
HAL Id: tel-03945748
https://theses.hal.science/tel-03945748v1

Submitted on 18 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contributions to utilize a Cobot as intermittent contact
haptic interfaces in virtual reality.

Vamsi Krishna Guda

To cite this version:
Vamsi Krishna Guda. Contributions to utilize a Cobot as intermittent contact haptic interfaces in
virtual reality.. Automatic. École centrale de Nantes, 2022. English. �NNT : 2022ECDN0033�. �tel-
03945748�

https://theses.hal.science/tel-03945748v1
https://hal.archives-ouvertes.fr

THESE DE DOCTORAT DE

L'ÉCOLE CENTRALE DE NANTES

ECOLE DOCTORALE N° 602
Sciences pour l'Ingénieur
Spécialité : Robotique – Mécanique

Par

 Vamsi Krishna GUDA

Contributions à l'utilisation de cobots comme interfaces
haptiques à contact intermittent en réalité virtuelle.

Thèse présentée et soutenue à l'Ecole Centrale de Nantes le 26 août 2022
Unité de recherche : UMR 6004, Laboratoire des Sciences du Numérique de Nantes (LS2N)

Rapporteurs avant soutenance :

Gérard POISSON Professeur des universités, Université d'Orléans
Charles PONTONNIER Maître de conférences HDR, Ecole Normale Supérieure de Rennes

Composition du Jury :

Président : Anatole LECUYER
Examinateur : Fouad BENNIS

Dir. de thèse : Damien CHABLAT

Directeur de recherche, Université de Rennes
Professeur des universités, Ecole Centrale de Nantes

Directeur de recherche CNRS, Ecole Centrale de Nantes
Co-dir. de thèse : Christine CHEVALLEREAU Directrice de recherche CNRS, Ecole Centrale de Nantes

ii

Dedicated to my parents, Venugopal Rao GUDA and Subbaravamma KOKA.

iv

Acknowledgments

I would like to thank my thesis directors, Christine Chevallereau and Damien Chablat for
offering me this opportunity, giving me the freedom to work on my own, and for being there
whenever I needed help in spite of their super-tight schedule. Thanks to there collaborations
across the world, I have had the honor to meet and interact with many clever people and learn
from them. My co-supervisor, Christine Chevallereau for wonderful insights and ideas, especially
for having patience during out long meetings. They have been a great mentor throughout this
journey.

Special thanks to Lionel Dominjon (Scientific Manager, CLARTE), for helping me in estab-
lishing the virtual environment setup for the experiments. The mechanic of our lab, Stéphane
Jolivet for his ultimate patience to print and design the required mechanisms. All the adminis-
trative staff on the third floor of our lab, staff of École doctorale and scolarité who are incredibly
nice and friendly, and make it a cakewalk to deal with the otherwise annoying administrative
stuff.

My parents have always encouraged me to pursue what I like, despite many hardships they
had to face. I am eternally grateful to them for their love, education and support for I would
not be here without them.

PhD life would not have been so much fun without my friends. Thanks to my friends Jahnavi
Marthala , Valentin Le Mesle and Saketh Panuganti for sharing my happy moments and being
there through tough times along the journey. I am also grateful to my friends and colleagues
Guillaume, Julian, Daravuth, Saman, Keerthi, Kashyap, Sashi, Manohar, Franco, Quynh, Bin
Bin, Lauren, Florence, Vivi and Margarita, my office-mates Samuel and Zhen, for interesting
discussions and beautiful memories that I cherish.

Thanks to everyone and to all the personnel who kindly volunteered their valuable time to
complete all the proposed user tests.

The research work for this doctoral thesis was conducted at Laboratoire des Sciences du
Numérique de Nantes (LS2N, Ecole Central de Nantes), and in collaboration with Institut
national de recherche en informatique et en automatique (INRIA, Rennes).The funding for this
project was made possible by the Agence Nationale de la Recherche (ANR).

vi

Contents

Acknowledgements . v
List of Figures . xi
List of Tables . xv
List of Algorithms . xvii
Glossary . xix
Nomenclature . xxi

Introduction

Description of context . 2
Applications of ICIs . 3
Challenges . 5

Chapter 1
State of the art and theoretical background

1.1 Introduction . 9
1.2 What is virtual reality ? . 10
1.3 Human senses . 14

1.3.1 Sight . 14
1.3.2 Hearing . 15
1.3.3 Smell . 15
1.3.4 Taste . 16
1.3.5 Touch . 17

1.4 Haptic technologies for VR . 17
1.4.1 Human haptic perception . 17
1.4.2 Tactile feedback interfaces . 18
1.4.3 Force feedback interfaces . 19
1.4.4 Haptic bodysuits . 20
1.4.5 Analysis of haptic technologies in VR . 21

1.5 Existing haptic interfaces . 22
1.5.1 Haptic senses . 22
1.5.2 Haptic feedback and sense of touch . 23
1.5.3 Examples of force feedback devices . 24
1.5.4 Commercially available interfaces . 25
1.5.5 Limitations of existing haptic interfaces 28

1.6 Intermittent-contact interface . 30
1.6.1 Encountered-type haptic interfaces . 30
1.6.2 Close-tracking-type haptic interfaces . 33

viii Contents

1.7 Equipment . 36
1.8 Research proposal . 36

Chapter 2
UR-5 configurations, workspace and placement

2.1 Introduction . 39
2.1.1 Safety standards . 43
2.1.2 Safety in human robot collaboration . 44
2.1.3 Methodology to achieve the safety standards in HRC 46

2.2 Robot configurations . 46
2.2.1 Inverse kinematics . 47

2.3 Generate workspace . 48
2.4 Regions of interest . 53

2.4.1 Workspace for given orientation . 55
2.5 Base placement of the robot . 55

2.5.1 Requirement . 55
2.5.2 Methodology . 56
2.5.3 Results . 57

2.6 Obstacle avoidance and dimensions of base table 60
2.7 Conclusions . 61

Chapter 3
Design of a user mannequin model for ROS

3.1 Introduction . 65
3.1.1 Using kinect to know the environment . 65

3.2 Selection of human model . 66
3.3 Description of the motion capture system . 68
3.4 Construction of human model . 68

3.4.1 Calculation of the configuration of the arm 71
3.4.2 Calculation of movement in torso . 74

3.5 Analysis of user model . 75
3.5.1 Accuracy of arms . 75
3.5.2 Accuracy of torso . 76
3.5.3 Scalability of the model . 76

3.6 Conclusions . 77

Chapter 4
System architecture and robot trajectory planning

4.1 Introduction . 79
4.2 Proposed architecture and data flow . 79

4.2.1 MoveIt . 81
4.3 Implementing laboratory setup based on proposed architecture 81

4.3.1 Requirement . 81
4.3.2 Methodology for calibration of real and virtual environments 82

4.4 Computation and trajectory planning . 86
4.4.1 Various path planning algorithms . 86

Contents ix

4.4.2 Comparison of various path planning algorithms 93
4.4.3 Selection of planning algorithm . 95
4.4.4 Description of Unity’s virtual environment 100
4.4.5 Different mobility schemes . 101

4.5 Conclusion . 105

Chapter 5
Prediction of user intention

5.1 Introduction . 107
5.2 Human intention prediction . 108

5.2.1 Detection of target . 108
5.2.2 Proposed model . 109
5.2.3 Scene information . 109

5.3 Safe and fast motion . 110
5.3.1 Cobot motion . 110
5.3.2 Velocity zones . 111
5.3.3 Velocity profiles . 113
5.3.4 Safe-points . 114
5.3.5 Comparison of motion with or without safe-points 115

5.4 Proposed strategies . 115
5.4.1 Strategy A: Hand position . 116
5.4.2 Strategy B: Hand position and gaze direction 120
5.4.3 Strategy C: Addition of safe points . 121
5.4.4 Strategy D: Head gaze and safe points 123

5.5 Experiments and analysis . 123
5.5.1 Criterion . 123
5.5.2 Experimental setup . 125
5.5.3 Analysis of one experiment . 126
5.5.4 Analysis of all recorded experiments . 129
5.5.5 Discussion . 133
5.5.6 Analysis on hand threshold . 134

5.6 Conclusions . 137

Conclusions and Future Work

Synopsis . 139
Contributions . 140
Future work . 141

Personal publications

Chapter A
UR-5 kinematics

Chapter B
Error analysis for user model

x Contents

Chapter C
What is MoveIt ?

References

List of Figures

1 Conceptual scheme of the experimental platform 2
2 The LobbyBot project setup. 3
3 Application of ICI in industry . 4
4 Application of ICI in entertainment industry . 4
5 Application of ICI in medical field . 4
6 Application of ICI in research . 4

1.1 First Head Mounted Display (HMD) . 10
1.2 Classic HMD and VR glove environment . 11
1.3 First virtual reality system . 11
1.4 Haptic display system (GROPE-III) . 12
1.5 Example of Cave Automatic Virtual Environment (CAVE) 12
1.6 Commercial HMD. 13
1.7 Principle of avatar. 13
1.8 Virtual reality feedback loop. 13
1.9 Basic five human senses. 14
1.10 Glove for tactile interface. 18
1.11 Glove for force feedback interface. 20
1.12 Haptic body suits. 21
1.13 Virtual reality systems using force feedback. 24
1.14 Applications of force feedback interfaces. 26
1.15 Commercially available force feedback interfaces. 29
1.16 Principle functioning of encountered-type haptic interfaces. 31
1.17 Virtual haptic space representation for ETHI. 31
1.18 Virtual haptic space representation for ETHI. 31
1.19 Multiple finger ETHI. 32
1.20 Path-planning issue in ETHI. 32
1.21 Principle of functioning close-tracking-type haptic interfaces. 33
1.22 Surface display. 34
1.23 2-DoF CTHI system. 34
1.24 2-DoF CTHI system. 35
1.25 3-DoF CTHI system. 35
1.26 Two finger dexterous CTHI. 36

2.1 The real UR-5 manipulator. 40
2.2 Coordinate frames for UR-5 manipulator. 41
2.3 Conceptual scheme of the experimental platform. 41
2.4 The UR-5 robot with a prop attach to the end-effector. 42
2.5 Virtual environment and a set of task to be reached. 42

xii List of Figures

2.6 Real system setup for human robot interaction. 43
2.7 Interaction between robot and human. 44
2.8 Configurations of the robot for same end-effector position and orientations. . . . 49
2.9 Discretization of the workspace into voxels. 50
2.10 Construction of complete workspace of UR-5. 51
2.11 Generated Workspace for Config7. 52
2.12 The prop used in the experiment. 53
2.13 Different regions in the virtual environment. 54
2.14 Different regions in the virtual environment. 54
2.15 Workspaces with region orientations. 55
2.16 Workspace including all region orientations. 56
2.17 S1 and S2 region task points and base location. 58
2.18 S2 and S3 region task points and base location. 59
2.19 S1, S2 and S3 region task points and base locations. 60
2.20 Introduction of User model into environment. 62
2.21 Analysis on the dimension of the base table of the robot. 63
2.22 Placement analysis of the base table of the robot. 63
2.23 New table design. 64

3.1 Environment scene setup. 66
3.2 The environment scanned using Kinect. 67
3.3 Models referenced in this experiment. 67
3.4 The model visualized in Rviz. 69
3.5 Tracking system used. 69
3.6 Front and side view of the subject attached with the trackers. 70
3.7 Model for right arm. 71
3.8 Structure for both arms. 73
3.9 Model for left arm. 73
3.10 D-H parameters for chest. 75
3.11 Transform frames for estimation of error between shoulder frames. 76
3.12 Scalability of the mannequin model based on height. 77
3.13 User with the HTC vive trackers . 78
3.14 Complete mannequin model of the user. 78

4.1 Proposed system architecture. 80
4.2 The system setup in the physical environment . 82
4.3 Calibration setup for virtual and real environment 83
4.4 Representation of the user’s effective workspace as a plane 86
4.5 Work logic of path planning. 87
4.6 Representation of an Artificial Potential Fields. 88
4.7 Representation of Probabilistic Road-maps. 89
4.8 Representation of Probabilistic Road-maps (shorter path). 89
4.9 Representation of Rapidly Exploring Random Trees. 90
4.10 Representation of Rapidly Exploring Random Trees* 91
4.11 Representation of Cell Decomposition. 92
4.12 Representation of Quadtree and Octree decompostion. 93
4.13 Planning group for the robot system. 95
4.14 Planned paths with out re-planning. 96

List of Figures xiii

4.15 Planned paths with re-planning. 97
4.16 Comparison of all planning algorithm. 98
4.17 Comparison of best planning algorithm’s times 98
4.18 Comparison of average execution times of the algorithms. 99
4.19 Comparison of average amount of generated waypoints. 99
4.20 Unity VR system and representation of interaction points 101
4.21 Representation of the user’s effective workspace as a sphere 101
4.22 Representation of dynamic obstacles using the user model. 104
4.23 Example of re-planning with dynamic obstacles. 104

5.1 The complete system setup. 108
5.2 Proposed schematic diagram. 110
5.3 Scene inforamtion inside the virtual environment. 111
5.4 Representaion of user occupancy using a sphere. 112
5.5 Interior of car and user workspace. 112
5.6 2D representation of interior of car and user workspace. 113
5.7 Illustration for motion using safe-points. 114
5.8 Comparison of motion with and without safe-points. 115
5.9 Pictorial representation of Strategy A. 116
5.10 k-d tree decompostion and structure. 117
5.11 Motion of hand tracker. 120
5.12 Motion of robot TCP without head gaze. 120
5.13 Motion of hand tracker. 120
5.14 Motion of robot TCP with head gaze. 121
5.15 Pictorial representation of Strategy B. 121
5.16 Pictorial representation of Strategy C. 122
5.17 Pictorial representation of Strategy D. 123
5.18 User hand motion trail, from point 2 to 11. 126
5.19 Detection of points of interest for different strategies. 126
5.20 Robot motion, user distance and time for detection, for strategies A and B. . . . 128
5.21 Robot motion, user distance and time for detection, for strategy C. 128
5.22 Robot motion, user distance and time for detection, for strategy D. 129
5.23 Comparison of time for detection (Q2norm) vs user distance (−Q5). 131
5.24 Comparison of robot distance (Q4norm) vs user distance (−Q5). 131
5.25 Comparison of time for robot (Q3norm) vs user distance (−Q5). 132
5.26 Comparison of time for robot (Q3norm) vs time for detection (Q2norm). 132
5.27 Comparison of robot distance (Q4norm) vs time for robot (Q3norm). 133
5.28 Comparison of time for detection (Q2norm) vs robot distance (Q4norm). 133
5.29 Comparison of time for detection (Q2norm) vs user distance (−Q5). 134
5.30 Comparison of robot distance (Q4norm) vs user distance (−Q5). 135
5.31 Comparison of time for robot (Q3norm) vs user distance (−Q5). 135
5.32 Comparison of time for robot (Q3norm) vs time for detection (Q2norm). 136
5.33 Comparison of robot distance (Q4norm) vs time for robot (Q3norm). 136
5.34 Comparison of robot distance (Q4norm) vs time for detection (Q2norm). 136

A.1 Coordinate frames for UR-5 manipulator . 146
A.2 Geometric illustration for computing θ1. 148
A.3 Geometric illustration for computing θ5. 150

xiv List of Figures

A.4 Geometric illustration for computing θ6 . 151
A.5 Geometric illustration for computing θ3, θ2 and θ4 152

B.1 Error for position in shoulder sensor in right hand. 153
B.2 Error for position in shoulder sensor in left hand. 154
B.3 Error for position in wrist sensor in right hand. 155
B.4 Error for position in wrist sensor in left hand. 156
B.5 Error between actual and estimated right shoulder frame. 157
B.6 Error between actual and estimated left shoulder frame. 158

C.1 MoveIt system architecture. 160
C.2 Move group architecture. 161
C.3 Planning scene architecture. 163

List of Tables

1 Research contributions . 7

2.1 Denavit-Hartenberg parameters for the UR arms. 40
2.2 Different configurations for UR-5 . 48
2.3 Color code for reachable sphere in workspace . 51
2.4 Reachable spheres in workspace. 52

4.1 Comparative table between path planning algorithms. 94

5.1 Strategy analysis for the trajectory 2-11 . 129
5.2 Complete analysis for seven trajectories . 130
5.3 Analysis of strategies for all trajectories. 133
5.4 Analysis for various thresholds . 134

A.1 Modified Denavit-Harteberg parameters (DH-parameters) of a UR5 robot 146

xvi List of Tables

List of Algorithms

1 Construction of workspace . 50
2 Base placement of the robot . 57
3 Tracker information in ROS. 83
4 Tracker world reference in ROS. 84
5 Hand tracker information in ROS. 84
6 Motion of robot based in hand position. 85
7 Trajectory computation and storage. 102
8 Trajectory upload and execution. 103
9 Strategy A: Predictions with hand. 116
10 Nearest neighbor search. 118
11 Predictions with head gaze. 119
12 Strategy B: Predictions with head gaze. 121
13 Strategy C: Addition of safe-point. 122
14 Strategy D: Predictions with head gaze and safe-points. 124

xviii List of Algorithms

Glossary

The following terminologies are repeatedly used in this doctoral thesis:

Definition 1. A joint is a connection between two or more l inks. It is also known as a kine-
matic pair.

Definition 2. Degree of freedom (dof) or mobility is the number of independent parameters
required to define the position of a rigid body in space.

Definition 3. A Workspace of a six-axis robot is the set of all poses attainable by a particular
end-effector mounted on the robot

Definition 4. The configurations of a manipulator where it loses or gains one or more dof are
called singular configurations.

Definition 5. A virtual world is an imaginary space often manifested through a medium.

Definition 6. Virtual reality is a medium composed of interactive computer simulations that
sense the participant’s position and actions and replace or augment the feedback to one or more
senses, giving the feeling of being mentally immersed or present in the simulation (a virtual
world).

Definition 7. Immersion is the sensation of being in an e nvironment. It can be a purely
mental state or can be accomplished through physical means. Physical immersion is a defining
characteristic of VR.

Definition 8. Position tracking is the computerized sensing of the position (location and/or
orientation) of an object in the physical world—usually including one or more parts of the
participant’s body.

Definition 9. In collaborative environment, multiple users interacting within a virtual world
that enables interaction among participants; not necessarily manifested in virtual reality; a col-
laborative VR environment can be referred to as multipresence or multiparticipant.

Definition 10. An avatar is a virtual object used to represent a participant or physical object
in a virtual world. The typically visual representation may take any form.

Definition 11. A base is the link in a mechanism where the first joint(is) is(are) connected
and is usually fixed.

Definition 12. An end-effector is a link in a mechanism where the last joint(s) is(are) con-
nected.

There are other terms used in this doctoral thesis, which are defined directly in the text for
the sake of continuity.

xx Glossary

Nomenclature

dof degree of freedom
M Transformation matrix
R Rotation matrix
d Displacement vector
VR Virtual Reality
DoF Degrees of Freedom
ICI Intermitent Contact Interfaces
SE Special Euclidean
SO Special Orthogonal
APF Artificial Potential Fields
PRM Probabilistic Roadmaps
ECD Exact Cell Decomposition
ACD Approximated Cell Decomposition
RRT/RRTs Rapidly Exploring Random Trees
BRRT Bi-directional RRT
RT-RRT Real-time RRT
BiTRRT Bi-directional transition-based RRT
ROS Robot Operating System
API Application Programming Interface
URDF Unified Robot Description Format
SRDF Semantic Robot Description Format
OMPL Open Motion Planning Library
EST Expansive Spacial Trees
BiEST Bi-directional Expansive Spacial Trees
FCL Flexible Collision Library
ACM Allowed Collision Matrix
KDL Kinematics and Dynamics Library
FOV Field of View
HVS Human Visual System
VE Virtual Environment
HMD Head Mounted Display
VOs Virtual Objects
CHIs Classical-Contact Haptic Interfaces
FPS Frames Per Second
GUI Graphical User Interface
HCI Human Computer Interaction
LCD Liquid Crystal Display

xxii Nomenclature

VPL Visual Programming Lab
× Cross product
· Scalar product
∀ For all
∈ Belongs to
⊂ Subset
∪ Union
∩ Intersection

Introduction

Virtual reality technologies allow a user to get immersed in virtual worlds. Haptic technolo-
gies born from robotics have increased the immersion in these virtual worlds by providing the
sensation of touch.

In a Virtual Reality (VR) simulation, haptic interfaces allow a tangible and physical inter-
action with the virtual environment, but they must generally be constantly held in hand by the
user and therefore do not allow objects to be touched in a natural way. At the same time, many
applications require hands-on interaction without intermediaries. This is particularly the case
for simulations that require tactile exploration of the physical properties of virtual objects.

Classical force feedback interfaces, also called here classic contact haptic interfaces (CHIs),
are robotic systems allowing natural motion interactions with virtual or remote environments.
They are used in several domains such as design, manufacturing, assembly, scientific visualiza-
tion, entertainment, education, medicine, space, rehabilitation, micro manipulation and molecu-
lar biology. In all cases, they should provide adequate kinesthetic (force) feedback, contributing
to enhance the sense of presence in the virtual environment.

With CHIs, the user is usually mechanically linked to the device’s end-effector, typically a
handle, whose movements, measured by the robot, are used to know the configuration (position
and orientation) of his/her hand. This information is necessary to provide force feedback which
is consistent with the virtual scene and the mechanical properties of the virtual object (VO)
being touched. The mechanical link that is established when the user manipulates the haptic
device has however a non-negligible influence since he/she experiences the friction, inertia and
vibrations of the mechanical structure, even in free space where he/she is expected to feel
nothing. Such unwanted sensations decrease the realism of the interaction since the user feels
all the time the presence of the robot. In addition, the difference between free space and contact
is less distinctively felt than in the real world.

In order to cope with these issues, several efforts can be made in terms of mechanical design,
e.g. use of very lightweight and very stiff structures (even if an optimal trade off is difficult to
attain) and more efficient transmission systems. Another approach consists in installing a force
sensor at the level of the robot’s end-effector in order to measure and compensate any resisting
force in the direction of displacement. However, resisting forces can never be totally canceled
and none of these approaches completely eliminates the feeling of the presence of the robot in
free space.

Years of research on haptics, robotics, and interaction in VR have led to the development
of a new generation of haptic devices called intermittent contact interfaces (ICI) [73],[87],[7].
Intermittent-contact interfaces (ICIs) represent an original and promising approach aiming to
cope with the aforementioned issues. Its principle consists in removing the mechanical link
between the human operator and the force feedback interface during manipulations in free space
and come at his/her contact only when force feedback is required. This solution implies the need

2 Introduction

to track and closely follow the user’s movements in free space and to prevent him/her to move
in the constraint direction when a VO is being touched. This way, the user doesn’t feel any force
in free space (perfect transparency) and the transitions from free space to contact are deemed
to be felt more naturally as the robot really touches the user at the simulated contact moment.
This approach aims to improve the realism of the interactions, however it suffers from several
shortcomings. First, its efficiency has not yet been proven in terms of user safety. Second,
even if IC interfaces are experimentally proven to be stable at low speeds, they tend to become
oscillating at higher speeds. Finally, despite the fact that a lot of tasks are performed by the
mean of tools in the real world, most of existing ICIs focus on bare finger interactions and are
therefore not optimal for simulating tool-mediated tasks.

User safety is central to the implementation of an ICI. To satisfy this constraint, we propose
to use a cobot, for which we will develop specific path planning algorithms taking into account
its low performance in terms of travel speed in the intrinsically safe mode, as well as all segments
of the robot and the user’s entire body in interference management. These algorithms will be
based on a user activity prediction model that will allow both specifying a final desired location
and the constraints to be respected when defining the path to reach this desired location.

Figure 1 – Conceptual scheme of the experimental platform

This thesis, entitled ”Contributions to utilize a cobot as intermittent contact haptic interfaces
in virtual reality” presents a series of research works aiming to leverage the usability of such a
system. This research work is created to address the current limitations in such a haptic device
system.

Description of context
This thesis was developed under the frame of the French National Research Agency (ANR)

LobbyBot Project. The LobbyBot project consisted in developing a system that could be inte-
grated into an industrial application for automotive interior prototyping. The system is intended
to be used to recreate an automotive cockpit for faster prototyping in VR for the Renault Group,
a French automotive company. In this fast prototyping process, designers had to explore and
evaluate the perceived quality of a virtual car interior with their sense of touch of different ma-
terials, shapes, and objects that could be arranged in a virtual automotive interior that could be
easily configured in VR. This new paradigm was conceived as a means to save the Renault Group

3

costs in budget and time for fabricating actual automotive cockpits that are exclusively used
for prototyping purposes. The object of the thesis will be the control of the robot to implement
this ICI.

Figure 2 – The LobbyBot project setup.

The project assembled a consortium consisting of four partners: The Renault Group which
was in charge of providing the use-case scenario and problematic. The Laboratory of Digital
Sciences of Nantes (LS2N) was in charge of the path-planning algorithm for avoiding collisions
with users. The National Institute for Research in Computer Science and Automation (INRIA)
was in charge of conceiving new 3D interaction techniques to compensate for the inherent limi-
tations of ICI. CLARTE was in charge of integrating the aforementioned contributions from all
the other partners to implement the system.

Interaction techniques will allow managing any delays by the ICI in relation to the user.
To increase the extent of sense of the form and materials can be restored by the use of an
adapted pseudo-haptic return, and to follow a surface with the finger through appropriate sensory
feedback. The integration of all the results into an ICI prototype will make it possible to validate
the interest of the solution on an industrial case study. With current technologies, this industrial
application (evaluation of the perceived quality of a virtual car interior) cannot be treated in a
fast and low cost way.

Applications of ICIs

ICI applications range from industry (Figure 3), entertainment (Figure 4), medicine (Fig-
ure 5), and research purposes (Figure 6). In all these cases, users expect to “encounter” a surface
to touch or manipulate in a Virtual Environment. In the case of industrial applications, these
devices are considered for virtual prototyping that requires to have haptic feedback in several
locations to recreate workspace or expected location for objects to be manipulated. In the case
of entertainment, they are used to recreate elements that can come in contact with the users
when interacting with a virtual environment [61]. In the case of medicine, its often used for
remote body-palpation and surgery practice [42]. The use in research purposes often looks for
leveraging the device’s capabilities for rendering more complex surfaces and objects [74].

4 Introduction

Figure 3 – Application in Industry by Lobbybot [104].

Figure 4 – Haptic-go-round from one direction to another while fishing in the virtual scene. [61].

Figure 5 – The virtual palpation system. [42].

Figure 6 – Synthesizing the Roughness of Textured Surfaces for an Encountered-type Haptic
Display [74].

5

Challenges

In order to leverage the capabilities of ICI, several challenges must be addressed, these are
addressed in different dimensions such as: User safety and security and User immersion
experience. The challenges are divided into research questions (RQ) that this thesis addresses
in the following chapters, namely; (RQ1) Robot placement; (RQ2) User model; (RQ3) Trajectory
planning and (RQ4) User prediction techniques. These questions are further presented below.

Challenge 1. User safety and security

The concern to avoid unexpected collisions with users has been present ever since the early
days of Human-Robot Interaction research. Measures for addressing this issue normally consider
path-planning algorithms that help the robot to actively avoid the user in cases where both user
and device could come into contact involuntarily. However, the use of path-planning often causes
the device to move more slowly. This delay affects response time and user’s perceived immersion
in the virtual environment, and thus, it has been recognized as an issue to be addressed by the
research community.

As an alternative to solutions exclusively relying on path-planning for avoiding collisions with
users, we propose additional techniques like the placement of robot to minimize the workspace
interaction, and creation of multiple zones for robot motion. Research concerning user safety
for ICI systems needs to look for strategies that help to avoid any undesired contact that could
break users perceived immersion in the virtual environment. The main objective remains to
ensure the safety of the operator. With virtual reality, the operator has a modified perception
of the robot and of the risk of collision. A visualization in the virtual world of the robot reduces
the immersion but increases the safety. In the intersection zones between the space possibly
scanned by the robot and the human, the robot (UR-5) will be placed in cobot mode, i.e. it will
stop and switch to gravity compensation mode if a contact effort is detected. Thus it cannot
injure the operator. However, the speed of the robot is then limited.

Research Question 1. Robot placement

Robot placement holds the promise of removing the need for a highly dedicated and struc-
tured workspace, as well as responding more quickly to environmental changes. Within the
systems, dynamic and robust placements are crucial and strategically important, since they are
often done in early stages in the process.

A complete set of operations consists in performing a specific task/operation by a robot on a
set of task points. Often, after the robot returns to its starting configuration, a user is introduced
to the system, and operations are performed. Since these cycles are repeated several times, it is
very important that they are executed as fast as possible in order to increase immersion.

Once a set of specific points is assigned to a robot, the layout has limited freedom to optimize
the robot workstation:

— robot’s base placement (translation and rotation); The orientation of robot TCP at each
task points is important as it effects the immersion of the user. So the robot should be
able to reach the task points with the required orientations. The study started with no
information on the robot base location in the virtual environment.

— visiting order of the work-points; In this approach the user decides the order of interaction
with the task points. To improve user safety , the robot has to be closer to the user hands
near the task points and as far as possible to the human body (torso, head and especially

6 Introduction

neck). Major concerns were to restrict the operation of the robot to one aspect to avoid
crossing singularities while performing the tasks.

— robot’s home configuration in the station (six joints); initial approach is to achieve one
single base location and have single aspect of robot to connect and move between all the
task point.

The last three ones may be modified by changing the robot program, whereas the first has
to be completely decided before installing the robot in the workspace.

Research Question 2. User model

There is no fixed technique or standard procedure to use a tracking system to explore user
actions in VR. Human movement tracking systems are expected to generate real-time data
that dynamically represent the pose changes of a human body (or a part of it), based on well-
developed motion sensor technologies. Generic tracking systems employed within these systems
adhere to the human body in order to collect movement information. These sensors are com-
monly categorized as mechanical, inertial, acoustic, radio, microwave, and magnetic-based. In
such systems, the user is generally equipped with sensors on his hands, that give the sense of
interacting with a virtual object. Additionally, these sensors don’t give information about the
position and orientation of the user’s location in the system. Visual marker-based tracking is a
technique where cameras are applied to track human movements, with identifiers placed upon
the human body.

The whole idea of ICI is to increase the immersion and remove the sensation of robot presence
in free space. Since the robot has a plan to move between task points without colliding with
the user. For safety concerns, the position of the user is very important. However, we cannot
have complex tracking systems to locate the user. Normally the use of external cameras and
markers are used to locate the user’s position. But such systems increase the number of sensors
attached to the user, which reduces the immersion. So the goal is to use less additional sensors
as possible to give the best immersion experiences while getting the accurate location of the user
for planning trajectories of the robot.

Challenge 2. User immersion experience

Haptic feedback for ICIs goal is to improve the immersion experience of users. The major
idea is to eliminate the mechanical link so as to have perfect transparency in free space. But
even trying to achieve this experience comes with the challenges like planning the robot motion
between the VO being touched (without colliding with the user), and predicting which VO object
the user intends to touch in the environment.

Research Question 3. Robot motion planning

In the given scenario the user is immersed in Virtual reality. The user has no information
regarding the motion of the robot. The robot’s motion has to be safe for the user, experiencing
the VR environment. It should avoid collision with the user and also any other obstacles in the
environment. The robot motion should take into consideration collision with the user based on
the tracking system used. It’s not only for the user’s safety, but also to have a better immersion
of the user, the robot must place a real object at the place where the user want to touch the
VO as quickly as possible, and before the user hand reach the contact location.

7

Research Question 4. Target object detection.

Since they touch the user only when force feedback is required, intermittent contact inter-
faces, and in particular close-tracking-type devices, aim to provide more realistic interactions
with virtual environments than classical contact haptic interfaces (CHI). User intention predic-
tion in ICI remains a challenge to be properly addressed by the research community.

Previous systems force the user interact with the VO, selected by it. These systems have
to use control algorithms and interaction techniques to make the haptic rendering as efficient
as possible. For the new system we want to give the user freedom to select the VO to interact
and the robot system should adapt to align itself w.r.t to the VO. The goal of such a system
is to predict the VO the user wants to interact with as soon as possible. However, for these
new systems the two solutions (control algorithms and interaction techniques) are not enough
to render the haptic sensation.

Thesis road map

The main research axis considered as contributions of this thesis is improving user safety
and immersive experience for users of an ICI haptic device in human-robot interaction.

The user safety axis is improved by addressing three contributions, the first contribution
(C1) consisting of a set of safety techniques based on robot placement, the second (C2) creation
of a user model for tracking user information, and the third (C3) techniques for robot trajectory
planning.

Then, the second axis immersive experience is improved by making sure the user does not
lose the illusion of the environment. This aspect can be addressed by making sure the user does
not wait a long time for the robot to reach the desired interactive location, this is achieved by
addressing 2 contributions, first contribution (C3) techniques for robot trajectory planning and
second contribution (C4) techniques for user goal predictions, designed to optimize the response
time in ICI systems.

The relationship between the contributions and the research axis can be seen in Table 1.

Contribution User safety Immersive experience
(C1) Safety techniques based on robot placement. x
(C2) User model for tracking user information. x
(C3) Techniques for robot trajectory planning. x x
(C4) Techniques for user goal predictions. x

Table 1 – Contributions to the research axis

In the following chapters the details about how the contributions addressed the research
questions will be presented.

Contributions

The contributions of the thesis are depicted in chapters which are described hereby:
Chapter 1 presents a literature review concerning present ICI haptic devices. In the first

part, the history of these devices is narrated. The second part presents an analysis of the
hardware used for these devices. The third section presents the types of haptic perception used

8 Introduction

in literature. The fourth part discusses application scenarios. The literature review concludes
with a discussion of the presented research works.

Chapter 2 presents a set of safety techniques for users based on the placement of the robot
(C1). This chapter introduces a design space for safety techniques using visuals restricting
the interactive workspace of the robot and the user, in order to reduce potential unintended
collisions. The dimensions of the space focus on where the user wants to interact with the
virtual environment. Explanation on how it protects the user. Using this design of robot
placement, a set of workspaces was developed to explore variations of the prop orientations. An
evaluation focusing on the best solution for robot placement is done. Safety was evaluated and
the ideal location of the robot was defined.

Chapter 3 presents the design and evaluation of the user model (C2). The model was
designed to estimate the user location in the ROS environment. The chapter introduces first the
need for such a model and different ways of achieving the goal. The model created had to have
features such as movement of both arms and also the mobility of the user around the hip. These
major three moving parts provided better information about the user’s location, improving his
safety in using an ICI system. A user study was designed to assess test the performance of these
motions to test the accuracy and reliability of creating user model. Results suggested that the
model is accurate for the given scenario in locating the user in the environment.

Chapter 4 presents an approach for the trajectory planning of robots. The goal is to increase
immersive experience (C3) by reducing the time taken by the robot to reach the contact area.
This approach renders large surfaces and multiple textures through the use of a rotating prop,
that couples the prop’s rotation and position with the users’ hand position when exploring a
textured surface in VR. A use-case scenario was designed for contextualising this approach.
Later, a user study was conducted to validate the approach haptic rendering performance.

Chapter 5 presents a novel approach for the prediction of user intention based on head
gaze and hand position. Different strategies are presented to predict where the user wants to
interact with the virtual environment (C4). The chapter starts by introducing the different
approaches and by describing their main features. Each approach presented is evaluated on four
key features: (1) time taken to prediction, (2) time taken by the robot to reach the contact area,
(3) distance traveled by the robot, and (4) safety of the user. These approaches integrate an
interaction technique for contact area selection and release. An evaluation concerning the speed
of the system is presented. Finally, the results are presented and discussed.

Chapter 6 concludes the thesis manuscript summarizing the thesis contributions as well as
providing perspectives for future work for ICI.

Collaborations
A rehabilitation project entitled “Development, engineering, prototyping of a low-cost robotic

system for postural rehabilitation with intuitive interface using consumer VR-AR technology and
wearable IoT sensorization of the patient”. Collaborators: Stanley Mugisha, Matteo Zoppi and
Rezia Molfino, University of Genoa, Italy.

Chapter 1

State of the art and theoretical
background

1.1 Introduction

This chapter forms the basis of this doctoral thesis. It puts forth the state of the art and
explains the fundamental concepts used to analyze and understand the behavior of the studied
herein.

First, a brief literature review is presented. Then, the human senses are introduced, starting
from vision to touch. Furthermore, the usefulness of virtual reality, and how we achieve im-
mersion using the senses in virtual reality is described. While this offers significant immersion,
there are some problems to be addressed. To overcome these problem, a new system called ICI
is introduced. Different ways to implement such a technique are then presented.

Finally, a system is defined for the given context of study and how to achieve such a dynamic
system is explained in short.

There is an increasing demand for simulators aiming to artificially recreate real world en-
vironments. These systems are used for various applications such as assembly verification, e.g.
virtually checking that a new system can be easily assembled before launching the production,
training, e.g. fight simulators, or simply entertainment, for instance immersive video-games.

An ideal simulation environment should stimulate each one of our senses (sight, hearing, smell
and touch) to give us the illusion of being present in the recreated environment (immersion) and
allow us to interact with it. However, recreating the corresponding sensations requires complex
devices while all of them are not always required.

Indeed, it can be observed in practice that visual and touch feedback are sufficient to cover
a wide scope of applications, even when fine interactions are required, e.g. dexterous manipu-
lation of virtual objects (VOs). Visual rendering is obtained with systems ranging from simple
monoscopic screens to more complex configurations like head mounted displays or multi-screen
immersive systems such as CAVEs, with techniques allowing to recreate photo-realistic images.
The study of the sense of touch is unfortunately less advanced. It is addressed with haptic
interfaces, i.e. complex mechatronic devices able to provide either tactile or force feedback.

Force feedback interfaces are widely employed in virtual reality (VR) environments, e.g.
for the training of novice surgeons in medicine, for the simulation of a product assembly, for
education purposes or for scientific research. However, despite the wide range of applications
of these devices, they still require to be improved in order to provide force sensations that are
totally realistic.

10 State of the art and theoretical background

Figure 1.1 – First HDM by NASA. [91]

Recently, human robot collaboration become popular and interesting in the field of engineer-
ing. For robotics, environments that require both humans and robot to work simultaneously to
improve the performance in industries.

1.2 What is virtual reality ?

Even if virtual reality sounds as a very modern concept, it has been around for more than
half a century.

VR accounts for an interactive computer simulation allowing the user to visualize a virtual
environment (VE) which recreates a scene of the real world. Interactive means that such sim-
ulation acquires, by means of a tracking system, information on the user’s state and is able to
provide sensory feedback to one or more senses. The main objective is to make the user feel as
being immersed in the VE [93].

Four basic characteristic elements of VR can be identified: the virtual world (or VE), im-
mersion, sensory feedback (as a response to user’s actions) and interactivity.

— A computer-based VE contains the description of the simulated objects as well as the
rules governing their interactions, e.g. the effect of gravity making virtual objects to fall
as it does with those in the real life.

— In the present context, immersion implies the notion of being present in the VE. In simple
words, it is the belief of having left the real world to be present inside the VE. Immersion
can be achieved if the VR system is able to provide realistic stimuli to all human senses
[90].

— Sensory feedback requires proper displays, e.g. a head-mounted display (HMD, see Fig-
ure 1.1 and Figure 1.2) able to visually immerse the user in the virtual world, and a force
feedback interface, hold by the user, that will apply on him/her the forces generated
when VOs are being touched.

— Finally, interactivity refers mainly to the fact that the VE is responsive to the user’s
actions (inputs). It requires a tracking system able to determine the movements of the
user to ensure consistency between the real world and the VE. As an example, the
visualized scene will adapt so that the user has the impression to move inside the VE.

The first practical implementation of the VR paradigm was developed in 1957 and patented
in 1962 by Morton Heilig, who is considered as the father of VR. In such a system, known as
Sensorama (see Figure 1.3), a single person could perceive, e.g. a motorcycle ride through a city
via sight, smell, vibration and wind [120].

What is virtual reality ? 11

Figure 1.2 – Classic HMD and VR glove environment. [54]

Figure 1.3 – First developed and patented VR system. [120]

12 State of the art and theoretical background

Figure 1.4 – GROPE-III haptic display system. [17]

Figure 1.5 – Example of a CAVE. [54]

Several other VR systems were developed. The GROPE I to III systems, created in the late
60s and early 70s, allowed the user to move and feel interaction forces between molecules thanks
to a haptic interface (see Figure 1.4). Other examples of VR applications using force feedback
will be described in future sections. As stated in the above paragraphs, one of the main goals
of a VR system is to create the sensation of "presence". A step forward in this direction was
achieved during the 90s with the concept of CAVE (Cave Automatic Virtual Environment). It
consists of a room whose walls are in fact screens displaying a VE (see Figure 1.5).

This technology is however very expensive and requires an important volume to be installed,
e.g. four equally sized walls of 1.8m × 1.8m. As a consequence, the current tendency is to use
HMDs instead. This technology have made huge progress in the recent years and is now both
efficient and affordable (see Figure 1.6).

Another important concept in VR applications is the notion of avatar, which is the virtual
representation, for instance, of a human being as well as objects of interest regarding the task or
the scene (see Figure 1.7). Finally, Figure 1.8 shows how the aforementioned elements are linked.
The following section will provide an insight on the importance of the sense of touch and, in

particular, the role it plays when non-direct manipulation of virtual objects and interaction with
VEs takes place.

What is virtual reality ? 13

(a) HTC VIVE (b) Oculus Rift

Figure 1.6 – Commercially available HMD. [54]

Figure 1.7 – Principle of avatar.

Figure 1.8 – Virtual reality feedback loop.

14 State of the art and theoretical background

Figure 1.9 – Ratio of information provided by each of 5 human senses.

1.3 Human senses

Our senses are physiological tools to perceive information about the physical world. As
defined and classified by Aristotle, human beings have at least five senses. These are sight,
hearing, touch, smell and taste. Sensory processing is the capability to acquire, elaborate and
incorporate information through our senses. There is a minimal point below which any stimulus
does not produce any effect on sensory organs. Above this level, a stimulus’ minimum perceptible
variation is proportional to the absolute value of intensity (Weber’s law). A specific sensory
organ such as eyes, ears, skin, nose and tongue receives a stimulus which is above the minimum
perceptible level. These sensory organs are the starting point for information transmission
through the body through the nerve tracks. The afferent message from the sensory receiver
is transferred to the nerve centres that are spinal cord, brain and cerebellum [100]. Once
information is integrated and processed in the brain, nerve centers pass the nerve messages to
the related sensory organs (skeletal muscles, eye muscles, vocal cord muscles, etc.).

Morton Heilig, in 1952, studied the senses in terms of their capacity to activate human
attention [57]. It is essential to know the contribution of each sense while perceiving the world.
Figure 1.9 clearly shows that the sight provides most information and captures the majority of
our attention. The stimulation of the visual system, therefore, plays a significant role in fooling
our the senses. Hearing, which is also often taken into account, is the second most crucial
sense. Touch does not in general play an important role comparing to sight and hearing, even
when it is essential for specific manipulation tasks. Due to the marginal role and difficulties of
implementation, smell and taste are currently under development in most VR systems. However,
immersive VR system should produce different signals and stimuli in several ways to replicate
the physical world and use various display devices to immerse the user.

1.3.1 Sight

Human use sense of sight to assess the position of the objects with respect to them, so they
can approach the objects, grasp them or avoid them for survival when needed.

Without eyesight, dangerous situations can be quite challenging to identify. Sight can there-
fore be used to avoid dangerous situations and materials.

Human senses 15

Since sight is a sensory channel that provides most information and captures the majority
of our attention, it is essential to achieve visual immersion that enables users to see the virtual
world in a realistic way. For the Immersive VR experience, ideally, visual displays are able to
produce feedback equal to or above the limitations of the human visual system [57].

Visual perception is the ability to see and interpret an environment using light in the vis-
ible spectrum, which is reflected by objects in the surrounding environment. In human visual
perception, the two eyes act as a sensor, the neurons function as a connecting cable and the
brain acts as a processor. The eyes, as sensory receptors, are engaged in the observation of the
environment.

A wide Field of View (FOV) in virtual environments can enhance the sense of immersion
and performance. The term FOV is one of the essential features of the Human Visual System
(HVS). FOV is an angular measure that represents an open area visible to the human eye. For a
healthy eye, two FOV information together describe human vision. The visible area through the
eyes is generally indicated as an angle for the horizontal and vertical component of the FOV. It
is approximately 160 degrees horizontally and 130 degrees vertically when one eye is used and
rises horizontally to 200 degrees when looking straight ahead with two eyes - thus we can see
behind us by 10 degrees. When we rotate our eyes to one side or another, we are able to see an
additional 50 degrees on each side [64]. Therefore, to cover the entire range of natural human
FOV, HDM needs approximately 300 degrees FOV horizontally. Moreover, the human brain
uses the horizontal change of picture location reported by both eyes to determine the depth or
the distance to the virtual object displayed on the scene from the viewer. This means that FOV
is also crucial for depth perception.

1.3.2 Hearing

The sound gives us precise details about our surroundings and can often help us to assess the
distance and direction of objects very accurately [138]. Sense of hearing is very useful for humans
and important for survival in many circumstances. We can detect a sound in the dark when we
cannot see. The auditory perception is omnidirectional, as opposed to limitations on the visual
field of view, a human can detect sound from any place in 3D. In view of this omnidirectional
aspect, hearing directs our visual senses, or “the function of the ears to point the eyes” as Cohen
and Wenzel said [26].

In Multimedia, hearing assumes at least equal importance to the user’s feeling of immersion
[112]. A 3D (Spatial) audio-system enables a user to perceive the position of sound sources
emanating of an arbitrary position in 3D space from speakers or pair of headphones. Spatial
sound processing goes far beyond conventional stereo sound technologies by allowing virtual
sound sources to possess attributes like left-right, up-down and back-forth.

1.3.3 Smell

Sense of smell, Olfaction, is essential to everyday life. It is a part of the chemosensory system
that enables us to distinguish between a wide range of smells and tastes [24]. Olfaction plays a
vital role in making us understand the environment in real wold. It enables us to recognize food,
drinks and also provides a sense of pleasure and warnings of danger. For instance, it advises us to
leave a building with fire or if the food is rotten and poisonous. Furthermore, smell sense is more
connected with feelings and emotions than thoughts and decisions [24]. Olfactory information
can enhance the user’s sense of immersion in the EV by tricking their sense of smell. Visual,

16 State of the art and theoretical background

audio and tactile senses are widely included in VR, but the technology to produce olfactory
stimulation is currently limited and still under development.

Olfaction has a strong influence over humans. The sense of smell is closely connected with
the memory of an emotion. For that reason, it is important to achieve the goal of immersion
by tricking the sense of smell. However, Olfactory simulation technologies have not reached
that level yet and are still under development. Due to some limitations on the chemically based
simulation as discussed, digital smell studies have grown in recent years. Real Feel [40] and
Vaqso [133] devices are examples of digital smell devices which are specifically designed for VR
headsets. They are able to create limited smell sensations as well as water mist, wind, heat and
vibrations. However, a human being can differentiate one trillion different odours, while Feelreal
can only simulate nine different, and Vaqso fifteen simultaneously. By comparing the natural
olfactory system, it is quite low and not even close. For that reason, Olfactory displays are still
under development to achieve the immersion by tricking sense of smell. When technology reaches
or at least approaches to human smell perception, it can be used a wide range of VR applications
including meditation, learning, movies and game VR applications to increase user’s feeling of
immersion. Game developers can use custom made smells and effects based on the content of
the games. Smells and effects can also be added in VR movies without any programming skills.

1.3.4 Taste

Taste plays a major role in human life. There are nearly 10,000 taste buds on the tongue,
roof of the mouth, and throat. These tiny bumps power our sense of taste. As a human being,
we need food to survive. When we are eating, the taste of the foods directly influenced what
we eat and how much we eat. Sense of taste, Gustation, is directly related to foods, and for
that reason, it is one of the most important sense for life. Without sight, hearing or smell,
people in our societies can still live a normal life. However, people who lack taste generally may
not eat and may ultimately die if no medical treatment exists [24]. Research has shown that
when human eat their favorite food, it triggers the production of β-Endorphin, which enhances
the mood [34]. It explains why we feel happier when we eat chocolate. It is therefore stated
that if food is the body, the taste is for the soul [34]. Moreover, taste also serves as a human
defense mechanism. For instance, we judge the quality of the food on the basis of certain taste
sensations and avoid decomposed food.

Despite the importance of the sense of taste in our daily lives, research and developments for
taste stimulation in VR much weaker than for other senses. However, to be able to achieve the
goal of immersion through tricking human senses, all of the human senses should be displayed
in the VR.

At present taste sensations are difficult to use as a VR output by comparing other hu-
man senses, for instance, sight, audio and touch. Two main methods are in use to simulate
the taste, which is chemical-based and non-chemical based approaches. Food simulator [24],
Taste screen[86] and Virtual cocoon [36] are examples of the chemical-based approaches. How-
ever, there are some limitations such as limited availability of virtual tastes, refilling, cleaning,
durability of the devices since the chemical content can be harmful to the device. Due to the
limitations on the chemical based taste simulations, current research continues strongly on the
basis of digital tasting devices. However, since digital tasting simulation technology is quite
new, there is no specific method for it. Only three different, which are salty, bitter and sour
achieved the simulate in Voctail whereas human tongue can approximately differentiate 10,000
tastes. The mixture of the taste sensation is difficult to predict due to complex interactions
between the other senses; therefore, the sense of taste is currently considered the ultimate limit

Haptic technologies for VR 17

for creating immersive VR [108].

1.3.5 Touch

Touch gives us our most simple tool to access the outside world [47]. It is a critical sense for a
human being to connect with the physical world and plays a central role in human communication
with the environment. Important details, for instance, warmth, coldness, softness and friction
or more nuanced emotional contacts between humans can only be experienced through the sense
of touch. Touch has often called “the sense” that helps us to differentiate between what is real
and what is not [47]. This ensures that the tactile information given by the skin is considered
real by default, and we always come to question how genuine a sensory signal is. The sense of
touch leads to reduce the gap between the virtual and physical world [79]. It is important to
trick the user’s touch sense through haptic technology to achieve the goal of immersiveness in
VR. Further on this will be discussed in Section1.4 , we begin by describing the human haptic
perception that is related to haptic technologies. We then discuss tactile feedback, force feedback
gloves and bodysuits. The chapter ends with a brief assessment of haptic technology for VR.

1.4 Haptic technologies for VR

Haptic technologies allow the user to touch and feel the objects that simulated in VE. Hap-
tic word is derived from Greek “haptai” meaning to “touch” that convey important sensory
information which helps users to identify virtual objects and move them to perform a task in
VE [19]. The study of haptics is a consequence of advances in VR. VR is a type of HCI (Hu-
man Computer Interaction) that creates an immersive virtual world that can be experienced by
direct interaction with our senses. When added to the visual and 3D audio feedback, haptic
feedback dramatically improves the reality of simulation [19]. To be able to increase immer-
siveness in the virtual world, haptic feedback must be added. In HCI, Haptic feedback includes
both force(kinetic) and touch(tactile) feedback as in the physical world.

1.4.1 Human haptic perception

Human sensation comes from the dermis layer of our bodies. The skin has a surface area
of 18.000 square centimetres that is about 16-18% of the bodyweight of an adult; it is also the
largest of our sense organs [94]. The dermis is lined with several sensory neurons’ nerve endings
[23]. When an entity touches or is touched, the sensors of the skin are activated by force. This
force is then transmitted to the brain as a piece of information. A healthy human can feel about
twenty different types of haptic sense of which hot, cold, pain are the most common ones. Some
areas of the body contain more receptors than others, making them more sensitive to sensation.
The tongue, for instance, has many nerve endings with pain and heat. For that reason, it
hurts more when we bite our tongue and why we can burn our mouths quickly when we drink
something hot. Other most sensitive places are palms, ears, fingertips and feet. Human haptic
sensations can be classified into two major groups of kinetic(force) feedback and tactile(touch)
feedback.

— Kinetic(force) feedback occurs when muscle, joints and tendons feel the forces. As a
result of clinical studies [6] on human manual force exertion capability, it was found that
males can exert a maximum force of 400 Newton while female hand strength is 60% to
80% of the males.

18 State of the art and theoretical background

— Tactile(touch) feedback includes feedback through the skin, such as a sense of touch,
temperature, texture and skin surface pressure. There are four different types of tac-
tile sensors that are Meissner corpuscles (the majority), Merkel disks, Pacinian and
Ruffini corpuscles. When they are excited, they create tiny electrical discharges that
are perceived by the brain. Merkel and Ruffini are the most sensitive to lower frequency
stimuli(0-10 Hz) whereas Meissner and Pacinian sensors respond to the higher frequency
(50-300Hz)stimuli [19].

1.4.2 Tactile feedback interfaces

Tactile feedback provides real-time information about contact geometry, surface softness and
roughness, friction and temperatures [19]. It does not actively resist contact movement of the
user and does not prevent the user from moving through virtual surfaces. In the commercial side,
the most common tactile feedback devices are hand controllers serving as navigation, pointing
and selection. They also have a hand tracking system to increase interaction in the virtual world.
However, when interacting with the virtual world with hand controllers, their tactile feedback
is only limited by vibrations. HTC Vive Controller and Oculus Touch are the examples of the
commonly used hand controllers.

CyberTouch glove

The CyberTouch, in Figure 1.10, glove provides vibrotactile feedback to the user. It has six
vibrotactile actuators, one at the back of each finger and one on the palm of the hand. Each
actuator has a plastic capsule containing a DE electrical motor. The motor shaft is vibrated by
an off-centred mass that produces vibration. The vibration frequency can be changed between
0 and 125Hz. Each actuator has a small force (1.2 Newton) that can be felt through the singer’s
bones [19]. They can be individually programmed to vary the strength of touch sensation [30].
Whenever fingers or palms of the user interacts with the virtual object, the CyberTouch glove
reads the user hand configuration and transmits the data to the host computer. Then the host
computer sends the necessary informations for activating the vibrotactile actuators. In this way,
the feedback loop is closed, and the user feels the vibrations on the skin. The glove enhances the
user freedom of movement and sense of vibration significantly comparing to the hand controllers
that require to kept on user’s hands.

Figure 1.10 – Tactile interface by CyberTouch glove [30].

Haptic technologies for VR 19

Temperature feedback glove

The temperature feedback gloves enable users to perceive thermal properties that can help to
recognize the material of the product. These thermal properties are, for instance, temperature,
thermal conductivity and diffusiveness. When grasped, materials with high conductivity feels
cold and those of low conductivity, such as wood, feels warm. It is because of the heat transfer
from the finger to the surface of the objects [19]. C&M Research developed a displaced tem-
perature sensing system (DTSS) which consists of eight thermodes and control interface panel.
Each thermode consists of a Peltier heat pump and a thermocouple temperature sensor attached
to the skin-contact plates [19]. The fingertip temperature is determined by the thermocouple
temperature sensors in real-time and then sent to the control system. The fingertip temperature
is compared to the target temperature and sent to the DTSS control interface. The temperature
difference between the target temperature and the user’s fingertip temperatures is the input for
the temperature controller system. The output is then forwarded to current amplifiers, which
drive the Peltier heat pump and thermocouple temperature sensors. These thermocouple sensors
are located in each fingertip and other locations such as on the palm. The host computer can
modify the temperature according to the VR simulation requires.

HaptX

HaptX is another glove device which offers a convincing touch feeling to virtual objects by
incorporating mid-air haptic technologies that touch the skin physically in a similar way real
objects do. Mid-air haptic technology makes a simulation of texture, shape and motion of virtual
objects. There are 130 points of feedback that displace user’s skin up to 2mm [52]. User also
can feel the size, weight of the virtual objects with the help of exoskeleton mechanism structure
of the glove. It also produces force feedback to limit and resist the user’s movements. However,
it is almost impossible to replicate all data transmitted by touching a virtual object, including
its surface and weight with HaptX glove.

1.4.3 Force feedback interfaces

Force feedback conveys information on compliance with the virtual object surface, object
weight and inertia in real-time. It actively resists and can stop the user’s contact movement
with large feedback forces [19].

CyberGrasp system

CyberGrasp is an exoskeleton device. CyberGlove, as seen Figure 1.11, is the most well-
known and precursor of all commercial exoskeletons [103]. It has a jointed structure that the
user wears over his hand that transmits forces to his fingers. It is used to provide feedback
from resistive force power. The system prevents the fingers from moving by applying the force
resistance and not allowing the movements of the fingers when the user tries to move them.
The system imitates the actual phenomenon when attempting to compress a rigid item in the
physical world. The CyberGlove can also make users feel the weight to the virtual objects by
using the same concept of force feedback. The interface box of the CyberGlove transmits the
finger position data to the Cyber grasp Force Control Unit (FCU). The same FCU collects
wrist-position data from the 3D magnetic tracker. Both finger and wrist 3D positions are
sent to the host computer during the simulation. The host computer then senses inputs that
are resulting from finger touch forces into the FCU. The Cyber Grasp FCU then converts the

20 State of the art and theoretical background

contact force targets into analogue currents which are amplified and delivered to one of the
five electric actuators in an actuator housing equipment. The actuator torques are conveyed
to the user via a cable network and a mechanical exoskeleton that is placed on the top of the
glove. The maximum force that can be generated on each finger is 16 N [19]. One of the main
disadvantages of CyberGrasp system is their large weight and height. For instance, CyberGlove
weight is approximately 0.4 kg [38]. It could be stressful for the user to do long simulations.

Figure 1.11 – Force feedback interface by Cyber glove [30].

1.4.4 Haptic bodysuits

In recent years, there have been several body haptic suits on the market; for instance, Tesla
suit as seen in Figure 1.12, allow the user to touch and feel the sensation in Virtual Reality.
The suit can actively stimulate heat, cold, vibration and tactile stimulation through a variety
of electrical impulses by using conductive polymers and special add on materials as the primary
structure of the suit. It has an ability to generate senses such as touch, pressure and pain by
using two functional electrical stimulation: Neuromuscular electrical stimulation (NMES) and
Transcutaneous electrical nerve stimulation (TENS) [10]. Touch sensation is mainly produced
by the use of Transcutaneous Electrical Nerve Stimulation that is normally used in pain control
treatments to block peripheral nerves [77]. Touch sense as tactile feedback can be simulated in
bodysuits by varying frequency amplitude and pulse length. Moreover, Neuromuscular Electrical
Stimulation is commonly used for muscle training and treatment for physiotherapy patients. It
has the capacity to generate a sense of force or pressure on the user by producing muscle
contractions, whereas TENS trigger a sense of touch depending on the virtual scenario.

Haptic technologies for VR 21

Figure 1.12 – Haptic body suits - Tesla Suit [10].

1.4.5 Analysis of haptic technologies in VR

Sense of touch is the link between the physical world. It plays a crucial role in human
contact with the environment. Since the VEs are designed to simulate physical worlds, it is
important to achieve the goal of immersivess by tricking the sense of touch. Haptic technologies
which we have discussed are capable of providing sensations not only for hands, wrist, and
palms but also for the human body. However, the skin is the largest part of our body including
ears and tongue. The Immersiveness is increasing when we involve more parts of the body
in the simulation. Current VR haptic devices do not support HCI fully in real-time and new
technological approaches needed to achieve the goal of immersion through tricking our haptic
senses. However, there are a still number of limitations on all existing haptic devices. They
have limited feedback capacity in comparison to the tactile sensory system in humans. The
human hand consists of millions of specialist touch sensors all working in tandem, while the
latest haptic interfaces typically have fewer than ten tactile feedback engines. Other limitations
on existing haptic devices include a high price, large size and weight, bandwidth restrictions,
latency between a human operator and force feedback, design for very specific purpose purposes
and instability if the update rate is well below 1 kHz [38] . Nevertheless, it will still take some
time, until VR haptic technologies achieve the goal of immersiveness through tricking sense of
touch.

Immersive haptic technologies can be used in e-commerce. For instance, a human can test
products by sensing the warm, cold, soft, hard, light or heavy properties of product’s surfaces and
textures. Since consumers usually tend to touch items (e.g. clothes) before purchasing. Haptic
feedback is important for impaired people who are not able to VE through visual displays.
Moreover, there is great benefit in meditation and training immersive VR haptic applications.

22 State of the art and theoretical background

1.5 Existing haptic interfaces

Haptic technology, also known as kinesthetic communication or 3D touch, refers to any
technology that can create an experience of touch by applying forces, vibrations, or motions to
the user. These technologies can be used to create virtual objects in a computer simulation, to
control virtual objects, and to enhance remote control of machines and devices (telerobotics).
Haptic devices may incorporate tactile sensors that measure forces exerted by the user on the
interface.

Haptic technology can communicate information to the user that could not be detected by
sight or sound alone. Haptic sensation is what one first feels when touching something. Haptic
sensation is also what allows us to determine that we are touching an actual object. We can
use this human trait to help communicate information on substance and feel that could not be
obtained through sight and sound alone. Haptic technology holds great promise as a means of
bringing a greater sense of reality to games and virtual reality.

1.5.1 Haptic senses

The haptic senses refer to the perception of the variety of sensations that relate to touch:
tactile sensibility, the perception of our limbs in space and the stress that they undergo, but
also equilibrium, pain, and temperature [75] Those various signals are all integrated by the
sensomatory system, giving us a global haptic image of our physical state and that of our
environment.

Haptic technology facilitates the investigation of how the human sense of touch works by
allowing the creation of controlled haptic virtual objects. Most researchers distinguish three
sensory systems related to the sense of touch in humans: cutaneous, kinaesthetic, and haptic.
All perceptions mediated by cutaneous and kinaesthetic sensibility are referred to as tactual
perception. The sense of touch may be classified as passive and active, and the term “haptic”
is often associated with active touch to communicate or recognize objects.

This section presents an overview of the sensory aspect of the human hand and focuses on
the predominant sensations involved in object manipulation: cutaneous sensibility and proprio-
ception.

Cutaneous sensibility

Cutaneous sensibility enables the perception of small-scale features such as texture and
roughness. These sensations stem from mechanoreceptors, nerve endings encapsulated inside
corpuscles that deform under stress, located below the superficial layer of the skin [35]. Structural
variations in the capsule tissue make the four types of receptors react to different stimuli [75].
For instance, Meissner’s corpuscles are sensitive to changes in velocity. Pacinian corpuscles
are sensitive to vibration and light touch. Ruffini’s corpuscles are sensitive to skin stretch and
detect the direction of forces. Merkel’s disks are sensible to pressure and smallscale shapes,
which helps in feeling the edges of objects. These mechanoreceptors can be found all over the
body in varying quantities but the hands are among the most densely populated areas, which
grants them a particularly acute sensibility [84].

The types of mechanoreceptors differ in other properties than the stimuli they respond.
First, they can be distinguished according to their adaptation rate, which is the speed of the
transition from the excited state to the neutral state. Rapidly adapting receptors quickly return
to their neutral state. Thus, they are not fit to detect the material properties of a surface from a

Existing haptic interfaces 23

static observation; which explains why we slide our fingers over a surface in order to perceive its
texture. On the contrary, slowly adapting mechanoreceptors detect if an event is continuously
occurring. They play an essential role in gauging the weight, balance, and slippage of the objects
that we manipulate in order to ensure secure grasps.

Mechanoreceptors are also characterized by their input frequency, which corresponds to
the speed at which separate stimuli can be detected. Rapidly adapting mechanoreceptors can
respond to events between 20 and 300 Hz whereas slowly adapting receptors are typically limited
to 10 Hz [19]. Additionally, the size of the receptive field, which corresponds to the skin area
in which a contact is detectable by a single touch receptor, is larger for Pacinian and Ruffini’s
corpuscles. However, the larger is the receptive field, the lower the spatial resolution is [132].

Proprioception

Proprioception, or kinesthesia, is the perception of the motion of our limbs in space as well
as the perception of the stress that they undergo; sensations which are essential for interacting
with our hands [11].

At the limb level, proprioceptive information comes from mechanoreceptors in the joint,
the muscles, and the tendons. First, the same Pacinian and Ruffini’s corpuscles that can be
found below the superficial layers of the skin are also located in the joints between bones. The
amplitude of the signal that they send to the brain informs about the joint angles between
limbs whereas its frequency informs about their angular velocities [20]. Then, internal and
external forces that our muscles are subjected to are evaluated by the Golgi organs located
at the junction between muscles and tendons. They measure muscle tension, stabilize heavy
grasps, and additionally play an inhibiting role by relaxing muscles when tension is too high.
Other receptors, the muscle spindles, are located inside of the muscles of the arms and hands,
and measure their length [75], which determines the shape and rigidity of the objects that we
manipulate. The various mechanoreceptors of the skin responsible for cutaneous sensibility
also play an indirect role in proprioception since extension/flexion of the limbs may result in
a stretching/bulging of the skin adding extra information about our haptic state. At a higher
level, the global position and orientation of each of our limbs is evaluated from the vestibular
system in the inner ear. Canals filled with fluid subject to gravity inform about the orientation
of the head. The perceived state of the rest of the body then depends on the proprioceptive
links between head, neck, trunk and limbs.

The maximum frequency at which a human finger can apply output forces is between 5 and
10 Hz [16]. Regarding the input bandwidth, variable numbers were proposed: [118] suggested
that it could go as high as 10 kHz and [16] supposed that a finger cannot discriminate two
consecutive force signals above 320 Hz. It is however admitted that a input frequency between
20 and 30 Hz is a minimum for meaningful perception [121].

1.5.2 Haptic feedback and sense of touch

The sense of touch is very important in our daily life. Without it, it would cause serious
difficulties in performing tasks such as holding and manipulating tools or making contact with
surrounding objects [111]. Thanks to this sense, which gives us the ability to perceive the
physical properties of our environment (shape, size, texture) and to control the forces applied
to it, allows us to perform a wide range of tasks with a high level of dexterity.

However, in some situations, for example, the human operator may not have direct contact
with the object being manipulated. Because the environment is hostile (nuclear, underwater,

24 State of the art and theoretical background

(a) Teleoperation master arm with force feed-
back in a nuclear context (©CEA/Stropa)

(b) VR assembly testing for the automotive in-
dustry (©CEA/Stropa)

Figure 1.13 – Teleoperated and virtual reality (VR) systems using force feedback.

space) or not usable at the user’s scale (micromanipulation, microsurgery). In such cases, tasks
can be performed using a remote control system, a remote robot that mimics the movements of
an operator-controlled master hand. The ability to control the movement of a remote system is
also very important in virtual reality, in which case the user remotely controls the virtual avatar
instead of the robot.

The concepts of remote manipulation (controlling a remote robot system), virtual reality
(controlling a virtual avatar), and telepresence (makes a user feel like he/she is in a place other
than their current location) are either remote (see Figure 1.13a) or Development of a system
that allows the operator to feel the force and physical properties applied to an object that is
virtually manipulated (see Figure 1.13a) [9], that is, i.e. by means of haptic interfaces.

Haptics was defined as a perceptual system that uses both cutaneous (including thermal)
and kinesthetic inputs to derive information about objects, their properties, and their spatial
layout [81]. To stimulate these sensations, users need special devices called tactile interfaces, de-
vices that can interact with remote/virtual environments by reproducing touch using kinesthetic
(force/position) and skin (tactile) receptors [51].

There are four distinguish methods for artificially creating haptic sensations : vibrotactile
devices, force feedback systems, surface displays and distributed tactile displays [56]. The fol-
lowing section will describe their main applications with a focus on VR.

1.5.3 Examples of force feedback devices

Force feedback interfaces are used in many domains (most of them using VR) such as design,
manufacturing, assembly, scientific visualization, entertainment, education, medicine, space,
rehabilitation, micro-manipulation, as well as molecular biology [51]. The interface should then
provide adequate kinesthetic information contributing to enhance the sense of presence in the
VE [109].

In the fields of design, manufacturing and assembly, haptic feedback can contribute to chang-
ing traditional product development approaches by allowing the users to get the feeling of touch-
ing objects, perceiving the nature of their surfaces and their dynamics before producing any real
prototype [139]. This way, users can gain a comprehensive understanding and accurate evalua-
tion of the design and manufacturing process (see Figure 1.14).

In scientific visualization (see Figure 1.14b), haptic devices can be used to simulate object’s
physical properties, e.g. texture and/or interaction forces. This allows direct and immediate

Existing haptic interfaces 25

control over simulations as well as sensing of the results of the scenario of interest [128].
The entertainment industry has also benefited from haptic developments. Force feedback

technology enhances the game experience by providing more realistic sensations while playing a
game [37].

Haptics is also of great interest in education. For example, a multimedia system for learning
handwriting of alphabet letters/characters in different languages can make use of a haptic device
to provide force feedback to guide the user’s gesture at following a pre-recorded letter trajectory
(see Figure 1.14c).

In medicine also, VR simulation-based training appears as a promising solution for skill
transfer. Novice surgeons can acquire and/or improve their skills before operating on a real
patient and experienced surgeons can learn new techniques and even rehearse when the patient
to operate presents a complicated surgery case (see Figure 1.14d), e.g. a congenital anomaly or
a known difficult anatomy [4].

Force feedback interfaces can also be used to intelligently guide/regulate the motion of the
user during an operation [15], e.g. preventing the user to move towards a restricted region,
contributing that way to improve the security of the patient and postoperative results.

More generally, robot-assisted minimally invasive surgery (RMIS) offers advantages to pa-
tients such as less trauma, shorter hospital stay and reduced recovery times [106]. Robots in
master-slave configuration can cope with motion constraints of surgical instruments, improving
surgeon’s dexterity [105]. The surgeon is expected to act and feel as if he/she were holding
directly the surgical tools being in contact with the patient. In such scenarios, any strategy
to estimate/ sense the applied force is expected to improve the accuracy and dexterity of the
surgeon [98] and therefore reduce the tissue trauma and organic damage. The development of
force sensors for RMIS is thus still an active research topic as reported in [105].

One can also refer to physical rehabilitation which is a growing field of use for haptic in-
terfaces. Unlike a human therapist, robots can train patients for long periods of time without
tiring. Robotic systems coupled with VR simulations also bring additional improvements to
today’s conventional physical therapy methods, since they introduce objective measures of per-
formance (see Figure 1.14e).

Space is an environment inaccessible to humans where force feedback systems can contribute
to train operators and help them performing maintenance, reparation or exploration tasks while
preventing and reducing risks. In [113] for instance, a VR platform for telerobotic on-orbit servic-
ing missions helps to train users (providing visual and haptic feedback) for satellite maintenance
tasks (see Figure 1.14f.

When it comes to manipulation of tiny objects, haptic systems allowing the user to interact
with objects at the micro scale are needed (see Figure 1.14g). In molecular biology for example,
the size and complexity of molecular structures make it difficult, if not impossible, to show all
of their features in a physical model alone. In combination with augmented reality (AR) and
voice commands, haptic feedback provides additional information about these models using a
force display [116]

All the above mentioned applications require a device compatible with the targeted task.
Several examples of such devices are presented in section 1.5.4, with focus on commercially
available interfaces.

1.5.4 Commercially available interfaces

Force feedback systems are robotic mechanisms capable to measure the user’s movements,
this information being used to control the movements of user avatar, and deliver a force signal

26 State of the art and theoretical background

(a) Virtual aircraft engine maintenability
operation

(b) GROPE III system used for scientific
visualization

(c) Telemaque platform used for children’s
handwriting acquisition

(d) Training platform for maxillo facial
surgery

(e) MIT MANUS for shoulder rehabilita-
tion

(f) HUG for VR on-orbit servicing mis-
sions

(g) Teleoperation for micromanipulation

Figure 1.14 – Applications of force feedback interfaces: (a) [14], (b) [17], (c) [101], (d) [49], (e)
[18], (f) [113], (g)[13]

Existing haptic interfaces 27

to his/her hand, usually through a stylus or a thimble [21].
The realism of the interaction is strictly related to the capabilities of the device to allow

natural movements of the human operator’s hands as well as to reproduce adequate stimuli on
them. An ideal force feedback system should be transparent: the user should be able to move
in free-space without feeling any force, i.e. to make pure free movements, and the device should
prevent him/her to move in the constraint direction if a stiff object is being touched, i.e. the
device should be able to simulate any type of contacts, even hard ones [29].

It is worth noting that a perfect transparency cannot be attained in practice. Fortunately,
most of the time it is not necessary to reproduce the whole bunch of physical interactions
experienced everyday, and force feedback interfaces can be tuned to the requirements of the
tasks of interest. It is thus important to identify what sources of kinesthetic information are
relevant for the targeted tasks, and which degree of fidelity is needed [111].

Several performance metrics are usually employed to qualify a force feedback interface:
workspace, position resolution, continuous force, peak force, friction, apparent stiffness, ap-
parent inertia and bandwidth. All these notions, defined below with reference to e.g. [95]
contribute to the transparency of the device.

— The workspace is the volume that the device can cover, considering both translations
(ranges usually expressed in the Cartesian space in mm, cm or m) and rotations (ranges
usually expressed in degrees in yaw, pitch and roll).

— The position resolution is the smallest amount of movement which can be detected by
the arm sensors. It is usually expressed at the level of the handle (i.e. in the Cartesian
space) in m or mm in translation and in degrees or radians for the rotations.

— The continuous force is the amount of force/torque that the device can exert for an
extended period of time. It is usually expressed in the Cartesian space in N for the
translations and in N.m for the rotations.

— The peak force is the maximum force that the actuators can exert, e.g. over a small
period of time. The peak force can typically be between 2 and 10 times higher than the
continuous force for typical actuators usually implemented in force feedback interfaces,
allowing to momentarily stop the user against the environment, e.g. when taping or
touching a hard object.

— The friction is a measure of the resistance of the device to movement. It is expressed in
N for translations and N:m for rotations. It should be as low as possible.

— The apparent stiffness is the maximum stiffness that can be simulated by the device. It
informs on the different types of objects that can be simulated. Indeed many objects
in VR environments behave like a spring, i.e. they deform linearly in response to an
external force. The apparent stiffness is expressed in N/m for translations and N.m/rad
for rotations. The higher it is, the better solid virtual walls can be simulated.

— The apparent inertia is a measure of the mass (in kg) and inertia (in kg.cm2) that is
sensed by the user when he/she tries to move the handle of the robot. It should be as low
as possible in order to give user the impression that he/she moves freely in free space.

— The bandwidth is the frequency (in Hz) up to which the device can be properly con-
trolled. It should not be confused with the update frequency of the controller nor with
the bandwidth of the human somatosensory system, i.e. about 300 - 1000Hz for tactile
sensing and 20 - 30Hz for kinesthetic and proprioceptive sensing.

It is worth noting that, even if the afore-mentioned data are usually given in the Cartesian
space, this information can be given instead in the joint space.

Six main manufacturers were identified in the market: 3D Systems, Force Dimension, Hap-

28 State of the art and theoretical background

tion S.A., Quanser, MOOG Inc. and MPB Technologies Inc. Representative examples of their
products will be briefly described below.

The Touch device (see Figure 1.15a, left) is a desktop interface providing 3DoF force feedback.
This low power device can be used in several applications, including 3D modeling, training,
skill evaluation, virtual assembly and robotic control [1]. The premium series provide 6 active
DoF and cover a vast range of research and commercial applications, e.g. virtual prototyping,
maintenance path planning and molecular modeling applications. Within this category, the
Phantom Premium 3.0 provides a range of motion compatible with full arm movement pivoting
at the shoulder (see Figure 1.15a, right).

The omega.6 (see Figure 1.15b,left) provides 3DoF force feedback. It is considered by Force
Dimension as the most advanced pen-shaped force feedback device available. Focused on er-
gonomics, this device enables the rendering of high contact forces and high stiffness thanks to
an update rate of 4kHz. The sigma.7 (see Figure 1.15b, right) is a high sensitivity 7 active
DoF device from Force Dimension that can be used in applications including medical and space
robotics, micro and nano manipulation, bi-manual teleoperation, virtual simulations, training
systems and research [43].

Haption S.A. provides a wide range of high performance force feedback interfaces. It proposes
3 or 6 DoF devices like the Virtuose 3D Desktop (see Figure 1.15c, left) and the Virtuose 6D TAO
that can be used for VR and teleoperation applications (see Figure 1.15c, right). It is particularly
well suited for scale 1 virtual/remote manipulations. It is also used for comanipulation in
laparoscopic surgery as well as in rehabilitation [134].

The High Definition Haptic Device (HD2) from Quanser (see Figure 1.15d) is a high-fidelity
6 DoF haptic interface for advanced research in haptics and robotics. It is particularly suitable
for the development of test beds for various emerging applications such as medical simulators
and teleoperation. This haptic interface can track the operator’s motion in 6 DoF and apply
force to the user in 5 DoF [107].

The Desktop Haptic Interface from MOOG, Inc. (see Figure 1.15e) is a general purpose
haptic interface, providing force feedback in 3 DoF. Its admittance control allows to provide
realistic crisp touch and feel [31].

Finally, the Freedom 6S (see Figure 1.15f) from MPB Technologies Inc. is a high-fidelity
force feedback device operating in 6 DoF, providing the user with the sense of touch in both
virtual and real-world applications. It is ideally suited for medical and master /slave robotics
[95].

It is worth noting that the development of haptic devices is part of an increasing market.
More and more applications are being imagined every day, generating the continuous need for
novel devices.

1.5.5 Limitations of existing haptic interfaces

As mentioned earlier, the user should not feel the presence of the robot in free space. All
existing devices lack the design to answer this need. As a consequence, a perfect transparency
is not attained.Transparency in free space could be improved by implementing accompanying
control strategies.

Part of the problem is related to the fact that tactile feedback interfaces usually require the
user to be mechanically linked to them in order to know the user’s position and provide feedback
that is consistent with the virtual scene. This link has a non negligible influence as the user
experiences mechanical structure even when moving in free space. In this case the difference

Existing haptic interfaces 29

(a) Touch and Phantom Premium 3.0 from
3D Systems, U.S.A.[1]

(b) omega.6 and sigma.7 from Force Di-
mension, Switzerland.[43]

(c) Virtuose 3D Desktop and Virtuose 6D
TAO from Haption S.A., France.[134]

(d) HD2 High Definition Haptic Device
from Quanser, Canada.[107]

(e) Desktop Haptic Interface from MOOG,
Inc., U.S.A.[31]

(f) Freedom 6S from MPB Technologies
Inc., Canada.[95]

Figure 1.15 – Examples of common commercial force feedback interfaces.

30 State of the art and theoretical background

between free space and contact is less distinctively felt and muscular fatigue is expected to
appear in case of long manipulations.

A relatively novel paradigm known as intermittent-contact aims to cope with the limitations
of conventional devices in order to improve the realism of the haptic interaction and relief the
user when long manipulations take place. Its principle and the advances in this field of research
will be described in the next section 1.6.

1.6 Intermittent-contact interface

The intermittent-contact (IC) model proposes to remove the mechanical link between the
interface and the user in free space, obtaining a perfect transparency and letting the user touch
the haptic device only when a contact occurs in the VE. This way, intermittent-contact interfaces
(ICIs) aim to improve the realism of the haptic interaction.

Two categories of devices implementing the IC model can be identified. The first one is
known as Encountered-Type haptic interfaces (ETHI) and the second one as Close-Tracking-
type haptic interfaces (CTHIs). In the former, a robot manipulator, which end-effector has the
shape of the simulated object, is controlled to make it be encountered the user’s hand at the
position where the VO is found. In the later, the device follows the user at a short and constant
distance, without contact, and touches user only when a VO is reached.

These devices are particularly interesting to reduce the fatigue during long manipulations
and to perceive small interaction forces as it is the case in medicine, e.g. the force applied on an
organ. Their principle and relevance will be discussed in sections 1.6.1 and 1.6.2 respectively.

1.6.1 Encountered-type haptic interfaces

The ETHI principle consists in imagining that the virtual space is superimposed with the
real environment. The robot is then controlled to be positioned along its surface at the nearest
position of the user’s hand and simulate the VO properties (see Figure 1.16). This way, the
user remains away from the robot in free space and he/she touches its end-effector only when
and where he/she is supposed to touch the VO, a perfect transparency is therefore achieved.
To do this, the user’s position must be tracked, e.g. using video cameras or body-mounted
position tracking sensors, and the robot must be controlled so that it can rapidly and accurately
anticipate the user’s movement intentions.

The ETHI approach was first proposed in [87]: a robot manipulator, which end-effector has
the shape of the simulated object, is controlled to make it encounter the user’s hand at the
position where the VO is expected to be found. This way the user is totally free in free space
and he/she can feel the corresponding interaction forces.

The ETHI approach was also used in [127] for the construction of a haptic space: the
user’s arm motion is measured by a passive master arm, allowing to compute the position and
orientation of the user’s fingertip. This information is used by a computer to calculate the nearest
object to the user’s hand in the virtual haptic space (see Figure 1.17). The local geometry of
the simulated object near the contact point and its mechanical impedance are displayed by a
6DoF impedance controlled manipulator and a shape approximation device (SAD). The SAD
possesses curved surfaces as well as convex and concave edges and its positioning and orientation
are modified in order to simulate the desired object configuration.

Intermittent-contact interface 31

Figure 1.16 – Principle functioning of encountered-type haptic interfaces.

Figure 1.17 – Virtual haptic space representation (adapted from [127]).

Another ETHI system was proposed in [140][141], called WYSIWYF (What You can See Is
What You can Feel), this concept allows the user to feel the object precisely where the user sees
it. Employing vision-based tracking, the system can blend live video with the virtual scene, i.e.
a portion of the user’s hand is extracted from the captured image and is superimposed on the
virtual scene (see Figure 1.18).

Figure 1.18 – Virtual haptic space representation [141].

32 State of the art and theoretical background

In [143], an ETHI device allowing the simulation of precision grasping tasks using three fin-
gers (thumb, index and middle fingers) was presented (see Figure 1.19). The system consists of
two modules, a base module composed of a robot manipulator (see Figure 1.19a) and a specifi-
cally designed contact module for finger interaction (see Figure 1.19b), together accounting for
the necessary number of DoF to place a local surface patch any where in space. The positioning
and orientation of the system are predicted based on the measure of the wrist speed profile and
aperture distance between the fingers.

(a) System modules (b) Contact module diagram

Figure 1.19 – Multiple finger ETHI [143]

When working with ETHI devices, the user’s hand is a kind of moving obstacle (see Fig.1.16a)
that should be avoided (see Fig.1.16b). Miscalculations or system slowness can lead to painful
collisions. In order to cope with this issue, path planning techniques are necessary.

In [142], a path planning algorithm for ET-HI devices that renders multiple VOs in 3D space
was proposed. Here a convex polyhedron is constructed from the reference points of the virtual
objects (see Fig.1.16c). As long as the user’s hand is outside the polyhedron, the device stays
on its surface. On the other hand, if the user’s hand penetrates in it, the device avoids the
user’s hand and goes inside the polyhedron if necessary. Such algorithm not only considered the
security of the user but also the efficiency of the device movement.

(a) Collisions with careless
path-planning (b) Collision avoidance (c) Polyhedron principle

Figure 1.20 – Path-planning issue in ETHIs [142]

As previously explained, ETHIs have the advantage over classical type haptic interfaces to

Intermittent-contact interface 33

be perfectly transparent in free space as they are not at all in contact with the user’s hand.
With this approach however, the robot may reach very high speeds, which is dangerous for the
user, e.g. if bilateral contacts with concave surfaces have to be simulated. Another issue is that
the amount of objects that can be simulated is limited to a restricted set of pre-manufactured
objects, which often display only very simple mathematical shapes.

1.6.2 Close-tracking-type haptic interfaces

The CTHI approach is another way to implement the IC model. Contrary to the ETHI
principle where the device follows the surface of the VO, it proposes to let the device follow
the user at a short and constant distance, without contact, and touch user only when a VO is
reached (see Figure 1.21).

The CTHI principle requires to measure the distance between the device and the user’s
body (typically user finger), using e.g. sensors installed on the end-effector. The device will
then closely follow the user’s movements without any path planning as long as the user remains
in the reachable volume (workspace) of the interface. Despite this limitation, the security of the
user is improved. Several examples of such devices will be given below.

Figure 1.21 – Principle of functioning close-tracking-type haptic interfaces.

In [59], the existence of an object is simulated thanks to a mechanism for surface displaying
(see Figure 1.22). 3-DoF tracking of the index finger is accomplished by means of magnetic
sensors integrated in a moving head and magnets mounted on the finger (see Figure 1.22a).
When the finger is being displaced in free space (i.e. no VO is being touched), the moving force
feedback head follows it (tracking mode).

When a VO is about to be touched, the display mode is activated, the force feedback head
stops at the VO position and waits for the finger to contact its inner surface composed of a tube
(see Figure 1.22b).

34 State of the art and theoretical background

(a) Detail of force feedback head (b) Control

Figure 1.22 – Surface display [59]

In [144], a 2-DoF arm (see Figure 1.23a) allows finger interaction with virtual worlds thanks
to a ring-like end-effector equipped with a set of eight lightweight optical on-off sensors used to
roughly estimate the fingertip position in the ring (see Figure 1.23b). When the finger is far
away from a VO, the ring’s position is controlled to keep the fingertip in its center. When the
fingertip is near a VO, the ring moves closer to it. Finally, when the fingertip is in touch with
a VO the display mode is activated (see Figure 1.23c). A force sensor placed between the ring
and the tip of the arm allows then to measure the force applied by the arm on the fingertip.

(a) 2-DoF touch and force display system (b) Sensor principle

(c) Control

Figure 1.23 – 2-DoF CTHI systems, adapted from [144]

A similar approach was used in [48] for the development of a 2-DoF CTHI (see Figure 1.24a).
The tracking is however improved to get better performances: the end-effector is instrumented
with infrared proximity sensors allowing to reconstruct the finger shape and to precisely estimate
the position of its center using distance measurements (see Figure 1.24b). The control of the
device is more precise, especially regarding the transitions between free space and contact (see
Figure 1.24c).

Intermittent-contact interface 35

(a) 2-DoF touch and force display
system (b) Sensor principle (c) Control

Figure 1.24 – 2-DoF CTHI system, adapted from [48]

In [144], a three-dimensional haptic display composed of two arms and a cap-like end-effector
attached to their tips was presented (see Figure 1.25a). The user can insert user finger in the cap
to interact with the virtual world. The device’s sensor system is composed of optical glass-fiber
on-off sensors, allowing to roughly estimate the 6-DoF configuration (position and orientation) of
the finger in the cap (see Figure 1.25b). In free space the device tracks and follows the fingertip
without contact. At contact (when a virtual object is touched), the cap is controlled so its inner
surface touches the finger (see Figure 1.25c).

Figure 1.25 – 3DoF CTHI system, adapted from [144]

Finally, a recently developed CTHI presented in [22] allows two finger dexterous interactions
(index and thumb fingertips) with digital mock-ups in VR (see Figure 1.26a). This interface
should be able to precisely measure and follow both fingertips remotely without equipping the
user with any marker on skin or nail, and serve as a contact surface when force feedback is
required. To perform this, two 6-DoF end-effectors were specially designed and tested. Each
end-effector integrates 9 proximity sensors, 8 placed around the finger in two planes, the last one
being in front of it (see Figure 1.26c). A 6-DoF (position and orientation) robot is associated
with each finger and connected to a base plate fixed on the hand palm. All these elements are

36 State of the art and theoretical background

associated with a positioning arm (see Figure 1.26b) in order to allow for as free as possible
hand movements.

(a) Two fingers close-tracking-type haptic interface.

(c) Prototype end-effector with 9 proximity sensors. (b) Interface main elements.

Figure 1.26 – Two finger dexterous CTHI, adapted from [22].

1.7 Equipment

In this thesis, it is expected that specific hardware and software will be used. Some basic
knowledge of this software is also required and challenges regarding installation are also expected.
As explained in "Description of Context", this thesis is a part of Renault Group project. The
selection of hardware components like robot, VR systems and software platforms are already
established. Since the consortium had selected Universal Robots UR-5 as the collaborative robot
and the use of HTC Vive for Virtual Reality display. Similarly the car model used in this thesis
and definition of iteration points are also established by Renault Group.

The use of Unity3D software for virtual reality scene development has also been established.
Since the final goal is to collaborate and combine the thesis with Renault Group project these
established hardware and software have not been challenged or changed. For robot planning in
this thesis, ROS has been selected because of its versatile features. This poses a challenge in
cross-platform between Windows and Linux which is also addressed in Chapter 4.

1.8 Research proposal

Haptic feedback interfaces are intended to allow a user to interact naturally with a virtu-
al/remote environment with haptic feedback. Therefore, they should be both light and safe
enough so that they do not interfere with the user’s movement in free space (transparency) and
mechanically stiff to provide realistic feedback. Several efforts can be made to achieve these
goals, e.g. by optimizing the mechanical design or by using force sensors (in case of force feed-
back systems) to measure and compensate the resistance of the device to the user’s movements
in the direction of displacement. These solutions are however not sufficient to achieve a perfect

Research proposal 37

transparency and the performances of current feedback devices still require to be improved, in
particular for tasks lasting long hours.

The ICI model, presented in section 1.6, aims to solve this problem by physically discon-
necting the user for the device in free space and letting user touch the robot only when it is
required, this way providing only the necessary amount of interaction. This principle can theo-
retically render feedback interfaces perfectly transparent, allowing to increase the realism of the
interaction. It has been implemented in two ways: ETHI and CTHI devices.

In the former approach, the system anticipates the user’s movements, positions the end-
effector of the robot at the place where he/she is expected to touch a VO and waits for the
user to encounter it. User tracking is commonly achieved by means of a motion capture system
or a passive mechanical master arm attached to the user’s arm. Such approach is however
dangerous, as without meticulous path planning, the robot may follow trajectories near the
user. Furthermore, if bilateral contacts are simulated the robot may attain very high speeds,
compromising the security of the user.

Therefore intermittent contact interfaces, should be safe enough so that they do not interfere
with the user’s movement in free space (transparency). Several efforts can be made to achieve
these goals, e.g. by optimizing the mechanical design (robot base placement wrt to the task
points, planning and control of the robot trajectories)or by using sensors to measure and predict
the user’s movements in the direction of displacement. These solutions are however are a step
forward to achieve a perfect transparency and the performances of current haptic feedback
devices.

The later approach proposes to closely track (advantageously with a system integrated in
the end-effector of the robot) and follow the user’s movements (in position and orientation)
without contact in free space and stop the robot when a VO is being touched to make the user
feel the interaction forces. With this approach, the security of the user is improved, even if
user movements are restricted to the workspace of the robot. However the system restricts the
interaction of user with only maximum of 2 fingers. For this reason, in the present work we will
focus on Encountered-type haptic interfaces.

It is worth noting that, despite their potential advantages, ETHI devices still suffer from
some limitations. The objective of the doctoral thesis presented here is to implement a system
for the texture perception. It is organized around three key questions that, according to the
explored literature, have not yet been addressed for this type of devices. Each of these issues
will be addressed in a specific chapter of this thesis, as explained in "Introduction".

38 State of the art and theoretical background

Chapter 2

UR-5 configurations, workspace and
placement

2.1 Introduction

Serial manipulators are used in many robotic systems like manufacturing, handling material,
and teleoperation. There is an increasing number of these robots worldwide with some big names
in that domain such as ABB and Kuka.

In recent years, Universal Robots have developed a series of robotic manipulators that are
now widely used by many universities and industries. These are a special kind of serial robots
which have a cobot mode. The ability for the robot to have a protective stop when violating a
set defined boundary. Additionally this robot is claimed to be fast, easy to program, flexible,
safe, and offers low-level programming access to the robot controller with a high cycle time [1].
Among the UR products, the family of UR-3, UR-5, and UR-10 have received great attention
within the robotics community and industries specifically by the robotic research community.

UR-5 robot, Figure 2.1, is a well-known 6-degree-of-freedom (DoF) robotic manipulator
manufactured by Universal Robots Company [130]. The most renowned feature of this robot is
its agility due to its lightweight, speed, ease of program, flexibility, and safety. One of the main
characteristics of the UR-5 is that the last three joints on it do not act as a coincidental wrist.
Therefore, all its six joints contribute to the transformational and rotational movements of its
end-effector.

In Figure 2.2 the schematic of the robotic arm and the allocation of each joint’s frame are
illustrated. It is mentioned that the DH parameters that are used in the kinematic model
are based on these frames. The DH parameters of the UR-5 for the specified joint frames in
Figure 2.2, are presented in Table 2.1.

40 UR-5 configurations, workspace and placement

Table 2.1 – Denavit-Hartenberg parameters for the UR arms [130].

i ai αi di θi

0 0 0 − −
1 0 π/2 d1 θ1
2 a2 0 0 θ2
3 a3 0 0 θ3
4 0 π/2 d4 θ4
5 0 −π/2 d5 θ5
6 − − d6 θ6

Figure 2.1 – The real UR-5 manipulator [130].

The context of study is the evaluation of perceived quality of a virtual car interior during
the first design phases.

In a given scenario, the user sits in the real world with a visual virtual reality experience inside
the car. The user wears a helmet and cannot see the robot, which explains the safety problem
(Figure 2.3). While the user is trying to interact with the virtual object in the environment,
the robot must come and position a sample of the material associated with the local surface,
to provide a tactical sense of touching the object. Currently, the prop can carry six different
materials (Figure 2.4). There is a cushion surface, a glossy glass surface, two different textures
of rubber, a simple plastic surface and a smooth leather surface.

Introduction 41

Figure 2.2 – Coordinate frames for UR-5 manipulator [130].

Figure 2.3 – Conceptual scheme of the experimental platform.

42 UR-5 configurations, workspace and placement

(a) (b)

Figure 2.4 – (a) The UR-5 robot with a prop attach to the end-effector and (b) The prop used
to carry six sample textures

So in this scenario, we want the robot workspace to cover all the virtual environments (in
this case the interior of the car) the user could interact. Figure 2.5 depicts inside a Dacia Duster
and three areas to touch.

Figure 2.5 – Example of virtual environment and a set of task to be reached.

Introduction 43

Figure 2.6 – The complete system setup for human robot interaction.

2.1.1 Safety standards

Possible collaboration of humans and robots in shared workplaces without perimeter guarding
opens up new possibilities and concepts. The standardization and legal situation allows for
human-robot collaboration (HRC) within defined limits.

Basics of Human-Robot Collaboration (HRC)

A collaborative robot is designed for direct interaction with a human within a collaborative
workspace, meaning a common workspace where the robot and a human work simultaneously.
In comparison to a traditional robot system, operators can work in close proximity to the robot
system while power to the robot’s actuators is available, and physical contact can occur within
a collaborative workspace. The term collaboration refers to cooperation between humans and
robots. This cooperation is limited to a precisely defined collaborative workspace.

Multiple definitions for levels of interaction between humans and robots exist. In one of
the first definitions Helms et al. identified four types of interaction between a human and an
industrial robot [58]:

— Independent: The human and the robot work on different workspace as in a traditional
robotic cell.

— Synchronized: The human and the robot work consecutively on the same workspace in
separate areas.

— Simultaneous: The human and the robot work on the same workspace at the same time
without having physical contact.

— Supportive: The human and the robot work cooperatively together on the same workspace.
Aaltonen et al. proposed a new framework based on a literature review and case study examples
[2]. They suggested four levels of HRC which are further divided into sublevels through the
factors: workspace sharing, robot’s activity when the human is present, type of joint effort,
and physical contact. This framework includes a wider variety of possible forms of HRC but
encompasses a high level in detail and complexity. Wang et al. classified the relationship between
human and robot based on five characteristics [137]:

— Shared workspace: working in the same workspace without fences.

44 UR-5 configurations, workspace and placement

Figure 2.7 – Interaction between robot and human.

— Direct contact: direct physical contact between both entities exists.
— Shared work task: working on the same task but not simultaneously.
— Simultaneous process: working at the same time on the same or a different task.
— Sequential process: working one after another, meaning in sequential order.

In this thesis work, the term HRC refers to combination of supportive interaction with simulta-
neous process having direct contacts, shown in Figure 2.7.

2.1.2 Safety in human robot collaboration

The four modes of collaborative operations were first introduced in ISO 10218 and have been
further detailed in ISO/TS 15066. Collaborative operations should include one or more of the
following four safety methods: 1) Safety-rated monitored stop, 2) Hand-guiding, 3) Speed and
separation monitoring (SSM) and 4) Power- and force-limiting (PFL). ISO/TS 15066 defines
them in detail as follows [62]:

— Safety-rated monitored stop; robot stops when operator enters the collaborative workspace
and continues when the operator has left the collaborative workspace.

— Hand guiding robot; movements of robot are controlled by the user.
— Speed and separation monitoring; contact between operator and moving robot is pre-

vented by the robot.
— Power and force limiting; contact forces between operator and robot are technically lim-

ited to a safe level.
The industrial HRC installations are limited by the current safety legislation. The existing stan-
dards provide rather guidance than clear definitions and do not clarify what sufficient safety
for the operator in collaborative operations is. They are loosely defined and complex. A high
inter dependency exists, meaning the standards build up on each other so that it takes longer to
look up the related definitions from previous standards. Further, different use case scenarios are
not specified, which makes the current standards too general and allows for multiple interpreta-
tion possibilities. As a result, companies cannot follow defined guidelines and depending on the
company’s internal safety level they interpret the recommendations in ISO/TS 15066 differently.

Safety schemes in HRC can be defined as pre-collision and post-collision systems [82][76].
These terms are directly related to the safety strategies collision avoidance and impact force
limitation.

— Pre-collision systems: Collisions are prevented by stopping the robot motion, altering

Introduction 45

its trajectory, alarming the operator with an audio output and moving back from the
operator. Workspace monitoring systems detect the position of the human with external
safety sensors.

— Post-collision systems: In case of an unexpected or unavoidable collision the harm to the
human is minimized. This can be achieved with integrated joint torque sensors in the
robot’s internal safety control systems for collision detection which initiate a robot stop
and mechanical compliant systems such as lightweight robot structures and robot skins
which limit the maximum transmittable energy to the operator during an impact.

The disadvantages of post-collision systems are 1) incorrect defined limits might result in
serious accidents, especially in combination with sharp tools or parts 2) frequent production
stops in case of collision occurrence. The advantages of a pre-collision system are 1) visual or
acoustic signals can warn the operator of a coming robot stop 2) a speed reduction can delay
the time point of a motion stop. However, external sensors require more space around the robot
because of the sensor detection time.

Contacts between robots and humans

In this thesis, for HRC we want to have contact with the human. So the robot and human
have to work in the same workspace with complex fence boundaries (as the interactive surface is
complex). From the classification discussed in previous section we can say the goal of this new
system is to have a hybrid of the existing classification. We establish a new safety constrains
taking into the ISO/TS 15066, requirements of having at least one or more safety methods. In
this process the robot should avoid unwanted collisions with the user. In this context we have
two types of contacts: (i) task contacts and (ii) unwanted contacts. The goal is to have a the
set safety methods in these 2 scenarios. The implemented safety methods are as follows:

1. Unwanted contacts are collisions that happen when the robot end-effector or robot body
comes in contact with the user while it is not expected in the task description. Multiple
safety standards are implemented, explained as below:
— The idea is to have more free space (space outside the reach of user workspace), possibly

to move the robot at higher speeds in these non-contact space;
— To have limited robot speed depending on user workspace boundary, robot, tool and

workspace;
— To have a fast and reliable collision recognition.

2. Task contacts are contacts that are related with the actual task of the robot and therefore
they are expected and mainly initiated by the robot. They are located on the frontiers of
the virtual environment and occurs between the end-effector and the human’s hand.
— To have low robot speeds in areas where contact is possible;
— To limited contact force depending on region and shape of robot, tool and workspace;
— Making sure the velocity and force limits do not exceed.

Speed and force limiting must be implemented. Without risk assessment, human-robot collab-
oration cannot take place. The overall application must always be considered, i.e. not only the
robot. Safety functions must be implemented in accordance to determined requirements. The
initial step towards safety is based on the location of the robot. That has to be far during the
no contact phase and be able to reach th humane during the static contact. The process on how
we achieve this discussed in this chapter.

To respect safety constraints and limit the risk of injury when the robot effector is in contact
with the operator, the positioning of the robot must be optimized. This placement should also

46 UR-5 configurations, workspace and placement

take into account the size of the environment in which the operator has to interact in immersion.
Constraints will also come from the desired haptic rendering. Indeed, during interactions, the
properties (crossing singularity, self collision and precision of movement) of the robot must be
adapted to the interaction modes required. The interface placement will be fixed for a given
experiment if the size of the environment to be simulated is smaller than the cobot workspace.
So the initial objective is to find a placement of the robot that allows to reach all the desired
zone of interactions. If this is not possible, then to constrain the robot to limited workspace of
the robot, it is possible to considered several placements adapted to the task.

2.1.3 Methodology to achieve the safety standards in HRC

Before beginning any robot task, users must position the robot’s base, a task that was
performed on user intuition (in the beginning of Lobbybot Project). While slight perturbation
is tolerable for robots with movable bases, correcting the problem is imperative for fixed-base
robots, especially if some essential task sections are out of reach. For non-mobile manipulation
robots, it is necessary to decide on a specific base position before beginning manipulation tasks.
The manual work of identifying potential base location is defined effectively, so that, where the
position of the robot and workspace ensure the maximum amount of work performed, where the
maximum amount of workable area can be reached. Since complicated robotics tasks require
the base to be placed at unique poses based on task demand and also to consider time efficiency
and range of applicability.

Collision in the base placement planning is vital, as the output base location may be in colli-
sion with manipulated workspace, worktable, and other surroundings. Also, the base placement
does not depend only on the reachability of the task poses, the cost or minimum joint motions
should also be considered.

To manage these collisions, we come up on a strategy for safety of user in ICI scenario. We
consider multiple control factors like planning, workspace /working posture and placement.

Planning: There are two aspects of planning of robot motion in this scenario: (i) reaching
the desired next ICI location safely, (ii) being able to track the user hand at the frontier of the
virtual environment without having collision with the user, to prepare a future motion of the ICI
to its desired location as soon as possible. Having a better planning control helps in avoiding
collisions.

Workspace / Working posture: Constraining the robot’s working posture for the entire
workspace reduces the risk of collisions. In practice this avoid reconfiguration of the robot
to change of working posture (such as elbow up or elbow down configuration) and such large
amplitude motion can lead to collision.

Placement: The placement of the robot with respect to the user and the environment has to
be defined in order that the robot is able to carry the prop to the limit of the virtual environment
that the user wants to explore while avoiding collision with the human. It is better if all the
part of the robot is keep outside of the interior of the virtual car.

Find a convenient location for the robot is an not easy task and it is the main goal of this
chapter.

2.2 Robot configurations

For the UR-5 Workspace there are eight configurations that form a complete workspace.
The computation of these configurations is based on the number of inverse kinematics solutions

Robot configurations 47

obtained for a given point of end-effector.
Definition: Configuration Space: All the possible values of θi it can take. For a six-axis

robot is the set of all θi attainable with out collision.
Definition: Workspace: The set of points that can be reached by its end-effector without

having any collision. The physical volume it can cover.

2.2.1 Inverse kinematics

In this section we will start with an analytical model that give all the solution of the inverse
kinematic model. The analytic inverse kinematics problem is to find the set of joint config-
urations that satisfies desired end-effector position and orientation. Given the input of the
end-effector position and orientation, we get the different set of possible joint configurations
to reach the same end-effector position and orientation (For UR-5, 8 possible set of joint con-
figurations). A detailed explanation of the UR kinematics and inverse kinematics can be see
in Appendix A. In this section we will only deal with the key final results to understand the
classification of the configurations.

From inverse kinematics, for finding θ1 results in:

θ1 = atan2(0p05y,
0 p05x)± cos−1(d4

R
+ π/2) (2.1)

There exist two solutions for θ1, where the shoulder is left or right. Using the function atan2
is essential for insuring correct signs and behavior when 0p05y = 0.

Given a particular θ1, we can solve for θ5. The final equation for θ5 is:

θ5 = ± cos−1 pxs1 − pyc1 − d4
d6

(2.2)

Again, there are two solutions for θ5, which correspond to configurations where the wrist is
in/down or out/up. After computing θ5, θ6 can be computed based on the equation below:

θ6 = atan2(yyc1 − yxs1
s5

,
xxc1 − xys1

s5
) (2.3)

The other three joints can be derived easily, considering that they act as a 3-RRR planar
arm. Once the previous 3 joints found, the location of the base and end-effector of this 3-RRR
arm is available, then these 3 joints can be solved. There is two possible configurations, elbow up
or elbow down. No solutions exist when the distance to the 4th joint exceeds the sum |a2 + a3|
or is less than the difference |a2 + a3|. If a2 = a3, a singularity exists when θ3 = π, making θ2
arbitrary.

θ2 = α1 − α2 = arctan(−1p14z,−1p14x)− arcsin
(−a3 sinα3
|1p14xz|

)
(2.4)

θ3 = ± arccos |
1p4xz|2 − a2

2 − a3
2

2a2a3
(2.5)

θ4 = arctan(3x4y,
3 x4x) (2.6)

Based on the IK computation, we can summaries a total of 8 solutions exist in general for
the general inverse kinematic problem of the UR-5: 2θ1× 2θ5× θ6× 2θ3× θ2× θ4. The different
configurations of robot as shown in Table 2.2. Figure 2.8 shows the visualization of the different

48 UR-5 configurations, workspace and placement

Table 2.2 – Different configurations for UR-5

Configs q1 q234 q5

Config0 Left Up Out
Config1 Left Down Out
Config2 Left Down In
Config3 Left Up In
Config4 Right Up Out
Config5 Right Down Out
Config6 Right Down In
Config7 Right Up In

configurations based for a single end-effector position and orientation. It can be seen that to
have maximum safety for the user, it is better to avoid some configurations like 0, 1, 4 and 5 as
these configuration have the part of the robot (yellow component) closer to the human than in
other configurations. Also configuration 1, 2, 5 and 6 are not desirable as they have a elbow down
configuration which is prone to collision with the robot platform and human. From Table 2.2
and Figure 2.8 it can be summarized that Configuration 3 and 7 are ideal, with key difference
being orientation of θ1 (left/right). The selection of configuration is very important because
the maximum reachability of the workspace is crucial to avoid changing configurations between
execution of task. A detailed study on the workspaces generation based on configurations and
workspace reachable spheres will be dealt in further sections.

2.3 Generate workspace
The next step is to construct the workspace of the robot. Further we constraint the workspace

to one configuration and analyze them. The construction of the workspace is done taking into
consideration both the base table and prop of the robot. Adding this information in universal
robot description file (URDF). URDF is an XML file format in ROS to describes all elements of
the robot. First we construct a workspace with a single fixed configuration (eg: Config 7). From
the URDF we have the information of the dimensions of the robot, creating a rough spherical
workspace W with those dimensions (Algorithm 1). Now, the workspace W is discretized with
squares of size of 5 cm (Figure 2.9a).

Creating squares of 5 cm and creating a sphere at its center (Figure 2.9b). Now for each
sphere, we have a set of poses that are to be checked. By poses, we mean different orientations
to reach the same sphere. These poses are shown using the arrows in Figure 2.9c. A range
of poses is considered, with an interval of 30°. The range of Azimuth is from [0,360°] and
elevation of [0,180°]. So for every pose of the sphere, we find the IK solutions. If a solution
exists for a given pose then the sphere is reachable. But for the present case, we want a specific
solution to exist, as we want to construct the workspace for a desired configuration defined
among config 0 to config 7, illustrated in Figure 2.8. So we check if the solution we get is of
the desired configuration, then we store the sphere si and pose pi, and next, we compute the
reachability index (RI). This is a factor that determines how many poses are reachable in a given
sphere with the desired configuration. Using this RI value, we color code the whole workspace.

RI = (No. of poses with solution)
(No. of total poses checked) × 100 (2.7)

Generate workspace 49

(a) Configuration 0 (b) Configuration 1

(c) Configuration 2 (d) Configuration 3

(e) Configuration 4 (f) Configuration 5

(g) Configuration 6 (h) Configuration 7

Figure 2.8 – All the configurations of the robot for same end-effector position and orientations.

50 UR-5 configurations, workspace and placement

(a) Vi of workspace W (b) sphere si for Vi (c) poses P for sphere si in Vi

Figure 2.9 – Discretization of the workspace into voxels.

Algorithm 1 Construction of workspace
Input: URDF of Robot, discretization size - n
Output: create hypothesized workspace Z.
Vi - Discretization of W, with size n
for each Vi in W do

create spheres si for Vi

check for self collision
save si in S

end for
for each si in W do

Generate poses P
for each pi in P do

Find ik solution
if solution then

store (si, pj)
end if
compute ri = reachable poses

total number of poses
store ri with (si, pj)

end for
end for

Generate workspace 51

Table 2.3 – Color code for reachable sphere in workspace

Color Percentage
Blue 91-100 %

Light Blue 51-90 %
Green 31-50 %
Yellow 6-30 %

Red 1-5 %

Figure 2.10 – Construction of complete workspace of UR-5.

A workspace construction comprising of all the configurations was done (Figure 2.10). Fur-
ther workspaces were constructed for each configuration (from config 0 to config 7). These
configurations and the corresponding reachable spheres in the workspace is summarized in Ta-
ble 2.4.

Figure 2.11 shows the workspace generated for Config7. The full workspace, and the dissected
one. We consider the prop and the base table as our robot collision objects. A comparison of
workspace for different configurations (in Table 2.4) shows that not many spheres are lost when
selecting one specific configuration (Config7). The total number of spheres in Figure 2.10 are
4584, and that in Figure 2.11 is 4519. The color code (Table 2.3, in this case of configuration 7
is based in the reachability index.

So after the workspace has been constructed for a specific configuration the next step is to
select the task points and find the base placement based on these task point. This will be dealt
in the next section.

52 UR-5 configurations, workspace and placement

Table 2.4 – Reachable spheres in workspace.

Reachable Spheres
Whole Workspace 4584

Config0 3311
Config1 3311
Config2 4484
Config3 4484
Config4 3310
Config5 3310
Config6 4519
Config7 4519

(a) Complete workspace for config 7 (b) Half sliced Workspace for config 7

Figure 2.11 – Generated workspace for Config7, considering the prop and base table.

Regions of interest 53

2.4 Regions of interest

To interact between the virtual environment and robot tool, we can specify two fixed orienta-
tions for the TCP. These orientations under test are obtained by considering three major regions
in the interior of the car, for interaction. These regions are define as S1, S2 and S3. The reason
for selecting these regions for computing the base location is, that they are the extreme regions
in the virtual environment: the door, the dashboard, and the seat next to the user/driver.

Also, we will be discussing the surfaces of the prop that will be used for these tests. The
prop that we consider has 6 surfaces. Figure 2.12 shows the major frames of interest in this test
scenario. The TCP frame is the frame at the end of the robot without any attachment. We will
need to consider two transforms from the TCP to the surface of the prop in contact. These 2
surfaces are Surface 5 and Surface 6 shown in Figure 2.12. Since joint q6 of robot (UR-5) has
[-2π,2π] limits, all five sides (Surface 5) of the prop are reachable by simple rotation. So when
one surface is reachable, all the rest side surfaces of the prop are also reachable. So the problem
is simplified and only one surface (Surface 5) is used.

So, transforming from TCP to Surface 6 is a simple translation in Z direction,

T = TransZ[15 cm] (2.8)

Transform from TCP to Surface 5 is a translation in Z, followed by rotation in Y and a final
translation in Z.

T = TransZ[2.87 cm].RotY [63.44°].T ransZ[7.75 cm] (2.9)

Figure 2.12 – The prop used in the experiment.

For S1 region as shown in Figure 2.13a, which is the door close to the user, we want for the
robot being able to reach this surface with the prop surface 6 orientations for the given set of
points P1 ... P4. This correspond to the orientation 1. The points must belong to the workspace
W1 shown in Figure 2.15a.

For the S2 Region as shown in Figure 2.14, we can have a maximum surface inter-action
with robot prop, we imposed that the surface 6 or surface 1 to 5 of the prop can be presented
in order to test several material. A rotation of the last axis of the robot allows to change the
surface of the prop from surface 1 to 5. To achieve this, the points has to be reachable by the
two orientations. The points must belong to the workspace W3 shown in Figure 2.16.

Finally, when considering S3 region, the seat next to the user/driver, as shown in Figure 2.13b
all the 5 surfaces of the prop were tested. So the orientation selected is Surface 5. In all these

54 UR-5 configurations, workspace and placement

(a) S1 - Region (b) S3 - Region

Figure 2.13 – Different regions in the virtual environment.

Figure 2.14 – S2 - Region

Base placement of the robot 55

(a) Workspace build for orientation 1 (denoted W1).(b) Workspace build for orientation 2 (denoted W2).

Figure 2.15 – Workspaces with S1 and S3 region orientations.

3 regions S1, S2 and S3 we define 4 points P1... P4 that we want the robot to reach in each
region. For this task, the points must belong to workspace W2 shown in Figure 2.15b.

2.4.1 Workspace for given orientation

Now, as the region of interest for robot is set up and the workspace of the robot is created.
The next step is to create workspace of the robot based on the fixed orientations for the robot.

The workspace describes the reachability of a given robot model by discretizing its environ-
ment, creating poses in the environment, and calculating valid IK solutions for the poses. The
poses which are reachable by the robot are associated with discretized spheres. The reachability
of each sphere in the environment is parameterized by a Reachability index.

Workspace is generated for a given set of orientations and a given configuration of the robot.
The output workspace map will be stored all the sphere the robot can reach. Figure 2.15a and
Figure 2.15b show the created workspace for the selected orientations (Surface 5 and Surface 6)
using the configuration 7 of the robot.

Then, we generate the intersection of both workspaces that can reach both orientations.
Figure 2.16 show the region that is reachable with both the orientations of the prop (all six
surfaces of the prop). This intersection will be used in our further tests for the base placement
of the Robot.

2.5 Base placement of the robot

2.5.1 Requirement

The base placement of the robot, is defined in order to be able to place the prop at the point
that the human want to explore. Since the robot arm studied has dimension which are close to
the dimension of human arm, the ideal robot location would be in the location where the user
is seated. However to avoid collisions, we cannot place the robot there. In fact, we would like

56 UR-5 configurations, workspace and placement

Figure 2.16 – Workspace for both orientation by intersection of W1 and W2 to obtain W3.

the robot to be located outside the passenger compartment of the virtual car. It is expected
that the user body (specially the chest and neck) should be outside the workspace of the robot,
such that there will be no possibility of contact between body parts of the user and the robot’s
arm. The robot placement should be such that it can reach all the desired contact regions in
the required orientation.

2.5.2 Methodology

The cobot used is UR-5 from Universal Robots [99]. It is a 6 DOF robot able to interact
with humans in a shared space or to work safely in close proximity. We constrain the posture
of the robot to stay in a single aspect, i.e. a particular configuration. In this case, it is elbow
up. This helps us in avoiding crossing singularities, during motions.

Now to find the best base placement of the robot, we discretize a set of all the possible base
locations that can reach a given point. The set of possible location are expressed as a set of
sphere of 8 cm of diameter that represent the paving of the space.

If the robot is fixed on the floor, the paving can include only sphere at the level of the floor.
In more general case, as the one studied here, a 3D paving can be considered. The vertical
coordinate of the best pose of the robot will defined the good height for the table supporting
the robot.

The task is defined as previously by the set of points that we want to reach with a given
orientation. The workspace generated for each orientation of region is also used. A point can
be reach if it belongs to the workspace associated to the desired orientation (for example W1).

The methodology can include any number of task points. For each point associated with one
orientation i.e. one workspace Wi, all the sphere inside of the workspace is covered and placed
at the point studied, and the corresponding pose of the robot is registered. The location of the
based is associated to the sphere paving the possible placement of the robot. The number of
point reachable from this base location is increased.

After considering all the point of interest (12 point in our study), the possible placement of

Base placement of the robot 57

the robot to achieve the task is defined as the sphere where the number of reachable is maximum.
From this set of base locations, we remove the base locations that coincide with the location

of the user. Depending on the number of desired points that can be reached, the points are
categorized. This gives the possible robot base location more suited for this scenario.

The algorithm developed is based on the library Reuleaux [85] available via ROS and used
the tool [70, 39].

Algorithm 2 Base placement of the robot
Input: Reachability Map, Task Points.
Output: Set of robot base locations.

function Procedure 1(create basemap)
for each task point Pi do

INVtransform from Pi and obtain b the base location of the robot
cluster b and assign the spheres Sk

increment the index associated to sphere Sk

save Sk

end for
end function
function procedure 2(base placement)

access spheres Sk

find spheres with max base index
exclude the spheres from inside the car

end function

2.5.3 Results

Tests were performed to find the base placement for a given set of points the robot has to
reach with a defined orientation. Results were found in robot base placement locations, outside
the interior of the VR car. Different combinations of the regions were taken to analyze how the
base location of the robot changes.

In the tested scenario, the dimension of the table under consideration is 75 cm high and 53
cm long and wide. The base of the robot is located in the middle of the table to ensure its
stability. A total of 12 task points have been defined: four task points in S3 region (Chair), four
task points in S1 region (Door), and four task points in S2 region (Dash board) with two sets
of different orientation. The possible robot base location are illustrated by blue spheres. In all
the test cases the base location are outside the passenger compartment of car. Multiple robot
base locations were found that could reach all the desired positions.

S1 and S2 Region

A total of 8 task points have been defined: 4 task points in S1 region (Door), 4 task points
in S2 region (Dash Board), with 2 sets of different orientations. All six surfaces of the prop were
tested to be reachable. It can be seen that the base location is not inside the interior of the car.
This analysis also helps in deciding the base table dimensions which will be discussed in further
sections.

58 UR-5 configurations, workspace and placement

(a) Base Placement for regions S1 and S2. (b) Side View.

(c) Front View. (d) Top View.

Figure 2.17 – S1 and S2 region task points and base location.

Base placement of the robot 59

(a) Base Placement for regions S2 and S3. (b) Side View.

(c) Top View.

Figure 2.18 – S2 and S3 region task points and base location.

S2 and S3 Region

A total of 12 task points have been defined: 4 task points in S3 region (Chair), 4 task points
in S2 region (Dash Board), with 2 sets of different orientations. All six surfaces of the prop were
tested to be reachable. It can be seen that the base location is not inside the interior of the car.
each sphere here is at a discretization of 8cm.

However when compared to the previous result the position of the base to more towards the
right (Figure 2.18), unlike it was left in the previous case (Figure 2.17).

S1 S2 and S3 Region

A total of 12 task points have been defined with 4 task points in S3 region (Chair), four
task points in S1 region (Door), and four task points in S2 region (Dash Board) with two sets
of different orientations. All six surfaces of the prop were tested to be reachable. It can be seen
that the base location is not inside the interior of the car, also the number of base locations,
when compared with Figure 2.17 and Figure 2.18, is reduced.

Unlike the previous results, the base location is a bit closer to the user. The maximum
distance of the robot from the car is not ideal for the given base dimension of the table.

60 UR-5 configurations, workspace and placement

(a) Base Placement for regions S1, S2 and S3. (b) Side View.

(c) Front View. (d) Top View.

Figure 2.19 – S1, S2 and S3 region task points and base locations.

2.6 Obstacle avoidance and dimensions of base table

In the previous study, the obstacle of the environment (the chair and the human) was not
taken into account since the location of the robot was not known. Thus the next step is to check
for the selected pose location (in Figure 2.19a) that the points can be reached when the real
environment are taken into account.

In this environment, we introduce a model of the chair and the human in rest position. For
the user’s body, the dimensions considered, for user cover 75 percentile of men and women of
age group 25-55 in France. The volume dimensions of the cuboid are 185 cm in height and 60
cm in width and 30 cm in thickness (Figure 2.20c).

First the location of the robot corresponding to the actual height of the table is considered.
For each pose location, the following task is considered: go from home position to each points
successively.

From several candidate poses of the robot, the task cannot be achieved. For others, the task
can be achieved. Two main problems were encountered:

An illustration of the result is shown for the case illustrated in Figure 2.20a. The configura-
tion of the robot to reach a point on the passenger chair is shown in Figure 2.20c, the robot is
close to the legs of the human. The configuration of the robot to reach a point on the dashboard
is shown in Figure 2.20d, the robot configuration is convenient, it is far from the human.

To improve, the robot base placement, we can change the height of the table used. Several
tests were done to determine the effect of changing the height of the table on the position of the
base and its effect on the inclusion of the robot in the passenger compartment of the car. For

Conclusions 61

performing the tests, the task points shown in Figure 2.21a are considered.
When the robot tries to reach the chair task points, we can see from Figure 2.20c that the

robot goes to the passenger compartment of the car. Conversely, the same problem does not
occur in Figure 2.21c, as the height to the table is increased by 5 cm. Similar result is shown
in Figure 2.21d with modified base table dimensions. It can be concluded that the current size
of the table is not ideal for the scenario, and that a better design of the table can be done to
improve the results.

It can be concluded that it is better to use a table of 80 cm height than 75 cm height for the
given scenario.

2.7 Conclusions
Complete modeling of a well-known robotic manipulator UR5 was presented. For this pur-

pose, first the robot’s kinematic was characterized and calculated. Workspace and different
configurations of the Robot were analyzed and visualized. The selection of configuration is
very important because the maximum reachability of the workspace is crucial to avoid changing
configurations between the execution of tasks.

The work presented allows to choose a robot placement(Figure 2.22) so that the end-effector
reaches the areas of interest in the environment while ensuring the absence of collision between
the robot and the user. An algorithm has been proposed define convenient placement of the
robot base in order to reach several areas of interest. First results are obtained using a given
height of the table that support the robot base. The results show an accessibility of the task
but also show a robot insertion in the passenger compartment. Changing this height setting
prevents this intrusion and therefore improves user safety.

Based on the study performed the following results were found. The ideal location of the
robot is 80 cm above ground level (Figure 2.23).

62 UR-5 configurations, workspace and placement

(a) Robot base locations in blue and task points with
desired orientations in pink (b) Robot interaction at chair without user model

(c) Robot interaction at chair with user model (d) Robot interaction at dash with user model

Figure 2.20 – Introduction of User model into environment - Table height of 75 cm.

Conclusions 63

(a) New table height in Blue and task points in pink (b) Robot interaction at chair without user model

(c) Robot interaction at chair with user model (d) Robot interaction at dash with user model

Figure 2.21 – Analysis on the dimension of the base table of the robot (Table Height 80 cm).

(a) The computed robot placement (b) Robot interaction with user

Figure 2.22 – Placement analysis of the base table of the robot.

64 UR-5 configurations, workspace and placement

Figure 2.23 – New Table design, 80 cm height.

Chapter 3

Design of a user mannequin model for
ROS

3.1 Introduction

In this chapter we will introduce the design of the user model used in this thesis. The main
objective of this approach is to ensure the safety of the operator. Collecting knowledge of the
scene and creating a model of the human. Alongside we also want to use the information to
predict the goal state of the robot trajectory. The goal state can be predicted via the final place
of the human hand knowing its current pose.

This can be analyzed by observing the movement of a human through a motion capture
system. A motion capture system is a system able to track the motion of an object moving in
space. The purpose of motion capture is to record only the movements of the actor, not his
or her visual appearance. This animation data is mapped to a 3D model so that the model
performs the same actions as the actor. In our case, the motion of interest will be that of the
different parts of the body of the subject. We will use a motion capture system based on rigid
bodies.

The scene (Figure 3.1) is composed of the chair of the car which is fixed, the support of the
robot is fixed and known. The robot movement is known. The human is seating in the chair
(torso and legs fixed), its arms are moving.

This system will provide us with the position of each of the parts of the body of the subject
at different instants. The whole process of analyzing the motion of a human subject can be
divided into three different steps. The first step consists of building a model of the subject. In
order to do this, we need to get different measurements from the subject, which will allow us to
characterize the Human model.

The second step consists to estimate the necessary joint values in order to achieve the ob-
served movement. Finally, the third step consists of visualizing them. We want to capture or
track the motion of the user’s hand in the given environment. To achieve this, we use the VIVE
trackers and the HTC VR set.

3.1.1 Using kinect to know the environment

Using Kinect is useful for detecting any unexpected objects in the environment. It helps
to get a rough idea of the objects in the environment. However, the location of the camera is
difficult to cover the entire scene and also Kinect’s constructed information has no information

66 Design of a user mannequin model for ROS

Figure 3.1 – Environment scene setup.

about an object obstructed by another object.
As shown in Figure 3.2, the information on the wall behind the objects is not known. How-

ever, this information can be used to know the form information of any object in the environment.
This knowledge can be used for emergency stops if the robot is interrupted by an obstacle. These
shortcomings in using Kinect has prompted to design a new approach to know the user presence
in the environment.

3.2 Selection of human model

A human can be represented as an articulated rigid body. The arm can be a classical 7 dof
arm. The pose of specific bodies can be measured via sensors (Vive tracker). In the studied
scenario, it is assumed that the user is seated in the chair (the motion of the trunk is limited,
the leg is assumed fixed). His/her hand motion is of specific interest.

In this section, we will describe the process of building an approximated model of the subject.
The model that has been chosen to describe the body of the subject is based on the modified

Hanavan model (Figure 3.3b). The proposed model is a quite simple enough for the purpose
of this project. This model approximates the human body by a set of 6 different rigid body
segments, as shown in Figure 3.4.

These segments are defined as simple geometric shapes. This way, this model allows us to
describe the body of a subject. For this test case, we want to measure only one dimension
and relate the rest of the dimensions based on it. For this, we use Winter’s model shown in
(Figure 3.3a). This relation helps in measuring only the height and relating all other dimensions
based on it.

From the height (measured using the HMD of the Vive set), the dimensions that define
each of the segments can be directly obtained as a relation to height (Figure 3.3a). Then, from
the measurements of the total height of the subject, the length of each of the segments can be
estimated through those relations. This feature help in having a model that can be scaled based
on the user’s height (Figure 3.12).

Selection of human model 67

Figure 3.2 – The environment scanned using Kinect.

(a) Anthropomorphic human dimensions, c
Winter, DA, 1990.

(b) The modified Hanavan model.

Figure 3.3 – Models referenced in this experiment.

68 Design of a user mannequin model for ROS

3.3 Description of the motion capture system

In this section, we will describe the motion capture system used to capture the movements
of the subject. This motion capture system is an indoor whole-body measurement system based
on HTC Vive Technology and located in a dedicated room under some specific conditions, as
we explain below. The system is used to help mimic the user motion based on a custom user
model that will be designed and explained in further sections. The systems returns five frames
(corresponding to the four segments of the body’s model plus an additional one corresponding
to the floor), as a function of time.

The placement of the sensors is shown in Figure 3.6. The motion capture system consists of
two base stations (timed infrared emitting stations), two Vive-trackers are fixed to the different
parts of the body of the subject, and a calibration tool.

— Two base stations also known as the lighthouse tracking system are two black boxes
that create a 360-degree virtual space. The base stations emit timed infrared pulses
at 60 pulses per second that are then picked up by the headset and controllers with
sub-millimeter precision. They are placed at the corners of the motion capture area
(delimiting the space where the subject can move) and looking towards the middle of the
defined space.

— The VIVE trackers are a set of frames designed to be attached to different parts of
the body. These trackers (as can be seen in Figure 3.6 and Figure 3.5) that are easily
traceable by the base stations. The trackers are rigid and transmit information on the
position and orientation of the segment.

— The calibrating tool is another Vive-tracker used to calibrate the position and orientation
of the cameras w.r.t the real world. In order to do so, it is necessary to place this tool in
a specific location, to link both the real and virtual environments. This has to be done
every time the system is initialized, or for some reason if one of the base stations has
somehow been moved with respect to the other.

3.4 Construction of human model

For the given scenario, we use four Vive-Trackers and one HMD. These act as markers for the
tracking system. The major measurements required to construct the user are his arm dimensions
and the distance of head w.r.t to base and shoulder. The model constructed (Figure 3.4), assumes
that the user is seated on a chair. The whole model is defined in a URDF. Since the human arm
is a 7 dof system, with two spherical joints each at the shoulder and wrist and a single revolute
joint near the elbow. We use two trackers each on each arm. These trackers are positioned one on
the hand, and the other closer to the elbow. From the trackers the position and orientation are
collected. The positioning of the trackers is based on the key position information required (eg:
accurate position of the user hand). Figure 3.7 show the frames of the model and the trackers.
The tracker frames Vs and Vw can be seen at the translation in Z of 5 cm and 2 cm respectively.
This translation is the approximated distance of the tracker position from the bones of the user
arm. Other key dimension like W, L1 and L2 are calculated from the height of the user, on the
basis of the Winter model.

Calculation of the joints values is done based on the tracker values. Each tracker gives the
rotation and translation with respect to a fixed frame.

Construction of human model 69

Figure 3.4 – The model visualized in Rviz.

(a) Frame on HMD. (b) Frame on Vive-tracker.

Figure 3.5 – Tracking system used.

70 Design of a user mannequin model for ROS

Figure 3.6 – Front and side view of the subject attached with the trackers.

Construction of human model 71

(a) Transform frames for right hand. (b) D-H parameter table.

Figure 3.7 – Model for right arm.

3.4.1 Calculation of the configuration of the arm

We are concerned mainly about the hand of the subject. So in this section, we will deduce
the equations that obtain the joint values of the arm, for a given set of positions transmitted by
the trackers in time.

We will analyze the mechanism of the arm system shown in Figure 3.7. This system consists
of 7 joints to be controlled using two trackers. We collect information of position and orientation
from both the trackers (6 by each tracker, 3 position and 3 orientations) and the objective is
to obtain the 7 joint values of the arm model. The mechanism starts with the shoulder frame
Fs followed by three revolute joints (q1, q2 and q3). The shoulder and elbow are separated by
a distance L1. Then there is the elbow joint q4. Frame Vs is related to the vive tracker frame
near the user’s elbow. From the elbow we have again three revolute joints (q5, q6 and q7). These
frames constitute the wrist joints. The elbow and wrist are separated by a distance L2. From
the wrist frame we have a hand link separated by W. The frame Vw is related to the vive tracker
on the hand of the user. Now to compute the joints and mimic the user movement we need to
actuate the joint based on the information from the vive trackers attached to the user.

Computing the transformation matrix from the Fs frame to the joint θ3 of the arm model
leads to a T03 matrix. Tracker information (Vs) is known and is connected to the upper-arm (the
tracker information in Vs is w.r.t reference frame). The transform from reference frame (base
tracker) to Fs is known. The vive tracker connected to upper arm allows to define the three first
rotation of the shoulder based on the orientation information given by the vive tracker.

R03 =

[
− cos(θ1) sin(θ2) cos(θ3) − sin(θ1) sin(θ3) cos(θ1) sin(θ2) sin(θ3) − sin(θ1) cos(θ3) − cos(θ1) cos(θ2)

− cos(θ2) cos(θ3) cos(θ2) sin(θ3) sin(θ2)
− sin(θ1) sin(θ2) cos(θ3) + cos(θ1) sin(θ3) sin(θ1) sin(θ2) sin(θ3) + cos(θ1) cos(θ3) − sin(θ1) cos(θ2)

]
(3.1)

θ1 = 2 tan−1(R03(3, 3), R03(1, 3)) (3.2)

θ2 = 2 tan−1(R03(2, 3),
√

(R03(2, 1))2 + (R03(2, 2))2) (3.3)

θ3 = 2 tan−1(−R03(2, 2), R03(2, 1)) (3.4)

72 Design of a user mannequin model for ROS

For joint θ4, we know the transform matrix information of tracker Vs and joints θ1, θ2 and
θ3. For a point on the forearm segment the translation in x-axis (in Fs frame) will be same
for T04 and Vs. Using the tracker information from Vs and taking that position in x value and
equating it with the transform matrix from T04. Gives the equation 3.5, where x1 = 2 cm.

Px = −(−(cos θ1 sin θ2 cos θ3 − sin θ1 sin θ3) sin θ4 − cos θ1 cos θ2 cos θ4)L2 − (−(cos θ1 cos θ2 sin θ3 − sin θ1 cos θ3))L1 + x1
(3.5)

This equation can be written as:

Px − (C) = (A) sin θ4 + (B) cos θ4, (3.6)

with,
A = (cos θ1 cos θ2 cos θ3 + sin θ1 sin θ3)L2

B = − cos θ1 sin θ2L2

C = (cos θ1 cos θ2 sin θ3 + sin θ1)L1 + x1

Equation 3.6 is a type 2 equation [71] and the angle θ4 can be deduced :

θ4 = atan2(sin θ4, cos θ4) (3.7)

Equation 3.7 gives two solutions but only one can be true due to the limited angle of the elbow
joint (180 ° > θ4 > 0).

Now, for computing θ5, θ6 and θ7 using rotation part of T47, which is

R47 =

[
− cos(θ5) sin(θ6) cos(θ7) − sin(θ5) sin(θ7) cos(θ5) sin(θ6) sin(θ7) − sin(θ5) cos(θ7) − cos(θ5) cos(θ6)

− cos(θ6) cos(θ7) cos(θ6) sin(θ7) sin(θ6)
− sin(θ5) sin(θ6) cos(θ7) + cos(θ5) sin(θ7) sin(θ5) sin(θ6) sin(θ7) + cos(θ5) cos(θ7) − sin(θ5) cos(θ6)

]
(3.8)

Since transform matrix information of tracker Vw and joints θ1, θ2, θ3 and θ4 are known, T47
can be computed.

T47 = T40T07 (3.9)

T07 is taken from the Vw tracker and T40 can also be known as we know θ1, θ2, θ3, and θ4.

θ5 = 2 tan−1(R47(3, 3), R47(1, 3)) (3.10)

θ6 = 2 tan−1(R47(2, 3),
√

(R47(2, 1))2 + (R47(2, 2))2) (3.11)

θ7 = 2 tan−1(−R47(2, 2), R47(2, 1)) (3.12)

Extend the model for both arms

The model explained so far has been extended for both hands, to get complete motion capture
information of both arms. This setup gives complete information about the arms that can be
view as dynamic obstacles for the robot in the environment.

This can help in improving the safety of the user. Also, an additional joint is introduced at
the waist to introduce two rotations at the hip and to model the rotation of the torso. These
joints are calculated according to the information provided by the trackers. Figure 3.8 shows
the complete structure of frames. As explained before in section 3.3 five sensors are used. The

Construction of human model 73

Figure 3.8 – Structure for both arms.

(a) Transform frames for left hand. (b) D-H parameter table.

Figure 3.9 – Model for left arm.

connection of these sensors to the user model and physical world is shown. A base sensors acts
as the reference frame for the real and virtual world elements.

A change between the models for each arm (Figure 3.7a and Figure 3.9a) is in the direction
of axis, especially for the tracker frames Vw and Vs. Applying the similar approach explained in
section 3.4.1 based on the model shown in Figure 3.9. Gives these below equations:

R03 =

[
cos(θ1) sin(θ2) cos(θ3) + sin(θ1) sin(θ3) cos(θ1) sin(θ2) sin(θ3) + sin(θ1) cos(θ3) cos(θ1) cos(θ2)

cos(θ2) cos(θ3) cos(θ2) sin(θ3) sin(θ2)
sin(θ1) sin(θ2) cos(θ3) − cos(θ1) sin(θ3) − sin(θ1) sin(θ2) sin(θ3) − cos(θ1) cos(θ3) sin(θ1) cos(θ2)

]
(3.13)

θ1 = 2 tan−1(R03(3, 3), R03(1, 3)) (3.14)

θ2 = 2 tan−1(R03(2, 3),
√

(R03(2, 1))2 + (R03(2, 2))2) (3.15)

θ3 = 2 tan−1(R03(2, 2), R03(2, 1)) (3.16)

74 Design of a user mannequin model for ROS

Px = −((cos θ1 sin θ2 cos θ3 − sin θ1 sin θ3) sin θ4 − cos θ1 cos θ2 cos θ4)L2 − (cos θ1 cos θ2 sin θ3 − sin θ1 cos θ3)L1+x1 (3.17)

where x1 = 2 cm,
Px − (C) = (A) sin θ4 + (B) cos θ4, (3.18)

with,
A = −(cos θ1 cos θ2 cos θ3 + sin θ1 sin θ3)L2

B = cos θ1 sin θ2L2

C = −(cos θ1 cos θ2 sin θ3 + sin θ1)L1 + x1
(3.19)

This gives the equations for θ4 as,

θ4 = atan2(sin θ4, cos θ4) (3.20)

Now, for computing θ5, θ6 and θ7 using rotation part of T47, which is

R47 =

[
cos(θ5) sin(θ6) cos(θ7) − sin(θ5) sin(θ7) cos(θ5) sin(θ6) sin(θ7) − sin(θ5) cos(θ7) cos(θ5) cos(θ6)

cos(θ6) cos(θ7) − cos(θ6) sin(θ7) − sin(θ6)
sin(θ5) sin(θ6) cos(θ7) − cos(θ5) sin(θ7) sin(θ5) sin(θ6) sin(θ7) + cos(θ5) cos(θ7) sin(θ5) cos(θ6)

]
(3.21)

Since transform matrix information of tracker Vw and joints θ1, θ2, θ3 and θ4 are known, T47
can be computed.

T47 = T40T07 (3.22)

where T07 is taken from the 2nd tracker and T40 can also known as we know θ1, θ2, θ3, and θ4.

θ5 = 2 tan−1(R47(3, 3), R47(1, 3)) (3.23)

θ6 = 2 tan−1(−R47(2, 3),
√

(R47(2, 1))2 + (R47(2, 2))2) (3.24)

θ7 = 2 tan−1(−R47(2, 2), R47(2, 1)) (3.25)

3.4.2 Calculation of movement in torso

So far we have calculated the hand pose and arm configurations of the human model. We are
also interested in the torso motion of the user seated on the chair. For torso motion, we consider
a simple rotation between the hip and head/neck. We assume that the user can bend forward,
backward, sideways, and also be able to turn. We assume that when he/she bends there is no
curvature of his/her back.

To achieve these values we use the information from the trackers placed near the elbow.
From the position of the tracker Vs near the elbow we deduce the position of the shoulder frame
Fs of the model. This frame Fs is used as the main reference information. We know the distance
between the two shoulder frames from the winter model, based on the user height. Now we have
the position of both the shoulder frames Fs from both trackers on each hand.

The neck frame is based on the two shoulder frames. It is known that human can have
cartesian displacement at shoulder and we assumed that the displacement are symmetric at the
two shoulders. The hip frame is assumed to be constant since the user is seated. For the user
model, we assume that the shoulder frames are always aligned in a line.

Analysis of user model 75

Figure 3.10 – Transform frames and D-H parameters for chest.

In Figure 3.10 shows the connection between the frames. The shoulder frames Left and
Right are computed based on the position of the vive trackers. Now the goal is to compute
the chest_psi (ψ), chest_theta (θ) and chest_phi (ϕ) to have the information about rotations
about the torso. It is to be noted that the model designed is disconnected at the shoulders. So
the position of the user torso and legs is based on the base tracker that is used (explained in
Figure 3.8).

Based on the shoulder frames the neck frame is calculated. From the base reference sensor,
using the DH table in Figure 3.10 the position of the hip frame is defined. First, using the
shoulder frames a line is drawn passing through the three frames (two shoulder frames and
neck). This line S is used to compute the angles of rotation for the torso.

Projecting line S onto the chest frame gives the rotation information of the torso. Projection
of line ’S’ onto XY, YZ, and ZX planes of chest frame. The dot product of line ’S’ and the
projected line on the planes gives rotation about the respective axis. Now have all the required
motions of the user, next tests were carried out to check the accuracy of the model.

3.5 Analysis of user model

3.5.1 Accuracy of arms

Within the model, two small points have been created within the humerus and palm links,
which represent the location of the sensors in the user as represented in Figure 3.13. To test the
accuracy in arms of the model, two additional frames (Us and Uw) were introduced in the model
which are positioned such that they align with the real frames for the tracker (Vs and Vw). The
frames Us and Uw are child frames to the frames q3 and q7 of the model. So the hypothesis
is using the information from the vive trackers (Vs and Vw), the joints of the arms are found.
So based on the joint values the position of the frames Us and Uw are found. So to check the
accuracy of the model an error between the values of the frames Us and Vs is computed.

This analysis was done and the resulting measure of the error computed for Us and Vs for
each arm (right and left) can be seen in Figure B.1 and Figure B.2. The errors computed are
magnitude less than 1 cm.

76 Design of a user mannequin model for ROS

Figure 3.11 – Transform frames for estimation of error between shoulder frames.

Similar analysis was done and the resulting measure of the error computed for Uw and Vw

for each arm (right and left) can be seen in Figure B.3 and Figure B.4. The errors computed
are magnitude less than 1 cm.

3.5.2 Accuracy of torso

The key frames computed to simulate the torso are the shoulder frames as explained in
section 3.4.2. It was known that using the tracker we compute the shoulder frames (Fs). Now to
make the error analysis we add two additional frames on the torso part of the user model. These
are the expected shoulder frames based on the Hanavan model (ideally we want the shoulders
to be connected with the body, Figure 3.11). Calculation of the error between the real and the
computed position of shoulder frames was done to test the accuracy of the model. Figure B.5
shows the error computed between the real and estimated position for the right shoulder. It
can be seen that the error is close to 0.1 cm. The same can be observed for the left shoulder in
Figure B.6.

A video demonstrating the working of the user model can be found here.

3.5.3 Scalability of the model

The mannequin also has the option of scalability (Figure 3.12), having a different size pro-
portionate to the user’s height to have a better relationship between the real world and the
model.

https://gitlab.univ-nantes.fr/guda-v/lobbybot.git

Conclusions 77

(a) Mannequin model for a height of 1.6 m (b) Mannequin model for a height of 2 m

Figure 3.12 – Scalability of the mannequin model for a height of 1.6m and 2m.

3.6 Conclusions
To model the user, a mannequin was defined in a URDF robot model. The hip of the model

is fixed, while the arms are structured as 7 DoF serial robot with all revolute joints, where the
first 3 constitute the shoulder, the 4th joint represents the elbow and the last 3 rotating joints
represent the wrist of the arm.

User test was done to test the accuracy and response of the model designed. In the scenarios
the user was seated and was asked to move the hand and the torso. Two types of analyses were
performed. The first one was to check the accuracy of the sensors position in real life and in
the model. The second was to find the accuracy in the shoulder frames computed during the
calculation of the torso rotations.

78 Design of a user mannequin model for ROS

Figure 3.13 – User with the HTC vive trackers

Figure 3.14 – Complete mannequin model of the user.

Chapter 4

System architecture and robot
trajectory planning

4.1 Introduction

So far we have established the base location of the robot and the occupancy of user in
the environment. This chapter is intended to provide an insight into the tools used in the
development of the experiments, such as the software architecture, data flow between softwares
used, a description of the system’s environment, and communication between the systems. Then
we will concentrate on the trajectory planning of the robot. Assuming that we have predicted
the user’s intention (which will be explained in next Chapter) through his/her gaze direction and
the position of his/her dominant hand (the one touching the object) Now, the goal is to move
the robot to the appropriate location. The robot motion to be performed must avoid collision
with the user and also with itself.

When the user uses HMD vision interfaces and has to perform haptic evaluations, he/she no
longer sees the real scene, but only a virtual world. His/her physical reference points quickly
disappear except for objects he/she touches such as his/her seat and the dashboard. It is
challenging to move the robot in the physical environment such that the robot doesn’t cause
any harm to the user.

The outline of this chapter is as follows. In section 4.2 an introduction to the proposed
architecture and data flow is explained. A brief description of all the components in the system
is explained. Section 4.3 deals with the preliminary setup of the systems explained in the
architecture. Section 4.4 deals with path planning for the robot. A complete analysis is made
between different planning algorithms and compared to find the best planning algorithm. Finally,
general remarks and conclusions are commented in section 4.5.

4.2 Proposed architecture and data flow

As established in chapter 1, there are multiple systems 1) Unity in Windows which has the
display of the virtual environment and the user prediction strategy (explained in chapter 5),
2) ROS in Ubuntu which is used for the robot trajectory planning (will be studied in this
chapter) and user occupancy (explained in chapter 3) and 3) the robot system itself. Figure 4.1
show the flow of data between these systems. A detailed explanation of modules inside ROS
(like MoveIt) will be dealt in detail in following sections of this chapter.

80 System architecture and robot trajectory planning

«UR5»

«Mannequin Model»

«HTC Vive Trackers»

«Planning Scene»

Data

sensor coordinates

desired pose (goal)

Solve person kinematicsSpawn obstacles in the environment

plan to the desired goal

Data

sensor coordinates

Data

joint values

Data

sensor coordinates

Unity

Legend:
 output:

input:

Data

Mannequin TF
frames

«Planning Scene Monitor»

Update obstacles in the scene
Data

Obstacles in the scene

«Move Group»

Data

Obstacles position

Data

desired pose (goal)

«ROS control»
ur modern driver

Data

plan

ROS
MoveIt

Figure 4.1 – System’s Architecture.

The proposed architecture provides an overview of how the instances share information
and communicate with each other, the HTC Vive sensors connected in Windows communicate
their positions and orientation. The same information is passed between Windows and Ubuntu
system. Additional information of the predicted desired point of intersection is also sent from
Unity to ROS in Ubuntu. From the information of the desired point and location of the user
model, robot planning is done and the pre-computed planned trajectories are sent to the robot
controller for executing the trajectory.

ROS [5] is the middleware that communicates with the robot and Unity. Based on this
information, pre-computed trajectories (using MoveIt) are selected so that the robot reaches the
desired positions while knowing the current states of obstacles in the scene. Once the trajectory
is selected, we communicate with the UR-5 robot. Thus, we can move the UR-5 robot with
the ROS control, and send as output the current states of the robot’s joints for visualization in
Unity.

To move the robot to a specific position and orientation, the position and orientation of the
cube are sent through a ROSBridge connection to a robot controller at a frequency of 50 Hz.
This controller runs on a thread library that consists of two threads, which read data from Unity
VR software and write data to the real-time data interface of the UR-5 at a frequency of 100 Hz.

The proposed architecture of the project describes the different interactions each element
of the system has and provides an insight into how the instances share the information and
communicate with each other as shown in Figure 4.1. The architecture is a description of the
way the system works and which tasks are taken care by which instances.

This chapter explains the ROS section described in the architecture, where it receives as
input the desired goal and the sensor’s data, with the sensor’s data we can compute the kine-
matics of the mannequin model, which allows the "planning_scene" (in MoveIt) to spawn the
objects that correspond to the mannequin in the scene, for them to be kept up to date by the

Implementing laboratory setup based on proposed architecture 81

"planning_scene_monitor" (in MoveIt).
Later based on this information and the desired goal, the "move_group" (in MoveIt) can

generate a plan for the robot to reach the desired positions while knowing the current states of
obstacles in the scene. Once the plan is generated, we communicate to the UR-5 robot by using
the ur_modern_driver [131] (this driver is currently deprecated, but given the UR-5 software
version available at the lab, is the one that has to be used). With it, we can move the UR-5
robot with ROS control, and send as output the current joint states of the robot to Unity system
to be used for visualization of robot in the virtual environment, if required.

4.2.1 MoveIt

MoveIt [27] is one of the most known and used software for robot manipulation, used on over
150 robots. It is an open-source software allowing the development of projects in industrial,
commercial, and research environments for free.

It counts with a user-friendly platform for building flexible industrial, research, and com-
mercial applications. It allows the configuration, programming, and definition of different robot
models, allowing to develop and define the environment, objects and plan different tasks where
path planning is required. It allows to perform and develop complex applications while being
able to determine and study the interactions of the system by incorporating the latest advances
in motion planning, manipulation, 3D perception, kinematics, control, and navigation.

The MoveIt architecture is based on two main nodes, the "move_group" node, and the
"planning_scene" (Figure4.1). The "move_group" takes care of obtaining the parameters, the
setup, and the individual components of the robot model being used, so it can provide to the
user ROS services and actions for the users to use on the robot.

The second element which is the "planning_scene" uses the "planning_scene_monitor" to
handle the scene in which the robot will be included. This is what will constitute the obstacles
or elements the robot has to interact with. Providing information about where they are located,
and any updates that happen in the robot’s surroundings. It uses as well the robot interface
data to make the connection between the data being processed and the objects defined in the
scene.

A detailed explanation of the components and functionality of MoveIt can be found in Ap-
pendix C

4.3 Implementing laboratory setup based on proposed architec-
ture

The laboratory setup (Figure 3.1) is conformed by the UR-5 robot system and a vehicle chair,
in a face-to-face configuration. Where the robot’s location and height have been determined in
Chapter 2 to be 80 cm above the ground. Being a position optimal enough so the robot is able
to reach all the interaction points where the system has an interest in reaching. For the user
(Figure 3.13), the VR helmet and trackers are attached to the body, in the humerus, and in the
palms so the data can be obtained and place the user’s location within the VR environment.

4.3.1 Requirement

In this scenario, a relation between the real world and the simulated environment in ROS has
to be established using the vive trackers used by the user. Additionally we want the end-effector

82 System architecture and robot trajectory planning

Figure 4.2 – The system setup in the physical environment

of the robot to follow the user’s hand and contact it when necessary. To achieve this, we need
good movement planning. We also want no part of the robot to come into contact with the user
during movement tracking.

4.3.2 Methodology for calibration of real and virtual environments

The ICI system can be divided into two physical components shown in Figure 4.2, the robot
and chair. Each component has a vive-tracker to localize between them. These components
need to be calibrated to synchronize with the virtual and the real physical environment, this is
achieved by using trackers. For this purpose, we consider some information, shown in Figure 4.3
we can see two trackers (Vb and Ve) and two robot frames(Rb and Re) that need to be calibrated
to sync the environments. The physical robot has base frame Rb and tool frame Re, by attaching
a vive-tracker at the tool end and assuming that the frames coincide (Ve and Re), we calibrate
the base tracker Vb, by assigning a translation in x (between Vb and Rb).

To achieve the requirements of safety in the present scenario, a virtual plan is introduced
that prevents the robot from crossing the interior of the car. The user and robot are located on
the opposite side of the plane. This virtual plan is defined in relation to the virtual car surfaces.
The user’s hand is equipped with a tracker, to track and follow the hand. In Figure 4.2 we can
see a tracker on the chair. Two trackers are used to depicting two frames Vc(vive tracker on
chair) and Vh (Vive-tracker on users hand). One tracker is used to define the car/chair plane(to
differentiate the interior and exterior of the car). The other tracker is used to track the user’s
hand. Once the calibration between the physical and virtual environment is done, the tracker
at the robot tool end can be removed Ve.

The collection of information is achieved by using OpenVR libraries.The algorithm used for
collecting the tracker information can be seen in Algorithm 3

Using the OpenVR library, the position and orientation of the tracker are known with respect
to a vive-world frame. Both robot and vive systems have information that needs to be linked to
perform hand tracking using the vive-trackers.

To establish connection we find the transformation, assuming Ve and Re are superposed,
compute from respective systems Trb

re and Tve
vb and compute Eq 4.1. Now the systems are

Implementing laboratory setup based on proposed architecture 83

Figure 4.3 – Calibration setup of the physical components.

Algorithm 3 Tracker information in ROS.
Input: Vive tracker frames and Names.
Output: New frames of vive trackers wrt ROS frames.

1: Convert all trackers to appropriate coordinate system.

2: function vive_tracker.
3: triad_openvr.triad_openvr().
4: get_serial, device_name.
5: if device_name prefix LHR then
6: rotate 180 degrees in +Z axis.
7: else
8: broadcast frames to /tf time stamped.
9: (x,y,z), (qx,qy,qz,qw), time, device, vive_world

10: [parent: vive_world, child:device]
11: end if
12: end function

84 System architecture and robot trajectory planning

Algorithm 4 Tracker world reference in ROS.
1: Broadcast a frame to /tf.

2: function vive_world.
3: broadcast a frame vive_world to /tf.
4: translation =[0, 0, 0,].
5: rotation = 90 degrees about x axis.
6: end function

connected.
Trb

vb = Tve
vbTrb

re (4.1)

So three trackers (Figure 4.2) are used to calibrate the systems. Next, the objective is to project
the tracker in hand on to plane created with the tracker on the bottom of the chair. This is a
test to check the system are connected, especially since the reference coordinate frames for robot
(right handed system) and Unity (left hand system) are different. Algorithm 3 and 4 show the
conversion of the coordinate systems and algorithm 5 describes the for hand tracking.

Algorithm 5 Hand tracker information in ROS.
Input: Vive tracker frames and names.
Output: Goal hand tracker.

1: To give the final position of the hand w.r.t to Robot base.

2: function hand_tracking.
3: listening to transforms Th and Tc.
4: Th; parent_fr:car_tracker; child_fr:hand_tracker; .
5: Tc; parent_fr:base_robot; child_fr:car_tracker;
6: function projection(Th).
7: get_translation(Th)
8: set y = 0.
9: return Projection

10: end function
11: desired position = Tc × Projection
12: end function

For the test, tracker in hand Vh is projected onto the tracker plane of the car Vc (which we
use as reference for the plane Figure 4.4). Then the transformation to the base of the robot is
calculated. The new transform is the desired location to which the robot needs to move. This
desired location is on the surface of the car and not inside (interior) of the car.

When following the hand, at every instance the projection of the hand onto a plane is taken.
With the robot controls, that projection point on the x-z plane is reached. Algorithm 6 describes
precisely these above steps.

After calculation of projection of hand onto car plane, initialization of robot and its con-
trollers is done to make the robot move/track user. The move group is created and named
”manipulator”. A ready position is set which is close to the tracking region and away from the
singularity home position.

Implementing laboratory setup based on proposed architecture 85

Algorithm 6 Motion of robot based in hand position.
Input: Vive tracker frames and names.
Output: Robot Motion.

1: move robot to desired hand position.

2: function Robot_motion.
3: Initialize Robot
4: Initialize move group "manipulator"
5: Set velocity Scaling Factor = 0.1
6: move in joint space from home to desired
7: if Plan Success then
8: Execute
9: else

10: Exit
11: end if
12: while set rate do
13: function Projection(Th)
14: return desired
15: end function
16: function move_robot(desired)
17: set first point in waypoint (get_currentpose())
18: set waypoint (desired)
19: F = move_group.computeCartesianPath()
20: if F×100 = 100 then
21: Execute
22: else
23: Nothing
24: end if
25: end function
26: end while
27: end function

86 System architecture and robot trajectory planning

Figure 4.4 – Representation of the user’s effective workspace as a plane

4.4 Computation and trajectory planning

So far we have established the flow of data between the systems and how the environment
in ROS is setup. Next is to explain the planning methods used as well as the different stages
in which it was developed. Starting from the setup and configuration phase, where we establish
the environment and defined the planning group. Afterward, tests were run to determine which
one of the multiple path planning algorithms available within the MoveIt software behaved the
best on some testing experiments.

Path planning (Figure 4.5) refers to the computation or generation of a geometric path, which
connects an initial point to a final one, through in-between waypoints. Waypoints are meant to
be followed in order to perform a desired task or motion. This geometric computation is based
on the kinematic properties of the robot along with its geometry. On the simplest case, path
planning need to be performed on static and known environments. However, this problem can
also be generated for robotic systems subject to kinematic constraints in a dynamic environment,
which are more complex to achieve.

In the different possible scenarios, path planning can be done using a previously known map,
which is defined as global planning, and it is commonly used in determining the possible paths
that can be followed in order to reach the final position. This is used for the case of a known and
static environment, where the position of the present obstacles is already known, and a path is
generated taking this into account. This can be performed off-line, as it is based on previously
known information. In the case of possible changing environments, local path planning needs to
be done, which relies on sensors or any other type of data-providing interfaces in order to obtain
updated information about the robot’s surroundings. This can only be done in real-time, as it
depends on dynamically changing environments.

4.4.1 Various path planning algorithms

The configuration space can be denoted as Cspace [83], where inside this space, the sub-spaces
where the robot configuration collides with and obstacle, are called Cobs, and the space where

Computation and trajectory planning 87

Figure 4.5 – Work logic of global [69] and local [72] path planning.

it does not collide is called the free configuration space Cfree.
There has been multiple proposals on path planning algorithms throughout the years, from

where we can provide a review of the bases and workings for the most commonly found algorithms
in the robotics literature, in [46] some of these algorithms are addressed.

Artificial Potential Fields

The Artificial Potential Fields (APF) approach [72] introduced by O. Khatib in 1985 and
further developed by [135] [136]. It represents the path planning algorithm as a problem where
the robot is considered as a “moving ball” or point under the influence of potential fields which
are artificially generated (thus the name) by the desired goal position and the obstacles within the
Cspace. In this case the desired goal generates an attractive potential and the different obstacles
generate repulsive potentials, where the sum of the two contributions creates a potential field
which can be translated into an artificial force that will lead the “ball” to go towards the goal,
while avoiding the obstacles. The succeeding configurations of the robot can be determined
given the direction of the slope of the force field which the robot is subjected to, this direction
represents the most optimal path towards the goal. The force field can be expressed as:

Uart(q) = Ugoal(q) + Uobs(q) (4.2)

Where for a configuration q, the artificial potential field Uart(q) is formed by the attractive
potential generated by the goal Ugoal(q) and the repulsive potential of the obstacles Uobs(q).

There are two main proposals in the literature to generate the attractive potential field of
the goal in order to guide the motion in the Cspace towards it. These are the paraboloidal field
and the conical or linear field approach, for a Cspace ∈ R2 (Figure 4.6).

However this method presents conflicting situations such as: a) trap situation due to local
minima; b) oscillation in the presence of obstacle; c) no passage between close spaced obstacles;
d) oscillations in narrow passages. Some solutions to the local minima problem has been pro-

88 System architecture and robot trajectory planning

Figure 4.6 – Representation of an Artificial Potential Fields.

posed, like the usage of Harmonic Potential Functions [65], virtual local target [119] and others
such as [28] [110].

Due to the way that the environment is represented, one feature of this algorithm is that
it is computationally inexpensive and has good reactivity to environment changes, taking into
account new obstacles that come into the Cspace allowing it to have good real-time reactions to
the environment.

Probabilistic Road-maps

The Probabilistic Road-maps approach [69] consists in generating random nodes in the con-
figuration space (Cspace) in order to generate a grid (so called, the road-map). The algorithm
(Figure 4.7) is divided into two phases, the learning stage, where the nodes are generated, and
the query phase where the generated nodes are then connected and an optimal path is found.
This connections are only possible if there are no objects present in between nodes, which will
lead to a road-map where all the connections are feasible paths for the robot to follow. This
algorithm is considered as a Sampling-Based planner, as it does not fully reconstruct the C-
space and its boundaries, but instead, checks if each sampled robot configuration is in collision
or not, in order to consider it as a valid node or not. Once a sufficient amount of nodes has
been generated in the Cspace, it then performs the connections between all the neighboring nodes
where no obstacle is present in between. This will generate the road-map, where multiple paths
can be followed between qinit and qgoal, so another algorithm such as A* [53] or Dijkstra [33] is
used to find the shortest path within the road-map.

Afterwards, some other techniques can be used in order to do path improvement. Like trying
to connect directly two non-adjacent nodes from within the path, checking consequently if for
the following nodes a connection is also possible, this will potentially reduce the amount of
connections needed within the path, reducing its total length.

The advantages on this type of algorithms is that is fast and has probabilistic completeness,
which, by not fully exploring the Cspace but instead sampling it, reduces the amount of com-
putation needed. On the other hand it also generates a big amount of “useless nodes” as only
the ones included in the final path are the ones that matters. Another problem is that it is
a trial and error algorithm, to which an unsuccessful case of finding a path might just mean
that there is not enough nodes in the road-map to fully connect qinit and qgoal, so re-tuning the

Computation and trajectory planning 89

Figure 4.7 – Example of a road-map on SE(2), the gray areas are the obstacles within the Cspace,
the empty circles correspond to the randomly generated nodes and the bold line is the shortest
path obtained by Dijkstra’s’s Algorithm.

Figure 4.8 – Optimization of the obtained path by connecting non-adjacent nodes.

90 System architecture and robot trajectory planning

(a) (b)

Figure 4.9 – RRT: (a) Building of the tree connecting the new node to the closest node towards
the random point (b) Path obtained between qinit and qgoal.

parameters can provide a successful outcome. This algorithm is also not suitable for dynamic
environments, as the road-map has to be recomputed and rewired every time obstacles moves
in the environment, having to check if the previously computed nodes still belong to Cfree or
now belong to Cobs.

Rapidly Exploring Random Trees

Rapidly Exploring Random Trees (RRTs) [80], introduced by S. LaValle in 2001 as an op-
timization from the classical Random Trees algorithm. It consists in a tree of nodes which is
generated starting from the initial configuration until it finds a feasible path towards the desired
goal configuration. This node-tree (Figure 4.9) is built by taking into consideration a random
point in the Cspace, and connecting the closest node within the tree to a newly generated node
in that direction and at a fixed step-size, in this way, the tree is constantly growing in a random
way, but always from the closest node to the random point. The newly generated nodes are
always checked in order to ensure they belong to Cfree, if they do not belong, the step-size is
reduced until they do. Due to its always increasing behavior, this algorithm is able to explore
the Cfree space in a fast and random way, and stops once it finds a feasible path between the
initial and final configurations. One of the drawbacks is that, due to the randomness, the final
path is not the shortest, and once it is found, the algorithm does not perform any optimization
on it. Another characteristic is that the obtained path is generally not a smooth path, this last
one can be slightly optimized by using spline interpolation on the obtained nodes that form the
path.

Another important improvement of this algorithm is called RRT* (Figure 4.10) [68] presented
by S. Karaman and E. Fazzoli in 2011, which works under the same principle as the original
RRT, but with the addition of two new considerations. The first one is that in this case, each
node has a cost assigned, linked to the traveled distance relative to its parent node. In this
way, after the closest node of the tree to the point has been found, all the surrounding nodes of

Computation and trajectory planning 91

(a) (b)

Figure 4.10 – RRT* (a) New node connected to the cheapest neighbor parent (b) Obtained path
with the shortest and smoothest path.

the parent node are examined within a radius, and if a node with a cheaper cost is found, the
cheaper node becomes the new parent and the connection to the new node is made. The second
consideration is that, this algorithm allows rewiring of the tree. When a new node is added, its
neighbors also check if being connected to the new node will decrease their cost, and if so, the
neighbor nodes are rewired to the newly added node.

One of the biggest advantages of this method is that is able to find a close-to-optimal path,
and the obtained path can be infinitely optimized for as long as new nodes are being added,
obtaining very smooth paths. It also has the characteristic that it is a forward projection
algorithm, meaning that once a connection is made between the initial configuration and the
desired configuration, the path is already obtained. On the other hand, a big drawback of this
method is that it is computationally expensive due to the constant checking that needs to be
done for each node within the algorithm (check if the node is outside an obstacle, check the cost
to confirm shortest path, rewiring of the neighbors, etc).

Other proposed alternatives commonly found are:
— Informed RRT* [45]: Where the random point generation is biased in order to place

the point at the desired goal configuration a percentage of times or every set amount
of iterations. This makes the tree to try to grow towards the desired goal in order to
decrease the computation time.

— BRRT* [67]: Starts generating a tree from the initial configuration and another tree from
the desired configuration, and when both trees meet, the path is obtained.

— RT-RRT* [97]: This is an improvement of the RRT* algorithm where the algorithm
allows changes in the qinit state and rewires the previously generated map so it can be
used for dynamic environments and changing initial and desired configurations.

— BiTRRT [32]: Bi-directional transition-based RRT is a version of RRT where each new
node added to the tree goes through a transition test. When the closest nodes of the
trees are closer than ten times the extension step-size, and if it is possible to connect
them following a downhill slope, both trees are merged.

92 System architecture and robot trajectory planning

Figure 4.11 – Exact cell decomposition method (a) Nodes generated based on vertex found (b)
Connectivity graph built from adjacent nodes (c) Nodes corresponding to the path found on the
connectivity graph (d) Final path generated by connecting the middle points between adjacent
nodes.

Cell Decomposition

Another approach commonly found in the literature are the Cell Decomposition algorithms
(Figure 4.11) [122]. The idea of this approach is to subdivide the Cspace into smaller obstacle
free regions called cells, which then are connected by building a graph of adjacency [117] in order
to find a path between the initial and final configurations. The method is subdivided also into
two different categories of cell decomposition approaches: the exact cell decomposition (ECD),
and the approximated cell decomposition method (ACD).

The first one, uses geometrically based algorithms to explicitly determine the obstacles and
build the cells. This is done by drawing parallel vertical lines from each vertex found in the Cspace,
and considering the shape of the object and of the Cspace, it can find the vertex corresponding
either to an obstacle or to the Cspace’s boundaries. This will allow the algorithm to build a
cell-based space which represents exactly to the Cfree space (free of obstacles). The counterpart
of this approach is that it’s mathematically expensive, as it is difficult to obtain the exact
representation of the Cfree space.

Afterwards, each obtained cell is numbered and represented as a node in the connectivity
graph, built based on the adjacency relationship between the free cells. Then a path is computed
from the node containing the initial configuration, to the node containing the desired one, by
following the shortest path on the graph (using A* or similar). In this way, the cells of the
shortest path are determined, and the real path is generated by connecting the middle point of
the transitions between adjacent cells, in order to ensure that the final path is as far as possible
from the Cspace boundaries and the obstacles.

The approximated cell decomposition method, also called “quadtree” decomposition or “oc-
tree” for 3D spaces (Figure 4.12), was proposed due to the high computations and geometric
calculations required in the exact cell decomposition method. The algorithm works by deter-
mining fully-free, completely full or mixed obstacle cells inside the Cspace. Initially the Cspace is
divided into four equal regions, the algorithm determines the mixed cells, and subdivides them

Computation and trajectory planning 93

(a)

(b)

Figure 4.12 – (a) Quadtree decomposition for 2D spaces (b) Octree decomposition for 3D spaces.

again in the same way recursively until a fixed resolution is reached or until each cell lies either
as a fully-free cell or as a completely-full cell. Once one of these criteria is met, the algorithm
stops decomposing the space. Finally, a path is obtained from the generated tree created by
the decomposition, where the initial configuration cell gets connected to the final configuration
cell through a fully-free cells path. This algorithm is resolution complete, which means that the
algorithm’s completeness depends the resolution of the grid, while the exact method has total
completeness as it exactly represents the Cspace.

In [3] an alternative method combines cell decomposition methods with Rapidly exploring
random trees (RRT) [80], where ACD is used to initially find a path on preliminary static
workspaces, and RRT is then used to validate the path and find alternatives on collisions due
to changing environments. In this work, RRT and ACD algorithms are combined together in
order to exploit the advantages of each of them. The RRT planner has relatively high tolerance
to obstacles shapes and workspace changes. Where this feature is missing in ACD planner. In
addition, the RRT is not effective in small areas or narrow passage, while ACD planner does
not face this problem.

4.4.2 Comparison of various path planning algorithms

In robotics, the path planning task has proven to be one of the most challenging tasks,
specially when conditions such as expecting real-time behaviors or in dynamically changing en-
vironments. A comparison of the presented planning algorithms has been presented in Table 4.1.

94 System architecture and robot trajectory planning

Table 4.1 – Comparative table between path planning algorithms.

Algorithms Advantages Disadvantages
APF — Easy to implement

— Allows on-line planning
— Commonly used method

— Local minima and oscillation
problems

— Goals can be non reachable
— Difficulty in narrow passages

Cell Decomp — Has completeness for exact ap-
proach

— Can be used for on-line plan-
ning

— Resolution dependant in ap-
proximated approach

— Cspace is not described in ap-
proximated approach

PRM — Allows multi-query scenarios
— Probabilistic completeness

without exploring all of the
Cspace

— Generates a lot of unused paths
and nodes

— Needs to rebuild road-map on
dynamic environments

RRTs — Forward projection algorithm,
computes and finds the path

— Explores rapidly the Cspace

— Has completeness

— Computationally demanding
— Single-query

From the algorithms presented, APF and its variations provide a good adaptation for path plan-
ning in dynamically changing environments, where any obstacle entering the Cspace generates a
new repulsive field which can be taken into account in order to generate a new trajectory. But
the local minima problem requires the use of alternative algorithms in order to overcome it.

The PRM case, it is well know for its ability to find a path without the need to explore
the totality of the Cspace, but it is also a graph based algorithm, which requires the use of
shortest path searchers as A*. It is proven to be highly efficient in static environments and can
handle initial and final configuration changes, but if the objects in the Cspace change positions,
the connections between the nodes have to be re-done. Some alternatives propose to maintain
the previously generated nodes and re-check if they belong to Cfree or Cobs, and rebuild the
graph based on that information and find a new path. Similarly the case for cell decomposition
methods, where the graph search needs to rebuilt again. Nonetheless this methods has proven
to be viable real-time options that can adapt to a dynamic environment.

Finally on RRT and RRT* methods and alternatives, they are known to be good path plan-
ning methods, with the limitations that the generated trees are linked to the initial configuration
and they have high computation demands. With the proposal of the different alternatives very
optimal real-time path planners can be obtained, the limitations on these type of algorithms is
that they require large memory capacity as the whole tree needs to be stored at all times, and
it only works in bounded environments, so unbounded and large distance environments are still
a challenge.

Computation and trajectory planning 95

Figure 4.13 – Planning group for the robot system.

4.4.3 Selection of planning algorithm

Description of MoveIt planning group

The "planning_group" is defined as the group of elements that constitute the whole robot
system. This is the UR-5 robot, the 6-faced prop, and finally the robot pedestal (Figure 4.13).
These three elements are what the path planning algorithms need to consider as the robot, in
order for them to avoid any collision state that exists with any of these elements.

The pedestal was modeled in such a way that it matches the dimensions of the real-world
system. As established in Chapter 2, the determined height of the pedestal is 80 cm.

For the configuration of the "plannig_group", MoveIt has an in-built graphical interface that
helps to create all the configuration files related to the kinematics, controllers, Semantic Robot
Description Format (SRDF), and other files for the usage of the robot in ROS. This interface is
called MoveIt Setup Assistant.

The MoveIt Setup Assistant creates all the mentioned files based on the robot description
given to it, in this case, the UR-5 robot description files provided by [89] were taken, and
modified in order to include the pedestal base (included in the URDF definition of the robot)
and also the mesh file for the 6-faced end effector.

Different movement techniques

Different mobility alternatives that MoveIt API offers were analyzed. All the tasks related
to the motion of the "planning_group" are handled by the "move_group" class. By being able to
specify which planning group we want to consider, we can use all the different functions that the
class offers for it, such as getting information on the current joint values, the target, configure
the planning algorithm we intend to use, and perform the planning and execution of motions in
the environment.

The "move_group" class has the option to perform path planning through different types of
motions, these options can be chosen depending on the nature of the task. For example, we can
set up as a goal a given pose in the space, or set it up as a desired joint value. Given the nature
of the system, we will be working with joint value goals, as we expect to reach the different

96 System architecture and robot trajectory planning

(a)

(b)

Figure 4.14 – Planned paths using move_group with out re-planning. (a) Back-to-back plans.
(b) Velocities for both plans.

points in a specific configuration that provides a higher level of safety to the user (elbow up the
configuration for the UR-5).

Another important feature is the option to specify whether we want to reach each one of
the requested goals or not. As the implementation is going to be receiving constantly changing
goals, the best implementation is to plan and go towards said goal, allowing for the system to
re-plan if the goal changes, which means that we do not need to reach the initial goal.

In Figure 4.14, two different trajectories are computed from an initial configuration to a mid
goal and then to a final goal. In this case, we ensure that the robot is going to fully execute each
one of the trajectories, reaching both goals. This is shown in Figure 4.14(b) where the velocities
come down to zero, as it is performing a stop.

In the case of Figure 4.15, we computed the same two trajectories as before, but allowing
re-planning during the execution of the first plan. In this case in Figure 4.15(a) we can see both
plans one after the other, wherein Figure 4.15(b) we show the representation of the segment
that was not executed from the first plan, as a re-planning scenario came to place. This is where
the current positions of the first plan were taken as initial positions for the second plan, which
gives as a result Figure 4.15(c), showing the two plans that were executed.

A parameter to select is the planning algorithm that suits best for the task. As previously

Computation and trajectory planning 97

(a)

(b)

(c)

Figure 4.15 – Re-planned paths using move_group
. (a) Back-to-back plans. (b) Segment not executed due to re-planning. (c) Final executed

plan.

98 System architecture and robot trajectory planning

Figure 4.16 – Comparison of all planning algorithm’s times.

Figure 4.17 – Comparison of best planning algorithm’s times

mentioned, MoveIt has multiple built-in path planning algorithms which can be used. To deter-
mine the best option, we iterated through all of the available options, and performed a planning
task for the desired goal configuration, measuring the time it took for each one of the algorithms
and registering the data. This was made for a total amount of five times for each one of the 12
available planning algorithms through 9 different trajectories. We then proceeded to take the
average times they took to find a solution, perform path simplification (just for the algorithms
that had this feature), and computed the average total time. With this data, we were able to
select which algorithms behaved the best with the shortest planning times.

After doing the computations for half of the trajectories, given the big difference in planning
times for some of the algorithms, we pre-filtered them in order to exclude those ones that
presented the slowest planning times, in order to only consider the suitable candidates.

Another analysis that allowed us to select the algorithm which behaved the best for the
implementation, was to perform an analysis of the generated trajectories with each one of the
algorithms for a fixed task. Based on the pre-filtered algorithms from the previous analysis
as a starting constraint, we computed the average execution time and waypoints for a set of
trajectories.

This analysis was made for the same trajectories as in the previous graphs for a total of 10

Computation and trajectory planning 99

Figure 4.18 – Comparison of average execution times of the algorithms.

Figure 4.19 – Comparison of average amount of generated waypoints.

100 System architecture and robot trajectory planning

iterations for each algorithm, but instead of considering just the computation time (Figure 4.18),
we also took into account the amount of generated waypoints (Figure 4.19). Also, the mannequin
was placed in the middle of the direct trajectory for it to be avoided in the computation, to test
each algorithm’s capabilities in planning around it. This also allowed us to see how consistent
each algorithm’s behavior was.

Analysis on different planning algorithms

Following the experiments introduced in section 4.4.3, we ran two different experiments. The
first one intended in determining which one of the 12 available planning algorithms were better
suited to perform the path planning within the system. As Figure 4.16 and Figure 4.17 shows.
Half of the algorithms included in the MoveIt plungins have long planning times, so that led us
to reduce the total amount of algorithms to consider as usable to a new total of 6 algorithms.
This ones being BiEST, EST, RRT, RRTConnect, TRRT and BiTRRT. With BiTRRT showing
the lowest average total computation times, having in 4.17 an average of 0.5799 seconds for that
particular trajectory. Followed by RRTConnect with 0.7332 seconds. While in 4.16 both of
them are also the fastest algorithms with 0.5559 and 0.5254 seconds respectively. In this last,
RRTConnect presented a slightly faster time, this two were the ones that showed the best times
throughout all the 9 tested trajectories.

Due to this, in order to deepen the study and choice of the algorithms to use, we defined the
second set of experiments, which considered the execution times of the trajectories generated
by the algorithms. In this case, shown in Figure 4.18 we can see that the BiTRRT algorithm
generally reaches the goal faster for the trajectory represented in the graph with an average
of 3.5727 seconds, while RRTConnect showed and average of 4.5399 seconds, this being 0.9674
seconds more in execution time. This behavior was also similar to the other trajectories tested
in the experiment, showing that even if both algorithms take more or less the same time in
finding a solution, BiTRRT has faster execution times.

This is also reflected in Figure 4.19, where for the BiTRRT algorithm the trajectories com-
puted where more “consistent”, obtaining similar trajectories every time (both algorithms are
based in RRT, which is based in random exploration). In the case of RRTConnect, the solutions
found were less optimal, sometimes generating longer trajectories with high deviations of what
was considered the “optimal path”.This is shown by the average amount of waypoints for each
algorithm, where RRTConnect generated in average 34 waypoints, while BiTRRT geneated 21.9
waypoints in average. This results were consistent as well in all the different trajectories tested,
backing up the conclusion over the deviation from the “optimal path” for the RRTConnect al-
gorithm, as an average of more waypoints and longer execution times are a reflection of longer
trajectories. Leading us to pick the BiTRRT algorithm as our path planning algorithm for the
implementation of this project.

4.4.4 Description of Unity’s virtual environment

In parallel to the development of the project, and to further explain the developed imple-
mentation, it is important to clarify how it will merge into the project. The system will receive
the desired goal configuration that is going to be the qgoal intended for the planning algorithm,
starting from the current configuration qinit. This goal selection is being made in Unity by a
Point selection algorithm which determines the point of interaction that the user intends to
reach, will be dealt in detail in next Chapter 5.

Computation and trajectory planning 101

Figure 4.20 – Unity VR system and representation of interaction points

Figure 4.21 – Representation of the user’s effective workspace as a sphere

4.4.5 Different mobility schemes

Based on the Unity information, two different motion or mobility schemes and scenarios have
been proposed depending on the nature of the task we want to achieve at the moment. One
for which no interaction with the user is required, and another one for when it is. These two
scenarios have their own environment to consider, presenting in general two different behaviors.

Movement outside person’s workspace

The first scenario is where a distinction for velocity zones is performed based on the persons
reach/workspace, the region is divided with a plane that represents the user’s reach. Based on
the same idea, we represented the mannequin’s effective workspace as a sphere surrounding the
model.

The mobility scheme consists of alternating from different "safe positions", called in this way
as they are interaction points outside the user’s reach, meaning there’s no need in constraining
the robot’s velocities. Due to this, the motion from one point to another just needs to take into
consideration the defined sphere, as we do not want to "collide" with it.

102 System architecture and robot trajectory planning

Following the idea, we performed a computation of all the existing trajectories between the
different "safe positions" and stored them in a data file (assuming here that the robot starts
at a point outside to the person’s workspace and want to go to a another point outside the
person’s workspace). This allows us to perform offline path planning, and then, on run-time,
based on the initial and desired goal, we can access the pre-computed trajectories to directly
execute them, removing the computation time that would take otherwise by performing online
planning.

The algorithm 7 show the trajectory storage.

Algorithm 7 Trajectory computation and storage.
Input: Number of points nop. A counter for start point i. A counter for final point j

1: start_name[nop] ← ▷ Store id of the points
2: final_name[nop] ← init_names[nop] ▷ Same id’s as we are iterating through all points
3: for i < 0 ; i < nop ; i+ + do
4: for j < 0 ; j < nop ; j + + do
5: if i ̸= j then
6: Ø← Plan_and_Exec_to(points[i]) ▷ Move to initial point of the plan
7: plan_array[i][j] ← Plan_and_Exec_to(points[j]) ▷ Move to desired point and

keep the planned trajectory
8: end if
9: end for

10: end for
11: ▷ Store all as a structured message
12: for i < 0 ; i < nop ; i+ + do
13: for j < 0 ; j < nop ; j + + do
14: if i ̸= j then
15: init_pos_id ← start_name[i]
16: goal_pos_id ← final_name[j]
17: plan ← plan_array[i][j]
18: end if
19: end for
20: end for

Subsequently, the second part of the scheme consists in loading up the pre-recorded data
and being able to use it on demand. Expecting as an input just the desired position to reach.
This is explained in algorithm 8.

Differently, in this research topic spherical obstacle (Figure 4.21) is used to divide the two
zones instead of a plane (Figure 4.4) , as it allows more flexibility for the planning group to
consider more configurations when computing the path between points. Also allowed to find
more achievable paths for the robot to follow, as it allowed to perform easier motions for the
robot.

Movement inside person’s workspace

The second mobility scheme was proposed for the scenario where we need to go inside the
user’s workspace, this means that the motions have to take into account the user’s model to
avoid colliding with it. Another thing to consider is that these motions need to have their
velocity constrained, to ensure safety aspect.

Computation and trajectory planning 103

Algorithm 8 Trajectory upload and execution.
Input: A desired frame to go to des_frame. A home pose home. Number of elements noe.

Initial positions init_pos_id. Goal positions goal_pos_id. Planned trajectories plan. A
counter i.

1: for i < 0 ; i < noe ; i+ + do
2: ▷ Extract the data from the file
3: start_name[i] ← init_pos_id[i]
4: final_name[i] ← init_names[i] ▷ Same id’s as we are iterating through all points
5: plan_array[i] ← plan[i]
6: end for
7: Ø← Plan_and_Exec_to(home) ▷ Move to home pose
8: ▷ Reference to home position as current
9: init_frame ← “home′′

10: aux_des_frame ← “home′′

11: while running do
12: if des_frame == init_frame then ▷ The robot is in position.
13: else
14: aux_des_frame = des_frame ▷ Update the desired position
15: for i < 0 ; i < noe ; i+ + do ▷ Search in the list of plans the one that matches the

init and final frames
16: if start_name[i] == init_frame) & (final_name[i] == aux_des_frame)

then
17: execute(plan_array[i])
18: init_frame ← aux_des_frame
19: end if
20: end for
21: end if
22: end while

Unlike in the first scheme, in this case, the environment consists of moving obstacles, which
requires a constant update of the scene and constant tracking of the objects within it. For
this reason, we used the frames of the mannequin model to obtain its current positions and
orientations to be able to track their movement and link it to the objects spawned in the scene.

We also need to be able to determine if a computed plan is going to enter in a collision
or not, which needs to consider multiple aspects. First, based on the computed path towards
the desired goal, we check if during the execution of the plan the path remains valid. This is
done by checking for all the computed waypoints of the path if the respective configurations are
currently in a collision with any other object present in the scene. If it is free of collisions, then
we proceed with the execution. In the case of a collision present in any of the remaining states
of the non-executed path, we instruct the robot to stop the execution of the computed path and
re-plan again based on the updated scene information.

To test this, we performed an initial implementation of the moving obstacle principle, to
which we planned to a desired joint position, and spawned an obstacle in the middle of the
trajectory while mid-execution. Then, thanks to the path validity checking we can detect that
an object is in collision with the planned path, so we instruct the robot to stop the current
execution and re-plan towards the same goal, taking into account the refreshed planning scene.

104 System architecture and robot trajectory planning

Figure 4.22 – Representation of dynamic obstacles using the user model.

(a)

(b)

Figure 4.23 – (a) Original planned path. (b) Re-planned path from detected collision

Conclusion 105

This work is intended to be extrapolated to work along with the mannequin model and
its kinematics as mentioned in section 3.1. So it is capable to take into account the moving
mannequin in the environment as an obstacle to avoid.

Analysis on mobility outside workspace

One of the advantages on this implementation, in section 4.4.5 is that by being capable
of directly identify which trajectory we want to execute, we can access to the pre-computed
plan and we perform directly the execution of said trajectory. As we are located outside the
workspace of the user, there’s no need to constantly plan a trajectory as once we already took
into account the sphere defined in Figure 4.21 we already ensured that the trajectory will be
safe. This normalizes the execution times as they are now constant.

One limitation this implementation has is that, given the nature of performing pre-recorded
trajectories, the system needs to fully execute each one of the trajectories that he/she performs.
Contrary to other scenario where trajectories can be re-planned as in Figure 4.23. Nonetheless,
this is not a strong limitation in the system, as the prediction (will be dealt in next chapter)
of the "interaction points" and "safe positions" done in Unity helps to overcome the re-planning
situation.

Analysis on mobility within workspace

This movement scheme is fundamental at the moment of interacting with the user, and
thanks to having defined obstacles which have been linked to the mannequin model we can
take into account this elements as the objects to avoid while performing any type of planning.
Another important aspect to take into account within this scenario, is that the goals received
for the system can change rapidly, so for this case we want to be able to do re-planning during
any plan’s execution period. Allowing the system to be more fluid in the motions as well.

On the limitations it presents is that during the development, even though that scene is
being constantly updated and we can know in real time the refreshed position of the mannequin
(Figure 4.22), the development of this scheme has not been fully implemented, as we are able
to re-plan for dynamically appearing objects as shown in Figure 4.23, but we are not able yet
to check the path validity in an iterative way, limiting the reaction and interaction with the
mannequin model.

4.5 Conclusion

A system architecture to communicate between the multiple systems (Unity in Windows ,
ROS in Ubuntu and robot system) was established. A calibration setup to connect components
of the physical and virtual environment in ROS was defined. A simple test was performed to
verify the conversion of coordinate systems between Unity and ROS.

Four planning algorithms were studied to plan the trajectories. These algorithms were com-
pared for a give test case and analyzed. Finally RRT and RRT* methods and alternatives,
they were known to be good path planning methods, with the limitations that they have high
computation demands and memory.

Another limitation, even though we are able to re-plan for dynamically appearing objects,
but we are not able to check the path validity in an iterative way, which limits the reaction

106 System architecture and robot trajectory planning

and interaction with the mannequin model. To counter these drawbacks, we plan to have pre-
computed trajectories and only wish to access them based on the user intention prediction
(explained in next Chapter).

In the next chapter we compare several algorithms for detection of user intention. To have
same data as input for all prediction algorithms the analysis will be done without motion of
the robot and recording the user motion. Precomputed trajectories will be used to evaluate
the intention prediction algorithm as the planning computation time and execution time will be
constant.

Chapter 5

Prediction of user intention

5.1 Introduction

This chapter proposes a set of different movement strategies for the robot to be as fast as
possible in the contact zone while guaranteeing safety. This work uses the concept of predicting
the user’s intention through his/her gaze direction and the position of his/her dominant hand
(the one touching the object) and safe points outside the human workspace. Experiments are
done and analyzed with a Pareto front with a UR-5 robot, an HTC Vive tracker system for an
industrial application involving the analysis of materials in the interior of a car.

When the user uses HMD vision interfaces and has to perform haptic evaluations, he/she no
longer sees the real scene, but only a virtual world. His/her physical reference points quickly
disappear except for objects he/she touches such as his/her seat and the floor.

Through the user’s gaze and hand movements, as well as the position of areas to be studied,
it is possible to predict the tasks that the user will perform. Eye-hand coordination is a funda-
mental behavior that humans use to interact with the world [55, 66, 92]. The head movement
facilitates subsequent gaze shifts toward the future position of the hand to guide object manipu-
lations, thus leading to a strong correlation between head and hand movement parameters [102,
123, 124]. The purpose of this study is to ensure that the robot end-effector will be available for
intermittent contact in complete safety when the human hand is close to the surface to touch.
An industrial robot can perform powerful and fast movements that can be dangerous for the
humans around it. Involuntary contact between the robot and humans is a threat. This is
particularly important in a virtual reality context where humans equipped with an HMD will
not be able to anticipate the robot’s movements.

Today, more than ever, humans work closely with robots. In the case of intermittent contact
interface ICI, contact is inevitable between humans and robots. Cobots are best suited to such a
scenario, but in terms of human safety, accident prevention can always be improved [25]. These
robots are designed to work at limited speeds during potential contacts. Moreover, it must be
ensured that the desired contact with the robot during interaction will not result in a necessary
restart of the robot after a safety stop [82].

The main contributions presented in this chapter can be summarized as follows:
— A set of strategies to predict the user intention.
— The modulation of the robot’s speed according to its location in relation to human.
— A user-based analysis of the proposed strategies.
A motion capture system based on HTC Vive-trackers is used to know the position of the

body and especially the hand used for interaction as well as the position of the chair and the

108 Prediction of user intention

robot [129] (Figure 5.1). The prop can carry six different materials. The robot is fixed on a
80 cm high table and the user sits on a seat 60 cm above the floor. The placement of the robot
in the scene has been chosen to be able to reach all the places where the user’s hand will want
to have haptic interaction with the robot’s probe[50].

Figure 5.1 – The complete system setup for human-robot interaction.

A virtual model under the Unity 18.4 LTS software represents the fixed objects in the envi-
ronment. The position of moving objects is known, the user position thanks to HTC trackers
located on the hands, and its seat and robot location thanks to encoders on the motors.

The outline of this chapter is as follows. Section 5.2 introduces the proposed model and
methodology. Section 5.3 presents different regions of robot motion. Section 5.4 explains all the
proposed strategies. Section 5.5 presents the user study carried out to evaluate the introduced
strategies. Results and insights from the study are also discussed. Finally, general remarks and
conclusions are commented in Section 5.6.

5.2 Human intention prediction

5.2.1 Detection of target

The robot needs to anticipate human’s future actions and act accordingly while performing
collaborative tasks. In most human-robot collaboration systems, the motion of robots is based on
some predefined programs, which are task-based. However, most tasks are highly complex and
it is difficult to redefine a complete set of instructions for such situations. In such tasks, the role
of the robot should be changed from purely automated machines to autonomous companions.
Previous works relied on supervised learning methods to build models of human motion, which

Human intention prediction 109

relied on understanding the environment, offline training or manual labeling, adapt to new
people, and motion styles.

Human intention is mainly expressed through the behavior of humans and the objects they
interact with. Most of the current research on human intention prediction just focuses on action
classification, in which the human action is classified into several categories, such as running,
walking, jumping [41] which is inadequate for accurate inference of human intention in human-
robot collaboration.

We propose an HRI framework that combines hand motion with gaze direction to build
models on the fly, which predict human intention in virtual reality and move the robot to the
required position in a virtual space without offline training.

5.2.2 Proposed model

The aim of the work is for the human to make contact with different parts of the car, in a
design phase where only a virtual model exists, to be able to assess the quality of the materials.
The areas to be explored are limited, driver’s door, passenger seat, dashboard, touchpad. De-
pending on where the human wants to touch, the robot must position itself so that the human
can touch the appropriate material placed on the probe. The probe has a certain surface area,
so a limited number of Regions of Interest (ROI) in the car have been defined that the robot
will have to reach to allow contact with the human. The set of 18 ROI considered is described
in Section 5.2.3. The objective is therefore to determine as soon as possible the ROI that the
user wants to reach and even more so that the robot’s probe is positioned as soon as possible
on this ROI. If the probe arrives before the human, the human will be able to make contact
without being aware that he/she is in a virtual world, otherwise the waiting time before making
contact should be as short as possible.

The major elements involved in our approach are summarized in Figure 5.2. Measurements
of the pose of the hand and the gaze direction via the orientation of the HMD are used to select
an ROI where the human hand will touch the prop of the robot.

It should be noted that as the objective is that the robot arrives at the target as soon as
possible, several strategies are possible and can be combined:

— Detect the target at the earliest,
— Move the robot as soon as possible in the right direction, even if the final target is not

yet known,
— Move the robot as quickly as possible.

As we are in a cobotic context with a human locked in a virtual world that does not see the
robot (the robot can also be visualized in the virtual mode but the immersion will be less),
safety is a priority. A description of the methods implemented to have a fast speed of movement
of the robot and ensure safety will be discussed in Section 5.3.

5.2.3 Scene information

From the model of the car in Unity virtual reality software, we defined the ROI the user is to
interact with. Each ROI is represented as a capsule placed at the center of the surface. For each
surface, the desired orientation of the probe is defined. We have defined 18 ROI to be studied
in the car (Figure 5.3). They are located as follows:

• Four capsules on the door,
• Four capsules on the chair,
• Four capsules on the dash board,

110 Prediction of user intention

Figure 5.2 – Diagram of the inputs used to choose a robot movement strategy.

• One capsule on steering wheel,
• One capsule on touch pad,
• Three capsules on glove compartment,
• One capsule on speedometer.

5.3 Safe and fast motion

When the target is defined, the robot must be moved. For this, a series of trajectories that
avoid obstacles have been defined (see section 5.3.1) between the point of interest and/or safe
point. While the robot is moving, a new point of interest can be defined. One could stop the
robot’s movement and recalculate an obstacle-free trajectory online. However, in order to avoid
wasting time in this calculation, predefined trajectories have no calculation time, so the robot
is let to perform its movement. And it will take into account the new target at the end of its
movement.

5.3.1 Cobot motion

The robot will navigate between a finite number of points which are our ROI. However, the
movements must ensure that collisions with humans are avoided. To do this, we will generate
offline robot movements that ensure that no part of the robot enters an area encompassing the
human at rest in the driver’s seat. The area to be avoided is composed of a sphere and is
illustrated in Figure 5.4. The dimension of the sphere covers the human head and torso and

Safe and fast motion 111

Figure 5.3 – Location of the ROI 1 to 18 inside the car and safe-points 20 to 24.

part of the arm, but the hands can be outside since they must be able to reach the ROI. For
this, we need to construct 18× 17 off-line trajectories that we will assemble in line according to
the ROI detected to accomplish the task. These trajectories are close to the human, they are
realized with a maximum speed of 0.25m/s to ensure the use of the UR-5 cobot according to the
ISO standard for human-robot collaboration [125]. This condition guarantees that a possible
collision with the human will not hurt him.

5.3.2 Velocity zones

The robot must be moved closer to the target point to prepare for the interaction. The
movement must be fast so that the robot has arrived before the human and thus avoid unpleasant
waiting, but the maximum speed of the robot must be limited for safety reasons. Figure 5.5
shows the scene of the VR environment, it consists of the car interior and user model.

112 Prediction of user intention

Figure 5.4 – In the definition of the robot motion to joint the ROI, the sphere that represents
the user occupancy zone is avoided.

Figure 5.5 – Car interior and user workspace in Rviz.

Safe and fast motion 113

Figure 5.6 – The spaces defining the robot velocity. The two blue spheres described the human
workspace when seated. The grey part shows the car model. The transparent sphere is the
robot’s working area. The red line delimits an area where the speed of the robot can be higher
because there is no risk of collision with the human.

Based on this, we distinguish three velocity zones:
• The human workspace (HW), is defined as two spheres whose radius is the size of the

arm centered on the shoulders of the mannequin. This workspace will evolve according
to the movements of the human. We could also consider a constant space if we limit the
realistic movements of the torso. This space is represented by blue circles in Figure 5.6.
• The inside of the car (IC): this space delimits the area where we know the human must

move. Even if the Unity model is complex, this zone can be approximated by a larger
simple region that includes the real interior of the car. The gray rectangle, in general,
represents the entire Unity model and we define a plane, depicted by the red line in
Figure 5.6, that separates the region that can be reached by the user.
• The free space (FS) cannot contain points that are in the HW. We can have a certain

safety margin to define this zone. In our example, this zone is simply limited by a plane
represented in red in Figure 5.6.

The limit on the robot velocity is chosen according to the space:
• When the robot moves in FS, it can do so at maximum speed Vm (all parts of the robot

are in FS),
• When the robot moves outside of FS, it must move at reduced speed Vr,

The speeds are chosen such as Vm ≥ Vr ≥ 0. The different spaces are shown in Figure 5.6.
The blue transparent circle is the robot’s workspace, two blue-filled circles are the workspace of
the user’s hands. The grey rectangle is the complete interior model of the car and the red line
is the plane that we use to differentiate the reachable and unreachable parts of the car by the
user.

5.3.3 Velocity profiles

To ensure safety and also have better response time we defined two velocity profiles of
Vr = 0.25 m/s and Vm = 4 m/s based on the zones defined above. To illustrate the idea, we

114 Prediction of user intention

Figure 5.7 – Illustration for the comparison of motion using safe-points.

devise the scene as shown in Figure 5.7. We define four points:
• Two points A’ and B’ are on the plane boundary, these are in the FS, and fast motion

between these points can be produced. For the application studied in the paper, the
capsule denoted 20 to 25 are in the FS.
• Two points B and A are inside the plane boundary, one point on the dashboard and

another on the passenger’s seat. These points play the same role as the ROI 1 to 18.
We analyze two different scenarios based on different velocity combinations.
• The shortest way: Knowing the target point, the robot moves towards it, and adapts its

speed according to the spaces it crosses. In the studied example, it goes directly from A
to B with a velocity of less than 0.25m/s.
• Safe-points: We use of safe-points to keep the robot’s speed high. In the studied example,

the points A’ and B’ belongs on the plane that limits FS. The robot goes from A to A’
with a maximal velocity less than 0.25m/s, then from A’ to B’ with a maximal velocity
less than 4m/s, B’ to B with a maximal velocity less than 0.25m/s.

The movement of the robot inside the car should be performed at reduced speeds for safety
reasons. In some cases, when the desired point is far away from the user space, it takes longer
to reach it due to the low speed. In such situations, we use the via-points on plane boundary in
the FS, called safe-points, between which the robot can move at high speed. The path is longer
but its execution can be faster.

New trajectories are calculated off-line to connect the ROIs and the safe points with the two
motion speeds.

5.3.4 Safe-points

As we have shown in the previous section, the interest to move the robot in FS is to speed
up the robot movements. Five points on the plane boundary of FS have been defined SP20,
SP21, SP22, SP23, SP24 to be used for this purpose.

The interest of moving the robot in the FS is also to increase the safety of the operator
by moving the robot away from the human. To quantify this notion of safety, we will define
an average distance between the robot’s end-effector and the sphere encompassing the human’s
torso shown in Figure 5.4. The higher this distance, the safer the human/robot interaction
will be. This distance is calculated in an approximate way from the points of passage of the
robot (SP1,...SP24), by making the hypothesis of a straight line displacement at constant speed
between the points (defined as the distance between the points divided by the duration of the
displacement).

Proposed strategies 115

Figure 5.8 – Comparison of motion through safe-points and without safe-points.

ds =
∑N

i=1(∥pi − C∥ −R)
N

(5.1)

Where the robot motion is sampled in N instant, pi is the coordinate vector of the end-effector
of the robot for the sample i, C is the coordinates vector of the center of the sphere shown in
Figure 5.4 and R is its radius.

Considering the user safety and robot velocity it is of interest to pass through points on the
plane boundary in FS, when we have long robot trajectories to make. In the next part of the
study we will show that this can also be useful when a movement is initiated by the human by
hand and gaze but without knowing yet where the human will stop. Placing the robot on one
of the safe points SP20, SP21, SP22, SP23, SP24 will allow the robot to get closer to the goal
more quickly.

5.3.5 Comparison of motion with or without safe-points

An example is illustrated in Figure 5.8 where A = P17 andB = P5, A′ = SP24 andB′ = SP21.
The points A’ and B’ are positioned on the plane that divides the two different velocity zones.

We compared the time taken by the robot to move between two points, taking into account
the presence of safe points and without them.

The results in Figure 5.8 show the position of points in X coordinate with respect to time.
The Figure 5.8 is a representation to show the point and at what time the robot reaches that
point. From the recorded trajectories of the robot to reach the points, the X-coordinates of
the robot are plotted at the beginning and end of the trajectory (and connected by a straight
line) against time in Figure 5.8. The direct motion is shown in blue, when the motion with
intermediate safe point is shown in red. It proves that by passing through safe-points A’ and
B’, the robot takes less time than going directly.

By traveling through safe points, the robot starts from point A and moves through A′, B′

at a higher velocity and then to the final point B. The total time taken to reach the final point
was 0.41s. For the motion inside the car, the robot arrives at the final point after 0.45s.

5.4 Proposed strategies

We will study and compare four strategies that integrate the position of the hand, the
direction of the gaze, and the use of safe-point to efficiently move the robot to one of the ROI
that the human wants to reach.

116 Prediction of user intention

5.4.1 Strategy A: Hand position

As the user’s objective is to touch with his/her hand the ROI, the first and the simplest
strategy proposed is to consider that the point to be reached is the closest to the hand position.
The strategy is presented in Figure 5.9, in the example the selected point is P2. The main
advantage is the simplicity of the approach. For the search for the nearest point, the k-d tree
structure is used to find the nearest point of the hand. An implementation of this algorithm for
VR environment is done in [96]. The strategy is summarized in Algorithm 9.

Figure 5.9 – Pictorial representation of Strategy A.

Algorithm 9 Strategy A: Predictions with hand.
Input: Hand position Ph ∈ R3

Output: Nearest Point P in the set of Pi, i = 1...18.
1: Build a k-d tree for all points Pi in the scene.

2: function STA(Ph)
3: Using hand pose as a query point q, return nearest point P from the k-d tree.
4: return P
5: end function

The main characteristics of the approach are:
1. The point is detected only when the human has almost reached the points;
2. If two points are equidistant, a prediction fluctuation can occur with small changes in hand

motion;
3. During the movement of the hand, intermediate points can be detected, which will allow

the robot to start its movement before the desired end point is detected.
We used a proximity search, which is an optimization problem of finding a point in a closed

set that is closest to a given point. Closeness is defined by a dissimilarity function such that the
dissimilar the objects, the larger the function values.

Problem definition

Given a set P of our interest points in a 3D space D, and a query point q which represents
the user’s dominant hand, we find the closest point P to q. This problem can be generalized as
a k-nearest neighbour (kNN) query where we have to find the k closest points where k ∈ Z+.
Implementing the kNN is normally done by computing the distances from q to all elements in
P . However, this method is computationally intensive for a large number of data points. We
used a k-d tree for the nearest neighbor search proposed by [8, 44].

Proposed strategies 117

Figure 5.10 – k-d tree (a) k-d tree decomposition for point set and (b) The resulting k-d tree.

Formally a k-d tree is a balanced binary tree for a set of data points p1, p2, ..., pn ∈ P where
the root corresponds to all points and its two children represent almost equal-sized subsets of
P . Every leaf corresponds to a k-dimensional point and every non-leaf node is a splitting point
generating a hyperplane that splits points into subsets in a level-wise manner. Points to the left
of this hyperplane are represented by the left sub-tree of the node and points to the right are
represented by the right sub-tree. For a given node p at level i, the points associated with p
are split into two halves by resorting to the median in dimension i mod k. Such that the point
inserted in the tree at each step is the one, which has the median coordinate in the direction
considered [8]. However, splitting rules may vary. The recursive construction ends as soon as a
node p corresponds to a singleton or to a set of predefined sizes.

Nearest neighbor search using the k-d tree

Given a point q, find the point p in the data set P that is closest to q. This can be done
with the three following steps :

— Step 1: We defined the points representing the position and orientation of the surface for
each of the ROI in the car model.

— Step 2: Build a k-d tree to store the positions for all the cubes.

— Step 3: Using the hand position as a query, we find the closest point to the hand from
the k-d tree.

The algorithm 10 describes precisely these above steps.

118 Prediction of user intention

Algorithm 10 Nearest neighbor search.
Input: k-d tree root node, query point q .
Output: Nearest node p.

1: Start from the root node.
2: Move down the tree recursively following the same procedure as it would be for the insertion

of point q in the tree.
3: Once a leaf node is reached, save the leaf as the current best point p.
4: Rewind the recursion tree, and
5: For each node v, if d(q, p) > d(q, v), then the current node is v = p, where d is a distance

metric.
6: Check if there could be yet better points on the other side of the subtree by checking if

neighboring boxes potentially contain points that are closer to q as the current best candidate
(using the median values).

7: In case a point might be closer, recurse to the sub-tree that has not yet been visited.
8: If there could be, move down again on the other side of the sub-tree. Otherwise, go up

another level.

Drawbacks of the above approach

The above approach has the following shortfalls:
1. The accuracy decreases when the hand is close to the midpoint of any two points. In this

case, the difference in the distance between each point and the hand is very small and such
that a slight displacement of the hand results in the inappropriate motion of the robot to
any of the nearest points.

2. Unnecessary and Involuntary hand movements. Due to human nature, the user can move
their hands involuntarily without the intention to interact with any objects in the space.
In this case, the algorithm would still move the robot to the best point according to the
minimum distance.

To overcome the above shortfalls, we decided to include the head gaze in the model such
that a predicted point is considered valid and intentional. If the user was gazing in the direction
of the object the hand interacts with. This is because when humans reach to grasp an object,
they look at the target first, then bring the hand to the center of gaze as the object [88, 114,
102, 123].

Improved approach

The improved approach involves information extraction and definition of ROI from car model,
k-d tree construction for each ROI and Hand pose, nearest neighbor search, and Hand - head
gaze coordination to determine the best point. A 5 step process :

— Step 1: We defined the points representing the position and orientation of the surface for
each of the ROI in the car model.

— Step 2: Build a k-d tree to store the positions for all the cubes.

— Step 3: Using the hand position as a query, we find the np points closest to the hand
from the k-d tree. Contrary to section 5.4.1, we do not define directly the closest point

Proposed strategies 119

but we select np candidate points. Depending on experiments np can be two or four.

— Step 4 : From the np candidate points, we select only the npg points. belonging to the
view frustum of the HMD.

— Step 5: Among these npg points, the closest to the gaze direction is selected as predicted
contact point between the user and the robot end effector.

Theses steps are commented in the Algorithm 11.

Algorithm 11 Predictions with head gaze.
Input: Scene information, head gaze direction.
Output: position and orientation of desired point.

1: Cubes representing the surface and orientation of regions of interest.
2: Build a k-d tree for all points in the scene.
3: Using the hand pose as a query point q, return the nearest np-points from the k-d tree.
4: For each of the np points, we select only the npg points which lie within the view frustum of

the HMD.
5: find the gaze direction as a unit vector from the central point of the eyes and draw a ray in

the gaze direction.
6: calculate the distance of each point in npg from the ray and return the position of the nearest

point.

Experimentation

We conducted experiments to analyse the motion of the robot in response to hand motion
in two approaches by moving the hand between the two points, with the following objectives:

1. Midpoint test: To show the response and error in robot motion when the hand is close
to the midpoint. For this, we consider two points, which are 1.3 meters apart. Placing
the hand tracker at the midpoint and displacing it by 2 cm results in the robot going to
extreme points

2. Involuntary and Unintended Hand Motion Test: To verify that the robot moves only when
the hand and head gaze are in the same direction. A hand motion to areas outside human
vision is not sufficient to move the robot.

Results

In the first approach, we used the model without data from VR HMD, we observed that by
moving the hand approximately 1.5 mm from the midpoint, the robot responds by moving to
the other closest point. Figure 5.11 shows the displacement of the hand. The corresponding
motion of the robot is shown in Figure 5.12. It can be seen that Robot TCP moves to the
extreme points ever-time there is a small displacement in the hand tracker. To avoid this noise,
motion we introduce Head Gaze.

In the second approach, by including the head gaze in the model, it is observed that the robot
only moves in the direction of the object where the head is currently facing. While Figure 5.13
shows displacement of the hand tracker about the midpoint, it can be noticed that there is no
significant change in the displacement of the tracker. However, for the robot TCP, it changes

120 Prediction of user intention

Figure 5.11 – Hand Tracker Motion.

Figure 5.12 – Robot TCP motion without head gaze.

only when the gaze shifts. Figure 5.14 shows the motion of the robot TCP, and when comparing
it with Figure 5.12, we can see a reduced noise in the displacement of the robot.

From Figures 5.14 and 5.13, it was observed the movement of the hand does not affect the
motion of the robot as long as the head is not facing in the direction of the hand movement.
The robot only changes the direction of motion at instances corresponding to the rotation of
the head.

The fact that gaze direction is taken into account limits the inappropriate variations of the
target point and allows a smoother movement of the robot. This is based on the assumption
that the operator looks in the direction where he/she wants to go.

5.4.2 Strategy B: Hand position and gaze direction

Head gazes direction is introduced to limit the detection of points to only what the user can
see. The detection of the interesting point is only possible if the point is in the field of view. The
strategy is presented in Figure 5.15. The pose of the hand is used to select 2 points, the closest
to the hand, in the example P1 and P2. From these 2 points, the closest to the gaze direction is
selected, by comparison of the angle between the line connecting the point and the line of view.
In the example, the closest point is P2. The strategy is summarized in Algorithm 12.

Figure 5.13 – Hand Tracker Motion.

Proposed strategies 121

Figure 5.14 – Robot TCP motion with head gaze.

Figure 5.15 – Pictorial representation of Strategy B.

Algorithm 12 Strategy B: Predictions with head gaze.
Input: Hand position Ph ∈ R3, HMD position Ps ∈ R3, Head Orientation Os ∈ R4.
Output: Nearest Point P.

1: Build a k-d tree for all points in the scene.

2: function STB(Ph, Ps, Os)
3: Using hand pose as a query point q, return nearest 2-points from the k-d tree.
4: Find the gaze direction as a unit vector from the central point of the eyes and draw a

ray in the gaze direction.
5: Calculate the distance l1 of each point in np from the ray.
6: Find the angle λi for each point such that λi = li/Li where Li is the distance from the

HMD to the projection of the point on the line. (Shown in Figure 5.15).
7: The point with min(λi) is the closest point P.
8: return P
9: end function

The aim of this approach is to try to find the point of interest with a little anticipation
compared to the previous method, by being able to choose a point that may be a little further
from the hand but directed according to the direction of the gaze.

5.4.3 Strategy C: Addition of safe points

If the hand is far from the point of interest, it is probably on the way, but still far from the
goal, so it may be appropriate to move the robot to a safe point to prepare for a higher speed
movement. This strategy is an extension of strategy B, but with added extra safe points. This
strategy is designed such that the robot will always go to the safe point if the distance between
the hand and the closest point is above a threshold, here 0.2 m. The strategy is presented in

122 Prediction of user intention

Figure 5.16. In the example, the point P2, the closest to the view line among the two closest
to the hand, is at more than 0.2 m from the hand, thus the robot will go to the safe point
which is the closest to P2 among SP20, SP21, SP22, SP23, SP24. The strategy is summarized in
Algorithm 13.

Figure 5.16 – Pictorial representation of Strategy C.

Algorithm 13 Strategy C: Addition of safe-point.
Input: Hand position Ph ∈ R3, HMD position Ps ∈ R3, Head Orientation Os ∈ R4, Hand

Threshold Th (Shown in Figure 5.16).
Output: Nearest Point P.

1: Build a k-d tree for all points in the scene.

2: function STC(Ph, Ps, Os, Th)
3: function STB(Ph, Ps, Os)
4: return P
5: end function
6: if distance(P,Ph) < Th then
7: return P
8: else
9: for all SP i ∈ SP do,

10: di = distance(P, SPi).
11: min(di);
12: end for
13: return SP i

14: end if
15: end function

The main characteristics of this strategy are as follows:
— The difference between this approach and strategy B can only be seen for long displace-

ments (of more than 0.6 m between the points) for which the hand displacement can be
quite far from the points Pi, i = 1, ...18.

— There is a risk that the robot will move to a safe point in an inefficient way with a longer
path that will not allow the robot to arrive faster

— The results obtained can vary with the choice of the threshold Th, an analysis of the
influence of this parameters on the prediction can be found in Section 5.5.6.

Experiments and analysis 123

5.4.4 Strategy D: Head gaze and safe points

All the strategies presented so far are based on a selection or pre-selection of the point of
interest-based on the hand position. Here the approach is different and the selection is based on
the direction of the gaze which can greatly anticipate the movement of the hand. As in strategy
C, safe points will be used if the point of interest is more than Th = 0.2 m away from the hand.
The strategy is presented in Figure 5.17. In the example, the point P2, is the closest to the view
line among the points in the frustum of the HMD. As the point P2 is more than 0.2 m from
the hand, thus the robot will go to the safe-point which is the closest to P2 among SP20, SP21,
SP22, SP23, SP24. The strategy is summarized in Algorithm 14.

Figure 5.17 – Pictorial representation of Strategy D.

This strategy is based on the assumption that the task will be carried out with the coor-
dination of gaze and movement. In general, it is reasonable to think that the gaze anticipates
the movement. In the context of the study, where the human is enclosed in a virtual world,
it is likely that he/she will not be disturbed by external elements and that he/she will remain
focused with his/her gaze directed towards the point of interest. The context should therefore
be favorable to this approach.

5.5 Experiments and analysis

5.5.1 Criterion

The main research question was to find a selection strategy that maximizes user safety while
minimizing robot response time. Four strategies explained in the previous section were tested
against each criterion. The strategy selected needs to minimize robot time to reach the desired
target pose while ensuring maximum user safety.

To evaluate the strategies, the following criteria were considered for strategy.
1. Efficacy:
• Q1: If the strategy detects the final point or not. A value of 1 or 0 was assigned if final

end point was detect or not.
2. Time for detection:
• Q2: Time taken by the strategy to detect the desired/final point the user want to reach.
• Q2norm : In order to be able to compare the results for several strategy, we defined a

normalized criterion. It a ratio of each value of Q2 for a trajectory divide by the min-

124 Prediction of user intention

Algorithm 14 Strategy D: Predictions with head gaze and safe-points.
Input: Hand position Ph ∈ R3, HMD position Ps ∈ R3, head orientation Os ∈ R4, hand

threshold Th.
Output: Nearest Point P.

1: function STD(Ph, Ps, Os, Th)
2: ni = points in the view frustum of HMD.
3: Find the gaze direction as a unit vector from the central point of the eyes and draw a

ray in the gaze direction.
4: Calculate the distance of each point in ni from the ray.
5: Find the angle λi for each point such that λi = li/Li where li represents the distance

between a point and it’s projection on the line as calculated in previous step and Li the
distance from the HMD to the projection of the point on the line (Shown in Figure 5.17).

6: The point with min(λi) is the closest point P.
7: if distance(P,Ph) < Th then
8: return P
9: else

10: for all SP i ∈ SP do,
11: di = distance(P, SPi).
12: min(di);
13: end for
14: return SP i

15: end if
16: end function

Experiments and analysis 125

imum value of Q2 for this trajectory and the four strategies analyzed. [Q2/min(Q2)].
For the best strategy with respect to this criterion the Q2norm = 1.

3. Time for robot:
• Q3: Time taken by the robot to reach the final point (to move from start to desired

point including all via points). It is the sum of the duration of all the pre-computed
trajectories according to the strategy of motion of the robot according to section 5.3
and the time that the robot waited to have new point where to go.
• Q3norm : As for the criterion Q2, we define a normalized criterion, to be able to compare

the strategy for several trajectories. Its a ratio of each value of Q3 for a trajectory
divide by the minimum value of Q3 for this trajectory and the four strategies analyzed.
[Q3/min(Q3)]. For the best strategy with respect to this criterion the Q3norm = 1.

4. Robot distance:
• Q4: The distance travelled by the robot from start to end point for all via points the

robot travels through.
• Q4norm : The ratio of distance travelled by the robot (from start to end point for all via

points the robot travels through) with distance between start and end point.
5. User distance:
• Q5: The mean distance between the sphere centered on the driver’s seat with a radius

of 0.5m and all points on the trajectory. This distance is evaluated via the equation
(5.1) and characterizes the safety of the user. The further the robot is from this sphere,
the safer it is.

5.5.2 Experimental setup

We used the hand motion sensor as a proximity sensor. The objective is to find the closest
ROI with respect to the hand. This is an optimization problem of finding a point in a closed
set that is closest to a given point. Using the Head-mounted display, we find the points in the
user view and if the gaze is directed towards a point Pi. We classify the distance of the points
in the direction of the gaze as a function of l1/L1. The user will direct his/her hand towards a
capsule (discrete set of N points). The goal is to detect as soon as possible, which point is to
be reached by the human and to move the robot to that point:

1. If the direction is known, the robot can be moved to intermediate points to facilitate the
task.

2. Safe-points SPi (i = 20 : 24), located outside the car’s interior space defined. Between
this points the robot can move quickly.

3. At each moment, from the sensor data, we define the target point among the set of N
points Pi (i = 1 : 18).

Seven trajectories were considered in the experimental design: two consisted of long-distance
trajectories (from points 2 to 11 and 5 to 18), three medium distances (from points 5 to 11, 5 to
15, 12 to 15), and two shorter distances (from points 3 to 4 and 17 to 16). The seven trajectories
have been done by three different participants.

The participant was seated in the car seat 0.6m above the ground and at a position of 0.9m
in y and −0.1m in x from the robot base frame. The sphere used for the obstacle avoidance
of the user is centered at this reference point. An HTC Viva HMD was worn by the user and
Vive sensors were attached to the user’s dominant hand as shown in Figure 5.1. Then for each
trajectory, the user was instructed to move his/her hand from a start point to a defined endpoint.

126 Prediction of user intention

Figure 5.18 – User hand trail for motion from point 2 to 11.

0 0.5 1 1.5 2 2.5 3

Time (sec)

0

5

10

15

20

25

P
o
in

ts

Comparison of Strategies for Traj 2 -11

Plane

Strategy A
Strategy B
Strategy C
Strategy D
Plane

Figure 5.19 – Points of interest detected for different strategies for a hand motion from 2 to 11.

For each trajectory performed by the user, data were recorded. It comprised of the position
of the hand tracker, the head position, and orientation. The user can do the task at the speed
he/she wants. During this experiment, the robot was not moved. The data recorded was used
to perform the analysis in parallel with the four strategies in order to compare them on the same
data set.

5.5.3 Analysis of one experiment

The four strategies are described and illustrated on one example, a trajectory done by one
subject for moving his/her hand from P2 to P11 was recorded. A visual trail of the user hand is
shown in Figure 5.18. This recorded motion was used to analyze the four proposed strategies.

Detection of points of interest

Figure 5.19 shows the sequence of points that are detected for the four studied strategies. It
can be visualized that different strategies have different intermediate points selected except for
strategies A and B that produced the same sequence of points detected.

Based on the results from the different strategies, it can be observed that strategies A, B
select intermediate points which are inside the car while strategy C and D select the safe-points
as some of the intermediate points. For this example, all the strategies allows to find the desired
final point P11. However the strategy D success to detect this point earlier that the strategies
A, B, C that detect the final desired point at the same time (as it can be seen in Table 5.1).

The obtained sequence of points of interest is now detailed:

Experiments and analysis 127

— Strategy A: P2, P12, P6, P8, P9, P10, P11.
The points are selected based on the least distance to the hand, the points selected can
be easily explained by the hand trail described in figure 5.18.

— Strategy B: P2, P12, P6, P8, P9, P10, P11.
The selection of this strategy is similar to strategy A for this example because all points
were all the time the point closest to the hand is also closest to the direction of gaze.
Since the set of points detected is the same as for the strategy A. The robot motion will
be similar and analyzed simultaneously.

— Strategy C: P2, SP20, SP21, SP23, P9, P10, P11.
For strategy C, a threshold is introduced around the detected points to choose whether
the robot should go to the point or to a safe-point. It is observed on Figure 5.18 that the
hand passes at a distance > 0.3m from the points P12, P6, P8. Consequently, the selected
points will be the associated safe-points SP20 SP21 and SP23. Then points P9, P10, P11
were detected and found to be within the required threshold of the distance from the
hand.

— Strategy D: P2, P3, SP20, SP21, SP22, SP23, SP24, P10, SP24, P11
Strategy D uses the direction of gaze as the primary criterion and it is therefore more
difficult to predict the sequence of points detected based on Figure 5.18. In this strategy
P3 is selected, it is done based on the user gaze and since the hand moved not far from
this point, P3 is selected. For the following points selected by the gaze, the hand is farther
from the points so the associated safe-points were selected. Then the gaze is directed
toward the point P10, since the distance from the hand was below a threshold Th, the
point P10 was selected. Then the gaze is probably oriented to point P11 since it’s distance
from the hand is above the threshold, the robot has to return to the safe-point P24 and
finally when the the hand is close to the final point P11, the point is detected. This
happens at a moment when the point P11 is not yet the closest point to the hand and
is therefore not yet detected by strategy A. The points detected in this example show
that the gaze does not go directly to the goal but sweeps along the path accompanying
the hand. The results also show a certain sensitivity of the point sequence to the value
chosen for the threshold.

The robot motion for the four strategies

For the three different selections of points (strategies A-B, strategy C, strategy D), the robot
motion and the safe distance is now commented. Figures 5.20, 5.21, 5.22 illustrate, starting from
the sequence of points detected represented in black as function of time, the corresponding robot
motion represented in red as function of time. On the same figure, the distance between the
end-effector of the robot and the sphere encompassing the human, is shown in blue as function
of time and expressed in meter. This curve is directly calculated based on the robot motion and
will be used for the evaluation criterion in Table 5.1.

The sequence of progression of robot motion with time from start to end point is described
below:

Strategy A and B:

The progression of the robot motion is indicated by the red line as shown in Figure 5.20.
Starting from point P2, the robot waits for a new point. When P12 is detected, the robot starts
moving and before it arrives, P6 is detected. However the robot has to continue and complete

128 Prediction of user intention

0 1 2 3 4 5 6 7 8

Time (sec)

0

5

10

15

20

25

P
o
in

ts

0

0.1

0.2

0.3

0.4

0.5

0.6

U
s
e
r

D
is

ta
n
c
e

Robot Motion and User Distance for 2 -11

Strategy A

Robot Motion

Distance from User

Figure 5.20 – Robot motion, user distance and time for detection, for strategies A and B for
trajectory 2 to 11.

the motion so then arriving at P12 the robot now detects P11 as new desired point, so the robot
moves directly to P11. The robot avoids all the points that are detected during the motion
towards P12. This pattern continues until the robot reaches the last point detected.

Strategy C:

A graph of robot motion is indicated by the red line as shown in Figure 5.21. The robot
starts at P2 and waits for a new point. When point SP20 is detected, it starts moving but along
the way, a new point SP21 is detected, so it has to complete the motion to SP20 first. By the
time it has reached the point SP20, points SP21, SP23, SP24 have been detected and passed by
the prediction algorithm. All the points that were detected and passed during the motion of
the robot have been ignored by the robot. Once a new point has been detected the goal state of
the robots updates and neglects the previous points that have not been reached. After reaching
SP20 the prediction now shows point P11 as the desired destination. So the robot moves to P11.

0 1 2 3 4 5 6 7 8

Time (sec)

0

5

10

15

20

25

P
o
in

ts

0

0.1

0.2

0.3

0.4

0.5

0.6

U
s
e
r

D
is

ta
n
c
e

Robot Motion and User Distance for 2 -11

Strategy C

Robot Motion

Distance from User

Figure 5.21 – Robot motion, user distance and time for detection, for strategy C using trajectory
2 to 11.

Strategy D:

The motion of the robot is indicated by a red line as shown in Figure 5.22. The robot starts
from P2 and when P3 is detected, it moves to point P3. When P20 is detected, the robot is
still in motion to P3, so it ignores the point. Further SP21, SP22, SP23 and SP24 are detected,
but when it the robot reaches P3, the prediction system still predicts SP24 as it moves to SP24
without waiting. Again during the motion P10 and SP24 are detected, but before arriving, P11
is detected so on arrival at SP24, it does not wait but continues to P11, where it finally stops.

Experiments and analysis 129

0 1 2 3 4 5 6 7 8

Time (sec)

0

5

10

15

20

25

P
o
in

ts

0

0.1

0.2

0.3

0.4

0.5

0.6

U
s
e
r

D
is

ta
n
c
e

Robot Motion and User Distance for 2 -11

Strategy D

Robot Motion

Distance from User

Figure 5.22 – Robot motion, user distance and time for detection, for strategy D using trajectory
2 to 11.

Criterion analysis for single trajectory

Table. 5.1 shows the complete data for all criteria proposed, for the single trajectory 2-11.
Q1 is the success of the strategy detecting the final goal state. It can been seen that all strategies
are able to detect the goal point. From the table it can be seen that Q2norm and Q3norm has
its best value for strategy D. These strategies have a very fast detection and robot travel time.
However the distance traveled is not the best as this strategy allows the selection of safe-points
which increase the robot travel distance. When considering safety, strategy D is second best.
The best safety Q5 is provided by strategy C.

Table 5.1 – Strategy analysis for the trajectory 2-11

Trajectory 2-11
Strategy Efficacy Time for Detection Time for Robot Robot Dist. User

Dist.
Q1 Q2 Q2norm Q3 Q3norm Q4 Q4norm Q5

St. A 1 2.0868 1.0600 7.4413 1.5158 1.4648 1.1959 0.4370
St. B 1 2.0867 1.0600 7.4413 1.5158 1.4648 1.1959 0.4370
St. C 1 2.0867 1.0600 5.2969 1.0790 1.5690 1.2810 0.4804
St. D 1 1.9686 1 4.9092 1 2.1931 1.7903 0.4428

After this detailed analysis for one trajectory, a discussion of the criterion evaluation for
seven trajectories recorded is presented in the following sections.

5.5.4 Analysis of all recorded experiments

The results obtained are summarized in Table. 5.2. For all the tests, the final desired position
is detected, thus criterion efficacy Q1 is one and the criterion is not summarized in the Table 5.2.
The analysis of the results will be separated into two parts. Firstly, an observation of the results
obtained for the different trials will enable us to arrive at certain conclusions about less variations
of the results as function of the trajectories. Then, in a second part, we will use the average values
of the different criteria, taking into account the seven trajectories, to highlight the particularities
of each strategy by comparing the criteria two by two.

130 Prediction of user intention

Table 5.2 – Complete analysis for seven trajectories

Criteria Strategy Long Trajectory Medium Trajectory Short Trajectory Analysis
2-11 5-18 5-11 5-15 12-15 3-4 17-16 Mean St. Dev

T
im

e
fo

r
D

et
ec

tio
n

Q
2

A 2.0868 2.3029 2.5878 2.1767 1.9842 0.6418 1.0381 1.8312 0.6597
B 2.0868 2.3029 2.5878 2.1767 2.3366 0.6418 1.0381 1.8815 0.6825
C 2.0868 2.5370 2.5878 2.1767 2.3366 0.6418 1.0381 1.9150 0.7076
D 1.9687 2.5370 2.2383 2.0428 2.3366 0.3258 0.8709 1.7600 0.7687

Q
2 n

o
r

m

A 1.0600 1 1.1561 1.0655 1 1.9701 1.1919 1.2062 0.3190
B 1.0600 1 1.1561 1.0655 1.1776 1.9701 1.1919 1.2316 0.3085
C 1.0600 1.1016 1.1561 1.0655 1.1776 1.9701 1.1919 1.2461 0.2995
D 1 1.1016 1 1 1.1776 1 1 1.0399 0.0663

T
im

e
fo

r
R

ob
ot

Q
3

A 7.4413 7.2735 7.5526 8.0443 5.4879 2.4640 6.9719 6.4622 1.7930
B 7.4413 7.2735 7.3964 8.0443 5.4879 2.4640 6.9719 6.4399 1.7802
C 5.2969 7.2735 6.6089 8.0443 4.3095 2.4640 7.9156 5.9875 1.9159
D 4.9092 9.8848 4.9460 5.8196 6.0033 2.1480 5.7774 5.6412 2.1183

Q
3 n

o
r

m

A 1.5158 1 1.5270 1.3823 1.2734 1.1471 1.2067 1.1605 0.1802
B 1.5158 1 1.4954 1.3823 1.2734 1.1471 1.2067 1.1848 0.1746
C 1.0790 1 1.3362 1.3823 1 1.1471 1.1701 1.2003 0.1591
D 1 1.3590 1 1 1.3930 1 1 1.0398 0.1701

R
ob

ot
D

ist
.

Q
4 n

o
r

m

A 1.1959 1.4943 1.0948 1.1582 1.0225 1.0000 1.3042 1.1814 0.1601
B 1.1959 1.4943 1.0948 1.1582 1.0225 1.0000 1.3042 1.1814 0.1601
C 1.2810 1.6766 3.9707 1.5271 3.0161 1.0000 2.9585 2.2043 1.0273
D 1.7904 3.9039 7.4400 2.8315 4.2133 1.0000 2.6207 3.4000 1.9464

U
se

r
D

ist
.

Q
5

A 0.4370 0.3301 0.4846 0.4143 0.3285 0.3535 0.4429 0.3987 0.0570
B 0.4370 0.3301 0.4846 0.4143 0.3285 0.3535 0.4429 0.3987 0.0570
C 0.4804 0.4134 0.4932 0.4149 0.3165 0.3535 0.4684 0.4200 0.0616
D 0.4428 0.3836 0.4199 0.4327 0.3510 0.3535 0.5044 0.4126 0.0506

Variations of the results for the different trajectories

For almost all trajectories, the strategy B and A produce the same result, but for one test,
the direction of the gaze is not well directed at the end of motion and a delay is observed with
strategy B, contrary to what is expected. This delay affects the time of detection and also the
time for the motion of the robot (trajectory 12-15).

It can be observed that in all the trials, the method that allowed the fastest detection of the
desired point of contact was also the one that allowed the robot to reach this point as quickly
as possible.

From the point of view of the efficiency of detection of the contact point, strategies A and D
were the most efficient: two times for strategy A and five times for strategy D. There is no clear
correlation between the efficiency of the strategy and the length of the trajectory. However for
short trajectories, the strategy D is the most efficient.

For all trajectories, the distance traveled by the robot is always smaller for strategies A and
B, which was expected as the robot does not move to safe-points. Consequently, in contrary
strategies C and D have higher user distance.

User distance versus time for detection

For the purpose of analyzing, −Q5 has been used so as the goal would be to minimize all
the selected criteria. A comparison of −Q5 and Q2norm shows that strategies C and D belong
to the Pareto front for these two criteria. Strategy D takes the least time to detect a desired
point the user would like to reach and a slightly higher mean distance from the sphere as shown

Experiments and analysis 131

in Figure 5.23. Strategy C has the largest user distance. However, it takes the longest time to
detect a point than all the strategies.

-0.43 -0.425 -0.42 -0.415 -0.41 -0.405 -0.4 -0.395

-Q
5
 (min)

1

1.05

1.1

1.15

1.2

1.25

1.3

Q
2

n
o
rm

 (

m
in

) A
B

C

D

Figure 5.23 – Comparison of time for detection (Q2norm) vs user distance (−Q5) for the four
strategies, all trajectories.

User distance versus robot distance

A comparison of −Q5 and Q4norm as presented in Figure 5.24 shows that strategies A-B and
C belong to the Pareto front for these two criteria. Since strategies A and B don’t use any safe
points they have smallest user distance (max −Q5) and always take the minimal robot distance
to arrive to a desired point (min Q4norm). Strategies C and D use safe points so, have higher user
distance (min −Q5) and robot distance Q4norm . While strategy D uses head gaze as primary
selection, it gives a value of Q5 better than A and B but the worst robot distance.

Figure 5.24 – Comparison of robot distance (Q4norm) vs user distance (−Q5) for the four strate-
gies, all trajectories.

User distance versus time for robot

A comparison of −Q5 and Q3norm as presented in Figure 5.25 shows that strategy C and D
belong to the Pareto front for both criteria. As known Strategy C gives a higher value for safety
(min −Q5) followed by strategy D. However strategy D far outperforms strategy C in terms of
time for the robot.

Time for robot versus time for detection

Visualization of Q3norm vs Q2norm is shown in Figure 5.26. It shows that the faster the
strategy detects the point, faster the robot reaches the point. The best being strategy D. It uses
the head gaze and an added use of safe-points helps it in reaching the desired point faster, as the

132 Prediction of user intention

-0.43 -0.425 -0.42 -0.415 -0.41 -0.405 -0.4 -0.395

-Q
5
 (min)

1.05

1.1

1.15

1.2

Q
3

n
o
rm

 (

m
in

)

A

B
C

D

Figure 5.25 – Comparison of time for robot (Q3norm) vs user distance (−Q5) for the four strate-
gies, all trajectories.

robot travels at higher velocity than in strategies A and B. Strategy A has lots of intermediate
point, but as the hand moves closer to the desired point the robot gradually moves closer. This
is one of the reason why this strategy is the second best. Even thought strategies B and C have
a head gaze, the primary selection is still based on the hand. Unless the hand is closer to the
point the robot does not move to the desired point. Strategy C takes the longest time in both
the axis, because the selection process used in strategy C is based primarily on hand location.
For strategy D it is the user gaze that help in primary selection of points.

1 1.05 1.1 1.15 1.2 1.25 1.3

Q
3norm

 (min)

1

1.05

1.1

1.15

1.2

1.25

1.3

Q
2

n
o
rm

 (

m
in

)

A

B
C

D

Figure 5.26 – Comparison of time for robot (Q3norm) vs time for detection (Q2norm) for the four
strategies, all trajectories.

Robot distance versus time for robot

Visualization of Q4norm vs Q3norm is shown in Figure 5.27 strategies A and D belong to the
Pareto front for these two criteria. In contrary to the assumption that longer robot distance
implies longer time for robot, the results show that strategy D has minimum time for robot but
has longer robot distance. This result achieved is due to combination of fast time for detection
and use of safe-point as intermediate points. Strategy C uses also safe-points, but it alone does
not guarantee a fast response time.

Time for detection versus robot distance

Visualization of Q2norm vs Q4norm is shown in Figure 5.28 strategies A and D belong to the
Pareto front for these two criteria. From Figure 5.28,it can be see that Strategy A and B have
least robot distance, but its detects the goal later than Strategy D. Strategy C is not ideal in
both criteria.

Experiments and analysis 133

1 1.05 1.1 1.15 1.2 1.25 1.3

Q
3norm

 (min)

0

1

2

3

4

Q
4

n
o
rm

 (

m
in

)

A B

C

D

Figure 5.27 – Comparison of robot distance (Q4norm) vs time for robot (Q3norm) for the four
strategies, all trajectories.

Figure 5.28 – Comparison of time for detection (Q2norm) vs robot distance (Q4norm) for the four
strategies, all trajectories.

5.5.5 Discussion

A comparative analysis of data from all the trajectories (in Table. 5.3) shows that, if the
objective is to maximize safety strategy C and D would be better. Both the strategies C and
D ensure safety by selecting safe-points when the hand is far away from the desired point. The
safe-points are located outside the user reach, such that the robot can travel fast and does not
collide with the user. The selection of the safe-points mean that the robot will have to travel a
longer distance to reach the desired point. While for strategies A and B, they select intermediate
points which are inside the car and no safe-points. So since the points are all inside the car, and
the robot does not a travel longer distance but has reduced velocity.

Table 5.3 – Analysis of strategies for all trajectories.

Strategy Time for Detection Time for Robot Robot Dist. User Dist.
St. A + + ++ -
St. B - - ++ -
St. C - - - ++
St. D ++ ++ - +

Strategy D gives second best safety and at the same time minimize the time to detect/reach
a desired point. Therefore it can be seen as the best strategy. The detection time for strategy
D is the smallest because we used the gaze of the user to pre-select the points. This plays a big
role in giving priority to vision information over information from the hand position. Fastest
detection time allows the robot to start moving to the desired point at the earliest time and

134 Prediction of user intention

reach the desired point the fastest.

5.5.6 Analysis on hand threshold

In strategy C, the primary selection is based on user hand unlike in strategy D which uses
the gaze direction. Since the selection in strategy C depends on the values of hand threshold
Th. In this subsections, Strategy C is selected to investigate the effect of each parameter on the
time to detect a point, robot time, user distance and Robot distance. The same 7 trajectories
recorded by same 3 users were used for this analysis.

The effect is analyzed by adjusting the threshold value Th using T1 = 0.10 m, T2 = 0.15 m,
T3 = 0.2 m, T4 = 0.25 m and T5 = 0.3 m.

Table 5.4 – Analysis for various thresholds

Th
Q2norm Q3norm Q4norm Q5

Mean St. Dev Mean St. Dev Mean St. Dev Mean St. Dev
0.1 1.6084 0.4919 0.9796 0.1861 2.1135 1.0912 0.4467 0.0871
0.15 1.4882 0.4075 0.9197 0.2484 2.0835 1.0461 0.4271 0.0381
0.2 1.2461 0.2995 1.2003 0.2214 2.2043 1.0273 0.4200 0.0616
0.25 0.9862 0.3312 1.3204 0.2246 2.2857 0.9892 0.3975 0.2583
0.3 0.7660 0.3865 1.5808 0.2206 2.3175 1.0561 0.3848 0.2378

User distance versus time for detection

A comparison of −Q5 and Q2norm as presented in Figure 5.29 shows that all thresholds from
T1 to T5 belong to the Pareto front for these two criteria. T1 takes the highest time to detect a
desired point the user would like to reach and it gives the best mean distance from the sphere
because the threshold is low so the robot is most of the time in safe points. In case of T5 since
the threshold is large the robot is closer to the user.

-0.47 -0.46 -0.45 -0.44 -0.43 -0.42 -0.41 -0.4 -0.39 -0.38

-Q
5
 (min)

0.6

0.8

1

1.2

1.4

1.6

Q
2

n
o
rm

 (

m
in

)

T1

T2

T3

T4

T5

Figure 5.29 – Comparison of time for detection (Q2norm) vs user distance (−Q5) for 5 thresholds.

User distance versus robot distance

A comparison of −Q5 and Q4norm as presented in Figure 5.30 shows that T1 does not belong
to the Pareto front for these two criteria. During the experiments it was realized that with small
threshold like T1 the robot sometimes fails to stop after it has detected the point. When the

Experiments and analysis 135

user has reached the desired point and interacting with the surface. It was noticed that a small
variation in hand position causes the robot to return to the safe points. This can be seen in
Figure 5.30. T1 despite detecting the point earlier (concluded from Figure 5.29) fails to have the
best robot distance.

-0.46 -0.45 -0.44 -0.43 -0.42 -0.41 -0.4 -0.39 -0.38 -0.37

-Q
5
 (min)

1.8

2

2.2

2.4

2.6

Q
4

n
o
rm

 (

m
in

)

T1 T2

T3
T4 T5

Figure 5.30 – Comparison of robot distance (Q4norm) vs user distance (−Q5) for 5 thresholds.

User distance versus time for robot

A comparison of −Q5 and Q3norm as presented in Figure 5.31 shows that T2, T3, T4 and
T5 belong to the Pareto front for both criteria. As known T2 gives a higher value for safety
(min −Q5) and time for robot but fails to outperform T3 in detection time (concluded from
Figure 5.29).

-0.46 -0.45 -0.44 -0.43 -0.42 -0.41 -0.4 -0.39 -0.38 -0.37

-Q
5
 (min)

0.8

1

1.2

1.4

1.6

Q
3

n
o
rm

 (

m
in

)

T1
T2

T3

T4

T5

Figure 5.31 – Comparison of time for robot (Q3norm) vs user distance (−Q5) for 5 thresholds.

Time for robot versus time for detection

A comparison of Q3norm vs Q2norm as presented in Figure 5.32 shows that T1 does not belong
to the Pareto front for these two criteria. Lower thresholds give a slow response of detection but
fast robot time due to use of safe points. Lower thresholds have fewer intermediate point inside
the car, but as the hand moves closer to the desired point the robot gradually moves closer.
This is one of the reason why lower thresholds are good in robot response time. Even thought
Strategy C has a head gaze, the primary selection is still based on the hand. Unless the hand
is closer to the point the robot does not move to the desired point. If the threshold is big the
robot continues to move inside the low velocity region and not pass through the safe-points.

136 Prediction of user intention

0.8 1 1.2 1.4 1.6

Q
2norm

 (min)

0.8

1

1.2

1.4

1.6

Q
3

n
o
rm

 (

m
in

)

T1
T2

T3

T4

T5

Figure 5.32 – Comparison of time for robot (Q3norm) vs time for detection (Q2norm) for 5 thresh-
olds.

Robot distance versus time for robot

A comparison of of Q4norm vs Q3norm is shown in Figure 5.33. The results are consistent
with the assumption that longer robot distance implies longer time for robot, the results show
that lower thresholds have minimum robot distance and time for robot. The explanation for
such behavior is similar to analysis seen before for Q3norm vs Q2norm . Larger thresholds cause
the detection of points inside the user space and cause the robot to move in low velocities.

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

Q
3norm

 (min)

1.6

1.8

2

2.2

2.4

2.6

Q
4

n
o
rm

 (

m
in

)

T1T2

T3
T4 T5

Figure 5.33 – Comparison of robot distance (Q4norm) vs time for robot (Q3norm) for 5 thresholds.

Robot distance versus time for detection

A comparison of Q2norm vs Q4norm is shown in Figure 5.34. T1 does not belong to the Pareto
front for both criteria. It can be see that T2 and T1 have least robot distance, but its detects
the goal later than T3 and T4.

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

Q
2norm

 (min)

1.6

1.8

2

2.2

2.4

2.6

Q
4

n
o
rm

 (

m
in

)

T1T2

T3
T4T5

Figure 5.34 – Comparison of robot distance (Q4norm) vs time for detection (Q2norm) for 5 thresh-
olds.

Conclusions 137

Overall, there was no significant difference between Th = 0.10 m, and 0.15 m for all the
objectives Q2norm , Q3norm , Q4norm and Q5. For this study, the best value to be selected is
Th = 0.20 m. Its based on several reasons. First, the task needs user to hold/interact with a
surface whose width is 10cm. Secondly, the hand threshold is used to detect the intention of
user to move his/her hand to the next point. A sufficient distance between the hand and the
surface points was necessary to notice that the human had let it go after touching. Lastly, the
tracker is placed on the top of hand, a distance of approximately 4cm from the palm. So the
total distance from the center of the prop to the tracker is about about 15cm.

5.6 Conclusions
Four motion prediction strategies are used to select the areas with which the user intends to

interact and to move the robot as fast as possible while ensuring user safety.
We introduce two speed profiles for the user’s safety. The robot moves at a higher speed

when it is outside the user’s workspace. In situations where there is a large distance between two
points within the workspace, we introduce via points to reduce travel time. The time needed to
go through via points can be less than the time needed to go directly inside the car while being
much safer.

Seven trajectories done by three users were analyzed thank to five criteria. A compromise
must be made between user safety and speed for the robot to reach its target.

138 Prediction of user intention

Conclusions and future work

Synopsis

Force feedback interfaces are robotic systems allowing natural motion interactions with vir-
tual or remote environments. They are employed in several domains such as remote handling,
manufacturing, entertainment, education, medicine and rehabilitation, just to mention the most
popular. In virtual reality applications, the user typically holds a handle that is mechanically
linked to the end-effector of the robot. This link has a non-negligible influence since the presence
of the robot can be felt even in free space, decreasing the realism of the interaction.

Intermittent contact haptic interfaces are a promising technological development aiming
to cope with this issue. These interfaces track and closely follow (without contact) the user
movements in free space and come to his/her contact only when force feedback is required. This
way ICI haptic interfaces aim to provide more realistic interactions with virtual environments.

Their design and objective evaluation are however particularly complex and there are still
challenges to be met.

The focus of this doctoral thesis was on creating a robot control system for haptic-tactile
sensation using such ICI systems. A system that is both safe and immersive for the user. The
research is guided in 2 major directions:

— Improvement of the performances of ICI interfaces while ensuring high user safety and
security.

— Improving the immersive experience of the ICI model by providing improved prediction
and robot trajectory planning.

A literature review about ICIs was presented in Chapter 1. This chapter proposed a definition
of the term Intermittent Contact Interface and its fundamental notions. Later, the history of
haptic device was presented to showcase how the field has evolved over the years. This chapter
also contributed with a classification for haptic devices according to their haptic feedback. Then,
a hardware review was presented where the research works were classified according to the
feedback types. The research works were reviewed according to the type of haptic feedback,
interaction, and application. This chapter concluded by raising the research questions to be
answered in this thesis based on the field’s limitations and research opportunities.

The final and important way forward is to integrate this research with other collaborators.
This research dealt with giving a trajectory planning of the robot which is safe for user and
gives him independence on selection of interactive points. INRIA team had worked on designing
different prop prototypes and rendering immersive interactive haptic displays. CLARTE works
to integrate these contributions and also to develop better immersive VR environment.

The major contributions of this doctoral thesis are summarized as follows.

140 Conclusions and future work

Contributions

1. Improving user safety and security by defining a robot base location.

Chapter 2 presented the choice of a robot base placement to increase the safety when inter-
acting with an ICI systems. The chapter introduced a design dedicated to increasing user safety
based on goal positions (interaction points) to estimate the best robot base location. A set of
tool orientations based on the TCP design were considered, and different robot workspace were
created to explore the different possible base locations for avoiding collisions with the user oc-
cluded in haptic display. Later a preliminary simulation was carried with a group of interaction
points to reflect the safety precautions such as position of robot far from the user, single base
location to reach all the desired intersection points. Then the chapter presented the results of
the evaluation made under the criteria previously proposed. Overall, results from this evaluation
suggest that a single robot base location with a new table design of the robot was possible to
reach all the points of interests in the car, without compromising user safety.

2. Improving user safety by building user model, for collision detection.

Chapter 3 introduces a user model designed in ROS based on the vive trackers. The model is
designed to actively track the user motion for collision avoidance during robot motion planning.
The model tracks both user hands and also his/her torso movement, the accuracy of the model
was also analyzed in this chapter. This technique uses four vive trackers, two on each hands
of the user. These trackers are used to estimate the position and orientation of the user hand
and torso. Key features of the model were portrayed in illustrative scenarios that allowed user
model to track the user for obstacle avoidance in Rviz, ROS.

3. Motion planning

Chapter 4 presented motion planning and velocity control strategies for the robot, considering
collision avoidance based on the user model designed in Chapter 3. This approach uses the idea
of restricting the max robot velocity in different regions based on the possible user location and
interaction points in the VR. This approach was envisioned to optimize the robot trajectory
time to increase the immersion of the user by reducing the wait time for the user to interact
with the robot. This was achieved by introducing via points in the region with higher velocity.
So the robot passes faster in between points to reach the goal.

4. Improving the security and immersion of user by prediction of intention

Chapter 5 studied the design and evaluation of intention prediction techniques for ICIs.
First, a design for interaction techniques was presented along with its main features: input,
movement control, and contact. Later, the chapter presented a set of interaction techniques
conceived from the aforementioned designs. A use-case scenario was created to contextualize
the use of the techniques. Later, the techniques were evaluated in a user study to assess user
experience and their performance in helping users to accomplish the task. Results suggested that
the techniques using the head-gaze from HMD and vive tracker in hand are useful for scenarios
that requires detection of early user intention. The designed techniques could be used in other
application scenarios and contexts where other types of applications might be required.

141

Future work
The presented contributions in this thesis could be further extended as future work by

focusing on key areas.

1. Improve user safety

In the case of addressing user safety presented in Chapter 4, the motion planning can be
improved by considering the motion of the user mannequin for real-time planning scenarios. At
present the strategy plans the trajectory offline and uses the appropriate one based on the user
prediction. The full potential of the user mannequin has not been used in this case, during the
trajectory execution additional features can be added to the planning strategy used to avoid
collision with the user.

The single scalable user model can be used to create various sizes of user models and have
different set so pre-computed trajectories. These trajectories can be accessed based on the
dimension of the user. In the present research a fixed sphere is used to have simple occupancy
of the user workspace. But the user sphere can be adjusted based on the user height/user model
dimensions to have better user safety. By changing the sphere based on the user, the velocity
boundary limits also changes.

Due to the complexity of the system, a complete characterization of real-time dynamic motion
planning based on the user model was not possible and is still an open problem. The present
approach only does a pre-computed (off-line) trajectory planning, a improved planning system
where the trajectories are computed directly and re-planning is possible to have better response
time.

2. Improve robot response

When addressing the response time of the robot, at present we have introduced velocity
limits in different zones (Chapter 5). As mentioned in Chapter 4, the trajectories are computed
offline and stored to be accessed later based on the prediction system. Now to increase the
response time of the robot one way is to introduce more number of via points for the robot
to pass. In present scenario only 23 points are used, 18 for task interaction and 5 safe points
(via-points). By introducing multiple points and using the prediction system from Chapter 5,
a better response can be achieved. As the robot will start its motion earlier (as points will be
detected earlier). A study to analyze the effect of the number of point and relative position or
distance would be an interesting direction to explore.

3. Improve haptic rendering for complex surfaces

The present research has only considered rendering of small flat surfaces. The research can
be extend to have a continues rendering of a surface. Further developments can be made to
render complex planes (not just flat). How to virtually have the sense of infinite surface has
been discussed in [88] using a different kind of prop. But the further challenge will be to plan
the robot and improve the prediction and trajectory planning to achieve the same.

Another development can be made to render the stiffness of the material the user interacts.
The information of different stiffness of the sample materials can be accessed and used to control
the robot force impedance. This would improve the immersion and result in better tactile
feedback.

142 Conclusions and future work

Coda
This thesis introduces a technology that seems to be specific to a specific context, but such

technologies have a huge potential. This technology can also be used in entertainment industry
and improved to augmented reality. Research and development in such technology have a effect
on humanity and I hope my contribution to this has helped in developing towards the betterment
of it.

Personal publications

Journal publications
1. Guda, V. K., Mugisha, S. Chevallereau, C., Zoppi, M., Molfino, R., Chablat, D. (2022).

Motion Strategies for a Cobot in a Context of Intermittent Haptic Interface. Journal of
Mechanisms and Robotics.

2. Mugisha, S., Guda, V. K., Chevallereau, C., Zoppi, M., Molfino, R., Chablat, D. (2022).
Improving Haptic Response for Contextual Human Robot Interaction. Sensors, 22(5),
2040.

Conference publications
1. Guda, V. K., Chablat, D., Chevallereau, C. (2020, July). Safety in a human robot interac-

tive: Application to haptic perception. In International Conference on Human-Computer
Interaction (pp. 562-574). Springer, Cham.

2. Mugisha, S., Zoppi, M., Molfino, R., Guda, V., Chevallereau, C., Chablat, D. (2021,
August). Safe collaboration between human and robot in a context of intermittent haptique
interface. In International Design Engineering Technical Conferences and Computers and
Information in Engineering Conference (Vol. 85451, p. V08BT08A007). American Society
of Mechanical Engineers.

3. Gutierrez, A., Guda, V., Mugisha, S., Chevallereau, C., Chablat, D. (2022, June). Tra-
jectory planning in Dynamics Environment: Application for Haptic Perception in Safe
Human-Robot Interaction. In 24TH International Conference on Human-Computer Inter-
action.

Appendix A

UR-5 kinematics

Introduction
For the remainder of the document, we use the notation ci = cos θi, si = sin θi , and for

angle sums, cij = cos(θi + θj).

Forward Kinematics
We first begin by giving the forward kinematics, describing the position of the end effector

as a function of joint angles. The transformation matrix is defined as:

0T6 (θ1, θ2, θ3, θ4, θ5, θ6) =
[

0R6
0p6

0 1

]
(A.1)

0T6 (θ1, θ2, θ3, θ4, θ5, θ6) =

nx ox ax px

ny oy ay py

nz oz az pz

0 0 0 1

We can split the transformation matrix is given as a chain of transformations, one for each joint:

0T6 (θ1, θ2, θ3, θ4, θ5, θ6) =0 T1 (θ1)1 T2 (θ2)2 T3 (θ3)3 T4 (θ4)4 T5 (θ5)5 T6 (θ6) (A.2)

The kinematic structure of the UR-5 robot in zero position is shown in Figure A.1:
The DH-parameters shown are specified as:
— ai = distance from zi to zi+1 measured along xi

— αi = angle from zi to zi+1 measured about xi

— di = distance from xi−1 to xi measured along zi

— θi = angle from xi−1 to xi measured about zi

For the UR-5, the DH parameters are shown in Table A.1. The DH-parameters can be used to
write the transformations for each link. The general transformation between link i-1 and i is
given by :

i−1Ti =

cos θi − sin θi 0 ai−1

sin θi cos(αi−1) cos θi cos(αi−1) − sin(αi−1) − sin(αi−1)di

sin θi sin(αi−1) cos θi sin(αi−1) cos(αi−1) cos(αi−1)di

0 0 0 1

 (A.3)

Figure A.1 – Coordinate frames for UR5 manipulator. Joints rotate around the z-axis and are
pictured at θi = 0 for 1 ≤ i ≤ 6

i ai−1 αi−1 di θi

1 0 0 d1 θ1
2 0 π/2 0 θ2
3 a2 0 0 θ3
4 a3 0 d4 θ4
5 0 π/2 d5 θ5
6 0 −π/2 d6 θ6

Table A.1 – Modified Denavit-Harteberg parameters (DH-parameters) of a UR5 robot, cor-
responding to the frames in Figure A.1. The parameters θi are variables and the remaining
parameters are constants.

It is straightforward to write the transformation matrix for each link of the UR-5 robot by
inserting the DH-parameters from Table A.1 in general transformation equation . The complete
transformation from base to end-effector can then be derived by multiplication of all 6 transfor-
mation matrices. The result is analytical expressions for all 12 parameters in the transformation
matrix 0T6. The complete analytic equations can be found below:

nx = c6(s1s5 + ((c1c234 − s1s234)c5)/2.0 + ((c1c234 − s1s234)c5)/2.0)−
(
s6((s1c234 + c1s234)

− (s1c234 − c1s234))
)
/2.0

ny = c6(((s1c234 + c1s234)c5)/2.0− c1s5 + ((s1c234 − c1s234)c5)/2.0) + s6
(
(c1c234 − s1s234)/2.0

− (c1c234 − s1s234)/2.0
)

nz = (s234c6 + c234s6)/2.0 + s234c5c6 − (s234c6 − c234s6)/2.0

ox = −(c6((s1c234 + c1s234)− (s1c234 − c1s234)))/2.0− s6
(
s1s5 + ((c1c234 − s1s234)c5)/2.0

+ ((c1c234 + s1s234)c5)/2.0
)

oy = c6((c1c234 − s1s234)/2.0− (c1c234 + s1s234)/2.0)− s6
(
((s1c234 + c1s234)c5)/2.0− c1s5

+ ((s1c234 − c1s234)c5)/2.0
)

oz = (c234c6 + s234s6)/2.0 + (c234c6 − s234s6)/2.0− s234c5s6

ax = c5s1 − ((c1c234 − s1s234)s5)/2.0− ((c1c234 + s1s234)s5)/2.0
ay = −c1c5 − ((s1c234 + c1s234)s5)/2.0 + ((c1s234 − s1c234)s5)/2.0
az = (c234c5 − s234s5)/2.0− (c234c5 + s234s5)/2.0
px = −(d5(s1c234 − c1s234))/2.0 + (d5(s1c234 + c1s234))/2.0 + d4s1 − (d6(c1c234 − s1s234)s5)/2.0

− (d6(c1c234 + s1s234)s5)/2.0 + a2c1c2 + d6c5s1 + a3c1c2c3 − a3c1s2s3

py = −(d5(c1c234 − s1s234))/2.0 + (d5(c1c234 + s1s234))/2.0− d4c1 − (d6(s1c234 + c1s234)s5)/2.0
− (d6(s1c234 − c1s234)s5)/2.0− d6c1c5 + a2c2s1 + a3c2c3s1 − a3s1s2s3

pz = d1 + (d6(c234c5 − s234s5))/2.0 + a3(s2c3 + c2s3) + a2s2 − (d6(c234c5 + s234s5))/2.0− d5c234

Inverse kinematic solution for UR-5, 6-DoF arm
The inverse kinematic (IK) equations calculates the joint angles θ1−6 based on a desired

position and orientation of the final frame, specified as the transformation 0T6.
The analytic inverse kinematics problem is to find the set of joint configurations Q = qi

where qi = (θ1
i,θ2

i,θ3
i,θ4

i,θ5
i,θ6

i) ∈ [0, 2π)6 that satisfies

0T6(θi
1, θ

i
2, θ

i
3, θ

i
4, θ

i
5, θ

i
6) = (0T d

6) =

nx ox ax px

ny oy ay py

nz oz az pz

0 0 0 1

 (A.4)

where 0T6
6 describes the desired position and orientation of the final link.

Figure A.2 – Illustration of the geometry of finding θ1. This is essentially an overhead view of
the robot, looking down on the x-y plane.

Finding θ1

To find θ1, we first determine the location of frame 5 (the wrist frame) in relation to the
base frame; 0p05. As illustrated in Figure A.2, 0p05 can be found by translating backwards
from frame 6 to frame 5 along z6. Remember that both 0T6 and d6 are known. Analyzing the
transformation from frame 1 to frame 5 using equations (1) and (2), we can form the equality[

1T5
]

LHS
=

[
1T5

]
RHS

(A.5)

[(0T1)−1(0T d
6)(5T6)−1]LHS = [(1T2)(2T3)(3T4)(4T5)]RHS (A.6)

We can then see that the y-coordinate of the position of this frame is

[(1p15)y]LHS = (0y1)T (0p05) (A.7)

=
[
−s1 c1 0

] px − d6zx

py − d6zy

pz − d6zz

 (A.8)

= (px − d6zx)(−s1) + (py − d6zy)(c1) (A.9)

[(1p15)y]RHS = −d4 (A.10)
The equation

(px − d6zx)(−s1) + (py − d6zy)(c1) = −d4 (A.11)
is known as a phase-shift equation whose solution can be found as

tanα1 = (0p05)y
(0p05)x (A.12)

cosα2 = d4
R

= d4√
(0p05)2

x + (0p05)2
y

(A.13)

θ1 = α1 + α2 + π/2 (A.14)

= arctan 2((0p05)y, (0p05)x)± cos−1 d4
R

+ π/2 (A.15)

We can see that there are generally 2 solutions for θ1, which correspond to configurations
where the shoulder is "left" or "right". Using the function atan2 is essential for insuring correct
signs and behavior when (0p05)x = 0. By looking at the Figure A.2, it is easy to see that
physically, no configuration is possible which makes

√
(0p05)x

2 + (0p05)y
2 ≤ |d4| ≤ 0. Thus,

both α1 and α2 always exist if an inverse solution exists.

Finding θ5

Given a particular θ1, we can solve for θ5. Using the tranformation from frame 1 to frame
6, we can form the equality

[(0T1)−1(0T d
6)]LHS = [(1T2)(2T3)(3T4)(4T5)(5T6)]RHS (A.16)

We can then see that the y-coordinate of the position of this frame is

[(1p16)y]LHS = (0y1)T (0p06) (A.17)

=
[
−s1 c1 0

] px

py

pz

 (A.18)

= px(−s1) + py(c1) (A.19)

[(1p16)y]RHS = −d4 − c5d6 (A.20)

θ5 = ± cos−1 pxs1 − pyc1 − d4
d6

(A.21)

Again, we find that there are 2 solutions for θ5, which correspond to configurations where the
wrist is "in/down" or out/up". This occurs due to the fact that the joint sum θ234 can allow the
1T5 to achieve orientations where 1y5 is pointing in the same direction, but that 1z5 is pointing
in the opposite direction.

This flip can then be reversed very simply by the 6th joint.

Finding θ6

This joint has a solution so long as the argument of cos−1 has magnitude not greater than
1, or |(1p16)y − d4| ≤ |d6|. To solve for the 6th joint, we look at the 6y1 coordinate axis:

[6y1]LHS =

−xxs1 + xyc1
−yxs1 + yyc1
−zxs1 + zyc1

 (A.22)

Figure A.3 – Illustration of the geometry of finding θ5. This is essentially an overhead view of
the robot, looking down on the x-y plane.

[6y1]RHS =

−c6s5
s6s5
−c5

 (A.23)

As shown in Figure A.4, this equality forms a spherical coordinate expression for the vector
−6y1 where θ6 is the azimuthal angle and θ5 is the polar angle. The x and y coordinates of this
vector form a system which can be easily solved as

θ6 = arctan(−yxs1 + yyc1
s5

,
−xxs1 + xyc1

s5
) (A.24)

The denominators of each argument can be replaced by sign(s5). This solution is undefined
in two circumstances, when both of the numerators are 0 or s5 = 0. Inspection of equations
(15) and (16) shows that these conditions actually imply each other. When s5 = 0, we know
c5 = ±1, which indicates that the joints 2, 3, 4, and 6 are all parallel and the solution is under
determined. When this occurs, a desired θ6 can be supplied to fully determine the system.

Finding θ3

The final 3 joints can be found easily, understanding that they together form a classical
3R planar arm. Since we have the other 3 joints, we solve for the location of the base and
end effector of the 3R arm, and use those equations to solve. The solution has two possible
configurations, where the arm is elbow "up" or "down". No solutions exist when the distance
to the 4th joint exceeds the sum |a2 + a3| or is less than the difference |a2 − a3|. If a2 = a3, a
displacement singularity exists when θ3 = π, making θ2 arbitrary.

Figure A.4 – Overhead view of the kinematics problem, for computing θ6.

We can constrict ourselves to look at 1T4 (frame 4 in relation to frame 1) because 1T0, 4T5
and 5T6 at this point are known. This transformation is illustrated in the x; z-plane of frame 1
in Figure A.5. From the figure it is clear that the length of the translation |1p14xz| is determined
only by θ3, or similarly by α3. The angle α3 can be found by using the law of cosine:

cosα3 = (−a2)2 + (−a3)2 − |1p14xz|2

2(−a2)(−a3) (A.25)

The relationship between cosα3 and cos θ3 is:

cosθ3 = cos(π − α3) = −cos(α3) (A.26)

Combining above 2 equations:

θ3 = ± arccos |
1p14xz|2 − a2

2 − a3
2

2a2a3
(A.27)

Finding θ2

The angle θ2 can be found as α1 − α2. Each of these can be found by inspecting Figure A.5
and using atan2 and sine relations:

α1 = arctan(−1p14z,−1p14x) (A.28)

α2 = arcsin −a3 sinα3
|1p4xz|

(A.29)

We can replace α3 with θ3 by noticing that sinα3 = sin(π − θ3) = sinθ3. Combining the
equations now give:

θ2 = α1 − α2 = arctan(−1p14z,−1p14x)− arcsin
(−a3 sinα3
|1p14xz|

)
(A.30)

Finding θ4

The last remaining angle θ4 is defined as the angle from x3 to x4 measured about z4. It can
thus easily be derived from the last remaining transformation matrix, 3T4, using its first column
3x4:

θ4 = arctan(3x4y,
3 x4x) (A.31)

Figure A.5 – Overhead view of the 3R planar manipulator constituted together by joints 2,3 and
4. Kinematics problem, for computing θ3, θ2 and θ4.

Summary

To sum up, a total of 8 solutions exist in general for the general inverse kinematic problem
of the UR5: 2θ1 × 2θ5 × θ6 × 2θ3 × θ2 × θ4.

Appendix B

Error analysis for user model

Figure B.1 – Error for position in shoulder sensor in right hand (Y-axis in cm).

Figure B.2 – Error for position in shoulder sensor in left hand (Y-axis in cm).

Figure B.3 – Error for position in wrist sensor in right hand (Y-axis in cm).

Figure B.4 – Error for position wrist sensor in left hand (Y-axis in cm).

Figure B.5 – Error between actual and estimated value of right shoulder frame.

Figure B.6 – Error between actual and estimated value of left shoulder frame.

Appendix C

What is MoveIt ?

Introduction

The MoveIt architecture is based on two main nodes, the move_group node, and the plan-
ning_scene (Figure C.1). The move_group takes care of obtaining the parameters, the setup,
and the individual components of the robot model being used, so it can provide to the user ROS
services and actions for the users to use on the robot. The move_group node can be divided
into three parts (Figure C.2):

1. The user interface: This takes care of handling the inputs given by the user in order to
perform actions on the robot, this can be done by:
— GUI through MoveIt RVIz plugin.
— APIs for C++ or python.
Based on the actions given, the move_group node is able to solve the robot kinematics
and is able to plan a trajectory that takes into account the defined scene, obstacles, and
constraints of the system.

2. The ROS Param Server: Which obtains the robot description through URDF, SRDF and
configuration files. Obtaining specifications such as joint limits, velocity limits, or other
constraints for the system.

3. The Robot Interface: This provides information obtained from the robot sensors (2D or
3D) or the robot joint states provided by the controllers.

The second element which is the planning_scene uses the planning scene monitor to handle
the scene in which the robot will be included. This is what will constitute the obstacles or
elements the robot has to interact with. Providing information about where they are located,
and any updates that happen in the robot’s surroundings. It uses as well the robot interface
data to make the connection between the data being processed and the objects defined in the
scene.

Motion Planning

MoveIt works with motion planners through a plugin interface. This allows MoveIt to com-
municate with and use different motion planners from multiple libraries, making MoveIt easily
extensible. The interface to the motion planners is through a ROS Action or service (offered
by the move_group node). The default motion planners for move_group are configured using

Figure C.1 – MoveIt system architecture.

Figure C.2 – Move group architecture.

OMPL [126] and the MoveIt interface to OMPL by the MoveIt Setup Assistant. Other planners
that are available by default are the Pilz industrial motion planner and CHOMP.

Within the planners available in the OMPL library there are:
1. PRM methods:

— PRM [69]
— PRM* [68]
— LazyPRM [12]
— LazyPRM* [12] [68]

2. RRT methods:
— RRT [80]
— RRT* [68]
— TRRT [63]
— BiTRRT [32]
— LBTRRT [115]
— RRTConnect [78]

3. Expansive Spacial Trees (EST) methods:
— EST [60]
— BiEST [60]

Collision detection

Collision checking in MoveIt is configured inside a Planning Scene using the CollisionWorld
object. Fortunately, MoveIt is set up so that users never really have to worry about how

collision checking is happening. Collision checking in MoveIt is mainly carried out using the
Flexible Collision Library (FCL) [39] package - MoveIt’s primary collision checking library.

MoveIt supports collision checking for different types of objects including:
— Meshes
— Primitive shapes (e.g. boxes, cylinders, cones, spheres, and planes)
— Octomap: The Octomap object can be directly used for collision checking (normally built

from 3D sensor’s data)
Allowed Collision Matrix (ACM): Given that collision, checking is a very expensive operation

often accounting for close to 90% of the computational expense during motion planning. The
Allowed Collision Matrix encodes a binary value corresponding to the need to check for collision
between pairs of bodies (which could be on the robot or in the world). If the value corresponding
to two bodies is set to 1 in the ACM, this specifies that a collision check between the two bodies
is not needed. This would happen if, e.g., the two bodies are always so far away that they would
never collide with each other.

Kinematics

MoveIt uses a plugin infrastructure, especially targeted toward allowing users to write their
own inverse kinematics algorithms. Forward kinematics and finding Jacobians are integrated
within the RobotState class itself. The default inverse kinematics plugin for MoveIt is configured
using the KDL [70] numerical Jacobian-based solver. This plugin is automatically configured by
the MoveIt Setup Assistant.

Planning Scene

For the environment and planning scene definition (Figure C.3), MoveIt counts with instances
that allow the manipulation and monitoring of the scene to keep it up-to-date. These instances
are:

— PlanningSceneInterface: Is responsible for adding and removing objects in the scene.
— PlanningSceneMonitor: Takes care of keeping track of the planning_scene to keep it

updated.
The last one of these instances is absolutely necessary to perform collision checking, as we need
to ensure that the scene which is being processed is the latest one available.

ROS-Industrial

ROS-Industrial is an open-source project that extends the advanced capabilities of ROS
software to industrial relevant hardware and applications. For this project, we used the ROS-
Industrial-Universal-Robots [89] meta-package, which provides and facilitates the main configu-
ration files for the usage of the Universal Robots co-bots within the ROS environment, providing
the different descriptions of the robot, configuration files such as joint limits, UR kinematics,
etc.

This package also facilitates the usage of the robot within MoveIt, providing the setup for
its usage in simulation or in real-world implementations.

Figure C.3 – Planning scene architecture.

Bibliography

[1] 3D Systems (2018),Touch haptic device. Feb. 2022. url: https://www.3dsystems.com/
haptics-devices/touch..

[2] Iina Aaltonen, Timo Salmi, and Ilari Marstio. “Refining levels of collaboration to
support the design and evaluation of human-robot interaction in the manufacturing in-
dustry”. In: Procedia CIRP 72 (2018), pp. 93–98.

[3] A. Abbadi and V. Pernosil. “Collided Path Replanning in Dynamic Environments Us-
ingRRT and Cell Decomposition Algorithms”. In: International Workshop on Modelling
and Simulation for Autonomous Systems (2015).

[4] Rajesh Aggarwal and Ara Darzi. “From scalpel to simulator: a surgical journey”. In:
Surgery 145.1 (2009), pp. 1–4.

[5] Stanford Artificial Intelligence Laboratory et al. Robotic Operating System. Version ROS
Melodic Morenia. May 23, 2018. url: https://www.ros.org.

[6] KN An, LJ Askew, and EY Chao. “Biomechanics and functional assessment of upper
extremities”. In: Trends in ergonomics/human factors III. Vol. 1986. Elsevier Science
Publishers North-Holland. 1986, pp. 573–580.

[7] Bruno Araujo et al. “Snake Charmer: Physically Enabling Virtual Objects”. In: Proceed-
ings of the TEI’16: Tenth International Conference on Tangible, Embedded, and Embodied
Interaction. ACM. 2016, pp. 218–226.

[8] Jon Louis Bentley. “Multidimensional Binary Search Trees Used for Associative Search-
ing”. In: Commun. ACM 18.9 (Sept. 1975), pp. 509–517. issn: 0001-0782. doi: 10.1145/
361002.361007. url: https://doi.org/10.1145/361002.361007.

[9] Massimo Bergamasco. “Haptic interfaces: the study of force and tactile feedback sys-
tems”. In: Proceedings 4th IEEE International Workshop on Robot and Human Commu-
nication. IEEE. 1995, pp. 15–20.

[10] Tiziano Bernard et al. “Haptic feedback astronaut suit for mitigating extra-vehicular
activity spatial disorientation”. In: AIAA SPACE and Astronautics Forum and Exposi-
tion. 2017, p. 5113.

[11] S James Biggs and Mandayam A Srinivasan. “Haptic interfaces”. In: Handbook of
virtual environments (2002), pp. 93–116.

[12] R. Bohlin and L.E. Kavraki. “Path Planning Using Lazy PRM”. In: IEEE International
Conference on Robotics and Automation (2000), pp. 521–528. doi: 10.1109/ROBOT.2000.
844107.

https://www.3dsystems.com/haptics-devices/touch.
https://www.3dsystems.com/haptics-devices/touch.
https://www.ros.org
https://doi.org/10.1145/361002.361007
https://doi.org/10.1145/361002.361007
https://doi.org/10.1145/361002.361007
https://doi.org/10.1109/ROBOT.2000.844107
https://doi.org/10.1109/ROBOT.2000.844107

[13] Aude Bolopion and Stéphane Régnier. “A review of haptic feedback teleoperation sys-
tems for micromanipulation and microassembly”. In: IEEE Transactions on automation
science and engineering 10.3 (2013), pp. 496–502.

[14] Diego Borro et al. “A large haptic device for aircraft engine maintainability”. In: IEEE
Computer Graphics and Applications 24.6 (2004), pp. 70–74.

[15] Stuart A Bowyer, Brian L Davies, and Ferdinando Rodriguez y Baena. “Active con-
straints/virtual fixtures: A survey”. In: IEEE Transactions on Robotics 30.1 (2013),
pp. 138–157.

[16] Thurston L Brooks. “Telerobotic response requirements”. In: 1990 IEEE international
conference on systems, man, and cybernetics conference proceedings. IEEE. 1990, pp. 113–
120.

[17] Frederick P Brooks Jr et al. “Project GROPEHaptic displays for scientific visualiza-
tion”. In: ACM SIGGraph computer graphics 24.4 (1990), pp. 177–185.

[18] Grigore Burdea. “The role of haptics in physical rehabilitation”. In: Haptic Rendering
(2008), pp. 517–529.

[19] Grigore Burdea and Philippe Coiffet. Virtual reality technology. John Wiley & Sons,
2003.

[20] Grigore C Burdea. Force and touch feedback for virtual reality. John Wiley & Sons, Inc.,
1996.

[21] Gianni Campion. The Synthesis of Three Dimensional Haptic Textures: Geometry, Con-
trol, and Psychophysics. Springer Science & Business Media, 2011.

[22] Anthony Chabrier et al. “Design and experimental evaluation of an infrared instrumen-
tation for haptic interfaces”. In: 2017 IEEE International Instrumentation and Measure-
ment Technology Conference (I2MTC). IEEE. 2017, pp. 1–6.

[23] Alan Chalmers, David Howard, and Christopher Moir. “Real virtuality: A step change
from virtual reality”. In: Proceedings of the 25th Spring Conference on Computer Graph-
ics. 2009, pp. 9–16.

[24] Adrian David Cheok and Kasun Karunanayaka. Virtual taste and smell technologies
for multisensory internet and virtual reality. Springer, 2018.

[25] Andrea Cherubini et al. “Collaborative manufacturing with physical human–robot in-
teraction”. In: Robotics and Computer-Integrated Manufacturing 40 (2016), pp. 1–13.

[26] Michael Cohen and Elizabeth M. Wenzel. “The Design of Multidimensional Sound
Interfaces”. In: Virtual Environments and Advanced Interface Design. USA: Oxford Uni-
versity Press, Inc., 1995, pp. 291–346. isbn: 0195075552.

[27] D. Coleman et al. “Reducing the Barrier to Entry of Complex Robotic Software: a
MoveIt! Case Study”. In: Journal of Software Engineering for Robotics 5(1) (2014), pp. 3–
16. url: https://moveit.ros.org/.

[28] C.I. Conolly, J.B. Burns, and R. Weiss. “Path Planning Using Laplaces Equation.”
In: IEEE International Conference on Robotics and Automation (1990).

[29] Damien Couroussé. Mechanical impedance. 2007.
[30] CyberGlove Systems. Jan. 2022. url: http://www.cyberglovesystems.com/cybertouch.

https://moveit.ros.org/
http://www.cyberglovesystems.com/cybertouch

[31] Desktop haptic interface. Feb. 2022. url: http://www.moog.com/products/haptics-
robotics/..

[32] D. Devaurs, T. Simeon, and J. Cortes. “Enhancing the Transition-based RRT to Deal
with Complex Cost Spaces”. In: Proceedings - IEEE International Conference on Robotics
and Automation (ICRA) (2013), pp. 4120–4125. doi: 10.1109/ICRA.2013.6631158.

[33] E. Dijkstra. “A Note on Two Problems in Connexion with Graphs Numerische Math-
ematik”. In: Journal of Computer and System Sciences - JCSS (1959).

[34] Adam Drewnowski. “Taste preferences and food intake”. In: Annual review of nutrition
17.1 (1997), pp. 237–253.

[35] Mark Wm Dubin. How the brain works. John Wiley & Sons, 2013.
[36] Michael Eisenstein. “Taste: More than meets the mouth”. In: Nature 468.7327 (2010),

S18–S19.
[37] Abdulmotaleb El Saddik. Haptics rendering and applications. BoD–Books on Demand,

2012.
[38] Abdulmotaleb El Saddik. “The Potential of Haptics Technologies”. In: IEEE Instrumen-

tation Measurement Magazine 10.1 (2007), pp. 10–17. doi: 10.1109/MIM.2007.339540.
[39] FCL flexible collision library. June 2019. url: https://github.com/flexible-collision-

library/fcl.
[40] FeelReal. Jan. 2022. url: https://feelreal.com.
[41] C. Feichtenhofer, A. Pinz, and A. Zisserman. “Convolutional Two-Stream Network

Fusion for Video Action Recognition”. In: 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). June 2016, pp. 1933–1941. doi: 10.1109/CVPR.2016.213.

[42] Alessandro Filippeschi et al. “Encountered-type haptic interface for virtual interaction
with real objects based on implicit surface haptic rendering for remote palpation”. In:
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
IEEE. 2015, pp. 5904–5909.

[43] Force Dimension (2018). sigma.7. Feb. 2022. url: http://www.forcedimension.com/
products/sigma-7/overview..

[44] Jerome H. Friedman, Jon Louis Bentley, and Raphael Ari Finkel. “An Algorithm
for Finding Best Matches in Logarithmic Expected Time”. In: ACM Trans. Math. Softw.
3.3 (Sept. 1977), pp. 209–226. issn: 0098-3500. doi: 10.1145/355744.355745. url:
https://doi.org/10.1145/355744.355745.

[45] Jonathan D. Gammell, Siddhartha S. Srinivasa, and Timothy D. Barfoot. “Informed
RRT*: Optimal sampling-based path planning focused via direct sampling of an admis-
sible ellipsoidal heuristic”. In: 2014 IEEE/RSJ International Conference on Intelligent
Robots and Systems (2014), pp. 2997–3004. doi: 10.1109/IROS.2014.6942976.

[46] A. Gasparetto et al. “Path Planning and Trajectory Planning Algorithms: A General
Overview”. In: Motion and Operation Planning of Robotic Systems 29 (2015).

[47] G. Ghinea, F. Andres, and S. Gulliver. Multiple Sensorial Media Advances and Ap-
plications: New Developments in MulSeMedia. Premier Reference Source. Information
Science Reference, 2012. isbn: 9781609608217. url: https://books.google.fr/books?
id=PjyOngEACAAJ.

http://www.moog.com/products/haptics-robotics/.
http://www.moog.com/products/haptics-robotics/.
https://doi.org/10.1109/ICRA.2013.6631158
https://doi.org/10.1109/MIM.2007.339540
https://github.com/flexible-collision-library/fcl
https://github.com/flexible-collision-library/fcl
https://feelreal.com
https://doi.org/10.1109/CVPR.2016.213
http://www.forcedimension.com/products/sigma-7/overview.
http://www.forcedimension.com/products/sigma-7/overview.
https://doi.org/10.1145/355744.355745
https://doi.org/10.1145/355744.355745
https://doi.org/10.1109/IROS.2014.6942976
https://books.google.fr/books?id=PjyOngEACAAJ
https://books.google.fr/books?id=PjyOngEACAAJ

[48] Franck Gonzalez, Wael Bachta, and Florian Gosselin. “Smooth transition-based
control of encounter-type haptic devices”. In: 2015 IEEE International Conference on
Robotics and Automation (ICRA). IEEE. 2015, pp. 291–297.

[49] Florian Gosselin et al. “Haptic systems for training sensorimotor skills: a use case in
surgery”. In: Robotics and Autonomous Systems 61.4 (2013), pp. 380–389.

[50] V.K. Guda, D. Chablat, and Chevallereau C. “Safety in a Human Robot Interactive:
Application to Haptic Perception”. In: International Conference on Human-Computer
Interaction HCII 2000. 2020.

[51] Blake Hannaford and Allison M Okamura. “Haptics”. In: Springer Handbook of Robotics.
Springer, 2016, pp. 1063–1084.

[52] HaptX. Jan. 2022. url: https://haptx.com.
[53] P.E. Hart, N.J. Nilson, and Raphael B. “A Formal Basis for the Heuristic Determina-

tion of Minimum Cost Paths.” In: IEEE Transactions on Systems Science and Cybernetics
4(2) (1968), pp. 100–107.

[54] Paul Havig, John McIntire, and Eric Geiselman. “Virtual reality in a cave: limita-
tions and the need for HMDs?” In: Head-and helmet-mounted displays XVI: Design and
applications. Vol. 8041. SPIE. 2011, pp. 58–63.

[55] Mary Hayhoe et al. “Visual short-term memory and motor planning.” eng. In: Progress
in brain research 140 (2002), pp. 349–363. issn: 0079-6123 (Print). doi: 10.1016/S0079-
6123(02)40062-3.

[56] Vincent Hayward and Karon E MacLean. “Do it yourself haptics: part I”. In: IEEE
Robotics & Automation Magazine 14.4 (2007), pp. 88–104.

[57] Mort Heilig. “Enter the Experimental Revolution”. In: Proceeding of Cyberarts Confer-
ence. 1992, pp. 292–305.

[58] Evert Helms, Rolf Dieter Schraft, and M Hagele. “rob@ work: Robot assistant in
industrial environments”. In: Proceedings. 11th IEEE International Workshop on Robot
and Human Interactive Communication. IEEE. 2002, pp. 399–404.

[59] Koichi Hirota and Michitaka Hirose. “Development of surface display”. In: Proceedings
of IEEE Virtual Reality Annual International Symposium. IEEE. 1993, pp. 256–262.

[60] David. Hsu, Jean-Claude. Latombe, and Rajeev. Motwani. “Path planning in expan-
sive configuration spaces”. In: International Journal of Computational Geometry & Ap-
plications 9.4-5 (1999), pp. 495–512. doi: 10.1142/S0218195999000285.

[61] Hsin-Yu Huang et al. “Haptic-Go-Round: A Surrounding Platform for Encounter-Type
Haptics in Virtual Reality Experiences”. In: Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems. CHI ’20. New York, NY, USA: Association for
Computing Machinery, 2020, pp. 1–10. isbn: 9781450367080. doi: 10.1145/3313831.
3376476. url: https://doi.org/10.1145/3313831.3376476.

[62] TS ISO. “15066: Robots and robotic devices-Collaborative robots”. In: Geneva: ISO
copyright office (2016).

[63] L. Jaillet, J. Cortes, and T. Simeon. “Sampling-Based Path Planning on Configuration-
Space Costmaps”. In: IEEE Transactions on Robotics 26.4 (Aug. 2010). doi: 10.1109/
TRO.2010.2049527.

https://haptx.com
https://doi.org/10.1016/S0079-6123(02)40062-3
https://doi.org/10.1016/S0079-6123(02)40062-3
https://doi.org/10.1142/S0218195999000285
https://doi.org/10.1145/3313831.3376476
https://doi.org/10.1145/3313831.3376476
https://doi.org/10.1145/3313831.3376476
https://doi.org/10.1109/TRO.2010.2049527
https://doi.org/10.1109/TRO.2010.2049527

[64] Jason Jerald. The VR book: Human-centered design for virtual reality. Morgan & Clay-
pool, 2015.

[65] K. Jin-Oh and P.K. Khosla. “Real-Time Obstacle Avoidance Using Harmonic Potential
Functions”. In: IEEE Transactions on Robotics and Automation 8(3) (1992), pp. 338–349.

[66] Roland S. Johansson et al. “Eye–Hand Coordination in Object Manipulation”. In:
Journal of Neuroscience 21.17 (2001), pp. 6917–6932. doi: 10.1523/jneurosci.21-
17- 06917.2001. url: https://app.dimensions.ai/details/publication/pub.
1074868523andhttp://www.jneurosci.org/content/21/17/6917.full.pdf.

[67] M. Jordan and A. Perez. “Optimal Bidirectional Rapidly-Exploring Random Trees”.
In: MIT-CSAIL-TR-2013-021 (2013).

[68] S. Karaman and E. Frazzoli. “Sampling-based algorithms for optimal motion plan-
ning”. In: The International Journal of Robotics Research 30.7 (2011), pp. 846–894. doi:
10.1177/0278364911406761.

[69] L.E. Kavraki et al. “Probabilistic roadmaps for path planning in high-dimensional con-
figuration spaces.” In: IEEE Transactions on Robotics and Automation 12(4) (1996),
pp. 566–80.

[70] KDL kinematics and dynamics library (kdl). June 2019. url: http://wiki.ros.org/kdl.
[71] Wisama Khalil and Etienne Dombre. Modeling identification and control of robots.

CRC Press, 2002.
[72] O. Khatib. “Real-time obstacle avoidance for manipulators and mobile robots”. In: IEEE

International Conference on Robotics and Automation (1985).
[73] Yaesol Kim, Hyun Jung Kim, and Young J Kim. “Encountered-type haptic display for

large VR environment using per-plane reachability maps”. In: Computer Animation and
Virtual Worlds 29.3-4 (2018), e1814.

[74] Yaesol Kim et al. “Synthesizing the roughness of textured surfaces for an encountered-
type haptic display using spatiotemporal encoding”. In: IEEE Transactions on Haptics
14.1 (2020), pp. 32–43.

[75] B. Kolb and I.Q. Whishaw. An Introduction to Brain and Behavior, Third Edition.
Worth Publishers, 2005. isbn: 9781429281478.

[76] Jörg Krüger, Terje K Lien, and Alexander Verl. “Cooperation of human and machines
in assembly lines”. In: CIRP annals 58.2 (2009), pp. 628–646.

[77] Ernst Kruijff, Dieter Schmalstieg, and Steffi Beckhaus. “Using Neuromuscular Elec-
trical Stimulation for Pseudo-Haptic Feedback”. In: Proceedings of the ACM Symposium
on Virtual Reality Software and Technology. VRST ’06. New York, NY, USA: Association
for Computing Machinery, 2006, pp. 316–319. isbn: 1595933212. doi: 10.1145/1180495.
1180558. url: https://doi.org/10.1145/1180495.1180558.

[78] James. Kuffner and Steven.M. Lavalle. “RRT-connect: An efficient approach to single-
query path planning”. In: Proceedings of the 2000 IEEE International Conference on
Robotics & Automation (Apr. 2000), pp. 995–1001. doi: 10.1109/ROBOT.2000.844730.

[79] G. Santhosh Kumar and G. Sony Bhavani. “A new dimension of immersiveness into
virtual reality through haptic technology”. In: 2017 IEEE International Conference on
Power, Control, Signals and Instrumentation Engineering (ICPCSI). 2017, pp. 1651–
1655. doi: 10.1109/ICPCSI.2017.8391994.

https://doi.org/10.1523/jneurosci.21-17-06917.2001
https://doi.org/10.1523/jneurosci.21-17-06917.2001
https://app.dimensions.ai/details/publication/pub.1074868523 and http://www.jneurosci.org/content/21/17/6917.full.pdf
https://app.dimensions.ai/details/publication/pub.1074868523 and http://www.jneurosci.org/content/21/17/6917.full.pdf
https://doi.org/10.1177/0278364911406761
http://wiki.ros.org/kdl
https://doi.org/10.1145/1180495.1180558
https://doi.org/10.1145/1180495.1180558
https://doi.org/10.1145/1180495.1180558
https://doi.org/10.1109/ROBOT.2000.844730
https://doi.org/10.1109/ICPCSI.2017.8391994

[80] S. LaValle and J.J. Kuffner. “Randomized Kinodynamic Planning”. In: The Inter-
national Journal of Robotics Research (2001).

[81] Susan J Lederman and Roberta Klatzky. “Haptic Exploration and Object”. In: Vision
and action: The control of grasping 2 (1990), p. 98.

[82] Philip Long et al. “An industrial security system for human-robot coexistence”. In:
Industrial Robot: An International Journal 45.2 (2018), pp. 220–226.

[83] T. Lozano-Perez. “Spatial planning: a configuration space approach”. In: IEEE Trans-
actions on Computers (1983).

[84] Anderson Maciel et al. “Multi-Finger Haptic Rendering of Deformable Objects, In.
Tenth Eurographics Symposium on Virtual Environments”. In: Eurographics. CONF.
2004, pp. 105–111.

[85] A. Makhal and A. K. Goins. “Reuleaux: Robot Base Placement by Reachability Anal-
ysis”. In: ArXiv e-prints (Oct. 2017). arXiv: 1710.01328 [cs.RO].

[86] Dan Maynes-Aminzade. “Edible bits: Seamless interfaces between people, data and
food”. In: Conference on Human Factors in Computing Systems (CHI’05)-Extended Ab-
stracts. Citeseer. 2005, pp. 2207–2210.

[87] William A McNeely. “Robotic graphics: a new approach to force feedback for virtual
reality”. In: Proceedings of IEEE Virtual Reality Annual International Symposium. IEEE.
1993, pp. 336–341.

[88] Víctor Rodrigo Mercado, Maud Marchal, and Anatole Lécuyer. “ENTROPiA: To-
wards Infinite Surface Haptic Displays in Virtual Reality Using Encountered-Type Ro-
tating Props”. In: IEEE Transactions on Visualization and Computer Graphics (2019).

[89] F. Messmer et al. ROS-Indutrial-Universal-Robots. https://github.com/ros-industrial/
universal_robot. 2022.

[90] Daniel Mestre et al. “Immersion et présence”. In: Le traité de la réalité virtuelle. Paris:
Ecole des Mines de Paris (2006), pp. 309–38.

[91] Daniel R Mestre. “CAVE versus head-mounted displays: ongoing thoughts”. In: Elec-
tronic Imaging 2017.3 (2017), pp. 31–35.

[92] Land Michael, Mennie Neil, and Rusted Jennifer. “The Roles of Vision and Eye
Movements in the Control of Activities of Daily Living”. In: Perception 28.11 (1999).
PMID: 10755142, pp. 1311–1328. doi: 10.1068/p2935. url: https://doi.org/10.
1068/p2935.

[93] Matjaž Mihelj, Domen Novak, and Samo Beguš. “Virtual reality technology and ap-
plications”. In: (2014).

[94] A. MONTAGU. “Touching, The human significance of the skin”. In: Perennial Library
(1972), pp. 98–99. url: https://ci.nii.ac.jp/naid/10007744975/en/.

[95] MPB Technologies Inc. (2018b). How do you Choose a Haptic Device? Feb. 2022. url:
http://www.mpb-technologies.ca/mpbt/mpbt_web_2009/_en/resources/articles/
Howdoyouchooseahapticdevice.pdf.

[96] Stanley Mugisha et al. “Safe collaboration between human and robot in a context of
intermittent haptique interface”. In: ASME International Design Engineering Technical
Conferences & Computers and Information in Engineering Conference. 2021.

https://arxiv.org/abs/1710.01328
https://github.com/ros-industrial/universal_robot
https://github.com/ros-industrial/universal_robot
https://doi.org/10.1068/p2935
https://doi.org/10.1068/p2935
https://doi.org/10.1068/p2935
https://ci.nii.ac.jp/naid/10007744975/en/
http://www.mpb-technologies.ca/mpbt/mpbt_web_2009/_en/ resources/articles/How do you choose a haptic device.pdf
http://www.mpb-technologies.ca/mpbt/mpbt_web_2009/_en/ resources/articles/How do you choose a haptic device.pdf

[97] K. Naderi and J. Rajamaki. “RT-RRT*: a real-time path planning algorithm based on
RRT*”. In: Conference: the 8th ACM SIGGRAPH Conference (2015).

[98] Allison M Okamura. “Haptic feedback in robot-assisted minimally invasive surgery”. In:
Current opinion in urology 19.1 (2009), p. 102.

[99] Esben H Ostergaard. “Lightweight robot for everybody [industrial activities]”. In:
IEEE robotics & automation magazine 19.4 (2012), pp. 17–18.

[100] Ezgi Özcan. “Analysis of Immersive Virtual Reality through Senses”. In: (2020).
[101] Richard Palluel-Germain et al. “A visuo-haptic device-telemaque-increases kinder-

garten children’s handwriting acquisition”. In: Second Joint EuroHaptics Conference
and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems
(WHC’07). IEEE. 2007, pp. 72–77.

[102] Jeff Pelz, Mary Hayhoe, and Russ Loeber. “The coordination of eye, head, and hand
movements in a natural task”. In: Experimental Brain Research 139.3 (2001), pp. 266–
277. issn: 1432-1106. doi: 10.1007/s002210100745. url: https://doi.org/10.1007/
s002210100745.

[103] Jérôme Perret and Emmanuel Vander Poorten. “Touching virtual reality: a review of
haptic gloves”. In: ACTUATOR 2018; 16th International Conference on New Actuators.
VDE. 2018, pp. 1–5.

[104] Javier Posselt et al. “Toward virtual touch: investigating encounter-type haptics for
perceived quality assessment in the automotive industry”. In: Proceedings of the 14th
annual EuroVR conference. Laval, France, 2017, pp. 11–13.

[105] Pinyo Puangmali et al. “State-of-the-art in force and tactile sensing for minimally in-
vasive surgery”. In: IEEE Sensors Journal 8.4 (2008), pp. 371–381.

[106] Eleanora P Westebring-van der Putten et al. “Haptics in minimally invasive surgery–a
review”. In: Minimally Invasive Therapy & Allied Technologies 17.1 (2008), pp. 3–16.

[107] Quanser Inc. (2018). High definition haptic device. Feb. 2022. url: https : / / www .
quanser.com/products/hd2-high-definition-haptic-device/..

[108] Nimesha Ranasinghe and Ellen Yi-Luen Do. “Digital lollipop: Studying electrical stim-
ulation on the human tongue to simulate taste sensations”. In: ACM Transactions on
Multimedia Computing, Communications, and Applications (TOMM) 13.1 (2016), pp. 1–
22.

[109] Miriam Reiner. “The role of haptics in immersive telecommunication environments”. In:
IEEE Transactions on Circuits and Systems for Video Technology 14.3 (2004), pp. 392–
401.

[110] D.E. Rimon E. Koditschek. “Exact robot navigation using artificial potential functions.”
In: IEEE Transactions on Robotics and Automation 8(5) (1992), pp. 501–518.

[111] Gabriel Robles-De-La-Torre. “The importance of the sense of touch in virtual and
real environments”. In: Ieee Multimedia 13.3 (2006), pp. 24–30.

[112] John W. Ruffner. “Multimedia and Virtual Reality: Designing Multisensory User In-
terfaces by Alistair Sutcliffe”. In: Ergonomics in Design 13.1 (2005), pp. 29–29. doi: 10.
1177/106480460501300108. eprint: https://doi.org/10.1177/106480460501300108.
url: https://doi.org/10.1177/106480460501300108.

https://doi.org/10.1007/s002210100745
https://doi.org/10.1007/s002210100745
https://doi.org/10.1007/s002210100745
https://www.quanser.com/products/hd2-high-definition-haptic-device/.
https://www.quanser.com/products/hd2-high-definition-haptic-device/.
https://doi.org/10.1177/106480460501300108
https://doi.org/10.1177/106480460501300108
https://doi.org/10.1177/106480460501300108
https://doi.org/10.1177/106480460501300108

[113] Mikel Sagardia et al. “VR-OOS: The DLR’s virtual reality simulator for telerobotic
on-orbit servicing with haptic feedback”. In: 2015 IEEE Aerospace Conference. IEEE.
2015, pp. 1–17.

[114] Steeven Villa Salazar et al. “Altering the Stiffness, Friction, and Shape Perception of
Tangible Objects in Virtual Reality Using Wearable Haptics”. In: IEEE Transactions on
Haptics (ToH) (2020).

[115] Oren Salzman and Dan. Halperin. “Asymptotically near-optimal RRT for fast, high-
quality motion planning”. In: IEEE Transactions on Robotics 32.3 (Apr. 2016), pp. 473–
483.

[116] Ganesh Sankaranarayanan et al. “Role of haptics in teaching structural molecular
biology”. In: 11th Symposium on Haptic Interfaces for Virtual Environment and Teleop-
erator Systems, 2003. HAPTICS 2003. Proceedings. IEEE. 2003, pp. 363–366.

[117] M. Seda. “Roadmap Methods vs. Cell Decomposition in Robot Motion Planning”. In:
Proceedings of the 6th WSEAS International Conference on Signal Processing (2007).

[118] JEE Sharpe. “Technical and human operational requirements for skill transfer in teleop-
erations”. In: Proceedings of the International Symposium on Teleoperation and Control.
1988, pp. 175–187.

[119] J. Sheng et al. “An Improved Artificial Potential Field Algorithm for Virtual Human
Path Planning”. In: Edutainment 2010, Lecture Notes in Computer Science (LNCS) 6249
(2010), pp. 592–601.

[120] William R Sherman and Alan B Craig. Understanding virtual reality: Interface, appli-
cation, and design. Morgan Kaufmann, 2018.

[121] Karun B Shimoga. “A survey of perceptual feedback issues in dexterous telemanipula-
tion. II. Finger touch feedback”. In: Proceedings of IEEE Virtual Reality Annual Inter-
national Symposium. IEEE. 1993, pp. 271–279.

[122] N. Sleumer and N. Tschichold-gurman. “Exact Cell Decomposition of Arrangements
used for Path Planning in Robotics”. In: Technical Report (2000).

[123] Jeroen B. J. Smeets, Mary M. Hayhoe, and Dana H. Ballard. “Goal-directed arm
movements change eye-head coordination”. In: Experimental Brain Research 109.3 (1996),
pp. 434–440. issn: 1432-1106. doi: 10.1007/BF00229627. url: https://doi.org/10.
1007/BF00229627.

[124] Alexander Stamenkovic. “Do postural constraints affect eye, head, and arm coordina-
tion?” In: Journal of neurophysiology 120.4 (2018), pp. 2066–2082. doi: 10.1152/jn.
00200.2018.

[125] Standard International Organization for Standardization. “Robots and robotic devices
- safety requirements for industrial robots - part I: Robots, DIN EN ISO 10218-1”. en.
In: (2021).

[126] Ioan A. Şucan, Mark Moll, and Lydia E. Kavraki. “The Open Motion Planning
Library”. In: IEEE Robotics & Automation Magazine 19.4 (Dec. 2012), pp. 72–82. doi:
10.1109/MRA.2012.2205651. url: https://ompl.kavrakilab.org.

[127] Susumu Tachi. “A construction method of virtual haptics space”. In: Proc. of the ICAT’94
(4th International Conference on Artificial Reality and Tele-Existence). 1994, pp. 131–
138.

https://doi.org/10.1007/BF00229627
https://doi.org/10.1007/BF00229627
https://doi.org/10.1007/BF00229627
https://doi.org/10.1152/jn.00200.2018
https://doi.org/10.1152/jn.00200.2018
https://doi.org/10.1109/MRA.2012.2205651
https://ompl.kavrakilab.org

[128] Russell M Taylor. “Haptics for scientific visualization”. In: ACM SIGGRAPH 2005
Courses. 2005, 174–es.

[129] Marija Tomić et al. “Human to humanoid motion conversion for dual-arm manipulation
tasks”. In: Robotica 36.8 (2018), pp. 1167–1187.

[130] Universal Robot. https://www.universal- robots.com/fr/. Accessed: 2022-03-23.
2022. url: https://www.universal-robots.com.

[131] UR modern driver. 2022. url: https://github.com/ros-industrial/ur_modern_
driver.

[132] ÅB Vallbo et al. “Microstimulation of single tactile afferents from the human hand:
Sensory attributes related to unit type and properties of receptive fields”. In: Brain 107.3
(1984), pp. 727–749.

[133] Vaqso. Jan. 2022. url: https://vaqso.com.
[134] Virtuose 6d. Feb. 2022. url: https://www.haption.com/fr/products-fr/virtuose-

6d-fr.html..
[135] R.A. Volpe. “Real-time obstacle avoidance for manipulators and mobile robots”. PhD

thesis. 1990.
[136] R.A. Volpe and P. Khosla. “Manipulator control with superquadric artificial poten-

tial functions: theory and experiments”. In: IEEE Transactions on Systems, Man, and
Cybernetics 20(6) (1990), pp. 1423–1436.

[137] Xi Vincent Wang, A Seira, and Lihui Wang. “Classification, personalised safety frame-
work and strategy for human-robot collaboration”. In: Proceedings of the International
Conference on Computers and Industrial Engineering., Auckland, New Zealand. 2018.

[138] Richard M. Warren. Auditory Perception: An Analysis and Synthesis. 3rd ed. Cambridge
University Press, 2008. doi: 10.1017/CBO9780511754777.

[139] Pingjun Xia. “Haptics for product design and manufacturing simulation”. In: IEEE trans-
actions on haptics 9.3 (2016), pp. 358–375.

[140] Y. Yokokohji, R.L. Hollis, and T. Kanade. “What you can see is what you can
feel-development of a visual/haptic interface to virtual environment”. In: Proceedings of
the IEEE 1996 Virtual Reality Annual International Symposium. IEEE. 1996, pp. 46–53.
doi: 10.1109/VRAIS.1996.490509.

[141] Yasuyoshi Yokokohji, Ralph L Hollis, and Takeo Kanade. “WYSIWYF display: A
visual/haptic interface to virtual environment”. In: Presence 8.4 (1999), pp. 412–434.

[142] Yasuyoshi Yokokohji, Junji Kinoshita, and Tsuneo Yoshikawa. “Path planning for
encountered-type haptic devices that render multiple objects in 3d space”. In: Proceedings
IEEE Virtual Reality 2001. IEEE. 2001, pp. 271–278.

[143] Yasuyoshi Yokokohji et al. “Design and path planning of an encountered-type haptic
display for multiple fingertip contacts based on the observation of human grasping behav-
ior”. In: IEEE International Conference on Robotics and Automation, 2004. Proceedings.
ICRA’04. 2004. Vol. 2. IEEE. 2004, pp. 1986–1991.

[144] Tsuneo Yoshikawa and Akihiro Nagura. “A touch and force display system for haptic
interface”. In: Proceedings of international conference on robotics and automation. Vol. 4.
IEEE. 1997, pp. 3018–3024.

https://www.universal-robots.com/fr/
https://www.universal-robots.com
https://github.com/ros-industrial/ur_modern_driver
https://github.com/ros-industrial/ur_modern_driver
https://vaqso.com
https://www.haption.com/fr/products-fr/virtuose-6d-fr.html.
https://www.haption.com/fr/products-fr/virtuose-6d-fr.html.
https://doi.org/10.1017/CBO9780511754777
https://doi.org/10.1109/VRAIS.1996.490509

Titre : Contributions à l'utilisation de cobots comme interfaces haptiques à contact intermittent en
réalité virtuelle.

Mots clés : sécurité, interface à contact intermittent, prédiction de l'intention humaine, planification
de trajectoires, collaboration homme-robot, réalité virtuelle.

Résumé : La réalité virtuelle (RV) est de plus
en plus utilisée dans des simulations
industrielles mais la possibilité de toucher les
objets manque rapidement par exemple pour
juger de la qualité perçue dans la conception
de véhicule automobile. Les interfaces
haptiques actuels ne permettent de restituer
aisément la notion de texture, l’approche
envisagée est donc une interface à contact
intermittent. Un cobot vient positionner une
surface mobile à l’endroit du contact avec un
objet virtuel pour permettre un contact
physique avec la main de l’opérateur.
Les contributions de cette thèse portent sur
plusieurs aspects : le placement du robot, la
modélisation de l’opérateur, la gestion du
déplacement et de la vitesse du robot et la
détection des intentions de l’opérateur.
Le placement du robot est choisi pour
permettre d’atteindre les différentes zones de
travail et pour assurer une sécurité passive en

rendant impossible au robot de heurter la tête
et le buste de l’opérateur en position normale
de travail, i.e. assis dans un fauteuil. Un
modèle de l'utilisateur, incluant un torse et des
bras, est conçu et testé pour suivre les
mouvements de l'utilisateur en temps réel.
L’interaction est possible sur un ensemble de
pose prédéfinies que l’utilisateur enchaine
comme il le désire. Différentes stratégies sont
proposées pour prédire les intentions de
l'utilisateur. Les aspects clés de la prédiction
sont basés sur la direction du regard et la
position de la main de l'utilisateur. Une étude
expérimentale ainsi que l'analyse qui en
découle montrent l’apport de la prise en
compte de la direction du regard. L’intérêt
d’introduire des points dit « de sécurité » pour
éloigner le robot de l’opérateur et permettre
des déplacements rapides du robot est mis en
évidence.

Title: Contributions to utilize a Cobot as intermittent contact haptic interfaces in virtual reality.

Keywords: safety, intermittent contact interface, human intention prediction, trajectory planning,
human robot collaboration, virtual reality.

Abstract: Virtual reality (VR) is evolving and
being used in industrial simulations but the
possibility to touch objects is missing, for
example to judge the perceived quality in the
design of a car. The current haptic interfaces
do not allow to easily restore the notion of
texture, therefore an approach is considered
“intermittent contact interface” to achieve this.
A cobot positions a mobile surface at the point
of contact with a virtual object to allow physical
contact with the operator's hand.
The contributions of this thesis concern several
aspects: the placement of the robot, the
modeling of the operator, the management of
the displacement and the speed of the robot
and the detection of the operator's intentions.
The placement of the robot is chosen to allow
reaching the different working areas and to

 ensure passive safety by making it impossible
for the robot to hit the head and chest of the
operator in a normal working position, i.e.
sitting in a chair. A model of the user, including
a torso and arms, is designed and tested to
follow the user's movements in real time
Interaction is possible on a set of predefined
poses that the user chains together as desired.
Different strategies are proposed to predict the
user's intentions. The key aspects of the
prediction are based on the gaze direction and
the hand position of the user. An experimental
study as well as the resulting analysis show the
contribution of taking into account the gaze
direction. The interest of introducing "safety"
points to move the robot away from the
operator and allow fast robot movements is
highlighted.

	couverture_SPI-ECN_5_19_2022
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Glossary
	Nomenclature
	Introduction
	Description of Context
	Applications of ICIs
	Challenges

	State of the art and theoreticalbackground
	Introduction
	What is virtual reality ?
	Human senses
	Sight
	Hearing
	Smell
	Taste
	Touch

	Haptic technologies for VR
	Human haptic perception
	Tactile feedback interfaces
	Force feedback interfaces
	Haptic bodysuits
	Analysis of haptic technologies in VR

	Existing haptic interfaces
	Haptic senses
	Haptic feedback and sense of touch
	Examples of force feedback devices
	Commercially available interfaces
	Limitations of existing haptic interfaces

	Intermittent-contact interface
	Encountered-type haptic interfaces
	Close-tracking-type haptic interfaces

	Equipment
	Research proposal

	UR-5 configurations, workspace andplacement
	Introduction
	Safety standards
	Safety in human robot collaboration
	Methodology to achieve the safety standards in HRC

	Robot configurations
	Inverse kinematics

	Generate workspace
	Regions of interest
	Workspace for given orientation

	Base placement of the robot
	Requirement
	Methodology
	Results

	Obstacle avoidance and dimensions of base table
	Conclusions

	Design of a user mannequin model forROS
	Introduction
	Using kinect to know the environment

	Selection of human model
	Description of the motion capture system
	Construction of human model
	Calculation of the configuration of the arm
	Calculation of movement in torso

	Analysis of user model
	Accuracy of arms
	Accuracy of torso
	Scalability of the model

	Conclusions

	System architecture and robot trajectory planning
	Introduction
	Proposed architecture and data flow
	MoveIt

	Implementing laboratory setup based on proposed architecture
	Requirement
	Methodology for calibration of real and virtual environments

	Computation and trajectory planning
	Various path planning algorithms
	Comparison of various path planning algorithms
	Selection of planning algorithm
	Description of Unity’s virtual environment
	Different mobility schemes

	Conclusion

	Prediction of user intention
	Introduction
	Human intention prediction
	Detection of target
	Proposed model
	Scene information

	Safe and fast motion
	Cobot motion
	Velocity zones
	Velocity profiles
	Safe-points
	Comparison of motion with or without safe-points

	Proposed strategies
	Strategy A: Hand position
	Strategy B: Hand position and gaze direction
	Strategy C: Addition of safe points
	Strategy D: Head gaze and safe points

	Experiments and analysis
	Criterion
	Experimental setup
	Analysis of one experiment
	Analysis of all recorded experiments
	Discussion
	Analysis on hand threshold

	Conclusions

	Conclusions and future work
	Personal publications
	Appendix A: UR-5 kinematics
	Appendix B: Error analysis for user model
	Appendix C: What is MoveIt ?
	References
	Resume

