
HAL Id: tel-03947199
https://theses.hal.science/tel-03947199v2

Submitted on 19 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reconstructing and repairing urban models with kinetic
data structures

Mulin Yu

To cite this version:
Mulin Yu. Reconstructing and repairing urban models with kinetic data structures. Discrete Mathe-
matics [cs.DM]. Université Côte d’Azur, 2022. English. �NNT : 2022COAZ4077�. �tel-03947199v2�

https://theses.hal.science/tel-03947199v2
https://hal.archives-ouvertes.fr

Reconstruction et Correction de

Modèles Urbains à l'Aide de Structures

de Données Cinétiques

Mulin Yu
INRIA Sophia-Antipolis Méditerranée

Présentée en vue de l’obtention

du grade de docteur en Informatique

d’Université Côte d’Azur

et de INRIA Sophia Antipolis

Dirigée par : Florent Lafarge

Soutenue le : 2 Décembre 2022

Devant le jury, composé de :

Philippos Mordohai, Rapporteur, Stevens

Institute of Technology

Gilles Gesquière, Rapporteur, University

Lyon 2

Marc Antonini, Examinateur, I3S-CNRS

Sven Oesau, Examinateur, Geometry Factory

Florent Lafarge, Examinateur, INRIA –

Université Côte d’Azur

Bruno Hilaire, Examinateur Invité, GEOFIT

Julien Soula, Examinateur Invité, CSTB

THÈSE DE DOCTORAT

iii

Reconstruction et Correction de Modèles Urbains à
l’Aide de Structures de Données Cinétiques

Reconstructing and Repairing Urban Models with Kinetic

Data Structures

Jury:

Rapporteurs
Philippos Mordohai, Professor, Stevens institute of technology
Gilles Gesquière, Professeur des universités, University Lyon 2

Examinateurs
Marc Antonini, Directeur de recherche, I3S-CNRS
Sven Oesau, Ingénieur de recherche, Geometry Factory
Florent Lafarge, Directeur de recherche, INRIA Sophia-Antipolis

Examinateurs Invité
Bruno Hilaire, Ingénieur de recherche, GEOFIT
Julien Soula, Cadre scientifique, CSTB

iv

Acknowledgements

Thank you to those who have helped me over the past three years.

v

Résumé

Les modèles numériques 3D compacts et précis de bâtiments sont couram-
ment utilisés par les praticiens pour la visualisation d’environnements ex-
istants ou imaginaires, les simulations physiques ou la fabrication d’objets
urbains. La génération de tels modèles prêts à l’emploi est cependant un
problème difficile. Lorsqu’ils sont créés par des designers, les modèles 3D
contiennent généralement des erreurs géométriques dont la correction au-
tomatique est un défi scientifique. Lorsqu’ils sont créés à partir de mesures
de données, généralement des balayages laser ou des images multivues, la
précision et la complexité des modèles produits par les algorithmes de re-
construction existants n’atteignent souvent pas les exigences des praticiens.
Dans cette thèse, j’aborde ce problème en proposant deux algorithmes : l’un
pour réparer les erreurs géométriques contenues dans les formats spécifiques
de modèles de bâtiments, et l’autre pour reconstruire des modèles compacts
et précis à partir de nuages de points générés à partir d’un balayage laser
ou d’images stéréo multivues. Le composant clé de ces algorithmes repose
sur une structure de données de partitionnement d’espace capable de décom-
poser l’espace en cellules polyédriques de manière naturelle et efficace. Cette
structure de données permet à la fois de corriger les erreurs géométriques
en réassemblant les facettes de modèles 3D chargés de défauts, et de recon-
struire des modèles 3D à partir de nuages de points avec une précision et
complexité proche de celles générées par les outils interactifs de Conception
Assistée par Ordinateur.

Ma première contribution est un algorithme pour réparer différents types
de modèles urbains. Les travaux antérieurs, qui reposent traditionnellement
sur une analyse locale et des heuristiques géométriques sur des maillages,
sont généralement conçus sur-mesure pour des formats 3D et des objets ur-
bains spécifiques. Nous proposons une méthode plus générale pour traiter
différents types de modèles urbains sans réglage fastidieux des paramètres.
L’idée clé repose sur la construction d’une structure de données cinétiques
qui décompose l’espace 3D en polyèdres en étendant les facettes du modèle
d’entrée imparfait. Une telle structure de données permet de reconstruire
toutes les relations entre les facettes de manière efficace et robuste. Une fois
construites, les cellules de la partition polyédrique sont regroupées par classes

vi

sémantiques pour reconstruire le modèle de sortie corrigé. Je démontre la ro-
bustesse et l’efficacité de l’algorithme sur une variété de modèles réels chargés
de défauts et montre sa compétitivité par rapport aux techniques tradition-
nelles de réparation de maillage à partir de données de modélisation des
informations du bâtiment (BIM) et de systèmes d’information géographique
(SIG).

Ma deuxième contribution est un algorithme de reconstruction inspiré de
la méthode Kinetic Shape Reconstruction, qui améliore cette dernière de dif-
férentes manières. En particulier, je propose une technique pour détecter des
primitives planaires à partir de nuages de points 3D non organisés. Partant
d’une configuration initiale, la technique affine à la fois les paramètres du
plan continu et l’affectation discrète de points d’entrée à ceux-ci en recher-
chant une haute fidélité, une grande simplicité et une grande complétude. La
solution est trouvée par un mécanisme d’exploration guidé par unefonction
énergétique à objectifs multiples. Les transitions dans le grand espace des
solutions sont gérées par cinq opérateurs géométriques qui créent, suppri-
ment et modifient les primitives. Je démontre son potentiel, non seulement
sur des bâtiments, mais sur une variété de scènes, des formes organiques aux
objets fabriqués par l’homme.

Mots clés: Reconstruction de surface, réparation de maillage, recon-
struction sémantique, structure de données cinétiques, BIM, GIS, détection
de forme planaire, regroupement de nuages de points

vii

Abstract

Compact and accurate digital 3D models of buildings are commonly used by
practitioners for the visualization of existing or imaginary environments, the
physical simulations or the fabrication of urban objects. Generating such
ready-to-use models is however a difficult problem. When created by design-
ers, 3D models usually contain geometric errors whose automatic correction
is a scientific challenge. When created from data measurements, typically
laser scans or multiview images, the accuracy and complexity of the mod-
els produced by existing reconstruction algorithms often do not reach the
requirements of the practitioners. In this thesis, I address this problem by
proposing two algorithms: one for repairing the geometric errors contained
in urban-specific formats of 3D models, and one for reconstructing compact
and accurate models from input point clouds generated from laser scanning
or multiview stereo imagery. The key component of these algorithms relies
upon a space-partitioning data structure able to decompose the space into
polyhedral cells in a natural and efficient manner. This data structure is used
to both correct geometric errors by reassembling the facets of defect-laden
3D models, and reconstruct concise 3D models from point clouds with a qual-
ity that approaches those generated by Computer-Aided-Design interactive
tools.

My first contribution is an algorithm to repair different types of urban
models. Prior work, which traditionally relies on local analysis and heuristic-
based geometric operations on mesh data structures, is typically tailored-
made for specific 3D formats and urban objects. We propose a more general
method to process different types of urban models without tedious parame-
ter tuning. The key idea lies on the construction of a kinetic data structure
that decomposes the 3D space into polyhedra by extending the facets of
the imperfect input model. Such a data structure allows us to re-build all
the relations between the facets in an efficient and robust manner. Once
built, the cells of the polyhedral partition are regrouped by semantic classes
to reconstruct the corrected output model. I demonstrate the robustness
and efficiency of the algorithm on a variety of real-world defect-laden mod-
els and show its competitiveness with respect to traditional mesh repairing
techniques from both Building Information Modeling (BIM) and Geographic

viii

Information Systems (GIS) data.
My second contribution is a reconstruction algorithm inspired by the

Kinetic Shape Reconstruction method, that improves the later in different
ways. In particular, I propose a data fitting technique for detecting planar
primitives from unorganized 3D point clouds. Departing from an initial con-
figuration, the technique refines both the continuous plane parameters and
the discrete assignment of input points to them by seeking high fidelity, high
simplicity and high completeness. The solution is found by an exploration
mechanism guided by a multi-objective energy function. The transitions
within the large solution space are handled by five geometric operators that
create, remove and modify primitives. I demonstrate its potential, not on
buildings only, but on a variety of scenes, from organic shapes to man-made
objects.

Keywords: Surface reconstruction, Mesh repairing, Semantic reconstruc-
tion, Kinetic data structure, BIM, GIS, Planar shape detection, Point cloud
clustering

Contents

Page

Contents x

1 Introduction 1
1.1 Context . 1
1.2 Challenges . 5
1.3 Outline . 11

2 Literature Review 13
2.1 Repairing 3D models . 13

2.1.1 Mesh repairing . 13
2.1.2 Repairing of CityGML and IFC data 15

2.2 Compact mesh reconstruction 16
2.2.1 Simplification methods 17
2.2.2 Shape assembling methods 19

3 Our Contributions 27
3.1 Repairing . 27
3.2 Reconstruction . 28

4 Repairing 3D urban models 31
4.1 Introduction . 31
4.2 Overview . 33
4.3 Our approach . 35

4.3.1 Disassembling . 35
4.3.2 Kinetic partitioning 36
4.3.3 Semantic labeling . 38
4.3.4 Formatting . 40

4.4 Implementation details . 41
4.5 Experiments on CityGML models 43
4.6 Experiments on IFC models 46
4.7 Conclusion . 52

5 3D Compact Mesh Reconstruction 55
5.1 Planar primitive detection . 55

5.1.1 Introduction . 55
5.1.2 Algorithm . 56
5.1.3 Experiments . 63

x Contents

5.1.4 Extension with geometric regularization 85
5.2 Surface extraction without normal orientation 95

5.2.1 Algorithm . 96
5.2.2 Experiments . 98

5.3 Conclusion . 100

6 Conclusion and Perspectives 103
6.1 Conclusion . 103
6.2 Perspectives . 104

Bibliography 109

Chapter 1

Introduction

1.1 Context

Urban Digital Twin (UDT) is gaining more and more attention in both the
scientific and industrial domains, as a result of the rapid development of big
data, artificial intelligence, and the Internet of Things (IoT) [SH20, SHY21].
UDT can be used for intelligent urban management, intelligent urban plan-
ning, disaster prevention, disaster control, energy analysis, clash detection
and more by constructing a virtual representation of the city [BSL+15], Fig-
ure 1.1. The fundamental concept behind a digital twin is creating a virtual
model that accurately depicts a real object or scene and is appropriate for
the target application scenario. The application scenarios of UDT can be
roughly separated into two families: (1) designing and analysing buildings,
(2) planning and managing cities. Therefore, Building Information Model-
ing (BIM) and Geographic Information System (GIS) have been proposed
to comprehend and maintain the 3D virtual models in the building and city
scales, respectively. In these two systems, the 3D virtual models are for-
malized in different ways to match the different application requirements.
Specially, two most popular formats in these two systems are introduced
below and are considered in this thesis.

Industry Foundation Classes (IFC). Initiated in 1994, IFC is a CAD
exchange data schema designed to describe the context of the building, archi-
tecture and construction industry. IFC has been the most widely used format
in BIM, which is originally formed with the goal of reducing information loss
in the AEC (architecture, engineering, and construction) domains [VSS14].
An IFC model typically describes only one building in detail, Figure 1.2,
which will be used during the entire life cycle of the building. The IFC
models therefore include additional information, such as project budgets,
schedules and organization, that is needed by various vendors and customers

2 Chapter 1. Introduction

(a) Interactive design

(b) Solar irradiation estimation (c) Daylight analysis

Figure 1.1: Visualization of three applications of UDT. BIM-based daylight
analysis (c) and interactive design (a). GIS-based solar irradiation estimation
(b). Images come from [PMMB22, YNK+18, JJ14].

(a) Outdoor (b) Indoor

Figure 1.2: Visualization of the outdoor and indoor scenes of an IFC model.
The building is presented based on volumes, a chosen IfcWall is shown in
green (b). Image visualized by BIMvision [Bui].

in addition to geometric and semantic information. As an object-oriented
and EXPRESS-based [ISO04] data format, all information in IFC is man-
aged by classes, which contains 130 defined types, 207 enumeration types,
60 select types, 776 entities, 47 functions, and 2 rules in IFC 4 Addendum
2 [OBD+17]. All the classes are subtypes of the root class and can be sep-
arated to three types, IfcObject, IfcPropertyDefinition and IfcRelationship.
IfcObject defines all the physical objects or constructing activities in the
AEC context. Attached to the IfcObject, IfcPropertyDefinition describes all
possible attributes as size, owner, name and orientation. The relationship
between IfcObjects is built by IfcRelationships. Each IFC element, such as

1.1. Context 3

Figure 1.3: A part of New York city LOD2 CityGML model [Dep16] in the
Cesium Platform [Ces]. The color is related to the height of the buildings.
Each build is represented by its envelop and the indoor part is ignored.

wall, roof and space, is presented as a volume and is associated with a seman-
tic class. There are four geometric presentation paradigms in IFC [OBD+17],
primitive instancing, boundary representation (B-rep), constructive solid ge-
ometry (CSG), and sweep volume:

1. Primitive instancing: An element is represented based on several pre-
defined primitives such as simple shapes.

2. B-rep: As a most straightforward way, elements are represented by the
set of their boundary surfaces.

3. CSG: Series of Boolean operations (difference, union and intersection)
of a set of primitives are used to present an element. The primitives
can be simple shapes like spheres, cones and cylinders.

4. Sweep volume: An element is implicitly presenting with a 2D shape
and a curve. The curve is the trajectory of the 2D shape.

To be used in the downstream applications, each element should be repre-
sented by a geometric and topological valid volume, and there should not
exist gaps or overlaps between any pairs of adjacent elements.

4 Chapter 1. Introduction

Figure 1.4: The five LODs of CityGML 2.0. From LOD0 to LOD4, the
virtual models are more and more precise. They are employed in various
application contexts. Image taken form [BLS16]

CityGML. Initiated in 2002 by the Special Interest Group 3D, CityGML
[GL12] is the most prominent standard formalism of Geographic informa-
tion system (GIS) [Cha16] for storing, managing, analyzing and visualizing
geographic data. The geographic information provided in CityGML format
relates to positions on the surface of the Earth, such as streets, buildings, and
vegetation. In addition to the geometry of urban objects, CityGML can also
record the topology, semantics and appearance of urban objects. Specifically,
CityGML can present an object in different levels of detail (LODs). From
LOD0 to LOD4, more and more details are presented as illustrated in Fig-
ure 1.4. LOD2 CityGML models are typically used at the city scale to plan
urban areas, navigate outdoor pedestrians, simulate the environment, and
manage facilities. As a result, we only consider the LOD2 CityGML models
in this thesis. According to ISO 19107 standard [ISO03], the surfaces and
curves in CityGML can only be planar and linear, respectively. The non-
linear structure such as the roofs of nymphaeum should be approximated by
piecewise planar surfaces. The geometric objects are presented by boundary
representation, e.g. buildings are preferred to be presented by watertight and
manifold solids that are composed by their bounding surfaces. Even though
a soup of unstructured surfaces is also permitted to present an object, this
representation is not friendly to some downstream applications that require
geometric processing on meshes. Semantic information is associated with
each surface and is enriched as the LOD increases. For instance, the surfaces
of a building in LOD1 can only contain building semantic information, while
they can be identified as roof, wall and ground in LOD2. A CityGML file
can be created by grouping together various urban digital twin components,
such as buildings, bridges and tunnels, Figure 1.3.

1.2. Challenges 5

Both IFC and CityGML portray the real world in a compact manner, de-
spite the fact that they are two completely distinct forms. In other words, the
3D virtual models are displayed by few facets that have big areas. By com-
pactly formalized, the 3D virtual models can be stored in a small amount of
memory, which make the processing programs effective. In addition, compact
representation has much simpler and clearer topological structure, which
makes it simple for users to edit them.

Typically, the 3D virtual models are generated through two different
ways: (1) Manually: 3D virtual models are designed and created by ar-
chitects or designers using specific software such as Revit. (2) Automati-
cally: they can be reconstructed from data measurements such as 3D point
cloud using reconstruction methods. Even though manual methods are the
dominant technology for generating 3D virtual models, some topological,
geometric and semantic errors can be introduced into the 3D virtual mod-
els due to the limitations of modeling software and the lack of guidelines.
Such errors are catastrophic for certain applications like the topological er-
rors can collapse the energy analysis. As a result, correcting defect-laden
3D virtual models before putting them into the downstream applications
is often necessary processing step. In the domains of computer vision and
computer graphics, reconstructing virtual models from data measurements
in an automatic way is a long-standing problem. There is still a long way to
go before automatically reconstructing semantic enriched IFC or CityGML
models from data measurements. Therefore, researchers attempt to first
reconstruct compact meshes from data measurements.

1.2 Challenges

The ultimate objective in the field is to automatically generate ready-to-
use models from readily accessible defect-laden 3D models or point clouds.
3D model repairing and compact mesh reconstruction are difficult problems,
mainly due to the variety of input and the ambiguity on quality evaluation.

1.2.1 Repairing

The challenge of repairing defect-laden 3D models comes from three primary
sources: the variety of input, the variety and the ambiguity of errors.

6 Chapter 1. Introduction

Variety of input. As previously mentioned, 3D virtual models are saved in
different formalisms depending on different application scenarios. Specially,
the LOD2 CityGML models ignore the thickness of building elements, i.e.
buildings are represented by their envelopes. In contrast, IFC models are
used to thoroughly describe a certain building and take element thickness
into account. As a result, the repairing methods should be general enough
to handle both the surface-based and volume-based representations.

Variety of geometric and topological errors. Urban models frequently
contain many topological and geometrical errors [BLD+16], Figure 1.5. These
errors are not independent, for instance, a misaligned vertex may belong to a
self-intersecting facet. One major drawback of traditional repairing methods

(b) Wrong facet orientation (d) non-manifold

(a) Vertex misalignment (c) self-intersection

Figure 1.5: Visualization of four kinds of geometric and topological errors in
urban models. (a) shows the vertex misalignment error, which is frequently
introduced during conversion and storage. The facets in LOD2 CityGML
models are typically associated with orientation that points outward, the red
facets are associated with the wrong orientation in (b). (c) and (d) represent
the common topological errors: self-intersection and non-manifold. Image
taken form [BLD+16, ZLSF18].

1.2. Challenges 7

is that extra errors may be introduced into the output models since they
iteratively conduct predefined local repairing operations based on the as-
sumption that errors are independent. Therefore, the ideal repairing method
should be robust enough to deal with all the errors and correct the errors in
a global way that guarantees the validity of the output models.

Ambiguity of semantic errors. Semantic errors are sometimes subject
to interpretation. For instance, it is hard to automatically determine the
semantic class for the common part of two intersecting IfcElements. As a
result, the ideal repairing methods should have the ability to highlight these
areas where the semantic classes are ambiguous and enable the experts to
quickly locate and correct the semantic errors.

1.2.2 Reconstruction

Compact mesh reconstruction is a long-standing topic in the computer vision
and computer graphics fields. The two main challenges are the variety of
input and the quality metrics. Note that we only consider point clouds as
data measurements in this thesis.

Variety of input. The point cloud is the most common data measurement
in the urban context. It is a collection of unstructured points in space that
seeks to present an object or a scene realistically. The point clouds obtained
differ in terms of the type of physical thing described and the types of acqui-
sition tool. On the one hand, the styles of structures and indoor scenes vary
greatly in a big urban context. The reconstruction methods should have the
ability to deal with different types of objects and scenes. For instance, sev-
eral existing reconstructing methods heavily rely on geometric hypotheses
like the Manhattan World assumption and the regularity of objects, which
can not generally perform in all situations. On the other hand, point clouds
can be gathered and created using different tools:

1. Light Detection And Ranging (LiDAR). LiDAR is a laser-based
remote sensing technology. The core principle of LiDAR is the reflec-
tion of light. Similar to radar, however, LiDAR employs lasers instead
of radio waves. It first emits a laser pulse to the surface of an object,
then catches the reflected laser and finally the location of reflection

8 Chapter 1. Introduction

(c) MVS [KPZK17] (d) Synthetic[ZJ16]

(a) LiDAR[KPZK17] (b) RGB-D[CDF+17]

Figure 1.6: Visualization of four kinds of 3D point clouds. Point clouds may
have other attributes besides coordinates, such as color in (a), (b) and (c).

can be determined. To achieve laser emitting, laser capture and posi-
tioning, a LiDAR scanner should have a laser emitter, a photodetector
and an embedded signal processing chain. Depending on different ap-
plications and environments, the wavelengths of beams emitted by the
laser emitter should be adjusted. The wavelengths vary between 250

nanometers to 10 micrometers. And the resolution of LiDAR data is
determined by the pulse width, a shorter pulse can lead to high resolu-
tion. There are two platforms for LiDAR: static LiDAR and dynamic
LiDAR. The former employs a static device that scans in a ball pat-
tern. The latter employs one or more devices on cars or planes that
scan in a circular line pattern.

2. RGB-D cameras. RGB-D cameras have drawn a lot of interest in
recent years due to their affordable cost and are widely applied in
face unlocking, 3D reconstruction, augmented reality and Simultane-
ous Mapping And Localization (SLAM). RGB-D cameras measure the
depth of each pixel on the basis of conventional RGB cameras. The
depth is typically measured by using structured light: an infrared light
pattern is first emitted by an infrared laser projector, which is then cap-

1.2. Challenges 9

tured by one or more infrared cameras, finally, the depth is obtained by
comparing the deformed pattern to reference patterns that are previ-
ously recorded at known depths and stored in the device. The effective
measuring distance ranges from 10cm to 10m, however, the accuracy
of the acquired depth degrades as the measuring distance is extended.
As a result, RGB-D cameras are better suited to indoor scenes than
large outdoor scenes. Additionally, benefiting from the properties of
structured light, RGB-D cameras are unaffected by ambient lighting
conditions and the texture of the objects.

3. Multiple View Stereo (MVS). MVS is typically used to extract
3D point cloud from a set of covered images in computer vision. This
technique aims at building a bridge between 2D to 3D. As a pipeline,
Structure-from-motion (SfM) is first inducted to calculate the camera
parameters for each image by minimizing camera projection error on
feature points. Then a dense point cloud is reconstructed by finding
the 3D coordinate for almost every pixel. MVS can be used in different
scales of scenes: indoor scenes, small-scale outdoor scenes and large-
scale outdoor scenes. Recently, some deep learning methods [CHXS20,
GFZ+20, YLL+18] have also been proposed to reconstruct point clouds
from multi-view images.

Recently, deep learning has been also widely used for point cloud processing
such as: reconstruction and shape detection. Due to the nature of super-
vised learning, a large amount of annotated point clouds are required to
train neural networks. The manual annotation of the acquired real-world
point clouds is very time-consuming and laborious work. To simplify the
manufacturing process of the training dataset, semantically enriched point
clouds are usually synthesized from existing virtual models, like CAD mod-
els [KMJ+19]. Uniform sampling is the most common manner. To make
the synthetic point clouds closer to the real-world ones, the sampled point
clouds are typically intentionally injected with noise. In the meanwhile, there
exists software [GKUP11] that can simulate LiDAR scanning point clouds
from a mesh. Figure 1.6 illustrates the three real-world point clouds and a
synthetic point cloud and Table 1.1 lists their characteristics. High-quality
point clouds are difficult to obtain on a limited budget. Therefore, the re-
construction methods should be robust enough to handle easily available and
poor-quality point clouds, such as sparse, noisy and non-uniform MVS point

10 Chapter 1. Introduction

Noise Outliers Range Uniformity Costing

P
oi

nt
cl

ou
ds LiDAR Low Low High High High

RGB-D High High Low Low Fair
MVS High High Fair Low Low
Synthetic Any Any Any Any Low

Table 1.1: Evaluation of the characteristics of different types of point clouds.

clouds. In addition, the size of obtained point clouds are typically quite
large due to the characteristics of urban scenes no matter the acquisition
tools. The reconstruction methods should be scalable to handle input with
numerous elements.

Quality metrics. There is not a single, universally accepted metric to
evaluate the quality of the reconstruction methods. Different criteria might
be taken into account in various application contexts. For instance, while
SLAM always overlooks details like the texture of walls in order to recon-
struct a scene in real-time, heritage recording attempts to reconstruct as
many details of a scene or an object as possible. Therefore, it is obviously
unconscionable to consider only one criterion. A broad measure that in-
corporates numerous criteria should be proposed. Specially, the considered
measurements are always conflict with each other, e.g. it is unable to simul-
taneously achieve high accuracy and high efficiency with limited resources.
As a result, the broad measure is a trade off between conflict criteria, which
requires the reconstruction methods to have the capacity to trade off between
these criteria.

1.3. Outline 11

1.3 Outline

In this thesis, we investigate the 3D model repairing and the compact mesh
reconstruction. The structure of this thesis is the following:

1. Chapter 2 covers the previous work related to the problems.

2. Chapter 3 describes the limitations of existing methods and lists our
contributions.

3. Chapter 4 presents a method for repairing geometric errors in 3D urban
models with kinetic data structures.

4. Chapter 5 presents the details of our contribution to compact mesh
reconstruction: detecting good planar primitive configurations from
unorganized point clouds, and a practical reconstruction pipeline that
combines the explicit kinetic framework and implicit neural network.

5. Chapter 6 draws the conclusion and perspectives of our work.

Chapter 2

Literature Review

We review previous works related to two aspects of the thesis: repairing
defect-laden 3D urban models and compact mesh reconstruction.

2.1 Repairing 3D models

In this section, we review the repairing methods for 3D models. The tra-
ditional mesh repairing methods are first reviewed before the specific ones
that can be used to urban models (CityGML and IFC).

2.1.1 Mesh repairing

Our problem is a specific instance of the mesh repairing issue whose goal
is to correct geometric errors contained in urban models. Deeply studied
in Geometry Processing [CAK12, PSMA16], we separate the mesh repairing
methods into two families: local methods and global methods.

Local methods. In a local manner, several specially designed local oper-
ators are utilized in a small region in the vicinity of the individual flaw and
defects that are located by traversing the input defected mesh, Figure 2.1.
Such techniques are local and assume that geometric errors are relatively
isolated from each other [GTLH01, BK97, Att10, BS95, MW99, WLL+12].
These methods can efficiently handle straightforward situations, however,
they typically fail on complex cases, such as when several errors are de-
pendent. Therefore, they are always employed in some special contexts to
address predictable errors.

Global methods. Global methods correct the errors by globally re-meshing
the defect-laden meshes. It is common to need an intermediate data struc-
ture, such as the constrained Delaunay triangulation or the voxel grid. For

14 Chapter 2. Literature Review

Figure 2.1: Overview of a local method [WLL+12]. A hole in the input mesh
is first located (a), then the feature vertices are selected and the boundary
feature vertices are marked in green (b). The feature curves are reconstructed
and some blue vertices are sampled on the curves located in the hole (c). The
sampled points are used to reconstruct the missing mesh patch to fill the hole
(d). Image taken from [WLL+12].

instance, [NT03] proposes a voxel-based method with morphological opera-
tors to handle holes, double walls and intersecting parts. [GDJY19] lever-
ages constrained Delaunay triangulation to re-mesh each CAD patch in a 2D
parametric domain before projected back to the 3D space. [MPR12] builds a
discrete parametrization with an orthogonal gradient method on radial basis
functions before remeshing the surface in the parametric space with a com-
puted inverse mapping. Even though global methods are much more robust
and can handle more complex configurations than local methods, they typi-
cally modify the entire input mesh and can smooth out some sharp features
such as corners and creases. In addition, it usually needs more computing
resources than local methods.

2.1. Repairing 3D models 15

(a) (b) (c)

(d) (e) (f)

Figure 2.2: Pipeline of a local re-meshing method [BK05]. From the input
CAD patches (a), the set of critical vertices in a local neighborhood around
the defects are first determined (b). Then these critical vertices are converted
into a set of voxels (c). The input CAD mesh is then clipped by the set of
voxels (d) and filled by the reconstructed mesh inside the voxels (e). Finally,
the mesh is simplified (f). Image taken from [BK05].

Specially, some methods try to re-mesh the region in vicinity of the flaw
and defects, i.e. a local re-meshing method. For instance, [BK05] relies
on a snapping process in the vicinity of intersections and cracks to re-mesh
inconsistencies in a manifold way, Figure 2.2, however, this method can not
fill holes in the mesh. The mentioned global methods are relatively efficient
to repair geometrical and topological errors but do not allow semantic errors
contained in BIM and GIS data to be corrected.

2.1.2 Repairing of CityGML and IFC data

Some works study the validity of CityGML and IFC models and propose spe-
cific methods for repairing them. Such tasks are delicate as the errors con-
tained in CityGML and IFC models are numerous and typically emerge from
geometric, topological and semantic approximations [BLD+16, OBD+17].
[KNO+20] proposes a set of validation algorithms to test the relationships
between geometries in IFC models. [LGR15] detects the frequented geo-
metric error in IFC models: clash errors, space definition errors and surface
orientation errors, and semi-automatically corrects these detected errors by

16 Chapter 2. Literature Review

Figure 2.3: Work flow of a LOD2 CityGML model repairing method
[ZLSF18]. A constrained tetrahedralization method is first used to build
a wrap that embeds the decomposed input facets. The carving strategies are
then used to shrink the wrap under topological and geometric constraints.
Image taken from [ZLSF18].

local operations. [AWW+14] proposes a set of geometric rules to test the
validity of CityGML models and local operators to repair certain types of
errors. [ZSL14] exploits a similar strategy with an efficient recursive repair-
ing framework. [DDVM14] and [ZLSF18] entirely re-build the input models
using a space partitioning data structure. The former proposes an automatic
method to convert a topology-free model into a cellular decomposition us-
ing combinatorial maps whereas the latter uses a heuristic shrink-wrapping
algorithm for reconstructing valid solid-based LOD2 buildings through a con-
strained tetrahedralization, Figure 2.3. As explained in [AWW+14], these
algorithms typically rely on combinations of heuristics that make them effi-
cient for a specific type of input model and specific types of errors only.

2.2 Compact mesh reconstruction

We distinguish two pipelines for reconstructing compact meshes from point
clouds: (1) Simplification methods: Simplifying dense meshes that are recon-
structed from 3D point clouds. (2) Shape assembling methods: Assembling
shapes that are detected from 3D point clouds.

2.2. Compact mesh reconstruction 17

2.2.1 Simplification methods

As the most straightforward strategy, simplification methods first estimate a
smooth implicit function and generate a dense mesh from it, the dense mesh
then is simplified into a compact mesh.

2.2.1.1 Dense meshes from point clouds

Dense meshes are typically generated by first estimating an implicit function
from the input points, such as the signed distance function, unsigned dis-
tance function and occupancy function, and then by extracting the isosurface
using the methods such as Marching cubes [LC87]. As the most widely used
implicit reconstruction method, the Poisson Surface Reconstruction method
[KBH06] and its extension [KH13, ZAB+21] estimate the smoothed indicator
function based on discretization such as tetrahedralization and octree. An-
other implicit reconstruction method SSD [CT11] estimates the signed dis-
tance function. Despite the fact that these techniques are frequently utilized
in practical applications, some extra attributes, such as oriented normals,
are necessary.

Some implicit neural networks are proposed to reconstruct 3D models
from point clouds due to the quick development of deep learning tech-
niques and the watertight and no self-intersection guarantees of implicit
functions. Moving Least-Squares function [LGP+21], signed distance func-
tion [JSM+20, EGO+20, PFS+19], unsigned distance function [CMPM20]
and occupancy function [BM22, CAPM20, MON+19, PNM+20] are esti-
mated by neural network. Among them, the estimated distance functions
are typically truncated to make the network concentrate on the space around
the isosurface. Given a query point, the implicit neural network can output
a value to indicate its corresponding position in relation to the isosurface.
Note that for most neural networks, learning the implicit function just re-
quires the coordinates of points. This enables them to be employed even
when the additional attribution, like oriented normals, is difficult to collect.

2.2.1.2 Simplification of dense meshes

Once the dense mesh is reconstructed, it is simplified to a compact mesh with
much fewer facets [LRC+03]. A first way for simplifying the dense meshes is
iteratively replacing one edge with a single vertex (merging two connected

18 Chapter 2. Literature Review

Before After

contract

Figure 2.4: Edge contraction (collapse). Edge v1v2 is replaced by a single
vertex v. Image from [GH97].

vertex to one) based on different cost metrics. This removes one vertex, three
edges, and two facets, in Figure 2.4. In this line of methods, [GH97] first
proposes the Quadric Error Metrics (QEM) to gauge the distance between
the new vertex and the original mesh. The QEM is used to organize the
ordering of edge collapse as well as to determine the location of the new ver-
tex produced by collapsing edges. One year after, [LT98] seeks to maintain
the original model volume and the surface area near boundaries instead of
considering the distance between the new vertex and the original mesh. To
deal with large scale models, [Lin00] presents a way to simplify large polyg-
onal models by combining clustering and QEM. In addition, it proposes a
way to locate the "best" new vertex in degenerated case where the collapsed
facets are nearly on the same plane. In addition to taking geometric error
into account, [Hop99] presents a new technique for efficiently and accurately
simplifying mesh with attribute data such as normals and color by proposing
a new quadric error metric based on geometric correspondence in 3D. To bet-
ter preserve the structure of objects or scenes, [SLA15] analyzes both local
error metrics and global (structure-aware) error metrics by introducing pla-
nar proxies. It is suitable for objects or scenes that contain a large amount of
planes. To make the simplification method more tolerant and produce more
uniform triangulations, [TK20] introduces probabilistic quadrics that can
be robustly minimized by solving a straightforward linear problem. These
QEM-based mesh decimation methods are efficient, however, the simplified
facets on the planar parts of an object can not be perfectly co-planar.

Another way for simplifying dense meshes consists in using planar poly-
gons to approximate the clustered tiny facets, shown in Figure 2.5. [CSAD04]
partitions the dense mesh by minimizing an error function between facets of
an input mesh and planar proxies. The error function is constructed using

2.2. Compact mesh reconstruction 19

Figure 2.5: Dense mesh partitioning and approximation. The input dense
mesh is divided by error-driven partitioning (left). And a planar proxy is
extracted for each cluster (middle). The proxies are then used to generate
an approximated compact mesh (right). Image sourced from [CSAD04].

the L2 distance or normal deviation and minimized by Lloyd’s algorithm.
For fabricating multiplanar models, [CSaLM13] iteratively assigns one plane
to each facet by minimizing a cost and deforms the mesh towards planar
segments. These methods are efficient on clean input that is both geometri-
cally and topologically accurate, which makes them only deliver good results
on synthetic data in practice. Furthermore, these approaches lack flexibility
since users must predefine the number of planar proxies.

2.2.2 Shape assembling methods

The other family of methods for reconstructing compact meshes from point
clouds consists in detecting planar shapes and assembling them into water-
tight and manifold compact meshes. The detected planar shapes are typically
approximated from sets of clustered points. They act as an intermediate pre-
sentation between the input points and the reconstructed compact meshes.
As a pipeline, the quality of the detected planar shapes can directly impact
the quality of output compact meshes. In accordance with the ordering of
the pipeline, we first review the existing planar shape detection methods
before moving on the shape assembling methods.

20 Chapter 2. Literature Review

2.2.2.1 Planar shape detection

(a) (b) (c) (d)

Figure 2.6: Visualization of configurations of planar shapes. Given an input
point cloud (a), RANSAC [SWK07] may obtain increasingly precise planar
shape configurations from (b) to (d) by gradually reducing the fitting toler-
ance. Image taken from [OVJ+21].

Detecting planar primitives from 3D point clouds is a long-standing prob-
lem, it consists in grouping input points into clusters while associating a
parametric plane to each of them. User-specified parameters typically can
be fine-tuned to control the precision of the output configuration, as shown
in Figure 2.6. We distinguish four families of methods for fitting planar
primitives to unorganized 3D point clouds. Note that most of these methods
can also detect quadric surface primitives.

Incremental mechanisms (IM). RANSAC and Region Growing are two
widely used mechanisms that detect primitives in an iterative manner. The
former [SWK07, RCP+13, SM19] samples many plane hypotheses and ver-
ifies them against the input data. The plane hypothesis with the largest
number of inliers is then kept as a primitive. The latter [MLM01, RVDHV06,
VTHLB15] operates by growing a local plane hypothesis in a spatial neigh-
borhood of a seed point. Voting schemes in discretized spaces of the primitive
parameters [BELN11, CC08, DI15, SSBC20] are also a popular strategy when
the input points are accurately oriented. While Gaussian sphere mapping is
the traditional choice for planes and cylinders [QZN14], more complex pa-
rameter spaces can also be used for fitting any type of quadrics [BBN+20].
These fast and scalable mechanisms constitute the de facto solutions from
real-world data with efficient implementations in popular geometry process-
ing libraries such as CGAL [OVJ+21]. However, they do not control well the
output quality, leading often to overly complex plane configurations.

2.2. Compact mesh reconstruction 21

Figure 2.7: Network architecture of a deep learning shape detection method
[Li,19]. From a set of input points, PointNet++ is first used to extract three
per-point properties: Memberships, Normal and Types. The order of ground
truth primitives are matched with the output in the primitive reordering step
and the primitive parameters are estimated from the point properties in the
model estimation step. Image taken from [Li,19].

Energy-based models (EB). Variational shape approximation [CSAD04,
WK05] minimizes an approximation error between the input data and a set
of primitives using Lloyd’s clustering algorithm [Llo82]. This approach can
be combined with sequences of splitting and merging of primitives so that
the number of primitives has not to be constant and fixed a priori by the user
[SZP20]. Input data are however supposed to be free of outliers, leading to
good results on synthetic data only. Another popular strategy consists in de-
tecting a set of plane hypotheses before assigning one of them to each input
point using a multi-labeling energy minimization [IB12, PCYS12, PERW16].
While a priori knowledge on label smoothness, output complexity or geomet-
ric regularity can be encoded easily, such discrete formulations require good
plane hypotheses. This can rarely be guaranteed in practice with exist-
ing incremental mechanisms, even when plane hypotheses are enriched with
geometric and spatial priors [MMBM15]. Such methods do not formulate
energies in the whole solution space (a mixed discrete-and-continuous con-
figuration space) where point assignment and estimation of plane parameters
are operated jointly.

Neural network architectures (NN). Deep learning methods have re-
cently emerged as a promising solution to the tedious parameter tuning
problem of traditional algorithms. The end-to-end networks SPFN [Li,19],
Figure 2.7, and ParSeNet [SLK+20] predict per-point properties using off-

22 Chapter 2. Literature Review

the-shelf architectures, typically Pointnet++ [QYSG17], before estimating
the primitive types and parameters. CPFN [LSC+21] proposes an adaptive
patch sampling network to assemble primitive detection results at coarse and
fine scales. HPNet [YYM+21] extracts primitives using a mean-shift clus-
tering operating on a combination of three learned features with adaptive
weights. These networks require high computing resources and can only han-
dle point clouds of a hundred thousand points at best. PrimitiveNet [HZS21]
offers a solution to this scalability issue with a region growing mechanism
operated from the output of two networks, one producing per-point high di-
mensional features and the other predicting whether two neighboring points
belong to the same primitive. This solution, however, requires defect-free,
dense meshes as input. In practice, these learning methods do not gen-
eralize well on real-world data as training sets are composed of synthetic
point clouds sampled from datasets of Computer-Aided Design (CAD) mod-
els [RRQ+21, KMJ+19, ZJ16]. Note that some neural networks also detect
planes from single image [YZ18, LKG+19, QF20] or depth maps [ZYY+17].

Methods with regularity enforcement (RE). Some methods are de-
signed to enforce geometric regularities between planes such as parallelism,
orthogonality or some types of symmetry. This can be done by alternating
fitting and regularization of primitives within the traditional incremental
mechanisms, i.e. Region Growing [OLA16] and RANSAC [LWC+11], or by
inserting pairwise priors in energy-based models [MMBM15]. Mutually or-
thogonal planes that respect the Manhattan-World assumption [CY00] can
also be fitted efficiently by Gaussian sphere mapping [SRF+14]. Some meth-
ods [FLD18, LMBM20] go further by analyzing the structure of objects at
different key abstraction levels so that no user-specified fitting tolerance is
required. In practice, the assumptions for such geometric and structural
regularities are relevant for specific application domains only.

After going over the four different types of planar shape detection meth-
ods, we list their advantage and disadvantage in Table 2.1. None of them are
able to operate in the whole (mixed continuous and discrete) configuration
space of the problem.

2.2. Compact mesh reconstruction 23

IM
Pros Fast, Scalable and efficient implementations (CGAL).
Cons Poor control of output quality (overly complex).

EB
Pros Fast.
Cons Can not explore the whole solution space.

NN
Pros No parameter setting.
Cons Big dataset, not scalable, not robust on real-world data.

RE
Pros Working well on specific application.
Cons Not generic and inheriting cons from IM and EB.

Table 2.1: Pros and cons of four families of planar shape detection methods.

2.2.2.2 Shape assembling

We broadly categorize shape assembling methods into two families: connect
ivity-based methods and partitioning-based methods. Both of them aim to
reconstruct a compact mesh from the detected planar shapes.

Connectivity-based methods. Connectivity-based methods extract the
vertices, edges, and facets of the resultant compact mesh by analyzing the
adjacent relationships between detected planar shapes. [VKVLV11] proposes
a guided α-shape that is bounded by a collection of intersection lines between
planes, which makes the soup of planar shapes that can be connected along
the intersection lines. However, this method is reliant on the guidelines
and cannot handle non-uniform distributed and missing data. To handle
scanned sparse building point clouds that partially or completely miss faces,
[CC08] first finds all the intersected lines between detected neighbor planar

(a) (b) (c) (d)

Figure 2.8: Pipeline of a semi-automatic method [ASF+13]. Departing from
a (a) segmented point cloud, local adjacency relations are automatically
discovered (b) and used to snap the polygons (c). Finally, a compact mesh
is reconstructed with the help of user interaction (d). Image from [ASF+13].

24 Chapter 2. Literature Review

shapes and the boundaries that may infer missing facets, and then extracts
the target compact mesh with the aid of cluster graphs and user interac-
tion. However, the neighboring information is determined erroneously by
the minimum distance between the corresponding regions of points, which
may introduce wrong adjacent relation. A semi-automatic method [ASF+13]
devises five mechanisms to constrain the permitted adjacencies before align-
ing all the detected polygons, Figure 2.8. It also proposes interactive editing
with simple 2D operators to handle missing data. Instead of user interaction,
[LA13] first performs a 3D constrained Delaunay triangulation on a struc-
tured point set that is consolidated using the detected planar shape, then
the output mesh is automatically extracted using graph cut. Optionally, the
output mesh can be simplified based on the classified points without loss of
accuracy, however, it is not suited to missing data.

Partitioning-based methods. To create a compact mesh, partitioning-
based methods first divide the 3D space (inside the bounding box of the input
point cloud) into polyhedrons departing from the detected planar shapes.
Compared to connectivity-based methods, partitioning-based methods are
global and robust to challenging data, e.g. missing data. Several works
are based on a constrained Delaunay triangulation [VKVLV13] or a voxel
grid [SDK09], however, they can not directly generate compact meshes and
some simplification methods are required as post-procession. Compared to
these dense 3D partitioning, we prefer more sparse partitioning which em-
beds the detected planar primitives like (d) shown in Figure 2.9. [CLP10]
uses a two-level hierarchy to partition the 3D space into a polyhedral cell
complex, Figure 2.9. The strategy of introducing ghost planar primitives
and the heuristic for sorting the inserted primitives, however, are not gen-
eral and are based on specific assumptions. As a result, [BdLGM14] uses a
planar arrangement rather than a two-level hierarchy such that the resulting
polyhedral cell complex is independent of the planar primitive insertion or-
der. Additionally, it introduces a more reasonable strategy to generate ghost
planes for occluding segments only. However, building a planar arrangement
is time consuming, which makes the method not scalable. To build the poly-
hedral cell complex more efficiently, [OLA14] transforms the 3D partitioning
into a set of 2D partitioning by separating the 3D space into horizontal slices.
However, this method is only valid for multi-floor indoor scenes. Filtering

2.2. Compact mesh reconstruction 25

Figure 2.9: Overview of a partitioning-based method [CLP10]. Departing
from a point cloud (a), planar primitives (b) are detected and ghost planar
primitives (c) are introduced. The 3D domain is then sliced into a set of
convex polyhedrons (d) by inserting the planar primitives in order. The final
compact mesh (f) is extracted by labeling the occupancy of each polyhedral
cell. Image taken from [CLP10].

and simplifying the detected planar primitives is another way to reduce the
computation burden [NW17]. This method is not scalable and cannot han-
dle more than a hundred planar primitives. Furthermore, [BL20] proposes
a more reasonable way to divide the 3D space, which extends all detected
planar shapes at the same rate until they collide with one another and create
a compact polyhedral partition. It significantly reduces the number of poly-
hedrons compared to the planar arrangement and improves the effectiveness
of partitioning the 3D space. Recently, [CTZ20] leverages the Binary Space
Partitioning (BSP) tree to facilitate 3D geometry learning. It progressively
predicts the planes, convex shapes and combined convex shapes through a

26 Chapter 2. Literature Review

(a) (b) (c) (d) (e)

Figure 2.10: Overview of an assembling method that combines connectivity
and partitioning [FL20]. Departing from the detected planar primitives (a),
connectivity analysis allows to extract the structurally-valid facets (b). The
partition is built by slicing the spatially-close unprocessed primitives while
embedding the structurally-valid facets (c). The facets of the reconstructed
compact mesh (d) are extracted by minimizing an energy using an integer
programming solver (e). Image taken from [FL20].

neural network. Although it is a brilliant integration between compact mesh
reconstruction and deep learning, the number of planes and convex shapes
should be predefined by users, which decreases the resolution.

As a combination of connectivity and partitioning, the hybrid strategy
proposed by [FL20] first connects the structurally-valid primitives, then slices
the rest primitives. It can significantly reduce the complexity of the polyg-
onal cell complex, Figure 2.10.

Chapter 3

Our Contributions

We now discuss the limitations of existing methods and present our contri-
butions to the 3D model repairing and compact mesh reconstruction.

3.1 Repairing

Our previous reviewing in Section 2 shows that the existing repairing meth-
ods for urban models traditionally rely on local analysis and heuristic-based
geometric operations on mesh data structures, which often fail to handle the
diversity and complexity of errors existing in real-world models. In addition,
all the mentioned repairing methods are typically tailored-made for specific
3D formats: either facet-based LOD2 CityGML models or volume-based
IFC models. Therefore, our first contribution is proposing a general and
global framework that can handle both LOD2 CityGML and IFC models
while ensuring the validation of corrected models.

We observe from the defect-laden urban models that the geometric and
topological errors are primarily caused by erroneous connections between ad-
jacent surfaces or volumes. To correct these errors, one way is to rebuilt all
the connection of the input facets. And this can be done by constructing a
kinetic data structure [BL20] that decomposes the 3D space into polyhedral
cells by extending the facets of the imperfect input model. As described in
Section 4, we first convert the input polygon meshes into a soup of discon-
nected semantized facets, which transforms facet-based and volume-based
urban models into the same form. Then the soup of facets is taken as the
input of kinetic framework and generates the kinetic data structure. In the
kinetic framework, the facets are extended to fill the gaps and holes, and
the relations between facets are rebuilt to deal with topological errors. Once
built, the polyhedral cells in the partition are regrouped by semantic classes
to reconstruct the corrected output model. In addition, the semantics in
IFC models are sometimes subject to interpretation, we proposed a confi-

28 Chapter 3. Our Contributions

dence score on the semantic class associated with each polyhedral cell. This
gives users the option to quickly check the polyhedral cells with low confi-
dence and interactively fix the incorrect semantic classes. We demonstrate
the robustness and efficiency of our algorithm on a variety of real-world
defect-laden models and show its competitiveness with respect to traditional
mesh repairing techniques from both CityGML and IFC models.

3.2 Reconstruction

Our previous review demonstrates that there are two common pipelines for
reconstructing compact meshes: simplifying dense mesh and assembling de-
tected planar shapes. In an urban context, we believe that the latter is a
better approach, for the following reasons:

1. In the urban scenes there are a large number of man-made objects,
such as buildings and sculptures, which are almost composed of planar
shapes only. Shape assembling methods can preserve the structural
information that is ubiquitous in man-made objects, such as planarity
and sharp features.

2. Various LODs of reconstructed urban models are required to differ-
ent applications, as stated in Section 1. Shape assembling methods
allow the generation of models with various LODs in an intuitive way:
detecting configurations of planar shapes with different LODs by pro-
gressively reducing user-defined tolerance, Figure 2.6.

3. Some geometric regularities, such as parallelism and orthogonality, are
well recognized in an urban scene. They can be preserved in the gen-
erated compact meshes by regularizing the detected planar shapes.

Among the existing methods, Kinetic Shape Reconstruction (KSR) is proba-
bly the most efficient approach that reconstructs compact meshes from point
clouds by assembling detected planar shapes [BL20]. However, there exist
two weak points of KSR:

1. It relies on a traditional algorithm for detecting planar shapes that
delivers often bad configurations of planar shapes.

2. It requires normal orientation for extracting surfaces, which is difficult
to obtain in the real world.

3.2. Reconstruction 29

(a) (b) (c) (d)

Figure 3.1: 2D Visualization of the definition of good planar shape configu-
rations. A good configuration should have high fidelity, we prefer (a) over (b)
since it has a smaller distance error between primitives and inliers. It should
also be simple, (a) is better than (c) here since it contains fewer primitives.
It should finally have a high ratio of inliers, (a) is more complete than (d)
since it contains fewer outliers.

We contribute to compact mesh reconstruction by overcoming these two
weaknesses in KSR. Determining good planar shape configurations from
point clouds is our second contribution, as described in Section 5.1.

Planar shape detection is a long-standing problem, it consists in group-
ing input points into clusters while associating a parametric plane to each of
them. For detecting good planar shape configurations, we first define their
characteristics. The definition comes from three objectives: fidelity, simplic-
ity and completeness, Figure 3.1. Finding a good configuration now turns
out to be a trade off between these three objectives. For all the planar shape
detection methods reviewed in Section 2, none of them seek for the three
objectives simultaneously and none of them can operate in the whole solu-
tion space which contains a continuous plane parameters estimation space
and a discrete point assignment space. We therefore proposed an algorithm
that operates in the mixed discrete-and-continuous configuration space by
seeking high fidelity, high simplicity and high completeness. Our algorithm
consists in two key elements: (1) a simple and natural energy function and
(2) an efficient exploration mechanism. The energy function measures the
quality of configurations in the large solution space with respect to the three
objects and the exploration mechanism uses five operators to modify a con-
figuration under the guidance of a dynamic priority queue. In addition,
our energy function and operators can be enriched. For instance, when the
geometric regularity is taken into account as an additional objective, the
regularity term is introduced to the energy function and the regularity oper-

30 Chapter 3. Our Contributions

ator is designed to conduct regularization, in Section 5.1.4. We demonstrate
the potential of our method in a variety of scenes, from organic shapes to
man-made objects, and sensors, from multiview stereo to laser, and show
its efficacy with respect to existing approaches. We also demonstrate high-
quality reconstructed compact meshes by using our method in place of the
Region Growing method in KSR.

Facet extraction of KSR is an energy-minimizing task that requires nor-
mal orientation. We also propose a secondary contribution that lies in a
practical and flexible way for extracting the facets without the use of normal
orientation.

Surface extraction is solved by using graph-cut to identify each poly-
hedral cell in the partition with either inside or outside in KSR. However,
oriented normals are needed for utilizing the graph-cut solver and they are
not readily available. Obtaining occupancy solely from the coordinates of
the input points is required to make the pipeline more practical. Some
deep learning techniques discussed in Section 2 can estimate the occupancy
of each location in 3D space taking only the point coordinates (x, y, z) as
input. In Section 5.2, we employ an efficient and scalable implicit neural
network (POCO) [BM22] to predict the occupancy in the bounding box of
input point clouds, which is then utilized by the graph-cut solver. The com-
pact meshes therefore can be reconstructed from only the point coordinates
through combining KSR and POCO. We demonstrate the potential of the
combination in a variety of scenes and objects.

Chapter 4

Repairing 3D urban models

4.1 Introduction

Computerized 3D models that recreate real urban environments play a more
and more fundamental role in our everyday life for assisting us during navi-
gation, imagining our urban projects, entertaining us with video games and
movies, optimizing our telecommunication networks or the construction of
our houses, reducing our energetic consumption, or protecting us by antici-
pating disaster scenarios. At the building scale, 3D models are usually con-
ceptualized through the Building Information Modeling (BIM) framework,
typically with the Industry Foundation Classes (IFC) format that spatially
decomposes a building into volumetric objects. The boundary of these ob-
jects can be represented under the form of 2-manifold watertight polygon
meshes enriched with semantic properties indicating their nature, e.g. wall,
floor, door or empty space. At the city scale, Geographic Information Sys-
tems (GIS) practitioners rather rely on the CityGML formalism to repre-
sent urban objects with different Levels Of Detail (LOD), as described in
[GL12]. In particular, the popular LOD2 CityGML models are typically
single solids whose surface components are enriched with semantic proper-
ties. Both IFC and CityGML 3D models can thus be represented under
the form of 2-manifold watertight polygon meshes whose volume or surface
components are enriched with semantic properties.

During their creation (either interactively with human operators or au-
tomatically with reconstruction algorithms), these 3D models are frequently
corrupted by geometric and semantic errors such as degenerated facets, self-
intersections, gaps or non-manifold components that require to be corrected
before use. Figure 4.1 shows such errors degrading CityGML and IFC mod-
els. Repairing these 3D models in an automated manner is an important
scientific challenge. Existing methods typically detect and identify errors
before correcting them by local geometric operations such as insertion, re-

32 Chapter 4. Repairing 3D urban models

Figure 4.1: Imperfect CityGML (left) and IFC (right) urban models. The
closeups show some typical geometric and semantic errors contained in the
models with, from left to right: self-intersection, hole, vertex misalignment,
overlapping, wrong facet orientation and gap.

moval or snapping of facets. Built on heuristics and a fine parameter tuning,
these methods do not generalize well to the variety of buildings.

To address this challenge, we adopt a more global strategy based on the
construction of a space partitioning data structure. Built from the facets
of the defect-laden input model, the latter decomposes the 3D space into a
valid embedding of polyhedra from which the corrected model is extracted.
Intuitively, such a data structure can be seen as a scaffold in which all the
relations between facets are re-built in a natural manner. This strategy
is based on the observation that most of errors contained in 3D models
originate from a wrong connectivity between adjacent facets. Such a strategy
has been inspired by [DDVM14] who construct Combinatorial Maps [DL14]
from soups of facets. Their construction mechanism, however, suffers from
a severe drawback: based on snapping and cutting operations, it cannot
guarantee to return valid combinatorial maps. In contrast, our method relies
upon a recent kinetic data structure [BL20] whose construction is exact,
time-efficient, parameter-free and conceptually natural: input facets extend
at constant speed until colliding and forming a polyhedral partition of the
3D space. Once built, the cells of the polyhedral partition are regrouped by
semantic classes, the output 3D model being defined as the set of facets at the

4.2. Overview 33

interface between cells of different semantic labels. This step is formulated
as an energy minimization problem.

Contrary to local heuristic-based algorithms, our approach has a low
number of parameters and offers a high genericity for repairing geomet-
ric and semantic errors contained in different types of urban models. We
demonstrate the robustness and efficiency of our algorithm on a variety of
real-world defect-laden models and show its competitiveness with respect to
traditional mesh repairing techniques on both BIM and GIS data.

Our approach presents several contributions to the field. First, from a
conceptual point of view, we propose a repairing system that, in contrast
to conventional detection-then-correction pipelines, undo the connectivity
between all facets of the input model before rebuilding them in a natural
and efficient manner. Then, we present a general and flexible formulation to
the semantic labeling of the polyhedral partition by seeking both consistency
with the input semantics and connectivity simplicity within a Markovian
energy minimization problem. Finally, we propose two application scenarios
for repairing 3D models of buildings, one for surface-based models using
the CityGML formalism and one for volume-based models using the IFC
standard. Experiments on these two application scenarios were performed
on a variety of building types such as residential, industrial, architectural
and building blocks, with different input complexity ranging from 5 to 2, 146

facets for CityGML and from 978 to 142, 565 facets for IFC models.

4.2 Overview

Our algorithm requires as input a polygon mesh describing a building with
a CityGML or IFC formalism. While these formalisms are different (the for-
mer is based on a surface-based representation whereas the latter relies upon
a volume-based representation), one strength of our approach is to first con-
vert these specific input polygon meshes into a general soup of disconnected
semantized facets (explained in Section 4.3.1). We then make the extracted
facets grow at constant speed within a kinetic framework to decompose the
3D space into a low number of convex polyhedra (Section 4.3.2). Finally,
these polyhedra are regrouped according to semantic similarities within an
energy minimization detailed in Section 4.3.3. The output 3D model is a
polygon mesh whose facets are semantically enriched, similarly to the input

34 Chapter 4. Repairing 3D urban models

model. These three steps of our approach are illustrated in Figure 4.2.

Our algorithm is designed to correct the most frequent geometric and
semantic errors contained in urban 3D models. These errors include ver-
tex misalignment with the duplication of vertices whose coordinates are not
exactly identical, inverted facets that have a wrong orientation, semantic
defects with volumes associated with the wrong semantic class and general
problems of self-intersections, holes or overlapping with typically a wrong
connection of adjacent facets of volumes components. Note that our algo-
rithm does not handle large missing parts that require the use of tailored-
made completion algorithms.

Disassembling

Kinetic
partition

Semantic
labeling

Formatting

Input model Output model

Figure 4.2: Overview of the proposed approach. Our algorithm departs from
an urban 3D model corrupted by geometric and semantic errors, here a BIM
model with gap, element overlapping and inaccurate vertex position (top
left). We rebuild all the geometric relations between its facets by first col-
lecting and enriching them with semantic information (bottom left) followed
by constructing a kinetic data structure that partitions the space into poly-
hedra (bottom middle). The latter are then regrouped by using a semantic
labeling formulation (bottom right) and reformatted into a BIM model in
which the initial errors are corrected (top right).

4.3. Our approach 35

(a) (b)

Figure 4.3: Disassembling of an IFC model. After collecting the boundary
facets of each IfcElement (a), we assign them the semantic class of their
IfcElement (b). As illustrated in the closeup, each surface component is
typically associated with two facets of opposite direction and with different
semantic class. Color code: space, outside, wall, slab, roof).

4.3 Our approach

We now describe the different steps of our algorithm and explain how it can
be used on both GIS and BIM models.

4.3.1 Disassembling

The first step consists in extracting a soup of disconnected facets enriched
with semantic properties from the input model. Each input facet is ori-
ented: its normal points by construction towards the outside space in case
of CityGML models and towards the center of the IfcElement to which the
facet belongs in case of IFC models. Our idea is to collect each facet of the
input model and to assign it the semantic class pointed by its normal.

In case of an IFC model, semantic classes are typically roof, wall, slab,
door, window, space or outside. These classes correspond to the nature of
volume elements that can be found in the IFC formalism where, for instance,
the class wall refers to an IfcWall element. For each facet of an IfcElement,
we thus simply assign it the corresponding semantic class of this IfcElement.
As illustrated in Figure 4.3, IfcElements usually share common boundaries.
The soup of collected facets thus contain coplanar facets with opposite ori-
entations and assigned to different semantic classes.

In case of a CityGML model, we consider the input model as a simple
boundary-based representation without real semantic classes attached to it,
ie without distinction between facade and roof facets for instance. However,
by assuming the output model must be watertight, we can distinguish two

36 Chapter 4. Repairing 3D urban models

(a) (b)

Figure 4.4: Disassembling of a CityGML model. Each facet of an input
CityGML model (a) is duplicated and inverted. The class outside is assigned
to each input facet while the class inside is assigned to the duplicated ones
(b). Color code: input facets associated with the class outside in grey,
duplicated ones associated with the class inside in blue.

types of volumes through the inside and the outside of the building. We
then consider two semantic classes: inside and outside the building. As
illustrated in Figure 4.4, we assign the class outside to each oriented facet of
the input model. We also duplicate each facet, invert its normal, and assign
it the class inside. This duplication operation is required because, contrary
to IFC models that describe volume objects, CityGML models only capture
the boundary surface of a building. This assignment is natural and simply
relies on the assumption that the normals of CityGML input facets point
toward the outside of buildings.

4.3.2 Kinetic partitioning

Our goal is now to build a kinetic data structure that partitions the space
into polyhedra aligned with the collected facets.

We first regroup coplanar facets, i.e.
facets that share the same supporting plane,
and convert them into a single convex poly-
gon. This polygon is defined as the convex
hull of the coplanar facets, i.e. the smallest
convex polygon that contains all the coplanar facets. As illustrated in the
inset, input coplanar facets (left) are converted into a simpler convex poly-
gon (right) that will be propagated in the 3D space more easily during the
kinetic simulation (see red arrows). Note that converting input facets into
convex polygons does not lead to a loss of information as, for each edge of an

4.3. Our approach 37

Input polygons Kinetic partition Reconstructed model

Figure 4.5: Kinetic partitioning of an IFC model. The 142, 565 facets of the
input defect-laden model (left) are regrouped into 668 convex polygons. The
kinetic partition built from the convex polygons contains 16, 306 polyhedra
(middle) from which the reconstructed model is extracted (right). The IFC
model contains 495 IFC elements including 209 IfcWall, 4 IfcRoof, 19 IfcSlab,
120 IfcWindow, 65 IfcDoor, 77 IfcSpace and 1 outside space.

original facet, there also exists an adjacent input facet that will be converted
to a convex polygon.

We then exploit the kinetic framework proposed by [BL20] to make the
convex polygons grow at constant speed until colliding with each other and
decomposing the 3D space into polyhedra. The principle of such a kinetic
framework has been first formalized in Computational Geometry by [Gui04].
A kinetic data structure corresponds to a set of geometric primitives, here
convex polygons, whose coordinates are continuous functions of time. A
kinetic framework consists in maintaining the validity of a set of geometric
properties while the primitives evolve over time. When a property is no
longer valid (also called an event), some geometric modifications are operated
on the set of primitives to make the property valid again. This situation
typically appears when two primitives collide. The algorithmic purpose of
kinetic frameworks is to dynamically order the times of occurrence of the
events within a priority queue in an efficient manner. A kinetic simulation
then consists in un-stacking this queue until no primitive can move anymore.
More information about this process can be found in Section 4 of [BL20].

Such a kinetic framework produces compact partitions with a low number
of polyhedra. The output partition comes with strong guarantees including
an exact construction with rationals, the convexity of the polyhedra and the
validity of the polyhedral embedding. From an IFC model, the construc-
tion process is also highly scalable and can handle a large number of convex
polygons (themselves made from potentially many input coplanar facets) in

38 Chapter 4. Repairing 3D urban models

Input polygons Kinetic partition Reconstructed model

Figure 4.6: Kinetic partitioning of a CityGML model. The 378 facets (left)
of the input model are grouped into 52 convex polygons, leading to the
construction of a kinetic partition of 356 polyhedra (middle). The corrected
model is extracted by selecting polyhedra located inside the building (right).
Closeups show situations where facets are initially not well connected, the
kinetic partition allowing us to properly re-build these connections.

reasonable time, Figure 4.5. Figure 4.6 shows an example of such a construc-
tion process from a CityGML model. In particular, we can see the kinetic
strategy allows us to properly re-build the erroneous facet connections.

4.3.3 Semantic labeling

We now assign one of the possible semantic classes to each polyhedral cell
of the kinetic partition. We formulate this problem as a multi-label energy
minimization where the label set is L = {inside, outside} in case of CityGML
models and L = {slab, space, wall, roof, door, window, outside} in case of
IFC models. These label sets were used for our experiments, but can freely
be extended to further labels. In particular, the label set for IFC models can
be reduced or augmented depending on the semantic complexity of models.
Such a semantic labeling is not an obvious operation as i) some facets of the
kinetic partition are not present in the input model and ii) some facets of
the kinetic partition can inherit from conflicting semantic information when
errors are present in the input model. To solve this problem, we proposed
an energy minimization framework with a multi-objective energy function.

We denote by C the set of polyhedral cells of the kinetic partition, and by
xi ∈ L, the label that specifies the semantic class associated with polyhedral
cell i ∈ C. We measure the quality of a possible configuration x = (xi)i∈C

with a two-term energy of the form

U(x) =
∑
i∈C

Di(xi) + λ
∑
i∼j

Vij(xi, xj) (4.1)

4.3. Our approach 39

where Di is an unary data term, and Vij a potential over pairs of adjacent
polyhedral cells. λ is a parameter balancing these two terms. i ∼ j denotes
the set of pairs of adjacent cells i and j.

The unary data term Di(xi) measures the consistency between the se-
mantic class xi assigned to the polyhedral cell i and the semantic properties
of enriched facets collected during the disassembling step. More specifically,
this term is formulated as a sum of local consistency measures over all the
polygonal facets forming the polyhedral cell i so that

Di(xi) =
∑
f∈i

df (xi) (4.2)

where df (xi) is a function measuring the local consistency on polygonal
facet f . This function checks whether the enriched facets collected during
the disassembling step which have the same supporting plane than polygonal
facet f and oriented toward the center of mass of cell i have the same semantic
class than label xi. The function is defined by

df (xi) =


0 if Ωf = ∅∑
p∈Ωf

af (p)× 1{xi ̸=lp} otherwise
(4.3)

where Ωf is the set of enriched facets collected during the disassembling
step which i) have the same supporting plane than the polygonal facet f ,
and ii) are oriented toward the center of mass of cell i. af (p) is a func-
tion that measures the overlapping area between the enriched facet p and
the polygonal facet f , 1{.} is the characteristic function, and lp is the se-
mantic class associated to the enriched facet p.In the inset for instance,

polyhedral cell i

polygonal facet f

p1 p2 p3

Ωf is composed of three enriched
facets p1, p2 and p3, but only p1 and
p2 are involved in the computation
of df as af (p3) = 0. The dash red
line represents the supporting plane
common to the three enriched facets
and to the polygonal facet f (black
line-segment).

The potential Vij penalizes configurations that are either geometrically
overly complex or semantically improbable. This term is formulated as a
generalized Potts model so that:

Vij(xi, xj) = aij ·W (xi, xj) (4.4)

40 Chapter 4. Repairing 3D urban models

where aij is area of the common facet between adjacent polyhedral cells i

and j and W is a matrix of size |L|×|L| where coefficient W (xi, xj) indicates
whether label xi and label xj are likely to be assigned to two adjacent cells.
Three cases are distinguished to set the value of its coefficients:

• W (xi, xj) = 0 if xi = xj . This condition favors label homogeneity
between adjacent cells. It allows us to encourage solutions where re-
constructed volume elements are connected in a simple way.

• W (xi, xj) = 1 else if label xi and label xj are unlikely to be spatially
next to each other, e.g. class door and class roof as doors are tradi-
tionally positioned vertically along walls.

• W (xi, xj) = 0.1 otherwise, i.e. when label xi and label xj are likely to
be spatially next to each other while being different.

To decide whether two semantic classes are likely to be next to each other,
we conducted a statistical analysis over a large range of real-world BIM
models in which occurrences below 1% were considered as unlikely1. Figure
4.7 shows the impact of this potential term on an IFC model.

4.3.4 Formatting

The last step consists in converting the polyhedral partition in which each
cell is assigned to a semantic class into a IFC or CityGML model. This
operation is realized by simply grouping the adjacent cells with an identical
semantic class: each resulting polyhedron gives, in case of a BIM model, an
IFC element whose surface boundary is the polyhedron itself and whose type
is given by the semantic class of the polyhedron. In case of a CityGML model,
we simply regroup the adjacent cells labeled as inside. Because the kinetic
partition is a valid embedding with an exact construction, the formatting
step is simple and guarantees output volume elements do not overlap and
share common polygonal facets. It also allows us to easily retrieve and
save the adjacency relationship between the volume elements which was not
originally available in the input file.

1For CityGML models, the notion of spatial proximity between classes is not used as
only two classes are considered: we simply have W (xi, xj) = 0 if xi = xj , and W (xi, xj) =

1 otherwise.

4.4. Implementation details 41

λ = 0 λ = 0.5
(with Potts prior)

λ = 0.5 λ = 2.5

Figure 4.7: Impact of parameter λ. When only the data term is taken
into account (λ = 0, top left), polyhedral cells are mislabeled at several
locations, as shown on the closeups where, for instance, an outside large cell
is wrongly assigned to space. Our potential typically allows the correction of
such mislabeling (λ = 0.5, bottom left). Giving too much importance to the
potential can however oversimplify the labeling and makes small elements
such as windows disappear (λ = 2.5, bottom right). When considering
simply a standard Potts model with a binary matrix W (top right), some
unrealistic configurations can appear such as horizontal facade components.

4.4 Implementation details

The proposed approach has been implemented in C++. The CGAL library
has been used for the manipulation of the geometric data structures and the
geometric operations and the OpenSceneGraph library for the I/O opera-
tions on the IFC models. The efficiency of our approach relies upon several
technical details that we explain below.

Coplanar facet grouping with tolerance After the disassembling step,
coplanar facets are grouped and converted into a single convex polygon that
will be propagated during the kinetic simulation. However, due to floating
point imprecision in the coordinates of the facets, an exact coplanarity be-
tween facets is often improbable. In practice, we rather rely upon the notion

42 Chapter 4. Repairing 3D urban models

Figure 4.8: 100 LOD2 models of varying complexity collected from the
Hanover 3D digital city model database.

of near-coplanarity by introducing two tolerance parameters. The first one
defines the maximal angle between the normal vectors of two near-coplanar
facets whereas the second specifies the maximal orthogonal distance between
the centroids of two near-coplanar facets. Reasoning with near-coplanar
facets allows us to avoid rounding issues which constitute a common source
of errors in urban models [BLD+16]. In our experiments, we typically set
the maximal angle to 1 degree and the maximal distance to 0.001 meter.

Simplification of some fine geometric details Input models can con-
tain some fine geometric details, as for instance, handles on doors or windows.
Such details are not important in the semantic understanding of the build-
ing and have a high geometric complexity that reduces performances of the
kinetic partitioning. We thus replace these geometric details by 3D bound-
ing boxes in our pipeline. The user then has the possibility to reintegrate
these geometric details in the output models, but we do not offer specific
operations to repair their potential geometric errors.

Introduction of the outside class for IFC models We introduce the
semantic class outside to label the cells that are not part of the building.

4.5. Experiments on CityGML models 43

This class does not exist as an IfcElement in IFC models but is necessary in
our labeling formulation in order to assign a semantic label at any location
in the 3D space. In practice, we duplicate all the non-overlapping facets,
invert their normals and assign them the class outside and space during the
disasembling step. During the labeling step, we also label the polyhedral
cells located on the borders of the bounding-box with the class outside.

4.5 Experiments on CityGML models

We evaluated our algorithm for repairing urban models represented with
the CityGML formalism, in particular with a LOD2 (Levels Of Detail) de-
scription. We used the Val3Dity tool proposed by [Led18] to test whether a
model is error-free or corrupted. This tool allows us to check the validity of
models against a large range of geometric and topological errors, from self-
intersecting facets to vertex misalignment through non-planarity and holes.

Tests with simulated errors We first tested our algorithm from 100

buildings of varying complexity in the Hanover 3D digital City model dataset
[Han21], in which we artificially introduced random errors. We selected a
collection of 100 LOD2 buildings of different types, from residential houses
to architectural structures through industrial estates, as illustrated in Fig-
ure 4.8. The average number of facets per building is 317. As illustrated
in Figure 8, structures such as churches, industrial estates and exhibition
centres are more complex and can contain up to 2, 146 facets. We then
generated 300 defect-laden models from this collection, all invalid with re-
spect to the Val3Dity tool, by randomly perturbing vertices and removing
facets, leading to the generation of errors such as self-intersections, holes,
or vertex misalignment. Our algorithm successfully repaired 292 of the 300
invalid models. The 8 still invalid models returned by our algorithm had
typically too many missing facets to properly reconstruct the buildings, as
shown in Figure 4.12. Figure 4.9 shows some buildings before and after be-
ing repaired by our algorithm. The defects such as holes, self-intersections
and vertex misalignment are properly fixed, even for the buildings with a
complex geometry.

Tests with real-world errors We also conducted experiments on two
defect-laden CityGML datasets on the cities of Lyon, France [Met15] and

44 Chapter 4. Repairing 3D urban models

input models

repaired models

Figure 4.9: Visual results on five buildings from the Hanover 3D digital city
model database. The simulated errors introduced in the input models (top)
are correctly fixed by our algorithm (bottom).

Nieuw Binckhorst, The Hague, The Netherlands [The18]. They represent
a dense city downtown and a complex industrial area respectively. These
two datasets, illustrated in Figure 4.10, have been produced by national
organizations in real-world conditions. Residential houses and warehouses
are typically described by a few dozen facets while skyscrapers, churches
and industrial estates can reach up to 684 facets. Most of buildings contain
errors and do not pass the validity test of Val3Dity, i.e. 1158 out of 1421
buildings are invalid for the Lyon dataset as well as all the 414 buildings
of the Nieuw Binckhorst dataset. Our algorithm achieves repairing 99.6%

(respectively 92.5%) of the invalid buildings for the Lyon (respectively Nieuw
Binckhorst) dataset.

Figure 4.11 shows some examples of invalid buildings with non-planar
facets, vertex misalignment, holes and self-intersecting facets that have been
correctly repaired by our algorithm. Besides correcting these geometric er-
rors, our algorithm produces meshes which are guaranteed to be watertight.
As illustrated in Figure 4.12, our algorithm fails to repair the input mesh
when too many facets are missing or when the mesh is highly non-manifold.

Comparisons We compared our algorithm with the specialized HSW al-
gorithm [ZLSF18] designed for repairing errors in CityGML LOD2 buildings.
Three evaluation criteria were considered: (i) applicability that measures the
ratio of buildings processed by the algorithm, (ii) accuracy that measures the
ratio of buildings successfully corrected by the algorithm to the number of
processed buildings, and (iii) the processing time. As illustrated in Table 4.1,

4.5. Experiments on CityGML models 45

Nieuw Binckhorst dataset

Lyon dataset

Figure 4.10: Lyon and Nieuw Binckhorst CityGML datasets. Produced by
national organisms in real-world conditions, most of buildings of these two
datasets are corrupted by geometric errors. 1158 out of 1421 buildings are
invalid according to the Val3Dity tool for Lyon as well as all the 414 build-
ings for Nieuw Binckhorst. Each building in Lyon CityGML dataset is repre-
sented as Solid while as MultiSurface in Nieuw Binckhorst CityGML dataset.

our algorithm outclasses the HSW algorithm on each of the three criteria.
Thanks to our global strategy that disassembles then reassembles facets, our
algorithm is very general and can be applied on all the input invalid models
of the Lyon and Nieuw Binckhorst datasets. This is not the case for the HSW
algorithm that cannot be run on the complex and highly corrupted build-
ings. Our accuracy is higher by a large margin and our processing times are
faster by approximately one order magnitude.

We also compared our algorithm with three generic mesh repairing tech-
niques, i.e. PMP [SB20], MeshFix [Att10] and PolyMender[Ju04]. Fig-
ure 4.13 shows a visual comparison on four different CityGML LOD2 build-
ings. By exploiting a local repairing strategy, the surface-based methods
MeshFix and PMP often generate geometric inconsistencies when input er-
rors cannot be fixed, which often also leads to a loss of geometric details.
Similarly to our approach, PolyMender is a volume-based method that offers

46 Chapter 4. Repairing 3D urban models

input models

repaired models

Figure 4.11: Visual results on four buildings of the Lyon and Nieuw Binck-
horst CityGML dataset. Our algorithm achieves repairing geometric errors
such as (from left to right) non-planar facets, vertex misalignment, holes and
self-intersecting facets.

input model output model input model output model

Figure 4.12: Failure cases. When the input mesh is highly non-manifold
(left), some parts of the building are typically omitted. Our algorithm also
fails to repair the input mesh when too many facets are missing (right).

more robustness to this problem and guarantees a watertight output mesh.
However, PolyMender relies upon a volumetric grid as space-partitioning
data structure that over-simplifies the output mesh and does not preserve
sharp features. In contrast, our kinetic data structure is resolution-independent
and not axis-aligned which allows us to repair meshes without any geometric
accuracy loss compared to the input mesh. In Figure 4.13, only our method
can correctly repair the four input models.

4.6 Experiments on IFC models

We tested our algorithm on IFC models. Contrary to experiments realized
in Section 4.5 on CityGML models, databases of IFC models are more dif-

4.6. Experiments on IFC models 47

Lyon Nieuw Binckhorst
#input invalid buildings 1158 414

HSW
Applicability 50.3% 91.1%
Accuracy 29.9% 35.8%
Processing time (sec. per building) 2.89 10.51

ours
Applicability 100% 100%
Accuracy 99.6% 92.5%
Processing time (sec. per building) 0.62 0.3

Table 4.1: Quantitative comparison against the HSW algorithm [ZLSF18]
on the Lyon and Nieuw Binckhorst datasets. Applicability refers to the
ratio of buildings processed by the algorithm to the number of invalid input
buildings. Accuracy refers to the ratio of buildings successfully corrected (i.e.
valid according to the Val3Dity tool) to the number of buildings processed
by the algorithm.

ficult to find. For our experiments, we rely on a set of nine IFC models of
real-world buildings designed by BIM experts. This set includes five houses
(three poorly detailed and two highly detailed), two tall residential struc-
tures, a single-floor office building and a highly detailed school. They have
different complexity, with the number of IfcElements ranging from 10 to
509 and the number of input facets ranging from 978 to 142, 565. Because
there is no tool available in the literature to test the validity of IFC models,
we propose several criteria to check whether an IFC model contains some
obvious geometric or semantic errors:

• Manifoldness test: We check that the boundary of each IFC element
is a watertight, 2-manifold and consistently oriented polyhedron.

• Overlapping test: We check for each pair of adjacent IfcElements that
their corresponding volumes do not overlap through a non-zero volume.

• Gap test: We check for each pair of adjacent IfcElements that there is
no non-empty space between their corresponding volumes.

• Semantic test: We check that (i) the semantic class of each IfcElement
is correct and (ii) there is no large volume inside the building not
associated with an IfcElement.

48 Chapter 4. Repairing 3D urban models

invalid building PolyMender MeshFix PMP ours

Figure 4.13: Visual comparisons with the generic mesh repairing methods
PolyMender[Ju04], MeshFix [Att10] and PMP [SB20]. Only our method can
correctly repair the four input models without remaining errors or loss of
geometric accuracy.

We tested our algorithm on IFC models that differ in terms of complex-
ity and levels of detail. Figure 4.14 presents visual results while Table 4.2
provides a quantitative evaluation of these results. Figure4.15 illustrates the
robustness of our algorithm with the correction of challenging errors. One
can see in Table 4.2 that the number of IfcElements slightly decreases after
the repairing process: some input adjacent IfcElements with the same se-
mantic class are typically merged during the semantic labeling. A strength
of our algorithm is to guarantee that the boundary of each output IfcEle-
ment is, by construction, a watertight, 2-manifold and consistently oriented
polyhedral surface mesh. As a result, the manifoldness test is always valid on
the corrected output model. This is not the case in the input models where
around half of the IfcElements typically suffers from manifoldness issues (see
the #ME column in Table 4.2). Our algorithm can also fill the potential
gap in between adjacent IfcElements or separate them when they overlap, as
we can see in the #OE and #GE columns in Table 4.2. This is made pos-
sible thanks to the grouping of near-coplanar input facets that allows us to
realign geometric approximations in a global manner. Our algorithm finally

4.6. Experiments on IFC models 49

case-1 case-2 case-3 case-4 case-5 case-6

In
pu

t
If
cD

oo
r

If
cW

in
do

w
If
cW

al
l

If
cS

la
b

If
cR

oo
f

If
cS

pa
ce

Figure 4.14: Visual results on different IFC models. Our algorithm rebuilds
the various IfcElements of an input IFC model (top) while guaranteeing a
valid embedding of the volumes. Input defects such as overlapping IfcEle-
ments or gaps between IfcElements (see closups) are fixed even for complex
buildings. The reconstructed IfcElements of each semantic class are shown
from the second to last rows inside the polyhedral partition (black wire-
frame). Color code: roof , wall, window, space, slab and door.

reduces the number of semantic errors, but is not able to entirely correct
them. Situations where semantic errors cannot be corrected occur when the
human-operator wrongly annotated a large IfcElement in the input model.

50 Chapter 4. Repairing 3D urban models

#IfcElement #ME #OE #GE #SE

case-1
Input 509 236 12 31 0
Output 498 0 0 0 0

case-2
Input 125 90 8 2 5
Output 144 0 0 0 4

case-3
Input 577 182 17 1 2
Output 554 0 0 0 0

case-4
Input 48 25 9 3 2
Output 46 0 0 0 2

case-5
Input 51 20 3 3 1
Output 49 0 0 0 0

case-6
Input 10 6 2 0 0
Output 10 0 0 0 0

Table 4.2: Quantitative results on the IFC models shown in Figure 4.14.
#ME (respectively #OE, #GE and #SE) refers to the number of times
where the manifoldness test (respectively overlapping test, gap test and se-
mantic test) is not valid.

case-1 case-2 case-3 case-4 case-5 case-6
#Input facets 101967 27532 13508 12394 5012 978
#Primitives 958 598 176 120 109 28
#Polyhedra 19636 9629 13999 1188 1041 124
Kinetic partitioning (sec.) 24557.4 4507.82 108.775 24.1 18.17 0.618
Semantic labeling (sec.) 54.508 14.285 24.0995 1.437 1.3 0.232

Table 4.3: Performance of our algorithm on the IFC models presented in
Figure 4.14.

Table 4.3 gives some statistics on the complexity of the IFC models pre-
sented in Figure 4.14 and the performance of our algorithm. Kinetic parti-
tioning is typically the most time-consuming step, especially when the num-
ber of input facets is high. In order to reduce the processing time of this
step, one possibility is to exploit a subdivision scheme within the kinetic
framework as detailed in [BL20]. Processing time for the semantic labeling
step is shorter, typically a few seconds on a medium-complexity IFC model.

Because errors in IFC models are sometimes subject to interpretation, it
can be interesting to provide to the user a confidence map on the semantic
class associated with each polyhedral cell. This can be done by simply choos-

4.6. Experiments on IFC models 51

Figure 4.15: Correction of an IFC model. Our algorithm automatically cor-
rects a defect-laden IFC model (left) containing multiple types of errors, as
shown in the closeups with (from left to right) confusions between semantic
classes, non-manifold situations, IfcElement overlaps and gaps. Note in par-
ticular that our corrected IFC model (right) properly fills in the large gap
as IfcSpace under the roof.

ing this score as the unary data term of Equation 4.2, where lower means
higher confidence. Figure 4.16 illustrates the use of such a confidence score
as a way to check spatial locations where our algorithm might have taken
the wrong choice. A human operator can then easily select a polyhedral
cell and modify its semantic label. Such a case of user assistance is shown
in Figure 4.17 with examples of semantic errors that were not corrected by
our algorithm but can be easily fixed by a human operator guided by the
confidence map. Note that only the results from Figure 4.17 have not been
obtained automatically.

52 Chapter 4. Repairing 3D urban models

high

low

co
nfi

de
nc

e

Figure 4.16: Confidence score. Our algorithm provides to the user a confi-
dence score that highlights the locations where the semantic labeling might
be erroneous. Transparent cells mean high confidence on the result whereas
dark red means uncertainty.

4.7 Conclusion

We proposed an automatic approach for repairing geometric errors contained
in urban models. The originality of our approach lies on the construction
of a kinetic data structure that decomposes the 3D space into polyhedral
cells by extending the original input facets. It allows us to re-build all the
relations between the input facets in an efficient and robust manner. One
strength of our approach is its capacity to adapt to different types of urban
models, to CityGML and IFC models.

Our algorithm has been tested on a variety of approximately 2, 100

CityGML models with both simulated errors and real-world errors made
during their conception or reconstruction. It offers a good robustness to
various geometric errors including self-intersections, gaps and vertex mis-
alignment, in contrast to specialized CityGML model repairing methods and
general mesh repairing techniques. Because the latter use local geometric
operators, they cannot correct non-local errors, contrary to our algorithm.

4.7. Conclusion 53

Figure 4.17: Failure cases corrected by human interactions. The input IFC
model (left) contains errors (see closeups) that cannot be repaired by our
algorithm (middle). These errors can be located by an human operator
checking the low confidence scores and modifying the semantic classes of the
concerned cells (right).

Failure cases typically occur when the input model is highly non-manifold
or contains too many holes. Also, our algorithm cannot directly correct se-
mantic errors in CityGML models as our semantic labeling formulation only
makes the distinction between the inside and the outside of a building.

We also tested our algorithm on nine IFC models which have been created
by BIM experts in real-world conditions. In particular, these models contain
numerous geometric and semantic errors that originate from inconsistencies
between adjacent IfcElements. Our experimental validation on IFC models
is less extended than for CityGML model for two reasons: (i) IFC mod-
els are less common than for CityGML models and not easily accessible in
practice, (ii) repairing BIM models has not been intensively studied in the
literature. Our algorithm is robust to different types of errors such as gaps
and overlaps between IfcElements or non-manifoldness of IfcElement bound-
aries. Contrary to CityGML-based experiments, our algorithm can correct
some semantic errors, i.e. wrong semantic class associated with some IfcEle-
ments, thanks to the multi-class labeling formulation in which semantically
improbable configurations are penalized. However, all the semantic errors
cannot be repaired automatically by our algorithm. In numerous situations,
the corrections of semantic errors are subject to interpretation and require
the assistance of an human operator to take the good decision.

From both CityGML and IFC models, our algorithm offers good perfor-
mance that originates from the use of efficient geometric data structures and

54 Chapter 4. Repairing 3D urban models

graph-based optimization techniques. In particular a complex architectural
building composed of thousands facets can be repaired in a few minutes with-
out exceeding the memory capacity of a standard laptop. A simple house
with a hundred facets is processed in almost real-time.

Chapter 5

3D Compact Mesh
Reconstruction

In this section, we introduce our contributions on reconstructing compact
meshes, which lie in the improvements of Kinetic Shape Reconstruction
(KSR) [BL20]. We first proposed a method to detect good planar primi-
tive configurations from point clouds. The good planar primitives can lead
to high-quality compact meshes. We then proposed a more practical re-
construction pipeline by combining KSR and an implicit neural network.
Because of the flexibility of the pipeline, normal orientation is not necessary.

5.1 Planar primitive detection

5.1.1 Introduction

Geometric primitives are popular representations for processing massive 3D
data. Such parametric shapes offer a more compact yet meaningful descrip-
tion than raw point clouds or dense meshes [KYZB18]. Among the most com-
mon types of primitives, planes are particularly important due to their rele-
vance to man-made environments, e.g. urban and indoor scenes. They have
been used in many data processing tasks such as data registration [ZZX+16,
LL21], object recognition [RMSG21], simultaneous localization and mapping
[Kae15, KCK18], structure from motion [ZJM12, RAB18], urban modeling
[ZSGH18, HMFB18] and surface reconstruction [BL20, CTZ20].

Fitting planar primitives to 3D point clouds is a long-standing problem
in computer vision. This is commonly formulated as a clustering operation:
input points are grouped into planar components under a user-specified fit-
ting tolerance. Solving this problem is, however, not trivial as (i) the number
of primitives is unknown, and (ii) some input points, called outliers, are as-
sociated with no primitive as they do not fall in the fitting tolerance zones of

56 Chapter 5. 3D Compact Mesh Reconstruction

the primitives. Finding a good configuration of planar primitives is somehow
arbitrary and turns out to be a tradeoff between three objectives:

1. Fidelity: the distance between a primitive and its associated input
points, called inliers, must be small,

2. Simplicity: the number of primitives must be small,

3. Completeness: the ratio of inliers must be high.

Unfortunately, existing methods are not designed to explicitly control these
three objectives simultaneously. They usually perform with one or two objec-
tives through either incremental mechanisms [OLA16, RVDHV06, SWK07],
multi-labeling energy minimization models [IB12, MMBM15, PERW16] or
neural networks [LSC+21, Li,19, SLK+20] that cannot fully explore the large
configuration space of this problem.

We propose an algorithm for fitting planar primitives to unorganized
point clouds by seeking high fidelity, high simplicity and high completeness
altogether. Our key contribution relies on the design and efficient imple-
mentation of an exploration mechanism that refines an initial configuration
by minimizing a multi-objective energy function. The transitions within the
large solution space are handled by five geometric operators that create,
remove and modify primitives and re-assign inliers and outliers. The explo-
ration works in tandem by alternating variational optimization at the global
scale and a priority queue that sorts the local operations likely to decrease
the energy. Optionally, our method offers the guarantee for not degrading
the fidelity, simplicity and completeness of the initial configuration.

We show the potential of our method on different types of scenes, from
organic to man-made, as well as on multiple sensors such as laser scanning
and multiview stereo (MVS). We also demonstrate its efficacy with respect
to existing approaches and its benefits for reconstructing compact meshes,
when combined with a plane assembly method.

5.1.2 Algorithm

Our algorithm takes as input an unorganized 3D point cloud which is typi-
cally generated from MVS, laser scanning, depth cameras, or directly sam-
pled from CAD models. The precision of the output planar primitives is

5.1. Planar primitive detection 57

controlled by the two key parameters of traditional primitive fitting algo-
rithms: (i) a fitting tolerance, denoted by ε, that specifies the maximal
distance of an inlier to its planar primitive, and (ii) a minimal primitive size,
denoted by σ, that allows primitives with a too low number of inliers to be
discarded. Note that specifying these two parameters is relatively intuitive
when data are defined in a meaningful system of units. It also requires less
efforts than creating training sets for learning methods.

The output primitives are clusters of inlier points each associated with a
supporting plane, i.e. the best least square fitting plane to its inlier points.
We denote such a configuration of planar primitives by x = (p, l) where p

is a set of supporting planes parametrized in the continuous domain, and l

is a configuration of discrete labels that indicates whether input points are
outliers or inliers to one of the supporting planes of p.

5.1.2.1 Energy formulation

We measure the quality of a primitive configuration x with an energy U of
the form

U(x) = ωfUf (x) + ωsUs(x) + ωcUc(x) (5.1)

where terms Uf , Us and Uc defined in the interval [0, 1] account for our
objectives of fidelity, simplicity and completeness respectively, and ωf , ωs

and ωc are positive weights balancing the terms such that ωf +ωs +ωc = 1.

Fidelity term. Uf measures the mean distance error between planar prim-
itives and their associated inliers

Uf (x) =
1

nx

∑
p∈p

∑
i∈p

dε(i, p) (5.2)

where nx is the total number of inliers in the configuration x, and dε(i, p)

represents the Euclidean distance between the inlier point i and the support-
ing plane p normalized by the fitting tolerance ε. Note that other metrics
can be considered such as the normal deviation between the normal of the
point and the orthogonal vector of the plane.

Simplicity term. Us encourages configurations with a low number of
primitives

Us(x) =
|p|
nσ

(5.3)

58 Chapter 5. 3D Compact Mesh Reconstruction

ωf ↑, (ωs, ωc) ↓

f : 0.16

s : 400

c : 99.8%

ωs ↑, (ωf , ωc) ↓

f : 0.38

s : 170

c : 99.7%

ωc ↑, (ωf , ωs) ↓

f : 0.24

s : 262

c : 100%

Figure 5.1: Tradeoff between energy terms. Putting weight on ωf favors a
low geometric error between planar primitives (see colored polygons respre-
senting their α-shapes) and input data, here 100K points uniformly sampled
on a sphere (left). Increasing ωs reduces the number of primitives (middle).
A high value of ωc produces configurations with few outliers (right). f , s, and
c correspond to the mean Euclidean distance of inliers to their associated
supporting plane normalized by ε, the number of primitives, and the per-
centage of inliers respectively. The colored point clouds show the geometric
error distribution (yellow=0, black≥ ε)

where |p| denotes the number of primitives of the configuration x, and nσ is
the maximal number of detectable primitives computed as the ratio of the
number of input points n to the minimal number of inliers per primitive σ.

Completeness term. Uc favors configurations with a high ratio of inliers

Uc(x) = 1− nx

n
(5.4)

Energy U is formulated in a simple and natural way regarding our three
initial objectives. Figure 5.1 illustrates the impact of the weights. Note that
none of the three configurations can be considered as better than the others
as they each perform best on one of the objectives. In our experiments, we
give the same importance to each objective.

5.1.2.2 Exploration mechanism

Both continuous variables for parametrizing the supporting planes and dis-
crete labels for grouping input points are involved in the minimization of
the non-convex energy U. In order to explore efficiently such a large solution

5.1. Planar primitive detection 59

Merging

Splitting
Transfer

Exclusion

Insertion

Figure 5.2: Local geometric operators. Five types of modifications can be
operated from a configuration of planar primitives (top middle). The merge
of two primitives (top left) and the split of a primitive (bottom left) alter the
number of primitives in the configuration. The transfer of inlier points from
a primitive to another (bottom middle) allows the refinement of supporting
planes. Finally, the insertion of outliers as inliers of a primitive (bottom
right) and the exclusion of inlier points of a primitive to outliers (top right)
modify the completeness of the configuration. The inliers and supporting
plane of each primitive are represented by colored points and a line-segment
while outliers are displayed by black points.

space, we propose an iterative mechanism inspired by mesh decimation tech-
niques [BKP+10]. Starting from an initial configuration x0, the idea consists
in computing the energy variations induced by local geometric operators that
create, remove or modify the primitives and re-assign the inliers and outliers.
By sorting the energy variations of all possible operations in ascending order
in a priority queue, we rank the operations that improve best the quality of
the configuration. The algorithm then performs the geometric operation on
top of the priority queue, updates the queue, and iterates until the energy
does not decrease anymore.

Local geometric operators. Figure 5.2 illustrates the five types of oper-
ators used for visiting the configuration space. The operators are local and
only affect one or two primitives. This condition is important to guarantee a
fast computation and sorting of the energy variations. To do this, we define
a notion of spatial proximity between input points and between primitives.
Two points are considered as adjacent if they are connected in the k-nearest
neighbor graph of the input point cloud. Two primitives are adjacent if at
least a pair of their respective inlier points are adjacent.

The transfer operator exchanges inliers between two adjacent primi-
tives and refines their supporting planes. This operation is performed using

60 Chapter 5. 3D Compact Mesh Reconstruction

the popular K-means algorithm (with K=2) from the two inlier sets. In par-
ticular, we use the same metrics dε from point to plane as in Equation (5.2),
and update the cluster centroids with the best least square fitting plane of
the cluster of points. In order to keep primitives compact, we only transfer
inliers located where the two primitives meet, i.e. the ones adjacent to inliers
of the other primitive.

The exclusion operator reassigns the inliers far away from their sup-
porting plane to outliers. This operation is performed by (i) sorting in de-
scending order the distance of all the inliers to their supporting plane, and
(ii) changing the k first inliers of the sorting list to outliers, k being fixed to
ten in our experiments.

The insertion operator reassigns outlier points to the inliers of a prim-
itive. We first list the outlier candidates whose distance to the support-
ing plane is smaller than the distance to the supporting plane of any other
primitive while being smaller than the fitting tolerance ε. We then sort in
ascending order the distance of these candidates to the supporting plane,
and insert the k first outliers to the set of inliers, k being fixed to ten in our
experiments.

The merging operator merges two adjacent primitives by reassigning
their inliers to a new primitive or as outliers if located at a distance higher
than ε. The supporting plane of the latter is then computed as the best least
square fitting plane of its inliers.

The splitting operator divides a primitive into two new ones.
This operator first identifies the farthest
inlier on each side of the supporting
plane, as illustrated by the dashed circles
on the top part of the inset. The other in-
liers are then associated with one of these
two farthest points by spatial proximity,
leading to the creation of two new prim-
itives (see red and green pairs of points
and line-segment in the middle). Finally,
the transfer operator is performed on the
two primitives in order to refine the assignment of inliers and the supporting
planes, as shown on the bottom part of the inset.

These five operators have complementary roles in the exploration. The

5.1. Planar primitive detection 61

Optimal plane

U: 0.69 → 0.031
f : 0.64 → 0.018
s: 1 → 152
c: 100 → 100

Random seeds

U: 0.067 → 0.031
f : 0 → 0.0166
s: 208 → 134
c: 0.4 → 94.6

RANSAC [SWK07]

U: 0.033 → 0.029
f : 0.02 → 0.017
s: 147 → 131
c: 99.4 → 99.9

Region Growing [RVDHV06]

U: 0.037 → 0.030
f : 0.0134 → 0.0148
s: 248 → 151
c: 92 → 99.9

Figure 5.3: Initialization. Top row shows different initial configurations from
100K input points uniformly sampled on a torus, while bottom row shows
results obtained after exploration. Starting the exploration from a good
initial configuration given by incremental mechanisms such as RANSAC or
Region Growing allows us to reach better configurations than from the opti-
mal plane fitted to the input points or from many small primitives randomly
distributed from input data. U refers to the energy of configurations.

transfer operator seeks a higher fidelity without altering simplicity and com-
pleteness. The merging and splitting operators aim at exploring configura-
tions with different complexity whereas the exclusion and insertion operators
have direct impact on completeness.

Priority queue. After each modification of the current configuration, the
priority queue is updated. The concerned operation and all the operations
with primitives impacted by the modification are first removed from the
queue. The energy variations of all possible operations affecting the modified
primitives are then computed and inserted in the queue.

Initialization. The exploration mechanism requires a good initial config-
uration as it finds a local minimum. As illustrated in Figure 5.3, start-
ing from initial configurations with an already good fidelity, simplicity and
completeness helps the exploration to reach better configurations. In our
experiments, we use Region Growing [RVDHV06] on defect-free data and
RANSAC [SWK07] on defect-laden data.

Stopping condition. The exploration mechanism stops when no more
energy variation sorted in the priority queue is negative, i.e., when no oper-
ation makes the energy decrease. This condition guarantees the exploration

62 Chapter 5. 3D Compact Mesh Reconstruction

Algorithm 1 Pseudo-code of the exploration mechanism
1: Initialize the primitive configuration x

2: repeat
3: Initialize the priority queue Q

4: while top operation i of Q decreases energy U do
5: Update x by operation i

6: Update Q

7: end while
8: Update x by the global transfer operator
9: until no update modifies x any more

mechanism to converge quickly without bumping effects.

Details for accelerating the exploration. The transfer operator im-
proves one objective, i.e. fidelity, without altering the other two: this partic-
ular feature makes it being called a high number of times in a priority queue.
However, these local refinements between any pairs of adjacent primitives are
likely undone later by the other four operators, leading to slow converge in
practice. To speed up the exploration, we prefer using the transfer operator
outside the priority queue in a global manner, i.e. by transferring inliers
between all the pairs of adjacent primitives simultaneously. The exploration
then alternates between series of priority queue updates where only split-
ting, merging, exclusion and insertion operations are considered, and global
transfer of inliers by K-means with K fixed to be the number of primitives.
Because the global transfer operator cannot degrade fidelity and modify the
simplicity and completeness, the exploration cannot loop infinitely between
priority queue and global transfer. Algorithm 1 describes the pseudo-code
of our exploration scheme.

As illustrated in Figure 5.4, this exploration in tandem reaches similar
energies as the original scheme while being one order of magnitude faster.
It is also an efficient solution against a non-local simulated annealing that is
three orders of magnitude slower for final configurations of identical quality.

Optional constraints. We can optionally impose that the final config-
uration does not degrade the fidelity, simplicity and completeness of the
initial configuration. This can be done by discarding from the priority

5.1. Planar primitive detection 63

SA

Tandem

Original

1 10 102 103 104 105
0

0.5

#iterations

E
ne

rg
y

Figure 5.4: Evolution of energy U during exploration mechanisms. Our
exploration in tandem (green curve) converges quickly whereas the original
scheme without global transfer interruptions (orange curve) and a simulated
annealing optimization (SA, blue curve) require respectively one and three
orders of magnitude more iterations for reaching similar energies.

queue all the operations that lead to lower fidelity, simplicity and com-
pleteness than those of the initial configuration. In this case, the energy
weights can be fixed proportionally to the initial configuration, i.e. by tak-
ing ωf = K−1Uf (x0)

−1, ωs = K−1Us(x0)
−1 and ωc = K−1Uc(x0)

−1 where
K = Uf (x0)

−1+Us(x0)
−1+Uc(x0)

−1. This option offers the user the guar-
antee not to score lower than the initial configuration on each of the three
objectives, but it typically reduces the overall quality of the reached solution.

5.1.3 Experiments

Our algorithm has been implemented in C++ using the Computational Ge-
ometry Algorithms Library (CGAL). In our experiments, we typically set the
fitting tolerance ε to 0.5% of the bounding box diagonal and the minimal
shape size σ from 0.001% to 1% of the number of input points, depending
on the complexity of scenes.

Flexibility and robustness. As shown in Figures 5.5, 5.6 and 5.9, we
tested the method on various scenes and objects ranging from indoor and
urban environments to statues through furniture elements. This good flexi-
bility originates from the absence of domain-specific geometric priors in our
method. We also performed tests on data generated from different types of

64 Chapter 5. 3D Compact Mesh Reconstruction

#pts: 2M
s: 266

#pts: 1M
s: 930

#pts: 1.4M
s: 1, 344

#pts: 1M
s: 443

#pts: 1.5M
s: 4, 132

#pts: 246K
s: 217

#pts: 730K
s: 490

#pts: 200K
s: 490

#pts: 1.5M
s: 5, 510

#pts: 3M
s: 513

#pts: 1.5M
s: 231

#pts: 1.5M
s: 746

#pts: 1M
s: 958

#pts: 868K
s: 61

#pts: 204K
s: 100 #pts: 2.6M

s: 176

Figure 5.5: Visual results on a variety of input point clouds. From left to
right, and top to bottom: Francis statue (MVS), curved Hilbert cube (CAD-
based), Earth globe (CAD-based), residential House triplet (MVS), En-
gine (Laser), Observatory (MVS), Vase (Laser), Carter (Laser), Owl statue
(Laser), Manhattan-World building (Laser), Train (MVS), Building Blocks
(MVS), Mechanical system (CAD-based), basic House (MVS), Chair (Laser)
and large House (MVS). #pts and s refer to the number of input points and
the number of detected primitives respectively.

5.1. Planar primitive detection 65
Input points Region Growing [RVDHV06]

f : 0.82
s: 138
c: 77.3

f : 0.62
s: 1, 723
c: 87.2

RANSAC [SWK07]

f : 0.81
s: 116
c: 77.4

f : 0.53
s: 1, 403
c: 85.6

Ours

f : 0.77
s: 47
c: 78.2

f : 0.39
s: 1, 053
c: 87.4

Figure 5.6: Visual comparisons with incremental mechanisms. Region Grow-
ing and RANSAC often produce inaccurate planar primitives from real-world
acquisition data with, for instance, over-detected primitives on the noisy fa-
cade (top, aerial MVS) and on thin furniture elements such as chairs (bot-
tom, indoor Laser). Our algorithm performs better by detecting fewer yet
more meningful primitives without sacrificing fidelity and completeness. f ,
s, and c refer to the fidelity, simplicity and completeness scores respectively.
Models from [KPZK17].

acquisition systems including Laser and MVS. Our method offers good ro-
bustness on these data, even on noisy MVS point clouds where our insertion
and exclusion operators allow an efficient selection of inliers and outliers.

Comparisons. We compared our algorithm with the traditional methods
Region Growing [RVDHV06], its seeding variant [OVJ+21] and RANSAC
[SWK07], as well as with the deep learning methods SPFN [Li,19], ParSeNet
[SLK+20] and HPNet [YYM+21]. We measure fidelity as the mean Eu-
clidean distance from inliers to primitives normalized by the longest side of
the bounding box, as proposed by [Li,19]. Simplicity and completeness are
measured as the number of primitives and the ratio of inliers respectively.

We first compared our algorithm with the traditional incremental meth-
ods by using plane as the only primitive type. We tested on a sample of
5,000 models randomly chosen from the ABC dataset [KMJ+19] (each CAD
model was sampled with 100K points) and on the 42 real-world models of
the KSR dataset [BL20] partly based on Tanks and Temples [KPZK17]. Ta-
ble 5.1 shows that our algorithm outperforms these methods on the three
objectives by a large margin on the KSR dataset, and to a lesser extent, on
the ABC dataset. The gain is higher from real-world data where traditional
methods often produce inaccurate and overly complex configurations, as il-

66 Chapter 5. 3D Compact Mesh Reconstruction

Fidelity (×102) Compl. Simpl.

K
SR

RG [RVDHV06] 0.39 83.6 654.2
SRG [OVJ+21] 0.43 83.9 612.7
RANSAC [SWK07] 0.42 83.3 684.7
Ours 0.33 84.1 572.4

A
B

C

RG [RVDHV06] 0.28 97.6 69
SRG [OVJ+21] 0.30 97.1 65
RANSAC [SWK07] 0.21 97.7 55.5
Ours 0.19 97.9 39.4

Table 5.1: Comparison with traditional methods. Our algorithm achieves
better scores of fidelity, simplicity and completeness on both the real-world
KSR and CAD-sampled ABC datasets.

Fidelity (×102) Compl. Simpl.

A
B

C
⋆

SPFN [Li,19] 2.835 90.0 12.2
ParSeNet [SLK+20] 0.410 99.1 8.8
HPNet [YYM+21] 0.224 96.8 8.3
Ours 0.130 99.8 8.3

A
N

SI
⋆

SPFN [Li,19] 0.760 95.5 12.1
ParSeNet [SLK+20] 1.064 91.0 9.0
HPNet [YYM+21] 0.087 83.0 13.3
Ours 0.085 95.5 9.7

Table 5.2: Comparison with deep learning methods. The ANSI⋆ and ABC⋆

datasets are composed of piecewise planar models only.

lustrated in Figure 5.6. In contrast, our algorithm can handle efficiently data
defects, in particular by merging and splitting primitives in case of over- and
under-detection, and by selecting inliers and outliers efficiently.

We also compared with the learning methods for smaller point clouds, i.e.
10K points or less. Because these methods also detect quadrics, we tested
on a collection of 653 and 132 purely piecewise planar models from the ABC
[KMJ+19] and ANSI [Li,19] datasets respectively. SPFN was trained on
the ANSI dataset as detailed in [Li,19], whereas ParSeNet and HPNet were
trained on the ABCParts dataset [SLK+20] generated from the ABC dataset.
We used the end-to-end model of SPFN to predict both point assignment
and plane parameters. For ParSeNet and HPNet, we combined their point
assignment predictions with least square fittings for estimating plane pa-

5.1. Planar primitive detection 67

SPFN [Li,19] ParSeNet [SLK+20] HPNet [YYM+21] Ours

Figure 5.7: Visual comparison with learning methods. Input points are
colored per primitive cluster. Trained from another dataset, SPFN does
not generalize well and exhibits many outliers (black points). ParSeNet and
HPNet perform better but remain affected by frequent local mislabeling, in
contrast to our method. Models from the ABC dataset.

rameters. As shown in Table 5.2, our algorithm competes well on the three
metrics. The gain is particularly high on fidelity as the inlier-to-plane error
is not directly controlled by a fitting tolerance parameter in learning meth-
ods. Deep learning methods also suffer from a low generalization from one
dataset to the other, in particular in terms of completeness and simplicity.
Only ParSeNet provides a better simplicity score than our method on the
ANSI dataset, but it scores low on fidelity and completeness. Figure 5.7
shows a visual comparison on piecewise planar objects.

Choice of the fidelity metric. In our previous experiments, fidelity is
measured through the traditional Euclidean distance from point to plane,
but other metrics can be considered. Normal deviation can be an option
when input normals are available or can be accurately estimated. Tables 5.3
and 5.4, which are an enriched version of Table 5.1 and 5.2, show quantitative
results from two fidelity metrics: the traditional Euclidean distance and the
normal deviation. They are used as both evaluation score and metric in the
energy. As expected, fidelity score is lower when computed with the same

68 Chapter 5. 3D Compact Mesh Reconstruction

Fid. L2 Fid. normal Compl. Simpl.

K
SR

RG [RVDHV06] 0.39 13.8 83.6 654.2
SRG [OVJ+21] 0.43 13.8 83.9 612.7
RANSAC [SWK07] 0.42 16.7 83.3 684.7
Ours-L2 0.33 13.3 84.1 572.4
Ours-normal 0.4 12.8 84.2 504.8

A
B

C

RG [RVDHV06] 0.28 10.3 97.6 69
SRG [OVJ+21] 0.30 10.6 97.1 65
RANSAC [SWK07] 0.21 10.6 97.7 55.5
Ours-L2 0.19 11.8 97.9 39.4
Ours-normal 0.27 9.9 97.9 41.6

Table 5.3: Enriched version of Table 5.1 with an average normal deviation
score (Fid. normal, in degree) and with a variant of our algorithm using a
normal deviation based metric (Ours-normal).

Fid. L2 Fid. normal Compl. Simpl.

A
B

C
⋆

SPFN [Li,19] 2.835 0.869 90.0 12.2
ParSeNet [SLK+20] 0.410 0.982 99.1 8.8
HPNet [YYM+21] 0.224 0.988 96.8 8.3
Ours-L2 0.130 0.997 99.8 8.3
Ours-normal 0.026 0.9996 99.9 8.8

A
N

SI
⋆

SPFN [Li,19] 0.760 0.939 95.5 12.1
ParSeNet [SLK+20] 1.064 0.85 91.0 9.0
HPNet [YYM+21] 0.087 0.985 83.0 13.3
Ours-L2 0.085 0.991 95.5 9.7
Ours-normal 0.097 0.994 99.2 12.1

Table 5.4: Enriched version of Table 5.2.

metric in the energy. However, the other fidelity score remains competitive
with respect to the values from existing methods.

Performance. We tested our algorithm on data ranging from 8K points
to 30M points. It offers a good scalability thanks to a low memory consump-
tion. The latter results from the design of the geometric operators which are
purely local. As shown in the Figure 5.8, our algorithm typically requires
a few minutes for processing several millions of input points on a standard
computer with a processor clocked at 2.9Ghz. Processing time of our se-
quential implementation of the algorithm is reasonable but remains higher

5.1. Planar primitive detection 69

0.01 0.1 1 10 #points

(×106)

1

10

102

103

104

Processing time (sec.)

Figure 5.8: Processing time against number of points in the input point
cloud.

than incremental mechanisms.

Application to compact mesh reconstruction. We applied our algo-
rithm to the compact mesh reconstruction problem. Starting from an ori-
ented point cloud, we used a plane assembly method [BL20] to produce a
watertight, intersection-free polygonal surface mesh from the planar primi-
tives fitted by our algorithm. Such a pipeline allows both the reconstruction
of piecewise planar structures and the approximation of freeform objects.

Figure 5.10 illustrates the benefits of using our algorithm instead of Re-
gion Growing in the plane assembly method of [BL20]. Output meshes are
both more accurate and more compact thanks to fewer yet more meaningful
planar primitives. In particular, the shape of output polygonal facets adapts
well to the local surface geometry, in coherence with the predictions of the
Dupin indicatrix [Str61].

We tested the pipeline on a variety of scenes and sensors, as illustrated
in Figure 5.9. It offers a good robustness to noise, outliers and, to a lesser
extent, occlusions when planar components are not entirely missing in the
data. The pipeline also offers a good scalability by digesting millions of
points and thousands of planar primitives, as shown with the large-scale yet
highly detailed results in Figure 5.9.

We compared our pipeline with the specialized compact mesh recon-

70 Chapter 5. 3D Compact Mesh Reconstruction

Figure 5.9: Compact mesh reconstruction and approximation on various
scenes. Planar primitives detected by our algorithm (middle row) from input
point clouds (top row) are assembled into compact, watertight, intersection-
free polygonal surface meshes (bottom row). Such a generic and scalable
pipeline produces accurate results on a variety of scenes and sensors.

struction methods PolyFit [NW17] and BSP-Net [CTZ20]. We measured
the accuracy on different object categories from ShapeNet [CFG+15], the
dataset used to train BSP-Net. As shown in Table 5.5, the accuracy scores
of our pipeline are significantly higher on each object category. This gap
comes from the low scalability of Polyfit and BSP-Net, the former being lim-
ited to the assembly of 50 planes at best and the latter imposing a volume
discretization of objects by 643. As shown in Figure 5.11, the better scala-

5.1. Planar primitive detection 71

with Region Growing

with our algorithm

e: 0.35

#f: 258

e: 0.32

#f: 213

e: 0.28

#f: 522

e: 0.15

#f: 460

e: 0.28

#f: 362

e: 0.24

#f: 313

Figure 5.10: Reconstruction of freeform objects. Using our algorithm instead
of Region Growing favors the assembling of planes into more accurate yet
more compact polygon meshes. In particular, the shape of polygonal facets
adapts adequately to the local surface geometry with concave hexagons when
hyperbolic, rectangles when parabolic and convex hexagons when spherical
and elliptic (closeups, from left to right). e and #f refer to the mean Haus-
dorff distance of input points to output mesh normalized by ε and the number
of polygonal facets respectively. The colored point clouds show the Hausdorff
distance distribution (yellow=0, black≥ ε)

bility of our pipeline allows the capture of fine details with highly compact
meshes. Note that Polyfit and our pipeline offer the guarantee to produce
watertight, intersection-free meshes, in contrast to BSP-Net that outputs a
soup of convex polytopes likely to intersect.

In addition to the ShapeNet dataset, we also compared our algorithm
with seven compact mesh reconstruction methods on the KSR42 dataset by
following the evaluation protocol of [BL20]. In particular, we considered as
evaluation metrics the symmetric mean Hausdorff distance between input
points and output mesh, the mean Hausdorff distance from input points

72 Chapter 5. 3D Compact Mesh Reconstruction

PolyFit BSP-Net Ours Ground Truth

Figure 5.11: Visual comparison of compact mesh reconstruction methods.
The low scalability of Polyfit [NW17] and BSP-Net [CTZ20] does not allow
objects to be described with many planar components. In contrast, our
pipeline can capture fine details such as the ornaments on the chair feet with
highly compact meshes. Models from ShapeNet [CFG+15].

Airplane Car Chair Lamp Table
Polyfit [NW17] 6.79 1.54 1.84 5.21 2.09
BSP-Net [CTZ20] 1.49 1.74 2.05 3.25 1.69
Ours 0.34 0.38 0.40 0.34 0.33

Table 5.5: Accuracy evaluation of compact mesh reconstruction methods.
Accuracy is measured as the mean symmetric Hausdorff distance between
input points and output meshes (values are normalized by the bounding box
diagonal and multiplied by a factor of 102) on five object categories from the
ShapeNet Dataset.

to output mesh and the mesh simplicity given by the number of polygonal
facets. The seven methods include three compact mesh reconstruction meth-
ods (Polyfit [NW17], Chauve’s algorithm [CLP10] and KSR [BL20]) and four
surface approximation pipelines where a dense mesh is first reconstructed
from input points by the Screened Poisson algorithm before being simpli-
fied either by the edge collapse method QEM [GH97], by variational shape
approximation VSA [CSAD04], by plane-guided mesh decimation SAMD
[SLA15] or by an alternative of the latter with corner preservation SAMD-
CP. The Screened Poisson algorithm was used with an octree depth set to
9. Tables 5.6 and 5.7 provide quantitative results on respectively the simple
and advanced models of the KSR42 dataset. Our algorithm outperforms
the other methods on both the accuracy and the mesh simplicity in most of
simple and advanced models. On a few models such as Building C, the KSR
algorithm performs better: it typically corresponds to regular scenes where

5.1. Planar primitive detection 73

the planar primitives detected by Region Growing have been consolidated ac-
cording to parallelism and orthogonality regularities before assembling. Such
geometric prior offers an advantage to KSR on such particular scenes by re-
ducing the number of detected planar primitives. Yet, our algorithm gives
better results on a large majority of models, showing that our primitive de-
tection algorithm is more efficient than the traditional Region Growing used
by the KSR algorithm. Figures 5.12, 5.13, 5.14 and 5.15 show visual com-
parisons on the simple models. Similarly, Figures 5.16, 5.17, 5.18 and 5.19
focus on advanced models. Note that Polyfit [NW17]and Chauve’s algorithm
[CLP10] do not scale well enough to produce results on advanced models.

74 Chapter 5. 3D Compact Mesh Reconstruction

B
ar

n
M

V
S

B
ui

ld
in

g
A

B
ui

ld
in

g
B

B
ui

ld
in

g
C

B
un

ny

C
ha

ir

C
ot

ta
ge

C
ou

ch

Fe
rt

ili
ty

-C
oa

rs
e

Fo
am

bo
x

H
an

d

La
ns

-C
oa

rs
e

R
oc

ke
r

ar
m

R
oo

m
s

A

R
oo

m
s

B

T
em

pl
e

Type U U U U F S U S F S F U S I I S
Origin MVS MVS MVS MVS Laser Laser MVS Laser Laser Laser Laser Laser Laser Laser Laser MVS
pts 619K 101K 73K 577K 146K 756K 143K 911K 242K 382K 369K 1.22M 733K 186K 176K 621K

ε 0.75 5 2.5 0.4 0.4 1.6 0.7 2.2 1.75 1.75 0.8 1 1.1 0.8 0.3 1.7
σ 0.08 0.6 0.25 1.2 0.15 0.5 0.2 0.7 0.2 0.2 0.07 0.8 0.04 0.3 0.6 0.3

Ours

eA 0.151 0.658 0.587 0.593 0.321 0.529 0.308 0.458 0.284 0.222 0.340 0.454 0.190 0.526 0.543 0.296
eS 0.128 1.053 0.663 0.442 0.441 0.557 0.441 1.667 0.434 0.258 0.395 0.827 0.312 0.468 0.503 0.446
#f 40 34 31 38 119 23 34 27 96 66 108 25 73 44 22 79

KSR

eA 0.231 0.951 0.605 0.372 0.454 0.557 0.401 0.560 0.350 0.247 0.423 0.491 0.257 0.677 0.553 0.381
eS 0.179 1.522 0.735 0.344 0.540 0.580 0.471 1.681 0.498 0.281 0.480 0.726 0.382 0.603 0.538 0.481
#f 38 29 23 34 111 23 28 25 95 63 92 25 73 46 26 95

Polyfit

eA - 1.347 2.097 0.461 - 1.447 1.491 6.385 0.388 0.221 0.460 3.977 0.361 0.590 0.680 0.548
eS - 1.170 1.385 0.343 - 1.089 1.259 3.325 0.500 0.297 0.537 2.592 0.524 0.556 0.572 0.683
#f - 14 25 30 - 16 18 17 150 63 98 26 144 51 19 90

Chauve

eA 1.042 9.585 2.626 0.407 0.545 1.422 1.429 3.931 0.328 0.207 0.462 0.421 0.357 0.790 0.526 0.459
eS 0.772 5.172 1.704 0.308 0.555 1.082 0.823 2.137 0.407 0.261 0.488 1.195 0.411 0.671 0.465 0.911
#f 25 32 103 56 261 25 18 14 528 107 188 36 202 125 54 700

SP_QEM

eA 2.815 4.081 6.344 2.873 1.435 4.287 2.373 2.922 0.722 2.969 0.724 2.814 2.124 2.847 2.871 2.127
eS 1.575 2.482 3.856 1.934 1.069 3.000 1.513 1.971 0.756 1.933 0.777 1.831 1.509 1.984 1.645 1.498
#f 39 28 22 26 110 24 27 25 100 62 92 25 72 46 26 92

SP_VSA

eA 0.752 4.222 2.673 1.593 1.002 1.906 1.181 1.762 1.724 1.404 1.058 2.894 1.201 2.066 0.911 0.894
eS 0.538 3.107 1.921 1.316 1.031 1.664 0.958 1.806 1.287 0.960 0.918 2.355 1.091 1.422 0.704 0.806
#f 717 213 157 947 175 420 528 113 93 682 127 31 83 568 123 270

SP_SAMD-CP

eA 1.164 1.138 0.806 0.387 1.042 1.797 1.341 1.965 0.366 2.363 0.745 0.842 0.907 0.704 0.760 1.361
eS 0.675 0.988 0.781 0.307 0.909 1.302 0.833 1.556 0.383 1.480 0.789 0.761 0.744 0.604 0.552 0.998
#f 141 95 92 267 162 40 75 35 352 105 120 102 137 125 98 125

SP_SAMD

eA 1.428 1.524 1.071 1.885 0.585 2.326 0.801 1.483 0.657 1.546 0.508 1.686 0.800 1.240 1.907 0.686
eS 0.902 1.059 1.240 1.359 0.820 1.394 0.776 1.840 0.907 1.481 0.806 1.721 0.971 0.940 1.186 0.766
#f 39 28 23 32 112 21 29 26 96 64 92 25 72 46 26 93

Table 5.6: Quantitative comparisons on the simple models of the KSR42
dataset. Types of objects include urban (U), freeform (F), indoor (I) and
structured (S). Origins of point cloud include multiview stereo (MVS), laser
scanning (Laser) and point sampled from CAD models (CAD). The size of
input points #pts ranges from 101K to 1.2M points. The fitting tolerance ε

and the minimal primitive size σ are expressed in percent of the bounding
box diagonal and in percent of the total number of input points respectively.
The evaluation metrics eS , eA, #f refer to the symmetric mean Hausdorff
error (in % of the bounding box diagonal), the mean Hausdorff error from
input points to output model and the number of output facets respectively.
Note that the scalability of Polyfit is too low to return a result on Barn MVS
and Bunny after several hours of computing.

5.1. Planar primitive detection 75

A
si

an
dr

ag
on

C
as

tl
e

C
hu

rc
h

C
ou

rt
ho

us
e

E
ul

er

Fe
rt

ili
ty

-F
in

e

Fu
ll

th
in

g

M
ee

ti
ng

R
oo

m

N
av

is

T
ow

er
of

P
i

Type F U I U I F S I I F
Origin Laser CAD Laser Laser Laser Laser CAD Laser Laser CAD
pts 3.6M 737K 31.1M 1.9M 2.7M 242K 1.4M 3.1M 3.6M 2.9M

ε 0.25 0.1 0.8 0.8 0.1 0.2 0.2 0.1 0.1 0.1
σ 0.004 0.001 0.005 0.002 0.004 0.03 0.004 0.003 0.005 0.001

Ours

eA 0.057 0.002 0.372 0.088 0.057 0.046 0.060 0.197 0.055 0.013
eS 0.064 0.033 0.239 0.136 0.094 0.086 0.062 0.146 0.048 0.031
#f 3210 748 387 2157 1118 831 1788 1449 546 12749

KSR

eA 0.065 0.006 0.460 0.134 0.069 0.061 0.064 0.198 0.061 0.020
eS 0.069 0.038 0.292 0.183 0.108 0.095 0.064 0.146 0.057 0.039
#f 3132 711 394 1795 1317 998 1807 1491 457 12059

SP_QEM

eA 0.071 0.044 0.292 0.155 0.148 0.082 0.170 0.299 0.167 0.135
eS 0.072 0.082 0.345 0.245 0.237 0.117 0.141 0.204 0.146 0.098
#f 3132 712 394 1795 1318 1000 1806 1490 458 12050

SP_VSA

eA 0.125 0.098 0.569 0.254 0.242 0.183 0.378 0.202 0.192 0.295
eS 0.108 0.110 0.377 0.262 0.240 0.243 0.245 0.160 0.164 0.241
#f 3351 1894 494 1818 4070 982 4368 4949 522 27285

SP_SAMD-CP

eA 0.114 0.065 0.187 0.154 0.169 0.150 0.117 0.330 0.098 0.104
eS 0.101 0.078 0.214 0.195 0.166 0.152 0.094 0.215 0.079 0.110
#f 3672 1600 1924 1835 1450 1709 10046 1552 1898 30654

SP_SAMD

eA 0.088 0.073 0.238 0.113 0.128 0.128 0.371 0.185 0.113 0.194
eS 0.094 0.095 0.274 0.223 0.199 0.163 0.258 0.168 0.114 0.205
#f 3132 733 396 1800 1318 999 1809 1491 457 12060

Table 5.7: Quantitative results on advanced models. Note that Polyfit
[NW17]and Chauve’s algorithm [CLP10] do not scale well enough to pro-
duce results on advanced models.

76 Chapter 5. 3D Compact Mesh Reconstruction

BARN MVS BUILDING A BUILDING B BUILDING C
O

ur
s

K
SR

P
ol

yfi
t

C
ha

uv
e

SP
+

V
SA

SP
+

Q
E
M

SP
+

SA
M

D
-C

P
SP

+
SA

M
D

not computable

Figure 5.12: Visual comparisons on simple models (part 1/4). The colored
point clouds correspond to the distribution of the Hausdorff distance from
input points to output models (yellow=0, black≥ ε). Evaluation scores as-
sociated with these results are given in Table 5.6.

5.1. Planar primitive detection 77

STANFORD BUNNY CHAIR COTTAGE COUCH

O
ur

s
K

SR
P
ol

yfi
t

C
ha

uv
e

SP
+

V
SA

SP
+

Q
E
M

SP
+

SA
M

D
-C

P
SP

+
SA

M
D

not computable

Figure 5.13: Visual comparisons on simple models (part 2/4).

78 Chapter 5. 3D Compact Mesh Reconstruction

FERTILITY COARSE FOAM BOX HAND LANS COARSE

O
ur

s
K

SR
P
ol

yfi
t

C
ha

uv
e

SP
+

V
SA

SP
+

Q
E
M

SP
+

SA
M

D
-C

P
SP

+
SA

M
D

Figure 5.14: Visual comparisons on simple models (part 3/4).

5.1. Planar primitive detection 79

ROCKER ARM ROOM A ROOM B TEMPLE

O
ur

s
K

SR
P
ol

yfi
t

C
ha

uv
e

SP
+

V
SA

SP
+

Q
E
M

SP
+

SA
M

D
-C

P
SP

+
SA

M
D

Figure 5.15: Visual comparisons on simple models (part 4/4).

80 Chapter 5. 3D Compact Mesh Reconstruction

ASIAN DRAGON CASTLE CHURCH

O
ur

s
K

SR
SP

+
V

SA
SP

+
Q

E
M

SP
+

SA
M

D
-C

P
SP

+
SA

M
D

Figure 5.16: Visual comparisons on advanced models (part 1/4). Evaluation
scores associated with these results are given in Table 5.7.

5.1. Planar primitive detection 81

COURTHOUSE EULER FERTILITY FINE

O
ur

s
K

SR
SP

+
V

SA
SP

+
Q

E
M

SP
+

SA
M

D
-C

P
SP

+
SA

M
D

Figure 5.17: Visual comparisons comparisons on advanced models (part 2/4).

82 Chapter 5. 3D Compact Mesh Reconstruction

FULL THING MEETING ROOM

O
ur

s
K

SR
SP

+
V

SA
SP

+
Q

E
M

SP
+

SA
M

D
-C

P
SP

+
SA

M
D

Figure 5.18: Visual comparisons on advanced models (part 3/4).

5.1. Planar primitive detection 83

NAVIS TOWER OF PI

O
ur

s
K

SR
SP

+
V

SA
SP

+
Q

E
M

SP
+

SA
M

D
-C

P
SP

+
SA

M
D

Figure 5.19: Visual comparisons on advanced models (part 4/4).

84 Chapter 5. 3D Compact Mesh Reconstruction

Reconstruction at different levels of details. As mentioned in Sec-
tion 1, multiple LODs of the reconstructed compact mesh are required. Our
method can optimize the planar shape configurations under any user-defined
parameters, which can lead to high-quality compact meshes with different
LODs. Figure 5.20 shows an example of a freeform object reconstruction
at different LODs obtained by modifying the fitting parameters (ε, σ). In-
creasing progressively both the fitting tolerance ε and the minimal primitive
size σ gives coarser configurations of planar primitives, and after assembling,
more concise polygon meshes.

ε: 3
σ: 200
s: 88
#f: 79

ε: 1
σ: 200
s: 188
#f: 213

ε: 0.518
σ: 70
s: 324
#f: 378

ε: 0.25
σ: 50
s: 628
#f: 741

ε: 0.1
σ: 40
s: 1, 424
#f: 1, 759

ε: 0.03
σ: 20
s: 4, 560
#f: 5, 598

Figure 5.20: Reconstruction of a freeform object at different levels of de-
tails. By progressively decreasing the fitting parameters (ε, σ), our algorithm
outputs a series of more and more accurate and complex planar primitive
configurations (colored polygons, from left to right, and top to bottom).
When combined with a plane assembly method, it produces polygon meshes
at different levels details. s and #f refer to the number of primitives and
the number of polygonal facets of the reconstructed mesh respectively. The
colored point clouds show the distribution of the Hausdorff distance of input
points to output mesh normalized by ε (yellow=0, black≥ ε).

5.1. Planar primitive detection 85

Limitations. Because the exploration mechanism is local and energy U is
not convex, the quality of the initial configuration influences results. Starting
from Region Growing or RANSAC is a fast and scalable solution, but it
might not be an optimal choice on data highly corrupted by occlusions.
That said, our algorithm will also benefit from future advances in the field
to produce even better results. Processing time on massive point clouds also
remains high in comparison with the traditional incremental mechanisms.
This can be penalizing when planar primitives must be quickly detected
as a preprocessing step for a 3D vision problem. Finally, our algorithm is
not designed to preserve geometric regularities. For example, the top and
bottom sides of the torus in Figure 5.10 do not have exactly symmetric
layouts of planar primitives. Taking into account such knowledge in our
framework could be done by considering the geometric regularity as a new
objective, Section 5.1.4. However, this would require a preliminary detection
of regularities, which is not a trivial task in practice.

5.1.4 Extension with geometric regularization

In this section, we demonstrate the extensibility of our method by introduc-
ing geometric regularity as a fourth objective. As previously indicated, our
algorithm is unable to preserve geometric regularities when only fidelity, sim-
plicity and completeness are considered as objectives. However, it is flexible
enough to introduce other objectives, as long as the new energy terms can
be formulated to quantify them and the associated geometric operators can
be designed to explore the solution space. A regularity term and a regularity
operator are proposed.

5.1.4.1 Algorithm

Our algorithm preserves the geometric regularities by using a regularity oper-
ator to adjust the nearly regular primitives to be exactly regular. In addition,
the regularity operator is guided by an updated energy function which intro-
duces degrees of freedom into the energy function 5.1. Here, we consider three
types of regular relationships: parallelism, orthogonality and co-planarity.

Regularity operator. To preserve the geometric regularities in the ob-
jects or scenes, the regularity operator should be proposed to carry out the
regularization of the primitives. Instead of operating on a single primitive or

86 Chapter 5. 3D Compact Mesh Reconstruction

(a) (b) (c) (d)

(e) (f) (g)

Figure 5.21: Regularity graph creation. From a planar primitive configu-
ration (a) where all the support planes of the primitives are the best least
square fitting plane to their inlier points, three parallel clusters are generated
(b) as nodes in the regularity graph (e). Then the orthogonal relationships
are detected by iteratively checking the mean normals of a pair of parallel
clusters (c), the nearly orthogonal parallel clusters are connected by edges
in the regularity graph (f). Finally, the nearly co-planarity detection is con-
ducted in each parallel cluster and the two dashed primitives in the yellow
cluster are detected as nearly co-planar (d), the co-planarity relationships
are preserved as node attributes (g).

a pair of adjacent primitives, the regularity operator operates on a regular-
ity graph. The regularity graph contains all the regular relationships in the
configuration and is built by progressively detecting nearly parallel, nearly
orthogonal and nearly co-planar primitives, Figure 5.21:

1. Detection of nearly parallel primitives. We first detect the nearly
parallel primitives and generate parallel clusters. To do this, the sup-
port plane of each primitive is first projected onto a unit sphere accord-
ing to its normal. Then they are grouped into several parallel clusters
via mean-shift using the user-defined parallel angle tolerance β as the
Gaussian kernel. In each parallel cluster, there are either a set of nearly
parallel primitives or only one primitive. Note that, a primitive can
only belong to one parallel cluster. The parallel clusters are seen as
the nodes of the regularity graph.

2. Detection of nearly orthogonal parallel clusters. We then find

5.1. Planar primitive detection 87

the nearly orthogonal parallel clusters by iteratively checking random
pairs of parallel clusters. Two parallel clusters cp1 and cp2 are nearly
orthogonal if and only if |ncp1 · ncp2 | < sin(β) where ncp1 and ncp2

are the average normals of these two parallel clusters. The nearly
orthogonal parallel clusters are connected by edges in the regularity
graph.

3. Detection of nearly co-planar primitives. We finally detect the
nearly co-planar primitives in each parallel cluster. The primitives of
a parallel cluster are clustered based on their signed distances to the
origin, which is also solved via mean-shift clustering using user-defined
coplanar distance tolerance εc as Gaussian kernel. The co-planarity
relationships are taken as the node attributes in the regularity graph.

The regular relationships are not independent and complicated [SRF+14]
such as orthogonal relationships are built based on parallel clusters. There-
fore, we cannot individually conduct the regularization of each regular re-
lationship. As a result, we introduce a constraint to simplify the solu-
tion space: the regularity operator can only operate on a subgraph in-
duced on the regularity graph by a random node and its adjacent nodes.

(1) (2) (3)

For instance in the inset, three de-
sired induced subgraphs can be gen-
erated from the regularity graph in
Figure 5.21 (g): the subgraph (1)
is induced by the blue node and its
adjacent green node; departing from
the yellow node, its adjacent green node is first found before inducing the
subgraph (2); the subgraph (3) is induced by the green node and its two ad-
jacent nodes (blue and yellow). And for each induced subgraph, we consider
the initial node as its main node.

Given a desired induced subgraph, we regularize the primitives in it by
repositioning the support planes of the primitives. More precisely, we first
adjust the primitives in each node to be exactly parallel. The main node
of the subgraph is then fixed and the rest nodes are rotated to be exactly
orthogonal to it. Finally, the nearly co-planar primitives are moved on the
same plane, Figure 5.22.

To guide the order of the regularity operations on the set of induced
subgraphs, we update energy function 5.1 by introducing the regularity term.

88 Chapter 5. 3D Compact Mesh Reconstruction

(a) (b) (c)

(d) (e) (f)

Figure 5.22: Regularity operation conducted on the induced subgraph (3) in
the inset on the previous page. The primitives in the nodes (parallel clusters)
are first adjusted to be exactly parallel (a), (b) and (c). The centers of mass
of corresponding inlier points are first calculated (a), then the inlier points
are translated together for each node by moving the centers of mass to a
single place (b) and the mean normal for each node is estimated from the
translated inlier points using PCA (c). Then the exactly parallel primitives
are located by the centers of mass before moving and the mean normals
(c). We then freeze the main node (green one) and rotate the rest nodes so
that they are exactly orthogonal to the main node (d). Finally, the inlier
points of nearly co-planar primitives are collected to calculate the center
of mass, which is used to determine the plane with the mean normal of
the corresponding node (yellow) (e) and the nearly co-planar primitives are
projected onto the plane (f).

Regularity term. To quantify the geometric regularity of a planar shape
configuration, we introduce the degrees of freedom as in [OLA16]. Each
primitive has three degrees of freedom, two for the orientation and one for
the signed distance to the origin. For a set of parallel planar primitives, we
count 2 degrees of freedom for their orientation since they are identical. The
co-planar primitives are located on the same support plane, therefore, they
have the identical signed distances to the origin and we count 1 degree of
freedom for all of their signed distances. For two or more sets of orthogonal

5.1. Planar primitive detection 89

(a) (b) (c) (d)

Figure 5.23: Degrees of freedom. In the (a) planar primitive configuration,
all the four planar primitives are best fitted to their inlier points and there
are not geometric regularity in the configuration. The degrees of freedom of
(a) are 12. The blue, green and yellow primitives in the (b) configuration
are made parallel by aligning their orientations, the degrees of freedom are
then changed to 8. Moving the blue and yellow primitives to the same plane
results in configuration (c) decreases the degrees of freedom to 7. In the (d)
configuration, the purple primitive is rotated to be orthogonal to the other
primitives, and the degrees of freedom are decreased to 6.

primitives, we count 3 degrees of freedom for their orientations. Figure 5.23
illustrates that a configuration has less degrees of freedom when it contains
more regular primitives. We measure the geometric regularity of a primitive
configuration x with regularity term Ud whose interval is also [0, 1] same as
fidelity, simplicity and completeness terms:

Ud(x) =
DoF (x)

3nσ
(5.5)

where DoF (X) denotes the function for calculating the degrees of freedom of
the current configuration as described before. 3nσ is the maximum degrees
of freedom as nσ is the maximum number of detectable primitives.

Then the regularity term Ud is added to the energy U 5.1 and weighted
by ωd such that ωf +ωs +ωc +ωd = 1. Figure 5.24 illustrates the impact of
the weight. The energy U is now formed as:

U(x) = ωfUf (x) + ωsUs(x) + ωcUc(x) + ωdUd(x) (5.6)

Same as the local exclusion, insertion, merging and splitting operations,
the regularity operations are also guided by a dynamic priority queue. How-
ever, they conflict with the global transfer operator since exchanging inliers
between adjacent primitives can disrupt the geometric regularities in the con-
figuration, which may make the exploration loop infinitely. We, therefore,
let the transfer operator skip the regularized primitives Pr after nr loops,

90 Chapter 5. 3D Compact Mesh Reconstruction

(a) (b) (c)

(d) (e) (f)

f : 0.043
s : 253
c : 92.9%
dof : 759

f : 0.045
s : 250
c : 92.9%
dof : 674

f : 0.044
s : 248
c : 92.9%
dof : 485

f : 0.048
s : 248
c : 92.5%
dof : 383

f : 0.050
s : 251
c : 90.6%
dof : 377

Figure 5.24: Impact of the regularity weight ωd. Given the point cloud
of a fountain (a), more and more regular configurations are produced by
increasing the value of ωd, (b)-(f). Note that the other three weights are
fixed and identical. The primitives have the same color if they are parallel,
orthogonal or co-planar to each other. dof corresponds to the degrees of
freedom.

we typically set nr to 7 in our experiment. The pseudo-code is shown in
Algorithm 2.

5.1.4.2 Experiments

In the experiments, we typically set the angle tolerance β to 5 degrees and
the coplanar distance tolerance εc to ε

2 . We denote the proposed shape de-
tection methods with and without regularization by Regular and Original,
respectively. And they are compared only on man-made objects and urban
scenes where the geometric regularities should be preserved.

We first tested the extended method on some complex dense point clouds
generated from different types of acquisition systems. Our methods are ro-
bust and scalable enough to handle these point clouds. Figure 5.25 demon-
strates that the extended method can preserve well the geometric regularities

5.1. Planar primitive detection 91

Algorithm 2 Pseudo-code of the exploration mechanism with regularization
1: Initialize the primitive configuration x

2: tloop = 0

3: repeat
4: if tloop < nr then
5: Update x by the global transfer operator
6: else
7: Find the regularized primitives Pr

8: Update x \ Pr by the global transfer operator
9: end if

10: Initialize the priority queue Q

11: while top operation i of Q decreases energy U do
12: Update x by operation i

13: Update Q

14: end while
15: tloop ++

16: until no update modifies x any more

in man-made objects and scenes.
We then do a quantitative comparison on 139 point clouds that are sam-

pled from the CAD models of ABC dataset [KMJ+19], the 139 CAD models
are complex and contain at least 200 facets and each CAD is sampled with
100K points. The weights for the four terms in the energy function are iden-
tical in Regular and the weights for the three terms in the energy function
are also identical in Original. Table 5.8 shows that the Regular can sig-
nificantly decrease the degrees of freedom and slightly lower the number of
detected primitives while sacrificing the fidelity and completeness. Due to the
trade-off between the objectives, the sacrificing of fidelity and completeness
are unavoidable when geometric regularities are expected to be preserved.
However, Regular can outperform the region growing method [RVDHV06]
in all the four aspects, which demonstrates that our method can finding good
planar primitive configurations by seeking high fidelity, high simplicity, high
completeness and high regularity simultaneously.

92 Chapter 5. 3D Compact Mesh Reconstruction

Original
f : 0.026
s : 1156
c : 92.3%
dof : 3468

Regular
f : 0.042
s : 1141
c : 91.7%
dof : 899

Original
f : 0.019
s : 1298
c : 93.6%
dof : 3894

Regular
f : 0.038
s : 1338
c : 93.4%
dof : 781

Original
f : 0.022
s : 640
c : 95.1%
dof : 1920

Regular
f : 0.030
s : 654
c : 94.9%
dof : 580

Original
f : 0.141
s : 181
c : 96.8%
dof : 543

Regular
f : 0.166
s : 202
c : 95.5%
dof : 235

Regular
f : 0.187
s : 1812
c : 99.7%
dof : 2936

Original
f : 0.135
s : 2477
c : 99.9%
dof : 7431

Regular
f : 0.067
s : 697
c : 94.9%
dof : 703

Original
f : 0.056
s : 729
c : 95.0%
dof : 2187

Figure 5.25: Visual comparisons between Regular and Original. The prim-
itives have the same color if they are parallel, orthogonal or co-planar to each
other. dof decreased a lot when we take regularity into account.

5.1. Planar primitive detection 93

Fidelity Completeness Simplicity Degrees of freedom
Original 0.0785 92.86% 174.49 523.47
Regular 0.0898 92.11% 167.45 204.98
RG [RVDHV06] 0.1117 91.56% 197.62 592.86

Table 5.8: Comparison between Regular, Original and region growing
(RG) [RVDHV06] on synthetic point clouds.

Barn MVS
eS : 0.582 VS 0.651
#f: 53 VS 43

Building C
eS : 0.339 VS 0.381
#f: 46 VS 44

House
eS : 0.494 VS 0.460
#f: 72 VS 51

Lans
eS : 0.105 VS 0.109
#f: 253 VS 187

Navhis
eS : 0.053 VS 0.058
#f: 723 VS 428

Figure 5.26: Reconstruction of urban objects and scenes. For each pair
of compact meshes, the left one and the right one are assembled from the
planar primitives generated by Original and Regular, respectively. eS and
#f refer to the symmetric mean Hausdorff error (in % of the bounding box
diagonal) and the number of output facets, respectively. The colored point
clouds show the Hausdorff distance distribution (yellow= 0, black≥ ε).

In addition, we also assemble the planar primitives detected by Regular

or Original using KSR. The reconstructed compact meshes are shown in
Figure 5.26. We measure the accuracy of the compact mesh by the sym-
metric mean Hausdorff distance between input point cloud and the output
mesh. The simplicity is quantified by the number of polygonal facets of the
reconstructed compact mesh. Figure 5.26 demonstrates that the regularized

94 Chapter 5. 3D Compact Mesh Reconstruction

planar primitives can lead to a more compact mesh where geometric regu-
larities are preserved while sacrificing the accuracy. Particularly, adjusting
nearly co-planar primitives to be exactly co-planar can eliminate unnecessary
creases in the planar area.

5.2. Surface extraction without normal orientation 95

5.2 Surface extraction without normal orientation

Surface extraction is formalized as an energy-minimizing task to determinate
the occupancy of each polyhedral cell in KSR [BL20]. To build the energy
function, the normal orientation is required, which is not easy to obtain in
the real world due to the limitations of acquisition tools. Therefore, a more
practical way is required to label the polyhedral cells in the partition only
from the coordinates of input points. With the rapid development of deep
learning, some implicit neural networks are proposed to estimate the implicit
function directly from the point coordinates. Given an estimated implicit
function, the energy function can be built by propagating the occupancy in-
formation from the estimated implicit function to the polyhedral partition.
We, therefore, adapt an efficient and scalable implicit neural network POCO
[BM22] in the generate framework (KSR). POCO predicts point-wise latent
vectors for each input point before computing latent vectors of the given
query points using learning-based interpolation. The query point features
are then decoded to occupancy probabilities. In the training phase, the
probabilities are used to calculate the loss function with the ground truth
of the given query points. In the inference phase, the occupancy probabili-
ties are used to determinate if the corresponding query points are inside or
outside of the object that is represented by the input points, Figure 5.27.

(a) (b) (c) (d)

Figure 5.27: Overview of POCO [BM22] during the inference phase. Given
a point cloud (a) that represents an object, POCO first extracts point-wise
latent vectors (b). For any given query point, its latent vector is generated by
interpolating the latent vectors of nearby input points (c). The latent vector
is then taken as the input of a decoder to predict the occupancy probability
of the query point (d). Image taken from [BM22].

96 Chapter 5. 3D Compact Mesh Reconstruction

(a) (b) (c)

Figure 5.28: MC-Regro. The bounding box of the input points is discretized
using a grid of voxels based on a user-defined parameter voxel resolution (10
here) (a). Given another user-defined parameter dilation size (1 here), the
close endpoints (at a distance of no more than dilation size grid steps) are
first taken as query points departing from the input points (b). And the
occupancy of each query point is predicted, where blue represents empty
and green means occupied (b). The occupancy is then iteratively calculated
for the rest endpoints that are close (at a distance of no more than dilation
size grid steps) to both empty and occupied queried points, which have red
contours in (c). Only one iteration is carried out here.

5.2.1 Algorithm

The input point cloud is taken as the inputs of KSR and POCO to obtain the
kinetic partition and the estimated occupancy function. To extract the oc-
cupancy information from the estimated occupancy function, we first collect
a set of query points Q in the vicinity of the input points and predict their
occupancy information using the occupancy function estimated by POCO.
As for POCO, the set of query points Q is generated by MC-regro (Marching
cube - region growing), Figure 5.28. To propagate the occupancy information
of Q into the kinetic partition, we determine position relationships between
Q and the set of polyhedral cell C in the kinetic partition. A polyhedral cell
gathers the occupancy information from its internal query points. This step
is explained in Query point positioning. After all, we build an energy
function and minimize it using graph cut (Semantic labeling).

Query point positioning. To transfer the occupancy information from
the set of query points Q to the kinetic partition, we find all the internal
query points for each polyhedral cell in the partition. A polyhedral cell i
can be seen as an intersection of a set of half-spaces that are obtained by
cutting the 3D space using the support planes of the polygonal facets of i.

5.2. Surface extraction without normal orientation 97

(a) (b) (c)

Figure 5.29: Finding the internal query points of a polyhedral cell. Given
a set of query points (blue points) and a kinetic partition (dashed line), we
want to efficiently find all the internal query points of the polyhedral cell i,
represented in grey (a). The query points are first saved in a kd-tree and then
the candidate internal query points for the polyhedral cell i are gathered by
searching the query points that are located within the bounding sphere (grey
dash circle) of i (b). Note that the center of the bounding sphere is located
at the barycenter of i. Finally, the internal query points of i are determined
from the candidate points, using the barycenter as a reference.

polyhedral cell i

If a reference point that is inside the
polyhedral cell i can be discovered,
the challenge of determining whether
a query point is inside the polyhe-
dral cell i can be converted to de-
termining whether the query point
is on the same side of all the sup-
port planes of i’s facets as the refer-
ence point. Thanks to the convexity
of the polyhedral cells in the kinetic
partition, the reference point can be
easily found as the barycenter of each polyhedral cell. In the insert for in-
stance, the black point represents the barycenter of the polyhedral cell i and
is seen as the reference point. The dash lines present the support planes of
the facets of i. The blue query point is inside the cell i because it is on the
same side of all the support planes as the reference point, whereas the green
query point is outside i since it is on the other side of the red support plane
from the reference point.

98 Chapter 5. 3D Compact Mesh Reconstruction

Iteratively checking each query point for each polyhedral cell is the sim-
plest way, but it takes a lot of time to position all the internal query points of
all the polyhedral cells. We, therefore, proposed a way to first select the can-
didate points for each polyhedral cell before determining the internal query
points from them. To collect the candidate points of a polyhedral cell, the
query points are first saved in a kd-tree [TF22] before finding all the query
points that are in the bounding sphere of the polyhedral cell, Figure 5.29.

Semantic labeling. We now propagate the occupancy information O from
the query points to the polyhedral cells C and assign inside or outside to
each polyhedral cell in the kinetic partition. The occupancy of a query point
q ∈ Q and a polyhedral cell i ∈ C are denoted as Oq and xi, respectively.
A two-term energy function is proposed to measure the quality of a set of
predicted occupancy x = (xi)i∈C:

U(x) = D(x) + λV (x) (5.7)

where D(x) and V (x) are fidelity and complexity terms, which are living in
the interval [0, 1]. λ ∈ [0, 1] is a parameter balancing these two terms. The
complexity term V (x) measures the complexity of the output surface by its
area and a simple surface is preferred by this term, as in [BL20].

The fidelity term D(x) measures the consistency between the occupancy
x assigned to the polyhedral cells and the occupancy of the query points
estimated by POCO, which is a sum of local consistency measures over each
query point q:

D(x) =
1

|Q|
∑
i∈C

∑
q∈Qi

d(xi, Oq) (5.8)

where Qi is the set of internal query points of the polyhedral cell i, |Q| is the
number of query points and d(xi, Oq) is a function measuring the consistency
between the occupancy xi of polyhedral cell i and the occupancy Oq of query
point q:

d(xi, Oq) =

1 if xi ̸= Oq

0 otherwise
(5.9)

5.2.2 Experiments

KSR is implemented in C++ and POCO is implemented in Python. The
pre-trained POCO network (trained using 4950 CAD models in the ABC

5.2. Surface extraction without normal orientation 99

symmetric mean Hausdorff distance # facets
KSR [BL20] 0.31% 221
KS-PO 0.36% 216

Table 5.9: Quantitative comparison with KSR. The symmetric mean Haus-
dorff distance is in % of the bounding box diagonal and # facets presents
the number of the polygonal facets of the reconstructed compact mesh.

dataset) is used. To collect query points, the two parameters voxel resolution
and dilation size are set to 2563 and 2 in MC-Regro, respectively. We denote
the combination of KSR and POCO by KS-PO.

Metrics. Two criteria are employed to evaluate the quality of the recon-
structed compact meshes. We measure the fidelity by the symmetric mean
Hausdorff distance between the input point cloud and the output mesh. The
simplicity is quantified by the number of polygonal facets of the reconstructed
compact mesh.

We first quantitatively compared KSR and KS-PO on 139 point clouds,
which are sampled from the CAD models of ABC dataset [KMJ+19]. The
139 CAD models are complex and contain at least 200 facets and each CAD
is sampled with 100K points. Note that the planar shape detection used
in KSR and KS-PO are the same. Table 5.9 shows that KS-PO has larger
symmetric mean Hausdorff distance and fewer polygonal facets than KSR,
it is hard to definitively state which one is better based just on the two
measurements. However, the two metrics of the results produced by these
two reconstruction methods are essentially the same and KS-PO does not
have the limitation of normal orientation. Hence, KS-PO is more practical
on such synthetic data.

We then qualitatively compare them on different freeform and man-made
object that are generated from different types of acquisition systems, Fig-
ure 5.30. Same as KSR, KS-PO is also scalable enough to handle large-scale
point clouds. However, KS-PO can not generate accurate compact meshes as
good as KSR. Some details are ignored by KS-PO since POCO is not robust
enough for real-world data. In addition, POCO can only produce results
when the input point clouds describe watertight objects or scenes due to the
limitation of the occupancy function. As a result, KS-PO can not work well
on the point clouds that contain a large amount of missing data, Figure 5.31.

100 Chapter 5. 3D Compact Mesh Reconstruction

M60: KSR VS KS-PO
eS : 0.264 VS 0.301

#f: 408 VS 481

Armadillo: KSR VS KS-PO
eS : 0.136 VS 0.138

#f: 837 VS 671

Dragon: KSR VS KS-PO
eS : 0.091 VS 0.126

#f: 1737 VS 1814

Horse: KSR VS KS-PO
eS : 0.150 VS 0.163

#f: 812 VS 789

Fertility: KSR VS KS-PO
eS : 0.213 VS 0.211

#f: 209 VS 210

Temple: KSR VS KS-PO
eS : 0.204 VS 0.205

#f: 232 VS 238

Hand: KSR VS KS-PO
eS : 0.301 VS 0.307

#f: 125 VS 124

Observatory: KSR VS KS-PO
eS : 0.164 VS 0.178

#f: 332 VS 411
Navhis: KSR VS KS-PO
eS : 0.065 VS 0.130

#f: 532 VS 529

Figure 5.30: Visual comparison with KSR. In each pair of result, the left
one is the reconstructed result of KSR and the right one is reconstructed
by KS-PO. The colored point clouds show the geometric error distribution
(yellow=0, black≥ ε). eS , #f refer to the symmetric mean Hausdorff error
(in % of the bounding box diagonal) and the number of output facets.

5.3 Conclusion

To efficiently reconstruct compact meshes, we first proposed an algorithm
for fitting planar primitives to unorganized point clouds. The key contri-
bution of this work relies upon the design and efficient implementation of

5.3. Conclusion 101

Figure 5.31: Failure cases of KS-PO. When there are large missing parts in
the input point clouds, KS-PO can not deliver well reconstructed compact
meshes.

an exploration mechanism that seeks configurations with high fidelity, high
simplicity and high completeness simultaneously. In addition, the algorithm
can be extended such that regularity can also be taken into account. Inspired
by geometry processing techniques, this mechanism delivers high quality re-
sults that outclass those obtained with traditional methods and recent deep
learning models. We also demonstrated the efficiency and the robustness of
our algorithm on a variety of objects and scenes in terms of size, complexity
and acquisition characteristics. To make the reconstruction method more
practical and free from the constraints of the requirement for normal orien-
tation, a new compact mesh reconstruction pipeline is proposed based on
the combination of a reconstruction method (KSR [BL20]) and an implicit
neural network (POCO [BM22]). Thanks to the powerful learning capacity
of the neural network, occupancy information can be directly estimated from
the point coordinates. Our experiments demonstrated the practicality of the
combined pipeline.

Chapter 6

Conclusion and Perspectives

6.1 Conclusion

This thesis addressed the problem of obtaining compact and accurate 3D
virtual models from the common, readily available data in urban contexts,
which involves repairing defect-laden urban models and compact meshes re-
construction from point clouds. In terms of repairing, a generic and global
repairing method was presented to correct geometric errors in common urban
models. On the reconstruction side, we enhanced the planar shape detec-
tion and surface extraction components of an efficient and scalable compact
mesh reconstruction method KSR [BL20], making it more practical to pro-
duce compact meshes of high quality.

3D model repairing. In Section 4, we proposed a repairing method that
allows generic and global correction of geometric errors in both facet-based
and volume-based urban models by using Kinetic data structures. Compari-
son with traditional mesh repairing methods demonstrated that our repairing
method is global and object-aligned, which can ensure the validation of out-
put and preserve the sharp features such as corners and creases. Experiments
on various CityGML models and large IFC models showed the adaptability
and scalability of our repairing method. Furthermore, experiments on differ-
ent types of errors, such as gaps, overlaps between volumes, self-intersection
of facets and vertex misalignment, demonstrated that our method is robust
to various types of geometric errors. Our method has also been shown to
compete well against the existing urban model repairing methods. In addi-
tion, a confidence map of the predicted semantics in ambiguous cases can also
be provided by our method, which can simplify optional user interactions.
Moreover, we designed a user-interactive GUI that enables users to interac-
tively correct some failure instances of our repairing procedure, producing
ideal and user-desired results.

104 Chapter 6. Conclusion and Perspectives

Compact mesh reconstruction. In Section 5.1, we first presented an
algorithm for detecting good planar shape configurations from point clouds.
The characteristics of a good planar shape configuration was defined before
proposing a natural and simple energy function. Guided by the energy func-
tion, five geometric operators are iteratively conducted to explore a mixed
discrete-and-continuous configuration space. Experiments on CAD-sampled,
Laser scanned and MVS point clouds demonstrated that our planar shape
detection method is robust in terms of acquisition tools; experiments on
freeform objects and urban scenes showed the flexibility and scalability of
our method. Meanwhile, it has been shown to compete well against existing
incremental mechanisms and neural network approaches. Our method is ex-
tensible, i.e. other objectives can be taken into account as long as they can
be formalized as new terms in the energy function and relevant new opera-
tors can be devised. We verified the extensibility by introducing geometric
regularity as a new objective in Section 5.1.4, where degrees of freedom are
leveraged to measure the regularity of planar shape configurations and the
regularity operators are proposed based on a pre-detected regularity graph.
In addition, we replaced the Region Growing method in the original KSR
with our method, the updated KSR outperforms the state-of-the-art compact
mesh reconstruction methods [BL20, NW17, CTZ20].

We secondly enhanced the surface extraction component of KSR by using
an implicit neural network POCO [BM22] in Section 5.2. This improves the
practicability of the reconstruction pipeline. The combination of explicit and
implicit methods benefits from both the structure-preserving of the kinetic
data structure and the powerful learning capability of the neural network.
Experiments have shown that the combined pipeline can produce compact
meshes with roughly the same quality as the results of KSR on synthetic
data while does not have the restriction that normal orientation is necessary.

6.2 Perspectives

This thesis only constitutes a tiny step toward reconstruction and repairing
of 3D urban models. Our methods suffer from some weaknesses. As detailed
in Section 5, the shape detection method requires long processing time for
handling the large-scale point clouds and is influenced by the initial config-
uration. The 3D model repairing method can not automatically handle the

6.2. Perspectives 105

ambiguous semantic errors as discussed in Section 4. These weaknesses call
for several future research that needs to be investigated.

Parallel explorations. Our planar shape detection method sequentially
conducts the operations, which results in lengthy processing times on mas-
sive point clouds, e.g. urban scenes. Inspired by the two-level hierarchical
partitioning used in [CLP10], separating a large point cloud into several
semantically consistent parts and then optimizing the planar shape config-
uration of each part in parallel would be a good way to reduce the running
time. A semantic point cloud segmentation method and a new operator for
combining the configuration of each part are therefore desired to be designed.

Generalization to more complex primitives. Our shape detection
method can only fit planar shapes, a natural extension of this work would
be to accommodate a wider range of shapes. Spheres, cylinders, cones and
B-spline surfaces can be introduced to enrich the shape types and lead to
simpler and more accurate configurations. Designing a unified energy func-
tion and the operators that are applicable to all shapes is the key challenge.

Robustness to initialization. As shown in Figure 5.3, poor initializa-
tions can easily lead to badly optimized configurations. The reason is that
our exploration mechanism is not designed to find the global optimal solu-
tion and the configuration may get stuck at a locally optimal solution. To
improve the robustness to initialization, one possible solution is to design a
new operator to disturb the configuration and skip over the local optimal
solution; another way could be to optimize the configuration with the help
of reinforcement learning.

Semantic understanding. In urban models, there exist semantic errors
in addition to geometric errors. Our repairing method can not automatically
deal with the ambiguous cases in IFC models and needs user interaction. A
graph neural network could be a good choice for predicting the semantic
class of each polyhedral cell in the kinetic partitioning, while training the
network requires an enriched training dataset, which is not yet available but
can be generated using the designed user-interactive GUI in Section 4.

106 Chapter 6. Conclusion and Perspectives

Multi-scale Urban Digital Twin (UDT). An ideal UDT can control
and manage a city in both city-scale and building-scale. Therefore, creating
a multi-scale UDT is a good future research direction. One way could be
creating an integration of BIM and GIS [LWW+17]. However, some chal-
lenges still need to be addressed, such as geometric and topological issues
when converting data with different forms [OBD+17].

Towards an alternative representation of point clouds. The point
cloud is commonly used as an intermediate representation when translating
geometric information from 2D (images) to 3D (meshes). However, some
important information, such as neighbor information, is lost while converting
between images and point clouds. Therefore, I believe that it is important
to design better representations that can gather more information from the
images and can deliver more accurate meshes. For instance, NeRF [MST+20]
can estimate a radiance field from the input images, which could be an
alternative representation to the point cloud [MHS+22].

Combination of traditional geometric processing and deep learn-
ing. Traditional geometric processing and deep learning have advantages
in different applications. For instance, deep learning is good at segmentation
and detection while geometric processing is good at generation and recon-
struction. In my opinion, designing end-to-end deep learning methods to deal
with all the geometric problems shall be inefficient, and combining the tra-
ditional geometric processing and deep learning in an efficient manner would
be a more interesting direction for future research. For instance, [LLM20] ex-
tracts and vectorizes objects with polygons in images based on rough seman-
tic probability maps generated by deep learning method [LY16]. It delivers
better results than end-to-end RNN-based methods [CKUF17, LWL19].

Publications

This thesis is supported by the following publications:

• Mulin Yu, Florent Lafarge. Finding Good Configurations of Planar
Primitives in Unorganized Point Clouds. Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2022.

• Mulin Yu, Florent Lafarge, Sven Oesau, Bruno Hilaire. Repairing geo-
metric errors in 3D urban models with kinetic data structures. ISPRS
Journal of Photogrammetry and Remote Sensing 192 (2022): 315-326.

Additional preprint not within the scope of this thesis:

• Tong Zhao, Mulin Yu, Florent Lafarge, Pierre Alliez. Sharp Feature
Consolidation from Raw 3D Point Clouds via Displacement Learning.
Preprint.

Bibliography

[ASF+13] Murat Arikan, Michael Schwarzler, Simon Flory, Michael Wim-
mer, and Stefan Maierhofer. O-Snap: Optimization-Based
Snapping for Modeling Architecture. Trans. on Graphics, 32(1),
2013. (Cited on pages 23 and 24.)

[Att10] Marco Attene. A lightweight approach to repairing digitized
polygon meshes. The Visual Computer, 26(11), 2010. (Cited
on pages 13, 45 and 48.)

[AWW+14] Nazmul Alam, Detlev Wagner, Mark Wewetzer, Julius von
Falkenhausen, Volker Coors, and Margitta Pries. Towards au-
tomatic validation and healing of CityGML models for geo-
metric and semantic consistency. In Innovations in 3D Geo-
Information Sciences. 2014. (Cited on page 16.)

[BBN+20] Tolga Birdal, Benjamin Busam, Nassir Navab, Slobodan Ilic,
and Peter Sturm. Generic Primitive Detection in Point Clouds
Using Novel Minimal Quadric Fits. TPAMI, 42(6), 2020. (Cited
on page 20.)

[BdLGM14] Alexandre Boulch, Martin de La Gorce, and Renaud Marlet.
Piecewise-planar 3D reconstruction with edge and corner reg-
ularization. In Computer Graphics Forum, volume 33, 2014.
(Cited on page 24.)

[BELN11] Dorit Borrmann, Jan Elseberg, Kai Lingemann, and Andreas
Nüchter. The 3D hough transform for plane detection in point
clouds: A review and a new accumulator design. 3D Research,
2(2), 2011. (Cited on page 20.)

[BK97] Gill Barequet and Subodh Kumar. Repairing CAD models. In
Proceedings. Visualization, 1997. (Cited on page 13.)

[BK05] Stephan Bischoff and Leif Kobbelt. Structure preserving CAD
model repair. In Computer Graphics Forum, volume 24, 2005.
(Cited on page 15.)

110 Bibliography

[BKP+10] Mario Botsch, Leif Kobbelt, Mark Pauly, Pierre Alliez, and
Bruno Lévy. "Polygon Mesh Processing". AK Peters, 2010.
(Cited on page 59.)

[BL20] Jean-Philippe Bauchet and Florent Lafarge. Kinetic Shape
Reconstruction. Trans. on Graphics, 39(5), 2020. (Cited on
pages 25, 27, 28, 32, 37, 50, 55, 65, 69, 71, 72, 95, 98, 99, 101,
103 and 104.)

[BLD+16] Filip Biljecki, Hugo Ledoux, Xin Du, Jantien Stoter, Kean Huat
Soon, and VHS Khoo. The most common geometric and seman-
tic errors in CityGML datasets. ISPRS Annals of Photogram-
metry, Remote Sensing & Spatial Information Sciences, 4, 2016.
(Cited on pages 6, 15 and 42.)

[BLS16] Filip Biljecki, Hugo Ledoux, and Jantien Stoter. An improved
LOD specification for 3D building models. Computers, Envi-
ronment and Urban Systems, 59, 2016. (Cited on page 4.)

[BM22] Alexandre Boulch and Renaud Marlet. POCO: Point convo-
lution for surface reconstruction. In CVPR, 2022. (Cited on
pages 17, 30, 95, 101 and 104.)

[BS95] Gill Barequet and Micha Sharir. Filling gaps in the boundary of
a polyhedron. Computer Aided Geometric Design, 12(2), 1995.
(Cited on page 13.)

[BSL+15] Filip Biljecki, Jantien Stoter, Hugo Ledoux, Sisi Zlatanova, and
Arzu Çöltekin. Applications of 3D city models: State of the art
review. ISPRS International Journal of Geo-Information, 4(4),
2015. (Cited on page 1.)

[Bui] BuildingSMART Polska. BIMvisio. https://bimvision.eu/.
(Cited on page 2.)

[CAK12] Marcel Campen, Marco Attene, and Leif Kobbelt. A Practical
Guide to Polygon Mesh Repairing. In Eurographics (Tutorials),
2012. (Cited on page 13.)

https://bimvision.eu/

Bibliography 111

[CAPM20] Julian Chibane, Thiemo Alldieck, and Gerard Pons-Moll. Im-
plicit functions in feature space for 3d shape reconstruction and
completion. In CVPR, 2020. (Cited on page 17.)

[CC08] Jie Chen and Baoquan Chen. Architectural Modeling from
Sparsely Scanned Range Data. IJCV, 78(2-3), 2008. (Cited
on pages 20 and 23.)

[CDF+17] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Halber,
Matthias Niessner, Manolis Savva, Shuran Song, Andy Zeng,
and Yinda Zhang. Matterport3D: Learning from RGB-D data
in indoor environments. 3DV, 2017. (Cited on page 8.)

[Ces] Cesium Engineer Team. CESIUM (Open Source 3D rendering
library). https://github.com/CesiumGS/cesium. (Cited on
page 3.)

[CFG+15] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat
Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Manolis
Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and Fisher
Yu. Shapenet: An information-rich 3d model repository. Tech-
nical report, 2015. (Cited on pages 70 and 72.)

[Cha16] Kang-Tsung Chang. Geographic information system. Inter-
national Encyclopedia of Geography: People, the Earth, Envi-
ronment and Technology: People, the Earth, Environment and
Technology, 2016. (Cited on page 4.)

[CHXS20] Rui Chen, Songfang Han, Jing Xu, and Hao Su. Visibility-
Aware Point-Based Multi-View Stereo Network. TPAMI,
43(10), 2020. (Cited on page 9.)

[CKUF17] Lluis Castrejon, Kaustav Kundu, Raquel Urtasun, and Sanja
Fidler. Annotating object instances with a Polygon-RNN. In
CVPR, 2017. (Cited on page 106.)

[CLP10] Anne-Laure Chauve, Patrick Labatut, and Jean-Philippe Pons.
Robust Piecewise-Planar 3D Reconstruction and Completion
from Large-Scale Unstructured Point Data. In CVPR, 2010.
(Cited on pages 24, 25, 72, 73, 75 and 105.)

https://github.com/CesiumGS/cesium

112 Bibliography

[CMPM20] Julian Chibane, Aymen Mir, and Gerard Pons-Moll. Neural
unsigned distance fields for implicit function learning. In NIPS,
volume 33, 2020. (Cited on page 17.)

[CSAD04] David Cohen-Steiner, Pierre Alliez, and Mathieu Desbrun.
Variational shape approximation. In ACM SIGGRAPH, 2004.
(Cited on pages 18, 19, 21 and 72.)

[CSaLM13] Desai Chen, Pitchaya Sitthi-amorn, Justin T Lan, and Wojciech
Matusik. Computing and fabricating multiplanar models. In
Computer graphics forum, volume 32, 2013. (Cited on page 19.)

[CT11] Fatih Calakli and Gabriel Taubin. SSD: Smooth signed dis-
tance surface reconstruction. In Computer Graphics Forum,
volume 30, 2011. (Cited on page 17.)

[CTZ20] Zhiqin Chen, Andrea Tagliasacchi, and Hao Zhang. BSP-Net:
Generating Compact Meshes via Binary Space Partitioning. In
CVPR, 2020. (Cited on pages 25, 55, 70, 72 and 104.)

[CY00] James M. Coughlan and Alan L. Yuille. The Manhattan
world assumption: Regularities in scene statistics which enable
Bayesian inference. In NIPS, 2000. (Cited on page 22.)

[DDVM14] Abdoulaye Abou Diakité, Guillaume Damiand, and Dirk
Van Maercke. Topological reconstruction of complex 3D build-
ings and automatic extraction of levels of detail. In Eurograph-
ics Workshop on Urban Data Modelling and Visualisation, 2014.
(Cited on pages 16 and 32.)

[Dep16] Department of Information Technology and Telecommu-
nications (DOITT). The NYC 3-D Building Mass-
ing Model, 2016. https://github.com/CityOfNewYork/

nyc-geo-metadata/blob/master/Metadata/. (Cited on
page 3.)

[DI15] Bertram Drost and Slobodan Ilic. Local Hough Transform for
3D Primitive Detection. In 3DV, 2015. (Cited on page 20.)

[DL14] Guillaume Damiand and Pascal Lienhardt. Combinatorial
Maps: Efficient Data Structures for Computer Graphics and

https://github.com/CityOfNewYork/nyc-geo-metadata/blob/master/Metadata/
https://github.com/CityOfNewYork/nyc-geo-metadata/blob/master/Metadata/

Bibliography 113

Image Processing. A K Peters/CRC Press, 2014. (Cited on
page 32.)

[EGO+20] Philipp Erler, Paul Guerrero, Stefan Ohrhallinger, Niloy J Mi-
tra, and Michael Wimmer. Points2surf learning implicit sur-
faces from point clouds. In ECCV, 2020. (Cited on page 17.)

[FL20] Hao Fang and Florent Lafarge. Connect-and-Slice: an hybrid
approach for reconstructing 3D objects. In CVPR, 2020. (Cited
on page 26.)

[FLD18] Hao Fang, Florent Lafarge, and Mathieu Desbrun. Planar
Shape Detection at Structural Scales. In CVPR, 2018. (Cited
on page 22.)

[GDJY19] Jianwei Guo, Fan Ding, Xiaohong Jia, and Dong-Ming Yan.
Automatic and high-quality surface mesh generation for CAD
models. Computer-Aided Design, 109, 2019. (Cited on page 14.)

[GFZ+20] Xiaodong Gu, Zhiwen Fan, Siyu Zhu, Zuozhuo Dai, Feitong
Tan, and Ping Tan. Cascade Cost Volume for High-Resolution
Multi-View Stereo and Stereo Matching. In CVPR, 2020. (Cited
on page 9.)

[GH97] Michael Garland and Paul S Heckbert. Surface simplification
using quadric error metrics. In Proceedings of the 24th annual
conference on Computer graphics and interactive techniques,
1997. (Cited on pages 18 and 72.)

[GKUP11] Michael Gschwandtner, Roland Kwitt, Andreas Uhl, and Wolf-
gang Pree. BlenSor: Blender sensor simulation toolbox. In
International Symposium on Visual Computing, 2011. (Cited
on page 9.)

[GL12] Groger Gerhard and Plumer Lutz. CityGML - Interoperable
semantic 3D city models. Journal of Photogrammetry and Re-
mote Sensing, 71, 2012. (Cited on pages 4 and 31.)

[GTLH01] André Guéziec, Gabriel Taubin, Francis Lazarus, and B Hom.
Cutting and stitching: Converting sets of polygons to manifold

114 Bibliography

surfaces. IEEE Transactions on Visualization and Computer
Graphics, 7(2), 2001. (Cited on page 13.)

[Gui04] Leonidas J. Guibas. Kinetic data structures. In Handbook of
Data Structures and Applications, 2004. (Cited on page 37.)

[Han21] Hanover City, Department of Planning and Urban Devel-
opment, Geoinformation. City model Hannover CityGML
LoD2, 2021. https://opengeodata.hannover-stadt.de/

Stadtmodell_Hannover_CityGML_LoD2.zip. (Cited on
page 43.)

[HMFB18] Thomas Holzmann, Michael Maurer, Friedrich Fraundorfer,
and Horst Bischof. Semantically Aware Urban 3D Reconstruc-
tion with Plane-Based Regularization. In ECCV, 2018. (Cited
on page 55.)

[Hop99] Hugues Hoppe. New quadric metric for simplifying meshes
with appearance attributes. In Proceedings Visualization, 1999.
(Cited on page 18.)

[HZS21] Jingwei Huang, Yanfeng Zhang, and Mingwei Sun. Primi-
tiveNet: Primitive Instance Segmentation with Local Primitive
Embedding under Adversarial Metric. In ICCV, 2021. (Cited
on page 22.)

[IB12] Hossam Isack and Yuri Boykov. Energy-based Geometric Multi-
Model Fitting. IJCV, 97(2), 2012. (Cited on pages 21 and 56.)

[ISO03] ISO ISO. 19107: 2003: Geographic information—Spatial
schema. International Organization for Standardization, 90,
2003. (Cited on page 4.)

[ISO04] ISO ISO. 10303-11: 2004 industrial automation systems and
integration– product data representation and exchange–part 11:
Description methods: The express language reference manual.
ISO/TC, 184, 2004. (Cited on page 2.)

[JJ14] Farzad Jalaei and Ahmad Jrade. Integrating building infor-
mation modeling (BIM) and energy analysis tools with green

https://opengeodata.hannover-stadt.de/Stadtmodell_Hannover_CityGML_LoD2.zip
https://opengeodata.hannover-stadt.de/Stadtmodell_Hannover_CityGML_LoD2.zip

Bibliography 115

building certification system to conceptually design sustainable
buildings. J. Inf. Technol. Constr., 19, 2014. (Cited on page 2.)

[JSM+20] Chiyu Jiang, Avneesh Sud, Ameesh Makadia, Jingwei Huang,
Matthias Nießner, and Thomas Funkhouser. Local implicit
grid representations for 3D scenes. In CVPR, 2020. (Cited
on page 17.)

[Ju04] Tao Ju. Robust repair of polygonal models. Trans. on Graphics,
23(3), 2004. (Cited on pages 45 and 48.)

[Kae15] Michael Kaess. Simultaneous localization and mapping with
infinite planes. In ICRA, 2015. (Cited on page 55.)

[KBH06] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. Pois-
son surface reconstruction. In Proceedings of the fourth Euro-
graphics symposium on Geometry processing, volume 7, 2006.
(Cited on page 17.)

[KCK18] Pyojin Kim, Brian Coltin, and H Jin Kim. Linear RGB-D
SLAM for planar environments. In ECCV, 2018. (Cited on
page 55.)

[KH13] Michael Kazhdan and Hugues Hoppe. Screened poisson surface
reconstruction. Trans. on Graphics, 32(3), 2013. (Cited on
page 17.)

[KMJ+19] Sebastian Koch, Albert Matveev, Zhongshi Jiang, Francis
Williams, Alexey Artemov, Evgeny Burnaev, Marc Alexa, De-
nis Zorin, and Daniele Panozzo. ABC: A Big CAD Model
Dataset For Geometric Deep Learning. In CVPR, 2019. (Cited
on pages 9, 22, 65, 66, 91 and 99.)

[KNO+20] Thomas Krijnen, Francesca Noardo, Ken Arroyo Ohori, Hugo
Ledoux, and Jantien Stoter. Validation and inference of geomet-
rical relationships in ifc. In Proceedings of the 37th International
Conference of CIB W, volume 78, 2020. (Cited on page 15.)

[KPZK17] Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen
Koltun. Tanks and Temples: Benchmarking Large-Scale Scene

116 Bibliography

Reconstruction. Trans. on Graphics, 36(4), 2017. (Cited on
pages 8 and 65.)

[KYZB18] Adrien Kaiser, Jose Alonso Ybanez Zepeda, and Tamy
Boubekeur. A Survey of Simple Geometric Primitives Detection
Methods for Captured 3D Data. Computer Graphics Forum, 37,
2018. (Cited on page 55.)

[LA13] Florent Lafarge and Pierre Alliez. Surface reconstruction
through point set structuring. Computer Graphics Forum, 32,
2013. (Cited on page 24.)

[LC87] William E Lorensen and Harvey E Cline. Marching cubes: A
high resolution 3D surface construction algorithm. ACM sig-
graph, 21(4), 1987. (Cited on page 17.)

[Led18] Hugo Ledoux. val3dity: validation of 3D GIS primitives ac-
cording to the international standards. Open Geospatial Data,
Software and Standards, 3(1), 2018. (Cited on page 43.)

[LGP+21] Shi-Lin Liu, Hao-Xiang Guo, Hao Pan, Peng-Shuai Wang, Xin
Tong, and Yang Liu. Deep implicit moving least-squares func-
tions for 3D reconstruction. In CVPR, 2021. (Cited on page 17.)

[LGR15] GN Lilis, GI Giannakis, and DV Rovas. Detection and semi-
automatic correction of geometric inaccuracies in IFC files.
In 14th International Conference of IBPSA-Building Simula-
tion 2015, BS 2015, Conference Proceedings, 2015. (Cited on
page 15.)

[Li,19] Li, Lingxiao and Sung, Minhyuk and Dubrovina, Anastasia and
Yi, Li and Guibas, Leonidas J. Supervised fitting of geomet-
ric primitives to 3d point clouds. In CVPR, 2019. (Cited on
pages 21, 56, 65, 66, 67 and 68.)

[Lin00] Peter Lindstrom. Out-of-core simplification of large polygo-
nal models. In Proceedings of the 27th annual conference on
Computer graphics and interactive techniques, 2000. (Cited on
page 18.)

Bibliography 117

[LKG+19] Chen Liu, Kihwan Kim, Jinwei Gu, Yasutaka Furukawa, and
Jan Kautz. PlaneRCNN: 3D Plane Detection and Reconstruc-
tion from a Single Image. In CVPR, 2019. (Cited on page 22.)

[LL21] Muxingzi Li and Florent Lafarge. Planar Shape Based Regis-
tration for Multi-modal Geometry. In BMVC, 2021. (Cited on
page 55.)

[LLM20] Muxingzi Li, Florent Lafarge, and Renaud Marlet. Approximat-
ing shapes in images with low-complexity polygons. In CVPR,
2020. (Cited on page 106.)

[Llo82] Stuart Lloyd. Least squares quantization in PCM. Trans. on
Information Theory, 28(2), 1982. (Cited on page 21.)

[LMBM20] Thibault Lejemble, Claudio Mura, Loïc Barthe, and Nicolas
Mellado. Persistence Analysis of Multi-scale Planar Structure
Graph in Point Clouds. Computer Graphics Forum, 39(2), 2020.
(Cited on page 22.)

[LRC+03] David Luebke, Martin Reddy, Jonathan D Cohen, Amitabh
Varshney, Benjamin Watson, and Robert Huebner. Level of
detail for 3D graphics. Morgan Kaufmann, 2003. (Cited on
page 17.)

[LSC+21] Eric-Tuan Lê, Minhyuk Sung, Duygu Ceylan, Radomir Mech,
Tamy Boubekeur, and Niloy J. Mitra. CPFN: Cascaded Prim-
itive Fitting Networks for High-Resolution Point Clouds. In
ICCV, 2021. (Cited on pages 22 and 56.)

[LT98] Peter Lindstrom and Greg Turk. Fast and memory efficient
polygonal simplification. In Proceedings Visualization. IEEE,
1998. (Cited on page 18.)

[LWC+11] Yangyan Li, Xiaokun Wu, Yiorgos Chrysathou, Andrei Sharf,
Daniel Cohen-Or, and Niloy J Mitra. Globfit: Consistently fit-
ting primitives by discovering global relations. Trans. on Graph-
ics, 2011. (Cited on page 22.)

118 Bibliography

[LWL19] Zuoyue Li, Jan Dirk Wegner, and Aurélien Lucchi. Topological
map extraction from overhead images. In ICCV, 2019. (Cited
on page 106.)

[LWW+17] Xin Liu, Xiangyu Wang, Graeme Wright, Jack CP Cheng, Xiao
Li, and Rui Liu. A state-of-the-art review on the integration
of Building Information Modeling (BIM) and Geographic In-
formation System (GIS). ISPRS International Journal of Geo-
Information, 6(2), 2017. (Cited on page 106.)

[LY16] Guanbin Li and Yizhou Yu. Deep contrast learning for salient
object detection. In CVPR, 2016. (Cited on page 106.)

[Met15] Lyon Metropolis. 3D textured model of the town of La Tour-
de-Salvagny, 2015. https://download.data.grandlyon.

com/files/grandlyon/localisation/bati3d/LA_TOUR_DE_

SALVAGNY_2015.zip. (Cited on page 43.)

[MHS+22] Jacob Munkberg, Jon Hasselgren, Tianchang Shen, Jun Gao,
Wenzheng Chen, Alex Evans, Thomas Müller, and Sanja Fi-
dler. Extracting Triangular 3D Models, Materials, and Lighting
From Images. In CVPR, 2022. (Cited on page 106.)

[MLM01] David Marshall, Gabor Lukacs, and Ralph Martin. Robust Seg-
mentation of Primitives from Range Data in the Presence of Ge-
ometric Degeneracy. TPAMI, 23(3), 2001. (Cited on page 20.)

[MMBM15] Aron Monszpart, Nicolas Mellado, Gabriel J Brostow, and
Niloy J Mitra. RAPter: rebuilding man-made scenes with reg-
ular arrangements of planes. Trans. on Graphics, 34(4), 2015.
(Cited on pages 21, 22 and 56.)

[MON+19] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian
Nowozin, and Andreas Geiger. Occupancy networks: Learning
3d reconstruction in function space. In CVPR, 2019. (Cited on
page 17.)

[MPR12] Emilie Marchandise, Cécile Piret, and J-F Remacle. CAD and
mesh repair with radial basis functions. Journal of Computa-
tional Physics, 231(5), 2012. (Cited on page 14.)

https://download.data.grandlyon.com/files/grandlyon/localisation/bati3d/LA_TOUR_DE_SALVAGNY_2015.zip
https://download.data.grandlyon.com/files/grandlyon/localisation/bati3d/LA_TOUR_DE_SALVAGNY_2015.zip
https://download.data.grandlyon.com/files/grandlyon/localisation/bati3d/LA_TOUR_DE_SALVAGNY_2015.zip

Bibliography 119

[MST+20] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view synthesis.
In ECCV, 2020. (Cited on page 106.)

[MW99] Andrey A Mezentsev and Thomas Woehler. Methods and Al-
gorithms of Automated CAD Repair for Incremental Surface
Meshing. In IMR, 1999. (Cited on page 13.)

[NT03] Fakir S. Nooruddin and Greg Turk. Simplification and repair
of polygonal models using volumetric techniques. IEEE Trans-
actions on Visualization and Computer Graphics, 9(2), 2003.
(Cited on page 14.)

[NW17] Liangliang Nan and Peter Wonka. PolyFit: Polygonal surface
reconstruction from point clouds. In ICCV, 2017. (Cited on
pages 25, 70, 72, 73, 75 and 104.)

[OBD+17] Ken Arroyo Ohori, Filip Biljecki, Abdoulaye Diakité, Thomas
Krijnen, Hugo Ledoux, and Jantien Stoter. Towards an inte-
gration of GIS and BIM data: What are the geometric and
topological issues. ISPRS Annals of Photogrammetry, Remote
Sensing & Spatial Information Sciences, 4, 2017. (Cited on
pages 2, 3, 15 and 106.)

[OLA14] Sven Oesau, Florent Lafarge, and Pierre Alliez. Indoor scene
reconstruction using feature sensitive primitive extraction and
graph-cut. ISPRS journal of photogrammetry and remote sens-
ing, 90, 2014. (Cited on page 24.)

[OLA16] Sven Oesau, Florent Lafarge, and Pierre Alliez. Planar shape
detection and regularization in tandem. Computer Graphics
Forum, 35(1), 2016. (Cited on pages 22, 56 and 88.)

[OVJ+21] Sven Oesau, Yannick Verdie, Clément Jamin, Pierre Alliez, Flo-
rent Lafarge, Simon Giraudot, Thien Hoang, and Dmitry Anisi-
mov. Point Set Shape Detection. In CGAL User and Reference
Manual. CGAL Editorial Board, 5.3 edition, 2021. (Cited on
pages 20, 65, 66 and 68.)

120 Bibliography

[PCYS12] Trung-Thanh Pham, Tat-Jun Chin, Jin Yu, and David Suter.
The Random Cluster Model for robust geometric fitting. In
CVPR, 2012. (Cited on page 21.)

[PERW16] Trung T. Pham, Markus Eich, Ian Reid, and Gordon Wyeth.
Geometrically Consistent Plane Extraction for Dense Indoor
3D Maps Segmentation. In IROS, 2016. (Cited on pages 21
and 56.)

[PFS+19] Jeong Joon Park, Peter Florence, Julian Straub, Richard New-
combe, and Steven Lovegrove. DeepSDF: Learning continuous
signed distance functions for shape representation. In CVPR,
2019. (Cited on page 17.)

[PMMB22] Abhinesh Prabhakaran, Abdul-Majeed Mahamadu, Lamine
Mahdjoubi, and Pawel Boguslawski. BIM-based immersive col-
laborative environment for furniture, fixture and equipment de-
sign. Automation in Construction, 142, 2022. (Cited on page 2.)

[PNM+20] Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc Polle-
feys, and Andreas Geiger. Convolutional occupancy networks.
In ECCV, 2020. (Cited on page 17.)

[PSMA16] Emiliano Pérez, Santiago Salamanca, Pilar Merchán, and Anto-
nio Adán. A comparison of hole-filling methods in 3d. Interna-
tional Journal of Applied Mathematics and Computer Science,
26(4), 2016. (Cited on page 13.)

[QF20] Yiming Qian and Yasutaka Furukawa. Learning Pairwise Inter-
Plane Relations for Piecewise Planar Reconstruction. In ECCV,
2020. (Cited on page 22.)

[QYSG17] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas.
PointNet++: Deep Hierarchical Feature Learning on Point Sets
in a Metric Space. In NIPS, 2017. (Cited on page 22.)

[QZN14] Rongqi Qiu, Qian-Yi Zhou, and Ulrich Neumann. Pipe-run
extraction and reconstruction from point clouds. In ECCV,
2014. (Cited on page 20.)

Bibliography 121

[RAB18] Carolina Raposo, Michel Antunes, and Joao P. Barreto.
Piecewise-Planar StereoScan: Sequential Structure and Mo-
tion Using Plane Primitives. TPAMI, 40(8), 2018. (Cited on
page 55.)

[RCP+13] Rahul Raguram, Ondrej Chum, Marc Pollefeys, Jiri Matas,
and Jan-Michael Frahm. USAC: A Universal Framework for
Random Sample Consensus. TPAMI, 35(8), 2013. (Cited on
page 20.)

[RMSG21] Zhongzheng Ren, Ishan Misra, Alexander G. Schwing, and Ro-
hit Girdhar. 3D Spatial Recognition Without Spatially Labeled
3D. In CVPR, 2021. (Cited on page 55.)

[RRQ+21] Chiara Romanengo, Andrea Raffo, Yifan Qie, Nabil Anwer,
and Bianca Falcidieno. Fit4CAD: A Point Cloud Benchmark
for Fitting Simple Geometric Primitives in CAD Objects. In
3D Object Retrieval workshop, 2021. (Cited on page 22.)

[RVDHV06] Tahir Rabbani, Frank Van Den Heuvel, and George Vossel-
mann. Segmentation of point clouds using smoothness con-
straint. International archives of photogrammetry, remote sens-
ing and spatial information sciences, 36(5), 2006. (Cited on
pages 20, 56, 61, 65, 66, 68, 91 and 93.)

[SB20] Daniel Sieger and Mario Botsch. The Polygon Mesh Processing
Library, 2020. (Cited on pages 45 and 48.)

[SDK09] Ruwen Schnabel, Patrick Degener, and Reinhard Klein. Com-
pletion and reconstruction with primitive shapes. In Computer
Graphics Forum, volume 28, 2009. (Cited on page 24.)

[SH20] Gerhard Schrotter and Christian Hürzeler. The digital twin
of the city of Zurich for urban planning. PFG–Journal of
Photogrammetry, Remote Sensing and Geoinformation Science,
88(1), 2020. (Cited on page 1.)

[SHY21] Ehab Shahat, Chang T Hyun, and Chunho Yeom. City digital
twin potentials: A review and research agenda. Sustainability,
13(6), 2021. (Cited on page 1.)

122 Bibliography

[SLA15] David Salinas, Florent Lafarge, and Pierre Alliez. Structure-
Aware Mesh Decimation. Computer Graphics Forum, 34(6),
2015. (Cited on pages 18 and 72.)

[SLK+20] Gopal Sharma, Difan Liu, Evangelos Kalogerakis, Subhransu
Maji, Siddhartha Chaudhuri, and Radomír Měch. ParSeNet:
A Parametric Surface Fitting Network for 3D Point Clouds,
2020. (Cited on pages 21, 56, 65, 66, 67 and 68.)

[SM19] Bo Sun and Philippos Mordohai. Oriented Point Sampling for
Plane Detection in Unorganized Point Clouds. In ICRA, 2019.
(Cited on page 20.)

[SRF+14] Julian Straub, Guy Rosman, Oren Freifeld, John Leonard, and
John Fisher. A Mixture of Manhattan Frames: Beyond the
Manhattan World. In CVPR, 2014. (Cited on pages 22 and 87.)

[SSBC20] Christiane Sommer, Yumin Sun, Erik Bylow, and Daniel Cre-
mers. PrimiTect: Fast Continuous Hough Voting for Primitive
Detection. In ICRA, 2020. (Cited on page 20.)

[Str61] Dirk Jan Struik. "Lectures on Classical Differential Geometry".
Courier Corporation, 1961. (Cited on page 69.)

[SWK07] Ruwen Schnabel, Roland Wahl, and Reinhard Klein. Efficient
RANSAC for point-cloud shape detection. Computer graphics
forum, 26(2), 2007. (Cited on pages 20, 56, 61, 65, 66 and 68.)

[SZP20] Martin Skrodzki, Eric Zimmermann, and Konrad Polthier.
Variational Shape Approximation of Point Set Surfaces. Com-
puter Aided Geometric Design, 80, 2020. (Cited on page 21.)

[TF22] Hans Tangelder and Andreas Fabri. dD Spatial Searching. In
CGAL User and Reference Manual. CGAL Editorial Board, 5.3
edition, 2022. (Cited on page 98.)

[The18] The Hague Municipality. 3D Stadsmodel Den Haag 2018
CityGML, 2018. https://ckan.dataplatform.nl/dataset/

36049d1a-4a0f-4c5d-8adb-21dbfb7252f9/resource/

8fb03a5a-5872-4bd6-afd6-9093c1e2e87a/download/39_

binckhorst.zip. (Cited on page 44.)

https://ckan.dataplatform.nl/dataset/36049d1a-4a0f-4c5d-8adb-21dbfb7252f9/resource/8fb03a5a-5872-4bd6-afd6-9093c1e2e87a/download/39_binckhorst.zip
https://ckan.dataplatform.nl/dataset/36049d1a-4a0f-4c5d-8adb-21dbfb7252f9/resource/8fb03a5a-5872-4bd6-afd6-9093c1e2e87a/download/39_binckhorst.zip
https://ckan.dataplatform.nl/dataset/36049d1a-4a0f-4c5d-8adb-21dbfb7252f9/resource/8fb03a5a-5872-4bd6-afd6-9093c1e2e87a/download/39_binckhorst.zip
https://ckan.dataplatform.nl/dataset/36049d1a-4a0f-4c5d-8adb-21dbfb7252f9/resource/8fb03a5a-5872-4bd6-afd6-9093c1e2e87a/download/39_binckhorst.zip

Bibliography 123

[TK20] Philip Trettner and Leif Kobbelt. Fast and Robust QEF Min-
imization using Probabilistic Quadrics. In Computer Graphics
Forum, volume 39, 2020. (Cited on page 18.)

[VKVLV11] Marc Van Kreveld, Thijs Van Lankveld, and Remco C
Veltkamp. On the shape of a set of points and lines in the
plane. In Computer Graphics Forum, volume 30, 2011. (Cited
on page 23.)

[VKVLV13] Marc Van Kreveld, Thijs Van Lankveld, and Remco C
Veltkamp. Watertight scenes from urban lidar and planar sur-
faces. In Computer Graphics Forum, volume 32, 2013. (Cited
on page 24.)

[VSS14] Rebekka Volk, Julian Stengel, and Frank Schultmann. Building
Information Modeling (BIM) for existing buildings—Literature
review and future needs. Automation in construction, 38, 2014.
(Cited on page 1.)

[VTHLB15] Anh-Vu Vo, Linh Truong-Hong, Debra F Laefer, and Michela
Bertolotto. Octree-based region growing for point cloud seg-
mentation. ISPRS Journal of Photogrammetry and Remote
Sensing, 104, 2015. (Cited on page 20.)

[WK05] Jianhua Wu and Leif Kobbelt. Structure Recovery via Hy-
brid Variational Surface Approximation. Computer Graphics
Forum, 24(3), 2005. (Cited on page 21.)

[WLL+12] Xiaochao Wang, Xiuping Liu, Linfa Lu, Baojun Li, Junjie Cao,
Baocai Yin, and Xiquan Shi. Automatic hole-filling of CAD
models with feature-preserving. Computers & Graphics, 36(2),
2012. (Cited on pages 13 and 14.)

[YLL+18] Yao Yao, Zixin Luo, Shiwei Li, Tian Fang, and Long Quan.
MVSNet: Depth inference for unstructured multi-view stereo.
In ECCV, 2018. (Cited on page 9.)

[YNK+18] Zhihang Yao, Claus Nagel, Felix Kunde, György Hudra,
Philipp Willkomm, Andreas Donaubauer, Thomas Adolphi,
and Thomas H Kolbe. 3DCityDB-a 3D geodatabase solution

124 Bibliography

for the management, analysis, and visualization of semantic 3D
city models based on CityGML. Open Geospatial Data, Soft-
ware and Standards, 3(1), 2018. (Cited on page 2.)

[YYM+21] Siming Yan, Zhenpei Yang, Chongyang Ma, Haibin Huang,
Etienne Vouga, and Qixing Huang. HPNet: Deep Primitive
Segmentation Using Hybrid Representations. In ICCV, 2021.
(Cited on pages 22, 65, 66, 67 and 68.)

[YZ18] Fengting Yang and Zihan Zhou. Recovering 3D planes from a
single image via convolutional neural networks. In ECCV, 2018.
(Cited on page 22.)

[ZAB+21] Tong Zhao, Pierre Alliez, Tamy Boubekeur, Laurent Busé, and
Jean-Marc Thiery. Progressive Discrete Domains for Implicit
Surface Reconstruction. Computer Graphics Forum, 40(5),
2021. (Cited on page 17.)

[ZJ16] Qingnan Zhou and Alec Jacobson. Thingi10k: A dataset of
10, 000 3d-printing models. arXiv:1605.04797, 2016. (Cited on
pages 8 and 22.)

[ZJM12] Zihan Zhou, Hailin Jin, and Yi Ma. Robust plane-based struc-
ture from motion. In CVPR, 2012. (Cited on page 55.)

[ZLSF18] Junqiao Zhao, Hugo Ledoux, Jantien Stoter, and Tiantian
Feng. HSW: Heuristic Shrink-wrapping for automatically re-
pairing solid-based CityGML LOD2 building models. ISPRS
Journal of Photogrammetry and Remote Sensing, 146, 2018.
(Cited on pages 6, 16, 44 and 47.)

[ZSGH18] Lingjie Zhu, Shuhan Shen, Xiang Gao, and Zhanyi Hu. Large
Scale Urban Scene Modeling from MVS Meshes. In ECCV,
2018. (Cited on page 55.)

[ZSL14] Junqiao Zhao, Jantien Stoter, and Hugo Ledoux. A framework
for the automatic geometric repair of CityGML models. In
Cartography from pole to pole. 2014. (Cited on page 16.)

Bibliography 125

[ZYY+17] Chuhang Zou, Ersin Yumer, Jimei Yang, Duygu Ceylan, and
Derek Hoiem. 3D-PRNN: Generating Shape Primitives with
Recurrent Neural Networks. In ICCV, 2017. (Cited on page 22.)

[ZZX+16] Chen Zhu, Zihan Zhou, Zirang Xing, Yanbing Dong, Yi Ma,
and Jingyi Yu. Robust Plane-based Calibration of Multiple
Non-Overlapping Cameras. In 3DV, 2016. (Cited on page 55.)

	Contents
	Introduction
	Context
	Challenges
	Outline

	Literature Review
	Repairing 3D models
	Mesh repairing
	Repairing of CityGML and IFC data

	Compact mesh reconstruction
	Simplification methods
	Shape assembling methods

	Our Contributions
	Repairing
	Reconstruction

	Repairing 3D urban models
	Introduction
	Overview
	Our approach
	Disassembling
	Kinetic partitioning
	Semantic labeling
	Formatting

	Implementation details
	Experiments on CityGML models
	Experiments on IFC models
	Conclusion

	3D Compact Mesh Reconstruction
	Planar primitive detection
	Introduction
	Algorithm
	Experiments
	Extension with geometric regularization

	Surface extraction without normal orientation
	Algorithm
	Experiments

	Conclusion

	Conclusion and Perspectives
	Conclusion
	Perspectives

	Bibliography

