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Abstract

The analysis of neuroimaging data is essential for the interpretation of the functional
or structural characteristics of the human brain. New machine learning algorithms
usually require a high amount of data often infeasible to acquire in clinical and
practical conditions. This requirement is a consequence of significant data vari-
ability arising from numerous factors (various recording procedures, subjects and
sessions, presence of high levels of noise). To address this problem, in this thesis, we
have investigated and proposed convolutional machine learning models adapted to
the properties and well grounded assumptions about the acquired data. Therefore,
the models are endowed with valuable knowledge and consequently more efficiently
learn to perform certain inferences. In particular, we have studied models for the
analysis of non-invasive and in-vivo structural and functional neuroimaging data,
namely diffusion Magnetic Resonance Imaging (dMRI) and magneto- and electro-
encephalography (M/EEG) signals.
Diffusion MRI is a nuclear imaging modality which captures micro-structural prop-
erties of the examined tissue. As q-space sampling has been the most widely used
high angular resolution diffusion imaging protocol (HARDI) over the last decade, we
have studied spherical rotation equivariant convolutional neural networks (CNNs)
for dMRI local modeling. As a first contribution, we have proposed a spherical
U-net for the estimation of fiber orientation distribution functions (fODFs) with
convolutions and non-linearities realized in the spectral and signal domains, respec-
tively. To avoid aliasing, our second contribution proposes a Fourier domain CNN
for micro-structure parameter estimation, where non-linearities are defined in the
spectral domain.
M/EEG are functional imaging techniques which measure magnetic field strength
and electric field potential caused by neural electric activities in the cerebral cor-
tex. Measured signals can be explained by Maxwell’s equations with quasi-static
approximations. Consequently, we can assume that cortical brain activities spread
instantaneously and linearly over the measuring sensors, thus a multivariate M/EEG
signal can be represented as a sum of rank-1 multivariate signals corresponding to
individual sources in the cortex and noise. Considering this assumption, the second
part of the thesis firstly investigates an M/EEG spatial and temporal dictionary
learning approach with an L0 constraint. A second contribution is a CNN classifier
with rank-1 spatio-temporal kernels regularized in the spectral domain, where the
spatial components of the kernels are represented in terms of spherical harmonics
basis, while the temporal components are represented in terms of discrete cosine
basis.
Keywords: dMRI local modeling, rotation equivariant CNNs, rank-1 CNN classi-
fier, M/EEG spatio-temporal pattern learning
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Résumé

L’analyse des données de neuroimagerie est essentielle pour l’interprétation des
caractéristiques fonctionnelles ou structurelles du cerveau humain. Les algorithmes
d’apprentissage automatique récents requièrent généralement une grande quantité
de données souvent impossibles à acquérir dans des conditions cliniques et pratiques.
Une telle exigence est une conséquence de la variabilité importante des données
résultant de nombreux facteurs (différentes procédures d’enregistrement, sujets et
sessions, présence de niveaux élevés de bruit). Pour résoudre ce problème, dans
cette thèse, nous avons étudié et proposé des modèles convolutifs d’apprentissage
automatique adaptés aux propriétés et aux hypothèses bien fondées sur les données
acquises. Par conséquent, les modèles sont dotés de connaissances précieuses et
apprennent plus efficacement à effectuer certaines inférences. En particulier, nous
avons étudié des modèles d’analyse des données de neuroimagerie structurelle et
fonctionnelle non-invasives et in-vivo pour de l’imagerie par résonance magnétique
de diffusion (IRMd) et des signaux de magnéto et d’électro-encéphalographie
(M/EEG).
L’IRM de diffusion est une modalité d’imagerie nucléaire qui capture les propriétés
microstructurales des tissus examinés. Comme l’échantillonnage de q-space est le
protocole d’imagerie de diffusion à haute résolution angulaire (HARDI) le plus
largement utilisé au cours de la dernière décennie, nous avons étudié les réseaux
de neurones convolutionnels (CNN) sphériques équivariants par rotation pour la
modélisation locale de l’IRMd. Comme première contribution, nous avons proposé
un U-net sphérique pour l’estimation des fonctions de distribution d’orientation des
fibres (fODF) avec des convolutions et des non-linéarités réalisées respectivement
dans les domaines spectral et signal. Pour éviter l’aliasing, la deuxième contribution
propose un CNN travaillant entièrement dans le domain spectral – y compris pour
les non-linéarités – pour l’estimation des paramètres de microstructure.
La M/EEG est une technique d’imagerie fonctionnelle qui mesure l’intensité du
champ magnétique et le potentiel du champ électrique provoqués par les activités
électriques neurales dans le cortex cérébral. Les signaux mesurés peuvent être
expliqués par les équations de Maxwell avec des approximations quasi-statiques.
Par conséquent, nous pouvons supposer que les activités cérébrales corticales se
propagent instantanément et linéairement sur les capteurs de mesure, ainsi un
signal M/EEG multivarié peut être représenté comme une somme de signaux
multivariés de rang 1 correspondant à des sources individuelles dans le cortex et
le bruit. Partant de cette hypothèse, la deuxième partie de la thèse étudie une
approche d’apprentissage de dictionnaire spatio-temporel M/EEG sous contrainte
L0. Une deuxième contribution dans cette partie est un classificateur CNN à
noyaux spatio-temporels de rang 1 régularisés dans le domaine spectral, où les
composantes spatiales et temporelles des noyaux sont représenteés respectivement
en termes d’éléments de base d’harmoniques sphériques et de base de cosinus
discrets.
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Chapter 1

Introduction

The development of neuroimaging techniques over the last and current cen-
tury has facilitated the gathering of new insights in the structure and func-
tion of the central nervous system, mainly in an in-vivo and non-invasive man-
ner [de Beeck & Nakatani 2019]. Firstly invented structural neuroimaging tech-
niques allowed the analysis of the shape, distribution, and volume of different neu-
ral tissues [Lenroot & Giedd 2006]. Therefore, they have been used in the diagno-
sis and characterization of multiple brain diseases, including brain tumors, multi-
ple sclerosis, and traumatic brain injuries [Gordillo et al. 2013, Filippi et al. 2019,
Lindberg et al. 2019]. The development of diffusion Magnetic Resonance Imag-
ing (dMRI) enabled structural analysis at a micro-scale by providing valuable infor-
mation on the orientation of neural micro-structures, principally white matter axon
bundles [Le Bihan et al. 2006]. This has also opened the door to the research field
of structural brain connectivity [Sporns et al. 2005]. Functional neuroimaging tech-
niques have been used to represent brain activities [Orrison et al. 2017]. Apart from
being employed in clinical practice for the detection and characterization of brain
conditions such as epilepsy and sleep disorders, functional neuroimaging has been
widely used in cognitive science, brain-computer interfaces (BCI) and functional
connectivity analysis [Kauhanen et al. 2006, da Silva 2013]. Besides the indepen-
dent analysis of the structural and functional properties of the brain, in the last
two decades, a field of research has been dedicated to the understanding of their
relationships [Deriche 2016].
To facilitate and improve the interpretation of the acquired medical data, a
broad research area is devoted to the development of the models for their analy-
sis [Erickson et al. 2017]. New machine learning algorithms, such as deep learning
models, usually require a high amount of data (and possibly its annotation) often in-
feasible to acquire in clinical and practical conditions. This request is a consequence
of high variability of the same imaging modalities between acquisition centers, imag-
ing devices, acquisition protocols, subjects, recording sessions, and often, also due
to high levels of noise. To account for some of these variabilities, data harmoniza-
tion [Pezoulas et al. 2020] and transfer learning [Cheplygina et al. 2019] methods
are being investigated.
To exploit the learning capacity of the neural networks, on one side and to ac-
count for the data variability and/or low quantity, on the other, in this thesis, we
have investigated CNN models adapted to the properties and well grounded as-
sumptions about the acquired data. In this way, the models are endowed with
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valuable prior knowledge, before seeing any training data. As a consequence, the
models show higher generalization power. In particular, we have investigated the
convolutional models for the local analysis of dMRI data acquired with q-space
sampling protocol [Caruyer et al. 2013] and for the analysis of the multivariate
Magnetoencephalography (MEG) and Electroencephalography (EEG) signals. The
former take into account the real and spherical nature of the dMRI signals, their
rotation equivariance with respect to the underlying microstructures, antipodal sym-
metry, and random uniform distribution of the sampling points. M/EEG convolu-
tional models are designed under the assumption that the measured signals can be
represented as a sum of rank-1 multivariate signals corresponding to individual brain
activities, and noise and that the brain waveforms are of transient and recurrent na-
ture. In addition, to reduce the effects of inter-session and inter-subject variability,
a model for M/EEG signal classification which assumes a spherical head model has
been investigated.
The thesis is organized as follows:

• Chapter 2 This chapter contains an overview of the principal structural and
functional properties of the human brain. This is followed by a description of
biophysical phenomena in neural tissues and medical structural and functional
imaging methodologies for their measuring, namely dMRI, EEG, and MEG.

• Chapter 3. In Chapter 3, firstly, properties of the dMRI signals acquired
with q-space sampling schemes are provided. Further, an overview of the state-
of-the-art dMRI local modeling approaches is given, in particular, probabil-
ity density functions on the sphere and biophysically inspired micro-structure
multi-compartment models. The following sections include a detailed overview
of the most recent deep learning approaches used in the analysis of spherical
data and in dMRI local modeling.

• Chapter 4. Our first contribution is presented in Chapter 4. It in-
troduces spherical U-net for the Fiber Orientation Distribution Function
(fODF) [Jeurissen et al. 2014] estimation with details related to the esti-
mation of SH coefficients via Gram-Schmidt orthonormalization, convolu-
tions with zonal kernels, pooling layers, and transposed convolution lay-
ers. The model is positively evaluated on the real Human Connectome
Project (HCP) [Van Essen et al. 2012] and synthetic data generated with the
dmipy [Fick et al. 2019] library.

• Chapter 5. Our second contribution from the domain of dMRI local modeling
is given in Chapter 5. It introduces the Fourier domain spherical CNN for
dMRI local parameter estimation. The principal ingredients of this model are
quadratic nonlinearities realized in the Fourier domain. The model is evaluated
on the synthetic data on the problem of the axon bundle count, estimation of
the micro-structure parameters, and brain tissue segmentation.

• Chapter 6. In this chapter, first, the modeling of the functional EEG and
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MEG signals is presented. After that, a detailed overview of the state-of-the-
art multivariate dictionary learning approaches is provided. This is followed
by a description of the classification models used in BCI with a focus on CNN
models.

• Chapter 7. This chapter contains a contribution in the domain of
EEG and MEG analysis, in particular a multivariate rank-1 convolu-
tional dictionary learning approach with an L0 penalty. The model is
thoroughly quantitatively examined on the synthetic data generated with
MNE [Gramfort et al. 2013b] and qualitatively on the real motor task MEG
HCP data [Gramfort et al. 2013b] and on somatosensory MEG data.

• Chapter 8. Our second contribution in the domain of EEG and MEG signal
analysis is provided in Chapter 8. We have proposed a shallow CNN classifier
with rank-1 kernels regularized in the spectral domain, both along spatial and
temporal dimensions. The model is evaluated on passive and active BCI clas-
sification problems, namely on the EEG mental workload [Hinss et al. 2021]
and motor-task MEG HCP data [Van Essen et al. 2012].

• Chapter 9. The last chapter contains general conclusions of the presented
models and related perspectives.

• Appendix A. In Appendix A, we have provided derivations related to the
Fourier transform of the real S2 and SO(3) signals, their convolutions, and
quadratic functions in the spectral domain. It accompanies chapters related
to dMRI local modeling, namely Chapters 3, 4, and 5.

• Appendix B In this appendix, we have provided additional information re-
lated to the experiments conducted with the Fourier domain spherical CNN
and compared methods, presented in Chapter 5.

• Appendix C The additional experiment materials related to convolutional
dictionary learning, presented in Chapter 7, are provided in Appendix C.

• Appendix D The materials related to the experiments performed with the
shallow rank-1 CNN and compared methods, presented in Chapter 8, are pro-
vided in Appendix D.
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Executive summary

In this chapter, firstly, a brief overview of the functional and structural properties of
the human nervous system is provided. It includes information about the neurons
as its essential element and about the neural organizations at a macro-scale, namely
the cortical brain lobes and the white matter fiber tracts. Further, an outline of
the most prominent functional and structural medical imaging techniques is given,
followed by a detailed description of the physical phenomena in the neural tissues
and methodologies which allow diffusion Magnetic Resonance Imaging and magneto-
and electro-encephalography signal recording.
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2.1 Human brain structure and function

Anatomically, the nervous system of vertebrates is composed of the Central Nervous
System (CNS) which includes the brain and the spinal cord and the Peripheral
Nervous System (PNS) which is composed of the nerves, and the ganglia outside
the CNS. An overview of the principal structural and functional properties of the
human’s CNS is provided in Figure 2.1 and of the PNS in Figure 2.2. For more
details, we refer the reader to [Snell 2010, Johns 2014].

Figure 2.1: An overview of the structural and functional properties of the CNS.
Images adapted from: Title: Mid-sagittal plane of the brain Author: DataBase Center for Life Science
Source: togotv.dbcls.jp/togopic.2021.023.html Link: commons.wikimedia.org/wiki/File:202102_
Mid-sagittal_plane_of_the_brain.svg and Title: A diagram of the human nervous system Author:
William Crochot aka. Persian Poet Gal Source: Own work Link: commons.wikimedia.org/wiki/File:
Nervous_system_diagram_%28dumb%29.png

Figure 2.2: An overview of the structural and functional properties of the PNS.
Image adapted from: Title: A diagram of the human nervous system Author: William Crochot
Source: Own work Link: commons.wikimedia.org/wiki/File:Nervous_system_diagram_%28dumb%29.png

https://togotv.dbcls.jp/togopic.2021.023.html
https://commons.wikimedia.org/wiki/File:202102_Mid-sagittal_plane_of_the_brain.svg
https://commons.wikimedia.org/wiki/File:202102_Mid-sagittal_plane_of_the_brain.svg
https://commons.wikimedia.org/wiki/File:Nervous_system_diagram_%28dumb%29.png
https://commons.wikimedia.org/wiki/File:Nervous_system_diagram_%28dumb%29.png
https://commons.wikimedia.org/wiki/File:Nervous_system_diagram_%28dumb%29.png
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2.1.1 Structure and function of neurons

The essential elements of the nervous system are neurons, a majority of which make
a part of the brain. On average, an adult human brain contains ∼ 86 × 109 neu-
rons and ∼ 85× 109 non-neural cells [Azevedo et al. 2009, Herculano-Houzel 2012].
Typically, a neuron is composed of a soma, dendrites, and an axon with multi-
ple terminals. The soma is the metabolic center of a neuron and is responsible
for generating proteins necessary for neuron maintenance and functioning. The re-
gion of the soma where the axon emerges is called the axon hillock. Dendrites and
axons, also referred to as neurites, are projections from the soma responsible for
communication and information processing. An illustration of a neuron with its
main structures is given in Figure 2.3. Each of the neuron components gives rise
to a morphological diversity of neurons, thus they can differ in terms of position,
shape, and size of the soma, length of neurites, number of dendrites and axon ter-
minals, as well as their spatial organization. Crucial electro-physiological properties
of neurons are excitability, conductivity, and secretion, which enable them to re-
ceive and process information and based on the processing outcome, to transmit
information further. Given their connections, neurons can be classified as interneu-
rons which communicate only with other neurons, afferent neurons which convert
environmental stimuli into signals, and efferent neurons which transmit signals to
organs [Peters et al. 1976]. In general, signal reception takes place at the level of
dendrites. In the case of afferent neurons, dendrites directly or indirectly translate
received stimuli into sensory signals. Otherwise, in interneurons and efferent neu-
rons, reception is performed via synapses which are, most commonly, established
with dendrites and axons of different neurons. As each synapse has an associated
weight, signal processing starts at reception and continues within dendrites. De-
pending on the spatial distribution of the synaptic inputs, processing at the level of
dendrites can be modeled in a linear or non-linear manner [Grienberger et al. 2015].
Processed signals are integrated in axon hillock and if the voltage of the result-
ing signal reaches a high enough amplitude in a short period, an action potential
is generated. This action potential is transmitted along the axon until its termi-
nals. Some axons are wrapped in a myelin sheath which acts as an insulator and
ensures their high conductivity and efficient action potential transmission. In the
PNS, the myelin sheath originates from Schwann cells, and in the CNS from oligo-
dendroglial cells [Morell & Quarles 1999]. Once the action potential reaches axon
terminals, the secretion of neurotransmitters enables information transmission to
the following neuron or an organ cell in the case of efferent neurons. In the CNS,
the spatial organization of neurons creates tissues that at macroscopic scale appear
as the gray and white matter. Gray matter is composed of cell bodies, dendrites,
unmyelinated axons, and glial cells [Solomon et al. 2014]. White matter contains
axons and a much higher concentration of glial cells, a majority of which are oligo-
dendroglial cells that create myelin sheath and give rise to the whitish color of the
tissue [Solomon et al. 2014].
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Figure 2.3: Structure of a neuron.
Image adapted from: Title: Structure of Neuron Author: Sanu N Source: Own work Link: commons.
wikimedia.org/wiki/File:Structure_of_Neuron.png.

2.1.2 Gray matter

Gray matter tissue constitutes the outer layers of the cerebrum and cerebellum
known respectively as the cerebral and cerebellar cortices, but also some of their
inner structures such as the basal ganglia and the deep cerebellar nuclei. It is also
the principal component of the diencephalon structures and is present in some
segments of the brain stem. Further, it constitutes the inner part of the spinal
cord also known as the gray column. As in the context of this thesis, we are only
interested in the signals emerging from the cerebral cortex, in this section, we focus
on its structural and functional properties.
The surface of the cortex is highly wrinkled, where a distinction can be made
between tissue bumps or ridges known as gyri (singular: gyrus) and tissue furrows
or grooves known as sulci (singular: sulcus) [Spielman et al. 2020]. The cerebral
cortex is divided by the longitudinal fissure into the right and left hemispheres.
Furthermore, each hemisphere is composed of four lobes, namely the frontal,
temporal, parietal, and occipital lobes.

Image adapted from: Title: Brain mesh
Author: Deslauriers-Gauthier Samuel
Source: nimesh
Link: github.com/sdeslauriers/nimesh.

The frontal lobe takes the largest portion
of the cerebral cortex. It is separated from
the rest of the cortex by the central sulcus
(fissure of Rolando) and the lateral sulcus
(Sylvian fissure). It contains the precentral,
superior frontal, middle frontal, and inferior
frontal gyri, separated by precentral, superior
frontal, and inferior frontal sulci. From
the functional point of view, the frontal
lobe is often termed as the "action cortex".
The precentral gyrus contains the primary
motor cortex. The premotor cortex and
supplementary motor area are situated
anterior to it. These three regions make

https://commons.wikimedia.org/wiki/File:Structure_of_Neuron.png
https://commons.wikimedia.org/wiki/File:Structure_of_Neuron.png
https://github.com/sdeslauriers/nimesh
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the motor cortex and are responsible for the planning, control, and execution
of voluntary movements [Foerster 1936]. The frontal part of the frontal lobe is
termed as the prefrontal cortex and it participates in higher cognitive functions,
such as attention, problem solving, short-term memory, personality expression,
etc [Miller et al. 2002]. The frontal lobe also includes Broca’s area responsible for
speech production [Keller et al. 2009].

Image adapted from: Title: Brain mesh
Author: Deslauriers-Gauthier Samuel
Source: nimesh
Link: github.com/sdeslauriers/nimesh.

The temporal lobe is separated from
the frontal lobe by the lateral sulcus and
from the rest of the cortex by an imaginary
parietotemporal line [DeFelipe et al. 2007].
It contains the superior, middle, and inferior
temporal gyri, separated by superior tempo-
ral and inferior temporal sulci. The temporal
lobe includes the auditory cortex composed of
primary, secondary, and tertiary cortices, also
referred to as core, belt, and parabelt areas,
which are responsible for the processing
of auditory information [Pickles 1998]. A
region of the temporal lobe termed as the
medial temporal lobe, which includes the

hippocampus, amygdala, and parahippocampal regions is essential in the creation
of long-term memory [Eichenbaum et al. 1993]. The superior temporal gyrus
contains the Wernicke’s area which is traditionally associated with understanding
written and spoken language, although some more recent studies indicate that it
also participates in speech production [Binder 2015]. Finally, the temporal lobe
also includes regions that participate in the processing of visual information, in
particular, object recognition [Milner & Goodale 2006].

Image adapted from: Title: Brain mesh
Author: Deslauriers-Gauthier Samuel
Source: nimesh
Link: github.com/sdeslauriers/nimesh.

The parietal lobe is placed behind the
frontal lobe and above the temporal and
occipital lobes. From the frontal lobe, it is
separated by the central sulcus and from
the temporal and occipital lobes by the
lateral sulcus, the parieto-occipital sulcus,
and imaginary borders. It contains the
postcentral gyrus, which is situated just
after the central sulcus and is followed by
the postcentral sulcus. The remaining part
of the parietal lobe is the posterior parietal
cortex, which is composed of the superior
and inferior parietal lobules, separated by the
intraparietal sulcus [Vingerhoets 2014]. The

postcentral gyrus contains the primary somatosensory cortex, while the secondary

https://github.com/sdeslauriers/nimesh
https://github.com/sdeslauriers/nimesh


10 Chapter 2. Background

somatosensory cortex is situated in the superior bank of the lateral sulcus. Together,
they constitute the somatosensory cortex involved in the reception and processing
of sensory information [Penfield & Rasmussen 1950]. The superior parietal lobule
is involved in attention and visuospatial perception, while the inferior parietal lob-
ule takes part in reading, writing, and solving mathematical operations [Johns 2014].

Image adapted from: Title: Brain mesh
Author: Deslauriers-Gauthier Samuel
Source: nimesh
Link: github.com/sdeslauriers/nimesh.

The occipital lobe is the smallest lobe
and corresponds to the posterior part of
the cortex. More precisely, it is separated
from the parietal and temporal lobes by the
parieto-occipital sulcus and the imaginary
lateral parietotemporal line. The morphology
of this lobe varies most significantly between
subjects, but three gyri can be identified
namely the superior, middle, and inferior
occipital gyri. The occipital lobe contains the
primary visual cortex known as the striate
cortex and the visual association cortex
also known as the extrastriate visual cortex.
They are responsible for the processing of

visual information, in particular, color determination, perception of size, depth,
and distance, object and face recognition, visuospatial processing, and memory
formation [Johns 2014, Rehman & Al Khalili 2019].

2.1.3 White matter

White matter tissue is present inside the cerebrum and cerebellum. It is composed
of myelinated axons, which are grouped in bundles also called tracts or fibers. These
tracts make links between distant gray matter regions. It is also present in the struc-
tures of the diencephalon and the brain stem and surrounds the gray matter in the
spinal cord. As in the context of this thesis, we are only interested in the cerebral
white matter, in this section, we focus on its structural and functional properties.
White matter tracts can be classified into three groups, namely projection, associa-
tion, and commissural fibers.
The projection tracts connect the cerebral cortex with the other structures of
the CNS. Traditionally, they are classified into efferent (brain output) and afferent
(brain input). The most prominent efferent projection tracts are the corticospinal,
corticobulbar, and corticopontine fibers. The corticospinal fibers primarily emerge
from the motor cortex, but some originate from the somatosensory cortex as well.
The axons terminate either by connections to motor neurons or to interneurons of
the spinal cord. Along this path, they pass through the brain stem, where they form
medullary pyramids. At the exit of the medullary pyramids, a larger fraction of the
fibers decussates and create the lateral corticospinal tract, while the remaining fibers

https://github.com/sdeslauriers/nimesh
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create the anterior corticospinal tract. The principal function of the corticospinal
tract is to transmit the signals responsible for voluntary movements and sensory-
driven reflexes, but they are also involved in the modulation of sensory information.
The corticobulbar fibers originate in the primary motor cortex, in particular from
the regions above the lateral fissure. By passing through the corona radiata and
the internal capsule, they end in the medullary pyramids also called bulbar. Corti-
cobulbar fibers transmit motor signals, directly or via interneurons, to the cranial
nerves which innervate muscles of the face, mastication, tongue, pharynx, larynx,
etc. The corticopontine fibers emerge from all the regions of the cerebral cortex,
but the largest number of fibers comes from the frontal lobe. They end in the pon-
tine nuclei, just at the entrance to the cerebellum. Corticopontine fibers establish
communication between the cerebral and cerebellar cortices and are involved in the
coordination of voluntary movements [Rea 2015]. Illustrations of the corticospinal,
corticobulbar, and corticopontine fibers are provided in Figure 2.4.

Figure 2.4: Illustrations of the corticospinal (blue), corticobulbar (red), and corti-
copontine (green) fibers in coronal (left) and sagittal (right) views.
Images adapted from: Title: The motor tract. (Modified from Poirier.) Author: Henry Vandyke
Carter Source: Henry Gray (1918) Anatomy of the Human Body Link: commons.wikimedia.org/
wiki/File:Gray764.png and Title: Brain human sagittal section Author: Patrick J. Lynch, medi-
cal illustrator Source: Patrick J. Lynch, medical illustrator Link: commons.wikimedia.org/wiki/File:
Brain_human_sagittal_section.svg.

The afferent projection tracts transmit information from the subcortical CNS struc-
tures to the cortex. Some examples of well recognized afferent projection tracts
are the optic and acoustic radiations which make part of the optic and audi-
tory pathways. The optic pathways start with the optic nerves originating in
the retina. The nerves meet and partially decussate in the optic chiasm, creat-
ing the optic tracts which terminate in the lateral geniculate nucleus, located in
the thalamus [Mehra & Moshirfar 2021]. The remaining pathways correspond to
the optic radiations which connect the thalamus and the visual cortex. The au-

https://commons.wikimedia.org/wiki/File:Gray764.png
https://commons.wikimedia.org/wiki/File:Gray764.png
https://commons.wikimedia.org/wiki/File:Brain_human_sagittal_section.svg
https://commons.wikimedia.org/wiki/File:Brain_human_sagittal_section.svg
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ditory pathways start with the cochlear nerves originating in the cochleas. They
pass and partially decussate in the brain stem, creating tracts termed lateral lem-
nisci [Peterson et al. 2018]. The lateral lemniscus terminates in the medial genic-
ulate nuclei, located in the thalamus. The remaining pathways correspond to the
acoustic radiations which connect the thalamus and the auditory cortex. Illustra-
tions of the optic and auditory pathways are illustrated in Figure 2.5.

Figure 2.5: Illustrations of the optic (left) and the auditory (right) pathways.
Images adapted from: Title: A simplified schema of the human visual pathway. Author: Miquel
Perello Nieto Source: Own work Link: commons.wikimedia.org/wiki/File:Human_visual_pathway.svg
and Title: The motor tract. (Modified from Poirier.)Author: Henry Vandyke Carter Source: Henry Gray
(1918) Anatomy of the Human Body (See "Book" section below) Link: commons.wikimedia.org/wiki/
File:Gray764.png and Title: Biology (Cochlea) Author: CNX OpenStax Source: cnx.org/contents/
GFy_h8cu@10.53:rZudN6XP@2/Introduction Link: commons.wikimedia.org/wiki/File:Gray764.png.

The association tracts form the interhemispheric connections. They can be clas-
sified into short and long tracts. Short fibers, situated closely beneath gray matter,
make connections between adjacent gyri. Long tracts connect more distant regions
of the cortex. Some of the most prominent long association fibers are the cingulum,
the superior and inferior longitudinal fasciculi, the uncinate fasciculus, the vertical
occipital fasciculus, the inferior fronto-occipital fasciculus, the arcuate fasciculus,
etc. The cingulum connects the frontal, parietal, and medial temporal regions,
and the subcortical nuclei to the cingulate cortex, situated in the medial part of
the cerebrum, thanks to its radiating nature [Bubb et al. 2018]. The superior lon-
gitudinal fasciculus makes a connection between the parietal lobe and the region
where it meets the temporal lobe on the one side and the frontal lobe on the other
side [Wang et al. 2016]. It is involved in signal transmission related to language, at-
tention, memory, and emotions. The uncinate fasciculus connects the anterior tem-
poral lobe with the inferior region of the frontal lobe [Von Der Heide et al. 2013].
It is considered to be involved in some aspects of episodic memory, language, and
emotional processing [Von Der Heide et al. 2013]. The vertical occipital fasciculus
connects the dorsolateral and ventrolateral visual cortices and is important in sig-
nal transmission related to visual and cognitive functions [Yeatman et al. 2014].
The inferior fronto-occipital fasciculus originates in the frontal lobe and terminates
in the regions of the occipital cortex, temporo-basal areas, and superior parietal
lobe [Wu et al. 2016b]. It is associated with language processing and goal-oriented
behavior [Conner et al. 2018]. The inferior longitudinal fasciculus arises from the

https://commons.wikimedia.org/wiki/File:Human_visual_pathway.svg
https://commons.wikimedia.org/wiki/File:Gray764.png
https://commons.wikimedia.org/wiki/File:Gray764.png
http://cnx.org/contents/GFy_h8cu@10.53:rZudN6XP@2/Introduction
http://cnx.org/contents/GFy_h8cu@10.53:rZudN6XP@2/Introduction
https://commons.wikimedia.org/wiki/File:Gray764.png
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occipital and temporal-occipital areas and terminates in the inferior region of the
temporal lobe. It is involved in a wide range of brain functions, such as object
recognition, reading, lexical and semantic processing, emotions, and visual process-
ing [Herbet et al. 2018]. The arcuate fasciculus is historically defined as a fiber
connecting two language-related areas, namely the Wernicke’s and Broca’s areas.
More precisely, a recent study showed that the fibers arise from the ventrolateral
frontal cortex and via the parietal cortex reach the middle and inferior temporal
lobe [Eichert et al. 2019]. Illustrations of the short and long association fibers are
provided in Figure 2.6.

(a) (b) (c)

Figure 2.6: Illustrations of the short (a) and long (b) and (c) association fibers.
The long fibers (b) include: the cingulum (red), the superior longitudinal fasciculus
(green), and the uncinate fasciculus (blue). The long fibers (c) include: the vertical
occipital fasciculus (red), the inferior fronto-occipital fasciculus (green), the inferior
longitudinal fasciculus (blue), the arcuate fasciculus (yellow).
Images adapted from: Title: Brain human sagittal section Author: Patrick J. Lynch, medical
illustrator Source: Patrick J. Lynch, medical illustrator Link: commons.wikimedia.org/wiki/File:
Brain_human_sagittal_section.svg.

The commissural tracts form interhemispheric connections. The most important
commissural fibers are the corpus callosum, the hippocampal commissure, and the
anterior and posterior commissures. The corpus callosum is the largest commissural
tract situated beneath the cerebral cortex and above the thalamus. It is composed of
four parts, namely the rostrum, the genu, the body, and the splenium. The rostrum
connects the orbital regions of the frontal lobes. The genu connects the medial and
lateral regions of the frontal lobe. The body contains fibers that make part of the
corona radiata and connect the temporal and occipital lobes. The splenium creates
connects the occipital lobes. The corpus callosum is responsible for signal trans-
mission related to sensory, motor, and high-level cognitive functions. The anterior
commissure is situated anteriorly with respect to the corpus callosum. It connects
the olfactory, amygdaloid, and temporal regions [Fenlon et al. 2021]. Although still
not completely understood, some studies have shown that the anterior commissure is
involved in olfactory functions, memory, and visual processing [Fenlon et al. 2021].
The posterior commissure is a small bundle of axons, posterior to the corpus cal-
losum, which connects the structures of the epithalamus. It is considered to be in-
volved in signal transmission between language processing centers [Standring 2020].
The hippocampal commissure, also known as commissure of the fornix, makes a con-
nection between hippocampus [Standring 2020]. Illustrations of the corpus callosum

https://commons.wikimedia.org/wiki/File:Brain_human_sagittal_section.svg
https://commons.wikimedia.org/wiki/File:Brain_human_sagittal_section.svg
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and anterior commissure are provided in Figure 2.7.

Figure 2.7: Illustration of the principal commissural tracts: corpus callosum (green)
and the anterior commissure (red).
Images adapted from: Title: The motor tract. (Modified from Poirier.) Author: Henry Vandyke
Carter Source: Henry Gray (1918) Anatomy of the Human Body Link: commons.wikimedia.org/wiki/
File:Gray764.png.

2.2 Structural and functional brain imaging techniques

Neuroimaging refers to the creation of images that reflect the structural and/or func-
tional characteristics of the examined part of the nervous system, via the utilization
of certain imaging techniques. Apart from the characteristics they reflect, these
techniques can be differentiated along multiple axes, such as spatial and tempo-
ral resolution, contrast, signal to noise ratio, required acquisition time, portability
and price of acquisition devices, invasivity, patient-friendly assessments, etc. An
overview of the well developed and commonly used techniques in brain imaging is
given below.
Magnetic Resonance Imaging (MRI) uses a strong magnetic field, magnetic
field gradients, and electro-magnetic radio frequency pulses to interact with nuclei
present in the tissues in order to create images. Spatial and temporal organizations
of the gradients and the pulses allow the acquisition of different MRI modalities.
Some of the broadly used structural modalities include conventional T1, T2 and T ∗

2

weighted images, and dMRI. Examples of MRI modalities that reflect functional
properties of the tissues are perfusion weighted images and functional MRI.
EEG is a functional imaging technique that uses electrodes placed on the scalp or
intra-cranially to record the electric potential produced by the electrical activity of
the cerebral cortex. It is characterized by a very high temporal resolution, but a
low spatial one in comparison to functional MRI. In addition to its high tempo-
ral resolution, another important advantage of the EEG imaging technique is the
portability and low cost of its measuring devices.
MEG is a functional imaging technique that measures the magnetic field strength
produced by the electric activity of the cerebral cortex. The acquisition is achieved
with magnetometers placed on the scalp or in its proximity. As EEG, it is charac-
terized by a high temporal resolution. The spatial resolution is in general higher
than with EEG, but lower than that of functional MRI.
Functional Near Infrared Spectroscopy (fNIRS) is a functional imaging tech-

https://commons.wikimedia.org/wiki/File:Gray764.png
https://commons.wikimedia.org/wiki/File:Gray764.png
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nique that uses near-infrared light to capture the haemodynamic activity in the
cortex which appears as a consequence of neural activity (the same physical phe-
nomena is measured by functional MRI). Measuring is achieved using light emitters
and detectors placed on the scalp. Its temporal resolution is better than in func-
tional MRI, but lower than with EEG and MEG. Localization of active regions
is more accurate than with EEG and MEG, mostly because fNIRS is only able to
measure activities that are close to the cortical surfaces. As for EEG, fNIRS devices
can be portable.
Computed Tomography (CT) uses X-ray sources and detectors to measure X-
ray attenuation along multiple angles. The obtained measurements are combined
using computerized algorithms which perform a tomographic reconstruction to ob-
tain the final images. Conventional CT scans are used for anatomical imaging,
whereas CT perfusion imaging is a functional modality that uses contrast agents
to quantify blood perfusion in the brain. Compared to MRI, CT scans can have
higher spatial resolution and lower acquisition times. MRI however provides better
contrast between soft tissues.
Positron Emission Tomography (PET) uses radiotracers that emit positrons
which when colliding with electrons emit gamma rays measurable by detectors placed
around the examined region. Similarly to CT, a computerized tomographic recon-
struction is applied to the measured signals to obtain the final scan. In brain imag-
ing, PET scans are used to measure the blood flow associated with neural activity.
Compared to MRI, both spatial and temporal resolutions of PET scans are lower.
Single Photon Emission Computed Tomography (SPECT) uses radiotrac-
ers that directly emit gamma rays measurable by detectors placed around the ex-
amined regions. As in the previously mentioned tomography imaging techniques,
images are computed using computerized tomographic reconstruction algorithms.
As with PET, it is a functional imaging technique that measures the blood flow
whose increase is correlated with an increase in neural activity. Compared to PET,
in general, its spatial and temporal resolutions are lower, as well as the price of the
scanner.
As in this thesis, we have proposed models for the analysis of EEG, MEG, and
dMRI data, a more detailed description of the physical phenomena in the neural
tissues and methodologies which allow their recording is provided.

2.2.1 Diffusion MRI

dMRI is an MRI imaging modality which captures the structural properties of tis-
sues. In comparison to conventional anatomical MRI scans, such as T1 and T2
weighted images, dMRI images provide information about the microstructures of
the examined tissue.
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2.2.1.1 Free and restricted diffusion of water molecules

Molecular diffusion is a phenomenon that corresponds to a type of particle motion
occurring at temperatures higher than absolute zero. If a particle concentration
gradient is present in a substance, diffusion leads to its uniform distribution. This
process can be described using Fick’s first law of diffusion [Fick 1855]

J = −D∇C , (2.1)

which relates the diffusive flux J[mol
m2s

] to the gradient of the concentration C[mol
m3 ] via

the diffusion coefficient D[m
2

s ]. D is often referred to as diffusivity and depends on
temperature, viscosity, particle size, and the presence of boundaries in the medium.
Fick’s second law of diffusion explains how concentration changes over time due to
the diffusion process

∂C

∂t
= ∇ · (D∇C), (2.2)

where t[s] is time. Even if the distribution of particles within a substance is uniform,
microscopic motions of the particles exist if the absolute temperature is higher than
the absolute zero, although the net flux J from Eq. 2.1 through any surface is
equal to zero. This type of motion is known as Brownian motion [Brown 1828]
as it was first described by Robert Brown. Displacement of particles only in the
presence of Brownian motion can be described by solving Eq. 2.2, where diffusivity
D depends on the properties of the medium. For spherical particles in an isotropic
medium, diffusivity can be considered constant and is defined using the Stokes-
Einstein equation as

D =
kBT

6πηr
(2.3)

where kB[ JK ] is the Boltzmann constant, T [K] is the absolute temperature, η[ kgm·s ]

is the dynamic viscosity and r[m] is the radius of the particle. In an anisotropic
medium, diffusivity can be represented as a symmetric positive-definite tensor

D =

Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

 (2.4)

or for more complex structures of the medium, as a positive function on a sphere
D : S2 → R+. An illustration of the displacement of one particle in the same
substance, without and with obstacles is provided in Figure 2.8.

2.2.1.2 Magnetic Resonance Imaging (MRI)

MRI is an imaging technique, based on the property of nuclei of certain atoms
to absorb and emit EM waves at a specific radio frequency (RF). In imaging of
the human body, a majority of these atoms are hydrogen atoms from the water
molecules, thus a nucleus H+ corresponds to a proton p+. To create an image, the
received EM waves are averaged over small volumes called voxels of the order of
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(a) D is a scalar (b) D is a tensor (c) D is a function on sphere

Figure 2.8: Illustration of displacement of one particle in a medium: (a) without
obstacles, (b) in a tube, and (c) in a tube junction

magnitude ∼ 1mm3. One voxel of water, of volume ∼ 1mm3, contains 0.67 × 1020

hydrogen protons. This can give us an idea of the number of protons within one
voxel which participates in the EM signal generation for different tissues, bearing
in mind that ∼ 73% of the brain and the heart is water, as well as ∼ 31% of the
bones [Mitchell et al. 1945].
Protons are characterized by their mass, electric charge, and spin. When the exam-
ined tissue is not exposed to a strong enough external magnetic field, the orientations
of the spins of the hydrogen protons are random as illustrated in Figure 2.9 (a). In
general, the acquisition of an MRI scan requires the utilization of a strong exter-
nal magnetic field, three gradient magnetic fields for spatial encoding, and RF EM
pulses at the resonance frequency. The external magnetic field is also referred to
as the main magnetic field B0[T ]. Spatial encoding gradient fields alter B0 with a
term ∆Bz(x, y, z, t)[T ] in a way that the EM waves associated to the voxels at differ-
ent positions have different frequencies and/or times of application. The RF pulses
emitted at Larmor frequency enable signal acquisition as it will be further explained.
Once the main magnetic field B0 is activated, spins align with and against it and
start to precess at the Larmor or resonance frequency ω0 = γ|B0| around B0 which
is oriented along the z-axis as depicted in Figure 2.9 (b). γ[ rads·T ] is the gyromagnetic
ratio - a constant equal to the ratio of the magnetic moment and the angular momen-
tum of the particle. For the hydrogen proton in a water molecule γ = 267.52×106 rads·T .
Taking into account the spatial encoding magnetic field gradients, the resonance fre-
quency can be expressed as ω0(x, y, z, t) = γ|B0 +∆Bz(x, y, z, t)|. The alignment
of the spins is illustrated in Figure 2.9 (b). Although both orientations of the spin
alignments are possible and are spread between these two orientations, alignments
with the external field have a lower energy state. Given this, at each moment, a
slightly higher number of spins aligns with B0. The ratio between the number of
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spins aligned with (n−) and against the external (n+) field is given by

n−
n+

= e
γℏ|B0+∆Bz(x,y,z,t)|

kBT (2.5)

where ℏ is the Plank constant. The difference between the number of spins at lower
and higher energy states gives raise to the net magnetization. Although the spins,
within one voxel, precess at the same frequency, since they do not precess in phase,
the net magnetization in the xy-plane sums up to 0. Thus, it exists only along the
z-axis and it is denoted with Mz[T ] in Figure 2.9 (b), where |Mz| = M0 is a non-
zero net magnetization. Mz is called the longitudinal component of magnetization.
Assuming the presence of only B0, using Eq. 2.5 one can obtain that for n+ = 106

and |B0| = 3T , n− ≈ 106 +20, while for |B0| = 9T , n− ≈ 106 +59. The higher the
difference between n− and n+, the amplitude of the produced net magnetization is
higher ("more protons participate in the contrast creation"), thus, the emitted EM
waves are less susceptible to noise. This shows why the scanners with higher main
magnetic field strengths are characterized by a higher signal-to-noise ratio.
If an EM RF pulse B1[T ] at the Larmor frequency is applied perpendicularly to the
main magnetic field B0, spins spiral down to the xy-plane and continue to precess
around the z-axis. But now, the precessions of the spins are in phase, as depicted in
Figure 2.9 (c). In this step, the net magnetization is non-zero only in the xy-plane -
|Mxy| =M0 and it rotates at the Larmor frequency, while |Mz| = 0. Mxy is called
the transverse component of the magnetization. Once the RF pulse is turned off,

(a) (b) (c)

Figure 2.9: Hydrogen proton spins: (a) with random orientations when there is no
external field, (b) aligned with and against the external magnetic field B0, and (c)
after receiving RF pulse B1 at the Larmor frequency

the spins start to emit the received EM energy at the resonance frequency. As a
consequence, they start to dephase and re-align with and against the external B0

field. This process was firstly described by Felix Bloch [Bloch 1946] with a set of
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equations termed as Bloch equations

dMx(t)

dt
= γ(M(t)×B(t))x −

Mx(t)

T2
,

dMy(t)

dt
= γ(M(t)×B(t))y −

My(t)

T2
, (2.6)

dMz(t)

dt
= γ(M(t)×B(t))z −

Mz(t)−M0

T1

where B(t) = (Bx(t), By(t), |B0 + ∆Bz(x, y, z, t)|) and M(t) =

(Mx(t),My(t),Mz(t)). T1 and T2 are longitudinal and transverse relaxation
times. If the RF pulse is |B1| = 0, then B(t) = (0, 0, |B0 + ∆Bz(x, y, z, t)|) and
the Bloch equations can be simplified as

dMx(t)

dt
= −Mx(t)

T2
+ γBz(t)My(t) = −Mx(t)

T2
+ ω0(x, y, z, t)My(t) ,

dMy(t)

dt
= −My(t)

T2
− γBz(t)Mx(t) = −My(t)

T2
− ω0(x, y, z, t)Mx(t) , (2.7)

dMz(t)

dt
= −Mz(t)−M0

T1
.

Assuming that ω0(x, y, z, t) = ω0(x, y, z), by solving Eq. 2.7, the exponential decay
of the magnitude of the transverse magnetization Mxy is defined as

|Mxy(t)| = |Mxy(0)|e
− t

T2 . (2.8)

This is termed as the T2 relaxation process which is illustrated in Figure 2.10 (b).
The magnitude of the longitudinal magnetization Mz recovers exponentially as

|Mz(t)| =M0 + (|Mz(0)| −M0)e
− t

T1 . (2.9)

This is termed as the T1 relaxation process which is illustrated in Figure 2.10 (a).
The T1 relaxation time describes how quickly the longitudinal component of the net
magnetization recovers and is defined as the time necessary to reach (1− 1

e ) ≈ 63%

of the initial magnitude before the RF pulse - M0. The T1 relaxation occurs due
to the energy dissipation via the interactions between H+ spins at higher energy
levels and their environment, leading to a slight increase in temperature. The T1
relaxation time is approximately 10 times lower in fat than in water.
The T2 relaxation time describes how quickly the transverse component of the net
magnetization decays and it corresponds to the time necessary to reach 1

e ≈ 37%

of its initial magnitude after the RF pulse - M0. The energy dissipation associated
with the T1 relaxation leads to the T2 relaxation as well. A second cause is the local
magnetic fields produced by the nuclei of surrounding atoms, causing the precession
frequency to slightly increase or decrease. Local magnetic fields associated with the
H+ spins impact each other as well. The T2 relaxation times are in general much
shorter than the T1.
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(a) T1 relaxation process (b) T2 relaxation process

Figure 2.10: Illustration of the longitudinal and transverse net magnetization during
the relaxation period. (Note that the axes in T1 and T2 are different. For T1 the
main magnetic field is oriented vertically, while for T2 it points out of the paper
plane.)

Values of T1 and T2 relaxation times in white matter (WM) and gray mat-
ter (GM) for scanners with |B0| = 1.5T and |B0| = 3T are provided in Ta-
ble 2.1 [Smith & Webb 2010] and corresponding relaxation curves are illustrated
in Figure 2.11.

Table 2.1: Brain white and gray matter tissue T1 and T2 relaxation times for |B0| =
1.5T and |B0| = 3T in ms [Smith & Webb 2010]

Tissue type / Relaxation T1(1.5T ) T1(3T ) T2(1.5T ) T2(3T )

White matter 790 1100 90 60
Gray matter 920 1600 100 80

Figure 2.11: The brain white and gray matter tissue T1 and T2 relaxation curves
corresponding to T1 and T2 relaxation times from Table 2.1.

EM signals emitted from excited protons are recorded using RF coils which are
placed parallel to the main magnetic field. A rotating magnetic field Mxy(t) pro-
duces an oscillating current in the coil whose magnitude is determined using Fourier
transform. On the other hand, the longitudinal component of the magnetization
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Mz(t) is very weak compared to the main magnetic field B0 and cannot be mea-
sured along the z axis, thus it is tipped down by another RF pulse to the transverse
plane to be measured.
As already mentioned, in addition to the main magnetic field B0 which is constantly
active, applications of three gradient magnetic fields are used for spatial encoding.
They allow us to disentangle signals recorded with the RF coil to signals originating
from individual voxels. The gradient along the z axis, denoted as gz is used to select
the axial slice to be recorded and it is applied at the same time as the B1 pulse.
Another gradient is applied along the y axis right after the pulse, denoted as gy and
is also called the phase encoding gradient, as it causes that proton spins along the y
axis rotate with different phases. After phase encoding, a third gradient gx, termed
as the frequency encoding gradient, is applied along the x axis, causing spins along x
to rotate with slightly different frequencies. While this gradient is applied, the EM
signal emerging from the entire slice is recorded with the RF coil. With a Fourier
transform, we can determine the magnitudes corresponding to different positions
along the x axis, however since those magnitudes correspond to the superposition
of the signals with the same frequency but different phases, the entire process needs
to be repeated multiple times with the different amount of phase encoding (ampli-
tude of gy) to determine magnitudes of the signals emerging from the individual
voxels along the y axis. If the number of voxels along the y axis is Ny, then the
number of phase encodings with different amplitudes of gy must also be Ny. The
period between two repetitions is called repetition time TR. The period between
the application of the RF pulse and signal recording via coil is called time to echo
TE. This pulse sequence is called the gradient echo sequence and is illustrated in
Figure 2.12 (a). Since the main magnetic field, B0 is not perfectly homogeneous,
the existing inhomogeneities cause much faster dephasing of the spins than if only
random spin-spin interactions are present. These inhomogeneities are constant in
time, so their effect can be reversed using a RF 180o pulses applied at TE/2 which
flip spins so that all the phase accumulated due to inhomogeneities during the first
TE/2 period is reversed. Thus the differences due to inhomogeneities sum up to
zero with the newly accumulated phase during another TE/2 period. This pulse
sequence is called the spin echo sequence and is illustrated in Figure 2.12 (b).
The T1 and T2 weighting of an image is achieved by adjusting the repetition time
interval TR and the echo time TE interval. These values are optimized on the
longitudinal and transverse relaxation times of the different tissues. One would like
to read an echo signal when the amplitudes of the longitudinal or transverse com-
ponents differ the most between the tissues. For a T1 weighting, TR is relatively
short and once the RF pulse is applied to flip the longitudinal component to the xy
plane, the echo is read shortly after to avoid amplitude decrease due to dephasing.
Since the recovery of the longitudinal component is long, for T2 weighting, TR is
relatively long, as well as TE. When the longitudinal component is recovered, it is
tipped down to the xy plane, and a TE period is given to spins to dephase before
reading the echo. If the longitudinal component is not recovered only a fraction of
spins participate in the evaluation of transverse relaxation.
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(a) (b)

Figure 2.12: Illustration of a gradient echo sequence (a) and spin echo sequence (b).

2.2.1.3 Diffusion weighted MRI

Diffusion weighting of MRI images is achieved by diffusion sensitizing gradients
(DSGs). A DSG can be created by using gradient fields gz, gy and gx. By adjusting
the amplitudes of gz, gy and gx, a DSG can have different orientations. DSGs are
combined with the T2 relaxation process to create a contrast. The principal idea
behind this is that when spins are tipped down to the transverse plane, a DSG is
applied during a short period δ along a certain direction. As a consequence, as
spins along the DSG direction experience slightly different gradient intensities, they
accumulate slightly different phases. Thus, the first DSG is called the phase encod-
ing gradient. After the refocusing RF pulse of 180o is applied and before the echo
time, a DSG with the same direction but a reversed amplitude is applied during δ,
thus the accumulated phases during the first δ period would be reversed. The sec-
ond DSG gradient is called the phase decoding gradient. An illustration of a pulse
sequence with diffusion weighting, known as Pulsed Gradient Spin-Echo (PSGE)
sequence introduced by Stejskal and Tanner [Stejskal & Tanner 1965], is illustrated
in Figure 2.13.
If the displacement of the spins along the DSG is restricted, the second DSG can-
cels the majority of the dephasing effect of the first DSG. This is illustrated in
Figure 2.14. On the other hand, if the displacement of the spins along the DSG is
free, spins with initially encoded phases move around, thus when the second DSG is
applied, the encoded phases of the spins would not be canceled. This is illustrated
in Figure 2.15. Thus, if the diffusion of the water molecules is restricted along the
DSG, the amplitude of the transverse component would be high, otherwise, if the
diffusion is free, due to additional dephasing, the amplitude of the transverse com-
ponent would be low.
To incorporate the effects of the molecule diffusion, Torrey, defined the Bloch-Torrey



2.2. Structural and functional brain imaging techniques 23

Figure 2.13: Illustration of a spin echo sequence with diffusion weighting.

(a) (b) (c) (d) (e)

Figure 2.14: Illustration of the spin phases with restricted molecule diffusion. After
the spins are tipped down with an RF pulse to the transverse plane(a), after phase
encoding with a DSG (b), after a free diffusion period and a refocusing RF pulse
of 180o (c), after phase decoding with a reversed DSG (d) and the resulting net
magnetization (e).

(a) (b) (c) (d) (e)

Figure 2.15: Illustration of the spin phases with free molecule diffusion. After the
spins are tipped down with an RF pulse to the transverse plane(a), after phase
encoding with a DSG (b), after a free diffusion period and a refocusing RF pulse
of 180o (c), after phase decoding with a reversed DSG (d) and the resulting net
magnetization (e).
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equations [Torrey 1956] as

dMx(t)

dt
= γ(M(t)×B(t))x −

Mx(t)

T2
+∇ ·D∇(Mx(t)−Mx0) ,

dMy(t)

dt
= γ(M(t)×B(t))y −

My(t)

T2
+∇ ·D∇(M(t)y −My0) , (2.10)

dMz(t)

dt
= γ(M(t)×B(t))z −

Mz(t)−M0

T1
+∇ ·D∇(M(t)z −Mz0)

where D is the diffusion coefficient and Mx0, My0 and Mz0 are the x, y and z

components of the equilibrium magnetization. Attenuation of the amplitude of the
transverse component of the magnetic field Mxy(t) described by Eq. 2.10, due to
the diffusion process and for the PSGE sequence, is defined by the Stejskal-Tanner
equation [Stejskal & Tanner 1965] as

A(TE)

A(0)
= e−Dγ

2G2(∆− δ
3
)δ2 (2.11)

where A(0) is the amplitude of Mxy(0), when the 90o RF pulse is applied and A(TE)

is the amplitude of Mxy(TE), when the signal is being recorded. G is the amplitude
of the DSG G. ∆ is the interval between encoding and decoding DSG and δ is their
duration. b = γ2G2(∆ − δ

3)δ
2 is the b-value which describes diffusion weighting

of the signal. Phase encoding and decoding DSGs are characterized by direction,
strength, shape, duration, and temporal spacing which all together constitute a
high dimensional acquisition space termed as q-space [Callaghan et al. 1988]. A
point of the q-space for the PSGE sequence is defined as q = γGδ

2π .
Starting from a single point q-space sampling via PSGE [Stejskal & Tanner 1965],
several more advanced q-space sampling schemes have been devel-
oped [Descoteaux et al. 2014]. The first diffusion weighted MRI scans were acquired
with a sampling protocol containing three differently oriented and noncollinear
pairs of DSGs as introduced in [Le Bihan et al. 1986]. This imaging protocol
allowed differentiation of the intravoxel incoherent motions between healthy and
pathological tissues via apparent diffusion coefficient (ADC) [Le Bihan et al. 1986].
As the diffusion of the water molecules in neural tissues is not uniform along all
directions, in [Basser et al. 1994], an imaging protocol termed Diffusion Tensor
Imaging (DTI), comprising acquisition over seven noncollinear q-space points
for multiple gradient strengths, has been proposed. DTI allowed the estimation
of the effective diffusion tensors capable to quantify anisotropic diffusion of
the water molecules [Basser et al. 1994]. Being able to estimate the principal
direction of the water molecule diffusion enabled tracking of the white mat-
ter pathways, a process known as tractography [Basser et al. 2000]. Since the
white matter might contain multiple axon bundle populations, such as crossing,
kissing, and fanning axon bundles, more advanced High Angular Resolution
Diffusion Imaging (HARDI) protocols have been proposed [Descoteaux et al. 2014].
Some of the most prominent HARDI protocols are diffusion spectrum imag-
ing (DSI) [Wedeen et al. 2000], single [Jones et al. 1999] and multi shell q-space
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sampling schemes [Ye et al. 2012, Caruyer et al. 2013]. They enabled the utiliza-
tion of more insightful mathematical tools and the estimation of the dMRI 3D

probability density functions, which have led to the development of more accurate
tractography algorithms.

2.2.2 Magnetoencephalography and electroencephalography

EEG and MEG are functional neuroimaging techniques that measure electric field
potential and magnetic field strength produced by the neural electrical activities
occurring in the pyramidal neurons which constitute more than 80% of the cerebral
cortex [Clerc & Papadopoulo 2010].

2.2.2.1 Neural electrical potentials

The principal task of neurons is the processing of the input signals that might come
from other neurons or from external stimuli and the transmission of the signals to
other neurons or muscle cells that are supposed to perform certain actions. In the
context of EEG and MEG, we are interested in the activities of the neurons that
communicate with each other, also called interneurons, and are situated in the cere-
bral cortex. During this communication, two principal types of electric potentials
are generated at the level of neurons, and in particular at the level of their mem-
branes, namely action potentials (APs) and postsynaptic potentials (PSPs). These
potentials are generated by the exchange of ions through the membrane of the neu-
rons. The ions include positively charged ions such as sodium (Na+), potassium
(K+), calcium (Ca2+) and negatively charged ions such as chloride (Cl−) and some
proteins (A−).
When a neuron is in a resting state, the concentration of K+ and A− ions is higher
in the intracellular space, while the concentration of Na+, Ca2+ and Cl− is higher
in the extracellular space. This results in a difference between potentials between
the interior and exterior of the neuron of approximately −70mV , which varies de-
pending on the neuron type. The membrane contains ion channels and ion pumps,
which enable passive and active displacements of the ions through the membrane.
An illustration of ion distribution when a neuron is in a resting state is depicted in
Figure 2.16.
When a neuron receives stimuli via dendrites, they are integrated in the axon hillock
and if the resulting stimulus is strong enough in a short period, it provokes an AP,
also called spike, which travels along the axon. Firstly, the stimulus provokes voltage
gated sodium channels to open, thus the Na+ ions enter the cell and raise the mem-
brane potential, a process called depolarization. At the end of the depolarization,
the voltage gated sodium channels start to close and the voltage gated potassium
channels start to open causing the K+ ions to pass to the extracellular space. The
increase of K+ concentration in the extracellular space leads to a decrease of the
membrane potential also termed as repolarization which terminates with hyperpo-
larization, meaning that the membrane potential reaches values lower than before
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Figure 2.16: Illustration of ion distribution in intra- and extraaxonal spaces during
resting state.

the stimulus. When hyperpolarization is reached, the voltage gated potassium chan-
nels close. This is followed by a refractory period when the intra- and extracellular
concentrations of Na+ and K+ ions return to their resting state distributions. This
entire process repeats along the axon, thus the AP travels down the axon until it
reaches the axon terminals.
Neurotransmitters, situated in small vesicles in axon terminals, are crucial for the
generation of PSPs. Once the AP reaches the axon terminals, depolarization of its
membrane causes the opening of voltage gated calcium channels, causing a rush of
Ca2+ ions into the intracellular space. These ions provoke the release of neuro-
transmitters from vesicles into the synaptic cleft - the extracellular space between
presynaptic axon terminals and postsynaptic dendrites. The released neurotrans-
mitters attach to receptor proteins situated at the membrane of the postsynaptic
dendrites, causing certain ion channels to open or close. If sodium channels are
opened, this causes an influx of Na+ ions into the intracellular space leading to
membrane depolarization. This type of postsynaptic potential is called excitatory.
On the other hand, if potassium channels are opened, K+ ions pass from intra- to
extracellular space causing membrane hyperpolarization. This type of PSP is called
inhibitory.
While the APs are often referred to as all-or-none, PSPs are graded potentials. The
all-or-none principle refers to the fact that no matter how strong or long a stim-
ulus is (yet above the activation threshold), the amplitude of the AP is the same.
On the other hand, graded potentials can have different amplitudes depending on
the temporal and spatial distances of individual potentials. If there are multi-
ple APs arriving to the axon terminals shortly one after the other, the PSPs sum
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up at the postsynaptic membrane. A similar effect occurs if the synapses where
the PSPs are generated are spatially close. Other important differences between
an AP and a PSP are in their duration and amplitudes. Whereas, the ampli-
tude of an AP traveling along an axon can be considered constant and is in the
range of 20 − 40mV , the amplitude of a PSP decreases with time and distance
is in the range of 1 − 4mV . APs are very short, approximately 1ms, while the
duration of the PSPs is around tens of ms [Clerc & Papadopoulo 2010]. These
differences between APs and PSPs lead to different mathematical modeling of the
two. An AP is modeled with an electric quadrupole whose EM field decreases with
1
r3

, while a PSP is modeled with an electric dipole whose EM field decreases with
1
r2

[Hämäläinen et al. 1993, Clerc & Papadopoulo 2010].

2.2.2.2 Modeling of EM fields of neural currents in cortex

Even though the amplitude of the APs is significantly higher than that of the PSPs,
due to short duration, random orientation, and fast decay with a distance of EM
fields, their electric potential and magnetic field strength outside of head are con-
sidered non-measurable by standard EEG and MEG devices. On the other hand,
PSPs in pyramidal cells, if occurring synchronously in a large population of cells,
can be recorded.
Pyramidal cells are the most common type of neural cells in the cerebral cor-
tex. They are characterized by apical dendrites whose direction can be consid-
ered perpendicular to the surface of the cortex. Thus PSP potentials generated
in these dendrites can be modeled with current dipoles with the same direction
[Hämäläinen et al. 1993].
A current dipole can be seen as an electric current which is characterized by its
position p, and orientation and magnitude represented by its moment q = Idθ with
units [A ·m], where I is the current intensity and dθ is an infinitesimal short vector
between the current sink and source. The dipole current density at position p can
be written as

Jp(r) = qδ(r− p) (2.12)

where δ(r) is the Dirac delta function. Electric field lines of the current dipole start
at a source and finish in a sink, while magnetic field lines correspond to concentric
circles around dθ. The electric and magnetic field lines are illustrated in Figure 2.17.

Relations between the electric and magnetic fields and the current density are ex-
plained via Maxwell’s equations, summarized in Table 2.2, where E[ Vm ] is the electric
field, B[T ] is the magnetic field, ρ[ C

m3 ] is the charge density, J [ A
m2 ] is the current

density, ε0 = 8.85 · 10−12 1
kg·m3 is the vacuum permittivity and µ0 = 4π · 10−7 mkg

s2A2

is the vacuum permeability. dr is an infinitesimal volume element, ds and dl are
infinitesimal vector elements of surface and contour.
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(a) (b)

Figure 2.17: Illustrations of the dipole’s electric field lines (a) and magnetic field
lines (b).
Images adapted from: Title: Mid-sagittal plane of the brain Author: DataBase Center for Life Science
Source: togotv.dbcls.jp/togopic.2021.023.html Link: commons.wikimedia.org/wiki/File:202102_
Mid-sagittal_plane_of_the_brain.svg.

Table 2.2: Integral formulae of Maxwell’s equations.
Integral formulae Meaning

Gauss’s
law

∫
∂Ω

E · ds =
∫
Ω

ρ
ε0
dr

The flux of the electric field
through any closed surface is pro-
portional to the electric charge
within the volume enclosed by
this surface.

Gauss’s
law for
magnetism

∫
∂Ω

B · ds = 0

The flux of the magnetic field
through any surface is 0, mean-
ing that the magnetic field is a
solenoidal vector field.

Faraday’s
law

∫
∂S

E · dl =
∫
S

∂B
∂t ds

The electromotive force in a con-
tour around a surface is propor-
tional to the change over time of
the magnetic field flux through
the surface.

Ampere’s
circuital
law

∫
∂S

B · dl = µ0
∫
S

(
J+ ε0

∂E
∂t

)
ds

The magnetic field line integral
along a contour around a surface
is proportional to the total cur-
rent passing through the surface.

https://togotv.dbcls.jp/togopic.2021.023.html
https://commons.wikimedia.org/wiki/File:202102_Mid-sagittal_plane_of_the_brain.svg
https://commons.wikimedia.org/wiki/File:202102_Mid-sagittal_plane_of_the_brain.svg
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From Maxwell’s equations, the charge conservation law can be derived as∫
∂Ω

J · ds = −
∫
Ω

∂ρ

∂t
dr (2.13)

stating that the change over time of the charge density is proportional to the flux
of current density through the surface around that volume.
Due to the maximal frequency of the brain waves, but also permittivity and con-
ductivity of brain tissues and head, time derivatives in Ampere’s circuital law can
be neglected [Hämäläinen et al. 1993]. This omitting of time derivatives is called
magneto-quasistatic assumption. Taking into account head dimensions, as well,
leads to the electro-quasistatic assumption, where the time derivative in Faraday’s
law is also neglected [Hämäläinen et al. 1993]. With the quasistatic approximations,
Maxwell’s equations can be written as in Table 2.3.

Table 2.3: Integral formulae of the quasistatic Maxwell’s equa-
tions [Hämäläinen et al. 1993].

Integral formulae
Gauss’s law

∫
∂Ω

E · ds =
∫
Ω

ρ
ε0
dr

Gauss’s law for magnetism
∫
∂Ω

B · ds = 0

Faraday’s law
∫
∂S

E · dl = 0

Ampere’s circuital law
∫
∂S

B · dl = µ0
∫
S

Jds

A consequence of magneto-quasistatic assumption is that
∫
∂Ω

J · ds = 0, meaning

that the dependence of the electric field from the magnetic field can be neglected
(from the Faraday’s law in particular). On the other hand, the electro-quasistatic
assumption neglects only the dependence of the magnetic field on the time varying
electric field, while the impact of the electrostatic field which causes Ohmic currents
cannot be neglected.
Due to the electro-quasistatic assumption, the electric field can be expressed as the
gradient of a scalar function V also known as electrostatic potential as E = −∇V .
Since current dipoles associated to PSPs, also referred to as primary currents with
current density Jp, produce an electric field E, this electric field produces Ohmic
currents with current density σE = −σ∇V where σ[ 1

Ω·m ] is the tissue conductivity.
This means that the total current density is

J = −σ∇V + Jp. (2.14)

Since we are interested only in the electric field potential generated by PSPs, using
the quasistatic charge conservation law, we obtain a relation between the electric
potential and the primary currents as

∇ · (σ∇V ) = ∇ · Jp (2.15)
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which is a Poisson equation.
As given in Table 2.3, the magnetic field under magneto-quasistatic assumption is
∇×B = µ0J, thus ∇×∇×B = µ0∇× J and ∆B = −µ0∇× J, where a solution
is given by the Biot-Savart law as

B(r) =
µ0
4π

∫
J(r′)× r− r′

||r− r′||3
dr′ =

µ0
4π

∫ (
Jp(r′)− σ∇V (r′)

)
× r− r′

||r− r′||3
dr′.

(2.16)
From the equation describing the Biot-Savart law, we can see that the magnetic
field depends both on the primary PSP and the secondary Ohmic currents.
The complexity of the solutions of the Poisson and Biot-Savart equations depends
on the modeling of conductivity σ. The simplest model assumes that conductivity is
constant over all tissues [Sarvas 1987]. However, although different tissue conductiv-
ities impact both fields, this is more prominent in the case of the electric field due to
the low conductivity of the skull. To address this, a model which represents tissues
as layers with constant conductivities is proposed [Sarvas 1987]. The most advanced
model so far assumes that the tissue conductivities are anisotropic and that they
can be represented as tensors estimated using dMRI [Clerc & Papadopoulo 2010].

2.2.2.3 Electroencephalography

Electro-encephalography (EEG) refers to the measuring of the previously described
electric potentials arising from the cerebral cortex. Usually, it is performed in a
non-invasive manner by placing multiple electrodes on the head, although intra-
cranial EEG exists too. In order to be measurable on the head, the brain activity
must occur synchronously in tens of thousands (≈ 50000) of spatially close pyrami-
dal cells [Clerc & Papadopoulo 2010]. Such activity in an adult human results in
electric potential in the range of 10 − 100µV [Aurlien et al. 2004]. Distribution of
the electrodes over the skull is termed as a montage. The two most commonly used
types of montage are bipolar and referential. In a bipolar montage, each channel
of a multivariate EEG signal corresponds to the difference between signals recorded
with adjacent electrodes. In a referential montage, from each electrode signal a
reference signal is subtracted to obtain the final multivariate EEG signal. EEG
signals exhibit very high temporal resolution which can be of the order of the ms.
On the other hand, the spatial resolution is limited due to the low conductivity of
the skull which causes smearing of the electric field. Depending on the number of
electrodes, it is of the order of several cm2. Apart from the temporal resolution,
other advantages of EEG, compared to other functional imaging methods, are the
low price of the measuring device, its portability and lower storage requirements,
and higher robustness to subject motion. In addition to the low spatial resolution,
another significant disadvantage of EEG is the low signal to noise ratio, where the
noise comes from the activities of other organs, imperfections of the measuring de-
vices, ambient, electrical sources, etc. Due to the superposition of electric fields
(∇·Jp = 0 in Eq. 2.15), EEG devices have difficulties in recording signals from cur-
rent dipoles organized into the forms close to solenoidal, whereas the magnetic field
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is measurable [Hämäläinen et al. 1993, Grave de Peralta Menendez et al. 2000].

2.2.2.4 Magnetoencephalography

Magneto-encephalography (MEG) refers to the measuring of the magnetic field
strength arising from the cerebral cortex. This is achieved non-invasively via mag-
netometers or gradiometers placed at the scalp or slightly above it. As for EEG,
the synchronous activity of tens of thousands of spatially close pyramidal cells is
required, so that the magnetic field is detectable by MEG device. Amplitudes of the
field strength are in the range of 10−1000fT , which is very low compared to the am-
bient noise of the order of 108fT [Seymour et al. 2022]. As a consequence, MEG sig-
nals must be recorded in specially magnetically shielded rooms. The most commonly
used MEG device is the superconducting quantum interference device (SQUID),
which uses magnetometers based on superconducting coils [Hämäläinen et al. 1993].
To achieve superconductivity, coils must be at low temperatures. Thus a SQUID
device includes a bulky cooling system. In addition, the positions of the magne-
tometers are fixed, thus not well suited to heads of different geometries and sizes.
Whereas a standard magnetometer contains a single coil, a special type of mag-
netometer termed as gradiometer uses multiple coils which allow noise reduction.
More recent MEG devices are based on spin exchange relaxation-free (SERF) which
use more compact optically pumped magnetometers [Allred et al. 2002]. As they
do not require a cooling system, they can be integrated into a portable helmet. As
EEG, MEG signals exhibit very high temporal resolution which can be of the order
of the ms. Since tissue conductivity has a lower impact on the magnetic field, its
spatial resolution is higher compared to the electric potential. The higher spatial
resolution of the field supports the utilization of a higher number of magnetome-
ters, in the range of 200 − 300. In addition, if the MEG signal is recorded in a
shielded room, the signal-to-noise ratio of MEG is higher compared to EEG signal.
Since a current dipole perpendicular to a magnetometer coil produces a magnetic
field with circular lines parallel to the coil (B(r) = 0 in Eq. 2.16), MEG devices
have difficulties in recording signals from the sources which can be approximated
by a radial current dipole, such as at the top of gyri or bottom of sulci, whereas
electric potential is measurable [Siems et al. 2016]. An illustration of the magnetic
field lines of the sources which can be approximated by a radial current dipole at
the top of a gyrus and the bottom of a sulcus, are illustrated in Figure 2.18.

2.3 Conclusion

In this chapter, we have provided a brief description of the functional and structural
properties of the human nervous system, at a micro-scale - the level of neurons and
a macro-scale - the level of cortical lobes and the most prominent white matter
fiber tracts, which are relevant in the context of this thesis. They are presented for
better comprehension of the functional and structural medical imaging techniques
and their properties. Further, in more detail, we have described diffusing water
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(a) (b)

Figure 2.18: Illustrations of the magnetic field lines of the sources which can be
approximated by a radial current dipole at the top of a gyrus (a) and at the bottom
of a sulcus (b). (S denotes measuring sensor.)

molecules in different media and the way dMRI is able to capture the structural
properties of the examined tissues based on this phenomenon and the magnetic
properties of the water molecules. Similarly, for EEG and MEG imaging techniques,
we have firstly described biophysical events which lead to the generation of the
PSPs which when occurring in a synchronous manner, in the cerebral cortex,
provoke measurable electric and magnetic fields, whose potential and strength can
be recorded by EEG and MEG devices.
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Executive summary

In this chapter, we first present the properties of the dMRI signals acquired with
q-space sampling protocols, namely real and spherical nature, antipodal symmetry,
and rotation equivariance. Further, we provide an overview of the state-of-the-art
dMRI local modeling approaches, which can be categorized into spherical probability
density functions (PDFs) and biophysically inspired multi-compartment microstruc-
ture models. In the following section, state-of-the-art deep learning models for the
analysis of general spherical signals are presented. The last section contains a de-
tailed description of the deep learning approaches used in local dMRI modeling.
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3.1 dMRI acquired on spheres

dMRI signal acquisition with HARDI protocols has enabled the use of more
insightful mathematical tools in the challenges, which include local model-
ing [Descoteaux et al. 2014]. The most prominent example is found in the
modeling of crossing fibers which was impossible with low angular resolution
dMRI signals, such as DTI [Basser et al. 1994]. In the last decade, the most
commonly used HARDI protocols are single and multi-shell q-space sampling
schemes [Jones 2010, Ye et al. 2012, Caruyer et al. 2013]. The shells correspond to
concentric spheres in high-dimensional q-space. In the acquisition protocol pro-
posed by [Caruyer et al. 2013], sampling points are randomly uniformly distributed
and noncollinear within and between different shells in a way that the optimal an-
gular coverage is achieved as illustrated in Figure 3.1.

Figure 3.1: An illustration of q-space sampling points over three shells. Image
source: [Caruyer et al. 2013]

Due to the nature of diffusion processes in the neural tissues, noiseless dMRI signals
of an arbitrary shell are spherical, antipodally symmetric, and real. This means
that such a dMRI signal for a single shell, s : S2 → R can be represented as

s(θ, ϕ) = s(r) =
∞∑
l=0

m=l∑
m=−l

ŝlmYlm(r) =
∞∑
l=0

m=l∑
m=−l

ŝlmYlm(θ, ϕ) (3.1)

where θ ∈ [0, π] and ϕ ∈ [0, 2π) are colatitude and longitude, r ∈ R3 s.t.
r = [sin θ cosϕ, sin θ sinϕ, cos θ]T . ŝlm is a coefficient associated to the real SH
basis element of degree l and order m - Ylm : S2 → R. By definition the
SH basis are complex, but since we are dealing with the real dMRI signals, we
have used a real SH basis, which can be defined using corresponding unitary
matrices [Homeier & Steinborn 1996]. A definition of the complex and real SH
bases is provided in Appendix A. Given the antipodal symmetry of the signal s,
s(r) = s(−r), only antipodally symmetric SH basis elements are used, which are the
elements of even degree l. dMRI signals are rotationally equivariant to the examined
tissue structures which can have arbitrary 3D orientations. A function f : S2 → R
is rotationally equivariant if the following holds

Q(f(r)) = f(Qr) (3.2)
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where r ∈ R3 and Q ∈ SO(3) is a 3D rotation matrix. Another property of interest
is rotation invariance which is a special case of rotation equivariance. A function
f : S2 → R is rotationally invariant if the following holds

f(r) = f(Qr). (3.3)

In reality, acquired signals are discrete and affected by noise. The noise which affects
dMRI signals is non-additive and of Rician distribution. Due to discretization, they
can be represented only with a finite number of SH basis elements. Given this,
Eq. 3.1 becomes an approximation

s(rn) ≈
B∑
l=0

m=l∑
m=−l

ŝlmYlm(rn) (3.4)

where {rn}Nn=1 is a discrete set of N points distributed over one shell, rn ∈ R3 s.t.
||rn||2 = 1 and B is the signal’s bandwidth. This can be written in a matrix-vector
notation as

s ≈ Y ŝ (3.5)

where s ∈ RN contains the discrete dMRI signal for one shell. Y ∈ RN×NB is a
matrix containing discrete SH basis elements in columns and ŝ ∈ RNB is a vector
containing the corresponding SH coefficients. NB = (B+1)(B+2)

2 is the number of SH
basis elements of even degrees.

Estimation of dMRI spherical harmonic coefficients

For more efficient processing and an insightful analysis of dMRI signals, it is of-
ten of interest to transform it to the Fourier/spectral domain. For signals ac-
quired on a sphere, the Fourier basis is also called SH basis. A challenge in the
computation of SH coefficients comes from the fact that there is no discretization
process on a sphere that preserves the orthogonality of the SH basis. In anal-
ogy to the Nyquist-Shannon sampling theorem for band-limited signals acquired
in Euclidean space, several sampling theorems for spherical signals have been pro-
posed [Kowsky 1986, Driscoll & Healy 1994, McEwen & Wiaux 2011]. These theo-
rems define sampling grids on spheres which guarantee that all the information from
a band-limited spherical signal is preserved. Each sampling grid has a corresponding
quadrature formula required for the exact computation of SH coefficients.
However, these sampling grids are not well suited to dMRI. They require
a much higher number of sampling points (eg. B(2B + 1) + 1 at least
for [McEwen & Wiaux 2011]), which is not practical from the clinical point of view.
In addition, even if this number can be decreased by exploiting antipodal symmetry,
the distribution of their points is not appropriate for signals affected by a significant
noise as the sampling is in general dense around the poles and sparse close to the
equator.
Coming back to Eq. 3.5, to estimate the SH coefficients ŝ from a signal s, discretized
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at a set of uniformly randomly distributed points, as in the q-space sampling, sev-
eral least square based approaches have been proposed. They require at least NB =
(B+1)(B+2)

2 sampling points for a signal of bandwidth B. Initially, a least square
solution was used by [Alexander et al. 2002, Tournier et al. 2004, Hess et al. 2006]
where the SH coefficients are estimated using the Moore-Penrose pseudo-inverse as

ŝ ≈ Y †
mps = (Y TY )−1Y T s. (3.6)

This approach is very sensitive to noise and yields accurate solutions only for a num-
ber of points N much higher than the number of SH coefficients NB (N >> NB).
To address this problem, higher degree SH coefficients were directly apodized
in [Tournier et al. 2004], while in [Hess et al. 2006] least square problem was reg-
ularized with a Tikhonov term, yielding the following

ŝ ≈ Y †
tikhs = (Y TY + λI)−1Y T s (3.7)

where λ is a regularization weight and I is the identity matrix of size NB. Since
Tikhonov regularization is not well suited for the S2 basis (as the regularization
term penalizes equally SH basis elements of all degrees), a least square solution
with Laplace-Beltrami regularization was proposed by [Descoteaux et al. 2007] as
follows

ŝ ≈ Y †
lbs = (Y TY + λL)−1Y T s (3.8)

where λ is a regularization weight and L ∈ RNB×NB is the Laplace-Beltrami smooth-
ing matrix.

Convolution between spherical and zonal signals

As dMRI signals generated by individual neural tissue structures such as single
axon bundles, gray matter and cerebrospinal fluid (CSF), at the level of a voxel, are
usually assumed to be axially symmetric, it is often of interest to filter dMRI signal
with a zonal signal (as it will be clear in the following sections). Zonal signals are
a special case of axially symmetric signals, where the symmetry takes place around
the z axis. They are also a special case of S2 signals as they change only along the
z axis (or along the inclination angle θ). An S2 signal z(θ, ϕ) : S2 → R is a zonal
signal iff z(θ, ϕ) = z(θ, 0) ∀ϕ ∈ [0, 2π) and ∀θ ∈ [0, π). It can be represented in
terms of SH and zonal harmonic (ZH) basis elements as

z(θ, ϕ) = z(r) =
∞∑
l=0

ẑl0Yl0(r) =
∞∑
l=0

ẑl0Yl0(θ, ϕ) =
∞∑
l=0

ẑl

√
(2l + 1)

4π
Pl(cos θ). (3.9)

where Pl(cos θ) is the Legendre polynomial or the ZH basis element of degree l

and ẑl is the corresponding coefficient, while ẑl,0 is the corresponding SH coefficient
associated to the SH basis element Yl,0(r). Given an L2 signal s : S2 → R and an
L2 zonal signal g : S2 → R of bandwidths B, correlation between them is given by

[s ∗ g](r) =
∫
S2

s(r′)g(R−1(θ, ϕ, 0)r′)dr′ =
B∑
l=0

√
4π

2l + 1
ĝl

l∑
m=−l

Ylm(r)ŝlm (3.10)
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where r = [sin θ cosϕ, sin θ sinϕ, cos θ]T and R(θ, ϕ, 0) ∈ SO(3) is rotation matrix
associated to r. ŝlm is the SH coefficient of degree l and order m of the signal s(r).
ĝl is the ZH coefficient of degree l of the function g(r). If f(r) = [s ∗ g](r), from
Eq. 3.10, its SH coefficients are defined as

f̂lm =

√
4π

2l + 1
ĝlŝlm f̂l =

√
4π

2l + 1
ĝlŝl (3.11)

where ŝl, f̂l ∈ R2l+1 are vectors which contain the SH coefficients of degree l of the
signals s(r) and f(r).

3.2 dMRI probability density functions

One way to explain the HARDI dMRI signals is via 3D PDFs. These functions
provide information related to the displacement of water molecules via diffusion
within white matter axon bundles or the orientation of the axon bundles themselves.
They are examples of rotation equivariant functions (see Eq. 3.2). These voxel-wise
PDFs opened the possibility of more accurate tracking of the white matter pathways
in a process called tractography [Basser et al. 2000], which has great use for the
analysis of brain structural connectivity [Jbabdi et al. 2015].

Ensemble Average Propagator

The Ensemble Average Propagator (EAP) is a PDF which describes the probability
of the water molecule displacement via diffusion in 3D space [Callaghan 1993]. If we
denote the density of water molecules at position R0 ∈ R3 and time instant 0 with
ρ(R0) and the probability of a molecule displacement from R0 to position R∆ ∈ R3

at time instant ∆ with P (R∆|R0), then the attenuation of the dMRI signal can be
written as

s(q)

s0
=

∫
R3

ρ(R0)

∫
R3

P (R∆|R0)e
2πiqT (R∆−R0)dR∆dR0 =

∫
R3

P (R)e2πiq
TRdR

(3.12)
where s(q) is the dMRI signal measured at point q ∈ R3 of the q-space and s0 is the
no diffusion-weighted signal. P (R) is the probability that a molecule is displaced by
R = R∆−R0. It is also known as the EAP. ∆ is the interval between the encoding
and decoding DSGs in direction q

||q||2 . q is computed as

q =
1

2π
γ

δ∫
0

G(t)dt (3.13)

where δ is the duration of DSG. Under the narrow pulse assumption δ << ∆, we
can assume that the movement of molecules within the intervals δ can be neglected,
and can also consider G(t) as a constant over that time. Thus q = 1

2πγGδ. In this
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scenario, since q has the same intensity and direction at time instants 0 and ∆, thus
at R0 and R∆, the EAP can be computed as the Fourier transform of the signal
attenuation:

P (R) =

∫
R3

s(q)

s0
e−2πiqTRdq. (3.14)

Units of EAP are [ 1
m3 ].

Diffusion Orientation Distribution Function

The Diffusion Orientation Distribution Function (dODF) is a PDF on the sphere
which describes how water molecules diffuse along different directions. It is thus
defined as the radial projection of the EAP. Initially, the dODF has been defined
in [Tuch 2004] as

dODF (r) =
1

Z

∞∫
0

P (Rr)dR (3.15)

where r ∈ R3 s.t. ||r||2 = 1 refers to the direction of diffusion and R ∈ R is its
magnitude. Z is a dimensionless constant which ensures that the PDF dODF (r)

sums to one. Since the EAP P (R) actually corresponds to the probability that a
water molecule initially placed at origin R0 is found in an infinitesimal volume dR
at position R∆ after time ∆, in [Wedeen et al. 2005] a better grounded definition
of dODF (r) has been introduced as

dODF (r) =

∫
R3

P (Rr)dR (3.16)

which by representing dR by R2dRdΩ where dΩ is infinitesimal solid angle element
can be written as

dODF (r) =
1

4π

∞∫
0

∫
S2

P (Rr)R2dΩdR =

∞∫
0

P (Rr)R2dR (3.17)

where S2 is the unit sphere.
In [Descoteaux et al. 2007], the authors proposed an analytical solution for dODF
approximation from dMRI signals acquired on spheres of q-space. The dODF is
obtained as the convolution between a zonal function obtained via the Funk-Hecke
theorem and the SH coefficients estimated solving the least square problem with a
Laplace-Beltrami regularization as in Eq. 3.8. The convolution is defined as

dODF (r) =
B∑
l=0

2πPl(0)
l∑

m=−l
ŝmlYml(r) (3.18)

where ŝml are the real SH coefficients of the dMRI attenuation s(r)/s0 and Pl(0) is
the Legendre polynomial of degree l evaluated at cosθ = 0.
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Fiber Orientation Distribution Function

The fODF is a spherical PDF which provides information on the orientation and
volume fractions of the axon bundles [Tournier et al. 2004, Tournier et al. 2007,
Jeurissen et al. 2014]. Whereas the EAP and the dODF are referred to as "model
free", the fODF requires the modeling of a response function corresponding to a
single axon bundle. Given the single fiber response function rsf , the fODF is com-
puted by the deconvolution of rsf from the dMRI signal. In the first approach for
fODF estimation proposed in [Tournier et al. 2004], the dMRI signals were modeled
as the convolution between the fODF : S2 → R+ and a zonal single fiber response
function rsf (θ) as

s(r) = [fODF ∗ rsf ](r) (3.19)

where the response function rsf (θ) is obtained from voxels which are determined as
the ones that most probably contain single white matter fibers according to certain
rotation invariant measures. As these bundles might have an arbitrary orientation,
they are firstly rotated to be zonal and averaged to obtain rsf (θ). In the spectral
domain, as given in Eq. 3.11, the convolution from Eq. 3.19 corresponds to

ŝl =

√
4π

2l + 1
f̂lr̂

sf
l (3.20)

where ŝl, f̂l ∈ R2l+1 are vectors containing the SH coefficients of degree l of the dMRI
signal s(r) and fODF (r). r̂sfl ∈ R is the ZH coefficients of degree l of a single fiber
response function rsf (θ). From Eq. 3.20, we can see that the spectral coefficients of
the fODF (r) can be simply obtained by deconvolution as

f̂l =

√
2l + 1

4π
ŝl

1

r̂sfl
(3.21)

where a least mean square solution from Eq. 3.6 is used to estimate the SH coeffi-
cients of the dMRI signals. Since deconvolution from Eq. 3.21 is susceptible to noise
and does not take into account the fact that some voxels contain gray matter or CSF
tissues, negative spurious peaks might appear in the estimated fODF. To address
this problem, an fODF estimation by deconvolution with non-negativity constraint
has been proposed in [Tournier et al. 2007]. The minimization problem is defined
as

f̂ = argmin
f

||Cf − s||22 s.t. Af >= 0 (3.22)

where f̂ are the SH coefficients of fODF (r). The matrix C incorporates convo-
lution of the fODF with response function rsf (θ) in the spectral domain and the
transformation of the resulting SH coefficients into the S2 domain at the same sam-
pling points as of the signal s(r). The matrix A transforms the SH coefficients f̂

into the S2 domain on a very dense sampling grid to impose the positivity con-
straint. This approach is termed as single shell single tissue constraint spherical
deconvolution - SSST-CSD. Since it is designed only for single shell signals and
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does not take into account the presence of non-white matter tissues in a voxel, it
is further extended into the multi shell multi tissue constraint spherical deconvolu-
tion - MSMT-CSD [Jeurissen et al. 2014], which in addition to white matter fODF
provides information on gray matter and CSF volume fractions. The MSMT-CSD
minimization problem is defined as
f̂1
f̂2
...
f̂n

 = argmin
f1
f2
...
fn



∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣


C1,1 . . . C1,n

C2,1 . . . C2,n
... . . .

...
Cm . . . Cm,n



f1
f2
...
fn

−


s1
s2
...
sm


∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
2

2

s.t.


A1 . . . 0

0 . . . 0
... . . .

...
0 . . . An



f1
f2
...
fn

 >= 0

(3.23)
where m is the number of shells and n is the number of tissues. si is dMRI signal
of shell i and f̂j are the SH coefficients of the spherical PDF of tissue j. Cij is a
matrix which incorporates the convolution of f̂j with the response function of tissue
j at shell i, rji (θ), in the spectral domain and the transformation of the resulting SH
coefficients into the S2 domain at the same sampling points as of the signal si. The
obtained reconstructed signals are summed over all tissue types j for the shell i to
fit it to si. The matrix Aj transforms the SH coefficients f̂j into the S2 domain to
impose the positivity constraint for the spherical PDF of each tissue type. Since the
response functions for gray matter and CSF are spherical (have bandwidth 0), Aj
does not need to transform these PDFs on a large number of sampling points. For
white matter tissue where the bandwidth of the response function is much higher a
high number of sampling points is needed to ensure positivity of the fODF.
Both minimization problems from Eq. 3.22 and Eq. 3.23 can be repre-
sented as convex quadratic programming problems which can be solved effi-
ciently [Jeurissen et al. 2014].

Tensor distribution model

In [Jian et al. 2007], the authors proposed a diffusion tensor distribution
model to explain the measured dMRI signals. Contrary to the traditional
DTI [Basser et al. 1994] where a compartment, eg. a single white matter fiber is
modeled with a single diffusion tensor, in their work, the authors proposed to model
each compartment with diffusion tensors distributed according to Wishart distribu-
tion. As given in [Jian et al. 2007], the dMRI signal S(q) measured at point q ∈ R3

of the q-space corresponding to one compartment is given by

S(q) = S0

∫
Pn

e−bg
TDgdF = S0

∫
Pn

f(D)e−bg
TDgdD = S0

∫
Pn

e−trace(BD)dF (3.24)

where Pn is the manifold of 3×3 symmetric positive definite matrices. B = bggT . F
is probability measure and f(D) is PDF of F over the space of diffusion tensors D.
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Figure 3.2: An illustration of fODFs generated using mr-
trix [Tournier et al. 2019] (left) and an illustration of a tractogram (right).
Image source: [Tournier et al. 2011].

Eq. 3.24 corresponds to Laplace transform of F on Pn [Jian et al. 2007]. Replacing
probability distribution F with Wishart distribution Wn(p,Σ), where Σ is scale
matrix, p represents the number of degrees of freedom and n is the dimension of a
square symmetric nonnegative-definite random matrix, Eq. 3.24 can be written as

S(q) = S0(1 + trace(BΣ))−p = S0
(
1 + (bgTΣg)

)−p
= S0

(
1 +

bgT D̂g

p

)−p
. (3.25)

where diffusion tensor D̂ corresponds to the expected value of Wn(p,Σ) as D̂ =

pΣ [Jian et al. 2007].
In the matrix-vector notation, the Eq. 3.25 can be formulated as

S(q1)
− 1

p B1
xx . . . 2B1

xz

S(q2)
− 1

p B2
xx . . . 2B2

xz
...

... . . .
...

S(qK)
− 1

p BK
xx . . . 2BK

xz



S

1
p

0

Σxx
...

Σxz

 =


1

1
...
1

 (3.26)

with K being the number of sampling points in q-space and Bk = bgkgk
T . For an

arbitrary number of fiber populations Eq. 3.25 is extended to

S(q) = S0

N∑
i=1

wi(1 + trace(BΣi))
−p = S0

N∑
i=1

(1 + (bgTΣig))
−p (3.27)

and in matrix-vector notation
S(q1)
S0

S(q2)
S0
...

S(qK)
S0

 =


(1 + trace(B1Σ1))

−p . . . (1 + trace(B1ΣN ))
−p

(1 + trace(B2Σ1))
−p . . . (1 + trace(B2ΣN ))

−p

...
(1 + trace(BKΣ1))

−p . . . (1 + trace(BKΣN ))
−p



w1

w2
...
wN

 (3.28)
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with N being the number of axon bundle populations and Σi being the scale matrix
of Wishart distribution of the ith axon bundle population and wi its volume fraction.
The problem defined in Eq. 3.26 is solved via Levenberg–Marquardt nonlinear solver
and the one in Eq. 3.28, assuming that only weights {wi}Ni=1 are unknown, via
damped least squares, as explained in [Jian et al. 2007].

3.3 dMRI multi-compartment microstructure imaging

Multi-compartment microstructure (MCMS) imaging refers to biophysically inspired
models which explain the dMRI signal as a linear combination of signals coming from
different tissue compartments such as intra- and extra-axonal spaces, gray matter,
CSF, tumorous cell, etc. These models can provide information about axonal density
and diameter, neurite dispersion, and different tissue volume fractions, which are ro-
tationally invariant measures (see Eq. 3.3), which have shown potential in the evalu-
ation of several neurological diseases [Panagiotaki et al. 2014, De Santis et al. 2017,
Schneider et al. 2017, Broad et al. 2018] and in the characterization of early brain
development [Jelescu et al. 2015, Bastiani et al. 2019].
We provide an overview of the most distinct MCMS models.
Ball and Stick [Behrens et al. 2003, Behrens et al. 2007] models the dMRI signal
as a linear combination of an isotropic Gaussian (ball) which corresponds to the sig-
nal generated by extra-axonal water molecule diffusion and N anisotropic diffusion
tensors without radial diffusivity (zero radius sticks) for intra-axonal diffusion as

si = s0

(
ν0e

−bid +
N∑
n=1

νne
−bidrTi RnARnri

)
(3.29)

where si is the dMRI signal measured along direction ri with a b-value bi and s0
is the no diffusion weighted signal. d is diffusivity and RnAR

T
n is the anisotropic

diffusion tensor of the nth fiber. ν0 and {νn}Nn=1 are volume fractions of the
isotropic and the N fiber compartments.
Composite Hindered And Restricted ModEl of Diffusion
(CHARMED) [Assaf et al. 2004, Assaf & Basser 2005] models dMRI gener-
ated by white matter tissue as a linear combination of signals generated by
hindered and restricted compartments. The former corresponds to between axons
diffusion modeled with diffusion tensor and the latter to intra-axonal diffusion
modeled with a cylinder as

si = s0

(
νhe

−4π2(∆−δ/3)qT
i Dqi +

N∑
n=1

νnr Eh(qi,∆)

)

= s0

(
νhe

−4π2(∆−δ/3)qT
i Dqi +

N∑
n=1

νnr E
∥
h(q

n,∥
i ,∆)E⊥

h (q
n,⊥
i ,∆)

) (3.30)

where D is the effective diffusion tensor. si is the dMRI signal measure at point
qi and s0 is the no diffusion weighted signal. q

n,∥
i and qn,⊥i are the parallel and
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perpendicular components of qi with respect to the nth axon bundle. E∥
h(q

n,∥
i ,∆)

and E⊥
h (q

n,⊥
i ,∆) are the intra-axonal attenuation factors coming from parallel and

perpendicular diffusion within the axon bundle. νh and {νnr }Nn=1 are the volume
fractions of the hindered and the N restricted compartments.
Neurite Orientation Dispersion and Density Imaging
(NODDI) [Zhang et al. 2012] models the dMRI signal as a linear combina-
tion of three types of compartments. The CSF compartment is modeled with
an isotropic Gaussian (ball), while the signals from intra- and extra-neurite
spaces are modeled with zero radius cylinders (sticks) distributed according to a
Watson distribution and an anisotropic Gaussian (zeppelin) whose diffusion tensor
corresponds to Watson distributed neurites as

si = s0

(
νisoe

−bidiso + (1− νiso)
(
νinEin(qi, d∥) + νenEen(qi, d⊥, d∥)

))
(3.31)

where si is the dMRI signal measured at point qi and s0 is the no diffusion weighted
signal. bi is the b-value corresponding to qi. νiso is the CSF volume fraction and νin
and νen are the intra and extra-neurite volume fractions with respect to non-isotropic
contribution. diso, d∥ and d⊥ are isotropic, parallel and perpendicular diffusivities.
Parallel diffusivities of intra- and extra-neurite compartments are the same, while
the perpendicular diffusivity of the extra-neurite compartment is related to parallel
diffusivity via the tortuosity model [Szafer et al. 1995] as d⊥ = d∥(1 − νin). Signal
attenuation due to intra and extra-neurite diffusions is defined as

Ein(qi, d∥) =

∫
S2

W (r, κ, µ)e−bid∥(q
T
i r)2dr (3.32)

and

Een(qi, d⊥, d∥) = e−biq
T
i Denqi where Den =

∫
S2

W (r, κ, µ)D(r)dr (3.33)

where W (r, κ, µ) is the Watson orientation distribution function (axially symmet-
ric), where µ is its orientation and κ determines dispersion around µ. κ is used
to define the orientation dispersion index as OD = 2

πarctan( 1κ) whose range is
in [0, 1]. D(r) is cylindrical diffusion tensor with orientation r with parallel and
perpendicular diffusivities d∥ and d⊥.

3.4 Deep learning models for spherical signals

Many 3D rotationally equivariant general purpose deep learning (DL) approaches
have been proposed for the analysis of arbitrary S2 signals. Among the
first notable rotationally equivariant neural networks is the S2CNN proposed
by [Cohen et al. 2018]. The main contribution of their work are the layers
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Figure 3.3: Illustration of NODDI compartments. Image source: [Tariq et al. 2016].

with convolutions (correlations) performed in the S2 and SO(3) spectral do-
main [Driscoll & Healy 1994, Kostelec & Rockmore 2008] so that the computation-
ally expensive interpolations in the signal domain are avoided.
In the first convolutional layer, given an input data sample f : S2 → C and a
trainable kernel ψ : S2 → C which is sampled at circles around the pole (other-
wise is zero), both sampled at a Driscoll-Healy grid [Driscoll & Healy 1994], the
SH coefficients {{f̂ml }m=l

m=−l}Bl=0 and {{ψ̂ml }m=l
m=−l}Bl=0 are computed using the corre-

sponding quadrature formulae [Driscoll & Healy 1994]. Convolution (correlation) is
performed as follows

G(R) = [f ∗ ψ∗](R) =

∫
S2

f(r)ψ∗(R−1r)dr

=
B∑
l=0

l∑
m=−l

l∑
n=−l

Dmn
l (R)f̂ml ψ̂

n
l
∗ =

B∑
l=0

l∑
m=−l

l∑
n=−l

Dmn
l (R)Ĝmnl

(3.34)

where R ∈ SO(3) is a rotation matrix. Dmn
l (R) is the Wigner-D matrix ba-

sis element of degree l and orders m and n which is a Fourier basis element of
the SO(3) manifold and Ĝmnl is the corresponding rotation harmonic (RH) coeffi-
cient. As Ĝmnl = f̂ml ψ̂

n
l
∗, in matrix-vector notation we can write Ĝl = f̂lψ̂

∗
l , where

f̂l, ψ̂l ∈ C(2l+1) are the SH coefficients of degree l of the signal f(r) and kernel ψ(r),
respectively. Ĝl ∈ C(2l+1)×(2l+1) are the RH coefficients of degree l of the resulting
signal G(R). This is illustrated in Figure 3.4 (a). The full derivation of the con-
volution (correlation) between two S2 signals is given in Appendix A. As shown in
Eq. 3.34, after convolution in the spectral domain, the signal in the SO(3) domain
is obtained as a linear combination of Wigner-D matrix basis elements. Then, the
spectral coefficients are projected back onto the equiangular SO(3) sampling grid
analogue to the Driscoll-Healy grid used for the discretization of S2 signals and the
ReLU nonlinearity is applied. As the convolution of two S2 signals gives a signal
in SO(3) manifold, all layers following the first one perform a convolution between
SO(3) signals and kernels, also in the spectral domain.
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In the ith convolutional layer with i > 1, given the input SO(3) signal and ker-
nel F,Ψ : SO(3) → C, both sampled at equiangular grids which allow the com-
putation of the respective RH coefficients using quadrature formulae denoted as
{{{F̂mnl }m=l

m=−l}n=ln=−l}Bl=0 and {{{Ψ̂mn
l }m=l

m=−l}n=ln=−l}Bl=0, the convolution (correlation)
is performed as

G(R) = [F ∗Ψ∗](R) =

∫
SO(3)

F (Q)Ψ∗(R−1Q)dQ

=
B∑
l=0

l∑
m=−l

l∑
n=−l

Dmn
l (R)

l∑
k=−l

F̂mkl Ψ̂nk
l

∗ =
B∑
l=0

l∑
m=−l

l∑
n=−l

Dmn
l (R)Ĝmnl

(3.35)

where R,Q ∈ SO(3). F̂ pql and Ψ̂pq
l are the RH coefficients of degree l and orders

p and q of the signal F (R) and kernel Ψ(R), respectively. Dpq
l : SO(3) → C

is an element of the Wigner-D matrix of degree l and orders p and q. As
Ĝmnl =

∑l
k=−l F̂

mk
l Ψ̂nk

l
∗, in matrix notation we can write Ĝl = F̂lΨ̂

∗
l , where

F̂l, Ψ̂l, Ĝl ∈ C(2l+1)×(2l+1) are the RH coefficients of degree l of F (R), Ψ(R) and
G(R), respectively. This is illustrated in Figure 3.4 (b). The full derivation of
the convolution between two SO(3) signals is given in Appendix A. As after the
first convolutional layer, ReLU is applied in SO(3) domain after each convolutional
layer.
As in standard Euclidean CNNs, pooling layers are important as their task is to
summarize feature maps by decreasing their resolution (e.g. with max or average
pooling). In S2CNN , this is achieved simply by discarding the RH coefficients of
the highest degree after each ReLU. After the last convolutional layer and nonlin-
earity, only the RH coefficients of degree l = 0 are extracted and fed to a chain of
fully connected layers whose task is to perform the final inference, such as regression
or classification, based on the extracted features.

(a) (b)

Figure 3.4: Illustration of convolutions in the spectral domain between a) two S2

signals and b) two SO(3) signals.

As the transformations between the SO(3) spectral and signal domains and vice
versa are computationally expensive, [Esteves et al. 2018] have proposed a spherical
CNN model with zonal kernels. In this case, the convolution between the S2 signals
and zonal kernels remains in the S2 domain, which is less computationally expen-
sive. The convolution between the input signal and a trainable kernel is illustrated
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in Figure 3.5 and is performed in the spectral domain as given in Eq. 3.11. As in
S2CNN proposed by [Cohen et al. 2018], the ReLU nonlinearity is applied in the
signal domain, that is S2 in this model and pooling is performed by discarding the
SH coefficients of the highest degree. Finally, as in [Cohen et al. 2018], feature maps
of degree l = 0 are extracted after the last convolutional layer and fed into a fully
connected network.

Figure 3.5: Illustration of the convolution between the signal f and a zonal kernel
ψ, with the SH and ZH coefficients {f̂l}Bl=0 and {ψ̂l}Bl=0. For the visualization, the
zonal kernel is presented as a diagonal matrix, whose entries corresponding to f̂l are
equal to

√
4π

2l+1 ψ̂l (see Eq. 3.11).

An issue that arises from the application of nonlinearity in the signal domain
is the appearance of high frequency components, which might introduce alias-
ing and decrease the rotation equivariance of the model. In the work presented
by [Kondor et al. 2018], a fully Fourier space CNN has been proposed, where ro-
tation invariant Fourier domain nonlinearities of quadratic nature have been intro-
duced, thus eliminating the need for conversion from spectral to the signal domain
and distortions introduced by aliasing. This is achieved by decomposing the tensor
product of SO(3) covariant vectors into irreducible fragments (vectors) using the
Clebsch-Gordan decomposition. Given an input data sample f : S2 → C sampled
at Driscoll-Healy grid [Driscoll & Healy 1994] or Gauss-Legendre grid, firstly the
SH coefficients {{f̂ml }m=l

m=−l}Bl=0 are computed using corresponding quadrature for-
mulae. The authors denote with fl ∈ C(2l+1) vector of the SH coefficients of degree
l, also referred to as the SO(3) covariant vectors or fragments. If there are multi-
ple input channels, they denote with Fl ∈ C(2l+1)×C the matrix which contains the
SH coefficients of each of the C channels. The authors proposed a Fourier domain
nonlinearity achieved via the Clebsch-Gordan decompositions as

Gl =
⊔

|l1−l2|≤l≤|l1+l2|

CTl1,l2,l
[
Fl1 ⊗ Fl2

]
(3.36)
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where CTl1,l2,l ∈ R(2l1+1)(2l2+1)×(2l+1) is a sparse matrix containing the Clebsch-
Gordan coefficients which are non-zero only for m1 +m2 = m, where m1, m2 and
m are the orders of the SH coefficients in fragments of degrees l1, l2 and l. ⊔ refers
to concatenation over channels. We can notice that with this type of nonlinearity,
the total number of channels is squared, which is addressed by a covariant linear
transformation defined as

Hl = GlWl (3.37)

where Wl ∈ CC×Q where Q < C. This can be seen as filtering the channels with
different zonal kernels and their sum. An illustration of a single layer of a Clebsch-
Gordan network containing a Clebsch-Gordan nonlinearity and a linear transform
is shown in Figure 3.6. In the final layer, only H0 are computed and fed into
a fully connected network as previously described for models [Cohen et al. 2018,
Esteves et al. 2018].

Figure 3.6: Illustration of a single layer of Clebsch-Gordan network. Image
source: [Kondor et al. 2018].

3.5 Deep learning models in dMRI local modeling

To address some of the problems in dMRI local modeling, as in other computer
vision domains, the focus has moved towards data driven approaches, such as DL
which have been recognized as a powerful tool to extract information from dMRI
signals.
Among the first DL models adapted to address the problem of the estimation of
microstructure parameters from dMRI data acquired with clinically desirable acqui-
sition schemes (containing a low number of sampling points) was the multi layer
perceptron (MLP) [Golkov et al. 2016]. The model was composed of fully con-
nected layers with trainable weights and biases {Wi}Li=1 and {bi}Li=1, where L is
the total number of layers. Each layer maps the input signal si−1 to the output
as ai = gi(Wisi−1 + bi), where gi is an activation function of the ith layer. Ex-
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cept for gL which is identity, all previous layers used a ReLU nonlinearity. To
reduce the effect of overfitting, the authors proposed to use drop-out regulariza-
tion [Srivastava et al. 2014]. The model was successfully evaluated on the problem
of diffusion kurtosis imaging and neurite orientation dispersion and density imaging
(NODDI) parameter estimation. MLP models have also been investigated in the con-
text of the estimation of rotationally invariant features (RIFs) [Zucchelli et al. 2020]
from different dMRI signal representations [Zucchelli et al. 2021].
In the work of [Ye 2017], an iterative hard thresholding (IHT) algo-
rithm [Blumensath & Davies 2009], used as a solution of sparse reconstruction prob-
lem, has been unfolded into a DL approach specifically designed for NODDI param-
eter estimation. The model was termed as Microstructure Estimation using a Deep
Network (MEDN). It is composed of two stages. Its architecture is illustrated in
Figure 3.7.

Figure 3.7: Illustration of the MEDN architecture. Image source: [Ye 2017].

In IHT, sparse codes f t+1 are computed as

f t+1 = hs(Wy + Sf t) (3.38)

where y is the input signal, W is the dictionary of atoms, S = I − WW T , f t

is the sparse reconstruction at the tth iteration, f0 = 0 and hs is the thresholding
operator which keeps s highest entries of the input and other sets to zero. In MEDN,
thresholding operator is defined as hλ(x) = x if x > λ and hλ(x) = 0 otherwise.
In addition, instead of using a predefined dictionary, the matrices W and S are
learned via backpropagation independently. In the second stage, given a sparse
reconstruction f̂ , the isotropic volume fraction νiso corresponds to the last entry of
f̂ , while the previous entries denoted as f̂a correspond to anisotropic compartments.
For numerical stability f̂a are firstly normalized as f̃a = (f̂a+τ1)/||f̂a+τ1||1, where
τ = 10−10. Finally, the intra-cellular parameter νic and the parameter κ associated
to the Watson distribution are estimated as [νic, κ]

T = H f̃a, where H is also a
trainable matrix. The orientation dispersion index is obtained as OD = 2

πarctan( 1κ).
The authors of MEDN proposed in [Ye et al. 2019] another DL model, inspired
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by the IHT algorithm, based on modified long-short-term memory (LSTM) units,
which is capable to incorporate information from the neighborhood voxels for the
estimation of microstructure parameters. The model is termed as Microstructure
Estimation with Sparse Coding Net (MESCNet). It is composed of two stages and
its architecture is illustrated in Figure 3.8. Contrarily to MEDN, MESCNet is
designed for the estimation of arbitrary microstructure parameters.

Figure 3.8: Illustration of MESCNet architecture at large scale. Image
source: [Ye et al. 2019].

In the first stage, given the input signals y = [yT1 , ...,y
T
nb]

T , where yi is the dMRI
signal in voxel i and nb is the total number of voxels in a cubic neighborhood, the
estimation of the sparse coefficients x in the tth layer is given by

xt = hλ(c
t) where ct = f t ◦ ct−1 + it ◦ c̃t where c̃t =Wy + Sxt−1 (3.39)

where as in MEDN W and S are trainable parameters. f t and it are respectively the
weighting terms of coefficients from the previous layer ct−1 and an intermediate es-
timate of the coefficients from the current layer ĉt. x0 = 0. ◦ refers to element-wise
multiplication. Comparing the sparse vector estimations in MEDN and MESCNet,
given in equations 3.38 and 3.39, we can see that MESCNet incorporates historical
information in the estimate of sparse reconstructions (in MEDN sparse reconstruc-
tions are denoted with f t and in MESCNet with xt). Weights f t and it are estimated
adaptively as

f t = σ(Wfxx
t−1 +Wfys) and it = σ(Wixx

t−1 +Wiys) (3.40)

where Wfx, Wfy, Wix and Wiy are trainable matrices. σ is the sigmoid function
defined as σ(x) = 1/(1 + e−x). All together, the structure of the layer used for
the estimation of the coefficients xt corresponds to a modified LSTM unit which
is illustrated in Figure 3.9 (a). In the second stage, once the sparse codes x are
estimated, they are mapped to microstructure parameters via a Fully Connected
Network (FCN), where each layer i has associated weights and biases Hi and bi.
Given the input ai−1 to a fully connected layer i, the output is estimated as ai =

ReLU(Hiai−1 + bi), where a0 = x.
As the input signal is taken from a neighborhood, the size of the matrices W , Wfy

and Wiy is very large (e.g. assuming 60 points in q-space, a neighborhood of size
3×3×3 and length of sparse codes 300, size of a matrix is the 27×60×300 = 486000).
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(a) (b)

Figure 3.9: Illustration of modified LSTM units used in the models MESC-
Net [Ye et al. 2019] (a) and MESCNetSepDict [Ye et al. 2020] (b). Image
sources: [Ye et al. 2019, Ye et al. 2020]

Training of such a model is computationally and storage-wise demanding, requiring
a large amount of training data. To address this problem, in [Ye et al. 2020] an
improved version of MESCNet has been proposed, where the weights are separately
defined for spatial patterns and q-space patterns. The architecture is also composed
of two stages as illustrated in Figure 3.8, but this time with separable weights. In
the first stage, given input in matrix form Y ∈ RQ×V , where Q is the number of
sampling points in q-space and V is the number of voxels in neighborhood, the
sparse vectors in the layer t are estimated as

Xt = hλ(C
t) s.t. Ct = F t ◦ Ct−1 + It ◦ C̃t s.t. C̃t =W aYW s + SaXt−1Ss

(3.41)
where W a, Sa are trainable weights applied along the q-space related (angular)
dimension of the input Y and the matrix of sparse code Xt−1, while W s, and Ss

weights along the neighborhood related (spatial) dimension. Similarly, weighting
factors F t and It are given by

F t = σ(W a
fxX

t−1W s
fx +W a

fyYW
s
fy) and It = σ(W a

ixX
t−1W s

ix +W a
iyYW

s
iy)

(3.42)
where the pairs W a

fx, W
a
fy and W a

ix, W
a
iy are trainable weights applied along the

q-space related dimension and W s
fx, W

s
fy and W s

ix, W
s
iy along the neighbourhood

dimension. They are used together to estimate the weighting factors of the co-
efficients Ct−1 and the intermediate estimate of the coefficients from the current
layer Ĉt. This modified LSTM unit with separable weight is illustrated in Fig-
ure 3.9 (b). Once the sparse codes in form of a matrix X are estimated, they are
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mapped to microstructure parameters via a set of fully connected layers contain-
ing separable filters. Each layer i contains a pair of weights W a

i and W s
i and bias

terms Ba
i and Bs

i . For an input Xi to the ith layer, coefficients are estimated as
Ai = ReLU((W a

i Ai−1 + Ba
i )W

s
i + Bs

i ), where A0 = X. This version of MESCNet,
termed as MESCNetSepDict, also has the possibility to provide output for multiple
voxels at once. All presented models MLP, MEDN, MESCNet, MESCNetSepDict
do not take into account any property of the dMRI signals, such as antipodal sym-
metry or spherical nature.
One of the first DL models adjusted to the specific properties of dMRI data was
proposed in [Banerjee et al. 2019]. It is composed of homogeneous CNN (HCNN)
designed for signals living in Riemannian homogeneous spaces which extract intra-
voxel features and 2D planar CNN which extract inter-voxel features. The model
is termed dMRI-CNN and its architecture is illustrated in Figure 3.10. In the first
convolutional layer of HCNN, correlation is performed between the dMRI signal
s1 and a filter s1,w1

i : S2 × R+ → R which are represented in the SHORE ba-
sis [Özarslan et al. 2013, Fick et al. 2016]. i refers to the ordinal number of the filter.
It is denoted by the M-Corr layer in Figure 3.10. Since (s1 ∗w1

i ) : SO(3)×R∗, the
following convolutional layers contain correlation between sil,w

ij
l : SO(3)×R∗ → R,

where wij
l is the trainable filter of layer l (l > 1), for the input channel i, contribut-

ing to the output channel j. These layers are denoted by the G-Corr layers in
Figure 3.10. After each convolutional layer, a ReLU nonlinearity is applied. Once
the features are extracted for each voxel independently, a 2D CNN is used to extract
spatial patterns between them. This model was applied to the problem of classifi-
cation of dMRI scans into Parkinson’s disease patients and control group subjects.
Application of DL approaches on dMRI data has been investigated for the evalua-
tion of other neurological diseases, as well. In [Minaee et al. 2018], a convolutional
autoencoder has been applied on dMRI metrics (e.g. fractional anisotropy; axial,
mean, and radial kurtosis; white matter integrity metrics), to extract spatial pat-
terns from 3D patches relevant for the identification of mild traumatic brain injury
features. Furthermore, in [Müller et al. 2021] a rotation and translation equivariant
network has been developed and applied to the problem of multiple sclerosis lesion
segmentation from dMRI data.
DL models have been also investigated for the estimation of voxel-wise PDFs, such
as fODFs. In [Lin et al. 2019], a 3DCNN applied on the SH coefficients of dMRI
signals has been proposed for fODF estimation. The architecture of the model is
illustrated in Figure 3.11. As input, it takes the dMRI SH coefficients estimated
using Moore-Penrose pseudo-inverse, over multiple shells and a neighbourhood of
size 3 × 3 × 3. Denoting by ŝi, theSH coefficients of shell i, the input vector cor-
responding to one voxel is obtained by simple concatenation as ŝ = [ŝT1 , ..., ŝ

T
Nsh

]T ,
where Nsh is the number of shells. Each entry of ŝ is treated as one input channel
(analogue to R, G, or B channels of color images). This input is processed by two
convolutional layers with kernels of size 2× 2× 2, which are followed by three fully
connected layers as illustrated in Figure 3.11. After each convolutional or fully con-
nected layer, apart from the last one, a ReLU nonlinearity is applied.
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Figure 3.10: Illustration of the architecture of dMRI-CNN. Image
source: [Banerjee et al. 2019].

Figure 3.11: Illustration of the architecture of 3DCNN for fODF estimation (image
source: [Lin et al. 2019]).

Although the model proposed in [Lin et al. 2019] achieves competitive results, it
does not take into account the properties of the dMRI data. Thus, it requires a
higher number of parameters and consequently a higher number of training data.
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In [Elaldi et al. 2021], an unsupervised rotation equivariant U-net with graph con-
volutions has been proposed for fODF estimation. The architecture of the model
is illustrated in Figure 3.12. This model takes as input single- or multi-shell dMRI
signals which are transformed to the spectral domain and then re-projected to the
S2 hierarchical Healpix sampling grid [Gorski et al. 2005]. Graph convolution of one
such signal s̃ with a filter w is defined as

s̃ ∗w =
P∑
p=0

wpL
ps̃ (3.43)

where wp is pth entry of w. L is graph Laplacian defined as L = D − A with D

being degree and A adjacency matrix. The degree matrix of the graph is diagonal,

with an ith diagonal entry equal to
∑

j wij , where wij = e
−

||xi−xj ||2
ρ2 if i ̸= j and

wii = 0. xk are coordinates of kth vertex and ρ is average distance between two
vertices. Entries i, j of the adjacency matrix A are 1 if there is an edge between the
vertices and 0 otherwise. In both, the contracting and expanding parts of the U-net,
convolutions are followed by ReLU nonlinearities and batch normalization, except
for the last layer, where a Soft plus activation was used for the multi-shell case and
ReLU for the single-shell case. The loss function, over N samples, is defined as

Figure 3.12: Illustration of the architecture of the rotationally equivariant U-net for
fODF estimation. Image source: [Elaldi et al. 2021]

L =
N∑
n=1

||sn − fn ∗ r||22 + λ
I∑
i=1

log(1 +
f in

2

2σ2c
) + ||fn ◦mn||22 (3.44)

where sn and fn are the nth dMRI samples and the estimated tissue PDFs, respec-
tively. sn ∈ MV,B,I(R), where V is the number of voxels, B is the number of shells
and I is the number of vertices. fn ∈ MV,T,I(R), where T is the number of tissues.
r is the response function for all tissue compartments precomputed with the mrtrix
library [Tournier et al. 2019]. mn is a mask whose entries are 1 for negative entries
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of fn and 0 otherwise. Constants λ and σc control the sparsity of the estimated
fODFs.
In [Bouza et al. 2021], the authors proposed manifold-valued deep networks based
on the manifold-valued Volterra series (MVVS) and manifold-valued convolution
(MVC), as the first order term of MVVS for the analysis of manifold-valued data
whose domain is Euclidean space. In analogy to the standard CNNs where the
translation invariant features are extracted by a chain of convolutional and non-
linear layers, in MVVS-Net and MVC-Net, convolutions are replaced by MVVS or
MVC, while as nonlinearity tangent ReLU is defined. The models were employed
for movement disorder classification from DTI data and fODF estimation from raw
undersampled dMRI data. For the problem of fODF reconstruction, the authors
proposed to use MVVS or MVC layers to extract inter-voxel features and spheri-
cal convolutional layers to extract intra-voxel features. Whereas inter-voxel MVVS
or MVC layers are followed by inter-voxel tangent ReLU, standard and intra-voxel
ReLU is applied after the intra-voxel spherical convolutions [Bouza et al. 2021].
Apart from the before mentioned applications, DL approaches have also been used
for dMRI data synchronization over different sites [Ning et al. 2018], segmentation
of brain tissues [Zhang et al. 2021], signal enhancement [Aggarwal et al. 2019] and
reconstruction [Hong et al. 2019], etc.

3.6 Conclusion

In this chapter, we have first presented the properties of the dMRI signals acquired
with q-space sampling protocols, namely their real and spherical nature, antipodal
symmetry, and rotation equivariance with respect to the underlying tissue struc-
tures. Due to the spherical nature and the rotation equivariance, representation of
the dMRI signals in the SH basis is often used in their analysis, thus we have pro-
vided an overview of the most relevant methods for the SH coefficient estimation. As
the dMRI signals associated with individual axon bundles can be often considered
axially symmetric, we have provided the definition of the convolution with zonal
filters which is used in the estimation of certain dMRI related PDF functions. Fur-
ther, we have described the most relevant PDF functions, namely, the EAP, dODF,
fODF, and tensor distribution model which are crucial in the tractography and con-
sequently in the analysis of the structural connectivity. This section is followed by
an overview of the most prominent biophysically inspired multi-compartment mod-
els for dMRI local modeling, which have shown potential in the evaluation of certain
neurological diseases and the characterization of early brain development.
As we are interested in the analysis of the spherical signals, we have also provided
an overview of the recent rotationally equivariant DL models used for arbitrary
spherical signals which served as a starting point in the development of our models.
Finally, in the last part of the chapter, the most relevant DL approaches used in
dMRI local modeling are described in detail.
In the following two chapters, we will present our contributions in dMRI local anal-
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ysis, concretely, a rotation equivariant model for the fODF estimation and rotation
invariant models for dMRI regression and classification problems, namely multi-
compartment microstructure parameter estimation and brain tissue segmentation.
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Executive summary

This chapter contains our first contribution in dMRI local modeling, namely a spher-
ical U-net for fODF estimation. Firstly, we have presented SH coefficient estimation
via the Gram-Schmidt orthonormalization process with an analysis of its orthogo-
nality properties. Further, we provide details related to the architecture of spherical
U-net and its main building blocks, namely convolutional and transposed convolu-
tional layers with zonal trainable kernels realized in the spectral domain, non-linear
activations ReLU applied in the signal domain and pooling layer realized in the
spectral domain. The model is compared with a DL 3DCNN approach and a tra-
ditional multi-shell multi-tissue constrained spherical deconvolution (MSMT-CSD)
on the real HCP data and synthetic dMRI signals, both resampled to the reduced
grids which are more clinically desirable.
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4.1 Introduction

U-net is a type of CNN initially designed for the segmentation of biomedical im-
ages in [Ronneberger et al. 2015]. In contrast to the firstly introduced CNNs which
have a contracting architecture [O’Shea & Nash 2015], a U-net architecture is com-
posed of contracting and expanding parts, which allow it to produce high resolu-
tion outputs, instead of pixel-wise (low resolution). It is a type of fully convo-
lutional network introduced in [Long et al. 2015]. Whereas the contracting part
of the U-net enables learning of relevant features at different scales, expanding
part which contains upsampling operations, instead of pooling, enables propagation
of contextual information from the layers of lower to the layers of higher band-
width [Ronneberger et al. 2015]. High resolution compared to the pixel-wise seg-
mentation adds a regularization, as the loss is computed over larger areas, not just
one pixel, thus the model requires fewer training samples. At the same time, it is
faster.
In the context of spherical signal analysis, a spherical U-net has been proposed for
saliency detection in 360o videos in [Zhang et al. 2018]. In this model, convolutions
between a spherical signal and kernel are realized in the signal domain by stretching
and rotating the kernel to match with locations of sampling points of the signal. In
the domain of medical imaging, a spherical U-net has been proposed for the analysis
of cortical surfaces in [Zhao et al. 2019]. In their work, instead of kernel stretching,
for each vertex direct neighbors are extracted from the signal and rotated around
the vertex. This is followed by a simple inner product with a kernel, representing a
convolution in the signal domain. A recent work, presented in more detail in Chap-
ter 3, used a spherical U-net trained in an unsupervised manner for the estimation
of the fODFs [Elaldi et al. 2021].
In this chapter, we present a supervised voxel-wise spherical U-net for the prob-
lem of fODF estimation from dMRI data sampled at multiple spheres (shells).
The model is tailored to the properties of the dMRI signals, namely its real
nature, the uniform distribution of sampling points, the rotation equivariance
with respect to the underlying tissues, and the antipodal and axial symmetry
of the signals generated by individual fibers. Contrary to the models proposed
in [Zhang et al. 2018, Zhao et al. 2019], our U-net contains convolutional layers
where the convolutions are performed in the spectral domain.

4.2 Method

The architecture of our spherical U-net model is illustrated in Figure 4.1.
As input, the model takes multi-shell dMRI data of one voxel or a small 3D neigh-
borhood that in total results inNsh×N3

nb channels, whereNsh is the number of shells
and Nnb is the neighborhood size. Taking into account a small neighborhood rather
than a single voxel as input allows the incorporation of the spatial information, in
addition to the angular information extracted from the q-space. Although in the
models proposed in [Ronneberger et al. 2015, Zhang et al. 2018, Zhao et al. 2019]
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Figure 4.1: Illustration of a spherical U-net architecture with corresponding convo-
lutional operations in contracting and expanding parts.

output is of the same resolution as input, for multi-shell dMRI data it is reasonable
to assume that fODFs of higher resolution can be estimated. This is explained by
the fact that multi-shell dMRI signals are sampled over noncollinear points between
shells, distributed over continuous q-space.
As the standard U-net, our model is composed of contracting and expanding parts.
The main operations are convolutions, pooling, and transposed convolutions. Due
to the assumed axial symmetry of the signals emerging from individual axon bundles
and antipodal symmetry of dMRI signals, convolutional kernels in our model are
zonal and antipodally symmetric. Each convolutional layer of the contracting part
takes as input the SH coefficients of a multi-channel signal and performs convolution
with zonal kernels also represented in the SH basis. As presented in Chapter 3, con-
volutional layers with zonal kernels were firstly introduced in [Esteves et al. 2018] as
a part of a standard contracting CNN. Resulting SH coefficients are transformed to
S2 domain onto a q-space sampling grid [Caruyer et al. 2013] where ReLU nonlin-
earity is applied. The S2 signals obtained after ReLU are forwarded to the parallel
layer of the expanding part, while their low-passed SH coefficients are passed to the
convolutional layer below. Low-pass filtering corresponds to simple discarding of the
SH coefficients of the highest degree as in [Cohen et al. 2018, Esteves et al. 2018]
which corresponds to the operation of pooling. Each layer of expanding part per-
forms upsampling by combining contextual information from its predecessor and the
information from its peer layer of the contracting part. A transposed convolutional
layer takes as input concatenated S2 domain signals (feature maps) from the layer
below and its peer layer from the contracting part (if it exists), then inserts zero sam-
ples among existing samples. Following this, the feature maps are transformed to
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the spectral domain and convolution with zonal kernels is performed. The obtained
SH coefficients are transformed to the S2 domain where the ReLU nonlinearity is
applied. It is important to note that the q-space sampling grids [Caruyer et al. 2013]
are incremental and therefore insertion of zeros does not require re-interpolation of
the sampling points. The last layer in the expanding part only performs convolution
with one convolutional kernel and as output gives the fODF SH coefficients.

4.2.1 Estimation of SH coefficients

To estimate the SH coefficients of the input and intermediate S2 signals (feature
maps), the SH basis Y is inverted using the Gram-Schmidt orthonormalization pro-
cess. The inverted basis is denoted with Y †

gs. If yi and ygsi correspond to ith columns
of Y and Y †

gs
T , respectively, ygsi are determined as

ygsi = yi −
i−1∑
j=0

⟨yi, ygsj ⟩
⟨ygsj , y

gs
j ⟩

ygsj , ygsi =
ygsi

||ygsi ||2
(4.1)

where ygs0 = y0. The SH basis elements in the matrix Y are ordered so that column 0

corresponds to the basis element of degree l = 0 and order m = 0, following columns
are the basis elements of degree l = 2 and orders m = {−2,−1, 0, 1, 2}, etc. Since
aliasing affects the SH coefficients of a higher degree l more, it is convenient to start
the orthonormalization process with a basis of a lower degree, as it is known that
they are determined by a lower number of sampling points. On the other hand, to
avoid a bias due to basis element ordering, the Gram-Schmidt process is repeated
Nit times, each time randomly shuffling the order of the basis elements of the same
degree, which are at the end averaged. Finally, for an input signal s : S2 → R, SH
coefficients ŝ are estimated as

ŝ ≈ Y †
gss. (4.2)

In Figure 4.2 and 4.3 orthogonality properties of bases inverted with different ap-
proaches, presented in Chapter 3, are depicted for 30 uniformly randomly distributed
points and the antipodally symmetric basis of bandwidth 6. The approaches we
have compared are the Moore-Penrose pseudo inverse (mp) (Eq. 3.6), least square
with Tikhonov regularization (tikh) (Eq. 3.7) with the regularization constants
λ ∈ {1, 0.1}, least square with Laplace-Beltrami regularization (lb) (Eq. 3.8) with
the regularization constants λ ∈ {0.001, 0.0001}, and the approach with the Gram-
Schmidt orthonormalization (gs) (Eqs. 4.1 and 4.2) for a different number of rep-
etitions Nit ∈ {1000, 1}. Orthogonality with respect to the basis Y , illustrated in
Figure 4.2 indicates how accurately the SH coefficients can be estimated if there is
no noise. In this scenario, we can see that More-Penrose yields the exact solution,
least square with Tikhonov regularization penalizes equally SH basis elements of all
degrees, while least square with Laplace-Beltrami penalizes more the SH coefficients
of the highest degree, as well as the approach with Gram-Schmidt orthonormaliza-
tion process. Orthogonality of the inverted SH bases with themselves, as illustrated
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in Figure 4.3 indicates their robustness to noise and aliasing. The illustrations
show that the Moore-Penrose and the least square with Tikhonov regularization
(for λ = 0.1) are very sensitive to noise. The least square with the Laplace Bel-
trami regularization and the Gram-Schmidt orthonormalization process averaged
over 1000 iterations perform stronger regularization of the SH coefficients of the
highest degree and therefore are more robust with respect to the noise and aliasing.

Figure 4.2: Illustrations of the orthogonality between the SH basis Y and inverted
SH bases (Y †

mp, Y †
tikh with λ ∈ {1, 0.1}, Y †

lb with λ ∈ {0.001, 0.0001} and Y †
gs with

Nit ∈ {1000, 1}) for 30 randomly uniformly distributed points (28 SH basis elements
in total).

Figure 4.3: Illustrations of the orthogonality of the inverted SH bases (Y †
mp, Y †

tikh

with λ ∈ {1, 0.1}, Y †
lb with λ ∈ {0.001, 0.0001} and Y †

gs with Nit ∈ {1000, 1}) with
themselves for 30 randomly uniformly distributed points (28 SH basis elements in
total).

4.2.2 Convolutional layers

Input SH coefficients to a convolutional layer are denoted as {{ŝil}Ll=0}Ii=1, where
l is the SH degree, i refers to channel (shell), L is the bandwidth and I is
the total number of input channels. A convolutional zonal kernel is denoted as
{{{ŵi,jl }Ll=0}Ii=1}Jj=1, where i, j indicate the input and output channels, respectively
and I, J their total number. The convolution between the input {{ŝil}Ll=0}Ii=1 and
the trainable zonal kernel {{{ŵi,jl }Ll=0}Ii=1}Jj=1, is based on definition in 3.11, where

the constants
√

4π
2l+1 are omitted since the kernels are learnable

ĝjl =

I∑
i=1

ŝilŵ
i,j
l for l ∈ {0, 2, ..., L} and j ∈ {1, 2, ..., J}. (4.3)

By transforming the ZH coefficients of an antipodally symmetric zonal filter
{wi,jl }Ll=1 into a diagonal matrix and the SH coefficients of the antipodally sym-
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metric input and output S2 signal {ŝil}Ll=1 and {ĝi,jl = ŝilŵ
i,j
l }Ll=1, into vectors, con-

volution between them in the spectral domain, according to 4.3 can be illustrated
as in Figure 4.4.

Figure 4.4: Illustration of convolution between an antipodally symmetric S2 signal
and a zonal filter in the spectral domain. For the visualization, the ZH coefficients
of the zonal filter are presented as a diagonal matrix, with entries corresponding
to ŝil equal to ŵi,jl , and the SH coefficients of the input and output S2 signals are
represented as vectors.

4.2.3 ReLU nonlinearity

As presented in Chapter 3, in the spherical CNN models proposed
by [Cohen et al. 2018, Esteves et al. 2018], after convolution, the spectral co-
efficients are projected to the equiangular grids of the signal domain, where ReLU
nonlinearity is performed. In our U-net model, we have also used ReLU nonlinearity
but applied to the signals sampled over q-space sampling grids [Caruyer et al. 2013].
The nonlinear layer is simply summarized as follows.
After a convolutional layer, the obtained SH coefficients {ĝj =

[ĝj0
T , ĝj2

T , ..., ĝjL
T ]T }Jj=1 are transformed to S2 domain as gj = Y ĝj . The

ReLU nonlinearity is performed as

aj = ReLU(gj + bj) (4.4)

where bj is a bias term associated with the channel j. We note that the thresh-
olding of the signal with ReLU might introduce sharp signal transitions between
neighboring points, which cannot be represented with a given bandwidth. Thus,
the ReLU nonlinearity can cause the aliasing. When the SH coefficients {ĝj}Jj=1

are transformed to S2 domain, to minimize the effect of the aliasing it is better to
project the coefficients to {gj}Jj=1 sampled at a higher number of sampling points.
(This is simply a consequence of the fact that the SH coefficient estimation is more
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accurate for a higher number of sampling points.) The minimal number of the sam-
pling points we have used is (L+1)(L+2)

2 as it corresponds to the number of the SH
basis elements for the bandwidth L.

4.2.4 Pooling

After the nonlinearity is applied, pooling is performed in the spectral domain as
in [Cohen et al. 2018, Esteves et al. 2018]. Obtained {aj}Jj=1 signals are trans-
formed to spectral domain as âj = [Y †

gs](L−2)a
j , where [Y †

gs](L−2) contains the in-
verted SH basis of the highest degree (L−2). This can be seen as low pass filtering.
In planar CNNs one way to perform pooling is by averaging values of a small neigh-
borhood as illustrated in Figure 4.5. Similarly, performed in the spectral domain,
pooling corresponds to the discarding of the SH coefficients of the highest degree as
illustrated in Figure 4.6.

Figure 4.5: Illustration of average pooling in planar CNNs

Figure 4.6: Illustration of the spectral domain pooling in spherical CNNs

4.2.5 Transposed convolutional layers

Given the input S2 signals {si}Ii=1 =
[
{ci}

I
2
i=1

⊔
{ei}

I
2
i=1

]
to a transposed convolu-

tional layer, where
⊔

refers to the concatenation of the feature maps from the layer’s

predecessor {ei}
I
2
i=1 and its peer layer from the contracting part {ci}

I
2
i=1. Firstly, by

insertion of zero samples, we obtain the {qi}Ii=1 signals. If the signals {si}Ii=1 have
bandwidth L, the number of inserted zeros increases the number of sampling points
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which corresponds to the bandwidth (L + 2) (e.g. from (L+1)(L+2)
2 to (L+3)(L+4)

2 ).
This is followed by the estimation of the SH coefficients q̂i = [Y †

gs](L+2)q
i, con-

volution with kernels {{{ŵ′
l
i,j}Ll=0}Ii=1}Jj=1, and application of ReLU, as defined in

Eqs. 4.3 and 4.4. For comparison, illustrations of a transposed convolution in a pla-
nar CNN and our model are given respectively in Figures 4.7 and 4.8. The obtained
SH coefficients are transformed to the S2 domain, where bias terms are added and
ReLU non-linearities are applied. The resulting signals are concatenated with the
signals of the same bandwidth, from the parallel layer in the contracting part of the
U-net and serve as input to the following transposed convolution layer.

Figure 4.7: Illustration of transposed convolution in planar CNNs.

Figure 4.8: Illustration of transposed convolution in our spherical U-net.

4.2.6 Loss function

The loss function is defined as mean squre error (MSE) between the SH coefficients
of gold-standard fODFs and the estimated fODFs as

L =
1

N

N∑
n=1

( ˆfODFn − ˆfODF
e

n)
2 (4.5)

where ˆfODFn and ˆfODF
e

n are the gold standard and estimated SH coefficients of
the fODF of the nth sample, respectively. N is the number of samples in a batch.
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4.3 Datasets

We have used in our experiments real data from the HCP [Van Essen et al. 2013]
(referred to as Real dataset) and synthetic data generated from the same real HCP
scans following the procedure described in [Wilkins et al. 2015]. The Real data was
acquired on Siemens 3T Skyra system with 100 mT /m gradient, over three shells
with b-values of 1000, 2000 and 3000 s/mm2, each with 90 gradient directions and
18 b = 0 images at resolution 1.25 × 1.25 × 1.25 mm3. To generate the synthetic
data, firstly, up to three fiber orientations and corresponding volume fractions were
estimated per voxel using the bedpostx tool from the FSL library [Smith et al. 2004].
These parameters were then used to generate synthetic data using the multi-fiber
ball and stick model [Behrens et al. 2007] as in [Wilkins et al. 2015] for each shell
independently. In the generation process, the free diffusivity coefficients are set
to {0.68, 0.96, 2.25} · 10−3s/mm2 for the white matter, gray matter, and cere-
brospinal fluid, respectively while the single-fiber tensor’s eigenvalues are set to
{λ1, λ2, λ3} = {1.7, 0.17, 0.17} · 10−3s/mm2 [Wilkins et al. 2015]. To simulate more
realistic dMRI data, a Rician noise with a signal to noise ratio (SNR) of 18 dB
was added to the synthesized data. In addition, to investigate the robustness of
the compared methods, one synthetic dataset is generated with the constant diffu-
sion single-fiber tensor eigenvalues (Synthetic dataset 1 ) as in [Wilkins et al. 2015]
and another one with the eigenvalues sampled from the uniform distribution
around these values (values sampled from the range of ±10%) (Synthetic dataset
2 ). Experiments were conducted on Real dataset, Synthetic dataset 1, and Syn-
thetic dataset 2 with downsampled acquisition schemes. To select relevant white
matter voxels, we have used brain tissue segmentation computed from T1w im-
ages using the FAST algorithm [Zhang et al. 2001] implemented in the mrtrix li-
brary [Tournier et al. 2019]. In the experiments, where comparing models take into
account neighborhood information, white matter masks are extended using the 3D

binary dilation operator. Gold standard fODFs, of SH degree 8, were estimated us-
ing the multi-shell multi-tissue constrained spherical deconvolution (MSMT-CSD)
approach [Jeurissen et al. 2014] on dMRI signals acquired on full sampling scheme
using the mrtrix library [Tournier et al. 2019]. In the case of synthetic data, the
fODFs were estimated on the noiseless data. We have used 50 subjects in total, 30
for training, 10 for validation, and 10 for testing.

4.4 Experiments and implementation details

To evaluate our method on data similar to those used in clinical practice, experi-
ments have been performed on data with a significantly reduced number of sampling
points Np (20, 30, 40, 60, 90, and 120 in total for the three shells). We compared
our approach with another DL model - 3DCNN [Lin et al. 2019] and with MSMT-
CSD [Jeurissen et al. 2014]. To investigate the importance of the neighbourhood in-
formation, one of our models is trained with single voxel multi-shell signals (termed
as S2U -net1×1×1) and another with multi-shell signals taken from a 3D neighbour-
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Table 4.1: Sizes of the trainable parameters of the 3DCNN and S2U -nets (MB) for
Np sampling points.

Model / Np 20 30 40 60 90 120
3DCNN 18.12 18.12 18.12 18.96 20.18 20.18
S2U-net1×1×1 15.65 15.65 15.65 19.30 20.52 20.52
S2U-net3×3×3

s 3.99 3.99 3.99 4.89 5.17 5.17
S2U-net3×3×3 15.80 15.80 15.80 19.42 20.60 20.60

hood of size Nnb = 3 (termed as S2U -net3×3×3), which is also the case with the
3DCNN model. MSMT-CSD takes as input dMRI signals from a single voxel. In
addition, to investigate the generalization potential of our model, we have trained
one more 3D patch based model with a significantly lower number of trainable pa-
rameters - termed as S2U -net3×3×3

s . Sizes of the trainable parameters of the DL
networks are given in Table 4.1. All DL approaches are implemented with the ten-
sorflow library [Abadi et al. 2015]. Models are trained over 100 epochs. In each
epoch, 3 dMRI scans are randomly selected from the 30 training samples. For all
models, the loss function is defined as MSE between the estimated and gold standard
fODFs represented in the spectral domain as given in Eq. 4.5. The initial learning
rate is 0.001 and after 50 epochs it is reduced to 0.0001. Model weights updates are
computed using the Adam optimization algorithm [Kingma & Ba 2014].

4.5 Results

The results are compared quantitatively in terms of the MSE over all white matter
voxels and the mean angular error (MAE) for single fiber voxels and voxels con-
taining two crossing fibers. To compute peaks of the estimated and gold standard
fODFs, we have used the mrtrix library [Tournier et al. 2019] and the threshold of
0.1 of the highest peak is used to eliminate spurious fibers. Thus, the MAE does not
take into account the voxels where the number of peaks differs from the number of
peaks in the gold standard. In Figure 4.9, we can see that our model S2U -net3×3×3

achieves a lower MSE compared to the other models on both real and synthetic
datasets. This difference is especially significant in comparison with the models
that do not use neighbourhood information (MSMT-CSD and S2U -net1×1×1). This
performance drop of single voxel based models is expected when the number of
sampling points over three shells (as 20, 30, 40) is lower than the number of SH
coefficients of fODFs (which is 45 for bandwidth 8). We can also notice that al-
most equal performance to S2U -net3×3×3 can be achieved with the more compact
model S2U -net3×3×3

s . Figure 4.10 shows that for the single fiber voxels and the real
dataset, the MAE of the models S2U -net3×3×3 and S2U -net3×3×3

s is almost equal
to the one achieved with MSMT-CSD. However, these results are a consequence of
the fact that MSMT-CSD often produces large spurious peaks when the number
of sampling points is reduced, as illustrated in Figures 4.11 and 4.12, which means
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Figure 4.9: Comparison of the MSE averaged over 10 testing subjects for the real
HCP dataset, Synthetic dataset 1 and Synthetic dataset 2 for different numbers of
sampling points.

that they are not taken into account if the gold standard contains a different num-
ber of peaks. The results obtained on synthetic data indicate that our approach
is more robust to noise, as the gold standard is estimated on noiseless data. As
depicted in Figure 4.10, S2U -net3×3×3 and S2U -net3×3×3

s achieve a lower MAE in
the voxels with crossing fibers. Qualitative comparison of MSMT-CSD, 3DCNN
and S2U -net3×3×3 is provided in Figures 4.11 and 4.12 for dMRI signals sampled
over 60 sampling points. Figure 4.11 compares the gold standard and estimated
fODFs obtained on Real Dataset, Synthetic Dataset 1 and Synthetic Dataset 2. A
similar comparison is depicted in Figure 4.12, only for Real Dataset, where the esti-
mated fODFs are overlaid over the gold standard peaks. It shows that MSMT-CSD
compared to 3DCNN and S2U -net3×3×3 is more prone to produce spurious fibers,
while the DL approaches are more likely to omit some. The 3DCNN model tends
to estimate more smoothed fODFs and/or lobes with lower amplitude compared to
our approach S2U -net3×3×3.

4.6 Conclusion

In this chapter, we have described a spherical U-net model adjusted to the
properties of dMRI data, namely the real and spherical nature of the signals, their
antipodal symmetry, the random distribution of the sampling points and under the
assumption that the signals coming from individual fibers are axially symmetric.
We have demonstrated that the proposed spherical U-net is suitable for a high
resolution inference such as the estimation of the fODFs from dMRI data acquired
with schemes that contain a lower number of sampling points, which is required
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(a)

(b)

Figure 4.10: Comparison of the MAE averaged over 10 testing subjects for real
HCP dataset, Synthetic dataset 1 and Synthetic dataset 2 for different numbers of
sampling points for voxels containing single fibers (a) and voxels containing two
crossing fibers (b)



4.6. Conclusion 69

Figure 4.11: Illustration of the fODF gold standard and estimates obtained using
MSMT-CSD, 3DCNN and S2U -net3×3×3 with angular resolution decreased to 60

points in total for the three shells. Sub-figures a), e) and i) correspond to the
gold standard fODFs for Real dataset, Synthetic dataset 1 and Synthetic dataset 2,
respectively. Sub-figures b), f) and j) correspond to the fODF estimates obtained
using MSMT-CSD; sub-figures c), g) and k) using 3DCNN and sub-figures d), h)
and l) correspond to the fODF estimation with S2U -net3×3×3.
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(a) (b) (c)

Figure 4.12: Comparison of the fODFs estimated with MSMT-CSD (a), 3DCNN
(b) and our S2U -net3×3×3 (c), overlaid over gold standard fiber peaks.

in clinical practice. The results are compared on the real HCP data and synthetic
data generated based on the corresponding HCP scans. The results showed that
our models are capable of successfully incorporating neighboring information in
order to boost the model’s performance, yielding the lowest reconstruction errors
regardless of the number of sampling points, where more important improvements
are achieved for dMRI signals acquired over low numbers of sampling points
(≤ 40) when compared to the single voxel based models. Comparison in terms
of MAE between fODF peaks showed that our 3D patch based model brings
notable improvement in the voxels containing two populations of axon fibers, while
some improvements in single fiber voxels are present only on the synthetic data,
indicating their robustness with respect to noise. We also note that the comparison
in terms of MAE should be taken with caution since DL models tend to oversmooth
estimated fODFs while MSMT-CSD is prone to generate spurious fODF lobes
(peaks). Finally, the results showed that our 3D patch based model with ∼ 4

times fewer parameters gives an almost equal performance as the large model, both
in terms of MSE and MAE, indicating a high generalization power our spherical
U-net. Furthermore, the generalization power of our model is proven to a certain
extent in the Diffusion Simulated Connectivity (DiSCo) Challenge, where spherical
U-net trained on synthetic data generated with dmipy library [Fick et al. 2019] and
applied on synthetic Monte-Carlo phantom data resulted in a correlation between
ground truth and validation connectivity matrices in the range of 94 − 97%, while
for MSMT-CSD this range was 87− 90%.
Experiments conducted in this chapter indicate that even if the models are not en-
dowed with any or all available prior knowledge, with a high amount of data, missing
knowledge can be inferred. Nevertheless, in our future work, we will investigate if im-
posing positivity and sparsity on fODFs as in [Elaldi et al. 2021, Bouza et al. 2021]
and their integration to one can further improve the performance of our models.
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Finally, as the fODFs are rotationally equivariant to dMRI signals, in an ideal
scenario one would like to create a model which contains rotationally equivariant
layers. We remark that in our spherical U-net, the estimation of the SH coeffi-
cients of the input signals and all intermediate feature maps is not rotationally
equivariant due to the random-uniform distribution of the sampling points and
noise. Another operation that distorts rotation equivariance is ReLU non-linearity
applied in the signal domain which can introduce aliasing. To tackle the former
problem, in the following chapter we have investigated Fourier domain spherical net
designed for dMRI regression and classification which contains rotation equivariant
non-linearities realized in the Fourier domain.
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Executive summary

In this chapter, we have investigated rotation equivariant CNNs with quadratic non-
linearities realized in the spectral domain for local analysis of dMRI data. The spec-
tral domain nonlinearities are introduced to avoid often computationally expensive
conversions from the spectral to the signal domain in order to apply nonlinearities
such as ReLU and to avoid the aliasing that such nonlinearities generate. First,
in Section 1.2, we introduce the mathematical grounds necessary for understanding
and defining the Fourier domain CNN, which are presented in the following Sec-
tion 1.3. The models are evaluated in Section 1.4 on the problem of axon bundle
counting on synthetic data, and on the real HCP dMRI data on the problems of
micro-structure parameter estimation and brain tissue segmentation.
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5.1 Introduction

Although the data acquired on spheres have been present over the last sev-
eral decades in different scientific areas such as astronomy, meteorology, satel-
lite imaging, point cloud applications, medical imaging, etc, it was only recently
that neural network models, properly taking into account their spherical nature
have been introduced for their analysis. Some of the most relevant rotation
equivariant CNN models for arbitrary spherical signals are presented in Chapter
3 [Cohen et al. 2018, Esteves et al. 2018, Kondor et al. 2018]. From the point of
view of dMRI data acquired with q-space sampling schemes, the first drawback of
these models is that they take as input signals sampled on grids that have asso-
ciated quadrature formulae for the exact computation of the SH coefficients such
as Driscoll-Healy and Gauss-Legendre grids. Furthermore, as already mentioned,
models proposed by [Cohen et al. 2018, Esteves et al. 2018] use signal domain non-
linearities. A drawback of the spectral domain nonlinearity of quadratic nature,
introduced in [Kondor et al. 2018], is its quadratic increase of the output channels,
consequently requiring a higher number of trainable parameters compared to the
other models [Cohen et al. 2018, Esteves et al. 2018]. The first rotation equivariant
CNN adapted to the properties of dMRI data, with signal domain nonlinearities, has
been introduced in [Banerjee et al. 2019], as a part of the model used in Parkinson’s
disease classification (detailed description in Chapter 3).
In this chapter, we present the following contributions and findings:

• As in the work introduced in [Sedlar et al. 2020], to estimate the SH coeffi-
cients of the input dMRI data, we have used the Gram-Schmidt orthonor-
malization process. Furthermore, for the multi-shell dMRI data, we have
introduced denoising layers that exploit the fact that q-space is continuous
and that the sampling points are noncollinear within and between shells. The
signal from one shell can thus be improved by incorporating information on
each point’s direct and antipodal neighbourhood and the information from
other shells.

• Secondly, we have introduced channel-wise spectral-domain nonlinearities. We
have investigated two types of models, one which uses zonal convolutional ker-
nels resulting in S2 feature maps and a second model which uses S2 and SO(3)

convolutional kernels which result in SO(3) feature maps. Consequently, we
have introduced channel-wise S2 and SO(3) quadratic nonlinearities, respec-
tively.

• Finally, in addressing the classification or regression problems, the pur-
pose of the sequence of the rotationally equivariant convolutional lay-
ers is to extract rotationally invariant features at the end. Contrary
to the models [Cohen et al. 2018, Esteves et al. 2018, Kondor et al. 2018,
Banerjee et al. 2019] which use the average value of each of the output chan-
nels of the last layer (which corresponds to the spectral harmonic of degree
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0), we have introduced degree-wise power spectrum features, which are also
rotationally invariant. They are extracted from the model’s input and the
channels after each nonlinearity.

• In Appendix A, we also provide derivations related to the real SH basis,
Wigner-D matrices, convolutions of S2 and SO(3) signals and Clebsch-Gordan
transformations required to realize quadratic functions of the real S2 and
SO(3) functions. To the best of our knowledge, some of these derivations
are not available in the literature, so they can be useful for researchers in
related fields.

5.2 Theory

In this section, we describe the mathematical tools necessary to define Fourier do-
main rotationally equivariant CNN models with zonal, and with S2 and SO(3)

kernels. Concretely, we provide definitions of convolutions and quadratic nonlinear-
ities realized in the spectral domain, and rotationally invariant degree-wise power
spectra computed using a generalization of Parseval’s theorem.

5.2.1 Convolution (correlation) between S2 and zonal functions

Although previously introduced, for readability of the section, we briefly repeat
the definition of correlation between S2 and zonal functions. Zonal functions are
a special case of S2 ones as they change only along the z axis, thus a correlation
between an S2 and a zonal function is a special case of spherical correlation since
the resulting function remains in the S2 domain. Given an L2 function s : S2 → R
and an L2 zonal function k : S2 → R, where k(θ, ϕ) = k(θ) for θ ∈ [0, π), correlation
between them is given by

[s ∗ k](r) =
∫
S2

s(r′)k(R−1(θ, ϕ, 0)r′)dr′ =

B∑
l=0

√
4π

2l + 1
k̂l

l∑
m=−l

Ylm(r)ŝlm (5.1)

where r = [sin θ cosϕ, sin θ sinϕ, cos θ]T and R(θ, ϕ, 0) ∈ SO(3) is a rotation matrix.
ŝlm is the SH coefficient of degree l and orderm of s. k̂l is the ZH coefficient of degree
l of k. Ylm is the SH real basis element of degree l and order m. If g(r) = [s ∗ k](r),
from Eq. 5.1, the SH coefficients of g are defined as:

ĝlm =

√
4π

2l + 1
k̂lŝlm , ĝl =

√
4π

2l + 1
k̂lŝl , (5.2)

where ŝl, ĝl ∈ R2l+1 are vectors which contain the SH coefficients of degree l of the
functions s and g. Derivations of equations 5.1 and 5.2 are provided in Appendix A.
An illustration of the convolution between an S2 and a zonal function is provided
in Figure 5.1.
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(a) S2 function s (b) Zonal function k (c) S2 function [s ∗ k]

Figure 5.1: Illustration of an S2 signal s(r) (a), of a zonal kernel k(r) (b) and the
S2 signal [s ∗ k](r) (c). All the signals are of bandwidth 16.

5.2.2 S2 quadratic function

Given an L2 signal g : S2 → R of bandwidth Bg, [g × g](r) is defined as

[g × g](r) =

2Bg∑
l=0

l∑
m=−l

ĥlmYlm(r) (5.3)

where

ĥlm =

Bg∑
l′=0

Bg∑
l′′=0

l′∑
m′=−l′

l′′∑
m′′=−l′′

ĝl′m′ ĝl′′m′′

√
(2l′ + 1)(2l′′ + 1)

4π(2l + 1)
C l,ml′,m′,l′′,m′′C

l,0
l′,0,l′′,0

(5.4)
and C l,ql′,q′,l′′,q′′ ∈ R is the Clebsch-Gordan coefficient associated with the real SH
basis elements. This can be written in matrix-vector notation as

ĥl =
∑
l′,l′′

√
(2l′ + 1)(2l′′ + 1)

4π(2l + 1)
C l,0l′,0,l′′,0C

l
l′,l′′

T [
ĝl′ ⊗ ĝl′′

]
s.t. |l′ − l′′| ≤ l ≤ l′ + l′′

(5.5)
where C ll′,l′′ ∈ R(2l′+1)(2l′′+1)×(2l+1) is the sparse Clebsch-Gordan matrix whose
entries are given with C l,ml′,m′,l′′,m′′ . ĝl, ĥl ∈ R2l+1 contain the real SH coefficients
of degree l of the functions g and h = g × g. ⊗ denotes the Kronecker product
of vectors. If the signal g is bandlimited to Bg, h has bandwidth 2Bg. The
definition of the Clebsch-Gordan coefficients associated with the real SH basis
elements and the derivation of equations 5.3 and 5.4 are given in Appendix A. In
addition to the optimization obtained by operating only on the real SH coefficients,
an additional reduction of computational complexity is achieved by noting that
C ll′,l′′

T [
ĝl′ ⊗ ĝl′′

]
= C ll′′,l′

T [
ĝl′′ ⊗ ĝl′

]
. In the case of an S2 nonlinearity, for

l′ = l′′ = l, computational complexity of C ll,l
T
[
ĝl ⊗ ĝl

]
is O((2l + 1)3).
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5.2.3 Convolution (correlation) between SO(3) functions

An S2 function is a special case of an SO(3) function. Given two L2 functions
s, k : S2 → R, their correlation is defined as:

[s ∗ k](R) =
∫
S2

s(r)k(R−1r)dr =
B∑
l=0

l∑
m=−l

l∑
n=−l

Dlmn(R)ŝlmk̂ln (5.6)

where R = R(θ, ϕ, ψ) ∈ SO(3) is a rotation matrix. ŝlq and k̂lq are the real SH
coefficients of degree l and order q of the functions s and k. Dlmn : SO(3) → R
is an element of the real Wigner-D matrix of degree l and orders m and n. If
g(R) = [s ∗ k](R), from Eq. 5.6, its Wigner-D, or here referred to as RH coefficients
are defined as

Ĝlmn = ŝlmk̂ln , Ĝl = ŝlk̂
T
l , (5.7)

where ŝl, k̂l ∈ R2l+1 are the vectors which contain the real SH coefficients of degree
l of the functions s and k. Ĝl ∈ R(2l+1)×(2l+1) is a the matrix containing the real
RH coefficient of degree l of the SO(3) function g.
Given two L2 functions s, k : SO(3) → R, their correlation is defined as:

[s ∗ k](R) =
∫

SO(3)

s(Q)k(R−1Q)dQ =
B∑
l=0

l∑
m=−l

l∑
n=−l

Dlmn(R)
l∑

k=−l
ŜlmkK̂lnk (5.8)

where R,Q ∈ SO(3). Ŝlpq and K̂lpq are the real RH coefficients of degree l and
orders p and q of the functions s and k. Dlpq : SO(3) → R is an element of the real
Wigner-D matrix of degree l and orders p and q. If g(R) = [s ∗ k](R), from Eq. 5.8,
its RH coefficients are defined as:

Ĝlmn =
l∑

k=−l
ŜlmkK̂lnk , Ĝl = ŜlK̂

T
l , (5.9)

where Ŝl, K̂l ∈ R(2l+1)×(2l+1) are the matrices which contain the real RH coefficients
of degree l of the functions s and k. Ĝl ∈ R(2l+1)×(2l+1) is a matrix containing the
real RH coefficient of degree l of the function g. Derivations of equations 5.6, 5.7, 5.8
and 5.9 are provided in Appendix A.

5.2.4 SO(3) quadratic function

Given an L2 signal g : SO(3) → R of bandwidth Bg, [g × g](R) is defined as:

[g × g](R) =

2Bg∑
l=0

l∑
m=−l

l∑
n=−l

ĤlmnDlmn(R) (5.10)
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where

Ĥlmn =

Bf∑
l′=0

Bg∑
l′′=0

l′∑
m′=−l′

l′∑
n′=−l′

l′′∑
m′′=−l′′

l′′∑
n′′=−l′′

Ĝl′m′n′Ĝl′′m′′n′′C l,ml′,m′,l′′,m′′C
l,n
l′,n′,l′′,n′′

(5.11)
and C l,ql′,q′,l′′,q′′ ∈ R is the Clebsch-Gordan coefficient associated with the real RH
basis elements. Similarly, as in Eq. 5.5, this can be written in matrix notation as:

Ĥl =
∑
l′,l′′

C ll′,l′′
T [
Ĝl′ ⊗ Ĝl′′

]
C ll′,l′′ s.t. |l′ − l′′| ≤ l ≤ l′ + l′′ (5.12)

where C ll′,l′′ ∈ R(2l′+1)(2l′′+1)×(2l+1) is the Clebsch-Gordan matrix as used in Eq. 5.5.
Ĝl, Ĥl ∈ R(2l+1)×(2l+1) contain the real RH coefficients of degrees l of the signals
g and h = [g × g]. ⊗ denotes the Kronecker product of matrices. If the signal
g is bandlimited to Bg, h has bandwidth 2Bg. The derivation of equations 5.11
and 5.12 is given in Appendix A. In addition to the optimization obtained due
to the operations on the real RH coefficients, symmetry C ll′,l′′

T [
Ĝl′ ⊗ Ĝl′′

]
C ll′,l′′ =

C ll′′,l′
T [
Ĝl′′ ⊗ Ĝl′

]
C ll′′,l′ , an additional reduction of the computational complexity is

obtained as follows. First, we remark that Eq. 5.12 can be written as

Ĥl =
∑
l′,l′′

C ll′,l′′
T
(
Ĝl′ ⊗ I2l′′+1

)(
I2l′+1 ⊗ Ĝl′′

)
C ll′,l′′ =

∑
l′,l′′

V̂ l
l′,l′′

[
Û ll′,l′′

]T
s.t. |l′ − l′′| ≤ l ≤ l′ + l′′

(5.13)

where the computation of

V̂ l
l′,l′′ = C ll′,l′′

T
(
Ĝl′ ⊗ I2l′′+1

)
is optimized by V̂ l

l′,l′′ [q, :] = vec
(
C̃ ll′,l′′ [q, :, :]

T Ĝl′
)

(5.14)
and

Û ll′,l′′ =
(
I2l′+1 ⊗ Ĝl′′

)
C ll′,l′′ is optimized by Û ll′,l′′ [q, :] = vec

(
Ĝl′′C̃

l
l′,l′′ [q, :, :]

)
(5.15)

where q ∈ {−l, ...0, ...l}. I2l+1 is the identity matrix of size (2l + 1) × (2l + 1).
C̃ ll′,l′′ ∈ R(2l+1)×(2l′′+1)×(2l′+1) is 3D tensor obtained by reshaping the Clebsch-
Gordan matrix C ll′,l′′ . If we assume naive matrix and tensor product, for

l′ = l′′ = l, replacing C ll,l
T [
Ĝl ⊗ Ĝl

]
C ll,l by the optimized V̂ l

l,l

[
Û ll,l

]T expression
as given in equations 5.14 and 5.15, reduces the computational complexity from
O((2l + 1)5 + 2(2l + 1)4) to O(3(2l + 1)4).

5.2.5 Power spectrum of S2 and SO(3) functions

From the generalization of Parseval’s theorem to S2 and SO(3) functions, given L2

functions g(r) : S2 → R and g(R) : SO(3) → R, the angular and rotation power
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spectra corresponding to the spectral degree l are defined as

pl =
l∑

m=−l
ĝ2lm , Pl =

8π2

2l + 1

l∑
m=−l

l∑
n=−l

Ĝ2
lmn (5.16)

where pl, Pl ∈ R. ĝlm is the real SH coefficient of degree l and order m of the signal
g(r) and Ĝlmn is the real RH coefficient of degree l and orders m and n of the signal
g(R).

5.3 Methods

We have investigated two types of Fourier domain rotation equivariant CNNs. One
with zonal kernels and S2 quadratic nonlinearities, termed as Fourier_S2_zonal
and another one with S2 and SO(3) kernels and SO(3) quadratic nonlinearities,
termed as Fourier_S2_SO(3). Although both types of convolutional layers are
rotation equivariant, here we stress the essential differences between them. First,
the number of their spectral components of a zonal, an S2 and an SO(3) kernels of
bandwidth L, is L+1, (L+1)2 and (L+1)(4(L+1)2−1)/3, respectively. This means
that the S2 and SO(3) kernels have a higher discrimination power. Thus, to make
a distinction between two patterns on a sphere, one would need to use more zonal
kernels than S2 or SO(3) ones. On the other hand, convolution with zonal kernels
is less computationally expensive. In addition, for an S2 signal input, convolution
with a zonal kernel results in a S2 signal, whose quadratic function is much less
computationally expensive than the quadratic function of the SO(3) signals.
The architectures of the two models are illustrated in Figures 5.2 and 5.3. As input,
they take raw multi-shell dMRI signals. Since q-space is continuous, signals acquired
over different shells are correlated. In addition, since they are sampled at points
which are noncollinear within and between shells, they contain a certain amount
of supplementary information. To make use of this and taking into account that
dMRI signals are positive, we have incorporated into the models a denoising layer
composed of a cascade of nonlinear layers defined as

s(n) = ReLU((I + λWn)s
(n−1)) (5.17)

where s(0) = [ssh=1
0 ...ssh=1

N1
, ..., ssh=K0 ...ssh=KNK

]T is a vector that contains concate-
nated raw dMRI signals of K shells, where Nk is the number of points for shell k.
Vectors {s(n)} contain denoised dMRI signals after application of n denoising steps.
I is the identity matrix, {Wn} are trainable weights, and λ is a parameter that en-
sures that matrices {(I+λWn)} remain close to the identity matrix and in this way
preserve the spherical nature of the input signal. These denoising layers are benefi-
cial only if the number of sampling points is low. If the number of sampling points
is much higher than the number of SH basis elements, denoising comes naturally
as the SH basis elements are better determined with more points (eg. mean, SH
coefficient of degree l = 0, is more accurate if averaged over more sampling points
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than only one, and the same is true for the coefficients of higher degree). After the
denoising layer, the signals are transformed to the Fourier domain using the real
SH basis of even degrees, inverted with Gram-Schmidt orthonormalization process
as in [Sedlar et al. 2020, Sedlar et al. 2021] and as described in Chapter 4. In the
context of standard CNN, a shell corresponds to a channel. We denote input SH
coefficients of degree l and of channel k as âl0,k, where l ∈ {0, 2, ..., L}, with L being
the input’s bandwidth.

5.3.1 Fourier domain CNN with quadratic S2 nonlinearities

In the model with zonal kernels Fourier_S2_zonal, convolutions are performed in
the Fourier domain with the zonal kernels as first introduced in [Esteves et al. 2018].
Convolutions in the nth convolutional layer are defined as

ẑn,il =
∑
j

ân−1,j
l ŵn,j,il for l ̸= 0 and ẑn,i0 =

∑
j

ân−1,j
0 ŵn,j,i0 + b̂n,i0 (5.18)

where ŵn,j,il is a ZH coefficient of the convolutional kernel in the nth layer, corre-
sponding to the input channel j and output channel i, while b̂n,i0 is corresponding
bias term. ân−1,j

l and ẑn,il are the vectors containing input and output SH coeffi-
cients of degree l for the channels j and i, respectively.
The output of the activation of the nth S2 nonlinear layer is obtained using Eq. 5.5
as

ân,il =
∑
l′,l′′

√
(2l′ + 1)(2l′′ + 1)

4π(2l + 1)
C l,0l′,0,l′′,0C

l
l′,l′′

T [
ẑn,il′ ⊗ ẑn,il′′

]
s.t. |l′ − l′′| ≤ l ≤ l′ + l′′

(5.19)
where C ll′,l′′ ∈ R(2l′+1)(2l′′+1)×(2l+1) is the sparse Clebsch-Gordan matrix. ẑn,il , ân,il
are the input and output SH coefficients of degree l of the ith channel. This type of
nonlinearity is similar to the one proposed in [Kondor et al. 2018], with a difference
that it is channel-wise, and thus it does not lead to a quadratic increase of the out-
put channels.
As in [Cohen et al. 2018, Esteves et al. 2018, Kondor et al. 2018], pooling is
achieved by discarding high frequency spectral components. Simply, the ân,il is
computed only for l < Ln, where Ln is the output bandwidth of the layer n.
Rotationally invariant power spectrum features are extracted from the input SH
coefficients and after each nonlinearity. The feature vector is defined as

f = [r0,10 , ..., r0,K0 , ..., r0,1L , ..., r0,KL , ..., rn,10 , ..., rn,K
n

0 , ..., rn,1Ln , ..., r
0,Kn

Ln , ..., ] (5.20)

where Kn refers to the number of output channels of the layer n. rn,kl is defined
using Eq. 5.16 as

rn,kl =
l∑

m=−l

[
ân,klm

]2
. (5.21)

Concatenated rotationally invariant power spectrum features are fed into a fully
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Figure 5.2: Architecture of the proposed model with zonal convolutional kernels and
S2 quadratic nonlinearities. The model is termed as Fourier_S2_zonal.

connected network which performs the final inference.

5.3.2 Fourier domain CNN with quadratic SO(3) nonlinearities

In the model with S2 and SO(3) kernels, Fourier_S2_SO(3), convolutions are re-
alized as firstly proposed in [Cohen et al. 2018]. Convolution in the 1st convolutional
layer is defined as:

Ẑ1,i
l =

∑
j

â0,jl
[
ŵ1,j,i
l

]T for l ̸= 0 and Ẑ1,i
0 =

∑
j

â0,j0 ŵ1,j,i
0 + b̂1,i0 (5.22)

where ŵ1,j,i
l are the SH coefficients of the S2 convolutional kernel in the 1st layer,

corresponding to the input channel j and output channel i, while b̂1,i0 is corresponding
bias term. Ẑ1,i

l is the matrix containing the output RH coefficients of degree l for
the channel i.
Since the output of the first and all the following nonlinear layers is an SO(3) signal
represented in the Fourier domain, convolution in the nth convolutional layer (n > 1)
is defined as:

Ẑn,il =
∑
j

Ân−1,j
l

[
Ŵn,j,i
l

]T for l ̸= 0 and Ẑn,i0 =
∑
j

Ân−1,j
0 Ŵn,j,i

0 + B̂n,i
0

(5.23)
where Ŵn,j,i

l are the RH coefficients of the SO(3) convolutional kernel in the nth

layer, corresponding to the input channel j and output channel i, while B̂n,i
0 is

the corresponding bias term. Ân−1,j
l and Ẑn,il are the vectors containing input and
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output RH coefficients of degree l for the channels j and i, respectively.
The output of the nth SO(3) nonlinear layer is obtained using Eq. 5.12 as:

Ân,il =
∑
l′,l′′

C ll′,l′′
T [
Ẑn,il′ ⊗ Ẑn,il′′

]
C ll′,l′′ s.t. |l′ − l′′| ≤ l ≤ l′ + l′′ (5.24)

where C ll′,l′′ ∈ R(2l′+1)(2l′′+1)×(2l+1) is the sparse Clebsch-Gordan matrix. Ẑn,il , Ân,il
are the input and output RH coefficients of degree l of the ith channel. Eq. 5.24 is
realized using the optimization presented in Eqs. 5.13, 5.14 and 5.15.
In this model as well, pooling is achieved by discarding spectral components of
the highest degree [Cohen et al. 2018, Esteves et al. 2018], thus Ân,il are computed
only for l < Ln, with Ln being the output bandwidth of the layer n. Rotationally
invariant power spectrum features are extracted from the input SH coefficients and
the RH coefficients after each nonlinearity. The feature vector is defined as

f = [r0,10 , ..., r0,K0 , ..., r0,1L , ..., r0,KL , ..., Rn,10 , ..., Rn,K
n

0 , ..., Rn,1Ln , ..., R
0,Kn

Ln , ..., ] (5.25)

where Kn refers to the number of output channels of the layer n. rn,kl is defined as
in Eq. 5.21 and Rn,kl according to Eq. 5.16 as:

Rn,kl =

l∑
m=−l

l∑
n=−l

[
Ân,klmn

]2
, (5.26)

where the scaling factor 8π2

2l+1 is omitted to have more balanced magnitudes of
the power spectrum features. As in the model with zonal kernels, concatenated
rotation invariant power spectrum features are fed into a fully connected network
which performs the final inference.

5.4 Experiments

Firstly, we have compared our model with zonal kernels with a state-of-the-art spher-
ical CNN model, namely S2CNN proposed by [Cohen et al. 2018]. Due to the dif-
ferences in sampling grids, the models are compared on synthetic dMRI data on the
classification problem of axon bundle count. Furthermore, the models are exten-
sively compared with the dMRI state-of-the-art deep learning approaches, namely
MLP [Golkov et al. 2016], MEDN and MEDN+ [Ye 2017], MescNet [Ye et al. 2019]
and MescNetSepDict [Ye et al. 2020], on the problem of NODDI [Zhang et al. 2012]
and spherical mean technique (SMT) [Kaden et al. 2016] microstructure parameter
estimation from dMRI acquired with significantly reduced sampling scheme. Fi-
nally, we demonstrated that our model can be successfully used to extract rotation
invariant features for brain tissue segmentation, obtaining results comparable to
the recently proposed deep learning approach [Zhang et al. 2021] while requiring
significantly less computational time.
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Figure 5.3: Architecture of the proposed model with zonal convolutional kernels and
S2 quadratic nonlinearities. The model is termed as Fourier_S2_SO(3).

5.4.1 Axon bundle counting experiment

In this experiment, we have compared our Fourier_S2_zonal model with the state-
of-the-art S2CNN [Cohen et al. 2018] model on synthetic data on the problem of
the axon bundle counting. The experiments highlight the importance of the spectral
domain nonlinearity used in our model.

Synthetic database

We have generated synthetic dMRI samples distributed over four classes contain-
ing zero, one, two, or three axon bundles. Data is generated using single fiber
white matter, gray matter, and CSF response functions and corresponding esti-
mated PDFs of one HCP subject (’100307’). The tissue response functions were
estimated using the mrtrix command dwi2response msmt_5tt and corresponding
PDFs with multi-shell multi-tissue CSD [Jeurissen et al. 2014] with the command
dwi2fod msmt_csd [Tournier et al. 2019]. SH coefficients of response functions for
a shell k are noted as r̂gmk , r̂csfk ∈ R1 and r̂sfwmk ∈ RNsh , for gray matter, CSF and
single fiber white matter, respectively, where Nsh is the number of SH coefficients.
The SH coefficients of synthetic dMRI signals for a shell k are computed as follows:

ŝk = νgm
√
4πp̂gmr̂gmk + νcsf

√
4πp̂csf r̂csfk + νwm

Nb∑
b=1

νbsfwmRb(c⊙ p̂sfwmb ⊙ r̂sfwmk )

(5.27)
where νgm, νcsf , νwm are tissue fractions, νbsfwm are axon bundle fractions and
Nb ∈ {1, 2, 3} is the number of axon bundles. p̂gm, p̂csf ∈ R are the SH coefficients of
PDFs of gray matter and CSF (these tissues are modeled as a sphere, thus they have
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only the SH coefficient of l = 0). p̂sfwmb ∈ RNsh is the fODF of of white matter bun-
dle b oriented along z axis. Rb is the rotation matrix for bundle b. Vector c ∈ RNsh is
a constant vector c = [

√
4π, 0, 0,

√
4π

2·2+1 , ...,
√

4π
2·4+1 , ...] used in the convolution be-

tween response function r̂sfwmk and fODF p̂sfwmb . To simulate white matter samples,
we set νwm = 1 and νgm, νcsf ∼ |N (0, 0.05)|, to simulate gray matter νgm = 1 and
νwm, νcsf ∼ |N (0, 0.05)| and to simulate CSF νcsf = 1 and νwm, νgm ∼ |N (0, 0.05)|.
Axon bundle fractions are drawn from a uniform distribution where minimum νbsfwm
is 0.2. Realistic PDFs are drawn from random distributions p̂gmk ∼ N (p̂gmm , p̂gmstd),
p̂csfk ∼ N (p̂csfm , p̂csfstd ), p̂

sfwm
k ∼ N (p̂sfwmm , p̂sfwmstd ). The mean and standard devia-

tion of gray matter and CSF tissue PDFs are computed over corresponding regions
determined with five-tissue-type segmentation with FAST algorithm applied on T1w
images [Zhang et al. 2001]. Single fiber white matter PDFs - fODFs - are selected
from brain regions with high fractional anisotropy (> 0.75), they are aligned with
the z-axis, and mean and standard deviation are computed for each zonal harmonic.
Rotation of the axon bundle is performed in a way that the minimum angle between
bundles is π

6 rad. Bandwidth of generated signals is L = 8, thus Nsh = 45 and they
are composed of three shells with b values 1000, 2000, 3000s/mm2. The total num-
ber of generated samples is 106, where 0.2×106 has been used for training, 0.2×106

for validation, and 0.6 × 106 for testing. Once the SH coefficients are converted to
the signal domain they are distorted by a non-additive Rician noise of SNR = 20

and afterward normalized with mean b = 0 value and clipped to the range [0, 1].
Number of no diffusion weighted signals (b = 0) is 18.
To investigate how the models behave with dMRI data with different angular reso-
lutions and to verify their rotation invariance, we have created three datasets (db 1 ,
db 2 , db 3 ). Each of the datasets is generated for two types of grids, Driscoll-Healy
grid [Driscoll & Healy 1994] used in the model S2CNN [Cohen et al. 2018] and q-
space sampling used in dMRI imaging [Caruyer et al. 2013]. In db1, SH coefficients
of generated samples (degree 8) are projected on 91 and 90 points for Driscoll-Healy
and q-space sampling grids, respectively. This corresponds to a bandwidth L = 4

for the Driscoll-Healy grid. In db2, SH coefficients of generated samples (degree 8)
are projected on 57 points, which corresponds to L = 3 for the Driscoll-Healy grid.
In db3, to investigate the rotation invariance of the models, training, and validation
samples are generated with a restriction on their orientation, while testing sam-
ples contain bundles of arbitrary orientation. Concretely, the first bundle is always
aligned with the z axis, if there are two bundles, the second one is always in z − x

plane drawn from the uniform distribution [π6 ,
π
2 ]rad, if there are three bundles, the

third one is rotated for θ < π
2 rad and ϕ < πrad while respecting that the angle with

respect to the other two bundles is greater than π
6 rad. Properties of the datasets

in terms of the number of points with corresponding grid types and bundle orienta-
tions are summarized in Table 5.1. Illustrations of the noiseless fODFs and dMRI
for three shells of db 1 and db 2 are illustrated in Figure 5.4 and for db 3 in
Figure 5.5.
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Table 5.1: Overview of the synthetic databases. Comparing mod-
els include S2CNN [Cohen et al. 2018]. Grid type DH refers to
Driscoll-Healy [Driscoll & Healy 1994] and Q to multi-shell q-space sam-
pling [Caruyer et al. 2013].

Database db 1 db 2 db 3

Model S2CNN Our S2CNN Our S2CNN Our
Grid type DH Q DH Q DH Q
No. of points 91 90 57 57 57 57
Bundle orientations arbitrary arbitrary restricted

fODFs dMRI, b=1000 s/mm2 dMRI, b=2000 s/mm2 dMRI, b=3000 s/mm2

Figure 5.4: Simulated fODFs and dMRI signals with arbitrary orientations of bun-
dles. Background color corresponds to the number of bundles (black-zero bundles,
dark gray - one bundle, light gray - two bundles, white - three bundles).

fODFs dMRI, b=1000 s/mm2 dMRI, b=2000 s/mm2 dMRI, b=3000 s/mm2

Figure 5.5: Simulated fODFs and dMRI signals with restricted orientations of bun-
dles. Background color corresponds to the number of bundles (black-zero bundles,
dark gray - one bundle, light gray - two bundles, white - three bundles).

Implementation details

Our model is implemented with the tensorflow library [Abadi et al. 2015] and com-
pared to the model S2CNN implemented with the torch [Collobert et al. 2002].
These models have been trained over 200 epochs by minimizing categorical cross-
entropy loss using an Adam optimizer [Kingma & Ba 2014]. The initial learning rate
has been set to 0.001 and the batch size to 128. If the difference between valida-
tion categorical cross-entropy averaged over two sequential blocks of five epochs
is smaller than 10−3, the learning rate is reduced by a factor of 0.95. For 91
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sampling points, S2CNN has three convolutional layers with input and output
bandwidths (4, 4), (4, 2), (2, 0), while for 57 sampling points the bandwidths are
(3, 3), (3, 1), (1, 0). For both sampling schemes, containing 90 and 57 points, we
have evaluated Fourier_S2_zonal with three convolutional layers with two dif-
ferent sets of bandwidths, (8, 4), (4, 2), (2, 0) and (4, 4), (4, 2)(2, 0). The number
of input and output channels in convolutional layers is (3, 8), (8, 16), (16, 32) and
(3, 16), (16, 32), (32, 64), for S2CNN and Fourier_S2_zonal, respectively, since
the number of trainable weights in zonal kernels is much smaller than in S2 and
SO(3) convolutional kernels used in S2CNN . The extracted rotation invariant fea-
tures are classified with a fully connected network composed of three layers with
output sizes 32, 16, 4. In our models, we have taken into account the antipodal sym-
metry of dMRI signals, thus the convolutional kernels are antipodally symmetric as
well. In this experiment, since the number of sampling points is considerably higher
than the number of SH basis elements (45 and 15), the model does not contain any
denoising layer.

Results

Classification is compared in terms of confusion matrices illustrated in Fig-
ures 5.6, 5.7 and 5.8, for db1, db2 and db3, respectively. In Figure 5.6, we can notice
that the classification accuracy of S2CNN and Fourier_S2_zonal are compara-
ble and that both models meet some difficulties in distinguishing between samples
containing 2 and 3 axon bundles. This can be a consequence of the lower amplitude
of the dMRI signals as the number of bundles increases from 1 to 3, as their volume
fractions sum to 1. Figure 5.7 shows that our models keep high classification accu-
racy even when the number of sampling points is significantly reduced. On the other
hand, the accuracy of S2CNN significantly decreases, which might be a consequence
of the fact that the model can extract only low frequency information of maximal
bandwidth 3. In addition, taking into account the antipodal symmetry of the input
signals, in S2CNN , valuable information of the SH coefficients are found only for
the degrees 0 and 2. (We denote that for 57 points, with quadrature formulae asso-
ciated with the Driscoll-Healy grid, we cannot compute SH coefficients of a higher
degree.) In Figure 5.8, the obtained results highlight the impact of the aliasing
introduced by ReLU nonlinearity applied in the signal domain used in S2CNN and
the benefit of the spectral domain nonlinearity used in our models. The S2CNN

is only capable to make a distinction between white and non-white matter samples.
For one such inference, a mean of the signal is sufficient (only the SH coefficients of
l = 0). On the other hand, by comparing the results obtained with db2 and db3, we
can also notice that our models preserve a high degree of rotation invariance.
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Figure 5.6: Comparison of confusion matrices for the number of axon bundle clas-
sification problem, for db1 where axon bundles are arbitrarily oriented in all, train,
validation, and test subsets, and the number of sampling points is 91 (S2CNN) and
90 (Fourier_S2_zonal). SNR = 20.

Figure 5.7: Comparison of confusion matrices for the number of axon bundle clas-
sification problem, for db2 where axon bundles are arbitrarily oriented in all, train,
validation, and test subsets, and the number of sampling points is 57. SNR = 20.

Figure 5.8: Comparison of confusion matrices for axon bundle classification prob-
lem, for db3 where the orientations of the axon bundles are restricted in train and
validation subsets, and the number of sampling points is 57. SNR = 20.
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5.4.2 Multi-compartment micro-structure estimation

In these experiments, we have extensively compared our models
Fourier_S2_SO(3) and Fourier_S2_zonal with the deep learning approaches
MLP [Golkov et al. 2016], MEDN and MEDN+ [Ye 2017], MescNet [Ye et al. 2019]
and MescNetSepDict [Ye et al. 2020], on the problem of NODDI [Zhang et al. 2012]
and SMT [Kaden et al. 2016] microstructure parameter estimation from dMRI
signals acquired with a significantly reduced number of q-space sampling points.
Concretely, the NODDI parameters include intracellular volume fraction νic,
isotropic volume fraction νiso and orientation dispersion indices denoted with
OD [Zhang et al. 2012]. SMT parameters include extra-neurite fraction νext and
intrinsic diffusion coefficient λ [Kaden et al. 2016]. In analogy to MEDN+, the
MLP+ is designed as the version of MLP which takes as input the signals from
a small neighbourhood - 3D patch. For a neighbourhood of size 3 × 3 × 3 the
size of the input vector is increased by factor 27. Similarly, we have created
Fourier_S2_SO(3)+ and Fourier_S2_zonal+, which take as input signals from
a small neighbourhood,3D patch, treated as different channels.

Real data from HCP and estimation of gold standard

We have used in our experiments a subset of 200 subjects from the Human
Connectome Project (HCP) database [Van Essen et al. 2013]. We have used
1, 3, 5, 10, 15, or 30 subjects for training, 20 for validation, and 150 for the final
testing of the algorithm. dMRI scans have been acquired on a Siemens 3T Skyra
system with a gradient strength of 100mT/m. Scans are composed of three shells
with b-values of 1000, 2000 and 3000 s/mm2, each with 90 gradient directions and
18 b = 0 images at resolution 1.25 × 1.25 × 1.25 mm3. We have used scans that
were previously registered to T1w images. As a consequence, although acquired
with the same acquisition protocol, after registration, gradient directions and
b-values slightly differ from their initial values and between subjects. To select
brain region voxels, we have used brain masks provided as a part of HCP dataset,
obtained from no diffusion weighted images (b = 0) using the Otsu thresholding
algorithm. Masks are post-processed by excluding voxels with very low mean b = 0

value (lower than 100) as they correspond to border voxels with likely erroneous
data. dMRI signals are voxel-wise normalized with mean value of b = 0 scans
and clipped to the range [0, 1]. For the estimation of the gold standard we have
used brute2fine optimizer from dmipy toolbox applied on dMRI data with full
acquisition scheme [Fick et al. 2019]. Models are compared with dMRI signals
acquired over a significantly reduced sampling scheme, containing 30 points over
two shells of b-values 1000 and 2000 s/mm2
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Implementation details

The models were implemented with the tensorflow. They were trained over 300
epochs, where in each epoch 25600 voxels (or 3D patches of size 3 × 3 × 3) are
randomly drawn from T training samples, where T ∈ {1, 3, 5, 10, 15, 30}. Validation
is performed on 25600 voxels randomly drawn from 20 validation subjects. If the
difference between validation loss averaged over two sequential blocks of five epochs
is smaller than 10−6, the learning rate is reduced by a factor of 0.95. Testing is
performed on 150 testing subjects. Models have been trained with a batch size of 128
by minimizing mean square error loss using an Adam optimizer [Kingma & Ba 2014].

Results

Results are compared quantitatively in terms of mean absolute error computed over
the 150 testing subjects. The mean absolute error and corresponding standard de-
viations for NODDI parameter estimation, namely νic, νiso and OD, for training on
1, 3, 5, 10, 15, 30 subjects are illustrated in Figure 5.9 for the models which take as
input single voxels. A comparison of the models which take as input signals from 3D
patches is provided in Figure 5.10. For the single voxel models, we have performed
an extensive hyperparameter grid search provided in Appendix B. Figure 5.9 shows
that our models Fourier_S2_zonal and Fourier_S2_SO(3) with the number of
trainable parameters 0.0915 · 106 and 0.0789 · 106, respectively give on the aver-
age similar mean absolute error as MLP with ∼ 0.148 · 106 parameters. Further,
we can see that the model MEDN , with 0.11 × 106 trainable parameters, which
is specifically designed for NODDI parameter estimation yields noticeably higher
mean absolute errors for the parameter νiso regardless of the number of training
subjects. More important differences in the mean absolute errors can be observed
by comparing the methods which take as input 3D patches, which are compared
for the number of training subjects 1, 3, and 5. We can see that our models yield
errors slightly higher but comparable with the recently proposed state-of-the-art
MESCNetSepDict, with the number of parameters decreased by factors 2.7 and 4.4

for Fourier_S2_SO(3)+ and Fourier_S2_zonal+, respectively. Although the
number of parameters is not necessarily proportional to the computational time (for
example, the training and testing with MESCNet is more than 8 times faster than
with MESCNetSepDict), Fourier_S2_SO(3)+ is approximately 6 times faster and
Fourier_S2_zonal+ 12 times. As for the single voxel methods, for the 3D patch
based methods we can also notice that the model specifically designed for NODDI
parameters MEDN+ yields the highest mean absolute errors over all three param-
eters νic, νiso and OD. Figures 5.11, 5.12 and 5.13 show a qualitative comparison of
NODDI parameters estimated with single-voxel and 3D patch based models, trained
on one subject. We can see that single-voxel based models tend to underestimate
values of νic and νiso in the white matter regions more prominently than 3D patch
based models. MEDN and MEDN+ are characterized by the overestimation of
OD parameter, especially noticeable in the corpus callosum.
Similarly, as for NODDI parameters, MLP designed for single voxel inputs
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gives comparable results to our models on the problem of SMT parameter es-
timation as depicted in Figure 5.14. Compared with 3D patch based models,
Fourier_S2_SO(3)+ and Fourier_S2_zonal+ models exhibit lower mean ab-
solute values for λ SMT parameter compared to MLP+, MescNet, and MescNet-
SepDict, but higher for νext in comparison with MescNetSepDict as given in Fig-
ure 5.15. Qualitative comparisons of SMT parameter estimation for models trained
on one subject are illustrated in Figures 5.16 and 5.17. The comparison shows that
the single voxel models highly overestimate νext in certain voxels of white matter in
comparison with 3D patch based models. Qualitative comparison of the λ parameter
estimation shows that our models Fourier_S2_SO(3)+ and Fourier_S2_zonal+
yield lower errors in the frontal brain regions, where white matter and gray matter
meet, compared to other models.

Figure 5.9: Comparison of the mean absolute errors for NODDI νic, νiso and OD

parameter estimation for a different number of training subjects for single voxel
models.
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Figure 5.10: Comparison of the mean absolute errors for NODDI νic, νiso parameter
estimation for different number of training subjects for 3D patch based models.
*MescNetSepDict for 3 subjects: testing performed on 49 subjects, due to memory
issues



92 Chapter 5. Fourier domain spherical CNN for dMRI local analysis

Figure 5.11: Qualitative comparison of NODDI νic parameter estimation and the
difference between the estimated and gold standard values. Training performed on
one subject. Blue color indicates underestimation and red color overestimation.
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Figure 5.12: Qualitative comparison of NODDI νiso parameter estimation and the
difference between the estimated and gold standard values. Training performed on
one subject. Blue color indicates underestimation and red color overestimation.
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Figure 5.13: Qualitative comparison of NODDI OD parameter estimation and the
difference between the estimated and gold standard values. Training performed on
one subject. Blue color indicates underestimation and red color overestimation.
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Figure 5.14: Comparison of the mean absolute errors for SMT νext and λ parameter
estimation for single voxel models. Intrinsic diffusion coefficients λ are normalized
to the range of [0, 1]. Blue color indicates underestimation and red color overesti-
mation.

Figure 5.15: Comparison of the mean absolute errors for SMT νext and λ parameter
estimation for 3D patch based model. Intrinsic diffusion coefficients λ are normalized
to the range of [0, 1].
*MescNet for 5 subjects: testing was performed on 93 subjects, due to memory
issues. Blue color indicates underestimation and red color overestimation.
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Figure 5.16: Qualitative comparison of SMT νext parameter estimation and the
difference between estimated and gold standard values. Training performed on one
subject. Blue color indicates underestimation and red color overestimation.
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Figure 5.17: Qualitative comparison of SMT intrinsic diffusion coefficients λ normal-
ized to the range [0, 1] and difference between estimated and gold standard values.
Training performed on one subject. Blue color indicates underestimation and red
color overestimation.
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5.4.3 Brain tissue segmentation

In this experiment, we demonstrated that our approach can be used in combination
with 3D planar CNN for the problem of brain tissue segmentation.

Real data from HCP and the estimation of gold standard

We have used the same subset of 200 subjects from the HCP
database [Van Essen et al. 2013] as used in the experiments for microstruc-
ture parameter estimation. The preprocessing and normalization of the signals
are performed in the same way. A gold standard has been estimated using
the FAST algorithm [Zhang et al. 2001] applied on T1w images of resolution
1.25 × 1.25 × 1.25 mm3 implemented in the mrtrix library [Tournier et al. 2019].
It segments tissue into cortical gray matter, subcortical gray matter, white matter,
CSF, and pathological tissue. Since, we have used data from healthy subjects only
and since we merged cortical and subcortical gray matter classes, only three tissue
classes have been considered, namely gray matter, white matter, and CSF. We have
conducted experiments with the number of training subjects 1, 30, and 70, on full
HCP acquisition scheme containing 90 points per each of the three shells and on
a reduced sampling scheme containing 60 points per each of the three shells. The
number of validation subjects is 20 and the number of testing subjects is 110.

Implementation details

The model is composed of Fourier_S2_SO(3) which is applied voxel-wise to ex-
tract features and 3D planar CNN which takes as input the 3D patches of the
extracted features. This enables the integration of 3D spatial information into
the segmentation process. For a 3D patch of size n × n × n, depending on the
number of convolutional layers and kernel sizes, the output will be m × m × m

where m < n. Although, n can be chosen such that m = 1 (voxel-wise), train-
ing a model with m > 1 provides regularization of the training process. Dur-
ing the testing phase, extracted features of the entire scan are fed into the CNN
model. We have compared Fourier_S2_SO(3) and MLP [Golkov et al. 2016] mod-
els for feature extraction followed by a CNN of the same structure. We named
these models with Fourier_S2_SO(3) + CNN and MLP + CNN . Both mod-
els Fourier_S2_SO(3) + CNN and MLP + CNN are implemented in tensor-
flow [Abadi et al. 2015]. The CNN is composed of three convolutional layers with
kernels of size 3. During the training, the spatial sizes of the input 3D patches
are 15 × 15 × 15 and of the output 9 × 9 × 9. Given that each voxel contains high
dimensional dMRI data acquired over three shells, models’ training with 3D patches
of size 15 × 15 × 15 might be computationally demanding in terms of GPU RAM
since the backpropagation algorithm requires keeping intermediate feature maps and
gradients. On the other hand, integrating spatial information of a broader context
is important, especially for the segmentation of the tissues close to a tissue border.
Since the output patch is of size 9 × 9 × 9, which means that the loss is averaged
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over 93 samples and for efficient usage of RAM, the 3D patch-wise batch size is
only 1. To augment training data in a computationally efficient manner, extracted
patches of features are axially mirrored, which efficiently increases batch size to 2.
In each epoch, 3D patches are randomly extracted from training subjects and val-
idation is performed on 3D patches randomly extracted from validation subjects.
Half of the training patches have been selected from the border regions of tissues.
The border regions are determined by selecting voxels with tissue class probabili-
ties provided by FAST higher than a threshold of 0.9. Models have been trained
over 200 epochs by minimizing categorical cross-entropy loss using an Adam opti-
mizer [Kingma & Ba 2014]. The initial learning rate has been set to 0.001. If the
difference between validation categorical cross-entropy averaged over two sequential
blocks of five epochs is smaller than 10−4, the learning rate is reduced by a factor
of 0.95. Once the models are trained, testing is very computationally efficient. It is
composed of a feature extraction step which is performed voxel-wise with batches
of size 128, and a segmentation with 3D CNN which takes as input the entire
scan of the extracted features and its axially mirrored version. Both MLP and
Fourier_S2_SO(3) extract 64 features. MLP is composed of 6 layers of output
sizes 128, 128, 128, 256, 128, 64. Fourier_S2_SO(3) is composed of three convolu-
tional layers of the input and output bandwidths (8, 6), (6, 4), (4, 2) and the input
and output number of channels (3, 2), (2, 4), (4, 8), and three fully connected layers
of the output sizes 256, 128, 64. The total number of parameters in MLP + CNN

is 0.212 × 106 and 0.201 × 106 for 90 and 60 points per shell, respectively. The
total number of parameters in Fourier_S2_SO(3) +CNN is 0.131× 106 for both
sampling schemes, as the input to the models are the SH coefficients of bandwidth
8. Since the number of sampling points is considerably higher than the number of
SH basis elements (45), the model does not contain a denoising layer.

Results

The results are compared in terms of Dice scores and are given in Tables 5.2 and 5.3
for 90 and 60 sampling points per shell. According to Dice scores, the difference
in performance between the two models is negligible except when the number of
training subjects is one. On the other hand, a qualitative comparison of the seg-
mentations illustrated in Figure 5.18 highlights some differences. The comparison is
provided for the experiments with one training subject and 90 sampling points per
shell (1t, 90p) and 30 training subjects and 60 points per shell (30t, 60p). First, by
comparing slices in axial view, we can notice that MLP + CNN misclassifies sev-
eral voxels of CSF situated in ventricles into white matter voxels. This is especially
prominent for the model trained with one subject. Secondly, illustrations in the coro-
nal plane show that Fourier_S2_SO(3)+CNN gives better segmentation of gray
matter in the region of the left lateral fissure. In the sagittal plane, we can notice
some differences in the region of the cerebellum and below it, where MLP +CNN

trained on one subject misclassifies CSF as a white matter region. Finally, we re-
mark that the Dice scores obtained with 70 training subjects and 90 points per shell
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for both models are comparable with the recently proposed deep learning approach
which uses three 2D U-nets applied on a combination of mean-kurtosis curve, diffu-
sion kurtosis, and diffusion tensor parameters [Zhang et al. 2021] also trained on 70

HCP subjects. Whereas the model proposed in [Zhang et al. 2021] takes ∼ 20min

for the segmentation of one scan, Fourier_S2_SO(3) + CNN requires ∼ 1min

and MLP + CNN ∼ 15s.

Table 5.2: Dice scores for brain tissue segmentation obtained with MLP + CNN

and Fourier_S2_SO(3) +CNN for 90 points per shell and 1, 30 and 70 subjects.
Model | Tissue Gray matter Cerebrospinal fluid White matter

MLP (1) 0.859 ±0.017 0.805 ±0.023 0.885 ±0.018

Ours (1) 0.871 ±0.015 0.804 ±0.022 0.903 ±0.015

MLP (30) 0.896 ±0.010 0.835 ±0.019 0.922 ±0.010

Ours (30) 0.903 ±0.009 0.840 ±0.019 0.930 ±0.009

MLP (70) 0.900 ±0.008 0.836 ±0.018 0.927 ±0.009

Ours (70) 0.905 ±0.008 0.843 ±0.018 0.931 ±0.009

Table 5.3: Dice scores for brain tissue segmentation obtained with MLP + CNN

and Fourier_S2_SO(3) + CNN for 60 points per shell and 30 and 70 subjects.
Model | Tissue Gray matter Cerebrospinal fluid White matter

MLP (30) 0.896 ±0.009 0.834 ±0.019 0.923 ±0.010

Ours (30) 0.904 ±0.009 0.838 ±0.019 0.930 ±0.010

MLP (70) 0.899 ±0.008 0.837 ±0.019 0.926 ±0.009

Ours (70) 0.906 ±0.008 0.843 ±0.018 0.932 ±0.008

5.5 Conclusion

In this chapter, we have presented convolutional models adjusted to the spherical and
real nature of dMRI signals, their antipodal symmetry, and uniform-random distri-
bution of the sampling points over multiple shells of q-space, for dMRI regression and
classification problems. We aimed to develop rotation invariant models and apart
from SH coefficient estimation and eventual denoising layers, all other operations in
the models are rotation equivariant or invariant. We have used rotation equivari-
ant convolutional and pooling layers as in [Cohen et al. 2018, Esteves et al. 2018],
and in addition, we have proposed rotation equivariant channel-wise Fourier do-
main nonlinearities of quadratic nature inspired by the work of [Kondor et al. 2018]
and degree-wise power spectrum rotation invariant feature vectors. These feature
vectors serve as input to fully connected layers which perform final inference. The
experiments are conducted on the real data from HCP and the synthetic data.
The experiments performed on the synthetic data on the problem of axon bun-
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Figure 5.18: Qualitative comparison of brain tissue segmentation into white matter,
gray matter, and CSF with MLP +CNN and Fourier_S2_SO(3)+CNN for one
training subject and 90 points per shell (1t, 90p) and for 30 training subjects and
60 points per shell (30t, 60p).

dle count demonstrated the robustness and rotation invariance of our models with
respect to the aliasing and noise. On the real HCP data we have addressed a re-
gression problem of NODDI and SMT parameter estimation from dMRI signals
sampled over reduced clinically desirable acquisition schemes and on the classifica-
tion problem of brain tissue segmentation experiments are conducted on both full
and reduced sampling schemes. In the extensive comparison with the other deep
learning approaches for microstructure parameter estimation, we have shown that
our models can achieve state-of-the-art performance with a significantly lower num-
ber of parameters and with often reduced computational time when the input is
composed of dMRI signals from 3D patches. Therefore, in general, our 3D patch
based models can achieve a trade-off between performance, the required number of
learnable parameters, and computational time. Experiments conducted on brain
tissue segmentation demonstrated that our model can be used to extract voxel-wise
rotation equivariant features that can be used for computationally efficient brain
tissue segmentation. Nonlinearities of quadratic nature in deep learning are not
common because they are not bounded. Given a lower computational complexity
of convolutions with zonal kernels and of S2 quadratic nonlinearity compared to
SO(3) convolutions and nonlinearities, in future work we will investigate how some
standard deep learning nonlinearities such as sigmoid 1

1+ex and hyperbolic tangent
ex−e−x

ex+e−x can be approximated via Taylor series in the spectral domain.
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Executive summary

In this chapter, we first describe the modeling of multivariate EEG and MEG signals
as a sum of rank-1 multivariate signals corresponding to individual brain sources and
noise, where the temporal courses of the brain activities are modeled as convolutions
of activation signals and characteristic temporal waveforms. Further, we provide an
overview of several inverse problems in EEG and MEG signal analysis, which are
currently very active fields of research. Whereas in the section state of the art,
we present a more detailed description of the most prominent dictionary learning
approaches with a focus on multivariate sparse convolutional dictionary learning.
At the end, an overview of the most important EEG and MEG classifiers, mainly
developed for BCI applications, with a focus on the CNN models is provided.
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6.1 MEEG multivariate signal modeling

As the brain is responsible for the functioning of other human organs, process-
ing sensory inputs, performing cognitive and motor tasks, controlling emotions,
etc, numerous activities are always present in the brain. Each of these activi-
ties can be described by the cortical regions they arise from and their tempo-
ral courses. Magnetic field strength and electric potential, as direct measures
of the brain’s activities, recorded at the scalp (or slightly above it) by M/EEG
devices can be described with Maxwell’s equations with quasi-static approxima-
tions [Sarvas 1987]. As a consequence, we can assume that the cortical brain activi-
ties spread instantaneously and linearly over measuring sensors [Hari & Puce 2017].
In order to be measurable by M/EEG devices, the neural activity must occur
synchronously in a group of pyramidal neural cells in the cortex which counts
tens of thousands of cells [Clerc & Papadopoulo 2010]. A common way to model
the current density present in these groups of cells is via equivalent electric
dipoles [Hämäläinen et al. 1993], often referred to as sources. Since the orientation
and position of each source can be considered fixed, the spread of source signal over
measuring sensors is fixed as well and can be represented with a vector of weights
also called a topographic map. Each weight describes how much a source contributes
to the measured signal and depends on the relative orientation of the source with
respect to the sensor, their distance, and the presence of different amounts of tis-
sues (bones, gray and white matter, cerebrospinal fluid) along the path between the
source and the sensor. These weights allow the construction of a so-called leadfield
matrix L and allow the modeling of the measured signals as

X = LS +N (6.1)

where L ∈ RN×Q, with N being the number of sensors and Q the number of
sources. Thus, the qth column of L describes how the qth source signal spreads
spatially over sensors. X ∈ RN×T contains a measured multivariate signal over
T time instants, and each row of S ∈ RQ×T represents a source signal over T
time instants. N is an additive noise that includes noise coming from measur-
ing devices, the environment, and the subject itself. The estimation of a lead-
field matrix belongs to the M/EEG forward model problems. A common point
in the estimation of MEG and EEG forward models is the modeling of the head
and brain shapes. However, whereas magnetic permeability can be considered con-
stant over tissues, electric conductivities of different tissue types must be taken into
account [Sarvas 1987]. The simplest model is the spherical head model, which as-
sumes concentric spheres. A layer between two spheres corresponds to one tissue
and has a specific conductivity [Hämäläinen et al. 1993, Vatta et al. 2010]. More
advanced head models require utilization of anatomical and/or structural infor-
mation usually extracted from MRI data. This allows them to take into account
finer head and brain tissue geometries and even to model anisotropic conductivi-
ties [Hämäläinen et al. 1993, Vatta et al. 2010, Ziegler et al. 2014].
Assuming K active sources, with K ≤ Q and often K << Q, the measured multi-
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variate signal X from Eq. 6.1 can be written as

X =

K∑
k=1

uk · sTk +N (6.2)

where sk ∈ RT is the source signal and uk ∈ RN its topographic map which cor-
responds to one column of the leadfield matrix L. Thus, we can notice that a
multivariate signal associated with one source k can be represented as a rank-1 ma-
trix uk · sTk .
Source signals are traditionally classified according to the frequency band they
span. They can reveal information related to the organism’s restoration, cognitive
processes, and certain brain disorders. Infra-low waves (<0.5Hz) or slow cortical
potentials are the least investigated ones and are in general considered to be im-
portant in the dynamic organization of neural networks at a large scale and the
modulation of higher frequency waves [Vanhatalo et al. 2004, Fox & Raichle 2007,
Grooms et al. 2017, Watson 2018]. Delta waves (0.5 to 4 Hz) are high energy waves
that are dominant in deep sleep, playing an important role in the stimulation of
the restoration processes. Delta waves might also be prominent in certain brain
disorders, such as attention deficit hyperactivity disorder [Kamida et al. 2016] and
traumatic brain injuries [Dunkley et al. 2015]. Theta waves (4 to 8 Hz) are oc-
curring during shallow sleep and meditation. Also, several studies have shown
increased power in the theta range during working memory load and process-
ing [Schacter 1977, Grunwald et al. 1999]. Alpha waves (8 to 12 Hz) are dominant
in the occipital lobe during relaxation with closed eyes when not much information
is processed. Mu waves occur in the same frequency range as alpha waves but in the
sensorimotor cortex and are indicators that the motor system is idling. Once a part
of the body is moved or imagined to be moved, the power of these waves decreases
which is a phenomenon used in the BCI [Pineda et al. 2000, Krusienski et al. 2007].
Beta waves (12 to 30 Hz) are related to active thinking, problem-solving, and con-
centration. Low frequency beta waves are considered to be related to idling and
focusing, medium ones to high engagement in mental activity, and high frequency
beta waves to complex thoughts, high anxiety, and excitement. Gamma waves (30
to 100 Hz) are related to high-level cognitive functioning and are responsible for
information processing from different brain regions.
Recent studies have shown that in certain frequency bands, brain waveforms are
rather of a transient and recurrent nature [van Ede et al. 2018]. This is also the
case in the active BCI, where the brain waveforms are evoked by external sensory
stimuli, with a difference that recurrence is approximately determined based on the
repetition of the stimuli. Under the assumption that waveforms of interest are of
transient and recurrent nature, Eq. 6.2 can be written as [Dupré la Tour et al. 2018]

X =

K∑
k=1

uk · (zk ∗ vk)T +N (6.3)
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where vk ∈ Rτ is a waveform associated with the source k and zk ∈ RT+τ−1 is a
sparse vector with Diracs indicating instants of the activation of the waveform k. τ
is duration of the waveforms vk.

6.2 MEEG inverse problems

In general, the analysis of EEG and MEG signals can be seen as a joint or an inde-
pendent analysis of the spatial and temporal components of the measured signals,
in order to make an inference about the underlying neural activities. Depending on
the inference one would like to make, we can distinguish between multiple areas of
interest in the domain of EEG and MEG signal analysis, which are not necessarily
completely independent of each other. Some of them are inverse problems, source
separation, dictionary learning, classification and regression problems, functional
brain network analysis, etc.
Inverse problems in functional brain imaging usually refer to the estimation of
the distribution, orientation, and intensity of neural activity sources in the cere-
bral cortex, given the measured signals. Characterization of the sources is im-
portant for the identification of the cortical regions that are employed while a
subject is executing certain functions such as cognitive and motor tasks, or pro-
cessing sensory inputs [Bowyer et al. 2020], but also in the evaluation of certain
neurological disorders [Asadzadeh et al. 2020]. Since there is an infinite number
of source organizations, including silent ones, and the number of measuring sen-
sors is limited, the inverse MEG and EEG problems are underdetermined. This
ill-posedness is addressed via multiple assumptions about the source space. A
common assumption is that the relevant sources are situated in the cerebral cor-
tex with orientations perpendicular to the cortex surface [Hämäläinen et al. 1993].
Furthermore, assuming a discrete source space, it can be constrained by lim-
iting the number of possible active sources, modeled with equivalent current
dipoles [Mosher et al. 1992, Mosher & Leahy 1998], while in the case of distributed
current sources, minimum norm or smoothness constraints are imposed on the so-
lution [Hämäläinen & Ilmoniemi 1994, Pascual-Marqui et al. 1994]. Recent studies
have shown that regularization of the MEG and EEG inverse problems can also be
achieved by incorporating information from structural imaging modalities such as
dMRI [Belaoucha et al. 2015, Kojčić et al. 2021].
Source separation refers to the disentangling of time courses originating from mul-
tiple sources given the measured mixed signals. Mathematically, it is also a class
of inverse problems, but with a focus on the temporal aspect of the brain signals,
rather than spatial. Source separation is often used as a preprocessing step for ar-
tifact removal and denoising [Zou et al. 2019, Roy & Shukla 2019], but also for the
extraction of event-related responses [Lee et al. 2006, Metsomaa et al. 2016]. Sepa-
rating source signals can also facilitate source localization [Zhukov et al. 2000]. To
address ill-posedness in the source separation problem, assumptions are made about
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the statistical properties of the source signals. In a widely used method for source
separation - independent component analysis (ICA) the assumption is that the val-
ues of each source signal have a non-Gaussian distribution and that they are statis-
tically independent [Hyvärinen & Oja 2000]. Under these constraints, the solutions
can be estimated by maximizing measures of non-gaussianity such as kurtosis and
negentropy, by minimizing mutual information, or by the estimation of maximum
likelihood [Hyvärinen & Oja 2000].
Dictionary learning is closely related to source separation and corresponds to
the estimation of atoms that constitute a dictionary and allow the sparse repre-
sentation of the measured signals, assuming the presence of recurrent waveforms in
the source signals. In addition to being able to separate source signals, dictionary
learning frameworks that exhibit translation invariance allow identification of the
time instants when the waveforms constituting source signals appear, also referred
to as waveform activations. Analysis of such waveforms and their occurrences over
time has potential in the evaluation of disorders such as epilepsy and cognitive im-
pairments [Abreu et al. 2019], but it is also used in the extraction of event-related
signals [Barthélemy et al. 2013, Hamner et al. 2011]. In general, dictionary learn-
ing is achieved by alternating between updating the dictionary atoms and the up-
date of the corresponding activations [Barthélemy et al. 2013, Hitziger et al. 2017,
Dupré la Tour et al. 2018]. The difference between objectives of source separation
and translation invariant dictionary learning approaches is depicted in Figure 6.1.

Figure 6.1: Illustrations of objectives of source separation and translation invariant
dictionary learning approaches, when two sources with distinct waveforms are active.

Classification and regression models aim to associate a label or a quantity to
neural activities given the recorded signals. These models are particularly impor-
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tant in active and passive BCI systems [Lotte et al. 2007, Lotte & Roy 2019]. In
the context of active BCI, classifiers are necessary in the process of translation of
relevant brain activity into a command given to a computer [Allison et al. 2007].
More recent, passive BCI systems use classifiers or regression models to as-
sess the mental workload, emotional state, drowsiness, and alertness of the
users [Zander & Kothe 2011, Aricò et al. 2018]. Classification and regression prob-
lems are addressed by machine learning algorithms trained in a supervised manner.
They can be applied directly on raw or preprocessed EEG and MEG signals, but
also on extracted features. Recently, a detailed review of the classifiers used in
BCI, categorized into adaptive, matrix and tensor, transfer and deep learning, and
miscellaneous classifiers has been provided in [Lotte et al. 2018]. Although signif-
icantly fewer studies have addressed the regression problems [Antelis et al. 2013,
Wu et al. 2016a], the majority of the classification models can be simply trans-
formed into regression ones.
Functional brain network analysis aims to understand relationships between
activities occurring in different regions of the cortex. Analysis of such networks pro-
vides additional insights into highly complex neural activities, while the examined
subject is performing cognitive or motor tasks, responding to some sensory stim-
uli, or simply being in a resting state. MEG functional brain networks have been
used to identify connectivity markers related to Alzheimer’s and Parkinson’s dis-
eases [Stam 2010] and multiple sclerosis [Nauta et al. 2021]. They have also shown
importance in the assessment and monitoring of functional reorganization of the
brain after surgery [Wang et al. 2010, Pittau & Vulliemoz 2015]. A functional brain
network can be represented as a graph composed of nodes that correspond to mea-
suring sensors or their projections to small regions of the cortex. Functional con-
nectivity measures represent the edges between the nodes, which can be undirected
such as correlation, phase coherence, mutual information, or directed such as lagged
correlation, transfer entropy, Granger causality [de Vico Fallani et al. 2014].

6.3 State of the art

In the context of this thesis, we provide a detailed overview of the dictionary and
deep learning approaches which are related to or served as inspiration for our work.
Firstly, we provide a description of dictionary learning paradigms, with a focus on
multivariate convolutional dictionary learning. Afterward, the most prominent EEG
and MEG classifiers, primarily developed for BCI applications, are presented, along
with a more detailed description of the most relevant CNN models.

6.3.1 Dictionary learning

Over the last two and half decades, the attention in the computer vision com-
munity has shifted from Fourier and wavelet analysis toward dictionary learning
approaches. Whereas a wavelet frame is composed of predefined wavelet func-
tions, dictionary learning aims to estimate a data-driven frame, also known as a
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dictionary. Such dictionaries allow a sparser representation of data. Thus, they
have been initially used for compression and denoising [Kreutz-Delgado et al. 2003,
Elad & Aharon 2006]. Dictionary learning has also been successfully used in clus-
tering and classification problems, signal reconstruction, etc [Ramirez et al. 2010,
Sprechmann & Sapiro 2010, Kong & Wang 2012].
In the context of brain wave analysis, the employment of dictionary learning ap-
proaches is more recent. This has been motivated by the fact that brain waves of
interest are often of a transient and recurrent nature [van Ede et al. 2018].
We can distinguish translation-invariant and noninvariant models and univariate
and multivariate models. Given a univariate set of data samples {xn}Nn=1, where N
is the number of samples and xn ∈ RT , with T being the number of sampling points,
a univariate translation-noninvariant dictionary learning problem can be defined as

argmin
D,zn

N∑
n=1

∣∣∣∣xn −Dzn
∣∣∣∣2
2

s.t. Cz(zn) and CD(dk) (6.4)

where D ∈ RT×K is dictionary composed of K atoms dk ∈ RT to be esti-
mated, and zn ∈ RK is a sparse vector containing coefficients for the sample
xn [Tošić & Frossard 2011]. Cz is a constraint which imposes sparsity of the vectors
{zn}Nn=1. CD is a constraint imposed on the atoms in the dictionary. Most commonly,
this constraint corresponds to ||dk||2 ≤ 1 [Olshausen & Field 1997], alleviating very
high amplitudes of the atoms and very low values of the sparse coefficients. Origi-
nally, Cz is defined as ||zn||0 ≤ α, however with this penalty, the minimization prob-
lem from Eq. 6.4 is not convex and it is NP-hard with respect to zn [Tillmann 2014].
Commonly, this minimization problem is addressed by the K-singular value decom-
position algorithm (K-SVD) [Aharon et al. 2006]. Although this algorithm can end
up in local minima, it has been shown as a sufficiently good solution in practice.
In the context of BCI, dictionaries of spatial and temporal EEG patterns have
been estimated independently using the K-SVD algorithm [Hamner et al. 2011]. L0

penalty is often replaced by L1, ensuring convexity of the problem with respect
to zn, which can be solved by the least absolute shrinkage and selection operator
(LASSO) method [Tibshirani 1996].
For the analysis of longer brain signals, where waveforms of interest might appear
at any time instant, translation-invariant dictionary learning is more suitable. Even
if the analysed signals are segmented into epochs, which is a common practice in
the analysis of the responses evoked by certain stimuli, the responses might follow
the stimuli with different delays. Thus, the models exhibiting translation invariance
are better suited for such data. Univariate translation-invariant dictionary learning
problem can be defined as

argmin
D,zkn

N∑
n=1

∣∣∣∣∣∣∣∣xn − K∑
k=1

zkn ∗ dk
∣∣∣∣∣∣∣∣2
2

s.t. Cz(zkn) and CD(dk) (6.5)

where the dictionary D is composed of K atoms dk ∈ Rτ , where τ < T is the
length of the atoms [Garcia-Cardona & Wohlberg 2018]. The sparse coefficients



110 Chapter 6. MEEG spatial and temporal pattern analysis

zkn ∈ RT+τ−1 correspond to the activations of the atom k in the signal xn. Cz
is a constraint that imposes sparsity on the activation vectors {{zkn}Kk=1}Nn=1. In
the Matching of Time Invariant Features (MoTIF) algorithm, univariate dictio-
nary learning has been achieved independently of the activations and in an iter-
ative manner, where each new atom is estimated under constraint CD which im-
poses that the atom is the most correlated to the data samples, but at the same
time the least correlated to the previously estimated atoms [Jost et al. 2005]. Once
the dictionary is created, sparse coefficients are estimated using Matching Pursuit
(MP) algorithm [Mallat & Zhang 1993]. Adaptive Waveform Learning (AWL) is
designed for epoched or long EEG recordings, termed with E-AWL and C-AWL,
respectively [Hitziger et al. 2017]. Dictionary learning is performed by alternating
between the update of activations and the update of the dictionary. In addition to
translation invariance, AWL can also be dilation invariant. To impose sparsity on
the activations, the E-AWL model combines L0 and L1 regularization terms. The
activations are estimated using a modification of the least angle regression shrink-
age (LARS) algorithm [Efron et al. 2004] termed LARS-0. This modification cor-
responds to an exclusion operator which enforces L0 sparsity of the L1 constrained
solution. Considering the LARS regularization path, at each regularization step,
the exclusion operator excludes coefficients that correspond to the translation of
the atom within a predefined time interval around the epoch center. To reduce
computational expenses, in C-AWL, the activations are estimated using the MP
algorithm [Mallat & Zhang 1993] with an exclusion operator acting within a prede-
fined time interval around any time instant and within an interval of atom dilations.
In both versions of AWL, the atoms are constrained to have ||dk||2 = 1 and they
are updated via the block coordinate descent.
Apart from being characterized by waveforms, brain activity can be also described
by the brain region from which it arises. Naturally, this has led to multivariate
dictionary learning approaches. Given a multivariate set of data samples {Xn}Nn=1,
where N is the number of samples and Xn ∈ RC×T , with C being the number
of channels and T the number of sampling points, we can categorized multivariate
translation-invariant dictionary learning approaches into three groups, illustrated
in Figure 6.2:

1. with multivariate dictionary and univariate activations (Figure 6.2 a))

2. with univariate dictionary and rank-1 multivariate activations (Figure 6.2 b))

3. with rank-1 multivariate dictionary and univariate activations (Figure 6.2 c)).

1. Multivariate translation-invariant dictionary learning with a multi-
variate dictionary and univariate activations is defined as

argmin
D,zkn

N∑
n=1

∣∣∣∣∣∣∣∣Xn −
K∑
k=1

zkn ∗Dk

∣∣∣∣∣∣∣∣2
2

s.t. Cz(zkn) and CD(Dk) (6.6)

where the dictionary D is composed of K multivariate atoms Dk ∈ RC×τ , where
τ < T is the length of the atoms. The sparse coefficients zkn ∈ RT+τ−1 correspond to
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(a) (b) (c)

Figure 6.2: Illustration of translation invariant multivariate dictionary learning
paradigms: a) with multivariate atoms and univariate activations; b) with univariate
atoms and multivariate rank-1 activations; c) with multivariate rank-1 atoms and
univariate activations. Each row corresponds to a multivariate signal contribution
associated with one atom.

the activations of the atom k in the signal Xn and convolution between activations
and multivariate atom is given by rowj

[
zkn ∗Dk

]
= zkn ∗ rowj

[
Dk

]
,∀j ∈ {1, ..., C}.

In [Barthélemy et al. 2012, Barthélemy et al. 2013], dictionary learning is achieved
by solving Eq. 6.6, where Cz(zkn) is defined as |zkn|0 < P , with P being maximal
number of non-zero entries and CD(Dk) is defined as ||Dk||2 = 1. Their proposed
multivariate dictionary learning approach is achieved in an online manner, by it-
erating through the entire dataset and performing the estimation of sparse activa-
tions and update of atoms for each data sample individually. Approximation of the
sparse activation vectors is performed using multivariate orthogonal matching pur-
suit (M-OMP) developed in [Barthélemy et al. 2012]. In [Barthélemy et al. 2012],
update of the atoms using stochastic Levenberg–Marquardt second-order gradient
descent [Madsen et al. 2004] and in [Barthélemy et al. 2013] by stochastic gradient
descent.
2. Multivariate translation-invariant dictionary learning with a univari-
ate dictionary and rank-1 multivariate activations is defined as

argmin
D,zkn,y

k
n

N∑
n=1

∣∣∣∣∣∣∣∣Xn −
K∑
k=1

(
yknz

k
n
T
)
∗ dk

∣∣∣∣∣∣∣∣2
2

s.t. Cz(zkn), Cy(ykn) and CD(dk) (6.7)

where sparse univariate activations zkn ∈ RT+τ−1 correspond to the activations of
the atom k and ykn ∈ RC to its spread over channels, for the data sample Xn. Al-
though defined in a slightly different manner, multidimensional jitter-adaptive dic-
tionary learning (JADL), proposed in [Papageorgakis et al. 2017], belongs to this
group of multivariate translation-invariant methods. The dictionary D composed of
the atoms {dk}Kk=1, dk ∈ RT , is extended to a dictionary Ds by shifting the atoms
by small shifts δ ∈ ∆, creating a dictionary composed of the atoms {{dk,δ}δ∈∆}Kk=1,
dk,δ ∈ RT . With such extension of dictionary, convolution from Eq. 6.7 is replaced
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by ak,δn dTk,δ in [Papageorgakis et al. 2017], where ak,δn ∈ RC performs linear mapping
of the atom dk,δ to the measuring sensors. To stay in accordance with the nota-
tion used in this section, ak,δn dTk,δ can be written as yknz

k,δ
n dTk,δ, where zk,δn ∈ {0, 1}.

Constraint Cz is defined as L0 norm along δ axis as
∣∣∣∣zkn∣∣∣∣0 ≤ 1, ∀k ∈ {1, ...,K}

imposing sparse selection of the atom shifts, allowing maximum one shift per atom
k. Given a data sample Xn, for each of the k atoms of the original dictionary D,
a shift δkn is chosen as the one which gives the maximal value of

∣∣∣∣Xndk,δ
∣∣∣∣
1
, thus

zk,δn = 1 only iff δ = δkn. Once the shifts are selected, a dictionary Dn containing
{dk,δkn}

K
k=1 is created. The constraint Cy is defined as channel-wise L1 norm along k

axis as
∣∣∣∣yn,j∣∣∣∣1 ≤ α,∀j ∈ {1, ..., C}. For one channel of Xn and given the dictionary

Dn and the constraint Cy, this problem becomes equivalent to the one from Eq. 6.4
when solving with respect to sparse coefficients. In [Papageorgakis et al. 2017], it is
solved using the LARS algorithm [Efron et al. 2004]. Constraint CD on the atoms of
the dictionary D is ||dk||2 = 1 and they are updated using block coordinate descent,
taking into account that each dictionary Dn has different atom shifts. Estimation of
the activations {{{zk,δn }δ∈∆}Kk=1}Nn=1, construction of the dictionaries {Dn}Nn=1 and
the estimation of the topographic maps {{ykn}Kk=1}Nn=1, followed by the update of
the dictionary D is repeated until convergence.
3. Multivariate translation-invariant dictionary learning with rank-1 mul-
tivariate dictionary and univariate activations is defined as

argmin
U,V,zkn

N∑
n=1

∣∣∣∣∣∣∣∣Xn −
K∑
k=1

zkn ∗ (ukvTk )
∣∣∣∣∣∣∣∣2
2

s.t. Cz(zkn) , CV (vk) and CU (uk)

(6.8)
where dictionary U and V are composed of K univariate spatial and temporal
atoms uk ∈ RC and vk ∈ Rτ , where τ < T is length of the atoms. The sparse
coefficients zkn ∈ RT+τ−1 correspond to the activations of the atoms k in the signal
Xn and convolution between activations and a rank-1 multivariate atom is given
by rowj

[
zkn ∗ (ukvTk )

]
= rowj

[
vk(z

k
n ∗ uk)T

]
, ∀j ∈ {1, ..., C}. Imposing rank-1 con-

straint on atoms is motivated by the assumption that the spread of source sig-
nals over measuring space is linear and instantaneous, where each possible source
has a constant topographic map [Hari & Puce 2017, Dupré la Tour et al. 2018].
Multivariate convolutional sparse coding (MCSC) for dictionary learning with
rank-1 constraint imposed on atoms, as given in Eq. 6.8, has been introduced
in [Dupré la Tour et al. 2018]. The constraint Cz was defined as

∣∣∣∣zkn∣∣∣∣1 < α and
zkn ≥ 0, and constraints CV and CU as ||vk||2 ≤ 1 and ||uk||2 ≤ 1. With given
constraints, the minimization problem from Eq. 6.8 is convex individually with
respect to each of the unknowns, {{zkn}Kk=1}Nn=1, {vk}Kk=1 and {uk}Kk=1. The ac-
tivations are updated using local greedy coordinate descent (LGCD) introduced
in [Moreau et al. 2018]. Given a data sample Xn, dictionaries U and V , and ini-
tialized activations {zkn}Kk=1, LGCD segments the range of coordinates [1, T − τ +1]

into M segments, and updates the activation vector corresponding to one pair of
atoms k along one coordinate t per segment to its optimal value. The coordinate t
and the pair k are selected as ones where the activation value is the furthest from
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its optimal value. Sequential pass through all segments is repeated iteratively until
convergence. Given {Xn}Nn=1 and corresponding {{zkn}Kk=1}Nn=1, updating dictionar-
ies {uk}Kk=1 and {vk}Kk=1 can be performed independently using gradient descent. In
particular, in [Dupré la Tour et al. 2018], the projected gradient descent with the
Armijo rule [Nocedal & Wright 2006] has been used, where the Armijo rule governs
the amplitude of the updates.

6.3.2 Classification models

In the context of M/EEG signal analysis, classification models are essential in
the BCI, but they have also been employed in the analysis of epileptic seizures,
sleeping disorders, Alzheimer’s disease, etc. In addition to signal preprocessing,
which is common for a majority of M/EEG signal analysis pipelines, the process of
classification, in general, and traditionally, is composed of multiple steps, namely
the feature extraction, their eventual reduction and/or selection, and the feature
classification [Lotte et al. 2007, Lotte et al. 2018].
The feature extraction refers to the application of spatial and/or temporal
signal processing tools with the goal to extract a pool of possibly relevant
features. We can make a distinction between ”hand-crafted”, connectivity-
based, and data-driven feature extraction. The former group includes power
spectral density [Herman et al. 2008, Iscan et al. 2011], discrete Gabor trans-
form [Kumar et al. 2015, Jrad et al. 2016], discrete wavelet transform fea-
tures [Subasi & Gursoy 2010, Bhattacharyya et al. 2010], etc. Connectivity-based
features model the strength of connections between brain regions, represented by
sensors, via covariance matrices [Barachant et al. 2010, Congedo et al. 2017] or
synchrony measures [Wei et al. 2007]. Prominent connectivity features are the
ones where data is mapped to matrix manifolds such as Hermitian and Grass-
mann ones which are equipped with Riemannian metrics which are often better
suited to BCI than Euclidean space metrics [Barachant et al. 2010]. Data-driven
feature extraction is present in a broad range of unsupervised and supervised
paradigms, starting with principal and independent component analysis (PCA
and ICA), linear discriminant analysis (LDA) [Subasi & Gursoy 2010], throughout
dictionary learning [Zhou et al. 2012, Peng et al. 2021] and deep learning ap-
proaches [Schirrmeister et al. 2017, Lawhern et al. 2018].
The feature reduction and selection are optional steps in the classification
process, applied if the dimensionality of the extracted features is very high.
The purpose of this step is to extract the most relevant features and in this
way reduce the possibility of the classifier overfitting to the training samples.
Whereas feature reduction transforms a feature vector into a space with lower
dimensionality, feature selection simply selects a predefined number of features
from the given vector. Although used directly for feature extraction, PCA and
LDA are linear techniques that have been often used for dimensionality reduction
as well [Kołodziej et al. 2012, Yu et al. 2014].
The feature classification refers to the application of the linear or
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non-linear classifiers on the extracted features in order to perform the
final inference. Among the classifiers applied to the extracted fea-
tures, broadly used linear ones are LDA and support vector machine
(SVM) [Herman et al. 2008, Iscan et al. 2011, Jrad et al. 2016]. Distinct non-
linear classifiers are k-nearest neighbours (k-NN), non-linear Bayesian classi-
fiers, random trees, and neural networks [Herman et al. 2008, Iscan et al. 2011,
Bhattacharyya et al. 2010, Kumar et al. 2015, Jrad et al. 2016].
As summarized in the recent review of the BCI models [Lotte et al. 2018], we can
also identify BCI classifiers that are able to adapt to new data samples termed as
adaptive classifiers and ones that allow transfer of their parameters to the domain
of another subject or session referred to as transfer learning approaches.

As in other computer vision research fields, over the last two decades, atten-
tion has been drawn to DL approaches in the analysis of M/EEG signals, as
well. In general, these models learn to perform feature extraction, reduction, and
classification in a joint global training procedure. Given that the brain waveforms of
interest can have an arbitrary position over time, CNNs, which exhibit translational
invariance, have been chosen to address multiple problems.
In analogy to the dictionary learning approaches, we can make a distinction between
univariate and multivariate CNN models. Due to the ease of use and portability
of the single channel EEG devices, several univariate CNN models have been
investigated in the context of sleep and epilepsy analysis. In [Tsinalis et al. 2016]
and [Sors et al. 2018], classical CNN models have been employed in the studies on
single channel EEG sleep scoring. In [Supratak et al. 2017], the authors proposed
a DeepSleepNet model composed of a convolutional module for time-invariant
representation learning and a module with bi-directional long-short-term-memory
(LSTM) units, that is able to learn transitions between the sleep stages. A pyrami-
dal CNN, with a low number of trainable parameters, suitable for a lower amount of
training data, for the classification of single channel EEG signals into normal, ictal,
and interictal classes has been proposed in [Acharya et al. 2018, Ullah et al. 2018].
In the context of multivariate CNNs developed for M/EEG signal analysis, we
can identify three types of convolutional layers, namely, standard convolutional
layer, separable convolutional layers and depthwise convolutional layers. Given a
multivariate M/EEG signal X ∈ RC×T , with C being the number of channels and
T being the number of time samples, they are defined as follows.
A standard convolutional layer with weights W , s.t. W ∈ RC×J×τ , (or
{Wj}Jj=1, s.t. Wj ∈ RC×τ ) performs convolution as

Yj =
C∑
c=1

Xc ∗Wcj (6.9)

where c refers to the cth channel of X and Wj . Yj is the jth channel of Y .
Y ∈ RJ×(T−τ+1), j ∈ {1, ..., J} and J is the number of the output channels. τ

is the duration of the convolutional kernel W . An illustration of the convolution in
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a standard convolutional layer is depicted in Figure 6.3.

Figure 6.3: Illustration of convolution in a standard convolutional layer.

In a separable convolutional layer, the convolution is performed along the tem-
poral and spatial dimensions independently. Thus, given the temporal weights
{uj}Jtj=1, s.t. uj ∈ Rτ , the temporal convolution is defined as

Zcj = Xc ∗ uj (6.10)

where Xc is the cth channel of X, Z ∈ RC×Jt×(T−τ+1) and Zcj ∈ RT−τ+1. Jt is the
number of temporal filters. This is followed by a spatial convolution (correlation
more precisely) with {vj}Jsj=1, vj ∈ RJt×C defined as

Yk =
C∑
c=1

Jt∑
j=1

Zcj · vcjk (6.11)

where Y ∈ RJs×(T−τ+1). An illustration of the convolution in a separable convolu-
tional layer is depicted in Figure 6.4.

A depthwise convolutional layer is closely related to the separable convolutional
layer, where after the temporal convolution as given by Eq. 6.10, correlation along
spatial dimensions is performed with {vj}Jtj=1, vj ∈ RC×D, where D is a depth
multiplier. Thus the output is obtained as

Yj·D+d =

C∑
c=1

Zcj · vcjd (6.12)

where Y ∈ RJt·D×(T−τ+1) and Yj·D+d ∈ RT−τ+1. An illustration of the convolution
in a depthwise convolutional layer is depicted in Figure 6.5 (with J = Jt).
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Figure 6.4: Illustration of convolution in a separable convolutional layer.

Figure 6.5: Illustration of convolution in a depthwise convolutional layer.

The three types of multivariate convolutional layers differ in terms of the number
of parameters and the number of multiplications. Assuming that J = Jt = Js = C

and D = 1, thus all the layers yield the output of the same size, the number of
trainable weights is C2× τ , C × τ +C3 and C × τ +C2, for the standard, separable
and depthwise convolutional layers, respectively. The corresponding number of the
multiplications is C2 × τ × (T − τ + 1), C2 × τ × (T − τ + 1) + C3 × (T − τ + 1)

and C2 × τ × (T − τ + 1) + C2 × (T − τ + 1).
To analyse multi-channel M/EEG data, multiple models with standard,
separable, and depthwise convolutional layers have been investigated.
In [Schirrmeister et al. 2017], DeepConvNet and ShallowConvNet have been
proposed for the classification of motor task and motor-imagery task related EEG
signals. In [Lawhern et al. 2018], a more compact CNN model termed as EEGNet
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has been proposed for BCI applications.
DeepConvNet [Schirrmeister et al. 2017] model is composed of four convolu-
tional layers and one fully connected layer. The first layer contains separable
convolutions as given in Eqs. 6.10 and 6.11, while the following three contain
standard convolutions as in Eq. 6.9. Each convolutional layer is followed by a
batch normalization [Ioffe & Szegedy 2015], an Exponential Linear Unit (ELU)
non-linearity, a max-pooling and drop-out operations [Srivastava et al. 2014]. The
features extracted from the last layer are fed into a fully connected network.
ShallowConvNet , a more compact model, was proposed in the same work
of [Schirrmeister et al. 2017]. It contains one separable convolutional layer with
longer filters compared to DeepConvNet and one fully connected layer. The
convolutional layer is followed by a batch normalization [Ioffe & Szegedy 2015],
a square non-linearity, average pooling, a logarithmic non-linearity, inspired by
the filter bank common spatial pattern approach [Ang et al. 2008] and a drop-out
layer [Srivastava et al. 2014]. As in DeepConvNet, the extracted features are fed
into a fully connected network which performs the final inference.
EEGNet model has been proposed as a compact CNN for EEG BCI applications
in [Lawhern et al. 2018]. It is composed of two convolutional layers, the former
with depthwise convolutions as in Eqs. 6.10 and 6.12 and the latter with separable
convolutions as in Eqs. 6.10 and 6.11. In addition to the batch normalization
layers [Ioffe & Szegedy 2015] applied after each of the convolutional layers, it is
also performed after the convolution with the temporal filters in the depthwise
convolutional layer. As non-linearity, ELU is used. It is followed by the average
pooling layer and the drop-out layer [Srivastava et al. 2014]. The last layer of the
model is one fully connected layer.
All three models, DeepConvNet, ShallowConvNet and EEGNet, apart from the
regularization achieved indirectly with batch normalization [Srivastava et al. 2014]
and drop-out operations [Ioffe & Szegedy 2015], regularize the model weights
directly by constraining their maximum norm.
In addition to the three described methods, in the context of passive BCI (classifica-
tion of cognitive load) a recurrent-CNN has been proposed in [Bashivan et al. 2015].
The authors proposed to transform EEG signals into a sequence of topology-
preserving multi-spectral images, which are used to train the model. The
transformation is achieved by projecting the spatial component of the signals to 2D

images for different power spectrum bands (theta, alpha, beta), where each band is
treated as one channel (R, G, B) of a video.

6.4 Conclusion

In this chapter, we first describe the forward modeling of the multivariate EEG and
MEG signals as a sum of rank-1 multivariate signals corresponding to individual
brain sources and noise, where temporal courses of the brain activities are modeled
as convolutions of activation signals and characteristic temporal waveforms, under



118 Chapter 6. MEEG spatial and temporal pattern analysis

the assumption that such waveforms are of a transient and recurrent nature.
Further, an outline of the most relevant areas of research in the field of EEG and
MEG inverse problems is provided. Whereas in the section on the state-of-the-art,
we have provided a more detailed description of the most prominent dictionary
learning approaches with a focus on multivariate convolutional dictionary learning
ones. At the end, an overview of the most important EEG and MEG classifiers, in
majority developed for BCI applications, with a focus on the most relevant CNN
models is presented.
In the following two chapters, we will present our contributions in EEG and MEG
multivariate signal analysis, concretely, a rank-1 multivariate spatio-temporal
dictionary learning with L0 constraint and a shallow rank-1 CNN model for
multivariate EEG and MEG signal classification.
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Executive summary

This chapter contains our first contribution in the field of EEG and MEG analysis.
We have proposed a model for rank-1 spatial and temporal convolutional dictionary
learning with the L0 constraint. Firstly, we have introduced the constrained least
mean square minimization problem we have addressed, followed by a description of
multivariate signal encoding and decoding steps, and the process of dictionary up-
date. Since the optimization problem is globally non-convex, we have illustrated the
importance of proper initialization of the dictionaries. The model is quantitatively
compared with rank-1 multivariate convolutional dictionary learning with the L1

constraint on the synthetic data. Qualitative analysis is provided for the real MEG
somatosensory data and HCP MEG motor datasets.
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with L0 constraint

7.1 Introduction

Brain activity associated with the cognitive processes, execution of sensory-motor
tasks, and certain neurodegenerative disorders can often be characterized by specific
time courses and their location in the cerebral cortex. Thus, the extraction of the
relevant temporal waveforms and spatial patterns from M/EEG signals is of interest
in active and passive BCI, in the analysis of dynamic brain networks, and for a
better understanding of brain disorders. As presented in Chapter 6, assuming that
the waveforms are of a transient and recurrent nature [van Ede et al. 2018], M/EEG
signalX ∈ RC×T measured over C channels and T time instants can be modeled as a
sum of rank-1 multivariate signals and additive noise N [Dupré la Tour et al. 2018]
as:

X =
K∑
k=1

uk · (zk ∗ vk)T +N (7.1)

where vk ∈ Rτ is a waveform associated with the source k and zk ∈ RT+τ−1 is a
sparse vector with Dirac impulses indicating the instants of the activations of the
waveform k. uk ∈ RC is a topographic map that describes how a signal from source
k spreads over channels. N is an additive noise that incorporates subject, envi-
ronment, and device related sources of noise. The estimation of {vk,uk, zk} from
the observed signal X is an ill-posed inverse problem which has been addressed
via multivariate convolutional dictionary learning paradigms as described in Chap-
ter 6. In [Dupré la Tour et al. 2018], the authors proposed rank-1 convolutional
spatio-temporal dictionary learning with the L1 sparsity constraint imposed on the
activation vectors {zk}. With this regularization term, the estimation of the sparse
activation vectors is a convex problem when the atoms in the spatial and temporal
dictionaries are fixed. For fixed activations, the individual update of the spatial and
temporal patterns is a convex problem [Dupré la Tour et al. 2018].
In this chapter, we have studied rank-1 convolutional spatio-temporal dictionary
learning with the L0 constraint. This problem is determined up to waveform shift
and rank-1 atom sign. As in [Dupré la Tour et al. 2018], we have assumed that a
source always has the activity of the same polarity and thus the sparse activation
vectors are constrained to be nonnegative. As in the standard dictionary learning
paradigms, estimation of the dictionaries and the sparse activation vectors is alter-
nated.
The L0 constraint imposed on the sparse activation vectors results in an NP-hard
problem with respect to {zk}. In the context of univariate translation noninvariant
dictionary learning, sparse vector estimation with the L0 constraint can be solved
via Iterative Hard Thresholding (IHT) [Blumensath & Davies 2008] if the dictio-
nary satisfies the restricted isometry condition [Candès et al. 2006]. The solution
can be formulated as follows. Given a univariate signal x ∈ RN and a dictionary
D ∈ RN×K , with K being the number of atoms and N being the length of x, a
sparse vector zi+1 ∈ RK , in the iteration i+ 1, is estimated via IHT as

zi+1 = Hλ

(
zi +DT (x−Dzi)

)
. (7.2)
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where Hλ is a thresholding operator, which keeps only λ highest coefficients and
other sets to zero, z0 = 0 and (x−Dzi) is residual after ith iteration. Although con-
volution can be written in the form of matrix-vector multiplication, by transforming
atoms {vk} into a matrix D, it is clear that one such matrix does not satisfy the
restricted isometry condition (nearly orthogonal matrix) even only with respect to
the thresholding operator.
To address this problem, matching pursuit (MP) [Mallat & Zhang 1993,
Pati et al. 1993] can be used. In the standard MP algorithm [Mallat & Zhang 1993],
in each iteration i one sparse vector zi ∈ RK is updated as

zi[k] = zi−1[k] +
[
DT ri

]
[k] where k = argmax

∣∣DT ri
∣∣ (7.3)

ri = (x−Dzi−1) is the residual after the ith iteration, z0 = 0 and r0 = x. In the con-
volutional MP presented in [Szlam et al. 2010], the MP is adjusted to the 2D atoms
for dictionary learning for images. In the orthogonal MP (OMP) [Pati et al. 1993],
in each iteration i, the sparse vectors are estimated only over the support Λi as:

ziΛi = D†
Λix and ziΛ\Λi = 0 where Λi = Λi−1 ∪

{
argmax
Λ\Λi−1

∣∣DT ri−1
∣∣} (7.4)

where Λ = {0, 1, ..,K− 1}, Λ0 = ∅, r0 = x, ri = (x−Dzi) and D†
Λi is the pseudoin-

verse of the dictionary containing only the atoms of indices in Λi. In the nonnega-
tive OMP presented in [Bruckstein et al. 2008], zi

Λi are estimated using a nonneg-
ative least square solution. Nonnegative OMP proposed in [Yaghoobi et al. 2015]
uses QR decomposition to update zi

Λi using a modified selection of the support Λi

which guarantees positivity of the coefficients. In the convolutional MP proposed
in [Plaut & Giryes 2018], given the signal x ∈ RN and a set of atoms {dk}Kk=1,
sparse vectors {zk}Kk=1 are determined over two nested iterative processes. In the
outer iteration i, correlations {cik}Kk=1 between atoms and residuals are computed
as

cik = Jdk ∗ ri where ri = x−
K∑
k=1

dk ∗ zik (7.5)

where J is a reversal matrix (ones along antidiagonal).
In the inner iterative process, the sparse vectors {zik} are updated as

zik∗ [j] = zi−1
k∗ [j] + cik∗ [j] where k∗ = argmax

k
|cik| and j = argmax(cik∗) (7.6)

after that cik[j
∗] = 0 ∀k and ∀j∗ ∈ Ωj , where Ωj is a set of indices around j. In such

a way, in a single outer iteration i, it is possible to estimate multiple activations,
but their contributions are prevented from overlapping.
In the context of multivariate signal sparse coding, multichannel MP so-
lutions have been proposed for the sparse representations given the dictio-
nary of Gabor atoms [Gribonval 2003, Durka et al. 2005] or learnable dictio-
nary [Barthélemy et al. 2012]. Regardless if the dictionary is Gabor or learnable,
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these solutions use univariate temporal atoms to estimate multichannel sparse vec-
tors. Given a multivariate signal X ∈ RC×T and dictionary of atoms {dk}Kk=1,
in [Gribonval 2003], in each iteration i, selection of the atom and coefficient to be
updated is obtained as

k∗ = argmax
k

C∑
c=1

|Ric ∗ Jdk|22 and j = argmax
C∑
c=1

|Ric ∗ Jdk∗ |22 (7.7)

while in [Durka et al. 2005, Barthélemy et al. 2012] this is performed as

k∗ = argmax
k

∣∣∣∣ C∑
c=1

Ric ∗ Jdk
∣∣∣∣
1

and j = argmax
∣∣∣∣ C∑
c=1

|Ric ∗ Jdk∗
∣∣∣∣
1

(7.8)

where Ric and Zik,c are the cth channel of the multivariate residual Ri and the mul-
tivariate activation Zik, respectively, obtained as

Ric = Xc −
K∑
k=1

Zik,c ∗ dk and Zik,c[j] = [Zi−1
k,c [j] +Ric ∗ dk][j]. (7.9)

In the context of sparse autoencoders, in the k-Sparse autoencoder, sparse rep-
resentations are obtained, similarly as in IHT, by selecting k highest coeffi-
cients of z = ReLU(DTx + b), where b is a bias term [Makhzani & Frey 2013].
In [Makhzani & Frey 2014], convolutional autoencoder keeps only the highest coef-
ficient of zk = ReLU(dk ∗ x+ bk) for each k, while the other coefficients are set to
zero. Instead of selecting a single highest coefficient per atom, in the convolutional
sparse autoencoder proposed by [Luo et al. 2017], r highest coefficients per atom
and patch of size p are preserved to create sparse representation.
To estimate the sparse activations, we have used an approach inspired by the sparse
autoencoders, IHT, and MP methods, adjusted to the rank-1 convolutional atoms.
Similarly, as in the sparse autoencoder [Makhzani & Frey 2014], it uses ReLU and
maximum operator over the correlation between the input and the atoms to se-
lect the highest activation per each atom of the dictionary at once. As IHT and
MP, and contrary to the sparse autoencoder [Makhzani & Frey 2014], it is a greedy
algorithm that iteratively updates sparse codes. In contrast to the sparse cod-
ing in [Gribonval 2003, Durka et al. 2005, Barthélemy et al. 2012], where the mul-
tivariate sparse activations of an arbitrary sign are estimated for univariate tem-
poral atoms (see Eq. 6.7), our approach estimates nonnegative univariate sparse
activations given the pairs of the spatial and temporal atoms (see Eq. 6.8). Fur-
ther, in [Gribonval 2003, Durka et al. 2005, Barthélemy et al. 2012], in each itera-
tion sparse activations for one atom are updated, in our approach in each iteration
sparse activations for all pairs of atoms are updated at once.
As in [Dupré la Tour et al. 2018], for fixed activations, the individual update of the
spatial and temporal patterns is a convex problem, thus we have used the Adam op-
timizer [Kingma & Ba 2014], which is faster than the traditional stochastic gradient
descent.
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7.2 Method

We aim to address the multivariate translation-invariant dictionary learning problem
from Eq. 6.8, firstly addressed in [Dupré la Tour et al. 2018], redefined as

ûk, v̂k, ẑk = argmin
uk,vk,zkn

1

N

N∑
n=1

∣∣∣∣∣∣∣∣Xn −
K∑
k=1

zkn ∗ (ukvTk )
∣∣∣∣∣∣∣∣2
2

s.t. ||zkn||0 ≤ Q , zkn > 0 , ||vk||22 ≤ 1 + d , ||uk||22 ≤ 1 + d

for k ∈ {1, 2, ...,K} and for n ∈ {1, 2, ..., N}

where Q is a parameter that ensures sparsity of the activations {{zkn}Kk=1}Nn=1 and
d ∈ R is a small constant. Joint estimation of the {vk,uk}Kk=1 and {{zkn}Kk=1}Nn=1 is
a non-convex problem, which is, in addition, NP-hard due to the L0 norm imposed
on the sparse vectors. On the other hand, minimization with respect to {vk}Kk=1

or {uk}Kk=1, while keeping the other two sets of variables fixed is a convex prob-
lem [Dupré la Tour et al. 2018].
The processes of the sparse activation vector encoding and decoding are illustrated
in Figure 7.1. Both encoding and decoding steps use the same dictionary atoms
{vk,uk}Kk=1. Given a sample Xn ∈ RC×T , in the encoding process, the sparse
codes {zk,Qn }Kk=1 are nonlinearly iteratively estimated over Q iterations, while in the
decoding process, they are linearly mapped to the signal X̂n.

Figure 7.1: Illustration of the encoding and decoding procedures. Estimation of
the sparse codes is performed iteratively, where in each encoding cycle at most one
activation per source is estimated. After Q encoding cycles, the activations are
linearly mapped to a reconstructed signal.



124
Chapter 7. Rank-1 M/EEG waveform and spatial pattern learning

with L0 constraint

7.2.1 Encoding

In the encoding process, as in sparse autoencoders [Makhzani & Frey 2013,
Makhzani & Frey 2014, Luo et al. 2017] and greedy algorithms such
as IHT [Blumensath & Davies 2008] and MP [Mallat & Zhang 1993,
Szlam et al. 2010], we use correlations with atoms to identify their activa-
tions. Due to the rank-1 constraint, correlation is first performed along the spatial
and then along the temporal multivariate signal dimension. Given a multivariate
data sample Xn ∈ RC×T , where n refers to the data sample, correlations with a
spatial dictionary of atoms {uk}Kk=1 is given by

skn = XT
n uk for k ∈ {1, ...,K} (7.10)

where skn ∈ RT . Correlation of {skn}Kk=1 with the temporal dictionary of atoms
{vk}Kk=1 is given by

ckn = skn ∗ Jvk for k ∈ {1, ...,K} (7.11)

where ckn is zero-padded so that ckn ∈ RT . Jvk is reversed version of the atom vk.

Iterative estimation of the activations.

As in greedy algorithms IHT [Blumensath & Davies 2008] and
MP [Mallat & Zhang 1993, Szlam et al. 2010] the sparse activation vectors are
updated iteratively. For a sample Xn, the activation vectors {zk,in ∈ RT+τ−1}Kk=1 in
iteration i are estimated as

Xi
n = Xi−1

n −
K∑
k=1

uk(y
k,i
n ∗ vk)T = X0

n −
K∑
k=1

uk(z
k,i
n ∗ vk)T (7.12)

where Xi
n is a multivariate residual after ith iteration, X0

n = Xn, zk,0n = 0, and
zk,in = zk,i−1

n +yk,in for all k. yk,in is a sparse vector containing at most one activation
estimated as follows. Given the residual Xi−1

n , we estimate ck,i−1
n using Eqs. 7.10

and 7.11. The position of the activation of the kth atom in the ith iteration corre-
sponds to jk,in =argmax(ReLU(ck,i−1

n )) since the activations are constrained to be
nonnegative. The amplitude of the activation in yk,in is determined as

yk,in [j] =

{
ck,i−1
n [j] if j = jk,in and ||Xi−1

n [:, ..j..]− ck,i−1
n [j]ukv

T
k ||22 < ||Xi−1

n [:, ..j..]||22
0 otherwise

.

(7.13)

The vectors {yk,in }Kk=1 are zero padded so that yk,in ∈ RT+τ−1, thus yk,in ∗ vk ∈ RT .
If we consider a multivariate signal X = u(z ∗ v)T , where z contains only one
Dirac impulse, the amplitude of the peak of its spatio-temporal correlation c =

uTX ∗ Jv corresponds to the amplitude of the peak of z, only if ||u||2||v||2 = 1.
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Therefore, since the constraints ||uk||2 = 1 or ||vk||2 = 1 are non-convex, we have
constrained the atoms to have norm lower than 1 + d, where d is a small constant.
In [Dupré la Tour et al. 2018], the atoms are constrained to have a norm lower or
equal to 1. The step defined in Eq. 7.12 is repeated Q times, ensuring that ||zk,Qn ||0 ≤
Q. An illustration of one encoding cycle is provided in Figure 7.2.

Figure 7.2: Illustration of one encoding cycle with a model containing K = 2 pairs
of spatial and temporal patterns. For simplicity, superscripts indicating iteration
are removed.

7.2.2 Decoding

Once the activations are estimated, they are linearly mapped to the reconstructed
signals as

X̂n =
K∑
k=1

uk(z
k
n ∗ vk)

T . (7.14)

The decoding process is illustrated in Figure 7.3.

Figure 7.3: Illustration of decoding with K = 2 pairs of spatial and temporal
patterns.
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7.2.3 Loss and update of the dictionaries

If we denote encoding and decoding processes with E and D, respectively, the loss
function is defined as the MSE as

L =
1

N

N∑
n=1

∣∣∣∣∣∣∣∣Xn −D
(
E(Xn|{uk,vk}Kk=1)|{uk,vk}Kk=1

)∣∣∣∣∣∣∣∣2
2

(7.15)

or

L =
1

N

N∑
n=1

∣∣∣∣∣∣∣∣Xn −
K∑
k=1

uk(E(Xn|{uk,vk}Kk=1)k ∗ vk)
T

∣∣∣∣∣∣∣∣2
2

. (7.16)

Following the standard dictionary learning paradigm, where the atoms are updated
for fixed activations, given the estimated activations {{zkn}Kk=1}Nn=1, the loss function
can be rewritten as

L =
1

N

N∑
n=1

∣∣∣∣∣∣∣∣Xn −
K∑
k=1

uk(z
k
n ∗ vk)

T

∣∣∣∣∣∣∣∣2
2

. (7.17)

It is the same minimization problem used to estimate dictionaries
in [Dupré la Tour et al. 2018], although not convex jointly, the problem is
convex individually with respect to uk and vk. Gradient of L with respect to uk is

∂L
∂uk

= −2
1

N

N∑
n=1

(
Xn −

K∑
k=1

uk
(
zkn ∗ vk

)T)T (
zkn ∗ vk

)
(7.18)

and gradient of L with respect to vk is

∂L
∂vk[q]

= −2
1

N

N∑
n=1

T∑
j=0

(
uTk

(
Xn −

K∑
k=1

uk
(
zkn ∗ vk

)T)
[q + j]zkn

[
τ

2
+ j

])
. (7.19)

In our work, the atoms are updated using the Adam optimizer [Kingma & Ba 2014]
where in each training iteration t a weight w is updated as

wt+1 = wt − η
νt√
st + ε

gt (7.20)

where
νt = β1νt−1 + (1− β1)gt (7.21)

and
st = β2st−1 + (1− β2)g

2
t (7.22)

where η is the learning rate. gt is a gradient as defined in Eqs. 7.18 and 7.19. νt
and st are the gradient’s moving mean and moving variance, where β1 and β2 are
constants determining the contributions of the past and current gradients. ε is a
small constant ensuring the stability of the division. The training is performed by
alternating between the update of spatial and temporal atoms.
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7.2.4 Testing

During the testing phase, sparse vectors are estimated over P iterations, which do
not need to be equal to Q, as will be discussed in the following section. After each
iteration of the sparse vector estimation according to Eqs. 7.12 - 7.13, amplitudes
of the activations are refined over R steps, where refinements are allowed to be
negative. Given a sparse vector zk,in in iteration i and residual Xi

n, in a refinement
step r

Xi,r
n = Xi,r−1

n −
K∑
k=1

uk(y
k,r
n ∗ vk)T (7.23)

where Xi,0
n = Xi

n, zk,i,0n = zk,in , and zk,i,rn = zk,i,r−1
n + yk,rn . yk,rn is a sparse re-

finement vector containing at most one activation estimated as follows. Given
Xi,r−1
n , we estimate ck,i,r−1

n using Eqs. 7.10 and 7.11. Position of the activation
update within sparse vector zk,i,r−1

n is selected as jk,i,rn =argmax(|ck,i,r−1
n |), such

that zk,i,r−1
n [jk,i,rn ] ̸= 0. The update is performed as

yk,rn [jk,i,rn ] =

{
0 if ck,i,r−1

n [jk,i,rn ] + zk,i,r−1
n [jk,i,rn ] ≤ 0

ck,i,r−1
n [jk,i,rn ] if ck,i,r−1

n [jk,i,rn ] + zk,i,r−1
n [jk,i,rn ] > 0

. (7.24)

Allowing the negative refinements during the testing phase is introduced since the
amplitudes of the activation vectors obtained via spatio-temporal correlation might
contain contributions of the other activations. Whereas this is the case during the
training as well, refinement steps increase training time, and the estimation of the
activation as in Eqs. 7.12 - 7.13 is sufficient from the point of view of the dictionary
updates.

7.3 Databases

We have compared our model with the multivariate convolutional sparse coding
(MCSC) algorithm [Dupré la Tour et al. 2018] on synthetic data and somatosensory
MEG data. Furthermore, the model is evaluated on the HCP motor task dataset.

Synthetic dataset

A synthetic MEG dataset is generated using the MNE tool-
box [Gramfort et al. 2013a]. The forward solution is taken from the
"sample_audvis-meg-eeg-oct-6-fwd" dataset, which contains 204 MEG gra-
diometers and 7498 sources. Under the assumption that a specific mental or motor
task is associated with the specific fixed sources in the cerebral cortex and specific
temporal courses, data is simulated for 3 fixed sources, each being associated with
a different temporal waveform. For the temporal waveforms, we have used a spike,
a sinusoid weighted by a Gaussian window, and a saw-tooth signal. The positions
of the selected sources, their topographic maps, and their corresponding temporal
waveforms are illustrated in Figure 7.4. Sparse activation vectors are generated
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with a density of 0.01 and a range of amplitudes drawn from a uniform distribution
of [0, 1]. Their duration without zero padding is 5s. Temporal courses are obtained
by convolving the zero-padded sparse activations with the temporal waveforms.
Their duration is 7s. The sampling rate is 128Hz. The total number of generated
samples for training and testing sets is 100. The experiments are conducted on
data without noise and data distorted with the noise of standard deviation σ = 0.1.
Illustrations of activations and 20 channels corresponding to one generated sample
without and with noise are provided in Figure 7.5.

(a) (b)

Figure 7.4: Illustration of active sources (a) and corresponding waveforms and to-
pographic maps (b).
Images generated using: MNE-python [Gramfort et al. 2013a]

(a) (b) (c)

Figure 7.5: Illustrations of activations (a) and signals recorded at 20 randomly
selected channels without noise (b) and with the noise of standard deviation σ = 0.1

(c).
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Motor-task HCP MEG dataset

The motor-task MEG dataset is part of the open HCP
dataset [Van Essen et al. 2012]. We have selected MEG recordings of five out
of 61 subjects acquired over two sessions where participants were guided by visual
cues to move either the right hand, left hand, right foot, left foot, or to stay still.
We have selected only five subjects, as we have performed dictionary learning
per session, and only qualitative analysis of the learned dictionaries and obtained
activations has been performed at the moment. Each session was composed of 42
blocks, where 10 blocks were resting state blocks and 32 blocks were movement
blocks (8 blocks per movement). Each movement block contains 10 movements
guided by a visual cue at the beginning of the block, which lasts 3000ms and
suggests which movement is to be performed, and nine visual cues in the form of
fleshes, which last 150ms and guide the subject to perform the movement again.
The visual cues are separated by the periods of black screen of 1050ms, during
which the subjects perform the indicated movement. The number of MEG channels
is 248. The sampling frequency is 2034.52 Hz. Signals are segmented into 2.4s long
epochs, centered with respect to the onset of the visual flesh. Therefore, each epoch
contains two movements.
To preprocess the raw MEG signals, we have used the preprocessing pipeline from
the MNE-HCP library [Gramfort et al. 2013b]. It included reference correction,
filtering with a bandpass Butterworth filter of order 4 with cutoff frequencies of
0.5 Hz and 60 Hz, removing artifacts using ICA, and interpolating missing or bad
channels. In our experiments, we have subsequently downsampled the signals by a
factor of 12, given that the signals are low-pass filtered with a cut-off frequency of
60 Hz. Thus, the sampling frequency is ∼ 170 Hz. For the stability of the model,
signals are scaled with the factor 5 · 1012. The scaling is desirable to alleviate the
vanishing gradients.

Somatosensory MEG dataset

In the somatosensory MEG dataset, somatosensory EM fields were evoked
by electrical stimulation of the median nerve at wrist [Sorrentino et al. 2009].
The stimuli were repeated with intervals randomly chosen between 7s and
9s. The MEG signals were acquired with 204 gradiometers and 102 mag-
netometers at a sampling rate of 600Hz. The dataset was taken from the
MNE-python toolbox [Gramfort et al. 2013a], and preprocessing was performed as
in [Dupré la Tour et al. 2018], including filtering with two notch filters of 50Hz and
100Hz, downsampling to a sampling frequency of 150Hz, segmentation into epochs
of 6s length, epoched signals weighting with a Tukey window, and normalization by
their standard deviation. The data corresponds to one subject. The total number
of extracted epochs is 103. In our experiments, we have used only the gradiometer
channels, as in [Dupré la Tour et al. 2018].
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7.4 Implementation details

Initialization

As the minimization problem from Eq. 7.17 is non-convex, we have investigated how
different initializations of spatial and temporal patterns influence the convergence of
the optimization process. These experiments are conducted on synthetic data with-
out noise, and for each initialization type, they are repeated 50 times. The model
includes three pairs of spatial and temporal patterns, whose norm is constrained to
1+d, where d = 0.01. The maximum number of activations allowed during training
and testing is Q = P = 40 and the maximum number of refinement steps in the
testing phase is R = 50. In the first experiment, we used random Gaussian N (0, n)

initialization of both the spatial and temporal patterns with different standard devi-
ations n ∈ {1.0, 0.1, 0.01, 0.001}. The corresponding learning curves are illustrated
in Figure 7.6(a) (left). The MSEs between the ground truth and the obtained recon-
structions on training and test datasets are illustrated in Figure 7.6(b) (left). In the
second and third initialization strategies, temporal waveforms are initialized with a
constant normalized to 1. In the second strategy, the spatial patterns are initialized
with 1 + nUc(−1, 1), where Uc(−1, 1) refers to a continuous uniform distribution in
the range of [−1, 1]. In the third strategy, they are initialized with 1 + nUd[−1, 1],
where Ud[−1, 1] are drawn from a discrete uniform distribution {−1, 0, 1}. In both
cases n ∈ {0.1, 0.01, 0.001, 0.0001}. After the initialization, as for the temporal pat-
terns, they are normalized to 1. Corresponding learning curves for the second and
third strategies are illustrated in Figure 7.6(a) (middle, right), while the MSEs be-
tween ground truth and reconstructions on training and test datasets are illustrated
in Figure 7.6(b) (middle, right).
As Figure 7.6 shows, the initialization of the patterns with random values gives very
dispersed learning curves with almost no difference between the different standard
deviations of the distribution of the initialization values. On the other hand, ini-
tialization of the temporal patterns with a constant and the spatial patterns with
values close to a constant (second and third initialization strategies), yields more
coherent learning curves and lower MSEs both on training and test datasets. We
can also notice that the losses and MSE decreases with the standard deviation of
the uniform distributions.

The impact of Q and P

The maximum number of activations Q determines the number of selected acti-
vations with the highest amplitude, which contribute to the reconstructed signal
during training and thus contribute to the update of the dictionaries. If this num-
ber is low, updates of the dictionaries will be based on a smaller amount of data
segments that correlate best with the atoms of the dictionaries. Due to the non-
convexity of the problem, there is a risk that initial patterns might best correlate
with non-representative segments of the signals, leading the minimization process
to local minima. On the other hand, if this number is high enough, the update of
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the atoms is guided by a higher amount of data segments, so among these segments,
there is a higher chance that some are well-representative and there is more room
for a correction of the optimization path. Finally, if the number Q is very high, the
algorithm might tend to learn more compact waveforms, especially when periodic
waveforms such as the sawtooth are present in the overall signal.
Activation vectors in synthetic data are generated with a density of 0.01, thus the
total number of activations per waveform is ∼ 12.8. Firstly, we have investigated
how the maximum number of activations during training Q influences the learning
process on noiseless data. The learning curves and MSEs estimated on the training
and testing data for Q = 30 and Q = 40 are depicted in Figure 7.7. It shows that
decreasing Q to 30 yields slightly lower MSEs averaged over 50 experiment repeti-
tions, but the MSE standard deviation is higher, when compared to Q = 40.
When the data is affected by significant noise, it is of interest to train the dictionar-
ies with activations of a high amplitude, since those with a lower amplitude might
be below or close to the level of noise. The learning curves and MSEs with respect to
noiseless ground truth signals, different values of Q ∈ {10, 20} and different values
of P ∈ {10, 40} are provided in Figure 7.8. The results indicate that for noisy data,
average MSE is lowest for low Q = P = 10. In accordance with the results obtained
with noiseless data, for P = 10, increasing Q from 10 to 20 yields a lower standard
deviation of the MSEs. Figure 7.7 also shows that for both Q = 10 and Q = 20,
increasing P from 10 to 40 significantly increases MSE, that the majority of the
activations for P = 40 correspond to the noise.

7.5 Results and discussions

We compared our method with the rank-1 multivariate dictionary learning method
with the L1 constraint [Dupré la Tour et al. 2018], termed Multivariate Convolu-
tional Sparse Coding (MCSC), on the synthetic data and the somatosensory MEG
dataset [Sorrentino et al. 2009, Gramfort et al. 2013a]. Further, we have visually
analyzed the results obtained with our method applied to the motor-task MEG
HCP data [Van Essen et al. 2012].

Comparison with the state of the art

Firstly, we compared the MSE between the ground truth and the reconstructed
data on noiseless synthetic data and the MSE between the ground truth and the
estimated activation vectors. Since the learned temporal patterns can be shifted
compared to the ground truth, the MSE between the activations corresponds to
the minimum MSE between the ground truth and corresponding shifted estimated
vectors. In this experiment, the maximum number of activations in the training
and testing phase Q = P = 40 and the number of refinement steps R = 50. The
selection of the hyperparameters for the MCSC method is given in Appendix C.
As illustrated in Figure 7.9, our model yields lower reconstruction errors and has a



132
Chapter 7. Rank-1 M/EEG waveform and spatial pattern learning

with L0 constraint

lower standard deviation. The MSE between activations is lower for MCSC for the
waveforms with narrower support, such as spikes and Gaussian weighted sinusoidal
waves, but significantly higher error for the sawtooth waves which have wide sup-
port. This might be because the correlation over a larger support is able to filter
out interference coming from other activations.
Estimated waveforms are compared in terms of maximum absolute correlation with
ground truth waveforms. In Figure 7.10, we can see that our model estimates Gaus-
sian weighted sines and sawtooth that correlate on average better with the ground
truth. This is especially prominent for the sawtooth waveform. MCSC gives better
average estimates of the spikes. In addition, we can see that the standard deviation
of the maximum correlation over 50 experiment repetitions is lower with our model
for all waveforms.
Further, we have visually compared the estimated patterns and the activation vec-
tors for the experiments where the average MSE between the ground truth and the
estimated activations is the lowest (Figure 7.11(a)) and the highest (Figure 7.12(a))
and where the reconstruction error is the lowest (Figure 7.11(b)) and the high-
est 7.12(b)). As we can notice in Figure 7.11, both methods are able to estimate
spatial and temporal patterns that closely resemble ground truth up to the sign and
shift. The estimated activations for spikes and sawtooth signals also exhibit a high
degree of resemblance to ground truth, while the activations for Gaussian weighted
sinusoidal waveforms considerably differ (which is in accordance with the results
illustrated in Figure 7.9). For the Gaussian weighted sinusoidal waveforms, in the
segments with close activations, our model tends to estimate more dense spurious
activations with lower amplitudes.
As we can notice in Figure 7.12(a), where the worst results, in terms of activa-
tions, are illustrated, our model has difficulty in the estimation of spike patterns
and MCSC with the estimation of sawtooth. To compensate for these errors, both
methods yield denser spurious activation vectors for the corresponding patterns.
These errors in the temporal pattern estimation are the ones that appear most com-
monly over repeated runs of the experiments. The comparison of the worst results,
in terms of the reconstruction error 7.12(b), shows that MCSC failed to separate
Gaussian weighted sinusoidal and sawtooth patterns. Also, the results obtained with
our method, indicate that a high reconstruction error comes due to the difficulty in
the estimation of the activation vectors for the Gaussian weighted sinusoidal.
Models are also compared on synthetic data distorted with Gaussian noise with a
standard deviation of 0.1. The selection of hyperparameters on such data is quite
challenging as it requires some prior knowledge. As provided in Appendix C, select-
ing parameters that minimize MSE between the input noisy signals and the recon-
structions may lead to very noisy estimated patterns. Although it is not a real-world
scenario, to investigate the potential of the models, in this experiment, the hyper-
parameters are chosen based on the MSE between the noiseless ground truth and
the reconstructions estimated on noisy data. The selection of the hyperparameters
for MCSC is given in Appendix C. Our model is selected based on the results illus-
trated in Figure 7.8, thus, the maximum number of activations during the training
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and testing phases is Q = P = 10, while the number of refinement steps is R = 50.
As in the previous experiments, we first compared models in terms of MSEs between
the noiseless ground truth and the obtained reconstructions and MSEs between the
ground truth and the estimated activations. The average MSEs and standard de-
viations are illustrated in Figure 7.13. As can be seen, the average reconstruction
error obtained with our model is slightly lower. On the other hand, the average
MSE between the activations for all temporal patterns is significantly lower with
MCSC. Contrary to that, the maximum correlations with ground truth patterns are
on average higher with our model which has a considerably lower standard deviation
over the experiment repetitions, as depicted in Figure 7.14. The visual comparisons
of the best and worst results, according to the mean MSE between the activations
and the reconstruction error, are provided in Figures 7.15 and 7.16. We can notice
in both scenarios that the spike patterns are better centered with MCSC, while our
model gives smoother temporal patterns which resemble more to the ground truth.
Even though the average MSEs between the activations are much higher with our
model, we can notice in Figure 7.15 and Figure 7.16 that they quite resemble the
ground truth activations, while MCSC yields more spurious low amplitude activa-
tions.
Finally, the methods are compared on the somatosensory MEG dataset. As in the

experiment presented in [Dupré la Tour et al. 2018], we have trained a model with
25 pairs of temporal and spatial patterns. Due to the very large number of atoms,
the maximum number of activations per atom pair during training and testing is
Q = P = 1 and the maximum number of refinement steps is R = 50. The length
of temporal waveforms in both models is 1s. The average explained variance over
epochs is 15.65% and 18.15% for MCSC and our method, respectively. Illustrations
of the estimated atoms and activations are given in Figure 7.17. They show that
the extracted temporal and spatial patterns between the methods to a great ex-
tent visually resemble. A great number of temporal atoms correspond to a special
type of α waves, so-called µ waves which occur in the sensorimotor cortex and are
an indicator that the motor system is idling. As expected, the peak of their power
spectral density is around 10−12Hz. The highest intensity of the associated spatial
patterns corresponds, to a certain extent, to the location of the sensorimotor cortex.
We can also notice a few patterns resembling spikes extracted with our method,
whose power spectral density has peaks in a range below 10Hz. Their associated
spatial patterns have peaks in the prefrontal cortex. In Figure 7.18, we illustrate
the distributions of correlations between the estimated rank-1 atoms, where we can
see that our model provides less correlated atoms.

HCP results

We trained models with one pair of spatial and temporal atoms, where the maximum
number of activations during train Q is 5 and the maximum number of activations
during testing P is 2. The models are trained on one session and tested on both
training and testing sessions. For each subject and each event (left hand, left foot,
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right hand, right foot movements, and fixations), one model is trained. The obtained
spatial and temporal patterns, and training and testing activations averaged over
epochs, are illustrated for five subjects in Figures 7.19, 7.20, 7.21, 7.22 and 7.23.
Firstly, we can notice that the spectral composition of the estimated waveforms dif-
fers significantly between subjects while being similar across different events. Also,
average activations on the training and testing sessions are consistent. We can no-
tice that spectral components in the range 8− 12Hz are emphasised in the cases of
subjects 104012, 108323, and 109123 for all events. For subjects 104012 and 109123,
the spectral components below 4Hz are of higher amplitudes for events that con-
tain movements compared to fixation/resting state epochs. Apart from the subject
105923, by analysing the average activations (fourth and fifth columns), we can
notice that for the epochs with movements, two well separated clusters are visible.
They correspond to two movements present in each epoch, as described in Section
1.3 which describes datasets. On the other hand, the average activations for fixation
epochs are mostly uniformly distributed over time. High peaks at the beginning and
end of the average activations are due to proximity to the signal border (taking into
account that the duration of the signal is 2.4s and the duration of the temporal
patterns is 1s). If the models are trained with Q = 3 and P = 2, waveforms tend
not to be well centered. On the other hand, if Q = 10 and P = 2 separation of the
activations is less specific (illustrations provided in Appendix C).
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(a)

(b)

Figure 7.6: Illustration of learning curves(a) and MSEs on training and test
datasets(b) for different initialization strategies of learnable spatial and temporal
atoms for 50 repetitions of the experiments. Gaussian distribution random initial-
ization (left), constant initialization of temporal weights and initialization of spatial
weights with values drawn from a continuous uniform distribution (middle), con-
stant initialization of temporal weights, and initialization of spatial weights with
values drawn from a discrete uniform distribution (right). In the bottom subfig-
ures, different colors of bars, representing the pairs of training and testing MSE,
correspond to different standard deviations of the weight initializations given in the
corresponding top subfigures. In the bottom subfigures, for each pair of bars of the
same color, the left one corresponds to training MSE and the right one to testing
MSE.
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Figure 7.7: Illustration of MSEs on train and test on noiseless datasets for different
values of the maximum number of activations during training Q ∈ {30, 40}, where
test P = 40. In the right subfigure, different colors of bars, representing the pairs
of training and testing MSE, correspond to different pairs of the parameters P and
Q given in the corresponding left subfigure. In the right subfigure, for each pair of
bars of the same color, the left one corresponds to training MSE and the right one
to testing MSE.

Figure 7.8: Illustration of MSEs on train and test on noisy datasets for different
values of the maximum number of activations during training Q ∈ {10, 20}, and
testing P ∈ {10, 40}. In the right subfigure, different colors of bars, representing the
pairs of training and testing MSE, correspond to different pairs of the parameters
P and Q given in the corresponding left subfigure. In the right subfigure, for each
pair of bars of the same color, the left one corresponds to training MSE and the
right one to testing MSE.
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Figure 7.9: Comparison of MSEs between the ground truth and the reconstructed
signals and MSEs between the ground truth and the estimated activation vectors
on the noiseless data.

Figure 7.10: Average and standard deviation of maximum absolute correlation be-
tween the ground truth and the estimated waveforms with MCSC (blue) and our
method (orange) on noiseless data.
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(a)

(b)

Figure 7.11: Visual comparison of the estimated and the ground truth patterns and
the training and testing activation vectors on the experiments where the mean MSE
between the ground truth and the estimated activations is the lowest(a) and where
the reconstruction error is the lowest(b)
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(a)

(b)

Figure 7.12: Visual comparison of the estimated and the ground truth patterns
and the training and testing activation vectors on the experiments where the mean
MSE between the ground truth and the estimated activations is the highest (a)
and where the reconstruction error is the highest (b).
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Figure 7.13: Comparison of MSE between ground truth and reconstructed signals
and MSE between ground truth and estimated activation vectors on data distorted
by Gaussian noise of standard deviation 0.1.

Figure 7.14: Average and standard deviation of maximum absolute correlation be-
tween ground truth and estimated waveforms with MCSC (blue) and our (orange)
methods on data distorted by Gaussian noise of standard deviation 0.1.
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(a)

(b)

Figure 7.15: Visual comparison of the estimated and the ground truth patterns and
the training and testing activation vectors on the experiments where the mean MSE
between the ground truth and the estimated activations is the lowest (a) and where
the reconstruction error is the lowest (b).
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(a)

(b)

Figure 7.16: Visual comparison of the estimated and the ground truth patterns
and the training and testing activation vectors on the experiments where the mean
MSE between the ground truth and the estimated activations is the highest (a)
and where the reconstruction error is the highest (b).
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(a)

(b)

Figure 7.17: Illustration of estimated temporal patterns (first row), their power
spectral density (second row), spatial patterns (third row), and corresponding ac-
tivations averaged over epochs(fourth row) obtained with MCSC(a) and with our
method(b).
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Figure 7.18: Distribution of correlations between different rank-1 atoms obtained
with MCSC and our method.

Figure 7.19: Subject 104012 Illustration of estimated temporal patterns (first
row), their power spectral density (second row), spatial patterns (third row), ac-
tivations on training session averaged over epochs (fourth row) and activations on
testing session averaged over epochs (fifth row) obtained with our method. Left
hand (first column), left foot (second column), right hand (third column), right
foot (fourth column) movements, fixation/resting (fifth column).
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Figure 7.20: Subject 105923 Illustration of estimated temporal patterns (first
row), their power spectral density (second row), spatial patterns (third row), ac-
tivations on training session averaged over epochs (fourth row) and activations on
testing session averaged over epochs (fifth row) obtained with our method. Left
hand (first column), left foot (second column), right hand (third column), right
foot (fourth column) movements, fixation/resting (fifth column).

Figure 7.21: Subject 106521 Illustration of estimated temporal patterns (first
row), their power spectral density (second row), spatial patterns (third row), ac-
tivations on training session averaged over epochs (fourth row) and activations on
testing session averaged over epochs (fifth row) obtained with our method. Left
hand (first column), left foot (second column), right hand (third column), right
foot (fourth column) movements, fixation/resting (fifth column).
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Figure 7.22: Subject 108323 Illustration of estimated temporal patterns (first
row), their power spectral density (second row), spatial patterns (third row), ac-
tivations on training session averaged over epochs (fourth row) and activations on
testing session averaged over epochs (fifth row) obtained with our method. Left
hand (first column), left foot (second column), right hand (third column), right
foot (fourth column) movements, fixation/resting (fifth column).

Figure 7.23: Subject 109123 Illustration of estimated temporal patterns (first
row), their power spectral density (second row), spatial patterns (third row), ac-
tivations on training session averaged over epochs (fourth row) and activations on
testing session averaged over epochs (fifth row) obtained with our method. Left
hand (first column), left foot (second column), right hand (third column), right
foot (fourth column) movements, fixation/resting (fifth column).
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7.6 Conclusion

In this chapter, we have investigated an approach for M/EEG convolutional dic-
tionary learning with the L0 constraint. The model assumes that multivariate
M/EEG signals can be represented as a sum of rank-1 multivariate signals asso-
ciated with individual brain sources and noise. Each rank-1 signal corresponds to
an outer product of a topographic map and a temporal course. Under the as-
sumption that characteristic temporal waveforms are of transient and recurrent
nature, each temporal course is modeled as a convolution between sparse vector
with activations (Dirac impulses) and characteristic temporal waveform. It is also
assumed that the waveforms always appear with the same polarity, therefore the
sparse activation vectors are nonnegative [Dupré la Tour et al. 2018]. During dic-
tionary learning, the sparse activation vectors and the dictionaries are estimated
alternatively, as in standard dictionary learning paradigms. The sparse activa-
tion vectors are estimated in a greedy manner, iteratively via an approach in-
spired by the sparse autoencoders [Makhzani & Frey 2013, Makhzani & Frey 2014,
Luo et al. 2017], IHT [Blumensath & Davies 2008] and MP [Mallat & Zhang 1993]
approaches, adjusted to the convolutional rank-1 spatio-temporal dictionaries.
Updates of the spatial and temporal dictionaries are performed independently
using the adaptive moment estimation (Adam) optimizer [Kingma & Ba 2014].
Since the minimization problem is globally non-convex, we have proposed ini-
tialization strategies that decrease the chances that the optimization process
ends in a local minimum. The approach is compared with the state-of-the-art
MCSC [Dupré la Tour et al. 2018], an approach with the L1 regularization, on the
synthetic and somatosensory MEG dataset. The results demonstrated that our
method is capable of learning dictionaries that on average better correlate with
ground truth, both on noiseless and noisy datasets. This is especially prominent
for the waveforms with wide support, such as sawtooth waveforms. On the other
hand, on average, MCSC yields better estimates of the activation vectors, which is
more prominent for noisy data. Qualitative comparison on the somatosensory MEG
dataset, showed that our approach can learn MEG dictionaries which highly resem-
ble the ones obtained with MCSC and are less correlated between each other. The
qualitative analysis performed on HCP MEG motor task data, where the dictionar-
ies containing only a single pair of atoms, have been learnt from a single session and
independently for each subject, indicates that the proposed approach is capable to
extract motor-task related patterns, which generalize well over an unseen session.
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Executive summary

In this chapter, we present a shallow CNN model for EEG and MEG multivariate
signal classification. In this model, in addition to the rank-1 assumption and model-
ing of time courses as the convolution of sparse activation signals and characteristic
waveforms, to reduce the impact of inter-subject and inter-session variabilities, we
have assumed that the subject’s head can be modeled as a sphere. As traditional
BCI pipelines, the model is composed of feature extraction, selection, and classifica-
tion modules which are presented in Section 8.2. This section also contains details
related to the update of trainable parameters. The model is compared with three
state-of-the-art CNN models for passive and active BCI problems on EEG mental
workload and MEG motor task signal classification.
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8.1 Theory

Apart from being distorted by a significant noise, the main challenge of the anal-
ysis of the M/EEG signals comes from inter-subject and inter-session variabil-
ity. The former arises from different head geometries between subjects, but also
due to different functional properties of the cortex [Saha & Baumert 2020]. Inter-
session variability is a consequence of the difference in sensor positions between
sessions, but an additional variability might also come from the alertness of the
subject. This problem has been most effectively addressed using transfer learning
paradigms [Lotte et al. 2018]. In this work, we propose a regularization of the spa-
tial and temporal feature space in order to reduce inter- and intra-subject variabil-
ities. To achieve this, we have assumed that a head can be modeled with a sphere.
Spherical head and brain tissue modeling have been used in the forward modeling
solutions [Hämäläinen et al. 1993, Mosher et al. 1999, Vatta et al. 2010], in the in-
verse problems of source reconstruction [Pascual-Marqui et al. 1988], to improve the
spatial resolution of EEG signals [Srinivasan 1999], etc. Given the spherical head
model, the spatial topographic maps {uk}Kk=1 can be expressed as

uk =

B∑
l=0

l∑
m=−l

Ylmûlmk (8.1)

where Ylm ∈ RN is a discrete real SH basis element of degree l and order m and
ûlmk its associated spectral coefficient. B is the signal’s bandwidth. NB = (B + 1)2

is the number of the SH basis elements. Similarly, the temporal waveforms {vk}Kk=1

can be expressed in terms of a discrete cosine basis as

vk[t] =
F∑
f=0

af√
τ
cos(πf

t+ 1

τ
)v̂fk (8.2)

where t = [0, 1, ..., τ − 1]T , a0 = 1 and af =
√
2 if f ̸= 0. F is the signal’s

bandwidth that must satisfy F ≤ τ − 1. In the context of MEG and EEG
analysis discrete cosine (DC) basis have been used for feature extraction in
classification pipelines in [Bairy et al. 2015, Birvinskas et al. 2012], for data com-
pression [Antoniol & Tonella 1997] and artifact removal [Yong et al. 2009]. In a
matrix-vector notation equations 8.1 and 8.2 can be written as

uk = Y ûk (8.3) vk = Cv̂k (8.4)

where Y ∈ RN×NL contains the SH basis elements and C ∈ Rτ×(F+1) the
discrete cosine basis elements in columns, ûk ∈ RNL and v̂k ∈ RF+1 are the
corresponding spectral coefficients. Finally, a multivariate signal X from Eq. 6.3
can be modeled as

X =

K∑
k=1

[Y ûk] · (zk ∗ [Cv̂k])T +N . (8.5)
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8.2 Method

In this work, we propose a shallow CNN with rank-1 spatial and temporal filters
represented in the terms of SH and DC basis, respectively. The architecture of
the model is illustrated in Figure 8.1. As in a majority of the BCI classification
pipelines [Lotte et al. 2007], we can identify a feature extraction step, a feature
selection, and a feature classification step. Although termed as convolutional, in
reality, a CNN uses cross-correlation with trainable filters.

Figure 8.1: Illustration of the shallow rank-1 CNN architecture

8.2.1 Feature extraction

If an M/EEG signal X can be modeled as in Eq. 8.5, its cross-correlations with the
spatial and the temporal patterns {Y ûk}Kk=1 and {Cv̂k}Kk=1 represent a measure of
their presence in X. Cross-correlation of X with one spatial pattern Y ûk can be
written as

yk = [Y ûk]
TX (8.6)

where yk ∈ RT . Given M/EEG signals from multiple subjects and/or sessions {Xi},
due to differences in sensor positions, for each session one matrix Yi containing the
SH basis elements needs to be defined. To reduce the computational time and
memory requirements during training, we map all the signal samples {Xi} to a
common Fourier space as

X̂i = Y †
i Xi (8.7)

where Y †
i ∈ RNL×N is the pseudo-inverse of the matrix Yi. To solve this problem we

have used the least mean square solution penalized with a Laplace-Beltrami term
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as
Y †
i = (Y T

i Yi + λRLB)
−1Y T

i (8.8)

where RLB is the Laplace-Beltrami regularization term and λ is a parameter which
controls the amount of regularization [Descoteaux et al. 2007]. This solution penal-
izes more high frequency components, which is desirable as they are more affected
by the inter-session and inter-subject variability of the sensor positions. Using equa-
tions 8.7 and 8.8, for a sample Xi we re-define cross-correlation from Eq. 8.6 with a
spatial pattern uk as

ŷi,k = ûTk Y
†
i Xi. (8.9)

Cross-correlation along the temporal axis with a temporal pattern Cv̂k is defined
as

ẑi,k = [JCv̂k] ∗ ŷi,k (8.10)

where J ∈ Rτ×τ is a reversal matrix (ones along antidiagonal) and ẑi,k ∈ RT−τ+1.
For each sample Xi, cross-correlations as defined in Eqs. 8.9 and 8.10 are performed
with K pairs of spatial and temporal patterns represented in the terms of SH and
DC basis as {ûk, v̂k}Kk=1, yielding feature vectors {ẑi,k}Kk=1.

8.2.2 Feature selection and normalization

Given the feature vectors {ẑi,k}Kk=1, nonlinear feature selection is performed using
ReLU and max-pooling operator. ReLU is a simple element-wise thresholding op-
erator which acts as

ai,k[t] = ReLU
(
ẑi,k[t] + bk

)
=

{
ẑi,k[t] + bk if ẑi,k[t] + bk ≥ 0

0 if ẑi,k[t] + bk < 0
(8.11)

where t ∈ {0, 1, ..., T − τ + 1} and bk is a trainable bias term. If we assume that
the polarity of brain activity is always the same as in [Dupré la Tour et al. 2018],
discarding negative cross-correlation coefficients with ReLU is justified.
In general, the task of a pooling operator is to summarize the input signal over
small patches and to provide a feature map of a reduced resolution to the follow-
ing layer. This is usually achieved by summarizing each patch with its average
or maximum value. In our work, we have used the max-pooling operator as it
goes along with the assumption that relevant brain activities occur sparsely over
time [van Ede et al. 2018]. Given an input vector ai,k and max-pooling size M ,
output is obtained as

si,k[t] = max
{
ak,i[t

′] : t ·M ≤ t′ < (t+ 1) ·M
}

(8.12)

where t ∈
{
0, ...,

⌊
T−τ+1
M

⌋
− 1}.

Since the spatial and temporal patterns {ûk, v̂k}Kk=1 may poorly correlate with the
input signal, the corresponding feature maps {si,k}Kk=1 might be very skewed. If for
two input samples Xi and Xj belonging to different classes, feature vectors si,k and
sj,k are very similar, it means that the pair of spatial and temporal filters ûk, v̂k
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does not have a high discrimination power. Thus, during training, these weights
will not be significantly updated. To avoid this, we have used batch normaliza-
tion layer [Ioffe & Szegedy 2015]. Batch normalization layer shifts and scales input
feature maps as follows

ŝi,k =
si,k − µk√
σ2k + ε

(8.13)

where mean µk and standard deviation σk differ in the training and the testing
phase. During the training phase, features are normalized by their own mean and
standard deviation. In the testing phase, features are normalized by the mean and
standard deviation estimated during the training phase using moving averages over
training data.

8.2.3 Feature classification

Once the feature vectors {ŝi,k}Kk=1 are extracted, they are concatenated into feature
vector ŝi = [ŝT1,i, ..., ŝ

T
K,i]

T . Classification is performed with a single fully connected
layer followed by softmax as

ĉi =
eDŝi+b

||eDŝi+b||1
(8.14)

where D ∈ RQ×(K⌊T−τ+1
M

⌋) and b ∈ RQ, with Q being the number of classes.

8.2.4 Training

During the training phase, trainable spatial and temporal patterns {ûk, v̂k}Kk=1 for
the feature extraction, biases {bk}Kk=1 used in the feature selection and the classifica-
tion parametersD and b are updated via backpropagation by minimizing categorical
cross-entropy loss defined as

L
(
{Xi, ĉi}Ni=1

)
= − 1

N

N∑
i=1

cTi log2(ĉi) (8.15)

where ci ∈ RQ is the ground truth vector represented in one-hot format and N is
the batch size. During the training phase, moving mean and variance in the batch
normalization layer for the testing phase are updated as follows

µit+1
k = mµitk + (1−m)µbatchk (8.16) σ2k

it+1
= mσ2k

it
+ (1−m)σ2k

batch (8.17)

where it refers to the iteration and m is the momentum [Ioffe & Szegedy 2015]. In
order to reduce the over-fitting, during the training phase a drop-out layer is used
before the fully connected layer [Srivastava et al. 2014]. Given the feature maps
{ŝi}, in each training iteration, the drop-out layer randomly sets a fraction of their
entries to zero.
Classifier gradients
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In a backpropagation step, the gradients of the loss L with respect to the matrix
D and biases b are given by

∂L
∂D

=
1

N

N∑
i=1

∂L
∂ĉi

∂ĉi
∂D

= − 1

N

N∑
i=1

ŝ0i (ci − ĉi)
T (8.18)

and
∂L
∂b

=
1

N

N∑
i=1

∂L
∂ĉi

∂ĉi
∂b

= − 1

N

N∑
i=1

(ci − ĉi)
T (8.19)

where ŝ0i corresponds to the vector ŝi after drop-out layer is applied.
Feature extractor gradients
Gradients of the loss L with respect to the bias bk used in the feature selection step
are obtained as

∂L
∂bk

=
1

N

N∑
i=1

∂L
∂ĉi

∂ĉi
∂ŝ0i

∂ŝ0i
∂ŝi

∂ŝi
∂ŝi,k

N∑
j=1

∂ŝi,k
∂sj,k

∂sj,k
∂aj,k

∂aj,k
∂bk

=
1

N

N∑
i=1

(ci − ĉi)
TDT dp

i T c
k

N∑
j=1

∂ŝi,k
∂sj,k

T p
j,kH(aj,k)

(8.20)

where T c
k is an operator (mask) which performs the concatenation of the vectors

{ŝi,k}Kk=1 to ŝi and T dp
i is an operator (mask) which performs the drop-out operation

on the vector ŝi producing the vector ŝ0i . The derivative of the batch normalization

function ∂ŝi,k
∂sj,k

∈ R
⌊

T−τ+1
M

⌋
×
⌊

T−τ+1
M

⌋
is defined as

∂ŝi,k
∂sj,k

[p, q] =



(
N
⌊

T−τ+1
M

⌋
−1
)(
σ2
k+ε

)
−
(
si,k[p]−µk

)(
sj,k[q]−µk

)(
N
⌊

T−τ+1
M

⌋
−1
)√

σ2
k+ε

3 if i = j and p = q

−
(
σ2
k+ε

)
−
(
si,k[p]−µk

)(
sj,k[q]−µk

)(
N
⌊

T−τ+1
M

⌋
−1
)√

σ2
k+ε

3 otherwise

.

(8.21)

T p
j,k is the operator (mask) which performs the max-pooling from the vector ai,k to

the vector si,k. H denotes the Heaviside function, which is the gradient of the ReLU
function.
The gradients of L with respect to the temporal filters {v̂k}Kk=1 used in the feature
selection step are obtained as

∂L
∂v̂k

=
1

N

N∑
i=1

∂L
∂ĉi

∂ĉi
∂ŝ0i

∂ŝ0i
∂ŝi

∂ŝi
∂ŝi,k

N∑
j=1

∂ŝi,k
∂sj,k

∂sj,k
∂aj,k

∂aj,k
∂v̂k

=
1

N

N∑
i=1

(ci − ĉi)
TDT dp

i T c
k

N∑
j=1

∂ŝi,k
∂sj,k

T p
j,k

[
H(aj,k)⊙ (JC ∗ yj,k)

] (8.22)
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where JC ∗ yj,k denotes the column-wise correlation between the discrete cosine
basis elements which are organized in columns of the matrix C and yj,k. ⊙ denotes
column-wise and element-wise multiplication.
The gradients of L with respect to the spatial filters {ûk}Kk=1 used in the feature
selection step are obtained as

∂L
∂ûk

=
1

N

N∑
i=1

∂L
∂ĉi

∂ĉi
∂ŝ0i

∂ŝ0i
∂ŝi

∂ŝi
∂ŝi,k

N∑
j=1

∂ŝi,k
∂sj,k

∂sj,k
∂aj,k

∂aj,k
∂ûk

=
1

N

N∑
i=1

(ci − ĉi)
TDT dp

i T c
k

N∑
j=1

∂ŝi,k
∂sj,k

T p
j,k

[
H(aj,k)⊙

(
JCv̂k ∗ (Y †

j Xj)
T
)]
(8.23)

where JCv̂k ∗ (Y †
i Xi)

T denotes the column-wise correlation between the temporal
filters vk = Cv̂k and the input data, whose spatial dimension is transformed into
the Fourier domain (Y †

i Xi)
T .

8.2.5 Validation and test

During the validation and the testing phases, the batch normalization is performed
using the mean and variance estimated during the training phase as in equations 8.16
and 8.17. Also, during these phases, the drop-out layer is deactivated. The valida-
tion accuracy is computed as

av =
1

Nv

Nv∑
i=1

cTi argmax1{ĉi} (8.24)

where argmax1 denotes a function that assigns 1 to the input’s maximum and 0

to other entries and Nv is the number of validation samples. Table 8.1 provides
the number of multiplications for the different operations used in the classification
process of one sample.

Table 8.1: Number of multiplications per different steps of the entire classification
process for one input sample.

Operation Number of multiplications
Spatial Fourier transform Eq. 8.7 NL ×N × T

Spatial correlation Eq. 8.9 K ×NL × T

Temporal correlation Eq. 8.10 K × (τ × F + τ × (T − τ + 1))

Batch normalization Eq. 8.13 K ×
⌊
T−τ+1
M

⌋
Feature classification Eq. 8.14 Q×K ×

⌊
T−τ+1
M

⌋
+Q× (1 + 3(NTy − 2))

* NTy corresponds to the Taylor series degree used to compute exponentials.
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8.3 Experiments

We have compared our method with three state-of-the-art methods, namely Deep-
ConvNet and ShallowConvNet proposed by [Schirrmeister et al. 2017] and EEGNet
proposed in [Lawhern et al. 2018]. Methods are compared on two datasets - on the
problem of mental workload classification from EEG signals for a passive BCI and
on the classification of motor-task MEG data. For each dataset, two labeled ses-
sions per subject are available. Since in the BCI applications it is common that
the algorithm is tuned to the recordings of the user, methods are compared for two
experimental setups:

• Subject blind experiment : subjects used in training and validation do not exist
in the testing set.

• Subject aware experiment : sessions used in training and validation do not exist
in the testing data.

8.3.1 Databases

Mental workload EEG dataset for passive BCI

We used the open mental workload EEG dataset provided in the "Pas-
sive BCI Hackathon" organized during the Neuroergonomics 2021 confer-
ence [Hinss et al. 2021]. The dataset contains EEG recordings of 15 subjects
acquired over three sessions where participants were asked to perform a Multi-
Attribute Task Battery-II (MATB-II) task developed by NASA. Since the labels
of the third session are not publicly available, we have used only two sessions in
our experiments. In each session, participants were asked to perform four sub-
tasks (system monitoring, tracking, resource management, and communications)
to create three mental workload difficulties, which are recorded during five minute
long sessions. They are labeled with ’easy’, ’medium’, and ’difficult’ labels. In the
’easy’ condition, the participants performed tracking and system monitoring, in the
’medium’ condition the subjects were asked to perform resource management in ad-
dition to ’easy’ tasks, and in the ’difficult’ condition communication task is included
in addition to the ’easy’ and ’medium’ tasks [Roy et al. ].
The number of available EEG channels is 61 and the sampling frequency 500 Hz.
Each session is segmented into 447 2s long epochs. Signals are band-pass filtered
with FIR filters with cut-off frequencies 1 Hz and 40 Hz. Biophysical artifacts are
removed with second order blind identification algorithm [Belouchrani et al. 1997]
and the signals are downsampled to the sampling rate of 250 Hz.
In our experiments, we have subsequently downsampled the signals by a factor of
3, given that the signals have been low-pass filtered with a cut-off frequency of 40
Hz. Thus, the sampling frequency is approximately 83 Hz. Signals are scaled with
the factor 5 · 104 to avoid dead neurons. For the subject blind setup, we have used
9 subjects for training, 3 for validation, and 3 for testing. Correspondingly, for the
subject aware experiment, we have used one session from each of the 3 subjects for
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validation and from each of the 3 subjects for testing, while the remaining sessions
were used for training. The split into the train, valid, and test is randomly repeated
three times.

Motor-task MEG dataset

The motor-task MEG dataset is part of the open HCP [Van Essen et al. 2012]
dataset. The dataset contains MEG recordings of 61 subjects acquired over two
sessions where participants were guided by visual cues to move either the right
hand, left hand, right foot, or left foot, or to stay still. Each session was composed
of 42 blocks, where 10 blocks were resting state blocks and 32 blocks were move-
ment blocks (8 blocks per movement). Each movement block contains 10 movements
guided by a visual cue at the beginning of the block, which lasts 3000ms and sug-
gests which movement is to be performed, and nine visual cues in the form of fleshes,
which last 150ms and guide the subject to perform the movement again. The vi-
sual cues are separated by the periods of black screen of 1050ms, during which the
subjects perform the indicated movement. The number of MEG channels is 248.
The sampling frequency is 2034.52 Hz. Signals are segmented into 2.4s long epochs,
centered with respect to the onset of the visual flesh. Therefore, each epoch contains
two movements.
To preprocess the raw MEG signals, we have used the preprocessing pipeline from
the MNE-HCP library [Gramfort et al. 2013b]. It included reference correction, fil-
tering with a bandpass Butterworth filter of order 4 with cutoff frequencies of 0.5 Hz
and 60 Hz, removing artifacts using ICA, and interpolating missing or bad channels.
In our experiments, we have subsequently downsampled the signals by a factor of
12, given that the signals are low-pass filtered with a cut-off frequency of 60 Hz.
Thus, the sampling frequency is ∼ 170 Hz. For stability of the model, signals are
scaled with the factor 5 · 1012. In the subject blind setup, we have used 20 subjects
for training, 10 for validation, and 31 for testing. In the subject aware experiment
setup, one session from each of the 10 subjects was used for validation and one
session from each of the 31 subjects for testing, while the remaining sessions were
used for training.

8.3.2 Implementation details

All models are implemented with the tensorflow library [Abadi et al. 2016]. The
loss function of all models is categorical cross entropy and they are trained using
Adam optimizer [Kingma & Ba 2014].
In the experiments with motor task MEG data, the models are trained over 200
epochs with batch size 64 and an initial learning rate of 0.001. If the difference be-
tween validation classification accuracy averaged over two sequential blocks of three
epochs is greater than 10−4, the learning rate is reduced by a factor of 0.9. Since the
number of trials belonging to fixation/resting state is higher compared to the other
four classes, at each epoch 1280 samples are randomly selected from each of the
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five classes over the entire training subset. In each epoch, there are 100 iterations.
The spatial component of the signals is transformed to the Fourier domain using
the pseudo-inverse of the SH basis as in Eq. 8.7 obtained with a Laplace-Beltrami
regularization as in Eq. 8.8 and a regularization weight λ = 0.001. The spatial com-
ponent bandwidth B is varied between 6 and 12. This transformation reduces the
spatial dimensionality from 248 channels to NB ∈ {49, 81, 121, 144} SH coefficients,
for bandwidths B ∈ {6, 8, 10, 12}, respectively. The length of the temporal filters
vk is 85 samples which correspond to approximately 0.5s. They are represented in
terms of DCT coefficients as in Eq. 8.4. The maximum frequency of the DC basis
elements used to represent the temporal filters is varied between F ∈ {10, 20, 30, 40}
Hz. Pooling step used to select features as in Eq. 8.12 is M = 10.
In the experiments with mental workload EEG data, the models are trained over
100 epochs with a batch size of 64 and an initial learning rate of 0.0005. If the
difference between validation classification accuracy averaged over two sequential
blocks of three epochs is greater than 10−4, the learning rate is reduced by a factor
of 0.9. As the classes in this dataset are balanced, the models are trained on the en-
tire training dataset. As in the experiment with MEG data, the SH coefficients are
estimated using a Laplace-Beltrami regularization with λ = 0.001. Due to a lower
number of sensors and a lower signal-to-noise ratio, in the case of the EEG signals,
the spatial component bandwidth is varied between 2 and 4. This transformation
reduces the spatial dimensionality from 61 channels to NB ∈ {9, 16, 25} SH coef-
ficients, for bandwidths B ∈ {2, 3, 4}, respectively. In this experiment, the length
of the temporal filters vk is 42 samples which also corresponds to approximately
0.5s and the maximum frequency of the DC basis elements used to represent the
temporal filters is varied between F ∈ {5, 10, 15} Hz. Pooling step used to select
features as in Eq. 8.12 is M = 20.
To select the hyper-parameters of the models, namely the bandwidths B of the spa-
tial patterns and the maximal frequency F of DC basis elements used to represent
temporal patterns, and the number of rank-1 kernels K, we have firstly analysed
validation curves. Figure 8.2 illustrates validation curves for subject blind and sub-
ject aware motor task MEG experiments, for a fixed number K = 50 of kernels and
varying bandwidths B and maximal DC frequencies F . We can notice that in both
experimental setups, and for all spatial bandwidths B, limiting F to 10 Hz results in
a lower validation accuracy. This can be explained by the fact that µ waves, which
are present in the motor cortex and are suppressed when a motor task is performed,
have a frequency range of 8−12 Hz and therefore require DC basis elements of higher
frequencies to be approximated. For F ≥ 10 Hz, we can observe that the validation
curves corresponding to B = 6 are on average lower than the curves corresponding
to B ≥ 6. This is more prominent in subject aware experimental set-up. This is a
consequence of a higher inter-subject variability of the spatial components compared
to the intra-subject one. The best model with the lowest number of parameters, in
the subject blind experiment, is the model with B = 8 and F = 30. In the subject
aware this is the model with B = 10 and F = 30. For the selected hyper-parameters
B and F , we have further analyzed validation curves, when the number of rank-1
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Figure 8.2: Validation classification accuracies for the motor task MEG classifica-
tion problem for fixed number of rank-1 kernels K = 50 and different spatial and
temporal kernel bandwidths B and F , and corresponding number of trainable pa-
rameters.

kernels K increases. In Figure 8.3, validation curves are depicted for different values
of K ∈ {50, 100, 200, 300, 400, 500}. In the subject blind setup, we can notice that
increasing the number of kernels does not necessarily and significantly improve the
validation accuracy. On the other hand, consistent improvements can be observed in
the subject aware experiment. This indicates that in addition to patterns common
to all subjects, the more room (kernels) a model is given, the more subject-specific
patterns it is able to learn.
The mental workload EEG dataset is smaller, the signal-to-noise ratio of EEG is
lower and the number of sensors is smaller, thus training a neural network model
on such data is quite challenging. To select hyper-parameters, the experiments are
repeated three times for three random splits of the dataset into training, validation,
and testing subsets. In Figures 8.4 and 8.5, different lines styles (full, ’–’ and ’.-’)
correspond to different random splits. Plots in Figure 8.4 illustrate validation curves
for the subject blind and the subject aware mental workload EEG experiments, split-
wise and averaged, for a fixed number of kernels K = 50 and varying bandwidths
B and maximal frequency F . Firstly, we can observe that increasing spatial band-
widths B results in more dispersed validation curves over different random splits
of the dataset and can lead to overfitting. This is especially visible for B = 4 in
the subject aware validation curves. In the subject blind experiment we can notice
that on average, validation curves over all spatial bandwidths B and the maximal
DC frequencies F are rather close, where the models with F = 5 result in slightly
higher validation accuracy. On the other hand, in the subject aware experiments
we can notice that models with F = 5 give the lowest validation accuracy and the
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Figure 8.3: Validation classification accuracies for motor task MEG classification
problem for different number of kernels K and their fixed spatial and temporal
bandwidths L and F , and corresponding number of trainable parameters.

ones with F = 10 the highest. To select the best model we have used the averages
over random splits of the validation accuracies in the last epoch. In the subject
blind experiment, the model with B = 2 and F = 5 is selected as the best one,
while in the subject aware experiment, the best one is the model with B = 2 and
F = 10. For the selected hyper-parameters B and F , we have further analyzed the

Figure 8.4: Validation classification accuracies for mental workload EEG classifica-
tion problem for fixed number of kernels K = 50, and different spatial and temporal
kernel bandwidths L and F , and corresponding number of trainable parameters.
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validation curves for an increasing number of kernels K. In Figure 8.5, validation
curves are depicted for different values of K ∈ {50, 100, 200, 300, 400, 500, 1000}. In
both, subject blind and subject aware setups, we can notice that an increase in the
number of kernels, on average, improves validation accuracy. Contrary to the MEG
motor task experiment, where these improvements are more significant in the subject
aware setup, here that is not the case. This might indicate that the inter-session
variability in the case of mental workload EEG signals is more significant and that
the improvement in validation accuracy between subject blind and subject aware
model training is rather a consequence of the increase of training data than in the
learning of subject specific patterns.

Figure 8.5: Validation classification accuracies for mental workload EEG classifica-
tion problem for different number of kernels K and their fixed spatial and temporal
bandwidths L and F , and corresponding number of trainable parameters.

For the comparison of methods on MEG motor task classification problem, we have
selected a small and a large model. For the subject blind experiment the parameters
of the small model are B = 8, F = 30 and K = 50 and of the large B = 8, F = 30

and K = 300. For the subject aware experiment the parameters of the small model
are B = 10, F = 30 and K = 50 and of the large B = 10, F = 30 and K = 300. For
the comparison of methods on EEG mental workload classification problem, we have
selected only a large model. For the subject blind experiment the parameters are
B = 2, F = 5 and K = 1000 and for the subject aware experiment the parameters
are B = 2, F = 10 and K = 1000.
Selection of the hyper-parameters used in compared methods, namely DeepConvNet
and ShallowConvNet [Schirrmeister et al. 2017] and EEGNet [Lawhern et al. 2018]
is provided in Appendix D.

8.4 Results and discussions

The results are compared quantitatively in terms of confusion matrices and classi-
fication accuracy. Given the importance of the model’s speed and memory require-
ments for real-time applications with portable processors in BCI, the models are
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also compared in terms of the number of trainable parameters and the number of
multiplications.
In Figures 8.6 and 8.7 confusion matrices are given for the subject blind and subject
aware MEG motor task experiments averaged over five repetitions of the experi-
ments. We can observe, that apart from the fixation class, all models have a high
sensitivity (true positive rate) with respect to the right hand movement class. On the
other side, classification of the right foot movements appears to be the most challeng-
ing one and they are mostly misclassified into the left foot and the right hand classes.
Compared with the subject blind training, subject aware training most significantly
impacts the classification of the right foot movements by reducing misclassifications
into the right hand and the fixation classes, while the misclassification into the left
foot class still remains. The subject aware training also significantly improves the
classification of the left hand movements by reducing the misclassifications into the
left foot, the right hand, and the fixation classes. Comparing the confusion matri-
ces in both experiments, we can notice that our model with a higher number of
parameters exhibits higher sensitivity to the left hand class. In the subject blind
experiments, sensitivity is higher also with respect to the right hand movement, but
lower for the left foot class. In the subject aware experiments, our model has higher
sensitivity for the right foot class, while for the left foot class sensitivity of EEGNet
is significantly higher than with other models.

Figure 8.6: Confusion matrices for DeepConvNet, ShallowConvNet, EEGNet,
Our(small) and Our(large) models obtained in MEG motor task the subject blind
experiments averaged over five experiment repetitions.

In Tables 8.2 and 8.3, classification accuracy is compared for the subject blind and
the subject aware MEG motor task experiments for five repetitions of the experi-
ments. In the subject blind experiments, we can observe that our model with a small
number of trainable parameters can achieve the same performance as significantly
larger models DeepConvNet, ShallowConvNet and EEGNet. The larger model, while
still having a significantly lower number of parameters compared to DeepConvNet
and ShallowConvNet, leads to an average improvement of at least 1.5%. In the sub-
ject aware experiments, we can notice that our small model does not have enough
capacity to capture subject specific patterns, while the larger model results in a
slight improvement of the classification accuracy compared to other models.
Figure 8.8 shows a comparison of the classification accuracies on the testing and
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Figure 8.7: Confusion matrices for DeepConvNet, ShallowConvNet, EEGNet,
Our(small) and Our(large) models obtained in MEG motor task subject aware ex-
periments averaged over five experiment repetitions.

Table 8.2: Classification accuracy for DeepConvNet, ShallowConvNet, EEGNet,
Our(small) and Our(large) models obtained in the MEG motor task subject blind
experiments for five experiment repetitions. Chance level is ∼ 0.25

Experiment subject blind
Model 1st run 2nd run 3rd run 4th run 5th run

DeepConvNet 0.576 0.576 0.573 0.575 0.573
ShallowConvNet 0.576 0.578 0.575 0.575 0.576

EEGNet 0.560 0.567 0.561 0.566 0.569
Our (small) 0.585 0.574 0.578 0.579 0.580
Our (large) 0.595 0.593 0.590 0.588 0.596

Table 8.3: Classification accuracy for DeepConvNet, ShallowConvNet, EEGNet,
Our(small) and Our(large) models obtained in MEG motor task subject aware ex-
periments for five experiment repetitions. Chance level is ∼ 0.25

Experiment subject aware
Model 1st run 2nd run 3rd run 4th run 5th run

DeepConvNet 0.684 0.686 0.682 0.680 0.684
ShallowConvNet 0.678 0.674 0.669 0.672 0.671

EEGNet 0.677 0.678 0.678 0.678 0.683
Our (small) 0.651 0.652 0.656 0.656 0.658
Our (large) 0.693 0.690 0.689 0.691 0.692

validation data versus the number of parameters and the number of multiplications
required for the classification of one data sample. The number of multiplications
only counts multiplications in convolutional and batch normalization layers (not
multiplications required in nonlinear layers). Since for the models that are selected
as the best ones, based on validation accuracy of one run of the experiments, model
training is repeated four more times, for these models we have provided average
accuracy (depicted with full circles) and accuracy for each experiment run (depicted
with vertical dash lines). Firstly, we can observe that in the subject blind experi-
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ments, our model achieves a high classification accuracy with a significantly lower
number of trainable parameters than DeepConvNet and ShallowConvNet, and with
a comparable number of parameters for EEGNet. In the subject aware training, dif-
ferences in classification accuracy between our models and EEGNet models are less
significant for a comparable number of parameters. When comparing the number of
multiplications, we can notice that all comparing models require at least 10 times
more multiplications to achieve accuracy comparable to the one obtained with our
models. The reason for such a high number of multiplications in DeepConvNet, Shal-
lowConvNet and EEGNet lies in the way the first convolutional layer with separable
and depthwise correlations is defined. Assuming K temporal filters and N channels
of an input MEG signal, these models perform a correlation of each channel with
each temporal filter. This means that for a filter of length τ and MEG signal length
T , there are N × K × (T − τ + 1) × τ multiplications. Further, in DeepConvNet
and ShallowConvNet, for each of the K temporal filters, there are K spatial filters
of length N , so the number of multiplication is N ×K × (T − τ + 1)×K. On the
other side, for EEGNet, for each one of the K temporal filters, there are D spatial
filters, thus the number of multiplications is N ×K× (T − τ +1)×D. On the other
hand, in our model, assuming a spatial bandwidth of L, to transform the spatial
component of the input MEG signal to Fourier domain the number of multiplica-
tions is (L + 1)2 × T × N . Contrary to the other models, we first perform spatial
correlations with K spatial filters which require (L + 1)2 × T ×K multiplications.
To transform the temporal filters from DC coefficients of maximal frequency F to
signal domain K×F × τ multiplications are required. For each one of the K spatial
filters, there is one temporal filter, thus the number of multiplications required for
correlations is K × (T − τ + 1)× τ .

Furthermore, we have quantitatively compared results on the problem of EEG men-
tal workload classification. In Figures 8.9 and 8.10, confusion matrices are provided
for the subject blind and the subject aware experiments averaged over three random
splits of the entire dataset and five repetitions for each of the split. In both ex-
periments, we can observe that models exhibit high sensitivity to the Easy class.
In the subject blind experiment, we can see that our model misclassifies Easy sam-
ples mostly in Medium class, while the other models tend to misclassify them into
Difficult class. It has the highest sensitivity with respect to the Medium class, but
the lowest to the Difficult class, with a difference that the majority of misclassified
samples are classified in Medium class in contrast to DeepConvNet and EEGNet. In
the subject aware experiments, our model has the highest sensitivity with respect
to the Easy class, while the sensitivity is noticeably lower for Medium class com-
pared to ShallowConvNet. In Tables 8.4 and 8.5, classification accuracy is compared
for the subject blind and subject aware EEG mental workload experiments for five
repetitions of the experiments averaged over three dataset splits. In subject blind ex-
periment, we can observe that classification accuracies of ShallowConvNet and Our
model are comparable and slightly better than ones obtained with DeepConvNet
and EEGNet. On the other hand, the differences between ShallowConvNet and Our
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Figure 8.8: Comparison of classification accuracy on test and validation data with
respect to the number of trainable parameters and the number of multiplications
for the MEG motor task subject blind and subject aware experiments.

on one side and DeepConvNet and EEGNet on the other side are more significant
in the subject aware experiment setup. Finally, it is important to note that in the
experiments conducted on EEG mental workload classification problem, although
the sizes of our models were significantly lower in comparison to DeepConvNet sizes
of the EEGNet models were more than two times smaller than ours. In the subject
blind experiments the number of parameters was 4 823 403, 161 003, 14 851, and
36 003 for DeepConvNet, ShallowConvNet, EEGNet and our model, respectively. In
the subject aware experiments the number of parameters were 1 889 903, 44 253,
16 163, and 41 003 for DeepConvNet, ShallowConvNet, EEGNet and our model,
respectively.
Although these classification accuracies seem very low, they are comparable to the
results obtained in a challenge Passive BCI Hackathon [Roy et al. ], where the win-
ning model [Pang et al. 2021] has achieved accuracy 54.26% with a difference that
amount of training data was higher compared to the data used in these analyses
(in the challenge, two sessions for 15 subjects had labels and the labels of the third
session have been hidden).
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Figure 8.9: Confusion matrices for DeepConvNet, ShallowConvNet, EEGNet and
Our models obtained in EEG mental workload task subject blind experiments aver-
aged over five experiment repetitions and over three random splits of the dataset.

Figure 8.10: Confusion matrices for DeepConvNet, ShallowConvNet, EEGNet and
Our models obtained in EEG mental workload task subject aware experiments av-
eraged over five experiment repetitions and over three random splits of the dataset.

Table 8.4: Classification accuracy for DeepConvNet, ShallowConvNet, EEGNet and
Our models obtained in EEG mental workload task subject blind experiments for
five experiment repetitions averaged over three random splits of data. Chance level
is ∼ 0.33

Experiment subject blind
Model 1st run 2nd run 3rd run 4th run 5th run

DeepConvNet 0.510 0.496 0.512 0.504 0.502
ShallowConvNet 0.520 0.520 0.522 0.510 0.531

EEGNet 0.494 0.504 0.508 0.508 0.516
Our 0.518 0.508 0.514 0.513 0.517

8.5 Conclusion

In this chapter, a shallow CNN model for multivariate EEG and MEG signals classi-
fication is presented. Although it can be considered as an approach from DL family
of approaches, its architecture is rather shallow and follows the traditional pipeline
of the BCI classifiers, where we can distinguish a module for feature extraction, fea-
ture selection and feature classification. As introduced in Chapter 6, multivariate



8.5. Conclusion 167

Table 8.5: Classification accuracy for DeepConvNet, ShallowConvNet, EEGNet and
Our models obtained in EEG mental workload task subject aware experiments for
five experiment repetitions averaged over three random splits of data. Chance level
is ∼ 0.33

Experiment subject aware
Model 1st run 2nd run 3rd run 4th run 5th run

DeepConvNet 0.486 0.475 0.472 0.485 0.476
ShallowConvNet 0.556 0.544 0.550 0.534 0.574

EEGNet 0.495 0.493 0.517 0.504 0.514
Our 0.556 0.554 0.553 0.559 0.563

M/EEG signals can be represented as a sum of rank-1 signals and noise. Assuming
the transience and recurrence of the characteristic temporal waveforms within the
temporal course of one source, one such course can be modeled as a convolution
between sparse activation vectors and characteristic waveform. If the waveforms
appear with the same polarity, sparse vectors are nonnegative. All these concepts
of forward M/EEG modeling have been used in dictionary learning presented in
Chapter 7 and in this contribution we have introduced an additional assumption
that aims to reduce inter-session and inter-subject variabilities. Concretely, we have
assumed that a head can be modeled with a sphere, thus the spatial components of
the M/EEG signals can be represented in terms of SH basis. Such representation
allows dimensionality reduction along the spatial dimension making the model more
robust with respect to the inter-session and inter-subject variabilities. Furthermore,
by exploiting the fact that a brain activity associated with a single source can be
represented by a rank-1 spatio-temporal multivariate signal, we have used in our
model rank-1 trainable weights. Since temporal courses of certain brain activities
spread over certain frequency bandwidths and are distorted by noise, temporal ker-
nels are regularized and represented in terms of discrete cosine basis elements of
lower frequency. In the experiments conducted on the mental-workload EEG data
and motor-task MEG data, we have shown that our models in comparison to the
state-of-the-art CNNs can achieve comparable or better performance in terms of
classification accuracy while requiring less trainable parameters and a lower num-
ber of multiplications making it more suitable for light portable devices. As the
well justified regularization of the spatial and temporal learnable weights incorpo-
rated in shallow CNN leads us to the model of higher generalization power, our
future work could focus on the subject-specific model design which is an important
concept in BCI. Furthermore, although inter-subject and inter-session variabilities
have been addressed via the representation of spatial weights in terms of low passed
SH coefficients, an important problem that will be addressed in our future work is
non-stationarity of the temporal brain courses.





Chapter 9

Conclusions and perspectives

In this thesis, we have investigated convolutional machine learning models tailored
to the properties and well grounded assumptions about the examined structural
and functional neuroimaging data, namely of the dMRI, EEG, and MEG signals.
Aiming to exploit a high learning capacity of the recent machine learning models,
such as CNNs, while being aware of the common data limitations, such as high
inter-subject and inter-session variabilities, low amount of data or their low
resolution, low signal to noise ratio, etc, we have studied the models which are
adapted to the domain and properties of the acquired data. This is achieved by
endowing the models with certain prior knowledge about the data.

In the first part of this thesis, in Chapter 2, we have provided a brief overview of
the functional and structural properties of the human brain which are relevant in
the context of this thesis. Further, details related to the biophysical phenomena
(diffusion of the water molecules in restricted spaces) and dMRI modality, which
together allow probing of the microstructural characteristics of the neural tissues,
are provided. In the same manner, for the functional neuroimaging, we have de-
scribed neural activities occurring in the cerebral cortex which generate measurable
EM fields, how these fields can be measured with EEG and MEG devices and which
properties the signals acquired in such a way exhibit.

dMRI local modeling

In Chapter 3, firstly an overview of the traditional, biophysically inspired, ap-
proaches for dMRI local modeling is provided, namely dMRI PDFs and multi-
compartment microstructure models. The former ones are crucial for the white mat-
ter tractography [Basser et al. 2000] and the latter one showed potential in the anal-
ysis of neurodegenerative diseases [Panagiotaki et al. 2014, De Santis et al. 2017,
Schneider et al. 2017, Broad et al. 2018]. This overview is followed with a detailed
description of the most relevant DL approaches in the context of the local dMRI
analysis, which has brought some progress in this area of research in terms of per-
formance and/or computational efficiency.

Contributions in dMRI local modeling

As the models defined to estimate dMRI PDFs such as fODFs are required to be
rotationally equivariant, the models designed to perform regression or classification
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tasks from dMRI signals, such as microstructure estimation or brain tissue segmen-
tation should be rotationally invariant. Motivated by the rotation equivariance of
the Fourier domain convolutions in spherical CNNs introduced in [Cohen et al. 2018]
and [Esteves et al. 2018], we have proposed two models for dMRI local analysis, for
the signals acquired on a reduced sampling grid, which is clinically more desirable.
They take into account the real and the spherical nature of dMRI signals, their
antipodal symmetry, and the uniform-random distribution of the sampling points
on the q-space shells [Caruyer et al. 2013].
The first model, termed as spherical U-net, with zonal convolutional kernels
as in [Esteves et al. 2018], presented in Chapter 4, has been designed for the
fODF estimation from multi-shell dMRI signals of a single voxel or a 3D patch.
The models are compared with the state-of-the-art single voxel based MSMT-
CSD [Jeurissen et al. 2014] and a DL patch based 3DCNN [Lin et al. 2019] both
on the real and synthetic data in terms of MSE between fODFs and MAE between
the fODF peaks. The results showed that our models are able to successfully incor-
porate neighboring information and in such a way boost the model’s performance,
yielding the lowest reconstruction errors regardless of the number of sampling points,
where more important improvements are achieved for dMRI signals acquired over
low numbers of sampling points (≤ 40) when compared to the single voxel based
models. Comparison in terms of MAE showed that 3D patch based spherical U-nets
bring notable improvement in the voxels containing two populations of axon fibers,
while some improvements in the voxels with single fibers are present only on the
synthetic data, indicating their robustness with respect to noise. Finally, the results
showed that 3D patch based spherical U-net with ∼ 4 times fewer parameters gives
an almost equal performance as the large model, both in terms of MSE and MAE,
indicating a high generalization power the spherical U-net.
As the ReLU nonlinearity applied in the signal domain as in [Cohen et al. 2018,
Esteves et al. 2018] might introduce aliasing and therefore decrease rotation equiv-
ariance of the model, the authors in [Kondor et al. 2018] proposed rotation-
equivariant Fourier domain nonlinearity of quadratic nature realized via the Clebsch-
Gordan transform. Motivated by this, in Chapter 5, we have proposed our second
contribution in the domain of dMRI local analysis, namely Fourier domain spherical
CNNs to tackle the regression problem of microstructure parameter estimation and
classification problem of the brain tissue segmentation. We have designed a model
with zonal convolutional kernels as in [Esteves et al. 2018] and a model with S2 and
SO(3) convolutional kernels as in [Cohen et al. 2018], with the channel-wise S2 and
SO(3) quadratic nonlinearities, respectively, both realized in the Fourier domain
via Clebsch-Gordan transform, inspired by the work of [Kondor et al. 2018]. Since
the classification and regression models should be rotation invariant, we have used
in our models rotation invariant degree-wise power spectrum features as input to a
fully connected network that performs the final inference. As for spherical U-net,
introduced in Chapter 4, we have designed both single voxel and 3D patch based
Fourier domain spherical CNNs. The experiments conducted on the synthetic data,
tackling the problem of the axon bundle count, demonstrated the robustness and ro-
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tation invariance of our models with respect to the aliasing and noise in comparison
to the spherical CNN proposed by [Cohen et al. 2018]. An extensive comparison of
single voxel and 3D patch based DL approaches on the problem of NODDI and SMT
parameter estimation has demonstrated the importance of incorporation of the infor-
mation from the broader neighbourhood, where our 3D patch based Fourier domain
CNN models can be seen as a solution which achieves a trade-off between accuracy,
the required number of learnable parameters and computational time. Further, we
have also shown that our models can be efficiently combined with a planar CNN to
extract rotation invariant intra-voxel and contextual inter-voxel features for brain
tissue segmentation, yielding promising results even with training on only a single
subject.

Perspectives in dMRI local modeling

Although our studies have shown that incorporating prior knowledge about dMRI
signals into CNN models has certain benefits, e.g. requires a lower number of pa-
rameters, for certain problems yields some performance improvement, or is more
time efficient, there is still room to investigate the importance of such domain
specific models. Since in dMRI, the real ground truth of the underlying mi-
crostructures can not be annotated by the medical experts, and synthetic data
can be efficiently generated, it would be very beneficial to design a model able
to learn from synthetic data and generalize well on the real data. The gen-
eralization power of our spherical U-net model for fODF estimation has been
proven to a certain extent in Diffusion Simulated Connectivity (DiSCo) Chal-
lenge [Rafael-Patino et al. 2021], where the model has been trained on the synthetic
data generated by dmipy [Fick et al. 2019] and tested on the phantom data gener-
ated via Monte-Carlo diffusion simulations[Rafael-Patino et al. 2021], therefore in
our future work, it would be interesting to study design of one such model for the
application on the real data. Furthermore, although we have conducted several ex-
periments on a low number of training scans, due to a high spatial resolution of HCP
scans (single scan contains ∼ 800000 voxels) the amount of training voxels is rather
high, therefore it would be interesting to investigate if the scans of lower spatial res-
olution could benefit more from spherical CNN models. The models endowed with
prior knowledge might be also favourable for the analysis of dMRI signals acquired
with different devices and different acquisition protocols. Finally, the models char-
acterized with a higher generalization power could be advantageous for the analysis
of dMRI scans of patients affected by neurodegenerative diseases, as they are less
prone to overfitting to training data.
From the methodological point of view, many concepts could be investigated.
Experiments conducted in Chapter 4, indicate that even if the model is not
endowed with any or all available prior knowledge, with a high amount of
data, missing knowledge can be inferred. Nevertheless, in our future work, we
will investigate if imposing nonnegativity constraint on the estimated fODFs as
in [Bouza et al. 2021, Elaldi et al. 2021], sparsity constraint as in [Elaldi et al. 2021]
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or enforcing fODF to integration to one can further improve performance of our
model. Further in the context of Fourier domain CNNs presented in Chapter 5, al-
though the Fourier domain nonlinearities of quadratic nature are rotationally equiv-
ariant, quadratic nonlinearities are rarely used in DL as their range is not stable,
therefore some of the related perspective work could focus on defining more appro-
priate rotation equivariant nonlinearities, which can also be realized in the Fourier
domain. Finally, to decrease computational expenses of the nonlinearities realized
via the Clebsch-Gordan transform, one of the further steps could be the exploitation
of the sparsity of the Clebsch-Gordan matrices.

EEG and MEG local analysis

In Chapter 6, firstly, a brief introduction to a multivariate EEG and MEG signal
forward modeling is presented, where the measured signals are explained as a sum
of rank-1 multivariate signals associated with the individual active brain sources
and noise [Hari & Puce 2017, Dupré la Tour et al. 2018]. Each rank-1 signal cor-
responds to the outer product of the source’s topographic map and the source’s
temporal course. Further, it is assumed that the temporal course associated with
one source contains recurrent and transient characteristic waveforms, and therefore
it is modeled as the convolution of sparse activation vectors and the characteristic
waveform [van Ede et al. 2018, Dupré la Tour et al. 2018]. This is followed by an
overview of the most relevant areas of research in the field of EEG and MEG in-
verse problems, such as source localization and separation, dictionary learning, and
classification and regression problems. In the section state of the art, firstly, a more
detailed description of the most prominent dictionary learning approaches with a
focus on multivariate sparse convolutional dictionary learning is presented. At the
end, an overview of the most important EEG and MEG classifiers, mainly developed
for BCI applications, with a focus on the most relevant CNN models is presented.

Contributions in EEG and MEG local analysis

Motivated by the modeling of the multivariate EEG and MEG signals as introduced
in Chapter 6 we have proposed two convolutional models, one unsupervised for the
spatio-temporal dictionary learning and other supervised for the multivariate signal
classification.
Inspired by the concepts from convolutional sparse autoencoders with tight weights,
as well as with the convolutional dictionary learning approaches, in Chapter 7,
we have studied a multivariate sparse convolutional dictionary learning approach
with rank-1 spatio-temporal atoms with the activations constrained to be nonnega-
tive as in [Dupré la Tour et al. 2018] and penalized by an L0 norm. Following the
standard dictionary learning paradigm, the sparse activation vectors and the dic-
tionaries are estimated alternatively. The sparse activation vectors are estimated in
a greedy manner, iteratively and all at once in each iteration, via an approach in-
spired by the sparse autoencoders [Makhzani & Frey 2013, Makhzani & Frey 2014,
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Luo et al. 2017], IHT [Blumensath & Davies 2008] and MP [Mallat & Zhang 1993]
approaches. As in [Dupré la Tour et al. 2018], updates of the spatial and tempo-
ral dictionaries are performed independently, whereas in our model this is per-
formed using adaptive moment estimation (Adam) optimizer [Kingma & Ba 2014],
an optimizer most commonly used in DL. We have compared our model with
MCSC [Dupré la Tour et al. 2018] quantitatively on synthetic data and qualita-
tively on MEG sensory-motor data. The results obtained on synthetic data showed
that our approach yields lower reconstruction errors and atoms that better cor-
relate with the ground truth, both on noiseless and noisy datasets, however,
MCSC [Dupré la Tour et al. 2018] gives lower reconstruction error between ground
truth and estimated activation vectors. The experiments conducted on the real MEG
sensory-motor data showed that the dictionaries learned with our model are in ac-
cordance with the state-of-the-art MCSC [Dupré la Tour et al. 2018], while learned
atoms are being less correlated. The qualitative analysis of the dictionaries con-
taining only a single pair of atoms, which have been learnt from a single session,
independently for several subjects from HCP MEG motor task dataset, suggests
that the proposed approach is able to extract motor-task related patterns, which
generalize well over an unseen session.
In Chapter 8, we have proposed a shallow rank-1 CNN for MEG and EEG
multivariate signal classification. Its architecture is composed of three modules,
present in the traditional BCI pipelines, namely feature extraction, feature se-
lection and feature classification module. In order to reduce inter-subject and
inter-session variabilities, an additional layer in the multivariate EEG and MEG
signal modeling is added, where we have assumed that a head can be mod-
eled with a sphere [Hämäläinen et al. 1993, Vatta et al. 2010], which allowed us
to represent the spatial component of the EEG and MEG multivariate signals
in terms of spherical harmonic basis. Following the forward modeling, learnable
weights in the proposed model are of rank-1. Learnable spatial patterns are rep-
resented in terms of SH basis elements, where their regularization is achieved
by discarding high frequency components. Since temporal courses of the brain
sources spread over a certain frequency range and are distorted by noise, tempo-
ral kernels are regularized and approximated by representation in terms of dis-
crete cosine basis elements of lower frequency. In the experiments conducted
on the mental-workload EEG data [Hinss et al. 2021] and motor-task HCP MEG
data [Van Essen et al. 2012], we have shown that our models in comparison to the
state-of-the-art CNNs, namely DeepConvNet [Schirrmeister et al. 2017], Shallow-
ConvNet [Schirrmeister et al. 2017] and EEGNet [Lawhern et al. 2018], can achieve
comparable or better performance in terms of classification accuracy while requir-
ing less trainable parameters and lower number of multiplication making it more
suitable for light portable devices.
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Perspectives in EEG and MEG local analysis

Although the qualitative inspection of the spatial and temporal atoms and corre-
sponding activations obtained on the real MEG sensory-motor and motor task data,
presented in Chapter7, suggest that our approach is capable to extract event related
information, their properties could be further qualitatively and quantitatively eval-
uated in classification pipelines or the analysis of dynamic functional networks. In
this context, it would be also interesting to investigate if dictionary learning from
multiple sessions and/or subjects could yield more representative atoms, which can
be employed on data of unseen subjects. Regularization of the spatial and tem-
poral learnable weights incorporated in shallow CNN presented in Chapter 8 have
led us to the model of higher generalization power, therefore an investigation of
the subject-specific model design could be one of the perspectives. Furthermore,
although inter-subject and inter-session have been addressed via representation of
spatial weights in terms of the low passed SH coefficients, an important problem
that will be addressed in our future work is the non-stationarity of the temporal
brain courses.
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Appendix A

S2 and SO(3) signal related
derivations appendix

Spherical harmonics

Definition of the complex spherical harmonics

The complex SH basis element Y m
l : S2 → C is defined as

Y m
l (r) = Y m

l (θ, ϕ) =

√
(2l + 1)

2π

(l −m)!

(l +m)!
Pml (cos θ)ejmϕ (A.1)

where Pml : [−1, 1] → R is associated Legendre polynomial of degree l and order m,
defined in closed form as

Pml = (−1)m2l(1− (cosθ)2)
m
2

l∑
k=m

k!

(k −m)!
(cosθ)k−m

(
l

k

)( l+k−1
2

l

)
. (A.2)

Definition of the real spherical harmonics

The real SH [Homeier & Steinborn 1996] basis elements can be defined as

Ylm =


√
2(−1)mIm[Y

|m|
l ] if m < 0

Y 0
l if m = 0

√
2(−1)mRe[Y m

l ] if m > 0

. (A.3)

If the complex SH basis elements of degree l are placed into columns of a matrix Y C
l

in the order {−l,−(l− 1), ...− 1, 0, 1, ..., (l− 1), l}, than the real SH basis elements
of degree l can be obtained as [

Y R
l

]T
= Ul

[
Y C
l

]T (A.4)
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where Ul ∈ C(2l+1)×(2l+1) is unitary matrix defined as in [Homeier & Steinborn 1996]

Ul =
1√
2


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...

... . . .
... . . .

...
...

...
... . . .

√
2 . . .

...
...

...
... . . .

... . . .
...

...
0 1 . . . 0 . . . (-1)l−1 0
1 0 . . . 0 . . . 0 (-1)l


.

(A.5)

Rotation of S2 functions

The complex Wigner-D matrices

The complex Wigner-D matrix is defined as

Dmn
l (R(ϕ, θ, ψ)) = dmnl (θ)e−jmϕe−jnψ (A.6)

where dmnl is small Wigner-d matrix defined as

dmnl (θ) = [(l+m)!(l−m)!(l+n)!(l−n)!]
1
2

smax∑
s=smin

[
(−1)m−n+s(cos θ2)2l+n−m−2s(

sin θ
2

)m−n+2s

(l + n− s)!s!(m− n+ s)!(l −m− s)!

]
(A.7)

where smin = max(0, n − m) and smax = min(l + n, l − m). We refer to l as the
Wigner-D matrix or RH degree and tom and n as to their orders. R(ϕ, θ, ψ) ∈ SO(3)

is a rotation matrix with ϕ, ψ ∈ [0, 2π) and θ ∈ [0, π].

Rotation of the complex S2 functions

Rotation of an L2 signal s : S2 → C of bandwidth B by angle R =

R(ϕ, θ, ψ) ∈ SO(3), such that g(r) = Rs(r) can be written as in [Vollrath 2010,
Cohen et al. 2018]

s(R−1r) =
B∑
l=0

m=l∑
m=−l

ŝml Y
m
l (R−1r) =
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l=0
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( m=l∑
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)
Y k
l (r) =

B∑
l=0

k=l∑
k=−l

[
Dl(R)̂sl

]k
Y k
l (r)

=
B∑
l=0

k=l∑
k=−l

gkl Y
k
l (r) = g(r)

(A.8)

where Y m
l is the complex SH basis element of degree l and order m. Dmn

l is the
complex Wigner-D matrix (RH basis element) of degree l and orders m and n.
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The real Wigner-D matrices

The real RH basis elements (Wigner-D matrices) can be expressed as

DR
000 = D0

00 (A.9)

DR
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(A.10)
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As noted in [Homeier & Steinborn 1996], a consequence of unitarity of the matrix Ul
from Eq. A.4 is identity Y R

l
T
(θ1, ϕ1)Y

R
l (θ2, ϕ2) = Y T

l (θ1, ϕ1)Y
∗
l (θ2, ϕ2). By defining

Y R
l (θ1, ϕ1) = Y R

l (θ, ϕ) and Yl(θ1, ϕ1) = Yl(θ, ϕ) (A.12)

and

Y R
l (θ2, ϕ2) = DR

l (R)Y
R
l (θ, ϕ) and Yl(θ2, ϕ2) = Dl(R)Yl(θ, ϕ) (A.13)

we obtain real Wigner-D matrix DR
l (R) as follows

Y R
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and

UTl D
R
l (R)U

∗
l = D∗

l (R) and DR
l (R) = U∗

l D
∗
l (R)U

T
l = UlD

∗
l (R)U

H
l (A.15)

where we used the property that Y R
l (θ, ϕ) = Y R

l
∗
(θ, ϕ) and DR

l (R) = DR
l
∗
(R) in

equations A.14 and A.15.

Rotation of the real S2 functions

In analogy to the rotation of the complex S2 functions from Eq. A.8 and using
the real Wigner-D matrices defined in Eq. A.15, we define the rotation of the real
S2 functions. Rotation of an L2 signal s : S2 → R of bandwidth B by angle
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R = R(ϕ, θ, ψ) ∈ SO(3), such that g(r) = Rs(r) can be written as

s(R−1r) =
B∑
l=0

m=l∑
m=−l

ŝlmYlm(R
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(A.16)

where Ylm is the real SH basis element of degree l and order m. Dlmn is the real
Wigner-D matrix (RH basis element) of degree l and orders m and n.

Convolutions of S2, zonal and SO(3) functions

As we are dealing with real signals and we have defined a real SH and RH basis, we
provide derivations of convolutions between real functions only.

Convolution of an S2 and a zonal function

Convolution between a spherical and a zonal function results in a function whose
domain is S2. Given a signal f : S2 → R and a zonal signal g : S2 → R s.t.
g(θ, ϕ) = g(θ, 0) ∀ϕ ∈ [0, 2π) and ∀θ ∈ [0, π), of bandwidths B, convolution is given
as [Driscoll & Healy 1994]

[f ∗ g](r) = [f ∗ g](θ, ϕ) =
∫
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(A.17)
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where f̂lm is the real SH coefficient of degree l and order m of the function f and ĝl
is ZH coefficient of degree l of the function g.

Convolution of S2 functions

Given two L2 signals f, g : S2 → R of bandwidth B, convolution between them is
defined as [Cohen et al. 2018]

[f ∗ g](R) =
∫
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(A.18)

where R = R(ϕ, θ, ψ) ∈ SO(3). f̂lm, ĝln are the real SH coefficients of degree l and
orders m and n of the functions f and g and Dlmn : SO(3) → R is an element of
the real RH basis (Wigner-D matrix) of degree l and orders m and n.

Convolution between SO(3) signals

Convolution between two SO(3) signals results in a signal whose domain is also
SO(3). Given two L2 functions function f, g : SO(3) → R of bandwidth B convo-
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lution between them is defined as [Vollrath 2010, Cohen et al. 2018]

[f ∗ g](Q) =
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(A.19)

Quadratic functions

Product of S2 signals

Multiplication of two spherical signals in S2 domain results in a signal whose domain
is also S2. Given two L2 functions function f, g : S2 → C of bandwidths Bf and
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Bg, their product is defined as [Kondor et al. 2018]
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(A.20)

where Cl,ql′,q′,l′′,q′′ ∈ R is Clebsch-Gordan coefficient associated to complex SH basis
elements, such that Cl,ql′,q′,l′′,q′′ ̸= 0 only when q′ + q′′ = q. If the Clebsch-Gordan
coefficients are stored in a sparse matrix Cll′,l′′ ∈ R(2l′+1)(2l′′+1)×(2l+1), Eq. A.20 can
be written in a more elegant way as

ĥl =
∑
l′,l′′

√
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l
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]
s.t. |l′ − l′′| ≤ l ≤ l′ + l′′

(A.21)
where ĥk, f̂k, ĝk ∈ C2k+1 are the vector with complex SH coefficients of degree k.
In analogy, given two L2 functions function f, g : S2 → R of bandwidths Bf and
Bg, their product is defined as
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(A.22)

and C l,ql′,q′,l′′,q′′ ∈ R is Clebsch-Gordan coefficient associated to real SH basis ele-
ments. If the Clebsch-Gordan coefficients are stored in a sparse matrix C ll′,l′′ ∈



184 Appendix A. S2 and SO(3) signal related derivations appendix

R(2l′+1)(2l′′+1)×(2l+1), Eq. A.22 can be written in matrix-vector notation as

ĥl =
∑
l′,l′′

√
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l
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(A.23)
where ĥk, f̂k, ĝk ∈ R2k+1 are the vector with real SH coefficients of degree k.
Denoting with Cl,ql′,q′,l′′,q′′ ∈ R and with C l,ql′,q′,l′′,q′′ ∈ R Clebsch-Gordan coefficient
associated to complex and real SH basis elements, respectively, the real Clebsch-
Gordan coefficients can be derived as
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using that Im
[
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can be obtained that

C l,ml′,m′,l′′,m′′ = c
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where c = 1
2(−1)m

′+m′′ .
Conversion between the sparse matrices Cll′,l′′ , C ll′,l′′ ∈ R(2l′+1)(2l′′+1)×(2l+1) used in
equations A.21 and A.23 can be derived from
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thus
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(A.27)
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Product of SO(3) signals

Multiplication of two SO(3) signals in SO(3) domain results in a signal whose do-
main is also SO(3). Given two L2 functions function f, g : SO(3) → R of bandwidths
Bf and Bg, their product is defined as [Guidry & Sun 2022]
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Ĝl′′m′′n′′Dl′′m′′n′′(R) =

Bf∑
l′=0

l′∑
m′=−l′

l′∑
n′=−l′

F̂l′m′n′

Bg∑
l′′=0

l′′∑
m′′=−l′′

l′′∑
n′′=−l′′
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Ĝl′′m′′n′′

l′+l′′∑
l=|l′−l′′|

C l,m
′+m′′

l′,m′,l′′,m′′C
l,n′+n′′

l′,n′,l′′,n′′Dl(m′+m′′)(n′+n′′)(R) =

Bf∑
l′=0

Bg∑
l′′=0

l′+l′′∑
l=|l′−l′′|

l′∑
m′=−l′

l′∑
n′=−l′

l′′∑
m′′=−l′′

l′′∑
n′′=−l′′
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ĤlmnDlmn(R)

(A.28)

.



Appendix B

Microstructure estimation
experiments appendix

MLP hyperparameter selection for microstructure param-
eter estimation

In this section, we provide details related to the hyperparameter selection for
the MLP model introduced by [Golkov et al. 2016]. We have evaluated mod-
els of two sizes and depths, namely MLP1 composed of four layers of sizes
60 × 256, 256 × 256, 256 × 256, 256 × nout and MLP2 composed of seven layers of
sizes 60×256, 256×192, 192×128, 128×64, 64×32, 32×16, 16×nout, where nout = 3

for NODDIand nout = 2 for SMT. Also, we have trained models with two different
initial learning rates, 0.001 and 0.0001. The original method uses drop out rate of
0.1, thus we have evaluated the model MLP1 with different dropout rates of 0.1,
0.05, and 0.0 for NODDIparameter estimation and found that the models without
dropout (0.0) have much better performance regardless of the number of training
subjects. Also, instead of stochastic gradient descent used in the original work, we
have found that the Adam optimizer gives better performance. Illustrations of the
validation losses for NODDIand SMTparameter estimation and the corresponding
number of trainable parameters, for the experiments with the number of training
subjects 1, 3, 5 are provided in Figure B.1 and for 10, 15, 30 training subjects in Fig-
ure B.2.
For a comparison with other methods on the problem of NODDIparameter estima-
tion, for the number of training subjects 1, 3, 5, and 10, we have selected MLP1

with lr = 0.001 and for 15 and 30 subjects the same model with lr = 0.0001. For the
SMTparameter estimation, for the number of training subjects 1 we have selected
MLP1 with lr = 0.001, for 3, 5, 10 subjects MLP2 with lr = 0.001, while for 15

and 30 the same model with lr = 0.0001.
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Figure B.1: Validation losses for NODDI(left) and SMT(middle) parameter estima-
tion and the corresponding number of trainable parameters (right) for the number
of training subjects 1, 3, 5.

Figure B.2: Validation losses for NODDI(left) and SMT(middle) parameter estima-
tion and the corresponding number of trainable parameters (right) for the number
of training subjects 10, 15, 30.
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MEDN hyperparameter selection for microstructure pa-
rameter estimation

In this section, we provide details related to the hyperparameter selection for
the MEDN model introduced by [Ye 2017]. This model is strictly designed for
NODDIparameter estimation. We have evaluated the models for a different number
of iterations 6, 8, 10 used in the approximation of iterative hard thresholding, as
described in Chapter 3, and for two different initial learning rates, 0.001 and 0.0001.
Illustrations of the validation losses for NODDIparameter estimation and the corre-
sponding number of trainable parameters, for the experiments with the number of
training subjects 1, 3, 5 are provided in Figure B.3 and for 10, 15, 30 training subjects
in Figure B.4. According to the validation curves, we have observed that the model
sometimes experiences instabilities with higher learning rates, thus the update of
trainable weights stops.

Figure B.3: Validation losses for NODDIparameter estimation, illustrated within a
range [0.0075, 0.01] (left), without rage limit to illustrate instabilities (middle) and
the corresponding number of trainable parameters (right) for the number of training
subjects 1, 3, 5.

For a comparison with other methods, for the number of training subjects 1, 3, and
5, we have selected models with Nit = 6, Nit = 8 and Nit = 10, respectively with
lr = 0.001. For 10, 15 and 30 training subjects, we have selected a model with
Nit = 10, for 10 subjects with lr = 0.001 and for 15 and 30 with lr = 0.0001.
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Figure B.4: Validation losses for NODDIparameter estimation, illustrated within a
range [0.0075, 0.01] (left), without rage limit to illustrate instabilities (middle) and
the corresponding number of trainable parameters (right) for the number of training
subjects 10, 15, 30.
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Hyperparameter selection for microstructure parameter
estimation for our models

We have evaluated our models for different input bandwidths and for different
depths. All models have the same denoising layer composed of two trainable
matrices of size 60 × 60 and four fully connected layers with the number of
output neurons 128, 128, 128, nout at the end which take as input rotation in-
variant features and based on them perform parameter estimation. Model
Fourier_S2_SO(3)1 contains three convolutional layers of input and output
bandwidths (6, 4), (4, 2), (2, 0) with the input and output number of channels
(2, 8), (8, 16), (16, 32). Model Fourier_S2_SO(3)2 contains three convolutional
layers of input and output bandwidths (8, 4), (4, 2), (2, 0) with the input and output
number of channels (2, 8), (8, 16), (16, 32). Model Fourier_S2_SO(3)3 contains
four convolutional layers of input and output bandwidths (8, 6), (6, 4), (4, 2), (2, 0)

with the input and output number of channels (2, 4), (4, 8), (8, 16), (16, 32). Model
Fourier_S2_zonal1 contains three convolutional layers of input and output
bandwidths (6, 4), (4, 2), (2, 0) with the input and output number of channels
(2, 20), (20, 40), (40, 80). Model Fourier_S2_zonal2 contains four convolutional
layers of input and output bandwidths (8, 6), (6, 4), (4, 2), (2, 0) with the input and
output number of channels (2, 12), (12, 24), (24, 48), (48, 96). Illustrations of the
validation losses for NODDIand SMTparameter estimation and the corresponding
number of trainable parameters, for the experiments with the number of training
subjects 1, 3, 5 are provided in Figure B.5 and for 10, 15, 30 training subjects in
Figure B.6.

Figure B.5: Validation losses for NODDI(left) and SMT(middle) parameter estima-
tion and the corresponding number of trainable parameters (right) for the number
of training subjects 1, 3, 5.
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Figure B.6: Validation losses for NODDI(left) and SMT(middle) parameter estima-
tion and the corresponding number of trainable parameters (right) for the number
of training subjects 10, 15, 30.

Since the differences between validation losses for different Fourier_S2_SO(3)

and Fourier_S2_zonal are smaller, for all subjects and for both NODDIand
SMTparameter estimation we have selected, Fourier_S2_SO(3)3 and
Fourier_S2_zonal1.
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MLP+ hyperparameter selection for microstructure pa-
rameter estimation

We have extended the model MLP [Golkov et al. 2016] to the version termed as
MLP+ which as input takes dMRI signals from a neighbourhood of size 3× 3× 3.
We have evaluated models of two sizes and depths, namely MLP1+ composed of
four layers of sizes 60×27×256, 256×256, 256×256, 256×nout and MLP2 composed
of seven layers of sizes 60×27×256, 256×192, 192×128, 128×64, 64×32, 32×16, 16×
nout, where nout = 3 for NODDIand nout = 2 for SMT. The models are trained with
three different initial learning rates 0.001, 0.0005, and 0.0001. Illustrations of the
validation losses and the corresponding number of trainable parameters, for the
experiments with the number of training subjects 1, 3, 5 are provided in Figure B.7.

Figure B.7: Validation losses for NODDI(left) and SMT(middle) parameter estima-
tion and the corresponding number of trainable parameters (right) for the number
of training subjects 1, 3, 5.

For a comparison with other approaches, we have selected MLP1+ with lr = 0.0001

for NODDIparameter estimation and MLP2+ with lr = 0.001 for SMTparameter
estimation.
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MEDN+ hyperparameter selection for microstructure pa-
rameter estimation

In the work presented in [Ye 2017], in analogy to MEDN, a model termed as MEDN+
is introduced. It has the same architecture as MEDN with a difference in that it takes
as input dMRI signals from neighbourhood 3×3×3. The model MEDN+ is evaluated
for three different initial learning rates 0.001, 0.0005, and 0.0001. Illustrations of
the validation losses for NODDIparameter estimation and the corresponding number
of trainable parameters, for the experiments with the number of training subjects
1, 3, 5 are provided in Figure B.8. As for MEDN, according to the validation curves,
we have observed that the model sometimes experiences instabilities with higher
learning rates, thus the update of trainable weights stops.

Figure B.8: Validation losses for NODDIparameter estimation, illustrated within a
range [0.005, 0.01] (left), without rage limit to illustrate instabilities (middle) and
the corresponding number of trainable parameters (right) for the number of training
subjects 1, 3, 5.

Clearly, for a comparison with other approaches, we have selected MEDN+ with
lr = 0.0001.
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MescNet hyperparameter selection for microstructure pa-
rameter estimation

The model MescNet introduced in [Ye et al. 2019] is designed for the estimation
of arbitrary microstructure parameters, thus it is evaluated on both problems of
NODDIand SMTparameter estimation. It is evaluated for three different initial
learning rates 0.001, 0.0005, and 0.0001. Illustrations of the validation losses for
NODDIand SMTparameter estimation and the corresponding number of trainable
parameters, for the experiments with the number of training subjects 1, 3, 5 are
provided in Figure B.9. As MEDN and MEDN+, the model exhibits instabilities
for higher learning rates, thus those curves are not visible in the illustrated ranges.

Figure B.9: Validation losses for NODDI(left) and SMT(middle) parameter estima-
tion and the corresponding number of trainable parameters (right) for the number
of training subjects 1, 3, 5.

For a comparison with other approaches, we have selected MescNet with lr =

0.0005, except for SMTparameter estimation trained on 3 subjects where the selected
model is trained with lr = 0.0001.
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MescNetSepDict hyperparameter selection for mi-
crostructure parameter estimation

As MescNet, MescNetSepDict introduced in [Ye et al. 2020] is designed for the es-
timation of arbitrary microstructure parameters. It represents the optimization of
the model MescNet in terms of the number of parameters, however, this comes with
a highly increased computational time. It is evaluated for three different initial
learning rates 0.001, 0.0005, and 0.0001. Illustrations of the validation losses for
NODDIand SMTparameter estimation and the corresponding number of trainable
parameters, for the experiments with the number of training subjects 1, 3, 5 are pro-
vided in Figure B.10. As MEDN, MEDN+, and MescNet, the model sometimes
exhibits instabilities, thus those curves are not visible in the illustrated ranges.

Figure B.10: Validation losses for NODDI(left) and SMT(middle) parameter estima-
tion and the corresponding number of trainable parameters (right) for the number
of training subjects 1, 3, 5.

For a comparison with other approaches, we have selected MescNetSepDict with
lr = 0.001, except for NODDIparameter estimation trained on 5 subjects where the
selected model is trained with lr = 0.0005.
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Hyperparameter selection for microstructure parameter
estimation for our models

In analogy to MLP+ and MEDN+, we have designed Fourier_S2_SO(3)+ and
Fourier_S2_zonal+ models which take as input dMRI signals from the neigh-
bourhood of size 3 × 3 × 3. As single voxel models, they have the same denois-
ing layer composed of two trainable matrices of size 60 × 60 and four fully con-
nected layers with the number of output neurons 128, 128, 128, nout at the end.
Model Fourier_S2_SO(3)+ contains four convolutional layers of input and out-
put bandwidths (8, 6), (6, 4), (4, 2), (2, 0) with the input and output number of chan-
nels (2× 27, 8), (8, 16), (16, 32), (32, 64). Model Fourier_S2_zonal+ contains four
convolutional layers of input and output bandwidths (8, 6), (6, 4), (4, 2), (2, 0) with
the input and output number of channels (2 × 27, 16), (16, 32), (32, 64), (64, 128).
In the model Fourier_S2_SO(3)+, since the number of rotation invariant fea-
tures extracted from the first SH coefficients (after denoising) is 2 × 27 × 5 = 270

is much larger than the number of rotation invariant features extracted from the
following layers after SO(3) non-linearities 8 × 4, 16 × 3, 32 × 2, 64 × 1, the input
rotation invariant features are projected to a vector of length 64 with a trainable
matrix of size 270 × 60 prior to concatenation to the features from other layers.
In Fourier_S2_zonal+, the number of rotation invariant features extracted after
S2 non-linearities is 16 × 4, 32 × 3, 64 × 2, 128, thus the rotation invariant features
extracted from the first SH coefficients (after denoising) is concatenated directly
to them. Illustrations of the validation losses for NODDIand SMTparameter esti-
mation and the corresponding number of trainable parameters, for the experiments
with the number of training subjects 1, 3, 5 are provided in Figure B.11.

Figure B.11: Validation losses for NODDI(left) and SMT(middle) parameter estima-
tion and the corresponding number of trainable parameters (right) for the number
of training subjects 1, 3, 5.
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Multivariate Convolutional Sparse Coding (MCSC) hy-
perparameter selection for noiseless data

To select the hyperparameters for MCSC, we have performed a grid search on four
parameters. λ which controls the sparsity of the activations, ε is a stopping criterion
(if the cost descent after an update of the dictionary and activations is smaller than
ε). εz tolerance of the solver for the estimation of the activations (locally greedy
coordinate descent (LGCD) solver was used). εD of the solver for the update of
the dictionary (alternate adaptive solver was used). Experiments are repeated 10

times to select the hyperparameters. To perform a comparison with our approach,
the experiments are repeated again 40 times for the best configuration of the pa-
rameters. The maximum number of iterations for all parameter configurations is
400. The MSE and standard deviations for different parameters are given in Ta-
bles C.1, C.2, C.3, C.4 and C.5.

Table C.1: εz = 10−4, ε = 10−8, εD = 10−8

λ = 0.4 λ = 0.5 λ = 0.6 λ = 0.7 λ = 0.8 λ = 0.9

0.1367 ±0.0679 0.1581 ±0.0998 0.1576 ±0.0632 0.2538 ±0.1438 0.2357 ±0.1552 0.2468 ±0.0890

0.1511 ±0.0822 0.1871 ±0.1375 0.1580 ±0.0773 0.2914 ±0.1922 0.2630 ±0.2051 0.2336 ±0.0860

Table C.2: εz = 10−5, ε = 10−8, εD = 10−8

λ = 0.4 λ = 0.5 λ = 0.6 λ = 0.7 λ = 0.8 λ = 0.9

0.2082 ±0.1408 0.1309 ±0.0279 0.2016 ±0.1308 0.1811 ±0.0905 0.1326 ±0.0999 0.1435 ±0.0483

0.2435 ±0.2024 0.1176 ±0.0239 0.2190 ±0.1797 0.1732 ±0.0931 0.1416 ±0.1357 0.1381 ±0.0527

Table C.3: ε = 10−8, εD = 10−8

λ = 0.4,εz = 10−3 λ = 0.3,εz = 10−3 λ = 0.8,εz = 10−6 λ = 0.9,εz = 10−6

0.2241 ±0.1114 0.2634 ±0.2098 0.1395 ±0.0621 0.1402 ±0.0918

0.2525 ±0.1355 0.3202 ±0.2629 0.1349 ±0.0571 0.1366 ±0.0879
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Table C.4: εz = 10−5, εD = 10−8

λ = 0.5, ε = 10−9 λ = 0.5, ε = 10−7 λ = 0.8, ε = 10−9 λ = 0.8, ε = 10−7

0.2174 ±0.1421 0.1244 ±0.0478 0.1840 ±0.1046 0.2080 ±0.1107

0.2641 ±0.2006 0.1200 ±0.0602 0.1891 ±0.1413 0.2127 0.1472

Table C.5: εz = 10−5, ε = 10−7

λ = 0.5, εD = 10−9 λ = 0.5, εD = 10−7

0.1288 ±0.0889 0.1659 ±0.0799

0.1425 ±0.1177 0.1740 ±0.1194

MCSC hyperparameter selection for noisy data

As for noiseless data, to select the hyperparameters for MCSC applied on noisy data,
we have performed a grid search on four parameters. Parameters are selected based
on reconstruction MSE computed with respect to noiseless ground truth signals
which are given in Tables C.6, C.7, C.8, C.9 and C.10. Since ground truth noiseless

Table C.6: εz = 10−5, ε = 10−8, εD = 10−8

λ = 0.3 λ = 0.4 λ = 0.5 λ = 0.6 λ = 0.7 λ = 0.8

2.9842 ±0.2601 2.2990 ±0.1859 2.4923 ±0.1773 4.0116 ±1.5745 6.7545 ±2.0822 8.6524 ±1.7048

2.8564 ±0.2831 2.2999 ±0.23028 2.5246 ±0.1980 3.9704 ±1.3986 6.5052 ±1.9051 8.3485 1.4671

Table C.7: εz = 10−4, ε = 10−8, εD = 10−8

λ = 0.3 λ = 0.4 λ = 0.5 λ = 0.6

2.7965 ±0.1466 2.3316 ±0.1645 2.6254 ±0.1639 3.5966 ±1.4074

2.6385 ±0.1646 2.3051 ±0.1573 2.6665 ±0.1945 3.6517 ±1.3504

Table C.8: εz = 10−6, ε = 10−8, εD = 10−8

λ = 0.3 λ = 0.4 λ = 0.5 λ = 0.6

2.7811 ±0.1815 2.3578 ±0.1285 2.6275 ±0.19479 3.2454 ±1.1326

2.6547 ±0.1993 2.3557 ±0.1502 2.6735 ±0.2204 3.2946 ±1.1355

Table C.9: εz = 10−5, εD = 10−8

λ = 0.4,ε = 10−9 λ = 0.4,ε = 10−7

2.3304 ±0.1064 2.3005 ±0.1639

2.2951 ±0.1376 2.2513 ±0.2192

Table C.10: εz = 10−5, ε = 10−8

λ = 0.4,εD = 10−9 λ = 0.4,εD = 10−7

2.2935 ±0.1049 2.3428 ±0.1347

2.2562 ±0.1330 2.3314 ±0.1515

signals are not available in the real scenario, we have investigated whether the
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selection of parameters can be based on reconstruction MSE computed with respect
to noisy available signals and concluded that some prior knowledge for parameter
selection is required. The MSE and standard deviations for different parameters are
given in Tables C.11, C.12, C.13, C.14, C.15 and C.16.

Table C.11: εz = 10−5, ε = 10−8, εD = 10−8

λ = 0.1 λ = 0.2 λ = 0.3

3109.898 ±0.788 3121.307 ±1.192 3128.235 ±1.039

3110.205 ±0.941 3122.229 ±1.169 3128.432 ±0.511

Table C.12: εz = 10−5, ε = 10−8, εD = 10−8

λ = 0.4 λ = 0.5 λ = 0.6 λ = 0.7

3129.933 ±0.940 3131.443 ±0.702 3133.805 ±1.750 3136.926 ±2.533

3130.829 ±0.969 3132.013 ±0.603 3134.207 ±2.030 3137.245 ±2.037

Table C.13: εz = 10−4, ε = 10−8, εD = 10−8

λ = 0.1 λ = 0.2 λ = 0.3

3109.1191 ±0.8951 3120.9702 ±0.9151 3127.5977 ±1.0059

3109.9946 ±1.2312 3121.6355 ±1.2983 3128.268 ±1.0959

Table C.14: εz = 10−3, ε = 10−8, εD = 10−8

λ = 0.1

3109.587 ±1.2439

3111.091 ±1.4872

Table C.15: εz = 10−4, εD = 10−8

λ = 0.1,ε = 10−7 λ = 0.1,ε = 10−9

3109.274 ±0.786 3109.6804 ±1.252

3110.586 ±1.222 3110.848 ±0.9401

Table C.16: εz = 10−4, ε = 10−8

λ = 0.1,εD = 10−7 λ = 0.1,εD = 10−9

3110.058 1.484 3109.657 ±1.141

3110.297 1.506 3110.540 ±0.909
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HCP Q=3 and P=2

Illustrations of the learned spatial and temporal patterns obtained with our approach
and the corresponding activation vectors. Models contain a 1 pair of spatial and
temporal atoms. The maximum number of activations during train Q = 3 and
during test P = 2. The models are trained on one session corresponding to one
event (left hand, left foot, right hand, right foot movements, and fixation).

Figure C.1: Subject 104012 Illustration of estimated temporal patterns (I row),
their power spectral density (II row), spatial patterns (III row), activations on the
training session (IV row), and activations on the testing session (V row) obtained
with our method. Left hand (I column), left foot (II column), right hand (III
column), right foot (IV column) movements, fixation/resting (V column).
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Figure C.2: Subject 105923 Illustration of estimated temporal patterns (I row),
their power spectral density (II row), spatial patterns (III row), activations on the
training session (IV row), and activations on the testing session (V row) obtained
with our method. Left hand (I column), left foot (II column), right hand (III
column), right foot (IV column) movements, fixation/resting (V column).

Figure C.3: Subject 106521 Illustration of estimated temporal patterns (I row),
their power spectral density (II row), spatial patterns (III row), activations on the
training session (IV row), and activations on the testing session (V row) obtained
with our method. Left hand (I column), left foot (II column), right hand (III
column), right foot (IV column) movements, fixation/resting (V column).
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Figure C.4: Subject 108323 Illustration of estimated temporal patterns (I row),
their power spectral density (II row), spatial patterns (III row), activations on the
training session (IV row), and activations on the testing session (V row) obtained
with our method. Left hand (I column), left foot (II column), right hand (III
column), right foot (IV column) movements, fixation/resting (V column).

Figure C.5: Subject 109123 Illustration of estimated temporal patterns (I row),
their power spectral density (II row), spatial patterns (III row), activations on the
training session (IV row), and activations on the testing session (V row) obtained
with our method. Left hand (I column), left foot (II column), right hand (III
column), right foot (IV column) movements, fixation/resting (V column).



205

HCP Q=10 and P=2

Illustrations of the learned spatial and temporal patterns obtained with our approach
and the corresponding activation vectors. Models contain a 1 pair of spatial and
temporal atoms. The maximum number of activations during train Q = 10 and
during test P = 2. The models are trained on one session corresponding to one
event (left hand, left foot, right hand, right foot movements, and fixation).

Figure C.6: Subject 104012 Illustration of estimated temporal patterns (I row),
their power spectral density (II row), spatial patterns (III row), activations on the
training session (IV row), and activations on the testing session (V row) obtained
with our method. Left hand (I column), left foot (II column), right hand (III
column), right foot (IV column) movements, fixation/resting (V column).
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Figure C.7: Subject 105923 Illustration of estimated temporal patterns (I row),
their power spectral density (II row), spatial patterns (III row), activations on the
training session (IV row), and activations on the testing session (V row) obtained
with our method. Left hand (I column), left foot (II column), right hand (III
column), right foot (IV column) movements, fixation/resting (V column).

Figure C.8: Subject 106521 Illustration of estimated temporal patterns (I row),
their power spectral density (II row), spatial patterns (III row), activations on the
training session (IV row), and activations on the testing session (V row) obtained
with our method. Left hand (I column), left foot (II column), right hand (III
column), right foot (IV column) movements, fixation/resting (V column).
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Figure C.9: Subject 108323 Illustration of estimated temporal patterns (I row),
their power spectral density (II row), spatial patterns (III row), activations on the
training session (IV row), and activations on the testing session (V row) obtained
with our method. Left hand (I column), left foot (II column), right hand (III
column), right foot (IV column) movements, fixation/resting (V column).

Figure C.10: Subject 109123 Illustration of estimated temporal patterns (I row),
their power spectral density (II row), spatial patterns (III row), activations on the
training session (IV row), and activations on the testing session (V row) obtained
with our method. Left hand (I column), left foot (II column), right hand (III
column), right foot (IV column) movements, fixation/resting (V column).
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HCP, 10 atoms, Q=5 and P=2

Illustrations of the learned spatial and temporal patterns obtained with our approach
and the corresponding activation vectors. Models contain 10 pairs of spatial and
temporal atoms. The maximum number of activations during train Q = 5 and
during test P = 2. The models are trained on one session corresponding to one
event (left hand, left foot, right hand, right foot movements, and fixation).

Figure C.11: Subject 104012, Left hand Illustration of estimated temporal pat-
terns (I row), their power spectral density (II row), spatial patterns (III row), acti-
vations on the training session (IV row), and activations on the testing session (V
row) obtained with our method. Each column corresponds to a different atom.
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Figure C.12: Subject 104012, Left foot Illustration of estimated temporal pat-
terns (I row), their power spectral density (II row), spatial patterns (III row), acti-
vations on the training session (IV row), and activations on the testing session (V
row) obtained with our method. Each column corresponds to a different atom.

Figure C.13: Subject 104012, Right hand Illustration of estimated temporal
patterns (I row), their power spectral density (II row), spatial patterns (III row),
activations on the training session (IV row), and activations on the testing session
(V row) obtained with our method. Each column corresponds to a different atom.
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Figure C.14: Subject 104012, Right foot Illustration of estimated temporal
patterns (I row), their power spectral density (II row), spatial patterns (III row),
activations on the training session (IV row), and activations on the testing session
(V row) obtained with our method. Each column corresponds to a different atom.

Figure C.15: Subject 104012, Fixation Illustration of estimated temporal pat-
terns (I row), their power spectral density (II row), spatial patterns (III row), acti-
vations on the training session (IV row), and activations on the testing session (V
row) obtained with our method. Each column corresponds to a different atom.



211

Figure C.16: Subject 105923, Left hand Illustration of estimated temporal pat-
terns (I row), their power spectral density (II row), spatial patterns (III row), acti-
vations on the training session (IV row), and activations on the testing session (V
row) obtained with our method. Each column corresponds to a different atom.

Figure C.17: Subject 105923, Left foot Illustration of estimated temporal pat-
terns (I row), their power spectral density (II row), spatial patterns (III row), acti-
vations on the training session (IV row), and activations on the testing session (V
row) obtained with our method. Each column corresponds to a different atom.
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Figure C.18: Subject 105923, Right hand Illustration of estimated temporal
patterns (I row), their power spectral density (II row), spatial patterns (III row),
activations on the training session (IV row), and activations on the testing session
(V row) obtained with our method. Each column corresponds to a different atom.

Figure C.19: Subject 105923, Right foot Illustration of estimated temporal
patterns (I row), their power spectral density (II row), spatial patterns (III row),
activations on the training session (IV row), and activations on the testing session
(V row) obtained with our method. Each column corresponds to a different atom.
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Figure C.20: Subject 105923, Fixation Illustration of estimated temporal pat-
terns (I row), their power spectral density (II row), spatial patterns (III row), acti-
vations on the training session (IV row), and activations on the testing session (V
row) obtained with our method. Each column corresponds to a different atom.

Figure C.21: Subject 106521, Left hand Illustration of estimated temporal pat-
terns (I row), their power spectral density (II row), spatial patterns (III row), acti-
vations on the training session (IV row), and activations on the testing session (V
row) obtained with our method. Each column corresponds to a different atom.
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Figure C.22: Subject 106521, Left foot Illustration of estimated temporal pat-
terns (I row), their power spectral density (II row), spatial patterns (III row), acti-
vations on the training session (IV row), and activations on the testing session (V
row) obtained with our method. Each column corresponds to a different atom.

Figure C.23: Subject 106521, Right hand Illustration of estimated temporal
patterns (I row), their power spectral density (II row), spatial patterns (III row),
activations on the training session (IV row), and activations on the testing session
(V row) obtained with our method. Each column corresponds to a different atom.
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Figure C.24: Subject 106521, Right foot Illustration of estimated temporal
patterns (I row), their power spectral density (II row), spatial patterns (III row),
activations on the training session (IV row), and activations on the testing session
(V row) obtained with our method. Each column corresponds to a different atom.

Figure C.25: Subject 106521, Fixation Illustration of estimated temporal pat-
terns (I row), their power spectral density (II row), spatial patterns (III row), acti-
vations on the training session (IV row), and activations on the testing session (V
row) obtained with our method. Each column corresponds to a different atom.
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Figure C.26: Subject 108323, Left hand Illustration of estimated temporal pat-
terns (I row), their power spectral density (II row), spatial patterns (III row), acti-
vations on the training session (IV row), and activations on the testing session (V
row) obtained with our method. Each column corresponds to a different atom.

Figure C.27: Subject 108323, Left foot Illustration of estimated temporal pat-
terns (I row), their power spectral density (II row), spatial patterns (III row), acti-
vations on the training session (IV row), and activations on the testing session (V
row) obtained with our method. Each column corresponds to a different atom.
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Figure C.28: Subject 108323, Right hand Illustration of estimated temporal
patterns (I row), their power spectral density (II row), spatial patterns (III row),
activations on the training session (IV row), and activations on the testing session
(V row) obtained with our method. Each column corresponds to a different atom.

Figure C.29: Subject 108323, Right foot Illustration of estimated temporal
patterns (I row), their power spectral density (II row), spatial patterns (III row),
activations on the training session (IV row), and activations on the testing session
(V row) obtained with our method. Each column corresponds to a different atom.
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Figure C.30: Subject 108323, Fixation Illustration of estimated temporal pat-
terns (I row), their power spectral density (II row), spatial patterns (III row), acti-
vations on the training session (IV row), and activations on the testing session (V
row) obtained with our method. Each column corresponds to a different atom.

Figure C.31: Subject 109123, Left hand Illustration of estimated temporal pat-
terns (I row), their power spectral density (II row), spatial patterns (III row), acti-
vations on the training session (IV row), and activations on the testing session (V
row) obtained with our method. Each column corresponds to a different atom.



219

Figure C.32: Subject 109123, Left foot Illustration of estimated temporal pat-
terns (I row), their power spectral density (II row), spatial patterns (III row), acti-
vations on the training session (IV row), and activations on the testing session (V
row) obtained with our method. Each column corresponds to a different atom.

Figure C.33: Subject 109123, Right hand Illustration of estimated temporal
patterns (I row), their power spectral density (II row), spatial patterns (III row),
activations on the training session (IV row), and activations on the testing session
(V row) obtained with our method. Each column corresponds to a different atom.
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Figure C.34: Subject 109123, Right foot Illustration of estimated temporal
patterns (I row), their power spectral density (II row), spatial patterns (III row),
activations on the training session (IV row), and activations on the testing session
(V row) obtained with our method. Each column corresponds to a different atom.

Figure C.35: Subject 109123, Fixation Illustration of estimated temporal pat-
terns (I row), their power spectral density (II row), spatial patterns (III row), acti-
vations on the training session (IV row), and activations on the testing session (V
row) obtained with our method. Each column corresponds to a different atom.
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DeepConvNet

In this subsection, we provide details on DeepConvNet [Schirrmeister et al. 2017]
hyperparameter search and the number of multiplications. The number of multipli-
cations per layer is given in Table D.1.

Table D.1: DeepConvNet number of multiplications per different steps of the entire
classification process for one input sample. T is the input signal length. N is the
number of channels of the input signal. K is the number of temporal kernels. kL is
the kernel length. T1 =

⌊
T−kL+1

p

⌋
. T2 =

⌊
T1−kL+1

p ⌋. T3 =
⌊
T2−kL+1

p ⌋. p is pooling
size. Q is the number of output classes.
Operation Number of multiplications
Temporal correlation N × (T − kL + 1)× kL ×K

Spatial correlation N × (T − kL + 1)×K ×K

Batch normalization 2× (T − kL + 1)×K

Exponential Linear Unit (T − kL + 1)/2×K × (1 + 3(NTy − 2))

Temporal correlation
(
T1 − kL + 1

)
×K × 2K

Batch normalization 2× (T1 − kL + 1)× 2K

Exponential Linear Unit (T1 − kL + 1)×K × (1 + 3(NTy − 2))

Temporal correlation
(
T2 − kL + 1

)
× 2K × 4K

Batch normalization 2× (T2 − kL + 1)× 4K

Exponential Linear Unit (T2 − kL + 1)× 2K × (1 + 3(NTy − 2))

Temporal correlation
(
T3 − kL + 1

)
× 4K × 8K

Batch normalization 2× (T3 − kL + 1)× 8K

Exponential Linear Unit (T3 − kL + 1)× 4K × (1 + 3(NTy − 2))

Feature classification Q× (T3 − kL + 1)× 8K +Q× (1 + 3(NTy − 2))
* NTy corresponds to Taylor series degree used to compute exponential

Illustration of validation classification accuracy DeepConvNet models for different
hyperparameters are provided in Figures D.1 and D.2 for MEG experiment. K

refers to the number of convolutional kernels in the first layer, where in each follow-
ing this number is increased by a factor of two. kL corresponds to the convolutional
filter length and p to the max pooling size after each convolution layer. We can
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notice that validation accuracy is lower for pooling step 3. An increase of K leads
to significant accuracy improvement, while the increase of kL from 5, 7 to 10, 15
leads to finer improvements. In the subject blind experiment set-up, the model with
K = 50, kL = 10, and p = 2 is selected as the best one. The number of trainable
parameters is ∼ 1.71 × 106. In subject aware experiment set-up, the model with
K = 50, kL = 15, and p = 2 is selected as the best one. The number of trainable
parameters is ∼ 2.22× 106.

Figure D.1: DeepConvNet validation classification accuracy for subject blind training
(left) and subject aware training (right) for motor task MEG classification problem
for fixed K = 50, different lengths of temporal kernels kL and different pooling sizes
p.

Illustration of the validation classification accuracy for DeepConvNet models for
different hyperparameters are provided in Figures D.3 and D.4 for EEG experiment.
In the subject blind experiment set-up, the model with K = 100, kL = 3, and p = 2

is selected as the best one. The number of trainable parameters is ∼ 1.89× 106. In
subject aware experiment set-up, the model with K = 100, kL = 3, and p = 3 is
selected as the best one. The number of trainable parameters is ∼ 1.89× 106. The
learning rate is 0.0005.
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Figure D.2: DeepConvNet validation classification accuracy for subject blind training
(left) and subject aware training (right) for motor task MEG classification problem
for different K, and fixed lengths of temporal kernels kL and pooling sizes p.

Figure D.3: DeepConvNet validation classification accuracy for subject blind train-
ing and subject aware training for mental workload EEG classification problem.
Learning rate 0.0005
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Figure D.4: DeepConvNet validation classification accuracy for subject blind train-
ing and subject aware training for mental workload EEG classification problem.
Learning rate 0.0001
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ShallowConvNet

In this subsection, we provide details on ShallowConvNet [Schirrmeister et al. 2017]
hyperparameter search and the number of multiplications. The number of multipli-
cations per layer is given in Table D.2.

Table D.2: ShallowConvNet number of multiplications per different steps of the
entire classification process for one input sample. T is the input signal length. N is
the number of channels of the input signal. K is the number of temporal kernels.
kL is the kernel length. p is the pooling size. Q is the number of output classes.
Operation Number of multiplications
Temporal correlation N × (T − kL + 1)× kL ×K

Spatial correlation N × (T − kL + 1)×K ×K

Batch normalization 2× (T − kL + 1)×K

Square activation (T − kL + 1)×K

Average pooling 5(T−kL+1)
p ×K

Logarithmic activation 5(T−kL+1)
p ×K × 3(NTy − 2))

Feature classification Q× 5(T−kL+1)
p ×K +Q× (1 + 3(NTy − 2))

* NTy corresponds to the Taylor series degree used to compute exponential and logarithm

Illustration of the validation classification accuracy for ShallowConvNet models for
different hyperparameters are provided in Figure D.5 for MEG experiment. kL refers
to the length of convolutional kernels and p to the average pooling size. The number
of convolutional kernels is K = 50. Contrary to the DeepConvNet where pooling
size corresponds to the pooling stride, in ShallowConvNet pooling stride is p/5. We
can notice that validation accuracy is higher for longer convolutional kernels and
smaller pooling sizes. We can also notice that in subject blind training there is
overfitting after 50th epoch in the majority of the models. To decrease overfitting,
models are trained with convolutional kernels constrained to a norm lower than 1,
whereas the default norm bound is 2. The models are trained for p = 15 and the
corresponding validation classification accuracy are depicted in Figures D.6 and D.7.
Decrease in norm bound yields a slight improvement in subject aware training as
well. In the subject blind experiment set-up, the model with kL = 35 and p = 15

is selected as the best one, with ∼ 0.652 × 106 parameters. In the subject aware
experiment set-up, the model with kL = 25 and p = 15 is selected as the best one,
with ∼ 0.652 × 106 parameters. We have also observed that although decreasing
the learning rate can lead to smoother validation loss, the curve flattens at lower
accuracy.

Illustration of the validation classification accuracy for ShallowConvNet models for
different hyperparameters are provided in Figures D.8, D.9 and D.10 for EEG ex-
periment. In the subject blind experiment set-up, the model with K = 50, kL = 15,
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Figure D.5: ShallowConvNet validation classification accuracy for subject blind
training (left) and subject aware training (right) for motor task MEG classifica-
tion problem.

Figure D.6: ShallowConvNet validation classification accuracy for subject blind
training (left) and subject aware training (right) for motor task MEG classifica-
tion problem.

and p = 15 is selected as the best one, with ∼ 0.16× 106 parameters. In the subject
aware experiment set-up, the model with K = 25, kL = 15, and p = 10 is selected
as the best one, with ∼ 0.04× 106 parameters. The learning rate is 0.0001.
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Figure D.7: ShallowConvNet validation classification accuracy for subject blind
training (left) and subject aware training (right) for motor task MEG classifica-
tion problem.

Figure D.8: ShallowConvNet validation classification accuracy for subject blind
training and subject aware training for mental workload EEG classification prob-
lem. Learning rate 0.0001
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Figure D.9: ShallowConvNet validation classification accuracy for mental workload
EEG classification problem. Learning rate 0.0001

Figure D.10: ShallowConvNet validation classification accuracy for subject blind
training and subject aware training for mental workload EEG classification problem.
Learning rate 0.0005
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EEGNet

In this subsection, we provide details on EEGNet [Lawhern et al. 2018] hyperpa-
rameter search and the number of multiplications. The number of multiplications
per layer is given in Table D.3.

Table D.3: EEGNet number of multiplications per different steps of the entire classi-
fication process for one input sample. T is the input signal length. N is the number
of channels of the input signal. K is the number of temporal kernels. kL is the kernel
length. p1 is the pooling size after the temporal convolution. p2 is the pooling size
after the spatial convolution. Q is the number of output classes.

Operation Number of multiplications
Temporal correlation N × T × kL ×K

Batch normalization 2×N × T ×K

Spatial correlation N × T ×K × 2K

Batch normalization 2× T × 2K

Exponential Linear Unit T × 2K × (1 + 3(NTy − 2))

Average pool
⌊
T
p1

⌋
× 2K

Separable correlation
⌊
T
p1

⌋
× 16× 2K +

⌊
T
p1

⌋
× 2K × 2K

Batch normalization 2×
⌊
T
p1

⌋
× 2K

Exponential Linear Unit
⌊
T
p1

⌋
× 2K × (1 + 3(NTy − 2))

Average pool
⌊⌊ T

p1

⌋
p2

⌋
× 2K

Feature classification Q×
⌊⌊ T

p1

⌋
p2

⌋
× 2K +Q× (1 + 3(NTy − 2))

* NTy corresponds to Taylor series degree used to compute exponential

Illustration of validation classification accuracy for EEGNet models for different
hyperparameters are provided in Figures D.11 and D.12 for MEG experiment. In
subject blind experiment kL = 85, p1 = 2, p2 = 4, K = 64. The norm constraint
on the fully connected layer is 0.5. The number of parameters is 0.088 In subject
aware experiment kL = 85, p1 = 2, p2 = 4, K = 80, normrate = 0.5. The num-
ber of parameters is 0.115. The norm constraint on the fully connected layer is
0.5. dp1 refers to the standard drop-out operation and dp2 to the spatial dropout.
Illustration of validation classification accuracy for EEGNet models for different

hyperparameters are provided in Figures D.13 and D.14 for EEG experiment. In
subject blind experiment K = 32 kL = 42, p1 = 2, p2 = 4,K = 32. In subject aware
experiment K = 32 kL = 83, p1 = 2, p2 = 4. The norm constraint on the fully
connected layer is 0.25.
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Figure D.11: EEGNet validation classification accuracy for subject blind training
(left) and subject aware training (right) for motor task MEG classification problem.
The curves are illustrated for the norm constraint on the fully connected layer 0.25

(default) and 0.5, for different lengths of convolutional filters kL and different pooling
sizes p1 and p2 = 2p1 and different dropout approaches (dp1, dp2).

Figure D.12: EEGNet validation classification accuracy for subject blind training
(left) and subject aware training (right) for motor task MEG classification problem.
The curves are illustrated for fixed lengths of convolutional kernels kL = 85, fixed
p1 = 2, p2 = 4 and dropout type dp1, and varying number of kernels K.
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Figure D.13: EEGNet validation classification accuracy for subject blind training and
subject aware training for mental workload EEG classification problem. The norm
constraint on the fully connected layer is 0.25 (default). The curves are illustrated
for different lengths of convolutional filters kL and different pooling sizes p1 and
p2 = 2p1 and different dropout (dp1, dp2) approaches. The learning rate is 0.0005

Figure D.14: EEGNet validation classification accuracy for subject blind training and
subject aware training for mental workload EEG classification problem. The norm
constraint on the fully connected layer is 0.25 (default). The curves are illustrated
for different lengths of convolutional filters kL and different pooling sizes p1 and
p2 = 2p1 and different dropout (dp1, dp2) approaches. The learning rate is 0.0001
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