be considered as a non-orthogonal-corrector. Some
other discretization schemes that would not imposed the use of explicit terms could have been
chosen but as explained by Jasak (1996), the use of this scheme is justified by a reduced size of
the discretization molecule and a reduced error.

3.1.8 Cell center gradient

For a scalar field ψ the value of the cell center gradient ∇ψ|P can be approximated
using several methods.

Gauss linear ∫∫∫
VP

∇ψdV = ∑
f

∫∫
S

ψdS (3.29)

then, using the cell and face-center approximations:

∇ψ|P ≈ 1
VP

∑
f

ψfSf (3.30)

Least Square This method consists in minimizing the square of the weighted error defined
as:

e2 = ∑
N

∣∣∣∣ψN −ψP

|PN| − PN
|PN|

• ∇ψ|P
∣∣∣∣ (3.31)

The resulting solution is:

∇ψ|P ≈ ∑
N

G−1 •
PN
|PN|2 (ψN −ψP) (3.32)
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with:
G = ∑

N

PN⊗PN
|PN|2 (3.33)

The interest of this scheme is the minimisation of the error.

3.2 Time discretisation

The equations with time derivative terms of a field ψ can be presented under the
following form:

∂ψ

∂ t

∣∣∣∣
t
= G (ψ,x, t) (3.34)

where G is a function of ψ , x and t, free of time derivative terms.

Then the discretization of Eq. 3.34 can be written as follows:

∂ψ

∂ t

(n)

= c(n)n ψ
(n)+ c(n)n-1ψ

(n-1)+ c(n)n-2ψ
(n-2)+ γ

(n)
ψ︸ ︷︷ ︸

S(n)ddtψ

(3.35)

The term ψ(n) identifies the computed value of ψ at the nth time-step. The coefficients c(n)n , c(n)n-1,
c(n)n-2 depend on the discretisation scheme used at the nth time-step. γ

(n)
ψ is an additional explicit

term depending on both the selected time schemes and the variable ψ . The order of accuracy
of the time approximation (Eq. 3.35) depends on the choice of the coefficients c(n)n , c(n)n-1, c(n)n-2

and γψ . For ease the explicit part of this formulation can occasionally be grouped as a temporal
discretization source term S(n)ddtψ :

S(n)ddtψ := c(n)n-1ψ
(n-1)+ c(n)n-2ψ

(n-2)+ γ
(n)
ψ (3.36)

Eq. 3.35 and Eq. 3.36 are the general form of any temporal discretization scheme that are used
in this document.
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3.2.1 Implicit Euler and second-order Backward schemes

a) Implicit Euler

Using the Implicit Euler scheme, Eq. 3.34 can be discretized as follows:

ψ(n)−ψ(n-1)

∆t(n)
= G (n) (3.37)

With G (n) the numerical approximation of G (t(n)), and ∆t(n) := t(n)− t(n−1) the time interval
between the (n-1)th and nth time step. This time step size is not necessarily constant all along the
simulation. Then, the following identification can be done:

c(n)n :=
1

∆t(n)
(3.38a)

c(n)n-1 :=− 1
∆t(n)

(3.38b)

c(n)n-2 := 0 (3.38c)

γ
(n)
ψ := 0 (3.38d)

This numerical scheme is non-conditionally stable and is first-order accurate. Consequently, it
will generate significant numerical damping.

b) Second-order Backward

Using the Second-order Backward scheme, Eq. 3.34 can be discretized as follows:

∆t(n-1)(2∆t(n)+∆t(n-1))ψ(n)− (∆t(n)+∆t(n-1))2 ψ(n-1)+∆t(n)
2

ψ(n-2)

∆t(n-1)(∆t(n)+∆t(n-1))
= G (n) (3.39)

with

∆t(n) := t(n)− t(n−1) (3.40a)

∆t(n-1) := t(n−1)− t(n−2) (3.40b)
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Using the Second-order Backward scheme, the following identification can be done:

c(n)n :=
1

∆t(n)
+

1
∆t(n)+∆t(n-1)

(3.41a)

c(n)n-1 :=−∆t(n)+∆t(n-1)

∆t(n)∆t(n-1)
(3.41b)

c(n)n-2 :=
∆t(n)

∆t(n-1)(∆t(n)+∆t(n-1))
(3.41c)

γ
(n)
ψ := 0 (3.41d)

This scheme is a second-order accuracy one and is unconditionally stable.

3.2.2 Crank-Nicolson schemes

The Crank-Nicolson method is the name given to a second-order approximation of
Eq. 3.34:

ψ(n)−ψ(n-1)

∆t(n)
=

1
2

[
G (n)+G (n-1)

]
, (3.42)

In the literature, it is said that this trapezoïd rule method applied to Navier-Stokes
equations can lead to oscillatory behavior during the computation. Those instabilities can be
reduced by introducing a blending factor CCN ∈ [0.5,1] to Eq. 3.42. It results in the following
formulation:

ψ(n)−ψ(n-1)

∆t(n)
=CCN G (n)+(1−CCN)G

(n-1) (3.43)

This equation can be rearranged as follow:

ψ(n)−ψ(n-1)

CCN∆t(n)
− 1−CCN

CCN
G (n-1) = G (n) (3.44)

Finally, considering Eq. 3.43, Def. 3.35 and Def. 3.36, the following identification can be done:
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c(n)n :=
1

CCN ∆t(n)
(3.45a)

c(n)n-1 :=− 1
CCN ∆t(n)

(3.45b)

c(n)n-2 := 0 (3.45c)

γ
(n)
ψ :=−1−CCN

CCN
G (n-1) (3.45d)

The blending factor CCN controls the weight of the implicit term G (n) with respect to
the explicit term G (n-1) in Eq. 3.42. This Crank-Nicolson formulation is formally second-order
accurate only if CCN = 0.5. With CCN = 1, Eq. 3.42 is equivalent to the implicit Euler method.

OpenFOAM formulation In the discretization process of OpenFOAM (except for the VOF
equation) the term G (n-1) is generally difficult to estimate in the time discretization algorithm.
An alternative is used by getting access to the values of ψ(n-1) and ψ(n-2). This is obtained
applying Eq. 3.44 at the time-step (n−1):

ψ(n-1)−ψ(n-2)

CCN∆t(n-1)
− 1−CCN

CCN
G (n-2) = G (n-1) (3.46)

and identifying the recursive relation:

γ
(n) :=−1−CCN

CCN

[
ψ(n-1)−ψ(n-2)

CCN∆t(n-1)
+ γ

(n-1)

]
(3.47)

For more clarity, a so-called Crank-Nicolson off-centre coefficient COC ∈ [0,1] is defined as:

COC :=
1−CCN

CCN
(3.48)
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This results in the following definition:

c(n)n :=
1+COC

∆t(n)
(3.49a)

c(n)n-1 :=−1+COC

∆t(n)
(3.49b)

c(n)n-2 := 0 (3.49c)

γ
(n)
ψ :=−COC

[
1+COC

∆t(n-1)

(
ψ

(n-1)−ψ
(n-2)

)
+ γ

(n-1)
]
. (3.49d)

using the finite-volume method.

3.2.3 Finite-volume method and moving meshes

The Navier-Stokes equations with or without turbulence model are unsteady and
comprise a first-order time derivative. In the domain reference-frame R0, considering a
generic field ψ , using Finite Volume Method (FVM), the following integral form has to be
approximated: ∫∫∫

VP

∂ψ

∂ t

∣∣∣∣
R0

dV

To take into account a possible mesh motion, this term becomes:

∫∫∫
VP

∂ψ

∂ t

∣∣∣∣
R0

dV =
d
dt

(∫∫∫
VP(t)

ψ dV
)

R0

−∑
f(t)

∫∫
Sf

ψ vm •dS (3.50)

where vm represents the velocity of the elementary surface of integration on Sf in R0. This
velocity is induced by the mesh motion. Besides, using the spatial discretization mentioned
previously, the following approximation can be done:

∂ψP

∂ t

∣∣∣∣
R0

(t(n))≈ ∂ψP

∂ t

∣∣∣∣(n)
R0

=
1

VP

((
dψPVP

dt

)(n)

−∑
f

ψ
(n)
f φ

(n)
mf

)
(3.51)

where φmf is the mesh velocity flux at the face f. Then, using the previously defined formulation
for the time discretization schemes (Eq. 3.35):

∂ψP

∂ t

∣∣∣∣(n)
R0

= c(n)n ψ
(n)+ c(n)n-1ψ

(n-1)V
(n-1)
P

V (n)
P

+ c(n)n-2ψ
(n-2)V

(n-2)
P

V (n)
P

+
γ
(n)
ψVP

V (n)
P

− 1

V (n)
P

∑
f

ψ
(n)
f φ

(n)
mf (3.52)
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Given a constant field ψ in space and time, Eq. 3.51 implies the following conservation
law: (

dVP

dt

)(n)

= ∑
f

φ
(n)
mf (3.53)

and using the coefficients of the selected time-scheme:

c(n)n V (n)
P + c(n)n-1V (n-1)

P + c(n)n-2V (n-2)
P + γ

(n)
VP

= ∑
f

φ
(n)
mf (3.54)

Consequently, respecting the conservation law, φ
(n)
mf formulation depends on the chosen time

scheme.

3.3 Solver algorithm

The foamStar algorithm is detailed in this section. For simulations with bodies, only
rigid body motions are considered here 2. The physical system of equations solved by foamStar

is the one established in Section 2.1. Table 3.1 indicates the modeled quantities to be solved and
the set of equations is recalled in the following.

Table 3.1 – Modeled quantities evaluated with VOF-RANSE resolution

Physical quantity Description Unit foamStar notation
u Fluid velocity [m.s-1] U

p Pressure [Pa] p_rgh

α Volume-fraction [ ] alpha

ρ Volumetric mass density [kg.m-3] rho

ν Kinematic viscosity [m2.s-1] nu

νt Turbulent kinematic viscosity [m2.s-1] nut

k Turbulent kinetic energy [m2.s-2] k

ω Turbulent dissipation rate [s-1] omega

VOF The VOF convection equation is:

∂α

∂ t
+∇•(αu)+∇•ucomp = 0 (2.18)

2. An hydroelastic model is also implemented in foamStar (Seng et al., 2014)
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and the mixture equations are:

ρ = αρw +(1−α)ρa (2.5a)

µ = αµw +(1−α)µa (2.5b)

ν =
µ

ρ
(2.5c)

RANSE The internal flow model is based on RANSE with the following continuity equation:

∇•u = 0 (2.7)

and momentum equation:

∂ (ρu)
∂ t

+∇•(ρuu+(ρw −ρa)ucompu)−∇p =−g •x∇ρ +∇•(µeff∇u)+∇µeff •∇uT −ρ acc0

(2.29)
with

µeff = µ +ρνt (2.21)

and
p = pd +

2
3

ρ k (2.22)

Turbulent Model (TM) The two-equation fs-k-ω-SST model is:

∂ρk
∂ t

+∇•ρuk−∇•((µ +ραkνt)∇k) = ρνt p0 −
2
3

ρk∇•u−ρβ
∗kω −ρPb (2.24a)

∂ρω

∂ t
+∇•ρuω −∇•((µ +ραωνt)∇ω) = γρ p0 −

2
3

ργω∇•u−ρβ
∗
ω

2 −ρ(F1 −1)C Dkω

(2.24b)
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FSI For a rigid body, the equations given by the FSI are:

Σ =− [p+ρg •x] I+µeff
(
∇u+∇uT) (2.44)

Ffluid =
∫

δΩbody

dS •Σ (2.43a)

Mb
fluid = Rb

0

[∫
M∈δΩbody

dS •Σ ∧ CgM
]

(2.43b)

mẌCg = mg+Ffluid +Fadd +Fc (2.41)

Igω̇
b = Mb

fluid +Mb
add +ω

b ∧
(

Igω
b
)

(2.42)

∀M ∈ ∂Ωbody, XM = XCg +R0
b

(
CgMb

)
(2.45a)

u(M) = uwall(M) = ẊCg +R0
b

[
CgMb ∧ωb

]
(2.45b)

Iterative resolution Several iterative loops are used in order to solve this unsteady nonlinear
coupled system. As shown in Figure 3.4, the first iterative loop to consider is the TIME loop
(time-stepping). It uses the n-indexing. The loop starts with the knowledge of the numerical
field solved at the previous (n-1)th time-step and ends with the numerical solution at the current
nth time-step. During one temporal iteration, several iterative loops are needed for solving the
coupled equations. The main one is the PIMPLE loop. It uses the m-indexing. It contains the
second one that is the PISO loop that uses the k-indexing. Each loop is divided into different
steps. At any step of the resolution, all fields, excepted the calculated one, are considered as
fixed terms inside the treated equations. To perform the numerical resolution, the discretization
schemes introduced in Section 3.1 and Section 3.2 are used. All the steps identified in Fig. 3.4
are detailed in the following sub-sections.

Notations used Table 3.2 indicates the notations that will be used in this section. Given a field
ψ , I

(
ψP
)

f represent the discretization scheme used to interpolate the numerical value ψP at
the center of a face f (see Sec. 3.1.3). ψf refers to the numerical value obtained at the center
of f. Defining ψ̃f = I

(
ψP
)

f , in most cases ψ̃f ̸= ψf because of some additional numerical
corrections 3. The schemes related to the operator I

()
f are chosen by the user. The schemes

are chosen according to the equation in which they are used and the fields to which they are
applied. The same remark can be made for ψP and I

(
ψf
)

P. The schemes are those presented

3. More details are given in the following.
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in Sec. 3.1.

In this document, the indexes used for the iterative loops obey to specific rules. Given
an iterative loop using an a-indexing:

— the initial value of the loop gets the 0th index;
— the first step of a loop gets the 1st index;
— the last step of a loop gets the alastth index;
— given sub-loop using the b-indexing and given a numerical field ψ , without

additional indication, the updated value of ψ in the a-loop equals the last update
of ψ in the b-loop ψ(...,a) = ψ(...,a,blast);

— without additional indication, the initial value of ψ in sub-loop equals the value of
ψ at the end of the previous a-loop ψ(...,a,0) = ψ(...,a-1).

As mentioned, the main iterative loops are the the Time-loop with n-indexing,
PIMPLE-loop with m-indexing and the PISO loop with k-indexing. For other loops described
in this document, the q-indexing will be used. With q only referring to the considered loop in
the corresponding section.

Table 3.2 – Synthesis of notations used for the spatial discretization of a field ψ at a cell P

Numerical values Approximated
physical values

Schemes Involved variables

ψP ψ at cell-center P
ψf ψ at a face-center

∇ψ|P ∇ψ at cell-center P Sec. 3.1.8 ψP, ψN (all neighbours of cell P)
∇ψ|f ∇ψ at a face-center Sec. 3.1.6 ψP, ψN (neighbour sharing face f)

∇•ψ|P ∇•ψ at cell-center P Sec. 3.1.5 ψP, ψN (all neighbours of cell P)
∂ψP

∂ t
∂ψ

∂ t
at cell-center P Sec. 3.2 ψ

(n)
P , ψ

(n-1)
P , ψ

(n-2)
P

I
(
ψP
)

f ψ at a face-center Sec. 3.1.3 ψP, ψN (neighbour sharing face f)
I
(
ψf
)

P ψ at cell-center P Sec. 3.1.4 ψf (all faces of cell P)

In the following, the equations used for the update of main fields are identified by red
or blue terms. The colored term is the one that is calculated by the equation. The blue color is
used when the equation directly gives a definition of the numerical variable. The red color is
used when the equation leads to a matrix system that is solved with a linear solver as detailed
in Section 3.3.7.
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TIME LOOP

Time step
START

Write outputs  calculation with (TM)
resolution

NO

YES END ?

PIMPLE LOOP

 calculation with
(FSI) resolution 


+ mesh motion


, , 
calculation with (VOF)

resolution


PISO LOOP

END ?NO YES

 calculation
with (RANSE)


   calculation
with (Mo.Eq.)

PISO iter. (k)
START

   correction in
Relaxation Zones

PIMPLE iter. (m) START

NO YESEND ?

 correction in
Relaxation Zones

   calculation with
(Mo.Eq.)


Time update

SIMULATION END

SIMULATION START Variables and fields
initialisation at 

Figure 3.4 – foamStar simplified flowchart
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3.3.1 Step one of PIMPLE loop: Body and mesh motion calculation

The first step of the PIMPLE loop is the body motion calculation and the resulting mesh
motion. Table 3.3 indicates the main fields updated during this step.

Table 3.3 – Numerical fields updated by the FSI resolution

Numerical values Description
F(n,m)

body External forces over the body
∀ f ∈ ∂Ωbody, uf Velocity of the faces of the body

X(n,m)
c , X(n,m)

P , X(n,m)
F Positions of mesh points (cell corners, cell centers, face centers)

V (n,m)
P Cells volume

nf
(n,m), S(n,m)

f , S(n,m)
f Normal vector, area and surface vector of faces

φ
(n,m)
mf Faces flux due to mesh motion

a) FSI resolution with 6 DoFs rigid body motion

The equations needed for the body motion resolution are recalled here:

Σ =− [p+ρg •x] I+µeff
(
∇u+∇uT) (2.44)

Ffluid =
∫

δΩbody

dS •Σ (2.43a)

Mb
fluid = Rb

0

[∫
M∈δΩbody

dS •Σ ∧ CgM
]

(2.43b)

mẌCg = mg+Ffluid +Fadd +Fc (2.41)

Igω̇
b = Mb

fluid +Mb
add +ω

b ∧
(

Igω
b
)

(2.42)

∀M ∈ ∂Ωbody, XM = XCg +R0
b

(
CgMb

)
(2.45a)

uwall(M) = ẊCg +R0
b

[
CgMb ∧ωb

]
(2.45b)

The second Newton law (Eq. 2.41) is valid in a Galilean reference frame. However, in
foamStar, the motions, velocities and accelerations X, Ẋ, Ẍ are written and derivated in the
moving-domain reference frame RD. Consequently, this equation is only valid for constant
domain-velocity v0 or for imposed acceleration in the v0 direction. The discretized forms of
these equation are,
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∀ f ∈ ∂Ωbody, Σf
(n,m)

=
(
− [pf +ρfg •Xf] I+µefff

(
∇u|

f
+ ∇u|T

f

))(n,m)
(3.55)

F(n,m)
fluid = ∑

f∈∂Ωbody

(
Sf •Σf

)(n,m-1)
(3.56)

Mb
fluid

(n,m)
= Rb

0
(n,m)

 ∑
f∈∂Ωbody

Sf •Σ ∧ CgM

(n,m-1)

(3.57)

F(n,m)
tot = mg+F(n,m)

fluid +F(n,m)
add (3.58)

Mb
tot

(n,m) = Mb
fluid

(n,m)
+Mb

add
(n,m)

+ωb(n,m)∧
(
ωb(n,m)Ig

)
(3.59)

mẌ(n,m)
Cg = F(n,m)

tot +F(n,m)
c (3.60)

ω̇b (n,m)Ig = Mb
tot

(n,m)
+Mb

c
(n,m)

(3.61)

Constraints To take into account constraints and evaluate Fc
(n,m), a method based on

Lagrange multipliers is used. It consists in constraining the direction of accelerations ẌCg and
ω̇b. From the 0th time-step to the Nth time-step, a system of constraints is defined as two vector
functions defining the directions of the constraints,

CF : [|0, N|]−→ R3 and CM : [|0, N|]−→ R3

n 7−→ C(n)
F n 7−→ C(n)

M
(3.62)

and two scalar functions defining the magnitudes of the constraints,

γF : [|0, N|]−→ R and γM : [|0, N|]−→ R
n 7−→ γ

(n)
F n 7−→ γ

(n)
M

(3.63)

With these imposed quantities, the constraints are represented by the following relations,

∀n ∈ [|0, N|], C(n)
F∣∣∣∣∣∣C(n)
F

∣∣∣∣∣∣ • Ẍ(n,m)
Cg = γ

(n)
F and

C(n)
M∣∣∣∣∣∣C(n)
M

∣∣∣∣∣∣ • ω̇b (n,m) = γ
(n)
M (3.64)

To impose the constraints in Eq. 2.41 and Eq. 2.42, the constraints force F(n,m)
c and moments

Mb
c
(n,m) are defined so that they force the components of the total forces F(n,m)

tot and moments
Mb

tot
(n,m) to be along the constraint directions. This results in the following formulation,
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F(n,m)
c =

mγ
(n)
F −F(n,m)

tot •
C(n)

M∣∣∣∣∣∣C(n)
M

∣∣∣∣∣∣
 C(n)

M∣∣∣∣∣∣C(n)
M

∣∣∣∣∣∣ (3.65a)

Mb
c
(n,m)

= Ig

γ
(n)
M −

(
I−1

g Mb
tot

(n,m)
)

•
C(n)

M∣∣∣∣∣∣C(n)
M

∣∣∣∣∣∣
 C(n)

M∣∣∣∣∣∣C(n)
M

∣∣∣∣∣∣ (3.65b)

Resolution The resolution of the system of equations is done defining a vector Y and its time
derivative Ẏ as,

Y(n,m) =


XCg

ẊCg

ωb

Θ


(n,m)

, Ẏ(n,m) =


ẊCg

ẌCg

ω̇b

Θ̇


(n,m)

(3.66)

Then, the equations are set into matrix M(n,m) and vector S(n,m) defined by,

M(n,m) =


0 I 0 0
0 0 0 0
0 0 0 0
0 0 T(n,m) 0

 , S(n,m) =


0

1
m [Ftot +Fc]

(n,m)

I−1
g
[
Mb

tot +Mb
c
](n,m)

0

 (3.67)

where,

T(n,m) =

1 sinφ (n,m) tanθ (n,m) cosφ (n,m) tanθ (n,m)

0 cosφ (n,m) −sinφ (n,m)

0 sinφ (n,m)/cosθ (n,m) cosφ (n,m)/cosθ (n,m)

 (3.68)

With this formulation, the system of equation becomes,

Ẏ(n,m) = M(n,m)Y(n,m)+S(n,m) (3.69)
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Finally after the resolution of this system 4, the updated positions of all the mesh corners c and
face centers F on the body-wall are,

∀c ∈ ∂Ωbody, X(n,m)
c = X(n,m)

Cg +R0
b
(n,m)

(
ξb

c

)
(3.70a)

∀ f ∈ ∂Ωbody, X(n,m)
F = X(n,m)

Cg +R0
b
(n,m)

(
ξb

F

)
(3.70b)

(3.70c)

and the velocities at the face center are imposed by:

∀ f ∈ ∂Ωbody, u(n,m)
f = Ẋ(n,m)

Cg +R0
b
(n,m)

[
ξb

F ∧ωb(n,m)
]

(3.71)

b) Mesh morphing

At this step, the positions Xc of mesh-points and XF of faces are known on the
body-walls ∂Ωbody. Using these boundary conditions, the entire mesh is morphed in order to
smooth the deformation from the body to the exterior boundaries. The exterior boundaries are
kept fixed in reference frame R0. For all faces f on boundaries, the displacement of their face
centers and face corners c are defined as,

δ
(n,m)
F = X(n,m)

F −X(n,m-1)
F (3.72a)

δ
(n,m)
c = X(n,m)

c −X(n,m-1)
c (3.72b)

Then, the cell centers displacements δ(n,m)
P are computed solving the following Poisson

equation:
∇•
(

Γ(X(n,m-1)
P ) ∇δ |(n,m)

P

)
= 0 (3.73)

with Γ(X(n,m-1)
P ) the diffusion coefficient that can take several forms depending on the desired

aspect of the mesh deformation propagation. In foamStar, this coefficient is the square of the
inverse distance r(n,m-1)

P from the body-wall to the point P by default:

Γ(X(n,m-1)
P ) =

(
1

r(n,m-1)
P

)2

(3.74)

After the resolution of this Poisson equation, the cell corners displacements are obtained

4. In foamStar, a Runge-Kutta-like algorithm is commonly used.
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interpolating the cell centers displacements. Finally, the positions of all the inner cell corners
are obtained applying Eq. 3.72b. After this update, the cells corner are kept fixed for the rest of
the PIMPLE iteration.

Knowing the new positions of the cell corners, the positions XF, XP and the variables
S(n,m)

f , nf
(n,m), S(n,m)

f , V (n,m)
P , φ

(n,m)
mf can be updated. Firstly, as shown in the Figure 3.5, to get

the position of the geometrical face center F and the surface vector Sf, the considered face f is
divided into triangles formed by each edge of the face and the barycenter F̃ of the NV vertexes
Vi defined as:

XF̃ =
1

NV

NV

∑
i=1

XVi (3.75)

Then, the positions of geometrical centers Ti and surface vectors Sfi of each triangle are obtained
as follows:

with VNV+1 ≡ V1

∀i ∈ [|1,NV|], XTi =
1
3
[
XF̃ +XVi +XVi+1

]
(3.76a)

∀i ∈ [|1,NV|], Sfi =
1
2

F̃Vi ∧ F̃Vi+1 (3.76b)

Finally,

Sf =
NV

∑
i=1

Sfi (3.77a)

Sf = |Sf| (3.77b)

nf =
Sf

Sf
(3.77c)

XF =
1
Sf

NV

∑
i=1

|Sfi|XTi (3.77d)

(3.77e)
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P Sf

V1V1

V4

V2

V3

sf1

sf2

sf3

sf4

T1

T2

T3F

T4

~F

x

y

z

Figure 3.5 – Face decomposition used for the calculations of surface areas and geometric-center
of faces. With F the geometric center and F̃ the barycenter of vertices.

To compute the position of the cell center P and the cell volume VP, a similar approach
is done decomposing the cell into pyramids for which, the base is a face fi and the apex is the
barycentrer P̃ of the Nf faces center Fi. This decomposition is shown in Figure 3.6. The resulting
equation is:

XP̃ =
1
Nf

Nf

∑
i=1

XFi (3.78)

Then, the geometrical center Pi and volume Vi of each pyramid are obtained with,

∀i ∈ [|1,Nf|], XPi = XP̃ +
3
4

P̃Fi (3.79a)

∀i ∈ [|1,Nf|], Vi =
1
3

P̃Fi •Sfi (3.79b)

Finally,

VP =
Nf

∑
i=1

Vi (3.80a)

XP =
1

VP

Nf

∑
i=1

ViXPi (3.80b)

(3.80c)
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x

y

z

Vp1

P2

Vp1

P

Vp

P1

Sf1
~P

F1

F2

Sf2

Figure 3.6 – Cell decomposition used for the calculations of volume and geometric-center of
cells. With P the geometric center and P̃ the barycenter of face centers.

As seen previously with Eq. 3.54, the mesh flux φ
(n,m)
mf of a face f depends on the

variation of the cell volume. Consequently, to evaluate φ
(n,m)
mf , the "swept volume" V sf of the

face has to be estimated. To do so, the face is decomposed into triangles formed by each edge
and the geometrical center F of the face. This decomposition is done for the face at the previous
time-step (n-1) and at the current time-step and PIMPLE-step (n,m) as shown in Figure 3.7.
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V1
(n-1)

V2
(n-1)

V4
(n-1)

V3
(n-1)

F(n-1)

V1
(n,m)

V2
(n,m)

V4
(n,m)

V3
(n,m)

F(n,m)

x

y

z

Figure 3.7 – Face-swept volume decomposition used for mesh flux computation

In the 4D space (t,x,y,z) the volume formed by a sweeping triangle between steps (n-1)
and (n,m) is not know so it has to be approximated. Figure 3.8 shows a representation of this
volume. The triangles considered here are FV1V2 at steps (n-1) and (n,m). The swept volume
V sT of the considered triangle is evaluated considering 3 tetrahedrons. Such a structure is not
unique and because the lateral quadrilateral faces are not necessarily planar, the sum of the
volumes of the tetrahedrons would depend on the chosen structure. To manage this problem,
the swept volume V sT is the mean of the volumes of two structures of tetrahedrons. For the
first one shown in Figure 3.8(a) the face V1(n-1)V2(n-1)V2(n,m)V1(n,m) is decomposed considering
the edge V1(n-1)V2(n,m). For the second one it is the edge V2(n-1)V1(n,m) that is involved. Such an
alternative tetrahedrons organization is not needed for the other lateral faces because they are
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internal faces from decomposition of the face-swept volume shown in Figure 3.8(b).

VNV+1 ≡ V1 (3.81a)

∀i ∈ [|1,NV|], V sTi =
1
6

F(n-1)F(n,m) •
(

F(n-1)V(n-1)
i ∧F(n-1)V(n-1)

i+1

)
+

1
12

V(n-1)
i+1 V(n,m)

i+1 •
(

Vi+1F(n,m)∧V(n,m)
i+1 V(n,m)

i

)
+

1
12

V(n-1)
i V(n-1)

i+1 •
(

V(n-1)
i F(n,m)∧V(n-1)

i V(n,m)
i

)
+

1
12

V(n-1)
i V(n,m)

i •
(

V(n,m)
i V(n,m)

i+1 ∧V1F(n,m)
)

+
1
12

V(n-1)
i+1 V(n-1)

i •
(

V(n-1)
i+1 V(n,m)

i+1 ∧V(n-1)
i+1 F(n,m)

)

(3.81b)

V sf =
NV

∑
i=1

V sTi (3.81c)

With this formulation of V sf and the cell volume VP, the following relation is verified:

V (n,m)
P −V (n-1)

P = ∑
f

V s(n,m)
f (3.82)

Consequently, the discretized geometric conservation law (Eq. 3.54) implies the following
expression of the mesh flux φ

(n,m)
mf for the face f:

φ
(n,m)
mf = c(n)n V s(n,m)

f − c(n)n-2V s(n-2)
f + γ

(n,m)
V sf

(3.83)

As mentioned in Section 3.2.3 the coefficients expression depends on the choice of the temporal
discretization scheme.
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Figure 3.8 – Two sub-face-swept decomposition required for mesh flux computation
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3.3.2 Step two of PIMPLE loop: VOF resolution

Once the mesh morphing is updated, equations of the VOF model are solved. The set of
equations in the moving-domain reference frame RD is,

∂α

∂ t
+∇•(αu)+∇•ucomp = 0 (2.18)

ρ = αρw +(1−α)ρa (2.5a)

µ = αµw +(1−α)µa (2.5b)

ν =
µ

ρ
(2.5c)

Table 3.4 indicates the main fields updated during this step.

Table 3.4 – Numerical fields updated by the VOF resolution

Numerical values Description

α
(n,m)
P Volume fraction at cell centers

ρ
(n,m)
P , µ

(n,m)
P , ν

(n,m)
P Density, dynamic and kinematic viscosity of the VOF at cell centers

F(n,m)
ρf Density flux at faces

Firstly, with the Finite Volume formulation, the discretized form of Eq. 2.18 at the nth
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time-step is:

c(n)n α
(n,m)
P +S(n)ddtα +∑

f

(
I
(

α
(n,m)
P

)
f

[
φ
(n,m-1)
f +φ

(n,m-1)
mf

]
+φ

(n,m)
comp.f

)
= 0 (3.84)

where φ
(n,m)
comp.f is the additional compression flux at the face f. Its formulation is discussed in the

following.

As defined in Section 3.2, the source term computed for the time derivative S(n)ddt

corresponds to:
S(n)ddtα = c(n)n-1V (n-1)

P α
(n-1)
P + c(n)n-2V (n-2)

P α
(n-1)+ γ

(n)
α

In foamStar, the VOF is solved by a recursive algorithm depending on the selected
time-scheme. At the end of the resolution, the numerical α field respects the following equation:

c(n)n V (n)
P α

(n,m)
P +S(n)ddtα +∑

f
F(n,m)

αf = 0 (3.85)

The volume fraction flux Fαf is computed by the algorithm detailed in the following.

Considering the density field ρ defined by Eq. 2.5a a density-flux can be defined as:

F(n,m)
ρf = (ρw −ρa)F

(n,m)
αf +ρa

[
φ
(n,m-1)
f +φ

(n,m-1)
mf

]
(3.86)

This density flux is consistent with a simplified volume fraction flux:

F̃αf

(n,m)
= α

(n,m)
f

[
φ
(n,m-1)
f +φ

(n,m-1)
mf

]
resulting in:

F̃ρf

(n,m)
= ρ

(n,m)
f

[
φ
(n,m-1)
f +φ

(n,m-1)
mf

]
Even with F(n,m)

αf ̸= F̃αf

(n,m)
(among other things because of the use of a compression term 5)

Eq. 3.85, Eq. 3.86 and Eq. 3.54 imply:

c(n)n V (n)
P ρ

(n,m)
P +S(n)ddtρ +∑

f
F(n,m)

ρf = 0 (3.87)

that is then used as the discretized form of the mass conservation equation with compression
term (Eq. 2.19).

In the following, the general resolution method is presented. Besides, the specific

5. More details can be found in the following.
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implementations are detailed. Some discussions on the algorithm are provided in the next
section (Sec. 3.3.3).

a) General formulation of the VOF resolution with foamStar

The numerical algorithm consists in solving the equations for the volume fraction with
a q-indexed iterative procedure. It is initialized with the following predictor step:

c(n)n α
(n,m,0)
P +

1

V (n,m)
P

∑
f

I
(

α
(n,m,0)
P

)
f(UD)

[
φ
(n,m-1)
f −φ

(n,m-1)
mf

]
=− S(n)ddtα

V (n,m)
P

(3.88a)

F(0)
L = IUD

(
α
(n,m,0)
P

)
f

[
φ
(n,m-1)
f −φ

(n,m-1)
mf

]
(3.88b)

At the initialisation step (q=0), α is predicted with the resolution of Eq. 3.88a. In this
equation, the operator IUD(.)f represents an upwind spatial scheme (see Section 3.1.3). An
initial low order flux F(0)

L is defined by Eq. 3.88b. No VOF compression terms are used during
this initialization step.

For q > 0, the recursive Algorithm 3.89 consists in updating the flux F(q)
L as a weighted

sum of an high-order compressed volume fraction flux and the flux F(q-1)
L calculated at the

previous step. This step involves the weight factor λ (q) computed using Multidimensional
Universal Limiter for Explicit Solution (MULES) algorithm detailed by Márquez Damián
(2013). This method ensures the TVD criterion introduced in Section 3.1.3.

During the VOF resolution, α(n,m,q) is computed with the following recursive
formulation:

φ
(n,m,q)
comp.f = I

(
α
(n,m,q-1)
P

)
f

[
1−I

(
α
(n,q-1)
P

)
f

]
φ
(n,m)
r (3.89a)

F(q)
H = I

(
α
(n,m,q-1)
P

)
f

[
φ
(n,m-1)
f −φ

(n,m-1)
mf

]
+φ

(n,m,q)
comp.f (3.89b)

F(q)
L = (1−λ

(q))F(q-1)
L +λ

(q)F(q)
H (3.89c)

α
(n,m,q)
P = α

(n,m,q-1)
P − 1

c(n)n V (n,m)
P

∑
f

λ
(q)(F(q)

H −F(q-1)
L ) (3.89d)

with φ
(n,m)
r defined as,

φ
(n,m)
r = γcomp

∣∣∣φ (n,m-1)
f −φ

(n,m-1)
mf

∣∣∣ ∇α|(n,m,q-1)
f∣∣∣∣∣∣∇α|(n,m,q-1)
f

∣∣∣∣∣∣ •nf
(n,m), (3.90)

and γcomp a positive constant.

As mentioned in Section 2.1.2, the compression term in Eq. 3.89b will only get non null
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value in the free-surface zone with 0 < α(n,m,q) < 1 and still verifies the mass conservation.
However, because of the its nonlinear aspect, it has to be evaluate explicitly. This explicit
formulation implies some instabilities for high values of γcomp. The literature suggests to use
γcomp ≤ 1 to preserve the numerical stability (OpenFOAM, 2022a; Choi et al., 2018). With
γcomp = 0, no additional compression term is used.

With this general formulation of the VOF resolution 6 the volume fraction flux Fαf is:

F(n,m)
αf = F(qlast)

L (3.91)

Using the computed volume fraction, the density is updated as follows 7:

ρ
(n,m) = α̃P

(n,m)
ρw +(1− α̃P

(n,m)
)ρa (3.92)

with:
α̃P

(n,m)
= min

(
max

(
α
(n,m,qlast)
P ,0

)
,1
)

(3.93)

At the end of the VOF resolution, with the relaxation zone activated, according to Eq. 2.61, the
volume fraction is corrected as follows:

α
(n,m)
P = (1−w)α(n,m,qlast)

P +w
(

α
(n,m-1)
P

)target
(3.94)

And finally, the kinetic and dynamic viscosity are calculated:

µ
(n,m) = α̃

(n,m)
P ρw +(1− α̃

(n,m)
P )ρa (3.95a)

µ
(n,m)
eff = µ

(n,m)+µ
(n,m-1)
t (3.95b)

ν
(n,m) =

µ(n,m)

ρ(n,m)
(3.95c)

b) Euler MULES

The MULES algorithm aims to ensure TVD criterion for the spatial schemes even
adding the compression term and then does not create new maximum and minimum terms.
However, this notion of maximum and minimum is relative to the first estimation α

(n,m,0)
P of the

volume fraction (Eq. 3.88a). Thanks to the MULES algorithm, the converged result α
(n,m,qlast)
P

is bounded by α
(n,m,0)
Pmin

and α
(n,m,0)
Pmax

. So, α
(n,m,qlast)
P between 0 and 1 is only ensured if α

(n,m,0)
P

6. The expression of Fαf depends on the selected method
7. This equation is discussed in Sec. 3.3.3

60



Numerical methods

obtained by the predictor step is between 0 and 1. Only the Euler time scheme ensures this
property. In the MULES algorithm, some limit values can be imposed but nothing ensures that
the algorithm will converge within these limits if α

(n,m,0)
P does not respect them.

With the Euler implicit scheme the predictor step (3.88) can be written as:

α
(n,m,0)
P
∆t

+
1

V (n,m)
P

∑
f

I
(

α
(n,m,0)
P

)
f(UD)

[
φ
(n,m-1)
f −φ

(n,m-1)
mf

]
=

α
(n-1)
P V (n-1)

P

∆t V (n,m)
P

(3.96a)

F(0)
L = IUD

(
α
(n,m,0)
P

)
f

[
φ
(n,m-1)
f −φ

(n,m-1)
mf

]
(3.96b)

and the correction step as:

F(q)
H = I

(
α
(n,m,q-1)
P

)
f

[
φ
(n,m-1)
f −φ

(n,m-1)
mf

]
+φ

(n,m,q)
comp.f (3.97a)

F(q)
L = (1−λ

(q))F(q-1)
L +λ

(q)F(q)
H (3.97b)

α
(n,m,q) = α

(n,m,q-1)− ∆t

V (n,m)
P

∑
f

λ
(q)(F(q)

H −F(q-1)
L ) (3.97c)

Finally, the volume fraction flux Fαf is respecting the same definition as in the general
formulation previously defined (Eq. 3.91).

c) Crank-Nicolson MULES

In OpenFOAM-5 the implicit Crank-Nicolson can be used for the VOF resolution
with the MULES algorithm. For the predictor step, the Crank-Nicolson scheme presented in
Section 3.2 could be used directly with the general formulation (see in (a)) but it would not
ensure 0 ≤ αP ≤ 1. The reason is the contribution of other terms than α

(n-1)
P in the source term.

Then, the predictor step is formulated in OpenFOAM-5 with an Euler-like scheme introducing
a mixed flux ΦCNf:

Φ
(n,m-1)
CNf

=CCN

[
φ
(n,m-1)
f −φ

(n,m-1)
mf

]
+(1−CCN)

[
φ
(n-1)
f −φ

(n-1)
mf

]
. (3.98)

The resulting predictor step is defined as follows:

α
(n,m,0)
P
∆t

+
1

V (n,m)
P

∑
f

I
(

α
(n,m,0)
P

)
f(UD)

Φ
(n,m-1)
CNf

=
α
(n-1)
P V (n-1)

P

∆t V (n,m)
P

(3.99a)

F(0)
L = IUD

(
α
(n,m,0)
P

)
f
Φ

(n,m-1)
CNf

(3.99b)
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This formulation of F(0)
L can be seen as writing the diffusive part obtained with

Crank-Nicolson time-scheme:

α
(n,m,0)
P
∆t

+
1

V (n,m)
P

∑
f
[CCNI

(
α
(n,m,0)
P

)
f(UD)

[
φ
(n,m-1)
f −φ

(n,m-1)
mf

]
+

1

V (n,m)
P

∑
f
(1−CCN)I

(
α
(n-1)
P

)
f(UD)

[
φ
(n-1)
f −φ

(n-1)
mf

]
=

α
(n-1)
P V (n-1)

P

∆t V (n,m)
P

(3.100)

but making the approximation α
(n-1)
P ≈ α

(n,m,0)
P in the convection term.

The resulting predictor is first-order accurate as would be an Euler one. Consequently,
using this predictor, the MULES algorithm aims to reach both spatial and temporal second-order
accuracy. The side effect is that second-order time accuracy can be achieved if and only if the
second-order spatial accuracy is reached.

Using the Crank-Nicolson time scheme, the targeted high-order flux is formulated as
follows:

F(q)
H =CCNI

(
α
(n,m,q-1)
P

)
f

[
φ
(n,m-1)
f −φ

(n,m-1)
mf

]
+(1−CCN)F

(n-1)
αf︸ ︷︷ ︸

Crank−Nicolson f ormulation

+φ
(n,m,q)
comp.f (3.101)

and the correction step:

F(q)
L = (1−λ

(q))F(q-1)
L +λ

(q)F(q)
H (3.102a)

α
(n,m,q) = α

(n,m,q-1)− ∆t

V (n,m)
P

∑
f

λ
(q)(F(q)

H −F(q-1)
L ) (3.102b)

Using the off-centering coefficient COC (Eq. 3.48), Fαf is computed as:

F(n,m)
αf = (1+COC)F

(qlast)
L −COCF(n-1)

αf (3.103)

In Chapter 4, the general MULES formulation keeping a time second-order predictor is
tested in spite of the potential loss of TVD behavior. This MULES method only dealing with
the spatial discretization is denoted S-MULES in this document.
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3.3.3 Discussion on VOF resolution

The previous section details how the VOF algorithm is implemented in foamStar. Some
parts of this implementation are discussed here.

a) The density-flux expression

As mentioned, one important updated field during the VOF resolution is the density-flux
F(n,m)

ρf (Eq. 3.86). This density flux is the one used for the momentum convection detailed in
Section 3.3.4. It implies some discussion on the consistency of its expression.

Time-scheme consistency As mentioned, because of its definition, F(n,m)
ρf does respect

the mass conservation equation (Eq. 3.87). However, the time-scheme coefficients are those
imposed by the selected scheme. Consequently, using another time-scheme for the momentum
equation would lead to an inconsistent density-flux regarding to the momentum convection and
the geometric-conservation law.

Clipping of the volume fraction As detailed, the VOF-MULES algorithm aims to keep 0 ≤
α ≤ 1. However, because of the resolution errors, a non-converged MULES step or the use of an
non-Euler-like predictor, the updated volume fraction field α(n,m,qlast) can eventually get some
values out of the prescribed interval [0,1]. Such values could significantly impair the simulation
if they were directly used for ρ and µ calculation. It explains why, in Eq. 3.92, ρ(n,m) is not
calculated with αP

(n,m,qlast) but with the clipped volume fraction α̃P
(n,m). The consequence of

this clipping is that using this formulation of ρ(n,m), the mass conservation equation Eq. 3.87 is
not truly verified. Then, if the clipping implies a too large change in the volume fraction, some
spurious velocities could occur during the the resolution of the momentum-equation.

b) Predictor step for Crank-Nicolson MULES

With Crank-Nicolson MULES, it can be interesting to question the use of Eq. 3.99 for
the predictor step rather than the standard Euler predictor Eq. 3.96. No reference where found
in the literature, so looking at the equations, two reasons could explain this choice.

The first one is the respect of the geometric conservation law. Using the currently
implemented predictor (Eq. 3.99), the coefficient of the mesh flux is the same as with the
Crank-Nicolson scheme. So, the geometric-conservation law is still respected if the field F(n,m)

ρf
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is used for the momentum convection with a Crank-Nicolson scheme and a same off-centering
coefficient.

The second, and probably the main reason, is the error implied by the formulation of
F(n,m)

αf . In the following, the coefficients resulting from the MULES correction at a face f is λf

and the Crank-Nicolson off-centering coefficient is COC. For more simplicity, we assume here
a fixed mesh, only one VOF correction loop, no compression term, and a previous time-step
solution obtained with a "perfect" MULES correction λ

(n-1)
f = 1.

Using ΦCNf as defined in foamStar, the resulting F(n,m)
αf flux at a face f is:

F(n,m)
αf = φ

(n,m)
f

[
(1−λf)IUD

(
α
(n,m,0)
P

)
f
+λfI

(
α
(n,m)
P

)
f

]
+COC φ

(n-1)
f

[
(1−λf)

[
IUD

(
α
(n,m,0)
P

)
f
−I

(
α
(n-1)
P

)
f

]] (3.104)

As expected, when λf = 1 the impact of this formulation is:

F(n,m)
αf = φ

(n,m)
f IUD

(
α
(n,m)
P

)
f

(3.105)

The issue occurs with λf ̸= 1. It implies additional terms in the VOF flux formulation
with a contribution of the previous time-step fields α

(n-1)
P and φ

(n-1)
f . The undesired contribution

is of the order of |α(n,m)
P − α

(n-1)
P |, so no additional terms are added in regions outside the

transition zone.

In the same situation but considering the initialization with the Euler approach, the
resulting F(n,m)

αf flux at a face f is:

F(n,m)
αf = φ

(n,m)
f

[
(1−λf)IUD

(
α
(n,m,0)
P

)
f
+λfI

(
α
(n,m)
P

)
f

]
+COC φ

(n-1)
f

[
(1−λf)

[
I
(

α
(n-1)
P

)
f

]] (3.106)

When λf = 1 the impact of this formulation is the same as previously. But now, with λf ̸= 1,
the contribution of α

(n-1)
P is not compensated by α

(n,m,0)
P . Then, in the wet region (α > 0),

even with a constant volume fraction, the flux used for the convection term in the momentum
equation includes the contributions of α

(n-1)
P and φ

(n-1)
f .

In regions where the volume fraction is locally constant (far from the free surface), the
MULES coefficient λf will not converge to 1 so the exposed situation with λf ̸= 1 concerns a
majority of the cell faces of the domain.

Finally, both Euler and Crank-Nicolson approach are first-order predictor, the
Crank-Nicolson introducing ΦCNf is the default implementation in OpenFOAM and, as
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mentioned, Euler approach can impose strong modifications of the flux even with constant
volume fraction. Consequently, only the Crank-Nicolson approach will be considered in the
following.

c) The relaxation zone

The corrections induced by the relaxation zone are made at the end of the VOF resolution
but only impact the expression of α(n,m), µ(n,m) and ν(n,m). The first remark is that the density
field ρ and the viscosity field µ are not calculated with the same volume fraction. Consequently,
some inconsistencies exist between the volume fraction and the density and density-flux. The
second remark is that the numerical volume fraction α(n,m) is not used in the foamStar code
except in the time scheme applied to the next time-step (n+1) with the source field α(n) =

α(n,mlast). Consequently, it could be interesting to apply the relaxation zone constraint on the
volume fraction only at the end of the time-step rather than inside the PIMPLE loop.

3.3.4 PISO loop: RANSE resolution

At this step, the mesh motion is known and the VOF has been updated. In the
moving-domain RD, the set of equations that are solved in this section is:

∇•u = 0 (2.7)

∂ (ρu)
∂ t

+∇•(ρuu+(ρw −ρa)ucompu) =−∇p−g •x∇ρ +∇•(µeff∇u)+∇µeff •∇uT −ρ acc0

(2.29)

Table 3.5 indicates the main fields updated during this step.

Table 3.5 – Numerical fields updated by the RANSE resolution

Numerical values Description

u(n,m)
P The velocity at cell centers

u(n,m)
f The velocity at face centers

φ
(n,m)
f The velocity flux at faces

p(n,m)
P The pressure at cell centers

The velocity and pressure variables are computed at the center of cells. So, in order to avoid
pressure oscillations solving RANSE with collocated variables, the OpenFOAM algorithm is
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using a variant the Rhie and Chow (1983) method in the PISO loop. Figure 3.9 gives a schematic
view of the PISO loop. First the loop starts with a predictor step where the velocity field u is
estimated solving the momentum equation (Eq. 2.29). Then at each iteration of a recursive
PISO loop, the pressure field p is updated using both the momentum and continuity equations
(Eq. 2.29, Eq. 2.7) followed by the update of the u according to the momentum equation.
In foamStar, the relaxation zone constraint is applied to the velocity field after the last PISO
iteration.

PISO LOOP

END ?NO YES

 calculation
combining (Co.Eq.)

and (Mo.Eq.)

   correction
with (Mo.Eq.)

PISO iter. (k)
START

   correction in
Relaxation Zones

   calculation with
(Mo.Eq.)


Figure 3.9 – Simplified flowchart of the PISO loop

a) Implicit velocity calculation

The first step is the initialization of the PISO loop with an estimation of the velocity
u(n,m,0)

P . To do so the momentum equation 2.29 is discretized as follow,

c(n)n ρ
(n,m)
P u(n,m,0)

P

+
1

V (n,m)
P

∑
f

(
I
(
u(n,m,0)

P
)

f F(n,m)
ρf −µ

(n,m)
eff Sf • ∇u|f (n,m,0)

)
=

∇u|(n,m-1)
P • ∇µeff|(n,m)

P +I
(

gz(n,m)
P ∇ρ|(n,m)

f − ∇p|(n,m-1)
f

)
P

− 1

V (n,m)
P

[
c(n)n-1(ρuPVP)

(n-1)+ c(n)n-2(ρuPVP)
(n-2)+ γ

(n)
ρu

]
−ρ

(n,m) a(n)cc0 (3.107)

With
µ
(n,m)
eff = µ

(n,m)+ρ
(n,m)

ν
(n-1,m)
t (3.108)

In this equation only u(n,m,0)
P is unknown. The resulting linear system is solved using matrix

resolution algorithm as mentioned in Section 3.3.7.
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b) PISO loop

For this part some new notations have to be introduced in order to decompose the
interpolation operator I

(
uP
)

f and gradient operator Sf • ∇u|f. The decompositions consist in
identifying the coefficients γN

If
, γN

∆f
, γP

If
, γP

∆f
, γS

If
and γS

∆f
associated to the neighbour cell N, the

principal cell P and additional source S relative to the considered operators.

I
(
uP
)

f = γ
N
If

uN + γ
P
If

uP + γ
S
If

(3.109a)

Sf • ∇u|f = γ
N
∆f

uN + γ
P
∆f

uP + γ
S
∆f

(3.109b)

As seen in Section 3.1, these coefficients depend on the cells geometry and the chosen numerical
schemes.

In the PISO loop, the momentum equation is decomposed introducing the fields D(n,m)
uP

and H(n,m,k)
P . A common way to introduce these fields is to use matrix formulation. Given the

matrix system built with Eq. 3.107 applied at each cell center of the numerical domain:

M(n,m)[u](n,m,0) = S(n,m)+G(n,m)
ρ +G(n,m-1)

p (3.110)

with M(n,m) the matrix of the system, G(n,m)
ρ and G(n,m)

p the vectors containing the source
terms associated with the gradients of density and pressure, respectively, and S(n,m) the vector
containing the other source terms.

Defining D(n,m) the diagonal matrix from M(n,m) and O(n,m) the matrix built with its
outer-diagonal coefficients, the matrix system becomes:

D(n,m)[u](n,m,0)+O(n,m)[u](n,m,0) = S(n,m)+G(n,m)
ρ +G(n,m-1)

p (3.111)

Then, defining the vector:

H(n,m,k) =−O(n,m)[u](n,m,k)+S(n,m) (3.112)

the following matrix system can be built:

D(n,m)[u](n,m,0) = H(n,m,k)+G(n,m)
ρ +G(n,m,k)

p (3.113)

For k=0, this matrix system is equivalent to Eq. 3.110.

Finally, D(n,m)
uP and H(n,m,k)

P are the coefficients of D(n,m) and H(n,m,k), and their
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expressions are:

D(n,m)
uP =

1

V (n,m)
P

∑
f

γ
P
If

F(n,m)
ρf − µ

(n,m)
eff

V (n,m)
P

∑
f

γ
P
If
+ c(n)n ρ

(n,m) (3.114)

H(n,m,k)
P = − 1

V (n,m)
P

∑
f

[(
γ

N
If

u(n,m,k-1)
N + γ

N
If

)
F(n,m)

ρf −µ
(n,m)
eff

(
γ

N
∆f

u(n,m,k-1)
N + γ

S
∆f

)]
+ ∇u|(n,m-1)

P • ∇µeff|(n,m)
P − 1

V (n,m)
P

[
c(n)n-1(ρuPVP)

(n-1)+ c(n)n-2(ρuPVP)
(n-2)+ γ

(n)
ρu

]
−ρ

(n,m) a(n)cc0

(3.115)

With such a formulation, the following discretized form of the momentum equation can
be written:

u(n,m,k)
P =

H(n,m,k)
P

D(n,m)
uP

+
I
(

gz(n,m)
P ∇ρ|(n,m)

f − ∇p|(n,m,k)
f

)
P

D(n,m)
uP

(3.116)

To use this formulation, ∇p|(n,m,k)
f requires the calculation of p(n,m,k)

P . To do so, φf representing
the velocity flux at face, the following equation is built:

φ
(n,m,k)
f =

I

(
H(n,m,k)

P

D(n,m)
uP

)
f

+
gz(n,m)

f ∇ρ|(n,m)
f

I
(

D(n,m)
uP

)
f

− ∇p|(n,m,k)
f

I
(

D(n,m)
uP

)
f

 •Sf (3.117)

On the other hand, using φ
(n,m,k)
f the continuity equation Eq. 2.7 is discretized as follows

∑
f

φ
(n,m,k)
f = 0 (3.118)

It results in the following equation where the values of p(n,m,k)
P are the only unknowns:

∑
f

 ∇p|f (n,m,k)

I
(

D(n,m)
uP

)
f

 •Sf = ∑
f

I

(
H(n,m,k)

P

D(n,m)
uP

)
f

+
gz(n,m)

f ∇ρ|(n,m)
f

I
(

D(n,m)
uP

)
f

 •Sf (3.119)

The cell-center values p(n,m,k)
P are obtained solving this linear system with the matrix

resolution algorithm as defined in Sec. 3.3.7. Rhie and Chow (1983).

Besides, based on the Rhie and Chow (1983) method, the updated pressure field p(n,m,k)
P

is used for the calculation of the velocity-flux φ
(n,m,k)
f and u(n,m,k)

P using Eq. 3.117 and Eq. 3.116.
Finally, at the end of a PISO iteration, the quantities u(n,m,k)

f are calculated with the following
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relation:

u(n,m,k)
f =

φ
(n,m,k)
f
|Sf|

nf︸ ︷︷ ︸
f ace−normal part

+I
(

u(n,m,k)
P

)
f
• [I −nfnf]︸ ︷︷ ︸

tangential part

(3.120)

With this formulation, the face-normal part of u(n,m,k)
f verifies the relation φ

(n,m,k)
f = u(n,m,k)

f •Sf

but the tangential part is the tangential part of the interpolated value of u(n,m,k)
P . The consequence

is that in general, I
(

u(n)
P

)
f
̸= u(n)

f

After a user-specified number of PISO iteration, the fluid velocity is corrected in the
relaxation zone as follows:

u(n,m)
P = (1−w)u(n,m,klast)

P +w
(

u(n,m-1)
P

)target
, (3.121)

and the other fields are defined with the relations,

u(n,m)
f = u(n,m,klast)

f (3.122a)

φ
(n,m)
f = φ

(n,m,klast)
f (3.122b)

p(n,m)
P = p(n,m,klast)

P (3.122c)

If the user-specified number of PIMPLE iterations is reached, all the fields except the
kinematic viscosity and the turbulent kinetic energy are considered as solved for the time-step
n. The following update can be done for each solved field,

ψ
(n) = ψ

(n,mlast) (3.123)

3.3.5 Turbulence model resolution

At the end of a time-step and before starting the next one, the turbulence model is
solved. The turbulence model detailed here is the k-ω model described in Sec. 2.1.3. In the
moving reference frame R0, the two equations evaluated in P are:

∂ρk
∂ t

+∇•ρuk−∇•((µ +ραkνt)∇k) = ρνt p0 −
2
3

ρk∇•u−ρβ
∗kω −ρPb (2.24a)

∂ρω

∂ t
+∇•ρuω −∇•((µ +ραωνt)∇ω) = γρ p0 −

2
3

ργω∇•u−ρβ
∗
ω

2 −ρ(F1 −1)C Dkω

(2.24b)
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with
νt =

k
ω

(3.124)

The updated numerical fields at this step are listed in Table 3.6

Table 3.6 – Numerical fields updated by the turbulence model resolution

Numerical values Description
k(n) The turbulent kinetic energy at cell centers
ω(n) The turbulent dissipation rate at cell centers
ν
(n)
t The turbulent viscosity at cell centers

The discretized equations of the turbulence model are:

c(n)n ρω
(n)+

1

V (n)
P

∑
f

(
ω

(n)F(n)
ρf −ρ(νw +αkν

(n-1)
t )Sf • ∇ω|f (n)

)
= γρ p0

ω(n)

k(n-1)
− 2

3
ργω

(n)
∇•u|(n)P −ρβ

∗
ω

(n-1)
ω

(n)−ρ(F1 −1)C Dkω −S(n)ddtω

(3.125)

and

c(n)n ρk(n)+
1

V (n)
P

∑
f

(
k(n)F(n)

ρf −ρ(νw +αkν
(n-1)
t )Sf • ∇k|f (n)

)
= ρ p0 −

2
3

ρk(n) ∇•u|(n)P −ρβ
∗k(n)ω(n)−ρPb −S(n)ddtk

(3.126)

The resulting linear matrix systems are solved successively and then the turbulent kinematic
viscosity is updated as follows:

ν
(n)
t =

a1k(n)

max(a1ω(n), b1F2 p0)
(3.127)

3.3.6 Boundary conditions

Solving numerical equations implies the definition of boundary conditions for the
different fields. These boundary conditions are related to the physical model. In this section
the boundary conditions (BCs) available in foamStar are presented. More information can be
found in the OpenFOAM documentation OpenFOAM (2022a) and Greenshields and Weller
(2022).

70



Numerical methods

a) Dirichlet boundary conditions

The first category of BCs is the Dirichlet’s one. It consists in imposing a value of the
field at the boundary. In OpenFOAM, the surface normal gradient of a field φ at face f on a
boundary with Dirichlet BC is computed as follows:

∇φf •nf =
φf −φP

PF •nf
. (3.128)

Where PF is the vector from the cell center P to the face center F and nf is the face normal.

In this document the following Dirichlet’s BCs provided by OpenFOAM are used:

— fixedValue: This BC imposes a user-defined value at the boundary.
— movingWallVelocity: This BC is used for the velocity field at walls, it forces

the velocity on the wall patch to be equal to the wall velocity obtained solving the
body motions.

— totalPressure: This BC imposes a user-defined value p0 minus a dynamic term
pBC = p0 − 1

2ρu2

— kLowReWallFunction: This BC imposes the value for the turbulent kinetic
energy k according to a two-equation turbulence model adapting the boundary
condition to the wall distance and fluid velocity.

— omegaWallFunction: This BC imposes the value for the turbulent dissipation
rate ω according to a two-equation turbulence model.

Some additional boundary conditions are available in foamStar 8:

— waveVelocity: It imposes the velocity field at the boundary to be equal to the
analytical solution of the user-defined wave-field.

— waveAlpha: It imposes the volume fraction at the boundary to be equal to the
analytical solution of the user-defined wave-field.

b) Neumann boundary conditions

The second category is the Neumann’s one. It consists in imposing the spatial
derivation of the field. In this document, the most used Neumann’s BC of OpenFOAM is the
zeroGradient. With this BC, the face value located at a boundary is equal to the center value

8. In OpenFOAM, namesake exists but the implementation is quite different
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of the owner cell and the surface normal gradient is equal to zero. Similarly, fixedGradient
BC allows to impose a certain value for the surface normal gradient on the boundary face.

Two other particular Neumann’s BCs are the fixedFluxPressure and
fixedFluxExtrapolatedPressure. These particular BCs are used to impose a
consistent surface normal gradient for the pressure field according to RANSE.

c) Special boundary conditions

— symmetryPlane: This BC is similar to a zeroGradient boundary condition
but applying it to a vector field, the component orthogonal to the symmetry plane is
removed.

— cyclic: This BC is used to link two boundaries as it will be an internal patch.
A face with a cyclic boundary condition is connected to two cells similarly to an
internal face 9. The main difference with an internal face is that the neighbour values
owned by the linked cell are expressed explicitly during the iterative resolution.

— processor: This BC is a particular one as it is not strictly speaking a condition
applied to a boundary of the CFD domain. This condition is used to define the
boundaries of the sub-domains created for parallel simulation. Parallelizing the
computation, each sub-domain is affected to one CPU. This processor BC is
located at the boundary between two sub-domains linking the values between cells
sharing the same face. It allows the transfer of values between processors during
the resolution of the equations. As for cyclic BC, the behaviour of a face with
processor BC is similar to the one of an internal cell but with the explicit
formulation of neighbours values.

— calculated: With this BC, the value of the fields are calculated during the
simulation.

3.3.7 Matrix equation resolution

For a domain with N cells, combination of linear equations involving unknowns ψi

from several adjacent cells (equations with red terms) result in a N-by-N matrix system with the
following form:

AΨ = S, with Ψ = [ψi]
N
i=1 (3.129)

9. An other BC is available for meshes with non-matching boundary mesh requiring interpolations
(CyclicAMI)
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This matrix system can be solved with different algorithms whose efficiency depends on
the structure of A that is directly linked to the equation type. For instance, a Poisson equation
leads to other matrix characteristics than a pure convection equation. In the literature a large
panel of solvers can be found and some are commonly used for CFD equations. Overviews
of the different solvers can be found in Ferziger and Peric (2012) or more specifically for
OpenFOAM in Greenshields and Weller (2022). The linear solvers used in this document are:

— smoothSolver with symGaussSeidel: This type of solver is based on the
Gauss-Seidel method.

— PBiCGStab: This is a preconditioned Bi-Conjugate Gradient Stabilized method
(Van der Vorst, 1992). It is a commonly used in CFD as a robust method for
asymmetric matrix system resolution.

— GAMG: It is a Geometric Algebraic Multi-Grid solver. This method can potentially
provide faster resolution than others but it will depend on the chosen controlled
parameter. (Jemcov et al., 2007; Jasak et al., 2007a)

Residuals Any of the mentioned linear solver is based on iterative algorithms. Conditions
have to be specified to stop the algorithm when the error of the solution is deemed to be
satisfactory. These conditions are named "tolerance" and the error measurement is done defining
the "residual".

For an equation AΨ = S, at the qth iteration of the linear solver, the OpenFOAM formulation of
the residual vector R(q) and the normalized residual r(q) is as follows:

R(q) = S−AΨ(q) (3.130a)

n =
N

∑
i=1

(∣∣∣(AΨ(0)
)

i
−
(

AΨ(0)
)

i

∣∣∣+ ∣∣∣Si −
(

AΨ(0)
)

i

∣∣∣) (3.130b)

r(q) =
1
n

N

∑
i=1

∣∣∣R(q)
i

∣∣∣ (3.130c)

Where Ψ(0) is the average of the solution. Its components are defined by:

∀i ∈ [|1,N|], Ψ(0)
i =

1
N

N

∑
j=1

Ψ(0)
j (3.131)

It is a measure of the distance between the exact solution of the matrix system Ψ and
the approximated one Ψ(q). With the OpenFOAM’s formulation, the normalized residual r(q)
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is normalised by a quantity n relative to the initial solution Ψ(0) used in the linear solver loop.
This normalized residual is kept between 0 and 1 and its value depends on the initial solution.
A particular case is the one with a uniform initial solution, Ψ(0) = Ψ(0), matching with the
approximated solution Ψ(q). In this situation the normalized residual is equal to 1. Then, if in
addition these quantities are equal to the exact solution Ψ, n = 0, R(q) = 0. To remain consistent
and avoiding to divide by 0 thanks to limiters, the output normalized residual remains r(q) = 1.

Using the normalized residual formulation, two tolerance parameters are available in
order to control the stopping condition of the linear solver. The first one is the absolute tolerance
ρerr and the second one is the relative tolerance εerr. With these quantities, and an additional limit
number of iterations qlim, the linear solver ends after the qth

last step if,

r(qlast) < ρerr or
r(qlast)

r(0)
< εerr or qlast = qlim (3.132)

Thus, the approximated solution resulting from the linear solver is Ψ(qlast).
In the following, an alternative notation Res

(
A,S,ψ(q)

)
= r(q) can be used in order to

clarify the matrix system and approximated solution used to compute the normalized residual.

3.3.8 Flow chart

In the previous sections, all the steps of the resolution process have been detailed. It is
now possible to build a flow-chart representing all the foamStar algorithm with more details
than the one presented in Figure 3.4. The structure of the flow-chart shown in Figure 3.10 is as
built as follows:

Colorized loop-boxes Four main loops were previously identified:
— The green Time-Loop that is the global loop of the algorithm;
— The yellow PIMPLE-Loop described along this current section (3.3);
— The blue VOF-Loop described in Section 3.3.2
— The purple PISO-Loop described in Section 3.3.4

White boxes with colored edges These boxes contain the numerical recursive variables from
the previous iteration of the corresponding Loop (with same color).

Diamond shape START boxes These boxes indicate the starting point of a given loop. The list
of initial values used by the Loop (index 0) are connected to the corresponding box.

{END, YES, NO} structures They correspond to steps verifying the end condition of a given
loop. The variables connected to the YES box are the variables updated by the loop.
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Colored boxes with text Those boxes represent a sub-algorithm used for some variables
update. The corresponding algorithm is detailed in the previous sections. The red boxes
correspond to the use of linear solver for matrix system resolution. In previous sections,
the equations related to these boxes are identifiable by the red color of the updated
variable.

White boxes with thin black edge These boxes only contain one variable and correspond to
the update of it. In previous sections, the equations related to this variable update are
identifiable by the red color of the updated variable.

Solid arrows These arrows are the structure of the algorithm and are used to identify the
sequence.

Dashed arrows These arrow identify the use of some variables inside equations. When the
arrow is connected to a loop-box it means that the variable is used in almost all the
equations of the loop.
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Figure 3.10 – foamStar global flowchart
76



Numerical methods

3.4 Iterative error

In the previous sections of this chapter the system of equations and the iterative
algorithms have been defined. In order to control the quality of the resolution it is needed
to define a metric reflecting the error between the approximated solutions of the discretized
equations and their exact values. This error is commonly named the "iterative error". The choice
of the error estimator has been discussed in Jasak (1996). With OpenFOAM the convenient
error estimator for unsteady problem resolution is based on the normalized residual calculation
exposed in Section 3.3.7. As previously mentioned, in foamStar matrix systems are used to solve
the VOF convection, the momentum predictor, the pressure equation and the two equations
of the turbulence model. Due to the PIMPLE and PISO algorithms (Sec. 3.3.4), successive
matrix resolutions are made. As the equations are coupled, at a given time-step n and PIMPLE
iteration m, the update of the solution ψ

(n,m)
a solving a matrix system

{
A(n,m)

a , S(n,m)
a

}
implies

the creation of a new matrix system
{

A(n,m)
b , S(n,m)

b

}
for the field ψb with

{
A(n,m)

b ,S(n,m)
b

}
̸={

A(n,m-1)
b ,S(n,m-1)

b

}
. Consequently the initial normalized residual for the matrix system b:

r(n,m,0)
ψb = Res

(
A(n,m)

b ,Sb
(n,m),ψ

(n,m,0)
b

)
= Res

(
A(n,m)

b ,Sb
(n,m),ψ

(n,m-1,qlast)
b

)
can be used to quantify the distance between the two matrix systems

{
A(n,m)

b ,S(n,m)
b

}
and{

A(n,m-1)
b ,S(n,m-1)

b

}
and then for the estimation of the iterative error (Jasak, 1996).

3.4.1 Iterative error in V&V procedure

V&V procedure

The Verification consists of verifying the code implementation. A solver is verified
when, reducing the discretization step, the numerical uncertainty evolves consistently with
the numerical schemes which were implemented and the expected mathematical solution. On
the other part, the validation consists of verifying the agreement between the mathematical
model and the experimental results. When the exact mathematical solution is not analytically
reachable. Thus, the validation has to be discussed relatively to the numerical and experimental
uncertainty. In the following, a simplified presentation of a standard validation process (McHale
et al., 2009) is set out.

For the simulation of a physical problem, if n numerical results (Φi)
n
1 are obtained,
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the general concept of V&V is to evaluate the numerical and the experimental uncertainties
respectively noted UCFD,i and UEFD and to compare them to the experimental results ΦEFD.
Defining Ei = Φi−ΦEFD the error between the CFD and EFD results, the validation is assumed
achieved if UCFD,i +UEFD > |Ei|.

The problem stays in the fact that the validation assessment depends on the
quantification method of UCFD,i and UEFD. The quantification method of the uncertainty UCFD,i

depends on the numerical results sampling (solver implementations, inputs, discretizations ...).
The procedure proposed by Eça and Hoekstra (2014) is well adapted to a single quantity
verification, for instance, a drag force. For multiple quantities, for instance, series of probes,
multivariate-metric approaches exist. An example is the one proposed by Hills (2006) and used
by Pereira et al. (2017).

As mentioned in Stern et al. (2017) and Roache (2019), some bias can exist with
the Validation process. In fact, only considering the criterion UCFD,i +UEFD > |Ei|, small
uncertainties can lead to UCFD,i +UEFD << |Ei|, meaning that the numerical and mathematical
models fail to model the physics with a modeling error δM ≈ |Ei|. However, this modeling error
can be small enough to reach the expectations of any industrial or research team. In practice, for
specific applications, it can be more consistent to define a target error δT such as the models are
still assumed valid if UCFD,i+UEFD < |Ei| but δT > |Ei|. On the other side, with such Validation
criterion a large uncertainty would easily lead to UCFD,i+UEFD > |Ei|. It means that the coarser
the simulations, the more valid they are. The reason is the term "valid" can be understood
as follows: For the application in question, the mathematical and numerical models are not

invalidated by the numerical test cases and the method used to quantify uncertainties. The

modeling error δM cannot be estimated. For industrial processes, it is needed to compare the
benefit of discretizing more with the induced additional computational cost. Some numerical
models potentially have a better ratio between modeling errors and computational cost than
others. Consequently, for the present work, the analyses of solver performances have to remain
consistent with the scope of application of foamStar and the accuracy expected by the naval
industry. Discussion of this question can be found in Larsson et al. (2013).

Iterative error consideration

As detailed in Eça and Hoekstra (2013), the Verification relies on the evaluation of the
numerical error that can be decomposed into three different types:

Round-off error This error is due to the zero machine and is deeply negligible for
RANSE-CFD naval application.
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Iterative error As mentioned above, this error is the error between the approximated solutions
of the discretized equations and their exact values.

Discretisation error This error is the error between the exact solution of the discretized system
and the analytical solution of the mathematical model.

For common Verification procedure, the numerical error estimation is based on the
study of the convergence of the numerical solver according to the discretization level. As the
accessible data is not the exact solution of the discretized system but the approximated one, it
is commonly required to get a negligible iterative error regarding to the total numerical error so
that the numerical error is dominated by the discretization error (Larsson et al., 2013).

3.5 Numerical solver modifications and new
implementations

3.5.1 Backward MULES

As explained, in OpenFOAM, the VOF propagation allows the use of Crank-Nicolson
scheme with the MULES algorithm. The implementation of the Crank-Nicolson MULES
consists in using the same method as for Euler MULES but defining differently the initial flux
and the corrected flux. The initial flux is built introducing a mixed flux ΦCNf based on the idea
of considering α

(n-1)
P ≈ α

(n,m,0)
P in the discretized equation with Crank-Nicolson time-scheme

(see Sec. 3.3.2).

With the current OpenFOAM implementation, the second-order implicit backward
scheme (named "backward" in this document for simplicity) is available. However, it cannot
be used for the VOF resolution with MULES. So, the only second-order implicit scheme
with MULES is the Crank-Nicolson one. Using Crank-Nicolson for the VOF resolution while
Backard is used for the momentum equation, causes some inconsistencies between the mass flux
obtained during the VOF resolution and its use in the momentum equation (see Section 3.3.3 for
more details). To fix this, some modifications were done in order to use in order to use backward
formulation with the MULES algorithm.

As mentioned in Section 3.3.2, the MULES algorithm is based on the flux correction
method, starting the resolution with a predictor step and an initial low-order flux that would be
iteratively corrected using an high-order flux as a target. As mentioned, with the Crank-Nicolson
MULES those low-order and high-order blendings can be done with both spatial and temporal
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schemes.

As for the Crank-Nicolson scheme, using the MULES algorithm only for the spatial
accuracy and keeping a second-order accurate time scheme is possible. However, by doing so,
the predictor step will not ensure 0 ≤ αP ≤ 1.

As detailed in Section 3.2, for the VOF equation resolution the Crank-Nicolson
formulation differs from an implicit Euler formulation because of an explicit contribution of
the volume-fraction flux of the previous time-step F(n-1)

αf . On the other side, the backward
formulation differs from Euler because of a contribution of the cell-center volume fraction of
the penultimate computed time-step α

(n-2)
P . The problem is that this additional source term is

not a flux and then cannot be treated directly by the MULES algorithm 10. Then the idea is to
express this cell-center source term as a flux and apply an analog method as the one used for
the Crank-Nicolson algorithm.

To express a flux equivalent to the standard backward formulation the following
discretized VOF equation is assumed to be verified:

c(n)n α
(n)
P V (n)

P + c(n)n-1α
(n-1)
P V (n-1)

P + c(n)n-2α
(n-2)
P V (n-2)

P +∑
f

F(n)
αf = 0 (3.133)

with

c(n)n :=
1

∆tn
+

1
∆tn +∆tn-1

(3.134a)

c(n)n-1 :=−∆tn +∆tn-1

∆tn∆tn-1
(3.134b)

c(n)n-2 :=
∆tn

∆tn-1(∆tn +∆tn-1)
(3.134c)

As c(n)n + c(n)n-1 + c(n)n-2 = 0, this equation can be rearranged as follows:

c(n)n

(
α
(n)
P V (n)

P −α
(n-1)
P V (n-1)

P

)
− c(n)n-2

(
α
(n-1)
P V (n-1)

P −α
(n-2)
P V (n-2)

P

)
+∑

f
F(n)

αf = 0 (3.135)

10. An option exists in order to add such source terms in the MULES algorithm. However, it will not ensure
0 ≤ αP ≤ 1
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Then, for a face f , introducing F(n)
bckf

recursively defined as:

F(0)
bckf

= 0 (3.136a)

F(n)
bckf

=
c(n)n-2

c(n-1)
n

(
F(n-1)

αf +F(n-1)
bckf

)
(3.136b)

the discretized VOF equation becomes:

c(n)n α
(n)
P +

1

V (n)
P

∑
f

F(n)
αf +

1

V (n)
P

∑
f

F(n)
bckf

=
cnα

(n-1)
P V (n-1)

P

V (n)
P

(3.137)

For more visibility the coefficient CBCK is introduced as follow:

CBCK =
1

cn ∆t
(3.138a)

α
(n)
P
∆t

+
CBCK

V (n)
P

[
∑

f
F(n)

αf +∑
f

F(n)
bckf

]
=

α
(n-1)
P V (n-1)

P

∆t V (n)
P

(3.138b)

It is important to mention that Eq. 3.133 is not really at the end of a time-step because
of the approximation of the matrix resolution and additional corrections (relaxation zone,
volume-fraction clipping ...) that are not introduced in F(n)

αf . Consequently, using the presented
backward-Flux formulation is not numerically equivalent to the standard one. However, this
error exists despite the use of the presented formulation.

Thanks to this formulation, the backward MULES can be implemented as it was done
for Crank-Nicolson MULES but with CBCK coefficient instead of CCN and (1−CBCK) and F(n)

bckf

instead of F(n-1)
αf .

For the following, the introduction of a recursive flux φbckf is needed:

φ
(0)
bckf

= 0 (3.139a)

φ
(n)
bckf

=
c(n)n-2

c(n-1)
n

(
φ
(n-1)
f −φ

(n-1)
mf +φ

(n-1)
bckf

)
(3.139b)

As for the Crank-Nicolson MULES, in order to ensure 0 ≤ αP ≤ 1, a mixed flux ΦBCKf

is introduced in the predictor step:

Φ
(n,m-1)
BCKf

=CBCK

[
φ
(n,m-1)
f −φ

(n,m-1)
mf

]
+CBCK φ

(n)
bckf

(3.140)
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The resulting predictor step is as follows:

α
(n,m,0)
P
∆t

+
1

V (n,m)
P

∑
f

I
(

α
(n,m,0)
P

)
f(UD)

Φ
(n,m-1)
BCKf

=−α
(n-1)
P V (n-1)

P

∆t V (n,m)
P

(3.141a)

F(0)
L = IUD

(
α
(n,m,0)
P

)
f
Φ

(n,m-1)
BCKf

(3.141b)

The backward MULES predictor is built using the recursive flux φbckf whereas the
Crank-Nicolson MULES predictor is created using only the face flux and mesh flux at the
previous time-step. Then, for Crank-Nicolson MULES, it is correct to consider the error∥∥∥(φ

(n-1)
f −φ

(n-1)
mf

)
I
(

α
(n,m,0)
P

)
f
−F(n-1)

αf

∥∥∥ = O(∆t) directly whereas for backward MULES it

is necessary to verify the order of the error
∥∥∥φ

(n)
bckf

I
(

α
(n,m,0)
P

)
f
−F(n-1)

αf

∥∥∥. The verification of∥∥∥φ
(n)
bckf

I
(

α
(n,m,0)
P

)
f
−F(n-1)

αf

∥∥∥= O(∆t) is done at the end of this section.

Finally, the resulting predictor is first-order accurate as for Crank-Nicolson MULES.

Using the backward-Flux formulation, the targeted high order flux is formulated as
follows:

F(q)
H =CBCKI

(
α
(n,m,q-1)
P

)
f

[
φ
(n,m-1)
f −φ

(n,m-1)
mf

]
+CBCKF(n)

bckf︸ ︷︷ ︸
Backward−Flux f ormulation

+ φ
(n,m,q)
comp.f︸ ︷︷ ︸

Comp. term

(3.142)

and the correction step remains the same:

F(q)
L = (1−λ

(q))F(q-1)
L +λ

(q)F(q)
H (3.143a)

α
(n,m,q) = α

(n,m,q-1)− ∆t

V (n,m)
P

∑
f

λ
(q)(F(q)

H −F(q-1)
L ) (3.143b)

Then, Fαf is computed as:

F(n,m)
αf =

1
CBCK

F(qlast)
L −F(n)

bckf
(3.144)

Finally, thanks to this implementation, using F(n,m)
ρf definition introduced in Section 3.3.2 and

renamed here:
F(n,m)

ρf = (ρw −ρa)F
(n,m)
αf +ρa

[
φ
(n,m-1)
f +φ

(n,m-1)
mf

]
, (3.86)

the discretized form of the mass conservation with Backard scheme is ensured 11.

11. The same discussion on alpha clipping as it is done with Crank-Nicolson in Sec. 3.3.2 can be done here.
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Verification of the predictor error Consider that for n ∈ I+∗ and for all a ∈ [|0, n−1|], the
following relation is verified 12:∥∥∥[φ (a)

f −φ
(a)
mf

]
I
(

α
(a)
P

)
f
− F(a)

αf

∥∥∥= O(∆t)

Besides, because of the Taylor-Young theorem:∥∥∥[φ (a)
f −φ

(a)
mf

]
I
(

α
(a+1)
P

)
f
−
[
φ
(a)
f −φ

(a)
mf

]
I
(

α
(a)
P

)
f

∥∥∥= O(∆t)

So, there is M ∈ R∗ such that, for all a ∈ [|0, n−1|], the volume-fraction flux verifies:∥∥∥[φ (a)
f −φ

(a)
mf

]
I
(

α
(a+1)
P

)
f
− F(a)

αf

∥∥∥≤ M ∆t

and ∥∥∥[φ (a)
f −φ

(a)
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]
I
(

α
(a+1)
P

)
f
−
[
φ
(a)
f −φ

(a)
mf

]
I
(

α
(a)
P

)
f

∥∥∥≤ M ∆t

Then, the following relation is verified:

∀a ∈ [|0, n−1|],
∥∥∥[φ (a)

f −φ
(a)
mf

]
I
(

α
(n,m,0)
P

)
f
− F(a)

αf

∥∥∥≤ (n−a)M ∆t

Beside, considering a constant time step, the backward coefficients cn, and cn-2 are positive
constants. Defining the positive constant γ =

cn-2

cn
, according to Def. 3.136 and Def. 3.139:

F(n)
bckf

=
n

∑
k=1

γ
kF(n-k)

αf

and

φ
(n)
bckf

=
n

∑
k=1

γ
k
(

φ
(n-k)
f −φ

(n-k)
mf

)
Consequently:

∥∥∥φ
(n)
bckf

I
(

α
(n,m,0)
P

)
f
−F(n-1)

αf

∥∥∥= n

∑
k=1

γ
k
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φ
(n-k)
f −φ

(n-k)
mf

]
I
(

α
(n,m,0)
P

)
f
− F(n-k)

αf

)

12. It means that the algorithm used for the resolution for previous time steps remains at least first-order.
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and then:∥∥∥φ
(n)
bckf

I
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α
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)
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With a constant time step γ = 1/3 so:

lim
n→+∞

[
γ − γn+1

(1− γ)2 − nγn+1

1− γ

]
=

3
4

and: ∥∥∥φ
(n)
bckf

I
(

α
(n,m,0)
P

)
f
−F(n-1)

αf

∥∥∥= O(∆t)

3.6 Reference numerical set-up

This section synthesizes the reference numerical parameters used in this document.
They are based on the best OpenFOAM practices used in the literature. In the following of
the document, each study takes this numerical set-up as a reference with few modifications
depending on the objective.

3.6.1 Numerical schemes

a) Time schemes

Numerical parameter Reference values

ddtScheme default
Euler

CranckNicolson 1

CranckNicolson 0.95

backward

b) Face interpolation schemes
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Table 3.7 – Tested temporal time schemes along the numerical studies.

Numerical parameter Reference values
interpolationSchemes default linear

divSchemes

default Gauss linear

div(rhoPhi,U) Gauss linearUpwindV grad(U)

div(phi,alpha) Gauss vanLeer

div(phir,alpha) Gauss upwind

div(rhoPhi,k)
Gauss linearUpwind

limitedGrad

div(rhoPhi,omega)
Gauss linearUpwind

limitedGrad

laplacianSchemes default Gauss linear corrected

c) Cell-centered gradient schemes

Table 3.8 – Tested cell-centered gradient schemes along the numerical studies.

Numerical parameter Reference values
gradSchemes default cellLimited leastSquares 1

d) Surface normal gradient schemes

Table 3.9 – Tested surface normal gradient schemes along the numerical studies.

Numerical parameter Reference values
snGradSchemes default corrected

laplacianSchemes default Gauss linear corrected

3.6.2 Numerical algorithms

a) Matrix-system resolution

85



Numerical methods

Table 3.10 – Tested matrix-system resolution parameters along the numerical studies.

Solved field Parameter Reference values

p_rgh

solver GAMG

smoother DIC

tolerance 1e-10

relTol 0

U; k; omega

solver PBiCGStab

preconditioner DILU

tolerance 1e-10

relTol 0

alpha

solver smoothSolver

smoother symGaussSeidel

tolerance 1e-10

relTol 0

cellDisplacement

solver GAMG

preconditioner GaussSeidel

tolerance 1e-7

relTol 0

b) PIMPLE and PISO algorithm

Table 3.11 – Tested PIMPLE and PISO parameters along the numerical studies.

Parameter Reference values
momentumPredictor yes

nOuterCorrectors 10

nCorrectors 3

nNonOrthogonalCorrectors 1

correctPhi no

c) VOF resolution
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Parameter Reference values
nAlphaCorr 2

cAlpha 0.5

firstOrderPredictor yes

nLimiterIter 50

clip yes
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PART II

foamStar numerical model accuracy

This part presents an analysis of some specific features of the numerical model

previously described. It is a continuation of the work done by Kim (2021). In order to

progressively reach naval simulations with waves, the successively studied cases are, 2D

Taylor-Green vortices to check the behavior without air/water interface, the 2D wave regular

wave propagation in periodic domain to check the behavior without relaxation zones, and finally

2D wave propagation with relaxation zones at the inlet and outlet. The objectives are to verify

the selected models, to compare the time schemes and to establish some recommendations on the

mesh structure. In order to maintain consistency, the resolution algorithm presented in Section

3.3 is used all along this part.
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CHAPTER 4

TAYLOR-GREEN VORTICES

The objective this first study is to verify the order of convergence of a set of temporal
and spatial schemes using a 2D mono-fluid problem and for various mesh characteristics. The
2D viscous Taylor-Green vortices is a standard unsteady mono-fluid case commonly used for
the qualitative analysis of numerical schemes; this is because, with a given initial condition, the
analytic solution of the incompressible Navier-Stokes equations is known for this problem, in
which the field is unsteady and rotational.

4.1 Case definition

The simulated case is the same as the one used by Kim (2021). The 2D computational
domain is in the (x,y) plane with coordinates x,y ∈ [−π,π]. The boundary conditions are
periodic (cyclic type) at each side of the domain. The kinematic viscosity of the fluid is
given as ν = 2π m2.s-1 and the density as ρ = 1 kg.m-3. Defining ux and uy as the components
coordinates of the velocity u, respectively along x and y axis, the initial conditions are:

u(0)x (x,y) =−sin(x) cos(y) (4.1a)

u(0)y (x,y) = cos(x) sin(y) (4.1b)

p(0)(x,y) =
ρ

4
[cos(2x)+ cos(2y)] (4.1c)

With these initial conditions, the analytical solution at time t is:

uA
x (x,y, t) =−sin(x) cos(y)e−2ν t (4.2a)

uA
y (x,y, t) = cos(x) sin(y)e−2ν t (4.2b)

pA(x,y, t) =
ρ

4
[cos(2x)+ cos(2y)]e−2ν t (4.2c)

89



Taylor-Green vortices

In the following the reference quantities are L = 2π m, Uref = 1 m.s-1 and pref = 1 Pa.

a) Error definition

For this study, the error E (t) is defined using the L2 norm of the weighted errors at
cell-centers positions (xi)

Ncells
i=1 compared to the analytical solution ψa. To take into account the

non-uniformity of the mesh, the errors are weighted by the volume of the cells. The total error is
normalized using the analytical maximal value over the domain. The mathematical formulation
of the error is:

E (t) =

√
∑

Ncells
i=1 [ψ(xi, t)−ψA(xi, t)]

2 V 2
i

max
1≤i≤Ncells

|ψA(xi, t)| VΩ

(4.3)

with VΩ the volume of the numerical domain 1:

VΩ =
Ncells

∑
i=1

Vi (4.4)

In the following, a particular notation E f (t) is used in order to identify the error obtained
with the finest refinement. The related refinement is to be specified case by case when the
notation is used. This finest error is used to calculate an intrinsic error E (t)−E f (t). Assuming
that the numerical error converges towards a non-zero value E∞(t) ̸= 0, the intrinsic error is used
to remove this non-null limit form the error E . This "intrinsic" error will especially be useful
to study separately the time and space convergence, making disappear the potential saturation
error due to the fixed space resolution when looking at the time convergence or, respectively,
due to the fixed time resolution when looking at the space convergence. Note that in this context
where the analytical solution is known and its frequency content simple, it is not necessary to
use an advanced V$V procedure to study the convergence.

4.2 Influence of the time schemes on the convergence

The objective is to compare the accuracy of three time schemes available within
OpenFOAM-5 implicit Euler (EULER), Crank-Nicolson (CN1), and second-order backward 2

1. Even if the simulation is done with a 2D assumption, with OpenFOAM implementation, the mesh has
to be a 3D mesh, so an arbitrary thickness is given along the z direction. The weighting process using the resulting
volume is equivalent to a surface weighting in the (x,y) plane.

2. The OpenFOAM-5 backward scheme was slightly modified due to a non-accurate scheme formulation
for the first time-step in the context of this study.
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(BCK). In the following the term backward is used to name the second-order backward. As
mentioned in Section 3.2, the theoretical order of convergence for these schemes are one for
Euler and two for Crank-Nicolson and backward. To control the convergence of the scheme a

regular mesh with 256 by 256 squared cells of size ∆x =
2π

256
is used. For this study the mesh is

labeled U256x256. Table 4.1 synthesizes the set of time steps (from 0.004 s to 0.4 s) with the

associated Courant Number Cflx =Uref
∆t
∆x

. This test matrix is directly extracted from the work
of Kim (2021).

Table 4.1 – Test matrix for Taylor-Green time-convergence study with U256x256 mesh.

Time step ∆t [s] Courant Number Cflx

0.004 0.16
0.01 0.41
0.02 0.81
0.04 1.63
0.08 3.24
0.1 4.07

0.125 5.09
0.2 8.15

0.25 10.2
0.4 16.3
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(a) Velocity error
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Figure 4.1 – Temporal convergence of the velocity and pressure error for various temporal
schemes at t = 1 s with U256x256.

The velocity and pressure errors at t = 1 s are plotted with respect to the Cflx in
Figure 4.1. The logarithmic scale is used for both the vertical and horizontal axis. The finest
resolution used for the evaluation of E f is ∆t = 0.004 s. Each data series corresponds to one
time scheme and the dotted lines show the expected slopes for a first and a second-order
convergence. The results obtained using Euler and CN1 are consistent with Kim (2021). The
saturation phenomenon occurring for Cflx < 0.5 in the top plots is due to the prevalence of
the spatial-discretization error. In the zone where the temporal-discretization error is dominant
the slopes of the straight part are consistent with the theoretical order of the studied numerical
schemes. The slope of the series obtained with Euler scheme fits with the first order slope. For
BCK and CN1 series, the trend in the zone Cflx > 0.5 is close to the expected second-order slope
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but some irregularities can be noticed. For the CN1 series, the irregularities close to Cflx = 1
on the pressure-convergence plot were noted by Kim (2021) already. The intrinsic error is used
to remove the spatial-discretization error assumed to be constant regardless of the temporal
discretization. The intrinsic error confirms the accordance between the theoretical order of
convergence and the numerical results. The errors obtained with CN1 and BCK schemes are
close to each other.

4.3 Influence of mesh deformations on the spatial
convergence with and without skewness corrector

The next step is to verify the accuracy of a given numerical set of spatial schemes taking
into account the mesh quality. In this section, the skewCorrector option is tested to see
potential improvements. As developed in Section 3.1.3, the skewness correction theoretically
reduces the loss of accuracy for face center interpolations. Moreover, some past attempts to
run naval simulation with foamStar indicate that the skewness is a tricky issue especially with
viscous boundary layers.

4.3.1 Mesh types

Four mesh types are studied: regular, stretch, twist and zigZag. The
regular meshes are built with a uniform grid of Cartesian square cells as the one used in
the previous section. The stretch mesh is built with a uniform grid of Cartesian cells with an

aspect ratio AR=
∆x
∆z

above one. The twist and zigZagmeshes consist in applying a specific
transformation to the nodes coordinates of a regular mesh. In order to assess the quality of the
meshes, three characteristics are controlled: the aspect ratio, the non-orthogonality (Sec. 3.1.6)
and the skewness (Sec. 3.1.3).

a) Regular mesh

The regular meshes are used as references in order to control the accuracy and the
convergence order of the spatial discretization. In order to remain consistent with the time
integration, it was decided to run the spatial convergence at fixed Cflx and only with the
Crank-Nicolson scheme. For a deformed mesh the reference Cflx is the one calculated with
the non-deformed regular mesh. Table 4.2 gives the list of the spacial discretization studied and
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the associated time discretization. The horizontal and vertical resolutions Nx and Ny are related
to the cell size by the relations

Nx =
2π

∆x
(4.5a)

Ny =
2π

∆y
(4.5b)

Table 4.2 – Regular meshes used on the Taylor-Green vortices case.

Name Horizontal discretization Nx Vertical discretization Ny ∆t [s]
U8X8 8 8 0.016
U16X16 16 16 0.008
U32X32 32 32 0.004
U64X64 64 64 0.002

U128X128 128 128 0.001
U256X256 256 256 0.0005

b) Stretched mesh

The stretch type is used in order to control the influence of the cells aspect ratio on
the accuracy of a simulation without interface. Table 4.3 lists the different meshes used in this
study. The aspect ratio is kept above one, it means that the smaller dimension between ∆x and
∆y is always the vertical one ∆y. A representation of the mesh U16X64 is shown in Figure 4.2.

Figure 4.2 – stretch type mesh U16X64.
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Table 4.3 – Stretch meshes used on the Taylor-Green vortices case.

Name Nx Ny AR ∆t [s]
U8X16 8 8 2 0.016
U16X132 16 32 2 0.008
U32X64 32 64 2 0.004
U64X128 64 128 2 0.002
U128X256 128 256 2 0.001
U8X32 8 32 4 0.016
U16X64 16 64 4 0.008
U32X128 32 128 4 0.004
U64X256 64 256 4 0.002
U8X64 8 64 8 0.016
U16X128 16 128 8 0.008
U32X256 32 256 8 0.004
U8X128 8 128 16 0.016
U16X256 16 256 16 0.008
U8X256 8 256 32 0.016

c) Twisted mesh

The twist deformation aims to reproduce a strong mesh deformation that could be
induced by a pitching body with a morphing mesh. In the deformation equations, (x0,y0) are
the coordinates of a mesh node before the deformation when (x,y) are the coordinates of the
same mesh node after the deformation.

For simplicity and because of the absence of body, the mesh morphing algorithm is not
used. The deformation consists in rotating the mesh nodes around the center of the domain
with a maximal rotation angle θmax at the center (x0,y0) = (0,0) and an angle θ = 0◦ at the
boundaries of the domain (x0,y0) ∈ {−π,π}2. Along both vertical and horizontal axis the
rotation angle follows a sinusoidal law relatively to the position (x0,y0) in the non-deformed
mesh. The coordinates (x,y) of deformed-mesh nodes follow the equations:

θ(x0,y0) =
θmax

4

[
1+ cos

(
2π x0

L

)][
1+ cos

(
2π y0

L

)]
(4.6a)

x(x0,y0) = x0 cos(θ(x0,y0))− y0 sin(θ(x0,y0)) (4.6b)

y(x0,y0) =−x0 sin(θ(x0,y0))+ y0 cos(θ(x0,y0)) (4.6c)

For each uniform regular mesh from Tab. 4.2, the tested deformations are θmax ∈
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{
kπ

8
withk = 1..8

}
. A representation of the mesh U64X64 twisted with θmax = π is shown

in Figure 4.3. The maximal value θmax = π is voluntary extreme as it would correspond to a
ship flipped upside-down. However, it is interesting to study the convergence of the scheme
with highly deformed cells.

Figure 4.3 – twist deformation θmax = π applied on a U64X64 mesh.

As mentioned, in this study, the quality of a twisted mesh is measured calculating the
average and maximal values of three quantities: aspect ratio, non-orthogonality and skewness.
For a spatial convergence study, it is expected that for a given level of deformation, the three
quantities remain as similar as possible regardless of the spatial resolution. Figure 4.4 shows
the aspect ratio evolution for different twist angles and mesh resolutions. The maximal aspect
ratio increases significantly with the mesh refinement and the twist angle, reaching a value of
11.1 for the mesh U256X256 twisted with Θmax = π . The average aspect ratio increases with
the twist angle but remains quite stable with resolutions above Nx = 16, reaching a value of 2.3
for the mesh U256X256 twisted with Θmax = π .

Figure 4.5 shows the non-orthogonality evolution for different twist angles and mesh
resolutions. The maximal and average values increase with the twist angle. With OpenFOAM it
is commonly admitted that cells with a non-orthogonality above 70◦ are highly non-orthogonal
and of bad quality (OpenFOAM, 2022c). Within the range of considered twist angles,
the maximal local non-orthogonality reaches 81◦ and the maximal average is 49◦ for the
largest twist angle Θmax. However, the maximal local non-orthogonality and the average non
orthogonality are reasonably constant regardless of the spatial resolution so it means that the
twist deformation is adequate to investigate the effect of non orthogonality.

Finally, Figure 4.6 shows the skewness evolution. Both the maximal and average
skewness increase when the twist angle increases and decrease when the refinement increases.
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(a) Maximal value
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Figure 4.4 – Evolution of the maximal and average aspect ratios depending on the mesh
resolution for various maximal angles of twist deformation.

With OpenFOAM, a skewness above 4 is assumed to badly impair the simulation (OpenFOAM,
2022c). This limit is never reached and the averaged skewness reaches values below 0.1 for
mesh resolutions above Nx = 32. Consequently, the selected twist deformation is assumed to
keep the skewness small.
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Figure 4.5 – Evolution of the maximal and average non-orthogonality angle depending on the
mesh resolution for various maximal angles of twist deformation.
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Figure 4.6 – Evolution of the maximal and average mesh skewness depending on the mesh
resolution for various maximal angles of twist deformation.
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d) Zig-zag mesh

The zigZag deformation is used to highlight the influence of the skewness on the
spatial schemes accuracy. It consists in moving alternatively up and down the mesh nodes along
the vertical axis. The largest amplitude of this oscillation is noted Amax and is applied along
the median line y = 0 m. No displacement is applied to the boundary nodes. The oscillation
amplitude follows a sinusoidal law along the vertical axis and remains constant along the
horizontal one. The coordinates (x,y) of the deformed-mesh nodes follow the equations:

Amax = η∆x (4.7a)

A(x0,y0) =
Amax

2

[
1+ cos

(
2π y0

L

)]
(4.7b)

x(x0,y0) = x0 (4.7c)

y(x0,y0) = A(x0,y0)cos
(

π y0

∆x

)
(4.7d)

In order to maintain the consistency between the mesh resolutions, the amount of deformation
is characterized by the non-dimensional coefficient η equal to the ratio between the maximal
point displacement and the cell size ∆x as follows:

η =

max
1≤i≤Nnodes

∣∣yi − y0,i
∣∣

∆x
(4.8)

For each uniform regular mesh from Tab. 4.2, the tested deformations are η ∈
{0.1, 0.2, 0.3, 0.4, 0.5, 0.75, 1}. A representation of the mesh U32X32 deformed with η =

0.75 is shown in Figure 4.7.

Figure 4.7 – zigZag deformation applied on a U32X32 mesh.
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As for the twist deformation, the impact of zigZag deformation on the mesh quality
is measured using the aspect ratio, the non-orthogonality and the skewness. Figure 4.8 shows
the evolution of the maximal and average aspect ratios depending on the mesh resolution for
several amplitudes of zigZag deformations. For a given amplitude both the maximal and
average values are rather independent of the mesh resolution. The aspect ratios increase with
the amplitude of the deformation but the maximal local value remains below 5 and the maximal
average below 3.
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Figure 4.8 – Evolution of the maximal and average aspect ratio depending on the mesh
resolution for various coefficients of zigZag deformation.

Figure 4.9 shows the impact of the zigZag deformation over the non-orthogonality.
Within the selected range of zigZag amplitudes, the evolution of the maximal
non-orthogonality is similar to the one observed with the twist deformation (Fig. 4.5). The
average value respects the expected independence of the mesh resolution and remains below
40◦.

Finally, Figure 4.10 shows the impact of the zigZag deformation on the skewness.
Compared to the mesh analysis done with the twist deformation (Fig. 4.6), the zigZag

deformation meets the objective of getting a sufficiently constant evolution for resolutions above
Nx = 32. However, because of the progressive deformation from the boundaries to the center
of the mesh, the average skewness remains below 0.5 with resolutions above Nx = 32. For the
finest mesh (Nx = 256), the maximal local skewness reaches the targeted value of 4.
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Figure 4.9 – Evolution of the maximal and average non-orthogonality angle depending on the
mesh resolution for various coefficients of zigZag deformation.
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Figure 4.10 – Evolution of the maximal and average mesh shewness depending on the mesh
resolution for various coefficients of zigZag deformation.
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e) Summary

Three mesh deformations have been designed to affect specific characteristics of the
mesh quality. Table 4.4 synthesizes the influence of each deformation. In the following
the stretch deformation is used to highlight the impact of the aspect ratio on the
mesh convergence. The twist deformation is convenient to highlight the influence of
non-orthogonality. Finally, only the zigZag deformation has a strong influence on the
skewness.

Table 4.4 – Influence of the mesh deformations on the mesh quality

Deformation Aspect ratio Non-orthogonality Skewness
stretch High 0 0
twist Small High Small
zigZag Small High High

4.3.2 Results

a) Stretched mesh (aspect ratio influence)

The set of stretch meshes is considered first to isolate the effect of the aspect ratio.
Figure 4.11 shows the effect of stretching the mesh on the spatial convergence of the error
E on the velocity plot (a) and the pressure field plot (b). For a given longitudinal cell size, the
velocity error remains similar regardless of the cell aspect ratio. For the pressure (b), high aspect
ratio tends to increase the error. For aspect ratios AR ≤ 8, at least three vertical refinements
are tested. The slopes are consistent with the expected second-order. Finally, this study shows
that for the simulation of Taylor-Green vortices, with the selected numerical setup, foamStar

remains of second-order in space, at least when AR ≤ 8 and the impact of the stretched mesh
on the numerical error is weak.
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Figure 4.11 – Spatial convergence of the velocity and pressure error for various aspect ratios
AR using the stretch deformation.

b) Twisted mesh (non-orthogonality influence)

As seen previously the twist deformation generates locally some high aspect ratio
and a significant maximal and average non-orthogonality in the meshes. Thanks to the result of
the previous paragraph, the impact of the aspect ratio can be neglected and the prevalent mesh
characteristics impacting the accuracy is most probably the non-orthogonality (with eventually
also the local skewness for coarse meshes). Figure 4.12 shows the velocity and pressure errors
for several twist angles and mesh resolutions. The error increases significantly with the
twist angle. Nevertheless, whatever the deformation angle is, the slope of the curve is close
to the expected second-order slope. Some spatial refinements are not plotted for high twist

angles (Θ≥ 3π

8
) because those simulations stopped with computational error before the targeted

t = 1 s. As shown, both the aspect ratio and the skewness decrease when the mesh resolutions
increases whereas the non-orthogonality remains constant. Then, the failed simulations are
probably caused by other mesh characteristics badly impaired by the twist deformation which
have not been identified in this study. However, it can be assessed that with the current numerical
setup, the non-orthogonality caused by the tested ranges of twist deformations and the small
skewness do not affect the spatial order of convergence. Note that the current numerical setup
includes a non-orthogonal correction. The effect of this non-orthogonal corrector is not studied
in this section and it is kept as the default parameter.
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Figure 4.12 – Spatial convergence of the velocity and pressure error for various maximal angles
of twist deformation.

c) Zig-Zag mesh (Skewness impact with and without skewness corrector)

The third deformation studied is the zigZag, dedicated to the analysis of the impact of
the cell skewness. Figure 4.13 shows the velocity and pressure error for several mesh resolutions
and zigZag coefficients. The OpenFOAM skewness corrector is also tested. Fig. 4.12(a) and
Fig. 4.12(b) show the results obtained without skewness correctors when Fig. 4.12(c) and
Fig. 4.12(d) show the results with the skewness corrector.

Without skewness corrector, the numerical values obtained with this type of deformation
do not converge towards the targeted analytical field. Even for the smallest zigZag coefficient
η = 0.1, the deformations impair significantly the simulations. With the finest resolutions,
the velocity error is more than 100 times larger with η = 0.1 than with the non-deformed
mesh. About the pressure, for any tested deformation and mesh resolution, the error remains
larger than 100%. Moreover, without the skewness corrector, the largest deformations cause the
simulations failure before reaching the targeted t = 1 s.

Using a skewness corrector improves significantly the results. With this corrector the
errors obtained with η = 0.1 are close to the ones obtained without deformations and the
pressure error for the finest meshes remains below 10% up to η = 0.3. However, the saturation
of the error is still noticeable.

It have been shown that the zigZag deformation induces some non-orthogonality.
Comparing to the results obtained with twist deformation, the error obtained with the zigZag

deformation is significantly higher than the error obtained with twist deformation. For
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instance, the non-orthogonality induced by a zigZag coeficient η = 0.5 is of the same order
as the non-orthogonality obtained with a twist angle θmax = π/2 but the velocity error using
the first mesh is about 10 times larger for the coarser meshes and more than 100 times larger
with the resolution Nx = 128. So it is assumed that with zigZag deformation the error induced
by the skewness prevails on the one induced by the non-orthogonality.

Figure 4.14 shows the corresponding velocity and pressure intrinsic errors (E −E f ). This
removes the saturated error and it eases the qualitative observation of the order of convergence
of the spatial discretization with the zigZag deformation. Given a zigZag coefficient, E f

represents the error obtained at t = 1 s with respect to the result using for the finest longitudinal
refinement. With this intrinsic error it appears that the slopes remain consistent with the
second-order accuracy. However, as mentioned, even with small deformations, the errors E are
large, so it seems questionable to establish a second-order accuracy using this intrinsic error.
It just implies that the scheme behaves as expected for the rest of the numerical errors but the
global error is largely dominated byt the mesh skewness-induced error. It has to be kept in mind
that the chosen deformations are rather extreme both in amplitude and spatial frequency.

Finally, with the zigZag deformation, the main conclusion is that the error is
significant even with small deformations. With foamStar, the zigZag-like cells thus impair a
lot the simulation compared to twisted cells or stretched ones. The second point to highlight is
the efficiency of the skewness corrector when the zigZag distortion is moderate.
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Figure 4.13 – Spatial convergence of the velocity and pressure error with and without
OpenFOAM skewness corrector for various coefficients of zigZag.
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Figure 4.14 – Spatial convergence of the velocity and pressure intrinsic error with and without
OpenFOAM skewness corrector for various coefficients of zigZag.
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4.4 Conclusion

In this chapter, the accuracy of three time schemes has been studied. The order
of convergence of the time schemes has been checked and then the effect of three
mesh deformations on the spatial convergence has been investigated. It appears that for a
Navier-Stokes simulation of Taylor-green vortices, both the temporal and spatial convergences
are in accordance with the theoretical order of convergence of the tested schemes. It also results
that, as expected, the Euler scheme is significantly less accurate than the Crank-Nicolson and
second-order backward. Those two last second-order schemes have very similar accuracy.

Concerning the mesh deformations, stretch deformation with aspect ratios below 8

or 16 and reasonable twist deformation (Θ ≤ 3π

8
) do not impair significantly the simulations

whereas even a small zigZag deformation drops down largely the accuracy. The skewness
corrector limits a lot the influence of such a zigZag deformation when it remains of small
amplitude.
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CHAPTER 5

PERIODIC REGULAR WAVE

The previous analysis was dedicated to investigate the behavior of the numerical
schemes in a periodic monofluid domain. The next step towards a naval simulation is to
consider a set of multi-phase flow problems. The case exposed in this chapter is a regular wave
propagating in a one wavelength long periodic bi-dimensional domain. This study completes
the work done by Choi et al. (2020) and Kim et al. (2022a) based on the same problem. As
mentioned in Section 3.3.2, the MULES algorithm is used for the VOF resolution. The objective
is to compare the accuracy of the Crank-Nicolson MULES model with the newly implemented
backward MULES model (Sec. 3.5.1) for 2D pure wave propagation. In order to progressively
reach a mesh design commonly used for naval applications, some non-uniform meshes are
tested with progressive cell refinements from the bottom and top boundaries towards the free
surface.

The characteristics of the simulated waves are synthesized in Table 5.1. In the following
the labels H01, H005 and H001 refer to the selected waves with the wave height H = 0.1 m,
H = 0.05 m and H = 0.01 m, respectively. Within the fully nonlinear wave framework, imposing
the depth D, the wave height H and the wavelength λ characterizes completely the wave. The
wave periods in Table 5.1 are obtained using the stream function wave theory (Rienecker and
Fenton, 1981) formulation implemented in the in-house tool CN-Stream (Ducrozet et al., 2019).
For a given simulation, the selected wave field is imposed as an initial condition at t = 0 s.
This initial field is based on the potential stream-theory solution and is only is imposed in the
water phase. In the air (α = 0), the velocity and pressure are null at t = 0 s. The 2D-domain
configuration is illustrated by Figure 5.1. For all meshes, the mean free-surface level is located
at z = 0 m. The simulations are conducted in the fixed-frame referential from t = 0 s to t = 40T ,
T being the considered wave period. No turbulent model is applied. In the following, in order
to evaluate a Courant number Cflx, the reference velocity for a given wave is

uref =
π H
T

. (5.1)
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The boundary conditions are synthesized in Table 5.2. For more details on these BCs
see Section 3.3.6.

Table 5.1 – Regular wave characteristics.

Item Unit H001 H005 H01

Depth (D) [m] 1 1 1
Wavelength (λ ) [m] 1 1 1
Wave period (T ) [s] 0.80 0.79 0.76
Wave height (H) [m] 0.01 0.05 0.1

Wave steepness (ε = H/λ ) 1 % 5 % 10 %

In
le

t

O
ut

le
t

Top

Bottom

Wave direction

Figure 5.1 – 2D Periodic domain configuration for regular wave propagation.

Table 5.2 – Boundary conditions used for wave propagation in periodic domain.

Field Inlet\Outlet Bottom Top
U cyclic slip pressureInletOutletVelocity

p_rgh cyclic fixedFluxPressure totalPressure

alpha cyclic zeroGradient inletOutlet
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5.1 Error definition

The accuracy of the numerical simulations is evaluated analyzing the damping in time
of the wave elevation. The wave elevation is obtained by probes evenly spaced all along the
simulation domain in x-direction. For a given probe located at the position x, and for the ith

time step, OpenFOAM returns the interpolated vertical position z verifying α(i)(x,z) = 0.5.
This point is assumed to be the surface elevation η(x, t(i)). For a given time t, a discrete Fourier
transformation is applied on the sampled surface elevation at x = 0 m between t0 = t − 2.5T

and t1 = t +2.5T . The resulting first harmonic amplitude is noted ACFD
1 (t). This first harmonic

amplitude of the surface elevation is compared to the analytic first harmonic amplitude obtained
with CN-Stream and noted 1 ASF

1 . Then, the numerical error used in this section is defined as

E (t) =
ACFD

1 (t)−ASF
1 (t)

ASF
1 (t)

. (5.2)

As in Sec. a), the intrinsic errors E (t)−E f (t) are occasionally used.

5.2 Numerical set-up

The reference numerical set-up (Sec. 3.6) is used. The investigation regards some
parameters relative to the VOF resolution and the time step, which are synthesized in Table 5.3.
The numerical parameter ddtScheme {default} corresponds to the time scheme used
for all the equations. Concerning the MULES type (MULESType), the MULES option refers to
the full space and time MULES algorithm whereas the S-MULES option refers to the MULES
algorithm applied on spatial schemes (see Sec. 3.3.2 for more details). Crank-Nicolson schemes
are tested with two different off-center coefficients, 1 (CN1) and 0.95 (CN95). A range of time
step (deltaT) from t = T/25 to t = T/1600 is tested.

1. SF exponent denotes the Stream-Function term
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Table 5.3 – Numerical parameters studied with regular wave propagation in periodic domain.

Numerical parameter Tested values

ddtScheme {default}
CranckNicolson 1

CranckNicolson 0.95
backward

MULESType
MULES
S-MULES

deltaT

{
T

25×2k | k ∈ [|1, 6|]
}

5.3 Meshes

Two types of meshes are designed:

Uniform regular mesh (U) A mesh of this type is perfectly uniform with isometric cells. The
cell dimensions ∆x and ∆z are equal and constant over the mesh. As mentioned, the
domain is one λ long in x-direction. In z-direction, the bottom boundary is located one
λ below the mean free-surface level and the top boundary one λ above. The left plot of
Figure 5.2 displays an example of uniform mesh with ∆x = 64 (U64x64).

Non-uniform mesh (NU) A mesh of this type is divided into seven refinement zones 2. The
characteristics of the meshes are controlled by the cell dimensions ∆x and ∆z in the free
surface zone (ZONE 0) and by the specific wave height H. In z-direction, the bottom
boundary is located one λ below the mean free-surface level but the top boundary is λ/2
above. This limitation of the mesh high is motivated by the work presented by Kim (2021)
and Kim et al. (2022a). The cells inside the free-surface zone are not necessarily isometric
whereas all the cells outside the free-surface zone are isometric. In the free-surface
zone, if the cells are non-isometric, the mesh is named non-uniform stretched mesh. The
quantity ARFS = ∆x/∆z is the cell aspect ratio in the free-surface zone. Figure 5.3 is
an example of non-uniform stretched mesh on which the refinement zones are identified.
The geometrical characteristics of these zones are given in Table 5.4. When ∆z=∆x in the
free-surface zone 0, the zones 0, 1 and 4 are mixed up and the mesh is named non-uniform

regular mesh, see, e.g. right plot of Fig. 5.2.

In the following, the different types of meshes are tested with one or several of the

2. Tiny transition zones can be noticed between two neighboring zones. For instance, this is visible in
Fig. 5.3 between the zones 0 and 1, and between the zones 0 and 4.
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three studied waves. The objectives are to conduct mesh convergence analyses and to evaluate
the influence of the non-conform refinement with various free-surface cell aspect ratio ARFS.
Table 5.5 gives a synthesis of the configurations.

(a) Uniform regular mesh U64x64 (b) non-uniform regular mesh NU64x64

Figure 5.2 – Uniform and non-uniform mesh profiles used for periodic-wave propagation in
periodic domain.
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Figure 5.3 – Non-uniform stretched mesh NU65x256 with refinement zones identification.
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Table 5.4 – Characteristics of refinement zones used composing non-uniform meshes used for
the regular wave propagation in periodic domain.

Zone index zone size Cell size

zmin zmax x-direction z-direction

0 −H H ∆x ∆z

1 −1
3λ −H ∆x ∆x

2 −2
3λ −1

3λ 2∆x 2∆x

3 −λ −2
3λ 4∆x 4∆x

4 H 1
5λ ∆x ∆x

5 1
5λ

2
5λ 2∆x 2∆x

6 2
5λ

1
2λ 4∆x 4∆x

115



Periodic regular wave

Table 5.5 – Studied configurations for the regular wave propagation in periodic domain.

Wave heights T/∆t Mesh type Mesh label λ/∆x λ/∆z ARFS

H = 0.1 m
{25, 50, 100,

100, 200, 400,
800, 1600}

Uniform
regular

U16x16 16 16

1
U32x32 32 32
U64x64 64 64

U128x128 128 128
U256x256 256 256

H = 0.1 m
H = 0.05 m
H = 0.01 m

{25, 50, 100,
100, 200, 400}

Non-uniform
regular

NU16x16 16 16

1
NU32x32 32 32
NU64x64 64 64

NU128x128 128 128
NU256x256 256 256

Non-uniform
stretched

NU16x32

16

32 2
NU16x64 64 4
NU16x128 128 8
NU16x256 256 16
NU32x64

32

64 2
NU32x128 128 4
NU32x256 256 8
NU32x512 512 16
NU64x128

64
128 2

NU64x256 256 4
NU64x512 512 8
NU128x256

128
256 2

NU128x512 512 4
NU256x512 256 512 2
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5.4 Steep regular wave propagation accuracy with backward
and Crank-Nicolson MULES

The first analysis focuses on the accuracy of the newly implemented backward MULES
compared to the Crank-Nicolson MULES on uniform regular meshes. The choice of uniform
regular meshes is to avoid the errors and instabilities that non-uniform meshes could create.
This first analysis is conducted on the steepest wave H = 0.1 m because the steepest the wave
is, the more unstable and the less accurate the simulation tends to be (Choi et al., 2020). With
isometric cells, the mesh is representative for this wave steepness in terms of number of cells
per wave height and cells per wavelength with respect to the litterature.

As presented in Tab. 5.3, the tested time schemes are Crank-Nicolson with an
off-centering coefficient of 1 (CN1) that corresponds to the standard Crank-Nicolson scheme,
Crank-Nicolson with an off-centering coefficient of 0.95 (CN95) that is commonly assumed
to be more stable and second-order backward (BCK). The tested MULES configurations are
the standard one with a temporal and spacial first-order predictor and the S-MULES with the
temporal high-order 3 and spatial first-order predictor. By default, when it is not specified, the
standard MULES is used.

5.4.1 Field convergence

a) Wave elevation profile

First, the convergence of the simulation is controlled plotting the wave elevation profile
along the longitudinal axis at t = 10T . Figure 5.4 shows these profiles obtained with a constant
Courant number (Cfl ≈ 0.05) and several time and space resolutions. The analytical, CN1,
CN95, and BCK results are presented with black dash-dotted line, solid line and dotted line,
respectively. Only BCK were tested with ∆t = T/3200 and ∆t = T/6400. Qualitatively, it
seems that the wave amplitude converges quicker towards the analytical solution than the
phase shift. The latter remains noticeably far from the analytical one even with a small time
step ∆t = T/6400 and cell size ∆x = λ/1024. Because of the computational cost, these fine
parameters is not realistic for naval applications. In the literature, common values used for naval
applications are T/800 ≤ ∆t ≤ T/200 and λ/200 ≤ ∆t ≤ λ/50. Besides, CN1, CN95 and BCK
provide very comparable results for each resolution used. This is all the more true comparing
only CN1 and BCK which are barely distinguishable from each other in Fig. 5.4. Finally a small

3. It is not formally second-order because Crank-Nicolson 0.95 is not (see Sec. 3.2 for more details)

117



Periodic regular wave

distortion of the wave elevation profile is noticeable close to the crest with both CN1 and BCK
for ∆ = T/800 (green lines).

−0.4 −0.2 0.0 0.2 0.4
X [m]

−0.04

−0.02

0.00

0.02

0.04

0.06

Z
[m

]

Analytic
CN1
BCK
CN95
∆x = λ/32; ∆t = T/200
∆x = λ/64; ∆t = T/400
∆x = λ/128; ∆t = T/800
∆x = λ/256; ∆t = T/1600
∆x = λ/512; ∆t = T/3200
∆x = λ/1024; ∆t = T/6400

Figure 5.4 – Surface elevation profile with backward, Crank-Nicolson 0.95 and Crank-Nicolson
1 at t = 10T ; depending on the discretization with Cflx ≈ 0.05; periodic wave H01; uniform
mesh.

b) Velocity and pressure

Figure 5.5 and Figure 5.6 respectively show the horizontal velocity and dynamic
pressure profiles obtained with CN95 (b) and BCK (c) at t = 40T and the analytical field (a)
obtained with potential stream-function theory used as the initial field at t = 0 s. The mesh used
for these simulation is U256x256 and the time step is ∆t = T/800. On a qualitative point of
view the fields seems to be well established without noticeable irregularities. CN95 and BCK

time schemes provide a similar solution. No comparison can be shown using CN1 with the same
configuration as the simulation failed after about forty periods.
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(a) Analytic, t=0 s (b) CN95, t = 40T (c) BCK, t = 40T

Figure 5.5 – Regular wave horizontal velocity field in periodic domain with uniform mesh
U256x256; ∆t = T/800.

(a) Analytic, t=0 s (b) CN95, t = 40T (c) BCK, t = 40T

Figure 5.6 – Regular wave dynamic pressure field in periodic domain with uniform mesh
U256x256; ∆t = T/800.

A thin transition zone is noticeable across the air/water interface in Figure 5.5. As
mentioned, the initial field is only computed in the water, with a single phase potential
modelling, this is the reason why the velocity and dynamic pressure fields are null in the air
at t = 0 s. The proposed potential flow solution is mono-fluid whereas the CFD model used
in the present study is based on a single-field two-phase formulation with a compression term
at the interface. The model is not developed to study this kind of interface flow but it imposes

119



Periodic regular wave

continuity of the velocity field accross the interface and it is then natural that the solution implies
a boundary layer between the phases. Figure 5.7 presents the horizontal velocity profile along
the z-axis at t = 10T and at the horizontal location of the crest of the wave, for the same set of
simulations presented earlier. The convergence of the velocity in air is slower than what can be
observed in the water and the solution is very different for the coarser mesh than for the other
refinements, whatever is the time scheme used. This change appears between the resolution λ /32
and λ /64, which are grid resolutions not far from the typical values used in naval simulations.
The horizontal velocity profile imposed as an initial field is plotted with bold black dash-dotted
line. The initial unphysical null velocity in air is far from the converged value and a better
initialization field could ease the convergence in the air. Another point that can be emphasized
from Figure 5.7 is that the position of the top boundary seems sensitive because the solutions
varies significantly around the boundary when changing the mesh. The solutions with the two
most refined meshes show that the mesh U256x256 can be considered converged.
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Figure 5.7 – Horizontal velocity profile with backward, Crank-Nicolson 0.95 and
Crank-Nicolson 1 at t = 10T and at the crest of the wave; depending on the discretization
with Cflx ≈ 0.05; periodic wave H01; uniform mesh

In the following the focus is on the amplitude error (Sec. 5.1) obtained with second-order
backward and Crank-Nicolson schemes. First, BCK is compared with CN1 and then for
robustness reason only the CN95 scheme is considered. The same data are plotted under several
views in order to identify multiple aspects of the numerical convergence.
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5.4.2 Error in amplitude within the tested time and space resolution
range with Crank-Nicolson 1 and backward time schemes

Figure 5.8 shows the absolute error of the first harmonic amplitude at t = 37.5T

depending on the Courant numbers in x-direction (Cflx) obtained for various time steps ∆t.
The colors represent the time step and the marker styles represent the cell size. The solid
lines connect the points obtained with CN1 with a same ∆t. The dotted lines do the same
but with BCK. The logarithm scale is used on both the vertical and horizontal axis. The filled
markers represent a positive error (overshoot of the analytic amplitude) when the empty markers
represents a negative error (wave damping). This type of representation is frequently used in the
following and is denoted by iso-time-step view.

All the meshes and time steps configuration tested with BCK are also tested with CN1.
However, only the simulation reaching the targeted time t = 40T are plotted. For the non-failed
simulations with Crank-Nicolson 1, the results from BCK and CN1 are close to each other. A
large part of the simulations with CN1 failed due to instabilities not well identified yet. Then,
this scheme is assumed as not stable enough to be used for such simulations. Consequently,
CN95 is taken as reference scheme for the comparison with backward in the following. This
choice of an off-centering coefficient below one is often done in the OpenFOAM literature.
More detailed analysis of the the BCK results is done in the following.
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Figure 5.8 – Iso-time-step view of the surface-elevation first-harmonic amplitude error at
t = 37.5T depending on Courant number Cflx for various time steps ∆t with backward and
Crank-Nicolson; periodic wave H01; uniform mesh.

5.4.3 Error in amplitude within the tested time and space resolution
range with Crank-Nicolson 0.95 and backward time schemes

a) Amplitude errors comparisons

Both Figure 5.9 and Figure 5.10 represent the absolute errors obtained with BCK

and CN95 within the tested range of time step and cell size. Fig. 5.9 is an iso-time-step

view when Fig. 5.10 is an iso-cell-size view. In Fig. 5.9, the solid dark lines connect the
Crank-Nicolson 0.95 data corresponding to a same time step when in Fig. 5.9, they connect
the data corresponding to a same cell size. The same applies with the dark dotted lines and the
backward scheme. These two iso-time-step view and iso-cell-size view representations highlight
the spatial and temporal convergence, respectively. In these figures, two grey dashed lines
represent the order-one and order-two slopes.
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Figure 5.9 – Iso-time-step view of the surface-elevation first-harmonic amplitude error at
t = 37.5T depending on Courant number Cflx for various time steps ∆t with backward and
Crank-Nicolson 0.95; periodic wave H01; uniform mesh.
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Figure 5.10 – Iso-cell-size view of the surface-elevation first-harmonic amplitude error at
t = 37.5T depending on Courant number Cflx for various cell sizes ∆x with backward and
Crank-Nicolson 0.95; periodic wave H01; uniform mesh.

Firstly, most simulations done with CN95 reach t = 40T , indicating a significant
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increase in robustness with respect to what was observed using CN1. With reaching t = 40T as a
robustness criterion, the stability of BCK and CN95 is similar. Besides, some tested resolutions
are too coarse to propagate the waves over forty periods because of the numerical damping.
Using CN95 gives 100% of error (flat free surface) for ∆t ≥ T/100 or ∆x ≥ λ/32. Using BCK,
this 100% damping is reached for ∆t ≥ T/25 or ∆x ≥ λ/32. With BCK and ∆t = T/50 the
wave remains identifiable after forty periods but the free surface is deeply perturbated. This is
consistent with the observations made in Figure 5.7 showing that a refinement ∆x = λ/32 leads
to a wrong air velocity field and a significant damping.

The general aspect of the convergence is more complicated than what was observed
with the Taylor-Green test case. Looking at the BCK plots with time steps ∆t ≤ T/200 in
Fig. 5.9, the error decreases faster than what it is expected with a second-order scheme and
then increases back. This behavior is only noticeable using CN95 for ∆t ≤ T/800. Visualizing
the errors with the iso-cell-size view in Fig. 5.10 conducts to the same observations with a
significantly non-monotonous temporal convergence with ∆x = λ/256. With the finest meshes,
the amplitude of the CFD wave tends to overshoot the analytic one. This phenomenon is likely
to be the consequence of a convergence towards a result which is not the analytical one. This
might be due to the bad accordance between the single-phase potential-flow initialization and
the Navier-Stokes two-phase solution discussed earlier. Additionally to the initialization, the
use of non energy-conservative numerical schemes might cause a gain of energy all along the
simulation. When both the temporal and spatial refinement are fine enough, this gain of energy
is not compensated by the numerical damping.

b) The energy gain

To verify the hypothesis of a gain of energy affecting the convergence, the time histories
of both the kinetic (a) and potential energy (b) obtained with the finest mesh U256x256 are
plotted in Figure 5.11. Both BCK and CN95 simulations gain energy over time with the smallest
time step ∆t = T/800. As the energy of a wave is directly correlated to the wave height,
this observation is consistent with the hypothesis formulated in the comment of Fig. 5.9 and
Fig. 5.10. This energy gain tends to converge toward a certain rate. This phenomenon explains
the non-monotonic temporal convergence with the mesh U256x256 in Fig. 5.10.
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Figure 5.11 – Total kinetic and potential energy in the domain over time with backward and
Crank-Nicolson 0.95 for several time steps; periodic wave H01; uniform mesh U256x256.

The problem of energy conservation solving the Navier-Stokes equations is well known.
The use of collocated grid and face interpolation can lead to a non-conservative resolution
in terms of energy (Ferziger and Peric, 2012) and it is quite hard to predict the evolution of
this non-conservation (gain or loss). Some discretization methods ensure the kinetic energy
conservation (Felten and Lund, 2006) but they are not used in this work. To go further in the
analysis, the main origin of the gain of energy should be identified (flow of energy at the bottom
and top boundaries, non-conservation due to face interpolations and PISO algorithm ...) and
more refinements should be tested. This is not carried out in this document.

c) Convergence order verification

To remove the effect of the offset between the converged numerical and the analytical
solution, the intrinsic errors are plotted in Figure 5.12 and Figure 5.13. The difference between
these figures and Fig. 5.9 and Fig. 5.10 is the use of the finest discretization to evaluate E f .
For a given plot in Fig. 5.12 corresponding to a given time scheme and time step, E f is the
error obtained with the same time scheme and time step but with the finest spatial discretization
∆x = λ/256. Figure 5.13 shows the same data in iso-cell-size view where this time, the case
with the smallest time step ∆t = T/1600 is used as reference.

The use of intrinsic error improves the visualization of the convergence. However, the
convergence order cannot be clearly identified. In Fig. 5.12, the slopes are between order 3 and
4 whereas the expected order is 2. In Fig. 5.12, the slopes are even less identifiable and seems
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to be between order 1 and 2. With BCK and ∆x = 256, the convergence is non-monotonous
whereas with CN95 it remains monotonous within the tested resolution range.

It appears that some phenomena influence significantly the convergence order and
cause some overshooting of the wave elevation with some space and time resolution. In the
following, to visualize the error regarding to the targeted value, and clearly expose overshoots,
the intrinsic error is no longer analyses but only the error. As mentioned, plotting the absolute
error with logarithm scale, the overshoot (positive error) are symbolized with a full color
marker when the negative error are symbolized with an empty marker with colored edges. With
this representation, a converging wave-elevation toward an higher value than the targeted one
implies a fast decrease of the absolute error toward 0 followed by an increase up to the converged
error.
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Figure 5.12 – Iso-time-step view of the surface-elevation first-harmonic amplitude intrinsic
error at t = 37.5T depending on Courant number Cflx for various time steps ∆t with backward
and Crank-Nicolson 0.95; periodic wave H01; uniform mesh.
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Figure 5.13 – Iso-cell-size view of the surface-elevation first-harmonic amplitude intrinsic error
at t = 37.5T depending on Courant number Cflx for various cell sizes ∆x with backward and
Crank-Nicolson 0.95; periodic wave H01; uniform mesh.

Plotting the error at fixed Courant number is a convenient way to verify the convergence
order of the simulations. Figure 5.14 shows the evolution of the error over different cell
refinements for two fixed Courant numbers, Cflx ≈ 0.1 (a) and Cflx ≈ 0.2 (b). The results
with CN95 are represented with a solid black line and those with BCK are represented with a
dashed black line. Colors and marker styles represent as before specific time step and cell size,
respectively. The slopes corresponding to order 1 and 2 are represented with dashed grey lines.
With such a representation, both simulations with CN95 and BCK behaves as second-order.
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Figure 5.14 – Surface-elevation first-harmonic amplitude error at t = 37.5T depending on cell
discretization at fixed Courant number with backward and Crank-Nicolson 0.95; periodic wave
H01; uniform mesh.

5.4.4 Spatial and temporal MULES

As detailed in Section 3.3.2, the MULES algorithm can be applied simultaneously
on temporal and spatial schemes (MULES) or only on the spatial one (S-MULES). The
Crank-Nicolson 0.95 MULES and Crank-Nicolson 0.95 S-MULES are compared using the
iso-time-step view in Figure 5.15. Some S-MULES simulations are not represented as they have
failed before reaching the targeted end. This indicates that S-MULES is less stable than the
standard MULES. Besides, the completed S-MULES simulations give really close results to the
ones obtained with MULES except for ∆t = T/100 where S-MULES appears to be significantly
more accurate.

The backward MULES and backward S-MULES are compared in Figure 5.16 using
iso-time-step view. Unlike for CN95, BCK S-MULES has only encountered failures with really
coarse temporal and spatial discretizations. However, the results between MULES and S-MULES
significantly differ for some configurations. The phenomenon of getting higher accuracy with
∆x = λ/128 than with ∆x = λ/256 is amplified with S-MULES revealing possibly a faster
energy gain with S-MULES than with MULES. Once again, this energy gain can be due to both
the increasing of the non-conservative effect or the decreasing of the numerical damping. As
the MULES algorithm was initially built for both spatial and time schemes during the VOF
resolution, in the following the S-MULES version is abandoned.

128



Periodic regular wave

10−2 10−1 100

Cflx

10−3

10−2

10−1

100

|E
|

Order 1

Order 2

CN95; MULES
CN95; S-MULES
∆t = T/25
∆t = T/50
∆t = T/100
∆t = T/200
∆t = T/400

∆t = T/800
∆t = T/1600
∆x = λ/16
∆x = λ/32
∆x = λ/64
∆x = λ/128
∆x = λ/256

Figure 5.15 – Iso-time-step view of the surface-elevation first-harmonic amplitude error at t =
37.5T depending on Courant number Cflx for various time steps ∆t with Crank-Nicolson 0.95
MULES and S-MULES algorithms; periodic wave H01; uniform mesh.
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Figure 5.16 – Iso-time-step view of the surface-elevation first-harmonic amplitude error at t =
37.5T depending on Courant number Cflx for various time steps ∆t with backward MULES and
S-MULES algorithms; periodic wave H01; uniform mesh.
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5.4.5 Simulation with non-uniform mesh

In the work exposed in the previous paragraphs, the meshes were uniform with isometric
cells. In a regular wave field, the magnitude of the velocity and the pressure decreases
exponentially with the distance to the free surface. Consequently, in the literature and for
naval industrial application, the meshes are progressively unrefined from the free surface to
the bottom and top boundaries. The main interest of such a structure of mesh is to decrease
the computational cost avoiding unnecessary fine zones. In this section, the simulations with
non-uniform meshes presented in Section 5.3 are compared to the ones with uniform mesh.

a) Comparison of fields

Figure 5.17 shows the horizontal velocity map obtained with backward method with
uniform mesh U128x128 and non-uniform mesh NU128x128 and ∆t = T/400. The use of
a non-uniform mesh with smaller air domain does not create visible spurious velocities and
both configuration seem to provide a well established field. However, even though the smaller
density of air leads to a smaller energy in the air field, it can be seen in Figure 5.17 that velocity
gradients are present high in the air part where a degraded resolution is used. In the present
case, the used non-uniform mesh is not unrefined symmetrically in the vertical direction (see
Fig. 5.3) The use of the present version of non-uniform meshes could lead to some disturbances
at the free surface and finally impair the simulations. Using a symmetric refinement between air
and water could be beneficial and subject of a dedicated study.

(a) U128x128, t = 40T (b) NU128x128, t = 40T

Figure 5.17 – Regular wave horizontal velocity field in periodic domain with uniform and
non-uniform meshes U128x128 and NU128x128; backward MULES; ∆t = T/400.
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b) Comparison of the wave amplitude error

Figure 5.18 shows an iso-time-step view of the errors obtained with CN95 on uniform
and non-uniform meshes with the wave H01. Results between uniform and non-uniform meshes
are really close, the accuracy is not significantly impacted by the change in the mesh structure.

Figure 5.19 shows the same analyses but using BCK. In this case the use of a non-uniform
mesh tends to change the error amplifying the overshoot of the targeting wave elevation. This
is particularly visible with ∆t = T/200 and ∆t = T/400.
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Figure 5.18 – Iso-time-step view of the surface-elevation first-harmonic amplitude error at t =
37.5T depending on Courant number Cflx for various time steps ∆t for CrankNicolson 0.95
with Uniform mesh and non-uniform refined mesh; periodic wave H01; uniform mesh.
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Figure 5.19 – Iso-time-step view of the surface-elevation first-harmonic amplitude error at t =
37.5T depending on Courant number Cflx for various time steps ∆t for backward with uniform
and non-uniform mesh; periodic wave H01; ARFS=1.

Even if the use of non-uniform mesh might slightly negatively impact the accuracy
using backward scheme, the computational cost benefit of non-uniform mesh largely justifies
its use for industrial naval applications. Consequently, in the following non-uniform refinement
as defined in Table 5.4 are used.

5.5 Regular wave propagation accuracy depending on the
wave steepness and the cell aspect ratio

For the steepest wave, the efficiency of non-uniform meshes built with the method
described in Section 5.3 was shown. The next step is to study the influence of cell aspect ratio
at the free surface (ZONE 0) for various wave steepnesses.

5.5.1 Optimal free-surface aspect ratio

In the present case, as seen with the steepest wave, verifying the numerical errors is
conveniently done analyzing convergences at fixed Courant numbers. Figure 5.20 shows the
evolution of the error depending on cell size for each studied steepness. Two ratio between time
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step and cell-size are plotted.
∆t
∆x

=
128
400

in (a), (c), (e) and
∆t
∆x

=
128
200

in (b), (d), (f). For a given
wave height it corresponds to two distinct Courant numbers. These Cflx are different from a
wave height to another because of a distinct reference velocity (Eq. 5.1). In these figures the
Crank-Nicolson 0.95 and backward time schemes are represented with solid and dotted lines,
respectively. A given colors is assigned to a given free-surface cell aspect ratio ARFS. The
markers shapes keep the same signification as in this whole chapter, representing the cell sizes.

In Fig. 5.20, the slopes of the plots are between first and second-order. The order seems
to drop as the wave heigth/steepness decreases. A significant impact of the free-surface cell
aspect ratio is seen. For a given wave height, an optimal ARFS provides errors in accordance
with the second-order behavior.

The key point here is that the most accurate aspect ratio depends on the steepness.
Table 5.6 synthesizes the optimal ARFS identified using Fig. 5.20. The choice between CN95
and BCK scheme does not change these optimal free-surface cell aspect ratios.

Because of the choice made to limit the vertical cell size to ∆z = λ/512, only few
simulations are done using ARFS = 8 . To complete the results, thinner vertical refinements
should be tested.
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Figure 5.20 – Surface-elevation first-harmonic amplitude error at t = 37.5T depending on
cell aspect ratio at free-surface (ARFS) at various Courant number Cflx for backward and
Crank-Nicolson 0.95; periodic wave; non-uniform mesh.
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Table 5.6 – Optimal aspect ratio for various wave steepness.

Wave Steepness Optimal aspect ratio
H001 1% 8 or 16
H005 5% 4 or 8
H01 10% 1 or 2

5.5.2 Comparison of the errors with backward and Crank-Nicolson 0.95
schemes

To compare the errors get using backward and Crank-Nicolson 0.95, iso-time-step views

are plotted in Figure 5.21, Figure 5.22 and Figure 5.23 for the wave heights H=0.1, H=0.05,
H=0.01, respectively. For each wave, ARFS is the one prescribed previously (Tab. 5.6).

In each figure, The BCK provides more accurate results than CN95. For the steepest
wave (Fig. 5.21), the results were already presented in Section 5.4.

Then, it can be noticed that the higher the steepness, the higher the error for low
resolutions and the higher the apparent convergence order. Once again, finer resolution, other
mesh structures and energy gain control could explain these observations.
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Figure 5.21 – Iso-time-step view of the surface-elevation first-harmonic amplitude error at
t = 37.5T depending on Courant number Cflx for various time steps ∆t with backward and
Crank-Nicolson 0.95; periodic wave H01; uniform mesh; ARFS=1.
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Figure 5.22 – Iso-time-step view of the surface-elevation first-harmonic amplitude error at
t = 37.5T depending on Courant number Cflx for various time steps ∆t with backward and
Crank-Nicolson 0.95; periodic wave H005; uniform mesh; ARFS=4.
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Figure 5.23 – Iso-time-step view of the surface-elevation first-harmonic amplitude error at
t = 37.5T depending on Courant number Cflx for various time steps ∆t with backward and
Crank-Nicolson 0.95; periodic wave H001; uniform mesh; ARFS=8.
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5.6 Comparison of the efficiency of various discretizations

The last point to analyze is the efficiency. Figures 5.24, 5.25 and 5.26 show iso-cell-size

views of the error but using the CPU time for the abscissa rather than the Courant number. The
logarithm scale is still used. The figures concern the waves H01, H005 and H001, respectively.
The meshes respect the optimal ARFS previously identified.

In these figures, taking into account the computational cost (CPU time), it appears
that for a same spatial and temporal resolution, both the simulation using BCK and CN95 are
achieved with a similar CPU time. However, there are some exceptions for which the backward
scheme induced an over-cost. For instance, in Fig. 5.24, with ∆t = T/200 and ∆x = λ/256
(yellow star), the simulation with BCK is significantly less accurate and slower than the one
with CN95. This loss of efficiency could be linked to a field perturbation caused by a non
well-design mesh or numerical set-up. The problem of the resolution of the air phase exposed
in Sec. 5.4 Sec. 5.4.1 and Sec. 5.4.5 is potentially involved. Some other points show a similar
loss of efficiency using backward especially with the finest resolution. Except for these local
issues, the backward scheme shows a clear global improvement of the efficiency compared to
the Crank-Nicolson 0.95 time scheme.
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Figure 5.24 – Iso-cell-size view of the surface-elevation first-harmonic amplitude error at t =
37.5T and CPU time for various cell sizes ∆x with backward and Crank-Nicolson 0.95; periodic
wave H01; non-uniform mesh; ARFS=1.
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Figure 5.25 – Iso-cell-size view of the surface-elevation first-harmonic amplitude error at t =
37.5T and CPU time for various cell sizes ∆x with backward and Crank-Nicolson 0.95; periodic
wave H005; non-uniform mesh; ARFS=4.
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Figure 5.26 – Iso-cell-size view of the surface-elevation first-harmonic amplitude error at t =
37.5T and CPU time for various cell sizes ∆x with backward and Crank-Nicolson 0.95; periodic
wave H001; non-uniform mesh; ARFS=8.

Finally, Figure 5.27 shows the impact of the ARFS choice. In this figure, the results
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are from the simulations of wave H001. Meshes with ARFS = 4 and ARFS = 8 are compared.
For this wave, the previously identified optimal ARFS in terms of accuracy is 8. On one hand,
increasing the vertical refinement (reducing the cell size ∆z) implies an increase of the number
of cells and therefore an increase of the computational cost. On the other hand, for a given
space and time refinement, the accuracy with ARFS = 8 is higher than with ARFS = 4. Fig. 5.27
shows that for this type of simulation the choice of ARFS = 8 is still more efficient and the
gain of accuracy compensates the small increase of computation cost. For a same error, using
a convenient free-surface cell aspect ratio leads to a reduction of the computational cost by a
factor 3.
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Figure 5.27 – Iso-cell-size view of the surface-elevation first-harmonic amplitude error at t =
37.5T and CPU time for various cell sizes ∆x with ARFS=4 and ARFS=8; periodic wave H001;
non-uniform mesh; backward.

5.7 Conclusion

In this chapter, it was shown that with foamStar, both Crank-Nicolson 0.95 and
backward time scheme are accurate for approximately second-order simulations of regular
waves propagating in periodic bi-dimensional domain with various wave steepnesses, 1%, 5%
and 10%. Within a range of time and space resolution commonly used for naval simulations,
the MULES implementation of second-order backward scheme is slightly more accurate and
efficient than the Crank-Nicolson 0.95 MULES.
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Some recommendations have been made for the structure of meshes. Firstly, the
mesh structure established in Sec. 5.3 is convenient for efficient simulations. Then, a strong
correlation between optimal free-surface cell aspect ratios and wave steepnesses have been
identified. About a factor 5 to 10 between this aspect ratio and the wave steepness seems to
be convenient. For a given regular wave with a wavelength λ and a wave height H, an optimal
aspect ratio can be written as

λ

5H
≤ ARFS

Opti ≤ λ

10H
. (5.3)
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CHAPTER 6

WAVE PROPAGATION WITH RELAXATION

ZONES

The next step toward a proper naval simulation is the use of realistic domains, several
wavelengths long, with relaxation zones and RANS model. The study presented in this chapter
is in line with the work done in the Numerical Wave Tank (NWT) working group of the
Reproducible CFD Modeling Practice for Offshore Applications Joint Industrial Project (JIP)
led by Technip Energies.

This work is the continuation of the previous section where periodic waves were studied.
The same three wave conditions are studied with the same meshing method. The difference lies
in the domain configuration and the wave generation. In the previous section, the wave fields
were set at the initialization and then freely propagated in a periodic domain. In this chapter,
waves are generated and absorbed using relaxation zones. In order to progressively get closer
to the naval simulations, the first configuration studied here uses the Navier-Stokes model (NS)
as in the previous chapter. Then, a turbulent RANS model is introduced and finally simulations
are perfomed in a moving frame as it is done for the case of a moving ship. The following
analyses do not go deep into the Verification procedure. The objectives are to identify some
potential issues induced by the introduced features and to build recommendations on how to
use the current foamStar implementation to perform naval simulations in waves.

Remark: The following work is done using a modified foamStar version in witch the

relaxation zone updates are organized differently compared to the flow chart presented in

Figure 3.10. For the version used in the following the velocity update is done between the "u

estimation step" and the PISO loop start.

6.1 Case definition

The numerical domain configuration and the wave characteristics are defined according
to the JIP procedure (Bouscasse et al., 2021). The characteristics of the simulated waves are
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recalled in Table 6.1. As for the periodic waves study, in the following the labels H01, H005
and H001 refer to the selected waves with the wave heights H = 0.1 m, H = 0.05 m and
H = 0.01 m, respectively. Those waves are the same as the previously used ones (Sec. 5). The
stream theory model implemented in foamStar is used in the relaxation zones to impose the
wave fields 1.

Two domain configurations are used in this section. One with an inlet and outlet
relaxation zone and another with only an outlet relaxation zone. Figure 6.1 shows the first
configuration. The size of the relaxation zones follows the recommendations established by
Choi et al. (2020). The inlet relaxation zone is 1λ long and the outlet one is 2λ long. The
so-called pure CFD domain is 7λ long and centered at the position x = 0. This domain
configuration is denoted by RZi1o2. Figure 6.2 shows the second configuration for which
the relaxation zone is only located at the outlet 2. The outlet relaxation zone is 3λ long and
the pure-CFD-domain is 7λ long with a central position x =−λ . This domain configuration is
denoted by RZo3.

As indicated in Fig. 6.1 and Fig. 6.2, for both configurations the wave direction is toward
positive x-direction (orange arrow) and the frame velocity is toward negative x-direction (white
arrow). The moving frame direction corresponds to a simulation of a boat moving with forward
speed in head waves.

For applications such as the added resistance in head waves, the simulation domain
geometry is often not based on the wavelength but on the ship length (LPP) in order to solve
the diffracted field accurately. In the literature (see e.g. Simonsen et al., 2013; Kim et al., 2017;
Mofidi et al., 2018) a standard recommendation is to define a domain length of about 4 to 6
LPP. One example of standard naval domain can be found in Chapter 7. Besides, wavelengths
between 0.5 LPP and 2 LPP are commonly encountered in naval simulations (Fujii (1975),
Larsson et al. (2010), Larsson et al. (2018)...). Consequently, the domain configurations studied
in this section are relevant to naval simulations with short wavelengths and a fictive scale model
boat for which LPP ≈ 2 m.

In the following, in order to evaluate a longitudinal Courant number Cflx, the reference
velocity for a given wave is still:

uref =
π H
T

. (6.1)

1. for more detail see Sec. 2.3.1
2. The reasons behind this choice are detailed in the following.

142



Wave propagation with relaxation zones

Table 6.1 – Regular wave characteristics.

Item Unit H001 H005 H01

Depth (D) [m] 1 1 1
Wavelength (λ ) [m] 1 1 1
Wave period (T ) [s] 0.80 0.79 0.76
Wave height (H) [m] 0.01 0.05 0.1

Wave steepness (ε = H/λ ) 1 % 5 % 10 %

Wave directionFrame velocity

Inlet
relaxation zone 

Lin = λ

Outlet
relaxation zone

Lout = 2λ

Pure CFD domain
LCFD = 7λ

Figure 6.1 – 2D domain dimensions used for pure wave propagation with Navier-Stokes model.
(RZi1o2)

Wave directionFrame velocity

Outlet
relaxation zone

Lout = 3λ

Pure CFD domain
LCFD = 7λ

Figure 6.2 – 2D domain dimensions used for pure wave propagation with RANS model. (RZo3)

The boundary conditions in RZi1o2 and RZo3 are synthesized in Table 6.2. For more
details on these BCs see Section 3.3.6. These BCs are used for both NS and RANS simulations
done along this study. For NS simulations modelling of the turbulence is not taken into account,
so the turbulent fields k, omega and nut are not activated.
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Table 6.2 – Boundary conditions used for wave propagation with relaxation zones.

Field Inlet\Outlet Bottom Top
U waveVelocity slip pressureInletOutletVelocity

p_rgh fixedFluxPressure fixedFluxPressure; totalPressure
alpha waveAlpha zeroGradient inletOutlet

k zeroGradient zeroGradient zeroGradient
omega zeroGradient zeroGradient zeroGradient
nut calculated calculated calculated

6.2 Error definition

6.2.1 Amplitude error

As for the wave propagation in a periodic domain (Sec. 5), the accuracy of the numerical
simulations is evaluated analyzing the damping in time of the wave elevation. The wave
elevation is measured at the center of the pure CFD domain. For a given time t a discrete Fourier
transform is applied to the sampled surface elevation between t0 = t −2.5T and t1 = t +2.5T .
The resulting first-harmonic amplitude is noted ACFD

1 (t). This first-harmonic amplitude of the
surface elevation is compared to the analytic first-harmonic amplitude obtained with CN-Stream

and noted ASF
1 . Then, the numerical error used in this section is defined as:

E (t) =
ACFD

1 (t)−ASF
1 (t)

ASF
1 (t)

(6.2)

6.2.2 Phase shift

The phase is evaluated using the same sliding-window discrete Fourier transform. The
phase of the first-harmonic error at the center of the domain is noted φCFD when the reference
analytical phase is noted φ SF and obtained using CN-Stream.

6.2.3 Wave period

For the wave period, another method is used. A period TCFD at a given instant t is
defined as the average between two successive zero crossing in the same direction over a
window of 5 periods between t0 = t − 2.5T and t1 = t + 2.5T . T SF is the analytical period
obtained with CN-Stream.
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6.3 Numerical setup

The reference numerical set-up (Sec. 3.6) is used. The investigation regards the temporal
discretization, the mathematical models (NS or RANS) and the moving frame velocity. Table 6.3
synthesizes the tested configurations. Only the backward (BCK) and the Crank-Nicolson 0.95
(CN95) time schemes are tested. With RANSE resolution, the turbulent models k-ω-SST
(kOmegaSST) and fs-k-ω-SST (fsKOmegaSST) are tested.

Table 6.3 – Numerical parameters studied with regular wave propagation with relaxation zones.

Numerical parameter Tested values

ddtScheme {default}
CranckNicolson 0.95

backward

simulationType (Model)
laminar (NS)

RAS kOmegaSST (RANS)
RAS fsKOmegaSST (RANS)

fwdVelocity (Frame velocity)
(0, 0, 0)

(−λ/T , 0, 0)

deltaT

{
T

25×2k | k ∈ [|1, 4|]
}

6.4 Meshes

The meshes used in this study are the non-uniform meshes presented in Section 5.3
extended along the x-direction. Figure 6.3 shows a view of mesh NU32x128 and Table 6.4
synthesizes the studied mesh configurations.

Figure 6.3 – non-uniform stretched mesh NU32x128 used for wave propagation with
relaxation zones.
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Table 6.4 – Studied configuration of meshes for the regular wave propagation with relaxation
zones.

Wave heights T/∆t Mesh type Mesh label λ/∆x λ/∆z ARFS

H = 0.1 m
H = 0.05 m
H = 0.01 m

{25, 50, 100,
100, 200, 400}

Non-uniform
regular

NU32x32 32 32

1
NU64x64 64 64

NU128x128 128 128
NU256x256 256 256

Non-uniform
stretched

NU32x64

32

64 2
NU32x128 128 4
NU32x256 256 8
NU32x512 512 16
NU64x128

64
128 2

NU64x256 256 4
NU64x512 512 8
NU128x256

128
256 2

NU128x512 512 4
NU256x512 256 512 2

6.5 Simulation in fixed frame with Navier-Stokes model

The first analysis is carried out using the Navier-stokes (NS) model, i.e. direct use of
the Navier-Stokes equations without any turbulence modeling, and the domain configuration
RZi1o2. The time histories are discussed first, then the phenomenon of vortices generation
due to the relaxation zone and finally the error convergence and the influence of the free-surface
cell aspect ratio (ARFS) are analyzed.

6.5.1 Time histories

Figure 6.4 shows the time history of the surface elevation first-harmonic amplitude error,
the phase shift and the wave period error for two mesh resolutions. The solid and dotted lines
correspond to simulations with CN95 and BCK, respectively. The colors represent the time steps
∆t.
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Figure 6.4 – Time histories of the surface elevation first-harmonic amplitude error, phase shift
and wave periods for various time steps ∆t with backward and Crank-Nicolson 0.95; regular
wave; H01; NU256x256 and NU128x128; Navier-Stokes model; domain RZi1o2.
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First, the time histories of the amplitude error in Fig. 6.4 show that the evolution of the
error is non constant. With some discretizations, the amplitude increases whereas with some
others it decreases. For all the curves is that even if the amplitude decreases during the first
periods, it tends to progressively increase after a certain time. Several causes could be involved
in this phenomenon. The first one is the energy non-conservative resolution highlighted in
Section 5. An other possible cause could be the presence of disturbance caused by the relaxation
zones (this point is discussed in the following). Finally, both time schemes convergence is
globally observed with a smaller damping of the wave elevation using BCK an some larger
overshoots.

Then, the phase shift plotted in (c) and (d) reveals two things. The first one is a phase
shift about 0.25 rad (about 4%) during the first periods. This shift is probably due to the
initialization using a non physical velocity profile as discussed in Sec. 5. Besides, as for the
amplitude error, the discretization influences significantly the evolution of the phase shift in
manners that are not easily explainable. The only identifiable trend is that BCK causes larger
phase shift than CN95.

Finally, the last two figures (e) and (f) show the time history of the wave period error.
Unlike the wave amplitude error and the phase shift, the period error stays between -1% and 1%
regardless of the discretization.

6.5.2 Generation of vortices in the air

In this section, investigation is done on the velocity fields in order to evaluate the impact
of the relaxation zones. The studied wave is the steepest one H = 0.1 m; the mesh used is
NU256x256 and the time step of the simulation is ∆t = T/400. In the following, the mainly
observed phenomenon are noticeable using both CN95 and BCK, so only the BCK scheme is
investigated. Figure 6.5 shows the map of the horizontal velocity field after 10 periods and
Figure 6.6 shows the norm of the vorticity. As the total size of the domain in 10λ , at t = 10T

the waves imposed at the initialization are supposed to be out of the domain so all the fields are
depending from the inlet and outlet boundaries, and the relaxation zones.
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Figure 6.5 – Regular wave horizontal velocity field with backward time scheme at t = 10T ;
NU256x256; ∆t = T/400; Navier-Stokes model; domain RZi1o2.

Figure 6.6 – Regular wave vorticity magnitude field with backward time scheme at t = 10T ;
NU256x256; ∆t = T/400; Navier-Stokes model; domain RZi1o2.

Some disturbances in the air are observed in Fig. 6.5 and Fig. 6.6 between x =−4.5 m
and x ≈ 0 m. In this part of the domain vortices are visible and comparing to what has been
observed in Sec. 5.4, the horizontal velocity reaches high values. Looking at Fig. 6.6, the source
of the vortices seems to be the transition zone at the free surface in the inlet relaxation zone. In
the remaining part of the pure CFD domain between x≈ 0 m and x≈ 3.5 m, the steady-state-like
velocity field is progressively established and is consistent with the expected one (see Fig. 5.5).
In the outlet relaxation zone, the air field is once again disturbed but with smaller vorticity than
in the inlet zone.

This behavior is explained by the way the relaxation zone works. As detailed in
Sec. 2.3.1, the relaxation imposes progressively the targeted values to the field, however, the
imposed velocity is a null vector in the air. This null velocity is far from the one obtained
with Navier-Stokes equations, consequently some large numerical corrections are applied by
the solver in the relaxation zones. At the inlet side, the null velocity in air and the non-null wave
velocity in water cause Kelvin-Helmholtz instabilities. These instabilities are then propagated
in the domain. The vortices are progressively damped. However, in absence of turbulence model
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and due to the lower Reynolds number in the air than in the water, the damping of these vortices
remains small. After a few periods, the disturbed air is all along the domain. This phenomenon
explains the noticed changes for the amplitude and phases after a certain period of time. First,
the first-harmonic wave amplitude tends to decrease and the air velocity fields is converged.
Then, the first-harmonic wave amplitude progressively increases. The hypothesis that should
be explored is that the disturbances in the air phase cause an unsteady interaction with waves
elevation when the vortices reach the measuring point.

6.5.3 Optimal free-surface cell aspect ratio and order of convergence

Despite the disturbance caused by the inlet relaxation zone, a convergence analysis is
carried out over the three tested waves within the discretization range. Figure 6.7 shows the
convergence of the first-harmonic amplitude error at fixed Courant numbers. As for the periodic

wave study, two time-step/cell-size ratios are analyzed. Results with
∆t
∆x

=
128
400

are shown in

(a), (c), (e) and results with
∆t
∆x

=
128
200

are shown in (b), (d), (f). Because of the reference
velocity (Eq. 6.1) used for the Courant number calculation, the selected Cflx are different from
one wave height to another. Solid and dotted lines represent Crank-Nicolson 0.95 and backward
time schemes, respectively. Each color is associated to a free-surface cell aspect ratio ARFS and
each marker style corresponds to a cell size ∆x. The gray dashed lines represent the first-order
and second-order slopes.

Similar to the periodic waves, changes of ARFS induce a modification of the accuracy.
For a given wave height, some ARFS with an optimal accuracy can be identified. Table 6.5
synthesizes these optimum values within the tested range. The results are close to the ones
obtained with periodic waves (Tab. 5.6). Within the restricted range of spatial discretization
only one point is plotted with ARFS = 16. It does not allow to conclude about the accuracy of
this aspect ratio. Nevertheless, in accordance with the periodic wave analyses, for H001 the
value 16 is still indicated.

For a large part of the plots, the slopes are between first and second-order. A clear
second-order behavior is hard to identify because of the previously identified perturbed air
field. The damping of the perturbations in air decreases as the refinement increases and it
paradoxically reduces the accuracy of the simulations.

Finally, even if for the finest spatial resolution ∆x = λ/256 NU256x256, the backward
scheme is more sensible than the Crank-Nicolson 0.95 to the perturbations in air, BCK is
globally more accurate than the CN95.
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Table 6.5 – Optimal aspect ratio for various wave steepness with relaxation zone and
Navier-Stokes model.

Wave Steepness Optimal aspect ratio
H001 1% 8 or (16)
H005 5% 4
H01 10% 2

These optimal aspect ratios follow the same conclusion as the one made in with the
periodic waves analyses. So, the general recommendation for the free-surface cell aspect ratio
simulating regular waves with relaxation zones is also:

λ

5H
≤ ARFS

Opti ≤ λ

10H
(5.3)
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Figure 6.7 – Surface elevation first-harmonic amplitude error at t = 37.5T depending on cell
aspect ratio at the free surface (ARFS) for two Courant number Cflx and for backward and
Crank-Nicolson 0.95; Navier-Stokes model, domain RZi1o2.
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6.6 Simulation in fixed frame with RANS model

At this stage, the accuracy of foamStar simulating nonlinear regular waves with a
backward time scheme and the MULES algorithm has been shown. However, the NS model is
insufficient for naval applications because of the very high Reynolds number at stake, implying
very thin boundary layers and the turbulent flow around the hulls. So, in this section, using
BCK, the results with the two RANS models are compared to the NS one. A discussion about
the undesirable vortices management is done, firstly considering the turbulent models and then
the domain configurations. Besides, the surface elevation errors are examined.

6.6.1 Influence of the turbulent model on the air vortices

a) OpenFOAM k-ω-SST

Figure 6.8 shows a map of the norm of the vorticity field after ten periods using RANS
with the k-ω-SST turbulence model from OpenFOAM. In this figure no vortices are noticeable.
The reason is the turbulence production by the model where the vortices are created. The side
effect is that this turbulent production damps the wave such that in the pure CFD zone the wave
elevation is 70% damped after only ten periods, see Figure 6.9

Figure 6.8 – Regular wave vorticity magnitude field with backward time scheme at t = 10T ;
NU256x256; ∆t = T/400, RANSE k−ω SST; domain RZi1o2.
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Figure 6.9 – Regular wave volume-fraction field with backward time scheme at t = 10T ;
NU256x256; ∆t = T/400, RANS k-ω-SST; domain RZi1o2.

b) foamStar fs-k-ω-SST

As detailed in Section 2.1.3 an alternative to the OpenFOAM k-ω-SST model is the
fs-k-ω-SST implemented in foamStar. Figure 6.10 shows the map of the norm of the vorticity
field after 10 periods using the fs-k-ω-SST RANS turbulence model. Figure 6.11 shows the
corresponding horizontal velocity field. The magnitude of the vorticity is smaller than with NS
simulations (Fig. 6.6). However, vortices are still present and disturb the horizontal velocity
field. Compared to the OpenFOAM k-ω-SST turbulence model, the fs-k-ω-SST model limits
the turbulence production and therefore the damping.

As a conclusion, at this point none of the three options is satisfactory. First, by
construction the NS model does not model correctly the turbulent part of the flow and the
large spurious vortices created in the inlet zone degrade the wave propagation quality. Then, a
standard turbulence model damps those vortices but at the cost of damping also the gravity
waves , since the free-surface boundary layer is not correctly accounted for in that model.
Finally, the free-surface turbulent model, which is the most physically correct, does not damp
much the spuriously created inlet vortices.

Remark: Additionnal works have shown that applying the relaxation update of the

velocity field after the PISO loop, as it is done in the current foamStar version, significantly

reduces the vorticies generation. This effect has been noticed after the present study so this

solution is not explored in this document.
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Figure 6.10 – Regular wave vorticity magnitude field with backward time scheme at t = 10T ;
NU256x256; ∆t = T/400, RANS fs-k-ω-SST; domain RZi1o2

Figure 6.11 – Regular wave vorticity magnitude field with backward time scheme at t = 10T ;
NU256x256; ∆t = T/400, RANS fs-k-ω-SST; domain RZi1o2

6.6.2 Removing the inlet relaxation zone

In order to remove the perturbations induced by the inlet relaxation zone, the domain
RZo3 is tested. With RZo3 there is no inlet relaxation zone and the wave is only generated by
the inlet boundary condition. The air velocity field imposed at the boundary is still null but it
is expected that the Kelvin-Helmholtz instabilities and thus the vortices production would be
limited. Since shearing between waves and the incorrect zero-velocity condition in air is only
acting on one boundary point rather than on a contact surface.

Figure 6.12 and Figure 6.13 show the norm of the vorticity and the horizontal wave field,
respectively, after ten periods. The simulations are done using RANS fs-k-ω-SST turbulent
model. Fig. 6.12 shows the absence of vortices production at the inlet. Some are still produced
at the outlet. In Fig. 6.13 the steady-state-like horizontal velocity field is established from x =

−4.5 m to x ≈ 3 m.
Removing the inlet relaxation zone prevents the production of non-physical vortices and

then the turbulence production at the inlet of the domain. So, for naval applications with forward
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speed, in order to avoid both the perturbation of the free surface and an additional drag in the
air, using only an outlet zone could be convenient. The relaxation zones are used to damp the
diffracted fields, so with a body, the inlet relaxation zone is designed to avoid reflections of the
diffracted fields on the inlet boundary. For a floating body without forward speed this diffracted
field could be non-negligible. However, thanks to the target naval applications, in the following
the selected configuration is RZo3 with fs-k-ω-SST turbulent model.

Figure 6.12 – Regular wave vorticity magnitude field with backward time scheme at t = 10T ;
NU256x256; ∆t = T/400, RANS fs-k-ω-SST; domain RZo3 (no inlet relaxation zone).

Figure 6.13 – Regular wave vorticity magnitude field with backward time scheme at t = 10T ;
NU256x256; ∆t = T/400, RANS fs-k-ω-SST, without inlet relaxation zone; domain RZo3.

6.7 Simulation in moving frame with RANS model

The next step toward naval simulations is to test the influence of moving frames with
imposed forward speed. For the computation of added resistance and ship motions, the waves
are simulated in a moving frame. This section presents a qualitative error comparison between
fixed and moving-frame simulations.

Firstly, the map of the vorticity norm after ten periods shown in Figure 6.14 reveals
an higher vortices productions with forward speed. Even if no inlet relaxation zone is used,
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votrices are distributed all along the domain. The boundary condition at the inlet could be a
cause of this. An other reason could be the higher Courant number caused by the forward
velocity and inducing some spurious vortices. Finally, the vortices generated in the outlet zone
could be reversely propagated because of some reflections at outlet boundary. In such a case,
potential reflections at the inlet should also be discussed.

Figure 6.14 – Regular wave vorticity magnitude field with backward time scheme at t = 20Te;
NU256x256; ∆t = T/400, RANS fs-k-ω-SST; domain RZo3.

Figure 6.15, Fig. 6.16 and Fig. 6.17 are iso-time-step views of the surface
elevation first-harmonic amplitude error from simulations of nonlinear regular waves with a
steepness of 10%, 5% and 1%, respectively. In Fig. 6.15 and Fig. 6.16, the free surface cell
aspect ratio are ARFS = 2 and ARFS = 4, respectively. They correspond to the recommendation
from Tab. 6.5. For H001, because of the lack of spatial discretization with ARFS ≥ 8 is not
convenient for the accuracy visualization. So, though it is not in the optimal range previously
defined, ARFS = 4 is used in Fig. 6.17. All the simulations are done using RANS fs-k-ω-SST
models and the domain configuration RZo3. The colors represent the time resolution with
respect to the encountered wave period Te. In these figures, for a given wave, V0 denotes the
fixed frame with a null velocity V0 = 0 m.s-1 and V1 denotes the frame moving toward negative

x-direction at the phase velocity V1 =
λ

T
. The Courant numbers are adapted according to the

forward speed with the following definition of the reference velocity Uref

Cflx =
(Uref +Vi)∆t

∆x
. (6.3)
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Figure 6.15 – Iso-time-step view of the surface elevation first-harmonic amplitude error at t =
37.5T depending on Courant number Cflx for various time steps ∆t with fixed and moving
frame; RANS fs-k-ω-SST; H01; ARFS=2; backward.
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Figure 6.16 – Iso-time-step view of the surface elevation first-harmonic amplitude error at t =
37.5T depending on Courant number Cflx for various time steps ∆t with fixed and moving
frame; RANS fs-k-ω-SST; H005; ARFS=4; backward.
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Figure 6.17 – Iso-time-step view of the surface elevation first-harmonic amplitude error at t =
37.5T depending on Courant number Cflx for various time steps ∆t with fixed and moving
frame; RANS fs-k-ω-SST; H001; ARFS=4; backward.

In Fig. 6.15 presenting the wave H01, an increase of the error is noticeable when the cell
size decreases for ∆t ≥ Te/100, with both the fixed and moving frame. With the moving frame
the accuracy of ∆x = λ/32 is greater than with a fixed frame. Nevertheless, with ∆t ≤ Te/200
the error stagnates regardless of the time and space resolutions, for this moving frame. An
hypothesis that might explain this phenomenon is that the gain of energy identified in Sec. 5.4
could be amplified by the increase velocity magnitude due to the forward speed. Then, this gain
of energy due to non-conservation would counterbalance the numerical damping. The saturation
of the error might also be caused by an increase of the Courant number due to the forward speed.
The vortices production amplified with the forward speed is also likely to be involved. Exploring
these tracks is left to future work.

Overall, the error with the forward speed V1 is smaller than the error with fixed frame
V0 for more than 80 % of the tests. However, as all the identified effects are not well quantified,
no conclusions about the accuracy gain can be done.

With H005 (Fig. 6.16) as with the other waves, for a given time step the error with
moving frame simulation does not decrease when the cell size decreases. However, the time
step influences are closer to the expectations, the smaller the time step the smaller the erro is.

Finally, with H001 (Fig. 6.17) the non decreasing error regardless of the time and space
resolution can be noticed and with this wave, for the finest resolutions the error with forward
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speed is larger than the error with fixed frame. This different behavior might be due to the choice
of ARFS that is not assessed as an optimal one.

6.8 Efficiency

The comparison of the efficiency is the final step of the analyses of the wave generation
in a domain using relaxation zones with RANS model. Figure 6.18, Fig. 6.19 and Fig. 6.20
show the iso-cell-size views of the error but using the CPU time for the abscissa rather than
Cflx. The figures concern the waves H01, H005 and H001, respectively. The free-surface cell
aspect ratios are ARFS = 2, ARFS = 4 and ARFS = 4, respectively. The scheme used is still the
fs-k-ω-SST.
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Figure 6.18 – Iso-cell-size view of the surface elevation first-harmonic amplitude error at t =
37.5T and CPU time for various cell sizes ∆x with fixed and moving frame; RANS fs-k-ω-SST;
H01; ARFS=2; backward.
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Figure 6.19 – Iso-cell-size view of the surface elevation first-harmonic amplitude error at t =
37.5T and CPU time for various cell sizes ∆x with fixed and moving frame; RANS fs-k-ω-SST;
H005; ARFS=4; backward.
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Figure 6.20 – Iso-cell-size view of the surface elevation first-harmonic amplitude error at t =
37.5T and CPU time for various cell sizes ∆x with fixed and moving frame; RANS fs-k-ω-SST;
H001; ARFS=8; backward.

The errors are the same as the ones shown in Fig. 6.15, Fig. 6.16 and Fig. 6.17, so
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the saturation of the error with V1 is still noticeable. The objective here is to identify some
guidelines that could be convenient for simulations with forward speeds between V0 and V1.
The apparent efficiency of ∆x = λ/32 for simulations with V1 cannot be taken as a reference
as it is not the case with V0. Besides, with the current foamStar implementation, the increase of
perturbations reducing the time step and the cell size implies that taking a too small refinement
would not be cost effective. Consequently, the recommendation is to use ∆xOpti ≈ λ/64 and
∆tOpti ≈ Te/200 with configurations and mesh similar to those used in this study. Note that,
contrary to the other previous recommendations, that one should be taken with caution, and is
likely to evolve with future studies.

6.9 Conclusion

For simulations of regular wave inside domains with relaxation zone it has been
shown that the relaxation zone technique currently implemented in foamStar generates some
spurious vortices in the air that can disturb the water field and affect the convergence. These
vortices are caused by the targeted null air velocity inside the relaxation zones that is far
from the converged Navier-Stokes physical solution in the pure CFD domain. These vortices
are attenuated using RANSE with fs-k-ω-SST turbulent model and a convenient option for a
simualtion with forward speed is to remove the inlet relaxation zones only using the boundary
condition to generate the waves. This solution could be further be discussed evaluating its
consequence on the reflections of diffracted waves on the inlet boundary. Besides, the influence
of the free surface cell aspect ratio as been shown and the recommendations made with the
periodic wave study are confirmed. It also has been shown that the use of moving frame leads
to additional errors and non clear convergence within the tested range of discretization. The
following time and space resolution recommendations have been made:

∆xOpti ≥ λ

64
(6.4a)

∆tOpti ≥ Te

200
(6.4b)

5 ≤ λ ∆zOpti

H ∆xOpti ≤ 10 (6.4c)

Finally, comparing to the work done in Kim (2021) and Kim et al. (2022a), some
conclusions are quite different. For instance the influence of the choice of RANS or NS
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model is less noticeable in Y.J, Kim’s work. Then, the problem of vortices disturbing the wave
propagation when inlet relaxation zones are used was not encountered to such an extent. A
major difference between the presented work and Kim’s work is the mesh refinement method.
In this work both the longitudinal and vertical cell refinement become coarser close to the upper
and lower boundaries and the refinement coefficient 3 is 2. In Kim’s work, the horizontal cell
size is constant and the vertical refinement is progressively changed using grading methods and
coefficients between 1.01 to 1.1. This might be a one cause of the noted differences, so for
future work the numerical set-up tested in this chapter should also be tested with Kim’s meshes.

3. The ratio between the size of two neighboring cells.
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DISCUSSION ON THE NUMERICAL STUDY

Over this part, a progressive analysis has been done from the Navier-Stokes simulation
of the analytic mono-fluid Taylor-Green vortices to RANS-VOF simulations of nonlinear
regular waves with relaxation zones and forward speed. The objectives of these studies were
to assess the accuracy and the efficiency of foamStar with the new second-order backward
MULES implementation, to identify the influence of the VOF, the turbulence model and the
frame velocity on the accuracy and to define some best practices for naval simulations with
regular waves.

First, the accuracy of the second-order backward scheme has been verified, first in
mono-fluid domain and then with the multi-phase simulations of regular waves using the
bakward MULES. Comparing it to the commonly used Crank-Nicolson 0.95, the backward
scheme shows better accuracy.

Besides, the ability of foamStar to simulate nonlinear regular waves with RANS has
been assessed. it has been especially shown that using a modified standard turbulence solver to
account for the free-surface presence is highly beneficial. However, issues have been identified
with the model used for the wave generation. Using relaxation zones, a targeted null velocity
in air causes some spurious vortices in the air. Some other kinds of extrapolations have
been proposed by Choi (2019) for irregular wave propagation. However, the latter methodss
have not been tested with regular waves and some air solutions could be established more
accurately (potential solution in the air, pre-solving of a 2D NS solution ...). Using the currently
implemented relaxation zones, using only an outlet one with just enforcing the BCs at inlet has
shown some improvements and would be convenient for naval simulation with forward speed.

Finally over all the studied cases, a common observation was the strong influence of the
mesh structure on the accuracy. The influence of some mesh deformations have been measured
and showed that with foamStar, some shapes of cells decrease a lot the accuracy when others
are well managed. For mono-fluid cases using non-orthogonal corrections, the cell aspect ratio
and the non-orthogonality cause only small disturbances whereas the skewness from tested
zigZag deformation induces significant error. For mono-fluid cases, the skewness corrector
has been tested and has shown a significant improvement of the accuracy. For the simulation
of regular waves with VOF, only the aspect ratio close to the free-surface has been studied
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revealing its significant influence on the accuracy of the wave propagation. Some optimal aspect
ratios depending on the wave steepness have been identified.
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PART III

Naval application

foamStar is already used by Bureau Veritas Marine & Offshore (BV-M&O) for some

naval applications. However, the company supervising this Ph.D., Bureau Veritas Solutions

Marine & Offshore (BVS-M&O), did not use foamStar in their industrial process at the start

of the PhD. This part presents the work done in order to qualify and improve the accuracy of

foamStar for some naval simulations and its ability to be used in an industrial context. The first

chapter presents a comparison between foamStar and foamStar-SWENSE to evaluate added

wave resistance and ship motions in head waves. The content of this chapter was generated

during the first year of the PhD, as an initial assessment of the capability of the code. The last

section present some results obtained at the very end of the PhD, after the work on the code

and the learning from the dedicated systematic numerical study. The second chapter details the

work done in order to ease the industrial use of foamStar.
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CHAPTER 7

NAVAL SIMULATION IN HEAD WAVES

In this chapter the numerical analysis are conducted using the Korea Research Institute
for Ships and Ocean Engineering (KRISO) Container Ship (KCS). Numerical results obtained
with the foamStar and foamStar-SWENSE solvers are compared to experimental data in regular
wave conditions with 3DoF motions and forward speed. A seakeeping simulation in a rough
irregular sea state is conducted using foamStar-SWENSE in order to highlight the robustness of
the solver.

7.1 Case definition

This section presents the cases studied all along this chapter. Both the geometry and the
regular wave conditions come from the case 2.10 of the CFD Tokyo 2015 Workshop (Larsson
et al., 2018).

7.1.1 Geometry and test conditions

The studied geometry is a scaled model (1:37.89) of the KCS. This ship is a modern
container ship with a bulbous bow used in many numerical and experimental investigations.
The main features of the KCS geometry at full and model scale are given in Table 7.1.
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Table 7.1 – Main particulars of KCS geometry

Main particulars Full Model
Length (LPP) [m] 230 6.0702

Breadth (BWL) [m] 32.2 0.8498

Depth (D) [m] 19.0 0.5015

Draft (T ) [m] 10.8 0.2850

Volume (∆) [m3] 52030 0.9571

Wetted surface (SW ) [m2] 9539 6.6978

Horizontal buoyancy center (LCB) [m] 111.5 2.944

Vertical center of gravity (KG) [m] 14.32 0.378

Radius of Inertia (Kxx
B ) 0.40 0.40

(
Kyy
LPP

,
Kyy
LPP

) 0.250 0.252

The forward speed condition is presented in Tab. 7.2 together with the associated non
dimensional numbers computed in the experimental conditions.

Table 7.2 – Physical parameters for KCS experiments and numerical simulations

Ship speed (U0) [m.s-1] Fr Re
2.017 0.261 1.074 •107

For the following simulations, only 2 DoF are considered, see Tab. 7.3.

Table 7.3 – Degrees of freedom during KCS experiments and numerical simulations

Surge Sway Heave Roll Pitch Yaw
Towing (no spring) Fixed Free Fixed Free Fixed

The six sea conditions from case 2.10 of the Tokyo 2015 workshop are treated. One is a
calm water condition and five are regular head waves. These conditions are detailed and labeled
in Table 7.4 where notations are λ for the wavelength, T for the period, Te for the encountered
the wave period, H for wave height and ε = H/λ for the steepness.
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Table 7.4 – Regular Waves conditions for KCS model scale hull

Case λ [m] λ

LPP
H [m] T [s] Te [s] ε

C0 Calm water

C1 3.949 0.651 0.062 1.591 0.878 0.016

C2 5.164 0.851 0.078 1.819 1.063 0.015

C3 6.979 1.150 0.123 2.115 1.311 0.018

C4 8.321 1.371 0.149 2.309 1.479 0.018

C5 11.840 1.951 0.196 2.754 1.873 0.017

The experimental data relevant to the studied cases were provided for the Tokyo 2015
Workshop. It was issued from the towing tank experiments realised by Van et al. (1998), Kim
et al. (2001) and updated by Larsson et al. (2013).

7.1.2 Numerical Setup

Figure 7.1 illustrates the computational domain geometry and the boundaries used in the
KCS study. The boundary conditions are specified in Table 7.5.

Figure 7.1 – Numerical domain for KCS simulations
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Table 7.5 – Boundary conditions used for naval simulation in head waves.

Field Inlet\Outlet Bottom Top
U waveVelocity slip pressureInletOutletVelocity

alpha waveAlpha zeroGradient inletOutlet

p_rgh fixedFluxExtrapolatedPressure totalPressure

k zeroGradient

omega zeroGradient

nut calculated

7.2 First assessment with regular head waves

This section presents a study carried out before the improvements of the numerical
accuracy of foamStar. The following is extracted from the paper "Seakeeping in regular and
irregular waves with forward speed using a two-phase functional coupling based SWENSE
solver" presented during the 33rd Symposium on Naval Hydrodynamics in October 2020.

The objective is to qualify the ability of the solver to handle naval simulations of ship
with forward speed in head regular and irregular waves. Both foamStar and foamStar-SWENSE

are tested in this section. The SWENSE method tested in this section is the one exposed in (Li
et al., 2021). This method has shown some efficiency gains by reducing the mesh refinement
requirements and consequently the computational cost (Li et al., 2018b; Kim, 2021).

7.2.1 Settings

The configuration of the relaxation zones is shown in Figure 7.2. Relaxation zones are
used at the inlet, outlet and on the side of the ship. The width of the relaxation zones is one
LPP. This configuration, used for an initial assessment, differs from the one prescribed in the
previous chapters of this document.
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Figure 7.2 – Relaxation zone configuration for KCS simulations

Table 7.6 presents some numerical parameters selected for this study. When this study
was conducted, the backward MULES scheme was not available and the Crank-Nicolson 0.95
scheme caused some simulations to fail. Consequently, for all the simulations presented in this
section, only the Euler time scheme is used. Besides, the turbulent model used is not fs-k-ω-SST
but k-ω-SST. The time steps are fixed to ∆t = Te/200.

Table 7.6 – Numerical configuration parameters for the KCS in head regular wave.

Numerical parameter Tested values

ddtScheme {default} Euler

simulationType RAS kOmegaSST

deltaT Te/200
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7.2.2 Meshes configuration

Figure 7.3 – Side view of the mesh at the symmetry plane and on the hull; KCS simulation;
The red box identifies the free-surface zone. Blue box is a zoom on the stern of the ship.
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Figure 7.4 – Top view of the mesh at z = 0 m; KCS simulation; colors identify some refinement
zones.

For this first assessment, the meshes are generated thanks to the Simcenter
STAR-CCM+®. Figure 7.3 shows a side view of a the mesh configuration used. And Figure 7.4
shows a top view of the mesh at z = 0 m. First, a free-surface refinement zone is set with
refinement depending on the wave condition (red box in Fig. 7.3). Then, a triangular refinement
box is added in the free-surface zone close to the hull in order to simulate more accurately
the wake (orange zone in Fig. 7.4). The near-field refinement is managed with some automatic
refinement on the hull relatively to the surface curvature and adding some refinements near to
the edges of the rudder, bow and transom. The view in the blue box in Fig. 7.3 shows the mesh
aspect at the rear part of the ship. The diffusion of this hull refinement creates the refinement
zone colored in green in Fig. 7.4. Finally, for the simulation of the turbulence, a wall function
is applied, so a viscous layer with a first cell thickness ∆VL = 0.002 m is inserted in the mesh.

A first study of the mesh convergence in calm water is done in order to identify an
accurate mesh refinement near the body and over the domain. Then, based on a selected mesh
density, the five meshes used for the five wave conditions are built.

Each resulting mesh is mainly composed of hexahedral cells, nevertheless, in order to
improve the mesh alignment and the viscous layer insertion, other cell shapes can occasionally
be generated.
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a) Mesh convergence in calm water

Before building the meshes used for the simulation with waves, three mesh densities,
"Coarse", "Medium" and "Fine" are tested in calm water in order to identify an accurate mesh
refinement near the body and in the domain. Figure 7.5 shows a view of the mesh at the rear
part of the ship for the "Coarse" (a), "Medium" (b) and "Fine" (c) meshes.

(a) Coarse (b) Medium (c) Fine

Figure 7.5 – Side views of the meshes used for simulations with calm water ; KCS; Fr=0.26

Table 7.7 gives some information on theses three meshes. The characteristic size of
the cells are noted: ∆xFF for the far-field cells, ∆xWF for the wake-field cells and ∆xNF for the
smallest near-field cells. The cell size of each zone is based on the far-field cell size ∆xFF, so
for a given zone, the ratios ∆xFF/∆x are the same for the three meshes "Coarse", "Medium" and
"Fine".

Table 7.7 – Mesh information for KCS in calm water cases

LPP/∆xFF ∆xFF/∆xWF ∆xFF/∆xNF LPP/∆VL Nb Cells
Coarse 4 32 256 3035 1.7M

Medium 6 32 256 3035 3.7M

Fine 8 32 256 3035 6.7M

The converged results of the total resistance (RT ) coefficient
(
Cx = 2RT/(ρSwU2

0 )
)

are shown in Table 7.8. The three meshes give results within 4% of the experiment. As a
compromise between accuracy and mesh size, the medium mesh refinement is chosen as a base
for the generation of every other mesh used to carry out the rest of the study.
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Table 7.8 – Calm Water results comparison

Coarse Medium Fine EFD
Cx ×103 3.973 3.946 3.929 3.835

Err +3.60% +2.88% +2.44%

b) Meshes for simulations with regular waves

A set of meshes, is generated using the medium mesh density and adapting the
free-surface refinement for each of the five regular wave conditions (Table 7.4). The free-surface
box refinement is adapted to the wavelengths and wave heights which are considered. A
synthesis of used meshes is provided in Table 7.9 in which ∆x, ∆y, ∆z denote the dimensions of
the cells in the free-surface zone.

The mesh refinement chosen at the free surface is motivated by the studies conducted
by Li (2018) and Choi (2019). In order to propagate the waves using as well foamStar as
foamStar-SWENSE, the criterion for the vertical refinement is around twenty cells per wave
height and for the longitudinal refinement above fifty cells per wavelength.

Comparing to the recommendations made in Chapter 6, the ratio
λ∆z
H∆x

is not between
the prescribed bounds of 5 to 10. The free-surface cell aspect ratio (ARFS = ∆x/∆z) is higher
than the recommendations.

Table 7.9 – Mesh information for KCS in head regular waves

Mesh λ/∆x λ/∆y H/∆z
λ∆z
H∆x

Nb Cells Related case

M1 62 8 16 3.9 3.7M C1

M2 82 10 20 4.1 3.7M C2

M3 55 14 31 1.8 4.3M C3

M4 66 16 19 3.5 3.4M C4

M5 47 23 25 1.9 3.3M C5

For this study, the meshes used for the simulations with waves are assumed to be
consistent with the mesh used for the calm water simulation. So, in the following the total
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resistance obtained from the calm water case is used to determine the added wave resistance for
all the wave cases. This is a strong assumption and using the same mesh at least in a defined
zone close to the ship might have be more relevant for the following analyses.

7.2.3 Regular head waves numerical results

a) Wave field damping

Because of the use of a first-order time scheme, a significant wave damping is noticeable.
Figure 7.6 shows the wave elevation profile obtained for the case C1 at the symmetry plane y= 0
(lower plot) and at a y = LPP (upper plot). This cutting planes are identified by dashed black
lines in Figure 7.2. The profiles obtained using foamStar are colored in red and the one obtained
using foamStar-SWENSE is colored in blue. The dark dashed line represents the wave profile
obtained with the stream-function (waveSF) used to define the targeted field in the relaxation
zones and at the boundaries of the domain. At y = LPP, the wave are noticeably damped. This
damping is less important with foamStar-SWENSE than with foamStar.
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Figure 7.6 – Wave elevation profile at y = LPP and at the symmetry plane (y = 0); KCS Fr =
0.26; regular head wave λ = 0.65LPP; steepness ε = 1.6%

Table 7.10 synthesizes the ratios HCFD/H measured at the longitudinal location of the
ship center of gravity (CoG) in the plane y = Lpp. HCFD is the vertical distance between a crest
and the trough of a wave that are equidistant from the CoG along the x-direction. Whatever
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the wave condition the use of foamStar-SWENSE limits the wave damping. The shorter the
wavelength, the more damped the wave is because the propagation distance is larger with respect
to the wavelength.

Table 7.10 – Ratio HCFD/H at the CoG

C1 C2 C3 C4 C5
foamStar 0.60 0.66 0.75 0.80 0.84

foamStar-SWENSE 0.84 0.87 0.88 0.92 0.94

b) Forces and motions

The experimental data is provided in the form of RAOs computed with the 0th, 1st and
2nd harmonics. To compute the same quantities with the numerical data, a spectral analysis is
conducted on the total resistance, heave and pitch time histories for the five wave conditions
studied. In the present section the wave amplitude A used for the nondimensionalization is the
prescribed wave height H divided by two for the EFD and half of the measured wave height
at the CoG for the CFD results. Because of the significant damping noticeable in foamStar

simulations, this choice could be discussed.

The 0th, 1st and 2nd harmonic motion RAOs are respectively presented in Fig. 7.7.
The mean and first harmonic amplitude of the heave and pitch motions obtained with
foamStar and foamStar-SWENSE reveal some differences between the two solvers. The motion
amplitude seems to be slightly smaller for the simulations done with foamStar, especially
close to the resonance (case C3). This difference might be induced by the significant damping
previously mentioned. Nevertheless, with the used nondimensionalization, both foamStar and
foamStar-SWENSE provide resuslts close to the experimental data. On Fig. 7.7 (e) and (f)
it can be seen that also the motion second harmonic amplitudes computed with foamStar

and foamStar-SWENSE are close to each other and follow the experimental data. The major
difference between both remains the undervalued motion amplitude with foamStar for the case
C3.
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Figure 7.7 – KCS heave and pitch 0th, 1st and 2nd harmonic amplitude, Fr=0.26, head waves
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In Fig. 7.8, the resistance is also compared with experimental results in terms of
total resistance (a) and added resistance (b). The total resistance coefficients computed with
foamStar and foamStar-SWENSE are close to the experimental results with still the undervalued
coeficient with foamStar simulating C3. The added resistance values computed with foamStar

and foamStar-SWENSE are quite different for short wavelengths. For those conditions the added
resistance magnitude is very small with respect to the calm water resistance and the uncertainty
on the added resistance computation is high. The noticed damping is likely also involved. The
numerical values of the total resistance and differences relative to the experimental data are
detailed in Table 7.11. The first and second harmonics of the total resistance time signal are
presented in Fig. 7.8 (c) and (d), respectively. The first and second harmonic analysis confirms
the closeness of the foamStar and foamStar-SWENSE results and the general agreement with
the experiments.
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Figure 7.8 – KCS total resistance and added resistance, Fr=0.26, head waves

Table 7.11 – KCS Total resistance results, (FSS) exponent stands for foamStar-SWENSE and
(FS) exponent for foamStar solver

Case C(EFD)
x ×10−3 C(FSS)

x ×10−3 C(FSS)
x −C(EFD)

x

C(EFD)
x

C(FS)
x (10−3) C(FS)

x −C(EFD)
x

C(EFD)
x

C1 8.25 8.09 -2.0% 8.36 1.2%

C2 9.24 8.86 -4.2% 9.00 -2.5%

C3 14.16 14.10 -0.4% 13.28 -6.2%

C4 13.96 13.95 -0.1% 13.76 -1.4%

C5 10.84 10.00 -7.8% 10.45 -3.7%
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The wave elevation field obtained from foamStar and foamStar-SWENSE for the C4
condition is presented in Fig. 7.9. The wave patterns are globally similar but some differences
can be observed, foamStar-SWENSE magnitudes being a bit larger.

Figure 7.9 – Comparison of the KCS wake in head wave (C4) using foamStar and
foamStar-SWENSE

7.3 Ship in long crested irregular waves

In the work presented during the 33rd Symposium on Naval Hydrodynamics, a study of
the capability of foamStar-SWENSE was also carried out on one rough irregular sea sate with
forward speed. The chosen sea state is classified with the code six in the World Meteorological
Organization. The chosen sea state follows a Pierson-Moskowitz spectrum, the characteristics
of which are shown in the Table 7.12.
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Table 7.12 – Irregular sea state (SS6) characteristics

Scale Hs [m] Tp [s] Hs/λp

Full 5.0 12.4
0.021

Model 0.132 2.0145

The KCS model scale and the mesh generation strategy are the same as for the previous
study in regular waves. The free surface refinement is adapted with 33 cells per significant wave
height (Hs) and 100 cells per peak wavelength (λp). The time step is also adapted so that 500
time steps are computed per encounter peak period (Te = 1.23 s).

This simulation is conducted using the same degrees of freedom and forward speed
conditions as for the study in regular waves (Table 7.2 and Table 7.3). Figure 7.10 shows the
interaction between the wake generated by the ship and the incident waves. Figure 7.11 shows
time histories for the heave and pitch responses as well as the total resistance. These preliminary
results show the stability and the ability of the recent foamStar-SWENSE implementation to
compute such seakeeping problems. The duration of presented simulation was to short to
conduct some spectral and stockastic analysis for instance measuring the heights probability of
exceedance. Because of the weak accuracy of the first order Euler time scheme, before carrying
out more studies with ship in irregular sea states, some improvements such as the one presented
in the following are needed.

Figure 7.10 – KCS wake in irregular head wave (SS6), Fr=0.26
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Figure 7.11 – KCS motions (heave and pitch) and total resistance response in irregular head
wave (SS6), Fr=0.26

7.4 Application of the recommendations

The previous study was done before establishing some recommendations for the mesh
generation and numerical setup. The objective is now to apply these recommendations in order
to improve the accuracy of the simulations. To this aim, case C1 is considered in this section,
as its wave characteristics and the size of the simulation domain are close to the studied ones in
Chapt. 4. Both the mesh and the numerical setup are changed compared to the simulation made
previously in Sec. 7.2.

7.4.1 Mesh configuration

First, in Chapt. 4 it is shown that the mesh characteristics influences a lot the accuracy
of foamStar. The skewness of the cells seems to be the most problematic one. It was also shown
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that using a cell skewness corrector improves the solver accuracy in case of some skewed cells.
However, some trials were made and no simulation with ship presence was successfully run
with this skewness corrector. The reason is not yet identified, so it was decided not to use this
corrector but to limit the skewness thanks to the use of snappyHexMesh program. This mesh
generator is dedicated to OpenFOAM simulation, so it allows a better control of some mesh
characteristics such as the skewness.

Then, the mesh characteristics are built following the recommendations made in
Chapt. 6. A background mesh is firstly built, with these recommendations in mind and then
snappyHexMesh is used to add cell refinements close to the hull and to snap the cells to it.
Figure 7.12 shows a view of the background mesh with the prescribed refinement zones and
a zoom on the refinements applied close to the ship. The sizing of the cells in each zone
(from 0 to 6) follows the method described in Sec. 5.3. As for the meshes generated using
Simcenter STAR-CCM+, additional refinements are made close to the edges of the rudder, bow
and transom. Figure 7.13 shows a top view of the mesh at z = 0 m. The wake refinement is made
using two boxes near to the hull (orange and yellow colored). The refinement zone close to the
hull is colored in green on the figure.
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Figure 7.12 – Side view of the improved mesh at the symmetry plane and on the hull; KCS
simulation; The red box identifies the free-surface zones. Blue box is a zoom on the stern of the
ship.
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Figure 7.13 – Top view of the improved mesh at z = 0 m; KCS simulation; colors identify some
refinement zones.

7.4.2 Settings

In this section the numerical set-up is the reference one detailed in Sec. 3.6. Three
different time schemes are tested: implicit Euler, second-order backward and Crank-Nicolson
0.95, and the turbulent model used is fs-k-ω-SST. Table 7.13 gives a synthesis of these
parameters.

Following the recommendations, no inlet relaxation zone is used. Figure 7.14 shows the
used configuration.
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Figure 7.14 – Relaxation zone configuration for KCS simulations without inlet forcing zone

Table 7.13 – Improved numerical configuration parameters for the KCS in head regular wave

Numerical parameter Tested values

ddtScheme

ddt(U)

ddt(rho,U)

Euler

CranckNicolson 0.95

backward

ddt(rhoPhi,omega)

ddt(rhoPhi,k)
Euler

simulationType RAS kOmegaSST

deltaT Te/200

7.4.3 Results

No added resistance or RAO analyses are done in this section. The objective here is
to verify the ability of the new setup to run second-order time schemes and then to observe the
differences in the wave field and time traces when using Euler (EULER), second-order backward
(BCK) and Crank-Nicolson 0.95 (CN95).
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a) Wave field damping

Figure 7.15 shows the wave elevation profile obtained at the symmetry plane y = 0
(lower plot) and at y = LPP (upper plot). The profiles obtained using EULER, BCK and CN95
are colored in blue, red and green, respectively and the dark dashed line represents the wave
profile obtained with the stream-function (waveSF) used to define the targeted field in the
relaxation zones and at the boundaries of the domain. At y = LPP, the waves are significantly
damped with EULER compared to the waves obtained with BCK and CN95. Still at y = LPP,
the profiles with BCK and CN95 are close to each other, some wave amplitudes are larger than
the analytic solution and a non regular profile is noticeable at the starting of the damping zone.
3D simulations with a similar mesh but without ship should be done to investigate which of
these perturbations are due to the ship and which are not. For the wave-elevation profiles at the
symmetry plane, the EULER scheme shows damping and the profiles with BCK and CN95 are
still close to each other.

Table 7.14 synthesizes the ratios HCFD/H measured at the longitudinal location of the
ship center of gravity (CoG) in the plane y = Lpp, with this improved configuration. With both
CN95 and BCK this ratio remains close to one so the damping can be assumed to be negligible.
A major improvement is thus obtained compared to the simulation results of the first assessment
made at the beginning of the thesis (see Tab. 7.10 in Sec. 7.2). Using EULER, the damping of
the wave elevation is about 32% that is comparable with the 30% damping observed with the
configuration used in that first assessment (Tab. 7.10).
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Figure 7.15 – Wave elevation profile at y = LPP and at the symmetry plane (y = 0) using Euler,
second-order backward and Crank-Nicolson 0.95 time schemes; KCS Fr = 0.26; regular head
wave λ = 0.65LPP; steepness ε = 1.6%; Improved configuration.

Table 7.14 – Ratio HCFD/H at the CoG in the case C1 using the improved configuration

EULER CN95 BCK

HCFD/H 0.577 1.004 0.997

Figure 7.16 shows the top views of the wave elevation map obtained simulating
with Euler and second-order backward time schemes at t = 20Te. Dark lines represent the
iso-wave-elevation with η ∈ {−0.1,−0.09,−0.08 .. 0.09, 0.1} The damping of the wave
field with the Euler scheme is clearly visible. Figure 7.17 shows the same view but using
Crank-Nicolson 0.95 rather than Euler. The wave elevation obtained with BCK and CN95 are
really close to each other but some slightly steeper wave field can be identified with BCK.
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EULER

Figure 7.16 – Comparison of the wave elevation map obtained using Euler and second-order
backward time schemes at t = 20Te; KCS Fr = 0.26; regular head wave λ = 0.65LPP; steepness
ε = 1.6%

BCK

CN95

Figure 7.17 – Comparison of the wave elevation map obtained using Crank-Nicolson 0.95 and
second-order backward time schemes at t = 20Te; KCS Fr = 0.26; regular head wave λ =
0.65LPP; steepness ε = 1.6%.
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b) Forces and motions

The time trace of the non-dimensional longitudinal pressure and viscous forces are
plotted on Fig. 7.18 and the time trace of the non-dimensional heave and pitch motions in
Fig. 7.19. EULER, CN95 and BCK are represented in blue, red and green, respectively. At
a given time t, the mean forces are calculated using a three encountered period long sliding
window between t0 = t−1.5 s and t1 = t+1.5 s. These mean forces are represented with dotted
lines of the same color as the corresponding simulations.
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Figure 7.18 – Time history of the pressure resistance and viscous resistance coefficients using
Euler, second-order backward and Crank-Nicolson 0.95; KCS Fr = 0.26; regular head wave
λ = 0.65LPP; steepness ε = 1.6%.
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Figure 7.19 – Time history of the heave and pitch using Euler, second-order backward and
Crank-Nicolson 0.95; KCS Fr = 0.26; regular head wave λ = 0.65LPP; steepness ε = 1.6%.

First, looking at the longitudinal forces (Fig. 7.18), the amplitude of the forces with
EULER are smaller than the ones obtained with CN95 and BCK. This is due to the smaller
wave amplitude of the waves around the ship with EULER time scheme that is itself due to the
the numerical damping. The time traces obtained with CN95 and BCK are superimposed for
the pressure force but differ for the viscous force. The viscous force obtained with CN95 is
below the BCK one during several periods before converging progressively to the same value.
The results from the BCK simulation can be assumed as converged after 10 periods when the
simulation with CN95 takes about 18 period to converge. With EULER, the viscous force also
converges within 10 periods but to a value 3% smaller than the converged value of BCK and
CN95 simulations. To explain these differences, further investigation are needed. This viscous
force depends strongly on the mesh quality close to the hull and on the size of the first mesh
layers. This aspect is not investigated in this section. It can be noticed that the mean pressure
forces are really close to each other regardless of the scheme used.

Besides, looking at the motions, the amplitudes of both heave and pitch motions
obtained with EULER are smaller than the ones obtained with CN95 and BCK. Moreover, with
EULER on one side and BCK and CN95 on the other side, a phase shift of the pitch motion is
noticeable. The wave damping explains probably most of these differences and investigations
of the evolution of the motions depending on the prescribed wave height should be carried out.
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No differences can be noticed from the motion time traces between CN95 and BCK.

7.4.4 Overview of the simulation improvements

First, applying the new recommendations, simulations using the Crank-Nicolson 0.95
time scheme have been run successfully, whereas using the configuration tried at the beginning
of this thesis, simulations with Crank-Nicolson 0.95 were not stable and used to fail. The
free-surface cells aspect ratio, the location and the size of the refinement boxes, or the use
of Simcenter STAR-CCM+ non-taking into account some OpenFOAM mesh requirements
could be reasons explaining the troubles encountered with the firstly tried configuration and
Crank-Nicolson 0.95. Some improvements on the parameters choice are also likely to be
involved.

Besides, the new second-order backward MULES version seems to show consistent
results compared with the Crank-Nicolson MULES so it corroborates the validity 1 of its
implementation.

7.5 Conclusion

The first assessment presented in this section reported on the first results obtained at
the beginning of the thesis, and based on some developments in the foamStar-SWENSE solver
presented by Li (2018). This study has been the first application of foamStar-SWENSE toward
the resolution of naval seakeeping problems with forward speed and has been completed by
Kim (2021). As a first approach these Z. Li’s developments appeared to be able to reach the
objective.

In this study, the comparison of results obtained with foamStar and foamStar-SWENSE

on the same meshes does not highlight the capabilities of the SWENSE method but allows to
assess its implementation.

It must be verified that the foamStar-SWENSE solver is able to keep a good accuracy for
lighter meshes in the far-field region. This will be the next step together with further numerical
improvements in the implementation of high-order discretisation schemes.

As shown, some numerical parameters, domain configuration and meshes used in
this first assessment did not correspond to the recommendations made in Chapter 6. A first
application of the newly implemented schemes and setup recommendations has been done at

1. Here "validity" does not refer to "Validation" from V&V procedures
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the end of the thesis and is reported in the last part of this chapter. It shows improvements
compared to the first assessment. This shall be extended with future works through a more
detailed mesh convergence analysis and applying V&V procedures.
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CHAPTER 8

APPLICATION IN THE INDUSTRIAL

CONTEXT

One of the main objectives of this Ph.D. is to meet the expectations of BVS-M&O
regarding the optimization of naval simulations in waves. To reach this objective, the study of
the accuracy of the foamStar solver, the implementation of optimized methods and building
up a methodology are required. In order to keep close to this industrial objective, during this
Ph.D., I brought my help on the first industrial applications of foamStar at BVS-M&O. Some
applications were done this year by the company and Hein Kyaw Swa, an intern at BVS-M&O,
has started to work on the validation of foamStar on several industrial cases close to the one
studied in this Ph.D. This section describes the work done about the integration of foamStar

into the industrial context.

8.1 Quick integration with applicable guidelines

The first issue with the use of foamStar in an industrial context with several co-workers
is to form them to the use of the solver. From a research perspective, an OpenFOAM based
code has the strong advantage to give access to a very large amount of numerical schemes and
parameters and a lot of flexibility. Nevertheless, this becomes detrimental when it comes for a
company to use the solver on tested and validated cases with well defined recommendations. In
this situation the flexibility of the solver slows the handling and turns into a source of errors.

Consequently the strategy chosen in order to ease the industrialization was as follow:

1. To identify the fields of application of foamStar and define recommendations for some
specific cases.

2. To provide a simplified set of modifiable parameters.

3. To provide some user guides.
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8.1.1 Fields of application and recommendations

This first step is based on the sharing of the conclusions established by the researchers
working and having worked on the software with the members of BVS M&O.

Wave generation This has been studied by several Ph.D. students at the LHEEA in recent
years. Li (2018), Choi (2019), Kim (2021) and the work developed in Chapter 6 provide
some recommendations on the current optimal setup for pure wave propagation with
regular and irregular waves.

Naval simulation in calm water A part of the work in Chapt. 7 has led to the conclusion that
foamStar can be applicable to resistance calculation in calm water with forward speed.

Naval simulation in waves The work done on the Tokyo 2015 case 2.10 (Sec. 7.2) has led to
the conclusion that both the foamStar-SWENSE and the standard foamStar (RANSE) can
eventually be used for naval simulations. Kim (2021) also provides similar conclusions.
For short term simulations with fixed bodies the SWENSE method also appears to
be more efficient than the RANSE one (Li (2018), Li et al. (2021) and S. Aliyar
current Ph.D.). However, for complex geometry, forward speed and non homogeneous
refinements, the current implementation of SWENSE turns out to be unstable. The
preliminary simulations reported in Chapter 7 and in Kim (2021) show the feasibility
of naval simulation with forward speed in head long-crested irregular waves using
foamStar-SWENSE but further and more systematic investigations are still to be done
before the introduction of it in the industrial process.

8.1.2 Simplified setup

The creation of a simplified setup with a reduced number of parameters encompasses
several objectives. The first one is to speed up the handling of foamStar by the BVS M&O
members. The second one is to prevent the modification of parameters that have been considered
as the optimal ones.
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Figure 8.1 – BVS M&O foamStar setup procedure

Figure 8.1 illustrates the procedure developed for the use of foamStar at BVS M&O.
At the center of the procedure, a script is used to read the simplified set of parameters. This
set is made to be close to the set of parameters usually modified by BVS M&O in other
industrial solvers such as ISIS-CFD and STAR-CCM+. It was important to be as close as
possible to the parameters the members of the company are used to manipulate in terms of
names, significations, and organization but without hiding the foamStar particularities. Then
the script identifies the simulation type required by the user (Symetric simulations, multiphase,
calm water etc ...) and uses reference foamStar parameters that have been fixed according to the
established recommendations. The output is the complete foamStar setup and running scripts
can be launched.

Simplified parameters description:

physicsDict In this file are indicated the physical conditions in the domain and the wave fields.

bodyDict In this file are indicated the bodies and the imposed motion of the whole domain.

boundaryConditionsDict In this file are indicated the boundary-conditions types.

paramDict In this file are indicated some parameters of the computation.

optionDict In this file are indicated the additional options (for instance Actuator disk).

addParamDict In this file are written all the additional parameters that we want to add or

modify in relation to the reference case.
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8.1.3 User guides

Several user guides or presentations have been made in order to circulate them inside
BVS M&O. Special attention has been paid to the mesh generation process and mesh generation
recommendations have been established. The mesh generation is a crucial step of CFD but
it is above all the case with foamStar that is strongly sensitive to mesh quality. Those
recommendations have been tested by Kyaw Swa Hein.

8.2 Computational cost managment through the control of
the residuals

Aside from the numerical optimization of the code, the choice of convenient numerical
parameters is crucial for the computational cost. One of the key parameters is the number of
PIMPLE and PISO iterations. Imposing more PIMPLE iteration implies more VOF, motion (in
case of moving body) and PISO resolutions. As seen in Section 3.3, each operation is related
to one or several time-consuming linear systems resolutions. Increasing the number of PISO
iterations increases the number of times the pressure equation is solved (Eq. 3.119), this being
the more costly operation in the code.

The duration of one linear system resolution depends on the difference between the
known approximation of the solution and the solution itself. This difference is measured with
the initial residual (more details can be found in Sec. 3.3.7 and Sec. 3.4). If this initial residual
is close to the chosen absolute tolerance (ρerr) of the system resolution, only few iterations are
needed. However, when this initial residual is high the linear solvers require a large number of
iterations before reaching the expected tolerance.

At the mth PIMPLE iteration in the nth time step, the convergence is optimal if a m+1
PIMPLE iteration would not change significantly the matrix systems. In other terms, whatever
the solved variable ψ and its associated system AΨ = B, the residual of the system verifies:

r(n,m+1,0)
ψ := Res

(
A(n,m+1),S(n,m+1),ψ(n,m,qlast)

)
< ρerr

Getting an initial residual below the tolerance, the linear system is already assumed as "solved",
so no solver iteration is needed. The computational cost of such an m+1 PIMPLE iteration is
reduced to the matrices building and additional numerical corrections, so adding unnecessary
PIMPLE iteration does not increase a lot the computational cost.
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Because of the spatial discretization process (schemes choice, mesh structure etc ...), for
some fields the initial residual at the beginning of a PIMPLE iteration may saturate and it implies
costly linear resolutions at each PIMPLE loop without reducing the apparent iterative error. An
example of such a situation is the simulation presented in Section 7.4. For this simulation, in
order to ensure the convergence and to minimize the iterative error, 5 PISO iterations within
10 PIMPLE iterations are used and the absolute tolerance is set to 10-10. Figure 8.2 shows
the initial pressure residual coming from the resolution of Eq. 3.119. The GAMG solver is
used for the linear system resolution and the horizontal axis represents the the total number of
GAMG iterations from the beginning of a given time step. The beginning of a given time step is
identified by a red stem with a height equal to the initial residual at this step of the simulation.
Yellow stems identify the beginning of each PIMPLE iterations. Blue bars represent the initial
residual of PISO iterations (height of the bar) and the number of linear solver iterations used all
along a given PISO iteration (width of the bar). The green bars represent the initial residual and
the total number of linear solver iterations for a given PIMPLE loop.

In Fig. 8.2, the initial residual saturates above 10-2, so each additional PIMPLE iteration
in the saturation zone (4 ≤ PIMPLE iter. ≤ 10) requires about the same number of GAMG
iterations. The width of the bars are proportional to the number of GAMG iterations, so a
same number of GAMG iterationsfor two PIMPLE iterations means a similar computation cost.
Consequently, assuming that the pressure residual is a relevant indicator of the iterative error,
the figure shows that the computational cost of the time step might have been reduced by a
factor 2 or 3 removing some apparently unnecessary PIMPLE iterations.
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Figure 8.2 – Initial residual of the pressure equation and linear solver iteration distribution
along two time steps; KCS in head regular wave; Fr=0.26; 10 PIMPLE iter.; 5 PISO iter.

8.2.1 Existing PIMPLE residual controllers

In order to control the number of PIMPLE iterations and therefore reduce the
computational cost, several methods exist. A first one, available in OpenFOAM, consists in
defining an absolute threshold value ρPIM

err for the initial residual of a given field φ such that if
the initial residual r(n,m,0)

φ
at the beginning of a PIMPLE iteration is below this threshold, the

current PIMPLE iteration is set as the final one for the current time step. With this method, it
is possible to define a clear target value for the selected initial residual and to assume that the
solution is converged when this value is reached. The problem of this method is that if the error
saturates at an higher value than the expected one (as in Fig. 8.2), then the number of PIMPLE
iterations is the user-defined maximal number of PIMPLE iterations.

Another method also available in OpenFOAM is the definition of a relative threshold

value εPIM
err such that, for the mth PIMPLE iteration in the nth time step, if

|r(n,m,0)
φ

−r(n,1,0)
φ

|
r(n,1,0)
φ

< εPIM
err

then the current PIMPLE iteration is set as the final one for the current time step.
Finally, a third method implemented in foamStar consists in controlling the number of

PIMPLE iterations with the initial residual r(n,m,0)
fsi extracted from the body motion solver. If

this residual is below a user-defined absolute threshold value ρFSI
err then the current PIMPLE

iteration is set as the final one for the current time step. With this method, the convergence of
the body motion solver is well controlled. However some unwanted non-well solved fields far
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from the body could not be captured by the body motion residual and then affect the global
convergence of the simulation. The other default of this PIMPLE controller is that it can only
be used considering moving body simulations.

8.2.2 Proposition of a new PIMPLE controller

In order to improve the control of the number of PIMPLE iterations, another PIMPLE
controller is proposed in this section. The idea is to identify the saturation of the initial residual
of the pressure by calculating the relative residual between two successive PIMPLE iterations
as follows:

ε
(n,m) =

|r(n,m,0)
p − r(n,m-1,0)

p |
r(n,m,0)

p

(8.1)

The current PIMPLE iteration is set as the final one for the current time step if ε(n,m) < εSPIM
err

where εSPIM
err is a user-defined relative threshold value 1. With such a PIMPLE controller, any

stagnation of the pressure initial residual between two successive PIMPLE iterations implies the
end of the PIMPLE loop, so no "unnecessary" PIMPLE iterations are run. The potential issue
is that a transient stagnation of the initial residual even at an high value causes the stop of the
PIMPLE loop while some additional iterations might have led to a better convergence.

Figure 8.3 shows the initial residuals of the pressure equation at the same time step than
in Fig. 8.2 but using the new PIMPLE controller with εSPIM

err = 0.1. As expected, using this
relative tolerance the number of PIMPLE iterations is reduced compared to what observed in
Fig. 8.2. The number of GAMG iterations and the initial residuals between the uncontrolled
simulation and the controlled one are really close one to each other for the first PIMPLE
iterations they have in common.

1. SPIM exponent stands for "Successive PIMPLE".
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Figure 8.3 – Initial residual of the pressure equation and linear solver iteration distribution
along two time steps; KCS in head regular wave; Fr=0.26; εSPIM

err = 0.1; 5 PISO iter.

Figure 8.4 shows the initial residuals of the pressure equation obtained by using the new
PIMPLE controller with εSPIM

err = 1. Comparing to Fig. 8.3, this high relative tolerance reduces
at two the number of PIMPLE iterations. The convergence of the initial residual between two
successive PIMPLE iterations is no longer visible and the criterium εSPIM

err = 1 is potentially a
too high value.
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An alternative is also tried, the condition εSPIM
err = 1 is kept but adding a body motion

control with ρFSI
err = 0.001. Doing this, the PIMPLE loop is stopped at the mth iteration only if

the two following conditions are verified:

r(n,m,0)
fsi < ρ

FSI
err

and
|r(n,m,0)

p − r(n,m-1,0)
p |

r(n,m,0)
p

< ε
SPIM
err

Figure 8.5 shows the initial residuals of the pressure equation for such criteria. Comparing to
Fig. 8.4, the number of PIMPLE iterations reaches three. So, in this case, the body motion
residual tolerance is more restrictive than the newly implemented residual control 2.

2. With the present simulation this phenomenon was expected because a specific behavior is implemented
for the body motion resolution. In fact no body motions are calculated at the second PIMPLE iteration in order
to stabilize the computation. So, only using two PIMPLE iterations implies a single body motion resolution at the
beginning of the time step. Consequently, with only two PIMPLE iterations, the body motion residual tolerance
cannot be satisfied.
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For all the presented simulations, the simulated time interval is from t0 = 0 s to tn = 5 s.
Table 8.1 synthesizes the computational cost of each simulation. As expected the computational
cost is approximately reduced proportionally to the number of PIMPLE iterations avoided.

Table 8.1 – Computational cost of simulations using various PIMPLE controller methods and
with a maximum of 10 PIMPLE iterations per time step.

No control εSPIM
err = 0.1 εSPIM

err = 1
εSPIM

err = 1
and ρFSI

err = 0.001

CPU time (×104) [s] 5.512 2.254 1.086 1.882

Finally, it is now needed to assess the effect of reducing the number of PIMPLE
iterations on the simulation results. For this simulation, the quantities of interest are the
longitudinal resistance and the heave and pitch motions. Fig. 8.6 shows the time traces of the
longitudinal pressure and viscous resistance coefficient when Fig. 8.7 shows the time traces of
non-dimensionalized heave and pitch motions. Among all the curves only the method using
εSPIM

err = 1 without defining ρFSI
err differs slightly from the others during the time window

simulated. Some non-well converged PIMPLE loops may be the cause of this phenomenon
and the criterion εSPIM

err = 1 is probably a too high value to select. However, adding the second
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criterion on ρFSI
err seems to solve this issue.
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For this test case, the use of a body motion control ρFSI
err has shown the best efficiency

among all the tested methods. As mentioned, this PIMPLE controller is only applicable to
simulations with a body motion and may not take into account some non-converged fields
far from the body. The newly implemented PIMPLE controller has also shown good results.
Keeping in mind the objective of efficiency, a wider range of test cases and more precise
convergence analyses have to be done in order to define robust recommendations.
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CHAPTER 9

CONCLUSION

9.1 Overview of the present work

The objectives of this PhD were to study and improve both the accuracy and efficiency
of the in-house solver foamStar. The targeted applications were the computation of added
wave resistance and ship motions in waves. To do so, work has been done looking at the
code implementation, describing it in detail and doing some modifications intending to ease
second-order accurate naval simulations. Besides, a progressive analysis was carried out,
starting from mono-fluid Navier-Stokes simulations up to two-phase RANS simulations, in
order to identify best practices for naval simulations with waves. Finally, some preliminary work
was done qualifying the ability of foamStar and foamStar-SWENSE to run naval simulations
with head waves.

9.1.1 Analysis of the numerical implementation

In the first part of this document a description of the implementation of foamStar is done.
Chapter 2 presents the mathematical model used into foamStar and foamStar-SWENSE and then
Chapter 3 gives a detailed description of the numerical implementation. Descriptions of the
algorithms of foamStar were already done in Li et al. (2021), Choi et al. (2018) and Kim (2021).
However, the objective during this Ph.D. was to describe as precisely as possible the numerical
implementation and to build a complete flow-chart. The interest of such a flow-chart is to
summarize the main algorithm of foamStar identifying each step of the numerical resolution
and connecting them to the numerical equations.

After these investigations, some new implementations have been made. One of the key
features of foamStar is the Multidimensional Universal Limiter for Explicit Solution (MULES)
that is used solving the convective equation of the volume fraction with the VOF model. This
method directly comes from the solver interDymFoam taken in its OpenFOAM-5 version.
Initially, using the MULES algorithm only the first-order implicit Euler or a Crank-Nicolson
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time scheme could be used. Some modifications were done in order to use the second-order
backward time scheme with MULES.

9.1.2 Accuracy simulating nonlinear regular waves

The second part of this document presents a progressive analysis of the accuracy of
foamStar. The objective was to propose a reference numerical set-up and mesh generation
method targeting simulations of ship in waves with forward speed. A large part of this work
is the direct continuation of studies done by Kim Y.J. (Kim, 2021; Kim et al., 2022a).

The reference numerical set-up used for this work was based on some recommendations
made by previous works (Seng, 2012; Li, 2018; Choi et al., 2018; Kim, 2021) and the
OpenFOAM literature. The time scheme was the main parameter to be studied comparing
the second-order backward and the Crank-Nicolson time schemes. Verifying the spatial
convergence, some specific mesh structures were also studied in order to quantify the impact of
some mesh deformations and make recommendations for wave simulations.

The first study-case described was the Taylor-Green vortices. The objective was to verify
the time schemes accuracy on mono-fluid Navier-Stokes simulations and then to identify the
influence of cell aspect ratio, non-orthogonality and skewness on the solver accuracy. This study
showed that for such simulations both the second-order backward and Crank-Nicolson schemes
verify the second-order accuracy. Moreover, they both produced similar errors. Besides, the
study showed that both the cell aspect ratio and non-orthogonality are accurately managed by
foamStar for values remaining in an acceptable range from the OpenFOAM literature. However,
with the studied cases, the cell skewness impaired significantly the accuracy. It was shown that
the use of a skewness corrector implemented in OpenFOAM and usable in foamStar could be a
convenient solution.

The next study-case was the nonlinear regular wave propagation in a periodic
bi-dimensional domain of one wavelength. Only the wavelength λ = 1 m was considered but
three wave steepnesses were studied: 1%, 5% and 10%. This study raised four points. First, for
simulations of regular waves using the Navier-Stokes equations, a converged air velocity field
can be identified and it is far from the null velocity profile commonly imposed using foamStar.
Besides, using MULES, the accuracy of both the newly implemented second-order backward
and Crank-Nicolson schemes is consistent with what would be expected from a second-order
scheme. Then, some gain of energy with time was identified. The backward scheme tended to
show a larger sensibility to this phenomenon. An assumption was that the selected numerical
set-up and its use with foamStar leads to non-conservative simulations in terms of energy. Some
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future work on the energy conservation in foamStar could answer this potential issue. Finally,
a important part of Chapt. 5 was dedicated to the comparison of the numerical errors obtained
using different mesh refinements and cell aspect ratio at the free surface. With the studied mesh
generation method, an optimal range of free-surface cell aspect ratios was defined. This optimal
range depends on the wave steepness.

The last study-case of this part was the nonlinear regular wave propagation in a long
bi-dimensional domain of several wavelengths. The same waves as for the periodic domain
were studied. The objectives were to verify the accuracy of both the second-order backward
and Crank-Nicolson schemes and to control if the mesh refinement recommendations made for
periodic domains remain convenient with a long simulation domain, relaxation zones, RANS
model and a moving reference frame. The results showed a good agreement between the error
of both the backward and Crank-Nicolson schemes and the expected second-order accuracy.
Besides, the mesh recommendations remained valid with the tested cases. However, adding
relaxation zones generated perturbations in the air. The reason is that to impose a null air
velocity as a targeted value leads to the spurious vortices generation in the air. Removing
relaxation zone at the inlet of the domain gave some improvements of the results. This
modification had to be discussed regarding to the need of damping some diffracted field for
simulations with bodies. Finally, using a moving reference frame also changed the accuracy of
foamStar and, clear numerical convergence was no more identified.

9.1.3 Naval applications

During this Ph.D. a preliminary study assessed the ability of foamStar and
foamStar-SWENSE to manage simulation of a ship moving with forward speed in head regular
waves. The study was based on the Tokyo 2015 workshop simulating a scale model of a KRISO
container ship with forward speed and five different regular head wave conditions. foamStar and
foamStar-SWENSE were compared but no mesh convergence and efficiency analyses were done.
The result were in good agreement with the experiments but a complete validation procedure
remains to do. A simulation of ship in long-crested irregular head waves was also performed,
however, no validation or comparison with other numerical results were done. These studies
were carried out using the first-order Euler time scheme because of stability reasons. When these
studies were conducted, the second-order backward MULES were not implemented and some
recommendations concerning the numerical set up and the mesh structure were not established
yet. One of the test cases initially simulated was thus simulated again using those backward
scheme and configuration recommendations. They provided clear enhancement of the previous
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results. This was the last work of the thesis and more detailed and exhaustive future work have
to be done in order to validate foamStar using the recommendations made all along this Ph.D.

The last chapter of this document gives a synthesis of the work done in order to integrate
foamStar into the industrial process of BVS-M&O. Some user-guides are tutorial were made
and a scripts was implemented in order to help the preparation of numerical set up following
the selected recommendations.

9.2 Perspectives and proposal for future works

This Ph.D. took place in the context of a research Chair. established by BV and École
Central Nantes in partnership with BVS-M&O. Consequently, the work presented was in the
continuity of the work done by the other members of the Chair. also working on the development
of foamStar. The following presents some future work proposal on the improvement of the
foamStar accuracy/efficiency and its use for naval simulation in an industrial context.

In the direct continuity of the Ph.D., validations of the selected numerical set-up
with naval simulation in head and oblique regular waves have to be done. Some work on
the efficiency not presented in this document also has to be continued in order to optimize
the numerical set-up reducing the computational costs. For instance, some directions are:
optimizing the number of PIMPLE and PISO iterations, adding or modifying some numerical
correctors or optimizing the choice of the linear solvers used for the matrix resolutions.

Another aspect that was not studied deeply during this Ph.D. is the optimization and
improvement of foamStar-SWENSE. Because of some promising results shown in Li et al.
(2021) and Kim (2021) some future work should be done on this topic.

Besides, the current implementation of the relaxation zones has shown some problematic
aspects and alternative implementations of the relaxation zone should be studied with possibly
some other form of field extrapolation in the air for the targeted wave. Some extrapolation
techniques avoiding a null air velocity were already proposed in Li (2018) and Choi (2019).

Finally, an important objective for the future of foamStar is to simulate ship moving in
complex irregular sea states. The work presented in Kim (2021) already assesses the ability of
foamStar to simulate such sea states without ship. The next step is to complete the preliminary
trials shown in this document carrying out some studies on the ship response with simulations
of long and short-crested irregular waves from various directions.
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Titre : Analyse numérique et développement de modèles précis dans un solveur CFD dédié
aux applications navales avec houle

Mot clés : OpenFOAM; Schéma temporel backward du deuxième ordre ; Génération de vagues ;

Résistance ajoutée sur houle ; Tenue à la mer du navire

Résumé : L’objectif de cette thèse est de
développer des solveurs numériques et des
méthodologies afin d’améliorer le temps de
calcul et la précision des simulations de tenue
à la mer et de résistance ajoutée sur houle.
Tout d’abord, une synthèse de l’algorithme
du solver foamStar développé en interne est
effectuée. A partir de cette analyse, une
modification est proposée afin de pouvoir
utiliser le "Multidimensional Universal Limiter
for Explicit Solution" (MULES) avec un
schéma temporel backward d’ordre deux.
Ensuite, plusieurs études successives sont
réalisées afin de : vérifier l’implémentation du
schéma backward ; définir une configuration

numérique et des maillages efficaces pour la
simulation de houle. Les cas d’étude sont : les
tourbillons de Taylor-Green, la houle régulière
non linéaire se propageant dans un domaine
periodique, et enfin, la houle régulière
générée avec des zones de relaxation et des
configurations numériques proches de celles
utilisées pour des applications navales.
Dans la dernière partie de cette thèse, une
étude préliminaire est réalisée en simulant
un porte-conteneur avec une vitesse d’avance
dans des houles régulières de face. Les
recommandations définies tout au long de
cette thèse sont également évaluées.

Title: Numerical analysis and development of accurate models in a CFD solver dedicated to
naval applications with waves

Keywords: OpenFOAM; Second-order backward time scheme; Regular wave generation; Wave

added resistance; Ship seakeeping

Abstract: The objective of the present thesis
is to develop solvers and methodologies in
order to improve the computational cost and
the accuracy with regard to the thematics of
seakeeping and added resistance.
First, a synthetic workflow of the algorithm
of the in-house solver foamStar is proposed.
From this analysis a modification is proposed
in order to use the Multidimensional Universal
Limiter for Explicit Solution (MULES) with a
second-order backward time scheme.
Then, successive studies are done in order
to: verify the implementation of the backward

scheme; define an efficient numerical set-up
and adequate mesh structures for numerical
wave simulations. The case studies are,
Taylor-Green vortices, nonlinear regular wave
propagating in a periodic domain, and finally,
regular waves generated with relaxation zones
considering numerical configurations close to
what is used for naval applications.
In the last part of this Thesis, a preliminary
study is done simulating a containership with
forward speed in head regular waves. The
recommendations derived all along this thesis
are also evaluated.
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