N

N
N

HAL

open science

Constrained Exploration in Reinforcement Learning

Evrard Garcelon

» To cite this version:

Evrard Garcelon. Constrained Exploration in Reinforcement Learning. Statistics [math.ST]. Institut

Polytechnique de Paris, 2022. English. NNT: 2022IPPAGO007 . tel-03946443

HAL Id: tel-03946443
https://theses.hal.science/tel-03946443
Submitted on 19 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-03946443
https://hal.archives-ouvertes.fr

L
W 11,

\‘I"/ ’,
[] I[//,/”,:
ENSAE Z::
\\\\\:

1, Py P’Q “\‘\\\\

INSTITUT
POLYTECHNIQUE =

DE PARIS "‘lp PARIS

Constrained Exploration in
Reinforcement Learning

] Thése de doctorat de I'Institut Polytechnique de Paris
préparée a I'Ecole nationale de |a statistique et de 'administration économique

2022IPPAG007

Ecole doctorale n°574 Ecole doctorale de mathématiques Hadamard (EDMH)
Spécialité de doctorat : Mathématiques appliquées

NNT

Thése présentée et soutenue a Palaiseau, le 08 Décembre 2022, par
EVRARD GARCELON

Composition du Jury :

Aurélien Garivier

Professeur, ENS Lyon Président, Rapporteur
Branislav Kveton

Principal Scientist, Amazon Rapporteur
Aurélien Bellet

Chargé de recherche, Inria & Université de Lille Examinateur
Azadeh Khaleghi

Professeure, ENSAE (CREST) Examinatrice
Vianney Perchet

Professeur, ENSAE (CREST) Directeur de thése
Matteo Pirotta

Research Scientist, Meta Invité

fo
-
ke,
O
O
e
©
e
©
)
O
- -
I—

Remerciements

First and foremost | wish to thank both my advisors Vianney Perchet and Matteo Pirotta. You gave me the
opportunity to start to this 3-years life-changing adventure. Your scientific and human support significantly improved
the quality of this thesis. | owe you both a lot. Vianney as | said during my defense since we met in 2017, under your
mentorship | could grew up immensly technically but also as a human being and for that | want to sincerely thank
you. Matteo, we met a bit later in 2019, you agreed to supervise my master's internship and later my PhD. The
opportunity coupled with your help you gave me really is a positive EV event on my life and for that | can simply
thank you sincerely.

| also want to thank the researchers that agreed to be part of my jury: Aurélien Garivier, Branislav Kveton,
Azadeh Khaleghi and Aurélien Bellet. | am humbled that such researchers agreed to being part of my thesis jury, a
very time-consuming task.

Over the last 3 years, | had the opportunity to collaborate with a lot of researchers from Meta Al and elsewhere.
Every time it was a wonderful experience. | want to thank: Alessandro Lazaric, Ciara Pike-Burke, Michal Valko,
Olivier Teytaud, Mohammad Ghavamzadeh, Remy Degenne, Paul Luyo, Kamalika Chaudhuri, Vashist Avadhanula,
Yunchang Yang, Tianhao Wu, Han Zhong, Liwei Wang, Simon Shaolei Du, Francois Charton, Kristin Lauter, Mark
Tygert, Cathy Li, Mingjie Chen and Emily Wenger.

During this PhD, | had the chance to meet some phenomenal people that made this PhD much easier. Either at
ENSAE with Maria, Mathieu, Flore, Come, Hugo, Lorenzo, Sasila, Reda, Corentin, Etienne, Firas. Going to ENSAE
was sometimes long but always a pleasure to chat with each of you. Or at Meta, with Charlotte, Gautier, Lina, Louis,
Leonard, Guillaume, Paul-Ambroise, Virginie, Hubert, Rui, Baptiste, Laurent. Again discussing with each of you was
always a pleasure. | hope that someday | could cross paths with all of you again. Of course | can not finish this
section without mentionning Jean-Baptiste, Pierre-Alexandre and Jean. You know why | thank each of you | already
had the occasion to tell in person. Without you, those last few years would have been dramatically different.

Enfin je veux remercier ma famille ceux qui sont encore avec nous et ceux qu'on a malheureusement perdu au
fil des années. En particulier, je veux remercier mes parents a qui je dois beaucoup si ce n'est quasiment tout.
Simplement merci. Je tiens a terminer ces remerciements en remerciant Yangi. Sans toi, je n'aurais tout simplement
pas pu terminer ce doctorat.

Abstract

Today, most personalized services like recommendations are powered by supervised learning algorithms. But those
algorithms use data collected thanks to the same applications and algorithms. This kind of feedback loop is remi-
niscent of an online learning problem. Surprisingly, online learning algorithms are not often used in applications like
recommender system. Amongst online learning algorithms Reinforcement Learning (RL) and bandits algorithms, look
the most well positioned to replace supervised learning algorithms (Netflix; Spotify; Li et al., 2016). Nonetheless,
there exists a significant number of roadblocks before being able to fully replace current supervised methods. In
this thesis, we focus on some of those constraints, from a theoretical point of view, to better understand some
of the limitations of RL and bandit algorithms under those constraints and how it impacts their use in real-world
applications. In this thesis, we consider three hurdles of deploying RL algorithms. But others exist such as model
misspecification, non-stationarity and lack of real-time architectures.

The first is to guarantee that during the learning process of the newly-deployed algorithm, its performance does
not fall significantly behind the performance of the already used method, called baseline policy. The latter is often
suboptimal. In this case, it is desirable to deploy a Reinforcement Learning algorithm that interacts with the system
to learn a better/optimal policy under the constraint that during the learning process, the performance is almost
never worse than the performance of the baseline itself.

Recently, an other important problematic that emerged in personalized services is the privacy of the data used
by the algorithms. For example, we can think to the leakage of information through recommended items in a
recommender system scenario. In RL, it is common that user data contain sensitive information that needs to be
protected from third parties. Motivated by this observation, we study privacy in the context of finite-horizon Markov
Decision Processes (MDPs) by requiring information to be obfuscated on the user side. We formulate this notion of
privacy for RL by leveraging the local differential privacy (LDP) framework. We establish a lower bound for regret
minimization in finite-horizon MDPs with LDP guarantees which shows that guaranteeing privacy has a multiplicative
effect on the regret. This result shows that while LDP is an appealing notion of privacy, it makes the learning problem
significantly more complex.

At last, we consider the problem of security in Reinforcement Learning systems. One aspect is to understand
how adversarial attacks can affect RL systems. In many domains, malicious agents may have incentives to force a
bandit algorithm into a desired behavior. For instance, an unscrupulous ad publisher may try to increase their own
revenue at the expense of the advertisers; a seller may want to increase the exposure of their products, or thwart a
competitor’s advertising campaign. We show that a malicious agent can force a bandit algorithm to recommend any
desired items T — o(T) times over a horizon of T steps, while applying adversarial modifications to either rewards
or contexts with a cumulative cost only growing logarithmically. The second aspect of security in RL is to build
an end-to-end encrypted RL system. Indeed, a critical aspect of bandit methods is that they require to observe
contexts —i.e., individual or group-level data— and rewards in order to solve the sequential problem. The deployment
in industrial applications has increased interest in methods that preserve the users’ data security. We introduce a
secure bandit framework based on homomorphic encryption which allows computations using encrypted data. The
algorithm only observes encrypted information (contexts and rewards) and has no ability to decrypt it. The security
of the data from the RL algorithm is then guaranteed.

Contents

1

Introduction 6
1.1 Overview . . . o o o 6
1.2 Contextual Bandit and Tabular Reinforcement Learning 7
1.2.1 Multi-Armed Bandit L 7
1.2.2 Linear Contextual Bandit 7
1.2.3 Reinforcement Learning 7
1.3 Outline and Contributions L 9
Performance Constraint in Reinforcement Learning 12
2.1 Bandit With Noisy Evaluations e 14
2.1.1 Definition of the Bandit Model 14
2.1.2 Other Related Bandit Models 16
2.1.3 The Generalized Linear Model Caseo 16
2.1.4 Linear Case e 19
2.1.5 Experiments L 21
2.1.6 Potential Extensions and Concluding Remarks 23
2.2 Improved Conservative Exploration for Linear Contextual Bandits 23
2.2.1 Conservative Contextual Linear Bandits 24
2.2.2 Improved Conservative Exploration 26
2.2.3 Checkpoint-based Conservative Exploration, 29
224 Experiments L 31
2.2.5 Potential Extensions and Concluding Remarks 33
2.3 Conservative Exploration in Reinforcement Learning 33
2.3.1 Average Reward Reinforcement Learning oL 34
2.3.2 Definition of Conservative Exploration in Average Reward RL 34
2.3.3 Conservative UCRL e 36
2.3.4 Experiments e 40
2.3.5 Future Extensions L 41
2.4 Conclusion L 41
2.A Appendix for Bandit with Noisy Evaluations, 42
2.A.1 Lower Bound e 42
2.A.2 Noise Correlation Issue e 43
2.A.3 Generalized Linear Model 44
2.A4 Linear Model e 50
2.A5 Regret Analysis L 52
2.A.6 Additional Experiments 53
2.B Appendix for Improved Conservative Exloration for Linear Contextual Bandit. 60
2.B.1 Proofs e 60
2.B.2 Experiments e 65
2.C Appendix for Conservative Exploration for Reinforcement Learning 68
2.C.1 Policy Evaluation with Uncertainties 68
2.C.2 Regret Bound for CUCRL e 71
2.C.3 Conservative Exploration in Finite Horizon Markov Decision Processes 76

2.C.4 Experiments e 81

3 Private Reinforcement Learning 83
3.1 (Local) Differential Privacy in Reinforcement Learning 85
3.1.1 Basics of Differential Privacy in RL 86
3.1.2 Regret Lower Bound Under LDP Constraintin RL 87
3.1.3 Exploration Under Local Differential Privacy 88
3.1.4 Choice of Randomizer e 90
3.1.5 Numerical Evaluation 91
3.1.6 Concluding Remarks and Potential Extensions 92

3.2 Improving Privacy by Shuffling 93
3.2.1 The Shuffle Model in Linear Contextual Bandits 94
3.2.2 Shuffle Model with Fixed-Batch Shuffler L 95
3.2.3 Analysis of The Shuffle Model with Fixed-Batch Shuffler 97
3.2.4 Potential Extensions 101

3.3 Conclusion L 101
3.A Appendix for (Local) Differential Privacy in Reinforcement LearningL 103
3.A.1 Extended Related Work 103
3.A.2 Regret Lower Bound (Proof of Thm. 6) 103
3.A.3 Concentration under Local Differential Privacy (Proof of Prop. 6): 106
3.A.4 Regret Upper Bound (Proof of Thm. 7) 108
3.A.5 The Laplace Mechanism for Local Differential Privacy 111
3.A.6 Other Privacy Preserving Mechanisms 114
3.A.7 Experimental Results: 122
3.A.8 Posterior Sampling for Local Differential Privacy 122
3.A.9 Additional Experiment. 125
3.A.10 Privacy Amplification by Shufflingin RL o 125

3.B Appendix for Improving Privacy by Shuffling 127
3.B.1 Local Privatizer Mipp 127
3.B.2 Proofs 129
3.B.3 Regret with Scheduled Update Algorithm 134

4 Secure Reinforcement Learning 137
4.1 Attacks on Linear Contextual Bandit 139
4.1.1 Linear Contextual Bandit 139
4.1.2 Online Adversarial Attacks on Rewards 140
4.1.3 Online Adversarial Attacks on Contexts 141
4.1.4 Offline attacks on a Single Context 143
415 Experiments L e 144
4.1.6 Concluding Remarks and Extensions 146

4.2 Encryption in Linear Contextual Bandit. 146
421 Homomorphic Encryption 147
4.2.2 Contextual Bandit And Encryption L 148
4.2.3 An Algortihm For Encrypted Linear Contextual Bandits 149
424 Theoretical Guarantees 151
4.2.5 Discussion And Extensions L 152

4.3 Conclusion L e 153
4.A Appendix for Attacks on Linear Contextual Bandit L. 154
4. A1 Proofs . . . e 154

4. A2 Experiments 156
4.A.3 Problem (4.8) as a Second Order Cone (SOC) Program 158
4.A.4 Attacks on Adversarial Bandits 159
4.A.5 Contextual Bandit Algorithms 161

4. A6 Semi-Online Attacks e 162

4.B Appendix for Encrypted Linear Contextual Bandits, . 163

4.B.1 Slow-Switching Algorithm 163

4.B.2 Additional Related Work 164

4.B.3 Protocol Details 164

4B.4 Toward An Encrypted OFUL 165

4.B.5 Slow Switching Condition and Regret of HELBA 171

4.B.6 Implementation Details 180

5 Final Conclusion and Perspectives 183
5.1 Conclusion and Contributions of this Thesis 183

6 Résumé étendu 184
6.1 APErcuU e 184
6.2 Bandits et Bandits contextuels 185
6.2.1 Bandits a plusieurs bras 185

6.2.2 Bandits contextuels linéaire L 187

6.3 Apprentissage par Renforcement L L 189
6.3.1 Apprentissage par Renforcement a Horizon Fini 189

6.3.2 Apprentissage par Renforcement a Récompense Moyenne 190

6.4 Contributions L 191
6.4.1 Bandits avec évaluations bruitées et Exploration conservatrice 192

6.4.2 Confidentialité des données dans I'apprentissage par renforcement 193

6.4.3 Sécurité dans I'apprentissage par renforcement. L. 193

6.4.4 Liste des publications dans les conférences internationales avec journal. 193

Chapter 1

Introduction

Contents

1.1 OVeIVIEW & v i i i i i e

1.2 Contextual Bandit and Tabular Reinforcement Learning.
1.2.1 Multi-Armed Bandito
1.2.2 Linear Contextual Bandit
1.2.3 Reinforcement Learning Lo

1.3 Outline and Contributions 00t e

© 9N No

1.1 Overview

Supervised Learning has powered a substantial amount of applications (Sharma et al., 2017; Wang et al., 2016;
Ghazanfar and Prugel-Bennett, 2010) where some might argue that online decision-making algorithms may be better
adapted (Sikka et al., 2012; Netflix). However, in the recent years there has been a lot of efforts to adapt and deploy
online decision-making algorithms for applications like recommendation problems (Spotify; le et al., 2019). At the
forefront of this push there is Reinforcement Learning (RL) and Bandit algorithms1 (Shi et al., 2018; Zhao et al.,
2019; Guo et al., 2020). Indeed, those learning paradigms allow practitioners to take into account the lifetime value
of a customer (Wang et al., 2019a), or other objectives that are a function of the previous interactions of a given
user with a product. Nonetheless, this change is not painless. One crucial reason for this, that we focus on in this
thesis, between Supervised Learning based algorithms and RL ones is exploration.

To understand what is exploration in Bandit and RL algorithms, let us consider the classical example, described in
(Lattimore and Szepesvari, 2020), where one faces two different slots machines with different winning probabilities.
You can play one of the two machines 10 times with the goal to maximize the total number of wins after 10 pulls.
Imagine that after 6 totally random pulls you observe that the first machine has a higher winning rate than the
second one. How does one should allocate the remaining pulls? Should one commit to pulling only the first machine
or try the second machine a few more times? The first example exploits the current results and makes a greedy
decision based on those. Whereas taking the second option means that one is still exploring the potential actions
maybe assuming the current results are due to randomness. The tension between optimizing the number of winning
pulls and gathering more data on the winning rate of each machine is dubbed, in the literature, the explore-exploit
tradeoff. When deploying a RL algorithm, exploration can be problematic for different reasons. For example, even
though it may lead to better long-term results, exploration can lead to worse result in the short-term, as an example
one may think about recommending a german-speaking (with no subtitles) movie to a solely french-speaking person.
In the worst scenario, exploration may even be harmful when recommending a PG18-rated movie to a 13 years old.
This motivates the need to constrain exploration when deploying RL algorithms.

This thesis is motivated by these questions around the exploration process for Reinforcement Learning and Bandits.
We hope that through the different contributions presented here, we clarified some questions in order to apply RL
algorithms in the real-world but also helped promising research directions to further facilitate the use of RL to emerge.

LIn this thesis, we may sometimes use the term RL algorithms to design both Reinforcement Learning algorithms and Bandit algorithms

1.2 Contextual Bandit and Tabular Reinforcement Learning

Before delving into the contributions of this thesis, we provide an introduction to Tabular Reinforcement Learning
and Contextual Bandits which are the two main settings studied in this thesis. We start by a brief introduction to
Multi-Armed Bandit that is the basic setting to understand the interaction scenario between the learning algorithm
and the rest of the world.

1.2.1 Multi-Armed Bandit

A Multi-Armed Bandit problem is a simple online decision-making problem. An algorithm (often called agent or
learner) has to choose an action from a set of K € N* possible actions for each time ¢ > 1. Each action generates
a reward, 7, (that may be adversarial or stochastic) the objective of the learner is to maximize the cumulative
rewards. In this thesis, we focus on stochastic bandit or Reinforcement Learning problem. That is to say, we assume
that for each action a < K, the reward r, ~ v, where v, is an unknown (for the learner) distribution on R. The
objective of the learner is then to maximize the cumulative reward, >, E,,,, (r). Or equivalently to minimize the
regret, R(T) = Y1 Epeoy,. (1) — Epn,, (1) for all T > 1, where a* := argmax,eq1,... .k} Er~w, (1) is the best
action to take with the knowledge of the distributions (v4)q.

As explained in the previous section, minimizing the regret requires the learner to balance exploring the arms
and exploiting the current best arms. There exists a wide variety of assumptions that makes the multi-armed bandit
problem more or less complex. For example, we can assume the reward distribution are sub-Gaussian or with heavy
tails (Bubeck and Cesa-Bianchi, 2012; Zhuang and Sui, 2021). However, this provides a basic setting to understand
the online nature of the problem studied in this thesis.

1.2.2 Linear Contextual Bandit

Contextual Bandit is a cardinal development of the standard bandit theory thanks to the addition of side-information
called contexts that modify the reward-generating process enabling for example personalization in some application
of bandit algorithms. In general in contextual bandit, the reward is a function of a feature given to the algorithm
without any further assumption on the relationship between the reward and the feature (Beygelzimer et al., 2010,
2011; Bietti et al., 2018). In this work, we focus on the case where this relation is linear. The linear contextual
bandit problem is one of the most studied version of the contextual bandit problem. There exists two slightly different
formulation of the problem that are equivalent but are more comfortable depending on the situation.

Action Dependent Features Let's consider the standard contextual linear bandit setting with K € N arms.
At each time t, the agent observes a context x; € R4*K selects an action a; € [1, K] and observes a reward:
Tta, = (0%, %q,) + 1%, where 6* € R? is a feature vector and 7%, is a conditionally independent zero-mean, o2-
subgaussian noise. No assumption is made on how the contexts are presented to the agent. That is to say they could
be sampled stochastically or adversely. In most cases, the contexts are assumed to all have a norm upper-bounded
by some known constant and the learner has access to an upper-bound on the norm of the unknown vector 6*.
The goal of the agent is to minimize the cumulative regret after T steps R = ZtT:1<9*7lBt,a;> — (0%, %4,4,), Where
ay :=argmax, (0%, q).

Action Independent Features In this formulation the features vector does depend on the action, that is to say
at each time ¢, the agent receives a context x; € R<. The main difference with the formalism above is that when
the agent selects an action a; € [1, K], it observes a reward: ry o, = (0, 2:) + 1, where for each arm a, 6, € R?
is a feature vector and nflt is a conditionally independent zero-mean, o2-subgaussian noise. The regret can now be

written as, Ry = ZtT:l(Ga:,xt) — (Ba,,), where af := argmax, (0, x¢).

1.2.3 Reinforcement Learning

Reinforcement Learning is a generalization of the bandit setting by incorporating a notion of state, similar to contexts
in contextual bandit. Over the years, different formulation of RL has been devloped. For example, most applied
deep Reinforcement Learning research is taking place in the discounted infinite horizon setting (Mnih et al., 2013).
In those work, we focus on two setting more studied in theoretical RL literature: finite-horizon (in Section 3.1 and
Section 2.C.3) and Average-Reward Reinforcement Learning (in Section 2.3).

1.2.3.1 Finite-Horizon Reinforcement Learning

Let's consider a finite-horizon Markov Decision Process (Puterman, 1994, Chp. 4) M = (S, A,p,r, H) with state
space S and action space A. Every state-action pair is characterized by a reward distribution with mean r(s,a) and
support in [0,1] and a transition distribution p(-|s,a) over the next state. We denote by S = |S| and A = | A| the
number of states and actions, and by H the horizon of an episode. A Markov randomized decision rule d : S — P(A)
maps states to distributions over actions. A policy 7 is a sequence of decision rules, i.e., 7 = (d1,da,...,dy). We
denote by TIMR (resp. TIMP) the set of Markov randomized (resp. deterministic) policies. The value of a policy
7 € IIMR is measured trough the value function

H
Vit € [H],Vs €S Vi'(s) =E" erl(sl,aZ) | st =s

1=t

where the expectation is defined w.r.t. the model and policy (i.e., a; ~ d;(s;)). This function gives the expected
total reward that one could get by following policy 7 starting in state s, at time ¢t. There exists an optimal policy
7* € IIMP (Puterman, 1994, Sec. 4.4) for which V;* = V;™" satisfies the optimality equations:

Vt € [H],Vs € S, Vi(s) = max {ri(s,a) +p(|s,a) Vi, } o= LIV (1.1)

where V. 1 (s) = 0 for any state s € S. The value function can be computed using backward induction (e.g.,
Puterman, 1994; Bertsekas, 1995) when the reward and transitions are known. Given a policy m € IIMP | the
associated value function satisfies the evaluation equations V" (s) := LTV 1 (s) = r(s,di(s)) + p(:|s, di(s)) TV, ;.
The optimal policy is thus defined as 7* = argmax o { LT V;*}, Vt € [H].

In the following we assume that the learning agent knows S, A and 7,,x, while the reward and dynamics are
unknown and need to be estimated online. Given a finite number of episode K, we evaluate the performance of a
learning algorithm 2(by its cumulative regret

K
RORLK) =Y Vi(s1x) — V™ (s1.6)
k=1

where 7, is the policy executed by the algorithm at episode k.

1.2.3.2 Average-Reward Reinforcement Learning

The Average-Reward setting in Reinforcement Learning is defined through a Markov Decision Process (Puterman,
1994, Sec. 8.3) M = (S, A, p,r) with state space S and action space A. Every state-action pair (s, a) is characterized
by a reward distribution with mean 7(s,a) and support in [0, max], and a transition distribution p(-|s, a) over next
states. We denote by S = |S| and A = | A| the number of states and actions. A stationary Markov randomized policy
7w : S — P(A) maps states to distributions over actions. The set of stationary randomized (resp. deterministic)
policies is denoted by TISR (resp. TI°P). Any policy m € TI°R has an associated long-term average reward (or gain)
and a bias function defined as

g"(s) = _lim E?[;Zr(st,at)} and

T—+o0
t=1

T—+o00

h™(s) := C-lim ET [é (r(se, ar) — g”(st))},

where ET denotes the expectation over trajectories generated starting from s; = s with a; ~ m(s;¢). The bias h™(s)
measures the expected total difference between the reward and the stationary reward in Cesaro-limit (denoted by
C-lim). We denote by sp(h™) := maxs h™(s) — ming h™(s) the span (or range) of the bias function.

Assumption 1. The MDP M is ergodic.

In ergodic MDPs, any policy 7 € TI°R has constant gain, i.e., g"(s) = g” for all s € S. There exists a policy
7 € argmax, g™ for which (¢*,h*) = (¢" ,h™") satisfy the optimality equations,

B(s)+ 9" = L* () i= max{r(s, a) + p(1s,0)Th"},

where L is the optimal Bellman operator. We use D = max.s min,cqso E[7-(s'|s)] to denote the diameter of M,
where 7,(s'|s) is the hitting time of s’ starting from s. We introduce the “worst-case” diameter

T = E (s’ 1.2
max max K [7(s']5)], (1.2)

which defines the worst-case time it takes for any policy m to move from any state s to s’. Asm. 1 guarantees that
D <T < 0.

1.3 Outline and Contributions

In this thesis, we explore the theoretical implications of how one can reconciliate the exploration process in Rein-
forcement Learning and Bandits algorithms with practical constraints that at first glance would require to limit or
even suppress exploration. In each of the following chapters, we explore one constraint showing its effect on the
regret. The theoretical results are illustrated with experiments on either synthetic dataset and real-world datasets.
The technical derivation are located in the Appendix at the end of each chapter.

Bandits with Noisy Evaluations and Conservative Exploration The first type of constraint, that is the focus
of Section 2.1 of Chapter 2, can be seen as a performance type of constraint. In a standard recommendation ML
pipeline it is not uncommon to have features being scored by a bunch of specialized models before being sent to
the algorithm in charge of the final recommendation. The reason for this design are multiple. In some cases, it is
simply due computational and latency constraints. For problems with millions of items to be recommended it is more
efficient to get a rough ranking of all items and then computing more refined estimation of a reduced number of
items. An other reason can be that the nature of objects to be ranked is heterogeneous that is to say the algorithm
may have to rank images and text data. In which case, it is often recommended to use specialized scoring algorithms.
The second performance constraint, studied in Sections 2.2 and 2.3 in Chapter 2 deals with the short-term reward
loss due to exploration in RL and Bandits algorithms. As discussed above, due to exploration, RL algorithms takes
action that are suboptimal in order to discard them quickly and focus on the other actions. However, oftentimes
when deploying a RL algorithms there exists a trusted algorithm (which maybe relying on handcrafted rules) solving
the same problem as the RL algorithm but potentially suboptimal. If this existing algorithm is indeed suboptimal, the
RL algorithm will outperform it in the long run. In the worst case the gap in performance can be in serious disfavor
of the RL algorithm for a long time. This situation is to be avoided at all cost and requires to control the exploration
of the algorithm such that it is taking bad actions only if it has built a "budget” for it. That is to say, we want to
introduce a parameter controlling the maximum difference between the performance of the existing algorithm and
the RL one while the latter is performing worse than the former. This problem is called conservative exploration.

Privacy in Reinforcement Learning The second type of constraints we tackle is motivated by the recent push
for more privacy in online services. Indeed, the question of privacy in machine learning algorithms has been a long
standing question (Dwork et al., 2010a). Recently the notion of Differential Privacy has nonetheless been accepted
as the default definition of privacy in the ML literature (Abadi et al., 2016). In Section 3.1 of Chapter 3, we examine
how this definition has been adapted to the tabular RL setting. The main consequence of privacy in RL is a constraint
on the sequence of actions that can be taken by the agent. We propose the first algorithm to enforce a stronger
definition of privacy, a decentralized one (Bebensee, 2019), and show how this affect the regret by proving a lower
bound and presenting an algorithm matching this lower-bound up to polynomial terms in the size of the state space
and the size of the actions space. In addition, in Section 3.2 of Chapter 3 we show how to relate a recent advance in
the theory of Differential Privacy (Feldman et al., 2020), which allows to achieve a trade-off between strong privacy
and performance degradation, to a linear contextual bandit problem.

Security in Reinforcement Learning. Finally, the last type of constraint we consider in this thesis is a security
constraint. In Chapter 4, we study two different aspects of security. First, in Section 4.1 we investigate how sensitive
linear contextual bandits are to adversarial attacks. In those attacks, the attackers are allowed to modify the feedback
sent to the algorithm. Their objective being to minimize the cumulative change in the feedback while ensuring that
the bandit algorithm is unable to find the best actions. In Section 4.2, we explore a second aspect of security that

2For each type of constraints a more thorough related work discussion is provided in the corresponding chapter.

having all the feedback sent and received by the algorithm are encrypted end-to-end. The algorithm can not decrypt
data but can perform computation on encrypted data. This encryption comes with serious computational drawbacks
and limitations. That is to say, there is a limited number of additions or multiplications possible before making the
data indecipherable. Despite this limitation, we show how to build a linear contextual bandit algorithm with a regret
on par with standard linear contextual bandit algorithms.

List of Publications in International Conferences with Proceedings. The list below contains the publications

| was involved in during this PhD. Chapter 2 is based on (Garcelon et al., 2022c, 2020a,b). Chapter 3 is based on

(Garcelon et al., 2021, 2022b) and the last chapter, Chapter 4 is based on (Garcelon et al., 2020c, 2022c).
Publications presented in this thesis:

Evrard Garcelon, Vashist Avadhanula, Alessandro Lazaric, and Matteo Pirotta. Top k ranking for multi-
armed bandit with noisy evaluations. In Gustau Camps-Valls, Francisco J. R. Ruiz, and Isabel Valera, edi-
tors, Proceedings of The 25th International Conference on Artificial Intelligence and Statistics, volume 151
of Proceedings of Machine Learning Research, pages 6242—6269. PMLR, 28-30 Mar 2022a. URL https:
//proceedings.mlr.press/vi51/garcelon22b.html

Evrard Garcelon, Mohammad Ghavamzadeh, Alessandro Lazaric, and Matteo Pirotta. Improved algorithms
for conservative exploration in bandits. Proceedings of the AAAI Conference on Artificial Intelligence, 34(04):
3962-3969, Apr. 2020a. doi: 10.1609/aaai.v34i04.5812. URL https://ojs.aaai.org/index.php/AAAT/
article/view/5812

Evrard Garcelon, Mohammad Ghavamzadeh, Alessandro Lazaric, and Matteo Pirotta. Conservative explo-
ration in reinforcement learning. In Silvia Chiappa and Roberto Calandra, editors, Proceedings of the Twenty
Third International Conference on Artificial Intelligence and Statistics, volume 108 of Proceedings of Machine
Learning Research, pages 1431-1441. PMLR, 26-28 Aug 2020b. URL https://proceedings.mlr.press/
v108/garcelon20a.html

Evrard Garcelon, Vianney Perchet, Ciara Pike-Burke, and Matteo Pirotta. Local differential privacy for regret
minimization in reinforcement learning. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman
Vaughan, editors, Advances in Neural Information Processing Systems, volume 34, pages 10561-10573. Curran
Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/

Evrard Garcelon, Kamalika Chaudhuri, Vianney Perchet, and Matteo Pirotta. Privacy amplification via shuf-
fling for linear contextual bandits. In Sanjoy Dasgupta and Nika Haghtalab, editors, International Conference on
Algorithmic Learning Theory, 29-1 April 2022, Paris, France, volume 167 of Proceedings of Machine Learning
Research, pages 381-407. PMLR, 2022b. URL https://proceedings.mlr.press/v167/garcelon22a.html

Evrard Garcelon, Baptiste Roziere, Laurent Meunier, Jean Tarbouriech, Olivier Teytaud, Alessandro Lazaric,
and Matteo Pirotta. Adversarial attacks on linear contextual bandits. In H. Larochelle, M. Ranzato, R. Hadsell,
M.F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages
14362-14373. Curran Associates, Inc., 2020c. URL https://papers.nips.cc/paper/2020

Evrard Garcelon, Matteo Pirotta, and Vianney Perchet. Encrypted linear contextual bandit. In Gustau Camps-
Valls, Francisco J. R. Ruiz, and Isabel Valera, editors, Proceedings of The 25th International Conference on
Artificial Intelligence and Statistics, volume 151 of Proceedings of Machine Learning Research, pages 2519—
2551. PMLR, 28-30 Mar 2022c. URL https://proceedings.mlr.press/vi51/garcelon22a.html

Other publications not presented in this thesis:

Rémy Degenne, Evrard Garcelon, and Vianney Perchet. Bandits with side observations: Bounded vs. logarith-
mic regret. In Amir Globerson and Ricardo Silva, editors, Proceedings of the Thirty-Fourth Conference on Uncer-
tainty in Artificial Intelligence, UAI 2018, Monterey, California, USA, August 6-10, 2018, pages 467-476. AUAI
Press, 2018. URL http://auai.org/uai2018/proceedings/supplements/Supplementary-Paper182.
pdf

Jean Tarbouriech, Evrard Garcelon, Michal Valko, Matteo Pirotta, and Alessandro Lazaric. No-regret explo-
ration in goal-oriented reinforcement learning. In Hal Daumé Ill and Aarti Singh, editors, Proceedings of the 37th
International Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pages
9428-9437. PMLR, 13-18 Jul 2020. URL https://proceedings.mlr.press/v119/tarbouriech20a.html

10

https://proceedings.mlr.press/v151/garcelon22b.html
https://proceedings.mlr.press/v151/garcelon22b.html
https://ojs.aaai.org/index.php/AAAI/article/view/5812
https://ojs.aaai.org/index.php/AAAI/article/view/5812
https://proceedings.mlr.press/v108/garcelon20a.html
https://proceedings.mlr.press/v108/garcelon20a.html
https://proceedings.neurips.cc/paper/2021/
https://proceedings.mlr.press/v167/garcelon22a.html
https://papers.nips.cc/paper/2020
https://proceedings.mlr.press/v151/garcelon22a.html
http://auai.org/uai2018/proceedings/supplements/Supplementary-Paper182.pdf
http://auai.org/uai2018/proceedings/supplements/Supplementary-Paper182.pdf
https://proceedings.mlr.press/v119/tarbouriech20a.html

= Yunchang Yang, Tianhao Wu, Han Zhong, Evrard Garcelon, Matteo Pirotta, Alessandro Lazaric, Liwei Wang,
and Simon Shaolei Du. A reduction-based framework for conservative bandits and reinforcement learning.

In International Conference on Learning Representations, 2022. URL https://openreview.net/forum?id=
AcrlgZ9BKed

11

https://openreview.net/forum?id=AcrlgZ9BKed
https://openreview.net/forum?id=AcrlgZ9BKed

Chapter 2

Performance Constraint in Reinforcement
Learning

In this chapter, we explore the impact of different empirical constraints on the exploration process in Reinforcement
Learning and Bandit problems. There is a myriad of practical constraints that may hinder the exploration process in
online learning. In this chapter, we explore two main constraints. The first constraint is when it is not possible for the
learning algorithm to directly observe the input, = such that the reward is a function of x. That is to say the algorithm
may only observe predictions of the reward from some prediction algorithms. For example, the learning algorithm
only observes predictions from computer vision algorithms for image inputs, or NLP algorithms for text-based inputs.
The second constraint we focus on is a performance constraint on the policy learned by the agent. That is to say,
assuming the learning algorithm has access to a baseline policy (usually a policy based on expert knowledge) the
agent is not allowed to deploy a policy in the environment that is performing significantly worse than the baseline
policy. This problem is known in the bandit and RL literature as the conservative exploration problem.

Specifically, in this chapter we formalize for the first time the problem of Bandits under Noisy Evaluations where
the agent choose arms based on noisy predictions provided by different evaluators. We define the notion of regret
in this new setting and introduce two learning algorithms with sublinear regret. In the second part of this chapter,
we revisit the problem of conservative exploration (Wu et al., 2016; Kazerouni et al., 2017). We introduce an
algorithm with improved regret guarantees in the linear contextual bandit case. Finally, we formalize the conservative
exploration problem in the Finite Horizon Reinforcement Learning but also in the Average Reward Reinforcement
Learning setting.

This chapter is based on the three following articles:

= Evrard Garcelon, Vashist Avadhanula, Alessandro Lazaric, and Matteo Pirotta. Top k ranking for multi-
armed bandit with noisy evaluations. In Gustau Camps-Valls, Francisco J. R. Ruiz, and Isabel Valera, edi-
tors, Proceedings of The 25th International Conference on Artificial Intelligence and Statistics, volume 151
of Proceedings of Machine Learning Research, pages 6242—6269. PMLR, 28-30 Mar 2022a. URL https:
//proceedings.mlr.press/v151/garcelon22b.html

= Evrard Garcelon, Mohammad Ghavamzadeh, Alessandro Lazaric, and Matteo Pirotta. Improved algorithms
for conservative exploration in bandits. Proceedings of the AAAI Conference on Artificial Intelligence, 34(04):
3962-3969, Apr. 2020a. doi: 10.1609/aaai.v34i04.5812. URL https://ojs.aaai.org/index.php/AAAT/
article/view/5812

= Evrard Garcelon, Mohammad Ghavamzadeh, Alessandro Lazaric, and Matteo Pirotta. Conservative explo-
ration in reinforcement learning. In Silvia Chiappa and Roberto Calandra, editors, Proceedings of the Twenty
Third International Conference on Artificial Intelligence and Statistics, volume 108 of Proceedings of Machine
Learning Research, pages 1431-1441. PMLR, 26-28 Aug 2020b. URL https://proceedings.mlr.press/
v108/garcelon20a.html

12

https://proceedings.mlr.press/v151/garcelon22b.html
https://proceedings.mlr.press/v151/garcelon22b.html
https://ojs.aaai.org/index.php/AAAI/article/view/5812
https://ojs.aaai.org/index.php/AAAI/article/view/5812
https://proceedings.mlr.press/v108/garcelon20a.html
https://proceedings.mlr.press/v108/garcelon20a.html

Contents

2.1 Bandit With Noisy Evaluations 00 oo i v 14
2.1.1 Definition of the Bandit Model 14
2.1.2 Other Related Bandit Models 16
2.1.3 The Generalized Linear Model Case 16
2.1.4 Linear Case o v o i e e e e e e e 19
2.1.5 Experimentso e e e 21
2.1.6 Potential Extensions and Concluding Remarks 23

2.2 Improved Conservative Exploration for Linear Contextual Bandits 23
2.2.1 Conservative Contextual Linear Bandits 24
2.2.2 Improved Conservative Exploration 26
2.2.3 Checkpoint-based Conservative Exploration 29
2.2.4 Experiments e e e 31
2.2.5 Potential Extensions and Concluding Remarks, 33

2.3 Conservative Exploration in Reinforcement Learning 33
2.3.1 Average Reward Reinforcement Learning 34
2.3.2 Definition of Conservative Exploration in Average Reward RL 34
2.3.3 Comservative UCRL e 36
2.3.4 Experiments e e 40
2.3.5 Future Extensions L L e 41

2.4 Conclusion i i i i i e 41

2.A Appendix for Bandit with Noisy Evaluationso oo v v v v 42
2.A.1 Lower Bound L 42
2.A.2 Noise Correlation Issue L 43
2.A.3 Generalized Linear Model L 44
2.A.4 Linear Model L 50
2.A5 Regret Analysis L e e e 52
2.A.6 Additional Experiments L L 53

2.B Appendix for Improved Conservative Exloration for Linear Contextual Bandit . 60
2.B.1 Proofs o e e e 60
2.B.2 Experiments e 65

2.C Appendix for Conservative Exploration for Reinforcement Learning 68
2.C.1 Policy Evaluation with Uncertainties 68
2.C.2 Regret Bound for CUCRL 71
2.C.3 Conservative Exploration in Finite Horizon Markov Decision Processes 76
2.C.4 Experiments e e e e 81

13

2.1 Bandit With Noisy Evaluations

Consider an idealized content reviewing task in a large social media firm, where the objective is to identify harmful
content that violates the platforms’ community standards. Given the large volume of content generated on a daily
basis, it may not be possible to ask human reviewers to provide a thorough assessment of each piece of content.
For this reason, the platform may automatically assign a badness score for each piece of content depending on their
estimated level of severity. For example, a hate speech related post may be assigned a higher badness score in
comparison to a click bait post. The content with higher badness score may then be prioritized for human review,
which eventually leads to what we can consider as a “ground-truth” evaluation of the severity of the content. The
more accurate the badness score is in predicting the actual severity, the higher the chance that harmful content is
passed for human review and properly identified. In practice, the badness score may be obtained by aggregating
predictions returned by different automatic systems (e.g., rule-based, ML-based systems). For instance, the platform
could rely on NLP-based classifiers for hostile speech detection, or CV-based classifiers for graphic images. As such,
it is crucial to properly calibrate the predictions returned by each of these classifiers to ensure that the scores can be
compared meaningfully and then return an aggregate and reliable badness score that correctly prioritizes the most
harmful content for human review.

In this section, we consider the case where evaluators are noisy and possibly biased functions of the true reward of
each arm. In particular, we consider two alternative settings, where evaluations are generated according to: 1) a noisy
generalized linear function of the true reward; 2) a noisy linear function of the true reward. In both cases, we first
define an “oracle” strategy that have prior knowledge of the evaluation function, including the noise distribution, and
it is designed to maximize the rewards of the arms chosen at each round given the evaluations provided as input. We
then devise the most suitable MAB strategies to approach the oracle’s performance over time. In the first case, we
show that one has to rely on an e-greedy strategy to avoid dependencies between the evaluations observed over time
and the decisions taken by the algorithm. This eventually leads to a regret w.r.t. the oracle of order O(T2/3) over
T rounds. On the other hand, if the evaluation functions are linear and the variance of the additive noise is known,
we show that a simple greedy strategy leveraging the specific structure of the problem is able to recover a O(\/T)
regret. We then validate these results in a number of experiments. We first consider synthetic problems where we
carefully design the MAB instances to support our theoretical findings and to compare to alternative approaches.
Then we move to problems based on real data, where our assumptions may not be verified, to provide a more thorough
evaluation of performance and robustness of our approach. Notably, we study a problem related to content review
prioritization for integrity in social media platforms.

2.1.1 Definition of the Bandit Model

We consider a multi-armed bandit problem where, at each round ¢, the learner is provided with a set of K; > K > 1
arms (e.g., the content to be reviewed at time t) characterized by a reward r;; € R for each i = 1,..., K, (e.g.,
the badness score). While the true reward is unknown to the learner, J evaluators return noisy, possibly biased,
evaluations f; ; ; for each arm (e.g., different rule-based and/or ML-classifiers). At the beginning of each round, the
learner receives the evaluations {f;; ;}, it returns a set A, C {1,..., K;} of K arms (i.e., |4;] = K), and it observes
their associated rewards r; ; for i € Ayt The learner's objective is to accumulate as much reward as possible over T
rounds by selecting the K arms with larger rewards.

Without any further assumption, this problem is not tractable since the rewards may change arbitrarily over time
and the evaluations may not be predictive of the true rewards, thus making it impossible for any learner to achieve
a satisfactory performance. Throughout the paper, we make a series of assumptions to make the problem solvable.
We start from the rewards.

Assumption 2. The rewards r;+ of each armi=1,...,K; atroundt =1,...,T are drawn i.i.d. from a common
distribution v supported on [0, C| with C' a positive constant. The number of arms K, at each round t is arbitrary
and K < K; < Kpax < 0.

While this assumption simplifies the treatment of the problem, it does not affect the objective of the learner,
which is to select the top-K arms at each round, i.e., for the specific realizations {r;;}. For instance, for K = 1, the
objective is to return the arm ¢} = argmax,;—1,... k, 7. We do not assume that the learner has any prior knowledge
of the distribution v.

LFor the sake of simplicity, we consider that the learner receives the exact reward r; ;, but all our results can be adapted to the case
of noisy feedback.

14

s perfectly cali-
brated function + + ‘ +
< b)) — Fu o)
+ (3 (2 Jh
c 61 + f(r) + |
S + N
= + + +
3 + + +
T 4F B 4 + +
@ . + +
- +
2 N "
T , h(z) for h*(z) =7
0 . | | L | * | | |
0 0.5 1 1.5 T2 2.5 3 3.5 4 4.5 5 Reward

Figure 2.1: As an illustrative example, consider the case where at each round ¢ each arm is associated to a context z; .
drawn from a context distribution p and there exists a function generating the true rewards as r;,+ = h*(x;,t). The distribution
v is then defined by the distribution on rewards r = h*(z) induced by ~ p. We also denote by p|h*(z) = r the
conditional distribution over contexts associated with reward r. Consider then a neural network h, trained on past context-
reward pairs, that returns an evaluation for arm ¢ characterized by a context z;: as fi+ = h(z:+). The black crosses in
the plot are the pairs (h*(zi+), h(zi)). The evaluation function associated to the neural network h is then defined as
fu(r) = Epnpln*(2)=r [h(m)] (green line) and the noise € is the deviation from h(z) and f(r) depending on the specific
realization of z, i.e., €, = h(xi+) — fn(r) for r = h*(x;+). The blue line illustrates the perfectly calibrated case, where h*
itself is used for prediction, in this case fr* (1) = r.

In general, the evaluators may rely on some contextual information z;, associated to each arm ¢ (e.g., texts,
images, meta-data related to the piece of content) to return their evaluation f;; ; and their accuracy in predicting
the true reward r; ; may vary depending on the evaluator and the specific context x; ;. Nonetheless, we assume that
the learner has no access to the context or the actual mechanism that generates the evaluations (e.g., the evaluators
may be external services) and we rather rely on the following model to describe how the evaluations are generated

fi,t,j :fj(ri,t)+€i,t7j7 .7: 17"')‘]7 (21)

where f; : R — R is the evaluation function, and ¢; ; ; is a stochastic error. This general formulation can be seen as
the inverse of a calibration function, as it describes the intrinsic bias of each evaluator j and the noise associated to
the evaluations of the true reward. See Fig. 2.1 for a qualitative illustration of this model. We assume the noise in
the evaluations satisfy a rather mild assumption.?

Assumption 3. Each error €; 4 ; is generated i.i.d. from a sub-Gaussian distribution with zero mean and parameter
0j, assumed to be known to the learner.

As far as the evaluation function is concerned, we distinguish two settings.

Assumption 4 (Generalized linear setting). We assume that each evaluation function is a generalized linear model
w.r.t. the true reward, i.e., f;(r) = g(c; -), for all j < J, where o € R and g is a strictly increasing function and
twice- differentiable with ||¢'||sc < Lg and ||g"||cc < My, and ¢ :=inf, g ¢'(x - 0) > 0. The function g is known to
the learner, while the evaluator-specific parameters a; are unknown.

Assumption 5 (Linear setting). We assume that each evaluation function is linear w.r.t. the true reward, i.e.,
fi(r) = ayr, forall j < J. While the shape of the function is known to the learner, the evaluator-specific parameters
o are unknown.

In the following we use a = (avq,...,ay) € R and 0 = (01,...,05) € R7. We use the standard notation || - ||
and || - || for the £5 and the maximum norm respectively, while for any two vectors z,y € R’, x -y € R’ denotes
the component-wise product.

We consider a setting where the bandit algorithm has only access to the predictors’ evaluations of the true reward
of an arm. This is a very generic scenario that encompasses the case where evaluations are a function of a context
characterizing an arm. The generality of our framework allows us to deal with problems where the context is not
directly observable (e.g., because it is kept private) or where it differs across evaluators. For example, similarly to
bandits with expert advice, evaluators may use very different context sources (e.g., visual information, text, meta

2A similar assumption is used in (Yun et al., 2017), where the covariance matrix of the distribution generating the noisy features is
assumed to be known to the learning.

15

data) to build their predictions, but these are unknown to the bandit algorithm (e.g., because evaluators are external
services). The resulting model in Eq. 2.1 is then a calibration function which, in the case evaluations are function
of a context, can be understood as explaining the connection between the true reward and the evaluations after
averaging over the stochasticity in the (non-observable) context information (Fig. 2.1). Notice that if the context
was available, the evaluations could be disregarded as the bandit could directly rely on the context to predict the
rewards in the first place, as in standard contextual bandit.

We conclude by noticing, despite these additional assumptions, no learner can retrieve the best choice of top-K
arms at each round (i.e., max;, ;. Z{il i,), since the only information available to the learner is from biased
and noisy evaluators (see Lemma 7 in App. 2.A.1). As a result, instead of targeting the top-K arms, in the following
we introduce oracle strategies that leverage the full knowledge of the problem (i.e., the evaluation function and the
noise distribution) and use their performance as reference for the learner.

2.1.2 Other Related Bandit Models

The problem sketched before can be seen as an instance of the multi-armed bandit (MAB) framework, where each
piece of content is an arm and the objective of the bandit algorithm is to select arms/content with the higher reward
(e.g., severity). The algorithm can rely on the estimations returned by a set of evaluators (e.g., a set of classifiers) to
decide which arm to pull at each step (e.g., content to pass to human review). This setting can be formalized using
a number of existing frameworks, such as MAB with expert advice, contextual bandit, bandit with side observation,
and contextual bandit with noisy context. Before diving into how to solve the problem introduced here, we review
alternative models that are related to our setting. Let consider the case with K = 1 (i.e., the learner returns one
arm at each round). The most direct way to model our setting is MAB with expert advice (Auer et al., 2003), where
the evaluators are experts and evaluations {f; . ;} are the experts feedback. In this case, it is possible to derive
algorithms with sublinear regret w.r.t. the best expert in hindsight (Beygelzimer et al., 2011). While this is a very
general model, where no assumption is imposed either on the rewards or on the experts feedback (they could even be
generated adversarially), algorithms designed for this setting tend to be over conservative in practice, as they have to
be robust to any sort of data process. Furthermore, none of the evaluators may be very accurate (e.g., they all have
very large variance) and targeting the performance of the best among them may not correspond to a satisfactory
performance.

Alternatively, we can frame our problem as a contextual MAB problem (Agrawal and Goyal, 2013; Agarwal et al.,
2014). We could aggregate all J evaluations for arm ¢ into a context representation

Gip = (fiens--s fitgs-os fizg) € RY. (2.2)

Unfortunately, there are two major issues using this model: 1) in general, the reward r; , may not be a simple function
(e.g., linear) of ¢, +; 2) the contextual features may be noisy realizations of some “true” features (e.g., due to the
noise factor €;; ; in Eq. (2.1)). In order to deal with the first issue, we could rely on Asm. 5, which would lead to
a linear contextual problem. The second issue could be dealt by using the approach proposed by Yun et al. (2017)
for linear contextual bandit with noisy features. While the setting in (Yun et al., 2017) bears some similarities (e.g.,
the noise distribution is assumed to be known, they consider a similar notion of relative regret and study a greedy
algorithm), there remain some crucial differences: 1) they consider unbiased features, which corresponds to a very
specific instance of Asm. 5 with o; = 1; 2) they provide guarantees only for Gaussian noise, while the algorithm
designed to handle the general case has no regret guarantee.

Finally, alternative models of contextual bandit with non-deterministic features considered the case where the
full distribution of the features is known (Yang et al., 2020) or part of the features are corrupted (Gajane et al.,
2016; Bouneffouf, 2021). These settings do not match the use cases studied in this section. In addition, most
other noise-in-the-features regression models such as Deming Regression (Walford and Deming, 1944) or Total Least
Squares (Golub and Loan, 1980) does not take into account the relationship between the rewards and the features,
that is to say the features are a function of the actual reward, this relationship creates dependence and correlation
unaccounted for in the analysis of those regression models.

2.1.3 The Generalized Linear Model Case

We start by considering the case where the evaluator functions satisfy the generalized linear model in Asm. 4.

3Similar problems are patient prioritization in hospitals (Déry et al., 2019), credit scoring (Provenzano et al., 2020), and resume
review (Li et al., 2020).

16

2.1.3.1 The Oracle Strategy

We first define an oracle strategy that, beside o; and g, has prior knowledge about the parameters a;. At each

round, the oracle receives as input the evaluations {f;; ;} and has to select K arms. We focus on oracle strategies

9 of the following form

1. The oracle O first aggregates the evaluations into a reward estimation Wf for each arm i using a weighted average
scheme. Let ¢;; € R’ the vector collecting all evaluations as in Eq. 2.2 and w € R’ a weight vector, then we
define*

70 = (w, g7 (bi)), (2.3)

where g~ ! is the inverse of the link function applied component-wise to ¢; ;. The choice of the weights is fixed and
independent from the actual evaluations, but it may depend on the evaluation function and the noise distribution.
2. The oracle O then returns the top-K arms according to the estimates ?ft ie.,

AP = argmifc(w, g~ (60.) (2.4)

The crucial aspect is then to find the weighting scheme w that guarantees the best performance for the oracle. Let
17,...,1%5 be the true top-K arms and AP = {i?,... ,1}3(} be the estimated top-K arms according to the estimated
rewards ?’f’t Ideally, at each round ¢, we would like to find the oracle weights that minimize the suboptimality gap

K K
A? :Zril*’t_zrif”t' (25)
=1 =1

Since the rewards r;; as well as the evaluations {fi’t,j} are random, it is not possible to minimize the previous
expression for any possible realization using a fixed set of weights. Thus, we rather focus on minimizing a high-
probability upper-bound of Eq. 2.5.

Lemma 1. Under Asm. 3 and 4, with o; being the parameter of the generalized linear model for each evaluator
j=1,...,J and g; being the sub-Gaussian parameter of the noise €; ; ;, let § € (0,1) be a desired confidence level,
then the oracle strategy designed to minimize a (1—¢)-upper bound of Eq. 2.5 is characterized by the weights solving
the optimization problem

(2.6)
where {5 = In (Kg"‘“). The previous problem has a closed-form solution wt € R’ such that
+_ % 27
Y a1 27
The resulting oracle has suboptimality gap w.p. 1 — ¢
2K /In (Eema€) + KT
AF < (%) . (2.8)

lac- o]

We first remark that the previous lemma does not use Asm. 2 and it holds for any realization of the rewards, where
the probability (1 — §) is w.r.t. to noise in the evaluations. We notice that the optimal weight w;r is proportional
to the ratio O[j/0'j2-, which describes the amount of “signal” with respect to the noise for evaluator j. Indeed, the
oracle gives less weight to evaluators that are noisy (large o), while relying more on evaluators with strong “signal”
(large aj). Indeed, as o increases w.r.t. o, the evaluations tend to be near deterministic and thus more reliable.
Interestingly, the suboptimal gap in Eq. 2.8 shows that the oracle improves as the number of evaluators increases (the

#In the linear case for a; = 1 (i.e., the link function g is the identity function) and Gaussian noise, (Yun et al., 2017) showed the
exact posterior over 7; ; given the evaluations {f; ¢ ;} takes a weighted average form as in Eq. 2.3.

17

Algorithm 1: GLM-e-GREEDY algorithm

Input: Noise parameters {0, };<, confidence level §

Parameters: exploration level £; number of arms to pull K; regularization A
Set Ho =0, @ =0 and wg =0

fort=1,...,7 do

Sample Z; ~ Ber (¢)

Observe evaluations for each arm (¢; +)i<k,

if Z, =1 then

Pull arms in A; obtained by sampling K arms uniformly in {1,..., K;}
Observe rewards r; ; for all 7 € A

Add sample to dataset H: = H:—1 U (Uie.At {(d4,, n,t)})

Update estimators o ; by solving

> (9@) = ¢5) = Aae; =0 (2.9)

¢, rEHL

Update weights w; ; = Q¢ ;/||as - o™
else

‘ Select A; = argmaxX (wr, i +)

term ||a- o~ grows as v/J) but AP does not tend to zero even when J — co. While this might be counterintuitive
(the learner is provided with an infinite number of independent evaluations), the residual gap is due to the nonlinear
nature of the generalized linear model, where the zero-mean noise added to the evaluations may be amplified or
decreased through g~! while reconstructing the unknown parameters «;.

Based on the previous lemma, the oracle strategy for the generalized linear case is defined by the weights w™ and
we denote by ?;ft and A/ the associated reward estimates and top-K arm selection rule.

2.1.3.2 The GLM-c-greedy Algorithm

Building on the oracle strategy defined in the previous section, we now consider the learning problem when the
link function g and the noise distribution are known, but the learner has no knowledge of the parameters o;. As
customary in MAB problems, at each round ¢, the learner observes only the rewards of the selected arms in A;. The
main challenge in this setting is that a learner leveraging the evaluations { f; ; ; } is directly affected in its choices (i.e.,
the set A;) by the noise ¢;, ; generated at the beginning of round ¢. This is radically different from the standard
MAB setting, where the noise (in the reward) follows the arms played by the learner, which are then independent
from any noise conditionally on the past (see App. 2.A.2). A way to circumvent this dependency is to rely on an
e-greedy strategy, where only the samples obtained in exploratory steps are actually used to build an estimator of the
unknown parameters aj.5 The resulting algorithm is detailed in Alg. 1. The core of Alg. 1 is a maximum likelihood
estimation step where the algorithm learn the parameter a. Coherently with the evaluation model in Eq. 2.1, the true
rewards (r;)+ serves as the input for the function f; (in this case the GLM model), while the evaluations (¢; ¢);
work as the values we need to fit.
We now compare the performance of Alg. 1 to the oracle strategy and define the notion of relative regret

T

Re=3 (20 - 7). (210)
t=1 iEAj— €A,

where wt € RY is the oracle weight vector, ﬁt are the associated reward estimates, and At+ is the oracle set of

top-K arms. This notion of regret, first introduced by Yun et al. (2017) in noisy contextual bandit, is comparing the

quality of the arms returned by the algorithm and the oracle according to the estimated rewards, for which the oracle

is optimal (see App. 2.A.5 for further discussion). The following theorem shows that if € is properly tuned, e-greedy

has sublinear regret.

5While we study an e-greedy type of algorithm, any type of exploration method decorrelating the estimation procedure and the
exploration, like an Explore- Then-Commit strategy, would achieve a similar regret.

18

Theorem 1. For any 6 € (0,1), T > 8, A = J ! and set ¢ = T=/3, let n2 ; = Eyru(g(a;r)?) and 0y min =
min; 1, ;. Then under Asm. 2, 3, and 4 we have that with probability at least 1 — ¢ the regret of Alg. 1 is bounded

as
< &[5 [A VI Nl @Sl gl
T = /7 T 52,2
Knu,min K "7V»1'ﬂin

where ||g]|co = max; .o, g(ajz) and

Kmax

—2 —1 2
- all, (ol

S:(-2 2)“U)
oo et o) o= * \ ool

As expected, the regret of GLM-e-greedy increases as 6(T2/3). While this shows that the algorithm is able to
approach the performance of the oracle, it also illustrates the difficulty of this setting, where the strict decoupling
between explorative and exploitative steps used to guarantee a consistent estimation process translates into a higher
regret. Interestingly, this result matches the regret of Yun et al. (2017) for contextual bandit with noisy features.

In order to investigate the main terms appearing in the previous bound, we consider the case where all evaluators
share the same parameters a; = ag and o; = ¢ for some (g, 0¢) € Ri (with ap > 1). In this case, the regret

bound of Thm. 1 reduces to
~ 2/3 K 0'8
Rr <O|T“°’VK|1+4/—]| —
J (7))

We first notice that the bound scales as max{\/E,K\/ J—1}. Similar to the suboptimality gap for the oracle (see
Lemma 1), when J — oo, the bound improves but does not decrease down to 0 and rather converges to VK.
The dependency on K may be surprising, since for K = Kp,.x the regret is trivially 0 at each round (i.e., the
algorithm returns all arms and it cannot make any error in the ranking). However, this dependency comes from the
fact that in the regret analysis we bound the norm of the evaluations for the selected jobs, which scales linearly with
K. We believe a more refined analysis could alleviate this dependency. Last, the regret depends inversely on the
"signal-to-noise” ratio g—é’

2.1.4 Linear Case

We now consider the special case of linear evaluations and show how this relatively minor change to the problem has
a major impact on how to approach the learning problem and the regret.

2.1.4.1 The Linear Oracle Strategy

Similar to the GLM case, we define the oracle strategy that defines an estimated reward ﬁt = (w,¢;). Then
the oracle ranks arms according to ?j»?t and selects the set of top-K AP accordingly. We then optimize weights to
minimize a high-probability upper bound to the suboptimality gap AP.

Lemma 2. Under Asm. 3 and 5, with «;, being the parameter for each evaluator j = 1,...,J, o; being the sub-
Gaussian parameter of the noise ¢; , ;, let 6 € (0,1) be a desired confidence level, then the oracle strategy designed to

minimize a (1 —§)-upper bound of Eq. 2.5 is characterized by the weights obtained as the solution of the optimization
problem

(2.11)
where {5 = In (Kg”). The previous problem has a closed-form solution wt € R’ such that
wi = m (2.12)
The resulting oracle has suboptimality gap w.p. 1 — ¢
Af < % (2.13)

lo- ot

19

Algorithm 2: The Evaluation-Structure-Aware Greedy (ESAG) algorithm for the linear case.

Input: Noise parameters {0, };<, confidence level §
Parameters: number of arms to pull K

Setaa=0, wo=0and N, =0

fort=1,...,7T do

Observe evaluations for each arm (¢;,1)i<k,
Select A; = arg max (we, Pi)

Observe rewards r; ¢ for all i € A

Update a; as:

a _ a Nt —+ Kt — Nth + Zfitl (bi,t
e (Nt + K¢) Ny K

(2.15)

Update Ni11 = Nt + K and w; as

Qit1,j
Wet1,5 = 2,\—]_12 (2.16)
of lloesr;- o=l

The weights of the oracle have the same expression in the GLM case in Lemma 1. Nonetheless, the suboptimality
gap is smaller than in Lemma 1 as the linear structure allows to concentrate the noise of the evaluations, unlike in
the GLM setting where the potential non linearity of g forces us to study the worst-case scenario. Notably, in the
linear case, we see that as J tends to infinity the suboptimality gap tends to zero.

2.1.4.2 Evaluation-Structure-Aware Greedy

Similarly to Sec. 2.1.3.2, the learner has no knowledge of the parameters «; but only knows the noise distribution
and the linear structure of the evaluations. The main estimation difficulty of the general case still applies to this
setting, i.e., using samples obtained by selecting arms based on the evaluations may introduce a bias in the estimation
process.

Instead of introducing explicit exploration steps to gather “unbiased” samples, as done in the GLM case, we
exploit a more subtle property for this case. We notice for any evaluator j, the expected evaluation is

]E[fi,t,j] =]E[ajri,t —+ ei,t,j} = O[j?, (214)

where 7 = E[r; ;] is the expectation of the reward distribution v in Asm. 2. Consider an oracle strategy that is fed
with the parameters o7, then the optimal weights in Eq. 2.12 become w* = w™ /7. While this leads to estimates
T;, that are biased w.r.t. the oracle estimates 7, the factor 1/7 is evaluator- and arm-independent and it does not

impact the ranking returned by this biased oracle, i.e., A, = A", This in striking contrast with the GLM where it is
not possible to easily evaluate a vector proportional to « because of the potential non-linear behavior of g.

Building on this evidence, we define an algorithm, the Evaluation-Structure-Aware Greedy (ESAG) in Alg. 2,
that avoids the use of the observed rewards altogether, thus removing the statistical dependency between noise and
decisions, and rather tries to estimate the expected evaluations in Eq. 2.14 (see Eq. 2.15 in Alg. 2) and use them to
build estimates, as in the biased oracle. Since ESAG only relies on the evaluations available at round ¢, it does not
need any explicit exploration strategy to collect useful information, and it executes greedy actions according to the
current weights w; at each round. We can derive the following regret guarantees.®

Theorem 2. Under Asm. 2, 3, and 5 for any 6 € (0,1), T > 1 with probability at least 1 — § the regret of Alg. 2 is
bounded by:

oy < Emy(r)@/K[(® 8y/T® s]

Ew<r>|a|wﬁ> i VEr
T

where Kp = ST > K is the harmonic average of the number of arms over T steps, S is the same as in

/ _ 4 Kmax
o' = 2||a|Cln (5) +2]0)0 <2\/j+ \ /Kln(o))

t=1 t—1
Zl:l e
6While we derive Thm. 2 for a greedy algorithm, similar results hold for an optimistic exploration strategy.

Thm. 1 and

20

The most interesting aspect of the previous theorem is that the regret is of order 6(\/T) since ESAG does not
pay for the sharp separation between exploration and exploitation steps as for GLM-e-GREEDY.

2.1.5 Experiments

In order to study different aspects of the settings and algorithms introduced in the previous sections, we focus on
both synthetic and real data experiments. We report further results in the supplementary material.

2.1.5.1 Synthetic Data

We first validate our algorithms on synthetic data. We consider K; = Kyax = 20 arms where for each arm we
get J = 10 evaluations. The reward distribution v is a Gaussian distribution centered at 0 and truncated between
[0,20]. We consider both the logistic case with g(z) = (1 + exp(—z))~! and the linear case where for all evaluators
fj(x) = ajz. At the beginning of each experiment, we draw the coefficients a; and the parameters o; from uniform
distributions in [/2; 30 /2] and [00/2; 30 /2] respectively. As discussed in Sect. 2.1.3, a critical term characterizing
the problem structure is the ratio «j/o;. We then set ap = 1 and consider three different values for o such that
ag/og € {0.1,1,10}. Finally, the noise in the evaluations are generated as ¢; ; ; ~ N (0, crjz) in the linear case whereas
in the GLM case ¢, ; ; is drawn from a truncated centered gaussian distribution with variance 2¢%. We average all
results over 80 runs and we report 95% confidence intervals. Additional details are reported in the supplement.

Oracle performance. Before investigating the performance of the learning algorithms, we compare the per-
formance of the oracle strategy to a simple average strategy that defines ?f\; =1/J Z}']:1 fie,; and ranks arms
accordingly. We also study how the suboptimality gap of the oracle changes as J increases for both the GLM and
linear case. As shown in Fig. 2.2a, in both settings that oracle strategies outperform the simple average. Furthermore,
as predicted by Lemma 1 and 2, the oracle suboptimality gap decreases as J increases, but it plateaus to a fixed
value for GLM, while it tends to zero for the linear case.

2.1.5.2 The GLM Case

We consider different types of algorithms: GLM-e-GREEDY (Alg. 1); GLM-e-GREEDY-ALL, it has same struc-
ture as Alg. 1 but uses samples from both explorative and exploitative steps to build the estimator a; GLM-
EvaLBASEDUCRB, it uses all samples to build an estimator & and leverages a high-probability confidence interval on
@ to derive optimistic weights w and rank and select arms accordingly; GLM-LINUCB, the algorithm of Abbasi-
Yadkori et al. (2011) using g_l(@,t) as features; GLM-ESAG, Alg. 2 adapted for the GLM case; RAND, the fully
random strategy; GLM-GREEDY, the greedy strategy using the MLE estimator &; Exp4.P, the bandit with expert
advice algorithm in Beygelzimer et al. (2011).

Estimation Bias. As discussed in Sect. 2.1.3.2, one of the critical aspects that motivated the use of an e-greedy
approach and led to the O(T2/?) is the fact that whenever the set of arms is chosen according to the noisy evaluations
{fi+;} the dependency between €; ; ; and A; may create a bias when estimating the parameters «; using the samples
i+ observed after selecting A;. We illustrate this effect in Fig. 2.2b, where we report the error of the estimates
a; computed by GLM-e-GREEDY and GLM-e-GREEDY-ALL w.r.t. the true parameters a. While the error of the
estimator computed by GLM-e-GREEDY decreases over time, the error for GLM-e-GREEDY-ALL has a residual bias
due to the estimation procedure. Similar results can be shown for all the algorithms (e.g., GLM-ESAG) that rely
on samples generated by selecting A; based on the evaluations {f;;;} and they can be reproduced in the linear
setting as well.

Regret Performance. We compare the performance of different learning algorithms in terms of relative regret
w.r.t. the oracle defined in Sec. 2.1.3.We remove from Fig. 2.2¢c all algorithms (i.e., RAND, GREEDY, EXP4.P)
that suffer large linear regret to avoid loosing resolution on the other algorithms. While GLM-ESAG and GLM-
LINUCB have better regret, they both have a linear regret that keeps increasing over time, while GLM-¢-GREEDY
has a sublinear regret.”

"Notice that we have not actively tried to find problem parameters that would make the linear regret of GLM-ESAG and GLM-
LINUCB larger than GLM-e-GREEDY in a shorter time. The linear regret of GLM-ESAG is due to the residual estimation bias illustrated
in Fig. 2.2b.

21

a) Oracle Performance b) Estimation Bias c) GLM Experiment d) Linear Experiment

10 -10° -10*
\ Linear Oracle) GLM-ESAG | | EVALBASEDUCB
= 8- L R Average of ¢; 1---- GLM-LINUCB) 0.8 - ESAG
3 N GLM Oracle —o— GLM-¢-GREEDY, £ = 0.02 _| —o LINUCB
% 6 '_: —— Average of gil(d‘)y,/,) 1.5 GLM-ESAG —_— GT,M—S—GRP.F.va e =0.003 0.6 1
E \ —e— GLM-£-GREEDY, ¢ = 0.02)
’gﬁ 44 1 GLM-e-GREEDY AS, ¢ = 0.02 044 /L
& 24 0.2 :
................... 05
0 T T T T I T T T T T 0 ‘;—A—T----_\ ----- \--- T
10 20 30 40 50 0 0.2 0.4 0.6 0.8 1 0.8 1 0 400 800 1200 1600 2000
J -10° 10°

Figure 2.2: a) Average suboptimality gap AP for the oracle strategy in the GLM and linear cases as a function of the number
of evaluators J. b) Estimation error ||a: — «||. €) Regret w.r.t. to the oracle as defined in Sect. 2.1.3 for the GLM case. d)
Regret w.r.t. to the oracle as defined in Sect. 2.1.3 for the linear case in the high noise regime (i.e., a; = 0.10;).

Table 2.1: Cumulative badness over T' = 2000 steps

l Alg. ‘ Badness ‘
RAND 30076.18
GLM-e-GREEDY 53403.6

GLM-e-GREEDY-ALL 53419

GLM-EvALBASEDUCB 53328.3
GLM-LINUCB 30910.5
GLM-ESAG 53393.9
GLM-GREEDY 53371.9
Expr4.P 47766.7
EvaLBAsSEDUCB 90768.2
LINUCB 90332.2
ESAG 90790.5
GREEDY 69956.3

2.1.5.3 The Linear Case

We also study the linear case and compare the linear versions of the algorithms described above. As illustrated in
Fig. 2.2d, the crucial difference w.r.t. the GLM case is that now ESAG has sublinear regret, whereas other algorithms
have linear regret. Interestingly, EVALBASEDUCB, despite the bias introduced by using samples obtained by selecting
actions based on the noisy observation, is able to learn a good strategy and it outperforms LINUCB, but still suffers
linear regret.

2.1.5.4 Content Review Prioritization

We now move to a real-world problem to investigate the performance of our algorithms when their assumptions are
no longer verified.

Data description. We consider a small dataset of content shared on a large social media firm that has been reported
for violating the platforms’ community standards. In order to ensure that the most harmful content is prioritized
for reviewing, the platform assigns badness score for each piece of content which increases with the severity of the
content. We consider four different classifiers that provide badness estimates for the sampled content. Each of these
classifiers are trained on the real data and follow different modeling architectures to predict the badness score. Our
objective is to leverage scores from these four classifiers to identify the most harmful subset of content and flag them
for the platform to review and action them.

Performance. We evaluate the cumulative badness of the content selected by the algorithms. The higher the score
the better. The results are reported in Tab. 2.1. We first notice that all learning algorithms perform significantly
better than the random strategy, thus indicating that the GLM and linear assumptions are accurate enough to return
meaningful rankings. Nonetheless, we notice that GLM-based algorithms do not perform as well as linear ones,
probably due to the choice of the logistic function, which, in this case, does not fit data accurately. On the other

22

hand, ESAG is the algorithm that performs best, followed by EVALBASEDUCB and LINUCB. Notice that in
the case of real data, we may even expect LINUCB to perform better, since it relies on somewhat less restrictive
assumptions (no assumption is made on how the features are generated) and it relies on the true rewards to estimate
parameters (this is also the case for EVALBASEDUCB). This is in contrast with ESAG that exclusively builds on
the evaluations, which clearly do not respect an exact linear model, to estimate the unknown parameters. This shows
that, even in problems where the assumptions do not hold, ESAG is robust enough and it is competitive w.r.t. a
large variety of algorithms.

2.1.6 Potential Extensions and Concluding Remarks

In this section, we studied a MAB problem where the learner is provided with noisy and biased evaluations of the true
reward for each arm. We showed that under specific assumptions it is possible to design learning algorithms that are
able to compete to oracle strategies both in theory and in practice. The empirical validation on real data also shows
that this model and the associated algorithms are promising for solving challenging real-world problems.

Extensions. There is a number of directions that could be pursued to extend our current results.

= FEvaluation functions. The GLM and linear assumptions are relatively strong. A natural venue of improvement
is to generalize our results to richer function spaces, such as Gaussian processes.

= Persistent arms. While we assume that the set of arms is “refreshed” at each round, we can easily extend our
setting to the case where all the arms that are not selected in A; remain in the pool of arms available at the
next round (e.g., content that has not been reviewed). All our results naturally extend to this case, except
for ESAG, which would not be able to use K; samples at each round, but would rather get K new samples
corresponding to the arms replaced at each round.

= Heteroschedastic noise. In the model illustrated in Fig. 2.1, the noise €;; ; is heteroschedastic, where the
variance may depend on the reward value r. While our model leverages an upper-bound o; on the actual
variance, better adapting to the reward-dependent variance may improve the performance.

» Relaxing Asm. 2. This assumption is used only in the linear case, while it is possible to remove any stochastic
assumption on the rewards and replace it by a milder condition that requires that the (arbitrary) sequence
of rewards is such that cumulative sum of the rewards observed over time is a growing function with T, i.e.,
Zthl i+ = §2(t). The results for GLM-e-GREEDY could be easily extended to this case.

In the remainder of this chapter, we focus on a constraint related to the performance of the learning agent. In
most potential applications of RL or bandit algorithms a trusted decision rule is already used and performs reasonably
well. One obstacle to use directly RL algorithms is that while the algorithm will converge eventually to the optimal
policy there is no guarantee that the algorithm will outperform the previously set decision rule in a time that is
reasonable for the desired application.

2.2 Improved Conservative Exploration for Linear Contextual Bandits

Many problems in fields such as digital marketing, healthcare, finance, and robotics can be formulated as decision-
making under uncertainty. Although many learning algorithms have been developed to find a good/optimal policy
for these problems, a major obstacle in using them in real-world applications is the lack of guarantees for the actual
performance of the policies they execute over time. Therefore, for the applicability of these algorithms, it is important
that they execute policies that are guaranteed to perform at least as well as an existing baseline. We can think of
the baseline either as a baseline value or the performance of a baseline policy. It is important to note that since
the learning algorithms generate these polices from data, they are random variables, and thus, all the guarantees
on their performance should be in high probability. This problem has been recently studied under the general title
of safety w.r.t. a baseline in bandits and reinforcement learning (RL), in both offline Bottou et al. (2013); Thomas
et al. (2015a,b); Swaminathan and Joachims (2015); Petrik et al. (2016) and online Mansour et al. (2015); Wu et al.
(2016); Kazerouni et al. (2017); Katariya et al. (2019) settings.

In the online setting, which is the focus of this section, the learning algorithm updates its policy while interacting
with the system. Although the algorithm eventually learns a good or an optimal policy, there is no guarantee on

23

the performance of the intermediate policies, especially at the very beginning, when the algorithm needs to heavily
explore different options. Therefore, in order to make sure that at any point in time the (cumulative) performance
of the policies generated by the algorithm is not worse than the baseline, it is important to control the exploration
and make it more conservative. Consider a recommender system that runs our learning algorithm. Although we
are confident that our algorithm will eventually learn a strategy that performs as well as the baseline, and possibly
even better, we should control its exploration not to lose too many customers, as a result of providing them with
unsatisfactory recommendations. This setting has been studied in multi-armed bandits Wu et al. (2016), contextual
linear bandits Kazerouni et al. (2017), and stochastic combinatorial semi-bandits Katariya et al. (2019). These
papers formulate the problem using a constraint defined based on the performance of the baseline policy (mean of
the baseline arm in the multi-armed bandit case), and modify the corresponding UCB-type algorithm Auer et al.
(2002a) to satisfy this constraint. At each round, the conservative bandit algorithm computes the action suggested
by the corresponding UCB algorithm, if the action satisfies the constraint, it is taken, otherwise, the algorithm acts
according to the baseline policy. Another algorithm in the online setting is by Mansour et al. (2015) that balances
exploration and exploitation such that the actions taken are compatible with the agent's (customer's) incentive
formulated as a Bayesian prior.

In this section, we focus on UCB-type algorithms and improve the design and empirical performance of the
conservative algorithms in the contextual linear bandit setting. We first highlight the limitations of the existing
conservative bandit algorithms Wu et al. (2016); Kazerouni et al. (2017) and show that simple modifications in
constructing the conservative condition and the arm-selection strategy may significantly improve their performance.
We show that our algorithm is formally correct by proving a regret bound, matching existing results and illustrate its
practical advantage w.r.t. state-of-the-art algorithms in a number of synthetic and real-world environments. Finally,
we consider the more realistic scenario where the conservative constraint is verified at predefined checkpoints (e.g.,
a manager may be interested in verifying the performance of the learning algorithm every few days). In this case,
we prove a regret bound showing that as the checkpoints become less frequent, the conservative condition has less
impact on the regret, which eventually reduces to the standard (unconstrained) one.

2.2.1 Conservative Contextual Linear Bandits

We consider the standard contextual linear bandit setting with arm dependent features, see Section 1.2.2 with K > 1
arms. At each time ¢, the agent selects an arm a; € A, = {1,..., K} and observes a reward

o = (0", 200) + 0 = gy, + 10, (2.17)

where 0* € R is a parameter vector, z;, € R? are the features of arm a at time ¢, and 772 is a zero-mean o2-

subgaussian noise. When the features correspond to the canonical basis, this formulation reduces to multi-armed
bandit (MAB) with d arms. In the more general case, the features may depend on a context s;, so that z; , = ¢(s¢,a)
denotes the feature vector of a context-action pair (s¢,a) and (2.17) defines the so-called linear contextual bandit
setting.

We rely on the following standard assumption on the features and the unknown parameter 6*.

Assumption 6. There exist B, D > 0, such that ||6*||» < B,

Trall < D, and (6%, 2 4) € [0,1], for all t and a.

Given a finite horizon n, the performance of the agent is measured by its (pseudo)-regret:

R(n) = (0%, 2t.a;) — (0%, 21.0,),

t=1

where a} € argmax, (0%, x; o) is the optimal action at time ¢. In the conservative setting, the objective is to minimize
the regret under additional performance constraints w.r.t. a known baseline. We assume the agent has access to a
baseline policy, which selects action b, at time ¢.2 The learning problem is constrained such that, at any time ¢, the
difference in performance (i.e., expected cumulative reward) between the baseline and the agent should never fall
below a predefined fraction of the baseline performance. Formally, the conservative constraint is given by

t

t
VE>0, Y ph > (-) (2.18)
i=1

i=1

8In the non-contextual case, the baseline policy reduces to a single baseline action b.

24

where « € (0,1) is the conservative level. As the LHS of (2.18) is a random variable depending on the agent's
strategy, we require this constraint to be satisfied with high probability. Finally, in order to keep the presentation and
analysis simple, we rely on the following assumption.

Assumption 7. For any t > 0, the performance of the baseline strategy until t is known, i.e., Zle /‘27 can be
evaluated by the agent.

This assumption is often reasonable since the baseline performance can be estimated from historical data (see
Rem. 3 in Kazerouni et al. (2017)). Furthermore, as shown in Wu et al. (2016); Kazerouni et al. (2017), this
knowledge can be removed and the algorithm can be modified to incorporate the estimation process (and preserve
the same order of regret).

T -

1,000 b —— UCB _ |
‘é CUCB *
& -.-CUCB-Or .-
~ -
] I
z
= 500 —
=] -
g S =
= 5 . S
O - PR

0 k= \ \ \ \
0 0.2 0.4 0.6 0.8 1

Time .10%

Figure 2.3: Comparison of the cumulative regret between UCB, its conservative variant (CUCB), and an oracle
version of CUCB, where (2.18) can be evaluated exactly to decide whether to select the UCB arm or the baseline.

Conservative Exploration. Conservative exploration algorithms Wu et al. (2016); Kazerouni et al. (2017) are based
on a two-step process to select the action to play. In the first step, they compute an optimistic action based on
the optimism-in-the-face-of-uncertainty principle, i.e., using UCB Auer et al. (2002b) or LINUCB Li et al. (2010);
Abbasi-Yadkori et al. (2011), which is effective in exploring and minimizing the regret over time. In the second
step, they evaluate the conservative condition by replacing the unknown mean with a statistical lower bound. If the
condition is verified, they play the optimistic action, otherwise, they act conservatively by selecting the baseline b;.
Playing the baseline over multiple steps contributes to “build a conservative budget”, so that condition (2.18) is more
likely to be satisfied by the UCB arm, and thus, allowing to execute explorative actions.

Formally, let S? be the set of times up to ¢ (included) where the agent played the baseline and S;_; = [t]\ S? be the
complementary set, i.e., when the agent played the UCB action. CLUCB uses the information collected when playing
non-conservatively to build an estimator of #* by solving a regularized least-square problem 6; = (®,®, +\I)~1®,Y;,
where A > 0, ®; = (;,0,)ies, , € R¥>IS=1land V; = (¢);es, , € RI9-1l. Denote by V; = AT +®,®; the design
matrix of the regularized least-square problem and by ||z||y = V2TV the weighted norm w.r.t. any positive matrix
V € R¥*4 We define the confidence set ©; = {§ € RY : ||§ — gt”\/fl < B;} where

ﬁt:a\/dlog(HDQ(HSH)M) + BV, (2.19)

0

which guarantees that 6* € Oy, for all t > 0, w.p. 1 — 4.
Similar to LINUCB, the optimistic action is computed as

a; € argmax max(0, ¢ ,),
acA, 0€O:

and CLUCB decides if the action is “safe” by evaluating the following conservative condition:

t
> b+ min <9,xw +) a:a> >(1-a)Y ui, (2.20)
i=1

b :
i€S) 1€S¢_1

The leftmost term in (2.20) represents the expected cumulative reward associated to baseline actions played up to
time ¢t — 1. The second term —minimization problem— denotes the lower bound to the cumulative reward of optimistic

25

H2) - -
[Y251 E‘B ol

° as
g = [EMS o /

Figure 2.4: Examples of settings where the UCB arm (blue) does not satisfy the conservative condition but there is
another “safe” arm to play (rather than the baseline).

actions, including the current optimistic action a;. This lower bound is constructed using the most recent confidence
set ©;. The rightmost term denotes the expected cumulative reward of playing the baseline policy at each step. This
inequality is a surrogate for the conservative condition in (2.18).

If the condition is satisfied, then the optimistic action a; is played, otherwise, the baseline strategy is selected and
the corresponding action b; is executed.

Limitations. While CLUCB enjoys strong regret guarantees (in the MAB setting, it is indeed near-optimal), its
empirical behavior is often over-conservative, i.e., the baseline strategy is selected for a very long time to build
enough conservative budget before the actual exploration takes place. We identify two main algorithmic causes for
such behavior.

First, in building the conservative condition (2.20), CUCB and CLUCB rely on possibly loose statistical lower-
bounds for the mean of the actions selected so far. This is well illustrated by the simulation in Fig. 2.3 in the MAB
setting, where we report the performance of UCB, CUCB, and an oracle variant of CUCB, when the conservative
condition (2.18) is evaluated exactly (i.e., no lower-bound is used). While the oracle version has almost the same
regret as UCB, and thus, showing that the conservative condition itself does not have a major impact on the
exploration of UCB, CUCB has a much higher regret. This shows that possibly loose estimates of the conservative
condition have a significant impact on the regret. In fact, tightening the conservative condition would allow selecting
the baseline strategy only when it is “strictly” needed, thus, reducing the conservative steps and improve the overall
exploration performance.

Second, the two-step selection strategy of CUCB and CLUCB performs either an exploration step, when the UCB
action is selected, or a conservative step, when the baseline is executed. Such sharp division between exploration
and conservative steps may be unnecessary, as other actions may still be “safe” (i.e., satisfying the conservative
condition), and thus, contribute to build “conservative budget”, and, at the same time, be useful for exploration
(e.g., optimistic), despite not being the UCB action. Exploiting such arms may lead to a better performance.

Finally, the conservative condition (2.18) itself is often too strict in practice. Instead of performing almost as well
as the baseline at every step, it is more likely that recurrent “checkpoints” are set at which the agent is required to
meet the condition. In this case, the agent may have extra time to perform exploratory actions and possibly recover
from bad past choices when getting close to the conservative checkpoint.

In the next section, we address the two algorithmic limitations described above, while we later illustrate how a
relaxed conservative condition may indeed allow an agent to achieve much smaller regret.

2.2.2 Improved Conservative Exploration

In this section we present Conservative Constrained LINUCB (CLUCB2) (Alg. 3 with T' = 1), an improved conser-
vative exploration algorithm for contextual linear bandit. All the proofs can be found in the extended version.

2.2.2.1 CLUCB2

The first improvement w.r.t. CLUCB is relative to the conservative condition (2.20). When evaluating the rewards
accumulated by the agents so far, we rely on the fact that the sequence (7,, — py,,)ies,_, is a Martingale Difference

26

Sequence (MDS) with respect to the filtration F;_1 = ¢ ((aj,xj,aj,r{;j

)jest—l)’ i.e., the history strictly before time
t. Indeed, the choice of arm a; is F;-measurable and for all i € S;_1 :

[A;l
Fi] = Mamgy B[] —p2) =0

=1

E [ra, =,
By using Freedman's inequality Freedman (1975) for martingales, with probability at least 1 — § we have

)) 2
| k= k)| S L= o218 L + L (2.21)

1€ESL_1
where L¢ :=log (3(|S171| v 1)2/6>. Thus we replace (2.20) by

t
D #hot D T~ wu(t) + min <9,xt,a,,>z<1—a>;‘uz, (2.22)

icSb 1ESt_
€8y, 1€5t—1

While it is not possible to prove that (2.22) is always tighter, in the next section we provide an extensive discussion
on the potential improvements.

A second limitation of CLUCB is its two-step approach to action selection, in which either the optimistic action
satisfies the conservative condition or the baseline b; is selected. The idea behind this strategy is that it is necessary
to select baseline actions before exploring any other action in order to build a “conservative budget”, which allows
performing effective exploration later on (once the conservative condition is met). In CLUCB2 we propose to combine
the explorative and conservative requirements by selecting the most optimistic (i.e., useful for exploration) “safe”
(i.e., satisfying the conservative condition) action. Formally, the algorithm computes the set C; of “safe” arms such
that’

t

G={acan (b} Y i -wn®+ 3w+ max {min(0.204),0) > (1-)Y pi, |

1€Si_1 iesSt | =1

where 1y, is the Martingale bound given in Eq. 2.21. The algorithm plays the arm that solves the following constrained
optimization problem:

a; € arg max {rit, max gé%)f<9’xt’a>} (2.23)
where, by definition, the max over an empty set is —oo. The maximizer is either the baseline arm b, or an arm in C;
that is optimistic w.r.t. the baseline. In order to illustrate the idea behind (2.23), consider the configuration illustrated
in Fig. 2.4 (left) for a MAB setting. If the algorithm has not built enough margin, the UCB arm (a;) would not satisfy
the conservative condition as its lower-confidence bound is well below the baseline. As a consequence, CUCB selects
the baseline arm a4. A direct improvement can be achieved by selecting arm a3 (i.e., the one with the higher lower
bound among the arms passing the conservative condition) as suggested in Wu et al. (2016). Nonetheless, while arm
a3 is indeed better than baseline and it allows building conservative budget faster, it may not be effective from an
exploration point of view. In (2.23) we suggest arm as would be a better choice as it does not give up on reducing the
regret (i.e., it has a larger UCB than as). This may indeed result in a better tradeoff between building conservative
budget and performing effective exploration. Finally, Fig. 2.4(right) shows that (2.23) may be effective even in the
linear setting. The stretched out ellipsoid on one axis gives a precise estimate of some bad arms, while good arms
would not be selected by choosing the arm maximizing the lower bound. Even though the arms are more correlated
due to the linear structure, the interpretation of this case is as the one for stochastic MABs.

From a computational perspective, the cost of an update for both CLUCB and CLUCB2 is O(Ad?®). This
complexity comes from the maximization over action and the construction of the confidence intervals. Compared
to CLUCB, CLUCB2 has to evaluate the conservative condition for each arm instead of only for the UCB arm.
However, the cost of this operation is dominated by the arm selection procedure.

Finally, we notice that following the same construction as in Kazerouni et al. (2017), CLUCB2 can be easily
adapted to the case when Asm. 7 does not hold and the baseline performance needs to be estimated online.

98, 1 contains all steps when the baseline is not selected, and now it may include arms different from the UCB arm.

27

Algorithm 3: CLUCB2 (T = 1) and CLUCB2T
Input: o, 6, T
Set So =Sy =0,k=0
fort=1,...,ndo
Compute “safe” set C; as in Eq. 2.23 or Eq. 2.26
Compute a; by solving (2.23)
Pull arm a; and observe 7},
if a; # b, then
Set S; = S; 1 U{t}, SP =50 |
Compute new confidence set ©;11
else
‘ Set St = St—lr Sf = Sfl;)_lv @t+1 = G)t
if t mod 7" =0 then
| k=k+1

2.2.2.2 Theoretical Analysis

Let Al = uflt* — p' be the action gap at time ¢. As in Kazerouni et al. (2017), we rely on the following assumption.
Assumption 8. There exists 0 < A; < Ay, and 0 < py < pyp, such that for every t :
AP <AL <A, and o <y, <

Asm. 8 ensures that the baseline policy has a minimum level of performance, which is reasonable since the
baseline policy is the strategy currently used by default. Note that in MABs and linear bandits p; = pun = up since
the performance does not depend on a system context. The terms A; and py, are not critical quantities in the regret
bound and it is possible to take A; = 0, up, = 1. We are now ready to state the following result for CLUCB2.

Theorem 3. For any contextual linear bandit problem, under Asm. 6, 7, and 8, CLUCB2 satisfies the conservative
condition with probability 1 — § and its regret can be bounded for any n > 0 with probability at least 1 — § by

Rerucsz(n) < O((leog (W) v+ Apd? (ﬁB«FU)leg (dQ(\f/\B—FO') \/D70>)

Ad (apu)? Vo

where Dy := max {2D?/),3}.

This regret is of the same order as the bound for CLUCB.'® While this shows that the changes made to CLUCB
are “safe”, we cannot prove a direct improvement to the regret performance, apart from better constants (the regret
of CLUCB is at least half of the one of CLUCB2, see appendix). Notice also that in the MAB case, this is not
even possible in general, as CUCB is already proved to match the lower bound (in a worst-case sense). However, a
worst-case argument may be misleading in the ranking of the algorithms. The empirical validation reported in the
experimental section will provide a more direct evidence of the improvement of CLUCB2 over CLUCB. In the rest
of the section we analyze the parts of the regret that are most directly impacted by the two algorithmic changes in
CLUCB2.

Discussion on martingale bound.

An interpretation for the \/d-improvement comes from comparing (2.20) and (2.22). The minimization in (2.20)
Tiq, -t While @, 2) ~ 3 ‘

1€St_1 i€S;—1 a;

since 0, solves the associated regularized least-square problem, Bellx|ly -1 = O(o+/d]S;_1]), which is larger than the
t

martingale term, which is of order 5(0\/\5,5_1\). The advantage of the martingale argument is that it avoids to
explicitly use the linear structure of the reward by building a concentration for the sum of scalar values. As shown
above, this allows to derive a bound independent from the dimensionality of the linear parametrization. Nonetheless,
notice that in evaluating the quality of the next arm, a minimization over 6 is still needed in (2.22), which brings

has a closed form solution given by <§t,x> — Bellz|ly -1, with z := >
t

10Notice that there is a typo in Thm.6 in Kazerouni et al. (2017), as the denominator in the log term of K should be 1.
1\We remove the contribution of the optimistic arm a; since it is the same when using martingale or self-normalizing bound.

28

back the dependency on v/d (but on a much smaller term) in the regret analysis, which eventually prevents us from
proving an explicit advantage in the final bound. A similar reasoning can be derived for the MAB case (see appendix).
Another interpretation for this v/d-improvement can be seen when looking at the regret. We start bounding the
regret as:
Rerucsa(n) < Y (uhe — pb,) + 1S5 A
teSn

In Kazerouni et al. (2017), the first term is upper-bounded by the standard regret of LINUCB, while the key step is
to bound the regret |S2|A, incurred while playing the baseline. By exploiting the martingale bound, we can provide
a tighter bound for |S%| compared to CLUCB. In Kazerouni et al. (2017) (after Eq. 19), the authors shows that
| St| < 114d%¢3) (ay) where ¢ = o4++/AB (ignoring logarithmic terms). By exploiting the martingale bound, we
can show that ayy|S%| < 10(0 +der)//am + 32(0 + der)? /(ap) (see Eq. 2.126). This already shows that we have
a linear term in d depending only on 1/4/a and a term quadratic in d as in CLUCB with a much smaller constant.
This is a big improvement compared to CLUCB that shows that the martingale indeed provides a v/d-improvement
(and also in 1/y/a). Finally, if we take a very loose upper bound we obtain a term that is smaller by a factor at least
2 compared to the one of CLUCB (formally we obtain that auy|S%| < 48d%c2 /(o).

Discussion on action selection. The second difference in CLUCB?2 is the action selection process. Denote by
fi; the empirical mean of arm i, let AVCP := arg max;e) {Hi + B (i)} be the set of UCB optimal arms, A} :=
{i € [K]: fi; +¢PCB(i) > p*} the set of optimistic arms and C; the set of arms satisfying the conservative condition.
At any time t we can define three events: E; = {a; € AY°B Aa, € Ci}, Eay = {ar #bNay ¢ AVB Aa, € Ci}
and Es5; = {a; = b}. Following the two-step selection process of CUCB, only E;; and Es5, can happen. In case
E +, the algorithm behaves like UCB, thus performing exploration that contributes to reduce the regret over time.
In case Ej3., the regret is equal to Ay and no “progress” is made on the exploration side, but it serves in building
conservative budget for later steps. In CLUCB2, event E5; happens when the UCB arm is not “safe” to play (i.e.,
AVCB ¢ C,) but there are other arms that are safe w.r.t. the baseline. Interestingly, in this case a; is indeed optimistic
w.r.t. the baseline, i.e., a; € C; and fi; + ¢CB(i) > ui. In analogy with the OFU principle for a*, this is a good
strategy for performing efficient exploration w.r.t. the baseline policy. One source of improvement comes when a;
is optimistic despite not being the UCB arm (i.e., a; € A and a; ¢ AY“P). In this case, the time step can be
analyzed as in UCB, thus reducing the number of pulls Tj(n) to the baseline arm and its impact to the regret. This
is likely to happen in earlier phases of the learning process, where the UCB of all arms tend to be optimistic (i.e.,
a; € A;). Even when a; is not optimistic w.r.t. x*, it may happen that p1,, > 3. In this case, while this step can
be still considered as a “conservative”, it would contribute for less than A, regret. Unfortunately, it is difficult to
provide theoretical evidence that such events happen often enough to provably reduce the regret. Nonetheless, the
fact that the arm is optimistic w.r.t. the baseline (i.e., fi; + 1 B(i) >) is sufficient to guarantee that the new
action selection strategy is never worse than CUCB.

We can provide an intuition of the impact of the new arm selection through a simple example. Consider the
situation of N > 3 arms, such that p; > p;y1, for any i. Assume we know the variance of the arms and we use
Bernstein inequality in building confidence intervals. Let o3 = 0 and (u;,0;);>3 such that the probability of being
safe and better than arm 2 is negligible. Then the regret can be decomposed by the normal LINUCB term (due to
event F1), the pull of an arm that is optimistic w.r.t. the baseline (i.e., event F5) and the conservative play. The
number of conservative play is thus further reduced due to event F», leading to a smaller contribution to the regret.
Now, in this specific case, the arm played during event Fs is w.h.p. always arm 2. Since it is better than the baseline,
we have a further improvement to the regret. To conclude, in this example, CLUCB2 will have a regret strictly better
than CLUCB.

2.2.3 Checkpoint-based Conservative Exploration

CLUCB?2 is designed to get a tighter proxy for (2.18), but it is still required to be conservative at any time t. This
requirement is often too strict in practice, where the conservative condition may be verified only at some “checkpoints”
over time. We study the case where the checkpoints are equally spaced every T steps. We still assume that Asm. 8
holds and we redefine the conservative condition such that for some « € [0,1] and T' € N* a learning agent must
satisfy

kT kT
VE>0, Y ph,>(1-a)d i, (2.24)
t=1 t=1

29

which reduces to (2.18) for T = 1. Knowing that the conservative condition is checked every T' steps provides the
agent with a leeway that can be used to perform more exploration and possibly converge faster towards the optimal
policy.

We first derive a conservative condition that can be evaluated at any time t € [kT + 1, (k + 1)T] of a phase
k € N in order to determine whether action a; is safe. We build this condition such that when selecting an action
a;, we want to ensure that by playing the baseline arm until the next checkpoint (i.e., until (k+1)T') , the algorithm
would meet the condition (2.24). Formally, at any step ¢, we replace (2.24) with

t
SToph+ D ph A, Aok DT =) > (1 —a)Y pp, (2.25)
i=1

1€8S—1 ieSt |

where i is as in Asm. 8 i.e a lower bound on the average reward of the baseline strategy.

We now modify CLUCB2 to satisfy this constraint. Changing the conservative condition impacts how the
algorithm evaluates whether an action is “safe” or not (i.e., if selecting a specific action is compatible with the
conservative condition), however the algorithm can still use the bound in (2.21) to lower bound the sum of the values
of actions selected so far, and compute the conservative set at time ¢ as

Cp = {aEAt\{thmaX{ > rfli—z/JL(t),O}

1€S_1

+ Z ub +max{§nm<0 xta>,0}+a((k+1)T—t) Ml>(1_a)z%i}7

i€eSe | i=1

and the arm to pull is obtained by solving the constrained problem (2.23). We now proceed by analyzing how this
different conservative condition impacts the final regret of CLUCB2, which we rename CLUCB2T to stress the
checkpoint-based conservative condition.

Theorem 4. For any § > 0, with probability as least 1 —§ CLUCB2T satisfies condition (2.24) at every checkpoint.

Furthermore, let Te = —— T then CLUCB2T suffers a regret
) (I1—a)pn+au

. /ng" > Cb(a7m,5)

T D?
R(n)<O(adlog()f+max{d(ﬁ3+a) T“log(¥ >+Mh nga,O},

= otherwise

>\F+ Al (/3B 4 o) 1og(RLIVE))2),

R(n) < O(Udlog((am)? Vo

where

2 2
2
Cy(a, pu, 8) := 28d* 2/3+VAB +20 In M(WHWBHU) ;
ofl § (app)?

with Do := max{3,2D?/\}.

This bound illustrate how the length T of each phase may significantly simplify the problem. As T gets larger,
satisfying condition (2.24) becomes easier, the baseline is selected less often and more time is spent in exploring
different actions, thus leading to smaller regret. Interestingly, when T is large enough (i.e., T > Cy(a, py,9)), the
conservative contribution has a smaller and smaller impact onto the regret, to the point that the max in the second
term can become 0, thus reducing the regret to the standard regret bound of LiNUCB, with no impact from the
conservative constraint.

30

Alternative checkpoint schemes. While we assumed T to be fixed, it is possible to generalize this result along
different lines. If the time between any two checkpoints is known to be lower-bounded by T, the same analysis could
hold by replacing T with Ty,;,,. Similarly, if 7" is random from a known distribution, then it is possible to compute the
1 —4/2 quantile of T to recover high-probability guarantees on the conservative properties of the algorithm. Finally,
if the checkpoints are completely arbitrary (or even adversarially chosen) then in order to guarantee that (2.24) is
verified at all checkpoints, the agent needs to be conservative at every step, thus reducing to condition (2.18).

2.2.4 Experiments

In this section we provide empirical evidence of the advantage of the Martingale lower-bound and the action selection
process in synthetic and real-data problems.

2.2.4.1 Synthetic Environments

We consider a MAB with K = 10 Bernoulli arms with means drawn from a uniform distribution, p; ~ Uniform([0.25,0.75]).
The conservative level « is set to 0.05, the horizon n to 10° (T' = 1) and § = 0.01. We generated 70 different
Bernoulli bandit problems (i.e., values of 1;) and we performed 40 simulations for each. In each problem, we selected
the 4t best arm as baseline. Out of the 70 problems, we report the regret curves for the instance where the advantage
of CUCB2 w.r.t. CUCB in terms of the average regret at n is the smallest. This provides an estimated worst-case
scenario for our comparison (see Appendix for further details and results). We report the performance of UCB and
an oracle variant of CUCB (CUCB-Or) where the conservative condition (2.18) is checked exactly. Furthermore,
we test CUCB and a variant of CUCB (CUCB-L) using the action selection process suggested in Wu et al. (2016),
which returns the safe arm with the largest lower bound . Finally, we report an ablation study for CUCB2, where
we consider the Martingale lower bound (CUCB-M) and the constrained action selection process (2.23) (CUCB-S)
separately beside the full algorithm (CUCB2). Fig. 2.5(top) shows that the MDS bound alone provides a significant
improvement, where the regret is reduced by 43% w.r.t. CUCB'’s. Interestingly, the action selection process (CUCB-
S) is much more effective than CUCB-L and it reduces the regret of CUCB by 12%. Finally, the combination of the
two elements (CUCB2) leads to a reduction of the original regret of more than 51%, with a performance which gets
much closer to CUCB-Or.

= L e
2,000 |- oy 2,500 |- Lt
”n -
G= .
— UCB ¢>' = LINUCB 2.000
--- CUCB-OR 1500 | === CLUCB-Or |
----- CUCB-M F <eees CLUCB-M S naenAnArERARnT
+=.= CUCB2 +=:= CLUCB2 1,500 - PP
= CUCB-ML = CLUCB-ML -
=== CUCB === CLUCB
CUCB-S CLUCB-S 1,000
CUCB-L CLUCB-L
500
l\Ollr A;rDag\eb | 0 ‘ | | 1 1 1 L 1 1 L
L»Iarm wit:umnax lower bound 0 02 04 06 08 1 1.2 14 16 18 2
S: constrained arm selection Time -10° Time 104

Figure 2.5: Cumulative regret in synthetic models. Left: Bernoulli arms. Right: linear bandits.

We also evaluated CLUCB2 in the linear setting. We considered a non-contextual case with 30 actions, each
defined by a 100-dimensional feature vector. The features and 6* are drawn randomly in the unit ball such that the
mean reward of each arm is in [0,1]. The reward noise is drawn from A(0,0.12) and the baseline arm is the 6"
best action. We set A = 0.5, § = 0.01 and o = 0.05. We generated 70 models and for each model we averaged
the results over 40 runs. As in the MAB case, we report the results for the model with the smallest advantage for
CLUCB2 w.r.t. CLUCB (Fig. 2.5(bottom)). Contrary to the MAB setting, the main improvement is obtained by
CLUCB-S, whose performance matches CLUCB2 and even the oracle variant, corresponding to an improvement
of 38% compared to CLUCB. As reported in the appendix in the average case (over models), we observe similar
behaviors and performance improvements as in the MAB setting. Finally, to provide an idea of how many times event
E5 occurs, we performed tests in synthetic linear setting (see experiment section) with baseline being the third-best
arm. On average over multiple models, the percentage of time event F5 happened in the first 5000 steps (25% of

31

overall time) is 38.7% (£9%). This shows that potentially we have played something better than baseline and for
sure we have gained information (in contrast to playing the baseline).

Checkpoint-based Condition. We compare the effect of the checkpoint T" on the regret of the algorithms. We
report the results for Bernoulli arms, the linear experiments can be found in Appendix. In this case, the horizon is
set to n = 20000, all the other parameters are unchanged. We generated 15 (integer) checkpoint values logarithmic
space between 1 and n. Fig. 2.6 shows the difference in the regret between CUCB2T and UCB as a function of
T. As expected, the difference decreases as T increases since the condition becomes less strong. Note that even for
T = n, CUCB2T and UCB are different since CUCB2T might discard UCB optimal arms in order to be safe. In
order to have the same behavior, T" should be put sufficiently large in order to overcome the pessimistic estimate
used in the condition. Finally, the improvement provided by the new condition is proportional to the quality of the
baseline. The stronger the baseline, the less is the margin for performing better exploration than playing the baseline
itself.

‘ ‘
400 7% —+— b =3" best arm |
300 |- Q - ©- b=7" best arm i
200

100 —

Rcucser (n) — Rucs(n)

Checkpoint T'

-10*

Figure 2.6: Relative performance between CUCB2T and UCB in synthetic MAB setting.

2.2.4.2 Dataset-based Environments

Fig. 2.7 reports the results using the Jester Dataset Goldberg et al. (2001) that consists of joke ratings in a continuous
scale from —10 to 10 for 100 jokes from a total of 73421 users. We consider the cold start problem: a new user arrives
and we need to learn her preferences (i.e., 6*). We use the features extracted via a low-rank matrix factorization
(d = 35) to represents the actions (i.e., the jokes). We consider a complete subset of 40 jokes and 19181 users
rating all the 40 jokes. The preference of the new user is randomly selected from the 19181 users and mean rewards
are normalized in [0,1]. The reward noise is A/(0,0.12), the horizon is T' = 10°, o = 0.01, § = 0.01 and X\ = 0.5
(see App. 2.B.2). We report the results averaged over 100 randomly selected users and for each user we performed 5
runs. The baseline is the 10t" best arm. We also report the regret of CLUCB2T with a checkpoint horizon T' equal
to 5%,10% or 12% of the horizon n. This experiment confirms that CLUCB2 performs best, with a regret that is
less than half of CLUCB. Furthermore, the results confirm that as the checkpoints become sparser, the performance
of CLUCB2 approaches the one of LINUCB.

8,000 (______
—— LinUCB --- CLUCB
== CLUCB2 —— CLUCB2T 7%
CLUCB2T 10% === CLUCB2T 12%
4,000

2,000

Cumulative Regret

-10°

Time

Figure 2.7: Average regret over multiple users of the Jester dataset

32

2.2.5 Potential Extensions and Concluding Remarks

We introduced CLUCB?2, a novel conservative exploration algorithm for linear bandit that matches existing regret
bound and outperforms state-of-the-art algorithms in a number of empirical tests. In this section, we also proposed
a first direction to relax the conservative condition towards a more realistic scenario.

Important directions for future work are: identify alternative conservative exploration constraints that are directly
motivated by specific applications, extend the current algorithms beyond linear bandit towards the more challenging
reinforcement learning setting.

So far conservative exploration has been defined in the bandit setting, however in the next section we show that
the definition can be extended to the Reinforcement Learning setting both in the average reward and finite-horizon
setting.

2.3 Conservative Exploration in Reinforcement Learning

While Reinforcement Learning (RL) has achieved tremendous successes in simulated domains, its use in real system
is still rare. A major obstacle is the lack of guarantees on the learning process, that makes difficult its application in
domains where hard constraints (e.g., on safety or performance) are present. Examples of such domains are digital
marketing, healthcare, finance, and robotics. For a vast number of domains, it is common to have a known and
reliable baseline policy that is potentially suboptimal but satisfactory. Therefore, for applications of RL algorithms,
it is important that are guaranteed to perform at least as well as the existing baseline.

In the offline setting, this problem has been studied under the name of safety w.r.t. a baseline (Bottou et al.,
2013; Thomas et al., 2015a,b; Swaminathan and Joachims, 2015; Petrik et al., 2016; Laroche et al., 2019; Sim3o
and Spaan, 2019). Given a set of trajectories collected with the baseline policy, these approaches aim to learn a
policy —without knowing or interacting with the MDP— that is guaranteed (e.g., w.h.p.) to perform at least as
good as the baseline. This requires that the set of trajectories is sufficiently reach in order to allow to perform
counterfactual reasoning with it. This often implies strong requirements on the ability of exploration of the baseline
policy. These approaches can be extended to a semi-batch settings where phases of offline learning are alternated
with the executing of the improved policy. This is the idea behind conservative policy iteration (e.g., Kakade and
Langford, 2002; Pirotta et al., 2013b) where the goal is to guarantee a monotonic policy improvement in order to
overcome the policy oscillation phenomena Bertsekas (2011). These approaches has been successively extended to
function approximation preserving theoretical guarantees (e.g., Pirotta et al., 2013a; Achiam et al., 2017). A related
problem studied in RL is the one of safety, where the algorithm is forced to satisfy a set of constraints, potentially
not directly connected with the performance of a policy (e.g., Altman, 1999; Berkenkamp et al., 2017; Chow et al.,
2018).

In the online setting, which is the focus of this paper, the learning agent needs to trade-off exploration and
exploitation while interacting with the MDP. Opposite to offline learning, the agent has direct control over exploration.
Exploration means that the agent is willing to give up rewards for policies improving his knowledge of the environment.
Therefore, there is no guarantee on the performance of policies generated by the algorithm, especially in the initial
phase where the uncertainty about the MDP is maximal and the algorithm has to explore multiple options (almost
randomly). To increase the application of exploration algorithm, it is thus important that the policies selected by the
algorithm are (cumulatively) guaranteed to perform as well as the baseline by making exploration more conservative.
This setting has been studied in multi-armed bandits (Wu et al., 2016), contextual linear bandits (Kazerouni et al.,
2017), and stochastic combinatorial semi-bandits (Katariya et al., 2019). These papers formulate the problem using
a constraint defined based on the performance of the baseline policy (mean of the baseline arm in the multi-armed
bandit case), and modify the corresponding UCB-type algorithm (Auer et al., 2002b) to satisfy this constraint.
Another algorithm in the online setting is by (Mansour et al., 2015) that balances exploration and exploitation such
that the actions taken are compatible with the agent's (customer’s) incentive formulated as a Bayesian prior.

While the conservative exploration problem is well-understood in bandits, little is known about this setting to RL,
where the actions taken by the learning agent affect the system state. This dynamic component makes the definition
of the conservative condition much less obvious in RL. While in the bandit case it is sufficient to look at (an estimate
of) the immediate reward to perform a conservative decision, in MDPs acting greedily may not be sufficient since
an action can be “safe” in a single step but lead to a potentially dangerous state space where it will not be possible
to satisfy the conservative constraint. Moreover, after ¢ steps, the action followed by the learning agent may lead
to a state that is possibly different from the one observed by following the baseline. This dynamical aspect is not
captured by the bandit problem and should be explicitly taken into account by the learning agent in order to perform

33

a meaningful decision. This, together with the problem of counterfactual reasoning in an unknown MDP, make the
conservative exploration problem is much more difficult (and interesting) in RL than in bandits.

This paper aims to provide the first analysis of conservative exploration in RL. In Sec. 2.3.2 we explain the design
choices that lead to the definition of the conservative condition for RL (both in average reward and finite horizon
settings), and discuss all the issues introduced by the dynamical nature of the problem. Then, we provide the first
algorithm for efficient conservative exploration in average reward and analyze its regret guarantees. The variant for
finite-horizon problems is postponed to the appendix. We conclude the paper with synthetic experiments.

2.3.1 Average Reward Reinforcement Learning

In this section, we consider the Average Reward Reinforcement Learning setting defined in Section 1.2.3.2 M =
(S, A, p,r) with state space S and action space A.

Exploration in RL. Let M* be the true unknown MDP. We consider the learning problem where S, A and 7ax
are known, while rewards r and transition probabilities p are unknown and need to be estimated online. We evaluate
the performance of a learning algorithm 2(after T' time steps by its cumulative regret

T
RAT)=Tg" - Zrt(stv a). (2.26)

t=1

The exploration-exploitation dilemma is a well-known problem in RL and (nearly optimal) solutions have been proposed
in the literature both base on optimism-in-the-face-of-uncertainty (OFU, e.g., Jaksch et al., 2010a; Bartlett and
Tewari, 2009; Fruit et al., 2018a) and Thompson sampling (TS, e.g., Gopalan and Mannor, 2015; Osband and Roy,
2016). Refer to (Lazaric et al., 2019) for more details.

2.3.2 Definition of Conservative Exploration in Average Reward RL

In conservative exploration, a learning agent is expected to perform as well as the optimal policy over time (i.e.,
regret minimization) under the constraint that at no point in time its performance is significantly worse than a
known baseline policy 7, € IISR. This problem has been studied in the bandit literature (Wu et al., 2016; Kazerouni
et al., 2017), where the conservative constraint compares the cumulative expected reward obtained by the actions

ai,as, ..., a; selected by the algorithm to the one of the baseline action ay,
t
vt > 0, Zr(ai) >(1—a)tr(a), (2.27)
i=1

where r(a) is the expected reward of action a. At any time t, conservative exploration algorithms first query a
standard regret minimization algorithm (e.g., UCB) and decide whether to play the proposed action a; or the
baseline a;, based on the accumulated budget (i.e., past rewards) and whether the estimated performance of a;
is sufficient to guarantee that the conservative constraint is satisfied at ¢ + 1 after a; is executed. While (2.27)
effectively formalizes the objective of constraining an algorithm to never perform much worse than the baseline, in
RL it is less obvious how to define such constraint. In the following we review three possible directions, we point out
their limitations, and we finally propose a conservative condition for RL for which we derive an algorithm in the next
section.

Gain-based condition. Instead of actions, RL exploration algorithms (e.g., UCRL2), first select a policy and
then execute the corresponding actions. As a result, a direct way to obtain a conservative condition is to translate
the reward of each action in (2.27) to the gain associated to the policies selected over time, i.e.,

t
VE>0, > g = (1-a)tg™. (2.28)
=1

The main drawback of this formulation is that the gain g™ is the expected asymptotic average reward of a policy
and it may be very far from the actual reward accumulated while executing 7; in the specific state s; achieved at
time i. The same reasoning applies to the baseline policy, whose cumulative reward up to time ¢ may significantly
different from ¢ times its gain. As a result, an algorithm that is conservative in the sense of Eq. (2.28) may still
perform quite poorly in practice depending on ¢, the initial state, and the actual trajectories observed over time.

34

Reward-based condition. In order to address the concerns about the gain-based condition, we could define the

stronger condition
t
Vit > 0, Zn_ Q=) rl, (2.29)
i=1

where 7; is the sequence of rewards obtained while executing the algorithm and r? is the reward obtained by the
baseline. While this condition may be desirable in principle (the learning algorithm never performs worse than
baseline), it is impossible to achieve. In fact, even if the optimal policy 7* is executed for all ¢ steps, the condition
may still be violated because of an unlucky realization of transitions and rewards. If we wanted to accounting for the
effect of randomness, we would need to introduce an additional slack of order O(v/t) (i.e., the cumulative deviation
due to the randomness in the environment), which would make the condition looser and looser over time.
Condition in expectation. The previous remarks could be solved by taking the expectation of both sides

t
Yt > 0, Eg lZTi(Si,ai>

i=1

51 = s] >(1—-a)E lz ri(si,ai)|s1 = 3,771,1 , (2.30)

i=1

where Eg denotes the expectation w.r.t. the trajectory of states and actions generated by the learning algorithm 2L,
while the RHS is simply the expected reward obtain by running the baseline for ¢ steps. Condition (2.30) effectively
captures the nature of the RL problem w.r.t. the bandit case. In fact, after ¢ steps, the actions followed by the
learning algorithm may lead to a state that is possibly very different from the one we would have reached by playing
only the baseline policy from the beginning. This deviation in the state dynamics needs to be taken into account
when deciding if an exploratory policy is safe to play in the future. In the bandit case, selecting the baseline action
contributes to build a conservative budget that can be spent to play explorative actions later on (i.e., by selecting ay,
the LHS of (2.27) in increased by r(ap), while only a fraction 1 — «v is added to the RHS, thus increasing the margin
that may allow playing alternative actions later). In the RL case, selecting policy 7, at time ¢ may not immediately
contribute to increasing the conservative budget. In fact, the state s; where 7, is applied may significantly differ
from the state that m, would have achieved had we selected it from the beginning. As a result, a conservative
RL algorithm should be extra-cautious when selecting policies different from 7, since their execution may lead to
unfavorable states, where it is difficult to recover good performance, even when selecting the baseline policy.

While this may seem a reasonable requirement, unfortunately it is impossible to build an empirical estimate
of (2.30) that a conservative exploration algorithm could use to guide the choice of policies to execute. In fact, the
LHS averages the performance of the algorithm over multiple executions, while in practice we have only access to a
single realization of the algorithm's process. This prevents from constructing accurate estimates of such expectation
directly from the data observed up to time ¢t. A possible approach would be to construct an estimate of the MDP and
use it to replay the algorithm itself for ¢ steps. Beside prohibitive computational complexity, the resulting estimate
of the expected cumulative reward of 2 would suffer from an error that increases with ¢, thus making it a poor proxy
for (2.30).12

Condition with conditional expectation. Let ¢ be a generic time and p; = (71, 72, ..., m), the non-stationary
policy executed up to t. We require the algorithm to satisfy the following conditional conservative condition

t

vVt >0, E Z (84,04 |51—5Ht] (1-a)E

t

Zrl SiyGi)|s1 = s, mp| - (2.31)

=1

where the expectations are taken w.r.t. the trajectories generated by a fixed non-stationary policy y; (i.e., we ignore
how rewards affect 11;). Notice that this condition is now stochastic, as p itself is a random variable and thus we
require to satisfy (2.31) with high probability. This formulation can be seen as relying on a pseudo-performance
evaluation of the algorithm instead of the actual expectation as in (2.30)** and it is similar to (2.27), which takes
the expected performance of each of the (random) actions, thus ignoring their correlation with the rewards. This
formulation has several advantages w.r.t. the conditions proposed above: 1) it considers the sum of rewards rather
than the gain as (2.28), thus capturing the dynamical nature of RL, 2) it contains expected values, so as to avoid
penalizing the algorithm by unlucky noisy realizations as (2.29), 3) as shown in the next section, it can be verified
using the samples observed by the algorithm unlike (2.30).

12More precisely, let]\//\[t be an estimate of M* and ¢; be the largest error T estimating its dynamics at time t. Estimating the expected
cumulative reward by running (an infinite number of) simulations of 2 in M; would suffer from an error scaling as te;. For any regret
minimization algorithm, €; cannot decrease linearly with ¢ and thus the estimation of Eg would have an error increasing with ¢.

13\We use pseudo-performance to stress the link the pseudo-regret formulations used in bandit (e.g., Auer et al., 2002b)

35

Algorithm 4: CUCRL2 algorithm.

Input: 7, € TSR, § € (0,1), Tmax, S, A, a € (0,1)

Set So =Sy =0,k=0

for episodes k =1,2,... do

Set t, =t and episode counters v (s,a) = 0.

Compute estimates Dy (s'|s, a), Tr(s,a) and a confidence set M.

Compute an rmax/\/ﬁ—approximation 7, of the optimistic planning problem max /e o, renso{9™ (M)}

Compute (g, ,h;,) = EVI(L;",rmEX/\F) see Eq. 2.35.
Compute an 7"max/\/7c approximation 7 of the optimistic planning problem max ;e o, renso {9™ (M)}
if Eq. 2.39 is true then
‘ Tk :%k else T = Tp
Sample action a; ~ 7 (+]s¢).
while v (s, a;) < N,j'(st,at) At <t +Tr_1 do
Execute a;, obtain reward r;, and observe s;.1.
Set vk (st ar) = vi(se,ar) + 1.
Sample action a1 ~ mg(+|s¢+1) and set t = ¢ + 1.
Set Niy1(s,a) = Ni(s,a) +vr(s,a), Ap = Ap—1 U{k} - L(gq 2.30) and Af = A, U{k} - L(~gq. 230

The finite-horizon case. We conclude the section, by reformulating (2.31) in the finite-horizon case. In this
setting, the learning agent interacts with the environment in episodes of fixed length H. Let S be the initial state,
m; be the policy proposed at episode j and let t = (kK — 1)H + 1 be beginning of the k-th episode. Then p; is a
sequence of policies 7, each executed for H steps. In this case, condition (2.31) can be conveniently written as

t k

(1—a)kVi™ (s Z (siya;)|s1=s Mt] = ZJE

— j=1

H

k
dorl(shalllsi=sm| =3 VUE) (232)

i=1

where V] is the H step value function of 7 at the first stage. In this formulation, the conservative condition has a
direct interpretation, as it directly mimics the bandit case (2.27). In fact, the performance of the algorithm up to
episode k is simply measured by the sum of the value functions of the policies executed over time (each for H steps)
and it is compared to the value function of the baseline itself. Note that this definition is compatible with the regret:
Reu(AU, K) = Zszl V*(3) — V™ (3). Indeed, the regret defined in expectation w.r.t. the stochasticity of the model
but not w.r.t. the algorithm, there is no expectation w.r.t. the possible sequence of policies generated by 2.

2.3.3 Conservative UCRL

In this section, we introduce conservative upper-confidence bound for reinforcement learning (CUCRL2), an ef-
ficient algorithm for exploration-exploitation in average reward that both minimize the regret (2.26) and satisfy
condition (2.31).

CUCRL2 builds on UCRL2 in order to perform efficient conservative exploration. At each episode k, CU-
CRL2 builds a bounded parameter MDP M, = {M = (S, A,7,p),r(s,a) € BF(s,a),p(:|s,a) € B(s,a), where
BE(s,a) € [0,7max] and B}’,f(s,a) € Ag are high-probability confidence intervals on the rewards and transition
probabilities such that M* € My w.h.p. and Ag is the S-dimensional simplex. This confidence intervals can be
built using Hoeffding or empirical Bernstein inequalities by using the samples available at episode & (e.g., Jaksch
et al.,, 2010a; Fruit et al., 2018b). CUCRL2 computes an optimistic policy 7 in the same way as UCRL2:
(My,, 7)) € argmax yre aq, rersoi19” (M)}, This problem can be solved using EVI (see Fig. 8 in appendix) on
the optimistic optimal Bellman operator £, of M, (Jaksch et al., 2010a)."* Then, it needs to decide whether
policy 7 is “safe” to play by checking a conservative condition f.(Hx) (see Sec. 2.3.3.1) where Hj, contains all the
information (samples and chosen policies) available at the beginning of episode k, including the optimistic policy 7.
If fo(Hr) > 0, the UCRL2 policy 7y is “safe” to play and CUCRL2 plays m, = 7 until the end of the episode.
Otherwise, CUCRL2 executes the baseline 7, i.e., 7, = m,. We denote by Ay the set of episodes (k included) where

14[,:1)(5) = maxa{maxreBz(S’a){r} + MaX, e pr (s,a) pTv}.

36

UCRL2 executed an optimistic policy and by A, = {1,...,k} \ Ay its complement. Formally, if f.(Hx) > 0 we set
Ap = Ag—1 U{k} else Ay, = Ax_1. The pseudocode of CUCRL2 is reported in Alg. 4.

Note that, contrary to what happens in conservative (linear) bandits, the statistics of the algorithm are updated
continuously, i.e., using also the samples collected by running the baseline policy. This is possible since UCRL2 is
a model-based algorithm and any off-policy sample can be used to update the estimates of the model. To have a
better estimate of the conservative condition, it is possible to use the model available at episode k to re-evaluate
the policies (m;);<x at previous episodes (change line 3 in Alg. 4). This will improve the empirical performance of
CUCRL2 but breaks the regret analysis.

2.3.3.1 Algorithmic Conservative Condition

We now derive a checkable conservative condition that can be incorporated in the UCRL2 structure illustrated in
the previous section. In the bandit setting, it is relatively straightforward to turn (2.27) into a condition that can be
checked at any time ¢ using estimates and confidence intervals build from the data collected so far. On the other
hand, while condition (2.31) effectively formalizes the requirement that the learning algorithm should constantly
perform almost as well as the baseline policy, we need to consider the specific RL structure to obtain a condition
that can be verified during the execution of the algorithm itself. In order to simplify the derivation, we rely on the
following assumption.

Assumption 9. The gain and bias function (g™, h™) of the baseline policy are known.

As explained in (Kazerouni et al., 2017), this is a reasonable assumption since the baseline policy is assumed to
be the policy currently executed by the company and for which historical data are available. We will mention how to
relax this assumption in Sec. 2.3.3.1.

We follow two main steps in deriving a checkable condition. 1) We need to estimate the cumulative reward
obtained by each of the policies played by the learning algorithm directly from the samples observed so far. We do
this by relating the cumulative reward to the gain and bias of each policy and then building their estimates. 2) It is
necessary to evaluate whether the policy proposed by UCRL?2 is safe to play w.r.t. the conservative condition, before
actually executing it. While this is simple in bandit, as each action is executed for only one step. In RL, policies
cannot be switched at each step and need to be played for a whole episode. Nonetheless, the length of a UCRL2
episode is not known in advance and this requires predicting for how long the explorative policy could be executed in
order to check its performance.

Step 1: Estimating the conditional conservative condition from data. In order to evaluate (2.31) from
data, one may be tempted to first replace the sum of rewards obtained by each policy m; in p; on the |hs side by
its gain g™, similar to the gain-based condition in (2.28). Indeed, under Asm. 1 any stationary policy 7 receives

asymptotically an expected reward g™ at each step. Unfortunately, in our case E [Z§:1 Ti’pt} + Z?Zl Tjg™. In

fact, when evaluating a policy for a finite number of steps, we need to account for the time required to reach the
steady regime (i.e., mixing time) and, as such, the influence of the state at which the policy is started. The notion
of reward collected during the transient regime is captured by the bias function.!® In particular, for any stationary
(unichain) policy 7 € TISR with gain g™ and gain function h™ executed for ¢ steps, we have that:

t
E [Z rils1 = s,w} =tg" +h"(s)— P.(-|s)Th". (2.33)
i=1

As a result, we have the bounds

t

Zri|sl = s,w] <tg"+sp(h™).
i=1

tg" —sp(h™) <E

Leveraging prior knowledge of the gain and bias of the baseline, we can use the second inequality to directly upper
bound the baseline performance as

t
E lz ri‘sl = s,wb,] < sp(h™) 4+t g™. (2.34)

i=1

5Puterman (1994, Sec. 8.2.1) refers to the gain as “stationary” reward while to the bias as “transient” reward.

37

On the other hand, for a generic policy 7, the gain and bias cannot be directly computed since M™* is unknown.

To estimate the cumulative reward of the algorithm we resort to the estimate of the true MDP build by UCRL2 to

construct a pessimistic estimate of the cumulative reward for any policy 7; (i.e., to perform counterfactual reasoning).
Given a policy 7 and the bounded-parameter MDP M}, we are intersted in finding g™ where g™ := minprea, {97 (M)}.

Define the Bellman operator L] associated to M;, as: Vv € R%, Vs e S

Tv(s):= min r4+ min To 2.35
k () reBE(s,a) pEBI’j(s,a){p } ()
Then, there exists (g7, h™) such that, Vs € S, g"e+h"™ = LT A" where e = (1,...,1) (see Lem. 15.1 in App. 2.C.1).
Similarly to what is done by UCRL2, we can use EVI with L] to build an e;-approximate solution of the Bellman

equations. Let (g,,v,) = EVI(L],€x), then g, — e < g7 < g"(M*). The values computed by the pessimistic
policy evaluation can be then used to bound the cumulative reward of any stationary policy.

Lemma 3. Consider a bounded parameter MDP M such that M* € M w.h.p., a policy = and let (g,,v,) =
EVI(L™,e). Then, under Asm. 1 for any state s € S:

t
E > rilsi = sm] 2 t(gn —€) = sp(vn).
i=1
Step 2: Test safety of optimistic policy. Let ¢; be the time when episode k starts. Policies my,...,Tr_1

have been executed until ¢, — 1 and UCRL2 computed an optimistic policy . In order to guarantee that (2.31) is
verified the algorithm needs to anticipate how well 7 may perform if executed for the next episode. For any policy
(m5)j<k U{Tx}, we first compute (g; . h;) = EVI(L}”,EJ»).16 If 7; = 7° (i.e., the baseline was executed at episode
7). we let (g;,h;) = (g™, h™) and £; = 0. Then

E

t k T k

> rilsi = s,ut] =Y N P(si, =yls.m) B> rilym| =Y Tilgy —e5) —sp(hy) (2.36)
i=1 j=1yes i=1 j=1

where t; is time at which episode j started, P (Sta = y|51 = s, Ht) is the probability of reaching state y after ¢; steps
starting from state s following policy p;. The inequality follows from Lem. 3. By lower bounding the LHS of (2.31)
by (2.36) and upper bounding the RHS by (2.34), the conservative condition becomes:

N

—1

(Tj(gj_ —&j—g") — Sp(hj_)> —sp(h™) + Ti(g, —er — (1 —a)g™) >0 (2.37)

<.
Il

Note that the algorithm should check this condition at the beginning of episode k in order to understand if the
policy 7y, is safe or if it should resort to playing policy 7. In many OFU algorithms, including UCRL2, the length of
episode k (i.e., T)) is not known at the beginning of the episode. As a consequence, condition (2.37) is not directly
computable. To overcome this limitation, we consider the dynamic episode condition introduced by (Ouyang et al.,
2017). This stopping condition provides an upper-bound on the length of each episode as T}, < Tj_1 + 1, without
affecting the regret bound of UCRL2 (up to constants). This condition can be used to further lower-bound the last
term in (2.37) by

Tilgi — e — (1= a)g™) > (T + (g —ex— (1= 0)0™) L _ayymzgr oy (2:38)

Plugging this lower bound into (2.37) gives the final conservative condition

S

-1

(Tj(g{ —&—g") - sp(hj_)) = sp(h™) + (T + (g, —er = (L= a)g™) - L4 _aygmzgr—e,) 2 05
1

<.
Il

(2.39)

16The subscript j in the operator L9 denotes the fact that it is computed using the samples observed up to t;. For each episode,
we need to compute the estimate only for the new UCRL2 policy. In order to have a tighter estimate of the conservative condition it
possible to recompute the gain and bias of the past policies at every episode (or periodically) by using all the available samples (i.e., using
Eg) However, this will break the current regret proof.

38

tested by CUCRL2 at the beginning of each episode. Unknown (g™, h™). If the gain and bias of the baseline are
unknown, we can use EVI on E;”’” (Eq. 2.35 with max instead of min) to compute an optimistic estimate of the
cumulative reward of the baseline up to time ¢; + 7;_1 + 1. While this account for the RHS of Eq. 2.31, we simply
define (g, ,h;) = EVI(L]",¢) for every episode I € Aj_, to compute a lower bound to the cumulative reward
obtained by the algorithm by playing the baseline in episode before k. Clearly, this approach is very pessimistic and
it may be possible to design better strategies for this case.

The finite-horizon case. We conclude this section with a remark on the finite horizon case. This case is much
simpler and resemble the bandit setting. We can directly build a lower bound v, ; to the value function V™ by using
the model estimate and its uncertainty at episode /. This estimate can be computed via extended backward induction
—see (Azar et al., 2017a, Alg. 2)- simply subtracting the exploration bonus, see Lem. 20 in App. 2.C.3. The same
approach can be used to construct an optimistic and pessimistic estimate of V;™* when it is unknown. This values
can be directly plugged in (2.32) to define a checkable condition for the algorithm.

2.3.3.2 Regret Guarantees

We start providing an upper-bound to the regret of CUCRL2 showing the dependence on UCRL2 and on the baseline
m,. Since the set Ay is updated at the end of the episode, we denote by A = Ag, U {kr} - 1 (g (230)) the set
containing all the episodes where CUCRL2 played an optimistic policy. The set A% is its complement.

Lemma 4. Under Asm. 1 and 9, for any T' and any conservative level «, there exists a numerical constant 3 > 0
such that the regret of CUCRL2 is upper-bounded as

R(CUCRL2,T) < - <RUCRL2(T|AT) + (g —g™) Z T, + sp(h™)/ SAT 111(T/5)),

IEAS,

and the conservative condition (2.31) is met at every step t = 1,...,T with probability at least 1 — %.17

RycrL2(T|A7) denotes the regret of UCRL2 over an horizon T conditioned on the fact that the UCRL2 policy
is executed only at episodes 7 € Ar. During the other episodes, the internal statistics of UCRL2 are updated using
the samples collected by the baseline policy m,. This does not pose any major technical challenge and, as shown in
App. 2.C.2, the UCRL2 regret can be bounded as follows.

Lemma 5 (Jaksch et al. (2010a)). Let Ly = In (%) for any T', there exists a numerical constant 3 > 0 such that,
with probability at least 1 — 2,

Rycrr(T|Ar) < BDS\/AT Ly + BDS* ALt

The second term in Lem. 4 represents the regret incurred by the algorithm when playing the baseline policy .
The following lemma shows that the total time spent executing conservative actions is sublinear in time (see Lem. 18
in App. 2.C.2 for details).

Lemma 6. For any T > 0 and any conservative level «, with probability at least 1 — 25—6, the total number of play
of conservative actions is bounded by:

112SAL
Z T, < 2y/SATIn(T) + Q(l +S(D+7Y)%) +

2
(ag™)

164/TL
6&;? (D + T)WVEA + 1y + VS Asp(h™)|

where Ly = In (%) and T < oo asin Eq. 1.2

Proof. Let T be the last episode played conservatively: 7 =sup{k > 0: k € A{}. This means that at the beginning
of episode 7 the conservative condition was not verified. By rearranging the terms in Eq. 2.39 and using simple
bounds, we can write that:

T—1
Ay +4kr (sp(g™) + T+ (1= @)rmax) > @y Tig™
=1

1"The probability refers to both events: the regret bound and the conservative condition.

39

T
CUCRL 0.026 —— CUCRL
3,000 — CUCRL 0.049 ‘ ‘ © g0l —— UCRL
CUCRL 0.076 o
----- CUCRL 0.099 / =
- == CUCRL 0.126 ° 60
2,000 - ... CUCRL 0.15 1 £
— CUCRL 0.177 s 40 1
— UCRL e -
1,000 |- aipaEaninnisl = BRe
- X
S
20
é 0 | I | | | | 0 | | —
0 1 2 3 4 5 6 5.10—2 0.1 0.15
Time 104 (67

Figure 2.8: Inventory control problem.

where Ar =37\ Ti(g1 — gl) and (ghgl) are optimistic and pessimistic gain of policy m; = 7;. Note that both

satisfies the Bellman equation: g + h; = Efﬁl (see footnote 14) and g, + hy = L]y (see Eq. 2.35). At this point,
the important terms in upper-bounding A are similar to the one analysed in UCRL2. In particular, we have a term
depending on the confidence intervals ALY .= 28L (s, a,) + BL (s, a¢)(sp(hu) + sp(R™)) and one depending on the

transitions AL := p*(-|s;, ar)T (711 —&—h’”) — (h(se41) — h™ (s¢41)). Let X = Zl:ll T,. By using the definition of

the confidence intervals, it is easy to show that >, zjg;,fl AYT < \/SATX + (D 4 T)VSZAX. Define the
o-algebra based on past history at t: F; = o(s1,a1,71,-..,St,at,Tt, Se+1). T he sequence (Aé,’tgft)l,t is an MDS.
Thus, using Azuma inequality we have that >, , ;’:*tll_l Alc’it < (D + Y)VT. Putting everything together

we have a quadratic form in X and solving it we can write that ag™X < by + S2ALS(D + Y)?/(ag™) where
br = O((D + T)VSAT) (see App. 2.C.2). The result follows noticing that), . T} < Zz:ll T+ T O

Combining the results of Lem. 5 and Lem. 6 into Lem. 4 leads to an overall regret of order O(+v/T), which matches
the regret of UCRL2. This shows that CUCRL2 is able to satisfy the conservative condition without compromising
the learning performance. Nonetheless, the bound in Lem. 6 shows how conservative exploration is more challenging
in RL compared to the bandit setting. While the dependency on the conservative level « is the same, the number of
steps the baseline policy is executed can be as large as O(\/T) instead of constant as in CUCB (Wu et al., 2016).
Furthermore, Lem. 4 relies on an ergodicity assumption instead of the much milder communicating assumption
needed by UCRL2 to satisfy Lem. 5. Asm. 1 translates into the bound through the “worst-case” diameter T, which
in general is much larger than the diameter D. This dependency is due to the need of computing a lower bound
to the reward accumulated by policies 7; in the past (see Lem. 3). In fact, UCRL2 only needs to compute upper
bounds on the gain and the value function returned by EVI by applying the optimistic Bellman operator Ez has
span bounded by the diameter D. This is no longer the case for computing pessimistic estimates of the value of a
policy. Whether Asm. 1 and the worst-case diameter T are the unavoidable price to pay for conservative exploration
in infinite horizon RL remains as an open question.

The finite-horizon case. App. 2.C.3 shows how to modify UCB-VT (Azar et al., 2017a) to satisfy the conservative
condition in Eq. 2.32. In this setting, it is possible to show (see Prop. 5 in App. 2.C.3) that the number of
conservative episodes is simply logarithmic in T = KH. Formally, |A%| = O(H5S?AIn(T/6)/(ary(A, + arp))
where 0 < 7, < r(s,a), for all (s,a), and A, = ming{V*(s) — V]"*(s)} is the optimality gap. This problem
dependent terms resemble the one in the bandit analysis. The regret of conservative UCB-VI is bounded by

O(H/SAT + 1/(ary(A, + ary))).

2.3.4 Experiments

In this subsection, we report results in the inventory control problem to illustrate the performance of CUCRL2
compared to unconstrained UCRL2 and how it varies with the conservative level. See App. 2.A.6 for additional

40

experiments for both average reward and finite horizon. In order to have a better estimate of the budget, we re-
evaluate past policies at each episode. We start considering the stochastic inventory control problem (Puterman,
1994, Sec. 3.2.1) with capacity M = 6 and uniform demand. At the beginning of a month ¢, the manager has to
decide the number of items to order in order to satisfy the random demand, taking into account the cost of ordering
and maintainance of the inventory (see App. 2.A.6). Since the optimal policy is a threshold policy, as baseline we
consider a (0, X) policy (Puterman, 1994, Sec. 3.2.1) with target stock ¥ = 4 and capacity threshold ¢ = 4. Note
that ¢* = 0.603 and (g™, sp(h™)) = (0.565,0.651). We use this domain to perform an ablation study w.r.t. the
conservative level . We have taken T' = 70000 and the results are averaged over 100 realizations.

Fig. 2.8(left) shows that the regret of CUCRL2 grows at the same speed as the one of the baseline policy 7 at
the beginning (the conservative phase), because during this phase CUCRL?2 is constrained to follow 7, to make sure
that constraint (2.31) is satisfied. Clearly, the duration of this conservative phase is proportional to the conservative
level . As soon as CUCRL2 has built margin, it starts interleaving exploratory (optimistic) policies with the baseline.
After this phase, CUCRL2 has learn enough about the system and has a sufficient margin to behave as UCRL2.
As expected, Fig. 2.8(left) confirms that the convergence to the UCRL2 behavior happens more quickly for larger
values of «, i.e., when the conservative condition is relaxed and CUCRL2 can explore more freely. On the other
hand, UCRL2 converges faster since it is agnostic to the safety constraint and may explore very poor policies in the
initial phase. To better understand this condition, Fig. 2.8(right) shows the percentage of time the constraint was
violated in the first 15000 steps (about 20% of the overall time T"). CUCRL2 always satisfies the constraint for all
values of a while UCRL2 fails a significant number of times, especially when the conditions is tight (small values of
Q).

2.3.5 Future Extensions

We presented algorithms for conservative exploration for both finite horizon and average reward problems with
O(\/T) regret. We have shown that the non-episodic nature of average reward problems makes the definition of the
conservative condition much harder than in finite horizon problems. In both cases, we used a model-based approach to
perform counterfactual reasoning required by the conservative condition. Recent papers have focused on model-free
exploration in tabular settings or linear function approximation (Jin et al., 2018; Yang and Wang, 2019; Jin et al.,
2019), thus a question is if it is possible for model-free algorithms to be conservative and still achieve 5(\/?) regret.

2.4 Conclusion

In this chapter, we studied different constraints that may be encountered during the deployment of a Reinforcement
Learning system. Those constraints are different by nature. One is about pure performance in terms of reward
whereas the other shows how challenging it is to deploy a bandit system as a part of whole recommendation pipeline.
In the following of this thesis, we focus on the privacy and security aspect of RL. Two questions that have gained
a lot in popularity recently. We will show how those two concepts can be seen as a constraint on the exploration
process and which solutions we can use to solve those issues.

41

Appendix

2.A Appendix for Bandit with Noisy Evaluations
2.A.1 Lower Bound

In this appendix, we prove why no algorithm can compute the top K arms at every time step. More, precisely we
prove the following Lemma.

Lemma 7. Let consider the linear case in Asm. 5 and parameters Ky = Kpax, K =1, a5 =1forallj=1,...,J
and a noise distributed as N'(0, ;) with o; = oo forall j = 1,...,J. The learner 2 receives as input the evaluations
fit; = Tit + €i1; and we denote by A({fi+;}) the arm returned by A. For all arms i < K, the reward r;; is
sampled from a Bernoulli distribution Ber(1/2). At every step, let's define I} = {i < K; | r;y = 1} the set of
optimal arms. Then any learner 2 has a fixed non-zero probability to return the wrong ranking at each step, i.e.,

VEVRA, 30 > 0, P,y [A({fiasDE IF] 2 6 (2.40)

Proof. We reason by contradiction and assume that there exists a deterministic algorithm 2l and a time step ¢ such
that

V8> 0, Poere,, |2 fieiDE L] <0 (2.41)

Now given the rewards (r;+)i<k, the distribution of the evaluations (f;¢;); is distributed as N ((ri+)j<s,00ls)
for each i. Now, let's consider the set of sub optimal arms, I, := {i < K, | r;;, = 0} because the rewards are
independent then with probability at least % the set I;V and I, are both non-empty. For an index iy < Kj, let
X0 ¢ RE:xJ and X109 ¢ RE+*/ be two random variables distributed sampled from the same distributions as the
(fieg)ig | If = {io}, Iy ={i—o} and (fi+ ;)i | I; = {io}, I} = {i_o} respectively. We then have that:

P (X% =X"%) >0 (2.42)

This is a direct consequence of the independence of the noise and rewards. Indeed,

P(XO = XM0) =P (V(i,g) € {1, K} x {1, T} X0 = X)) (243)
=[P} = x1) (2.44)
4,3

But for a given couple (i,7) € {1,..., K} x {1,...,J}, ngjl ~ N(]l{i:io},og), X0

i~ N(1jiziy, 05) and are
independent. Therefore, the probability of those random variables being equal is:

2 2

oo (&= Limi)” + (o = L))

P (X?,’jl = Xil,’jo) = 92 / exp | — - 557 - dx >0 (2.45)
0 J—o0 0

Let's note v > 0 such that v < PP (X?”jl = X}”f) for all i then we have that: P (X% = X10) > 4%/ > 0. This

implies that there exists a dp such that Pger (¢, , ;3 [Ql(XOJ) €I, X0 = X0 1 = {ig}, I; = i_o} > dp > 0,

42

thanks to Eq. (2.41) but then on this event we have that:

do < IF)Berv{Ei,t,j} [Ql(Xoyl) SEhS X0t = Xl’ov IF ={io}, I; = 7;*0} = PBerv{Ei‘t,J} [Ql(XLO) =0, I} = {io}, I, = 7;70}

(2.46)
< PBer,{éi,t,j} [Ql(XLO> = i0:| (247)
N 1)
< Poerfeso) [AX) 2 1] T (248)
thanks to Eq. 2.41. This is not possible therefore by contradiction we have the result. O

Lem. 7 shows that there exists a instance of the problem studied in this paper where it is not possible to retrieve
systematically the K actions maximiziing the reward (7; ;)i<x,). Therefore defining the regret with respect to the
true top K actions.

2.A.2 Noise Correlation Issue

The standard result on GLM are based theorems with the same structure as the following proposition (Filippi et al.,
2010):

Proposition 1. Let (Fi)r>o be a filtration, (my.)r>0 be an R%-valued stochastic process adapted to (Fi)k, (Mk)k
be a real-valued martingale difference process adapted to (Fy)r. Assume that ny, is conditionnally sub-Gaussian in
the sense that there exists some R > 0 such that for any v >0, k > 1,

’72R2
E(exp(ynk) | Fr—1) < exp (5) a.s (2.49)

Consider the martingale £ = 2221 my_1M, and the process M; = 2221 mpy_1m],_,. Assume that with probability
one the smallest of My is lower bounded by some positive constant \g and that ||my|2 < c,, holds a.s. for any
k > 0. The following hold true: Let

k= /3 + 2log(1 +2¢2, /o)
For anyz € RY, 0 < § < e™!, t > max(d,2), with probability at least 1 — §,
[(z, &) < KRy/21og(t) log(1/9)[|x||as, (2.50)

Further, for any 0 < § < min{l,d/e}, t > max{ d, 2}, with probability at least 1 — ¢,

€]l ar-1 < wR+/2d1og(t) log(d/3) (2.51)

In our setting, we can not use the type of results presented above because estimators like ridge regression or
maximum likelihood estimation rely on the assumption that the noise associated to the data is zero-mean. However,
in our setting the learner'® takes a decision .A; based on the noisy evaluations (¢i,t); and this introduces a statistical
dependence that biases the distribution of the noise affecting the evaluations. For simplicity, assume K = 1 then
the action a, is a function of the noise in the observations (¢;) and, in general, we have that E (e, ;) # 0 for
all evaluators j < J (where (€; ;) is the noise in the evaluation f;, ;) although for any fixed non random action
a S Kt, E(Ea,t,j) =0.

More formally, let consider the GLM setting of Sec. 2.1.3 assuming K = 1 and a MLE estimator using all
the data H; := {(fa,,t,j)jTa,t } to estimate the parameter c. Let also assume that the action a; is chosen as
a; = arg max;(wy, ¢; ;) where for any ¢, w, is a vector adapted to the o-algebra o(?{;_1). For each evaluator j we
compute the MLE, aj as the solution to

t—1

Z(fatytyj - g(ajrit,t))rit,t =0 (252)

=1

18Notice that the following discussion holds also for any non-learning algorithm, e.g., an oracle algorithm.

43

with a; is the arm selected by the algorithm and r,, ; is the associated reward observed at the end of the round. In
order to evaluate the accuracy of this estimator @;, following the proof of Filippi et al. (2010) or Li et al. (2017), we
eventually need to control the term

t
i Panian)

)
Ay 2
Zl:l Tal,l

where €, 1 ; is the noise associated with the evaluation j for arm a; at round I. One may be tempted to apply Prop. 1
with my_1 = 74, ¢ and 1, = €4,,;. The issue is that a; = argmax&wtfl,g*l(d)z‘,t)) where w; is a measurable
function for of the past (in addition, note that this action selection process is used in most optimistic algorithms for
GLM). As a result,

(2.53)

E (€ap,t,5 | Hi-1, (rit)i<k,) # 0, (2.54)

(2.54) can be further simplified when g is the identity function, J = 1, a; = 0, 0; = ¢ and w; # 0 then (2.54)
reduces to

E (eat,t,j ‘ Ht—la (Ti,t)igKt) =E (ei,tﬂ{i:argmaxwtei,t} | Ht—l) ~ 0o, (255)

thus showing that €4, ; is no longer a zero-mean variable. A way to address this issue would be to take a union
bound over all the arms chosen over time aq,...,a¢,...,ar. Unfortunately, this would lead to take a union bound
over KT elements, which would eventually lead to an additional v/T factor in Prop 1 and ultimately a linear regret
bound. We further confirm this effect in several empirical validations, where algorithms relying on data generated
based on the evaluations introduce a bias in the estimation of the parameters a.

2.A.3 Generalized Linear Model

In this subsection, we present how to defined the oracle and the analysis of the regret in the case of a GLM model.

2.A.3.1 Oracle in the GLM Model (Proof of Lemma 1)

We consider an oracle O with access to the link function g, the parameters (¢;);<s of the evaluation function,
and the parameters (o) <. of the noise distribution. Given the vector ¢;; € R’ obtained by aggregating all the
evaluations (f;+.); for each arm i < K, we recall that an oracle defines a set of weights (w;);<; and predicts the
reward of arm ¢ as

O -1
rie = (w, 9" (iz)) (2.56)
We aim at minimizing the gap between reward of the true top-K arms 7, ..., i} and the reward of the estimated
top-K arms i, ..., i% according to the estimated rewards rf?t

K K
(@)=Y rize—D rios (257)
=1 =1

By leveraging the definition of estimated top-K arms, we can rewrite the previous expression as

K K K K K K
~0 ~0 ~0 ~0
(a) = E Tirt — E :n;,ﬁ E TR E :Tz‘f,t—’_ E :ﬁlﬂ,t - E :Tz’;’,t
=1 =1 =1 =1 =1 =1

l_
K K K K
~O ~O
< § :rzl*,t - Tzl*,t+ § :Tilo,f - E :rzf,t
=1 =1 =1 =1
K K
= E (Tzl*,t r1;7t> —+ E (rzlg T t)
=1 =1
K
~0
< 2 max g Tit— m,t’ .
11, 'ﬂKl 1
=1 ——

44

Using the GLM model of Asm. 4, we have that for any i = 1,..., K;, the estimated reward can be written as

T = Zwag Y9l - rie) + i) - (2.58)
We can then measure the deviation between true reward and estimated reward as

J
= ij [9_1 (g(aj - rie) +€ing) — 97" (gl (ovjrie] (Z Wit —)Tiyt (2.59)
j=1

J J
et Y lwy - leis] + (Z wja; — 1)7"“,, (2.60)
Jj=1 Jj=1

where in the first equality we introduce the term Z _, wijoy = Zfil wjg~ (g(ajr;it)) and in the second step we
-1

leverage the fact that ¢! is ¢, '-Lipschitz. The last expression above contains two random realizations, i.e., € ;
and 7, thus preventing from computing a fixed set of weights to minimize the performance gap (a). Furthermore,
while we assume the oracle to have prior knowledge about the parameters, we would like to avoid leveraging any
knowledge on the true rewards (r;). In order to remove any dependency on the rewards, we impose a constrain
on the weights, such that Z _; wja; = 1, thus removing the last term, and thus the rewards, in the previous
expression. We can then focus on minimizing a high-probability upper bound of (a)

(@) <26 “maXKZZ w1 e

=1 j5=1

(2.61)

where we leverage the fact that the noise €;; ; are sub-Gaussian then E(|est,5]) is also sub-Gaussian with

the same parameter and by Jansen inequality its mean is E(|¢;; ;|) < ,/E(€;1) = 0;. Therefore for any time ¢ and

any set U C {1,---, K.} of size K , we have by Chernoff inequality, for any z > 0

J
PO wjews;

uelU j=1

$2
E(lwjeusil)| = 2 | < 2exp <— 5) (2.62)
2K Zj:1(w.7"7j)2

Therefore we have taking a union over all the set of size K,

maX ZZ (wj€i el — B(lwj€i z]) Z P Z Z lwjeut,;| — E(lwj€ue;l) > =] (2.63)

K= 15=1 U,\U| K uelU j=1
22
Z 2 exp (—J (2.64)
U,|UI=K 22j:1(wj‘7j)2

- 2(?) exp (T «” (wm)2> (2.65)

Therefore for any ¢ € (0,1) we have that with probability at least 1 — §:

2(%) - 2 K
 max ZZW il = Bl - leses]) < K 2Zwm ! Zwm In (22)

,,,,,
e —

(2.66)

using the standard inequality () < (er) and K; < Kpax. Therefore,

2K K 2K § K
(a) <— KZw azln(te) Z\wﬂojﬁcf KZw 02111(o2 e)—FC
9

(2.67)

Finally, this leads to the optimization problem in Eq. 2.7. By plugging the optimal solution back into the optimization
problem, we also obtain the stated upper bound on the suboptimality gap.

45

2.A.3.2 Regret of e-greedy Algorithm for GLM Model (Proof of Thm. 1)

We now move on proving the regret upper bound of Thm. 1. The first step is to bound the norm of the noisy
evaluations at every step. That is the object of the following lemma.

Lemma 8. Let ¢, = (fi,t71, vy fitge s firg) € R the vector summarizing all the evaluations observed at round
t. Then for any § € (0,1) with probability 1 — & for any t < T, for any set A; of K arms chosen in {1, ..., Kiax}
possibly adaptive to the evaluations, it holds that

2eK T
1> diall, < @ = 2K 0] <2ﬁ+ \/Kln (6K"3>> + 2K J|lg|o

€A

where [|0||cc = max;<jo; and ||glloc = max;< ;. efo,c9(a;z)]

Proof. For a time t < T and set of size K A; C {1,---,K;} and an evaluator j < J the sum of features can be
decomposed as,

<Z ¢i,t,j> = (Z glayrie) + Z 6i,t,j> <2 (Z g(aj?”i,t)> +2 (Z 6i,t,j> (2.68)

i€EA, 1€AL i€AL 1€AL i€A,;

2
< 2K?g|5 +2 (Z Gi,t7j> (2.69)

€A,

Therefore, we just need to bound || ZieAt GithQ to finish the proof. But thanks to the subGaussian assumption on

the noise ¢, we have that:
<4K, |Jmaxo? + 2K maxcj4[log ! (2.70)
- j<7 7 g<g !) '
2

because the vector Zz‘eA, €;,t is K max; o; sub-Gaussian. The last step is to take a union bound over steps t < T'
and subset of size K. O

E €it

€A

The first step to analyze the regret of Alg. 1 is to decompose the regret according to the steps where the algorithm
selected a totally random set of arms or when it played greedy. Noting, as in Alg. 1, Z; the Bernoulli random variable
used by the algorithm to distinguish between exploratory and exploitative steps, the regret is

T T
R = ZZt(w+, Z e, — Z ¢i,t>+z (1= Z)(Z it — Z i) (2.71)
t=1 1

igA:r €A t= 1eA+ €A

:=Rrp1 =Rr,2

In the following, we bound each term Rt and Rr .

Bounding Ry ;. The term we analyze is the regret due to the random steps in the algorithm. Centering the variable
Zy we get that 7 scales as:

T T
Rry = Z (Zy —€) Z Dt Z Git) + €Z<w+a Z Ot — Z i)

t=1 ieAf 1€A; t=1 i€ A €A
T

<D G, D7 b= D dia) +eTlwt I] 32 duelly + [Y duell, (272)
t=1 icAf 1€A i€ AF 1€A;
T

<Y (Zi—)wh, Y bri— Y dia) + 20T |[w?|

~
_

'LG.A+ 1€A,L

46

thanks to Lemma 8. Now, the first term can be bounded thanks to a standard Azuma-Hoeffding inequality as for
every time t < T, Z, is independent from the evaluations (¢;,); and the set of arms A; hence considering the
filtration (F): being the history up until time ¢, we have,

T
Ve<T, N (Zi—)w™, > ¢ri— Y di)| < 40wt /2T <4§) w.p at least 1 — §/2 (2.73)
t=1 €A

i€ Af

Putting everything toghether we have that for any § € (0, 1),

Ry < 49||w™|| (2T In <4§> +eT> (2.74)
with probability at least 1 — §/2.

Bounding 7. Next, we bound the regret coming due to the estimation error in the exploitative steps, that is to
say when Z; = 0. We begin by using the greedy behavior of the algorithm to enough to study the error ||w; — w||
to bound Ry 2,

T
Rro <Y (1=2) [(wh —wy, D ia) + (we, D bie— Y dia) + (we —w, D" i) (2.75)
t=1

icAf icAf i€A, i€ A,
But because A; is the maximizer of the estimated reward with respect to w; we have that
(1-2) <7~Ut7 TEDY ¢7i,t> <0. (2.76)
i€ A i€ A,

Furthermore, using Lemma 8 we have that with probability at least 1 — §/4

max <w+ — wy, Z ¢i,t> , <wt —w™, Z ¢i7t> < Oflwt — w2 (2.77)

icAf i€A;

As a result, the remaining step to obtain a bound on the regret is to build a concentration inequality for the
weights w; w.r.t. wT and properly tune the exploration factor €.

We start by studying the concentration of the MLE estimator @; € R’ to the true parameter o € R’. Thanks to
the random choice of A4; in the explorative steps, all the data in H; are i.i.d. and we can directly apply the standard
concentration inequality for MLE in GLM (Li et al., 2017).

Lemma 9. For any § € (0,1) with probability at least 1 — /8 for all j < J andt < T':

N ﬁ”a”—i—aj\/% log (1 + 2L) + log (84F)

@ — ay] < By = :
Cg \/21,21:1 Diea, T

(2.78)

In other words,

VAllal| + o]/ $ log (1 + ZE) + log (35F)

Cg\/Zl,Z,:l DicA, Tli

We leverage Lem. 9 to concentrate |w* — w; ||. But first, recall that w; is given by:

(2.79)

||at - OérHOO < B o= mjaxﬁt,j =

-1 -~ -1

o -y I o«
wg=———-—=andw" = ——
" lo a3 o=t a3

47

where ¥ = diag(cy,- -+ ,07). Therefore, the error between wt and wy can be written as:

-2 ~
T (ay — «) 2 1 3 1 2 80
o=t = | TE S o (|01 S - e (2.80)
1 1 o 2. (ay — a)
<l|lo2- - —_— 2.81
| o (mrmr - T omr |, (281
Proposition 2. For any time t < T, assuming that ||a; — alleo < B: and |||l > 86; then:
J o1
o2 @ —a)lp MY Zimor ([> 62)
=~ ~ = - t .
(Qr, 072 - ay) > O‘fﬂﬁ“z@iﬂt} o=t - alyja>sp,3 2
Proof. Using the definition of o~2- we have,
lo™2- (@ —a)ll2 _ ' (2.83)
(Qy, 072 Q) g az, :
’ Zr:l ;7?1
However, we have that for any j < .J:
arj = af + (A — ;) +2 (@ —) a; > o +2(@r; — aj)
> a? — 2B¢|a;]
a?
> Ej when || > 86,
using that ||@; — @]|eo < B:. In addition, using again that ||a; — &f|eo < Bt
J ~ N2 J 2
(at,JU4 ;) < Z % (2.84)
j=1 J j=1"1J
O

Using the same reasonning as in Prop. 2, we can show the following which bound the second term in (2.80).

Proposition 3. For any time t < T, assuming that ||a; — alleo < B: and |||l > 86; then:

lo™ -al — o™t -a@)?) o2«
lo=t - @ lo=t - o2

Therefore, using Prop. 2 and Prop. 3 on the event that the confidence intervals in Lem. 9 holds then with
probability at least 1 — §/4:

4 o2 alls+ Belle™2|) o2« -1 2
||wt _ w+||2 S /8t (H_l ||2 ﬁtH 5 ||z]” 5 H + 4/8f < — ||J ||4) (286)
lo=t - aljalzss,y [2lo 71 - afl o=t alga=ss. 2

4By (o2 - alla + Bello™2l) o2 - o
o=t alyqja)=spy [P0t - of?

(2.85)

In order to complete the proof of the regret upper bound, we need to control how fast the confidence intervals
width (3; decreases with ¢.

Lemma 10. For any 6 € (0,1) and A > 0 we have with probability at least 1 — /4,

2C41n (&2 o]looy/In (1 + 2F) +In (32L) + VAo
vte{cn(é)w’T}’ﬂtS yin (14) +1n (552)

K2t
! cg\/etKn?, — C2,/2tIn (81)

where for all j < J, n2 = E,,(r?)

48

Proof. First, thanks to a standard Hoeffding inequality we have that with probability at least 1 — §/4,

8T

Vi< T § § 2 _R E: §:2. <C?% /2tln | —

= & . Tl,z ' rl,z —C n 5
I<t,Z;=1i€A; I<t,Z;=1i€A;

And E (Zlgt,z,,:l Yiea, r?z) = etKn? where 2 := E,..,(r?). Therefore, using the definition of 3;

oo/t (1 + 2E) + I (552) + VX

t < (2.88)
cg\/etKnﬁ —C2%,/2tln (8F)
O
8111(%)04 1 . . -
As a consequence, for t > 179 :i= —~4, 5 < O (—) Therefore, using Lem. 10 with probability at least
) Vel
1—0/4:
2T 8TJ
ZT: < ZT: V2lolloer/ln (1 4+ 2E) +1n (32) + VAo
t=ro+1 t=ro+1 co/ etKmy (2.89)
3V2T o 2T 8T J
< 3v2Tllolloe In (1+) +1In () +VA|lal|
cg\/ eKN? A 0
We can finally bound Ry 1 with probability at least 1 — §/2 by:
24D/ 2T |0 | o 2T 8TJ o2 allg+ e |le2 - «
Ry <7+ —”UH In (1 +) +1In () + \/XHaH (H — I+ | !) H71 2“
cg\/ €eKn? A 4 o=t alyjazsp,3*llo~" - af (2.90)

_ 2
+< o= lla)
o=t alfja>s88,} 2

where 7 := max

128 |0]| oo (In(14 2L) +1n (8L))+ Al|af|? 8In(3L)C*
min; |a,[2eKn? ’ (EK??L2,>2
Finally, the regret is bounded with probability at least 1 — § by:

e 10 (o (A1) w) max{mllauoo (10 (1+2) 4 1n (552)) 4 Afol* 81n () 04}

“ o=t 5 ming.a, 20 ;|2 Kn ’ (5Kn5)2

-2 -2 -2 _ 2
249~/2T oo 2T 8T J o “-all2+ o o« 1
L 2AeV2T ol \/m (1+—)+1n (4>+\5||a” (I 7‘1|2 |2‘ J) I 2 I +< il)
cor/ K2 X 5 fo a2l ol o a2
(2.91)
Remark. Compared to the bound reported in Thm. 1, we corrected an error in the analysis which removed

the dependency on the norm ||g|lco and replaceed it with the upper bound on the distribution of the reward C.
In addition, here we report a bound depends on min;< j ;0 |04]-|2 however because of the condition]l{|o¢j|28ﬁt} it
is possible to present a regret upper bound that scales inversly with max; |c;| but at the cost of a much bigger
problem-dependent quantity S. Fortunately, the difference between the bound report in Thm 1 and the one in (2.91)
has no impact on the discussion around the depency on J. Simplifying the bound in (2.91), we get that the regret
is bounded with high probability by,

. 14+ VT Tlalhd 4
Ry < 0723 LAY Hal)®Slolloe o T Il N c i (2.02)
cgVKn, ming o, 20 [2K05 " (Kn2)

—2, -2 -2, -1 2
when choosing € = 7, A = J ! and setting S := (lo=2-all2+llo =2) lo—2-all + (o s) _

lo=t-al?llo=t-af? o=l

49

2.A.4 Linear Model

In this subsection, we show how the definition of the oracle changes with the linear setting and the proof of Thm. 2,
that is to the regret of Alg. 2

2.A.4.1 Oracle in the Linear Model (Proof of Lem. 2)

Just as in Section 2.A.3.1, we consider an oracle that has access to the parameters () < but also knows the noise
(0j)j<s for each evaluation functions. Given a vector of evalutations ¢;; for some ¢ < T and ¢ < K, an orcale
is defined through a set of weights (w;),<s and predicts the reward, rg?t = (w, ¢;¢). Following the reasonning in

Section 2.A.3.1, the difference between the true top-K arms, if, cee ,i}, and the top K according to the oracle,
iy, ,i’f(is bounbed by
ZT” oy < ler’na,)fKZV”t Tirt| (2.93)

Again following the same reasonning as in App. 2.A.3.1, the difference between the estimated reward and the actual
reward for any arm ¢ < K, is bounded by

J J J J
|Ti,t — ﬁ?t‘ S Tit ijaj —1 + ijqm S C ijOéj -1 + ijei,t,j (294)
j=1 j=1 j=1 j=1

The main difference compared to the proof of Lem. 1 is that thanks to the linear strucutre contorlling the noise can
be done direclty without usingany Lipschitz property. Therefore, in order to remove the dependency on the reward,
we focus on weights w such that (w, «) = 1. Hence using Chernoff inequality the error is bounded for any 6 € (0,1)

by

J

rie —r| < 2K K2w§a§ In (K"(‘;‘Xe) (2.95)

j=1
with probability at least 1 — §. This conlcudes the proof of Lem. 1
2.A.4.2 Regret of ESAG (Proof of Thm. 2)

The first step to analyze the regret of Alg. 2 is to compute an upper bound on the deviation of the estimator a;.

Lemma 11. For any § € (0,1) and t < T, the error between & and K., (1)« is bounded with probability at least

1—48/4 by,
Cy/21n (1821 4 2|0 |00 1/In (BLL
Ernu(r)al < B = &) 1 HolleeV T) (2.96)

\/ZE K \/ZE K Vit K

Ky
Proof. For any t < T, a; = M but using the strucuture of the evaluations ¢; ; for every j < J,

l

le =

=1
t—1 K t—1 K,
Qij = ——71— (ZZa]nl—i-ZZe”j) (2.97)
1= 1Kl =1 i=1 =1 i=1

But the first term converges toward o, () because at every time step the reward are independtly sampled from
the distribution v (see Assumption 2). More precisely, with probability at least 1 — §/8, for any ¢ < T and j < J

t—1 K, C./21n (18T
t_ll Z Z 1,1 ETNV(T) < D (298)
Zl:l K =1 i=1 \/H

50

In addition, the second term in Eq. (2.97) can be bounded with probability at least 1 — §/8 by

t—1 K 4\/Jmaxj O'J Zl 1 K+ 2\/maxj 0] Zl 1K In (%)
t— 1K ZZEZZ - t— 1K
=1 =1 i=1 1=1 "
o (2.99)
AoV . 2[|o]|ooy/In (¥57)
t—1 t—1
=1 K 1=1 K
Finally, to finish the proof, we simply need to note that
a t—1 K, 1 t—1 K;
I8 = Epm(r)al] < || e DD i = 0Bes ()| + | S €3 (2.100)
=1 =1 i=1 1=1 B =1 i=1
t—1 K, 2| || In (w)
Aol VT > 5
< el ’ SEr DO rin = Eru(‘ I — (2.101)
duo Kiimim -1 K -1 Ki
O

Once ESAG has computed the weigths @; it then computes a set of weights thanks to this estimator and based
on the shape of the optimal weigths of the oracle. That is to say the weights w used by the algorithm are:

72) o~
i (2.102)

Wt = 7——7 <19
" lot a3

The optimal weights for the parameter E,., (1)« is IE (3 Therefore, in the following we bound the error between
the weights w; and the rescaled optimal weights ﬁ Following the same reasonning as in Prop. 2 and Prop. 3,
we can show the following proposition

Proposition 4. For any t < T let's assume E,..,(7)|allcc > 88F with Bl defined in Eq. (2.97). Then for any
0 € (0,1) with probability at least 1 — /4

2

' o W8E (Brao 0™ - allo + BENl0?N) o™ -0ll | apf lo ™"
o Brew(r)?llo=? 'aﬂ{ﬂir,\,y(r)\a|28ﬂf‘}||2H0-71 a2 Erau(r)?

Thanks to Lemma 11 and Prop. 4, we can now analyze the regret of ESAG. Recall the regret is defined as

follows,

wT

Epnw(r)

we —

lo=t-alig, , (r)jal>spLyll2
(2.103)

Rr = Z > wh i) = Y (wh diy) (2.104)

t=1 Z€A+ €A

where A = arg maxX (wt, ¢; ;) and A; is the set of jobs selected by the learner at time ¢.
However, the set A;" is only defined as the arg max of some values, it is invariant by multiplicating the weights

w™T by some constant independent of the arms. In particular, we have that for any time ¢t < T

+
.Aj = arg m{;X <u)‘*‘7 ¢it) = arg mﬁx <E v) , &; t> (2.105)

o (T

Hence the regret can rewritten as,

RT:ZETNV(T) Z <E:i}:(r)’¢i‘t>_ Z <E::}:(r)7¢zt>
t=1 icAf €A
T
= ZETNU(T) Z <Ew+(r) —wt,¢i,t> + Z (we, Pi) — Z (we, i) + Z < (T)7¢i,t>
t=1 'L'E.A;r v iG.Aj 1€AL i€AL Erno

51

But for any ¢t < T', because of the greedy arm selection process of ESAG:

Z (Wi, die) — Z (wi, gi) <0 (2.106)

iEA;r €A

But using Lem. 8 with probability at least 1 — §/4

+
max <Er~y Wt, Z ¢z t> < Z o} t> < CI)]ET,:Uiy(T) —wt||2. (2107)

icAf Eru(1€ A,

Thanks to Lem.11 and that for all t < T, K; > K therefore for

16JT 8JT 64
> = -1 2 < 5
t>to:=1+4K (C 1n< 5)Hlalm <4J+ln(g >)> aX{Er~u(r)2minj7aj¢0a?’l}

+

(2.108)

w
— Wy

ABF (Brm(P)|lo™2 - alla + o 2[) lo=2 -l 48F lo a1\
Epy(7) |

< +
Ernu(r)?llo=t - all?llo=t - af? Ervn(r)? \llo=" - all2

But using the definition of 8}:

T
16JT 8TJ
> Bl < (C\/ﬂiJrﬁlllallooer?IIUIIoo\/ln)
5 tfl
t=to+1 t=to+1 =1 Kl

< (q/@ +4||o||ooﬁ+2||a||oo\/m(87§‘])> \/? (2109)
< (c an (165”) +4||a||oof+2||a||oo\/1n (8?])) \/TLI;(TT)

is the average number of arms presented over the T steps, K1+ > K. Therefore the

where Kp :=

T
POHRES =
t=tg thl

Ky

=1
regret is bounded with probability at least 1 — ¢

R < 2 1+ 212 64 19 16LS® {1 1 } T In(T)
T E— —— max , ———max«< 1, =
"= 1 af K E,y (r)2 ming o, 2o a2 Eyu(r) Epu(r) Ko

(2.110)

2, o1 2
where S = (Jla- o2 +]~ 2) =it + () and £ = Cy/21n (S55) 48 oo/ T4 0oc 1 (557)

2.A.5 Regret Analysis

In Section 2.3.1, the regret has been defined as the difference between the top-K arms according to the oracle and
the K arms selected by a learner, see (2.10). However one may argue that a more interesting notion of regret is to
compare the actions of the oracle to the action of the learner with respect to the true reward of each arm. That is
to say, to define the notion of absolute regret,

T
R =" riz— > ris (2.111)

t=1jeAf i€A;

The two notions of regret, that is to say the relative and absolute regret are related,

Ry — R = Z >t g7 (i) =g M gla i) = Y (W g (ia) —g Mglarin)) (2.112)

t=1 Z€A+ €A

52

However controlling the deviation here is not possible through standard concentration inequalities. Indeed the set
of arms, A is computed by taking the argmax over the noise therefore (eiﬂt)ieA:r are not centered anymore, see
App. 2.A.2. Nonetheless, one can still provide some guarantees on the regret R}bs.

Theorem 5. For every t < T let (¢(;),+)i<k, be the ordered set of arms with respect to the oracle O, that is to
say (w*, g7 (dr,1))) = (W, g7 (dr2))) > -.. = (w*, 9 (¢, (k,))) let’s now define the gap between the top-K
according the oracle and the rest of the arms, Ay i = (w™, g*1(¢(K),t) — g’1(¢>(K+1)7t)>. For any weights w € RY

such that:
Ay g

4
Then the top-K arms, A := argmax’ (w, $;) is exactly the ranking of the oracle, that is to say A = A} .

Vi < K, (Wt —w, g7 (b)) | < (2.113)

Proof. For an arm i € A,

(67 (60)) 2 (', g™ (8000) — 285 > (g™ sy 1)) —
> (g™ G) +
> (w9~ Qe) + 2 > (g™ Benye)
Therefore A" C A. On the other hand for any i ¢ A;", we have that:
(g™ (B10)) < (0%, 9™ Buaean) + 225 < (', g By) - S
< (we, g7 (Dr)) — % < A{we, g7 (b(x0)0))
Therefore, the set A" C A but because both are of size K, we have that A = A;". O

The main implication of Thm. 5 is that we can now provide a bound on the absolute regret of GLM-¢-GREEDY.

TNED) > 2 | 32(ﬁ|\a\|+|\o\|m (ln(1+¥)+ln(¥))) 2

2
Indeed, thanks to the bound of Lem. 9, for ¢ > max (20 R

eKn?2 ming<p AE’K !

the error between the estimated weights w; and the optimal oracle weights w™ is bounded by A; /4, therefore the
absolute regret of Alg. 1 is bounded by

2 2
2C2%,/21n (8 32 (VA|le|| + [|o]leo (4/In (14 2E) +1n (8L
R < C'max &) ((Vin (2 +1n () (2.114)

) : 2
eKn? eKnZ ming<r A7

4P 4T
_ 2T In [— T 2.11
%ww04n< “<5)+5> (2119)

} yields an absolute regret of:

hoosin = min {73 min Az 1
C 00s g € ’ t<T t,K> \/Tminth At,K

) .) . 4
mins<r Ay g ming<rp At)K

. Therefore, when min;<7 Ay > T—1/6 the absolute regret and relative regret of Alg. 1 scales similarly with a
relative and absolute regret of order O(T?/3).

2.A.6 Additional Experiments

In this subsection, we present in details the algorithms used in Sec. 4.1.5, the experimental protocol and additionnal
experimental results.

53

Algorithm 5: GLM-e-GREEDY-ALL SAMPLES algorithm

Input: Noise parameters {0, };<, confidence level §

Parameters: exploration level £; number of arms to pull K; regularization A

Set Ho =0, @ =0 and wg =0

fort=1,...,7 do

Sample Z; ~ Ber (¢)

Observe evaluations for each arm (¢; +)i<k,

if Z, =1 then
Pull arms in A; obtained by sampling K arms uniformly in {1,..., K;}
Observe rewards r; ; for all 7 € A

else

‘ Select A; = argmax’ (we, g7 (¢it))
Add sample to dataset H; = Hi—1 U (UieAt {(¢s1, Ti,t)})
Update estimators a;,+ by solving

> (9@ 1) = ¢5) = A =0 (2.116)
b, rEH
71”2

Update weights w; ; = av,;/(03) ||t - o

2.A.6.1 Baseline Algorithms
In Sec. 4.1.5, we compare our algorithms, GLM-¢-GREEDY (Alg. 1) and ESAG (Alg. 2), to different baselines.

GLM-c-greedy-ALL (Alg. 5). This algorithm is the s Alg. 1 and illustrate the problem with the noise correlation
of App. 2.A.2. This algorithm thus updates its own MLE estimator at every time step instead of step with a random
exploration.

GLM-EvalBasedUCB (Alg. 6). This algorithm does not rely on an e-greedy type of exploration but on an optimistic
approach. Similar to other algorithms, it first computes an MLE estimator of « using all samples collected over time.
Then it build a “confidence” set around the estimated @ and it computes weights w; as those resulting from a
worst-case choice of a parameter & in terms of error. Notice that the confidence sets are not theoretically justified
because they are designed by ignoring the correlation between decisions and evaluations. As such, this algorithm has
not theoretical guarantee and it should be considered as a heuristic. We provide further details in Sect. 2.A.6.2.

RAND (Alg. 7). This baseline algorithm is simply selecting one random evaluators every step and computing a
ranking of the arms based on this random evaluators.

GLM-Greedy. This algorithm is a variant of GLM-e-GREEDY-ALL with ¢ = 0.

2.A.6.2 Derivation of GLM-EvalBasedUCB

Here, we breifly present how we derive the GLM-EVALBASEDUCB algorithm. This algorithm takes a optimistic
approach w.r.t. the set of plausible a values and compute a set of weights w; as the set of oracle weights but for a
different value of a. The first step is to compute an estimator a; such that:

&t:ar

J
oy max min E w?a?- (2.118)
zERY:||&y —z|| <BF weR (w,z)=1 =

where BF is the width of the confidence intervals defined in Eq. (2.96) Solving the minimization problem in the
previous equation implies that a; is solution to the following equivalent optimization problem,

. —1 2 . —1 N E 2
min 0" -z||3= min |[c7" - (&t + B u 2.119
il = i o 5] (2119)

Z;ﬁ;; ZieAl g (di)
EZ: EieAl Tl

using KKT conditions, we distinguish two different situations:

with a; = the average features observed until time ¢. Eq. (2.119) is a convex problem and

54

Algorithm 6: GLM-EvALBASEDUCB algorithm

Input: Noise parameters {0, };<, confidence level §
Set Ho=0, a =0 and wo =0

fort=1,...,7T do

Observe evaluations for each arm (¢;,1)i<k,

Dot Yiea ¥ G0
= a
D Diea, i

nd

Compute a; =

24/271n(2/5) 7
, DI Ju- KRS o2 /)
B = 1 (2.117)
1=1 ZiEAf, Tl

if |aell2 < B then

&

—2
. o2,
‘ Compute weights w; = To=Ta: 2
else
- 2
. J at g _ 1
Compute A; > 0 solving Z]’:l,aj>0 <At‘7]2-+<5¢E>2> =52

Compute a; = (IJ - B? ()\JJ + (6?)20_2)_1 O'_2> ap and wy = 2ot
llo= a2
Select A; = argmax;* (w:, g~ ' (¢i,t)) and observe rewards r; ; for all i € A;

Algorithm 7: RAND algorithm

Parameters: number of arms to pull K
fort=1,...,7 do

Randomly select j < J

Observe evaluations for each arm (¢;+)i<k,

Select A; = argmax’ g~ (¢ie,;)

L. If [|&|| < BF then min;_4,|,<ge lo=t - z||3 = 0 thus the problem is ill-defined and the weights are also not
defined (A necessary condition for this condition to be fulfilled is that ||a|| < BE (1 + /1 + (8F)2))

2. If ||| > BF then the solution is such that u = —BF (A1, + (6{5)2Diag(o_2))_1 0=2 . &; where A\, > 0 is
solution to'’:

J R 2
Qg _ 1 2120
2 (Ato—? ¥ wf)?) G (2:120)

Overall, a; is defined as:

~ . —o\\—1 _ A
a, = (JJ — (BE)2 (M, + (BF)?Diag(02)) ' o 2) ae, (2.121)
that is to say the weights used by the algorithm is w; = %
tll2

2.A.6.3 Additional Synthetic Experiments

We report here the regret and estimation bias for the in the logisitic and linear setting for the three different
regimes of (O‘T—g € {0.1,1,10} as reported in Section 4.1.5. For both the linear and logistic case we choose K =
10 and K; = 60. For GLM-e-GREEDY and GLM-e-GREEDY-ALL SAMPLES, we use different values of
e € {0.1T7~1/3,0.1T~/2}. The rewards are sampled from a centered unit variance normal distribution truncated
between [0, 20].

9A solution \; always exist when there is at least one evaluator j such that o; > 0 because the function f : A
. 2
Q5 ; ; N ; + _ — &L 112 /(BEV4 E\—2
Zj:l,aj>0 (A0?+(BtE)2) is strictly non-increasing over RT and for A 0, we have f(0) laz]|?/(B)* > (Bf)~2 and
limy_, 4 oo f(A) = 0 so by continuity there exists a unique solution A\; > 0.

55

-10¢

—e— GLM-EvVALBASEDUCB
—+— EXP.4P
—+— GLM-ESAG
—+— GLM-LINUCB
—+—RAND
—— GLM-£-GREEDY, ¢ = 0.02
GLM-&-GREEDY, ¢ = 0.003
—e— GLM-s-GREEDY ALL SAMPLES, £ = 0.02
~#— GLM-e-GREEDY ALL SAMPLES, ¢ = 0.003
-&—- GLM-GREEDY

/

0 0.2 0.4 0.6 0.8 1
-10°

Figure 2.A.1: g—g =0.1

6 -
-10¢ 105
5

—o— GLM-EvALBASEDUCB 6
—+— EXP.4P

—— GLM-ESAG

—+— GLM-LINUCB

——RAND 47
GLM-e-GREEDY, € = 0.003

GLM-e-GREEDY, ¢ = 0.02

—e— GLM-e-GREEDY ALL SAMPLES, € = 0.02

~®— GLM-¢-GREEDY ALL SAMPLES, ¢ = 0.0032
—&- GLM-GREEDY

e ———

0% T T
0 0.2 0.4 0.6

T
0.8 1 0.2 0.4 0.6 0.8 1
.10° -10°

Figure 2.A.2: 3—3 =1

-106 -10%

—e— GLM-EvALBASEDUCB 27

—+— EXP.4P

—»— GLM-ESAG

—— GLM-LINUCB : 0.6

—4+—- RAND

—— GLM-&-GREEDY, £ = (.02 14
GLM-£-GREEDY, ¢ = 0.003 0.4

—o— GLM-e-GREEDY ALL SAMPLES, € = 0.02

~#— GLM-e-GREEDY ALL SAMPLES, £ = 0.003).5 | 0.2 4

-8 GLM-GREEDY

0.8

0 Fo—p—o—tr—t—p—p—p—f 0 5 5 = =

.10° -10°

Figure 2.A.3: 3—8 =10

Figure 2.A.4: Regret (Left) and zoomed in regret (Right, removing RAND and EXP4.P algorithms) wrt to the
oracle O in Section 2.1.3 for different values of oL

Logistic and Linear Experiments. As highlighted in Section 4.1.5, for a small ratio j’;—g the algorithms GLM-e-
GREEDY-ALL SAMPLES or GLM-EVALBASEDUCB that use all samples suffer from a linear regret compared to
our algorithm Alg. 1 for e = O(T~'/?). In addition, we observe that as the ratio o increases the correlation effect

highlighted in App. 2.A.2 becomes less and less relevant and GLM-EVALBASEDUCB performs particularly well.

2.A.6.4 Second Content Review Prioritization Dataset.

In order to validate our observations of Section 4.1.5 on the content review proritization dataset, we consider a second
small dataset (D2) of content similar to the one used in Section 4.1.5. Table 2 sums up the cumulative reward of
each algorithms at 7' = 2000 steps selecting K = 10 out of K; = 200 arms. Similarly to Table 1 linear algorithms
performs best compared to the logistic algorithms with the same three algorithms getting the best performance.

56

—e— GLM-EvALBASEDUCB
—»— GLM-ESAG
—— GLM-e-GREEDY, ¢ = 0.02
GLM-e-GREEDY, & = 0.003
—o— GLM-e-GREEDY ALL SAMPLES, € = 0.02

—o— GLM-e-GREEDY ALL SAMPLES, £ = 0.003
-8- GLM-GREEDY L

0.5
0 T T T T
0 0.2 0.4 0.6 0.8 1
105
Figure 2.A.5: 22 = (.1
oo
‘B
—o— GLM-EvALBASEDUCB 3.5
—— GLM-ESAG |
—— GLM-e-GREEDY, ¢ = 0.003
GLM-e-GREEDY, ¢ = 0.02 31
—o— GLM-e-GREEDY ALL SAMPLES, € = 0.02
~o— GLM-e-GREEDY ALL SAMPLES, ¢ = 0.0032
- GLM-GREEDY 2.5
2 T T T T
0 0.2 0.4 0.6 0.8 1
-10°
H .o
Figure 2.A.6: oy = 1
2.5
—o— GLM-EvALBASEDUCB 2
—»— GLM-ESAG
—— GLM-&-GREEDY, ¢ = 0.02 | 5
GLM-e-GREEDY, ¢ = 0.003 27
—o— GLM-&-GREEDY ALL SAMPLES, € = 0.02
=0— GLM-¢-GREEDY ALL SAMPLES, € = 0.003 1 |
-8~ GLM-GREEDY
0.5 1
0 \ \ \ \
0 0.2 0.4 0.6 0.8 1
-10°

Figure 2.A.7: g—g =10

Figure 2.A.8: Estimation error for the o parameters for different values of g—g

57

10t

------ EVALBASEDUCB 12 4 0.1
---ESAG | R e EvALBASEDUCB
—o— LINUCB woqf e EvALBASEDUCB | --- ESAG
--- ESAG 8-10 —e—LINUCB
8 —— LINUCB
6-1072
6
-------- 4-1072 4
........... 44
..... 2 2.1072
"""" ‘_-' , , , 0 .—.-.-I.-!ﬂnmr.v...'.-‘ﬂnnT.F.'.'I.'!F\HF.F‘.P.'.'I.'lﬂF\.I'\.F 0 ____‘ - ___‘
400 800 1200 1600 2000 0 500 1,000 1,500 2,000 0 500 1,000 1,500 2,000
Q0 — Q0 — @0 —
(a) 22 = 0.1 (b) 22 =1 (c) 22 =10

Figure 2.A.9: Regret w.r.t. to the oracle O in Section 2.1.4 for different values of <2

0
oo

Table 2.A.1: Cumulative badness on D2 for T = 2000 steps

l Alg. [Badness ‘
RAND 60025.8
GLM-e-GREEDY 105965.8
GLM-e-GREEDY-ALL 105499.1
GLM-EvALBASEDUCB 105545.4
GLM-LINUCB 60347.4
GLM-ESAG 106237.5
GLM-GREEDY 105264.3
Expr4.P 88979.4
EvAaLBASEDUCB 138230.1
LiNUCB 144009.4
ESAG 141172.1
GREEDY 106195.4

58

----- EvALBASEDUCB,, j—g =0.1 —o— EvALBASEDUCB, 2—2 =1 —+— EVALBASEDUCB, g—ﬁ =10
--- BSAG, 2 = 0.1 ——ESAG, & — | ‘ ——ESAG, 2 =10
0 0 . 10,2 | 0
0.3
2] - - - -
: : 61072
0.2
4-1072
1 -
0.1
L‘) 1072 L
U — D 0 — T 0 T T T T
0 0.2 04 06 08 1 0 02 04 06 08 1 0 0.2 04 06 08 1
108 -10° 105
Figure 2.A.10: Estimation Bias in the linear case. For ESAG, we compute the error ||&; — E,.p (r) ||
Table 2.A.2: Statistics about the evaluators. We Table 2.A.3: Average reward after T' = 6000 steps
report the R2 score of the evaluators w.r.t. the true in the Jester experiment averaged over 50 runs.
ratings. The column & is the maximum estimate
standard deviation.) Average Reward
Algorithm 1 T
T Zi:l i
algo R2 - EvALBASEDUCB 0.87
ESAG 0.86
r5-s18 0.864 0.115 LINUCB 0.85
dt-s50 0.448 0.174 GLM-EvALBASEDUCB 0.69
linear 0.348 0.167 GLM-GREEDY 0.69
adaboost 0.440 0.048 GLM-ESAGesaglogistic 0.69
mlp 0.917 0.110 GLM-&-GREEDY 0.69
rf 0.936 0.064 RAND 0.57
adaboost20-s60 0.309 0.086 GLM-LINUCB 0.51

2.A.6.5 Jester Experiments.

We consider the Jester dataset (Goldberg et al., 2001), which consists of joke ratings in a continuous range from
—10 to 10 for a total of 100 jokes and 73421 users. We consider the same set of users and jokes as in (Riquelme
et al., 2018). For a subset of 40 jokes and 19181 users rating all these 40 jokes, we build evaluators as follows. We
fit 7 contextual models to predict the ratings from features —obtained as concatenation of user and joke features—
extracted via a low-rank factorization of the full matrix (of dimension 36). Ratings are normalized and transformed
through the logarithmic function. We trained the following models:°

= rf5-s18: a random forest with 5 trees trained over 5 randomly selected features;

= dt-sb0: a decision tree with max depth 10 trained over 50 randomly selected features;

= linear: a linear model with intercept;

= adaboost: an implementation of AdaBoost.R2 with 20 trees;

= mlp: a neural network with two hidden layers ([512,128]) and ReLu activation;

= adaboost20-s60: AdaBoost.R2 with 20 trees trained over 60 randomly selected features.

We use the predictions of each model as inputs for our algorithms. As rewards, we use the real ratings and we add
to them zero-mean Gaussian noise (standard deviation is 0.5). The resulting problem is thus misspecified since the
evaluators are not perfect, as shown in Tab. 2.A.2.

We estimate the parameters of the algorithms by computing statistics about the relationship between true ratings
and predicted ones. For e-greedy, we use the value 7/3. From Tab. 2.A.3, we can see that linear algorithms
outperform the logistic algorithms. EVALBASEDUCB and ESAG behave similarly and perform better than LINUCB.

20\We used the implementations provided by scikit-learn (Pedregosa et al., 2011).

59

adaboost adaboost20-s60 dt-s50

mbinned means m= binned means m=binned means

0.0 02 04 0.6 08 10 00 0.2 04 0.6 08 Lo 0.0 0.2 04 0.6 08 L0

linear mip o
10
wm binned means 1.2 wemm binned means " binned means

00

0.0 02 04 0.6 08 10 00 0.2 04 0.6 08 Lo 0.0 0.2 04 0.6 08 L0

rf5-s18

m=binned means

0.0

00 0.2 04 0.6 08 Lo

Figure 2.A.11: We report the predictions of the evaluators as a function of the true ratings (for clarity we reported
only 10% of the samples). We also report the average value over a discretization of the ratings into 40 bins.

2.B Appendix for Improved Conservative Exloration for Linear Contextual
Bandit

2.B.1 Proofs
2.B.1.1 Proof of Thm. 3

We define three sets of time steps: S} is the steps before ¢ (¢ included) where the optimistic arm is in the constraint
set of (2.23) and it is thus selected, S;" is the steps where the optimistic arm is not in the constraint set and the
algorithm did not select the baseline by, finally let S? := [t] \ (S U S;") be the remaining time steps at which the
baseline was played. We consider the high-probability event in which 6* € ©; (i.e., the true linear parameter belongs
to the confidence ellipsoid). For any action a and any time ¢, we introduce the notation

it = <0At,xt7a> (2.122)

fig = <ét7xt7a> + Bt |7 ea [y (2.123)

60

The regret can be decomposed as

Roruesa(n) = Y (way —pe,) + D (e —wa,) + Y (we; — h,)

tesy teS;h test

(a)

<D gk —ph, 4 D> phe — ph, + An|Sh]
teSy test

() B

<Nk, —ph,) + > (whe —mb,) + Y (uh, — b)) + An]Sh|
tesy test teSt

(¢)

< Z 2ﬂtH‘Tt,at||Vt—l + Z (b, — 1) + An (|S5] + S
tesy tes;h

(d)

< D 2Bi[aeallyr + An(Sn] + ST (2.124)
teSLuUST

where (a) is using the upper bound Ay, to the per-step regret of the baseline, (b) follows from the high-probability
upper-confidence bounds using in LINUCB steps, (c) is using the definition of the confidence ellipsoid and the bound
on the baseline regret, and (d) follows by the definition of S;". In fact, at any time ¢t € S\, an arm different from

the UCB arm and the baseline is selected following the action selection in (2.23). Since the baseline arm belongs to
the constraint set by definition, then we have

1, < <ét7$t,at> +Be|[ztally 1 < e, + 28t [wt]|y (2.125)

Recalling the definition of 8; and using Theorem 2 in Abbasi-Yadkori et al. (2011), we obtain

2
Z 26tth,at|"/;—l §4\/ndlog(l+> \fB—i-U\/Qlog((lS)—i—dlog <1+ @)]

teSxus;t
Finally, we need to bound the number of times |S,ﬂ + |SZ‘ the optimistic arm was not selected (i.e., it was not in
the constraint set).

Lemma 12. For any 6 > 0, we have with probability 1 — § that :

b w2 4 4 4 B+2 2 L
ISpl + 15,1 < +3auz a+\/§(am>3/2(d(\f/\ + a)+fa) o+

5 (44(VAB +20) + \/50)2La
(2.126)

(o)

where L, is a logarithmic term,

VDo 12y/Dy (4d(VAB +20) + V20 36v/Dy ?
a_log[m N (o) log (fam (4d(fB+20)+fa))]x

xlog<321\/j(4d(f3+2a)+fa)>

Including this result into the regret decomposition provides the final bound

nD? 1 nD? Gn 4
R <4, [ndl 1+ — \B 21 - dl 14— — 4+ —1L,
CLUCB2(n) < \/n og(+ d > \/‘ -|-O'\/ og (5) + Og(+ 5V)‘| + am + 304”

14(VAB +20) + V20) L t u) (4d(fB+2a)+\fa) o

b
Valam)*?

where Dy := max {2D?/X, 3}.

61

Proof of Lemma 12. Let T :=max{ t € [n] |t € ST USL}, i.e., the last time the optimistic arm was not in the
constraint set (and either the baseline or another arm was selected). Let @, the optimistic arm at time 7, since it
does not satisfy the constraint, we have

> 7o —wr(n) +max { min (0,0 2)00+ D ph, < (1) D>y, (2.127)

teSr_1 tESﬁ 1

Reordering the baseline terms and recalling that S, = [t]\S? = S} U S;", we obtain
aZub <y + ,E; 1, — te; rl 4+ (1) — max { erg(ianrw,xn;),O}. (2.128)

Using pj < pp and since the last term is non-negative, we can further simplify the expression as

O‘Zﬂb <pnt+ D (wh, —h,) (7). (2.129)

tEST 1

Using the same Friedman inequality as in the construction of the Martingale lower bound and the fact that whenever
the algorithm does not select the baseline, the chosen arm is “optimistic” w.r.t. the baseline (see (2.125)) we have

Do (b =) < D (b —pe) ToL(m) < Y0 2Bl|wna|ly o+ vu() (2.130)

teSr 1 teS, 1 teS, 1

<44 (VAB +) y/|S:-] + 1log (2@2 (11| + 1)> +1r(7), (2.131)

where the last step follows from Lemma 4 in Kazerouni et al. (2017). As 7 =1+ [S*_,| +|S ;| +|S%_,|, we can
lower-bound the LHS of (2.129) as

(1+ 18740+ 187

- QL a *
QZMit > a1+ S5 | + S| + 52 DZT \)+7(1+|5T—1|+‘S:-r—1|)~ (2.132)
t=1

Plugging these results back into (2.129) and using the definition of ¢, (7) we obtain

%(\Sﬁ,ll +]St +1) <_%(y e]Sj_1|+1) +,Lth+§log ((H] |+ |SE |)DO>

<4d(fB+o)+fa)\/\ I ERE: 1]+1log<(1+]s7*_l\ﬂsj_l\)g(’)

where Dy := max {2D?/\,3}. To finish, bounding the number of rounds where the algorithm played we use the
following lemma (Lemma 13):

Lemma 13. For any © > 2 and ay,as,a3,a4 > 0 such that ay > 2, the function f : RT™ — R with f(z) =
a1+/xlog(asx) + aglog(asz) — agx, is bounded as follows:

2 2 18 2 4 2 18 2
g 100 (o[22 8 (1801 (V[0 08 (00)°,, (Lo
as as as

as 3(13
2a4 64 ay 2 18&1,/&2 2
+aslog [ag | — 4+ — | —) log| ————
as 9 as as
Proof. f is a strictly concave function and goes to —oco as ©* — 400 thus it admits a unique maximum, noted z*.
Moreover, by putting the gradient of f to zero, we have that:

azr” = ayVa*log (\/agx*e) + ay (2.133)

62

Thus injecting equation 2.133 into the definition of f, we have that:

r>2

*
max f(z) = f(a*) < %\/at* log (a2x™) + a4 log (a2:)
Finally, using eq. 2.133 and Lemma 8 of Kazerouni et al. (2017), we get:

a3 (dayJaze
as

z* < aT log
3

asz

Hence, putting everything together we have that:

18a 2 18a1/az \ 2
1£1§§f(x)§<a1\/; all (1\/>>>log \F\/QM—FZI 3) 1og(;;/>2))
2 2
+aq log [az (2% +4 <al> log (M))]
as as as

Using the previous lemma, we get

%(|5§_1]+|S;1|) < 2log [8Do | _4Do <(4d(fB+20)+fo) [144dr(f3+4)])2]

3 3oy d(ap)? Voo
2
2 VDo 2 4d(VAB 4+ 20) + /20
+pin + 4d(VAB + 20) + V20 1o +4
o V3o (()) & Vée (\/30441 < Qp
2
x 1o (36” (4d(fB+2a)+\fa)>
\[a/iz
1 Dy VDo
—(4d(VAB + 2 2 1 4d(VAB + 2 1 ——
+0¢Ml((VA +a)+\[0) og(m\/5< (VA +0)+\[o)) og[o
2
12\/ 4 B+2 vD
AVAB +20) + Va0 | o (36 (4d(fB+2a)+fa)>
\/3 o Voo
Since neither baseline nor a non-UCB arm will be pulled anymore after 7, the final statement at n follows. O
2.B.1.2 Proof of Theorem 4
The proof follows the same regret decomposition as in Thm. 3
R(n) < Y 2B |zeally-r +An (IS0 +1571) - (2.134)

teSruUS;T

While the first term is exactly the regret of the LINUCB algorithm, we need to derive a bound on the number of
times a non-UCB arm is selected similar to Lemma 12.

Lemma 14. Let T¢ T and :

= (1- a)uh +oap

2
Chlar) i= 28 (2/3 HYAB 2") In (696dDo

L S (2/3 +VAB+ 20))

where Dy := max{3,2D?/\}. Then the number of conservative plays for the algorithm 3 is such that :

63

» T > Cyla, pu,0) -

2 D
e (CA R) gmax{ = LT+ 1) + o+ 4 <ﬁ3+2a+3> T3+ 1 x log ((;)(T(erl)) ,0}

= efse:

O (150 + |5t]) < T8 (2/3+fB+zo—)%og(44df§; (2/3+ VB +20))2

Proof. As previously, let's define 7 as the last time the optimistic arm was not in the constraint set, and let k£ be
such that, 7 € [kT + 1, (k + 1)T7], i.e., the phase to which 7 belongs and let @, be the optimistic arm at time 7.
Because this arm does not satisfy the constraint we have :

ax{ Z TZZ—T/}L(T),O}—&— Z ,ub +max{m1n(9 x7“7>70}+0‘((kj+1)T—T>/~‘l§(1_04)2%1-
1=1

gec,
teS- 1 lest_,

where S, 1 = S*_; U ST |. This can be rewritten as :

aTu < Z Mé,, - rgl + (1) + pp —a((k+1)T — 7) iy — max { grelicn (O 7O} (2.135)
leS-_1 T

Now, —a ((k+1)T — 1) A; < 0 and — max { mingec. (0,%rq,) ,O} < 0. Thus using the same reasoning as in the
regret analysis of CLUCB2, we have :

%Qsﬂ n ysj,1|) <-%(y I +1) +un

+4d(fB+2a+)\/]S 1\+]Sj_1\+110g<(1+\5:1]+\Sj_1y)l§0>
(2.136)

where Dy = max{3,2D?/\}. Let's define the function
aly Dol‘
f: xl—>—7x+uh+4d \fB—|—2a+ Vzlog

Equation (2.136) can be rewritten as :

(sl wlszal) < s(Isral + 187 +1)

but function f has a maximum and computing it gives :

ap 57d2 4d2\/Dy 2
= (182 + 7)) < (2/3+f3+2a) log< o (2/3+fB+20)) (2.137)
and it is attained at x* such that :

2 2
a* < 2842 2/3+VAB+20) | M(2/3+WB+2U)
Qfhy § (app)”

= Cb(Ot, M, 6)

Function f is increasing before 2* and decreasing afterwards. Now, equation (2.137) is the result obtained by

Kazerouni et al. (2017). But, at the beginning of the first phase, i.e., when k = 0, we have that for ¢ < W%
that :

t
(T —1) > (1—a)un > (1 —a) Z s (2.138)

64

Equation (2.138) implies that at the beginning of the algorithm the conservative condition is satisfied for every

possible arm. Thus]S* 1‘ + }ST = M‘%T. Therefore, if T := %T > Cy(a, g, d), we can
upper-bound f(| 1| + | 1| + 1) by the value of f evaluated at % that is to say we have:

« 2 D
S(Se +[SE) < = (T2 1) 4+ 4d (fB+2o—+ 3> VT2 + 1log (;(Tg + 1)) (2.139)
And, on the other hand « |S$| wr > 0, we have :

2 D
%(|Sﬁ|+‘5ﬁ71|)m gmax{ f%(Tngl) + pp +4d (AB+20+3> /TS +1 x log (;(T(erl)) ,O}

O
Combining the result of the lemma with LINUCB regret bound provides the final result

= If T > Cyla, w,9) :
R(n) < 2 max = S(TE 1) + g+ 4d VAB + 20+ 2) /T8 + 11og &(T‘S—kl) 0
~ o 2 \ @ 3 e AN ’
nD nD?
—|—4\/nd10g <1+)\d) \fB—I—a\/Zlog(é)—i—dlog(l-i- d)]

= else:

R(n)§4\/ndlog (1+) \fB+U\/21og (5>+dlog <1+ni);>]

5(7?21)(1 (2/3+IB+20) x log (ZW;;\/IMDT (2/3+\F)\B+20)2>2
o e

2.B.2 Experiments
2.B.2.1 Worst Case Model for Synthetic Data

In this subsection, we present the protocol used to choose which model is used to present the results on synthetic
data. To generate Figure 2.5, we have drawn n,,, random bandit models on which each algorithm was ran ng times.

In order to show the improvement of CUCB2 or CLUCB2 over their counterparts CUCB and CLUCB, we have
selected the model in which the difference between the regret of CUCB2 and of CUCB at n is the smallest. More
formally, if R8U0B2(n) is the empirical regret of CUCB2 after n steps in the bandit model m averaged over ng
runs, RE’UCB(n) the same for CUCB, and M the set of models used for the experiments. The model, m*, selected
for Figure 2.5 is such that

R n R n
y_ Béuepo™ o Féuee(™) (2.140)

As algorithm CUCB2 achieves consistently better regret than CUCB, the quantities involved in (2.140) are
positive and thus selecting the minimum effectively gives the worst model in terms of improvement w.r.t. to CUCB.
Empirically, the difference between the regrets was indeed positive for each model. We follow the same protocol for
the linear case by comparing the performance of CLUCB2 and CLUCB.

65

—UCB P Crc Lt e PO S Lo
2,000 1 poare
<= CUCB-Or .-~ 3000 |
- CUCB-M Y / _ 3,000 -
5 5 / 5
% 1,500 - CUCB2))
& —— CUCB-ML 3 g
P --- CUCB o 2,000 - S 2000 4
£ 1,000 4 CUCB-S o700 | 2 E
E CUCBL =--- | |
5 1 BUPRRTEE et B g
S V S S 1,000
5004 Ao
/
0 T T T T 0 T T T
0 02 04 06 08 1 0 0.5 1 15 2
Time 107 Time .10° Time 10
(a) Worst Regret (b) Best Regret (c) Average Regret
100 ‘ 100 ‘
8,000 1
. 6,000 B
1l S0
< E % i
& ; E)
< 4,000) E
% £ a L
g
5 =
= 2,000 L
0
T T T T T T T T T T T
0 02 04 06 08 1 0 02 04 06 08 1 0 0.5 1 15 2
Time 10° Time 107 Time 104
(d) Budget (worst model) (e) Budget (best model) (f) Budget (average model)
1
4 f, L 5 . _ I
£ o 8 0 ===
B y 80
D e E
o 54 |-
& -2 g T g
£ g a
: E -
< -1 - -101 -
6 L
15 L
T T T T T T T T T
0 200 400 60O 800 1,000 1,200 1,400 0 50 100 150 0 100 200 300 400 500 600
Time Time Time

(g) Budget (worst model) zoomed (h) Budget (best model) zoomed (i) Budget (average model) zoomed

Figure 2.B.1: We report the regret and the budget for the worst, best and average model in the Bernoulli experiment.

2.B.2.2 Multi-Armed Bandits

In order to give an idea about the difference of performance across different bandit problems, we report the regret for
the worst model, best model and average of model (see Fig. 2.B.1). The best model is obtained by changing min to
a max in Eq. 2.140. Notice that the best model and the average one are very similar, meaning that the distribution
of the results is very concentrated close to the best one.

We also report the average violation of the conservative constraint. More precisely, for an algorithm, A, which
pulled arms (ai,...,a;), the exact budget is defined as

t

Ba(t) =Y (b, (1=)i

=1

This quantity is what conservative algorithms like CUCB2 is constrained to keep positive at every step, while CUCB2T
is constrained to keep budget positive at certain predefined checkpoint. On the other hand UCB does not constraint
the budget at all. We focus on the time steps where the budget is negative for UCB and for CUCB2T algorithms.?!
As it can be noticed the other conservative algorithms trade-off some level of performance (regret) in order to be
safe w.r.t. the baseline.

2INote that the budget is negative since these algorithms are not constrained to be safe uniformly in time but only at the checkpoints.

66

25004 =TT et e
4,000 1 3,000 -
5 2,000 4 ;] g
& : e o
& ., — LinUCB . & 3,000 4 ~
g 1,500 4 s === CLUCB-oracle-0.05 @ i 2 2000
z AR CLUCB-new-0.05-1 e / s
E 1,000 <+- CSLUCB-new-0.05-1 | 20004/ E
2 —— CLUCB-LBS-new-0.05-1 i y E)
© - == CLUCB-0ld-0.05-1 © ool 7 © 10004 J.°
o 1000 4 A
500 / CSLUCB-old-0.05-1 J 5
/ CLUCB-LBS-0ld-0.05-1 ; /
0 T T T 0 T T T 0 T T T
0 0.5 1 15 2 0 0.5 1 15 2 0 0.5 1 15 2
Time 10 Time 10 Time 10
(a) Worst Regret (b) Best Regret (c) Average Regret
101 ‘ ‘ 10 ‘ ‘
4,000 4 1 -
8 E) B i
o0 < <
z a & I
A 2,000 054 L
0 0
T T T T T T T T T
0 0.5 1 15 2 0 0.5 1 15 2 0 0.5 1 15 2
Time 104 Time 10 Time 104
(d) Budget (worst model) (e) Budget (best model) (f) Budget (average model)
[4 1 1 1 1 1
i . 4 ‘
0 F : //’ ° e
5 i i
14 0 gE=a=mm T
—920 4 L ¥
; # .
= @ t4
% =1 g
R g < 0 r
A A
604 | | ~10 4 I
154 L
—80 T T T T T Ul 0 T T T T T T T ° T T T T T
0 500 1,000 1,500 2,000 2,500 3,000 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600
Time Time Time

(g) Budget (worst model) zoomed (h) Budget (best model) zoomed (i) Budget (average model) zoomed

Figure 2.B.2: We report the regret and the budget for the worst, best and average model in the linear bandit
experiment.

Figures 2.B.1d-e-f show the budget of the worst, best and the average over models until ¢ = n. Note that all the
lines are parallel meaning that all the algorithms have reached nearly optimal policies. As the reader may notice, the
better the algorithm the higher the budget. This is due to the fact that better algorithms tends to explore better
(and/or faster) and quickly discard suboptimal arms. Figure 2.B.1 also reports the time steps where the budget is
negative for UCB. In particular, as pointed out in the introduction, UCB explores heavily at the beginning which
leads to potentially large violation of the constraint, see Fig. 2.B.1d. On the other hand, the conservative algorithms
never violates the conservative constraint.

2.B.2.3 Synthetic Linear Data

We present the regret and budget for the best, average and worst model on different linear bandit problems. Fig-
ure 2.B.2 shows the regret and the budget for CLUCB, CLUCB2 and different ablated algorithms used in the
experiments. Figure 2.B.2a shows that in the worst case, the algorithms using the action selection process introduced
in this paper outperforms CLUCB-OR which can be surprising. However, the latter is an oracle with respect to
algorithms using a two stage action selection process. Thus, Figure 2.B.2a shows that the introduction of a new
action selection process can lead to major improvement in regards of the regret of conservative algorithms. The other
possible comment is that the introduction of a martingale based concentration inequality does not lead to significant

67

improvement in that specific case. This indicates that in the linear setting, the impact of the choice of the lower
bound is less flagrant than for multi-armed bandit because the lower bound used by CLUCB in in some way takes
into account of the correlation between arms.

However, looking at Figure 2.B.2c, it is clear that in average changing the lower bound does impact positively
the regret and that the worst case presented here is a corner case. Figures 2.B.2g-h-i shows the violation of the
constraint by LINUCB and are similar to the multi-armed bandit case, in the sense that LINUCB explore heavily at
the beginning of the problem which leads to large violation of the conservative constraint.

2.B.2.4 Jester Dataset

For the Jester Goldberg et al. (2001) experiment, we consider the standard linear setting. We performed a matrix
factorization of the ratings (after filtering over users and jokes). This provides features for the arms and users, the
reward (i.e., rating) is the dot product between the arm and user features (we make it stochastic by adding Gaussian
noise). We consider a cold start problem where the user is randomly selected at the beginning of the repetition and
the agent has to learn the best arm to recommend. When an arm is selected by the algorithm, its reward is computed
as the dot product between the arm and user features.

We report the budget B.4(t) in the case of Jester dataset. We report the average over all the users and simulations.
Fig. 2.B.3(/eft) shows that LINUCB and the checkpoint-based algorithms violates the one-step budget in the initial
phase. CLUCB2T follows the exploratory behaviour of LINUCB until the conservative condition (2.24) forces them
to revert to a conservative behavior by playing the baseline. If we observe the long-term behavior (Fig. 2.B.3(right)),
all the lines are parallel, meaning that the algorithms have converged to nearly optimal policies. Second, LINUCB is
the one building the higher budget since it is the first one to converge toward optimal arms. The other algorithms
are ordered accordingly to their regret performance.

-10%
T
- == CLUCB 0
9| +=+=CLUCB2
—— CLUCB2-C T = 7% /
CLUCB2-C T = 10% 4
=== CLUCB2-C T = 12% / 1o
LinUCB 4

-
% e
<z ®

5 © -2
m o
8 2
3 3
= g
O

—30

—40

0 0.2 0.4 0.6 0.8 1 0 200 400 600 800 1,000 1,200 1,400 1,600 1,800
Time 105 Time

Figure 2.B.3: Budget as a function of time for the Jester dataset. The figure shows the average budget over users
and repetitions.

2.C Appendix for Conservative Exploration for Reinforcement Learning

2.C.1 Policy Evaluation with Uncertainties
Consider a bounded parameter MDP M defined by a compact set B,.(s,a) C [0, "max] and B,(s,a) € Ag:
M={M = (S,A,r,p),r(s,a) € B.(s,a),p(-|s,a) € Byp(s,a),¥(s,a) € S x A} (2.141)

68

Algorithm 8: EVI.

Input: Operator £ : R® — R and accuracy ¢ > 0
Set v9 =0, v1 = Lvg, n=0
while sp(vn4+1 — vn) > € do
n=n+1
Un+1 = L'Un
Output: g, = %(max5 {Vn+1(8) — vn(s)} + ming{vn41(s) — vn(s)}) and v,

In this paper, we consider confidence sets B, and B, that are polytopes. We are interested in building a pessimistic
(robust) estimate of the performance of a policy m € II3P in M. This robust optimization problem can be written
as:
T:= inf {¢g"(M 2.142
g" = inf {g"(M)} (2.142)
where g™ (M) is the gain of policy 7 in the MDP M. Lemma 15 shows that there exists a solution to this problem
that can be computed using EVI when the set M contains an ergodic MDP.

We recall that any bounded parameter MDP admits an equivalent representation as an extended MDP (Jaksch
et al., 2010a) with identical state space S but compact action space. For a deterministic policy m € IISP, the
extended (pessimistic) Bellman operator £ is defined as:

YoeR% VseS, Lpu(s):= min min T 2.143

’ B) T remto (2:143)

Lemma 15. Let M be a bounded-parameter MDP defined as in Eq. 2.141 such that exists an ergodic MDP M € M
w.h.p. Consider a policy = € TI°P, then:

1. There exists a tuple (§,h) € R x R such that:
Vs €S, G+ h(s)=Lyh(s)
where L, is the Bellman operator of the extended MDP M™ associated to M (see Eq. 2.143).

2. In addition, we have the following inequalities on the pair (g, h):

g<g™ (M and sp(h) < max max E7, (7(s')|s) =T < +o0

g=<g"(M) p(LWEHS;%M) max i (7(s')]s) +
where 7, is the expectation of using policy m in the MDP M and 7(s’) is the minimal number of steps to
reach state s'.

Proof. Point 1. We show that this policy evaluation problem is equivalent to a planning problem in an extended
MDP M~ with negative reward. Consider the extended MDP M~ = (S, A~,p~, 7") such that A, = {7n(s)} x
B, (s,m(s)) x Bp(s,m(s)). For any state s € S and action a™ = (n(s), r(s,7(s)),p(:|s,7(s))) € As,
o (57047) = *T(S,W(S))
p~(ls,a™) = p(|s, m(s))

Denote by £~ the optimal Bellman operator of M ™. Since B,(s,n(s)) and By(s,n(s)) are polytopes, L~ can
be interpreted as an optimal Bellman operator with finite number of actions. A sufficient condition for the existence
of a solution of the optimality equations is that the MDP is weakly communicating (Puterman, 1994, Chap. 8-9).
Note that M~ contains the model defined by P™, i.e., the Markov chain induced by 7 in M.?? Since P is ergodic,
M~ is at least communicating and thus £~ converges to a solution of the optimality equations. Extended value
iteration (Jaksch et al., 2010a) on £~ converges toward a gain and bias (¢~, h ™) such that:

g~ +h (s)=L"h(s) = max{r (s,a) +p (:|s,a)Th™}
acAg

= max —r}+ max Th
TEB,,,(s,ﬂ(s)){ } pGBp(s,Tr(s))p

= —min{B,(s,7(s))} + max Th~
(Bi(s.m()} + _max p

22\We abuse of language since M~ is not formally a set. We should formally refer to the bounded parameter MDP associated to M ™,
i.e., built considering By (s, 7(s)) and By(s,m(s)). Note that p(-|s, w(s)) € Bp(s,m(s)) w.h.p.

69

By rearranging, we have that:

—g~ + (=h7)(s) = min{B,(s,7(s))} + min p'(=h7) = La(=h7)(s)
PEBp(s,m(s))
Thus follows that § = —g~ and h = —h~. This shows the relationship between maximizing over policies in the

extended MDP M™ and minimizing over the set of models induced by 7.
Point 2. Let's begin by bounding the span of the bias h. Thanks to Theorem 4 of Bartlett and Tewari (2009),
we have that the span of & is upper-bounded by the diameter of the extended MDP M ™, i.e:

. _ o
sp(h) Smax _inf | Ee- (7(s)ls)

where E .- is the expectation of using policy 7~ in the extended MDP M~ and 7(s’) is the hitting time of state s'.
But let's define the policy 7* in the extended MDP M ™ such that for a state s, it chooses the action:

7 (s) = (w(s),r"(s,7(s)),p" (s, 7(s)))
with 7* and p* the true parameter of the MDP M, this is possible because w.h.p the MDP M™ € M~ with M™ the
Markov chain induced by using policy 7 in the MDP M. Thus for any pair of states (s, s’):
Ers (7(s)]s) = B, (7(s')]s)
with E7, the expectation of using policy 7 in the MDP M. Therefore:

sp(h) < Isr;igﬂ_enigﬂ)f(M_)]Er (r(s")ls)

<E7 ! <7T:= E7, !
SEy(r(s)ls) s Ti= max max Biy (r(s)]s)
And T < 400 because M is assumed to be ergodic.
Let's show that the gain § is a lower bound on the gain of the policy 7 in the MDP M. Indeed, because the

operator L~ converges toward solution of the optimality equations for negative rewards, we have that, see (Puterman,
1994, Th. 8.4.1):

9~ > -g"(M)

because reversing the sign of the rewards in the MDP M changes the sign of the gain of a policy. Thus, § <
g (M).

O

As a consequence, we can use EVI on L, to compute a solution for problem 2.142. EVI generates a sequence
of vectors (v;) such that v;41 = Lrv; and vo = 0. If the algorithm is stopped when sp(v,+1 — v,) < € we
have (Puterman, 1994, Sec. 8.3.1) that:

lgn =91 <€/2 and ||Lrvn — U — gnelloo <€ (2.144)

where e = (1,...,1) and g, = % (max,{v,41(s) — v, (s)} + ming{v,11(s) — v, (s)}). The following lemma shows
how we can use the value produced by EVI to lower bound the expected sum of rewards under a policy 7.

Lemma 16. Let (g, v,) the values computed by EVI using L, and an accuracy e. Then, the cumulative reward
collected by policy m in M after t steps can be lower bounded by:

t

Zn’|51 =y

i=1

VyeS, Euy > t(gn —€) — sp(vy)

In addition,
sp(vy) < 7T

70

Proof. Using the inequalities in (2.144) we can write that:

min r+ min Tol + ¢
r€By(s,m(s)) peBp(s,Tr(S)){p }

< r(s,m(s)) +p([s,7(s) o + €

Un(8) + gn < Lavy(s) =

since r(s,m(s)) € By(s,m(s)) and p(:|s,m(s)) € By(s,m(s)) w.h.p. By iterating this inequality, we get that for all
t > 0 and state s :

t

vn(8) +tgn < (t—1)e+p'(|s, 7(s))Tv, + E Z i (si,m(si))|s1 = s
i=1

The statement follows by noticing that

sp(vp) = max v, (s) —minv,(s) > p'(ly, 7(y))Ton — waly) . VyeS
s s —_—— N——
<maxg vy, (s) >ming vy, (8)

The last statement is a direct consequence of the argument developed in subsection 4.3.1 of Jaksch et al. (2010a).
This reasoning relies on the fact that the initial vector used in EVI is a zero span vector. O

2.C.2 Regret Bound for CUCRL

Lemma 17. The regret of CUCRL2 can be upper-bounded for some 3 > 0, with probability at least 1 — %, by:

R(CUCRL2,T) < 8- | R(UCRL2,T|Ar) + (¢* — g™) Y T + max{rmax, sp (h™)}/SAT In(T/5)
keAS,

Proof. Recall that k; = sup{k > 0: ¢ > ¢, } is the episode at time ¢ and that the regret is defined as R(CUCRL2,T) =

S (9* - Tt(st»at)>-

Since the baseline policy 7, may be stochastic, as a first step we replace the observed reward by its expectation.
As done in (Fruit et al., 2018b) we use Azuma's inequality that gives, with probability at least 1 — g:

T T
vI'>1, - Zrt < —Z Z T, (St, @)1 (S, @) + 2rmaxy | T In <56T) (2.145)
t=1

t=1acA

We denote by A7 = Ap, U {kr} - 1(gq. 2.39) the set of episodes where the algorithm played an UCRL policy.
Note that we cannot directly consider Ay, since the set is updated at the end of the episode and the last episode
may not have ended at 7'. Similarly we denote by A7 = Af U {kr} 1 (-gq. 2.30). Then, the regret of CUCRL2
can be decomposed as follow:

R(CUCRL27T) = Z (g* - Z Ty (Staa)r(sta a)) + 2rmax TlIn <5(;r)

t=1 acA

5T kT tp41—1
= 2rmaxy | T In (6) + Z IL(kGAT) Z (g* - ’r(Sta at))

k=1 t=te (2.146)
:=R(UCRL2,T|Ar)

k1 ter1—1
+ Z]l(keAcT) ((9* —9™) (tet1 —te) + Z (g”b - Z Wb(sma)r(sha)))

k=1 t=ty, acA

=A7

Moreover, note that the UCRL2 policy is deterministic so we hate that > . , T, (s¢,a)7r(s¢,a) = r(s¢,a¢) when
ki € Ar. The second term, denoted R(UCRL2, T|Ay,), is the regret suffered by UCRL2 over 3, _\ T} steps.
T

71

The only difference with the orginal analysis (Jaksch et al., 2010a) is that the confidence intervals used by UCRL
are updated when using the baseline policy, however it does not affect the regret of UCRL because it only means
the confidence intervals used shrinks faster for some state-action pairs. We will analyze this term in Lem. 19. To
decompose A¢ we can use the Bellman equations (g™e = L™h™ — h™):

thy1—1
Z Aj = Z Z Zﬂb (st,a)p(-[se, a)TR™ — hro(st)
keAL, keAS, t=tp a
ter1—1 tpyr1—1
DI S ST (RIS B ATMNS Sl SRRV ATIS)
keAs t=tp a€A keAg t=tg

=ACP L AC2
'7A/\'1 *_AL

But, AE’Q can be bounded using a telescopic sum argument and the number of episodes:
Do A= D0 W () — h (su) < [AGLsp ()
kEAT keAs,

Then it is easy to see that (A;’;)k ¢ is a Martingale Difference Sequence with respect to the filtration (F;)ien Which
is generated by all the randomness in the environment and in the algorithm up until time ¢: [A7] < 2[|2™ o

2sp(h™) and E[A}|F;] = 0. Thus with probability 1 — g

thr1—1
Z Z AV <A4sp(h™)4|T1In (5(?)

keAzT t=ty,

Therefore putting all the above together, we have that with probability at least 1 — £>

kr
T
R(CUCRL2,T) < 2rpaxt /T In <56) + R(UCRL2,T|Ar) + (¢ — g™) E 11(k€A%)(tk+1 — 1)
k=1

+sp (h™) <ACT| +44/Tn <55T)>

As shown in (Ouyang et al., 2017, Lem. 1), kpy < +/2SATIn(T) thus we can simply write that |AS| <
2SAT In(T). O

In the next lemma, we bound the total number of steps where CUCRL2 used the baseline policy.
Lemma 18. For any, § > 0, the total length of episodes where the baseline policy is played by CUCRL after T steps
is upper-bounded with probability 1 — 26 /5 by:

164/ T Ly, I < | 1125AL;

lEA,

(1+S(D+T))

with LY. = In (%) a logarithmic term in T

Proof. Let T be the last episode played conservatively: ™ = sup{k > 0:k € Af}. At the beginning of episode 7 the
conservative condition is not verified that is to say:

S Ti(g™ —g +e) +sp(h™) (A +A—a)+ > sp(h)+
lEA,_1 leA_1U{T}

+ T+ 1) (1= a)g™ — g7 +¢€) L aygmosgrpe) = @ ZTlg”*’ (2.147)
li

72

Let’s proceeding by analysing each term on the RHS of Eq. 2.147. First, we have that |AS_;| < kr < +/2SAT In(T),
thus:

sp(h™) (JA°_4]+ (1 — @) < (\/QSATln +1)sp ™) (2.148)
On the other hand, thanks to Lem. 16, we have:

> sp(hy) < (Aroa] + DY < 2y/2SAT In(T)Y (2.149)

leA,_1U{T}
Before analysing Al, let’s bound the contribution of episode 7:
(T,_1+1) ((1 —a)g™ — g —) ((1—a)gm>gm+er} < <1 —=a)g™kr < (1 — a)rmaxV/2SATIn(T) (2.150)

where we used the fact that for all episode k, we have T < k. Indeed the dynamic episode condition is such
that for an episode k, Ty, < Ty_1 + 1 thus by iterating this inequality, T < Ty + k = k. At this point using
equations 2.147, 2.149 and 2.150 we have:

+(9SAT In(T) +)sp(h”b)+ 2¢/2SATIn(T)Y + (1 —) rmax/2SAT In(T >o¢Zng”b

Let's finish by analysing /A . Let's define the event, I' = {EIT >0,3k>1, st M & Mk}, by definition of B¥

and B, P(T') < §/5, see (Lazaric et al., 2019, App. B.2) for a complete proof. We have that on the event I'°, for
any [€ Ar_1, (g9, ,h;) = EVI(L]", &) is such that [g™ — g, | < ¢ (see App. 2.C.1) where g™ is the true gain:
g™ +h™ = LA™, Thus, since g < rmax/V:

= > Ti(¢"-g +a)<2 Y Tea+ Y, Ti(g™—g")

leA, 1 leAr 1 leEAr 1
< 4Tmaxﬁ+ Z ,Tl(gl - gﬁl)
leEAN 1

where g is the optimistic gain at episode [(see Lazaric et al. (2019)) thus the last inequality comes from g™ < g* < g
for every episode [. We can also define the optimistic bias at episode [, hl the pair (g, hg) is such that:

a réBL(s,a) pEBL(s,a

Vs € S, aq + fNLl(s) = L?‘El = max{ max r+ max))pTEl}

Recall that 7; € TISP is the optimistic policy at episode I and when I € A,_;, m; = 7;. Then, by using Bellman
equations:

ti41—1 ti41—1
o Tm-g= >, Y. @-gm= > > (£ hl (se) »—hu(se) — L7 R™ (s¢) + h™ (s¢))
leN 4 leN,—1 =t leN, 1 =t +
= [, ’hl(gt)
ti41—1 _ _
= Z Z max — min 7+ max p'h— min p A™ — hi(s) + R (sy)
lEA,_1 t=t; reb; (Sf’af r€BL(st,a1) pEBL(s1,a1) PEBL (st,ar)
tH,lfl _
< 2 max r+ max (q¢g—p")Th
le;l ;tz r€BL(s¢,ar) qulp(staat)()

i (g = p)R 4 p (s an) (o= 1) = (alsern) =B (5011)
qGBé(st,at)

+ (u(se41) — Tu(se) + B™ (s441) — K™ (s¢))

73

where p* is the transition probability of the true MDP, M*. By a simple telescopic sum argument, we have:

tiy1—1
ST hulsisr) = hu(se) + B (1) — ™ (50) = [Ar—a| (sp(Pa) + sp(B™))
leA_1 t=1;

At this point we need to explicitly define the concentration inequality used to construct the confidence sets B’ and
BL. For every (s,a) € S x A, we define (s, a) such that:

Vi>1, Bi(s,a) C [Fi(s,a) = By(s, a),7i(s,a) + By(s, a)]

where 7;(s, a) is the empirical average of the reward received when visiting the state-action pairs (s, a) at the beginning
of episode I. For every (s,a) € S x A, we define £ (s,a) as:

By(s,a) = {p € As : |lp(|s,a) = Bi(-]s,a)llL < By(s,a)}

with p; is the empirical average of the observed transitions. Choosing those 3. and ﬁll, is done thanks to concentration
inequalities such that event I'® holds with high enough probability. In the following, we use:

7SAL6 14AL?
I . T l _ T
Vs, Brls,a) = \/2 max{1, Ni(s,a)} and fy(s,0) = S\/max{l,Nl(s,a)}

where L§ = In (3527). For other choices of 3. and S| refer to (Lazaric et al., 2019). Similarly to what done
n (Jaksch et al., 2010a, Sec. 4.3.1 and 4.3.2), by using Holder's inequality and recentering the bias functions, we
write:

tiy1—1
Z Ti(g—g™) < |A— 1|(Sp(hl) + sp(h™)) Z Z 2BL(Staat)+5 (St»at)(sp(hl) + sp(h™))
lEA lEA, . t=h
:=(a)
tiy1—1 » _
+ 33 pClsnad” (™) = (ulsen) = b (s141))

leEN 1 t=1;

:=(b)

To finish, the proof of this lemma, we need to bound the term (a) and (b). In the following, we use the fact that
sp(hy) + sp(K™) < D+ T (see Lem. 16) and again that [A;_1| < kr < \/2SAT In(T). Let's begin with (a), by
definition of the radius of the confidence sets, we have:

Z tlilﬂ (st,a 7SAL tHl ! 1 <
t>t) max{1, Ni(ss,a¢)} —

leh,_1 t=t leA 1 t t
and,
tip1—1
g g Bl (8¢, az) <S\/14L5A
leN._1 t=1;

The second term (b) is easy to bound because it is a Martingale Difference Sequence with respect to the filtration
generated by all the randomness in the algorithm and the environment before the current step. For any time
t, the o-algebra generated by the history up to time ¢ included is F; = o(s1,a1,71,...,5¢t,at, 7, St4+1). Define
Xo = Lp,enr)0(Ie, T, (50)) Tuk, — uk, (S441)) with wg, = hy, —h™. Since 7y, is F; measurable, E[X;|F;_1] =0
and |X;| < 2(D+7). Then (X, F;); is an MDS and nothing change compared to the analysis of UCRL2. Therefore
using Azuma-Hoeffding inequality, we have, with probability 1 — g that:

(b) <2(D+T)y/2T LS

74

A Algorithmically, it is possible to evaluate the gain of the policies played in the past episodes at the beginning of
the current episode. While this will provide a better estimate for the conservative condition, it will break the MDS
structure in (b) since A™ will be not measurable w.r.t. F; since it is computed with samples collected after episode
I. Thus putting the bound for (a) and (b) together, we have:

3 TG —g™) <(D+7)/25ATIn(T) + \/14SALS,
A<y, —
+2(D +)\ /2T LS,

T—1
S Ti+ (D+7)S\/14L5 A
=1

That is to say,

AraxV/T + (D + X) /ZSATI(T) + 2D + Y)y /2T LS,

T—1 T—1 T—1
+\/4SALS | Y T+ (D+X)S\14L5A > Th > a) Tig™
1=1 1=1 1=1
Rearranging the terms and calling X = Zl:ll T;, we have:

ag™X < bp+ (,/14SAL5T + (D +7)58, /14L5TA> VX

We have a quadratic equation and thus:

T—1

2br N 56S ALY

T, <
"= agm " (agm)?

=1

(2+2S(D +71)%)

Therefore, as 7 is the last episode where CUCRL2 played the policy m;, we have >, . Ty = >,cxc 11 Also,
T T
because of the condition on the length of an episode T}, < k for every k, therefore:

T—1

2br 56SALY. 9

o= 1< Ti+T <kr+ g T Tagm)? (2+28(D+7)?%)
leAS leAS I=1

O

The following lemma states the regret of the UCRL2 algorithm conditioned on running only the episodes in the
set Ar.

Lemma 19. For any § > 0, we have that after T, the regret of UCRL2 is upper bounded with probability at least

1—46/5 by:
T T
R(UCRL2, T|A7) < DS/ AT In (55> +BDS?Aln (‘2)

with 8 a numerical constant.

Proof. The same type of bound has been shown in numerous work before Jaksch et al. (2010a); Lazaric et al.
(2019), however the proof presented in those works can not be readily applied to our setting. Indeed, when the
algorithm chooses to play the baseline policy for an episode, then the confidence sets used in CUCRL2 are updated
for the state-action pairs encountered during this episode. However, in the classic proof for the UCRL2 algorithm
the confidence sets are the same between the end of one episode and the beginning of the next one are the same.
This may not be the case for CUCRL2.

Fortunately, when using the baseline policy during an episode, the confidence sets for every state-action pairs are
either the same as the previous episode or are becoming tighter around the true parameters of the MDP M™*. Thus,

75

proving Lemma 19 is similar to the proof presented in Lazaric et al. (2019), the only difference resides in bounding

the sum, >, x, :’;i*l 1/4/N;f (st at), which is bounded by the square root of the total number of samples in

the proof of Lazaric et al. (2019) whereas in the case CUCRL2 it is bounded by the square root of the total number
of samples gathered while exploring the set of policies plus the number of samples collected while playing the baseline
policies. Therefore, at the end of the day both quantities are bounded by a constant times the square root of 7.

A doubt someone could have is on controlling the term

kT tk+171
Z Tikenr) Z (p(:se, i (s¢)) s, — u(st))
k=1 t=ty
kr thp1—1 kr tht1—1
=D Lgear) O (PClsemilse)Tur —urlsern)) + Y Lwear) Y wilsern) — un(se)
k=1 t=ty, N k=1 t=ty,
k
kr
= Z]l(kEAT)Ai + (uk(stk+1) - uk(stk))
h=t <sp(w)<D
For any time ¢, the o-algebra generated by the history up to time ¢ included is F; = o(s1,a1,71, ..., St, Qt, T4, St41)-

Define X; = 11, enr) (p(-|5¢, 7k, (5¢)) Tus, — ug(s¢41)). Since my, is F; measurable, F[X;|F;_1] = 0 and | X;| < 2D.
Then (X, ;)¢ is an MDS and nothing change compared to the analysis of UCRL2.
]

Finally, plugging Lemmas 18 and 19 into Lem. 17, we have that there exists a numerical constant C such that
with probability 1 — §:

\/TSALS
R(CUCRL2,T) < 4 <DS\/ATL§~ +(g"—g™) (SAT In(T) + y 7 max{sp(h™),D + T}

g™

(ag™)?

S2ALS
+ (D +7)) + max{rmax, sp (K™)}/ SAT ln(T/5)>

2.C.3 Conservative Exploration in Finite Horizon Markov Decision Processes

In this subsection, we show how the conservative setting can be applied to finite horizon MDPs. Let's consider
a finite-horizon MDP (Puterman, 1994, Chp. 4) M = (S, A,p,r, H) with state space S and action space A as
described in Section 1.2.3.1. Every state-action pair is characterized by a reward distribution with mean r(s,a) and
support in [0,1] and a transition distribution p(-|s,a) over next state. We denote by S = |S| and A = |A| the
number of states and actions, and by H the horizon of an episode.

In the following we assume that the learning agent known S, A and 7,42, while the reward and dynamics are
unknown and need to be estimated online. Given a finite number of episode K, we evaluate the performance of a
learning algorithm 2(by its cumulative regret

ZVI (s1,6) = V"™ (51,%)
where 7, is the policy executed by the algorithm at episode k.

Conservative Condition Designing a conservative condition, in this setting is much easier than in the average
reward case as evaluating a policy can be done through the value function which gives an estimation of the expected
reward over an episode. Thus, we can use this evaluation of a policy to use in place of rewards in the bandits condition.
Formally, denote by 7;, € TIMR the baseline policy and assume that V™ is known. In general, this assumption is not
restrictive since the baseline performance can be estimated from historical data. Given a conservative level a € (0, 1),
we define the conservative condition as:
k
VE € | Z Hsin) > (1 -« ZV’”’ (s1.1) w.h.p (2.151)

76

where 7 is the policy executed by the algorithm at episode [and s; ; is the starting state of episode I before policy
7 is chosen. The initial state can be chosen arbitrarily but should be revealed at the beginning of each episode.
Note that this condition is random due the choice of the policies (m;); and also because of the starting states thus
the condition is required to hold with high probability.

Note that Eq. 2.151 requires to evaluated the performance of policy 7; on the true (unknown) MDP. In order
derive a practical condition, we need to construct an estimate of Vf”. In order to be conservative, we are interesting
in deriving a lower bound on the value function of a generic policy 7w which can be used in Eq. 2.151.

Pessimistic value function estimate. We recall that OFU algorithms (e.g., UCB-VI and EULER) builds un-
certainties around the rewards and dynamics that are used to perform an optimistic planning. Formally, denote by
Dr(+|s,a) and T (s, a) the empirical transitions and rewards at episode k. Then, with high probability

(15, a) = Pi(-]s,a) vl < Bi(s,a) and |r(s,a) = Ti(s,a)| < Bi(s,a)

for all (s,a) € S x A and v € [0, H]®. This uncertainties are used to compute an exploration bonus by (s,a) =
By (s,a) + Br(s,a) that can be used to compute an optimistic estimate of the optimal value function. Formally, at
episode k, optimistic backward induction (e.g., Azar et al., 2017a, Alg. 2) computes an estimate value function vy, 5,
such that vy, > Vi* for any state s. The same approach can be used to compute a pessimistic estimate of the
optimal value function by subtracting the exploration bonus to the reward (e.g., Zanette and Brunskill, 2019).

The only difference in the conservative setting is that we are interesting to compute a pessimistic estimate for a
policy different from the optimal one. We thus define the pessimistic evaluation equations for any episode k, step h,
state s and policy m € MR as:

Vi n(8) = LE a0 e = D men(s, @) (F(s,a) = buls, @) + Bi(-ls, @) Tof 1) (2.152)

with of 5., (s) = 0 for all states s € S. This value function is pessimistic (see Lem. 20) and can be computed using
backward induction with L7 .

Lemma 20. Let m = (dy,...,dy) € MR and (v} ;,)ne(m) be the value function given by backward induction using
Eq. 2.152 then with high probability:
V(h,s) € [H] xS, Vii(s) = v n(s)

Proof. On the event that the concentration inequalities holds, let 7;(s,a) be the empirical reward at episode k
and pi(.|s,a) the empirical distribution over the next state from (s, a) at episode k. We proceed with a backward
induction. At time H the statement is true. For h < H :

OEa(s) = Vil(s) =D di(s,a) (Fu(s, a) = bi(s, @) + Pul-15,0) T0F jar) — LT Vil (5)

a

= Zdh s,a) | Te(s,a) —r(s,a) — Bi(s,a)
<0

+ Z dh(sa a) (I/)\k(|sv a)TQZ,h+1 - p(~\$, a)T‘/IZT—i-l - ﬂz(sv a))

a

<> du(s,a) (Bi(ls,)" 0f s — p(ls,) Vily — Bi (s, a))

a

<> duls,a) (Br(ls,a) = p(ls,a) Vi, — BE(s,a)) <0

where the first inequality is true because of the confidence intervals on the reward function and the penultimate
inequality is true because of the backward induction hypothesis. O

Thanks to this result, we can formulate a condition that the algorithm can check, at the beginning of episode k
to decide if a policy is safe to play or not :

k
Z " (s1,1) Z Vz1 s11) > (1—a) Z *(s11) (2.153)

lesk—lu{k‘} lesSg_,

7

Algorithm 9: CUCB-VI algorithm.
Input: Policy mp, § € (0,1), Tmax, S, A, o’ € (0,1), H
Set H=0,So=0and S§ =0
for episodes k = 1,2, ... do
Compute optimistic policy 7 using any OFU algorithm on history H.
Compute pessimistic estimate v;* as in Eq. 2.152.
if Equation (2.153) not verified: then
‘ T = Tp, S;C:Jrl = S;é @] {k} and Sk+1 =S
else
| Sky1 =8k U{k} and S¢,, = Si
forh=1,...,H do
Execute a,r, = 7k (Sk,n), obtain reward 7y 5, and observe si .
if T 76 T then
‘ Add (sk7h,ak7h,rk7h,sk,h+1) to H

where Sj,_; is the set of episodes where the algorithm previously played non-conservatively, S;_; = [k — 1] \ Sk—1
is the set of episodes played conservatively and (7;); is the policies that the OFU algorithm (e.g., UCB-VI) would
execute without the conservative constraint.

Alg. 9 shows the generic structure of any conservative exploration algorithm for MDPs. First, it computes an
optimistic policy by leveraging on an OFU algorithm and the collected history. Then it checks the conservative
condition. When Eq. 2.153 is verified it plays the optimistic policy otherwise it plays conservatively by executing
policy mp. This allows to build some budget for playing exploratory actions in the future.

Regret Guarantees We analyse Alg. 9 with UCB-VI. Before to introduce the upper-bound to the regret of
CUCB-VI we introduce the following assumption on the baseline policy.

Assumption 10. The baseline policy m, € IIMR is such that 1}, := min{V™(s)} > 0.
We can now state the main results:

Proposition 5. For § > 0, the regret of conservative UCB-VI (CUCB-V1) is upper-bounded with probability at
least 1 — § by:

1

B-VI,K) < BVLK)+—
R(CUCB-VI, K) <R(UCB-VI,)+4Mb(éb+wb)

<16H3LK + (200H°S*A + 128H5SA)L§(> (2.154)

where Ly = max{ln (3KHSA/S),1} and A, = minges{V7*(s) — V" (s)}.

Proof. Let's define the high probability event, &, that is such that in this event, all the concentration inequalities
holds and the Martingale Difference Sequence concentration inequalities also holds :

- . 251n (3KSA/))
Ei,5 = ﬂ ﬂ {|p('|s’a) — (s, a)llr < \/maX{l,Nk(s,a)}}

(s,a)ESXAkE[K]

) In (3KSA/J)
ﬂ {|rk(s7a) —r(s,a)] < 2rmax\/max{1,Nk(57a)}}

H
&=) { S ewn < HY?\/2#8:In (3KH/5)}

ke[K] \leS, h=1

and finally, £ := & 5 N &2 5, then & holds with probability at least 1 — d. Indeed,

peey < S~ 0 2 5
()—;3HK+SZ;%:3KSA—

78

Under this event, we have that for all episode k € Sk :

H

1 (s1,%) — 0 (51,6) <O €kon + 5L (sk.m, df (5k.n)) + 284 (8.0, df (51.1)),
h=1

where (exn)kes, hem) is @ martingale difference sequence with respect to the filtration (F. n)res, ne(r that is
generated by all the randomness before step h of episode k. Indeed, for an episode k, let 7, = (d¥,...,d%),
decomposing 7y into successive decision rules.

Vg1 (81,,%) — Uply <285 (s1, k. d5 (51,)) + Dre(- | S1,0,dV(51,%)) T (Vh2 — URly) + 268 (s1, k. df (s1,))
Thus by defining, By = 3ﬂ£(sk7h,d§(sk7h)) + 2ﬂ£(sk7h,d£(sk7h)), we have :

T (s1,k) — Uit (s1.k) <Bra + Br(- | 1,k dY (51,6) — P(Is1k, AV (51,8))T (U2 — v3y) + (Tr2(sk.2) — v (sk.2))
— (Bk,2(sk,2) — 05’ (58,2)) + (L1 ks dY (51,8) T (Tr2 — v}y)
< p([s1, k. d5 (s1,0) T (k2 —) — Wk2(sk,2) — v (sk,2)) + 28 (s1,k, d5 (s1,%)) + Bra
+ (Tk,2(8k,2) — 055 (Sk,2))

But let's define ey, := p(.|sk.n, d5 (k.1))T Uk — i) = @k,n(Sk,nt1) — U, (Sk,n41)) then (exp)ke(k) ne(m) is 2

Martingale Difference Sequence with respect to the filtration Fj, 5, which is generated by all the randomness in the
environment and the algorithm before step h of episode k& . Then, by recursion, we have :

H

Vg1 (81,,6) — v (81,6) < Z Bin + €k,n + 288 (sk d5 (sk.n))
h=1

The regret of algorithm CUCB-VI can be decomposed as :
R(CUCB-VLK) = Y Vi(s1.0) = Vi (s1.0) + D Vi (s1.) — V™ (51,
keSY, kESK
< |S%|A, + R(UCB-VI, |Sk|)
where Ay = max,ecs V*(s) — V™(s). Therefore bounding the regret amounts to bound the number of episode

played conservatively. To do so, let's consider, 7 the last episode played conservatively, then before the beginning of
episode 7, the condition 2.153 is not verified and thus :

T
ad V(i) < Y VW (s1k) — upt(s1)
k=1

keS,_1u{r}

=Ap1

Thus, let's finish this analysis by bounding Ay 1 = V™ (s1 k) — vk * (s1,%) for all k € Sk. But:

A =V (s1,6) = Vi (s1,6) + Vi (81,6) — v (81,6) < =By +0,1(51,6) — 05 (51,6)

where A, := min, V7*(s) — V™" (s). Now, we need to bound the sum over all the non-conservative episodes of the
difference between the optimistic and pessimistic value function. That is to say :

21n (3K SA/5)
4 d 2H T max
S S i) = Y S 2 \/maX{LNk(Sk’h,dmh))

leS,_1 h=1 leS,_1 h=1
< 2maxH?\/2SAH|S, _1|(1 +In(|S,_1|H)) In (3K SA/6)

Also :

2510 (3K.SA/S)
p
Z Zﬂk Sk hydh Sk, h Z Z maX{].,Nk(Sk,h,d’;L(Sk,h))

leS,_1 h=1 leS,_1 h=1

< H?S\/2AH#S, _1(1+In(#S,_1H))In (3KSA/5)

79

and, under the event £, 7. | SO ern < 2H3/2\/2[S,_|[In(3K H/). On the other hand, for the episode 7,
we can only bound the difference in value function by H. Finally, we have that 7 =1+ |S¢_,| 4 |S;_1| and thus if

we assume that 7y, := mins V™ (s) > 0 :

ary(82 41+ 1) < a3V (s1,4) < (A, + any)|S, 1| + 2HY\/2]S, [In(3K H/3)
k=1

+5H?S\/2AH|S, 1|(1+ S,_1|H))In (3KSA/6)

+ 47 max H? /25 AH|S; _1|(1 + In(|S-_1|H)) In (3K SA/6)
Thus, the function on the RHS in bounded and using lemma 8 of Kazerouni et al. (2017), we have :

1 3KH
¢ N<— [16H?’In | —= 200H°S?A + 12872, H°SA
arpy(|SS_1|+ 1) (Ab+arb)<6 n(3 >—|—(00 S?A+128r7, H SA) x

!
«(1+1In (HK)) In <3K55A)>

But by definition, |S¢_;]| + 1 = |S%]|. Hence the result.

O

Experiments Finally, we end this presentation of conservativeness in finite horizon MDPs with some experiments.
We consider a classic 3 x 4 gridworld problem with one goal state, a starting state and one trap state, we set H = 10,
and the reward of any action in all the state to —2, the reward in the goal state to 10 and the reward of falling in
the trapping state to —20. We normalize the rewards to be in [0, 1]. The baseline policy is describing a path around
the pit, see Fig 2.C.1. On the two position adjacent to the goal the baseline policy is stochastic with a probability of

\Le<|>g
ARl
PSR

Figure 2.C.1: lllustration of the baseline policy. S is the starting state, X is the pit a,d G is the goal state.

reaching the goal of 1/2 for the position on the right of the goal and below the goal, respectively. On the last line
the probability of going up or right is also uniform. Figure 2.C.2 shows the impact of the conservative constraint on
the regret of UCB-VI for a conservative coefficient v = 0.05. Fig 2.C.2 also shows the constraint as a function of
the time for UCB-VT and CUCB-VT that is to say: >.i_, V™ (s9) — (1 —a)V™(so) as a function of episode ¢ with
S the starting state of the gridworld. In the first 10% episodes (i.e until episode 300) the condition was violated by

UCB-VI 83% of the time.

200

= UCB-VI 300 9 === UCB-VI R
- --+- CUCB-VI 0.05 ---- CUCB-VI 0.05 -
5 1504 .
=]
: 2 200
Q ﬂf —
o
S 100 e
E k|
> =
g 504 - E 100
S e ©
s |
0 bz e
T T T T T 0 T T T T T
0 50 100 150 200 250 300 0 500 1,000 1,500 2,000 2,500 3,000
Time Time

Figure 2.C.2: Regret and Conservative Condition for the gridworld problem

80

+ Jrm o m o m o mwwoe -
] »
= IS
;q:éo 3 - ;' _
¢ 9| ¢ =——UCRL i
= K +=+= CUCRL 0.001
ERRN SN
g
=
O 0 | |

0 0.5 1

Time ,106

Figure 2.C.3: Regret of UCRL2 and CUCRL2 on the Cost-Based Maintenance problem described in 2.A.6

2.C.4 Experiments

For average reward problems we consider “simplified” Bernstein confidence intervals given by:

In(SA/0) In(SA/0)
N,j'(s,a) e N]j'(s,a)

In(SA/6) In(SA/0)
N;'(s,a) N,j'(s,a)

and B;;(s,a,s/) =op(s,a,s)

Br (s, a) = ov(s,a)

where N, (s, a) = max{1, Ni(s,a)}, 0,-(s, a) is the empirical standard deviation and o,(s,a, ') = \/p(s'|s, a)(1 — p(s'[s, a)).

2.C.4.1 Single-Product Stochastic Inventory Control

Maintaining inventories is necessary for any company dealing with physical products. We consider the case of single
product without backlogging. The state space is the amount of products in the inventory, S = {0,..., M} where M
is the maximum capacity. Given the state s; at the beginning of the month, the manager (agent) has to decide the
amount of units a; to order. We define D, to be the random demand of month ¢ and we assume a time-homogeneous
probability distribution for the demand. The inventory at time ¢ + 1 is given by

St4+1 = max{0, s¢ + a; — D;}

The action space is A, = {0,...,M — s}. As in (Puterman, 1994), we assume a fixed cost K > 0 for placing
K+c(a) a>0

. The
0 otherwise

orders and a varible cost c(a) that increases with the quantity ordered: O(a) =

cost of maintaining an inventory of s items is defined by the nondecreasing function h(s). If the inventory is
available to meet a demand j, the agent receives a revenue of f(j). The reward is thus defined as r(s;, as, $¢41) =
—O(ay) — h(s¢ + ai) + f(s¢ + ar — se41). In the experiments, we use K = 4, ¢(x) = 2z, h(z) = x and f(z) = 8z.

In all the experiments, we normalize rewards such that the support is in [0, 1] and we use noise proportional to
the reward mean: ry(s,a) = (1 + cn)r(s,a) where g, ~ N'(0,1) (we set ¢ = 0.1).

2.C.4.2 Cost-Based Maintenance

The system is composed by N components in an active redundant, parallel setting, which are subject to economic
and stochastic dependence through load sharing. Each component j € [N] is described by its operational level
xzj ={0,...,L}. The level L denotes that the component has failed. The deterioration process is modelled using a
Poisson process. If all components have failed, the system is shut down and a penalty cost p is paid. The replacement
of a failed component cost ¢, while the same operation on an active component cost ¢, (usually ¢, > ¢,). There is
also a fixed cost for maintenance c,. At each time step, it is possible to replace simultaneously multiple components.
Refer to (Olde Keizer, 2016) for a complete description of dynamics and rewards.

We terminate the analysis of CUCRL2 with a more challenging test. We consider the condition-based mainte-
nance problem (CBM, Olde Keizer, 2016) a multi-component system subject to structural, economic and stochastic
dependences. We report a complete description of the problem in App. 2.A.6. The resulting MDP has S = 121 states
and A = 4 actions. The maintenance policy is often implemented as a threshold policy based on the deterioration
level. Such a threshold policy is not necessarily optimal for a system with economic dependence and redundancy. We

81

simulate this scenario by considering a strong (almost optimal) threshold policy for CBM without economic depen-
dence as baseline. We make it stochastic by selecting with probability 0.3 a random action. As a result we have that
the optimal gain g* = 0.89 while the baseline gain is g™ = 0.82. Fig. 2.C.3 shows the cumulative regret for UCRL2
and CUCRL2 with o = 0.001. UCRL2 explores faster than CUCRL2 but violates the conservative condition 53%
of times in the initial phase (up to ¢t = 140000), incurring in multiple complete system failures. On the other hand,
CUCRL2 never violates the conservative condition.

82

Chapter 3

Private Reinforcement Learning

In the last chapter, we studied two different performance constraints that one may encountered when deploying
a Bandit or Reinforcement Learning system for a specific application. In this chapter, we study the impact of
privacy constraints on the learning process in Reinforcement Learning. Privacy in Machine Learning has been studied
extensively in the last two decades (Dwork et al., 2006, 2010b; Duchi et al., 2013). In this chapter, we focus on
notion of differential privacy. From a high level point of view, differential privacy states that if a machine learning
system is trained on two datasets that differs by at most a small number of different entries the outputs of those two
systems are not statistically too different!. Although this notion of privacy is well defined in the standard supervised
learning setting it is not the case for online learning.

This has led to a significant amount of work to define differential privacy in the MAB and linear contextual bandit
(Shariff and Sheffet, 2018; Gajane et al., 2016). However, the definition of Differential Privacy for bandit does not
take into account the state space in Reinforcement Learning. In this thesis, we studied how to define differential
privacy in a tabular Reinforcement Learning setting. Defining this notion in RL requires to put a strong constraint
on the exploration process as each action taken by the algorithm can leak information about the current state or
previous visited states.

In this chapter, we first present how to build a local differential privacy algorithm for tabular Reinforcement
Learning with regret guarantees. We then show how to apply a recent advances in the Differential Privacy literature
to merge the two different notions of privacy —local and central differential privacy— in linear contextual bandit.

This chapter is based on the two following articles:

= Evrard Garcelon, Vianney Perchet, Ciara Pike-Burke, and Matteo Pirotta. Local differential privacy for regret
minimization in reinforcement learning. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman
Vaughan, editors, Advances in Neural Information Processing Systems, volume 34, pages 10561-10573. Curran
Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/

= Evrard Garcelon, Kamalika Chaudhuri, Vianney Perchet, and Matteo Pirotta. Privacy amplification via shuf-
fling for linear contextual bandits. In Sanjoy Dasgupta and Nika Haghtalab, editors, International Conference on
Algorithmic Learning Theory, 29-1 April 2022, Paris, France, volume 167 of Proceedings of Machine Learning
Research, pages 381-407. PMLR, 2022b. URL https://proceedings.mlr.press/v167/garcelon22a.html

IThe notion of "too different” is controlled quantitatively in this privacy setting.

83

https://proceedings.neurips.cc/paper/2021/
https://proceedings.mlr.press/v167/garcelon22a.html

Contents

3.1 (Local) Differential Privacy in Reinforcement Learning 85
3.1.1 Basics of Differential Privacy in RL oo 86
3.1.2 Regret Lower Bound Under LDP Constraint in RL 87
3.1.3 Exploration Under Local Differential Privacy 88
3.1.4 Choice of Randomizer e 90
3.1.5 Numerical Evaluation e 91
3.1.6 Concluding Remarks and Potential Extensions 92

3.2 Improving Privacy by Shuffling 0000000 93
3.2.1 The Shuffle Model in Linear Contextual Bandits 94
3.2.2 Shuffle Model with Fixed-Batch Shuffler, 95
3.2.3 Analysis of The Shuffle Model with Fixed-Batch Shuffler 97
3.2.4 Potential Extensions Lo 101

3.3 Conclusion i i i i i e 101

3.A Appendix for (Local) Differential Privacy in Reinforcement LearningL 103
3.A.1 Extended Related Work 103
3.A.2 Regret Lower Bound (Proof of Thm. 6) 103
3.A.3 Concentration under Local Differential Privacy (Proof of Prop. 6): 106
3.A.4 Regret Upper Bound (Proof of Thm. 7) 108
3.A.5 The Laplace Mechanism for Local Differential Privacy 111
3.A.6 Other Privacy Preserving Mechanisms 114
3.A.7 Experimental Results: 122
3.A.8 Posterior Sampling for Local Differential Privacy 122
3.A.9 Additional Experiment Lo 125
3.A.10 Privacy Amplification by Shufflingin RL 125

3.B Appendix for Improving Privacy by Shuffling 127
3.B.1 Local Privatizer Mipp . . .« o v v o o e e e e e e 127
3.B.2 Proofs e 129
3.B.3 Regret with Scheduled Update Algorithm 134

84

3.1 (Local) Differential Privacy in Reinforcement Learning

The practical successes of Reinforcement Learning (RL) algorithms have led to them becoming ubiquitous in many
settings such as digital marketing, healthcare and finance, where it is desirable to provide a personalized service (e.g.,
Mao et al., 2020; Wang and Yu, 2021). However, users are becoming increasingly wary of the amount of personal
information that these services require. This is particularly pertinent in many of the aforementioned domains where
the data obtained by the RL algorithm are highly sensitive. For example, in healthcare, the state encodes personal
information such as gender, age, vital signs, etc. In advertising, it is normal for states to include browser history,
geolocalized information, etc. Unfortunately, (Pan et al., 2019) has shown that, unless sufficient precautions are
taken, the RL agent leaks information about the environment (i.e., states containing sensitive information). That
is to say, observing the policy computed by the RL algorithm is sufficient to infer information about the data (e.g.,
states and rewards) used to compute the policy (scenario @). This puts users’ privacy at jeopardy. Users therefore
want to keep their sensitive information private, not only to an observer but also to the service provider itself (i.e.,
the RL agent). In response, many services are adapting to provide stronger protection of user privacy and personal
data, for example by guaranteeing privacy directly on the user side (scenario @). This often means that user data
(i.e., trajectories of states, actions, rewards) are privatized before being observed by the RL agent. In this paper, we
study the effect that this has on the learning problem in RL.

Differential privacy (DP) (Dwork et al., 2006) is a standard mechanism for preserving data privacy, both on the
algorithm and the user side. The (e,d)-DP definition guarantees that it is statistically hard to infer information
about the data used to train a model by observing its predictions, thus addressing scenario @. In online learning,
(e,9)-DP has been studied in the multi-armed bandit framework (e.g., Mishra and Thakurta, 2015; Tossou and
Dimitrakakis, 2016). However, (Shariff and Sheffet, 2018) showed that DP is incompatible with regret minimization
in the contextual bandit problems. This led to considering weaker or different notions of privacy (e.g., Shariff and
Sheffet, 2018; Boursier and Perchet, 2020). Recently, (Vietri et al., 2020) transferred some of these techniques to RL,
presenting the first private algorithm for regret minimization in finite-horizon problems. In (Vietri et al., 2020), they
considered a relaxed definition of DP called joint differential privacy (JDP) and showed that, under JDP constraints,
the regret only increases by an additive term which is logarithmic in the number of episodes. Similarly to DP, in the
JDP setting the privacy burden lies with the learning algorithm which directly observes user states and trajectories
containing sensitive data. In particular, this means that the data itself is not private and could potentially be used
—for example by the owner of the application— to train other algorithms with no privacy guarantees. An alternative
and stronger definition of privacy is Local Differential Privacy (LDP) (Duchi et al., 2013). This requires that the
user’'s data is protected at collection time before the learning agent has access to it. This covers scenario @ and
implies that the learner is DP. Intuitively, in RL, LDP ensures that each sample (states and rewards associated to
an user) is already private when observed by the learning agent, while JDP requires computation on the entire set
of samples to be DP. Recently, (Zheng et al., 2020) showed that, in contrast to DP, LDP is compatible with regret
minimization in contextual bandits.> LDP is thus a stronger definition of privacy, simpler to understand and more
user friendly. These characteristics make LDP more suited for real-world applications. However, as we show in this
paper, guaranteeing LDP in RL makes the learning problem more challenging.

In this chapter, we study LDP for regret minimization in finite horizon reinforcement learning problems with S
states, A actions, a horizon of H and a number of episodes K .3 Our contributions are as follows. 1) We provide a
regret lower bound for (g, 0)-LDP on(H\/ SAK /min{e—1, 1}) showing LDP is inherently harder than JDP, where
the lower-bound is only Q(HV/SAK +SAH log(K H)/e) (Vietri et al., 2020). 2) We propose the first LDP algorithm
for regret minimization in RL. We use a general privacy-preserving mechanism to perturb information associated to
each trajectory and derive LDP-OBI, an optimistic model-based (g,)-LDP algorithm with regret guarantees. 3)
We present multiple privacy-preserving mechanisms that are compatible with LDP-OBI and show that their regret is
O(VK /) up to some mechanism dependent terms depending on S, A, H. 4) We perform numerical simulations to
evaluate the impact of LDP on the learning process. For comparison, we build a Thompson sampling algorithm (e.g.,
Osband et al., 2013) for which we provide LDP guarantees but no regret bound.

The notion of differential privacy was introduced in (Dwork et al., 2006) and is now a standard in machine

2This shows that there are peculiarities in the DP definitions that are unique to sequential decision-making problems such as RL. The
discrepancy between DP and LDP in RL is due to the fact that, when guaranteeing DP, actions taken by the learner cannot depend on
the current state (this would break the privacy guarantee). On the other hand, in the LDP setting, the user executes a policy prescribed
by the learner on its end (i.e., directly on non-private states) and send a privatized result (sequence of states and rewards observed by
executing the policy) to the learner. Hence the user can execute actions based on its current state leading to a sublinear regret.

3We do not explicitly focus on preventing malicious attacks or securing the communication between the RL algorithm and the users.
This is outside the scope of the paper.

85

learning (e.g., Erlingsson et al., 2014; Dwork and Roth, 2014; Abowd, 2018). Several notions of DP have been
studied in the literature, including the standard DP and LDP notions. While LDP is a stronger definition of privacy
compared to DP, recent works have highlighted that it possible to achieve a trade-off between the two settings in
terms of privacy and utility. The shuffling model of privacy (Cheu et al., 2019; Feldman et al., 2020; Chen et al.,
2021; Balle et al., 2019b; Erlingsson et al., 2020) allows to build (e, §)-DP algorithm with an additional (¢’,4")-LDP
guarantee (for ¢’ = e+1In(n), any ¢’ > 0 where n is the number of samples), hence it is possible to trade-off between
DP, LDP, and utility in this setting. However, the scope of this paper is ensuring (¢, d)-LDP guarantees for a fixed ¢.
In this case, shuffling will not provide an improvement in utility (error) (see Thm 5.2 in Sec. 5.1 of (Feldman et al.,
2020) and App. 3.A.10).

The bandit literature has investigated different privacy notions, including DP, JDP and LDP (Mishra and Thakurta,
2015; Tossou and Dimitrakakis, 2016; Gajane et al., 2018; Shariff and Sheffet, 2018; Sajed and Sheffet, 2019; Chen
et al.,, 2020; Zheng et al., 2020; Ren et al., 2020). In contextual bandits, (Shariff and Sheffet, 2018) derived an
impossibility result for learning under DP by showing a regret lower-bound Q(T') for any (e,)-DP algorithm. Since
the contextual bandit problem is a finite-horizon RL problem with horizon H = 1, this implies that DP is incompatible
with regret minimization in RL as well. Regret minimization in RL with privacy guarantees has only been considered
in (Vietri et al., 2020), where the authors extended the JDP approach from bandit to finite-horizon RL problems.
They proposed a variation of UBEV (Dann et al., 2017) using a randomized response mechanism to guarantee e-JDP
with an additive cost to the regret bound. While local differential privacy (Duchi et al., 2013) has attracted increasing
interest in the bandit literature (e.g., Gajane et al., 2018; Chen et al., 2020; Zheng et al., 2020; Ren et al., 2020),
it remains unexplored in the RL literature, and we provide the first contribution in that direction. Finally, outside
regret minimization, DP has been studied in off-policy evaluation (Balle et al., 2016), in control with DP guarantees
on only the reward function (Wang and Hegde, 2019), and in distributional RL (Ono and Takahashi, 2020).

3.1.1 Basics of Differential Privacy in RL

We consider the finite-horizon time-homogeneous Markov Decision Process (MDP) (Puterman, 1994, Chp. 4)
M = (S, A,p,r, H) with state space S, action space A, and horizon H € NT described in Section 1.2.3.1. Every
state-action pair is characterized by a reward distribution with mean r(s,a) supported in [0,1] and a transition
distribution p(-|s,a) over next state.* We denote by S = |S| and A = |A| the number of states and actions.
A non-stationary Markovian deterministic (MD) policy is defined as a collection © = (m1,...,7x) of MD policies
m, S - A. Forany h € [H] := {1,...,H} and state s € S, the value functions of a policy 7 are defined

as Q7 (s,a) = r(s,a) + Ex {Zfihﬂ r(si,ai)} and V/7(s) = Q™(s,mn(s)). There exists an optimal Markovian

and deterministic policy 7* (Puterman, 1994, Sec. 4.4) such that V;*(s) = V;™ (s) = max, V;"(s). The Bellman
equations at stage h € [H] are defined as Q}(s,a) = ru(s,a) + maxa By p, (5,0 [Viip1(5))]. The value iteration
algorithm (a.k.a. backward induction) computes Q* by applying the Bellman equations starting from stage H down
to 1, with V4, (s) = 0 for any s. The optimal policy is simply the greedy policy: 7 (s) = argmax, Qj (s,a). By
boundness of the reward, all value functions V7 (s) are bounded in [0, H — h + 1] for any h and s.

The general interaction protocol. The learning agent (e.g., a personalization service) interacts with an unknown
MDP with multiple users in a sequence of episodes k € [K] of fixed length H. At each episode k, an user wy, arrives
and their personal information (e.g., location, gender, health status, etc.) is encoded by the state 51,k. The learner
selects a policy 7 that is sent to the user wuy for local execution on “clear” states. The outcome of the execution,
i.e., a trajectory, X = (skh,akh,rkh,sk7h+1)he[H] is sent to the learner to update the policy. Note that we have
not yet explicitly taken into consideration privacy in here. We evaluate the performance of a learning algorithm 2

which plays policies 71, ..., 7k by its cumulative regret after K episodes
K
A(K) =Y (Vi (s1,6) = V™ (s10))- (3.1)
k=1

3.1.1.1 Local Differential Privacy in RL

In many application settings, when modelling a decision problem as a finite horizon MDP, it is natural to view each
episode k € [K] as a trajectory associated to a specific user. In this paper, we assume that the sensitive information

4We can simply modify the algorithm to handle step dependent transitions and rewards. The regret is then multiplied by a factor

HVH.

86

is contained in the states and rewards of the trajectory. Those quantities need to be kept private. This is reasonable
in many settings such as healthcare, advertising, and finance, where states encode personal information, such as
location, health, income etc. For example, an investment service may aim to provide each user with investment
suggestions tailored to their income, deposit amount, age, risk level, properties owned, etc. This information is
encoded in the user state and evolves over time as a consequence of investment decisions. The service provides
guidances in the form of a policy (e.g., where, when and how much to invest) and the user follows the strategy for a
certain amount of time. After that and based on the newly acquired information the provider may decide to change
the policy. However, the user may want to keep their personal and sensitive information private to the company,
while still receiving a personalised and meaningful service. This poses a fundamental challenge since in many cases,
this information about actions taken in each state is essential for learning and creating a personalized experience for
the user. The goal of a private RL algorithm is thus to ensure that the sensitive information remains private, while
preserving the learnability of the problem.

Privacy in RL has been tackled in (Vietri et al., 2020) through the lens of joint differential privacy (JDP).
Intuitively, JDP requires that when a user changes, the actions observed by the other K — 1 users will not change
much (Vietri et al., 2020). The privacy burden thus lies with the RL algorithm. The algorithm has access to all
the information about the users (i.e., trajectories) containing sensitive data. It then has to provide guarantees about
the privacy of the data and carefully select the policies to execute in order to guarantee JDP. This approach to
privacy requires the user to trust the RL algorithm to privately handle the data and not to expose or share sensitive
information, and does not cover the examples mentioned above.

In contrast to prior work, in this paper, we consider local differential privacy (LDP) in RL. This removes the
requirement that the RL algorithm observes the true sensitive data, achieving stronger privacy guarantees. LDP
requires that an algorithm has access to user information (trajectories in RL) only through samples that have been
privatized before being passed to the learning agent. This is different to JDP or DP where the trajectories are directly
fed to the RL agent. In LDP, information is secured locally by the user using a private randomizer M, before being
sent to the RL agent. The appeal of this local model is that privatization can be done locally on the user-side. Since
nobody other than the user has ever access to any piece of non private data, this local setting is far more private.
There are several variations of LDP available in the literature. In this paper, we focus on the non-interactive setting.
We argue that this is more appropriate for RL. Indeed, due to the RL interaction framework, the data generated by
user k is a function of the data of all users [< k, therefore the data are not i.i.d. and the standard definition of
sequential interactivity for LDP (Eq. 1 in (Duchi et al., 2013)) is not applicable. It is therefore more natural to study
the non-interactive setting (Eq. 2 in (Duchi et al., 2013)) in RL. We formally define this below.

Following the definition in (Vietri et al., 2020), a user u is characterized by a starting state distribution P0,u (i.e.,
for user u, $1 ~ po,,) and a tree of depth H, describing all the possible sequence of states and rewards corresponding
to all possible sequences of actions. Alg. 10 describes the LDP private interaction protocol between K unique users
{u1,...,ux} C UK, with U the set of all users, and an RL algorithm 21. For any k € [K], let s1 4 ~ po.u, be the
initial state for user u; and denote by X, = {(Sk.h,ak,n,Tk,n) | h € [H]} € Xy, the trajectory corresponding to
user uy, executing a policy 7. We write M(X,,) to denote the privatized data generated by the randomizer for
user u. The goal of mechanism M is to privatize sensitive informations while encoding sufficient information for
learning. With these notions in mind, LDP in RL can be defined as follows:

Definition 1. For any e > 0 and 6 > 0, a privacy preserving mechanism M is said to be (e, §)-Locally Differential
Private (LDP) if and only if for all users u, v’ € U, trajectories (X, Xy) € Xy X Xy and all O C {M(X,) | u € U}:

PM(X,) €0)<efPM(Xy)€O)+46 (3.2)
where X, is the space of trajectories associated to user u.

Def. 3 ensures that if the RL algorithm observes the output of the privacy mechanism M for two different input
trajectories, then it is statistically difficult to guess which output is from which input trajectory. As a consequence,
the users’ privacy is preserved.

3.1.2 Regret Lower Bound Under LDP Constraint in RL

We provide a lower bound on the regret that any LDP RL algorithm must incur. For this, as is standard when proving
lower bounds on the regret in RL (e.g., Auer et al., 2002b; Lattimore and Szepesvari, 2020), we construct a hard
instance of the problem. The proof (see App. 3.A.2) relies on the fact that LDP acts as Lipschitz function, with
respect to the KL-divergence, in the space of probability distribution.

87

Algorithm 10: Locally Private Episodic RL

Input: Agent: 2, Local Randomizer: M, Users:
Uty..., UK

for k=1 to K do

Agent 2 computes 7 using {M(Xu,) }ier—1]

User uy receives 7, from agent 21 and observes
S1,k ™~ PO,uy

User uj, executes policy m; on “non-private”
states and observes a trajectory
Xy = {(8hk> Qh ks Thok) Yrhe[H)

User uj, sends back private data M (X,) to 2

Algorithm 11: LDP-OBI (M)

Input: § € (0,1), a > 1, randomizer M with
parameters (e, do)

for k=1 to K do

Compute py, and 7, as in Eq. (3.4) using
{M(Xw;) ieix—1), Br and B% as in Prop. 6
using {ck,: (€0, do, %)}1 and bk

Compute 7 as in Eq. (3.5) and send it to user
Uk

User uj, executes policy my, collects trajectory
X and sends back privatized value M (X})

Theorem 6 (Lower-Bound). For any algorithm A associated to a e-LDP mechanism, any number of states S > 3,
actions A > 2 and H > 2log,(S — 2) + 2, there exists an MDP M with S states and A actions such that:

HVSAK
Enm(A(K)) =z Q2 (W)
The lower bound of Thm. 6 shows that the price to pay for LDP in the RL setting is a factor 1/(exp(e) — 1)
compared to the non-private lower bound of HV/SAK. The regret lower bound scales multiplicatively with the
privacy parameter £. The recent work of (Vietri et al., 2020) shows that for JDP, the regret in finite-horizon MDPs

is lower-bounded by (H\/ SAK + é) Thm. 6 shows that the local differential privacy setting is inherently harder

than the joint differential privacy one for small €, as our lower-bound scales with /K /e when ¢ = 0. Both bounds
scale with vV K when ¢ — +o0.

3.1.3 Exploration Under Local Differential Privacy

A standard approach to the design of the private randomizer M is to inject noise into the data to be preserved (Dwork
and Roth, 2014). A key challenge in RL is that we cannot simply inject noise to each component of the trajectory
since this will break the temporal consistency of the trajectory and possibly prevent learning. In fact, a trajectory is
not an arbitrary sequence of states, actions, and rewards but obeys the Markov reward process induced by a policy.
Fortunately, Def. 3 shows that the output of the randomizer need not necessarily be a trajectory but could be any
private information built from it. In the next subsection, we show how to leverage this key feature to output succinct
information that preserves the information encoded in a trajectory while satisfying the privacy constraints. We show
that the output of such a randomizer can be used by an RL algorithm to build estimates of the unknown rewards and
transitions. While these estimates are biased, we show that they carry enough information to derive optimistic policies
for exploration. We leverage these tools to design LDP-OBI, an optimistic model-based algorithm for exploration
with LDP guarantees.

3.1.3.1 Privacy-Preserving Mechanism

Consider the locally-private episodic RL protocol described in Alg. 10. At the end of each episode k € [K], user uy
uses a private randomizer M to generate a private statistic M(X,,) to pass to the RL algorithm 2[. This statistic
should encode sufficient information for the RL algorithm to improve the policy while maintaining the user’s privacy.
In model-based settings, a sufficient statistic is a local estimate of the rewards and transitions. Since this cannot be
reliably obtained from a single trajectory, we resort to counters of visits and rewards that can be aggregated by the
RL algorithm.

For a given trajectory X = {(sn, an,7h)}ne[n). let Rx(s,a) = Zthl Tl =s,an=a} Nx(5,0) = Zthl 1(s,=s,an=a}
and N% (s,a,s") = hH:_11 15, =s,an=a,sns1—s'} De the true non-private statistics, which the agent will never observe.
We design the mechanism M so that for a given trajectory X, M returns private versions M(X) = (ﬁx,ﬁgg,]\7;})
of these statistics. Here, Rx (s, a) is a noisy version of the cumulative reward Rx (s,a), and N% and Nf(are per-
turbed counters of visits to state-action and state-action-next state tuples, respectively. At the beginning of episode
k, the algorithm has access to the aggregated private statistics:

Ri(s,a) = ZRXM (s,a), Nj(s,a) = ZNX s,a) (s,a,s) ZNP (s,a,8") (3.3)
1<k 1<k 1<k

88

We denote the non-private counterparts of these aggregated statistics as Ry (s,a) = >, Rx, (s,a), Nj(s,a) =
ek N)T(w (s,a) and N(s,a,s") = 3,4 Nf(ul (s,a,s"), these are also unknown to the RL agent. Using these
private statistics, we can define conditions that a private randomizer must satisfy in order for our RL agent, LDP-
OB]I, to be able to learn the reward and dynamics of the MDP.

Assumption 11. The private randomizer M satisfies (g, 00)-LDP, Def. 3, with €g, 9 > 0. Moreover, for any 6 > 0
and k > 0, there exist four finite strictly positive function, ci 1(€o, 00, 9), ¢k 2(€0, 00, 9), ck,3(€0, d0,0), ¢k, 4(€0, 00, 0) €
R such that with probabilty at least 1 — ¢ for all (s,a,s’) € S x Ax S:

’Ek(s,a) — Rk(s,a)‘ < ¢x.1(€0, 00, 9), ‘N]:(s,a) - N,Z(s,a)‘ < ¢g.2(€0, 00,)

S Ck,3(€035075)5 ‘N,f(s,a,s') - N}f('S?avS/)‘ S Ck,4(5076076)

ZN}:(S,CL,S') - N]f(s,a,s')

The functions cy, 1(€0, 00,9), ck2(€0,00,0), ck3(€0,00,0) and cx (o, d0,d) must be increasing functions of k and
decreasing functions of §. We also write ¢y, 1(€¢,9), cx,2(£0,0), ck,3(€0,0) and ci a(g0,0) when 6o = 0.

In Sec. 3.1.4, we will present schemas satisfying Asm. 11 and discuss their impacts on privacy and regret.

3.1.3.2 Our LDP Algorithm For Exploration

In this subsection, we introduce LDP-OBI (Local Differentially Private Optimistic Backward Induction), a flexible
optimistic model-based algorithm for exploration that can be paired with any privacy mechanism satisfying Asm. 11.
When developing optimistic algorithms it is necessary to define confidence intervals using an estimated model that are
broad enough to capture the true model with high probability, but narrow enough to ensure low regret. This is made
more complicated in the LDP setting, since the estimated model is defined using randomized counters. In particular,
this means we cannot use standard concentration inequalities such as those used in (Azar et al., 2017a; Zanette and
Brunskill, 2019). Moreover, when working with randomized counters, classical estimators like the empirical mean can
even be ill-defined as the number of visits to a state-action pair, for example, can be negative.

Nevertheless, we show that by exploiting the properties of the mechanism M in Asm. 11, it is still possible to
define an empirical model which can be shown to be close to the true model with high probability. To construct this
empirical estimator, we rely on the fact that for each state-action pair (s, a), Nj (s, a)+cx 2(€0,0,9) > NJ (s,a) >0
with high probability where the precision ¢ 2(€0, do, 9) ensures the positivity of the noisy number of visits to a state
action-pair. A similar argument holds for the transitions. Formally, the estimated private rewards and transitions
before episode k are defined as follows:

N?(s,a,s)

1\75(3, a) + acy 3(€o, 0o, 9)

Ek(&a’)
NI(s,a) 4 acg.a(co, 0o, 8)

?k(S,CL) =) ﬁk(sl | 570/) = (34)
Note that unlike in classic optimistic algorithms, pj, is not a probability measure but a signed sub-probability measure.
However, this does not preclude good performance. By leveraging properties of Asm. 11 we are able to build confidence
intervals using these private quantities (see App. 3.A.5). Using standard concentration inequalities on each component
would lead to wider confidence intervals.

Proposition 6. For any ey >0, 0g > 0, 6 > 0, a > 1 and episode k, using mechanism M satisfying Asm. 11, then
with probability at least 1 — 26, for any (s,a) € S x A

2 3
2In (#53) (ot Dewa(e0,00,9) + ek (20, 60,0)

N;(s, a) + ack,2(€0, o, 9) N (s,a) + acg,2(€o0,d0,0)

14SIn (%) Scy,a(€0, b0, 9)
]\7,’;(57 a) + ac,3(€o, do, §)]\75(3»‘1) + acy,3(€0, 00, 0)
(a + 1)ck,3(e0, 00, 9)
]\75(3, a) + ack,3(€o0, 00, 9)

r(s,a) = 7k(s,a)| < Bi(s,a) = \/

Ip(:ls,a) = pr(:ls, a) [l < BE (s, a) = \/

The shape of the bonuses in Prop. 6 highlights two terms. The first term is reminiscent of Hoeffding bonuses
as it scales with O(l/ Nf) The other term is of order O(l/ﬁ,f) and accounts for the variance (and potentially

bias) of the noise added by the privacy-preserving mechanism.

89

M Noise (e,0)-LDP level Regret A(T) ‘

Laplace Lap(6H/e) (£,0) 5(H3S2A\/E/a)
Gaussian N(0, (H/e)?) (e, 80) O(H3S2A\/K In(1/50) /<)
Randomized /H _ 1\—1 S017/2 o2
Response Ber((e 11 (e,0) O(H"/2S?AVK /¢)
Bounded ~
Noise See (Dagan and Kur, 2020) and App. 3.A.6.3 (e, 0) O(H?83A3/2, /K 1n(1/80)/¢)

Table 3.1.1: Summary of the guarantees of LDP-OBI with different randomizers for ¢ > 0 and o > 0. For
the mechanism in this table, we have approximately ¢, ;, = O(VkH/¢) for i € {1,2,4} (ignoring log terms) and

Ck,3 = 6(\/ SkH/E)

As commonly done in the literature (e.g., Azar et al., 2017a; Qian et al., 2019; Neu and Pike-Burke, 2020), we
use these concentration results to define a bonus function by, i(s,a) := (H —h + 1) - 8;.(s,a) + B} (s,a) which is
used to define an optimistic value function and policy by running the following backward induction procedure:

Qni(s,a)s =Tk(s,a) + by k(s,a) + pi(-|s, CL)TVthL;€7 mhk(s) = argmax Qp (s, a) (3.5)
where V3, 1(s) = min{H — h + 1, max, Qnx(s,a)} and Vi1 k(s) = 0.

3.1.3.3 Regret Guarantees
We get the following general guarantees for any LDP mechanism satisfying Asm. 11 in LDP-OBI.

Theorem 7. For any privacy mechanism M satisfying Asm. 11 with e > 0, 69 > 0, and for any § > 0 the regret of
LDP-OBI is bounded with probability at least 1 — § by:

2K 22 K2
5 (36)
35 30
RS AHenca (5100 g5)+ SAHena (o s) >

The combination of M and LDP-OBI is also (g, dg)-LDP.

N 38 38
AK)<O| HSVAT +SAH?) H?S%A)
(K) < < + CK,3 (5, 05) + CK.4 (57 05)

Thm. 7 shows that the regret of LDP-OBI 1) is lower bounded by the regret in non-private settings; and 2)
depends directly on the precision of the privacy mechanism used though ck 1, ..., cxk 4. Thus improving the precision,
that is to say reducing the amount of noise that needs to be added to the data to guarantee LDP of the privacy
mechanism, directly improves the regret bounds of LDP-OBI. The first term in the regret bound (@) is of the
order expected in the non-private setting (see e.g., Jaksch et al. (2010a)). Classical results in DP suggest that
the {ck;}i<a terms should be approximately of order V'K /e (this is indeed the case for many natural choices of
randomizer). In such a case, the dominant term in (3.6), is no longer @ but rather a term of order H2S?AVK /e
(from e.g. ck,4). The dependency on S, A, H is larger than in the non-private setting. This is because the cost
of LDP is multiplicative, so it also impacts the lower order terms in the concentration results (see e.g. the second
term in 6), which are typically ignored in the non-private setting. In addition, this implies that variance reduction
techniques for RL (e.g., based on Bernstein) classically used to decrease the dependence on S, H will not lead to any
improvement here. This is to be contrasted with the JDP setting where Vietri et al. (2020) shows that the cost of
privacy is additive so using variance reduction techniques can reduce the dependency of the regret on S, A, H.

3.1.4 Choice of Randomizer

There are several randomizers that satisfy Asm. 11, for example Laplace (Dwork and Roth, 2014), randomized
response (Erlingsson et al., 2014; Kairouz et al., 2016), Gaussian (Wang et al., 2019b) and bounded noise (Dagan
and Kur, 2020) mechanisms. Since one method can be preferred to another depending on the application, we believe
it is important to understand the regret and privacy guarantees achieved by LDP-OBI with these randomizers.

90

Tab. 3.1.1 provides a global overview of the properties of LDP-OBI with different randomized mechanism. The
detailed derivations are deferred to App. 3.A.6.

Privacy. All the mechanisms satisfy Asm. 11 but only the Laplace and Randomized Response mechanisms
guarantees (¢,0)-LDP. Note that in all cases, in order to guarantee a ¢ level of privacy (or (¢,d) for the Gaussian
and bounded noise mechanisms), it is necessary to scale the parameter e proportional to 1/H. This is because the
statistics computed by the privacy-preserving mechanism are the sum of H observations which are bounded in [0, 1],
the sensitivity® of those statistics is bounded by H. Directly applying the composition theorem for DP (Dwork and
Roth, 2014, Thm 3.14) over the different counters, would lead to an upper-bound on the privacy of the mechanism

of S2AHe and corresponding regret bound of O ((H4S4A2\/f)/5). For the randomizers that we use, the impact

on ¢ is lower thanks to fact that they are designed to exploit the structure of the input data (a trajectory).

_ Regret Bound. From looking at Table 3.1.1, we see that while all the mechanisms achieve a regret bound of order
O(VK) the dependence on the privacy level ¢ varies as well as the privacy guarantees. The regret of Laplace, Gaussian
and bounded noise mechanisms scale with !, whereas the randomized response has an exponential dependence in ¢
similar to the lower bound. However, this improvement comes at the price of worse dependency in H when ¢ is small,
and a worse multiplicative constant in the regret. This is due to the randomized response mechanism perturbing
the counters for each stage h € [H], leading to up to HS?A obfuscated elements. This worse dependence is also
observed in our numerical simulations. _

For many of the randomizers, our regret bounds scale as O(H?S?Av/K /). Aside from the v/K /e rate which
is expected, our bounds exhibit worse dependence on the MDP characteristics when compared to the non-private
setting. We believe that this is unavoidable due to the fact that we have to make S?A terms private, while the
extra dependence on H comes from dividing ¢ by H to ensure privacy over the whole trajectory. Moreover, the DP
literature (e.g., Duchi et al., 2016; Duchi and Rogers, 2019; Ye and Barg, 2018) suggests that the extra dependency on
S, A, H may be inherent to model-based algorithms due to the explicit estimation of private rewards and transitions.
Indeed, (Ye and Barg, 2018) shows that the minimax error rate in ¢; norm for estimating a distribution over S states

is (7\5(6@(8)_1)) with n samples in the high privacy regime (¢ < 1), while there is no change in the low privacy

regime. This means that in the high privacy regime the concentration scales with a multiplicative v/S term which
would translate directly into the regret bound. Furthermore, this results assumes that the number n of samples is
known to the learner. In our setting, n maps to N(s,a) which is unknown to the algorithm. Since we only observe
a perturbed estimate of n, estimating p(:|s, a) here is strictly harder than the aforementioned setting.® This suggests
that it is impossible for any model-based algorithm which directly estimates the transition probabilities to match the
lower bound. However, this does not rule out the possibility of a model-free algorithm being able to match the lower
bound. Designing such a model-free algorithm which is able to work with LDP trajectories is non-trivial and we leave
it to future work.

Another direction for future work is to investigate whether the recently developed shuffling model (Erlingsson
et al., 2019) may be used to improve our regret bounds in the LDP setting. Preliminary investigations of the shuffling
model (see App. 3.A.10) show that it is not possible while preserving a fixed e-LDP constraint, which is the focus of
this paper. Nonetheless, if we were to relax the privacy constraint to only guarantee e-JDP then the shuffling model
could be used to retrieve the regret bound in (Vietri et al., 2020) while guaranteeing some level of local differential
privacy, although the level of LDP would be much weaker than the one considered in this paper. We believe the
study of this model sitting in-between the joint and local DP settings for RL is a promising direction for future work
and that the tools developed in this paper will be helpful for tackling this problem.

3.1.5 Numerical Evaluation

In this subsection, we evaluate the empirical performance of LDP-OBI on a toy MDP. We compare LDP-OBI
with the non-private algorithm UCB-VTI (Azar et al., 2017a). To the best of our knowledge there is no other LDP
algorithm for regret minimization in MDPs in the literature. To increase the comparators, we introduce a novel LDP

SFor a function f : X — R the sensitivity is defined as S(f) = max, yex |f(z) — f(v)]

6We are not aware of any lower-bound in the literature that applies to this setting but we believe that the S2A+/ K H /e dependence
may be unavoidable for model-based algorithms. This is because Ni(s,a) and ﬁk(s,a) differ by at most |/kH log(SA) (which is a
well-known lower bound for the counting elements problem see (Bassily and Smith, 2015)). Intuitively this difference creates a bias when
estimating each component p(:|s,a), a bias that would scale with the size of the support p(:|s,a) and the relative difference between
N (s,a) and ﬁk(s,a). Hence, the bias would scale with Sv/kH/Ny(s,a). Summing over all episodes and SA counters gives the
conjectured result.

91

E . E
g0 g2 e 1
S 0 Q
~
% ~
Z 2 £ 8
=1) -
2 7 %5
g 5 3
= Ay
© He-s g 4%
O [= Bo0e0ane0l ,
0 0 | I I | | I | | I
Time 108 Time .108 0 0.5 1 0 0.5 1 0 0.5 1
—— UCB-VI =& LDP-OBLL & = 0.2 —— LDP-OBLL ¢ = 2 —— LDP-OBLL ¢ = 20 Time 108 Time 108 Time -108
--- PSRL —A— LDP-PSRL ¢ =0.2 —— LDP-PSRL ¢ = 2 —— LDP-PSRL ¢ = 20 —— UCB-VI —#— LDP-OBI-L —6— LDP-OBL-RR LDP-OBL-BxD —&— LDP-OBI-G

Figure 3.1.1: Evaluation of LDP-OBI with the Figure 3.1.2: Regret for LDP-OBI coupled with different mech-
Laplace mechanism and LDP-PSRL. Left) Cu- anisms. For all ¢, 6 = 0.1 for the Gaussian and Bounded Noise

mulative regret. Right) per-step regret (k — mechanism.
Ry /k).

algorithm based on Thompson sampling (e.g., Osband et al., 2013).

LDP-PSRL. Thompson sampling algorithms (e.g., PSRL, Osband et al., 2013) have proved to be effective in several
applications (Russo et al., 2018). Due to their inherent randomization, one may imagine that they are also well suited
to LDP regret minimization. Here, we introduce and evaluate LDP-PSRL, an LDP variant of PSRL and provide a
first empirical evaluation. Informally, by defining by Wi, = {(S, A,p,7, H) : |[p—pll1 < B, |r — 7| < B;} the private
set of plausible MDPs constructed using the definition in Prop. 6, we can see posterior sampling as drawing an MDP
from this set at each episode k£ and running the associated optimal policy:

) My ~PWy), i) mp = mgx{Vl’T(Mk)}.

More formally, we consider Gaussian and Dirichlet prior for rewards and transition which lead to Normal-Gamma and
Dirichlet distributions as posteriors. We use the private counters defined in Asm. 11 to update the parameters of
the posterior distribution and thus the distribution over plausible models. We provide full details of this schema in
App. 3.A.8 and show that it is LDP. However, we were not able to provide a regret bound for this algorithm.

Simulations. We consider the RandomMDP environment described in (Dann et al., 2017) where for each state-
action pair transition probabilities are sampled from a Dirichlet(«) distribution (with a4 ¢ = 0.1 for all (s, a,s"))
and rewards are deterministic in {0, 1} with r(s,a) = 11y, ,<0.5} for (Us,a)(s,a)esx.a ~ U([0, 1]) sampled once when
generating the MDP. We set the number of states S = 2, number of actions A = 2 and horizon H = 2. We evaluate
the regret of our algorithm for ¢ € {0.2,2,20} and K = 1 x 10® episodes. For each &, we run 20 simulations.
Confidence intervals are the minimum and maximum runs. Fig. 3.1.1 shows that the learning speed of the optimistic
algorithm LDP-OBI is severely impacted by the LDP constraint. This is consistent with our theoretical results. The
reason for this is the very large confidence intervals that are needed to deal with the noise from the privacy preserving
mechanism that is necessary to guarantee privacy. While the regret looks almost linear for ¢ = 0.2, the decreasing
trend of the per-step regret shows that LDP-OBI-L is learning. Although these experimental results only consider
a small MDP, we expect that many of the observations will carry across to larger, more practical settings. However,
further experiments are needed to conclusively assess the impact of LDP in large MDPs. Fig. 3.1.1 also shows
that LDP-PSRL performs slightly better than LDP-OBI. This is to be expected, since even in the non-private
case PSRL usually outperforms optimistic algorithm empirically. Finally, Fig. 3.1.2 compares the mechanisms with
different privacy levels and illustrates the empirical impact of the privacy-preserving mechanism on the performance
of LDP-OBI. We observe empirically that the bounded noise mechanism is the most effective approach, followed
by the Laplace mechanism. However, the former suffers from a higher variance in its performance.

3.1.6 Concluding Remarks and Potential Extensions

We have introduced the definition of local differential privacy in RL and designed the first LDP algorithm, LDP-OBI,
for regret minimization in finite-horizon MDPs. We provided an intuition why model-based approaches may suffer a
higher dependence in the MDP characteristics. Designing a model-free algorithm able to reduce or close the gap with
the lower-bound is an interesting technical question for future works. As mentioned in this subsection, the shuffling

92

privacy model does not provide any privacy/regret improvement in the strong LDP setting. An interesting direction is
to investigate the trade-off between JDP and LDP that can be obtained in RL using shuffling. In particular, we believe
that, sacrificing LDP guarantees, it is possible to achieve better regret leveraging variance reduction techniques (that
are not helpful in strong LDP settings). Finally, there are other privacy definition that can be interesting for RL. For
example, profile-based privacy (Geumlek and Chaudhuri, 2019; Acharya et al., 2020) allows to privatize only specific
information or geo-privacy (Andrés et al., 2013) focuses on privacy between elements that are “similar”.

In the next subsection, we further develop the notion of shuffling differential privacy, albeit in the linear contextual
bandit setting, to show how to bridge the gap between the strong privacy guarantees of LDP (but at the cost of high
regret) and the weaker but with less impact notion of privacy JDP. Using, this third definition of privacy, shuffling
differential privacy it is possible to interpolate between the two setting and almost recover the privacy properties of
LDP and the regret guarantees of JDP.

3.2 Improving Privacy by Shuffling

In a contextual bandit algorithm, at each time t € [T] := {1,...,T}, a learner first observes a set of features
(Tt,a)ae(r] C RY selects an action a; € [K] out of a set of K actions, and observes a reward ¢ = 7(2¢,q,) + 7t
where 1, is a conditionally independent zero-mean noise (r is not known beforehand), as described in Section 1.2.2.
Consequently, the learning algorithm has to balance exploration of the environment with exploitation of the current
knowledge to maximize the cumulative reward. The performance of the the learner is measured by the cumulative
regret, which is the difference between its own cumulative reward, and the cumulative reward it would have received
had it always played the best action. Contextual bandit algorithms have achieved great practical success, and have
been used for many sensitive applications such as personalization, digital marketing, healthcare and finance (e.g.,
Mao et al., 2020; Wang and Yu, 2021). With these applications in mind, the literature has started investigated
privacy guarantees both in bandits (e.g., Shariff and Sheffet, 2018; Zheng et al., 2020) and in RL (e.g., Vietri et al.,
2020; Garcelon et al., 2021). In this paper, we focus on privacy-preserving contextual bandits.

For a contextual bandit problem on sensitive data, we assume that a single user enters the system at time ¢,
and hence the context at time ¢ is their private information. To measure privacy, we use differential privacy (Dwork
et al., 2006) — a privacy definition introduced by cryptographers that has emerged as the gold standard for privacy-
preserving data analysis (e.g., Erlingsson et al., 2014; Dwork and Roth, 2014; Abowd, 2018; Chaudhuri et al., 2011;
Abadi et al., 2016; Boursier and Perchet, 2020). The standard differential privacy framework applies to static data
in a batch setting, but two extensions have been proposed to address online problems. The first is Joint Differential
Privacy (JDP) (e.g., Shariff and Sheffet, 2018), an analogue of central differential privacy, where the users trust the
bandit algorithm. JDP ensures that changing a single user's private information in the data does not change the
probability of any future outcome (namely, actions taken and rewards received by any other user) by much.

Definition 2 (Joint DP). Fore > 0 and d¢ > 0, a randomized bandit agent 2 is (e, dp)-joint differentially private if
for every t € [T, two sequences of users, U = {u1,...,ur} and U’ = {u},...,ul}, that differs only for the t-th
user and for all events E C AT=1 then:

P(A_,(U) € E) < e’ P(A_(U") € E) + & (3.7)

where 2_,(U) denotes all the outputs of algorithm 2, i.e., all actions (a;)ix: excluding the output of time t for the
sequence of users U.

A second, stronger concept is Local Differential Privacy (LDP) (e.g., Zheng et al., 2020), where the users do not
trust the bandit algorithm, and transmit only sanitized versions (using a private randomizer M) of their contexts
and rewards to the algorithm. Here, LDP ensures that user information is sanitized in such a manner that changing
a single user’s private value does not alter the distribution of the sanitized value by much.

Definition 3 (Local DP). For any e > 0 and § > 0, a privacy preserving mechanism M is said to be (g, 6)-locally
differential private if and only if for all users u,u’ € U, contexts/rewards ((zy,74), (Tu,7u)) € (R? x R)? and all
O C {M(B(0,L) x [0,1]) | u € U}:

P(M({(zy,7s)) € 0) <P (M((Ty,70)) €0)+6 (3.8)

where B(0, L) x [0,1] is the space of context/reward associated to user u.

93

Just like the standard batch setting, while LDP offers a strong notion of privacy, its utility is often much lower.
Specifically, for contextual linear bandit algorithms, while e-JDP guarantees can be obtained by paying a multiplicative
factor in the regret, LDP comes with a much higher impact on the regret. In fact, Zheng et al. (2020) have shown
that e-LDP regret scales with O(T%*/,/z) instead of O(T"/?/\/z) for a e-JDP algorithm (see Tab. 3.2.1 for more
details.)

Real applications are gradually moving away from the centralized model of privacy, favoring the simpler and
stronger notion of local privacy. This change is illustrated by the rise of on-device computation for mobile applica-
tion (e.g., Apple). The natural question we address in this paper is:

Is it possible to design a bandit algorithm with guarantees akin to local privacy but better utility?

To address this question, we consider the shuffle model of privacy (e.g., Cheu et al., 2019; Feldman et al., 2020;
Chen et al., 2021; Balle et al., 2019b; Erlingsson et al., 2020) that, in supervised learning settings, allow to achieve
a trade-off between central and local DP through a shuffler. The shuffler receives users’ reports and permutes them
before sending them to the server. This setting was first introduced in Bittau et al. (2017), named the ESA model
(Encode-Shuffle-Analyze) and motivated by the need for anonymous data collection. Erlingsson et al. (2019) later
provided an analysis of the amplification of privacy thanks to the combined use of shuffling and local differential
privacy showing that the shuffling model of privacy is able to strike a middle ground between the totally decentralized
but somewhat sample inefficient local model and the centralized but more sample efficient central model of privacy. It
is currently unclear whether it is possible to achieve some form of privacy/utility trade-off between these two models
in the contextual bandit setting.

In this paper, we investigate the linear contextual bandit problem under the shuffle model of privacy, for the first
time considering this privacy model in contextual bandit. Compared to the standard shuffle model (e.g., in supervised
learning), there are several challenges introduced by the sequential nature of the problem. First, the shuffler is
executed continuously and not only once as normally considered in supervised learning. Second, the number of
samples available grows with time and depends on the decisions of the learning agent. This makes the design of the
algorithm non-trivial, in particular for efficiently trading-off privacy amplification and regret.

We address these challenges in two ways. First, we carefully design separate asynchronous batch schedules for the
shuffler and the bandit algorithm (i.e., LINUCB); here, batching at the shuffler is used to ensure privacy, and not just
improved regret. Second, we leverage the martingale structure of the problem to analyze these batching schedules
and provide privacy guarantees on the entire sequence of outputs generated by the shuffler and bandit algorithm. We
summarize our main contributions as follows (see also Tab. 3.2.1):

= If there is no adversary in between the shuffler and the algorithm (i.e., the communication channel is secure),

we show that it is possible to achieve a regret bound of O (dT2/3/e'/3) with a fixed batch size for the shuffler
and dynamic batch for the bandit algorithm.

= In the case of adversary in between the shuffler and the users, our algorithm achieves a regret bound of

O (T3/*/\/€) with a fixed batch size for the shuffler and dynamic batch for the bandit algorithm.

Privacy Model

Algorithm Regret Bound Jomt DP Local DP
Shariff and Sheffet (2018) O (T'2)c1/?) (e,9) N/A
Zheng et al. (2020) o (T)e112) (e,9) (,0)
Our Cor. 1 (LDP optimization) | O (T4)e112) (;31—/;, 9) (e,0)
Our Cor. 2 (regret optimization) | O (T*/°/c1/3) (¢,6) (e2/3T1/6 0)

Table 3.2.1: Regret and privacy for algorithms in linear contextual bandits for T > 1/(27¢)*.

3.2.1 The Shuffle Model in Linear Contextual Bandits

We consider linear contextual bandit problems, where rewards are linearly representable in the features, i.e., for any
feature vector x4, it writes as 1(x¢,q) = (¥¢,q, 0*), where 6* € R? is unknown. We do not pose any assumption on
the context generating process but we rely on the following standard assumptions.

Assumption 12. There exist S > 0 and L > 0 such that ||0*]|2 < S and, for all time t € [T], arm a € [K],
llzt,all2 < L. Furthermore, the noisy reward is v, = (x4 q,0*) +n € [0,1] with 1, being o-subGaussian for some
o > 0. These parameters, L, S and o, are known.

94

The performance of the learner 2 over T' steps is measured by the regret Ry = Zthl 7(%¢ar) — 7(5¢,a,), which
represents the cumulative difference between playing the optimal action a} = arg max,¢[x) r(2t,4) and a; the action
selected by the algorithm.

3.2.1.1 Shuffle-model in Contextual Bandits

In this subsection, we introduce the generic shuffle-model for contextual bandit, inspired by the ESA model. In
Sec. 3.2.2, we will provide the details for instantiating it in linear contextual bandits. In the standard shuffle model, a
shuffler is introduced in between the data and the algorithm. The shuffler enables privacy amplification by permuting
information of [users. The larger the batch, the higher the privacy amplification but also the degradation of the
utility (see e.g., Cheu et al., 2019), leading to some fundamental trade-off between privacy amplification and utility
loss. In online learning, we observe users sequentially and it is natural to assume that, in order to achieve privacy
amplification, the shuffler builds a batch of consecutive users before communicating with the bandit algorithm. The
bandit algorithm can then behave synchronously or asynchronously w.r.t. the shuffler. In other words, it can update
its internal statistics with the same frequency of the shuffler or use an independent batch schedule.

More formally, the shuffle-model for contextual bandit is described by the following interaction protocol (see also
Fig. 3.2.1). At each time t € [T,

® A new user x; receives model information from the bandit algorithm (e.g., estimated rewards and confidence
intervals) that are used to locally compute the action to play. Then, the user plays the prescribed action a; which
generates the associated reward r;.
® The user sends its own privatized version of the data Mrpp(z¢,q,,7:) to the shuffler. This new data is added
to the shuffler batch By := Uz:tks {Mvrpp (@i, i)}, where ki denotes the shuffler batch at time ¢ and ¢, is
t

the starting time of batch k.

® The bandit algorithm queries statistics from the shuffler. If the shuffler is ready to send data (e.g., enough
samples has been collected for privacy amplification), it computes a statistic u on a permutation of the data (i.e.,
u(o(B})))) and sends it to the bandit algorithm. Otherwise no information is provided. The bandit algorithm

adds the new statistic to its batch (i.e., B,‘:‘A = {u(a(Blfs))}) and may then decide to update the model

i=t, A
ki

as soon as data is received (i.e., synchronously) or use an independent batch schedule (i.e., asynchronous).

Users Local Randomizer Shuffler Bandit Algorithm
Tt,a, Tt
_ ® |
- &t g
° Tt,a, Tt
t=2 SE— 0
shuffled data
LDP data o—@
Tt,a, Tt
t=T-1 & +—— Q
° Tt,a, Tt
- &g
T private model estimate (\7}7 bvt, Bt)

Figure 3.2.1: lllustration of the shuffle model for linear contextual bandits.

The objective is to minimize the (pseudo) regret and simultaneously guarantee privacy of the data and of the
statistics. To this extent, we assume all users (including the shuffler and the bandit algorithms) behaves in an honest
but curious manner (Oded, 2009), i.e., the users and the algorithm behaves as prescribed by the protocol. We
consider different threat models for privacy, including an adversary in between [the user and the shuffler, [[§ the
shuffler and the bandit algorithm, and [the bandit algorithm and the user. We will show that different privacy/regret
guarantees can be achieved in the different settings.

3.2.2 Shuffle Model with Fixed-Batch Shuffler

In this subsection, we provide an instantiation of the shuffle model for linear contextual bandit. We base our algorithm
on the non-private low-switching LINUCB (Abbasi-Yadkori et al., 2011), that incrementally builds an estimate 0; of

95

Algorithm 12: SBLB
Input: LDP parameter: g, privacy parameters: €, dg, regularizer: \, context bound: L, failure probability:
d, low switching parameter: 7, encoding parameter: m, dimension: d, fix batch size: ¢

Initialize 5 = j4 =0, By = 0, Vo = My and p = 2(exp (525857) +1) 7

fort=0,1,... do

Communication with the user

User receives 0,4, 17jA and fja and selects a; € argmax,¢(g|(Tt,a, 04) + Bjall Tt.all5-1
jA

Observe reward r; and compute private statistics (gt,@t) = Muypp(@t,q,,7t, L, €0, m) (Alg. 21)
B) Communication with the shuffler

BS% = B% U (by, W)

if \BSS| = [then

Set tjsy1 =t, compute a permutation o of [[t s +1,t s+1]] and compute aggregate statistics

m

l)
Vi<dk<i, Zpsg=)» ii)a(nm and Ujs i = Z > Wo(ny.ikg

n=1gq=1 n=1gq=1

Set Ujs,i,k = Ujs,k,iv BjS+1 = @ and jS = jS +1
E Communication with the bandit algorithm
Receives (Zjs_1,U;s_1) and compute candidate statistics

B, By, 4 %1 ©
ST T =) 2(1-p)
UjS,l lS

VA+1 —VA+1+

if det(V ap1) = (1+ n)det(VA) then
Compute 0 iag = VA+1 AL
Settja,q =t, Bjasq and A\jayq asin Eq. (3.13) and Eq. (3.14)
Set jA ZjA +1, éjA+1 = éjA and %A_;’_l = ‘7]-A

the unknown parameter 6*. Since the algorithm leverages sum of statistics received from the users, we consider the
binary sum mechanism inspired by (Cheu et al., 2019) as building block for achieving privacy in the shuffle model.
While this scheme allows us to obtain standard LDP guarantees on users information, the shuffler is responsible to
provide privacy amplification via batching and shuffling. The main challenge is to combine these elements with the
low-switching scheme of LINUCB. As we will explain later, adaptive batching at the level of LINUCB is not for
computational efficiency but it is rather fundamental for obtaining a good privacy/regret trade-off.

3.2.2.1 Algorithmic Design

In this subsection, we provide a full description of the Shuffle-Batched Linear Bandit (SBLB) algorithm. Intuitively,
the algorithm relies on a shuffler with fixed batch size to achieve privacy amplification from LDP data, and a variation of
LINUCB with dynamic batch schedule based on the determinant condition. The pseudo-code is reported in Alg. 12.

O Action Selection At each time ¢, the user x; receives, from the bandit algorithm, an estimate of the model composed
by a parameter GkA € R?, a design matrix VkA € R%¥*? and confidence width ﬁkA Notice that these are parameters computed

at the beginning of the batch k;* of the bandit algorithm. Then, the action is selected by maximizing the following standard
optimistic problem:

a€[K] kj

ae argmax{m,aﬁw + Bl xt,a|;1}
A

96

1/4

where f3; is the size of the confidence ellipsoid, defined in Lem. 21, which roughly scales as 0} i,) Note that it is possible

t
to directly access the features x; , of the user since this computation happens locally. The action is played and a reward r; is
observed.

® Local Privacy and Shuffler. Users' information is then protected through a local private mechanism Mypp. As
noticed in (Shariff and Sheffet, 2018), only the information required by the algorithm, to compute 5through ridge regression
and the associated confidence interval, must be privatized. We are thus interested in privatizing the quantities x; ,,7: and
wt,atm{at. To obtain LDP quantities, we leverage a variation of the private mechanism introduce by Cheu et al. (2019).
We independently privatize each component of the vector z; ,,7: and of the upper triangular part of the matrix xt,atwlat,
the rest follows from the symmetric structure. Each entry is normalized to [0, 1] and approximated by a truncated 0/1-bit
representation, which length is controlled by the parameter m € N*. The full procedure is reported in Alg. 21.

The shuffler receives the privatize data Mypp(xt,q,,7+) and adds it to the current batch. The role of the shuffler is to
provide additional privacy by sending data in a random order compared what it has received. At a high-level this provide an
additional privacy guarantee because it breaks the link between a given user and its data. Indeed for an algorithm receiving
data from the shuffler, the ¢-th row of data has little chance to come from user ¢. If the shuffler has access to a batch of
size [, it can provide a privacy amplification of level [~1/2 (see e.g., Cheu et al.,, 2019, Thm. 5.4). Ideally, we would like
to shuffle all the data at each time ¢, achieving a privacy amplification of ¢t~'/2. However, this approach would not provide
enough privacy due to the fact an adversary would have multiple observations of the same data, thus greatly decreasing the
advantage of using the shuffling mechanism. To avoid this issue, we need to force the shuffler to use batches and discard
samples after each batch. Let’s denote by I° the fix batch size of the shuffler. At time t, if the batch B,ft is of size 17,
the shuffler permutes the data and compute the statistics required by the bandit algorithm. To compute those statistics, the
shuffler uses a secure and trusted third-party different that the shuffler. This third-party is assumed to be secure with for
example the use of encrypted communication between the shuffler and it, like in (Cheu et al., 2019). When |B; | < [°, the
shuffler do not provide any information to the bandit algorithm. The shuffling setting is not fundamentally different than the
LDP one, but it allows to achieve a large gain in privacy in the high data regime from multiple users. Shuffling allows to
achieve better privacy guarantees and, overall, it improves the standard LDP protocol with virtually no cost.

® Model Estimation (the bandit algorithm). As last step, the bandit algorithm queries new data to the shuffler which

replies only if the batch is full. If no data is received, the bandit algorithm does nothing. Otherwise, the bandit algorithm

receives summary statistics Zkf and kas corresponding to the sum over the shuffled batch B;fs of the LDP data associated
t t t

to zr and zz'. The algorithm could behave synchronously with the batch schedule of the shuffler and update the model by
updating the design matrix V} s, and parameter 6, s_ ;. However, this behavior would lead to a worse privacy/regret trade-
off than an asynchronous data-adaptive schedule. Although it is possible to achieve the same regret bound in non-private
settings with static and dynamic batch schedules, in the private case it is no more the case because of required inflation of the
confidence intervals by a factor t1/% to deal with concentrations of private statistics. In App. 3.B.3, we provide a more formal
support to this claim.

As a consequence, we shall leverage the determinant-based condition introduced by Abbasi-Yadkori et al. (2011). Upon

receiving the data at time ¢, the bandit algorithm has access to the following set of private statistics {(Z“ Us;),i € [kts]} which

is further divided into batches of various lengths. Denote by j = kf the bandit batch at time ¢ with associated parameters
VJ, B and 0 computed at the beginning of the batch. Then, we denote by Vi the new de5|gn matrix obtained by updating
the matrix V with all the statistics received from the shuffler after ¢;. If det(Vt) (1 —|—77)V], then a new batch is started and

the model is updated, i.e., 5j+1 = LVJHBJH is computed through ridge-regression. In a LinUCB fashion, the last step for

the algorithm is to compute the size of a confidence intervals around 5]‘4-1 containing the true parameter 6*. Contrary to the
non-private setting (Abbasi-Yadkori et al., 2011), the algorithm uses wider confidence intervals to account for the noise added
to ensure privacy. This increase is quite significant as the confidence intervals grow at a ¢'/* rate compared to log(t) in the
non private setting. Refer to Lem. 21 for the explicit definition.

3.2.3 Analysis of The Shuffle Model with Fixed-Batch Shuffler

In this subsection, we provide the privacy and regret guarantees of SBLB. We first begin to describe which privacy guarantees
are attainable in the different attack scenarios outlined in the introduction. Then we show how the regret of SBLLB is impacted
by the these attack models.

For sake of clarity, we recall the parameters that regulates the privacy/regret analysis of our algorithm. The first parameter
€0 regulates the level of local differential privacy introduced by the Iocal randomizer M| pp. However, to simplify the analysis,

we often use the alternative parameter p := 2(exp (m) + 1) derived from € (see Alg. 21). The other two parameters
(e,d0) controls the level of joint differential privacy that SBLB should attain.

97

3.2.3.1 Privacy Analysis of SBLB

As discussed in Sec. 3.2.1, the shuffling model encompasses all the multiple scenarios in which the privacy of users can be
threatened.

a Compromised communication between the user and the shuffler. In the first and most harmful scenario, the commu-
nication between the users and the shuffler is not secured and the data can be observed by an adversary. This is the standard
LDP setting in linear contextual bandit. In this case, the use of the local randomizer M| pp guarantees that the data sent by
the user to the shuffler are £9-LDP. That is to say the most stringent privacy guarantees in the differential privacy model.

Proposition 7 (LDP guarantee). For any o > 0 and m € N*, Mpp(.,.,€0, L, m) is £o-LDP.

This particular scenario corresponds to a decentralized setting where the users do not trust the algorithm or the commu-
nication channel between them to be secure and they have to protect the privacy of their data at a individual level, that is to
say to guarantee that the data sent could have been sent by anyone else. This setting (i.e., the “pure” LDP scenario) is also
the one studied in (Zheng et al., 2020). We will show that we can recover their result when we want to guarantee the highest
level of LDP privacy. However, at the cost of sacrificing a portion of LDP level, we can obtain a better regret bound, closing
the gap with the less stringent JDP setting.

E Compromised communication between the shuffler and the bandit algorithm. In another privacy loss scenario, an
adversary can observe the same data as the bandit algorithm. Stated otherwise, the adversary has access to the output of
the shuffler. In that case, SBLB is still £0-LDP but stronger differential privacy guarantees can be achieved thanks to privacy
amplification. In this scenario, the adversary observes the different outputs of the shuffler, that are statistics computed on a
number of different users. The question, in the differential privacy setting, is whether it is possible to know that one particular
user (i.e., user's data) was involved in the computation of those statistics.

Tenenbaum et al. (2021) studies a weaker version of this question in the multi-armed bandit setting where an adversary
only observes the output of the shuffler for one time step, while we focus on the more challenging case where the adversary
observes all the history. Technically, this is the same difference as ensuring event-level privacy in the continual observation
model compared to a differential privacy on a single query. Note that it would be possible to obtain a better regret bound if
we consider the adversary model in (Tenenbaum et al., 2021) since a smaller level of privacy is required (see Remark 2).

The complicated aspect is to guarantee that the whole sequence of Mg vectors and matrices (Z]-s,Ujs);,VéS:1 is private,
and not a single output at a given time. This issue is solved by leveraging batching. Formally, we can show in this scenario
that the sequence (Z;s,U;s);s is (g,00 + 6)-DP for any do,d € (0,1) and € € (0, 1).

Theorem 8. Foranye € (0,1), 80,8 € (0,1), encoding parameterm and LDP parameterey > 0, let p = 2(e2e0/m4d+3) L 1)~=1,
Then if I*, the length of a shuffler batch, satisfies I*p > 141log(8mT/do) and:

2\ 2
9+ el* 4> 1-92pto 2log(2mT'/éo)
32d(d + 3) log(8mT/80)+/2T In(2T /o) !

el*

32d(d + 3) log(8mT /b0)+/2T In(2T'/é0)

s is central (g,80 + 6)-DP.’

the sequence (Z;s,U;s);

The result of Thm. 8 is a consequence of the advanced composition theorem (Dwork et al., 2010a). Indeed, thanks to

shuffling, for any batch j°, the statistics (Z;s,U;s) are (%7 %)-DP, since the batch length [is approximately
VT(1-p) ; e O [k
~—-—". As a consequence, when composing them together we get that the central DP level of each batch is O (e\/ ?>.

Therefore by advanced composition, since we have a total number of batches Ms ~ /T, the total privacy over the sequence
of (Z;s,U;s);s is of order o (5\/% X ¢/ %) that is to say of order 6(5)

Compromised Communication between the bandit algorithm and the users. Similarly to Shariff and Sheffet (2018),
in the final scenario we consider, an adversary can observe the same data coming from SBLB as the users, i.e., the stream
of estimates (Qk{;,ka\,ﬁk;;)te[T]. Recall that the bandit algorithm uses a dynamic batch schedule based on the determinant

"We provide the definition of central DP in Def. 4 in App. 3.B.2. Note that the concept of central DP is at the core for proving JDP

results, in fact thanks to Claim 7 in (Shariff and Sheffet, 2018) having a sequence (%,Bt)t is (g,0)-DP implies that a bandit algorithm
based on this sequence is (¢, §)-DP.

98

technique and it is asynchronous w.r.t. the shuffler. This leads to a number of bandit batches roughly of order log(T). While
we have to guarantee privacy on a smaller number of element (log(7") compared to v/T in the shuffler), we are technically
limited by the former scenario E As shown in Prop. 8, SBLB is (g, 00 + ¢)-JDP w.r.t. the sequence (FéijA,f//vjA,ﬂjA)
(st,Ujs)js is (5, oo + 5)—DP.

GA since

Proposition 8 (JDP guarantee). For any ¢ € (0,1), eg > 0, 6,00 € (0,1), m € N*, selecting the length of a shuffler like in
Thm. 8 ensures that the sequence of (0,4, V;a,p;4);4 is (€,0 + d0)-DP. In other words SBLB is (¢, + d0)-JDP.

J

Since we are directly leveraging advance composition, we cannot get any privacy amplification when we consider E and
together. Scenario fd is indeed the most stringent adversary model in the shuffle-model, limiting the gain in the privacy/regret
we can obtain compared to the pure LDP setting. It is however possible to achieve a better privacy/utility trade-off when
considering only scenario (and not E) but we believe it is a much weaker attack scenario. In both scenarios, E and
, the objective is to ensure Joint Differential Privacy. Model deals with the issue when attackers can submit potentially
false contexts to the bandit algorithm and observes the action recommended with the objective to learn the context/reward
of a target user. Guaranteeing that this task is difficult is the objective of Joint Differential Privacy. In this paper, we use a
deterministic bandit algorithm therefore in terms of privacy scenarios E and are the same (thanks to the post-processing
lemma). However, one could think of using a randomized algorithm and therefore improve the privacy of the whole scheme.

Remark 1. In online learning, JDP and central-DP are not equivalent definitions. A DP constraint on the actions selected
implies that the probability of selecting any action is strictly positive thus hindering the algorithm to select the optimal action.
Indeed, as noted in (Shariff and Sheffet, 2018) (see Claim 13) any central-DP linear contextual bandit algorithm must incur
linear regret, whereas in the weaker definition of JDP it is possible to attain a sublinear regret. The fact that the computation
of the action is local is necessary to achieve a sublinear regret.

3.2.3.2 Regret Analysis of SBLB

In the previous subsection, we stated several privacy guarantees of SBLB with different attack models. We shall now show
the impact of those privacy guarantees on the regret. As mentioned, shuffling allows to regulate the level and type of privacy
desired by trading-off the regret guarantee. In SBLB, this trade-off is regulated by the parameter £y which has impact on all
the main elements in the privacy and regret analysis (e.g., batch size, privacy p, etc.).

The first result we provide is a validation of our algorithm. The following proposition shows that SBLB recovers the
results in (Zheng et al., 2020), providing the highest possible local DP level at the expense of the regret bound.

Corollary 1. For anyeo > 0 and § € (0,1) then choosing ¢ = \/exp(eo) — 1 and §o = & we have that SBLB is €o-LDP and
with probability at least 1 — § is bounded by:

~ (T%*/eso +1 log(T) (e** 4 1)? VT
Rr <O + +
Ve —1 4 Veso —1

On the other hand, Cor. 2 shows that SBLB interpolates between the regret of (Zheng et al., 2020) (LDP setting studied
under scenario a) and (Shariff and Sheffet, 2018) (JDP setting studied under scenario) The structure of the shuffle-model
requires to also consider scenario E that, as mentioned before, poses the highest restriction on the regret bound we can
achieve.

(3.10)

Corollary 2. Foranye < m%/‘l and 8,80 € (0,1), the choices ofn = 0.5, A = /T, m = 1 and ey = d(d2+3> In (1752/23T1/6 — 1)

ensures that with probability at least 1 — § the regret of SBLB is bounded by:

41%/3 1~
Rr < — (S +d+ o 0(1)), (311)
where (5() hides poly-log factor (in T,d,00) and polynomial factors (in d, L). In addition SBLB is (g,00 + 6)-JDP and
6d%e*/>T'/°-LDP.

One may be confused as to the utility of this result as it shows a worse regret bound compared to the one of Theorem 7.
The improvement comes from the fact that the best known regret for LDP contextual linear bandit scales as O (T3/4/ﬁ)
(Han et al., 2021) (without any further assumption) whereas for LDP RL, we showed that the regret scales as O (T1/2/5).
It is suspected that the difference between the two results comes from the finiteness of the state space in RL but not for the
contexte space in linear contextual bandits.

For the complete regret bound refer to the end of App. 3.B.2. This shows that the regret bound of SBLB is of order
@ (dT2/3/51/3), while being (¢,)-JDP and approximately (2c2/3T%/% 0)-LDP. As expected, this indicates the regret bound

can be improved by sacrificing some level of LDP. However, the /T regret bound of (Shariff and Sheffet, 2018) cannot be

99

recovered directly. While the search for a better upper-bound or a lower-bound is an interesting future direction, we think
it would be hard to match such JDP minimax result. Indeed, shuffling allows to interpolate between JDP (where the best
minimax bound is v/T') and LDP (where the best known upper bound is T3/4). Since we will always have a non-zero LDP
level of privacy in the considered ESA shuffle model, we believe it is almost impossible to achieve v/T regret in particular.®

Proof Sketch The proof of this theorem is presented in details in App. 3.B.2. To understand this result however we present
how we build the confidence intervals around the parameter 8. As noticed in (Shariff and Sheffet, 2018), the estimator 6
is the result of a ridge regression computed by a design matrix regularized by a regularizer which is a function of the time.
Therefore in order to apply Prop. 4 in (Shariff and Sheffet, 2018) we need to ensure that our estimator V; of the design matrix,
Zt xt’at:r;at, is unbiased and to bound with high probability the deviation with respect to the design matrix. We also need

the same type of guarantees with respect to the vector Ej and Zt T+Tt,qy -

Computation of our Estimators. The bandit algorithm receives the estimate (Z;s,U,s) from the shuffler but given the
data those estimates are biased. For a couple of vector and reward, = and r, let us note Mpp(z,r) = (b, w), so that

E (bk,q | :E,’r') = (1 — p) [1{q<ﬁ.ka” + I[{q:ﬁ.l.km”(mrmk — [mckm] -+ 1)]

p
5 +

p

5t (1=p) [Lg<ramemly + Lig=(izpm]} (MT1zy — [zmem] + 1)]

E (wg, | z,r) =

for all k,1 < d and ¢ < m. Therefore, we introduce a debiased estimator for computing the estimators of SBLB, written as
follows:’

tia T tia

~ Tt a, Tt a ~ TI%].a

Via = =St Hia+ Mals and Bja =y =™ 4 hya, (3.12)
t=1 =1

LA . . .
where, for all batches, H;4 +)" I, is with high probability a symmetric positive definite matrix decomposed as the sum of zero
mean noise and a regularization A4, and h,;a is a vector of zero mean noise. Both noises are due to the noise introduced in by
A
the local randomizer M pp. In addition, as we show in App. 3.B.2 controlling the eigenvalues of the regularizer H]-A + NIy

and the noise h;a is bounded roughly by |/t;a. Therefore thanks to Prop. 4 in (Shariff and Sheffet, 2018), the following
proposition holds.

Lemma 21 (Confidence Ellipsoid). For any 6 € (0,1), &0 > 0, p = m and X > 0, we have with probability at
least 1 — ¢ that:

vit < Ms, ||0" — 'é].Ausvj;l < Bia = J\/S log <2tg“) + dlog (3 + t&‘f) +S/3x;4
(3.13)
s (3 e () 30 8)
where Mg = T/i* is the number of shuffler batch and for all jA < Mg,
N /8t In(2t;4 /6) N 2./8t;a In(2t;4/9) (3.14)

! m (1-p)vm

Given the definition of the confidence ellipsoid above, we can analyze the regret using a standard regret analysis for
algorithms using the optimism-in-the-face-of-uncertainty principle. For a generic set of privacy parameters g, € and o, the
regret bound of SBLB is given in the following theorem.

Theorem 9. For any 8,0, € (0,1), &,e0 € (0,1) and T > 1, let p = 2(e2°/™ 43 1 1)~ then with probability at least 1 — 6,
the regret of Alg. 21 is bounded by:

8Note that in multi-armed bandit (MAB), it is possible to achieve a minimax regret bound of order v/T' both in central DP and LDP
(Ren et al., 2020; Basu et al., 2019). We think this is an important aspect leveraged by Tenenbaum et al. (2021) for shuffling in MAB.
In addition, as already mentioned, they considered a weaker attack model.

9Note that this is an alternative but equivalent form to the one used in Alg. 12.

100

- fpP(1—p) S Tl

— 644/21n(2T/60)d(d+1) :
2v/3(S + md)T3/* T
< 1 1 14+ —
Br< == (*”)°g<+dx>
/2
3/2 L2T | 16VT log(2T/3) 3 (3.15)
n dLm 1+ ™" log (a (1-p)) 141log(8mT/do)
VA log(1 4+ n) p?
. 201 TT—1/2¢ .
fp~(1—p) 2 644/21n(2T/60)d(d+1)
2v/3(S + md)T*/* T
< il
Rr < iy (14 n)log (1+d/\)
(3.16)

3/2
3/2 L2T | 16VT log(2T/6)
d log(R)) VT(1—p)

log(1+n) e

264 N 8mT\3/?
+ 222 2d% 10 (7) Lm |1+
VA & do

The first term of the regret in Thm. 9 highlights the regret coming from the local privacy guarantees whereas the second
term is coming from the mismatch between the batch of the shuffler and the batch of the bandit algorithm. Indeed, when
the bandit algorithm updates its batch it means that during the last shuffler batch the determinant condition was satisfied at
some point during the shuffler batch. However, the impact on the regret during this shuffler batch can only be bounded by
the length of a shuffler batch times the maximum reward possible. But given Thm. 8 the length of a shuffler batch scales
with O (ﬁ/s) Hence the final regret scales with O (T3/4/\/ﬁ+ ﬁ/s) As a consequence, Cor. 1 and Cor. 2 are obtained
by optimizing for the highest privacy level and smaller regret bound, respectively.

Remark 2. A better regret bound can be obtained in the setting of (Tenenbaum et al., 2021), where the adversary only
observes the output of the shuffler for one time step. In particular, this allows to improve the privacy analysis and obtain a
generic regret bound of order O (T3/4/\/ﬁ+ log(T)/EQ) that once optimized leads to a regret bound of T3/5/52/5 which is
much closer to the best JDP regret bound. However, we think this setting is less practical than the one considered in this
paper.

3.2.4 Potential Extensions

We introduced SBLB, an algorithm for linear contextual bandits that achieves a trade-off between joint and local differential
privacy. Our algorithm is a variant of batched LINUCB with dynamic schedule using a variant of the binary sum method to
achieve privacy. Thanks to an asynchronous batch schedule between shuffler and bandit algorithm, it is able to take advantage
of the privacy amplification through shuffling to reduce the gap between JDP and LDP regret bound.

An interesting question raised by our paper is whether it is possible to use a synchronous schedule between the shuffler and
the bandit algorithm, e.g., by making the shuffler batch data dependent. We believe this would require to use some private
technique (e.g., sparse vector technique by Dwork et al., 2009) to guarantee privacy at the output of the shuffler. Another
direction inspired by our paper is to gain a better understanding about the intrinsic limitations of differential privacy in linear
contextual bandits by studying lower-bounds for these settings.

3.3 Conclusion

In this chapter, we studied the problem of privacy in RL and Bandits under different aspects and showed how this constraint
impact the exploration process. Indeed, asking to an RL algorithm to satisfy Local Differential Privacy (LDP) implies that the

regret can not scale better than O (@) which can be prohibitively high for some applications. Experimentally we observe

that the impact of LDP on the regret is significant. We also showed how to bridge the gap between the two main notion of
privacy, a central and decentralized one, in linear contextual bandits. There are still many questions left unanswered by this
work. For instance, in this chapter we assumed users are not recurring, an assumption that is too restrictive in real-world
systems. This raises the question on the impact on the level of privacy of allowing recurring users. With the current tools,
this level of privacy is expected to degrade with the square root of the number of visits from a user which is not desirable for
regular users.

Local Differential Privacy requires the user to privatize their information before sending them to the bandit/RL algorithm.
Therefore, in a sense it is similar to encrypting —by injecting noise in the data sent to the algorithm— the interaction between
the users and the bandit/RL algorithm. In the next chapter, we aim to understand the potential effect of adversarial attacks

101

changing the feedback from users to the bandit/RL algorithm and present an encryption-based algorithm for linear contextual
bandit that prevents the algorithm or any outside attackers to access the data from other users all while the algorithm is still
able to minimize regret (at the cost of some additional computational complexity). We also investigate the change in the
regret that adversarial attacks on contexts and rewards can have for well-known linear contextual bandit algorithms.

102

Appendix

3.A Appendix for (Local) Differential Privacy in Reinforcement LearninglL

3.A.1 Extended Related Work

The notion of differential privacy was introduced in (Dwork et al., 2006) and is now a standard in machine learning (e.g.,
Erlingsson et al., 2014; Dwork and Roth, 2014; Abowd, 2018). In stochastic multi-armed bandits, e-DP algorithms have been
extensively studied (see e.g., Mishra and Thakurta, 2015; Tossou and Dimitrakakis, 2016). Recently, (Sajed and Sheffet, 2019)
proposed an e-DP algorithm for stochastic multi-armed bandits that achieves the private lower-bound presented in (Shariff
and Sheffet, 2018). In contextual bandits, (Shariff and Sheffet, 2018) derived an impossibility result for learning under DP by
showing a regret lower-bound Q(T") for any (e, §)-DP algorithm. Instead, they considered the relaxed JDP setting and proposed
an optimistic algorithm with sublinear regret and e-JDP guarantees. Since the contextual bandit problem is an episodic RL
problem with horizon H = 1, this suggests that DP is incompatible with regret minimization in RL as well.

Recently, local differential privacy (Duchi et al., 2013) has attracted increasing interest in the bandit literature. (Gajane
et al., 2018) were the first to study LDP in stochastic MABs. (Chen et al., 2020) extended LDP to combinatorial bandits,
and (Zheng et al., 2020; Ren et al., 2020) focused on LDP for MAB and contextual bandit. Private algorithms for regret
minimization have also been investigated in multi-agent bandits (a.k.a. federated learning) in centralized and decentralized
settings (e.g., Tossou and Dimitrakakis, 2015; Dubey and Pentland, 2020a,b), and empirical approaches have been considered
in (Hannun et al., 2019; Malekzadeh et al., 2020).

In RL, (Balle et al., 2016) proposed the first private algorithm for policy evaluation with linear function approximation
that ensures privacy with respect to the change of trajectories collected off-policy. (Wang and Hegde, 2019) considered the
RL problem in continuous space, where reward information is protected. They designed a private version of Q-learning with
function approximation where privacy with respect to different reward functions is achieved by injecting noise in the value
function. (Ono and Takahashi, 2020) recently studied LDP for actor-critic methods in the context of distributed RL. None of
these works considered regret minimization under privacy constraints. Regret minimization with privacy guarantees has only
been considered in RL recently. (Vietri et al., 2020) designed a private optimistic algorithm for regret minimization with JDP.
They proposed a variation of UBEV (Dann et al., 2017) using a randomized response mechanism with parameter ¢/H to
guarantee privacy. Their algorithm PUCB achieves a regret bound O(VH*SAK + SAH?(S + H)/e) while enjoying e-JDP.
Compared to the worst case regret of UBEV, the penalty for JDP privacy is only additive, as shown by their lower-bound of
Q(HVSAK + SAH[e).

3.A.2 Regret Lower Bound (Proof of Thm. 6)

Let's consider the following MDP for a given number of states S and actions A. The initial state 0 has A actions which
deterministically lead the next state. The MDP is a tree with A children for each node and exactly S — 2 states.

We denote by x1,...,xr the leaves of this tree. Each leaf can transition to one of the two terminal states denoted by +
and —, where the agent will receive reward of 1 or 0 respectively, and the agent will stay there until the end of the episode.
There exists a unique action a* and leaf z;+ such that: P(+ | z;x,a*) = 1/2 + A for a chosen A. Each other leaf transitions
with equal probability to two states + and — where each has a reward of 1 and 0. All other states have a reward of 0 and
every other transition is deterministic.

Once the agent arrives at + or —, it stay there until the end of the episode. In addition, we assume that H > 21n(S —
2)/1In(A) 4+ 2. Let d > 0 be the depth of the tree, i.e., the depth of the tree with S — 2 nodes is d — 1 and nodes +,— are at
depth d. Then leaves x1,...,x are at depth either d — 1 or d — 2. Without loss of generality we assume that all zi,..., 2
are at depth d — 1, i.e., the number of leaves is L = Ad-t > (S — 2)/2, stated otherwise, the tree without the nodes + and
— is a perfect A-ary tree. In the general case we have that L > (S — 2)/2.

For a policy 7, the value function can be written:

VT(0) = (H — d)P(sq = +) = (H — d)(1/2 + AP (s4_1 = x4, a4-1 = a*)) (3.17)

103

Figure 3.A.1: Example of an MDP described in this subsection with S =15 and A =3

Thus the regret can be written as:

R(K,I) = (H — d)A (K Y P (stao1 = v, agar = a*)) (3.18)
k=1

=E(T(K,I))

where I = (z;+,a”) is the optimal state action pair and we define T'(K, I) as:

K
T(K,I) = Zl{sk,d—l:zi*vak,d—lza*}' (3.19)
k=1
T(K,I) is a function of the history observed by the algorithm. Since we consider the LDP setting, this history can be written
as:
MHk) ={M(X1) [< K} (3.20)

where X; = {(si,n,ai,n,7,n) | R < H} is the trajectory observed by the user for episode [and M is a privacy mechanism
which maintains e-LDP. Thus T'(K, I) is a function of M(Hk). By Lem. A.1 in (Auer et al., 2002b):

E(T(K, 1)) < Eo(T(K, 1)) + K\/ KL (Po(M(Hic) || POM(Hx))) (321)

where Eq is the expectation when A = 0. However, because T'(K, I) can be seen as a function on the history only, we can
use Exercise 14.4 in (Lattimore and Szepesvari, 2020) which states that for any random variable Y : Q — [a, b] with (22, F) a
measurable space, a < b and two distributions P and @ on F, then:

< (b—a) w (3.22)

/w Y (p(n) - / ¥ (w)dQ(w)

weN

In our case the random variable Y is the combination of T'(K, I) and the privacy mechanism M so we have:

E(T(K,) < Eo(T(K, 1)) + K\/ KL (]P’O(HK) I P(HK)) (3.23)

Putting together Eq. (3.21) and (3.23), we get:

E(T(K, 1)) < Eo(T(K, I)) + K min { \/KL<]P’0(M(HK)) I]P’(M(HK))>, \/KL(IPO(’HK) I]P’(HK)> }

(3.24)
ey @
Bounding @). Now we bound the KL-divergence between the two measures for the history. Using the chain rule we have:
K
KL (Po(M(Hi)) || BM(HK))) = Y Erey,~rg (KL (Po(-|M(Hr-1)) || P(|M(Hr-1)))) (3.25)
k=1

104

But because M is an e-LDP mechanism, Thm. 1 in (Duchi et al., 2013) ensures that:
L (Po(-[M(Hr-1)) || P(|M(Hr-1))) < 4(exp(e) = 1)*KL (Po(-[Hi—1) || P([Hr-1)) (3.26)

Additionally, the KL-divergence can be written as:

P _ ks Th)i <he
KL (Po(-[Hx1) || P(-|He_1) ZEXICN]PO (ln< 0(Sk,hy @i,y Thoh | Hi—1, (Sk,j, Gh,js Th G)j<h 1))) (3.27)

P(Sk,hs kb ook | Hi—1, (Sk,js Qkjs Thyj)j<h—1)

where Xy = {(Sk,n, @k,n,Tk,n) | b < H} is a trajectory sampled from the MDP with the transitions distributed according to
Py and for each step h, si p is a state, ax,, an action and 7y, the reward associated with (s, n, ak,n)-
Therefore for a step h > 1,

In (Po(8k,hs Qheyhs Tk | Hio—1, (Skojis @,y Thig)j<h—1)) = In (Po(sk,n | Hi—1, (Sk,5, g, Th,i)j<h—1))
+1n (Po(ak,n | Hi—1, (Sk,js Qk,js Th,j) j<h—1, Sk,1))

+1In (Po(re,n | He—1, (Sk,j, Qk,js Th,j)j<h—1, Sk, Gk,h))
By the Markov property of the environment:
In (Po(sk,n | He—1, (k5> Ok,j, Th,j)j<n—1)) = In (Po(sk,n | Sk,n—1,ak,n—1)) (3.28)
Also, since the reward only depends on the current state-action pair:
In (Po(re,n | Hi—1, (Sk,j, Gk j, Tk j)j<h—1,Sk,hy @k,n)) = I (Po(rrn | Skh,akn)) - (3.29)

The same results holds for P, thus:

P 1, Qe
KL (o (-[Hr—1) || P(-|Hx1) Z]EXkNPc)((o(sk.n | Skh—1,arn 1))

P(sk,n | Sk,h—1,0k,n—1)

tin (Po(ak,h | Hi—1, (Sk,jyak,jzrk,j)j<h175k,h)> 4 (PO("'k,h | Sk,h,ak,h)>)

(3.30)

Plak,n | Hi—1,(Sk,js Qk,js Tk j)j<h—1, Sk,h) P(rin | Sk,k, G,h)

But for P and Py the rewards are distributed accordingly to the same distribution hence In (W) = 0 foreach h <

. . P, Hio15(Sk 20k, k3)i <ho—
H. The action taken at each step depends only the history of data and the current state, thus In (0k, n|Hk—1,(%k.j 0h,g Tk g)j<h 1)) =

Plag, nlHr—1,(5k,j,0k, 5Tk, j)j<h—1)

0. Lastly, transition dynamics between P and Py only differ when at step d—1 thus for all b # d—1, In (PO(S’“*’L‘S’“”L“’%*’I”)> =

Po(sk,nlsk,n—1,0k,n—1)
0. Overall, we get:

Po(j | @1, a))
KL (Po(-[Hx—1) || P(-|Hx—1) ZZ > EXkNPO<1n< P2)>1{__}>

ag,d—1=a,
=1 a=1je{—,+} Sk,d=J

Finally, for j € {—,+}, o1 # zi» and a # a*, P(j | z1,a) = Po(j | 21,a). Hence,

1
KL (Bo ([[|PCH-1)) = 510 (37) Exiro (Lo move a0 (3:31)

where we have used P(+ | zix,a*) = 3 + A, Po(+ | ir,a*) = &, P(— | zir,a*) = 1 — A and Po(— | zs+,a*) = .
Therefore combining (3.26) and (3.31) and summing over the episodes, we get:

KL<PO(M(HK)) I IP’(M(HK))) <2(e* —1)°In (1—714A2> ZPO (Skd—1 = Tir,apq-1 =a") (3.2

— 2" — 1)%In (TZAQ) Eo(T(K, T))

105

Bounding (2. Using again the chain rule of the KL-divergence, we have that:

KL (Po(H) || P(Hic)) = Y By yro (KL (Po(-[Hi-1) || P([He-1))) (333)

k=1

Therefore, using Eq. (3.31), we have:

K
1 1
KL (Bo(Hic) || P(H)) = > B yor | 510 (=57) Exmro ooz
k=1

ona1—a" (3.34)
1 1
= 51 (=) BT D)
Finishing the proof. Hence using Eq. (3.32) and Eq. (3.34) in Eq. (3.24):
. 1 1
E(T(K, I)) < Eo(T(K, I)) + K min {\/E(e —, \/5} \/IEO(T(K,) (m) (3.35)
Now, let's assume that I = (z;+, a*) is distributed uniformly over {z1,..., 21} X [A]. That is to say, that the leaf ¢* ~ U([L])

and given the realization of ¢*, a* is drawn uniformly in the action set of node z;« i.e., a* ~ U([A]). We denote the expectation
over the random variable (x;+,a”) by E;. It then holds that:

K L A
1 K
EIEO(T(K7 I)) =]EO Z Z Z ﬂn{sk’d,lzs,ak’d,lza} = ﬁ (336)

k=1 l=1 a=1

Therefore thanks to Jensen's inequality the regret is lower-bounded by:

E/R(K,I) > (H — d)AK <1 - ﬁ — min {\/i(ef —1), \}5} \/54 In (1 + 14A412)> (3.37)

Therefore for LA > 2, K > W and choosing A = % X

— min

[S .
Tovamn{ (D3] we get that:

min {\/ﬁ(exp(e) -1, \;5} \/54 In (1 + fA:AQ) < i

Hence:
max R(K,I) > E;R(K,I) > (H—d)VKLA - (3.38)
Ie{z1,...,wL }x[A] 64 min {(exp(a) -1), 5}
And because I is a finite random variable there exist I* such that max;c (s, .. .o, yxja] R(K, 1) = R(K,I*).
H — KLA
RK,) > — =DV (3.39)

~ 64 min {(eXP(E) - 1), %}

Thus we have that there exists an MDP such that its frequentist regret is (2 (HVSAK)

min{1l,exp(e)—1}
3.A.3 Concentration under Local Differential Privacy (Proof of Prop. 6):
In this subsection, we proceed with the proof of Prop. 6 (recalled below).

Proposition. For any g > 0, 6o > 0, § > 0, « > 1 and episode k, using mechanism M satisfying Asm. 11, then with
probability at least 1 — 26, for any (s,a) € S x A

21n 4n2SAHE3 . .
r(s,0) — T,)] < Bi(s,) = | =2l) (e Dea(e0,80,0) - ekua(en: 50,0)
Nj(s,a) + ack,2(€o, 0o, 9) N (s,a) + ac,2(€o0,d0,0)

148 In (4m2SAHES) N Scr,a(g0, 00, 6)
Ny (s,a) + ack,3(€0,00,6) Ni(s,a) + acks(eo, do,)
(o + 1)k 3(0, 60, 0)

]V,f(s, a) + ack,3(€o0, 0o, 9)

Ip(ls,a) = pr(ls,a)lln < By (s,a) = \/

106

Proof. On the event that all inequalities of Def. 11 holds, we have:

’ ﬁk(s,a) _ Ry (s,a) < ¢k,1(€0, 00, 0) (3.40)
N,:(S, a) + OéCk,Q(Eo, 507 (5) N]:(S, a) + OéCkyg(Eo, 507 (5) B N]:(S, a) + OéCkVQ(EO, (5()7 (S)
since N,:(s,a) + ack,2(£0,00,8) > NF(s,a) > 0 with a > 1. But, we also have that with probability 1 — 4
= Ri(s,a) —r(s,a)| < |r(s,a) < = Ni(s,a) - 1) (3.41)
N} (s,a) + ack,2(eo, 0o, 9) N{(s,a) + acg,2(g0,00,0)
i Nk(s7a) > <Rij(8,a) —T(S,a))
N;(s,a) + ack,2(c0, 00, 9) Nj (s, a)
=T (s,a)—r(s,a)
< N (s,a) L(¢) tr(sa) |1 — — N/ (s,a) (3.42)
NI (s,a) + ack,2(g0,00,8) \/Ni(s,a) N (s,a) + ack2(g0,00,0)
L(6)\/NT(s,a
o LOVNGD (et Dewslen00.0) (343)
N (s,a) + ack,2(c0,00,0) N[(s,a)+ ackz2(eo0,d0,0)
where the second inequality follows from Chernoff-Hoeffding bound on the empirical non-private rewards with
0) = \/2 In(472SAHK?3/36), and we use Def. 11 for the last. Furthermore:
L(8)\/N7 (s, \/NT) + ck,2(€0, 00, 0)
_ LO)VNi(50) < < L(9) (3.40)
Nl:(s’a)+ac’“2(50’50’5) Ni (5, 0) + ack2(c0,do, 6) \/ﬁg(s7a)+ack,z(ao,5o,6)

Therefore combining Eq. (3.40), (3.43) and (3.44), we have:

Ek(s, a)

NT (s, a) 4 ack 2 (€0, 60, 6)

Ck71(€0, 50, 6) + (a + 1)Ck,2(€0, 50, 5)
Nj(s,a) + ack,2(€o, 0, 9)
L(é)

\/1\7]:(5,(1) + ack,2(£0, 0, 0)

- T(Sva)‘ <

+

thus proving the first statement of the proposition. Now, we bound the deviation between the private estimate pr and the
true transition dynamics p. First, because o > 1, we have that > , N (s,a,s") + ack 3(€0,00,6) > >, NE(s,a,s") + (o —
1)ck,3(g0, d0,0) > 0. We start by decomposing the error as

Z ’17(8/|8,a) —p(s'|s,a)’ = Z

s'eS s'eS

N]:‘)(S7 a,sl) _ (5/|3 a)

Zs/ N}f(‘% a, 5/) + O[Ck,3(507 607 6)

+Z NP(s,a,s") — Ni(s,a,s")
e ZS/N (5,0, ') + ack,s(c0, 60, 0)

D)

(3.45)

<Z N7 (s,a,s") o(s' | .0)
S|, Ni(s,a,8) + acka(eo,00,6)

107

Do
N7 (s,a,)

Recall that ﬁf(s,a, s') = ﬁ,f(s,a) and >, NZ(s,a,s") = N (s,a) and define B, (-[s,a) = NPy - | herefore:
He
(s,a,s") NP(s,a) /
@ = . —p(s' | s,a)
’ze;s Np (s,a) N,f(s,a) + ack,3(€0, 0, 0)
N7 (s,a,s") / P
(Npm —p(baDNua@ o
) (|8 a)(~ 7(s,a) 1>
Np (s,a) + ack,3(€o0, 00,90) N7 (s,a) + ack,3(€0, 60, 0)

>0

< Z <p(s/s,a) _ (a + 1)cg,3(g0, 00, 0)) i NIS,(VSvaﬂlﬁk("Sva) —p(s,a)llx
N,f(s, a) + ack,3 (&‘07 do, 5) N,f(s, a) + acg,3 (80, (50, 5)

(z) (a + 1)ck,3(0, 00, 6) n NP (s, a) L(%)
~ NP(s,a) + ack3(g0,60,8) NE(s,a) + ack,s(co,80,08) /N (s,a)
< (a + 1)016,3(50750,6) L((;)

N?(s,a) + ack 3(€0, 0, 8) \/ﬁlg(s’ a) + acks(o, 8o, 8)

where L(0) = \/145 In(472SAHK3/30) and inequality (a) follows from the Weissman inequality (Weissman et al., 2003),
and we have again used the fact that the inequalities in Def. 11 hold.
In addition,we have:

ck.4(€0, 00,0 Sci,a(e0, 00,0
@<ZW|““0” - (60, 20,0) (3.46)

s (s,a) + ack,3(eo0, 00,0)]\Nflf(s,a)+ack,3(50,5o,5)

Hence putting together Eq. (3.46) and Eq. (3.46), we have:

>

s'eS

NP(s,a,s")
Np(s a) + ack,3(€0, 0o, 9)

Scg.a(€o,00,0) + (a + 1)cx,3(€0, 00,)
Np(s a) + ack,3(€o0, 0o, 6)

L(9)
\/ﬁf(s, a) + OéClg,g(t’:‘o7 50, (S)

—p(s' | s,a)| <

(3.47)

+

3.A.4 Regret Upper Bound (Proof of Thm. 7)

In this subsection, we prove Thm 7, which we recall below.

Theorem. For any privacy mechanism M satisfying Asm. 11 with e > 0, 0o > 0, and for any 6 > 0 the regret of LDP-OBI
is bounded with probability at least 1 — § by:

2 / 2 35 2 ~2 35
A(K) S O(HS AT+SAH CK,3 (67(507 W) + H S ACKA (5,50, W)

(3.48)

+SAHck o (5760, W) + SAHck 1 (87507 W))

The combination of M and LDP-OBI is also (e, §o)-LDP.

108

Good Event: Before proceeding the proof of the regret we define a good event under which all concentration inequalities
holds with probability at least 1 — §. First, we define the event that all inequalities from Def. 11 holds. Let:

Ly = ﬂ {‘Ek(s,a) — Ri(s,a)

s,a

Loy = m {‘N}g(&a) — Ni(s,a)

ZN]f(s?a,s/) — Zﬁ:(s,a, s')

L3y = ﬂ {
n {‘N,f(s,a, s —]V,f(s,a,s/)‘ < ck74(50,50736/2k27r2)}

s,a
s,a,s’

< ¢g,1(€0, do, 36/2]€2W2)}

< ¢ 2(€0, do, 35/2k27r2)}

< cg,3(€0, do, 35/2k27r2)}

Ly,

then thanks to Def. 11 we have :

i X3S
P H LixgUL; , UL5 x ULGy | < ; YR (3.49)

In addition, for all k& € N*, we can define 71 (s,a) = Ri(s,a)/Ny(s,a) and B, = N{(s,a,s")/> ., N{(s,a,s") as the
empirical reward and transition probability computed with the non-private counters. Note that in this case Ni(s,a) =

Ni(s,a) = Zs, NP(s,a,s’). We also define B;((S,s,a) = ,/% and Bi(é,s,a) = %ﬁ%gé). as the size of the

confidence intervals using Hoeffding and Weissman inequalities. Thus, we get:

“+oo
P <U UI7e(s,a) = r(s,0)| > Bi(36/4x*SAHRK®, 5, a))

k=1 s,a

+oo i :
<> P (m(s,a) —7(s,a)] > \/21n(47;\71i?’21§g /35)>

k=1 s,a

ERSS kH +o0 kH
Y3 e <|Tk(s7a) C(sia)| > \/21n(47r2S:Hk3/35)> <YV % 4772;)}6L4k:3 < g

k=1 s,a n=0 k=1 s,a n=0

A similar result holds for the transition dynamics, i.e.,:

(3.50)

| >

“+oo
P (U U IpeCls,a) = pCls,a)ll, > 6’2(35/47T25AHk3,s,a)> <

k=1 s,a

Thus we can define the good event Gi. by:

k—1 4
Ge = () () Zia N[{[Fils.a) — (s,)| < B (36/(4n>SAHI®), 5,0)}
1=1i=1 s,a

N {||ﬁk(-\s,a) —p(ls,a)l]; < BZ(36/(47TQSAHl3),s,a)}

Then IP’(Z: gk) >1—46/2 and G, C o(Hz) (i-e., the history before episode k).

Optimism: For each episode k, the value function Vi 1 computed by LDP-OBI is optimistic, that is to say: Vi n(s) > V,(s)
for any h and state s. We sum up this with the following lemma:

Lemma 22. For any episode k € [k|, the value function Vi, 1 computed by running Alg. 11 is such that with probability 1 —¢:
Vs € S,h €1, H] Vie,w(s) > Vi (s) (3.51)

Proof. Fix an episode k then we proceed by backward induction conditioned on the event Gi:

= For h = H, we have for any state s and action a:

Vi m(8) > Qu u(s,a) > ri(s,a) + Bi(s,a) > r(s,a) thanks to Prop. 6 (3.52)

109

= For h < H when the property is true for h + 1, we get for any state-action (s, a):
Vien(8) = Qin(s,a) = Ti(s, a) + Bi(s, a) + pr(:|s,a) Vins1 + HBL (s, a) (3.53)
>r(s,a) +p(-ls,a) Vi1 > Qi(s, a) (3.54)

where we used the fact that ||(px(-|s, a) —p(-|s, @)™ Vi nra |l < Ipx(-ls, @) = p(-ls, @)1 Vi nsilloo < HBL(s,a) and the
inductive hypothesis.

O
Regret Decomposition: We are now ready to analyze the regret of LDP-OBI. Consider an episode k, then, conditioned
on G:

Vi (s,1) = Vi (k1) < Vi (s,1) — V™ (s,1) < 7(sk,1, am,1) + Bi(sk,1, am,1) — 7(Sk,1, ak,1)
+pk(|s,a) " Vi2 — p(-[s,a)TV™ 4+ HPBY (sk,1, ak,1)

where the last inequality follows from recursively applying the same technique. Then, observe that (7x,n)x,n is @ Martingale
Difference Sequence with respect to the history before episode k and thanks to Azuma-Hoeffding inequality we have that with
probability at least 1 — §/2, Zszl H ! 1 Me,n < 2HL/KH1In(2/6). Therefore, we have with probability at least 1 — 4:

R(LDP-OBL K) < 222@ Skons @) + HBY (skny arn) + 2H/TIn(2/5 (3.55)

k=1 h=1 MDS error term

Let vi(s,a) = Zle s, =s,ap n=a}- Then summing over the reward bonus and using the fact that a > 1, we get:

K H
Z Br.(sk,n, ak,n) Z - v(8,a)Li,»

k=1 h=1 s,k A/ Ni(s,a) + ack,2 (507 do, 27r32‘6k7)
35
N Z vk(s,a)(a+ 1)ck,2 (80750, T%z) (3.56)

38 e
QCk,2 (507 607 27‘r2k2) + NT(S7 a’)

s,a,k

N Z vk (s, a)cr (50,50, 27251&2)
QCk,2 (50a507 2ﬂ2k2) JFNT(S a)

s,a,k

where Ly, = 4/21n (W). Then, using that]V,Z(s,a) + Ck,2 (50,50, %) > Nyi(s,a) on the good event from Gy:
356 k(57a)Lk,r + Vk(s a)(+1)Ck2 (60’60’%)
s,a,k \/Nk 5 (l a—l)ck2(80,(50,%%g) (a_l)ck2(50’60’ w2 2)—’—]\/vk(s a)
, (3.57)
s vi(s,a)cr1 (20,00, gm0z)
— (a—1)ckz (60,5o, %) + Ni(s,a)
But because ci 2 is non-decreasing in k, we have that,
36 30 vi(s,a)
357) = ((act Ve (o g 202) e (e 20)) 37 1ol
(357) < ((a—i— Jer2 (EO 0 27r2K2) e |2, % 2m2K? Ni(s,a)
o 3.58
n Z vk(s,a) L r ()
s,a,k Nk(S,(I)
Which can be rewritten as:
(3.58) < 2 ((+1) (5 5 375) + (5 5 i)) SA(In(2TSA) + H)
. = o CK,2 0,00, oK 2 CK,1 0,00, 2 K2 (3.59)

+1/61n (14SAT/5) (V2SAT + HSA)

110

where the last inequality comes from Lem. 19 in (Jaksch et al., 2010a). For the sum of the bonus on the transition dynamics

we have that:
& Huvy(s,a)Lg
) IETARES ISR Y1
k=1 h=1 s,a,k \/N,f(s, a) + ack,3 (50,50, %)

35
HSvy(s,a)ck,a (60, 00, 5752)

38 NP
7 OCk,3 (50, do, 2ﬁ2k2) + N (s,a)

(3.60)
N Z Hug(s,a)(a+ 1)ck,3 (80,507 %)
Qack,3 (60, do, %) +]\75(57 a)

s,a,k

where Ly, = \/145 In (4”253#). Then similarly to the reasonning used to bound Eq. (3.56), we have:

(3.60) Huvy(s,a)Lg,p Z Hu(s,a)(a + 1)cks (20,00, 57552)
36
s,k \/Nk (s,a) + (v = 1)ck,3 (50,507 2773‘26{2) sask (@ = Ders (60’50’ W> + Ni(s,a)
N Z HScy 4 (60,507 %)
P (a—1)ck,3 (50750, %) + Ni(s, a)
35 36 Huy(s,a)
< 1 80, 00, 55773 Nols.a)
<+ ((a+)CK,S (50, 0, 27T2K2) + SCK,4 (507 0, 27T2K2>) Nk(S,a)

k,s,a

30
271'27) + SCK,4 (507 50,

+ H1\/46S In (14SAT/6) (V2SAT + HSA)

36

<2SAH ((a +1)ck3 (507 do, o2 K2

)) (n(2TSA) + H)

where the last inequality comes from (Jaksch et al., 2010a, Lem. 19) and (Fruit et al., 2020, Lem. 8). Hence putting
everything together, we get that with probability 1 — ¢:

R(LDP-OBI, K) < H\/46S In(14SAT/6)(V2SAT + HSA) + \/6In(14SAT/8)(V2SAT + HSA)

34 38
+2SAH ((Ot + 1)ck,s (EO7 do, W) + Scx 4 (507 do, K2
30

d
+2 ((Oc =+ 1)0}{»2 (80, do, W) + CcK 1 (80,507 2K2)) SA(]H(QTSA) + H + 2H+\/ Th’l 2/(5

In addition, because LDP-OBI has only access to the privatized data, that is to say it only uses the output of
M({(sk,h, @k,h, Tk,n)n<m }) for each episode k, the LDP constraint is satsified as long as the privacy mechanism M satisfies
Def. 3.

)) (n(2TSA) + H)

Note: the proof of this regret upper-bound relies on concentration inequalities more generally used in the average reward
regret minimization setting. Stated otherwise, we directly study the error between the estimated model and the true model,

e., |rx — | and ||px(. | s,a) — p(. | s,a)||1 for each s,a. In the non-private setting, it is possible to get a more refined regret
using more precise concentration inequalities, mainly Bernstein inequality and other tools introduced in (Azar et al., 2017a).
However, in the private setting, using such results only leads to a gain in lower order terms and terms independent of ¢ while
the technical derivations are much more intricate.

3.A.5 The Laplace Mechanism for Local Differential Privacy

In this appendix, we show how the well-known Laplace mechanism (Dwork et al., 2006) can be used with LDP-OBI to ensure
LDP and a sublinear regret.

111

Algorithm 13: Laplace mechanism for LDP

Input: Trajectory: X = {(sn,an,rn) | h < H}, Privacy Parameter: £

Draw (Yi,x(s,a))(s,a)esxA,i<2 i.i.d Lap(1/e0) and (Zx (s,a,5"))(s,a,5")esx.axs i.i.d Lap(1/e0) and independent
from Y; x for i € {1,2}

for (s,a) € S x A do

Rx(s,a) = > 1 mnl{s, ap=s.a) + Y1,x(s,0)

N;((87 a‘) = Zthl ﬂ{sh»ah;‘%a} + YQvX(S’ a)
for s’ € S do
H-1

N;}(SCLS Zl{sl7aah75h+1 SGS}"_ZX(SO'S)

Output: (Rx,NX,Np) c]RSXA x RSXA % RSXAXS

3.A.5.1 The Laplace mechanism (Alg. 13) satisfies local differential privacy (Asm. 11)
We first prove Thm. 10 which states that using Alg. 13 with parameter g = ¢/6H guarantees (g,9)-LDP.

Theorem 10. For any ¢ > 0, the Laplace mechanism described by Alg. 13 with parameter ¢y = ¢/6H is (g,0)-LDP (and thus
(g,00)-LDP for every 6o > 0).

Formally, we need to show that, for any two trajectories X and X’ and tuple (r,n,n’), the following inequality holds
IP’(M(X) = (r,n, n/)) < eEIP(M(X') = (r,n,n/)) +4 (3.61)
where 7, n, n’ are vectors of dimension SA, SA and S?A, respectively. See the LDP definition in Def. 3.

Proof of Thm. 10. Let's consider two trajectories X = {(sn,an,ra) | h < H} and X' = {(sh,ap,) | h < H}. We
denote the output of the private randomizer M by M(X) = (RX,NX,N”) and M(X') = (Rx,]V)T(,,]Vp). Recall that
Ex(s, a) = Zle Trhll{s), =s,ap=a} +Y1,x(5,a) where (Y1,x(s,a))(s,a)csx.4 are independent Laplace variables with parameter
¢/(6H). Consider a vector € R5*4, then:

(3.62)

P (v(s,a)7Rx(s7a) =Tsa | X) _ H P (Y1,x(s,a) = S rhle—sap—a} — Ts.a | X)

since the Laplace distribution is symmetric. But Y1 x(s,a) and Y7 x/(s,a) are independent random variables for any state-
action pair. Thus:

ap=a

H
_ €0 (rpl —Ts,a
P Yix(s,0) =YL mal | —real X D (7 -
e CL}L—G

II

s,a s,a
P Yl X/ S, a Eh 17"h { ;L s } — Ts,a | X/ €0 Zh 1(;L {s/ —s }—T‘s,a
, h="%
a;l—a e a%/:a
H
(3.63)
< exp <50 Z Z rh]l{sh s,ap=a} — Th]l{a =s,a’, —a}) >
s,a | h=1

< exp <€0 Z('Th|]l{3h:57”‘h:a} + |T;L|]1{S;L—s,a’h—a})>

s,a,h
= exp <60 Xh:(\rﬂ + |r}b)> < exp (2Heg) = exp (%)
where we used the definition of the Laplace distribution, = — & exp(|z|/b). Let n € RS*# and n’ € RS*4*5. Similarly,
since Nk (s,a) = Zthl Lo, =s,a,—a} + Y2,x(s,a) and N%(s,a,s") = hH 11 Lsp=sian=a,spsr=s'y T Zx(5,a,5"), we have:

P (V(s,a), ﬁ)}(&a) = Nsa | X)

P (V(s, a), Kf;(,(s, a) =nsq | X’) < exp (%) (3.64)

112

and:
P (V(s, a,s’), ﬁf((s, a,s’) = Wygo | X)

P(V(S,aasl)7ﬁX’(s a, S) sas' ‘X/)

< exp (%) (3.65)

Then because (Vi x (s,a))i<2,(s,a)esx.A, (Z2x(8,0,5"))(s,0,5)esxAxs are independent it holds that:
P(EX:T,JVQ:n,N” :n/|X> :IP’(EX:r\X)P(Z\Nf}}:n|X)P<ZV§’(:n’\X)
Thus for any (r,n,n') € R¥*4 x RS*4 x R¥*4*5 and any two trajectories X and X':
IP’(M(X) y—— x) _p (EX =, N% =n, N2 =’ | x) (3.66)
:P(EX:r\X)P<N§:n\X>P(N§:n’\X) (3.67)

where we use the convention that Rx = r implies that Ex(s, @) = T'g,q, and similarly for Ny =n,]\fo(= n’. Therefore using
inequalities (3.63), (3.64) and (3.65) in (3.66), we have:

P(M(X):(r,n,n’)\x):P(EX:MX)]P(N;:n|X)P(Kr§:n’|X)
< exp(e)P (EX, :r\x/)]P(Kf;(, =n|X’>1P(N§;, = /|X’)
(RX/—TNX/—n Np,—n |X>

e)P
= exp(e)P (/\/l(X/) = (r,n,n’) | X')
This concludes the proof. O

Now that we shown the Laplace mechanism ensures LDP with the reight parameter, let's show that the latter satisfies
Asm. 11 by showing the following proposition:

Proposition 9. For any € > 0, the Laplace mechnism, Alg. 13, with parameter o = /(6H) satisfies Def. 11 for any 6 > 0
and k € N with c; 1(g,8) = cr2(¢,9), cx3(e,8) = VScra(e, 8) and:

s (.8) = max { VE.In (GSA)}W

) e/6H

524

6524 | V8 (%)
ck,g(s,é)—max{vks,ln< 5 >} /G

Before proving Prop. 9 we state the following concentration inequality for the sum of Laplace variables.

Proposition 10. (Dwork and Roth, 2014, Cor. 12.3) Let Yh,...,Y) be independent Lap(b) random variables with b > 0 and

5 € (0,1) then for any v > bmax{\/ﬁ, «/1n(2/5)},

P(ZYZ >y\/m>§5

1=1
We can now prove Prop. 9 that shows that Alg. 13 satisfies Def. 11.

Proof of Prop. 9. Let Xi,..., X,—1 be the k — 1 trajectories generated before episode k > 1. Consider the private statistic
Ry(s,a) generated by the private randomizer before episode k. Then for any state-action pair (s,a) € S x A:

Ri(s,a) — Ry(s, a)

= | > (Bx,(s,a) = Rx,(s,0))

1<k
H "
=12 (Mm@)y omty, | =2 > miy,
1<k h=1 aip=a I<k h=1 alp=a

k-1
= ZYLXL (s,a)
1=1

113

Algorithm 14: Gaussian mechanism for LDP

Input: Trajectory: X = {(sh,an,7r) | h < H}, Privacy Parameter: ¢, ¢
Draw (Y3, x (8, a))(s,a)esxA,i<2 i.i.d J\/'(O7 02) and (Zx(s,a,5"))(s,a,s")esxAxs i-i.d /\/(0,02) and independent from
Yi, x for i € {1,2} with 0 = cH/eo

for (s,a) € S x A do

Rx(s,a) = Zthl Tl (s, =s,an=a} + Y1,x(5,0)

= h

Nx (87 a‘) = Zh:l :H'{Sh:Svah:a} + Yo x (S’ a)

for s’ € S do

~ H-1
‘ N§ (S’g’ s/)~: _h=1 :[I'{Sh:srah,:“vShJ»lzs/} + Zx (s, a, 5/)
Output: (Rx, N%, N%) € RF*¥A x RI*XA 5 RIXAXS

which is the sum of independent Laplace variables. Let 6 > 0. By Prop. 10 we have that with probability at least 1 — /(35 A)

= 1 6SA 6SA

E Y1, x,(s,a)| < - max {\/k —1,In (T>} 81ln (—) (3.68)
0

=1

é
The same property holds for ﬁ,’; and ﬁfj and we again apply Prop. 10. Properties in Def. 11 follow from union bounds. [J

3.A.6 Other Privacy Preserving Mechanisms

We have shown in App. 3.A.5.1 that the Laplace mechanism, Alg. 13, satisfies Def. 11. However it is not the only mechanism
to do so. In this appendix we present the Gaussian, Randomized Response and bounded noise mechanisms and show that
these also satisfy Def. 11.

3.A.6.1 Gaussian Mechanism:

The Gaussian mechanism is a fundamental mechanism in the differential privacy literature (see e.g., Dwork and Roth, 2014).
However, contrary to the Laplace mechanism the Gaussian mechanism can only guarantees (g,6)-LDP for § > 0. The
mechanism is based on the same idea as the Laplace mechanism, that is to say it adds Gaussian noise to the result of a given
computation on the input data. This noise is centered and the standard deviation o (e,) is Ce—H

In the following, we show that the Gaussian mechanism almost satisfies Def. 11. The Gaussian mechanism can not
guarantee (0, 0)-LDP for any g9 > 0, however we show that it satisfies the other necessary conditions, including (g9,)-LDP
for any 6 > 0. First, we show that the mechanism guarantees Local Differential Privacy for high enough noise.

24

Proposition 11. For any 1 > ¢9 > 0 and do > 0 and parameter ¢ > 4In (%

), the Gaussian mechanism, Alg. 14, is
(g0, 60)-LDP.

Proof of Prop. 11: The proof is based on the proof presented in (Dwork and Roth, 2014). Similarly to the proof of Prop. 9
let's consider two trajectories X = {(sp,an,7) | h < H} and X’ = {(s},, a},,7},) | R < H} and also denote the output of the
private randomizer M by M(X) = (Rx, N, N%) and M(X') = (EX/,]V)T(/,]V;).

For a given vector rr € R9*4,

P (V(s,a)7ﬁx(s,a) =Tsa | X)

o H P (YI,X(57Q) = Ethl Thn{sh:s,ah:a} —Ts,a | X)

= (3.69)
since the Gaussian distribution is symmetric. Then,
H
H P (Yl,X(S,CL) = Zh:l Th‘ﬂ{sh:s,ah:a} —Ts,a ‘ X)
H
s,a P <Y1,X’(S7 a) = Zh:l r;ll{sglzs,aglza} —Ts,a ‘ Xl)
(3.70)

2
H 2 H
Zh=1 Thll (s =s,ap=a) — TS,G) - (Zh=1 Thﬂ{sgzsya’,:a} - Ts,a)

= H exp (552

114

But, considering the squared term, we get

2 2
H

Z’”hﬂ{s, :s,} ~Tsa

h=1 ap=a

Il
()=
.
>
=
—
K
d
——
|
()=
=
>~
=
=
o
>
Il
I3
——
+
()=
.
=~
=
—
s
ST~
Il
Q@
——
|
o
®

Hence we get that

H H 2
1
00Tl (s (() bty
s,a h=1
H H
-2 —r ’ ; ’ - .
(ZT}L]I sp=s, ’f’h]l o) =s, > (Zrh]l s =s, Ts,a)))
h=1 ap=a a;L=a h=1 a;lza

2
But, ZS’G (Zthl rrlis, =s,ap=a} — Zthl r}bl{szzsﬁa;l:a}) < 2H? because for each step h, 7, € [0,1]. By the same

H ’ H /
(thl Thl{s,=s.ap=a} = Thﬂ{s'h:s,a;;a}) 2on=1 Thl{s) =501 —a}

H
1
(370) < exp <w (22 <Zrh]1{sh—s,a;L—a} - T;L]I{S;I—S,Q;L—a}> Ts,a + 3H2>>

s,a h=1

1
< exp <202 (2\@1{ /Z 2o+ 3H2>>

where the last inequality follows from Cauchy-Schwartz. Note that if ||r||2 < o’cq _ 3H Eq. (3.72) is bounded by exp(g0/3).

(3.71)

< H?. Therefore, we have:

reasonning, we have)

(3.72)

3vV2H 22’
- " SxA - SxA 2 H 3H
Therefore, to finish, we partition R”*“ in two subspaces R = {m e R4 | lz]]2 < 3;560 — m} and
SxA 2H 3H .
Ry = Sz € R4 | ||z]|2 > 3‘\3/550 - m} where we used the fact that o = cH/eo with ¢ a constant to be chosen later.

Then for ¢ > 41n (%) for 41 to be chosen later, P (Y1,x € R2) <61 and P (Y7 x/ € R2) < d1. Thus for Eq. (3.69):

P (V(s,a)7Rx(s7a) =Ts,a | X) =P (V(s,a),Rx(s,a) =Ts,a ‘ X) IL{,,,(ZhH:l 7'h]l{sh:s,})5va€R1} (373)
ap=a
+P (V(s,a%Rx(s,a) =Tsa | X) ﬂ{r_(zlerhl s)ea€R2)
{an=2)
€0 ~
<ew / = ' :
< PP (V(s, a), Bx:(5,0) = 7ea | X) Lot oy o) (3.74)
ap=a
+P(Y1,x € R2)
< exp(eo/3)P (V(s, a), B (s,0) = roa | X’) 46 (3.75)

We get the same results for N" and N?. Then, because (Yi,x(s,a))i<2,(s,a)esxa: (Zx(8,0,8))(s,a,5")c5xAxs are
independent, see Alg. 14 it holds that:

P(EX:r,ﬁg}:n,ﬁp :n/|X> :P(R’X:r\X)P(ﬁ§=n|X)P(N§:n/\X)
and so,
]P’(M(X):(r,mn’)\X) :P(EX :r,ﬁgzn,ﬁ;:n’m)

:P(éxzr\X>]P’<Kf§<:n\X)IP’(]\Nfg’}:n’\X)

115

Then for any two trajectories X and X', we have:
P(EX:r|X)1P(ﬁ§:n|X)P(Kf§:n’|X) < ﬁ”@(ﬁxl :r|X’> +51>
X (e%OP (]V)T(/ =n| X/) +51)
X (e%OIF’ (]V)’}, =n'| X') +51)
< eP (éx/ =r| X’) P (]V)T(, =n| X’) P (1\7;/ =n| X’) + 26, exp (2£0/3)
+267 exp (€0/3) + 65

Thus by choosing 61 = do/8, it holds that 281 exp (2e0/3) 4 267 exp (€0/3) + &5 < §o for €9 < 1, and so we can conclude that
the Gaussian mechanism is (g9, do)-LDP. O

In addition, the precision of the Gaussian mechanism is of the same order as the Laplace mechanism, that is to say:

Proposition 12. The Gaussian mechanism, Alg. 14, with parameter o > 0 and 2 >4ln (%) for any 6o > 0 satisfies Def. 11
for any § > 0 and k € N* with:

Ckﬂl(eo,(s(),(s) = Ckyg(E(),(s(),(;) = Ck,4(€o,(50,5) = max {C;{ (k - l)ln (6&4),1}

0 1)
Ck,3(507507§) — max {C‘e}]\/(k o 1)811’1 (6?;14)7 1}
0

This result shows that using the Gaussian mechanism rather than the Laplace mechanism would not lead to improved
regret rate as the utilities cy,1, Ck,2, Ck,3, Ck,4 have the same depency of S, A, H,e¢ and k . Moreover, the Gaussian mechanism
only guarantees LDP for 6 > 0 whereas using the Laplace mechanism ensures that we can guarantee LDP for 6 = 0 as well.

Proof of Prop. 12: Following the same steps as in the proof of Prop 9, we have that at the beginning of episode k with

I 5 .
probability at least 1 — 55

Ri(s,a) — Ri(s,a)| = Z(ﬁxl (s,a) — Rx, (s, q)) (3.76)
<k
= Y1 x,(s,a)+) ml - - rallp (3.77)
sz < hzz:l {az'ﬁ—a‘}> 1<k hzz:l {azlh;a }‘
k—1
_ ;nxl(s,a) < a\/Z(kz 1) (%) (3.78)

for o = cH/eo thanks to Chernoff bounds. The same result follows for N” and N”. Therefore, the Gaussian mechanism
satisfies Def. 11 with ¢ 1 (€0, do,0) = cx,2(g0, 00, 9) = ck,a(€0, 00, §) with:

¢k, (0, 00,9) zmax{c;;[q/(k—l)ln <6§A),1} (3.79)

cr3(20, 80, 0) —max{f\/(k—l)Sln(Gf;A),l} (3.80)

where ¢ 3(€0, do, 0) is defined such that Y, Ni(s,a,s") = > ﬁ,f(s,a, s’)’ < ¢x,3(€0, 00, 9). O

with ¢ > 0 and:

116

Algorithm 15: Randomized Response mechanism for LDP

Input: Trajectory: X = {(sn,an,rr) | h < H}, Privacy Parameter: ¢
Draw (Y3, x(8,a))(s,a)esxA,i<2 i.i.d J\/'(O7 02) and (Zx(s,a,5"))(s,a,s")esxAxs i-i.d /\/(0,02) and independent from
Yi x for i € {1,2} with 0 = cH /e

for (s,a) € S x A do

forh=1,...,H do

Sample Y1, x (h, s,a) ~ Ber (zig—;}mﬂ{sh:s,ah:a} + ﬁ)

Rx(h,s,a) = iﬁj} (Yl x(h,s,a) - sol+1)

Sample 1'% (h, s,a) ~ Ber(€0+1]1{Sh:5 ap=a} + EOH)

if h < H then

for s’ € S do

S~amp|e nk (h,s,a,s’) ~ Ber (EOH]I{S,L—S ap=a,spp1=s'} T €0+1)
N)p;(h,87aas/) = Zzgti (ﬁX(h S (1 s) - 5()«|»1)

Outputs (R, N5, NY) € {zoty ctota} ™ x {ebs it} {at ot 7

3.A.6.2 Randomized Response Mechanism:

The second alternative mechanism we consider is the Randomized Response mechanism. In general, it is used for discrete
data like indicator functions (15, —s,a),=a})h,s,a. We therefore use it to privatize the number of visits of a state-action pair
and state-action-next-state tuple for each trajectory. With the assumption that reward are supported in [0, 1], we can also
use this mechanism for privatizing the cumulative reward of a given trajectory. Contrary to previous ones, the output of the
Randomized Response mechanism is three vectors, two of size H x S x A, and the last one of size (H —1) x § x A x S.
We slightly modify the requirements of Def. 11 by changing the size of the output of the privacy preserving mechanism. We
summarize the mechanism in Alg. 15.

Just as for the Gaussian mechanism, we show that Alg. 15 satisfies Def. 11. We begin by showing that this mechanism
satisfies (g9, 0)-LDP for any ¢ > 0.

Proposition 13. For any € > 0, the Randomized Response mechanism, Alg. 15, with parameter g = ¢/6H is (£,0)-LDP.

Proof of Prop. 13: Just as in the proof of Prop. 11 and Prop. 9, let's consider two trajectories X = {(sn,an,rn) | h < H}
and X' = {(sh,ah,rh) | h < H} and also denote the output of the private randomizer M by M(X) = (Rx, N, N%) and
M(X') = (er NX/ N /)

sA o . :
For a given r € { 50_17 950_1} (note that by definition of r in Alg. 15, these are the only values it can take), we

have that:
R = . ef0 — y}:,s,a
P (v(hasva)7RX(h7 870’) Th,s,a | X) (eioﬁrhn{Shs ,ap=a} + 501+1> %

~ €0—1,./]]. +
P (V(h,s,aLRxf(h, $,G) = Ths,a | X’) h.s,a \ €0+1 {s},=s,a},=a} S0+1
. (3.81)
% 1- (Eo+1rh]l{5h75 ap=a} T 5€0+1)
€0 —1
1= (50+1T;L]1{5'h:5,a;l:a} + m)
where for every (h,s,a) € H xS x A, we define yy, . , = :3;17«+ 2=o+7 belongs to {0, 1} because r € { 1, ef(f—[)l}HSA

Eq. (3.81) can be rewritten as:

0 — 1 1 sSp=s8,ap=a 1 y;’s’a g0 go _ 1 1 s1 =s.a1 =a 17y;’5v“
s =] ((e)rnl s =s.an=a) +) (6 (€ = Drnl(s,=s.a,= }) (3.82)

(650 - 1)T;Lﬂ{8;l:57ﬂ/ =a} +1 eso — (650 - 1)7.;1,1{5;1:570/ =a}

h,s,a

117

Then for a given (h,s,a), because rp, € [0, 1] we have:

e

(eEU - l)rh:[l-{sh:s,ah,:a} +1 < 1
(eso — 1)7“;111{%:5,@;1:&} +1 =)e®

1

e

e’ — (650 - 1)Th]l{s;L:s,a;L:a} < 1
eso — (eso — 1)7“;11{5%:5,(1”:«1} -1 1
e

Therefore, we can simplify each term in (3.82) by:

(e®0 — 1)Th1{sh,:37ah,:a} +1

if sy =s.ap=a) = L{s/ =s,af =a} = 1

if Lgsy=s.ap=a) = Lfs! =s.af =a} =0
if l{sh:s,ah:a} =1 and :[[{S/h:S’a;_L:a} =0
if]l{sh:s’ah:a} =0 and]I{S;L:s’a/h:a} =1

If :[I-{sh,:s,ah_:a} =]l{s;l:s,a'h:a} =1
if]l{sh:s,ah:a} =]l{s;lzs,a'h:a} =0

if 1{sh:s,ah:a} =1 and 1{311:57‘1;L:a} =0
if]l{sh:sﬂah,:a’} =0and :[I'{S/h:s,a%:a} =1

<ex (E (IL sp=s,ap=a} T 1 s’ =s,a) =a))
(650 — 1)T;LIL{S;L:-S,O«;LZQ} +1 — P Y {sh=s,ap=a} { p=5:ay }

660 — (660 — 1)Th]1{3h

=s,ap=a}
e — (0 — DLy oy P (50 (I{Shzs’%m} + 1{5215»%2“))

Hence, using the two inequalities above:

h=—a

(3'82) < H €XP | Yn,s,a€0 IL{sh:S’} + IL{s/h:s’} + (1 - yh,s,a)g() 1{3;123’} + IL{sh:s’
a ’
ah:a

h,s,a

h,s,a ap=a

— H exp | €o ﬂ{Sh:s } + I{S;L:s,}
= exp (2e0H)

1 €0 }H><S><A

In addition, let’s consider m € {m, e |

P <V(h,8,(l)7j\7§((h,8,(l) = Mh,s,a ‘ X)

P (V(h, s,a), N%, (h,s,a) = mp s | X/) hoa

X

Which can be rewritten as:

P (V(h,s,a)ﬁ&(h,s,m — X)

P (V(h, S, CL)7 N)T(’(hv S, a) = Mh,s,a | Xl)

Thus for a given (h, s, a):

(e — 1)1{5}L:51G}L:a‘} +1

(650 - 1)1{5;1:5,a’h:a} +1 e—c0
€0 €0 1
e — (e - 1)1{8;1,:8,(%:‘1} —) o0
€0 — (650 - 1)1{s;l:s,a'h:a} £50

€01

and y = Sg1m + s € {0,1}, we then have that:

€S0 1 1 Yh,s,a
(eEO+1]l{5h:3»ah,:a} + eF0F1) %

ef0 —1 1
o1 I, =s,a,=a} + 2077

17yh,s,a

ef0 —1 1
1- (650+1]1{5h:3’ah:a} + e€0+1)

ef0—1 1
1= (efo-y-ll{sgzsqa'h:a} + e50+1)

— H <(e<€0 - 1)]1{S;L:s,ah:a} + 1)yh,s,a «
(650 - 1)1{S;l:s,u;’:a} + 1

h,s,a

(650 o (eso _ 1)1{5h:5,ah:a}) 1=Yp . s.a
X

%0 — (%0 = Dy 5,07 =a}

if]l{sh:s,ah:a} =]I{S;LZS’G;L:‘Z}
if ﬂ{sh:s,ah:a} =1 and]I{S;L=S,a;L=a} =0
if IL{sh:s,ah:a} =0 and :H-{S;z,:s’a;:a} =1
if n{s;L:S,ah:a} =]l{S;L=S,a;L:a}
if ﬂ{sh’:s,ah:a} =1 and :ﬂ{s;z:s’a,h,:a‘} =0
if]l{shzs,ahza} =0 and]l{s;lis,a/h:a} =1

118

(3.83)

(3.84)

(3.85)

(3.86)

(3.87)

(3.88)

Therefore, here again we can simplify each term in (3.86) by:

(650 - 1)]1{sh:s,ah:a} +1
(650 — 1)ﬂ{g/ i) 1 < exp (50 (II'{Sh,:&ah:a} - IL{s;_L:s,a’h:a}))

eso - (- 1)]1{5;1 s,ap=a}
R PR (o0 (Ftnmsn=e =Ly msa))

Therefore:

(3.86) = H exp | Yn,s,a€0 1{3}1:3’} - 1{S;L=S,} + (1 = yn,s.a)€0 1{%:&} - 1{3}63’}

h,s,a ap=a aj=a a’h:a ap=a
= H exXp ((th,s,a - 1)50 <]1{sh:s,ah=a} -]I{S;zzs’a/h:a’}))
h,s,a

< exp (2¢0H)

}(H 1)><S><A><S

Using the same reasonning we have that for any m’ € { o1 5607

P (V(h7 s, a, s')7]\~]§'((l”lj,s,a7 s') = m/h,s,a,S’ | X)

- < exp(2e0H) (3.89)
P <V(h7 S, a, Sl)? Nf(/(h» s, a, S/) = m;‘b s,a,s’ | Xl)

We conclude the proof the same way as the proof of Prop. 10. O

In addition, the precision cx 1, k.2, ck,3 and c 4 of the Randomized Response mechanism are still of order v/k just as the
Gaussian and Laplace mechanisms. Contrary to any of those two, the dependence is exponential on g9 which is closer to the
lower bound of Sec. 3.1.2. Indeed, we have an additional factor S for ci 3 compared to the other mechanisms but those terms
scale with 1/(e® — 1) instead of the worse dependency 1/¢.

Proposition 14. The Randomized Response mechanism, Alg. 15, with parameter €9 > 0 satisfies Def. 11 for any § > 0 and

k € N* with:
2e°0 — 1 k—1)H 45A
crr (€0, 6) = cra(eo, 0) :max{l, — \/(:) ln(-)}
_ S(2e° —1) [(k—1)H 4S5 A
ck,3(€0,0) = max {1, pr— \/ 3 In (T)

B 20 1 [(k—1)H (4524
ck,4(€0,0) = max {1, e \/ 5 n (<)}

Proof of Prop. 14: Let's consider a given state-action-next state tuple, (s, a,s’), then when summing over h:

H
ZNk h, s, a) Z Z]]'{sl h=$,a1,p=a} Z Zﬁgﬁ (h,s,a) = Lis) p=s.a1,,=a}

I<k h=1 h=1 I<k

(3.90)

We now construct a filtration (F,5)k,n such that (Kf}}l (hys,a) — 1y, =s.a; y=a})1,h is @ Martingale Difference Sequence.
For an episode k and step h, define Fi,n = o({(s1.5, a1,5,r1,5) i<, M((s1,5,a15,705)i<m)} | U<k} U{(Sk,j,an;,ki)i<n})
to be the filtration that contains the history before episode k. Then H{Sk,h:s,ak,h:a} is Fi,n-measurable and thus we have:

e’ +1

~ 1
e (IE (nx, (hys,a) | Fr,n) — 7)

E (N;}k (h,s,a) —]l{sk,hzs’akvh:a} |]:k’h) - efo 41

71{%,17,:51%,17,:“} =0

where ix, (h, s,a) is a Randomized Response random variable generated by Alg. 15 for each step h, state s, action a and

trajectory Xx. And ‘]\7;% (h,s,a) — IL{Sk,h:SMM:a}‘ < 2::00__1' Then thanks to Azuma-Hoeffding inequality we have that

1
with probability at least 1 — 6/(4SA):

_ 201 (k- DH | 454
ZNk hoss) = 33 Ut < 20 \/ I, (154) (391)

I<k h=1

119

With the same reasonning, we have with probability at least 1 — §/45%A

H
Z (h5a5 ZZH{SHL =s,a;,p=0a,5; hy1=5"}
h=1

i<k h=1

2850—1 (k—1)H 4524
e

Also, we have:

H

Z (h,s,a) erhﬂ{ﬂ h=s,a;,n=a}

h=1 1<k h=1

_ 2 - 1\/(14 —21)H n (%) (3.93)

eso —1

with Rj(h,s,a) = 3,_, Rx,. Finally, with probability at least 1 — 6/4SA:

iZNg(h,s,a,s Zzzﬂ{m - } <S(€2::0—11)\/(k—21)H1n (4?4) (3.94)

h=1 s’ s/ I<k h=1 SLhg1= o
Compared to the bounds we derived for previous mechanisms there is an additional factor /S. This comes from using a
triangular inequality instead of using concentration inequalities like in previous mechanisms. Then thanks to a union bound
over the state-action pair and the state-action-next state tuple we have that the Randomized Response mechanism satisfies
Def. 11 with:

2e°0 — 1 k—1)H 45A

ck,1(€0,0) = ck,2(€0,0) = max {1, :EO — \/()) In (5)} (3.95)
_ S(2e*° —1) [(k—1)H (4SA)

¢k,3(€0,0) = max {1,] \/ 3 In 3 , (3.96)
2 —1 [(k—1)H . [452A

ck,4(€0,8) = max {1, pr— \/ 5 In < 5)} (3.97)

3.A.6.3 Bounded Noise Mechanism for DP:

Recently, Dagan and Kur (2020) showed how to construct a differential privacy with an almost surely bounded noise mechanism.
This mechanism, M, computes an (g,)-DP approximation of the average of a dataset D = {z1,...,2,} C R™¥* for any
€ >0 and ¢ € [exp(—k/log(k)®),1/2] (see Theorem 1.1 in (Dagan and Kur, 2020)). In the local differentially private setting
in RL, we apply this bounded noise mechanism to each user k in order to compute the cumulative reward for each state-action
(s,a), the number of visits to (s,a) and the number of visits to state-action-next state tuple (s, a, s’).

This noise mechanism is similar to the Laplace or Gaussian mechanism and add a noise drawn from a well-chosen distri-
bution, upe, r supported on (—R, R) for any R, whose density at n € (—R, R) is:

PSR) ity foe () = exp (Rf) and Zoer = / e ToerM (3.98)

ZpE,R -n R

Dagan and Kur (2020) shows that when taking § > exp(—k/log(k)®) and € € (0,1) there exists a universal constant
C > 0 such that when taking R = = klog() adding noise from uper ensures (g,)-DP to the average of n data of

dimension k.
Similarly to the previous mechanisms we studied we can show the following proposition, which states the parameter we
need to use to ensure (g, d)-DP.

Proposition 15. For any ¢ € (0,1), §o > exp(—SA/log(SA)®) and 61 > exp(—S2A/log(S%A)®) then the bounded noise
mechanism, Alg. 16, is (3He, §')-LDP with §; = 8o is =1, 61 = 51H7*1 and &' = 61e2Me 1251 426067 e+ (60)% e +
(85)%41.
Proof. of Prop. 15

For any ¢ € (0,1) and do > exp(—SA/log(SA)®), for any r € R¥*# and two trajectories X = {(sn,an,7n)n<m} and

X' ={(s},an,mh)n<u} let's define Rx (s,a) = Zthl Thl{s, —s,a,—a} the cumulative reward in state-action (s, a) associated
to trajectory X. Finally, let’s define for a set of indexes I C [H]] the new trajectory X where for h € I, (X1)n, = (s, an, rs)

120

Algorithm 16: Bounded Noise Mechanism for LDP
Input: Trajectory: X = {(sn,an,rn) | h < H}, Privacy Parameter: ¢,d, Constant: C'
Set Ry = £,/SAIn(1/5) and Ry = €2/AlIn(1/6)
for (s,a) € S x A do
Sample Y1, x(s,a) ~ uper,
Bx(s,a) = Yi,x(5,0) + 3230, (s =.00=a)
Sample n'% (s, a) ~ pE,R,
NX(S a) _n;((s a +Eh 1]1{Sh s,ap=a}
for s’ € S do
Sample n% (s,a,s’) ~ upERr,
NX(S a,s’) =nk(s,a,s +Zh 1 Lsp=s.ap=a,sp41=5}
Np(sas) n% (s, a,s) +Zh11{sh,sah a,spp1=s"}
Output: (Rx, N, N%) € RS*A x RS*A x RS*xAxS

and for h € I, (X1)n = (s),,a}, ;). Therefore, using Theorem 3.2 from Dagan and Kur (2020), we have that for I = [H —1]]
and Rx defined as in Alg. 16,

P (ﬁx = r) < exp(e)P (EXI = r) + do (3.99)
< exp(e) (exp(s)P (éX[H—2] = r) + 50) + do (3.100)
Therefore repeating the same argument H times, we have that:
H-1
P (RX = r) < exp(He)P (RX/ = r) + do Z exp(he) (3.101)
h=0
_ ~ exp(He) — 1
— exp(He)P (RX, - r) T (3.102)
In addition, we have with the same reasoning that for any n € R%*4 and n? € RS*4%5 that:
P (]\7}} = n) < exp(He)P (]\7)(/ = n) + 50% (3.103)
exp(e) — 1
and for any &§; > exp(—S?A/log(S%A)®):
~ ~ exp(He) — 1
P (N§ - n,,) < exp(He)P (N;;, - np) O T (3.104)
Therefore we have that:
(Rx—T,NX—n Ni_np|X> :]P’(RX_T\X) (Z\Nf}}:n|X)P<N§:np|X>
H H eHE —1
S E]P)(RX/_T')+($0 €]P> NX/—TL)+50 1 X
65 J—
X <6H5P (ﬁé’(, = nf’) + 51 —)
< 3Hep (RX/ =Ny =n,N2, =n) + 81 e*ep (EX/ = »,«) P (ﬁ;, - n)
+ 5662H6P (ﬁi, = np> (]P’ <ﬁ§/ = n) + P (EX/ = 7’))
4 645, eMe ((ﬁg/ - n) +P (ﬁX, - r)) + (5)2eHeP (ﬁ;, = np) + (8))%5),
with 8y = 0o = _11 and 4] = 51 . Therefore, we have that the mechanism is (3He, §')-LDP that is to say:
P(EX :T’,ﬁ;(:’I’L,N§ :TLP ‘ X) S €3H€P (EX’ :T,N;(/ =N NX’ = ;D) +(5162H€
+26/ 2H5+26061 He ((56)2€Hs+(66)2(5£
with §y = §p < : = o = 51 *1 and &' = 617 26027 4 2661 4 (55)%e™E + (64)%6]. O

121

In addition, because the noise is bounded we can apply standard sub-gaussian concentration inequalities to show that
Alg. 16 satisfies Def. 3.

Proposition 16. The bounded noise mechanism, Alg. 16, with parameter o > 0 satisfies Def. 11 for any § > 0 and k € N*
with:

ci(20,8) = cra(eo,6) = R\/Q(k 1 (%)

ck,3(20,0) = R2\/25(k ~1)In <6562A)
Croa(€0,0) = RQ\/Q(k‘ ~1)In (6S;A>

with R = 1,/SAIn(1/60) and Ry = £/ Aln(1/d0)

Proof. of Prop. 16 For any 6 > 0 and at the beginning of episode k, we have thanks to Hoeffding inequality that with
probability at least 1 — ﬁ for any state-action (s,a) € S X A:

A
‘Rk s,a) — Ri(s,a) (s,a)| < R\/ 2(k—1)In (%) (3.105)
with (Y1,x,(s,a))i<k—1 are i.i.d distributed according to pper,. With the same reasonning, we have that with probability at
least 1 — 54
A
‘Nk s,a) — Ny, (s,a) (s,a)| <R \/2(k:— 1)In (%) (3.106)
Finally, still using Hoeffding inequality, and definning Ry = % Aln(1/6), we have that with probability at least 1 — 352A
652A
S a, 5 ZZ]I{Sl h=8,a h=0a,5| hy1=5"} <R2\/ (k)ln(5) (3-107)
1<k h=1
And finally with probability at least 1 — 35A
~ — 652A
Z le(sa a, Sl) - Z Z Z]l{Sl,h:Svﬂl.h:avSl,thl:Sl} < Ryy|258(k—1)In (5) (3.108)
s'es s'€8 1<k h=1
O

3.A.7 Experimental Results:

We show empirical results for three mechanisms discussed in the RandomMDP environment in Figures 3.A.2, 3.A.3 and 3.A.4.

As we have seen in Fig. 3.1.1, the LDP constraint has a significant impact on the regret especially as € decreases. In
particular for ¢ = 0.2, LDP-OBI-L, LDP-OBI-G, LDP-OBI-B, LDP-OBI-BND have not reached the usual square root
growth phase of the regret usually seen in UCB-VTI or other regret minimizing algorithm.

From figures 3.A.2, 3.A.3 and 3.A.4, we can observe that the bounded noise mechanism has a lower impact on the regret
compared to the Laplace, Gaussian and Randomized Response mechanisms. However, this benefit does not appear in the
regret bound of Table 3.1.1. This suggests that the regret analysis of Sec. 4.2.4 may be improved to show this empirically
observed advantage.

3.A.8 Posterior Sampling for Local Differential Privacy

The Posterior Sampling for Reinforcement Learning algorithm (PSRL, Osband et al., 2013) is a Thompson Sampling based
algorithm for Reinforcement Learning. It works by maintaining a Bayesian posterior distribution over MDPs. We focus on a
particular instantiation of PSRL where for each state-action pair (s, a) we have an independent Gaussian prior for the reward
distribution and a Dirichlet prior for the transition dynamics. With those priors, the posterior distributions are Normal-Gamma
and Dirichlet distributions.

122

—
N 6
< = -10
T 7 5=
g 110 L6
— UCB-VI = s 3
—~LDP-OBIRR § (| % 4
LDP-OBLG & 2
- OBI-G = o4 o
—+— LDP-OBI-L © = — o 2
LDP-OBL-Bxo £ 027 ~ 5
ER 7 T T T T E 0 &
E| 0 0.2 0.4 0.6 0.8 1 g I T T T T T
5])
Episode (K) 108 =} 0 0.2 0.4 0.6 0.8 1
O

Episode (K) 108
Figure 3.A.2: ¢ = 0.2 and § = 0.1 (only for the

Gaussian and bounded noise mechanism) Figure 3.A.3: ¢ =2 and § = 0.1 (only for the Gaus-
sian and bounded noise mechanism)

Cumulative Regret R(2, K)

Episode (K) 108

Figure 3.A.4: ¢ =20 and § = 0.1 (only for the Gaussian and bounded noise mechanism)

Let ao(s,a) denote the parameters of the prior distribution over the transition dynamics, so the prior is given by
Dir(ao(s,a)). In addition, let po(s,a) € R, Ao(s,a) € Ry, v(s,a) € RY and fo(s,a) € R} be the parameters of the
Normal-Gamma prior distribution that we place on the rewards. Then, at the beginning of episode k£ and for a given pair
(5,a) € S x A, let ax(s,a) € (R%)® be such that the posterior distribution over the transition dynamics is Dir(ax(s,a)). We
then define (s, a) € R, Ax(s,a) € RY, vi(s,a) € RY and Bi(s,a) € R% to the parameters of the Normal-Gamma posterior
distributions. Using standard results from Bayesian Learning we have that, for all state s’ € S:

ax(s,a) = ao(s,a) + Ni(s,a,s") (3.109)
Ak(s,a) = Ao(s,a) + Ni(s,a) (3.110)
vi(s,a) = vo(s,a) + w (3.111)
) = 2l o) 1
Br(s,a) = Bo(s,a) + %\7:1Tr(.l%(s7 a)) + 2()\];%5(,8(;;:—)\3\5?(;)a)) (Rk(s, a) — ,uo(s,a))2 (3.113)

where o, 110, Ao, Yo, Bo are prior parameters provided at the beginning of the algorithm. We denote by Ny (s, a), the number
of visits to the state-action pair (s,a), Ni(s,a,s’) the number visits to (s,a,s’), Rx(s,a) the average reward observed for
(s,a) and \Er(R(s,a)) the empirical variance for (s,a).

At each episode k, PSRL samples an MDP from the posterior distributions, then computes the optimal policy and executes
it in the true MDP. (Osband et al., 2013) showed that the Bayesian regret of this algorithm is bounded by o) (HS\/ﬁ)

Locally Differentially Private Posterior Sampling for Reinforcement Learning: We now discuss how to adapt
PSRL to ensure it is locally differentially private. Def. 3 states that LDP is ensured at the collection time of trajectories
therefore it is enough for us to design a LDP posterior sampling algorithm which takes as input the trajectories outputted by a
mechanism similar to Alg. 13. Here, we use the LDP mechanism to pertub the statistics used to define the parameters of the
posterior distribution in PSRL. More precisely, we replace the aggregate counts in Eqs. 3.109-3.113 by noisy counts provided
by an LDP mechanism. In order to do this, we need to modify the initial values of those parameters to guarantee they are
non-negative.

In this appendix, we assume that the privacy-preserving mechanism M is such that for a given trajectory X, M(X) =

123

-y

< <
------ PSRL §: [
—+— LDP-PSRL, e =02 & = 015
—+— LDP-PSRL, £ = 2 8 = 3
——LDP-PSRL, e =20 & g 01
_ ~ ~ 50

UCB-VI A & 005

— LDP-OBI-L, e =02 =2

< o
—— LDP-OBLL, e =2 E ; g 0
— LDP-OBI-L,e=20 £ 0.2 0.4 0.6 0.8 1 & 0

O)

Episode (K) 108 ~ Episode (K)

-108

Figure 3.A.5: Evaluation of LDP-PSRL in the RandomMDP environment. Left) Cumulative regret. Right) per-
step regret (k — Ry/k). Results are averaged over 20 runs and the the confidence intervals are the minimum and
maximum runs. While the regret looks almost linear for ¢ = 0.2, the decreasing trend of the per-step regret shows

that the algorithms are learning.

(E;g EQ,X, N%, ﬁf}) where Ry, EQ,X, N% and]\7;} are noisy version of the following aggregate statistics:

H H
2
RX(S,G/) = E Th]l{sh:s,ah:a}y R2 X(S a) = g rh]l{sh:s,ah:a}
h=1 h=1
H-1
= § :1{%:5»‘%:‘1}’ (s, a, s 1{5h:5!ah:avsh+1:5l}
h=1

In particular, EX, ﬁ}} and ﬁf(are defined as for the optimistic algorithm in subsection 3.1.3.1 and Ez,x is a privatized version

of Rz x(s,a) = Zthl T2 1 (s, —s.a,—a} for a trajectory X.s
The posterior updates we use in LDP-PSRL are then for all s’ € S:

ak(s,a) = ao(s,a) + Nf(& a,s’)
Xo(s, a)pio(s, a) + Ri(s,a)

e Xo(s,a) + Ny (s,a)
Me(s,a) = Ao(s,a) + Nji (s, a)
vk (s,a) = Do(s,a) + N/:(Qs,a)

gk(s,a) = Bo(s,a) +

1 Z B — to(s,a)Ri(s,a)
Ao(s, a)—l—N""(s a)

(3.114)

In the following, we choose the Laplace mechanism as our privacy—preserving mechanism for LDP-PSRL, although we
believe that it should be possible to use one of the other mechanisms we discussed. For each trajectory X, we add independent
Laplace variables to (Rx(s,a), Rx,2(s,a), Nx(s,a), N%(s,a)) with parameter 8 H /. Following the same argument outlined

in the proof of Thm. 10, we can show that this privacy-preserving mechanism is (g, 0)-LDP.

To ensure positivity, by concentration of Laplace variables we set the initial values of the parameters of the posterior

distributions to:

ao(s, a,s") = max{VKS, IH(GSzA/é)}w
po(s,a) =0

Ao(s,) = max{V'K, ln(GSA/a)}M

vo(s, a) = max{VK, ln(GSA/(;)}w
Bo(s, @) = 5max{VE, ln(&%/é)}w

where K is the total number of episodes. The pseudocode of LDP-PSRL is reported in Alg. 17.

124

(3.115)
(3.116)

(3.117)
(3.118)

(3.119)

Algorithm 17: LDP-PSRL
Input: Initial values: ao, o, Ao, 0 and Bo
for episodes k = 1,..., K do
Draw empirical MDP, 6 from the posterior and compute 7, as the optimal policy for MDP 6y,
User uy, executes policy 7y, collect trajectory X = {(sk,n, ak,n,7k,n) | h < H}
Update noisy counts with (Exk (s,a), Exk,z(s,a),]v&k(&a),ﬁf(k(s,a)) and posterior distribution

150
120 | I1 Privatized X
e=02 Privatized X’
,» 100 - :'E =2 g Non Private X
g ie=20 . g | ¥¥Non Private X’
g I 1 Non Private Data £ 100
= 804 E
=
g S
© 60 b
[} P
- 2 50+
é’ 40 A E
Z: Z.
20
0 1
0 \ 1 T 1
-2 2 4
-1 —-0.5 0 0.5 1 1.5 0 _
Reward R (s, a) 10 Reward R (s, a)

Figure 3.A.7: Privatized cumulative reward over an
episode for a given state-action pair and two different
trajectories X and X’ with e = 20 for state 0 and
action 1

Figure 3.A.6: Aggregate reward for privatized data
with ¢ € {0.2,2,20} and non-privatized data for
state 0 and action 1

Empirical results We show empirical results for the LDP-PSRL algorithm in the RandomMDP environment in Fig-
ure 3.A.5. While we have shown that this algorithm is e-LDP and empirically outperforms optimistic approaches, we leave the
regret analysis to future work.

3.A.9 Additional Experiment

In this subsection, we explore a second experiment, in which we use the same the RandomMDP environment with the same
parameters as in Sec. 4.1.5 in order to investigate the effect of differential privacy on the learning process. For this, we run the
UCB-VT algorithm for K = 10? episodes and collect the aggregate noisy statistics, (Rx (s, a))(s,a)esx A, (NK(S,0))(s,a)esx.A
and (ﬁ}'}(s, a, ")) (s,a,5")eSxAxs that have been generated by using the Laplace mechanism for each episode. We collect those
statistics, 10° times. We compare the histogram of those noisy statistics to that of the noiseless statistics used by UCB-VI
in Fig. 3.A.6. This demonstrates that, as expected, there is much more variation in the statistics provided by the private
mechanism. In Fig. 3.A.7, we applied the Laplace mechanism to two different random trajectories, X and X’. We can see
that, after applying the Laplace mechanism, the two distinct trajectories become almost indistinguishable. These two figures
combined demonstrate the difficulty of learning from locally differentially private data.

3.A.10 Privacy Amplification by Shuffling in RL

In recent years, the shuffle model for privacy (Cheu et al., 2019; Feldman et al., 2020; Chen et al., 2021; Balle et al., 2019b;
Erlingsson et al., 2020, 2019) has attracted a lot of attention thanks its amplification property tof the differential privacy
guarantees of locally differential data.

In this model of privacy, we consider n users equipped with a local differential privacy mechanism, each user submits a
locally private report to a random shuffler which computes a random permutation of the users’ reports. Those randomly shuffled
reports are then sent to a analyzer which computes functions of interests based on them. This setting was first introduced
in Bittau et al. (2017) and was named the ESA model (Encode-Shuffle-Analyze) and motivated by need for anonymous data
collection. (Erlingsson et al., 2019) later provided an analysis of the amplification of privacy thanks to the combined use of
shuffling and local differential privacy showing that the shuffling model of privacy is able to strike a middle ground between
the totally decentralized but somewhat sample inefficient local model and the centralized but more sample efficient central
model of privacy.

125

Algorithm 18: Shuffling Protocol
Input: number of episodes K, horizon H, failure probability 6 € (0,1), bias & > 1, private randomizer Mg, with
LDP parameters (€o, do)

for k=1 to K do
Shuffler R sends (Msh(Xuak(l)))lgk,l with o a random permutatioon at each episode
LDP-OBI computes policy 7y based on (Man(Xu,, ;)))i<i—1
User uj, executes policy 7 in the environment, collects trajectory X, = {(sk,h, ar,h, "k,n)n<m } and sends the

privatized trajectory M (Xx) to R

Algorithm 19: Local randomizer Rg/l

Input: Randomization probability: p € [0,1], z € {0,1}
Let b ~ Ber(p)
if b =0 then
‘ Return z
else
‘ Return Ber(1/2)

The shuffling model has then been refined to study the impact on the size of the reports sent by users, i.e., how the accuracy
of a shuffling protocol can be improved when user are allowed to have higher communication threshold (Cheu et al., 2019;
Balle et al., 2019a). It has also been studied for different analyzer function, for instance histograms (Balcer and Cheu, 2020) or
summation (Cheu et al., 2019; Balle et al., 2019b), obtaining optimal protocol with better accuracy and lesser communication
costs (i.e., the number of messages or the size of those messages sent by a user). Finally, the shuffle model has inspired a
privacy amplification algorithm for learning in distributed setting without server-initiated communication (Balle et al., 2019b).

Overall, the most attractive feature of this privacy model is that it offers a smooth transition in terms of privacy/utility
tradeoff between stringent LDP requirements and differential privacy requirements (see (Feldman et al., 2020) for an example
of this transition in the problem of estimating a distribution).

Formally, in our RL setting each episode k represents a user ur which completes a trajectory X, in the MDP. The user
computes a locally private version of its trajectory thanks to a privacy-preserving mechanism M. The result M(X,,) is
passed to a shuffler R. This shuffler stores all the previous privatized trajectories before the current episode k, (M(Xu,))i<k,
computes a random permutation o : [k —1] — [k —1] and sends the permuted set of privatized trajectories, (M(Xu, ,))i<k-1
to an RL algorithm like LDP-OBI. This interaction protocol is detailed in Alg. 18.

In the specific case of RL, thanks to (Vietri et al., 2020) we know that any regret minimizing algorithm using (g, 6)-DP
counters, like (N})r<x is (¢, 0)-joint differentially private.

3.A.10.1 Privacy-preserving mechanism Mg,

A trajectory X, := {(sn,an,mn) | h < H} is a sequence of H states, actions and rewards. In order to build a model of
the MDP, LDP-OBI uses counters of the numbers of occurrences of each tuple of state-action (s,a) and state, actions and
next-state (s,a,s’). We adapt to the RL setting, the algorithm for bit-sum protocol presented in (Cheu et al., 2019). The
first step of the process M, is to apply a one-hot encoding the trajectory for each state-action. Let x € {0, 1}HXSXA and
y € {0, 1}H-DXSXAXS guch that for each (s,a,5) € S x Ax S

Vh € [1, H], Th,s,a = Ufs,=s,ap=a}, AN Y s,a,s' = H{Sh,=S7ah,=a,Sh+1=S'} (3.120)
To encode the reward, we first compute the reward for each state-action pair, (rh]l{sh:s’ahza})(h,s,a)Gﬂl,H]]xSxA then given
a parameter m € N* for each state-action pair (s,a), we compute by 5o € {0,1}™ such that for j € [1,m]:
1 if j < ph,sa
(bh,s,a)j = 1 Ber (pr,s,a) if 5= pinsa (3.121)
0 |f] > Mh,s,a

with pip s.a = [mrhﬂ{sh,:s,ah:aﬂ and pp,s,a = Mral(s, —=s.ap=a} — Hh,s,a + 1.

It is a well known result, (Cheu et al., 2019) that Alg. 22 with parameter p guarantees In(2/p — 1) differential privacy.
Finally, the privacy-preserving mechanism My, is described by Alg. 20.

Using standard analysis, we can show that this local mechanism Rg/l is roughly He-LDP for any € > 0.Upon receiv-

ing the shuffled privatized, the algorithm LDP-OBI computes the different counts (NF(s,a,5"))(s,a,5'), (NE(S,a))(s,a) and

126

Algorithm 20: Privacy-preserving mechanism Mg,

Input: trajectory 7 = {(Sn,an,Th)n<m}, privacy parameter € > 0, parameter m € N*
Compute z and y as in Eq. (3.120) and (bn,s,a)(s,a)esx.4 as in Eq. (3.121)
_ 2
>etp = exp%)# 0 0/1
1
Output: (Ry " (1,0.0)) 010,00, (B Un,s0,5))(h,.0,00) and (R (0n,s0)5)5<m) (5.0

(Ri(5,a))(s,a)- For any (s,a,s’) € S x A x S, we define the counters as:

Ni(s,a) = > ({RO“ Thea) — QD (3.122)
=1 h=1
Nk (s,a,8") p (RO/I(yh,g,a,s) — g}) (3.123)
m k—1 H
Ri(s,a) = (Z > [RO“ ((bhsa)i) — ZD (3.124)

_ Therefore, thanks to Claim 4.6 of (Cheu et al,, 2019), we have at the beginning of episode k(N7 (s,a))(s,a) and
(NP (s,a,5"))(s,a,5") are (€k,c,0)-DP with any § > 0 and:

_ 32log(4/d0)/+/(k — 1)H 2plog(2/do)
- o (1- (-2 (3.125)
—\ “GenE-

with p € {(k V)i log(4/do), } But we have that with probability at least 1 — ¢, for any § > 0, that:

k—1 H

221{51 n=s,a; p=a} Nk (s,a)

=1 h=1

<1, <\/(’f —1)Hp(1 —p/2) In(1/5) + 2111(31/5)>

1-p

k—1 H-1

1{2@,222 } _ NP(s,a,8)| < ﬁ <\/(k 1) Hp(1— p/2)In(1/8) +

!
Sk, h41=58

21n(1/6)
3

=1 h=1

The same type of result of result holds for the cumulative reward in each state-action pair (s, a), albeit some small technical
difficulties due the estimated sum being in R and not an integer contrary to the counters for the number of visits.

3.A.10.2 Impact on the Regret

We have mentioned that thanks to the shuffling mechanism the counters (Ri(s,a))(s.a), (N5 (5,a))(s,0), (NE(8,a,8"))(s,0,5")

enjoy a (gc, 9)-DP guarantee, in addition to the €o-LDP guarantee. But the utility bound in the last subsubsection highlights

__VkH
exp(egg)—1

using Thm. 7, the regret of LDP-OBI coupled with M, is bounded with high probability by Z-SAYEH - This result is
similar to the result of (Feldman et al., 2020) of Sec. 5.1 about density estimation where the shuffle model recovers the known
rate of convergence of O(1/ey/n) under an e-LDP constraint with n samples.

However, in the reinforcement learning setting the shuffle model might allow to interpolate between LDP setting presented
in this paper and the joint differential privacy setting of Shariff and Sheffet (2018); Vietri et al. (2020). One difficulty here
being that because each user interacts only once with the RL algorithm the probability used by the local randomizer Rg/l ha
to be dependent on the number of previous episode to ensure a good (g, §)-JDP guarantee. In other words, for the very first
episodes the privacy amplification of the shuffle model is negligible therefore the privacy parameter for those early users has
to be stronger than for the latter ones which are somewhat hidden by the crowd. Albeit this minor issue, a good choice of the
probabilities (p;)x<x may be able to guarantee (¢,8)-JDP (for any € > 0 and § > 0) and a regret of order O(VK + %)

that for a strict constraint on the level of local differential privacy the utility of each counters is of order therefore

3.B Appendix for Improving Privacy by Shuffling
3.B.1 Local Privatizer M pp

In this appendix, we present the privacy-preserving mechanism M, pp used in this paper.

127

Algorithm 21: Local Privatizer M pp

Input: context: x € R?, reward: r € [0,1], context bound: L, privacy parameter: ¢o, encoding parameter:
m
//*Encoder*//
~ 1 s maT | 1AT
Sety—%+§ and z = 322 +T
forj=1,...,ddo
Compute pj = [g; -m] and pj =m-§; — p; +1
for k=1,...,m do

1 if k< i
Let bj,k = Ber pj) if k= M
0 if k> p;

fori=1,...,ddo

forj=1,...,ido

Compute k;j = [Z;j-m] and ¢;j =m - Z; j — ki j + 1
for k=1,...,m do

1 if k< Ki,j
Let Wi, 5.k = Ber(qm) if k = Ki,j
0 if k> Ki,j

Let wj;k = wijk
//*Local Randomizer*//

Set probabilities p = 0/1

m and compute private values b; = (Rg/l(bj,l), Ry (bj,m)> for all

j €l @iy = (Ry (wiga)s o By (i) for alli € [L,d], j <

Algorithm 22: Local Randomizer Rg/l

Input: probability: p, z € {0,1}
Let b ~ Ber(p);
if b =0 then

| Return x

else
| Return Ber(1/2)

128

3.B.2 Proofs

In this appendix, we provide the full derivation of the results stated in the main text. We start introducing the notion of central
(e,9)-DP that is widely used in the proofs.

Definition 4. A randomized mechanism, M : R? — Z, is said to be central (¢,0) differential private (DP) if for all sequence
of values z € R* and 2’ such that there exists a unique i < t for which z; # z} and for all j # i, z; = 2} then

P(M(z) € Alz) <eP(M(2) € A|Z) +6
for any A C Range(M).

Note that the concept of central DP is at the core for proving JDP results, in fact thanks to Claim 7 in (Shariff and Sheffet,
2018) having a sequence (V4, Bt): is (,d)-DP implies that a bandit algorithm based on this sequence is (g,)-DP.

3.B.2.1 Proof of Lem. 21

Here, we detail how to obtain the confidence intervals around 6* using the privatized estimator gj for any batch j° < Mg
(with Mg = T1* the total number of batches from the shuffler side). First, let's define the sequence of random variables
(Yi,k,1,q)t<T b i<d,g<m, (Zt,k,1,q)t<T,k,1<d,q<m two independent sequences of i.i.d. Bernoulli distributed random variable with
parameters p = 2/(exp(2e0/md(d 4+ 3)) + 1) and 1/2 and such that for all k,1 < d, Yi k1, = Ye,ik,q and Ziit,qg = Zt1k,q-
For every (t,k,1,q) € [T] x [d] x [d] x [m], Y;,k,1,q is sampled by Alg. 22 if Y} ;1,4 = 1 then it return the random variable
Z4,k,1,q Otherwise it returns the true data.

In addition, let's define (At k1 = Wt k 1,k 1,)t<T K 1<a @ Sequence of Bernoulli random variable with parameter (q¢ k1)t <7k 1<a
defined by the two sequences (zt,k,1)t<7,k,1<d and (mt k,1)t<T.k,i<d in the mechanism Mpp, Alg. 21. Finally, let's note the
sequence of data computing by the encoding part of Alg. 21.

For any batch j# < Mg, we can write the approximate design matrix and vector B; as follows for every coordinate k,! < d:

=~ Tt,a a
Vi = Z ZY},k,z,th,k,z,q >+ Z 2tL; S+ 20 L=y
t=1 q=1
t; (3.126)
1 < ~
+ o ZAt,k,l — (mze,kg — Keeg + 1) + Z Z D — Yikl,q) Wt k,l,q
t=1 t=1 g=1
where)\; is defined in Eq. (3.14).
ti m
~ 1 - p t
Bjp= —— (bl,i, - 7) b 3.127
! m(1 —p) ; ; 7 9 2 ()

Now, given an well-chosen regularization \; the approximate design matrix XN/J can be written as the sum of the true design
matrix Zt Tta, 2] ,, and a time-varying regularizer similar to (Shariff and Sheffet, 2018). We just need to bound with high

probability the deviation of the eigenvalues of VJ Et L = ";L; 2t — Nl

Let’s consider a vector v € R? such that ||v]|2 = 1 then for any time ¢; < T and § € (0,1) we have with probability at

least 1 — §:
CA 17
P
‘ < (zzyz o)>
t=1 g=1

Therefore because the matrix (th ™ Y,

t=1 g=1
max {

pl1T

)\min <Z th.,.,.,th ,,,,, q 2
tq

where Amin and Amax are the minimum and maximum eigenvalues. Similarly, using the martingale difference structure,we

have that for any v € R?, ||jv]|2 < 1 and & € (0,1), we have with probability at least 1 — 4:

tji+1 m
‘ <U, (Z Z(p]lllT - }/t,‘,‘,q)wtp,‘,q> v>
t=1 g=1

129

< 2/2t;m1n(2/5) (3.128)

.....

alt,.,..q — %) is symmetric we have that with high probability:

11T
’)\max <Z}/t ,,,,, th ,,,,, q P 2) } S 2 Qt]mln(2/6)

t,q

< 24/2t;11mIn(2/6) (3.129)

and

<2 275j+1 ln(2/6) (3130)

<v, (JZ Ay — (mze — ke + 1)> v>

Indeed, for every t < T, let's define the filtration F; which is the filtration generated by all the history up to time ¢ included
except for the noise added by the mechanism My pp that is to say F; = o((z1,a,, 71)i<t, (Yi,i,5,q) 1<t —1,i5<d,q<ms (Z1,i5,q)i<t—1,i,5<d,q<m, (Wt k.
Therefore, we have that:

E((p— Yek,,)We g | Fi) = E(D = Yek1,¢)E (Wen,q | Ft) =0

~ ~ 3.131
E(A¢ky — (mze kg — By + 1) | Fo) = E(Ae ki Fr) — (mzZei — Kewg +1) =0 ()

because Y; is independent of F; and w;. The second equality comes from the fact that given F%, A¢ 1, is a Bernoulli random

variable with parameter mz; ; — kit k1 + 1.

/8t In(2t;/3)
m

+ 2\/21&1:;%/&, we have that with probability at least 1 — 4:

Joom (%) 2y fsm (%)
+ - 3.132
m -pvm (3:132)
t . 2,/8t;1n (2%) 4,/8t;In (‘%)
A [V5 = Y Tt + (3.133)
’ 2L m (1 —p)v/m

In addition, with the same reasoning, we have with probability at least 1 — 4:

D 2tj> 4 <2tj> 2 (Qtj)
< — 2t + = e ; s 3.134
< 2\/dp (1 2) timlog (5 3\/E10g 5 dt; log 5 ()

Hence, when choosing \; =

~ Y Tt.q, LT
Vi< Ms, Awin | Vim) —EE] 2
t=1

IN

tj+1
T1%1,a,

2L

- B;

Therefore, using Prop. 5 in (Shariff and Sheffet, 2018), we have that the result.

3.B.2.2 Proof of Prop. 7

We now move to prove the following proposition which implies Prop. 7;

Proposition 17. For any encoding parameter m € N* and LDP parameter g > 0, Mpp(x,r) is £0-LDP for any ||z| < L
and r € [0, 1].

Proof. For any 2,2’ € R* and r,7' € [0,1] such that ||z|| < L and ||z|| < L let's note Mipp(z,r) = (('lI)»L"j)ihde, (B]’)jgd) €
{O,I}dszdm and Mpp(2’,r") = ((wg,j)i,jgd,(ég)jgd) € {0,1}”!2’"de. Therefore, let's consider a tuple (W, By) €

{0, 1}d2dem then we want to show that:
P (Mupp(z,7) = (Wo, Bo)) < e*°P (Muop (2, ') = (Wo, Bo)) (3.135)
But we have:
P (Vi,j < d,i; = Woij,b; = Boj) =P (Vi,j < d,bi; = Wo;)P(Vj <db;=Bo,) (3.136)

In addition, because the mechanism Rg/l is an example of a randomized response mechanism (Dwork et al., 2010a), we have
that for all j < d,q < m, P(Rg/l(bj,m) | bim) < (2/p — l)lP’(Rg/l(b;-’m) | b5 ,). Therefore, because of the independence of
the sequence (b;);:

P (Vj <d,b; = Bo,) = HIP’ (bj.a = Bo.ja)
J.q

(3.137)

130

For all 4,5 < d, we have that w; ; = wW;,; therefore:

P(¥i,j < dyibiy = Woig) = |[P@isa=Woisa)

4,5 <i,q
2 ”
< 11 (p - 1) P (@54 = Wo.i0) (3.138)
4,5 <4,q
) md(d+1)/2
= (— 1) P (Vi,j < d,1;; = Wo,i;)
p
Hence the resulting when setting p = —————. O

b (Fracatays) 1

3.B.2.3 Proof of Thm. 8

Before proving the JDP guarantees of our algorithm, that is to say Thm. 8. We first prove the following proposition that is a
consequence of Thm. 5.4 in (Cheu et al., 2019).

Proposition 18. For any 60,0 € (0,1), number of batch Ms and length I, encoding parameter m, LDP parameter 0 <
g0 <In (m — 1)) and for all batch j < Mg of length I, the statistics (Z;,U;) computed by the shuffler (with

p=2/(e*0/™4+3) L 1)) are (g, + 80)-DP with

. 2plog (2m
Ejec P D g(0) 321og(8m/do) (3.139)
2d(d + 3)/8m log(8m/do) ! ; (p _ - [2ioa(s0/m) logwm))
7
of Prop. 18. Let's consider § € (0,1) and define
+oo 1 T m
_ L _Poar
5= (] [o o
T=1 t=1 g=1
1 &
EZA,: — (m?t —Gt +1)
t=1
+

1 =
+||nm—m;;(pn"”q)wt””q - o }

This event is such that P(E5) > 1 — §. Therefore for a batch j and any event A, we have that:

+

<\/8T1n(2T/6) 2./8T In(2T°/5)

P (MLDP Toi ()T s To ()T) cAl =
((9% i@ J(t))) teft;+1,t541]

T
g <(MLDP(m°j(t)m°J(t>’T"f(t)x“f(t))))te[[tj+1,tj+1]] €4 86)

+P <(MLDP(xaj(t)x;j(t)7Taj(t)xaj(t)))) €A, 55)

teft;+1,t541]

Therefore, we have that:

T <
v <(MLDP(SCG-7(”$"J“)’T"j(t)xaj(t))))te[[tj+1,tj+1]] © A) B

teft;+1,t541]

P ((MLDP(maj(t)x;j(t),To'j(t)xo'j(t)))) €A, 55) +6

And thanks to the definition of privacy with shuffling we have that:
P (MLDP T ()T 0y T ()T e) €A <
((ity Tos(t) -7<t))) teltj+1,t541]

P ((MLDP(m;j(t)(m;j(t))T7rO‘j(t>mO'j(t>))) € A) exp(gj,c) + 00+ 9

tE[tj+1,tj+1]]

131

where €. is such that:

Eie _ (1 B (p [ies (32))) 32 log (8m /o)
m l 3.140
2d(d + 3),/8mlog (5—) I (p 2 1og(§s5o/m)) ()

according to Thm. 5.4 in (Cheu et al., 2019). O

Now let's consider a set of parameters dp,d € (0,1) and €,e0 € (0,1) and a length [that satisfies Eq. (3.9). Such length
[exists for any p € [0, 1] as

21log(2m/do)

. le ’
M oo ! (25d(d+ 3) log(8m/5o)\/2Tln(1/6O)>

2

- <2+< e >> —4=2

Therefore, thanks to Prop. 18, we have that each update to the design matrix is (8‘[do + 6) DP. Therefore, using advanced

(3.141)

composition yields the result.

3.B.2.4 Proof of Thm. 9

Let's now move on to the proof of the main theorem, Thm. 9. Let’s note [* = T'/Ms where Mg is the number of batch from
the shuffler point of view, this parameter is given to the shuffler. Now let's consider a shuffler batch 7 < Mg, sent to the
bandit algorithm, let's note then g; < j the last shuffler batch where Alg. 12 has updated the estimate 6. Therefore, if Alg. 12
decides to update the parameter 9 after receiving the data from the shuffler batch j, we have that:

det(V;) > (1 + n)det(Vg,) (3.142)

Let's consider any bandit batch r, between time ¢, + 1 and ¢,4+1 we can then decompose the interval {¢t, + 1,...,¢r41}
into successive shuffler batches and we note the last of them j.. That is to say, upon receiving the shuffler batch j,. and
t;, the time step at which this batch begins, Alg. 12 updates the parameter 6, so increasing the bandit batch from r to
r + 1. Therefore, for all shuffler batch j < j. — 1, we have that det(‘N/j) <1+ n)det(V) therefore for any vector z € R,

(6" — 291,1:) < V1+nB|z H~_1 (see App. D in (Abbasi-Yadkori et al., 2011)). In addition, for any time step ¢ during a
batch j, [|z[/ -1 < ||:c|\~ . where V; is the design matrix computed with only data from the first ¢ time steps. In addition for
te{t;,.. tr+1} we have that the norm ||IE||~_1 can not be related to the norm of ||z(|; 1 but we have that:

«_g Brllz|2
(0" = 8r,2)| < Brllallyr < o (3.143)
’ Vr ' Alnin(VT‘)
Therefore, we can write the regret as:
T Mg tp+1
= 0 wiar —) =D D (05T — Tra,) (3.144)
t=1 p=0 t=t,+1
where Mg is the number of batch of Alg. 12. Using the reasoning above, we have:
Mp—1 tjp tp+1
Rr < 2 1 ai|l=— 2 ai|l=— 3.145
r< > D0 W/ T nlenalg Y 2Bl (s (3.145)
p=0 t=tp+l t:t- +1
S 2,10
< 2,3TZ\/1+77th arllgr + Z e (3.146)
Amin (V5)

132

where [* is the length of a shuffler batch. In addition, the design matrix ‘7p is regularized to ensure that its minimum eigenvalues

grows at a rate of \/Z,. Therefore we have that for any bandit algorithm batch r

. 2log (%) + dlog (3 + T£2)
28, Ll \/ g (% g X

<2Ll* +SV3
PURE < /)\T

Arnin (Vr)

(,/trmlog % 210g(2/5) + X2 ,/t log %)>

2020), the regret can be bounded by:

Therefore using (Carpentier et al.,

Mp—1 (\/210g (25) +dlog(3+T§‘2)

RT§25T\/(1+n)Tlog()+ Z 211" e
(3.147)

(1/ Tmlog 21°g(2/5) + ¥2 ,/t log %))

+SV3+

We now proceed to bound each term individually. First, we have
Mp—1
(3.148)

Z 2V3LI*S < 2/3LSI* My

r=0

This is because the shuffler sends data on a fix length schedule. Also, we have

Mp—1 a\/Qlog —T) +dlog (3+ L) * 2
Z 2LI* (5 (< IMRLI [y, (2) +dlog 3+ LL (3.149)
2 v N 5 X
Finally,
' Y& anird N 2log(2T/6 f ALI*dM o7
>) (trm log <7> + Og(:a o, - log (6)) =73 = log (T)
r=0 " (3150)
ﬂLl*dMRm
L

Therefore with probability at least 1 — § the regret is bounded by

* 2
T) +72MRL1 g 2log (%) + dlog (3 + Tf)

< =
RT_zﬂT\/(Hn)Tlog<1+dA =
e (3.151)
AL AM R o (E) y Y2LUAMRm | o
3 4 4
Bounding @. Given the expression of 57, we have that:
2T TL? T
< R
@ < \/<810g< 5) + dlog <3+ \ >) (1+mn)Tlog (1—|— dA)
2V/38T'/* T (3.152)
_— 1 T1 14+ —)
= VA Og(+d>\>
+ <4me1/4 + W) \/(1 + 1) Tlog (1 + %)

Now, we are left with bounding the remaining of the right hand part of Eq. (3.151). The first step to do so is to notice
that the number of bandit algorithm batch is bounded by roughly O (log(T)), more precisely:

L2T | 16VTlog(2T/$)
dlog(7+ (-p)) (3.153)

Mp <1+
= log(1 +n)

133

In addition, if [* satisfies Eq. (3.9) then we have that:

log (2 1284/2T In(2/80)d(d + 1) log(8m/do)(1 — 141log(2
R { Slog(2m/8) (2/50)d(d + 1) log($m/50) (1~ p) 141og(2m/) } (3.154)
p € p
In Eq. (3.154) we have that the regret is bounded with probability at least 1 — 4:
2v/3(S + md)T*/* T
Rr < 1 1 14+ —
= VI—»p (+n)0g<+d/\)
/2
3/2 L2T | 16VTlog(2T/6) 8
n dLm 14 d log(a t (I-p)) «
v log(1 +n) (3.155)
2 8m
{ 1410g(8m /) 1234 /2T (£&)d(d +1)log (52) (1 - p) }
X max > ,
p €
Therefore, we can differentiate two different scenarios:
. 201 _ 7T—1/2¢ .
fp (1 —p) < 644/21n(2/80)d(d+1)
2v/3(S + md)T3/* (T)
Rr < 1 1 14+ — 3.156
r < NI (1+m)log {1+ -+ (3.156)
3/2
3/2 LT | 16VTlog(2T/4)
n dLm 14 d log(a T (1-p)) 141log(8m/do) (3.157)
VA log(1+n) p? .
. 201 7T~ 1/2¢ .
ifp°(1-p) = 64+/21n(2/80)d(d+1)
2v/3(S + md)T3/* T
Rr < 141 (1 7)
3/2
) 3/2 L2T | 16VT log(2T/5) (3.158)
+ 264 e (87’”)3/2 Lm |1+ ’ log(Tt a) VT(1—p)
oY RN log(1+7) e
The last step now is to choose the parameter o to optimize the regret. Therefore, if ¢ < m%/él so in a high privacy

regime, when choosing p =1 — £2/3T1/6 \we are in the second scenario above and:

3/2
T2 264 500 (8m)Y &/ log (LfTTﬂL %)
Rr< — | 2% 34%1 (7) m | 1
T > VE \/X og % m + log(l +17)

+ 2\/§(S+md)\/(1 +1n)log (1 + %)

3.B.3 Regret with Scheduled Update Algorithm

In this appendix, we present a bandit algorithm using a fixed schedule update instead of the determinant based condition used
in Alg. 12. The main consequence of using a fixed batch bandit algorithm is a worse regret compared to Alg. 12. That is
a consequence of the inflated bonus needed by the use of the local randomizer algorithm M pp. Let’s consider the batched
algorithm described in Alg. 23.

In terms of privacy Alg. 23 enjoys the same guarantees as Alg. 12. For any § € (0,1), we have that with probability at
least 1 — §:

T M tiy1
Rr = Z(G*,wt,a; — Tia,) = Z Z (0", 2tar — Ttoay) (3.159)
t=1 j=1t=t;+1

134

Algorithm 23: FixedBatchedShuffling-LinUCB

Input: LDP parameter: g, privacy parameter: ¢, ', regularization parameter:\, context bound:L, failure
probabnlntyé low switching parameter: 7, encodmg parameter:m, dimension: d
Initialize j° =0, 00 =0, Vo=My p= exp(250/<md<d+3))>+1
fort:0,1,... do
User receives 04, V4 and (4 and selects a; € argmax,¢(k1(Tt,a,054) + Bjall mt7a|\‘~/;1
J

J
Observe reward r; and compute private statistics (gt,qﬂt) = Muipp((24,4,,7¢), 0, m, L)
Communication with the shuffler
B = B% U (by,)
if \B | =1 then
Set tjsy1 =t, compute a permutation o of [[t is + 1,¢; s+1]] and compute aggregate statistics

m m

Vi <d,k <i, ZZb ()i and Ujs iy = Zzw(,(mk,q

n=1gq¢=1 n=1g¢g=1

Set Ujs,i,k = Ujs,k’,iv BjS+1 = @ and jS = jS + 1
Communication with the bandit algorithm
Receives (Z;s_1,U;js_1) and compute candidate statistics

é —E + ZjS_l ZS
ST (i) 2(1-p)
- Ujs_ 19
-1 At — Aa)l

Compute 04, = lv;i_lg'A+1
Set tjay, =t, ﬁJA+1 and Ajayq asin Eq. (3.13) and Eq. (3.14)
Set] _jA+1 BA+1 BAandVA+1=‘7jA

135

But using Lem.3 in (Han et al., 2020), we have that for any batch j:

M tjt1 T M tit1
~ ;
E E th,anH";—l < NV g Tr V] E Tt,ay Ty g,
J .

J=1 t=t;+1 j=1 t=tj+1 (3.160)

< ,/%mg(TJrl) (Mﬂl@)

where M is the total number of batch. Therefore, the regret is bounded with high probability by:

/10T /T T3/ T /T—p
< —_— — | = .
Rr < 2Bum % log(T + 1) <\/Md—|— d M) o (m + - (3.161)

Where we used the fact that M is defined in Eq. (3.154). Therefore, using a fixed schedule algorithm the trade-off highlighted
in Thm. 9 does not appear.

136

Chapter 4

Secure Reinforcement Learning

The last chapter of this thesis deals with the problem of security in Reinforcement Learning and the associated constraints. We
consider two different aspects of this problem. The first one is adversarial attacks on linear contextual bandit. The objective is
to understand how sensitive to perturbation in the observed rewards and contexts standard algorithms like Thompson Sampling
or UCB are. That is to say, we aim to answer to the different questions of what happens when an attacker can control the
rewards observed by the bandit algorithm (while minimizing the total change between the true rewards and the ones observed
by the bandit algorithm) or when the attacker can modify the contexts but not the reward. The second problem (and potential
solution to the problem mentioned above) is about encryption in linear contextual bandit. Indeed, most software uses end-to-
end encryption to secure the communication between the users and the servers. Some application go even further by providing
a service to the users without observing the true data but only an encrypted version of it. Combined with the previous result
about attackers able to perturb the algorithm feedback, we aim to design a secure bandit algorithm leveraging homomorphic
encryption to prevent any outside attackers to modify the reward and context sent to the algorithm. But also, to prevent
the bandit algorithms to observe true contexts and rewards, solely encrypted version of it. The resulting algorithm designed
around homomorphic encryption for linear contextual bandit has to trade-off constraints like being able to perform a finite
number of multiplication before making the data indecipherable and minimizing regret. To do so, we leverage techniques from
the slow-switching in bandit literature and present an algorithm with a regret similar to the non-encrypted case.
This chapter is based on the two following articles:

= Evrard Garcelon, Baptiste Roziere, Laurent Meunier, Jean Tarbouriech, Olivier Teytaud, Alessandro Lazaric, and Matteo
Pirotta. Adversarial attacks on linear contextual bandits. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and
H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages 14362—-14373. Curran Associates,
Inc., 2020c. URL https://papers.nips.cc/paper/2020

= Evrard Garcelon, Matteo Pirotta, and Vianney Perchet. Encrypted linear contextual bandit. In Gustau Camps-Valls,
Francisco J. R. Ruiz, and Isabel Valera, editors, Proceedings of The 25th International Conference on Artificial Intelligence
and Statistics, volume 151 of Proceedings of Machine Learning Research, pages 2519-2551. PMLR, 28-30 Mar 2022c.
URL https://proceedings.mlr.press/vibl/garcelon22a.html

137

https://papers.nips.cc/paper/2020
https://proceedings.mlr.press/v151/garcelon22a.html

Contents

4.1 Attacks on Linear Contextual Bandit 139
4.1.1 Linear Contextual Bandit o 139
4.1.2 Online Adversarial Attacks on Rewards 140
4.1.3 Online Adversarial Attacks on Contexts, 141
4.1.4 Offline attacks on a Single Context 143
4.1.5 Experiments e e 144
4.1.6 Concluding Remarks and Extensions 146

4.2 Encryption in Linear Contextual Bandit 146
4.2.1 Homomorphic Encryption Lo 147
4.2.2 Contextual Bandit And Encryption o o L. 148
4.2.3 An Algortihm For Encrypted Linear Contextual Bandits 149
4.2.4 Theoretical Guarantees L L e 151
4.2.5 Discussion And Extensions o 152

4.3 Conclusion . . . ¢ v i i i it e 153

4.A Appendix for Attacks on Linear Contextual Bandit 154
4.A1 Proofs . . . L e 154
4.A.2 Experiments e e 156
4.A.3 Problem (4.8) as a Second Order Cone (SOC) Program 158
4.A.4 Attacks on Adversarial Bandits Lo 159
4.A.5 Contextual Bandit Algorithms L 161
4.A.6 Semi-Online Attacks L e 162

4.B Appendix for Encrypted Linear Contextual Bandits 163
4.B.1 Slow-Switching Algorithm L 163
4.B.2 Additional Related Work L L 164
4.B.3 Protocol Details 164
4.B.4 Toward An Encrypted OFUL e 165
4.B.5 Slow Switching Condition and Regret of HELBA 171
4.B.6 Implementation Details L 180

138

4.1 Attacks on Linear Contextual Bandit

Recommender systems are at the heart of the business model of many industries like e-commerce or video streaming (Davidson
et al.,, 2010; Gomez-Uribe and Hunt, 2015). The two most common approaches for this task are based either on matrix
factorization (Park et al., 2017) or bandit algorithms (Li et al., 2010), which both rely on a unaltered feedback loop between
the recommender system and the user. In recent years, a fair amount of work has been dedicated to understanding how
targeted perturbations in the feedback loop can fool a recommender system into recommending low quality items.

Following the line of research on adversarial attacks in supervised learning (Biggio et al., 2012; Goodfellow et al., 2014;
Jagielski et al., 2018; Li et al., 2016; Liu et al., 2017), attacks on recommender systems have been focused on filtering-based
algorithms (Christakopoulou and Banerjee, 2019; Mehta and Nejdl, 2008) and offline contextual bandits (Ma et al., 2018).
The question of adversarial attacks for online bandit algorithms has only been studied quite recently (Jun et al., 2018; Liu and
Shroff, 2019; Immorlica et al., 2018; Guan et al., 2020), and solely in the multi-armed stochastic setting. Although the idea of
online adversarial bandit algorithms is not new (see Exp3 algorithm in Auer et al. (2002b)), the focus is different from what
we are considering in this article. Indeed, algorithms like Exp3 or Exp4 (Lattimore and Szepesvari, 2018) are designed to find
optimal actions in hindsight in order to adapt to any rewards stream.

The opposition between adversarial and stochastic bandit settings has sparked interests in studying a middle ground. In
Bubeck and Slivkins (2012), the learning algorithm has no knowledge of the type of feedback it receives (either stochastic or
adversarial). In Lykouris et al. (2018); Li et al. (2019); Gupta et al. (2019); Lykouris et al. (2019); Kapoor et al. (2019), the
rewards are assumed to be corrupted by adversarial rewards. The authors focus on building algorithms able to find the optimal
actions even in the presence of some non-random perturbations. This setting is different from what is studied in this article
because those perturbations are bounded and agnostic to arms pulled by the learning algorithm, i.e., the adversary corrupt the
rewards before the algorithm chooses an arm.

In the broader Deep Reinforcement Learning (DRL) literature, the focus is placed on modifying the observations of different
states to fool a DRL system at inference time (Hussenot et al., 2019; Sun et al., 2020) or the rewards (Ma et al., 2019).
In this chapter, we first follow the research direction opened by Jun et al. (2018) where the attacker has the objective of
fooling a learning algorithm into taking a specific action as much as possible. For example in a news recommendation problem,
as described in Li et al. (2010), a bandit algorithm chooses between K articles to recommend to a user, based on some
information about them, called context. We assume that an attacker sits between the user and the website, they can choose
the reward (i.e., click or not) for the recommended article observed by the recommending algorithm. Their goal is to fool the
bandit algorithm into recommending some articles to most users. The contributions of our work can be summarized as follows:

= We extend the work of Jun et al. (2018); Liu and Shroff (2019) to the contextual linear bandit setting showing how to
perturb rewards for both stochastic and adversarial algorithms, forcing any bandit algorithms to pull a specific set of
arms, o(T') times for logarithmic cost for the attacker.

= We analyze, for the first time, the setting in which the attacker can only modify the context = associated with the
current user (the reward is not altered). The goal of the attacker is to fool the bandit algorithm into pulling arms of
a target set for most users (i.e., contexts) while minimizing the total norm of their attacks. We show that the widely
known LINUCB algorithm (Abbasi-Yadkori et al., 2011; Lattimore and Szepesvari, 2018) is vulnerable to this new type
of attack.

= We present a harder setting for the attacker, where the latter can only modify the context associated to a specific user.
This situation may occur when a malicious agent has infected some computers with a Remote Access Trojan (RAT).
The attacker can then modify the history of navigation of a specific user and, as a consequence, the information seen by
the online recommender system.We show how the attacker can attack the two very common bandit algorithms LINUCB
and Linear Thompson Sampling (LINTS) Agrawal and Goyal (2012); Abeille et al. (2017) and, in certain cases, force
them to pull a set of arms most of the time when a specific context (i.e., user) is presented to the algorithm (i.e., visits
a website).

4.1.1 Linear Contextual Bandit

We consider the standard contextual linear bandit setting with K € N arms and feature independent arms described in
Section 1.2.2. At each time ¢, the agent observes a context z; € R?, selects an action a; € [1, K] and observes a reward:
Tt,a; = (Oay, Tt) + M, where for each arm a, 0, € R is a feature vector and 7%, is a conditionally independent zero-mean,
o2-subgaussian noise. The contexts are assumed to be sampled stochastically except in App. 4.A.4.

Assumption 13. There exist L > 0 and D C R?, such that for allt, z; € D and, Vz € D,VYa € [1, K], ||z||2 < L and (84,) €
(0,1]. In addition, we assume that there exists S > 0 such that ||04]|2 < S for all arms a.

The agent minimizes the cumulative regret after T' steps Ry = Z?:1<0a:,xt> — (Bay,), where af := argmax, (fa, T¢).
A bandit learning algorithm 2l is said to be no-regret when it satisfies R = o(T), i.e., the average expected reward received by
2 converges to the optimal one. Classical bandit algorithms (e.g.,LINUCB and LINTS) compute an estimate of the unknown
parameters 0, using past observations. Formally, for each arm a € [K] we define S}, as the set of times up to ¢ — 1 (included)

139

where the agent played arm a. Then, the estimated parameters are obtained through regularized least-squares regression as
~, t t
0, = (X1,aX{a + M) "' Xy 0Yia, where A > 0, X0 = (2i);est € RI%) and Vi 0 = (7i0,)scs: € RISl Denote by

Via = M + Xt,0 X/, the design matrix of the regularized least-square problem and by ||z|v = VzT Vz the weighted norm
w.r.t. any positive matrix V € R¥*?. We define the confidence set:

Cro={0 R 5 0= 0ua],, < Bra} (4.1)

where Bi.a = a\/dlog ((1+ L2(1 + SE)/N)/8) + SV,
which guarantees that 6, € C;,q, for all t > 0, w.p. 1 — 4. This uncertainty is used to balance the exploration-exploitation
trade-off either through optimism (e.g.,LINUCB) or through randomization (e.g., LINTS).

4.1.2 Online Adversarial Attacks on Rewards

The ultimate goal of a malicious agent is to force a bandit algorithm to perform a desired behavior. An attacker may simply
want to induce the bandit algorithm to perform poorly—ruining the users’ experience—or to force the algorithm to suggest a
specific arm. The latter case is particularly interesting in advertising where a seller may want to increase the exposure of its
product at the expense of the competitors. Note that the users’ experience is also compromised by the latter attack since the
suggestions they will receive will not be tailored to their needs. Similarly to Liu and Shroff (2019); Jun et al. (2018), we focus
on the latter objective, i.e., to fool the bandit algorithm into pulling arms in AT, a set of target arms, for T — o(T) time steps
(independently of the user).

A way to obtain this behavior is to dynamically modify the reward in order to make the bandit algorithm believe that af
is optimal, for some a' € AT. Clearly, the attacker has to pay a price in order to modify the perceived bandit problem and
fool the algorithm. If there is no restriction on when and how the attacker can alter the reward, the attacker can easily fool
the algorithm. However, this setting is not interesting since the attacker may pay a cost higher than the loss suffered by the
attacked algorithm. An attack strategy is considered successful when the total cost of the attack is sublinear in T

In this subsection , we show that under Assumption 13, there exists an attack algorithm that is successful against any
bandit algorithm, stochastic or adverserial.

Setting. We assume that the attacker has the same knowledge as the bandit algorithm 2(about the problem (i.e., knows
o and L). The attacker is assumed to be able to observe the context z;, the arm a; pulled by 2, and can modify the reward
received by 2. When the attacker modifies the reward 7: 4, into 774, the instantaneous cost of the attack is defined as
ct = |7"t,a¢ — Ttoa ’ The goal of the attacker is to fool algorithm 2 such that the arms in AT are pulled T — o(T") times and

Zf,T:1 ¢t = o(T). We also assume that the action for the arms in the target set is strictly positive for every context = € D.

That is to say that A := minzep {(x,&ai(wQ - maxaem’a#aim(x, o9a>} > 0 where al (z) = argmax, 41 (x,0,) for every

z €D.

Attack idea. We leverage the idea presented in Liu and Shroff (2019) and Jun et al. (2018) where the attacker lowers
the reward of arms a ¢ AT so that algorithm 2l learns that an arm of the target set is optimal for every context. Since 2 is
assumed to be no-regret, the attacker only needs to modify the rewards o(T") times to achieve this goal. Lowering the rewards
has the effect of shifting the vectors (6a),¢ 1t to new vectors (6;),¢ 4+ such that for all arms a ¢ AT and all contexts x € D,
there exists an arm a' € AT such that (8, z) < (6,+,x). Since rewards are assumed to be bounded (see Asm. 13), this
objective can be achieved by simply forcing the reward of non-target arms a ¢ A" to the minimum value. Contextual ACE
(see Fig. 25) implements a soft version of this idea by leveraging the knowledge of the reward distribution. At each round ¢,
Contextual ACE modifies the reward perceived by 2 as follows:

Trae = Ml ia,gaty + Tradia,caty (4.2)

where 7; is a o-subgaussian random variable generated by the attacker independently of all other random variables.
Contextual ACE transforms the original problem into a stationary bandit problem in which there is a targeted arm that is
optimal for all contexts and all non targeted arms have expected reward of 0. The following propostion shows that the
cumulative cost of the attack is sublinear.

Proposition 1. For any § € (0,1/K], when using Contextual ACE algorithm (Fig. 24) with perturbed rewards 7, with
probability at least 1 — K6, algorithm 2 pulls an arm in At for T — o(T) time steps and the total cost of attacks is o(T).

The proof of this proposition is provided in App. 4.A.1.1. While Prop. 1 holds for any no-regret algorithm 2, we can
provide a more precise bound on the total cost by inspecting the algorithm. For example, we can show (see App. 4.A.5), that,
with probability at least 1 — K§, the number of times LINUCB Abbasi-Yadkori et al. (2011) pulls arms not in At is at most

TLZ\\ 2
ngAT N;(T) < MKX# (dlog (Xﬁs;")) . This directly translates into a bound on the total cost.

140

Comparison with ACE Liu and Shroff (2019). In the stochastic setting, the ACE algorithm Liu and Shroff (2019)
leverages a bound on the expected reward of each arm in order to modify the reward. However, the perturbed reward process
seen by algorithm 2 is non-stationary and in general there is no guarantee that an algorithm minimizing the regret in a
stationary bandit problem keeps the same performance when the bandit problem is not stationary anymore. Nonetheless,
transposing the idea of the ACE algorithm to our setting would give an attack of the following form, where at time ¢, Alg. 2
pulls arm a; and receives rewards ??’at:

F?,at = (Tt,at + max(—L min(07 Ct,at)))]l{atQAT} + Ttyat]l{atEAT}

with Cta, = (1 — 7)mingic 4+ minoec, ; (0, 7:) — maxoec, ., (0,71). Note that Ciq is defined as in Eq. 4.1 using the
non-perturbed rewards, i.e., Yi o = (i,a;)icst -

Bounded Rewards. The bounded reward assumption is necessary in our analysis to prove a formal bound on the total
cost of the attacks for any no-regret bandit algorithm, otherwise we need more information about the attacked algorithm. In
practice, the second attack on the rewards, 72, can be used in the case of unbounded rewards for any algorithms. The difficulty
for unbounded reward is that the attacker has to adapt to the environment reward but in order to do so the reward process
observed by the bandit algorithm becomes non-stationary under the attack. Thus, there is no guarantee that an algorithm like
LINUCB will pull a target arm as the proof relies on the environment observed by the bandit algorithm being stationary. We
observe empirically that the total cost of attack is sublinear when using 2.

Jun et al. (2018) does not assume that rewards are bounded but focus on attacking algorithms in the stochastic multi-
armed setting. That is to say they study attacks only designed for e-greedy and UCB while we provide an efficient attack for
any algorithms in the linear contextual case. We can extend their work, and thus remove the bounded reward assumption, in
the linear contextual case by using the following attack, designed only for LINUCB:

~3 . .
a = 0, — max (0, 1., 1, 4.3
Tt a; (Tt,at + min oengiij.<) Gle%f,ft< wt>> {argaty TTeaclia,eaty (4.3)

with Cy,, defined as in Eq. (4.1). Although, the attack 7 is not stationary, it is possible to prove that the total cost of attack
is O(log(T")) because we know that the attacked bandit algorithm is LINUCB.

Constrained Attack. When the attacker has a constraint on the instantaneous cost of the attack, using the perturbed
reward 71 may not be possible as the cost of the attack at time ¢ is not decreasing over time. Using the perturbed reward 72
offers a more flexible type of attack with more control on the instantaneous cost thanks to the parameter . But it still suffers
from a minimal cost of attack from lowering rewards of arms not in Af.

Defense mechanism. The attack based on reward 77 is hardly detectable without prior knownledge about the problem.
In fact, the reward process associated to 77 is stationary and compatible with the assumption about the true reward (e.g.,
subgaussian). While having very low rewards is reasonable in advertising, it can make the attack easily detectable in some
other problems. On the other hand, the fact that 72 is a non-stationary process makes this attack easier to detect. When
some data are already available on each arm, the learner can monitor the difference between the average rewards per action
computed on new and old data.

4.1.3 Online Adversarial Attacks on Contexts

In this subsection , we consider the attacker to be able to alter the context x; perceived by the algorithm rather than the
reward. The attacker is now restricted to change the type of users presented to the learning algorithm 2(, hence changing its
perception of the environment. We show that under the assumption that the attacker knows a lower-bound to the reward of
the target set, it is possible to fool LINUCB.

Setting. As in Sec. 4.1.2, we consider the attacker to have the same knowledge about the problem as 2. The main
difference with the previous setting is that the attacker attacks before the algorithm. We adopt a white-box Goodfellow et al.
(2014) setting attacking LINUCB. The goal of the attacker is unchanged: they aim at forcing the algorithm to pull arms
in AT for T — o(T) time steps while paying a sublinear total cost. We denote by Z; the context after the attack and by
¢t = ||w¢ — T¢||2 the instantaneous cost.

Difference between attacks on contexts and rewards. Perturbing contexts is fundamentally different from perturbing
the rewards. The attacker only modifies the context that is shown to the bandit algorithm. The true context, which is used
to compute the reward, remains unchanged. In other words, the attacker cannot modify the reward observed by the bandit
algorithm. Instead, the attack algorithm described in this subsection fools the bandit algorithm by making the rewards appear
small relative to the contexts and requires more assumptions on the bandit algorithm than in Sec. 4.1.2.

141

Attack Idea. The idea of the attack in this setting is similar to the attack of Sec. 4.1.2. The attacker builds a bandit
problem where arm an a' € A' is optimal for all contexts by lowering the perceived value of all other arms not in AT. The
attacker cannot modify the reward but, thanks to the linear reward assumption, they can scale the contexts to decrease the
predicted rewards in the original context.

At time t, the attacker receives the context x; and computes the attack. Thanks to the white-box setting, it computes
the arm a; that algorithm 2 would pull if presented with context z:. If a: ¢ A" then the attacker changes the context to
Tt = Qg Tt With g, > maxXgep Mings ¢ 41 {0a,,)/ (0,1,). This factor is chosen such that for a ridge regression computed
on the dataset (au;, (0, x;)); outputs a parameter close to 6/« therefore the attacker needs to choose « such that for every
context x € D, (z,0/a) < max,reat(z,0,1,2). In other words, the attacker performs a dilation of the incoming context
every time algorithm 2l does not pull an arm in AT, The fact that the decision rule used by LINUCB is invariant by dilation
guarantees that the attacker will not inadvertently lower the perceived rewards for arms in A. Because the rewards are
assumed to be linear, presenting a large context ax and receiving the reward associated with the normal context x will skew
the estimated rewards of LINUCB. The attack protocol is summarized in Fig. 25.

In order to compute the parameter « used in the attack, we make the following assumption concerning the performance
of the arms in the target set:

Assumption 14. For all x € D, there exists a' € AT, such that 0 < v < (x,0,1) and v is known to the attacker.

Knowing v. For advertising and recommendation systems, knowing v is not problematic. Indeed in those cases, the reward
is the probability of impression of the ad (r € [0,1]). The attacker has the freedom to choose one of multiple target arms
with strictly positive click probability in every context. This freedom is an important aspect for the attacker since it allows the
attacker to cherry pick the target ad(s). In particular, the attacker can estimate v based on data from previous campaigns
(only for the target ad). For instance, a company could have run many ad campaigns for one of their products and try to get
the defender’s system to advertise it.

An issue is that the norm of the attacked context can be greater that the upper bound L of Assumption 13. To prevent
this issue, we choose a context-dependent multiplicative constant «(z) = min{2/v, L/||z||2} which amounts to clip the norm
of the attacked context to L. In Sec. 4.1.5, we show that this attack is effective for different size of target arms sets. We also
show that in the case of contexts such that ||z||2 < vL/2 that the cost of attacks is logarithmic in the horizon T'.

Algorithm 24: Contextual ACE algorithm Algorithm 25: ConicAttack algorithm.
Input: attack parameter: o

for timet=1,2,...,T do for timet =1,2,...,T do
Alg. 2 chooses arm a; based on context z¢ Attacker observes the context x;, computes potential
Environment generates reward: arm a; and sets T3 = x; + (a(xt) — 1)y Liargaty
Tt,a, = (Bay, Tt) + me with 7, conditionally '
o2-subgaussian
Attacker observes reward r; ,, and feeds the
perturbed reward 77 ,, (or 77,,) to 2

Alg. 2 chooses arm a: based on context Tt

Environment generates reward: r¢,q, = (0o, Zt) + Nt
with 7, conditionally o%-subgaussian

Alg. 2 observes reward 74 q,

Proposition 2. Using the attack described in Alg. 25 and assuming that ||z|l2 < vL/2 for all contexts z € D, for any
§ € (0,1/K)], with probability at least 1 — K§, the number of times LINUCB does not pull an arm in AT before time T

3
is at most ngm N;(T) < 32K? (?)\2 + o?dlog (MerTikL;Cﬁ)) with N;(T) the number of times arm j has been pulled

3
during the first T steps, The total cost for the attacker is bounded by: ZtT:I ct < 645(2 (a% + o2dlog (%)) with
a=2/v.

The proof of Proposition 2 (see App. 4.A.1.2) assumes that the attacker can attack at any time step, and that they can
know in advance which arm will be pulled by Alg. 2 in a given context. Thus it is not applicable to random exploration
algorithms like LINTS Agrawal and Goyal (2012) and e-GREEDY. We also observed empirically that thowe two randomized
algorithms are more robust to attacks (see Sec. 4.1.5) than LINUCB.

Norm Clipping. Clipping the norm of the attacked contexts is not beneficial for the attacker. Indeed, this means that an
attacked context was violating the assumption (used by the bandit algorithm) that contexts are bounded by L. The attack
could then be easily detectable and may succeed only because it is breaking an underlying assumption used by the bandit
algorithm. Prop. 2 provides a theoretical grounding for the proposed attack when contexts are bounded by vL /2 and not only
L. Although, we can not prove a bound on the cumulative cost of attacks in general, we show in Sec. 4.1.5 that attacks are
still successful for multiple datasets where contexts are not bounded by vL/2.

142

4.1.4 Offline attacks on a Single Context

Previous subsection s focused on the man-in-the-middle (MITM) attack either on reward or context. The MITM attack allows
the attacker to arbitrarily change the information observed by the recommender system at each round. This attack may be
hardly feasible in practice, since the exchange channels are generally protected by authentication and cryptographic systems.
In this subsection , we consider the scenario where the attacker has control over a single user u. As an example, consider
the case where the device of the user is infected by a malware (e.g., Trojan horse), giving full control of the system to the
malicious agent. The attacker can thus modify the context of the specific user (e.g., by altering the cookies) that is perceived
by the recommender system. We believe that changes to the context (e.g., cookies) are more subtle and less easily detectable
than changes to the reward (e.g., click). Moreover, if the reward is a purchase, it cannot be altered easily by taking control
of the user's device. Clearly, the impact of the attacker on the overall performance of the recommender system depends on
the frequency of the specific user, that is out of the attacker's control. It may be thus difficult to obtain guarantees on the
cumulative regret of algorithm 2(. For this reason, we mainly focus on the study of the feasibility of the attack.

The attacker targets a specific user (i.e., the infected user) associated to a context z'. Similarly to Sec. 4.1.3, the objective
of the attacker is to find the minimal change to the context presented to the recommender system 2 such that 2 selects
an arm in AT, 9 observes a modified context Z instead of z!. After selecting an arm a:, 2 observes the true noisy reward
Tta, = <9at,xT> +nt,. We still study a white-box setting: the attacker can access all the parameters of 2.

In this subsection , we show under which condition it is possible for an attacker to fool both an optimistic and posterior
sampling algorithm.

4.1.4.1 Optimistic Algorithm: LinUCB

We consider the LINUCB algorithm which chooses the arm to pull by maximizing an upper-confidence bound on the expected
reward. For each arm a and context x, the UCB value is given by maxgec, , (z,0) = (z,0.) + Broallzll5-1 (see Sec. 4.1.1).
t,a

The objective of the attacker is to force LINUCB to pull an arm in A" once presented with context 2'. This means to find a
perturbation of context ' that makes any arm in AT the most optimistic arm. Clearly, we would like to keep the perturbation
as small as possible to reduce the cost for the attacker and the probability of being detected. Formally, the attacker needs to
solve the following non-convex optimization problem:

: T t
min s.t max max (x' +y,0) + & < max max (z' +y,0
S vl ag A eeCNt,a< ol afeat eeCNt T< w0 (4.4)

where £ > 0 is a parameter of the attacker and C; o := {9 | 1|16 — éé”; < Bm} is the confidence set constructed by
t,a

LINUCB. We use the notation 5’7\7 to stress the fact that LINUCB observes only the modified context. In contrast to
Sec. 4.1.2 and 4.1.3, the attacker may not be able to force the algorithm to pull any of the target arms in A'. In other words,
Problem 4.4 may not be feasible. However, we are able to characterize the feasibility of (4.4).

Theorem 11. Problem (4.4) is feasible at time t iff.
30 € UyicniCrats 0 ¢ Conv(Ungat &,a) (4.5)

The condition given by Theorem 11 says that this attack can be done when there exists a vector « for which an arm in Af
is assumed to be optimal according to LINUCB. The condition mainly stems from the fact that optimizing a linear product on
a convex compact set will reach its maximum on the edge of this set. In our case this set is the convex hull of the confidence
ellipsoids of LINUCB. Although it is possible to use an optimization algorithm for this class of non-convex problems—e.g.,
DC programming Tuy (1995)—they are still slow compared to convex algorithms. Therefore, we present a simple convex
relaxation of the previous problem for a single target arm af € A" that still enjoys some empirical performance compared to
Problem (4.4). The final attack can then be computed as the minimum of the attacks obtained for each a' € AT. The relaxed
problem is the following for each af € AT:

. f At
min s.t max max {(z' +vy,0 —0 < —
min - yllz e max (z1 4,0 = 041) < ¢ (4.6)

Since the RHS of the constraint in Problem (4.4) can be written as maxopec, ; (6, 2" +1) for any y, the relaxation here consists

in using (8, z" + y) as a lower-bound to this maximum for any 6 € Ci.at-
For the relaxed Problem (4.6), the same type of reasoning as for Problem (4.4) gives that Problem (4.6) is feasible if and

only if 6, (t) & Conv (Ua#tagm Ct,a).

If Condition (4.5) is not met, no arm a' € A" can be pulled by LINUCB. Indeed, the proof of Theorem 11 shows that
the upper-confidence of every arm in Al is always dominated by another arm for any context. In other words, if any arm in
At is optimal for some contexts then the condition is satisfied a linear number of times for LINUCB (for formal proof of this
fact see App. 4.A.1.4).

143

4.1.4.2 Random Exploration Algorithm: LinTS

The previous subsubsection focused on LINUCB, however we can obtain similar guarantees for algorithms with random
exploration such as LINTS. In this case, it is not possible to guarantee that a specific arm will be pulled for a given context
because of the randomness in the arm selection process. The objective is to guarantee that an arm from A is pulled with
probability at least 1 — §. Similarly to the previous subsubsection , the problem of the attacker can be written as:

min y| st P (HaT €Al Vag A, (2" +y,00—0,:) < —5) >1-36 (4.7)
yER

where the 6, for different arms a are independently drawn from a normal distribution with mean 9a(t) and covariance
matrix 02V, () with v = ¢1/9d1In(T/5). Solving this problem is not easy and in general not possible, even for a single
arm. For a given and arm a, the random variable <x7§a> is normally distributed with mean piq(z) := (04 (t), z) and variance
1 We can then write (1:,5,1) = () + 0a(x)Zy with (Zs)e ~ N(0,1k). For the sake of clarity, we
drop the variable z when writing uq(z) and oo ().
Let's imagine (just for this paragraph) that AT = {a'}, then the constraint in Problem (4.7) becomes:

1 -z, (Mgaro (an‘ZaT SRR Y

Oa

oa(z) = v?||zf},

SN O AL REVE O

Oa

where ® is the cumulative distribution function of a normally distributed Gaussian random variable. Unfortunately, computing
exactly this expectation is an open problem.

In the more general case where |AT| > 1, rewriting the constraints of Problem (4.7) is not possible. Following the idea
of Liu and Shroff (2019), for every single target arm a' € AT, a possible relaxation of the constraint in Problem (4.7) is, to
ensure that there exists an arm a' € A" such that for every arm a ¢ AT, 1 — & ((pa»r — o —&)/(y/02 + 031)) < ﬁ,
where |AT| is the cardinal of AT. Thus the relaxed version of the attack on LINTS for a single arm a' is:

min [yl st Vag A (z' +y,0, —0.) —€>vo (hﬁ) [EEA | P — (4.8)
yERd a at

Problem (4.8) is similar to Problem (4.6) as the constraint is also a Second Order Cone Program but with different parameters
(see App. 4.A.3). As in subsection 4.1.4.1, we compute the final attack as the minimum of the attacks computed for each
arm in AT,

4.1.5 Experiments

In this subsection , we conduct experiments on the attacks on contextual bandit problems with simulated data and two real-
word datasets: MovieLens25M Harper and Konstan (2015) and Jester Goldberg et al. (2001). The synthetic dataset and the
data preprocessing step are presented in App. 4. A.2.1.

4.1.5.1 Attacks on Rewards

We study the impact of the reward attack for 4 contextual algorithms: LINUCB, LINTS, e-GREEDY and ExXP4. As parameters,
we use I = 1 for the maximal norm of the contexts, § = 0.01, v = o+/dIn(t/5))/2, &x = 1/+/t at each time step ¢ and
X = 0.1. We choose only a unique target arm at. For ExP4, we use N = 10 experts with N — 2 experts returning a random
arm at each time, one expert choosing arm a' every time and one expert returning the optimal arm for every context. With
this set of experts the regret of bandits with expert advice is the same as in the contextual case. To test the performance of
each algorithm, we generate 40 random contextual bandit problems and run each algorithm for 7' = 10° steps on each. We
report the average cost and regret for each of the 40 problems. Figure 4.1.1 (Top) shows the attacked algorithms using the
attacked reward 7' (reported as “stationary CACE") and the rewards 7 (reported as CACE).

These experiments show that, even though the reward process is non-stationary, usual stochastic algorithms like LINUCB
can still adapt to it and pull the optimal arm for this reward process (which is arm a'). The true regret of the attacked
algorithms is linear as a' is not optimal for all contexts. In the synthetic case, for the algorithms attacked with the rewards
72, over 1M iterations and y = 0.22, the target arm is drawn more than 99.4% of the time on average for every algorithm and
more than 97.8% of the time for the stationary attack 7' (see Table 4.A.1 in App. 4.A.2.2). The dataset-based environments
(see Figure 4.1.1 (Left)) exhibit the same behavior: the target arm is pulled more than 94.0% of the time on average for all our
attacks on Jester and MovieLens and more than 77.0% of the time in the worst case (for LINTS attacked with the stationary
rewards) (see Table 4.A.1).

144

10° 10*

8,000 4 121

— CACE LINUCB, 7 = 0.5

- - - Stationary CACE LINUCB 6,000 N
------ CACE LINTS, v =0.5

- -+ - Stationary CACE LINTS 4,000 e e e @ 34

—eo— CACE Exp4, v =0.5 f L .
—— Stationary CACE Exr4 2,000 4

—«— CACE e-GREEDY, v = 0.5 f

—o— Stationary CACE e-GREEDY

0 2 4 6 8 4 0 2 4 6 8
Time 105 Time -10° Time 107
-10°
106 o 10
154 2.5 o
— Attacked LINUCB, |A| = 0.3K)
------ Attacked LINUCB, |4] = 0.6K 7
--- Attacked LINUCB, | 4| = 0.9K 1 .
—4— Attacked e-GREEDY, |A| = 0.3K ’
—— Attacked e-GREEDY, |A| = 0.6K]
—+— Attacked e-GREEDY, |A| = 0.9K 054
—o— Attacked LINTS, |A] = 0.3K : 05
—— Attacked LINTS, |A] = 0.6K
—— Attacked LINTS, |A] = 0.9K e — 0
R ' '
Time . Time -10° Time 100

Figure 4.1.1: Total cost of attacks on rewards for the synthetic (Left, v = 0.22), Jester (Center, v = 0.5) and
MovieLens (Right, v = 0.5) environments. Bottom, total cost of ContextualConic attacks on the synthetic (Left),
Jester (Center) and MovieLens (Right) environments.

4.1.5.2 Attacks on Contexts

We now illustrate the effectiveness of the attack in Alg. 25. We study the behavior of attacked LINUCB, LINTS, e-GREEDY
with different size of target arms set (|AT|/K € {0.3,0.6,0.9} with K the total number of arms). We test the performance
of LINUCB with the same parameters as in the previous experiments. Yet since the variance is much smaller in this case, we
generate a random problem and run 20 simulations for each algorithm. The target arms are chosen randomly and we use the
exact lower-bound on the reward of those arms to compute v.

Table 4.1.1: Percentage of iterations for which the algorithm pulled an arm in the target set AT (with a target set
size of 0.3K arms) (Left) Online attacks using ContextualConic (CC') algorithm. Percentages are averaged over 20
runs of 1M iterations. (Right) Offline attacks with exact (Full) and Relaxed optimization problem. Percentages are
averaged over 40 runs of 1M iterations.

Synthetic ~ Jester ~ Movilens Synthetic Jester ~ Movielens

LINUCB 28.91% 26.59% 31.13% LiNUCB 007% 0.01% 0.39%

Li 550 369 619 LINUCB Relaxed 13.76% 97.81% 4.09%
CC LinUCB % 55/’ % 36? %9 61? LINUCB Full 88.30% 99.98% 99.99%
£-GREEDY 25.7% 25.85% 31.78% o GREEDY 0.01% 0.00% 0.03%
CCc-GREEDY 89.71% 99.85% 99.92% . Grumpy Full 99.98% 99.95% 99.97%
LINTS 272% 26.10% 33.24% LINTS 0.02% 0.01% 0.05%
CC LINTS 30.93% 97.26% 98.82% LINTS Relaxed 18.21% 80.48% 5.56%

Table 4.1.1 (Left) shows the percentage of times an arm in Af, for |AT| = 0.3K, has been selected by the attacked
algorithm. We see that, as expected, CC LINUCB reaches a ratio of almost 1, meaning the target arms are indeed pulled
a linear number of times. A more surprising result (at least not covered by the theory) is that e-GREEDY exhibits the same
behavior. Similarly to LINTS, e-GREEDY exhibits some randomness in the action selection process. It can cause an arm
al € AT to be chosen when the context is attacked and interfere with the principle of the attack. We suspect that is what
happens for LINT'S. Fig. 4.1.1 (Bottom) shows the total cost of the attacks for the attacked algorithms . Despite the fact
that the estimate of 6,+ can be polluted by attacked samples, it seems that LINTS can still pick up a' as being optimal for
some dataset like MovieLens and Jester but not on the simulated dataset.

4.1.5.3 Offline attacks on a Single Context

We now move to the setting described in Sec. 4.1.4 and test the same algorithms as in Sec. 4.1.5.2. We run 40 simulations for
each algorithm and each attack type. The target context z' is chosen randomly and the target arm as the arm minimizing the
expected reward for 7. The attacker is only able to modify the incoming context for the target context (which corresponds to

145

the context of one user) and the incoming contexts are sampled uniformly from the set of all possible contexts (of size 100).
Table 4.1.1 (Right) shows the percentage of success for each attack. We observe that the non-relaxed attacks on e-GREEDY
and LINUCB work well across all datasets. However, the relaxed attack for LINUCB and LINTS are not as successful, on
the synthetic dataset and MovieLens25M. The Jester dataset seems to be particularly suited to this type of attacks because
the true feature vectors are well separated from the convex hull formed by the feature vectors of the other arms: only 5% of
Jester's feature vectors are within the convex hull of the others versus 8% for MovieLens and 20% for the synthetic dataset.
As expected, the cost of the attacks is linear on all the datasets (see Figure 4.A.4 in App. 4.A.2.4). The cost is also lower for
the non-relaxed than for the relaxed version of the attack on LINUCB. Unsurprisingly, the cost of the attacks on LINTS is
the highest due to the need to guarantee that a! will be chosen with high probability (95% in our experiments).

4.1.6 Concluding Remarks and Extensions

We presented several settings for online attacks on contextual bandits. We showed that an attacker can force any contextual
bandit algorithm to almost always pull an arbitrary target arm a' with only sublinear modifications of the rewards. When
the attacker can only modify the contexts, we prove that LINUCB can still be attacked and made to almost always pull
an arm in A" by adding sublinear perturbations to the contexts. When the attacker can only attack a single context, we
derive a feasibility condition for the attacks and we introduce a method to compute some attacks of small instantaneous cost
for LINUCB, e-GREEDY and LINTS. To the best of our knowledge, this paper was the first to describe effective attacks
on the contexts of contextual bandit algorithms. Our numerical experiments, conducted on both synthetic and real-world
data, validate our results and show that the attacks on all contexts are actually effective on several algorithms and with more
permissible settings.

In the next section, we focus on building an end-to-end encrypted linear contextual algorithm. That is to say all the contexts
and rewards are encrypted using homomorphic encryption. Using this encryption method we design a bandit algorithm that
does not need to observe the true contexts and rewards of the users but only encrypted version of it. Offering some protection
against adversarial attacks especially on rewards but also and maybe more importantly prevent any privacy issue when the
users do not trust the bandit algorithm.

4.2 Encryption in Linear Contextual Bandit

Contextual bandits have become a key part of several applications such as marketing, healthcare and finance; as they can
be used to provide personalized e.g., adaptive service (Bastani and Bayati, 2020; Sawant et al., 2018). In such application,
algorithms receives as input users’ features, i.e. the “contexts”, to tailor their recommendations. Those features may disclose
sensitive information, as personal (e.g., age, gender, etc.) or geo-localized features are commonly used in recommendation
systems. Privacy awareness has increased over years and users are less willing to disclose information and are more and
more concerned about how their personal data is used (Das et al., 2021). For example, a user may be willing to receive
financial investment suggestion but not to share information related to income, deposits, properties owned and other assets.
However, without observing this important information about a user, a service provider may not be able to provide meaningful
investment guidance to the user. This example extends to many other applications. For instance, suppose an user is looking
for a restaurant nearby, if the provider has no access to even a coarse geo-location, it would not be able to provide meaningful
suggestions to the user. An effective approach to address these concerns is to resort to end-to-end encryption to guarantee
that data is readable only by the users (Kattadige et al., 2021). In this scenario, the investment company or the service
provider observes only an encrypted version of user’s information and have no ability to decrypt it. While this guarantee high
level of privacy, it is unclear whether the problem remains learnable and how to design effective online learning algorithms in
this secure scenarios.

In this paper, we introduce - and analyze - the setting of encrypted contextual bandit to model the mentioned scenarios. At
each round, a bandit algorithm observes encrypted features (including e.g., geo-location, food preferences, visited restaurants),
chooses an action (e.g., a restaurant) and observes an encrypted reward (e.g., user’s click), that is used to improve the quality
of recommendations. While it is possible to obtain end-to-end encryption —i.e., the bandit algorithm only observes encrypted
information that is not able to decrypt— using standard encryption methods (e.g., AES, RSA, TripleDES), the provider may
no longer be able to provide a meaningful service since may not be able to extract meaningful information from encrypted
features. We thus address the following question:

Is it possible to learn with encrypted contexts and rewards? And what is the associated computational and learning cost?

Homomorphic Encryption (Halevi, 2017, HE) is a powerful encryption method that allows to carry out computation of encrypted
numbers. While this is a very powerful idea, only a limited number of operations can be performed, notably only addition
and/or multiplication. While HE has been largely investigated in supervised learning (Badawi et al., 2020; Graham, 2015), little
is known about online learning. In this paper we aim to look into this direction. We approach the aforementioned question
via HE and from a theoretical point-of-view. We consider the case of linear rewards and investigate the design of a “secure”
algorithm able to achieve sub-linear regret in this setting. There are several challenges in the design of bandit algorithms that

146

makes the application of HE techniques not easy. First, it is not obvious that all the operations required by a bandit algorithm
(notably optimism) can be carried out only through additions and multiplications. Second, errors or approximations introduced
by the HE framework to handle encrypted data may compound and prevent to achieve provably good performance. Finally, a
careful algorithmic design is necessary to limit the total number of HE operations, which are computationally demanding.

Contributions. Our main contributions can be summarized as follows: 1) We introduce and formalize the problem of
secure contextual bandit with homomorphic encryption. 2) We provide the first bandit algorithm able to learn over encrypted
data in contextual linear bandits, a standard framework that allows us to describe and address all the challenges in leveraging
HE in online learning. Leveraging optimism (e.g., Abbasi-Yadkori et al., 2011) and HE, we introduce HELBA which balances
security, approximation error due to HE and computational cost to achieve a 5(\/T) regret bound. This shows that i) it is
possible to learn online with encrypted information; ii) preserving users’ data security has negligible impact on the learning
process. This is a large improvement w.r.t. e-LDP which has milder security guarantees and where the best known bound is
O(T®*/e). 3) We discuss practical limitations of HE and ways of improving the efficiency of the proposed algorithm, mainly
how the implementation of some procedures can speed up computations and allow to scale dimension of contexts. We report
preliminary numerical simulations confirming the theoretical results.

Related work. To prevent information leakage, the bandit literature has mainly focused on Differential Privacy (DP) (e.g.,
Shariff and Sheffet, 2018; Tossou and Dimitrakakis, 2016). While standard (e, §)-DP enforces statistical diversity of the output
of an algorithm, it does not provide guarantees on the security of user data that can be accessed directly by the algorithm.
A stronger privacy notion, called local DP, requires data being privatized before being accessed by the algorithm. While it
may be conceptually similar to encryption, i) it does not provide the same security guarantee as encryption (having access to
a large set of samples may allow some partial denoising Cheu et al. (2021)); and ii) it has a large impact on the regret of the
algorithm. For example, Zheng et al. (2020) recently analyzed e-LDP in contextual linear bandit and derived an algorithm
with 5(T3/4/5) regret bound to be compared with a 5(\@) regret of non-private algorithms. Homomorphic Encryption (e.g.
Halevi, 2017) has only been merely used to encrypt rewards in bandit problems (Ciucanu et al., 2019), but in some inherently
simpler setting than the setting considered here (see App. 4.B.2).

4.2.1 Homomorphic Encryption

Homomorphic Encryption (Halevi, 2017) is a probabilistic encryption method that enables an untrusted party to perform some
computations (addition and/or multiplication) on encrypted data. Formally, given two original messages mi and ma € R, the
addition (resp. multiplication) of their encrypted versions (called ciphertexts) is equal to the encryption of their sum mi + ma2
(resp. m1 x m2), hence the name “homomorphic”.! We consider a generic homomorphic schemes that generate a public key
pk (distributed widely and used to encrypt messages), and private keys sk (used for decryption of encrypted messages). This
private key is, contrary to the public key, obviously assumed to be kept private.

More precisely, we shall consider Leveled Fully Homomorphic encryption (LFHE) schemes for real numbers. This type
of schemes supports both additions and multiplications but only for a fixed and finite number of operations, referred to as
the depth. This limitation is a consequence of HE's probabilistic approach. Although noisy encryption allows to achieve high
security, after a certain number of operations the data is drown in the noise (e.g., Albrecht et al., 2015), resulting in an
indecipherable ciphertext (the encrypted message). In most LFHE schemes, the depth is the maximum number of operations
possible before losing the ability to decrypt the message. Often multiplications have a significantly higher noise growth than
addition and the depth refers to the maximum number of multiplication between ciphertexts possible. The security of a LFHE
schemes is defined by k € N, usually k € {128,192,256}. A k-bit level of security means that an attacker has to perform
roughly 2" operations to break the encryption scheme, i.e., to decrypt a ciphertext without the secret key.

Formally, an LFHE scheme is defined by:

A key generator function KeyGen(N, D, k): takes as input the maximum depth D (e.g., max. number of multiplications), a
security parameter x and the degree N of polynomials used as ciphertexts (App. 4.B.3.1). It outputs a secret key sk and a
public key pk .

An encoding function Encpk(m): encrypts the message m € R? with the public key pk. The output is a ciphertext ct, a
representation of m in the space of complex polynomials of degree N.

A decoding function Decs(ct): decrypts the ciphertext ct of m € R? using the secret key sk and outputs message m.

An additive operator Add(ct1,ctz): for ciphertexts ct; and cto of messages mi and meo, it outputs ciphertext ctyqq of
m1 + mo: Decs (Add(Enc,,k(m1)7 Enc,,k(mz))) =m1 + mao.

A multiplicative operator Mult(ct,ct2): similar to Add but for ciphertexts ct; and cty of messages m1 and m2 and output

ciphertext cty,uir of m1 - ma.
To avoid to complicate the notation we will use classical symbols to denote addition and multiplication between ciphertexts.

Choosing D as small as possible is essential, as it is the major bottleneck for performance, in particular at the keys generation
step. This cost comes from the fact that the dimension of a ciphertext N needs to grow with D for a given security level &:

IMost schemes also support Single Instruction Multiple Data (SIMD), i.e., the same operation on multiple data points in parallel.

147

Algorithm 26: Encrypted Contextual Ban-

dit (Server-Side)

Input: Agent: 2, public key: pk, horizon: T’
fort=1,...,7T do

Agent 2l observes encrypted context
(Tt,0)acx] = (Encok(st,a))ac(k]

Agent 2l computes the next action as a
function of the encrypted history and
(%t,a)acik) and outputs an encrypted
action uz = Encpk(at)

Agent 2l observes encrypted reward
Yyt = Encok(rt)

Algorithm 27: Encrypted Contextual Ban-

dit (User-Side)
Input: Public key: pk, Secret key: sk
fort=1,...,7 do

User t observes features (s¢,q)a<k and
sends (xt’a)ae[K] = (EnCpk(St,a))ae[K] to
the server

User t receives encrypted action uy

User ¢ decrypts action a; = Decg(ut)

User t observes reward v = 7(St,a,) + 7t
and sends Encpi(r¢) to the server

namely N > Q(xD) (refer to App. 4.B.3.1 for more details). In this paper, we choose to use the CKKS scheme (Cheon et al.,
2017) because it supports operations on real numbers.

Other HE schemes. Most HE schemes (ElGamal, 1985; Paillier, 1999; Rivest et al., 1978) are Partially Homomorphic
and only support either additions or multiplications, but not both. Other schemes that support any number of operations are
called Fully Homomorphic encryption (FHE) schemes. Most LFHE schemes can be turned into FHE schemes thanks to the
bootstrapping technique introduced by Gentry and Boneh (2009). However, the computational cost is extremely high. It is thus
important to optimize the design of the algorithm to minimize its multiplicative depth and (possibly) avoid bootstrapping (Acar
et al., 2018; Ducas and Micciancio, 2015; Zhao and Wang, 2018).

4.2.2 Contextual Bandit And Encryption

Let's consider the contextual bandit problem with arm dependent features described in Section 1.2.2 with K € N, arms
and horizon T' € Ny (e.g., Lattimore and Szepesvari, 2020). At each time t € [T] := {1,...,T}, a learner first observes
a set of features (s¢,a)ae(x] C R%?, selects an action a; € [K] and finally observes a reward r: = r(s¢,q,) + 1: Where 7 is
a conditionally independent zero-mean noise. We do not assume anything on the distribution of the features (st,q)a. The
performance of the learner 2 over T steps is measured by the regret, that measures the cumulative difference between playing
the optimal action and the action selected by the algorithm. Formally, let a; = argmax,¢(x) 7(5t,a) be the optimal action at
step ¢, then the pseudo-regret is defined as:

Ry = ZT(St,a{) —7(St,a;)- (4.9)

To protect privacy and avoid data tempering, we introduce end-to-end encryption to this protocol. Contexts and rewards
are encrypted before being observed by the learner; we call this setting encrypted contextual bandit (Alg. 26). Formally, at
time ¢t € [T], the learner 2l observes encrypted features ;o = Encyk(st,a) for all actions a € A, and the encrypted reward
y: = Encpi(r:) associated to the selected action a:. The learner may know the public key pk but not the secure key sk. The
learner is thus not able to decrypt messages and it never observes the true contexts and rewards. We further assume that both
the agent 2 and the users follow the honest-but-curious model, that is to say each parties follow their protocol honestly but
try to learn as much as possible about the other parties private data. > As a consequence, the learner can only do computation
on the encrypted information. As a result, all the internal statistics used by the bandit algorithm are now encrypted. On user's
side (see Alg. 27), upon receiving an encrypted action u: = Encpk(at) and decrypting it a; = Dece(ut) using the secure key
sk, the user generates a reward r: = 7(S¢t,q,) +7: and sends to the learner the associated ciphertext y;:. The learning algorithm
is able to encrypt the action since the public key is publicly available. See App. 4.B.3 for additional details.

We focus on the well-known linear setting where rewards are linearly representable in the features. Formally, for any feature
vector s;,q, the reward is 7(s4,4) = (St,0,0%), where 8* € R? is unknown. For the analysis, we rely on the following standard
assumption:

Assumption 15. There exists S > 0 such that ||0*||2 < S and there exists L > 1 such that, for all time t € [T| and arm
a € [K], ||st,all2 < L and ry = (s¢,a,0) + n € [—1,1] with n, being o-subGaussian for some o > 0 .

2Contrary to the notation in Section 1.2.2, the unencrypted features are denoted by s; as they are not observed by the agent. The
encrypted features observed by the agent are still denoted by x:

3A trusted third party can be used to generate a public and secret keys. Those keys are then sent to the users but not to the agent
A (see Sec. 4.2.5).

148

4.2.3 An Algortihm For Encrypted Linear Contextual Bandits

In the previous subsection , we have introduced a generic framework for contextual bandit with encrypted information. Here,
we provide the first algorithm able to learn with encrypted observations.

Algorithm 28: Simplified HELBA

fort=1,...,7T do
if Update (Step ®) then
‘ Step @: Estimate encrypted parameter using {1,a,, %1 }ieft—1]
Observe encrypted contexts (71,4)acix] = (Encpk(St,a))ac(k]
Step ®: Compute encrypted indexes (pa(t))ecik]
Step ®: Compute arg max.{pa.(t)}

In the non-secure protocol, algorithms based on the optimism-in-the-face-of-uncertainty (OFU) principle such as LIN-
UCB (Chu et al., 2011) and OF UL (Abbasi-Yadkori et al., 2011) have been proved to achieve the regret bound O(Sdﬁln(TL)).
Clearly, they will fail to be used as is in the secure protocol and need to be rethinked around the limitations of HE (mainly
approximations in most operations). As mentioned in the introduction, there are many, both theoretical and practical, chal-
lenges to leverage HE in this setting. Indeed, 1) computing an estimate of the parameter 0* from ridge regression is extremely
difficult with HE as finding the inverse of a matrix is not directly feasible for a leveled scheme (Esperanca et al., 2017). 2)
Similarly, computing the bonus for the optimistic action selection requires invoking operations that are not naturally available
in HE hence incurring a large computational cost. Finally, 3) computing the maximum element (or maximum index) of a list
of encrypted values is non-trivial for the algorithm alone, as it cannot observe the values to compare. In this subsection , we
will provide HE compatible operations addressing these three issues. Each step is highly non-trivial and correctly combining
them is even more challenging due to error compounding. We believe the solution we provide for each individual step may be
of independent interest.

Alg. 28 report a simplified version of our HE bandit algorithm. Informally, at each round ¢, our algorithm HELBA
(Homomorphically Encrypted Linear Bandits) builds an HE estimate w; of the unknown 6* (w* = Ency(0)) using the
observed encrypted samples, compute HE optimistic indexes (pa(t))s for each action and select the action maximizing the
index. We stress that all the mentioned statistics (w¢ and pq(t)) are encrypted values. Indeed, HELBA operates directly in
the encrypted space, i.e., the space of complex polynomials of degree N. Let's analyze those three steps.

Step ®: HE Friendly Ridge Regression

The first step is to build an estimate of the parameter #*. In the non-encrypted case, we can simply use 6; = V; ! Zf;ll SL,a; Tl
where V; = Z;;ll Sl,alslqjal + AI. With encrypted values (x1,q;,%1)ie[¢—1), it is possible to compute an encrypted matrix
Ay = Zf;ll xl,alxljjal + AEncpk(I) = Encpk (Vi) and vector Zf;ll Z1,q, Y1 as these operations (summing and multiplying) are
HE compatible. The issue resides in the computation of A;l. An approximate inversion scheme can be leveraged though.

Given a matrix V' € R? with eigenvalues A1 > ... > g > 0 and ¢ € Rsuch that foralli € [d], \; € Conv({z €R | |z —¢| < ¢},2¢)\
{0,2c}*, we define the following sequence of matrices (Guo and Higham, 2006)

X1 = Xi (214 — M), Miyr = (214 — My) My, (4.10)
initialized at Xo = %[d and My = %V. We can show that this sequence converges to V1.

Proposition 19. IfV € R¥*? js a3 symmetric positive definite matrix, ¢ > Tr(V') and for some precision level € > 0, the iterate
in (4.10) satisfies || Xy — V|| < for any k > ki(e) with ki(e) = gy In (M) where A < A4 is a lower bound to

In(1—2
the minimal eigenvalue of V and || - || is the matrix spectral-norm.)

Since V; is a regularized matrix, it holds that Ay > X > 0 and by setting ¢ = Ad+ L*t we get that ¢ > Tr(V;) > max;{\:},
for any step t € [T]. Therefore, we can apply iterations (4.10) to Ay = Encpi(V;) since are all HE compatible operations
(additions and matrix multiplications). For e; > 0, iterations (4.10) gives a e;-approximation A; := Xy, (,) of V, 7', ie.,
| Deca (Ar) — VY| < e:. As a consequence, an encrypted estimate of the unknown parameter §* can be computed by mere
simple matrix multiplications w; = A Zf;ll Z1,q,Y1. Leveraging the concentration of the inverse matrix, the following error
bound for the estimated parameter holds.

-1
Corollary 3. Setting e = (Lt3/2\/L2t +)\) in Prop. 19, then || Decsk(w:) — 0: v, < t7/2, Vt.

This result, along with the standard concentration for linear bandit (Abbasi-Yadkori et al., 2011, Thm. 2), implies that, at
all time steps ¢, with probability at least 1 — §:

0" € C,:={ 0 € R | || Decac(ws) — Ol|v, < B}, (4.11)

4Conv(E) is the convex hull of set E.

149

where ||a||ls = VaT Ba and Be =t 4+ SVA+ a\/d (In (1 + L2t/X\) + In(72t2/(66))) is the inflated confidence interval
due to the approximate inverse (see Prop. 23 in App. 4.B.4.4). Note that Bt is a plain scalar, not an encrypted value.

Step ®: Computing The Optimistic Index
Once solved the encrypted ridge regression, the next step for HELBA is to compute an optimistic index pq(t) such that
r(st,a) < Decs(pa(t)). For any feature vector s; 4, by leveraging the confidence interval in (4.11), the optimistic (unencrypted)
index is given by max, o (6, 51,0) = (Decsk(wr), 5t,a) + Billst.a
|st,all2 < L, it holds that:

|Vt_l' Leveraging Prop. 19, the definition of ¢, in Cor. 3 and

star [1seally -1 = lIseallbeqan < LX|IVi " — Decw(Adl|

<Lt 3N+ L) V?

. —1
which leads to maxeeaw,st,a) < (Decsk(wt), St,a) + \/Hst,aﬂﬁecsk(m) + L(t3/2\/)\ + L2t) . As a consequence, we can

write that the encrypted optimistic index is given by:

pa(t) = (Wi, Te,a) + EtsqrtHE(xIaAtxt,a + L(t3/2\/ A+ L2t) -t) (4.12)

where sqrtyg is an approximate root operator in the encryption space. Unfortunately, computing the root is a non-native
operation in HE and we need to build an approximation of it.
For a real value z € [0, 1], we define the following sequences (Cheon et al., 2020)

-3
Qk+1 = Gk (1 - %k) . Uki1 = Uj (Uk4) (4.13)

where qo = z and v = 2z — 1. It is possible to show that this sequence converges to +/z.

Proposition 20. For any z € Ry, c¢1,¢c2 > 0 with co > z > c¢1 and a precision € > 0, let qi, be the result of k iterations of
Eq. (4.13), withqo = Z andvo = Z —1. Then, |qx\/c2—/2| < e forany k > ko(e) := ﬁ (ln (In(e) —In(y/c2)) — In (4ln(- C—l)))

4co

Therefore, by setting z = ||z¢,q

|4, +ec1 (e, as+#in Eq. (4.12)), c1 = L 2VA+ L) 7!, co = ey + L2A7Y/? (1 +)_1/2)
and e = t71, we set

pa(t) = (we, Te.a) + B (\/(Eqko(l/t) + %) , (4.14)

which implies that 7(s¢,q) < max 0, 5t,a) < Decsk(pa(t)). Note that while wy, x+,4 and ¢; are encrypted values, Bi, c1, c2

vec!
and t are plain scalars.

Step ©: HE Approximate Argmax

The last challenge faced by the learning algorithm is to compute arg max,¢(x]{pa(t)}. Although, it is theoretically possible to
compute an argmax procedure operating on encrypted numbers (Gentry and Boneh, 2009), it is highly non practical because it
relies on bootstrapping. Recently, Cheon et al. (2020) introduced an homomorphic compatible algorithm (i.e., approximate),
called NewComp, that builds a polynomial approximation of Comp(a,b) = Ly,5p} for any a,b € [0,1]. This algorithm
allows to compute an HE friendly approximation of max{a,b} for any a,b € [0,1]. We leverage this idea to derive acomp,
a homomorphic compatible algorithm to compute an approximation of the maximum index (see Alg. 39 in App. 4.B.4.5).
Precisely, acomp does not compute arg maxqc[xj{pa(t)} but an approximate vector b; = (L{s=argmax; p;(t)})ac[k]- The
maximum index is the value a such that (b;), is greater than a threshold accounting for the approximation error.

The acomp algorithm works in two phases. First, acomp computes an approximation M of max;c(x]{p:(t)} by comparing
each pair (p;(t), p;(t)) with ¢ < j < K. Second, each value p,(t) is compared to this approximated maximum value M to
obtain (b:)a, an approximate computation of 1, (¢)>as}- Cor. 4 shows that if a component of b; is big enough, the difference

between max, pq(t) and any arm with 4(b;), > t~* is bounded by 5(1/1&) (proof in App. 4.B.4.5).

Corollary 4. At any time t € [T, any arm a € [K] satisfying (b;)a > = is such that:

4t

1 B2 L 11
t)> max {py ()} —~———= |-+ \| 07—+ L/~ + —
pult) 2 max {por (D)} — 7 = 5 lt \/tm — \/A 7
Cor. 4 shows that while an action a such that 4t(b;)a > 1 may not belong to argmax,c(xj{p:(a)}, it can be arbitrarily
close, hence limiting the impact on the regret. As shown later, this has little impact on the final regret of the algorithm as the
approximation error decreases fast enough. Since b, is encrypted, the algorithm does not know the action to play. b; is sent to
the user who decrypts it and selects the action to play (the user is the only one having access to sk). b; &~ (]l{a:maXie[K] pi()}
indicates to the user which action to take which is necessary by design of the bandit problem. However, if the user is able to

(4.15)

150

invert the polynomial functions used to compute b+ thanks to the rescaling of the estimates (pa(t)). the latter can only learn
a relative ranking for this particular user and not the actual estimates.
Step @: Update Schedule

Thanks to these steps, we can prove (see App. 4.B.5) a VT regret bound for HELBA when w; is recomputed at each step t.
However, this approach would be impractical due to the extremely high number of multiplications performed. In fact, inverting
the design matrix at each step incurs a large multiplicative depth and computational cost. The most natural way of reducing
this cost is to reduce the number of times the ridge regression is solved. The arm selection policy will not be updated at
each time step but rather only when necessary. Reducing the number of policy changes is exactly the aim of low switching
algorithms (see e.g., Abbasi-Yadkori et al., 2011; Perchet et al., 2016; Bai et al., 2019; Calandriello et al., 2020; Dong et al.,
2020). We focus on a dynamic, data-dependent batching since VT regret is not attainable using a fixed known-ahead-of-time
schedule (Han et al., 2020).

Abbasi-Yadkori et al. (2011) introduced a low switching variant of OFUL (RSOFUL) that recomputes the ridge regression
only when the following condition: det(V;11) > (1 + C)det(V) is met, with V the design matrix after the last update. The
regret of RSOFUL scales as 6(d (14+C)T). In the secure setting, computing the determinant of an encrypted matrix
is costly (see e.g. Kaltofen and Villard, 2005) and requires multiple matrix multiplications. The complexity of checking
the above condition with HE outweights the benefits introduced by the low switching regime, rendering this technique non
practical. Instead of a determinant-based condition, we consider a trace-based condition, inspired by the update rule for
GP-BUCB (Desautels et al., 2014; Calandriello et al., 2020).

The “batch j" is defined as the set of time steps between j-th and (5 + 1)-th updates of w, and we denote by ¢; the first
time step of this batch. The design matrix is now denoted by A; = AEncuk(I) + Z;gl T1,a,2] ,,, and more importantly is
only updated at the beginning of each batch j (and similarly for the inverse A; and vector w;). The current batch j is ended
if and only if the following trace-based condition is met at some time ¢:

t—1 t—1
C<Tr< > ijl,alx;a) =Y 3 (4.16)

I=t;+1 I=t;+1

The intuition behind this condition is that the trace of V; = AI + Efgl SlyaLSzT,a, is enough to directly control the regret.
The following proposition shows that the error due to the computation in the encrypted space remains small.

—1 . _
Proposition 21. Let ¢; = (Lt?/2\/A+L2tj) and Aj = Xy, (c,;) as in Eq. (4.10) starting from Mo = A;/c with ¢ >

X+t;L%. Then, for any j > 0: ’Tr(f;:ﬂ_l (DeCsk(Aj) — V;l)sl,als;al)‘ < LPej(t—1—t5).

Since the switching condition involves data-dependent encrypted quantities, we leverage a similar procedure as to compare
indexes. We compute an (encrypted) homomorphic approximation of the sign function thanks to the acomp algorithm. The
result is an encryption of the approximation of 1y3. Similarly to computing the argmax of (pa(t))a, the algorithm cannot
access the result, thus it relies on the user to decrypt and send the result of the comparison to decide whenever the algorithm
needs to update the approximate inverse 121]', . However, to prevent any information leakage, that is to say the algorithm or
the user learning about the features of other users, we use a masking procedure which obsfucates the result of the decryption
to the user (detailed in App. 4.B.5.1 and App. 4.B.5.1).

In non-encrypted setting, Cond. 4.16 can be used to dynamically control the growth of the regret, that is bounded by

(’)(ZﬁTO Zz::ﬂ ||V;1/25t,at Hz) But in the secure setting, the regret can not be solely bounded as before. The condition
for updating the batch has to take into account the approximation error introduced by all the approximate operations. Let M7
be the total number of batches, then the contribution of the approximations to the regret scales as ;.ViTO_l O((tj+1 —t5)%e;).
We thus introduce an additional condition aiming at explicitly controlling the length of each batch. Let n > 0, then a new
batch is started if Cond. (4.16) is met or if: ¢ > (14 n)t;. This ensures that the additional regret term grows proportionally
to the total number of batches Mr. Note that ¢; and ¢ are not encrypted values and the comparison is “simple”. The full

algorithm is reported in App. 4.B.1.

4.2.4 Theoretical Guarantees

The regret analysis of HELBA is decomposed in two parts. First, we show that, the number of batches is logarithmic in 7.
Then, we bound the error of approximations per batch.

Proposition 22. For any T > 1, if C — —X1— > i, the number of episodes M1 of HELBA (see Alg. 28) is bounded by:

VA+L2
dln (1 + Lde)
Mr <1+ + () (4.17)
21n(§+0— L) In(1 +n)
1 iz

151

The total number of multiplications to compute wj; is T'/Mp-times smaller thanks to the low-switching condition. This
leads to a vast improvement in computational complexity. Note that at each round ¢, HELBA still computes the upper-
confidence bound on the reward and the maximum action. Leveraging this result, when any of the batch conditions is satisfied,
the regret can be controlled in the same way as the non-batched case, up to a multiplicative constant.

Theorem 12. Under Asm. 15, for any § > 0 and T > d, there exists constants Cy,C2 > 0 such that the regret of HELBA
(Alg. 28) is bounded with probability 1 — § by:

/
Ry < C18* <\/(1.25+C’)dTln (%) + [5; 1n(T)> +C25*MTmax{\/f+ _n 2, L}

with 8* =1+ VS + a\/d (ln (1 + Lff) +In (”26?)) and Mt as in Prop. 22.

The first term of the regret highlights the impact of the approximation of the square root and maximum that are computed
at each round. The second term shows the impact of the approximation of the inverse. It depends on the number of batches
since the inverse is updated only once per batch. By Prop. 22, we notice that this term has a logarithmic impact on the regret.
Finally, the last term is the regret incurred due to low-switch of the optimistic algorithm. We can notice that the parameter
C regulates a trade-off between regret and computational complexity. This term is also the regret incurred by running OFUL
with trace condition instead of the determinant-based condition. This further stress that the cost of encryption on the regret is
only logarithmic, leading to a regret bound of the same order of the non-secure algorithms. But the computationnal complexity
of HELBA is multiple orders higher than any non-encrypted bandit algorithm. For example the complexity of computing a
scalar product with HE now scales with the ring dimension N and not the dimension of the contexts anymore d < N.

4.2.5 Discussion And Extensions

In this subsection , a numerical validation of the proposed algorithm in a secure linear bandit problem is privded as well as a
discussion about the limitations of the current setting and possible extensions.

Numerical simulation. Despite the mainly theoretical focus of the paper, we
illustrate the performance of the proposed algorithm on a toy example, where we
aim at empirically validating the theoretical findings. We consider a linear contextual
bandit problem with 4 contexts in dimension 2 and 2 arms. As baselines, we consider
81 OFUL, RSOFUL and RSOFUL-TR (a version of RSOFUL where the determinant-
based condition is replaced by the trace-condition in (4.16)). We run these baselines
on non-encrypted data and compare the performance with HELBA working with
encrypted data. In the latter case, at each step, contexts and rewards are encrypted

+§28§8}:TR using the CKKS (Cheon et al., 2017) scheme with parameter k = 128, D = 100 and

L/ S OFUL N = 2% a modulus log(go) = 4982 and a cyclotomic degree of M = 131072 chosen
o ‘ ‘ ‘ - HELBA automatically by the PALISADE library (PAL, 2020) used for the implementation.
0 20 40 60 80 100 120 The size of the ciphertext is not allowed to grow and a relinearization is performed

after every operation. The variance of the noise in the reward is o = 0.5. Finally,
. we use C' =1 and n = 0.1 in HELBA. The regularization parameter is set to 1 and
Figure 4.2.1: Regret on a toy prob- L = 5.5. Fig. 4.2.1 shows the regret of the algorithms averaged over 25 repetitions.
lem with 4 random uniform con- e notice that while the non-encrypted low-switching algorithms (i.e., RSOFUL
texts. and RSOFUL-TR) recompute the ridge regression only 11 times on average, their
performance is only slightly affected by this and it is comparable to the one of OFUL.
The reduced number of updates is a significant improvement in light of the current limitation in the multiplicative depth of
homomorphic schemes. This was the enabling factor to implement HELBA. Note that the update condition in HELBA
increases the number of updates to about 20 on average. As expected, the successive approximations and low-switching
combined worsen the regret of HELBA. However, this small loss in performance comes with a provable guarantee on the
security of users’ data.

Computational Complexity. Even though we reduced the number of multiplications and additions, the total runtime
of HELBA is still significant, several orders of magnitude higher compared to the unencrypted setting, the total time for
T = 130 steps and k = 128 bits was 20 hours and 39 minutes. We believe that a speed up can be obtained by optimizing how
matrix multiplication is handled. For example, implementation optimization can increase the speed of computation of logistic
regression (Blatt et al., 2020). However, we stress that HELBA is almost (up to the masking procedure) agnostic to the
homomorphic scheme used, hence any improvement in the HE literature can be leveraged by our algorithm. Bootstrapping
procedures (Gentry and Boneh, 2009) can be used for converting a leveled schema into a Fully HE scheme. This mechanism,
together with the low-switching nature of our algorithm, can be the enabling tool for scaling this approach to large problems
as the multiplicative depth scales linearly with the dimension.

152

Discussion. Many other approaches are possible to increase the computational efficiency, for example using a trusted
execution environment (Sabt et al., 2015) or leveraging user-side computational capacities. We decided to design an algorithm
where the major computation (except for comparisons) are done server-side, having in mind cloud-computing or recommenda-
tions running on mobile phone. The objective was to make as secure as possible this protocol so that the server can leverage
the information coming from all users. However, if we assume that users have greater computation capabilities, the algorithm
can delegate some computations (see e.g., Blatt et al., 2020). For example, for the inverse, the algorithm can generate a
random (invertible) matrix N;, homomorphically compute V;N; and sends the masked matrix, V;N; to the user. The latter
decrypts, inverts, re-encrypts the inverse and sends it to the algorithm (see (Bost et al., 2015, Sec. 8) for more details). A
similar scenario, can be imagined for computing a square root or a matrix multiplication. This protocol requires users to
perform computationally heavy operations (inverting a matrix) locally. To ensure security with this delegation, a verification
step is needed (see e.g., Bost et al., 2015) further increasing communications between the user and the bandit algorithm.
We believe that an interesting direction for future work is to integrate this protocol in a distributed setting (i.e., federated
learning). Using a server-side trusted execution environment can speed up computations as operations are executed in the
clear in private regions of the memory.

Multi-users Setting. Usually contexts represent different users, described by their features s; and some users may want
to use their own public key pk, (and secret key sk¢) to encrypt those features. In that case, HELBA can be used with a
KeySwitching Fan and Vercauteren; Brakerski (2012); Brakerski et al. (2014) component. This operation takes a ciphertext
c1 decipherable by a secret key sk; and output a ciphertext ce decipherable by a secret key sk2. A user send the encrypted
context/reward to the bandit algorithm which perform a key switching (see App. 4.B.3.2) with the help of trusted third party
who generate the set of keys used by the learning algorithm such that all ciphertexts received are decipherable by the same
key and compatible for homomorphic operations. KeySwitching can be performed without accessing the data and with some
(or all) users using their own set of private/public keys for encryption/decryption.

4.3 Conclusion

In the last chapter of this thesis, we explored the security aspect of linear contextual bandit that is to say, if and how bandit
algorithms are sensitive to adversarial attacks but also how to leverage advance in the E2E encryption technology to design a
bandit algorithm with an almost optimal regret only using encrypted data. As discussed in this chapter, there are still many
questions left to explore around those topics. For example, in the case of adversarial attacks on contexts a question left
unanswered is to get a lower bound on the percentage of contexts needed to force a linear regret, similar to results in the
literature of asynchronous deterministic consensus systems (Fischer et al., 1985). An other interesting question in encrypted
linear contextual bandits is if it is possible to derive a regret bound that explicitly trade-off the computational capacity and the
regret bound. That is to say, if the algorithm can perform M operations per iteration in average how does the regret changes.
This question would also be of interest for a general bandit problem especially when trying to use those in real systems.

153

Appendix

4.A Appendix for Attacks on Linear Contextual Bandit
4.A.1 Proofs

In this appendix, we present the proofs of different theoretical results presented in the paper.

4.A.1.1 Proof of Proposition 1

Proposition 1. For any § € (0,1/K], when using Contextual ACE algorithm (Alg. 24) with perturbed rewards 7', with
probability at least 1 — K4, algorithm 2 pulls an arm in AT for T — o(T) time steps and the total cost of attacks is o(T).

Proof. Let us consider the contextual bandit problem A1, with K arms with contexts x € D such that every arm in a’ € AT has
mean reward (0,+,z) and all other arms has mean 0. Then the regret of algorithm 2l for this bandit problem is upper-bounded
with probability at least 1 — § by a function fo(T') such that fo(T) = o(T). In addition, the reward process fed to Alg. 2
by the attacker is a stationary reward process with o2-subgaussian noise. Therefore, the number of times algorithm 2 pulls
an arm not in A" is upper-bounded by fo(T')/ mingep A(z) where for every context € D, let af(z) := arg max,c o1 (%, Oa)
and A(z) = (a:,éai(x)) — maxaem’a#ai(m)(x,ea)

In addition, the total cost of the attack is upper-bounded by max,c[1, k] maxazep |(z,0a)|(T — N i (T)) where N4+ (T)
is the number of times an arm in A" has been pulled up to time 7. Thanks to the previous argument, T — N ;(T) <
fa(T)/ mingep A(x). O

4.A.1.2 Proof of Proposition 2

Proposition 2. Using the attack described in Alg. 25, for any § € (0,1/K], with probability at least 1 — K&, the number of
times LINUCB does not pull an arm in AT is at most:

3
Z 2 A 5 M+ TL*o?

jg At

with N;(T) the number of times arm j has been pulled after T steps, ||0.|| < S for all arms a, A the regularization parameter
of LINUCB and for all x € D, ||z||2 < L. The total cost for the attacker is bounded by:

a 64K2 [A A+ TL2a?)\’
E < - 7
t=1 “= v <a2 e d10g< dXd))

Proof. Let a: be the arm pulled by LINUCB at time ¢. For each arms a, let éa(t) be the result of the linear regression with
the attacked context and 0,(t, A/a?) the one with the unattacked context and a regularization of a% At any time step ¢, we
can write, for all ag A':

t t

t -1 t -t)
. 1{ A Oa(t, N/
0a(t) = ()\Id + Z a2xl:ﬁ> Z rLOTE = S (oﬂjd + Z xwv%) Z rRTE = (f/a)

1=0,a;=a k=0,ar=a k=0,a=a k=0,a;=a

We also note that, since the contexts are not modified for arms in af € AT: 6, (t) = 6,1 (¢, \). In addition, for any context =
and arm a ¢ AT, the exploration term used by LINUCB becomes:

1
JP—— L 4.1
HxH\/a,t1 aHIHVa,tI (8)

154

where V,; = M4 + Z;:O,al:a o’ziz] and V, ! = N/a’Ia + ZZ:O,%:G zrxy. For a time t, if presented with context x;
LINUCB pulls arm a¢ ¢ A we have:

a (<éd (),0) + Bar (t>|xt|v-;t> < (B, (0,70, 20) + B (Ol

As o = % > ming et ﬁ, we deduce that on the event that the confidence sets (Theorem 2 in Abbasi-Yadkori et al.
ot Tt

(2011)) hold for arm a*:
2< <éat (ta A/a2)7fbt> + Bay (t)HthVazlt < <9at,$t> +2Ba, (t)thHVa;lt

Thus, 1 <2 — (04, 2¢) < 204, (t)HItHV—lt. Therefore,
ag,

T T T T
D Lagary < D min(Ba, (Ollaelly-1, Do gary < Y 265(T)y | D Tiwmsy D min(L, [lae]]?)
t=1 t=1) jgAt t=1 t=1,a¢=j o

But using Lemma 11 from Abbasi-Yadkori et al. (2011) and the bound on the 8;(T") for all arms j, we have with Jensen
inequality:

T T
a?TL? a2TL2
D Diggary <4 KZIL{atgm}dlog(l—l— v)(\/)\/a25+0\/210g(1/5)+dlog(1+ v))

t=1 t=1

4.A.1.3 Proof of Theorem 11
Theorem. For any £ > 0, Problem (4.4) is feasible if and only if:

e | Carn 0¢ conv< U Cm) (4.19)

ateAt ag At

where for every arm a, Ct,q 1= {9 [16— 8a(t)| Iy, , < Ba(t)} with 0,(t) the least squares estimate for arm a built by LINUCB
and

t t
Vae=Ma+ Y Lzawel+ Y Lg=a@id]

I=1,z; Azt I=1,2;=xT

the design matrix of LINUCB at time ¢t for all arms a (where &; is the modified context)

Proof. The proof of Theorem 11 is decomposed in two parts.
First, let us assume that Equation (4.19) is satisfied. Then, let us define a’ € A" such that 6 € C, ,+ \ Conv (Ua At Ct,a),
then by the theorem of separation of convex sets applied to C; ,+ and {6}. There exists a vector v and ¢1 < c2 sucﬁ that for

all y € Conv (Ua;éaf Ct,a>;
(y,v) <e1 < cz2 < (0,v).

Hence, for £ > 0 we have that for = £ _y that:

co—cy

(y,0) + & < (6,7)

So the problem is feasible.
Secondly, let us assume that an attack is feasible. Then there exists a vector y such that:

0 = 0 4.20
T G (y,0) > c1 max max (y,0) (4.20)

Let us reason by contradiction. We assume that UaeAT Cy,at C Conv (Ua¢AT Ct,a) and consider

0" € LJT C; ot such that (y,0") = arggf‘(f eglc?)jf (y,0)
acA o

155

As we assumed J,_,+C, .t C Conv (UangT Ct,a), there exists n € N*, A, -+, A, > 0 and 61,---,0, € UangT Cta
such that

9* = i&@l and zn:)\l =1
=1 =1

Thus
W07 =D Xify,0) <) Ai=a (4.21)
i i=1
We assumed that the problem is feasible, so ¢1 < (y,0") according to Eq. 4.20. It contradicts Eq. 4.21. O

4.A.1.4 Condition of Sec. 4.1.4

Figure 4.A.1: lllustrative example of condition (4.5). The target arm is arm 3 or 5 and the dashed black line is the
convex hull of the other confidence sets. The ellipsoids are the confidence sets C; , for each arm a. If we consider
only arms {1,2,4,5}, and we use 5 as the target arm, the condition (4.5) is satisfied as there is a § outside the
convex hull of the other confidence sets. On the other hand, if we consider arms {1,2,3,4} and we use 3 as the
target arm, the condition is not satisfied anymore.

Let us assume that there is an arm in af € AT which is optimal for some contexts. More formally, there exists a subspace
V' C D such that:
Ve e V,3al(z) € AT, Va e [1, K]\ {al ()} <x,9a7<w>) > (z,0q) .

We also assume that the distribution of the contexts is such that, for all ¢, u := P(z: € V) > 0. Then, the regret is
lower-bounded in expectation by:

*€Vazal(2)

T
E(Rr)=E (Z Lipevy (<:vt, GGI(M) — 9m,>)) > pm(T) min max <0a*(z) — a4,)
t=1

where m(T") is the expected number of times ¢ < T such that condition (4.5) is not met. LINUCB guarantees that

E(Rr) < O(VT) for every T. Hence, m(T) < O (VT e @)- This means that, in an unattacked
ol)0

pming ey maxa?ﬁai (@)

problem, condition (4.5) is met T — O(\/T) times. On the other hand, when the algorithm is attacked the regret of LINUCB
is not sub-linear as the confidence bound for the target arm is not valid anymore. Hence we cannot provide the same type of
guarantees for the attacked problem.

4.A.2 Experiments
4.A.2.1 Datasets and preprocessing

We present here the datasets used in the article and how we preprocess them for numerical experiments conducted in subsection
4.1.5.

156

5,000

4’000] - CACE LINUCB | [ey
--- CACE LINTS | o
=300 \ CACE Exp4
8 -=+= CACE &-GREEDY
2,000 — CACE LiNUCB
--- CACE LINTS
wo-se CACE Exp4
---- CACE &-GREEDY
07 0.98 1 T T T T
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Y 0
(a) Total cost (b) Number of draws

Figure 4.A.2: Total cost of attacks and number of draws of the target arm at 7' = 10° as a function of y on synthetic
data

We consider two types of experiments, one on synthetic data with a contextual MAB problems with K = 10 arms such
that for every arm a, 0, is drawn from a folded normal distribution in dimension d = 30. We also use a finite number of
contexts (10), each of them is drawn from a folded normal distribution projected on the unit circle multiplied by a uniform
radius variable (i.i.d. across all contexts). Finally, we scale the expected rewards in (0,1] and the noise is drawn from a
centered Gaussian distribution A(0,0.01).

The second type of experiments is conducted in the real-world datasets Jester Goldberg et al. (2001) and MovieLens25M
Harper and Konstan (2015). Jester consists of joke ratings on a continuous scale from —10 to 10 for 100 jokes from a total
of 73421 users. We use the features extracted via a low-rank matrix factorization (d = 35) to represent the actions (i.e., the
jokes). We consider a complete subset of 40 jokes and 19181 users . Each user rates all the 40 jokes. At each time, a user
is randomly selected from the 19181 users and mean rewards are normalized in [0,1]. The reward noise is N'(0,0.01). The
second dataset we use is MovieLens25M. It contains 25000095 ratings created by 162541 users on 62423 movies. We perform
a low-rank matrix factorization to compute users features and movies features. We keep only movies with at least 1000 ratings,
which leave us with 162539 users and 3794 movies. At each time step, we present a random user, and the reward is the scalar
product between the user feature and the recommend movie feature. All rewards are scaled to lie in [0, 1] and a Gaussian noise
N(0,0.01) is added to the rewards.

4.A.2.2 Attacks on Rewards

In this appendix, we present empirical evolution of the total cost and the number of draws for a unique target arm as a function
of the attack parameter ~ for the Contextual ACE attack with perturbed rewards 72 on generated data.

Fig. 4.A.2 (left) shows that the total cost of attacks seems to be quite invariant w.r.t. v except when v — 0 because
the difference between the target arm and the other becomes negligible. This is also depicted by the total number of draws
(Fig. 4.A.2, Right) as the number of draws plummets when v — 0.

4.A.2.3 Attacks on all Contexts

Fig. 4.A.3 shows the regret for all the attacks. This figure shows that even though the total cost of attacks is linear for
algorithms like LINTS in the synthetic dataset, the regret is linear. More generally, we observe that the regret is linear for all
attacked algorithms on all datasets.

4.A.2.4 Attack on a single context

The attacks are computed by solving the optimization problems 4.4 and 4.6 (Sec. 4.1.4). We choose the libraries according to
their efficiency for each problem we need to solve. For Problem (4.6) and Problem (4.8) we use CVXPY Agrawal et al. (2018)
and the ECOS solver. For Problem (4.4) we use the SLSQP method from the Scipy optimize library Virtanen et al. (2019)
to solve the full LINUCB problem (Equation 4.4) and QUADPROG to solve the quadratic problem to attack e-GREEDY.

157

Table 4.A.1: Number of draws of the target arm a' at 7' = 10°, for the synthetic data, v = 0.22 for the Contextual
ACE algorithm and for the Jester and Movielens datasets v = 0.5.

Synthetic Jester Movilens
LINUCB 86, 731.6 23,548.16 25,017.31
CACE LINUCB 996,238.6 921,083.69 944,721.28
Stationary CACE LINUCB 995,578.88 862,095.67 931,531.6
£-GREEDY 111,380.44 21,911.54 3,165.81
CACE e-GREEDY 999,812.92 999,755.72 999, 776.82
Stationary CACE e-GREEDY 999,806.32 999,615.98 999, 316.76
LINTS 91,664.8 23,398.3 30,189.84
CACE LINTS 998,997.04 976,708.9 990, 250.67
Stationary CACE LINT'S 977,850.96 784,715.62 845,512.98
Expr4 93, 860.4 29,147.01 17,985.78
CACE Exp4 992,793.36 989,214.36 936,230.4
Stationary CACE Exp4 993,673.24 988,463.56 934, 304.23
10t
44
34

— Attacked LINUCB, |A| = 0.3K 31

------ Attacked LINUCB, |A| = 0.6K e 2

- - - Attacked LINUCB, |A| = 0.9K 2 - -7

—— Attacked e-GREEDY, |A| = 0.3K .- ~ e

—— Attacked e-GREEDY, [A| = 0.6K 14 “,.v";__-“‘ Y e

—+— Attacked e-GREEDY, |A| = 0.9K et

—o— Attacked LINTS, |A| = 0.3K &

—— Attacked LINTS, |A| = 0.6K 0 0 2 4 ; : 0

—+— Attacked LINTS, |A| = 0.9K Time 105 Time 107

5
Time 10°

Figure 4.A.3: Total cost of attacks and number of draws of the target arm at T = 10° as a function of v on synthetic
data

4.A.3 Problem (4.8) as a Second Order Cone (SOC) Program

Problem (4.6) and Problem (4.8) are both SOC programs. We can see the similarities between both problems as follows. Let
us define for every arm a ¢ A', the ellipsoid:

T d) -1 g
Cta = {y €R [y = Oa(®)l| y=1(,) <0 (1 - K—|AT|> }

with Ag(t) = V, 1 (t) + Vajl(t) with V,(t) and Vi (t) the design matrix built by LINTS and 0,(t) the least squares
estimate of 0, at time ¢. Therefore for an arm a, the constraint in Problem (4.8) can be written for any y € R? and some
arm a' € AT as:

<':C* + yaéaT (t)> - f Z ma;X <Z,$* + y>
zECt,a

158

-10° -10°

2.5 10°
194 =" LINUCB Relaxed
------ e-GREEDY Full 549
14 —* LINTS Relaxed R 24
—+— LINUCB Full L7 4
0.8 /,” 1.5
e 3
0.6 |
1
0.4 21
02 A 0.5 - a ————____,
P et ‘ ‘ ‘ 0 ‘ : ‘ ‘ 0 L=~ puasasgceoe: ooy oo A‘ ---------
0 2 4 6 8 0 2 4 6 8 0 2 4 6 8
Time 10° Time .10° Time 105
(a) Synthetic data (b) Jester Dataset (c) MovieLens Dataset

Figure 4.A.4: Total cost of the attacks for the attacks one one context on our synthetic dataset, Jester and Movielens.
As expected, the total cost is linear.

Indeed for any = € R?,

max (u, x)
Y2 (4yul | <1

)~
—<%é4w>+u¢‘1< IAT>Im?(<ZA”2))
)

= <x,éa(t)> + 0ot (1 |AT\

Thus, the constraint is feasible if and only if:

max <y,$> = <$,éa(t)> +vd~! (1 |AT\

yee,, 1AL

(RO

B, (t) & Conv | | Cla

ag At

4.A.4 Attacks on Adversarial Bandits

In the previous subsection s, we studied algorithms with sublinear regret Rr, i.e., mainly bandit algorithms designed for
stochastic stationary environments. Adversarial algorithms like EXP4 do not provably enjoy a sublinear stochastic regret
Rr (as defined in the introduction) °. In addition, because this type of algorithms are, by design, robust to non-stationary
environments, one could expect them to induce a linear cost on the attacker. In this subsection , we show that this is not the
case for most contextual adversarial algorithms. Contextual adversarial algorithms are studied through the reduction to the
bandit with expert advice problem. This is a bandit problem with K arms where at every step, IV experts suggest a probability
distribution over the arms. The goal of the algorithm is to learn which expert gets the best expected reward in hindsight

after T steps. The regret in this type of problem is defined as R7* = E (maxme[[l,N]] Zthl Zfil Ef,?jrt,j — Tt,at) where

ET(n)j is the probability of selecting arm j for expert m. In the case of contextual adversarial bandits, the experts first observe
the context x; before recommending an expert m. Assuming the current setting with linear rewards, we can show that if
an algorithm 2, like EXP4, enjoys a sublinear regret R7", then, using the Contextual ACE attack with either 7 or 72, the
attacker can fool the algorithm into pulling arm a' a linear number of times under some mild assumptions. However, attacking
contexts for this type of algorithm is difficult because, even though the rewards are linear, the experts are not assumed to use

a specific model for selecting an action.

exp

Proposition 3. Suppose an adversarial algorithm U satisfies a regret R7™® of order o(1T") for any bandit problem and that there

exists an expert m* such that T — thl E(E® : > = o(T) with at’* the optimal arim in At at time t. Then attacking alg.

*
m*,a;

2 with Contextual ACE leads to pulling arm o', T — o(T) of times in expectation with a total cost of o(T) for the attacker.

5ExP4 enjoys a sublinear hindsight regret though. Showing a sublinear upper-bound for the stochastic regret of Exp4 is still an open
problem (see subsection 29.1 in Lattimore and Szepesvari (2018))

159

Proof. Similarly to the proof of Proposition 1, let's define the bandit with expert advice problem, A;, such that at each time ¢
the reward vector is (7} ,)a (with i € {1,2}). The regret of this algorithm is: Ry = E (maxme[[l,N]] Z E(t)rt — i at) €

o(T). The regret of the learner is: E (maxme[[lﬁN]] ZtT:I EYr, — rt,at) where a; are the actions taken by algorithm A; to

minimize RiT’EXp. Then we have:
T K T
i, t i i i
Ry > E (Z DI R LA D DU)
t=1 j=1 ’ t=1

Therefore,

T K
~1 ~1 i,exp (t) ~%
E <Z Tt,ai‘ - Tt«“t) R +E <Z Z(l{j:al,*} o Em*,j)rt’j>
<Ry 4+ E <Z(1 -EBY .)f§,j>
m ,at‘*
T
<aer s (So-s,)

For strategy ¢ = 1, we have:
T
1
(St i) =302 (g, i) > (72 (S,)) o
t=1
where A := mingep {(HQT(I),@ - maxaeAT’a#auz)(ea/,m)} with a'(z) := argmax, 41 (04,). Then, as R € o(T) and

=T —o(T).

T
E (Ztl(l — E’(’?*“I *) € o(T), we deduce that E(Et ll{at:a;*})

For strategy i = 2, and § > 0, let us denote by Fs the event that all confidence intervals hold with probability 1 — §. But
on the event Es, for a time ¢t where a; # aI’* and such that —1 < C 4, <0:

Fiat =740, + Cta, = (1 —7) min min (0, 2¢) + e, ,t + (0o, x¢) — max (0, x¢)
ateat 0€C, 1 0€Ct.q,

S @ =m0 @) +Tare
when Cy q, > 0 (still on the event Es):
ff,at = Tt,ay < (1 - ’7)<0ai 7xt> + Nay,t

because C} o, > 0 means that (1 — 7)(0017*,1:,5) > (1 —) mingt 4t mingec, (0, 2¢) > maxpec, ,, (0,7t) > (0o, 7). But
finally, when Ci o, < —1, 714, = Ttay — 1 < Naye < (1 —)0+ ,%t) + Nay,e. But on the complementary event Ef,
t,x

774, < Tt,a,. Thus, given that the expected reward is assumed to be bounded in (0,1] (Assumption 13):

T T
E <Z fia;* - ffyaf) =E (Z(Tmt - fiﬂt)l{at?ﬁaz *}> <Z m1n{*ym1n<:c 0 af) A}Il{a#a;*}l{E?;}) —-T6

t=1

Finally, putting everything together we have:

T
52,exp (t)
<Z'y£rélg 1*>]1{at;ﬁaz,*}> < RIP+E (Z(l — Em*’a;*)> + 6T (mln{’y a?lelg’f rmn(ac 0,1), A} + 1)

t=1
Hence, because R;™® = o(T) and E (7(7’?* a_r)) = o(T") we have that for 6 < 1/T, the expected number of pulls
of the optimal arm in AT is of order o(T'). In addition, the cost for the attacker is bounded by:

T T T
E (th> =E (Z fortal 3| max(=1,min(Cta;, 0 ‘) <E <Zﬂ{at¢a1,*}>
Py t=1

160

The proof is similar to the one of Prop. 1. The condition on the expert in Prop. 3 means that there exists an expert which
believes an arm af € AT is optimal most of the time. The adversarial algorithm will then learn that this expert is optimal.
Algorithm EXP4 has a regret R7" bounded by /2T K log(N), thus the total number of pulls of arms not in At is bounded
by /2T K log(M)/~. This result also implies that for adversarial algorithms like EXP3 Auer et al. (2002b), the same type of
attacks could be used to fool 2 into pulling arms in AT because the MAB problem can be seen as a reduction of the contextual
bandit problem with a unique context and one expert for each arm.

4.A.5 Contextual Bandit Algorithms

In this appendix, we present the different bandit algorithms studied in this paper. All algorithms we consider except Expr4
uses disjoint models for building estimate of the arm feature vectors (6a)acq1,kx7. Each algorithm (except Exp4) builds least
squares estimates of the arm features.

Algorithm 29: Contextual LINUCB
Input: regularization A, number of arms K, number of rounds 7', bound on context norms: L, bound on norms 6,: D

Initialize for every arm a, V, ' (t) = + 14, 0a(t) = 0 and ba(t) = 0
fort=1,...,T do

Observe context z;

Compute SBq(t) = U\/dlog (w) with N, (t) the number of pulls of arm a

Pull arm a; = arg max,, (fa (), z:) + ﬂa(t)||xt||‘7;1<t)
Observe reward r; and update parameters 0, (t) and V, ' (t) such that:

Vae(t+1) = Vo, (O) + 2ew], b, (t+1) = ba, (1) + 70w, o, (¢ +1) = Vo, ' (¢ + Dba, (E+1)

Algorithm 30: Linear Thompson Sampling with Gaussian prior

Input: regularization A, number of arms K, nAumber of rounds T, variance v
Initialize for every arm a, V; ' (t) = Az and 0, () = 0, ba(t) =0
fort=1,...,7T do

Observe context ¢

Draw 0, ~ N (Ba(t), V2V, 1(1))

Pull arm a; = arg MaX, e[y, K] <§a,xt>

Observe reward r; and update parameters 0,(t) and V, ' (t)

Var(t+1) = Vo, (O) + 2ew], b, (t+1) = ba, (1) + 70w, o, (¢ +1) = Vo, ' (¢ + Db, (t+1)

Algorithm 31: s-GREEDY
Input: regularization A, number of arms K, number of rounds T', exploration parameter (e)¢
Initialize, for all arms a, V, ' (t) = Alq and 0,(t) =0, &, = 1, bo(t) =0 for t = 1,...,T do
Observe context x;
With probability ¢, pull a; ~ U ([1, K]), or pull a; = arg max(6a, z.)

Observe reward r; and update parameters 0, (t) and V, *(t)

‘_/at (t + 1) = Vay (t) + .TtQZI, ba, (t + 1) = ba, (t) + T2,
Oa, (t+1) = Vo, ' (¢ + 1)ba, (t +1)

161

Algorithm 32: Expr4

Input: number of arms K, experts: (Eu,)meqi,n], Parameter n

Set Q1 = (1/N)jeq,ng

fort=1,...,7T do
Observe context x: and probability recommendation (Ey(,tl))me[[lyN]]
Pull arm a; ~ P; where P, ; = > QuiEL)
Observe reward 7 and define for all arms 4 7 ; =1 — L4, —} (1 —7r¢)/Prs
Define Xy x = >, B\ 0 fra
Update Q¢+1,; = exp(nQ.,i)/ Z;\;l exp(nQy,;) for all experts 4

4.A.6 Semi-Online Attacks

Liu and Shroff (2019) studies what they call the offline setting for adversarial attacks on stochastic bandits. They consider a
setting where a bandit algorithm is successively updated with mini-batches of fixed size B. The attacker can tamper with some
of the incoming mini-batches. More precisely, they can modify the context, the reward and even the arm that was pulled for
any entry of the attacked mini-batches. The main difference between this type of attacks and the online attacks we considered
in the main paper is that we do not assume that we can attack from the start of the learning process: the bandit algorithm
may have already converged by the time we attack.

We can still study the cumulative cost for the attacker to change the mini-batch in order to fool a bandit algorithm to
pull a target arm a' (here we take AT = {a}). Contrarily to Liu and Shroff (2019), we call this setting semi-online. We first
study the impact of an attacker on LINUCB where we show that, by modifying only (K — 1)d entries from the batch B, the
attacker can force LINUCB to pull arm af, M’B — o(M’B) times with M’ the number of remaining batches updates. The
cost of our attack is v M B with M the total number of batches.

Cost of an attack: |If presented with a mini-batch B, with elements (z:, a:,7:) composed of the context z; presented at
time ¢, the action taken a: and the reward received r;, the attacker modifies element 4, namely (x}, at,7¢) into (%, ai, 7).
The cost of doing so is ¢; = ||z} — Zi||2 + ‘fﬁ —ri’ +]l{ai¢&i} and the total cost for mini-batch B is defined as ¢z = ZieB .
Finally, we consider the cumulative cost of the attack over M different mini-batches By, ..., B, lbil ¢p,. The interaction

between the environment, the attacker and the learning algorithm is summarized in Alg. 33.

Algorithm 33: Semi-Online Attack Setting.
Input: Bandit alg. 2, size of a mini-batch: B
Sett=0
while True do

2A observe context x;
2 pulls arm a: and observes reward 7
Interaction (z¢, at, r¢) is saved in mini-batch B
if |B| = B then
Attacker modifies mini-batch B into B
Update alg. 2 with poisoned mini-batch B

The attack presented here is based on the Ahlberg—Nilson—Varah bound Varah (1975), which gives a control on the sup
norm of a matrix with dominant diagonal elements. More precisely, when presented with a mini-batch B, the attacker needs
to modify the contexts and the rewards. We assume that the attacker knows the number of mini-batch updates M and has
access to a lower-bound on the reward of the target arm, v as in Assumption 14.

The attacker changes (K — 1) x d rows of the first mini-batch to rewards of 0 with a context de; for each arm a # a'
with (e;) the canonical basis of R?. Moreover, J, is chosen such that:

2 2 2
8 > max <\/W +dMB, \/‘m"“’;”Ld + dMB) (4.22)
v v

with Bmae = maxii8 .(t) and M the number of mini-batch updates.

Proposition 4. After the first attack, with probability 1 — §, LINUCB always pulls arm a',

162

Proof. After having poisoned the first mini-batch 5, the latter can be partitioned into two subsets, B. (with non-perturbed
rows) and B, (with the poisoned rows). The design matrix of arm a # a' for every time t after the poisoning is:

¢ d
Via = Ma + Z zix] + 6, Z eie] (4.23)

I=1,a;=a i=1

For every time t, non diagonal elements of V4 o = (v;,;)s,; are bounded by:

t
Virii=Y vig <> Y |ma] e < dNa(kB) (4.24)

i j#i I=1,a;=a

Whereas for all diagonal elements, v;; > 62 > ;. Thus V; , is strictly diagonal dominant and by the Ahlberg—Nilson—Varah
bound Varah (1975):

1 1

Ve < <
H ta ” min; (HUZIH — Ti) - 53 —dMB

(4.25)

Then, for every arm a # a' and any context = € D and any time t after the attack:

t

(fats @) + Ba@llelly 1 < Y re(Vidw) e+ Ba(®)llalliy/1Vi llse

I=1,a;=a

Vi o leodNe (@) sup [[y]]3 + BmaxVd sup |[yll2y/ |V o oo < v
yeD yeD

IN

We have shown that for any arm a # a and any time step ¢ after the attack, the upper confidence bound computed by
LINUCB is upper-bounded bu v the arm a'. Then, with probability 1 — &, the confidence set for arm a' holds and, for all
x €D, arm a' is chosen by LINUCB. The total cost of this attack is dz:a?éaf 0oL = O(VMB) O

4.B Appendix for Encrypted Linear Contextual Bandits
4.B.1 Slow-Switching Algorithm

In this subsection , we present the detailed algorithm of Sec. 4.2.3.

Algorithm 34: Low-Switching HELBA (Server-Side)

Input: horizon: T, regularization factor: A, failure probability: §, feature bound: L, 8* norm bound: S, dimension: d,
batch growth: 7, trace condition: C'

Set w1 = Encp(0), A1 = Encpk(A), A1 = Encoe(A"11), Vi = Encok(A), jo =0, j =0 and to = 1

fort=1,...,7T do

Set A(t) = J\/dln ((szﬂ‘) ("2f2>> +t72 £ SVXand ¢ = L(£57 /A + L?t;) 7}

Observe encrypted contexts (2¢ a)ac(x] = (ENCpk(St,a))ac|k]
fora=1,...,K do

Compute approximate square root sqrtyg (xIafljxt,a + 5j)

Compute encrypted indexes pq(t) = (Tt,a, w;) + E(t) (sqrtHE (xIaijt,a + Ej) + t71> (Step ®)

_ pa(t)=Trmin _ rt 2 L 1, 1
Rescale encrypted indexes pa(t) p——— with pmax = Tmax + 26(t) { + 7&/%/@ (\F)]
Compute comparison vector by € RE using acomp (see Alg. 39 in App. 4.B.4.5) with precision ¢} = (4.1
(Step ®)

Observe encrypted reward y; and encrypted context x¢ q,
Update ‘7t+1 =Vi+ It,atfrtT,at and gi+1 = gt + YtTt,a,s
Compute Cond. (4.16) by computing §; with e = 0.45 and &} = LQ(% + %)(t —1—t;)) (see App. 4.B.5.1).
Use masking procedure on §; (Alg. 40) and sends the masked ciphertext to the user
if 6 > 0.45 ort > (1 +n)t; then
Settj+1:t,j:j+1 andAj+1 :‘V/t
Compute Aj 1 = Xy (0., /12) as in Prop. 19 (V=Aj41, c=Ad+ L%;11) and wj4q = Ajt1dt; 4

163

4.B.2 Additional Related Work

In Federated Learning (a.k.a., collaborative multi-agent), DP and LDP guarantees can provide a higher level of privacy at a
small regret cost, leveraging collaboration between users Wang et al. (2020); Zhu et al. (2020). Another collaborative approach
to privacy-preserving machine learning, called Secure Multi-Party Computation (MPC) (e.g. Damgérd et al., 2012), divides
computations between parties, while guarantying that it is not possible for any of them to learn anything about the others.
This has been recently empirically investigated in the bandit framework Hannun et al. (2019). However, there is an additional
strong assumption, that each party provides a subset of the features observed at each round.

Finally, Homomorphic Encryption (HE) (e.g. Halevi, 2017) aims at providing a set of tools to perform computation on
encrypted data, outsourcing computations to potentially untrusted third parties (in our setting the bandit algorithm) since
data cannot be decrypted. HE has only been merely used to encrypt rewards in bandit problems Ciucanu et al. (2019), but
in some inherently simpler setting: i) contexts are not considered and arms’ features are not encrypted; ii) a trusted party
decrypts data. In particular, the second point makes algorithm design much easier but requires users to trust the third party
which, in turn, can lead again to privacy/security concerns. In the supervised learning literature, HE has been used to train
neural networks (Badawi et al., 2020) achieving 77.55% classification accuracy on CIFAR-10 (compared to a state-of-the-art
accuracy of 96.53% (Graham, 2015)) highlighting the potentially high impact of the approximation error due to HE.

4.B.3 Protocol Details

The learning algorithm may try to break encryption by inferring a mapping between ciphertexts and values or by storing all
data. HE relies on the hardness of the Learning With Error problem (Albrecht et al., 2015) to guarantee security. To break
an HE scheme, an attacker has to perform at least 2" operations to be able to differentiate noise from messages in a given
ciphertext. We refer to (Albrecht et al., 2018) for a survey on the actual number of operations needed to break HE schemes
with most of the known attacks. Although collecting multiple ciphertexts may speedup some attacks, the security of any HE
scheme is still guaranteed as long as long the number of ciphertexts observed by an attacker is polynomial in N (Regev, 2009).

4.B.3.1 CKKS Encryption Scheme

In this subsection , we introduce the CKKS scheme Cheon et al. (2017). This scheme is inspired by the BGV scheme Brakerski
et al. (2014) but has been modified to handle the encryption of real numbers. The security of those schemes relies on the
assumption of hardness of the Learning With Errors (LWE), ring-LWE (RLWE) Regev (2009). The scheme can be divided into
2 parts: encoding/decoding and encryption/decryption.

Encoding and Decoding of Messages. In CKKS, the space of message is defined as CV/2 for some big even integer
N € N. This integer is a parameter of the scheme chosen when generating the private and secret keys. CKKS scheme
does not work directly on the space C/2 but rather on an integer polynomial ring R = Z[X]/ (XN + 1) (the plaintext

space) Seidenberg (1978). Encoding a message m € C™/? into the plaintext space R is not as straightforward as using a
classical embedding of a vector into a polynomial because we need the coefficients of the resulting polynomial to be integers.
To solve this issue the CKKS scheme use a more sophisticated construction that the canonical embedding, based on the
subring H = {z € CV | z; = Zn_;,5 < N/2} which is isomomorphic to CV/2. Finally, using a canonical embedding
o : R — o(R) C H and the coordinate-wise random rounding technique developed in Lyubashevsky et al. (2013b), the CKKS
scheme is able to construct an isomorphism between CV/? and R.

Encryption and Decryption of Ciphertexts. Most public key scheme relies on the hardness of the Learning with Error
(LWE) problem introduced in Regev (2009). The LWE problem consists in distinguishing between noisy pairs (a;, (a;, s) +
€i)i<n C (Z/qZ)" x Z/qZ and uniformly sampled pairs in (Z/qZ)" x Z/qZ where (e;);<n are random noises and ¢ € N.
However, building a cryptographic public key system based on LWE is computationally inefficient. That's why CKKS relies
on the Ring Learning with Error (RLWE) introduced in Lyubashevsky et al. (2013a) which is based on the same idea as LWE
but working with polynomials Z,[X]/(X" + 1) instead on integer in Z/qZ. RLWE (and LWE) problem are assumed to be
difficult to solve and are thus used as bases for cryptographic system. The security of those problems can be evaluated thanks
to Albrecht et al. (2015) which gives practical bounds on the number of operations needed for known attacks to solve the
LWE (RLWE) problem.

The CKKS scheme samples a random s on R and defines the secret key as sk = (1, s). It then samples a vector a uniformly
on R/qrR (with g, = 2L g0 where L is the depth of the scheme and ¢ its modulus) and an error term e sampled on R (usually
each coefficient is drawn from a discrete Gaussian distribution). The public key is then defined as pk = (a, —a.s + ¢). Finally,
to encrypt a message m € CV/2 identified by a plaintext m € R the scheme samples an encrypting noise v ~ Z0(0.5)°. The
scheme then samples eg,e1 € ZY two independent random variable from any distribution on R, usually a discrete Gaussian
distribution. The ciphertext associated to the message m is then [(v - pk 4+ (m + ep, €1))]q, with [.], the modulo operator

6A random variable X ~ Z0(0.5) such that X € {0,1,—1}¥, (X;);<n are i.i.d such that for all i < N P(X; = 0) = 1/2,P(X; =
=1/4 and P(X; = —1) = 1/4

164

and qr. = 2%, Finally, to decrypt a ciphertext ¢ = (co,c1) € ’Rgl (with [the level of the ciphertext, that is to say the depth of
the ciphertext), the scheme computes the plaintext m’ = [co + c15]q,” and returns the message m’ associated to the plaintext

m’.

4 B.3.2 Key Switching

Homomorphic Encryption schemes needs all ciphertexts to be encrypted under the same public key in order to perform additions
and multiplications. As we mentioned in Sec. 4.2.5 one way to circumvent this issue is to use a KeySwitching operation. The
KeySwitching operation takes as input a cyphertext c¢1 encrypted thanks to a public key pk; associated to a secret key sk;
and transform it into a cyphertext encrypting the same message as ¢1 but under a different secret key sko.
The exact KeySwitching procedure for each scheme is different. We will use the CKKS scheme, inspired by the BGV
scheme Brakerski et al. (2014), where KeySwitching relies on two operations BitDecomp and PowerOf2, described below,
1. BitDecomp(c, q) takes as input a ciphertext ¢ € RY with m the size of the ring dimension used in CKKS and an integer q.
This algorithm decomposes c in its bit representation (uo, ..., Uflog,(q)]) € RN *Mog2()] gych that ¢ = ZJL:%Z(Q)J 20,

2. PowerOf2(c, q) takes as input a ciphertext ¢ € R and an integer ¢. This algorithm outputs (¢, 2c, ..., 2L1°g’-’<q”c) €
R™* [og2(a)]

The KeySwitching operation can then be decomposed as:

= the first party responsible for ski generates a new (bigger, in the sense that the parameter N is bigger than sk;) public
key pk, still associated to ski

= the owner of secret key sko computes PowerOf2(sks2) and add it to p~k1. This object is called the KeySwitchingKey.

= the new cyphertext is computed by mulitiplying BitDecomp(c1) with the KeySwitchingKey. This gives a new cyphertext
decryptable with the secret key sk2 and encrypted under a new public key pko

Algorithm 35: KeySwitching Procedure

Input: Cyphertext: ¢, User: u, User public key/secret key: pk,,,sku, Bandit Algorithm: 2, Trusted Third Party: 9B,
integer ¢

Alg. 2 receives cypthertext ¢ encrpyted with key pk,

B sends public key pk to u

u computes Encpk, (ksky) = Encpi,, (PowerOf2(sk., g) + pk)

u sends Encpi, (ksky) to A

2l computes the new cyphertext ¢’ = Encpi, (BitDecomp(c, ¢)T)Encpk,, (ksk.) = Encpk, (Encpi(c))

u decrypts ¢’ and sends the result to

Alg. 35 allows us to perform the KeySwitching in a private manner for the CKKS scheme. Indeed, the key switch operation
requires to decompose a secret key thanks to the PowerOf2 procedure. If not done in a secure fashion this could lead to a
leak of the frist private key. It is thus necessary to ensure that this key is not distributed in the clear. However, our private
procedure requires communication between the bandit algorithm 2(and the user u. In particular, the user still needs to receives
the public key from the trusted third party. However, the user does not need to be known ahead of time as previously.

4.B.4 Toward An Encrypted OFUL

In this subsection , we provide the proof of the results of Step @, @ and ©, i.e., the speed of convergence of iterating Eq. (4.10)
or Eq. (4.13), how to build a confidence intervals around 6* and how the approximate argmax is computed in Alg. 28.

4.B.4.1 Computing an Approximate Inverse

First, we prove Prop. 19. The proof of convergence the Newton method for matrix inversion is rather standard but the proof
of convergence for the stable method (Eq. (4.10)) is often not stated. We derive it here for completeness. First, we recall
Prop. 19.

Proposition. Given a symmetric positive definite matrix V € R?*?, ¢ > Tr(V') and a precision level ¢ > 0, the iterate in (4.10)
satisfies
IXe -V <e

1 In(\) + In(e)
ki(e) = m(2) In (™ (1_ %))

, where A < \q is a lower bound to the minimal eigenvalue of V and || - || is the matrix spectral-norm.

for any k > k1(e) with

Tfor any n € N, [.],, is the remainder of the division by n

165

Proof. of Prop. 19. After k iterations of Eq. (4.10), we have that VX), = M. Indeed we proceed by induction:
= Fork=0 Mo=1V=VXp
= For k + 1 given the property at time k, VX141 = VX (214 — My) = My(214 — My) = My+1

Let's note By, = Xz — V™! and By = My — I4 then:

Eip1= (Xp1V 1)V = (Myy1 — L) V!
=— (Mg —2My + 1) V™!

— (M, — L)’V = —ERV™!

where the second equality is possible because V' and (Xx)ren commute as for all k£ € N, X}, is a polynomial function of V.
Therefore, we have for any k € N:

[Brrall = IERVTH < IV TH < |1 El® (4.26)
But at the same time:

Bl = | Misr = Lal| = [|My(21a — My,) = La]l = || = (Mx — 1)*|| < || Ex||? (4.27)
thus iterating Eq. (4.27), we have that for all k € N, || Ex|| < || Eol|2*. And then ||Ex|| < ||Eo|2"||[V |, therefore using that
any V symmetric definite positive ||V 7| = ||[V|| ! then for all k € N:

ok

V -
1B < ||~ 1| v (4.28)

But ||E0H = % — 1‘ where A1 > X2 > ... > Ag > 0 are the (ordered) eigenvalues of V. However

¢ > Tr(V) thus 0 < \;/c < 1 for all i < d. Therefore || Eo|| < 1 — %‘i We also have that ||V|| = A1. Using Eq. (4.28), we
have for all k:

%V—Id H = maxie[d]

A\ N2
1B < (1-3) ATt s (1-5) A (4.29)
for any 0 > X\ < Aq. Finally, Eq. (4.29) implies that | Ex|| < & as soon as:
1 In(\) + In(e)
> | 4.
k—m@>“<1n@_ﬁ) (4.30)
forany 0 > A < A\g and Xe < 1. O

4.B.4.2 Computing an Approximate Square Root

The proof of Prop. 20 is very similar to the proof of Prop. 19 thanks the analysis of the convergence speed in Cheon et al.
(2019). First, let us recall Prop. 20.

Proposition. For any z € Ry, ci1,c2 > 0 with ca > z > ¢1 and a precision € > 0, let qi be the result of k iterations of
Qru/C2 — /Z| <€ forany k > ko(e) := 1 In M
n(2) 4ln(1—°—1)

Tcq

Eq. (4.13), with qo = é and vg = é — 1. Then,

Proof. of Prop. 20. Because 0 < ¢1 < < cz, we have that = € (0,1), hence thanks to Lemma 2 of Cheon et al. (2019),

we have that after k iterations:
T
Q= —
C2

where gy is the k-th iterate from iterating Eq. (4.13) with go = é and vo = qo — 1. Then because x > c¢;, we have that
1-— é < 1— -4 Stated otherwise,

ok+1

< (1 - i) (4.31)

402

4eo " - . Sl
- /=< 1_71) 4.32
e ca| (4co ()
Therefore, for k > —1-1n In(e)~In(vez) , the result follows since:
™E) 21“(174?2)
\/aqk—,/é <e (4.33)

166

4.B.4.3 Computing an Optimistic Ellipsoid Width.

The next step to build an optimistic algorithm is to compute a confidence ellipsoid around the estimate @vt such that the true
parameter 6* belongs to this confidence ellipsoid with high probability. First, we need an estimate of the distance between 6*
and 6; that is the object of Cor. 3. The proof of Cor. 3, is based on the fact that the approximated inverse is closed enough
to the true inverse. Let’s recall Cor. 3 first.

—1
Corollary. Setting e = (Lt3/2\/ L2t +)\) in Prop. 19, then || Decs(w:) — 0: v, < t~/2, Vt.

Proof. of Cor. 3. Let's note A;, the result of iterating Eq. (4.10), k1 (e;) times with V = V; and ¢ = Ad + L?t. Thanks to
the definition of Decg (w:) and 8; = V,;"'b;, we have:
t—1
th/Q (Vt_l — DeCsk(z‘L)) Z”Sl’al (4.34)
1=1 2
t—1

(V,:l — Decsk(flt)) th/2 Z”Sl,az (4.35)

[IDecs(we) = O:llv, =

=1
t—1
V2N risi, (4.36)

=1 2

< [|Deca(Ar) — ;|

But Tr(Vi) < Ad + L2t and Amin(V:) > . Therefore thanks to Prop. 19 A, is such that:
IDecuc(Ar) = Vi < e (4.37)
We also have that:

< IVVill

2

(4.38)

t—1

1/2

v E T1Sl,a
=1

t—1

Zrlsl,al

=1 2

< Lin/||Vill < Lt/ X+ L2t (4.39)

because r; € [—1,1] for all I < ¢ and Amax(Vi) < A+ Lt Finally, we have that:

16: — 6:||v, <Lt/ X+ L2t <t /2 (4.40)

4.B.4.4 Approximate Confidence Ellipsoid

Finally thanks to Cor. 3, we can now prove that with high probability 6* belongs to the inflated confidence intervals C; for all
time ¢t. That is the object of Prop. 23.

Proposition 23. For any § > 0, we have that with probability at least 1 — §:

“+oo
0" € (o) = {9 |10 — Deca(ws)]ly, < B(t)} (4.41)

t=1

with B(t) = t7Y/2 + VXS + o/d(In(1 + L2t/(Ad)) + In(n22/(65))

Proof. of Prop. 23. Using Cor. 3 and Thm. 2 in Abbasi-Yadkori et al. (2011), we have that for any time ¢ that with probability
at least 1 — 6:

10" — Decs(we)||v;, < |16 — Decse(we)llv; + (16" = 6c|lv; (4.42)
<12 4 VAS + o /dn(l + L8/ (d) + In(1/8)) (4.43)

where w; computed as in Alg. 34 and 6, is the ridge regression estimate computed at every time step in OFUL. Taking a

union bound with high-probability event means that with probability at least 1 — %, we have:

16" = Ocllv, < 1|0 — Decac(w:)llv, + (16" — 0:]lv; (4.44)
<t7Y2 £ VAS + o/d(In(1 + L2t/(Ad)) + In(72t2/(65))) (4.45)
O

167

4.B.4.5 Homomorphic Friendly Approximate Argmax

As mentioned in Sec. 4.2.3, an homomorphic algorithm can not directly compute the argmax of a given list of values. In this
work, we introduce the algorithm Alg. 39 to compute the comparison vector b; = (IL{a:arg,,,axie[K] Pi(t)}> with (pa(t))ac(x)
the UCBs defined in Sec. 4.2.3. This algorithm is divided in two parts. First, it computes an approximate maximum, M of
(pa(t))acix) thanks to Alg. 38 and then compares each values (pa(t))ac[x] to this approximate max