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Résumé. Nous généralisons le résultat de compatibilité local-global dans [28]
aux cas de dimension supérieure, en examinant la relation entre le foncteur
de Scholze et la cohomologie des variétés de Shimura de type Kottwitz-Harris-
Taylor. En chemin, nous prouvons un critère de cuspidalité de la théorie des
types. Nous traitons également de la compatibilité des classes de torsion dans
le cas des représentations semi-simples mod p Galois sans multiplicité, sous cer-
taines hypothèses de platitude. Enfin, nous enlevons la condition sur semisim-
plicité et la remplaçons par la condition beaucoup plus faible d’être sans mul-
tiplicité. Ce dernier résultat est obtenu en collaboration avec Z. Qian.

Mots clés: Compatibilité local-global, programme de Langlands, variétés de Shimura,

représentations galoisiennes
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Abstract. We generalize the local-global compatibility result in [28] to higher
dimensional cases, by examining the relation between Scholze’s functor and co-
homology of Kottwitz-Harris-Taylor type Shimura varieties. Along the way we
prove a cuspidality criterion from type theory. We also deal with compatibility
for torsion classes in the case of semisimple mod p Galois representations which
are multiplicity free, under certain flatness hypotheses. Finally, we remove the
semisimple condition and replace it by the much weaker condition of being mul-
tiplicity free. This last result is obtained in joint work with Z. Qian.

Key words: Local-global compatibility, Langlands program, Shimura varieties,
Galois representations
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1. Introduction

The existence of a p-adic local Langlands correspondence, as was first envisioned
by Breuil (cf. [4]), is still widely open beyond the case of GL2(Qp). The work of
Caraiani-Emerton-Gee-Geraghty-Paskunas-Shin [6] provides a construction which
attaches p-adic GLn(F )-representations to Galois representations for a p-adic field
F . Their construction is global in nature. Later in [28], Scholze takes the other
direction and constructs Galois representations from mod p (and p-adic) represen-
tations of GLn(F ), in a purely local way. Then Scholze proves the compatibility
between his construction and the patching construction of Caraiani-Emerton-Gee-
Geraghty-Paskunas-Shin, as well as a local-global compatibility result, both for
GL2.

The purpose of the thesis is to generalize the local-global compatibility result
of Scholze to GLn for n > 2. For this we follow mostly the strategy of [28]. Let
us describe the results of [28] and this paper in more detail.

Let n ≥ 1 be an integer and L/Qp be a finite extension with residue field k of
cardinality q. Denote by L̆ the completion of the maximal unramified extension of
L. Then one has the Lubin-Tate tower (MLT,J)J⊆GLn(L), indexed by compact open
subgroups J of GLn(L), consisting of smooth rigid-analytic varieties MLT,J over
L̆ equipped with compatible actions of D× on all MLT,J where D is the central
division algebra over L of invariant 1/n. It is shown in [29] that the inverse limit

MLT,∞ = lim←−
J

MLT,J

can be defined in a good sense in the category of perfectoid spaces. Let π be a
smooth mod p representation of GLn(L). The construction of Scholze involves
descending the trivial sheaf π on MLT,∞ along the Gross-Hopkins period map

πGH :MLT,∞ → Pn−1

L̆
,

resulting in a Weil-equivariant sheaf Fπ on the site (Pn−1

L̆
/D×)ét. (One may refer

to Section 3 of [28] for the notations and more details.) The main theorem of
[28], Theorem 1.1 in loc.cit., asserts that for each i ≥ 1, the cohomology group
H i

ét(P
n−1
Cp

,Fπ) is an admissible representation of D× and carries an action of the
Galois group Gal(L̄/L); moreover, this cohomology group vanishes if i > 2(n−1).

To state our local-global compatibility result, we need to change the notations
to a global context. So fix a CM field extension K/F with K totally imaginary
and F its maximal totally real subfield. Choose a place p of F lying over p and
an infinite place α of K. Let B be a division algebra over K of dimension n2 with
an involution of the second kind which is supposed to be positive. Assume that
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p is split in K and fix a place q of K over p where we assume moreover that B is
a division algebra of invariant 1/n. Then to these data one has a corresponding
unitary similitude group G̃ over F with

G̃(Fp) ∼= (Bop
q )× × (Fp)

×,

and for each compact open subgroup U ⊆ (Bop
q )× there is a Shimura variety ShUCp

over K associated with the subgroup U×O×
Fp
×Cp of G̃(AF,f ), where Cp ⊆ G̃(Ap

F,f )

is a fixed sufficiently small tame level. Moreover there exists another division
algebra D over K with interchanged local behaviours at q and α from B, so that
its associated unitary similitude group G′ over F is an inner form of G̃, locally
isomorphic to G̃ at all places except p and α|F ; in particular, D is split at q. The
space of continuous functions

π = πCp := C0(G′(F )\G′(AF,f )/(O×
Fp
× Cp),Qp/Zp)

is an admissible Zp-representation of GLn(Fp) and applying Scholze’s functor, one
obtains a (GalFp×B×

q )-representation on the space Hn−1
ét (Pn−1

Cp
,Fπ). On the global

side, we consider the cohomology of the above system of Shimura varieties and
define

ρ = ρCp := lim−→
U

Hn−1(ShUCp,K ,Qp/Zp)

which is a (GalK ×B×
q )-representation. The first result that we will prove in this

article is the following weak form of local-global compatibility.

Theorem 1.1. There is a natural isomorphism of (GalFp × B×
q )-representations

over Zp
H i

ét(Pn−1
Cp

,FπCp ) ∼= ρCp .

As in [28], this will be proved as a consequence of p-adic uniformization of
Shimura varieties. We can deduce from this theorem a more precise result using
the formalism of σ-typicity in Section 5 of [28]. To state it, let T be the formal
Hecke algebra over Z generated by Hecke operators at good places of K and m be
a maximal ideal of T (associated with a mod p Galois representation σ̄) such that

H i(ShUCp,C,Zp)m 6= 0

only when i = n−1; we also assume that m satisfies certain “strongly irreducibile”
condition (Assumption 3.5). Then there is an n-dimensional Galois representation

σ = σm : GK → GLn(T(Cp)m)
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characterized by certain Eichler-Shimura relations. Here T(Cp)m denotes the com-
pleted Hecke algebra at level Cp and is a complete local Noetherian ring acting
faithfully on πm. The next result says that one can recover σ|GalFp

from πm.

Theorem 1.2. There is a canonical T(Cp)m[GalFp×B×
q ]-equivariant isomorphism

Hn−1
ét (Pn−1

Cp
,FπCp,m

) ∼= σ|GalFp
⊗T(Cp)m ρ[σ].

for some faithful T(Cp)-module ρ[σ] which carries the trivial GalFp-action. If
moreover σ̄|GalFp

is absolutely irreducible, then this determines σ|GalFp
uniquely.

One important step in proving this theorem is the following cuspidality criterion,
and its consequence on constructing congurences between automorphic forms,
which will allow us to extend the Hecke action of T on πm to an action of T(Cp)m;
see section 6 for the notations and some background unexplained here. We remark
that Fintzen-Shin [12] have proved, independently and simultaneously, such results
for all reductive groups over totally real fields that are compact modulo center at
infinity under a mild condition on p; see Theorem 3.1.1 of their paper (and also
the Appendix D therein which removes the condition on p).

Proposition 1.3. Let L be a p-adic field and ψ : L → C× be a non-trivial
(additive) character of level one (that is, ψ is trivial on $OL but non-trivial on
OL). Let αm be the homomorphism

αm : U M̃(A)→ $−NOL, a 7→ trA/L(βm(a− 1)).

If π is a smooth irreducible representation of GLn(L) such that π|UM̃ (A) contains
the character ψ ◦ αm, then π is cuspidal.

Corollary 1.4. Let Am = Zp[T ]/((T p
m − 1)/(T − 1)). Take L = Fp and let ψ be

a character of L with coefficients in Am whose restriction to $−NOL is the map

$−NOL
×ϖN

∼−→ OL ↠ OL/$me ↠ Z/pmZ→ A×
m

with the last arrow mapping 1 ∈ Z/pmZ to T ∈ A×
m. Define ψm = ψ ◦ αm. Then

any automorphic representation π of GLn(Fp) appearing in

C0(G′(F )\G′(AF,f )/(U
M̃ ×O×

Fp
× Cp), ψm)[1/p]

is cuspidal at p.

Finally we prove a torsion class version under a reasonable flatness assumption,
cf. remark 7.6. It shows in particular that if σ̄|GalFp

is irreducible, then it can be
read off from Hn−1

ét (Pn−1
Cp

,Fπ[m]).
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Theorem 1.5. Assume that π∨
m is flat over T(Cp)m. Then Hn−1

ét (Pn−1
Cp

,Fπ[m]) is a
non-zero admissible GalFp×B×

q -representation, and it has the same Jordan-Hölder
factors as σ̄|GalFp

. In particular, if σ̄|GalFp
is irreducible, then every irreducible

subrepresentation of Hn−1
ét (Pn−1

Cp
,Fπ[m]) is isomorphic to σ̄|GalFp

.

Remark 1.6. In [23], Le-Le Hung-Morra-Park-Qian have obtained similar mod
p local-global compatibility result in the Fontaine-Lafaille cases under suitable
conditions, by studying moduli stacks of Fontaine-Lafaille modules. Moreover,
Zicheng Qian and the author have succeeded in giving an argument which can be
used to deal with the much larger class of multiplicity-free Galois representations
σ̄|GalFp

in Theorem 1.5 above, namely:

Theorem 1.7. Assume that π∨
m is flat and the F[GalFp ]-module σ|GalFp

is multi-
plicity free. Then Hn−1

ét (Pn−1
Cp

,Fπ[m]) determines σ|GalFp
up to isomorphism.

Here F is the finite field which serves as the coefficient field of σ̄ above. We prove
this theorem by establishing certain classification result of subrepresentations of
a given σ-typic representation, cf. section 8 of the thesis.
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Introduction (En Français)

L’existence d’une correspondance de Langlands p-adique, comme imaginé pre-
mièrement par Breuil (cf. [4]), reste encore largement ouverte au-delà du cas
de GL2(Qp). Le travail de Caraiani-Emerton-Gee-Geraghty-Paskunas-Shin [6] a
fourni une construction qui à des représentations p-adiques de GLn(F ) associe
des représentations galoisiennes sur un corps p-adique F , une construction de
nature globale. Dans l’autre direction, Scholze [28] a construit des représenta-
tions galoisiennes à partir de représentations mod p (et p-adiques), de manière
complètement locale; puis il a prouvé la compatibilité entre sa construction et
celle de Caraiani-Emerton-Gee-Geraghty-Paskunas-Shin, aussi qu’un résultat de
compatibilité locale-globale, tous les deux pour GL2.

L’objet de cette thèse est de généraliser le résultat de compatibilité locale-
globale de Scholze à GLn pour n > 2. Pour cela nous suivons largement le
stratégie de [28]. Décrivons en détails les résultats de [28] et de celui-ci.

Soient n ≥ 1 un entier et L/Qp une extension finie de corps résiduel k de cardi-
nalité q. Notez par L̆ le complété de l’extension non ramifié maximale de L. On
dispose alors du tour Lubin-Tate (MLT,J)J⊆GLn(L), indexé par sous-groupes com-
pacts ouverts J de GLn(L), constitué de variétés lisse rigide-analytiques MLT,J

sur L̆ munies d’actions compatibles de D× où D est l’algèbre de division centrale
sur L d’invariant 1/n. Il est démontré dans [29] que la limit inverse

MLT,∞ = lim←−
J

MLT,J

peut avoir du bon sens dans la catégorie d’espaces perfectoïdes. Soit π une
représentation mod p et lisse de GLn(L). La construction de Scholze consiste
à descendre le faisceau trivial π sur MLT,∞ le long de l’application période de
Gross-Hopkins

πGH :MLT,∞ → Pn−1

L̆
,

donnant un faisceau Weil-équivariant Fπ sur le site (Pn−1

L̆
/D×)ét. (On peut se

référer à Section 3 de [28] pour les notations et pour plus de détails.) Le théorème
principal de [28], Theorem 1.1 dans loc.cit., affirme que pour chaque i ≥ 1, le
groupe de cohomologie H i

ét(P
n−1
Cp

,Fπ) est une représentation admissible de D×

et porte une action du groupe Gal(L̄/L); par ailleurs, ce groupe de cohomologie
disparaît si i > 2(n− 1).

Pour énoncer notre résultat de compatibilité locale-globale, il faut changer les
notations à un contexte global. Donc fixons une extension CM de corps K/F avec
K totalement imaginaire et F son sous-corps maximal totalement réel. Choissons
une place p de F au dessus de p et une place infinie α de K. Soit B une algèbre
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de division sur K de dimension n2 avex une involution de seconde espèce qui est
supposée être positive. Supposons que p est déployé dans K et fixons une place q

de K au dessus de p telle que B soit une algèbre de division d’invariant 1/n en q.
Alors on a un groupe unitaire de similitude G̃ sur F associé à ces dononées avec

G̃(Fp) ∼= (Bop
q )× × (Fp)

×,

et pour chaque sous-groupe compact ouvert U ⊆ (Bop
q )× il y a une variété de

Shimura ShUCp sur K associé au sous-groupe U ×O×
Fp
×Cp de G̃(AF,f ), où Cp ⊆

G̃(Ap
F,f ) est un niveau modéré suffisament petit et fixé. Par ailleurs, il y a une

autre algèbre de division D sur K avec comportements locals échangés en q et
α de B, tel que le groupe unitaire de similitude associé G′ sur F est une forme
interieure de G̃, localement isomorphe à G̃ en toute les places sauf p et α|F ; en
particulier, D est deployée en q. L’espace de fonctions continues

π = πCp := C0(G′(F )\G′(AF,f )/(O×
Fp
× Cp),Qp/Zp)

est une Zp-représentation admissible de GLn(Fp) et en appliquant le foncteur de
Scholze, on obtient une représentation de (GalFp×B×

q ) sur l’espaceHn−1
ét (Pn−1

Cp
,Fπ).

Dans le côté global, on considère la cohomologie du système de variétés de Shimura
ci-dessus et definit

ρ = ρCp := lim−→
U

Hn−1(ShUCp,K ,Qp/Zp)

qui est une (GalK × B×
q )-représentation. Le premier résultat que nous allons

prouver dans ce article est la forme faible de compatibilité locale-globale suivante.

Theorem 1.8. Il y a un isomorphisme naturel de (GalFp × B×
q )-représentations

sur Zp
H i

ét(Pn−1
Cp

,FπCp ) ∼= ρCp .

Comme dans [28], cela sera montré comme une consequence d’uniformisation p-
adic de variétés de Shimura. On peut en déduire un résultat plus précis utilisant le
formalisme de σ-typicité dans Section 5 de [28].Pour le énoncer, soient T l’algèbre
de Hecke formelle sur Z engendrée par des opérateurs de Hecke aux bonnes places
de K et m un idéal maximal de T (associé à une représentation galoisienne mod
p, noté par σ̄) tel que

H i(ShUCp,C,Zp)m 6= 0

seulement quand i = n − 1. Nous Supposons aussi que m satisfait certaine “fort
irréductible” condition (Assumption 3.5). Alors il y a une représentation galoisi-
enne de dimension n

σ = σm : GK → GLn(T(Cp)m)
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caractérisée par certaines relations de Eichler-Shimura. Ici T(Cp)m désigne l’algèbre
de Hecke complétée au niveau Cp et est un anneau local noethérien complet agis-
sant fidèlement sur πm. Le résultat suivant dit que l’on peut récupérer σ|GalFp

à
partir de πm.

Theorem 1.9. Il y un ismorphisme canonique et T(Cp)m[GalFp×B×
q ]-équivariant

Hn−1
ét (Pn−1

Cp
,FπCp,m

) ∼= σ|GalFp
⊗T(Cp)m ρ[σ].

pour certain T(Cp)-module ρ[σ] qui porte l’action triviale par GalFp. Si par ailleurs
σ̄|GalFp

est absolument irréductible, alors cela determine σ|GalFp
uniquement.

Une étape importante dans la démonstration de ce théorème est le critère de
cuspidalité suivant, et sa conséquence sur la construction de congurences entre
formes automorphes, ce qui nous permettra d’étendre l’action de Hecke de T
sur πm à une action de T(Cp)m; voir la section 6 pour les notations et quelques
arrière-plans inexpliqués ici. Nous remarquons que Fintzen-Shin [12] ont prouvé,
indépendamment et simultanément, de tels résultats pour tous les groupes réduc-
tifs sur des corps totalement réels qui sont compacts modulo centre à l’infini sous
une condition douce sur p ; voir le théorème 3.1.1 de leur article (aussi l’annexe
D qui enlève la condition sur p).

Proposition 1.10. Soient L un corps p-adique et ψ : L → C× un caractère
(additif) non trivial de niveau 1 (c’est-à-dire, ψ est trivial sur $OL mais non
trivial sur OL). Soit αm le morphism

αm : U M̃(A)→ $−NOL, a 7→ trA/L(βm(a− 1)).

Si π est une représentation lisse et irréductible de GLn(L) telle que π|UM̃ (A) con-
tient le caractère ψ ◦ αm, alors π est cuspidal.

Corollary 1.11. Soit Am = Zp[T ]/((T p
m − 1)/(T − 1)). Posons L = Fp et soit

ψ un caractère de L avec coefficients dans Am dont la restriction à $−NOL est
l’application

$−NOL
×ϖN

∼−→ OL ↠ OL/$me ↠ Z/pmZ→ A×
m

avec la flèche dernière 1 ∈ Z/pmZ à T ∈ A×
m. Define ψm = ψ ◦ αm. Alors toute

représentation automorphe π de GLn(Fp) qui apparaît dans

C0(G′(F )\G′(AF,f )/(U
M̃ ×O×

Fp
× Cp), ψm)[1/p]

est cuspidale en p.
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Enfin, nous prouvons une version de classe de torsion sous une hypothèse de
platitude raisonnable, voir remarque 7.6. Il montre en particulier que si σ̄|GalFp

est irréductible, alors il peut être lu à partir de Hn−1
ét (Pn−1

Cp
,Fπ[m]).

Theorem 1.12. Supposons que le module π∨
m est plat sur T(Cp)m. Alors

Hn−1
ét (Pn−1

Cp
,Fπ[m]) est une représentation non zéro de GalFp×B×

q , et il a les mêmes
facteurs de Jordan-Hölder avec σ̄|GalFp

. En particulier, si σ̄|GalFp
est irréducible,

alors toute sous-représentation irréductible de Hn−1
ét (Pn−1

Cp
,Fπ[m]) est isomorphe à

σ̄|GalFp
.

Remark 1.13. Dans [23], Le-Le Hung-Morra-Park-Qian ont obtenu un résultat
similaire de compatibilité locale-globale de mod p dans les cas de Fontaine-Lafaille
sous des conditions appropriées, en étudiant des champs des modules de Fontaine-
Lafaille. De plus, Zicheng Qian et l’auteur ont réussi à donner un argument qui
peut être utilisé pour traiter la classe beaucoup plus large des représentations
galoisiennes sans multiplicité σ̄|GalFp

dans le théorème 1.12 ci-dessus, c’est-à-dire:

Theorem 1.14. Supposons que π∨
m est plat surT(Cp)m et que le F[GalFp ]-module

σ|GalFp
est sans multiplicité. Alors Hn−1

ét (Pn−1
Cp

,Fπ[m]) détermine σ|GalFp
à isomor-

phisme près.

Ici F est le corps fini de coéfficients de la représentation σ̄ ci-dessus. Nous mon-
trons ce théorème en établissant un résultat de classification des sous-représentations
d’une représentation σ-typique; voir la section 8 de cette thèse.
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2. Scholze’s functor

In this section we give a short review of Scholze’s construction which associates
p-adic Galois representations with admissible p-adic representations of GLn(F ),
for F a p-adic field. The proof of most statements in this section, if not provided
here, can be found in [28]. We start with some background on the Gross-Hopkins
period map and étale cohomology of adic spaces that are equipped with a contin-
uous action of a profinite group.

I. Adic spaces

Definition 2.1. A Huber ring is a topological ring A which contains an open
subring A0 whose subspace topology is induced by a finitely generated ideal I ⊆ A0

(i.e., the set {In}n≥1 forms a basis of neighborhood of 0 ∈ A0).

A subset S of a topological ring A is said to be bounded if for every open
neighborhood U of 0, there exists an open neighborhood V of 0 such that V ·S ⊆ U .
An element a ∈ A is called power-bounded if the set {an : n ≥ 0} is bounded. We
denote the subset of bounded elements of A by A◦.

Definition 2.2. Let A be a topological ring and Γ be totally ordered abelian
group. A continuous valuation (with values in Γ) on A is a multiplicative map

| · | : A→ Γ ∪ {0}

such that |0| = 0, |1| = 1, |a + b| ≤ max(|a|, |b|) and for every γ ∈ Γ the set
{a ∈ A : |a| < γ} is open in A.

Two valuations | · |1 : A→ Γ1∪{0} and | · |2 : A→ Γ2∪{0} are equivalent if for
all a, b ∈ A we have |a|1 ≥ |b|1 if and only if |a|2 ≥ |b|2. Let Cont(A) denote the
set of equivalence classes of continuous valuations of A. We endow Cont(A) the
topology generated by subsets of the form {x ∈ Cont(A)

∣∣ |f(x)| ≤ |g(x)| 6= 0}
with f, g ∈ A; here we denote by |f(x)| the image of the valuation x on an element
f ∈ A.

Definition 2.3. Let A be a Huber ring. A ring of integral elements of A is a
subring of A which is open and integrally closed in A, and moreover satisfies
A+ ⊆ A◦. A Huber pair (A,A+) is a pair (A,A+) consisting of a Huber ring A
and a ring of integral elements A+ of A. Morphisms between Huber pairs (A,A+)

and (B,B+) are continuous ring homomorphisms A→ B mapping A+ into B+.

Just as in the construction of schemes, we can first associate a locally ringed
space Spa(A,A+) with a Huber pair (A,A+), called the adic spectrum of (A,A+),
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and then use these adic spectra as building blocks for general adic spaces. The
underlying topological space of Spa(A,A+) is the subset of Cont(A) given by

Spa(A,A+) = {x ∈ Cont(A)
∣∣ |f(x)| ≤ 1 for all f ∈ A+}

equipped with the subspace topology. To define the structure sheaf, we start with

Definition 2.4. Let s ∈ A and T ⊆ A a finite subset such that TA ⊆ A is open.
The the subset of X = Spa(A,A+)

U(
T

s
) := {x ∈ X

∣∣ |t(x)| ≤ |s(x)| for all t ∈ T}
is called a rational subset.

It is easy to see that rational subsets of Spa(A,A+) are open. The following
result, which is Proposition 1.3 of [17], shows that rational subsets are themselves
adic spectra.

Lemma 2.5. Let U be a rational subset of X = Spa(A,A+). Then there exists
a complete Huber pair, denoted by (OX(U),O+

X(U)), together with a morphism of
Huber pairs (A,A+)→ (OX(U),O+

X(U)) such that the induced map

Spa(OX(U),O+
X(U))→ Spa(A,A+)

factors through U , and is universal for such maps. Furthermore, this map is a
homeomorphism onto U .

Here we say a Huber pair (A,A+) is complete if A is complete. Then A+ is also
complete as it is open and hence closed in A.

Definition 2.6. The structure presheaf of complete topological rings OX on
Spa(A,A+) is defined as follows. If ⊆ X is a rational subset, then OX(U) is
as in the above lemma. For a general open subset W ⊆ X, we define

OX(W ) := lim←−
U⊆W rational

OX(U).

We also define the sub-presheaf O+
X similarly.

Proposition 2.7. (Proposition 3.1.7, [30]) For all open subsets U ⊆ X, we have

O+
X(U) = {f ∈ OX(U)

∣∣ |f(x)| ≤ 1 for all x ∈ U}.

Thus O+
X is a sheaf if OX is.

Remark 2.8. The presheaf OX is not necessarily a sheaf in general, cf. for instance
the end of §1, [17] for such examples due to Rost. But in many important cases
it is a sheaf. These cases include: (1) A is finitely generated over a notherian ring
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of definition (2) A is strongly noetherian (3) A is perfectoid (4) A is discrete. We
call a Huber pair (A,A+) sheafy if OX is sheaf.

Definition 2.9. An adic space is a triple (X,OX , {| · |x}x∈X) where (X,OX) is
a locally ringed space, OX is a sheaf of complete topological rings, and {| · |x}
is a continuous valuation on OX,x for each x ∈ X, such that locally on X it is
isomorphic to Spa(A,A+) for some sheafy Huber pair (A,A+).

For a Huber pair (B,B+), we write CAffop
(B,B+) for the category of complete

Huber pairs (A,A+) with a morphism (B,B+)→ (A,A+).

Remark 2.10. One may have noticed in the construction of adic space one differ-
ence with the theory of schemes, that is, the additional role of A+. This is well
motivated and explained in Section 3.3 of [30].

Remark 2.11. A slightly general notion of adic space is proposed in [29], Definition
2.1.5, to remedy the problem that a Huber pair (A,A+) may be non-sheafy. Their
approach is to enlarge the category of adic spaces from a functor of points view,
analogous to the theory of algebraic spaces. In fact we will need to appeal to this
more general notion later on when necessary but we do not repeat the definition
here.

For a complete nonarchimedean field K with ring of integers OK and a pseudo-
uniformizer $ (that is, |$| < 1), we let NilpO to be the category of OK-algebras
R such that $ is nilpotent on R.

Definition 2.12. Let F be a contravariant functor on Nilpop
O . Then Fad

η is defined
to be the sheafification of the presheaf on CAffop

(K,O) given by

(R,R+) 7→ lim−→
R0⊆R+

lim←−
n

F(R0/$
n).

Remark 2.13. In the case when F is representable by a formal scheme X over O
with locally finitely generated ideal of definition, Fad

η is exactly the adic generic
fiber of the adic space X ad over Spa(O,O) associated with the formal scheme X ,
cf. Proposition 2.2.2 of [29].

II. Lubin-Tate spaces at infinite level

It is noticed that categorical inverse limits rarely exist in the category of adic
spaces. Instead, the following well-behaved notion of inverse limit has been for-
mulated which proves to be useful.
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Definition 2.14. Let Xi be a filtered inverse system of adic spaces such that all
transition maps are quasi-compact and quasi-separated, let X be an adic space,
and let fi : X → Xi be a family of compatible morphisms of adic spaces. Then
we write X ∼ lim←−

i

Xi if the following two properties hold:

(1) the induced map on the underlying topological spaces is a homeomorphism:
|X| ∼−→ lim←−

i

|Xi|;

(2) there exists an open cover of X by affinoid subspaces Spa(R,R+) ⊆ X

such that the map lim−→
Spa(Ri,R

+
i )⊆Xi

Ri → R has dense image. Here the direct

limit runs over all open affinoid subspaces Spa(Ri, R
+
i ) ⊆ Xi over which

the map Spa(R,R+) ⊆ X → Xi factors.

Remark 2.15. Here we have followed the definition of [29]; it is more general than
the original one, Definition 7.14 of [27].

Let H be a p-divisible group over a perfect field k of characteristic p, of height
n and dimension d. We denote by W (k) the Witt ring of k and NilpW (k) the
category of W (k)-algebras where p is nilpotent. Then we define

Definition 2.16. A deformation of H to an object R ∈ NilpW (k) is a pair (G, ρ)

where G is a p-divisible group over R and ρ : H ⊗k R/p → G ⊗R (R/p) is a
quasi-isogeny.

Let M be the functor on NilpW (k) which sends an object R to the set of iso-
morphism classes of deformations of H to R. Then Rapoport-Zink [26] proved
the following theorem.

Theorem 2.17. The functorM is representable by a formal scheme, still denoted
by M, over SpfW (k) which admits locally a finitely generated ideal of definition.

These formal schemes (or more generally, their associated adic spaces) are what
we usually call Rapoport-Zink spaces. If we take the dimension of H in Definition
2.16 to be d = 1, then the corresponding formal scheme M is said to be Lubin-
Tate, and it is isomorphic (non-canonically) to⊔

i∈Z

Spf (W (k)[[X1, . . . , Xn−1]])

when k is algebraically closed. One can add level structures to the moduli prob-
lems on the generic level and define by passing to infinity the reasonable inverse
limit of the corresponding moduli spaces.
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Definition 2.18. For each integer i ≥ 1, let Mi be the functor on the category
of complete affinoid (W (k)[1/p],W (k))-algebras which sends an object (R,R+) to
the set of triples (G, ρ, γ) where (G, ρ) ∈Mad

η (R,R+) and

γ : (Zp/piZp)n → G[pi]adη (R,R+)

is a morphism of Zp/piZp-modules. It is required that for all x = Spa(K,K+) ∈
Spa(R,R+) the induced map

α(x) : (Zp/piZp)n → G[pi]adη (K,K+)

is an isomorphism.

Theorem 2.19. (Rapoport-Zink) The functor Mi is representable by an adic
space over Spa(W (k)[1/p],W (k)), which is an closed and open subset of the n-
fold fiber product (G[pi]adη )n of G[pi]adη over Mad

η .

Now we can introduce Rapoport-Zink spaces at infinite level.

Definition 2.20. Let M∞ be the functor on the category of complete affinoid
(W (k)[1/p],W (k))-algebras which sends an object (R,R+) to the set of triples
(G, ρ, γ) where (G, ρ) ∈Mad

η (R,R+) and

γ : Znp → T (G)adη (R,R+)

is a morphism of Zp-modules. It is required that for all x = Spa(K,K+) ∈
Spa(R,R+) the induced map

α(x) : Znp → T (G)adη (K,K+)

is an isomorphism.

Theorem 2.21. The functor M∞ is representable by an adic space over
Spa(W (k)[1/p],W (k)) which is in fact perfectoid. Moreover, the relation

M∞ ∼ lim←−
i

Mi

holds in the category of adic spaces.

Remark 2.22. This theorem is proved by Scholze-Weinstein, cf. Theorem 6.3.4
of [29]. There, they also give an alternative description of M∞ in terms of the
Dieudonné module of H and crystalline period rings from p-adic Hodge theory,
thus in a way independent of deformations of H.

If the dimension of H is d = 1, then we will write MLT,∞ for the Rapoport-
Zink space at infinite level (and similarly for MLT,n). Note also that in these
Lubin-Tate cases, MLT,∞ can be described as a space cut out from (H̃ad

η )n by a
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determinant condition where n is the height of H; see Theorem 6.4.1 of [29]. Here
and in the following, H̃ denotes the universal cover of the p-divisble group H, cf.
Page 17 of [29] for the definition.

III. Gross-Hopkins period map

Now we recall some basic facts of the Gross-Hopkins period map. It is first stud-
ied by Gross-Hopkins [14] where the authors had applications to stable homotopy
theory for them. We will define it using Grothendieck-Messing theory.

Let H be as above, i.e., a p-divisible group over a perfect field k of characteristic
p, of height n and dimension d. We denote by M(H) the Dieudonné module of
H, which is a free W (k)-module of rank n. Suppose that R is a W (k)-algebra
complete with respect to the p-adic topology. Then by Grothendieck-Messing
theory, a deformation (G, ρ) to R gives rise to a surjection of locally free R[1/p]-
modules

M(H)⊗W (k) (R[1/p]) ↠ LieG[1/p].

Note that this map depends on (G, ρ) only up to isogeny. So it induces a map
(the Grothendieck-Messing period morphism) on the generic fiber

π :Mad
η → Gr(d, n)

where Gr(d, n) is the Grassmannian variety of d-dimensional quotients of the
rational Dieudonné module M(H)[1/p], which is considered as an adic space over
Spa(W (k)[1/p],W (k)). The following theorem is Proposition 5.17 of [26].

Theorem 2.23. The period morphism π is étale. Each fiber consists of a single
isogeny class of lifts of H.

In the Lubin-Tate case, namely when d = 1, we have Gr(d, n) = Pn−1. In this
case, Gross-Hopkins proved that π is surjective, not just on classical rigid points
but on all adic points.

Remark 2.24. The surjectivity result of Gross-Hopkins shows some new features
in nonarchimedean geometry, which indicates that the projective space Pn−1 is
not simply connected. One consequence of the above surjectivity, that is, the
properness of the image of π, is crucial in the construction of Scholze’s functor.
In fact the Lubin-Tate case is essentially the only case of Rapoport-Zink spaces
whose period maps are surjective, cf. the Appendix by Rapoport to [28].

By composing with the natural surjections M∞ →Mn →M
π−→ Gr(d, n), we

obtain period morphisms on M∞ and Mn, which will also be denoted by π.

IV. Duality between Lubin-Tate and Drinfeld towers
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We can generalize the previous results to Rapoport-Zink spaces of EL type.
This depends on a choice of quadruple (B, V,G, µ) where

• B is a semisimple algebra over Qp;
• V is a finite B-module;
• G = GLB(V ) considered as an algebraic group over Qp;
• µ : Gm → GQp

is a conjugacy class of cocharacters such that the weight
decomposition of VQp

has only 0 and 1 as weights:

VQp
= V0 ⊕ V1

.

Then we set n = dimV and d = dimV0. We fix moreover a maximal order OB of
B and an OB-stable lattice Λ of V . Finally, fix a p-divisible group H over k of
height n and dimension d equipped with an action of OB such that

M(H)⊗W (k) W (k)[1/p] ∼= V ⊗Qp W (k)[1/p]

holds as B ⊗ QpW (k)[1/p]-modules. Then we write D = (B, V, H̃, µ) for the
rational EL data and Dint = (OB,Λ, H, µ) for the integral one. Let E be the field
of definition of the conjugacy class of cocharacters µ and set Ĕ = E ·W (k).

To these data one can define similarly Rapoport-Zink spaces of EL type, denoted
by MDint , cf. Definition 6.5.1 and Theorem 6.5.2 of [29]. Furthermore, there is
also the Grothendieck-Messing period morphism

πGM : (MDint)adη → GrGM(d, n)

where GrGM(d, n) parametrizes B-equivariant quotients of M(H) ⊗W (k) R which
are projective finite modules over R and isomorphic to V0 ⊗Qp R (as B ⊗Qp R-
modules) locally on R, for R a complete Ĕ-algebra. One can also add level struc-
tures as before to obtain Rapoport-Zink spaces of EL type at finite levelsMDint,i,
i ≥ 1 and at infinite level MDint,∞. The following result is taken from pp. 56 of
[29].

Theorem 2.25. The adic space MDint,∞ is preperfectoid and admits an alter-
native description as a sheaf MD,∞ which depends only on the rational data D.
Here MD,∞ is the sheafification of the functor which maps a complete affinoid
(Ĕ,OĔ)-algebra (R,R+) to the set of B-module morphisms

V → H̃ad
η (R,R+)

satisfying the following two properties.
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(1) The quotient Q of M(H) ⊗W (k) R by the image of V ⊗ R is a projective
finite module over R and is isomorphic to V0⊗Qp R (as B⊗Qp R-modules)
locally on R.

(2) For all geometric point x = Spa(C,OC)→ Spa(R,R+) the sequence

0→ V → H̃ad
η (C,OC)→ Q⊗R C → 0

is exact.
Moreover, the action of G(Qp)×J(Qp) onMD,∞ is continuous, and the Grothendieck-
Messing period map

πGM :MD,∞ → GrGM(d, n)

is G(Qp)×J(Qp)-equivariant. Here J is the group of B-linear self quasi-isogenies
of H.

Now we can state the duality result on Rapoport-Zink spaces. Before that, let
us note that in all the constructions of EL type, if we take B to be an extension
of Qp of degree d and V = F n, then we obtain the Lubin-Tate case which is
relevant to us later. But the more general context is necessary to state the duality
result. Now let GrHT(d, n) be the adic space over Spa(Ĕ,OĔ) parametrizing B-
equivariant quotients of V ⊗Qp R which are finite projective as modules over R
and are isomorphic to V1 ⊗Qp R (as B ⊗Qp R-modules) locally on R.
Proposition 2.26. There is a Hodge-Tate period morphism

πHT :MD,∞ → GrHT(d, n)

which sends an (R,R+)-valued points ofMD,∞ represented by a map V → H̃ad
η (R,R+)

to the quotient of V ⊗Qp R given as the image of

V ⊗Qp R→M(H)⊗W (k) R.

Moreover, πHT is G(Qp)× J(Qp)-equivariant.
Proof. This is Proposition 7.1 of [29]. □

From now on we suppose that k is algebraically closed.
Definition 2.27. For an EL data D = (B, V, H̃, µ), the dual EL data Ď is defined
as follows. First B̌ = EndB(H) ⊗ Q, and OB̌ = EndOB

(H). Then V̌ = B̌ and
Λ̌ = OB̌ endowed with the natural left action of B̌ and OB̌ respectively. We set
Ȟ = HomOB

(Λ,OB)⊗OB
H. The definition of µ̌ is a given via its induced weight

decomposition on V̌ and we refer the reader to page 58 of [29].
It follows that Ǧ ∼= J and g ∈ Ǧ = J ⊆ B̌ acts on V̌ by multiplication with g−1

from the right. We also denote by ǦrGM(d, n) and ǦrHT(d, n) the corresonding
Grassmannian varieties for the dual EL data.
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Theorem 2.28. There are natural action of G on GrHT(d, n) and ǦrGM(d, n), as
well as a canonical G-equivariant isomorphism GrHT(d, n) ∼= ǦrGM(d, n). Simi-
larly, there are natural action of Ǧ on ǦrHT(d, n) and GrGM(d, n), as well as a
canonical Ǧ-equivariant isomorphism ǦrHT(d, n) ∼= GrGM(d, n).

LetMĎ,∞ be the Rapoport-Zink space at infinite level associated with the dual
EL data Ď.

Theorem 2.29. There is a natural G(Qp)× Ǧ(Qp)-equivariant isomorphism

MD,∞ ∼=MĎ,∞

under which πGM : MD,∞ → GrGM(d, n) gets identified with π̌HT : MĎ,∞ →
ǦrHT(d, n), and vice versa.

For the proofs of these two theorems one may refer to Section 7 of [29].

V. Equivariant étale sites

Let X be a locally noetherian analytic adic space with a continuous action by
a locally profinite group G. Let (X/G)ét be the site whose objects are (locally
noetherian analytic) adic spaces Y equipped with a continuous action of G, and a
G-equivariant étale morphism Y → X. Morphisms are G-equivariant maps over
X, and a family of morphisms {fi : Yi → Y } is a cover if |Y | =

⋃
i fi(|Yi|). We

denote the associated topos of this site by (X/G)∼ét.
One can easily verify that all finite limits exist in (X/G)ét. Recall that a

category C is called coherent if it satisfies the following axioms:
(A1) The category C admits finite limits.
(A2) Every morphism f : X → Z in C admits a factorization X

g→ Y
h→ Z,

where g is an effective epimorphism and h is a monomorphism.
(A3) For every object X ∈ C, the partially ordered set Sub(X) is an upper

semilattice: that is, it has a least element, and every pair of subobjects of X have
a least upper bound.

(A4) The collection of effective epimorphisms in C is stable under pullback.
(A5) For every morphism f : X → Y in C, the map f−1 : Sub(Y ) → Sub(X)

is a homomorphism of upper semilattices.
One may refer to eg. Tag 00WP of [31] for the definition of effective epimor-

phism. Then we have the following lemma.

Lemma 2.30. Let X be a locally noetherian analytic adic space with a continuous
action by a locally profinite group G. Then (X/G)ét is locally coherent.

Proof. This is (v) of [28]. □

https://stacks.math.columbia.edu/tag/00WP
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Thus it follows that formation of cohomology of such sites commutes with direct
limit; this point will be used later when we deal with the cohomology of adic
projective spaces. We also need the following two propositions whose proofs can
be found in Section 2 of [28].

Proposition 2.31. Let X be a qcqs locally noetherian analytic adic space with a
continuous action by a profinite group G. Then for any closed subgroup H of G,
(X/H0)

∼
ét is a projective limit of the fibred topos (X/H)∼ét for all open subgroups

H of G containing H0. In particular, for any sheaf F ∈ (X/G)∼ét, we have

H i(X/H0)ét,F) = lim−→
H0⊆H⊆G

H i(X/H)ét,F).

Proposition 2.32. Suppose that X is a locally noetherian adic space which is
analytic and moreover equipped with a continuous action of a locally profinite
group G. Let F be a pointed sheaf on (X/G)ét. Then F is trivial if and only if
its pullback to Xét is trivial.

VI. Scholze’s functor

With these preparations, now let us briefly recall Scholze’s construction of his
functor. We fix some notations first.

So let n ≥ 1 be an integer, F be a finite extension of Qp and K is a open
subgroup of GLn(F ). Denote by F̆ the completion of the maximal unramified
extension of F and by MLT,∞ the perfectoid space over F̆ constructed in [29], so
that

MLT,∞ ∼ lim←−
K

MLT,K .

Here MLT,K is the smooth rigid-analytic Lubin-Tate space over F̆ at finite level
K, cf. [14]. Let D denote the central division algebra over F of invariant 1/n.
Then for π an admissible Fp-representation of GLn(F ), one may construct a sheaf
Fπ on the site (Pn−1

F̆
/D×)ét equivariant for the Weil descent datum, by descending

the trivial sheaf π along the Gross-Hopkins map

πGH :MLT,∞ → Pn−1

F̆

which can be considered as a GLn(F )-torsor.

Proposition 2.33. The association mapping a D×-equivariant étale map U →
Pn−1

F̆
to the Fp-vector space

Mapcont,GLn(F )×D×(|U ×Pn−1

F̆

MLT,∞|, π)
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of continuous GLn(F )×D×-equivariant maps defines a Weil-equivariant sheaf Fπ
on (Pn−1

F̆
/D×)ét. The association π 7→ Fπ is exact, and all geometric fibers of Fπ

are isomorphic to π.

Let C/F̆ be an algebraically closed complete extension with ring of integers OC .

Theorem 2.34. (Scholze) For any i ≥ 0, the D×-representation H i
ét(P

n−1
C ,Fπ)

is admissible, independent of C, and vanishes for i > 2(n − 1). Taking C = Cp,
the action of the Weil group WF on H i

ét(P
n−1
Cp

,Fπ) extends to an action of the
absolute Galois group GF of F . More generally, the same statements hold when
π is replaced by an admissible A[GLn(F )]-module with A a complete Noetherian
local ring with finite residue field of characteristic p.

To explain the last statement of the above theorem, we recall:

Definition 2.35. Let A be a complete noetherian local ring, m be its maximal
ideal such that the residue field A/m is finite of characteristic p. Let G be a p-adic
analytic group. Then we call an A[G]-module V to be smooth if for every v ∈ V ,
there exists an open subgroup H ⊆ G and an integer j ≥ 1 such that v is invariant
under the action of H, and miv = 0.

We call a smooth A[G]-module V to be admissible if for every integer j ≥ 1 and
H an open subgroup of G, V H [mj] is finitely generated as a module over A/mj.

Using a result of M. Strauch (cf. Theorem 4.4 of [32]), one can show that the
cohomology group in degree 0 is always computable.

Theorem 2.36. Let V be an admissible A[GLn(F )]-module as in the above defi-
nition, and let FV be the associated sheaf on (Pn−1

C /D×)ét. Then the map induced
by the inclusion V SLn(F ) ↪→ V

H0
ét(Pn−1

C ,FV SLn(F ))→ H0
ét(Pn−1

C ,FV )
is an isomorphism. Moreover, the action of the triple GLn(F )×WF ×D× can be
described explicitly.

Remark 2.37. The above theorem plays an important role in Scholze’s proof of
the complete classification in the mod p local-global compatibility in the case of
n = 2, and its failure in higher dimensions is one of the source of difficulties to
obtain a complete result as in the n = 2 case.

Remark 2.38. Another important topic is the vanishing property of H i
ét(P

n−1
Cp

,Fπ)
for different choices of smooth admissible representations π of GLn(K). As men-
tioned before, Scholze has shown that it vanishes for every π whenever i > 2(n−1).
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In [20], Johansson-Ludwig proved that for an appropriate parabolic induction
π = Ind

GLn(K)
P ∗(K) σ of GLn(K), the group H i

ét(P
n−1
Cp

,Fπ) vanishes for i > n − 1,
strengthening a previous result of Ludwig [24]. The latter was already used by
Paskunas to show a non-vanishing result in degree one for (a version of) Scholze’s
functor for Banach space representations of GL2(Qp) corresponding via the p-adic
local Langlands correspondence to reducible two-dimensional representations of
Gal(Qp/Qp). So it is natural to ask if there are similar consequences for GL2(K)

with a general K/Qp. We remark that in [20] the vanishing result is proved by
a perfectoidness property of MLT,∞/P (K) which is the quotient of infinite level
Lubin-Tate space by a parabolic subgroup P of GLn, based on a construction of a
perfectoid overconvergent anticanonical tower for certain Harris-Taylor Shimura
varieties.
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3. Global setup

Introduction. In this section we consider some unitary similitude Shimura vari-
eties and their cohomology. These so-called Kottwitz-Harris-Taylor type Shimura
varieties are singled out and studied in [21], and then further in [16] (on a sub-
class of it), hence the terminology. The class of varieties that we will consider is a
variant of the KHT class, but we still call it KHT type. We remark here that we
choose to work with such Shimura varieties (more precisely, the class in [2]) for
the following two reasons. First, the tubular neighborhoods for them that can be
p-adically uniformized by Drinfeld spaces are the whole of their associated adic
spaces, which thus provides a bridge between the cohomology of these varieties
and that of Drinfeld spaces; by the duality result in [29] the latter is related to
cohomology of Lubin-Tate spaces which in turn is closely related to Scholze’s func-
tor. Second, the Rapoport-Zink uniformization result, cf. [26], is realized at the
level of places of Q while we need to deal with representations of GLn at the level
of a specific place of a CM field rather than a bunch of such places over a place
of Q; Boutot-Zink provides the correct generalization of Rapoport-Zink’s results
in a parallel manner (see, however, Remark 4.8 and 5.5). On the other hand, in
(2.10) of [11] an explicit relation between these two types of Shimura varieties (as
well as their cohomology groups), is given.

Thus we will work under the context of [2]; let us first introduce some notations
and establish the global setup. One can refer to chapter 0 of [2] for more details.
We first change the notation to a global setup. Fix an integer n > 2 and a rational
prime integer p. Let K be a CM field with F ⊆ K the maximal totally real
subfield. Let B be a division algebra over K of dimension n2 with an involution
of the second kind ′ which we assume to be positive, i.e., for all nonzero x ∈ B we
have trB/Q(xx′) > 0. Let W = B as a B ⊗K Bop-module and ψ : W ×W → Q an
alternating nondegenerate pairing such that

ψ(bw1, w2) = ψ(w1, b
′w2)

for all w1, w2 ∈ W and b ∈ B.
Let ∗ be the unique involution on B such that

ψ(w1b, w2) = ψ(w1, w2b
∗)

for all w1, w2 ∈ W and b ∈ B. Fix an infinite place α : K ↪→ C of K and
its complex conjugate ᾱ, as well as an embedding v : Q ↪→ Qp. We denote by
p0, p1, . . . , pm the prime ideals ofOF lying over p with p0 induced by the embedding
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v above and set p := p0. We assume that they all split in K with

piOK = qiq̄i, qi 6= q̄i, i = 0, 1, . . . ,m.

The prime ideals q0 and q̄0 will also be denoted by q and q̄ respectively. We
assume that Bq := B ⊗K Kq is a division algebra of invariant 1/n.

We also fix a maximal order OB of B such that OB ⊗Z Zp is fixed under the
involution b→ b′. We also write Γ for OB⊗ZZp when we regard it as a submodule
of W ⊗Qp.

Let G̃ be the algebraic group over F whose group of R-points for any F -algebra
R is given by

G̃(R) := {(g, λ) ∈ (Bop ⊗F R)× ×R×| gg∗ = λ}

and let G := ResF/Q(G̃) be the Weil restriction of scalars so that for any Q-algebra
T we have

G(T ) := {(g, λ) ∈ (Bop ⊗Q T )
× × (F ⊗Q T )

×| gg∗ = λ}.

We will consider Shimura varieties associated with compact open subgroups C of

G(Af ) = G̃(AF,f )

with the form C = CpC
p where Cp ⊆ G(Ap

f ) is compact open and

Cp ⊆ G(Qp) =
m∏
i=0

G̃(Fpi)

decomposes as

Cp =
m∏
i=0

Cpi , Cpi ⊆ G̃(Fpi).

As the involution ∗ induces an isomorphism

Bq̄i
∼−→ Bop

qi
,

there are identifications for all i

G̃(Fpi)
∼= (Bop

qi
)× × F×

pi
.

In fact, in later parts C will usually be of the form C = CpC
p with Cp ⊆ G̃(Ap

F,f )

(sufficiently small) compact open and Cp = U×O×
Fp
⊆ G̃(Fp) = (Bop

q )××F×
p with

U ⊆ (Bop
q )× compact open, in which case we write ShUCp instead of ShU×O×

Fp
×Cp

for the Shimura variety associated with C.
Let S := ResC/R(Gm) be the Deligne torus and h be a morphism

h : S→ GR
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such that h defines on WR a Hodge structure of type (1, 0), (0, 1) and such that
ψ(w1, h(i)w2) is a symmetric positive definite bilinear form on WR. Note that h
is unique up to G(R)-conjugacy and we let X denote the G(R)-conjugacy class of
h. Then (G,X) defines a Shimura datum and for sufficiently small compact open
subgroups C ⊆ G(Af ) as above we have a projective system of Shimura varieties
ShC over its reflex field, denoted by E.

The morphism h defines a Hodge structure

WC = W 1,0 ⊕W 0,1

and we require the following condition to hold: the trace of the action of an
element b ∈ B on W 1,0 is of the form

trC(b|W 1,0) = Σi:K→Cri(tr
0b)

with ri integers such that ri is of type (1, n − 1) at α and (0, n) at other infinite
places. Then we have E = α(K) and Ev ∼= Kq. Denote by κ the residue field of
Ev.

We fix a tame level, i.e. a compact open subgroup Cp of G̃(Ap
F,f ) and let P

denote the set of finite places w of K such that

• w|Q 6= p;
• w is split over F ;
• B is split at w (i.e., G̃(Fu) ∼= GLn(Fu) × F×

u where u = w|F ) and the
component Cu of Cp at u is maximal.

Consider the abstract Hecke algebra

T = TP := Z[T (j)
w : w ∈ P , j = 1, 2, . . . , n]

where T (j)
w is the Hecke operator corresponding to the double coset[

GLn(OFw)

(
$w1j 0

0 1n−j

)
GLn(OFw)

]
.

Here $w is a uniformizer of the local field Fw. Then the Hecke algebra T acts on
H i(ShUCp,C,Zp) for all compact open U ⊆ (Bop

q )×. Fix a finite field F := Fq with
q elements for q a power of p. Let

σ̄ : GalK → GLn(Fq)

be an absolutely irreducible continuous representation of GalK . We can associate
to σ̄ (together with P) a maximal ideal m of T; it is the kernel of the map

T→ Fq, T (j)
w 7→ (−1)j(Nw)−j(j−1)/2a(j)w , w ∈ P , j = 1, 2, . . . , n
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where Frobw for w ∈ P is the geometric Frobenius of GalKw , Nw is the cardinality
of the residue field of Kw, and the a

(j)
w ∈ Fq are such that the characteristic

polynomial of σ̄(Frobw) equals

Xn + · · ·+ a(j)w Xn−j + · · ·+ a(n)w .

Thus m is a maximal ideal containing p; we assume further that

Condition 3.1. For all compact open U

H i(ShUCp,C,Zp)m 6= 0

only when i = n− 1.

Remark 3.2. The above condition on vanishing of cohomology outside of the mid-
dle degree is satisfied, for instance, when we impose certain generic condition on
m or on its associated Galois representation, cf. eg. Théorème 4.7 of [3], and also
the main results of [7].

Remark 3.3. The reason that we impose the above condition is twofold: on the
one hand, it gives an easier comparison between the completed cohomology and
cohomology with infinite level at p in p-torsion coefficients, of the Shimura vari-
eties; on the other hand, under the flatness assumption in Section 7 it implies an
important injectivity result (cf. Lemma 7.9).

Let T(UCp) be the image of T in End(Hn−1(ShUCp,C,Z)) and T(UCp)m its m-
adic completion. Note then that T(UCp)m is isomorphic to the localization at
m of the image of Zp[T (i)

w : w ∈ P , i = 1, 2, . . . , n] in End(Hn−1(ShUCp,C,Zp)),
which one meets more often in the literature. (This is because the localization at
a maximal ideal m of a finite Zp-algebra is automatically complete with respect to
the m-adic topology.) Thus T(UCp)m acts faithfully on Hn−1(ShUCp,C,Zp)m and
we have an associated Galois representation:

Proposition 3.4. Assume from now on that m satisfies the following Assump-
tion 3.5. There is a unique (up to conjugation) continuous n-dimensional Galois
representation

σ = σm : GalK → GLn(T(UCp)m)

unramified at almost all places, such that for every w ∈ P, σ(Frobw) has charac-
teristic polynomial

Xn + · · ·+ (−1)j(Nw)j(j−1)/2T (j)
w Xn−j + · · ·+ (−1)n(Nw)n(n−1)/2T (n)

w .
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Proof. As the ShUCp ’s are projective, Matsushima’s formula (cf. VII. 5.2 of [1])
gives an isomorphism

Hn−1(ShUCp(C),Qp) ∼=
⊕
π

π
U×O×

Fp
×Cp

f ⊗Hn−1(LieG(R), K∞, π∞)

where π runs over irreducible constituents (taken with its multiplicity) of the space
of automorphic forms on G(Q)\G(A), and K∞ is a maximal compact subgroup
of G(R). Then by Artin comparison theorem (cf. [15], Exposé XI, Théorème 4.4)
we have Hn−1(ShUCp(C),Qp) ∼= Hn−1

ét (ShUCp,K ,Zp)⊗Zp Qp and we may write

Hn−1
ét (ShUCp,K ,Qp) =

⊕
π

π
U×O×

Fp
×Cp

f ⊗Rn−1(π)

where π runs over cuspidal automorphic representations of G(A) over Qp (taken
with its multiplicity) and where Rn−1(π) is a finite dimensional continuous repre-
sentation of Gal(K/K). Localizing both sides at m, we obtain

(1) Hn−1
ét (ShUCp,K ,Qp)m =

⊕
π∈A(m)

π
U×O×

Fp
×Cp

f ⊗Rn−1(π)

where A(m) denotes the subset of cuspidal automorphic representations π of G
such that the kernel of the corresponding map ψπ : T(UCp) → Qp induced by π

is contained in m. As σ̄m is assumed to be absolutely irreducible, each of the π
belonging to A(m) will have base change (ψ,Π) to A×

E × GLn(AK) so that Π is
cuspidal. We now make the following assumption on m to apply the known cases
of the Tate conjecture in the setting of Shimura varieties, see Remark 3.6 however.

Assumption 3.5. Assume that for every π ∈ A(m), the Galois representation
ρΠ,p associated with Π by the global Langlands correspondence is strongly irre-
ducible, i.e., ρΠ,p is irreducible and not induced from a proper open subgroup of
GalK.

Thus by Theorem 2.25 of [11], each Rn−1(π) is a semisimple Qp[Gal(K/K)]-
module. Then by Proposition VII.1.8 and Proposition VI.2.7 of [16] (or similarly
by Theorem 6.4 and Corollary 6.5 of [33]), for every π in A(m), Rn−1(π) is a direct
sum of finite copies of an n-dimensional GalK representation R̃n−1(π).

We get from (1) an isomorphism

T(UCp)m ⊗Zp Qp
∼−→

∏
π∈A(m)

Qp

by sending T
(i)
w on the left hand side to its corresponding Hecke eigenvalue on

π
GLn(Ow)
w . This isomorphism is defined over a finite extension of Qp as T(UCp)m is
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of finite type over Zp. Collecting the R̃n−1(π)’s above we obtain a representation

GalK → GLn(T(UCp)m[1/p]).

On the other hand, all characteristic polynomials of Frobenius elements take values
in T(UCp)m, so one obtains a determinant with values in T(UCp)m. But σ̄ is
absolutely irreducible by assumption, so one obtains the existence of the desired
representation σ, cf. Theorem 2.22 of [8]. That for every w ∈ P the Frobenius
action σ(Frobw) has the exhibited characteristic polynomial is classical and is
proved in Theorem 1 of [21] (where the unitary group has similitude factor in
Gm/Q but it works for groups with Gm/F -similitude factors, too), cf. also [36].
Finally the uniqueness follows from the fact that the set {Frobw|w ∈ P} is dense
inside GalK , which is a consequence of Chebotarev’s theorem. □
Remark 3.6. By a strong form of the Tate Conjecture (see eg. [25]), the semisim-
plicity of the Rn−1(π)’s above always holds true but at this moment it is not fully
proved yet, so we made the assumption 3.5 on m to use the results of [11].

In particular, we have σ (modm) = σ. Recall (Definition 5.2, [28]) that for
a ring R, a group G and an n-dimensional representation σR : G → GLn(R) of
G, an R[G]-module is said to be σR-typic if there exists an R-module M0 such
that M = σR ⊗R M0 with G acting trivially on M0. The following proposition
generalizes the case of n = 2.

Proposition 3.7. The T(UCp)m[GalK ]-module Hn−1(ShUCp,K ,Zp)m is σ-typic.

Proof. Since Hn−1(ShUCp,K ,Zp)m is a submodule of Hn−1(ShUCp,K ,Zp)m[1/p] (over
the ring T(UCp)m[GalK ]), by Proposition 5.4 of [28] it suffices to show that

Hn−1(ShUCp,K ,Zp)m ⊗Zp Qp

is σ-typic. But this follows from the description of the Qp-cohomology of ShUCp,K ,
as in the proof of Proposition 3.4. Indeed, we may shift the multiplicity of each
Galois representation R̃n−1(π) to π

U×O×
Fp

×Cp

f and then use the isomorphism of

GalK-modules π
U×O×

Fp
×Cp

f ⊗Qp
R̃n−1(π) ∼= π

U×O×
Fp

×Cp

f ⊗T(UCp)m (T(UCp)m)
⊕n ob-

tained from the following diagram

π
U×O×

Fp
×Cp

f ⊗Qp
R̃n−1(π) π

U×O×
Fp

×Cp

f ⊗T(UCp)m (T(UCp)m)
⊕n

π
U×O×

Fp
×Cp

f ⊗T (T )⊕n
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where T = T(UCp)m ⊗Zp Qp and both arrows are isomorphisms of GalK-modules
induced by the natural inclusion on the second factor of tensor product. By
summing up over π ∈ A(m), we obtain an isomorphism⊕

π∈A(m)

(
π
U×O×

Fp
×Cp

f ⊗Qp
Rn−1(π)

) ∼= M ⊗T(UCp)m T(UCp)⊕nm

as GalK-modules for some T(UCp)m-module M .
□

Now we pass to completed cohomology. It will be essentially the cohomology
with torsion coefficients of Section 5 (at least under our ongoing assupmtion on
m that the cohomology is concentrated in middle degree when localized at m, cf.
Condition 3.1). Let

H̃n−1(Cp,Zp) := lim←−
k

lim−→
U

Hn−1(ShUCp,K ,Z/p
kZ),

and
H̃n−1(Cp,Zp)m := lim←−

k

lim−→
U

Hn−1(ShUCp,K ,Z/p
kZ)m

where U runs over all compact open subgroups of (Bop
q )× in each definition.

Then the inverse limit

T(Cp)m := lim←−
U

T(UCp)m

acts faithfully and continuously on H̃n−1(Cp,Zp)m. Then the same argument as
in the proof of Proposition 5.7, [28] shows the following result.

Proposition 3.8. There is a unique (up to conjugation) continuous n-dimensional
Galois representation

σ = σm : GK → GLn(T(Cp)m)

unramified at almost all places, such that for every w ∈ P, σ(Frobw) has charac-
teristic polynomial

Xn + · · ·+ (−1)j(Nw)j(j−1)/2T (j)
w Xn−j + · · ·+ (−1)n(Nw)n(n−1)/2T (n)

w .

The ring T(Cp)m is a complete Noetherian local ring with finite residue field.

Proposition 3.9. The T(Cp)m[GalK ]-module H̃n−1(Cp,Zp)m is σ-typic.

Proof. This follows from Propostion 3.7, noting that the σ’s are compatible with
each other and that all operations in the definition of

H̃n−1(Cp,Zp)m = lim←−
k

lim−→
U

Hn−1(ShUCp,K ,Z/p
kZ)m
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preserve the property (of modules) of being σ-typic. □
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4. p-adic uniformization of KHT type Shimura varieties

Now we describe a p-adic (in contrast to classical complex-analytic) uniformiza-
tion result of the Shimura varieties defined before to compare local and global
cohomology groups. We will use the results of Boutot-Zink which introduces a
variant of the moduli methods of Rapoport-Zink and which obtains the same
uniformization results (up to some Galois twists) with Varshavsky [34], [35].

We keep the notations from the last section on the global context. Let us
consider the following moduli problem, which is a variant of the one in [26]. For
C a compact open subgroup of G̃(AF,f ), let AC be the functor on the category of
OEv -schemes, which sends an OEv -scheme S to the set of isomorphism classes of
tuples (A,Λ, {λi}mi=1, η̄

p, {η̄qi}mi=1) where

1. A is an abelian OK-scheme over S up to isogeny of order prime to p

together with an action of OB
ι : OB → End(A);

2. Λ is the one dimensional vector space over F generated by an F -homogeneous
polarization λ of A which is principal in p;

3. for each i = 1, . . . ,m, λi is a generator of Λ⊗F Fpi mod (Cpi ∩ F×
pi

);
4. η̄p is a class of isomorphisms of B ⊗ Ap

f -modules

η̄p : V p(A)→ W ⊗ Ap
f mod Cp

which preserve the Riemannian form on V p(A) induced by any polarization
λ ∈ Λ and the pairing ψ on W ⊗ Ap

f up to a constant in (F ⊗ Ap
f )

×;
5. for each i = 1, . . . ,m, η̄qi is class of isomorphisms of Bqi-modules

η̄qi : Vqi(A)→ Wqi mod Cqi .

such that the following properties are satisfied:

(a) The involution b → b′ on OB coincides with the one obtained from the
Rosati involution on End(A) induced by Λ;

(b) there is an equality of polynomial functions on OB, called the determinant
condition:

detOS
(b,LieA) = detQp

(b,W0)

Remark 4.1. One can formulate condition (b) in terms of the associated p-divisible
group X of A. Indeed, the determinant condition amounts to requiring: (1) Xq is
a special formal OBq-module à la Drinfeld; (2) Xqi is étale for each i = 1, . . . ,m.

It is proved in [2] that
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Proposition 4.2. If C is sufficiently small, then the étale sheafification of AC is
represented by a projective scheme over OEv , still denoted by AC. For such varying
C these schemes form a projective system {AC} with finite transition maps.

It is natural to equip the system {AC} with a right action of G(Af ), for the
details one may refer to [2]. Next we consider moduli problems for p-divisible
formal OBq-modules. We fix a special formal OBq-module Φ over κ and denote its
dual by Φ̂. We will often write X for Φ× Φ̂.

LetM be the functor on the category of OĔv
-schemes where p is locally nilpo-

tent, which assigns such a scheme T the set of isomorphism classes of pairs (X, ρ)
where

(1) X is a p-divisible OBp-module of special type over T ;
(2) ρ is a quasi-isogeny of OBp-modules over T

ρ : X×Specκ T → X ×T T .

Here T := T ×SpecZp SpecFp and it is regarded as a scheme over Specκ via
T → Spec (OĔv

/p)→ Specκ. Note that by rigidity of quasi-isogenies, ρ gives rise
to a quasi-isogeny β : X̂2 → X1; we require that Zariski locally on T one can find
an element h ∈ F×

p such that hβ is an isomorphism.

Proposition 4.3. M is representable by a p-adic formal scheme over OĔv
, which

is equipped with a Weil descent datum. Furthermore, it acquires natural actions
of two groups, the group J of self quasi-isogenies of the OBp-module X preserving
the polarization up to a constant in F×

p , and G̃(Fp).

Now we are ready to state the p-adic uniformization result. For this we fix a
point (As,Λs, {λs.i}mi=1, η̄s

p, {η̄s,qi}mi=1) ∈ AC(κ̄) for a sufficiently small C. Using a
theorem of Serre-Tate, one can define a uniformization morphism

Θ :M× G̃(Ap
F,f )/C

p → AC ×SpecOEv
SpecOĔv

which is G̃(AF,f )-equivariant. It is then natural to try to find out the fibers of
this map. Define

Ĩ•(F ) = {φ ∈ End0
B(As) |φ ◦ φ′ ∈ F×}

where φ 7→ φ′ is the Rosati involution induced by Λ on the finite dimensional
Q-algebra End0

B(As). (Here End0
B(As) means EndB(As) ⊗Z Q which is usually

called the endomorphism ring up to isogeny.) Then we regard Ĩ• as an algebraic
group over F such that its F -points are given as above.

Let G′ be the inner form of G over F such that G′(F ⊗Q R) is compact modulo
center, G′(Ap

F,f ) = G̃(Ap
F,f ), and G′(Fp) ∼= GLn(Fp)×O×

Fp
. Then G′ is the unitary

similitude group associated with (D,µ) where D is a division algebra over K
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of dimension n2 with an involution µ of the second kind over F satisfying the
following conditions:

• D splits at q,
• (D,µ) and (B,′ ) are locally isomorphic at all finite places except q,
• µ is positive definite at all archimedean places of F .

Remark 4.4. The existence of such D and µ follows from the results of Kottwitz
and Clozel (see [9], Prop. 2.3]).

Theorem 4.5. (p-adic uniformization of Shimura varieties, Theorem
0.16, [2])
For any compact open subgroup C ⊆ G̃(AF,f ), there is an isomorphism of rigid
analytic spaces over SpĔv:

I•(Q)\(X× F×
p )× G̃(Ap

F,f )/C
∼−→ Shrig

(G,h̃),C
×SpEv SpĔv

which is G̃(AF,f )-equivariant and compatible with the Weil descent data on both
sides.

We explain a bit on the notations and the proof of this theorem. It is essentially
a consequence of the corresponding p-adic uniformization of Shimura varieties that
are moduli spaces of abelian varieties with PEL structures. Here h̃ is a well chosen
morphism S→ GR in the definition of Shimura datum to account for certain Galois
twist which occurs when comparing some Sh(G,h) and its appropriate PEL type
avatar. Then one proves the following uniformization result for PEL type Shimura
varieties following the method of Rapoport-Zink, [26].

Theorem 4.6. (Page 29, [2]) There is an isomorphism of rigid analytic spaces
over Ĕv:

I•(Q)\(X× F×
p )× G̃(Ap

F,f )/C
∼−→ ArigC ×SpEv Sp Ĕv.

Here and above, I• denotes ResF/QĨ• and Ĩ• is defined above as the algebraic
group of certain self quasi-isogenies of an abelian variety over the residue field of
Kq. It is easy to show that Ĩ• is in fact isomorphic to our G′. Thus we can write
I•(Q) = Ĩ•(F ) = G′(F ). Moreover, X denotes the rigid analytic pro-covering
space over N̆ rig, the rigid analytic space associated with the formal scheme N̆
classifying quasi-isogenies of some fixed special formal OBq-module over κ̄, see
e.g. 5.34 of [26] for more details. With Theorem 4.6, the p-adic uniformization
of Shimura varieties Theorem 4.5 is proved by a comparison between these two
types of Shimura varieties, see Lemma 0.9 of [2].

Recall that we have fixed a compact open subgroup Cp of G̃(Ap
F,f ), that U

denotes a compact open subgroup of (Bop
q )× and that ShUCp denotes the Shimura
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variety associated with the subgroup U×O×
Fp
×Cp. Thus taking C = U×O×

Fp
×Cp

in Theorem 4.5 (then base change to Cp and take the associated adic spaces with
quasi-separated rigid analytic spaces, cf. 1.1.11 of [18]) we obtain:

Theorem 4.7. There is an isomorphism of adic spaces over Cp

(ShUCp ⊗E Cp)
ad ∼= G′(F )\MDr,U,Cp × (F×

p /O×
Fp
)×G′(Ap

F,f )/C
p

compatible with varying U ⊆ (Bop
q )× and with the Weil descent datum to Ev.

In this theorem,MDr,U,Cp denotes the Drinfeld space of level U ⊆ (Bop
q )×, which

is a smooth adic space over Spa(Cp,OCp), cf. [29]. When U varies, these spaces
form the so-called Drinfeld tower (MDr,U,Cp)U with finite étale transitive maps
and they are related to the above pro-space X via

(X⊗Ĕv
Cp)

ad ∼= lim←−
U

MDr,U,Cp .

Remark 4.8. There is a similar rigid uniformization result of Rapoport-Zink for
unitary groups with similitude factor in Gm/Q; in our special case it has the
following form

(ShKpKp ⊗E Cp)
ad ∼= G0(Q)\MDr,Kp,Cp ×G0(Ap

Q,f )/K
p

for a group G0 over Q and Kp (resp. Kp) the level group at p (resp. away from p).
Then the Rapoport-Zink space MDr,Kp,Cp decomposes as a product of Rapoport-
Zink spaces indexed by places p of F over p. Under appropriate conditions on the
choice of the PEL Shimura datum, the decomposition reads:

MDr,Kp,Cp = Π
p|p
MDr,Kp,Cp × (Q×

p /Z×
p )

where the component MDr,Kp,Cp for p not equal to a fixed one (say p1) can be
furthermore arranged to be in the étale case, that is, isomorphic to G0(Fp)/Kp.
Then we can make a parallel development for this type Shimura varieties on all
the results in our work. The above arrangement on local components at p 6= p1 is
for the purpose of focusing on the fixed place p1 when applying the Hodge-Tate
period map and matching the fiber of the period map to automorphic forms with
infinite level at p1. See the proof of Proposition 5.3 and also Remark 5.5 for more
explanations.
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5. The case of GLn

Now let us return to our case of GLn, n > 2.
Definition 5.1. Let ρiCp be the admissible Zp-representation of GK×(Bop

q )× given
by

ρiCp := lim−→
U

H i(ShUCp,K ,Qp/Zp)

where U runs over compact open subgroups of (Bop
q )×. We will often write ρ for

ρn−1
Cp . Let π = πCp be the admissible Zp-representation of GLn(Fp) given by the

space of continuous functions

π = πCp := C0(G′(F )\G′(AF,f )/(O×
Fp
× Cp),Qp/Zp).

Define
ShCp := G′(F )\MDr,∞,Cp × (F×

p /O×
Fp
)×G′(Ap

F,f )/C
p.

It is a perfectoid space over Cp equipped with a Weil descent datum to Ev, such
that we have the following similarity relation between adic spaces (see Def. 2.4.1
of [29])

ShCp ∼ lim←−
U

(ShUCp ⊗E Cp)
ad.

In particular, we have

(2) H i(ShCp,Cp ,Qp/Zp) = lim−→
U

H i(ShUCp,Cp,,Qp/Zp)

as (WFp×B×
q )-representations where WFp is the Weil group (here we drop the nota-

tion “op” from (Bop
q )× so that it acts from the right on lim−→

U

H i(ShUCp,Cp,,Qp/Zp)).

Remark 5.2. It follows from the proper base change theorem (e.g., Tag 0A5I of
[31]) that there is a canonical isomorphism

H i(ShUCp,Cp,,Qp/Zp) ∼= H i(ShUCp,K ,Qp/Zp),
which we will use tacitly throughout.

Then we can proceed as Scholze did in [28] to obtain first a weak form of p-adic
local-global compatibility. By Proposition 7.1.1 of [29] we have the Hodge-Tate
period morphism

πHT :MDr,∞,Cp → Pn−1
Cp

compatible with Weil descent data, and it is identified with the Grothendieck-
Messing period map under the duality isomorphism

MDr,∞,Cp
∼=MLT,∞,Cp ,

https://stacks.math.columbia.edu/tag/0A5I
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cf. Theorem 7.2.3 of [29]. Now the GLn(Fp)-equivariance of the Hodge-Tate period
map induces a map

πSh
HT : ShCp,Cp = G′(F )\MDr,∞,Cp × (F×

p /O×
Fp
)×G′(Ap

F,f )/C
p → Pn−1

Cp
.

Note that πHT is (WFp ×B×
q )-equivariant.

Proposition 5.3. There is a (WFp ×B×
q )-equivariant isomorphism of sheaves on

the étale site of (the adic space) Pn−1
Cp

:

RπSh
HTét∗(Qp/Zp) ∼= FπCp .

Proof. The proof is almost the same as in [28]. First we check that the higher direct
images vanish. It is enough to check this at stalks, so let x̄ = Spa(C,C+)→ Pn−1

Cp

be a geometric point, that is, C/Ĕv is complete algebraically closed and C+ ⊆ C is
an open and bounded valuation subring. We may assume that C is the completion
of the algebraic closure of the residue field of Pn−1

Cp
at the image of x̄. Let

x̄→ Ui → Pn−1
Cp

be a cofinal system of étale neighborhoods of x̄; then we have x̄ ∼ lim←−
i

Ui. Write

USh
i → ShCp,Cp

for the pullback of Ui, so that USh
i is a perfectoid space étale over ShCp,Cp . One

can form the inverse limit USh
x = lim←−

i

USh
i in the category of perfectoid spaces over

Cp. We have equalities

(RjπSh
HTét∗(Qp/Zp))x̄ = lim−→

i

Hj
ét(U

Sh
i ,Qp/Zp) = Hj

ét(U
Sh
x̄ ,Qp/Zp).

On the other hand, the fiber USh
x̄ is given by profinitely many copies of x̄,

USh
x̄ = Spa(C0(G′(F )\G × G̃(Ap

F,f )/C
p, C), C0(G′(F )\G × G̃(Ap

F,f )/C
p, C+))

where G = GLn(Fp)× (F×
p /O×

Fp
). This implies that Hj

ét(U
Sh
x̄ ,Qp/Zp) vanishes for

j > 0, and equals

C0(G′(F )\GLn(Fp)× F×
p × G̃(A

p
F,f )/(O

×
Fp
× Cp),Qp/Zp)

in degree 0.
It remains to identify πSh

HTét∗(Qp/Zp). The previous computation shows that
the fibers are isomorphic to πCp . Let U → Pn−1

Cp
be an étale map. We need to
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construct a map
H0(U ×Pn−1

Cp
(G′(F )\MDr,∞,Cp × (F×

p /O×
Fp
)×G′(Ap

F ,f )/C
p),Qp/Zp)

→ Mapcont, GLn(Fp)(|U ×Pn−1
Cp
MDr,∞,Cp |, C0(G′(F )\G ×G′(Ap

F,f )/C
p,Qp/Zp)).

The left hand side is equal to

C0(|U ×Pn−1
Cp

(G′(F )\MDr,∞,Cp × (F×
p /O×

Fp
)×G′(Ap

F ,f )/C
p)|,Qp/Zp),

and it remains to observe that there is a natural GLn(Fp)-equivariant map
(U ×Pn−1

Cp
MDr,∞,Cp)×G′(F )\G ×G′(Ap

F,f )/C
p)

→ U ×Pn−1
Cp

(G′(F )\MDr,∞,Cp × (F×
p /O×

Fp
)×G′(Ap

F ,f )/C
p).

□

It follows from Proposition 5.3 that

H i(ShCp,Cp ,Qp/Zp) = H i
ét(Pn−1

Cp
,FπCp ).

Combining this with formula (2) we have proved

Theorem 5.4. There is a natural isomorphism of (GalFp × B×
q )-representations

over Zp
H i

ét(Pn−1
Cp

,FπCp ) ∼= ρiCp .

This is a form of local-global compatibility. We will now derive a more concrete
version of it by combining it with the σ-typicity decomposition before. To this end
we need to extend the Hecke action and for this we need a cuspidality criterion.

Remark 5.5. Until now we have been working with the unitary similitude group
G and G′ whose similitude factors lie in Gm/F . As one might have noticed, this
similitude factor played almost a trivial role in the sense that by our definition au-
tomorphic forms on G′ have unramified character on F×

p and all Shimura varieties
associated with G have level subgroups of the form U ×O×

Fp
×Cp. Thus it is nat-

ural to imagine that one can use unitary groups G with Q-similitude factors and
their associated Shimura varieties to do the generalization (of local-global com-
patibility). Indeed, this is possible. Most of the arguments involved are formal as
long as the p-adic uniformization and σ-typicity of the cohomology are available:
the main change will be to replace F×

p /O×
Fp

by Q×
p /Z×

p . (As mentioned in Remark
4.8, the Rapoport-Zink uniformization allows one to obtain directly a similar weak
form of local-global compatibility for Shimura varieties associated with G, while a
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parallel property on σ-typicity of the cohomology groups of Shimura varieties as-
sociated with G, when combined with the corresponding weak form of local-global
compatibility, will lead to again a strong form as in Section 7.)
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6. Digression on type theory and a cuspidality criterion

Let n ≥ 2 be an integer as before and L/Qp a finite extension. Set G = GLn(L).
Just as the n = 2 case, for general n we also have a cuspidality criterion of
admissible representations of G in terms of containment of certain characters of
filtration subgroups of G. To achieve this, we will work with a special extreme
case in type theory. The reference for the following and more general framework
is [5].

Let E/L be the totally ramified extension of degree n obtained by adjoining an
n-th root α of ω, namely E = L[α] with αn = ω. Regarding E =: V as an n-
dimensional vector space over L, we have isomorphisms EndL(E) ∼= Mn(L) =: A

and AutL(E) ∼= GLn(L) = G. Let A be the hereditary order corresponding to the
chain lattice L = {piE : i ∈ Z}, that is, A = End0

oL
(L) := {x ∈ A |xpiE ⊆ piE ,∀i ∈

Z}. Then A is the unique oL-order in A such that

E× ⊆ L(A) := {g ∈ G | gAg−1 = A};

in other words, E× normalises A. Moreover, A is a principal order. We set
P = End1

oL
(L) := {x ∈ A |xpiE ⊆ pi+1

E ,∀i ∈ Z}, the Jacobson radical of A.
Next, for m a positive integer, we can and do choose an element βm ∈ E with

νE(βm) = −mn − 1 (for example, one can take βm = $−mα−1); here νE is the
discrete valuation on E. Then it follows that βm is minimal in the sense of [5].

Lemma 6.1. Set βm = $−mα−1 ∈ E. Then the stratum [A,−νA(βm), 0, βm] is
simple.

Proof. It is clear that E = L[βm], so L[βm] is a field whose non-zero elements
normalise A. Also the inequality M := −νA(βm) > 0 holds as noted in the
following remark. □

Remark 6.2. Note that M := −νA(βm) > 0 tends to infinity as m tends to infinity.
Indeed, by definition νA(βm) is the unique integer r such that βm ∈ Pr\Pr+1,
which is easily computed to be mn+ 1; thus M := mn+ 1 tends to infinity when
m goes to infinity. We will denote M̃ := [M

2
] + 1 > 0 for future use.

Recall that for the hereditary order A defined above, one has a sequence of
filtration subgroups Uk(A) given by Uk(A) := 1+Pk for k ≥ 1 and U0(A) := A×.
Also in our case, B := EndE(V ) ∼= E,B := A ∩ B ∼= OE is a hereditary oE-order
with Jacobson radical Q = P ∩ B ∼= pE. In particular, since βm is minimal, we
have H1(βm,A) = (1 + pE)U

M̃(A), cf. Corollary 3.1.13 of [10], hence

H1/U M̃(A) ∼= (1 + pE)/(1 + pM̃E ).
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In the last step we have used the following two points: (1) The fact that E×

normalizes U M̃ implies that H1 normalizes U M̃ ; (2) H1 ∩ U M̃ = (1 + pM̃E ); both
follow from straightforward computations. Moreover, detB : E× → E× is the
identity map in our case. In the following proposition, we keep the notations as
above. Thus, M = mn+ 1 and we also set N =M − M̃ where M̃ = [M

2
] + 1.

Proposition 6.3. Let ψ : L → C× be a non-trivial (additive) character of level
one (that is, ψ is trivial on $OL but non-trivial on OL). Let αm be the homo-
morphism

αm : U M̃(A)→ $−NOL, a 7→ trA/L(βm(a− 1)).

If π is a smooth irreducible representation of GLn(L) such that π|UM̃ (A) contains
the character ψ ◦ αm, then π is cuspidal.

Proof. We will prove that π contains a maximal simple type; hence by Theorem
6.2.2 of [5] it is cuspidal. Let us first show that π contains a simple character θ of
H1. By assumption, there is an injection

ψm := ψ ◦ αm ↪→ π|UM̃ (A)

which gives rises to a non-zero homomorphism

c-IndH1

UM̃ (A)
ψm → π|H1 .

It then suffices to show that we have the following decomposition:

c-IndH1

UM̃ (A)
ψm =

⊕
θ∈C1(ψm)

θ

where C1(ψm) is the set of simple characters of H1 extending ψm. Clearly the right
hand side is contained in the left; thus the equality holds if both sides have the
same dimension. But by Mackey’s restriction formula, the left side has dimension

[H1 : U M̃(A)] = |(1 + pE)/(1 + pM̃E )|

while by 1. (b), Proposition 3.1.18 of [10] the right side has dimension

[U1(B) : U M̃(B)] = |(1 + pE)/(1 + pM̃E )|.

So they indeed have the same dimension, as claimed. We have the inclusions of
compact open subgroups of G:

H1 ⊆ J1 ⊆ J

Since there is a unique extension η(θ) of the simple character θ to J1 and J1 is
compact, it follows that π|J1 contains this unique η(θ). Our final task is to show
that π|J contains a simple type (J, λ).



48

Note that as a result of our choice of the hereditary order and the stratum
above, one has ef = n/[E : L] = 1, hence e = f = 1 in our case. Thus

J/J1 ∼= GL(f, kE)
e = k×E

and the factor σ in the definition of λ = κ⊗ σ is nothing but a character inflated
from

k×E
∼= o×E/(1 + oE).

So by Theorem 5.2.2 of [5] the irreducible representation λ in the definition of
simple type coincides with the β-extension κ of η(θ). Therefore it suffices to show
that π|J contains some β-extension of η(θ). We make a counting argument again.
Indeed, we obtain from the containment η(θ) ↪→ π|J1 a non-zero map

c-IndJJ1η(θ)→ π|J .

We claim that
c-IndJJ1η(θ) =

⊕
κ

where κ runs over all β-extensions of η(θ). But again, the left side has dimension
by Mackey’s formula

[J : J1] = |GL(f, kE)e| = |k×E |
while the right side has dimension |o×E/(1 + oE)| = |k×E | by Theorem 5.2.2 of
[5]. We conclude that π contains a simple type which is also maximal (namely
e = e(B|oE) = 1) and the proof is complete. □

Remark 6.4. In this proposition, we could have just dealt with such a cuspidality
criterion by assuming the containment of a simple character in π, for which the
proof would be a little easier. The reason that we consider characters on the
smaller subgroup U M̃ rather than on H1 is because the latter does not form a
cofinal system of subgroups of GLn(L) (that is, they cannot be as small as one
would want), whereas the former does. This point will be important in Corollary
6.8.

Let e be the ramification index of [Fp : Qp] and fix a surjection OL/$me ↠
Z/pmZ. Taking L = Fp, we have the following corollary.

Corollary 6.5. Let Am = Zp[T ]/((T p
m − 1)/(T − 1)). Let ψ be a character of L

with coefficients in Am whose restriction to $−NOL is the map

$−NOL
×ϖN

∼−→ OL ↠ OL/$me ↠ Z/pmZ→ A×
m
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with the last arrow mapping 1 ∈ Z/pmZ to T ∈ A×
m. Define ψm = ψ ◦ αm. Then

any automorphic representation π of GLn(Fp) appearing in

C0(G′(F )\G′(AF,f )/(U
M̃ ×O×

Fp
× Cp), ψm)[1/p]

is cuspidal at p.

Proof. Let k be the smallest integer such that ψ is trivial on $kOL, so −N < k ≤
me − N . Let ψ′ be the character of L given by x 7→ ψ($k−1x) so that ψ′ is a
character of level one. Then πp|UM̃m+k−1

contains the character ψ′ ◦αm+k−1, where
M̃m+k−1 = n(m+ k − 1) + 1; indeed, for any g ∈ U M̃m+k−1 we have

π(g)v = ψ(αm(g))v = ψ′($−(k−1)αm(g))v = ψ′ ◦ αm+k−1(g)v

where v is an eigenvector of π|UM̃ . Therefore one concludes by the proposition
above.

Remark 6.6. The existence of such an additive character ψ of L in the above
corollary can be seen from the following fact: for each integer k, one can always
extend a character χ on ωkOL to ωk−1OL, since C× is an injective Z-module.
(Here we are regarding each ωkOL as a Z-module, too.)

□
Remark 6.7. Fintzen-Shin [12] have proved, independently and simultaneously,
such results for all reductive groups over totally real fields that are compact mod-
ulo center at infinity under a mild condition on p; see Theorem 3.1.1 of their paper
(and also the Appendix D by Raphaël Beuzart-Plessis therein which removes the
condition on p). In fact they prove results on supercuspidal types to construct
congruences between automorphic forms and apply such congruence results to
simplify the construction of automorphic Galois representations by reducing to
cases where the automorphic representation has supercuspidal component at a
prime.

Let us return to our context. Note that asG andG′ are isomorphic to GL1(B)×Gm

ResK/FGm and GL1(D) ×Gm ResK/FGm respectively, applying the results of [22]
along with the classical Jacquet-Langlands correspondence between GL1(B) (resp.
GL1(D)) and GLn, we know that an automorphic representation of G′ transfers
to G if and only if it is a discrete series at p.

Corollary 6.8. Let T(Cp)m be defined as in Section 2, so that it acts faithfully
on Hn−1(Cp,Qp/Zp)m. The natural action of T on

πm = πCp,m = C0(G′(F )\G′(AF,f )/(O×
Fp
× Cp),Qp/Zp)m

extends to a continuous action of T(Cp)m.
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Proof. We follow the proof of Scholze in [28]. It is enough to prove this for each
group

C0(G′(F )\G′(AF,f )/(K
′ ×O×

Fp
× Cp),Z/pmZ)m

with K ′ ⊆ GLn(Fp) compact open subgroups. We may assume that K ′ = U M̃

is of the form in Proposition 6.3 with M̃ = [mn+1
2

] + 1 for varying m, as these
subgroups form a cofinal system. In this case, Z/pmZ ∼= Am/(T − 1) and ψm mod
(T − 1) is trivial. Hence there is a T-equivariant surjection

C0(G′(F )\G′(AF,f )/(U
M̃ ×O×

Fp
× Cp), ψm)m

→ C0(G′(F )\G′(AF,f )/(U
M̃ ×O×

Fp
× Cp),Z/pmZ)m.

Thus it suffices to show that the action of T on

M := C0(G′(F )\G′(AF,f )/(U
M̃ ×O×

Fp
× Cp), ψm)m

extends continuously to T(Cp)m. But M is p-torsion free, so it is enough to check
in characteristic 0. In that case, by Corollary 6.5 all automorphic representa-
tions of G′ appearing in M [1/p] are cuspidal at the place p and thus transfer
by Jacquet-Langlands correspondence to G̃, so that after transfer they show up
in the cohomology group Hn−1(ShUM̃Cp,C,Zp)m for U M̃ sufficiently small. Since
T(Cp)m ↠ T(U M̃Cp)m acts continuously on

Hn−1(ShUM̃Cp,C,Zp)m,

the result follows.
□
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7. The local-global compatibility

With the previous preparations, let us now deduce the concrete form of local-
global compatibility mentioned before. Recall that there is an n-dimensional
Galois representation

σ = σm : GK → GLn(T(Cp)m)

associated with m, as well as its reduction modulo m

σ̄ = σ̄m : GK → GLn(Fq)

which is by definition modular; here q is the cardinality of T(Cp)/m. By Propo-
sition 3.9 and Corollary 6.8, ρn−1

Cp,m is a σ-typic T(Cp)m[GalK ]-module, so we have

ρn−1
Cp,m = σ ⊗T(Cp)m ρ[σ]

for some T(Cp)m[B
×
q ]-module ρ[σ]. Combining with Theorem 5.4, we have proved

the following result.

Corollary 7.1. There is a canonical T(Cp)m[GalFp×B×
q ]-equivariant isomorphism

Hn−1
ét (Pn−1

Cp
,FπCp,m

) ∼= σ|GalFp
⊗T(Cp)m ρ[σ].

The T(Cp)-module ρ[σ] is faithful.

Remark 7.2. In the proof of the above corollary it is guaranteed by corollary 6.8
that there is a well defined T(Cp)m-module structure on πm (so that we can use
the formalism of A[G]-modules). We also abused tacitly the notations GalKq and
GalFp under the canonical isomorphism Fp

∼= Kq.

This implies that the localization πCp,m determines the local Galois representa-
tion

σ|GalFp
: GalFp → GLn(T(Cp)m)

at least when σ̄|GalFp
is absolutely irreducible.

Theorem 7.3. Assume that σ̄|GalFp
is absolutely irreducible. Then σ|GalFp

is de-
termined by πCp,m. More precisely, the T(Cp)m[GalFp ]-module

Hn−1
ét (Pn−1

Cp
,FπCp,m

)

is σ|GalFp
-typic, and faithful as a T(Cp)m-module. It follows from Lemma 5.5 of

[28] that this module determines σ|GalFp
uniquely.

This more concrete form of local-global compatibility shows that the local com-
ponent at p of the global Galois representation σm associated with the eigen-
system m is determined compatibly by πCp,m through the cohomology group
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Hn−1
ét (Pn−1

Cp
,FπCp,m

). Now we want to prove a similar result for the m-torsion
πCp [m] instead of the localization πCp,m.

Consider the following two short exact sequences of T(Cp)m-modules

(3) 0→ πCp,m[m]
i→ πCp,m → πCp,m/πCp,m[m]→ 0

and

(4) 0→ πCp,m/πCp,m[m]
j→

r∏
i=1

πCp,m → Q→ 0

where r is an integer such that there exists a sequence of generators f1, . . . , fr
of the ideal mT(Cp)m, j induced by mapping x ∈ πCp,m to (f1x, . . . , frx) ∈∏r

i=1 πCp,m, and Q is by definition the quotient in the second sequence. Let C
denote πCp,m/πCp,m[m]. We have two corresponding long exact sequences
(5)
. . .→ Hn−1

ét (Pn−1
Cp

,FπCp,m[m])
i∗→ Hn−1

ét (Pn−1
Cp

,FπCp,m
)→ Hn−1

ét (Pn−1
Cp

,FC)→ . . .

and

(6) . . .→ Hn−1
ét (Pn−1

Cp
,FC)→

r⊕
i=1

Hn−1
ét (Pn−1

Cp
,FπCp,m

)→ Hn−1
ét (Pn−1

Cp
,FQ)→ . . .

Now for simplicity, πCp will be denoted by π.

Lemma 7.4. The natural map π → πm induces an isomorphism π[m]
∼−→ πm[m].

Proof. Suppose f ∈ π[m] maps to 0 in πm, then there exists t /∈ m such that
tf = 0. But m is a maximal ideal, so there exist r ∈ T and m ∈ m satisfying
rt+m = 1, and we deduce that f = rtf +mf = 0 since f is m-torsion. To show
surjectivity, let f/s ∈ πm[m]. As

π = lim−→
Kp

lim−→
r

C0(G′(F )\G′(AF,f )/(Kp ×O×
Fp
× Cp),Z/prZ)

we may assume that f belongs to a member indexed by Kp and r above, which
is Hecke stable and finite as a set; denote it by πKp,r. Then the image of T (resp.
m) in End(πKp,r) is a finite ring (resp. ideal) and we choose m1, . . . ,ml ∈ m so
that their images form a set equal to the image of m. By the assumption that
f/s ∈ πm[m], there exists an element ti ∈ T with ti /∈ m for each 1 ≤ i ≤ l such
that timif = 0. Let t = t1 . . . tl, so that tmf = 0 for every m ∈ m. Moreover there
exists h ∈ T satisfying 1 − hst ∈ m. Taking g = fht, one verifies that g ∈ π[m]

and that f/s is the image of g under the localization map. □
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Lemma 7.5. Assume that π∨
m = HomZp(πm,Qp/Zp) is flat over T(Cp)m (see the

remark below). Then for all r ≥ 1, we have

πm[m
r+1]/πm[m

r] ∼=
⊕
s

π[m]

where s = dimT/m(m
r/mr+1).

Proof. Since taking dual (with respect to Qp/Zp) is an exact functor, we have

(πm[m
r+1]/πm[m

r])∨ ∼=Ker(πm[mr+1]∨ → πm[m
r]∨)

∼=Ker(π∨
m/m

r+1π∨
m → π∨

m/m
rπ∨

m)

∼=mrπ∨
m/m

r+1π∨
m.

But π∨
m is assumed to be flat over T(Cp)m, we decuce that

mrπ∨
m/m

r+1π∨
m
∼= π∨

m ⊗ (mr/mr+1)

∼= (π∨
m ⊗ T(Cp)m/m)⊗T(Cp)m/m (mr/mr+1)

∼= (πm[m])∨ ⊗T(Cp)m/m (mr/mr+1).

From the isomorphism π[m] = πm[m], the last term above can be identified with

(πm[m])∨ ⊗T(Cp)m/m (mr/mr+1) ∼= (π[m])∨ ⊗T/m (mr/mr+1) ∼=
⊕
s

(π[m])∨

where s = dimT/m(m
r/mr+1). Combining all these isomorphisms and taking duals

again, we have πm[mr+1]/πm[m
r] ∼=

(
(π[m])∨⊗T/m (m

r/mr+1)
)∨ ∼= (

⊕
s(π[m])∨)∨ ∼=⊕

s π[m] where s = dimT/m(m
r/mr+1), as desired. □

Remark 7.6. In [13], Theorem B, Gee-Newton proved among other things that un-
der certain assumptions on the Gelfand-Kirillov dimension of π, the corresponding
flatness result for the group PGLn indeed holds, so our flatness assumption above
seems to be reasonable and one might expect a proof of it under similar conditions
as in [13] or directly via the Jacquet-Langlands correspondence using Theorem B
of [13].

Assume from now on that π∨
m is flat over T(Cp)m. As a consequence of the above

lemma, the sheaf Fπm[mr+1]/πm[mr] and hence the cohomology group
Hn−1

ét (Pn−1
Cp

,Fπm[mr+1]/πm[mr]), are determined by the torsion part π[m]. We also
notice that

Lemma 7.7. The T(Cp)m-module πm is m power torsion: πm = lim−→
k

πm[m
k]. More-

over, there exists an integer N > 0 such that σ̄|GalFp
appears in Hn−1

ét (Pn−1
Cp

,Fπm[mN ])[m].
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Proof. By the equality

π = lim−→
Kp

C0(G′(F )\G′(AF,f )/(Kp ×O×
Fp
× Cp),Qp/Zp)

and the finiteness of the cardinality of G′(F )\G′(AF,f )/(Kp×O×
Fp
×Cp) it suffices

to show that for each compact open subgroup Kp ⊆ G(Fp) and for each positive
integer r, the localization at m of

πKp,r := C0(G′(F )\G′(AF,f )/(Kp ×O×
Fp
× Cp),Z/prZ)

is m power torsion. Let T̃ be the image of the map φ : T→ End(πKp,r) and m̃ ⊆ T̃
be the image of m under φ. We distinguish two cases:

• m̃ is equal to T̃, which is equivalent to ker(φ) ⊈ m. In this case it is direct
to check that (πKp,r)m = 0.
• ker(φ) ⊆ m, in which case m̃ is a maximal ideal of T̃. As πKp,r is finite as

a set it follows that T̃ is a finite ring and hence an Artin ring. Thus T̃m̃ is
a local Artin ring and there exists an integer M > 0 such that m̃M T̃m̃ = 0.
Now mM(πKp,r)m = m̃M(T̃m̃ ⊗T̃ πKp,r) = 0.

For the second statement, we first note that from the exactness of π 7→ Fπ we
have an injective morphism of sheaves

lim−→
k

Fπm[mk] → Fπm ,

which is also surjective by checking stalks using the equality Fπ,x̄ = π and the
first statement of the lemma. On the other hand, by Proposition 2.8 of [28] and
the coherence of the sites (Pn−1

Cp
/K)ét we deduce

Hn−1
ét (Pn−1

Cp
,Fπm) = lim−→

k

Hn−1
ét (Pn−1

Cp
,Fπm[mk])

with injective transition maps in the direct system. As σ̄|GalFp
is finite dimen-

sional and occurs in Hn−1
ét (Pn−1

Cp
,Fπm)[m] = σ̄|GalFp

⊗ ρCp [m] it must occur in some
Hn−1

ét (Pn−1
Cp

,Fπm[mN ])[m] for some large N .
□

Now we can prove

Theorem 7.8. Assume that π∨
m is flat over T(Cp)m and that σ̄|GalFp

is semisimple
with distinct irreducible factors. Then σ̄|GalFp

appears in the composition series of
Hn−1

ét (Pn−1
Cp

,Fπ[m]).

Proof. We may assume that σ̄|GalFp
is irreducible. Pick an N > 0 such that

σ̄|GalFp
appears in Hn−1

ét (Pn−1
Cp

,Fπm[mN ])[m] whose existence is guaranteed by the
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above lemma. Denote πN := πm[m
N ] and consider the short exact sequence

0→ πN [m]
i→ πN → πN/πN [m]→ 0

and its associated long exact sequence

. . .→ Hn−1
ét (Pn−1

Cp
,FπN [m])

i∗→ Hn−1
ét (Pn−1

Cp
,FπN )→ Hn−1

ét (Pn−1
Cp

,FC1)→ . . .

where C1 := πN/πN [m]. Since πN [m] is of m-torsion, by functoriality the map i∗
factors through Hn−1

ét (Pn−1
Cp

,FπN )[m] which by assumption contains σ̄|GalFp
. If the

image of i∗ contains a copy of σ̄|GalFp
in Hn−1

ét (Pn−1
Cp

,FπN ) then we are done, as the
irreducible representation σ̄|GalFp

occurs in the composition series of a quotient of
Hn−1

ét (Pn−1
Cp

,FπN [m]) (note that πN [m] = π[m]). Now suppose the contrary so that
coker(i∗), containing a copy of σ̄|GalFp

(since σ̄|GalFp
is assumed to be irreducible),

injects into Hn−1
ét (Pn−1

Cp
,FC1).

Consider the further filtration

0→ C1[m]
i1→ C1 → C2 → 0

where C2 := C1/C1[m] and one can check that C1[m] = πN [m
2]/πN [m] so that

C2 = πN/πN [m
2]. We have again the long exact sequence

. . .→ Hn−1
ét (Pn−1

Cp
,FC1[m])

i1∗→ Hn−1
ét (Pn−1

Cp
,FC1)→ Hn−1

ét (Pn−1
Cp

,FC2)→ . . .

By the same argument as above, either the image of i1∗ contains a copy of σ̄|GalFp

inside Hn−1
ét (Pn−1

Cp
,FC1), or, otherwise, coker(i1∗) contains a copy of σ̄|GalFp

and
injects into Hn−1

ét (Pn−1
Cp

,FC2). Then one defines C3 := πN/πN [m
3] to continue

with the above procedure.
Considering that πN = πN [m

N ] (hence CN := πN/πN [m
N ] = 0), one concludes

by induction that there exists a positive integer r < N such that the image of
ir∗ contains a copy of σ̄|GalFp

inside Hn−1
ét (Pn−1

Cp
,FCr), i.e., σ̄|GalFp

is an irreducible
sub-representation of a homomorphic image of Hn−1

ét (Pn−1
Cp

,FCr[m]) and therefore
appears in the composition series of

Hn−1
ét (Pn−1

Cp
,FCr[m]) = Hn−1

ét (Pn−1
Cp

,Fπm[mr+1]/πm[mr])

where we have used equalities πN [mi] = π[mi] for 1 ≤ i ≤ N . For later reference
in the following, we denote this induction process by Ω.

So we have proved that σ̄|GalFp
appears in the composition series either of

Hn−1
ét (Pn−1

Cp
,Fπ[m]) or of Hn−1

ét (Pn−1
Cp

,Fπm[mr+1]/πm[mr]) for some positive integer r,
but in the latter case one has

Hn−1
ét (Pn−1

Cp
,Fπm[mr+1]/πm[mr]) ∼=

⊕
s

Hn−1
ét (Pn−1

Cp
,Fπ[m])
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from the equality πm[mr+1]/πm[m
r] ∼=

⊕
s π[m] (hence Fπm[mr+1]/πm[mr]

∼=
⊕

sFπ[m]).
□

Now we show that when σ̄|GalFp
is irreducible, it is uniquely determined by π[m]

in the sense that we can read off σ̄|GalFp
from Hn−1

ét (Pn−1
Cp

,Fπ[m]).

Lemma 7.9. Assume that π∨
m is flat over T(Cp)m. Then H i

ét(P
n−1
Cp

,Fπ[m]) = 0 for
1 ≤ i ≤ n−2, and the map Hn−1

ét (Pn−1
Cp

,Fπm[m])
i∗→ Hn−1

ét (Pn−1
Cp

,Fπm)[m] is injective.

Proof. We prove that the kernel of the map i∗ in the long exact sequence (5),
which is equal to the image of the map

Hn−2
ét (Pn−1

Cp
,FC)→ Hn−1

ét (Pn−1
Cp

,Fπm[m]),

is trivial by showing directly that Hn−2
ét (Pn−1

Cp
,FC) = 0. This will be a consequence

of the hypothesis that H i(ShUCp,C,Zp)m is concentrated in middle degree. Indeed,
in degree 0 this follows from the injection

H0
ét(Pn−1

Cp
,FC)→

r⊕
i=1

H0
ét(Pn−1

Cp
,Fπm) =

r⊕
i=1

H0(ShCp,Cp ,Qp/Zp)m

induced by the exact sequence (4), and from the vanishing of H0(ShCp,Cp ,Qp/Zp)m
by our assumption on m. Then we proceed by induction, so assume now that
Hk

ét(P
n−1
Cp

,FC) = 0 for some k with 0 ≤ k ≤ n − 3 and we want to prove the
vanishing in degree k + 1. Note that from the sequence (3) we have immediately
Hk+1

ét (Pn−1
Cp

,Fπ[m]) = 0. Further, as we can write πm/πm[m] = lim−→
N

πm[m
N ]/πm[m]

by Lemma 7.7, it suffices to prove Hk+1
ét (Pn−1

Cp
,FC′

N
) = 0 for all N ≥ 1 where

C ′
N := πm[m

N ]/πm[m]. But this follows directly by the induction process Ω in the
proof of Theorem 7.8, which shows in particular that C ′

N is a successive extension
of copies of π[m] (by Lemma 7.5).

□
Theorem 7.10. Assume that π∨

m is flat over T(Cp)m. Then Hn−1
ét (Pn−1

Cp
,Fπ[m]) is a

non-zero admissible GalFp×B×
q -representation, and it has the same Jordan-Hölder

factors with σ̄|GalFp
. In particular, if σ̄|GalFp

is irreducible, then every irreducible
subrepresentation of Hn−1

ét (Pn−1
Cp

,Fπ[m]) is isomorphic to σ̄|GalFp
.

Proof. By Lemma 7.9 it suffices to prove JH(σ̄|GalFp
) is contained in

JH(Hn−1
ét (Pn−1

Cp
,Fπ[m])). But σ̄|GalFp

is finite dimensional, so this follows again
from the induction argument Ω in the proof of Theorem 7.8, using Lemma 7.5
and Lemma 7.7.

□
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8. Beyond the semisimple case (joint with Z. Qian)

Introduction. In this joint work with Zicheng Qian, we prove a stronger result
on mod p local-global compatibility than that in section 7; namely, we remove
the semisimple condition on σ̄|GalFp

and instead replace it by the much weaker
condtion that σ̄|GalFp

be multiplicity free as a Galois representation of GalFp . We
will first establish a slightly more general framework concerning submodules of a
given σ-typic module before we embark on the proof of the stronger result that
we mentioned.

Let G be a group, R be a commutative ring and ρ0 be an R[G]-module of finite
length. We have the following definition generalizing Definition 5.2 of [28].

Definition 8.1. Assume that ρ0 is multiplicity free, namely each Jordan–Hölder
factor of ρ0 appears with multiplicity one. Then ρ0 admits a decomposition ρ0 ∼=⊕

ρ̃ into its non-zero indecomposable direct summands. We say that an R[G]-
module V is ρ0-typic if there exists a non-zero R-module Wρ̃ with trivial G-action
for each ρ̃, such that V ∼=

⊕
ρ̃Wρ̃ ⊗R ρ̃.

We assume throughout this section that R is field and ρ0 is multiplicity free.
We fix from now a ρ0-typic R[G]-module V equipped with an R-module Wρ̃ for
each indecomposable direct summand ρ̃ of ρ0 as in Definition 8.1. The main result
of this section is a criterion (see Proposition 8.6) for certain submodule of V to
be ρ0-typic.

We write Σ for the set of non-zero indecomposable R[G]-submodules of ρ0,
equipped with the natural partial order given by inclusion of R[G]-submodules.
We write JHR[G](·) for the set of Jordan–Hölder factors. As ρ0 is multiplicity free,
any R[G]-submodule of ρ0 is uniquely determined by its set of Jordan–Hölder
factors, and we clearly have #Σ ≤ 2ℓ where ` is the length of ρ0. Note that
V ∼=

⊕
ρ̃Wρ̃ ⊗R ρ̃ forces V to be locally finite, and so is any subquotient of V .

Lemma 8.2. Let ρ′ ⊆ ρ be two elements of Σ. Then the canonical map

HomR[G](ρ, V )→ HomR[G](ρ
′, V )

is an isomorphism.

Proof. We first deduce from ρ, ρ′ ∈ Σ and ρ′ ⊆ ρ that there exists a unique
indecomposable direct summand ρ̃ ∈ Σ of ρ0 which contains ρ, ρ′. The canon-
ical map HomR[G](ρ, ρ̃) → HomR[G](ρ

′, ρ̃) is clearly an isomorphism of R-vector
spaces of dimension one. Then the canonical map in question factors through the
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isomorphisms

HomR[G](ρ, V ) ∼= Wρ̃⊗RHomR[G](ρ, ρ̃)
∼−→Wρ̃⊗RHomR[G](ρ

′, ρ̃) ∼= HomR[G](ρ
′, V ).

□

Lemma 8.3. Let V ′ ⊆ V be an R[G]-submodule with cosocR[G](V
′) being irre-

ducible. Then there exists ρ ∈ Σ such that V ′ ∼= ρ.

Proof. We write τ := cosocR[G](V
′) ∈ JHR[G](V ) = JHR[G](ρ0). There exists a

unique ρ ⊆ ρ̃ ⊆ ρ0 such that ρ̃ is an indecomposable direct summand of ρ0 and
cosocR[G](ρ) ∼= τ . As V/Wρ̃ ⊗R ρ does not have τ as a Jordan–Hölder factor, we
may assume without loss of generality that ρ = ρ̃ = ρ0. Then the key observation
is that

(7) HomR[G](ρ̃, V ) ∼= Wρ̃ ⊗R R[G](ρ̃)
∼−→Wρ̃ ⊗R R[G](τ) ∼= HomR[G](τ,Wρ̃ ⊗R τ).

The R[G]-submodule V ′ ⊆ V determines an embedding τ ↪→ Wρ̃ ⊗R τ and thus
(by (7) an embedding f : ρ̃ ↪→ V . We write rad(V ′) for the kernel of V ′ ↠
cosocR[G](V

′). As the canonical map V ′/rad(V ′) → V/(im(f) + rad(V ′)) is zero
by the choice of f , so is the map V ′ → V/im(f), which implies that V ′ ⊆ im(f).
This inclusion must be equality as both R[G]-modules share the same cosocle. □

Lemma 8.4. Let V ′ ⊆ V be an R[G]-submodule. If V ′ is multiplicity free, then
there exists an embedding V ′ ↪→ ρ0.

Proof. By writing V ′ as direct sum of its indecomposable direct summands, it
suffices to assume that V ′ is indecomposable and find ρ ∈ Σ such that V ′ ∼= ρ. As
JHR[G](V ) = JHR[G](ρ0) is finite, we deduce that V ′ has finite length. By writing
each Wρ̃ = lim−→

k

Wρ̃,k as direct limit of its finite dimensional subspaces and then

using the fact that V ′ has finite length, we may assume without loss of generality
that Wρ̃ is finite dimensional for each indecomposable direct summand ρ̃ of ρ0.
We write socR[G]V

′ ∼=
⊕s

t=1 τt, then each τt ⊆ V ′ ⊆ V determines a unique ρ̃t
containing τt as well as an element ft ∈ HomR[G](τt, V ) ∼= HomR[G](ρ̃t, V ) ∼= Wρ̃t .
As V ′ is indecomposable and Wρ̃⊗R ρ̃ do not share common Jordan–Hölder factor
for different ρ̃, we deduce that all ρ̃t equal the same ρ̃. As it is harmless to assume
that R is infinite, there exists ` : Wρ̃ → R such that `(ft) 6= 0 for each 1 ≤ t ≤ s.
Hence, `⊗R ρ̃ : Wρ̃⊗R ρ̃→ ρ̃ restricted to an injection on socR[G](V

′), and thus an
injection on V ′ as well. We conclude by the observation that any indecomposable
R[G]-submodule of ρ̃ is in Σ. □

Lemma 8.5. Let V ′ ⊆ V be an R[G]-submodule. Assume that
(1) JHR[G](V

′) = JHR[G](ρ0);
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(2) for each indecomposable direct summand ρ̃ of ρ0 and each embedding f :

ρ̃ ↪→ V , we have either im(f) ⊆ V ′ or im(f) ∩ V ′ = 0.
Then V ′ is ρ0-typic.

Proof. Recall that we have V ∼=
⊕

ρ̃Wρ̃⊗Rρ̃ and the identificationWρ̃
∼= HomR[G](ρ̃, V )

for each indecomposable direct summand ρ̃ of ρ0. We write W ′
ρ̃ ⊆ Wρ̃ for the sub-

space of all morphisms f : ρ̃ → V satisfying im(f) ⊆ V ′. We claim that the
natural map

(8)
⊕
ρ̃

W ′
ρ̃ ⊗R ρ̃→ V ′

is an isomorphism. The compatibility with V ∼=
⊕

ρ̃Wρ̃ ⊗R ρ̃ forces (8) to be
injective. As V ′ is sum of its R[G]-submodules with irreducible cosocle, it suffices
to prove that each such R[G]-submodule V ′′ of V ′ is contained in the image of
(8). In fact, it follows from Lemma 8.3 that there exists ρ ∈ Σ such that V ′′ ∼= ρ.
Hence, we deduce from Lemma 8.2 that there exists an indecomposable direct
summand ρ̃ of ρ0 as well as f ∈ HomR[G](ρ̃, V ) such that ρ̃ ⊇ ρ and V ′′ ⊆ im(f).
As im(f) is multiplicity free, it embeds into ρ0 by Lemma 8.4, and thus embeds
into ρ̃ by checking Jordan–Hölder factors. This forces ρ̃ ∼= ker(f) ⊕ im(f) and
thus ker(f) = 0 as ρ̃ is indecomposable. In other words, f is an embedding with
0 6= V ′′ ⊆ im(f)∩V ′, which together with our assumption implies that im(f) ⊆ V ′.
Hence, im(f) is contained in the image of (8), and so is V ′′. Note finally that the
equality JHR[G](V

′) = JHR[G](ρ0) forces W ′
ρ̃ 6= 0 for each indecomposable direct

summand ρ̃ of ρ. The proof is thus completed. □

Proposition 8.6. Let ρ0 be a multiplicity free R[G]-module of finite length. Let
V be a ρ0-typic R[G]-module with a sequence of R[G]-submodules V1 ⊊ V2 ⊊ · · ·
satisfying the following conditions

• V =
⋃
r≥1 Vr; and

• for each r ≥ 1, there exists an embedding Vr+1/Vr ↪→ V ⊕sr
1 for some sr ≥ 1.

Then V1 is ρ0-typic. In particular, V1 determines ρ0 up to isomorphism.

Proof. Our assumption clearly implies that JHR[G](V1) = JHR[G](ρ0). Let ρ̃ be an
indecomposable direct summand of ρ0 and f : ρ̃ ↪→ V be an embedding. According
to Lemma 8.5, it suffices to show that either im(f) ⊆ V1 or im(f) ∩ V1 = 0 holds.
We set Vf,0 := 0 ⊆ im(f) and Vf,r := im(f)∩Vr for each r ≥ 1. Our assumption on
{Vr}r≥1 implies that {Vf,r}r≥0 is an increasing and exhaustive filtration on im(f).
The inclusion im(f) ⊆ V induces a natural embedding

Vf,r+1/Vf,r ↪→ Vr+1/Vr ↪→ V ⊕sr
1 ↪→ V ⊕sr .
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As V ⊕sr is ρ0-typic and Vf,r+1/Vf,r is multiplicity free, we deduce from Lemma 8.4
that Vf,r+1/Vf,r embeds into ρ0, and actually embeds into ρ̃ by checking Jordan–
Hölder factors. As Vf,r+1/Vf,r embeds into ρ̃ ∼= im(f) for each r ≥ 0, we deduce
that

ρ̃ ∼= im(f) ∼=
⊕
r≥0

Vr+1,f/Vr,f .

However, ρ̃ is indecomposable, and thus there exists a unique rf ≥ 0 such that
Vrf+1,f/Vrf ,f

∼= ρ̃ and Vr+1,f = Vr,f for all r 6= rf . In particular, we have im(f) ⊆
V1 if rf = 0, and im(f) ∩ V1 = 0 if rf ≥ 1. As the ρ0-typic R[G]-module V1
determines the isomorphism class of each indecomposable direct summand ρ̃ of
ρ0 (by considering all possible indecomposable direct summands of V1), it clearly
determines ρ0 up to isomorphism. The proof is thus finished. □

We also have the following more general result which captures ρ0 from an R[G]-
submodule V ′ ⊆ V without knowing that V ′ is ρ0-typic.

Proposition 8.7. Let V ′ ⊆ V be an R[G]-submodule. Assume that JHR[G](V
′) =

JHR[G](ρ0). Then V ′ determines ρ0 up to isomorphism.

Proof. As ρ0 is multiplicity free, for each τ ∈ JHR[G](ρ0), there exists a unique
R[G]-submodule ρτ ⊆ ρ0 such that cosocR[G](ρτ ) ∼= τ . It follows from Lemma 8.3
that for each τ ∈ JHR[G](ρ0), anyR[G]-submodule V ′′ ⊆ V satisfying cosocR[G](V

′) ∼=
τ must also satisfy V ′′ ∼= ρτ . Consequently, we deduce from JHR[G](V

′) =

JHR[G](ρ0) that V ′ determines the set of isomorphism classes {[ρτ ]}τ∈JHR[G](ρ0).
It then suffices to show that the set {[ρτ ]}τ∈JHR[G](ρ0) determines ρ0 up to isomor-
phism. We prove that {[ρτ ]}τ∈JHR[G](ρ0) determines ρ up to isomorphism for each
R[G]-submodule ρ ⊆ ρ0 by induction on the length of ρ.

Let ρ′ ⊆ ρ be two R[G]-modules of ρ0 with ρ/ρ′ ∼= τ0 for some τ0 ∈ JHR[G](ρ0).
Assume first that {[ρτ ]}τ∈JHR[G](ρ0) determines ρ′ and ρ′ ∩ ρτ0 up to isomorphism.
We choose two embeddings f1 : ρ′ ∩ ρτ0 → ρ′ and f2 : ρ′ ∩ ρτ0 → ρτ0 and note
that the choice of the pair (f1, f2) is unique up to automorphisms of ρ′, ρτ0 and
ρ′ ∩ ρτ0 . Hence, the isomoprphism class of the amalgamated sum ρ′ ⊕ρ′∩ρτ0 ρτ0
does not depend on the choice of f1, f2. It is obvious that ρ ∼= ρ′ ⊕ρ′∩ρτ0 ρτ0 and
thus {[ρτ ]}τ∈JHR[G](ρ0) determines ρ up to isomorphism. The proof is then finished
by induction on length. □

We can now apply this formalism to our setting in section 7. More precisely,
recall that under the flatness condition on π∨

m there exists for each r ≥ 1 a short
exact sequence (by Lemma 7.5)

(9) 0→ πm[m
r]→ πm[m

r+1]→ (πUp [m])⊕sr → 0
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where sr ≥ 1 is a positive integer. Applying Scholze’s functor, we get from it an
exact sequence on cohomology groups (for each r ≥ 1)
(10)
0→ Hn−1

ét (Pn−1
Cp

,Fπm[mr])→ Hn−1
ét (Pn−1

Cp
,Fπm[mr+1])→

⊕
sr

Hn−1
ét (Pn−1

Cp
,FπUp [m]).

The injectivity on the left hand side follows from Lemma 7.9. Now set

Vr := Hn−1
ét (Pn−1

Cp
,Fπm[mr])[m].

Taking m-torsion on the sequence (10) yields an exact sequence

(11) 0→ Vr → Vr+1 → (V1)
⊕sr .

To apply our previous results on the classification of R[G]-submodules of a ρ0-typic
R[G]-module V , we need to assume

Condition 8.8. The F[GalFp ]-module σ|GalFp
is multiplicity free; that is, each

Jordan–Hölder factor of σ|GalFp
appears with multiplicity one.

Recall that here F = Fq is the coefficient field of the representation σ̄. Then we
take

• R = F = T(U p)m/mT(U p)m
• G = GalFp

• ρ0 = σ|GalFp

• V = Hn−1
ét (Pn−1

Cp
,Fπm)[m].

Thus we have V = lim−→
r

Vr; this equality together with the sequence (11) fulfills

all the conditions in Proposition 8.6. Therefore we deduce

Theorem 8.9. Assume that the flatness condition on π∨
m and Condition 8.8 hold.

Then Hn−1
ét (Pn−1

Cp
,Fπ[m]) is σ|GalFp

-typic. In particular, Hn−1
ét (Pn−1

Cp
,Fπ[m]) deter-

mines σ|GalFp
up to isomorphism.

Remark 8.10. Let us write V ∗
1 for the image of the homomorphism

(12) Hn−1
ét (Pn−1

Cp
,Fπm[m])→ Hn−1

ét (Pn−1
Cp

,Fπm)[m].

Assuming Condition 8.8 and moreover that

(13) JHF[GalFp ]
(V ∗

1 ) = JHF[GalFp ]
(σ|GalFp

),

we can show that V ∗
1 determines σ|GalFp

up to isomorphism without showing that
V ∗
1 is σ|GalFp

-typic. In fact, for each τ ∈ JH[GalFp ]
(σ|GalFp

), there exists a unique
subrepresentation ρτ ⊆ σ|GalFp

with cosocle τ . It follows from Lemma 8.3 that
any [GalFp ]-submodule V ′ of V ∗

1 with cosoc[GalFp ]
(V ′) ∼= τ necessarily satisfies
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V ′ ∼= ρτ . As τ ∈ JH[GalFp ]
(V ∗

1 ) by our assumption, we deduce that V ∗
1 determines

the isomorphism class [ρτ ] of ρτ for each τ ∈ JH[GalFp ]
(σ|GalFp

). Then we can
recover the isomorphism class of σ|GalFp

from

{[ρτ ]}τ∈JH[GalFp
](V

∗
1 )

by considering an amalgamate sum. However, one needs to be careful that V ∗
1 a

priori depends on the structure of πm rather than πm[m], and thus the result above
for V ∗

1 is not sufficient to imply that πm[m] determines σ|GalFp
up to isomorphism.

If (12) is an embedding, then this gives an alternative approach to Theorem 8.9
with weaker conclusion (namely without showing that V ∗

1 is σ|GalFp
-typic). It

worths to point out that there are actually examples in [19] such that
• The flatness condition fails;
• the map ((12)) is an embedding; and
• V ∗

1
∼= Hn−1

ét (Pn−1
Cp

,Fπ[m]) is not σ|GalFp
-typic.

We also note that we do not know how to prove (13) without assuming the flatness
condition when n ≥ 3.

Remark 8.11. If σ|GalFp
is not multiplicity free, then in general we cannot deter-

mine σ|GalFp
uniquely from the structure of a direct summand V ′ of an infinite

dimensional σ|GalFp
-typic module, even if V ′ exhausts all Jordan–Hölder factors

of σ|GalFp
. Let χ1, χ2 be two distinct characters GalFp → F×, then we have the

following simple examples for such σ|GalFp

• r1, r2 ≥ 2 and σ|GalFp

∼= χ⊕r1
1 ⊕ χ⊕r2

2 ;
• [Fp : Qp] ≥ 2, r1, r2 ≥ 2 and σ|GalFp

∼= σ⊕r1
1 ⊕ σ⊕r2

2 with σ1, σ2 two non-
isomorphic extensions of χ1 by χ2.

We expect a better understanding of the D×-action on Hn−1
ét (Pn−1

Cp
,Fπ[m]) to be

essential to generalize Theorem 8.9 to cases when σ|GalFp
has multiplicity.
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Résumé. Nous généralisons le résultat de compatibilité local-global dans [28]
aux cas de dimension supérieure, en examinant la relation entre le foncteur
de Scholze et la cohomologie des variétés de Shimura de type Kottwitz-Harris-
Taylor. En chemin, nous prouvons un critère de cuspidalité de la théorie des
types. Nous traitons également de la compatibilité des classes de torsion dans
le cas des représentations semi-simples mod p Galois sans multiplicité, sous cer-
taines hypothèses de platitude. Enfin, nous enlevons la condition sur semisim-
plicité et la remplaçons par la condition beaucoup plus faible d’être sans mul-
tiplicité. Ce dernier résultat est obtenu en collaboration avec Z. Qian.

Mots clés: Compatibilité local-global, programme de Langlands, variétés de Shimura,

représentations galoisiennes

Abstract. We generalize the local-global compatibility result in [28] to higher
dimensional cases, by examining the relation between Scholze’s functor and co-
homology of Kottwitz-Harris-Taylor type Shimura varieties. Along the way we
prove a cuspidality criterion from type theory. We also deal with compatibility
for torsion classes in the case of semisimple mod p Galois representations which
are multiplicity free, under certain flatness hypotheses. Finally, we remove the
semisimple condition and replace it by the much weaker condition of being mul-
tiplicity free. This last result is obtained in joint work with Z. Qian.

Key words: Local-global compatibility, Langlands program, Shimura varieties,
Galois representations
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