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Abstract xi

Geometry and new rational W-algebras
Abstract

Affine W-algebras form a rich one-parameter family of vertex algebras associated with nilpotent elements of
simple Lie algebras. These complex algebraic structures appear in several areas of physic and mathematics.
Because of their recent construction, numerous aspects of the theory of W-algebras remain unknown.
In this thesis, we study W-algebras associated with nilpotent elements of Lie algebras of small ranks. We
prove the rationality of a new family of W-algebras, describe their set of simple modules and study other
geometrical aspects. We describe new associated varieties of vertex algebras. The geometry of these
objects often reflects some important algebraic properties of the vertex algebras. For some particular
values of the parameter, called collapsing levels, we also get new remarkable isomorphisms of W-algebras.

Keywords: vertex algebras, W-algebras, rationality, representation theory, Lie algebras, nilpotent orbits

Géométrie et nouvelles W-algèbres rationnelles
Résumé

Les W-algèbres affines forment une famille riche d’algèbres vertex à un paramètre associées à un élément
nilpotent d’une algèbre de Lie simple. Ce sont des structures algébriques complexes qui apparaissent
dans plusieurs domaines de la physique et des mathématiques. Du fait de leur construction récente, de
nombreux aspects de la théorie des W-algèbres restent méconnus.
Dans cette thèse, nous étudions des W-algèbres associées à des éléments nilpotents d’algèbres de Lie de
petits rangs. Nous démontrons la rationalité d’une nouvelle famille de W-algèbres, décrivons l’ensemble des
modules simples sur ces dernières et étudions d’autres aspects géométriques. Nous décrivons de nouvelles
variétés associées à des algèbres vertex. La géométrie de ces objets reflète souvent des propriétés algébriques
importantes des algèbres vertex. Pour certaines valeurs particulières du paramètre, appelées niveaux
d’effondrement, nous obtenons également de nouveaux isomorphismes remarquables de W-algèbres.

Mots clés : algèbres vertex, W-algèbres, rationalité, théorie des représentations, algèbres de Lie, orbites
nilpotentes

Laboratoire Paul Painlevé, UMR CNRS 8524
Université de Lille – Cité Scientifique - Bâtiment M2 – F-59655 VILLENEUVE d’ASCQ –
France
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Introduction

Let g be a finite dimensional simple Lie algebra, f a nilpotent element of g, and k ∈ C a complex
number. The affine W-algebra Wk(g, f) associated with (g, f) is a certain vertex algebra obtained
from the quantized Drinfeld-Sokolov reduction of the universal affine vertex algebra V k(g) (see
Sect. 1.2). The W-algebras can be regarded as affinizations of finite W-algebras introduced by
Premet [89]. They can also be considered as generalizations of infinite-dimensional Lie algebras
such as Kac-Moody or Virasoro algebras.

First W-algebras appeared in the 90s in the works of Zamolodchikov and Fateev-Lukyanov on
the two-dimensional conformal field theory in physic. The construction of W-algebras that we
know today was introduced by Feigin and Frenkel [58] for f a principal nilpotent element. Then
the definition was extended for general nilpotent elements by Kac, Roan and Wakimoto [73]. The
theory of W-algebras is also related with integrable systems [72], the two-dimensional conformal
field theory, the geometric Langlands program [23, 60, 65], and the 4d/2d duality [20, 34, 35, 92]
in physics.

Since the area is relatively recent, there are a lot of unknown aspects and open ambitious
questions to investigate. In this thesis, we study the algebraic structure, geometry and representa-
tion theory of certain W-algebras associated with simple Lie algebras of small ranks. From these
examples, we observe phenomena that we suspect to be general. Thus, we expect that certain
techniques we develop can be extended to study larger families of W-algebras. For instance, we
wish to extend the reasoning presented in Chap. 4 to study simple modules of Wk(sp2n, fmin) at
admissible levels when n > 2.

Affine W-algebras can be described using their strong generators and the relations between
them. These relations are called Operator Product Expansions (OPEs). In general, any vertex
algebra admits such a description. In the context of W-algebras, even if the construction of the
generators is theoretically well known only a few examples were explicitly computed [41, 76]. Our
first contribution is the computation of OPEs of all W-algebras associated with Lie algebras of
rank two (Appx. A, B and C)1.

The explicit descriptions we obtain are the starting point to prove precise statements. For
special values of the parameter k, called collapsing levels (see Chap. 2), we deduce remarkable
isomorphisms of simple vertex algebras (Tables 2.2 and 2.3). Collapsing levels have interesting
applications to the representation theory of affine vertex algebras [10, 95]. They have been fully
classified when f belongs to the minimal nilpotent orbit of g [8, 9]. For other nilpotent elements,
[22] provides many new collapsing levels when k is admissible (see Sect. 1.2.1) and conjectures it
is an exhaustive list. The study of OPEs allows achieving the classification of collapsing levels
of W-algebras associated with Lie algebras of rank 2. We thank Prof. Dražen Adamović whose
remarks on OPEs of W(sp4, fsubreg) initiate this axis of research.

The nicest (conformal) vertex algebras are those which are both rational and lisse (see
1Due to limited computational resources, OPEs of W-algebras associated with principal nilpotent elements of

sp4 and G2 remain incomplete for the moment.
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2 Introduction

Sect. 1.1.3 and 1.1.4). The rationality means the complete reducibility of Z>0-graded modules
while the lisse property – we say also the C2-cofiniteness – is detectable from a geometric
object related to vertex algebra called associated variety. Both imply a finiteness condition on
dimensions of graded components of positive energy representations of the vertex algebra. It
has been conjectured by Zhu [97] that rational vertex algebras are also lisse. Lisse and rational
vertex algebras generate rational conformal field theories. The rich class of W-algebras gives
rise to many new examples of rational vertex algebras. Nonetheless, it is in general extremely
difficult to study the rationality of the simple quotient Wk(g, f) of Wk(g, f). The rationality has
been conjectured by Kac-Wakimoto [78] and Arakawa [17] for a large family of W-algebras called
exceptional (see Sect. 1.3.2). Particular cases of this conjecture were previously established by
Arakawa [16, 18], Creutzig-Linshaw [41], and Arakawa-van Ekeren [21]. We prove the rationality
of the exceptional W-algebra Wk(sp4, fsubreg) associated with fsubreg, a subregular nilpotent
element of sp4 (type C2 = B2) (Theorem 3.1). These W-algebras can be viewed as the “easiest”
exceptional W-algebras not covered by the previous works. It is an analogue for the type C
of the Bershadsky-Polyakov vertex algebra studied by Arakawa [16]. However, we cannot use
directly method of [16] because the reduction function is not exact in this case. To encounter the
difficulty, we exploit certain techniques of [21].

The increasing number of new results in the last few years shows that the classification of
rationalW-algebras is a major topical problem. After we proved the previous result, Creutzig and
Linshaw [43] gave a proof of the rationality of a larger class of lisse W-algebras – which covers a
part of our cases. More recently McRae [86] gave a general conceptual proof of the conjecture
of Kac-Wakimoto and Arakawa asserting that all exceptional W-algebras are rational. These
articles are important advances for the classification of rational W-algebras. Nevertheless, the
problem is far from being completely solved because exceptional W-algebras do not provide an
exhaustive list of rational ones. Indeed, there exist examples of rational but non-exceptional
W-algebras. For instance, [80] provides examples related to the exceptional series of Deligne.
Certain W-algebras associated with principal or subregular nilpotent elements at non-exceptional
levels are also rational [43, 79].

As a by-product of our proof, we obtain an explicit description of the simple Wk(sp4, fsubreg)-
modules when k is admissible (Proposition 3.2.5). One uses this description to compute the
characters of simple modules (Sect. 3.5). They allow to deduce the fusion rules of the simple
W-algebras. Moreover, we show that the component group of the nilpotent orbit Osubreg acts
non-trivially on the finite set of the simple Wk(sp4, fsubreg)-modules (Theorem 3.4.3). As far as
we know, it is the first example of rational W-algebras whose corresponding component group
satisfies this property.

When f = fmin is a minimal nilpotent element of sp4, the rationality of exceptional
Wk(sp4, fmin) has been proved by Creutzig-Linshaw [43]. Nonetheless, we give an explicit
description of the simple Wk(sp4, fmin)-modules (Proposition 4.2.3). In fact, we show that
Wk(sp4, fmin) is isomorphic to the reduction of the simple affine vertex algebra H0

fmin
(Lk(sp4))

(Theorem 4.1). Thus, we prove new cases of the conjecture of Kac-Roan-Wakimoto [73, 78]
holding that the vertex algebra H0

f (Lk(g)) is simple provided it is non-zero. This conjecture has
been verified in many cases [12, 14].

The geometry of associated varieties reflects some algebraic properties of the vertex algebras
[26, 30]. However, their description is an open question in most cases. The associated variety
XV k(g) of the affine vertex algebra V k(g) is g∗. Therefore, that of its simple quotient Lk(g) is
a subvariety of g∗, conical and invariant under the action of the adjoint group of g. When k
is a positive integer, XLk(g) = 0 [53], and when it is an admissible level, it corresponds to the
closure of a certain nilpotent orbit of g depending on k [17]. In [28], Arakawa and Moreau provide
additional examples of this form coming from the Deligne exceptional series. They also provide



Introduction 3

examples of associated varieties corresponding to Dixmier sheet closures [29]. This proves that
associated varieties of simple affine vertex algebras are not necessarily contained in the nilpotent
cone. More examples of this type are computed in [24] but the associated variety of Lk(g) remains
unknown in general. According to [25], it is equal to g if and only if V k(g) is simple. All the
previous examples correspond to closures of a Jordan class of a nilpotent or a semisimple element
of g. Based on the work of Adamović, Perše and Vukorepa [7], we compute the associated variety
of L−5/2(sl4). It is also the closure of a Jordan class, but associated with an element of sl4 which
is neither nilpotent nor semisimple (Theorem 5.1).

In addition, when f is an element in the nilpotent orbit corresponding to the partition (2, 2)
of sl4, [6] and [45] independently proved that the W-algebra W−5/2(sl4, f) is isomorphic to
the coset Com(M(1), S(2)) of the Heisenberg vertex algebra M(1) in a βγ-system of rank two
(see Sect. 5.2). This description allows us to compute the associated variety of the W-algebra
W−5/2(sl4, f) (Theorem (i)).

Cosets, as well as orbifolds, are among of the most common ways to construct new vertex
algebras from old ones. Cosets, also called commutants, were introduced by Frenkel and Zhu [63],
while orbifolds are originated from physics [49, 50]. Both appear in the Gaoitto-Rapčák triality
conjectures [64] recently proved by Creutzig and Linshaw [43, 44]. Let U be a vertex subalgebra
of a vertex algebra V and G a reductive subgroup of V -automorphisms. It is expected that the
coset Com(U, V ) and the orbifold V G inherit certain good properties from those of V , such as
rationality or C2-cofiniteness. One can wonder, when G is reductive and V is strongly finitely
generated, if V G is also strongly finitely generated, or equivalently, if its Zhu’s C2-algebra RV G
is a finitely generated Poisson algebra (see Sect. 1.1.4). This problem is known as the vertex
algebra Hibert’s problem because of its similarities with the Hilbert’s theorem stating that if
G is a reductive group and V a finite G-module then the ring C[V ]G is finitely generated. It
has a positive solution in many cases including all affine vertex algebras and W-algebras [42,
44]. Considering this question, Lian and Linshaw [84] compare the Zhu’s C2-algebra RV G and
the invariants of the Zhu’s C2-algebra (RV )G. They are not isomorphic in general, but in many
cases one recovers an isomorphism by taking their reduced rings. So, if V and V G are strongly
generated, the C2-cofiniteness of V would imply that of V G.

When U is an affine vertex algebra, the coset Com(U, V ) is identifiable to a certain orbifold
of V [42]. An analogue of the vertex algebra Hilbert’s problem can be formulate in this context.
Creutzig and al. developed the theory for cosets of a Heisenberg vertex algebra inside a larger vertex
algebra in [45], but the general case remains largely unknown. If we consider a vertex subalgebra
U of a vertex algebra V , the inclusion induces a Poisson algebra morphism RU → RV . If this
morphism is injective, RU can be viewed as a subalgebra of RV and one defines Com(RU , RV ) as
the commutant of the image of RU in RV (see Sect. 5.2). Then one can compare it to the Zhu’s
C2-algebra RCom(U,V ). Again, both Poisson algebras are not isomorphic in general. One wonders
which kind of relations hold at level of their reduced rings. Whereas cosets take a important place
in the theory of vertex algebras and W-algebra, their Zhu’s C2-algebras has not been investigate
a lot to our knowledge. We thank Prof. Andrew Linshaw for indicating considerations formulated
for vertex algebras orbifolds [84, Sect. 13] which are similar for cosets.

In Sect. 5.2, we consider the coset of the Heisenberg vertex algebra of rank 1 embedded in
a βγ-system of rank 2. We check that, even if their spectra are not equal, they still are closely
related. More precisely, the spectrum of the commutant of Zhu’s C2-algebras is the normalization
of the associated scheme of W−5/2(sl4, f) (Theorem (iii)). Conjecturally, the associated variety
of Wk(g, f) is equal to the intersection of the Slodowy slice Sf with XLk(g). Thus, using the
description of the associated variety of L−5/2(sl4), we conjecture an algebraic realization of the
associated variety XW−5/2(sl4,f) (Conjecture 5.3.2).

Several questions naturally raise from our work (see Chap. 6). We implemented an algorithm in
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the computer algebra system GAP in order to compute conformal weights ofW-algebras (Appx. D).
This algorithm also provides representatives of nilpotent orbits in Lie algebras, and it is helpful
to construct strong generators of W-algebras. We expect to use it to detect similarities in – a
priori – different W-algebras. In particular, we would like to explore possible relations between
W-algebras with same conformal weights and central charge. Our examples brings us to think
that there exist certain “dualities” analogous to the Feigin-Frenkel duality [58]. Let Lg be the dual
Langlands of g. The Feigin-Frenkel duality holds isomorphisms between principal W-algebras
Wk(g, f) and W`(Lg, f) for some particular levels k and `. Recently, dualities of this type have
been obtained for subregular W-algebras in type A and B and principal W-superalgebras [40, 46].

The thesis is structured as follows. In Chap. 1, we recall basic definitions and properties of
vertex algebras and W-algebras. We introduce the associated objects which play a major role in
the general theory, such as Zhu’s algebra, Zhu’s C2-algebra and associated variety. The Chap. 2 is
dedicated to the algebraic structure of W-algebras. We study the OPEs of W-algebras associated
with Lie algebras of rank two, and we classify their collapsing levels. Main results of Chap. 3 are
published in [56]. We prove the rationality of exceptional W-algebras Wk(sp4, fsubreg) associated
with a subregular nilpotent element of sp4. In addition, we provide a complete classification of
their simple modules. We present a similar classification for exceptionalW-algebrasWk(sp4, fmin)
associated with a minimal nilpotent element of sp4 in Chap. 4. In Chap. 5, we compute the
associated varieties of L−5/2(sl4) and W−5/2(sl4, f), where f is a nilpotent element corresponding
to the partition (2, 2). We also look at the commutant of the Zhu’s C2-algebras Com(RM(1), RS(2))
and we compare its spectrum to the associated spectrum of the coset Com(M(1), S(2)). Finally,
in Chap. 6, we introduce some problems related to the present work. We hope to study them in
the future.



Chapter1
Vertex algebras

Vertex algebras have been introduced in 1986 by Borcherds [37] who was motivated by the
construction of the Mooshine module due to Frenkel-Lepowsky-Meurman. In the last decades,
they have generated an intense interest because of their numerous applications. They play a
crucial role in the representation theory of infinite-dimensional Lie algebras. Moreover, they are
deeply connected with several areas of physics including integrable systems and two-dimensional
conformal field theory. They have applications in algebraic geometry with the study of moduli
spaces. Recent developments also relate vertex algebras to quantum groups through Kazhdan-
Lusztig correspondence. We refer to [31, 61, 71] as more complete references about the theory of
vertex algebras.

In this chapter, we first recall basic definitions and general properties of vertex algebras
(Sect. 1.1). We also introduce important tools to study vertex algebras and their modules, such as
Zhu’s algebra, Zhu’s C2-algebra and associated variety. A family of vertex algebras, called affine
vertex algebras, is significant in the study of W-algebras. We review them briefly in Sect. 1.2.
Finally in Sect. 1.3, we give an overview of the construction of W-algebras.

1.1 Vertex algebras operators
1.1.1 Definition of vertex algebras and OPEs
Let V be a complex vector space. We denote by (End V )[[z, z−1]] the set of all Laurent series in
the variable z with coefficients in End V . For any series a(z) ∈ (End V )[[z, z−1]], we write

a(z) :=
∑
n∈Z

a(n)z
−n−1

such that a(n) = Resz=0 a(z)zn.
A series a(z) ∈ (End V )[[z, z−1]] is called a field on V if for all b ∈ V , a(z)b :=

∑
n∈Z a(n)bz

−n−1

belongs to V ((z)), that is a(n)b = 0 for n large enough. Denote F(V ) the set of fields on V .

Definition 1.1.1. A vertex algebra is a vector space V equipped with a distinguished vector
|0〉 ∈ V and two linear maps: a translation operator T : V → V and a vertex operator

V → (End V )[[z, z−1]], a 7→ Y (a, z) := a(z) =
∑
n∈Z

a(n)z
−n−1,

5
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satisfying the following axioms:

• for all a ∈ V , a(z) is a field on V ,

• (vacuum axiom) |0〉(z) = idV and, for all a ∈ V , a(z)|0〉 ∈ a+ zV [[z]],

• (translation axiom) T |0〉 = 0 and, for all a ∈ V , [T, a(z)] = ∂za(z) and (Ta)(z) = ∂za(z),

• (locality axiom) for all a, b ∈ V , (z−w)N [a(z), b(w)] = 0 for a sufficiently large N depending
on a and b.

Remark 1.1.2. The translation axiom implies that for all a ∈ V and n ∈ Z,

[T, a(n)] = −na(n−1) and (Ta)(n) = −na(n−1).

In particular, we directly deduce that Ta = a(−2)|0〉.

Remark 1.1.3. The vacuum axiom defines a correspondence between the spaces of states V and
the fields F(V ). From the field a(z), we can recover a = limz→0 a(z)|0〉 = a(−1)|0〉. Moreover,
since a(z)|0〉 ∈ V [[z]], a(n)|0〉 = 0 for n > 0. It implies that the vertex operator Y (·, z) is injective.

Because the product of two fields on a vertex algebra V does not make sense in general, we
define the normally ordered product of two fields a(z), b(z) ∈ F(V ) by

: a(z)b(z) :def= a(z)+b(z) + b(z)a(z)−,

where a(z)+ :=
∑
n<0 a(n)z

−n−1 and a(z)− :=
∑
n>0 a(n)z

−n−1. This product is not associative,
and we define the normally ordered product of multiple fields by induction:

: a1(z)a2(z) . . . an(z) : = : a1(z) : a2(z) . . . an(z) :: .

The vertex algebra V is strongly generated [73] by a family of fields {ai(z)}i∈I if any field of V
is a linear combination of normally ordered products of the fields {ai(z)}i∈I and their derivatives.
This means that, as a vector space, V is spanned by

ai1(−n1) . . . a
is
(−ns)|0〉 (1.1)

with s > 0, nr > 1, and ir ∈ I. If V is freely strongly generated by the fields {ai(z)}i∈I ,
the set of monomials (1.1) where the sequence of pairs (i1, n1), . . . , (ir, nr) is decreasing in the
lexicographical order is a basis of V called a Poincaré-Birkhoff-Witt (PBW) basis. Then, the
structure of V is completely determined by the relations among the fields ai(z), i ∈ I, or,
equivalently, the Lie brackets in End(V ) among the ai(n):

Proposition 1.1.4 ([71]). Consider two fields a(z), b(z) ∈ F(V ). The following assertions are
equivalent:

(i) it exists some N ∈ Z>0 such that (z − w)N [a(z), b(w)] = 0,

(ii) there exist c0(w), . . . cN−1(w) ∈ F(V ) such that

[a(z), b(w)] =
N−1∑
n=0

cn(w) 1
n!∂

n
wδ(z − w),

where δ(z − w) refers to the formal delta-function
∑
n∈Z w

nz−n−1 ∈ C[[z±1, w±1]],
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(iii) there exist c0(w), . . . cN−1(w) ∈ F(V ) such that

a(z)b(w) =
N−1∑
n=0

cn(w)τz,w
(

1
(z − w)n+1

)
+ : a(z)b(w) :

and

b(w)a(z) =
N−1∑
n=0

cn(w)τw,z
(

1
(z − w)n+1

)
+ : a(z)b(w) :,

where τz,w
(

1
z−w

)
=
∑
n>0 w

nz−n−1 and τw,z
(

1
z−w

)
= −

∑
n>0 z

nw−n−1.

By abuse of notation, we write

a(z)b(w) ∼
N−1∑
j=0

cj(w)
(z − w)j+1 (1.2)

for the relations of Proposition 1.1.4 (iii). The relation (1.2) is called the operator product
expansion (OPE) of a(z) and b(w). It is equivalent to the data, for all m,n ∈ Z, of the Lie
brackets

[a(m), b(n)] =
N−1∑
j=0

(
m

j

)
(cj)(m+n−j),

where for j > 0, (
m

j

)
= m(m− 1) · · · (m− j + 1)

j(j − 1) · · · 1 .

One naturally defines a morphism between two vertex algebras (V, |0〉, T, Y )→ (V ′, |0〉′, T ′, Y ′)
to be a linear map φ : V → V ′ mapping |0〉 to |0〉′ such that, for any a, b ∈ V ,

φ(Ta) = T ′φ(a) and φ(Y (a, z)b) = Y ′(φ(a), z)φ(b).

The previous construction can easily be extended to a superspace V = V0 ⊕ V1, and gives rise
to the notion of vertex superalgebra.

1.1.2 Conformal vertex algebras
Virasoro vertex algebras

Let Vir = C((t))∂t ⊕ CC be the Virasoro Lie algebra with the commutation relations

[Ln, Lm] = (n−m)Ln+m + n3 − n
12 δn+m,0C and [C,Vir] = 0,

where Ln = −tn+1∂t for n ∈ Z. Given any c ∈ C, let

Virc = U(Vir)⊗U(C[[t]]∂t⊕CC) Cc,

where Cc is the one-dimensional representation of C[[t]]∂t ⊕ CC on which C[[t]]∂t acts trivially
and C acts as the multiplication by c. The space Virc admits a PBW basis of the form

L−n1 . . . L−nm |0〉,
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where |0〉 is the image of 1⊗ 1 in Virc and n1 > . . . > nm > 2.
Let T = L−1 and L(z) := (L−2|0〉)(z) =

∑
n∈Z Lnz

−n−2. These data define a unique structure
of vertex algebra on Virc which is called the Virasoro vertex algebra with central charge c. The
OPE of the generating field L(z) with itself is given by

L(z)L(w) ∼ c/2
(z − w)4 + 2L(w)

(z − w)2 + ∂L(w)
(z − w) .

Conformal structure of vertex algebras

A vertex algebra V is called conformal if there exists a vector ω ∈ V , called a conformal vector,
such that ω(z) =

∑
n∈Z Lnz

−n−2 satisfies the following conditions

(a) [Lm, Ln] = (m− n)Lm+n + m3−m
12 δm+n,0cV , where cV is some constant called the central

charge of V ,

(b) L0 acts semisimply on V ,

(c) T = L−1 is the translation operator on V .

For a conformal vertex algebra V , we set V∆ = {a ∈ V | L0a = ∆a} so that

V =
⊕
∆∈C

V∆.

For a ∈ V∆, ∆ is called the conformal weight of a. We denote it by ∆a := ∆. If a ∈ V is
homogeneous of conformal weight ∆a, we set an = a(n+∆a−1) so that

a(z) =
∑
n∈Z

anz
−n−∆a , (1.3)

which is a more standard notation in physics. Let a ∈ V be a homogeneous element of conformal
weight ∆a. The OPE between the conformal field L(z) and a(w) is given by

L(z)a(w) ∼ ∂a(w)
(z − w) + ∆aa(w)

(z − w)2 + o

(
1

(z − w)2

)
.

We say that the field a(z) is primary when

L(z)a(w) ∼ ∂a(w)
(z − w) + ∆aa(w)

(z − w)2 ,

or, equivalently,
[Lm, a(n)] = −na(m+n),

for all m,n ∈ Z.
If V is a Z-graded conformal vertex algebra such that V∆ = 0 for ∆ small enough, then V is

called a vertex operator algebra (VOA).

Example 1.1.5. By definition, the Virasoro vertex algebra Virc is conformal with central charge c
and conformal vector ω = L−2|0〉.

Remark 1.1.6. If V is a VOA of central charge c, there is an injective vertex algebra morphism
Virc ↪→ V via the identification L 7→ ω.
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1.1.3 Modules over vertex algebras and Zhu’s correspondence
Definition 1.1.7. Let V be a vertex algebra. A module M over V is a vector space together
with a linear map,

V → (EndM)[[z, z−1]], a 7→ YM (a, z) := aM (z) =
∑
n∈Z

aM(n)z
−n−1,

satisfying the following axioms:

• for all a ∈ V , aM (z) ∈ F(M),

• |0〉(z) = idM ,

• (Ta)M (z) = ∂za
M (z), for all a ∈ V ,

• for all a, b ∈ V and m,n ∈ Z,∑
j>0

(
m

j

)
(a(n+j)b)M(m+k−j) =

∑
j>0

(−1)j
(
n

j

)
(aM(m+n−j)b

M
(k+j) − (−1)nbM(n+k−j)a

M
(m+j)).

This implies in particular that V is a module over itself.
The usual notions of submodules, quotients and ideals naturally arise in the context of vertex

algebras. In particular, a module which has only two submodules, 0 and itself, is said simple. A
vertex algebra V is simple if it is simple as V -module. Moreover, all ideals of a vertex algebra
are two-sided ideals. Hence, if I is an ideal of the vertex algebra V , the quotient V/I inherits a
natural vertex algebra structure.

Let V be a conformal vertex algebra andM be a V -module. The moduleM is called a positive
energy representation if L0 acts semisimply on M with spectrum bounded from below, that is,

M =
⊕

∆∈χ+Z>0

M∆,

where M∆ = {m ∈M | L0m = ∆m}, and Mχ 6= 0.. Let Mtop := Mχ be the top degree component
of M . For all homogeneous vector a ∈ V , we have

aM(n)M∆ ⊂M∆+∆a−n−1,

for all n ∈ Z and ∆ ∈ C. This defines a grading on M .
A conformal vertex algebra V is rational if any Z>0-graded module is completely reducible,

that is, isomorphic to a direct sum of simple V -modules. The rationality condition implies that
V has finitely many simple Z>0-graded modules and that the graded components of each of these
Z>0-graded modules are finite dimensional [51].

Zhu’s algebra and Zhu’s correspondence

To any vertex operator algebra V one associates the quotient space A(V ) := V/(V ◦ V ), where
V ◦ V is the subspace of V generated by the elements

a ◦ b := Resz=0

(
a(z) (z + 1)∆a

z2 b

)
,
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where a ∈ V∆a
and b ∈ V . For all a, b ∈ V with a homogeneous, we define the bilinear operation

a ∗ b := Resz=0

(
a(z) (z + 1)∆a

z
b

)
.

Then, (A(V ), ∗) is an associative algebra called the Zhu’s algebra of V [97].
The following theorem, known as Zhu’s theorem or Zhu’s correspondence, illustrates how

important this algebra is for the representation theory of vertex algebras.

Theorem 1.1.8 (Zhu’s correspondence [97]). If M =
⊕

∆∈χ+Z>0
M∆ is a positive energy

representation of V , thenMtop is a representation of A(V ) whose action is described as follows. For
any a ∈ V homogeneous, the image [a] of a in A(V ) acts on Mtop as a(∆a−1). The correspondence
M 7→Mtop gives a bijection between the set of isomorphism classes of irreducible positive energy
representations of V and that of simple A(V )-modules.

1.1.4 C2-cofiniteness condition and lisse vertex algebras

Let M be a module over a vertex algebra V . There is a natural filtration on M , called Li filtration
[83], defined by F 0M = M and

F pM = SpanC{a(−i−1)b | a ∈ V, b ∈ F p−iM, i > 1},

for all p > 1. The subspace F 1M , usually denoted C2(M), is spanned by the elements a(−2)m
where a ∈ V and m ∈M . Set RM := M/C2(M). In particular, the quotient space RV is naturally
endowed with a structure of Poisson algebra defined by

1 = |0〉, a.b = a(−1)b, and {a, b} = a(0)b,

where a denotes the image of a ∈ V in the quotient RV . The algebra RV is called the Zhu’s
C2-algebra of V . If M is a V -module then, RM is a Poisson module over RV . The V -module M
is said finitely strongly generated if RM is finitely generated over RV . It is C2-cofinite if RM is
finite dimensional. A vertex algebra V is C2-cofinite if it is C2-cofinite as a module over itself.
Such vertex algebras are also called lisse.

The associated scheme X̃V and the associated variety XV of V [15] are respectively the scheme
and reduced scheme of the Zhu’s C2-algebra RV :

X̃V := SpecRV and XV := SpecmRV .

The vertex algebra V is lisse if and only if dimXV = 0. If V is lisse then, all its simple
modules are positive energy representations with finite dimensional graded components [1]. These
objects are very powerful tools to check the potential rationality of a vertex algebra. Indeed,
the previous implication is close from the rationality condition and Zhu conjectured [97] that
rational vertex algebras are lisse. The conjecture is still open even if Ai and Lin [11] recently
gave a counterexample in the context of vertex superalgebras.

Similarly, we can construct the associated scheme X̃M and the associated variety XM of a
V -module M . They are Poisson subschemes of X̃V and XV respectively.

Remark 1.1.9. In [54], van Ekeren and Heluani propose a uniform construction of the Zhu’s
algebra and Zhu’s C2-algebra associated to a vertex algebra.
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1.2 Affine vertex algebras

1.2.1 Affine Kac-Moody algebras and admissible weights
Let g be a complex simple Lie algebra with adjoint group G. Let g = n−⊕ h⊕ n+ be a triangular
decomposition with a Cartan subalgebra h. Set ∆ the root system of (g, h) and fix ∆+ a set
of positive roots. Let Π = {α1, . . . , α`} be the corresponding set of simple roots. Denote θ
the highest positive root. For any root α ∈ ∆, we define the coroot α∨ = 2α/(α|α), where
( | ) = 1

2h∨ × κg is the normalized invariant inner product of g satisfying (θ|θ) = 2, h∨ the dual
Coxeter number, and κg is the Killing form of g. Let ∆∨ be the set of coroots. Let Q =

∑
α∈∆ Zα

be the root lattice and Q∨ =
∑
α∈∆ Zα∨ be the coroot lattice. Let P be the weight lattice of g

and P∨ be the coweight lattice. The fundamental weights {$i}16i6` form a basis of P dual to
the basis of Q∨ formed by the simple coroots {α∨i }16i6`.

Let g̃ = g[t, t−1]⊕CK ⊕CD be the extended affine Kac-Moody algebra with the commutation
relations:

[xtm, ytn] = [x, y]tm+n +mδm+n,0(x|y)K, [D,xtn] = −nxtn, and [K, g̃] = 0,

for all x, y ∈ g and m,n ∈ Z, where xtn stands for x⊗ tn and δi,j stands for the Kronecker symbol.
Let g̃ = n̂− ⊕ h̃⊕ n̂+ be the standard triangular decomposition, that is, h̃ = h⊕ CK ⊕ CD is a
Cartan subalgebra of g̃, n̂+ = n+ ⊕ tg[t] and n̂− = n− ⊕ t−1g[t−1].

Set ĝ = [g̃, g̃] = g[t, t−1] ⊕ CK and ĥ = h ⊕ CK ⊂ ĝ, so that ĝ = n̂− ⊕ ĥ ⊕ n̂+. The Cartan
subalgebra h̃ is equipped with a bilinear form extending that on h by

(K|D) = 1, and (h|CK ⊕ CD) = (K|K) = (D|D) = 0.

We write Λ0 and δ for the elements of h̃∗ orthogonal to h∗ and dual to K and D respectively. We
have the (real) root systems

∆̂re = {α+ nδ | n ∈ Z, α ∈ ∆} = ∆̂re
+ t (−∆̂re

+),
∆̂re

+ = {α+ nδ | α ∈ ∆+, n > 0} t {−α+ nδ | α ∈ ∆+, n > 0}.

The affine Weyl group Ŵ is generated by reflections rα with α ∈ ∆̂re. For α ∈ h∗, the translation
tα : h̃∗ → h̃∗ is defined by

tα(λ) = λ+ λ(K)α−
[
(α|λ) + |α|

2

2 λ(K)
]
δ.

For α ∈ Q∨, we have tα ∈ Ŵ . In fact, Ŵ ∼= W n tQ∨ , where tQ∨ := {tα | α ∈ Q∨}, and W is
the Weyl group of g. The extended affine Weyl group, which is the group of isometries of ∆̂, is
W̃ = W n tP , where tP := {tα | α ∈ P}.

The category O is be the full subcategory of U(ĝ) -Mod whose objects are the ĥ-diagonizable
modules

M =
⊕
λ∈ĥ∗

Mλ,

where each Mλ is finite dimensional and so that there exists a finite subset {λi}16i6s ⊂ ĥ∗ such
that Mλ 6= 0 implies λ − λi ∈

∑`
j=1 Z>0αj for at least one λi. For λ ∈ ĥ∗, M(λ) denotes the

Verma module of ĝ with highest weight λ, and L(λ) is the unique simple quotient of M(λ). All
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simple modules of the category O are with the form L(λ) for some λ ∈ ĥ∗. Let Ok be the category
O of ĝ at level k [70]. The simple objects of Ok are the irreducible highest weight representations
L(λ), λ ∈ ĥ∗ such that λ(K) = k. For λ ∈ h∗, denote L̂k(λ) the simple ĝ-module with highest
weight λ̂ = λ+ kΛ0. For a weight λ ∈ ĥ∗, the corresponding integral root system is

∆̂(λ) = {α ∈ ∆̂re | 〈λ, α∨〉 ∈ Z},

where α∨ = 2α/(α|α) as usual. Let Ŵ (λ) be the corresponding integral Weyl group generated by
the reflections rα, α ∈ ∆̂(λ).

A weight λ ∈ ĥ∗ is said to be admissible [75] (equivalently, we say that L(λ) is admissible) if

• λ is regular dominant, that is, 〈λ+ ρ̂, α∨〉 > 0 for all α ∈ ∆̂+(λ) = ∆̂(λ) ∩ ∆̂re
+ ,

• Q∆̂re = Q∆̂(λ).

Here, ρ̂ = ρ+ h∨Λ0 with ρ =
∑
α∈∆+

α/2. A complex number k is admissible if λ = kΛ0 is an
admissible weight.

Proposition 1.2.1 ([78]). A complex number k is admissible if and only if it is of the form

k = −h∨ + p

q
,

with p, q ∈ Z>0, (p, q) = 1 and either p > h∨ if (r∨, q) = 1, or p > h if (r∨, q) = r∨. Here ,r∨ is
the lacety of g, that is, r∨ = 1 if g has type A`, D`, E6, E7, E8, r∨ = 2 if g has type B`, C`, F4
and r∨ = 3 if g has type G2.

For k an admissible number, let Prk be the set of weights λ ∈ h∗ such that λ̂ = λ+ kΛ0 is
admissible and there exists y ∈ W̃ such that ∆̂(λ̂) = y(∆̂(kΛ0)). For λ ∈ Prk, if y ∈ W̃ satisfies
y(∆̂(kΛ0)+) ⊂ ∆̂re

+ and ∆̂(λ) = y(∆̂(kΛ0)) then, Ŵ (λ) = yŴ (kΛ0)y−1. The weights of Prk are
said principal admissible if (r∨, q) = 1 and coprincipal admissible if (r∨, q) = r∨. For λ ∈ Prk,
consider

Jλ := AnnU(g) L(λ),

the annihilating ideal of L(λ) in the enveloping algebra U(g). For a nilpotent orbit O in g,
denote PrkO the subset of Prk consisting of principal or coprincipal admissible weights λ such
that Var(Jλ) = O. For y ∈ W and λ ∈ h∗, let y ◦ λ = y(λ + ρ) − ρ. Set [Prk] := Prk/∼ and
[PrkO] := PrkO/∼ where λ ∼ µ if µ ∈W ◦ λ.

1.2.2 Affine vertex algebras associated with a simple Lie algebra
Given any k ∈ C, let

V k(g) := U(ĝ)⊗U(g[t]⊕CK) Ck,

where Ck is the one-dimensional representation of g[t]⊕ CK on which g[t] acts by 0 and K acts
as a multiplication by k. It is the representation of ĝ induced from Ck and a highest weight
representation with highest weight kΛ0. Hence, it is a representation of level k of ĝ, i.e. K acts
as k id on it.

As a vector space,
V k(g) ' U(g⊗ t−1C[t−1]).
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Let {x1, . . . , xd} be an ordered basis of g. By the Poincaré-Birkhoff-Witt theorem, V k(g) has a
PBW basis which consists in the monomials

xi1(−n1) . . . x
im
(−nm)|0〉, (1.4)

where |0〉 is the image of 1⊗ 1 in V k(g), x(n) = xtn for all n ∈ Z, n1 > n2 > . . . > nm > 0, and
ij 6 ij+1 if nj = nj+1.

There is a unique vertex algebra structure on V k(g) such that |0〉 is the image of 1 ⊗ 1 in
V k(g) and

x(z) := (x(−1)|0〉)(z) =
∑
n∈Z

x(n)z
−n−1

for all x ∈ g. The Lie algebra g is considered as a subspace of V k(g) through the embedding
x ∈ g ↪→ x(−1)|0〉 ∈ V k(g). The vertex algebra V k(g) is called the universal affine vertex algebra
associated with g at level k. Its structure is defined by induction for any monomial of the basis
(1.4) by:

Y (xi1(−n1) . . . x
im
(−nm)|0〉, z) = 1

(n1 − 1)! . . . (nm − 1)! : ∂n1−1
z xi1(z) . . . ∂nm−1

z xim(z) : .

Moreover, for x, y ∈ g, the OPE between the corresponding fields on V k(g) is given by

x(z)y(w) ∼ [x, y](w)
(z − w) + (x|y)k

(z − w)2 .

When the level k is non-critical, that is, k 6= −h∨, the affine vertex algebra V k(g) is conformal
by Sugawara construction. Its central charge is

cV k(g) = k dim g

k + h∨
,

and the Sugawara conformal vector is defined by

ω = 1
2(k + h∨)

d∑
i=1

xi(−1)x
i∗
(−1)|0〉,

where {xi∗}i is the dual basis of {xi}i with respect to ( | ).

Modules of affine vertex algebras

The universal affine vertex algebra V k(g) plays a crucial role in the representation theory of ĝ. A
ĝ-module M of level k is smooth if xM (z) ∈ F(M) for all x ∈ g. By definition, V k(g)-modules
correspond exactly with smooth ĝ-modules of level k.

Let Lk(g) be the unique simple graded quotient of V k(g). It inherits a structure of vertex
algebra from the one of V k(g). It is called the simple affine vertex algebra associated with g at
level k. As a representation of ĝ, Lk(g) ∼= L(kΛ0).

Moreover, for all k ∈ C, the Zhu’s algebra of V k(g) is isomorphic to the enveloping algebra
U(g) of g. Hence, A(Lk(g)) is a quotient of U(g):

A(Lk(g)) ' U(g)/Ik,
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where Ik is a certain two-side ideal of U(g). Thus, L(λ̂) is a Lk(g)-module if and only if Jλ
contains Ik. When k is admissible, this happens if and only if λ ∈ Prk [19].

Associated varieties of affine vertex algebras

For any graded quotient V of V k(g), the Zhu’s C2-algebra of V is given by

RV = V/t−2g[t−1]V.

In particular, RV k(g) ' C[g∗]. Hence, XV k(g) = g∗. It follows that XLk(g) is a subvariety of g∗ ' g,
G-invariant and conical. The associated variety XLk(g) is difficult to compute in general. It is
known that XLk(g) = {0}, i.e. Lk(g) is lisse, if and only if L(kΛ0) is an integrable representation
of ĝ, that is k ∈ Z>0 [53]. Furthermore, when k is admissible, we have the following result:
Proposition 1.2.2 ([17]). If k = −h∨ + p/q is an admissible level for g, then XLk(g) is the
closure of some nilpotent orbit Oq which only depends on q.

The nilpotent orbit Oq is explicitly described in [17, Tables 2–10].

1.2.3 Universal affine vertex algebras
The previous construction of vertex algebra is generalizable to any Lie algebra a endowed with a
symmetric invariant bilinear form κ. Let â = a[t, t−1]⊕ C1 be the Kac-Moody Lie algebra of a
with commutation relations

[xtm, ytn] = [x, y]tm+n +mδm+n,0κ(x, y)1, and [1, â] = 0

for all x, y ∈ g and m,n ∈ Z. The vector space

V κ(a) = U(â)⊗U(a[t]⊕C1) C,

where C is the one-dimensional representation of a[t]⊕ C1 on which a[t] acts by 0 and 1 acts as
identity, is a Z>0-graded vertex algebra called the universal affine vertex algebra associated with
a and κ.
Example 1.2.3. Let a ' C be a one-dimensional abelian Lie algebra, and κ any non-degenerate
bilinear form on a. Then V κ(a) is called the Heisenberg vertex algebra, denoted by M(1). If
b ∈ a\{0}, then b(z) strongly generates M(1) and

b(z)b(w) ∼ 1
(z − w)2 .

1.3 The BRST reduction and W-algebras
The following construction of the W-algebra is due to Kac, Roan and Wakimoto [73]. We refer to
[73] and [12, 76] as general references for the construction of W-algebras.

1.3.1 The complex C (g, f, k) and the BRST reduction
Let f be a nilpotent element of g that we embed into an sl2-triple (e, h, f) given by the Jacobson-
Morosov theorem. We have

[h, e] = 2e, [h, f ] = −2f, and [e, f ] = h.
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The semisimple element x0 := h/2 induces an 1
2Z-gradation on g,

g =
⊕
j∈ 1

2Z

gj , (1.5)

where gj = {y ∈ g | [x0, y] = jy}. Set g>0 :=
⊕

j>0 gj and g>0 :=
⊕

j>0 gj . We define similarly
g60 and g<0. Choose a basis {eα}α∈Sj of each gj . One can assume that h ⊂ g0 and that the root
system ∆ is compatible with the grading induced by x0. Then we can pick each eα to be a root
vector if j 6= 0, and for j = 0, either eα is a root vector or eα belongs to the Cartan subalgebra h
[55]. Set S = tjSj , S+ = tj>0Sj and let {eα}α∈S+ be the dual basis in g∗>0 to {eα}α∈S+ .

The x0-grading is good if it satisfies the decomposition (1.5). In the following, we always
consider good gradings. We refer to [55] for additional details and classification of good gradings
in simple Lie algebras.

Neutral free fermions

The nilpotent element f belongs to g−1 and defines a skew-symmetric bilinear form on g1/2:

〈a, b〉 = (f |[a, b])

for all a, b ∈ g1/2. Consider the vector space (g1/2, 〈 , 〉), and let ĝ1/2 = g1/2[t, t−1]. For α ∈ S1/2
and n ∈ Z, Φα(n) denotes eαtn. Set

Φα(z) =
∑
n∈Z

Φα(n)z−n−1.

The set {Φα}α∈S1/2 gives a basis of g1/2. Let {Φα}α∈S1/2 be the corresponding dual basis with
respect to 〈 , 〉. Then the vertex algebra of neutral free fermions Fne is the vertex algebra strongly
generated by the neutral free fermions {Φα(z),Φα(z)}α∈S1/2 satisfying relations

[Φα(m),Φβ(n)] = δα,βδm+n,−1, and [Φα(m),Φβ(n)] = [Φα(m),Φβ(n)] = 0

for all α, β ∈ S1/2 and m,n ∈ Z.
Moreover, the field

Lne(z) := 1
2
∑

α∈S1/2

: (∂Φα(z))Φα(z) :

defines a structure of conformal vertex algebra on Fne whose central charge is given by

cne = −1
2 dim g1/2.

All fields Φα(z) and Φα(z) on Fne are primary with respect to Lne and have conformal weight
1/2.

Charged free fermions

Let C`(g>0) = g>0[t, t−1]⊕g∗>0[t, t−1] the Clifford affinization of g>0 endowed with the symmetric
bilinear form 〈 , 〉 defined by

〈xtm, ψtn〉 = δm+n,0ψ(x), and 〈xtm, ytn〉 = 〈ψtm, φtn〉 = 0
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for x, y ∈ g>0 and ψ, φ ∈ g∗>0. We write ϕα(m) for eαtm ∈ C`(g>0) and ϕα(m) for eαtm ∈ C`(g>0).
Then C`(g>0) is the associative superalgebra with

• odd generators: ϕα(m), ϕα(n) for all m,n ∈ Z and α ∈ S+,

• relations: [ϕα(m), ϕβ(n)] = [ϕα(m), ϕβ(n)] = 0 and [ϕα(m), ϕβ(n)] = δα,βδm+n,0,

where the parity of ϕα(m) and ϕα(n) is reverse to eα. Since elements of g are purely even, this
means that ϕα(m) and ϕα(n) are odd.

Define the charged fermion Fock space associated with g>0 as

F(g>0) := C`(g>0)∑
m>0
α∈S+

C`(g>0)ϕα(m) +
∑
n>1
α∈S+

C`(g>0)ϕα(n)
∼=
∧(
ϕα(m)

)
m<0
α∈S+

⊗
∧(
ϕα(n)

)
n60
α∈S+

,

where
∧

(ai)i∈I denotes the exterior algebra with generators {ai}i∈I . It is an irreducible C`(g>0)-
module, and as C-vector spaces we have

F(g>0) ∼=
∧

(g∗>0[t−1])⊗
∧

(g>0[t−1]t−1).

There is a unique vertex superalgebra structure on F(g>0) such that the image of 1 is the vacuum
|0〉 and

Y (ϕα(−1)|0〉, z) = ϕα(z) :=
∑
n∈Z

ϕα(n)z−n−1,

Y (ϕα(0)|0〉, z) = ϕα(z) :=
∑
n∈Z

ϕα(n)z−n

for all α ∈ S+. We denote by Fch this vertex algebra called the charged free fermion vertex
algebra associated with C`(g>0). The fields {ϕα}α∈S+ ∪ {ϕα}α∈S+ strongly generate Fch.

Let a conformal field on Fch be

Lch(z) := −
∑
α∈S+

mα : ϕα(z)(∂ϕα(z)) : +
∑
α∈S+

(1−mα) : (∂ϕα(z))ϕα(z) :,

where [x0, eα] = mαeα for all α ∈ S+. The central charge of Lch is given by

cch = −
∑
α∈S+

(12m2
α − 12mα + 2),

and the fields ϕα and ϕα are primary with respect to Lch with conformal weight 1−mα and mα

respectively.
The vertex algebra Fch has the charge decomposition

Fch =
⊕
m∈Z
Fmch , (1.6)

defined by the relations chargeϕα(z) = −chargeϕα(z) = −1 for α ∈ S+.
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Reduction of the complex C (g, f, k)

Let k ∈ C and set the vertex algebra

C (g, f, k) = V k(g)⊗F(g, f),

where F(g, f) = Fch ⊗ Fne. Define chargeV k(g) = chargeFne = 0. Then (1.6) induces the
charge decompositions

F(g, f) =
⊕
m∈Z
F(g, f)m and C (g, f, k) =

⊕
m∈Z

Cm,

where Cm := C (g, f, k)m, m ∈ Z.

Following [73], set

dst(z) =
∑
α∈S+

: eα(z)ϕα(z) : −1
2

∑
α,β,γ∈S+

cγα,β : ϕγ(z)ϕα(z)ϕβ(z) :, (1.7)

dnd(z) =
∑
α∈S+

(f |eα)ϕα(z) +
∑

α∈S1/2

: ϕα(z)Φα(z) :, (1.8)

where cγα,β is the structure constant defined by [eα, eβ ] =
∑
γ c

γ
α,βeγ . Let d(z) := dst(z) + dnd(z).

The field d(z) does not depend on the choice of the basis. One has [d(z), d(w)] = 0. Since d(z) is
odd, d2

(0) = 0. Moreover, [d(0),Cm] ⊂ Cm+1. Thus, (C (g, f, k), d(0)) is a Z-graded cohomology
complex. The zero-th cohomology of this complex is a vertex algebra denoted by Wk(g, f):

Wk(g, f) := H0(C (g, f, k), d(0)).

This construction is a particular case of BRST reduction usually referred as the Drinfeld-Sokolov
reduction of V k(g). We denote this reduction functor H•f (?) := H•BRST (?) in the following. We
briefly write

Wk(g, f) = H0
f (V k(g)).

The vertex algebra Wk(g, f) is called the (affine) W-algebra associated with g and f at the
level k. Its simple graded quotient is denoted by Wk(g, f). Historically, W-algebras were firstly
defined for principal (or regular) nilpotent elements of Lie algebras [58]. The W-algebra Wk(g)
always refers to the principal W-algebra Wk(g, freg).

Conformal vector and generating fields of W-algebras

Provided that k 6= −h∨ is non-critical, Wk(g, f) inherits a structure of conformal vertex algebra
from those of V k(g), Fch and Fne. Define the conformal field on Wk(g, f) by

L(z) = Lg(z) + d

dz
x(z) + Lch(z) + Lne(z),
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with central charge

ck = cV k(g) − 12k(x|x) + cch + cne

= k dim g

k + h∨
− 12k(x|x)−

∑
α∈S+

(12m2
α − 12mα + 2)− 1

2 dim g1/2

= dim g0 −
1
2 dim g1/2 −

12
k + h∨

|ρ− (k + h∨)x|2.

(1.9)

Given a ∈ g−j , introduce the field of C (g, f, k)

Ja(z) =
∑
n∈Z

Ja(n)z−n−1 = a(z)−
∑

α,β∈S+

cαa,β : ϕα(z)ϕ∗β(z) :,

where [a, eβ ] =
∑
α∈S c

α
a,βeα. This field has conformal weight 1 + j with respect to L. The

fields {Ja}a∈g play an important role in the structure of the W-algebra Wk(g, f). Let gf be the
centralizer of f in g, and set gfj := gf ∩ gj for all j ∈ 1

2Z. By the theory of sl2, we have

gf =
⊕
j60

gfj . (1.10)

Theorem 1.3.1 ([76]). For each a ∈ gf−j , j > 0, there exists a field J{a}(z) of Wk(g, f) of
conformal weight 1 + j with respect to L such that J{a}(z)− Ja(z) is a linear combination of
normally order products of the fields Jb(z), where b ∈ g−s, 0 6 s < j and their derivatives.

Let {ai}i∈I be a basis of gf compatible with the graduation (1.10). Then Wk(g, f) is freely
strongly generated by the fields {J{ai}}i∈I .

In practice, to construct J{a}(z) from Ja(z), we write a linear combination of fields as in the
theorem and find coefficients so that the field J{a}(z) is d(0)-closed. In [76], Kac and Wakimoto
give formulas to construct strong generators with conformal weights 1, 1/2 and 0, and they
compute OPEs between them. This provides in particular an explicit description of allW-algebras
associated with minimal nilpotent elements. Indeed, if f belongs to the minimal nilpotent orbit
Omin then the grading (1.5) induced by x is minimal:

g = g−1 ⊕ g−1/2 ⊕ g0 ⊕ g1/2 ⊕ g1,

with g−1 = Cf and g1 = Ce.
In fact, there is a general algorithm to construct the strong generators of Wk(g, f) whatever

their conformal weights. This algorithm is introduces in Chap. 2 when f induces an even good
grading on g, i.e. when the x0-grading (1.5) is a Z-grading. Using the computer program
Mathematica and the package [94], we compute OPEs between the strong generators. Appx. A,
B and C provide the description of W-algebras associated with Lie algebras of rank two.1

1The complexity of computations exponentially increases with values of the conformal weights. Due to the
limited computational power of the machine, the OPEs of Wk(sp4) and Wk(G2) remain incomplete for the
moment.
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1.3.2 Representation theory of W-algebras
Let M be a V k(g)-module, that is, a smooth ĝ-module of level k. It can be extended into a
Wk(g, f)-module as follows. Set the C (g, f, k)-module

C (M) := M ⊗F(g, f).

Set chargeM = 0, then the C (g, f, k)-module C (M) admits a charge decomposition inherited
from the one of C (g, f, k):

C (M) =
⊕
m∈Z

C (M)m.

Hence, (C (M), d(0)) is a C (g, f, k)-module complex, and its cohomology H•f (M) :=
⊕

i∈ZH
i
f (M)

is a direct sum of Wk(g, f)-modules. In particular, it defines a functor

V k(g) -Mod→Wk(g, f) -Mod, M 7→ H0
f (M). (1.11)

Let KLk be the full subcategory of Ok consisting of ĝ-modules on which g acts locally finitely.
Then for M ∈ KLk, Hi

f (M) = 0 if i 6= 0, and the restriction of the previous functor

KLk →Wk(g, f) -Mod, M 7→ H0
f (M), (1.12)

is exact [17].

Associated varieties and lisse W-algebras

It is known that the associated variety ofWk(g, f) is the Slodowy slice Sf := f+ge, where ge is the
centralizer of e in g [48]. Its Poisson structure comes from the one of g∗ by Hamiltonian reduction.
The Li filtration defined in Sect. 1.1.4 is compatible with the functor (1.12). Hence, for any finitely
generated module M ∈ KLk, RH0

f
(M) ' H0

f (RM ) as Poisson modules over RWk(g,f) = C[Sf ]
[48]. Moreover, X̃H0

f
(M) = X̃M ×g∗ Sf [17]. In particular, the associated variety of H0

f (Lk(g)) is
isomorphic to the intersection

XLk(g) ∩Sf .

Furthermore, H0
f (Lk(g)) is a quotient of Wk(g, f) = H0

f (V k(g)). Thus, the simple W-algebra
Wk(g, f) is a quotient of H0

f (Lk(g)), provided that the latter is non-zero. We deduce thatWk(g, f)
is lisse whenever XLk(g) is the closure of the nilpotent orbit O of f in g. Indeed, if f ∈ O, we
have O ∩Sf = {f}. Consequently, we have the following result:

Proposition 1.3.2 ([17]). Assume that k = −h∨ + p/q is admissible for g and pick f ∈ Oq,
with Oq the associated variety of Lk(g) (cf. Proposition 1.2.2). Then Wk(g, f) is lisse.

Pairs (f, k) with k = −h∨+p/q admissible and f ∈ Oq are called exceptional [17]. This extends
the original notion of exceptional pair given by Kac-Wakimoto [78]. If (f, k) is exceptional, the
W-algebra Wk(g, f) is said exceptional. It has been recently proved that exceptional W-algebras
are rational. We give more details about this result in the following.

Finite W-algebras and Zhu’s algebra A(Wk(g, f))

We can extend the construction of the Zhu’s algebra introduced in Sect. 1.1.3 to any module M
of a vertex algebra V setting A(M) = M/(V ◦M) [63]. Then A(M) is a bimodule over A(V ).
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Recall that A(V k(g)) ' U(g). For M ∈ KLk, A(M) belongs to HC(g), the category of
Harish-Chandra bimodules. Hence, A(M) is a finitely generated U(g)-bimodule on which the
adjoint action of g is locally finite. For any Harish-Chandra U(g)-bimodule M , one defines an
analogue of the Drinfeld-Sokolov reduction H0

f (M) which is naturally a H0
f (U(g))-bimodule [18].

Using the exactness of Zhu’s functor, we get H0
f (A(M)) ' A(H0

f (M)) for any module M ∈ KLk.
In particular,

A(Wk(g, f)) := H0
f (U(g)) = U(g, f),

is the finite W-algebra [89] associated with f ∈ g [48]. The finite W-algebra U(g, f) is the
enveloping algebra of the Slodowy slice Sf . Moreover, U(g, f) ' EndU(g)(Y )op where Y =
U(g) ⊗U(m) Cχ is induced from a one-dimensional representation Cχ over a certain nilpotent
subalgebra m of g of dimension dimm = 1

2 dimOf . We refer to [13, 47, 48] for a precise
construction of U(g, f).

In [21], Arakawa and van Ekeren prove the semisimplicity of the Zhu’s algebra A(H0
f (Lk(g)))

when (f, k) is an exceptional pair. It implies the semisimplicity of the quotient A(Wk(g, f)) of
A(H0

f (Lk(g))). Recently, McRae showed [86, Theorem 5.10] that a VOA V is rational if its Zhu’s
algebra A(V ) is semisimple, proving in particular the conjecture of Kac-Wakimoto and Arakawa.

Theorem 1.3.3 (McRae [86], conjectured by Kac-Wakimoto [76] and Arakawa [17]).
If (f, k) is an exceptional pair then Wk(g, f) is rational.

Ramond twisted representation and "−"-reduction functor

Previously we mentioned that the functor (1.12) is exact. However, in order to recover all the
irreducible positive energy representations of Wk(g, f) – which are in correspondence with simple
A(Wk(g, f))-modules – we need to extend this functor to the whole category Ok. Unfortunately,
the functor

Ok →Wk(g, f) -Mod, M 7→ H0
f (M), (1.13)

is not exact in general. It is if f belongs to the minimal nilpotent orbit of g [12]. One modifies
the functor (1.13) into a "−"-reduction functor H0

f,−(?) defined in [62] (see also [14, 78]).
Let σR be the automorphism of the complex C (g, f, k) defined by σR = e2πix0 . It fixes the

vector d and thus, induces an automorphism of Wk(g, f) [77]. If M is a V k(g)-module then
H0
f,−(M) carries a structure of a Ramond twisted representation of Wk(g, f) coming from the

σR-twisted action on C (M):
u ·m = ŵ0t̂−x0(u) ·m, (1.14)

where the isomorphim t̂−x0 is given by [78]:

t̂−x0 : J{eα}(n)R 7→ J{eα}(n+ α(x0)), (α ∈ ∆),
J{h}(n)R 7→ J{h}(n) + δn,0(x0|h)K, (h ∈ h),
KR 7→ K,

DR 7→ D − x0(0),
ϕα(n)R 7→ ϕα(n+ α(x0)), (α ∈ S+ ∪ S−),
Φα(n)R 7→ Φα(n+ 1/2), (α ∈ S1/2),

where ϕα stands for ϕ−α when α ∈ S−, and ŵ0 is the lift of the longest element w0 of the Weyl
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group W such that

ŵ0(J{eα}(n)) = cw0(α)J
{ew0(α)}(n), (α ∈ ∆),

ŵ0(ϕα(n)) = cw0(α)ϕw0(α)(n), (α ∈ S+),
ŵ0(ϕ−α(n)) = c−1

w0(α)ϕ−w0(α)(n), (α ∈ S+),

with cα ∈ C∗.
Let O0,k be the full subcategory of the category of left ĝ-modules of level k consisting in the

objects M such that

• M admits a weight space decomposition with respect to the action of ĥ,

• there is a finite subset of weights {µ1, . . . , µn} ⊂ h∗ such that M =
⊕

µ∈∪iµi−Q+
Mµ, where

Q+ =
∑
α∈∆+

Z>0α,

• for each d ∈ C, Md is a direct sum of finite dimensional g0-modules.

The functor
H0
f,−(?) : O0,k →Wk(g, f) -ModR,

is exact.
Note that a W-algebra is generally 1

2Z>0-graded, as well as its irreducible representations
whereas Ramond twisted representations are Z>0-graded [78]. Also, whenWk(g, f) is Z>0-graded
– for instance when f is even – a Ramond twisted module is the same as an untwisted module.
In fact, the finite W-algebra U(g, f) appears as the Zhu’s algebra of Wk(g, f) when we consider
Ramond twisted representations rather than untwisted ones in Zhu’s correspondence. The same
holds for the simple quotient Wk(g, f).

For a simple A(Wk(g, f))-module E, denote L(E) the corresponding irreducible Ramond
twisted representation of Wk(g, f). The module L(E) is the unique simple quotient of the Verma
module,

M(E) := U(Wk(g, f))⊗U(Wk(g,f))>0 E,

where U(Wk(g, f)) is the Ramond twisted current algebra of Wk(g, f) [21, 63].

Characters of highest weight representations

Let M be a highest weight ĝ-module of level k 6= −h∨ with highest weight λ̂ ∈ ĥ∗ and highest
weight vector v(λ̂). If v(λ̂) is not in the image of d(0), its image ṽ(λ̂) in H0

f (M) generates a
non-zero Wk(g, f)-module. Moreover, the eigenvalue of ṽ(λ̂) for L0 is given by

(λ̂|λ̂+ 2ρ̂)
2(k + h∨) − (x+D|λ̂),

and for h ∈ hf , its eigenvalue for J{h}0 is λ̂(h).
The character of a ĝ-module M is defined as the formal serie

chM (τ, z, u) := trM e2πi(z−τD+uK),

where z ∈ h and τ, u ∈ C with Im(τ) > 0. In the following we fix u = 0 and consider
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chM (τ, z) := chM (τ, z, u). In particular, it was proved by Kac-Wakimoto [74] that for λ ∈ Prk,

ch
L̂k(λ) = 1

R̂

∑
w∈Ŵ (λ̂)

ε(w) ew◦λ̂,

where R̂ =
∏
α∈∆̂+

(1 − e−α)multα is the Weyl denominator for ĝ and w ◦ λ̂ = w(λ̂ + ρ̂) − ρ̂ is
the “dot”-action extended to Ŵ . This character can be considered as a meromorphic function of
(τ, z) ∈ H × h, with H = {τ ∈ C | Im τ > 0},

ch
L̂k(λ)(τ, z) = 1

R̂

∑
w∈Ŵ (λ̂)

ε(w) e−2πi(w◦λ̂|τD−z) .

Following [73], let chH•
f

(M) be the Euler-Poincaré character of H•f (M):

chH•
f

(M)(q, h) =
∑
j∈Z

(−1)j chHj
f
(M)(q, z) =

∑
j∈Z

(−1)j trHj
f
(M) q

L0 e2πiJ{h}0 , (1.15)

with q = e2πiτ and h ∈ hf .

Theorem 1.3.4 ([73]). Let M be the highest weight ĝ-module of level k 6= h∨ with highest
weight λ̂. Suppose that chM extends to a meromorphic function on H× h with at most simple
poles at the hyperplane Tα = {h ∈ ĥ | α(h) = 0}, α ∈ ∆̂re. Then

chH•
f

(M)(q, h) = q
(λ̂|λ̂+2ρ̂)
2(k+h∨)∏∞

j=1(1− qj)dim h
(R̂ chM (τ,−τx+ h))

×
∞∏
n=1

∏
α∈∆+,(α|x0)=0

(1− qn−1 e−2πi(α|h))−1(1− qn e2πi(α|h))−1

×
∞∏
n=1

∏
α∈∆+,(α|x0)=1/2

(1− qn−1/2 e2πi(α|h))−1,

where h ∈ hf .



Chapter2
OPEs and collapsing levels of W-algebras
associated with simple Lie algebras of
rank 2

In this chapter, we present the concrete construction of W-algebras in terms of strong generators
and relations (OPEs) due to [76]. To simplify the theory, we assume that f admits an even good
grading on g (see Sect. 1.3.1). In particular, this covers all cases in type A (sln) and cases where f
is even, i.e. its Dynkin grading is a Z-grading, such as principal or subregular nilpotent elements.
Then the derivation d(0) splits into two derivations which define a structure of bicomplex over
C (g, f, k). The computation of the strong generators of Wk(g, f) is simpler and we recall an
algorithm to construct them in Sect. 2.1. The structure of bicomplex remains valid for any
nilpotent element but explicit computations are more difficult when the grading is not even. We
consider several examples of this type in our work.

Even if the construction of the strong generators is known, the computation of OPEs remains
difficult. Only few examples were explicitly computed so far [41, 76]. We compute generators
and OPEs for W-algebras associated to Lie algebras of rank 2 using the Mathematica package
[94]. Results of our computations are presented in Appx. A, B, and C. The computational
complexity increases exponentially with the value of conformal weights. As a consequence, due
to limited capacity of the machine, the OPEs for principal W-algebras Wk(sp4) and Wk(G2)
remain incomplete for the moment.

For particular values of the level k, said collapsing, the simpleW-algebraWk(g, f) is isomorphic
to another vertex algebra – for instance, an affine vertex algebra. Collapsing levels of minimal
W-algebras have been completely classified in [8, 9] using OPEs. However, it is difficult to predict
which levels collapse for other nilpotent elements, since OPEs are not known. Few particular cases
have been computed explicitly [6, 7]. Recently, Arakawa, van Ekeren and Moreau [22] provided
a large – and conjecturally complete – family of admissible collapsing levels. In Sect. 2.2, we
study conditions to obtain certain isomorphisms of W-algebras (Propositions 2.2.2 and 2.2.7). We
provide several new examples of generalized collapsing levels which are not admissible (Tables 2.2
and 2.3). We thank Prof. Dražen Adamović for drawing our attention to new collapsing levels in
Wk(sp4, fsubreg).

23
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2.1 Explicit construction of generating fields ofW-algebras

2.1.1 Structure of bicomplex over C (g, f, k)
We keep the notations of Chap. 1. Let f be a nilpotent element of g admitting an even good
grading. The grading (1.5), defined by x0 = h

2 on g, turns to a Z-grading

g =
⊕
j∈Z

gj . (2.1)

As a consequence, there is no neutral part in the complex C (g, f, k) = V k(g)⊗F(g>0). Let C +

be the vertex subalgebra of C (g, f, k) generated by the fields ϕα(z) and Jeα(z), α ∈ S+, and C−

be the vertex subalgebra generated by ϕα(z), α ∈ S+, and Jeα(z), eα ∈ g60. Obviously, as vector
space, C (g, f, k) = C + ⊗ C−. Moreover, C + and C− inherit cohomological grading from the one
of C (g, f, k):

C + =
⊕
i60

C +
i , and C− =

⊕
i>0

C−i .

Hence,
Wk(g, f) =

⊕
m+n=0

Hm(C +, d)⊗Hn(C−, d).

Recall that d(z) = dst(z) + dnd(z). Because of the even grading, the second sum in dnd(z)
disappears and we get

dst(z) =
∑
α∈S+

: eα(z)ϕα(z) : −1
2

∑
α,β,γ∈S+

cγα,β : ϕγ(z)ϕα(z)ϕβ(z) :, (2.2)

dnd(z) =
∑
α∈S+

(f |eα)ϕα(z). (2.3)

Set dst(z) =
∑
n∈Z dst(n)z−n−1 and dnd(z) =

∑
n∈Z dnd(n)z−n. Then the fields dst(z) and dnd(z)

respectively correspond to the vectors dst,(0) and dnd,(0) given by

dst,(0) = dst(0) =
∑
α∈S+
n∈Z

: eα(−n)ϕα(n) : −1
2

∑
α,β,γ∈S+
k+l+m=0

cγα,β : ϕγ(k)ϕα(l)ϕβ(m) :,

dnd,(0) = dnd(1) =
∑
α∈S+

(f |eα)ϕα(1).

By abuse of notation, denote d, dst, dnd for d(0), dst,(0), dnd,(0). By direct calculation, we check
that dst and dnd are two derivations which commute with each other:

d2
st = d2

nd = [dst, dnd] = 0.

On the one hand, for n ∈ Z and α ∈ S+, we have the relations

dst(ϕα) = Jeα , dnd(ϕα) = (f |eα)|0〉, dst(Jeα) = dnd(Jeα) = 0.

Consequently, the cohomology H•(C +, d) vanishes for non-zero degrees and H0(C +, d) = C|0〉.
Thus,

Wk(g, f) = H0(C−, d).
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On the other hand, for all eα ∈ g60 and γ ∈ S+, we have

dst(Jeα) = −
∑

β∈S+,[eα,eβ ]∈g60

: ϕβJ [eα,eβ ] : +
∑
β∈S+

(k(eα|eβ) + trg>0(ad eα)(ad eβ))∂ϕβ ,

dnd(Jeα) =
∑
β∈S+

([f, eα]|eβ)ϕβ ,

dst(ϕγ) = −1
2
∑

α,β∈S+

cγα,βϕ
αϕβ ,

dnd(ϕγ) = 0.

Let consider first the cohomology induced by dnd on C−. We deduce from the relations above
that all degrees of the cohomology H•(C−, dnd) vanish except the zero-th. Besides, H0(C−, dnd)
is a vertex algebra strongly generated by the fields Ja(z), where a ∈ gf is a linear combination of
elements eα ∈ g60.

Define a Z2-grading on C− =
⊕

m,n∈Z C−m,n by

bideg |0〉 = (0, 0), bideg Ja = (−j, j) (a ∈ g−j), and bidegϕα = (j,−j+1) (eα ∈ gj).

Since dst(C−m,n) ⊂ C−m,n+1 and dnd(C−m,n) ⊂ C−m+1,n, the direct sum C− admits a structure of
bicomplex:

...
...

· · · C−−1,0 C−−1,1 · · ·

· · · C−0,−1 C −
0,0 C−0,1 · · ·

· · · C −
1,−1 C−1,0 C−1,1 · · ·

...
...

...

dst dst

dnd dnd

dst dst

dnd

dst

dnd dnd

dst dst dst

Furthermore,H0(C−, dnd) ⊂
⊕

m∈Z>0
C−m,−m. Then dst induces a zero differential onH0(C−, dnd)

and all higher differentials of the spectral sequence vanish.
The two derivations, dst and dnd, preserve the conformal grading induced by L0. In practice,

for a ∈ gf−j (j > 0), the strong generator J{a} of Wk(g, f) of conformal weight 1 + j is construct
by extending the close field Ja with respect to dnd into a close field with respect to d. Initially
dnd(Ja) = 0. If dst(Ja) = 0 then set J{a} := Ja. Else, we look for a field Xa

1 of conformal weight
1 + j such that dst(Ja) = −dnd(Xa

1 ). The two sides of the equality must have the same bidegree
for the Z2-grading on C−. Hence,

bidegXa
1 = bideg(dnd(Xa

1 )) + (1, 0)
= bideg dst(Ja) + (1, 0)
= bideg Ja + (0,−1) + (1, 0) = (−j + 1, j − 1).
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As a consequence, Xa
1 ∈ C−−j+1,j−1 is a linear combination of normally ordered products of fields

Jeα , eα ∈ g−j+1 and their derivatives. Differentiating a field increases its conformal weight of 1
but does not impact the bidegree, and the conformal weight of a normally ordered product of
fields is the sum of the conformal weights of each of them. If dnd(Xa

1 ) = 0 then J{a} := Ja +Xa
1 ,

else iterate and look for Xa
2 such that dst(Xa

1 ) = −dnd(Xa
2 ), etc. In this way, we construct a

sequence of fields (Xa
i )i>0 of conformal weight j + 1 such that

Xa
0 = Ja, Xa

i ∈ C−−j+i,j−i, and dst(Xa
i ) = −dnd(Xa

i+1).

In the worst case, dst(Xa
j ) = 0 because C−m,n = 0 for m > 0.

2.1.2 Example: construction of the strong generators of Wk(sp4, fsubreg)

In this paragraph, consider g to be the simple Lie algebra sp4 that we may realize as the set of
4-size square matrices x such that xTJ4 + J4x = 0, where J4 is the anti-diagonal matrix given by

J4 =
(

0 U2
−U2 0

)
, where U2 =

(
0 1
1 0

)
.

We make the standard choice that h is the set of diagonal matrices of g. Nilpotent orbits of
g = sp4 are parameterized by the partitions of 4 such that the number of parts of each odd
number is even (see, for instance, [39, Theorem 5.1.3]). Thus, there are four nilpotent orbits
in g = sp4 corresponding to the following partitions: (4), (22), (2, 12), (14). They correspond
respectively to the principal, subregular, minimal and zero nilpotent orbits of g, with respective
dimensions 8, 6, 4, 0. Write Π = {α1, α2} a set of simple roots for the root system ∆ of (g, h)
such that α1 is a long root and α2 is short. Then ∆+ = {α1, α2, η, θ}, with η := α1 + α2 and
θ := α1 + 2α2 is the highest positive root.

The centralizer of e−η is four-dimensional generated by e−η, e−α1 , e−θ, h2, where hi := α∨i ∈
(h∗)∗ ∼= h, for i = 1, 2. Hence, e−η belongs to the subregular nilpotent orbit of g. In this section,
we fix

f := e−η = fsubreg.

Setting e := eη and h := [e, f ] = 2h1 + h2 we get the sl2-triple (e, h, f) of g. Let x0 := h
2 = $1.

The nilpotent element f is even and we have

g = g−1 ⊕ g0 ⊕ g1.

Moreover, gf = gf−1 ⊕ gf0 , with gf−1 = Cf ⊕ Ce−α1 ⊕ Ce−θ and gf0 = Ch2. It follows from
Theorem 1.3.1 that Wk(sp4, f) is strongly generated by the fields J{f}, J{e−α1}, J{e−θ} and
J{h2}. We detail their construction in the following.

Remark 2.1.1. The smallest Levi subalgebra of sp4 containing f has semisimple type A1 with
basis h1, h2, e±η (it is the centralizer in sp4 of h2). Hence, f has Levi type. It means that f is a
principal nilpotent element of the minimal Levi subalgebra that contains it.

First of all, because of the decomposition of g, there are only two possibilities for the bidegree
of the fields Ja, a ∈ g60. We classify these fields and certain of their derivatives in the Table 2.1
depending on their bidegrees as well as their conformal weights.
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bideg conformal weight fields
(−1, 1) 2 Jf , Je−α1 , Je−θ
(0, 0) 2 ∂Jh1 , ∂Jh2 , ∂Jeα2 , ∂Je−α2

(0, 0) 1 Jh1 , Jh2 , Jeα2 , Je−α2

Table 2.1 – Bidegrees and conformal weights

By direct computation, dst(Jh2) = dnd(Jh2) = 0, so we pick for J{h2} any multiple of Jh2 . For
normalization reasons, set

J = J{h2} := 1
2J

h2 = Jh2/2 = Jα2 .

On the contrary of Jh2 , the field Jf is not vanished by the derivation dst. We look for a field Xf
1

such that dst(Jf ) = −dnd(Xf
1 ). Using bidegree and conformal weight considerations, we get that

Xf
1 is a linear combination of fields of bidegree (0, 0) and conformal weight 2 (see Table 2.1):

Xf
1 = −1

2
(
: Jeα2Je−α2 : + : (Jh1)2 : + : Jh1Jh2 : +(3 + 2k)∂Jh1

)
.

Moreover, since dnd(Xf
1 ) = 0, J{f} := Jf +Xf

1 . We have similar computations for the rest of the
generators:

G+ = J{e−α1} := Je−α1 + 1
2(: Jh1Jeα2 : +(k + 2)∂Jeα2 ),

G− = J{e−θ} := Je−θ + 1
2(: Jh1Je−α2 : + : Jh2Je−α2 : +(k + 2)∂Je−α2 ).

The field J{f} is a conformal vector but its central charge differs from the Sugawara’s 1.9:

− (k + 1)(43 + 46k + 12k2)
2 .

To remedy this, we slightly modify the field J{f} into a field L with the same conformal weight.
We write L as a linear combination of fields which act semisimply – in particular J{f} and fields
J{a}, a ∈ h – their derivatives and normally ordered products:

L = − 1
(3 + k)J

{f} + (1 + k)
(3 + k)∂J

{h2} + 1
(3 + k) : J{h2}2 : .

2.2 Particular isomorphisms ofW-algebras associated with
rank-two Lie algebras

Let f be a nilpotent element of g embedded into an sl2-triple (e, h, f). The centralizer in g of
this triple, denoted g\, is the intersection of centralizers of at least two elements of the triple. In
particular, g\ = gf0 . It is a reductive Lie subalgebra of g, hence g\ = z(g\)⊕ [g\, g\] with z(g\) the
center of g\, and

[g\, g\] =
s⊕
i=1

g\i ,
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where g\1, . . . , g
\
s are simple Lie algebras. Set

V k
\

(g\) := M(1)⊗d ⊗
s⊗
i=1

V k
\
i (g\i),

where M(1) denotes the Heisenberg vertex algebra of central charge 1, d is a non negative integer
and k\1, . . . , k\s are complex numbers all depending on k. We refer to [9] or [22] for the precise
relations of dependence between d, ki and k.

According to [76], the vertex algebra V k
\(g\) is a vertex subalgebra of Wk(g, f) via the

embedding
ι : V k

\

(g\) ↪→Wk(g, f).

Denote Vk(g\) := ι(V k\(g\)) and Vk(g\) the image of Vk(g\) by the canonical projection
Wk(g, f)�Wk(g, f). The level k is said to be collapsing [9] if Wk(g, f) ' Vk(g\). Equiva-
lently, k is a collapsing level if and only if there is a surjective vertex algebra morphism

Wk(g, f)� Lk\(g\),

where Lk\(g\) :=
⊗s

i=0 Lk\
i
(g\i), or if and only ifWk(g, f) is isomorphic to Lk\(g\). More generally,

we said that k is a generalized collapsing level if the W-algebra Wk(g, f) is isomorphic to another
W-algebra Wk′(g′, f ′).

Collapsing levels have remarkable applications to representation theory of affine vertex algebras.
They play a important role in the study of the category KLk [2, 10]. In [8, 9], Adamović and
al. give a complete classification of collapsing levels for W-algebras associated with a minimal
nilpotent element using OPEs. Few particular cases have also been computed explicitly for other
nilpotent elements [6, 7]. It is difficult to predict which levels collapse in general since OPEs are
unkown. Recently, Arakawa, van Ekeren and Moreau [22] proposed a different approach using
associative varieties and Slodowy slices. Its provides a large family of admissible collapsing levels.
We use the explicit description of W-algebras associated with Lie algebras of rank two to obtain
a complete list of collapsing levels and some other remarkable isomorphisms of vertex algebras
(Tables 2.2 and 2.3). Before getting into the heart of the matter, let state the following useful
lemma:

Lemma 2.2.1. Let V be a vertex algebra and a ∈ V . For b ∈ V , denote

a(z)b(w) ∼
N∑
j=0

cj(w)
(z − w)j+1 .

Then for all j ∈ J0, NK, cj belongs to the ideal generated by a.

Proof. This follows directly from the definition of a vertex algebra ideal. Let I be the ideal
generated by a. Then I is a two-sided ideal of V , T -invariant such that a(z)b ∈ I((z)) for any
b ∈ V . As a consequence, a(z)b(w) ∈ I((z))((w)) and cj ∈ I. �

2.2.1 Trivial simple W-algebras
Consider the W-algebra Wk(g, f) associated with a nilpotent element f ∈ g. Denote Ik its
maximal ideal – which depends on the level k. We have Wk(g, f) =Wk(g, f)/Ik. At non-critical
level, it follows from the conformal structure of Wk(g, f) that the vertex algebra Wk(g, f) is
trivial, i.e. isomorphic to C, if and only if the conformal vector generates Ik. This happens only
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if the central charge ck is zero, but this necessary condition is not sufficient. For instance, the
conformal vector L of Wk(sp4, fmin) does not belong to the maximal ideal when k = −1 whereas
c−1 = 0. Indeed, according to the OPEs described in Appx. B.1 and Lemma 2.2.1, if L were in
I−1 then J would be in I−1 as well as the vacuum.

Proposition 2.2.2. Let J1, . . . , Jn be a set of strong generators of Wk(g, f) with conformal
weights w1, . . . , wn respectively. The simple quotient Wk(g, f) is trivial if and only if for any
1 6 i, j 6 n, the pole of degree wi + wj of the OPE Ji(z)Jj(w) vanishes.

Proof. For 1 6 i, j 6 n, set

Ji(z)Jj(w) ∼
wi+wj∑
m=0

cmi,j(w)
(z − w)m .

For all m, the field cmi,j has conformal weight wi + wj −m. Hence, it is a multiple of the vacuum
if and only if m = wi +wj . If cwi+wji,j = 0 for all 1 6 i, j 6 n then the vacuum does not belong to
the ideal I generated by J1, . . . , Jn. Hence I = I. In particular, the conformal vector of Wk(g, f)
generates I and Wk(g, f) ' C. Else, assume there exists cwi+wji,j 6= 0, by Lemma 2.2.1, Ji and Jj
do not belong to I. The simple quotient is not trivial. �

Remark 2.2.3. If the condition of Proposition 2.2.2 is satisfied, the central charge vanishes. Indeed,
it is a multiple of the maximal pole of the OPE of the conformal vector with itself.

Consequently, the descriptions of W-algebras Wk(g, f), where g = sl2, sp4, or G2 (Appx. A,
B, C), allow to classify all pairs (f, k) such that the simple W-algebra Wk(g, f) is trivial.

Corollary 2.2.4. 1. Consider the Lie algebra g = sl3, then Wk(g, f) ' C if and only if

(f, k) ∈ {(fmin,−3/2), (freg,−5/3), (freg,−9/4)}.

2. Consider the Lie algebra g = sp4, then Wk(g, f) ' C if and only if

(f, k) ∈ {(fmin,−1/2), (freg,−13/6), (freg,−12/5)}.

3. Consider the Lie algebra g = G2, then Wk(g, f) ' C if only if

(f, k) ∈ {(fmin,−5/3), (fsubreg,−17/6), (fsubreg,−2), (freg,−41/12), (freg,−24/7)}.

Proof. The complete classification of trivial simple W-algebras Wk(g, f) follows directly from
the OPEs (Appx. A, B, C) and Proposition 2.2.2 except for g = G2 and f = freg. The central
charge ofWk(G2) vanishes if and only if k = −41/12 or k = −24/7. So, Wk(G2) cannot be trivial
outside these two levels. Moreover, by [22, Theorem 10.10], W−41/12(G2) ' W−24/7(G2) ' C. �

Most of the pairs listed in the Corollary 2.2.4 have already been studied in [9, 22]. It is not
the case of W−2(G2, fsubreg). It provides a new example of rational W-algebra at non admissible
level.

Corollary 2.2.5. The simple W-algebra W−2(G2, fsubreg) is rational and lisse.

In another direction, the principal W-algebras Wk(sl3), Wk(sp4) and Wk(G2), and the
subregular W-algebra Wk(G2, fsubreg) are one-dimensional if and only if ck = 0. More generally,
we conjecture the following:
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Conjecture 2.2.6. If f is distinguished, i.e. gf0 = 0, then Wk(g, f) ' C if and only if ck = 0.

We check this conjecture in many cases. In particular, we verify in [22] that, when f is distinguished
and k is an admissible level which vanishes the central charge, it is a collapsing level, i.e.
Wk(g, f) ' C.

2.2.2 Simple quotients isomorphic to Virasoro vertex algebras
From now on, we consider non-trivial simple W-algebras. Hence, the conformal vector does not
belong to the maximal ideal of Wk(g, f). If the other strong generators are in the maximal ideal
then Wk(g, f) is isomorphic to the Virasoro vertex algebra Virck (see Sect. 1.1.2).

Proposition 2.2.7. Let J1, . . . , Jn, L be a free family of strong generators of Wk(g, f) with L a
conformal vector. Assume J1, . . . , Jn have conformal weights w1, . . . , wn respectively. The simple
quotient Wk(g, f) is isomorphic to Virck if and only if for any 1 6 i, j 6 n the pole of degree
wi +wj of the OPE Ji(z)Jj(w) vanishes and the pole of degree wi +wj − 2 does not depend on L.

Proof. The simple quotient Wk(g, f) is isomorphic to Virck if and only if it is strongly generated
only by the conformal vector L. Hence, Wk(g, f) ' Virck if and only if J1, . . . , Jn ∈ Ik and
L /∈ Ik. For 1 6 i, j 6 n, set

Ji(z)Jj(w) ∼
wi+wj∑
m=0

cmi,j(w)
(z − w)m .

The field cmi,j is a multiple of the vacuum if and only if m = wi + wj and a linear combination of
vector of weight 2 – in particular the vector L – if and only if m = wi +wj − 2. As a consequence,
if cwi+wji,j = 0 and L does not appeared in the linear combinations cwi+wj−2

i,j , the vectors J1, . . . , Jn
belongs to Ik whereas |0〉 and L do not.

Conversely, assume Wk(g, f) ' Virck . Then I is generated by all strong generators except
the conformal vector. Suppose there are 1 6 i, j 6 n and c ∈ C∗ such that

c
wi+wj−2
i,j = cL+R ∈ Ik,

where R is a field of Wk(g, f) which does not depend on L. The field R is a linear combination
of J1, . . . , Jn, their derivatives and normally ordered products. Thus, R ∈ I and L ∈ Ik. Then
Wk(g, f) is trivial whence a contradiction. �

Remark 2.2.8. The previous criterion is very convenient when one considers principal W-algebras
because they are strongly generated only by two fields. It can also be useful when one of the
strong generator – denote it J – acts semisimply on graded component of the W-algebra, that is

J(z)G(w) ∼ wJ(G)
(z − w)G(w),

with wJ(G) ∈ C, for any strong generator G distinct from J and L. Then, if wJ(G) 6= 0 for all
G, J generates Ik. In many cases, J will be a strong generator corresponding to a semisimple
element of g.

Corollary 2.2.9. 1. The simple W-algebra Wk(sl3) is isomorphic to Virck if and only if
k = −4/3 or k = −12/5.

2. Consider the Lie algebra g = sp4, then Wk(g, f) ' Virck if and only if
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• f = fsubreg and k = −2, or
• f = freg and k ∈ {−3/2,−8/3,−11/5,−11/6,−18/7,−19/8}.

3. The simple W-algebra Wk(G2, fÃ1
) is isomorphic to Virck if and only if k = −3/2.

4. The simple W-algebra Wk(G2, fsubreg) is isomorphic to Virck if and only if k = −10/3.

Remark 2.2.10. Recall [15] that the Virasoro vertex algebra Virc is rational if and only if it is
lisse, that is if and only if

c = 1− 6(p− q)2

pq
,

for p, q ∈ Z>2, (p, q) = 1. In the examples listed in Corollary 2.2.9, when the pair (k, f) is excep-
tional then Wk(g, f) ' Virck is rational. On the contrary, when it is not, the simple W-algebras
are neither lisse nor rational: W−2(sp4, fsubreg),W−3/2(sp4),W−8/3(sp4) andW−10/3(G2, fsubreg)
are neither lisse nor rational.

2.2.3 Other collapsing levels
For several additional particular simpleW-algebras, OPEs give a complete or partial description of
the maximal ideal. For instance, we recover some isomorphisms from [8] and [22, Theorem 10.10]:

W−2(sp4, fmin) 'M(1), W−2(sp4, fmin) ' L−3/2(sl2),
W−4/3(G2, fmin) ' L1(sl2), W−17/6(G2, fÃ1

) ' L−4/3(sl2).

We are also able to determine other collapsing levels.

Proposition 2.2.11. We have the following isomorphisms:

W−10/3(G2, fÃ1
) ' L−11/6(sl2), W−2(G2, fÃ1

) ' L−1/2(sl2), W−1(sp4, fsubreg) 'M(1).

Proof. Assume (g, f) is one of the pairs appearing in Proposition 2.2.11. Let {ai}i∈I be a basis
of gf compatible with the gradation (1.10) and {J{ai}}i∈I be the strong generators of Wk(g, f)
constructed as in Theorem 1.3.1. Using the OPEs, one checks that if ai /∈ g\, then the field
J{ai} generates a non trivial ideal. Hence, it belongs to the maximal ideal I of Wk(g, f). Using
Lemma 2.2.1, we get relations between the conformal vector L and the fields J{ai}, ai ∈ g\.
The latter generate a affine vertex algebra and L can be written as a multiple of the Sugawara
conformal vector of V k\(g\) (see Sect. 1.2.2). Since Wk(g, f) is simple, it is then isomorphic to
Lk\(g\) for some level k\. The level k\ is determined using the equality of central charge:

ck = cL
k\

(g\) = k\ dim g\

k\ + h∨
g\
.

�

Remark 2.2.12. The OPEs of Wk(G2, fsubreg) admit simplifications at level k = −16/5 (see
Appx. C.3). Indeed, the strong generator F belongs to the maximal ideal I−16/5. This induces
relations between the three other strong generators and their derivatives in the simple W-algebra.
We have not identify W−16/5(G2, fsubreg) with another vertex algebra for the moment.

We summarize in Tables 2.2 and 2.3 the (generalized) collapsing levels ofW-algebras associated
with simple Lie algebras of rank two we mentioned in Sect. 2.2.
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Wk(g, f) g\ Lk\(g\) k or (k, k\) (when it is relevant)

Wk(sl3, fmin) C M(1) −1
Wk(sl3) 0 C − 5

3 , −
9
4

Wk(sp4, fmin) sl2 Lk\(sl2) (−2,− 3
2 )

Wk(sp4, fsubreg) C M(1) −1
Wk(sp4) 0 C − 13

6 , − 12
5

Wk(G2, fmin) sl2 Lk\(sl2) (− 4
3 , 1)

Wk(G2, fÃ1
) sl2 Lk\(sl2) (− 17

6 ,−
4
3 ), (− 10

3 ,−
11
6 ), (−2,− 1

2 )
Wk(G2, fsubreg) 0 C − 17

6 , −2
Wk(G2) 0 C − 41

12 , −
24
7

Table 2.2 – Collapsing levels for W-algebras of rank two.

Wk(g, f) V k or (k, ck) (when it is relevant)

Wk(sl3, fmin) C − 3
2

Wk(sl3) Virck (− 4
3 ,−

22
5 ), (− 12

5 ,−
22
5 )

Wk(sp4, fmin) C − 1
2

Wk(sp4, fsubreg) Virck (−2,−2)
Wk(sp4) Virck (− 3

2 ,−24), (− 8
3 ,−24), (− 11

5 ,
1
2 ), (− 11

6 ,
68
7 ), (− 18

7 ,
68
7 ), (− 19

8 ,
1
2 )

Wk(G2, fmin) C − 5
3

Wk(G2, fÃ1
) Virck (− 3

2 ,−
22
5 )

Wk(G2, fsubreg) Virck (− 10
3 ,−24)

Table 2.3 – Generalized collapsing levels for W-algebras of rank two.



Chapter3
Rationality of exceptional W-algebras
Wk(sp4, fsubreg)

Classification of rational W-algebras is a major problem of the theory. In this chapter, we prove
the rationality of a new family of W-algebras: exceptional W-algebras associated with subregular
nilpotent elements of sp4. It proves new cases of Kac-Wakimoto and Arakawa’s conjecture (see
Sect. 1.3.2). This conjecture has been intensively studied in the recent years and particular cases
was previously established by Arakawa [16, 18], Creutzig-Linshaw [41] and Arakawa-van Ekeren
[21]. The case of exceptional W-algebras Wk(sp4, fsubreg) can be consider as the “easiest” not
covered by the works mentioned above.

The main results of the chapter have been published in [56]. In particular, we recall the precise
statement of the main theorem:

Theorem 3.1. Let f = fsubreg be a subregular nilpotent element of g = sp4. Then the exceptional
W-algebrasW−3+p/3(g, f), with (p, 3) = 1, p > 3, and the exceptionalW-algebrasW−3+p/4(g, f),
with (p, 2) = 1, p > 4, are rational (and lisse). Moreover, Proposition 3.2.5 gives a complete
classification of their simple modules.

The chapter is organized as follows. In Sect. 3.1, we recall briefly the relations between strong
generators of Wk(sp4, fsubreg) and look at positive energy representations with finite dimensional
top component. When (f, k) is an exceptional pair, all possible simple Wk(sp4, fsubreg)-modules
satisfy this finiteness condition. Using the twist action introduced in [82], we show that simple
Wk(sp4, fsubreg)-modules are in finite number. We describe them in Sect. 3.2.

The Sect. 3.3 is devoted to the proof of the main Theorem 3.1. TheW-algebraWk(sp4, fsubreg)
can be viewed as an analogous of the Bershadsky-Polyakov vertex algebra in type C. The later
corresponds to the W-algebra Wk(sl3, fmin) studied in [16]. In sl3, minimal nilpotent elements
are also subregular, whence Wk(sl3, fmin) ' Wk(sl3, fsubreg). However, contrary to the case
where f is minimal, the functor H0

f (?) appearing in the construction of W-algebras is not exact
(see Sect.1.3.2). As a consequence, we cannot use directly the methods of [16] to prove the
rationality of exceptional W-algebras Wk(sp4, fsubreg). To encounter the difficulty, we exploit
certain techniques of [21].

The two last sections give applications to the explicit description of the simpleWk(sp4, fsubreg)-
modules we obtained as a by-product of our proof. In Sect. 3.4, we show that the component group

33
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of the nilpotent orbit Osubreg acts non-trivially on the finite set of the simple Wk(sp4, fsubreg)-
modules (Theorem 3.4.3). Moreover, one uses the description to compute the characters of simple
modules (Sect. 3.5). Part of the simple Wk(sp4, fsubreg)-modules comes from the reduction of
certain highest weight representations of ŝp4. We conjecture that this holds for all the simple
modules (Conjecture 3.5.7).

3.1 Actions of strong generators on positive energy repre-
sentations of Wk(sp4, fsubreg)

From now on, g = sp4 and f = fsubreg. We saw in Chap. 2, that the centralizer of f is four-
dimensional. Hence, the vertex algebra Wk(g, f) is freely strongly generated by the fields J(z),
G±(z) and L(z). We refer to Sect. 2.1.2 for the description of these generators and Appx. B.2 for
OPEs between them. By construction, provided k 6= −3, the field L(z) =

∑
n∈Z Lnz

−n−2 is a
conformal vector of Wk(g, f) with central charge

ck := −2(9 + 16k + 6k2)
3 + k

.

It gives J(z), G+(z) and G−(z) the conformal weights 1, 2 and 2, respectively. Following (1.3)
we write

J(z) =
∑
n∈Z

Jnz
−n−1, G±(z) =

∑
n∈Z

G±n z
−n−2, L(z) =

∑
n∈Z

Lnz
−n−2.

The monomials
Jn1 . . . JnjLm1 . . . LmtG

−
p1
. . . G−pgG

+
q1
. . . G+

qh
|0〉, (3.1)

with n1 6 . . . 6 nj 6 −1, m1 6 . . .mt 6 −2, p1 6 . . . 6 pg 6 −2, and q1 6 . . . 6 qh 6 −2 form
a PBW basis of the vertex algebra Wk(g, f).

From the OPEs, we deduce the commutation relations for all m,n ∈ Z:

[Jm, Jn] =(2 + k)mδm+n,0,

[Jm, G±n ] =±G±m+n,

[Lm, Ln] = ck
12(m3 −m)δn+m,0 + (m− n)Lm+n,

[Lm, G±n ] =(m− n)G±m+n,

[Lm, Jn] =− nJm+n,

[G+
m, G

−
n ] =− (1 + k)(2 + k)2

2 (m3 −m)δm+n,0 + (2 + k)(3 + k)
2 (m− n)Lm+n

+
(

3(1 + k)(2 + k)
2 (m+ 1)(n+ 1)− (5 + 4k + k2)

2 (m+ n+ 1)(m+ n+ 2)
)
Jm+n

− (3 + 2k)(m+ 1)(J2)m+n + (3 + k)(LJ)m+n − (J3)m+n − (3 + 2k)(J∂J)m+n,

where∑
n∈Z

(J2)nz−n−2 def=: J(z)2 : ,
∑
n∈Z

(LJ)nz−n−3 def=: L(z)J(z) : ,
∑
n∈Z

(J∂J)nz−n−3 def=: J(z)∂J(z) : .
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Let M be an irreducible positive energy representation of Wk(g, f), with Mtop = Mχ, χ ∈ C
(see Sect. 1.1.3). Using the commutation relations, we notice that the submodule N of M
generated by all J0-eigenvectors of M is stable by Ln, G±n , Jn, n ∈ Z. Hence, N = M because M
is simple.

Lemma 3.1.1. Let M be an irreducible positive energy representation of Wk(g, f), with Mtop =
Mχ, χ ∈ C. Suppose that Mtop is finite dimensional. Then there is a vector v ∈ M such that
L0v = χv, J0v = ξv for some ξ ∈ C, and such that the relations below hold:

Jnv = 0 for n > 0,
Lnv = 0 for n > 0,
G+
n v = 0 for n > 0,

G−n v = 0 for n > 0.

Moreover, M =
⊕

a∈ξ+Z
d∈χ+Z>0

Ma,d, where Ma,d = {m ∈ M | J0m = am, L0m = dm}, dimMξ,χ = 1

and Mtop = Mχ is spanned by the vectors (G+
0 )iv for i > 0.

Proof. Since J0 and L0 commute, the action of J0 preserves each Mχ+n, n ∈ Z>0. Moreover, J0
is semisimple over M and each Mχ+n. Then M can be written

M =
⊕

(a,d)∈C2
d∈χ+Z>0

Ma,d.

As Mtop is finite dimensional, there is a vector v ∈ Mtop such that J0v = ξv, ξ ∈ C and ξ − n
is not an eigenvalue of J0 in Mtop for all n ∈ Z>0. The relations of the lemma result from the
following equations. Let n ∈ Z,

J0Jnv = ξJnv, L0Jnv = (χ− n)Jnv,
J0Lnv = ξLnv, L0Lnv = (χ− n)Lnv,
J0G

±
n v = (ξ ± 1)G±n v, L0G

±
n v = (χ− n)G±n v.

It ensues from those relations that all the eigenvalues of J0 are in ξ + Z. Hence,

M =
⊕
a∈ξ+Z

d∈χ+Z>0

Ma,d.

We explain the relation G−n v = 0, n > 0, the others are obtained similarly. Since M is a positive
energy representation of Wk(g, f), for n > 0, χ− n is not an eigenvalue of L0, whence G−n v = 0.
Besides, G−0 v ∈ Mtop and the choice of v implies that ξ − 1 is not a eigenvalue of J0 in Mtop.
Hence G−0 v = 0. Finally, the vectors (G+

0 )iv, i > 0, are the only ones attached to the eigenvalue
χ for L0 so they span Mtop. Moreover, J0(G+

0 )iv = (ξ + i)G+
0 v for i > 0. As a consequence,

Mξ,χ = Cv. �

For (ξ, χ) ∈ C2, let L(ξ, χ) be the irreducible representation of Wk(g, f) generated by a vector
v = |ξ, χ〉 satisfying the relations of Lemma 3.1.1. According to Lemma 3.1.1, |ξ, χ〉 is uniquely
defined up to nonzero scalar, so the notation is legitimate. Zhu’s correspondence ensures that
such L(ξ, χ) does exist and is unique up to isomorphism of Wk(g, f)-modules (see, for example,
[31]).



36 CHAPTER 3. Rationality of exceptional W-algebras Wk(sp4, fsubreg)

Remark 3.1.2. When k is an admissible level appearing in the Theorem 3.1, the W-algebra
Wk(sp4, fsubreg) is lisse. As a consequence, its simple modules are positive energy representations
with finite dimensional top component (see Sect. 1.1.4). Hence, they are of the form L(ξ, χ) with
(ξ, χ) ∈ C2 .

Since L(ξ, χ)χ,ξ is one-dimensional and G−0 G+
0 |ξ, χ〉 belongs to L(ξ, χ)χ,ξ, it is proportional

to |ξ, χ〉:

G−0 G
+
0 |ξ, χ〉 = G+

0 G
−
0 |ξ, χ〉︸ ︷︷ ︸
0

+[G−0 , G+
0 ]|ξ, χ〉

=
(
−k

2 + k − 4
2 J0 + (3 + 2k)(J2)0 − (3 + k)(LJ)0 + (J3)0 + (3 + 2k)(J∂J)0

)
|ξ, χ〉

=
(
−k

2 + k − 4
2 J0 + (3 + 2k)J2

0 − (3 + k)(L0J0 + J0) + J3
0 − (3 + 2k)J2

0

)
|ξ, χ〉

= g(ξ, χ)|ξ, χ〉,

where
g(ξ, χ) = −1

2ξ
(
2 + 3k + k2 − 2ξ2 + 6χ+ 2kχ

)
.

For i > 1 and m > 0,

Jm(G+
0 )i−1|ξ, χ〉 = δm,0(ξ + i− 1)(G+

0 )i−1|ξ, χ〉, Lm(G+
0 )i−1|ξ, χ〉 = δm,0χ(G+

0 )i−1|ξ, χ〉.

We deduce that,

G−0 (G+
0 )i|ξ, χ〉 = G+

0 G
−
0 (G+

0 )i−1|ξ, χ〉+ g(ξ + i− 1, χ)(G+
0 )i−1|ξ, χ〉.

Hence, by induction, for i > 1,

G−0 (G+
0 )i|ξ, χ〉 = i hi(ξ, χ)(G+

0 )i−1|ξ, χ〉, (3.2)

where

hi(ξ, χ) = 1
i

i−1∑
m=0

g(ξ +m,χ)

= (2ξ + i− 1)
4 (−2− i+ i2 − 3k − k2 − 2ξ + 2iξ + 2ξ2 − 6χ− 2kχ).

Proposition 3.1.3. Suppose that L(ξ, χ)top is n-dimensional. Then hn(ξ, χ) = 0.

Proof. If dimL(ξ, χ)top = n then (G+
0 )n|ξ, χ〉 = 0 and (G+

0 )n−1|ξ, χ〉 6= 0. It results from (3.2)
that hn(ξ, χ) = 0. �

3.2 Twist-action over simple Wk(sp4, fsubreg)-modules
Following the ideas of [16], we introduce the twist-action ψ described in [82]. Let us define

∆(−J, z) := z−J0 exp
( ∞∑
m=1

(−1)m+1−Jm
mzm

)
.
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For a ∈ Wk(g, f),

∆(−J, z)a = z−J0

( ∞∑
n=0

Xn

n! a
)
,

where X =
∞∑
m=1

(−1)m+1 −Jm
mzm and z−J0 is defined by z−J0a = z−ca if J0a = ca. For a field a(z),

set the twist-field:∑
n∈Z

ψ(a(n))z−n−1 := Y (∆(−J, z)a, z) =
∞∑
n=0

Y (z−J0
Xn

n! a, z).

For any Wk(g, f)-module M , the space ψ(M) denotes the Wk(g, f)-module obtained by twisting
the action of Wk(g, f) as a(n) 7→ ψ(a(n)). The following relations are obtained by applying the
ψ-action to the strong generators of Wk(g, f):

ψ(Jn) = Jn − (2 + k)δn,0,

ψ(Ln) = Ln − Jn + (2 + k)
2 δn,0,

ψ(G+
n ) = G+

n−1,

ψ(G−n ) = G−n+1.

Proposition 3.2.1. Assume that dimL(ξ, χ)top = i and dimψ(L(ξ, χ))top = j. Then

ψ(L(ξ, χ)) ' L(ξ + (i− 1)− (2 + k) , χ− ξ − (i− 1) + (2 + k)
2 ),

and
ψ2(L(ξ, χ)) ' L(ξ + i+ j − 6− 2k , χ− 2ξ − 2i− j + 7 + 2k).

Proof. For all m > 0, we have

ψ(J0)(G+
0 )m|ξ, χ〉 = (ξ +m− (2 + k))(G+

0 )m|ξ, χ〉,

ψ(L0)(G+
0 )m|ξ, χ〉 = (χ− (ξ +m) + (2 + k)

2 )(G+
0 )m|ξ, χ〉.

Since the smallest eigenvalue associated with the ψ(L0)-action is attached to the vector (G+
0 )i−1|ξ, χ〉,

we get
ψ(L(ξ, χ)) ' L(ξ + (i− 1)− (2 + k) , χ− ξ − (i− 1) + (2 + k)

2 ),

and, by induction,

ψ2(L(ξ, χ)) ' ψ(L(ξ + (i− 1)− (2 + k) , χ− ξ − (i− 1) + (2 + k)
2 ))

' L(ξ + (i− 1) + (j − 1)− 2(2 + k) , χ− 2ξ − 2(i− 1)− (j − 1) + 2(2 + k)). �

Remark 3.2.2. For all m,n ∈ Z>0,

ψ2(J0)(G+
−1)m(G+

0 )n|ξ, χ〉 = (ξ + n+m− 2(2 + k))(G+
−1)m(G+

0 )n|ξ, χ〉,
ψ2(L0)(G+

−1)m(G+
0 )n|ξ, χ〉 = (χ− 2ξ − 2n−m+ 2(2 + k))(G+

−1)m(G+
0 )n|ξ, χ〉.
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Proposition 3.2.3. Suppose that dimL(ξ, χ)top = i, dimψ(L(ξ, χ))top = j and dimψ2(L(ξ, χ))top = l.

(a) If k = −3 + p/3 with (p, 3) = 1, p > 3, then (ξ, χ, l) = (ξ(s)
i,j , χ

(s)
i,j , l

(s)
i,j ) with s ∈ {1, 2, 3},

where


ξ

(1)
i,j = 1− i

2 ,

χ
(1)
i,j = 13− 6i+ i2 − 12j + 2ij + 2j2 + 6k − 2ik − 4jk

4(3 + k) ,

l
(1)
i,j = 9− i− j + 3k,
ξ

(2)
i,j = 7− 2i− j + 2k

2 ,

χ
(2)
i,j = 31− 12i+ 2i2 − 12j + 2ij + j2 + 18k − 4ik − 4jk + 2k2

4(3 + k) ,

l
(2)
i,j = i,
ξ

(3)
i,j = 4− i− j + k

2 ,

χ
(3)
i,j = 4 + i2 − 6j + j2 − 2jk − k2

4(3 + k) ,

l
(3)
i,j = 9− i− j + 3k.

(b) If k = −3 + p/4 with (p, 2) = 1, p > 4, then (ξ, χ, l) = (ξ(s′)
i,j , χ

(s′)
i,j , l

(s′)
i,j ) with s ∈ {1, 2},

where


ξ

(1′)
i,j = 1− i

2 ,

χ
(1′)
i,j = 13− 6i+ i2 − 12j + 2ij + 2j2 + 6k − 2ik − 4jk

4(3 + k) ,

l
(1′)
i,j = 12− i− 2j + 4k,
ξ

(2′)
i,j = 7− 2i− j + 2k

2 ,

χ
(2′)
i,j = 31− 12i+ 2i2 − 12j + 2ij + j2 + 18k − 4ik − 4jk + 2k2

4(3 + k) ,

l
(2′)
i,j = i.

Proof. By solving the system of equations
hi(ξ, χ) = 0,

hj(ξ + (i− 1)− (2 + k), χ− ξ − (i− 1) + (2 + k)
2 ) = 0,

hl(ξ + (i− 1) + (j − 1)− 2(2 + k), χ− 2ξ − 2(i− 1)− (j − 1) + 2(2 + k)) = 0,
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we find nine triples (ξ, χ, l) in term of i, j and k:
ξ

(1)
i,j = 1− i

2 ,

χ
(1)
i,j = 13− 6i+ i2 − 12j + 2ij + 2j2 + 6k − 2ik − 4jk

4(3 + k) ,

l
(1)
i,j = 9− i− j + 3k,
ξ

(1′)
i,j = 1− i

2 ,

χ
(1′)
i,j = 13− 6i+ i2 − 12j + 2ij + 2j2 + 6k − 2ik − 4jk

4(3 + k) ,

l
(1′)
i,j = 12− i− 2j + 4k,
ξ

(1′′)
i,j = 1− i

2 ,

χ
(1′′)
i,j = 13− 6i+ i2 − 12j + 2ij + 2j2 + 6k − 2ik − 4jk

4(3 + k) ,

l
(1′′)
i,j = 3− j + k,
ξ

(2)
i,j = 7− 2i− j + 2k

2 ,

χ
(2)
i,j = 31− 12i+ 2i2 − 12j + 2ij + j2 + 18k − 4ik − 4jk + 2k2

4(3 + k) ,

l
(2)
i,j = i,
ξ

(2′)
i,j = 7− 2i− j + 2k

2 ,

χ
(2′)
i,j = 31− 12i+ 2i2 − 12j + 2ij + j2 + 18k − 4ik − 4jk + 2k2

4(3 + k) ,

l
(2′)
i,j = 6− j + 2k,
ξ

(2′′)
i,j = 7− 2i− j + 2k

2 ,

χ
(2′′)
i,j = 31− 12i+ 2i2 − 12j + 2ij + j2 + 18k − 4ik − 4jk + 2k2

4(3 + k) ,

l
(2′′)
i,j = 6− i− j + 2k,
ξ

(3)
i,j = 4− i− j + k

2 ,

χ
(3)
i,j = 4 + i2 − 6j + j2 − 2jk − k2

4(3 + k) ,

l
(3)
i,j = 9− i− j + 3k,
ξ

(3′)
i,j = 4− i− j + k

2 ,

χ
(3′)
i,j = 31− 12i+ 2i2 − 12j + 2ij + j2 + 18k − 4ik − 4jk + 2k2

4(3 + k) ,

l
(3′)
i,j = 6− i+ 2k,
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ξ

(3′′)
i,j = 4− i− j + k

2 ,

χ
(3′′)
i,j = 31− 12i+ 2i2 − 12j + 2ij + j2 + 18k − 4ik − 4jk + 2k2

4(3 + k) ,

l
(3′′)
i,j = 3− j + k.

Since l is the dimension of ψ2(L(ξ, χ))top, it must be a positive integer. If k = −3 + p/3, with
(p, 3) = 1, p > 3, the three triples described in the first part of the proposition are the only
ones among the solutions of the system corresponding to this restrictive condition. Similarly, if
k = −3 + p/4, (p, 2) = 1, p > 4, we find that only two triples satisfy the condition. �

Proposition 3.2.4. (a) Let k = −3 + p/3 with (p, 3) = 1, p > 3 then (G+
−2)p−2|0〉 belongs to

the maximal ideal of Wk(g, f).

(b) Let k = −3 + p/4 with (p, 2) = 1, p > 4 then (G+
−2)p−3|0〉 belongs to the maximal ideal of

Wk(g, f).

Proof. (a) For i = j = 1, we have l(1)
1,1 = p− 2. Since ξ(1)

1,1 = χ
(1)
1,1 = 0 and L0|0〉 = J0|0〉 = 0 the

correspondence |0〉 7→ |ξ(1)
1,1 , χ

(1)
1,1〉 yields the isomorphism

Wk(g, f) ' L(ξ(1)
1,1 , χ

(1)
1,1).

Moreover, ψ2(Wk(g, f))top is at most (p− 2)-dimensional because

hp−2(−2(2 + k), 2(2 + k)) = 0.

Hence, (G+
−2)p−2|0〉 = ψ2((G+

0 )p−2)|0〉 = 0.
(b) The argument is the same as in the previous case with l(1

′)
1,1 = p− 3 and ξ(1′)

1,1 = χ
(1′)
1,1 = 0.�

We are now in a position to state the main result of this section.

Proposition 3.2.5. Let M be a simple Wk(g, f)-module.

(a) If k = −3 + p/3 with (p, 3) = 1, p > 3, then the Wk(g, f)-module M is isomorphic to
L(ξ(s)

i,j , χ
(s)
i,j ) for ξ(s)

i,j and χ(s)
i,j as in Proposition 3.2.3(a) with 1 6 i 6 p− 2, 1 6 j 6 p− i− 1

and s ∈ {1, 2, 3}.

(b) If k = −3 + p/4 with (p, 2) = 1, p > 4, then the Wk(g, f)-module M is isomorphic
to L(ξ(s′)

i,j , χ
(s′)
i,j ) for ξ(s′)

i,j and χ
(s′)
i,j as in Proposition 3.2.3(b) with 1 6 i 6 p − 3 and

1 6 j 6 (p− i− 1)/2 if s = 1 or 1 6 i 6 p− 3 and 1 6 j 6 p− 2i− 1 if s = 2.

Proof. (a) Since M is a simple Wk(g, f)-module, there exist ξ, χ ∈ C such that M ∼= L(ξ, χ). By
Proposition 3.2.4, G+(z)p−2 = 0. Hence,

: G+(z)p−2 :def=
∑
n∈Z

((G+)p−2)nz−n−2 = 0.

In particular, (G+
0 )p−2|ξ, χ〉 = ((G+)p−2)0|ξ, χ〉 = 0. As a consequence, L(ξ, χ)top is at most

(p − 2)-dimensional. By Proposition 3.2.3(a), since ψ2(L(ξ, χ)) is a simple Wk(g, f)-module,
there exist 1 6 i, j 6 p− 2 and s ∈ {1, 2, 3} such that ξ = ξ

(s)
i,j and χ = χ

(s)
i,j . In the same way,
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ψ4(L(ξ, χ)) is a simple Wk(g, f)-module and there are 1 6 l,m 6 p− 2 and r ∈ {1, 2, 3} such that
ψ2(ξ) := ξ+(i−1)+(j−1)−2(2+k) = ξ

(r)
l,m and ψ2(χ) := χ−2ξ−2(i−1)−(j−1)+2(2+k) = χ

(r)
l,m.

The ψ2-action permutes the three forms of the eigenvalues ξ and χ:

ψ2(L(ξ(1)
i,j , χ

(1)
i,j )) ' L(ξ(2)

p−i−j,i, χ
(2)
p−i−j,i),

ψ2(L(ξ(2)
i,j , χ

(2)
i,j )) ' L(ξ(3)

i,p−i−j , χ
(3)
i,p−i−j),

ψ2(L(ξ(3)
i,j , χ

(3)
i,j )) ' L(ξ(1)

p−i−j,j , χ
(1)
p−i−j,j).

The condition j 6 p− i− 1 comes from 1 6 l,m 6 p− 2.
(b) The argument is quite similar. By Proposition 3.2.3(b), G+(z)p−3 = 0 and L(ξ, χ)top is

at most (p− 3)-dimensional. Moreover, since ψ2(L(ξ, χ)) and ψ4(L(ξ, χ)) are simple Wk(g, f)-
modules, ξ = ξ

(s′)
i,j , χ = χ

(s′)
i,j , ψ2(ξ) = ξ

(r′)
l,m and ψ2(χ) = χ

(r′)
l,m with 1 6 i, j, l,m 6 p − 3,

r, s ∈ {1, 2}. On the contrary of the first case, the ψ2-action preserves the form of the eigenvalues
ξ and χ:

ψ2(L(ξ(1′)
i,j , χ

(1′)
i,j )) ' L(ξ(1′)

p−i−2j,j , χ
(1′)
p−i−2j,j),

ψ2(L(ξ(2′)
i,j , χ

(2′)
i,j )) ' L(ξ(2′)

i,p−2i−j , χ
(2′)
i,p−2i−j).

If s = 1, the condition p− i− 2j > 1 implies j 6 p−i−1
2 , and if s = 2, we get j 6 p− 2i− 1 with

the same argument. �

Remark 3.2.6. The simple Wk(g, f)-modules L(ξ(s)
i,j , χ

(s)
i,j ) of Proposition 3.2.5 are all mutually

non-isomorphic since their highest weights are distinct.

Remark 3.2.7. For k = −3 + p/3, with (p, 3) = 1, p > 3, or k = −3 + p/4, with (p, 2) = 1, p > 4,
the application ψ is a bijection of the set of the simple Wk(g, f)-modules L(ξ(s)

i,j , χ
(s)
i,j ) described

in Proposition 3.2.5 over itself of inverse ψ5 if k is principal admissible, and ψ3 otherwise. We
describe below the L(ξ(s)

i,j , χ
(s)
i,j ) orbits under the ψ-action:

• if k = −3 + p/3 with (p, 3) = 1, p > 3, then

L(ξ(1)
i,j , χ

(1)
i,j ) ψ→ L(ξ(3)

j,p−i−j , χ
(3)
j,p−i−j)

ψ→ L(ξ(2)
p−i−j,i, χ

(2)
p−i−j,i)

ψ→ L(ξ(1)
i,p−i−j , χ

(1)
i,p−i−j)

ψ→ L(ξ(3)
p−i−j,j , χ

(3)
p−i−j,j)

ψ→ L(ξ(2)
j,i , χ

(2)
j,i )) ψ→ L(ξ(1)

i,j , χ
(1)
i,j ),

• if k = −3 + p/4 with (p, 2) = 1, p > 4, then

L(ξ(1′)
i,j , χ

(1′)
i,j ) ψ→ L(ξ(2′)

j,p−i−2j , χ
(2′)
j,p−i−2j)

ψ→ L(ξ(1′)
p−i−2j,j , χ

(1′)
p−i−2j,j)

ψ→ L(ξ(2′)
j,i , χ

(2′)
j,i ) ψ→ L(ξ(1′)

i,j , χ
(1′)
i,j ).

3.3 Proof of the rationality of Wk(sp4, fsubreg) at admissible
levels

This section is devoted to the proof of the Theorem 3.1. Unfortunately, contrary to the case
where f = fmin is minimal, the functor H0

f (?) appearing in the construction of W-algebras
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(see Sect. 1.3.2) is not exact for f = fsubreg. To encounter the difficulty, we exploit techniques
developed in [21], when f is an even nilpotent element. We show that simple modules described
in Proposition 3.2.5 exist and that there are no nontrivial extension between them.

For the moment, let f be an even nilpotent of a simple Lie algebra g. Set

P0,+ := {λ ∈ ĥ, 〈λ, α∨〉 ∈ Z>0 for all α ∈ ∆0,+},

where ∆0,+ = ∆0 ∩ ∆+ with ∆0 the root system of (g0, h). Recall that Jλ ⊂ U(g) is the
annihilating ideal of the simple g-module L(λ) with highest weight λ ∈ h∗ (see Sect. 1.2.1).
The quotient H0

f (U(g)/Jλ) is a quotient algebra of the finite W-algebra U(g, f) = H0
f (U(g)).

For λ ∈ P0,+ ∩ Prk such that dimL(λ) is maximal, H0
f (U(g)/Jλ) has a unique simple module

denoted by EJλ [21, Theorem 7.7]. Let L(EJλ) = H0
f,−(L̂k(λ)) be the irreducible Ramond twisted

Wk(g, f)-module attached to EJλ (see Sect. 1.3.2).

Theorem 3.3.1 ([21]). Let k = −h∨ + p/q be an admissible number for g and pick f ∈ Oq.
Let λ ∈ P0,+ ∩ Prk. Then

H0
f (L̂k(λ)) ' L(EJ

λ− p
q
x0

).

In particular,
Wk(g, f) ' H0

f (Lk(g)) ' L(EJ− p
q
x0

).

In the case g = sp4 and f = fsubreg = e−η, we have ∆0,+ = {α2}, whence

P0,+ = {λ ∈ h∗ : 〈λ, α∨2 〉 ∈ Z>0} = C$1 + Z>0$2.

According Proposition 3.2.5, when k = −3 + p/3, with (p, 3) = 1, p > 3, or k = −3 + p/4, with
(p, 2) = 1, p > 4, if M is a simple Wk(g, f)-module, then it is isomorphic to L(ξ(s)

i,j , χ
(s)
i,j ) with ξ(s)

i,j

and χ(s)
i,j as described in Proposition 3.2.3. The following assertion ensures the reverse.

Proposition 3.3.2. Let k, ξ(s)
i,j and χ(s)

i,j be as in Proposition 3.2.5, then L(ξ(s)
i,j , χ

(s)
i,j ) is a simple

Wk(g, f)-module.

Proof. The computation depends on whether k is principal admissible of coprincipal admissible,
but the argument is very similar in both cases. We only detail the case k = −3 + p/3, with
(p, 3) = 1, p > 3. For 1 6 i 6 p− 2 and 1 6 j 6 p− i− 1, set λi,j = (j − 1)$1 + (i− 1)$2. We
check that λi,j ∈ P0,+ ∩ Prk. By Theorem 3.3.1,

H0
f (L̂k(λi,j)) ' L(EJ

λi,j−
p
3 x0

).

The minimal L0-eigenvalue hλi,j− p3x0 , called the conformal dimension of L(EJ
λi,j−

p
3 x0

), is given
by [21, (7.4)]:

hλi,j− p3x0 =
(λi,j − p

3x0|λi,j − p
3x0 + 2ρ)

2(k + h∨) − k + h∨

2 |x0|2 + (x0|ρ)

= −15 + 3i2 + 6ij + 6j2 + 6p− 2ip− 4jp
4p = χ

(1)
i,j .

Besides, using the identification between Ramond twisted and non-twisted representation (1.14)
for J(z) = J{α2}(z), we get that ŵ0t̂−x0J

{α2}(z)R = −J{α2}(z). We deduce that the lowest



3.3. Proof of the rationality of Wk(sp4, fsubreg) at admissible levels 43

J0-eigenvalue is
(λi,j −

p

3x0| −
α∨2
2 ) = 1− i

2 = ξ
(1)
i,j .

In conclusion,
L(EJ

λi,j−
p
3 x0

) ' L(ξ(1)
i,j , χ

(1)
i,j ). (3.3)

Thus, L(ξ(1)
i,j , χ

(1)
i,j ) is a simple Wk(g, f)-module for all 1 6 i 6 p − 2 and 1 6 j 6 p − i − 1. If

s = 2 or 3, using the ψ-action on the module L(ξ(s)
i,j , χ

(s)
i,j ), it always comes down to a module

L(ξ(1)
i′,j′ , χ

(1)
i′,j′). As a consequence, L(ξ(s)

i,j , χ
(s)
i,j ) is a simple module of Wk(g, f) too. �

Lemma 3.3.3. Suppose that there is a nontrivial extension of Wk(g, f)-modules,

0 −→ L(ξ, χ) ι−→M
π−→ L(ξ′, χ′) −→ 0.

Then L0 acts locally finitely on M .
Proof. Suppose there is a nontrivial extension

0 −→ L(ξ, χ) ι−→M
π−→ L(ξ′, χ′) −→ 0.

Since Wk(g, f) is lisse, L := L(ξ, χ) and L′ := L(ξ′, χ′) are L0-diagonalizable and the L0-
eigenspaces are finite dimensional. Let m ∈M . Since π(m) ∈ L′, there exist w1, . . . , ws ∈ L′ and
µ1, . . . , µs ∈ C such that L0wj = µjwj for all 1 6 j 6 s and

∏s
j=1(L0 − µj id)π(m) = 0. Then

π(
s∏
j=1

(L0 − µj id)m) = 0.

As a consequence,
∏s
j=1(L0 − µj id)m ∈ im ι. Let m1 ∈ L such that ι(m1) =

∏s
j=1(L0 − µj id)m.

As before, there are v1, . . . , vr ∈ L and ν1, . . . , νr ∈ C such that
∏r
i=1(L0 − νi id)m1 = 0. Then

ι(
r∏
i=1

(L0 − νi id)m1) = 0 =
r∏
i=1

(L0 − νi id)ι(m1) =
r∏
i=1

(L0 − νi id)
s∏
j=1

(L0 − µj id)m.

Hence, m belongs to some L0-stable finite dimensional vector subspace of
r⊕
i=1

ker(L0 − νi id)⊕
s⊕
j=1

ker(L0 − µj id).
�

Lemma 3.3.4. If there exists a nontrivial extension of Wk(g, f)-modules

0 −→ L(ξ, χ) ι−→M
π−→ L(ξ′, χ′) −→ 0,

then χ and χ′ coincide modulo Z.
Proof. Suppose that there is a nontrivial extension

0 −→ L(ξ, χ) ι−→M
π−→ L(ξ′, χ′) −→ 0.

As in the previous proof, set L := L(ξ, χ) and L′ := L(ξ′, χ′). For d ∈ C, let Md be the
generalized L0-eigenspace of M attached to the eigenvalue d. Set M [d] :=

⊕
d′∈d+ZMd′ . It is
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a Wk(g, f)-submodule of M . Then M =
⊕

d∈C,
06Re(d)<1

M [d] is a direct sum decomposition of

the Wk(g, f)-modules of M . For any d, the previous decomposition induces the following exact
sequence

0 −→ L[d] −→M [d] −→ L′[d] −→ 0. (3.4)

Assume χ − χ′ /∈ Z. Since L[d] = 0 if d − χ /∈ Z, and L[d′] = 0 if d′ − χ′ /∈ Z, we get that
M = M [χ]⊕M [χ′]. Taking d = χ and d = χ′ in (3.4) we get

0 −→ L[χ] −→M [χ] −→ 0,
0 −→M [χ′] −→ L′[χ′] −→ 0.

Finally, M = L[χ] ⊕ L′[χ′] = L ⊕ L′ since L and L′ are simple modules. So the sequence
0→ L→M → L′ → 0 splits, whence a contradiction. �

Proposition 3.3.5. Suppose that either k = −3 + p/3 with (p, 3) = 1, p > 3, or k = −3 + p/4
with (p, 2) = 1, p > 4. Then

Ext1
Wk(g,f) -Mod(L(ξ(s)

i,j , χ
(s)
i,j ), L(ξ(s′)

i′,j′ , χ
(s′)
i′,j′)) = 0,

where ξ(s)
i,j and χ(s)

i,j are described in Proposition 3.2.5.

Proof. Assume k = −3+p/3 with (p, 3) = 1, p > 3. It clearly appears that for all 1 6 i, i′ 6 p−2,
1 6 j 6 p − i − 1 and 1 6 j′ 6 p − i′ − 1, the differences χ(2)

i,j − χ
(1)
i′,j′ and χ

(3)
i,j − χ

(1)
i′,j′ are not

integers. According to Lemma 3.3.4, any extension

0 −→ L(ξ(s)
i,j , χ

(s)
i,j ) −→M −→ L(ξ(s′)

i′,j′ , χ
(s′)
i′,j′) −→ 0,

where exactly one of s, s′ is equal to 1 is trivial. Applying ψ we deduce that if s 6= s′ then

Ext1
Wk(g,f) -Mod(L(ξ(s)

i,j , χ
(s)
i,j ), L(ξ(s′)

i′,j′ , χ
(s′)
i′,j′)) = 0.

Suppose that s = s′. Using the ψ-action, we can assume that s = s′ = 1. According to (3.3),
since Wk(g, f) is lisse, it suffices to show that there is no nontrivial extension

0 −→ L(EJ
λi,j−

p
3 x0

) ι−→M
π−→ L(EJ

λ
i′,j′−

p
3 x0

) −→ 0. (3.5)

Set Li,j := L(EJ
λi,j−

p
3 x0

) and Li′,j′ := L(EJ
λ
i′,j′−

p
3 x0

). If χ(1)
i,j = χ

(1)
i′,j′ , since the Zhu algebra

A(Wk(g, f)) is semisimple, the sequence

0 −→ (Li,j)top −→Mtop −→ (Li′,j′)top −→ 0

of A(Wk(g, f))-modules splits. Applying the Zhu induction functor we get that (3.5) splits.
Let us suppose χ(1)

i,j > χ
(1)
i′,j′ . Set Mi′,j′ := M(EJ

λ
i′,j′−

p
3 x0

). Let v+ be a primitive vector of

Mi′,j′ and v ∈M be such that π(v) is the image of v+ in Li′,j′ . We have π((L0 − χ(1)
i′,j′ id)v) =

(L0 − χ
(1)
i′,j′ id)π(v) = 0. Hence, (L0 − χ

(1)
i′,j′ id)v ∈ im ι. Since im ι ' Li,j and χ

(1)
i,j > χ

(1)
i′,j′ ,

(L0 − χ(1)
i′,j′ id)v 6= 0. As a consequence, there exists an injective Wk(g, f)-module homomorphism

f : Mi′,j′ →M such that the diagram commutes:
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Mi′,j′

M Li′,j′

f

Let us suppose that the sequence (3.5) does not split. The module f(Mi′,j′) is a submodule of M .
As a consequence, since Li,j ' ι(Li,j) is simple, either ι(Li,j) ⊂ f(Mi′,j′) or ι(Li,j)⊕ f(Mi′,j′).
However, if ι(Li,j)⊕ f(Mi′,j′) then the sequence

0 −→ Li,j −→ ι(Li,j)⊕ f(Mi′,j′) −→ Li′,j′ −→ 0

splits contradicting the fact that the sequence (3.5) does not split. Hence, ι(Li,j) ⊂ f(Mi′,j′).
Let m ∈ M . Since π is surjective, it exists m1 ∈ Mi′,j′ such that π(m) = π ◦ f(m1). Thus,
m − f(m1) ∈ kerπ. We get m ∈ ι(Li,j) ⊂ f(Mi′,j′). Therefore, f is surjective. It implies that
M is isomorphic to Mi′,j′ as Wk(g, f)-modules. Hence, [Mi′,j′ : Li,j ] 6= 0. By [21, Theorem 7.6],
this happens only if it exists µ ∈ P0,+ such that [M̂k(λi′,j′ − p

3x0) : L̂k(µ− p
3x0)] 6= 0, where

M̂k(λi′,j′ − p
3x0) is the Verma module of g with highest weight λ̂i′,j′ − p

3x0, and EJ
λi,j−

p
3 x0

is a
direct summand of HLie

0 (L(µ − p
3x0))1. The first condition implies that µ ∈ W ◦ λi′,j′ and we

get λi,j ∈ W ◦ µ from the second one. Hence, λi,j ∈ W ◦ λi′,j′ . Since λ̂i,j and λ̂i′,j′ are both
dominant they are equal, and λi,j = λi′,j′ contradicting χ(1)

i,j > χ
(1)
i′,j′ . Finally if χ(1)

i,j < χ
(1)
i′,j′ by

applying the duality functor to (3.5) we are back to the previous case χ(1)
i,j > χ

(1)
i′,j′ .

The argument for the coprincipal case is the same. �

Propositions 3.2.5 and 3.3.2 give the complete classifications of simple Wk(g, f)-modules when
k is an admissible level appearing in Theorem 3.1. When k is principal admissible, we list exactly
3(p−1)(p−2)/2 irreducible representations, and (p−1)(p−3)/2 when k is coprincipal admissible.
Example 3.3.6. Let k = − 5

3 . There exist nine simple W− 5
3
(g, f)-modules. We describe below the

two orbits under the action of ψ:

L(0, 0) ψ→ L

(
−1

3 ,
1
6

)
ψ→ L

(
−2

3 ,
2
3

)
ψ→ L

(
0, 1

2

)
ψ→ L

(
−1

3 ,
2
3

)
ψ→ L

(
1
3 ,

1
6

)
ψ→ L(0, 0),

L

(
−1

2 ,
7
16

)
ψ→ L

(
1
6 ,

5
48

)
ψ→ L

(
−1

6 ,
5
48

)
ψ→ L

(
−1

2 ,
7
16

)
.

A vertex algebra V is positive [21] if every irreducible V -modules besides V itself has positive
conformal dimension. In our setting,Wk(g, f) is positive if χ(s)

i,j > 0 for all k, s, i, j as in Proposition
3.2.5. We observe the vertex algebras W− 5

3
(g, f), W− 4

3
(g, f), W− 7

4
(g, f) and W− 5

4
(g, f) are

positive.
If V is unitary ([52, Sect. 2]) then it is unitary as a module of the Virasoro subalgebra generated

by the conformal vector as well. This forces the conformal dimension to be non-negative. In
particular, it is a positive vertex algebra. We expect the following:

1Here, HLie
• denotes the usual Lie algebra homology functor and M 7→ HLie

0 (M) defines a correspondence
between the subcategory of the category O of g-modules which are integrable as g0-modules and the category of
the finite dimensional representations of U(g, f) [14, Sect. 5].
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Conjecture 3.3.7. At level k ∈ {− 5
3 ,−

4
3 ,−

7
4 ,−

5
4}, the vertex algebra Wk(sp4, fsubreg) is uni-

tary.

Remark 3.3.8. For the other admissible levels as in Theorem 3.1, that is for k = −3 + p/3 with
(p, 3) = 1 and p > 6, or k = −3+p/4 with (p, 2) = 1 and p > 8, the vertex algebraWk(sp4, fsubreg)
is not positive because χ(1)

1,2 = −1 + 6
p and χ(1′)

1,2 = −1 + 8
p are negative.

3.4 Action of the component group of Osubreg over simple
Wk(sp4, fsubreg)-modules

Let g\ be the centralizer of the sl2-triple {e, h, f}. As we saw in Sect. 2.2, it is a Lie subalgebra of
g. We denote by G\ the stabilizer in the adjoint group G of {e, h, f}. This group is not necessary
connected, so denote (G\)◦ its identity component. The component group of G\ is the quotient
group:

A(Of ) := G\/(G\)◦.

The component group of G\ coincides with the one of Gf the centralizer of f in G:

A(Of ) ' Gf/(Gf )◦.

We refer to [39, Chap.3] for general facts on the component group A(Of ).
Realize sp4 as in Sect. 2.1.2. The adjoint group of sp4 is the quotient PSp4 = Sp4/{±I4}

where Sp4 is the set of 4-size square matrices g such that gJ4g
T = J4 and In denotes the n-size

square identity matrix. Fix an sl2-triple {e, h, f} such that f ∈ Osubreg. One may assume that

f =
(

0 0
−I2 0

)
, e =

(
0 I2
0 0

)
, and h =

(
I2 0
0 −I2

)
.

Then the centralizer gf is generated by the matrices f , f1, fθ and h2 where

f1 =


0 0 0 0
0 0 0 0
0 −1 0 0
0 0 0 0

 , fθ =


0 0 0 0
0 0 0 0
0 0 0 0
−1 0 0 0

 , and h2 = diag(1,−1, 1,−1).

Moreover, the stabilizer in G of the sl2-triple {e, h, f} is given by

G\ =
{(

A 0
0 A

)
, AU2A

T = U2

}
' O(2),

where U2 =
(

0 1
1 0

)
. Hence, A(Osubreg) ' O(2)/SO(2) = {I4, U} ' Z/2Z, where U =(

U2 0
0 U2

)
. Then U acts on gf by

U.f = f, U.h2 = −h2, U.f1 = fθ and U.fθ = f1.

It induces an automorphism Φ of Wk(g, f) defined by

Φ(L) = L, Φ(J) = −J, and Φ(G±) = G∓.
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Remark 3.4.1. For U ∈ Gf , denote Ū its image in the component group A(Osubreg). Setting the
convention that J{cx} = cJ{x} for any strong generator J{x} and c ∈ C, we notice that A(Osubreg)
acts on Wk(g, f) by

Ū .J{x} = J{U.x},

where U.x = UxU−1 for all U ∈ Gf .
For any nilpotent element f in a simple Lie algebra g. The correspondence of the strong

generators with a good basis of the centralizer gf leads us to strongly believe that the action of
the component group A(Of ) on gf induces an action on Wk(g, f) defined as above.

Remark 3.4.2. We can describe all automorphisms of Wk(g, f) using OPEs. Indeed, an auto-
morphism of Wk(g, f) is an isomorphism of conformal vertex algebra. It preserves OPEs, the
conformal vector and the conformal weights. Thus, any automorphism of W(sp4, fsubreg) is of
the form Φ+

α or Φ−α , α ∈ C∗, where

Φ±α (J) = ±J, Φ±α (G+) = αG± and Φ±α (G−) = 1
α
G∓.

With this notation we have Φ = Φ−1 .

Theorem 3.4.3. Suppose that k is an admissible level. The automorphism Φ induces an action
on the set of simple Wk(g, f)-modules:

Φ(L(ξ(s)
i,j , χ

(s)
i,j )) ' L(−(ξ(s)

i,j + i− 1), χ(s)
i,j ).

Moreover, Φ is an involution (i.e. Φ2 = id) which preserves pairwise the simple modules of the
first form. If k is principal admissible then Φ induces a one-to-one correspondence between the
modules of the second form and those of the third form. If k is coprincipal admissible, Φ induces
an action of the simple modules of the second form (remember that there is only two forms of
simple modules in this case).

Proof. Let L(ξ(s)
i,j , χ

(s)
i,j ) be a simple module of Wk(g, f). Since Φ fixes L, the L0-weights of

L(ξ(s)
i,j , χ

(s)
i,j ) remain unchanged and so the top-component of the simple module under the action

of Φ(Wk(g, f)) is still spanned by the vectors (G+
0 )m|ξ(s)

i,j , χ
(s)
i,j 〉, 0 6 m 6 i− 1. Moreover,

−J0(G+
0 )m|ξ(s)

i,j , χ
(s)
i,j 〉 = −(ξ +m)(G+

0 )m|ξ(s)
i,j , χ

(s)
i,j 〉

for all m. Then the smallest eigenvalue of −J0 in the top-component is −(ξ + i− 1) associated
with the vector (G+

0 )i−1|ξ(s)
i,j , χ

(s)
i,j 〉. Hence,

Φ(L(ξ(s)
i,j , χ

(s)
i,j )) ' L(−(ξ(s)

i,j + i− 1), χ(s)
i,j ).

If s = 1, 1′ then ξ(s)
i,j = 1−i

2 and −(ξ(s)
i,j + i − 1) = ξ

(s)
i,j . Thus, Φ(L(ξ(s)

i,j , χ
(s)
i,j )) ' L(ξ(s)

i,j , χ
(s)
i,j )

for s = 1, 1′. Moreover, suppose that k is principal admissible then

Φ(L(ξ(2)
i,j , χ

(2)
i,j )) ' L(ξ(3)

i,p−i−j , χ
(3)
i,p−i−j) and Φ(L(ξ(3)

i,p−i−j , χ
(3)
i,p−i−j)) ' L(ξ(2)

i,j , χ
(2)
i,j ),

and, if k is coprincipal admissible,

Φ(L(ξ(2′)
i,j , χ

(2′)
i,j )) ' L(ξ(2′)

i,p−2i−j , χ
(2′)
i,p−2i−j).
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In particular, Φ is an involution. �

Remark 3.4.4. It seems that exceptionalW-algebrasWk(sp4, fsubreg) are the first known examples
of rational W-algebras such that the corresponding component group acts non-trivially on the set
of simple Wk(g, f)-modules.

Example 3.4.5. Let k = −5/3. We described in Example 3.3.6 the nine simple W−5/3(g, f)-
modules. There Φ fixes the modules L(0, 0), L

(
0, 1

2
)
and L

(
− 1

2 ,
7
16
)
and permutes the others as

follows:

L

(
−1

3 ,
1
6

)
Φ↔ L

(
1
3 ,

1
6

)
,

L

(
−2

3 ,
2
3

)
Φ↔ L

(
−1

3 ,
2
3

)
,

L

(
1
6 ,

5
48

)
Φ↔ L

(
−1

6 ,
5
48

)
.

3.5 Character of admissible highest weight modules
From now one k denotes a admissible level of the form k = −3 + p/3 with (p, 3) = 1, p > 3 or
k = −3 + p/4 with (p, 2) = 1, p > 4.

The intersection hf = gf ∩ h is one-dimensional, generated by α∨2 viewed as an element of
h, and J = J{α2}. Following [73], for any simple Wk(g, f)-modules L(ξ(s)

i,j , χ
(s)
i,j ) described in

Proposition 3.2.5, one associates the formal character

ch
L(ξ(s)

i,j
,χ

(s)
i,j

)(q, z) := tr
L(ξ(s)

i,j
,χ

(s)
i,j

) q
L0zJ0 =

∑
d∈χ(s)

i,j
+Z>0,

a∈ξ(s)
i,j

+Z

dimL(ξ(s)
i,j , χ

(s)
i,j )a,dqdza,

where q = e2πiτ and z = e−2πiν , ν ∈ C.
Recall from the proof of Proposition 3.3.2 that the simple modules L(ξ(1)

i,j , χ
(1)
i,j ) (if k is

principal) and L(ξ(1′)
i,j , χ

(1′)
i,j ) (if k is coprincipal) corresponds to some highest weight ĝ-modules

L(ξ(s)
i,j , χ

(s)
i,j ) ' H0

f (L̂k(λ(s)
i,j )), (3.6)

with s = 1, 1′ and λ(s)
i,j := λi,j = (j − 1)$1 + (i− 1)$2 ∈ P0,+.

Proposition 3.5.1. (a) Let k = −3 + p/3 with (p, 3) = 1, p > 3, and ξ(1)
i,j and χ(1)

i,j be as in
Proposition 3.2.5(a) such that L(ξ(1)

i,j , χ
(1)
i,j ) is a simple Wk(g, f)-module. Then

ch
L(ξ(1)

i,j
,χ

(1)
i,j

)(q, z) = qχ
(1)
i,j
−ξ(1)

i,j
+j−1∏

n∈Z>0
(1− qn)2

∏
n∈Z>0

(1− qn−1z)−1(1− qnz−1)−1

×
∑

w∈Ŵ (kΛ0)

ε(w)q−(w◦λ̂i,j |D+x0)z−(w◦λ̂i,j |
α∨2

2 ).
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(b) Let k = −3 + p/4 with (p, 2) = 1, p > 4, and ξ(1′)
i,j and χ(1′)

i,j be as in Proposition 3.2.5(b)
such that L(ξ(1′)

i,j , χ
(1′)
i,j ) is a simple Wk(g, f)-module. Then

ch
L(ξ(1′)

i,j
,χ

(1′)
i,j

)(q, z) = qχ
(1′)
i,j
−ξ(1′)

i,j
+j−1∏

n∈Z>0
(1− qn)2

∏
n∈Z>0

(1− qn−1z)−1(1− qnz−1)−1

×
∑

w∈Ŵ (kΛ0)

ε(w)q−(w◦λ̂i,j |D+x0)z−(w◦λ̂i,j |
α∨2

2 ).

Proof. It is an immediate consequence of [76, Theorem 6.2] that for λ ∈ P0,+, Hi
f (L̂k(λ)) = 0

for all i 6= 0. Hence, ch
H•
f

(L̂k(λ(s)
i,j

)) = ch
H0
f
(L̂k(λ(s)

i,j
)). According to the isomorphism (3.6) and

Theorem 1.3.4, we get that for s = 1, 1′,

ch
L(ξ(s)

i,j
,χ

(s)
i,j

)(q, z) = ch
H•
f

(L̂k(λ(s)
i,j

))(q,−ν
α∨2
2 )

= q
(λ̂i,j |λ̂i,j+2ρ̂)

2(k+h∨)∏
n∈Z>0

(1− qn)2

∏
n∈Z>0

(1− qn−1z)−1(1− qnz−1)−1R̂ ch
L̂k(λ(s)

i,j
)(q, z)

= qχ
(s)
i,j

+(x0|λ̂i,j)∏
n∈Z>0

(1− qn)2

∏
n∈Z>0

(1− qn−1z)−1(1− qnz−1)−1

×
∑

w∈Ŵ (λ̂i,j)

ε(w)e2πi(w◦λ̂i,j |−τD−τx0−ν
α∨2

2 )

= qχ
(s)
i,j

+(x0|λ̂i,j)∏
n∈Z>0

(1− qn)2

∏
n∈Z>0

(1− qn−1z)−1(1− qnz−1)−1

×
∑

w∈Ŵ (kΛ0)

ε(w)q−(w◦λ̂i,j |D+x0)z−(w◦λ̂i,j |
α∨2

2 ). �

Using the ψ-action, it is possible to get a similar expression for the other simple Wk(g, f)-
modules. Indeed, since ψ is an isomorphism of vector spaces, it sends an eigenspace (L(ξ(s)

i,j , χ
(s)
i,j ))d,a

to an eigenspace (ψ(L(ξ(s)
i,j , χ

(s)
i,j )))d′,a′ . Because the minimal eigenvalues for ψ(L0) and ψ(J0) are

uniquely determined by χ(s)
i,j and ξ(s)

i,j , we denote without ambiguity

ψ(χ(s)
i,j ) = χ

(s)
i,j − ξ

(s)
i,j − (i− 1) + (2 + k)

2 ,

ψ(ξ(s)
i,j ) = ξ

(s)
i,j + (i− 1)− (2 + k).

Then L(ψ(ξ(s)
i,j ), ψ(χ(s)

i,j )) = ψ(L(ξ(s)
i,j , χ

(s)
i,j )).

Lemma 3.5.2. Let ξ(s)
i,j and χ

(s)
i,j be such that L(ξ(s)

i,j , χ
(s)
i,j ) is an irreducible Wk(g, f)-module

(see Proposition 3.2.5). For n ∈ Z>0 and a ∈ Z,

dim(L(ψ(ξ(s)
i,j ), ψ(χ(s)

i,j )))
ψ(χ(s)

i,j
)+n,ψ(ξ(s)

i,j
)+a = dim(L(ξ(s)

i,j , χ
(s)
i,j ))

χ
(s)
i,j

+n+a,ξ(s)
i,j

+a+i−1.
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Proof. Let m ∈ (L(ξ(s)
i,j , χ

(s)
i,j ))

χ
(s)
i,j

+n,ξ(s)
i,j

+a. Then

ψ(L0)m = (χ(s)
i,j − ξ

(s)
i,j + n− a+ 2 + k

2 )m = (ψ(χ(s)
i,j ) + n− a+ (i− 1))m,

ψ(J0)m = (ξ(s)
i,j + a− (2 + k))m = (ψ(ξ(s)

i,j ) + a− (i− 1))m.

Hence, (L(ξ(s)
i,j , χ

(s)
i,j ))

χ
(s)
i,j

+n,ξ(s)
i,j

+a ' (L(ψ(ξ(s)
i,j ), ψ(χ(s)

i,j ))
ψ(χ(s)

i,j
)+n−a+(i−1),ψ(ξ(s)

i,j
)+a−(i−1). �

Remark 3.5.3. By induction we get that for all n ∈ Z>0, a ∈ Z, if k = −3 + p/3, (p, 3) = 1, p > 3,
then

(L(ξ(s)
i,j , χ

(s)
i,j ))

χ
(s)
i,j

+n,ξ(s)
i,j

+a ' (ψ6(L(ξ(s)
i,j , χ

(s)
i,j )))

χ
(s)
i,j

+n,ξ(s)
i,j

+a

' (L(ξ(s)
i,j , χ

(s)
i,j )))

χ
(s)
i,j

+6ξ(s)
i,j

+n+6a+18(2+k),ξ(s)
i,j

+a+6(2+k),

and if k = −3 + p/4, (p, 2) = 1, p > 4, then

(L(ξ(s)
i,j , χ

(s)
i,j ))

χ
(s)
i,j

+n,ξ(s)
i,j

+a ' (ψ4(L(ξ(s)
i,j , χ

(s)
i,j )))

χ
(s)
i,j

+n,ξ(s)
i,j

+a

' (L(ξ(s)
i,j , χ

(s)
i,j )))

χ
(s)
i,j

+4ξ(s)
i,j

+n+4a+8(2+k),ξ(s)
i,j

+a+4(2+k).

Proposition 3.5.4. Let ξ(s)
i,j and χ(s)

i,j be such that L(ξ(s)
i,j , χ

(s)
i,j ) is a simple Wk(g, f)-module (see

Proposition 3.2.5). Then,

ch
ψ(L(ξ(s)

i,j
,χ

(s)
i,j

))(q, z) = q
2+k

2 z−(2+k) ch
L(ξ(s)

i,j
,χ

(s)
i,j

)(q, q
−1z).

Proof. Using Lemma 3.5.2 we get

ch
ψ(L(ξ(s)

i,j
,χ

(s)
i,j

))(q, z) =
∑
n∈Z>0
a∈Z

dim(ψ(L(ξ(s)
i,j , χ

(s)
i,j )))

ψ(χ(s)
i,j

)+n,ψ(ξ(s)
i,j

)+aq
ψ(χ(s)

i,j
)+nzψ(ξ(s)

i,j
)+a

=
∑
n∈Z>0
a∈Z

dim(L(ξ(s)
i,j , χ

(s)
i,j ))

χ
(s)
i,j

+n+a,ξ(s)
i,j

+a+i−1q
χ

(s)
i,j
−ξ(s)

i,j
−(i−1)+ 2+k

2 +nzξ
(s)
i,j

+(i−1)−(2+k)+a

= q
2+k

2 z−(2+k) ch
L(ξ(s)

i,j
,χ

(s)
i,j

)(q, q
−1z). �

Corollary 3.5.5. (a) Let k = −3 + p/3 with (p, 3) = 1, p > 3, s = 2, 3, and ξ(s)
i,j and χ(s)

i,j be
as in Proposition 3.2.5(a) such that L(ξ(s)

i,j , χ
(s)
i,j ) is a simple Wk(g, f)-module. Then

ch
L(ξ(2)

i,j
,χ

(2)
i,j

)(q, z) = qχ
(2)
i,j

+2p−2i− j+1
2 z−

2p
3∏

n∈Z>0
(1− qn)2

∏
n∈Z>0

(1− qn−1z)−1(1− qnz−1)−1

×
∑

w∈Ŵ (kΛ0)

ε(w)q−(w◦λ̂j,p−i−j |D+x0−α∨2 )z−(w◦λ̂j,p−i−j |
α∨2

2 )

= qχ
(2)
i,j

+2p−2i− j2 z−
2p
3 + 1

2∏
n∈Z>0

(1− qn)2

∏
n∈Z>0

(1− qn−1z)−1(1− qnz−1)−1



3.5. Character of admissible highest weight modules 51

×
∑
w∈W
η∈Q∨

ε(wt3η)q−(w(λj,p−i−j+ρ+pη)|x0−α∨2 )+3(η|λj,p−i−j+ρ)+ 3
2 |η|

2p z−(w(λj,p−i−j+ρ+pη)|
α∨2

2 ),

and

ch
L(ξ(3)

i,j
,χ

(3)
i,j

)(q, z) = − qχ
(3)
i,j

+p−j−1z−
p
3∏

n∈Z>0
(1− qn)2

∏
n∈Z>0

(1− qn−1z)−1(1− qnz−1)−1

×
∑

w∈Ŵ (kΛ0)

ε(w)q−(w◦λ̂p−i−j,i|D+x0−
α∨2

2 )z−(w◦λ̂p−i−j,i|
α∨2

2 )

= − qχ
(3)
i,j

+p−jz−
p
3 + 1

2∏
n∈Z>0

(1− qn)2

∏
n∈Z>0

(1− qn−1z)−1(1− qnz−1)−1

×
∑
w∈W
η∈Q∨

ε(wt3η)q−(w(λp−i−j,i+ρ+pη)|x0−
α∨2

2 )+3(η|λp−i−j,i+ρ)+ 3
2 |η|

2p z−(w(λp−i−j,i+ρ+pη)|
α∨2

2 ).

(b) Let k = −3 + p/4 with (p, 2) = 1, p > 4, and ξ(2′)
i,j and χ(2′)

i,j be as in Proposition 3.2.5(b)
such that L(ξ(2′)

i,j , χ
(2′)
i,j ) is a simple Wk(g, f)-module. Then

ch
L(ξ(2′)

i,j
,χ

(2′)
i,j

)(q, z) = − qχ
(2′)
i,j

+i+j−2z
p
4∏

n∈Z>0
(1− qn)2

∏
n∈Z>0

(1− qn−1z)−1(1− qnz−1)−1

×
∑

w∈Ŵ (kΛ0)

ε(w)q−(w◦λ̂j,i|D+x0+
α∨2

2 )z−(w◦λ̂j,i|
α∨2

2 )

= − qχ
(2′)
i,j

+i+jz
p
4 + 1

2∏
n∈Z>0

(1− qn)2

∏
n∈Z>0

(1− qn−1z)−1(1− qnz−1)−1

×
∑
w∈W
η∈Q∨

ε(wt4η)q−(w(λj,i+ρ+pη)|x0+
α∨2

2 )+4(η|λj,i+ρ)+2|η|2p z−(w(λj,i+ρ+pη)|
α∨2

2 ).

Proof. If k is principal admissible then the irreducible module L(ξ(3)
i,j , χ

(3)
i,j ) is isomorphic to

ψ(L(ξ(1)
p−i−j,i, χ

(1)
p−i−j,i)) whereas L(ξ(2)

i,j , χ
(2)
i,j ) is isomorphic to ψ2(L(ξ(1)

j,p−i−j , χ
(1)
j,p−i−j)). Hence,

ch
L(ξ(3)

i,j
,χ

(3)
i,j

)(q, z) = q
2+k

2 z−(2+k) ch
L(ξ(1)

p−i−j,i,χ
(1)
p−i−j,i)

(q, q−1z),

and

ch
L(ξ(2)

i,j
,χ

(2)
i,j

)(q, z) = q
2+k

2 z−(2+k) ch
L(ξ(3)

p−i−j,i,χ
(3)
p−i−j,i)

(q, q−1z)

= q2(2+k)z−2(2+k) ch
L(ξ(1)

j,p−i−j ,χ
(1)
j,p−i−j)

(q, q−2z).

If k is coprincipal admissible then the irreducible module L(ξ(1′)
j,i , χ

(1′)
j,i ) is isomorphic to ψ(L(ξ(2′)

i,j , χ
(2′)
i,j )).
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Hence,

ch
L(ξ(2′)

i,j
,χ

(2′)
i,j

)(q, z) = q
2+k

2 z(2+k) ch
L(ξ(1′)

j,i
,χ

(1′)
j,i

)(q, qz).

Moreover, if A(q, z) denotes the product∏
n∈Z>0

(1− qn−1z)−1(1− qnz−1)−1∏
n∈Z>0

(1− qn)2 ,

then A(q, q−1z) = −qz−1A(q, z), A(q, q−2z) = q3z−2A(q, z) and A(q, qz) = −zA(q, z). This
remark allows to complete the computation. �

We have already showed that the simple Wk(sp4, fsubreg)-modules with the form L(ξ(1)
i,j , χ

(1)
i,j )

(if k is principal admissible) and L(ξ(1′)
i,j , χ

(1′)
i,j ) (if k is coprincipal admissible) are isomorphic to

the zero-th homology of the H•f -reduction of certain highest weight ĝ-modules. We expect that
this result holds for all simple Wk(sp4, fsubreg)-modules. More precisely, we expect that for any
simple Wk(g, f)-module L(ξ(s)

i,j , χ
(s)
i,j ), it exists an admissible weight λ(s)

i,j ∈ ĥ∗ such that

H l
f (L̂k(λ(s)

i,j )) =
{
L(ξ(s)

i,j , χ
(s)
i,j ) if l = 0,

0 otherwise.

If such a weight exists then it satisfies the following equation:
ξ

(s)
i,j = Λ(s)

i,j (−α
∨
2
2 ) mod Z,

χ
(s)
i,j =

(Λ(s)
i,j |Λ

(s)
i,j + 2ρ)

2(k + h∨) − Λ(s)
i,j (x0) mod Z.

(3.7)

Solving this system for all pairs (ξ(s)
i,j , χ

(s)
i,j ), we get candidates for the weights λ(s)

i,j ∈ Q$1 + Q$2
which answer to the conjecture. For all 1 6 i 6 p− 2 and 1 6 j 6 p− i− 1,

λ
(2)
i,j ∈ {Λ

(2)+
i,j ,Λ(2)−

i,j }, where Λ(2)±
i,j = −6− 6i− 3j + 4p± (3j − 2p)

6 $1 + (2i+ j − 2p/3− 1)$2,

λ
(3)
i,j ∈ {Λ

(3)+
i,j ,Λ(3)−

i,j }, where Λ(3)±
i,j = −6− 3i− 3j + 3p± (3j − 3i− p)

6 $1 + (i+ j − p/3− 1)$2,

and for 1 6 i 6 p− 3 and 1 6 j 6 p− 2i− 1,

λ
(2′)
i,j ∈ {Λ

(2′)+
i,j ,Λ(2′)−

i,j }, where Λ(2′)±
i,j = −4− 4i− 2j + 2p± (2j − p)

4 $1 + (2i+ j − p/2− 1)$2

Among all of them we keep only the admissible ones. As a consequence, we set

λ
(2)
i,j = Λ(2)+

i,j = (−i+ p/3− 1)$1 + (2i+ j − 2p/3− 1)$2

λ
(3)
i,j = Λ(3)+

i,j = (−i+ p/3− 1)$1 + (i+ j − p/3− 1)$2,

and λ
(2′)
i,j = Λ(2′)+

i,j = (−i+ p/4− 1)$1 + (2i+ j − p/2− 1)$2.

Proposition 3.5.6. (a) Let k = −3 + p/3 with (p, 3) = 1, p > 3, s = 2, 3, and ξ(s)
i,j and χ(s)

i,j
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be as in Proposition 3.2.5(a) so that L(ξ(s)
i,j , χ

(s)
i,j ) is a simple Wk(g, f)-module. Then

ch
H•
f

(L̂k(λ(2)
i,j

))(q, z) = ch
L(ξ(2)

i,j
,χ

(2)
i,j

)(q, z), (3.8)

and
ch
H•
f

(L̂k(λ(3)
i,j

))(q, z) = ch
L(ξ(3)

i,j
,χ

(3)
i,j

)(q, z). (3.9)

(b) Let k = −3 + p/4 with (p, 2) = 1, p > 4, and ξ(2′)
i,j and χ(2′)

i,j be as in Proposition 3.2.5(b)
such that L(ξ(2′)

i,j , χ
(2′)
i,j ) is a simple Wk(g, f)-module. Then

ch
H•
f

(L̂k(λ(2′)
i,j

))(q, z) = ch
L(ξ(2′)

i,j
,χ

(2′)
i,j

)(q, z). (3.10)

Proof. We only detail the proof of (3.8). By Theorem 1.3.4,

ch
H•
f

(L̂k(λ(2)
i,j

))(q, z) = qχ
(2)
i,j

+ j−3
2∏

n∈Z>0
(1− qn)2

∏
n∈Z>0

(1− qn−1z)−1(1− qnz−1)−1

×
∑

w∈Ŵ (λ̂(2)
i,j

)

ε(w)q−(w(λ̂(2)
i,j

+ρ̂)−ρ̂|D+x0)z−(w(λ̂(2)
i,j

+ρ̂)−ρ̂|
α∨2

2 ).

Moreover, ∆̂(λ̂(2)
i,j ) = y

(
∆̂(kΛ0)

)
where y = −rα1rα2t−$∨1 ∈ Ŵ and Ŵ (λ̂(2)

i,j ) = {ywy−1 | w ∈

Ŵ (kΛ0)}. Hence,

ch
H•
f

(L̂k(λ(2)
i,j

))(q, z) = qχ
(2)
i,j

+ j−3
2∏

n∈Z>0
(1− qn)2

∏
n∈Z>0

(1− qn−1z)−1(1− qnz−1)−1

×
∑

w∈Ŵ (kΛ0)

ε(w)q−(y2wy
−1
2 (λ̂(2)

i,j
+ρ̂)−ρ̂|D+x0)z−(y2wy

−1
2 (λ̂(2)

i,j
+ρ̂)−ρ̂|

α∨2
2 )

= qχ
(2)
i,j

+2p−2i− j2 z−
2p
3 + 1

2∏
n∈Z>0

(1− qn)2

∏
n∈Z>0

(1− qn−1z)−1(1− qnz−1)−1

×
∑
w∈W
η∈Q∨

ε(wt3η)q((rα1rα2−2 id)w(−(λj,p−i−j+ρ)+pη)|$1)−3(η|λj,p−i−j+ρ)+ 3
2 |η|

2p

× z(rα1rα2w(−(λj,p−i−j+ρ)+pη)||
α∨2

2 )

= qχ
(2)
i,j

+2p−2i− j2 z−
2p
3 + 1

2∏
n∈Z>0

(1− qn)2

∏
n∈Z>0

(1− qn−1z)−1(1− qnz−1)−1

×
∑
w∈W
η∈Q∨

ε(wt−3η)q−((id +2rα1rα2 )w(λj,p−i−j+ρ+pη)|$1)+3(η|λj,p−i−j+ρ)+ 3
2 |η|

2p

× z−(w(λj,p−i−j+ρ+pη)||
α∨2

2 ).

In addition, for all w ∈W , (−rα1rα2w(λj,p−i−j + ρ+ pη)|$1) = (w(λj,p−i−j + ρ+ pη)|α
∨
2
2 ). As a
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consequence,

ch
H•
f

(L̂k(λ(2)
i,j

))(q, z) = qχ
(2)
i,j

+2p−2i+ j
2 z−

2p
3 + 1

2∏
n∈Z>0

(1− qn)2

∏
n∈Z>0

(1− qn−1z)−1(1− qnz−1)−1

×
∑
w∈W
η∈Q∨

ε(wt3η)q−(w(λj,p−i−j+ρ+pη)|x0−α∨2 )+3(η|λj,p−i−j+ρ)+ 3|η|2
2 p z−(w(λj,p−i−j+ρ+pη)|

α∨2
2 )

= ch
L(ξ(2)

i,j
,χ

(2)
i,j

)(q, z).

Formulas (3.9) and (3.10) are obtained with similar computations using that

∆̂(λ̂(3)
i,j ) = y

(
∆̂(kΛ0)

)
, with y = −t−($∨1 +$∨2 )/2,

and ∆̂(λ̂(2′)
i,j ) = y

(
∆̂(kΛ0)

)
, with y = rα1t−$∨1 /2. �

We are in a position to formulate a conjecture.

Conjecture 3.5.7. Let k be an admissible level. Then all the simpleWk(g, f)-modules L(ξ(s)
i,j , χ

(s)
i,j )

as in Proposition 3.2.5 are obtained from the Drinfeld-Sokolov reduction of a highest weight
ĝ-modules. More precisely,

(a) If k = −3 + p/3 with (p, 3) = 1, p > 3, and ξ(s)
i,j and χ(s)

i,j be as in Proposition 3.2.5(a), then

H l
f (L̂k(λ(s)

i,j )) =
{
L(ξ(s)

i,j , χ
(s)
i,j ) if l = 0,

0 else.

(b) If k = −3 + p/4 with (p, 2) = 1, p > 4, and ξ(s)
i,j and χ(s)

i,j be as in Proposition 3.2.5(b), then

H l
f (L̂k(λ(s)

i,j )) =
{
L(ξ(s)

i,j , χ
(s)
i,j ) if l = 0,

0 else.



Chapter4
On the simple modules of exceptional
W-algebras Wk(sp4, fmin)

In the previous chapter we proved the rationality of exceptional W-algebras Wk(sp4, fsubreg), an
analogous of the Bershadsky-Polyakov vertex algebra Wk(sl3, fmin) in type C. Another analogous
is the W-algebra Wk(sp4, fmin). The rationality of these exceptional W-algebras has been proved
recently by Creutzig-Linshaw [43] and also appears as a particular case of the conjecture of
Kac-Wakimoto and Arakawa proved in all generality by McRae [86]. However, both conceptual
proves do not provide the set of simple Wk(sp4, fmin)-modules. In this chapter, we give a explicit
realization of these modules as highest weight representations.

Since f := fmin is not an even nilpotent element, the usual conformal vector induces a
1
2Z-grading on Wk(sp4, fmin). Twisting it, we recover a conformal even grading of Wk(sp4, fmin)
(Sect. 4.1). At exceptional levels, we deduce that any positive energy representation is a highest
weight module depending on two complex parameters. However, the structure of Wk(sp4, fmin) is
more complicated to study than the one of Wk(sp4, fsubreg), so we need to change our approach
to the problem. Let say a few words on the strategy implemented in this chapter. Since Wk(g, f)
is a quotient of H0

f (Lk(g)), simple Wk(g, f)-modules are also simple H0
f (Lk(g))-modules. In

Sect. 4.2, we describe the set of simple H0
fmin

(Lk(sp4))-modules using Zhu’s correspondence and
the classification provided in [21]. We get an exhaustive list of candidates for the irreducible
positive energy representations of Wk(sp4, fmin). Moreover, they correspond to certain highest
weight representations of Wk(sp4, fmin). The realization of the simple H0

fmin
(Lk(sp4))-modules

is the key point to prove the simplicity of this vertex algebra (Theorem 4.3.2). The simplicity
of H0

f (Lk(g)) when it is non zero is a long-standing conjecture of Kac-Roan-Wakimoto [73, 78].
It has been verified in many cases [12, 14]. The classification of simple Wk(sp4, fmin)-modules
follows.

Theorem 4.1. Let f = fmin be a minimal nilpotent element of g = sp4. Then, for admissible
level k = −3+p/2, (p, 2) = 1, p > 4, H0

f (Lk(g)) ' Wk(g, f). Moreover, Proposition 4.2.3 provides
a complete classification of their simple modules.

The realization of simple Wk(sp4, fmin)-modules as highest weight representation is similar to
the one presented in Chap. 3. Zhu’s correspondence emphasizes their correspondence with to
Ramond twisted representations. Furthermore, since the functor H0

fmin
(?) is exact (see Sect. 1.3.2),

any simple Wk(sp4, fmin)-module corresponds to the reduction of a certain highest weight rep-

55
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resentation of ĝ. We conjecture (Conjecture 4.3.4), that each Ramond twisted representations
corresponds to the reduction of a certain highest weight representation of ĝ.

4.1 Twist conformal vector and even grading

In this chapter, fix f := fmin = e−θ that we embed in an sl2-triple (e, h, f) where h = θ. The
semisimple element x0 = θ/2 induces odd gradings on g and gf :

g = Cf ⊕ g−1/2 ⊕ g0 ⊕ g1/2 ⊕ Ce,

and
gf = Cf ⊕ gf−1/2 ⊕ gf0 .

As a consequence, the usual conformal vector L defines a 1
2Z-grading on the W-algebra Wk(g, f).

To recover a conformal Z-grading, we twist the field corresponding to L using the semisimplicity
of J . Set

L̃(z) = L(z) + 1
2∂J(z).

For all m ∈ Z, we have
L̃m = Lm −

m+ 1
2 Jm.

This defines a conformal vector of Wk(g, f) which induces a Z>0-grading. Its central charge is
given by

c̃k = −6(2 + k)(1 + 2k)
3 + k

.

The W-algebra Wk(g, f) is Z>0-graded with respect to L̃0. Since conformal weights of J , F+,
F−, G+ and G− are respectively 1, 0, 2, 1, and 2, we have:

J(z) =
∑
n∈Z

Jnz
−n−1, F+(z) =

∑
n∈Z

F+
n z
−n, F−(z) =

∑
n∈Z

F−n z
−n−2

G+(z) =
∑
n∈Z

G+
n z
−n−1, G−(z) =

∑
n∈Z

G−n z
−n−2, L̃(z) =

∑
n∈Z

L̃nz
−n−2.

We have the following commutation relations:

[Jm, Jn] = (1 + 2k)mδm+n,0,

[Jm, F±n ] = ±2F±m+n,

[F+
m , F

−
n ] = 1 + 2k

2 (m− 1)δm+n,0 + Jm+n,

[Jm, G±n ] = ±G±m+n,

[G±m, F∓n ] = G∓m+n

[L̃m, L̃n] = c̃k
12(m3 −m)δn+m,0 + (m− n)L̃m+n,

[L̃m, F+
n ] = −(m+ n)F+

m+n,

[L̃m, F−n ] = (m− n)F−m+n,

[L̃m, G+
n ] = −nG+

m+n,
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[L̃m, G−n ] = (m− n)G−m+n,

[L̃m, Jn] = − (1 + 2k)m(m+ 1)
2 δm+n,0 − nJm+n,

[G±m, G±n ] = ±2(2 + k)(m− n)F±m+n,

[G+
m, G

−
n ] = (1 + 2k)(2 + k)m(m− 1)δm+n,0 + (2(2 + k)m− (3 + 2k)(m+ n+ 1)) Jm+n

− 2(3 + k)L̃m+n + 4(F+F−)m+n + (J2)m+n.

where ∑
n∈Z

(J2)nz−n−2 def=: J(z)2 : , and
∑
n∈Z

(F+F−)nz−n−2 def=: F+(z)F−(z) : .

Similarly to the case where f is a subregular nilpotent element of sp4 (see Chap. 3), we can
describe irreducible positive energy representations with finite dimensional top component as
highest weight modules depending on two parameters.

Lemma 4.1.1. Let M be an irreducible positive energy representation of Wk(g, f) with respect
to the conformal vector L̃0, with Mtop = Mχ, χ ∈ C. Suppose that Mtop is finite dimensional.
Then there exist ξ ∈ C and a vector v ∈M such that L̃0v = χv, J0v = ξv and the below relations
hold:

Jnv = 0 for n > 0,
L̃nv = 0 for n > 0,
F+
n v = 0 for n > 0,

F−n v = 0 for n > 0,
G+
n v = 0 for n > 0,

G−n v = 0 for n > 0.

Moreover, M =
⊕

a∈ξ+Z
d∈χ+Z>0

Ma,d, where Ma,d = {m ∈ M | J0m = am, L̃0m = dm}, dimMξ,χ = 1

and Mtop = Mχ is spanned by the vectors (F+
0 )m(G+

0 )nv, m,n > 0.

Proof. The proof is identical to the demonstration of Lemma 3.1.1. �

In the following, L(ξ, χ) denotes the irreducible representation of Wk(g, f) generated by
the vector |ξ, χ〉 following the previous construction. Since L(ξ, χ)top is spanned by vectors
(F+

0 )m(G+
0 )n|ξ, χ〉, m,n ∈ Z>0, for any non negative integer N , the subspace L(ξ, χ)χ,ξ+N is

spanned by {
(F+

0 )N
′−`(G+

0 )2`|ξ, χ〉, (` = 0, . . . , N ′) if N = 2N ′,
(F+

0 )N
′−`(G+

0 )2`+1|ξ, χ〉, (` = 0, . . . , N ′) if N = 2N ′ + 1.

We have no guaranty that the previous family form basis of the vector space L(ξ, χ)χ,ξ+N . As a
consequence, if we assume that L(ξ, χ)top is finite dimensional, its dimension does not allow to
recover a basis of the vector space. In the current state, the argument of dimension we used in
the subregular case (see Sect. 3.1) fails and we need to find another approach.
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4.2 Irreducible positive energy representations of H0
f (Lk(g))

Let f be any nilpotent element in a simple Lie algebra g. Recall that irreducible positive
energy representations of H0

f (Lk(g)) are in one-to-one correspondence with simple module of
its Zhu’s algebra (see Sect. 1.1.3). It is more convenient to work in A(H0

f (Lk(g))). In [21],
Arakawa and van Ekeren prove that, for an admissible level k, isomorphism classes of simple
A(H0

f (Lk(g)))-modules are parameterized by [Prk◦] = Prk◦/ ∼, where

Prk◦ = {λ ∈ Prk | |∆(λ)| = dimN − dimOq},

with ∆(λ) = {α ∈ ∆ | 〈λ, α∨〉 ∈ Z}. Precisely, we have the following statement:

Theorem 4.2.1 ([21]). Let k = −h∨ + p/q be a admissible level such that f ∈ Oq then

A(H0
f (Lk(g))) '

∏
λ∈[Prk◦ ]

 ∏
E∈FinJλ (U(g,f))

E ⊗ E∗
 ,

where FinJλ(U(g, f)) denotes the set of isomorphism classes of finite dimensional simple U(g, f)-
module E such that AnnU(g)(Y ⊗U(g,f) E) = Jλ with U(g, f) ' EndU(g)(Y )op (see Sect. 1.3.2).
Then a complete set of isomorphism classes of simple A(H0

f (Lk(g)))-modules is given by the
disjoint union of isomorphism classes of FinJλ(U(g, f)) for λ through [Prk◦].

On the other hand, when f = fmin is a minimal nilpotent element of g, for each primitive
ideal I of the enveloping algebra U(g) satisfying VA(I) = Omin, there exists a unique (up to
isomorphism) finite-dimensional simple U(g, f)-module MI such that I = AnnU(g)(Y ⊗U(g,f)MI)
[90, Theorem 1.2]. When I = Jλ, λ ∈ h∗, denote EJλ the corresponding U(g, fmin)-module. Then

A(H0
f (Lk(g))) '

∏
λ∈[Prk◦ ]

EJλ ⊗ E∗Jλ ,

and isomorphism classes of its simple modules are in one-to-one correspondence with [Prk◦ ]. Denote
L(EJλ) be the corresponding simple H0

f (Lk(g))-module through the Zhu’s correspondence.
For the rest of this chapter, let g = sp4, f = fmin and consider an admissible level

k = −3 + p

2 , (p, 2) = 1, p > 4, (4.1)

then (f, k) is an exceptional pair and the W-algebra Wk(g, f) is lisse [17].

Lemma 4.2.2. Let f = fmin be a minimal nilpotent element of g = sp4. Then, for k = −3 + p/2,
(p, 2) = 1, p > 4, a complete set of representatives of the equivalent classes [Prk◦] is given by

[Prk◦] =
{

(λ1 − 1/2)$1 + λ2$2 | 0 6 λ1, λ2, λ1 + λ2 6
p− 5

2

}
Proof. Let k = −3 + p/2 with p > 4 and (p, 2) = 1. For such level,

Prk◦ = {λ ∈ Prk | |∆(λ)| = 4}
= {(λ1 − 1/2)$1 + λ2$2 ∈ Prk | λ1, λ2 ∈ Z}.
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Using that (λ1 − 1/2)$1 + λ2$2 + kΛ0 is admissible we get the following inequalities:

−p− 1
2 6 λ1 6

p− 3
2 ,

0 6 λ2 6 p− 2,

−p+ 1
2 6 λ1 + λ2 6

p− 5
2 ,

−1 6 2λ1 + λ2 6 p− 3.

In particular, −p−1
2 6 λ1 6

p−5
2 . Moreover, for any weight λ = (λ1 − 1/2)$1 + λ2$2 ∈ Prk◦, we

have
r1 ◦ (λ) = (−(λ+ 1)− 1/2)︸ ︷︷ ︸

>0

$1 + (2λ1 + λ2 + 1)$2.

As a consequence, we can consider only weights λ such that λ1 > 0. Other conditions follow. �

Since the vertex algebra H0
f (Lk(g)) is a quotient ofWk(g, f), we can regard simple H0

f (Lk(g))-
module as simple Wk(g, f)-modules. We deduce from Lemma 4.1.1, that they correspond to
highest weight representations L(ξ, χ) for certain (ξ, χ) ∈ C2.

Proposition 4.2.3. Let f = fmin be a minimal nilpotent element of g = sp4 and k = −3 + p/2,
(p, 2) = 1, p > 4. Then, for λ = (λ1 − 1/2)$1 + λ2$2 ∈ [Prk◦] ,

L(EJλ) ' L(χλ, ξλ),

with

ξλ = p− 5
2 − (λ1 + λ2), and χλ = 4λ2

1 + 2λ2
2 + 4λ1λ2 + 8λ1 + 3λ2 − 5− p(p− 6)

4p .

Moreover,
dimL(ξλ, χλ)top = (λ2 + 1)(2λ1 + λ2 + 2)

2 .

Proof. Let λ ∈ [Prk◦]. Since H0
f (Lk(g)) is a quotient of Wk(g, f), L(EJλ) is a simple Wk(g, f)-

module. From Lemma 4.1.1, it exists χλ, ξλ ∈ C such that

L(EJλ) ' L(ξλ, χλ).

We determine values of χλ and ξλ using the image EJλ ' L(ξλ, χλ)top in the finite W-algebra
U(g, f). According to [90, Theorem 7.1], there exists a unique highest weight module LU(g,f)(λ, c)
such that

EJλ ' LU(g,f)(λ, c),

where the Casimir element Ω of U(g) acts on LU(g,f)(λ, c) as c id with c = (λ|λ + 2ρ). It
follows from the construction of L that its image [L] in the finite W-algebra acts on EJλ as the
multiplication by

cL = c

2(k + h∨) −
1
2(λ|θ).

Moreover, [J ] acts semisimply on LU(g,f)(λ, c) and the eigenvalues of [J ] lie in {λ̂(θ∨−δ)−Z>0}. As
a consequence, J0 acts semisimply on the top component of the corresponding H0

f (Lk(g))-module
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L(ξλ, χλ)top with eigenvalues in {−λ̂(θ∨ − δ) + Z>0}. Hence,

ξλ = −λ̂(θ∨ − δ).

Finally, L̃0 = L0 − 1
2J0 acts on L(ξλ, χλ)top as the multiplication by

χλ = cL −
1
2ξλ.

In addition, by [90, Theorem 6.2], for λ ∈ [Prk◦], the dimension of L(ξλ, χλ)top is given by

dimL(ξλ, χλ)top =
∏
α∈∆s

+

(λ+ ρ|α)
(λ0 + ρ|α) ,

where ∆s
+ is the set of all short positive roots and λ0 = −1//2$1. �

Since the weight λ ∈ h∗ uniquely determines the pair (χλ, ξλ), we denote |λ〉 := |ξλ, χλ〉.

Example 4.2.4. For p = 5, the only simple H0
f (Lk(g))-module is L(0, 0).

For p = 7, there are three simple H0
f (Lk(g))-modules: L(1,−3/7), L(0, 0), and L(0,−1/7).

4.3 Classification of simple Wk(sp4, fmin)-modules
For any admissible level k = −3 + p/2, (p, 2) = 1, p > 4, Proposition 4.2.3 together with
Lemma 4.2.2 give a realization of any simple H0

fmin
(Lk(sp4))-module L(EJλ) as a highest weight

representation L(χλ, ξλ). We use this realization to prove that the simplicity of the vertex algebra
H0
fmin

(Lk(sp4)).
In the previous example (Example 4.2.4), χλ is never positive. In fact, given any admissible

weight k of the form (4.1), it is a general fact that for all λ ∈ [Prk◦], χλ is a non positive rational
number.

Lemma 4.3.1. Let f = fmin be a minimal nilpotent element of g = sp4 and k = −3 + p/2,
(p, 2) = 1, p > 4. For all λ ∈ [Prk◦], χλ 6 0.

Proof. Let λ = (λ1 − 1/2)$1 + λ2$2 ∈ [Prk◦], one verifies that

χλ = − (p− 5)(p− 1)
4p + (λ1 + λ2)2 + λ1(λ1 + 4) + 3λ2

2p .

Moreover, λ2 can be upper bounded using that λ1 + λ2 6 (p− 5)/2:

χλ 6 −
(p− 5)(p− 1)

4p + (p− 5)2

8 + 3(p− 5) + 2λ1(λ1 + 1)
4p

6
1
4p

(
−(p− 5)(p− 1) + (p− 5)2

2 + 3(p− 5) + (p− 5)(p− 1)
2

)
6 0. �

It follows that Wk(g, f) is semisimple.

Theorem 4.3.2. Let f = fmin be a minimal nilpotent element of g = sp4 and k = −3 + p/2,
(p, 2) = 1, p > 4. The vertex algebra H0

f (Lk(g)) is simple.
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Proof. Let N be a simple submodule of H0
f (Lk(g)). According to Proposition 4.2.3, N ' L(ξλ, χλ)

for a certain λ ∈ [Prk◦], whence N =
⊕

n∈Z>0
Nχλ+n. Moreover, H0

f (Lk(g)) is Z>0-graded by L0

H0
f (Lk(g)) =

⊕
n∈Z>0

H0
f (Lk(g))n.

Each graded component of N is contained in a graded component of H0
f (Lk(g)). In particular,

there exists n ∈ Z>0 such that Ntop ⊂ H0
f (Lk(g))n, thus χλ = n. However, by Lemma 4.3.1,

χλ 6 0. As a consequence, χλ = 0 and Ntop = H0
f (Lk(g))0 = C|0〉. Thus, N = H0

f (Lk(g)) is
simple. �

SinceWk(g, f) is a quotient of H0
f (Lk(g)), both vertex algebras are isomorphic. This proves ad-

ditional case of Kac-Roan-Wakimoto conjecture [73, 78]. Then we obtain a complete classification
of simple Wk(g, f)-modules.
Corollary 4.3.3. Let k = −3 + p/2, (p, 2) = 1, p > 4, then

Wk(g, f) ' H0
f (Lk(g)).

Moreover, the complete set of irreducible positive energy representations of Wk(g, f) is

{L(ξλ, χλ) | λ ∈ [Prk◦]},

where ξλ and χλ have been described in Proposition 4.2.3.

From the proof of Proposition 4.2.3, note that χλ = hλ− p2x0 −
1
2ξλ, where

hλ− p2x0 = |λ+ ρ|2 − |ρ|2

2(k + h∨) − k + h∨

2 |x0|2 + (x0, ρ).

In the case where f is an even nilpotent element, this correspond to the conformal dimension of
the Ramond twisted module L (EJ

λ− p
q
x0

) [21]. Moreover it has been showed that when λ satisfy

certain conditions, this Ramond twisted module is isomorphic to the reduction H0
f (L̂k(λ)) of the

highest weight ĝ-module L̂k(λ). This draws us to think about a possible similar construction for
odd nilpotent elements.

Since Wk(g, f) is a simple module over itself, there is a weight λ ∈ [Prk◦] such that

Wk(g, f) ' L(ξλ, χλ).

Let λ = k$1 ∈ [Prk◦ ]. We have ξλ = χλ = 0. The correspondence |0〉 7→ |λ〉 yields the isomorphism

Wk(g, f) ' L(ξλ, χλ) ' L(EJk$1
).

Moreover, Wk(g, f) ' H0
f (Lk(g)) ' H0

f (L(kΛ0)). The isomorphisms imposes an additional
condition on the possible correspondence. More precisely, we conjecture that:
Conjecture 4.3.4. Let f = fmin be a minimal nilpotent element of g = sp4 and k = −3 + p/2,
(p, 2) = 1, p > 4. For λ ∈ [Prk◦ ], L(EJλ) ' H0

f (L̂k(µλ)) for a certain µλ depending on λ, k and x0
and satisfying µk$1 = 0.

This conjecture is also supported by the exactness of the functorH0
fmin

(?) : Ok →Wk(g, fmin) -Mod
[12].
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Chapter5
Associated varieties of affine vertex
algebras and W-algebras associated with
sl4 at level k = −5/2

In this chapter we present interesting and quite surprising computations of associated varieties.
We start by computing the associated variety of a simple affine vertex algebra Lk(sl4) at the non
admissible level k = −5/2. We obtain that it is the adherence of some Jordan class.

Theorem 5.1. The associated variety of L−5/2(g) is the closure of the Jordan class of x0 ∈ g,

XL−5/2(g) = JG(x0),

where

x0 = 3h1 + 2h2 + h3 + eε2−ε4 =


3 0 0 0
0 −1 0 1
0 0 −1 0
0 0 0 −1

 .

Let x ∈ g and denote by x = xs + xn its Jordan decomposition with xs and xn the semisimple
and nilpotent components of x respectively. The centralizer gxs is a reductive Lie algebra and we
consider its center z(gxs). Let z(gxs)reg be the set of y in z(gxs) such that gy has the minimal
dimension. We define JG(x) the Jordan class of x to be the G-invariant, irreducible and locally
closed subset of g:

JG(x) := G.(z(gxs)reg + xn).

We refer to [93] for general facts about Jordan classes.
It is known that there are several families of pairs (g, k) such that XLk(g) is the closure of

some Jordan class. So, our example is not the first of this type. For instance, when k is a positive
integer or an admissible level, the associated variety of Lk(g) is known to be the closure of some
nilpotent orbit of g [17, 53], that is the Jordan class of a nilpotent element of g. Arakawa and
Moreau provided additional examples coming from the Deligne exceptional series that are also
of this form [28]. Moreover, in [29], they showed that Dixmier sheet closures – i.e. closures of
Jordan classes of semisimple elements – can also appear as associated varieties of simple affine

63
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vertex algebras. Recently, it has been proved [25] that the affine vertex algebra V k(g) is simple if
and only if the associated variety XLk(g) is g∗ ' g. This corresponds to the regular sheet, another
particular case of closure of Jordan class. More examples of this type have been computed [24].

The particularity of our result is that the associated variety XL−5/2(sl4) is the closure of a
Jordan class of an element in sl4 which is neither semisimple nor nilpotent. Sect. 5.1 is devoted
to prove Theorem 5.1. Part of the computation is based on the article of Adamović, Perše and
Vukorepa [7].

We would like to relate the previous computation to the description of the associated varieties
ofW-algebrasWk(sl4, f) at level k = −5/2. Since the subregular nilpotent orbit O(3,1) is included
in XL−5/2(sl4) (Proposition 5.1.4), W−5/2(sl4, fsubreg) is lisse, i.e. its associated variety is reduced
to {fsubreg}. We study the case where f is an element in the nilpotent orbit of sl4 corresponding
to partition (2, 2) in Sect. 5.2. It has been independently obtained by [6] and [45] that, for such a
nilpotent element f , the W-algebra W−5/2(sl4, f) is isomorphic to the coset – or commutant –
Com(M(1), S(2)) of the Heisenberg vertex algebra M(1) viewed as a subalgebra of the βγ-system
of rank two S(2). Thank to the works [6, 45] we can explicitly compute the associated variety of
the W-algebra W−5/2(sl4, f) (Theorem 5.2(i)).

Cosets play a major role in the theory of vertex algebras. They were introduced in [63]
and become an usual way to construct new vertex algebras from old ones. They appear in
the Gaoitto-Rapčák triality conjectures [64] which have been recently proved by Creutzig and
Linshaw [43, 44]. Let U be a vertex subalgebra of a vertex algebra V . The coset Com(U, V ) is
the commutant of U in V . It is expected that Com(U, V ) inherits certain properties from U and
V , such as rationality and C2-cofiniteness. The case where U is a Heisenberg vertex algebra has
been study by Creutzig and al. [45], but the general case remains largely unknown.

If we consider a vertex subalgebra U of a vertex algebra V , the inclusion induces a Poisson
algebra morphism ϕ : RU → RV which is not necessary injective. It does not always make sense
to define the Poisson commutant of the Zhu’s C2-algebras. Nonetheless, when ϕ is injective RU
can be viewed as a subalgebra of RV . Then, we can consider the commutant Com(RU , RV ) of
the image of RU in RV and compare it to the Zhu’s C2-algebra RCom(U,V ). Only a few is known
about the structure of cosets. Then it is difficult to compute the Zhu’s C2-algebra RCom(U,V ).
Provided it is well-defined, it is sometimes simpler to compute the commutant of Zhu’s C2-algebras
Com(RU , RV ). There is an Poisson algebra morphism RCom(U,V ) → RV coming from the inclusion
Com(U, V ) ⊂ V . Clearly, the image of RCom(U,V ) is contained in Com(RU , RV ).

This holds for the Heisenberg vertex algebra M(1) embedded in the βγ-system S(2) of rank 2,
and more generally, embedded in a βγ-system S(n) of rank n (Sect. 5.2). Thus, we compare the
algebras RCom(M(1),S(2)) and Com(RM(1), RS(2)). Note that, in general, if RV is normal – it is the
case when V is the βγ-system S(n) – so is the commutant Com(RU , RV ) (Lemma 5.2.1). On the
contrary, RCom(U,V ) has no apparent reason to be normal. We cannot hope an equality between
the two spectra in general. In particular, the associated scheme of W−5/2(sl4, f) is not the same
as the spectrum Spec Com(RU , RV ). However, we notice that the latter is the normalization of
the previous one.

Theorem 5.2. The Zhu’s C2-algebra RW−5/2(sl4,f) is a subalgebra of the commutant of Zhu’s
C2-algebras Com(RM(1), RS(2)). Moreover, these Poisson algebras satisfy the following properties:

(i) X̃W−5/2(sl4,f) is a three-dimensional reduced, irreducible and not normal scheme,

(ii) Spec Com(RM(1), RS(2)) is a three-dimensional reduced, irreducible and normal scheme,

(iii) Spec Com(RM(1), RS(2)) is the normalization of X̃W−5/2(sl4,f).
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Finally, in Sect. 5.3, using that the associated variety of H0
f (Lk(g)) is the intersection of

the associated variety of Lk(g) with the Slodowy slice Sf [17], and the explicit computation
we obtained for XL−5/2(sl4), we are able to compute the associated variety of H0

f (L−5/2(sl4)).
Conjecturally, the latter is isomorphic to the simple W-algebra W−5/2(sl4, f) and so we should
obtain an algebraic realization of the associated variety XW−5/2(sl4,f) (Conjecture 5.3.2).

5.1 Associated variety of L−5/2(sl4)

We consider g := sl4, the vector space of four-size square matrices with trace zero endowed with
the Lie bracket [a, b] = ab − ba for all a, b ∈ sl4. Let g = n− ⊕ h ⊕ n+ be the usual triangular
decomposition, where the Cartan subalgebra h consists in the diagonal matrices in g and n+
corresponds to the upper triangular matrices. For 1 6 i 6 3, write αi = εi− εi+1 the simple roots
of (g, h), ∆ the corresponding root system and hi = α∨i the corresponding coroots. Denote $i,
1 6 i 6 3, the fundamental weights. For α ∈ ∆+ a positive root, let eα and fα be root vectors
corresponding to α and −α respectively.

Recall that a vector v in V k(g) is singular if it is annihilated by all raising operators in V k(g),
i.e. n̂.v = 0. Singular vectors depend on the complex k, and for a fixed level k it is in general
difficult to determine one. They play an important role in the description of the simple quotient
of the affine vertex algebra Lk(g) and its associated objects. For instance, thank to the singular
vector v of V −5/2(sl4) provided in [7] we compute the associated variety of L−5/2(sl4). We prove
(see Theorem 5.1) that it is the closure of the Jordan class of the element

x0 = 3h1 + 2h2 + h3 + eε2−ε4 =


3 0 0 0
0 −1 0 1
0 0 −1 0
0 0 0 −1

 ,

which is neither nilpotent nor semisimple. Let xs = diag(3,−1,−1,−1) and xn = x0 − xs be the
Jordan decomposition of x0. Since z(gxs) is one-dimensional, we easily describe the Jordan class
of x0:

JG(x0) = G.C∗x0.

The rest of this section is devoted to the proof of Theorem 5.1.
In [7], the authors give a singular vector v of V −5/2(sl4) and prove that it generates the

maximal ideal in V −5/2(sl4). Hence,

L−5/2(sl4) = V −5/2(sl4)/〈v〉.

From this equality, we can deduce A(L−5/2(sl4)) ' U(g)/〈v′〉 where v′ is the image of [v] ∈
A(V −5/2(sl4)) through the isomorphismA(V −5/2(sl4)) ' U(g). Similarly, RL−5/2(sl4) ' S(g)/IW ,
where IW is the ideal of S(g) generated by W , the g-module generated by v′′, where v′′ is the
image of v ∈ RV −5/2(g) = V −5/2(g)/C2(V −5/2(g)) with the identification of the Zhu’s C2-algebra
of V −5/2(g) with the symmetric algebra S(g). Explicit formulas for v, v′ and v′′ appear in [7,
Sect. 3]. We recall below formula of v′′ which will be useful to prove Theorem 5.1.

Proposition 5.1.1 ([7]). The Zhu’s C2-algebraRL−5/2(sl4) is isomorphic to the quotient S(g)/IW
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where W is the g-module generated by the following vector v′′:

v′′ = 2eε3−ε4e
2
ε2−ε3

eε1−ε2 + 2
3(h1h2 − h1h3 + h2

2 + h2h3)eε2−ε4eε1−ε3

+ 2
3(−h1h2 − 2h1h3 − h2

2 − h2h3)eε2−ε3eε1−ε4

+ 2
3

(
− fε1−ε2eε1−ε2 + 2fε1−ε3eε1−ε3 + 2fε1−ε4eε1−ε4 + 2fε2−ε3eε2−ε3

+ 2fε2−ε4eε2−ε4 − fε3−ε4eε3−ε4

)
eε2−ε4eε1−ε3

+ 2
3

(
fε1−ε2eε1−ε2 − 2fε1−ε3eε1−ε3 − 2fε1−ε4eε1−ε4 − 2fε2−ε3eε2−ε3

− 2fε2−ε4eε2−ε4 + fε3−ε4eε3−ε4

)
eε2−ε3eε1−ε4

− 2h3eε1−ε2eε2−ε3eε2−ε4 + 2h1eε3−ε4eε2−ε3eε1−ε3 + 2h3fε1−ε2eε1−ε4eε1−ε3

− 2fε1−ε2eε3−ε4e
2
ε1−ε3

− 2h1fε3−ε4eε2−ε4eε1−ε4 − 2fε3−ε4eε1−ε2e
2
ε2−ε4

+ 2fε3−ε4fε1−ε2e
2
ε1−ε4

.

Since the singular vector v generates the maximal ideal of V −5/2(sl4), we obtain an explicit
description of the simple quotient L−5/2(sl4) and its Zhu’s C2-algebra. By definition, the associated
variety of L−5/2(sl4) is the reduced spectrum Specm(RL−5/2(sl4)), that is the zero locus in g∗ ' g
of the kernel of the map

C[g∗] −→ RL−5/2(sl4) = L−5/2(sl4)/t−2g[t−1]L−5/2(sl4)

x1 . . . xn 7−→ (x1t−1) . . . (xnt−1)|0〉 mod t−2g[t−1]L−5/2(sl4),

where x1,6, xn ∈ g.

Lemma 5.1.2. Let H = {3h1 + 2h2 + h3,−h1 + 2h2 + h3,−h1 − 2h2 + h3,−h1 − 2h2 − 3h3}.
Then,

XL−5/2(g) ∩ h = ∪λ∈HCλ.

Proof. Let h ∈ XL−5/2(g) ∩ h. We identify h with its dual through the symmetric bilinear form
(.|.). Since IW is invariant under the adjoint action, we have in particular

(adfε1−ε4
adfε2−ε3

v′′)(h) = 0
(adfε2−ε4

adfε1−ε3
v′′)(h) = 0

(adfε3−ε4
adfε1−ε3

adfε2−ε3
v′′)(h) = 0.

The solutions of this system are precisely the set of lines generated by the elements in H :
∪λ∈HCλ. Let prove the converse inclusion. Note that all the semisimple elements of H are in the
same semisimple orbit under the action of the adjoint group G. As a consequence, since XL−5/2(g)
is a G-invariant cone, it suffices to show that 3h1 + 2h2 + h3 belongs to the associated variety.
By [7, Lemma 4.1], the zero weight space of W is generated by the following polynomials:

p1 :=− 5
2h2 −

7
2h1h2 + 3

2h1h3 −
7
2h2h3 −

31
6 h2

2 − 13
3 h1h2

2 − h1
2h2 − 2h1h2h3

− 10
3 h2

3 + h1h3
2 + h1

2h3 −
13
3 h2

2h3 − h2h3
2 − 4

3h1h2
3 − 2

3h1
2h2

2

+ 2
3h1

2h3
2 − 4

3h1h2
2h3 −

2
3h2

4 − 4
3h2

3h3 −
2
3h2

2h3
2,
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and
p2 :=5

2h2 + 7
2h1h2 + 7

2h2h3 + 31
6 h2

2 + 13
3 h1h2

2 + h1
2h2 + 16

3 h1h2h3

+ 10
3 h2

3 + 13
3 h2

2h3 + h2h3
2 + 4

3h1h2
3 + 2

3h1
2h2

2 + 4
3h1

2h2h3

+ 8
3h1h2

2h3 + 4
3h1h2h3

2 + 2
3h2

4 + 4
3h2

3h3 + 2
3h2

2h3
2.

Since for 1 6 i 6 3,
$i = (ε1 + . . .+ εi)−

i

4(ε1 + . . .+ ε4),

the element 3h1 + 2h2 + h3 is identified with 4$1 through (.|.). We easily check that p1(4$1) =
p2(4$1) = 0. Hence, 3h1 + 2h2 + h3 ∈ XL−5/2(g). �

Given a nilpotent element f of sl4, let χf = (f |·) ∈ g∗. Choose a Lagrangian subspace
L ⊂ g1/2 and set

m = L ⊕
⊕
j>1

gj , and Jχ =
∑
x∈m
S(g)(x− χ(x)).

Lemma 5.1.3 ([29]). Let I be an ad g-invariant ideal of C[g∗]. Then Of 6⊂ Var(I) if and only if

C[g∗] = I + Jχ,

where Var(I) is the zero locus of I in g∗.

Applying this result to a subregular and a principal nilpotent element of g successively, one proves
the following result.

Proposition 5.1.4. The associated variety of L−5/2(g) contains some nilpotent elements. More
precisely,

Osubreg ⊂ XL−5/2(g) and Oreg 6⊂ XL−5/2(g).

Proof. The first inclusion follows from [7, Lemma 3.8]. Focus on the second part of the proposition.
Let χreg = (freg|.) with freg = fε1−ε2 + fε2−ε3 + fε3−ε4 a regular nilpotent element of sl4. Then

v′′ = 1 mod Jχreg .

Hence, IW + Jχreg = C[g∗]. By Lemma 5.1.3, this implies Oreg 6⊂ XL−5/2(g). �

Let p be a parabolic subalgebra with Levi decomposition p = l⊕ n, where n is the nilradical.
Given a nilpotent orbit Ol in the Levi subalgebra l, it is shown in [85] that there is a unique
nilpotent orbit O in g such that O ∩ (Ol ⊕ n) is dense in Ol ⊕ n. This orbit only depends on
l and not on the parabolic subgroup p. It is said induced from Ol and denoted Indg

l (Ol). Not
all nilpotent orbit of g are induced from one of l. We refer to [39, Chap. 7] for basic results on
induced nilpotent orbits. For a generic element x ∈ g with Jordan decomposition x = xs + xn,
one can consider the induced nilpotent orbit Indg

gxs (Oxn) of xn in the centralizer gxs . Recall the
following result from [38].

Theorem 5.1.5 ([38]). 1. If x = xn + xs is a non nilpotent element of g. Then Indg
gxs (Oxn)

is the unique nilpotent orbit contained in the closure C(x) := G.C∗x of the G-invariant
cone generated by x whose dimension is dimG.x. Furthermore, C(x) ∩N = Indg

gxs (Oxn).
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2. Conversely, if O is an induced nilpotent orbit, there exists a non nilpotent element x ∈ g
such that C(x) ∩N = O.

We are now in position to prove Theorem 5.1.

Proof of Theorem 5.1. Let x ∈ XL−5/2(g) and write x = xs + xn its Jordan decomposition with
xs semisimple and xn nilpotent. Since XL−5/2(g) is G-invariant, one can assume that xs belongs
to h. If xn = 0 then x = xs ∈ G.C∗(3h1 + 2h2 + h3) ⊂ G.C∗x0.

Assume xn 6= 0. If x is nilpotent, i.e. xs = 0, then x ∈ Osubreg. Besides, Osubreg is the induced
nilpotent orbit of eε2−ε4 ∈ g3h1+2h2+h3 in g. Thus

Osubreg ⊂ G.C∗(3h1 + 2h2 + h3 + eε2−ε4).

Else, if x is not nilpotent, we embed xn = e in an sl2-triple (e, h, f) with h ∈ h. Let the
one-parameter subgroup ρ : C∗ → G generated by adh:

ρ(t).y = tiy, for all y ∈ g, [h, y] = iy.

Then for all t ∈ C∗,
ρ(t).x = xs + t2xn ∈ XL−5/2(g).

Since the associated variety XL−5/2(g) is a closed G-invariant cone, we get that xs and xn belong to
XL−5/2(g). By Lemma 5.1.2, it exists c ∈ C∗ such that xs = cλ with λ ∈ H. Since all the elements
in H are G-conjugated and the associated variety is conical, one can assume λ = 3h1 + 2h2 + h3
and c = 1. Then xn ∈ gxs ∩N . Let O be the nilpotent orbit of xn in gxs . By Theorem 5.1.5, the
induced nilpotent orbit Indg

gxs (O) of O in g is included in G.C∗x, so in the associated variety.
Since

gxs = h⊕ Ceε2−ε3 ⊕ Ceε3−ε4 ⊕ Ceε2−ε4 ⊕ Cfε2−ε3 ⊕ Cfε3−ε4 ⊕ Cfε2−ε4

with eε2−ε4 = [eε2−ε3 , eε3−ε4 ], gxs ' sl3 × C, and we get the following possibilities:

(1) O = 0 and Indg
gxs (O) = Omin,

(2) O = O(2,1) and Indg
gxs (O) = Osubreg,

(3) O = O(3) and Indg
gxs (O) = Oreg.

The condition (3) cannot happen since Oreg 6⊂ XL−5/2(g) and condition (1) was already treated
as x is semisimple. Focus on condition (2). Let Gxs ⊂ G the adjoint group of gxs . Since
O(2,1) = Gxs .eε1−ε4 , there exists y ∈ Gxs such that xn = y.eε1−ε4 . Hence,

x = xs + y.eε1−ε4 = y.(xs + eε1−ε4) ∈ G.C∗x0.

In order to prove the converse inclusion, it suffices to show that x = xs + eε2−ε4 , where xs =
3h1 + 2h2 + h3 belongs to the associated variety. Assume it does not. One deduces from the
previous discussion that XL−5/2(g) = G.C∗xs ∪ Osubreg. Then the intersection between the
associated variety and the Slodowy slice Sfsubreg is reduced to a point. Indeed, according to
Theorem 5.1.5,

G.C∗xs ∩N = Indg
gxs (0) = Omin.

Thus, the intersection G.C∗xs ∩Sfsubreg is empty and Osubreg ∩Sfsubreg = {fsubreg}. However, ac-
cording to [7, Proposition 5.3], H0

fsubreg
(L−5/2(g)) 'M(1), so this intersection is one-dimensional,

whence x ∈ XL−5/2(g).
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Let show that G.C∗x0 = JG(x0). Recall [93] that

JG(x0) = G.(z(g3h1+2h2+h3)reg + eε1−ε4) = G.(z(gx0)reg),

where z(gx)reg = {y ∈ g, gy = gx}. Since x0 ∈ z(gx0)reg and JG(x0) is G-invariant, G.C∗x0 ⊂
JG(x0). Conversely, let y ∈ J(x0). The set z(g3h1+2h2+h3)reg is one-dimensional generated by
3h1 + 2h2 + h3, and one can assume y = α(3h1 + 2h2 + h3) + eε1−ε4 ∈ G.(z(gx0)reg) for some
α ∈ C∗. We embed eε1−ε4 in an sl2-triple whose the semisimple element h belongs to h. Again,
consider the one-parameter subgroup ρ : C∗ → G generated by adh. For all t ∈ C∗,

ρ(t)y = α(3h1 + 2h2 + h3) + t2eε1−ε4 ∈ JG(x0).

In particular, for β = α1/2 we get that ρ(β)y ∈ G.C∗x0. Hence, y ∈ G.C∗x0. �

Remark 5.1.6. The closure of the Jordan class JG(x0) is not normal. Indeed, if it were, the quotient
JG(x0)//G would be normal. It is not the case according to the classification of normality of
quotients of closures of decomposition classes of Richardson [91]. We thank Prof. Giovanna
Carnovale and Francesco Esposito for informing us about this.

5.2 Commutant of Zhu’s C2-algebras
Let U be a vertex subalgebra of the vertex algebra V . We define the coset [63] of U in V to be
the vertex subalgebra of V

Com(U, V ) := {a ∈ V | a(n)b = 0, for all b ∈ U and n > 0}.

In particular, we consider in the following the coset of the Heisenberg algebra M(1) in the
βγ-system S(n) of rank n > 1.

The βγ-system S(n) of rank n is the vertex algebra strongly generated by fields β1, . . . , βn, γ1, . . . , γn
satisfying the only non-trivial OPEs

βi(z)γi(w) ∼ 1
z − w

.

The Heisenberg vertex algebra M(1) can be viewed as a vertex subalgebra of S(n) sending its
strong generator on the field

h =: β1γ1 : + . . .+ : βnγn : .

Hence, we can consider the coset Com(M(1), S(n)).
Recall that the associated variety of S(n) is RS(n) ' C[T ∗Cn] ' C[p1, . . . , pn, q1, . . . , qn] with

Poisson bracket
{pi, qj} = δi,j , and {pi, pj} = {qi, qj} = 0,

for all i, j = 1, . . . , n. On the other hand, setting h̄ =
∑n
i=1 piqi, we get that the Zhu’s C2-algebra

of the Heisenberg algebra M(1) is RM(1) = C[h̄], a subalgebra of RS(n). Hence, we can define the
commutant Com(RM(1), RS(n)) which is the Poisson commutant of h̄ in C[p1, . . . , pn, q1, . . . , qn].

It has been independently proved by [6] and [45] that, when n = 2, the coset Com(M(1), S(2))
is isomorphic to the W-algebra W−5/2(sl4, f) where f := fε1−ε3 + fε2−ε4 is a nilpotent element
corresponding to the partition (2, 2) of 4. Using the explicit description presented in [6] and [45],
we compute the associated variety of W−5/2(sl4, f) and compare it to the commutant of Zhu’s
C2-algebras M(1) in S(2) (see Theorem 5.2).
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The proof of Theorem 5.2 is the guiding principle of this section. It allows to introduce a
more general reflexion on the possible link between Zhu’s C2-algebras of cosets Com(U, V ) and
commutants of Zhu’s C2-algebras Com(RU , RV ). Similar considerations have been formulated in
[84, Sect. 13] in the context of vertex algebras orbifolds, that are vertex subalgebras invariant
under the action of a reductive group of automorphisms.

5.2.1 Commutants of Zhu’s C2-algebras and Zhu’s C2-algebras of cosets
Recall (Sect. 1.1.4), that for any vertex algebra V the Zhu’s C2-algebra RV corresponds to the
quotient V/C2(V ), where C2(V ) is spanned by the elements a(−2)b, a, b ∈ V . A morphism of
vertex algebras f : U → V induces a morphism of Poisson algebras ϕ : RU → RV such that the
following diagram commutes:

U V

RU RV

f

ϕ

Consider the commutant of the Poisson algebra ϕ(RU ) in RV

Com(ϕ(RU ), RV ) = {ā ∈ RV | {ā, φ(b̃)} = 0, for all b ∈ U}
= {ā ∈ RV | {ā, f(b)} = 0, for all b ∈ U}.

In particular, when U is a vertex subalgebra of the vertex algebra V , the inclusion induces a map
ϕ as above. Clearly, ϕ is injective if and only if U ∩ C2(V ) = C2(U). If so, RU can be viewed as
a subalgebra of RV .

On another hand, the inclusion Com(U, V ) ⊂ V gives rise to a map φ : RCom(U,V ) → RV which
is injective if and only if Com(U, V ) ∩ C2(V ) = C2(Com(U, V )). Assume that is the case. Then
RCom(U,V ) can also be viewed as a subalgebra of RV . By abuse of notation, we identify RCom(U,V )
with its image through φ. Then RCom(U,V ) = {ā ∈ RV | a(n)b = 0, for all b ∈ U and n > 0}, and
RCom(U,V ) ⊂ Com(RU , RV ). This inclusion induces a dominant morphism of schemes

Spec Com(RU , RV ) −→ X̃Com(U,V ).

There is apparently no reason for X̃Com(U,V ) or Spec Com(RU , RV ) to be normal. It would be
interesting to determine conditions on the vertex algebras U and V which induce the normality
in either or both spectra. Note that Com(RU , RV ) is normal if RV is so.

Lemma 5.2.1. Let (A, {., .}) be a normal Poisson algebra and B a Poisson subalgebra of A.
Then the Poisson commutant of B in A,

Com(B,A) = {a ∈ A | {a, b} = 0, for all b ∈ B},

is normal.

Proof. Set C = Com(B,A). Let f ∈ FracC, n > 1 and a0, . . . , an−1 ∈ C such that

fn + an−1f
n−1 + . . .+ a1f + a0 = 0

is a minimal degree equation in C. Since FracC ⊂ FracA and A is normal, f belongs to A. We
need to show that f belongs to C. Set f = p/q, p, q ∈ C, q 6= 0. In particular, qf = p ∈ C. Let
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b ∈ B, using the Leibniz’s rule we get

{b, p} = {b, qf} = q{b, f}+ {b, q}f.

Since p, q ∈ C, {b, p} = {b, q} = 0, hence q{b, f} = 0. Because A is an integral domain, we deduce
that {b, f} = 0 for any b ∈ B. As a consequence, f ∈ C. The integral closure of C in FracC is C
itself and C is normal. �

Corollary 5.2.2. For any positive integer n, since RS(n) is normal, so is Com(RM(1), RS(n)).

The commutant Com(RM(1), RS(n)) is the Poisson commutant of h̄ in C[p1, . . . , pn, q1, . . . , qn].
It is generated by monomials piqj with i, j = 1, . . . , n. Let ψ : C2n → Cn2 defined by

(p1, . . . , pn, q1, . . . , qn) 7→ (p1q1, . . . p1qn, p2q1, . . . p2qn, . . . , pnq1, . . . , pnqn).

The comorphism

ψ∗ : C[x1,1, . . . , x1,n, x2,1, . . . , x2,n, . . . , xn,1, . . . , xn,n]→ C[p1, . . . , pn, q1, . . . , qn],

has kernel the ideal In generated by (xi,jxk,l − xi,lxk,j)16i<k6n,
16j<l6n

. Hence,

Com(RM(1), RS(n)) ' C[x1,1, . . . , x1,n, x2,1, . . . , x2,n, . . . , xn,1, . . . , xn,n]/In. (5.1)

with non trivial Poisson brackets {xi,j , xk,l} = δj,kxi,l − δi,lxk,j .

5.2.2 Proof of Theorem 5.2

Using the previous computations, we are now in position to prove all assertions of the Theorem 5.2
(ii) First, considering n = 2 in (5.1), we get that Com(RM(1), RS(2)) ' C[x, y, z, t]/(xy − zt)

with non trivial Poisson brackets {x, z} = −z, {x, t} = t, {y, z} = z, {y, t} = −t and {z, t} = y−x.
It follows directly that Spec Com(RM(1), RS(2)) is a reduced and irreducible variety of dimension
three. It is normal by Corollary 5.2.2.

(i) Using the explicit description of W−5/2(sl4, f) as the coset of M(1) in S(2) given in [6] we
get that RW−5/2(sl4,f) is the subalgebra of C[p1, p2, q1, q2] generated by

{p1q2, p2q1, p1q1 − p2q2, p1q2(p1q1 + 2p2q2), p2q1(p1q1 + 2p2q2), (p1q1)2 − (p2q2)2}.

Consider ψ : C4 → C6 defined by

(p1, p2, q1, q2) 7→ (p1q2, p2q1, p1q1−p2q2, p1q2(p1q1 +2p2q2), p2q1(p1q1 +2p2q2), (p1q1)2−(p2q2)2).

We denote by KW the kernel of the comorphism ψ∗ : C[e1, e2, e3, e4, e5, e6] → C[p1, p2, q1, q2],
which is a prime ideal. Then RW−5/2(sl4,f) = C[e1, e2, e3, e4, e5, e6]/KW , and we conclude that
X̃W−5/2(sl4,f) is reduced, irreducible of dimension three but not normal.

(iii) Let prove that Com(RM(1), RS(2)) is isomorphic to the integral closure of RW−5/2(sl4,f)
denoted by F . By direct computation, we have F = C[e0, e1, e2, e3, e4, e5, e6]/IF where IF is the
ideal generated by

e2e4 − e1e5, e0e3 + e6, 3e0e2 + e2e3 + 2e5, 3e0e1 + e1e3 + 2e4, e2
0 − 4e1e2 − e2

3.
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Set φ : C4 → C7 mapping

(x, y, z, t) 7−→ (−x− y, z, t, x− y, z(x+ 2y), t(x+ 2y)x2 − y2).

The kernel of the comorphism φ∗ : C[e0, e1, e2, e3, e4, e5, e6] → C[x, y, z, t] is the ideal KC of
C[e0, e1, e2, e3, e4, e5, e6] generated by

e2e4 − e1e5, e0e3 + e6, 3e0e2 + e2e3 + 2e5, 3e0e1 + e1e3 + 2e4.

We check that C[e0, e1, e2, e3, e4, e5, e6]/KC ' C[x, y, z, t], and so there is a surjective map

C[e0, e1, e2, e3, e4, e5, e6]/KC → C[x, y, z, t]/(xy − zt).

The image of e2
0−4e1e2−e2

3 through φ∗ is xy−zt so C[x, y, z, t]/(xy−zt) ' C[e0, e1, e2, e3, e4, e5, e6]/K̃C

where K̃C is the ideal generated by KC and e2
0 − 4e1e2 − e2

3. Clearly, IF = K̃C .

5.3 Associated variety of W−5/2(sl4, f(2,2))
Assume the vertex algebra H0

f (Lk(g)) is non zero. Since the W-algebra Wk(g, f) is the simple
quotient of Wk(g, f), it is a quotient of H0

f (Lk(g)). As a consequence, the associated variety
XWk(g,f) is a subvariety of XH0

f
(Lk(g)). It has been proved by Arakawa [17] that the latter

coincides with the intersection of XLk(g) with the Slodowy slice of f .
By [67], we know that the intersection XL−5/2(g) ∩Sf is equidimensional of dimension three.

Moreover, one verifies that XL−5/2(g) ∩Sf contains the following element

v = f + (4eε2−ε4 + h1 + h3) =


1 0 0 0
0 −1 0 4
1 0 1 0
0 1 0 −1

 .

Proposition 5.3.1. Let G\ be the stabilizer of the sl2-triple {e, h, f} in the adjoint group
G = SL4. For all t ∈ C∗, define ρ̃(t) := t2ρ(t), where ρ is the one-parameter subgroup introduced
in the proof of Theorem 5.1:

ρ̃(t).v =


t2 0 0 0
0 −t2 0 4t4
1 0 t2 0
0 1 0 −t2

 .

Then G\.ρ̃(C∗)v is a three-dimensional irreducible component of XH0
f
(Lk(g)).

Proof. Since the centralizer gf is generated by the elements eε1−ε2 +eε3−ε4 , eε2−ε3 , eε1−ε3 , eε2−ε4 ,
eε1−ε4 , fε1−ε2 + fε3−ε4 and h1 + h3, one easily checks that ρ̃(t).v ∈ Sf for all t ∈ C∗. Moreover,
G\ stabilizes f and gf , thus G\.ρ̃(C∗)v ⊂ Sf . Besides, v and x are conjugated in G and XL−5/2(g)

is G-invariant – and so G\-invariant. Hence, G\.ρ̃(C∗)v ⊂ XL−5/2(g).
The stabilizer of the sl2-triple {e, h, f} in the adjoint group G = SL4 is

G\ = {
(
A 0
0 A

)
, detA = ±1}.
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Furthermore, the stabilizer G\(v) of v in G\ is one-dimensional, given by

G\(v) = {diag(a, 1
a
, a,

1
a

) | a ∈ C∗} ∪ {diag(a,−1
a
, a,−1

a
) | a ∈ C∗}.

As a consequence, {(g, t) ∈ G\×C∗ | g.(ρ̃(t)v) = v} = G\(v)×{1} is also one-dimensional. Hence,
G\.ρ̃(C∗)v has dimension 3.

From the previous description, the group G\ is not connected. Let (G\)◦ be the identity
component. Set g ∈ G\\(G\)◦ and d = diag (1,−1, 1,−1) ∈ G\(v), d /∈ (G\)◦. For all t ∈ C∗,
d.(ρ̃(t)v) = ρ̃(t)v. As a consequence, g.(ρ̃(C∗)v) = (gd).(ρ̃(C∗)v) ⊂ (G\)◦.ρ̃(C∗)v. Hence,
G\.ρ̃(C∗)v = (G\)◦.ρ̃(C∗)v and so it is a irreducible component of XL−5/2(g) ∩Sf . �

Conjecturally, H0
f (L−5/2(sl4)) is simple and isomorphic to the W-algebra W−5/2(sl4, f). As

a consequence, the associated schemes X̃W−5/2(sl4,f) and X̃H0
f
(L−5/2(sl4)) = X̃L−5/2(sl4) ×sl4 Sf

should be isomorphic. In regard with this, the latter should be irreducible. We formulate the
following conjecture.

Conjecture 5.3.2. The variety X̃C(2) is isomorphic to G\.ρ̃(C∗)v where v is described in Propo-
sition 5.3.1.

Another evidence to support this conjecture comes from Remark 5.1.6: since X̃L−5/2(sl4) is not
normal, it is also the case of X̃H0

f
(L−5/2(sl4)) because the Slodowy slice Sf is transversal. Hence,

both X̃W−5/2(sl4,f) and G\.ρ̃(C∗)v are reduced, irreducible of dimension three and not normal.
An idea to prove Conjecture 5.3.2 is to compute the characters of vertex algebrasH0

f (L−5/2(sl4))
and W−5/2(sl4, f). If they are isomorphic both characters should be the same. We plan to go
back to this topic in the future.
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Chapter6
Open problems and future works

We already mentioned some questions we expect to work on in the future (see Conjectures 2.2.6
and 5.3.2, and Sect. 5.2.1). In this chapter, we present several additional problems and projects.

Our work on the classification of simple Wk(sp4, fsubreg)-modules has paved the way for many
interesting questions and applications (Sect. 6.1). We would like to use the OPEs to study in
depth the representation theory of Wk(sp4, fsubreg) and its consequences on W-superalgebras
Wk(ospN |2n) attached to the complex orthosymplectic Lie superalgebra ospN |2n with N = 1, 2.
For instance, the latter can be written as a coset involving the W-algebra Wk′(so2n+1, fsubreg).
More precisely we have [40]

Wk′(osp2|2n) ' Com
(
πH̃1

,Wk(so2n+1, fsubreg)⊗ VZ
)
, (6.1)

where k and k′ are non-critical levels satisfying a certain relation. Since sp4 ' so5, we could
use (6.1) to obtain rationality of new families of W-superalgebras. We plan to use techniques
developed by Creutzig and Linshaw [43] to study this kind of structure.

Also, we wish to extend the methods we develop to classify simple modules of exceptional
W-algebra Wk(sp4, fmin) to other families of rational W-algebras (Sect. 6.2). Since simple
Wk(g, f)-modules can be viewed as simple H0

f (Lk(g))-modules and we plan to study this vertex
algebra in a first place. The set of simple modules of the corresponding Zhu’s algebra A(H0

f (Lk(g)))
is easy to describe using [21, Theorem 4.2 ]. Moreover, Premet’s results on finite W-algebras
associated with minimal nilpotent elements [90] make minimal W-algebras good candidates for a
first generalization.

The problem presented in Sect. 6.3 is directly related with observations of OPEs of the
W-algebra Wk(G2, fsubreg). We saw in Chap. 2 that, at non admissible level k = −2, the
simple W-algebra W−2(G2, fsubreg) is isomorphic to C (see Corollary 2.2.4). Hence, it is lisse,
so its associated variety is reduced to the point {fsubreg}. As a consequence, fsubreg belongs to
XH0

f
(L−2(G2)) which corresponds to the intersection XL−2(G2) ∩Sfsubreg , viewed as topological

varieties [17]. It follows that the associated variety XL−2(G2) contains the subregular nilpotent
orbit. We conjecture (Conjecture 6.3.2) that it is exactly the closure of the subregular nilpotent
orbit Osubreg of G2.

Finally, Sect. 6.4 introduces a longer term project dealing with links between certain vertex
algebras obtained from W-algebras of type Bn and Cn, n > 2. These two Lie algebras are
Langlands duals of each other. It is known [59] that the principal W-algebras Wk(g) at non

75
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critical level k is isomorphic to the principal W-algebra of its Langlands dual Lg at a certain level
`:

Wk(g) ' W`(Lg).

This isomorphism is known as the Feigin-Frenkel duality. Recently, similar dualities between sub-
regularW-algebras of type An and Bn, and principalW-superalgebrasWk(sl1|n) andWk(osp2|2n)
have been proved by Creutzig, Genra and Nakatsuka [40]. The aim of our project is to extend
these results to a larger family of W-algebras. Our candidates are pairs {(f, k), (f ′, k′)}, where
f and f ′ are nilpotent elements of Bn and Cn respectively, and k and k′ are two non critical
levels, such that the W-algebras Wk(Bn, f) and Wk′(Cn, f ′) have the same conformal weights
and central charge (Tables 6.1–6.4).

6.1 Classification of simple Wk(sp4, fsubreg)-modules at other
levels

As a by-product of our proof of the rationality ofWk(sp4, fsubreg) at admissible levels k = −3+p/q
with q = 3, 4, we explicit the set of simple modules. We verify that part of our modules are
originated from Drinfeld-Sokolov reduction of highest weight ĝ-modules. We expect that other
modules are also with this form. The characters of these modules provide candidates for
the corresponding highest weights. Finally, we expect (Conjecture 3.5.7) that for any simple
Wk(sp4, fsubreg)-module L(ξ, χ), there is an admissible weight λξ,χ ∈ h∗ such that:

L(ξ, χ) ' H0
fsubreg

(L̂k(λξ,χ)).

Similar results hold for several other examples of rational W-algebras, for instance when the Lie
algebra is sln [16, 21]. We embed irreducible representations L(ξ, χ) in H0

fsubreg
(Lk(sp4)). This

module should coincide with a certain Ramond twisted representation. We determine the latter
through Zhu’s correspondence comparing the conformal dimensions and highest weights.

Moreover, we intend to study the set of simple Wk(sp4, fsubreg)-module at integer levels. For
instance we wish to classify simple Wk(sp4, fsubreg)-modules for certain levels k not rational a
priori: when k is a positive integer or an admissible level not of the form appearing in Theorem 3.1.
This project is a joint work with Prof. Dražen Adamović.

The minimal and subregular nilpotent orbits in sl3 coincide. In addition the structure of
the Bershadsky-Polyakov vertex algebra Wk(sl3, fmin) is relatively close from the one of the
W-algebra Wk(sp4, fsubreg). Hence, the W-algebra Wk(sp4, fsubreg) can be viewed as a natural
analogue to Wk(sl3, fmin) for the type C. The latter has been studied in depth during the last
few years [3, 4, 5, 57]. As a first step, we intend to extend the method developed in [5] to classify
irreducible representations of Wk(sp4, fsubreg). By direct computation, we determine two singular
vectors of Wk(sp4, fsubreg) when k is an integer bigger than −1 or when k = −3 + (m + 2)/3,
with m > 1.

Lemma 6.1.1. Let k = m− 2 or k = −3 + (m+ 2)/3 with m a positive integer. Then

(G+
−2)m|0〉, (G−−2)m|0〉

are singular vectors of Wk(sp4, fsubreg).

We plan to project these singular vectors in the Zhu’s algebra A(Wk(sp4, fsubreg)), and use Zhu’s
correspondence to find a necessary condition on the form of the simple Wk(sp4, fsubreg)-modules.
We expect to construct an infinite set of non-isomorphic simple modules as it was done in [5].
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The classification of the simple modules when k is an admissible level not of the previous forms is
probably more complicated to obtain. This has been treated in the context of the Bershadsky-
Polyakov vertex algebra using minimal quantum Hamiltonian reduction [57]. We also plan to
study this technique to determine if it can be relevant in our case.

For any levels k, the Bershadsky-Polyakov vertex algebra Wk(sl3, fmin) is a vertex subalgebra
of Wk(sl3)⊗Π(0), where Π(0) is a certain lattice vertex algebra [3]. The realization still holds
for simple quotients when 2k + 3 /∈ Z>0 ∪ {−3}, and we have an embedding

Wk(sl3, fmin) ↪→Wk(sl3)⊗Π(0).

The W-algebra Wk(sp4, fsubreg) admits a similar realization. For generic k, Wk(sp4, fsubreg) is
a vertex subalgebra of Wk(sp4)⊗Π(0) [32]. As for the case of the Bershadsky-Polyakov vertex
algebra, we expect this embedding to be preserve at certain levels when we consider the simple
quotients. More precisely, we should be able to prove that for a non admissible level k 6= −3,

Wk(sp4, fsubreg) ↪→Wk(sp4)⊗Π(0).

We can later use this realization to transfer the classification of irreducibleWk(sp4)-representations
to the classification of simple Wk(sp4, fsubreg)-modules.

In a different direction, applications to the representation theory of the principalW-superalgebra
associated with the Lie superalgebra osp1|2n have been brought to our attention during the publica-
tion process of article [56]. It seems that, using [43], we can deduce the rationality of Ws(osp1|2n)
from the one of Wk(sp4, fsubreg) for a certain level s depending on k. More precisely, from
Theorem 3.1, we obtain

Theorem 6.1.2. The W-superalgebra Ws(osp1|2n) is rational when

k = −3 + 2(n+ 2)
3 , and s = −(n+ 1

2) + n+ 2
2n+ 1 .

Since sp4 ' so5, we can also deduce properties on principal W-superalgebras associated with
the Lie superalgebra osp2|2n using the Kazama-Suzuki type coset isomorphisms [40]:

Wk′(osp2|2n) ' Com
(
πH̃1

,Wk(so2n+1, fsubreg)⊗ VZ
)
,

Wk(so2n+1, fsubreg) ' Com
(
πH̃2

,Wk′(osp2|2n, fsubreg)⊗ VZ√−1
)
,

(6.2)

where VZ and VZ√−1 are two lattice vertex superalgebras, and k and k′ are non critical levels
satisfying 2(k+2n−1)(k′+n) = 1. From the classification of simpleWk(sp4, fsubreg)-modules, we
classify irreducible representations ofWk′(osp2|2n). It is then possible to compute their characters
and deduce the fusion rules ofWk′(osp2|2n). They encode the decomposition of the tensor product
of two irreducible representations of Wk′(osp2|2n) in the fusion algebra. Only a few is known
about fusion rules of W-algebras [21, 62] and those of W-superalgebras are even more mysterious.
So, it would be interesting to have new explicit examples. We thank Naoki Genra for suggesting
this problem.
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6.2 Classification of simple Wk(G2, fmin) and Wk(sp2n, fmin)-
modules

Another natural project is to extend the techniques presented in this manuscript to larger families
of W-algebras. First, we plan to classify simple modules of minimal W-algebras Wk(G2, fmin)
andWk(sp2n, fmin), when n > 2. Indeed, when (f, k) is an exceptional pair (see Sect. 1.3.2), these
W-algebras are rational [43, 86]. However, current proofs of the rationality do not provide an
explicit description of the simple modules. In order to classify the simple modules, we will adapt
techniques used in Chap. 4. The W-algebras Wk(G2, fmin) and Wk(sp2n, fmin) do not admit a
good even grading but we expect to recover even conformal weights by twisting the conformal
vector. We expect then that simple modules of Wk(g, fmin) at admissible levels are highest weight
modules of the form

L(χ, ξ1, . . . , ξ`),

where χ, ξ1, . . . , ξ` ∈ C are the smallest eigenvalues corresponding to the twisted conformal vector
L̃ and field J{x1}, . . . , J{x`} defined as in Lemmas 3.1.1 and 4.1.1. Here {x1, . . . , x`} is a basis of
gfmin ∩ h respecting the grading induced by x0 = 1/2hmin. Hence,

` =
{

1, if g = G2,

n− 1, if g = sp2n.

The modules L(χ, ξ1, . . . , ξ`) are also simple H0
fmin

(Lk(g))-modules. According Zhu’s correspon-
dence, Arakawa and van Ekeren’s article [21, Theorem 4.2] and Premet’s result on minimal finite
W-algebras [90], we deduce that the latter are in a finite number. The rest of the proof of the
classification of simple Wk(sp4, fmin)-module when k is an admissible level with denominator
q = 2, should be generalizable too. As a consequence, simple modules L(χ, ξ1, . . . , ξ`) would be
isomorphic to certain Ramond twisted modules L(EJλ) of H0

f (Lk(g)), with λ ∈ [Prk◦ ]. In Chap. 3,
we saw that part of simple Wk(sp4, fsubreg)-modules L(ξ, χ) are isomorphic to a Ramond twisted
module L(EJ

λ− p
q
x0

), where the weight λ is admissible and depends on χ and ξ.
According to [21], when f admits a good even grading and λ satisfies certain conditions, the

Ramond twisted module L(EJ
λ− p

q
x0

) is the Drinfeld Sokolov reduction of the ĝ-module H0
f (L̂(λ)).

Minimal nilpotent elements do not admit an even grading in general. Nonetheless, certain
coincidences emphazised in Sect. 4.3 lead us to believe that we can extend this correspondence in
this context (Conjecture 4.3.4). So, if we manage to free ourselves from the even parity condition
in the minimal case, we hope later to generalize and standardize the construction to all good
gradings.

Note that, for the moment, we cannot extend all our techniques to Wk(G2, fsubreg). Indeed
certain tools require having a generator – different from the conformal vector – which acts
semisimply. Such a generator arises from a semisimple element in the Lie algebra commuting
with f . There is no such element in Wk(G2, fsubreg) since the subregular nilpotent orbit is
distinguished (i.e. g\ = 0). We are still thinking about how to adapt our techniques in this case.

6.3 Associated variety of L−2(G2)
In Chap. 2, we give examples of new collapsing levels. In particular, we observe (Corollary 2.2.4)
that at non admissible level k = −2, when f is a subregular nilpotent element of G2,

W−2(G2, f) ' C.
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As a consequence, the W-algebra W−2(G2, f) is lisse and its associated variety is

XW−2(G2,f) = {f}.

It follows, since XW−2(G2,f) contains the intersection XL−2(G2) ∩Sf (see Sect. 1.3.2), that the
closure of the subregular nilpotent orbit of G2 is included in the associated variety XL−2(G2).

According to the long-standing conjecture of Kac-Wakimoto [78], provided H0
f (Lk(g)) is non

zero, it is isomorphic to Wk(g, f). In particular, if the conjecture holds for k = −2 and g = G2,
we are able to prove the reverse inclusion.
Proposition 6.3.1. Let f be a subregular nilpotent element ofG2. IfW−2(G2, f) ' H0

f (L−2(G2)),
then the associated variety of the simple affine vertex algebra L−2(G2) is the closure of the sub-
regular nilpotent orbit of G2:

XL−2(G2) = Of .

Proof. Suppose W−2(G2, f) ' H0
f (L−2(G2). On the one hand, the associated variety of

H0
f (L−2(G2)) is the intersection of XL−2(G2) with the Slodowy slice Sf [17], whence

XH0
f
(L−2(G2) = XL−2(G2) ∩Sf = {f}.

As a consequence, the associated variety XL−2(G2) contains f . Moreover, it is closed and G-
invariant. Hence,

Of ⊂ XL−2(G2).

On another hand, the associated variety XL−2(G2) is included in the nilpotent cone of G2. Indeed,
suppose there exists a non nilpotent element x ∈ XL−2(G2). Denote x = xn + xs its Jordan
decomposition with xn nilpotent and xs 6= 0 semisimple. Then the closure C(x) = G.C∗x of the
adjoint orbit of x is included in the associated variety:

C(x) ⊂ XL−2(G2).

According to Theorem 5.1.5, C(x) contains the induced nilpotent orbit Indg
gxs (Oxn) from the

adjoint orbit of xn in gxs . The only induced nilpotent orbits in G2 are the regular and subregular
orbits [68, 87], so C(x) strictly contains the subregular nilpotent orbit. The variety C(x) is
G-invariant, reduced and irreducible. Thus [67, Corollary 1.3.8],

dim(C(x) ∩Sf ) = dimC(x)− dimOf > 0 = dim(XL−2(G2) ∩Sf ),

whence a contradiction. At this point, we have,

Of ⊂ XL−2(G2) ⊂ N .

Thus, XL−2(G2) is the closure of the regular or the subregular nilpotent orbit of G2. However,
the intersection between the nilpotent cone and the Slodowy slice Sf is two-dimensional. Hence,
XL−2(G2) = Of . �

In view of this, it is reasonable to conjecture the following.
Conjecture 6.3.2. Let f be a subregular nilpotent element of G2, then

XL−2(G2) = Of .

In addition, the conjecture is coherent with the strong connection between Lie algebras G2
and D4. Consider the Lie algebra D4. Its Dynkin diagram is given by
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α1 α2

α3

α4

where αi = εi − εi+1 for i = 1, 2, 3 and α4 = ε3 + ε4 are the simple roots of D4. The symmetric
group S3 can be viewed as a subgroup of the group of automorphisms of the Dynkin diagram of
D4. It is generated by a translation τ and a 3-cycle σ satisfying

τ(ε3 − ε4) = ε3 + ε4,

σ(ε1 − ε2) = ε3 + ε4, σ(ε3 + ε4) = ε3 − ε4.

The symmetric group S3 acts on the set of simple roots, so on the corresponding root vectors.
Finally, it acts on D4 and the Lie algebra DS3

4 of the S3-invariants in D4 is isomorphic to G2

[81]. The embedding G2
ι
↪→ D4 induces a comorphism ι∗ : D∗4 → G∗2 given by the restriction. We

get a G2-module map π : D4 → G2 by identifying each Lie algebra with its dual through the
Killing form. According to [81], π maps the closure of the minimal nilpotent orbit OD4

min in D4 to
the one of the subregular nilpotent orbit OG2

subreg of G2:

π(OD4
min) = OG2

subreg.

By a fortunate coincidence, XL−2(D4) is the closure of the minimal nilpotent orbit of D4 [28]:

XL−2(D4) = Omin.

So, if Conjecture 6.3.2 is true, we have

X
L−2(DS3

4 ) ' XL−2(G2) ' OG2
subreg = π(OD4

min) = π(XL−2(D4)).

Furthermore, the action of S3 on D4 induces an action on the affine vertex algebra V −2(D4).
This action is preserved by taking the simple quotient L−2(D4). This should be verifiable
considering the three singular vectors given in [28] which generate the maximal ideal of V −2(D4).
Then we can consider the orbifold L−2(D4)S3 , i.e. the vertex subalgebra of the S3-invariants in
L−2(D4). It would be interesting to investigate the link between the vertex algebras L−2(D4)S3

and L−2(G2). We will use the description of L−2(D4) in [33] to compute directly L−2(D4)S3 .
The comparison of their associated varieties echoes questions introduced in Sect. 5.2 and [84, Sect.
13]. Consider a vertex algebra V and let G be a finite group of V -automorphisms. Consider the
orbifold V G. Then the action of G on V leads to an action of G on RV . The inclusion V G ↪→ V
induces a morphism of Poisson algebras RV G → RV whose image is clearly in (RV )G. In general
RV G and (RV )G are non isomorphic [27] but sometimes one recovers a isomorphism at level
of reduced rings, so at level of reduced schemes. It would be interesting to know whether the
G-action and the associated variety functor commute. Indeed, if XV G ' (XV )G, the orbifold V G
would inherit certain properties, as C2-cofiniteness, from the ones of V .

6.4 Duality of Lie algebras and duality of W-algebras
In the early 90s, Feigin and Frenkel [59] showed that the principal W-algebras associated to a Lie
algebra g and its Langlands dual Lg are isomorphic

Wk(g) ' W`(Lg), (6.3)
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when k and ` are non critical level satisfying

r∨(k + h∨)(`+L h∨) = 1, (6.4)

where r∨ is the lacing number of g, and h∨ and Lh∨ are the dual Coxeter numbers of g and Lg
respectively. This result also holds for W-superalgebras Wk(osp1|2n, freg) [66].

Thanks to a GAP program (see Appx. D), we compute conformal weights of W-algebras. We
discover some pairs of nilpotent elements (f1, f2) in Lie algebras (g1, g2) associated to the same list
of conformal weights. In most cases, g1 = Bn and g2 = Cn. Notice that these two Lie algebras are
Langlands duals of each other. In the following, we call a dual pair, a pair (f1, f2) ∈ (Bn, Cn) such
that the corresponding W-algebras have the same conformal weights. Because of Feigin-Frenkel
duality, principal nilpotent elements in Bn and Cn always have the same conformal weights. For
small values of n (n 6 11), we list below the pairs (f1, f2) ∈ (Bn, Cn) which have same conformal
weights (see Tables 6.1–6.4). For n = 7, 9, 10, there are not dual pairs distinct from the principal
nilpotent elements (fBnreg , f

Cn
reg ).

Motivated by the idea to generalize (6.3), we check for which non critical levels (k1, k2) the
W-algebras Wk1(g1, f1) and Wk2(g2, f2) have the same central charge. From our examples, we
get a relation between k1 and k2 similar to (6.4):

r∨λf1,f2(k1 + h∨)(k2 +L h∨) = dim g,

where λf1,f2 is a positive integer depending on f1 and f2. When f1 and f2 are principal nilpotent
elements of Bn and Cn respectively, λf1,f2 = dim g and we recover (6.4).

After discussing with Naoki Genra, it appears that theW-algebrasWk1(g1, f1) andWk2(g2, f2)
satisfying the previous conditions are non isomorphic in general. Indeed, another invariant of the
W-algebra Wk(g, f) is the radical of the centralizer gf . Those of centralizers gf1

1 and gf2
2 are not

always isomorphic. However, it is still possible that the W-algebras Wk1(g1, f1) and Wk2(g2, f2)
are closely related. Recently, more Feigin-Frenkel type dualities have been found involving cosets
[40, 43]. We hope that our pairs are, for example, cosets of each other. If so, we should obtain
relations similar to (6.2).

A preliminary step would be to understand how we obtain pairs (f1, f2) to predict their
apparition. Moreover, we would like to find a rigorous interpretation of the constant λf1,f2 . In
the same time, we will investigate on the simplest examples applying the usual techniques. The
screening operators [66] are the main tool to prove Feigin-Frenkel type dualities in [40]. We hope
to explore this topic in collaboration with Naoki Genra.

conformal weights orbit partition in B5 orbit partition in C5 λf1,f2

113, ( 3
2 )12, 26 24, 13 23, 14 1

13, ( 3
2 )2, 22, ( 5

2 )2, 33, ( 7
2 )2, 4 42, 3 4, 32 6

1, 26, 33, 43 5, 32 42, 2 7
23, 3, 43, 5, 6 7, 3, 1 6, 4 15
2, 4, 6, 8, 10 11 (principal) 10 (principal) 55

Table 6.1 – Dual pairs (f1, f2) in (B5, C5)
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conformal weights orbit partition in B6 orbit partition in C6 λf1,f2

16, ( 3
2 )6, 27, ( 5

2 )6, 33 33, 22 32, 23 3
12, 210, 35, 43 5, 32, 12 42, 22 6

2, 4, 6, 8, 10, 12 13 (principal) 12 (principal) 78

Table 6.2 – Dual pairs (f1, f2) in (B6, C6)
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Table 6.3 – Dual pairs (f1, f2) in (B8, C8)
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Table 6.4 – Dual pairs (f1, f2) in (B11, C11)
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AppendixA
W-algebras associated with nilpotent
elements of sl3

The simple Lie algebra g := sl3 of type A2 may be realized as the set of 3-size square matrices
with trace zero. As a Cartan subalgebra h fix the set of diagonal matrices of g. The Lie algebra sl3
admits three nilpotent orbits which are parametrized by the partitions of 3: (3), (2, 1), (13). They
correspond respectively to the principal, the minimal and the trivial nilpotent orbits. Recall that
in this particular case, the minimal nilpotent orbit is also the subregular one. Let Π = {α1, α2}
be a set of simple roots for the root system ∆ corresponding with our choice of h. We denote
hi := α∨i , for i = 1, 2. The dual Coxeter number of sl3 is h∨ = 3. In the following, we give the
OPEs between the strong generators of Wk(sl3, fmin) and Wk(sl3) at level k 6= −3. These two
W-algebras are among the first to have been described explicitly. They are respectively called
the Bershadsky-Polyakov vertex algebra [36, 88] and the Zamolodchikov vertex algebra [96].

A.1 Generators and OPEs of the Bershadsky-Polyakov ver-
tex algebra Wk(sl3, fmin)

In [16], Arakawa give an explicit description of the Bershadsky-Polyakov vertex algebra which
corresponds to the W-algebra associated with a minimum nilpotent element of sl3.

The W-algebra Wk(sl3, fmin) is strongly generated by the fields J(z), G±(z) and L(z) corre-
sponding respectively to vectors h1 − h2, e−α1 , e−α2 and f := fmin = e−α1 + e−α2 which form a
basis of the centralizer gf . These fields satisfy the following relations:

J(z)J(w) ∼ (3 + 2k)
(z − w)2 ,

J(z)G±(w) ∼± 1
(z − w)G

±(w),

L(z)L(w) ∼ ck
2(z − w)4 + 2

(z − w)2L(w) + 1
(z − w) ∂L(w),

L(z)G±(w) ∼ 3
2(z − w)2G

±(w) + 1
(z − w) ∂G

±(w),
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L(z)J(w) ∼ 1
(z − w)2 J(w) + 1

(z − w) ∂J(w),

G±(z)G±(w) ∼0,

G+(z)G−(w) ∼− (1 + k)(3 + 2k)
(z − w)3 + 3(1 + k)

(z − w)2 J(w)

+ 1
(z − w)

(
−(3 + k)L(w) + 3 : J(w)2 : −3(1 + k)

2 ∂J(w)
)
,

where
ck = − (1 + 3k)(3 + 2k)

3 + k
.

A.2 Generators and OPEs of the Zamolodtchikov vertex
algebra Wk(sl3)

Set f := freg = 2(e−α1 + e−α2), e = 2(eα1 + eα2) and h = 2(h1 + h2). The centralizer of f in g is
two-dimensional:

gf = Cf ⊕ Ce−θ,

with e−θ ∈ g−3.
The W-algebra Wk(sl3) is strongly generated by the fields L(z) and W (z) satisfying the

OPEs:

L(z)L(w) ∼ ck
2(z − w)4 + 2

(z − w)2L(w) + 1
(z − w) ∂L(w),

L(z)W (w) ∼ 4
(z − w)2W (w) + 1

(z − w) ∂W (w),

W (z)W (w) ∼ wkck
3(z − w)6 + 2wk

(z − w)4L(w) + wk
2(z − w)3 ∂L(w)

+ 1
(z − w)2

(
2(3 + k)2

3 : L(w)2 : −3(3 + k)2(2 + k)2

4 ∂2L(w)
)

+ 1
(z − w)

(
2(3 + k)3

3 : L(w)∂L(w) : − (3 + k)2(18 + 14k + 3k2)
18 ∂3L(w)

)
,

where
ck = −2(5 + 3k)(9 + 4k)

3 + k
,

and
wk = − (3 + k)2(4 + 3k)(12 + 5k)

6 .



AppendixB
W-algebras associated with nilpotent
elements of sp4

The simple Lie algebra g := sp4 may be realized as the set of 4-size square matrices x such that
xTJ4 + J4x = 0, where J4 is the anti-diagonal matrix given by

J4 =
(

0 U2
−U2 0

)
, where U2 =

(
0 1
1 0

)
.

We make the standard choice that h is the set of diagonal matrices of g. Nilpotent orbits of g
are parameterized by the partitions of 4 such that the number of parts of each odd number is
even [39, Theorem 5.1.3]. Thus there are four nilpotent orbits in g corresponding to the following
partitions: (4), (22), (2, 12), (14). They correspond, respectively, to the principal, the subregular,
the minimal and the zero nilpotent orbits of g, with respective dimensions 8, 6, 4, 0.

Write Π = {α1, α2} a set of simple roots for the root system ∆ of (g, h) such that α1 is a long
root and α2 is short. Then ∆+ = {α1, α2, η, θ}, with η := α1 +α2, and θ := α1 + 2α2 the highest
positive root. We denote hi := α∨i ∈ (h∗)∗ ∼= h, for i = 1, 2. The Lie algebra of sp4 is of type
B2'C2. The previous choice of root system fixes the Dynkin diagram

α1 α2
.

The dual Coxeter number of sp4 is h∨ = 3. In the following, we give the OPEs between strong
generators of W-algebras associated with nilpotent elements of sp4 at level k 6= −3.

B.1 Generators and OPEs of Wk(sp4, fmin)
Let f := fmin = e−θ be a minimal nilpotent element of sp4, e = eθ and h = [e, f ] = θ. Then (e, h, f)
is an sl2-triple. The centralizer of f is six-dimensional generated by eα1 , e−α1 , e−α2 , e−η, e−θ, h1.
We have the decomposition

gf = gf−1 ⊕ gf−1/2 ⊕ gf0 ,

where

gf−1 = Cf, gf−1/2 = Ce−α2 ⊕ Ce−η, and gf0 = Ceα1 ⊕ Ch1 ⊕ Ce−α1 ' sl2.

The W-algebra Wk(sp4, fθ) is strongly generated by the fields J(z), G±(z), F±(z), and L(z)
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satisfying the following OPEs:

J(z)J(w) ∼ (1 + 2k)
(z − w)2 ,

J(z)F±(w) ∼± 2
(z − w)F

±(w),

F±(z)F±(w) ∼0,

F+(z)F−(w) ∼ (1 + 2k)
2(z − w)2 + 1

(z − w) J(w),

J(z)G±(w) ∼± 1
(z − w)G

±(w),

G±(z)F±(w) ∼ 0,

G±(z)F∓(w) ∼ 1
(z − w)G

∓(w),

L(z)L(w) ∼ ck
2(z − w)4 + 2

(z − w)2L(w) + 1
(z − w) ∂L(w),

L(z)G±(w) ∼ 3
2(z − w)2G

±(w) + 1
(z − w) ∂G

±(w),

L(z)F±(w) ∼ 1
(z − w)2F

±(w) + 1
(z − w) ∂F

±(w),

L(z)J(w) ∼ 1
(z − w)2 J(w) + 1

(z − w) ∂J(w),

G±(z)G±(w) ∼± 4(2 + k)
(z − w)2F

±(w)± 2(2 + k)
(z − w) ∂F

±(w),

G+(z)G−(w) ∼2(1 + 2k)(2 + k)
(z − w)3 + 2(2 + k)

(z − w)2 J(w)

+ 1
(z − w)

(
−2(3 + k)L(w) + 4 : F+(w)F−(w) : + : J(w)2 : +k∂J(w)

)
,

where
ck = −3(k + 1)(2k + 1)

3 + k
.

B.2 Generators and OPEs of Wk(sp4, fsubreg)
Let f := fsubreg = e−η be a subregular nilpotent element in sp4. Setting e := eη and h := 2h1 +h2,
we get an sl2-triple of g. The centralizer of f is four-dimensional generated by e−η, e−α1 , e−θ, h2.
Moreover,

gf = gf−1 ⊕ gf0 ,

where
gf−1 = Cf ⊕ Ce−α1 ⊕ Ce−θ , and gf0 = Ch2.

The W-algebra Wk(sp4, f) is strongly generated by the fields J(z), G±(z) and L(z) satisfying
the OPEs:

J(z)J(w) ∼ (2 + k)
(z − w)2 ,
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J(z)G±(w) ∼± 1
(z − w)G

±(w),

L(z)L(w) ∼ ck
2(z − w)4 + 2

(z − w)2L(w) + 1
(z − w) ∂L(w),

L(z)G±(w) ∼ 2
(z − w)2G

±(w) + 1
(z − w) ∂G

±(w),

L(z)J(w) ∼ 1
(z − w)2 J(w) + 1

(z − w) ∂J(w),

G±(z)G±(w) ∼0,

G+(z)G−(w) ∼− 3(1 + k)(2 + k)2

(z − w)4 − 3(1 + k)(2 + k)
(z − w)3 J(w)

+ 1
(z − w)2

(
(2 + k)(3 + k)L(w)− (3 + 2k) : J(w)2 : −3(1 + k)(2 + k)

2 ∂J(w)
)

+ 1
(z − w)

(
(3 + k) : L(w)J(w) : +(3 + k)(2 + k)

2 ∂L(w)− : J(w)3 :

−(3 + 2k) : J(w)∂J(w) : − (5 + 4k + k2)
2 ∂2J(w)

)
,

where
ck = −2(9 + 16k + 6k2)

3 + k
.

B.3 Generators and OPEs of Wk(sp4)

Let f := freg = 4e−α1 + 3e−α2 , e := 4eα1 + 3eα2 and h := 4h1 + 3h2. Then f belongs to the
regular nilpotent orbit of sp4 and the centralizer of f is

gf = Cf ⊕ Ce−θ,

with e−θ ∈ g−3.
The W-algebra Wk(sp4) is strongly generated by the fields L(z) and W (z) satisfying the

OPEs:

L(z)L(w) ∼ ck
2(z − w)4 + 2

(z − w)2L(w) + 1
(z − w) ∂L(w),

L(z)W (w) ∼ 4
(z − w)2W (w) + 1

(z − w) ∂W (w),

W (z)W (w) ∼ wkck
4(z − w)8 + 2wk

(z − w)6L(w) + wk
(z − w)5 ∂L(w)

+ 3(3 + k)(3 + 2k)(8 + 3k)
(z − w)4

(
30(17 + 12k + 2k2)W (z)

+(3 + k)(11 + 5k) (11 + 6k)(18 + 7k)(19 + 8k)(−7(3 + k) : L(w)2 : +(162 + 139k + 30k2)
2 ∂2L(w))

)
+ 1

(z − w)3 (. . .) + 1
(z − w)2 (. . .) + 1

(z − w) (. . .),
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where
ck = −2(12 + 5k)(13 + 6k)

3 + k
,

and

wk = (3 + k)2(3 + 2k)(8 + 3k)(11 + 5k)(11 + 6k)(18 + 7k)(19 + 8k)(747 + 674k + 150k2).



AppendixC
W-algebras associated with nilpotent
elements of G2

Consider the Lie algebra g := G2 of rank 2. Let Π = {α1, α2} be a set of simple roots for the
root system ∆ of g with α1 the short root and α2 the long one. Then ∆+ = {α1, α2, η1, η2, η3, θ},
with ηi := iα1 + α2 for i = 1, 2, 3, and θ := 3α1 + 2α2 the highest positive root. Denote
hi := α∨i ∈ (h∗)∗ ∼= h, for i = 1, 2. The previous choice of root system fixes the Dynkin diagram
of G2 α1 α2

.

The Lie algebra g has four non-zero nilpotent orbits, the three canonical nilpotent orbits (Omin,
Osubreg, and Oreg) of dimension 6, 10 and 12, and an additional nilpotent orbit of dimension 8,
denoted Ã1 [39, Chap. 8].

The dual Coxeter number of G2 is h∨ = 4. In the following, we give the OPEs between the
strong generators of W-algebras associated with nilpotent element of G2 provided k 6= −4.

C.1 Generators and OPEs of Wk(G2, fmin)
Let f := fmin = e−θ be a minimal nilpotent element of G2, and h := h1 + 2h2. The centralizer
of f is eight-dimensional, generated by {eα1 , e−α1 , e−α2 , e−η1 , e−η2 , e−η3 , f, h1}. The minimal
grading on g induces the decomposition of the centralizer of f :

gf = Cf ⊕ gf−1/2 ⊕ gf0 ,

where

gf−1 = Cf, gf−1/2 = Ce−α2 ⊕
3⊕
i=1

Ce−ηi , and gf0 = Ceα1 ⊕ Ce−α1 ⊕ Ch1 ' sl2.

The W-algebra Wk(G2, fmin) is strongly generated by the fields J(z), F±(z), G±(z), W±(z),
and L(z) satisfying the OPEs:

L(z)L(w) ∼ ck
2(z − w)4 + 2

(z − w)2L(w) + 1
(z − w) ∂L(w),
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L(z)J(w) ∼ 1
(z − w)2 J(w) + 1

(z − w) ∂J(w),

L(z)F±(w) ∼ 1
(z − w)2F

±(w) + 1
(z − w) ∂F

±(w),

L(z)G±(w) ∼ 3
2(z − w)2G

±(w) + 1
(z − w) ∂G

±(w),

L(z)W±(w) ∼ 3
2(z − w)2W

±(w) + 1
(z − w) ∂W

±(w),

J(z)J(w) ∼2(5 + 3k)
(z − w)2 ,

J(z)F±(w) ∼± 2
(z − w)F

±(w),

J(z)G±(w) ∼± 3
(z − w)G

±(w),

J(z)W±(w) ∼± 1
(z − w)W

±(w),

F±(z)F±(w) ∼G±(z)G±(w) ∼ F±(z)G±(w) ∼ 0,

F+(z)F−(w) ∼ (5 + 3k)
(z − w)2 + 1

(z − w) J(w),

G+(z)G−(w) ∼2(4 + 3k)(5 + 3k)
9(z − w)3 + (4 + 3k)

3(z − w)2 J(w)

+ 1
(z − w)

(
−(4 + k)L(w) + 2

3 : F+(w)F−(w) : +1
3 : J(w)2 : +(2 + 3k)

6 ∂J(w)
)
,

F±(z)G∓(w) ∼ 1
(z − w)W

∓(w),

W±(z)W±(w) ∼± 4(4 + 3k)
3(z − w)2F

±(w)± 2(4 + 3k)
3(z − w) ∂F

±(w),

W+(z)W−(w) ∼− 2(4 + 3k)(5 + 3k)
3(z − w)3 − (4 + 3k)

3(z − w)2 J(w)

+ 1
(z − w)

(
3(4 + k)L(w)− 10

3 : F+(w)F−(w) : −1
3 : J(w)2 : +(2− k)

2 ∂J(w)
)
,

F±(z)W±(w) ∼ 3
(z − w)G

±(w),

F±(z)W∓(w) ∼ 2
(z − w)W

±(w),

G±(z)W±(w) ∼± 2
3(z − w) : F±(w)2 :,

G±(z)W∓(w) ∼∓ 2(4 + 3k)
3(z − w)2F

±(w) + 1
(z − w)

(
−2

3 : J(w)F±(w) : ∓ (2 + 3k)
3 ∂F±(w)

)
,

where
ck = −2k(5 + 3k)

4 + k
.
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C.2 Generators and OPEs of Wk(G2, fÃ1
)

Set f := fÃ1
= e−η2 and h := 2h1 + 3h2. Then f is a nilpotent element in Ã1. A basis of the

vector space gf is given by {eα2 , e−α2 , f, e−η3 , e−θ, h2}. Moreover, we have the decomposition

gf = gf−3/2 ⊕ gf−1 ⊕ gf0 ,

where

gf−1 = Cf, gf−3/2 = Ce−η3 ⊕ Ce−θ, and gf0 = Ceα2 ⊕ Ch2 ⊕ Ce−α2 ' sl2.

The W-algebra Wk(G2, f) is strongly generated by the fields J(z), F±(z), G±(z), and L(z)
satisfying the OPEs:

L(z)L(w) ∼ ck
2(z − w)4 + 2

(z − w)2L(w) + 1
(z − w) ∂L(w),

L(z)J(w) ∼ 1
(z − w)2 J(w) + 1

(z − w) ∂J(w),

L(z)F±(w) ∼ 1
(z − w)2F

±(w) + 1
(z − w) ∂F

±(w),

L(z)G±(w) ∼ 5
2(z − w)2G

±(w) + 1
(z − w) ∂G

±(w),

J(z)J(w) ∼ (3 + 2k)
(z − w)2 ,

J(z)F±(w) ∼± 2
(z − w)F

±(w),

J(z)G±(w) ∼± 1
(z − w)G

±(w),

F±(z)F±(w) ∼G±(z)F±(w) ∼ 0,

F+(z)F−(w) ∼ (3 + 2k)
2(z − w)2 + 1

(z − w) J(w),

F±(z)G∓(w) ∼ 1
(z − w)G

±(w),

G±(z)G±(w) ∼∓ 2(2 + k)(10 + 3k)(17 + 6k)
(z − w)4 F±(w)∓ (2 + k)(10 + 3k)(17 + 6k)

(z − w)3 ∂F±(w)

+ 1
(z − w)2

(
±2(4 + k)(16 + 5k) : L(w)F±(w) : ∓16(3 + k) : F+(w)F±(w)F−(w) :

∓ 4(3 + k) : F±(w)J(w)2 : −(44∓ 48 + (24∓ 16)k + 3k2) : F±(w)∂J(w) :
+(2 + k)(10 + 3k) : J(w)∂F±(w) : ∓2(3 + k)(38∓ 4 + 20k + 3k2)∂2F±(w)

)
+ 1

(z − w)
(
±(4 + k)(16 + 5k) : L(w)∂F±(w) : ∓16(3 + k) : F+(w)F−(w)∂F±(w) :

± (4 + k)(16 + 5k) : ∂L(w)F±(w) : ∓8(3 + k) : F±(w)2∂F∓(w) :
∓ 4(3 + k) : F±(w)J(w)∂J(w) : ∓2(3 + k) : J(w)2∂F±(w) :

+ 44 + 24k + 3k2

2 (: J(w)∂2F±(w) : − : F±(w)∂2J(w) :)
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±4(2∓ 1)(3 + k) : ∂J(w)∂F±(w) : ∓940 + 736k + 195k2 + 18k3

12 ∂3F±(w)
)
,

G+(z)G−(w) ∼ (2 + k)(3 + 2k)(10 + 3k)(17 + 6k)
(z − w)5 + (2 + k)(10 + 3k)(17 + 6k)

(z − w)4 J(w)

+ 1
(z − w)3 (−(4 + k)(3 + 2k)(16 + 5k)L(w)

+ (38 + 34k + 7k2)(4 : F+(w)F−(w) : + : J(w)2 :)

+188 + 256k + 119k2 + 18k3

2 ∂J(w)
)

+ 1
(z − w)2

(
−(4 + k)(16 + 5k) : L(w)J(w) : +8(3 + k) : F+(w)F−(w)J(w) :

+ (8 + 36k + 11k2) : F+(w)∂F−(w) : +(144 + 100k + 17k2) : F−(w)∂F+(w) :
+ 2(3 + k) : J(w)3 : +(26 + 30k + 7k2) : J(w)∂J(w) :

− (4 + k)(3 + 2k)(16 + 5k)
2 ∂L(w) + (3 + k)(42 + 20k + 3k2)∂2J(w)

)
+ 1

(z − w)

(
3(4 + k)2

2 : L(w)2 : −3(2 + k)(3 + k)(4 + k)
2 ∂2L(w)

− (4 + k)(16 + 5k)
2 : ∂L(w)J(w) : − (4 + k)(8 + 5k)

2 : L(w)∂J(w) :

+ 396 + 332k + 90k2 + 9k3

12 ∂3J(w)− 8(4 + k) : L(w)F+(w)F−(w) :

− 2(4 + k) : L(w)J(w)2 : +116 + 72k + 15k2

2 : ∂F+(w)∂F−(w) :

+ (2 + k)(26 + 15k)
8 : ∂J(w)2 : +96 + 52k + 9k2

4 : J(w)∂2J(w) :

+ 2(27 + 19k + 3k2) : F−(w)∂2F+(w) : +(26 + 14k + 3k2) : F+(w)∂2F−(w) :
+ (7 + 3k) : J(w)2∂J(w) : +4(5 + k) : J(w)F−(w)∂F+(w) :
+ 4(1 + k) : J(w)F+(w)∂F−(w) : +4(k − 1) : F+(w)F−(w)∂J(w) :

+8 : F+(w)2F−(w)2 : +4 : F+(w)F−(w)J(w)2 : +1
2 : J(w)4 :

)
,

where
ck = − (92 + 81k + 18k2)

4 + k
.

C.3 Generators and OPEs of Wk(G2, fsubreg)
Set f := fsubreg = e−α2 + e−η2 , e := eα2 + eη2 , and h := 2h1 + 4h2. The centralizer of f in g is
four-dimensional:

gf = gf−2 ⊕ gf−1,

where
gf−2 = Ce−θ, and gf−1 = Cf ⊕ Ce−α2 ⊕ C(e−η1 − 3e−η3).

The W-algebra Wk(G2, f) is strongly generated by the fields L(z), G±(z) and F (z) satisfying
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the OPEs:

L(z)L(w) ∼ ck
2(z − w)4 + 2

(z − w)2L(w) + 1
(z − w) ∂L(w),

L(z)G±(w) ∼ 2
(z − w)2G

±(w) + 1
(z − w) ∂G

±(w),

L(z)F (w) ∼ 3
(z − w)2F (w) + 1

(z − w) ∂F (w),

G+(z)F (w) ∼2(2 + k)(16 + 5k)
(z − w)3 G−(w) + (2 + k)(16 + 5k)

2(z − w)2 ∂G−(w)

+ 1
(z − w)

(
2 : G+(w)G−(w) : −2(4 + k) : L(w)G−(w) : +2∂F (w) + (2 + k)2

2 ∂2G−(w)
)
,

G−(z)F (w) ∼2(2 + k)(16 + 5k)
(z − w)3 G+(w) + (2 + k)(16 + 5k)

2(z − w)2 ∂G+(w)

+ 1
(z − w)

(
− : G+(w)2 : −2(4 + k) : L(w)G+(w) : − : G−(w)2 : +(2 + k)2

2 ∂2G+(w)
)
,

F (z)F (w) ∼− (2 + k)(10 + 3k)(16 + 5k)(4 + k)ck
2(z − w)6

− 3(2 + k)(4 + k)(10 + 3k)(16 + 5k)
(z − w)4 L(w)− 3(2 + k)(4 + k)(10 + 3k)(16 + 5k)

2(z − w)3 ∂L(w)

+ 1
(z − w)2

(
−(8 + 3k) : G+(w)2 : +2(4 + k)2(10 + 3k) : L(w)2 :

+(8 + 3k) : G−(w)2 : −3(2 + k)(4 + k)(8 + 3k)(10 + 3k)
4 ∂2L(w)

)
+ 1

(z − w)
(
−(8 + 3k) : G+(w)∂G+(w) : +2(4 + k)2(10 + 3k) : L(w)∂L(w) :

+(8 + 3k) : G−(w)∂G−(w) : − (2 + k)(4 + k)(4 + 3k)(10 + 3k)
6 ∂3L(w)

)
,

G±(z)G±(w) ∼± (10 + 3k)(4 + k)ck
2(z − w)4 + 1

(z − w)2
(
±2(4 + k)(10 + 3k)L(w)− 4(3 + k)G+(w)

)
+ 1

(z − w)
(
±(4 + k)(10 + 3k)∂L(w)− 2(3 + k)∂G+(w)

)
,

G+(z)G−(w) ∼ 4(3 + k)
(z − w)2G

−(w) + 1
(z − w)

(
−2F (w) + 2(3 + k)∂G−(w)

)
,

where
ck = −4(k + 2)(17 + 6k)

4 + k
.

C.4 Generators and OPEs of Wk(G2)
Let f := freg = 6e−α1 + 10e−α2 and h := 6h1 + 10h2. Then f is a regular nilpotent element of
G2 and the centralizer of f is

gf = Cf ⊕ Ce−θ,

where [h, e−θ] = −10e−θ.
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The W-algebra Wk(G2) is strongly generated by the fields L(z) and W (z) satisfying the
OPEs:

L(z)L(w) ∼ ck
2(z − w)4 + 2

(z − w)2L(w) + 1
(z − w) ∂L(w),

L(z)W (w) ∼ 6
(z − w)2W (w) + 1

(z − w) ∂W (w),

W (z)W (w) ∼ 1
(z − w)12 (. . .) + 1

(z − w)11 (. . .) + 1
(z − w)10 (. . .)

+ 1
(z − w)9 (. . .) + 1

(z − w)8 (. . .) + 1
(z − w)7 (. . .)

+ 1
(z − w)6 (. . .) + 1

(z − w)5 (. . .) + 1
(z − w)4 (. . .)

+ 1
(z − w)3 (. . .) + 1

(z − w)2 (. . .) + 1
(z − w) (. . .),

where
ck = −2(12k + 41)(7k + 24)

4 + k
.



AppendixD
GAP commands to compute conformal
weights of W-algebras

Let L be a simple Lie algebra and e be a element in the nilpotent orbit N of L. This appendix
introduces several commands in the language of the computer algebra system GAP to compute
the conformal weights of the W-algebra associated with the nilpotent element e in L. These
functions require the package SLA [69] which make easier computations of various data of simple
Lie algebras. The following commands implemented in the package SLA are very useful for our
computations:

• NilpotentOrbits(L) returns the list of all non trivial nilpotent orbits of L,

• NilpotentOrbit(L,wd) returns the nilpotent orbit of L whose the weighted Dynkin diagram
corresponds to the list wd,

• OrbitPartition(N) returns the partition of the nilpotent orbit N when L is a classical Lie
algebra,

• WeightedDynkinDiagram(N) returns the weighted Dynkin digrams of the nilpotent orbit N,

• WeightedDynkinDiagram(L,e) returns the weighted Dynkin digrams of the nilpotent orbit
containing e,

• SL2Triple(N) returns an sl2-triple whose the nilpotent elements are in N.

D.1 Computation of conformal weights of a W-algebra
In this section, we present our main function ConformalWeightsN(L,N). It returns the list of
conformal weights of the W-algebra Wk(e, L), where e is a element in the nilpotent orbit N. This
function uses two auxiliary functions:

• characteristic(L,N) returns the list of eigenvalues of ad(h) where h is a semisimple
element of an sl2-triple whose nilpotent elements are in the nilpotent orbit N,

• extract(l,i) returns the number of occurrences of i in the list l. In particular, when l
is the list characteristic(L,N), the function returns the dimension of the eigenspace of
ad(h) corresponding with the eigenvalue i.
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We have also constructed two variations of the function ConformalWeightsN(L,N) depending on
the data we know:

• ConformalWeights(L) returns all lists of conformal weights corresponding to nilpotent
orbits of L,

• ConformalWeightsE(L,e) returns the list of conformal weights corresponding to a nilpotent
element e in L.

1 characteristic := function (L,N)
2 local R,tC ,pR;
3 R:= RootSystem (L);
4 pR:= PositiveRoots (R);
5 tC:= Inverse ( TransposedMat ( CartanMatrix (R)));
6 return List ([1.. Length (pR)], j->
7 tC*pR[j]* WeightedDynkinDiagram (N)); end;
8
9 extract := function (l,i)

10 local n,c,j;
11 n:= Length (l);
12 c:=0;
13 for j in [1..n] do if l[j]=i then c:=c+1; fi; od;
14 return c; end;
15
16 ConformalWeightsN := function (L,N)
17 local Caract ,n,N_max ,Even_Part ,Odd_Part ,j,
18 Eigenvalues_list ,hL;
19 Caract := characteristic (L,N);
20 n:= Length ( Caract );
21 Sort( Caract );
22 N_max := Caract [n];
23 hL:= ChevalleyBasis (L)[3];
24 Even_Part :=[[0/2+1 , extract (Caract ,0)*2+ Length (hL)
25 -extract (Caract ,2)]];
26 Odd_Part :=[];
27 for j in [1.. N_max] do
28 Add(Even_Part ,[(2*j)/2+1 , extract (Caract ,2*j)
29 -extract (Caract ,2*j +2)]);
30 Add(Odd_Part ,[(2*j -1)/2+1 , extract (Caract ,2*j -1)
31 -extract (Caract ,2*j +1)]); od;
32 Eigenvalues_list := Concatenation (Even_Part , Odd_Part );
33 Sort( Eigenvalues_list , function (v,w) return v[2]<w[2]; end );
34 while Eigenvalues_list [1][2]=0 do
35 Remove ( Eigenvalues_list ,1); od;
36 Sort( Eigenvalues_list , function (v,w) return v[1]<w[1]; end );
37 return Eigenvalues_list ; end;

Example D.1.1. The conformal weights of Wk(sp4, fsubreg) are (1, 23). This means that the
W-algebra is strongly generated by one field of conformal weight 1 and three of conformal weight
2.
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gap > L:= SimpleLieAlgebra ("B" ,2, Rationals );
<Lie algebra of dimension 10 over Rationals >
gap > N:= NilpotentOrbits (L)[2];
<nilpotent orbit in Lie algebra of type B2 >
gap > ConformalWeightsN (L,N);
[ [ 1, 1 ], [ 2, 3 ] ]

1 ConformalWeights := function (L)
2 local Orbits ,N;
3 Orbits := NilpotentOrbits (L);
4 N:= Length ( Orbits );
5 return List ([1..N],i-> ConformalWeightsN (L, Orbits [i])); end;

Example D.1.2. To obtain the conformal weights of all W-algebras associated with sp4 one uses
ConformalWeights.
gap > L:= SimpleLieAlgebra ("B" ,2, Rationals );
<Lie algebra of dimension 10 over Rationals >
gap > ConformalWeights (L);
[ [ [ 1, 3 ], [ 3/2, 2 ], [ 2, 1 ] ], [ [ 1, 1 ], [ 2, 3 ] ],
[ [ 2, 1 ], [ 4, 1 ] ] ]

1 ConformalWeightsE := function (L,e)
2 local N;
3 N:= NilpotentOrbit (L, WeightedDynkinDiagram (L,e));
4 return ConformalWeightsN (L,N); end;

Example D.1.3. The conformal weights of Wk(sp4, fsubreg) also correspond to the conformal
weights of the nilpotent element e = eα1 + eθ.
gap > L:= SimpleLieAlgebra ("B" ,2, Rationals );
<Lie algebra of dimension 10 over Rationals >
gap > Ch:= ChevalleyBasis (L);
[ [ v.1, v.2, v.3, v.4 ], [ v.5, v.6, v.7, v.8 ], [ v.9, v.10 ] ]
gap > e:=Ch [1][1]+ Ch [1][4];
v.3
gap > ConformalWeightsE (L,e);
[ [ 1, 1 ], [ 2, 3 ] ]

D.2 Applications to find nilpotent orbits sharing same con-
formal weights

Let f be a nilpotent element in g and {x1, . . . , xn} be a basis of the centralizer gf with respect
to the grading of h. The list of conformal weights of f encodes the h-eigenvalues of x1, . . . , xn.
It contains a lot of additional information. For instance, given a list of conformal weights CW,
one easily deduces dimensions of the corresponding nilpotent orbit (DimensionN(CW)) and Lie
algebra (DimensionL(CW)).
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1 DimensionL := function (CW)
2 local i,dim;
3 dim :=0;
4 for i in [1.. Length (CW)] do
5 dim := dim +(( CW[i ][1] -1)*2+1)* CW[i][2]; od;
6 return dim; end;
7
8 DimensionN := function (CW)
9 return DimensionL (CW)-Sum(CW )[2]; end;

We use the previous programs to determine if a list of half-integers can be the list of conformal
weights of a W-algebra. In order to do that, we use several auxiliary functions. Indeed, to reduce
successively the number of candidates, we start comparing the dimensions of Lie algebras and
then ones of nilpotent orbits:

• PossibleLie(d) returns the list of simple Lie algebras of dimension d,

• OrbitsFixedDimension(L,d) returns the list of nilpotent orbits in L whose dimension is d.

Then we obtain a list of candidate orbits which satisfy the previous dimensional conditions
(PossibleOrbits(CW)). We conclude comparing the conformal weights of the candidates to the
initial list:

• OrbitsCW(CW) returns the list of nilpotent orbits in all simple Lie algebras whose conformal
weights is CW,

• OrbitsCWE(CW) returns the list of nilpotent orbits N in all simple Lie algebras and a nilpotent
element f in N such as the list of conformal weights of Wk(g, f) is CW.

1 PossibleLie := function (d)
2 local Lie , exceptionnal_Lie , classical_Lie ,i;
3 exceptionnal_Lie :=[[["E" ,6] ,78] ,[["E" ,7] ,133] ,
4 [["E" ,8] ,248] ,[["F" ,4] ,52] ,[["G" ,2] ,14]];
5 Lie :=[];
6 for i in [1.. Length ( exceptionnal_Lie )] do
7 if exceptionnal_Lie [i][2]=d
8 then Add(Lie , exceptionnal_Lie [i ][1]); fi; od;
9 classical_Lie :=[ -1+ Sqrt (1+d),(-1+ Sqrt (1+8*d))/4 ,

10 (1+ Sqrt (1+8*d ))/4];
11 if classical_Lie [1] in Integers
12 then Add(Lie ,["A",classical_Lie [1]]); fi;
13 if classical_Lie [2] in Integers
14 then Append (Lie ,[["B",classical_Lie [2]] ,
15 ["C",classical_Lie [2]]]); fi;
16 if classical_Lie [3] in Integers and classical_Lie [3] >3
17 then Add(Lie ,["D",classical_Lie [3]]); fi;
18 return Lie; end;
19
20 OrbitsFixedDimension := function (L,d)
21 local Orbits ,N,i, GoodOrbits ;
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22 Orbits := NilpotentOrbits (L);
23 N:= Length ( Orbits );
24 GoodOrbits :=[];
25 for i in [1..N] do
26 if DimensionN ( ConformalWeightsN (L, Orbits [i]))=d
27 then Add(GoodOrbits ,[ Orbits [i],i]); fi; od;
28 return GoodOrbits ; end;
29
30 PossibleOrbits := function (CW)
31 local dimL ,dimN ,Lie ,i,GoodOrbits ,Orbits ,L;
32 dimL := DimensionL (CW);
33 dimN := DimensionN (CW);
34 Lie := PossibleLie (dimL );
35 GoodOrbits :=[];
36 for i in [1.. Length (Lie )] do
37 L:= Lie[i];
38 Orbits := OrbitsFixedDimension (
39 SimpleLieAlgebra (L[1],L[2], Rationals ),
40 dimN );
41 if Orbits <>[] then
42 Add(GoodOrbits ,[L, Orbits ]); fi; od;
43 return GoodOrbits ; end;
44
45 OrbitsCW := function (CW)
46 local PO ,GoodOrbits ,i,j,L;
47 PO:= PossibleOrbits (CW);
48 GoodOrbits :=[];
49 for i in [1.. Length (PO)] do
50 L:= SimpleLieAlgebra (
51 PO[i][1][1] , PO[i][1][2] , Rationals );
52 for j in [1.. Length (PO[i ][2])] do
53 if CW= ConformalWeightsN (L,PO[i][2][j][1])
54 then Add(GoodOrbits ,
55 [PO[i][1] , PO[i][2][j]]); fi;od;od;
56 return GoodOrbits ; end;

Example D.2.1. Two nilpotent orbits have conformal weights (113, 3/212, 26): the second nilpotent
orbit in the list NilpotentOrbits(B5) and the third one in NilpotentOrbits(C5).
gap > OrbitsCW ([ [ 1, 13 ], [ 3/2, 12 ], [ 2, 6 ] ]);
[[[ "B", 5 ], [ <nilpotent orbit in Lie algebra of type B5 >, 2 ]],
[[ "C", 5 ], [ <nilpotent orbit in Lie algebra of type C5 >, 3 ]]]

1 OrbitsECW := function (CW)
2 local Orbits ,OrbitsE ,i;
3 Orbits := OrbitsCW (CW);
4 OrbitsE :=[];
5 for i in [1.. Length ( Orbits )] do
6 Add(OrbitsE ,[ Orbits [i][2] ,
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7 SL2Triple ( Orbits [i ][2][1])]); od;
8 return OrbitsE ; end;

Example D.2.2. The command OrbitsECW([ [ 1, 13 ], [ 3/2, 12 ], [ 2, 6 ] ]) returns
the same result as OrbitsCW([ [ 1, 13 ], [ 3/2, 12 ], [ 2, 6 ] ]) with the additional
data of an sl2-triple whose nilpotent elements are representatives of the nilpotent orbit.
gap > OrbitsECW ([ [ 1, 13 ], [ 3/2, 12 ], [ 2, 6 ] ]);
[ [ [ <nilpotent orbit in Lie algebra of type B5 >, 2 ],
[v.47+v.48, v .51+(2)* v .52+(3)* v .53+(4)* v .54+(2)* v.55, v.22+v.23]] ,
[[ <nilpotent orbit in Lie algebra of type C5 >, 3 ],
[v.47+v.48, v .51+(2)* v .52+(3)* v .53+(3)* v .54+(3)* v.55, v.22+v .23]]]

Finally, we compare conformal weights of W-algebras associated with two simple Lie algebras
L1 and L2. The function SharedWeights(L1,L2) returns the lists of conformal weights which
correspond simultaneously to a nilpotent orbit of L1 and one of L2. This command has been
used to compute examples appearing in Tables 6.1-6.4.

1 SharedWeights := function (L1 ,L2)
2 local OrbitsL1 ,OrbitsL2 ,N1 ,N2 ,CW1 ,CW2 ,i,j,CW;
3 OrbitsL1 := NilpotentOrbits (L1);
4 N1:= Length ( OrbitsL1 );
5 OrbitsL2 := NilpotentOrbits (L2);
6 N2:= Length ( OrbitsL2 );
7 CW1 := ConformalWeights (L1);
8 CW2 := ConformalWeights (L2);
9 CW :=[];

10 for i in [1.. N1] do
11 for j in [1.. N2] do
12 if CW1[i]= CW2[j]
13 then Add(CW ,[i,j,CW1[i]]); fi; od; od;
14 return CW; end;

Example D.2.3. Some nilpotent orbits in B5 and C5 have the same conformal weights. The
command SharedWeights(B5,C5) returns a list whose each element is a triple: the first and
second terms correspond respectively to the index of the nilpotent orbits in NilpotentOrbits(B5)
and NilpotentOrbits(C5), and the third item of the triple is their list of conformal weights.
gap > B5:= SimpleLieAlgebra ("B" ,5, Rationals );
<Lie algebra of dimension 55 over Rationals >
gap > C5:= SimpleLieAlgebra ("C" ,5, Rationals );
<Lie algebra of dimension 55 over Rationals >
gap > S:= SharedWeights (B5 ,C5);
[ [ 2, 3, [[ 1, 13 ],[ 3/2, 12 ],[ 2, 6 ]] ],
[ 10, 13, [[ 1, 3 ],[ 3/2, 2 ],[ 2, 2 ],[ 5/2, 2 ],[ 3, 3 ],
[ 7/2, 2 ],[ 4, 1 ]] ],
[ 14, 15, [[ 1, 1 ],[ 2, 6 ],[ 3, 3 ],[ 4, 3 ]] ],
[ 18, 20, [[ 2, 3 ],[ 3, 1 ],[ 4, 3 ],[ 5, 1 ],[ 6, 1 ]] ],
[ 20, 23, [[ 2, 1 ],[ 4, 1 ],[ 6, 1 ],[ 8, 1 ],[ 10, 1 ]] ] ]
gap > OrbitPartition ( NilpotentOrbits (B5 )[2]);
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[ 2, 2, 2, 2, 1, 1, 1 ]
gap > OrbitPartition ( NilpotentOrbits (C5 )[3]);
[ 2, 2, 2, 1, 1, 1, 1 ]
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Geometry and new rational W-algebras
Abstract

Affine W-algebras form a rich one-parameter family of vertex algebras associated with nilpotent elements of
simple Lie algebras. These complex algebraic structures appear in several areas of physic and mathematics.
Because of their recent construction, numerous aspects of the theory of W-algebras remain unknown.
In this thesis, we study W-algebras associated with nilpotent elements of Lie algebras of small ranks. We
prove the rationality of a new family of W-algebras, describe their set of simple modules and study other
geometrical aspects. We describe new associated varieties of vertex algebras. The geometry of these
objects often reflects some important algebraic properties of the vertex algebras. For some particular
values of the parameter, called collapsing levels, we also get new remarkable isomorphisms of W-algebras.
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Géométrie et nouvelles W-algèbres rationnelles
Résumé

Les W-algèbres affines forment une famille riche d’algèbres vertex à un paramètre associées à un élément
nilpotent d’une algèbre de Lie simple. Ce sont des structures algébriques complexes qui apparaissent
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petits rangs. Nous démontrons la rationalité d’une nouvelle famille de W-algèbres, décrivons l’ensemble des
modules simples sur ces dernières et étudions d’autres aspects géométriques. Nous décrivons de nouvelles
variétés associées à des algèbres vertex. La géométrie de ces objets reflète souvent des propriétés algébriques
importantes des algèbres vertex. Pour certaines valeurs particulières du paramètre, appelées niveaux
d’effondrement, nous obtenons également de nouveaux isomorphismes remarquables de W-algèbres.
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