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Utilisabilité des marqueurs de synchronie de phase dans les protocoles de neurofeedback EEG
pour la réduction des crises épileptiques

Résumé

Le cerveau est un organe qui supervise de nombreuses fonctions vitales. Malgré sa fascinante complexité associée
à une incroyable fiabilité, des disfonctionnements peuvent survenir et avoir des conséquences graves comme dans
les troubles épileptiques. Certaines fonctions du cerveau sont permises par l’activité oscillatoire de populations
de neurones. En fonction de la tâche mentale, ces oscillations se produisent à des rythmes et dans des régions
corticales différents. Elles peuvent être décrites par deux grandeurs : l’amplitude et la phase. En particulier,
la phase caractérise dans le temps les cycles d’activation d’une population neuronale. La synchronie de phase
mesure la similitude entre deux oscillations en capturant la stabilité d’une relation de phase. Elle peut donc
informer sur une relation fonctionnelle entre ces ensembles. Alors que la synchronie entre activités oscillatoires de
régions cérébrales est présentée comme un coordinateur nécessaire entre ces dernières, son excès, comme dans les
épilepsies, a des conséquences dramatiques, indiquant qu’un équilibre est nécessaire. Ce travail se concentre donc
sur la modulation en temps réel de la synchronisation de phase entre des zones cérébrales distinctes dont l’activité
est mesurée au moyen de l’électroencéphalographie (EEG). Cela dans le but d’offrir de nouvelles opportunités de
traitement pour certains troubles épileptiques.

Dans une première contribution, focalisée sur l’extraction de la phase dans les signaux EEG, les transformées en
ondelettes de Morlet de sinusöıdes, de sommes pondérées de sinusöıdes, de bouffées oscillantes et de bouffées os-
cillantes superposées sont dévelopées formellement. Des simplifications sont proposées pour permettre des expres-
sions compactes de ces phases. Ces développements montrent notamment que pour des composantes fréquentielles
proches et d’énergie similaire ou pour des salves trop rapprochées, la phase ne peut pas être récupérée de manière
fiable. Néanmoins, dans des conditions raisonnables (et réalistes), les paramètres des bouffées du rhytme alpha
(amplitude et phase) peuvent être récupérés par le biais de la transformée en ondelettes de Morlet. Des résultats
préliminaires satisfaisants sur des données réelles sélectionnées sont proposés.

Une deuxième contribution consiste en une tentative de reproduction d’une étude montrant le potentiel de la
synchronie de phase par la différenciation entre cerveaux épileptiques et sains avec des améliorations statistiques
pour prendre en compte des données hautement corrélées, inhérentes aux mesures EEG et de synchronie de phase.
Des stratégies originales pour corriger les biais sont proposées et détaillées. Contrairement à ce qui a été publié,
la synchronie de phase s’avère généralement plus élevée chez les patients atteints d’épilepsie temporale que chez
les témoins. Si l’adaptation de l’analyse statistique a modéré les résultats, elle n’en a pas changé les conclusions.

Dans une troisième contribution, un ensemble de données EEG de repos et de tâches simples a été acquis sur des
sujets sains pour identifier des neuromarqueurs de synchronie de phase entrâınables. L’étude des différences de
phase brutes le long de l’axe antéropostérieur a montré qu’il existe des différences de phase prédominantes dans la
bande de fréquence alpha, notamment lors de l’état de repos avec les yeux fermés. Ces déphasages, différents d’un
sujet à l’autre, sont stables d’un enregistrement à l’autre sur de longues périodes de temps. Un modèle simple
de deux sources est proposé pour rendre compte de ce résultat et conduire à reconsidérer certaines propriétés des
mesures de synchronie de phase.

Au final, alors que l’objectif de modulation en temps réel d’un marqueur de synchronie de phase n’a pas été atteint,
notamment parce que l’identification d’un tel marqueur a été démontrée non triviale, les différentes contributions
ajoutent aux fondations nécessaires à la recherche de tels marqueurs neuronaux basés sur la phase.

Mots clés: EEG, neurofeedback, neuromarqueur, épilepsie, phase, synchronie



3

Usability of phase synchrony neuromarkers in neurofeedback protocols for epileptic seizures
reduction

Summary

The brain is an organ that oversees many vital functions. Despite its fascinating complexity associated to its
incredible consistency, failures can occur and have severe consequences such as in epilepsy disorders. Major
functions in the brain are enabled through the oscillatory activity of neuronal assemblies. These oscillations
occur at different rhythms, over different regions, depending on the mental task. They can be described by
two quantities: their amplitude and their phase. In particular, the phase characterizes over time the oscillatory
pattern of a neuronal assembly. Phase synchrony measures the similarity between two oscillations by capturing
the stability of a phase relationship between neuronal assembly activities and informs on a functional relationship
between these assemblies. While synchronization between the oscillatory activities of brain regions is presented as
a necessary coordinator between brain areas, its excess, such as in epilepsy, causes dramatic outcomes, indicating
that a balance is necessary. For these reasons and others detailed in this manuscript, this work focuses on the
real-time modulation of phase synchrony between distinct brain areas by means of electroencephalography (EEG)
to offer new treatment opportunities for certain epileptic disorders.

In a first contribution, focusing on the retrieval of the phase from EEG signals, the Morlet wavelet transforms
of sinusoids, weighted sums of sinusoids, oscillating bursts and overlapping oscillating bursts are formally de-
rived.Simplifications are proposed to allow for compact expressions of the phase.Their properties and parameters
are discussed.These derivations notably show that for close frequency components with similar energy the phase
is not trustworthy.They also show that for too close bursts, the phase cannot be reliably recovered. Nonetheless,
in reasonable and practical conditions, the recovery based on the Morlet Wavelet transform of the properties of
alpha bursts (amplitude and phase) is attempted and provides satisfactory preliminary results on selected real
data.

The second contribution is an attempt to reproduce a study showing the potential of phase synchrony in differ-
entiating between epileptic and healthy brains with statistical improvements to handle highly correlated data,
inherent to EEG and phase synchrony measures. Original strategies to correct for the biases are proposed and
detailed. Contrarily to what was published, the mean phase coherence is shown to be generally higher in temporal
lobe epilepsy patients than in controls. While adapting the statistical analysis moderated the results, it did not
overturn the conclusions.

In a third contribution, an EEG dataset of resting states and simple tasks was acquired on healthy subjects to
search for trainable phase synchrony neuromarkers. The study of bare phase differences along the anteroposterior
axis showed that there exists predominant phase differences in the alpha frequency band, notably during eyes
closed resting state. These phase differences, which are different from one subject to the other, are stable across
recordings over long periods. A simple model of two sources is proposed to account for this finding and lead to
reconsider some properties of phase synchrony measures.

Ultimately, while the real-time modulation of a phase synchrony marker was not achieved, especially because the
identification of such a marker was demonstrated non-trivial, the various contributions lay more foundations to
the search for phase-based neural markers. Primarily through the development of theoretical but also software
contributions. These software contributions are part of an ongoing research protocol with hospital La Timone in
Marseille.

Keywords: EEG, neurofeedback, neuromarker, epilepsy, phase, synchrony
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General introduction

Context

The brain is the organ, in vertebrate and most invertebrate animals, that oversees vital functions, such as heart
beating and breathing and allows for the extensive adaptation of the animal behavior to its surroundings. Although
it has not always been considered the processing unit of the animal, it dictates its behavior (its reactions), from
the short time scale of the reflex, to the longer time scale of the thinking and beyond. Despite its fascinating
complexity (in the variety of tasks an animal can achieve) associated to an incredible consistency (most animals
achieve roughly the same as their peers), failure can occur and have severe consequences such as in epilepsy
disorders. An attempt to develop a methodology on the control of one’s brain activity to reduce the symptoms of
epilepsy disorders, requires first to grasp (as much as possible) the workings of such a unit, as well as the possible
disruptions in these workings. Fortunately, the field is now rich of three centuries of ex-vivo / in-vitro / in-vivo
experiments at all possible scales, on human and non-human animals.

Major brain functions are mediated through the timely and repetitive activations of neuronal assemblies, i.e.
their oscillations. These oscillations occur at different rhythms, over different regions, depending on the mental
task. Their phase describes over time the pace at which the neuronal assembly goes from inactivated to activated
(recruited by Excitatory Post Synaptic Potentials) back to inactivated. Phase synchrony defines the consistency
in the phase relationships (linear or non-linear) of two (or more) neuronal assemblies. In its simplest form, it
amounts to a constant phase difference across time, which may provide information on the functional relationship
between these assemblies. Phase synchrony between oscillatory activities of brain regions is hailed as one of the
main coordinators of brain functional integration.

For these reasons (and others described in the introduction), this thesis work engages with the online modulation
of synchronous activity between separate brain areas by means of ElectroEncephaloGraphy (EEG) to provide new
opportunities to treat some epilepsy disorders.

As mentioned by Egner and Sterman [63], long date practitioners of EEG neurofeedback, ”skilled practice of
neurofeedback requires a good understanding of the neurophysiology underlying EEG oscillations, of operant
learning mechanisms, and an in-depth appreciation of the various hardware/software equipment options open to
the practitioner.”

Overview of the thesis

Chapter 1: Neurophysiology and neuropathophysiology in the light of brain oscillations Chapter 1
is a state of the art introduction dedicated to the emergence of oscillations in the brain electrical activity. A
special care is dedicated to the links that have been made with epilepsy syndromes. It reviews state of the art
experiments investigating the role of oscillations and their relationship to function. In a second overview, it
emphasizes on the role of long range synchronization, much less described with regard to oscillations. It should
prove useful for the further analysis of results observed in different frequency bands. A specific point is made
regarding traveling waves, which at the level of the scalp may be the manifestation of long range synchrony, and
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is the physiological basis of chapter 7.

Chapter 2: Measuring and modeling oscillations and oscillating systems, EEG experimation and
mathematical modeling Chapter 2 provides a range of measures that help quantify the level of synchro-
nization between brain areas based on their oscillatory activity. This oscillatory activity is well measured with
ElectroEncephaloGraphy (EEG), therefore it brings details on how one can set up properly such experiments.
These setups are employed in chapter 7 and chapter 6. This chapter also describes Neurofeedback setups, and
more precisely those that have been hailed as reducing the frequency and / or severity of epileptic seizures.

Chapter 3: Analytic derivation of Morlet Wavelet Transform applied to sum of sinusoids Chapter 3
derives mathematically the convolution of sinusoids, weighted sums of sinusoids and oscillating bursts by the
Morlet Wavelet Transform. Simplifications are proposed that allow a compact expression of the phase. Its
properties and parameters are discussed. It notably shows the frequency over spatial trade-off, and that for close
frequency components with similar energy, the phase is not trustworthy.

Chapter 4: Correlation between close wavelet coefficients Chapter 4 deals with the issue of dependence
between samples in statistical testing of phase synchrony measures. The correlation coefficient is calculated for
δ distant complex coefficients computed through the Morlet Wavelet Transform, first by considering that the
autocorrelation of the signal is null, then by releasing this constraint. When the autocorrelation of the signal is
assumed to be 0, the autocorrelation function of the wavelet coefficients is a Gaussian function centered at 0.

Chapter 5: Extraction of alpha bursts parameters based on Morlet Wavelet Transforms Chapter 5
provides a simple tool to extract the bursts parameters of the EEG signal in the alpha band based on the complex
coefficients obtained by the Morlet Wavelet transform. The parameters of greatest interest are the temporal
localization and the phase shift. The ambition of this procedure is to obtain a new way to compute delays
between brain areas. The limits of this approach are linked to chapter 3.

Chapter 6: Phase synchrony in epileptic patients ElectroEncephaloGraphic recordings Chapter 6
compares two groups of healthy and epileptic (temporal lobe epilepsy during the interictal stage) subjects, with
regard to common phase synchrony measures. It notably shows the bias in using Mann-Whitney U tests in such
a configuration, and provides ways to circumvent this bias. The end-goal of this contribution is to ascertain the
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feasibility of using these measures as neuromarkers in neurofeedback protocols, by making sure that they allow
to differentiate the two populations.

Chapter 7: Non-zero phase delays in the alpha band along the antero-posterior axis Chapter 7
shows that there not only exists stable phase differences along the anteroposterior axis in the alpha frequency
band, notably during eyes closed condition, but that this stable phase difference, which is different from one
subject to the other, is stable across recordings over long periods up to 2 years. These observations arose by
chance while searching for patterns in phase synchrony measures.

General conclusion This chapter gives a wrap-up of the contributions of the thesis. It discusses the main
limitations of the methods and studies and proposes perspectives for future work.
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Chapter 1

Neurophysiology and
neuropathophysiology in the light of
brain oscillations

This chapter presents a state of the art introduction dedicated to the emergence of oscillations in the brain
electrical activity. A special care is dedicated to the links that have been made with epilepsy syndromes. It
reviews state of the art experiments investigating the role of oscillations and their relationship to function. In
a second overview, it emphasizes on the role of long range synchronization, much less described with regard to
oscillations. It should prove useful for the further analysis of results observed in different frequency bands. A
specific point is made regarding traveling waves, which at the level of the scalp may be the manifestation of long
range synchrony, and is the physiological basis of chapter 7.

1.1 The source of electrical activity in the brain

While the spark of consciousness will remain a mystery by the end of this biochemical introduction, the basic
concepts for the generation of electric fields in the brain should be laid out.

1.1.1 All cells manage a potential difference between the intra and extracellular
spaces

Any animal cell exhibits a double layer of lipids and proteins surrounding and protecting its organelles. This layer,
called the membrane, has the chemical and bio-mechanical properties of selectively favoring certain molecules to
enter and exit the cell. Whereas oxygen and water molecules freely pass, charged or larger molecules passage is
regulated by dedicated carrier proteins in that membrane.

Two main forces drive molecules around the aqueous extracellular and intracellular media. Firstly, the diffusion,
enforced by a chemical gradient (i.e a difference in concentration of a given molecule across space). This force will
drive molecules from where they are the denser to areas of lower concentration. Secondly, the electrical motion,
forcing any charged molecule to move along current lines joining areas of different electrical potentials. This
force will drive positively charged particles from higher potential area to the lower potential area, and negatively
charged particles reversely.

If the membrane was permeable to any molecules, the potential difference and the concentration difference between
the intra and extracellular media would cancel. The ion permeability selectivity of the membrane allows for a

15
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potential difference at the membrane, called resting membrane potential. This potential difference can be altered
by the activation (voltage or signaling dependent) of protein channels that let ions follow their electrochemical
gradient, or protein ion pumps consuming chemical energy to force given ions to pass though the membrane
against their electrochemical gradient.

For any cell, this energy is stored in the form of an electric potential energy (voltage) and can be used by any
protein in the membrane to achieve a given operation. A radically different usage of this energy is possible, such
as in the case of muscle cells and neurons, where this variable potential difference (polarization / depolarization
of the membrane), is turned into information to transmit from one cell to another.

The membrane voltage is always measured as the difference of potential between the intra and extracellular
media (Vm = Vintra − Vextra). At rest, the resting membrane voltage (Vm) of human neurons is measured at
about −70mV , and is said polarized. A depolarization 1 of the membrane implies inverting the polarization of
the membrane towards a more positive voltage. The re-polarization, implies the return of the voltage to resting
membrane voltage. A hyper-polarization, implies increasing the polarization, i.e. increasing the measured voltage
towards values more negative than the resting membrane voltage.

1.1.2 Neurons convert membrane potential differences into trains of action poten-
tials

An action potential is a strong and brief (about one-thousandth of a second) reversal of electric polarization of
the membrane 2. It is followed by a refractory period during which the neuron cannot repeat an action potential.
While a depolarization may trigger an action potential in most neuronal membranes, an hyperpolarization will
not.

These action potentials are usually elicited by the activation of Na+ / Ca2+ (and other) voltage gated channels,
opening below a certain membrane voltage threshold. Na+ ions flow inside the cell with their electrochemical
gradient mostly influenced by the concentration gradient. This depolarization (the action potential) propagates
along the axon of the neuron, down to the synapses.

The modalities of the conversion from membrane potential difference to action potential are diverse. While some
neurons integrate the input: an increase in activation will increase the action potential firing rate of the neuron
(up to a rate fixed by the refractory period), other will filter the input: a timely activation (at the rate of the
subthreshold membrane oscillation (1.2.1)) of these neurons will optimize their firing.

1.1.3 An action potential either triggers an excitatory or an inhibitory post-synaptic
potential

Depending on the neurotransmitter discharged by the synapses, it may either have an inhibitory (contributing
negatively to the elicitation of an action potential) or excitatory (contributing positively to the elicitation of an
action potential) influence on the neurons they are bound to.

A large number of channels must be opened so that a neuronal cell triggers an action potential: it involves possibly
hundreds of synchronous neuronal cells and excitatory neurons must release their neurotransmitters approximately
together. Because a neuron from the central nervous system can be innervated by up to thousands of synapses,
each of these inputs acting as either excitatory or inhibitory, it makes the complexity of the brain as a system
even greater.

While this complexity is overwhelming, correlates / condensates of this machinery emerge at larger scales offering
meager although useful perspectives on the system, such as event related potentials and brain oscillations.

1the prefix “de” is to be understood as inverting, and not removing
2depolarization, followed by repolarization, then by hyperpolarization and return to initial resting membrane voltage
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1.2 Oscillations in the brain

Oscillatory systems are observed all over the brain, at different scales: from the membrane of a neuron [71], to the
interacting regions within a neuron [222], or even within networks of neurons [231]. A system is said oscillatory
if some of its inner variables / properties (e.g., membrane potentials, currents, calcium concentrations...) are
periodic with a well defined period [71]. A period is defined as the time required by the property to return to
the same state (one oscillation). For periodic signals, it is the time between two successive maxima. Initially,
oscillations were termed waves [5] (and still are), for their oscillating shape, the fact that they propagate, and
that they can be measured far from where they originate.

Devising models for the generation of oscillations that are macroscopically observable requires investigating the
possible links between oscillations at different spatial and frequential scales.

1.2.1 Sub-threshold membrane potential oscillations

At the (arguably) smallest scale stand subthreshold membrane potential oscillations, which are difficult to measure
in-vivo (let alone with scalp EEG setups). They are a good starter for obtaining hints on what make neurons
sensible to oscillating behaviors, how oscillations emerge and how they can be put to use. They occur in such
a wide range of cells, and provide a determinant means of influencing the oscillations of a large number of cells,
such that they could determine the frequency of network oscillations [311].

These oscillations share a common dynamic. They either develop after an excitatory input, or are emitted
constantly in some neuronal cells. The peak amplitude of such oscillations is small (of the order of 5mV [101])
with respect to spike amplitudes.

A large diversity of neurons, after electrical or chemical stimulation, display dampened oscillations at various
frequencies in the subthreshold range of their membrane potentials. In vitro studies revealed these oscillations
in :

• the inferior olivary neurons (located in the medulla oblongata) of guinea pigs: their oscillations occur in the
3-10Hz band and depend on external voltage and calcium concentration [20], [155];

• the magnocellular neurons of the rat supra-optic nucleus (located in the hypothalamus) (10-70Hz, sponta-
neous, Na+ voltage dependent) [33];

• the stellate cells of layer II of the entorhinal cortex (≈ 10Hz, voltage and Na+ dependent)

• as well as neurons of the deep layers of the entorhinal cortex (10Hz or 20Hz, voltage and Na+ dependent)
[266],

• or half the neurons of the frontal cortex of guinea-pigs (> 6s of depolarizing pulses, voltage dependent,
4-20Hz) [101].

Not only are there a common dynamic, they are also powerful. They offer a mechanism for timing control in
which action potentials are more likely to occur during peaks than throughs. The cerebellar Purkinje neurons are
spontaneously active, and thought to encode timing signals in the rate and pattern of their activity [334]. Minimal
changes in the membrane potential at the proper frequency can trigger an action potential. This selectivity is
called resonance [119].

1.2.2 Local Field Potential (LFP) oscillations

It is not possible to track the activity of an individual neuron in the inter-cellular space, for they are too many and
their activities mix up. In vivo neurophysiological studies and applications most often measure the mass activity
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of neuronal microcircuits: the Local Field Potential (LFP). The LFP is the electric potential of the extra-cellular
space (in between neurons and inter-neurons). To fill the gap between individual neurons firing and LFP, a large
body of neuroscience research focuses on the relationship between LFP and neural discharges as it is central to
understanding the type of information carried by oscillations [58].

The LFP integrates all the transient electrical events occurring in the neighborhood of a measuring electrode. It
is usually distinguished from multiunit activity (reflecting axonal firing rates) as the lower part of the frequency
spectrum (< 300 / 400 Hz). Hence, it represents slower events, reflecting cooperative and independent activity of
close-by neurons in the form of synaptic potentials, after-potentials of somatodendritic spikes [100], and voltage-
gated membrane oscillations [232].

These synchronous discharges can occur as single events (i.e.: ponto-geniculo-occipital waves generated in the
brain stem), or repetitive events. In the latter case, they give rise to oscillatory field potentials [277].

Could these LFP pathlines, driving the ions in the extra-cellular medium, play a role in neural communication
? According to Tiganj et al. [306], computational models of the CA1 and CA3 pyramidal cells, suggest that the
contribution of these oscillations are too weak to be responsible for a dedicated communication mechanism, by
opposition to the effect of transcranial magnetic stimulation or perhaps epileptic seizures. Which does not rule
out that they can stochastically perturb communication.

1.2.3 Large amplitude oscillations at the scalp

The cooperative activity of neuronal cells is not sufficient to elicit a strong LFP standing out at the surface of the
scalp. Spatial factors enter the equation: the distribution of co-activated synapses, the neuronal morphology, and
the architectonic configuration of the cell population [77]. Despite a given topology for a neuron, it may operate
as many different sources of current with varying geometry, depending on which of the connected synapses are
co-activated [111]. The variety of electrical geometries impact the orientation and the range of the source as it
depends on which multi-pole type it behaves like (varying attenuation with distance) [240] 2.1.

Pyramidal cells are radially oriented in the neocortex. They are present in its most external layers and the closest
to the scalp. Oscillations measured at the scalp level are therefore mostly generated by pyramidal cells, whether
they are the drive or not.

These oscillations at the scalp appear to follow the rule that the amplitude of the fluctuations decreases with
increasing frequency of the oscillation. Oostendorp et al. [203] challenges the idea that the skull can act as a low
pass filter for frequency comprised in the 100 - 10 kHz range. According to Singer [277] the explanation could
come from the fact that it is the small cell assemblies that oscillate rapidly, while bigger cell assemblies oscillate
slower. For this reason and the small solid angle at which they would appear to the electrode or the coil, the
activity of a small synchronously active population of neurons is unlikely to be observed from the scalp.

1.2.4 Brain rhythms are oscillations at dedicated frequencies and locations

The denomination of the brain rhythms follows the historical course of their discovery, starting with the α rhythm
identified by Berger [21] in 1929. They are currently mostly used to describe the frequency at which they oscillate,
so that α rhythm means from 8-12Hz, regardless of the location. This denomination is rather coarse: it is not
always spatially relevant, and lacks frequency accuracy. The reason for the frequency inaccuracy is likely the
frequency variability of cognition related rhythms across subjects. Spatial inaccuracy is due to the difficulty
in localizing brain oscillating sources with scalp recording. Ensues a classification of brain rhythms based on
frequency alone (or as first discriminant) that is sometimes difficult to follow.

The origins (drives) of these oscillations have been a long lasting topic [165], and still have a lot of unknowns. As
a rule of thumb, the slower rhythms (sleep spindles [184], α rhythms...) are attributed to functional relationship
between the thalamus and the neocortex [287]. Faster rhythms have been linked to the behavior of GABAergic
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interneurons [95], due to the response of these oscillations to GABA A 3 blockers and / or the consequence of
local interactions.

δ rhythms (1.5 - 4 Hz)

δ rhythms are also termed cortical slow waves. They have mostly been associated with the deep stage 3 of NREM
(Non-Rapid Eye Movement) sleep and anesthesia. Variations of the δ rhythm have been observed, notably during
concentration tasks, where the rhythm increases in frontal areas. For more details, [140] provides an extensive
review on the δ rhythms.

Origin The motor of the δ waves has not been consensual, while some works [288] favor the interactions between
thalamic and cortical circuits, other studies using localization techniques from electroencephalographic recordings
suggest these rhythms may originate from the frontal ventro-medial-prefrontal areas. While it is possible that delta
oscillations are generated in the cortex alone (Capone et al. [44] show slow waves oscillation in cortical slices), it
remains plausible that the control of the rhythm is achieved through ascending cholinergic (acetylcholine mediates
both excitatory and inhibitory effects) subcortical–cortical projections from the thalamus [289].

θ rhythms (4 - 8 Hz)

θ rhythms are present in the hippocampus: the Type 1 θ (≈ 3.5 Hz) is associated to wakefulness and voluntary
movements (such as walking) [90], while the Type 2 θ (≈ 6.5 Hz)is associated to desynchronized sleep. The θ
rhythms also appear in the frontal midline electrodes of EEG setups, in non pathological subjects θ waves appear
in short bursts, high frequency, low voltage and regular waveform, with amplitude peaks at electrode Fz. As a
side note, Maulsby [178] remarks that affective emotional stimuli in infants trigger rhythmic θ activity.

Origin Gemma et al. [90] study shows a positive correlation between the type 1 θ (atropine resistant) activity
and the levels of serotonin. This suggests that part of the hippocampal rhythmical slow activity is generated by
a serotonergic mechanism.

α rhythms (8 - 13 Hz)

At coarse grain, α rhythms are inhibition rhythms. As example: in the sensorimotor cortex, α rhythms are
thought to strongly inhibit spike timing (relative timing of a neuron’s output and input action potentials) and
firing rate. Firing rates of neurons increase with a decrease in α-power during a vibrotactile discrimination task
in monkeys [103]. α magnitude decreases with attention [230], it predicts better discrimination tasks performance
[103], or correlates with enhanced sensory processing [13]. There exists a positive relationship between event-
related α desynchronization 4 and cognitive performance in tasks that specifically require semantic memory or
long-term memory (LTM) performance [139]. Finally, α rhythms can be top-down 5 inhibitory control markers
[139].

Origin Da Silva et al. [53] supposed early that a thalamic drive for α waves was unlikely because of the variety
of α rhythms. Halgren et al. [104] prove that unlike sleep spindles, α bursts during quiet wakefulness are driven
by the cortex (in line with previous work and the α thalamocortical loop).

3GABA A receptors are ligand-gated ion channels while GABA B receptors are G protein-coupled receptors.
4reduction of signal power in the α band
5Top-down attention refers to “internal guidance of attention based on prior knowledge, willful plans, and current goals” [132].
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µ rhythm (8 - 12 Hz)

Often considered part of the α rhythms, because of its oscillating frequency of about 10Hz, the µ rhythm is located
over the sensorimotor cortex. It traduces the synchronization of neurons in the motor cortex regions. It is distinct
from the occipital and parietal α rhythms [148] and identical to the SensoriMotor Rhythms (SMR) observed in
felines. It is disrupted by input to the somatosensory system [148]. In humans, the µ rhythm can also be called
SMR [188].

Origin The neural mechanisms regulating the µ rhythms were not elucidated at all until 2009 [130], since a lot
remains to be understood (their implication in movement preparation for instance). Interestingly, it would seem
that the µ rhythm is related to the sympathetic activity (of the autonomic nervous system) regulating heart rate,
due to the negative correlation between µ cortical sources of low-frequency β rhythms and the low-frequency band
power of tachogram spectrum [309].

σ rhythm (12 - 14 Hz or 14 - 16 Hz)

The σ rhythm is mostly associated to sleep. Sleep spindles bursts last between 0.5 and 2 seconds [227].

Origin By opposition to the parieto-occipital α, σ bursts are driven by the thalamus Halgren et al. [104].

β rhythms (13 - 30 Hz)

β oscillations occur as brief and variable bursts [168] [76], they are thought of as a default state, interrupted by
encoding and decoding of sensory information.

β oscillation’s power increases over the sensorimotor area during stable postures, after movement or even imaginary
movements, while they are reduced during the movement itself [137]. Similarly to the α rhythm, the β power
typically reflects changes in the probability of beta bursts [19] [264]. They occur immediately after evoked gamma
oscillations in sensory evoked potentials [142]. For these reasons, β rhythms appear as inhibiting rhythms.

They were proposed as a medium to protect from sensory information interference during a working memory task,
as well as a ”clear out” afterwards [264]. A decrease in β event related synchronization in neural networks could
serve working memory maintenance [82].

According to [280], β-synchronization is a ”mechanism for the formation of functional neuronal ensembles during
endogenous (re)activation of cortical representations”, in accordance with [319]. This mechanism is involved in
top-down attention, visual working-memory attention and working memory maintenance.

Palacios-Garćıa et al. [208] also observe an increase in β activity during top-down modulation. Top-down attention
is impaired during a β TMS experiment targeting superior-precentral and intraparietal sulci [239]. This implies
that β oscillations in these sulci participate to the voluntary allocation of attention in goal driven tasks.

Origin The supposed mechanisms for the generation of β occur in the basal ganglia and the cortex [264]. They
are mostly studied in relation to the Parkinson’s disease [29]. β rhythms can be artificially produced by lowering
gamma activity with barbiturates. This is only visible in isolated interneuron networks [332]. β rhythms in
excitatory neurons can be coherently sustained by gamma rhythms in interneuron networks [331].
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γ rhythms (> 30 Hz)

The γ rhythm was first observed in the hedgehog and the cat olfactory bulb [4], and only later, on multiple
occasions in the primary visual cortex (for a review on γ oscillations in the visual cortex see: [106]).

In rodents, CA1 (entorhinal cortex) γ oscillations are involved in providing information about object and place
recognition [43]. Studies on rat vibrissae led Ahissar and Kleinfeld [6] to consider at least in part that cortical
oscillatory activity is generated independently to measure the input periodicity. The thalamic relay neurons would
serve as phase detectors.

The role of γ rhythms is not restricted to these faculties. In humans, the neocortical 35–45 Hz γ rhythms increase
in early age and stabilize around the age of five, especially in the frontal areas. It is associated to long-term
memory and cognitive task performance, both relatively modest in the first years of life.

Other studies link γ oscillations to sound perception and linguistic stimuli [238], REM dream states [162], atten-
tion, movement and perception [9], face recognition [243].

But overall, γ oscillations play a role in the integration of various sensory stimuli and possibly internal repre-
sentations. γ rhythms are often related to bottom-up attention 6. They could support the binding of different
functional areas of the brain to create coherent representation of objects [226, 294, 295].

Origin Their generation involves a complex system. In the primary visual cortex only, γ rhythms of different
origin coexist [106]. It is known that interneuron networks alone can generate gamma oscillations [308] [332].
Nonetheless, Ribary et al. [238] suggest, with magnetic field tomography that auditory related 40Hz oscillations
would be generated within a thalamocortical network.

1.3 Synchronization / Synchrony / Desynchronization of neuronal
assemblies

Neurons and neuronal assemblies are physically interconnected: locally (within a cortical column), and at range
between columns. This implies that the simultaneous activation of a certain population of neurons at a given
time may lead to the activation of another certain population of neurons at some later time. In case of loops
in this circuitry, such as the thalamocortical loop [28], or even within a cortical column, oscillations can arise.
The oscillation within a cortical column can also be transmitted to other regions. The small-world topology
[327] of axonal connections within the brain allows at the same time the segregation and integration of functional
relationships of cortical units.

1.3.1 Definition

Disambiguation

Synchronization and synchrony are two terms that are easily used in place of the other. Their disambiguation
provides a richer description of the events at hand by proposing a larger panel of terms, each with a distinct
meaning. Synchrony should be a state, which lasts after a process of synchronization, and before a process
of desynchronization. Synchronization not only defines the passage from desynchronized (not in synchrony) to
synchronized (in synchrony), but also the process (the means involved, the speed at which it synchronizes...). In
that sense it may corresponds to the adjustment of rhythms of dynamic oscillators [246] due to their interaction.

6”Attentional guidance purely by externally driven factors to stimuli that are salient because of their inherent properties relative
to the background” [132])
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Etymology

Initially used in the french language by Raymond in 1827 as the “art of comparing, reconciling the dates of
history”, and by Ferdinand de Saussure in 1916, as “synchronie” to describe the study of language at a specific
point in time (as opposed to diachrony). The term adopted a more general usage, in alignment with the Greek
construction of the word : syn- with, together, in accompany of; -chronos time, duration. An even more general
sense is given when establishing synchrony in sciences, where it does not strictly mean “at the same time”, but
“linked to the same task”.

Definition

The concept of synchrony was already a subject of interest in ancient times, maybe as far as the Egyptian history
goes. Pythagoras of Samos (ca. 570–495 BC) studied the structure of the cosmos, later theorized as the Music
/ Harmony of spheres [261]. Tidal locking of low orbiting spherical objects, is an example of synchrony: because
the rotation of the moon around the earth is synchronized with its own self-rotation, one face of the moon is
always hidden from us.

In the field of neurosciences, synchronization was initially used to describe high-amplitude events reflecting large
neural populations firing within the same cortical areas such as in seizures or mid-line anterior theta bursts
for ”hedonic hypersynchrony” in children [178]. Brain activity can be partially modeled with help of dynamical
oscillating systems. Hence, the study of synchrony between brain areas in that perspective is possible and relevant
[164]. In dynamical system theory terms, two dynamical systems X and Y are said to be synchronized if there
exists a continuous function (two close points in X on the attractor of X, are also close in Y) that can predict the
state of the system Y given X [283]. The theorization and development of synchronization and synchrony in the
frame of chaotic oscillators led to the mathematical definition of generalized synchrony [253], which encompasses
possible linear or non linear relationships. The relationship between the many variables of possibly many systems
being of many possible kinds makes the space search for relevant synchrony measures extremely large. Preferred
relationships have been put forward as good descriptors of synchrony describing functional relationships. As
an example, Rosenblum et al. [245] define the phase synchronization of a chaotic system as the occurrence of a
certain relationship (a function F) between the phases of interacting systems, neglecting any possible relationship
concerning the amplitudes. It is worth noting that the notions of phase and amplitude of chaotic systems are non-
trivial [245], and partly detailed in chapter 3. An extended definition of synchrony, in the frame of neurosciences,
is that the similarity of a property between a given set of systems implies a possible functional relationship between
them.

Brown and Kocarev [37] propose a generalized work-flow to identify ”synchronization” (synchrony) that goes
beyond the scope of chaotic systems, which is composed of four tasks : 1) Separating the dynamics of a large
dynamical system into the dynamics of subsystems 2) Measuring properties of the subsystems 3) Comparing
properties of the subsystems 4) Determining whether the properties agree in time.

Despite the highly stochastic and far from predictable spiking discharges of individual neurons in the cortex,
collective network dynamics manage to emerge from synaptic circuits. One can learn from in vitro or in sil-
ico experiments on few neurons, before attempting to interpret synchrony at the high end level of the scalp
measurements.

1.3.2 Synchrony at the level of neuronal cells

Two groups of neurons, firing each at different but similar rhythms, can synchronize within a few cycles at a zero
phase delay [277]. Wang and Rinzel [322]’s model of mutually inhibiting neurons with post-inhibitory rebound
responses (such as most neurons in the thalamic relay nuclei and of the thalamic reticular nucleus) shows that
oscillations can arise with as few as two neurons, and that this synchronization does not depend on a conduction
delay. This specific properties of the membrane only occur in some neurons, and is possibly the result of a specific
genetic expression. It may play a role in compartmentalizing certain functions, such as centralizing cortical
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inhibition drive in the thalamus.

In the primary visual cortex of the cat, distinct neuronal populations oscillate at 40Hz, but asynchronously
from one another. Only for certain stimuli, these populations synchronize at a zero phase delay [74]. This
synchronization can be observed within a cortical column, but also between columns with on average no phase
delay [96]. Ultimately, homologous left and right visual cortical areas can also synchronize their discharges at
zero phase delay. According to these findings, it appears that the participation of a neuron to a given task may
be dictated by the synchrony at zero phase lag with other neurons of the assembly. It is a complementary or
adversary theory to population coding [278], in which the participation of a given neuron to a particular mental
task is dictated by the context set by other neurons of the assembly.

In Traub et al. [308] in silico experiment, a model of network of neurons that would account for the generation and
synchronization of the 40Hz rhythms is developed. The model produces “gamma oscillations that are synchronized
on a millisecond timescale from one end of the chain to the other”, and predicts that pyramidal cells and at
least some interneuron spikes should occur with near-zero phase delay. While it appears reasonable for medium
distances (conduction delays of up to 20ms), it has been debated that this model could synchronize brain areas
over long distances. The coherence of fast rhythms is spatially limited [290].

Wang et al. [325] suggests that the electrotonic coupling of pyramidal cells plays a unique role in the generation
of neuronal synchronization in the neocortex : they measure a high junctional conductance, which permits the
direct transmission of action potentials and even tonic firing between coupled neurons.

The coherent oscillation of a large population of neurons implies its synchronization at about zero phase delay.
There is for this reason a terminology overlap (oscillation / synchronization) in the literature. An Event Related
Potential is categorized either as an Event Related Synchronization, or as an Event Related Desynchronization,
but is seen, on the electroencephalogram as an oscillation at possibly only one electrode site. A variation in EEG
power within a given frequency range translates into the synchronization of neuronal cells, not necessarily into
the synchronization between distant brain areas. The synchronization between distant brain areas, observable
with scalp EEG, is usually termed ”long-range” synchronization.

While synchronization seems to play a major role in communication, it is not the only mechanism: spike timing,
rate coding, rank order coding, phase coding... are also to be considered when appropriate (motor control for
instance) [315].

1.3.3 Occurrence and interest of synchrony in cognition

The versatile cognitive capacities of the human brain require the neural activity across this (these) widespread
small-world brain network(s) to coordinate efficiently. Notably, temporal binding theory (appropriate binding
of event related multisensory inputs and segregation of the others) assumes that synchrony between distributed
neurons is required for object representation, response selection, attention and sensorimotor integration [66].

Koralek et al. [143] show that temporally precise coherence appears during learning in output-relevant neuronal
populations and thus suggest that correlations in oscillatory activity serve to synchronize widespread brain net-
works to produce behavior.

The interest in oscillations and their synchronization takes root in the possibility that these precise spatio-temporal
relations are a fantastic proxy over the complexity inherent to the activity of billions of neurons relayed by their
trillions of synaptic connections, considerably reducing the dimensionality of the problems.

θ long range synchrony

θ synchrony (measured as across-trials coherence in [258], which is described in 2.3.2) between prefrontal and
posterior electrodes is found during retention (between perception and reproduction) intervals. A transcranial
magnetic stimulation experiment [182] stimulating either the frontal or the sensory area shows that only the
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stimulation of sensory area disrupted the working memory task and therefore that this network in unidirectional
(from sensory to frontal area) and likely bottom-up (rather than top-down).

Decision based behaviors require the integration of distinct cortical area. In a maze-based experiment, [129]
measures correlation in firing rates between CA1 in the hippocampus and medial prefrontal cortex. These two
structures notably synchronize during the choice phase of a task.

α long range synchrony

While long range synchrony in the α frequency band is generally attributed to inhibition processes, few studies
were identified to specifically study synchrony between distant areas in that band of frequencies.

Outside the scope of inhibition, Von Stein and Sarnthein [319] notice long range fronto-parietal interactions during
working memory retention and mental imagery in the α band. In the same fashion, Sadaghiani et al. [255] identify
a ”well defined intrinsic functional connectivity network” related to the upper α band involving the frontal and
parietal lobe regions.

β long range synchrony

Low β (12-18Hz) synchronization between temporal and parietal could be involved in multi-modal semantic
binding [319]. Schmiedt et al. [265] suggests that the generation of cortical β is driven by thalamic and/or
top-down cortical inputs. Roelfsema et al. [244] correlate β activity with the long-range synchronous activity
of neocortical regions during visuomotor reflex activation. Palva et al. [211] suppose the inter-area (long-range)
phase synchrony in the β (, α and γ) frequency bands among frontoparietal and visual regions could be a system
level mechanism for coordinating and regulating the maintenance of neuronal object representations in visual
working-memory.

γ long range synchrony

Although γ oscillations were mostly attributed to local synchronization [142], some studies relate possible long
range coordination.

Bhattacharya et al. [26] observe in EEG recordings a γ-band phase synchronization between posterior and frontal
cortex during mental rotation in humans. In Bhattacharya et al. [27] long-range synchrony is found to be higher
in musicians while listening to music. Ribary et al. [238] observe during audio stimuli, with magnetic field
tomography, a 40Hz coherence between cortical and subcortical sites ”with a time shift that is consistent with
thalamocortical conduction times. Rodriguez et al. [243] measure γ (40Hz) long range synchrony related to face
perception (by opposition to meaningless shapes).

Traveling and Standing waves

The discovery of traveling waves may be accredited to Nunez [196] who described a wavelike shape of the alpha
component along midline scalp EEG electrodes.

The role of traveling waves in cognition Traveling waves have been observed intracortically on many
occasions. Probably firstly observed by Adrian and Matthews [5] in the cortex of cats and rabbits, it has since
been revealed in the hippocampus [167], as well as in the visual cortex [313]. More recently, Zhang et al. [344]
observed traveling waves all over the cortex with intra-cranial EEG analysis in θ and α band for epilepstic patients.
These traveling waves are organized into oscillation clusters, and are behaviorally relevant.
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According to Patten et al. [215], these waves travel mostly either from occipital region to frontal regions, or
reversely. As waves traveling in multiple directions cross each other, their either damp out or interfere, it is thus
expected that the patterns might be more complex. Visser et al. [318] theorizes that the cortex being homeomorph
(topologically identical) to the sphere and thus closed on itself, it could be assumed that traveling waves, as they
interfere, form standing waves, a concept shared in [112]. However, no strong experimental evidence for “standing
waves” was reported [312].

Nunez [196] correlated the speed of the wave to the frequency of oscillation : “high alpha frequency components
(alpha + 1.5 Hz) have shorter midline wavelengths than low alpha components(alpha - 1.5 Hz)”, i.e. fast oscilla-
tions propagates faster. This property was extended by Patten et al. in a study where propagation speeds of θ
and α rhythms are compared during a Go-NoGo experimental paradigm.

Although they have been observed in the ongoing brain activity, traveling waves also can be evoked ([112] :
semantic judgment task).

Due to their ubiquity, these traveling waves have been proposed as coordinators, transferring or communicating
information between different parts of the brain [215].

The motor and means of traveling waves As an introduction to [312], a short review classifies the different
biophysical models that could account for the traveling waves : pacemakers (thalamic), local (cortical) and local-
global (thalamo-cortical). They aim at describing what generates the rhythms, and how they propagate. The role
of subcortial units on the general control and tuning of the activation of the brain was already suggested in [65].
Nunez [196] challenged the fact that it would be specific thalamocortical fibers that would account for the high
spatial variability of the alpha field. Valdés-Hernández et al. [312] shows that white matter architecture rather
than cortical surface area correlates with the EEG alpha rhythm. It opposes to a view proposed in [198] where
the size of the head correlated to the position of the α peak.

Halgren et al. [104] proposed, based on ECoG and EEG depth recordings, that α bursts during quiet wakefulness
originate from the cortex and reach the thalamus (pulvinar) afterwards, by opposition to sleep spindles.

Ito et al. [123] analyses the phase differences between electrodes positioned on the anterio-posterior axis. They
observe two distinct cases of phase differences: an abrupt shift from 0 to π phase lag, or a positive phase shift
from electrode to electrode from frontal to posterior areas. These correspond to the traveling and standing
waves postulated by Nunez [196]. Halgren et al. [104] show with ECoG and EEG depth recordings, during quiet
wakefulness, that the median speed of the α waves are of about 1 m/s (median speed across patients: 0.9134 ±
0.1563 m/s), while their propagation is prevalent along the anteroposterior axis [215].

Alamia and VanRullen [10] show that for predictive coding (a model in which the brain learns to make better
predictions) to occur, given the biological temporal constraints, α traveling waves have to exist. They notably
notice forward waves in humans attending visual stimulation and backward waves for participants with eyes closed,
effect they say corroborate their model of predictive coding. Lastly, Patten et al. [215] correlate prestimulus alpha
waves to reaction speed.

Alteration of traveling waves Traveling waves have been shown to be subject to alterations, episodically,
and following long periods of meditation. As evidence, van Lutterveld et al. [314] shows statistical differences
between a meditation group and a healthy group in centrality of minimum spanning tree (minimum number of
edges connecting all the vertices of a graph). Also, Hebert et al. [109] shows that the speed of propagation of the
α traveling wave is statistically different between TM (Transcendental Meditation) 7 practitioners and control
group.

7Transcendental meditation is a meditation technique attempting to lower the brain activity. It is based on apprehending a word
by its sound at different pitches rather than its sense. As the word is discovered through different pitches, until it is completely
”understood”, the brain enters a state of transcendence.
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1.4 Epilepsy

Not only is epilepsy a handicapping disease widely spread among animal species, it is also difficult to treat in
some human cases. It concerns an often underestimated number of people, more than fifty million: roughly one
in a hundred worldwide [205] and affects people of all ages.

Epilepsy is not “one” condition but a “syndrome”: it manifests itself over a wide range of symptoms, with different
etiologies. The symptoms vary in frequency and severity, from less than one per year to several per day, and from
the briefest lapses of attention or muscle jerks to severe and prolonged convulsions. They are categorized as either
partial or generalized depending on the origin of the seizure. Partial seizures originate from a single location in
the brain, the onset is said focal [214] whereas generalized seizures involve both hemispheres of the brain.

Epilepsies are also biased towards low income and / or tropical countries, especially those suffering from malaria
and / or neurocysticercosis. In other countries with strong religious beliefs, people with epilepsy and their families
suffer from stigma and discrimination. In developed countries, over half the incidence cases are partial [205] and
about 60% of people with focal epilepsy have temporal lobe epilepsy (TLE).

Another overlooked, although important, aspect are the SUDEPs (Sudden Unexpected Deaths in Epilepsy). They
are not caused by injury, drowning, or other known causes, but caused by either breathing, heart rythm failure,
or unknown causes. They happen to about one in a thousand epileptic patient [305]. It is a concern of life and
death for any patient and his/her family.

This altogether has lead to extensive extra and intra-cranial research on the syndrome, increasing in addition
knowledge of the human brain. Epileptic brains are now decisively characterized by the presence of interictal
epileptic discharges (IEDs) in the EEG and by epileptic seizures. The condition is characterized by cortical
and/or thalamocortical hyper-excitability ([63]). Clinically, a subject is diagnosed epileptic after “two unprovoked
seizures occurring more than 24 hours apart; or one unprovoked (or reflex) seizure and a probability of further
seizures similar to the general recurrence risk (at least 60%) after two unprovoked seizures, occurring over the
next 10 years or diagnosis of an epilepsy syndrome” [81] [80].

1.4.1 Temporal Lobe Epilepsy

Temporal lobe epilepsy (TLE) seizures involve the temporal lobe of the brain. They usually implicate small
areas of the lobe, but highly connected such as the hippocampus and amygdalae. The hippocampus is a sea-
horse shaped brain structure located in the temporal lobe [128]. It is strongly involved in learning and memory
(especially long-term memory formation). The amygdalae are two almond shaped structures located near the base
of the brain that participate to the management of emotional information [202], to memory and fight-or-flight
response.

Mesial temporal lobe epilepsy

Mesial Temporal Lobe Epilepsy (MTLE) is the most common form of focal epilepsy (80% of all TLE) [298]. It
involves the hippocampus, the parahippocampus, or the amygdala.

Hippocampal Sclerosis Hippocampal Sclerosis (HS) is a MTLE and the most common histopathological
abnormality found in patients with drug-resistant TLE. In Blumcke et al. [31], of about 10 000 patients undergoing
surgery: 36.4% had hippocampal sclerosis, 23.6% had long-term epilepsy-associated tumors and 19.8% focal
cortical dysplasia. HS is present in 56% of cases of Medial Temporal Lobe Epilepsy (MTLE).

HS is characterized by a loss of neuronal cells, a granule cell dispersion, or a gliosis of the hippocampus, often
localized in CA-1 or the subiculum. The subiculum is the hippocampal hub and gate to interegional communi-
cation [177] [282]. It consists in a large population of endogenously bursting excitatory neurons [16]. Therefore,
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deregulation of this complex can greatly impact the activity of the whole brain.

Causes for hippocampal sclerosis epileptogenicity For LTLE, the impaired GABAergic signaling in the
subiculum (hippocampus) could be the gate to secondary generalized seizures. In rodent models, the activation
of subicular GABAergic neurons retards the generalization of the seizure by inhibiting the firing of pyramidal
neurons, and degradation of GABAergic inhibition contributes to secondary generalized seizure expression [323].
It suggests that the malfunctioning GABAergic neurons of the subiculum are a possible bridge to secondary
generalized seizures in temporal lobe epilepsy.

Alteration of ion channels / transporters in the neurons of the subiculum can result in the aforementioned impaired
inhibition [8]. A study on Potassium / Chloride transporters [209] and a study on sodium channels [16], show
respectively a default in inhibition of GABAergic neurons and a facilitation to hyper-excitability of the pyramidal
neurons. Both conditions lead to hypersynchronous events.

Causes for hippocampal sclerosis The possible identified cause for HS are febrile seizures, genetic suscepti-
bility, inflammatory and neurodevelopmental disorders [303]. The febrile seizures in childhood could damage the
hippocampus and prime it for HS development later on. Notably, the prevalence of epilepsy in Alzheimer patients
is higher than in healthy subjects.

Amygdala Enlargement Amygdala Enlargement (AE-TLE) differs from HS-TLE morphologycally and func-
tionally. As in HS, the AE can be the epileptic focus. The enlargement consists in an augmentation of gray matter
volume [297]. Patients presenting an enlargement of the amygdala sometimes suffer autoimmune encephalitis. On
rare occasions, AE is linked to post psychological trauma epilepsies.

Lateral temporal lobe epilepsy

While TLE is often associated with hippocampal sclerosis [22] or to a lesser extent amygdala enlargement, the
seizures do not necessarily originate from these regions [49]. Lateral Temporal Lobe Epilepsy (LTLE) corresponds
to this specific case, where lesions in the temporal neocortex generate epileptiform discharges that preferentially
propagate to mesiotemporal structures. Auras are often described in relations to these epilepsies: premonitory
and epigastric sensations, olfactory hallucinations and automatic behaviors [118].

1.4.2 Alteration of brain structure

Kindling is a process by which a seizure or other brain event is both initiated and its recurrence made more likely,
notably by lowering the threshold at which stimuli elicit electrographic seizures [94].

In Morgan et al. [183], the duration of seizure is associated with ipsilateral temporal lobe to a diminished connec-
tivity between the contralateral temporal lobe, the precuneus, and the mid cingulate cortex in MTLE patients.
This suggests a gradual functional isolation of the ipsilateral temporal lobe over the years [183]. Similarly, in an
fMRI protocol, Haneef et al. [107] show a progressive reduction in connectivity diversity (variance of correlation
between regions) over time.

Using Lévesque and Avoli [158] rodent kainate epilepsy model, Sheybani et al. [273] give more evidence that
induced focal epilepsy is an evolving disease. The location of the sites from which generalized spikes and fast
ripples are generated evolves with the disease. Also, the suppression of epileptic activity with TTX (Tetrodotoxin)
at the stimulation site is not necessarily enough to suppress epileptic activity. This shows that a single epileptic
focus can become a widespread disease [41]. These evidences are possibly in line with seizures still occurring after
the resection of the presumed epileptic focus (up to 40% attributable to either incomplete resection of seizure
focus, incorrect identification of seizure focus and recurrence of tumor [233], or distributed epileptic loci).
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Notably, seizures can trigger in the developed brain the phenomenon of axonal sprouting [170], a common process
in the developing brain.

In animals, Holmes et al. [114] observed that treating the flurothyl-induced limbic epilepsy with bumetanide not
only freed the rats from epileptic behaviors but also restored the impaired functional connectivity (increased
functional connectivity between the dorsal and ventral hippocampus and prefrontal cortex compared to control
animals). This indicates that in certain cases, the damage is not structural but functional.

The alteration of brain structures is not necessarily observable with imaging techniques. The study of the changes
in oscillatory activity can shed more light onto the effects of the disease, and relate them to cognitive alteration.
Synchronous oscillatory activity between distant regions appears as an interesting lead to unveil some specificities
of epilepsies, mostly because of the network dis-regulation property of some epilepsies.

1.4.3 Oscillations in epilepsy

Oscillations are one, if not ”the”, hallmark of brain activity. They offer a prism through which pathology is
analyzed, and epilepsy does not escape the rule. This classification could allow to make parallels with healthy
cognitive functions associated to the frequency bands of these oscillations.

δ rhythms (1.5 - 4 Hz)

δ rhythms occur in the epilepsy literature: post-ictal delta unveils the lateralization of the epileptogenic focus of
TLE patients in 60% of cases [145]. Also, temporal intermittent rhythmic delta activity is highly specific for the
diagnosis of complex partial epilepsy [195] (the most common type of epilepsy in adults, with seizures that can
last up to 2 minutes).

θ rhythms (4 - 8 Hz)

Fu et al. [85] (in humans) and Ge et al. [88] (in rats) found that interictal spikes had a significant inhibitory effect
on theta rhythm. Moreover, inhibition of the θ rhythm was greater when epileptogenic areas involved the anterior
hippocampus and the entorhinal cortex [85]. The reduction of seizures during wakefulness and REM sleep could
be explained by the increase of θ rhythm during these conditions [51].

α rhythms (8 - 13 Hz)

Links between the α component and epilepsy are scarce. In Abela et al. [1], slower α rhythm associates with
poorer seizure control in epilepsy. It is specially in focal epilepsies, where the α power shift is even greater than
for idiopathic generalized epilepsies.

µ rhythm (8 - 12 Hz)

Altered µ rhythms are rarely described or associated to epilepsy. Nonetheless, Saradzhishvili et al. [257] observe
that the µ rhythm seems more disorganized when the epileptic focus is located in the temporal lobe.

σ rhythm (12 - 14 Hz or 14 - 16 Hz)

Sleep spindles are associated with an increase of interictal epileptic discharges [275]. In Tezer et al. [301], it is
reported that sleep spindle density and power decrease before the first seizure. This decrease before secondarily
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generalized seizures is less pronounced than before focal seizures.

β rhythms (13 - 30 Hz)

Focal beta activity on scalp EEG is a rare seizure pattern [34].

γ rhythms (> 30 Hz)

γ rhythms are strongly linked to epilepsy, possibly because of the role of the hippocampus in temporal lobe
epilepsy, and its implication in γ rhythms generation. These high-frequency bursts are an alternative marker for
epileptic spikes [333]. In vitro, γ oscillations increase in frequency from the pre-ictal to ictal state [136].

1.4.4 Long range synchrony in epilepsy

The reorganization of the large-scale structural network in epilepsy in not clear [343], especially given the range
of possible causes for epilepsy. A similar observation regarding the large-scale functional network can be made.

Nonetheless, intracranial electrode recordings allowed Warren et al. [326] to show a disconnection of the epileptic
zone from the rest of the brain network. A similar finding arose in Lagarde et al. [152], who compared the
connectivity inside and between epileptogenic / propagation / non involved zones, and found that there was a
preferential coupling between epileptogenic and propagation zone than with the non-involved zone. In parallel,
Englot et al. [68] observed a decreased resting-state functional connectivity in widespread regions, including
perisylvian, posterior temporo-parietal, and orbitofrontal cortices. The degree of connectivity decrease correlates
with longer duration and higher frequency seizures. Similarly, Luo et al. [169] observed, in a resting-state fMRI
protocol, a reduced connectivity between the epileptogenic locus and distal regions (while augmented in the
neighborhood).

1.4.5 Treatments

LTLE seizures are usually easily controlled with medication [67], while MTLE seizures are not.

AED (Anti-epileptic drugs)

A review concerning AEDs can be found in Sankaraneni and Lachhwani [256]. Interestingly, AEDs can at best
only abolish the symptoms of seizures while under medication. They do not reverse nor stop epileptogenesis.

As an AED example, one may consider Diazepam. Diazepam is ”effective in calming people who experience
mild to moderate levels of anxiety, which could trigger epileptic seizures”, and is mostly used as an emergency
anticonvulsant. Its mechanism involves the interaction with GABAergic neurons. Diazepam alters hipocampal
interneurons networks activity that produces gamma oscillations. It halves the frequency while doubling the
amplitudes of the gamma rhythms [332]. Gamma EEG stands as a potential marker of underlying ion channel or
neurotransmitter receptor dysfunction in primary generalized epilepsies [333].

Surgery

Although deemed safe, epilepsy surgery is associated with cognitive changes [272], mostly because pre-surgical
screening of brain functions can only be partial. In a meta-analysis on surgical outcomes, Sherman et al. [272]
note an increased risk of verbal memory and naming impairment with left-sided temporal surgery.
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Neurofeedback

Brain cells and brain networks are malleable to some extent, which is the basis to learning. Training subjects
to regulate specific brain patterns can diminish the frequency and severity of seizures. This topic is discussed at
length in a further section 2.4.



Chapter 2

Measuring oscillations and oscillating
systems in scalp EEG experimentations

This chapter provides a range of measures that help quantify the level of synchronization between brain areas
based on their oscillatory activity. This oscillatory activity is well measured with ElectroEncephaloGraphy (EEG),
therefore it brings details on how one can set up properly such experiments. These setups are employed in chapter 7
and chapter 6. This chapter also describes neurofeedback setups, and more precisely those that have been hailed
as reducing the frequency and / or severity of epileptic seizures.

2.1 ElectroEncephaloGraphy (EEG)

Electroencephalography amounts to measuring potential differences between electrodes [87] resulting from neu-
ronal activations and inhibitions.

2.1.1 EEG, one among many media for exploration: low cost, high time / weak
spatial resolution

Instruments to measure the inner workings of the human brain are various, mostly providing indirect measure-
ments. Some measure the electrical field generated by brain cells at different levels: electrocorticography (ECoG:
grid of electrodes laid directly on the cortex), iEEG (needles with contact electrodes inside the cortex), EEG
(electrodes at the surface of the scalp). Other instruments measure the magnetic field (MEG (coils at the surface
of the scalp)). fMRI measures the blood deoxygenation (BOLD signal). New devices are still emerging, such as
functional near-infrared spectroscopy (fNIRS) which captures the concentration of oxygen in hemoglobin.

All these instruments provide a wide range of information, either complementary or redundant, but mostly
complementary. Of the non invasive tools at hand: EEG and MEG provide sub-millisecond accuracy, but low
spatial accuracy (several centimeters), and only in superficial layers of the cortex (MEG to a lesser extent). MEG
is mildly sensitive to radial sources, whereas EEG is much less sensitive to tangential orientations [7]. MEG will
capture more of the activity of neurons located in folds (sulci), whereas EEG will capture more of the activity
of the closest gyrus [281]. MEG provides a better SNR than EEG. Both can improve the spatialization of the
electromagnetic sources by densifying the sensors, at the cost of increasing the preparation time of the experiment,
and only to a certain extent (volume conduction in the case of EEG). fMRI on the other hand gives a coverage
of the whole brain, at a millimeter accuracy, but the time sampling is usually of the order of the second. Invasive
recordings provide information with a high SNR because of a smaller distance to the sources and reduced mixing
[146]. But in the case of ECoG, only a fraction of the brain is usually covered. As with iEEG, the contacts
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are usually sparse, and do not match from one subject to the other, as they are implanted with respect to the
upcoming surgery needs. Moreover, in humans, they only are laid / implanted in impaired subjects.

Any measurement is valuable, any combination of measurements is even more valuable. But linking (making sense
of) synchronous recordings of different kind is often a challenge. Eventually, the cost of experiment / treatment
have to be considered. This cost concerns either the risks of the measurements (in the case of ECOG or iEEG), or
the dependence on costly hardware (fMRI), or the dependence on costly consumables (MEG), or the scarcity of
installations (MEG again). Because of the will of pushing neurofeedback in large scale usages, and despite all the
aforementioned benefits of multi-modal analysis, this thesis work abides by medium resolution scalp EEG (21-32
channels) analysis alone.

2.1.2 Large amplitude potentials at the scalp have cortical sources: the pyramidal
cells

The electrostatic sources generating the electrostatic potential are in the order of the number of neurons regarding
their occurrence in space, and in the order of the number of connections between neurons / synapses regarding
their occurrence in time.

Large amplitude potentials do not reflect action potentials (briefly introduced in section 1.1.2). Action potentials
are brief events, moving along the axon at approximately 3m.s−1, or the dendrites at approximately 0.5m.s−1 [156],
and hardly sum up in a cortical area. They contribute mostly to noise in the EEG and cannot be modeled with
simple electric dipoles. On the other hand, the post-synaptic potentials, i.e. the longer-lasting depolarizations
/ polarizations at the dendrites and soma are more likely to sum up and thus to be observed at the scalp in a
macroscopically comprehensive manner [61].

Because the current generated by a single cell is too small to be discriminated from the ambient noise at the
surface of the scalp, the synchronous activation of a large assembly of similarly oriented cells (open field [335]) in
some mm3 (104 neurons) of cortex is required [87]. The pyramidal cells of the neocortex qualify for this office.
Not only the distance from the dipole to the electrode lowers the amplitude of the potential at the electrode, but
also the angle between the direction of the dipole and the direction from the dipole to the electrode [259] [87].
Dipoles whose direction are radial with regard to the surface of the scalp are most likely produced in gyri of the
cortex, whether dipoles with tangential direction are most likely produced in sulci [87]. This activation can be
approximated by a dipole representation, whose activity is of the order of 10 nA [87].

Nonetheless, not every electrical field generated by a summation of post-synaptic potentials can be observed
at the surface of the scalp. The application of the Maxwell equations by Elbert [64] to a spherical onion with
homogeneous layers (a simplistic model of the head) provides insights into what can and what can’t be measured
from scalp electrodes. Sub-cortical structures activity can rarely be measured from the scalp because they are
too small and too distant from the scalp, and it is not possible to distinguish an extended superficial cortical
source from a more focal one in deeper structures [64]. Event Related Potentials (ERPs, such as the P3 (P300)
or the Contingent Negative Variation (CNV)) are strong (> 10µV ) positive or negative shifts in polarization
observed at one or more scalp electrodes. They occur when a large number of neuronal cells, oriented in a similar
direction, have ions flowing in a specific direction. The larger ERPs have electrical sources distributed in extended
cortical regions (“an active, but small, planar area, with a diameter of 1 cm contributes about 1/25 of the activity
shown by an extended layer 10 cm in diameter” [64]). Depending on the nature of the stimulation (excitatory or
inhibitory), and the location of the stimulation on the cells, the direction of the flow of ions can be reversed. In
other words, excitatory or inhibitory activity cannot be assessed from polarity at the scalp [124]. Lastly, the depth
of the activation / inhibition cannot be assessed from scalp EEG either, because the distance to the electrode
and the number of synchronous post-synaptic potentials can hardly be disentangled. Therefore, the EEG alone
cannot help assess much of the diverse possible characteristics of the underlying process. To nuance such claims,
approaches of source localization based on EEG exist. They provide meaningful results, especially on dense EEG
setups (LORETA [213] or beamformers [330]), and to some extent to sparser EEG setups [171].
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2.1.3 EEG amplifiers

To limit the influence of the noise that is introduced by induction in the wire from the electrode to the amplifier
device, the active electrodes will increase the amplitude of the signal at the electrodes. To remove the problem
of induction noise from the amplifier to the processing device, the signal is digitized and stored on the amplifier
(which has a small digital memory (RAM)). It is sent by packets to the processing device when requested, through
the use of a dedicated application programming interface.

2.1.4 EEG electrodes

The first electroencephalograph on humans was recorded and published by Hans Berger in 1929 [21]. Although
the technical means have evolved (to some relatively reasonable extent), the principle has remained the same over
the years.

By Ohm’s Law:

U = Z ∗ I

where:

U is the voltage
Z is the impedance
I is the current

, high electrode impedance cause voltage measurement errors when electrical current flows through the electrodes.
Reducing the electrode’s impedance mitigates this source of noise. EEG electrodes can be divided in active or
passive and wet or dry types.

Passive electrodes With passive electrodes, the impedance can only be reduced by optimizing the contact
between the scalp and the electrode. In the case of passive dry electrodes, the impedance is high, and currents
unrelated to neuronal activity flowing through the electrode strongly impact the voltage between electrodes. In
the case of wet electrodes, the application of conductive gel at the surface of the skin decreases the impedance, and
thus reduces the voltage due to the noisy currents. The most common way of wetting the electrodes is either with
saline solution (short duration experiments), or conductive gel (longer to very long experiments). The quality of
the conductive gel conditions the duration of the experiment (hours or days). The choice of electrodes depends
on the experiment: active dry electrodes can be sufficient to measure ERP albeit with increased level of noise
[176]. These electrodes are already used in ecological situations, despite muscular artifacts generating a lot of
noise (figure 2.1.6); such as in mobile brain/body imaging (MoBI).

Active electrodes Active electrodes add an active amplification stage right at the electrode transforming its
impedance [180]. They consist is an amplifier circuit, controlling its input and output impedance. To limit the
current flowing through the electrode a high input impedance is required as well as an extremely low output
impedance. Active electrodes therefore eliminates interference currents flowing through the electrode. The am-
plification stage minimizes the noise to signal ratio to disregard the noise captured by the wire running to the
amplifier. Active shielding, on the other hand, is also called “guarding”, and is a technique used to minimize
current leakage from a high impedance source.

Ground electrode The ground electrode is an extra consideration for the security of the subject as it controls
the potential leakage that could occur in case the insulation of the amplifier from the Alternative Current (outlet)
was to fail. It triggers a security system which may differ from amplifier to amplifier. Nonetheless, optical coupling
within the amplifier makes the experiment 100% safe.
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2.1.5 Referencing

Isolated populations of neurons act as a source (multipole) (described in section 1.1). The electrical correlate of
this activity is a potential field. Because an absolute electrical potential cannot be measured, one must introduce
a reference electrode in the setup. This reference electrode is used to measure the potential difference with all the
other electrodes [87]. Choosing properly the reference electrode(s) and referencing is a matter of first importance,
and one of EEG’s main limitations [91].

If the common reference is any electrode on the scalp, the raw values provided by the amplifier are hardly
intelligible, since they vary from one arbitrary choice or the other, unless they are chosen carefully and documented.

Common reference montage The EEG signal can be measured between one electrode located in the electric
field of a cortical region of interest, and another reference electrode, as silent as possible, with respect to the
brain properties under analysis. Since silent electrodes do only exist in theory, there will always be some noise.
What matters is that the properties of this noise are not mistaken for brain properties involved in the process of
analysis.

Bipolar montage A short distance bipolar montage allows to measure the difference of potential between pairs
of electrodes located in the same electric field of neural area of interest. Their instantaneous difference is due to
the different geometries with the activated/deactivated population of neurons, the variation of this difference is a
good indicator of the dynamics of the neural area of interest. In other words, “if the paired electrodes are close
together, then the data can be interpreted as an estimate of the first spatial derivative in the direction along the
line from one electrode to the other”[75]. Bipolar longitudinal referencing is a common practice in neurology. It
amounts to computing local potential differences. By opposition, long distances potential differences on the scalp
are used when attempting to prove a flat EEG to ascertain death before, for instance, the removal of organs.

Average reference montage This montage amounts to re-referencing all the channels to the average.

Bertrand et al. [23] theorizes with the head modeled by a sphere and sources as dipoles inside this sphere, that
the average of potentials differences measured on the scalp (sphere surface), is zero, for a sufficient sampling. For
obvious reasons EEG caps cannot cover the whole head and this theory is not observed in practice.

2.1.6 Filtering external noise

Filtering Artifacts

Artifacts are the manifestation in electroencephalographic signals of the environment (line noise...) or events
(blinks, heart beats, muscular contractions...) that are not relevant to the study. Any computation or analysis of
the brain electrical activity may be impaired by such unsettling perturbations.

Some artifacts can be detected and filtered out. Because they differ in nature, there is not a single method to
handle each artifact. Sometimes they can be detected but hardly removed or large portions of the signal would
have to be ignored (such as ample muscular artifacts).

In figure 2.1, different frequency spectra are computed over periods of 20s for: eye blinks, jaw clench, head
movements and swallowing. They are compared to a baseline signal (averaged over 6 periods of 20 seconds), in
the eyes open fixation condition. The baseline displays a 1/f trend with a moderate bump between 11 and 12
Hz. Eyes blinks are greatly energetic compared to the baseline, especially at low frequencies; the 1/f rule is not
valid for low frequencies. Jaw clench is slightly more energetic than the baseline, but for all frequencies. Head
movements and swallowing mostly impact the lower end of the frequency spectrum.
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From these observations, all frequencies are subject to energy increase during the artifacts period, regardless of
the artifact. Therefore the analysis of the signal during the occurrence of one of these artifacts must be done with
great care.

Digital Filtering

In the case of artifacts that have a constant frequency across time, such as AC current noise, frequency based
filters can be used. There exists a range of filters for this purpose, with varying properties. When selecting a
filter for a specific application, one has to take heed of the trade-off between time domain accuracy (less ringing)
and a sharp frequency cutoff. Ideally, one is looking for a “brick wall” (Heaviside) filter, that would filter out all
the frequencies above a given threshold, and keep the rest.

For EEG applications, linear time-invariant filters are applied. Time invariance is expected so that the filter
constantly behaves the same; Linearity: f(α1s1 + α2s2) = α1f(s1) + α2f(s2) is also expected (f being the filter,
α1, α2 two scaling constants, and s1, s2 two signals or signal components).

Phase delay

Considering an harmonic (signal):
eiωt

where:

ω is the pulsation
t is the time

, the response of a digital filter, can be expressed as |H(iω)| ei(ωt+φ(ω)), where H is the transfer function. By

identification of ω(t− δt) to ωt+ φ(ω), the phase delay (δt) of the filter is −φ(ω)
ω , and thus depends on ω.

One must be careful in analyzing delays between signals and especially across frequencies, given that the use of
a given non linear phase (response) filter will add phase delays depending on the frequency of oscillation. It is
of first matter in cross-frequency coupling problems, and not necessarily addressed in the literature [210][173]. A
zero-phase digital filtering must be applied, consisting of filtering the signal from start to end, then end to start.
The second pass cancels the delay introduced by the first one. Its effect is presented in 2.2.

Unfortunately, this strategy is not possible for online neuromarkers computation. A compromise must be made on
the cut-off slope. For the special cases of linear phase filters: the phase delay does not depend on the frequency,
is constant and known. The Bessel filter, for instance, is a Finite Impulse Response filter that approximates a
linear phase filter, and may be used as an alternative for online frequency coupling measurement.

2.2 Phase and amplitude of oscillations

The course of neuronal activity within one period (from deactivated to activated back to deactivated) can be
represented on the trigonometric circle. It lasts 2π, and is called the phase. The unwrapped phase is the quantity
Φ(t) = ωt+ Φ0 (ω being the pulsation, t the time and Φ0 the phase for t = 0). It tracks over time the evolution
of the phase. It extends beyond 2π, and may be brought back to [0 : 2π] by taking the 2π modulo. The cosine of
the phase, gives the time course of a mono-frequency (f = ω/2 ∗ π) signal.

For multi-frequency signals (or approximated as such) i.e.
∑
αicos(ωit+ φi), the phase is not easily defined. One

way to define it more generally requires the introduction of analytic signals, and is detailed further down and in
chapter 3.
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2.2.1 Phase extraction

An analytic signal is a signal that has no energy in the negative part of its frequency spectrum. A real signal can
be made analytic by finding a complex part counterbalancing the energy in the negative part of the frequency
spectrum. This problem can be solved using the Hilbert transform, through a windowed Fourier Transform or
by convolution with a Morlet wavelet kernel. These methods holding fundamentally equivalent results under the
right set of parameters [157][229][39].

A Morlet wavelet transform (WT ) is the convolution of the signal with a wavelet kernel. In the case of Morlet
wavelet:

ei2πνwte
− 2t2π2ν2

w
Ω2
w

where:

t is the time variable
νw is the frequency of oscillation of the wavelet
Ωw is the number of oscillations of the wavelet before it zeroes out (usually fixed at 7)

the convolution is expressed as:

WTf (t, νw) =

∫ ∞
−∞

f(t− k) (cos(2πνwk) + i sin(2πνwk)) e
− 2k2π2ν2

w
Ω2
w dk

where:

f is the signal / function under analysis

Therefore, at each chosen time point and frequency step, a complex coefficient can be obtained:

WTf (t, νw) = A(t, νw)eiΦ(t,νw)

where:

A represents the amplitude
Φ represents the phase

It is usually assumed [3] [157] that the phase Φ(t, ν) and the amplitude A(t, ν) can be retrieved from the angle
of complex coefficients calculated with an analytic wavelet transform. Unfortunately the physical significance of
this phase may become doubtful, or hardly interpretable if the signal is not oscillating enough, i.e. if the phase
varies slowly compared to the amplitude, or when the signal is the sum of two (or more) sine functions [54] [32].
This idea is analyzed in depth as one of the contributions chapter 3.

atan2 Retrieving the phase information from a complex coefficient involves retrieving the angle of the coefficient
in the complex plane Φ(t, ν), it is obtained as the arc-tangent of the imaginary part over the real part of the
complex coefficient in its Euler form. The tangent function is mathematically defined as the quotient of the sine
function over the cosine function.

tan(θ) =
sin(θ)

cos(θ)
(2.1)

atan2 uses the numerator and the denominator to guess the angle in ]−π;π[, by opposition to atan, that uses
the quotient to provide an angle between

]
−π2 ; π2

[
. The “2” corresponds to the number of argument the function

retrieves. It was first implemented in IBM’s implementation FORTRAN-IV (1961). It is therefore necessary to
use atan2 with wavelet coefficients.
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Large band Hilbert transform The literature seems partly mistaken on the usage of large band Hilbert
Transform. Frei et al. [84] explains, supposedly based on Boashash [32] and Osterhage et al. [207], that a ”phase
variable generally reflects the dominant frequency in the spectral composition of a signal”. While Osterhage
et al. [207] writes “the instantaneous phase/frequency based on this technique always relates to the predominant
frequency in the spectrum”, it does not provide any explanation as to why but cites Boashash [32] as a justification.
On the other hand Boashash [32] explains that “the more closely a signal approaches a narrow-band condition,
the better the Hilbert Transformed (HT) signal approximates the quadrature signal, and the more likely the
HT-based analytic signal is to provide an accurate model of a real system with a particular IF; also the better in
general will be the estimate of instantaneous frequency.”, and insists on “the phase has resulted from a nonlinear
combination of the two phase factors and may possess erratic behavior”. Therefore, we would discourage using
the Hilbert Transform on large frequency bands, in chapter 3 lies an attempt to provide some more hints as to
why. Frei et al. [84] interestingly points out that phase extracted from narrow-band filtering will reflect a constant
frequency, whether there is energy at that frequency or not, as discussed in chapter 3. Nonetheless, considering
the time-frequency plane of amplitudes circumvents this issue, an application is presented in chapter 7. There is
much to believe that achieving broad-band analyses by a bank of narrow-band analysis can hold more accurate
result, and provide more tractability.

2.3 Measuring synchrony

2.3.1 Linearity

Measures of synchronization can be categorized either as linear or non-linear, in the sense that they capture the
linear or non linear relationships of a property between different neuronal systems in the brain. At the level of
the scalp, potential fluctuations and phase information are such properties.

Linear synchrony A perfect linear relationship of the same property between two systems i and j, seen as a
function of time holds if :

fj(t) = afi(t) + b,∀t ∈ R, (a, b) ∈ R

A perfect linear relationship of the same property between two systems i and j, seen as a random variable holds
if :

Xj = aXi + b, (a, b) ∈ R

for all synchronous realizations between Xi and Xj . The kth synchronous realization can be noted (Xi, Xj)k.
It may seem unsettling, since random variables are usually of different nature when compared (i.e. number of
petals and length of petals), and their (linear) relationship compared over different items (i.e. flowers). Here
the random variables are a same property on two distinct systems, and their linear relationship compared over
different timings. A perfect linear relationship is rarely reached, possibly because of noise in the measurements,
non-linearities in the relationship or no relationship at all, and is best approximated with a least-square (Gauss-
Markov theorem) linear regression. It consists in finding a and b minimizing the error of the prediction of Xj

knowing Xi. The analytic solution of this minimization problem gives

a =
V (Xi, Xj)

V (Xj)

where:

V(Xi) is the variance of Xi

V(Xi, Xj) is the covariance between Xi and Xj

The deviation from this linear regression provides the degree of non-linearity of the relationship. It is commonly
measured in a cross-plot as the sum of the vertical or orthogonal distances between the n (Xi, Xj)p points and
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the line with slope a and intercept b. This sum can be written as

S = n ∗ V (Xj) ∗

1−

(
V (Xi, Xj)√
V (Xi)V (Xj)

)2


for vertical projection, and involves the Pearson coefficient.

The Pearson coefficient

V(Xi, Xj)√
V(Xi)V(Xj)

is a value contained in [−1, 1], which is extreme when Xi and Xj are linearly correlated / anti-correlated (S = 0)
and equal to zero when linearly uncorrelated (S is maximal).

While these measures are good estimates of the linear relationships between two variables defined on R, they are
not especially adequate for variables defined on the circle, such as the phase. The relationship between two phase
functions would be more naturally investigated on the torus (the Cartesian product of two circular spaces). While
this work did not follow this lead, it could provide some interesting means to develop more adapted synchrony
measures.

For the purpose of illustration of this obstacle, figures 2.3 show that while estimating phase differences for phases
expressed in the Euclidean space presents no difficulty, assessing phase differences with phase defined on the
circle is not straightforward. When phases are expressed on the circle (figure 2.3 II), estimating phase differences
(figure 2.3 VI) become more delicate as several (2) states of phase differences appear. It is particularly troublesome
as the instantaneous phase recovered from the Morlet Wavelet transform is concerned. The transform returns the
phase information in the [−π;π] interval. Attempting to unwrap this phase information that is especially noisy in
real case scenarios can induce strong artifacts at a given time that will impact measures for all remaining samples.
In order to counterbalance this, without having to resort to dedicated measures on the toroidal space, hypothesis
on transmission delays are made. They are notably supposed short enough, such as in chapter 7, so that:

Φ(t) =

{
Φ(t) + 2π if Φ(t) < π

Φ(t)− 2π if Φ(t) > π
(2.2)

This basically turns a too large advance in a short delay, and reversely, a too large delay in a short advance. With
this hypothesis, the bias introduced by folding the phase information on the [−π;π] interval is partially corrected
(figure 2.3 VII).

Non linear synchrony The brain is a highly non linear system [146], in which information is passed around
the cortex following non linear mechanisms [2], primarily because of the integration property of the neuronal
membranes, but also because of feedback loops. This non-linearity does not imply a chaotic spatial distribution
on the scalp [146]. The mapping from electrical activity of sources in the cortex to potential field measured at
the sensors on the scalp is linear (the result of a product of source activities with the gain matrix, a function of
the properties of the different tissues of the head). Thus, any non-linear synchrony observed at the level of the
sensors, cannot be due to volume conduction. And the non-linear synchrony observed at the level of the sensors
is a linear function of the non-linear synchrony that exists at the level of the sources. It is therefore plausible
that there exists, at the scalp level, a measurable non linear relationship between properties of the activity of
distinct populations of neurons, unveiling functional dependencies between brain areas. While numerous metrics
have been devised to capture such synchronization between neural assemblies, it is not clear which stands out
[127].
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2.3.2 Coherence

Coherence is especially well suited for time-locked analysis 1 but can also be applied to single trial analysis such
as in Nunez et al. [199].

Coh2
AB =

|E [ΓAB ]|2

E [ΓA]E [ΓB ]
(2.3)

where:

ΓAB is the cross-spectrum between XA and XB

ΓA is the auto-spectrum of XA

ΓB is the auto-spectrum of XB

E is the expectation over trials

The cross-spectrum is defined as follows :

ΓAB = X̃AX̃B (2.4)

where:

X̃A is the Fourier transform of XA

X̃B is the conjugate of the Fourier transform of XB

The normalization by the auto-spectra isolates the influence of coupling between XA and XB from large values
of the cross-spectrum occurring only because of high amplitude.

Coherence decrease may happen for several reasons: the increase of noise in any of the two signals, the appearance
of a non-linear relationship, an inadequation between the size of window and the frequency of the signal, an
interaction delay greater than that of analysis [149].

2.3.3 Imaginary Coherence

Nolte et al. [194] provide imaginary coherence as an interesting alternative to the coherence measure, especially
for EEG which is very sensitive to volume conduction.

ImCohAB = Im

(
E [ΓAB ]√

E [ΓA]E [ΓB ]

)
(2.5)

The construction of the measure is a reductio ad absurdum, based on the supposition that sources in the brain
are independent, which is not the case. Under this assumption, since all signals measured at the scalp are, by
volume conduction, linear combination of source activities :

Xi =

M∑
k=1

αi,kSk

where:

1Time-locked analysis refers to the study of a given neural response after repeated identical stimuli, or event of interest (peak of
the heart beat for instance).
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Xi is the signal at the electrode i
Sk is the activity at source k, among M sources
αi,k is the (scalar) contribution of the source k to the electrode i

and since the Fourier transform of a sum is a sum of Fourier transforms:

X̃i =

M∑
k=1

αi,kS̃k

the cross-spectrum gives:

X̃iX̃j =

(
M∑
k=1

αi,kS̃k

)(
M∑
k=1

αj,kS̃k

)
and since the sources are supposed independent:

S̃lS̃m = 0,∀l 6= m

the cross-spectrum equals :

X̃iX̃j =

M∑
k=1

αi,kαj,kS̃kS̃k =

M∑
k=1

αi,kαj,k

∣∣∣S̃k∣∣∣2

This cross spectrum is thus necessarily real valued, the product of a complex number S̃k by its conjugate S̃k
removes the imaginary part. In practice, the imaginary part of the cross spectrum is rarely null, therefore it
contains information about the dependence between sources.

2.3.4 Phase synchrony

Phase synchrony commonly consists in assessing or quantifying the linear relationship between two phase variables
(or more). Yet, nonlinear operations are required to extract the phase from the EEG correlates of neuronal
population activities, and were presented in 2.2. In the following, Φ(t, ν) is simplified to Φ(t), supposing that the
phase is computed for a given frequency (ν).

Phase locking

|Φn,m(t)| < δ, where Φn,m(t) = nΦ1(t)−mΦ2(t), and n,m ∈ Z (2.6)

Phase locking can be assessed through the consistency of phase difference across time. Rosenblum et al. [245]
describes the phase locking period as a period during which the phases of two oscillating variables stay close
(within δ) to one another. Commonly, in equation 2.6, it is the relationship with n = m = 1 that is assessed.

Phase Locking Value / Mean Phase Coherence The Phase Locking Value (PLV, equation 2.7) and the
Mean Phase Coherence (MPC) track the consistency of phase difference, respectively over trials [151] or over time
[185]. It is based on the circular variance of the angular distribution of phase differences.

PLV (t) =

∣∣∣∣∣∣ 1

N

N∑
j=1

ei(ΦAj(t)−ΦBj(t))

∣∣∣∣∣∣ (2.7)

where:
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j is the index of the trial among N repeated trials
ΦX(t) is the phase angle of signal X at locked time t

MPC(w) =

∣∣∣∣∣∣
wc+L/2∑

k=wc−L/2

ei(ΦA(k)−ΦB(k))

∣∣∣∣∣∣ (2.8)

where:

L is the duration of a time window
wc is the window center
w is the window [wc− L/2;wc+ L/2]
ΦX(k) is the phase angle of signal X at time k

In EEG, PLV is maximal for two channels measuring the activity of the same source, in which case the synchrony
is purely introduced by volume conduction, therefore spurious.

Aydore et al. [12] show that the PLV is a biased estimator which depends on the distribution of phase differences
while the PLV 2 is unbiased (it only depends on the number of samples), and identical to Vinck et al. [316]
Pairwise Phase Consistency metric. Interestingly, for phase differences following a Von Mises distribution, the
PLVVM can be estimated from the concentration parameter κ, agnostically of the location (mean) [126]:

PLVVM =
I0(κ)

I1(κ)
(2.9)

where:

κ is the concentration parameter of the Von Mises distribution
Ii(κ) is the modified Bessel function of ith order

The inherent difficulty is to properly estimate the Von Mises distribution parameters, a difficulty faced in chapter 7.

Phase Lag Index The Phase Lag Index (PLI) [284] also tracks the consistency of phase difference over time,
but only considers the sign of the phase difference. Volume conduction in EEG experiments occurs at zero time
delays, which corresponds in the phase space to either zero phase angle delay or π phase angle delay. For any
symmetric distribution of phase differences about zero or π angle, the PLI is minimal (half of the signs are plus,
half are minus), making the PLI insensitive to volume conduction effects.

PLI(w) =

∣∣∣∣∣∣ 1

N

wc+L/2∑
k=wc−L/2

sign(ΦA(k)− ΦB(k))

∣∣∣∣∣∣ (2.10)

where:

L is the duration of a time window
wc is the window center
w is the window [wc− L/2;wc+ L/2]
ΦX(k) is the phase angle of signal X at time k

A hardware implementation of PLI have been realized to minimize the latency of the system [200].

Both methods (PLI and MPC) are rough estimates of the actual distributions of phase differences and completely
fail at describing some usual cases (Von Mises bimodal distribution with high concentration parameter for in-
stance). Nonetheless, they are complementary: a high MPC associated to a high PLI indicates a stable phase
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difference that is not due to volume conduction. These measures are valid only under the assumption that the
signals are stationary, somewhat encouraging to consider short windows [12]. Taking short complex coefficient
windows in offline analysis is possible since the coefficients at the border of the window have been computed with
the knowledge of what lies beyond. It becomes a problem in online analysis as it introduce a non-negligible delay.

Weighted Phase Lag Index Although based on the PLI, the Weighted Phase Lag Index (WPLI) was designed
for repeated trials [317]. The phase differences are weighted by the amplitude of the imaginary component.

WPLI(w) =

∣∣∣∑wc+L/2
k=wc−L/2 |Im(X)| sign(∆(ΦA(k)− ΦB(k)))

∣∣∣∑wc+L/2
k=wc−L/2 |Im(X)|

(2.11)

where:

X is the cross-spectrum of A and B

Phase Synchrony Referencing

The studies considering phase synchrony computed from EEG data are legion, table 2.1 collects only a fraction of
the studies involving phase synchrony EEG, all later than 2000. This recollection shows that referencing strategies
are so diverse that there does not seem to be a consensus as to which is to be used.

Referencing in EEG is one of the most difficult point to address, notably with regard to phase synchrony. Some
even strongly discouraged conducting phase synchrony analysis on EEG data [263] [75] [99] and [310] to a lesser
extent. The issue lies in the activity of the common reference, whose frequency content might overlap with the
frequency content at locations of interest, or with the average reference removing most of the genuine synchrony
[224]. A first proposal is to consider bipolar montages of pairs of the closest electrodes without repetition of
electrodes, which unfortunately considerably reduces the dimensionality of the data, especially for setups with
a reduced number of electrodes. A second proposal lies in computing the source current densities at the scalp,
a solution that definitely should be put forward when the study benefits from a dense electrode coverage of the
scalp. As a third option, artificial montages (combination of electrodes) can be considered as a good reference
electrode. As a last proposal, Pockett et al. [224] suggest considering at the same time the common and average
reference, as ”there is no reason to suppose that episodes of genuine, average-referenced synchrony should occur
at the same time as artifactual episodes of common-referenced synchrony”.

2.3.5 Ensuring the statistical robustness of the synchrony

Synchrony can occur by chance, even for signals that are completely uncorrelated. Therefore, it is paramount to
assess the likelihood that a given synchrony value is obtained.

One option is to compute a p-value, as the probability that a synchrony measure as extreme as the observed
value might occur [38]. It can be done by permutations, shuffling one of the two random variables, so that the
pairs (Xi, Xj)p are no longer synchronous, computing a synchrony measure on this surrogate data and repeating
this operation a great number of times. The p-value is the number of times the observed synchrony is bigger /
lower than the surrogate over all the repetitions. Finally, how to assess the threshold for p-value stating that
the synchrony is significant? If it was computed on a stationary signal with accurate measurements, only a high
threshold should reveal a relationship. On the opposite, on highly perturbed signals with an assumed high level
of noise, a lower threshold can be tolerated, but with a lower level of confidence. A second option to estimate
the p-value is to test it against a probabilistic distribution model of the synchrony measure derived from the
probabilistic distribution models of random variables Xi and Xj .
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Statistical significance also has to be checked when comparing two groups. To check whether long range synchrony
is significantly different in healthy and epileptic patients, [24] apply a Wilcoxon Rank Sum test. It is studied in
much detail as a contribution in chapter 6.

Once a measure has been identified to capture a property of interest, it can be introduced in protocols where the
objective is to control it at will: neurofeedback protocols.

2.4 Neurofeedback

Neurofeedback is a protocol involving a Brain Computer Interface (BCI) to provide a feedback to the participant
of features of his own brain activity. It aims at regulating putative neural substrates serving specific behavior
or pathology [279]. Not only can control of some features be achieved, but these skills can be conserved over
time (from hours to months after training) and match changes in brain topology [279]. Neurofeedback is either
defined as a specialization of biofeedback protocols when they encompass all possible bio-signal measures, or as a
complement to biofeedback protocols when the latter involve only physiological signals (heart-beating, breathing,
Galvanic Skin Response (GSR), pupillometry)...

2.4.1 Neural substrates for self-regulation

Operant conditioning successfully train the output behavior of a single cell Fetz [78] showed that
monkeys could be trained by neurofeedback to increase the discharge rate of a single neuron of the motor cortex
by 50 to 500 percent, hence brain cell networks can be trained to modulate the activity of a single brain cell.
Sitaram et al. [279] suggest that neurofeedback involves a reward processing network (comprising the anterior
cingulate cortex (ACC), anterior insular cortex (AIC) and ventral striatum (VS)), a control network (comprising
the lateral occipital cortex (LOC), dorsolateral prefrontal cortex (dlPFC), posterior parietal cortex (PPC) and
thalamus) and a learning network (the dorsal striatum (DS)).

Learning to control the activity of one specific brain regions modifies functional connectivity Ruiz
et al. [252] show with real-time Functional Magnetic Resonance Imaging that acquired self-control of bilateral
anterior insula cortex modulates brain network connectivity in schizophrenia patients. Rota et al. [247] show
that subjects who learned to deliberately increase activation in the right Inferior Frontal Gyrus (rIFG), saw the
connectivity of the rIFG to a widespread network of frontal and temporal areas decrease and lateralize to the
right hemisphere.

2.4.2 BCIs are diverse and Neurofeedback is an Active BCI

BCIs are the hardware and software means to transfer information of the brain activity and its environment to
the computer and analyze it.

The common part of all BCIs is that they monitor brain activity correlates: they recover data informing on the
brain workings, either as fMRI data (contrasts in blood oxygenation) [328], EEG / iEEG / sEEG data (electric
potential differences between locations on/in the head), MEG data (magnetic fields), fNIRS data (cortical hemo-
dynamic activity) or several at once [216]. It comes down to measuring the activation (excitation or inhibition)
of neurons by other neurons.

Additionally, some BCI systems integrate information from the body, such as galvanic skin response, body tem-
perature, heart rate... Furthermore, they can also add information from the surroundings, such as light exposure,
background noise, room temperature...
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Do BCIs differ not only in the data they process, but also in their purpose. A now widely shared formal
categorization of BCIs [340], [342] was proposed. It splits the BCI between passive, active, reactive and hybrids.

Passive Brain Computer Interfaces (PBCI) use implicit (and are sometimes named as such [92]) information
recovered from the brain and analyzed without the active participation of the user. A number of PBCI protocols
have been developed: to adapt the music to a predicted user’s task [93], to detect if the user perceived a system’s
error (consciously or unconsciously) [341], and to many other goals. One can imagine an infinitely number of
practical use for PBCI aiming at increasing quality of life such as controlling light intensity in a room to reduce
stress markers.

Active Brain Computer Interfaces (ABCI) let the user voluntarily modulate brain activity to generate a specific
command, or control a given neuromarker. They offer new means of control over either a physical or digital
environment.

Neurofeedback is a form of ABCI, where information not only goes from the brain to the computer, but also back
from the computer to the senses of the user (visual, auditory, haptic or electrical). This feedback loop extends
the control of the machine to the control of ones’ own brain states.

Neurofeedback has been used as a therapeutic tool [242] to help ease Attention Deficit Hyperactivity Disorder
(ADHD) [70], motor (re-)learning after stroke [237], epilepsy symptoms... but also as a performance training
tool in healthy subjects [98] to enhance various skills (spatial rotation, perceptual binding, mood and well-being
among many other), although in some cases the neurofeedback was detrimental [45].

Neurofeedback is made possible by the processing of brain signals into neuromarkers and their representation to
the subject.

2.4.3 Modalities, type of feedback and presentation rate must be carefully chosen

Neurofeedback involves the presentation of one or several neuromarkers at once, which can be derived from either
one or more simultaneous modalities of acquisition. Visual, auditory, haptic or electrical representations of these
neuromarkers are created and submitted to the subject.

Multimodal brain activity acquisition ?

Because the different acquisition modalities have complementary specificities (temporal vs spatial resolution, and
different proxys on neurons stimulation), it appears appealing to consider combining markers from different modal-
ities of acquisition (such as EEG and fMRI [216]). The inherent complexity and cost of setting up and running
a (neuro)multimodal experiment, the design of the neuromarkers, and the multiple feedback (or combination) it
imposes, suggest more theoretical research should be dedicated before clinical research can build on this basis for
possible clinical applications.

Some constraints (setup complexity) can be alleviated by combining neuro and bio feedbacks such as the galvanic
response, heart rate or breathing. Moreover, they are often integrated on some devices as supplementary channels
with sampling rate identical to the EEG channels.

Means of neuromarker presentation

Of the five senses, olfaction and gustation are difficult to artificially stimulate in real time. Leaving vision, audition
and tactile perception as the main modalities of feeding back the neuromarker(s).
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How to choose the feedback delivery modality ? The best feedback modality (or combination) is con-
strained by the experiment. First, not all feedbacks can be implemented depending on the constraints of the
experiment (for example, an eyes closed experiment rules out using visual feedback). Then it should minimize
the possible interactions between the brain activity tracked by the neuromarker and the brain activity related to
processing the feedback. Some brain regions have been identified to activate during visual neurofeedback (ante-
rior insular cortex (AIC), dorsolateral prefrontal cortex (dlPFC), anterior cingulate cortex (ACC) and posterior
parietal cortex (PPC) for visual feedback [279]), their activation should not influence the neuromarker. The in-
vestigator must ensure that while the subject is told not to attempt to control the neuromarker, the neuromarker
is statistically identical when a sham feedback is presented and when no feedback is presented.

Should one choose more that one feedback modality ? Multimodal feedback presentation is possible, but
definitely not encouraged in all situations, with any combination of feedbacks. Visual-haptic multimodal feedback
is the most promising, especially in motor function recovery / enhancement [242]. Meanwhile, visual-auditory
show much more reserved conclusions.

How to choose the feedback delivery features ? The content (its features) of the feedback must be
informative, supportive [242] and motivating. While informative is objective, the supportive and motivating
aspect are rather subjective. Supportive: it must encourage any effort first, then encourage efforts in the good
direction, it may trigger emotional rewards systems (as in the presentation of a smiling face). Motivating: it’s
highly psychological, and beyond the scope of the feedback. Subjects must be convinced that there is this option of
coming out of the experiment having made progress, especially subjects that struggle against a debilitating disease
for years, with successive medication / surgery failures. It is nonetheless conspicuous that their expectations should
not be raised unrealistically.

How to choose the number of features ? Multifeature feedback may be considered, but the more feedback
features to integrate the harder it gets. Perronnet [216] reports that 1D feedback is easier to control on single-
session. This result is in line with mental workload witnessed during Multi-Attribute Task Battery-II (MATB-II)
developed by the NASA: as the number of gauges to control increases, not only does the mental workload increase,
but also the level of errors.

How often should the feedback be presented ? According to Roc et al. [242], Mental Task BCI feedback
comes at a high presentation rate, when it should be timely, i.e. when the learner ”most needs it”. The moment
at which the learner ”most needs it” could be measured with attention measures. Subjects cannot constantly
learn, mind wandering may occur. Feedback should be given when the subject is the most receptive and can make
the best of it.

How quickly should the feedback be ready for presentation ? In Jackson et al. [125]’s intracortical
experiment, where the spiking recorded in one area of the motor cortex are stimulated in another area, long-term
changes occurred only when the duration between recording and stimulation was less than 50 ms. Belinskaia et al.
[19] establishes that EEG neurofeedback latency has a strong effect on learning some features. Neurofeedback
latency having a strong impact on learning outcomes, hardware implementations of neuromarkers have been
developed [200], allowing for considerable gains on processing time.

Any marker computed over a window is inherently delayed Any neuromarker computed over a window:
statistical measures or measures involving convolution (Hilbert Transform, Wavelet Transform...) are delayed by
half the duration of the window used for their computation. The reason is that the measure is centered over the
time point at which it makes sense. This is a a fact not necessarily considered in all latency analyzes.

There is still a need to better understand how the characteristics of feedback impact the acquisition of skills
(capacity to up-regulate a given neuromarker) [242].
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2.4.4 Neuromarkers

Neuromarkers are proxys / filters on specific brain states / events

Brain activity is the result of the continuous stimulations of billions of neurons. Local integration (spatial and
temporal) of these stimulations gives rise to what are commonly named ”(di/multi-pole) sources”. A neuromarker
is a well designed proxy to some sources (or even some stimulations), and filter to specific electric events produced
by these sources.

The goal of neuromarkers is to faithfully capture information linked to specific electric events and at the same
time reduce wisely the dimensionality of the data so that it can be interpreted quickly and easily by the subject.
Quickly because the marker may be updated on a regular basis (as quickly as the sampling rate of the recording
device). Easily because it must not perturb the subject’s ability to focus on a chosen mental strategy.

Neuromarkers may be ahead of biomarkers

The search for neural correlates to physiological changes, is of great interest with regard to any successful biofeed-
back experiment as it can provide significant performance increase. The first advantage of neuromarkers over
biomarkers (such as GSR or pupillometry) is due to the shorter time scale of some brain activity recording modal-
ities such as EEG or MEG. The second is the precedence of brain activity over physiological correlates. The
first drawback regarding the study of brain activity is the difficulty in making sense of brain signals. The second
drawback stems from the fact that the most obvious correlates may be located in deep structures, at distance
from the extracranial sensors [120].

α power

The α power neuromarker may serve as a mean to improve cognitive performance in human subjects [108]. In
Belinskaia et al. [19], the subjects were able to increase the power of their alpha activity during 30 minutes of
neurofeedback training. α power can also be trained specifically to one hemisphere [13], in which case, a reduction
in alpha was associated with enhanced sensory processing. Belinskaia et al. [19] show that alpha power training
lasts beyond the duration of the session. Counter-intuitively, the increase in alpha power would not be due to an
increase in instantaneous amplitude, but in an increase in incidence rate [19] [206].

α power is a neuromarker for which voluntary control can be quickly acquired and lasts in time. Nonetheless the
effects on cognitive functions are diverse, and typically may depend on the target (location, spread...).

In a large experiment involving 50 subjects, over 3 neurofeedback sessions per week for 4 weeks, Hsueh et al. [116]
show a progressive significant increase in the α amplitude and total α duration of the frontoparietal region. This
increase is correlated with accuracies of both working and episodic memories.

Sensorimotor Rhythm

The control of the sensorimotor rhythms have been used widely in neurofeedback protocols for a variety of
applications, such as :

• improving golf putting performance [50],

• improving memory functions [141],

• improving attention processing [50],

• reducing conscious control of the motor task [276],



48CHAPTER 2. MEASURINGOSCILLATIONS ANDOSCILLATING SYSTEMS IN SCALP EEG EXPERIMENTATIONS

• reducing severity of anxiety [160],

• reducing MPTP(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-induced parkinsonian symptoms and both
ON and OFF scores during classical L-DOPA (l-3,4-dihydroxyphenylalanine) treatment in non-human pri-
mates [221],

• improving cognitive performance in elderly with mild cognitive impairment [174] (sensorimotor over theta),

• reducing the frequency and severity of epileptic seizures [292] [291] [267] [79] [166] [268]

The beginning of the sensorimotor rhythms Roth et al. [248]’s experiment paves the way to the intro-
duction of SensoriMotor Rhythms (SMR) in reinforcement paradigms. A simplification of the original protocol
gives: cats are initially taught to press a bar during a light signal to be delivered food; then the food is only
delivered when the cats restrain from pressing the bar during the same light signal. They observed during that
period a 12-20c/sec activity over the coronal gyrus and adjacent sensorimotor cortex. They named this activity
the SMR. The development by Sterman et al. [293] of this initial study consisted in the usage of SMR as a positive
reinforcement trigger based on neuronal rhythms: a neurofeedback protocol. This protocol would be simplified
as: food-deprived cats with no training were delivered food only if they managed to spontaneously exhibit SMR.
They observed after 50/60 reinforcements, that the animals began to adopt a fixed position (motionless with eyes
fixed straight ahead) and to exhibit SMR.

Effect of SMR on somatosensory systems In the meantime, Chase and Harper [48] studied in cats the
changes in central and peripheral processes co-occuring with the SMR. They observed that the tonic activity
of the neck musculature decreased and eye movements ceased, that the amount of integrated activity decreased
significantly, that the pattern of respiration was closely regulated and that heart rate was significantly decreased
(by up to 30%). Howe and Sterman [115] looked into the synaptic transmission changes occuring during the
different behaviourial states (described partly with SMR activity and oculogram). They noted that: “During
SMR in the awake animal, almost no evoked response amplitude changes occurred in somatosensory cortex,
a small decrease was present at the thalamus while a large increase was observed at the 1Sn, supporting the
hypothesis that neural mechanisms associated with the suppression of CNS functions during quiet sleep are also
operative in awake and active sleep states”. In [115], it is supposed that “The marked decrease in the thalamic
evoked response observed during the SMR supports the hypothesis that this rhythmic EEG activity is generated,
at least in part, by recurrent inhibitory processes located at the thalamic level.” In humans, Thompson et al.
[304] obtained results supporting the hypothesis that SMR modulation had predictable effects on spinal reflex
excitability: a property of inhibition, and Boulay et al. [35] that the bidirectional modulation of SMR was
associated to reduction in reaction time, suggesting that not only the rhythm should be investigated, but also the
mean of modulation. Thompson et al. [304] notes that the modulation of SMR has predictable effects on spinal
reflex excitability. A bio-physiological model of the SMR is illustrated and summarized in [63].

Contingent Negative Variation, a Slow Cortical Potential

Slow cortical potentials are another neuromarker commonly used in neurofeedback experiments. They consist
in very slow shifts (positive or negative) of brain activity lasting up to several seconds. It was suggested that
negative shifts reflect activity of large cell assemblies that are responsible for planning and initiation of goal
directed behavior.

The Contingent Negative Variation (CNV) is a SCP that is elicited in a Go/No Go S2 (second stimulus) paradigm.
The protocol followed by the subjects in [105] is: (S1) A first low tone burst is heard (S2) 2 seconds after S1
either (at random) a medium (Go) or a high (No Go) tone burst is heard triggering in the medium case a finger
extension.

The CNV was first discovered by Walter et al. [320] as a brief surface positive wave superimposed by a brief
surface negative wave and a more prolonged surface negative component lasting several seconds, generally limited
to the anterior regions. The temporal and spatial dynamics of the CNV are precised by Hamano et al. [105] in
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subdural investigations: multiple cortical potentials with different origins and possibly different functions sum up
at the scalp. Moreover they are not related to motor preparation alone, unlike the Bereitshaftpotential [30].

2.4.5 Neurofeedback and epilepsy

SensoriMotor Rhythms

In Cats The first study of SMR and epilepsy by Sterman et al. [292] was led on cats under convulsant (MMH).
It showed that SMR trained animals were less sensitive to convulsants, i.e. escape behavior and convulsions were
delayed substantially compared to a control group.

In Humans The first study of the impact of SMR training on epilepsy in humans was conducted by Sterman
and Friar [291]. They observed a significant suppression of seizures after the neurofeedback training of the SMR.
A number of trials followed, on a restricted number of epileptic patients, and under various prescription medicines
[293][291][166][79][267], with overall many reported positive outcomes ([296] for a meta-analysis).

‘

2.4.6 Neuromarker as online measures

A neuromarker in neurofeedback is an online measure: a continuous calculation, on the fly, as the signal is being
recorded. Online measures are relevant to BCI interfaces (e.g.: the continuous computation of power in the
β band), or more specifically neurofeedback protocols (e.g.: the continuous computation of amplitude of the µ
rhythm, or perhaps synchrony between brain areas). This constraint gives rise to several concerns that have to
be addressed: the speed of the calculus and blindness to the future.

Speed While offline analysis can afford to be computationally expensive, online analysis, requiring a measure
in real-time demands high-efficiency and/or light and/or parallelized (on Central Processing Unit/Graphical
Processing Unit) algorithms. It poses a limit to how much data can be processed at once. While delay could
be tolerated (with impact on learning [19]), it has to be constant (no accumulation and no variation from one
measure to the next). Computationally efficient accumulators may in some cases be designed such as moving
average and variance. Other signal processing algorithms have been developed with real-time usage in mind. From
signal filtering, to amplitude extraction, where the ratio latency/accuracy can be controlled. Lastly, hardware
improvement may reduce processing time.

Blindness to the future For various reasons, such as mitigating the high temporal variations of some brain
activity correlates or phase extraction, some measures are computed as a weighted average. At a given time step
t, it is not possible to compute a mean from t − δt to t + δt, because the data from t to t + δt is unknown (as
opposed to offline measures with the exception at the end). Either one accepts a delay of δt, and returns the
measure of for time t at t + δt, and a balance between a low δt and a high variation of the measure (a large
δt implies many less overlapping values, and higher variation for close-by measures) must be set. Or the future
samples can be guessed with a model (auto-regressive / neural network...). Again, a balance between a low δt
(higher accuracy of guessed samples) and a high variation must be set.

No averaging over repeated trials The brain is constantly at work. Most often, if not always, multitasking,
rearranging memories, planning for possible events... When recording EEG during a task, much of the signal
can be the result of this undergoing and uncontrollable activity. Nonetheless, this undergoing activity varies on
repeated tasks, while the activity strictly time locked to the task is repeated. Averaging across tasks the time
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locked recordings zeroes out the signal that varies from task to task and amplifies the signal that is stable, i.e.
amplifies the signal-to-noise ratio [277].

Averaging can be applied when a given stimulus elicits a neural response at a fixed delay from the stimulus.
Otherwise, not only the undergoing activity is zeroed out, but also the activity elicited by the stimuli. Averaging
may also be applied if specific EEG patterns are identified (epileptic spikes, sleep spindle, end of a characteristic
state such as epiletic discharges...) and used as triggers.

It would not be accurate to assert that stimulus based averaging is to be excluded from online analysis. The P300
[241] is an example of such a paradigm (event related potential). Averaging is achieved across several calibrations
(tasks), the result of averaging is then used during online classification. To further improve classification, several
stimuli are presented, each new stimulus improving the classification outcome.
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Figure 2.1: Fourier power spectrum are presented for under different artifact conditions, and compared to a
baseline. The upper most plot corresponds to the baseline (eyes open fixation). The baseline is compared (in

grey), in descending order to (in black): eye blinks, jaw clench, head moving right and left, head moving up and
down, and swallowing.
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Figure 2.2: An original signal (in blue) oscillating at 10 Hz, to which is added some gaussian noise, is one pass
filtered with a Butterworth causal filter (in orange), and two-pass filtered (filtfilt method) with the same

Butterworth filter (in green). x-axis: time, y-axis: amplitude.
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V VI

VII

Figure 2.3: In I is displayed the temporal evolution of phase functions in the Euclidean space. In II is a
representation of the same temporal evolution of phase functions but restricted to [−π;π], as it could be

recovered with the Morlet wavelet transform. In III the phase functions of I are plotted against each other. In
IV the phase functions of II are plotted against each other. In V is plotted the temporal evolution of the phase

differences between the phase functions of I. In VI is plotted the temporal evolution of the phase differences
between the phase functions of II. In VII is plotted the temporal evolution of the phase differences between the
phase functions of II after a correction of phase differences based on the distances of the phase differences to 0.
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Chapter 3

Analytic derivation of Morlet Wavelet
Transform applied to sum of sinusoids

Phase retrieval is an inevitable step to compute phase synchrony measures. The available tools prone to the task
are implemented in mainstream libraries and used without much concern about their actual accuracy. It is most
often used with fixed parameters that are almost never debated. Thanks to the very formulations of Morlet wavelet
transforms applied to sinusoids or Gaussian modulated sinusoids, the derivations are possible. The analysis of
these derivations provides insights on the accuracy of the method to retrieve the phase information.

3.1 Introduction

The usage of continuous (and most often Morlet) wavelet transforms is ubiquitous in fields where rhythmicity
occurs. Not only because it is convenient (largely implemented in common libraries) but also because it is well
adapted to problems where ephemeral oscillations arise at different frequencies. Its usage notably bloomed in the
EEG field from the early 1990s, and served different purposes: interictal EEG spike detection [270, 269, 131],
epileptic seizure prediction, reconstruction of evoked potentials [17], induced oscillatory activity [295]... Thirty
years later, several thousand scientific papers yearly employ continuous wavelet transforms to analyze EEG signal.
While its interest is unquestionable, the extent to which it can be used and interpreted is sometimes unclear. One
aim of the following derivations is to provide a tighter grasp on what can, and what cannot be extracted from
EEG signals with the Morlet wavelet transform (MWT), by offering another perspective on the trade-off between
time and frequency accuracy. It is based on the hypothesis of local stationarity of the frequency and amplitude
properties. The latter hypothesis is relaxed in the last section.

Two components are usually extracted from analytic wavelet transforms, namely the envelope and the phase
angle. The envelope (instantaneous amplitude) at a given time point corresponds to the modulus of the complex
wavelet coefficient. It is a good indicator of the signal’s energy around a given time point and within a frequency
band. The phase angle (instantaneous phase) is taken as the argument of this same complex coefficient. For
mono-frequency signals, the phase angle informs on the angular location within the current oscillation. It can be
represented on the trigonometric circle, hence takes values between −π and π. For more complex signals, there
is no simple interpretation of the phase. This is discussed in length hereafter.

This chapter is organized as follows. First, the phase angle of the MWT of a sine wave is analytically derived.
Some properties of the formula are discussed to draw some connections with the width of the Morlet wavelet.
Second, the phase angle of a sum of sine waves oscillating at arbitrary frequencies (a more realistic approximation
of a biologically inspired signal) is calculated by the MWT. Hypotheses are proposed to provide a simplification
of this expression. It provides a useful view on the mixing of frequency components that occur during the phase
extraction. Third, the phase angle MWT of a sine wave modulated by a Gaussian window is derived to show the
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influence of the Gaussian modulation on phase extraction. Lastly, the overlapping of two Gaussian modulated
sine waves is considered.

3.1.1 Brief introduction of the Morlet Wavelet Transform

An analytic signal has no energy in the negative part of its frequency spectrum. It can be expressed as a complex
exponential, which enables the retrieval of the envelope and the phase angle. A real signal can be made analytic
by finding a complex part offsetting the energy in the negative part of the frequency spectrum. This problem can
be solved using the Hilbert transform [36], the windowed Fourier Transform or by convolution with an analytic
wavelet kernel. These strategies were shown to hold fundamentally equivalent results under the right set of
parameters [157, 229, 39].

Several analytic wavelets have been designed, such as the complex Cauchy wavelet, the complex Mexican Hat
wavelet or the complex Morlet Wavelet. They are analytic, meaning their real part is orthogonal to their imaginary
part : ∫ ∞

−∞
=(w(t))<(w(t)) = 0 (3.1)

where:

w is any analytic wavelet function

The convolution of a function f : t→ f(t) with a kernel function g : t→ g(t) is expressed as:
∫∞
−∞ f(u− t)g(t)dt.

A Wavelet Transform (WT ) is a convolution of the signal with a wavelet kernel.

The principal aim of the Morlet wavelet transform is therefore to produce an analytic signal while constraining
the information locally (in time and frequency). The Morlet wavelet w is a function of time t :

w(t) =

√
2πνwe

Ω2
w
2

Ωw
ei2πνwte

− 2t2π2ν2
w

Ω2
w (3.2)

where:

νw is the frequency of oscillation of the wavelet (in Hz)
Ωw is the number of oscillations (approximately) contained within the Gaussian window

The Morlet wavelet is the product of a complex exponential function (oscillating at νw Hz in the complex plane),
and a Gaussian function centered at zero (whose width Ωw depends on νw and a chosen number of oscillations in
the time domain). It is is plotted in figure 3.1.

Its Fourier transformed counterpart is a function of the frequency ν :

Fw(ν) = e
Ω2
w
2 e
− (−2π(νw+ν))2Ω2

w
8π2ν2

w (3.3)

Note: Although the Gaussian function is symmetric, the complex exponential is not, thus the Morlet wavelet is
not symmetric. Increasing Ωw enlarges the wavelet in the time domain and reduces its Fourier counterpart in
the frequency domain. The larger the wavelet in the time domain, the more time samples are needed to compute
its transform, reducing the time accuracy to the benefit of improving the frequency accuracy. Figuring the best
compromise between time and frequency accuracies depends on the duration of events of interest in the signal.

The convolution of a function f with a Morlet wavelet is written :

WTf (u) =

√
2πe

Ω2
w
2

Ωw

∫ ∞
−∞

f(u− t)ei2πνwte−
2t2π2ν2

w
Ω2
w dt (3.4)
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Figure 3.1: Morlet Wavelet w(t) =
√

2πνwe
−Ω2

w
2

Ωw
ei2πνwte

− 2t2π2ν2
w

Ω2
w . Time: t. =(w(t)) and <(w(t)) are represented

as a function of time. It oscillates at 3 Hz in the complex plane (νw = 3), with a width(Ωw) of 10.

3.2 Phase angle of a sine wave

It is usually assumed [3, 157] that the phase angle can be retrieved from the argument of complex coefficients

calculated with the analytic wavelet transform, i.e.: φ(u) = arctan
(
=(WTf (u))
<(WTf (u))

)
. To challenge this stand, this

quantity is calculated analytically for a sinusoid f : t→ cos(2πνct+φc). The derivation is simplified by rewriting
f with the Euler formula, f → 1

2 (ei(2πνct+φc) + e−i(2πνct+φc)) and supposing known the Fourier Transform (FT )
of the Morlet wavelet :
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Ωw
√

2πνwe
Ω2
w
2

WTf (u)

=

∫ ∞
−∞

cos(2πνc(u− t) + φc)e
i2πνwte

− t
2(2πνw)2

2Ω2
w dt

=

∫ ∞
−∞

1

2
(ei(2πνc(u−t)+φc) + e−i(2πνc(u−t)+φc))ei2πνwte

− t
2(2πνw)2

2Ω2
w dt

=
1

2

(∫ ∞
−∞

ei(2πνc(u−t)+φc)ei2πνwte
− t

2(2πνw)2

2Ω2
w dt+

∫ ∞
−∞

e−i(2πνc(u−t)+φc)ei2πνwte
− t

2(2πνw)2

2Ω2
w dt

)
=

1

2

(
ei(2πνcu+φc)

∫ ∞
−∞

ei2πνwte
− t

2(2πνw)2

2Ω2
w e−i2πνct dt+ e−i(2πνcu+φc)

∫ ∞
−∞

ei2πνwte
− t

2(2πνw)2

2Ω2
w ei2πνct dt

)
=

1

2

(
ei(2πνcu+φc)FT (ei2πνwte

− t
2(2πνw)2

2Ω2
w )(2πνc) + e−i(2πνcu+φc)FT (ei2πνwte

− t
2(2πνw)2

Ω2
w )(−2πνc)

)
=

1

2

(
ei(2πνcu+φc)

Ωw√
2πνw

e
−Ω2

w(2πνc−2πνw)2

2(2πνw)2 + e−i(2πνcu+φc)
Ωw√
2πνw

e
−Ω2

w(2πνc+2πνw)2

2(2πνw)2

)

For the numerator :

e
−Ω2

w
2 Ωw√
2π

= (WTf (u))

=
Ωw√
2πνw

1

2

(
sin(2πνcu+ φc)e

−Ω2
w(νc−νw)2

2ν2
w − sin(2πνcu+ φc)e

−Ω2
w(νc+νw)2

2ν2
w

)

=
Ωw√
2πνw

1

2
sin(2πνcu+ φc)

(
e
−Ω2

w(νc−νw)2

2ν2
w − e−

Ω2
w(νc+νw)2

2ν2
w

)

=
Ωw√
2πνw

e−
Ω2
w
2 sin(2πνcu+ φc)e

−Ω2
wν

2
c

2ν2
w sinh

(
Ω2
wνc
νw

)

and similarly for the denominator :

e
−Ω2

w
2 Ωw√
2π

< (WTf (u))

=
Ωw√
2πνw

e−
Ω2
w
2 cos(2πνcu+ φc)e

−Ω2
wν

2
c

2ν2
w cosh

(
Ω2
wνc
νw

)

The phase is therefore expressed as :

φ(u) = arctan

(
=(WTf (u))

<(WTf (u))

)
= arctan

(
tan (2πνcu+ φc) tanh

(
Ω2
wνc
νw

))
(3.5)

The assumption that: φ(u) = arctan
(
=(WTf (u))
<(WTf (u))

)
is the phase of the signal, holds true only for mono-frequency

signals, if the frequency of the signal matches the frequency of the wavelet (i.e. νc = νw), and yet, in this specific
case, it depends on the number of oscillations (Ωw).
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Figure 3.2: tanh(Ω2), Ω varying from 0 to 4. No units.

Figure 3.3: Evolution of the phase extracted by the WT of a sinus oscillating at 10Hz (νs = νc + π/2). x-axis: u
varies from 0 to 0.2 seconds, equivalently two oscillations. y-axis: phase angle ranging from −π/2 to π/2. The

dotted line corresponds to the case where the frequency of the wavelet matches the frequency of the signal. The
dashed line corresponds to the case where the frequency of the wavelet is much higher than the frequency of the

signal. Ωw = 10.
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Figure 3.4: Time Frequency plane of the phase of sin(10 ∗ 2πt), t varying from 0 to 5. The signal is decomposed
on frequencies varying from 1 to 19 with wavelets composed of 7 oscillations (Ωw = 7). The plot is obtained by
numerical convolution (computed by multiplication in the Fourier domain of the Fourier Transform of the signal

and the Fourier Transform of the wavelet followed by Fourier Inverse Transform of the product). Despite the
absence of energy in the signal for frequencies different from 10Hz phase information is available but not

meaningful. Behavior at the edges and for low frequencies is not discussed here.

When νc = νw one can observe in figure 3.2 that tanh(Ω2
w) is close to 1 for values of Ωw higher than 2.

When the frequency of the sinusoid differs from the frequency of the wavelet, the hyperbolic tangent is close to
1 when Ω2

wνc >> νw. In cases where this is not observed, such as in figure 3.3, the phase angle trajectory gets
curved, while the singularities (jumps) still occur at the same time points (due to the unaffected tangent).

Formula 3.5 also helps understand the numerical values of the phase in frequency bands with no energy observed
in figure 3.4. The phase angle is dictated by the closest frequency components of the signal and not the frequency
of the wavelet, as it will be unveiled in section 3.3. Hence, for a mono-frequency signal oscillating at 10 Hz, for
Ωw large enough and far enough from the edges, regardless of the frequency of the wavelet, the phase is always
the phase of the signal.

3.3 Phase angle for combination of sine waves

The WT applied to a sum of sinusoids f(t) =
∑
αicos(2πνit+ φi) is a sum of WT applied to single sinusoids. It

leads to the expression of a “phase”1 :

φ(u) = arctan

(
=(WTf (u))

<(WTf (u))

)
= arctan


∑
αi

(
e
−Ω2

w(νi−νw)2

2ν2
w − e

−Ω2
w(νi+νw)2

2ν2
w

)
sin(2πνiu+ φi)

∑
αi

(
e
−Ω2

w(νi−νw)2

2ν2
w + e

−Ω2
w(νi+νw)2

2ν2
w

)
cos(2πνiu+ φi)

 (3.6)

For Ωw values higher than a threshold γ, equation 3.6 simplifies to 2 :

φ(u) ≈ arctan

∑αie
−Ω2

w(νi−νw)2

2ν2
w sin(2πνiu+ φi)∑

αie
−Ω2

w(νi−νw)2

2ν2
w cos(2πνiu+ φi)

 (3.7)

The threshold γ is the value Ωw solution of: e−
Ω2
w(ν+1)2

2

e−
Ω2
w(ν−1)2

2

= 10−θ, where ω = νi
νw

, θ being the requested precision.

γ =

√
−2ν ln(10−θ)

2ν . For example, with θ = 2 and νi = νw: γ ≈ 2.15

1The exponential form is used instead of the hyperbolic sine / cosine for the simple reason that the hyperbolic tangent cannot
appear due to the sums at the numerator and denominator.

2The coefficients αie
−Ω2

w(2πνi−2πνw)2

22πν2
w can be further simplified to αie

−
Ω2
w2πν2

i
22πν2

w e
Ω2
w2πνi
2πνw , but the coefficients wouldn’t max out at

αi but at αie
Ω2
w
2 .
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It can also be observed with the hyperbolic functions, for Ωw > 5: sinh(Ω2
w

2πνc
2πνw

) ≈ cosh(Ω2
w

2πνc
2πνw

) for any

practical 2πνc
2πνw

.

The study of the coefficients weighting sin(2πνiu+ φi) at the numerator and cos(2πνiu+ φi) at the denominator
in equation 3.7 provides insightful information on what the MWT can achieve, and when it fails to provide
meaningful results.

Notably, phase shift (φi) is not involved in the coefficients and the frequency of a component does not play any
role in the weighting of another (a trivial albeit essential property due to the linearity of the transform).

The contribution of a frequency component to the phase is balanced between its amplitude and the distance of its
frequency to the wavelet frequency. The more distant the frequency of the signal to the frequency of the wavelet,

the closer the Gaussian window (e
−Ω2

w(νi−νw)2

2ν2
w ) gets to zero and so does the weight. But for close frequency

components, the sums at the numerator and denominator mix up, and no proper phase (in the sense of a pure
oscillator) can be retrieved. In that sense, it tallies with the idea that there is a trade-off between time and
frequency accuracy: by increasing the width of the Morlet wavelet in the time domain, it reduces the width of
the wavelet in the frequency domain (the role of Ωw being reversed).

Equation 3.7 gives a possible definition for the ”phase” of a combination of sine waves. This phase is defined
locally (within the Gaussian window) and applies especially well in the context of signals with local stationarity.

Regarding the analysis of EEG signals, the arctan is non-linear and equation 3.7 is a good representation to
observe that the influence of the reference in a bipolar channel cannot be removed once the phase is computed.
For instance, computing phase differences is not an option to make the reference’s influence vanish.

3.3.1 Different combinations of sinusoids produce the same phase

One concern that can be unveiled under this framework is that different combinations of sinusoids at various
frequencies can return the same phase. It is illustrated in equation 3.8 with the phase angle difference between
two signals, each one composed of a pair of sinusoids (s0 and s1, s2 and s3) with amplitude αi and frequency νi.

φs0+s1 − φs2+s3 =

arctan

 α0e
− (ν0−νw )2Ω2

w
2νw 2 sin(2πν0u) + α1e

− (ν1−νw )2Ω2
w

2νw 2 sin(2πν1u)

α0e
− (ν0−νw )2Ω2

w
2νw 2 cos(2πν0u) + α1e

− (ν1−νw )2Ω2
w

2νw 2 cos(2πν1u)


− arctan

 α2e
− (ν2−νw )2Ω2

w
2νw 2 sin(2πν2u) + α3e

− (ν3−νw )2Ω2
w

2νw 2 sin(2πν3u)

α2e
− (ν2−νw )2Ω2

w
2νw 2 cos(2πν2u) + α3e

− (ν3−νw )2Ω2
w

2νw 2 cos(2πν3u)

 = 0 (3.8)

This phase difference can be null when the frequencies of sinusoids composing each signals are different, but sym-
metrically chosen around the wavelet frequency, and the amplitudes are equals. It translates into four hypotheses
:

1) ν0 − νw = −(ν1 − νw)

2) ν2 − νw = −(ν3 − νw)

3) α0 = α1

4) α2 = α3
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With 1) and 2) :

arctan

(
α0 sin(2πν0u) + α1 sin(2πν1u)

α0 cos(2πν0u) + α1 cos(2πν1u)

)
− arctan

(
α2 sin(2πν2u) + α3 sin(2πν3u)

α2 cos(2πν2u) + α3 cos(2πν3u)

)
= 0 (3.9)

With 3) and 4) :

arctan

(
sin(2πν0u) + sin(2πν1u)

cos(2πν0u) + cos(2πν1u)

)
− arctan

(
sin(2πν2u) + sin(2πν3u)

cos(2πν2u) + cos(2πν3u)

)
= 0

arctan

(
2 sin

(
2πν0u+2πν1u

2

)
cos
(

2πν0u−2πν1u
2

)
2 cos

(
2πν0u+2πν1u

2

)
cos
(

2πν0u−2πν1u
2

))− arctan

(
2 sin

(
2πν2u+2πν3u

2

)
cos
(

2πν2u−2πν3u
2

)
2 cos

(
2πν2u+2πν3u

2

)
cos
(

2πν2u−2πν3u
2

)) = 0

2π(ν0 + ν1 − ν2 − ν3 )u = 0

ν0 + ν1 = ν2 + ν3

which is true because of 1) and 2): ν0−νw = −(ν1−νw) and ν2−νw = −(ν3−νw) are equivalent to ν0 +ν1 = 2νw
and ν2 + ν3 = 2νw.

Relaxing 3) and 4), α3 in 3.8 can be expressed as a function of the other parameters 3.10.

α3 = −
e
− (ν2−νw )2Ω2

w
2νw 2 α2

(
e
− (ν1−νw )2Ω2

w
2νw 2 α1 sin(2πν1u− 2πν2u) + e

− (ν0−νw )2Ω2
w

2νw 2 α0 sin(2πν0u− 2πν2u)

)
e
− (ν3−νw )2Ω2

w
2νw 2

(
e
− (ν1−νw )2Ω2

w
2νw 2 α1 sin(2πν1u− 2πν3u) + e

− (ν0−νw )2Ω2
w

2νw 2 α0 sin(2πν0u− 2πν3u)

) (3.10)

In any case, this means that observing a phase difference of 0 over time, does not imply that the components of
two signals oscillate at the same frequencies.

3.4 Phase angle for an oscillating burst

Electrical brain activity measured at the scalp is in part rhythmic, and arrives mostly in bursts. A phenomenon
which is especially visible in the α, µ, β, θ rhythms. This rhytmicity is at best locally stationary. To study
the pertinence of the Morlet Wavelet approach in extracting properties of the underlying activity, one burst of
rhythmical brain activity at the scalp is modeled as a Gaussian modulated sinusoid. It mimics the projection of
the excitation / inhibition of a given cortical area by a varying (increasing then decreasing) number of neurons
from the same or different cortical area.

Following a similar derivation to the one applied to the sine wave, the phase extraction of a Gaussian modulated
sinusoid :

f(t) = e
−2(t−t0)2π2ν2

s
Ω2
s cos (2πνs(t− t0) + φs) (3.11)

where:

t0 Center of the burst
Ωs Width of the burst (in number of oscillations)
νs Frequency of the burst
φs Phase of the burst at t = t0

by convolution with a Morlet wavelet gives :
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φ(u) = arctan

(

e
−Ω2

w(νs+νw)2Ω2
s−4π2ν2

sν
2
w(u−t0)2

2ν2
sΩ2
w+2ν2

wΩ2
s sin

2
(
π (u− t0) νw − φs

2

)
Ω2
wν

2
s − 2πν2

wΩ2
s (u− t0) νs − Ω2

sφsν
2
w

ν2
sΩ2

w + ν2
wΩ2

s


+ e

−Ω2
sΩ2
w(νs−νw)2−4π2ν2

sν
2
w(u−t0)2

2ν2
sΩ2
w+2ν2

wΩ2
s sin

2
(
π (u− t0) νw + φs

2

)
Ω2
wν

2
s + 2πν2

wΩ2
s (u− t0) νs + Ω2

sφsν
2
w

ν2
sΩ2

w + ν2
wΩ2

s



e
−Ω2

w(νs+νw)2Ω2
s−4π2ν2

sν
2
w(u−t0)2

2ν2
sΩ2
w+2ν2

wΩ2
s cos

2
(
π (u− t0) νw − φs

2

)
Ω2
wν

2
s − 2πν2

wΩ2
s (u− t0) νs − Ω2

sφsν
2
w

ν2
sΩ2

w + ν2
wΩ2

s


+ e

−Ω2
sΩ2
w(νs−νw)2−4π2ν2

sν
2
w(u−t0)2

2ν2
sΩ2
w+2ν2

wΩ2
s cos

2
(
π (u− t0) νw + φs

2

)
Ω2
wν

2
s + 2πν2

wΩ2
s (u− t0) νs + Ω2

sφsν
2
w

ν2
sΩ2

w + ν2
wΩ2

s


)

With similar considerations as those used to obtain equation 3.7, namely whenever 2Ω2
wΩ2

sνsνw >> ν2
sΩ2

w+ν2
wΩ2

s,
a simplification leads to :

φ(u) ≈ 2π
νwΩ2

wν
2
s + νsΩ

2
sν

2
w

ν2
sΩ2

w + ν2
wΩ2

s

(u− t0) + φs

For νw = νs, the convolution of a synthetic burst with a Morlet Wavelet gives the expected phase: 2πνs(u−t0)+φs
i.e. the phase and phase shift of the bursts sine wave.

It paves the way for possible bursts properties identification by means of a Morlet wavelet transform, the topic of
the research of chapter 5.

3.5 Phase angle for close oscillating bursts

While the Morlet wavelet transform permits the retrieval of the phase and phase shift of a single burst, it may
seem unpractical for real EEG applications. Indeed, while a cortical region is likely to generate a single burst at
once, because of volume conduction, an electrode might measure several overlapping bursts coming from different
regions at about the same time.

The case of two overlapping bursts is generally defined as follows, with similar considerations as in the previous
section :

f(t, ts0, ts1) = e
− 2(t−ts0)2π2ν2

s0
Ω2
s0 cos(2πνs0(t− ts0) + φs0) + e

− 2(t−ts1)2π2ν2
s1

Ω2
s1 cos(2πνs1(t− ts1) + φs1) (3.12)

Three cases are considered to study the evolution of the phase with varying distance between bursts are depicted
in figure 3.5. The two bursts share a same frequency and duration, but differ in their center and in their phase
shift at the center. In all cases ts1 = 4., so that by progressively increasing ts0 the two bursts overlap more and
more. In the first case where ts0 = 3. the two burst centers are distant of 1 second and do not overlap. In the
second case where ts0 = 3.5 the two burst centers are distant of 0.5 second and clearly overlap, yet the two bursts
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I II III

Figure 3.5: I: ts0 = 3.s, II: ts0 = 3.5s, III: ts0 = 3.9s.
ts1 = 4.s. νs0 = νs1 = 5. Ωs0 = Ωs1 = 5. φs0 = π/2. φs1 = 0π.

are still distinguishable. In the third and last case where ts0 = 3.9 the two burst centers are distant of 0.1 second.
Of the two bursts only remains the shape asymmetry.

Again, the derivation of the Morlet wavelet transform of f conducts to :
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(3.13)

To compare the behaviors with respect to phase retrieval, the unwrapped phase is computed with equation 3.13.

Figure 3.6 shows that for case I of figure 3.5, the phase is correctly estimated at t = 3. and t = 4. (respectively
equal to 0π and π/2), for case II an error in the estimation of the bursts starts to appear, and becomes striking
for case III. Therefore, the phase and phase shift, even at the center of the bursts cannot be accurately recovered
by means of the Morlet wavelet transform where the bursts are too close.
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Figure 3.6: Unwrapped phase of the function composed of two bursts whose centers vary in distance to one
another. The pink and grey lines corresponds to a linear phase at νs0 frequency (2πνs0) plus their respective

phase shift (0π and π/2).

3.6 Conclusion

Part if not most of the exploitable EEG signal is oscillatory in nature. This justifies considering the EEG signal
as a weighted sum of sinusoids, locally stationary. The Morlet wavelet is oscillatory by construction, it is therefore
adapted to detect the oscillatory components in the EEG signal. This consideration induces the simplification
that allows the derivation of interesting properties on the Morlet Wavelet transform. It notably sets up a first
lower bound on the width of the wavelet, below which the course of the phase becomes unrealistic. It sets up
a second lower bound on the width of the wavelet to obtain a more tractable expression of the extracted phase.
This expression recalls that the reference electrode impairs the computation of the phase if and only if it oscillates
in the vicinity of the frequency of the wavelet, and because of the non-linear properties of the arc-tangent, the
phase cannot be corrected afterwards. Synchrony measures devised through the difference between phases can
be misguiding since different combination of sinusoids produce the same phase. Lastly, such assumption on the
EEG signal and the following derivations allow to show that the phase and phase shift of EEG bursts could be
retrieved, although it was shown that for close bursts the Morlet wavelet as such is not up to the task.
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Chapter 4

Correlation between close wavelet
coefficients

Standard inferential statistic tests, such as the parametric Student t-test or the non parametric Mann-Whitney U
test, assume that the two compared sets are made of independent samples. If two random variables are linearly
correlated, they cannot be independent, and two samples drawn from these dependent random variables are not
independent.

In the following derivation, the linear correlation coefficient is calculated for δ distant complex coefficients obtained
by an analytic wavelet on an arbitrary signal for which the autocorrelation function is supposed null. In the case
of a Morlet wavelet, it is shown that the autocorrelation function of the wavelet coefficients is a Gaussian function
centered at 0.

4.1 Wavelet based measures are not independent

Synchrony measures based on the phase or amplitude envelope of real valued signals usually rely on the calculus
of their complex analytic counterparts. The three most common options to obtain the complex analytic signal
are either: delimitation of overlapping tapering windows on the signal and computation of a Fourier Transform
for a specific frequency on these tapering windows, narrow band pass filtering and convolution with the Cauchy
Kernel (Hilbert Transform), or convolution of the signal with an analytic wavelet (see chapter 3).

Because the complex coefficients are computed on overlapping windows (Fourier), or by convolution (Hilbert /
Wavelets), they are correlated and the level of correlation depends on how spaced (in time) two coefficients are.

Although intuitive, this correlation can be shown under the hypothesis of the EEG signal behaving as a random
variable. EEG signals can be modeled by random variables [86] and equivalently a 1D, n samples EEG signal
can be modeled by a sequence of draws from n independent random variables Xt with the same mean EX and
variance VX :

x(t) = Xt,∀t Xt ∼ Γ(EX ,VX) (4.1)

The wavelet coefficient at time step k is obtained by convolution of a wavelet function W , oscillating at a given
frequency (unspecified) with the signal x :

WTx(k) =

k+Γ∑
t=k−Γ

W (t− k)Xt (4.2)
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WTx(k) (written WT (k) further on) is also a random variable. To not limit the development to infinitely wide
wavelets, each wavelet has the window [−Γ; Γ] as support.

The correlation coefficient between two δk distant wavelet coefficients is given by:

ρ(WT(k),WT(k + δk)) =
C[WT(k),WT(k + δk)]√

V[WT(k)]
√

V[WT(K + δk)]

Where the variance equals:

V[WT(k)] = VX
k+Γ∑
t=k−Γ

W (t− k)2

= VX
Γ∑

t=−Γ

W (t)2

And the covariance equals:

C[WT(k),WT(k + δk)] = C[

k+Γ∑
ta=k−Γ

W (ta − k)Xta ,

k+δk+Γ∑
tb=k+δk−Γ

W (tb − (k + δk))Xtb ]

With the covariance bilinearity:

=

k+Γ∑
ta=k−Γ

k+δk+Γ∑
tb=k+δk−Γ

W (ta − k)W (tb − (k + δk))C[Xta , Xtb ]

after the two changes of variables t′a = ta − k and t′b = tb − (k + δk), the expression becomes:

=

Γ∑
t′a=−Γ

Γ∑
t′b=−Γ

W (t′a)W (t′b)C[Xt′a+k, Xt′b+k+δk ]

under the formulated hypothesis that the Xt are independent, C[Xt′a+k, Xt′b+k+δk ] 6= 0 for t′a + k = t′b + k + δk:

= VX
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W (t)W (t− δk)

ρ(WT(k),WT(k + δk)) =
VX

∑Γ
t=ΓW (t)W (t− δk)√

VX
∑Γ
t=−ΓW (t)2 ∗ VX

∑Γ
t=−ΓW (t)2

=

∑Γ
t=−ΓW (t)W (t− δk)∑Γ

t=−ΓW (t)2

The autocorrelation of the Morlet wavelet as a function of the lag (±δt) is :∫ ∞
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and plotted in figure 4.1.
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Figure 4.1: Modulus of the autocorrelation of the Morlet Wavelet (oscillating at 3 Hz, with a width (Ωw) of 10
oscillations), as a function of δt.

Its modulus equals :
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2ν2
wδ

2
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w

It validates a result presented by Ge [89] regarding the absolute value of the correlation coefficient of temporally

adjacent wavelet coefficients: ρ(∆b) = e−(∆b)2/4a2

, where ∆b matches δt and a matches Ωw/(2πνw), developed
under the hypothesis that the signal follows a Gaussian white noise distribution which is slightly more restrictive
than in the current case.

Because the Morlet wavelet function is tapered in time with a Gaussian window (not restricted to [−Γ; Γ]), any
two coefficients, regardless of their proximity, will be correlated. This suggests that alternative tapering windows
of finite length are to be considered in cases where correlation of samples is an issue, as it provides a guarantee
of decorrelation between spaced enough samples (Hanning window).

For infinitely long wavelets Ge [89] proposes to decide of a correlation value (ρind) below which two coefficients
are deemed independent. From this correlation value, a minimal distance δt can be obtained to ensure that the
coefficients aren’t more correlated than ρind :

δt ≥ 2
√
ln(ρind)Ωw/(2πνw)

What if the signal is autocorrelated ? Assuming that an EEG signal is not autocorrelated is convenient,
but not realistic. In the following derivation an arbitrary autocorrelation function for the signal is proposed.

C[WT(k),WT(k + δk)] =

k+Γ∑
ta=k−Γ

k+δk+Γ∑
tb=k+δk−Γ

W (ta − k)W (tb − (k + δk))C[Xta , Xtb ]

=

k+Γ∑
ta=k−Γ

k+δk+Γ∑
tb=k+δk−Γ

W (ta − k)W (tb − (k + δk))ρ(Xta , Xtb)
√
V[Xta ]

√
V[Xtb ]

Because V[Xta ] = V[Xtb ] = VX and ρ(Xta , Xtb) = ρ(tb − ta), i.e. the autocorrelation function:

= VX
k+Γ∑

ta=k−Γ

k+δk+Γ∑
tb=k+δk−Γ

W (ta − k)W (tb − (k + δk))ρ(tb − ta)



72 CHAPTER 4. CORRELATION BETWEEN CLOSE WAVELET COEFFICIENTS

with t = ta − k:

= VX
Γ∑

t=−Γ

k+δk+Γ∑
tb=k+δk−Γ

W (t)W (tb − (k + δk))ρ(tb − (t+ k))

with t′ = tb − k:

= VX
Γ∑

t=−Γ

δk+Γ∑
t′=δk−Γ

W (t)W (t′ + k − (k + δk))ρ(t′ + k − (t+ k))

= VX
Γ∑

t=−Γ

δk+Γ∑
t′=δk−Γ

W (t)W (t′ − δk)ρ(t′ − t)

with t′′ = t′ − δk:

= VX
Γ∑

t=−Γ

Γ∑
t′′=−Γ

W (t)W (t′′)ρ(t′′ − t+ δk)

= VX
Γ∑

t=−Γ

W (t)

Γ∑
t′′=−Γ

W (t′′)ρ(t′′ − t+ δk)

because the autocorrelation function is symmetric ρ(t′′ − t+ δk) = ρ(t− δk − t′′):

= VX
Γ∑

t=−Γ

W (t)

Γ∑
t′′=−Γ

W (t′′)ρ(t− δk − t′′)︸ ︷︷ ︸
WTρ(t−δk)

= VX
Γ∑

t=−Γ

W (t)WTρ(t− δk)︸ ︷︷ ︸
WT (WTρ(δk))

= VXg(δk)

The correlation between close wavelet coefficients only depends on the interplay between the parameters of the
wavelet and the autocorrelation function of the signal. The correlation between two δk distant wavelet coefficients
can be empirically estimated on real data by convolving the autocorrelation function of the signal twice, once
with the conjugate of the wavelet and once with the wavelet itself.

This generalization leads to the previous more specific result when the autocorrelation of the signal was assumed
null, i.e. when ρ(k = 0) = 1 and ρ(k 6= 0) = 0.

This result taking into account the autocorrelation of the signal can help guide more accurately the spacing
required between two coefficients to minimize their dependence in statistical testing, and does not depend on
a specific wavelet choice. Whereas the correlation between close wavelet coefficients introduced by the wavelet
transform is artifactual, the autocorrelation of the EEG signal may be the manifestation of features of interest.
In other words, it may not be interesting to compensate for.



Chapter 5

Extraction of alpha bursts parameters
based on Morlet Wavelet Transforms

The motivation of this chapter is the identification of the temporal properties of oscillating events (namely bursts).
They could provide new ways of assessing functional relationships between the cortical regions generating these
bursts, and be integrated in functional connectivity based neurofeedback protocols. The description of such
bursts can be achieved accurately with a restricted number of parameters and therefore present the advantage of
condensing remarkably the signal information. It is proposed to use the Morlet wavelet transform to recover the
parameters of these bursts on some selected real data, and describe the outcome.

5.1 Introduction

Electrical brain activity observed on the scalp can be rhythmic. In the α band, these rhythmic events mostly
occur in bursts.

Chandran KS et al. [47] provides a review of the existing strategies employed for burst extraction, namely:
continuous Gabor transform [42, 337], power estimation [76], wavelet transform [249], Hilbert transform [168],
matching pursuit [147, 60, 172]. The strategy described here falls into the wavelet transform category, but differs
substantially from the method exposed in [249].

5.2 Data

The toy sample presented in figure 5.1 is taken from the experiment of chapter 7. It consists in 20 seconds of
Eyes Closed Relaxation (ECR) EEG recording at electrode O1 of a subject selected for presenting large α waves.
The recording sampling rate is of 512 samples per second, and is kept as such during the processing.

5.3 Model

The model is based on the assumption that sources of electric activity in the neocortex have a bursty behavior in
the α frequency band. Namely, at the scalp, is recorded a weighted sum of these bursts, according to an unknown
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Figure 5.1: 20s sample of Eyes Closed Relaxation (ECR) of a subject selected for presenting large α waves. The
sample is high-pass filtered below 8Hz, and low-pass filtered above 12Hz for display. The first and last seconds

are ignored because of the filtering effects.

gain matrix1:

S(t) =

N∑
i

wiBi(t) (5.1)

where:

wi is a projection weight (gain matrix coefficient) of the source activity onto the sensor

and Bi is a burst modeled as a sinusoidal wave modulated by a Gaussian window.:

Bi(t) = αie
− (t−ti)

2

2σ2
i cos(2πfi(t− ti) + φi) (5.2)

where:

αi is the amplitude of the source
fi is the frequency of oscillation of the burst
σi is the standard deviation of the Gaussian window
ti is the time at which the Gaussian is maximized
φi is the phase shift at ti

Hence, at the level of the scalp :

S(t) =

N∑
i

wiαie
− (t−ti)

2

2σ2
i cos(2πfi(t− ti) + φi) (5.3)

In the upcoming content, wiαi = Ai.

1This model is also used in [338], where a completely different task is undertaken, notably finding a reference point at infinity in
EEG settings.
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5.4 Method

The method aims at recovering the amplitude, the time of peak, the frequency and the phase shift of bursts while
assuming their duration, based on the Morlet wavelet transform.

The duration parameter ∂i is fixed to 0.5 seconds for all bursts according to the duration of α bursts found in
the literature (which is in accordance with observations in the current toy sample). ∂i, the width of the Gaussian
window at half maximum is linked to its standard deviation σi by the formula:

∂i = 2
√

2 log 2σi (5.4)

The amplitude Ai, the time ti at which the maximum of the Gaussian is reached, the frequency fi and the phase
shift φi are estimated from the coefficients of the continuous complex Morlet wavelet transform.

The Morlet wavelet transform complex coefficients are obtained with a wavelet width of 7 oscillations. The
amplitudes map 5.2 and phases map 5.3 are obtained by respectively taking the magnitude and the angle of the
complex coefficients. The time ti and frequency fi points at which the energy is locally maximal are estimated.
At these locations, the amplitude Ai and the phase φi are retrieved.

Figure 5.2: Amplitudes map of the signal, obtained as the magnitude of the continuous Morlet wavelet
transform coefficients. Local maxima are represented by red crosses, obtained with the Python library scipy,

algorithm: maximum filter.

Figure 5.3: Phase map of the signal, obtained as the angle of the continuous Morlet wavelet transform
coefficients. Red crosses show the local maxima locations estimated on the amplitude map.

The signal is then reconstructed according to Equation 5.3, and compared to the original signal.
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Figure 5.4: In black: Original signal presented in figure 5.1. In red: Reconstructed signal based on the
parameters extracted from the Morlet wavelet transform, and assumptions. Edges are removed due to filtering

effects. Both signals are normalized w.r. to the original signal.

The amplitudes recovered at (fi, ti) in the amplitude map are not accurate when two or more bursts are over-
lapping, it is actually the sum of all overlapping bursts at (fi, ti) 5.5. This effect is especially visible at 10.5s in
figure 5.4. Therefore, a correction must be designed, so that the amplitude at a maximum equals the sum of the
amplitudes of the bursts at that location :

A(fi, ti) =

N∑
j

Aje
−

(t′j−t
′
i)

2

2σ2 (5.5)

where:

t′i equals ti − φi
2πfi

t′j equals tj − φj
2πfj

σ equals ∂
2
√

2 log 2

Solving for all maxima at the same time amounts to solving a linear system, with unknown Aj , the actual
amplitudes of the bursts. The resolution of the system provides new amplitudes. The correction induces overall
a better fit of the bursts to the data presented in figure 5.5. For some bursts, the goodness of fit decreases (at
9s.). Several reasons can lead to the reduction of the goodness of fit, the first one being a wrong estimation of the
location in time or frequency or the phase shift. This occurs when bursts oscillating at a similar frequency have
their centers too close to one another. In such cases, different optimizations should be considered, among which
an optimization involving the procedural removal of the bursts could be interesting (such as matching pursuit
[172]).

5.5 Wavelet width estimation

The goodness of fit of the reconstructed signal with the original signal can be used to estimate a good wavelet
width. In line with the discussions of chapter 3 regarding the estimation of the width of the wavelet, the number
of bursts and the average error between the reconstructed signal and the original signal is computed for varying
wavelet widths. The results are presented in figure 5.6. The best result is obtained for the smallest reconstruction
error and smallest number of burst. In this example, it occurs for wavelets of 5 to 9 cycles.
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Figure 5.5: The first and last 2 seconds are ignored in the corrected reconstruction.

Figure 5.6: Reconstruction error and number of reconstructed bursts with respect to wavelet width, results
obtained on an arbitrary 20s segment of EEG during an Eye Closed Relaxation condition (Fp1 electrode

referenced at M2).

5.6 Conclusion

In this contribution, the Morlet wavelet transform was used to extract the locations, phase shifts and amplitudes
of bursts in a real EEG signal. The main interest of this approach is its simplicity, and the goodness of fit that can
be achieved without optimization. A linear optimization based on the amplitudes increases further the goodness
of fit.

The Morlet wavelet transform is especially well designed for the purpose of detecting oscillatory bursts. Nonethe-
less, the wavelet width is paramount in figuring the most adapted time to frequency accuracy. Studying the error
of reconstruction of the signal with the presented method along varying wavelet width is a practical data-driven
estimation of this parameter.

Moreover, it confirms that the phase extracted at the maximum of amplitude is indeed practically accurate,
despite the caveats formulated in chapter 3. While the duration was fixed in this experiment, it could also be
extracted from the data. Estimating the duration parameter ∂i is another step that can be taken to further
improve the goodness of fit.
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Chapter 6

Phase synchrony in epileptic patients
ElectroEncephaloGraphic recordings

This chapter is a joint effort conducted with Jeanne Benôıt, neurologist at the university hospital Pasteur in Nice,
that emerged during the search for a neuromarker differentiating epileptic patients from healthy subject during
interictal period. Indeed, a neuromarker of this kind should be of first choice for neurofeedback protocols. Among
the few scalp EEG studies demonstrating such difference stands Bhattacharya [24]. This work reproduces and
extends the experimental protocol of the study [24] on a new group of epileptic patients and healthy controls.

Glossary

EEG : ElectroEncephaloGraphy
EC : Eyes Closed
C : Control participants (Healthy)
E : Epileptic patients
TLE : Temporal Lobe Epilepsy
RTLE : Right TLE
LTLE : Left TLE
MTLE : Mesial TLE

MPC : Mean Phase Coherence
PLI : Phase Lag Index
FC : Functional Connectivity
NH : Null Hypothesis
WRST : Wilcoxon Rank Sum Test
ROC : Receiving Operator Char-
acteristic
AUC : Area Under Curve
CHUN : University Hospital of
Nice

6.1 Introduction

Epilepsy is defined by an enduring predisposition of the brain to generate epileptic seizures [81]. Electroen-
cephalography, together with patients’ clinical and radiological features, are the key elements to the diagnosis of
epilepsy. 8.93 per 1000 (roughly 1%) of the world population suffers from epilepsy [205]. While 70-80% of epilepsy
cases can be controlled through adapted and personalized medication, the remaining cases are drug resistant 1.
Moreover, anti-epileptic drugs have a wide range of adverse effects [217], and may be detrimental to daily life. Al-
ternative treatment options must then be considered. Surgically isolating or removing the identified epileptogenic
focus is often considered as the alternative in focal epilepsies. While lesional epilepsies are successfully surgically
treated in about 70% of the cases, only 50% are successful when the cause is not lesional [299]. Although deemed

1Drug resistant epilepsy is defined by Kwan et al. [150] as failure of adequate trials of two tolerated, appropriately chosen and
used anti-epileptic drug schedules (whether as monotherapies or in combination) to achieve sustained seizure freedom.
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safe, epilepsy surgery is associated with cognitive changes [272], mostly because pre-surgical screening of brain
functions can only be partial. In a meta-analysis on surgical outcomes, Sherman et al. [272] note an increased risk
of verbal memory and naming impairment with left-sided temporal surgery. It leaves out, considering all epilep-
sies could be treated surgically, 70% of 30% of 1% of the world population untreated, i.e. 15 million individuals.
These 15 million individuals live with disabling seizures justifying an extensive research into additional means of
treatment.

Over the past half century, electroencephalographic protocols of operant conditioning have provided an alternative
to medication and invasive procedures. By learning to modulate and reinforce specific brain activity patterns,
EEG-neurofeedback has shown positive outcomes in reducing the frequency and severity of seizures in epileptic
patients (see [296] for a review). These protocols were either based on the control of sensorimotor rhythms: 12-16
Hz oscillations present over the motor area [293][291][166][79][267], or slow cortical potentials: several hundred of
millisecond shifts reflecting at the scalp the level of excitability of the underlying cortex [320][144]. While these
studies offer a promising alternative, and mechanisms explaining their success have been suggested (inhibitory
role of the sensorimotor rhythms: [304], in link with the thalamus [115]), they were not designed based on the
current knowledge regarding the differences in brain connectivity associated with epilepsy (for the initial study
on sensorimotor and epilepsy see Sterman et al. [292]).

Epilepsy is now recognized as malfunction in a network of brain structures rather than a single epileptogenic region
[223][300][326][152]. Indeed Warren et al. [326] and Lagarde et al. [152] show a clear disconnection of the epileptic
zone from the rest of the brain network with intracortical measurements. Additionally, magnetoencephalogra-
phy studies [69][68] revealed global decreases in connectivity of mesiotemporal lobe epilepsy patients based on
imaginary coherence. Schevon et al. [262] electrocorticography study revealed an increased local synchrony.

The measure of interictal correlates of epileptic activity in EEG signals could give a more adapted lever to control
epileptogenic processes and their unfolding before and during seizure. Finding a measure differentiating epileptic
from healthy brains with EEG in the absence of epileptic spikes is challenging but rewarding, as it could be used
as marker / feature for a rehabilitating neurofeedback protocol. Characterizing this deviance is at the heart of
Z-Score neurofeedback protocols [302].

While many approaches accurately differentiate seizure signals from healthy signals, not many to date differentiate
interictal signals from healthy signals with scalp EEG recordings. Lahmiri [153] claim that the Hurst exponents
of interictal and healthy recordings are statistically different, despite comparing healthy scalp EEG and interictal
intra EEG recordings.

Phase synchrony is a natural way to represent possible functional relationships through the oscillatory nature of
the periodic brain events. In a study that claims differentiating epileptic (during interictal stage carefully chosen
not to exhibit epileptic spikes) from healthy subjects (both under closed eyes condition), Bhattacharya [24] used
the Mean Phase Coherence (MPC), a phase informed synchrony measure. It was calculated on all possible pairs
of scalp EEG electrodes within several frequency bands. For each pair of electrode and each frequency band, a
Wilcoxon rank sum test was conducted to check if the MPC values of epileptic patients were statistically higher
than in controls, and reversely. The positive tests were aggregated in bins. The results are reproduced in figure 6.1.
They allow a twofold conclusion: (1) Short-distance pairs showing statistically greater MPC values (in one group
than in another) are evenly shared between the epileptic patient group and the control group. (2) Long-distance
pairs showing statistically greater MPC values are mostly attributable to the control group, indicating a reduced
long range synchrony in epileptic patients. This stand is partially in line with an intracortical study of Lagarde
et al. [152].

This work reproduces scrupulously Bhattacharya [24]’s study to ensure whether or not it applies to another group
verifying a stricter inclusion criteria (TLE patients, TLE being the most common drug-resistant epilepsy [22]).
It extends the latter study by attempting to correct some analysis biases, bringing some natural add-ons such as
considering other synchrony measures and the location of the epileptic focus.
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Figure 6.1: Results of Bhattacharya’s experiments, EC condition, window length: 8s, window overlapping: 7s,
measure: Mean Phase Coherence. Each bin counts the number of pairs that show statistically higher

“synchrony” measures according to the Wilcoxon rank-sum test. Left side for “short range” pairs, right side for
“long range” pairs. For an easier comparison between short and long range, the bins are normalized respectively

by the number of short and long range pairs. Reproduced from Bhattacharya [24].

6.2 Material

The model of EEG recording device is a SD plus (Micromed), and the recording software a PLUS EVOLUTION
(Micromed SpA, 01/10/2015 update). The conducting paste is a PATE REEGAPONCE (M.E.I.). The recording
sampling rate is fixed at 256Hz and not re-sampled later on. The electrodes are placed following the 10/20
system: Fp1, Fpz, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, Oz, O2. Two additional
electrodes are placed on the thorax. All electrodes are referenced to the mean of the earlobes 6.2. The raw signals
are recorded.

The experimental protocol was not designed for the purpose of this analysis, but for routine EEG recordings. The
protocol follow this pattern:

• 2 blocks of 30s eyes closed / 30s eyes open,

• 1 block of 180s hyperventilation / 180s hyperventilation recovery,

• 1 block of intermittent photic stimulation,

• 1 block of 180s hyperventilation / 180s hyperventilation recovery,

• 1 block of 30s eyes closed / 30s eyes open

Of these eyes closed condition blocks, a neurologist recovered those free of any artifacts (periodic lateralized
epileptiform discharges, eye movements, muscle contractions...). This protocol was realized with 23 E (12 LTLE,
11 RTLE), and 12 C. All recording sessions took place at the CHUN Pasteur, Alpes-Maritimes, France. Epileptic
patients present focal epilepsies without MRI anomalies. They were under various medical treatments during
the period within which the recordings took place (such as in [24]). Each subject has a total of 10 recordings
lasting 30 seconds. While the EEG recordings of epileptic patients were recovered from the hospital database,
consenting healthy subjects took part to new acquisitions on the same device. These controls declared not having
any neurological disorder, nor taking any medication.
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Figure 6.2: Routine EEG recordings at CHUN.

6.3 Reproduction

In this first analysis, the methodology proposed in Bhattacharya [24] is reproduced.

6.3.1 Methodology

The methodology of Bhattacharya [24] is reproduced. Electrodes of interest are selected to match that of Bhat-
tacharya [24]: P3, C3, F3, O1, T5, T3, F7, Fp1, P4, C4, F4, O2, T6, T4, F8, Fp2. The EEG signals are notch
filtered at 50Hz and then filtered between 1Hz and 70Hz. The signals are filtered in parallel on several frequency
bands: delta (1-4 Hz), theta (4-7 Hz), alpha-1 (7-10 Hz), alpha-2 (10-13 Hz), beta-1 (13-18 Hz), beta-2 (18-30
Hz) and gamma (30-70 Hz). Filtering is achieved with a 6th-order Butterworth filter (Infinite Input Response)
applied with the “filtfilt” technique performing a zero-phase digital filtering, of importance in broad band phase
based measures (although not specified in [24]). The 30s epochs are chopped, into windows of 8s, overlapping by

7s. All possible pairs of scalp electrodes ( 162−16
2 ), are categorized either as long-range, or short range. Short-range

pairs are neighboring electrodes within the same hemisphere and amount to 30 pairs. Long-range pairs are either
located in opposite hemispheres or are not immediate spatial neighbors and amount to 90 pairs.

The MPC [185] values are computed for each group, each subject, each pair and on each window. For each pair,
and each frequency band, the measures obtained for each group (E and C) are compared statistically with two
non-parametric one-sided Wilcoxon rank-sum tests, with p-value = 0.05. Once testing if MPC values for E are
statistically greater than MPC values for C, and then reversely. The number of pairs for which MPC values of E
are statistically greater than MPC values of C are summed up, the same is realized for C > E.

6.3.2 Results

Bhattacharya [24] observed a “reduced long range synchrony” in epileptic patients (patients experiencing seizures),
through the MPC computed as in this experiment. From the results of this experiment, presented in figure 6.3,
this effect is absent. On the contrary, almost every pair (regardless of the range) in epileptic patients reveal a
higher synchrony. Given the discrepancy between the results, caution seem advised, and justifies investigating
the methodology. While the variability between Bhattacharya [24] and this reproduction may indicate that the
variability in the MPC of epileptic patients is higher than any of the two datasets could capture, the difference
in results observed with Bhattacharya [24]’s study could also come from statistical analysis bias. These biases
are considered in 6.4.1. Alternatively, this difference could be explained by the generally strong variability of the
MPC in epileptic patients. The variability is already high in the dataset of this study, with strict inclusion criteria
(a fact unveiled in figure 6.8, I.), one may suppose it is also the case with looser inclusion criteria. In such cases,
a restricted number of subjects does not allow to capture the variability of the studied population, and can lead
to different analysis results.

Alternatively, the subjects in Bhattacharya [24] study are random epileptic patients; their inclusion criteria is less
specific than for this study. Although this effect could not be tested due to the absence of Bhattacharya [24]’s
data. Inclusion criteria and statistical analysis biases are considered in 6.4.1.
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Figure 6.3: Reproduction of Bhattacharya experiments, EC condition, window length: 8s, window overlapping:
7s, measure: Mean Phase Coherence. Each bin counts the number of pairs that show statistically higher

“synchrony” measures according to the Wilcoxon rank-sum test. Left side for “short range” pairs, right side
pour “long range” pairs. For an easier comparison between short and long range, the bins are normalized

respectively by the number of short and long range pairs. Black bins are absent because there is not a single
pair of electrodes for which C MPC values are statistically higher than those of E.

6.4 Adaptation

The inclusion criteria are more specific in this study as they only involve TLE patients. In Bhattacharya [24], the
independence between draws within groups is not validated to a high degree, the draws are correlated spatially
and temporally. First, the MPC values are computed on pairs of sequences of complex coefficients obtained by
a convolution operator [89] (see chapter 3) and hence correlated temporally by construction. Second, the MPC
values are computed on highly overlapping windows, hence are even more correlated temporally. Third, the
MPC measures are recovered on a restricted number of subjects which adds another level of correlation within
each subject. Fourth, the different pairs share electrodes, which is not an issue regarding the groups (E and
C) comparison at the level of one pair, but impairs the statistical analysis regarding the comparison between
accumulated WRSTs in bins. Fifth, MPC values are spatially correlated by volume conduction of brain activity
sources; again the issue does not stem at the level of the pair comparison but at the level of bins comparisons.

6.4.1 Methodology

Before diving into the problem of dependent data, shorter epoch length and the absence of overlapping are
investigated to match more closely the bursty behavior of brain rhythms (rather short in general), and better
capture the synchrony, while still keeping an eye on minimizing the correlation in the data (removing overlap and
using PLI).

The dependence within the data is then considered in the light of the Wilcoxon rank-sum test (Mann-Whitney U
test). One of the hypotheses of the Wilcoxon rank-sum test is the independence of the draws within groups and
mutual independence of the draws between groups [189]. In case of dependence between the draws, the distribution
of the test statistic changes: the variance is (potentially strongly) increased [220], and the commonly applied p-
value check is not appropriate. In other words, correlated values within each group increase fallaciously the
significativity of the test (see the next section) and may bias the conclusions. To partially reduce this correlation
the WRST statistic is adapted to take some degree of dependence into account.

The present reproduction eventually adds an additional statistical test to Bhattacharya [24]’s methodology to
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not arbitrary decide whether for a given frequency band the epileptic patients have generally more synchronous
values that controls. The multinomial distribution of the Wilcoxon Rank Sum Test outcomes is used to gauge
the likelihood of observing such results.

Considering shorter epoch length

Epoch length may have a strong influence on synchrony measures. Indeed, too large epochs tend to mix different
synchrony states and average low and high synchrony measures of these states. Also, overlapping epochs strongly
correlates them, making these less appropriate for statistical testing.

Given the duration of oscillatory components of brain activity of the order of the second (see chapter 5), it is
therefore appropriate to consider windows of this duration (2 seconds is chosen), and minimize the overlapping
to avoid considering complex statistical corrections.

I II

Figure 6.4: In I windowing schemes are compared for healthy subjects, while in II they are compared for
epileptic patients. MPC values are obtained on windows of phase differences between all possible pairs of the

channels mentioned in the material section, regardless of the notion of range. W: window duration. O:
overlapping duration. The bin heights weighted by their widths sum to one.

In figure 6.4, two windowing schemes are compared. Longer windows lead to a decrease in MPC. Also, the
distribution is slightly more skewed. These effects are observed in C and E.

Considering the autocorrelation of the synchrony measures

Hereafter synchrony measures are conveniently considered as random processes, and the synchrony measure values
as “draws”. Synchrony measures computed on sliding windows (consecutive ”draws”), even when not overlapping,
might be strongly correlated in time. To investigate if this is a general property, the autocorrelation function is
averaged over all periods of 20 seconds, for all possible pairs, and for the low alpha frequency band in Controls.
Two windowing schemes are considered: 8 seconds windows, overlapping by 7 seconds (W: 8s, O: 7s) as in [24],
or 2 seconds windows, overlapping by 0 seconds (W: 2s, O: 0s).

Following 6.5, in the case (W: 2s, O: 0s), on average, two consecutive “draws” are not correlated. This is opposed
to the case (W: 8s, O: 7s), where correlation remains up to the 4 seconds lag (corresponding to 4 consecutive
“draws”).

It encourages to use shorter and non overlapping windows, which is what will be done in the following sections.



6.4. ADAPTATION 85

Figure 6.5: Autocorrelation function of MPC measures, according to two windowing schemes. Obtained on 154
recordings from all Controls and 120 pairs of electrodes. W stands for Window duration, O stands for

Overlapping duration.

Considering the Phase Lag Index

To mitigate against the spatial correlation due to volume conduction (or gel-bridged electrodes) the PLI is com-
puted [284] for comparison and/or correction. According to the literature, the PLI is not sensible to volume
conduction since it disregards phase differences oscillating around 0 or π. A controversial stance was nonetheless
presented in chapter 7.

Mann Whitney U test with independence

Two samples Sα : (s1
α, ..., s

Nα
α ) and Sβ : (s1

β , ..., s
Nβ
β ) are considered, of respective sample size Nα and Nβ . The

Mann Whitney U test statistics attributes a rank to each of the realizations of Sα ∪ Sβ from the lowest to the

highest value, as an example : s1
α < s1

β < ... < sNαα < skβ < ... < s
Nβ
β < skα gives the ranks (r(s1

α) = 1, r(s1
β) =

2, ..., r(sNαα ) = l, r(skβ) = l + 1, ..., s
Nβ
β = (Nα + Nβ) − 1, skα = (Nα + Nβ)). Then the sum of the ranks of each

sample is calculated in the general case: Tα =
∑Nα
i=1 r(s

i
α) and Tβ =

∑Nβ
i=1 r(s

i
β), and the test statistic is taken as

the smaller T of the two (the larger is noted T̃ , by association the number of samples are respectively N and Ñ).
For sufficiently large N and Ñ , the test statistic under the null hypothesis is approximately normally distributed.

T ∼ N (µ, σ2) (6.1)

where:

µ(T ) equals N(N+Ñ+1)
2

σ2(T ) equals NÑ(N+Ñ+1)
12

Mann Whitney U test with dependence

To understand the impact of correlated samples on the power of the test, one may imagine the extreme case were
each realization (siα and siβ) is duplicated f times (or respectively chosen as close as possible but different to
avoid ties). This gives the test statistic T ′ which is realistic for close overlapping windows. Then compare it to
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the usual test statistic T constructed with fNα and fNβ randomly attributed ranks. In both cases the number
of samples is the same, namely fNα and fNβ . In the duplicate case, under the null hypothesis :

T ′ =

N∑
i=1

f−1∑
k=0

f(r(si)− 1) + 1 + k = f2T − f(f − 1)

2
N (6.2)

Since T ′ and T are both random variables:

µ(T ′) = f2µ(T )− f(f − 1))

2
N = f2N(N + Ñ + 1)

2
− f(f − 1))

2
N =

fN(fN + fÑ + 1)

2
= µ(T ) (6.3)

σ2(T ′) = f4σ2(T ) = f4NÑ(N + Ñ)

12
+ f4NÑ

12
= fσ2(T ) + (f4 − f3)

NÑ

12
(6.4)

Duplication of the ranks is thereby demonstrated to increase in the variance of T ′’s distribution, as a polynomial
function of the duplication, strictly increasing for f > 1 (see equation 6.4). The effect is increased for large
samples. The variance increase will lead to a more frequent rejection of the null hypothesis for a given significance
threshold than for T . It is typically in line with other works such as [220].

Once the factor f is estimated, the test statistic T ′ can be standardized to be used in pvalue tables.

Z ′ =
T ′ − µ(T ′)

σ2(T ′)
(6.5)

In the following, the f values are estimated in different scenarios, with the data of the experiment presented in
section 6.2. The estimation of f is achieved by solving the 4th order polynomial of equation 6.4 after introducing
the theoretical variance (σ2(T ) given N and Ñ), and the variance estimated from the NH with the a priori
correlated data (σ2(T ′)). The subtlety with the estimation of the Wilcoxon rank sum test statistic distribution
under the NH, is that it requires N and Ñ to be constant. This distribution under the NH is built upon the 12
Controls, on all possible combinations of these controls in two groups of size 6 subjects. Leading to N = Ñ , and
varying from scenario to scenario.

Measure W. S. N Theoretical µ Theoretical σ Actual µ Actual σ f

MPC
(right hemisphere)

W: 8s
O: 7s

246960 30494620800 50103116 30494585928 2388109980 180

MPC
(right hemisphere)

W: 2s
O: 0s

152880 11686147200 24403442 11686197538 797373608 130

PLI
(right hemisphere)

W: 2s
O: 0s

152880 11686147200 24403442 11686022485 272171620 65

PLI
(O1-P3)

W: 2s
O: 0s

5460 14905800 164715 14905998.8 803515 17

PLI
(O1-P3, α band)

W: 2s
O: 0s

780 304200 8896 304231.50 21632 5

PLI
(F7-P3, α band)

W: 2s
O: 0s

780 304200 8896 304251.33 17423 4

Table 6.1: W. S.: Windowing Scheme, N.H.: Null hypothesis distribution of WRST, µ: mean, σ: standard
deviation

Different scenarios of WRST statistics on correlated samples are studied and presented in table 6.1. These sce-
narios cover more elements of correlation than those described in 6.4.1. More precisely, these scenarios encompass
a within hemisphere correlation, as well as a within band correlation that is not present in Bhattacharya [24].
They mainly serve the purpose of presenting the soundness of the f value across incrementally decreasing levels
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of synchrony. Two windowing schemes are compared, two phase synchrony measures are compared, two different
restrictions on sub-samples are considered (pair and frequency band), and lastly different pairs are compared.

Shortening the windows and removing the overlap between consecutive windows considerably lowers the f value,
as it reduces the intuitive redundancy created by overlapping. It goes along the autocorrelation of the MPC
measures for varying window lengths and overlaps presented in 6.4.1, that goes to 0 in the short windows / no
overlap case and justifies why considering shorter and non overlapping windows in 6.1 lead to a reduction of the f
value accounting for dependence. The f value obtained for the PLI measure is again greatly lowered, supposedly
because the correlation due to volume conduction is (partly, see conclusion of chapter 7) ignored. Considering
only one pair also lowers f , since it avoids the correlation between pairs containing the shared electrodes, and the
same activity recorded by two pairs of electrodes. Considering only one pair and one frequency band again lowers
f because it removes the correlation between frequency bands (by construction or due to physiological constraints
(cross frequency coupling)). f value still unveils some correlation for a single pair of electrodes within a single
frequency band (F7-P3 or O1-P3, α band). This is not what is observed with the autocorrelation of the signal
as suggested in section 6.4.1, since the autocorrelation is close to 0 for non zero lags. It could capture the within
subject dependence that is not accounted for in this framework.

The f values could ultimately be used to correct the WRST employed in the reproduction of Bhattacharya [24]
results (see section 6.4.3).

6.4.2 Multiple comparisons correction

Whether working with corrected WRS tests or not, before making any deduction on a pair of bins (such as
“MPC values of E are generally higher than of C for long / short range electrode pairs at a given frequency
band”), one must ensure that this is not due to chance. Indeed, given the number of comparisons (90 for Long
Range and 30 for Short Range), rejections of the null hypothesis at 2 ∗ α occur even if the MPC samples come
from the same“population”. The multinomial experiment is a probabilistic framework to model and explain the
construction of these bins.

For each pair of electrodes, WRST statistic is computed over the E and C samples. Under the null hypothesis
that both samples belong to the same “population”, and the rejection of the null hypothesis at α% on the left
(Epileptic are more likely to have lower values than Controls) and α% on the right (Epileptic are less likely to
have lower values than Controls), there is a α% chance that the WRST statistic of the Epileptic sample is deemed
statistically very low, 100-2α% that it is deemed statistically not extreme and α% that is deemed statistically
very high. Each time a WRST statistic is drawn for the Epileptic sample, it can lead to 3 different outcomes:
statistically very low, statistically very high, or statistically not extreme. Equation 6.6 gives the probability that
a given pair of bins for 90 (for long range pairs) tests occurs.

P (K = k, L = l) =
n!

k!l!(n− k − l)!
αk(1− 2 ∗ α)(n−k−l)αl, n = 90, α = 0.05 (6.6)

where:

K is the random variable counting the number of tests that return E significantly more synchronous than C.
L is the random variable counting the number of tests that return C significantly more synchronous than E.
k is the realization of the K random variable.
l is the realization of the L random variable.
n is the number of tests (90 for long range pairs).

What must then be tested is how likely such an extreme scenario is likely to occur under the null hypothesis. The
couples (k,l) that are not likely to occur (under 5% off all draws) are determined by summing all probabilities of
the less likely couples (according to equation 6.6) until reaching a probability of β = 0.05. In figure 6.6 the 5% of
(k,l) less likely to be drawn are plotted in blue, and the remaining in red. Picking a couple (k, l) in the blue area
occurs by chance less than 5% of the time.
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Figure 6.6: z-axis: 6.6. x-axis: k, y-axis: l. In red: couples that are likely to be drawn, in blue: couples unlikely
to be drawn. n = 90. beta is p-value of this statistical test, and set to 0.05.

Applying these tests to the results of the original study would suggest that some of the differences observed
between control and epileptic patients could have happened by chance, or at least would have suggested to be
cautious regarding the conclusions. The ultimate problem lies in the correlation between these WRST statistics
computed on pairs that share electrodes, the draws of the WRSTs are likely not independent.

Adapt the statistical tools

Despite the adjustments provided in section 6.4.1, alternative statistical tools can be used to approach more
closely the levels of dependence in the dataset at hand. As a complement, the synchrony measure can be viewed
as a classifier threshold, and a ROC statistic can be inferred [186]. An additional statistical analysis is realized
thanks to the AUC of the ROC, providing an alternative mean of differentiating between epileptic patients and
controls.

6.4.3 Results

Adapted Wilcoxon-Rank Sum Test

The f values can be used to correct the WRST employed in the reproduction of Bhattacharya [24] results. They
are evaluated for each pair of electrodes and each frequency band, on MPC values computed on 8 s. windows
with a 7 s. overlap. On average they equal 21.8 with a standard deviation of 3.6 and are sensibly higher for
the highest frequency bands. They are used to adapt the standard deviation of the (normal) distributions of the
WRST statistics under the null hypothesis, and provide adapted results, displayed in figure 6.7.

While the results in figure 6.7 do not overturn the conclusions made in the reproduction section, they clearly
show the impact of mis-considering the correlation in the data. The multiple comparison check presented in
section 6.4.2 does not invalidate, that for this dataset, regardless of the frequency band, and for most pairs of
electrodes, the epileptic patients have, in general, higher MPC values than controls.
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Figure 6.7: Reproduction of Bhattacharya experiments, EC condition, window length: 8s, window overlapping:
7s, measure: Mean Phase Coherence. Each bin counts the number of pairs that show statistically higher

“synchrony” measures according to the adapted Wilcoxon rank-sum test. Left side for “short range” pairs, right
side pour “long range” pairs. For an easier comparison between short and long range, the bins are normalized

respectively by the number of short and long range pairs. Black bins are still absent because there is not a single
pair of electrodes for which C MPC values are statistically higher than those of E.

The influence of the localization of the epileptogenic zone with ROC AUC

There is much to believe that the epileptic focus, in TLE, impairs differently the FC of the ipsilateral hemisphere
than the FC of the contralateral one. Therefore, the influence of the epileptogenic locus on the MPC is assessed.
Because hemispheres differ strongly in the cognitive functions they underlie, the functional connectivity should
be different. One hemisphere in epileptic patients is only compared to itself in controls (Right vs Right, Left vs
Left).

The ROC statistic is employed to quantify how well a synchrony measure helps in differentiating between the
epileptic patients and controls, notably the AUC of the ROC (as in [186]). The more similar the epileptic
patients are to controls, the harder it is to differentiate between both, and the AUC of the ROC is close to 0.5.
Interestingly, ROC curves are insensitive to class imbalance. To ensure the ROC statistic did not occur by chance
when classifying C and E with the synchrony measure, the distribution of the AUC under the null hypothesis
must be estimated.

Null hypothesis Because it does not seem feasible to infer theoretically a threshold of the ROC statistic above
which it would be guaranteed significant (95% certainty), the AUC distribution of the ROC statistics is drawn
from the sample of controls. An underlying hypothesis is that most parameters inducing dependence in the data
are the same in C and E. The controls are randomly assigned into two groups of equal number of subjects (6
controls in each), since 12 controls are available, there exist only

(
12
6

)
possible combinations. The AUC is extracted

from the ROC statistic computed for each pair of groups. The AUC distributions are roughly normal (slightly
skewed to the right), the distribution mean µ and standard deviation σ are obtained by fitting theoretical normal
distributions. When comparing E to C, the p-value of the test is estimated with regard to the fitted mean and
variance.

Comparisons The data analyzed is the MPC values measured on all pairs (Short range and Long range) of
electrodes for which both located on the Right or Left hemisphere, for the Eyes Closed condition. The duration
of windows is 2 seconds long and windows do not overlap. The null hypothesis distribution of the test described
in 6.4.3 is drawn, σ and µ are estimated by fitting. The comparison results are compiled in 6.2. Ipsi Right
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corresponds to the hemisphere of right temporal lobe epilepsy patients and Contra Left to their left hemisphere.
A p-value smaller than 0.05 indicates the likelihood that the measure could not differentiate between the two
groups (E and C) is less than 5%.

Mean Phase Coherence
Case N.H. µ N.H. σ AUC p-value

Ipsi Right 0.53 0.02 0.71 0.0
Contra Left 0.53 0.02 0.71 0.0

Ipsi Left 0.53 0.02 0.52 0.34
Contra Right 0.53 0.02 0.52 0.28

Table 6.2: N.H.: Null hypothesis distribution of AUC, µ: mean, σ: standard deviation. All numbers are rounded
after all computations for display.

The results in table 6.2 show that the MPC classification performance can be used to differentiate the group of
RTLE patients from the group of controls. Indeed, regardless of the hemisphere of RTLE patients the p-value
is close to 0. It is not the case for the group of LTLE patients: the measure does not help to discriminate with
controls (p-value close to 0.3). This can be explained by the MPC box-plots presented in the appendix (see
figure 6.8). Namely, all sides (Left and Right) confounded, the number of right epileptic patients presenting only
high MPC values is higher than the number of left epileptic patients presenting only high MPC values. The causes
of these subjects presenting high MPC values were investigated in appendix (see section 6.6.1). Because these
individuals could not be removed from the analysis, a selection bias should be hypothesized. This bias could be
circumvented by increasing substantially the number of subjects in each group.

Overall, the analysis of the classification performance by MPC does not reveal any difference with respect to the
laterality of the epileptic focus within this group of subjects at the level of this experiment.

6.5 Conclusions

This chapter demonstrates through the practical reproduction of a prior statistical study in epileptic patients that
phase synchrony measures on scalp EEG recordings are strongly impaired by correlation. While the Wilcoxon rank
sum test is appropriate for comparing sets of not normally distributed synchrony measures, the commonly used
p-value to assess for statistically significant differences (5%) has to be revised in accordance with the correlation
within the data. Although the methodological points developed here address a specific problem, they cover a
broad range of possible cases. A mean of computing an approximation of this correlation factor was proposed and
tested over several scenarios with varying degrees and form of correlation in real data. While the correction of
the Wilcoxon rank sum tests by this correlation factor does not overturn the biased initial tests, some differences
become statistically insignificant after correction.

Phase synchrony laterality in mono-lateral (left or right) temporal lobe epilepsies was investigated with an alterna-
tive test to the Wilcoxon rank sum test, namely the area under the curve of the receiver operating characteristic.
No statistically significant evidence of the epileptic focus laterality in phase synchrony can be unveiled in the
dataset at hand.

One major concern in statistical analysis remains the number of independent samples, and all correlation within
a given subject accounted for, in the limited number of subjects. And therefore the main limitation of the current
study remains in the restricted number of subjects which has to be substantially improved to allow for a definite
answer. The availability of data is constrained by two main factors: the cost of expertly examining the EEG
records to identify artifacts (eyes, muscles, epileptic spikes...), and differentiate between conditions(EO/EC); as
well as the recording of controls. A second limitation stems from the medication that epileptic patients are taking
despite still having seizures.

Finding a measure differentiating epileptic from healthy brain at the level of the individual with EEG in the absence
of epileptic spikes remains challenging but rewarding, as it could be used as marker / feature for a rehabilitating
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neurofeedback protocol, in the form of a Z-Score neurofeedback [302]. These results indicate nonetheless that
the mean phase coherence on specific pairs of EEG channels constitutes a neuromarker that should be tested in
neurofeedback protocols.

6.6 Appendix

6.6.1 Outliers

Subjects with elevated and localized (reduced spread) MPC distributions were identified unilaterally in the epilep-
tic group (see figure 6.8, I). These possible “outliers” are: 7f4499ef3 (RTLE), 8766fe2ebd (RTLE), f560d1b20e
(LTLE), f8766225fd (RTLE).

I

II

Figure 6.8: Distribution of the synchrony values for each subject taking part to the experiment, over all
recordings, all pairs of either Short Range / Long Range, all frequencies. I) MPC, window length: 2s, window

overlapping: 0.s. II) PLI, window length: 2s, window overlapping: 0.s.

They were not removed from the analysis for three reasons: there are other subjects that reach such high values
of MPC, they do not behave differently with the PLI (figure 6.8, II), but mostly because a careful supplementary
analysis of these EEG recordings did not unveil any peculiarity. An analysis of the medical records of these
epileptic patients did not unveil any common specificity.
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Reduced interhemispheric synchrony in controls ?

The involvement of hemisphere side in phase synchrony measures was evaluated regardless of the epileptic syn-
drome. The denomination of the hemisphere side is as follows: Left corresponds to both of the electrodes of a
pair are on the left hemisphere, Right corresponds to both of the electrodes of a pair are on the right hemisphere,
Both is for pairs that have electrodes on both hemispheres.

Histograms drawn from the MPC values confounding all frequency bands in figure 6.9 I show decreased MPC
values for interhemispheric pairs.

I II

Figure 6.9: I) Superposed histogram densities of MPC values (all frequency bands) of intra (right and left)
hemispheres and inter hemispheres pairs of electrodes for C only. II) Superposed histogram densities of the

square root of PLI values (all frequency bands) of intra (right and left) hemispheres and inter hemispheres pairs
of electrodes for C only. The bin heights weighted by their widths sum to one.

To statistically test the significance of this difference, a simple mixed linear model is devised, with Subject as
random factors (Value ∼ Side+(1 | Subject)), on C and E separately. In C, the random effect Subject accounts
poorly for the variance of the MPC residuals (0.001446 Subject σ2 for 0.064077 Residuals σ2). In E, the random
effect Subject accounts greatly (by a third) for the variance of the MPC residuals (0.02071 Subject σ2 for 0.06048
Residuals σ2). Both results are in line with the box-plots presented in figure 6.8, I, where a lower variance and
better consistency are observed in C, and higher variance and variability in E. Therefore, the previous linear
mixed model is used for E and a simpler linear model is used for C: Value ∼ Side. The linear model confidently
shows that interhemispheric MPC values are lower than intrahemispheric MPC values in C by over 0.13. The
mixed linear model also shows that interhemispheric MPC values are lower than intrahemispheric MPC values
in E by about 0.08 (with respect to 0.66 for Left and Right) whereas Left and Right hemisphere are overall the
same.

While a strong reduction of MPC is observed in C as well as in E for crossing pairs (interhemispheric), the PLI
in figure 6.9 II does not reveal any difference between interhemispheric and intrahemispheric pairs. The strong
reduction of MPC observed in controls (as well as in epileptic patients despite not being presented here) for
crossing pairs (interhemispheric) and the absence of this effect in PLI could be explained by volume conduction,
since the PLI is not directly sensible to it.

6.6.2 Non significative pairs

For the sake of providing information that could be useful to further analysis, the pairs that do not significatively
show that the epileptic group is more synchronous that the control group in figure 6.7 are:
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Delta Theta Alpha 1 Alpha 2 Beta 1 Beta 2 Gamma

Short range

C3-P3
T3-P3
T4-P4
F4-C4
T4-C4

C3-P3
T3-P3
O2-P4
T4-P4
T4-C4
T6-O2

F7-F3
T4-P4
T4-C4

F7-F3
T4-P4
T4-C4
T4-F4

T4-C4
T4-F4

Long range
T4-C3
F4-F3
T4-F3
C4-F7
F4-F7

C4-F3
C4-F7

T4-O2

Table 6.3: For each frequency sub-bands: the pairs that did not unveil a statistical significance between the
healthy and epileptic group.
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Chapter 7

Investigating the origin of phase delays
in the alpha band

Traveling waves in the brain are spatial patterns of oscillatory activity which underpin functional relationships.
This work investigates traveling waves in scalp EEG recordings, in an eyes-open / eyes-closed paradigm through
the prism of neurofeedback. Different electrode montages and different frequency bands are considered to show
the specificity of the anteroposterior axis in exhibiting phase differences in the alpha rhythm triggered by the
eyes closed condition. It reveals that the variability between subjects is higher than exposed in the literature.
Compellingly, it unveils that for a given subject, the phase difference patterns are stable across recordings. A
simplistic model of solely two electrical dipolar activities is proposed to account for these traveling waves on the
scalp. Finally, the focus on the anteroposterior axis shows that instantaneous estimates of phase differences are
not reliable but yet suitable for neurofeedback training.

7.1 Introduction

Traveling (or propagating) waves in the brain are oscillating electrical voltages of identical frequency observed
sequentially or simultaneously at different locations, relating them functionally. They are observed at various
scales, all over the brain [344], in various frequency bands and following varied stimuli (or in their absence),
making them an ubiquitous phenomenon [336].

How are the propagating waves measured? The variety of occurrence of traveling waves requires multiple
acquisition approaches. They can be measured with optical imaging method (voltage-sensitive dyes), MEG, EEG,
iEEG, ECOG or fMRI. Nonetheless, ensuring their functional relationship is non-trivial. The characterization of
consistent phase delays between the oscillations of neuronal populations may serve to unveil existing relationships.

Small scale At the scales of cortical columns or cortical area such as those of sensory systems, the traveling
waves propagate within the gray matter. These waves are recorded in the visual [72, 191, 225, 260], olfactory
[62, 83, 204, 154, 345], somatosensory [57, 55, 218], auditory[234], and motor [251] systems of multiple species.
The propagation occurs with respect to specific directions dictated by the structure of the network [57, 15]
and its synaptic weights. Sato et al. [260]’s review suggests that traveling waves in the visual cortex rely on
horizontal connections to ”long-range” (by opposition to immediate neighboring) cells and permit the integration
of information over larger area. The possible interactions between waves patterns add to their complexity. The
result of these interactions is sometimes interpreted as having a computing role in the brain [159].

95
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Large scale Other traveling wave patterns can be observed at the largest scale of the whole cortex, notably
sleep related waves and alpha waves. Nunez [196] was among the first studies to document traveling waves at
the level of the scalp. It described a wavelike shape of the alpha component along midline scalp EEG electrodes.
More recently, Zhang et al. [344] observed traveling waves all over the cortex with intra-cranial EEG analysis of
the θ and α band in epileptic patients. Their medium of propagation is debatable: Petsche and Šterc [219] show
that spreading may be a purely cortical surface event while Nunez [197] seem to favor a cortico-cortical spreading
involving white matter fibers over another medium involving thalamocortical fibers [312]. In multimodal (iEEG,
scalp EEG, unit firing) recordings, Nir et al. [192] show that these slow waves propagate along major anatomical
pathways, usually from medial prefrontal to medial temporal lobe and hippocampus. In any case, the interactions
between distant cortical areas are not only the result of anatomical connectivity, because they can be modulated
by brain states [274]. The spatiotemporal patterns of slow cortical waves (<4Hz [192], 0.1-5Hz [192]) are the
hallmark of non-REM sleep and anesthesia [274]. The sweeping wave of membrane potentials during sleep (<1Hz,
1.2-7.0 m/sec) from prefrontal-orbitofrontal to occipital regions is probably the most reproducible (across nights
and subjects) traveling wave [175]. According to [159], the structure of these cortex wide waves is mostly described
(in mice) through five patterns: a plane wave (1-directional), a standing wave, a source, a sink or a saddle. Studies
focusing on traveling waves of α activity during resting state remain relatively rare [123], and their conclusions
regarding the direction of the propagation dividing. While it is a consensus that these waves propagate along the
anteroposterior axis, results about the direction of propagation vary: anterior to posterior [122, 121], posterior
to anterior [196, 219, 344], or with reversals. Alamia and VanRullen [10] attribute the propagation direction to
the paradigm: forward (during visual stimulation) and backward (during rest). In Shaw and McLachlan [271]’s
study, stronger arousal level are positively correlated with slower longer time delays (slower propagation). The
closest study [123] to the present one unveils traveling waves in the α band, along the anteroposterior axis during
periods of high synchronization. It shows, involving 4 healthy subjects, that ”during phase synchronization, the
pattern of phase difference between sites takes two forms”, which appear irregularly over time. One is a pattern
with a gradual phase shift, and the other is a pattern with a sudden phase shift of about π radians in the central
region.

While the causality between scales remains unclear [181], some studies have advanced that slow rhythms operate as
coordinators between brain regions [319, 344], more precisely that the phase of α traveling waves could coordinate
the neocortical γ bursts [14].

Roles The roles attributed to the traveling waves are diverse. They occur during the development of the retina
in mammals, even before vision is available [133] and could be involved in synaptic remodeling in central visual
structures [133]. In the fully formed visual system, they encode position [191] and it has been suggested by
Ermentrout and Kleinfeld [72] that the continuum of phase shifts provides means to scan incoming sensory input.
This idea of predictive coding was taken up by Alamia and VanRullen [10] for α waves. In the olfactory system,
Zochowski and Cohen [345] indicate that propagating waves may carry information about previous olfactory
experience. The sleep slow oscillations set up a spatio-temporal framework for increased excitability in neuronal
populations [175], and are linked to memory consolidation [329, 187] known to occur during sleep.

More generally, traveling waves occur in sensory processing, sensorimotor transformations and executive control
[321]. In addition, they are thought to be behaviorally relevant and necessary to the spatial and temporal
segmentation of neural representations [344].

What mechanisms permit the propagation of electrical waves? The ease of propagation of traveling
waves can be supported by a sustained mildly depolarized state [336]. The mechanisms for this propagation
have been theorized, notably by Ermentrout and Kleinfeld [72], who proposed three possible mechanisms: 1) A
unique oscillator activating cortical areas with different time delays (resulting in a spurious wave), 2) A chain
of successively activated oscillators, 3) Coupled local oscillators generating wave propagation due to phase delay
between individual oscillators and a fourth mechanism is proposed by Huang et al. [117], in which two non-
oscillatory pulse generate an oscillation in the form of a spiral wave singularity. According to Wu et al. [336] the
strength of the coupling between these oscillators reduce phase gaps, increase velocity, or simply allows for waves
in the first place. A failure in GABAergic inhibitory circuits can trigger a“local excitatory activity [that] can
become regenerative and propagate to a large area” [336].
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Training the speed of the alpha waves Under Shaw and McLachlan [271]’s hypothesis that low alpha
traveling waves correlate with high level of arousal, and Nagai et al. [190]’s review that the up-regulation of arousal
(increase in sympathetic activity) can reduce epileptic seizures, plus the likelihood that speed of propagation can
be trained [109], it is tempting to envision the training of alpha wave speed as a mean to reduce epileptic seizures
frequency and/or severity.

This study This study focuses on the α inhibition rhythm propagation, as its voluntary control could prove
beneficial to the regulation of seizure propagation. The phase difference distributions between pairs of electrodes
on the scalp are analyzed and compared for two different conditions: Eyes Open Fixation (EOF) and Eyes Closed
Relaxation (ECR) (or a control condition: Mental Calculus). This study shows that phase differences emerge
in the α band along the anteroposterior axis during the ECR condition whereas not in the coronal plane, nor
during calculus condition. While these phase differences differ from subject to subject, they appear stable across
recordings taken days and years apart. These results suggest a subject to subject variability that is not exhibited
in the literature, especially in Ito et al. [123]. A model of two dipolar activities is proposed, and is enough to
simulate phase differences similar to those observed experimentally.

7.2 Data

Figure 7.1: Electrode layout of 32 channels ANT Neuro headcap. Black and red disks are the available
electrodes (thirty two). It is an extension to the 10/20 system. Red disks are an example of an anteroposterior

midline. Black circle (one at the vertex) is the reference electrodes.

EEG recordings of 9 healthy subjects were acquired on a ANT Neuro EEGO32 acquisition device, with a EEGO32
wet electrodes channels headset, referenced at the vertex (CPz), as illustrated figure 7.1. The electrode impedances
were kept under 20 kΩ, which is below the recommended maximum of 50 kΩ for high-impedance eego amplifiers
[18].

Each recording alternates between a baseline period (EOF) and a task (either ECR or calculus) period, each
lasting 20 s. These periods are interleaved with 5 s-periods that are not analyzed. The recordings were obtained
for each subject over a variable number of sessions, occurring over several weeks / years. Each recording lasts
275 seconds as depicted figure 7.2). For each subject the number of recordings is variable, and depends on the
number of sessions to which he/she participated (1 to 8), and the number of recordings per session (2 to 4).
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0 275

Eyes Open Fixation Eyes Closed Relaxation

Figure 7.2: Each recording lasts 275 seconds, it alternates between 20 seconds of Eyes Open Fixation (EOF) (6
times), and 20 seconds of Eyes Closed Relaxation (ECR)(5 times) or 20 seconds of Mental Calculus, interleaved

with 5 seconds of rest. ECR condition ends with a sound, to inform the participant that he/she has to open
his/her eyes.

7.3 Method

Phase differences between channels along the anteroposterior midline ([O1, P3, C3, F3, Fp1]) and medio-lateral
midlines ([T7, C3, Cz, C4, T8]) are computed and their probability distributions are compared between EOF,
ECR or calculus conditions.

While each subject is analyzed separately, all the recordings obtained on a given subject are considered simulta-
neously.

The Morlet Wavelet (MWT) computed on several small frequency bands compared to the Hilbert Transform on
a single large band of analysis (as in Ito et al. [123]) could provide a more accurate description of the possible
phase delays at different frequencies inside the band. It would also limit to which extent the phase information
is mixed between two close frequency components (within a larger band), and thus wrong (see chapter 3). The
MWT (number of cycles: 12) was therefore applied to each channel, for frequencies (ν) varying from 8 to 12 Hz
(sampling step of 0.1 Hz), to deduce complex wavelet coefficients A(t, ν)eiΦ(t, ν) representing the channel in
the time-frequency (t, ν) plane. The phase Φ(t, ν) and amplitude A(t, ν) are then extracted from these wavelet
coefficients. Both are split according to the EOF and ECR (or calculus) condition periods.

Phase information is used to compute at each time step and frequency step (∀(t, ν)) the phase differences ∆Φ(t, ν)
between channels. Postulating that direct communication between neurons (from one Excitatory Post Synaptic
Potential to another) are fast (do no exceed 50ms, which at 10Hz amounts to half a cycle (π)), then ∆Φ(t, ν) ∈
[−π : π]. In which case, any computed difference greater than π is turned into a difference greater than −π, and
reversely:

∆Φ′(t, ν) =

{
∆Φ(t, ν)− = 2π ∆Φ(t, ν) > π

∆Φ(t, ν)+ = 2π ∆Φ(t, ν) < π.
(7.1)

The phase differences ∆Φ′(t, ν) of a given 20 s period are then integrated in a histogram weighted by their associ-
ated amplitude products

∏
A(t, ν) in 100 bins over the [−π : π] interval, providing a dense and smooth coverage

of the [−π : π] lag range. While using the MWT can be beneficial or even necessary, one must be wary that, by
opposition to the Hilbert transform on large frequency bands, phase information is more likely to be meaningless
because there may be no energy in the signal at that frequency of interest. The option considered herein consists
in weighting each phase difference ∆Φ′(t, ν) by its associated amplitude product

∏
A(t, ν) when integrating it to

the phase difference probability distribution. Consequently, the contribution of the phase differences computed
from phases associated to low amplitudes can be considerably reduced. The effect of such processing is briefly
illustrated in the appendix (subsection 7.7.2).

The resulting probability distribution is concatenated to all the distributions of all the periods of all the recordings
of a given condition. 1. An illustration summarizing the pipeline is provided in figure 7.3 and the specificity of
integrating the amplitudes is described in figure 7.11. These steps are repeated for all 9 subjects.

In another analysis aiming at showing the stability of the distributions across recordings, the parameters of the

1Proceeding this way circumvent the memory storage of all the phase differences at all time and all frequencies, but just those of
a given period.
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fitted von Mises distributions are extracted, and the locations are plotted on a circular histogram.

Finally, to investigate the possible usage of such information in online protocols, the time course of the phase
information is analyzed.
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Figure 7.3: The pipeline is presented for a given subject with k recordings. The phase differences are computed
on each EEG recording separately and the phase difference histograms are merged in the final steps. For each

recording, the channels of interest are selected (O1-P3-C3-F3-Fp1 for instance), these channels are re-referenced
(to M1 or M2 for instance), their Morlet wavelet transform is computed with a number of cycles equal to 12 to

retrieve the instantaneous phase as a function of time. The phases are split according to whether they occur
during the EOF or ECR condition. The phase differences are computed for each pair of channels of the selection

with the first one (O1-P3, O1-C3, O1-P3, O1-F3, O1-Fp1), and their histograms are evaluated. All the
histograms of a given condition and given pair of electrode are merged together to aggregate all the information.

Finally, the EOF and ECR condition are compared.
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Figure 7.4: To take into account the amplitudes in the phase distribution estimations, the pipeline is modified,
and for convenience truncated to the kth recording of a given subject. The amplitude is also extracted from the
wavelet coefficients, then the amplitude maps are split according to the condition. For each pair of channels of
interest, the product of amplitudes is computed. For each phase difference falling into a bin of the histogram,

the product of the amplitudes is added, instead of 1.

7.4 Results

7.4.1 Phase difference distributions

The results presented in figure 7.5 are strikingly similar to the results presented in Ito et al. [123], where phase
shift are mostly constrained between 0 and π. However, these results are much more variable between subjects.
While the EOF condition leads invariably to two possible outcomes: either a distribution centered on 0 phase lag
or a π phase reversal for all channels in the anteroposterior axis, the ECR condition leads to much more diverse
results.

Before discussing this diversity, one may take heed of the consistency in the order of the phase differences at
which the peaks occur in the ECR condition (O1-P3-C3-F3-Fp1). In most cases, the phase difference are positive
and reveal a phase advance of frontal channels with respect to occipital channels. The distance from Fp1 peak to
F3 peak is systematically shorter than the distance from C3 peak to F3 peak, despite the similar distance on the
scalp. There is a non linear relationship between the distances of the anterior electrodes to O1 and their phase
difference peaks. In other words, despite the similar distance between each electrode on the scalp, the phase
difference does not evolve linearly from the back to the front of the scalp.

The Fp1 distribution peaks from π/4 to almost π in most recordings where delays are manifest, except for subject
VIII. In subject VIII there seem to be a reversal of the phase distributions, which is not the result of delays
exceeding π, as presented in 7.7.1 with simulations in which the order would be maintained. It could be that not
only the delays are subject specific, but also the main direction of propagation. This claim is to moderate with
respect to the number of periods of 20s. available for this subject (10).

Interestingly, if one compares the histograms obtained over all available recordings to those obtained on a single
random recording (presented in the Appendix as figure 7.16), the same global features can be retrieved. One may
wonder how stable these patterns are across recordings.



7.4. RESULTS 101

I ECR: 115, EOF: 138 II ECR: 15, EOF: 18 III ECR: 20, EOF: 24

IV ECR: 45, EOF: 54 V ECR: 35, EOF: 42 VI ECR: 40, EOF: 48

VII ECR: 25, EOF: 30 VIII ECR: 10, EOF: 12 IX ECR: 10, EOF: 12

Figure 7.5: Left anteroposterior axis (O1-P3-C3-F3-Fp1). Referenced at M2. Over the α frequency band:
8-12Hz. Phase difference distributions retrieved from 9 subjects with various number of recordings. Each

histogram is computed on a variable number of recordings (4 to 23) 6 * 20 seconds of EOF, 5*20 seconds of
ECR. The number of periods of 20s per subject is provided under each histogram.
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7.4.2 Stability of traveling waves across recordings

To standardize the process of assessing the stability across recordings of the phase difference peaks, von Mises
distribution are fitted to each histogram of phase difference (for each pair of electrodes, and each EOF or ECR
periods). The location is extracted from each histogram, and the values plotted in a polar histogram. The results
are presented for the subject with most recordings in figure 7.6. To assess the soundness of the results, three
controls are devised. One reproduces the pipeline on recordings based on the same protocol, replacing ECR with
calculus. A second reproduces the pipeline in a different frequency band (part of the β band: 20-24Hz). A last
control reproduces the pipeline on coronal selection of electrodes.

1 2 3 4

Figure 7.6: Polar histogram of the estimated locations of von Mises phase difference distributions. (EOF, ECR)
or (EOF, Calculus). For this subject: (23 * 6 * 20 s. of EOF and 23 * 5 * 20 s. of ECR) or (20 * 6 * 20 s. of

EOF and 20 * 5 * 20 s. of Calculus) are analyzed. These were recorded over the course of 2 years. Referenced at
M2. 1) EOF and ECR, [P3, C3, F3, Fp1] - O1, in the 8-12 Hz frequency band. 2) EOF and Calculus, [P3, C3,

F3, Fp1] - O1, in the 8-12 Hz frequency band. 3) EOF and ECR, [P3, C3, F3, Fp1] - O1, in the 20-24 Hz
frequency band. 4) EOF and ECR, [C3, Cz, C4, T8] - T7, in the 8-12 Hz frequency band.

First, the controls show that these phase differences do not occur by chance, nor because of data processing.
Second, the phase difference distributions are always located at approximately the same angles across recordings.
The further from O1 the more variation can be observed.

Interestingly, in the calculus paradigm, a likely non-zero phase difference appear for frontal (Fp1) electrodes.
While no synchrony is measured in the 20-24 Hz frequency band for ECR paradigm.

7.4.3 Explaining phase delays

The phase delays measured reliably can be turned into transmission delays and therefore propagation speed. The
distances are estimated as the geodesic distances between electrodes on the scalp. The time required to cover
theses distances is estimated with cross multiplication from the phase delays knowing that at about 10 Hz, a cycle
(2π) lasts 100 ms.

Phase delays (∆Φ) to time delays (∆τ) (ms)
∆Φ ∆τ Scalp Distance (cm) Speed (m.s-1)

O1-P3 π
8 6.25 5.5 8.8

O1-C3 π
4 12.5 11.5 9.4

O1-F3 π
2 25 17 6.8

O1-Fp1 5π
8 30.625 25 8.2

Table 7.1: ∆τ = ∆Φ
2π × 100 ms, where 100 ms corresponds to the duration of 1 cycle (2π) at 10 Hz. The phase
delays were obtained from the approximated locations of the peaks in 7.5 I.
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Several hypotheses can explain phase delays at electrodes located along the anteroposterior axis. An interesting
hypothesis consider as many sources as there are phase delays. If the sources are located directly beneath the
electrodes, the average propagation speed on the scalp would be of 8.3 m.s-1, which seems too high to be compatible
with propagation speed in the cortex or white matter, despite these speed values being still discussed.

A second hypothesis involves bidirectionally coupled oscillators (as many as phase delays) that would allow for
small phase differences (and therefore high velocity). One easily observes a consistency in the sign of phase delays
between electrodes, regardless of the subject. It seems unlikely that the phase differences are the consequence of
bidirectionally coupled oscillators for which the phase difference could be of an arbitrary sign.

A third, more simple and more likely hypothesis requires only two sources with oscillating activities and their
possible mixing at the different electrode sites. In such model, one source is located in the occipital region, and
the other in the frontal region. Both oscillate at a similar frequency, but are phased shifted with arbitrary phase
values. Considering these two sources as sin(ωt+ φ0) and sin(ωt+ φ1)

At the ith electrode:

αi sin(ωt+ φ0) + βi sin(ωt+ φ1)

= sin(ωt)αi cos(φ0) + βi cos(φ1)︸ ︷︷ ︸
Ai

+ cos(ωt)αi sin(φ0) + βi sin(φ1)︸ ︷︷ ︸
Bi

= Ri sin(ωt+ φi)

where:

φ0 is the phase shift of the first source (0)
φ1 is the phase shift of the second source (1)
αi is the volume conduction weight of the ith electrode associated to the first source (0)
βi is the volume conduction weight of the ith electrode associated to the second source (1)

Ri equals
√
A2
i +B2

i

φi equals atan(BiAi )

The mixing of these sources gives rise to sinusoids oscillating at the same frequencies to the frontal and occipital
ones, for which the phase shift only depends on the geometrical configuration given by the αi and βi. The αi and
βi are typically functions of source to electrode distance and source orientation with respect to source to electrode
orientation. Phase differences computed between electrodes will therefore be differences between the φi. In this
model, the major requirement is that the two sources have a constant relative phase shift in time.

To test the soundness of this model, it was simulated on two nested spheres (for the cortex and the scalp), using
equations for electromagnetic waves propagation [259], and a constant conductivity value. Gaussian noise was
added to the signal by a signal to noise ratio of 1 to 1.5. Geometric configuration and results are presented in
figure 7.7.

The simulation unveils that two sources are sufficient to produce phase delays similar to those observed on real
data (figure 7.5). More details are provided in the appendix for alternative geometries.

Since the geometry is paramount in explaining the phase differences, the position of the head-cap electrodes with
respect to the generators is crucial. And the different scalp morphologies could partly explain the discrepancy
between the results observed between subjects in figure 7.5.

Other arguments against the fact that these phase differences are attributable to anatomical wiring only is that
they can strongly vary from one subject to the other, that the relationship between phase delays and distance is
non linear and that they can be trained [109].
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1 2

Figure 7.7: Geometry of the traveling wave simulation (1), and associated phase distributions (2). Sources are
represented as arrows (SF: Source Frontal, SO: Source Occipital), on the inner red hemisphere. The sources are
two sinusoidal waves oscillating at 10 Hz, with added gaussian noise. They are phase shifted from one another

by 0.93π. Electrodes are represented as spheres of different colors (O1, P3, C3, F3, Fp1), on the outer blue
hemisphere. Electrodes are placed along the anteroposterior axis. The histograms are obtained exactly as in 7.5,

where the electrodes are referenced to O1.

7.4.4 Course of phase difference

The temporal fluctuation of phase difference along the anteroposterior axis unveils a cyclic pattern that corre-
sponds to the EOF / ECR periods (figure 7.8, 1). Despite this overall trend, the local temporal variations are
strong. Averaging (figure 7.8, 2), or finding the mode over larger windows provide a way to find respectively more
stable or physically more meaningful patterns. Averaging can be an option for neurofeedback protocols based on
traveling waves, were the subject exert control on up or down regulating the “speed of traveling waves”, regardless
of its value.

Averaging (figure 7.8, 2) shows in a (among other) specific recording some episodic phase reversal events (under-
lined in black), which could correspond to backward “propagation”, or a switch of the drive between the neural
sources. These events are not occurring sufficiently to appear in global phase differences distributions. They
could add to the complexity of the neurofeedback training, but should definitely be taken into consideration in
the possible levers to control the visual / auditory clue.

7.5 Discussion

Despite the so-called lack of spatial resolution, scalp EEG setups can provide insightful perspectives on syn-
chronous activity in the form a phase synchrony.
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1

2

Figure 7.8: Temporal fluctuation of phase difference with O1, alternating 20s EOF / 20s ECR / 20s EOF / 20s
ECR, during a single recording. Reference electrode: M2. In 1), each point is local average of 25 time points
(1./sampling rate * 25 seconds) * 40 frequency scales = 700 phase differences. Sampling rate: 512 Hz. In 2),

each point is a 2 seconds average.

Figure 7.9: Phase Lag Index computed within the α (8-12 Hz) band on windows of 0.5 s overlapping by 0.4 s
during the ECR condition on one recording (amounting to 5 x 20 s of ECR condition) of subject I.
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7.5.1 Phase synchrony

A number of measures are devised with respect to phase differences, such as the Phase Locking Value [151], the
Phase Lag Index (PLI) [194] or the weighted PLI. The PLI gives an estimate of the stability of phase difference
within a given time window. If the idea behind the model presented in 7.4.3 is at least partly true, the synchrony
measures based on the phase could be biased. The PLI was computed within the α band on windows of 0.5 s
overlapping by 0.4 s during the ECR condition on one recording (amounting to 5 x 20 s of ECR condition) of
an arbitrary subject. The result is illustrated in figure 7.9, where strong PLI connectivity is visible between
electrodes along the anteroposterior axis, and even between left and right hemispheres.

It can be deduced that an index of mean synchrony (i.e. an average of PLI values) over all pairs could lead to
an overestimation of actual synchrony, in such a case where two sources synchronize many electrodes at once. It
is to emphasizes on the need for careful interpretation of phase informed synchrony measures in EEG, which is
already subject to a number of pitfalls, or the necessity of using high resolution headset for source current density
estimation and / or MRI acquisitions for sources reconstruction.

7.5.2 Online usage of phase difference

Phase synchrony occurs over short periods and is not better captured by measures such as the commonly used
PLI and PLV, than by coherence [40]. The frequency at which phase differences vary over time hinders the
retrieval of averaged phase differences (see figure 7.8), which would pull the phase difference to lower values, not
representative of the actual phase difference during synchrony periods. While the average of phase differences
over time windows would not provide a meaningful phase difference, it still can be put to use in the construction
of a marker. Indeed, averaging over windows of 2 seconds allows to classify with great accuracy periods of EOF
and ECR, but also gives a confident guess of the direction of propagation of the “traveling wave”.

To add to the complexity of providing an online protocol, any phase informed measure also suffer an incompressible
delay because of the inherent delay introduced by phase extraction, which in some applications (especially those
focused on learning) is a shortcoming.

7.5.3 Perspectives

Histograms weighting The choice of weighting the histograms by the amplitudes have the adverse effect of
hiding low amplitude synchronies. Indeed, synchrony patterns involve different cortical units whose activations of
likely different size lead to favor the appearance of the synchrony patterns involving the largest activated cortical
units. Other histogram constructs could be devised instead of weighting by the product of the amplitudes, such
as counting the number of phase difference falling into a bin only if the product of the amplitudes is above an
estimated threshold below which the phase difference is assumed spurious.

Source reconstruction The model of two dipolar activities oscillating at the same frequency with an arbitrary
phase shift can be used as a constraint to localize these dipoles using the phase gradient. For such operation, a
realistic model of the head would have to be employed, as well as an accurate registration of the electrodes on
this realistic model of the head.

Training the propagating waves Following the simplistic model proposed in this work, it would seem that
controlling the speed of propagation of this α wave would consist in enhancing / reducing the coupling between the
two generators responsible for the wave. This appears considerably simpler than learning to control the activity
of several coupled oscillators.
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7.6 Conclusion

The phase difference distributions between pairs of electrodes on the scalp were analyzed and compared for two
different conditions (and control): Eyes Open Fixation (EOF), Eyes Closed Relaxation (ECR) (, Mental Calculus).
This study clearly showed von Mises phase difference distributions whose locations are clearly identifiable along the
anteroposterior axis. While the locations are mostly organized close to a 0π phase lag in the EOF condition (and
other control conditions), in the ECR condition and within the α band they show shifts between channels mostly
restricted to the [−π;π] interval. A simplistic model of two sources is enough to let appear such phase difference,
and actually explains more simply the small phase difference that would lead to inconsistent transmission delays
if hypothesized as such. In addition this model also explains the results observed for the control conditions. These
results unveil a subject to subject variability that is not exhibited in the literature Ito et al. [123], which could
be the effect of variable placement of the electrodes with respect to the α oscillations generators, an effect well
illustrated with the model. Nonetheless, repeating the automatic evaluation of anteroposterior phase differences
over more than a 100 periods of 20s showed that they are stable across recordings taken days and years apart.
While the instantaneous phase differences are not stable on very short time scale, averaging over windows of 1 to
2 seconds display much more stable patterns. Despite their lack of physical significance, they could be used in
BCI applications.

7.7 Appendix

7.7.1 Frequency specificity of traveling waves

In Inouye et al. [122] the direction of propagation depends on the frequency of the alpha peak, and in Zhang et al.
[344] there is a correlation between frequency and speed of the traveling waves. The analysis of phase differences
is therefore split with respect to frequency, the results are presented in figure 7.10. Instead of considering the
whole 8-12Hz range, subbands of 1Hz are considered (8-9 Hz, 9-10 Hz, 10-11 Hz, 11-12 Hz).

While the phase differences appearing during ECR do not depend on the frequency subband at the level of all
the recordings of a given subject, some interesting patterns appear in the EOF condition of dedicated recordings.
In the EOF condition of one recording appears a reversal of phase difference distribution locations from 8-9 to
11-12Hz. The location of the peak differs in the different frequency bands. To ensure that this effect was not an
effect of the processing on increasing phase differences, synthetic sin waves at 10Hz (ν) with a constant phase shift
for all waves (φc) plus a varying phase shift for each wave (φk) were constructed (sin(2πνt+ φc + k ∗ φk)), with
k ∈ {0., 0.1, 0.2, 0.3, 0.4}. The phase differences between these sin waves on the different sub-bands were identical,
suggesting that the effect is not an artifact of data processing. Then, the constant phase shift was increased from
π/2 to 3π/4 to π. Leading to three possible cases: all phase differences are located between π/2 and π, half phase
difference are located between π/2 and π and the other half between π and 3π/2. Regardless of the constant phase
shift, the order of the peaks is maintained, by opposition to what is observed in the real data. In this example,
this is in opposition to the idea that propagation speed depends on the frequency of oscillation or reversely. This
is mostly in support of Inouye et al. [122]’s work, in which α traveling waves direction is supposed to depend on
the frequency of oscillation of the wave.

7.7.2 Phase difference weighting by amplitude product in histogram estimation

While considering the amplitude products does not shift the histogram peaks, it does remove a seemingly uniform
distribution to the phase difference histograms of distant pairs (figure 7.11, 1 and 7.11, 2). Since a uniform
distribution would be observed for unrelated phases, or random phase differences, it could be guessed that the
transformation considering the amplitudes has the effect of removing a type of noise introduced by the MWT.
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1 8-9 Hz 2 9-10 Hz

3 10-11 Hz 4 11-12 Hz

Figure 7.10: Right anteroposterior axis (O1-P3-C3-F3-Fp1), referenced at M2. Phase difference distributions
retrieved from 1 recording of subject I, on various frequency subbands. Each histogram is computed either a

variable number of recordings 6 * 20 seconds of EOF, 5*20 seconds of ECR.
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1 2

Figure 7.11: 1) Phase difference distributions based on phase difference occurrence only. 2) Phase difference
distributions weighted by the amplitude product.

7.7.3 Statistical testing of dependent realizations of the circle

Specific statistical tests exist on angular measurements [285] [286], as well as on angular measurement distribu-
tions [163]. In this study only distributions are available, and the cited distribution tests require the estimation of
the concentration parameter, through tables. Both tests suppose independence between the realizations. Unfor-
tunately, phase difference estimation through any strategy introduce artifactual dependence between close phase
difference (in time and frequency) and because of volume conduction in EEG recordings. The formal derivation of
close wavelet coefficients dependence is presented in chapter 4. Then, the dependence between phase differences
is not straightforward (notably because of the nonlinear definition of the phase) to evaluate. To avoid misjudging
the location of the von Mises distributions based on the pvalue of a statistical test, the null hypothesis along which
the location of the von Mises distribution is zero is refuted by looking directly at the probability distributions.

7.7.4 Von Mises distribution parameters estimation

Due to the massive amount of realizations for each pair of channels, the theoretical von Mises distributions are
not directly fit to the empirical distributions of phase differences. To fit a von Mises distribution of parameters
κ and µ, a large (but reasonable N=1000 realizations) artificial sample is drawn from the empirical distribution,
and a von Mises distribution is fitted to this large sample. Figure 7.12 shows that the sample distributions match
the empirical distribution. While this approach allows to identify the parameters of the empirical distribution,
the goodness of fit of the artificial sample distribution with the von Mises distribution of estimated parameters κ
and µ is to link to the arbitrary artificial sample size.

7.7.5 Effect of the common reference on the phase difference

Choosing M1 or M2 as reference electrode does not change the baseline (EOF), except for M1 that removes the
phase difference peak at -π/2 present for M2. The locations of the F4-02 electrode peaks differ slightly from M1
to M2, but the order is maintained. This could partly be explained by the varying distance of M1 and M2 to
these electrodes.

Choosing CPz as reference electrode, located at the vertex (white disk in Figure 7.1), introduce phase differences
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Figure 7.12: Flattened polar empirical probability distribution of phase difference distributions for all periods of
either EOF or ECR, accompanied by draws (N=1000) from these empirical probability distributions. The draws

are in turn used to obtain the κ and µ parameters of the von Mises distribution by fitting.

1 CPz reference 2 M2 reference 3 M1 reference

Figure 7.13: Histograms of phase differences along the anteroposterior axis (between P3, C4, F4, Fp2 and O2),
with different common references (Cpz, M2, M1).
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far from 0 during EOF that could be due to the sensorimotor rhythms especially close to the vertex. It also shows
a reversal of phase difference during ECR that cannot be observed with M1 or M2 as reference.

The similarity between two distinct electrodes M1 / M2 (although rather symmetrically distributed) and the
distinction with CPz causing a phase difference reversal tend to give arguments into favoring either the M1 / M2
or their mean as the new reference in this specific problem.

7.7.6 Simulations

1 2

Figure 7.14: Geometry of the traveling wave simulation (1), and associated phase difference distributions (2) for
a coronal axis. Sources are represented as arrows (SF: Source Frontal, SO: Source Occipital), on the inner red
hemisphere. The sources are two sinusoidal waves oscillating at 10 Hz, with added gaussian noise. They are

phase shifted from one another by 0.93π. Electrodes are represented as spheres of different colors (T7, C3, Cz,
C4, T8), on the outer blue hemisphere. Electrodes are placed along the coronal plane. The histograms are

obtained exactly as in 7.5.

Coronal plane electrodes The simulation of two sources located in the occipital and frontal areas and their
projection onto sensors located on the coronal plane (figure 7.14, 1) unveils no phase difference (figure 7.14, 2).
It reproduces what could be observed on real data (as suggested in figure 7.6, 4). It adds to the likelihood of the
third hypothesis presented in 7.4.3.

Electrodes shift The same simulation allows us to test the influence of the placement of the head-cap on the
scalp with respect to these traveling waves (see figure 7.15, 1 and 2). The electrodes are shifted of π/12 toward the
nose. The effect on phase difference distributions of such manipulation is high. It demonstrates the importance
of placing the head-cap with the greatest care when attempting to measure phase delays in EEG. While care was
brought to the placement of the EEG head-cap (proved by the reproducibility over sessions), the relative position
of the electrode with respect to the generators cannot be guaranteed. As mentioned in the perspectives, this
“traveling wave” could be a supplementary information to be of use for source localization.
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1 2

Figure 7.15: Geometry of the traveling wave simulation (1), and associated phase distributions (2). Sources are
represented as arrows (SF: Source Frontal, SO: Source Occipital), on the inner red hemisphere. The sources are
two sinusoidal waves oscillating at 10 Hz, with added gaussian noise. They are phase shifted from one another

by π. Electrodes are represented as spheres of different colors (O1, P3, C3, F3, Fp1), on the outer blue
hemisphere. Electrodes are placed along the anteroposterior axis, and shifted by π/12 with respect to 7.7 toward

the nose. The histograms are obtained exactly as in 7.5.

7.7.7 Distributions on one recording

Figure 7.16, obtained on typical single recordings is interesting with regard to its similarity to figure 7.5, obtained
on many recordings. Not only does it suggests that the phase differences distributions are consistent across
recordings, but that a restricted number of blocks are necessary to assess the phase difference peaks.
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I ECR: 5, EOF: 6 II ECR: 5, EOF: 6 III ECR: 5, EOF: 6

IV ECR: 5, EOF: 6 V ECR: 5, EOF: 6 VI ECR: 5, EOF: 6

VII ECR: 5, EOF: 6 VIII ECR: 5, EOF: 6 IX ECR: 5, EOF: 6

Figure 7.16: Left anteroposterior axis (O1-P3-C3-F3-Fp1). Phase difference distributions retrieved from 9
subjects. Each histogram is computed either over 6 * 20 seconds of EOF, 5*20 seconds of ECR. The channels

are referenced at M2.



114



General conclusion

Summary of the contributions

This manuscript covers the tentative conception of a neurofeedback protocol to treat epilepsy on the basis of
neural synchrony. Neural synchrony is approached through the study of phase synchrony between distant brain
area activity oscillations, a paradigm available to high frequency recording media such as EEG or MEG. Despite
the causal link between an excess of neural synchrony and epilpsy, studies linking phase synchrony to epilepsy
are not legion. Bhattacharya [24] study unveiled a difference in phase synchrony between epileptic patients
and healthy subjects, paving the way for a promising neuromarker. Given the experimental cost of testing a
neurofeedback protocol based on a chosen neuromarker, it foundations must be solid. Building solid foundations
meant reproducing the aforementioned study on a novel dataset. This brought us to the investigation of how
phase information is extracted from EEG signals, how statistical tests can be employed to ensure the statistical
significance of tests involving such phase information and derived phase synchrony measures. Additionally, the
exploration of bare phase differences across the scalp led to observe a phenomenon called traveling waves (which
could be a potential alternative neuromarker).

Extraction of instantaneous phase information, although commonly employed in the literature, is not as trust-
worthy as assumed. It was demonstrated with the Morlet wavelet transform of a generic sum of sinusoids that
close frequency components have an intricate effect on phase estimation, and that the choice of a reference elec-
trode minimizing its effect in the frequency band of analysis is paramount. The same derivation was achieved
on overlapping bursts and showed the limits of the Morlet wavelet transform regarding phase extraction at the
level of the scalp. Nonetheless, in practice, it was shown on real data not only that the alpha component in the
eyes closed condition is well modeled by a sum of Gaussian bursts, but that some of the parameters (phase shift,
amplitude) can be extracted in the time frequency planes of the Morlet wavelet transform.

The statistical testing making use of instantaneous phase information, or derived measures was studied from two
perspectives. As a theoretical approach, it was shown that the very construction of the instantaneous phase with
the Morlet wavelet transform already correlates close values: for non autocorrelated signals the correlation between
close complex coefficients is equal to the autocorrelation function of the Morlet wavelet, and for autocorrelated
signals it still can be expressed and calculated practically. The data-driven approach consists in devising an
original measure of the correlation between synchrony measures computed on pairs of redundant EEG channels
in the framework of the Mann Whitney U test. These statistical considerations and a freshly acquired dataset
lead to discuss the original study. Essentially, the original study could not be reproduced on the new dataset,
with or without the statistical corrections for correlation. What emerged is that epileptic patients tend to show
higher synchrony levels, as measured with the mean phase coherence. While the statistical corrections did not
affect the conclusion, it however affected the statistical significance of some pairs of electrodes.

The exploration of phase differences across the scalp, on a second original dataset, to better understand phase
synchrony led to observe specific patterns on the scalp. Notably, an anteroposterior phase difference relationship
was revealed in the α frequency band during the eyes closed condition. While several bio-physiological models of
the literature could account for this finding, a simple model of two phase related sources was enough to explain
for these many phase differences on the basis of the spherical geometry of the head. It would have influential
consequences on phase synchrony measures, even those claimed insensitive to volume conduction, since they
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predict strong functional connectivity between regions that are not necessarily functionally related during the
task.

A complete neurofeedback software solution is provided alongside this manuscript. It is at the root of an ongoing
collaboration with the university hospital La Timone. Due to the uncertainties regarding phase synchrony mea-
sures, the neuromarker of the upcoming protocol is based upon the lagged correlation between channels, that is
thought to expose cortical excitability.

While it may seem unsatisfactory that this thesis does not unveil an efficient neuromarker for epilepsy reduction
(among the few), solid tools have been designed to ease future endeavors on the matter.

Limitations and prospects

Neurofeedback protocols

Cross-correlation neurofeedback A neurofeedback protocol proposal submitted in the frame of our collabo-
ration with hopital La Timone has received the funding required for its practical application. It aims at training
a patient to desynchronize brain areas by reducing their functional connectivity. This functional connectivity is
calculated as the smoothed averaged cross-correlation between chosen pairs of scalp EEG electrodes. The primary
goal of this neurofeedback protocol is to show that reducing the synchrony between brain areas translates into
reducing the frequency of epileptic seizures after neurofeedback.

Alpha ”traveling waves’ auditory neurofeedback Chapter 7 showed that there were some predominant
phase differences between electrodes along the anteroposterior axis in the α band during the eyes closed condition
for most of the subjects involved in the study. While phase differences were variable from subject to subject, they
were highly stable across recordings. These phase differences can be measured on relatively short windows, making
them suitable for neurofeedback protocols. Learning to accelerate or slow down the communication between the
brain areas involved in these specific patterns could train general capacities of self-regulation beneficial to the
control of seizure propagation. Because these patterns require the subjects to have their eyes shut, an auditory
feedback seems appropriate. Incidently, it was implemented in the course of this research: the sound level of the
audio track is modulated with regard to the performance of the subject. An interesting and barely approached
observation is the phase reversals occurring in short windows. Learning to increase these phase reversals, and
correlating the success to the strategies employed, could shed light on the underlying principles guiding the
observed phase differences and their reversal.

Statistical methodology

Phase correlation Correlation between temporally close wavelet coefficients was calculated under mean and
variance stationarity hypothesis on the EEG signal. The following step consists in obtaining the correlation
between close phase values, relying on the fact that the phase can be extracted as the ratio between the imaginary
and the real part of the wavelet coefficients. The correlation between phase difference can be obtained and
hopefully lead to an estimation of the correlation within and across different phase synchrony measures. While
correlation was studied through the prism of temporality, the analytic wavelet coefficients are also correlated
frequentially. For statistical analysis of constructs incorporating different frequency steps (such as histograms of
phase differences within a given frequency sub-band) frequency correlation should be addressed similarly as to
time correlation. Lastly, spatial correlation, one of EEG’s major caveat, must be considered: in statistical analyses
incorporating several pairs of channels, redundancy is present and should be accounted for. A generalization of the
work proposed in chapter 4 to pairs of random processes with different mean and variance should be investigated
in the hope of finding an expression of the correlation between wavelet coefficients depending not only on the
autocorrelation within the signals but also their cross correlation.
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Models for correlation simulation Despite providing consistent and convincing insights into the correlation
between related phase synchrony measures, the f values presented in chapter 6 were only estimated on real data.
These f values should be matched to controlled correlation within the data. A framework for this is auto-regressive
modeling as these models are defined on the basis of autocorrelation coefficients.

Bursts delays

On one hand, chapter 7 illustrated that phase differences are notably noisy. On the other hand, chapter 5 showed
that most of the parameters of the α bursts could be retrieved by means of the Morlet wavelet transform when
bursts were not too overlapped. Instead of retrieving the phase difference from the signal itself, it could be
computed on the basis of the parameters of the bursts. The location and the phase shift can be used to infer
relationships between bursts at the different electrodes, and therefore grant an original synchrony marker.

Sources synchrony

Another approach consists in estimating the activity of cortical sources, limiting the conduction effects affecting
the scalp EEG synchrony measures. Nonetheless, to estimate such activity, the volume conduction must still be
addressed. These activities can be approximately recovered by solving a blind sources separation problem such
as an independent component analysis, by calculating the source current density, or by attempting to solve the
inverse problem of projecting the sensors activity onto cortical sources. The main caveat of such methods is that
they require a sensor density much higher than that usually available for home usage.
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A.1 Zither, a new open-source
neurofeedback software product /
platform

Neurofeedback involves at its core the computation of a neuromarker of the ongoing brain activity that serves as
feedback.

Existing open-source software such as OpenVibe [236], provide an efficient, versatile, although aging, computa-
tionally expensive and hardly improvable mean to design such protocols.

Zither is a new neuro-recording experimental and neuro-feedback platform. It embeds the most common and
simple tools required for processing EEG signal. Most parameters of the processing pipeline can be modified on
the fly, which can considerably ease the prototyping phase of experiments. Not only does it work online, offline
analysis of EEG signal is also a possibility, using the Python prototyping language.

Although at heart to be of use to many in the field, this software platform was developed mainly to accommodate
the needs of this PhD research. For this reason, some features are not implemented in the most abstract way,
and could in their current state, not be usable by all.

Pipeline

The four building objects of the platform are the Configuration, the Chunk, the Event and the Node. The
pipelines are designed as linear chains of operations on chunks of data. A chain is composed solely of connected
Node objects, between which pass Configuration and Chunk objects, or Event objects. A complete example
is provided in figure 8.17.

Together, the Chunk and the Configuration are the two objects representing the EEG data. A Chunk
holds a matrix storing a contiguous piece of data, and a vector associating the timestamp of each sample. The
Configuration holds common information such as the sampling rate, the names of the channels, their units
and additional data such as the physical and numerical limits of the signal. Basically, the Configuration is the
information of the stream that does not change with each Chunk. If a property of the signal changes (a dynamic
change of the sampling rate for instance), a new Configuration can be passed, and the Node must adapt to the
modified Configuration. The rule is that before the first Chunk is passed to a given Node, the Configuration
must be passed.

The Node is an abstraction for an operation on the data. The Node is fed with a Configuration, then computes
a Configuration (associated to the new Chunks the Node will generate) and sends it to the next Node, then,
it is fed Chunk after Chunk. The Node will send a new Chunk to the next Node when appropriate.

The Event is a time-stamped information running through the pipeline, which can be a trigger for displaying
some text on the screen, turning on the music, switching the state of a Node...
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Figure 8.17: Example of a pipeline set for a neurofeedback protocol. Each black box is the implementation of a
Node. Configuration and Chunk pass from box to box (Node to Node). The Acquisition Server and the
Event Reader are synchronized to start at the same time. The EEG data is acquired from an EEG acquisition

device, and the events are read from a file (see subsection 7.7.7). The EEG channels are displayed on the
experimenter screen, the 3D model is animated on the participant screen, so are displayed and read the

instructions. The raw signal is saved in a file, as well as the marker with which the participant is trained.

Example

This example illustrates the backbone of a pipeline designed for a neurofeedback experiment. It presents the role
of each component to the workings of the machinery. It is based on figure 8.17.

Configuration The first Node of the pipeline is the Acquisition Server, whose purpose is to feed Chunks
to the pipeline. Based on the Acquisition Server properties (sampling rate=512, number of channels=32...), a
Configuration object is created. This Configuration object is passed to the Channel Selector, that compares
the selection with which it is parametrized with the channels of the Configuration, creates a new Configuration
object, with the restricted channels list, and pass it further down the pipeline. The same step is reproduced by all
Nodes, each with its own specificities, until it reaches either a Writer, or a Display Node, that will simply read
the Configuration. Figure 8.18 illustrates the processing of the configuration through three abstract Nodes.

Chunks The Acquisition Server can either record data on the fly, or read prerecorded data (of use in Sham
experiments). The data is saved raw through a Chunker that ensures the duration of each block is constant when
saved, in order to match the Writer requirements (EDF file format). The Chunks generated by the Acquisition
Server are filtered in the Channel Selector to match a selection provided as parameter (as an external file).
Then they pass through a High Pass Filter and a Low Pass Filter, whose parameters can be changed on the fly
(without stopping the experiment). The filtered signal goes through the Eye Blink Removal, that initially learns
to detect blinks (when it receives a specific Event, paragraph 7.7.7). Once blinking is learned and a spatial filter
calculated, the mode is switched to filtering (thanks to a second Event). The EEG channels are combined in
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Figure 8.18: A Node keeps track of its current Configuration as well as its parent’s Configuration. 1, in
Node A, the initial Configuration is created. 2, the configuration of Node A is sent to Node B, which stores
the Configuration of Node A. 3, Node B creates a new Configuration adapted to the Chunks it is about

to send. 4, the Configuration of Node B is sent to Node C.

the Montage into a bipolar montage (various bipolar montages can be tested and switched on the fly by simply
selecting another montage file). The data is then epoched by the Epocher to overlapping windows (of 1 second,
overlapping by 0.95 second). One epoch of 1 second is sent every 0.05 seconds the Marker. The Marker role is to
compute a neuromarker from the epoched data. The neuromarker is then saved in the Marker Writer for later
analysis.

Events The Protocol Reader start-up is synchronized with the Acquisition server ’s. It reads the participants
instructions from a Protocol file, and displays instructions on the screen. At the same time, it plays the recorded
instructions on speakers. The Protocol Reader also controls the Eye Blink Removal, by switching its mode from
learning (the correction to apply) to filtering. Ultimately, the Protocol Reader sends the termination signal, to
stop the pipeline when the experiment ends.

Designing experimental protocols

The platform allows to design experimental protocols. Such a protocol where the subject is asked to open / close
his eyes when requested (see code 7.7.7) is designed in a text file and can be loaded in the app:

5000 baseline {"control":"start", "text":"Keep your eyes open.", "description":"Request the 

↪→ subject to keep his eyes open."}

25000 baseline {"control":"stop", "text":"End of task. Relax.", "description":"Request to 

↪→ relax."}

30000 alpha {"control":"start", "text":"Close your eyes and relax.", "description":"Request 

↪→ to close his eyes and relax."}

50000 alpha {"control":"stop", "sound" : "bells", "text":"Open your eyes and stop relaxing.",

↪→ "description":"Request the subject to open his eyes and stop relaxing."}

55000 baseline {"control":"start", "text":"Keep your eyes open.", "description":"Request the 

↪→ subject to keep his eyes open."}

75000 baseline {"control":"stop", "text":"End of task. Relax.", "description":"Request to 

↪→ relax."}

80000 alpha {"control":"start", "text":"Close your eyes and relax.", "description":"Request 

↪→ to close his eyes and relax."}

100000 alpha {"control":"stop", "sound" : "bells", "text":"Open your eyes and stop relaxing."

↪→ , "description":"Request the subject to open his eyes and stop relaxing."}

105000 baseline {"control":"start", "text":"Keep your eyes open.", "description":"Request the

↪→  subject to keep his eyes open."}

...
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Because the recording and the protocol files are launched and read simultaneously, the timestamps of the protocol
file match the recording. For this reason, inserting triggers in the EDF file is optional (and not provided as of the
last release).

The format of this file follows the rule that each line is an event. Each line comprises three elements: the
timestamp in milliseconds, the label (which does not have to be unique, and may be used to match ”stop” to
”start” control), and a dictionary (in the JSON format).

Texts text keyword followed by the text to display. Text can be displayed to the participants, and the size is
optimized to fill the available space.

Sounds sound keyword followed by one of the available sounds (”bells”, ”bip-06”. ”bip-07”). Sounds can be
played once to the participants (for instance to inform he/she must open his/her eyes).

Sound tracks track keyword followed by the location of the track on the disk. Instructions can be read if
provided as audio files, music tracks can also be played (mp3 format).

Random calculation calculus keyword followed by an empty string. Random calculations verifying pre-
implemented rules (the sum of two products of two digits numbers) can be submitted to the participant.

Description May be used to display errors regarding the processing of the events, or simply to track in the file
what a given line does.

Specific Events Events can also be used to trigger specific behaviors (turning on/off certain Nodes, activating
certain modes, stopping the experiment...). For instance the Eye blink Removal reacts to the keyword exp status
followed by either ”training eye removal” or ”evaluation eye removal”.

Feedback

Visual The software provides a simplistic 3D environment of a hot air balloon going up and down with a
neuromarker. Neuromarkers can be directly controlled by looking at the curve, since any Chunk passing between
Nodes can be plotted.

Audio The software also provides a Node to control the sound volume of the application. A music track can
be chosen, it starts to play as the experiment is launched. As the neuromarker goes up and down, so does the
volume of the music.

Python wrapping

Prototyping is arguably easier and faster on higher level language such as Python (or Javascript, Java, C#...).
Since offline analyses are mostly prototyping, it seems reasonable that they are solved in Python. For the sake
of reproducibility between online C++ routines and offline Python operations, (and for efficiency motives) the
C++ routines have to be available and used in Python. The SWIG wrapping tool has been extensively used, and
wrapper routines specifically developed for this purpose. C++ objects can be created from Python :
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Figure 8.19: A neuromarker controls the altitude of the hot air balloon. The model (balloon) can be replaced
with any other model stored on the computer. The images displayed on the panels can also be changed at will.

Listing 8.1: This snippet provides a complete set of instructions to read a modified EDF file (with less
constraints than the original library 7.7.7) in Python. data is a numpy array, channels is a Python array,

sampling rate is a float

import numpy as np

import ztrcore

ztrcore.setVerboseLoading(True)

ztrcore.setAutoLoading(True)

ztrcore.initialize() # For plugin handling

reader_edf_file = ztrcore.processReader_pluginFactory().create("

↪→ ztrProcessReaderEdfFile")

reader_edf_file.setFilePath(str(f))

reader_edf_file.run()

data = reader_edf_file.output()

channels = reader_edf_file.channels() # Channels x Time (real values)

sampling_rate = reader_edf_file.samplingRate()

Technical points

Latency According to Belinskaia et al. [19], the faster the feedback the longer lasting the neurofeedbacks effect.
They show, with feedback of P4 electrode alpha envelope power, that the magnitude of sustained changes is
negatively correlated with feedback latency. To minimize the latency the computation must occur as the signal
is recovered, and as quickly as possible. Obtaining the necessary flexibility and performance, requires the usage
of low level programming language. Low programming languages, and complete leverage on the manipulation of
the memory ensures that it can be optimized to minimize the latency.

The reality directing the choices regarding delay is that the visual feedback cannot be provided faster than the
refreshing speed of the computer screen. The data is pulled from the acquisition device every 1000 ms / 24. Then
the pipeline must process the data and display the neuromarker before the next data chunk is pulled (duration
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of the pipeline must be lower than 1000 ms / 24). The threshold is large enough for the computations at hand
here, even when marker are computed 50 times a second.

Event-loop and jitter Built upon Qt, it relies on its event loop. In an object oriented language, an event
loop is a design pattern that dispatch messages from all sender objects to all receiver objects. While it does not
guarantee the absence of jitter, it offers flexibility, and clarity of code. It is used by thousands of applications.

Shared pointers Chunk and Configuration are encapsulated in a shared pointer : whenever the Chunk or
Configuration is not used, it is deleted.

Dependencies

Although fully developed in C++, it relies on C / C++ / fortran librairies. To permit L-GPL licensing, all the
proprietary / GPL optional dependencies are built as plugins, a process facilitated by the Qt plugin layer.

Qt Qt is the library upon which the software is based. It provides the Event-Loop 7.7.7, the connections between
objects, the windowing, the drawing of the widgets. It allows the 2D plotting of the electroencephalogram, 2D
plotting of electrodes during the impedance setup, it plays the various sounds and sound tracks.

dtk-... dtk is a modular toolkit for the efficient design of scientific applications. dtk-core is used extensively for
creating the parameters of the Nodes. dtk-widgets is used to handle the menu-bar aggregating all the parameters
of the various Nodes, as well as the splitting between views. dtk-fonts is used to have access to font-awesome fonts
within a Qt application. dtk-themes is used for an easy switch between color themes / styles of the application.

xtensor xtensor is a fast, robust, and still maintained matrices manipulation library. It attempts to reach the
simplicity of usage of numpy (in Python), while in the C++ language. Notably, it offers wrappers for linear
algebra operations, which are required for some spatial filters. xtensor-fftw is especially used to compute Fourier
transform related calculations.

edflib One of the most common extension for EEG data is EDF (European Data Format), such as in Obeid
and Picone [201], or exports from Nice CHU. The exported files from Nice CHU did not match strictly the
specifications, and could not be read as such by the library. The library was modified so that these files could be
processed: the checks triggering abort of the program were turned off.

DSP Filters The DSP Filters library provides solid digital filtering tools [73], of the many objects that are
offered by the library, only a handful are used. This handful comprises the SmoothedFilterDesign orchestrating
either one of Bessel, Butterworth or Legendre filters, as either band-pass, band-stop, low-pass or high-pass filter.

VTK Visualisation ToolKit is a C++ library that provides a 3D scientific visualization engine.

Conda recipes and packaging

The dependencies can be installed with a simple one-liner on linux and MacOS.
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conda create -n zither -f path/to/recipe.yml

The software can then be installed with CMake.

Pseudonymisation

Statistical analyses can be biased if the statistician has a view on the origin of the data (for instance from
which subject it was acquired). Moreover, discussing subject specific results without compromising the identity
of the subject requires some kind of anonymization. Lastly, it is part of General Data Protection Regulation
(GDPR) which defines pseudonymization at the EU level in Article 4(5). Pseudonymisation is a middle groung
accomodation that removes any identification of the subject in EEG records, while keeping track, in a dedicated
table of the pairing between subject information and EEG records. The access to the table of pairing is restricted.
In the frame of this thesis work, only the neurologist had access to the table.

A Python script was developed to pseudonymize the EEG records acquired in the EDF (European Data Format).
It removes subject identification and replace it by a unique identifier. This unique identifier is filled in the table
alongside the name of the subject.
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A.2 Mental workload classification

The present work is a joint effort conducted with Sara Sedlar (Inria) and Johann Benerradi (University of Notting-
ham). It was presented at the Neuroergonomics conference 2021, to compete in the ”Grand Challenge: Passive
BCI Hackathon”. This challenge aimed at facing the large within-subject variability affecting brain signals lead-
ing to often poorly performing passive brain computer interfaces. Several pre-processing strategies (including
computing the Morlet wavelet coefficients) and neural networks (classical CNNs) have been implemented. The
methodology stemming for the research work of Sara Sedlar stood out and was deemed to be presented in this
chapter.

Abstract

Assessing mental workload could prove invaluable in many safety-critical situations, notably situations where
fatigue impairs cognitive and behavioral functions. Passive Brain Computer Interfaces (PBCI) can be a solution
of choice for the purpose of assessing the mental workload of users performing various tasks with different levels
of mental demand. One main problem is the variability across sessions of the EEG of different mental workloads.
The ”Grand Challenge: Passive BCI Hackathon” organized for the Neuroergonomics 2021 conference enabled
to challenge researchers with a real-life scenario of a mental workload PBCI: classifying mental workload of an
unlabeled session after training on only 2 labeled sessions. The proposed strategy is based on a convolutional neural
network with rank-1 constraint fed with EEG signals projected on a basis of spherical harmonics. It performed
modestly: 48.20% on an unlabeled session, with a chance level at 33%. Despite this modest performance, it ranked
second out of eleven participants. This clearly unveiled the difficulty of classifying correctly mental workload with
EEG on unseen sessions.

Introduction

Assessing the mental workload of individuals in risky situations is critical: it could for instance be used to reduce
plane crashes relating to the inattention of pilots. It could also be employed to design interfaces that are not
overwhelming to users, and therefore ease the usage of the interface.

A number of approaches have been put forward to classify mental workload, and involve one or several recording
modalities. The most influential [193] psychophysiological features in classifying mental workload level are brain
electrical activity or blood oxygenation, heart rate [110], breath rate, eye blink measures and pupillometry [11].
Some studies involve several features at the same time such as this of Liu et al. [161] (EEG, fNIRS, physiological).

The classification algorithms making use of these signals are as diverse as the pre-processing the signals undergo.
Pre-processing may involve time-frequency decomposition of the signals, or independent source decomposition
[228] among other approaches.

Classification procedures are of at least three families: RandomForest, Riemannian geometry or deep-learning.
Deep-learning approaches have become mainstream in challenging these problems: adaptive stacked denoising
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autoencoder [339], CNN [254] are such approaches that have hailed promising results.

In the current approach, the pre-processing of the EEG signal involves the projection of the raw signal onto a
spherical harmonics basis. These coefficients feed a CNN deep-learning framework model (with reduced number
of parameters). While the time-frequency decomposition is not performed in the pre-processing, it is partially
achieved in the first layer (rank-1 constrained) of the CNN.

Data

The dataset provided for this challenge [113] was composed of the EEG recordings of 15 participants (6 female;
average 25 y.o.). These participants were asked to perform the Multi-Attribute Task Battery-II (MATB-II de-
veloped by NASA) in 3 one-week-apart sessions. Each session is composed of 3 5-minutes blocks of different
difficulties: easy, medium and difficult, and accompanied by a 1-minute resting state baseline with eyes open.
The order of presentation of the different difficulty block was randomized, meaning that participants did not
necessarily start with the easy task first. The easy blocks (label 0) involved a TRACK (manual control of a
target within a window) and a SYSTEM MONITORING (monitoring 4 gauges and 2 warning lights) tasks. The
medium blocks (label 1) involved an additional and third task: RESOURCE MANAGEMENT in which a set of
pumps had to be activated / deactivated to control for the allocation of fuel to several reservoirs. The difficult
blocks (label 2) incorporated a fourth task: COMMUNICATION in which exchanges had to be made through
radio messages by changing the frequencies of different radios.

Figure 8.20: Electrodes of all subjects on the same 3D plot. Electrode orientations are not consistent, and some
are either misplaced on the scalp or mislocated.

The original signals were acquired on a 64 EEG electrodes headcap placed along the 10-20 system and sampled at
500Hz. The exact location of the electrodes was obtained by means of a 3D camera. The data made available by
the organizers of the contest was already pre-processed. It involved a selection of 62 electrodes (whose positions
for all participants are drawn are figure 8.20) referenced to the right mastoid. These channels were down-sampled
to 250Hz. The signals were high-pass filtered above 1Hz (FIR), and low-pass filtered below 40Hz (FIR). An
independent component analysis was used to identify the artifacts and reject them. The data was ultimately split
into epochs of 2 seconds for a total 447 epochs for each session and each participant.

While three sessions were recorded, the difficulty labels were provided only for the 2 first sessions. The third
and remaining session is used by the organizers to evaluate the classification performances of all the submitted
classifiers.
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Method

In order to perform the classification of 3-level mental workload tasks, this approach proposed a deep-learning
model based on a convolutional neural network (CNN) with rank-1 constraint [59, 138] fed with spherical repre-
sentations of EEG spatio-temporal patterns.

A spatio-temporal EEG pattern can also be represented as a linear combination of spherical harmonics Ŝ, which
has the advantage of being invariant to rotations.

Ŝ = Ŷ −1X (8.2)

where:

X is the matrix of raw EEG signals

Ŷ −1 is the inverted spherical harmonics basis

Ŝ is the matrix of EEG signals in the spherical harmonic basis

The projection matrix Ŷ −1 (equation 8.2) is obtained by the pseudo inversion of real basis of spherical harmonic
with least mean square optimization regularized with Laplace-Beltrami regularization term (λ = 0.001) [56]:

Ŷ −1 = (Y TY + λRLB)−1Y T (8.3)

where:

Y is the spherical harmonic basis computed for each subject with the electrodes locations expressed as angles

The complex form of the elements of Y are obtained as:

ymn (θ, φ) =

√
2 + 1

4π

(n−m)!

(n+m)!
eimθPmn (cos(φ)) (8.4)

where:

m is the order of the harmonic
n is the degree of the harmonic
Pmn is the associated Legendre polynomial
θ is the azimuthal coordinate
φ is the polar coordinate

Their real form is then extracted with:

ymn =


√

2 (−1)m =
(
y
|m|
n

)
if m < 0

y0
n if m = 0√
2 (−1)m < (ymn ) if m > 0.

(8.5)

The angles φ and θ are obtained after the electrodes were fit onto a sphere whose center and radius were optimized
for each subject separately.

The projection of spatio-temporal EEG patterns on a spherical harmonics basis has several advantages. It miti-
gates the subject to subject and session to sessions variability in sensors position, which is strong in the dataset at
hand (see figure 8.20) and allows to reduce the dimensionality of the problem by reducing the number of spatial
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components. To evaluate the order to use, learning and validation have been conducted several times, with a
maximal degree of spherical harmonics varying from 2 to 4. The learning curve was optimal for a degree of 3
corresponding to 16 basis elements. This had the effect of reducing the spatial dimension from 62 to 16. One
drawback is that it approximates the head to a sphere, and therefore introduces some distortions. The signals
expressed in the SH basis (Ŝ) are down-sampled at 42 samples per second (Ŝds) to only consider oscillatory
components below 20Hz.

The classifier, illustrated in figure 8.21, takes Ŝds as input. It is solely composed of 3 convolutional layers and
3 dense layers. The first convolutional layer has 5 kernels, each verifying a rank-1 constraint. These kernels are
outer-products of spatial (ŵs) and temporal weights (ŵt), and represent spatio-temporal atoms. This is especially
convenient for capturing short lived neural events (described at length in chapter 3 and chapter 5). The second
and third convolutional layers are standard and shorter convolutional filters, 3 kernels of size 5 × 3 and 3 kernels
of size 3 × 3 respectively. These convolutional layers are followed by ReLU activation functions. The 3 dense
layers are of respectively 15, 4 and 3 nodes. These dense layers are respectively followed by ReLU, ReLU and
Softmax activation functions. It gives rise to a total of of 342 parameters.

Figure 8.21: Rank 1 convolutional neural network architecture for mental workload classification of EEG signals.
The last layer (green, blue and red disks) gives the probabilities of belonging to either one of the three (easy,

medium, difficult) classes.

The model is trained over 100 epochs with batch size 64 and an initial learning rate of 0.0005. For two following
triplets of epochs with validation classification accuracy difference greater than 10−4, the learning rate is slowed
by a factor 0.9. The loss function is categorical cross entropy and the models are trained with the Adam optimizer.

Results

The model is trained on 9 subjects, 3 are used for validation and the remaining 3 for testing. 3 repetitions of
this procedure with random assignation of subjects are realized to obtain confidence intervals. The validation set
accuracy after training on the first session is of about 46.6% (figure 8.22, II). The performance is consistently
higher than the chance level of 33.33% (or an upper-bound of about 38% after considering the number of trials
per class) as seen in figure 8.22, II with the confidence interval showing that the training is relatively robust over
repeated training.
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I II

Figure 8.22: Training graphs of the CNN rank-1 model (loss on the left, accuracy on the right), using one
labeled session for the train set and the other labeled session for the validation set (assigned randomly for each
participant). The bands represent the 95% confidence intervals on 3 repetitions of the procedure with random

training/validation splits.

The model was re-trained on all the subjects of the 1st and 2nd labeled sessions in order to produce the final
network sent to the competition. The results obtained by the BCI challenge organizers on the 3rd unlabeled
session (48.20%) match the order of magnitude of the validation tests (46.6%). The slightly improved results may
be due to the increase in the size of the training data.

Figure 8.23: Overall confusion matrix of the CNN rank-1 model on 3 repetitions of the procedure with random
training/validation splits.

As displayed in figure 8.23, the model is biased towards the easy task in the sense that is predicts the label 0
way more often than it occurs. An interesting result is that the label 0 is rarely confused for another label. A
surprising effect is that the label 1 is either predicted as label 0 or label 2, which suggests that the features (if
any) in the EEG signal of the label 1 were not captured by the classifier.
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Discussion

By comparison to the other deep-learning strategies employed in the competition [250], the network was shallow.
The design helped to capture EEG signal by learning atoms matching the events manifested during the different
tasks. It was better tailored to the amount of available data and low signal to noise ratio which avoided over-fitting,
a point raised by Roy et al. [250].

Several leads should be considered in improving the network. The 3rd session baseline was not used to further
constrain the final network, and transfer learning approaches could benefit from this additional information. The
model was trained on all subjects at once (with randomized epochs) because of the restricted amount of epochs,
nonetheless, was more data available, personalized training or personalized fine-tuning should be considered.

Conclusion

This rank-1 constraint CNN model, despite a moderate performance at classifying unlabeled 3-class mental work-
load tasks, reached the 2nd place out of 11 at the ”Grand Challenge: Passive BCI Hackathon” that took place
during the online 2021 Neuroergonomics conference.

It was outperformed by a Riemannian geometry classifier [212] but outperformed another [52] and several deep
learning algorithms. This shows that deep-learning do not always outperform more “classical” approaches, but
that the careful design of the network is at the heart of its performance. This inter-session exercise is difficult
because it involves a longitudinal (there is variability from session to session) component that is hard to learn on
such a restricted number of sessions.

While the literature usually brings out attractive classification results, it appears that in competitions where
evaluation data is unknown and hard tweaking to this data impossible, the results are more modest.
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A.3 Cortical Synchrony Neurofeedback

This additional content describes an ongoing collaboration with hospital La Timone in Marseille on a neurofeed-
back (NFB) protocol design for epileptic patients.

Introduction

The PhD thesis at Inria gave the opportunity to build up a platform for EEG signal processing and feedback
delivery. The potential of EEG channels cross-correlation control learning will be evaluated. The effects of
attempting to down-regulate general levels of cross-correlation will be studied. These general levels of cross-
correlation of the EEG channels are thought to possibly reveal excited states favoring seizures.

Methods

Various neuromarkers have been implemented over the course of this doctoral research. Given the moderate
confidence in using MPC / PLI / Coherence or Imaginary Coherence developed in the study of phase synchrony
in epileptic patients (see chapter 7 and chapter 6), an alternative measure was selected: the smoothed average
lagged cross correlation between selected pairs of scalp EEG electrodes.

To avoid considering correlations due to volume conduction, the 0 and π lag correlations should be discarded.

EEG-NFB procedures

The procedure involves the neurofeedback platform Zither (stemming from the collaboration between Nice CHU,
Marseille CHU and Inria Sophia) for impedance checks, recording, processing and feedback delivery. It is illus-
trated in figure 8.24, and described hereafter.

Figure 8.24: Procedure summary of the neurofeedback experiment.

At the beginning of each session, the subject will be invited to sit in front of a computer screen. A head-cap
of 32 gel electrodes (10-20 system) will be set up on his/her scalp. Electrode-impedance will be lowered below
10kOhm, and stored for further inspection. Two additional electrodes will be placed on the 2nd phalange of the
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middle and index fingers to record the galvanic skin response (GSR). The raw EEG and GSR signal will be stored
for further inspection.

At this time, the subject will be invited to ask any question and will proceed to the completion of a questionnaire
about his/her subjective state. This questionnaire has been developed with the Association française de psychiatrie
biologique et Neuropsychopharmacologie (AFPBN), in order to evaluate cognitive states during NFB training
sessions [référence appropriée].

Then, the investigator will explain to the patient that EEG will be recorded in a resting state condition for 30
seconds before the NFB procedure starts. For this recording, the subject will be asked to stay in a relaxed and
wakeful state, without any particular task to perform and with his/her eyes closed, which provides better data
quality and presents less muscular artifacts than with open eyes.

After recording resting-state EEG, the tasks of the EEG-NFB procedure will start. The task will be performed by
the subject in an environment with as few distractions as possible and in the presence of the investigator who will
remain purely passive and neutral. The subject will be informed to look at a computer screen displaying a hot air
balloon which can be commanded to either go up or down, in a simplified 3D environment. If the level of EEG
inter-channel synchrony goes down, the balloon goes up, if the level goes up, the balloon goes down (uplifting
the balloon is rewarding). The subject will never receive negative feedback in order to avoid loss of motivation.
Overall, the NFB procedure will consist of 10 blocks of training lasting 75 seconds separated by resting intervals
of 15 seconds to avoid fatigue and decreased attention (lasting a total of 15 minutes). The test procedure will aim
at decreasing the mean EEG inter-channel instantaneous correlation in the 1-40 Hz band. The GSR is recorded
to be used for further analyses such as tests of correlation between cortical desynchronization and high sudation,
and comparison with previous studies of GSR biofeedback in the context of epilepsy.

BCI skills are unevenly shared among subjects. Instructions provided outside of the tasks can help some subjects
getting started. The first instruction given to the subject will be to carefully perform mental calculation tasks.
The second instruction will be to carefully perform motor imagination tasks. The subject will have the opportunity
to adapt their strategy based on feedback reward to improve their NFB performance. At the end of each session,
30 seconds of resting-state EEG will be recorded in the same conditions as before the NFB procedure.

Finally, the subject will complete the post-intervention version of the NExT-Q questionnaire about their subjective
state at the end of the session. He / She will be asked by the investigator about his/her experience during the
session, and the strategy (or strategies) he/she used to “succeed at the game” (Metacog-IQ). This semi-structured
standardized questionnaire is based on a metacognitive interview during which the investigator accompanies the
subject to identify and understand the strategies used during EEG-NFB learning, to foster introspection, and to
facilitate the process of empowerment. The Metacog-IQ should allow a better transfer of NFB learning in everyday
life. Overall each EEG-NFB session will last about 20 minutes, explanations and discussion with the subject:
15 minutes, setting up the headcap and fingers electrodes: 20 minutes, removing and washing the headcap 10
minutes.

To enable a double blind experiment, the software will randomly feed the EEG of the subject, or of a different
subject recorded only for this purpose of substitution (placebo). The algorithm ensures that half the sessions /
subjects are placebo.

The 16 patients definitely enrolled in each group will undergo 12 EEG-NFB sessions over 4 weeks.
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Castellanos, Trinidad Virués-Alba, Lourdes Valdés-Urrutia, and Pedro A Valdes-Sosa. White matter archi-
tecture rather than cortical surface area correlates with the eeg alpha rhythm. Neuroimage, 49(3):2328–2339,
2010.

[313] Timo Van Kerkoerle, Matthew W Self, Bruno Dagnino, Marie-Alice Gariel-Mathis, Jasper Poort, Chris Van
Der Togt, and Pieter R Roelfsema. Alpha and gamma oscillations characterize feedback and feedforward
processing in monkey visual cortex. Proceedings of the National Academy of Sciences, 111(40):14332–14341,
2014.

[314] Remko van Lutterveld, Edwin van Dellen, Prasanta Pal, Hua Yang, Cornelis Jan Stam, and Judson Brewer.
Meditation is associated with increased brain network integration. Neuroimage, 158:18–25, 2017.

[315] Bernadette van Wijk, Peter J Beek, and Andreas Daffertshofer. Neural synchrony within the motor system:
what have we learned so far? Frontiers in human neuroscience, 6:252, 2012.

[316] Martin Vinck, Marijn van Wingerden, Thilo Womelsdorf, Pascal Fries, and Cyriel MA Pennartz. The
pairwise phase consistency: a bias-free measure of rhythmic neuronal synchronization. Neuroimage, 51(1):
112–122, 2010.

[317] Martin Vinck, Robert Oostenveld, Marijn Van Wingerden, Franscesco Battaglia, and Cyriel MA Pen-
nartz. An improved index of phase-synchronization for electrophysiological data in the presence of volume-
conduction, noise and sample-size bias. Neuroimage, 55(4):1548–1565, 2011.

[318] Sid Visser, Rachel Nicks, Olivier Faugeras, and Stephen Coombes. Standing and travelling waves in a
spherical brain model: the nunez model revisited. Physica D: Nonlinear Phenomena, 349:27–45, 2017.

[319] Astrid Von Stein and Johannes Sarnthein. Different frequencies for different scales of cortical integration:
from local gamma to long range alpha/theta synchronization. International journal of psychophysiology, 38
(3):301–313, 2000.

154



[320] W Grey Walter, R Cooper, VJ Aldridge, WC McCallum, and AL Winter. Contingent negative variation: an
electric sign of sensori-motor association and expectancy in the human brain. Nature, 203(4943):380–384,
1964.
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Utilisabilité des marqueurs de synchronie de phase dans les protocoles de neurofeedback EEG
pour la réduction des crises épileptiques Court résumé Le cerveau est un organe complexe et pourtant
fiable qui supervise de nombreuses fonctions vitales. Des disfonctionnements peuvent pourtant survenir et avoir
des conséquences graves comme dans les troubles épileptiques. Certaines fonctions du cerveau sont permises par les
oscillations de populations de neurones. Ces oscillations se produisent à des rythmes et dans des régions corticales
différents. La phase d’une oscillation caractérise dans le temps les cycles d’activation d’une population neuronale.
Quant à la synchronie de phase, elle capture la stabilité d’une relation de phase entre deux oscillations. Bien
que la synchronie entre activités oscillatoires de régions cérébrales soit une coordinatrice nécessaire, son excès
est la cause de certaines crises épilepiques. Ce travail se focalise donc sur la modulation en temps réel de la
synchronie de phase entre régions corticales dans le but d’offrir de nouvelles opportunités de traitement pour
certaines épilepsies.

Usability in EEG neurofeedback protocols of phase synchrony neuromarkers for epileptic seizure
reduction Short summary Despite the fascinating complexity of the brain associated to an incredible consistency,
failures do occur and have severe consequences such as in epilepsies. Major functions in the brain are enabled
through the oscillatory activity of neuronal assemblies. These oscillations occur at different rhythms, over different
regions, depending on the mental task. The oscillatory pattern of a neuronal assembly is characterized by the
phase. Phase synchrony captures the stability of a phase relationship between neuronal assembly activities. While
synchrony between the oscillatory activities of brain regions is presented as a necessary coordinator, its excess,
such as in epilepsy, causes dramatic outcomes, indicating that a balance is necessary. This work focuses on learning
a balance with the real-time modulation of phase synchrony measured by means of electroencephalography (EEG)
to offer new treatment opportunities for certain epileptic disorders.
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