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Abstract

The analysis of neuroimaging data is essential for the interpretation of the functional
or structural characteristics of the human brain. New machine learning algorithms
usually require a high amount of data often infeasible to acquire in clinical and
practical conditions. This requirement is a consequence of significant data vari-
ability arising from numerous factors (various recording procedures, subjects and
sessions, presence of high levels of noise). To address this problem, in this thesis, we
have investigated and proposed convolutional machine learning models adapted to
the properties and well grounded assumptions about the acquired data. Therefore,
the models are endowed with valuable knowledge and consequently more efficiently
learn to perform certain inferences. In particular, we have studied models for the
analysis of non-invasive and in-vivo structural and functional neuroimaging data,
namely diffusion Magnetic Resonance Imaging (dMRI) and magneto- and electro-
encephalography (M/EEG) signals.
Diffusion MRI is a nuclear imaging modality which captures micro-structural prop-
erties of the examined tissue. As q-space sampling has been the most widely used
high angular resolution diffusion imaging protocol (HARDI) over the last decade, we
have studied spherical rotation equivariant convolutional neural networks (CNNs)
for dMRI local modeling. As a first contribution, we have proposed a spherical
U-net for the estimation of fiber orientation distribution functions (fODFs) with
convolutions and non-linearities realized in the spectral and signal domains, respec-
tively. To avoid aliasing, our second contribution proposes a Fourier domain CNN
for micro-structure parameter estimation, where non-linearities are defined in the
spectral domain.
M/EEG are functional imaging techniques which measure magnetic field strength
and electric field potential caused by neural electric activities in the cerebral cor-
tex. Measured signals can be explained by Maxwell’s equations with quasi-static
approximations. Consequently, we can assume that cortical brain activities spread
instantaneously and linearly over the measuring sensors, thus a multivariate M/EEG
signal can be represented as a sum of rank-1 multivariate signals corresponding to
individual sources in the cortex and noise. Considering this assumption, the second
part of the thesis firstly investigates an M/EEG spatial and temporal dictionary
learning approach with an L0 constraint. A second contribution is a CNN classifier
with rank-1 spatio-temporal kernels regularized in the spectral domain, where the
spatial components of the kernels are represented in terms of spherical harmonics
basis, while the temporal components are represented in terms of discrete cosine
basis.
Keywords: dMRI local modeling, rotation equivariant CNNs, rank-1 CNN classi-
fier, M/EEG spatio-temporal pattern learning
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Résumé

L’analyse des données de neuroimagerie est essentielle pour l’interprétation des
caractéristiques fonctionnelles ou structurelles du cerveau humain. Les algorithmes
d’apprentissage automatique récents requièrent généralement une grande quantité
de données souvent impossibles à acquérir dans des conditions cliniques et pratiques.
Une telle exigence est une conséquence de la variabilité importante des données
résultant de nombreux facteurs (différentes procédures d’enregistrement, sujets et
sessions, présence de niveaux élevés de bruit). Pour résoudre ce problème, dans
cette thèse, nous avons étudié et proposé des modèles convolutifs d’apprentissage
automatique adaptés aux propriétés et aux hypothèses bien fondées sur les données
acquises. Par conséquent, les modèles sont dotés de connaissances précieuses et
apprennent plus efficacement à effectuer certaines inférences. En particulier, nous
avons étudié des modèles d’analyse des données de neuroimagerie structurelle et
fonctionnelle non-invasives et in-vivo pour de l’imagerie par résonance magnétique
de diffusion (IRMd) et des signaux de magnéto et d’électro-encéphalographie
(M/EEG).
L’IRM de diffusion est une modalité d’imagerie nucléaire qui capture les propriétés
microstructurales des tissus examinés. Comme l’échantillonnage de q-space est le
protocole d’imagerie de diffusion à haute résolution angulaire (HARDI) le plus
largement utilisé au cours de la dernière décennie, nous avons étudié les réseaux
de neurones convolutionnels (CNN) sphériques équivariants par rotation pour la
modélisation locale de l’IRMd. Comme première contribution, nous avons proposé
un U-net sphérique pour l’estimation des fonctions de distribution d’orientation des
fibres (fODF) avec des convolutions et des non-linéarités réalisées respectivement
dans les domaines spectral et signal. Pour éviter l’aliasing, la deuxième contribution
propose un CNN travaillant entièrement dans le domain spectral – y compris pour
les non-linéarités – pour l’estimation des paramètres de microstructure.
La M/EEG est une technique d’imagerie fonctionnelle qui mesure l’intensité du
champ magnétique et le potentiel du champ électrique provoqués par les activités
électriques neurales dans le cortex cérébral. Les signaux mesurés peuvent être
expliqués par les équations de Maxwell avec des approximations quasi-statiques.
Par conséquent, nous pouvons supposer que les activités cérébrales corticales se
propagent instantanément et linéairement sur les capteurs de mesure, ainsi un
signal M/EEG multivarié peut être représenté comme une somme de signaux
multivariés de rang 1 correspondant à des sources individuelles dans le cortex et
le bruit. Partant de cette hypothèse, la deuxième partie de la thèse étudie une
approche d’apprentissage de dictionnaire spatio-temporel M/EEG sous contrainte
L0. Une deuxième contribution dans cette partie est un classificateur CNN à
noyaux spatio-temporels de rang 1 régularisés dans le domaine spectral, où les
composantes spatiales et temporelles des noyaux sont représenteés respectivement
en termes d’éléments de base d’harmoniques sphériques et de base de cosinus
discrets.



ii

Mots clés : modélisation locale d’IRMd, CNN équivariant par rotation,
classifieur rang-1 CNN, apprentissage spatio-temporel M/EEG



iii

Acknowledgments



iv

Funding

This work was supported by the ERC under the European Union’s Horizon 2020
research and innovation program (ERC Advanced Grant agreement No 694665
CoBCoM: Computational Brain Connectivity Mapping).

Data were provided [in part] by the Human Connectome Project, WU-Minn
Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil;
1U54MH091657) funded by the 16 NIH Institutes and Centers that support the
NIH Blueprint for Neuroscience Research; and by the McDonnell Center for
Systems Neuroscience at Washington University.

The authors are grateful to the OPAL infrastructure from Université Côte
d’Azur for providing resources and support.

https://cordis.europa.eu/project/id/694665
https://cordis.europa.eu/project/id/694665


Contents

List of Acronyms ix

1 Introduction 1

2 Background 5
2.1 Human brain structure and function . . . . . . . . . . . . . . . . . . 6

2.1.1 Structure and function of neurons . . . . . . . . . . . . . . . . 7
2.1.2 Gray matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 White matter . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Structural and functional brain imaging techniques . . . . . . . . . . 14
2.2.1 Diffusion MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Magneto and electro encephalography . . . . . . . . . . . . . 26

2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Diffusion MRI local analysis 35
3.1 dMRI acquired on spheres . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 dMRI probability density functions . . . . . . . . . . . . . . . . . . . 39
3.3 dMRI multi-compartment micro-structure imaging . . . . . . . . . . 42
3.4 Deep learning models for spherical signals . . . . . . . . . . . . . . . 44
3.5 Deep learning models in dMRI local modeling . . . . . . . . . . . . . 49
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Spherical U-net for dMRI fiber orientation distribution function
estimation 57
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.1 Estimation of spherical harmonic (SH) coefficients . . . . . . 60
4.2.2 Convolutional layers . . . . . . . . . . . . . . . . . . . . . . . 61
4.2.3 Rectified linear unit (ReLU) non-linearity . . . . . . . . . . . 61
4.2.4 Pooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2.5 Transposed convolutional layers . . . . . . . . . . . . . . . . . 62
4.2.6 Loss function . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4 Experiments and implementation details . . . . . . . . . . . . . . . . 65
4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69



vi Contents

5 Fourier domain spherical CNN for dMRI local analysis 71
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2.1 Convolution (correlation) between S2 and zonal functions . . 73
5.2.2 S2 quadratic function . . . . . . . . . . . . . . . . . . . . . . 74
5.2.3 Convolution (correlation) between SO(3) functions . . . . . . 75
5.2.4 SO(3) quadratic function . . . . . . . . . . . . . . . . . . . . 75
5.2.5 Power spectrum of S2 and SO(3) functions . . . . . . . . . . 76

5.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3.1 Fourier domain convolutional neural network (CNN) with

quadratic S2 non-linearities . . . . . . . . . . . . . . . . . . . 78
5.3.2 Fourier domain CNN with quadratic SO(3) non-linearities . . 78

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.4.1 Axon bundle counting experiment . . . . . . . . . . . . . . . 81
5.4.2 Multi-compartment micro-structure estimation . . . . . . . . 87
5.4.3 Brain tissue segmentation . . . . . . . . . . . . . . . . . . . . 97

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6 MEEG spatial and temporal pattern analysis 103
6.1 MEEG multivariate signal modeling . . . . . . . . . . . . . . . . . . 104
6.2 MEEG inverse problems . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.3 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.3.1 Dictionary learning . . . . . . . . . . . . . . . . . . . . . . . . 108
6.3.2 CNN classification models . . . . . . . . . . . . . . . . . . . . 113

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7 Rank-1 M/EEG waveform and spatial pattern learning with L0

constraint 119
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.2.1 Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.2.2 Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.2.3 Loss and update of the dictionaries . . . . . . . . . . . . . . . 124
7.2.4 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.3 Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.4 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

8 Shallow CNN for M/EEG classification 145
8.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
8.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

8.2.1 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . 147
8.2.2 Feature selection and normalization . . . . . . . . . . . . . . . 148



Contents vii

8.2.3 Feature classification . . . . . . . . . . . . . . . . . . . . . . . 149
8.2.4 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
8.2.5 Validation and test . . . . . . . . . . . . . . . . . . . . . . . . 151

8.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
8.3.1 Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
8.3.2 Implementation details . . . . . . . . . . . . . . . . . . . . . . 153

8.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

9 Conclusions and perspectives 163

Appendices 167

A S2 and SO(3) signal related derivations appendix 169

B Microstructure estimation experiments appendix 181

C Dictionary learning experiments appendix 193

D M/EEG classification experiments appendix 217

Bibliography 229





List of Acronyms

CNS Central Nervous System . . . . . . . . . . . . . . . . . . . . . . . . . . 6

PNS Peripheral Nervous System . . . . . . . . . . . . . . . . . . . . . . . . . 6

GM gray matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

WM white matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

CSF cerebrospinal fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

AP action potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

PSP postsynaptic potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

MRI Magnetic Resonance Imaging . . . . . . . . . . . . . . . . . . . . . . . . 14

CT Computed Tomography . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

PET Positron Emission Tomography . . . . . . . . . . . . . . . . . . . . . . . 15

EM electro-magnetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

RF radio frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

DSG diffusion sensitizing gradients . . . . . . . . . . . . . . . . . . . . . . . . 22

dMRI diffusion Magnetic Resonance Imaging . . . . . . . . . . . . . . . . . . 1

PSGE Pulsed Gradient Spin-Echo . . . . . . . . . . . . . . . . . . . . . . . . 24

EEG Electroencephalography . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

MEG Magnetoencephalography . . . . . . . . . . . . . . . . . . . . . . . . . 2

fNIRS functional Near Infrared Spectroscopy . . . . . . . . . . . . . . . . . . 14

SPECT Single Photon Emission Computed Tomography . . . . . . . . . . . 15

DTI Diffusion Tensor Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . 24

HARDI High Angular Resolution Diffusion Imaging . . . . . . . . . . . . . . 25

SQUID superconducting quantum interference device . . . . . . . . . . . . . 32

SERF spin exchange relaxation-free . . . . . . . . . . . . . . . . . . . . . . . 32

ZH zonal harmonic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

SH spherical harmonic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v



x Contents

RH rotation harmonic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

PDF probability density function . . . . . . . . . . . . . . . . . . . . . . . . 35

ADC apparent diffusion coefficient . . . . . . . . . . . . . . . . . . . . . . . . 24

DSI diffusion spectrum imaging . . . . . . . . . . . . . . . . . . . . . . . . . 25

EAP Ensemble Average Propagator . . . . . . . . . . . . . . . . . . . . . . . 39

dODF Diffusion Orientation Distribution Function . . . . . . . . . . . . . . . 40

fODF Fiber Orientation Distribution Function . . . . . . . . . . . . . . . . . 2

BCI brain-computer interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . 1

CNN convolutional neural network . . . . . . . . . . . . . . . . . . . . . . . vi

FCN Fully Connected Network . . . . . . . . . . . . . . . . . . . . . . . . . . 51

ReLU rectified linear unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ICA independent component analysis . . . . . . . . . . . . . . . . . . . . . . 107

HCP Human Connectome Project . . . . . . . . . . . . . . . . . . . . . . . . 2

SNR signal to noise ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

MSE mean squre error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

MAE mean angular error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

DL deep learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

MLP multi layer perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

CNN convolutional neural network . . . . . . . . . . . . . . . . . . . . . . . vi

NODDI neurite orientation dispersion and density imaging . . . . . . . . . . 49

SMT spherical mean technique . . . . . . . . . . . . . . . . . . . . . . . . . . 81

MCSC Multivariate Convolutional Sparse Coding . . . . . . . . . . . . . . . 193



Chapter 1

Introduction

The development of neuroimaging techniques over the last and current cen-
tury has facilitated gathering of the new insights in the structure and function
of the central nervous system, mainly in an in-vivo and non-invasive manner
[de Beeck & Nakatani 2019]. Firstly invented structural neuroimaging techniques
allowed the analysis of the shape, the distribution, and the volume of different
neural tissues [Lenroot & Giedd 2006]. Therefore, they have been used in the diag-
nosis and characterization of multiple brain diseases, including brain tumors, mul-
tiple sclerosis, and traumatic brain injuries [Gordillo et al. 2013, Filippi et al. 2019,
Lindberg et al. 2019]. The development of diffusion Magnetic Resonance Imag-
ing (dMRI) enabled structural analysis at a micro-scale by providing valuable in-
formation on the orientation of neural micro-structures, principally white matter
axon bundles [Le Bihan et al. 2006]. This has also opened the door to the research
field of structural brain connectivity [Sporns et al. 2005]. Functional neuroimaging
techniques have been used to represent brain activities [Orrison et al. 2017]. Apart
from being employed in clinical practice for detection and characterization of brain
conditions such as epilepsy and sleep disorders, functional neuroimaging has been
widely used in cognitive science, brain-computer interfaces (BCI) and functional
connectivity analysis [Kauhanen et al. 2006, da Silva 2013]. Besides the indepen-
dent analysis of the structural and functional properties of the brain, in the last two
decades, a field of research has been dedicated to understanding of their relation-
ships [Deriche 2016].
To facilitate and improve the interpretation of the acquired medical data, a
broad research area is devoted to development of the models for their analysis
[Erickson et al. 2017]. New machine learning algorithms, such as deep learning mod-
els, usually require a high amount of data (and possibly its annotation) often infea-
sible to acquire in clinical and practical conditions. This request is a consequence of
a high variability of the same imaging modalities between acquisition centers, imag-
ing devices, acquisition protocols, subjects, recording sessions and often, also due to
high levels of noise. To account for some of these variabilities, data harmonization
[Pezoulas et al. 2020] and transfer learning [Cheplygina et al. 2019] methods are be-
ing investigated.
To exploit the learning capacity of the neural networks, on one side and to ac-
count for the data variability and/or low quantity, on the other, in this thesis, we
have investigated CNN models adapted to the properties and well grounded as-
sumptions about the acquired data. In this way, the models are endowed with
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valuable prior knowledge, before seeing any training data. As a consequence, the
models show higher generalization power. In particular, we have investigated the
convolutional models for the local analysis of dMRI data acquired with q-space
sampling protocol [Caruyer et al. 2013] and for the analysis of the multivariate
Magnetoencephalography (MEG) and Electroencephalography (EEG) signals. The
former take into account real and spherical nature of the dMRI signals, their rotation
equivariance with respect to the underlying microstructures, antipodal symmetry,
and random uniform distribution of the sampling points. M/EEG convolutional
models are designed under assumptions that the measured signals can be repre-
sented as a sum of rank-1 multivariate signals corresponding to individual brain
activities, and noise and that the brain waveforms are of transient and recurrent na-
ture. In addition, to reduce the effects of inter-session and inter-subject variability,
a model for M/EEG signal classification which assumes spherical head model has
been investigated.
The thesis is organized as follows:

• Chapter 2. This chapter contains an overview of the principal structural and
functional properties of the human brain. This is followed by a description of
biophysical phenomena in neural tissues and medical structural and functional
imaging methodologies for their measuring, namely dMRI, EEG, and MEG.

• Chapter 3. In Chapter 3, firstly, properties of the dMRI signals acquired with
q-space sampling schemes are provided. Further, an overview of the state-of-
the-art dMRI local modeling approaches is given, in particular probability
density functions on sphere and biophysically inspired micro-structure multi-
compartment models. Following sections include a detailed overview of the
most recent deep learning approaches used in the analysis of spherical data
and in dMRI local modeling.

• Chapter 4. Our first contribution is presented in Chapter 4. It introduces
spherical U-net for the Fiber Orientation Distribution Function (fODF) es-
timation with details related to the estimation of SH coefficients via Gram-
Schmidt orthonormalization, convolutions with zonal kernels, pooling layers
and transposed convolution layers. The model is positively evaluated on the
real Human Connectome Project (HCP) and synthetic data generated with
the dmipy library.

• Chapter 5. Our second contribution from the domain of dMRI local model-
ing is given in Chapter 5. It introduces the Fourier domain spherical CNN for
dMRI local parameter estimation. The principal ingredients of this model are
quadratic non-linearities realized in the Fourier domain. The model is evalu-
ated on the synthetic data on the problem of the axon bundle count, estimation
of the micro-structure parameters and on the brain tissue segmentation.

• Chapter 6. In this chapter, first, the modeling of the functional EEG and
MEG signals is presented. After that, a detailed overview of the state-of-the-
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art multivariate dictionary learning approaches is provided. This is followed
by a description of the classification models used in BCI with a focus on CNN
models.

• Chapter 7. This chapter contains a contribution in the domain of EEG and
MEG analysis, in particular a multivariate rank-1 convolutional dictionary
learning approach with an L0 penalty. The model is thoroughly quantitatively
examined on the synthetic data generated with MNE and qualitatively on the
real motor task MEG HCP data and on somatosensory MEG data.

• Chapter 8. Our second contribution in the domain of EEG and MEG signal
analysis is provided in Chapter 8. We have proposed a shallow CNN classifier
with rank-1 kernels regularized in the spectral domain, both along spatial
and temporal dimensions. The model is evaluated on passive and active BCI
classification problems, namely on the EEG mental workload and motor-task
MEG HCP data.

• Chapter 9. The last chapter contains general conclusions of the presented
models and related perspectives.

• Appendix A. In Appendix A, we have provided derivations related to the
Fourier transform of the real S2 and SO(3) signals, their convolutions and
quadratic functions in the spectral domain. It accompanies chapters related
to dMRI local modeling, namely Chapters 3, 4 and 5.

• Appendix B In this appendix, we have provided additional information re-
lated to the experiments conducted with the Fourier domain spherical CNN
and compared methods, presented in Chapter 5.

• Appendix C The additional experiment materials related to convolutional
dictionary learning, presented in Chapter 7, are provided in Appendix C.

• Appendix D The materials related to the experiments performed with the
shallow rank-1 CNN and compared methods, presented in Chapter 8, are pro-
vided in Appendix D.
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Executive summary

In this chapter, firstly, a brief overview of the functional and structural properties
of the human nervous system is provided. It includes the information about the
neurons as its essential element and about the neural organizations at a macro-
scale, namely the cortical brain lobes and the white matter fiber tracts. Further, an
outline of the most prominent functional and structural medical imaging techniques
is given, followed by a detailed description of the physical phenomena in the neural
tissues and methodologies which allow diffusion Magnetic Resonance Imaging and
magneto- and electro-encephalography signal recording.
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2.1 Human brain structure and function

Anatomically, the nervous system of vertebrates is composed of the Central Nervous
System (CNS) which includes the brain and the spinal cord and the Peripheral
Nervous System (PNS) which is composed of the nerves and the ganglia outside
the CNS. An overview of the principal structural and functional properties of the
human’s CNS is provided in Figure 2.1 and of the PNS in Figure 2.2. For more
details, we refer the reader to [Snell 2010, Johns 2014].

Figure 2.1: An overview of the structural and functional properties of the CNS.
Images adapted from: mid-sagittal plane of the brain and image credited to William Crochot.

Figure 2.2: An overview of the structural and functional properties of the PNS.
Image adapted from: image credited to William Crochot.

https://commons.wikimedia.org/wiki/File:202102_Mid-sagittal_plane_of_the_brain.svg
https://commons.wikimedia.org/wiki/File:Nervous_system_diagram_%28dumb%29.png
https://commons.wikimedia.org/wiki/File:Nervous_system_diagram_%28dumb%29.png
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2.1.1 Structure and function of neurons

The essential elements of the nervous system are neurons, a majority of which make
a part of the brain. On average, an adult human brain contains ∼ 86× 109 neurons
and ∼ 85 × 109 non-neural cells [Azevedo et al. 2009, Herculano-Houzel 2012].
Typically, a neuron is composed of a soma, dendrites and an axon with multiple
terminals. The soma is the metabolic center of a neuron and is responsible for
generating proteins necessary for neuron maintenance and functioning. The region
of the soma where the axon emerges is called the axon hillock. Dendrites and
axons, also referred to as neurites, are projections from the soma responsible
for communication and information processing. An illustration of a neuron with
its main structures is given in Figure 2.3. Each of the neuron components give
rise to a morphological diversity of neurons, thus they can differ in terms of
position, shape and size of the soma, length of neurites, number of dendrites and
axon terminals, as well as their spatial organization. Crucial electro-physiological
properties of neurons are excitability, conductivity and secretion, which enable
them to receive and process information and based on the processing outcome, to
transmit information further. Given their connections, neurons can be classified as
interneurons which communicate only with other neurons, afferent neurons which
convert environmental stimuli into signals, and efferent neurons which transmit
signals to organs [Peters et al. 1976]. In general, signal reception takes place at the
level of dendrites. In the case of afferent neurons, dendrites directly or indirectly
translate received stimuli into sensory signals. Otherwise, in interneurons and
efferent neurons, reception is performed via synapses which are, most commonly,
established with dendrites and axons of different neurons. As each synapse
has an associated weight, signal processing starts at reception and continues
within dendrites. Depending on the spatial distribution of the synaptic inputs,
processing at the level of dendrites can be modeled in a linear or non-linear manner
[Grienberger et al. 2015]. Processed signals are integrated in axon hillock and if the
voltage of the resulting signal reaches a high enough amplitude in a short period
of time, an action potential is generated. This action potential is transmitted
along the axon until its terminals. Some axons are wrapped in a myelin sheath
which acts as an insulator and ensures their high conductivity and efficient action
potential transmission. In the PNS, the myelin sheath originates from Schwann
cells and in the CNS from oligodendroglial cells [Morell & Quarles 1999]. Once
the action potential reaches axon terminals, secretion of neurotransmitters enables
information transmission to the following neuron or an organ cells in the case of
efferent neurons.
In the CNS, the spatial organization of neurons creates tissues that at macroscopic
scale appear as the gray and white matter. Gray matter is composed of cell bodies,
dendrites, unmyelinated axons and glial cells [Solomon et al. 2014]. White matter
contains axons and a much higher concentration of glial cells, a majority of which
are oligodendroglial cells which create myelin sheath and give rise to the whitish
color of the tissue.
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Figure 2.3: Structure of a neuron.
Image adapted from: structure of neuron.

2.1.2 Gray matter

Gray matter tissue constitutes the outer layers of the cerebrum and cerebellum
known respectively as the cerebral and cerebellar cortices, but also some of their
inner structures such as the basal ganglia and the deep cerebellar nuclei. It is also
the principal component of the diencephalon structures and is present in some
segments of the brain stem. Further, it constitutes the inner part of the spinal
cord also known as the gray column. As in the context of this thesis, we are only
interested in the signals emerging from the cerebral cortex, in this section, we focus
on its structural and functional properties.
The surface of the cortex is highly wrinkled, where a distinction can be made
between tissue bumps known as gyri (singular: gyrus) and grooves known as
sulci (singular: sulcus) [Spielman et al. 2020]. The cerebral cortex is divided by
the longitudinal fissure into the right and left hemispheres. Furthermore, each
hemisphere is composed of four lobes, namely frontal, temporal, parietal and
occipital lobe.

Courtesy of: Deslauriers-Gauthier S. [nimesh]

The frontal lobe takes the largest portion of
the cerebral cortex. It is separated from the
rest of the cortex by the central sulcus (fissure
of Rolando) and the lateral sulcus (Sylvian
fissure). It contains the precentral, superior
frontal, middle frontal, and inferior frontal
gyri, separated by precentral, superior frontal
and inferior frontal sulci. From the functional
point of view, the frontal lobe is often termed
as the "action cortex". The precentral gyrus
contains the primary motor cortex. The

https://commons.wikimedia.org/wiki/File:Structure_of_Neuron.png
https://github.com/sdeslauriers/nimesh


2.1. Human brain structure and function 9

premotor cortex and supplementary motor
area are situated anterior to it. These three regions make the motor cortex
and are responsible for planning, control and execution of voluntary movements
[Foerster 1936]. The frontal part of the frontal lobe is termed as prefrontal cortex
and it participates in higher cognitive functions, such as attention, problem solving,
short-term memory, personality expression, etc [Miller et al. 2002]. The frontal
lobe also includes Broca’s area responsible for speech production [Keller et al. 2009].

Courtesy of: Deslauriers-Gauthier S. [nimesh]

The temporal lobe is separated from
the frontal lobe by the lateral sulcus and
from the rest of the cortex by an imagi-
nary parietotemporal line. It contains the
superior, middle and inferior temporal gyri,
separated by superior temporal and inferior
temporal sulci. The temporal lobe includes
the auditory cortex composed of primary,
secondary and tertiary cortices, also referred
to as core, belt and parabelt areas, which
are responsible for processing of auditory
information [Pickles 1998]. A region of the

temporal lobe termed as medial temporal lobe, which includes the hippocampus,
amygdala and parahippocampal regions is essential in the creation of long-term
memory [Eichenbaum et al. 1993]. The superior temporal gyrus contains the
Wernicke’s area which is traditionally associated with understanding of written
and spoken language, although some more recent studies indicate that it also
participates in speech production [Binder 2015]. Finally, the temporal lobe also
include regions which participate in processing of visual information, in particular
object recognition [Milner & Goodale 2006].

Courtesy of: Deslauriers-Gauthier S. [nimesh]

The parietal lobe is placed behind the
frontal lobe and above the temporal and
occipital lobes. From the frontal lobe, it is
separated by the central sulcus and from the
temporal and occipital lobes by the lateral
sulcus, the parieto-occipital sulcus and imag-
inary borders. It contains the postcentral
gyrus, which is situated just after the central
sulcus and is followed by the postcentral
sulcus. The remaining part of the parietal
lobe is the posterior parietal cortex, which
is composed of the superior and inferior

parietal lobules, separated by the intraparietal sulcus [Vingerhoets 2014]. The
postcentral gyrus contains the primary somatosensory cortex, while the secondary
somatosensory cortex is situated in the superior bank of the lateral sulcus. Together,

https://github.com/sdeslauriers/nimesh
https://github.com/sdeslauriers/nimesh
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they constitute the somatosensory cortex involved in reception and processing of
sensory information [Penfield & Rasmussen 1950]. The superior parietal lobule is
involved in attention and visuospatial perception, while the inferior parietal lob-
ule takes part in reading, writing, and solving mathematical operations [Johns 2014].

Courtesy of: Deslauriers-Gauthier S. [nimesh]

The occipital lobe is the smallest lobe
and corresponds to the posterior part of
the cortex. More precisely, it is separated
from the parietal and temporal lobes by the
parietooccipital sulcus and the imaginary
lateral parietotemporal line. The morphology
of this lobe varies most significantly between
subjects, but three gyri can be identified,
namely the superior, middle and inferior
occipital gyri. The occipital lobe contains the
primary visual cortex known as the striate
cortex and the visual association cortex also

known as extrastriate visual cortex. They are responsible for the processing of
visual information, in particular color determination, perception of size, depth and
distance, object and face recognition, visuospatial processing, memory formation
[Johns 2014, Rehman & Al Khalili 2019].

2.1.3 White matter

White matter tissue is present inside the cerebrum and cerebellum. It is composed of
myelinated axons, which are grouped in bundles also called tracts or fibers. These
tracts make links between distant gray matter regions. It is also present in the
structures of diencephalon and the brain stem and surrounds the gray matter in the
spinal cord. As in the context of this thesis, we are only interested in the cerebral
white matter, in this section, we focus on its structural and functional properties.
White matter tracts can be classified into three groups, namely projection, associa-
tion and commissural fibers.
The projection tracts connect the cerebral cortex with the other structures of
the CNS. Traditionally, they are classified into efferent (brain output) and afferent
(brain input). The most prominent efferent projection tracts are the corticospinal,
corticobulbar and corticopontine fibers. The corticospinal fibers primarily emerge
from the motor cortex, but some originate from the somatosensory cortex as well.
The axons terminate either by connections to motor neurons or to interneurons of
the spinal cord. Along this path, they pass through the brain stem, where they form
medullary pyramids. At the exit of the medullary pyramids, a larger fraction of the
fibers decussate and create the lateral corticospinal tract, while the remaining fibers
create the anterior corticospinal tract. The principal function of the corticospinal
tract is to transmit the signals responsible for voluntary movements and sensory-

https://github.com/sdeslauriers/nimesh


2.1. Human brain structure and function 11

driven reflexes, but they are also involved in modulation of the sensory information.
The corticobulbar fibers originate in the primary motor cortex, in particular from
the regions above the lateral fissure. By passing through the corona radiata and
the internal capsule, they end in the medullary pyramids also called bulbar. Corti-
cobulbar fibers transmit motor signals, directly or via interneurons, to the cranial
nerves which innervate muscles of the face, mastication, tongue, pharynx, larynx,
etc. The corticopontine fibers emerge from all the regions of the cerebral cortex,
but the largest number of fibers comes from the frontal lobe. They end in the
pontine nuclei, just at the entrance to cerebellum. Corticopontine fibers establish
communication between the cerebral and cerebellar cortices and are involved in the
coordination of voluntary movements [Rea 2015]. Illustrations of the corticospinal,
corticobulbar and corticopontine fibers are provided in Figure 2.4.

Figure 2.4: Illustration of the corticospinal (blue), corticobulbar (red) and cortico-
pontine (green) fibers in coronal (left) and sagittal (right) views.
Images adapted from: The projection tracts (coronal) and the projection tracts (sagittal).

The afferent projection tracts transmit information from the subcortical CNS struc-
tures to the cortex. Some examples of well recognized afferent projection tracts
are the optic and acoustic radiations which make part of the optic and auditory
pathways. The optic pathways start with the optic nerves originating in the retina.
The nerves meet and partially decussate in the optic chiasm, creating the optic
tracts which terminate in the lateral geniculate nucleus, located in the thalamus
[Mehra & Moshirfar 2021]. The remaining pathways correspond to the optic radi-
ations which connect the thalamus and the visual cortex. The auditory pathways
start with the cochlear nerves originating in the cochleas. They pass and partially de-
cussate in brain stem, creating tracts termed lateral lemnisci [Peterson et al. 2018].
The lateral lemnisci terminate in the medial geniculate nuclei, located in the thala-
mus. The remaining pathways correspond to the acoustic radiations which connect

https://commons.wikimedia.org/wiki/File:Gray764.png
https://commons.wikimedia.org/wiki/File:Brain_human_sagittal_section.svg
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the thalamus and the auditory cortex. Illustrations of the optic and auditory path-
ways are illustrated in Figure 2.5.

Figure 2.5: Illustrations of the optic (left) and the auditory (right) pathways.
Images adapted from: Optic pathways, auditory pathways and cochlea.

The association tracts form the intrahemispheral connections. They can be clas-
sified into short and long tracts. Short fibers, situated closely beneath gray matter,
make connections between adjacent gyri. Long tracts connect more distant regions
of the cortex. Some of the most prominent long association fibers are the cingulum,
the superior and inferior longitudinal fasciculi, the uncinate fasciculus, the vertical
occipital fasciculus, the inferior fronto-occipital fasciculus, the arcuate fasciculus,
etc. The cingulum connects the frontal, parietal and medial temporal regions, and
the subcortical nuclei to the cingulate cortex, situated in the medial part of the
cerebrum [Bubb et al. 2018]. The superior longitudinal fasciculus makes connection
between the temporoparietal junction area and the parietal lobe on the one side
and the frontal lobe on the other side [Wang et al. 2016]. It is involved in signal
transmission related to language, attention, memory, and emotions. The uncinate
fasciculus connects the anterior temporal lobe with the inferior region of the frontal
lobe [Von Der Heide et al. 2013]. It is considered to be involved in some aspects of
episodic memory, language and emotional processing [Von Der Heide et al. 2013].
The vertical occipital fasciculus connects the dorsolateral and ventrolateral visual
cortices and is important in signal transmission related to visual and cognitive func-
tions [Yeatman et al. 2014]. The inferior fronto-occipital fasciculus originates in the
frontal lobe and terminates in the regions of occipital cortex, temporo-basal areas,
and superior parietal lobe [Wu et al. 2016b]. It is associated with language pro-
cessing and goal-oriented behavior [Conner et al. 2018]. The inferior longitudinal
fasciculus arises from the occipital and temporal-occipital areas and terminates in
the inferior region of the temporal lobe. It is involved in a wide range of brain func-
tions, such as object recognition, reading, lexical and semantic processing, emotions
and visual processing [Herbet et al. 2018]. The arcuate fasciculus is historically de-
fined as a fiber connecting two language-related areas, namely the Wernicke’s and
Broca’s area. More precisely, a recent study showed that the fibers arise from the
ventrolateral frontal cortex and via the parietal cortex reach the middle and inferior

https://commons.wikimedia.org/wiki/File:Human_visual_pathway.svg
https://commons.wikimedia.org/wiki/File:Gray764.png
https://commons.wikimedia.org/wiki/File:Figure_36_04_04.jpg
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temporal lobe [Eichert et al. 2019]. Illustrations of the short and long association
fibers are provided in Figure 2.6.

Figure 2.6: Illustrations of the short (left) and long (middle, right) association fibers.
The long fibers (middle) include: the cingulum (red), the superior longitudinal fas-
ciculus (green), the uncinate fasciculus (blue). The long fibers (right) include: the
vertical occipital fasciculus (red), the inferior fronto-occipital fasciculus (green), the
inferior longitudinal fasciculus (blue), the arcuate fasciculus (yellow).
Images adapted from: the association tracts (sagittal).

The commissural tracts form interhemispheral connections. The most important
commissural fibers are the corpus callosum, the hippocampal commissure, and the
anterior and posterior commissures. The corpus callosum is the largest commissural
tract situated beneath the cerebral cortex and above the thalamus. It is composed of
four parts, namely the rostrum, the genu, the body, and the splenium. The rostrum
connects the orbital regions of the frontal lobes. The genum connects the medial and
lateral regions of the frontal lobe. The body contains fibers which make part of the
corona radiata and connect the temporal and occipital lobes. The splenium creates
connects the occipital lobes. The corpus callosum is responsible for signal trans-
mission related to sensory, motor, and high-level cognitive functions. The anterior
commissure is situated anteriorly with respect to the corpus callosum. It connects
the olfactory, amygdaloid and temporal regions [Fenlon et al. 2021]. Although still
not completely understood, some studies have shown that the anterior commissure
is involved in olfactory functions, memory and visual processing [Fenlon et al. 2021].
The posterior commissure is a small bundle of axons, posterior to the corpus callo-
sum, which connects the structures of epithalamus. It is considered to be involved
in signal transmission between language processing centers [Standring 2020]. The
hippocampal commissure, also known as commissure of the fornix, makes connection
between hippocampus [Standring 2020].

https://commons.wikimedia.org/wiki/File:Brain_human_sagittal_section.svg
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Figure 2.7: Illustration of the principal commissural tracts: corpus callosum (green)
and the anterior commissure (red).
Image adapted from: the commissural tracts (coronal).

2.2 Structural and functional brain imaging techniques

Neuroimaging refers to the creation of images which reflect the structural and/or
the functional characteristics of the examined part of the nervous system, via uti-
lization of certain imaging techniques. Apart from the characteristics they reflect,
these techniques can be differentiated along multiple axes, such as spatial and tempo-
ral resolution, contrast, signal to noise ratio, required acquisition time, portability
and price of acquisition devices, invasivity, patient-friendly assessments, etc. An
overview of the well developed and commonly used techniques in brain imaging is
given below.
Magnetic Resonance Imaging (MRI) uses a strong magnetic field, magnetic
field gradients and electro-magnetic radio frequency pulses to interact with nuclei
present in the tissues in order to create images. Spatial and temporal organizations
of the gradients and the pulses allow acquisition of different MRI modalities. Some of
the broadly used structural modalities include conventional T1, T2 and T ∗

2 weighted
images, and diffusion MRI. Examples of MRI modalities which reflect functional
properties of the tissues are perfusion weighted images and functional MRI.
EEG is a functional imaging technique which uses electrodes placed on the scalp
or intra-cranially to record the electric potential produced by the electric activity
of the cerebral cortex. It is characterized by a very high temporal resolution, but
a low spatial one in comparison to functional MRI. In addition to its high tempo-
ral resolution, another important advantage of the EEG imaging technique is the
portability and low cost of its measuring devices.
MEG is a functional imaging technique which measures the magnetic field strength
produced by the electric activity of the cerebral cortex. Acquisition is achieved with
magnetometers placed on the scalp or in its proximity. As EEG, it is characterized
by a high temporal resolution. The spatial resolution is in general higher than with
EEG, but lower than that of functional MRI.
Functional Near Infrared Spectroscopy (fNIRS) is a functional imaging tech-
nique which uses near-infrared light to capture the haemodynamic activity in the
cortex which appears as a consequence of a neural activity (the same physical phe-
nomena is measured by functional MRI). Measuring is achieved using light emitters

https://commons.wikimedia.org/wiki/File:Gray764.png
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and detectors placed on the scalp. Its temporal resolution is better than in func-
tional MRI, but lower than with EEG and MEG. Localization of active regions
is more accurate than with EEG and MEG, mostly because fNIRS is only able to
measure activities that are close to the cortical surfaces. As for EEG, fNIRS devices
can be portable.
Computed Tomography (CT) uses X-ray sources and detectors to measure X-ray
attenuation along multiple angles. The obtained measurements are combined using
computerized algorithms which perform a tomographic reconstruction to obtain the
final images. Conventional CT scans are used for anatomical imaging, whereas CT
perfusion imaging is a functional modality which uses contrast agents to quantify
blood perfusion in the brain. Compared to MRI, CT scans can have higher spatial
resolution and lower acquisition times. MRI however provides better contrast be-
tween soft tissues.
Positron Emission Tomography (PET) uses radiotracers which emit positrons
which when colliding with electrons emit gamma rays measurable by detectors placed
around the examined region. Similarly to CT, a computerized tomographic recon-
struction is applied on the measured signals to obtain the final scan. In brain
imaging, PET scans are used to measure the blood flow associated with neural ac-
tivity. Compared to MRI, both spatial and temporal resolutions of PET scans are
lower.
Single Photon Emission Computed Tomography (SPECT) uses radiotrac-
ers which directly emit gamma rays measurable by detectors placed around the
examined regions. As in the previously mentioned tomography imaging techniques,
images are computed using computerized tomographic reconstruction algorithms.
As with PET, it is a functional imaging technique which measures the blood flow
whose increase is correlated with an increase of neural activity. Compared to PET,
in general, its spatial and temporal resolutions are lower, as well as the price of
scanner.
As in this thesis, we have proposed models for the analysis of EEG, MEG and
dMRI data, a more detailed description of the physical phenomena in the neural
tissues and methodologies which allow their recording of the corresponding signals
is provided.

2.2.1 Diffusion MRI

dMRI is an MRI imaging modality which captures the structural properties of tis-
sues. In comparison to conventional anatomical MRI scans, such as T1 and T2
weighted images, dMRI images provide information about the microstructures of
the examined tissue.
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2.2.1.1 Free and restricted diffusion of water molecules

Molecular diffusion is a phenomenon which corresponds to a type of particle motion
occurring at temperatures higher than the absolute zero. If a particle concentration
gradient is present in a substance, diffusion leads to their uniform distribution. This
process can be described using Fick’s first law of diffusion [Fick 1855]

J = −D∇C , (2.1)

which relates the diffusive flux J[mol
m2s

] to the gradient of the concentration C[mol
m3 ]

via the diffusion coefficient D[m
2

s ]. D is often referred to as diffusivity and depends
on temperature, viscosity, particle size and presence of boundaries in the medium.
Fick’s second law of diffusion explains how concentration changes over time due to
the diffusion process

∂C

∂t
= ∇ · (D∇C), (2.2)

where t[s] is time. Even if the distribution of particles within a substance is uniform,
microscopic motions of the particles exist if the absolute temperature is higher than
the absolute zero, although the net flux J from Eq. 2.1 through any surface is
equal to zero. This type of motion is known as Brownian motion [Brown 1828] as
it was firstly described by Robert Brown. Displacement of particles only in the
presence of Brownian motion can be described by solving Eq. 2.2, where diffusivity
D depends on the properties of the medium. For spherical particles in an isotropic
medium, diffusivity can be considered constant and is defined using the Stokes-
Einstein equation as

D =
kBT

6πηr
(2.3)

where kB[ JK ] is the Boltzmann constant, T [K] is the absolute temperature, η[ kgm·s ]

is the dynamic viscosity and r[m] is the radius of the particle. In an anisotropic
medium, diffusivity can be represented as a symmetric positive-definite tensor

D =

Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 (2.4)

or for more complex structures of the medium, as a positive function on a sphere
D : S2 → R+. Illustration of the displacement of one particle in the same substance,
without and with obstacles is provided in Figure 2.8.

2.2.1.2 Magnetic Resonance Imaging (MRI)

MRI is an imaging technique, based on the property of nuclei of certain atoms
to absorb and emit EM waves at a specific radio frequency (RF). In imaging of
the human body, a majority of these atoms are hydrogen atoms from the water
molecules, thus a nucleus H+ corresponds to a proton p+. To create an image, the
received EM waves are averaged over small volumes called voxels of the order of
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a) D is a scalar b) D is a tensor c) D is a function on sphere

Figure 2.8: Illustration of displacement of one particle in a medium: a) without
obstacles, b) in a tube and c) in a tube junction

magnitude ∼ 1mm3. One voxel of water, of volume ∼ 1mm3, contains 0.67 × 1020

hydrogen protons. This can give us an idea of the amount of protons within one
voxel which participate into the EM signal generation for different tissues, bearing
in mind that ∼ 73% of the brain and the heart is water, as well as ∼ 31% of the
bones [Mitchell et al. 1945].
Protons are characterized by their mass, electric charge and spin. When the exam-
ined tissue is not exposed to a strong enough external magnetic field, the orientations
of the spins of the hydrogen protons are random as illustrated in Figure 2.9 a). In
general, the acquisition of an MRI scan requires the utilization of a strong external
magnetic field, of three gradient magnetic fields for spatial encoding and of RF EM
pulses at the resonance frequency. The external magnetic field is also referred to
as the main magnetic field B0[T ]. Spatial encoding gradient fields alter B0 with
a term ∆Bz(x, y, z, t)[T ] in a way that the EM waves associated to the voxels at
different positions have different frequencies and/or times of application. The RF
pulses emitted at Larmor frequency enable signal acquisition as it will be further
explained.

Once the the main magnetic field B0 is activated, spins align with and against
it and start to precess at the Larmor or resonance frequency ω0 = γ|B0| around B0

which is oriented along the z-axis in Figure 2.9 b). γ[ rads·T ] is the gyromagnetic ratio
- a constant equal to the ratio of the magnetic moment and the angular momentum
of the particle. For the hydrogen proton in a water molecule γ = 267.52 × 106 rads·T .
Taking into account the spatial encoding magnetic field gradients, the resonance
frequency can be expressed as ω0(x, y, z, t) = γ|B0+∆Bz(x, y, z, t)|. The alignment
of the spins is illustrated in Figure 2.9 b). Although both orientations of the spin
alignments are possible and are spread between these two orientations, alignments
with the external field have a lower energy state. Given this, at each moment, a
slightly higher amount of spins aligns with B0. The ratio between the number of
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spins aligned with (n−) and against the external (n+) field is given by

n−
n+

= e
γℏ|B0+∆Bz(x,y,z,t)|

kBT (2.5)

where ℏ is the Plank constant. The difference between the number of spins at lower
and higher energy states gives raise to the net magnetization. Although the spins,
within one voxel, precess at the same frequency, since they do not precess in phase,
the net magnetization in the xy-plane sums up to 0. Thus it exists only along the
z-axis and it is denoted with Mz[T ] in Figure 2.9 b), where |Mz| =M0 is a non-zero
net magnetization. Mz is called the longitudinal component of the magnetization.
Assuming the presence of only B0, using Eq. 2.5 one can obtain that for n+ = 106

and |B0| = 3T , n− ≈ 106 + 20, while for |B0| = 9T , n− ≈ 106 + 59. Higher the
difference between n− and n+ the amplitude of the produced net magnetization
is higher ("more protons participate in the contrast creation"), thus the emitted
EM waves are less susceptible to noise. This shows why scanners with higher main
magnetic field strengths are characterized by a higher signal-to-noise ratio.

If an EM RF pulse B1[T ] at the Larmor frequency is applied perpendicularly
to the main magnetic field B0, spins spiral down to the xy-plane and continue to
precess around the z-axis. But now, the precession of the spins are in phase, as
depicted in Figure 2.9 c). In this step, the net magnetization is non-zero only in
the xy-plane - |Mxy| =M0 and it rotates at the Larmor frequency, while |Mz| = 0.
Mxy is called the transverse component of the magnetization.

a) b) c)

Figure 2.9: Hydrogen proton spins: a) with random orientations when there is no
external field, b) aligned with and against the external magnetic field B0, and c)
after receiving RF pulse B1 at Larmor frequency

Once the RF pulse is turned off, the spins start to emit the received EM energy
at the resonance frequency. As a consequence, they start to dephase and re-align
with and against the external B0 field. This process was firstly described by Felix
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Bloch [Bloch 1946] with a set of equations termed as Bloch equations

dMx(t)

dt
= γ(M(t)×B(t))x −

Mx(t)

T2
, (2.6)

dMy(t)

dt
= γ(M(t)×B(t))y −

My(t)

T2
, (2.7)

dMz(t)

dt
= γ(M(t)×B(t))z −

Mz(t)−M0

T1
(2.8)

where B(t) = (Bx(t), By(t), |B0 + ∆Bz(x, y, z, t)|) and M(t) =

(Mx(t),My(t),Mz(t)). T1 and T2 are longitudinal and transverse relaxation
times. If the RF pulse is |B1| = 0, then B(t) = (0, 0, |B0 + ∆Bz(x, y, z, t)|) and
the Bloch equations can be simplified as

dMx(t)

dt
= −Mx(t)

T2
+ γBz(t)My(t) = −Mx(t)

T2
+ ω0(x, y, z, t)My(t) , (2.9)

dMy(t)

dt
= −My(t)

T2
− γBz(t)Mx(t) = −My(t)

T2
− ω0(x, y, z, t)Mx(t) , (2.10)

dMz(t)

dt
= −Mz(t)−M0

T1
. (2.11)

Assuming that ω0(x, y, z, t) = ω0(x, y, z), by solving equations 2.9 and 2.10, the
exponential decay of the magnitude of the transverse magnetization Mxy is defined
as

|Mxy(t)| = |Mxy(0)|e
− t

T2 . (2.12)

This is termed as the T2 relaxation process which is illustrated in Figure 2.10 b).
The magnitude of the longitudinal magnetization Mz recovers exponentially as

|Mz(t)| =M0 + (|Mz(0)| −M0)e
− t

T1 . (2.13)

This is termed as the T1 relaxation process which is illustrated in Figure 2.10 a).

a) T1 relaxation process b) T2 relaxation process

Figure 2.10: Illustration of the longitudinal and transverse net magnetization during
the relaxation period. (Note that the axes in T1 and T2 are different. For T1 the
main magnetic field is oriented vertically, while for T2 it points out of the paper
plane.)
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The T1 relaxation time describes how quickly the longitudinal component of the net
magnetization recovers and is defined as the time necessary to reach (1− 1

e ) ≈ 63%

of the initial magnitude before the RF pulse - M0. The T1 relaxation occurs due
to the energy dissipation via the interactions between H+ spins at higher energy
levels and their environment, leading to a slight increase of temperature. The T1
relaxation time is approximately 10 times lower in fat than in water.
The T2 relaxation time describes how quickly the transverse component of the net
magnetization decays and it corresponds to the time necessary to reach 1

e ≈ 37%

of its initial magnitude after the RF pulse - M0. The energy dissipation associated
to the T1 relaxation leads to the T2 relaxation as well. A second cause is the local
magnetic fields produced by the nuclei of surrounding atoms, causing the precession
frequency to slightly increase or decrease. Local magnetic fields associated with the
H+ spins impact each other as well. The T2 relaxation times are in general much
shorter than the T1.
Values of T1 and T2 relaxation times in white matter (WM) and gray matter
(GM) for scanners with |B0| = 1.5T and |B0| = 3T are provided in Table 2.1
[Smith & Webb 2010] and corresponding relaxation curves are illustrated in Figure
2.11.

Table 2.1: Brain white and gray matter tissue T1 and T2 relaxation times for |B0| =
1.5T and |B0| = 3T in ms [Smith & Webb 2010]

Tissue type / Relaxation T1(1.5T ) T1(3T ) T2(1.5T ) T2(3T )

White matter 790 1100 90 60
Gray matter 920 1600 100 80

Figure 2.11: The brain white and gray matter tissue T1 and T2 relaxation curves
corresponding to T1 and T2 relaxation times from Table 2.1.

EM signals emitted from excited protons are recorded using RF coils which are
placed parallel to the main magnetic field. A rotating magnetic field Mxy(t) pro-
duces an oscillating current in the coil whose magnitude is determined using Fourier
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transform. On the other hand, the longitudinal component of the magnetization
Mz(t) is very weak compared to the main magnetic field B0 and cannot be mea-
sured along the z axis, thus it is tipped down by another RF pulse to the transversal
plane in order to be measured.
As already mentioned, in addition to the main magnetic field B0 which is constantly
active, applications of three gradient magnetic fields are used for spatial encoding.
They allow us to disentangle signals recorded with the RF coil to signals originating
from individual voxels. The gradient along the z axis, denoted as gz is used to select
the axial slice to be recorded and it is applied at the same time as the B1 pulse.
Another gradient is applied along the y axis right after the pulse, denoted as gy
and is also called the phase encoding gradient, as it causes that proton spins along
the y axis rotate with different phases. After phase encoding, a third gradient gx,
termed as the frequency encoding gradient, is applied along the x axis, causing spins
along x to rotate with slightly different frequencies. While this gradient is applied,
the EM signal emerging from the entire slice is recorded with the RF coil. With
a Fourier transform, we can determine the magnitudes corresponding to different
positions along the x axis, however since those magnitudes correspond to the su-
perposition of the signals with the same frequency but different phases, the entire
process needs to be repeated multiple times with different amount of phase encoding
(amplitude of gy) in order to determine magnitudes of the signals emerging from
the individual voxels along the y axis. If the number of voxels along the y axis is
Ny, then the number of phase encodings with different amplitudes of gy must also
be Ny. This pulse sequence is called the gradient echo sequence and is illustrated
in Figure 2.12 a). Since the main magnetic field B0 is not perfectly homogeneous,
the existing inhomogeneities cause much faster dephasing of the spins than if only
random spin-spin interactions are present. These inhomogeneities are constant in
time, so their effect can be reversed using a RF 180o pulses applied at TE/2 which
flip spins so that all the phase accumulated due to inhomogeneities during the first
TE/2 period is reversed. Thus the differences due to inhomogeneities sum up to
zero with the newly accumulated phase during another TE/2 period. This pulse
sequence is called the spin echo sequence and is illustrated in Figure 2.12 b).
The T1 and T2 weighting of an image is achieved by adjusting the repetition time
interval TR and the echo time TE interval. These values are optimized on the longi-
tudinal and transverse relaxation times of the different tissues. Basically, one would
like to read an echo signal when the amplitudes of the longitudinal or transversal
components differ the most between the tissues. For a T1 weighting, TR is rela-
tively short and once the RF pulse is applied to flip the longitudinal component to
the xy plane, the echo is read shortly after in order to avoid amplitude decrease
due to dephasing. Since the recovery of the longitudinal component is long, for T2
weighting, TR is relatively long, as well as TE. When the longitudinal component
is recovered, it is tipped down to the xy plane and a TE period is given to spins
to dephase before reading the echo. If the longitudinal component is not recovered
only a fraction of spins participate in the evaluation of transversal relaxation.



22 Chapter 2. Background

(a) (b)

Figure 2.12: Illustration of a gradient echo sequence (a) and a spin echo sequence
(b).

2.2.1.3 Diffusion weighted MRI

Diffusion weighting of MRI images is achieved by diffusion sensitizing gradients
(DSG)s. A DSG can be created by using gradient fields gz, gy and gx. By adjusting
the amplitudes of gz, gy and gx, a DSG can have different orientations. DSGs are
combined with the T2 relaxation process in order to create a contrast. The principal
idea behind this is that when spins are tipped down to the transversal plane, a DSG
is applied during a short period of time δ along a certain direction. As a consequence,
as spins along the DSG direction experience slightly different gradient intensities,
they accumulate slightly different phases. Thus, the first DSG is called the phase
encoding gradient. After the refocusing RF pulse of 180o is applied and before the
echo time, a DSG with the same direction but a reversed amplitude is applied during
δ, thus the accumulated phases during the first δ period would be reversed. The
second DSG gradient is called the phase decoding gradient. An example of a pulse
sequence with diffusion weighting is illustrated in Figure 2.13.
If the displacement of the spins along the DSG is restricted, the second DSG cancels
the majority of the dephasing effect of the first DSG. This is illustrated in Figure
2.14. On the other hand, if the displacement of the spins along the DSG is free, spins
with initially encoded phases move around, thus when the second DSG is applied,
the encoded phases of the spins would not be canceled. This is illustrated in Figure
2.15. Thus, if the diffusion of the water molecules is restricted along the DSG, the
amplitude of the transverse component would be high, otherwise if the diffusion is
free, due to additional dephasing, the amplitude of the transverse component would
be low.
To incorporate the effects of the molecule diffusion, Torrey, defined the Bloch-Torrey
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Figure 2.13: Illustration of a spin echo sequence with diffusion weighting.

(a) (b) (c) (d) (e)

Figure 2.14: Illustration of the spin phases with restricted molecule diffusion. After
the spins are tipped down with an RF pulse to the transverse plane(a), after phase
encoding with a DSG (b), after a free diffusion period and a refocusing RF pulse
of 180o (c), after phase decoding with a reversed DSG (d) and the resulting net
magnetization (e).

equations [Torrey 1956] as

dMx(t)

dt
= γ(M(t)×B(t))x −

Mx(t)

T2
+∇ ·D∇(Mx(t)−Mx0) , (2.14)

dMy(t)

dt
= γ(M(t)×B(t))y −

My(t)

T2
+∇ ·D∇(M(t)y −My0) , (2.15)

dMz(t)

dt
= γ(M(t)×B(t))z −

Mz(t)−M0

T1
+∇ ·D∇(M(t)z −Mz0) (2.16)

where D is the diffusion coefficient and Mx0, My0 and Mz0 are the x, y and z

components of the equilibrium magnetization. Attenuation of the amplitude of the



24 Chapter 2. Background

(a) (b) (c) (d) (e)

Figure 2.15: Illustration of the spin phases with free molecule diffusion. After the
spins are tipped down with an RF pulse to the transverse plane(a), after phase
encoding with a DSG (b), after a free diffusion period and a refocusing RF pulse
of 180o (c), after phase decoding with a reversed DSG (d) and the resulting net
magnetization (e).

transverse component of the magnetic field Mxy(t) described by Eqs. 2.14 and
2.15, due to the diffusion process and for the Pulsed Gradient Spin-Echo (PSGE)
sequence, is defined by the Stejskal-Tanner equation [Stejskal & Tanner 1965]
as

A(TE)

A(0)
= e−Dγ

2G2(∆− δ
3
)δ2 (2.17)

where A(0) is the amplitude of Mxy(0), when the 90o RF pulse is applied and A(TE)

is the amplitude of Mxy(TE), when the signal is being recorded. G is the amplitude
of the DSG G. ∆ is the interval between encoding and decoding DSG and δ is
their duration. b = γ2G2(∆− δ

3)δ
2 is the b-value which describes diffusion weighting

of the signal. Phase encoding and decoding DSGs are characterized by direction,
strength, shape, duration and temporal spacing which all together constitute a high
dimensional acquisition space termed as q-space [Callaghan et al. 1988]. A point of
the q-space for the PSGE sequence is defined as q = γGδ

2π .
Starting from a single point q-space sampling via PSGE [Stejskal & Tanner 1965],
a number of more advanced q-space sampling schemes have been developed
[Descoteaux et al. 2014]. The first diffusion weighted MRI scans were acquired with
a sampling protocol containing three differently oriented and noncollinear pairs of
DSGs as introduced in [Le Bihan et al. 1986]. This imaging protocol allowed dif-
ferentiation of the intravoxel incoherent motions between healthy and pathological
tissues via apparent diffusion coefficient (ADC) [Le Bihan et al. 1986]. As diffu-
sion of the water molecules in neural tissues is not uniform along all directions, in
[Basser et al. 1994], an imaging protocol termed Diffusion Tensor Imaging (DTI),
comprising acquisition over seven noncollinear q-space points for different gradi-
ent strengths, has been proposed. DTI allowed the estimation of the effective
diffusion tensors capable to quantify anisotropic diffusion of the water molecules
[Basser et al. 1994]. Being able to estimate the principal direction of the water
molecule diffusion enabled tracking of the white matter pathways, a process known
as tractography [Basser et al. 2000]. Since the white matter might contain multiple



2.2. Structural and functional brain imaging techniques 25

axon bundle populations, such as crossing, kissing and fanning axon bundles, more
advanced High Angular Resolution Diffusion Imaging (HARDI) protocols have been
proposed [Descoteaux et al. 2014]. Some of the most prominent HARDI protocols
are diffusion spectrum imaging (DSI) [Wedeen et al. 2000], single [Jones 2010] and
multi shell q-space sampling schemes [Ye et al. 2012, Caruyer et al. 2013]. They en-
abled utilization of more insightful mathematical tools and the estimation of the
dMRI 3D probability density functions, which have led to the development of more
accurate tractography algorithms.



26 Chapter 2. Background

2.2.2 Magneto and electro encephalography

EEG and MEG are functional neuroimaging techniques which measure electric field
potential and magnetic field strength produced by the neural electrical activities
occurring in the pyramidal neurons which constitute more than 80% of the cerebral
cortex.

2.2.2.1 Neural electrical potentials

The principal task of neurons is the processing of the input signals that might come
from other neurons or from external stimuli and the transmission of the signals to
other neurons or muscular cells that are supposed to perform certain actions. In
the context of EEG and MEG, we are interested in the activities of the neurons
that communicate between each other, also called interneurons, and are situated
in the cerebral cortex. During this communication, two principal types of elec-
tric potentials are generated at the level of neurons, and in particular at the level of
their membranes, namely action potential (AP)s and postsynaptic potential (PSP)s.
These potentials are generated by the exchange of ions through the membrane of the
neurons. The ions include positively charged ions such as sodium (Na+), potassium
(K+), calcium (Ca2+) and negatively charged ions such as chloride (Cl−) and some
proteins (A−).
When a neuron is in a resting state, the concentration of K+ and A− ions is higher
in the intracellular space, while the concentration of Na+, Ca2+ and Cl− is higher
in the extracellular space. This results in a difference between potentials between
the interior and exterior of the neuron of approximately −70mV , which varies de-
pending on the neuron type. The membrane contains ion channels and ion pumps,
which enable passive and active displacements of the ions through the membrane.
An illustration of ion distribution when a neuron is in resting state is depicted in
Figure 2.16.

When a neuron receives stimuli via dendrites, they are integrated in the axon hillock
and if the resulting stimulus is strong enough in a short period of time, it provokes
an AP, also called spike, which travels along the axon. Firstly, the stimulus provokes
voltage gated sodium channels to open, thus the Na+ ions enter the cell and raise
the membrane potential, a process called depolarization. At the end of the depo-
larization, the voltage gated sodium channels start to close and the voltage gated
potassium channels start to open causing the K+ ions to pass to the extracellular
space. The increase of K+ concentration in the extracellular space leads to a de-
crease of the membrane potential also termed as repolarization which terminates
with hyperpolarization, meaning that the membrane potential reaches values lower
than before the stimulus. When the hyperpolarization is reached, the voltage gated
potassium channels close. This is followed by a refractory period when the intra-
and extra-cellular concentrations of Na+ and K+ ions return to their resting state
distributions. This entire process repeats along the axon, thus the AP travels down
the axon until it reaches the axon terminals.
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Figure 2.16: Illustration of ion distribution in intra- and extra-axonal spaces during
resting state.

Neurotransmitters, situated in small vesicles in axon terminals, are crucial for the
generation of PSP. Once the AP reaches the axon terminals, depolarization of its
membrane causes opening of voltage gated calcium channels, causing a rush of Ca2+

ions into the intracellular space. These ions provoke the release of neurotransmitters
from vesicles into the synaptic cleft - the extracellular space between presynaptic
axon terminals and postsynaptic dendrites. The released neurotransmitters attach
to receptor proteins situated at the membrane of the postsynaptic dendrites, causing
certain ion channels to open or close. If sodium channels are opened, this causes an
influx of Na+ ions into the intracellular space leading to a membrane depolariza-
tion. This type of postsynaptic potential is called excitatory. On the other hand,
if potassium channels are opened, K+ ions pass from intra- to extra-cellular space
causing membrane hyperpolarization. This type of PSP is called inhibitory.
While the APs are often referred to as all-or-none, PSPs are graded potentials. All-
or-none principle refers to the fact that no matter how strong or long a stimulus is
(yet above activation threshold), the amplitude of the AP is the same. On the other
hand, graded potentials can have different amplitudes depending on temporal and
spatial distances of individual potentials. If there are multiple APs arriving to the
axon terminals shortly one after the other, the PSPs sum up at the postsynaptic
membrane. Similar effect occurs if the synapses where the PSPs are generated are
spatially close. Another important differences between an AP and a PSP are in
their durations and amplitudes. Whereas, the amplitude of an AP traveling along
an axon can be considered constant and is in the range of 20−40mV , the amplitude
of a PSP decreases with time and distance is in the range of 1−4mV . APs are very
short, approximately 1ms, while the duration of the PSPs is around tens of ms.
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These differences between APs and PSPs lead to different mathematical modeling
of the two. An AP is modeled with an electric quadrupole whose EM field decreases
with 1

r3
, while a PSP is modeled with an electric dipole whose EM field decreases

with 1
r2

.

2.2.2.2 Modeling of EM fields of neural currents in cortex

Even though the amplitude of the APs is significantly higher than that of the PSPs,
due to short duration, random orientation and fast decay with distance of EM fields,
their electric potential and magnetic field strength outside of head are considered
non-measurable by standard EEG and MEG devices. On the other hand, PSPs in
pyramidal cells, if occurring synchronously in a large population of cells, can be
recorded.
Pyramidal cells are the most common type of neural cells in the cerebral cortex.
They are characterized by apical dendrites whose direction can be considered per-
pendicular to the surface of the cortex. Thus PSP potentials generated in these
dendrites can be modeled with current dipoles with the same direction.
A current dipole can be seen as an electric current which is characterized by its
position p, and orientation and magnitude represented by its moment q = Idθ with
units [A ·m], where I is the current intensity and dθ is an infinitesimal short vector
between the current sink and source. The dipole current density at position p can
be written as

Jp(r) = qδ(r− p) (2.18)

where δ(r) is the Dirac delta function. Electric field lines of the current dipole start
at a source and finish in a sink, while magnetic field lines correspond to concentric
circles around dθ. The electric and magnetic field lines are illustrated in Figure
2.17.

Relations between the electric and magnetic fields and the current density are
explained via Maxwell’s equations, summarized in Table 2.2, where E[ Vm ] is the
electric field, B[T ] is the magnetic field, ρ[ C

m3 ] is the charge density, J [ A
m2 ] is the

current density, ε0 = 8.85 · 10−12 1
kg·m3 is the vacuum permittivity and µ0 = 4π ·

10−7 mkg
s2A2 is the vacuum permeability. dr is an infinitesimal volume element, ds and

dl are infinitesimal vector elements of surface and contour.
From the Maxwell’s equations, the charge conservation law can be derived as∫

∂Ω

J · ds = −
∫
Ω

∂ρ

∂t
dr (2.19)

stating that change over time of the charge density is proportional to the flux of
current density through the surface around that volume.
Due to the maximal frequency of the brain waves, but also permittivity and con-
ductivity of brain tissues and head, time derivatives in Ampere’s circuital law can
be neglected [Hämäläinen et al. 1993]. This omitting of time derivatives is called
magneto-quasistatic assumption [Hämäläinen et al. 1993]. Taking into account head
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a) b)

Figure 2.17: Illustrations of the dipole’s electric field lines a) and magnetic field
lines b).
Images adapted from :Mid-sagittal plane of the brain

Table 2.2: Integral formulae of the Maxwell’s equations.
Integral formulae Meaning

Gauss’s
law

∫
∂Ω

E · ds =
∫
Ω

ρ
ε0
dr

The flux of the electric field
through any closed surface is pro-
portional to the electric charge
within the volume enclosed by
this surface.

Gauss’s
law for
magnetism

∫
∂Ω

B · ds = 0

The flux of the magnetic field
through any surface is 0, mean-
ing that the magnetic field is
solenoidal vector field.

Faraday’s
law

∫
∂S

E · dl =
∫
S

∂B
∂t ds

The electromotive force in a con-
tour around a surface is propor-
tional to the change over time of
the magnetic field flux through
the surface.

Ampere’s
circuital
law

∫
∂S

B · dl = µ0
∫
S

(
J+ ε0

∂E
∂t

)
ds

The magnetic field line integral
along a contour around a surface
is proportional to total current
passing through the surface.

dimensions, as well, leads to the electro-quasistatic assumption, where the time
derivative in Faraday’s law is also neglected [Hämäläinen et al. 1993]. With the

https://commons.wikimedia.org/wiki/File:202102_Mid-sagittal_plane_of_the_brain.svg
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quasistatic approximations the Maxwell’s equations can be written as in Table 2.3.

Table 2.3: Integral formulae of the quasistatic Maxwell’s equations
[Hämäläinen et al. 1993].

Integral formulae
Gauss’s law

∫
∂Ω

E · ds =
∫
Ω

ρ
ε0
dr

Gauss’s law for magnetism
∫
∂Ω

B · ds = 0

Faraday’s law
∫
∂S

E · dl = 0

Ampere’s circuital law
∫
∂S

B · dl = µ0
∫
S

Jds

A consequence of magneto-quasistatic assumption is that
∫
∂Ω

J · ds = 0, meaning

that the dependence of the electric field from the magnetic field can be neglected
(from the Faraday’s law in particular). On the other hand, the electro-quasistatic
assumption neglects only the dependence of the magnetic field on the time varying
electric field, while the impact of the electrostatic field which causes Ohmic currents
cannot be neglected.
Due to the electro-quasistatic assumption, the electric field can be expressed as the
gradient of a scalar function V also known as electrostatic potential as E = −∇V .
Since current dipoles associated to PSPs, also referred to as primary currents with
current density Jp, produce an electric field E, this electric field produces Ohmic
currents with current density σE = −σ∇V where σ[ 1

Ω·m ] is the tissue conductivity.
This means that the total current density is

J = −σ∇V + Jp. (2.20)

Since we are interested only in the electric field potential generated by PSPs, using
the quasistatic charge conservation law, we obtain a relation between the electric
potential and the primary currents as

∇ · (σ∇V ) = ∇ · Jp (2.21)

which is a Poisson equation.
As given in Table 2.3, the magnetic field under magneto-quasistatic assumption is
∇×B = µ0J, thus ∇×∇×B = µ0∇× J and ∆B = −µ0∇× J, where a solution
is given by the Biot-Savart law as

B(r) =
µ0
4π

∫
J(r′)× r− r′

||r− r′||3
dr′ =

µ0
4π

∫ (
Jp(r′)− σ∇V (r′)

)
× r− r′

||r− r′||3
dr′.

(2.22)
From the equation describing the Biot-Savart law, we can see that the magnetic
field depends both on the primary PSP and the secondary Ohmic currents.
Complexity of the solutions of the Poisson and Bio-Savart equations depends on
the modeling of conductivity σ. The simplest model assumes that conductivity is
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constant over all tissues. However, although different tissue conductivities impact
both fields, this is more prominent in the case of the electric field due to the low
conductivity of the skull. To address this, a model which represents tissues as layers
with constant conductivities is proposed. The most advanced model so far assumes
that the tissue conductivities are anisotropic and that they can be represented as
tensors estimated using dMRI.

2.2.2.3 Electro-encephalography

Electro-encephalography (EEG) refers to the measuring of the previously described
electric potentials arising from the cerebral cortex. Usually, it is performed in a non-
invasive manner by placing multiple electrodes on the head, although intra-cranial
EEG exists too. In order to be measurable on the head, the brain activity must occur
synchronously in tens of thousands (≈ 50000) of spatially close pyramidal cells. Such
activity in an adult human results in an electric potential in the range of 10−100µV

[Aurlien et al. 2004]. Distribution of the electrodes over the skull is termed as a
montage. The two most commonly used types of montage are bipolar and referential.
In a bipolar montage, each channel of a multivariate EEG signal corresponds to
the difference between signals recorded with adjacent electrodes. In a referential
montage, from each electrode signal a reference signal is subtracted in order to
obtain the final multivariate EEG signal. EEG signals exhibit very high temporal
resolution which can be of the order of the ms. On the other hand, the spatial
resolution is limited due to the low conductivity of the skull which causes smearing of
the electric field. Depending on the number of electrodes, it is of the order of several
cm2. Apart from the temporal resolution, other advantages of EEG, compared
to other functional imaging methods, are the low price of the measuring device,
its portability and lower storage requirements, and higher robustness to subject
motion. In addition to the low spatial resolution, another significant disadvantage
of EEG is the low signal to noise ratio, where noise comes from the activities of
other organs, imperfections of the measuring devices, ambient, electrical sources,
etc. Due to the superposition of electric fields (∇·Jp = 0 in Eq. 2.21), EEG devices
have difficulties in recording signals from current dipoles organized into the forms
close to solenoidal, whereas magnetic field is measurable [Hämäläinen et al. 1993,
Grave de Peralta Menendez et al. 2000]. An illustration of the electric field lines of
dipoles organized into a solenoidal form are illustrated in Figure 2.18 a).

2.2.2.4 Magneto-encephalography

Magneto-encephalography (MEG) refers to the measuring of the magnetic field
strength arising from the cerebral cortex. This is achieved non-invasively via magne-
tometers placed at the scalp or slightly above it. As for EEG, synchronous activity
of tens of thousands of spatially close pyramidal cells is required, so that the mag-
netic field is detectable by MEG device. Amplitudes of the field strength are in the
range of 10− 1000fT , which is very low compared to the ambient noise of the order
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of 108fT . As a consequence, MEG signals must be recorded in specially magneti-
cally shielded rooms. The most commonly used MEG device is the superconducting
quantum interference device (SQUID), which uses magnetometers based on super-
conducting coils. To achieve superconductivity, coils must be at low temperature.
Thus a SQUID device includes a bulky cooling system. In addition, positions of the
magnetometers are fixed, thus not well suited to heads of different geometries and
sizes. Whereas a standard magnetometer contains a single coil, a special type of
magnetometer termed as gradiometer uses multiple coils which allow noise reduc-
tion. More recent MEG devices are based on spin exchange relaxation-free (SERF)
which use more compact optically pumped magnetometers. As they do not require
a cooling system, they can be integrated into a portable helmet. As EEG, MEG
signals exhibit very high temporal resolution which can be of order of the ms. Since
tissue conductivity has a lower impact on the magnetic field, its spatial resolution
is higher compared to the electric potential. The higher spatial resolution of the
field supports the utilization of a higher number of magnetometers, in the range of
200 − 300. In addition, if MEG signal is recorded in a shielded room, the signal-
to-noise ratio of MEG is higher compared to EEG signal. Since a current dipole
perpendicular to a magnetometer coil, produces a magnetic field with circular lines
parallel to the coil (B(r) = 0 in Eq. 2.22), MEG devices have difficulties in record-
ing signals from radial sources, such as at the top of gyri, whereas electric potential
is measurable [Hämäläinen et al. 1993, Ahlfors et al. 2010]. An illustration of the
magnetic field lines of dipoles organized into a radial form at the top of a gyrus are
illustrated in Figure 2.18 b).

2.3 Conclusion

In this chapter, we have described the functional and structural properties of the
human nervous system, at a micro-scale - the level of neurons and a macro-scale
- the level of cortical lobes and white matter fiber tracts. They are presented for
better comprehension of the functional and structural medical imaging techniques
and their properties. Further, in more detail, we have provided a description of
diffusing water molecules in different media and the way dMRI is able to capture
structural properties of the examined tissues based on this phenomenon and mag-
netic properties of the water molecules. In a similar manner, for EEG and MEG
techniques, we have firstly described biophysical events leading to PSPs which when
occurring in synchronous manner, in the cerebral cortex, provoke measurable elec-
tric and magnetic fields, whose potential and strength can be recorded by EEG and
MEG devices.
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a) b)

Figure 2.18: Illustrations of the electric field lines of the dipoles organized into a
solenoidal form a) and magnetic field lines of the dipoles organized into a radial
form at the top of a gyrus b). (S denotes measuring sensor.)
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Executive summary

In this chapter, we firstly present the properties of the dMRI signals acquired with q-
space sampling protocols, namely real and spherical nature, antipodal symmetry and
rotation equivariance. Further, we provide an overview of the state-of-the-art dMRI
local modeling approaches, which can be categorized into spherical probability den-
sity function (PDF)s and biophysically inspired multi-compartment micro-structure
models. In the following section, the state-of-the-art deep learning models for the
analysis of general spherical signals are presented. The last section contains a de-
tailed description of the deep learning approaches used in local dMRI modeling.
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3.1 dMRI acquired on spheres

dMRI signal acquisition with HARDI protocols has enabled the use of more
insightful mathematical tools in the challenges, which include local modeling
[Descoteaux et al. 2014]. The most prominent example is found in the model-
ing of crossing fibers which was impossible with low angular resolution dMRI
signals, such as DTI [Basser et al. 1994]. In the last decade, the most com-
monly used HARDI protocols are single and multi-shell q-space sampling schemes
[Jones 2010, Ye et al. 2012, Caruyer et al. 2013]. The shells correspond to concen-
tric spheres in high-dimensional q-space. In the acquisition protocol proposed by
[Caruyer et al. 2013], sampling points are randomly uniformly distributed and non-
collinear within and between different shells in a way that the optimal angular
coverage is achieved as illustrated in Figure 3.1.

Figure 3.1: Illustration of a q-space sampling points over three shells
[Caruyer et al. 2013]

Due to the nature of diffusion processes in the neural tissues, noiseless dMRI signals
of an arbitrary shell are spherical, antipodally symmetric and real. This means that
such a dMRI signal for a single shell, s : S2 → R can be represented as

s(θ, ϕ) = s(r) =
∞∑
l=0

m=l∑
m=−l

ŝlmYlm(r) =
∞∑
l=0

m=l∑
m=−l

ŝlmYlm(θ, ϕ) (3.1)

where θ ∈ [0, π] and ϕ ∈ [0, 2π) are colatitude and longitude, r ∈ R3 s.t.
r = [sin θ cosϕ, sin θ sinϕ, cos θ]T . ŝlm is a coefficient associated to the real SH
basis element of degree l and order m - Ylm : S2 → R. By definition the SH
basis are complex, but since we are dealing with the real dMRI signals, we have
used a real SH basis, which can be defined using corresponding unitary matrices
[Homeier & Steinborn 1996]. Definition of the complex and real SH bases is pro-
vided in Appendix A. Given the antipodal symmetry of the signal s, s(r) = s(−r),
only antipodally symmetric SH basis elements are used, which are the elements of
even degree l. dMRI signals are rotationally equivariant to the examined tissue
structures which can have arbitrary 3D orientations. A function f : S2 → R is
rotationally equivariant if the following holds

Q(f(r)) = f(Qr) (3.2)
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where r ∈ R3 and Q ∈ SO(3) is a 3D rotation matrix. Another property of interest
is rotation invariance which is a special case of rotation equivariance. A function
f : S2 → R is rotationally invariant if the following holds

f(r) = f(Qr). (3.3)

In reality, acquired signals are discrete and affected by noise. Noise which affects
dMRI signals is non-additive and of Rician distribution. Due to discretization, they
can be represented only with a finite number of SH basis elements. Given this, Eq.
4.1 becomes an approximation

s(rn) ≈
B∑
l=0

m=l∑
m=−l

ŝlmYlm(rn) (3.4)

where {rn}Nn=1 is a discrete set of N points distributed over one shell, rn ∈ R3 s.t.
||rn||2 = 1 and B is the signal’s bandwidth. This can be written in a matrix-vector
notation as

s ≈ Y ŝ (3.5)

where s ∈ RN contains the discrete dMRI signal for one shell. Y ∈ RN×NB is a
matrix containing discrete SH basis elements in columns and ŝ ∈ RNB is a vector
containing the corresponding SH coefficients. NB = (B+1)(B+2)

2 is the number of SH
basis elements of even degrees.

Estimation of dMRI spherical harmonic coefficients

For more efficient processing and an insightful analysis of dMRI signals, it is often
of interest to transform it to the Fourier/spectral domain. For signals acquired on
a sphere, the Fourier basis is also called SH basis. A challenge in the computa-
tion of SH coefficients comes from the fact that there is no discretization process
on a sphere which preserves the orthogonality of the SH basis. In analogy to the
Nyquist-Shannon sampling theorem for band-limited signals acquired in Euclidean
space, a number of sampling theorems for spherical signals have been proposed
[Kowsky 1986, Driscoll & Healy 1994, McEwen & Wiaux 2011]. These theorems de-
fine sampling grids on spheres which guarantee that all the information from a
band-limited spherical signal is preserved. Each sampling grid has a corresponding
quadrature formula required for the exact computation of SH coefficients.
However, these sampling grids are not well suited to dMRI. They require
a much higher number of sampling points (eg. B(2B + 1) + 1 at least for
[McEwen & Wiaux 2011]), which is not practical from the clinical point of view.
In addition, even if this number can be decreased by exploiting antipodal sym-
metry, the distribution of their points is not appropriate for signals affected by a
significant noise as the sampling is in general dense around the poles and sparse
close to the equator.
Coming back to Eq. 3.5, to estimate the SH coefficients ŝ from a signal s, discretized
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at a set of uniformly randomly distributed points, as in the q-space sampling, a num-
ber of least square based approaches have been proposed. They require at leastNB =
(B+1)(B+2)

2 sampling points for a signal of bandwidth B. Initially, a least square
solution was used by [Alexander et al. 2002, Tournier et al. 2004, Hess et al. 2006]
where the SH coefficients are estimated using the Moore-Penrose pseudo-inverse as

ŝ ≈ Y †
mps = (Y TY )−1Y T s. (3.6)

This approach is very sensitive to noise and yields accurate solutions only for a num-
ber of points N much higher than the number of SH coefficients NB (N >> NB).
To address this problem, higher degree SH coefficients were directly apodized in
[Tournier et al. 2004], while in [Hess et al. 2006] least square problem was regular-
ized with a Tikhonov term, yielding the following

ŝ ≈ Y †
tikhs = (Y TY + λI)−1Y T s (3.7)

where λ is a regularization weight and I is the identity matrix of size NB. Since
Tikhonov regularization is not well suited for the S2 basis (as the regularization
term penalizes equally SH basis elements of all degrees), a least square solution
with Laplace-Beltrami regularization was proposed by [Descoteaux et al. 2007] as
follows

ŝ ≈ Y †
lbs = (Y TY + λL)−1Y T s (3.8)

where λ is a regularization weight and L ∈ RNB×NB is the Laplace-Beltrami smooth-
ing matrix.

Convolution between spherical and zonal signals

As dMRI signals generated by individual neural tissue structures such as single
axon bundles, gray matter and cerebrospinal fluid (CSF), at the level of a voxel, are
usually assumed to be axially symmetric, it is often of interest to filter dMRI signal
with a zonal signal (as it will be clear in the following sections). Zonal signals are
a special case of axially symmetric signals, where the symmetry takes place around
the z axis. They are also a special case of S2 signals as they change only along the
z axis (or along the inclination angle θ). An S2 signal z(θ, ϕ) : S2 → R is a zonal
signal iff z(θ, ϕ) = z(θ, 0) ∀ϕ ∈ [0, 2π) and ∀θ ∈ [0, π). It can be represented in
terms of SH and zonal harmonic (ZH) basis elements as

z(θ, ϕ) = z(r) =
∞∑
l=0

ẑl0Yl0(r) =
∞∑
l=0

ẑl0Yl0(θ, ϕ) =
∞∑
l=0

ẑl

√
(2l + 1)

4π
Pl(cos θ). (3.9)

where Pl(cos θ) is the Legendre polynomial or the ZH basis element of degree l

and ẑl is the corresponding coefficient, while ẑl,0 is the corresponding SH coefficient
associated to the SH basis elements Yl,0(r). Given an L2 signal s : S2 → R and an
L2 zonal signal g : S2 → R of bandwidths B, correlation between them is given by

[s ∗ g](r) =
∫
S2

s(r′)g(R−1(θ, ϕ, 0)r′)dr′ =
B∑
l=0

√
4π

2l + 1
ĝl

l∑
m=−l

Ylm(r)ŝlm (3.10)
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where r = [sin θ cosϕ, sin θ sinϕ, cos θ]T and R(θ, ϕ, 0) ∈ SO(3) is rotation matrix
associated to r. ŝlm is the SH coefficient of degree l and order m of the signal s(r).
ĝl is the ZH coefficient of degree l of the function g(r). If f(r) = [s ∗ g](r), from Eq.
3.10, its SH coefficients are defined as

f̂lm =

√
4π

2l + 1
ĝlŝlm f̂l =

√
4π

2l + 1
ĝlŝl (3.11)

where ŝl, f̂l ∈ R2l+1 are vectors which contain the SH coefficients of degree l of the
signals s(r) and f(r).

3.2 dMRI probability density functions

One way to explain the HARDI dMRI signals is via 3D PDFs. These functions
provide information related to the displacement of water molecules via diffusion
within white matter axon bundles or orientation of the axon bundles themselves.
They are examples of rotation equivariant functions (see Eq. 4.2). These voxel-wise
PDFs opened the possibility of tracking white matter pathways an a process called
tractography [Basser et al. 2000], which has a great use for the analysis of brain
structural connectivity [Jbabdi et al. 2015].

Ensemble Average Propagator

The Ensemble Average Propagator (EAP) is a PDF which describes the probability
of the water molecule displacement via diffusion in 3D space [Callaghan 1993]. If we
denote the density of water molecules at position R0 ∈ R3 and time instant 0 with
ρ(R0) and the probability of a molecule displacement from R0 to position R∆ ∈ R3

at time instant ∆ with P (R∆|R0), then the attenuation of the dMRI signal can be
written as

s(q)

s0
=

∫
R3

ρ(R0)

∫
R3

P (R∆|R0)e
2πiqT (R∆−R0)dR∆dR0 =

∫
R3

P (R)e2πiq
TRdR

(3.12)
where s(q) is the dMRI signal measured at point q ∈ R3 of the q-space and s0 is the
no diffusion weighted signal. P (R) is the probability that a molecule is displaced by
R = R∆−R0. It is also known as the EAP. ∆ is the interval between the encoding
and decoding diffusion sensitizing gradients in direction q

||q||2 . q is computed as

q =
1

2π
γ

δ∫
0

G(t)dt (3.13)

where δ is the duration of diffusion sensitizing gradients. Under the narrow pulse
assumption δ << ∆, we can assume that the movement of molecules within the
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intervals δ can be neglected, and can also consider G(t) as a constant over that
time. Thus q = 1

2πγGδ. In this scenario, since q has the same intensity and
direction at time instants 0 and ∆, thus at R0 and R∆, the EAP can be computed
as the Fourier transform of the signal attenuation:

P (R) =

∫
R3

s(q)

s0
e−2πiqTRdq. (3.14)

Units of EAP are [ 1
m3 ].

Diffusion Orientation Distribution Function

The Diffusion Orientation Distribution Function (dODF) is a PDF on the sphere
which describes how water molecules diffuse along different directions. It is thus
defined as the radial projection of the EAP. Initially, the dODF has been defined
in [Tuch 2004] as

dODF (r) =
1

Z

∞∫
0

P (Rr)dR (3.15)

where r ∈ R3 s.t. ||r||2 = 1 refers to the direction of diffusion and R ∈ R is its
magnitude. Z is a dimensionless constant which ensures that the PDF dODF (r)

sums to one. Since the EAP P (R) actually corresponds to the probability that a
water molecule initially placed at origin R0 is found in an infinitesimal volume dR
at position R∆ after time ∆, in [Wedeen et al. 2005] a better grounded definition
of dODF (r) has been introduced as

dODF (r) =

∫
R3

P (Rr)dR (3.16)

which by representing dR by R2dRdΩ where dΩ is infinitesimal solid angle element
can be written as

dODF (r) =
1

4π

∞∫
0

∫
S2

P (Rr)R2dΩdR =

∞∫
0

P (Rr)R2dR (3.17)

where S2 is the unit sphere.
In [Descoteaux et al. 2007], the authors proposed an analytical solution for dODF
approximation from dMRI signals acquired on spheres of q-space. The dODF is
obtained as the convolution between a zonal function obtained via the Funk-Hecke
theorem and the SH coefficients estimated solving the least square problem with a
Laplace-Beltrami regularization as in Eq. 3.8. The convolution is defined as

dODF (r) =
B∑
l=0

2πPl(0)
l∑

m=−l
ŝmlYml(r) (3.18)

where ŝml are the real SH coefficients of the dMRI attenuation s(r)/s0 and Pl(0) is
the Legendre polynomial of degree l evaluated at cosθ = 0.
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Fiber Orientation Distribution Function

The fODF is a spherical PDF which provides information on the orientation and
volume fractions of the axon bundles [Tournier et al. 2004, Tournier et al. 2007,
Jeurissen et al. 2014]. Whereas the EAP and the dODF are referred to as "model
free", the fODF requires the modeling of a response function corresponding to a
single axon bundle. Given the single fiber response function rsf , the fODF is com-
puted by the deconvolution of rsf from the dMRI signal. In the first approach for
fODF estimation proposed in [Tournier et al. 2004], the dMRI signals were modeled
as the convolution between the fODF : S2 → R+ and a zonal single fiber response
function rsf (θ) as

s(r) = [fODF ∗ rsf ](r) (3.19)

where the response function rsf (θ) is obtained from voxels which are determined as
the ones that most probably contain single white matter fibers according to certain
rotation invariant measures. As these bundles might have an arbitrary orientation,
they are firstly rotated to be zonal and averaged in order to obtain rsf (θ). In the
spectral domain, as given in Eq. 3.11, the convolution from Eq. 3.19 corresponds
to

ŝl =

√
4π

2l + 1
f̂lr̂

sf
l (3.20)

where ŝl, f̂l ∈ R2l+1 are vectors containing the SH coefficients of degree l of the dMRI
signal s(r) and fODF (r). r̂sfl ∈ R is the ZH coefficients of degree l of a single fiber
response function rsf (θ). From Eq. 3.20, we can see that the spectral coefficients
of the fODF (r) can be simply obtained by deconvolution as

f̂l =

√
2l + 1

4π
ŝl

1

r̂sfl
. (3.21)

where a least mean square solution from Eq. 3.6 is used to estimate the SH coeffi-
cients of the dMRI signals. Since deconvolution from Eq. 3.21 is susceptible to noise
and does not take into account the fact that some voxels contain gray matter or CSF
tissues, negative spurious peaks might appear in the estimated fODF. To address
this problem, an fODF estimation by deconvolution with non-negativity constraint
has been proposed in [Tournier et al. 2007]. The minimization problem is defined
as

f̂ = argmin
f̂

||C f̂ − s||22 s.t. Af̂ >= 0 (3.22)

where f̂ are the SH coefficients of fODF (r). The matrix C incorporates convo-
lution of the fODF with response function rsf (θ) in the spectral domain and the
transformation of the resulting SH coefficients into the S2 domain at the same sam-
pling points as of the signal s(r). The matrix A transforms the SH coefficients f̂

into the S2 domain on a very dense sampling grid in order to impose the positivity
constraint. This approach is termed as single shell single tissue constraint spheri-
cal deconvolution - SSST-CSD. Since it is designed only for single shell signals and
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does not take into account the presence of non-white matter tissues in a voxel, it
is further extended into the multi shell multi tissue constraint spherical deconvolu-
tion - MSMT-CSD [Jeurissen et al. 2014], which in addition to white matter fODF
provides information on gray matter and CSF volume fractions. The MSMT-CSD
minimization problem is defined as
f̂1
f̂2
...
f̂n

 = argmin

f̂1
f̂2
...
f̂n



∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣


C1,1 . . . C1,n

C2,1 . . . C2,n
... . . .

...
Cm . . . Cm,n



f̂1
f̂2
...
f̂n

−


s1
s2
...
sm


∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

2

2

s.t.


A1 . . . 0

0 . . . 0
... . . .

...
0 . . . An



f̂1
f̂2
...
f̂n

 >= 0

(3.23)
where m is the number of shells and n is the number of tissues. si is dMRI signal
of shell i and f̂j are the SH coefficients of the spherical PDF of tissue j. Cji is a
matrix which incorporates the convolution of f̂j with the response function of tissue
j at shell i, rji (θ), in the spectral domain and the transformation of the resulting
SH coefficients into the S2 domain at the same sampling points as of the signal si.
The obtained reconstructed signals are summed over all tissue types j for the shell
i in order to fit it to si. The matrix Aj transforms the SH coefficients f̂j into the S2

domain in order to impose the positivity constraint for the spherical PDF of each
tissue type. Since the response functions for gray matter and CSF are spherical
(have bandwidth 0), Aj does not need to transform these PDFs on a large number
of sampling points. For white matter tissue where bandwidth of response function
is much higher a high number of sampling points is needed in order to ensure
positivity of the fODF.
Both minimization problems from Eq. 3.22 and Eq. 3.23 can be represented
as convex quadratic programming problems which can be solved efficiently
[Jeurissen et al. 2014].

3.3 dMRI multi-compartment micro-structure imaging

Multi-compartment micro-structure (MCMS) imaging refers to biophysically in-
spired models which explain the dMRI signal as a linear combination of signals com-
ing from different tissue compartments such as intra- and extra-axonal spaces, gray
matter, cerebrospinal fluid, tumorous cell, etc. These models can provide informa-
tion about axonal density and diameter, neurite dispersion, different tissue volume
fractions, which are rotationally invariant measures (see Eq. 3.3), which have shown
potential in the evaluation of several neurological diseases [Panagiotaki et al. 2014,
De Santis et al. 2017, Schneider et al. 2017, Broad et al. 2018] and in characteriza-
tion of early brain development [Jelescu et al. 2015, Bastiani et al. 2019].
We provide an overview of the most distinct MCMS models.
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Figure 3.2: Illustration of fODFs and tractography [Tournier et al. 2011].

Ball and Stick [Behrens et al. 2003, Behrens et al. 2007] models the dMRI signal
as a linear combination of an isotropic Gaussian (ball) which corresponds to sig-
nal generated by extra-axonal water molecule diffusion and N anisotropic diffusion
tensors without radial diffusivity (zero radius sticks) for intra-axonal diffusion as

si = s0

(
ν0e

−bid +
N∑
n=1

νne
−bidrTi RnARnri

)
(3.24)

where si is the dMRI signal measured along direction ri with a b-value bi and s0
is the no diffusion weighted signal. d is diffusivity and RnAR

T
n is the anisotropic

diffusion tensor of the nth fiber. ν0 and {νn}Nn=1 are volume fractions of the isotropic
and the N fiber compartments.
Composite Hindered And Restricted ModEl of Diffusion (CHARMED)
[Assaf et al. 2004, Assaf & Basser 2005] models dMRI generated by white matter
tissue as a linear combination of signals generated by hindered and restricted com-
partments. The former corresponding to between axons diffusion modeled with
diffusion tensor and the latter to intra-axonal diffusion modeled with a cylinder as

si = s0

(
νhe

−4π2(∆−δ/3)qT
i Dqi +

N∑
n=1

νnr Eh(qi,∆)

)

= s0

(
νhe

−4π2(∆−δ/3)qT
i Dqi +

N∑
n=1

νnr E
∥
h(q

n,∥
i ,∆)E⊥

h (q
n,⊥
i ,∆)

) (3.25)

where D is the effective diffusion tensor. si is the dMRI signal measure at point
qi and s0 is the no diffusion weighted signal. q

n,∥
i and qn,⊥i are the parallel and

perpendicular components of qi with respect to the nth axon bundle. E∥
h(q

n,∥
i ,∆)

and E⊥
h (q

n,⊥
i ,∆) are the intra-axonal attenuation factors coming from parallel and

perpendicular diffusion within the axon bundle. νh and {νnr }Nn=1 are the volume
fractions of the hindered and the N restricted compartments.
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Neurite Orientation Dispersion and Density Imaging (NODDI)
[Zhang et al. 2012] models the dMRI signal as a linear combination of three types
of compartments. The CSF compartments is modeled with an isotropic Gaussian
(ball), while the signals from intra- and extra-neurite spaces are modeled with zero
radius cylinders (sticks) distributed respectively to a Watson distribution and an
anisotropic Gaussian (zeppelin) whose diffusion tensor corresponds to Watson dis-
tributed neurites as

si = s0

(
νisoe

−bidiso + (1− νiso)
(
νinEin(qi, d∥) + νenEen(qi, d⊥, d∥)

))
(3.26)

where si is the dMRI signal measured at point qi and s0 is the no diffusion weighted
signal. bi is the b-value corresponding to qi. νiso is the CSF volume fraction and νin
and νen are the intra and extra-neurite volume fractions with respect to non-isotropic
contributions. diso, d∥ and d⊥ are isotropic, parallel and perpendicular diffusivities.
Parallel diffusivities of intra- and extra-neurite compartments are the same, while
the perpendicular diffusivity of the extra-neurite compartment is related to parallel
diffusivity via the tortuosity model [Szafer et al. 1995] as d⊥ = d∥(1 − νin). Signal
attenuation due to intra and extra-neurite diffusions are defined as

Ein(qi, d∥) =

∫
S2

W (r, κ, µ)e−bid∥(q
T
i r)2dr (3.27)

and

Een(qi, d⊥, d∥) = e−biq
T
i Denqi where Den =

∫
S2

W (r, κ, µ)D(r)dr (3.28)

where W (r, κ, µ) is the orientation distribution function (axially symmetric), where
µ is its orientation and κ determines dispersion around µ. κ is used to define the
orientation dispersion index as OD = 2

πarctan( 1κ) whose range is in [0, 1]. D(r)

is cylindrical diffusion tensor with orientation r with parallel and perpendicular
diffusivities d∥ and d⊥.

3.4 Deep learning models for spherical signals

A number of 3D rotationally equivariant general purpose deep learning (DL) ap-
proaches have been proposed for the analysis of arbitrary S2 signals. Among
the first notable rotationally equivariant neural networks is the S2 − CNN pro-
posed by [Cohen et al. 2018]. The main contribution of their work are the layers
with convolutions (correlations) performed in the S2 and SO(3) spectral domain
[Driscoll & Healy 1994, Kostelec & Rockmore 2008], so that the computationally
expensive interpolations in the signal space are avoided.
In the first convolutional layer, given an input data sample f : S2 → C and a
trainable kernel ψ : S2 → C which is sampled at circles around pole (otherwise
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Figure 3.3: NODDI compartments [Tariq et al. 2016].

is zero), both sampled at a Driscoll-Healy grid [Driscoll & Healy 1994], the SH co-
efficients {{f̂ml }m=l

m=−l}Bl=0 and {{ψ̂ml }m=l
m=−l}Bl=0 are first computed using the corre-

sponding quadrature formulae [Driscoll & Healy 1994]. Convolution (correlation) is
performed as follows

g(R) = [f ∗ ψ∗](R) =

∫
S2

f(r)ψ∗(R−1r)dr

=
B∑
l=0

l∑
m=−l

l∑
n=−l

Dmn
l (R)f̂ml ψ̂

n
l
∗ =

B∑
l=0

l∑
m=−l

l∑
n=−l

Dmn
l (R)Ĝm,nl

(3.29)

where R ∈ SO(3) is a rotation matrix. Dmn
l (R) is the Wigner-D basis element of de-

gree l and ordersm and n which is a Fourier basis element of the SO(3) manifold and
Ĝm,nl is the corresponding rotation harmonic (RH) coefficient. As Ĝmnl = f̂ml ψ̂

n
l
∗,

in matrix-vector notation we can write Ĝl = f̂lψ̂
∗
l , where f̂l, ψ̂l ∈ C(2l+1) are

the SH coefficients of degree l of the signal f(r) and kernel ψ(r), respectively.
Ĝl ∈ C(2l+1)×(2l+1) are the RH coefficients of degree l of the resulting signal g(R).
This is illustrated in Figure 3.4 a). The full derivation of the convolution between
two S2 signals is given in Appendix A. As shown in Eq. 3.29, after convolution in the
spectral domain, the signal in the SO(3) domain is obtained as a linear combination
of Wigner-D basis elements. Then, the spectral coefficients are projected back onto
the equiangular SO(3) sampling grid analogue to the Driscoll-Healy grid used for
the discretization of S2 signals and the Rectified Linear Unit (ReLU) non-linearity
is applied. As the convolution of two S2 signals gives a signal in SO(3) manifold,
all layers following the first one perform a convolution between SO(3) signals and
kernels after the ReLU non-linearity is applied in the SO(3) domain.
In the ith convolutional layer with i > 1, given the input SO(3) signal and ker-
nel f, ψ : SO(3) → C, both sampled at equiangular grids which allow the com-
putation of the respective RH coefficients using quadrature formulae denoted as
{{{F̂m,nl }m=l

m=−l}n=ln=−l}Bl=0 and {{{Ψ̂m,n
l }m=l

m=−l}n=ln=−l}Bl=0, the convolution (correlation)
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is performed as

g(R) = [f ∗ ψ∗](R) =

∫
SO(3)

f(Q)ψ∗(R−1Q)dQ

=
B∑
l=0

l∑
m=−l

l∑
n=−l

Dmn
l (R)

l∑
k=−l

F̂mkl Ψ̂nk
l

∗ =
B∑
l=0

l∑
m=−l

l∑
n=−l

Dmn
l (R)Ĝmnl

(3.30)

where R,Q ∈ SO(3). F̂ pql and Ψ̂pq
l are the RH coefficients of degree l and or-

ders p and q of the signal f(R) and kernel ψ(R), respectively. Dpq
l : SO(3) → C

is an element of the Wigner-D matrix of degree l and orders p and q. As
Ĝmnl =

∑l
k=−l F̂

m,k
l ψ̂n,kl

∗, in matrix notation we can write Ĝl = F̂lψ̂
∗
l , where

F̂l, Ψ̂l, Ĝl ∈ C(2l+1)×(2l+1) are the RH coefficients of degree l of f(R), ψ(R) and g(R),
respectively. This is illustrated in Figure 3.4 b). Full derivation of the convolution
between two SO(3) signals is given in Appendix A. As after the first convolutional
layer, ReLU is applied in SO(3) domain.
As in standard Euclidean space CNNs, pooling layers are important as their task is
to summarize feature maps by decreasing its resolution (e.g. with max or average
pooling). In S2 − CNN , this is achieved simply by discarding the RH coefficients
of the highest degree after each ReLU. After the last convolutional layer and non-
linearity, only the RH coefficients of degree l = 0 are extracted and fed to a chain
of fully connected layers whose task is to perform the final inference based on the
extracted features, such as regression or classification.

a) b)

Figure 3.4: Illustration of convolutions in spectral domain between a) two S2 signals
and b) two SO(3) signals.

As the transformations between the SO(3) spectral and signal domains and vice
versa are computationally expensive, [Esteves et al. 2018] have proposed a spherical
CNN model with zonal kernels. In this case the convolution between the S2 signals
and zonal kernels remains in the S2 space, which is less computationally expensive.
The convolution between the input signal and a trainable kernel is illustrated in
Figure 3.5 and is performed in the spectral domain as given in Eq. 3.11. As in
S2 − CNN proposed by [Cohen et al. 2018], the ReLU non-linearity is applied in
the signal domain, that is S2 in this model and pooling is performed by discarding
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the SH coefficients of the highest degree. Finally, as in [Cohen et al. 2018], feature
maps of degree l = 0 are extracted after the last convolutional layer and are fed into
a fully connected network.

Figure 3.5: Illustration of convolutions in spectral domain between an S2 signal and
a zonal kernel.

An issue that arises from the application of the non-linearity in the signal do-
main is the appearance of high frequency components, which might introduce alias-
ing and decrease rotation equivariance of the model. In the work presented by
[Kondor et al. 2018], a fully Fourier space CNN has been proposed, where rotation
invariant Fourier domain non-linearities of quadratic nature have been introduced,
thus eliminating the need for conversion from spectral to signal domain and distor-
tions introduced by aliasing. This is achieved by decomposing the tensor product
of SO(3) covariant vectors into irreducible fragments (vectors) using the Clebsch-
Gordan decomposition. Given an input data sample f : S2 → C sampled at Driscoll-
Healy grid [Driscoll & Healy 1994] or Gauss-Legendre grid, firstly the SH coefficients
{{f̂ml }m=l

m=−l}Bl=0 and {{ψ̂ml }m=l
m=−l}Bl=0 are computed using corresponding quadrature

formulae. We denote with fl ∈ C(2l+1) vector of the SH coefficients of degree l, here
also referred to as the SO(3) covariant vectors or fragments. If there are multi-
ple input channels, we denote with Fl ∈ C(2l+1)×C the matrix which contains the
SH coefficients of each of the C channels. The authors proposed a Foruier domain
non-linearity achieved via the Clebch-Gordan decompositions as

Gl =
⊔

|l1−l2|≤l≤|l1+l2|

CTl1,l2,l
[
Fl1 ⊗ Fl2

]
(3.31)

where CTl1,l2,l ∈ R(2l1+1)(2l2+1)×(2l+1) is a sparse matrix containing the Clebch-
Gordan coefficients which are non-zero only for m1 +m2 = m, where m1, m2 and
m are the orders of the SH coefficients in fragments of degrees l1, l2 and l. ⊔ refers
to concatenation over channels. We can notice that with this type of non-linearity
the total number of channels is squared, which is addressed by a covariant linear
transformation defined as

Hl = GlWl (3.32)
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where Wl ∈ CC×Q where Q < C. This can be seen as filtering the channels with
different zonal kernels and their sum. Illustration of a single layer of a Clebsch-
Gordan network containing a Clebsch-Gordan non-linearity and a linear transform
is shown in Figure 3.6. In the final layer, only H0 are computed and fed into
a fully connected network as previously described for models [Cohen et al. 2018,
Esteves et al. 2018].

Figure 3.6: Illustration of a single layer of Clebsch-Gordan network
[Kondor et al. 2018].
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3.5 Deep learning models in dMRI local modeling

To address some of the problems in dMRI local modeling, as in other computer
vision domains, focus has moved towards data driven approaches, such as DL which
have been recognized as a powerful tool to extract information from diffusion MRI
signals.
Among the first DL models adapted to address the problem of the estimation of
micro-structure parameters from dMRI data acquired with clinically desirable ac-
quisition schemes (containing a low number of sampling points) was the multi layer
perceptron (MLP) [Golkov et al. 2016]. The model was composed of fully con-
nected layers with trainable weights and biases {Wi}Li=1 and {bi}Li=1, where L is
the total number of layers. Each layer maps the input signal si−1 to the output as
ai = gi(Wisi−1 + bi), where gi is an activation function of the ith layer. Except
for gL which is identity, all previous layers used a ReLU non-linearity. To reduce
the effect of overfitting, the authors proposed to use drop-out regularization. The
model was successfully evaluated on the problem of diffusion kurtosis imaging and
neurite orientation dispersion and density imaging (NODDI) parameter estimation.
MLP models have also been investigated in the context of the estimation of rota-
tionally invariant features (RIFs) [Zucchelli et al. 2020] from different dMRI signal
representations [Zucchelli et al. 2021].
In the work of [Ye 2017], an iterative hard thresholding (IHT) algorithm
[Blumensath & Davies 2009], used as a solution of sparse reconstruction problem,
has been unfolded into a DL approach specifically designed for NODDI parameter
estimation. The model was termed as Microstructure Estimation using a Deep Net-
work (MEDN). It is composed of two stages. Its architecture is illustrated in Figure
3.7.

Figure 3.7: Illustration of the MEDN architecture (image source: [Ye 2017]).

In IHT, sparse codes xt+1 are computed as

xt+1 = hλ(Wy + Sxt) (3.33)
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where y is the input signal, W is the dictionary of atoms, S = I −WW T , xt is the
sparse reconstruction at the tth iteration, x0 = 0 and hλ is the thresholding operator
defined as hλ(x) = x if x > λ and hλ(x) = 0 otherwise. In MEDN, instead of using
a predefined dictionary, the matrices W and S are learned via backpropagation
independently. In the second stage, the isotropic volume fraction νiso corresponds to
the last entry of x, while the previous entries denoted as xa correspond to anisotropic
compartments. For numerical stability xa are firstly normalized as x̃a = (xa +

τ1)/||xa + τ1||1, where τ = 10−10. Finally, the intra-cellular parameter νic and the
parameter κ associated to the Watson distribution are estimated as [νic, κ]T = Hx̃a,
where H is also a trainable matrix. The orientation dispersion index is obtained as
OD = 2

πarctan( 1κ).
The authors of MEDN proposed in [Ye et al. 2019] another DL model, inspired by
the IHT algorithm, based on a modified long-short term memory (LSTM) units,
which is capable to incorporate information from the neighborhood voxels for the
estimation of micro-structure parameters. The model is termed as Microstructure
Estimation with Sparse Coding Net (MESCNet). It is composed of two stages and
its architecture is illustrated in Figure 3.8. Contrarily to MEDN, MESCNet is
designed for the estimation of arbitrary micro-structure parameters.

Figure 3.8: Illustration of MESCNet architecture (image source: [Ye et al. 2019]).

In the first stage, given the input signals y = [yT1 , ...,y
T
nb]

T , where yi is the dMRI
signal in voxel i and nb is the total number of voxels in a cubic neighborhood, the
estimation of the sparse coefficients x in the tth layer is given by

xt = hλ(c
t) where ct = f t ◦ ct−1 + it ◦ c̃t where c̃t =Wy + Sxt−1 (3.34)

where as in MEDN W and S are trainable parameters. f t and it are respectively the
weighting terms of coefficients from previous layer ct−1 and an intermediate estimate
of the coefficients from the current layer ĉt. x0 = 0. ◦ refers to element wise mul-
tiplication. Comparing the sparse vector estimations in MEDN and in MESCNet,
given in equations 3.33 and 3.34, we can see that MESCNet incorporates historical
information in the estimate of xt. Weights f t and it are estimated adaptively as

f t = σ(Wfxx
t−1 +Wfys) and it = σ(Wixx

t−1 +Wiys) (3.35)

where Wfx, Wfy, Wix and Wiy are trainable matrices. σ is the sigmoid function
defined as σ(x) = 1/(1 + e−x). All together, the structure of the layer used for



3.5. Deep learning models in dMRI local modeling 51

the estimation of the coefficients xt corresponds to a modified LSTM unit which
is illustrated in Figure 3.9 (a). In the second stage, once the sparse codes x are

(a) (b)

Figure 3.9: Illustration of modified LSTM units (image sources: [Ye et al. 2019,
Ye et al. 2020])

estimated, they are mapped to micro-structure parameters via a Fully Connected
Network (FCN), where each layer i has associated weights and biases Hi and bi.
Given the input ai−1 to a fully connected layer i, the output is estimated as ai =

ReLU(Hiai−1 + bi), where a0 = x

As the input signal is taken from a neighborhood, the size of the matrices W ,
Wfy and Wiy is very large (e.g. assuming 60 points in q-space, neighborhood of size
3×3×3 and length of sparse codes 300, size of a matrix is the 27×60×300 = 486000).
Training of such a model is computationally and storage-wise demanding, requiring
a large amount of training data. To address this problem, in [Ye et al. 2020] an
improved version of MESCNet has been proposed, where the weights are separately
defined for spatial patterns and q-space patterns. The architecture is also composed
of two stages as illustrated in Figure 3.8, but this time with separable weights. In
the first stage, given input in matrix form Y ∈ RQ×V , where Q is the number of
sampling points in q-space and V is the number of voxels in neighborhood, the
sparse vectors in the layer t are estimated as

Xt = hλ(C
t) s.t. Ct = F t ◦ Ct−1 + It ◦ C̃t s.t. C̃t =W aYW s + SaXt−1Ss

(3.36)
where W a, Sa are trainable weights applied along the q-space related (angular)
dimension of the input Y and the matrix of sparse code Xt−1, while W s, and Ss

weights along the neighborhood related (spatial) dimension. Similarly, weighting
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factors F t and It are given by

F t = σ(W a
fxX

t−1W s
fx +W a

fyYW
s
fy) and It = σ(W a

ixX
t−1W s

ix +W a
iyYW

s
iy)

(3.37)
where the pairs W a

fx, W
a
fy and W a

ix, W
a
iy are trainable weights applied along the

q-space related dimension and W s
fx, W

s
fy and W s

ix, W
s
iy along the neighbourhood

dimension. They are used together to estimate the weighting factors of the co-
efficients Ct−1 and the intermediate estimate of the coefficients from the current
layer Ĉt. This modified LSTM unit with separable weight is illustrated in Fig-
ure 3.9 (b). Once the sparse codes in form of a matrix X are estimated, they are
mapped to micro-strucuture parameters via a set of fully connected layers contain-
ing separable filters. Each layer i contains a pair of weights W a

i and W s
i and bias

terms Ba
i and Bs

i . For an input Xi to the ith layer, coefficients are estimated as
Ai = ReLU((W a

i Ai−1 + Ba
i )W

s
i + Bs

i ), where A0 = X. This version of MESCNet,
termed as MESCNetSepDict, also has a possibility to provide output for multiple
voxels at once. All presented models MLP, MEDN, MESCNet, MESCNetSepDict
does not take into account any property of the dMRI signals, such as antipodal
symmetry or spherical nature.
One of the first DL models adjusted to the specific properties of dMRI data was
proposed in [Banerjee et al. 2019]. It is composed of homogeneous CNN (HCNN)
designed for signals living in Riemannian homogeneous spaces which extract intra-
voxel features and 2D planar CNN which extract inter-voxel features. The model
is termed dMRI-CNN and its architecture is illustrated in Figure 3.10. In the first
convolutional layer of HCNN, correlation is performed between the dMRI signal
s1 and a filter s1,w1

i : S2 × R+ → R which are represented in the SHORE basis
[Özarslan et al. 2013, Fick et al. 2016]. i refers to the ordinal number of the filter.
It is denoted by the M-Corr layer in Figure 3.10. Since (s1 ∗w1

i ) : SO(3)×R∗, the
following convolutional layers contain correlation between sil,w

ij
l : SO(3)×R∗ → R,

where wij
l is the trainable filter of layer l (l > 1), for the input channel i, contribut-

ing to the output channel j. These layers are denoted by the G-Corr layers in
Figure 3.10. After each convolutional layer a ReLU non-linearity is applied. Once
the features are extracted for each voxel independently, a 2D CNN network is used
to extract spatial patterns between them. This model was applied to the problem
of classification of dMRI scans into Parkinson disease patients and control group
subjects. Application of DL approaches on dMRI data has been investigated for the
evaluation of other neurological diseases, as well. In [Minaee et al. 2018], a convolu-
tional auto-encoder has been applied on dMRI metrics (e.g. fractional anisotropy;
axial, mean and radial kurtosis; white matter integrity metrics), to extract spatial
patterns from 3D patches relevant for identification of mild traumatic brain injury
features. Furthermore, in [Müller et al. 2021] a rotation and translation equivariant
network has been developed and applied to the problem of multiple sclerosis lesion
segmentation from dMRI data.
DL models have been also investigated for the estimation of voxel-wise PDFs, such
as fODFs. In [Lin et al. 2019], a 3D CNN applied on the SH coefficients of dMRI
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Figure 3.10: Illustration of the architecture of dMRI-CNN (image source:
[Banerjee et al. 2019]).

signals has been proposed for fODF estimation. The architecture of the model is
illustrated in Figure 3.11. As input, it takes the dMRI SH coefficients estimated
using Moore-Penrose pseudo-inverse, over multiple shells and over a neighbourhood
of size 3× 3× 3. Denoting by ŝi, theSH coefficients of shell i, the input vector cor-
responding to one voxel is obtained by simple concatenation as ŝ = [ŝT1 , ..., ŝ

T
Nsh

]T ,
where Nsh is the number of shells. Each entry of ŝ is treated as one input channel
(analogue to R,G or B channels of color images). This input is processed by two
convolutional layers with kernels of size 2× 2× 2, which are followed by three fully
connected layers as illustrated in Figure 3.11. After each convolutional or fully con-
nected layer, apart from the last one, a ReLU non-linearity is applied.
Although the model proposed in [Lin et al. 2019] achieves competitive results, it
does not take into account the properties of the dMRI data. Thus, it requires a
higher number of parameters and consequently a higher number of training data.
In [Elaldi et al. 2021], an unsupervised rotation equivariant U-net with graph con-
volutions has been proposed for fODF estimation. The architecture of the model
is illustrated in Figure 3.12. This model takes as input single- or multi-shell dMRI
signals which are transformed to the spectral domain and then re-projected to the
S2 space onto a hierarchical Healpix sampling grid [Gorski et al. 2005]. Graph con-
volution of one such signal s with a filter w is defined as

s̃ ∗w =
P∑
p=0

wpL
ps̃ (3.38)
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Figure 3.11: Illustration of the architecture of 3DCNN for fODF estimation (image
source: [Lin et al. 2019]).

where wp is pth entry of w. L is graph Laplacian defined as L = D − A with D

being degree and A adjacency matrix. The degree matrix of the graph is diagonal,

with an ith diagonal entry equal to
∑

j wij , where wij = e
−

||xi−xj ||2
ρ2 if i ̸= j and

wii = 0. xk are coordinates of kth vertex and ρ is average distance between two
vertices. Entries i, j of the adjacency matrix A are 1 if there is an edge between
the vertices and 0 otherwise. In both, the contracting and expanding parts of the
U-net, convolutions are followed by ReLU non-linearities and batch normalization,
except for the last layer, where a Soft plus activation was used for the multi-shell
case and ReLU for the single-shell case. Due to hierarchical nature of the sampling
grid, pooling in contracting and up-sampling in expansive parts can be performed
without a need for re-sampling. The loss function is defined as

L =

N∑
n=1

||sn − fn ∗ r||22 + λ

I∑
i=1

log(1 +
f in

2

2σ2c
) + ||fn ◦mn||22 (3.39)

where sn and fn are the nth dMRI sample and the estimated fODF, respectively. r

is the response function precomputed with the mrtrix library [Tournier et al. 2019].
mn is a mask whose entries are 1 for negative entries of fn and 0 otherwise. Constants
λ and σc control the sparsity of the estimated fODFs.
Apart from the before mentioned applications, DL approaches have also been used
for dMRI data synchronization over different sites [Ning et al. 2018], segmentation
of brain tissues [Zhang et al. 2021], signal enhancement [Aggarwal et al. 2019] and
reconstruction [Hong et al. 2019], etc.



3.6. Conclusion 55

Figure 3.12: Illustration of the architecture of the rotationally equivariant U-net for
fODF estimation (image source: [Elaldi et al. 2021])

3.6 Conclusion

In this chapter, we have firstly presented the properties of the dMRI signals acquired
with q-space sampling protocols, namely their real and spherical nature, antipodal
symmetry and rotation equivariance with respect to the underlying tissue struc-
tures. Due to the spherical nature and the rotation equivariance, representation of
the dMRI signals in the SH basis is often used in their analysis, thus we have pro-
vided an overview of the most relevant methods for the SH coefficient estimation.
As the dMRI signals associated with individual axon bundles can be considered
axially symmetric, we have provided definition of the convolution with zonal filters
which is used in the estimation of certain dMRI related PDF functions. Further,
we have described the most relevant PDF functions, namely the EAP, dODF and
fODF and the most prominent biophysically inspired multi-compartment models for
dMRI local modeling. As we are interested in the analysis of the spherical signals,
we have provided an overview of the recent rotationally equivariant DL models used
for arbitrary spherical signals. Finally, in the last part of the chapter, the most
relevant DL approaches used in dMRI local modeling are described in details.
In the following two chapters, we will present our contributions in dMRI local analy-
sis, concretely, rotation equivariant models for the fODF estimation and microstruc-
ture parameter estimation.
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Executive summary

This chapter contains our first contribution in dMRI local modeling, namely a spher-
ical U-net for fODF estimation. Firstly, we have presented SH coefficient estimation
via the Gram-Schmidt orthonormalization process with an analysis of its orthogo-
nality properties. Further, we provide details related to the architecture of spherical
U-net and its main building blocks, namely convolutional and transposed convolu-
tional layers with zonal trainable kernels realized in the spectral domain, non-linear
activations ReLu applied in the signal domain and pooling layer realized in the spec-
tral domain. The model is compared with a deep learning 3DCNN approach and a
traditional multi-shell multi-tissue constrained spherical deconvolution on the real
HCP data and synthetic dMRI signals, both resampled to the reduced grids which
are more clinically desirable.
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4.1 Introduction

U-net is a type of CNN initially designed for segmentation of biomedical images
in [Ronneberger et al. 2015]. In contrast to firstly introduced CNNs which have a
contracting architecture [O’Shea & Nash 2015], a U-net architecture is composed of
a contracting and an expanding parts, which allow it to produce a high resolution
outputs, instead of pixel wise (low resolution). It is a type of fully convolutional
network [Long et al. 2015]. Whereas contracting part of the U-net enables learning
of relevant features at different scales, expanding part which contains upsampling
operations, instead of pooling, enables propagation of contextual information from
the layers of lower to the layers of higher bandwidth. High resolution compared
to the pixel-wise segmentation adds a regularization, as the loss is computed over
larger areas, not just one pixel, thus the model requires less training samples. At
the same time, it is faster.
In the context of spherical signal analysis, a spherical U-net has been proposed for
saliency detection in 360o videos in [Zhang et al. 2018]. In this model, convolutions
between a spherical signal and kernel are realized in the signal domain by stretching
and rotating the kernel to match with locations of sampling points of the signal. In
the domain of medical imaging, a spherical U-net has been proposed for the analysis
of cortical surfaces in [Zhao et al. 2019]. In their work, instead of kernel stretching,
for each vertex direct neighbors are extracted from the signal and rotated around
the vertex. This is followed by a simple inner product with a kernel, representing a
convolution in the signal domain. A recent work, presented in more details in Chap-
ter 3, used a spherical U-net trained in an unsupervised manner for the estimation
of the fODFs [Elaldi et al. 2021].
In this chapter, we present a supervised voxel-wise spherical U-net for the prob-
lem of fODF estimation from dMRI data sampled at multiple spheres (shells).
The model is tailored to the properties of the dMRI signals, namely its real
nature, the uniform distribution of sampling points, the rotation equivariance
with respect to the underlying tissues, and the antipodal and axial symmetry of
the signals generated by individual fibers. Contrary to the models proposed in
[Zhang et al. 2018, Zhao et al. 2019], our U-net contains convolutional layers where
the convolutions are performed in the spectral domain.

4.2 Method

The architecture of our spherical U-net model is illustrated in Figure 4.1.
As input the model takes multi-shell dMRI data of one voxel or a small 3D neigh-
borhood that in total results in Nsh × N3

nb channels, where Nsh is the number of
shells and Nnb is the neighborhood size. Taking into account a small neighborhood
rather than a single voxel as input allows incorporation of the spatial information,
in addition to the angular information extracted from the q-space. Although in the
models proposed in [Ronneberger et al. 2015, Zhang et al. 2018, Zhao et al. 2019]
output is of the same resolution as input, for multi-shell dMRI data it is reasonable
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Figure 4.1: Illustration of a spherical U-net architecture with corresponding convo-
lutional operations in contracting and expanding parts.

to assume that fODFs of higher resolution can be estimated. This is explained by
the fact that multi-shell dMRI signals are sampled over noncollinear points between
shells, distributed over continuous q-space.
As the standard U-net, our model is composed of contracting and expanding parts.
The main operations are convolutions, pooling and transposed convolutions. Due to
assumed axial symmetry of the signals emerging from individual axon bundles and
antipodal symmetry of dMRI signals, convolutional kernels in our model are zonal
and antipodally symmetric. Each convolutional layer of the contracting part takes as
input the SH coefficients of multi-channel signal and performs convolution with zonal
kernels also represented in the SH basis. Resulting SH coefficients are transformed
to S2 space onto a q-space sampling grid [Caruyer et al. 2013] where ReLU non-
linearity is applied. The S2 signals obtained after ReLU are forwarded to the paral-
lel layer of the expanding part, while their low-passed SH coefficients are passed to
the convolutional layer below. Low-pass filtering corresponds to simple discarding of
the SH coefficients of the highest degree as in [Cohen et al. 2018, Esteves et al. 2018]
which corresponds to the operation of pooling. Each transposed convolutional layer,
of expanding part, takes as input S2 domain signals from the layer below and inserts
zero samples among existing samples. Following this, the signals are transformed to
the spectral domain and convolution with zonal kernels is performed. The obtained
SH coefficients are transformed to the S2 domain where the ReLU non-linearity
is applied. The resulting signals in the S2 domain are concatenated with parallel
signals of the contracting part and they serve as input to the next transposed con-
volutional layer. The last layer in the expanding part, only performs convolution
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with one convolutional kernel and as output gives the fODF SH coefficients.

4.2.1 Estimation of SH coefficients

To estimate the SH coefficients of the input and intermediate S2 signals, the SH
basis Y are inverted using Gram-Schmidt orthonormalization process. The inverted
basis are denoted with Y †

gs. If yi and ygsi correspond to ith columns of Y and Y †
gs
T ,

respectively, ygsi are determined as

ygsi = yi −
i−1∑
j=0

⟨yi, ygsj ⟩
⟨ygsj , y

gs
j ⟩

ygsj , ygsi =
ygsi

||ygsi ||2
(4.1)

where ygs0 = y0. The SH basis elements in the matrix Y are ordered so that column 0

corresponds to the basis element of degree l = 0 and order m = 0, following columns
are the basis elements of degree l = 2 and orders m = {−2,−1, 0, 1, 2}, etc. Since
aliasing affects more the SH coefficients of a higher degree l, it is convenient to start
the orthonormalization process with a basis of a lower degree, as we know that they
are determined by a lower number of sampling points. On the other hand, in order
to avoid a bias due to basis element ordering, the Gram-Schmidt process is repeated
Nit times, each time randomly shuffling the order of the basis elements of the same
degree, which are at the end averaged. Finally, for an input signal s : S2 → R, SH
coefficients ŝ are estimated as

ŝ ≈ Y †
gss. (4.2)

In Figure 4.2 and 4.3 orthogonality properties of bases inverted with different ap-
proaches, presented in Chapter 3, are depicted for 30 uniformly randomly dis-
tributed points and the antipodally symmetric basis of bandwidth 6. The approaches
we have compared are the Moore-Penrose pseudo inverse (mp), least square with
Tikhonov regularization (tikh) with the regularization constants λ ∈ {1, 0.1}, least
square with Laplace-Beltrami regularization (lb) with the regularization constants
λ ∈ {0.001, 0.0001}, and the approach with the Gram-Schmidt orthonormalization
(gs) for different number of repetitions Nit ∈ {1000, 1}. Orthogonality with respect
to the basis Y , illustrated in Figure 4.2 indicates how accurately the SH coefficients
can be estimated if there is no noise. In this scenario, we can see that More-Penrose
yields the exact solution, least square with Tikhonov regularization penalizes equally
SH basis elements of all degrees, while least square with Laplace-Beltrami penalizes
more the SH coefficients of the highest degree, as well as the approach with Gram-
Schmidt orthonormalization process. Orthogonality of the inverted SH basis with
itself, as illustrated in Figure 4.3 indicates their robustness to noise and aliasing.
The illustrations show that the Moore-Penrose and the least square with Tikhonov
regularization (for λ = 0.1) are very sensitive to the noise. Least square with the
Laplace Beltrami regularization and the Gram-Schmidt orthonormalization process
averaged over 1000 iterations perform stronger regularization of the SH coefficients
of the highest degree and therefore are more robust with respect to the noise and
aliasing.
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Figure 4.2: Orthogonality between the SH basis Y and inverted SH basis for 30
randomly uniformly distributed points (28 SH basis elements in total).

Figure 4.3: Orthogonality of the inverted SH basis for 30 randomly uniformly dis-
tributed points (28 SH basis elements in total).

4.2.2 Convolutional layers

Input SH coefficients to a convolutional layer are denoted as {{ŝil}Ll=0}Ii=1, where
l is the SH degree, i refers to channel (shell), L is the bandwidth and I is
the total number of input channels. A convolutional zonal kernel is denoted as
{{{ŵi,jl }Ll=0}Ii=1}Jj=1, where i, j indicate the input and output channels, respectively
and I, J their total number. The convolution between the input {{ŝil}Ll=0}Ii=1 and
the trainable zonal kernel {{{ŵi,jl }Ll=0}Ii=1}Jj=1, is defined as

ĝjl =
I∑
i=1

ŝilŵ
i,j
l for l ∈ {0, 2, ..., L} and j ∈ {1, 2, ..., J}. (4.3)

By transforming a zonal kernel into a diagonal matrix, convolution in the spectral
domain can be illustrated as in Figure 4.4.

4.2.3 ReLU non-linearity

After a convolutional layer, the obtained SH coefficients {ĝ}Jj=1 are transformed to
S2 domain as gj = Y ĝj . The ReLU non-linearity is performed as

aj = ReLU(gj + bj) (4.4)

where bj is a bias term associated with the channel j. We note that the thresh-
olding of the signal with ReLU might introduce sharp signal transitions between
neighboring points, which cannot be represented with given bandwidth. Thus, the
ReLU non-linearity can cause the aliasing. When the SH coefficients {ĝj}Jj=1 are
transformed to S2 domain, in order to minimize the effect of the aliasing it is bet-
ter to project the coefficients to {gj}Jj=1 sampled at a higher number of sampling
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Figure 4.4: Illustration of convolution between S2 signal and a zonal kernel in
spectral domain.

points. (This is simply a consequence of the fact that the SH coefficient estimation
is more accurate for a higher number of sampling points.) The minimal number of
the sampling points we have used is (L+1)(L+2)

2 as it corresponds to the number of
the SH basis elements for the bandwidth L.

4.2.4 Pooling

After the non-linearity is applied, pooling is performed in the spectral domain.
Obtained {aj}Jj=1 signals are transformed to spectral domain as âj = [Y †

gs](L−2)a
j ,

where [Y †
gs](L−2) contains the inverted SH basis of the highest degree (L− 2). This

can be seen as low pass filtering. In planar CNNs, one way to perform pooling is
by averaging values of a small neighborhood as illustrated in Figure 4.5. Similarly,
performed in the spectral domain, pooling corresponds to discarding of the SH
coefficients of the highest degree as illustrated in Figure 4.6.

Figure 4.5: Illustration of average pooling in planar CNNs

4.2.5 Transposed convolutional layers

Given input S2 signals {si}Ii=1 to a transposed convolutional layer, firstly, by in-
sertion of zero samples we obtain the {qi}Ii=1 signals. If the signals {si}Ii=1 have
bandwidth L, the number of inserted zeros increases the number of sampling points
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Figure 4.6: Illustration of spectral domain pooling in spherical CNNs

which corresponds to the bandwidth (L + 2) (e.g. from (L+1)(L+2)
2 to (L+3)(L+4)

2 ).
This is followed by the estimation of the SH coefficients q̂i = [Y †

gs](L+2)q
i and

convolution with kernels {{{ŵ′i,j
l }Ll=0}Ii=1}Jj=1, as defined in equation 4.3. For a

comparison, illustrations of a transposed convolution in a planar CNN and in our
model are given respectively in Figures 4.7 and 4.8. The obtained SH coefficients
are transformed to the S2 domain, where bias terms are added and ReLU non-
linearities are applied. The resulting signals are concatenated with the signals of
the same bandwidth, from the parallel layer in the contracting part of the U-net
and serve as input to the following transposed convolution layer.

Figure 4.7: Illustration of transposed convolution in planar CNNs.

Figure 4.8: Illustration of transposed convolution in our spherical U-net.
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4.2.6 Loss function

The loss function is defined as mean squre error (MSE) between the SH coefficients
of gold-standard fODFs and the estimated fODFs as

L =
1

N

N∑
n=1

( ˆfODFn − ˆfODF
e

n)
2 (4.5)

where ˆfODFn and ˆfODF
e

n are the gold standard and estimated SH coefficients of
the fODF of the nth sample, respectively. N is the number of samples in a batch.

4.3 Datasets

We have used in our experiments real data from the HCP [Van Essen et al. 2013]
(referred to as Real dataset) and synthetic data generated from the same real
HCP scans following the procedure described in [Wilkins et al. 2015]. The Real
data was acquired on Siemens 3T Skyra system with 100 mT /m gradient, over
three shells with b-values of 1000, 2000 and 3000 s/mm2, each with 90 gradi-
ent directions and 18 b = 0 images at resolution 1.25 × 1.25 × 1.25 mm3. To
generate the synthetic data, firstly, up to three fiber orientations and correspond-
ing volume fractions were estimated per voxel using the bedpostx tool from the
FSL library [Smith et al. 2004]. These parameters were then used to generate syn-
thetic data using the multi-fiber ball and stick model [Behrens et al. 2007] as in
[Wilkins et al. 2015] for each shell independently. In the generation process, the free
diffusivity coefficients are set to {0.68, 0.96, 2.25} ·10−3s/mm2 for the white matter,
gray matter and cerebrospinal fluid, respectively while the single-fiber tensor’s eigen-
values are set to {λ1, λ2, λ3} = {1.7, 0.17, 0.17} · 10−3s/mm2 [Wilkins et al. 2015].
To simulate more realistic dMRI data, a Rician noise with a signal to noise ra-
tio (SNR) of 18db was added to the synthesized data. In addition, in order to inves-
tigate the robustness of the compared methods, one synthetic dataset is generated
with the constant diffusion single-fiber tensor eigenvalues (Synthetic dataset 1 ) as in
[Wilkins et al. 2015] and another one with the eigenvalues taken from the uniform
distribution around these values (values taken from the range of ±10%) (Synthetic
dataset 2 ). Experiments were conducted on Real dataset, Synthetic dataset 1 and
Synthetic dataset 2 with downsampled acquisition schemes. To select relevant white
matter voxels, we have used brain tissue segmentation computed from T1w images
using the FAST algorithm [Zhang et al. 2001] implemented in the mrtrix library
[Tournier et al. 2019]. In the experiments, where comparing models take into ac-
count neighborhood information, white matter masks are extended using the 3D

binary dilation operator. Gold standard fODFs, of SH degree 8, were estimated us-
ing the multi-shell multi-tissue constrained spherical deconvolution (MSMT-CSD)
approach [Jeurissen et al. 2014] on signals acquired on full sampling scheme using
the mrtrix library [Tournier et al. 2019]. In the case of synthetic data, the fODFs
were estimated on the noiseless data. We have used 50 subjects in total, 30 for
training, 10 for validation and 10 for testing.



4.4. Experiments and implementation details 65

Table 4.1: Sizes of the trainable parameters of the 3DCNNs and S2U -nets (MB)
for Np sampling points.

Model / Np 20 30 40 60 90 120
3DCNN 18.12 18.12 18.12 18.96 20.18 20.18
S2U-net1×1×1 15.65 15.65 15.65 19.30 20.52 20.52
S2U-net3×3×3

s 3.99 3.99 3.99 4.89 5.17 5.17
S2U-net3×3×3 15.80 15.80 15.80 19.42 20.60 20.60

4.4 Experiments and implementation details

To evaluate our method on data similar to those used in clinical practice, experi-
ments have been performed on data with significantly reduced number of sampling
points Np (20, 30, 40, 60, 90 and 120 in total for the three shells). We compared
our approach with another deep learning model - 3DCNN [Lin et al. 2019] and with
MSMT-CSD [Jeurissen et al. 2014]. To investigate importance of the neighbour-
hood information, our model is trained with single voxel multi-shell signals (termed
as S2U -net1×1×1) and with multi-shell signals from a neighbourhood of size Nnb = 3

(termed as S2U -net3×3×3), which is also the case with the 3DCNN model. In ad-
dition, to investigate the potential of our model, we have trained one model with a
significantly lower number of trainable parameters - termed as S2U -net3×3×3

s . Sizes
of the trainable parameters of the deep learning networks are given in Table 4.1.
All DL approaches are implemented with the tensorflow library [Abadi et al. 2015].
Models are trained over 100 epochs. In each epoch, 3 dMRI scans are randomly
selected from the 30 training samples. For all three models, the loss function is
defined as MSE between the estimated and gold standard fODFs represented in the
spectral domain as given in Eq. 4.5. The initial learning rate is 0.001 and after
50 epochs it is reduced to 0.0001. Model weights updates are computed using the
Adam optimization algorithm [Kingma & Ba 2014].

4.5 Results

The results are compared quantitatively in terms of the MSE over all white matter
voxels and the mean angular error (MAE) for single fiber voxels and voxels con-
taining two crossing fibers. To compute peaks of the estimated and gold standard
fODFs, we have used the mrtrix library [Tournier et al. 2019] and the threshold
of 0.1 of the highest peak is used to eliminate spurious fibers. Thus, the MAE
does not take into account the voxels where the number of peaks differs from the
number of peaks in the gold standard. In Figure 4.9, we can see that our model
S2U -net3×3×3 achieves a lower MSE compared to the other models on both real
and synthetic datasets. This difference is especially significant when compared to
the models that do not use neighbourhood information. This performance drop of
single voxel based models is expected when the number of sampling points over
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Figure 4.9: Comparison of the MSE averaged over 10 testing subjects for the real
HCP dataset, Synthetic dataset 1 and Synthetic dataset 2 for different numbers of
sampling points.

three shells (like 20, 30, 40) is lower than the number of SH coefficients of fODFs
(which is 45 for bandwidth 8). We can also notice that almost equal performance
to S2U -net3×3×3 can be achieved with the more compact model S2U -net3×3×3

s . In
Figure 4.10, we can see that for the single fiber voxels and the real dataset, the
MAE of the models S2U -net3×3×3 and S2U -net3×3×3

s is almost equal to the one
achieved with MSMT-CSD. However, these results are a consequence of the fact
that MSMT-CSD often produces large spurious peaks when the number of sampling
points is reduced, as illustrated in Figures 4.11 and 4.12, which means that they will
not be taken into account if the gold standard contains a different number of peaks.
The results obtained on synthetic data indicate that our approach is more robust
to noise, as the gold standard is estimated on noiseless data. As depicted in Fig-
ure 4.10, S2U -net3×3×3 and S2U -net3×3×3

s achieve a lower MAE in the voxels with
crossing fibers. Qualitative comparison of MSMT-CSD, 3DCNN and S2U -net3×3×3

is provided in Figure 4.11 and 4.12 for 60 sampling points. Figure 4.11 compares the
fODFs of the gold standard and compare the methods with Real Dataset, Synthetic
Dataset 1 and Synthetic Dataset 2. A similar comparison is depicted in Figure
4.12, where the estimated fODFs are overlaid over the gold standard peaks. We can
notice that MSMT-CSD compared to 3DCNN and S2U -net3×3×3 is more prone to
produce spurious fibers, while these DL approaches are more likely to omit some.
The 3DCNN model tends to estimate more smoothed fODFs and/or lobes with
lower amplitude compared to our approach.
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Figure 4.10: Comparison of the MAE averaged over 10 testing subjects for real
HCP dataset, Synthetic dataset 1 and Synthetic dataset 2 for different numbers
of sampling points for voxels containing single fibers (upper three sub-figures) and
voxels containing two crossing fibers (lower three sub-figures)
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Figure 4.11: Illustration of the fODF gold standard and estimates obtained using
MSMT-CSD, 3DCNN and S2U -net3×3×3 with angular resolution decreased to 60
points in total for the three shells. Sub-figures a), e) and i) correspond to the gold
standard fODFs for real HCP dataset, Synthetic dataset 1 and Synthetic dataset 2,
respectively. Sub-figures b), f) and j) correspond to the fODF estimates obtained
using MSMT-CSD; sub-figures c), g) and k) using 3DCNN and sub-figures d), h)
and l) correspond to the fODF estimation with S2U -net3×3×3
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(a) (b) (c)

Figure 4.12: Comparison of the fODFs estimated with MSMT-CSD (a), 3DCNN
(b) and our S2U -net3×3×3 (c), overlaid over gold standard fiber peaks

4.6 Conclusion

In this chapter, we have described a spherical U-net model adjusted to the properties
of dMRI data, namely the real and spherical nature of the signals, their antipodal
symmetry, the random distribution of the sampling points and the axial symmetry
of signals coming from individual fibers. We have demonstrated that the proposed
spherical U-net is suitable for a high resolution inference such as the estimation of
the fODFs from dMRI data acquired on schemes which contain a lower number of
sampling points, which is required in clinical practice. It is also shown that the
model is capable of successfully incorporating neighboring information to boost the
model’s performance, yielding significant improvements for low numbers of sampling
points (≤ 40) when compared to the single voxel based models. The results are com-
pared on the real and synthetic datasets. The results obtained on synthetic data
indicate a better robustness of our model with respect to the noise.
This work was used in the Diffusion Simulated Connectivity (DiSCo) Challenge
associated with the CDMRI MICCAI workshop 2021 where our team was ranked
as fifth. In the DiSCo challenge the model was trained on single voxel data gen-
erated by the dmipy library [Fick et al. 2019], showing that our model has a high
generalization power. In addition, correlation between ground truth and validation
connectivity matrices obtained with MSMT-CSD fODFs was in the range 87− 90%

and with the fODFs obtained with spherical U-net in the range 94− 97%.
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Executive summary

In this chapter, we have investigated rotation equivariant CNNs with quadratic non-
linearities realized in the spectral domain for local analysis of dMRI data. The spec-
tral domain non-linearities are introduced to avoid often computationally expensive
conversions from the spectral to the signal domain in order to apply non-linearities
such as ReLU and to avoid the aliasing that such non-linearities generate. First,
in Section 1.2, we introduce the mathematical grounds necessary for understanding
and defining the Fourier domain CNNs, which are presented in the following Sec-
tion 1.3. The models are evaluated in Section 1.4 on the problem of axon bundle
counting on synthetic data, and on the real HCP dMRI data on the problems of
micro-structure parameter estimation and brain tissue segmentation.
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5.1 Introduction

Although the data acquired on spheres have been present over the last several
decades in different scientific areas such as astronomy, meteorology, satellite imag-
ing, point cloud applications, medical imaging, etc, it was only recently that
neural network models, properly taking into account their spherical nature have
been introduced for their analysis. Some of the most relevant rotation equiv-
ariant CNN models for arbitrary spherical signals are presented in Chapter 3
[Cohen et al. 2018, Esteves et al. 2018, Kondor et al. 2018]. From the point of view
of dMRI data acquired with q-space sampling schemes, the first drawback of these
models is that they take as input signals sampled on grids which have associ-
ated quadrature formulae for the exact computation of the SH coefficients such
as Driscoll-Healy and Gauss-Legendre grids. Furthermore, as already mentioned,
models proposed by [Cohen et al. 2018, Esteves et al. 2018] use signal domain non-
linearities. A drawback of the spectral domain non-linearity of quadratic nature,
introduced in [Kondor et al. 2018], is its quadratic increase of the output channels,
consequently requiring a higher number of trainable parameters compared to the
other models [Cohen et al. 2018, Esteves et al. 2018]. The first rotation equivariant
CNN adapted to the properties of dMRI data, with signal domain non-linearities,
has been introduced in [Banerjee et al. 2019], as a part of the model used in Parkin-
son’s disease classification (detailed description in Chapter 3).
In this chapter, we present the following contributions and findings:

• As in the work introduced in [Sedlar et al. 2020], to estimate the SH coeffi-
cients of the input dMRI data, we have used the Gram-Schmidt orthonor-
malization process. Furthermore, for the multi-shell dMRI data, we have
introduced denoising layers which exploit the facts that q-space is continuous
and that the sampling points are noncollinear within and between shells. The
signal from one shell can thus be improved by incorporating information of
each point’s direct and antipodal neighbourhood and the information from
other shells.

• Secondly, we have introduced channel-wise spectral-domain non-linearities.
We have investigated two types of models, one which uses zonal convolu-
tional kernels resulting in S2 feature maps and a second model which uses
S2 and SO(3) convolutional kernels which result in SO(3) feature maps.
Consequently, we have introduced channel-wise S2 and SO(3) quadratic non-
linearities, respectively.

• Finally, as the purpose of the sequence of the rotationally equivariant
convolutional layers is to extract rotationally invariant features, contrary
to the models [Cohen et al. 2018, Esteves et al. 2018, Kondor et al. 2018,
Banerjee et al. 2019] which use average value of each of the output channels
of the last layer (which corresponds to the spectral harmonic of degree 0),
we have introduced degree-wise power spectrum features, which are also ro-



5.2. Theory 73

tationally invariant. They are extracted from the model’s input and from the
channels after each non-linearity.

• In Appendix A, we also provide derivations related to the real SH basis,
Wigner-D matrices, convolutions of S2 and SO(3) signals, and Clebsch-Gordan
transformations required to realize quadratic functions of the real S2 and
SO(3) functions. To the best of our knowledge, some of these derivations
are not available in the literature, so they can be useful for the researchers in
related fields.

5.2 Theory

In this section, we describe the mathematical tools necessary to define Fourier do-
main rotationally equivariant CNN models with zonal, and with S2 and SO(3) ker-
nels. Concretely, we provide definitions of convolutions and quadratic non-linearities
realized in spectral domain, and rotationally invariant degree-wise power spectrum
computed using generalization of the Parseval’s theorem.

5.2.1 Convolution (correlation) between S2 and zonal functions

Although previously introduced, for readability of the section, we briefly repeat
definition of correlation between S2 and zonal functions. Zonal functions are a
special case of S2 ones as they change only along the z axis, thus a correlation
between an S2 and a zonal function is a special case of spherical correlation since
the resulting function remains in the S2 space. Given an L2 function s : S2 → R
and an L2 zonal function k : S2 → R, where k(θ, ϕ) = k(θ) for θ ∈ [0, π), correlation
between them is given by

[s ∗ k](r) =
∫
S2

s(r′)k(R−1(θ, ϕ, 0)r′)dr′ =

B∑
l=0

√
4π

2l + 1
k̂l

l∑
m=−l

Ylm(r)ŝlm (5.1)

where r = [sin θ cosϕ, sin θ sinϕ, cos θ]T and R(θ, ϕ, 0) ∈ SO(3) is a rotation matrix.
ŝlm is the SH coefficient of degree l and orderm of s. k̂l is the ZH coefficient of degree
l of k. Ylm is the SH real basis element of degree l and order m. If g(r) = [s ∗ k](r),
from Eq. 5.1, the SH coefficients of g are defined as:

ĝlm =

√
4π

2l + 1
k̂lŝlm , ĝl =

√
4π

2l + 1
k̂lŝl , (5.2)

where ŝl, ĝl ∈ R2l+1 are vectors which contain the SH coefficients of degree l of the
functions s and g. Derivations of equations 5.1 and 5.2 are provided in Appendix A.
An illustration of the convolution between an S2 and a zonal function is provided
in Figure 5.1.
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S2 function s Zonal function k S2 function [s ∗ k]

Figure 5.1: Illustration of an S2 signal s(r) (a), of a zonal kernel k(r) (b) and the
S2 signal [s ∗ k](r) (c). All the signals are of bandwidth 16.

5.2.2 S2 quadratic function

Given an L2 signal g : S2 → R of bandwidth Bg, [g × g](r) is defined as

[g × g](r) =

2Bg∑
l=0

l∑
m=−l

ĥlmYlm(r) (5.3)

where

ĥlm =

Bg∑
l′=0

Bg∑
l′′=0

l′∑
m′=−l′

l′′∑
m′′=−l′′

ĝl′m′ ĝl′′m′′

√
(2l′ + 1)(2l′′ + 1)

4π(2l + 1)
C l,ml′,m′,l′′,m′′C

l,0
l′,0,l′′,0

(5.4)
and C l,ql′,q′,l′′,q′′ ∈ R is the Clebsch-Gordan coefficient associated to the real SH basis
elements. This can be written in matrix vector notation as

ĥl =
∑
l′,l′′

√
(2l′ + 1)(2l′′ + 1)

4π(2l + 1)
C l,0l′,0,l′′,0C

l
l′,l′′

T [
ĝl′ ⊗ ĝl′′

]
s.t. |l′ − l′′| ≤ l ≤ l′ + l′′

(5.5)
where C ll′,l′′ ∈ R(2l′+1)(2l′′+1)×(2l+1) is the sparse Clebsch-Gordan matrix whose
entries are given with C l,ml′,m′,l′′,m′′ . ĝl, ĥl ∈ R2l+1 contain the real SH coefficients
of degree l of the functions g and h = g × g. ⊗ denotes the Kronecker product of
vectors. If the signal g is bandlimited to Bg, h has bandwidth 2Bg. The definition
of the Clebsch-Gordan coefficients associated to the real SH basis elements and
the derivation of equations 5.3 and 5.4 are given in Appendix A. In addition
to the optimization obtained by operating only on the real SH coefficients, an
additional reduction of computational complexity is achieved by noting that
C ll′,l′′

T [
ĝl′ ⊗ ĝl′′

]
= C ll′′,l′

T [
ĝl′′ ⊗ ĝl′

]
. In the case of an S2 non-linearity, for

l′ = l′′ = l, computational complexity of C ll,l
T
[
ĝl ⊗ ĝl

]
is O((2l + 1)3).
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5.2.3 Convolution (correlation) between SO(3) functions

An S2 function is a special case of an SO(3) function. Given two L2 functions
s, k : S2 → R, their correlation is defined as:

[s ∗ k](R) =
∫
S2

s(r)k(R−1r)dr =
B∑
l=0

l∑
m=−l

l∑
n=−l

Dlmn(R)ŝlmk̂ln (5.6)

where R = R(θ, ϕ, ψ) ∈ SO(3) is a rotation matrix. ŝlq and k̂lq are the real SH
coefficients of degree l and order q of the functions s and k. Dlmn : SO(3) → R
is an element of the real Wigner-D matrix of degree l and orders m and n. If
g(R) = [s∗k](R), from Eq. 5.6, its Wigner-D, or here referred to as RH, coefficients
are defined as

Ĝlmn = ŝlmk̂ln , Ĝl = ŝlk̂
T
l , (5.7)

where ŝl, k̂l ∈ R2l+1 are the vectors which contain the real SH coefficients of degree
l of the functions s and k. Ĝl ∈ R(2l+1)×(2l+1) is a the matrix containing the real
RH coefficient of degree l of the SO(3) function g.
Given two L2 functions s, k : SO(3) → R, their is defined as:

[s ∗ k](R) =
∫

SO(3)

s(Q)k(R−1Q)dQ =
B∑
l=0

l∑
m=−l

l∑
n=−l

Dlmn(R)
l∑

k=−l
ŜlmkK̂lnk (5.8)

where R,Q ∈ SO(3). Ŝlpq and K̂lpq are the real RH coefficients of degree l and
orders p and q of the functions s and k. Dlpq : SO(3) → R is an element of the real
Wigner-D matrix of degree l and orders p and q. If g(R) = [s ∗ k](R), from Eq. 5.8,
its RH coefficients are defined as:

Ĝlmn =
l∑

k=−l
ŜlmkK̂lnk , Ĝl = ŜlK̂

T
l , (5.9)

where Ŝl, K̂l ∈ R(2l+1)×(2l+1) are the matrices which contain the real RH coefficients
of degree l of the functions s and k. Ĝl ∈ R(2l+1)×(2l+1) is a matrix containing the
real RH coefficient of degree l of the function g. Derivations of equations 5.6, 5.7,
5.8 and 5.9 are provided in Appendix A.

5.2.4 SO(3) quadratic function

Given an L2 signal g : SO(3) → R of bandwidth Bg, [g × g](R) is defined as:

[g × g](R) =

2Bg∑
l=0

l∑
m=−l

l∑
n=−l

ĤlmnDlmn(R) (5.10)
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where

Ĥlmn =

Bf∑
l′=0

Bg∑
l′′=0

l′∑
m′=−l′

l′∑
n′=−l′

l′′∑
m′′=−l′′

l′′∑
n′′=−l′′

Ĝl′m′n′Ĝl′′m′′n′′C l,ml′,m′,l′′,m′′C
l,n
l′,n′,l′′,n′′

(5.11)
and C l,ql′,q′,l′′,q′′ ∈ R is the Clebsch-Gordan coefficient associated to the real RH basis
elements. Similarly as in Eq. 5.5, this can be written in matrix notation as:

Ĥl =
∑
l′,l′′

C ll′,l′′
T [
Ĝl′ ⊗ Ĝl′′

]
C ll′,l′′ s.t. |l′ − l′′| ≤ l ≤ l′ + l′′ (5.12)

where C ll′,l′′ ∈ R(2l′+1)(2l′′+1)×(2l+1) is the Clebsch-Gordan matrix as used in Eq.
5.5. Ĝl, Ĥl ∈ R(2l+1)×(2l+1) contain the real RH coefficients of degrees l of the
signals g and h = [g × g]. ⊗ denotes the Kronecker product of matrices. If the
signal g is bandlimited to Bg, h has bandwidth 2Bg. The derivation of equations
5.11 and 5.12 is given in Appendix A. In addition to the optimization obtained due
to the operations on the real RH coefficients, symmetry C ll′,l′′

T [
Ĝl′ ⊗ Ĝl′′

]
C ll′,l′′ =

C ll′′,l′
T [
Ĝl′′ ⊗ Ĝl′

]
C ll′′,l′ , an additional reduction of the computational complexity is

obtained as follows. First, we remark that Eq. 5.12 can be written as

Ĥl =
∑
l′,l′′

C ll′,l′′
T
(
Ĝl′ ⊗ I2l′′+1

)(
I2l′+1 ⊗ Ĝl′′

)
C ll′,l′′ =

∑
l′,l′′

V̂ l
l′,l′′

[
Û ll′,l′′

]T
s.t. |l′ − l′′| ≤ l ≤ l′ + l′′

(5.13)

where the computation of

V̂ l
l′,l′′ = C ll′,l′′

T
(
Ĝl′ ⊗ I2l′′+1

)
is optimized by V̂ l

l′,l′′ [q, :] = vec
(
C̃ ll′,l′′ [q, :, :]

T Ĝl′
)

(5.14)
and

Û ll′,l′′ =
(
I2l′+1 ⊗ Ĝl′′

)
C ll′,l′′ is optimized by Û ll′,l′′ [q, :] = vec

(
Ĝl′′C̃

l
l′,l′′ [q, :, :]

)
(5.15)

where q ∈ {−l, ...0, ...l}. I2l+1 is the identity matrix of size (2l + 1) × (2l + 1).
C̃ ll′,l′′ ∈ R(2l+1)×(2l′′+1)×(2l′+1) is 3D tensor obtained by reshaping the Clebsch-
Gordan matrix C ll′,l′′ . If we assume naive matrix and tensor product, for

l′ = l′′ = l, replacing C ll,l
T [
Ĝl ⊗ Ĝl

]
C ll,l by the optimized V̂ l

l,l

[
Û ll,l

]T expression
as given in equations 5.14 and 5.15, reduces the computational complexity from
O((2l + 1)5 + 2(2l + 1)4) to O(3(2l + 1)4).

5.2.5 Power spectrum of S2 and SO(3) functions

From the generalization of Parseval’s theorem to S2 and SO(3) functions, given L2

functions g(r) : S2 → R and g(R) : SO(3) → R, the angular and rotation power
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spectra corresponding to the spectral degree l are defined as

pl =
l∑

m=−l
ĝ2lm , Pl =

8π2

2l + 1

l∑
m=−l

l∑
n=−l

Ĝ2
lmn (5.16)

where pl, Pl ∈ R. ĝlm is the real SH coefficient of degree l and order m of the signal
g(r) and Ĝlmn is the real RH coefficient of degree l and orders m and n of the signal
g(R).

5.3 Methods

We have investigated two types of Fourier domain rotation equivariant CNNs. One
with zonal kernels and S2 quadratic non-linearities, termed as Fourier_S2_zonal
and another one with S2 and SO(3) kernels and SO(3) quadratic non-linearities,
termed as Fourier_S2_SO(3). Although both types of convolutional layers are
rotation equivariant, here we stress the essential differences between them. First,
the number of their spectral components of a zonal, an S2 and an SO(3) kernels of
bandwidth L, is L + 1, (L + 1)2 and (L + 1)(4(L + 1)2 − 1)/3, respectively. This
means that the S2 and SO(3) kernels have a higher discrimination power. Thus,
to make a distinction between two patterns on sphere, one would need to use more
zonal kernels than S2 or SO(3). On the other hand, convolution with zonal kernels
is less computationally expensive. In addition, for an S2 signal input, convolution
with a zonal kernel results in S2 signal, whose quadratic function is much less
computationally expensive than the quadratic function of the SO(3) signals.
Architecture of the two models are illustrated in Figures 5.2 and 5.3. As input they
take raw multi-shell dMRI signals. Since q-space is continuous, signals acquired
over different shells are correlated. In addition, since they are sampled at points
which are noncollinear within and between shells, they contain a certain amount
of supplementary information. To make a use of this and taking into account that
dMRI signals are positive, we have incorporated into the models a denoising layer
composed of a cascade of non-linear layers defined as

s(n) = ReLU((I + λWn)s
(n−1)) (5.17)

where s(0) = [ssh=1
0 ...ssh=1

N1
, ..., ssh=K0 ...ssh=KNK

]T is a vector that contains concate-
nated raw dMRI signals of K shells, where Nk is the number of points for shell
k. Vectors {s(n)} contain denoised dMRI signals after application of n densoising
steps. I is the identity matrix, {Wn} are trainable weights and λ is parameter
which ensures that matrices {(I + λWn)} remain close to identity matrix and in
this way preserve the spherical nature of the input signal. After the denoising
layer, the signals are transformed to the Fourier domain using the real SH ba-
sis, of even degrees, inverted with Gram-Schmidt orthonormalization process as in
[Sedlar et al. 2020, Sedlar et al. 2021] and as described in Chapter 4. In the context
of standard CNN, a shell corresponds to a channel. We denote input SH coefficients
of degree l and of channel k as âl0,k, where l ∈ {0, 2, ..., L}, with L being the input’s
bandwidth.



78 Chapter 5. Fourier domain spherical CNN for dMRI local analysis

5.3.1 Fourier domain CNN with quadratic S2 non-linearities

In the model with zonal kernels Fourier_S2_zonal, convolutions in the nth con-
volutional layer are defined as

ẑn,il =
∑
j

ân−1,j
l ŵn,j,il for l ̸= 0, ẑn,i0 =

∑
j

ân−1,j
0 ŵn,j,i0 + b̂n,i0 for l = 0

(5.18)
where ŵn,j,il is a ZH coefficient of the convolutional kernel in nth layer, corresponding
to the input channel j and output channel i, while b̂n,i0 is corresponding bias term.
ân−1,j
l and ẑn,il are the vectors containing input and output SH coefficients of degree
l for the channels j and i, respectively.
The output or the activation of the nth S2 nonlinear layer is obtained using Eq. 5.5
as

ân,il =
∑
l′,l′′

√
(2l′ + 1)(2l′′ + 1)

4π(2l + 1)
C l,0l′,0,l′′,0C

l
l′,l′′

T [
ẑn,il′ ⊗ ẑn,il′′

]
s.t. |l′ − l′′| ≤ l ≤ l′ + l′′

(5.19)
where C ll′,l′′ ∈ R(2l′+1)(2l′′+1)×(2l+1) is the sparse Clebsch-Gordan matrix. ẑn,il , ân,il
are the input and output SH coefficients of degree l of the ith channel. This type of
non-linearity is similar to the one proposed in [Kondor et al. 2018], with a difference
that its is channel wise, and thus it does not lead to quadratic increase of the output
channels.
As in [Cohen et al. 2018, Esteves et al. 2018, Kondor et al. 2018], pooling is
achieved by discarding high frequency spectral components. Simply, the ân,il is
computed only for l < Ln, where Ln is the output bandwidth of the layer n.
Rotationally invariant power spectrum features are extracted from the input SH
coefficients and after each non-linearity. The feature vector is defined as

f = [r0,10 , ..., r0,K0 , ..., r0,1L , ..., r0,KL , ..., rn,10 , ..., rn,K
n

0 , ..., rn,1Ln , ..., r
0,Kn

Ln , ..., ] (5.20)

where Kn refers to the number of output channels of the layer n. rn,kl is defined
using Eq. 5.16 as

rn,kl =
l∑

m=−l

[
ân,klm

]2
. (5.21)

Concatenated rotationally invariant power spectrum features are fed into a fully
connected network which performs the final inference.

5.3.2 Fourier domain CNN with quadratic SO(3) non-linearities

In the model with S2 and SO(3) kernels, Fourier_S2_SO(3), convolutions are re-
alized as firstly proposed in [Cohen et al. 2018]. Convolution in the 1st convolutional



5.3. Methods 79

Figure 5.2: Architecture of the proposed model with zonal convolutional kernels and
S2 quadratic non-linearities. The model is termed as Fourier_S2_zonal.

layer is defined as:

Ẑ1,i
l =

∑
j

â0,jl
[
ŵ1,j,i
l

]T for l ̸= 0, Ẑ1,i
0 =

∑
j

â0,j0 ŵ1,j,i
0 + b̂1,i0 for l = 0 ,

(5.22)
where ŵ1,j,i

l are the SH coefficients of the S2 convolutional kernel in the 1st layer,
corresponding to the input channel j and output channel i, while b̂1,i0 is corresponding
bias term. Ẑ1,i

l is the matrix containing the output RH coefficients of degree l for
the channel i.
Since the output of the first and all the following non-linear layers is an SO(3)

signal represented in the Fourier domain, convolution in the nth convolutional layer
(n > 1) is defined as:

Ẑn,il =
∑
j

Ân−1,j
l

[
Ŵn,j,i
l

]T for l ̸= 0, Ẑn,i0 =
∑
j

Ân−1,j
0 Ŵn,j,i

0 +B̂n,i
0 for l = 0

(5.23)
where Ŵn,j,i

l are the RH coefficients of the SO(3) convolutional kernel in the nth

layer, corresponding to the input channel j and output channel i, while B̂n,i
0 is

the corresponding bias term. Ân−1,j
l and Ẑn,il are the vectors containing input and

output RH coefficients of degree l for the channels j and i, respectively.
The output of the nth SO(3) nonlinear layer is obtained using Eq. 5.12 as:

Ân,il =
∑
l′,l′′

C ll′,l′′
T [
Ẑn,il′ ⊗ Ẑn,il′′

]
C ll′,l′′ s.t. |l′ − l′′| ≤ l ≤ l′ + l′′ (5.24)
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where C ll′,l′′ ∈ R(2l′+1)(2l′′+1)×(2l+1) is the sparse Clebsch-Gordan matrix. Ẑn,il , Ân,il
are the input and output RH coefficients of degree l of the ith channel.
In this model as well, pooling is achieved by discarding spectral components of
the highest degree, thus Ân,il are computed only for l < Ln, with Ln being the
output bandwidth of the layer n. Rotationally invariant power spectrum features
are extracted from the input SH coefficients and from the RH coefficients after each
non-linearity. The feature vector is defined as

f = [r0,10 , ..., r0,K0 , ..., r0,1L , ..., r0,KL , ..., rn,10 , ..., Rn,K
n

0 , ..., Rn,1Ln , ..., R
0,Kn

Ln , ..., ] (5.25)

where Kn refers to the number of output channels of the layer n. rn,kl is defined as
in Eq. 5.21 and Rn,kl according to Eq. 5.16 as:

Rn,kl =
l∑

m=−l

l∑
n=−l

[
Ân,klmn

]2
, (5.26)

where the scaling factor 8π2

2l+1 is omitted in order to have more balanced magnitudes
of the power spectrum features. As in the model with zonal kernels, concatenated
rotation invariant power spectrum features are fed into a fully connected network
which performs the final inference.

Figure 5.3: Architecture of the proposed model with zonal convolutional kernels and
S2 quadratic non-linearities. The model is termed as Fourier_S2_SO(3).
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5.4 Experiments

Firstly, we have compared our model with zonal kernels with a state-of-the-art spher-
ical CNN model, namely S2CNN proposed by [Cohen et al. 2018]. Due to the dif-
ferences in sampling grids, the models are compared on synthetic dMRI data on the
classification problem of axon bundle count. Furthermore, the models are exten-
sively compared with the dMRI state-of-the-art deep learning approaches, namely
MLP [Golkov et al. 2016], MEDN and MEDN+ [Ye 2017], MescNet [Ye et al. 2019]
and MescNetSepDict [Ye et al. 2020], on the problem of NODDI [Zhang et al. 2012]
and spherical mean technique (SMT) [Kaden et al. 2016] microstructure parameter
estimation from dMRI acquired with significantly reduced sampling scheme. Finally,
we demonstrate that our model can be successfully used to extract rotation invariant
features for brain tissue segmentation, obtaining results comparable to the recently
proposed deep learning approach [Zhang et al. 2021], while requiring significantly
less computational time.

5.4.1 Axon bundle counting experiment

In this experiment, we have compared our Fourier_S2_zonal model with the state-
of-the-art S2CNN [Cohen et al. 2018] model on synthetic data on the problem of
the axon bundle counting. The experiments highlight the importance of the spectral
domain non-linearity used in our model.

Synthetic database

We have generated synthetic dMRI samples distributed over four classes containing
zero, one, two or three axon bundles. Data is generated using single fiber white
matter, gray matter and CSF response functions and corresponding estimated PDFs
of one HCP subject (’100307’). The tissue response functions were estimated using
the mrtrix command dwi2response msmt_5tt and corresponding PDFs with multi-
shell multi-tissue CSD [Jeurissen et al. 2014] with the command dwi2fod msmt_csd
[Tournier et al. 2019]. SH coefficients of response functions for a shell k are noted
as r̂gmk , r̂csfk ∈ R1 and r̂sfwmk ∈ RNsh , for gray matter, CSF and single fiber white
matter, respectively, where Nsh is the number of SH coefficients.
The SH coefficients of synthetic dMRI signals for a shell k are computed as follows:

ŝk = νgm
√
4πp̂gmr̂gmk + νcsf

√
4πp̂csf r̂csfk + νwm

Nb∑
b=1

νbsfwmRb(c⊙ p̂sfwmb ⊙ r̂sfwmk )

(5.27)
where νgm, νcsf , νwm are tissue fractions, νbsfwm are axon bundle fractions and
Nb ∈ {1, 2, 3} is the number of axon bundles. p̂gm, p̂csf ∈ R are the SH coefficients
of PDFs of gray matter and CSF (these tissues are modeled as a sphere, thus they
have only the SH coefficient of l = 0). p̂sfwmb ∈ RNsh is the fODF of of white matter
bundle b oriented along z axis. Rb is rotation matrix for bundle b. Vector c ∈ RNsh is
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a constant vector c = [
√
4π, 0, 0,

√
4π

2·2+1 , ...,
√

4π
2·4+1 , ...] used in the convolution be-

tween response function r̂sfwmk and fODF p̂sfwmb . To simulate white matter samples,
we set νwm = 1 and νgm, νcsf ∼ |N (0, 0.05)|, to simulate gray matter νgm = 1 and
νwm, νcsf ∼ |N (0, 0.05)| and to simulate CSF νcsf = 1 and νwm, νgm ∼ |N (0, 0.05)|.
Axon bundle fractions are drawn from uniform distribution where minimum νbsfwm
is 0.2. Realistic PDFs are drawn from random distributions p̂gmk ∼ N (p̂gmm , p̂gmstd),
p̂csfk ∼ N (p̂csfm , p̂csfstd ), p̂

sfwm
k ∼ N (p̂sfwmm , p̂sfwmstd ). The mean and standard devia-

tion of gray matter and CSF tissue PDFs are computed over corresponding regions
determined with five-tissue-type segmentation with FAST algorithm applied on T1w
images [Zhang et al. 2001]. Single fiber white matter PDFs - fODFs - are selected
from brain regions with high fractional anisotropy (> 0.75), they are aligned with
z-axis and mean and standard deviation are computed for each zonal harmonic. Ro-
tation of the axon bundle is performed in a way that the minimum angle between
bundles is π

6 rad. Bandwidth of generated signals is L = 8, thus Nsh = 45 and they
are composed of three shells with b values 1000, 2000, 3000s/mm2. The total num-
ber of generated samples is 106, where 0.2×106 has been used for training, 0.2×106

for validation and 0.6 × 106 for testing. Once the SH coefficients are converted to
signal domain they are distorted by a non-additive Rician noise of SNR = 20 and
afterwards normalized with mean b = 0 value and clipped to the range [0, 1]. Num-
ber of no diffusion weighted signals (b = 0) is 18.
To investigate how the models behave with dMRI data with different angular reso-
lutions and to verify their rotation invariance, we have created three datasets (db 1 ,
db 2 , db 3 ). Each of the dataset is generated for two types of grids, Driscoll-Healy
grid [Driscoll & Healy 1994] used in the model S2CNN [Cohen et al. 2018] and q-
space sampling used in dMRI imaging [Caruyer et al. 2013]. In db1, SH coefficients
of generated samples (degree 8) are projected on 91 and 90 points for Driscoll-Healy
and q-space sampling grids, respectively. This corresponds to a bandwidth L = 4

for Driscoll-Healy grid. In db2, SH coefficients of generated samples (degree 8) are
projected on 57 points, which corresponds to L = 3 for Driscoll-Healy grid. In db3,
to investigate rotation invariance of the models, training and validation samples
are generated with a restriction on their orientation, while testing samples contain
bundles of arbitrary orientation. Concretely, the first bundle is always aligned with
z axis, if there are two bundles, the second one is always in z− x plane drawn from
uniform distribution [π6 ,

π
2 ]rad, if there are three bundles, the third one is rotated for

θ < π
2 rad and ϕ < πrad, while respecting that the angle with respect to the other

two bundles is grater than π
6 rad. Properties of the datasets in terms of number of

points with corresponding grid types, and bundle orientations are summarized in
Table 5.1. Illustrations of the noiseless fODFs and dMRI for three shells of db 1
and db 2 are illustrated in Figure 5.4 and for db 3 in Figure 5.5.
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Table 5.1: Overview of the synthetic databases. Comparing models include S2CNN

[Cohen et al. 2018]. Grid type DH refers to Driscoll-Healy [Driscoll & Healy 1994]
and Q to multi-shell q-space sampling [Caruyer et al. 2013].

Database db 1 db 2 db 3

Model S2CNN Our S2CNN Our S2CNN Our
Grid type DH Q DH Q DH Q
No. of points 91 90 57 57 57 57
Bundle orientations arbitrary arbitrary restricted

fODFs dMRI, b=1000 s/mm2 dMRI, b=2000 s/mm2 dMRI, b=3000 s/mm2

Figure 5.4: Simulated fODFs and dMRI signals with arbitrary orientations of bun-
dles. Background color corresponds to the number of bundles (black-zero bundles,
dark gray - one bundle, light gray - two bundle, white - three bundles).

fODFs dMRI, b=1000 s/mm2 dMRI, b=2000 s/mm2 dMRI, b=3000 s/mm2

Figure 5.5: Simulated fODFs and dMRI signals with restricted orientations of bun-
dles. Background color corresponds to the number of bundles (black-zero bundles,
dark gray - one bundle, light gray - two bundle, white - three bundles).

Implementation details

Our model is implemented with the tensorflow library [Abadi et al. 2015] and com-
pared to the model S2CNN implemented with the torch [Collobert et al. 2002].
These models have been trained over 200 epochs by minimizing categorical cross-
entropy loss using an Adam optimizer [Kingma & Ba 2014]. Initial learning rate
has been set to 0.001 and batch size to 128. If the difference between valida-
tion categorical cross-entropy averaged over two sequential blocks of five epochs
is smaller than 10−3, learning rate is reduced by factor of 0.95. For 91 sam-
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pling points, S2CNN has three convolutional layers with input and output
bandwidths (4, 4), (4, 2), (2, 0), while for 57 sampling points the bandwidths are
(3, 3), (3, 1), (1, 0). For both sampling schemes, containing 90 and 57 points, we
have evaluated Fourier_S2_zonal with three convolutional layers with two dif-
ferent sets of bandwidths, (8, 4), (4, 2), (2, 0) and (4, 4), (4, 2)(2, 0). The number
of input and output channels in convolutional layers is (3, 8), (8, 16), (16, 32) and
(3, 16), (16, 32), (32, 64), for S2CNN and Fourier_S2_zonal, respectively, since
the number of trainable weights in zonal kernels is much smaller than in S2 and
SO(3) convolutional kernels used in S2CNN . The extracted rotation invariant fea-
tures are classified with a fully connected network composed of three layers with
output sizes 32, 16, 4. In our models, we have taken into account antipodal sym-
metry of dMRI signals, thus the convolutional kernels are antipodally symmetric as
well. In this experiment, since the number of sampling points is considerably higher
than the number of SH basis elements (45 and 15), the model does not contain any
denoising layer.

Results

Classification is compared in terms of confusion matrices illustrated in Figures 5.6,
5.7 and 5.8, for db1, db2 and db3, respectively. In Figure 5.6, we can notice that the
classification accuracy of S2CNN and Fourier_S2_zonal are comparable and that
both models meet some difficulties in distinguishing between samples containing 2

and 3 axon bundles. This can be a consequence of the lower amplitude of the dMRI
signals as the number of bundles increases from 1 to 3, as their volume fractions sum
to 1. Figure 5.7 shows that our models keep high classification accuracy even when
the number of sampling points is significantly reduced. On the other hand, accuracy
of S2CNN significantly decreases, which might be a consequence of the fact that
the model can extract only low frequency information of maximal bandwidth 3. In
addition, taking into account antipodal symmetry of the input signals, in S2CNN ,
valuable information of the SH coefficients are found only for the degrees 0 and
2. (We denote that for 57 points, with quadrature formulae associated to Driscoll-
Healy grid, we cannot compute SH coefficients of a higher degree.) In Figure 5.8,
the obtained results highlight the impact of the aliasing introduced by ReLU non-
linearity applied in the signal domain used in S2CNN and the benefit of the spectral
domain non-linearity used in our models. The S2CNN is only capable to make a
distinction between white and non-white matter samples. For one such inference,
a mean of the signal is sufficient (only the SH coefficients of l = 0). On the other
hand, by comparing the results obtained with db2 and db3, we can also notice that
our models preserve a high degree of rotation invariance.
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Figure 5.6: Comparison of confusion matrices for the number of axon bundle clas-
sification problem, for db1 where axon bundles are arbitrarily oriented in all, train,
validation and test subsets, and the number of sampling points is 91 (S2CNN) and
90 (Fourier_S2_zonal). SNR = 20.

Figure 5.7: Comparison of confusion matrices for the number of axon bundle clas-
sification problem, for db2 where axon bundles are arbitrarily oriented in all, train,
validation and test subsets, and the number of sampling points is 57. SNR = 20.
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Figure 5.8: Comparison of confusion matrices for axon bundle classification problem,
for db3 where the axon bundles orientation is restricted in train and validation
subsets, and the number of sampling points is 57. SNR = 20.
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5.4.2 Multi-compartment micro-structure estimation

In these experiments, we have extensively compared our models
Fourier_S2_SO(3), Fourier_S2_zonal with the deep learning approaches
MLP [Golkov et al. 2016], MEDN and MEDN+ [Ye 2017], MescNet [Ye et al. 2019]
and MescNetSepDict [Ye et al. 2020], on the problem of NODDI and SMT mi-
crostructure parameter estimation from dMRI signals acquired with a significantly
reduced number of q-space sampling points. Concretely, the NODDI parameters
include intracellular volume fraction νic, isotropic volume fraction νiso and orienta-
tion dispersion indices denoted with OD. SMT parameters include extra-neurite
fraction νext and intrinsic diffusion coefficient λ. In analogy to MEDN+, the FCN+
is designed as the version of FCN which takes as input the signals from a small
neighbourhood. For a neighbourhood of size 3 × 3 × 3 the size of input vector is
increased by factor 27. In a similar manner, we have created Fourier_S2_SO(3)+

and Fourier_S2_zonal+, which take as input signals from a small neighbourhood
treated as different channels.

Real data from HCP and estimation of gold standard

We have used in our experiments a subset of 200 subjects from the Human Connec-
tome Project (HCP) database [Van Essen et al. 2013]. We have used 1, 3, 5, 10, 15

or 30 subjects for training, 20 for validation and 150 for the final testing of the
algorithm. dMRI scans have been acquired on a Siemens 3T Skyra system with a
gradient strength of 100mT/m. Scans are composed of three shells with b-values of
1000, 2000 and 3000 s/mm2, each with 90 gradient directions and 18 b = 0 images
at resolution 1.25 × 1.25 × 1.25 mm3. We have used scans that were previously
registered to T1w images. As a consequence, although acquired with the same
acquisition protocol, after registration, gradient directions and b-values slightly
differ from their initial values and between subjects. To select brain region voxels,
we have used brain masks provided as a part of HCP dataset, obtained from no
diffusion weighted images (b = 0) using Otsu thresholding algorithm. Masks are
post-processed by excluding voxels with very low mean b = 0 value (lower than
100) as they correspond to border voxels with likely erroneous data. dMRI signals
are voxel-wise normalized with mean value of b = 0 scans and clipped to the range
[0, 1]. For the estimation of gold standard we have used brute2fine optimizer from
dmipy toolbox applied on dMRI data with full acquisition scheme. Models are
compared with dMRI signals acquired over a significantly reduced sampling scheme,
containing 30 points over two shells of b-values 1000 and 2000 s/mm2

Implementation details

The models are implemented with the tensorflow. They are trained over 300 epochs,
where in each epoch 25600 voxels (or windows of size 3×3×3) are randomly drawn
from T training samples, where T ∈ {1, 3, 5, 10, 15, 30}. Validation is performed on
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25600 voxels randomly drawn from 20 validation subjects. If the difference between
validation loss averaged over two sequential blocks of five epochs is smaller than
10−6, the learning rate is reduced by the factor of 0.95. Testing is performed on 150
testing subjects. Models have been trained with batch size of 128 by minimizing
mean square error loss using an Adam optimizer [Kingma & Ba 2014].

Results

Results are compared quantitatively in terms of mean absolute error computed over
the 150 testing subjects. The mean absolute error and corresponding standard de-
viations for NODDI parameter estimation, namely νic, νiso and OD, for training on
1, 3, 5, 10, 15, 30 subjects are illustrated in Figure 5.9 for the models which take as
input single voxels. Comparison of the models which take as input signals from 3D
patches is provided in Figure 5.10. For the single voxel models, we have performed
an extensive hyperparameter grid search provided in Appendix B. Figure 5.9 shows
that our models Fourier_S2_zonal and Fourier_S2_SO(3) with the number of
trainable parameters 0.0915·106 and 0.0789·106, respectively give on average similar
mean absolute error as MLP with ∼ 0.148 · 106 parameters. Further, we can see
that the model MEDN , with 0.11× 106 trainable parameters, which is specifically
designed for NODDI parameter estimation yields noticeable higher mean absolute
errors for the parameter νiso regardless of the number of training subjects. More
important differences in the mean absolute errors can be observed by comparing the
methods which take as input 3D patches, which are compared for the number of
training subjects 1, 3 and 5. We can see that our models yield errors slightly higher
but comparable with the recently proposed state-of-the-art MESCNetSepDict, with
the number of parameters decreased by factors 2.7 and 4.4 for Fourier_S2_SO(3)+

and Fourier_S2_zonal+, respectively. Although the number of parameters is not
necessarily proportional to the computational time (for example, the training and
testing with MESCNet is more than 8 times faster than with MESCNetSepDict),
Fourier_S2_SO(3)+ is approximately 6 times faster and Fourier_S2_zonal+
12 times. As for the single voxel methods, for the 3D patch based methods we can
also notice that the model specifically designed for NODDI parameters MEDN+

yields the highest mean absolute errors over all three parameters νic, νiso and OD.
Figures 5.11, 5.12 and 5.13 show qualitative comparison of NODDI parameters esti-
mated with single-voxel and 3D patch based models, trained on one subject. We can
see that single-voxel based models tend to underestimate values of νic and νiso in
the white matter regions more prominently then 3D patch based models. MEDN

and MEDN+ are characterized by the overestimation of OD parameter, especially
noticeable in the corpus callosum.
Similarly as for NODDI parameters, MLP designed for single voxel inputs
gives comparable results to our models on the problem of SMT parameter es-
timation as depicted in Figure 5.14. Compared with 3D patch based models,
Fourier_S2_SO(3)+ and Fourier_S2_zonal+ models exhibit lower mean ab-
solute values for λ SMT parameter compared to MLP+, MescNet and MescNet-
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SepDict, but higher for νext in comparison with MescNetSepDict as given in Figure
5.15. Qualitative comparisons of SMT parameter estimation for models trained on
one subject are illustrated in Figures 5.16 and 5.17. The comparison shows that
the single voxel models highly overestimate νext in certain voxels of white matter in
comparison with 3D patch based models. Qualitative comparison of the λ parameter
estimation shows that our models Fourier_S2_SO(3)+ and Fourier_S2_zonal+
yield lower errors in the frontal brain regions compared to other models.

Figure 5.9: Comparison of the mean absolute errors for NODDI νic, νiso and OD

parameter estimation for different number of training subjects for single voxel mod-
els.
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Figure 5.10: Comparison of the mean absolute errors for NODDI νic, νiso parameter
estimation for different number of training subjects for 3D patch based models.
*MescNetSepDict for 3 subjects: testing performed on 49 subjects, due to memory
issues
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Figure 5.11: Qualitative comparison of NODDI νic parameter estimation and differ-
ence between the estimated and gold standard values. Training performed on one
subject.
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Figure 5.12: Qualitative comparison of NODDI νiso parameter estimation and dif-
ference between the estimated and gold standard values. Training performed on one
subject.
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Figure 5.13: Qualitative comparison of NODDI OD parameter estimation and dif-
ference between the estimated and gold standard values. Training performed on one
subject.
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Figure 5.14: Comparison of the mean absolute errors for SMT νext and λ parameter
estimation for single voxel models. Intrinsic diffusion coefficients λ are normalized
to the range of [0, 1].

Figure 5.15: Comparison of the mean absolute errors for SMT νext and λ parameter
estimation for 3D patch based model. Intrinsic diffusion coefficients λ are normalized
to the range of [0, 1].
*MescNet for 5 subjects: testing performed on 93 subjects, due to memory issues.
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Figure 5.16: Qualitative comparison of SMT νext parameter estimation and dif-
ference between estimated and gold standard values. Training performed on one
subject.
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Figure 5.17: Qualitative comparison of SMT intrinsic diffusion coefficients λ normal-
ized to the range [0, 1] and difference between estimated and gold standard values.
Training performed on one subject.
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5.4.3 Brain tissue segmentation

In this experiment, we demonstrate that our approach can be used in combination
with 3D planar CNN for the problem of the brain tissue segmentation.

Real data from HCP and the estimation of gold standard

We have used the same subset of 200 subjects from the HCP database
[Van Essen et al. 2013] as used in the experiments for microstructure parame-
ter estimation. The preprocessing and normalization of the signals is performed
in the same way. A gold standard has been estimated using the FAST algorithm
[Zhang et al. 2001] applied on T1w images of resolution 1.25 × 1.25 × 1.25 mm3

implemented in the mrtrix library [Tournier et al. 2019]. It segments tissue into
cortical gray matter, sub-cortical gray matter, white matter, CSF and pathological
tissue. Since, we have used data from healthy subjects only and since we merged
cortical and sub-cortical gray matter classes, only three tissue classes have been
considered, namely gray matter, white matter and CSF. We have conducted
experiments with the number of training subjects 1, 30 and 70, on full HCP
acquisition scheme containing 90 points per each of the three shells and on a
reduced sampling scheme containing 60 points per each of the three shells. The
number of validation subjects is 20 and the number of testing subjects is 110.

Implementation details

The model is composed of Fourier_S2_SO(3) which is applied voxel-wise to ex-
tract features and 3D planar CNN which takes as input the 3D patches of the
extracted features. This enables the integration of 3D spatial information into
the segmentation process. For a 3D patch of size n × n × n, depending on the
number of convolutional layers and kernel sizes, the output will be m × m × m

where m < n. Although, n can be chosen such that m = 1 (voxel-wise), train-
ing a model with m > 1 provides regularization of the training process. Dur-
ing the testing phase, extracted features of the entire scan are fed into the CNN
model. We have compared Fourier_S2_SO(3) and MLP [Golkov et al. 2016] mod-
els for feature extraction followed by a CNN of the same structure. We named
these models with Fourier_S2_SO(3) + CNN and MLP + CNN . Both mod-
els Fourier_S2_SO(3) +CNN and MLP +CNN are implemented in tensorflow
[Abadi et al. 2015]. The CNN is composed of three convolutional layers with ker-
nels of size 3. During the training, the spatial sizes of the input 3D patches are
15 × 15 × 15 and of the output 9 × 9 × 9. Given that each voxel contains high di-
mensional dMRI data acquired over three shells, models’ training with 3D patches
of size 15 × 15 × 15 might be computationally demanding in terms of GPU RAM
since the backpropagation algorithm requires keeping intermediate feature maps and
gradients. On the other hand, integrating spatial information of broader context is
important, especially for the segmentation of the tissues close to a tissue border.
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Since the output patch is of size 9 × 9 × 9, which means that the loss is averaged
over 93 samples and for an efficient usage of RAM, 3D patch-wise batch size is
only 1. To augment training data in a computationally efficient manner, extracted
patches of features are axially mirrored, which efficiently increases batch size to 2.
In each epoch, 3D patches are randomly extracted from training subjects and val-
idation is performed on 3D patches randomly extracted from validation subjects.
Half of the training patches has been selected from the border regions of tissues.
The border regions are determined by selecting voxels with tissue class probabili-
ties provided by FAST higher than a threshold 0.9. Models have been trained over
200 epochs by minimizing categorical cross-entropy loss using an Adam optimizer
[Kingma & Ba 2014]. Initial learning rate has been set to 0.001. If the difference be-
tween validation categorical cross-entropy averaged over two sequential blocks of five
epochs is smaller than 10−4, the learning rate is reduced by the factor of 0.95. Once
the models are trained, testing is very computationally efficient. It is composed of
feature extraction step which is performed voxel-wise with batches of size 128, and
a segmentation with 3D CNN which takes as input entire scan of the extracted fea-
tures and its axially mirrored version. Both MLP and Fourier_S2_SO(3) extract
64 features. MLP is composed of 6 layers of output sizes 128, 128, 128, 256, 128, 64.
Fourier_S2_SO(3) is composed of three convolutional layers of the input and out-
put bandwidths (8, 6), (6, 4), (4, 2) and the input and output number of channels
(3, 2), (2, 4), (4, 8), and three fully connected layers of the output sizes 256, 128, 64.
The total number of parameters in MLP + CNN is 0.212 × 106 and 0.201 × 106

for 90 and 60 points per shell, respectively. The total number of parameters in
Fourier_S2_SO(3)+CNN is 0.131×106 for both sampling schemes, as the input
to the models are the SH coefficients of bandwidth 8. Since the number of sampling
points is considerably higher than the number of SH basis elements (45), the model
does not contain denoising layer.

Results

The results are compared in terms of Dice scores and are given in Tables 5.2 and 5.3
for 90 and 60 sampling points per shell. According to Dice scores, the difference in
performance between the two models is negligible except when the number of train-
ing subjects is one. On the other hand, qualitative comparison of the segmentations
illustrated in Figure 5.18 highlights some differences. The comparison is provided for
the experiments with one training subject and 90 sampling points per shell (1t, 90p)
and 30 training subjects and 60 points per shell (30t, 60p). First, by comparing
slices in axial view, we can notice that MLP +CNN misclassifies several voxels of
CSF situated in ventricles into white matter voxels. This is especially prominent
for the model trained with one subject. Secondly, illustrations in coronal plane
show that Fourier_S2_SO(3) + CNN gives better segmentation of gray matter
in the region of the left lateral fissure. In the sagittal plane, we can notice some
differences in the region of cerebellum and below it, where MLP + CNN trained
on one subject misclassifies CSF as white matter region. Finally, we remark that
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the Dice scores obtained with 70 training subjects and 90 points per shell for both
models are comparable with the recently proposed deep learning approach which
uses three 2D U-nets applied on combination of mean-kurtosis curve, diffusion kur-
tosis and diffusion tensor parameters [Zhang et al. 2021] also trained on 70 HCP
subjects. Whereas the model proposed in [Zhang et al. 2021] takes ∼ 20min for
the segmentation of one scan, Fourier_S2_SO(3) + CNN requires ∼ 1min and
MLP + CNN ∼ 15s.

Table 5.2: Dice scores for brain tissue segmentation obtained with MLP + CNN

and Fourier_S2_SO(3) +CNN for 90 points per shell and 1, 30 and 70 subjects.
Model | Tissue Gray matter Cerebrospinal fluid White matter

MLP (1) 0.859 ±0.017 0.805 ±0.023 0.885 ±0.018

Ours (1) 0.871 ±0.015 0.804 ±0.022 0.903 ±0.015

MLP (30) 0.896 ±0.010 0.835 ±0.019 0.922 ±0.010

Ours (30) 0.903 ±0.009 0.840 ±0.019 0.930 ±0.009

MLP (70) 0.900 ±0.008 0.836 ±0.018 0.927 ±0.009

Ours (70) 0.905 ±0.008 0.843 ±0.018 0.931 ±0.009

Table 5.3: Dice scores for brain tissue segmentation obtained with MLP + CNN

and Fourier_S2_SO(3) + CNN for 60 points per shell and 30 and 70 subjects.
Model | Tissue Gray matter Cerebrospinal fluid White matter

MLP (30) 0.896 ±0.009 0.834 ±0.019 0.923 ±0.010

Ours (30) 0.904 ±0.009 0.838 ±0.019 0.930 ±0.010

MLP (70) 0.899 ±0.008 0.837 ±0.019 0.926 ±0.009

Ours (70) 0.906 ±0.008 0.843 ±0.018 0.932 ±0.008
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Figure 5.18: Qualitative comparison of brain tissue segmentation into white matter,
gray matter and cerebrospinal fluid with MLP +CNN and Fourier_S2_SO(3)+

CNN for one training subject and 90 points per shell (1t, 90p) and for 30 training
subjects and 60 points per shell (30t, 60p).
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5.5 Conclusion

In this chapter, we have presented convolutional models adjusted to the spherical
and real nature of dMRI signals for its local analysis. Apart from SH coefficient
estimation and eventual denoising layers, all other operations in the models are
rotation equivariant. We have proposed non-linearities of quadratic nature and
degree-wise power spectrum as rotation invariant feature vectors. In the experiment
with synthetic data we have demonstrated robustness and rotation invariance of our
models with respect to the aliasing and noise. In the extensive comparison with the
other deep learning approaches for microstructure parameter estimation, we have
shown that the model can achieve state-of-the-art performance with significantly
lower number of parameters and with often reduced computational time. Finally,
in the last experiments, we have demonstrated that our model can be used to ex-
tract voxel-wise rotation equivariant features that can be used for computationally
efficient brain tissue segmentation.
Non-linearities of quadratic nature in deep learning are not common due to the fact
that they are not bounded. Given a lower computational complexity of convolutions
with zonal kernels and of S2 quadratic non-linearity compared to SO(3) convolu-
tions and non-linearities, in the future work we will investigate how some standard
deep learning non-linearities such as sigmoid 1

1+ex and hyperbolic tangent ex−e−x

ex+e−x

can be approximated via Taylor series in spectral domain.





Chapter 6

MEEG spatial and temporal
pattern analysis

Contents
6.1 MEEG multivariate signal modeling . . . . . . . . . . . . . . 104
6.2 MEEG inverse problems . . . . . . . . . . . . . . . . . . . . . 106
6.3 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.3.1 Dictionary learning . . . . . . . . . . . . . . . . . . . . . . . . 108
6.3.2 CNN classification models . . . . . . . . . . . . . . . . . . . . 113

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Executive summary

In this chapter, we firstly describe modeling of multivariate EEG and MEG signals
as sum of rank-1 multivariate signals corresponding to individual brain sources and
noise, where temporal courses of the brain activities are modeled as convolution of
activation signals and characteristic temporal waveforms. Further, we provide an
overview of the most important inverse problems in EEG and MEG signal analysis.
Whereas in the section state of the art, we provide a more detailed description of
the most prominent multivariate convolutional dictionary learning approaches and
CNN models used for EEG and MEG signal classification in BCI is provided.
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6.1 MEEG multivariate signal modeling

As the brain is responsible for the functioning of other human’s organs, processing
of sensory inputs, performing cognitive and motor tasks, controlling emotions, etc,
numerous activities are always present in a brain. Each of these activities can be de-
scribed by cortical regions they arise from and their temporal courses. Magnetic field
strength and electric potential, as direct measures of the brain activities, recorded at
scalp (or slightly above it) by M/EEG devices can be described with the Maxwell’s
equations with quasi-static approximations [Sarvas 1987]. As a consequence, we can
assume that the cortical brain activities spread instantaneously and linearly over
measuring sensors. In order to be measurable by M/EEG devices, neural activity
must occur synchronously in a group of pyramidal neural cells in the cortex which
counts tens of thousands cells. A common way to model current density present
in these groups of cells is via equivalent electric dipoles [Hämäläinen et al. 1993],
often referred to as sources. Since the orientation and position of each source can be
considered fixed, the spread of source signal over measuring sensors is fixed as well
and can be represented with a vector of weights, also called topographic map. Each
weight describes how much a source contributes to the measured signal and depends
on the relative orientation of the source with respect to the sensor, their distance
and the presence of different amounts of tissues (bones, gray and white matter, cere-
brospinal fluid) along the path between the source and the sensor. These weights
allow the construction of a so called leadfield matrix L and allow the computation
of the measured signals as

X = LS +N (6.1)

where L ∈ RN×Q, with N being the number of sensors and Q the number of sources.
Thus, qth column of L describes how qth source signal spreads spatially over sensors.
X ∈ RN×T contains measured multivariate signal over T time instants and each row
of S ∈ RQ×T represents a source signal over T time instants. N is an additive noise
which includes noise coming from measuring devices, from the environment and
from the subject itself. The estimation of a leadfield matrix belongs to the M/EEG
forward model problems. A common point in the estimation of MEG and EEG
forward models is modeling of the head and brain shapes. However, whereas mag-
netic permeability can be considered constant over tissues, electric conductivities of
different tissue types must be taken into account. The simplest model is the spheri-
cal head model, which assumes concentric spheres. Each sphere corresponds to one
tissue and has a specific conductivity [Hämäläinen et al. 1993, Vatta et al. 2010].
More advanced head models require utilization of anatomical and/or structural in-
formation usually extracted from MRI data. This allows them to take into account
finer head and brain tissue geometries and even to model anisotropic conductivities
[Hämäläinen et al. 1993, Vatta et al. 2010, Ziegler et al. 2014].
Assuming K active sources, with K ≤ Q and often K << Q, the measured multi-
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variate signal X from Eq. 6.1 can be written as

X =

K∑
k=1

uk · sTk +N (6.2)

where sk ∈ RT is the source signal and uk ∈ RN its topographic map which cor-
responds to one column of the leadfield matrix L. Thus, we can notice that a
multivariate signal associated to one source k can be represented as a rank-1 matrix
uk · sTk .
Source signals are traditionally classified according to the frequency band they
span. They can reveal information related to the organism restoration, cognitive
processes and certain brain disorders. Infra-low waves (<0.5Hz) or slow cortical
potentials are the least investigated ones and are in general considered to be im-
portant in the dynamic organization of neural networks at a large scale and the
modulation of higher frequency waves [Vanhatalo et al. 2004, Fox & Raichle 2007,
Grooms et al. 2017, Watson 2018]. Delta waves (0.5 to 4 Hz) are high energy waves
dominant in deep sleep, playing an important role in the stimulation of restoration
processes. Delta waves might also be prominent in certain brain disorders such as
the attention deficit hyperactivity disorder [Kamida et al. 2016] and traumatic brain
injuries [Dunkley et al. 2015]. Theta waves (4 to 8 Hz) are occurring during shallow
sleep and meditation. Also several studies have shown increased power in theta range
during working memory load and processing [Schacter 1977, Grunwald et al. 1999].
Alpha waves (8 to 12 Hz) are dominant in the occipital lobe during relaxation with
closed eyes when not much information is processed. Mu waves occur in the same
frequency range as alpha waves but in the sensorimotor cortex and are indicators
that the motor system is idling. Once a part of the body is moved or imagined to be
moved, the power of these waves decreases which is a phenomenon used in the BCI
[Pineda et al. 2000, Krusienski et al. 2007]. Beta waves (12 to 30 Hz) are related to
active thinking, problem solving and concentration. Low frequency beta waves are
considered to be related to idling and focusing, medium ones to high engagement in
mental activity and high frequency beta waves to complex thoughts, high anxiety
and excitement. Gamma waves (30 to 100 Hz) are related to high level cognitive
functioning and are responsible for information processing from different brain re-
gions.
Recent studies have shown that in certain frequency bands, brain waveforms are
rather of transient and recurrent nature [van Ede et al. 2018]. This is also the case
in the active BCI, where the brain waveforms are evoked by external sensor stimuli,
with a difference that recurrence is approximately determined based on the repeti-
tion of the stimuli. Under the assumption that waveforms of interest are of transient
and recurrent nature, Eq. 6.2 can be written as

X =

K∑
k=1

uk · (zk ∗ vk)T +N (6.3)
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where vk ∈ Rτ is a waveform associated to the source k and zk ∈ RT+τ−1 is a
sparse vector with Diracs indicating instants of the activation of the waveform k. τ
is duration of the waveforms vk.

6.2 MEEG inverse problems

In general, the analysis of EEG and MEG signals can be seen as a joint or an
independent analysis of spatial and temporal components of the measured signals,
in order to make an inference about the underlying neural activities. Depending on
the inference one would like to make, we can distinguish between multiple areas of
interest in the domain of EEG and MEG signal analysis, which are not necessarily
completely independent of each other. Some of them are inverse problems, source
separation, dictionary learning, classification and regression problems, functional
brain network analysis, etc.
Inverse problems in functional brain imaging usually refer to the estimation
of the distribution, orientation, and intensity of neural activity sources in the
cerebral cortex, given the measured signals. Characterization of the sources is
important for identification of the cortical regions which are employed while
a subject is executing certain functions such as cognitive and motor tasks, or
processing of sensory inputs [Bowyer et al. 2020], but also in the evaluation of
certain neurological disorders [Asadzadeh et al. 2020]. Since there is an infinite
number of source organizations, including silent ones, and the number of measuring
sensors is limited, the inverse MEG and EEG problems are underdetermined. This
ill-posedness is addressed via multiple assumptions about the source space. A
common assumption is that the relevant sources are situated in the cerebral cortex
with orientations perpendicular to the cortex surface [Hämäläinen et al. 1993].
Furthermore, assuming a discrete source space, it can be constrained by limiting
the number of possible active sources, modeled with equivalent current dipoles
[Mosher et al. 1992, Mosher & Leahy 1998], while in the case of distributed current
sources, minimum norm or smoothness constraints are imposed on the solution
[Hämäläinen & Ilmoniemi 1994, Pascual-Marqui et al. 1994]. Recent studies have
shown that a regularization of the MEG and EEG inverse problems can also be
achieved by incorporating information from structural imaging modalities such as
dMRI [Belaoucha et al. 2015, Kojčić et al. 2021].
Source separation refers to disentangling of time courses originating from
multiple sources given the measured mixed signals. Mathematically, it is also a
class of inverse problems, but with a focus on the temporal aspect of the brain
signals, rather than spatial. Source separation is often used as a preprocessing step
for artifact removal and denoising [Zou et al. 2019, Roy & Shukla 2019], but also
for the extraction of event-related responses [Lee et al. 2006, Metsomaa et al. 2016].
Separating source signals can also facilitate source localization [Zhukov et al. 2000].
To address ill-possedness in the source separation problem, assumptions are made
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on statistical properties of the source signals. In a broadly used method for source
separation - independent component analysis (ICA) the assumption is that the
values of each source signal have non-Gaussian distribution and that they are
statistically independent [Hyvärinen & Oja 2000]. Under these constraints, the
solutions can be estimated by maximizing measures of non-gaussianity such as
kurtosis and negentropy, by minimizing mutual information or by the estimation of
maximum likelihood [Hyvärinen & Oja 2000].
Dictionary learning is closely related to the source separation and corre-
sponds to the estimation of atoms which constitute a dictionary and allow
sparse representation of the measured signals, assuming the presence of recurrent
waveforms in the source signals. In addition to being able to separate source
signals, dictionary learning frameworks which exhibit translation invariance allow
identification of the time instants when the waveforms constituting source signals
appear, also referred to as waveform activations. Analysis of such waveforms
and their occurrences over time has potential in the evaluation of disorders such
as epilepsy and cognitive impairments [Abreu et al. 2019], but also used in the
extraction of event-related signals [Barthélemy et al. 2013, Hamner et al. 2011].
In general, dictionary learning is achieved by alternating between update
of the dictionary atoms and the update of the corresponding activations
[Barthélemy et al. 2013, Hitziger et al. 2017, La Tour et al. 2018]. The differ-
ence between objectives of source separation and translation invariant dictionary
learning approaches is depicted in Figure 6.1.

Figure 6.1: Illustrations of objectives of source separation and translation invariant
dictionary learning approaches, when two sources with distinct waveforms are active.
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Classification and regression models aim to associate a label or a quantity to
neural activities given the recorded signals. These models are particularly important
in active and passive BCI systems [Lotte et al. 2007, Lotte & Roy 2019]. In the
context of active BCI, classifiers are necessary in the process of translation of rele-
vant brain activity into a command given to a computer [Allison et al. 2007].
More recent, passive BCI systems use classifiers or regression models to
asses mental workload, emotional state, drowsiness and alertness of the users
[Zander & Kothe 2011, Aricò et al. 2018]. Classification and regression problems
are addressed by machine learning algorithms trained in a supervised manner.
They can be applied directly on raw or preprocessed EEG and MEG signals,
but also on extracted features. Recently, a detailed review of the classifiers
used in BCI, categorized into adaptive, matrix and tensor, transfer and deep
learning, and miscellaneous classifiers has been provided in [Lotte et al. 2018].
Although, significantly less studies have addressed the regression problems
[Antelis et al. 2013, Wu et al. 2016a], the majority of the classification models can
be simply transformed into regression ones.
Functional brain network analysis aims to understand relationship between
activities occurring in different regions of the cortex. Analysis of such networks
provides additional insights in highly complex neural activities, while the examined
subject is performing cognitive or motor tasks, responding to some sensory stimuli
or simply being in a resting state. MEG functional brain networks have been used
to identify connectivity markers related to Alzheimer’s and Parkinson’s diseases
[Stam 2010] and multiple sclerosis [Nauta et al. 2021]. They have also shown an
importance in assessment and monitoring of functional reorganization of the brain
after a surgery [Wang et al. 2010, Pittau & Vulliemoz 2015]. A functional brain
network can be represented as a graph composed of nodes which correspond to
measuring sensors or their projections to small regions of the cortex. Functional
connectivity measures represent the edges between the nodes, which can be
undirected such as correlation, phase coherence, mutual information or directed as
lagged correlation, transfer entropy, Granger causality [de Vico Fallani et al. 2014].

6.3 State of the art

In the context of this thesis, we provide a detailed overview of the dictionary and
deep learning approaches which are related or served as an inspiration to our work.
Firstly, we provide a description of dictionary learning paradigms, with a focus on
the multi-variate dictionary learning. Further, the most prominent deep-learning
CNN classifiers used for M/EEG signal classification are presented.

6.3.1 Dictionary learning

Over the last two and half decades, the attention in computer vision commu-
nity has shifted from Fourier and wavelet analysis towards dictionary learning ap-
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proaches. Whereas, a wavelet frame is composed of predefined wavelet functions,
dictionary learning aims to estimate a data driven frame, also know as a dictio-
nary. Such dictionaries allow for a sparser representation of data. Thus, they
have been initially used for compression and denoising [Kreutz-Delgado et al. 2003,
Elad & Aharon 2006]. Dictionary learning has been also successfully used in clus-
tering and classification problems, signal reconstruction, etc [Ramirez et al. 2010,
Sprechmann & Sapiro 2010, Kong & Wang 2012].
In the context of brain wave analysis, the employment of dictionary learning ap-
proaches is more recent. This has been motivated by the fact that brain waves of
interest are often of a transient and recurrent nature [van Ede et al. 2018].
We can distinguish translation-invariant and noninvariant models, and univariate
and multivariate models. Given a univariate set of data samples {xn}Nn=1, where N
is the number of samples and xn ∈ RT , with T being the number of sampling points,
a univariate translation-noninvariant dictionary learning problem can be defined as

argmin
D,zn

N∑
n=1

∣∣∣∣xn −Dzn
∣∣∣∣2
2

s.t. Cz(zn) and CD(dk) (6.4)

where D ∈ RT×K is dictionary composed of K atoms dk ∈ RT to be esti-
mated, and zn ∈ RK is a sparse vector containing coefficients for the sample xn
[Tošić & Frossard 2011]. Cz is a constraint which imposes sparsity of the vectors
{zn}Nn=1. CD is a constraint imposed on the atoms in dictionary. Most commonly,
this constraint corresponds to ||dk||2 ≤ 1 [Olshausen & Field 1997], alleviating very
high amplitudes of the atoms and very low values of the sparse coefficients. Origi-
nally, Cz is defined as ||zn||0 ≤ α, however with this penalty, the minimization prob-
lem from Eq. 6.4 is not convex and it is NP-hard with respect to zn [Tillmann 2014].
Commonly, this minimization problem is addressed by K-singular value decomposi-
tion algorithm (K-SVD) [Aharon et al. 2006]. Although, this algorithm can end up
in a local minima, it has been shown as a sufficiently good solution in practice. In
the context of BCI, dictionaries of spatial and temporal EEG patterns have been
estimated independently using K-SVD algorithm [Hamner et al. 2011]. l0 penalty
is often replaced by l1, ensuring convexity of the problem with respect to zn, which
can be solved by least absolute shrinkage and selection operator (LASSO) method
[Tibshirani 1996].
For the analysis of longer brain signals, where waveforms of interest might appear
at any time instant, translation-invariant dictionary learning is more suitable. Even
if the analysed signals are segmented into epochs, which is a common practice in
the analysis of the responses evoked by certain stimuli, the responses might follow
the stimuli with different delays. Thus, the models exhibiting translation invariance
are better suited for such data. Univariate translation-invariant dictionary learning
problem can be defined as

argmin
D,zkn

N∑
n=1

∣∣∣∣∣∣∣∣xn − K∑
k=1

zkn ∗ dk
∣∣∣∣∣∣∣∣2
2

s.t. Cz(zkn) and CD(dk) (6.5)
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where dictionary D is composed of K atoms dk ∈ Rτ , where τ < T is length
of the atoms [Garcia-Cardona & Wohlberg 2018]. Sparse coefficients zkn ∈ RT+τ−1

correspond to the activations of the atom k in the signal xn. Cz is a constraint
which imposes sparsity of the activation vectors {{zkn}Kk=1}Nn=1. In the Matching
of Time Invariant Features (MoTIF) algorithm, univariate dictionary learning has
been achieved independently of the activations and in an iterative manner, where
each new atom is estimated under constraint CD which imposes that the atom
is the most correlated to the data samples, but at the same time the least cor-
related to the previously estimated atoms [Jost et al. 2005]. Once the dictionary
is created, sparse coefficients are estimated using Matching Pursuit (MP) algo-
rithm [Mallat & Zhang 1993]. Adaptive Waveform Learning (AWL) is designed for
epoched or long EEG recordings, termed with E-AWL and C-AWL, respectively
[Hitziger et al. 2017]. Dictionary learning is performed by alternating between up-
date of activations and update of dictionary. In addition to translation invari-
ance, AWL can also be dilation invariant. To impose sparsity on the activations,
E-AWL model combines l0 and l1 regularization terms. The activations are esti-
mated using a modification of the least angle regression shrinkage (LARS) algorithm
[Efron et al. 2004] termed as LARS-0. This modifications corresponds to an exclu-
sion operator which enforces l0 sparsity of the l1 constrained solution. Considering
LARS regularization path, at each regularization step, exclusion operator excludes
coefficients which corresponds to translation of the atom within a predefined time
interval around the epoch center. To reduce computational expenses, in C-AWL,
the activations are estimated using the MP algorithm [Mallat & Zhang 1993] with
exclusion operator acting within a predefined time interval around any time instant
and within an interval of atom dilations. In both versions of AWL, the atoms are
constrained to have ||dk||2 = 1 and they are updated via block coordinate descent.
Apart from being characterized by waveforms, brain activity can be also described
by the brain region from which it arises. Naturally, this has lead to multivariate
dictionary learning approaches. Given a multivariate set of data samples {Xn}Nn=1,
where N is the number of samples and Xn ∈ RC×T , with C being the number
of channels and T the number of sampling points, we can categorized multivariate
translation-invariant dictionary learning approaches into three groups, illustrated
in Figure 6.2:

1. with multivariate dictionary and univariate activations (Figure 6.2 a))

2. with univariate dictionary and rank-1 multivariate activations (Figure 6.2 b))

3. with rank-1 multivariate dictionary and univariate activations (Figure 6.2 c)).

1. Multivariate translation-invariant dictionary learning with multi-
variate dictionary and univariate activations is defined as

argmin
D,zkn

N∑
n=1

∣∣∣∣∣∣∣∣Xn −
K∑
k=1

zkn ∗Dk

∣∣∣∣∣∣∣∣2
2

s.t. Cz(zkn) and CD(Dk) (6.6)
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a) b) c)

Figure 6.2: Illustration of translation invariant multivariate dictionary learning
paradigms: a) with multivariate atoms and univariate activations; b) with univari-
ate atoms and multivariate rank-1 activations; c) with multivariate rank-1 atoms
and univariate activations. Each row corresponds to multivariate signal contribution
associated to one atom.

where dictionary D is composed of K multivariate atoms Dk ∈ RC×τ , where τ < T

is length of the atoms. Sparse coefficients zkn ∈ RT+τ−1 correspond to the acti-
vations of the atom k in the signal Xn and convolution between activations and
multivariate atom is given by rowj

[
zkn ∗ Dk

]
= zkn ∗ rowj

[
Dk

]
, ∀j ∈ {1, ..., C}. In

[Barthélemy et al. 2012, Barthélemy et al. 2013], dictionary learning is achieved by
solving Eq. 6.6, where Cz(zkn) is defined as |zkn|0 < P , with P being maximal num-
ber of non-zero entries and CD(Dk) is defined as ||Dk||2 = 1. Proposed multivariate
dictionary learning approach is achieved in an online manner, by iterating trough
the entire dataset and performing estimation of sparse activations and update of
atoms for each data sample individually. Approximation of the sparse activation
vectors is performed using multivariate orthogonal matching pursuit (M-OMP) de-
veloped in [Barthélemy et al. 2012] and update of the atoms using stochastic Lev-
enberg–Marquardt second-order gradient descent [Madsen et al. 2004].

2. Multivariate translation-invariant dictionary learning with univari-
ate dictionary and rank-1 multivariate activations is defined as

argmin
D,zkn,y

k
n

N∑
n=1

∣∣∣∣∣∣∣∣Xn −
K∑
k=1

(
yknz

k
n
T
)
∗ dk

∣∣∣∣∣∣∣∣2
2

s.t. Cz(zkn), Cy(ykn) and CD(dk) (6.7)

where sparse univariate activations zkn ∈ RT+τ−1 correspond to the activations of
the atom k and ykn ∈ RC to its spread over channels, for the data sample Xn. Al-
though defined in a slightly different manner, multidimensional jitter-adaptive dic-
tionary learning (JADL), proposed in [Papageorgakis et al. 2017], belongs to this
group of multivariate translation-invariant methods. The dictionary D composed of
the atoms {dk}Kk=1, dk ∈ RT , is extended to a dictionary Ds by shifting the atoms
by small shifts δ ∈ ∆, creating a dictionary composed of the atoms {{dk,δ}δ∈∆}Kk=1,
dk,δ ∈ RT . With such extension of dictionary, convolution from Eq. 6.7 is replaced
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by ak,δn dTk,δ in [Papageorgakis et al. 2017], where ak,δn ∈ RC performs linear mapping
of the atom dk,δ to the measuring sensors. To stay in accordance with the nota-
tion used in this section, ak,δn dTk,δ can be written as yknz

k,δ
n dTk,δ, where zk,δn ∈ {0, 1}.

Constraint Cz is defined as l0 norm along δ axis as
∣∣∣∣zkn∣∣∣∣0 ≤ 1, ∀k ∈ {1, ...,K} im-

posing sparse selection of the atom shifts, allowing maximum one shift per atom k.
Given a data sample Xn, for each of the k atoms of the original dictionary D, a
shift δkn is chosen as the one which gives maximal value of

∣∣∣∣Xndk,δ
∣∣∣∣
1
, thus zk,δn = 1

only iff δ = δkn. Once the shifts are selected, a dictionary Dn containing {dk,δkn}
K
k=1

is created. The constraint Cy is defined as channel-wise l1 norm along k axis as∣∣∣∣yn,j∣∣∣∣1 ≤ α,∀j ∈ {1, ..., C}. For one channel of Xn and given the dictionary Dn

and the constraint Cy, this problem becomes equivalent to the one from Eq. 6.4
when solving with respect to sparse coefficients. In [Papageorgakis et al. 2017], it is
solved using the LARS algorithm [Efron et al. 2004]. Constraint CD on the atoms of
the dictionary D is ||dk||2 = 1 and they are updated using block coordinate descent,
taking account that each dictionary Dn has different atom shifts. Estimation of the
activations {{{zk,δn }δ∈∆}Kk=1}Nn=1, construction of the dictionaries {Dn}Nn=1 and the
estimation of the topographic maps {{ykn}Kk=1}Nn=1, followed by the update of the
dictionary D is repeated until convergence.
3. Multivariate translation-invariant dictionary learning with rank-1 mul-
tivariate dictionary and univariate activations is defined as

argmin
U,V,zkn

N∑
n=1

∣∣∣∣∣∣∣∣Xn −
K∑
k=1

zkn ∗ (ukvTk )
∣∣∣∣∣∣∣∣2
2

s.t. Cz(zkn) , CV (vk) and CU (uk)

(6.8)
where dictionary U and V are composed of K univariate spatial and temporal
atoms uk ∈ RC and vk ∈ Rτ , where τ < T is length of the atoms. Sparse co-
efficients zkn ∈ RT+τ−1 correspond to the activations of the atoms k in the signal
Xn and convolution between activations and a rank-1 multivariate atom is given
by rowj

[
zkn ∗ (ukvTk )

]
= rowj

[
vk(z

k
n ∗ uk)T

]
, ∀j ∈ {1, ..., C}. Imposing rank-1 con-

straint on atoms is motivated by the assumption that the spread of source signals
over measuring space is linear and instantaneous, where each possible source has
a constant topographic map [Hari & Puce 2017, La Tour et al. 2018]. Multivariate
convolutional sparse coding (CSC) for dictionary learning with rank-1 constraint im-
posed on atoms, as given in Eq. 6.8, has been introduced in [La Tour et al. 2018].
The constraint Cz was defined as

∣∣∣∣zkn∣∣∣∣1 < α and zkn ≥ 0, and constraints CV and CU
as ||vk||2 ≤ 1 and ||uk||2 ≤ 1. With given constraints, minimization problem from
Eq. 6.8 is convex individually with respect to each of the unknowns, {{zkn}Kk=1}Nn=1,
{vk}Kk=1 and {uk}Kk=1. The activations are updated using local greedy coordinate
descent (LGCD) introduced in [Moreau et al. 2018]. Given a data sample Xn, dic-
tionaries U and V , and initialized activations {zkn}Kk=1, LGCD segments range of
coordinates [1, T−τ+1] intoM segments, and updates activation vector correspond-
ing to one pair of atoms k along one coordinate t per segment to its optimal value.
The coordinate t and the pair k are selected as ones where the activation value is
the furthest from its optimal value. Sequential pass trough all segments is repeated
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iteratively until convergence. Given {Xn}Nn=1 and corresponding {{zkn}Kk=1}Nn=1,
updating dictionaries {uk}Kk=1 and {vk}Kk=1 can be performed independently using
gradient descent. In particular, in [La Tour et al. 2018], projected gradient descent
with Armijo rule [Nocedal & Wright 2006] has been used, where the Armijo rule
governs the amplitude of the updates.

6.3.2 CNN classification models

In the context of M/EEG signal analysis, classification models are essential in the
BCI, but they have also been employed in the analysis of epileptic seizures, sleeping
disorders, Alzheimer disease, etc. In addition to signal preprocessing, which is com-
mon for a majority of M/EEG signal analysis pipelines, process of classification, in
general, is composed of multiple steps, namely the feature extraction, their eventual
reduction and/or selection and the feature classification.
The feature extraction refers to application of spatial and/or temporal
signal processing tools with a goal to extract a pool of possibly relevant
features. We can make a distinction between ”hand-crafted”, connectivity
based, and data driven feature extraction. The former group includes power
spectral density [Herman et al. 2008, Iscan et al. 2011], discrete Gabor trans-
form [Kumar et al. 2015, Jrad et al. 2016], discrete wavelet transform features
[Subasi & Gursoy 2010, Bhattacharyya et al. 2010], etc. Connectivity based fea-
tures model strength of connections between brain regions, represented by
sensors, via covariance matrices [Barachant et al. 2010] or synchrony measures
[Wei et al. 2007]. Prominent connectivity features are the ones where data is
mapped to matrix manifolds such as Hermitian and Grassmann ones which are
equipped with Riemannian metrics which are often better suited to BCI than Eu-
clidean space metrics [Barachant et al. 2010]. Data driven feature extraction is
present in a broad range of unsupervised and supervised paradigms, starting with
principal and independent component analysis (PCA and ICA), linear discriminant
analysis (LDA), throughout dictionary learning [Zhou et al. 2012, Peng et al. 2021]
and deep learning approaches.
The feature reduction and selection are optional steps in classification pro-
cess, applied if dimensionality of extracted features is very high. Purpose of this
step is to extract the most relevant features and in such a way reduce possibility
of classifier overfitting to training samples. Whereas feature reduction transforms
feature vector to a space with lower dimensionality, feature selection simply selects
a predefined number of features from the given vector. Although used directly for
feature extraction, PCA and LDA are linear techniques which have been often used
for dimensionality reduction as well [Kołodziej et al. 2012, Yu et al. 2014].
The feature classification refers to the application of the linear or non-
linear classifiers on the extracted features in order to perform the final infer-
ence. Among the classifiers applied on the extracted features, broadly used
linear ones are LDA and support vector machine (SVM) [Herman et al. 2008,
Iscan et al. 2011, Jrad et al. 2016]. Distinct non-linear classifiers are k-nearest
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neighbours (k-NN), non-linear Bayesian classifiers, random trees and neu-
ral networks [Herman et al. 2008, Iscan et al. 2011, Bhattacharyya et al. 2010,
Kumar et al. 2015, Jrad et al. 2016]. As summarized in the recent review of the
BCI models [Lotte et al. 2018], we can also identify BCI classifiers which are able
to adapt to new data samples termed as adaptive classifiers and ones which allow
transfer of their parameters to a domain of another subject or session referred to as
transfer learning approaches.
As in another computer vision research fields, over the last two decades, an attention
has been drawn to DL approaches in the analysis of M/EEG signals, as well. In
general, these models learn to perform the feature extraction, reduction and clas-
sification in a joint global training procedure. Given that the brain waveforms of
interest can have an arbitrary position over time, CNN, which exhibit translational
invariance, have been chosen to address multiple problems.
In analogy to the dictionary learning approaches, we can make a distinction between
univariate and multivariate CNN models. Due to ease of use and portability of the
single channel EEG devices, a number of univariate CNN models have been inves-
tigated in the context of sleep and epilepsy analysis. In [Tsinalis et al. 2016] and
[Sors et al. 2018], classical CNN models have been employed in the studies on single
channel EEG sleep scoring. In [Supratak et al. 2017], the authors proposed a Deep-
SleepNet model composed of a convolutional module for time-invariant represen-
tation learning and a module with bi-directional long short-term-memory (LSTM)
units, which is able to learn transitions between the sleep stages. A pyramidal CNN,
with a low number of trainable parameters, suitable for lower amount of training
data, for classification of single channel EEG signals into normal, ictal and interictal
classes has been proposed in [Acharya et al. 2018, Ullah et al. 2018]. In the context
of multivariate CNNs developed for M/EEG signal analysis, we can identify three
types of convolutional layers, namely, standard convolutional layer, separable con-
volutional layers and depthwise convolutional layers. Given a multivariate M/EEG
signal X ∈ RC×T , with C being the number of channels and T being the number of
time samples, they are defined as follows.
A standard convolutional layer with weights W , s.t. W ∈ RC×J×τ , (or {Wj}Jj=1t,
s.t. Wj ∈ RC×τ ) performs convolution as

Yj =

C∑
c=1

Xc ∗Wcj (6.9)

where c refers to the cth channel of X and Wj . Yj is the jth channel of Y . Y ∈
RJ×(T−τ+1), j ∈ {1, ..., J} and J is the the number of the output channels. An
illustration of the convolution in a standard convolutional layer is depicted in Figure
6.3.

In a separable convolutional layer, the convolution is performed along temporal and
spatial dimensions independently. Thus, given the temporal weights {uj}Jtj=1, s.t.
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Figure 6.3: Illustration of convolution in a standard convolutional layer.

uj ∈ Rτ , the temporal convolution is defined as

Zcj = Xc ∗ uj (6.10)

where Z ∈ RC×Jt×(T−τ+1) and Zcj ∈ RT−τ+1. Jt is the number of temporal filters.
This is followed by a spatial convolution (correlation more precisely) with {vj}Jsj=1,
vj ∈ RJt×C defined as

Yk =

C∑
c=1

Jt∑
j=1

Zcj · vcjk (6.11)

where Y ∈ RJs×(T−τ+1). An illustration of the convolution in a separable convolu-
tional layer is depicted in Figure 6.4.

A depthwise convolutional layer is closely related to separable convolutional layer,
where after the temporal convolution as given by Eq. 6.10, correlation along spatial
dimensions is performed with {vj}Jtj=1, vj ∈ RC×D, where D is a depth multiplier.
Thus the output is obtained as

Yjd =

C∑
c=1

Zcj · vcjd (6.12)

where Y ∈ RJt×D×(T−τ+1) and Yjd ∈ R(T−τ+1). An illustration of the convolution
in a depthwise convolutional layer is depicted in Figure 6.5 (with J = Jt).
The three types of multivariate convolutional layers differ in terms of the number
of parameters and the number of multiplication. Assuming that J = Jt = Js = C

and D = 1, thus all the layers yield the output of the same size, the number of
trainable weights is C2× τ , C × τ +C3 and C × τ +C2, for the standard, separable
and depthwise convolutional layers, respectively. The corresponding number of the
multiplications is C2 × τ × (T − τ +1), C × τ × (T − τ +1)+C2 × (T − τ +1) and
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Figure 6.4: Illustration of convolution in a separable convolutional layer.

Figure 6.5: Illustration of convolution in a depthwise convolutional layer.

C × τ × (T − τ + 1) + C × (T − τ + 1).
To analyse multi-channel M/EEG data, multiple models with standard,
separable and dephtwise convolutional layers have been investigated. In
[Schirrmeister et al. 2017], DeepConvNet and ShallowConvNet have been proposed
for classification of motor task and motor-imagery task related EEG signals. In
[Lawhern et al. 2018], a more compact CNN model termed as EEGNet has been
proposed for BCI applications.
DeepConvNet [Schirrmeister et al. 2017] model is composed of four convolutional
layers and one fully connected layer. The first layer contains separable convolutions
as given in Eqs. 6.10 and 6.11, while the following three contain standard convolu-
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tions as in Eq. 6.9. Each convolutional layer is followed by a batch normalization,
an Exponential Linear Unit (ELU) non-linearity, a max-pooling and drop-out op-
erations. The features extracted from the last layer are fed into a fully connected
network.
ShallowConvNet , a more compact model, was proposed in the same work of
[Schirrmeister et al. 2017]. It contains one separable convolutional layer with longer
filters compared to DeepConvNet and one fully connected layer. The convolutional
layer is followed by a batch normalization, a square non-linearity, average pooling, a
logarithmic non-linearity, inspired by filter bank common spatial pattern approach
[Ang et al. 2008] and a drop-out layer. As in DeepConvNet, the extracted features
are fed into a fully connected network which performs the final inference.
EEGNet model has been proposed as a compact CNN for EEG BCI applications
in [Lawhern et al. 2018]. It is composed of two convolutional layers, the former with
depthwise convolutions as in Eqs. 6.10 and 6.12 and the latter with separable con-
volutions as in Eqs. 6.10 and 6.11. In addition to the batch normalization layers
applied after each of the convolutional layers, it is also performed after the convolu-
tion with the temporal filters in the depthwise convolutional layer. As non-linearity,
ELU is used. It is followed by average pooling layer and drop-out layer. The last
layer of the model is one fully connected layer.
All the three models, DeepConvNet, ShallowConvNet and EEGNet, apart from the
regularization achieved indirectly with batch normalization and drop-out operations,
regularize the model weights directly by constraining their maximum norm.
In addition to the three described methods, in the context of passive BCI (classifica-
tion of cognitive load) a recurrent-CNN has been proposed in [Bashivan et al. 2015].
The authors proposed to transform EEG signals into a sequence of topology preserv-
ing multi-spectral images, which are used to train the model. The transformation
is achieved by projecting spatial component of the signals to 2D images for differ-
ent power spectrum bands (theta, alpha, beta), where each band is treated as one
channel (R, G, B) of a video.

6.4 Conclusion

In this chapter, we have firstly describe modeling of multivariate EEG and MEG sig-
nals as sum of rank-1 multivariate signals corresponding to individual brain sources
and noise, where temporal courses of the brain activities are modeled as convolution
of activation signals and characteristic temporal waveforms. Further, we have pro-
vided an overview of the most important inverse problems in EEG and MEG signal
analysis. Whereas in the section state of the art, we have provided a more detailed
description of the most prominent multivariate convolutional dictionary learning
approaches. At the end, an overview of the CNN models used for EEG and MEG
signal classification in the BCI is provided.
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Executive summary

This chapter contains our first contribution in the field of EEG and MEG analysis.
We have proposed a model for rank-1 spatial and temporal convolutional dictionary
learning with L0 constraint. Firstly, we introduce constrained least mean square
minimization problem we have addressed, followed by a description of multivariate
signal encoding and decoding steps, and the process of dictionary update. Since the
optimization problem is globally non-convex, we have illustrated the importance of
proper initialization of the initial dictionaries. The model is quantitatively compared
with rank-1 multivariate convolutional dictionary learning with L1 constraint on the
synthetic data. Qualitative analysis is provided for the real MEG somatosensory
data and HCP MEG motor dataset.
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with L0 constraint

7.1 Introduction

Brain activity associated to the cognitive processes, execution of the sensory-motor
tasks, and certain neurodegenerative disorders can be often characterized by specific
time courses and their location in the cerebral cortex. Thus, the extraction of rele-
vant temporal waveforms and spatial patterns from M/EEG signals is of interest in
the active and passive BCI, in the analysis of dynamic brain networks and for a bet-
ter understanding of the brain disorders. As presented in Chapter 6, assuming that
the waveforms are of a transient and recurrent nature [van Ede et al. 2018], M/EEG
signal X ∈ RC×T measured over C channels and T time instants can be modeled as
a sum of rank-1 multivariate signals and additive noise N [La Tour et al. 2018] as:

X =
K∑
k=1

uk · (zk ∗ vk)T +N (7.1)

where vk ∈ Rτ is a waveform associated to the source k and zk ∈ RT+τ−1 is
a sparse vector with Dirac impulses indicating instants of the activation of the
waveform k. uk ∈ RC is a topographic map which describes how signals from
source k spread over channels. N is an additive noise which incorporates subject,
environment and device related sources of noise. The estimation of {vk,uk, zk} from
the observed signal X is an ill-posed inverse problem which has been addressed via
multivariate convolutional dictionary learning paradigms as described in Chapter 6.
In [La Tour et al. 2018], the authors proposed a rank-1 spatio-temporal dictionary
learning with L1 sparsity constraint imposed on the activation vectors {zk}. With
this regularization term, the estimation of the sparse activation vectors is a convex
problem when the atoms in the spatial and temporal dictionaries are fixed. On the
other hand, L0 constraint results in an NP-hard problem with respect to {zk}. In
the context of univariate translation noninvariant dictionary learning, sparse vector
estimation with L0 constraint can be solved via Iterative Hard Thresholding (IHT)
[Blumensath & Davies 2008] if the dictionary satisfies restricted isometry condition
[Candès et al. 2006]. The solution can be formulated as follows. Given a univariate
signal x ∈ RN and a dictionary D ∈ RN×K , with K being the number of atoms
and N being the length of x, a sparse vector zi+1 ∈ RK , in the iteration i + 1, is
estimated via IHT as

zi+1 = Hλ

(
zi +DT (x−Dzi)

)
. (7.2)

where Hλ is a thresholding operator and z0 = 0. Although convolution can
be written in a form of matrix vector multiplication, by transforming atoms
{vk} into a matrix D, it is clear that one such matrix does not satisfy re-
stricted isometry condition (nearly orthogonal matrix) even only with respect
to the thresholding operator. To address this problem, matching pursuit (MP)
[Mallat & Zhang 1993, Pati et al. 1993] algorithms have been used, which are greedy
algorithms, where instead of the thresholding operator, the maximum absolute
value (of the inner product) is used to approximate the sparse representations.
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In the context of multivariate signal sparse coding, multichannel MP solutions
have been proposed in [Gribonval 2003, Durka et al. 2005, Barthélemy et al. 2012].
Whereas in [Gribonval 2003, Durka et al. 2005], multichannel MP solutions have
been proposed for the sparse representations given the dictionary of Gabor atoms,
in [Barthélemy et al. 2012], multichannel MP has been used in dictionary learning.
In this chapter, we have investigated a rank-1 convolutional dictionary learn-
ing with L0 constraint. This problem is determined up to waveform shift and
rank-1 atom sign. Therefore, as in [La Tour et al. 2018], we assume that one
source always has activity of the same polarity which is non-negative. As in
the standard dictionary learning paradigms, the estimation of the dictionaries
and the activation vectors is alternated. To estimate the sparse activations,
we have used a greedy approach inspired by the sparse autoencoders, IHT and
OMP methods, adjusted to the rank-1 convolutional atoms. It iteratively uses
ReLU (thresholding) and maximum operator to estimate the sparse activation
vectors. The combination of ReLU and maximum operator for the estimation
of the activations has been commonly used in the family of sparse autoencoders
[Makhzani & Frey 2013, Makhzani & Frey 2014, Luo et al. 2017]. In contrast to the
sparse coding in [Gribonval 2003, Durka et al. 2005, Barthélemy et al. 2012], where
the multivariate sparse representations are estimated for univariate temporal atoms
(Gabor or learnable) (see Eq. 6.7), our approach estimates univariate sparse repre-
sentations given the pairs of the spatial and temporal atoms (see Eq. 6.8). Further,
whereas in [Gribonval 2003, Durka et al. 2005, Barthélemy et al. 2012], in each it-
eration sparse representation for one atom is updated, in our approach in each
iteration sparse representations for all pairs of atoms are updated at once. Finally,
using ReLU and maximum operator sparse representations are enforced to be non-
negative, while in [Gribonval 2003, Durka et al. 2005, Barthélemy et al. 2012] they
can have arbitrary sign. As in [La Tour et al. 2018], for fixed activations, the indi-
vidual update of the spatial and temporal patterns is a convex problem, thus we
have used Adam optimizer [Kingma & Ba 2014], which is faster than the traditional
stochastic gradient descent.

7.2 Method

We aim to address the multivariate translation-invariant dictionary learning problem
from Eq. 6.8, redefined as

ûk, v̂k, ẑk = argmin
uk,vk,zkn

1

N

N∑
n=1

∣∣∣∣∣∣∣∣Xn −
K∑
k=1

zkn ∗ (ukvTk )
∣∣∣∣∣∣∣∣2
2

s.t. ||zkn||0 ≤ Q , zkn > 0 , ||vk||22 ≤ 1 + d , ||uk||22 ≤ 1 + d

for k ∈ {1, 2, ...,K} and for n ∈ {1, 2, ..., N}

where Q is a parameter that ensures sparsity of the activations {{zkn}Kk=1}Nn=1 and
d ∈ R is a small constant. Joint estimation of the {vk,uk}Kk=1 and {{zkn}Kk=1}Nn=1 is
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a non-convex problem, which is in addition NP-hard due to the L0 norm imposed
on the sparse vectors. On the other hand, minimization with respect to {vk}Kk=1 or
{uk}Kk=1, while keeping the other two sets of variables fixed is a convex problem.
The process of the sparse activation vector encoding and decoding is illustrated
in Figure 7.1. Both encoding and decoding steps use the same dictionary atoms
{vk,uk}Kk=1. Given a sample Xn ∈ RC×T , in the encoding process, the sparse
codes {zk,Qn }Kk=1 are non-linearly iteratively estimated over Q iterations, while in
the decoding process, they are linearly mapped to the signal X̂n.

Figure 7.1: Illustration of the encoding and decoding procedures. Estimation of
the sparse codes is performed iteratively, where in each encoding cycle at most one
activation per source is estimated. After Q encoding cycles, the activations are
linearly mapped to a reconstructed signal.

7.2.1 Encoding

In the encoding process, we use correlations along spatial and temporal multivariate
signal dimensions to identify the atom activations. Given a multivariate data sample
Xn ∈ RC×T , correlations with a spatial dictionary of atoms {uk}Kk=1 is given by

skn = XT
n uk for k ∈ {1, ...,K} (7.3)

where skn ∈ RT . Correlation of {skn}Kk=1 with the temporal dictionary of atoms
{vk}Kk=1 is given by

ckn = skn ∗ Jvk for k ∈ {1, ...,K} (7.4)

where ckn is zero-padded so that ckn ∈ RT . Jvk is reversed version of the atom vk.
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Iterative estimation of activations. For a sample Xn, the activation
vectors {zk,in ∈ RT+τ−1}Kk=1 in iteration i are estimated as

Xi
n = Xi−1

n −
K∑
k=1

uk(y
k,i
n ∗ vk)T = X0

n −
K∑
k=1

uk(z
k,i
n ∗ vk)T (7.5)

where X0
n = Xn and zk,0n = 0, and zk,in = zk,i−1

n + yk,in . yk,in is a sparse vector
containing at most one activation estimated as follows. Given Xi−1

n , we estimate
ck,i−1
n using Equations 7.3 and 7.4. The position of the activation of the kth atom

in the ith iteration is performed as jk,in =argmax(ReLU(ck,i−1
n )) since the activa-

tions are constrained to be non-negative. The amplitude of the activation in yk,in is
determined as

yk,in [j] =

{
ck,i−1
n [j] if j = jk,in and ||Xi−1

n [:, ..j..]− ck,i−1
n [j]ukv

T
k ||22 < ||Xi−1

n [:, ..j..]||22
0 otherwise

.

(7.6)
The vectors {yk,in }Kk=1 are zero padded so that yk,in ∈ RT+τ−1, thus yk,in ∗ vk ∈ RT .
If some multivariate signal X = u(z∗v)T , where z contains only one Dirac impulse,
peak of its spatio-temporal correlation c = uTX ∗ Jv corresponds to the peak of z,
only if ||u||2||v||2 = 1. Therefore, since the constraints ||uk||2 = 1 or ||vk||2 = 1 are
non-convex, we have constrained the atoms to have norm lower than 1+ d, where d
is a small constant. The step defined in Eq. 7.5 is repeated Q times, ensuring that
||zk,Qn ||0 ≤ Q. An illustration of one encoding cycle is provided in Figure 7.2.

Figure 7.2: Illustration of one encoding cycle with a model containing K = 2 pairs
of spatial and temporal patterns. For simplicity, superscripts indicating iteration
are removed.

7.2.2 Decoding

Once the activations are estimated, they are linearly mapped to the reconstructed
signals as

X̂n =
K∑
k=1

uk(z
k
n ∗ vk)

T . (7.7)

Decoding process is illustrated in Figure 7.3.



124
Chapter 7. Rank-1 M/EEG waveform and spatial pattern learning

with L0 constraint

Figure 7.3: Illustration of decoding with K = 2 pairs of spatial and temporal
patterns.

7.2.3 Loss and update of the dictionaries

If we denote encoding and decoding processes with E and D, respectively, the loss
function is defined as the MSE as

L =
1

N

N∑
n=1

∣∣∣∣∣∣∣∣Xn −D
(
E(Xn|{uk,vk}Kk=1)|{uk,vk}Kk=1

)∣∣∣∣∣∣∣∣2
2

(7.8)

or

L =
1

N

N∑
n=1

∣∣∣∣∣∣∣∣Xn −
K∑
k=1

uk(E(Xn|{uk,vk}Kk=1)k ∗ vk)
T

∣∣∣∣∣∣∣∣2
2

. (7.9)

Given the estimated activations {{zkn}Kk=1}Nn=1, the loss function can be rewritten as

L =
1

N

N∑
n=1

∣∣∣∣∣∣∣∣Xn −
K∑
k=1

uk(z
k
n ∗ vk)

T

∣∣∣∣∣∣∣∣2
2

. (7.10)

It is the same minimization problem used to estimate dictionaries in
[La Tour et al. 2018], although not convex jointly, the problem is convex individ-
ually with respect to uk and vk. Gradient of L with respect to uk is

∂L
∂uk

= −2
1

N

N∑
n=1

(
Xn −

K∑
k=1

uk
(
zkn ∗ vk

)T)T (
zkn ∗ vk

)
(7.11)

and gradient of L with respect to vk is

∂L
∂vk[q]

= −2
1

N

N∑
n=1

T∑
j=0

(
uTk

(
Xn −

K∑
k=1

uk
(
zkn ∗ vk

)T)
[q + j]zkn

[
τ

2
+ j

])
. (7.12)

Atoms are updated using the Adam optimizer [Kingma & Ba 2014] where in each
training iteration t a weight w is updated as

wt+1 = wt − η
νt√
st + ε

gt (7.13)
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where
νt = β1νt−1 + (1− β1)gt (7.14)

and
st = β2st−1 + (1− β2)g

2
t (7.15)

where η is the learning rate. gt is a gradient as defined in Eqs. 7.11 and 7.12. νt and
st are gradient’s moving mean and moving variance, where β1 and β2 are constant
determining the contributions of the past and current gradients. ε is small constant
ensuring stability of the division. The training is performed by alternating between
the update of spatial and temporal atoms.

7.2.4 Testing

During the testing phase, sparse vectors are estimated over P iterations, which does
not need to be equal to Q, as it will be discussed in the following section. After each
iteration of the sparse vector estimation according to Eqs. 7.5 - 7.6, amplitude of the
activations are refined over R steps, where refinements are allowed to be negative.
Given a sparse vector zk,in in iteration i and remaining signal Xi

n, in a refinement
step r

Xi,r
n = Xi,r−1

n −
K∑
k=1

uk(y
k,r
n ∗ vk)T (7.16)

where Xi,0
n = Xi

n, z
k,i,0
n = zk,in , and zk,i,rn = zk,i,r−1

n + yk,rn . yk,rn is a sparse refine-
ment vector containing at most one activation estimated as follows. Given Xi,r−1

n ,
we estimate ck,i,r−1

n using Equations 7.3 and 7.4. Position of the activation up-
date within sparse vector zk,i,r−1

n is selected as jk,i,rn =argmax(|ck,i,r−1
n |), such that

zk,i,r−1
n [jk,i,rn ] ̸= 0. The update is performed as

yk,rn [jk,i,rn ] =

{
0 if ck,i,r−1

n [jk,i,rn ] + zk,i,r−1
n [jk,i,rn ] ≤ 0

ck,i,r−1
n [jk,i,rn ] if ck,i,r−1

n [jk,i,rn ] + zk,i,r−1
n [jk,i,rn ] > 0

. (7.17)

Allowing the negative refinements during testing phase, is introduced since the am-
plitudes of the activation vectors obtained via spatio-temporal correlation might
contain contributions of the other activations. Whereas, this is the case during the
training as well, refinement steps increase training time and the estimation of the
activation as in Eqs. 7.5 - 7.6 is sufficient from the point of view of the dictionary
updates.

7.3 Databases

We have compared our model with the multivariate convolutional sparse coding
algorithm [La Tour et al. 2018] on synthetic data and somatosensory MEG data.
Furthermore, the model is evaluated on the HCP motor task dataset.
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Synthetic dataset

A synthetic MEG dataset is generated using the MNE toolbox
[Gramfort et al. 2013a]. The forward solution is taken from the "sample_audvis-
meg-eeg-oct-6-fwd" dataset, which contains 204 MEG gradiometers and 7498
sources. For temporal waveforms, we have used a spike, a sinusoid weighted by a
Gaussian window and a saw-tooth signal. The positions of the selected sources,
their topographic maps and their corresponding temporal waveforms are illustrated
in Figure 7.4. Sparse activation vectors are generated with density 0.01 and a range
of amplitudes drawn from a uniform distribution [0, 1]. Their duration without zero
padding is 5s. Temporal courses are obtained by convolving the zero-padded sparse
activations with the temporal waveforms. Their duration is 7s. The sampling rate
is 128Hz. The total number of generated samples for training and testing sets is
100. The experiments are conduced on data without noise and data distorted with
noise of variance σ = 0.1. Illustrations of activations and 20 channels corresponding
to one generated sample without and with noise are provided in Figure 7.5

a) b)

Figure 7.4: Illustration of active sources a) and corresponding waveforms and topo-
graphic maps b).
Images generated using: MNE-python [Gramfort et al. 2013a]

Motor-task HCP MEG dataset

The motor-task MEG dataset is part of the open HCP dataset
[Van Essen et al. 2012]. We have selected MEG recordings of five out of 61
subjects acquired over two sessions where participants were guided by visual cues
to move either the right hand, left hand, right foot, or left foot. Each session was
composed of 42 blocks, where 10 blocks were resting state blocks and 32 blocks
were movement blocks (8 block per movement). Each movement block contains 10
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a) b) c)

Figure 7.5: Illustrations of activations a) and signals recorded at 20 randomly se-
lected channels without noise b) and with noise σ = 0.1 c).

movements guided by a visual stimulus. A stimulus lasts 150ms and is followed by
1050ms of black screen. The number of MEG channels is 248. Sampling frequency
is 2034.52 Hz. Signals are segmented into 2.4s long epochs.
To preprocess the raw MEG signals, we have used preprocessing pipeline from
the MNE-HCP library [Gramfort et al. 2013b]. It included reference correction,
filtering with bandpass Butterworth filter of order 4 with cutoff frequencies of 0.5
Hz and 60 Hz, removing of artefacts using ICA and interpolating missing or bad
channels. In our experiments, we have subsequently downsampled the signals by a
factor 12, given that the signals are low-pass filtered with a cut-off frequency of 60
Hz. Thus, the sampling frequency is ∼ 170 Hz. For stability of the model, signals
are scaled with the factor 5 · 1012. The scaling is desirable in order to alleviate the
vanishing gradients.

Somatosensory MEG dataset

In the somatosensory MEG dataset, somatosensory EM fields were evoked
by electrical stimulation of the median nerve at wrist [Sorrentino et al. 2009].
The stimuli were repeated with intervals randomly chosen between 7s and 9s.
The MEG signals were acquired with 204 gradiometers and 102 magnetome-
ters with sampling rate of 600Hz. The dataset was taken from the MNE-
python toolbox [Gramfort et al. 2013a], and preprocessing was performed as in
[La Tour et al. 2018], including filtering with two notch filters of 50Hz and 100Hz,
downsampling to a sampling frequency of 150Hz, segmentation into epochs of 6s
length, epoched signals weighting with a Tukey window, and normalization by their
standard deviation. The total number of extracted epochs is 103. In our experi-
ments, we have used only the gradiometer channels as in [La Tour et al. 2018].
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7.4 Implementation details

Initialization

As the minimization problem from Eq. 7.10 is non-convex, we have investigated
how different initializations of spatial and temporal patterns influence convergence
of the optimization process. These experiments are conducted on synthetic data
without noise and for each initialization type are repeated 50 times. The model
includes three pairs of spatial and temporal patterns, whose norm is constrained to
1 + d, where d = 0.01. The maximum number of the activations allowed during
training and testing is Q = P = 40 and the maximum number of the refinement
steps in testing phase is R = 50. In the first experiment, we have used random
Gaussian N (0, n) initialization of both the spatial and temporal patterns with dif-
ferent standard deviations n ∈ {1.0, 0.1, 0.01, 0.001}. The corresponding learning
curves are illustrated in Figure 7.6 a) (left). The MSE between the ground truth
and the obtained reconstructions on train and test datasets are illustrated in Figure
7.6 b) (left). In a second and third initialization strategies, temporal waveforms are
initialized with a constant normalized to norm 1. In the second strategy, the spa-
tial patterns are initialized with 1+nUc(−1, 1), where Uc(−1, 1) refers to continuous
uniform distribution in the range of [−1, 1]. In the third strategy, they are initialized
with 1 + nUd[−1, 1], where Ud[−1, 1] are drawn from discrete uniform distribution
{−1, 0, 1}. In both cases n ∈ {0.1, 0.01, 0.001, 0.0001}. After the initialization, as
for the temporal patterns, they are normalized to norm 1. Corresponding learning
curves for the second and third strategy are illustrated in Figure 7.6 a) (middle,
right), while the MSE between ground truth and reconstructions on train and test
datasets are illustrated in Figure 7.6 b) (middle, right).
As Figure 7.6 shows, the initialization of the patterns with random values gives very
dispersed learning curves with almost no difference between the different standard
deviations of the distribution of the initialization values. On the other hand, initial-
ization of the temporal patterns with a constant and spatial patterns with values
close to a constant (second and third initialization strategies), yields more coherent
learning curves and lower MSEs both on train and test datasets. We can also no-
tice that the losses and MSE decrease with the standard deviation of the uniform
distributions.

The impact of Q and P

The maximum number of activations Q determines the number of selected acti-
vations with the highest amplitude which contribute to the reconstructed signal
during training and thus contribute to the update of the dictionaries. If this
number is low, update of the dictionaries will be based on a smaller amount of
data segments which correlate the best with the atoms of the dictionaries. Due to
the non-convexity of the problem, there is a risk that initial patterns might best
correlate to non-representative segments of the signals, leading the minimization
process to local minima. On the other hand, if this number is high enough, the
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a)

b)

Figure 7.6: Illustration of learning curves a) and MSEs on train and test datasets b)
for different initialization strategies for 50 repetitions of the experiments. Random
initialization (left), constant initialization of temporal weights and initialization of
spatial weights with values drawn from continious uniform distribution (middle),
constant initialization of temporal weights and initialization of spatial weights with
values drawn from discrete uniform distribution (right).

update of the atoms is guided with a higher amount of data segments, so among
this segments there is a higher chance that some are well-representative and there
is more room for a correction of the optimization path. Finally, if the number Q is
very high, the algorithm might tend to learn more compact waveforms, especially
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when periodic waveforms such as the sawtooth are present in an overall signal.
Activation vectors in synthetic data are generated with a density of 0.01, thus a
total number of activations per waveform is ∼ 12.8. Firstly, we have investigated
how the maximum number of activations during training Q influences the learning
process on noiseless data. The learning curves and MSEs estimated on the training
and testing data for Q = 30 and Q = 40 are depicted in Figure 7.7. It shows that
the decreasing Q to 30 yields slightly lower MSEs averaged over 50 experiment
repetitions, but the MSE standard deviation is higher, when compared to Q = 40.
When the data is affected by a significant noise, it is of interest to train the
dictionaries with the activations of a high amplitude, since those with a lower
amplitude might be below or close to the level of noise. The learning curves and
MSEs with respect to noiseless ground truth signals, different values of Q ∈ {10, 20}
and different values of P ∈ {10, 40} are provided in Figure 7.8. The results indicate
that for noisy data, average MSE is lowest for low Q = P = 10. In accordance to
the results obtained with noiseless data, of P = 10, increasing Q from 10 to 20

yields a lower standard deviation of the MSEs.

Figure 7.7: Illustration of MSEs on train and test on noiseless datasets for different
values of the maximum number of activations during training Q ∈ {30, 40}, where
test P = 40.

7.5 Results

We have compared our method with a rank-1 multivariate dictionary learning
method with L1 constraint [La Tour et al. 2018] on the synthetic data and the so-



7.5. Results 131

Figure 7.8: Illustration of MSEs on train and test on noisy datasets for different
values of the maximum number of activations during training Q ∈ {10, 20}, and
testing P ∈ {10, 40}.

matosensory MEG dataset. Further, we have analyzed the results obtained with our
method applied on the motor-task MEG HCP data.

Comparison with the state of the art

Firstly, we have compared the MSE between the ground truth and the reconstructed
data on noiseless synthetic data and the MSE between the ground truth and the
estimated activation vectors. Since the learned temporal patterns can be shifted
compared to the ground truth, the MSE between the activations corresponds to
the mimimum MSE between the ground truth and corresponding shifted estimated
vectors. In this experiment, the maximum number of activations in train and test
phase Q = P = 40 and the number of refinement steps R = 50. The selection of
the hyperparameters for MCSC method is given in Appendix C. As illustrated in
Figure 7.9, our model yields lower reconstruction errors and has a lower standard
deviation. The MSE between activations is lower for MCSC for the the waveforms
with a narrower support such as spikes and Gaussian weighted sinusoidal waves, but
a significantly higher error for the sawtooth waves which have a wide support.
Estimated waveforms are compared in terms of the maximum absolute correlation
with ground truth waveforms. In Figure 7.10, we can see that our model estimates
Gaussian weighted sines and sawtooths that correlate on average better with the
ground truth. This is especially prominent for the sawtooth waveform. MCSC gives
better estimates of the spikes on average. In addition, we can see that the standard
deviation of the maximum correlation over 50 experiment repetitions is lower with
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Figure 7.9: Comparison of MSEs between the ground truth and the reconstructed
signals and MSEs between the ground truth and the estimated activation vectors
on the noiseless data.

our model.

Figure 7.10: Average and standard deviation of the maximum absolute correlation
between the ground truth and the estimated waveforms with MCSC (blue) and our
method (orange) on noiseless data.

Further, we have visually compared the estimated patterns and the activation vec-
tors for the experiments where the average MSE between the ground truth and the
estimated activations is the lowest (Figure 7.11 a)) and the highest (Figure 7.12 a))
and where the reconstruction error is the lowest (Figure 7.11 b)) and the highest
7.12 b)). As we can notice in Figure 7.11, both methods are able to estimate spa-
tial and temporal patterns which highly resemble to ground truth up to the sign
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and shift. The estimated activations for spikes and sawtooth signals also exhibit
a high resemblance with ground truth, while the activations for Gaussian weighted
sinusoidal waveforms considerably differ (which is in accordance with the results
illustrated in Figure 7.9). For the Gaussian weighted sinusoidal waveforms, in the
segments with close activations, our model tends to estimate more dense activations
with lower amplitudes.
As we can notice in Figure 7.12 a), where the worst results, in terms of activations,
are illustrated, our model has difficulty in the estimation of spike pattern and MCSC
with the estimation of sawtooth. To compensate these errors, both methods yield
denser activation vectors for the corresponding patterns. These errors in the tempo-
ral pattern estimation are the ones which appear most commonly over repetitions of
the experiments. The comparison of the worst results, in terms of the reconstruction
error 7.12 b), show that MCSC failed to separate Gaussian weighted sinusoidal and
sawtooth patterns. Also, the results obtained with our method, indicate that a high
reconstruction error comes due to the difficulty in the estimation of the activation
vectors for the Gaussian weighted sinusoidal.
Models are also compared on synthetic data distorted with Gaussian noise of a
standard deviation of 0.1. The selection of the hyperparameters on such data is
quite challenging as it requires some prior knowledge. As provided in Appendix C,
selecting parameters which minimize MSE between the input noisy signals and the
reconstructions may lead to very noisy estimated patterns. Although it is not a
real world scenario, to investigate the potential of the models, in this experiment,
the hyperparameters are chosen based on the MSE between the noiseless ground
truth and the reconstructions estimated on noisy data. The selection of the hy-
perparameters for MCSC are given in Appendix C. Our model is selected based
on the results illustrated in Figure 7.8, thus the maximum number of activations
during training and testing phases Q = P = 10, while the number of refinement
steps R = 50. As in the previous experiments, we have firstly compared models in
terms of MSEs between the noiseless ground truth and the obtained reconstructions
and MSE between the ground truth and the estimated activations. The average
MSE and standard deviations are illustrated in Figure 7.13. As it can be seen,
the average reconstruction error obtained with our model is slightly lower. On the
other hand, the average MSE between the activations for all temporal patterns is
significantly lower with MCSC. Contrary to that, the maximum correlations with
ground truth patterns are on average higher with our model with a considerable
lower standard deviation over the experiment repetitions as depicted in Figure 7.14.
The visual comparison of the best and the worse results, according to the mean
MSE between the activations and between the reconstruction error, are provided
in Figures 7.15 and 7.16. We can notice in both scenarios that the spike patterns
are better centered with MCSC, while our model gives smoother temporal patterns
which resemble more to the ground truth. Despite the fact that the average MSEs
between the activations are much higher with our model, we can notice in the Figure
7.15 and Figure 7.16 that they quite resemble to the ground truth activations, while
MCSC yields more spurious low amplitude activations.
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a)

b)

Figure 7.11: Visual comparison of the estimated and the ground truth patterns and
the training and testing activation vectors on the experiments where the mean MSE
between the ground truth and the estimated activations is the lowest a) and where
the reconstruction error is the lowest b)

Finally, the methods are compared on the somatosensory MEG dataset. As in the
experiment presented in [La Tour et al. 2018], we have trained a model with 25
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a)

b)

Figure 7.12: Visual comparison of the estimated and the ground truth patterns and
the training and testing activation vectors on the experiments where the mean MSE
between the ground truth and the estimated activations is the highest a) and where
the reconstruction error is the highest b).

pairs of temporal and spatial patterns. Due to a very large number of atoms, the
maximum number of activations per atom pair during train and test Q = P = 1
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Figure 7.13: Comparison of MSE between ground truth and reconstructed signals
and MSE between ground truth and estimated activation vectors on data distorted
by Gaussian noise of standard deviation 0.1.

Figure 7.14: Average and standard deviation of maximum absolute correlation be-
tween ground truth and estimated waveforms with MCSC (blue) and our (orange)
methods on data distorted by Gaussian noise of standard deviation 0.1.

and the maximum number of refinement steps R = 50. The length of temporal
waveforms in both models is 1s. The average explained variance over epochs is
15.65% and 18.15% for MCSC and our method, respectively. Illustrations of the
estimated atoms and activations are given in Figure 7.17. They show that the
extracted temporal and spatial patterns between the methods in a great extent
visually resemble. A great number of temporal atoms correspond to a special type
of α waves, so called µ waves which occur in the sensorimotor cortex and are an
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a)

b)

Figure 7.15: Visual comparison of the estimated and the ground truth patterns and
the training and testing activation vectors on the experiments where the mean MSE
between the ground truth and the estimated activations is the lowest a) and where
the reconstruction error is the lowest b).

indicator that the motor system is idling. As expected, the peak of their power
spectral density is around 10−12Hz. The highest intensity of the associated spatial
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a)

b)

Figure 7.16: Visual comparison of the estimated and the ground truth patterns and
the training and testing activation vectors on the experiments where the mean MSE
between the ground truth and the estimated activations is the highest a) and where
the reconstruction error is the highest b).

patterns corresponds, to a certain extent, to the location of the sensorimotor cortex.
We can also notice few patterns resembling to spikes extracted with our method,
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whose power spectral density has peaks in a range below 10Hz. Their associated
spatial patterns have peaks in the prefrontal cortex. In Figure 7.18, we illustrate
the distributions of correlations between the estimated rank-1 atoms, where we can
see that our model provides less correlated atoms.

a)

b)

Figure 7.17: Illustration of estimated temporal patterns (first row), their power
spectral density (second row), spatial patterns (third row) and corresponding ac-
tivations averaged over epochs(fourth row) obtained with MCSC a) and with our
method b).

HCP results

We have trained models with one pair of spatial and temporal atoms, where the
maximum number of activations during train Q is 5 and the maximum number of
activations during test P is 2. The models are trained on one session and tested
on both training and testing sessions. For each subject and each event (left hand,
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Figure 7.18: Distribution of correlations between different rank-1 atoms obtained
with MCSC and our method.

left foot, right hand, right foot movements and fixations), one model is trained.
The obtained spatial and temporal patterns, and training and testing activations
averaged over epochs are illustrated for five subjects in Figures 7.19, 7.20, 7.21,
7.22 and 7.23. Firstly, we can notice that the spectral composition of the estimated
waveforms differ significantly between subjects, while it is similar across different
events. Also, average activations on training and testing sessions are consistent. We
can notice that spectral components in the range 8 − 12Hz are emphasised in the
case of the subjects 104012, 108323 and 109123 for all events. For subjects 104012

and 109123, the spectral components below 4Hz are of higher amplitudes for events
which contain movements compared to fixation/resting state epochs. Apart for the
subject 105923, by analysing the average activations, we can notice that for the
epochs with movements, show two well separated clusters which correspond to two
movements per each epoch. On the other hand, the average activations for fixation
epochs are mostly uniformly distributed over time. High peaks at the beginning and
end of the average activations are due to proximity to the signal border (taking into
account that duration of the signal is 2.4s and duration of the temporal patterns is
1s). If the models are trained with Q = 3 and P = 2, waveforms tend not to be
well centered. On the other hand if Q = 10 and P = 2 separation of the activations
are less specific (illustrations provided in Appendix C).
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Figure 7.19: Subject 104012 Illustration of estimated temporal patterns (first
row), their power spectral density (second row), spatial patterns (third row), ac-
tivations on training session (fourth row) and activations on testing session (fifth
row) obtained with our method. Left hand (first column), left foot (second col-
umn), right hand (third column), right foot (fourth column) movements, fixa-
tion/resting (fifth column).

Figure 7.20: Subject 105923 Illustration of estimated temporal patterns (first
row), their power spectral density (second row), spatial patterns (third row), ac-
tivations on training session (fourth row) and activations on testing session (fifth
row) obtained with our method. Left hand (first column), left foot (second col-
umn), right hand (third column), right foot (fourth column) movements, fixa-
tion/resting (fifth column).
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Figure 7.21: Subject 106521 Illustration of estimated temporal patterns (first
row), their power spectral density (second row), spatial patterns (third row), ac-
tivations on training session (fourth row) and activations on testing session (fifth
row) obtained with our method. Left hand (first column), left foot (second col-
umn), right hand (third column), right foot (fourth column) movements, fixa-
tion/resting (fifth column).

Figure 7.22: Subject 108323 Illustration of estimated temporal patterns (first
row), their power spectral density (second row), spatial patterns (third row), ac-
tivations on training session (fourth row) and activations on testing session (fifth
row) obtained with our method. Left hand (first column), left foot (second col-
umn), right hand (third column), right foot (fourth column) movements, fixa-
tion/resting (fifth column).
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Figure 7.23: Subject 109123 Illustration of estimated temporal patterns (first
row), their power spectral density (second row), spatial patterns (third row), ac-
tivations on training session (fourth row) and activations on testing session (fifth
row) obtained with our method. Left hand (first column), left foot (second col-
umn), right hand (third column), right foot (fourth column) movements, fixa-
tion/resting (fifth column).
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7.6 Conclusion

In this chapter, we have investigated an approach for M/EEG convolutional dictio-
nary learning with L0 constraint. The model assumes that the multivariate M/EEG
signals associated to the individual brain sources are of rank-1 and that they ap-
pear always with the same polarity. During the dictionary learning, the sparse
activation vectors and the dictionaries are estimated alternatively. The sparse acti-
vation vectors are estimated iteratively via an approach inspired by the sparse au-
toencoders [Makhzani & Frey 2013, Makhzani & Frey 2014, Luo et al. 2017], IHT
[Blumensath & Davies 2008] and MP [Mallat & Zhang 1993] approaches, adjusted
to the convolutional rank-1 spatio-temporal dictionaries. Updates of the spatial
and temporal dictionaries are performed independently using adaptive moment es-
timation (Adam) optimizer [Kingma & Ba 2014]. Since the minimization problem
is globally non-convex, we have proposed initialization strategies which decrease
chances that the optimization process ends in a local minima. The approach is
compared with the state-of-the art MCSC [La Tour et al. 2018], an approach with
L1 regularization on the synthetic and somatosensory MEG dataset. The results
demonstrated that our method is capable to learn dictionaries which on average
better correlate with ground truth, both on noiseless and noisy datasets. This is es-
pecially prominent for the waveforms of wide support such as sawtooth waveforms.
On the other hand, on average, MCSC yields better estimates of the activation
vectors, which is more prominent for noisy data. Qualitative comparison on the
somatosensory MEG dataset, showed that our approach is able to learn MEG dic-
tionaries which highly resemble to the ones obtained with MCSC. The analysis of
the dictionaries and activations obtained on HCP MEG motor task data with only
a single pair of atoms, indicate that the proposed approach is capable to extract
motor-task related patterns, which generalize well over an unseen session.
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Executive summary

In this chapter, we present a shallow CNN model for EEG and MEG multivariate
signal classification. In this model, in addition to the rank-1 assumption and mod-
eling of time courses as convolution of sparse activation signals and characteristic
waveforms, in order to reduce impact of inter-subject and inter-session variabilities,
we have assumed that the subject’s head can be modeled as a sphere. As tradi-
tional BCI pipelines, the model is composed of a feature extraction, selection and
classification modules which are presented in Section 8.2. This section also contains
details related to the update of trainable parameters. The model is compared with
three state-of-the-art CNN models for a passive and active BCI problems on EEG
mental workload and MEG motor task signal classification.
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8.1 Theory

Apart from being distorted by a significant noise, the main challenge of the anal-
ysis of the M/EEG signals comes from inter-subject and inter-session variability.
The former one arises from different head geometries between subjects, but also
due to different functional properties of the cortex [Saha & Baumert 2020]. Inter-
session variability is a consequence of difference in sensor positions between sessions,
but an additional variability might also come from the alertness of the subject.
This problem has been most effectively addressed using transfer learning paradigms
[Lotte et al. 2018]. In this work, we propose a regularization of the spatial and
temporal feature space in order to reduce inter- and intra-subject variabilities. To
achieve this, we have assumed that a head can be modeled with a sphere, thus the
spatial topographic maps {uk}Kk=1 can be expressed as

uk =
B∑
l=0

l∑
m=−l

Ylmûlmk (8.1)

where Ylm ∈ RN is a discrete real SH basis element of degree l and order m and
ûlmk its associated spectral coefficient. B is the signal’s bandwidth. NB = (B + 1)2

is the number of the SH basis elements. Similarly, the temporal waveforms {vk}Kk=1

can be expressed in terms of a discrete cosine basis as

vk[t] =
F∑
f=0

af√
τ
cos(πf

t+ 1

τ
)v̂fk (8.2)

where t = [0, 1, ..., τ−1]T , a0 = 1 and af =
√
2 if f ̸= 0. F is the signal’s bandwidth

that must satisfy F ≤ τ − 1. In a matrix-vector notation equations 8.1 and 8.2 can
be written as

uk = Y ûk (8.3) vk = Cv̂k (8.4)

where Y ∈ RN×NL contains the SH basis elements and C ∈ Rτ×(F+1) the
discrete cosine basis elements in columns, ûk ∈ RNL and v̂k ∈ RF+1 are the
corresponding spectral coefficients. Finally, a multivaraite signal X from Eq. 6.3
can be modeled as

X =

K∑
k=1

[Y ûk] · (zk ∗ [Cv̂k])T +N . (8.5)

8.2 Method

In this work, we propose a shallow CNN with rank-1 spatial and temporal filters
represented in the Fourier domain. The architecture of the model is illustrated in
Figure 8.1. As in a majority of the BCI classification pipelines, we can identify a
feature extraction step, a feature selection and a feature classification step. Although
termed as convolutional, in reality, a CNN use cross-correlation with trainable filters.
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Figure 8.1: Illustration of the shallow rank-1 CNN architecture

8.2.1 Feature extraction

If a M/EEG signal X can be modeled as in Eq. 8.5, its cross-correlations with the
spatial and the temporal patterns {Y ûk}Kk=1 and {Cv̂k}Kk=1 represent a measure of
their presence in X. Cross-correlation of X with one spatial pattern Y ûk can be
written as

yk = [Y ûk]
TX (8.6)

where yk ∈ RT . Given M/EEG signals from multiple subjects and/or sessions {Xi},
due to differences in sensor positions, for each session one matrix Yi containing the
SH basis elements needs to be defined. To reduce the computational time and
memory requirements during training, we map all the signal samples {Xi} to a
common Fourier space as

X̂i = Y †
i Xi (8.7)

where Y †
i ∈ RNL×N is the pseudo-inverse of matrix Yi. To solve this problem we

have used the least mean square solution penalised with a Laplace-Beltrami term as

Y †
i = (Y T

i Yi + λRLB)
−1Y T

i (8.8)

where RLB is the Laplace-Beltrami regularization term and λ is a parameter which
controls the amount of regularization. This solution penalizes more high frequency
components, which is desirable as they are more affected by the inter-session and
inter-subject variability of the sensor positions. Using equations 8.7 and 8.8, for a
sample Xi we re-define cross-correlation from Eq. 8.6 with a spatial pattern uk as

ŷi,k = ûTk Y
†
i Xi. (8.9)
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Cross-correlation along the temporal axis with a temporal pattern Cv̂k is defined
as

ẑi,k = [JCv̂k] ∗ ŷi,k (8.10)

where J ∈ Rτ×τ is a reversal matrix (ones along antidiagonal) and ẑi,k ∈ RT−τ+1.
For each sample Xi, cross-correlations as defined in Eqs. 8.9 and 8.10 are performed
with K pairs of spatial and temporal patterns represented in the Fourier domain as
{ûk, v̂k}Kk=1, yielding {ẑi,k}Kk=1.

8.2.2 Feature selection and normalization

Given the vectors {ẑi,k}Kk=1, non-linear feature selection is performed using Rectified
Linear Unit (ReLU) and max-pooling operator. ReLU is a simple element-wise
thresholding operator which acts as

ai,k[t] = ReLU
(
ẑi,k[t] + bk

)
=

{
ẑi,k[t] + bk if ẑi,k[t] + bk ≥ 0

0 if ẑi,k[t] + bk < 0
(8.11)

where t ∈ {0, 1, ..., T − τ + 1} and bk is a trainable bias term. If we assume that
polarity of a brain activity is always the same, discarding negative cross-correlation
coefficients with ReLU is justified.
In general, the task of a pooling operator is to summarize input signal over small
patches and to provide a feature map of a reduced resolution to the following layer.
This is usually achieved by summarizing each patch with its average or maximum
value. In our work, we have used the max-pooling operator as it goes along with the
assumption that relevant brain activities occur sparsely over time. Given an input
vector ai,k and max-pooling size M , output is obtained as

si,k[t] = max
{
ak,i[t

′] : t ·M ≤ t′ < min
(
(t+ 1) ·M,T − τ + 1

)}
(8.12)

where t ∈
{
0, ...,

⌊
T−τ+1
M

⌋}
.

Since the spatial and temporal patterns {ûk, v̂k}Kk=1 may poorly correlate with the
input signal, corresponding feature maps {si,k}Kk=1 might be very skewed. If for two
input samples Xi and Xj belonging to different classes, feature vectors si,k and sj,k
are very similar, it means that the pair of spatial and temporal filters ûk, v̂k does
not have a high discrimination power. Thus, during training these weights will not
be significantly updated. To avoid this, we have used batch normalization layer
[Ioffe & Szegedy 2015]. Batch normalization layer shifts and scales input feature
maps as follows

ŝi,k =
si,k − µk√
σ2k + ε

(8.13)

where mean µk and standard deviation σk differ in the training and the testing
phase. During the training phase, features are normalized by their own mean and
standard deviation. In the testing phase, features are normalized by the mean and
standard deviation estimated during the training phase using moving averages over
training data.
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8.2.3 Feature classification

Once the feature vectors {ŝi,k}Kk=1 are extracted, they are concatenated into feature
vector ŝi = [ŝT1,i, ..., ŝ

T
K,i]

T . Classification is performed with a single fully connected
layer followed by softmax as

ĉi =
eDŝi+b

||eDŝi+b||1
(8.14)

where D ∈ RQ×(K⌊T−τ+1
M

⌋) and b ∈ RQ, with Q being number of classes.

8.2.4 Training

During the training phase, trainable spatial and temporal patterns {ûk, v̂k}Kk=1 for
the feature extraction, biases {bk}Kk=1 used in feature selection and classification
parameters D and b are updated via backpropagation by minimizing categorical
cross-entropy loss defined as

L
(
{Xi, ĉi}Ni=1

)
= − 1

N

N∑
i=1

cTi log2(ĉi) (8.15)

where ci ∈ RQ is the ground truth vector represented in one-hot format and N

is the batch size. During the training phase, moving mean and variance in batch
normalization layer for testing phase are updated as follows

µit+1
k = mµitk + (1−m)µbatchk (8.16) σ2k

it+1
= mσ2k

it
+ (1−m)σ2k

batch (8.17)

where it refers to the iteration and m is the momentum. In order to reduce
the over-fitting, during the training phase a drop-out layer is used before the
fully connected layer. Given the feature maps {ŝi}, in each training iteration, the
drop-out layer randomly sets a fraction of their entries to zero.

Classifier gradients
In a backpropagation step, the gradients of the loss L with respect to the matrix D
and biases b are given by

∂L
∂D

=
1

N

N∑
i=1

∂L
∂ĉi

∂ĉi
∂D

= − 1

N

N∑
i=1

ŝ0i (ci − ĉi)
T (8.18)

and
∂L
∂b

=
1

N

N∑
i=1

∂L
∂ĉi

∂ĉi
∂b

= − 1

N

N∑
i=1

(ci − ĉi)
T (8.19)

where ŝ0i corresponds to the vector ŝi after drop-out layer is applied.
Feature extractor gradients
Gradients of the loss L with respect to the bias bk used in the feature selection step
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are obtained as

∂L
∂bk

=
1

N

N∑
i=1

∂L
∂ĉi

∂ĉi
∂ŝ0i

∂ŝ0i
∂ŝi

∂ŝi
∂ŝi,k

N∑
j=1

∂ŝi,k
∂sj,k

∂sj,k
∂aj,k

∂aj,k
∂bk

=
1

N

N∑
i=1

(ci − ĉi)
TDT dp

i T c
k

N∑
j=1

∂ŝi,k
∂sj,k

T p
j,kH(aj,k)

(8.20)

where T c
k is an operator (mask) which performs the concatenation of the vectors

{ŝi,k}Kk=1 to ŝi and T dp
i is an operator (mask) which performs the drop-out operation

on the vector ŝi producing the vector ŝ0i . The derivative of the batch normalization

function ∂ŝi,k
∂sj,k

∈ R
⌊

T−τ+1
M

⌋
×
⌊

T−τ+1
M

⌋
is defined as

∂ŝi,k
∂sj,k

[p, q] =



(
N
⌊

T−τ+1
M

⌋
−1
)(
σ2
k+ε

)
−
(
si,k[p]−µk

)(
sj,k[q]−µk

)(
N
⌊

T−τ+1
M

⌋
−1
)√

σ2
k+ε

3 if i = j and p = q

−
(
σ2
k+ε

)
−
(
si,k[p]−µk

)(
sj,k[q]−µk

)(
N
⌊

T−τ+1
M

⌋
−1
)√

σ2
k+ε

3 otherwise

.

(8.21)

T p
j,k is the operator (mask) which performs the max-pooling from the vector ai,k to

the vector si,k. H denotes the Heaviside function, which is the gradient of the ReLU
function.
The gradients of L with respect to the temporal filters {v̂k}Kk=1 used in the feature
selection step are obtained as

∂L
∂v̂k

=
1

N

N∑
i=1

∂L
∂ĉi

∂ĉi
∂ŝ0i

∂ŝ0i
∂ŝi

∂ŝi
∂ŝi,k

N∑
j=1

∂ŝi,k
∂sj,k

∂sj,k
∂aj,k

∂aj,k
∂v̂k

=
1

N

N∑
i=1

(ci − ĉi)
TDT dp

i T c
k

N∑
j=1

∂ŝi,k
∂sj,k

T p
j,k

[
H(aj,k)⊙ (JC ∗ yj,k)

] (8.22)

where JC ∗ yj,k denotes the column-wise correlation between the discrete cosine
basis elements which are organized in columns of the matrix C and yj,k. ⊙ denotes
column-wise and element-wise multiplication.
The gradients of L with respect to the spatial filters {ûk}Kk=1 used in the feature
selection step are obtained as

∂L
∂ûk

=
1

N

N∑
i=1

∂L
∂ĉi

∂ĉi
∂ŝ0i

∂ŝ0i
∂ŝi

∂ŝi
∂ŝi,k

N∑
j=1

∂ŝi,k
∂sj,k

∂sj,k
∂aj,k

∂aj,k
∂ûk

=
1

N

N∑
i=1

(ci − ĉi)
TDT dp

i T c
k

N∑
j=1

∂ŝi,k
∂sj,k

T p
j,k

[
H(aj,k)⊙

(
JCv̂k ∗ (Y †

j Xj)
T
)]
(8.23)
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where JCv̂k ∗ (Y †
i Xi)

T denotes the column-wise correlation between the temporal
filters vk = Cv̂k and the input data, whose spatial dimension is transformed into
the Fourier domain (Y †

i Xi)
T .

8.2.5 Validation and test

During the validation and the testing phases, the batch normalization is performed
using the mean and variance estimated during the training phase as in equations
8.16 and 8.17. Also, during these phases, the drop-out layer is deactivated. The
validation accuracy is computed as

av =
1

Nv

Nv∑
i=1

cTi argmax1{ĉi} (8.24)

where argmax1 denotes a function which assigns 1 to input’s maximum and 0 to other
entries and Nv is the number of validation samples. Table 8.1 provides the number
of multiplications for the different operations used in the classification process of
one sample.

Table 8.1: Number of multiplications per different steps of the entire classification
process for one input sample.

Operation Number of multiplications
Spatial Fourier transform Eq. 8.7 NL ×N × T

Spatial correlation Eq. 8.9 K ×NL × T

Temporal correlation Eq. 8.10 K × (τ × F + τ × (T − τ + 1))

Batch normalization Eq. 8.13 K ×
⌊
T−τ+1
M

⌋
Feature classification Eq. 8.14 Q×K ×

⌊
T−τ+1
M

⌋
+Q× (1 + 3(NTy − 2))

* NTy corresponds to the Taylor series degree used to compute exponentials.

8.3 Experiments

We have compared our method with three state of the art methods, namely Deep-
ConvNet and ShallowConvNet proposed by [Schirrmeister et al. 2017] and EEGNet
proposed in [Lawhern et al. 2018]. Methods are compared on two datasets - on the
problem of mental workload classification from EEG signals for a passive BCI and
on the classification of motor-task MEG data. For each dataset, two labeled ses-
sions per subject are available. Since in the BCI applications it is common that
the algorithm is tuned to the recordings of the user, methods are compared for two
experimental setups:

• Subject blind experiment : subjects used in training and validation do not exist
in the testing set.

• Subject aware experiment : sessions used in training and validation do not exist
in the testing data.
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8.3.1 Databases

Mental workload EEG dataset for passive BCI

We used the open mental workload EEG dataset provided in the "Pas-
sive BCI Hackathon" organized during the Neuroergnonomics 2021 conference
[Hinss et al. 2021]. The dataset contains EEG recordings of 15 subjects acquired
over three sessions where participants were asked to perform a Multi-Attribute Task
Battery-II (MATB-II) task developed by NASA. Since the labels of the third session
are not publicly available, we have used only two sessions in our experiments. In
each session, participants were asked to perform four sub-tasks (system monitor-
ing, tracking, resource management and communications) to create three mental
workload difficulties, which are recorded during five minutes long sessions. The are
labeled with ’easy’, ’medium’ and ’difficult’ labels. The number of available EEG
channels is 61 and sampling frequency 500 Hz. Each session is segmented into 447 2s

long epochs. Signals are band-pass filtered with FIR filters with cut-off frequencies
1 Hz and 40 Hz. Artefacts coming from other organs are removed and the signals
are downsampled to the sampling rate of 250 Hz.
In our experiments, we have subsequently downsampled the signals by a factor 3,
given that the signals have been low-pass filtered with a cut-off frequency of 40 Hz.
Thus, the sampling frequency is approximately 83 Hz. Signals are scaled with the
factor 5 · 104 to avoid dead neurons. For the subject blind setup, we have used 9
subjects for training, 3 for validation and 3 for testing. Correspondingly, for the
subject aware experiment, we have use one session from each of the 3 subjects for
validation and from each of the 3 subjects for testing. The split into train, valid
and test is randomly repeated three times.

Motor-task MEG dataset

The motor-task MEG dataset is part of the open HCP [Van Essen et al. 2012]
dataset. The dataset contains MEG recordings of 61 subjects acquired over two
sessions where participants were guided by visual cues to move either the right
hand, left hand, right foot, or left foot. Each session was composed of 42 blocks,
where 10 blocks were resting state blocks and 32 blocks were movement blocks (8
blocks per movement). Each movement block contains 10 movements guided by a
visual stimulus. A stimulus lasts 150ms and is followed by 1050ms of black screen.
The number of MEG channels is 248 and the initial sampling frequency is 2034.52

Hz. Signals are segmented into 2.4s long epochs.
To preprocess the raw MEG signals, we have used the MNE-HCP library
[Gramfort et al. 2013b]. Preprocessing included reference correction, filtering with
bandpass Butterworth filter of order 4 with cutoff frequencies of 0.5 Hz and 60 Hz,
removing of artefacts using ICA and interpolation of missing or bad channels. In
our experiments, we have subsequently downsampled the signals by a factor 12,
given that the signals are low-pass filtered with cut-off frequency of 60 Hz. Thus,
the sampling frequency is ∼ 170 Hz. Again, for stability of the model, signals are
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scaled with the factor 5 · 1012. In the subject blind setup, we have used 20 subjects
for training, 10 for validation and 31 for testing. In the subject aware experiment
setup, one session from each of the 10 subjects were used for validation and one
session from each of the 31 subjects for testing.

8.3.2 Implementation details

All models are implemented with the tensorflow library [Abadi et al. 2016]. Loss
function of all models is categorical cross entropy and they are trained using Adam
optimizer [Kingma & Ba 2014].
In the experiments with motor task MEG data, the models are trained over 200
epochs with batch size 64 and initial learning rate of 0.001. If the difference be-
tween validation classification accuracy averaged over two sequential blocks of three
epochs is greater than 10−4, the learning rate is reduced by a factor of 0.9. Since
the number of trials belonging to fixation/resting state is higher compared to the
other four classes, at each epoch 1280 samples are randomly selected from each of
the five classes over the entire training subset. In each epoch there is 100 iterations.
The spatial component of the signals is transformed to the Fourier domain using
the pseudo-inverse of the SH basis as in Eq. 8.7 obtained with a Laplace-Beltrami
regularization as in Eq. 8.8 and a regularization weight λ = 0.001. The spatial com-
ponent bandwidth B is varied between 6 and 12. This transformation reduces the
spatial dimensionality from 248 channels to NB ∈ {49, 81, 121, 144} SH coefficients,
for bandwidths B ∈ {6, 8, 10, 12}, respectively. The length of the temporal filters
vk is 85 samples which corresponds to approximately 0.5s. They are represented in
terms of DCT coefficients as in Eq. 8.4. Maximum bandwidth of the temporal filter
representation is varied between F ∈ {10, 20, 30, 40} Hz. Pooling step used to select
features as in Eq. 8.12 is M = 10.
In the experiments with mental workload EEG data, the models are trained over
100 epochs with batch size 64 and the initial learning rate of 0.0005. If the differ-
ence between validation classification accuracy averaged over two sequential blocks
of three epochs is greater than 10−4, the learning rate is reduced by a factor of 0.9.
As the classes in this dataset are balanced, the models are trained on the entire
training dataset. As in the experiment with MEG data, the SH coefficients are
estimated using a Laplace-Beltrami regularization with λ = 0.001. Due to a lower
number of sensors and a lower signal to noise ratio, in the case of the EEG signals,
the spatial component bandwidth is varied between 2 and 4. This transformation
reduces the spatial dimensionality from 61 channels to NB ∈ {9, 16, 25} SH coeffi-
cients, for bandwidths B ∈ {2, 3, 4}, respectively. In this experiment, the length of
the temporal filters vk is 42 samples which also corresponds to approximately 0.5s

and their bandwidth is varied between F ∈ {5, 10, 15} Hz. Pooling step used to
select features as in Eq. 8.12 is M = 20.
To select hyper-parameters of the models, namely the bandwidths of the spatial and
the temporal patterns B and F , and the number of rank-1 kernels K, we have firstly
analysed validation curves. Figure 8.2 illustrates validation curves for subject blind
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and subject aware motor task MEG experiments, for a fixed number K = 50 of
kernels and varying bandwidths B and F . We can notice that in both experimental
setups, and for all spatial bandwidths B, limiting temporal filters to bandwidth of
10 Hz results in a lower validation accuracy. This can be explained by the fact that
µ waves, which are present in the motor cortex and are suppressed when a motor
task is performed, have a frequency range of 8 − 12 Hz. For F ≥ 10 Hz, we can
observe that the validation curves corresponding to B = 6 are on average lower
than the curves corresponding to B ≥ 6. This is more prominent in subject aware
experimental set-up. This is a consequence of a higher inter-subject variability of
the spatial components compared to the intra-subject one. The best model with
the lowest number of parameters, in the subject blind experiment is the model with
B = 8 and F = 30. In the subject aware this is clearly the model with B = 10 and
F = 30.

Figure 8.2: Validation curves for the motor task MEG classification problem for
fixed number of rank-1 kernels K = 50 and different spatial and temporal kernel
bandwidths B and F , and corresponding number of trainable parameters.

For the selected hyper-parameters B and F , we have further analyzed validation
curves, when the number of rank-1 kernels K increases. In Figure 8.3, validation
curves are depicted for different values of K ∈ {50, 100, 200, 300, 400, 500}. In the
subject blind setup, we can notice that increasing the number of kernels does not
necessarily and significantly improve the validation accuracy. On the other hand,
consistent improvements can be observed in the subject aware experiment. This in-
dicates that in addition to patterns common to all subject, the more room (kernels)
a model is given, the more subject-specific patterns it is able to learn.
The mental workload EEG dataset is smaller, the signal-to-noise ratio of EEG is
lower and the number of sensors is smaller, thus a training of a neural network model
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Figure 8.3: Validation curves for motor task MEG classification problem for different
number of kernels K and their fixed spatial and temporal bandwidths L and F , and
corresponding number of trainable parameters.

on such data is quite challenging. To select hyper-parameters, the experiments are
repeated three times for three random splits of dataset into training, validation and
testing subsets. In Figures 8.4 and 8.5, different lines styles (full, ’–’ and ’.-’) corre-
spond to different random splits. Plots in Figure 8.4 illustrate validation curves for
the subject blind and the subject aware mental workload EEG experiments, split-
wise and averaged, for a fixed number of kernels K = 50 and varying bandwidths
B and F . Firstly, we can observe that increasing spatial bandwidths B results in
more dispersed validation curves over different random splits of dataset and can
lead to an overfitting. This is especially visible for B = 4 in the subject aware
validation curves. In the subject blind experiment we can notice that on average,
validation curves over all spatial and temporal bandwidths are rather close, where
the models with F = 5 result in slightly higher validation accuracy. On the other
hand, in the subject aware experiments we can notice that models with F = 5 give
the lowest validation accuracy and the ones with F = 10 the highest. This goes
along with the fact that theta waves (4-8 Hz) are associated to mental fatigue and
workload [Gevins et al. 1997]. To select the best model we have used the averages
over random splits of the validation accuracies in the last epoch. In the subject blind
experiment, the model with B = 2 and F = 5 is selected as the best one, while in
the subject aware experiment, the best one is the model with B = 2 and F = 10.
For the selected hyper-parameters B and F , we have further analyzed the valida-
tion curves for an increasing number of kernels K. In Figure 8.5, validation curves
are depicted for different values of K ∈ {50, 100, 200, 300, 400, 500, 1000}. In both,
subject blind and subject aware setups, we can notice that increase of the number
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Figure 8.4: Validation curves for mental workload EEG classification problem for
fixed number of kernels K = 50, and different spatial and temporal kernel band-
widths L and F , and corresponding number of trainable parameters.

of kernels, on average, improves validation accuracy. Contrary to the MEG motor
task experiment, where these improvements are more significant in the subject aware
setup, here that is not the case. This might indicate that the inter-session variabil-
ity in the case of mental workload EEG signals is more significant and that the
improvement in validation accuracy between subject blind and subject aware model
training is rather a consequence of the increase of training data than in learning of
subject specific patterns.

Figure 8.5: Validation curves for mental workload EEG classification problem for
different number of kernels K and their fixed spatial and temporal bandwidths L
and F , and corresponding number of trainable parameters.
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Selection of the hyper-parameters used in compared methods, namely DeepConvNet
and ShallowConvNet [Schirrmeister et al. 2017] and EEGNet [Lawhern et al. 2018]
is provided in Appendix D.

8.4 Results

The results are compared quantitatively in terms of confusion matrices and classifi-
cation accuracy. Given the importance of model’s speed and memory requirements
for the real time applications with portable processors in BCI, the models are also
compared in terms of the number of trainable parameters and the number of mul-
tiplications.
In Figures 8.6 and 8.7 confusion matrices are given for the subject blind and subject
aware MEG motor task experiments averaged over five repetitions of the experi-
ments. We can observe, that apart from the fixation class, all models have high
sensitivity (true positive rate) with respect to the right hand movement class. On
the other side, classification of the right foot movements appears to be the most
challenging one and they are mostly misclassified into the left foot and the right
hand classes. Compared with the subject blind training, subject aware training most
significantly impacts classification of the right foot movements by reducing misclas-
sifications into the right hand and the fixation classes, while the missclassification
into the left foot class still remains. The subject aware training also significantly
improves the classification of the left hand movements by reducing the mislcassifi-
cations into the left foot, the right hand and the fixation classes. Comparing the
confusion matrices in both experiments, we can notice that our model with a higher
number of parameters exhibits higher sensitivity with respect to the left hand class.
In the subject blind experiments, sensitivity is higher also with respect to the right
hand movement, but lower for the left foot class. In the subject aware experiments,
our model has higher sensitivity for the right foot class, while for the left foot class
sensitivity of EEGNet is significantly higher than with other models.

Figure 8.6: Confusion matrices for DeepConvNet, ShallowConvNet, EEGNet,
Our(small) and Our(large) models obtained in MEG motor task the subject blind
experiments averaged over five experiment repetitions.

In Tables 8.2 and 8.3, classification accuracy is compared for the subject blind and
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Figure 8.7: Confusion matrices for DeepConvNet, ShallowConvNet, EEGNet,
Our(small) and Our(large) models obtained in MEG motor task subject aware ex-
periments averaged over five experiment repetitions.

the subject aware MEG motor task experiments for five repetitions of the experi-
ments. In the subject blind experiments, we can observe that our model with a small
number of trainable parameters can achieve the same performance as significantly
larger models DeepConvNet, ShallowConvNet and EEGNet. The larger model, while
still having a significantly lower number of parameters compared to DeepConvNet
and ShallowConvNet, leads to an average improvement of at least 1.5%. In the sub-
ject aware experiments, we can notice that our small model does not have enough
capacity to capture subject specific patterns, while the larger model results in a
slight improvement of the classification accuracy compared to other models.

Table 8.2: Classification accuracy for DeepConvNet, ShallowConvNet, EEGNet,
Our(small) and Our(large) models obtained in the MEG motor task subject blind
experiments for five experiment repetitions.

Experiment subject blind
Model 1st run 2nd run 3rd run 4th run 5th run

DeepConvNet 0.576 0.576 0.573 0.575 0.573
ShallowConvNet 0.576 0.578 0.575 0.575 0.576

EEGNet 0.560 0.567 0.561 0.566 0.569
Our (small) 0.585 0.574 0.578 0.579 0.580
Our (large) 0.595 0.593 0.590 0.588 0.596

Figure 8.8 shows a comparison of the classification accuracies on the testing and
validation data versus the number of parameters and the number of multiplications
required for the classification of one data sample. The number of multiplications
only counts multiplications in convolutional and batch normalization layers (not
multiplications required in non-linear layers). Since for the models that are selected
as the best ones, based on validation accuracy of one run of the experiments, model
training is repeated four more times, for these models we have provided average
accuracy (depicted with full circles) and accuracy for each experiment run (depicted
with vertical dash lines). Firstly, we can observe that in the subject blind experi-
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Table 8.3: Classification accuracy for DeepConvNet, ShallowConvNet, EEGNet,
Our(small) and Our(large) models obtained in MEG motor task subject aware ex-
periments for five experiment repetitions.

Experiment subject aware
Model 1st run 2nd run 3rd run 4th run 5th run

DeepConvNet 0.684 0.686 0.682 0.680 0.684
ShallowConvNet 0.678 0.674 0.669 0.672 0.671

EEGNet 0.677 0.678 0.678 0.678 0.683
Our (small) 0.651 0.652 0.656 0.656 0.658
Our (large) 0.693 0.690 0.689 0.691 0.692

ments, our model achieves a high classification accuracy with a significantly lower
number of trainable parameters than DeepConvNet and ShallowConvNet, and with
a comparable number of parameters for EEGNet. In the subject aware training,
differences in classification accuracy between our models and EEGNet models are
less significant for comparable number of parameters. When comparing the number
of multiplications, we can notice that all comparing models require at least 10 times
more multiplications to achieve accuracy comparable to the one obtained with our
models. The reason for such a high number of multiplications in DeepConvNet,
ShallowConvNet and EEGNet lies in the way the first convolutional layer with sep-
arable and depthwise correlations is defined. Assuming K temporal filters and N

channels of the input MEG signal, these models perform correlation of each chan-
nel with each temporal filter. This means that for filter length τ and MEG signal
length T , there is N ×K× (T −τ +1)×τ multiplications. Further, in DeepConvNet
and ShallowConvNet, for each of the K temporal filters, there is K spatial filters of
length N , so the number of multiplication is N × K × (T − τ + 1) × K. On the
other side, for EEGNet, for each one of the K temporal filters there is D spatial
filters, thus the number of multiplications is N × K × (T − τ + 1) × D. On the
other hand, in our model, assuming a spatial bandwidth L, to transform spatial
component of the input MEG signal to Fourier domain the number of multiplica-
tions is (L+ 1)2 × T ×N . Contrary to the other models, we firstly perform spatial
correlation with K spatial filters which requires (L + 1)2 × T ×K multiplications.
To transform temporal filters of bandwidth F to signal domain K ×F × τ multipli-
cations is required. For each one of the K spatial filters, there is one temporal filter,
thus the number of multiplications required for correlations is K × (T − τ + 1)× τ .

Furthermore, we have quantitatively compared results on the problem of EEG men-
tal workload classification. In Figures 8.9 and 8.10, confusion matrices are provided
for the subject blind and the subject aware experiments averaged over three random
splits of entire dataset and five repetitions for each of the split. In both experi-
ments, we can observe that models exhibit high sensitivity with respect to the Easy
class. In the subject blind experiment, we can see that our model missclassifies Easy
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Figure 8.8: Comparison of classification accuracy on test and validation data with
respect to the number of trainable parameters and the number of multiplications
for the MEG motor task subject blind and subject aware experiments.

samples mostly in Medium class, while the other models tend to missclassify them
into Difficult class. It has the highest sensitivity with respect to the Medium class,
but the lowest with respect to the Difficult class, with a difference that majority of
missclassified samples are classified in Medium class in contrast to DeepConvNet and
EEGNet. In the subject aware experiments, our model has the highest sensitivity
with respect to the Easy class, while the sensitivity is noticeably lower for Medium
class compared to ShallowConvNet. In Tables 8.4 and 8.5, classification accuracy is
compared for the subject blind and subject aware EEG mental workload experiments
for five repetitions of the experiments averaged over three dataset splits. In subject
blind experiment, we can observe that classification accuracies of ShallowConvNet
and Our model are comparable and slightly better than ones obtained with Deep-
ConvNet and EEGNet. On the other hand, the differences between ShallowConvNet
and Our on one side and DeepConvNet and EEGNet on the other side are more
significant in the subject aware experiment setup. Although these classification ac-
curacies seem very low, they are comparable to the results obtained in a challenge
Passive BCI Hackathon [Roy et al. ], where the winning model [Pang et al. 2021]
has achieved accuracy 54.26% with a difference that amount of training data was
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higher compared to the data used in these analysis (in the challenge, two sessions
for 15 subjects had labels and the labels of the third session have been hidden).

Figure 8.9: Confusion matrices for DeepConvNet, ShallowConvNet, EEGNet and
Our models obtained in EEG mental workload task subject blind experiments aver-
aged over five experiment repetitions and over three random splits of dataset.

Figure 8.10: Confusion matrices for DeepConvNet, ShallowConvNet, EEGNet and
Our models obtained in EEG mental workload task subject aware experiments av-
eraged over five experiment repetitions and over three random splits of dataset.

Table 8.4: Classification accuracy for DeepConvNet, ShallowConvNet, EEGNet and
Our models obtained in EEG mental workload task subject blind experiments for
five experiment repetitions averaged over three random splits of data.

Experiment subject blind
Model 1st run 2nd run 3rd run 4th run 5th run

DeepConvNet 0.510 0.496 0.512 0.504 0.502
ShallowConvNet 0.520 0.520 0.522 0.510 0.531

EEGNet 0.494 0.504 0.508 0.508 0.516
Our 0.518 0.508 0.514 0.513 0.517
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Table 8.5: Classification accuracy for DeepConvNet, ShallowConvNet, EEGNet and
Our models obtained in EEG mental workload task subject aware experiments for
five experiment repetitions averaged over three random splits of data.

Experiment subject aware
Model 1st run 2nd run 3rd run 4th run 5th run

DeepConvNet 0.486 0.475 0.472 0.485 0.476
ShallowConvNet 0.556 0.544 0.550 0.534 0.574

EEGNet 0.495 0.493 0.517 0.504 0.514
Our 0.556 0.554 0.553 0.559 0.563

8.5 Conclusion

In this chapter, a shallow CNN model for M/EEG data classification is presented.
The model takes into account properties of the M/EEG signals. Firstly, by assuming
that a head can be modeled with a sphere, spatial components of M/EEG signals
are represented as a linear combination of spherical harmonics. Such representation
allows dimensionality reduction along spatial dimension making the model more ro-
bust with respect to inter- and intra-subject variabilities. Furthermore, by exploiting
the fact that a brain activity can be represented by a rank-1 spatio-temporal multi-
variate signal, we have used in our model rank-1 trainable weights. Since temporal
courses of certain brain activities spread over certain frequency bandwidths, tem-
poral kernels are regularized by being represented in terms of discrete cosine basis
with a predefined bandwidth. Finally, we have demonstrated that the proposed
method can achieve high accuracy with very small number of parameters and at
the same time being very time efficient, what makes it suitable for portable devices
with limited RAM and processors. In the future work, we will investigate potential
of our model in the subject specific BCI scenarios.
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Conclusions and perspectives

In this thesis, we have investigated convolutional machine learning models tailored
to the properties of the examined structural and functional neuroimaging data,
namely of the dMRI, EEG, and MEG signals. Aiming to exploit the learning
capacity of the machine learning models, such as CNNs, while taking into account
the high data variability and/or low data quantity, we have studied the models
which are adapted to the domain and properties of the acquired data. This is
achieved by equipping the models with a prior knowledge about the data.
For the local analysis of dMRI signals acquired with a q-space sampling schemes,
we have investigated the spherical rotation equivariant CNN models which take into
account real and spherical nature of the dMRI signals, their rotation equivariance
with respect to the underlying tissue microstructures, antipodal symmetry and
uniform random distribution of the sampling points. Firstly, we have studied
a spherical U-net model for the fODF estimation from dMRI. The model is
designed with convolutional layers realized in Fourier domain and traditional ReLU
non-linearities realized in signal domain. Non-linear activations are crucial in CNN
models as they allow the identification of the most salient features and in such a way
guide the training process of the model. In order to avoid the aliasing introduced
by non-linearities applied in the signal domain, in our second contribution, we
have proposed a rotation equivariant CNN with quadratic non-linearities realized
in Fourier domain for the dMRI local inferences, such as microstructure parameter
estimation, tissue classification, and axon bundle count. In addition to evaluations
performed on synthetic data, in both projects, the models are evaluated on the real
HCP dMRI signals resampled to reduced sampling schemes which is more clinically
desirable.
In the context of M/EEG signal analysis, the models are based on the assumptions
that the acquired multivariate signals can be represented as a sum of rank-1
multivariate signals corresponding to the individual sources and additive noise. In
addition, assuming a recurrence and transience of the brain waveforms, the temporal
courses can be represented as a convolution of the sparse activation vectors and the
characteristic brain waveforms. Finally, by approximating a head with a sphere,
M/EEG topographic maps on the measuring sensors can be seen as spherical signals.
In this part of the thesis, we have firstly studied a rank-1 spatio-temporal convolu-
tional dictionary learning with sparse codes penalized by an L0 norm. In addition
to the quantitative analysis on the synthetic data, the model was evaluated in the
subject wise extraction of the temporal and spatial patterns on the somatosensory
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and HCP motor-task MEG datasets. In our second contribution, we have proposed
a shallow rank-1 CNN model for the classification of multivariate M/EEG signals.
In addition to rank-1 constraint, the model performs regularization by representing
spatial and temporal components of the trainable parameters in Fourier domain,
in SH and discrete cosine bases, respectively. The model has been evaluated on
the problem of mental workload classification from EEG signals containing a small
number of subjects and on the motor-task classification from the HCP MEG dataset.

Perspectives

The work presented in this thesis raised multiple questions and ideas which will be
investigated in our future work.
Concretely, in the context of rotation equivariant CNNs, although the non-linearities
of a quadratic nature realized in Fourier domain showed potential, their main draw-
back is that they are not bounded. However, being able to defined x2 functions in
the Fourier domain, leads us to an idea to approximate via the Taylor series more
traditional DL non-linearities such as sigmoid 1

1+ex and hyperbolic tangent ex−e−x

ex+e−x .
Furthermore, as the real ground truth of biophysically inspired micro-structure pa-
rameters does not exist, it would be of interest to design models of high generaliza-
tion power which can be trained on synthetic data.
Our future work related to the spatio-temporal dictionary learning, might focus in
conducting of more quantitative studies on real data such as the analysis of epileptic
seizures. In addition, the extraction of the spatio-temporal patterns associated to
individual brain sources, opens the door to the analysis of dynamic brain networks.
Finally, we will investigate potential of our shallow rank-1 CNN model in the subject
specific BCI scenarios.
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Appendix A

S2 and SO(3) signal related
derivations appendix

Spherical harmonics

Definition of the complex spherical harmonics

The complex SH basis element Y m
l : S2 → C is defined as

Y m
l (r) = Y m

l (θ, ϕ) =

√
(2l + 1)

2π

(l −m)!

(l +m)!
Pml (cos θ)ejmϕ (A.1)

where Pml : [−1, 1] → R is associated Legendre polynomial of degree l and order m,
defined in closed form as

Pml = (−1)m2l(1− (cosθ)2)
m
2

l∑
k=m

k!

(k −m)!
(cosθ)k−m

(
l

k

)( l+k−1
2

l

)
. (A.2)

Definition of the real spherical harmonics

The real SH [Homeier & Steinborn 1996] basis elements can be defined as

Ylm =


√
2(−1)mIm[Y

|m|
l ] if m < 0

Y 0
l if m = 0

√
2(−1)mRe[Y m

l ] if m > 0

. (A.3)

If the complex SH basis elements of degree l are placed into columns of a matrix Y C
l

in the order {−l,−(l− 1), ...− 1, 0, 1, ..., (l− 1), l}, than the real SH basis elements
of degree l can be obtained as [

Y R
l

]T
= Ul

[
Y C
l

]T (A.4)
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where Ul ∈ C(2l+1)×(2l+1) is unitary matrix defined as in [Homeier & Steinborn 1996]

Ul =
1√
2



j 0 . . . 0 . . . 0 (-1)−l+1j

0 j . . . 0 . . . (-1)−lj 0
...

... . . .
... . . .

...
...

...
... . . .

√
2 . . .

...
...

...
... . . .

... . . .
...

...
0 1 . . . 0 . . . (-1)l−1 0
1 0 . . . 0 . . . 0 (-1)l


.

(A.5)
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Rotation of S2 functions

The complex Wigner-D matrices

The complex Wigner-D matrix is defined as

Dmn
l (R(ϕ, θ, ψ)) = dmnl (θ)e−jmϕe−jnψ (A.6)

where dmnl is small Wigner-d matrix defined as

dmnl (θ) = [(l+m)!(l−m)!(l+n)!(l−n)!]
1
2

smax∑
s=smin

[
(−1)m−n+s(cos θ2)2l+n−m−2s(

sin θ
2

)m−n+2s

(l + n− s)!s!(m− n+ s)!(l −m− s)!

]
(A.7)

where smin = max(0, n−m) and smax = min(l+n, l−m). We refer to l as Wigner-
D matrix or RH degree and to m and n as to their orders. R(ϕ, θ, ψ) ∈ SO(3) is
rotation matrix with ϕ, ψ ∈ [0, 2π) and θ ∈ [0, π].

Rotation of the complex S2 functions

Rotation of an L2 signal s : S2 → C of bandwdidth B by angle R = R(ϕ, θ, ψ) ∈
SO(3), such that g(r) = Rs(r) can be written as (*cite)

s(R−1r) =
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(A.8)

where Y m
l is the complex SH basis element of degree l and order m. Dmn

l is the
complex Wigner-D matrix (RH basis element) of degree l and orders m and n.

The real Wigner-D matrices

The real RH basis elements (Wigner-D matrices) can be expressed as

DR
000 = D0

00 (A.9)
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As noted in [Homeier & Steinborn 1996], a consequence of unitarity of the matrix Ul
from Eq. A.4 is identity Y R

l
T
(θ1, ϕ1)Y

R
l (θ2, ϕ2) = Y T

l (θ1, ϕ1)Y
∗
l (θ2, ϕ2). By defining

Y R
l (θ1, ϕ1) = Y R

l (θ, ϕ) and Yl(θ1, ϕ1) = Yl(θ, ϕ) (A.12)

and

Y R
l (θ2, ϕ2) = DR

l (R)Y
R
l (θ, ϕ) and Yl(θ2, ϕ2) = Dl(R)Yl(θ, ϕ) (A.13)

we obtain real Wigner-D matrix DR
l (R) as follows

Y R
l
T
(θ, ϕ)DR

l (R)Y
R
l (θ, ϕ)

= (UlYl(θ, ϕ))
TDR

l (R)UlYl(θ, ϕ) = Y T
l (θ, ϕ)UTl D

R
l (R)UlYl(θ, ϕ)

= Y T
l (θ, ϕ)UTl D

R
l (R)U

∗
l Y

∗
l (θ, ϕ) = Y T

l (θ, ϕ)D∗
l (R)Y

∗
l (θ, ϕ)

(A.14)

and

UTl D
R
l (R)U

∗
l = D∗

l (R) and DR
l (R) = U∗

l D
∗
l (R)U

T
l = UlD

∗
l (R)U

H
l (A.15)

where we used the property that Y R
l (θ, ϕ) = Y R

l
∗
(θ, ϕ) and DR

l (R) = DR
l
∗
(R) in

equations A.14 and A.15.

Rotation of the real S2 functions

In analogy to the rotation of the complex S2 functions from Eq. A.8 and using
the real Wigner-D matrices defined in Eq. A.15, we define rotation of the real
S2 functions. Rotation of an L2 signal s : S2 → R of bandwdidth B by angle
R = R(ϕ, θ, ψ) ∈ SO(3), such that g(r) = Rs(r) can be written as

s(R−1r) =
B∑
l=0

m=l∑
m=−l

ŝlmYlm(R
−1r) =

B∑
l=0

m=l∑
m=−l

ŝlm

k=l∑
k=−l

Dlkm(R)Ylk(r)

=
B∑
l=0

k=l∑
k=−l

( m=l∑
m=−l

Dlkm(R)ŝlm

)
Ylk(r) =

B∑
l=0

k=l∑
k=−l

[
Dl(R)̂sl

]
k
Ylk(r)

=

B∑
l=0

k=l∑
k=−l

glkYlk(r) = g(r)

(A.16)

where Ylm is the real SH basis element of degree l and order m. Dlmn is the real
Wigner-D matrix (RH basis element) of degree l and orders m and n.
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Convolutions of S2, zonal and SO(3) functions

As we are dealing with real signals and we have defined real SH and RH basis, we
provide derivations of convolutions between real functions only.

Convolution of an S2 and a zonal function

Convolution between a spherical and a zonal function results in a function whose
domain is S2. Given a signal f : S2 → R and a zonal signal g : S2 → R s.t.
g(θ, ϕ) = g(θ, 0) ∀ϕ ∈ [0, 2π) and ∀θ ∈ [0, π), of bandwidths B, convolution is given
by [Kostelec & Rockmore 2008]

[f ∗ g](r) = [f ∗ g](θ, ϕ) =
∫
S2

f(r′)g(R−1(ϕ, θ, 0)r′)dr′

=

∫
S2

B∑
l′=0

l∑
m=−l

f̂lmYlm(r
′)

B∑
l′=0

ĝl′Yl′0(R
−1(ϕ, θ, 0)r′)dr′

=

∫
S2

B∑
l=0

l∑
m=−l

f̂lmYlm(r
′)

B∑
l′=0

ĝl′
l′∑

k=−l′
Dl′k0(ϕ, θ, 0)Yl′k(r

′)dr′

=
B∑
l=0

l∑
m=−l

f̂lm

B∑
l′=0

ĝl′
l′∑

k=−l′
Dl′k0(R(0, θ, ϕ))

∫
S2

Ylm(r
′)Yl′k(r

′)dr′

=

B∑
l=0

l∑
m=−l

f̂ml

B∑
l′=0

ĝl′
l′∑

k=−l′
Dl′k0(R(0, θ, ϕ))δll′δmk

=
B∑
l=0

l∑
m=−l

Dlm0(R(0, θ, ϕ))f̂lmĝl

=

B∑
l=0

√
4π

2l + 1
ĝl

l∑
m=−l

Ylm(θ, ϕ)f̂lm

(A.17)

where f̂lm is the real SH coefficient of degree l and order m of the function f and ĝl
is ZH coefficient of degree l of the function g.
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Convolution of S2 functions

Given two L2 signals f, g : S2 → R of bandwidth B, convolution between them is
defined as [Driscoll & Healy 1994]

[f ∗ g](R) =
∫
S2

f(r)g(R−1r)dr

=

∫
S2

B∑
l=0

l∑
m=−l

f̂lmYlm(r)

B∑
l′=0

l′∑
n=−l′

ĝl′nYl′n(R
−1r)dr

=

∫
S2

B∑
l=0

l∑
m=−l

f̂lmYlm(r)
B∑
l′=0

l′∑
n=−l′

ĝl′n

l′∑
k=−l′

Dl′kn(R)Yl′k(r)dr

=
B∑
l=0

l∑
m=−l

f̂lm

B∑
l′=0

l′∑
n=−l′

ĝl′n

l′′∑
k=−l′′

Dl′kn(R)

∫
S2

Ylm(r)Yl′k(r)dr

=

B∑
l=0

l∑
m=−l

f̂lm

B∑
l′=0

l′∑
n=−l′

ĝl′n

l′∑
k=−l′

Dl′kn(R)δll′δmk

=
B∑
l=0

l∑
m=−l

l∑
n=−l

Dlmn(R)f̂lmĝln

(A.18)

where R = R(ϕ, θ, ψ) ∈ SO(3). f̂lm, ĝln are the real SH coefficients of degree l and
orders m and n of the functions f and g and Dlmn : SO(3) → R is an element of
the real RH basis (Wigner-D matrix) of degree l and orders m and n.

Convolution between SO(3) signals

Convolution between two SO(3) signals results in a signal whose domain is also
SO(3). Given two L2 functions function f, g : SO(3) → R of bandwidth B convo-
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lution between them is defined as [Kostelec & Rockmore 2008]

[f ∗ g](Q) =

∫
SO(3)

f(R)g(Q−1R)dR =

∫
SO(3)

B∑
l=0

l∑
m=−l

l∑
n=−l

F̂lmnDlmn(R)

B∑
l′=0

l′∑
m′=−l′

l′∑
n′=−l′

Ĝl′m′n′Dl′m′n′(Q−1R)dR =

∫
SO(3)

B∑
l=0

l∑
m=−l

l∑
n=−l

F̂lmnDlmn(R)
B∑
l′=0

l′∑
m′=−l′

l′∑
n′=−l′

Ĝl′m′n′

l′∑
k=−l′

Dl′km′(Q)Dl′kn′(R)dR =

B∑
l=0

l∑
m=−l

l∑
n=−l

F̂lmn

B∑
l′=0

l′∑
m′=−l′

l′∑
n′=−l′

Ĝl′m′n′

l′∑
k=−l′

Dl′km′(Q)

∫
SO(3)

Dlmn(R)Dl′kn′(R)dR =

B∑
l=0

l∑
m=−l

l∑
n=−l

F̂lmn

B∑
l′=0

l′∑
m′=−l′

l′∑
n′=−l′

Ĝl′m′n′

l′∑
k=−l′

Dl′km′(Q)
8π2

2l + 1
δll′δmkδnn′ =

B∑
l=0

l∑
m=−l

l∑
n=−l

F̂lmn

B∑
l′=0

l′∑
m′=−l′

l′∑
n′=−l′

Ĝl′m′n′Dl′mm′(Q)
8π2

2l + 1
δll′δnn′ =

B∑
l=0

l∑
m=−l

l∑
n=−l

F̂lmn

l∑
m′=−l

Ĝlm′nDlmm′(Q)
8π2

2l + 1
=

B∑
l=0

8π2

2l + 1

l∑
m=−l

l∑
m′=−l

Dlmm′(Q)

l∑
n=−l

F̂lmnĜlm′n =

B∑
l=0

8π2

2l + 1

l∑
m=−l

l∑
n=−l

Dlmn(Q)
l∑

k=−l
F̂lmkĜlnk

(A.19)
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Quadratic functions

Product of S2 signals

Multiplication of two spherical signals in S2 domain results in a signal whose domain
is also S2. Given two L2 functions function f, g : S2 → C of bandwidths Bf and
Bg, their product is defined as [Kondor et al. 2018]

h = [f × g] =

Bf∑
l′=0

l′∑
m′=−l′

f̂m
′

l′ Y
m′
l′

Bg∑
l′′=0

l′′∑
m′′=−l′′

ĝm
′′

l′′ Y
m′′
l′′ =

Bf∑
l′=0

Bg∑
l′′=0

l′+l′′∑
l=|l′−l′′|

l′∑
m′=−l′

l′′∑
m′′=−l′′

f̂m
′

l′ ĝ
m′′
l′′

√
(2l′ + 1)(2l′′ + 1)

4π(2l + 1)
Cl,m

′+m′′

l′,m′,l′′,m′′Cl,0l′,0,l′′,0Y
m′+m′′

l =

Bf+Bg∑
l=0

l∑
m=−l

Bf∑
l′=0

Bg∑
l′′=0

l′∑
m′=−l′

l′′∑
m′′=−l′′

f̂m
′

l′ ĝ
m′′
l′′

√
(2l′ + 1)(2l′′ + 1)

4π(2l + 1)
Cl,ml′,m′,l′′,m′′Cl,0l′,0,l′′,0Y

m
l =

Bf+Bg∑
l=0

l∑
m=−l

ĥml Y
m
l

(A.20)

where Cl,ql′,q′,l′′,q′′ ∈ R is Clebsch-Gordan coefficient associated to complex SH basis
elements, such that Cl,ql′,q′,l′′,q′′ ̸= 0 only when q′ + q′′ = q. If the Clebsch-Gordan
coefficients are stored in a sparse matrix Cll′,l′′ ∈ R(2l′+1)(2l′′+1)×(2l+1), Eq. A.20 can
be written in a more elegant way as

ĥl =
∑
l′,l′′

√
(2l′ + 1)(2l′′ + 1)

4π(2l + 1)
Cl,0l′,0,l′′,0C

l
l′,l′′

T [
f̂l′ ⊗ ĝl′′

]
s.t. |l′ − l′′| ≤ l ≤ l′ + l′′

(A.21)
where ĥk, f̂k, ĝk ∈ C2k+1 are the vector with complex SH coefficients of degree k.
In analogy, given two L2 functions function f, g : S2 → R of bandwidths Bf and
Bg, their product is defined as

h = [f × g] =

Bf∑
l′=0

l′∑
m′=−l′

f̂m′,l′Ym′,l′

Bg∑
l′′=0

l′′∑
m′′=−l′′

ĝm′′,l′′Ym′′,l′′ =

Bf∑
l′=0

Bg∑
l′′=0

l′+l′′∑
l=|l′−l′′|

l′∑
m′=−l′

l′′∑
m′′=−l′′

f̂m′,l′ ĝ
m′′,l′′

√
(2l′ + 1)(2l′′ + 1)

4π(2l + 1)
C l,m

′+m′′

l′,m′,l′′,m′′C
l,0
l′,0,l′′,0Ym′+m′′,l =

Bf+Bg∑
l=0

l∑
m=−l

Bf∑
l′=0

Bg∑
l′′=0

l′∑
m′=−l′

l′′∑
m′′=−l′′

f̂m′,l′ ĝm′′,l′′

√
(2l′ + 1)(2l′′ + 1)

4π(2l + 1)
C l,ml′,m′,l′′,m′′C

l,0
l′,0,l′′,0Ym,l =

Bf+Bg∑
l=0

l∑
m=−l

ĥm,lYm,l

(A.22)
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and C l,ql′,q′,l′′,q′′ ∈ R is Clebsch-Gordan coefficient associated to real SH basis ele-
ments. If the Clebsch-Gordan coefficients are stored in a sparse matrix C ll′,l′′ ∈
R(2l′+1)(2l′′+1)×(2l+1), Eq. A.22 can be written in matrix-vector notation as

ĥl =
∑
l′,l′′

√
(2l′ + 1)(2l′′ + 1)

4π(2l + 1)
C l,0l′,0,l′′,0C

l
l′,l′′

T [
f̂l′ ⊗ ĝl′′

]
s.t. |l′ − l′′| ≤ l ≤ l′ + l′′

(A.23)
where ĥk, f̂k, ĝk ∈ R2k+1 are the vector with real SH coefficients of degree k.
Denoting with Cl,ql′,q′,l′′,q′′ ∈ R and with C l,ql′,q′,l′′,q′′ ∈ R Clebsch-Gordan coefficient
associated to complex and real SH basis elements, respectively, the real Clebsch-
Gordan coefficients can be derived as

Ym′,l′Ym′′,l′′ = 2(−1)m
′+m



Im
[
Y m′
l′

]
Im

[
Y m′′
l′′

]
if m′ < 0, m′′ < 0

Im
[
Y m′
l′

]
Re

[
Y m′′
l′′

]
if m′ < 0, m′′ > 0

Re
[
Y m′
l′

]
Im

[
Y m′′
l′′

]
if m′ > 0, m′′ < 0

Re
[
Y m′
l′

]
Re

[
Y m′′
l′′

]
if m′ > 0, m′′ > 0

1√
2
Im

[
Y m′
l′

]
Y m′′
l′′ if m′ < 0, m′′ = 0

1√
2
Re

[
Y m′
l′

]
Y m′′
l′′ if m′ > 0, m′′ = 0

1√
2
Y m′
l′ Im

[
Y m′′
l′′

]
if m′ = 0, m′′ < 0

1√
2
Y m′
l′ Re

[
Y m′′
l′′

]
if m′ = 0, m′′ > 0

1
2Y

m′
l′ Y m′′

l′′ if m′ = 0, m′′ = 0

(A.24)

using that Im
[
Y m
l

]
=

Ym
l −Ym

l
∗

2 , Re
[
Y m
l

]
=

Ym
l (r)+Ym

l
∗

2 and Y m
l

∗ = (−1)mY −m
l , it
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can be obtained that

C l,ml′,m′,l′′,m′′ = c



Cl,ml′,m′,l′′,m′′ − (−1)m
′Cl,ml′,−m′,l′′,m′′ − (−1)m

′′Cl,ml′,m′,l′′,−m′′ + (−1)m
′+m′′Cl,ml′,−m′,l′′,−m′′

if m′ < 0, m′′ < 0

Cl,ml′,m′,l′′,m′′ − (−1)m
′Cl,ml′,−m′,l′′,m′′ + (−1)m

′′Cl,ml′,m′,l′′,−m′′ − (−1)m
′+m′′Cl,ml′,−m′,l′′,−m′′

if m′ < 0, m′′ > 0

Cl,ml′,m′,l′′,m′′ + (−1)m
′Cl,ml′,−m′,l′′,m′′ − (−1)m

′′Cl,ml′,m′,l′′,−m′′ − (−1)m
′+m′′Cl,ml′,−m′,l′′,−m′′

if m′ < 0, m′′ > 0

Cl,ml′,m′,l′′,m′′ + (−1)m
′Cl,ml′,−m′,l′′,m′′ + (−1)m

′′Cl,ml′,m′,l′′,−m′′ + (−1)m
′+m′′Cl,ml′,−m′,l′′,−m′′

if m′ > 0, m′′ > 0
√
2(Cl,ml′,m′,l′′,m′′ − (−1)m

′Cl,ml′,−m′,l′′,m′′)

if m′ < 0, m′′ = 0
√
2(Cl,ml′,m′,l′′,m′′ + (−1)m

′Cl,ml′,−m′,l′′,m′′)

if m′ > 0, m′′ = 0
√
2(Cl,ml′,m′,l′′,m′′ − (−1)m

′Cl,ml′,m′,l′′,−m′′)

if m′ = 0, m′′ < 0
√
2(Cl,ml′,m′,l′′,m′′ + (−1)m

′Cl,ml′,m′,l′′,−m′′)

if m′ = 0, m′′ > 0

2Cl,ml′,m′,l′′,m′′

if m′ = 0, m′′ = 0

(A.25)

where c = 1
2(−1)m

′+m′′ .
Conversion between the sparse matrices Cll′,l′′ , C ll′,l′′ ∈ R(2l′+1)(2l′′+1)×(2l+1) used in
equations A.21 and A.23 can be derived from

UHl ĥl =
∑
l′,l′′

√
(2l′ + 1)(2l′′ + 1)

4π(2l + 1)
Cl,0l′,0,l′′,0C

l
l′,l′′

T [
UHl′ f̂l′ ⊗ UHl′′ ĝl′′

]
s.t. |l′ − l′′| ≤ l ≤ l′ + l′′

=

√
(2l′ + 1)(2l′′ + 1)

4π(2l + 1)
Cl,0l′,0,l′′,0C

l
l′,l′′

T
[
UHl′ ⊗ UHl′′

][
f̂l′ ⊗ ĝl′′

]
s.t. |l′ − l′′| ≤ l ≤ l′ + l′′

(A.26)

thus

C l
′,l′′

l
T =


Re

[
UlCl

′,l′′

l
T
[
UHl′ ⊗ UHl′

]]
l1 + l2 + l is even

Im

[
UlCl

′,l′′

l
T
[
UHl′ ⊗ UHl′

]]
l1 + l2 + l is odd

(A.27)
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Product of SO(3) signals

Multiplication of two SO(3) signals in SO(3) domain results in a signal whose do-
main is also SO(3). Given two L2 functions function f, g : SO(3) → R of bandwidths
Bf and Bg, their product is defined as (*cite)

[f × g](R) =

Bf∑
l′=0

l′∑
m′=−l′

l′∑
n′=−l′

F̂m
′n′

l′ Dm′n′
l′ (R)

Bg∑
l′′=0

l′′∑
m′′=−l′′

l′′∑
n′′=−l′′

Ĝm
′′n′′

l′′ Dm′′n′′
l′′ (R) =

Bf∑
l′=0

l′∑
m′=−l′

l′∑
n′=−l′

F̂m
′n′

l′

Bg∑
l′′=0

l′′∑
m′′=−l′′

l′′∑
n′′=−l′′

Ĝm
′′n′′

l′′ Dm′n′
l′ (R)Dm′′n′′

l′′ (R) =

Bf∑
l′=0

l′∑
m′=−l′

l′∑
n′=−l′

F̂m
′n′

l′

Bg∑
l′′=0

l′′∑
m′′=−l′′

l′′∑
n′′=−l′′

Ĝm
′′n′′

l′′

l′+l′′∑
l=|l′−l′′|

C l,m
′+m′′

l′,m′,l′′,m′′C
l,n′+n′′

l′,n′,l′′,n′′D
(m′+m′′)(n′+n′′)
l (R) =

Bf∑
l′=0

Bg∑
l′′=0

l′+l′′∑
l=|l′−l′′|

l′∑
m′=−l′

l′∑
n′=−l′

l′′∑
m′′=−l′′

l′′∑
n′′=−l′′

F̂m
′n′

l′ Ĝm
′′n′′

l′′ C l,m
′+m′′

l′,m′,l′′,m′′C
l,n′+n′′

l′,n′,l′′,n′′D
(m′+m′′)(n′+n′′)
l (R) =

Bf+Bg∑
l=0

l∑
m=−l

l∑
n=−l

Bf∑
l′=0

Bg∑
l′′=0

l′∑
m′=−l′

l′∑
n′=−l′

l′′∑
m′′=−l′′

l′′∑
n′′=−l′′

F̂m
′n′

l′ Ĝm
′′n′′

l′′ C l,m
′+m′′

l′,m′,l′′,m′′C
l,n′+n′′

l′,n′,l′′,n′′D
mn
l (R) =

Bf+Bg∑
l=0

l∑
m=−l

l∑
n=−l

Ĥmn
l Dmn

l (R)

(A.28)

.





Appendix B

Microstructure estimation
experiments appendix

MLP hyperparameter selection for microstructure param-
eter estimation

In this section we provide details related to the hyperparameter selection for
the MLP model introduced by [Golkov et al. 2016]. We have evaluated mod-
els of two sizes and depths, namely MLP1 composed of four layers of sizes
60 × 256, 256 × 256, 256 × 256, 256 × nout and MLP2 composed of seven layers of
sizes 60×256, 256×192, 192×128, 128×64, 64×32, 32×16, 16×nout, where nout = 3

for NODDI and nout = 2 for SMT. Also, we have trained models with two different
initial learning rates, 0.001 and 0.0001. The original method uses drop out rate of
0.1, thus we have evaluated the model MLP1 with different drop out rates of 0.1,
0.05 and 0.0 for NODDI parameter estimation and found that the models without
drop out (0.0) have much better performance regardless of the number of training
subjects. Also, instead of stochastic gradient descent used in the original work,
we have found that the Adam optimizer gives better performance. Illustrations of
the validation losses for NODDI and SMT parameter estimation and corresponding
number of trainable parameters, for the experiments with the number of training
subjects 1, 3, 5 are provided in Figure B.1 and for 10, 15, 30 training subjects in Fig-
ure B.2.
For a comparison with another methods on the problem of NODDI parameter esti-
mation, for the number of training subjects 1, 3, 5 and 10, we have selected MLP1

with lr = 0.001 and for 15 and 30 subjects the same model with lr = 0.0001. For the
SMT parameter estimation, for the number of training subjects 1 we have selected
MLP1 with lr = 0.001, for 3, 5, 10 subjects MLP2 with lr = 0.001, while for 15

and 30 the same model with lr = 0.0001.
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Figure B.1: Validation losses for NODDI (left) and SMT (middle) parameter esti-
mation and corresponding number of trainable parameters (right) for the number
of training subjects 1, 3, 5.

Figure B.2: Validation losses for NODDI (left) and SMT (middle) parameter esti-
mation and corresponding number of trainable parameters (right) for the number
of training subjects 10, 15, 30.
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MEDN hyperparameter selection for microstructure pa-
rameter estimation

In this section we provide details related to the hyperparameter selection for the
MEDN model introduced by [Ye 2017]. This model is strictly designed for NODDI
parameter estimation. We have evaluated the models for different number of itera-
tions 6, 8, 10 used in the approximation of iterative hard thresholding, as described
in Chapter 3, and for two different initial learning rates, 0.001 and 0.0001. Illustra-
tions of the validation losses for NODDI parameter estimation and corresponding
number of trainable parameters, for the experiments with the number of training
subjects 1, 3, 5 are provided in Figure B.3 and for 10, 15, 30 training subjects in
Figure B.4. According to the validation curves, we have observed that the model
sometimes experiences instabilities with higher learning rates, thus the update of
trainable weights stops.

Figure B.3: Validation losses for NODDI parameter estimation, illustrated within a
range [0.0075, 0.01] (left), without rage limit to illustrate instabilities (middle) and
corresponding number of trainable parameters (right) for the number of training
subjects 1, 3, 5.

For a comparison with another methods, for the number of training subjects 1, 3
and 5, we have selected models with Nit = 6, Nit = 8 and Nit = 10, respectively
with lr = 0.001. For 10, 15 and 30 training subjects, we have selected model with
Nit = 10, for 10 subjects with lr = 0.001 and for 15 and 30 with lr = 0.0001.
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Figure B.4: Validation losses for NODDI parameter estimation, illustrated within a
range [0.0075, 0.01] (left), without rage limit to illustrate instabilities (middle) and
corresponding number of trainable parameters (right) for the number of training
subjects 10, 15, 30.
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Hyperparameter selection for microstructure parameter
estimation for our models

We have evaluated our models for different input bandwidths and for differ-
ent depths. All models have the same denoising layer composed of two train-
able matrices of size 60 × 60 and four fully connected layers with the num-
ber of output neurons 128, 128, 128, nout at the end which take as input rota-
tion invariant features and based on them perform parameter estimation. Model
Fourier_S2_SO(3)1 contains three convolutional layers of input and output
bandwidths (6, 4), (4, 2), (2, 0) with the input and output number of channels
(2, 8), (8, 16), (16, 32). Model Fourier_S2_SO(3)2 contains three convolutional
layers of input and output bandwidths (8, 4), (4, 2), (2, 0) with the input and output
number of channels (2, 8), (8, 16), (16, 32). Model Fourier_S2_SO(3)3 contains
four convolutional layers of input and output bandwidths (8, 6), (6, 4), (4, 2), (2, 0)

with the input and output number of channels (2, 4), (4, 8), (8, 16), (16, 32). Model
Fourier_S2_zonal1 contains three convolutional layers of input and output
bandwidths (6, 4), (4, 2), (2, 0) with the input and output number of channels
(2, 20), (20, 40), (40, 80). Model Fourier_S2_zonal2 contains four convolutional
layers of input and output bandwidths (8, 6), (6, 4), (4, 2), (2, 0) with the input and
output number of channels (2, 12), (12, 24), (24, 48), (48, 96). Illustrations of the vali-
dation losses for NODDI and SMT parameter estimation and corresponding number
of trainable parameters, for the experiments with the number of training subjects
1, 3, 5 are provided in Figure B.5 and for 10, 15, 30 training subjects in Figure B.6.

Figure B.5: Validation losses for NODDI (left) and SMT (middle) parameter esti-
mation and corresponding number of trainable parameters (right) for the number
of training subjects 1, 3, 5.
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Figure B.6: Validation losses for NODDI (left) and SMT (middle) parameter esti-
mation and corresponding number of trainable parameters (right) for the number
of training subjects 10, 15, 30.

Since the differences between validation losses for different Fourier_S2_SO(3)

and Fourier_S2_zonal are smaller, for all subjects and for both NODDI
and SMT parameter estimation we have selected, Fourier_S2_SO(3)3 and
Fourier_S2_zonal1.
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MLP+ hyperparameter selection for microstructure pa-
rameter estimation

We have extended the model MLP [Golkov et al. 2016] to the version termed as
MLP+ which as input take dMRI signals from a neighbourhood of size 3 × 3 × 3.
We have evaluated models of two sizes and depths, namely MLP1+ composed of
four layers of sizes 60×27×256, 256×256, 256×256, 256×nout and MLP2 composed
of seven layers of sizes 60×27×256, 256×192, 192×128, 128×64, 64×32, 32×16, 16×
nout, where nout = 3 for NODDI and nout = 2 for SMT. The models are trained
with three different initial learning rates 0.001, 0.0005 and 0.0001. Illustrations
of the validation losses and corresponding number of trainable parameters, for the
experiments with the number of training subjects 1, 3, 5 are provided in Figure B.7.

Figure B.7: Validation losses for NODDI (left) and SMT (middle) parameter esti-
mation and corresponding number of trainable parameters (right) for the number
of training subjects 1, 3, 5.

For a comparison with other approaches, we have selected MLP1+ with lr = 0.0001

for NODDI parameter estimation and MLP2+ with lr = 0.001 for SMT parameter
estimation.
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MEDN+ hyperparameter selection for microstructure pa-
rameter estimation

In the work presented in [Ye 2017], in analogy to MEDN, a model termed as MEDN+
is introduced. It has the same architecture as MEDN with a difference that it takes
as input dMRI signals from neighbourhood 3×3×3. The model MEDN+ is evaluated
for three different initial learning rates 0.001, 0.0005 and 0.0001. Illustrations of
the validation losses for NODDI parameter estimation and corresponding number
of trainable parameters, for the experiments with the number of training subjects
1, 3, 5 are provided in Figure B.8. As for MEDN, according to the validation curves,
we have observed that the model sometimes experiences instabilities with higher
learning rates, thus the update of trainable weights stops.

Figure B.8: Validation losses for NODDI parameter estimation, illustrated within
a range [0.005, 0.01] (left), without rage limit to illustrate instabilities (middle) and
corresponding number of trainable parameters (right) for the number of training
subjects 1, 3, 5.

Clearly, for a comparison with other approaches, we have selected MEDN+ with
lr = 0.0001.
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MescNet hyperparameter selection for microstructure pa-
rameter estimation

The model MescNet introduced in [Ye et al. 2019] is designed for the estimation
of arbitrary microstructure parameters, thus it is evaluated on both problems of
NODDI and SMT parameter estimation. It is evaluated for three different initial
learning rates 0.001, 0.0005 and 0.0001. Illustrations of the validation losses for
NODDI and SMT parameter estimation and corresponding number of trainable
parameters, for the experiments with the number of training subjects 1, 3, 5 are pro-
vided in Figure B.9. As MEDN and MEDN+, the model exhibit instabilities for
higher learning rates, thus those curves are not visible in the illustrated ranges.

Figure B.9: Validation losses for NODDI (left) and SMT (middle) parameter esti-
mation and corresponding number of trainable parameters (right) for the number
of training subjects 1, 3, 5.

For a comparison with other approaches, we have selected MescNet with lr =

0.0005, except for SMT parameter estimation trained on 3 subjects where the se-
lected model is trained with lr = 0.0001.



190 Appendix B. Microstructure estimation experiments appendix

MescNetSepDict hyperparameter selection for mi-
crostructure parameter estimation

As MescNet, MescNetSepDict introduced in [Ye et al. 2020] is designed for the es-
timation of arbitrary microstructure parameters. It represents optimization of the
model MescNet in terms of the number of parameters, however this comes with a
highly increased computational time. It is evaluated for three different initial learn-
ing rates 0.001, 0.0005 and 0.0001. Illustrations of the validation losses for NODDI
and SMT parameter estimation and corresponding number of trainable parame-
ters, for the experiments with the number of training subjects 1, 3, 5 are provided
in Figure B.10. As MEDN, MEDN+ and MescNet, the model exhibit sometimes
instabilities, thus those curves are not visible in the illustrated ranges.

Figure B.10: Validation losses for NODDI (left) and SMT (middle) parameter es-
timation and corresponding number of trainable parameters (right) for the number
of training subjects 1, 3, 5.

For a comparison with other approaches, we have selected MescNetSepDict with
lr = 0.001, except for NODDI parameter estimation trained on 5 subjects where
the selected model is trained with lr = 0.0005.
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Hyperparameter selection for microstructure parameter
estimation for our models

In analogy to MLP+ and MEDN+, we have designed Fourier_S2_SO(3)+ and
Fourier_S2_zonal+ models which take as input dMRI signals from neighbour-
hood of size 3 × 3 × 3. As single voxel models, they have the same denois-
ing layer composed of two trainable matrices of size 60 × 60 and four fully con-
nected layers with the number of output neurons 128, 128, 128, nout at the end.
Model Fourier_S2_SO(3)+ contains four convolutional layers of input and out-
put bandwidths (8, 6), (6, 4), (4, 2), (2, 0) with the input and output number of chan-
nels (2× 27, 8), (8, 16), (16, 32), (32, 64). Model Fourier_S2_zonal+ contains four
convolutional layers of input and output bandwidths (8, 6), (6, 4), (4, 2), (2, 0) with
the input and output number of channels (2 × 27, 16), (16, 32), (32, 64), (64, 128).
In the model Fourier_S2_SO(3)+, since the number of rotation invariant fea-
tures extracted from the first SH coefficients (after denoising) is 2 × 27 × 5 = 270

is much larger than the number of rotation invariant features extracted from the
following layers after SO(3) non-linearities 8 × 4, 16 × 3, 32 × 2, 64 × 1, the input
rotation invariant features are projected to a vector of length 64 with a trainable
matrix of size 270 × 60 prior to concatenation to the features from other layers.
In Fourier_S2_zonal+, the number of rotation invariant features extracted after
S2 non-linearities is 16 × 4, 32 × 3, 64 × 2, 128, thus the rotation invariant features
extracted from the first SH coefficients (after denoising) is concatenated directly to
them. Illustrations of the validation losses for NODDI and SMT parameter estima-
tion and corresponding number of trainable parameters, for the experiments with
the number of training subjects 1, 3, 5 are provided in Figure B.11.
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Figure B.11: Validation losses for NODDI (left) and SMT (middle) parameter es-
timation and corresponding number of trainable parameters (right) for the number
of training subjects 1, 3, 5.
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Multivariate Convolutional Sparse Coding (MCSC) hy-
perparameter selection for noiseless data

To select the hyperparameters for MCSC, we have performed a grid search on four
parameters. λ which controls sparsity of the activations, ε a stopping criterion (if
the cost descent after an update of dictionary and activations is smaller than ε). εz
tolerance of the solver for the estimation of the activations (locally greedy coordinate
descent (LGCD) solver was used). εD of the solver for the update of dictionary
(alternate adaptive solver was used). Experiments are repeated 10 times to select
the hyperparameters. To perform comparison with our approach, the experiments
are repeated again 40 times for the best configuration of the parameters. Maximum
number of iterations for all parameter configurations is 400. The MSE and standard
deviations for different parameters are given in Tables C.1, C.2, C.3, C.4 and C.5.

Table C.1: εz = 10−4, ε = 10−8, εD = 10−8

λ = 0.4 λ = 0.5 λ = 0.6 λ = 0.7 λ = 0.8 λ = 0.9

0.1367 ±0.0679 0.1581 ±0.0998 0.1576 ±0.0632 0.2538 ±0.1438 0.2357 ±0.1552 0.2468 ±0.0890

0.1511 ±0.0822 0.1871 ±0.1375 0.1580 ±0.0773 0.2914 ±0.1922 0.2630 ±0.2051 0.2336 ±0.0860

Table C.2: εz = 10−5, ε = 10−8, εD = 10−8

λ = 0.4 λ = 0.5 λ = 0.6 λ = 0.7 λ = 0.8 λ = 0.9

0.2082 ±0.1408 0.1309 ±0.0279 0.2016 ±0.1308 0.1811 ±0.0905 0.1326 ±0.0999 0.1435 ±0.0483

0.2435 ±0.2024 0.1176 ±0.0239 0.2190 ±0.1797 0.1732 ±0.0931 0.1416 ±0.1357 0.1381 ±0.0527

Table C.3: ε = 10−8, εD = 10−8

λ = 0.4,εz = 10−3 λ = 0.3,εz = 10−3 λ = 0.8,εz = 10−6 λ = 0.9,εz = 10−6

0.2241 ±0.1114 0.2634 ±0.2098 0.1395 ±0.0621 0.1402 ±0.0918

0.2525 ±0.1355 0.3202 ±0.2629 0.1349 ±0.0571 0.1366 ±0.0879

MCSC hyperparameter selection for noisy data

As for noiseless data, to select the hyperparameters for MCSC applied on noisy data,
we have performed a grid search on four parameters. Parameters are selected based
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Table C.4: εz = 10−5, εD = 10−8

λ = 0.5, ε = 10−9 λ = 0.5, ε = 10−7 λ = 0.8, ε = 10−9 λ = 0.8, ε = 10−7

0.2174 ±0.1421 0.1244 ±0.0478 0.1840 ±0.1046 0.2080 ±0.1107

0.2641 ±0.2006 0.1200 ±0.0602 0.1891 ±0.1413 0.2127 0.1472

Table C.5: εz = 10−5, ε = 10−7

λ = 0.5, εD = 10−9 λ = 0.5, εD = 10−7

0.1288 ±0.0889 0.1659 ±0.0799

0.1425 ±0.1177 0.1740 ±0.1194

on reconstruction MSE computed with respect to noiseless ground truth signals
which are given in Tables C.6, C.7, C.8, C.9 and C.10.

Table C.6: εz = 10−5, ε = 10−8, εD = 10−8

λ = 0.3 λ = 0.4 λ = 0.5 λ = 0.6 λ = 0.7 λ = 0.8

2.9842 ±0.2601 2.2990 ±0.1859 2.4923 ±0.1773 4.0116 ±1.5745 6.7545 ±2.0822 8.6524 ±1.7048

2.8564 ±0.2831 2.2999 ±0.23028 2.5246 ±0.1980 3.9704 ±1.3986 6.5052 ±1.9051 8.3485 1.4671

Table C.7: εz = 10−4, ε = 10−8, εD = 10−8

λ = 0.3 λ = 0.4 λ = 0.5 λ = 0.6

2.7965 ±0.1466 2.3316 ±0.1645 2.6254 ±0.1639 3.5966 ±1.4074

2.6385 ±0.1646 2.3051 ±0.1573 2.6665 ±0.1945 3.6517 ±1.3504

Table C.8: εz = 10−6, ε = 10−8, εD = 10−8

λ = 0.3 λ = 0.4 λ = 0.5 λ = 0.6

2.7811 ±0.1815 2.3578 ±0.1285 2.6275 ±0.19479 3.2454 ±1.1326

2.6547 ±0.1993 2.3557 ±0.1502 2.6735 ±0.2204 3.2946 ±1.1355

Table C.9: εz = 10−5, εD = 10−8

λ = 0.4,ε = 10−9 λ = 0.4,ε = 10−7

2.3304 ±0.1064 2.3005 ±0.1639

2.2951 ±0.1376 2.2513 ±0.2192

Table C.10: εz = 10−5, ε = 10−8

λ = 0.4,εD = 10−9 λ = 0.4,εD = 10−7

2.2935 ±0.1049 2.3428 ±0.1347

2.2562 ±0.1330 2.3314 ±0.1515

Since ground truth noiseless signals are not available in the real scenario, we have
investigated whether selection of parameters can be based on reconstruction MSE
computed with respect to noisy available signals and concluded that some prior
knowledge for parameter selection is required. The MSE and standard deviations
for different parameters are given in Tables C.11, C.12, C.13, C.14, C.15 and C.16.
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Table C.11: εz = 10−5, ε = 10−8, εD = 10−8

λ = 0.1 λ = 0.2 λ = 0.3

3109.898 ±0.788 3121.307 ±1.192 3128.235 ±1.039

3110.205 ±0.941 3122.229 ±1.169 3128.432 ±0.511

Table C.12: εz = 10−5, ε = 10−8, εD = 10−8

λ = 0.4 λ = 0.5 λ = 0.6 λ = 0.7

3129.933 ±0.940 3131.443 ±0.702 3133.805 ±1.750 3136.926 ±2.533

3130.829 ±0.969 3132.013 ±0.603 3134.207 ±2.030 3137.245 ±2.037

Table C.13: εz = 10−4, ε = 10−8, εD = 10−8

λ = 0.1 λ = 0.2 λ = 0.3

3109.1191 ±0.8951 3120.9702 ±0.9151 3127.5977 ±1.0059

3109.9946 ±1.2312 3121.6355 ±1.2983 3128.268 ±1.0959

Table C.14: εz = 10−3, ε = 10−8, εD = 10−8

λ = 0.1

3109.587 ±1.2439

3111.091 ±1.4872

Table C.15: εz = 10−4, εD = 10−8

λ = 0.1,ε = 10−7 λ = 0.1,ε = 10−9

3109.274 ±0.786 3109.6804 ±1.252

3110.586 ±1.222 3110.848 ±0.9401

Table C.16: εz = 10−4, ε = 10−8

λ = 0.1,εD = 10−7 λ = 0.1,εD = 10−9

3110.058 1.484 3109.657 ±1.141

3110.297 1.506 3110.540 ±0.909
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HCP Q=3 and P=2

Illustrations of the learned spatial and temporal patterns obtained with our approach
and the corresponding activation vectors. Models contain 1 pair of spatial and
temporal atoms. The maximum number of activations during train Q = 3 and
during test P = 2. The models are trained one one session corresponding to one
event (left hand, left foot, right hand, right foot movements and fixation).

Figure C.1: Subject 104012 Illustration of estimated temporal patterns (first row),
their power spectral density (second row), spatial patterns (third row), activations on
training session (fourth row) and activations on testing session (fifth row) obtained
with our method. Left hand (first column), left foot (second column), right
hand (third column), right foot (fourth column) movements, fixation/resting
(fifth column).
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Figure C.2: Subject 105923 Illustration of estimated temporal patterns (first row),
their power spectral density (second row), spatial patterns (third row), activations on
training session (fourth row) and activations on testing session (fifth row) obtained
with our method. Left hand (first column), left foot (second column), right
hand (third column), right foot (fourth column) movements, fixation/resting
(fifth column).

Figure C.3: Subject 106521 Illustration of estimated temporal patterns (first row),
their power spectral density (second row), spatial patterns (third row), activations on
training session (fourth row) and activations on testing session (fifth row) obtained
with our method. Left hand (first column), left foot (second column), right
hand (third column), right foot (fourth column) movements, fixation/resting
(fifth column).
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Figure C.4: Subject 108323 Illustration of estimated temporal patterns (first row),
their power spectral density (second row), spatial patterns (third row), activations on
training session (fourth row) and activations on testing session (fifth row) obtained
with our method. Left hand (first column), left foot (second column), right
hand (third column), right foot (fourth column) movements, fixation/resting
(fifth column).

Figure C.5: Subject 109123 Illustration of estimated temporal patterns (first row),
their power spectral density (second row), spatial patterns (third row), activations on
training session (fourth row) and activations on testing session (fifth row) obtained
with our method. Left hand (first column), left foot (second column), right
hand (third column), right foot (fourth column) movements, fixation/resting
(fifth column).
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HCP Q=10 and P=2

Illustrations of the learned spatial and temporal patterns obtained with our approach
and the corresponding activation vectors. Models contain 1 pair of spatial and
temporal atoms. The maximum number of activations during train Q = 10 and
during test P = 2. The models are trained one one session corresponding to one
event (left hand, left foot, right hand, right foot movements and fixation).

Figure C.6: Subject 104012 Illustration of estimated temporal patterns (first row),
their power spectral density (second row), spatial patterns (third row), activations on
training session (fourth row) and activations on testing session (fifth row) obtained
with our method. Left hand (first column), left foot (second column), right
hand (third column), right foot (fourth column) movements, fixation/resting
(fifth column).
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Figure C.7: Subject 105923 Illustration of estimated temporal patterns (first row),
their power spectral density (second row), spatial patterns (third row), activations on
training session (fourth row) and activations on testing session (fifth row) obtained
with our method. Left hand (first column), left foot (second column), right
hand (third column), right foot (fourth column) movements, fixation/resting
(fifth column).

Figure C.8: Subject 106521 Illustration of estimated temporal patterns (first row),
their power spectral density (second row), spatial patterns (third row), activations on
training session (fourth row) and activations on testing session (fifth row) obtained
with our method. Left hand (first column), left foot (second column), right
hand (third column), right foot (fourth column) movements, fixation/resting
(fifth column).
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Figure C.9: Subject 108323 Illustration of estimated temporal patterns (first row),
their power spectral density (second row), spatial patterns (third row), activations on
training session (fourth row) and activations on testing session (fifth row) obtained
with our method. Left hand (first column), left foot (second column), right
hand (third column), right foot (fourth column) movements, fixation/resting
(fifth column).

Figure C.10: Subject 109123 Illustration of estimated temporal patterns (first
row), their power spectral density (second row), spatial patterns (third row), ac-
tivations on training session (fourth row) and activations on testing session (fifth
row) obtained with our method. Left hand (first column), left foot (second col-
umn), right hand (third column), right foot (fourth column) movements, fixa-
tion/resting (fifth column).
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HCP, 10 atoms, Q=5 and P=2

Illustrations of the learned spatial and temporal patterns obtained with our approach
and the corresponding activation vectors. Models contain 10 pairs of spatial and
temporal atoms. The maximum number of activations during train Q = 5 and
during test P = 2. The models are trained one one session corresponding to one
event (left hand, left foot, right hand, right foot movements and fixation).

Figure C.11: Subject 104012, Left hand Illustration of estimated temporal pat-
terns (first row), their power spectral density (second row), spatial patterns (third
row), activations on training session (fourth row) and activations on testing session
(fifth row) obtained with our method. Each column corresponds to different atom.
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Figure C.12: Subject 104012, Left foot Illustration of estimated temporal pat-
terns (first row), their power spectral density (second row), spatial patterns (third
row), activations on training session (fourth row) and activations on testing session
(fifth row) obtained with our method. Each column corresponds to different atom.

Figure C.13: Subject 104012, Right hand Illustration of estimated temporal
patterns (first row), their power spectral density (second row), spatial patterns (third
row), activations on training session (fourth row) and activations on testing session
(fifth row) obtained with our method. Each column corresponds to different atom.
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Figure C.14: Subject 104012, Right foot Illustration of estimated temporal
patterns (first row), their power spectral density (second row), spatial patterns (third
row), activations on training session (fourth row) and activations on testing session
(fifth row) obtained with our method. Each column corresponds to different atom.

Figure C.15: Subject 104012, Fixation Illustration of estimated temporal pat-
terns (first row), their power spectral density (second row), spatial patterns (third
row), activations on training session (fourth row) and activations on testing session
(fifth row) obtained with our method. Each column corresponds to different atom.
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Figure C.16: Subject 105923, Left hand Illustration of estimated temporal pat-
terns (first row), their power spectral density (second row), spatial patterns (third
row), activations on training session (fourth row) and activations on testing session
(fifth row) obtained with our method. Each column corresponds to different atom.

Figure C.17: Subject 105923, Left foot Illustration of estimated temporal pat-
terns (first row), their power spectral density (second row), spatial patterns (third
row), activations on training session (fourth row) and activations on testing session
(fifth row) obtained with our method. Each column corresponds to different atom.
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Figure C.18: Subject 105923, Right hand Illustration of estimated temporal
patterns (first row), their power spectral density (second row), spatial patterns (third
row), activations on training session (fourth row) and activations on testing session
(fifth row) obtained with our method. Each column corresponds to different atom.

Figure C.19: Subject 105923, Right foot Illustration of estimated temporal
patterns (first row), their power spectral density (second row), spatial patterns (third
row), activations on training session (fourth row) and activations on testing session
(fifth row) obtained with our method. Each column corresponds to different atom.
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Figure C.20: Subject 105923, Fixation Illustration of estimated temporal pat-
terns (first row), their power spectral density (second row), spatial patterns (third
row), activations on training session (fourth row) and activations on testing session
(fifth row) obtained with our method. Each column corresponds to different atom.
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Figure C.21: Subject 106521, Left hand Illustration of estimated temporal pat-
terns (first row), their power spectral density (second row), spatial patterns (third
row), activations on training session (fourth row) and activations on testing session
(fifth row) obtained with our method. Each column corresponds to different atom.

Figure C.22: Subject 106521, Left foot Illustration of estimated temporal pat-
terns (first row), their power spectral density (second row), spatial patterns (third
row), activations on training session (fourth row) and activations on testing session
(fifth row) obtained with our method. Each column corresponds to different atom.
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Figure C.23: Subject 106521, Right hand Illustration of estimated temporal
patterns (first row), their power spectral density (second row), spatial patterns (third
row), activations on training session (fourth row) and activations on testing session
(fifth row) obtained with our method. Each column corresponds to different atom.

Figure C.24: Subject 106521, Right foot Illustration of estimated temporal
patterns (first row), their power spectral density (second row), spatial patterns (third
row), activations on training session (fourth row) and activations on testing session
(fifth row) obtained with our method. Each column corresponds to different atom.
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Figure C.25: Subject 106521, Fixation Illustration of estimated temporal pat-
terns (first row), their power spectral density (second row), spatial patterns (third
row), activations on training session (fourth row) and activations on testing session
(fifth row) obtained with our method. Each column corresponds to different atom.
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Figure C.26: Subject 108323, Left hand Illustration of estimated temporal pat-
terns (first row), their power spectral density (second row), spatial patterns (third
row), activations on training session (fourth row) and activations on testing session
(fifth row) obtained with our method. Each column corresponds to different atom.

Figure C.27: Subject 108323, Left foot Illustration of estimated temporal pat-
terns (first row), their power spectral density (second row), spatial patterns (third
row), activations on training session (fourth row) and activations on testing session
(fifth row) obtained with our method. Each column corresponds to different atom.
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Figure C.28: Subject 108323, Right hand Illustration of estimated temporal
patterns (first row), their power spectral density (second row), spatial patterns (third
row), activations on training session (fourth row) and activations on testing session
(fifth row) obtained with our method. Each column corresponds to different atom.

Figure C.29: Subject 108323, Right foot Illustration of estimated temporal
patterns (first row), their power spectral density (second row), spatial patterns (third
row), activations on training session (fourth row) and activations on testing session
(fifth row) obtained with our method. Each column corresponds to different atom.
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Figure C.30: Subject 108323, Fixation Illustration of estimated temporal pat-
terns (first row), their power spectral density (second row), spatial patterns (third
row), activations on training session (fourth row) and activations on testing session
(fifth row) obtained with our method. Each column corresponds to different atom.
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Figure C.31: Subject 109123, Left hand Illustration of estimated temporal pat-
terns (first row), their power spectral density (second row), spatial patterns (third
row), activations on training session (fourth row) and activations on testing session
(fifth row) obtained with our method. Each column corresponds to different atom.

Figure C.32: Subject 109123, Left foot Illustration of estimated temporal pat-
terns (first row), their power spectral density (second row), spatial patterns (third
row), activations on training session (fourth row) and activations on testing session
(fifth row) obtained with our method. Each column corresponds to different atom.
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Figure C.33: Subject 109123, Right hand Illustration of estimated temporal
patterns (first row), their power spectral density (second row), spatial patterns (third
row), activations on training session (fourth row) and activations on testing session
(fifth row) obtained with our method. Each column corresponds to different atom.

Figure C.34: Subject 109123, Right foot Illustration of estimated temporal
patterns (first row), their power spectral density (second row), spatial patterns (third
row), activations on training session (fourth row) and activations on testing session
(fifth row) obtained with our method. Each column corresponds to different atom.



216 Appendix C. Dictionary learning experiments appendix

Figure C.35: Subject 109123, Fixation Illustration of estimated temporal pat-
terns (first row), their power spectral density (second row), spatial patterns (third
row), activations on training session (fourth row) and activations on testing session
(fifth row) obtained with our method. Each column corresponds to different atom.
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M/EEG classification experiments
appendix

DeepConvNet

In this subsection we provide details on DeepConvNet [Schirrmeister et al. 2017]
hyperparameter search and the number of multiplications. The number of multipli-
cations per layer are given in Table D.1.

Table D.1: DeepConvNet number of multiplications per different steps of entire
classification process for one input sample. T is the input signal length. N is the
number of channels of the input signal. K is the number of temporal kernels. kL is
the kernel length. T1 =

⌊
T−kL+1

p

⌋
. T2 =

⌊
T1−kL+1

p ⌋. T3 =
⌊
T2−kL+1

p ⌋. p is pooling
size. Q is the number of output classes.
Operation Number of multiplications
Temporal correlation N × (T − kL + 1)× kL ×K

Spatial correlation N × (T − kL + 1)×K ×K

Batch normalization 2× (T − kL + 1)×K

Exponential Linear Unit (T − kL + 1)/2×K × (1 + 3(NTy − 2))

Temporal correlation
(
T1 − kL + 1

)
×K × 2K

Batch normalization 2× (T1 − kL + 1)× 2K

Exponential Linear Unit (T1 − kL + 1)×K × (1 + 3(NTy − 2))

Temporal correlation
(
T2 − kL + 1

)
× 2K × 4K

Batch normalization 2× (T2 − kL + 1)× 4K

Exponential Linear Unit (T2 − kL + 1)× 2K × (1 + 3(NTy − 2))

Temporal correlation
(
T3 − kL + 1

)
× 4K × 8K

Batch normalization 2× (T3 − kL + 1)× 8K

Exponential Linear Unit (T3 − kL + 1)× 4K × (1 + 3(NTy − 2))

Feature classification Q× (T3 − kL + 1)× 8K +Q× (1 + 3(NTy − 2))
* NTy corresponds to Taylor series degree used to compute exponential

Illustration of validation curves DeepConvNet models for different hyperparameters
are provided in Figures D.1 and D.2 for MEG experiment. K refers to the number
of convolutional kernels in the first layer, where in the each following this number is
increased by a factor of two. kL corresponds to the convolutional filter length and
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Figure D.1: DeepConvNet validation curves for subject blind training (left) and
subject aware training (right) for motor task MEG classification problem for fixed
K = 50, different lengths of temporal kernels kL and different pooling sizes p.

p to max pooling size after each convolution layer. We can notice that validation
accuracy is lower for pooling step 3. Increase of K leads to significant accuracy
improvement, while increase of kL from 5, 7 to 10, 15 leads to finer improvements.
In the subject blind experiment set-up, the model with K = 50, kL = 10 and p = 2

is selected as the best one. The number of trainable parameters is ∼ 1.71 × 106.
In subject aware experiment set-up, the model with K = 50, kL = 15 and p = 2 is
selected as the best one. The number of trainable parameters is ∼ 2.22× 106.
Illustration of the validation curves DeepConvNet models for different hyperparam-
eters are provided in Figures D.3 and D.4 for EEG experiment. In the subject blind
experiment set-up, the model with K = 100, kL = 3 and p = 2 is selected as the
best one. The number of trainable parameters is ∼ 1.89 × 106. In subject aware
experiment set-up, the model with K = 100, kL = 3 and p = 3 is selected as the
best one. The number of trainable parameters is ∼ 1.89 × 106. Learning rate is
0.0005.
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Figure D.2: DeepConvNet validation curves for subject blind training (left) and
subject aware training (right) for motor task MEG classification problem for different
K, and fixed lengths of temporal kernels kL and pooling sizes p.

Figure D.3: DeepConvNet validation curves for subject blind training and subject
aware training for mental workload EEG classification problem. Learning rate
0.0005
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Figure D.4: DeepConvNet validation curves for subject blind training and subject
aware training for mental workload EEG classification problem. Learning rate
0.0001
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ShallowConvNet

In this subsection we provide details on ShallowConvNet [Schirrmeister et al. 2017]
hyperparameter search and the number of multiplications. The number of multipli-
cations per layer are given in Table D.2.

Table D.2: ShallowConvNet number of multiplications per different steps of entire
classification process for one input sample. T is the input signal length. N is the
number of channels of the input signal. K is the number of temporal kernels. kL is
the kernel length. p is pooling size. Q is the number of output classes.
Operation Number of multiplications
Temporal correlation N × (T − kL + 1)× kL ×K

Spatial correlation N × (T − kL + 1)×K ×K

Batch normalization 2× (T − kL + 1)×K

Square activation (T − kL + 1)×K

Average pooling 5(T−kL+1)
p ×K

Logarithmic activation 5(T−kL+1)
p ×K × 3(NTy − 2))

Feature classification Q× 5(T−kL+1)
p ×K +Q× (1 + 3(NTy − 2))

* NTy corresponds to Taylor series degree used to compute exponential and logarithm

Illustration of the validation curves for ShallowConvNet models for different hyper-
parameters are provided in Figure D.5 for MEG experiment. kL refers to the length
of convolutional kernels and p to average pooling size. The number of convolutional
kernels is K = 50. Contrary to the DeepConvNet where pooling size corresponds
to the pooling stride, in ShallowConvNet pooling stride is p/5. We can notice that
validation accuracy is higher for longer convolutional kernels and smaller pooling
size. We can also notice that in subject blind training there is overfitting after 50th

epoch in majority of the models. To decrease overfitting, models are trained with
convolutional kernels constrained to norm lower than 1, whereas the default norm
bound is 2. The models are trained for p = 15 and the corresponding validation
curves are depicted in Figures D.6 and D.7. Decrease of norm bound yields a slight
improvement in subject aware training as well. In the subject blind experiment set-
up, the model with kL = 35 and p = 15 is selected as the best one, with ∼ 0.652×106

parameters. In the subject aware experiment set-up, the model with kL = 25 and
p = 15 is selected as the best one, with ∼ 0.652× 106 parameters. We have also ob-
served that although decreasing learning rate can lead to smoother validation loss,
the curve flattens at lower accuracy.

Illustration of the validation curves for ShallowConvNet models for different hyper-
parameters are provided in Figures D.8, D.9 and D.10 for EEG experiment. In the
subject blind experiment set-up, the model with K = 50, kL = 15 and p = 15 is
selected as the best one, with ∼ 0.16× 106 parameters. In the subject aware exper-
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Figure D.5: ShallowConvNet validation curves for subject blind training (left) and
subject aware training (right) for motor task MEG classification problem.

Figure D.6: ShallowConvNet validation curves for subject blind training (left) and
subject aware training (right) for motor task MEG classification problem.
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Figure D.7: ShallowConvNet validation curves for subject blind training (left) and
subject aware training (right) for motor task MEG classification problem.

iment set-up, the model with K = 25, kL = 15 and p = 10 is selected as the best
one, with ∼ 0.04× 106 parameters. Learning rate is 0.0001.

Figure D.8: ShallowConvNet validation curves for subject blind training and sub-
ject aware training for mental workload EEG classification problem. Learning rate
0.0001
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Figure D.9: ShallowConvNet validation curves for mental workload EEG classifica-
tion problem. Learning rate 0.0001

Figure D.10: ShallowConvNet validation curves for subject blind training and sub-
ject aware training for mental workload EEG classification problem. Learning rate
0.0005
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EEGNet

In this subsection we provide details on EEGNet [Lawhern et al. 2018] hyperparam-
eter search and the number of multiplications. The number of multiplications per
layer are given in Table D.3.

Table D.3: EEGNet number of multiplications per different steps of entire classifica-
tion process for one input sample. T is the input signal length. N is the number of
channels of the input signal. K is the number of temporal kernels. kL is the kernel
length. p1 is the pooling size after the temporal convolution. p2 is the pooling size
after the spatial convolution. Q is the number of output classes.

Operation Number of multiplications
Temporal correlation N × T × kL ×K

Batch normalization 2×N × T ×K

Spatial correlation N × T ×K × 2K

Batch normalization 2× T × 2K

Exponential Linear Unit T × 2K × (1 + 3(NTy − 2))

Average pool
⌊
T
p1

⌋
× 2K

Separable correlation
⌊
T
p1

⌋
× 16× 2K +

⌊
T
p1

⌋
× 2K × 2K

Batch normalization 2×
⌊
T
p1

⌋
× 2K

Exponential Linear Unit
⌊
T
p1

⌋
× 2K × (1 + 3(NTy − 2))

Average pool
⌊⌊ T

p1

⌋
p2

⌋
× 2K

Feature classification Q×
⌊⌊ T

p1

⌋
p2

⌋
× 2K +Q× (1 + 3(NTy − 2))

* NTy corresponds to Taylor series degree used to compute exponential

Illustration of validation curves EEGNet models for different hyperparameters are
provided in Figures D.11 and D.12 for MEG experiment. In subject blind exper-
iment kL = 85, p1 = 2, p2 = 4, K = 64. The norm constraint on fully con-
nected layer is 0.5. The number of parameters is 0.088 In subject aware experi-
ment kL = 85, p1 = 2, p2 = 4, K = 80, normrate = 0.5. The number of pa-
rameters is 0.115. The norm constraint on fully connected layer is 0.5. dp1 refers
to the standard drop-out operation and dp2 to the spatial dropout. Illustra-
tion of validation curves EEGNet models for different hyperparameters are pro-
vided in Figures D.13 and D.14 for EEG experiment. In subject blind experiment
K = 32 kL = 42, p1 = 2, p2 = 4,K = 32. In subject aware experiment K = 32

kL = 83, p1 = 2, p2 = 4. The norm constraint on fully connected layer is 0.25.
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Figure D.11: EEGNet validation curves for subject blind training (left) and subject
aware training (right) for motor task MEG classification problem. The curves are
illustrated for the norm constraint on fully connected layer 0.25 (default) and 0.5,
for different lengths of convolutional filters kL and different pooling sizes p1 and
p2 = 2p1 and different dropout approaches (dp1, dp2).

Figure D.12: EEGNet validation curves for subject blind training (left) and subject
aware training (right) for motor task MEG classification problem. The curves are
illustrated for fixed lengths of convolutional kernels kL = 85, fixed p1 = 2, p2 = 4

and dropout type dp1, and varying number of kernels K.
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Figure D.13: EEGNet validation curves for subject blind training and subject aware
training for mental workload EEG classification problem. The norm constraint on
the fully connected layer is 0.25 (default). The curves are illustrated for different
lengths of convolutional filters kL and different pooling sizes p1 and p2 = 2p1 and
different dropout (dp1, dp2) approaches. Learning rate is 0.0005

Figure D.14: EEGNet validation curves for subject blind training and subject aware
training for mental workload EEG classification problem. The norm constraint on
the fully connected layer is 0.25 (default). The curves are illustrated for different
lengths of convolutional filters kL and different pooling sizes p1 and p2 = 2p1 and
different dropout (dp1, dp2) approaches. Learning rate is 0.0001
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