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The analysis of neuroimaging data is essential for the interpretation of the functional or structural characteristics of the human brain. New machine learning algorithms usually require a high amount of data often infeasible to acquire in clinical and practical conditions. This requirement is a consequence of significant data variability arising from numerous factors (various recording procedures, subjects and sessions, presence of high levels of noise). To address this problem, in this thesis, we have investigated and proposed convolutional machine learning models adapted to the properties and well grounded assumptions about the acquired data. Therefore, the models are endowed with valuable knowledge and consequently more efficiently learn to perform certain inferences. In particular, we have studied models for the analysis of non-invasive and in-vivo structural and functional neuroimaging data, namely diffusion Magnetic Resonance Imaging (dMRI) and magneto-and electroencephalography (M/EEG) signals.

Diffusion MRI is a nuclear imaging modality which captures micro-structural properties of the examined tissue. As q-space sampling has been the most widely used high angular resolution diffusion imaging protocol (HARDI) over the last decade, we have studied spherical rotation equivariant convolutional neural networks (CNNs) for dMRI local modeling. As a first contribution, we have proposed a spherical U-net for the estimation of fiber orientation distribution functions (fODFs) with convolutions and non-linearities realized in the spectral and signal domains, respectively. To avoid aliasing, our second contribution proposes a Fourier domain CNN for micro-structure parameter estimation, where non-linearities are defined in the spectral domain. M/EEG are functional imaging techniques which measure magnetic field strength and electric field potential caused by neural electric activities in the cerebral cortex. Measured signals can be explained by Maxwell's equations with quasi-static approximations. Consequently, we can assume that cortical brain activities spread instantaneously and linearly over the measuring sensors, thus a multivariate M/EEG signal can be represented as a sum of rank-1 multivariate signals corresponding to individual sources in the cortex and noise. Considering this assumption, the second part of the thesis firstly investigates an M/EEG spatial and temporal dictionary learning approach with an L 0 constraint. A second contribution is a CNN classifier with rank-1 spatio-temporal kernels regularized in the spectral domain, where the spatial components of the kernels are represented in terms of spherical harmonics basis, while the temporal components are represented in terms of discrete cosine basis.

i Résumé L'analyse des données de neuroimagerie est essentielle pour l'interprétation des caractéristiques fonctionnelles ou structurelles du cerveau humain. Les algorithmes d'apprentissage automatique récents requièrent généralement une grande quantité de données souvent impossibles à acquérir dans des conditions cliniques et pratiques. Une telle exigence est une conséquence de la variabilité importante des données résultant de nombreux facteurs (différentes procédures d'enregistrement, sujets et sessions, présence de niveaux élevés de bruit). Pour résoudre ce problème, dans cette thèse, nous avons étudié et proposé des modèles convolutifs d'apprentissage automatique adaptés aux propriétés et aux hypothèses bien fondées sur les données acquises. Par conséquent, les modèles sont dotés de connaissances précieuses et apprennent plus efficacement à effectuer certaines inférences. En particulier, nous avons étudié des modèles d'analyse des données de neuroimagerie structurelle et fonctionnelle non-invasives et in-vivo pour de l'imagerie par résonance magnétique de diffusion (IRMd) et des signaux de magnéto et d'électro-encéphalographie (M/EEG). L'IRM de diffusion est une modalité d'imagerie nucléaire qui capture les propriétés microstructurales des tissus examinés. Comme l'échantillonnage de q-space est le protocole d'imagerie de diffusion à haute résolution angulaire (HARDI) le plus largement utilisé au cours de la dernière décennie, nous avons étudié les réseaux de neurones convolutionnels (CNN) sphériques équivariants par rotation pour la modélisation locale de l'IRMd. Comme première contribution, nous avons proposé un U-net sphérique pour l'estimation des fonctions de distribution d'orientation des fibres (fODF) avec des convolutions et des non-linéarités réalisées respectivement dans les domaines spectral et signal. Pour éviter l'aliasing, la deuxième contribution propose un CNN travaillant entièrement dans le domain spectral -y compris pour les non-linéarités -pour l'estimation des paramètres de microstructure. La M/EEG est une technique d'imagerie fonctionnelle qui mesure l'intensité du champ magnétique et le potentiel du champ électrique provoqués par les activités électriques neurales dans le cortex cérébral. Les signaux mesurés peuvent être expliqués par les équations de Maxwell avec des approximations quasi-statiques. Par conséquent, nous pouvons supposer que les activités cérébrales corticales se propagent instantanément et linéairement sur les capteurs de mesure, ainsi un signal M/EEG multivarié peut être représenté comme une somme de signaux multivariés de rang 1 correspondant à des sources individuelles dans le cortex et le bruit. Partant de cette hypothèse, la deuxième partie de la thèse étudie une approche d'apprentissage de dictionnaire spatio-temporel M/EEG sous contrainte L 0 . Une deuxième contribution dans cette partie est un classificateur CNN à noyaux spatio-temporels de rang 1 régularisés dans le domaine spectral, où les composantes spatiales et temporelles des noyaux sont représenteés respectivement en termes d'éléments de base d'harmoniques sphériques et de base de cosinus discrets.
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Introduction

The development of neuroimaging techniques over the last and current century has facilitated the gathering of new insights in the structure and function of the central nervous system, mainly in an in-vivo and non-invasive manner [START_REF] De Beeck | Hans Op de Beeck and Chie Nakatani. Introduction to human neuroimaging[END_REF]. Firstly invented structural neuroimaging techniques allowed the analysis of the shape, distribution, and volume of different neural tissues [Lenroot & Giedd 2006]. Therefore, they have been used in the diagnosis and characterization of multiple brain diseases, including brain tumors, multiple sclerosis, and traumatic brain injuries [START_REF] Gordillo | State of the art survey on MRI brain tumor segmentation[END_REF], Filippi et al. 2019, Lindberg et al. 2019]. The development of diffusion Magnetic Resonance Imaging (dMRI) enabled structural analysis at a micro-scale by providing valuable information on the orientation of neural micro-structures, principally white matter axon bundles [Le Bihan et al. 2006]. This has also opened the door to the research field of structural brain connectivity [START_REF] Sporns | The human connectome: a structural description of the human brain[END_REF]. Functional neuroimaging techniques have been used to represent brain activities [Orrison et al. 2017]. Apart from being employed in clinical practice for the detection and characterization of brain conditions such as epilepsy and sleep disorders, functional neuroimaging has been widely used in cognitive science, brain-computer interfaces (BCI) and functional connectivity analysis [Kauhanen et al. 2006, da Silva 2013]. Besides the independent analysis of the structural and functional properties of the brain, in the last two decades, a field of research has been dedicated to the understanding of their relationships [Deriche 2016]. To facilitate and improve the interpretation of the acquired medical data, a broad research area is devoted to the development of the models for their analysis [START_REF] Erickson | [END_REF]. New machine learning algorithms, such as deep learning models, usually require a high amount of data (and possibly its annotation) often infeasible to acquire in clinical and practical conditions. This request is a consequence of high variability of the same imaging modalities between acquisition centers, imaging devices, acquisition protocols, subjects, recording sessions, and often, also due to high levels of noise. To account for some of these variabilities, data harmonization [START_REF] Pezoulas | [END_REF]] and transfer learning [Cheplygina et al. 2019] methods are being investigated. To exploit the learning capacity of the neural networks, on one side and to account for the data variability and/or low quantity, on the other, in this thesis, we have investigated CNN models adapted to the properties and well grounded assumptions about the acquired data. In this way, the models are endowed with Chapter 1. Introduction valuable prior knowledge, before seeing any training data. As a consequence, the models show higher generalization power. In particular, we have investigated the convolutional models for the local analysis of dMRI data acquired with q-space sampling protocol [Caruyer et al. 2013] and for the analysis of the multivariate Magnetoencephalography (MEG) and Electroencephalography (EEG) signals. The former take into account the real and spherical nature of the dMRI signals, their rotation equivariance with respect to the underlying microstructures, antipodal symmetry, and random uniform distribution of the sampling points. M/EEG convolutional models are designed under the assumption that the measured signals can be represented as a sum of rank-1 multivariate signals corresponding to individual brain activities, and noise and that the brain waveforms are of transient and recurrent nature. In addition, to reduce the effects of inter-session and inter-subject variability, a model for M/EEG signal classification which assumes a spherical head model has been investigated. The thesis is organized as follows:

• Chapter 2 This chapter contains an overview of the principal structural and functional properties of the human brain. This is followed by a description of biophysical phenomena in neural tissues and medical structural and functional imaging methodologies for their measuring, namely dMRI, EEG, and MEG.

• Chapter 3. In Chapter 3, firstly, properties of the dMRI signals acquired with q-space sampling schemes are provided. Further, an overview of the stateof-the-art dMRI local modeling approaches is given, in particular, probability density functions on the sphere and biophysically inspired micro-structure multi-compartment models. The following sections include a detailed overview of the most recent deep learning approaches used in the analysis of spherical data and in dMRI local modeling.

• Chapter 4. Our first contribution is presented in Chapter 4. It introduces spherical U-net for the Fiber Orientation Distribution Function (fODF) [Jeurissen et al. 2014] estimation with details related to the estimation of SH coefficients via Gram-Schmidt orthonormalization, convolutions with zonal kernels, pooling layers, and transposed convolution layers. The model is positively evaluated on the real Human Connectome Project (HCP) [Van Essen et al. 2012] and synthetic data generated with the dmipy [Fick et al. 2019] library.

• Chapter 5. Our second contribution from the domain of dMRI local modeling is given in Chapter 5. It introduces the Fourier domain spherical CNN for dMRI local parameter estimation. The principal ingredients of this model are quadratic nonlinearities realized in the Fourier domain. The model is evaluated on the synthetic data on the problem of the axon bundle count, estimation of the micro-structure parameters, and brain tissue segmentation.

• Chapter 6. In this chapter, first, the modeling of the functional EEG and 

Executive summary

In this chapter, firstly, a brief overview of the functional and structural properties of the human nervous system is provided. It includes information about the neurons as its essential element and about the neural organizations at a macro-scale, namely the cortical brain lobes and the white matter fiber tracts. Further, an outline of the most prominent functional and structural medical imaging techniques is given, followed by a detailed description of the physical phenomena in the neural tissues and methodologies which allow diffusion Magnetic Resonance Imaging and magnetoand electro-encephalography signal recording.

Chapter 2. Background

Human brain structure and function

Anatomically, the nervous system of vertebrates is composed of the Central Nervous System (CNS) which includes the brain and the spinal cord and the Peripheral Nervous System (PNS) which is composed of the nerves, and the ganglia outside the CNS. An overview of the principal structural and functional properties of the human's CNS is provided in Figure 2.1 and of the PNS in Figure 2.2. For more details, we refer the reader to [Snell 2010, Johns 2014]. 

Structure and function of neurons

The essential elements of the nervous system are neurons, a majority of which make a part of the brain. On average, an adult human brain contains ∼ 86 × 10 9 neurons and ∼ 85 × 10 9 non-neural cells [Azevedo et al. 2009, Herculano-Houzel 2012].

Typically, a neuron is composed of a soma, dendrites, and an axon with multiple terminals. The soma is the metabolic center of a neuron and is responsible for generating proteins necessary for neuron maintenance and functioning. The region of the soma where the axon emerges is called the axon hillock. Dendrites and axons, also referred to as neurites, are projections from the soma responsible for communication and information processing. An illustration of a neuron with its main structures is given in Figure 2.3. Each of the neuron components gives rise to a morphological diversity of neurons, thus they can differ in terms of position, shape, and size of the soma, length of neurites, number of dendrites and axon terminals, as well as their spatial organization. Crucial electro-physiological properties of neurons are excitability, conductivity, and secretion, which enable them to receive and process information and based on the processing outcome, to transmit information further. Given their connections, neurons can be classified as interneurons which communicate only with other neurons, afferent neurons which convert environmental stimuli into signals, and efferent neurons which transmit signals to organs [Peters et al. 1976]. In general, signal reception takes place at the level of dendrites. In the case of afferent neurons, dendrites directly or indirectly translate received stimuli into sensory signals. Otherwise, in interneurons and efferent neurons, reception is performed via synapses which are, most commonly, established with dendrites and axons of different neurons. As each synapse has an associated weight, signal processing starts at reception and continues within dendrites. Depending on the spatial distribution of the synaptic inputs, processing at the level of dendrites can be modeled in a linear or non-linear manner [START_REF] Grienberger | [END_REF].

Processed signals are integrated in axon hillock and if the voltage of the resulting signal reaches a high enough amplitude in a short period, an action potential is generated. This action potential is transmitted along the axon until its terminals. Some axons are wrapped in a myelin sheath which acts as an insulator and ensures their high conductivity and efficient action potential transmission. In the PNS, the myelin sheath originates from Schwann cells, and in the CNS from oligodendroglial cells [Morell & Quarles 1999]. Once the action potential reaches axon terminals, the secretion of neurotransmitters enables information transmission to the following neuron or an organ cell in the case of efferent neurons. In the CNS, the spatial organization of neurons creates tissues that at macroscopic scale appear as the gray and white matter. Gray matter is composed of cell bodies, dendrites, unmyelinated axons, and glial cells [START_REF] Solomon | [END_REF]. White matter contains axons and a much higher concentration of glial cells, a majority of which are oligodendroglial cells that create myelin sheath and give rise to the whitish color of the tissue [START_REF] Solomon | [END_REF]]. 

Gray matter

Gray matter tissue constitutes the outer layers of the cerebrum and cerebellum known respectively as the cerebral and cerebellar cortices, but also some of their inner structures such as the basal ganglia and the deep cerebellar nuclei. It is also the principal component of the diencephalon structures and is present in some segments of the brain stem. Further, it constitutes the inner part of the spinal cord also known as the gray column. As in the context of this thesis, we are only interested in the signals emerging from the cerebral cortex, in this section, we focus on its structural and functional properties.

The surface of the cortex is highly wrinkled, where a distinction can be made between tissue bumps or ridges known as gyri (singular: gyrus) and tissue furrows or grooves known as sulci (singular: sulcus) [Spielman et al. 2020]. The cerebral cortex is divided by the longitudinal fissure into the right and left hemispheres. Furthermore, each hemisphere is composed of four lobes, namely the frontal, temporal, parietal, and occipital lobes.

Image adapted from: Title: Brain mesh Author: Deslauriers-Gauthier Samuel Source: nimesh Link: github.com/sdeslauriers/nimesh.

The frontal lobe takes the largest portion of the cerebral cortex. It is separated from the rest of the cortex by the central sulcus (fissure of Rolando) and the lateral sulcus (Sylvian fissure). It contains the precentral, superior frontal, middle frontal, and inferior frontal gyri, separated by precentral, superior frontal, and inferior frontal sulci. From the functional point of view, the frontal lobe is often termed as the "action cortex". The precentral gyrus contains the primary motor cortex. The premotor cortex and supplementary motor area are situated anterior to it. These three regions make the motor cortex and are responsible for the planning, control, and execution of voluntary movements [START_REF] Foerster | The motor cortex in man in the light of Hughlings Jackson's doctrines[END_REF]]. The frontal part of the frontal lobe is termed as the prefrontal cortex and it participates in higher cognitive functions, such as attention, problem solving, short-term memory, personality expression, etc [Miller et al. 2002]. The frontal lobe also includes Broca's area responsible for speech production [Keller et al. 2009].

Image adapted from: Title: Brain mesh Author: Deslauriers-Gauthier Samuel Source: nimesh Link: github.com/sdeslauriers/nimesh.

The temporal lobe is separated from the frontal lobe by the lateral sulcus and from the rest of the cortex by an imaginary parietotemporal line [DeFelipe et al. 2007]. It contains the superior, middle, and inferior temporal gyri, separated by superior temporal and inferior temporal sulci. The temporal lobe includes the auditory cortex composed of primary, secondary, and tertiary cortices, also referred to as core, belt, and parabelt areas, which are responsible for the processing of auditory information [Pickles 1998]. A region of the temporal lobe termed as the medial temporal lobe, which includes the hippocampus, amygdala, and parahippocampal regions is essential in the creation of long-term memory [START_REF] Eichenbaum | Howard Eichenbaumet al. Memory, amnesia, and the hippocampal system[END_REF]]. The superior temporal gyrus contains the Wernicke's area which is traditionally associated with understanding written and spoken language, although some more recent studies indicate that it also participates in speech production [START_REF] Binder | [END_REF]]. Finally, the temporal lobe also includes regions that participate in the processing of visual information, in particular, object recognition [START_REF] Milner | The visual brain in action[END_REF].

Image adapted from: Title: Brain mesh Author: Deslauriers-Gauthier Samuel Source: nimesh Link: github.com/sdeslauriers/nimesh.

The parietal lobe is placed behind the frontal lobe and above the temporal and occipital lobes. From the frontal lobe, it is separated by the central sulcus and from the temporal and occipital lobes by the lateral sulcus, the parieto-occipital sulcus, and imaginary borders.

It contains the postcentral gyrus, which is situated just after the central sulcus and is followed by the postcentral sulcus. The remaining part of the parietal lobe is the posterior parietal cortex, which is composed of the superior and inferior parietal lobules, separated by the intraparietal sulcus [Vingerhoets 2014]. The postcentral gyrus contains the primary somatosensory cortex, while the secondary somatosensory cortex is situated in the superior bank of the lateral sulcus. Together, they constitute the somatosensory cortex involved in the reception and processing of sensory information [START_REF] Penfield | The cerebral cortex of man; a clinical study of localization of function[END_REF]. The superior parietal lobule is involved in attention and visuospatial perception, while the inferior parietal lobule takes part in reading, writing, and solving mathematical operations [Johns 2014].

Image adapted from: Title: Brain mesh Author: Deslauriers-Gauthier Samuel Source: nimesh Link: github.com/sdeslauriers/nimesh.

The occipital lobe is the smallest lobe and corresponds to the posterior part of the cortex. More precisely, it is separated from the parietal and temporal lobes by the parieto-occipital sulcus and the imaginary lateral parietotemporal line. The morphology of this lobe varies most significantly between subjects, but three gyri can be identified namely the superior, middle, and inferior occipital gyri. The occipital lobe contains the primary visual cortex known as the striate cortex and the visual association cortex also known as the extrastriate visual cortex. They are responsible for the processing of visual information, in particular, color determination, perception of size, depth, and distance, object and face recognition, visuospatial processing, and memory formation [Johns 2014, Rehman & Al Khalili 2019].

White matter

White matter tissue is present inside the cerebrum and cerebellum. It is composed of myelinated axons, which are grouped in bundles also called tracts or fibers. These tracts make links between distant gray matter regions. It is also present in the structures of the diencephalon and the brain stem and surrounds the gray matter in the spinal cord. As in the context of this thesis, we are only interested in the cerebral white matter, in this section, we focus on its structural and functional properties. White matter tracts can be classified into three groups, namely projection, association, and commissural fibers. The projection tracts connect the cerebral cortex with the other structures of the CNS. Traditionally, they are classified into efferent (brain output) and afferent (brain input). The most prominent efferent projection tracts are the corticospinal, corticobulbar, and corticopontine fibers. The corticospinal fibers primarily emerge from the motor cortex, but some originate from the somatosensory cortex as well. The axons terminate either by connections to motor neurons or to interneurons of the spinal cord. Along this path, they pass through the brain stem, where they form medullary pyramids. At the exit of the medullary pyramids, a larger fraction of the fibers decussates and create the lateral corticospinal tract, while the remaining fibers create the anterior corticospinal tract. The principal function of the corticospinal tract is to transmit the signals responsible for voluntary movements and sensorydriven reflexes, but they are also involved in the modulation of sensory information. The corticobulbar fibers originate in the primary motor cortex, in particular from the regions above the lateral fissure. By passing through the corona radiata and the internal capsule, they end in the medullary pyramids also called bulbar. Corticobulbar fibers transmit motor signals, directly or via interneurons, to the cranial nerves which innervate muscles of the face, mastication, tongue, pharynx, larynx, etc. The corticopontine fibers emerge from all the regions of the cerebral cortex, but the largest number of fibers comes from the frontal lobe. They end in the pontine nuclei, just at the entrance to the cerebellum. Corticopontine fibers establish communication between the cerebral and cerebellar cortices and are involved in the coordination of voluntary movements [Rea 2015]. Illustrations of the corticospinal, corticobulbar, and corticopontine fibers are provided in Figure 2.4.

Figure 2.4: Illustrations of the corticospinal (blue), corticobulbar (red), and corticopontine (green) fibers in coronal (left) and sagittal (right) views.

The afferent projection tracts transmit information from the subcortical CNS structures to the cortex. Some examples of well recognized afferent projection tracts are the optic and acoustic radiations which make part of the optic and auditory pathways. The optic pathways start with the optic nerves originating in the retina. The nerves meet and partially decussate in the optic chiasm, creating the optic tracts which terminate in the lateral geniculate nucleus, located in the thalamus [START_REF] Mehra | Divy Mehra and Majid Moshirfar[END_REF]. The remaining pathways correspond to the optic radiations which connect the thalamus and the visual cortex. The au-ditory pathways start with the cochlear nerves originating in the cochleas. They pass and partially decussate in the brain stem, creating tracts termed lateral lemnisci [START_REF] Peterson | [END_REF]. The lateral lemniscus terminates in the medial geniculate nuclei, located in the thalamus. The remaining pathways correspond to the acoustic radiations which connect the thalamus and the auditory cortex. Illustrations of the optic and auditory pathways are illustrated in Figure 2.5. The association tracts form the interhemispheric connections. They can be classified into short and long tracts. Short fibers, situated closely beneath gray matter, make connections between adjacent gyri. Long tracts connect more distant regions of the cortex. Some of the most prominent long association fibers are the cingulum, the superior and inferior longitudinal fasciculi, the uncinate fasciculus, the vertical occipital fasciculus, the inferior fronto-occipital fasciculus, the arcuate fasciculus, etc. The cingulum connects the frontal, parietal, and medial temporal regions, and the subcortical nuclei to the cingulate cortex, situated in the medial part of the cerebrum, thanks to its radiating nature [START_REF] Bubb | [END_REF]]. The superior longitudinal fasciculus makes a connection between the parietal lobe and the region where it meets the temporal lobe on the one side and the frontal lobe on the other side [Wang et al. 2016]. It is involved in signal transmission related to language, attention, memory, and emotions. The uncinate fasciculus connects the anterior temporal lobe with the inferior region of the frontal lobe [START_REF] Der | [END_REF]. It is considered to be involved in some aspects of episodic memory, language, and emotional processing [START_REF] Der | [END_REF]. The vertical occipital fasciculus connects the dorsolateral and ventrolateral visual cortices and is important in signal transmission related to visual and cognitive functions [START_REF] Yeatman | [END_REF]]. The inferior fronto-occipital fasciculus originates in the frontal lobe and terminates in the regions of the occipital cortex, temporo-basal areas, and superior parietal lobe [Wu et al. 2016b]. It is associated with language processing and goal-oriented behavior [Conner et al. 2018]. The inferior longitudinal fasciculus arises from the occipital and temporal-occipital areas and terminates in the inferior region of the temporal lobe. It is involved in a wide range of brain functions, such as object recognition, reading, lexical and semantic processing, emotions, and visual processing [START_REF] Herbet | [END_REF]. The arcuate fasciculus is historically defined as a fiber connecting two language-related areas, namely the Wernicke's and Broca's areas. More precisely, a recent study showed that the fibers arise from the ventrolateral frontal cortex and via the parietal cortex reach the middle and inferior temporal lobe [START_REF] Eichert | [END_REF]. Illustrations of the short and long association fibers are provided in Figure 2.6. The commissural tracts form interhemispheric connections. The most important commissural fibers are the corpus callosum, the hippocampal commissure, and the anterior and posterior commissures. The corpus callosum is the largest commissural tract situated beneath the cerebral cortex and above the thalamus. It is composed of four parts, namely the rostrum, the genu, the body, and the splenium. The rostrum connects the orbital regions of the frontal lobes. The genu connects the medial and lateral regions of the frontal lobe. The body contains fibers that make part of the corona radiata and connect the temporal and occipital lobes. The splenium creates connects the occipital lobes. The corpus callosum is responsible for signal transmission related to sensory, motor, and high-level cognitive functions. The anterior commissure is situated anteriorly with respect to the corpus callosum. It connects the olfactory, amygdaloid, and temporal regions [START_REF] Fenlon | [END_REF]]. Although still not completely understood, some studies have shown that the anterior commissure is involved in olfactory functions, memory, and visual processing [START_REF] Fenlon | [END_REF].

The posterior commissure is a small bundle of axons, posterior to the corpus callosum, which connects the structures of the epithalamus. It is considered to be involved in signal transmission between language processing centers [Standring 2020].

The hippocampal commissure, also known as commissure of the fornix, makes a connection between hippocampus [Standring 2020]. Illustrations of the corpus callosum and anterior commissure are provided in Figure 2.7.

Figure 2.7: Illustration of the principal commissural tracts: corpus callosum (green) and the anterior commissure (red).

Structural and functional brain imaging techniques

Neuroimaging refers to the creation of images that reflect the structural and/or functional characteristics of the examined part of the nervous system, via the utilization of certain imaging techniques. Apart from the characteristics they reflect, these techniques can be differentiated along multiple axes, such as spatial and temporal resolution, contrast, signal to noise ratio, required acquisition time, portability and price of acquisition devices, invasivity, patient-friendly assessments, etc. An overview of the well developed and commonly used techniques in brain imaging is given below. Magnetic Resonance Imaging (MRI) uses a strong magnetic field, magnetic field gradients, and electro-magnetic radio frequency pulses to interact with nuclei present in the tissues in order to create images. Spatial and temporal organizations of the gradients and the pulses allow the acquisition of different MRI modalities. Some of the broadly used structural modalities include conventional T 1 , T 2 and T * 2 weighted images, and dMRI. Examples of MRI modalities that reflect functional properties of the tissues are perfusion weighted images and functional MRI.

EEG is a functional imaging technique that uses electrodes placed on the scalp or intra-cranially to record the electric potential produced by the electrical activity of the cerebral cortex. It is characterized by a very high temporal resolution, but a low spatial one in comparison to functional MRI. In addition to its high temporal resolution, another important advantage of the EEG imaging technique is the portability and low cost of its measuring devices.

MEG is a functional imaging technique that measures the magnetic field strength produced by the electric activity of the cerebral cortex. The acquisition is achieved with magnetometers placed on the scalp or in its proximity. As EEG, it is characterized by a high temporal resolution. The spatial resolution is in general higher than with EEG, but lower than that of functional MRI. Functional Near Infrared Spectroscopy (fNIRS) is a functional imaging tech-nique that uses near-infrared light to capture the haemodynamic activity in the cortex which appears as a consequence of neural activity (the same physical phenomena is measured by functional MRI). Measuring is achieved using light emitters and detectors placed on the scalp. Its temporal resolution is better than in functional MRI, but lower than with EEG and MEG. Localization of active regions is more accurate than with EEG and MEG, mostly because fNIRS is only able to measure activities that are close to the cortical surfaces. As for EEG, fNIRS devices can be portable.

Computed Tomography (CT) uses X-ray sources and detectors to measure Xray attenuation along multiple angles. The obtained measurements are combined using computerized algorithms which perform a tomographic reconstruction to obtain the final images. Conventional CT scans are used for anatomical imaging, whereas CT perfusion imaging is a functional modality that uses contrast agents to quantify blood perfusion in the brain. Compared to MRI, CT scans can have higher spatial resolution and lower acquisition times. MRI however provides better contrast between soft tissues.

Positron Emission Tomography (PET) uses radiotracers that emit positrons which when colliding with electrons emit gamma rays measurable by detectors placed around the examined region. Similarly to CT, a computerized tomographic reconstruction is applied to the measured signals to obtain the final scan. In brain imaging, PET scans are used to measure the blood flow associated with neural activity. Compared to MRI, both spatial and temporal resolutions of PET scans are lower.

Single Photon Emission Computed Tomography (SPECT) uses radiotracers that directly emit gamma rays measurable by detectors placed around the examined regions. As in the previously mentioned tomography imaging techniques, images are computed using computerized tomographic reconstruction algorithms.

As with PET, it is a functional imaging technique that measures the blood flow whose increase is correlated with an increase in neural activity. Compared to PET, in general, its spatial and temporal resolutions are lower, as well as the price of the scanner.

As in this thesis, we have proposed models for the analysis of EEG, MEG, and dMRI data, a more detailed description of the physical phenomena in the neural tissues and methodologies which allow their recording is provided.

Diffusion MRI

dMRI is an MRI imaging modality which captures the structural properties of tissues. In comparison to conventional anatomical MRI scans, such as T 1 and T 2 weighted images, dMRI images provide information about the microstructures of the examined tissue.

Chapter 2. Background

Free and restricted diffusion of water molecules

Molecular diffusion is a phenomenon that corresponds to a type of particle motion occurring at temperatures higher than absolute zero. If a particle concentration gradient is present in a substance, diffusion leads to its uniform distribution. This process can be described using Fick's first law of diffusion [START_REF] Fick | Ueber diffusion[END_REF]]

J = -D∇C , (2.1) which relates the diffusive flux J[ mol m 2 s ] to the gradient of the concentration C[ mol m 3 ] via the diffusion coefficient D[ m 2
s ]. D is often referred to as diffusivity and depends on temperature, viscosity, particle size, and the presence of boundaries in the medium. Fick's second law of diffusion explains how concentration changes over time due to the diffusion process

∂C ∂t = ∇ • (D∇C), (2.2)
where t[s] is time. Even if the distribution of particles within a substance is uniform, microscopic motions of the particles exist if the absolute temperature is higher than the absolute zero, although the net flux J from Eq. 2.1 through any surface is equal to zero. This type of motion is known as Brownian motion [START_REF] Brown | on the particles contained in the pollen of plants, and on the general existence of active molecules in organic and inorganic bodies[END_REF]] as it was first described by Robert Brown. Displacement of particles only in the presence of Brownian motion can be described by solving Eq. 2.2, where diffusivity D depends on the properties of the medium. For spherical particles in an isotropic medium, diffusivity can be considered constant and is defined using the Stokes-Einstein equation as

D = k B T 6πηr (2.3)
where k B [ J K ] is the Boltzmann constant, T [K] is the absolute temperature, η[ kg m•s ] is the dynamic viscosity and r[m] is the radius of the particle. In an anisotropic medium, diffusivity can be represented as a symmetric positive-definite tensor

D =   D xx D xy D xz D xy D yy D yz D xz D yz D zz   (2.4)
or for more complex structures of the medium, as a positive function on a sphere D : S 2 → R + . An illustration of the displacement of one particle in the same substance, without and with obstacles is provided in Figure 2.8.

Magnetic Resonance Imaging (MRI)

MRI is an imaging technique, based on the property of nuclei of certain atoms to absorb and emit EM waves at a specific radio frequency (RF). In imaging of the human body, a majority of these atoms are hydrogen atoms from the water molecules, thus a nucleus H + corresponds to a proton p + . To create an image, the received EM waves are averaged over small volumes called voxels of the order of hydrogen protons. This can give us an idea of the number of protons within one voxel which participates in the EM signal generation for different tissues, bearing in mind that ∼ 73% of the brain and the heart is water, as well as ∼ 31% of the bones [START_REF] Mitchell | The chemical composition of the adult human body and its bearing on the biochemistry of growth[END_REF].

Protons are characterized by their mass, electric charge, and spin. When the examined tissue is not exposed to a strong enough external magnetic field, the orientations of the spins of the hydrogen protons are random as illustrated in Figure 2.9 (a). In general, the acquisition of an MRI scan requires the utilization of a strong external magnetic field, three gradient magnetic fields for spatial encoding, and RF EM pulses at the resonance frequency. The external magnetic field is also referred to as the main magnetic field B 0 [T ]. Spatial encoding gradient fields alter B 0 with a term ∆B z (x, y, z, t)[T ] in a way that the EM waves associated to the voxels at different positions have different frequencies and/or times of application. The RF pulses emitted at Larmor frequency enable signal acquisition as it will be further explained.

Once the main magnetic field B 0 is activated, spins align with and against it and start to precess at the Larmor or resonance frequency ω 0 = γ|B 0 | around B 0 which is oriented along the z-axis as depicted in Figure 2.9 (b). γ[ rad s•T ] is the gyromagnetic ratio -a constant equal to the ratio of the magnetic moment and the angular momentum of the particle. For the hydrogen proton in a water molecule γ = 267.52×10 6 rad s•T . Taking into account the spatial encoding magnetic field gradients, the resonance frequency can be expressed as ω 0 (x, y, z, t) = γ|B 0 + ∆B z (x, y, z, t)|. The alignment of the spins is illustrated in Figure 2.9 (b). Although both orientations of the spin alignments are possible and are spread between these two orientations, alignments with the external field have a lower energy state. Given this, at each moment, a slightly higher number of spins aligns with B 0 . The ratio between the number of Chapter 2. Background spins aligned with (n -) and against the external (n + ) field is given by

n - n + = e γℏ|B 0 +∆Bz(x,y,z,t)| k B T (2.5)
where ℏ is the Plank constant. The difference between the number of spins at lower and higher energy states gives raise to the net magnetization. Although the spins, within one voxel, precess at the same frequency, since they do not precess in phase, the net magnetization in the xy-plane sums up to 0. Thus, it exists only along the z-axis and it is denoted with M z [T ] in Figure 2.9 (b), where

|M z | = M 0 is a non- zero net magnetization. M z is called the longitudinal component of magnetization.
Assuming the presence of only B 0 , using Eq. 2.5 one can obtain that for n + = 10 6 and |B 0 | = 3T , n -≈ 10 6 + 20, while for |B 0 | = 9T , n -≈ 10 6 + 59. The higher the difference between n -and n + , the amplitude of the produced net magnetization is higher ("more protons participate in the contrast creation"), thus, the emitted EM waves are less susceptible to noise. This shows why the scanners with higher main magnetic field strengths are characterized by a higher signal-to-noise ratio.

If an EM RF pulse B 1 [T ] at the Larmor frequency is applied perpendicularly to the main magnetic field B 0 , spins spiral down to the xy-plane and continue to precess around the z-axis. But now, the precessions of the spins are in phase, as depicted in the spins start to emit the received EM energy at the resonance frequency. As a consequence, they start to dephase and re-align with and against the external B 0 field. This process was firstly described by Felix Bloch [Bloch 1946] with a set of equations termed as Bloch equations

dM x (t) dt = γ(M(t) × B(t)) x - M x (t) T 2 , dM y (t) dt = γ(M(t) × B(t)) y - M y (t) T 2 , (2.6) dM z (t) dt = γ(M(t) × B(t)) z - M z (t) -M 0 T 1 where B(t) = (B x (t), B y (t), |B 0 + ∆B z (x, y, z, t)|) and M(t) = (M x (t), M y (t), M z (t))
. T 1 and T 2 are longitudinal and transverse relaxation times. If the RF pulse is |B 1 | = 0, then B(t) = (0, 0, |B 0 + ∆B z (x, y, z, t)|) and the Bloch equations can be simplified as

dM x (t) dt = - M x (t) T 2 + γB z (t)M y (t) = - M x (t) T 2 + ω 0 (x, y, z, t)M y (t) , dM y (t) dt = - M y (t) T 2 -γB z (t)M x (t) = - M y (t) T 2 -ω 0 (x, y, z, t)M x (t) , (2.7) dM z (t) dt = - M z (t) -M 0 T 1 .
Assuming that ω 0 (x, y, z, t) = ω 0 (x, y, z), by solving Eq. 2.7, the exponential decay of the magnitude of the transverse magnetization M xy is defined as

|M xy (t)| = |M xy (0)|e -t T 2 . (2.8)
This is termed as the T 2 relaxation process which is illustrated in Figure 2.10 (b).

The magnitude of the longitudinal magnetization M z recovers exponentially as

|M z (t)| = M 0 + (|M z (0)| -M 0 )e -t T 1 .
(2.9) This is termed as the T 1 relaxation process which is illustrated in Figure 2.10 (a).

The T 1 relaxation time describes how quickly the longitudinal component of the net magnetization recovers and is defined as the time necessary to reach (1 -1 e ) ≈ 63% of the initial magnitude before the RF pulse -M 0 . The T 1 relaxation occurs due to the energy dissipation via the interactions between H + spins at higher energy levels and their environment, leading to a slight increase in temperature. The T 1 relaxation time is approximately 10 times lower in fat than in water. The T 2 relaxation time describes how quickly the transverse component of the net magnetization decays and it corresponds to the time necessary to reach 1 e ≈ 37% of its initial magnitude after the RF pulse -M 0 . The energy dissipation associated with the T 1 relaxation leads to the T 2 relaxation as well. A second cause is the local magnetic fields produced by the nuclei of surrounding atoms, causing the precession frequency to slightly increase or decrease. Local magnetic fields associated with the H + spins impact each other as well. The T 2 relaxation times are in general much shorter than the T 1 . EM signals emitted from excited protons are recorded using RF coils which are placed parallel to the main magnetic field. A rotating magnetic field M xy (t) produces an oscillating current in the coil whose magnitude is determined using Fourier transform. On the other hand, the longitudinal component of the magnetization M z (t) is very weak compared to the main magnetic field B 0 and cannot be measured along the z axis, thus it is tipped down by another RF pulse to the transverse plane to be measured. As already mentioned, in addition to the main magnetic field B 0 which is constantly active, applications of three gradient magnetic fields are used for spatial encoding. They allow us to disentangle signals recorded with the RF coil to signals originating from individual voxels. The gradient along the z axis, denoted as g z is used to select the axial slice to be recorded and it is applied at the same time as the B 1 pulse.

Another gradient is applied along the y axis right after the pulse, denoted as g y and is also called the phase encoding gradient, as it causes that proton spins along the y axis rotate with different phases. After phase encoding, a third gradient g x , termed as the frequency encoding gradient, is applied along the x axis, causing spins along x to rotate with slightly different frequencies. While this gradient is applied, the EM signal emerging from the entire slice is recorded with the RF coil. With a Fourier transform, we can determine the magnitudes corresponding to different positions along the x axis, however since those magnitudes correspond to the superposition of the signals with the same frequency but different phases, the entire process needs to be repeated multiple times with the different amount of phase encoding (amplitude of g y ) to determine magnitudes of the signals emerging from the individual voxels along the y axis. If the number of voxels along the y axis is N y , then the number of phase encodings with different amplitudes of g y must also be N y . The period between two repetitions is called repetition time T R. The period between the application of the RF pulse and signal recording via coil is called time to echo T E. This pulse sequence is called the gradient echo sequence and is illustrated in Figure 2.12 (a). Since the main magnetic field, B 0 is not perfectly homogeneous, the existing inhomogeneities cause much faster dephasing of the spins than if only random spin-spin interactions are present. These inhomogeneities are constant in time, so their effect can be reversed using a RF 180 o pulses applied at T E/2 which flip spins so that all the phase accumulated due to inhomogeneities during the first T E/2 period is reversed. Thus the differences due to inhomogeneities sum up to zero with the newly accumulated phase during another T E/2 period. This pulse sequence is called the spin echo sequence and is illustrated in Figure 2.12 (b).

The T 1 and T 2 weighting of an image is achieved by adjusting the repetition time interval T R and the echo time T E interval. These values are optimized on the longitudinal and transverse relaxation times of the different tissues. One would like to read an echo signal when the amplitudes of the longitudinal or transverse components differ the most between the tissues. For a T 1 weighting, T R is relatively short and once the RF pulse is applied to flip the longitudinal component to the xy plane, the echo is read shortly after to avoid amplitude decrease due to dephasing. Since the recovery of the longitudinal component is long, for T 2 weighting, T R is relatively long, as well as T E. When the longitudinal component is recovered, it is tipped down to the xy plane, and a T E period is given to spins to dephase before reading the echo. If the longitudinal component is not recovered only a fraction of spins participate in the evaluation of transverse relaxation.

(a) (b)

Figure 2.12: Illustration of a gradient echo sequence (a) and spin echo sequence (b).

Diffusion weighted MRI

Diffusion weighting of MRI images is achieved by diffusion sensitizing gradients (DSGs). A DSG can be created by using gradient fields g z , g y and g x . By adjusting the amplitudes of g z , g y and g x , a DSG can have different orientations. DSGs are combined with the T 2 relaxation process to create a contrast. The principal idea behind this is that when spins are tipped down to the transverse plane, a DSG is applied during a short period δ along a certain direction. As a consequence, as spins along the DSG direction experience slightly different gradient intensities, they accumulate slightly different phases. Thus, the first DSG is called the phase encoding gradient. After the refocusing RF pulse of 180 o is applied and before the echo time, a DSG with the same direction but a reversed amplitude is applied during δ, thus the accumulated phases during the first δ period would be reversed. The second DSG gradient is called the phase decoding gradient. An illustration of a pulse sequence with diffusion weighting, known as Pulsed Gradient Spin-Echo (PSGE) sequence introduced by Stejskal and Tanner [START_REF] Stejskal | [END_REF], is illustrated in Figure 2.13. If the displacement of the spins along the DSG is restricted, the second DSG cancels the majority of the dephasing effect of the first DSG. This is illustrated in Figure 2.14. On the other hand, if the displacement of the spins along the DSG is free, spins with initially encoded phases move around, thus when the second DSG is applied, the encoded phases of the spins would not be canceled. This is illustrated in Figure 2.15. Thus, if the diffusion of the water molecules is restricted along the DSG, the amplitude of the transverse component would be high, otherwise, if the diffusion is free, due to additional dephasing, the amplitude of the transverse component would be low.

To incorporate the effects of the molecule diffusion, Torrey, defined the Bloch-Torrey Chapter 2. Background equations [Torrey 1956] as

dM x (t) dt = γ(M(t) × B(t)) x - M x (t) T 2 + ∇ • D∇(M x (t) -M x0 ) , dM y (t) dt = γ(M(t) × B(t)) y - M y (t) T 2 + ∇ • D∇(M(t) y -M y0 ) , (2.10) dM z (t) dt = γ(M(t) × B(t)) z - M z (t) -M 0 T 1 + ∇ • D∇(M(t) z -M z0 )
where D is the diffusion coefficient and M x0 , M y0 and M z0 are the x, y and z components of the equilibrium magnetization. Attenuation of the amplitude of the transverse component of the magnetic field M xy (t) described by Eq. 2.10, due to the diffusion process and for the PSGE sequence, is defined by the Stejskal-Tanner equation [START_REF] Stejskal | [END_REF] as

A(T E) A(0) = e -Dγ 2 G 2 (∆-δ 3 )δ 2 (2.11)
where A(0) is the amplitude of M xy (0), when the 90 o RF pulse is applied and A(T E) is the amplitude of M xy (T E), when the signal is being recorded. G is the amplitude of the DSG G. ∆ is the interval between encoding and decoding DSG and δ is their duration. b = γ 2 G 2 (∆ -δ 3 )δ 2 is the b-value which describes diffusion weighting of the signal. Phase encoding and decoding DSGs are characterized by direction, strength, shape, duration, and temporal spacing which all together constitute a high dimensional acquisition space termed as q-space [Callaghan et al. 1988]. A point of the q-space for the PSGE sequence is defined as q = γGδ 2π . Starting from a single point q-space sampling via PSGE [START_REF] Stejskal | [END_REF], several more advanced q-space sampling schemes have been developed [Descoteaux et al. 2014]. The first diffusion weighted MRI scans were acquired with a sampling protocol containing three differently oriented and noncollinear pairs of DSGs as introduced in [Le Bihan et al. 1986]. This imaging protocol allowed differentiation of the intravoxel incoherent motions between healthy and pathological tissues via apparent diffusion coefficient (ADC) [Le Bihan et al. 1986]. As the diffusion of the water molecules in neural tissues is not uniform along all directions, in [START_REF] Basser | [END_REF]], an imaging protocol termed Diffusion Tensor Imaging (DTI), comprising acquisition over seven noncollinear q-space points for multiple gradient strengths, has been proposed. DTI allowed the estimation of the effective diffusion tensors capable to quantify anisotropic diffusion of the water molecules [START_REF] Basser | [END_REF]]. Being able to estimate the principal direction of the water molecule diffusion enabled tracking of the white matter pathways, a process known as tractography [Basser et al. 2000]. Since the white matter might contain multiple axon bundle populations, such as crossing, kissing, and fanning axon bundles, more advanced High Angular Resolution Diffusion Imaging (HARDI) protocols have been proposed [Descoteaux et al. 2014]. Some of the most prominent HARDI protocols are diffusion spectrum imaging (DSI) [Wedeen et al. 2000], single [START_REF] Jones | [END_REF]] and multi shell q-space sampling schemes [Ye et al. 2012, Caruyer et al. 2013]. They enabled the utilization of more insightful mathematical tools and the estimation of the dMRI 3D probability density functions, which have led to the development of more accurate tractography algorithms.

Magnetoencephalography and electroencephalography

EEG and MEG are functional neuroimaging techniques that measure electric field potential and magnetic field strength produced by the neural electrical activities occurring in the pyramidal neurons which constitute more than 80% of the cerebral cortex [Clerc & Papadopoulo 2010].

Neural electrical potentials

The principal task of neurons is the processing of the input signals that might come from other neurons or from external stimuli and the transmission of the signals to other neurons or muscle cells that are supposed to perform certain actions. In the context of EEG and MEG, we are interested in the activities of the neurons that communicate with each other, also called interneurons, and are situated in the cerebral cortex. During this communication, two principal types of electric potentials are generated at the level of neurons, and in particular at the level of their membranes, namely action potentials (APs) and postsynaptic potentials (PSPs). These potentials are generated by the exchange of ions through the membrane of the neurons. The ions include positively charged ions such as sodium (N a + ), potassium (K + ), calcium (Ca 2+ ) and negatively charged ions such as chloride (Cl -) and some proteins (A -). When a neuron is in a resting state, the concentration of K + and A -ions is higher in the intracellular space, while the concentration of N a + , Ca 2+ and Cl -is higher in the extracellular space. This results in a difference between potentials between the interior and exterior of the neuron of approximately -70mV , which varies depending on the neuron type. The membrane contains ion channels and ion pumps, which enable passive and active displacements of the ions through the membrane. An illustration of ion distribution when a neuron is in a resting state is depicted in Figure 2.16. When a neuron receives stimuli via dendrites, they are integrated in the axon hillock and if the resulting stimulus is strong enough in a short period, it provokes an AP, also called spike, which travels along the axon. Firstly, the stimulus provokes voltage gated sodium channels to open, thus the N a + ions enter the cell and raise the membrane potential, a process called depolarization. At the end of the depolarization, the voltage gated sodium channels start to close and the voltage gated potassium channels start to open causing the K + ions to pass to the extracellular space. The increase of K + concentration in the extracellular space leads to a decrease of the membrane potential also termed as repolarization which terminates with hyperpolarization, meaning that the membrane potential reaches values lower than before the stimulus. When hyperpolarization is reached, the voltage gated potassium channels close. This is followed by a refractory period when the intra-and extracellular concentrations of N a + and K + ions return to their resting state distributions. This entire process repeats along the axon, thus the AP travels down the axon until it reaches the axon terminals. Neurotransmitters, situated in small vesicles in axon terminals, are crucial for the generation of PSPs. Once the AP reaches the axon terminals, depolarization of its membrane causes the opening of voltage gated calcium channels, causing a rush of Ca 2+ ions into the intracellular space. These ions provoke the release of neurotransmitters from vesicles into the synaptic cleft -the extracellular space between presynaptic axon terminals and postsynaptic dendrites. The released neurotransmitters attach to receptor proteins situated at the membrane of the postsynaptic dendrites, causing certain ion channels to open or close. If sodium channels are opened, this causes an influx of N a + ions into the intracellular space leading to membrane depolarization. This type of postsynaptic potential is called excitatory. On the other hand, if potassium channels are opened, K + ions pass from intra-to extracellular space causing membrane hyperpolarization. This type of PSP is called inhibitory. While the APs are often referred to as all-or-none, PSPs are graded potentials. The all-or-none principle refers to the fact that no matter how strong or long a stimulus is (yet above the activation threshold), the amplitude of the AP is the same. On the other hand, graded potentials can have different amplitudes depending on the temporal and spatial distances of individual potentials. If there are multiple APs arriving to the axon terminals shortly one after the other, the PSPs sum up at the postsynaptic membrane. A similar effect occurs if the synapses where the PSPs are generated are spatially close. Other important differences between an AP and a PSP are in their duration and amplitudes. Whereas, the amplitude of an AP traveling along an axon can be considered constant and is in the range of 20 -40mV , the amplitude of a PSP decreases with time and distance is in the range of 1 -4mV . APs are very short, approximately 1ms, while the duration of the PSPs is around tens of ms [Clerc & Papadopoulo 2010]. These differences between APs and PSPs lead to different mathematical modeling of the two. An AP is modeled with an electric quadrupole whose EM field decreases with 1 r 3 , while a PSP is modeled with an electric dipole whose EM field decreases with 1 r 2 [Hämäläinen et al. 1993, Clerc & Papadopoulo 2010].

Modeling of EM fields of neural currents in cortex

Even though the amplitude of the APs is significantly higher than that of the PSPs, due to short duration, random orientation, and fast decay with a distance of EM fields, their electric potential and magnetic field strength outside of head are considered non-measurable by standard EEG and MEG devices. On the other hand, PSPs in pyramidal cells, if occurring synchronously in a large population of cells, can be recorded. Pyramidal cells are the most common type of neural cells in the cerebral cortex. They are characterized by apical dendrites whose direction can be considered perpendicular to the surface of the cortex. Thus PSP potentials generated in these dendrites can be modeled with current dipoles with the same direction [Hämäläinen et al. 1993]. A current dipole can be seen as an electric current which is characterized by its position p, and orientation and magnitude represented by its moment q = Idθ with units [A • m], where I is the current intensity and dθ is an infinitesimal short vector between the current sink and source. The dipole current density at position p can be written as J p (r) = qδ(rp) (2.12)

where δ(r) is the Dirac delta function. Electric field lines of the current dipole start at a source and finish in a sink, while magnetic field lines correspond to concentric circles around dθ. The electric and magnetic field lines are illustrated in Figure 2.17.

Relations between the electric and magnetic fields and the current density are explained via Maxwell's equations, summarized in Table 2.2, where

E[ V m ] is the electric field, B[T ] is the magnetic field, ρ[ C m 3 ] is the charge density, J[ A m 2 ] is the current density, ε 0 = 8.85 • 10 -12 1 kg•m 3 is the vacuum permittivity and µ 0 = 4π • 10 -7 mkg s 2 A 2
is the vacuum permeability. dr is an infinitesimal volume element, ds and dl are infinitesimal vector elements of surface and contour. 

Integral formulae Meaning

Gauss's law

∂Ω E • ds = Ω ρ ε 0 dr
The flux of the electric field through any closed surface is proportional to the electric charge within the volume enclosed by this surface.

Gauss's law for magnetism ∂Ω B • ds = 0

The flux of the magnetic field through any surface is 0, meaning that the magnetic field is a solenoidal vector field.

Faraday's law

∂S E • dl = S ∂B ∂t ds
The electromotive force in a contour around a surface is proportional to the change over time of the magnetic field flux through the surface.

Ampere's circuital law

∂S B • dl = µ 0 S J + ε 0 ∂E ∂t ds
The magnetic field line integral along a contour around a surface is proportional to the total current passing through the surface.

From Maxwell's equations, the charge conservation law can be derived as

∂Ω J • ds = - Ω ∂ρ ∂t dr (2.13)
stating that the change over time of the charge density is proportional to the flux of current density through the surface around that volume.

Due to the maximal frequency of the brain waves, but also permittivity and conductivity of brain tissues and head, time derivatives in Ampere's circuital law can be neglected [Hämäläinen et al. 1993]. This omitting of time derivatives is called magneto-quasistatic assumption. Taking into account head dimensions, as well, leads to the electro-quasistatic assumption, where the time derivative in Faraday's law is also neglected [Hämäläinen et al. 1993]. With the quasistatic approximations, Maxwell's equations can be written as in Table 2.3.

Table 2.3: Integral formulae of the quasistatic Maxwell's equations [Hämäläinen et al. 1993].

Integral formulae Gauss's law

∂Ω E • ds = Ω ρ ε 0 dr Gauss's law for magnetism ∂Ω B • ds = 0 Faraday's law ∂S E • dl = 0 Ampere's circuital law ∂S B • dl = µ 0 S Jds
A consequence of magneto-quasistatic assumption is that ∂Ω J • ds = 0, meaning that the dependence of the electric field from the magnetic field can be neglected (from the Faraday's law in particular). On the other hand, the electro-quasistatic assumption neglects only the dependence of the magnetic field on the time varying electric field, while the impact of the electrostatic field which causes Ohmic currents cannot be neglected. Due to the electro-quasistatic assumption, the electric field can be expressed as the gradient of a scalar function V also known as electrostatic potential as E = -∇V . Since current dipoles associated to PSPs, also referred to as primary currents with current density J p , produce an electric field E, this electric field produces Ohmic currents with current density σE = -σ∇V where σ[ 1 Ω•m ] is the tissue conductivity. This means that the total current density is

J = -σ∇V + J p .
(2.14)

Since we are interested only in the electric field potential generated by PSPs, using the quasistatic charge conservation law, we obtain a relation between the electric potential and the primary currents as

∇ • (σ∇V ) = ∇ • J p (2.15)
Chapter 2. Background which is a Poisson equation. As given in Table 2.3, the magnetic field under magneto-quasistatic assumption is ∇ × B = µ 0 J, thus ∇ × ∇ × B = µ 0 ∇ × J and ∆B = -µ 0 ∇ × J, where a solution is given by the Biot-Savart law as

B(r) = µ 0 4π J(r ′ ) × r -r ′ ||r -r ′ || 3 dr ′ = µ 0 4π J p (r ′ ) -σ∇V (r ′ ) × r -r ′ ||r -r ′ || 3 dr ′ .
(2.16) From the equation describing the Biot-Savart law, we can see that the magnetic field depends both on the primary PSP and the secondary Ohmic currents. The complexity of the solutions of the Poisson and Biot-Savart equations depends on the modeling of conductivity σ. The simplest model assumes that conductivity is constant over all tissues [Sarvas 1987]. However, although different tissue conductivities impact both fields, this is more prominent in the case of the electric field due to the low conductivity of the skull. To address this, a model which represents tissues as layers with constant conductivities is proposed [Sarvas 1987]. The most advanced model so far assumes that the tissue conductivities are anisotropic and that they can be represented as tensors estimated using dMRI [Clerc & Papadopoulo 2010].

Electroencephalography

Electro-encephalography (EEG) refers to the measuring of the previously described electric potentials arising from the cerebral cortex. Usually, it is performed in a non-invasive manner by placing multiple electrodes on the head, although intracranial EEG exists too. In order to be measurable on the head, the brain activity must occur synchronously in tens of thousands (≈ 50000) of spatially close pyramidal cells [Clerc & Papadopoulo 2010]. Such activity in an adult human results in electric potential in the range of 10 -100µV [Aurlien et al. 2004]. Distribution of the electrodes over the skull is termed as a montage. The two most commonly used types of montage are bipolar and referential. In a bipolar montage, each channel of a multivariate EEG signal corresponds to the difference between signals recorded with adjacent electrodes. In a referential montage, from each electrode signal a reference signal is subtracted to obtain the final multivariate EEG signal. EEG signals exhibit very high temporal resolution which can be of the order of the ms. On the other hand, the spatial resolution is limited due to the low conductivity of the skull which causes smearing of the electric field. Depending on the number of electrodes, it is of the order of several cm 2 . Apart from the temporal resolution, other advantages of EEG, compared to other functional imaging methods, are the low price of the measuring device, its portability and lower storage requirements, and higher robustness to subject motion. In addition to the low spatial resolution, another significant disadvantage of EEG is the low signal to noise ratio, where the noise comes from the activities of other organs, imperfections of the measuring devices, ambient, electrical sources, etc. Due to the superposition of electric fields (∇ • J p = 0 in Eq. 2.15), EEG devices have difficulties in recording signals from current dipoles organized into the forms close to solenoidal, whereas the magnetic field is measurable [Hämäläinen et al. 1993, Grave de Peralta Menendez et al. 2000].

Magnetoencephalography

Magneto-encephalography (MEG) refers to the measuring of the magnetic field strength arising from the cerebral cortex. This is achieved non-invasively via magnetometers or gradiometers placed at the scalp or slightly above it. As for EEG, the synchronous activity of tens of thousands of spatially close pyramidal cells is required, so that the magnetic field is detectable by MEG device. Amplitudes of the field strength are in the range of 10-1000f T , which is very low compared to the ambient noise of the order of 10 8 f T [START_REF] Seymour | [END_REF]]. As a consequence, MEG signals must be recorded in specially magnetically shielded rooms. The most commonly used MEG device is the superconducting quantum interference device (SQUID), which uses magnetometers based on superconducting coils [Hämäläinen et al. 1993]. To achieve superconductivity, coils must be at low temperatures. Thus a SQUID device includes a bulky cooling system. In addition, the positions of the magnetometers are fixed, thus not well suited to heads of different geometries and sizes. Whereas a standard magnetometer contains a single coil, a special type of magnetometer termed as gradiometer uses multiple coils which allow noise reduction. More recent MEG devices are based on spin exchange relaxation-free (SERF) which use more compact optically pumped magnetometers [Allred et al. 2002]. As they do not require a cooling system, they can be integrated into a portable helmet. As EEG, MEG signals exhibit very high temporal resolution which can be of the order of the ms. Since tissue conductivity has a lower impact on the magnetic field, its spatial resolution is higher compared to the electric potential. The higher spatial resolution of the field supports the utilization of a higher number of magnetometers, in the range of 200 -300. In addition, if the MEG signal is recorded in a shielded room, the signal-to-noise ratio of MEG is higher compared to EEG signal. Since a current dipole perpendicular to a magnetometer coil produces a magnetic field with circular lines parallel to the coil (B(r) = 0 in Eq. 2.16), MEG devices have difficulties in recording signals from the sources which can be approximated by a radial current dipole, such as at the top of gyri or bottom of sulci, whereas electric potential is measurable [Siems et al. 2016]. An illustration of the magnetic field lines of the sources which can be approximated by a radial current dipole at the top of a gyrus and the bottom of a sulcus, are illustrated in Figure 2.18.

Conclusion

In this chapter, we have provided a brief description of the functional and structural properties of the human nervous system, at a micro-scale -the level of neurons and a macro-scale -the level of cortical lobes and the most prominent white matter fiber tracts, which are relevant in the context of this thesis. They are presented for better comprehension of the functional and structural medical imaging techniques and their properties. Further, in more detail, we have described diffusing water molecules in different media and the way dMRI is able to capture the structural properties of the examined tissues based on this phenomenon and the magnetic properties of the water molecules. Similarly, for EEG and MEG imaging techniques, we have firstly described biophysical events which lead to the generation of the PSPs which when occurring in a synchronous manner, in the cerebral cortex, provoke measurable electric and magnetic fields, whose potential and strength can be recorded by EEG and MEG devices.

Chapter 3

Diffusion MRI local analysis 

Executive summary

In this chapter, we first present the properties of the dMRI signals acquired with q-space sampling protocols, namely real and spherical nature, antipodal symmetry, and rotation equivariance. Further, we provide an overview of the state-of-the-art dMRI local modeling approaches, which can be categorized into spherical probability density functions (PDFs) and biophysically inspired multi-compartment microstructure models. In the following section, state-of-the-art deep learning models for the analysis of general spherical signals are presented. The last section contains a detailed description of the deep learning approaches used in local dMRI modeling.

3.1 dMRI acquired on spheres dMRI signal acquisition with HARDI protocols has enabled the use of more insightful mathematical tools in the challenges, which include local modeling [Descoteaux et al. 2014]. The most prominent example is found in the modeling of crossing fibers which was impossible with low angular resolution dMRI signals, such as DTI [START_REF] Basser | [END_REF]]. In the last decade, the most commonly used HARDI protocols are single and multi-shell q-space sampling schemes [Jones 2010, Ye et al. 2012, Caruyer et al. 2013]. The shells correspond to concentric spheres in high-dimensional q-space. In the acquisition protocol proposed by [Caruyer et al. 2013], sampling points are randomly uniformly distributed and noncollinear within and between different shells in a way that the optimal angular coverage is achieved as illustrated in Figure 3.1.

Figure 3.1: An illustration of q-space sampling points over three shells. Image source: [Caruyer et al. 2013] Due to the nature of diffusion processes in the neural tissues, noiseless dMRI signals of an arbitrary shell are spherical, antipodally symmetric, and real. This means that such a dMRI signal for a single shell, s : S 2 → R can be represented as

s(θ, ϕ) = s(r) = ∞ l=0 m=l m=-l ŝlm Y lm (r) = ∞ l=0 m=l m=-l ŝlm Y lm (θ, ϕ) (3.1)
where θ ∈ [0, π] and ϕ ∈ [0, 2π) are colatitude and longitude, r ∈ R 3 s.t. r = [sin θ cos ϕ, sin θ sin ϕ, cos θ] T . ŝlm is a coefficient associated to the real SH basis element of degree l and order m -Y lm : S 2 → R. By definition the SH basis are complex, but since we are dealing with the real dMRI signals, we have used a real SH basis, which can be defined using corresponding unitary matrices [Homeier & Steinborn 1996]. A definition of the complex and real SH bases is provided in Appendix A. Given the antipodal symmetry of the signal s, s(r) = s(-r), only antipodally symmetric SH basis elements are used, which are the elements of even degree l. dMRI signals are rotationally equivariant to the examined tissue structures which can have arbitrary 3D orientations. A function f : S 2 → R is rotationally equivariant if the following holds where s ∈ R N contains the discrete dMRI signal for one shell. Y ∈ R N ×N B is a matrix containing discrete SH basis elements in columns and ŝ ∈ R N B is a vector containing the corresponding SH coefficients.

Q(f (r)) = f (Qr) (3.2)
N B = (B+1)(B+2) 2
is the number of SH basis elements of even degrees.

Estimation of dMRI spherical harmonic coefficients

For more efficient processing and an insightful analysis of dMRI signals, it is often of interest to transform it to the Fourier/spectral domain. For signals acquired on a sphere, the Fourier basis is also called SH basis. A challenge in the computation of SH coefficients comes from the fact that there is no discretization process on a sphere that preserves the orthogonality of the SH basis. In analogy to the Nyquist-Shannon sampling theorem for band-limited signals acquired in Euclidean space, several sampling theorems for spherical signals have been proposed [Kowsky 1986, Driscoll & Healy 1994, McEwen & Wiaux 2011]. These theorems define sampling grids on spheres which guarantee that all the information from a band-limited spherical signal is preserved. Each sampling grid has a corresponding quadrature formula required for the exact computation of SH coefficients. However, these sampling grids are not well suited to dMRI. They require a much higher number of sampling points (eg.

B(2B + 1) + 1 at least for [McEwen & Wiaux 2011]), which is not practical from the clinical point of view. In addition, even if this number can be decreased by exploiting antipodal symmetry, the distribution of their points is not appropriate for signals affected by a significant noise as the sampling is in general dense around the poles and sparse close to the equator. Coming back to Eq. 3.5, to estimate the SH coefficients ŝ from a signal s, discretized at a set of uniformly randomly distributed points, as in the q-space sampling, several least square based approaches have been proposed. They require at least N B = (B+1)(B+2) 2

sampling points for a signal of bandwidth B. Initially, a least square solution was used by [START_REF] Alexander | Detection and modeling of non-Gaussian apparent diffusion coefficient profiles in human brain data[END_REF], Tournier et al. 2004, Hess et al. 2006] where the SH coefficients are estimated using the Moore-Penrose pseudo-inverse as

ŝ ≈ Y † mp s = (Y T Y ) -1 Y T s. (3.6)
This approach is very sensitive to noise and yields accurate solutions only for a number of points N much higher than the number of SH coefficients N B (N >> N B ).

To address this problem, higher degree SH coefficients were directly apodized in [Tournier et al. 2004], while in [Hess et al. 2006] least square problem was regularized with a Tikhonov term, yielding the following

ŝ ≈ Y † tikh s = (Y T Y + λI) -1 Y T s (3.7)
where λ is a regularization weight and I is the identity matrix of size N B . Since Tikhonov regularization is not well suited for the S 2 basis (as the regularization term penalizes equally SH basis elements of all degrees), a least square solution with Laplace-Beltrami regularization was proposed by [START_REF] Descoteaux | [END_REF] as

follows ŝ ≈ Y † lb s = (Y T Y + λL) -1 Y T s (3.8)
where λ is a regularization weight and L ∈ R N B ×N B is the Laplace-Beltrami smoothing matrix.

Convolution between spherical and zonal signals

As dMRI signals generated by individual neural tissue structures such as single axon bundles, gray matter and cerebrospinal fluid (CSF), at the level of a voxel, are usually assumed to be axially symmetric, it is often of interest to filter dMRI signal with a zonal signal (as it will be clear in the following sections). Zonal signals are a special case of axially symmetric signals, where the symmetry takes place around the z axis. They are also a special case of S 2 signals as they change only along the z axis (or along the inclination angle θ). An S 2 signal z(θ, ϕ) :

S 2 → R is a zonal signal iff z(θ, ϕ) = z(θ, 0) ∀ϕ ∈ [0, 2π
) and ∀θ ∈ [0, π). It can be represented in terms of SH and zonal harmonic (ZH) basis elements as

z(θ, ϕ) = z(r) = ∞ l=0 ẑl0 Y l0 (r) = ∞ l=0 ẑl0 Y l0 (θ, ϕ) = ∞ l=0 ẑl (2l + 1) 4π P l (cos θ). (3.9)
where P l (cos θ) is the Legendre polynomial or the ZH basis element of degree l and ẑl is the corresponding coefficient, while ẑl,0 is the corresponding SH coefficient associated to the SH basis element Y l,0 (r). Given an L 2 signal s : S 2 → R and an L 2 zonal signal g : S 2 → R of bandwidths B, correlation between them is given by

[s * g](r) = S 2 s(r ′ )g(R -1 (θ, ϕ, 0)r ′ )dr ′ = B l=0 4π 2l + 1 ĝl l m=-l Y lm (r)ŝ lm (3.10)
where r = [sin θ cos ϕ, sin θ sin ϕ, cos θ] T and R(θ, ϕ, 0) ∈ SO(3) is rotation matrix associated to r. ŝlm is the SH coefficient of degree l and order m of the signal s(r). ĝl is the ZH coefficient of degree l of the function g(r). If f (r) = [s * g](r), from Eq. 3.10, its SH coefficients are defined as

flm = 4π 2l + 1 ĝl ŝlm fl = 4π 2l + 1 ĝl ŝl (3.11)
where ŝl , fl ∈ R 2l+1 are vectors which contain the SH coefficients of degree l of the signals s(r) and f (r).

dMRI probability density functions

One way to explain the HARDI dMRI signals is via 3D PDFs. These functions provide information related to the displacement of water molecules via diffusion within white matter axon bundles or the orientation of the axon bundles themselves.

They are examples of rotation equivariant functions (see Eq. 3.2). These voxel-wise PDFs opened the possibility of more accurate tracking of the white matter pathways in a process called tractography [Basser et al. 2000], which has great use for the analysis of brain structural connectivity [Jbabdi et al. 2015].

Ensemble Average Propagator

The Ensemble Average Propagator (EAP) is a PDF which describes the probability of the water molecule displacement via diffusion in 3D space [Callaghan 1993]. If we denote the density of water molecules at position R 0 ∈ R 3 and time instant 0 with ρ(R 0 ) and the probability of a molecule displacement from R 0 to position R ∆ ∈ R 3 at time instant ∆ with P (R ∆ |R 0 ), then the attenuation of the dMRI signal can be written as

s(q) s 0 = R 3 ρ(R 0 ) R 3 P (R ∆ |R 0 )e 2πiq T (R ∆ -R 0 ) dR ∆ dR 0 = R 3 P (R)e 2πiq T R dR
(3.12) where s(q) is the dMRI signal measured at point q ∈ R 3 of the q-space and s 0 is the no diffusion-weighted signal. P (R) is the probability that a molecule is displaced by R = R ∆ -R 0 . It is also known as the EAP. ∆ is the interval between the encoding and decoding DSGs in direction q ||q|| 2 . q is computed as

q = 1 2π γ δ 0 G(t)dt (3.13)
where δ is the duration of DSG. Under the narrow pulse assumption δ << ∆, we can assume that the movement of molecules within the intervals δ can be neglected, and can also consider G(t) as a constant over that time. Thus q = 1 2π γGδ. In this Chapter 3. Diffusion MRI local analysis scenario, since q has the same intensity and direction at time instants 0 and ∆, thus at R 0 and R ∆ , the EAP can be computed as the Fourier transform of the signal attenuation:

P (R) = R 3 s(q) s 0 e -2πiq T R dq. (3.14) Units of EAP are [ 1 m 3 ].

Diffusion Orientation Distribution Function

The Diffusion Orientation Distribution Function (dODF) is a PDF on the sphere which describes how water molecules diffuse along different directions. It is thus defined as the radial projection of the EAP. Initially, the dODF has been defined in [Tuch 2004] as

dODF (r) = 1 Z ∞ 0 P (Rr)dR (3.15)
where r ∈ R 3 s.t. ||r|| 2 = 1 refers to the direction of diffusion and R ∈ R is its magnitude. Z is a dimensionless constant which ensures that the PDF dODF (r) sums to one. Since the EAP P (R) actually corresponds to the probability that a water molecule initially placed at origin R 0 is found in an infinitesimal volume dR at position R ∆ after time ∆, in [START_REF] Wedeen | [END_REF]] a better grounded definition of dODF (r) has been introduced as

dODF (r) = R 3 P (Rr)dR (3.16)
which by representing dR by R 2 dRdΩ where dΩ is infinitesimal solid angle element can be written as

dODF (r) = 1 4π ∞ 0 S 2 P (Rr)R 2 dΩdR = ∞ 0 P (Rr)R 2 dR (3.17)
where S 2 is the unit sphere.

In [START_REF] Descoteaux | [END_REF], the authors proposed an analytical solution for dODF approximation from dMRI signals acquired on spheres of q-space. The dODF is obtained as the convolution between a zonal function obtained via the Funk-Hecke theorem and the SH coefficients estimated solving the least square problem with a Laplace-Beltrami regularization as in Eq. 3.8. The convolution is defined as

dODF (r) = B l=0 2πP l (0) l m=-l ŝml Y ml (r) (3.18)
where ŝml are the real SH coefficients of the dMRI attenuation s(r)/s 0 and P l (0) is the Legendre polynomial of degree l evaluated at cosθ = 0.

Fiber Orientation Distribution Function

The fODF is a spherical PDF which provides information on the orientation and volume fractions of the axon bundles [Tournier et al. 2004, Tournier et al. 2007, Jeurissen et al. 2014]. Whereas the EAP and the dODF are referred to as "model free", the fODF requires the modeling of a response function corresponding to a single axon bundle. Given the single fiber response function r sf , the fODF is computed by the deconvolution of r sf from the dMRI signal. In the first approach for fODF estimation proposed in [Tournier et al. 2004], the dMRI signals were modeled as the convolution between the f ODF : S 2 → R + and a zonal single fiber response function r sf (θ) as

s(r) = [f ODF * r sf ](r) (3.19)
where the response function r sf (θ) is obtained from voxels which are determined as the ones that most probably contain single white matter fibers according to certain rotation invariant measures. As these bundles might have an arbitrary orientation, they are firstly rotated to be zonal and averaged to obtain r sf (θ). In the spectral domain, as given in Eq. 3.11, the convolution from Eq. 3.19 corresponds to

ŝl = 4π 2l + 1 fl rsf l (3.20)
where ŝl , fl ∈ R 2l+1 are vectors containing the SH coefficients of degree l of the dMRI signal s(r) and f ODF (r). rsf l ∈ R is the ZH coefficients of degree l of a single fiber response function r sf (θ). From Eq. 3.20, we can see that the spectral coefficients of the f ODF (r) can be simply obtained by deconvolution as

fl = 2l + 1 4π ŝl 1 rsf l (3.21)
where a least mean square solution from Eq. 3.6 is used to estimate the SH coefficients of the dMRI signals. Since deconvolution from Eq. 3.21 is susceptible to noise and does not take into account the fact that some voxels contain gray matter or CSF tissues, negative spurious peaks might appear in the estimated fODF. To address this problem, an fODF estimation by deconvolution with non-negativity constraint has been proposed in [Tournier et al. 2007]. The minimization problem is defined as

f = arg min f ||Cf -s|| 2 2 s.t. Af >= 0 (3.22)
where f are the SH coefficients of f ODF (r). The matrix C incorporates convolution of the fODF with response function r sf (θ) in the spectral domain and the transformation of the resulting SH coefficients into the S 2 domain at the same sampling points as of the signal s(r). The matrix A transforms the SH coefficients f into the S 2 domain on a very dense sampling grid to impose the positivity constraint. This approach is termed as single shell single tissue constraint spherical deconvolution -SSST-CSD. Since it is designed only for single shell signals and

does not take into account the presence of non-white matter tissues in a voxel, it is further extended into the multi shell multi tissue constraint spherical deconvolution -MSMT-CSD [Jeurissen et al. 2014], which in addition to white matter fODF provides information on gray matter and CSF volume fractions. The MSMT-CSD minimization problem is defined as

     f1 f2 . . . fn      = arg min         f 1 f 2 . . . f n              C 1,1 . . . C 1,n C 2,1 . . . C 2,n . . . . . . . . . C m . . . C m,n           f 1 f 2 . . . f n      -      s 1 s 2 . . . s m      2 2 s.t.      A 1 . . . 0 0 . . . 0 . . . . . . . . . 0 . . . A n           f 1 f 2 . . . f n      >= 0
(3.23) where m is the number of shells and n is the number of tissues. s i is dMRI signal of shell i and fj are the SH coefficients of the spherical PDF of tissue j. C ij is a matrix which incorporates the convolution of fj with the response function of tissue j at shell i, r j i (θ), in the spectral domain and the transformation of the resulting SH coefficients into the S 2 domain at the same sampling points as of the signal s i . The obtained reconstructed signals are summed over all tissue types j for the shell i to fit it to s i . The matrix A j transforms the SH coefficients fj into the S 2 domain to impose the positivity constraint for the spherical PDF of each tissue type. Since the response functions for gray matter and CSF are spherical (have bandwidth 0), A j does not need to transform these PDFs on a large number of sampling points. For white matter tissue where the bandwidth of the response function is much higher a high number of sampling points is needed to ensure positivity of the fODF. Both minimization problems from Eq. 3.22 and Eq. 3.23 can be represented as convex quadratic programming problems which can be solved efficiently [Jeurissen et al. 2014].

Tensor distribution model

In [Jian et al. 2007], the authors proposed a diffusion tensor distribution model to explain the measured dMRI signals. Contrary to the traditional DTI [START_REF] Basser | [END_REF] where a compartment, eg. a single white matter fiber is modeled with a single diffusion tensor, in their work, the authors proposed to model each compartment with diffusion tensors distributed according to Wishart distribution. As given in [Jian et al. 2007], the dMRI signal S(q) measured at point q ∈ R 3 of the q-space corresponding to one compartment is given by

S(q) = S 0 Pn e -bg T Dg dF = S 0 Pn f (D)e -bg T Dg dD = S 0 Pn e -trace(BD) dF (3.24)
where P n is the manifold of 3×3 symmetric positive definite matrices. B = bgg T . F is probability measure and f (D) is PDF of F over the space of diffusion tensors D. Eq. 3.24 corresponds to Laplace transform of F on P n [Jian et al. 2007]. Replacing probability distribution F with Wishart distribution W n (p, Σ), where Σ is scale matrix, p represents the number of degrees of freedom and n is the dimension of a square symmetric nonnegative-definite random matrix, Eq. 3.24 can be written as

S(q) = S 0 (1 + trace(BΣ)) -p = S 0 1 + (bg T Σg) -p = S 0 1 + bg T Dg p -p . (3.25)
where diffusion tensor D corresponds to the expected value of W n (p, Σ) as D = pΣ [Jian et al. 2007].

In the matrix-vector notation, the Eq. 3.25 can be formulated as

      S(q 1 ) -1 p B 1 xx . . . 2B 1 xz S(q 2 ) -1 p B 2 xx . . . 2B 2 xz . . . . . . . . . . . . S(q K ) -1 p B K xx . . . 2B K xz             S 1 p 0 Σ xx . . . Σ xz       =      1 1 . . . 1      (3.26)
with K being the number of sampling points in q-space and

B k = bg k g k T .
For an arbitrary number of fiber populations Eq. 3.25 is extended to

S(q) = S 0 N i=1 w i (1 + trace(BΣ i )) -p = S 0 N i=1 (1 + (bg T Σ i g)) -p (3.27)
and in matrix-vector notation

      S(q 1 ) S 0 S(q 2 ) S 0 . . . S(q K ) S 0       =      (1 + trace(B 1 Σ 1 )) -p . . . (1 + trace(B 1 Σ N )) -p (1 + trace(B 2 Σ 1 )) -p . . . (1 + trace(B 2 Σ N )) -p . . . (1 + trace(B K Σ 1 )) -p . . . (1 + trace(B K Σ N )) -p           w 1 w 2 . . . w N      (3.28)
with N being the number of axon bundle populations and Σ i being the scale matrix of Wishart distribution of the i th axon bundle population and w i its volume fraction. The problem defined in Eq. 3.26 is solved via Levenberg-Marquardt nonlinear solver and the one in Eq. 3.28, assuming that only weights {w i } N i=1 are unknown, via damped least squares, as explained in [Jian et al. 2007].

dMRI multi-compartment microstructure imaging

Multi-compartment microstructure (MCMS) imaging refers to biophysically inspired models which explain the dMRI signal as a linear combination of signals coming from different tissue compartments such as intra-and extra-axonal spaces, gray matter, CSF, tumorous cell, etc. These models can provide information about axonal density and diameter, neurite dispersion, and different tissue volume fractions, which are rotationally invariant measures (see Eq. 3.3), which have shown potential in the evaluation of several neurological diseases [Panagiotaki et al. 2014, De Santis et al. 2017, Schneider et al. 2017, Broad et al. 2018] and in the characterization of early brain development [Jelescu et al. 2015, Bastiani et al. 2019]. We provide an overview of the most distinct MCMS models. Ball and Stick [Behrens et al. 2003, Behrens et al. 2007] models the dMRI signal as a linear combination of an isotropic Gaussian (ball) which corresponds to the signal generated by extra-axonal water molecule diffusion and N anisotropic diffusion tensors without radial diffusivity (zero radius sticks) for intra-axonal diffusion as

s i = s 0 ν 0 e -b i d + N n=1 ν n e -b i dr T i RnARnr i (3.29)
where s i is the dMRI signal measured along direction r i with a b-value b i and s 0 is the no diffusion weighted signal. d is diffusivity and R n AR T n is the anisotropic diffusion tensor of the n th fiber. ν 0 and {ν n } N n=1 are volume fractions of the isotropic and the N fiber compartments.

Composite

Hindered And Restricted ModEl of Diffusion (CHARMED) [Assaf et al. 2004, Assaf & Basser 2005] models dMRI generated by white matter tissue as a linear combination of signals generated by hindered and restricted compartments. The former corresponds to between axons diffusion modeled with diffusion tensor and the latter to intra-axonal diffusion modeled with a cylinder as

s i = s 0 ν h e -4π 2 (∆-δ/3)q T i Dq i + N n=1 ν n r E h (q i , ∆) = s 0 ν h e -4π 2 (∆-δ/3)q T i Dq i + N n=1 ν n r E ∥ h (q n,∥ i , ∆)E ⊥ h (q n,⊥ i , ∆) (3.30)
where D is the effective diffusion tensor. s i is the dMRI signal measure at point q i and s 0 is the no diffusion weighted signal. q n,∥ i and q n,⊥ i are the parallel and perpendicular components of q i with respect to the n th axon bundle.

E ∥ h (q n,∥ i , ∆) and E ⊥ h (q n,⊥ i , ∆
) are the intra-axonal attenuation factors coming from parallel and perpendicular diffusion within the axon bundle. ν h and {ν n r } N n=1 are the volume fractions of the hindered and the N restricted compartments.

Neurite

Orientation Dispersion and Density Imaging (NODDI) [Zhang et al. 2012] models the dMRI signal as a linear combination of three types of compartments. The CSF compartment is modeled with an isotropic Gaussian (ball), while the signals from intra-and extra-neurite spaces are modeled with zero radius cylinders (sticks) distributed according to a Watson distribution and an anisotropic Gaussian (zeppelin) whose diffusion tensor corresponds to Watson distributed neurites as

s i = s 0 ν iso e -b i d iso + (1 -ν iso ) ν in E in (q i , d ∥ ) + ν en E en (q i , d ⊥ , d ∥ ) (3.31)
where s i is the dMRI signal measured at point q i and s 0 is the no diffusion weighted signal. b i is the b-value corresponding to q i . ν iso is the CSF volume fraction and ν in and ν en are the intra and extra-neurite volume fractions with respect to non-isotropic contribution. d iso , d ∥ and d ⊥ are isotropic, parallel and perpendicular diffusivities. Parallel diffusivities of intra-and extra-neurite compartments are the same, while the perpendicular diffusivity of the extra-neurite compartment is related to parallel diffusivity via the tortuosity model [Szafer et al. 1995] as

d ⊥ = d ∥ (1 -ν in ).
Signal attenuation due to intra and extra-neurite diffusions is defined as

E in (q i , d ∥ ) = S 2 W (r, κ, µ)e -b i d ∥ (q T i r) 2 dr (3.32) and E en (q i , d ⊥ , d ∥ ) = e -b i q T i Denq i where D en = S 2 W (r, κ, µ)D(r)dr (3.33)
where W (r, κ, µ) is the Watson orientation distribution function (axially symmetric), where µ is its orientation and κ determines dispersion around µ. κ is used to define the orientation dispersion index as r) is cylindrical diffusion tensor with orientation r with parallel and perpendicular diffusivities d ∥ and d ⊥ .

OD = 2 π arctan( 1 κ ) whose range is in [0, 1]. D(

Deep learning models for spherical signals

Many 3D rotationally equivariant general purpose deep learning (DL) approaches have been proposed for the analysis of arbitrary S 2 signals.

Among the first notable rotationally equivariant neural networks is the S 2 CN N proposed by [Cohen et al. 2018]. The main contribution of their work are the layers with convolutions (correlations) performed in the S 2 and SO(3) spectral domain [Driscoll & Healy 1994[START_REF] Kostelec | [END_REF]] so that the computationally expensive interpolations in the signal domain are avoided. In the first convolutional layer, given an input data sample f : S 2 → C and a trainable kernel ψ : S 2 → C which is sampled at circles around the pole (otherwise is zero), both sampled at a Driscoll-Healy grid [Driscoll & Healy 1994], the SH coefficients {{ f m l } m=l m=-l } B l=0 and {{ ψm l } m=l m=-l } B l=0 are computed using the corresponding quadrature formulae [Driscoll & Healy 1994]. Convolution (correlation) is performed as follows

G(R) = [f * ψ * ](R) = S 2 f (r)ψ * (R -1 r)dr = B l=0 l m=-l l n=-l D mn l (R) f m l ψn l * = B l=0 l m=-l l n=-l D mn l (R) Ĝmn l (3.34)
where R ∈ SO(3) is a rotation matrix. D mn l (R) is the Wigner-D matrix basis element of degree l and orders m and n which is a Fourier basis element of the SO(3) manifold and Ĝmn l is the corresponding rotation harmonic (RH) coefficient. As Ĝmn l = f m l ψn l * , in matrix-vector notation we can write Ĝl = fl ψ * l , where fl , ψl ∈ C (2l+1) are the SH coefficients of degree l of the signal f (r) and kernel ψ(r), respectively. Ĝl ∈ C (2l+1)×(2l+1) are the RH coefficients of degree l of the resulting signal G(R). This is illustrated in Figure 3.4 (a). The full derivation of the convolution (correlation) between two S 2 signals is given in Appendix A. As shown in Eq. 3.34, after convolution in the spectral domain, the signal in the SO(3) domain is obtained as a linear combination of Wigner-D matrix basis elements. Then, the spectral coefficients are projected back onto the equiangular SO(3) sampling grid analogue to the Driscoll-Healy grid used for the discretization of S 2 signals and the ReLU nonlinearity is applied. As the convolution of two S 2 signals gives a signal in SO(3) manifold, all layers following the first one perform a convolution between SO(3) signals and kernels, also in the spectral domain.

In the i th convolutional layer with i > 1, given the input SO(3) signal and kernel F, Ψ : SO(3) → C, both sampled at equiangular grids which allow the computation of the respective RH coefficients using quadrature formulae denoted as

{{{ F mn l } m=l m=-l } n=l n=-l } B l=0 and {{{ Ψmn l } m=l m=-l } n=l n=-l } B l=0 , the convolution (correlation) is performed as G(R) = [F * Ψ * ](R) = SO(3) F (Q)Ψ * (R -1 Q)dQ = B l=0 l m=-l l n=-l D mn l (R) l k=-l F mk l Ψnk l * = B l=0 l m=-l l n=-l D mn l (R) Ĝmn l (3.35) where R, Q ∈ SO(3). F pq l
and Ψpq l are the RH coefficients of degree l and orders p and q of the signal F (R) and kernel Ψ(R), respectively. D pq l : SO(3) → C is an element of the Wigner-D matrix of degree l and orders p and q. As Ĝmn As in standard Euclidean CNNs, pooling layers are important as their task is to summarize feature maps by decreasing their resolution (e.g. with max or average pooling). In S 2 CN N , this is achieved simply by discarding the RH coefficients of the highest degree after each ReLU. After the last convolutional layer and nonlinearity, only the RH coefficients of degree l = 0 are extracted and fed to a chain of fully connected layers whose task is to perform the final inference, such as regression or classification, based on the extracted features. As the transformations between the SO(3) spectral and signal domains and vice versa are computationally expensive, [Esteves et al. 2018] have proposed a spherical CNN model with zonal kernels. In this case, the convolution between the S 2 signals and zonal kernels remains in the S 2 domain, which is less computationally expensive. The convolution between the input signal and a trainable kernel is illustrated in Figure 3.5 and is performed in the spectral domain as given in Eq. 3.11. As in S 2 CN N proposed by [Cohen et al. 2018], the ReLU nonlinearity is applied in the signal domain, that is S 2 in this model and pooling is performed by discarding the SH coefficients of the highest degree. Finally, as in [Cohen et al. 2018], feature maps of degree l = 0 are extracted after the last convolutional layer and fed into a fully connected network. An issue that arises from the application of nonlinearity in the signal domain is the appearance of high frequency components, which might introduce aliasing and decrease the rotation equivariance of the model. In the work presented by [Kondor et al. 2018], a fully Fourier space CNN has been proposed, where rotation invariant Fourier domain nonlinearities of quadratic nature have been introduced, thus eliminating the need for conversion from spectral to the signal domain and distortions introduced by aliasing. This is achieved by decomposing the tensor product of SO(3) covariant vectors into irreducible fragments (vectors) using the Clebsch-Gordan decomposition. Given an input data sample f : S 2 → C sampled at Driscoll-Healy grid [Driscoll & Healy 1994] or Gauss-Legendre grid, firstly the SH coefficients {{ f m l } m=l m=-l } B l=0 are computed using corresponding quadrature formulae. The authors denote with f l ∈ C (2l+1) vector of the SH coefficients of degree l, also referred to as the SO(3) covariant vectors or fragments. If there are multiple input channels, they denote with F l ∈ C (2l+1)×C the matrix which contains the SH coefficients of each of the C channels. The authors proposed a Fourier domain nonlinearity achieved via the Clebsch-Gordan decompositions as 2l+1) is a sparse matrix containing the Clebsch-Gordan coefficients which are non-zero only for m 1 + m 2 = m, where m 1 , m 2 and m are the orders of the SH coefficients in fragments of degrees l 1 , l 2 and l. ⊔ refers to concatenation over channels. We can notice that with this type of nonlinearity, the total number of channels is squared, which is addressed by a covariant linear transformation defined as

G l = |l 1 -l 2 |≤l≤|l 1 +l 2 | C T l 1 ,l 2 ,l F l 1 ⊗ F l 2 (3.36) where C T l 1 ,l 2 ,l ∈ R (2l 1 +1)(2l 2 +1)×(
H l = G l W l (3.37)
where W l ∈ C C×Q where Q < C. This can be seen as filtering the channels with different zonal kernels and their sum. An illustration of a single layer of a Clebsch-Gordan network containing a Clebsch-Gordan nonlinearity and a linear transform is shown in Figure 3.6. In the final layer, only H 0 are computed and fed into a fully connected network as previously described for models [Cohen et al. 2018, Esteves et al. 2018]. 

Deep learning models in dMRI local modeling

To address some of the problems in dMRI local modeling, as in other computer vision domains, the focus has moved towards data driven approaches, such as DL which have been recognized as a powerful tool to extract information from dMRI signals.

Among the first DL models adapted to address the problem of the estimation of microstructure parameters from dMRI data acquired with clinically desirable acquisition schemes (containing a low number of sampling points) was the multi layer perceptron (MLP) [Golkov et al. 2016]. The model was composed of fully connected layers with trainable weights and biases {W i } L i=1 and {b i } L i=1 , where L is the total number of layers. Each layer maps the input signal s i-1 to the output as a i = g i (W i s i-1 + b i ), where g i is an activation function of the i th layer. Ex-cept for g L which is identity, all previous layers used a ReLU nonlinearity. To reduce the effect of overfitting, the authors proposed to use drop-out regularization [Srivastava et al. 2014]. The model was successfully evaluated on the problem of diffusion kurtosis imaging and neurite orientation dispersion and density imaging (NODDI) parameter estimation. MLP models have also been investigated in the context of the estimation of rotationally invariant features (RIFs) [Zucchelli et al. 2020] from different dMRI signal representations [Zucchelli et al. 2021].

In the work of [START_REF] Ye | Estimation of tissue microstructure using a deep network inspired by a sparse reconstruction framework[END_REF]], an iterative hard thresholding (IHT) algorithm [Blumensath & Davies 2009], used as a solution of sparse reconstruction problem, has been unfolded into a DL approach specifically designed for NODDI parameter estimation. The model was termed as Microstructure Estimation using a Deep Network (MEDN). It is composed of two stages. Its architecture is illustrated in Figure 3.7. In IHT, sparse codes f t+1 are computed as

f t+1 = h s (W y + Sf t ) (3.38)
where y is the input signal, W is the dictionary of atoms, S = I -W W T , f t is the sparse reconstruction at the t th iteration, f 0 = 0 and h s is the thresholding operator which keeps s highest entries of the input and other sets to zero. In MEDN, thresholding operator is defined as h λ (x) = x if x > λ and h λ (x) = 0 otherwise. In addition, instead of using a predefined dictionary, the matrices W and S are learned via backpropagation independently. In the second stage, given a sparse reconstruction f , the isotropic volume fraction ν iso corresponds to the last entry of f , while the previous entries denoted as f a correspond to anisotropic compartments.

For numerical stability f a are firstly normalized as f a = ( f a + τ 1)/|| f a + τ 1|| 1 , where τ = 10 -10 . Finally, the intra-cellular parameter ν ic and the parameter κ associated to the Watson distribution are estimated as [ν ic , κ] T = H f a , where H is also a trainable matrix. The orientation dispersion index is obtained as OD = 2 π arctan( 1 κ ). The authors of MEDN proposed in [Ye et al. 2019] another DL model, inspired by the IHT algorithm, based on modified long-short-term memory (LSTM) units, which is capable to incorporate information from the neighborhood voxels for the estimation of microstructure parameters. The model is termed as Microstructure Estimation with Sparse Coding Net (MESCNet). It is composed of two stages and its architecture is illustrated in Figure 3.8. Contrarily to MEDN, MESCNet is designed for the estimation of arbitrary microstructure parameters. In the first stage, given the input signals y = [y T 1 , ..., y T nb ] T , where y i is the dMRI signal in voxel i and nb is the total number of voxels in a cubic neighborhood, the estimation of the sparse coefficients x in the t th layer is given by

x t = h λ (c t ) where c t = f t • c t-1 + i t • ct where ct = W y + Sx t-1 (3.39)
where as in MEDN W and S are trainable parameters. f t and i t are respectively the weighting terms of coefficients from the previous layer c t-1 and an intermediate estimate of the coefficients from the current layer ĉt . x 0 = 0. • refers to element-wise multiplication. Comparing the sparse vector estimations in MEDN and MESCNet, given in equations 3.38 and 3.39, we can see that MESCNet incorporates historical information in the estimate of sparse reconstructions (in MEDN sparse reconstructions are denoted with f t and in MESCNet with x t ). Weights f t and i t are estimated adaptively as

f t = σ(W f x x t-1 + W f y s) and i t = σ(W ix x t-1 + W iy s) (3.40)
where W f x , W f y , W ix and W iy are trainable matrices. σ is the sigmoid function defined as σ(x) = 1/(1 + e -x ). All together, the structure of the layer used for the estimation of the coefficients x t corresponds to a modified LSTM unit which is illustrated in Figure 3.9 (a). In the second stage, once the sparse codes x are estimated, they are mapped to microstructure parameters via a Fully Connected Network (FCN), where each layer i has associated weights and biases H i and b i .

Given the input a i-1 to a fully connected layer i, the output is estimated as

a i = ReLU (H i a i-1 + b i ), where a 0 = x.
As the input signal is taken from a neighborhood, the size of the matrices W , W f y and W iy is very large (e.g. assuming 60 points in q-space, a neighborhood of size 3×3×3 and length of sparse codes 300, size of a matrix is the 27×60×300 = 486000). Training of such a model is computationally and storage-wise demanding, requiring a large amount of training data. To address this problem, in [Ye et al. 2020] an improved version of MESCNet has been proposed, where the weights are separately defined for spatial patterns and q-space patterns. The architecture is also composed of two stages as illustrated in Figure 3.8, but this time with separable weights. In the first stage, given input in matrix form Y ∈ R Q×V , where Q is the number of sampling points in q-space and V is the number of voxels in neighborhood, the sparse vectors in the layer t are estimated as

X t = h λ (C t ) s.t. C t = F t • C t-1 + I t • Ct s.t. Ct = W a Y W s + S a X t-1 S s
(3.41) where W a , S a are trainable weights applied along the q-space related (angular) dimension of the input Y and the matrix of sparse code X t-1 , while W s , and S s weights along the neighborhood related (spatial) dimension. Similarly, weighting factors F t and I t are given by

F t = σ(W a f x X t-1 W s f x + W a f y Y W s f y ) and I t = σ(W a ix X t-1 W s ix + W a iy Y W s iy ) (3.42)
where the pairs W a f x , W a f y and W a ix , W a iy are trainable weights applied along the q-space related dimension and W s f x , W s f y and W s ix , W s iy along the neighbourhood dimension. They are used together to estimate the weighting factors of the coefficients C t-1 and the intermediate estimate of the coefficients from the current layer Ĉt . This modified LSTM unit with separable weight is illustrated in Figure 3.9 (b). Once the sparse codes in form of a matrix X are estimated, they are mapped to microstructure parameters via a set of fully connected layers containing separable filters. Each layer i contains a pair of weights W a i and W s i and bias terms B a i and B s i . For an input X i to the i th layer, coefficients are estimated as

A i = ReLU ((W a i A i-1 + B a i )W s i + B s i )
, where A 0 = X. This version of MESCNet, termed as MESCNetSepDict, also has the possibility to provide output for multiple voxels at once. All presented models MLP, MEDN, MESCNet, MESCNetSepDict do not take into account any property of the dMRI signals, such as antipodal symmetry or spherical nature. One of the first DL models adjusted to the specific properties of dMRI data was proposed in [Banerjee et al. 2019]. It is composed of homogeneous CNN (HCNN) designed for signals living in Riemannian homogeneous spaces which extract intravoxel features and 2D planar CNN which extract inter-voxel features. The model is termed dMRI-CNN and its architecture is illustrated in Figure 3.10. In the first convolutional layer of HCNN, correlation is performed between the dMRI signal s 1 and a filter s 1 , w 1 i : S 2 × R + → R which are represented in the SHORE basis [START_REF] Özarslan | [END_REF][Özarslan et al. , Fick et al. 2016]]. i refers to the ordinal number of the filter. It is denoted by the M-Corr layer in Figure 3.10. Since (s 1 * w

1 i ) : SO(3) × R * , the following convolutional layers contain correlation between s i l , w ij l : SO(3) × R * → R, where w ij
l is the trainable filter of layer l (l > 1), for the input channel i, contributing to the output channel j. These layers are denoted by the G-Corr layers in Figure 3.10. After each convolutional layer, a ReLU nonlinearity is applied. Once the features are extracted for each voxel independently, a 2D CNN is used to extract spatial patterns between them. This model was applied to the problem of classification of dMRI scans into Parkinson's disease patients and control group subjects. Application of DL approaches on dMRI data has been investigated for the evaluation of other neurological diseases, as well. In [START_REF] Minaee | [END_REF]], a convolutional autoencoder has been applied on dMRI metrics (e.g. fractional anisotropy; axial, mean, and radial kurtosis; white matter integrity metrics), to extract spatial patterns from 3D patches relevant for the identification of mild traumatic brain injury features. Furthermore, in [Müller et al. 2021] a rotation and translation equivariant network has been developed and applied to the problem of multiple sclerosis lesion segmentation from dMRI data. DL models have been also investigated for the estimation of voxel-wise PDFs, such as fODFs. In [Lin et al. 2019], a 3DCNN applied on the SH coefficients of dMRI signals has been proposed for fODF estimation. The architecture of the model is illustrated in Figure 3.11. As input, it takes the dMRI SH coefficients estimated using Moore-Penrose pseudo-inverse, over multiple shells and a neighbourhood of size 3 × 3 × 3. Denoting by ŝi , theSH coefficients of shell i, the input vector corresponding to one voxel is obtained by simple concatenation as ŝ = [ŝ T 1 , ..., ŝT N sh ] T , where N sh is the number of shells. Each entry of ŝ is treated as one input channel (analogue to R, G, or B channels of color images). This input is processed by two convolutional layers with kernels of size 2 × 2 × 2, which are followed by three fully connected layers as illustrated in Figure 3.11. After each convolutional or fully connected layer, apart from the last one, a ReLU nonlinearity is applied. Although the model proposed in [Lin et al. 2019] achieves competitive results, it does not take into account the properties of the dMRI data. Thus, it requires a higher number of parameters and consequently a higher number of training data.

In [Elaldi et al. 2021], an unsupervised rotation equivariant U-net with graph convolutions has been proposed for fODF estimation. The architecture of the model is illustrated in Figure 3.12. This model takes as input single-or multi-shell dMRI signals which are transformed to the spectral domain and then re-projected to the S 2 hierarchical Healpix sampling grid [Gorski et al. 2005]. Graph convolution of one such signal s with a filter w is defined as

s * w = P p=0 w p L p s (3.43)
where w p is p th entry of w. L is graph Laplacian defined as L = D -A with D being degree and A adjacency matrix. The degree matrix of the graph is diagonal, with an i th diagonal entry equal to j w ij , where

w ij = e - ||x i -x j || 2 ρ 2
if i ̸ = j and w ii = 0. x k are coordinates of k th vertex and ρ is average distance between two vertices. Entries i, j of the adjacency matrix A are 1 if there is an edge between the vertices and 0 otherwise. In both, the contracting and expanding parts of the U-net, convolutions are followed by ReLU nonlinearities and batch normalization, except for the last layer, where a Soft plus activation was used for the multi-shell case and ReLU for the single-shell case. The loss function, over N samples, is defined as 

L = N n=1 ||s n -f n * r|| 2 2 + λ I i=1 log(1 + f i n 2 2σ 2 c ) + ||f n • m n || 2 2 (3.44)
where s n and f n are the n th dMRI samples and the estimated tissue PDFs, respectively. s n ∈ M V,B,I (R), where V is the number of voxels, B is the number of shells and I is the number of vertices. f n ∈ M V,T,I (R), where T is the number of tissues. r is the response function for all tissue compartments precomputed with the mrtrix library [Tournier et al. 2019]. m n is a mask whose entries are 1 for negative entries of f n and 0 otherwise. Constants λ and σ c control the sparsity of the estimated fODFs.

In [Bouza et al. 2021], the authors proposed manifold-valued deep networks based on the manifold-valued Volterra series (MVVS) and manifold-valued convolution (MVC), as the first order term of MVVS for the analysis of manifold-valued data whose domain is Euclidean space. In analogy to the standard CNNs where the translation invariant features are extracted by a chain of convolutional and nonlinear layers, in MVVS-Net and MVC-Net, convolutions are replaced by MVVS or MVC, while as nonlinearity tangent ReLU is defined. The models were employed for movement disorder classification from DTI data and fODF estimation from raw undersampled dMRI data. For the problem of fODF reconstruction, the authors proposed to use MVVS or MVC layers to extract inter-voxel features and spherical convolutional layers to extract intra-voxel features. Whereas inter-voxel MVVS or MVC layers are followed by inter-voxel tangent ReLU, standard and intra-voxel ReLU is applied after the intra-voxel spherical convolutions [Bouza et al. 2021].

Apart from the before mentioned applications, DL approaches have also been used for dMRI data synchronization over different sites [Ning et al. 2018], segmentation of brain tissues [START_REF] Zhang | [END_REF], signal enhancement [Aggarwal et al. 2019] and reconstruction [Hong et al. 2019], etc.

Conclusion

In this chapter, we have first presented the properties of the dMRI signals acquired with q-space sampling protocols, namely their real and spherical nature, antipodal symmetry, and rotation equivariance with respect to the underlying tissue structures. Due to the spherical nature and the rotation equivariance, representation of the dMRI signals in the SH basis is often used in their analysis, thus we have provided an overview of the most relevant methods for the SH coefficient estimation. As the dMRI signals associated with individual axon bundles can be often considered axially symmetric, we have provided the definition of the convolution with zonal filters which is used in the estimation of certain dMRI related PDF functions. Further, we have described the most relevant PDF functions, namely, the EAP, dODF, fODF, and tensor distribution model which are crucial in the tractography and consequently in the analysis of the structural connectivity. This section is followed by an overview of the most prominent biophysically inspired multi-compartment models for dMRI local modeling, which have shown potential in the evaluation of certain neurological diseases and the characterization of early brain development.

As we are interested in the analysis of the spherical signals, we have also provided an overview of the recent rotationally equivariant DL models used for arbitrary spherical signals which served as a starting point in the development of our models. Finally, in the last part of the chapter, the most relevant DL approaches used in dMRI local modeling are described in detail.

In the following two chapters, we will present our contributions in dMRI local anal-ysis, concretely, a rotation equivariant model for the fODF estimation and rotation invariant models for dMRI regression and classification problems, namely multicompartment microstructure parameter estimation and brain tissue segmentation.

Chapter 4

Spherical U-net for dMRI fiber orientation distribution function estimation 

Executive summary

This chapter contains our first contribution in dMRI local modeling, namely a spherical U-net for fODF estimation. Firstly, we have presented SH coefficient estimation via the Gram-Schmidt orthonormalization process with an analysis of its orthogonality properties. Further, we provide details related to the architecture of spherical U-net and its main building blocks, namely convolutional and transposed convolutional layers with zonal trainable kernels realized in the spectral domain, non-linear activations ReLU applied in the signal domain and pooling layer realized in the spectral domain. The model is compared with a DL 3DCNN approach and a traditional multi-shell multi-tissue constrained spherical deconvolution (MSMT-CSD) on the real HCP data and synthetic dMRI signals, both resampled to the reduced grids which are more clinically desirable.

Introduction

U-net is a type of CNN initially designed for the segmentation of biomedical images in [START_REF] Ronneberger | Unet: Convolutional networks for biomedical image segmentation[END_REF] In the context of spherical signal analysis, a spherical U-net has been proposed for saliency detection in 360 o videos in [Zhang et al. 2018]. In this model, convolutions between a spherical signal and kernel are realized in the signal domain by stretching and rotating the kernel to match with locations of sampling points of the signal. In the domain of medical imaging, a spherical U-net has been proposed for the analysis of cortical surfaces in [Zhao et al. 2019]. In their work, instead of kernel stretching, for each vertex direct neighbors are extracted from the signal and rotated around the vertex. This is followed by a simple inner product with a kernel, representing a convolution in the signal domain. A recent work, presented in more detail in Chapter 3, used a spherical U-net trained in an unsupervised manner for the estimation of the fODFs [Elaldi et al. 2021].

In this chapter, we present a supervised voxel-wise spherical U-net for the problem of fODF estimation from dMRI data sampled at multiple spheres (shells).

The model is tailored to the properties of the dMRI signals, namely its real nature, the uniform distribution of sampling points, the rotation equivariance with respect to the underlying tissues, and the antipodal and axial symmetry of the signals generated by individual fibers. Contrary to the models proposed in [Zhang et al. 2018, Zhao et al. 2019], our U-net contains convolutional layers where the convolutions are performed in the spectral domain.

Method

The architecture of our spherical U-net model is illustrated in Figure 4.1.

As input, the model takes multi-shell dMRI data of one voxel or a small 3D neighborhood that in total results in N sh ×N 3 nb channels, where N sh is the number of shells and N nb is the neighborhood size. Taking into account a small neighborhood rather than a single voxel as input allows the incorporation of the spatial information, in addition to the angular information extracted from the q-space. Although in the models proposed in [START_REF] Ronneberger | Unet: Convolutional networks for biomedical image segmentation[END_REF], Zhang et al. 2018, Zhao et al. 2019] output is of the same resolution as input, for multi-shell dMRI data it is reasonable to assume that fODFs of higher resolution can be estimated. This is explained by the fact that multi-shell dMRI signals are sampled over noncollinear points between shells, distributed over continuous q-space.

As the standard U-net, our model is composed of contracting and expanding parts.

The main operations are convolutions, pooling, and transposed convolutions. Due to the assumed axial symmetry of the signals emerging from individual axon bundles and antipodal symmetry of dMRI signals, convolutional kernels in our model are zonal and antipodally symmetric. Each convolutional layer of the contracting part takes as input the SH coefficients of a multi-channel signal and performs convolution with zonal kernels also represented in the SH basis. As presented in Chapter 3, convolutional layers with zonal kernels were firstly introduced in [Esteves et al. 2018] as a part of a standard contracting CNN. Resulting SH coefficients are transformed to S 2 domain onto a q-space sampling grid [Caruyer et al. 2013] where ReLU nonlinearity is applied. The S 2 signals obtained after ReLU are forwarded to the parallel layer of the expanding part, while their low-passed SH coefficients are passed to the convolutional layer below. Low-pass filtering corresponds to simple discarding of the SH coefficients of the highest degree as in [Cohen et al. 2018, Esteves et al. 2018] which corresponds to the operation of pooling. Each layer of expanding part performs upsampling by combining contextual information from its predecessor and the information from its peer layer of the contracting part. A transposed convolutional layer takes as input concatenated S 2 domain signals (feature maps) from the layer below and its peer layer from the contracting part (if it exists), then inserts zero samples among existing samples. Following this, the feature maps are transformed to the spectral domain and convolution with zonal kernels is performed. The obtained SH coefficients are transformed to the S 2 domain where the ReLU nonlinearity is applied. It is important to note that the q-space sampling grids [Caruyer et al. 2013] are incremental and therefore insertion of zeros does not require re-interpolation of the sampling points. The last layer in the expanding part only performs convolution with one convolutional kernel and as output gives the fODF SH coefficients. where y gs 0 = y 0 . The SH basis elements in the matrix Y are ordered so that column 0 corresponds to the basis element of degree l = 0 and order m = 0, following columns are the basis elements of degree l = 2 and orders m = {-2, -1, 0, 1, 2}, etc. Since aliasing affects the SH coefficients of a higher degree l more, it is convenient to start the orthonormalization process with a basis of a lower degree, as it is known that they are determined by a lower number of sampling points. On the other hand, to avoid a bias due to basis element ordering, the Gram-Schmidt process is repeated N it times, each time randomly shuffling the order of the basis elements of the same degree, which are at the end averaged. Finally, for an input signal s :

Estimation of SH coefficients

S 2 → R, SH coefficients ŝ are estimated as ŝ ≈ Y † gs s. (4.2)
In Figure 4.2 and 4.3 orthogonality properties of bases inverted with different approaches, presented in Chapter 3, are depicted for 30 uniformly randomly distributed points and the antipodally symmetric basis of bandwidth 6. The approaches we have compared are the Moore-Penrose pseudo inverse (mp) (Eq. 3.6), least square with Tikhonov regularization (tikh) (Eq. 3.7) with the regularization constants λ ∈ {1, 0.1}, least square with Laplace-Beltrami regularization (lb) (Eq. 3.8) with the regularization constants λ ∈ {0.001, 0.0001}, and the approach with the Gram-Schmidt orthonormalization (gs) (Eqs. 4.1 and 4.2) for a different number of repetitions N it ∈ {1000, 1}. Orthogonality with respect to the basis Y , illustrated in Figure 4.2 indicates how accurately the SH coefficients can be estimated if there is no noise. In this scenario, we can see that More-Penrose yields the exact solution, least square with Tikhonov regularization penalizes equally SH basis elements of all degrees, while least square with Laplace-Beltrami penalizes more the SH coefficients of the highest degree, as well as the approach with Gram-Schmidt orthonormalization process. Orthogonality of the inverted SH bases with themselves, as illustrated 

Convolutional layers

Input SH coefficients to a convolutional layer are denoted as {{ŝ i l } L l=0 } I i=1 , where l is the SH degree, i refers to channel (shell), L is the bandwidth and I is the total number of input channels. A convolutional zonal kernel is denoted as

{{{ ŵi,j l } L l=0 } I i=1 } J j=1
, where i, j indicate the input and output channels, respectively and I, J their total number. The convolution between the input {{ŝ i l } L l=0 } I i=1 and the trainable zonal kernel {{{ ŵi,j l } L l=0 } I i=1 } J j=1 , is based on definition in 3.11, where the constants 

ReLU nonlinearity

As presented in Chapter 3, in the spherical CNN models proposed by [Cohen et al. 2018, Esteves et al. 2018], after convolution, the spectral coefficients are projected to the equiangular grids of the signal domain, where ReLU nonlinearity is performed. In our U-net model, we have also used ReLU nonlinearity but applied to the signals sampled over q-space sampling grids [Caruyer et al. 2013]. The nonlinear layer is simply summarized as follows. After a convolutional layer, the obtained SH coefficients

{ĝ j = [ĝ j 0 T , ĝj 2 T , ..., ĝj L T ] T } J
j=1 are transformed to S 2 domain as g j = Y ĝj . The ReLU nonlinearity is performed as

a j = ReLU (g j + b j ) (4.4)
where b j is a bias term associated with the channel j. We note that the thresholding of the signal with ReLU might introduce sharp signal transitions between neighboring points, which cannot be represented with a given bandwidth. Thus, the ReLU nonlinearity can cause the aliasing. When the SH coefficients {ĝ j } J j=1 are transformed to S 2 domain, to minimize the effect of the aliasing it is better to project the coefficients to {g j } J j=1 sampled at a higher number of sampling points. (This is simply a consequence of the fact that the SH coefficient estimation is more accurate for a higher number of sampling points.) The minimal number of the sampling points we have used is (L+1)(L+2) 2 as it corresponds to the number of the SH basis elements for the bandwidth L.

Pooling

After the nonlinearity is applied, pooling is performed in the spectral domain as in [Cohen et al. 2018, Esteves et al. 2018 ). This is followed by the estimation of the SH coefficients qi = [Y † gs ] (L+2) q i , convolution with kernels {{{ ŵ′ 

Loss function

The loss function is defined as mean squre error (MSE) between the SH coefficients of gold-standard fODFs and the estimated fODFs as

L = 1 N N n=1 ( fODF n -fODF e n ) 2 (4.5)
where fODF n and fODF e n are the gold standard and estimated SH coefficients of the fODF of the n th sample, respectively. N is the number of samples in a batch.

Datasets

We have used in our experiments real data from the HCP [Van Essen et al. 2013] (referred to as Real dataset) and synthetic data generated from the same real HCP scans following the procedure described in [Wilkins et al. 2015]. The Real data was acquired on Siemens 3T Skyra system with 100 mT /m gradient, over three shells with b-values of 1000, 2000 and 3000 s/mm 2 , each with 90 gradient directions and 18 b = 0 images at resolution 1.25 × 1.25 × 1.25 mm 3 . To generate the synthetic data, firstly, up to three fiber orientations and corresponding volume fractions were estimated per voxel using the bedpostx tool from the FSL library [START_REF] Smith | [END_REF]]. These parameters were then used to generate synthetic data using the multi-fiber ball and stick model [Behrens et al. 2007] as in [Wilkins et al. 2015] for each shell independently. In the generation process, the free diffusivity coefficients are set to {0.68, 0.96, 2.25} • 10 -3 s/mm 2 for the white matter, gray matter, and cerebrospinal fluid, respectively while the single-fiber tensor's eigenvalues are set to {λ 1 , λ 2 , λ 3 } = {1.7, 0.17, 0.17} • 10 -3 s/mm 2 [Wilkins et al. 2015]. To simulate more realistic dMRI data, a Rician noise with a signal to noise ratio (SNR) of 18 dB was added to the synthesized data. In addition, to investigate the robustness of the compared methods, one synthetic dataset is generated with the constant diffusion single-fiber tensor eigenvalues (Synthetic dataset 1 ) as in [Wilkins et al. 2015] and another one with the eigenvalues sampled from the uniform distribution around these values (values sampled from the range of ±10%) (Synthetic dataset 2 ). Experiments were conducted on Real dataset, Synthetic dataset 1, and Synthetic dataset 2 with downsampled acquisition schemes. To select relevant white matter voxels, we have used brain tissue segmentation computed from T 1w images using the FAST algorithm [Zhang et al. 2001] implemented in the mrtrix library [Tournier et al. 2019]. In the experiments, where comparing models take into account neighborhood information, white matter masks are extended using the 3D binary dilation operator. Gold standard fODFs, of SH degree 8, were estimated using the multi-shell multi-tissue constrained spherical deconvolution (MSMT-CSD) approach [Jeurissen et al. 2014] on dMRI signals acquired on full sampling scheme using the mrtrix library [Tournier et al. 2019]. In the case of synthetic data, the fODFs were estimated on the noiseless data. We have used 50 subjects in total, 30 for training, 10 for validation, and 10 for testing.

Experiments and implementation details

To evaluate our method on data similar to those used in clinical practice, experiments have been performed on data with a significantly reduced number of sampling points N p (20, 30, 40, 60, 90, and 120 in total for the three shells). We compared our approach with another DL model -3DCNN [Lin et al. 2019] and with MSMT-CSD [Jeurissen et al. 2014]. To investigate the importance of the neighbourhood information, one of our models is trained with single voxel multi-shell signals (termed as S 2 U -net 1×1×1 ) and another with multi-shell signals taken from a 3D neighbour- [Abadi et al. 2015]. Models are trained over 100 epochs. In each epoch, 3 dMRI scans are randomly selected from the 30 training samples. For all models, the loss function is defined as MSE between the estimated and gold standard fODFs represented in the spectral domain as given in Eq. 4.5. The initial learning rate is 0.001 and after 50 epochs it is reduced to 0.0001. Model weights updates are computed using the Adam optimization algorithm [Kingma & Ba 2014].

Results

The results are compared quantitatively in terms of the MSE over all white matter voxels and the mean angular error (MAE) for single fiber voxels and voxels containing two crossing fibers. To compute peaks of the estimated and gold standard fODFs, we have used the mrtrix library [Tournier et al. 2019] and the threshold of 0.1 of the highest peak is used to eliminate spurious fibers. Thus, the MAE does not take into account the voxels where the number of peaks differs from the number of peaks in the gold standard. In Figure 4.9, we can see that our model S 2 U -net 3×3×3 achieves a lower MSE compared to the other models on both real and synthetic datasets. This difference is especially significant in comparison with the models that do not use neighbourhood information (MSMT-CSD and S 2 U -net 1×1×1 ). This performance drop of single voxel based models is expected when the number of sampling points over three shells (as 20, 30, 40) is lower than the number of SH coefficients of fODFs (which is 45 for bandwidth 8). We can also notice that almost equal performance to S 2 U -net 3×3×3 can be achieved with the more compact model S 2 U -net 3×3×3 s . Figure 4.10 shows that for the single fiber voxels and the real dataset, the MAE of the models S 2 U -net 3×3×3 and S 2 U -net 3×3×3 s is almost equal to the one achieved with MSMT-CSD. However, these results are a consequence of the fact that MSMT-CSD often produces large spurious peaks when the number of sampling points is reduced, as illustrated in Figures 4.11 and 4.12, which means that they are not taken into account if the gold standard contains a different number of peaks. The results obtained on synthetic data indicate that our approach is more robust to noise, as the gold standard is estimated on noiseless data. As depicted in Figure 4.10, S 2 U -net 3×3×3 and S 2 U -net 3×3×3 s achieve a lower MAE in the voxels with crossing fibers. Qualitative comparison of MSMT-CSD, 3DCNN and S 2 U -net 3×3×3 is provided in Figures 4.11 and 4.12 for dMRI signals sampled over 60 sampling points. Figure 4.11 compares the gold standard and estimated fODFs obtained on Real Dataset, Synthetic Dataset 1 and Synthetic Dataset 2. A similar comparison is depicted in Figure 4.12, only for Real Dataset, where the estimated fODFs are overlaid over the gold standard peaks. It shows that MSMT-CSD compared to 3DCNN and S 2 U -net 3×3×3 is more prone to produce spurious fibers, while the DL approaches are more likely to omit some. The 3DCNN model tends to estimate more smoothed fODFs and/or lobes with lower amplitude compared to our approach S 2 U -net 3×3×3 .

Conclusion

In this chapter, we have described a spherical U-net model adjusted to the properties of dMRI data, namely the real and spherical nature of the signals, their antipodal symmetry, the random distribution of the sampling points and under the assumption that the signals coming from individual fibers are axially symmetric. We have demonstrated that the proposed spherical U-net is suitable for a high resolution inference such as the estimation of the fODFs from dMRI data acquired with schemes that contain a lower number of sampling points, which is required function estimation Experiments conducted in this chapter indicate that even if the models are not endowed with any or all available prior knowledge, with a high amount of data, missing knowledge can be inferred. Nevertheless, in our future work, we will investigate if imposing positivity and sparsity on fODFs as in [Elaldi et al. 2021, Bouza et al. 2021] and their integration to one can further improve the performance of our models. 

Executive summary

In this chapter, we have investigated rotation equivariant CNNs with quadratic nonlinearities realized in the spectral domain for local analysis of dMRI data. The spectral domain nonlinearities are introduced to avoid often computationally expensive conversions from the spectral to the signal domain in order to apply nonlinearities such as ReLU and to avoid the aliasing that such nonlinearities generate. First, in Section 1.2, we introduce the mathematical grounds necessary for understanding and defining the Fourier domain CNN, which are presented in the following Section 1.3. The models are evaluated in Section 1.4 on the problem of axon bundle counting on synthetic data, and on the real HCP dMRI data on the problems of micro-structure parameter estimation and brain tissue segmentation.

Introduction

Although the data acquired on spheres have been present over the last several decades in different scientific areas such as astronomy, meteorology, satellite imaging, point cloud applications, medical imaging, etc, it was only recently that neural network models, properly taking into account their spherical nature have been introduced for their analysis. Some of the most relevant rotation equivariant CNN models for arbitrary spherical signals are presented in Chapter 3 [Cohen et al. 2018, Esteves et al. 2018, Kondor et al. 2018]. From the point of view of dMRI data acquired with q-space sampling schemes, the first drawback of these models is that they take as input signals sampled on grids that have associated quadrature formulae for the exact computation of the SH coefficients such as Driscoll-Healy and Gauss-Legendre grids. Furthermore, as already mentioned, models proposed by [Cohen et al. 2018, Esteves et al. 2018] In this chapter, we present the following contributions and findings:

• As in the work introduced in [Sedlar et al. 2020], to estimate the SH coefficients of the input dMRI data, we have used the Gram-Schmidt orthonormalization process. Furthermore, for the multi-shell dMRI data, we have introduced denoising layers that exploit the fact that q-space is continuous and that the sampling points are noncollinear within and between shells. The signal from one shell can thus be improved by incorporating information on each point's direct and antipodal neighbourhood and the information from other shells.

• Secondly, we have introduced channel-wise spectral-domain nonlinearities. We have investigated two types of models, one which uses zonal convolutional kernels resulting in S 2 feature maps and a second model which uses S 2 and SO(3) convolutional kernels which result in SO(3) feature maps. Consequently, we have introduced channel-wise S 2 and SO(3) quadratic nonlinearities, respectively.

• Finally, in addressing the classification or regression problems, the purpose of the sequence of the rotationally equivariant convolutional layers is to extract rotationally invariant features at the end. Contrary to the models [Cohen et al. 2018, Esteves et al. 2018, Kondor et al. 2018, Banerjee et al. 2019] which use the average value of each of the output channels of the last layer (which corresponds to the spectral harmonic of degree 0), we have introduced degree-wise power spectrum features, which are also rotationally invariant. They are extracted from the model's input and the channels after each nonlinearity.

• In Appendix A, we also provide derivations related to the real SH basis, Wigner-D matrices, convolutions of S 2 and SO(3) signals and Clebsch-Gordan transformations required to realize quadratic functions of the real S 2 and SO(3) functions. To the best of our knowledge, some of these derivations are not available in the literature, so they can be useful for researchers in related fields.

Theory

In this section, we describe the mathematical tools necessary to define Fourier domain rotationally equivariant CNN models with zonal, and with S 2 and SO(3) kernels. Concretely, we provide definitions of convolutions and quadratic nonlinearities realized in the spectral domain, and rotationally invariant degree-wise power spectra computed using a generalization of Parseval's theorem.

Convolution (correlation) between S 2 and zonal functions

Although previously introduced, for readability of the section, we briefly repeat the definition of correlation between S 2 and zonal functions. Zonal functions are a special case of S 2 ones as they change only along the z axis, thus a correlation between an S 2 and a zonal function is a special case of spherical correlation since the resulting function remains in the S 2 domain. Given an L 2 function s : S 2 → R and an L 2 zonal function k : S 2 → R, where k(θ, ϕ) = k(θ) for θ ∈ [0, π), correlation between them is given by

[s * k](r) = S 2 s(r ′ )k(R -1 (θ, ϕ, 0)r ′ )dr ′ = B l=0 4π 2l + 1 kl l m=-l Y lm (r)ŝ lm (5.1)
where r = [sin θ cos ϕ, sin θ sin ϕ, cos θ] T and R(θ, ϕ, 0) ∈ SO(3) is a rotation matrix. ŝlm is the SH coefficient of degree l and order m of s. kl is the ZH coefficient of degree l of k. Y lm is the SH real basis element of degree l and order m. If g(r) = [s * k](r), from Eq. 5.1, the SH coefficients of g are defined as:

ĝlm = 4π 2l + 1 kl ŝlm , ĝl = 4π 2l + 1 kl ŝl , (5.2)
where ŝl , ĝl ∈ R 2l+1 are vectors which contain the SH coefficients of degree l of the functions s and g. Derivations of equations 5.1 and 5.2 are provided in Appendix A.

An illustration of the convolution between an S 2 and a zonal function is provided in Figure 5.1. 

S 2 quadratic function

Given an L 2 signal g :

S 2 → R of bandwidth B g , [g × g](r) is defined as [g × g](r) = 2Bg l=0 l m=-l ĥlm Y lm (r) (5.3) where ĥlm = Bg l ′ =0 Bg l ′′ =0 l ′ m ′ =-l ′ l ′′ m ′′ =-l ′′ ĝl ′ m ′ ĝl ′′ m ′′ (2l ′ + 1)(2l ′′ + 1) 4π(2l + 1) C l,m l ′ ,m ′ ,l ′′ ,m ′′ C l,0 l ′ ,0,l ′′ ,0
(5.4) and C l,q l ′ ,q ′ ,l ′′ ,q ′′ ∈ R is the Clebsch-Gordan coefficient associated with the real SH basis elements. This can be written in matrix-vector notation as

ĥl = l ′ ,l ′′ (2l ′ + 1)(2l ′′ + 1) 4π(2l + 1) C l,0 l ′ ,0,l ′′ ,0 C l l ′ ,l ′′ T ĝl ′ ⊗ ĝl ′′ s.t. |l ′ -l ′′ | ≤ l ≤ l ′ + l ′′ (5.5) where C l l ′ ,l ′′ ∈ R (2l ′ +1)(2l ′′ +1)×(2l+1)
is the sparse Clebsch-Gordan matrix whose entries are given with C l,m l ′ ,m ′ ,l ′′ ,m ′′ . ĝl , ĥl ∈ R 2l+1 contain the real SH coefficients of degree l of the functions g and h = g × g. ⊗ denotes the Kronecker product of vectors. If the signal g is bandlimited to B g , h has bandwidth 2B g . The definition of the Clebsch-Gordan coefficients associated with the real SH basis elements and the derivation of equations 5.3 and 5.4 are given in Appendix A. In addition to the optimization obtained by operating only on the real SH coefficients, an additional reduction of computational complexity is achieved by noting that

C l l ′ ,l ′′ T ĝl ′ ⊗ ĝl ′′ = C l l ′′ ,l ′
T ĝl ′′ ⊗ ĝl ′ . In the case of an S 2 nonlinearity, for

l ′ = l ′′ = l, computational complexity of C l l,l T ĝl ⊗ ĝl is O((2l + 1) 3 ).
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Convolution (correlation) between SO(3) functions

An S 2 function is a special case of an SO(3) function. Given two L 2 functions s, k : S 2 → R, their correlation is defined as: where ŝl , kl ∈ R 2l+1 are the vectors which contain the real SH coefficients of degree l of the functions s and k. Ĝl ∈ R (2l+1)×( 2l+1) is a the matrix containing the real RH coefficient of degree l of the SO(3) function g. Given two L 2 functions s, k : SO(3) → R, their correlation is defined as:

[s * k](R) = S 2 s(r)k(R -1 r)dr =
[s * k](R) = SO(3) s(Q)k(R -1 Q)dQ = B l=0 l m=-l l n=-l D lmn (R) l k=-l Ŝlmk Klnk (5.8)
where R, Q ∈ SO(3). Ŝlpq and Klpq are the real RH coefficients of degree l and orders p and q of the functions s and k. D lpq : SO(3) → R is an element of the real Wigner-D matrix of degree l and orders p and q. If g(R) = [s * k](R), from Eq. 5.8, its RH coefficients are defined as:

Ĝlmn = l k=-l Ŝlmk Klnk , Ĝl = Ŝl KT l , (5.9) 
where Ŝl , Kl ∈ R (2l+1)×(2l+1) are the matrices which contain the real RH coefficients of degree l of the functions s and k. Ĝl ∈ R (2l+1)×( 2l+1) is a matrix containing the real RH coefficient of degree l of the function g. Derivations of equations 5.6, 5.7, 5.8 and 5.9 are provided in Appendix A.

SO(3) quadratic function

Given an L 2 signal g :

SO(3) → R of bandwidth B g , [g × g](R
) is defined as:

[g × g](R) = 2Bg l=0 l m=-l l n=-l Ĥlmn D lmn (R) (5.10)
where

Ĥlmn = B f l ′ =0 Bg l ′′ =0 l ′ m ′ =-l ′ l ′ n ′ =-l ′ l ′′ m ′′ =-l ′′ l ′′ n ′′ =-l ′′ Ĝl ′ m ′ n ′ Ĝl ′′ m ′′ n ′′ C l,m l ′ ,m ′ ,l ′′ ,m ′′ C l,n l ′ ,n ′ ,l ′′ ,n ′′
(5.11) and C l,q l ′ ,q ′ ,l ′′ ,q ′′ ∈ R is the Clebsch-Gordan coefficient associated with the real RH basis elements. Similarly, as in Eq. 5.5, this can be written in matrix notation as:

Ĥl = l ′ ,l ′′ C l l ′ ,l ′′ T Ĝl ′ ⊗ Ĝl ′′ C l l ′ ,l ′′ s.t. |l ′ -l ′′ | ≤ l ≤ l ′ + l ′′ (5.12)
where 2l+1) is the Clebsch-Gordan matrix as used in Eq. 5.5. Ĝl , Ĥl ∈ R (2l+1)×(2l+1) contain the real RH coefficients of degrees l of the signals g and h = [g × g]. ⊗ denotes the Kronecker product of matrices. If the signal g is bandlimited to B g , h has bandwidth 2B g . The derivation of equations 5.11 and 5.12 is given in Appendix A. In addition to the optimization obtained due to the operations on the real RH coefficients, symmetry

C l l ′ ,l ′′ ∈ R (2l ′ +1)(2l ′′ +1)×(
C l l ′ ,l ′′ T Ĝl ′ ⊗ Ĝl ′′ C l l ′ ,l ′′ = C l l ′′ ,l ′ T Ĝl ′′ ⊗ Ĝl ′ C l
l ′′ ,l ′ , an additional reduction of the computational complexity is obtained as follows. First, we remark that Eq. 5.12 can be written as

Ĥl = l ′ ,l ′′ C l l ′ ,l ′′ T Ĝl ′ ⊗ I 2l ′′ +1 I 2l ′ +1 ⊗ Ĝl ′′ C l l ′ ,l ′′ = l ′ ,l ′′ V l l ′ ,l ′′ Û l l ′ ,l ′′ T s.t. |l ′ -l ′′ | ≤ l ≤ l ′ + l ′′ (5.13)
where the computation of

V l l ′ ,l ′′ = C l l ′ ,l ′′ T Ĝl ′ ⊗ I 2l ′′ +1 is optimized by V l l ′ ,l ′′ [q, :] = vec Cl l ′ ,l ′′ [q, :, :] T Ĝl ′
(5.14) and

Û l l ′ ,l ′′ = I 2l ′ +1 ⊗ Ĝl ′′ C l l ′ ,l ′′ is optimized by Û l l ′ ,l ′′ [q, :] = vec Ĝl ′′ Cl l ′ ,l ′′ [q, :, :] (5.15)
where q ∈ {-l, ...0, ...l}. I 2l+1 is the identity matrix of size (2l + 1)

× (2l + 1). Cl l ′ ,l ′′ ∈ R (2l+1)×(2l ′′ +1)×(2l ′ +1
) is 3D tensor obtained by reshaping the Clebsch-Gordan matrix C l l ′ ,l ′′ . If we assume naive matrix and tensor product, for

l ′ = l ′′ = l, replacing C l l,l T Ĝl ⊗ Ĝl C l l,l by the optimized V l l,l Û l l,l
T expression as given in equations 5.14 and 5.15, reduces the computational complexity from O((2l + 1) 5 + 2(2l + 1) 4 ) to O(3(2l + 1) 4 ).

Power spectrum of S 2 and SO(3) functions

From the generalization of Parseval's theorem to S 2 and SO(3) functions, given L 2 functions g(r) : S 2 → R and g(R) : SO(3) → R, the angular and rotation power spectra corresponding to the spectral degree l are defined as

p l = l m=-l ĝ2 lm , P l = 8π 2 2l + 1 l m=-l l n=-l Ĝ2 lmn (5.16)
where p l , P l ∈ R. ĝlm is the real SH coefficient of degree l and order m of the signal g(r) and Ĝlmn is the real RH coefficient of degree l and orders m and n of the signal g(R).

Methods

We have investigated two types of Fourier domain rotation equivariant CNNs. One with zonal kernels and S 2 quadratic nonlinearities, termed as F ourier_S 2 _zonal and another one with S 2 and SO(3) kernels and SO(3) quadratic nonlinearities, termed as F ourier_S 2 _SO(3). Although both types of convolutional layers are rotation equivariant, here we stress the essential differences between them. First, the number of their spectral components of a zonal, an S 2 and an SO(3) kernels of bandwidth L, is L+1, (L+1) 2 and (L+1)(4(L+1) 2 -1)/3, respectively. This means that the S 2 and SO(3) kernels have a higher discrimination power. Thus, to make a distinction between two patterns on a sphere, one would need to use more zonal kernels than S 2 or SO(3) ones. On the other hand, convolution with zonal kernels is less computationally expensive. In addition, for an S 2 signal input, convolution with a zonal kernel results in a S 2 signal, whose quadratic function is much less computationally expensive than the quadratic function of the SO(3) signals.

The architectures of the two models are illustrated in Figures 5.2 and 5.3. As input, they take raw multi-shell dMRI signals. Since q-space is continuous, signals acquired over different shells are correlated. In addition, since they are sampled at points which are noncollinear within and between shells, they contain a certain amount of supplementary information. To make use of this and taking into account that dMRI signals are positive, we have incorporated into the models a denoising layer composed of a cascade of nonlinear layers defined as

s (n) = ReLU ((I + λW n )s (n-1) )
(5.17)

where

s (0) = [s sh=1 0 ...s sh=1 N 1 , ..., s sh=K 0 ...s sh=K N K ]
T is a vector that contains concatenated raw dMRI signals of K shells, where N k is the number of points for shell k. Vectors {s (n) } contain denoised dMRI signals after application of n denoising steps. I is the identity matrix, {W n } are trainable weights, and λ is a parameter that ensures that matrices {(I + λW n )} remain close to the identity matrix and in this way preserve the spherical nature of the input signal. These denoising layers are beneficial only if the number of sampling points is low. If the number of sampling points is much higher than the number of SH basis elements, denoising comes naturally as the SH basis elements are better determined with more points (eg. mean, SH coefficient of degree l = 0, is more accurate if averaged over more sampling points than only one, and the same is true for the coefficients of higher degree). After the denoising layer, the signals are transformed to the Fourier domain using the real SH basis of even degrees, inverted with Gram-Schmidt orthonormalization process as in [Sedlar et al. 2020, Sedlar et al. 2021] and as described in Chapter 4. In the context of standard CNN, a shell corresponds to a channel. We denote input SH coefficients of degree l and of channel k as âl 0,k , where l ∈ {0, 2, ..., L}, with L being the input's bandwidth.

Fourier domain CNN with quadratic S 2 nonlinearities

In the model with zonal kernels F ourier_S 2 _zonal, convolutions are performed in the Fourier domain with the zonal kernels as first introduced in [ where ŵn,j,i l is a ZH coefficient of the convolutional kernel in the n th layer, corresponding to the input channel j and output channel i, while bn,i 0 is corresponding bias term. ân-1,j l and ẑn,i l are the vectors containing input and output SH coefficients of degree l for the channels j and i, respectively. The output of the activation of the n th S 2 nonlinear layer is obtained using Eq. 5.5 as

ân,i l = l ′ ,l ′′ (2l ′ + 1)(2l ′′ + 1) 4π(2l + 1) C l,0 l ′ ,0,l ′′ ,0 C l l ′ ,l ′′ T ẑn,i l ′ ⊗ ẑn,i l ′′ s.t. |l ′ -l ′′ | ≤ l ≤ l ′ + l ′′ (5.19) where C l l ′ ,l ′′ ∈ R (2l ′ +1)(2l ′′ +1)×(2l+1)
is the sparse Clebsch-Gordan matrix. ẑn,i l , ân,i l are the input and output SH coefficients of degree l of the i th channel. This type of nonlinearity is similar to the one proposed in [Kondor et al. 2018], with a difference that it is channel-wise, and thus it does not lead to a quadratic increase of the output channels.

As in [Cohen et al. 2018, Esteves et al. 2018, Kondor et al. 2018], pooling is achieved by discarding high frequency spectral components. Simply, the ân,i l is computed only for l < L n , where L n is the output bandwidth of the layer n. Rotationally invariant power spectrum features are extracted from the input SH coefficients and after each nonlinearity. The feature vector is defined as f = [r 0,1 0 , ..., r 0,K 0 , ..., r 0,1 L , ..., r 0,K L , ..., r n,1 0 , ..., r n,K n 0 , ..., r n,1 L n , ..., r 0,K n L n , ..., ] (5.20)

where K n refers to the number of output channels of the layer n. r n,k l is defined using Eq. 5.16 as

r n,k l = l m=-l ân,k lm 2 .
(5.21) Concatenated rotationally invariant power spectrum features are fed into a fully connected network which performs the final inference.

Fourier domain CNN with quadratic SO(3) nonlinearities

In the model with S 2 and SO(3) kernels, F ourier_S 2 _SO(3), convolutions are realized as firstly proposed in [Cohen et al. 2018]. Convolution in the 1 st convolutional layer is defined as:

Ẑ1,i l = j â0,j l ŵ1,j,i l T for l ̸ = 0 and Ẑ1,i 0 = j â0,j 0 ŵ1,j,i 0 + b1,i 0 (5.22)
where ŵ1,j,i l are the SH coefficients of the S 2 convolutional kernel in the 1 st layer, corresponding to the input channel j and output channel i, while b1,i 0 is corresponding bias term. Ẑ1,i l is the matrix containing the output RH coefficients of degree l for the channel i. Since the output of the first and all the following nonlinear layers is an SO(3) signal represented in the Fourier domain, convolution in the n th convolutional layer (n > 1) is defined as:

Ẑn,i l = j Ân-1,j l Ŵ n,j,i l T for l ̸ = 0 and Ẑn,i 0 = j Ân-1,j 0 Ŵ n,j,i 0 + Bn,i 0 
(5.23) where Ŵ n,j,i l are the RH coefficients of the SO(3) convolutional kernel in the n th layer, corresponding to the input channel j and output channel i, while Bn,i 0 is the corresponding bias term. Ân-1,j l and Ẑn,i l are the vectors containing input and 82 Chapter 5. Fourier domain spherical CNN for dMRI local analysis output RH coefficients of degree l for the channels j and i, respectively. The output of the n th SO(3) nonlinear layer is obtained using Eq. 5.12 as:

Ân,i l = l ′ ,l ′′ C l l ′ ,l ′′ T Ẑn,i l ′ ⊗ Ẑn,i l ′′ C l l ′ ,l ′′ s.t. |l ′ -l ′′ | ≤ l ≤ l ′ + l ′′ (5.24)
where

C l l ′ ,l ′′ ∈ R (2l ′ +1)(2l ′′ +1)×(2l+1)
is the sparse Clebsch-Gordan matrix. Ẑn,i l , Ân,i l are the input and output RH coefficients of degree l of the i th channel. Eq. 5.24 is realized using the optimization presented in Eqs. 5.13, 5.14 and 5.15.

In this model as well, pooling is achieved by discarding spectral components of the highest degree [Cohen et al. 2018, Esteves et al. 2018], thus Ân,i l are computed only for l < L n , with L n being the output bandwidth of the layer n. Rotationally invariant power spectrum features are extracted from the input SH coefficients and the RH coefficients after each nonlinearity. The feature vector is defined as

f = [r 0,1 0 , ..., r 0,K 0 , ..., r 0,1 L , ..., r 0,K L , ..., R n,1 0 , ..., R n,K n 0 , ..., R n,1 L n , ..., R 0,K n L n , ..., ] (5.25)
where K n refers to the number of output channels of the layer n. r n,k l is defined as in Eq. 5.21 and R n,k l according to Eq. 5.16 as:

R n,k l = l m=-l l n=-l Ân,k lmn 2 ,
(5.26)

where the scaling factor 8π 2 2l+1 is omitted to have more balanced magnitudes of the power spectrum features. As in the model with zonal kernels, concatenated rotation invariant power spectrum features are fed into a fully connected network which performs the final inference.

Experiments

Firstly, we have compared our model with zonal kernels with a state-of-the-art spherical CNN model, namely S 2 CN N proposed by [Cohen et al. 2018]. Due to the differences in sampling grids, the models are compared on synthetic dMRI data on the classification problem of axon bundle count. Furthermore, the models are extensively compared with the dMRI state-of-the-art deep learning approaches, namely MLP [Golkov et al. 2016], MEDN and MEDN+ [START_REF] Ye | Estimation of tissue microstructure using a deep network inspired by a sparse reconstruction framework[END_REF]], MescNet [Ye et al. 2019] and MescNetSepDict [Ye et al. 2020], on the problem of NODDI [Zhang et al. 2012] and spherical mean technique (SMT) [Kaden et al. 2016] microstructure parameter estimation from dMRI acquired with significantly reduced sampling scheme. Finally, we demonstrated that our model can be successfully used to extract rotation invariant features for brain tissue segmentation, obtaining results comparable to the recently proposed deep learning approach [START_REF] Zhang | [END_REF]] while requiring significantly less computational time. 

Axon bundle counting experiment

In this experiment, we have compared our F ourier_S 2 _zonal model with the stateof-the-art S 2 CN N [Cohen et al. 2018] model on synthetic data on the problem of the axon bundle counting. The experiments highlight the importance of the spectral domain nonlinearity used in our model.

Synthetic database

We have generated synthetic dMRI samples distributed over four classes containing zero, one, two, or three axon bundles. Data is generated using single fiber white matter, gray matter, and CSF response functions and corresponding estimated PDFs of one HCP subject ('100307'). The tissue response functions were estimated using the mrtrix command dwi2response msmt_5tt and corresponding PDFs with multi-shell multi-tissue CSD [Jeurissen et al. 2014] with the command dwi2fod msmt_csd [Tournier et al. 2019]. SH coefficients of response functions for a shell k are noted as rgm k , rcsf k ∈ R 1 and rsfwm k ∈ R N sh , for gray matter, CSF and single fiber white matter, respectively, where N sh is the number of SH coefficients. The SH coefficients of synthetic dMRI signals for a shell k are computed as follows: , psfwm std ). The mean and standard deviation of gray matter and CSF tissue PDFs are computed over corresponding regions determined with five-tissue-type segmentation with FAST algorithm applied on T1w images [Zhang et al. 2001]. Single fiber white matter PDFs -fODFs -are selected from brain regions with high fractional anisotropy (> 0.75), they are aligned with the z-axis, and mean and standard deviation are computed for each zonal harmonic. Rotation of the axon bundle is performed in a way that the minimum angle between bundles is π 6 rad. Bandwidth of generated signals is L = 8, thus N sh = 45 and they are composed of three shells with b values 1000, 2000, 3000s/mm 2 . The total number of generated samples is 10 6 , where 0.2 × 10 6 has been used for training, 0.2 × 10 6 for validation, and 0.6 × 10 6 for testing. Once To investigate how the models behave with dMRI data with different angular resolutions and to verify their rotation invariance, we have created three datasets (db 1 , db 2 , db 3 ). Each of the datasets is generated for two types of grids, Driscoll-Healy grid [Driscoll & Healy 1994] used in the model S 2 CN N [Cohen et al. 2018] and qspace sampling used in dMRI imaging [Caruyer et al. 2013]. In db1, SH coefficients of generated samples (degree 8) are projected on 91 and 90 points for Driscoll-Healy and q-space sampling grids, respectively. This corresponds to a bandwidth L = 4 for the Driscoll-Healy grid. In db2, SH coefficients of generated samples (degree 8) are projected on 57 points, which corresponds to L = 3 for the Driscoll-Healy grid. In db3, to investigate the rotation invariance of the models, training, and validation samples are generated with a restriction on their orientation, while testing samples contain bundles of arbitrary orientation. Concretely, the first bundle is always aligned with the z axis, if there are two bundles, the second one is always in z -x plane drawn from the uniform distribution [ π 6 , π 2 ]rad, if there are three bundles, the third one is rotated for θ < π 2 rad and ϕ < πrad while respecting that the angle with respect to the other two bundles is greater than π 6 rad. Properties of the datasets in terms of the number of points with corresponding grid types and bundle orientations are summarized in Table 5.1. Illustrations of the noiseless fODFs and dMRI for three shells of db 1 and db 2 are illustrated in Figure 5.4 and for db 3 in Figure 5.5. Grid type DH refers to Driscoll-Healy [Driscoll & Healy 1994] and Q to multi-shell q-space sampling [Caruyer et al. 2013 
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Implementation details

Our model is implemented with the tensorflow library [Abadi et al. 2015] and compared to the model S 2 CN N implemented with the torch [START_REF] Collobert | [END_REF]]. These models have been trained over 200 epochs by minimizing categorical crossentropy loss using an Adam optimizer [Kingma & Ba 2014]. The initial learning rate has been set to 0.001 and the batch size to 128. If the difference between validation categorical cross-entropy averaged over two sequential blocks of five epochs is smaller than 10 -3 , the learning rate is reduced by a factor of 0.95. For 91 sampling points, S 2 CN N has three convolutional layers with input and output bandwidths (4, 4), (4, 2), (2, 0), while for 57 sampling points the bandwidths are (3, 3), (3, 1), (1, 0). For both sampling schemes, containing 90 and 57 points, we have evaluated F ourier_S 2 _zonal with three convolutional layers with two different sets of bandwidths, (8, 4), (4, 2), (2, 0) and (4, 4), (4, 2)(2, 0). The number of input and output channels in convolutional layers is (3, 8), (8, 16), (16, 32) and (3, 16), (16, 32), (32, 64), for S 2 CN N and F ourier_S 2 _zonal, respectively, since the number of trainable weights in zonal kernels is much smaller than in S 2 and SO(3) convolutional kernels used in S 2 CN N . The extracted rotation invariant features are classified with a fully connected network composed of three layers with output sizes 32, 16, 4. In our models, we have taken into account the antipodal symmetry of dMRI signals, thus the convolutional kernels are antipodally symmetric as well. In this experiment, since the number of sampling points is considerably higher than the number of SH basis elements (45 and 15), the model does not contain any denoising layer.

Results

Classification is compared in terms of confusion matrices illustrated in Figures 5.6, 5.7 and 5.8, for db1, db2 and db3, respectively. In Figure 5.6, we can notice that the classification accuracy of S 2 CN N and F ourier_S 2 _zonal are comparable and that both models meet some difficulties in distinguishing between samples containing 2 and 3 axon bundles. This can be a consequence of the lower amplitude of the dMRI signals as the number of bundles increases from 1 to 3, as their volume fractions sum to 1. Figure 5.7 shows that our models keep high classification accuracy even when the number of sampling points is significantly reduced. On the other hand, the accuracy of S 2 CN N significantly decreases, which might be a consequence of the fact that the model can extract only low frequency information of maximal bandwidth 3. In addition, taking into account the antipodal symmetry of the input signals, in S 2 CN N , valuable information of the SH coefficients are found only for the degrees 0 and 2. (We denote that for 57 points, with quadrature formulae associated with the Driscoll-Healy grid, we cannot compute SH coefficients of a higher degree.) In Figure 5.8, the obtained results highlight the impact of the aliasing introduced by ReLU nonlinearity applied in the signal domain used in S 2 CN N and the benefit of the spectral domain nonlinearity used in our models. The S 2 CN N is only capable to make a distinction between white and non-white matter samples. For one such inference, a mean of the signal is sufficient (only the SH coefficients of l = 0). On the other hand, by comparing the results obtained with db2 and db3, we can also notice that our models preserve a high degree of rotation invariance. 

Multi-compartment micro-structure estimation

In these experiments, we have extensively compared our models F ourier_S 2 _SO(3) and F ourier_S 2 _zonal with the deep learning approaches MLP [Golkov et al. 2016], MEDN and MEDN+ [START_REF] Ye | Estimation of tissue microstructure using a deep network inspired by a sparse reconstruction framework[END_REF]], MescNet [Ye et al. 2019] and MescNetSepDict [Ye et al. 2020], on the problem of NODDI [Zhang et al. 2012] and SMT [Kaden et al. 2016] microstructure parameter estimation from dMRI signals acquired with a significantly reduced number of q-space sampling points. Concretely, the NODDI parameters include intracellular volume fraction ν ic , isotropic volume fraction ν iso and orientation dispersion indices denoted with OD [Zhang et al. 2012]. SMT parameters include extra-neurite fraction ν ext and intrinsic diffusion coefficient λ [Kaden et al. 2016]. In analogy to MEDN+, the MLP+ is designed as the version of MLP which takes as input the signals from a small neighbourhood -3D patch. For a neighbourhood of size 3 × 3 × 3 the size of the input vector is increased by factor 27. Similarly, we have created F ourier_S 2 _SO(3)+ and F ourier_S 2 _zonal+, which take as input signals from a small neighbourhood,3D patch, treated as different channels.

Real data from HCP and estimation of gold standard

We have used in our experiments a subset of 200 subjects from the Human Connectome Project (HCP) database [Van Essen et al. 2013]. We have used 1, 3, 5, 10, 15, or 30 subjects for training, 20 for validation, and 150 for the final testing of the algorithm. dMRI scans have been acquired on a Siemens 3T Skyra system with a gradient strength of 100mT /m. Scans are composed of three shells with b-values of 1000, 2000 and 3000 s/mm 2 , each with 90 gradient directions and 18 b = 0 images at resolution 1.25 × 1.25 × 1.25 mm 3 . We have used scans that were previously registered to T1w images. As a consequence, although acquired with the same acquisition protocol, after registration, gradient directions and b-values slightly differ from their initial values and between subjects. To select brain region voxels, we have used brain masks provided as a part of HCP dataset, obtained from no diffusion weighted images (b = 0) using the Otsu thresholding algorithm. Masks are post-processed by excluding voxels with very low mean b = 0 value (lower than 100) as they correspond to border voxels with likely erroneous data. dMRI signals are voxel-wise normalized with mean value of b = 0 scans and clipped to the range [0, 1]. For the estimation of the gold standard we have used brute2fine optimizer from dmipy toolbox applied on dMRI data with full acquisition scheme [Fick et al. 2019]. Models are compared with dMRI signals acquired over a significantly reduced sampling scheme, containing 30 points over two shells of b-values 1000 and 2000 s/mm 2

Implementation details

The models were implemented with the tensorflow. They were trained over 300 epochs, where in each epoch 25600 voxels (or 3D patches of size 3 × 3 × 3) are randomly drawn from T training samples, where T ∈ {1, 3, 5, 10, 15, 30}. Validation is performed on 25600 voxels randomly drawn from 20 validation subjects. If the difference between validation loss averaged over two sequential blocks of five epochs is smaller than 10 -6 , the learning rate is reduced by a factor of 0.95. Testing is performed on 150 testing subjects. Models have been trained with a batch size of 128 by minimizing mean square error loss using an Adam optimizer [Kingma & Ba 2014].

Results

Results are compared quantitatively in terms of mean absolute error computed over the 150 testing subjects. The mean absolute error and corresponding standard deviations for NODDI parameter estimation, namely ν ic , ν iso and OD, for training on 1, 3, 5, 10, 15, 30 subjects are illustrated in Figure 5.9 for the models which take as input single voxels. A comparison of the models which take as input signals from 3D patches is provided in Figure 5.10. For the single voxel models, we have performed an extensive hyperparameter grid search provided in Appendix B. Figure 5.9 shows that our models F ourier_S 2 _zonal and F ourier_S 2 _SO(3) with the number of trainable parameters 0.0915 • 10 6 and 0.0789 • 10 6 , respectively give on the average similar mean absolute error as MLP with ∼ 0.148 • 10 6 parameters. Further, we can see that the model M EDN , with 0.11 × 10 6 trainable parameters, which is specifically designed for NODDI parameter estimation yields noticeably higher mean absolute errors for the parameter ν iso regardless of the number of training subjects. More important differences in the mean absolute errors can be observed by comparing the methods which take as input 3D patches, which are compared for the number of training subjects 1, 3, and 5. We can see that our models yield errors slightly higher but comparable with the recently proposed state-of-the-art MESCNetSepDict, with the number of parameters decreased by factors 2.7 and 4.4 for F ourier_S 2 _SO(3)+ and F ourier_S 2 _zonal+, respectively. Although the number of parameters is not necessarily proportional to the computational time (for example, the training and testing with MESCNet is more than 8 times faster than with MESCNetSepDict), F ourier_S 2 _SO(3)+ is approximately 6 times faster and F ourier_S 2 _zonal+ 12 times. As for the single voxel methods, for the 3D patch based methods we can also notice that the model specifically designed for N ODDI parameters M EDN + yields the highest mean absolute errors over all three parameters ν ic , ν iso and OD. Figures 5.11, 5.12 and 5.13 show a qualitative comparison of NODDI parameters estimated with single-voxel and 3D patch based models, trained on one subject. We can see that single-voxel based models tend to underestimate values of ν ic and ν iso in the white matter regions more prominently than 3D patch based models. M EDN and M EDN + are characterized by the overestimation of OD parameter, especially noticeable in the corpus callosum. Similarly, as for NODDI parameters, M LP designed for single voxel inputs gives comparable results to our models on the problem of SM T parameter estimation as depicted in Figure 5 

Brain tissue segmentation

In this experiment, we demonstrated that our approach can be used in combination with 3D planar CNN for the problem of brain tissue segmentation.

Real data from HCP and the estimation of gold standard

We have used the same subset of 200 subjects from the HCP database [Van Essen et al. 2013] as used in the experiments for microstructure parameter estimation. The preprocessing and normalization of the signals are performed in the same way. A gold standard has been estimated using the FAST algorithm [Zhang et al. 2001] applied on T1w images of resolution 1.25 × 1.25 × 1.25 mm 3 implemented in the mrtrix library [Tournier et al. 2019]. It segments tissue into cortical gray matter, subcortical gray matter, white matter, CSF, and pathological tissue. Since, we have used data from healthy subjects only and since we merged cortical and subcortical gray matter classes, only three tissue classes have been considered, namely gray matter, white matter, and CSF. We have conducted experiments with the number of training subjects 1, 30, and 70, on full HCP acquisition scheme containing 90 points per each of the three shells and on a reduced sampling scheme containing 60 points per each of the three shells. The number of validation subjects is 20 and the number of testing subjects is 110.

Implementation details

The model is composed of F ourier_S 2 _SO(3) which is applied voxel-wise to extract features and 3D planar CNN which takes as input the 3D patches of the extracted features. This enables the integration of 3D spatial information into the segmentation process. For a 3D patch of size n × n × n, depending on the number of convolutional layers and kernel sizes, the output will be m × m × m where m < n. Although, n can be chosen such that m = 1 (voxel-wise), training a model with m > 1 provides regularization of the training process. During the testing phase, extracted features of the entire scan are fed into the CNN model. We have compared F ourier_S 2 _SO(3) and MLP [Golkov et al. 2016] models for feature extraction followed by a CNN of the same structure. We named these models with F ourier_S 2 _SO(3) + CN N and M LP + CN N . Both models F ourier_S 2 _SO(3) + CN N and M LP + CN N are implemented in tensorflow [Abadi et al. 2015]. The CNN is composed of three convolutional layers with kernels of size 3. During the training, the spatial sizes of the input 3D patches are 15 × 15 × 15 and of the output 9 × 9 × 9. Given that each voxel contains high dimensional dMRI data acquired over three shells, models' training with 3D patches of size 15 × 15 × 15 might be computationally demanding in terms of GPU RAM since the backpropagation algorithm requires keeping intermediate feature maps and gradients. On the other hand, integrating spatial information of a broader context is important, especially for the segmentation of the tissues close to a tissue border. Since the output patch is of size 9 × 9 × 9, which means that the loss is averaged over 9 3 samples and for efficient usage of RAM, the 3D patch-wise batch size is only 1. To augment training data in a computationally efficient manner, extracted patches of features are axially mirrored, which efficiently increases batch size to 2. In each epoch, 3D patches are randomly extracted from training subjects and validation is performed on 3D patches randomly extracted from validation subjects. Half of the training patches have been selected from the border regions of tissues. The border regions are determined by selecting voxels with tissue class probabilities provided by FAST higher than a threshold of 0.9. Models have been trained over 200 epochs by minimizing categorical cross-entropy loss using an Adam optimizer [Kingma & Ba 2014]. The initial learning rate has been set to 0.001. If the difference between validation categorical cross-entropy averaged over two sequential blocks of five epochs is smaller than 10 -4 , the learning rate is reduced by a factor of 0.95. Once the models are trained, testing is very computationally efficient. It is composed of a feature extraction step which is performed voxel-wise with batches of size 128, and a segmentation with 3D CNN which takes as input the entire scan of the extracted features and its axially mirrored version. Both M LP and F ourier_S 2 _SO(3) extract 64 features. M LP is composed of 6 layers of output sizes 128, 128, 128, 256, 128, 64. F ourier_S 2 _SO(3) is composed of three convolutional layers of the input and output bandwidths (8, 6), (6, 4), (4, 2) and the input and output number of channels (3, 2), (2, 4), (4, 8), and three fully connected layers of the output sizes 256, 128, 64. The total number of parameters in M LP + CN N is 0.212 × 10 6 and 0.201 × 10 6 for 90 and 60 points per shell, respectively. The total number of parameters in F ourier_S 2 _SO(3) + CN N is 0.131 × 10 6 for both sampling schemes, as the input to the models are the SH coefficients of bandwidth 8. Since the number of sampling points is considerably higher than the number of SH basis elements (45), the model does not contain a denoising layer.

Results

The results are compared in terms of Dice scores and are given in Tables 5.2 and 5.3 for 90 and 60 sampling points per shell. According to Dice scores, the difference in performance between the two models is negligible except when the number of training subjects is one. On the other hand, a qualitative comparison of the segmentations illustrated in Figure 5.18 highlights some differences. The comparison is provided for the experiments with one training subject and 90 sampling points per shell (1t, 90p) and 30 training subjects and 60 points per shell (30t, 60p). First, by comparing slices in axial view, we can notice that M LP + CN N misclassifies several voxels of CSF situated in ventricles into white matter voxels. This is especially prominent for the model trained with one subject. Secondly, illustrations in the coronal plane show that F ourier_S 2 _SO(3) + CN N gives better segmentation of gray matter in the region of the left lateral fissure. In the sagittal plane, we can notice some differences in the region of the cerebellum and below it, where M LP + CN N trained on one subject misclassifies CSF as a white matter region. Finally, we remark that the Dice scores obtained with 70 training subjects and 90 points per shell for both models are comparable with the recently proposed deep learning approach which uses three 2D U-nets applied on a combination of mean-kurtosis curve, diffusion kurtosis, and diffusion tensor parameters [START_REF] Zhang | [END_REF]] also trained on 70 HCP subjects. Whereas the model proposed in [START_REF] Zhang | [END_REF] takes ∼ 20min for the segmentation of one scan, F ourier_S 2 _SO(3) + CN N requires ∼ 1min and M LP + CN N ∼ 15s. 

Conclusion

In this chapter, we have presented convolutional models adjusted to the spherical and real nature of dMRI signals, their antipodal symmetry, and uniform-random distribution of the sampling points over multiple shells of q-space, for dMRI regression and classification problems. We aimed to develop rotation invariant models and apart from SH coefficient estimation and eventual denoising layers, all other operations in the models are rotation equivariant or invariant. We have used rotation equivariant convolutional and pooling layers as in [Cohen et al. 2018, Esteves et al. 2018], and in addition, we have proposed rotation equivariant channel-wise Fourier domain nonlinearities of quadratic nature inspired by the work of [Kondor et al. 2018] and degree-wise power spectrum rotation invariant feature vectors. These feature vectors serve as input to fully connected layers which perform final inference. The experiments are conducted on the real data from HCP and the synthetic data.

The experiments performed on the synthetic data on the problem of axon bun- dle count demonstrated the robustness and rotation invariance of our models with respect to the aliasing and noise. On the real HCP data we have addressed a regression problem of NODDI and SMT parameter estimation from dMRI signals sampled over reduced clinically desirable acquisition schemes and on the classification problem of brain tissue segmentation experiments are conducted on both full and reduced sampling schemes. In the extensive comparison with the other deep learning approaches for microstructure parameter estimation, we have shown that our models can achieve state-of-the-art performance with a significantly lower number of parameters and with often reduced computational time when the input is composed of dMRI signals from 3D patches. Therefore, in general, our 3D patch based models can achieve a trade-off between performance, the required number of learnable parameters, and computational time. Experiments conducted on brain tissue segmentation demonstrated that our model can be used to extract voxel-wise rotation equivariant features that can be used for computationally efficient brain tissue segmentation. Nonlinearities of quadratic nature in deep learning are not common because they are not bounded. Given a lower computational complexity of convolutions with zonal kernels and of S 2 quadratic nonlinearity compared to SO(3) convolutions and nonlinearities, in future work we will investigate how some standard deep learning nonlinearities such as sigmoid 1 1+e x and hyperbolic tangent e x -e -x e x +e -x can be approximated via Taylor series in the spectral domain. 

Executive summary

In this chapter, we first describe the modeling of multivariate EEG and MEG signals as a sum of rank-1 multivariate signals corresponding to individual brain sources and noise, where the temporal courses of the brain activities are modeled as convolutions of activation signals and characteristic temporal waveforms. Further, we provide an overview of several inverse problems in EEG and MEG signal analysis, which are currently very active fields of research. Whereas in the section state of the art, we present a more detailed description of the most prominent dictionary learning approaches with a focus on multivariate sparse convolutional dictionary learning. At the end, an overview of the most important EEG and MEG classifiers, mainly developed for BCI applications, with a focus on the CNN models is provided.

MEEG multivariate signal modeling

As the brain is responsible for the functioning of other human organs, processing sensory inputs, performing cognitive and motor tasks, controlling emotions, etc, numerous activities are always present in the brain. Each of these activities can be described by the cortical regions they arise from and their temporal courses. Magnetic field strength and electric potential, as direct measures of the brain's activities, recorded at the scalp (or slightly above it) by M/EEG devices can be described with Maxwell's equations with quasi-static approximations [Sarvas 1987]. As a consequence, we can assume that the cortical brain activities spread instantaneously and linearly over measuring sensors [START_REF] Hari | [END_REF].

In order to be measurable by M/EEG devices, the neural activity must occur synchronously in a group of pyramidal neural cells in the cortex which counts tens of thousands of cells [Clerc & Papadopoulo 2010]. A common way to model the current density present in these groups of cells is via equivalent electric dipoles [Hämäläinen et al. 1993], often referred to as sources. Since the orientation and position of each source can be considered fixed, the spread of source signal over measuring sensors is fixed as well and can be represented with a vector of weights also called a topographic map. Each weight describes how much a source contributes to the measured signal and depends on the relative orientation of the source with respect to the sensor, their distance, and the presence of different amounts of tissues (bones, gray and white matter, cerebrospinal fluid) along the path between the source and the sensor. These weights allow the construction of a so-called leadfield matrix L and allow the modeling of the measured signals as

X = LS + N (6.1)
where L ∈ R N ×Q , with N being the number of sensors and Q the number of sources. Thus, the q th column of L describes how the q th source signal spreads spatially over sensors. X ∈ R N ×T contains a measured multivariate signal over T time instants, and each row of S ∈ R Q×T represents a source signal over T time instants. N is an additive noise that includes noise coming from measuring devices, the environment, and the subject itself. The estimation of a leadfield matrix belongs to the M/EEG forward model problems. A common point in the estimation of MEG and EEG forward models is the modeling of the head and brain shapes. However, whereas magnetic permeability can be considered constant over tissues, electric conductivities of different tissue types must be taken into account [Sarvas 1987]. The simplest model is the spherical head model, which assumes concentric spheres. A layer between two spheres corresponds to one tissue and has a specific conductivity [Hämäläinen et al. 1993, Vatta et al. 2010]. More advanced head models require utilization of anatomical and/or structural information usually extracted from MRI data. This allows them to take into account finer head and brain tissue geometries and even to model anisotropic conductivities [Hämäläinen et al. 1993, Vatta et al. 2010, Ziegler et al. 2014].

Assuming K active sources, with K ≤ Q and often K << Q, the measured multi-6.1. MEEG multivariate signal modeling 105 variate signal X from Eq. 6.1 can be written as

X = K k=1 u k • s T k + N (6.2)
where s k ∈ R T is the source signal and u k ∈ R N its topographic map which corresponds to one column of the leadfield matrix L. Thus, we can notice that a multivariate signal associated with one source k can be represented as a rank-1 matrix u k • s T k . Source signals are traditionally classified according to the frequency band they span. They can reveal information related to the organism's restoration, cognitive processes, and certain brain disorders. Infra-low waves (<0.5Hz) or slow cortical potentials are the least investigated ones and are in general considered to be important in the dynamic organization of neural networks at a large scale and the modulation of higher frequency waves [Vanhatalo et al. 2004, Fox & Raichle 2007, Grooms et al. 2017, Watson 2018]. Delta waves (0.5 to 4 Hz) are high energy waves that are dominant in deep sleep, playing an important role in the stimulation of the restoration processes. Delta waves might also be prominent in certain brain disorders, such as attention deficit hyperactivity disorder [Kamida et al. 2016] and traumatic brain injuries [START_REF] Dunkley | Low-frequency connectivity is associated with mild traumatic brain injury[END_REF]. Theta waves (4 to 8 Hz) are occurring during shallow sleep and meditation. Also, several studies have shown increased power in the theta range during working memory load and processing [Schacter 1977, Grunwald et al. 1999]. Alpha waves (8 to 12 Hz) are dominant in the occipital lobe during relaxation with closed eyes when not much information is processed. Mu waves occur in the same frequency range as alpha waves but in the sensorimotor cortex and are indicators that the motor system is idling. Once a part of the body is moved or imagined to be moved, the power of these waves decreases which is a phenomenon used in the BCI [START_REF] Pineda | [END_REF], Krusienski et al. 2007]. Beta waves (12 to 30 Hz) are related to active thinking, problem-solving, and concentration. Low frequency beta waves are considered to be related to idling and focusing, medium ones to high engagement in mental activity, and high frequency beta waves to complex thoughts, high anxiety, and excitement. Gamma waves (30 to 100 Hz) are related to high-level cognitive functioning and are responsible for information processing from different brain regions. Recent studies have shown that in certain frequency bands, brain waveforms are rather of a transient and recurrent nature [van Ede et al. 2018]. This is also the case in the active BCI, where the brain waveforms are evoked by external sensory stimuli, with a difference that recurrence is approximately determined based on the repetition of the stimuli. Under the assumption that waveforms of interest are of transient and recurrent nature, Eq. 6.2 can be written as [Dupré la Tour et al. 2018]

X = K k=1 u k • (z k * v k ) T + N (6.3)
where v k ∈ R τ is a waveform associated with the source k and z k ∈ R T +τ -1 is a sparse vector with Diracs indicating instants of the activation of the waveform k. τ is duration of the waveforms v k .

MEEG inverse problems

In general, the analysis of EEG and MEG signals can be seen as a joint or an independent analysis of the spatial and temporal components of the measured signals, in order to make an inference about the underlying neural activities. Depending on the inference one would like to make, we can distinguish between multiple areas of interest in the domain of EEG and MEG signal analysis, which are not necessarily completely independent of each other. Some of them are inverse problems, source separation, dictionary learning, classification and regression problems, functional brain network analysis, etc.

Inverse problems in functional brain imaging usually refer to the estimation of the distribution, orientation, and intensity of neural activity sources in the cerebral cortex, given the measured signals. Characterization of the sources is important for the identification of the cortical regions that are employed while a subject is executing certain functions such as cognitive and motor tasks, or processing sensory inputs [START_REF] Bowyer | [END_REF]], but also in the evaluation of certain neurological disorders [Asadzadeh et al. 2020]. Since there is an infinite number of source organizations, including silent ones, and the number of measuring sensors is limited, the inverse MEG and EEG problems are underdetermined. This ill-posedness is addressed via multiple assumptions about the source space. A common assumption is that the relevant sources are situated in the cerebral cortex with orientations perpendicular to the cortex surface [Hämäläinen et al. 1993]. Furthermore, assuming a discrete source space, it can be constrained by limiting the number of possible active sources, modeled with equivalent current dipoles [Mosher et al. 1992, Mosher & Leahy 1998], while in the case of distributed current sources, minimum norm or smoothness constraints are imposed on the solution [START_REF] Hämäläinen | [END_REF], Pascual-Marqui et al. 1994]. Recent studies have shown that regularization of the MEG and EEG inverse problems can also be achieved by incorporating information from structural imaging modalities such as dMRI [Belaoucha et al. 2015, Kojčić et al. 2021].

Source separation refers to the disentangling of time courses originating from multiple sources given the measured mixed signals. Mathematically, it is also a class of inverse problems, but with a focus on the temporal aspect of the brain signals, rather than spatial. Source separation is often used as a preprocessing step for artifact removal and denoising [Zou et al. 2019[START_REF] Roy | [END_REF], but also for the extraction of event-related responses [Lee et al. 2006, Metsomaa et al. 2016]. Separating source signals can also facilitate source localization [START_REF] Zhukov | [END_REF]]. To address ill-posedness in the source separation problem, assumptions are made about 6.2. MEEG inverse problems 107 the statistical properties of the source signals. In a widely used method for source separation -independent component analysis (ICA) the assumption is that the values of each source signal have a non-Gaussian distribution and that they are statistically independent [START_REF] Hyvärinen | Independent component analysis: algorithms and applications[END_REF]. Under these constraints, the solutions can be estimated by maximizing measures of non-gaussianity such as kurtosis and negentropy, by minimizing mutual information, or by the estimation of maximum likelihood [START_REF] Hyvärinen | Independent component analysis: algorithms and applications[END_REF].

Dictionary learning is closely related to source separation and corresponds to the estimation of atoms that constitute a dictionary and allow the sparse representation of the measured signals, assuming the presence of recurrent waveforms in the source signals. In addition to being able to separate source signals, dictionary learning frameworks that exhibit translation invariance allow identification of the time instants when the waveforms constituting source signals appear, also referred to as waveform activations. Analysis of such waveforms and their occurrences over time has potential in the evaluation of disorders such as epilepsy and cognitive impairments [Abreu et al. 2019], but it is also used in the extraction of event-related signals [Barthélemy et al. 2013, Hamner et al. 2011]. In general, dictionary learning is achieved by alternating between updating the dictionary atoms and the update of the corresponding activations [Barthélemy et al. 2013, Hitziger et al. 2017[START_REF] Dupré La Tour | Multivariate convolutional sparse coding for electromagnetic brain signals[END_REF]]. The difference between objectives of source separation and translation invariant dictionary learning approaches is depicted in Figure 6.1.

Figure 6.1: Illustrations of objectives of source separation and translation invariant dictionary learning approaches, when two sources with distinct waveforms are active.

Classification and regression models aim to associate a label or a quantity to neural activities given the recorded signals. Functional brain network analysis aims to understand relationships between activities occurring in different regions of the cortex. Analysis of such networks provides additional insights into highly complex neural activities, while the examined subject is performing cognitive or motor tasks, responding to some sensory stimuli, or simply being in a resting state. MEG functional brain networks have been used to identify connectivity markers related to Alzheimer's and Parkinson's diseases [Stam 2010] and multiple sclerosis [START_REF] Nauta | [END_REF]. They have also shown importance in the assessment and monitoring of functional reorganization of the brain after surgery [Wang et al. 2010[START_REF] Pittau | Functional brain networks in epilepsy: recent advances in noninvasive mapping[END_REF]. A functional brain network can be represented as a graph composed of nodes that correspond to measuring sensors or their projections to small regions of the cortex. Functional connectivity measures represent the edges between the nodes, which can be undirected such as correlation, phase coherence, mutual information, or directed such as lagged correlation, transfer entropy, Granger causality [START_REF] De Vico | [END_REF]].

State of the art

In the context of this thesis, we provide a detailed overview of the dictionary and deep learning approaches which are related to or served as inspiration for our work. Firstly, we provide a description of dictionary learning paradigms, with a focus on multivariate convolutional dictionary learning. Afterward, the most prominent EEG and MEG classifiers, primarily developed for BCI applications, are presented, along with a more detailed description of the most relevant CNN models.

Dictionary learning

Over the last two and half decades, the attention in the computer vision community has shifted from Fourier and wavelet analysis toward dictionary learning approaches. Whereas a wavelet frame is composed of predefined wavelet functions, dictionary learning aims to estimate a data-driven frame, also known as a dictionary. Such dictionaries allow a sparser representation of data. Thus, they have been initially used for compression and denoising [Kreutz-Delgado et al. 2003, Elad & Aharon 2006]. Dictionary learning has also been successfully used in clustering and classification problems, signal reconstruction, etc [Ramirez et al. 2010[START_REF] Sprechmann | Pablo Sprechmann and Guillermo Sapiro. Dictionary learning and sparse coding for unsupervised clustering[END_REF][START_REF] Kong | [END_REF]].

In the context of brain wave analysis, the employment of dictionary learning approaches is more recent. This has been motivated by the fact that brain waves of interest are often of a transient and recurrent nature [van Ede et al. 2018].

We can distinguish translation-invariant and noninvariant models and univariate and multivariate models. Given a univariate set of data samples {x n } N n=1 , where N is the number of samples and x n ∈ R T , with T being the number of sampling points, a univariate translation-noninvariant dictionary learning problem can be defined as argmin

D,zn N n=1 x n -Dz n 2 2 s.t. C z (z n ) and C D (d k ) (6.4)
where D ∈ R T ×K is dictionary composed of K atoms d k ∈ R T to be estimated, and z n ∈ R K is a sparse vector containing coefficients for the sample

x n [Tošić & Frossard 2011]. C z is a constraint which imposes sparsity of the vectors {z n } N n=1 . C D is a constraint imposed on the atoms in the dictionary. Most commonly, this constraint corresponds to ||d k || 2 ≤ 1 [Olshausen & Field 1997], alleviating very high amplitudes of the atoms and very low values of the sparse coefficients. Originally, C z is defined as ||z n || 0 ≤ α, however with this penalty, the minimization problem from Eq. 6.4 is not convex and it is NP-hard with respect to z n [Tillmann 2014]. Commonly, this minimization problem is addressed by the K-singular value decomposition algorithm (K-SVD) [Aharon et al. 2006]. Although this algorithm can end up in local minima, it has been shown as a sufficiently good solution in practice. In the context of BCI, dictionaries of spatial and temporal EEG patterns have been estimated independently using the K-SVD algorithm [Hamner et al. 2011]. L 0 penalty is often replaced by L 1 , ensuring convexity of the problem with respect to z n , which can be solved by the least absolute shrinkage and selection operator (LASSO) method [Tibshirani 1996]. For the analysis of longer brain signals, where waveforms of interest might appear at any time instant, translation-invariant dictionary learning is more suitable. Even if the analysed signals are segmented into epochs, which is a common practice in the analysis of the responses evoked by certain stimuli, the responses might follow the stimuli with different delays. Thus, the models exhibiting translation invariance are better suited for such data. Univariate translation-invariant dictionary learning problem can be defined as argmin

D,z k n N n=1 x n - K k=1 z k n * d k 2 2 s.t. C z (z k n ) and C D (d k ) (6.5)
where the dictionary D is composed of K atoms d k ∈ R τ , where τ < T is the length of the atoms [Garcia-Cardona & Wohlberg 2018]. The sparse coefficients z k n ∈ R T +τ -1 correspond to the activations of the atom k in the signal x n . C z is a constraint that imposes sparsity on the activation vectors {{z k n } K k=1 } N n=1 . In the Matching of Time Invariant Features (MoTIF) algorithm, univariate dictionary learning has been achieved independently of the activations and in an iterative manner, where each new atom is estimated under constraint C D which imposes that the atom is the most correlated to the data samples, but at the same time the least correlated to the previously estimated atoms [START_REF] Jost | [END_REF]. Once the dictionary is created, sparse coefficients are estimated using Matching Pursuit (MP) algorithm [START_REF] Mallat | [END_REF]. Adaptive Waveform Learning (AWL) is designed for epoched or long EEG recordings, termed with E-AWL and C-AWL, respectively [START_REF] Hitziger | [END_REF]. Dictionary learning is performed by alternating between the update of activations and the update of the dictionary. In addition to translation invariance, AWL can also be dilation invariant. To impose sparsity on the activations, the E-AWL model combines L 0 and L 1 regularization terms. The activations are estimated using a modification of the least angle regression shrinkage (LARS) algorithm [Efron et al. 2004] termed LARS-0. This modification corresponds to an exclusion operator which enforces L 0 sparsity of the L 1 constrained solution. Considering the LARS regularization path, at each regularization step, the exclusion operator excludes coefficients that correspond to the translation of the atom within a predefined time interval around the epoch center. To reduce computational expenses, in C-AWL, the activations are estimated using the MP algorithm [START_REF] Mallat | [END_REF]] with an exclusion operator acting within a predefined time interval around any time instant and within an interval of atom dilations. In both versions of AWL, the atoms are constrained to have ||d k || 2 = 1 and they are updated via the block coordinate descent. Apart from being characterized by waveforms, brain activity can be also described by the brain region from which it arises. Naturally, this has led to multivariate dictionary learning approaches. Given a multivariate set of data samples {X n } N n=1 , where N is the number of samples and X n ∈ R C×T , with C being the number of channels and T the number of sampling points, we can categorized multivariate translation-invariant dictionary learning approaches into three groups, illustrated in Figure 6.2:

1. with multivariate dictionary and univariate activations (Figure 6.2 a)) 2. with univariate dictionary and rank-1 multivariate activations (Figure 6.2 b))

3. with rank-1 multivariate dictionary and univariate activations (Figure 6.2 c)).

1. Multivariate translation-invariant dictionary learning with a multivariate dictionary and univariate activations is defined as argmin

D,z k n N n=1 X n - K k=1 z k n * D k 2 2 s.t. C z (z k n ) and C D (D k ) (6.6)
where the dictionary D is composed of K multivariate atoms D k ∈ R C×τ , where τ < T is the length of the atoms. The sparse coefficients z k n ∈ R T +τ -1 correspond to the activations of the atom k in the signal X n and convolution between activations and multivariate atom is given by row [START_REF] Barthélemy | [END_REF], Barthélemy et al. 2013], dictionary learning is achieved by solving Eq. 6.6, where C z (z k n ) is defined as |z k n | 0 < P , with P being maximal number of non-zero entries and C D (D k ) is defined as ||D k || 2 = 1. Their proposed multivariate dictionary learning approach is achieved in an online manner, by iterating through the entire dataset and performing the estimation of sparse activations and update of atoms for each data sample individually. Approximation of the sparse activation vectors is performed using multivariate orthogonal matching pursuit (M-OMP) developed in [START_REF] Barthélemy | [END_REF]. In [START_REF] Barthélemy | [END_REF], update of the atoms using stochastic Levenberg-Marquardt second-order gradient descent [Madsen et al. 2004] and in [Barthélemy et al. 2013] by stochastic gradient descent. 2. Multivariate translation-invariant dictionary learning with a univariate dictionary and rank-1 multivariate activations is defined as argmin

j z k n * D k = z k n * row j D k , ∀j ∈ {1, ..., C}. In [
D,z k n ,y k n N n=1 X n - K k=1 y k n z k n T * d k 2 2 s.t. C z (z k n ), C y (y k n ) and C D (d k ) (6.7)
where sparse univariate activations z k n ∈ R T +τ -1 correspond to the activations of the atom k and y k n ∈ R C to its spread over channels, for the data sample X n . Although defined in a slightly different manner, multidimensional jitter-adaptive dictionary learning (JADL), proposed in [START_REF] Papageorgakis | Christos Papageorgakis, Sebastian Hitziger and Théodore Papadopoulo. Dictionary learning for multidimensional data[END_REF], belongs to this group of multivariate translation-invariant methods. The dictionary D composed of the atoms {d k } K k=1 , d k ∈ R T , is extended to a dictionary D s by shifting the atoms by small shifts δ ∈ ∆, creating a dictionary composed of the atoms {{d k,δ } δ∈∆ } K k=1 , d k,δ ∈ R T . With such extension of dictionary, convolution from Eq. 6.7 is replaced by a k,δ n d T k,δ in [START_REF] Papageorgakis | Christos Papageorgakis, Sebastian Hitziger and Théodore Papadopoulo. Dictionary learning for multidimensional data[END_REF], where a k,δ n ∈ R C performs linear mapping of the atom d k,δ to the measuring sensors. To stay in accordance with the notation used in this section, a k,δ n d T k,δ can be written as y k n z k,δ n d T k,δ , where z k,δ n ∈ {0, 1}. Constraint C z is defined as L 0 norm along δ axis as z k n 0 ≤ 1, ∀k ∈ {1, ..., K} imposing sparse selection of the atom shifts, allowing maximum one shift per atom k. Given a data sample X n , for each of the k atoms of the original dictionary D, a shift δ k n is chosen as the one which gives the maximal value of

X n d k,δ 1 , thus z k,δ n = 1 only iff δ = δ k n .
Once the shifts are selected, a dictionary D n containing {d k,δ k n } K k=1 is created. The constraint C y is defined as channel-wise L 1 norm along k axis as y n,j 1 ≤ α, ∀j ∈ {1, ..., C}. For one channel of X n and given the dictionary D n and the constraint C y , this problem becomes equivalent to the one from Eq. 6.4 when solving with respect to sparse coefficients. In [START_REF] Papageorgakis | Christos Papageorgakis, Sebastian Hitziger and Théodore Papadopoulo. Dictionary learning for multidimensional data[END_REF], it is solved using the LARS algorithm [Efron et al. 2004]. Constraint C D on the atoms of the dictionary D is ||d k || 2 = 1 and they are updated using block coordinate descent, taking into account that each dictionary D n has different atom shifts. Estimation of the activations {{{z k,δ n } δ∈∆ } K k=1 } N n=1 , construction of the dictionaries {D n } N n=1 and the estimation of the topographic maps {{y k n } K k=1 } N n=1 , followed by the update of the dictionary D is repeated until convergence. 3. Multivariate translation-invariant dictionary learning with rank-1 multivariate dictionary and univariate activations is defined as

argmin U,V,z k n N n=1 X n - K k=1 z k n * (u k v T k ) 2 2 s.t. C z (z k n ) , C V (v k ) and C U (u k )
(6.8) where dictionary U and V are composed of K univariate spatial and temporal atoms u k ∈ R C and v k ∈ R τ , where τ < T is length of the atoms. The sparse coefficients z k n ∈ R T +τ -1 correspond to the activations of the atoms k in the signal X n and convolution between activations and a rank-1 multivariate atom is given by row

j z k n * (u k v T k ) = row j v k (z k n * u k ) T , ∀j ∈ {1, .
.., C}. Imposing rank-1 constraint on atoms is motivated by the assumption that the spread of source signals over measuring space is linear and instantaneous, where each possible source has a constant topographic map [START_REF] Hari | [END_REF][START_REF] Dupré La Tour | Multivariate convolutional sparse coding for electromagnetic brain signals[END_REF]. Multivariate convolutional sparse coding (MCSC) for dictionary learning with rank-1 constraint imposed on atoms, as given in Eq. 6.8, has been introduced in [Dupré la [START_REF] Dupré La Tour | Multivariate convolutional sparse coding for electromagnetic brain signals[END_REF]]. The constraint C z was defined as z k n 1 < α and z k n ≥ 0, and constraints

C V and C U as ||v k || 2 ≤ 1 and ||u k || 2 ≤ 1.
With given constraints, the minimization problem from Eq. 6.8 is convex individually with respect to each of the unknowns,

{{z k n } K k=1 } N n=1 , {v k } K k=1 and {u k } K k=1 .
The activations are updated using local greedy coordinate descent (LGCD) introduced in [Moreau et al. 2018]. Given a data sample X n , dictionaries U and V , and initialized activations {z k n } K k=1 , LGCD segments the range of coordinates [1, T -τ + 1] into M segments, and updates the activation vector corresponding to one pair of atoms k along one coordinate t per segment to its optimal value. The coordinate t and the pair k are selected as ones where the activation value is the furthest from its optimal value. Sequential pass through all segments is repeated iteratively until convergence. Given {X n } N n=1 and corresponding {{z k n } K k=1 } N n=1 , updating dictionaries {u k } K k=1 and {v k } K k=1 can be performed independently using gradient descent. In particular, in [START_REF] Dupré La Tour | Multivariate convolutional sparse coding for electromagnetic brain signals[END_REF], the projected gradient descent with the Armijo rule [START_REF] Nocedal | Jorge Nocedal and Stephen Wright[END_REF] has been used, where the Armijo rule governs the amplitude of the updates.

Classification models

In the context of M/EEG signal analysis, classification models are essential in the BCI, but they have also been employed in the analysis of epileptic seizures, sleeping disorders, Alzheimer's disease, etc. In addition to signal preprocessing, which is common for a majority of M/EEG signal analysis pipelines, the process of classification, in general, and traditionally, is composed of multiple steps, namely the feature extraction, their eventual reduction and/or selection, and the feature classification [START_REF][END_REF], Lotte et al. 2018]. The feature extraction refers to the application of spatial and/or temporal signal processing tools with the goal to extract a pool of possibly relevant features.

We can make a distinction between "hand-crafted", connectivitybased, and data-driven feature extraction. The former group includes power spectral density [Herman et al. 2008, Iscan et al. 2011], discrete Gabor transform [Kumar et al. 2015, Jrad et al. 2016], discrete wavelet transform features [Subasi & Gursoy 2010, Bhattacharyya et al. 2010], etc. Connectivity-based features model the strength of connections between brain regions, represented by sensors, via covariance matrices [START_REF] Barachant | [END_REF], Congedo et al. 2017] or synchrony measures [Wei et al. 2007]. Prominent connectivity features are the ones where data is mapped to matrix manifolds such as Hermitian and Grassmann ones which are equipped with Riemannian metrics which are often better suited to BCI than Euclidean space metrics [START_REF] Barachant | [END_REF]. Data-driven feature extraction is present in a broad range of unsupervised and supervised paradigms, starting with principal and independent component analysis (PCA and ICA), linear discriminant analysis (LDA) [Subasi & Gursoy 2010], throughout dictionary learning [START_REF] Zhou | [END_REF][START_REF] Peng | A novel automatic classification detection for epileptic seizure based on dictionary learning and sparse representation[END_REF]] and deep learning approaches [Schirrmeister et al. 2017, Lawhern et al. 2018]. The feature reduction and selection are optional steps in the classification process, applied if the dimensionality of the extracted features is very high. The purpose of this step is to extract the most relevant features and in this way reduce the possibility of the classifier overfitting to the training samples. Whereas feature reduction transforms a feature vector into a space with lower dimensionality, feature selection simply selects a predefined number of features from the given vector. Although used directly for feature extraction, PCA and LDA are linear techniques that have been often used for dimensionality reduction as well [START_REF] Kołodziej | [END_REF], Yu et al. 2014]. The feature classification refers to the application of the linear or non-linear classifiers on the extracted features in order to perform the final inference.

Among the classifiers applied to the extracted features, broadly used linear ones are LDA and support vector machine (SVM) [Herman et al. 2008, Iscan et al. 2011, Jrad et al. 2016]. Distinct nonlinear classifiers are k-nearest neighbours (k-NN), non-linear Bayesian classifiers, random trees, and neural networks [Herman et al. 2008, Iscan et al. 2011, Bhattacharyya et al. 2010, Kumar et al. 2015, Jrad et al. 2016]. As summarized in the recent review of the BCI models [Lotte et al. 2018], we can also identify BCI classifiers that are able to adapt to new data samples termed as adaptive classifiers and ones that allow transfer of their parameters to the domain of another subject or session referred to as transfer learning approaches.

As in other computer vision research fields, over the last two decades, attention has been drawn to DL approaches in the analysis of M/EEG signals, as well. In general, these models learn to perform feature extraction, reduction, and classification in a joint global training procedure. Given that the brain waveforms of interest can have an arbitrary position over time, CNNs, which exhibit translational invariance, have been chosen to address multiple problems. In analogy to the dictionary learning approaches, we can make a distinction between univariate and multivariate CNN models. Due to the ease of use and portability of the single channel EEG devices, several univariate CNN models have been investigated in the context of sleep and epilepsy analysis. In [Tsinalis et al. 2016] and [Sors et al. 2018], classical CNN models have been employed in the studies on single channel EEG sleep scoring. In [Supratak et al. 2017], the authors proposed a DeepSleepNet model composed of a convolutional module for time-invariant representation learning and a module with bi-directional long-short-term-memory (LSTM) units, that is able to learn transitions between the sleep stages. A pyramidal CNN, with a low number of trainable parameters, suitable for a lower amount of training data, for the classification of single channel EEG signals into normal, ictal, and interictal classes has been proposed in [Acharya et al. 2018, Ullah et al. 2018]. In the context of multivariate CNNs developed for M/EEG signal analysis, we can identify three types of convolutional layers, namely, standard convolutional layer, separable convolutional layers and depthwise convolutional layers. Given a multivariate M/EEG signal X ∈ R C×T , with C being the number of channels and T being the number of time samples, they are defined as follows.

A standard convolutional layer with weights W , s.t. W ∈ R C×J×τ , (or

{W j } J j=1 , s.t. W j ∈ R C×τ ) performs convolution as Y j = C c=1 X c * W cj (6.9)
where c refers to the c th channel of X and W j . Y j is the j th channel of Y . Y ∈ R J×(T -τ +1) , j ∈ {1, ..., J} and J is the number of the output channels. τ is the duration of the convolutional kernel W . An illustration of the convolution in a standard convolutional layer is depicted in Figure 6.3. In a separable convolutional layer, the convolution is performed along the temporal and spatial dimensions independently. Thus, given the temporal weights {u j } Jt j=1 , s.t. u j ∈ R τ , the temporal convolution is defined as

Z cj = X c * u j (6.10)
where X c is the c th channel of X, Z ∈ R C×Jt×(T -τ +1) and Z cj ∈ R T -τ +1 . J t is the number of temporal filters. This is followed by a spatial convolution (correlation more precisely) with {v j } Js j=1 , v j ∈ R Jt×C defined as

Y k = C c=1 Jt j=1 Z cj • v cjk (6.11) where Y ∈ R Js×(T -τ +1
) . An illustration of the convolution in a separable convolutional layer is depicted in Figure 6.4.

A depthwise convolutional layer is closely related to the separable convolutional layer, where after the temporal convolution as given by Eq. 6.10, correlation along spatial dimensions is performed with {v j } Jt j=1 , v j ∈ R C×D , where D is a depth multiplier. Thus the output is obtained as

Y j•D+d = C c=1 Z cj • v cjd (6.12)
where

Y ∈ R Jt•D×(T -τ +1) and Y j•D+d ∈ R T -τ +1
. An illustration of the convolution in a depthwise convolutional layer is depicted in Figure 6.5 (with J = J t ). The three types of multivariate convolutional layers differ in terms of the number of parameters and the number of multiplications. Assuming that J = J t = J s = C and D = 1, thus all the layers yield the output of the same size, the number of trainable weights is C 2 × τ , C × τ + C 3 and C × τ + C 2 , for the standard, separable and depthwise convolutional layers, respectively. The corresponding number of the multiplications is

C 2 × τ × (T -τ + 1), C 2 × τ × (T -τ + 1) + C 3 × (T -τ + 1) and C 2 × τ × (T -τ + 1) + C 2 × (T -τ + 1).
To analyse multi-channel M/EEG data, multiple models with standard, separable, and depthwise convolutional layers have been investigated.

In [Schirrmeister et al. 2017], DeepConvNet and ShallowConvNet have been proposed for the classification of motor task and motor-imagery task related EEG signals.

In [Lawhern et al. 2018], a more compact CNN model termed as EEGNet has been proposed for BCI applications.

DeepConvNet [Schirrmeister et al. 2017] model is composed of four convolutional layers and one fully connected layer. The first layer contains separable convolutions as given in Eqs. 6.10 and 6.11, while the following three contain standard convolutions as in Eq. 6.9. Each convolutional layer is followed by a batch normalization [Ioffe & Szegedy 2015], an Exponential Linear Unit (ELU) non-linearity, a max-pooling and drop-out operations [Srivastava et al. 2014]. The features extracted from the last layer are fed into a fully connected network. ShallowConvNet, a more compact model, was proposed in the same work of [Schirrmeister et al. 2017]. It contains one separable convolutional layer with longer filters compared to DeepConvNet and one fully connected layer. The convolutional layer is followed by a batch normalization [Ioffe & Szegedy 2015], a square non-linearity, average pooling, a logarithmic non-linearity, inspired by the filter bank common spatial pattern approach [Ang et al. 2008] and a drop-out layer [Srivastava et al. 2014]. As in DeepConvNet, the extracted features are fed into a fully connected network which performs the final inference.

EEGNet model has been proposed as a compact CNN for EEG BCI applications in [Lawhern et al. 2018]. It is composed of two convolutional layers, the former with depthwise convolutions as in Eqs. 6.10 and 6.12 and the latter with separable convolutions as in Eqs. 6.10 and 6.11. In addition to the batch normalization layers [Ioffe & Szegedy 2015] applied after each of the convolutional layers, it is also performed after the convolution with the temporal filters in the depthwise convolutional layer. As non-linearity, ELU is used. It is followed by the average pooling layer and the drop-out layer [Srivastava et al. 2014]. The last layer of the model is one fully connected layer. All three models, DeepConvNet, ShallowConvNet and EEGNet, apart from the regularization achieved indirectly with batch normalization [Srivastava et al. 2014] and drop-out operations [Ioffe & Szegedy 2015], regularize the model weights directly by constraining their maximum norm. In addition to the three described methods, in the context of passive BCI (classification of cognitive load) a recurrent-CNN has been proposed in [Bashivan et al. 2015].

The authors proposed to transform EEG signals into a sequence of topologypreserving multi-spectral images, which are used to train the model. The transformation is achieved by projecting the spatial component of the signals to 2D images for different power spectrum bands (theta, alpha, beta), where each band is treated as one channel (R, G, B) of a video.

Conclusion

In this chapter, we first describe the forward modeling of the multivariate EEG and MEG signals as a sum of rank-1 multivariate signals corresponding to individual brain sources and noise, where temporal courses of the brain activities are modeled as convolutions of activation signals and characteristic temporal waveforms, under

the assumption that such waveforms are of a transient and recurrent nature.

Further, an outline of the most relevant areas of research in the field of EEG and MEG inverse problems is provided. Whereas in the section on the state-of-the-art, we have provided a more detailed description of the most prominent dictionary learning approaches with a focus on multivariate convolutional dictionary learning ones. At the end, an overview of the most important EEG and MEG classifiers, in majority developed for BCI applications, with a focus on the most relevant CNN models is presented.

In the following two chapters, we will present our contributions in EEG and MEG multivariate signal analysis, concretely, a rank-1 multivariate spatio-temporal dictionary learning with L 0 constraint and a shallow rank-1 CNN model for multivariate EEG and MEG signal classification.

Chapter 7

Rank 

Executive summary

This chapter contains our first contribution in the field of EEG and MEG analysis.

We have proposed a model for rank-1 spatial and temporal convolutional dictionary learning with the L 0 constraint. Firstly, we have introduced the constrained least mean square minimization problem we have addressed, followed by a description of multivariate signal encoding and decoding steps, and the process of dictionary update. Since the optimization problem is globally non-convex, we have illustrated the importance of proper initialization of the dictionaries. The model is quantitatively compared with rank-1 multivariate convolutional dictionary learning with the L 1 constraint on the synthetic data. Qualitative analysis is provided for the real MEG somatosensory data and HCP MEG motor datasets.

Introduction

Brain activity associated with the cognitive processes, execution of sensory-motor tasks, and certain neurodegenerative disorders can often be characterized by specific time courses and their location in the cerebral cortex. 

X = K k=1 u k • (z k * v k ) T + N (7.1)
where v k ∈ R τ is a waveform associated with the source k and z k ∈ R T +τ -1 is a sparse vector with Dirac impulses indicating the instants of the activations of the waveform k. u k ∈ R C is a topographic map that describes how a signal from source k spreads over channels. N is an additive noise that incorporates subject, environment, and device related sources of noise. The estimation of {v k , u k , z k } from the observed signal X is an ill-posed inverse problem which has been addressed via multivariate convolutional dictionary learning paradigms as described in Chapter 6. In [START_REF] Dupré La Tour | Multivariate convolutional sparse coding for electromagnetic brain signals[END_REF], the authors proposed rank-1 convolutional spatio-temporal dictionary learning with the L 1 sparsity constraint imposed on the activation vectors {z k }. With this regularization term, the estimation of the sparse activation vectors is a convex problem when the atoms in the spatial and temporal dictionaries are fixed. For fixed activations, the individual update of the spatial and temporal patterns is a convex problem [Dupré la [START_REF] Dupré La Tour | Multivariate convolutional sparse coding for electromagnetic brain signals[END_REF].

In this chapter, we have studied rank-1 convolutional spatio-temporal dictionary learning with the L 0 constraint. This problem is determined up to waveform shift and rank-1 atom sign. As in [Dupré la Tour et al. 2018], we have assumed that a source always has the activity of the same polarity and thus the sparse activation vectors are constrained to be nonnegative. As in the standard dictionary learning paradigms, estimation of the dictionaries and the sparse activation vectors is alternated.

The L 0 constraint imposed on the sparse activation vectors results in an NP-hard problem with respect to {z k }. In the context of univariate translation noninvariant dictionary learning, sparse vector estimation with the L 0 constraint can be solved via Iterative Hard Thresholding (IHT) [Blumensath & Davies 2008] if the dictionary satisfies the restricted isometry condition [START_REF] Candès | [END_REF]]. The solution can be formulated as follows. Given a univariate signal x ∈ R N and a dictionary D ∈ R N ×K , with K being the number of atoms and N being the length of x, a sparse vector z i+1 ∈ R K , in the iteration i + 1, is estimated via IHT as

z i+1 = H λ z i + D T (x -Dz i ) . (7.2)
where H λ is a thresholding operator, which keeps only λ highest coefficients and other sets to zero, z 0 = 0 and (x -Dz i ) is residual after i th iteration. Although convolution can be written in the form of matrix-vector multiplication, by transforming atoms {v k } into a matrix D, it is clear that one such matrix does not satisfy the restricted isometry condition (nearly orthogonal matrix) even only with respect to the thresholding operator.

To address this problem, matching pursuit (MP) [START_REF] Mallat | [END_REF], Pati et al. 1993] can be used. In the standard MP algorithm [START_REF] Mallat | [END_REF], in each iteration i one sparse vector z i ∈ R K is updated as

z i [k] = z i-1 [k] + D T r i [k]
where k = argmax D T r i (7.3)

r i = (x-Dz i-1
) is the residual after the i th iteration, z 0 = 0 and r 0 = x. In the convolutional MP presented in [START_REF] Szlam | Convolutional matching pursuit and dictionary training[END_REF]], the MP is adjusted to the 2D atoms for dictionary learning for images. In the orthogonal MP (OMP) [Pati et al. 1993], in each iteration i, the sparse vectors are estimated only over the support Λ i as:

z i Λ i = D † Λ i x and z i Λ\Λ i = 0 where Λ i = Λ i-1 ∪ argmax Λ\Λ i-1 D T r i-1 (7.4) 
where Λ = {0, 1, .., K -1}, Λ 0 = ∅, r 0 = x, r i = (x -Dz i ) and D † Λ i is the pseudoinverse of the dictionary containing only the atoms of indices in Λ i . In the nonnegative OMP presented in [START_REF] Bruckstein | [END_REF], z i Λ i are estimated using a nonnegative least square solution. Nonnegative OMP proposed in [Yaghoobi et al. 2015] uses QR decomposition to update z i Λ i using a modified selection of the support Λ i which guarantees positivity of the coefficients. In the convolutional MP proposed in [Plaut & Giryes 2018], given the signal x ∈ R N and a set of atoms {d k } K k=1 , sparse vectors {z k } K k=1 are determined over two nested iterative processes. In the outer iteration i, correlations {c i k } K k=1 between atoms and residuals are computed as

c i k = Jd k * r i where r i = x - K k=1 d k * z i k (7.5)
where J is a reversal matrix (ones along antidiagonal).

In the inner iterative process, the sparse vectors {z i k } are updated as

z i k * [j] = z i-1 k * [j] + c i k * [j] where k * = argmax k |c i k | and j = argmax(c i k * ) (7.6)
after that c i k [j * ] = 0 ∀k and ∀j * ∈ Ω j , where Ω j is a set of indices around j. In such a way, in a single outer iteration i, it is possible to estimate multiple activations, but their contributions are prevented from overlapping. In the context of multivariate signal sparse coding, multichannel MP solutions have been proposed for the sparse representations given the dictionary of Gabor atoms [START_REF] Gribonval | Piecewise linear source separation[END_REF], Durka et al. 2005] or learnable dictionary [START_REF] Barthélemy | [END_REF]. Regardless if the dictionary is Gabor or learnable, with L 0 constraint these solutions use univariate temporal atoms to estimate multichannel sparse vectors. Given a multivariate signal X ∈ R C×T and dictionary of atoms {d k } K k=1 , in [START_REF] Gribonval | Piecewise linear source separation[END_REF]], in each iteration i, selection of the atom and coefficient to be updated is obtained as

k * = argmax k C c=1 |R i c * Jd k | 2 2 and j = argmax C c=1 |R i c * Jd k * | 2 2 (7.7)
while in [Durka et al. 2005, Barthélemy et al. 2012] this is performed as

k * = argmax k C c=1 R i c * Jd k 1 and j = argmax C c=1 |R i c * Jd k * 1 (7.8)
where R i c and Z i k,c are the c th channel of the multivariate residual R i and the multivariate activation Z i k , respectively, obtained as

R i c = X c - K k=1 Z i k,c * d k and Z i k,c [j] = [Z i-1 k,c [j] + R i c * d k ][j]. (7.9)
In the context of sparse autoencoders, in the k-Sparse autoencoder, sparse representations are obtained, similarly as in IHT, by selecting k highest coefficients of z = ReLU (D T x + b), where b is a bias term [Makhzani & Frey 2013].

In [Makhzani & Frey 2014], convolutional autoencoder keeps only the highest coefficient of z k = ReLU (d k * x + b k ) for each k, while the other coefficients are set to zero. Instead of selecting a single highest coefficient per atom, in the convolutional sparse autoencoder proposed by [Luo et al. 2017], r highest coefficients per atom and patch of size p are preserved to create sparse representation.

To estimate the sparse activations, we have used an approach inspired by the sparse autoencoders, IHT, and MP methods, adjusted to the rank-1 convolutional atoms. Similarly, as in the sparse autoencoder [Makhzani & Frey 2014], it uses ReLU and maximum operator over the correlation between the input and the atoms to select the highest activation per each atom of the dictionary at once. As IHT and MP, and contrary to the sparse autoencoder [Makhzani & Frey 2014], it is a greedy algorithm that iteratively updates sparse codes. In contrast to the sparse coding in [START_REF] Gribonval | Piecewise linear source separation[END_REF], Durka et al. 2005, Barthélemy et al. 2012], where the multivariate sparse activations of an arbitrary sign are estimated for univariate temporal atoms (see Eq. 6.7), our approach estimates nonnegative univariate sparse activations given the pairs of the spatial and temporal atoms (see Eq. 6.8). Further, in [START_REF] Gribonval | Piecewise linear source separation[END_REF], Durka et al. 2005, Barthélemy et al. 2012], in each iteration sparse activations for one atom are updated, in our approach in each iteration sparse activations for all pairs of atoms are updated at once. As in [START_REF] Dupré La Tour | Multivariate convolutional sparse coding for electromagnetic brain signals[END_REF], for fixed activations, the individual update of the spatial and temporal patterns is a convex problem, thus we have used the Adam optimizer [Kingma & Ba 2014], which is faster than the traditional stochastic gradient descent.
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Method

We aim to address the multivariate translation-invariant dictionary learning problem from Eq. 6.8, firstly addressed in [START_REF] Dupré La Tour | Multivariate convolutional sparse coding for electromagnetic brain signals[END_REF], redefined as ûk , vk , ẑk = argmin

u k ,v k ,z k n 1 N N n=1 X n - K k=1 z k n * (u k v T k ) 2 2 s.t. ||z k n || 0 ≤ Q , z k n > 0 , ||v k || 2 2 ≤ 1 + d , ||u k || 2 2 ≤ 1 + d for k ∈ {1, 2, ..., K} and for n ∈ {1, 2, ..., N }
where Q is a parameter that ensures sparsity of the activations The processes of the sparse activation vector encoding and decoding are illustrated in Figure 7.1. Both encoding and decoding steps use the same dictionary atoms {v k , u k } K k=1 . Given a sample X n ∈ R C×T , in the encoding process, the sparse codes {z k,Q n } K k=1 are nonlinearly iteratively estimated over Q iterations, while in the decoding process, they are linearly mapped to the signal Xn . Chapter 7. Rank-1 M/EEG waveform and spatial pattern learning with L 0 constraint

{{z k n } K k=1 } N n=1 and d ∈ R is a small constant. Joint estimation of the {v k , u k } K k=1 and {{z k n } K k=1 } N n=1 is a non-convex problem,

Encoding

In the encoding process, as in sparse autoencoders [Makhzani & Frey 2013, Makhzani & Frey 2014, Luo et al. 2017] and greedy algorithms such as IHT [Blumensath & Davies 2008] and MP [START_REF] Mallat | [END_REF][START_REF] Szlam | Convolutional matching pursuit and dictionary training[END_REF], we use correlations with atoms to identify their activations. Due to the rank-1 constraint, correlation is first performed along the spatial and then along the temporal multivariate signal dimension. Given a multivariate data sample X n ∈ R C×T , where n refers to the data sample, correlations with a spatial dictionary of atoms {u k } K k=1 is given by

s k n = X T n u k for k ∈ {1, ..., K} (7.10) 
where

s k n ∈ R T . Correlation of {s k n } K k=1
with the temporal dictionary of atoms {v k } K k=1 is given by

c k n = s k n * Jv k for k ∈ {1, ..., K} (7.11) 
where

c k n is zero-padded so that c k n ∈ R T . Jv k is reversed version of the atom v k .
Iterative estimation of the activations.

As in greedy algorithms IHT [Blumensath & Davies 2008] and MP [START_REF] Mallat | [END_REF][START_REF] Szlam | Convolutional matching pursuit and dictionary training[END_REF] the sparse activation vectors are updated iteratively. For a sample X n , the activation vectors {z k,i n ∈ R T +τ -1 } K k=1 in iteration i are estimated as

X i n = X i-1 n - K k=1 u k (y k,i n * v k ) T = X 0 n - K k=1 u k (z k,i n * v k ) T (7.12)
where X i n is a multivariate residual after i th iteration, X 0 n = X n , z k,0 n = 0, and z k,i n = z k,i-1 n + y k,i n for all k. y k,i n is a sparse vector containing at most one activation estimated as follows. Given the residual X i-1 n , we estimate c k,i-1 n using Eqs. 7.10 and 7.11. The position of the activation of the k th atom in the i th iteration corresponds to j k,i n =argmax(ReLU(c k,i-1 n

)) since the activations are constrained to be nonnegative. The amplitude of the activation in y k,i n is determined as

y k,i n [j] = c k,i-1 n [j] if j = j k,i n and ||X i-1 n [:, ..j..] -c k,i-1 n [j]u k v T k || 2 2 < ||X i-1 n [:, ..j..]|| 2 2 0 otherwise . (7.13) The vectors {y k,i n } K k=1 are zero padded so that y k,i n ∈ R T +τ -1 , thus y k,i n * v k ∈ R T . If we consider a multivariate signal X = u(z * v) T ,
where z contains only one Dirac impulse, the amplitude of the peak of its spatio-temporal correlation c = u T X * Jv corresponds to the amplitude of the peak of z, only if ||u|| 2 ||v|| 2 = 1. 

Decoding

Once the activations are estimated, they are linearly mapped to the reconstructed signals as

Xn = K k=1 u k (z k n * v k ) T . (7.14)
The decoding process is illustrated in Figure 7.3. Chapter 7. Rank-1 M/EEG waveform and spatial pattern learning with L 0 constraint

Loss and update of the dictionaries

If we denote encoding and decoding processes with E and D, respectively, the loss function is defined as the MSE as

L = 1 N N n=1 X n -D E(X n |{u k , v k } K k=1 )|{u k , v k } K k=1 2 2 (7.15) or L = 1 N N n=1 X n - K k=1 u k (E(X n |{u k , v k } K k=1 ) k * v k ) T 2 2 . (7.16)
Following the standard dictionary learning paradigm, where the atoms are updated for fixed activations, given the estimated activations {{z k n } K k=1 } N n=1 , the loss function can be rewritten as 

L = 1 N N n=1 X n - K k=1 u k (z k n * v k ) T 2 2 . ( 7 
= -2 1 N N n=1 X n - K k=1 u k z k n * v k T T z k n * v k (7.18)
and gradient of L with respect to v k is

∂L ∂v k [q] = -2 1 N N n=1 T j=0 u T k X n - K k=1 u k z k n * v k T [q + j]z k n τ 2 + j . (7.19)
In our work, the atoms are updated using the Adam optimizer [Kingma & Ba 2014] where in each training iteration t a weight w is updated as

w t+1 = w t -η ν t √ s t + ε g t (7.20)
where

ν t = β 1 ν t-1 + (1 -β 1 )g t (7.21) and s t = β 2 s t-1 + (1 -β 2 )g 2 t (7.22)
where η is the learning rate. g t is a gradient as defined in Eqs. 7.18 and 7.19. ν t and s t are the gradient's moving mean and moving variance, where β 1 and β 2 are constants determining the contributions of the past and current gradients. ε is a small constant ensuring the stability of the division. The training is performed by alternating between the update of spatial and temporal atoms. 

Motor-task HCP MEG dataset

The motor-task MEG dataset is part of the open HCP dataset [Van Essen et al. 2012]. We have selected MEG recordings of five out of 61 subjects acquired over two sessions where participants were guided by visual cues to move either the right hand, left hand, right foot, left foot, or to stay still. We have selected only five subjects, as we have performed dictionary learning per session, and only qualitative analysis of the learned dictionaries and obtained activations has been performed at the moment. Each session was composed of 42 blocks, where 10 blocks were resting state blocks and 32 blocks were movement blocks (8 blocks per movement). Each movement block contains 10 movements guided by a visual cue at the beginning of the block, which lasts 3000ms and suggests which movement is to be performed, and nine visual cues in the form of fleshes, which last 150ms and guide the subject to perform the movement again. The visual cues are separated by the periods of black screen of 1050ms, during which the subjects perform the indicated movement. The number of MEG channels is 248. The sampling frequency is 2034.52 Hz. Signals are segmented into 2.4s long epochs, centered with respect to the onset of the visual flesh. Therefore, each epoch contains two movements. To preprocess the raw MEG signals, we have used the preprocessing pipeline from the MNE-HCP library [Gramfort et al. 2013b]. It included reference correction, filtering with a bandpass Butterworth filter of order 4 with cutoff frequencies of 0.5 Hz and 60 Hz, removing artifacts using ICA, and interpolating missing or bad channels. In our experiments, we have subsequently downsampled the signals by a factor of 12, given that the signals are low-pass filtered with a cut-off frequency of 60 Hz. Thus, the sampling frequency is ∼ 170 Hz. For the stability of the model, signals are scaled with the factor 5 • 10 12 . The scaling is desirable to alleviate the vanishing gradients.

Somatosensory MEG dataset

In the somatosensory MEG dataset, somatosensory EM fields were evoked by electrical stimulation of the median nerve at wrist [Sorrentino et al. 2009]. The stimuli were repeated with intervals randomly chosen between 7s and 9s. The MEG signals were acquired with 204 gradiometers and 102 magnetometers at a sampling rate of 600Hz. The dataset was taken from the MNE-python toolbox [Gramfort et al. 2013a], and preprocessing was performed as in [START_REF] Dupré La Tour | Multivariate convolutional sparse coding for electromagnetic brain signals[END_REF]], including filtering with two notch filters of 50Hz and 100Hz, downsampling to a sampling frequency of 150Hz, segmentation into epochs of 6s length, epoched signals weighting with a Tukey window, and normalization by their standard deviation. The data corresponds to one subject. The total number of extracted epochs is 103. In our experiments, we have used only the gradiometer channels, as in [START_REF] Dupré La Tour | Multivariate convolutional sparse coding for electromagnetic brain signals[END_REF]. with L 0 constraint

Implementation details

Initialization

As the minimization problem from Eq. 7.17 is non-convex, we have investigated how different initializations of spatial and temporal patterns influence the convergence of the optimization process. These experiments are conducted on synthetic data without noise, and for each initialization type, they are repeated 50 times. The model includes three pairs of spatial and temporal patterns, whose norm is constrained to 1 + d, where d = 0.01. The maximum number of activations allowed during training and testing is Q = P = 40 and the maximum number of refinement steps in the testing phase is R = 50. In the first experiment, we used random Gaussian N (0, n) initialization of both the spatial and temporal patterns with different standard deviations n ∈ {1.0, 0.1, 0.01, 0.001}. The corresponding learning curves are illustrated in Figure 7.6(a) (left). The MSEs between the ground truth and the obtained reconstructions on training and test datasets are illustrated in Figure 7.6(b) (left). In the second and third initialization strategies, temporal waveforms are initialized with a constant normalized to 1. In the second strategy, the spatial patterns are initialized with 1 + nU c (-1, 1), where U c (-1, 1) refers to a continuous uniform distribution in the range of [-1, 1]. In the third strategy, they are initialized with

1 + nU d [-1, 1],
where U d [-1, 1] are drawn from a discrete uniform distribution {-1, 0, 1}. In both cases n ∈ {0.1, 0.01, 0.001, 0.0001}. After the initialization, as for the temporal patterns, they are normalized to 1. Corresponding learning curves for the second and third strategies are illustrated in Figure 7.6(a) (middle, right), while the MSEs between ground truth and reconstructions on training and test datasets are illustrated in Figure 7.6(b) (middle, right). As Figure 7.6 shows, the initialization of the patterns with random values gives very dispersed learning curves with almost no difference between the different standard deviations of the distribution of the initialization values. On the other hand, initialization of the temporal patterns with a constant and the spatial patterns with values close to a constant (second and third initialization strategies), yields more coherent learning curves and lower MSEs both on training and test datasets. We can also notice that the losses and MSE decreases with the standard deviation of the uniform distributions.

The impact of Q and P

The maximum number of activations Q determines the number of selected activations with the highest amplitude, which contribute to the reconstructed signal during training and thus contribute to the update of the dictionaries. If this number is low, updates of the dictionaries will be based on a smaller amount of data segments that correlate best with the atoms of the dictionaries. Due to the nonconvexity of the problem, there is a risk that initial patterns might best correlate with non-representative segments of the signals, leading the minimization process to local minima. On the other hand, if this number is high enough, the update of the atoms is guided by a higher amount of data segments, so among these segments, there is a higher chance that some are well-representative and there is more room for a correction of the optimization path. Finally, if the number Q is very high, the algorithm might tend to learn more compact waveforms, especially when periodic waveforms such as the sawtooth are present in the overall signal. Activation vectors in synthetic data are generated with a density of 0.01, thus the total number of activations per waveform is ∼ 12.8. Firstly, we have investigated how the maximum number of activations during training Q influences the learning process on noiseless data. The learning curves and MSEs estimated on the training and testing data for Q = 30 and Q = 40 are depicted in Figure 7.7. It shows that decreasing Q to 30 yields slightly lower MSEs averaged over 50 experiment repetitions, but the MSE standard deviation is higher, when compared to Q = 40. When the data is affected by significant noise, it is of interest to train the dictionaries with activations of a high amplitude, since those with a lower amplitude might be below or close to the level of noise. The learning curves and MSEs with respect to noiseless ground truth signals, different values of Q ∈ {10, 20} and different values of P ∈ {10, 40} are provided in Figure 7.8. The results indicate that for noisy data, average MSE is lowest for low Q = P = 10. In accordance with the results obtained with noiseless data, for P = 10, increasing Q from 10 to 20 yields a lower standard deviation of the MSEs. Figure 7.7 also shows that for both Q = 10 and Q = 20, increasing P from 10 to 40 significantly increases MSE, that the majority of the activations for P = 40 correspond to the noise.

Results and discussions

We compared our method with the rank-1 multivariate dictionary learning method with the L 1 constraint [Dupré la [START_REF] Dupré La Tour | Multivariate convolutional sparse coding for electromagnetic brain signals[END_REF], termed Multivariate Convolutional Sparse Coding (MCSC), on the synthetic data and the somatosensory MEG dataset [Sorrentino et al. 2009, Gramfort et al. 2013a]. Further, we have visually analyzed the results obtained with our method applied to the motor-task MEG HCP data [Van Essen et al. 2012].

Comparison with the state of the art

Firstly, we compared the MSE between the ground truth and the reconstructed data on noiseless synthetic data and the MSE between the ground truth and the estimated activation vectors. Since the learned temporal patterns can be shifted compared to the ground truth, the MSE between the activations corresponds to the minimum MSE between the ground truth and corresponding shifted estimated vectors. In this experiment, the maximum number of activations in the training and testing phase Q = P = 40 and the number of refinement steps R = 50. The selection of the hyperparameters for the MCSC method is given in Appendix C. As illustrated in Figure 7.9, our model yields lower reconstruction errors and has a Chapter 7. Rank-1 M/EEG waveform and spatial pattern learning with L 0 constraint lower standard deviation. The MSE between activations is lower for MCSC for the waveforms with narrower support, such as spikes and Gaussian weighted sinusoidal waves, but significantly higher error for the sawtooth waves which have wide support. This might be because the correlation over a larger support is able to filter out interference coming from other activations. Estimated waveforms are compared in terms of maximum absolute correlation with ground truth waveforms. In Figure 7.10, we can see that our model estimates Gaussian weighted sines and sawtooth that correlate on average better with the ground truth. This is especially prominent for the sawtooth waveform. MCSC gives better average estimates of the spikes. In addition, we can see that the standard deviation of the maximum correlation over 50 experiment repetitions is lower with our model for all waveforms. Further, we have visually compared the estimated patterns and the activation vectors for the experiments where the average MSE between the ground truth and the estimated activations is the lowest (Figure 7.11(a)) and the highest (Figure 7.12(a)) and where the reconstruction error is the lowest (Figure 7.11(b)) and the highest 7.12(b)). As we can notice in Figure 7.11, both methods are able to estimate spatial and temporal patterns that closely resemble ground truth up to the sign and shift. The estimated activations for spikes and sawtooth signals also exhibit a high degree of resemblance to ground truth, while the activations for Gaussian weighted sinusoidal waveforms considerably differ (which is in accordance with the results illustrated in Figure 7.9). For the Gaussian weighted sinusoidal waveforms, in the segments with close activations, our model tends to estimate more dense spurious activations with lower amplitudes.

As we can notice in Figure 7.12(a), where the worst results, in terms of activations, are illustrated, our model has difficulty in the estimation of spike patterns and MCSC with the estimation of sawtooth. To compensate for these errors, both methods yield denser spurious activation vectors for the corresponding patterns. These errors in the temporal pattern estimation are the ones that appear most commonly over repeated runs of the experiments. The comparison of the worst results, in terms of the reconstruction error 7.12(b), shows that MCSC failed to separate Gaussian weighted sinusoidal and sawtooth patterns. Also, the results obtained with our method, indicate that a high reconstruction error comes due to the difficulty in the estimation of the activation vectors for the Gaussian weighted sinusoidal. Models are also compared on synthetic data distorted with Gaussian noise with a standard deviation of 0.1. The selection of hyperparameters on such data is quite challenging as it requires some prior knowledge. As provided in Appendix C, selecting parameters that minimize MSE between the input noisy signals and the reconstructions may lead to very noisy estimated patterns. Although it is not a real-world scenario, to investigate the potential of the models, in this experiment, the hyperparameters are chosen based on the MSE between the noiseless ground truth and the reconstructions estimated on noisy data. The selection of the hyperparameters for MCSC is given in Appendix C. Our model is selected based on the results illustrated in Figure 7.8, thus, the maximum number of activations during the training and testing phases is Q = P = 10, while the number of refinement steps is R = 50. As in the previous experiments, we first compared models in terms of MSEs between the noiseless ground truth and the obtained reconstructions and MSEs between the ground truth and the estimated activations. The average MSEs and standard deviations are illustrated in Figure 7.13. As can be seen, the average reconstruction error obtained with our model is slightly lower. On the other hand, the average MSE between the activations for all temporal patterns is significantly lower with MCSC. Contrary to that, the maximum correlations with ground truth patterns are on average higher with our model which has a considerably lower standard deviation over the experiment repetitions, as depicted in Figure 7.14. The visual comparisons of the best and worst results, according to the mean MSE between the activations and the reconstruction error, are provided in Figures 7.15 and 7.16. We can notice in both scenarios that the spike patterns are better centered with MCSC, while our model gives smoother temporal patterns which resemble more to the ground truth. Even though the average MSEs between the activations are much higher with our model, we can notice in Figure 7.15 and Figure 7.16 that they quite resemble the ground truth activations, while MCSC yields more spurious low amplitude activations.

Finally, the methods are compared on the somatosensory MEG dataset. As in the experiment presented in [START_REF] Dupré La Tour | Multivariate convolutional sparse coding for electromagnetic brain signals[END_REF], we have trained a model with 25 pairs of temporal and spatial patterns. Due to the very large number of atoms, the maximum number of activations per atom pair during training and testing is Q = P = 1 and the maximum number of refinement steps is R = 50. The length of temporal waveforms in both models is 1s. The average explained variance over epochs is 15.65% and 18.15% for MCSC and our method, respectively. Illustrations of the estimated atoms and activations are given in Figure 7.17. They show that the extracted temporal and spatial patterns between the methods to a great extent visually resemble. A great number of temporal atoms correspond to a special type of α waves, so-called µ waves which occur in the sensorimotor cortex and are an indicator that the motor system is idling. As expected, the peak of their power spectral density is around 10 -12Hz. The highest intensity of the associated spatial patterns corresponds, to a certain extent, to the location of the sensorimotor cortex.

We can also notice a few patterns resembling spikes extracted with our method, whose power spectral density has peaks in a range below 10Hz. Their associated spatial patterns have peaks in the prefrontal cortex. In Figure 7.18, we illustrate the distributions of correlations between the estimated rank-1 atoms, where we can see that our model provides less correlated atoms.

HCP results

We trained models with one pair of spatial and temporal atoms, where the maximum number of activations during train Q is 5 and the maximum number of activations during testing P is 2. The models are trained on one session and tested on both training and testing sessions. For each subject and each event (left hand, left foot, with L 0 constraint right hand, right foot movements, and fixations), one model is trained. The obtained spatial and temporal patterns, and training and testing activations averaged over epochs, are illustrated for five subjects in Figures 7.19,7.20,7.21,7.22 and 7.23. Firstly, we can notice that the spectral composition of the estimated waveforms differs significantly between subjects while being similar across different events. Also, average activations on the training and testing sessions are consistent. We can notice that spectral components in the range 8 -12Hz are emphasised in the cases of subjects 104012, 108323, and 109123 for all events. For subjects 104012 and 109123, the spectral components below 4Hz are of higher amplitudes for events that contain movements compared to fixation/resting state epochs. Apart from the subject 105923, by analysing the average activations (fourth and fifth columns), we can notice that for the epochs with movements, two well separated clusters are visible.

They correspond to two movements present in each epoch, as described in Section 1.3 which describes datasets. On the other hand, the average activations for fixation epochs are mostly uniformly distributed over time. High peaks at the beginning and end of the average activations are due to proximity to the signal border (taking into account that the duration of the signal is 2.4s and the duration of the temporal patterns is 1s). If the models are trained with Q = 3 and P = 2, waveforms tend not to be well centered. On the other hand, if Q = 10 and P = 2 separation of the activations is less specific (illustrations provided in Appendix C). 

Conclusion

In this chapter, we have investigated an approach for M/EEG convolutional dictionary learning with the L 0 constraint. The model assumes that multivariate M/EEG signals can be represented as a sum of rank-1 multivariate signals associated with individual brain sources and noise. Each rank-1 signal corresponds to an outer product of a topographic map and a temporal course. Under the assumption that characteristic temporal waveforms are of transient and recurrent nature, each temporal course is modeled as a convolution between sparse vector with activations (Dirac impulses) and characteristic temporal waveform. It is also assumed that the waveforms always appear with the same polarity, therefore the sparse activation vectors are nonnegative [START_REF] Dupré La Tour | Multivariate convolutional sparse coding for electromagnetic brain signals[END_REF]. During dictionary learning, the sparse activation vectors and the dictionaries are estimated alternatively, as in standard dictionary learning paradigms. The sparse activation vectors are estimated in a greedy manner, iteratively via an approach inspired by the sparse autoencoders [Makhzani & Frey 2013, Makhzani & Frey 2014, Luo et al. 2017], IHT [Blumensath & Davies 2008] and MP [START_REF] Mallat | [END_REF] approaches, adjusted to the convolutional rank-1 spatio-temporal dictionaries.

Updates of the spatial and temporal dictionaries are performed independently using the adaptive moment estimation (Adam) optimizer [Kingma & Ba 2014].

Since the minimization problem is globally non-convex, we have proposed initialization strategies that decrease the chances that the optimization process ends in a local minimum. The approach is compared with the state-of-the-art MCSC [START_REF] Dupré La Tour | Multivariate convolutional sparse coding for electromagnetic brain signals[END_REF]], an approach with the L 1 regularization, on the synthetic and somatosensory MEG dataset. The results demonstrated that our method is capable of learning dictionaries that on average better correlate with ground truth, both on noiseless and noisy datasets. This is especially prominent for the waveforms with wide support, such as sawtooth waveforms. On the other hand, on average, MCSC yields better estimates of the activation vectors, which is more prominent for noisy data. Qualitative comparison on the somatosensory MEG dataset, showed that our approach can learn MEG dictionaries which highly resemble the ones obtained with MCSC and are less correlated between each other. The qualitative analysis performed on HCP MEG motor task data, where the dictionaries containing only a single pair of atoms, have been learnt from a single session and independently for each subject, indicates that the proposed approach is capable to extract motor-task related patterns, which generalize well over an unseen session. 

Executive summary

In this chapter, we present a shallow CNN model for EEG and MEG multivariate signal classification. In this model, in addition to the rank-1 assumption and modeling of time courses as the convolution of sparse activation signals and characteristic waveforms, to reduce the impact of inter-subject and inter-session variabilities, we have assumed that the subject's head can be modeled as a sphere. As traditional BCI pipelines, the model is composed of feature extraction, selection, and classification modules which are presented in Section 8.2. This section also contains details related to the update of trainable parameters. The model is compared with three state-of-the-art CNN models for passive and active BCI problems on EEG mental workload and MEG motor task signal classification.

Theory

Apart from being distorted by a significant noise, the main challenge of the analysis of the M/EEG signals comes from inter-subject and inter-session variability. The former arises from different head geometries between subjects, but also due to different functional properties of the cortex [START_REF] Saha | Intra-and intersubject variability in EEG-based sensorimotor brain computer interface: a review[END_REF]. Intersession variability is a consequence of the difference in sensor positions between sessions, but an additional variability might also come from the alertness of the subject. This problem has been most effectively addressed using transfer learning paradigms [Lotte et al. 2018]. In this work, we propose a regularization of the spatial and temporal feature space in order to reduce inter-and intra-subject variabilities. To achieve this, we have assumed that a head can be modeled with a sphere. Spherical head and brain tissue modeling have been used in the forward modeling solutions [Hämäläinen et al. 1993, Mosher et al. 1999, Vatta et al. 2010], in the inverse problems of source reconstruction [START_REF] Pascual-Marqui | [END_REF], to improve the spatial resolution of EEG signals [Srinivasan 1999], etc. Given the spherical head model, the spatial topographic maps {u k } K k=1 can be expressed as

u k = B l=0 l m=-l Y lm ûlm k (8.1)
where Y lm ∈ R N is a discrete real SH basis element of degree l and order m and ûlm k its associated spectral coefficient. B is the signal's bandwidth. N B = (B + 1) 2 is the number of the SH basis elements. Similarly, the temporal waveforms {v k } K k=1 can be expressed in terms of a discrete cosine basis as

v k [t] = F f =0 a f √ τ cos(πf t + 1 τ )v f k (8.2)
where t = [0, 1, ..., τ -1] T , a 0 = 1 and a f = √ 2 if f ̸ = 0. F is the signal's bandwidth that must satisfy F ≤ τ -1. In the context of MEG and EEG analysis discrete cosine (DC) basis have been used for feature extraction in classification pipelines in [Bairy et al. 2015, Birvinskas et al. 2012], for data compression [Antoniol & Tonella 1997] and artifact removal [Yong et al. 2009]. In a matrix-vector notation equations 8.1 and 8.2 can be written as

u k = Y ûk (8.3) v k = C vk (8.4)
where Y ∈ R N ×N L contains the SH basis elements and C ∈ R τ ×(F +1) the discrete cosine basis elements in columns, ûk ∈ R N L and vk ∈ R F +1 are the corresponding spectral coefficients. Finally, a multivariate signal X from Eq. 6.3 can be modeled as 

X = K k=1 [Y ûk ] • (z k * [C vk ]) T + N . ( 8 

Feature extraction

If an M/EEG signal X can be modeled as in Eq. 8.5, its cross-correlations with the spatial and the temporal patterns {Y ûk } K k=1 and {C vk } K k=1 represent a measure of their presence in X. Cross-correlation of X with one spatial pattern Y ûk can be written as

y k = [Y ûk ] T X (8.6)
where y k ∈ R T . Given M/EEG signals from multiple subjects and/or sessions {X i }, due to differences in sensor positions, for each session one matrix Y i containing the SH basis elements needs to be defined. To reduce the computational time and memory requirements during training, we map all the signal samples {X i } to a common Fourier space as Xi = Y † i X i (8.7)

where Y † i ∈ R N L ×N is the pseudo-inverse of the matrix Y i . To solve this problem we have used the least mean square solution penalized with a Laplace-Beltrami term 152 Chapter 8. Shallow CNN for M/EEG classification as

Y † i = (Y T i Y i + λR LB ) -1 Y T i (8.8)
where R LB is the Laplace-Beltrami regularization term and λ is a parameter which controls the amount of regularization [START_REF] Descoteaux | [END_REF]]. This solution penalizes more high frequency components, which is desirable as they are more affected by the inter-session and inter-subject variability of the sensor positions. Using equations 8.7 and 8.8, for a sample X i we re-define cross-correlation from Eq. 8.6 with a spatial pattern

u k as ŷi,k = ûT k Y † i X i . (8.9)
Cross-correlation along the temporal axis with a temporal pattern C vk is defined as ẑi,k = [JC vk ] * ŷi,k (8.10)

where J ∈ R τ ×τ is a reversal matrix (ones along antidiagonal) and ẑi,k ∈ R T -τ +1 .

For each sample X i , cross-correlations as defined in Eqs. 8.9 and 8.10 are performed with K pairs of spatial and temporal patterns represented in the terms of SH and DC basis as {û k , vk } K k=1 , yielding feature vectors {ẑ i,k } K k=1 .

Feature selection and normalization

Given the feature vectors {ẑ i,k } K k=1 , nonlinear feature selection is performed using ReLU and max-pooling operator. ReLU is a simple element-wise thresholding operator which acts as

a i,k [t] = ReLU ẑi,k [t] + b k = ẑi,k [t] + b k if ẑi,k [t] + b k ≥ 0 0 if ẑi,k [t] + b k < 0 (8.11)
where t ∈ {0, 1, ..., T -τ + 1} and b k is a trainable bias term. If we assume that the polarity of brain activity is always the same as in [START_REF] Dupré La Tour | Multivariate convolutional sparse coding for electromagnetic brain signals[END_REF], discarding negative cross-correlation coefficients with ReLU is justified.

In general, the task of a pooling operator is to summarize the input signal over small patches and to provide a feature map of a reduced resolution to the following layer. This is usually achieved by summarizing each patch with its average or maximum value. In our work, we have used the max-pooling operator as it goes along with the assumption that relevant brain activities occur sparsely over time [van Ede et al. 2018]. Given an input vector a i,k and max-pooling size M , output is obtained as

s i,k [t] = max a k,i [t ′ ] : t • M ≤ t ′ < (t + 1) • M (8.12)
where t ∈ 0, ..., T -τ +1 M -1}. Since the spatial and temporal patterns {û k , vk } K k=1 may poorly correlate with the input signal, the corresponding feature maps {s i,k } K k=1 might be very skewed. If for two input samples X i and X j belonging to different classes, feature vectors s i,k and s j,k are very similar, it means that the pair of spatial and temporal filters ûk , vk 8.2. Method 153 does not have a high discrimination power. Thus, during training, these weights will not be significantly updated. To avoid this, we have used batch normalization layer [Ioffe & Szegedy 2015]. Batch normalization layer shifts and scales input feature maps as follows

ŝi,k = s i,k -µ k σ 2 k + ε (8.13)
where mean µ k and standard deviation σ k differ in the training and the testing phase. During the training phase, features are normalized by their own mean and standard deviation. In the testing phase, features are normalized by the mean and standard deviation estimated during the training phase using moving averages over training data.

Feature classification

Once the feature vectors {ŝ i,k } K k=1 are extracted, they are concatenated into feature vector ŝi = [ŝ T 1,i , ..., ŝT K,i ] T . Classification is performed with a single fully connected layer followed by softmax as 

L {X i , ĉi } N i=1 = - 1 N N i=1 c T i log 2 (ĉ i ) (8.15)
where c i ∈ R Q is the ground truth vector represented in one-hot format and N is the batch size. During the training phase, moving mean and variance in the batch normalization layer for the testing phase are updated as follows

µ it+1 k = mµ it k + (1 -m)µ batch k (8.16) σ 2 k it+1 = mσ 2 k it + (1 -m)σ 2 k batch (8.17)
where it refers to the iteration and m is the momentum [Ioffe & Szegedy 2015]. In order to reduce the over-fitting, during the training phase a drop-out layer is used before the fully connected layer [Srivastava et al. 2014]. Given the feature maps {ŝ i }, in each training iteration, the drop-out layer randomly sets a fraction of their entries to zero. Classifier gradients 154 Chapter 8. Shallow CNN for M/EEG classification In a backpropagation step, the gradients of the loss L with respect to the matrix D and biases b are given by

∂L ∂D = 1 N N i=1 ∂L ∂ĉ i ∂ĉ i ∂D = - 1 N N i=1 ŝ0 i (c i -ĉi ) T (8.18) and ∂L ∂b = 1 N N i=1 ∂L ∂ĉ i ∂ĉ i ∂b = - 1 N N i=1 (c i -ĉi ) T (8.19)
where ŝ0 i corresponds to the vector ŝi after drop-out layer is applied. Feature extractor gradients Gradients of the loss L with respect to the bias b k used in the feature selection step are obtained as

∂L ∂b k = 1 N N i=1 ∂L ∂ĉ i ∂ĉ i ∂ŝ 0 i ∂ŝ 0 i ∂ŝ i ∂ŝ i ∂ŝ i,k N j=1 ∂ŝ i,k ∂s j,k ∂s j,k ∂a j,k ∂a j,k ∂b k = 1 N N i=1 (c i -ĉi ) T DT dp i T c k N j=1 ∂ŝ i,k ∂s j,k T p j,k H(a j,k ) (8.20)
where T c k is an operator (mask) which performs the concatenation of the vectors {ŝ i,k } K k=1 to ŝi and T dp i is an operator (mask) which performs the drop-out operation on the vector ŝi producing the vector ŝ0

i . The derivative of the batch normalization function

∂ŝ i,k ∂s j,k ∈ R T -τ +1 M × T -τ +1 M is defined as ∂ŝ i,k ∂s j,k [p, q] =              N T -τ +1 M -1 σ 2 k +ε -s i,k [p]-µ k s j,k [q]-µ k N T -τ +1 M -1 √ σ 2 k +ε 3 if i = j and p = q -σ 2 k +ε -s i,k [p]-µ k s j,k [q]-µ k N T -τ +1 M -1 √ σ 2 k +ε 3 otherwise . (8.21)
T p j,k is the operator (mask) which performs the max-pooling from the vector a i,k to the vector s i,k . H denotes the Heaviside function, which is the gradient of the ReLU function. The gradients of L with respect to the temporal filters {v k } K k=1 used in the feature selection step are obtained as

∂L ∂ vk = 1 N N i=1 ∂L ∂ĉ i ∂ĉ i ∂ŝ 0 i ∂ŝ 0 i ∂ŝ i ∂ŝ i ∂ŝ i,k N j=1 ∂ŝ i,k ∂s j,k ∂s j,k ∂a j,k ∂a j,k ∂ vk = 1 N N i=1 (c i -ĉi ) T DT dp i T c k N j=1 ∂ŝ i,k ∂s j,k T p j,k H(a j,k ) ⊙ (JC * y j,k ) (8.22) 8.2. Method 155
where JC * y j,k denotes the column-wise correlation between the discrete cosine basis elements which are organized in columns of the matrix C and y j,k . ⊙ denotes column-wise and element-wise multiplication.

The gradients of L with respect to the spatial filters {û k } K k=1 used in the feature selection step are obtained as

∂L ∂ ûk = 1 N N i=1 ∂L ∂ĉ i ∂ĉ i ∂ŝ 0 i ∂ŝ 0 i ∂ŝ i ∂ŝ i ∂ŝ i,k N j=1 ∂ŝ i,k ∂s j,k ∂s j,k ∂a j,k ∂a j,k ∂ ûk = 1 N N i=1 (c i -ĉi ) T DT dp i T c k N j=1 ∂ŝ i,k ∂s j,k T p j,k H(a j,k ) ⊙ JC vk * (Y † j X j ) T (8.23)
where JC vk * (Y † i X i ) T denotes the column-wise correlation between the temporal filters v k = C vk and the input data, whose spatial dimension is transformed into the Fourier domain (Y † i X i ) T .

Validation and test

During the validation and the testing phases, the batch normalization is performed using the mean and variance estimated during the training phase as in equations 8.16 and 8.17. Also, during these phases, the drop-out layer is deactivated. The validation accuracy is computed as

a v = 1 N v Nv i=1 c T i argmax 1 {ĉ i } (8.24)
where argmax 1 denotes a function that assigns 1 to the input's maximum and 0 to other entries and N v is the number of validation samples. Table 8.1 provides the number of multiplications for the different operations used in the classification process of one sample. N L × N × T Spatial correlation Eq. 8.9

K × N L × T Temporal correlation Eq. 8.10 K × (τ × F + τ × (T -τ + 1)) Batch normalization Eq. 8.13 K × T -τ +1 M Feature classification Eq. 8.14 Q × K × T -τ +1 M + Q × (1 + 3(N T y -2))
* N T y corresponds to the Taylor series degree used to compute exponentials.

validation and from each of the 3 subjects for testing, while the remaining sessions were used for training. The split into the train, valid, and test is randomly repeated three times.

Motor-task MEG dataset

The motor-task MEG dataset is part of the open HCP [Van Essen et al. 2012] dataset. The dataset contains MEG recordings of 61 subjects acquired over two sessions where participants were guided by visual cues to move either the right hand, left hand, right foot, or left foot, or to stay still. Each session was composed of 42 blocks, where 10 blocks were resting state blocks and 32 blocks were movement blocks (8 blocks per movement). Each movement block contains 10 movements guided by a visual cue at the beginning of the block, which lasts 3000ms and suggests which movement is to be performed, and nine visual cues in the form of fleshes, which last 150ms and guide the subject to perform the movement again. The visual cues are separated by the periods of black screen of 1050ms, during which the subjects perform the indicated movement. The number of MEG channels is 248. The sampling frequency is 2034.52 Hz. Signals are segmented into 2.4s long epochs, centered with respect to the onset of the visual flesh. Therefore, each epoch contains two movements.

To preprocess the raw MEG signals, we have used the preprocessing pipeline from the MNE-HCP library [Gramfort et al. 2013b]. It included reference correction, filtering with a bandpass Butterworth filter of order 4 with cutoff frequencies of 0.5 Hz and 60 Hz, removing artifacts using ICA, and interpolating missing or bad channels.

In our experiments, we have subsequently downsampled the signals by a factor of 12, given that the signals are low-pass filtered with a cut-off frequency of 60 Hz. Thus, the sampling frequency is ∼ 170 Hz. For stability of the model, signals are scaled with the factor 5 • 10 12 . In the subject blind setup, we have used 20 subjects for training, 10 for validation, and 31 for testing. In the subject aware experiment setup, one session from each of the 10 subjects was used for validation and one session from each of the 31 subjects for testing, while the remaining sessions were used for training.

Implementation details

All models are implemented with the tensorflow library [START_REF] Abadi | [END_REF]. The loss function of all models is categorical cross entropy and they are trained using Adam optimizer [Kingma & Ba 2014].

In the experiments with motor task MEG data, the models are trained over 200 epochs with batch size 64 and an initial learning rate of 0.001. If the difference between validation classification accuracy averaged over two sequential blocks of three epochs is greater than 10 -4 , the learning rate is reduced by a factor of 0.9. Since the number of trials belonging to fixation/resting state is higher compared to the other four classes, at each epoch 1280 samples are randomly selected from each of the five classes over the entire training subset. In each epoch, there are 100 iterations.

The spatial component of the signals is transformed to the Fourier domain using the pseudo-inverse of the SH basis as in Eq. 8.7 obtained with a Laplace-Beltrami regularization as in Eq. 8.8 and a regularization weight λ = 0.001. The spatial component bandwidth B is varied between 6 and 12. This transformation reduces the spatial dimensionality from 248 channels to N B ∈ {49, 81, 121, 144} SH coefficients, for bandwidths B ∈ {6, 8, 10, 12}, respectively. The length of the temporal filters v k is 85 samples which correspond to approximately 0.5s. They are represented in terms of DCT coefficients as in Eq. 8.4. The maximum frequency of the DC basis elements used to represent the temporal filters is varied between F ∈ {10, 20, 30, 40} Hz. Pooling step used to select features as in Eq. 8.12 is M = 10.

In the experiments with mental workload EEG data, the models are trained over 100 epochs with a batch size of 64 and an initial learning rate of 0.0005. If the difference between validation classification accuracy averaged over two sequential blocks of three epochs is greater than 10 -4 , the learning rate is reduced by a factor of 0.9. As the classes in this dataset are balanced, the models are trained on the entire training dataset. As in the experiment with MEG data, the SH coefficients are estimated using a Laplace-Beltrami regularization with λ = 0.001. Due to a lower number of sensors and a lower signal-to-noise ratio, in the case of the EEG signals, the spatial component bandwidth is varied between 2 and 4. This transformation reduces the spatial dimensionality from 61 channels to N B ∈ {9, 16, 25} SH coefficients, for bandwidths B ∈ {2, 3, 4}, respectively. In this experiment, the length of the temporal filters v k is 42 samples which also corresponds to approximately 0.5s and the maximum frequency of the DC basis elements used to represent the temporal filters is varied between F ∈ {5, 10, 15} Hz. Pooling step used to select features as in Eq. 8.12 is M = 20.

To select the hyper-parameters of the models, namely the bandwidths B of the spatial patterns and the maximal frequency F of DC basis elements used to represent temporal patterns, and the number of rank-1 kernels K, we have firstly analysed validation curves. Figure 8.2 illustrates validation curves for subject blind and subject aware motor task MEG experiments, for a fixed number K = 50 of kernels and varying bandwidths B and maximal DC frequencies F . We can notice that in both experimental setups, and for all spatial bandwidths B, limiting F to 10 Hz results in a lower validation accuracy. This can be explained by the fact that µ waves, which are present in the motor cortex and are suppressed when a motor task is performed, have a frequency range of 8-12 Hz and therefore require DC basis elements of higher frequencies to be approximated. For F ≥ 10 Hz, we can observe that the validation curves corresponding to B = 6 are on average lower than the curves corresponding to B ≥ 6. This is more prominent in subject aware experimental set-up. This is a consequence of a higher inter-subject variability of the spatial components compared to the intra-subject one. The best model with the lowest number of parameters, in the subject blind experiment, is the model with B = 8 and F = 30. In the subject aware this is the model with B = 10 and F = 30. For the selected hyper-parameters B and F , we have further analyzed validation curves, when the number of rank-1 

Results and discussions

The results are compared quantitatively in terms of confusion matrices and classification accuracy. Given the importance of the model's speed and memory requirements for real-time applications with portable processors in BCI, the models are also compared in terms of the number of trainable parameters and the number of multiplications.

In Comparing the confusion matrices in both experiments, we can notice that our model with a higher number of parameters exhibits higher sensitivity to the left hand class. In the subject blind experiments, sensitivity is higher also with respect to the right hand movement, but lower for the left foot class. In the subject aware experiments, our model has higher sensitivity for the right foot class, while for the left foot class sensitivity of EEGNet is significantly higher than with other models. and in this contribution we have introduced an additional assumption that aims to reduce inter-session and inter-subject variabilities. Concretely, we have assumed that a head can be modeled with a sphere, thus the spatial components of the M/EEG signals can be represented in terms of SH basis. Such representation allows dimensionality reduction along the spatial dimension making the model more robust with respect to the inter-session and inter-subject variabilities. Furthermore, by exploiting the fact that a brain activity associated with a single source can be represented by a rank-1 spatio-temporal multivariate signal, we have used in our model rank-1 trainable weights. Since temporal courses of certain brain activities spread over certain frequency bandwidths and are distorted by noise, temporal kernels are regularized and represented in terms of discrete cosine basis elements of lower frequency. In the experiments conducted on the mental-workload EEG data and motor-task MEG data, we have shown that our models in comparison to the state-of-the-art CNNs can achieve comparable or better performance in terms of classification accuracy while requiring less trainable parameters and a lower number of multiplications making it more suitable for light portable devices. As the well justified regularization of the spatial and temporal learnable weights incorporated in shallow CNN leads us to the model of higher generalization power, our future work could focus on the subject-specific model design which is an important concept in BCI. Furthermore, although inter-subject and inter-session variabilities have been addressed via the representation of spatial weights in terms of low passed SH coefficients, an important problem that will be addressed in our future work is non-stationarity of the temporal brain courses.

Chapter 9

Conclusions and perspectives

In this thesis, we have investigated convolutional machine learning models tailored to the properties and well grounded assumptions about the examined structural and functional neuroimaging data, namely of the dMRI, EEG, and MEG signals.

Aiming to exploit a high learning capacity of the recent machine learning models, such as CNNs, while being aware of the common data limitations, such as high inter-subject and inter-session variabilities, low amount of data or their low resolution, low signal to noise ratio, etc, we have studied the models which are adapted to the domain and properties of the acquired data. This is achieved by endowing the models with certain prior knowledge about the data.

In the first part of this thesis, in Chapter 2, we have provided a brief overview of the functional and structural properties of the human brain which are relevant in the context of this thesis. Further, details related to the biophysical phenomena (diffusion of the water molecules in restricted spaces) and dMRI modality, which together allow probing of the microstructural characteristics of the neural tissues, are provided. In the same manner, for the functional neuroimaging, we have described neural activities occurring in the cerebral cortex which generate measurable EM fields, how these fields can be measured with EEG and MEG devices and which properties the signals acquired in such a way exhibit.

dMRI local modeling

In Chapter 3, firstly an overview of the traditional, biophysically inspired, approaches for dMRI local modeling is provided, namely dMRI PDFs and multicompartment microstructure models. The former ones are crucial for the white matter tractography [Basser et al. 2000] and the latter one showed potential in the analysis of neurodegenerative diseases [Panagiotaki et al. 2014, De Santis et al. 2017, Schneider et al. 2017, Broad et al. 2018]. This overview is followed with a detailed description of the most relevant DL approaches in the context of the local dMRI analysis, which has brought some progress in this area of research in terms of performance and/or computational efficiency.

Contributions in dMRI local modeling

As the models defined to estimate dMRI PDFs such as fODFs are required to be rotationally equivariant, the models designed to perform regression or classification [Cohen et al. 2018]. An extensive comparison of single voxel and 3D patch based DL approaches on the problem of NODDI and SMT parameter estimation has demonstrated the importance of incorporation of the information from the broader neighbourhood, where our 3D patch based Fourier domain CNN models can be seen as a solution which achieves a trade-off between accuracy, the required number of learnable parameters and computational time. Further, we have also shown that our models can be efficiently combined with a planar CNN to extract rotation invariant intra-voxel and contextual inter-voxel features for brain tissue segmentation, yielding promising results even with training on only a single subject.

Perspectives in dMRI local modeling

Although our studies have shown that incorporating prior knowledge about dMRI signals into CNN models has certain benefits, e.g. requires a lower number of parameters, for certain problems yields some performance improvement, or is more time efficient, there is still room to investigate the importance of such domain specific models. Since in dMRI, the real ground truth of the underlying microstructures can not be annotated by the medical experts, and synthetic data can be efficiently generated, it would be very beneficial to design a model able to learn from synthetic data and generalize well on the real data. , therefore in our future work, it would be interesting to study design of one such model for the application on the real data. Furthermore, although we have conducted several experiments on a low number of training scans, due to a high spatial resolution of HCP scans (single scan contains ∼ 800000 voxels) the amount of training voxels is rather high, therefore it would be interesting to investigate if the scans of lower spatial resolution could benefit more from spherical CNN models. The models endowed with prior knowledge might be also favourable for the analysis of dMRI signals acquired with different devices and different acquisition protocols. Finally, the models characterized with a higher generalization power could be advantageous for the analysis of dMRI scans of patients affected by neurodegenerative diseases, as they are less prone to overfitting to training data.

From the methodological point of view, many concepts could be investigated. Experiments conducted in Chapter 4, indicate that even if the model is not endowed with any or all available prior knowledge, with a high amount of data, missing knowledge can be inferred. Nevertheless, in our future work, we will investigate if imposing nonnegativity constraint on the estimated fODFs as in [Bouza et al. 2021, Elaldi et al. 2021], sparsity constraint as in [Elaldi et al. 2021] or enforcing fODF to integration to one can further improve performance of our model. Further in the context of Fourier domain CNNs presented in Chapter 5, although the Fourier domain nonlinearities of quadratic nature are rotationally equivariant, quadratic nonlinearities are rarely used in DL as their range is not stable, therefore some of the related perspective work could focus on defining more appropriate rotation equivariant nonlinearities, which can also be realized in the Fourier domain. Finally, to decrease computational expenses of the nonlinearities realized via the Clebsch-Gordan transform, one of the further steps could be the exploitation of the sparsity of the Clebsch-Gordan matrices.

EEG and MEG local analysis

In Chapter 6, firstly, a brief introduction to a multivariate EEG and MEG signal forward modeling is presented, where the measured signals are explained as a sum of rank-1 multivariate signals associated with the individual active brain sources and noise [START_REF] Hari | [END_REF][START_REF] Dupré La Tour | Multivariate convolutional sparse coding for electromagnetic brain signals[END_REF]. Each rank-1 signal corresponds to the outer product of the source's topographic map and the source's temporal course. Further, it is assumed that the temporal course associated with one source contains recurrent and transient characteristic waveforms, and therefore it is modeled as the convolution of sparse activation vectors and the characteristic waveform [van Ede et al. 2018[START_REF] Dupré La Tour | Multivariate convolutional sparse coding for electromagnetic brain signals[END_REF]. This is followed by an overview of the most relevant areas of research in the field of EEG and MEG inverse problems, such as source localization and separation, dictionary learning, and classification and regression problems. In the section state of the art, firstly, a more detailed description of the most prominent dictionary learning approaches with a focus on multivariate sparse convolutional dictionary learning is presented. At the end, an overview of the most important EEG and MEG classifiers, mainly developed for BCI applications, with a focus on the most relevant CNN models is presented.

Contributions in EEG and MEG local analysis

Motivated by the modeling of the multivariate EEG and MEG signals as introduced in Chapter 6 we have proposed two convolutional models, one unsupervised for the spatio-temporal dictionary learning and other supervised for the multivariate signal classification.

Inspired by the concepts from convolutional sparse autoencoders with tight weights, as well as with the convolutional dictionary learning approaches, in Chapter 7, we have studied a multivariate sparse convolutional dictionary learning approach with rank-1 spatio-temporal atoms with the activations constrained to be nonnegative as in [START_REF] Dupré La Tour | Multivariate convolutional sparse coding for electromagnetic brain signals[END_REF]] and penalized by an L 0 norm. Following the standard dictionary learning paradigm, the sparse activation vectors and the dictionaries are estimated alternatively. The sparse activation vectors are estimated in a greedy manner, iteratively and all at once in each iteration, via an approach inspired by the sparse autoencoders [Makhzani & Frey 2013, Makhzani & Frey 2014, Luo et al. 2017], IHT [Blumensath & Davies 2008] and MP [START_REF] Mallat | [END_REF] approaches. As in [START_REF] Dupré La Tour | Multivariate convolutional sparse coding for electromagnetic brain signals[END_REF], updates of the spatial and temporal dictionaries are performed independently, whereas in our model this is performed using adaptive moment estimation (Adam) optimizer [Kingma & Ba 2014], an optimizer most commonly used in DL. We have compared our model with MCSC [START_REF] Dupré La Tour | Multivariate convolutional sparse coding for electromagnetic brain signals[END_REF] quantitatively on synthetic data and qualitatively on MEG sensory-motor data. The results obtained on synthetic data showed that our approach yields lower reconstruction errors and atoms that better correlate with the ground truth, both on noiseless and noisy datasets, however, MCSC [START_REF] Dupré La Tour | Multivariate convolutional sparse coding for electromagnetic brain signals[END_REF] gives lower reconstruction error between ground truth and estimated activation vectors. The experiments conducted on the real MEG sensory-motor data showed that the dictionaries learned with our model are in accordance with the state-of-the-art MCSC [Dupré la Tour et al. 2018], while learned atoms are being less correlated. The qualitative analysis of the dictionaries containing only a single pair of atoms, which have been learnt from a single session, independently for several subjects from HCP MEG motor task dataset, suggests that the proposed approach is able to extract motor-task related patterns, which generalize well over an unseen session.

In Chapter 8, we have proposed a shallow rank-1 CNN for MEG and EEG multivariate signal classification. Its architecture is composed of three modules, present in the traditional BCI pipelines, namely feature extraction, feature selection and feature classification module. In order to reduce inter-subject and inter-session variabilities, an additional layer in the multivariate EEG and MEG signal modeling is added, where we have assumed that a head can be modeled with a sphere [Hämäläinen et al. 1993, Vatta et al. 2010] 

Perspectives in EEG and MEG local analysis

Although the qualitative inspection of the spatial and temporal atoms and corresponding activations obtained on the real MEG sensory-motor and motor task data, presented in Chapter7, suggest that our approach is capable to extract event related information, their properties could be further qualitatively and quantitatively evaluated in classification pipelines or the analysis of dynamic functional networks. In this context, it would be also interesting to investigate if dictionary learning from multiple sessions and/or subjects could yield more representative atoms, which can be employed on data of unseen subjects. Regularization of the spatial and temporal learnable weights incorporated in shallow CNN presented in Chapter 8 have led us to the model of higher generalization power, therefore an investigation of the subject-specific model design could be one of the perspectives. Furthermore, although inter-subject and inter-session have been addressed via representation of spatial weights in terms of the low passed SH coefficients, an important problem that will be addressed in our future work is the non-stationarity of the temporal brain courses.

Publications

Conference and workshop papers:

• Sara Sedlar, Théodore Papadopoulo, Rachid Deriche, Samuel Deslauriers-Gauthier. Diffusion MRI fiber orientation distribution function estimation using voxel-wise spherical U-net.

International MICCAI Workshop 2020 -Computational Diffusion MRI, Oct 2020, Lima, Peru In preparation for journal:

• Sara Sedlar, Théodore Papadopoulo, Rachid Deriche, Samuel Deslauriers-Gauthier. A spherical convolutional neural network for white matter structure imaging via dMRI.

• Sara Sedlar, Rachid Deriche, Samuel Deslauriers-Gauthier, Théodore Papadopoulo. Multivariate M/EEG spatio-temporal dictionary learning with L 0 constraint

• Sara Sedlar, Rachid Deriche, Théodore Papadopoulo. Shallow convolutional neural network with rank-1 Fourier domain weights for brain signal classification.

B g , their product is defined as [Kondor et al. 2018] where C l,q l ′ ,q ′ ,l ′′ ,q ′′ ∈ R is Clebsch-Gordan coefficient associated to complex SH basis elements, such that C l,q l ′ ,q ′ ,l ′′ ,q ′′ ̸ = 0 only when q ′ + q ′′ = q. If the Clebsch-Gordan coefficients are stored in a sparse matrix C l l ′ ,l ′′ ∈ R (2l ′ +1)(2l ′′ +1)×(2l+1) , Eq. A.20 can be written in a more elegant way as ĥl = l ′ ,l ′′ (2l ′ + 1)(2l ′′ + 1) 4π(2l + 1) C l,0 l ′ ,0,l ′′ ,0 C l l ′ ,l ′′ T fl ′ ⊗ ĝl ′′ s.t. |l ′ -l ′′ | ≤ l ≤ l ′ + l ′′ (A.21) where ĥk , fk , ĝk ∈ C 2k+1 are the vector with complex SH coefficients of degree k. In analogy, given two L 2 functions function f, g : S 2 → R of bandwidths B f and B g , their product is defined as and C l,q l ′ ,q ′ ,l ′′ ,q ′′ ∈ R is Clebsch-Gordan coefficient associated to real SH basis elements. If the Clebsch-Gordan coefficients are stored in a sparse matrix C l l ′ ,l ′′ ∈ MEDN hyperparameter selection for microstructure parameter estimation

h = [f × g] = B f l ′ =0 l ′ m ′ =-l ′ f m ′ l ′ Y m ′ l ′ Bg l ′′ =0 l ′′ m ′′ =-l ′′ ĝm ′′ l ′′ Y m ′′ l ′′ = B f l ′ =0 Bg l ′′ =0 l ′ +l ′′ l=|l ′ -l ′′ | l ′ m ′ =-l ′ l ′′ m ′′ =-l ′′ f m ′ l ′ ĝm ′′
h = [f × g] = B f l ′ =0 l ′ m ′ =-l ′ fm ′ ,l ′ Y m ′ ,l ′ Bg l ′′ =0 l ′′ m ′′ =-l ′′ ĝm ′′ ,l ′′ Y m ′′ ,l ′′ = B f l ′ =0 Bg l ′′ =0 l ′ +l ′′ l=|l ′ -l ′′ | l ′ m ′ =-l ′ l ′′ m ′′ =-l ′′
In this section, we provide details related to the hyperparameter selection for the MEDN model introduced by [START_REF] Ye | Estimation of tissue microstructure using a deep network inspired by a sparse reconstruction framework[END_REF]]. This model is strictly designed for NODDIparameter estimation. We have evaluated the models for a different number of iterations 6, 8, 10 used in the approximation of iterative hard thresholding, as described in Chapter 3, and for two different initial learning rates, 0.001 and 0.0001. For a comparison with other approaches, we have selected M escN et with lr = 0.0005, except for SMTparameter estimation trained on 3 subjects where the selected model is trained with lr = 0.0001.

To select the hyperparameters for MCSC, we have performed a grid search on four parameters. λ which controls the sparsity of the activations, ε is a stopping criterion (if the cost descent after an update of the dictionary and activations is smaller than ε). ε z tolerance of the solver for the estimation of the activations (locally greedy coordinate descent (LGCD) solver was used). ε D of the solver for the update of the dictionary (alternate adaptive solver was used). Experiments are repeated 10 times to select the hyperparameters. To perform a comparison with our approach, the experiments are repeated again 40 times for the best configuration of the parameters. The maximum number of iterations for all parameter configurations is 400. 

Figure 2 . 1 :

 21 Figure 2.1: An overview of the structural and functional properties of the CNS.

Figure 2

 2 Figure 2.2: An overview of the structural and functional properties of the PNS.

Figure 2 . 3 :

 23 Figure 2.3: Structure of a neuron.

Figure 2

 2 Figure 2.5: Illustrations of the optic (left) and the auditory (right) pathways.

  Figure 2.6: Illustrations of the short (a) and long (b) and (c) association fibers. The long fibers (b) include: the cingulum (red), the superior longitudinal fasciculus (green), and the uncinate fasciculus (blue). The long fibers (c) include: the vertical occipital fasciculus (red), the inferior fronto-occipital fasciculus (green), the inferior longitudinal fasciculus (blue), the arcuate fasciculus (yellow).

  Figure 2.8: Illustration of displacement of one particle in a medium: (a) without obstacles, (b) in a tube, and (c) in a tube junction

  Figure 2.9: Hydrogen proton spins: (a) with random orientations when there is no external field, (b) aligned with and against the external magnetic field B 0 , and (c) after receiving RF pulse B 1 at the Larmor frequency

  Figure 2.10: Illustration of the longitudinal and transverse net magnetization during the relaxation period. (Note that the axes in T 1 and T 2 are different. For T 1 the main magnetic field is oriented vertically, while for T 2 it points out of the paper plane.)

Figure 2 .

 2 Figure 2.13: Illustration of a spin echo sequence with diffusion weighting.

Figure 2 .

 2 Figure 2.16: Illustration of ion distribution in intra-and extraaxonal spaces during resting state.

  Figure 2.17: Illustrations of the dipole's electric field lines (a) and magnetic field lines (b).

  Figure 2.18: Illustrations of the magnetic field lines of the sources which can be approximated by a radial current dipole at the top of a gyrus (a) and at the bottom of a sulcus (b). (S denotes measuring sensor.)

Figure

  Figure 3.2: An illustration of fODFs generated using mrtrix [Tournier et al. 2019] (left) and an illustration of a tractogram (right). Image source: [Tournier et al. 2011].

Figure 3 . 3 :

 33 Figure 3.3: Illustration of NODDI compartments. Image source: [Tariq et al. 2016].

  Ψnkl * , in matrix notation we can write Ĝl = Fl Ψ * l , where Fl , Ψl , Ĝl ∈ C (2l+1)×(2l+1) are the RH coefficients of degree l of F (R), Ψ(R) and G(R), respectively. This is illustrated in Figure3.4 (b). The full derivation of the convolution between two SO(3) signals is given in Appendix A. As after the first convolutional layer, ReLU is applied in SO(3) domain after each convolutional layer.

  Figure 3.4: Illustration of convolutions in the spectral domain between a) two S 2 signals and b) two SO(3) signals.

Figure 3 . 5 :

 35 Figure 3.5: Illustration of the convolution between the signal f and a zonal kernel ψ, with the SH and ZH coefficients { fl } B l=0 and { ψl } B l=0 . For the visualization, the zonal kernel is presented as a diagonal matrix, whose entries corresponding to fl are equal to 4π 2l+1 ψl (see Eq. 3.11).
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 36 Figure 3.6: Illustration of a single layer of Clebsch-Gordan network. Image source: [Kondor et al. 2018].

Figure 3 . 7 :

 37 Figure 3.7: Illustration of the MEDN architecture. Image source: [Ye 2017].

Figure 3

 3 Figure 3.8: Illustration of MESCNet architecture at large scale. Image source: [Ye et al. 2019].

  Figure 3.9: Illustration of modified LSTM units used in the models MESC-Net [Ye et al. 2019] (a) and MESCNetSepDict [Ye et al. 2020] (b).Image sources:[Ye et al. 2019, Ye et al. 2020] 

Figure 3

 3 Figure 3.10: Illustration of the architecture of dMRI-CNN. Image source: [Banerjee et al. 2019].

Figure 3 .

 3 Figure 3.11: Illustration of the architecture of 3DCNN for fODF estimation (image source: [Lin et al. 2019]).

Figure 3 .

 3 Figure3.12: Illustration of the architecture of the rotationally equivariant U-net for fODF estimation. Image source:[Elaldi et al. 2021] 

  Figure 4.1: Illustration of a spherical U-net architecture with corresponding convolutional operations in contracting and expanding parts.

  4.3 indicates their robustness to noise and aliasing. The illustrations show that the Moore-Penrose and the least square with Tikhonov regularization (for λ = 0.1) are very sensitive to noise. The least square with the Laplace Beltrami regularization and the Gram-Schmidt orthonormalization process averaged over 1000 iterations perform stronger regularization of the SH coefficients of the highest degree and therefore are more robust with respect to the noise and aliasing.

Figure 4

 4 Figure 4.2: Illustrations of the orthogonality between the SH basis Y and inverted SH bases (Y † mp , Y † tikh with λ ∈ {1, 0.1}, Y † lb with λ ∈ {0.001, 0.0001} and Y † gs with N it ∈ {1000, 1}) for 30 randomly uniformly distributed points (28 SH basis elements in total).

Figure 4

 4 Figure 4.3: Illustrations of the orthogonality of the inverted SH bases (Y † mp , Y † tikh with λ ∈ {1, 0.1}, Y † lb with λ ∈ {0.001, 0.0001} and Y † gs with N it ∈ {1000, 1}) with themselves for 30 randomly uniformly distributed points (28 SH basis elements in total).

  {0, 2, ..., L} and j ∈ {1, 2, ..., J}. (4.3) By transforming the ZH coefficients of an antipodally symmetric zonal filter {w i,j l } L l=1 into a diagonal matrix and the SH coefficients of the antipodally sym-function estimation metric input and output S 2 signal {ŝ i l } L l=1 and {ĝ i,j l = ŝi l ŵi,j l } L l=1 , into vectors, convolution between them in the spectral domain, according to 4.3 can be illustrated as in Figure4.4.

Figure 4

 4 Figure 4.4: Illustration of convolution between an antipodally symmetric S 2 signal and a zonal filter in the spectral domain. For the visualization, the ZH coefficients of the zonal filter are presented as a diagonal matrix, with entries corresponding to ŝi l equal to ŵi,j l , and the SH coefficients of the input and output S 2 signals are represented as vectors.

  ]. Obtained {a j } J j=1 signals are transformed to spectral domain as âj = [Y † gs ] (L-2) a j , where [Y † gs ] (L-2) contains the inverted SH basis of the highest degree (L -2). This can be seen as low pass filtering. In planar CNNs one way to perform pooling is by averaging values of a small neighborhood as illustrated in Figure 4.5. Similarly, performed in the spectral domain, pooling corresponds to the discarding of the SH coefficients of the highest degree as illustrated in Figure 4.6.

Figure 4

 4 Figure 4.5: Illustration of average pooling in planar CNNs

Figure 4

 4 Figure 4.6: Illustration of the spectral domain pooling in spherical CNNs

  l i,j } L l=0 } I i=1 } J j=1 , and application of ReLU, as defined in Eqs. 4.3 and 4.4. For comparison, illustrations of a transposed convolution in a planar CNN and our model are given respectively in Figures 4.7 and 4.8. The obtained SH coefficients are transformed to the S 2 domain, where bias terms are added and ReLU non-linearities are applied. The resulting signals are concatenated with the signals of the same bandwidth, from the parallel layer in the contracting part of the U-net and serve as input to the following transposed convolution layer.

Figure 4

 4 Figure 4.7: Illustration of transposed convolution in planar CNNs.

Figure 4

 4 Figure 4.8: Illustration of transposed convolution in our spherical U-net.

Figure 4

 4 Figure 4.9: Comparison of the MSE averaged over 10 testing subjects for the real HCP dataset, Synthetic dataset 1 and Synthetic dataset 2 for different numbers of sampling points.

  Figure 4.10: Comparison of the MAE averaged over 10 testing subjects for real HCP dataset, Synthetic dataset 1 and Synthetic dataset 2 for different numbers of sampling points for voxels containing single fibers (a) and voxels containing two crossing fibers (b)

  Figure 5.1: Illustration of an S 2 signal s(r) (a), of a zonal kernel k(r) (b) and the S 2 signal [s * k](r) (c). All the signals are of bandwidth 16.

D

  lmn (R)ŝ lm kln(5.6) where R = R(θ, ϕ, ψ) ∈ SO(3) is a rotation matrix. ŝlq and klq are the real SH coefficients of degree l and order q of the functions s and k. D lmn : SO(3) → R is an element of the real Wigner-D matrix of degree l and orders m and n. If g(R) = [s * k](R), from Eq. 5.6, its Wigner-D, or here referred to as RH coefficients are defined as Ĝlmn = ŝlm kln , Ĝl = ŝl kT l , (5.7)

  Esteves et al. 2018]. Convolutions in the n th convolutional layer are defined as

Figure 5

 5 Figure 5.2: Architecture of the proposed model with zonal convolutional kernels and S 2 quadratic nonlinearities. The model is termed as F ourier_S 2 _zonal.

Figure 5

 5 Figure 5.3: Architecture of the proposed model with zonal convolutional kernels and S 2 quadratic nonlinearities. The model is termed as F ourier_S 2 _SO(3).

∼

  27) where ν gm , ν csf , ν wm are tissue fractions, ν b sf wm are axon bundle fractions and N b ∈ {1, 2, 3} is the number of axon bundles. pgm , pcsf ∈ R are the SH coefficients of PDFs of gray matter and CSF (these tissues are modeled as a sphere, thus they have only the SH coefficient of l = 0). psfwm b ∈ R N sh is the fODF of of white matter bundle b oriented along z axis. R b is the rotation matrix for bundle b. Vector c ∈ R N sh is a constant vector c = [ , ...] used in the convolution between response function rsfwm k and fODF psfwm b . To simulate white matter samples, we set ν wm = 1 and ν gm , ν csf ∼ |N (0, 0.05)|, to simulate gray matter ν gm = 1 and ν wm , ν csf ∼ |N (0, 0.05)| and to simulate CSF ν csf = 1 and ν wm , ν gm ∼ |N (0, 0.05)|. Axon bundle fractions are drawn from a uniform distribution where minimum ν b sf wm is 0.2. Realistic PDFs are drawn from random distributions pgm k

  the SH coefficients are converted to the signal domain they are distorted by a non-additive Rician noise of SN R = 20 and afterward normalized with mean b = 0 value and clipped to the range [0, 1]. Number of no diffusion weighted signals (b = 0) is 18.
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 54 Figure 5.4: Simulated fODFs and dMRI signals with arbitrary orientations of bundles. Background color corresponds to the number of bundles (black-zero bundles, dark gray -one bundle, light gray -two bundles, white -three bundles).

Figure 5 . 6 :

 56 Figure 5.6: Comparison of confusion matrices for the number of axon bundle classification problem, for db1 where axon bundles are arbitrarily oriented in all, train, validation, and test subsets, and the number of sampling points is 91 (S 2 CN N ) and 90 (F ourier_S 2 _zonal). SN R = 20.

Figure 5 . 7 :

 57 Figure 5.7: Comparison of confusion matrices for the number of axon bundle classification problem, for db2 where axon bundles are arbitrarily oriented in all, train, validation, and test subsets, and the number of sampling points is 57. SN R = 20.

Figure 5 . 8 :

 58 Figure 5.8: Comparison of confusion matrices for axon bundle classification problem, for db3 where the orientations of the axon bundles are restricted in train and validation subsets, and the number of sampling points is 57. SN R = 20.

  .14. Compared with 3D patch based models, F ourier_S 2 _SO(3)+ and F ourier_S2_zonal+ models exhibit lower mean absolute values for λ SMT parameter compared to MLP+, MescNet, and MescNet-SepDict, but higher for ν ext in comparison with MescNetSepDict as given in Figure 5.15. Qualitative comparisons of SMT parameter estimation for models trained on one subject are illustrated in Figures 5.16and 5.17. The comparison shows that the single voxel models highly overestimate ν ext in certain voxels of white matter in comparison with 3D patch based models. Qualitative comparison of the λ parameter estimation shows that our models F ourier_S 2 _SO(3)+ and F ourier_S2_zonal+ yield lower errors in the frontal brain regions, where white matter and gray matter meet, compared to other models.

Figure 5

 5 Figure 5.9: Comparison of the mean absolute errors for NODDI ν ic , ν iso and OD parameter estimation for a different number of training subjects for single voxel models.

Figure 5 .

 5 Figure 5.10: Comparison of the mean absolute errors for NODDI ν ic , ν iso parameter estimation for different number of training subjects for 3D patch based models. *MescNetSepDict for 3 subjects: testing performed on 49 subjects, due to memory issues

Figure 5 .

 5 Figure 5.12: Qualitative comparison of NODDI ν iso parameter estimation and the difference between the estimated and gold standard values. Training performed on one subject. Blue color indicates underestimation and red color overestimation.

Figure 5 .

 5 Figure 5.14: Comparison of the mean absolute errors for SMT ν ext and λ parameter estimation for single voxel models. Intrinsic diffusion coefficients λ are normalized to the range of [0, 1]. Blue color indicates underestimation and red color overestimation.

Figure 5 .

 5 Figure 5.15: Comparison of the mean absolute errors for SMT ν ext and λ parameter estimation for 3D patch based model. Intrinsic diffusion coefficients λ are normalized to the range of [0, 1]. *MescNet for 5 subjects: testing was performed on 93 subjects, due to memory issues. Blue color indicates underestimation and red color overestimation.

Figure 5 .

 5 Figure 5.16: Qualitative comparison of SMT ν ext parameter estimation and the difference between estimated and gold standard values. Training performed on one subject. Blue color indicates underestimation and red color overestimation.

Figure 5 .

 5 Figure 5.17: Qualitative comparison of SMT intrinsic diffusion coefficients λ normalized to the range [0, 1] and difference between estimated and gold standard values. Training performed on one subject. Blue color indicates underestimation and red color overestimation.

Figure 5 .

 5 Figure 5.18: Qualitative comparison of brain tissue segmentation into white matter, gray matter, and CSF with M LP + CN N and F ourier_S 2 _SO(3) + CN N for one training subject and 90 points per shell (1t, 90p) and for 30 training subjects and 60 points per shell (30t, 60p).

  Figure 6.2: Illustration of translation invariant multivariate dictionary learning paradigms: a) with multivariate atoms and univariate activations; b) with univariate atoms and multivariate rank-1 activations; c) with multivariate rank-1 atoms and univariate activations. Each row corresponds to a multivariate signal contribution associated with one atom.

Figure 6

 6 Figure 6.3: Illustration of convolution in a standard convolutional layer.

Figure 6

 6 Figure 6.4: Illustration of convolution in a separable convolutional layer.

Figure 6 . 5 :

 65 Figure 6.5: Illustration of convolution in a depthwise convolutional layer.

  which is, in addition, NP-hard due to the L 0 norm imposed on the sparse vectors. On the other hand, minimization with respect to {v k } K k=1 or {u k } K k=1 , while keeping the other two sets of variables fixed is a convex problem [Dupré la Tour et al. 2018].

Figure 7 . 1 :

 71 Figure 7.1: Illustration of the encoding and decoding procedures. Estimation of the sparse codes is performed iteratively, where in each encoding cycle at most one activation per source is estimated. After Q encoding cycles, the activations are linearly mapped to a reconstructed signal.

  the constraints ||u k || 2 = 1 or ||v k || 2 = 1 are non-convex, we have constrained the atoms to have norm lower than 1 + d, where d is a small constant. In [Dupré la Tour et al. 2018], the atoms are constrained to have a norm lower or equal to 1. The step defined in Eq. 7.12 is repeated Q times, ensuring that ||z k,Q n || 0 ≤ Q. An illustration of one encoding cycle is provided in Figure 7.2.

Figure 7

 7 Figure 7.2: Illustration of one encoding cycle with a model containing K = 2 pairs of spatial and temporal patterns. For simplicity, superscripts indicating iteration are removed.
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 73 Figure 7.3: Illustration of decoding with K = 2 pairs of spatial and temporal patterns.

  Figure 7.4: Illustration of active sources (a) and corresponding waveforms and topographic maps (b).Images generated using: MNE-python[Gramfort et al. 2013a] 

  Figure 7.6: Illustration of learning curves(a) and MSEs on training and test datasets(b) for different initialization strategies of learnable spatial and temporal atoms for 50 repetitions of the experiments. Gaussian distribution random initialization (left), constant initialization of temporal weights and initialization of spatial weights with values drawn from a continuous uniform distribution (middle), constant initialization of temporal weights, and initialization of spatial weights with values drawn from a discrete uniform distribution (right). In the bottom subfigures, different colors of bars, representing the pairs of training and testing MSE, correspond to different standard deviations of the weight initializations given in the corresponding top subfigures. In the bottom subfigures, for each pair of bars of the same color, the left one corresponds to training MSE and the right one to testing MSE.

Figure 7

 7 Figure 7.7: Illustration of MSEs on train and test on noiseless datasets for different values of the maximum number of activations during training Q ∈ {30, 40}, where test P = 40. In the right subfigure, different colors of bars, representing the pairs of training and testing MSE, correspond to different pairs of the parameters P and Q given in the corresponding left subfigure. In the right subfigure, for each pair of bars of the same color, the left one corresponds to training MSE and the right one to testing MSE.

Figure 7 . 8 :

 78 Figure 7.8: Illustration of MSEs on train and test on noisy datasets for different values of the maximum number of activations during training Q ∈ {10, 20}, and testing P ∈ {10, 40}. In the right subfigure, different colors of bars, representing the pairs of training and testing MSE, correspond to different pairs of the parameters P and Q given in the corresponding left subfigure. In the right subfigure, for each pair of bars of the same color, the left one corresponds to training MSE and the right one to testing MSE.
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 79 Figure 7.9: Comparison of MSEs between the ground truth and the reconstructed signals and MSEs between the ground truth and the estimated activation vectors on the noiseless data.

Figure 7 .

 7 Figure 7.10: Average and standard deviation of maximum absolute correlation between the ground truth and the estimated waveforms with MCSC (blue) and our method (orange) on noiseless data.

Figure 7 .

 7 Figure 7.14: Average and standard deviation of maximum absolute correlation between ground truth and estimated waveforms with MCSC (blue) and our (orange) methods on data distorted by Gaussian noise of standard deviation 0.1.

Figure 7 .

 7 Figure 7.18: Distribution of correlations between different rank-1 atoms obtained with MCSC and our method.

Figure 7 . 19 :

 719 Figure 7.19: Subject 104012 Illustration of estimated temporal patterns (first row), their power spectral density (second row), spatial patterns (third row), activations on training session averaged over epochs (fourth row) and activations on testing session averaged over epochs (fifth row) obtained with our method. Left hand (first column), left foot (second column), right hand (third column), right foot (fourth column) movements, fixation/resting (fifth column).

Figure 7 .

 7 Figure 7.20: Subject 105923 Illustration of estimated temporal patterns (first row), their power spectral density (second row), spatial patterns (third row), activations on training session averaged over epochs (fourth row) and activations on testing session averaged over epochs (fifth row) obtained with our method. Left hand (first column), left foot (second column), right hand (third column), right foot (fourth column) movements, fixation/resting (fifth column).

Figure 7 . 21 :

 721 Figure 7.21: Subject 106521 Illustration of estimated temporal patterns (first row), their power spectral density (second row), spatial patterns (third row), activations on training session averaged over epochs (fourth row) and activations on testing session averaged over epochs (fifth row) obtained with our method. Left hand (first column), left foot (second column), right hand (third column), right foot (fourth column) movements, fixation/resting (fifth column).

Figure 7 .

 7 Figure 7.22: Subject 108323 Illustration of estimated temporal patterns (first row), their power spectral density (second row), spatial patterns (third row), activations on training session averaged over epochs (fourth row) and activations on testing session averaged over epochs (fifth row) obtained with our method. Left hand (first column), left foot (second column), right hand (third column), right foot (fourth column) movements, fixation/resting (fifth column).

Figure 7 . 23 :

 723 Figure 7.23: Subject 109123 Illustration of estimated temporal patterns (first row), their power spectral density (second row), spatial patterns (third row), activations on training session averaged over epochs (fourth row) and activations on testing session averaged over epochs (fifth row) obtained with our method. Left hand (first column), left foot (second column), right hand (third column), right foot (fourth column) movements, fixation/resting (fifth column).

  In this work, we propose a shallow CNN with rank-1 spatial and temporal filters represented in the terms of SH and DC basis, respectively. The architecture of the model is illustrated in Figure8.1. As in a majority of the BCI classification pipelines[START_REF][END_REF], we can identify a feature extraction step, a feature selection, and a feature classification step. Although termed as convolutional, in reality, a CNN uses cross-correlation with trainable filters.

Figure 8 . 1 :

 81 Figure 8.1: Illustration of the shallow rank-1 CNN architecture

  Dŝ i +b ||e Dŝ i +b || 1 (8.14)whereD ∈ R Q×(K⌊ T -τ +1 M ⌋) and b ∈ R Q , with Q being the number of classes.8.2.4 TrainingDuring the training phase, trainable spatial and temporal patterns {û k , vk } K k=1 for the feature extraction, biases {b k } K k=1 used in the feature selection and the classification parameters D and b are updated via backpropagation by minimizing categorical cross-entropy loss defined as

Figure 8

 8 Figure 8.2: Validation classification accuracies for the motor task MEG classification problem for fixed number of rank-1 kernels K = 50 and different spatial and temporal kernel bandwidths B and F , and corresponding number of trainable parameters.

Figure 8 . 5 :

 85 Figure 8.5: Validation classification accuracies for mental workload EEG classification problem for different number of kernels K and their fixed spatial and temporal bandwidths L and F , and corresponding number of trainable parameters.

  Figures 8.6 and 8.7 confusion matrices are given for the subject blind and subject aware MEG motor task experiments averaged over five repetitions of the experiments. We can observe, that apart from the fixation class, all models have a high sensitivity (true positive rate) with respect to the right hand movement class. On the other side, classification of the right foot movements appears to be the most challenging one and they are mostly misclassified into the left foot and the right hand classes. Compared with the subject blind training, subject aware training most significantly impacts the classification of the right foot movements by reducing misclassifications into the right hand and the fixation classes, while the misclassification into the left foot class still remains. The subject aware training also significantly improves the classification of the left hand movements by reducing the misclassifications into the left foot, the right hand, and the fixation classes.

Figure 8 . 6 :

 86 Figure 8.6: Confusion matrices for DeepConvNet, ShallowConvNet, EEGNet, Our(small) and Our(large) models obtained in MEG motor task the subject blind experiments averaged over five experiment repetitions.

Figure 8 . 8 :

 88 Figure 8.8: Comparison of classification accuracy on test and validation data with respect to the number of trainable parameters and the number of multiplications for the MEG motor task subject blind and subject aware experiments.

Figure 8 . 9 :

 89 Figure 8.9: Confusion matrices for DeepConvNet, ShallowConvNet, EEGNet and Our models obtained in EEG mental workload task subject blind experiments averaged over five experiment repetitions and over three random splits of the dataset.

Figure 8 .

 8 Figure 8.10: Confusion matrices for DeepConvNet, ShallowConvNet, EEGNet and Our models obtained in EEG mental workload task subject aware experiments averaged over five experiment repetitions and over three random splits of the dataset.

  The generalization power of our spherical U-net model for fODF estimation has been proven to a certain extent in Diffusion Simulated Connectivity (DiSCo) Challenge[START_REF] Rafael-Patino | [END_REF], where the model has been trained on the synthetic data generated by dmipy[Fick et al. 2019] and tested on the phantom data generated via Monte-Carlo diffusion simulations[START_REF] Rafael-Patino | [END_REF]
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  Illustrations of the validation losses for NODDIparameter estimation and the corresponding number of trainable parameters, for the experiments with the number of training subjects 1, 3, 5 are provided in Figure B.3 and for 10, 15, 30 training subjects in Figure B.4. According to the validation curves, we have observed that the model sometimes experiences instabilities with higher learning rates, thus the update of trainable weights stops.

Figure B. 3 :

 3 Figure B.3: Validation losses for NODDIparameter estimation, illustrated within a range [0.0075, 0.01] (left), without rage limit to illustrate instabilities (middle) and the corresponding number of trainable parameters (right) for the number of training subjects 1, 3, 5.

Figure B. 9 :

 9 Figure B.9: Validation losses for NODDI(left) and SMT(middle) parameter estimation and the corresponding number of trainable parameters (right) for the number of training subjects 1, 3, 5.

  The MSE and standard deviations for different parameters are given in Tables C.1, C.2, C.3, C.4 and C.5.

λ

  3: ε = 10 -8 , ε D = 10 -8 ε z = 10 -5 , ε D = 10 -8 λ = 0.5, ε = 10 -9 λ = 0.5, ε = 10 -7 λ = 0.8, ε = 10 -9 λ = 0.8, ε = 10 -ε z = 10 -5 , ε = 10 -7 λ = 0.5, ε D = 10 -9 λ = 0.5, ε D = 10

Figure C. 2 :

 2 Figure C.2: Subject 105923 Illustration of estimated temporal patterns (I row), their power spectral density (II row), spatial patterns (III row), activations on the training session (IV row), and activations on the testing session (V row) obtained with our method. Left hand (I column), left foot (II column), right hand (III column), right foot (IV column) movements, fixation/resting (V column).

Figure C. 3 :

 3 Figure C.3: Subject 106521 Illustration of estimated temporal patterns (I row), their power spectral density (II row), spatial patterns (III row), activations on the training session (IV row), and activations on the testing session (V row) obtained with our method. Left hand (I column), left foot (II column), right hand (III column), right foot (IV column) movements, fixation/resting (V column).

Figure C. 4 :

 4 Figure C.4: Subject 108323 Illustration of estimated temporal patterns (I row), their power spectral density (II row), spatial patterns (III row), activations on the training session (IV row), and activations on the testing session (V row) obtained with our method. Left hand (I column), left foot (II column), right hand (III column), right foot (IV column) movements, fixation/resting (V column).

Figure C. 5 :

 5 Figure C.5: Subject 109123 Illustration of estimated temporal patterns (I row), their power spectral density (II row), spatial patterns (III row), activations on the training session (IV row), and activations on the testing session (V row) obtained with our method. Left hand (I column), left foot (II column), right hand (III column), right foot (IV column) movements, fixation/resting (V column).

Figure C. 6 :

 6 Figure C.6: Subject 104012 Illustration of estimated temporal patterns (I row), their power spectral density (II row), spatial patterns (III row), activations on the training session (IV row), and activations on the testing session (V row) obtained with our method. Left hand (I column), left foot (II column), right hand (III column), right foot (IV column) movements, fixation/resting (V column).

Figure C. 7 :

 7 Figure C.7: Subject 105923 Illustration of estimated temporal patterns (I row), their power spectral density (II row), spatial patterns (III row), activations on the training session (IV row), and activations on the testing session (V row) obtained with our method. Left hand (I column), left foot (II column), right hand (III column), right foot (IV column) movements, fixation/resting (V column).

Figure C. 8 :

 8 Figure C.8: Subject 106521 Illustration of estimated temporal patterns (I row), their power spectral density (II row), spatial patterns (III row), activations on the training session (IV row), and activations on the testing session (V row) obtained with our method. Left hand (I column), left foot (II column), right hand (III column), right foot (IV column) movements, fixation/resting (V column).

Figure C. 9 :

 9 Figure C.9: Subject 108323 Illustration of estimated temporal patterns (I row), their power spectral density (II row), spatial patterns (III row), activations on the training session (IV row), and activations on the testing session (V row) obtained with our method. Left hand (I column), left foot (II column), right hand (III column), right foot (IV column) movements, fixation/resting (V column).

Figure C. 10 :

 10 Figure C.10: Subject 109123 Illustration of estimated temporal patterns (I row), their power spectral density (II row), spatial patterns (III row), activations on the training session (IV row), and activations on the testing session (V row) obtained with our method. Left hand (I column), left foot (II column), right hand (III column), right foot (IV column) movements, fixation/resting (V column).

Figure C. 12 :

 12 Figure C.12: Subject 104012, Left foot Illustration of estimated temporal patterns (I row), their power spectral density (II row), spatial patterns (III row), activations on the training session (IV row), and activations on the testing session (V row) obtained with our method. Each column corresponds to a different atom.

Figure C. 13 :

 13 Figure C.13: Subject 104012, Right hand Illustration of estimated temporal patterns (I row), their power spectral density (II row), spatial patterns (III row), activations on the training session (IV row), and activations on the testing session (V row) obtained with our method. Each column corresponds to a different atom.

Figure C. 14 :

 14 Figure C.14: Subject 104012, Right foot Illustration of estimated temporal patterns (I row), their power spectral density (II row), spatial patterns (III row), activations on the training session (IV row), and activations on the testing session (V row) obtained with our method. Each column corresponds to a different atom.

Figure C. 15 :

 15 Figure C.15: Subject 104012, Fixation Illustration of estimated temporal patterns (I row), their power spectral density (II row), spatial patterns (III row), activations on the training session (IV row), and activations on the testing session (V row) obtained with our method. Each column corresponds to a different atom.

Figure C. 16 :

 16 Figure C.16: Subject 105923, Left hand Illustration of estimated temporal patterns (I row), their power spectral density (II row), spatial patterns (III row), activations on the training session (IV row), and activations on the testing session (V row) obtained with our method. Each column corresponds to a different atom.

Figure C. 17 :

 17 Figure C.17: Subject 105923, Left foot Illustration of estimated temporal patterns (I row), their power spectral density (II row), spatial patterns (III row), activations on the training session (IV row), and activations on the testing session (V row) obtained with our method. Each column corresponds to a different atom.

Figure C. 18 :

 18 Figure C.18: Subject 105923, Right hand Illustration of estimated temporal patterns (I row), their power spectral density (II row), spatial patterns (III row), activations on the training session (IV row), and activations on the testing session (V row) obtained with our method. Each column corresponds to a different atom.

Figure C. 19 :

 19 Figure C.19: Subject 105923, Right foot Illustration of estimated temporal patterns (I row), their power spectral density (II row), spatial patterns (III row), activations on the training session (IV row), and activations on the testing session (V row) obtained with our method. Each column corresponds to a different atom.

Figure C. 20 :

 20 Figure C.20: Subject 105923, Fixation Illustration of estimated temporal patterns (I row), their power spectral density (II row), spatial patterns (III row), activations on the training session (IV row), and activations on the testing session (V row) obtained with our method. Each column corresponds to a different atom.

Figure C. 21 :

 21 Figure C.21: Subject 106521, Left hand Illustration of estimated temporal patterns (I row), their power spectral density (II row), spatial patterns (III row), activations on the training session (IV row), and activations on the testing session (V row) obtained with our method. Each column corresponds to a different atom.

Figure C. 24 :

 24 Figure C.24: Subject 106521, Right foot Illustration of estimated temporal patterns (I row), their power spectral density (II row), spatial patterns (III row), activations on the training session (IV row), and activations on the testing session (V row) obtained with our method. Each column corresponds to a different atom.

Figure C. 25 :

 25 Figure C.25: Subject 106521, Fixation Illustration of estimated temporal patterns (I row), their power spectral density (II row), spatial patterns (III row), activations on the training session (IV row), and activations on the testing session (V row) obtained with our method. Each column corresponds to a different atom.

Figure C. 28 :

 28 Figure C.28: Subject 108323, Right hand Illustration of estimated temporal patterns (I row), their power spectral density (II row), spatial patterns (III row), activations on the training session (IV row), and activations on the testing session (V row) obtained with our method. Each column corresponds to a different atom.

Figure C. 29 :

 29 Figure C.29: Subject 108323, Right foot Illustration of estimated temporal patterns (I row), their power spectral density (II row), spatial patterns (III row), activations on the training session (IV row), and activations on the testing session (V row) obtained with our method. Each column corresponds to a different atom.

Figure C. 32 :

 32 Figure C.32: Subject 109123, Left foot Illustration of estimated temporal patterns (I row), their power spectral density (II row), spatial patterns (III row), activations on the training session (IV row), and activations on the testing session (V row) obtained with our method. Each column corresponds to a different atom.

Figure C. 33 :

 33 Figure C.33: Subject 109123, Right hand Illustration of estimated temporal patterns (I row), their power spectral density (II row), spatial patterns (III row), activations on the training session (IV row), and activations on the testing session (V row) obtained with our method. Each column corresponds to a different atom.

Figure D. 2 :

 2 Figure D.2: DeepConvNet validation classification accuracy for subject blind training (left) and subject aware training (right) for motor task MEG classification problem for different K, and fixed lengths of temporal kernels k L and pooling sizes p.

Figure D. 3 :

 3 Figure D.3: DeepConvNet validation classification accuracy for subject blind training and subject aware training for mental workload EEG classification problem. Learning rate 0.0005

Figure D. 6 :

 6 Figure D.6: ShallowConvNet validation classification accuracy for subject blind training (left) and subject aware training (right) for motor task MEG classification problem.

Figure D. 7 :

 7 Figure D.7: ShallowConvNet validation classification accuracy for subject blind training (left) and subject aware training (right) for motor task MEG classification problem.

Figure D. 8 :

 8 Figure D.8: ShallowConvNet validation classification accuracy for subject blind training and subject aware training for mental workload EEG classification problem. Learning rate 0.0001

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  Human brain structure and function . . . . . . . . . . . . . . 6 2.1.1 Structure and function of neurons . . . . . . . . . . . . . . . 7 2.1.2 Gray matter . . . . . . . . . . . . . . . . . . . . . . . . . . .

	Chapter 2
	Background
	Contents
	2.1

8 2.1.3 White matter . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 Structural and functional brain imaging techniques . . . . . 14 2.2.1 Diffusion MRI . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.1.1 Free and restricted diffusion of water molecules . . . 16 2.2.1.2 Magnetic Resonance Imaging (MRI) . . . . . . . . . 16 2.2.1.3 Diffusion weighted MRI . . . . . . . . . . . . . . . . 22 2.2.2 Magnetoencephalography and electroencephalography . . . . 25 2.2.2.1 Neural electrical potentials . . . . . . . . . . . . . . 25 2.2.2.2 Modeling of electro-magnetic (EM) fields of neural currents in cortex . . . . . . . . . . . . . . . . . . . 27 2.2.2.3 Electroencephalography . . . . . . . . . . . . . . . . 30 2.2.2.4 Magnetoencephalography . . . . . . . . . . . . . . . 31 2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Table 2

 2 
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 2 2: Integral formulae of Maxwell's equations.

  ]. In contrast to the firstly introduced CNNs which have a contracting architecture[START_REF] O'shea & Nash ; Keiron | An introduction to convolutional neural networks[END_REF], a U-net architecture is composed of contracting and expanding parts, which allow it to produce high resolution outputs, instead of pixel-wise (low resolution). It is a type of fully convolutional network introduced in[Long et al. 2015]. Whereas the contracting part of the U-net enables learning of relevant features at different scales, expanding part which contains upsampling operations, instead of pooling, enables propagation of contextual information from the layers of lower to the layers of higher bandwidth[START_REF] Ronneberger | Unet: Convolutional networks for biomedical image segmentation[END_REF]. High resolution compared to the pixel-wise segmentation adds a regularization, as the loss is computed over larger areas, not just one pixel, thus the model requires fewer training samples. At the same time, it is faster.

  To estimate the SH coefficients of the input and intermediate S 2 signals (feature maps), the SH basis Y is inverted using the Gram-Schmidt orthonormalization process. The inverted basis is denoted with Y † gs . If y i and y gs i correspond to i th columns of Y and Y †

	gs	T , respectively, y gs i are determined as	
		y gs i = y i -	i-1 j=0	⟨y i , y gs j ⟩ ⟨y gs j , y gs j ⟩	y gs j , y gs i =	y gs i ||y gs i || 2	(4.1)

Table 4 .

 4 1: Sizes of the trainable parameters of the 3DCNN and S 2 U -nets (MB) for N p sampling points. U -net3×3×3 15.80 15.80 15.80 19.42 20.60 20.60 hood of size N nb = 3 (termed as S 2 U -net 3×3×3 ), which is also the case with the 3DCNN model. MSMT-CSD takes as input dMRI signals from a single voxel. In addition, to investigate the generalization potential of our model, we have trained one more 3D patch based model with a significantly lower number of trainable parameters -termed as S 2 U -net 3×3×3 s . Sizes of the trainable parameters of the DL networks are given in Table4.1. All DL approaches are implemented with the tensorflow library

	Model / N p	20	30	40	60	90	120
	3DCN N	18.12 18.12 18.12 18.96 20.18 20.18
	S 2 U -net 1×1×1 15.65 15.65 15.65 19.30 20.52 20.52
	S 2 U -net 3×3×3 s	3.99	3.99	3.99	4.89	5.17	5.17
	S 2						

  Finally, as the fODFs are rotationally equivariant to dMRI signals, in an ideal scenario one would like to create a model which contains rotationally equivariant layers. We remark that in our spherical U-net, the estimation of the SH coefficients of the input signals and all intermediate feature maps is not rotationally equivariant due to the random-uniform distribution of the sampling points and noise. Another operation that distorts rotation equivariance is ReLU non-linearity applied in the signal domain which can introduce aliasing. To tackle the former problem, in the following chapter we have investigated Fourier domain spherical net designed for dMRI regression and classification which contains rotation equivariant non-linearities realized in the Fourier domain. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
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  use signal domain nonlinearities. A drawback of the spectral domain nonlinearity of quadratic nature, introduced in[Kondor et al. 2018], is its quadratic increase of the output channels, consequently requiring a higher number of trainable parameters compared to the other models[Cohen et al. 2018, Esteves et al. 2018]. The first rotation equivariant CNN adapted to the properties of dMRI data, with signal domain nonlinearities, has been introduced in[Banerjee et al. 2019], as a part of the model used in Parkinson's disease classification (detailed description in Chapter 3).

Table 5 .

 5 1: Overview of the synthetic databases.Comparing models include S 2 CN N[Cohen et al. 2018].

  ]. CN N Our S 2 CN N Our S 2 CN N Our

	Database	db 1		db 2		db 3	
	Model S 2 Grid type	DH	Q	DH	Q	DH	Q
	No. of points	91	90	57	57	57	57
	Bundle orientations	arbitrary	arbitrary	restricted

fODFs dMRI, b=1000 s/mm 2 dMRI, b=2000 s/mm 2 dMRI, b=3000 s/mm 2

Table 5 .

 5 2: Dice scores for brain tissue segmentation obtained with M LP + CN N and F ourier_S 2 _SO(3) + CN N for 90 points per shell and 1, 30 and 70 subjects.

	Model | Tissue	Gray matter	Cerebrospinal fluid	White matter
	MLP (1)	0.859 ±0.017	0.805 ±0.023	0.885 ±0.018
	Ours (1)	0.871 ±0.015	0.804 ±0.022	0.903 ±0.015
	MLP (30)	0.896 ±0.010	0.835 ±0.019	0.922 ±0.010
	Ours (30)	0.903 ±0.009	0.840 ±0.019	0.930 ±0.009
	MLP (70)	0.900 ±0.008	0.836 ±0.018	0.927 ±0.009
	Ours (70)	0.905 ±0.008	0.843 ±0.018	0.931 ±0.009

Table 5

 5 

	Model | Tissue Gray matter Cerebrospinal fluid White matter
	MLP (30)	0.896 ±0.009	0.834 ±0.019	0.923 ±0.010
	Ours (30)	0.904 ±0.009	0.838 ±0.019	0.930 ±0.010
	MLP (70)	0.899 ±0.008	0.837 ±0.019	0.926 ±0.009
	Ours (70)	0.906 ±0.008	0.843 ±0.018	0.932 ±0.008

.3: Dice scores for brain tissue segmentation obtained with M LP + CN N and F ourier_S 2 _SO(3) + CN N for 60 points per shell and 30 and 70 subjects.

  These models are particularly impor-tant in active and passive BCI systems[START_REF][END_REF], Lotte & Roy 2019]. In the context of active BCI, classifiers are necessary in the process of translation of relevant brain activity into a command given to a computer[Allison et al. 2007]. More recent, passive BCI systems use classifiers or regression models to assess the mental workload, emotional state, drowsiness, and alertness of the users[Zander & Kothe 2011, Aricò et al. 2018]. Classification and regression problems are addressed by machine learning algorithms trained in a supervised manner. They can be applied directly on raw or preprocessed EEG and MEG signals, but also on extracted features. Recently, a detailed review of the classifiers used in BCI, categorized into adaptive, matrix and tensor, transfer and deep learning, and miscellaneous classifiers has been provided in[Lotte et al. 2018]. Although significantly fewer studies have addressed the regression problems[START_REF] Antelis | [END_REF], Wu et al. 2016a], the majority of the classification models can be simply transformed into regression ones.

  -1 M/EEG waveform and spatial pattern learning with L 0 constraint
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  Thus, the extraction of the relevant temporal waveforms and spatial patterns from M/EEG signals is of interest in active and passive BCI, in the analysis of dynamic brain networks, and for a better understanding of brain disorders. As presented in Chapter 6, assuming that the waveforms are of a transient and recurrent nature [van Ede et al. 2018], M/EEG signal X ∈ R C×T measured over C channels and T time instants can be modeled as a sum of rank-1 multivariate signals and additive noise N [Dupré la Tour et al. 2018] as:
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	.1: Number of multiplications per different steps of the entire classification
	process for one input sample.	
	Operation	Number of multiplications
	Spatial Fourier transform Eq. 8.7	

Table 8 .

 8 st run 2 nd run 3 rd run 4 th run 5 th run the number of parameters and the number of multiplications required for the classification of one data sample. The number of multiplications only counts multiplications in convolutional and batch normalization layers (not multiplications required in nonlinear layers). Since for the models that are selected as the best ones, based on validation accuracy of one run of the experiments, model training is repeated four more times, for these models we have provided average accuracy (depicted with full circles) and accuracy for each experiment run (depicted with vertical dash lines). Firstly, we can observe that in the subject blind experi-ments, our model achieves a high classification accuracy with a significantly lower number of trainable parameters than DeepConvNet and ShallowConvNet, and with a comparable number of parameters for EEGNet. In the subject aware training, differences in classification accuracy between our models and EEGNet models are less significant for a comparable number of parameters. When comparing the number of multiplications, we can notice that all comparing models require at least 10 times more multiplications to achieve accuracy comparable to the one obtained with our models. The reason for such a high number of multiplications in DeepConvNet, Shal-lowConvNet and EEGNet lies in the way the first convolutional layer with separable and depthwise correlations is defined. Assuming K temporal filters and N channels of an input MEG signal, these models perform a correlation of each channel with each temporal filter. This means that for a filter of length τ and MEG signal length T , there are N × K × (T -τ + 1) × τ multiplications. Further, in DeepConvNet and ShallowConvNet, for each of the K temporal filters, there are K spatial filters of length N , so the number of multiplication is N × K × (T -τ + 1) × K. On the other side, for EEGNet, for each one of the K temporal filters, there are D spatial filters, thus the number of multiplications is N × K × (T -τ + 1) × D. On the other hand, in our model, assuming a spatial bandwidth of L, to transform the spatial component of the input MEG signal to Fourier domain the number of multiplications is (L + 1) , we have quantitatively compared results on the problem of EEG mental workload classification. In Figures 8.9 and 8.10, confusion matrices are provided for the subject blind and the subject aware experiments averaged over three random splits of the entire dataset and five repetitions for each of the split. In both experiments, we can observe that models exhibit high sensitivity to the Easy class. In the subject blind experiment, we can see that our model misclassifies Easy samples mostly in Medium class, while the other models tend to misclassify them into Difficult class. It has the highest sensitivity with respect to the Medium class, but the lowest to the Difficult class, with a difference that the majority of misclassified samples are classified in Medium class in contrast to DeepConvNet and EEGNet. In the subject aware experiments, our model has the highest sensitivity with respect to the Easy class, while the sensitivity is noticeably lower for Medium class compared to ShallowConvNet. In Tables 8.4 and 8.5, classification accuracy is compared for the subject blind and subject aware EEG mental workload experiments for five repetitions of the experiments averaged over three dataset splits. In subject blind experiment, we can observe that classification accuracies of ShallowConvNet and Our model are comparable and slightly better than ones obtained with DeepConvNet and EEGNet. On the other hand, the differences between ShallowConvNet and Our

	DeepConvNet	0.576	0.576	0.573	0.575	0.573
	ShallowConvNet	0.576	0.578	0.575	0.575	0.576
	EEGNet	0.560	0.567	0.561	0.566	0.569
	Our (small)	0.585	0.574	0.578	0.579	0.580
	Our (large)	0.595	0.593	0.590	0.588	0.596
	Table 8.3: Classification accuracy for DeepConvNet, ShallowConvNet, EEGNet,
	Our(small) and Our(large) models obtained in MEG motor task subject aware ex-
	periments for five experiment repetitions. Chance level is ∼ 0.25	
	Experiment			subject aware		
	Model 1 DeepConvNet 0.684	0.686	0.682	0.680	0.684
	ShallowConvNet	0.678	0.674	0.669	0.672	0.671
	EEGNet	0.677	0.678	0.678	0.678	0.683
	Our (small)	0.651	0.652	0.656	0.656	0.658
	Our (large)	0.693	0.690	0.689	0.691	0.692
	validation data versus					

2: Classification accuracy for DeepConvNet, ShallowConvNet, EEGNet, Our(small) and Our(large) models obtained in the MEG motor task subject blind experiments for five experiment repetitions. Chance level is ∼ 0.25 Experiment subject blind Model 1 st run 2 nd run 3 rd run 4 th run 5 th run 2 × T × N . Contrary to the other models, we first perform spatial correlations with K spatial filters which require (L + 1) 2 × T × K multiplications. To transform the temporal filters from DC coefficients of maximal frequency F to signal domain K × F × τ multiplications are required. For each one of the K spatial filters, there is one temporal filter, thus the number of multiplications required for correlations is K × (T -τ + 1) × τ . Furthermore

Table 8 .

 8 In this chapter, a shallow CNN model for multivariate EEG and MEG signals classification is presented. Although it can be considered as an approach from DL family of approaches, its architecture is rather shallow and follows the traditional pipeline of the BCI classifiers, where we can distinguish a module for feature extraction, feature selection and feature classification. As introduced in Chapter 6, multivariate Table 8.5: Classification accuracy for DeepConvNet, ShallowConvNet, EEGNet and Our models obtained in EEG mental workload task subject aware experiments for five experiment repetitions averaged over three random splits of data. Chance level is ∼ 0.33 Experiment subject aware Model 1 st run 2 nd run 3 rd run 4 th run 5 th run EEG signals can be represented as a sum of rank-1 signals and noise. Assuming the transience and recurrence of the characteristic temporal waveforms within the temporal course of one source, one such course can be modeled as a convolution between sparse activation vectors and characteristic waveform. If the waveforms appear with the same polarity, sparse vectors are nonnegative. All these concepts of forward M/EEG modeling have been used in dictionary learning presented in Chapter 7

	DeepConvNet	0.510	0.496	0.512	0.504	0.502
	ShallowConvNet 0.520	0.520	0.522	0.510	0.531
	EEGNet	0.494	0.504	0.508	0.508	0.516
	Our	0.518	0.508	0.514	0.513	0.517
	8.5 Conclusion					

4: Classification accuracy for DeepConvNet, ShallowConvNet, EEGNet and Our models obtained in EEG mental workload task subject blind experiments for five experiment repetitions averaged over three random splits of data. Chance level is ∼ 0.33 Experiment subject blind Model 1 st run 2 nd run 3 rd run 4 th run 5 th run

  tasks from dMRI signals, such as microstructure estimation or brain tissue segmentation should be rotationally invariant. Motivated by the rotation equivariance of the Fourier domain convolutions in spherical CNNs introduced in[Cohen et al. 2018] and[Esteves et al. 2018], we have proposed two models for dMRI local analysis, for the signals acquired on a reduced sampling grid, which is clinically more desirable. They take into account the real and the spherical nature of dMRI signals, their antipodal symmetry, and the uniform-random distribution of the sampling points on the q-space shells[Caruyer et al. 2013]. The first model, termed as spherical U-net, with zonal convolutional kernels as in[Esteves et al. 2018], presented in Chapter 4, has been designed for the fODF estimation from multi-shell dMRI signals of a single voxel or a 3D patch. The models are compared with the state-of-the-art single voxel based MSMT-CSD[Jeurissen et al. 2014] and a DL patch based 3DCN N[Lin et al. 2019] both on the real and synthetic data in terms of MSE between fODFs and MAE between the fODF peaks. The results showed that our models are able to successfully incorporate neighboring information and in such a way boost the model's performance, yielding the lowest reconstruction errors regardless of the number of sampling points, where more important improvements are achieved for dMRI signals acquired over low numbers of sampling points (≤ 40) when compared to the single voxel based models. Comparison in terms of MAE showed that 3D patch based spherical U-nets bring notable improvement in the voxels containing two populations of axon fibers, while some improvements in the voxels with single fibers are present only on the synthetic data, indicating their robustness with respect to noise. Finally, the results showed that 3D patch based spherical U-net with ∼ 4 times fewer parameters gives an almost equal performance as the large model, both in terms of MSE and MAE, indicating a high generalization power the spherical U-net. As the ReLU nonlinearity applied in the signal domain as in[Cohen et al. 2018, Esteves et al. 2018] might introduce aliasing and therefore decrease rotation equivariance of the model, the authors in[Kondor et al. 2018] proposed rotationequivariant Fourier domain nonlinearity of quadratic nature realized via the Clebsch-Gordan transform. Motivated by this, in Chapter 5, we have proposed our second contribution in the domain of dMRI local analysis, namely Fourier domain spherical CNNs to tackle the regression problem of microstructure parameter estimation and classification problem of the brain tissue segmentation. We have designed a model with zonal convolutional kernels as in[Esteves et al. 2018] and a model with S 2 and SO(3) convolutional kernels as in[Cohen et al. 2018], with the channel-wise S 2 and SO(3) quadratic nonlinearities, respectively, both realized in the Fourier domain via Clebsch-Gordan transform, inspired by the work of[Kondor et al. 2018]. Since the classification and regression models should be rotation invariant, we have used in our models rotation invariant degree-wise power spectrum features as input to a fully connected network that performs the final inference. As for spherical U-net, introduced in Chapter 4, we have designed both single voxel and 3D patch based Fourier domain spherical CNNs. The experiments conducted on the synthetic data, tackling the problem of the axon bundle count, demonstrated the robustness and ro-tation invariance of our models with respect to the aliasing and noise in comparison to the spherical CNN proposed by

  , which allowed us to represent the spatial component of the EEG and MEG multivariate signals in terms of spherical harmonic basis. Following the forward modeling, learnable weights in the proposed model are of rank-1. Learnable spatial patterns are represented in terms of SH basis elements, where their regularization is achieved by discarding high frequency components. Since temporal courses of the brain sources spread over a certain frequency range and are distorted by noise, temporal kernels are regularized and approximated by representation in terms of discrete cosine basis elements of lower frequency. In the experiments conducted on the mental-workload EEG data[Hinss et al. 2021] and motor-task HCP MEG data[Van Essen et al. 2012], we have shown that our models in comparison to the state-of-the-art CNNs, namely DeepConvNet[Schirrmeister et al. 2017], Shallow-ConvNet[Schirrmeister et al. 2017] and EEGNet[Lawhern et al. 2018], can achieve comparable or better performance in terms of classification accuracy while requiring less trainable parameters and lower number of multiplication making it more suitable for light portable devices.

•

  Sara Sedlar, Abib Alimi, Théodore Papadopoulo, Rachid Deriche, Samuel Deslauriers-Gauthier. A spherical convolutional neural network for white matter structure imaging via dMRI. MICCAI 2021 -24th International Conference on Medical Image Computing and Computer Assisted Intervention, Sep 2021, Strasbourg / Virtual Poster communications: • Sara Sedlar, Johann Benerradi, Côme Le Breton, Rachid Deriche, Théodore Papadopoulo et al. Rank-1CNNfor mental workload classification from EEG. Neuroergonomics conference, Sep 2021, Munich (virtual event), Germany • Sara Sedlar, Samuel Deslauriers-Gauthier, Rachid Deriche, Théodore Papadopoulo. Shallow convolutional neural network with rank-1 Fourier domain weights for brain signal classification. Proceedings of SophIA 2022, Nov 2022, Sophia Antipolis, France

Table C .

 C 1: ε z = 10 -4 , ε = 10 -8 , ε D = 10 -8 Table C.2: ε z = 10 -5 , ε = 10 -8 , ε D = 10 -8

	λ = 0.4	λ = 0.5	λ = 0.6	λ = 0.7	λ = 0.8	λ = 0.9
	0.1367 ±0.0679	0.1581 ±0.0998	0.1576 ±0.0632	0.2538 ±0.1438	0.2357 ±0.1552	0.2468 ±0.0890
	0.1511 ±0.0822	0.1871 ±0.1375	0.1580 ±0.0773	0.2914 ±0.1922	0.2630 ±0.2051	0.2336 ±0.0860
	λ = 0.4	λ = 0.5	λ = 0.6	λ = 0.7	λ = 0.8	λ = 0.9
	0.2082 ±0.1408	0.1309 ±0.0279	0.2016 ±0.1308	0.1811 ±0.0905	0.1326 ±0.0999	0.1435 ±0.0483
	0.2435 ±0.2024	0.1176 ±0.0239	0.2190 ±0.1797	0.1732 ±0.0931	0.1416 ±0.1357	0.1381 ±0.0527

Table C .

 C 

Table C .

 C As for noiseless data, to select the hyperparameters for MCSC applied on noisy data, we have performed a grid search on four parameters. Parameters are selected based on reconstruction MSE computed with respect to noiseless ground truth signals which are given in Tables C.6, C.7, C.8, C.9 and C.10. Since ground truth noiseless Table C.6:ε z = 10 -5 , ε = 10 -8 , ε D = 10 -8 Table C.7: ε z = 10 -4 , ε = 10 -8 , ε D = 10 -8 Table C.8: ε z = 10 -6 , ε = 10 -8 , ε D = 10 -8 Table C.9: ε z = 10 -5 , ε D = 10 -8TableC.10: ε z = 10 -5 , ε = 10 -8 are not available in the real scenario, we have investigated whether the selection of parameters can be based on reconstruction MSE computed with respect to noisy available signals and concluded that some prior knowledge for parameter selection is required. The MSE and standard deviations for different parameters are given inTables C.11, C.12, C.13, C.14, C.15 and C.16. Table C.11: ε z = 10 -5 , ε = 10 -8 , ε D = 10 -8 Table C.12: ε z = 10 -5 , ε = 10 -8 , ε D = 10 -8 Table C.13: ε z = 10 -4 , ε = 10 -8 , ε D = 10 -8TableC.14: ε z = 10 -3 , ε = 10 -8 , ε D = 10 -8 15: ε z = 10 -4 , ε D = 10 -8 TableC.16: ε z = 10 -4 , ε = 10 -8

		λ = 0.1	λ = 0.2	-7 λ = 0.3
		0.1288 ±0.0889 3109.898 ±0.788 3121.307 ±1.192 0.1659 ±0.0799 3128.235 ±1.039
		0.1425 ±0.1177 3110.205 ±0.941 3122.229 ±1.169 0.1740 ±0.1194 3128.432 ±0.511
	MCSC hyperparameter selection for noisy data
		λ = 0.4		λ = 0.5		λ = 0.6	λ = 0.7
		3129.933 ±0.940		3131.443 ±0.702	3133.805 ±1.750	3136.926 ±2.533
		3130.829 ±0.969		3132.013 ±0.603	3134.207 ±2.030	3137.245 ±2.037
		λ = 0.1		λ = 0.2	λ = 0.3
	λ = 0.3	λ = 0.4 3109.1191 ±0.8951 λ = 0.5 3120.9702 ±0.9151 λ = 0.6	λ = 0.7 3127.5977 ±1.0059	λ = 0.8
	2.9842 ±0.2601	2.2990 ±0.1859 3109.9946 ±1.2312 2.4923 ±0.1773 3121.6355 ±1.2983 4.0116 ±1.5745 3128.268 ±1.0959 6.7545 ±2.0822	8.6524 ±1.7048
	2.8564 ±0.2831	2.2999 ±0.23028	2.5246 ±0.1980	3.9704 ±1.3986	6.5052 ±1.9051	8.3485 1.4671
					λ = 0.1
		λ = 0.3		λ = 0.4	λ = 0.5 3109.587 ±1.2439	λ = 0.6
		2.7965 ±0.1466	2.3316 ±0.1645 3111.091 ±1.4872 2.6254 ±0.1639	3.5966 ±1.4074
		2.6385 ±0.1646	2.3051 ±0.1573	2.6665 ±0.1945	3.6517 ±1.3504
			λ = 0.1,ε = 10 -7	λ = 0.1,ε = 10 -9
		λ = 0.3	λ = 0.4 3109.274 ±0.786		λ = 0.5 3109.6804 ±1.252	λ = 0.6
	2.7811 ±0.1815	2.3578 ±0.1285 3110.586 ±1.222 2.6275 ±0.19479 3110.848 ±0.9401 3.2454 ±1.1326
	2.6547 ±0.1993	2.3557 ±0.1502	2.6735 ±0.2204	3.2946 ±1.1355
			λ = 0.1,ε D = 10 -7	λ = 0.1,ε D = 10 -9
		λ = 0.4,ε = 10 -9 3110.058 1.484	λ = 0.4,ε = 10 -7 3109.657 ±1.141
		2.3304 ±0.1064 3110.297 1.506		2.3005 ±0.1639 3110.540 ±0.909
		2.2951 ±0.1376		2.2513 ±0.2192
		λ = 0.4,ε D = 10 -9	λ = 0.4,ε D = 10 -7
		2.2935 ±0.1049		2.3428 ±0.1347
		2.2562 ±0.1330		2.3314 ±0.1515

signals
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Code contributions

• Spherical U-net for dMRI fiber orientation distribution function estimation (Chapter 4) gitlab.inria.fr/ssedlar/spherical_unet • Fourier domain sphericalCNNfor dMRI local analysis (Chapter 5) gitlab.inria.fr/ssedlar/fourier_s2cnn • Rank-1 M/EEG waveform and spatial pattern learning with L 0 constraint (Chapter 7) gitlab.inria.fr/ssedlar/st_cdl_l0 • ShallowCNNfor M/EEG classification (Chapter 8) gitlab.inria.fr/ssedlar/shallow_cnn_meeg

Testing

During the testing phase, sparse vectors are estimated over P iterations, which do not need to be equal to Q, as will be discussed in the following section. After each iteration of the sparse vector estimation according to Eqs. 7.12 -7.13, amplitudes of the activations are refined over R steps, where refinements are allowed to be negative. Given a sparse vector z k,i n in iteration i and residual X i n , in a refinement step r

where X i,0 n = X i n , z k,i,0 n = z k,i n , and z k,i,r n = z k,i,r-1 n + y k,r n . y k,r n is a sparse refinement vector containing at most one activation estimated as follows. Given X i,r-1 n , we estimate c k,i,r-1 n using Eqs. 7.10 and 7.11. Position of the activation update within sparse vector z k,i,r-1 n is selected as j k,i,r n =argmax(|c k,i,r-1 n |), such that z k,i,r-1 n [j k,i,r n ] ̸ = 0. The update is performed as

Allowing the negative refinements during the testing phase is introduced since the amplitudes of the activation vectors obtained via spatio-temporal correlation might contain contributions of the other activations. Whereas this is the case during the training as well, refinement steps increase training time, and the estimation of the activation as in Eqs. 7.12 -7.13 is sufficient from the point of view of the dictionary updates.

Databases

We have compared our model with the multivariate convolutional sparse coding (MCSC) algorithm [START_REF] Dupré La Tour | Multivariate convolutional sparse coding for electromagnetic brain signals[END_REF] on synthetic data and somatosensory MEG data. Furthermore, the model is evaluated on the HCP motor task dataset.

Synthetic dataset

A synthetic MEG dataset is generated using the MNE toolbox [Gramfort et al. 2013a].

The forward solution is taken from the "sample_audvis-meg-eeg-oct-6-fwd" dataset, which contains 204 MEG gradiometers and 7498 sources. Under the assumption that a specific mental or motor task is associated with the specific fixed sources in the cerebral cortex and specific temporal courses, data is simulated for 3 fixed sources, each being associated with a different temporal waveform. For the temporal waveforms, we have used a spike, a sinusoid weighted by a Gaussian window, and a saw-tooth signal. The positions of the selected sources, their topographic maps, and their corresponding temporal waveforms are illustrated in Figure 7.4. Sparse activation vectors are generated 

Experiments

We have compared our method with three state-of-the-art methods, namely Deep-ConvNet and ShallowConvNet proposed by [Schirrmeister et al. 2017] and EEGNet proposed in [Lawhern et al. 2018]. Methods are compared on two datasets -on the problem of mental workload classification from EEG signals for a passive BCI and on the classification of motor-task MEG data. For each dataset, two labeled sessions per subject are available. Since in the BCI applications it is common that the algorithm is tuned to the recordings of the user, methods are compared for two experimental setups:

• Subject blind experiment: subjects used in training and validation do not exist in the testing set.

• Subject aware experiment: sessions used in training and validation do not exist in the testing data.

Databases

Mental workload EEG dataset for passive BCI

We used the open mental workload EEG dataset provided in the "Passive BCI Hackathon" organized during the Neuroergonomics 2021 conference [Hinss et al. 2021]. The dataset contains EEG recordings of 15 subjects acquired over three sessions where participants were asked to perform a Multi-Attribute Task Battery-II (MATB-II) task developed by NASA. Since the labels of the third session are not publicly available, we have used only two sessions in our experiments. In each session, participants were asked to perform four subtasks (system monitoring, tracking, resource management, and communications) to create three mental workload difficulties, which are recorded during five minute long sessions. They are labeled with 'easy', 'medium', and 'difficult' labels. In the 'easy' condition, the participants performed tracking and system monitoring, in the 'medium' condition the subjects were asked to perform resource management in addition to 'easy' tasks, and in the 'difficult' condition communication task is included in addition to the 'easy' and 'medium' tasks [Roy et al. ].

The number of available EEG channels is 61 and the sampling frequency 500 Hz. Each session is segmented into 447 2s long epochs. Signals are band-pass filtered with FIR filters with cut-off frequencies 1 Hz and 40 Hz. Biophysical artifacts are removed with second order blind identification algorithm [START_REF] Belouchrani | [END_REF]] and the signals are downsampled to the sampling rate of 250 Hz.

In our experiments, we have subsequently downsampled the signals by a factor of 3, given that the signals have been low-pass filtered with a cut-off frequency of 40 Hz. Thus, the sampling frequency is approximately 83 Hz. Signals are scaled with the factor 5 • 10 4 to avoid dead neurons. For the subject blind setup, we have used 9 subjects for training, 3 for validation, and 3 for testing. Correspondingly, for the subject aware experiment, we have used one session from each of the 3 subjects for Appendix A

S 2 and SO(3) signal related derivations appendix

Spherical harmonics

Definition of the complex spherical harmonics

The complex SH basis element Y m l : S 2 → C is defined as

where P m l : [-1, 1] → R is associated Legendre polynomial of degree l and order m, defined in closed form as

Definition of the real spherical harmonics

The real SH [Homeier & Steinborn 1996] basis elements can be defined as

If the complex SH basis elements of degree l are placed into columns of a matrix Y C l in the order {-l, -(l -1), ... -1, 0, 1, ..., (l -1), l}, than the real SH basis elements of degree l can be obtained as

where U l ∈ C (2l+1)×( 2l+1) is unitary matrix defined as in [Homeier & Steinborn 1996] 

Rotation of S 2 functions

The complex Wigner-D matrices

The complex Wigner-D matrix is defined as

where d mn l is small Wigner-d matrix defined as

) where s min = max(0, n -m) and s max = min(l + n, l -m). We refer to l as the Wigner-D matrix or RH degree and to m and n as to their orders. R(ϕ, θ, ψ) ∈ SO(3) is a rotation matrix with ϕ, ψ ∈ [0, 2π) and θ ∈ [0, π].

Rotation of the complex S 2 functions

Rotation of an L 2 signal s : S 2 → C of bandwidth B by angle R = R(ϕ, θ, ψ) ∈ SO(3), such that g(r) = Rs(r) can be written as in [Vollrath 2010, Cohen et al. 2018] 

where Y m l is the complex SH basis element of degree l and order m. D mn l is the complex Wigner-D matrix (RH basis element) of degree l and orders m and n.

The real Wigner-D matrices

The real RH basis elements (Wigner-D matrices) can be expressed as

As noted in [Homeier & Steinborn 1996], a consequence of unitarity of the matrix U l from Eq. A.

and

where we used the property that .14 and A.15.

Rotation of the real S 2 functions

In analogy to the rotation of the complex S 2 functions from Eq. A.8 and using the real Wigner-D matrices defined in Eq. A.15, we define the rotation of the real S 2 functions. Rotation of an L 2 signal s : S 2 → R of bandwidth B by angle R = R(ϕ, θ, ψ) ∈ SO(3), such that g(r) = Rs(r) can be written as

where Y lm is the real SH basis element of degree l and order m. D lmn is the real Wigner-D matrix (RH basis element) of degree l and orders m and n.

Convolutions of S 2 , zonal and SO(3) functions

As we are dealing with real signals and we have defined a real SH and RH basis, we provide derivations of convolutions between real functions only.

Convolution of an S 2 and a zonal function

Convolution between a spherical and a zonal function results in a function whose domain is S 2 . Given a signal f : S 2 → R and a zonal signal g :

) and ∀θ ∈ [0, π), of bandwidths B, convolution is given as [Driscoll & Healy 1994]

where flm is the real SH coefficient of degree l and order m of the function f and ĝl is ZH coefficient of degree l of the function g.

Convolution of S 2 functions

Given two L 2 signals f, g : S 2 → R of bandwidth B, convolution between them is defined as [Cohen et al. 2018]

where R = R(ϕ, θ, ψ) ∈ SO(3). flm , ĝln are the real SH coefficients of degree l and orders m and n of the functions f and g and D lmn : SO(3) → R is an element of the real RH basis (Wigner-D matrix) of degree l and orders m and n.

Convolution between SO(3) signals

Convolution between two SO(3) signals results in a signal whose domain is also

lution between them is defined as [Vollrath 2010, Cohen et al. 2018] 2l+1) , Eq. A.22 can be written in matrix-vector notation as

(A.23) where ĥk , fk , ĝk ∈ R 2k+1 are the vector with real SH coefficients of degree k. Denoting with C l,q l ′ ,q ′ ,l ′′ ,q ′′ ∈ R and with C l,q l ′ ,q ′ ,l ′′ ,q ′′ ∈ R Clebsch-Gordan coefficient associated to complex and real SH basis elements, respectively, the real Clebsch-Gordan coefficients can be derived as

can be obtained that

where c = 1 2 (-1) m ′ +m ′′ . Conversion between the sparse matrices C l l ′ ,l ′′ , C l l ′ ,l ′′ ∈ R (2l ′ +1)(2l ′′ +1)×(2l+1) used in equations A.21 and A.23 can be derived from 

Ĥlmn D lmn (R)

.

Microstructure estimation experiments appendix

MLP hyperparameter selection for microstructure parameter estimation

In this section, we provide details related to the hyperparameter selection for the MLP model introduced by [Golkov et al. 2016]. We have evaluated models of two sizes and depths, namely Hyperparameter selection for microstructure parameter estimation for our models

We have evaluated our models for different input bandwidths and for different depths. All models have the same denoising layer composed of two trainable matrices of size 60 × 60 and four fully connected layers with the number of output neurons 128, 128, 128, n out at the end which take as input rotation invariant features and based on them perform parameter estimation. Model F ourier_S 2 _SO(3) 1 contains three convolutional layers of input and output bandwidths (6, 4), (4, 2), (2, 0) with the input and output number of channels (2, 8), (8, 16), (16,32). Model F ourier_S 2 _SO(3) 2 contains three convolutional layers of input and output bandwidths (8, 4), (4, 2), (2, 0) with the input and output number of channels (2, 8), (8, 16), (16,32). Model F ourier_S 2 _SO(3) 3 contains four convolutional layers of input and output bandwidths (8, 6), (6, 4), (4, 2), (2, 0) with the input and output number of channels (2, 4), (4, 8), (8, 16), (16,32). Model F ourier_S 2 _zonal 1 contains three convolutional layers of input and output bandwidths (6, 4), (4, 2), (2, 0) with the input and output number of channels (2, 20), (20, 40), (40, 80). Model F ourier_S 2 _zonal 2 contains four convolutional layers of input and output bandwidths (8, 6), (6, 4), (4, 2), (2, 0) with the input and output number of channels (2, 12), (12, 24), (24, 48), ( 48 Since the differences between validation losses for different F ourier_S 2 _SO(3) and F ourier_S 2 _zonal are smaller, for all subjects and for both NODDIand SMTparameter estimation we have selected, F ourier_S 2 _SO(3) 3 and F ourier_S 2 _zonal 1 .

MLP+ hyperparameter selection for microstructure parameter estimation

We have extended the model MLP [Golkov et al. 2016] For a comparison with other approaches, we have selected M escN etSepDict with lr = 0.001, except for NODDIparameter estimation trained on 5 subjects where the selected model is trained with lr = 0.0005.

Hyperparameter selection for microstructure parameter estimation for our models

In analogy to MLP+ and MEDN+, we have designed F ourier_S 2 _SO(3)+ and F ourier_S 2 _zonal+ models which take as input dMRI signals from the neighbourhood of size 3 × 3 × 3. As single voxel models, they have the same denoising layer composed of two trainable matrices of size 60 × 60 and four fully connected layers with the number of output neurons 128, 128, 128, n out at the end. Model F ourier_S 2 _SO(3)+ contains four convolutional layers of input and output bandwidths (8, 6), (6, 4), (4, 2), (2, 0) with the input and output number of channels (2 × 27, 8), (8, 16), (16, 32), (32, 64). Model F ourier_S 2 _zonal+ contains four convolutional layers of input and output bandwidths (8, 6), (6, 4), (4, 2), (2, 0) with the input and output number of channels (2 × 27, 16), (16, 32), (32, 64), (64, 128). In the model F ourier_S 2 _SO(3)+, since the number of rotation invariant features extracted from the first SH coefficients (after denoising) is 2 × 27 × 5 = 270 is much larger than the number of rotation invariant features extracted from the following layers after SO(3) non-linearities 8 × 4, 16 × 3, 32 × 2, 64 × 1, the input rotation invariant features are projected to a vector of length 64 with a trainable matrix of size 270 × 60 prior to concatenation to the features from other layers. In F ourier_S 2 _zonal+, the number of rotation invariant features extracted after S 2 non-linearities is 16 × 4, 32 × 3, 64 × 2, 128, thus the rotation invariant features extracted from the first SH coefficients (after denoising) is concatenated directly to them. Illustrations of the validation losses for NODDIand SMTparameter estimation and the corresponding number of trainable parameters, for the experiments with the number of training subjects 1, 3, 5 are provided in Appendix D

M/EEG classification experiments appendix

DeepConvNet

In this subsection, we provide details on DeepConvNet [Schirrmeister et al. 2017] hyperparameter search and the number of multiplications. The number of multiplications per layer is given in Table D.1.

Table D.1: DeepConvNet number of multiplications per different steps of the entire classification process for one input sample. T is the input signal length. N is the number of channels of the input signal. K is the number of temporal kernels. k L is the kernel length.

* N T y corresponds to Taylor series degree used to compute exponential Illustration of validation classification accuracy DeepConvNet models for different hyperparameters are provided in Figures D.1 and D.2 for MEG experiment. K refers to the number of convolutional kernels in the first layer, where in each following this number is increased by a factor of two. k L corresponds to the convolutional filter length and p to the max pooling size after each convolution layer. We can notice that validation accuracy is lower for pooling step 3. An increase of K leads to significant accuracy improvement, while the increase of k L from 5, 7 to 10, 15 leads to finer improvements. In the subject blind experiment set-up, the model with K = 50, k L = 10, and p = 2 is selected as the best one. The number of trainable parameters is ∼ 1.71 × 10 6 . In subject aware experiment set-up, the model with K = 50, k L = 15, and p = 2 is selected as the best one. The number of trainable parameters is ∼ 2.22 × 10 6 . In the subject blind experiment set-up, the model with K = 100, k L = 3, and p = 2 is selected as the best one. The number of trainable parameters is ∼ 1.89 × 10 6 . In subject aware experiment set-up, the model with K = 100, k L = 3, and p = 3 is selected as the best one. The number of trainable parameters is ∼ 1.89 × 10 6 . The learning rate is 0.0005. 

EEGNet

In this subsection, we provide details on EEGNet [Lawhern et al. 2018]