
HAL Id: tel-03947453
https://theses.hal.science/tel-03947453

Submitted on 19 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A dynamic attack graphs based approach for impact
assessment of vulnerabilities in complex computer

systems
Antoine Boudermine

To cite this version:
Antoine Boudermine. A dynamic attack graphs based approach for impact assessment of vulnerabili-
ties in complex computer systems. Computer science. Institut Polytechnique de Paris, 2022. English.
�NNT : 2022IPPAT046�. �tel-03947453�

https://theses.hal.science/tel-03947453
https://hal.archives-ouvertes.fr

626

N
N

T
:2

02
2I

P
PA

T0
46 A Dynamic Attack Graphs based

approach for Impact Assessment of
Vulnerabilities in Complex Computer

Systems
Thèse de doctorat de l’Institut Polytechnique de Paris

préparée à Télécom Paris

École doctorale n◦626 École doctorale de l’Institut Polytechnique de Paris (EDIPP)
Spécialité de doctorat: Informatique

Thèse présentée et soutenue à Palaiseau, le 19 Décembre 2022, par

ANTOINE BOUDERMINE

Composition du Jury :

Pascal Lorenz

Professeur, Université de Haute-Alsace Président

Solange Ghernaouti

Professeure, Université de Lausanne Rapporteuse

Lyes Khoukhi

Professeur, Normandie Université Examinateur

Sherali Zeadally

Professeur, Université du Kentucky Examinateur

Jean Leneutre

Maı̂tre de conférences, Télécom Paris Examinateur

Youssef Laarouchi

Spécialiste en cybersécurité, EDF R&D Examinateur

Rida Khatoun

Professeur, Télécom Paris Directeur de thèse

Jean-Henri Choyer

Adjoint CERT, NAVAL GROUP Co-directeur de thèse

Julien Francq

Responsable Recherche & Innovation en Cybersécurité, NAVAL
GROUP Invité

ii

Résumé

Les systèmes informatiques sont devenus omniprésents dans nos sociétés modernes. Par

exemple, les systèmes d’information permettent de supporter le processus métier de nom-

breuses entreprises en permettant de collecter, stocker, traiter et distribuer de l’information.

Les systèmes industriels permettent quant à eux d’augmenter les performances de production,

tout en améliorant les conditions de travail et la qualité des produits fabriqués.

La complexité de ces systèmes n’a cessé de crôıtre des dernières années, avec un nombre

toujours plus important de composants aux propriétés diverses et en forte interaction. Les

attaques ciblant ces systèmes se sont elles aussi complexifiées et peuvent se dérouler en plusieurs

étapes sur une longue période de temps. Par exemple, le comité national démocrate, qui est un

organisme responsable du parti démocrate aux États-Unis d’Amérique (USA), a été compromis

en juillet 2015 par le groupe d’attaquant APT29 [1]. Les attaquants ont maintenu un accès au

système informatique jusqu’au 10 juin 2016, soit presque 1 an après la compromission initiale.

De nombreuses données ont été dérobées, incluant des e-mails et des documents confidentiels

en rapport avec les élections américaines.

Les organisations ont donc besoin d’évaluer la sécurité de leurs systèmes informatiques afin

d’identifier les contremesures qui doivent être mises en place. Cependant, les méthodes de

gestion du risque actuellement utilisées, comme EBIOS RM en France ou le NIST RMF aux

USA, ne sont plus adaptées à la forte complexité des systèmes et des attaques qui ont lieu

de nos jours. En effet, ces méthodes reposent sur un travail humain trop important, ce qui

rend l’analyse de risque peu précise et sujette aux erreurs. L’objectif est donc de proposer une

méthode d’analyse de risque plus automatisée et capable de gérer des systèmes complexes de

plusieurs milliers de composants.

Pour atteindre cet objectif, il faut être en mesure de modéliser le plus précisément possible

le système ainsi que les capacités de l’attaquant, malgré les informations parfois limitées ou

iv RÉSUMÉ

incertaines dont on dispose en donnée d’entrée. Il est par exemple difficile d’identifier l’ensemble

des faiblesses présentes dans un système ou d’évaluer la difficulté avec laquelle un attaquant

parviendra à les exploiter. La modélisation du système est d’autant plus compliquée que cette

dernière doit être la plus exhaustive possible afin de garantir que l’attaquant ne parviendra pas

à identifier un moyen de compromettre le système que les défenseurs n’avaient pas envisagé. La

méthode d’analyse de risque doit également pouvoir être appliquée dans des systèmes de très

grande taille en un temps raisonnable, afin que les résultats obtenus puissent être utilisés par

les équipes de sécurité en s’inscrivant dans un processus d’amélioration continue de la sécurité

du système.

Des travaux de recherche ont déjà été réalisés pour tenter de répondre à cette problématique.

La méthode la plus couramment utilisée consiste à modéliser l’ensemble des chemins d’attaque

qui permettent à un acteur malveillant d’atteindre ses objectifs de compromission du système.

Un chemin d’attaque représente donc une succession d’actions réalisées par l’attaquant et de

conséquences de ces dernières sur le système. Ces chemins sont généralement représentés sous la

forme d’un graphe appelé graphe d’attaque. Ce graphe permet de modéliser les différentes ac-

tions qui permettent d’atteindre un objectif intermédiaire de l’attaquant, ainsi que les différentes

conditions nécessaires à la réalisation d’une action. Cette représentation permet de modéliser

d’une manière compacte l’ensemble des chemins d’attaque.

Les graphes d’attaque peuvent ensuite être utilisés pour évaluer les chances de succès de

l’attaquant en tenant compte de la difficulté des actions réalisées. Pour ce faire, il est possible

d’évaluer les chances de succès de chaque chemin d’attaque. Cependant leur nombre évolue

de façon exponentielle par rapport à la taille du graphe d’attaque, ce qui rend cette solution

inapplicable dans des systèmes de grande taille. C’est pour cette raison qu’une solution plus

efficace consiste à calculer directement la probabilité d’être VRAI pour chaque nœud du graphe

d’attaque. Pour les nœuds représentant une action de l’attaquant, il s’agit de la probabilité de

la réaliser, tandis que pour un nœud représentant une conséquence d’une attaque, il s’agit de

la probabilité que l’attaquant parvienne à atteindre cet objectif.

Le calcul de ces probabilités peut se faire directement à partir du graphe d’attaque ou en

convertissant ce dernier en un modèle plus générique comme un réseau Bayésien ou un réseau de

Petri. L’avantage de ces modèles est que de nombreux algorithmes existent déjà et peuvent être

utilisés pour calculer les chances de succès de l’attaquant. Cependant, aucune de ces méthodes

de calculs n’est adaptée aux systèmes complexes, qu’il s’agisse des calculs réalisés directement

dans un graphe d’attaque, des calculs d’inférences dans un réseau Bayésien ou de la génération

du graphe d’accessibilité dans les réseaux de Petri. En effet, la complexité en temps dans le

pire des cas de ces algorithmes ne permet pas d’analyser la sécurité de systèmes composés

v RÉSUMÉ

de plusieurs milliers de composants. Il est cependant possible d’utiliser des algorithmes pour

approximer les chances de succès de l’attaquant en un temps raisonnable. Par exemple, il

est possible d’échantillonner les variables aléatoires présentent dans un réseau Bayésien ou de

réaliser des simulations dans un réseau de Petri.

D’autres solutions ont été proposées pour évaluer l’impact d’une attaque sur le système.

Il est possible d’utiliser un modèle épidémiologique pour étudier la propagation d’un virus

informatique ou l’impact d’une attaque à travers un système. L’inconvénient de cette solution

est qu’il n’est pas possible d’étudier la propagation de plusieurs impacts de différentes natures

au même instant. Il n’est par exemple pas possible de modéliser une attaque combinant la prise

de contrôle distant d’un composant et l’indisponibilité d’un service réseau.

La théorie des réseaux complexes peut être utilisée pour mesurer l’impact d’une attaque à

partir d’une étude topologique du réseau. Les nœuds représentent des composants du système

tandis que les liens représentent des connexions. L’indisponibilité d’un composant suite à une

attaque est représentée en supprimant le nœud du réseau. Des métriques sont ensuite définies

pour mesurer les performances du système en fonction des nœuds supprimés. Cette méthode

est utilisée pour identifier les composants critiques d’un système afin de prioriser les mesures de

protection sur ces derniers. Cependant, il est uniquement possible de modéliser l’indisponibilité

d’un composant comme conséquence d’une attaque.

Les automates permettent de modéliser l’évolution de l’état d’un système en fonction des ac-

tions réalisées par l’attaquant et des changements d’états internes du système. Des algorithmes

de model checking sont ensuite utilisés pour mesurer les conséquences de l’attaque. Cependant,

ce modèle souffre d’une explosion combinatoire du nombre d’états possibles du système et n’est

donc pas applicable lorsque ce dernier est composé de milliers de composants.

La plupart des solutions proposées ne tiennent pas compte du comportement dynamique du

système lors de l’évaluation du risque d’une cyber attaque. Pourtant l’évolution du système

au cours du temps peut avoir un impact sur les chances de compromission par un acteur

malveillant. Par exemple, la pratique de plus en plus courante du télétravail a pour effet que

les postes informatiques des collaborateurs sont régulièrement déplacés entre le réseau interne

de l’entreprise et le réseau domestique de l’utilisateur. Un acteur malveillant pourrait profiter

que l’ordinateur soit connecté au réseau domestique qui est peu sécurisé pour compromettre

la machine, puis attendre que cette dernière soit de nouveau connectée au réseau interne de

l’entreprise pour pouvoir se propager à travers le système informatique.

Nous avons donc eu pour objectif de proposer une solution d’analyse de risque qui tient

compte du comportement dynamique du système et qui peut être appliquée lorsque ce dernier

vi RÉSUMÉ

est composé de plusieurs milliers de composants.

Notre première contribution a été de proposer une solution permettant de construire un

graphe d’attaque à partir d’une représentation incluant les propriétés dynamiques du système

à analyser. Nous avons ensuite montré que notre modèle permettait d’identifier davantage de

chemins d’attaque qu’un graphe d’attaque basé sur une représentation statique du système.

Notre seconde contribution a été de proposer un algorithme permettant de simuler des

attaques à partir du graphe d’attaque dynamique précédemment construit. Ces simulations

permettent d’approximer les chances de réussite de l’attaquant en tenant compte de la diffi-

culté des actions réalisées et de l’incertitude relative à certaines propriétés du système. Une

première métrique a été définie pour mesurer l’évolution de la probabilité qu’un nœud du graphe

d’attaque soit VRAI au cours du temps. Pour un nœud représentant une action, il s’agit de la

probabilité que l’attaquant parvienne à la réaliser à un instant t. Pour un nœud représentant

la conséquence d’une action, il s’agit de la probabilité que l’attaquant parvienne à atteindre cet

objectif à partir d’un instant t. Une seconde métrique permet de mesurer le temps nécessaire

pour que la probabilité qu’un nœud du graphe d’attaque soit VRAI dépasse une valeur seuil ps

définie par l’utilisateur. Cette métrique peut être utilisée pour afficher une heatmap du système

en montrant les composants les plus impactés par l’attaque. Enfin, une troisième métrique a

été définie pour mesurer la différence entre deux simulations d’attaque. Cette métrique peut

être utilisée pour mesurer l’impact d’un changement de configuration du système, comme la

correction d’une vulnérabilité, sur les chances de succès de l’attaquant.

Nous avons ensuite montré que notre solution pouvait être utilisée dans des systèmes com-

plexes. La complexité en temps dans le pire des cas de tous les algorithmes utilisés a été évaluée.

Plusieurs benchmarks ont également été réalisés pour évaluer les performances réelles de nos

algorithmes. Les résultats montrent que le temps de génération du graphe d’attaque évolue de

façon quadratique par rapport au nombre de machines dans le système, tandis que le temps

de réalisation d’une simulation d’attaque évolue linéairement par rapport à la taille du graphe

d’attaque. Nous avons ensuite appliqué notre méthode sur un système informatique complexe

composé de 60,000 postes utilisateurs. Nous avons utilisé une machine virtuelle Ubuntu 20.04

avec un noyau Linux 5.15.0-41-generic, 16 CPUs à 2GHz et 64 GB de mémoire. Si toutes les sim-

ulations d’attaque sont réalisées en parallèle, il faut approximativement 12 heures pour générer

le graphe d’attaque dynamique et pour calculer les probabilités de réussite de l’attaquant.

Pour conclure, notre solution permet d’analyser la sécurité dans des systèmes complexes

tout en tenant compte de leurs propriétés dynamiques. Les métriques qui ont été définies per-

mettent de mesurer l’évolution de la probabilité de compromission des composants du système,

vii RÉSUMÉ

d’afficher une heatmap des composants les plus impactés par l’attaque ainsi que de mesurer

les conséquences d’un changement de configuration du système sur les chances de succès de

l’attaquant. Cependant, nous restons limités à l’analyse de systèmes composés de moins de

100,000 éléments à cause de l’évolution quadratique du temps de génération du graphe d’attaque

dynamique. Il serait intéressant de vérifier s’il n’est pas possible de générer ce graphe d’une

manière plus efficace. De plus, la modélisation du système qui est nécessaire à la construction

du graphe d’attaque, n’est pas automatisée et reste donc une étape difficile à réaliser par des

humains, surtout dans des systèmes complexes. Des solutions d’automatisation devraient être

recherchées et une Interface Homme-Machine (IHM) devrait être développée pour faciliter le

travail collaboratif entre les acteurs responsables de la sécurité du système informatique. Notre

solution pourrait être utilisée à l’avenir pour identifier les mesures protectrices à mettre en

place en priorité par les équipes de sécurité. En prenant le point de vue opposé de l’attaquant,

cette solution pourrait permettre d’identifier les chemins d’attaque optimaux que les équipes

offensives devraient utiliser pour atteindre leurs objectifs.

viii RÉSUMÉ

Remerciements

Je remercie tout d’abord M. Rida Khatoun, mon directeur de recherche, pour l’encadrement

qu’il a mis en place durant cette thèse de doctorat et qui m’a permis de travailler avec

méthodologie tout en étant en forte autonomie.

Je tiens à remercier toute l’équipe encadrante de Naval Group avec qui, sans leur soutien

constant, cette thèse de doctorat n’aurait jamais vue le jour. Je remercie tout particulièrement

M. Pascal Mercier, directeur du CERT Naval Group et M. Jean-Henri Choyer, co-directeur du

CERT Naval Group, pour m’avoir accordé leur confiance le jour où ils m’ont confié le soin de

réaliser cette thèse de doctorat, ainsi que pour leur soutien sans faille et leurs encouragements

qui m’ont permis de surmonter les nombreux obstacles et moments difficiles menant au titre de

docteur.

Je tiens également à remercier M. Julien Francq, responsable recherche et innovation en

cybersécurité à Naval Group, pour son accompagnement et ses précieux conseils qui m’ont

permis de grandement améliorer la qualité de mes travaux de recherche.

Mes remerciements vont également à toute l’équipe du CERT Naval Group pour leur soutient

et leur bonne humeur au quotidien, qui permet de créer une ambiance de travail exceptionnelle

dans laquelle on s’épanouie personnellement et professionnellement.

Pour finir, mes remerciements vont à toute ma famille et plus particulièrement à mes parents

avec qui, sans leur soutient et leur persévérance depuis déjà plus de 27 ans, je ne serais pas

devenu la personne que je suis aujourd’hui.

x REMERCIEMENTS

Table of contents

Abstract iii

Acknowledgement ix

Table of contents xi

List of figures xv

List of tables xix

Introduction 1

Context and motivation . 2

Scientific challenges . 11

Main contributions and objectives . 12

Manuscript outline . 13

I Review of the literature 15

I.1 Introduction . 16

I.2 Example of computer systems . 19

I.2.1 IT system . 20

I.2.2 CPS system . 20

I.2.3 Embedded systems . 22

I.3 Multi-step attack modeling . 23

xii TABLE OF CONTENTS

I.3.1 Definition . 23

I.3.2 Attack graph generation . 24

I.3.3 Attack graph-based risk assessment . 27

I.3.4 Bayesian attack graph . 39

I.3.5 Petri net based attack graphs . 47

I.3.6 Conclusion . 55

I.4 Epidemiological models . 56

I.4.1 Definition . 56

I.4.2 Deterministic assessment . 57

I.4.3 Stochastic assessment . 60

I.4.4 Conclusion . 62

I.5 Complex network theory . 63

I.5.1 Definition . 63

I.5.2 Cyberspace survivability . 67

I.5.3 Powergrid survivability . 69

I.5.4 Conclusion . 71

I.6 State-based modeling . 72

I.6.1 Definition . 72

I.6.2 Security assessment of a naval system . 74

I.6.3 Conclusion . 79

I.7 Discussion . 79

I.8 Conclusion . 84

II Dynamic security assessment of complex systems 85

II.1 Introduction . 86

II.2 Presentation of the dynamic attack graph model 87

II.2.1 Presentation of the use case . 87

xiii TABLE OF CONTENTS

II.2.2 System modeling . 88

II.2.3 Attack graph generation . 97

II.3 Assessment of the risk of compromise based on dynamic attack graphs 100

II.3.1 Simulation of an attack . 100

II.3.2 Metric calculation . 105

IIIPerformance evaluation of the solution 111

III.1Evaluation of the algorithms complexity . 112

III.1.1Definition of variables . 112

III.1.2Analysis of the complexity of the attack graph generation algorithm . . . 112

III.1.3Optimization of the attack graph size . 113

III.1.4Analysis of the complexity of the simulation algorithm 117

III.2Results of benchmarks . 117

III.2.1Test environment . 117

III.2.2Evolution of the attack graph size . 118

III.2.3Evolution of the execution time of the attack graph generation algorithm . 120

III.2.4Evolution of the execution time of the simulation algorithm 121

III.3Results of the scalability test . 122

III.3.1Test environment . 122

III.3.2Presentation of the results . 125

III.3.3Conclusion . 127

III.4Discussion . 128

III.4.1Advantages of the solution . 128

III.4.2Identified limitations . 130

III.4.3Opportunities . 131

III.4.4Identified risks . 131

III.5Conclusion . 132

xiv TABLE OF CONTENTS

IVConclusion 133

Appendix 139

Appendix A. Definition of literals and reasoning rules used in the MulVAL framework140

Appendix B. Description of the assets and vulnerabilities present in the use case of

the complex computer network 144

List of abbreviations 155

List of Figures

1 MITRE ATT&CK matrix making the link between the tactics used by the attack-

ers and the techniques employed to achieve them 3

2 Tactics, Techniques and Procedures (TTP) used by different types of attacker

groups . 5

3 NIST risk assessment process . 8

4 Composition of an information technology system [15] 20

5 Various functions of a CPS [16] . 21

6 Composition of an industrial control system [17] 22

7 Example of an embedded system aboard a ship [18] 23

8 Configuration of the network used as an example [27] 25

9 Exploitation dependency type attack graph used in TVA [27] 25

10 Logic-based attack graph used in MulVAL [27] 26

11 Multiple prerequisite attack graph used in NetSPA [27] 27

12 Average number of attack paths for different randomly generated attack graphs

with different path length limits n [42] . 29

13 Average CPU time in milliseconds for the attack path generation phase for dif-

ferent randomly generated attack graphs with different path length limits n [42] 29

14 Performance evaluation of Algorithm 1 in the use case of the Valencia port [42] 31

15 Layer 0 of the system modeling [42] . 33

16 Layer 1 of the system modeling [42] . 34

xvi LIST OF FIGURES

17 Representation of the authentication process in a third modeling layer [42] . . 35

18 Possible cycles in an attack graph [42] . 36

19 Attack Graph used to check the solution proposed in [46] 37

20 Probability tree allowing to reach P4 . 38

21 Removing cycles in a Bayesian network using a dynamic Bayesian network . . 41

22 BAG simplified to illustrate the computation of probabilities [58] 44

23 BAG corresponding to the test network with marginal and posterior probabilities

[58] . 44

24 Example of Dynamic Bayesian Network (DBN) for security assessment [64] . . 46

25 Transition representing the environment [74] 50

26 Reachability graph after activation of the transition env1 [74] 50

27 Example of a propagation network [74] . 50

28 Reachability graph after activation of the transition env3 [74] 51

29 Logical relationships in a Petri net [75] . 52

30 Petri net used in the use case [75] . 54

31 Distribution of tokens in the Petri net [75] . 55

32 Distribution of the different experts’ opinions for the value pk [81] 62

33 Heatmap of the system [81] . 62

34 [84] Representation of a clique, clusters, and a component 65

35 The range of distribution degrees . 66

36 Evolution of the information transmission efficiency index as a function of the

number of attacks performed on network nodes [85] 68

37 Evolution of the index of the largest subnetwork as a function of the number of

attacks performed on network nodes [85] . 68

38 Evolution of the information transmission efficiency index as a function of the

number of attacks performed on network links [85] 69

xvii LIST OF FIGURES

39 Evolution of the index of the largest subnetwork as a function of the number of

attacks performed on network links [85] . 69

40 Graphical representation of the Indian electricity network [86] 70

41 Example of a Deterministic Finite Automaton 73

42 Example of a Non Deterministic Finite Automaton 73

43 Automaton representing the behaviour of the rudder [42] 76

44 Automaton representing a measurement campaign [42] 77

45 Automaton representing the behaviour of the rudder controller [42] 77

46 Automaton representing the behaviour of the rudder controller vulnerable to a

DoS attack [42] . 77

47 Automaton representing an attack on the rudder controller [42] 78

48 Remote working use case network . 88

49 Dynamic attack graph for the remote working use case 99

50 Results of the simulation at time t169 . 105

51 Evolution of the compromise probability of the system components when no

patch is applied . 106

52 Evolution of the compromise probability of the system components when the

user station is wiped in the third week . 107

53 Evolution of the compromise probability of the system components when the

vulnerability present on the web service is patched 108

54 Evolution of the compromise probability of the system components when the

vulnerability on the web service is patched on 2021-01-23 00:00:00 108

55 Evolution of the compromise probability of the system components when the

SMB vulnerability is patched on 2021-01-13 00:00:00 109

56 Evolution of the difference in probability between the simulation without patch

and the simulation with the user station wipe 110

xviii LIST OF FIGURES

57 Part of an attack graph . 115

58 Part of an attack graph after removing the node v6 115

59 Three cases of deletion of an intermediate node in an attack graph 116

60 Addition of the intermediate node v5 lanAccess to reduce the size of the attack

graph . 116

61 Benchmark results in blue and polynomial regression in red showing the evo-

lution of the attack graph size in relation to the number of hosts present in the

system . 119

62 Benchmark results in blue and polynomial regression in red showing the evolu-

tion of the attack graph size in relation to the number of vulnerabilities present

in the system . 119

63 Benchmark results in blue and polynomial regression in red showing the evolu-

tion of the attack graph size in relation to the number of initial literals 120

64 Benchmark results in blue and polynomial regression in red showing the evolu-

tion of the execution time of the MulVAL algorithm 121

65 Benchmark results in blue and polynomial regression in red showing the evolu-

tion of the execution time of the simulation algorithm in relation to the number

of hosts present in the system . 122

66 Evolution of the execution time of the attack graph size optimization algorithm

in relation to the number of hosts present in the system 122

List of Tables

1 Criteria used for the evaluation of articles . 16

2 List of vulnerabilities present in the network . 25

3 Characteristics of the different attack graphs used for performance evaluation. 29

4 Attacker’s capabilities . 30

5 Attacker’s location . 30

6 Results of the analysis of the first case study 31

7 List of places and transitions in the Petri net . 52

8 List of possible values for the different parameters 53

9 Values of the different parameters of the transitions 54

10 List of properties to check for each mission Automaton 75

11 Evaluation of the most relevant articles . 83

12 Characteristics of the vulnerabilities present in the remote working use case

network . 88

13 Results of the tests performed on the complex use case with different configu-

rations . 126

14 Description of the literals used in the MulVAL framework 141

15 Description of the reasoning rules used in the MulVAL framework 143

16 Characteristics of the vulnerabilities present in the complex use case network . 146

17 List of assets present in the network of the complex use case (XX ∈{PA,ST,MA,LY,BR},

YY ∈ N) . 147

xx LIST OF TABLES

Introduction

2 INTRODUCTION

Context and motivation

Computer systems have become ubiquitous in our societies. They allow us to exchange

information across the world, to connect everyday objects to make them more intelligent or

to improve the productivity of our industries. In [2], the authors defines a system as a set of

interacting units or elements that form a whole in order to perform some functions. The purpose

of computer systems is to interconnect electrical components in order to perform certain tasks.

The precise properties of this type of system will be given in the next section. Over time, the

complexity of these systems has continued to grow. We understand by complex any system

which corresponds to the definition given in [3], meaning a system made up of a large number of

elements in strong interaction and with diverse characteristics, and whose evolution is sensitive

to small perturbations. It is therefore very difficult to predict the impact that a vulnerability

could have on the evolution of the computer system’s state when exploited by a malicious actor.

We will see in the next section how modern computer systems can be considered as complex

systems.

Computer systems are also increasingly used in critical environments. They can be found,

for example, in the management systems of nuclear power plants, in the autopilot system of

some vehicles or in the weapon systems of modern warships. It is obvious that the malfunction

of one of these systems can lead to serious consequences, such as death or injury, destruction

of important equipments or negative impact on the environment.

However, vulnerabilities are regularly discovered on some components of computer systems.

These may be weaknesses related to a configuration flaw, improper architectural design, or a

problem with the implementation or use of the solution. Databases, such as the one provided

by National Vulnerability Database (NVD), publicly list a large number of vulnerabilities that

have been discovered in widely deployed components of computer systems.

The exploitation of these vulnerabilities by a malicious actor can therefore have serious

consequences. During an attack, an attacker can perform a succession of actions that allow

him to reach his final goal. To achieve this goal, the attacker uses a variety of tactics. For each

of these tactics, there are a multitude of attack techniques to achieve an intermediate goal of

the malicious actor. The matrix MITRE ATT&CK [4], visible in Figure 1, allows to make the

link between the tactics used by the attacker and the techniques allowing to realize them.

3 INTRODUCTION

Figure 1: MITRE ATT&CK matrix making the link between the tactics used by the attackers and the techniques
employed to achieve them

4 INTRODUCTION

The impacts that an attack can have on system components are generally summarized as

loss of availability, integrity or confidentiality. The need for availability can be defined as the

property of accessibility at the desired moment of the assets by authorized persons (for example,

the asset must be available during the expected usage periods). The need for integrity can be

defined as the property of accuracy and completeness of assets and information (for example,

an illegitimate modification of an asset must be detected and corrected). Finally, the need

for confidentiality can be defined as the property of assets to be accessible only to authorized

people.

Malicious actors are often categorized into three groups [5]:

• the commodity threats. Most of the time, these are cybercriminal groups whose objective

is to make money. The two most commonly used modus operandi are: (1) exfiltration of

sensitive data and request for a ransom to keep them from being made public. Attackers

can in some cases make part of the stolen information public to prove their crime and put

the organization under pressure. (2) The encryption of company data and the request for

a ransom to recover them;

• hacktivism. These are people with a political agenda who target specific organizations

to try to destabilize them or affect their reputation. The most commonly used modus

operandi is to exfiltrate sensitive information and make them public;

• the Advanced Persistent Threat (APT). These are groups of attackers with significant

human and financial resources that allow them to achieve specific objectives. The attacks

target a specific organization and the objective is to maintain access to the system over a

long period of time and remain undetected.

The different tactics of these attacking groups are summarized in Figure 2.

Many cyber attacks have already taken place in the past with sometimes disastrous con-

sequences. These attacks have often targeted information technology systems. In May 2017,

the WannaCry ransomware spread across the globe, affecting nearly 300,000 systems including

hospitals and governments [6]. This worm used a 0-day named Eternal Blue to propagate itself.

A 0-day is a vulnerability that has not yet been published or has no known patch. More re-

cently in 2019, malware was injected into the SolarWinds solution and spread through customer

updates [7]. This malware allows to create a backdoor in the system and gives remote access to

the attackers. More than 18,000 customers were affected, including critical U.S. organizations

such as the Treasury Department, a nuclear weapons design and production laboratory, and

the government.

5 INTRODUCTION

Figure 2: Tactics, Techniques and Procedures (TTP) used by different types of attacker groups
Source: “Advanced Persistent Threats: Learn the ABCs of APTs - Part A.” (), [Online]. Available: https://www.secureworks.com/blog/advanced-
persistent-threats-apt-a

Cyber-physical systems have not been spared. On December 23, 2015, several control centers

of the Ukrainian power grid were targeted by an attack resulting in a power outage for 6 hours

in the capital and its surroundings [9]. Hundreds of thousands of consumers were impacted

in the heart of winter. This attack took place in a context of civil war and high tension with

Russia, from where the attack was probably launched. The computer worm named Stuxnet and

discovered in 2010 was used to destroy several centrifuges of a uranium enrichment plant in Iran

[10]. The worm was spread via Universal Serial Bus (USB) device and targeted Windows-based

computer workstations used for automation and supervision of electromechanical equipment.

It is possible for organizations to assess the impact of these vulnerabilities at the component

https://www.secureworks.com/blog/advanced-persistent-threats-apt-a
https://www.secureworks.com/blog/advanced-persistent-threats-apt-a

6 INTRODUCTION

level, but there is a real difficulty in doing the same at the level of an entire system. Nevertheless,

this assessment is essential for an organization to be able to prioritize its remediation actions, or

to defer them when corrective actions cannot be taken immediately without seriously affecting

the system.

First, the organization must be able to identify the vulnerabilities present on its computer

system. To do this, it is possible to use a vulnerability scanner such as Nessus [11] which will

search for vulnerabilities on the various network services or locally on the machines. However,

these scanning tools can only find vulnerabilities that have been publicly reported such as those

present in databases such as the Common Vulnerabilities and Exposures (CVE) maintained by

the MITRE organization. But as we saw with the WannaCry attack, some vulnerabilities are

not shared when discovered and are used by attacker groups. Furthermore, these tools will

not be able to find vulnerabilities on solutions developed internally in the organization, nor

vulnerabilities related to a misconfiguration such as the presence of a weak password associated

with an administration account. Organizations should therefore also perform security audits

conducted by experts to detect this type of vulnerability. This may include, for example,

offensive tests performed by pentesters or application code reviews. However, these operations

have a significant and recurring financial cost for the company.

Remediation of identified vulnerabilities can also be a technical and operational challenge.

Sometimes security patches are not available, either because it is a 0-day vulnerability or

because the vulnerability concerns an internally developed solution. It is still possible in some

cases to apply work-arounds to limit the impact of a vulnerability for which no patch is available.

When a vulnerability concerns an internally developed product, the organization must develop

a patch itself, which can be costly in time and money.

Even when a patch is available, it is not always possible to apply it. For example, if the

vulnerability concerns a critical application of the organization and the implementation of the

patch requires an interruption of the service, it could have serious consequences to apply it and

the system managers may prefer to delay the correction. Even more constraining, a warship

in operation will not interrupt its mission if the vulnerability is not considered critical. In this

case, the decision to fix the vulnerability depends largely on the impact of the vulnerability on

the proper functioning of the system.

Computer system managers therefore need a method to assess the security of their system

and to measure the criticality of a vulnerability in relation to its impact on the organization.

Several risk management methods already exist and are used in practice. The EBIOS RM

method [12] proposed by the French National Agency for Information Systems Security (ANSSI)

7 INTRODUCTION

is used to manage the risk of an attack based on:

1. sources of risks and their objectives;

2. strategic scenarios representing the attack paths that allow a risk source to achieve its

objective. These attack paths are realized at the business level of the studied objects and

are evaluated in terms of severity;

3. operational scenarios representing the techniques used by the risk sources to achieve the

strategic scenarios. These scenarios focus on the third party supports of the system and

are evaluated in terms of likelihood;

4. synthesis of the previously identified risks and definition of a risk management strategy.

In addition, definition of what the residual risks will be.

In the United States of America (USA), the Risk Management Framework (RMF) [13]

proposed by the National Institute of Standards and Technology (NIST) is divided into 7

different steps:

1. prepare: list all the assets we want to protect and perform a organisation-level risk assess-

ment. NIST Special Publication 800-30 [14] presents the methodology for assessing risk in

an information system. This process, visible in Figure 3, consists of 6 different steps:

(a) identification of the threat sources that the organization must face;

(b) identification of the threat events that these threat sources can perform;

(c) identification of vulnerabilities in the organization that can be exploited by threat

sources to carry out their threat events, as well as the preconditions that must be

met;

(d) assess the likelihood that a threat source will initiate and succeed in carrying out a

threat event;

(e) assess the impact of a successful threat event on the organization’s assets and pro-

cesses;

(f) assess information security risks based on the likelihood of vulnerability exploitation

and the impact on the organization, and by considering the uncertainty of the risk

assessment.

2. categorize: classify the system and information according to the impact analysis.;

3. select: define protection measures to be put in place to protect these assets;

8 INTRODUCTION

4. implement: implement the previously defined protective measures;

5. assess: test that the protective measures implemented are adequate to protect the assets;

6. authorize: accept that some risks remain;

7. monitor: continuously monitor the relevance of the measures implemented in the system.

Figure 3: NIST risk assessment process
Source: “Guide for Conducting Risk Assessments.” (), [Online]. Available: https : / / nvlpubs . nist . gov / nistpubs / Legacy / SP /
nistspecialpublication800-30r1.pdf

The problem with the above-mentioned methods is that they mainly rely on the work of

experts. This human work has several disadvantages. First, the risk assessment is subjective.

Experts must qualitatively assess the likelihood and impact of risk scenarios, without being

able to rely on quantitative and objective calculations. The EBIOS method defines so-called

strategic and operational scenarios, which often remain at a high level without giving details

of the different actions that can be carried out by the attacker. The definition of these attack

paths by experts is often based on fictitious scenarios and on few real data coming from the

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-30r1.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-30r1.pdf

9 INTRODUCTION

system. For example, a step in an attack scenario might be the injection of malicious code

into a website, but without specifying the technical details or the vulnerabilities exploited to

achieve this. On the other hand, risk assessment methodology proposed in the NIST RMF

process does not provide specific guidance on how vulnerabilities are identified, nor how to

assess their likelihood and impact. Finally, both risk assessment methods lack scalability. The

large number of attack paths to define in the EBIOS method cannot be performed by humans,

while the number of vulnerabilities to analyze in the RMF method becomes too large.

In order to solve the problem of assessing the impact of a vulnerability, the Common Vul-

nerability Scoring System (CVSS) has been defined based on several criteria that measure the

difficulty and impact of the exploitation. The different criteria used to measure the difficulty

of the exploitation are:

• AttackVector: the context in which the vulnerability is exploitable (Network, Adjacent

Network, Local, Physical);

• AttackComplexity: requirements to perform the exploitation of the vulnerability (Low,

High);

• PrivilegeRequired: level of privileges required to exploit the vulnerability (None, Low,

High);

• UserInteraction: action required from the user to exploit the vulnerability (None, Re-

quired).

The criteria for measuring the impact of a vulnerability are:

• confidentiality: impact of the vulnerability on the confidentiality of the asset (None, Low,

High);

• integrity: impact of the vulnerability on the integrity of the asset (None, Low, High);

• availability: impact of the vulnerability on the availability of the asset (None, Low, High).

The Base Score (BS) in version 3.1 is calculated with equation (1). The calculation of this

score requires the calculation of two sub scores. The Impact Sub Score (ISC) is calculated with

equation (2), while the Exploitability Sub Score (ESC) is calculated with equation (3). The

change of scope means that the exploitation of a software’s vulnerability impacts resources that

are beyond its privileges.

10 INTRODUCTION

If (ISC ≤ 0): BS = 0

If (Scope Unchanged): BS = Roundup(Min[(ISC+ESC),10])

If(Scope Changed): BS = Roundup(Min[1.08× (ISC+ESC),10])

(1)

If(Scope Unchanged): ISC = 6.42× ISCbase

If(Scope Changed): ISC = 7.52× [ISCbase−0.029]−3.25× [ISCBase−0.02]15

with ISCBase = 1− [(1− ImpactCon f)× (1− ImpactInteg)× (1− ImpactAvail)]

(2)

ESC = 8.22×AttackVector×AttackComplexity×PrivilegeRequired×UserInteraction (3)

The CVSS score also allows to take into account criteria that evolve over time, such as the

presence of exploit code, a patch from the editor or confidence in the actual existence of the

vulnerability. The following criteria are defined:

• exploit code maturity: existence of an exploit or attack code in progress (Not Defined,

Unproven that exploit exists, Proof of concept code, Functional exploit exists, High);

• remediation level: existence of a remediation method such as a workaround or a patch

from the editor (Not Defined, Official fix, Temporary fix, Workaround, Unavailable);

• report confidence: measures the degree of certainty that the vulnerability exists (Not

Defined, Unknown, Reasonable, Confirmed).

Equation (4) shows the calculation of the CVSS 3.1 Temporal Score (TS).

T S = Roundup(BaseScore×ExploitCodeMaturity×RemediationLevel×ReportCon f idence)
(4)

The environmental impact can also be considered. The following criteria are defined:

• security requirements: the security requirements of the defender in terms of availability,

integrity, and confidentiality (Not Defined, High, Medium, Low);

11 INTRODUCTION

• modified base score metrics: vulnerability characteristics in the context of the defender.

The CVSS score has the advantage of being used by many actors and is already associated

with each CVE in database. However, this score only measures the impact of a vulnerability

at the asset level, but not at the system one.

Scientific challenges

We have shown that the risk management solutions currently used to assess the security of

computer systems are no longer adequate and we have highlighted the necessity of developing

a solution that meets the following requirements:

1. the method must be applicable in any kind of computer system;

2. the method must be able to be used in complex and dynamic systems. In this thesis,

we set ourselves the objective of analyzing the security of systems composed of several

thousands of elements;

3. the calculations made to assess risk must be as objective as possible. To do this, the

security analysis must be based on real information directly issued from the studied system;

4. the risk assessment process should be automated as much as possible to reduce the amount

of work that needs to be done by humans and to avoid errors;

5. the risk analysis method must also be able to assess the impact of one or a set of vulner-

abilities on the system.

To meet the above requirements, several scientific challenges must be overcome. First of all,

we must succeed in modeling the system as well as the capabilities of the attacker. Although a

model is a simplification of reality, it must allow the most accurate representation of the various

properties of the components and their interactions. It is also possible to model the evolution of

the system over time. The difficulties related to the modeling come from the limited information

that can be obtained, either about the system or the attacker. Concerning computer systems,

this information can for example come from network filtering rules present on firewalls or from

network scanning results. However, some information may remain unknown or uncertain, and

the model must be able to take this into account. For example, the time required for a malicious

actor to exploit a vulnerability cannot be known with sufficient confidence.

12 INTRODUCTION

Difficulties related to modeling can also come from the model itself. Indeed, the size of the

model as well as the time required for its construction must be adapted to the representation of

complex systems, which in this thesis means systems that can be composed of several thousands

of elements.

There are also difficulties in assessing the risk of compromise and measuring the impact

of vulnerabilities. Indeed, the calculations performed must be adapted to models representing

complex systems. It is therefore necessary to be vigilant about the complexity of the algorithms

used in order to guarantee that the calculations carried out finish in a reasonable amount of

time.

Objectives and main contributions

The objective of this thesis is to propose a risk analysis method applicable to complex

computer systems of various nature. This method should make it possible to measure the

risk of compromise of system components in a more precise and automated way than the

methods currently used, such as EBIOS RM or NIST RMF. Moreover, our method must be

able to measure the impact of one or a subset of vulnerabilities on the proper functioning

of the system. This assessment must take into account the structure and properties of the

organization’s system, unlike the CVSS score, which assesses the impact of a vulnerability only

at the component level.

Several works have already been done in this research area in order to model the attack paths

allowing a malicious actor to compromise the system and to evaluate its chances of success.

These attack paths are represented in the form of a graph called an attack graph. However,

the modeling of attack paths is based on a static representation of the system. It does not

allow to consider dynamic behaviors such as the changes of network connections of the user

workstations alternatively working at home and in the office. These permanent changes in the

network topology can however have an impact on how a malicious actor will penetrate the

system. Our objective is therefore to propose a new method for generating attack graphs that

is based on a dynamic representation of the system.

The complexity of the calculations performed to evaluate an attacker’s chances of success

based on attack paths is rarely adapted to complex systems. Our objective is to propose a

method to compute the attacker’s success probabilities from the previously constructed dynamic

attack graph. The calculations carried out must allow the analysis of systems composed of

several thousands of components and to be completed in a reasonable amount of time. In this

13 INTRODUCTION

thesis, we decided that the risk assessment should not last longer than one week in order to

give the security teams time to apply the necessary countermeasures before performing a new

analysis.

Finally, our goal is to propose a metric to measure the impact of one or a subset of vulner-

abilities based on our risk assessment method.

The main contributions of this Ph.D thesis are as follows:

1. analytical study of the existing solutions;

2. modeling cyber attacks in complex systems by considering their dynamic behaviours;

3. calculate the risk of system compromise by malicious actors;

4. measure the impact of a system configuration change, such as the correction of a vulner-

ability, on the chances of compromise by the attacker;

5. implement and validate our solutions on a complex use case.

Manuscript outline

In the first chapter, we present the results of the literature review on the problem of risk

assessment in complex computer systems. This step allows us to identify the limitations of the

currently proposed solutions and to define several research questions to guide our work in this

thesis.

In the second chapter, we present the work done to answer the research questions defined

in Chapter I. The first part of this chapter presents our method for generating attack graphs

based on a dynamic representation of the system. In the second part of this chapter, we propose

a method for calculating the risk of compromise of the system based on the dynamic attack

graph previously constructed. The third part of this chapter aims at showing that our solution

is usable in complex systems. To do so, we first evaluate the worst-case time complexity of all

the algorithms used. Then we measure the real performance of our algorithms by performing

several benchmarks. Finally, we present the results of the test of our method on a complex

system. In the last part of Chapter II, we discuss the results obtained by highlighting the

advantages and limitations of our work, and by presenting perspectives for future work.

The third chapter concludes this manuscript by outlining how our work addresses the re-

search questions identified in Chapter I.

14 INTRODUCTION

Chapter I

Review of the literature

16 Chapter I REVIEW OF THE LITERATURE

I.1 Introduction

The objective of this section is to perform a literature review based on the problematic

formulated in the introduction of this thesis. This review allowed us to identify the work that

has been completed so far in the field of risk analysis in complex systems. The solutions were

divided into different categories according to the methods used:

• methods based on the modeling of attack paths;

• methods using the complex network theory;

• methods applying epidemiological models on computer systems;

• methods based on the modeling of the system state.

Metric Score

S
ys

te
m

M
od

el
in

g

Impact Assessment - IA (Number of criteria) IA≤ 1 1 < IA≤ 4 IA > 4

Cascading Effects - CE (Modeling capacities) None (N) Limited (L) Unlimited (U)

Multi-step Attacks - MA (Modeling capacities) None (N) Limited (L) Unlimited (U)

Dynamic Properties - DP (Modeling capaci-
ties)

None (N) Limited (L) Unlimited (U)

Stochastic Properties - SP (Modeling capaci-
ties)

None (N) Limited (L) Unlimited (U)

Uncertainty - UN (Modeling capacities) None (N) Limited (L) Unlimited (U)

C
om

pl
ex

ity Modeling Complexity - MC (Maximum system
size)

MC ≤ 100 100 < MC ≤ 1000 MC > 1000

Risk Assessment Complexity - RAC (Maxi-
mum system size)

RAC ≤ 100 100 < RAC ≤ 1000 RAC > 1000

Table 1: Criteria used for the evaluation of articles

The relevance of each solution in addressing the research problem was assessed and we were

17 Chapter I REVIEW OF THE LITERATURE

able to highlight the advantages and disadvantages of each of them. Criteria defined in Table

1 have been used to evaluate the different solutions:

• Impact Assessment (IA): the ability of the model to represent the diversity of the impact

that an attack can cause to the system. The possible values of this metric are:

– IA≤ 1: the model allows to represent only one type of impact;

– 1 < IA≤ 4: the model allows to represent up to four different types of impacts;

– IA > 4: the model allows to represent more than four impacts.

• Cascading Effects (CE): the ability of the model to represent the cascading effects that can

be triggered during an attack. These cascading effects are due to the interdependencies

present between the different components of the system. For example, when a component

becomes unavailable due to an attacker’s action, all the components that depend on its

availability will also be impacted by the attack. The possible values of this metric are:

– None (N): cascading effects cannot be represented in the model;

– Limited (L): some cascading effects can be represented, such as system interdepen-

dencies related to component availability;

– Unlimited (U): all cascading effects can be represented in the model, regardless of the

nature of the interdependencies between the system components.

• Multi-step Attacks (MA): the ability of the model to represent multi-step attacks that

can be performed by a malicious actor in the system. The possible values of this metric

are:

– None (N): multi-step attacks cannot be represented in the model;

– Limited (L): some multi-step attacks can be represented, such as the propagation of

a virus that always uses the same vulnerability to propagate;

– Unlimited (U): all multi-step attacks can be represented in the model, regardless of

the techniques used or the vulnerabilities exploited by the attacker.

• Dynamic Properties (DP): the ability of the model to represent the dynamic behavior

of the system, such as representing changes in network topology or the internal state of

components. The possible values of this metric are:

– None (N): the dynamic behavior of the system cannot be represented in the model;

– Limited (L): some dynamic behaviors of the system can be represented;

18 Chapter I REVIEW OF THE LITERATURE

– Unlimited (U): all the dynamic behaviors of the system can be represented in the

model.

• Stochastic Properties (SP): the ability of the model to represent the random behavior of

the system or the attacker, such as changes in the network connections of users’ computers

when they move or the chances of success of the actions performed by the attacker. The

possible values of this metric are:

– None (N): the random behavior of the system cannot be represented in the model.

– Limited (L): some random behavior of the system can be represented;

– Unlimited (U): all the random behaviors of the system can be represented in the

model.

• Uncertainty (UN): the ability of the model to represent uncertainty about the actual state

of the system or about the actual capabilities of the attacker. This uncertainty can for

example be modeled by using intervals of values or probability distributions to describe

some properties of the system whose value is not known with sufficient confidence. The

possible values of this metric are:

– None (N): uncertainty about the actual state of the system cannot be represented in

the model;

– Limited (L): some uncertainties about the actual state of the system can be repre-

sented, such as using a probability distribution to describe the chances of success of

the attacker’s actions;

– Unlimited (U): all uncertainties about the actual state of the system can be represented

in the model.

• Modeling Complexity (MC): the ability of the model to represent complex systems. The

possible values of this metric are:

– MC ≤ 100: the model allows to represent systems whose size is lower than 100 com-

ponents;

– 100 < MC≤ 1000: the model allows to represent systems with a size between 100 and

1,000 components;

– MC > 1000: the model allows to represent systems whose size is beyond 1,000 com-

ponents.

• Risk Assessment Complexity (RAC): the ability of the model to allow the assessment of

the risk of compromise by a malicious actor in complex systems. The possible values of

this metric are:

19 Chapter I REVIEW OF THE LITERATURE

– RAC ≤ 100: the model allows to assess the risk of compromise in systems whose size

is less than 100 components;

– 100 < RAC≤ 1000: the model is used to assess the risk of compromise in systems with

a size between 100 and 1,000 components;

– RAC > 1000: the model allows to assess the risk of compromise in systems whose size

is beyond 1,000 components.

The evaluation of the solutions allowed us to identify some limitations in their ability to

fully address the research problem of this thesis. Research questions have been formulated

from the identification of these limitations in order to define future work to be done in the

continuation of this thesis. In the rest of this section, several systems for which a risk analysis

can be performed are presented.

I.2 Example of computer systems

The objective of this section is to present computer systems in which the risk of compromise

by a malicious actor can be assessed. We call computer system any system composed of

electronic elements that are interconnected to perform one or more tasks. An electronic element

can consist of:

• Central Processing Unit (CPU) to perform arithmetic calculations and interact with ex-

ternal devices;

• short-term memory for quick access to data;

• long-term memory to save data;

• input and output devices to interact with the external environment.

The systems presented in this section provide a research context for the solutions studied

in the literature review of this thesis. In the following part of this section, we will present

and define three types of computer systems that are Information Technology (IT) systems,

Cyber-Physical Systems (CPS) and embedded systems.

20 Chapter I REVIEW OF THE LITERATURE

I.2.1 IT system

In this context, IT networks are composed of elements which collect, store, process, and

distribute information. It includes technical elements such as servers, user workstations, and

network components, but also human elements such as collaborators, administrators, and di-

rectors. IT networks exchange information through both wired and wireless networks. This

type of system is used to support business processes of companies in a decentralized way, and

can evolve over time to adapt to the growth of the company, by adding new elements and new

communication technologies (cf Figure 4).

The objectives of the attacker in an IT system can be:

1. to make a service unavailable to impact the company’s productivity;

2. recover credentials to access sensitive information;

3. to modify the content of a database.

Figure 4: Composition of an information technology system [15]

I.2.2 CPS system

The role of CPS is to monitor and control several mechanized equipments such as robotic

arms or electric relays. These systems are composed of a cyber part which allows to manage

the communications between the elements of the network, to carry out calculations to make

decisions according to the information coming from the environment and to store these data

21 Chapter I REVIEW OF THE LITERATURE

to keep a history of the performed actions. They are also composed of a physical part such as

sensors which allow to measure some properties of the environment of the system, as well as

actuators to modify the state of the environment. These systems are used in the management

of smart grid or in industrial production.

Figure 5: Various functions of a CPS [16]

The system responsible for the management of an industrial process is called an Industrial

Control System (ICS). Signals are received from sensors that can for example measure tempera-

ture, pressure or distances in the environment. These signals are then transmitted to computer

units called PLCs for Programmable Logic Controllers. The role of the PLC is to process the

signals received on the input interfaces and to carry out calculations to decide on the signals

to be sent on the output interfaces. These signals are then transmitted to actuators whose role

is to modify the environment, such as activating a motor to move a robotic arm.

The attacker’s objectives in a CPS can be:

• to make a PLC unavailable to degrade the productivity of an organization;

• retrieve information from technical documentation in order to steal intellectual properties;

• to corrupt the data sent to the actuators to create an industrial incident.

22 Chapter I REVIEW OF THE LITERATURE

Figure 6: Composition of an industrial control system [17]

I.2.3 Embedded systems

Embedded systems are computer systems integrated into a larger physical system. These

systems allow the control of devices that often have real-time computing constraints. An

embedded system can for example be used for smart home or for controlling the autopilot

of a vehicle. They have a similar role to the CPS in the sense that they interact with the

environment through input-output interfaces, but with additional constraints concerning the

electrical consumption which can be limited by the capacity and power of the installed batteries.

The objectives of the attacker in an enbedded system can be:

• create a denial of service to negatively impact the user experience;

• recover personal information stored in the system;

• to corrupt the data sent by the sensors of an autonomous vehicle to create an incident.

The solutions identified in the literature review are intended to be used to assess the security

of some or all of the systems previously presented. In the continuation of this section, risk

analysis solutions based on multi-step attack modeling are presented.

23 Chapter I REVIEW OF THE LITERATURE

Figure 7: Example of an embedded system aboard a ship [18]

I.3 Multi-step attack modeling

I.3.1 Definition

When analyzing the security of a system, experts often have to answer the question: how

can a malicious actor achieve their goals? The objectives of an attacker in a computer system

are frequently summarized in the criteria of unavailability, integrity and confidentiality. For

example, an objective may be to encrypt system data to make them unavailable, to modify the

input values of a PLC to impact the industrial process or to steal confidential information about

a new technology. To identify the different ways in which an attacker can achieve its objectives,

it is possible to list all the actions that must be performed. The successive realizations of

these actions form what we call attack paths. It is possible to model these attack paths as

a tree where the root node represents the attacker’s objective. The steps to reach this goal

24 Chapter I REVIEW OF THE LITERATURE

are represented with child nodes. The relationship between nodes can be conjunctive when all

child nodes must be realized to reach the parent node or disjunctive when several actions are

possible to reach the parent node.

I.3.2 Attack graph generation

Several articles propose methods to build attack trees and use them to analyze the security

of computer systems [19]–[23]. Unlike attack trees, attack graphs allow to represent the attack

paths in a more compact way by avoiding repeating some nodes.

The first attack graphs were made of nodes representing the different states of the system

and arcs modeling the actions of the attacker allowing to go from one state to another. These

graphs can be generated automatically from a description of the system with model checking

algorithms such as SMV [24] or NuSMV [25]. The problem with these attack graphs is that

their size grows exponentially with respect to the size of the system. It is to solve this problem

that the monotonicity assumption has been proposed in [26]. This assumption says that one

action of the attacker cannot invalidate a precondition of another action. However, it is not

always true. For example, when an attacker exploits a vulnerability on a network service and

causes its unavailability, it will no longer be possible to exploit other vulnerabilities on this

service. The attack graph models presented in the rest of this chapter all use monotonicity

assumption to reduce the size of the graph.

The network visible in Figure 8 was used to test the different attack graph generation

methods. This network comes from [27] and it is composed of a web server, an authentication

server on a DMZ network, and a database server on an internal network. Several vulnerabilities

are present in this system and are summarized in Table 2. The web server hosts an Apache

web service that is vulnerable to an attack that allows the execution of arbitrary code. An SSH

service is present on the authentication server. The vulnerability CVE-2002-0640 is present

on this service and allows the attacker to execute arbitrary code on the server. A MySQL

service is present on the database server. This service is vulnerable to an attack allowing to

execute arbitrary code on the server. A second vulnerability is present on the Linux kernel of

the database server. This vulnerability is locally exploitable and allows the attacker to elevate

his privileges on the server.

The tool TVA (Topological Vulnerability Analysis) [28], [29] automatically builds an attack

graph from attack scenarios, a set of vulnerabilities identified in the system and network mod-

eling. The attack scenarios are made up of the attacker’s objectives and initial conditions. The

25 Chapter I REVIEW OF THE LITERATURE

Software Vulnerability (CVE-ID) Short symbol
Apache Web Server v1.3 CVE-2006-3747 V1
OpenSSH v2.3.1-v3.3 CVE-2002-0640 V2
MySQL v4.0, v5.0 CVE-2009-2446 V3
Linux Kernel v2.4, v2.6 CVE-2004-0495 V4

Table 2: List of vulnerabilities present in the network

list of vulnerabilities can be obtained automatically with scanning tools such as Nessus [11] or

Retina IoT (RIoT) [30]. The attack graph is composed of nodes representing the vulnerabilities

and security conditions acquired by the attacker. The arcs from the precondition nodes to a

vulnerability node represent the conditions required to exploit the vulnerability. An arc from a

vulnerability node to a condition node represents the impact of the vulnerability exploitation.

The size of the attack graph evolves in a quadratic way with respect to the size of the system.

Figure 9 shows the attack graph generated from the test network using the TVA method.

Figure 8: Configuration of the network used as an
example [27]

Figure 9: Exploitation dependency type attack
graph used in TVA [27]

The MulVAL [31] (Multihost, multistage Vulnerability Analysis) framework automatically

generates an attack graph from a list of vulnerabilities present in the system, asset configuration,

user access rights, possible interactions and policies. The system is modeled with the Datalog

language [32]. The possible interactions in the system are modeled with Horn clauses. A Horn

clause is a logical formula written as a rule. They allow to model reasoning rules and to deduce

new information about the system from already known facts. The XSB [33] environment is used

to deduce new information about the system state. Figure 10 shows the attack graph generated

from the test network using the MulVAL framework. The structure of the attack graph is

relatively identical to that of TVA with nodes representing vulnerability exploits, parent nodes

representing the necessary preconditions and a child node representing the impact of the attack.

The attack graph construction algorithm has a worst-case time complexity O(n2× log(n)), with
n the number of hosts in the system and its size evolves in a quadratic way [34].

26 Chapter I REVIEW OF THE LITERATURE

Figure 10: Logic-based attack graph used in MulVAL [27]

The NetSPA (Network Security Planning Architecture) [35] framework allows to automat-

ically build an attack graph called multiple-prerequisite graph. First, a reachability graph is

built from information about the network topology, network filtering equipment and hosts.

The reachability matrix is simplified into a matrix of reachability groups by removing any re-

dundancies. Vulnerabilities can be identified automatically with a scanning tool. Then, using

information from databases such as NVD, the vulnerabilities discovered on the network are

analyzed to deduce whether they are remotely or locally exploitable, and what is its impact

on the host. The impact of an attack on a host is measured with one of the following criteria:

root, user, DoS or other. In this article, a vulnerability is defined as any method by which an

attacker can gain access to the system. However, attacks such as social engineering and physi-

cal attacks are not modeled because they cannot be identified automatically. Figure 11 shows

the attack graph generated from the test network using the NetSPA framework. The attack

graph is composed of 3 types of nodes: state, prerequisite and vulnerability nodes. The state

nodes represent an attacker’s state in the system and allow unlocking new prerequisites. The

prerequisite nodes represent the conditions required to exploit a vulnerability. Vulnerability

nodes represent the vulnerabilities present on the hosts of the system and whose exploitation

27 Chapter I REVIEW OF THE LITERATURE

allows the attacker to reach a new state. This attack graph structure allows to avoid repetitions

of some nodes as it can happen in TVA. The performance is similar to MulVAL. The worst-case

time complexity of the attack graph generation algorithm is O(max(V,T)×R×C), with V the

number of vulnerabilities, T the number of network ports, R the number of reachability groups

and C the number of credentials.

Figure 11: Multiple prerequisite attack graph used in NetSPA [27]

Although the attack graphs make it possible to identify the attack paths leading to the

compromise of the system components, the difficulty of the actions that the attacker must

perform is not considered. We will introduce some methods that have been proposed to assess

the attacker’s chances of success from the attack graphs.

I.3.3 Attack graph-based risk assessment

Attack graphs can be used to assess the risk of system compromise by considering the

difficulty of the attacker’s actions. It is possible to list all the attack paths present in an

attack graph and calculate for each of them their probability of success as in [36]–[41]. In

[36], the authors aim to reduce the cyber risk to the Internet of Things (IoT) as effectively

as possible, considering the budgetary limitations that are imposed. A backward algorithm is

28 Chapter I REVIEW OF THE LITERATURE

used to traverse the attack graph and list all attack paths. This algorithm ignores paths that

do not lead to any of the attacker’s objectives. Paths that do not start at the attacker’s initial

condition node are also removed. If an exploit node is traversed a second time, path extraction

is stopped to avoid cycling. Attack paths that exceed a given length or have a probability of

success below a given limit are removed. The success probability of an exploit Ei is calculated

using the CVSS score normalised from the following equation:

E prob(Ei) = (8.22×AV ×AC×PR×UI)/10 (5)

where AV is the attack vector, AC is the complexity of the attack, PR is the required privileges,

and UI is the user interaction. Exploiting the same type of vulnerability several times in the

same attack path increases its probability of success. This characteristic is considered with the

parameter θ ∈ [0;1], and allows to model the learning of the attacker. If θ = 0, the probability
of exploitation of the same type of vulnerability does not change. With θ = 1, the probability of

exploiting the same type of previously exploited vulnerability is 1. The probability of successful

exploitation of an attack path is calculated by the following equation:

Aprob(A j) = ∏min(1.0,E prob(Ei)+θ ×ϕ× (1−E prob(Ei))) (6)

where ϕ is the number of exploits of the same type as Ei. The Security Metric noted SM
allows to measure the security of the system and the attack surface, and is calculated with the

following equation:

SM = ∑Aprob(A j) (7)

The solution was tested on an attack graph composed of 25 nodes. Nine attack paths are

found with the back propagation algorithm. Among them, four are removed, because their

starting node is not the attacker node, and the last one, because the number of nodes in the

path exceeds the allowed limit. The time complexity of the attack path extraction phase is

O(Mn−1), where M is the maximum number of exploits that point to a condition, and n is

the maximum length of the attack paths that has been defined. Experimental tests have been

performed with different attack graphs of increasing complexity (see Table 3).

29 Chapter I REVIEW OF THE LITERATURE

Attack graph Number of initial
conditions

Number of exploits Number of arcs

A 21 32 129
B 98 305 1382
C 512 984 4982
D 945 1326 6814
E 2122 4023 21221

Table 3: Characteristics of the different attack graphs used for performance evaluation.

The arcs are randomly generated and the minimum probability of an attack path is set to

0.01. 50 simulations are performed for each network and the average of the results is calculated.

Figure 12 shows the average number of attack paths identified as a function of the complexity

of the different attack graphs and the value n representing the maximum length of an attack

path. Figure 13 shows the average time required for the identification of the attack paths in

the different attack graphs and for different values of n.

Figure 12: Average number of attack paths for dif-
ferent randomly generated attack graphs with dif-
ferent path length limits n [42]

Figure 13: Average CPU time in milliseconds for
the attack path generation phase for different ran-
domly generated attack graphs with different path
length limits n [42]

We notice that the given complexity O(Mn−1) is equal to O(MM−1) when no attack path

length limit is set, which means that the complexity is exponential in this case. With a value

of n = 5, the complexity becomes O(M4). The time complexity of the attack path identification

algorithm is therefore highly dependent on the value n that is set.

The experimental analysis of the complexity is difficult to interpret. The x-axis corresponds
to the 5 attack graphs of increasing complexity (see Table 3), but the notion of complexity has

not been clearly defined. It corresponds to a combination of the number of initial condition

nodes, the number of exploitation nodes and the average number of arcs. Moreover, these

various parameters do not evolve linearly. For example graph A has 32 exploitation nodes, 305

30 Chapter I REVIEW OF THE LITERATURE

for graph B and 984 for graph C. This is an increase of factor 9.5 between graph A and B, and

of factor 3.2 between graph B and C.

In [41], the authors aim to develop a method for assessing the cyber risk of port infras-

tructures using attack graphs. These infrastructures are dependent on complex supply chains

that rely on IT networks, involving a large number of organisations such as transport, energy

and telecommunications. Network assets may be vulnerable, allowing an attacker to exploit

them to compromise confidentiality, integrity or availability. All the attack paths present in

the graph are listed using a deep traversal algorithm. A set of constraints is used to reduce the

complexity of the algorithm:

• the attacker’s capabilities whose possible values are shown in Table 4;

• the position of the attacker, whose possible values are shown in Table 5;

• the maximum propagation length;

• the entry and exit points of the attack.

Qualitative values Description
High The attacker is an expert and has sufficient resources to carry

out the attack
Medium The attacker’s expertise and resources are of moderate level
Low The attacker has limited expertise and resources to carry out the

attack

Table 4: Attacker’s capabilities

Qualitative values Description
Local The attacker is located on the local network
Adjacent The attacker is located on a adjacent network
Network The attacker is located on a remote network such as the Internet

Table 5: Attacker’s location

The use of entry and exit points makes it possible to carry out the risk analysis on a sub-part

of the system, which makes it possible to constantly re-evaluate the cyber risk in a context of

high network evolution.

The model was tested in two different cases. The first is a simplified example consisting of 7

assets and 9 vulnerabilities and was used to test the effectiveness of the algorithm. Three tests

with different parameters were performed and all the attack paths were identified (see Table

6).

31 Chapter I REVIEW OF THE LITERATURE

Test number Number of existing paths Number of identified paths Paths
1 2 2 [1, 2], [1, 5]
2 0 0 /0
3 1 1 [3, 4, 5, 7]

Table 6: Results of the analysis of the first case study

The second use case is inspired by the port of Valencia and consists of 182 assets. The

performance of the solution was tested and the results are available in Figure 14. The y-axis
corresponds to the execution time of the algorithm in seconds. The terms low, medium and

high correspond to the different capacity levels of the attacker. The values 5, 10, 15 and 20

correspond to the total number of entry points and targets. The attacker’s position was set to

local. The maximum length of the propagation in the network is fixed at 10.

Figure 14: Performance evaluation of Algorithm 1 in the use case of the Valencia port [42]

The benchmark that has been carried out does not show an explosion of computing time

in relation to the number of entry points and objectives. This is certainly due to the many

parameters that eliminate some of the attack paths considered to be too difficult for the attacker

to exploit. However, it would be interesting to measure the number of false negatives. The

complexity of the algorithm has not been given. The algorithm presented in this paper is very

similar to the one proposed in [36]. The main differences is that the probability of the attack

paths is not considered in this article, but additional parameters have been defined such as

entry and exit points, as well as the capabilities and position of the attacker.

Other solutions have been proposed to compute the probabilities for each node of the attack

graph without having to list all the attack paths as in [43]–[47]. In [43], the authors propose

a solution to assess the security of IT systems. This assessment is automatically performed

to not rely on human work that could be error-prone. The authors propose a new modeling

32 Chapter I REVIEW OF THE LITERATURE

language similar to the Meta Object Facility (MOF) [48], where the system is represented in

several layers with an object-oriented structure. This language allows a reduction in the cost

of modeling the system, a great flexibility when defining new components and a possible reuse

of the models.

The layer 0 of the model visible in Figure 15 allows to define the construction rules of the

attack graph. It is composed of the following elements:

1. the class asset represents the system components.

2. the relationships between components are represented in class AssetRelationship, such as

a physical connection between two components.

3. class AttackStep represents actions that allow an attacker to compromise a component.

The time required to achieve an attack step is represented by a probability distribution

over the Time To Compromise T TC. This probability distribution makes it possible to

model the uncertainty about the value of the time required to carry out the attack. There

are two types of attack step:

• the asmin attack step can be carried out by the attacker if at least 1 parent attack step

has been achieved;

• the asmax attack step can be carried out by the attacker if all the parent attack steps

have been achieved.

4. class Attacker is used to model the entry points of the attack with attack steps having a

T TC value of 0.

5. class AttackStepRelationship represents the relations between the attack steps and models

the possible propagation of an attacker.

33 Chapter I REVIEW OF THE LITERATURE

Figure 15: Layer 0 of the system modeling [42]

The attack graph G constructed from this model is composed of:

• a set V of nodes representing the attack steps;

• a subset I ⊂V of nodes representing the entry points of the attack;

• a set E ⊆ V ×V of arcs between the nodes representing the possible progressions of the

attacker;

• a weight attribution function w : (A,B) ∈ E→ P(T TCA) which allows to define the proba-

bility distributions of the time required to perform an attack step by the attacker.

The layer 1 of the model visible in Figure 16 allows to represent the different threats that

exist in the system. All classes of this layer are instances of the class Asset of layer 0. Each class

of layer 1 contains a set of attack steps that are related to this class. The attack steps framed

in dotted lines represent asmin and those framed in lines represent asmax. An arc between two

classes represents a relationship that is part of class AssetRelationship of layer 0. A dotted arc

between two attack steps represents a possible progression of the attacker and is part of the

class AttackStepRelationship of layer 0. The four classes defined in layer 1 are:

• identity that represents an authorization required in the system to perform an action;

• agent that represents an entity in the network such as a person, a software or a physical

component;

• data that represents information such as a file, credentials or a command;

34 Chapter I REVIEW OF THE LITERATURE

Figure 16: Layer 1 of the system modeling [42]

• vulnerability that represents a flaw in the implementation or design of the system. The

uncertainty about the actual existence of the vulnerability is represented by a probability

distribution and is considered in the computation of the TTC value.

It is possible to represent some processes in more detail by adding a new modeling layer.

For example, Figure 17 represents the authentication process of a user, where class Host1 and

Host2 are instances of class Agent, classes User and Admin are instances of class Identity, and

class UserLoginCredentials an instance of class Data.

The calculation of the TTC value for each node of the attack graph is performed in two

steps:

1. a TTC value is sampled from the probability distribution that represents the time required

to complete the action, given that all the parent attack steps have been completed;

2. the minimum TTC value that considers the parent nodes is computed for each node of the

attack graph using a modified version of Dijkstra’s shortest path algorithm [49].

This process is performed multiple times and allows to obtain the distribution of the success

35 Chapter I REVIEW OF THE LITERATURE

Figure 17: Representation of the authentication process in a third modeling layer [42]

frequencies of an attack step as a function of time.

But there is not enough information about how the attack graph is generated from the

system modeling, as well as how the initial TTC value of a vulnerability is computed from the

probability of its actual existence. There is also no analysis of the complexity of the algorithms

used such as the modified version of Dijkstra’s shortest path algorithm. The model has not

been tested on a large system, so it is not certain that this solution is able to assess them.

In [46], the authors observe that identified vulnerabilities may not be immediately patched

due to environmental factors, cost or the organisation’s mission. Their objective is to propose

a solution to identify the vulnerabilities that need to be addressed as a priority, by computing

the probability that the attacker will succeed in compromising some system components.

An attack graph G is defined as G(E∪C,Rr∪Ri), where E is the set of exploit nodes, C the set

of condition nodes, Rr ⊆C×E the set of incoming arcs to an exploit node and Ri⊆ E×C the set

of incoming arcs to a condition node. The individual score of a vulnerability corresponds to the

probability of successful exploitation by the attacker assuming that all required preconditions

are satisfied. The cumulative score combines the individual score of the vulnerability with the

structure of the attack graph. The authors use an attack graph to model the dependencies

between vulnerability exploits, represented by ovals, and the security conditions acquired by

the attacker, represented by text.

The calculations of the attacker’s success probabilities that will be presented do not consider

the conditional interdependencies between attacks. The cumulative score P(e) of an exploita-

tion type node is computed from its individual score p(e) and the cumulative score of the

preconditions P(c) with the following equation:

36 Chapter I REVIEW OF THE LITERATURE

P(e) = p(e)× ∏
c∈Rr(e)

P(c) (8)

The cumulative score P(c) of a condition node is computed from its individual score p(c)
and the cumulative score of the vulnerabilities P(e) allowing to reach the condition c, with the

following equation:

P(c) =

{
p(c), Ri(c) = /0
p(c)×⊕e∈Ri(c)P(e), otherwise.

with ⊕ recursively defined as ⊕P(e) = P(e),e ∈ E

and ⊕ (S1∪S2) =⊕S1 +⊕S2−⊕S1×⊕S2,S1 ⊆ E and S2 ⊆ E

(9)

The authors address the problem of cycles in attack graphs. Some cycles can be deleted

(left-hand graph in Figure 18) when a condition within the cycle can never be satisfied. Others

can be broken (middle graph of Figure 18) when an exploit within the cycle only allows to

obtain a condition which is itself necessary for the exploit. However, some cycles can neither

be deleted nor broken (right-hand graph in Figure 18).

Figure 18: Possible cycles in an attack graph [42]

The cumulative score cannot be computed for a node present in a cycle. To solve this

problem, the authors propose to generate a graph A(G,v) from the attack graph G where all

outgoing arcs from node v are deleted, and recursively all arcs and nodes that are no longer

accessible. This allows the node v to be no longer present in a cycle and to compute its

cumulative score with equations (8) and (9) in the graph A(G,v). The authors prove that

computing the cumulative score of a node v in graph A(G,v) is not a problem because only

nodes that have node v as a predecessor are deleted and thus it has no impact on the attack

37 Chapter I REVIEW OF THE LITERATURE

paths reaching node v.

In order to compute the cumulative score of all nodes in the attack graph, the graph is

traversed with a modified Breadth-First Search (BFS) algorithm, where a node v can only be

computed when all cumulative scores of the parent nodes have already been computed. The

graph traversal with the BFS algorithm stops when there are only nodes that are entry points

in cycles. At this moment, all the cumulative scores of these nodes are computed by generating

the graph A(G,v). Then the BFS algorithm is used again and so on until the entire attack

graph has been traversed.

Figure 19: Attack Graph used to check the solution proposed in [46]

This solution has the advantage of not listing all the attack paths present in the attack graph,

their number evolving exponentially with the size of the graph, which makes its use possible

in large systems. However, the authors do not consider the conditional interdependencies

between nodes. Yet it is obvious that in Figure 19, action A5 depends on condition P1, and
that action A4 also depends on condition P1. It is therefore necessary to consider this shared

dependence when computing the probability P(P4). Attack graph in Figure 19 is used to

demonstrate that this results in incorrect probabilities. The probabilities below the nodes

correspond to the individual scores, while the probabilities above correspond to the cumulative

scores computed with the solution proposed in this article. We constructed the probability

tree corresponding to the attacker reaching condition P4 (see Figure 20), which allowed us to

compute the probability P(P4). We obtain P(P4) = 0.43072, which is a different result than

by following the solution proposed in this article, showing the importance of considering the

38 Chapter I REVIEW OF THE LITERATURE

Figure 20: Probability tree allowing to reach P4

dependencies between vulnerability exploits.

In [47], the authors’ objective is to compute the probability that the attacker will reach some

given security conditions in the system based on the attack paths present in an attack graph.

The MulVAL [31] framework is used to build the attack graph. There are three kinds of nodes

in the graph:

1. attack-step nodes GC representing a logical AND relationship with its parent nodes of type

privilege;

2. privileges nodes GD representing a logical OR relationship with its parent nodes of type

attack-step;

3. configuration nodes representing the initial properties of the system.

Configuration nodes are removed and substituted by a single root node GR ∈GD, with an arc

to all attack-step nodes that are left without parents. Privilege nodes with several outgoing arcs

are called branch nodes, GB ∈ GD. The set of probabilities GM associated with the attack-step

nodes can be computed from the CVSS score. For an attack-step node c ∈ GC, let GM[C] be

the probability associated with node c such that Pr[e|P] = GM[C]. The probability GV of an

attack being carried out by the attacker is associated with the root node GR, with GV = 1 in

this article.

The concept of d-separation is used to establish conditional interdependencies between nodes

and it has been adapted to the specific case of attack graphs. A set V ⊆GB is said to d-separate

39 Chapter I REVIEW OF THE LITERATURE

distinct sets of nodes A and B if among all diverging paths between A and B, there is a node

v ∈ V such that v is the divergence point. Theorems (1) and (2) are used to compute the

marginal probability Pr[N].

Theorem 1 ∀D,N ⊆ GN ,Pr[N] = ∑
D

Pr[N|D]×Pr[D]

Theorem 2 Pr[N|D] = ∏
n∈N

Pr[n|D], with D the node set that d-separate any pair of nodes in the

node set N.

To compute the probability of a node v present in a cycle, the authors start by listing all

acyclic paths that pass through this cycle. Then, only the paths passing through node v are

kept. The probability that the node v is true is equal to the probability that at least one of the

attack paths passing through this node is true. The calculation of this probability is done in

the same way as for a node that is not present in a cycle with theorems (1) and (2).

The solution has been tested in different systems, with generated attack graphs having a

different number of cycles. The platform used to perform these tests is not specified, but what

interests us here is to measure the way the computation time evolves as a function of the system

size. The tests carried out show that the number of cycles present in the attack graph has a

great influence on the calculation time. For example, in a system composed of 9 hosts, it takes

4 seconds to perform the computations in an attack graph with 28 nodes in the largest cycle,

against 8 minutes and 31 seconds with 46 nodes in the largest cycle. Although this solution

makes it possible to compute compromise probabilities by considering conditional dependencies

between vulnerability exploits, execution times increase quickly, especially when many cycles

are present in the attack graph. Therefore, it seems that this solution is not suitable for large

systems, where many cycles may be present in the attack graph. This solution was tested on

the attack graph shown in Figure 19 and the probability P(P4) corresponds well to the value

obtained from the probability tree shown in Figure 20.

I.3.4 Bayesian attack graph

A Bayesian network is an acyclic graph where the nodes represent random variables and

the arcs represent dependencies between them. Each node is associated with a Conditional

Probability Table (CPT) where each row represents the probability of the random variable Xi

40 Chapter I REVIEW OF THE LITERATURE

regarding the value of its parents, noted P(Xi|PARENT S(Xi)). Once all the probability tables

have been completed, it is possible to compute the joint probabilities of a set of random variables

Xi with equation (10). Then, the marginal probabilities of a random variable Xi is calculated

with equation (11).

P(X1,X2, ...,Xn) =
n

∏
i=1

P(Xi|PARENT S(Xi)) (10)

P(Xi = x) = ∑
X1

...∑
Xi−1

∑
Xi+1

...∑
Xn

P(X1, ...,Xi = x, ...,Xn) (11)

It is also possible to compute the marginal probabilities of the random variables Xi given

one or more evidences E with equation (12). An evidence is a random variable whose value is

known, such that Ei = ei. The hidden variables Y are those whose value is not known.

P(Xi = x|E = e) =
P(Xi = x,E = e)

P(E = e)
, with P(Xi = x,E = e) = ∑

Y
P(Xi = x,Y,E = e)

and P(E = e) = ∑
X

∑
Y

P(X ,Y,E = e)
(12)

The concept of d-separation makes it possible to obtain the set of random variables on

which it is necessary to marginalize to compute the probability P(N). The marginalization

computation of random variables is generally NP-hard [50]. It can be done in two ways:

1. exact algorithms such as junction tree and cut-set conditionning [51]. In the case where

the graph is a polytree, there is Pearl’s message passing algorithm [52] of polynomial

complexity. As a reminder, a polytree is a directed acyclic graph for which there are

no undirected cycles. Another solution is to use a large number of CPU cores with the

junction tree algorithm as in [53]. This allows, for the computation of the marginalization

of a node with two states and 30 parents, to go from 19,463 seconds (≈ 5h) with 2 CPU

cores, to 55 seconds with 1024 CPU cores.

2. In an approximate way by carrying out sampling as in [54]. The simplest method is

called Rejection Sampling: it consists in sampling random variables by respecting the

conditional probabilities of the Bayesian network, and by removing the samples which

do not correspond to the observed random variables. Then the value of the marginal

41 Chapter I REVIEW OF THE LITERATURE

Figure 21: Removing cycles in a Bayesian network using a dynamic Bayesian network

probabilities of each node can be determined by counting the number of corresponding

samples divided by the total number of samples. Other approximate algorithms exist:

in paper [55], the authors measured the performance of Likelihood Weighting [56], Gibbs

algorithms [57], and Pearl inference [52]. A probability is calculated with the juntion tree

exact algorithm and is used as a reference to evaluate the performance of the approximate

algorithms. The Gibbs algorithm starts to converge to the correct value after 400 iterations

and gets very close to it after 600 iterations. The likelihood weighting algorithm is directly

very close to the correct value and gets very close to it after 600 iterations as well. The

Pearl inference algorithm is the fastest to converge to the correct value and gets very close

to it in only 3 iterations. However, the computation time in relation to the number of

iterations increases more rapidly than the Gibbs algorithm, but less than the likelihood

weighting algorithm. If we take into account the computation time, the Gibbs algorithm

is the fastest to converge to the correct value.

Dynamic Bayesian networks are an extension of static ones. They are a series of static

Bayesian networks linked by temporal arcs. This allows the impact of time in the system to be

considered. It also makes it possible to remove cycles that could appear in a classic Bayesian

network. Figure 21 shows an example of cycle removal using a dynamic Bayesian network.

Bayesian networks can be used to model conditional interdependencies between nodes in

an attack graph and compute the attacker’s success probabilities as in [58]–[64]. These types

of networks are called Bayesian attack graphs. There are two surveys concerning the use

42 Chapter I REVIEW OF THE LITERATURE

of Bayesian networks in attack graphs [65], [66]. In [58], the objective is to propose a risk

management framework based on Bayesian networks allowing to compute the probability of

network compromise. A Bayesian attack graph is used to model the causal relationships between

the different states of the network. The probability of successful exploitation are computed

based on the version 2 of the CVSS score of the associated vulnerability with equation (13).

Pr(ei) = 2×AccessVector×AccessComplexity×Authentication (13)

Several concepts are defined:

• a template is a generic network property such as a vulnerability, account access, system

or network properties. For example, a template could be a buffer overflow vulnerability

on the SSH service of an FTP server;

• an attribute S defines the truthfulness of a template, with S = True or S = False. We note

Pr(S) the probability that the attribute S is true, and Pr(¬S) that it is false;

• dependencies between two attributes are defined by the set A such that A : S×S→ [0,1]. An
atomic attack is defined as a relation a : Spre→ Spost , with Spre the precondition necessary

for the exploitation to be carried out, and Spost the postcondition of the exploitation, such

that:

– Spre ̸= Spost ;

– If Spre = 1, then Spost = 1 with a probability A(Spre,Spost)> 0;

– ∄S1, ...,S j ∈ S−{Spre,Spost} such that A(Spre,S1)> 0, A(S1,Spost)> 0, ..., A(Spre,S j)> 0,
A(S j,Spost)> 0.

The probability of success of an atomic attack is given by Pr(ei), such that A(Spre,Spost) =

Pr(ei);

• a Bayesian attack graph is defined by the set BAG = (S,τ,ε,P) with:

– S = Ninternal ∪Nexternal ∪Nterminal, with Ninternal the set Si for which ∄a ∈ A|Si = post(a),
Ninternal the set S j for which ∃a1,a2 ∈ A|(S j = pre(a1), S j = post(a2)), and Nterminal the

set Sk for which ∄a ∈ A|Sk = pre(a);

– τ ⊆ S×S, (Spre,Spost) ∈ τ if Spre→ Spost ∈ A;

– ε is a set of relations (S j,d j) defined for all S j ∈Ninternal∪Nterminal and d j ∈ {AND,OR}.
d j = AND if S j = 1 =⇒ ∀Si ∈ Pa(S j), Si = 1 and Pr(S j|Pa(S j)) is computed with

43 Chapter I REVIEW OF THE LITERATURE

the equation (14). d j = OR if S j = 1 =⇒ ∃Si ∈ Pa(S j), Si = 1, and Pr(S j|Pa(S j)) is

computed with the equation (15);

Pr(S j|Pa[S j]) =

{
0,∃Si ∈ Pa[S j]|Si = 0
Pr(∩

Si=1
ei),otherwise. (14)

Pr(S j|Pa[S j]) =

{
0,∀Si ∈ Pa[S j],Si = 0
Pr(∪

Si=1
ei),otherwise. (15)

– The set of conditional probabilities P defined for each attribute S j ∈ Ninternal∪Nterminal

representing the values Pr(S j|Pa(S j)).

The Bayesian Attack Graph corresponding to the test network is shown in Figure 23 and

was constructed from a list of vulnerabilities and the network topology. A static risk analysis

requires the system administrator to assess the attacker’s capabilities and the difficulty of ex-

ploits based on their subjective beliefs. The marginal probability of all attributes S j is computed

from the probabilities P(Si) of the attributes Si ∈ Nexternal and the conditional probabilities of

the attributes S j ∈ Ninternal ∪Nterminal (cf. figure 22).

A dynamic risk analysis makes it possible to consider the incidents detected on the network

during its life cycle by fixing the state of some attributes to true in the BAG. This allows

to model the new proofs and to compute the marginal probabilities of all nodes S j ∈ S. Let

E = {S′1, ...,S′m} ⊂ S the set of proofs such that S′i = 1 for all S′i ∈ E, and let the set S j ∈ S−E
be the set of attributes for which it is necessary to compute the marginal probability.

44 Chapter I REVIEW OF THE LITERATURE

Figure 22: BAG simplified to illustrate the computation of probabilities [58]

Figure 23: BAG corresponding to the test network with marginal and posterior probabilities [58]

45 Chapter I REVIEW OF THE LITERATURE

The computation of marginal probabilities is done with the brute force DFS traversal algo-

rithm of complexity O(2n), and is therefore not adapted for complex systems. However, there

are approximate algorithms, such as the Monte Carlo based one [67], which can speed up the

computation time, but this has an impact on the accuracy of the results.

Bayesian networks are acyclic graphs. According to the authors this is not a problem because

cycles do not increase the probability of success of an attack scenario and can therefore be

removed. However, as we have seen in [46], some cycles cannot be removed without impacting

the success probability of the attacks (see right-hand graph in Figure 18). Therefore, it seems

necessary to use attack trees in the Bayesian network in order to avoid cycles, at the price of

increasing the size of the network.

In [64], the authors look for a solution to measure the overall security of information systems.

Changes in the nature of vulnerabilities are considered, such as the publication of new technical

information, the proposal of a patch or the presence of exploit codes. Dynamic Bayesian

Networks (DBNs) are used to model changes in vulnerability properties, measure the evolution

of overall system security over time, and make predictions about future system security based

on past observations.

An attack graph is defined in this paper as a set G(E ∪C ∪ Rr ∪ Ri) where E is the set

of exploitations, C is the set of security conditions, Rr and Ri are the two sets of relations

between conditions and exploitations. The conditional relationships that exist between security

conditions and vulnerability exploits in an attack graph G are encoded using a Bayesian network.

The T S score measures the difficulty of exploiting a vulnerability by considering its dynamic

properties and is computed from CVSS scores using equation (16), with Base Score (BS),

Exploitability (E), Remediation Level (RL) and Report Confidence (RC).

T S = round to 1 decimal(BS× (E×RL×RC)) (16)

The computation of the probabilities of exploiting the vulnerabilities given that all precon-

ditions are satisfied is computed by normalising the TS score in [0;1] such that P(e = T |∀c ∈
Rr(e),c = T) = T S/10.

Two types of relationships can be encoded in CPT:

• a disjunctive relationship where only one of the parent nodes needs to be TRUE for the

child node to be TRUE;

46 Chapter I REVIEW OF THE LITERATURE

• a conjunctive relationship where only one of the parent nodes needs to be FALSE for the

child node to be FALSE.

Temporal links between random variables of different time slices allow to take into account

past events. In this paper, the authors define that if the attacker succeeds in exploiting a

vulnerability in one time slice, the probability of exploiting the same vulnerability in future

time slices will be equal to 1. The BS and TGS scores are modelled by a node in each time slice.

Finally, the probability of a vulnerability being exploited depends on the BS and TGS scores,

whether or not the vulnerability was exploited at the previous time slice and the dependency

on other vulnerabilities (cf Figure 24).

Figure 24: Example of Dynamic Bayesian Network (DBN) for security assessment [64]

The authors did not assess the complexity of the algorithms used, nor performed any bench-

mark. This is probably not a solution that can be used in large systems without using approx-

imate algorithms. However, the respect of the Markovian properties of the dynamic Bayesian

network allows to model it in a compact way.

The uncertainty on the value of conditional probabilities in CPTs can be modeled with

noisy gates as in [61]. A noisy AND gate consists in assigning a probability to the TRUE state

of a random variable even if one of the dependencies is FALSE. A noisy OR gate consists in

assigning a probability to the FALSE state of a random variable even if one of the dependencies

is TRUE. It is also possible to aggregate the opinion of several experts to define the values of

the conditional probabilities in the CPT as in [62]. The defensive measures implemented by the

defenders can also be modeled in the Bayesian network and taken into account when computing

the attacker’s success probabilities as in [63].

47 Chapter I REVIEW OF THE LITERATURE

I.3.5 Petri net based attack graphs

Petri nets are graphs where the nodes can be places or transitions. Places can contain tokens

and transitions allow, when activated, to move them from place to place. Arcs allow a set of

places to be connected to a transition or a set of transitions to a place. A marking represents

the distribution of tokens across the places of the Petri net. Petri nets are used to model

the evolution of this marking as a function of the activation of the transitions and allow to

represent:

• synchronisation;

• parallel processes;

• competition;

• management of resources.

It is possible to check some properties such as:

• reachability: is it possible to reach a given marking given an initial configuration of the

Petri net?

• deadlocks: is it possible that the system is in a configuration where no more transitions

can be activated?

• boundedness: places are always limited to a quantity M of tokens;

• liveness: no transition will become permanently inactive.

The reachability graph can be generated in order to visualise the evolution of Petri net

marking, according to the transitions that are activated. This graph can be infinite, in which

case it is possible to generate a coverability graph where the nodes that keep growing in the

reachability graph are replaced by a single node ω [68]. There are a multitude of extensions

associated with Petri nets such as:

• coloured Petri nets: the tokens can be of several types;

• hierarchical Petri nets: a transition in a Petri net can itself be a Petri net;

• continuous Petri nets: the tokens take real values;

48 Chapter I REVIEW OF THE LITERATURE

• hybrid Petri nets: the tokens can be either natural or real numbers;

• Petri nets with queues: it is possible to add queues before the places where the tokens will

have to stay for a determined time before reaching the place;

• temporal Petri nets: transitions take a fixed time to activate;

• stochastic Petri nets: the transitions take a random time to activate, following an expo-

nential distribution of parameter λ . The average activation time is equal to 1/λ ;

• generalized Petri nets: add inhibiting transitions. The transitions can be activated in a

deterministic or stochastic time with any random distribution. Immediate transitions can

have weights corresponding to activation probabilities.

Petri nets are mainly used to model the attack paths present in a system as in [69]–[73].

In [74], the authors propose a formal method to model the propagation of risk in critical

infrastructures. A new class of Petri net called propagation net is defined, which is based on

coloured Petri nets and allows to model the relations between the different components of the

network structure. In a propagation network, all the components E = e1, ...,ek are modelled in

the form of places. A place ei can contain only one token whose value is defined by the function

f (ei) such that f : E → V . The set V represents the feature that is studied in the system.

For example it can be a probability and in this case V ∈ [0;1]. The value of the token of a

component ei is computed from the value of the other components on which it depends. This

internal dependency is modelled by a function fi such that f (ei) = fi(f (e′1), ..., f (e′k)), where
e′1, ...,e

′
k are the dependencies of ei, and it is represented by a transition in the propagation

network. We note F the set of internal dependencies fi of the system. The value of some

places can also be modified by the environment. We note the set of these places Eb such

that Eb = {e1, ...,em}. An environment is represented by a transition without parents in the

propagation network.

In order to propagate the impact of the environment on all the components of the system,

the value f (ei) of a place ei is updated each time the value f (e′i) of one of its dependencies

e′i has been modified. To do this, one or more trigger places, noted tr j
i , are associated with

each place representing a component. These places contain a single token of Boolean type

and are represented by dotted lines in the propagation network. When a place tr j
i is true, it

indicates that the value f (e j) of a component e j must be computed again because the value of its

dependency ei has been modified. The input places of a transition fi represent the dependencies

whose token values are required to compute f (ei), as well as the trigger place tr j
i . The places at

the output of the transition fi represent the set of places of type trigger trk
j , as well as the place

49 Chapter I REVIEW OF THE LITERATURE

e j. When a transition representing the environment is activated, this allows the value of the

token of a place representing a component and its associated trigger type place to be modified

(see Figure 25). Subsequently, a transition is activated if at least one of the input trigger type

places is True. In this case, the following changes are made:

• the value of the token of place ei is computed with the function fi;

• the token of the input trigger place is reset to False;

• the token of all output trigger places are set to True if the value f (ei) has changed.

Propagation stops when all trigger places are False. The propagation network was tested on

an example case composed of 5 components E = {e1, ...,e5}, with V = [0;9] and f : E → [0;9].
Internal dependencies were modeled by experts using the equations (17).

f (e1) = f1(e1) =

{
max(0, f (e3)−1) : f (e1)< 5
f (e3) : else

f (e2) = f2(e2) = max(f (e1), f (e3))

f (e4) = f4(e4) = (f (e2)+ f (e3))/2

f (e5) = f5(e5) =

{
max(0, f (e3)−1) : f (e5)< 5
f (e3) : else

(17)

An algorithm is used to automatically build the propagation network. The propagation

network visible in Figure 27 is used as an example. Two tests were performed:

• the transition env1 is activated in order to change the value of the token of place e1 from

3 to 4. The initial marking of the network is equal to (3,3,0,1,0,F,F,F,F,F,F). The

reachability graph is generated and can be seen in Figure 26;

• the transition env3 is activated in order to change the value of the token of the place e3

from 0 to 2. The initial marking of the network is equal to (3,3,0,1,0,F,F,F,F,F,F). The

reachability graph is generated and can be seen in Figure 28.

The reachability graph allows to visualise the propagation of the risk through the system

until a stable state is reached if it exists. Indeed, in some cases there is no stable state, for

example if a cycle is present in the Petri net such that f (ei+1) is an argument of fi, f (ei+2) is

50 Chapter I REVIEW OF THE LITERATURE

Figure 25: Transition representing the environ-
ment [74]

Figure 26: Reachability graph after activation of
the transition env1 [74]

Figure 27: Example of a propagation network [74]

an argument of fi+1, and f (ek) is an argument of fi. It also allows model checking to be carried

out in order to verify the veracity of some properties of the system.

But unlike what the authors say, model checking algorithms are not adapted to this type of

system. Indeed nuXmv is able to analyse systems with more than 1020 states, but this does not

correspond to a complex system. For example, a simple system composed of 20 elements with

10 possible states gives 1020 possible states. It is therefore not able to analyse an information

system composed of several thousands machines.

51 Chapter I REVIEW OF THE LITERATURE

Figure 28: Reachability graph after activation of the transition env3 [74]

It is also possible to perform simulations in a Petri net to calculate the chances of success of

an attacker. In paper [75], the authors aim to understand and quantify the cyber risk affecting

Software-Defined Networking (SDN) using Generalized Stochastic Petri Nets (GSPN). SDN is

a network paradigm where the configuration of the network is organised by a controller, which

allows the physical separation of network control from the network infrastructure. The weights

on the transitions allow probabilistic simulations to be performed. The GSPN places represent

the security state and conditions of the attacker, while the transitions represent the actions of

the attacker. The input places of a transition represent the preconditions, and the output places

represent the results of the action. The tokens in the places represent the different attackers in

the system and their progress. A methodology for the construction of the GSPN is proposed:

• define the attacker’s main objective and sub-objectives;

• list all possible security states of the SDN components;

• identify all possible actions of the attacker that could change the security state of the

components;

• build the model from the previous information that allows the attacker’s main objective

to be achieved.

52 Chapter I REVIEW OF THE LITERATURE

(a) Logical AND relationship (b) Logical OR relationship

Figure 29: Logical relationships in a Petri net [75]

A Boolean AND relationship can be modelled in a GSPN (see Figure 29a) and allows to

represent the case where at least one token is required in each place to activate the transition.

A Boolean OR relation can be modelled (see Figure 29b) and allows to represent the case where

a precondition with at least one token is required to activate the transition.

Place Description
P0 DoS attack start
P1 Attack route 1
P2 Attack route 2
P3 Genuine LLDP packet
P4 Network LLDP packet
P5 DPID of two switches
P6 Modified LLDP packet
P7 Link Fabrication attack
P8 Switch with lower DPID
P9 DoS attack done
Transition Description
T0 Launch DoS attack
T1 Get genuine LLDP packet from external source
T2 Get LLDP packet from one target switch within the network
T3 Listen to LLDP packets
T4 Modify LLDP packet
T5 Repeat LLDP packet
T6 Find the lower DPID
T7 Inject LLDP packet
T8 Link with the target switch
T9 Restart DoS attack

Table 7: List of places and transitions in the Petri net

The authors tested their model on attacks targeting the topology management service used

by the SDN controller. The network discovery protocol works like this:

53 Chapter I REVIEW OF THE LITERATURE

1. the controller sends a Link Layer Discovery Protocol (LLDP) packet to a switch S1. This

packet contains the port ID and the Datapath ID (DPID) of the switch. The DPID is used

to identify the switch to the controller. The LLDP packet is encapsulated in a Packet-Out

message.

2. the switch then broadcasts this packet on all its ports.

3. when a switch S2 receives the message on a port that is not connected to the controller, the

LLDP packet is encapsulated in a Packet-In message that is then sent to the controller.

The LLDP packet contains the port ID and DPID of the switch S2.

4. when the controller receives the message, it can detect the link between switches S1 and

S2 and update the network topology accordingly.

The GSPN visible in Figure 30 allows to represent the attack paths allowing to realize a denial

of service attack on the topology management service. The different places and transitions are

listed in Table 7. The places P0, P1 and P2 represent the initial states. The transition T9

allows to restart the attack in order to perform several simulations. The probabilities on the

transitions are computed according to three parameters:

• the cost of the attack cA for the attacker;

• the technical difficulty dA;

• the discovering difficulty sA.

Attack Cost
(103) cA

Grade Technical
difficulty dA

Grade Discovering
Difficulty sA

Grade

> 10 5 Very difficult 5 Very difficult 1
6−10 4 Difficult 4 Difficult 2
3−6 3 Medium 3 Medium 3

0.5−3 2 Simple 2 Simple 4
< 0.5 1 Very simple 1 Very simple 5

Table 8: List of possible values for the different parameters

The possible values of these parameters are shown in Table 8. The probability PA of a

transition is computed from the following equation:

PA = w1×u1(cA)+w2×u2(dA)+w3×u3(sA) (18)

54 Chapter I REVIEW OF THE LITERATURE

Transition Attribute Occurrence
probability

Attack cost cA Technical
difficulty dA

Probability to be
discovered sA

T1 2 1 5 0.113
T2 3 2 3 0.078
T3 1 2 4 0.117
T4 3 2 3 0.078
T5 2 2 2 0.10
T6 1 1 5 0.147
T7 3 4 2 0.072
T8 4 4 2 0.067

Table 9: Values of the different parameters of the transitions

with w1 +w2 +w3 = 1 the weights of the different parameters, and u(x) ∈ [0;1] a utility

function of the parameters associated with the transitions. In this model, w1 = w2 = w3 = 1/3
and u1(cA) = u2(dA) = u3(sA) = 0.2/x. The probabilities of all the transitions in this model are

shown in Table 9.

The open source tool PIPE [76] (Platform-Independent Petri net Editor) is used to model and

analyse the GSPN corresponding to the use case shown in Figure 30. A weight of 1 is assigned

to the transitions T0 and T9. The reachability graph that is generated makes it possible to

explain the behaviour of the system, to verify the absence of deadlock, and to guarantee it is

bounded.

50 simulations are performed with each time a different number of activation of the initial

transition T 0. Figure 31 shows the distribution of the tokens in the Petri net and allows to

approximate the success probabilities of the attacker. For example, the attacker has a 17%

chance of succeeding in the P7 attack and a 29% chance of succeeding in the P8 attack.

Figure 30: Petri net used in the use case [75]

55 Chapter I REVIEW OF THE LITERATURE

Figure 31: Distribution of tokens in the Petri net [75]

The solution proposed in this paper allows to compute the chances of successful compromise

by an attacker. The probabilities are approximated by performing several simulations in the

Petri net, which allows to use this method in a complex system. However, the method proposed

by the authors to build the Petri net relies on too much human work and it would be interesting

to verify if an attack graph generated automatically with a tool such as MulVAL cannot be

transformed into a generalized Petri net.

The modeling of attack paths can be simplified by using hierarchical Petri nets as in [73],

[77]. In this network, a node of the first layer represents the exploitation of a vulnerability and

this node can be associated with a second Petri net of a lower layer to detail the steps necessary

for the exploitation.

I.3.6 Conclusion

The modeling of attack paths allows to represent in a very precise way all the actions

that the attacker can perform to compromise the system. The attack graph can be generated

automatically with algorithms such as MulVAL or NetSPA from a detailed description of the

system and the attacker’s capabilities. These algorithms are suitable for large systems with

respective worst-case time complexity O(n2× log(n)) and O(max(V,T)×R×C), where n is the

number of components in the system, V the number of vulnerabilities, T the number of ports,

R the number of reachability groups and C the number of credentials. It is also possible to

take into account the difficulty of exploiting the vulnerabilities and to calculate the success

probabilities of the different actions of the attacker. However, the accuracy provided by this

model requires an accurate and a comprehensive modeling of the system, which can be difficult

56 Chapter I REVIEW OF THE LITERATURE

to achieve. Especially when some information cannot be known with sufficient confidence, such

as information about the real capabilities of the attacker. The complexity of the calculations

of the attacker’s success probabilities can also be in some cases too complex to be used in large

systems, such as inference calculations in Bayesian networks [58] or model checking in Petri net

[74]. Moreover, the modeling of attack paths is often based on a static representation of the

system. The only exception are the solutions based on dynamic Bayesian networks as in [64],

which allows to represent the evolution of the CVSS score of a vulnerability. To summarize,

the modeling of attack paths allows a very accurate analysis of the risk of compromise of the

system by an attacker, but a lot of information is required to model all the properties of the

system and the capabilities of the attacker. Especially since some of this information can be

difficult to obtain and its collection cannot always be done automatically.

I.4 Epidemiological models

I.4.1 Definition

An epidemiological model is used to study the evolution of an infection in a population over

time. The population is divided into several groups whose number and meaning may change

depending on the models used. For example, the SIR (Susceptible, Infected, Recovered) model

represents three population groups: susceptible, infectious and recovered. A person who is

susceptible to infection can be moved into the infectious group when he or she contracts the

virus. An infectious person can pass into the recovered group when the infection is over and

he or she becomes immune to the virus. The SIS (Susceptible, Infected, Susceptible) model

is identical to the SIR model except that there is no immunity: an infectious person, once

recovered, returns to the group of people susceptible to be infected. The SEIS (Susceptible,

Exposed, Infected, Susceptible) model is an extension of the SIS model where a new group is

created corresponding to people who have been infected but cannot yet transmit the virus. A

susceptible person can move into the exposed group when he or she is infected with the virus.

An exposed person enters the infectious group when he or she can transmit the virus. The

evolution of populations within these different groups of individuals can be represented in a

deterministic way with differential equations or in a stochastic way by modeling the random

behavior of the virus. Epidemiological models can be used to model the propagation of an

attack through a computer system.

57 Chapter I REVIEW OF THE LITERATURE

I.4.2 Deterministic assessment

In [78], the authors study the propagation of jamming attacks on IoT wireless networks. A

jamming attack consists in saturating the communication channel of a device. This attack can

be performed at the physical or Medium Access Control (MAC) layer of the Open Systems

Interconnection (OSI) model, and does not require a lot of computing power. The symptoms

of this attack are an increase in the number of packets transmitted between nodes, packet loss

and an extra consumption of resources. An infected node will produce the same effects on its

neighboring nodes.

In this paper, the authors use a SIR epidemiological model to study the spread of the

attack. In a SIR model with N people, three quantities evolve over time: the number S of

people susceptible to be infected, the number I of infected and the number R of recovered.

The number of new infections depends on the infection rate β , which is the average number of

attacks per unit of time. The period of recovery γ depends on the duration of the infection td.
A SIR model is defined such as:

N(t) = S(t)+ I(t)+R(t) (19)

dS(t)
dt

=−β I
S
N

dI(t)
dt

= β I
S
N
− γI

dR(t)
dt

=−γI

(20)

γ =
1
td

(21)

The steady state of the system such as dS(t)/dt = 0, dI(t)/dt = 0, dR(t)/dt = 0 allows to

obtain the reproduction rate R0. This metric indicates the average number of new infections

caused by an individual during its own infection period. If R0 ≤ 1, then

lim
t→∞

I(t) = 0 (22)

58 Chapter I REVIEW OF THE LITERATURE

If R0 > 1, then

lim
t→∞

[S(t), I(t),R(t)] = (
N
R0

,
βN

β + γ
(1− 1

R0
),

γN
β + γ

(1− 1
R0

)) (23)

The maximum number of infected Imax is computed as follows

Imax = S(0)+ I(0)− γ

β
ln(S(0))− γ

β
+

γ

β
ln(

γ

β
) (24)

The authors focus on two types of attacks: (1) reactive mode attacks where packets are

sent out by the infected node as soon as a transmission is detected. (2) Random attacks when

packets are sent for a period of time t j before going into sleep for a period of time ts. The

wireless IoT network is modeled by a graph where the nodes represent devices of same nature

and the links represent radio connections between them. A link exists between two nodes if

their distance is less than or equal to the range of their radio transmission r0. The nodes are

uniformly distributed on a two-dimensional area A. The average density ρ of a network of

N nodes is therefore equal to ρ = N/A. The degree of a node corresponds to its number of

connections. The probability that a node is connected to k neighbors is

p(k) =

(
N−1

k

)
pk(1− p)N−1−k (25)

with

p =
πr2

0
A

(26)

The objective is to consider the density of the system while modeling the epidemic. Two

metrics are defined:

• the severity of the attack λ such that λ = ρ×β ;

• the persistence of the attack td such that td = 1/γ .

The differential equations and the computation of Imax are redefined to take into account the

density of the system:

59 Chapter I REVIEW OF THE LITERATURE

dS(t)
dt

=−λ I
S
N

dI(t)
dt

= λ I
S
N
− γI

dR(t)
dt

=−γI

(27)

Imax = S(0)+ I(0)− γ

λ
ln(S(0))− γ

λ
+

γ

λ
ln(

γ

λ
) (28)

The epidemiological model is validated using experimental data from study [79], [80], where

three different routing protocols are compared: Multi-Parent Hierarchical Protocol (MPHP),

Ad-hoc On-demand Distance Vector (AODV) and Dynamic Source Routing (DSR). A grid

of dimension 300×300 is used where 49 static nodes are placed randomly following a uniform

distribution. Each node has a radio range of 50m. A coordinator node is placed in the upper left

corner and collects all the information generated by the other nodes of the network. Different

experimental conditions were tested:

• the position of the attacker’s node (top left, middle and bottom right);

• the type of attack (random attack with a rate of 50 packets/s, random attack with a rate

of 80 packets/s, reactive attack);

• the type of routing protocol (AODV, DSR, MPH).

The performance of the network is evaluated over a period of 100 seconds with 270 samples

by measuring the number of nodes that the coordinator is able to reach. A node is able to

communicate with the coordinator if it has not been infected or if the infection has ended. A

tool has been developed to compare experimental data and differential equations. This tool also

allows to compute attack severity R0 and attack persistence 1/γ values from the experimental

data.

Theoretical and experimental results are compared on the basis of attack severity, attack

persistence and peak attack value. The authors find that the theoretical values are close to the

experimental values. However, there is a difference in the case of the MPH protocol when the

primary infection node is near or far from the coordination node, and in the random attack

with a rate of 50 packets/s.

60 Chapter I REVIEW OF THE LITERATURE

The authors note several things that need to be improved: (1) new experimental data must

be generated. These data are required to validate the theoretical model and there are currently

not enough of them. An environment to simulate jamming attacks could be developed in

the future. (2) Other node distributions should be considered. In this study, only a uniform

distribution was considered. (3) The stochastic behavior of the system must be modeled.

This solution is only applicable for one type of attack. It is undoubtedly possible to adapt

it to other types of attacks with different impacts than the unavailability of the component.

Several points of concern can be made in this study: (1) the authors did not explain how the

parameters β and td were obtained when solving the differential equations. (2) The authors

chose to compare the experimental and theoretical results using indicators such as attack sever-

ity and attack persistence. It would have been more relevant to compare them by computing a

correlation coefficient.

I.4.3 Stochastic assessment

Epidemiological models can also take into account the stochastic behavior of the system when

calculating the propagation of an attack. In [81], the authors use epidemiological modeling to

assess the spread of a generic problem through a system by studying the cascading effects

that can occur. For example, it can be the propagation of an impact through the chains of

dependencies or the propagation of a virus in the system.

A stochastic model is required to model random phenomena such as the connection of user

devices to workstations (Bring Your Own Device - BYOD). Stochastic models are built from a

large amount of observational data, which may be difficult to obtain or unavailable, especially

in a cyber security context. It is therefore necessary that a stochastic model works with little

data.

An example case is defined, which corresponds to the case of the propagation of a malware

in a network infrastructure. This attack is similar to the Stuxnet [10] attack, where a worm

penetrated the system through a USB device and spread through the network.

A network infrastructure is modelled with a graph G = (V,E) with V the set of nodes and E
the interconnections such that E ⊆V ×V . Different classes of connections are defined according

to their properties to transmit a problem. E is thus partitioned in m subsets such that to each

link of class k is associated:

• a probability pk of transmitting a problem;

61 Chapter I REVIEW OF THE LITERATURE

• an infection rate λk corresponding to the average number of events per unit of time. For

example, this could be the average number of emails received each hour. This data can be

obtained by analysing network traffic, counting emails, or by asking users how often they

use a given communication method.

The authors model the number of infection attempts by a Poisson distribution of parameter

λk, and the waiting time between two events by an exponential distribution of parameter 1/λk.

An algorithm allows to simulate the propagation of a problem (cf. Algorithm 1). All the nodes

of the graph are initially coloured in green. A node v0 ∈ V is coloured in red and represents

the entry point of the infection. At each step of the simulation, all infected nodes are traversed

and propagate the problem through a link with probability pk. A simulation time limit T is

defined, and at each propagation attempt, the time counter t is incremented by e1/λk . The

result of the algorithm is a partially coloured graph where the nodes in red correspond to the

infected nodes. The infection rate can be calculated and is equal to N
|V | where N is the number

of infected nodes. If M nodes have been recovered, then the infection rate is N−M
|V | . The amount

M depends on the recovery processes of the organisation.

Algorithm 1 Algorithm for simulating the propagation of a problem
Input: G = (V,E)
Output: Color nodes of the graph
1: t← 0
2: while t < T do
3: for each red node in V , set N(v)← u ∈V : (v,u) ∈ E do
4: for each neighboring node u ∈ N(v) do
5: let k be the class in which the edge v→ u falls into
6: with likelihood pk , color u in red
7: draw an exponentially random ∆t ≃ e1/λ

8: t← t +∆t
9: end for

10: end for
11: end while

The value pk can be obtained by aggregating several expert evaluations in order to take

uncertainty into account. Let pk,1, ..., pk,nk be the set of nk estimates from the different experts.

The value pk can be defined from a random variable Xk which follows the distribution of the

different expert opinions (see Figure 32). The probability pk is obtained from equation (29),

which represents the proportion of experts who consider the probability pk higher than 0.5.

pk := Pr(Xk > 0.5) (29)

A pandemic criterion is defined from the percolation theory [82] and allows to affirm or not

that the propagation of the problem will remain local to a part of the system or will spread to

all the parts of the system. If the network is described through an Erdös-Rényi [83] model with

n nodes, m classes of links, qi the probability that a link of class i exists, and pi the probability

62 Chapter I REVIEW OF THE LITERATURE

that a link of class i propagates the problem, then the propagation remains local to a part of

the system if equation (30) is satisfied.

1−n× p1×q1− ...−n× pm×qm (30)

Figure 32: Distribution of the different experts’
opinions for the value pk [81]

Figure 33: Heatmap of the system [81]

The result of the simulations can be visualised in the form of a heatmap (see Figure 33),

where each node is coloured between purple and green according to the probability of infection.

This probability is computed by dividing the number of times a node has been infected by the

number of simulations performed. The authors propose to perform simulations for different

security criteria such as unavailability or integrity, in order to obtain a different heatmap in

each case. However, it does not seem possible to model dependencies between several security

criteria, such as the loss of data integrity leading to the unavailability of a component.

I.4.4 Conclusion

Epidemiological models allow to represent the evolution of a system when an attack is

launched by a malicious actor by measuring the evolution of the number of components im-

pacted by the attack. In the case of deterministic modeling, differential equations are used

to represent the evolution of the number of infected components over time. In the case of

stochastic modeling, probabilities are associated with the infection rates to represent differ-

ences in infection success based on the transmission context of the virus. Simulations are then

performed from the differential equations to approximate the evolution of the impact of the

attack on the different components of the system. These simulations make it possible to an-

63 Chapter I REVIEW OF THE LITERATURE

alyze large systems in a reasonable amount of time. In the case of stochastic modeling, it is

possible to display a heatmap of the system to visualize the components most impacted by the

attack. However, epidemiological models are mainly used to represent the propagation of a

single type of impact through the system. More attention is required to adapt this model to

the representation of an attack mixing loss of integrity, confidentiality and availability.

I.5 Complex network theory

I.5.1 Definition

The complex network theory allows to study the structure of complex systems. Different

metrics are defined to analyze the properties of nodes and edges of the network. A system

can be represented by a graph where nodes represent atomic elements with some properties,

and edges represent relationships between them. An edge can be oriented and a weight can

be assigned to it. A graph can be extended into a multigraph where several edges are possible

between two nodes, or into a multidimensional graph where several levels of the graph are

modelled, such as bipartite graphs. The size of a graph corresponds to its number of nodes.

A walk is a sequence of edges between two nodes where repetitions are allowed, unlike a path

where repetitions are not allowed. The shortest path between two nodes is called a geodesic.

The diameter of a network is its longest geodesic.

There are different network topologies that will have an impact on its properties such as

trees, rings, starts, complete graphs, lines, meshes or buses. The adjacency matrix is a matrix

of dimension 2 where ai j = 1 if there is an arc from node i to node j, and 0 otherwise. In an

undirected graph, ai j = a ji. If there is a weight wi j on an arc, then ai j = wi j.

The degree of a node measures the number of connections it has with other nodes, and is

computed with the following equation:

NDi =
N

∑
j=1, j ̸=i

ai j (31)

This definition can be extended for directed graphs by computing the In-degree with equation

(32) and measuring the number of arcs going to the node.

64 Chapter I REVIEW OF THE LITERATURE

NDin
i =

N

∑
j=1, j ̸=i

a ji (32)

The Out-degree is computed with equation (33) and measures the number of arcs outgoing

from the node.

NDout
i =

N

∑
j=1, j ̸=i

ai j (33)

A node with a high degree can become a hub of the network. The degree distribution of a

graph represents the frequency distribution of the different degrees of the nodes.

The density of a network is calculated with equation (34) and measures the ratio between

the number of connections in the network and the total number of possible connections, with

n the number of nodes in the graph.

D =
Actual Connections

Potential Connections (PC)
, with PC =

n× (n−1)
2

(34)

The clustering coefficient measures the level of aggregation of nodes in a network. There

is a global coefficient that measures the global aggregation of the nodes in the network and is

calculated with equation (35), where NDi the degree of node i and V the set of nodes of the

graph.

C =
3×|triangles|

∑
i∈V

(NDi
2

) (35)

There is also a local coefficient that measures the level of aggregation around a node vi. This

coefficient is calculated with equation (36).

Ci =
3×|triangles with vertex i|(NDi

2

) (36)

The mean of the local clustering coefficients of the graph nodes can be computed with the

following equation:

65 Chapter I REVIEW OF THE LITERATURE

1
|V |
×∑

i
ci (37)

A network can have subsets of particular nodes (see Figure 34) such that:

• Component: a set of nodes such that for all nodes x and y, there exists a path P(x,y). And
this subset of nodes is not connected to the rest of the network.

• Cluster: a subset of nodes that are strongly connected and share common properties.

• Clique: a subset of nodes in a graph where there is one edge between each pair of vertices.

Figure 34: [84] Representation of a clique, clusters, and a component

The importance of a node in the network can be measured by computing different metrics

such as:

• degree connectivity: measures the number of connections with other nodes in the network.

• closeness centrality: measures the ability of the node to affect all others:

C(x) = ∑
y

1
d(x,y)

(38)

• betweenness centrality: measures the number of shortest paths that pass through this

66 Chapter I REVIEW OF THE LITERATURE

Figure 35: The range of distribution degrees

node:

BC(x) =
N

∑
x ̸=y̸=z

ωyz(x)
ωyz

(39)

, with ωyz(x) the number of shortest paths between y and z passing through x, and ωyz the

number of shortest paths passing between y and z.

• flow betweeness centrality: same as Betweeness centrality but for all paths.

• prestige centrality: the importance of the node depends on the importance of its neigh-

bours, so we obtain a recursive definition of centrality. For example, the eigenvector

centrality allows to propagate the information of the degree centrality to the whole net-

work. To do this, we define an initial vector X = [1,1, ...,1], then we multiply X by the

adjacency matrix A, until we reach a stable state where the values of the matrix X all

increase at the same rate. We thus obtain AX = λX . This equation can be solved by

finding the eigenvalues and eigenvectors of the system.

There are mainly three types of networks (see Figure 35):

• distributed: the distribution of degrees in the network follows a normal distribution. The

network is super resilient.

• decentralised: a set of clusters linked together at the level of hubs. It respects the small

world property: most nodes are not neighbours but the distance between them is small.

• centralised: there is an exponential relationship between the degree of connectivity of a

node and its frequency of occurrence. This is called a scale-free network and it is very

sensitive against targeted attacks.

67 Chapter I REVIEW OF THE LITERATURE

The next section will show how the previously defined metrics can be used to assess the

impact of a vulnerability on the overall security of the system. For this purpose, two papers are

presented: the first one is interested in evaluating the impact of a cyber attack on the cyberspace

by modeling the cascading effects following the deletion of a node in the network. The second

article focuses on the survivability of a powergrid when some relays become unavailable, either

because of an attack or because of the environment.

I.5.2 Cyberspace survivability

In [85], the authors attempt to measure the impact of network topology on the survival of

cyberspace using complex network theory. A cyberspace is defined as a large network such as

Internet. Different attack strategies based on metrics from complex network theory are defined:

• random attack on a node.

• random attack on a link.

• deliberate attack based on the static degree of a node.

• deliberate attack based on the dynamic degree of a node.

• deliberate attack based on the betweenness centrality of a node.

• deliberate attack based on the betweenness centrality of a link.

An attack consists of removing a set of nodes or links from the network, modeling their

unavailability as a result of the attack. Attacks can be deliberate or random. Random attacks

can represent natural phenomena or human errors. The objective is to identify the attack

strategy that has the greatest impact on the system, and to use the corresponding metric to

identify the critical points of the network. The exploitation of a vulnerability at a critical point

in the network will therefore have a strong impact on the survivability of cyberspace.

Different metrics are defined to measure the impact of an attack:

• information transmission efficiency index E in cyberspace. This metric measures the dif-

ference in the sum of the reciprocal of the shortest transmission paths in cyberspace with

68 Chapter I REVIEW OF THE LITERATURE

and without cyber attack, and is computed with equation (40):

E =

∑
i∈G, j∈D

1
ωi j

∑
i∈G0, j∈D0

1
ω0

i j

(40)

with G the set of service nodes, D the set of terminal nodes, ωi j the shortest transmission

path between the service nodes i and the terminal nodes j, and the exponent 0 when it is

the context without attacks.

• index of maximum connected regions in cyberspace Q. This metric measures the number

of nodes present in the largest remaining connected part of the network and is computed

with equation (41):

Q = max(∑Setm),m = 1,2, ...,k (41)

with Setm the different sets of connected nodes and k the number of sets.

The evolution of these indices is measured according to the attacks carried out on the

network. Tests were performed on a system with 2145 nodes and 3260 links. Figure 36 shows

the evolution of the information transmission efficiency index E as a function of the number and

different types of attacks performed on the network nodes, while Figure 37 shows the evolution

of the index of the largest connected subnetwork Q.

Figure 36: Evolution of the information transmis-
sion efficiency index as a function of the number
of attacks performed on network nodes [85]

Figure 37: Evolution of the index of the largest
subnetwork as a function of the number of attacks
performed on network nodes [85]

The analysis of these data allows to notice that the attack strategy that consists in dynam-

ically targeting nodes with a high degree of connectivity is the most effective in damaging the

efficiency of the information transmission in the network, while the strategy targeting nodes

with a high betweenness centrality is the most effective in fragmenting the network.

69 Chapter I REVIEW OF THE LITERATURE

Figure 38 shows the evolution of the information transmission efficiency index E as a function

of the number and different types of attacks performed on the network links, while Figure 39

shows the evolution of the index of the largest connected subnetwork Q.

The analysis of these data allows to notice that the attack strategy which consists in targeting

the links with a strong betweenness centrality is the most effective to damage the efficiency of

the transmission of the information in the network as well as to fragment it.

Figure 38: Evolution of the information transmis-
sion efficiency index as a function of the number
of attacks performed on network links [85]

Figure 39: Evolution of the index of the largest
subnetwork as a function of the number of attacks
performed on network links [85]

Exploiting a vulnerability on a highly connected host will therefore have a strong impact on

the proper functioning of the system, and defensive measures should be applied as a priority

on these nodes.

I.5.3 Powergrid survivability

In [86], the authors aim to identify the most critical assets of the Indian electricity network

in order to protect them as a priority and thus increase the robustness and reliability of the

network. Indeed, attacks on these assets can make them unavailable and cause a cascading

effect that can lead to a blackout.

Attacks can be deliberate or random. Random attacks can represent natural phenomena such

as thunderstorms, extreme winds, or floods. The power system is represented by a graph (see

Figure 40) where the nodes correspond to the substations in the system, and the edges represent

the transmission lines. Weights are associated with the edges to model the transmission line

reactance. Reactance is a form of electrical resistance that is caused by changes in current in

an Alternating Current (AC) circuit. More power can be transmitted through a line with a low

70 Chapter I REVIEW OF THE LITERATURE

Figure 40: Graphical representation of the Indian electricity network [86]

reactance.

Several metrics from complex network theory are adapted to weighted graphs. The degree

of a node NDi is computed with equation (42), with N the number of nodes in the graph and

wi j the weight associated with a edge between node i and j. The calculation of the shortest

path between two nodes is also redefined to take into account the weights associated with the

links and is equal to the smallest sum of weights of lines connected between that two nodes.

NDi =
N

∑
j=1, j ̸=i

wi j (42)

Different attack strategies are defined:

• random attacks (RA);

• static attacks on links with the highest betweenness centrality (SL);

• dynamic attacks on links with the highest betweenness centrality (DL);

• attacks on nodes with high betweenness centrality of low reactance paths (HBNL);

• static attacks on the nodes with the highest degree centrality (HDNS);

• dynamic attacks on nodes with the highest degree centrality (HDND);

• static attacks on nodes with the highest betweenness centrality (HBNS);

• dynamic attacks on nodes with the highest betweenness centrality (HBND).

Different metrics are defined to measure the performance of the network:

71 Chapter I REVIEW OF THE LITERATURE

• the ratio S between the number of nodes in the largest subgraph before deletion (Na) and

after deletion (Ni):

S =
Na

Ni
(43)

• the efficiency E f of the network to transmit loads, with ωi j the shortest path between

nodes i and j and N the total number of nodes in the network:

E f =
1

N(N−1)∑i ̸= j

1
ωi j

(44)

The model has been tested on two use cases. The first one is the Indian electrical network

composed of 1,634 nodes and 2,549 links. The second is an approximation of the American

electrical network as it was in 1962 named IEEE 118. Attacks targeting nodes with high

betweenness centrality are the most effective in reducing network efficiency.

Complex network theory has identified the most effective attack strategy to degrade the

performance of the power system, as well as the critical assets of the system. We will now

discuss the advantages and disadvantages of this type of solution for risk analysis in complex

systems.

I.5.4 Conclusion

The complex network theory allows to compute metrics from a network representing the

system components and their interactions. These metrics are used to measure the impact of

an attack on the final network structure. The complexity of the calculations performed are

most often adapted to large systems. For example, computing the betweenness centrality of a

node requires listing the complete set of shortest paths between all nodes in the network, which

can be done with Floyd Warshall algorithm with a worst-case time complexity O(n3), with n
the number of nodes [87]. However, the impact of an attack on the system is represented by

the removal of a node or link in the network, which limits the representation of the impact of

attacks to the unavailability of a component. It would be interesting to verify if it is possible

to adapt this theory to model other types of impacts such loss of confidentiality or loss of

integrity.

72 Chapter I REVIEW OF THE LITERATURE

I.6 State-based modeling

I.6.1 Definition

State-based modeling is a type of modeling that consists in representing the behavior of a

system. This modeling makes it possible to represent the dynamic behavior of a system in

response to changes in some of its internal variables or in its environment. With this model, it

is possible to describe the properties of a system and their evolution. Each individual property

of the system can take a finite or infinite set of values. For example, the state of a vehicle can

be defined in the finite set S1 = {on,o f f}. But the position of this vehicle on a map can be

defined by the infinite set S2 = {(x,y)|x ∈ R,y ∈ R}. The state of a system is a combination

of all the values of the different properties that compose it. For example, the state of the

previously defined system takes its values in the set S1× S2. For example, the state of the

vehicle may be (on,(11,4)). The number of states of the system can be infinite when one of its

properties takes its values in an infinite set, which is the case in this example. The transitions

between the different states of the system can be represented with a graph called Automaton.

A Finite Automaton allows to model the behavior of a system whose number of possible states

is finite. On the other hand, a Non Finite Automaton allows to model a system with an

infinite number of states. A Deterministic Automaton corresponds to an Automaton where

the transition between two states depends only on changes of internal variables of the system

or the environment. On the other hand, a Non Deterministic Automaton is an Automaton in

which several states can be reached from the current state. The choice between these multiple

transitions can be done randomly. Most computer systems can be modeled with a Finite

Automaton, whether deterministic or stochastic. A Deterministic Finite Automaton M can be

defined with a tuple (Q,∑,δ ,q0,F) such that:

• Q the set of states of the system;

• ∑ the set of symbols associated with transitions, either triggers or the result of the tran-

sition;

• δ the transition function such as δ : Q×∑→ Q;

• q0 ∈ Q the initial state of the Automaton;

• F ⊆ Q the set of final states of the Automaton.

Figure 41 shows a Deterministic Finite Automaton. The different states of the system are

73 Chapter I REVIEW OF THE LITERATURE

represented by circles. The final states are represented by circles with two rings. The initial

state is represented by an arc without a parent node. The transitions are represented by arcs

between the nodes of the Automaton.

Figure 41: Example of a Deterministic Finite Automaton

Figure 42 represents a Non Deterministic Finite Automaton. We can see that unlike a

Deterministic Finite Automaton, it is possible to have several transitions between two states

of the system and with the same associated symbols. The choice between these transitions is

made randomly from the probabilities indicated on the transitions. For example, it is possible

to reach state S2 from state S1 with probability P
S1

a−→S2
= 0.7, and state S3 with probability

P
S1

a−→S3
= 0.3. The formal definition of a Non Deterministic Finite Automaton is very similar

to that of a Deterministic Finite Automaton except for the definition of the transition function

δ which becomes δ : Q×∑→ P(Q), with P(Q) the power set of Q.

Figure 42: Example of a Non Deterministic Finite Automaton

Once the Finite Automaton is built, it is possible to check some properties with a model

checking algorithm. A model checking algorithm explores the possible executions of the Au-

tomaton to check if a property P is satisfied. A property P is represented with a logical formula,

most often with temporal logic [88].

The following section presents an example of using Deterministic Finite Automata to analyze

the risk of compromise of a naval system. The last section shows why state-based models cannot

74 Chapter I REVIEW OF THE LITERATURE

be used in the context of complex systems.

I.6.2 Security assessment of a naval system

In [42], the authors model a naval system composed of elements that can be affected by

vulnerabilities. The exploitation of these vulnerabilities can impact the behaviour of the system.

It is therefore necessary to apply patches to reduce the risk, without negatively impacting

the functionality of the system. Timed Automata are used to model the state sequences of

the behaviour of system components and missions, and quantitatively assess the impact of

vulnerabilities, attacks, and countermeasures on naval missions.

Timed Automata are an extension of Finite Automaton where clocks can be defined. The

values of these clocks all increase at the same speed during the execution of the Automaton.

It is then possible to associate guards to the transitions of the Automaton which compare the

value of the clocks to integers. With these clocks, timed Automata can model the temporal

aspects of a system.

Dependencies between system and mission elements are modelled with guards assigned to the

arcs between two states of the Automata. For example, the guard movement done? between

the states shipMoving and measurementCampaign ensures that the rudder operates correctly

during the movement. Two types of Automata are used:

• system Automata which allow the behaviour of the vessel to be modelled. Timers allow

to model the time needed for the operation of a component;

• the mission Automata make it possible to describe the different stages of a mission.

A set of properties are defined. These properties are used to verify the correct operation of

the system using model checking, and are divided into three groups:

• A: the system can perform its tasks;

• T: the system can accomplish its tasks in a given time;

• I: the system can perform its tasks while maintaining the integrity of its components.

For any cyber event, whether it is the discovery of a vulnerability, an attack or a patch,

changes to the system are modelled by making mutations to the system Automaton, such as

75 Chapter I REVIEW OF THE LITERATURE

adding or removing a state, transition, clock, guard, or changing the value of a guard or clock.

It is then possible for each mission to gather the modified system Automata with the mission

Automaton, and to measure the impact on the system by checking different properties in the

model. The construction of the Automata is the result of the federation of different models

such as naval doctrines, missions, physical and functional architectures. A methodology for

impact assessment is proposed:

1. definition of a nominal system Automaton An representing the initial state of the system

before the discovery of a vulnerability, and satisfying the set of properties P;

2. definition of an Automaton of the vulnerable system Av where mutations have been made

from the Automaton An in order to describe the changes in the behaviour of the system

after the discovery of a set of vulnerabilities. The matrix Iv represents the impact of the

vulnerabilities on the satisfaction of the properties P;

3. for each countermeasureCi, i∈ [1; l], an Automaton of the patched system Ap
i is constructed

by performing a series of mutations from the Automaton Av to model the effect of the patch

Ci. The matrix Ip
i measures the impact of the patch Ci on the satisfaction of the properties

P of the system. The difference between the matrices Iv and Ip
i measures the non-regression

test of the countermeasure Ci;

4. for each attack att j, j ∈ [1;k], the Automata of the vulnerable system under attack Av/att
j

and the Automata of the patched system under attack Av/att
i, j are constructed. The Iv/att

j
matrices measure the impact of the attack att j on the vulnerable system, while the matrices

Ip/att
i, j measure the impact of the attack att j on the system where the countermeasure

Ci has been applied. The difference between the matrices Iv/att
j and Ip/att

i, j measures the

effectiveness of the countermeasure Ci.

Mission 1 Mission 2
The state end of mission 1 Automata can be
reached

The state end of mission 2 Automata can be
reached

The state end of mission 1 Automata can be
reached within x seconds

The state end of mission 2 Automata can be
reached within x seconds

The rudder is operational The network switch is operational
The controller is operational The controller is operational
The network switch is operational The rudder is operational

Table 10: List of properties to check for each mission Automaton

The model is tested on a small system composed of a rudder, its controller and a network

switch allowing Internet access by the crew. Two missions are modelled (see Table 10): the

76 Chapter I REVIEW OF THE LITERATURE

Figure 43: Automaton representing the behaviour of the rudder [42]

first is a measurement campaign (see Figure 44), and the second consists of transmitting the

results of this campaign via the Internet. The network switch is modelled by an Automaton

where a variable internet link is set to 1 when it is connected to the Internet. The nominal

Automaton An is the composition of the Automata present in Figure 44, 45 and 43, as well as

the Automaton of the network switch. The Automaton An verifies the following properties:

• the end state of the PLC of the first mission can be reached;

• the end state of the Automaton of the first mission can be reached in x seconds;

• the end state of the PLC of the second mission can be reached;

• the end state of the Automaton of the second mission can be reached in x seconds;

• the rudder is operational;

• the controller is operational;

• the network switch is operational.

The controller is affected by a remotely exploitable DoS vulnerability, represented by the

Automaton visible in Figure 46. The Automaton Av corresponds to the composition of the

Automata visible in Figure 44, 45 and 46, as well as the Automaton of the network switch.

Two countermeasures C1 and C2 are defined, the first one consists in patching the controller

software, the second one in forbidding the Internet connection to the network switch. Ip
1 and

Ip
2 represent respectively the impact of the countermeasures on the Automata of the patched

system Ap
1 and Ap

2 .

77 Chapter I REVIEW OF THE LITERATURE

Figure 44: Automaton representing a measurement campaign [42]

Figure 45: Automaton representing the behaviour of the rudder controller [42]

The Automaton in Figure 47 represents the attack att1 which consists in exploiting the DoS

vulnerability. The composition of the Automaton Av and the Automaton visible in Figure 47

forms the Automaton Av/att
1 , and the matrix Iv/att

1 represents the impact of the attack att1 on the

vulnerable system. Each of the Automata Ap
1 and Ap

2 are merged with the attack Automaton

visible in Figure 47, and the Automata Ap/att
1,1 and Ap/att

2,1 are obtained. The matrices Ip/att
1,1 and

Ip/att
2,1 are then obtained and correspond respectively to the impact of the attack att1 on the

system patched with the countermeasure C1 and C2.

Figure 46: Automaton representing the behaviour of the rudder controller vulnerable to a DoS attack [42]

78 Chapter I REVIEW OF THE LITERATURE

Figure 47: Automaton representing an attack on the rudder controller [42]

Each row of an impact matrix corresponds to a property and each column corresponds to a

mission. The columns are sorted by the order of importance of the missions, while the elements

of a column are sorted by their importance in the successful development of the corresponding

mission. A lexicographical order, denoted <lex in the following, is defined to compare two

impact matrices (see equation 45). The value of the different impact matrices corresponding

to the test system can be seen in equation (46). The countermeasure C2 impacts the proper

functioning of the system because Ip
1 <lex Iv. The two countermeasures reduce the risk because

Ip/att
1,1 >lex Iv/att

1 and Ip/att
2,1 >lex Iv/att

2 .

Let (ai, j),(bi, j) ∈ {0,1}m×n.

(ai, j)<lex (bi, j) ⇐⇒ ∃(k, l) ∈ [0,m]|(∀p,q ∈ [0,m]×
[0, l−1],ap,q = bp,q)∧ (a0,l = b0,l ∧ ...∧ak−1,l

= bk−1,l)∧ (ak,l < bk,l).

(45)

Iv =


1 1
1 1
1 1
1 1
1 1

 Ip
1 =


1 1
1 1
1 1
1 1
1 1

 Ip
2 =


1 0
1 0
1 0
1 1
0 1



Iv/att
1 =


0 1
0 1
1 1
0 0
1 1

 Ip/att
1,1 =


1 1
1 1
1 1
1 1
1 1

 Ip/att
2,1 =


1 0
1 0
1 0
1 1
0 1



(46)

The complexity of the impact assessment depends on two parameters: the number of model

checking performed for each vulnerability and the size of the Automata. The number of model

79 Chapter I REVIEW OF THE LITERATURE

checking performed for each vulnerability is n×(m+1)×(1+ l+k+k× l), where n is the number

of missions, m the number of components, l the number of countermeasures and k the number

of attacks. For a matrix with 20 missions, 2,000 components, 5 attacks per vulnerability and 5

patches, this requires 1,441,441 model checking. The first mission is composed of 39,069 states

and 144,756 transitions, and the second mission of 4,095 states and 11,380 transitions.

I.6.3 Conclusion

Models based on the state of a system suffer from a problem of combinatorial explosion of

the individual properties that compose it. For example, if we are interested in 6 properties in a

system with each of them 10 different possible states, the state of the system is a combination

of the values of these properties. The number of states of this system is therefore equal to

106. From a more general point of view, if we consider that a property of the system can only

take 2 values, the number of possible states of a system is equal to 2n, with n the number of

properties to analyze. In complex systems composed of several thousands elements, there may

be thousands of properties to analyze. The number of possible states of the system becomes too

large, making its modeling very difficult and the exploration of its states with model checking

algorithms impossible in a reasonable time. It is for this reason that we have decided to not

explore further the solutions based on the modeling of the system states, such as Automata or

Markov chains.

In the rest of this section, we will highlight the advantages and disadvantages of each solution

and pose research questions that will define directions for our future work.

I.7 Discussion

This section presents the results of the literature review that was conducted on the problem

of risk analysis in complex systems. This allowed us to assess the pertinence of the different

models by discussing their advantages and disadvantages. Table 11 summarizes the evaluation

of the main articles that have been presented in this chapter. As a reminder, the metrics used

to compare articles have been defined in the introduction page 16.

We observe that all the solutions based on the modeling of attack paths allow to represent any

type of impact. Indeed, it is possible to model the result of an attack with a node representing,

for example, the unavailability, loss of confidentiality or integrity of a component. These models

also make it possible to represent the multi-step attacks that a malicious actor can follow to

80 Chapter I REVIEW OF THE LITERATURE

achieve its objectives, as well as the cascading effects that can be triggered. However, the

generation of attack graphs is generally based on a static representation of the system. The

only exception is the use of dynamic Bayesian networks in paper [64] to represent the evolution

of the CVSS score of vulnerabilities, but this remains very limited.

The algorithms used to build attack graphs are adapted to the high complexity of the

systems. However, an attack graph alone does not allow a very accurate assessment of the

risk of compromise because it only lists the attack paths without taking into account other

parameters such as the difficulty of exploiting the vulnerabilities.

Solutions have been proposed to perform a more accurate assessment of the risk of compro-

mise based on attack graphs. In [36], the solution consists in listing all the attack paths present

in an attack graph and then assessing their probability of success. But this poses problems

when analyzing complex systems because the number of paths increases exponentially with the

network size. In [43], [46] and [47], the proposed solutions allow to evaluate the probability of

success of the attacker’s actions without having to list all the attack paths and by considering

the uncertainty of some information. However, the probability calculations performed in [46]

were proved to be inaccurate and those performed in [47] are inadequate for large systems.

The use of Bayesian networks, such as those used in [58] and [64], allow to calculate the

probabilities of success of the attacker’s malicious actions. Nevertheless, the calculations per-

formed are not adapted to complex systems, except by performing approximate calculations

like those presented in [54].

Petri nets can be used to represent the attack paths and approximate the success proba-

bilities as the solution proposed in paper [75]. Moreover, Petri nets can be used to model the

uncertainty associated with some information.

Epidemiological models and complex network theory are suitable for risk analysis in large

systems. However, these models are generally used respectively to represent the propagation of a

single type of attack [78], [81] and to model the impact of the unavailability of some components

on the proper functioning of the system [85], [86]. More work should be done to verify if these

models can be adapted to model other types of impact such as loss of confidentiality or integrity

of a component. Moreover, the complex network theory is a purely deterministic model and

does not allow to model the uncertainty about the information related to the system.

This literature review has highlighted the most relevant solutions to analyze the security of

complex systems. We observe a clear dominance of solutions based on the modeling of attack

paths. Indeed, these models allow to represent very precisely the ways in which a malicious

81 Chapter I REVIEW OF THE LITERATURE

agent can compromise the system.

Although algorithms for generating attack graphs capable of handling large systems have

already been developed, the subsequent computations performed to calculate the risk of com-

promise are rarely adapted to complex systems. One may wonder if it is possible to propose a

risk analysis solution based on attack graphs capable of handling large systems, while consid-

ering the uncertainty that may exist about some information.

Furthermore, attack graphs are generated from a static description of the system and there-

fore cannot take into account changes that may occur during its life cycle, such as variations in

network topology. Thus, it should be investigated whether it is possible to generate an attack

graph from a system model that includes its dynamic behavior.

Finally, we could investigate if solutions exist to simplify the system modeling step required

for the generation of the attack graph, since this can quickly become cumbersome for systems

composed of several thousands of elements.

82 Chapter I REVIEW OF THE LITERATURE

Article
Impact
Assessment -
IA

System Modeling Complexity

C
as

ca
di

ng
E

ffe
ct

s
-C

E

M
ul

ti-
st

ep
A

tta
ck

s
-M

A

D
yn

am
ic

P
ro

pe
rt

ie
s

-D
P

S
to

ch
as

tic
P

ro
pe

rt
ie

s
-S

P

U
nc

er
ta

in
ty

-U
N

Modeling Com-
plexity - MC

Risk Assessment
Complexity - RAC

Multi-step attack modeling

Attack graph generation

[24] IA > 4 U U N N N MC ≤ 100 RAC ≤ 100

[25] IA > 4 U U N L N MC ≤ 100 RAC ≤ 100

[26], [28],
[29], [89]

IA > 4 U U N N N MC > 1000 RAC > 1000

[31], [34],
[45]

IA > 4 U U N L N MC > 1000 RAC > 1000

[35] IA > 4 U U N N N MC > 1000 RAC > 1000

Attack graph based risk assessment

[36] IA > 4 U U N L N MC > 1000 100 < RAC < 1000

[41] IA > 4 U U N N N MC > 1000 100 < RAC < 1000

[43] IA > 4 U U N U L MC > 1000 RAC > 1000

[46] IA > 4 U U N L L MC > 1000 RAC > 1000

[47] IA > 4 U U N U L MC > 1000 RAC ≤ 100

Bayesian Network

[58] IA > 4 U U N U L MC ≤ 100 RAC ≤ 100

[64] IA > 4 U U L U L MC > 1000 RAC ≤ 100

83 Chapter I REVIEW OF THE LITERATURE

Petri net

[74] IA > 4 U U N N N MC > 1000 RAC ≤ 100

[75] IA > 4 U U N U L MC > 1000 RAC > 1000

Epidemiological models

[78] IA≤ 1 L L L N N MC > 1000 RAC > 1000

[81] IA≤ 1 U U L U L MC > 1000 RAC > 1000

Complex network theory

[85] IA≤ 1 L L L N N MC > 1000 RAC > 1000

[86] IA≤ 1 L L L N N MC > 1000 RAC > 1000

State-based models

[42] IA > 4 U U U N N MC ≤ 100 RAC ≤ 100

Table 11: Evaluation of the most relevant articles

84 Chapter I REVIEW OF THE LITERATURE

I.8 Conclusion

In this literature review, we have defined several metrics in order to evaluate the relevance

of the different solutions in solving our research problem. We were able to highlight that

solutions based on the modeling of attack paths were the most adapted to assess the security

in complex systems. We then identified some limitations to the current solutions that allowed

us to formulate several research questions. In the following chapter, we will present the work

done during this thesis to answer the research questions previously defined.

Chapter II

Dynamic security assessment of

complex systems

86 Chapter II DYNAMIC SECURITY ASSESSMENT OF COMPLEX SYSTEMS

II.1 Introduction

The literature review conducted in the previous section has identified several limitations to

current risk analysis solutions used in complex systems. The objective of this Ph.D thesis is to

propose a solution allowing to remove all the obstacles that we identified, which are:

1. model the attack paths from a system model including its dynamic properties such as

network topology changes. The generation of the attack graph must be achievable in a

reasonable time even for systems composed of several thousands elements.

2. assess the risk of the system being compromised by a malicious actor from the attack graph

previously constructed. This evaluation must take into account the difficulty of the actions

performed by the attacker as well as the uncertainty about the real state of the system

and the real capabilities of the attacker. Moreover, this evaluation must be achievable in a

reasonable amount of time even when the size of the attack graph reaches several million

of nodes.

3. facilitate the system modeling step required to build the attack graph.

To achieve these goals, we started by looking for a complex system from which we could

test our model. Unfortunately, we did not find any system architecture complex enough and

publicly available. So we decided to create our own dataset representing the architecture of an

IT system of a major organization. To ensure that our dataset is representative of a real IT

system, we validated our model by several domain experts. Then, after having developed our

solution theoretically, we implemented it in a tool called DAGSIM. This tool allowed us to test

our solution in real conditions by applying it to our dataset representing the IT network of a

major organization.

In the rest of this chapter, we will present our attack graph model based on a dynamic

representation of the system, as well as our method for assessing the risk of compromise. We

will also illustrate the tests that have been performed to ensure that our solution can be used

on complex systems.

87 Chapter II DYNAMIC SECURITY ASSESSMENT OF COMPLEX SYSTEMS

II.2 Presentation of the dynamic attack graph model

II.2.1 Presentation of the use case

We have created a use case to illustrate our risk analysis method based on dynamic attack

graphs. We have chosen to model a user who is regularly working from home in his company.

Indeed, this way of working has developed rapidly in recent years and we want to analyze the

impact of this practice on the security of the computer system. The system consists of a mobile

user station and a web server. A firewall restricts the access to the company’s computer system

and only users connected to the internal network can access the web server. An attacker has

already compromised the user’s home WiFi network. We aimed to model how this attacker

could access the company’s internal network and compromise the web server over a period

of three weeks. The user is on the company’s internal network the first week, then connects

to its home network the second week and returns to the internal network the third week. The

vulnerability CVE-2020-0796 is present on the SMB (Server Message Block) service of the

user workstation which is only accessible from the local network. This vulnerability allows the

attacker to execute code on the machine and gain remote control. A second vulnerability, the

CVE-2017-12617, is present on the server’s web service that is only accessible from the internal

network. This vulnerability allows the attacker to execute arbitrary code on the server. The

network is visible in Figure 48 and the characteristics of the vulnerabilities are summarized in

Table 12. The CVSS metrics presented in this table are then used to calculate the mean time

required to exploit them.

There are two attack paths in this use case: the first one allows the attacker to compromise

the user station when it is connected on the home WiFi network the second week. At this

moment, the SMB service is accessible because the attacker has already compromised the WiFi

network and therefore has access to the local network. Once the vulnerability on the SMB

service is exploited, the malicious actor is able to execute arbitrary code. A Meterpreter is then

used to obtain a remote access on the user station. A second attack path allows to execute

arbitrary code on the web server. Once the user’s computer is compromised, the attacker

can wait the third week for the user to connect to the company’s internal network again. At

this moment, the attacker has access to the web server from the compromised machine and

can exploit the vulnerability present on the web service. The particularity of this attack path

is that it requires the user station to move and change network. This use case illustrates

the importance of modeling the dynamic behavior of systems, as new attack paths can be

identified. We will see how a dynamic system can be modeled with a dynamic attack graph.

88 Chapter II DYNAMIC SECURITY ASSESSMENT OF COMPLEX SYSTEMS

CVE ID Description Attack
Complexity

(AC)

Privileges
Required

(PR)

User
Interaction

(UI)
CVE-2017-12617 Remote code execution

on Apache Tomcat
High (0.44) None (0.85) None (0.85)

CVE-2020-0796 Remote code execution
on SMBv3

Low (0.77) None (0.85) None (0.85)

Table 12: Characteristics of the vulnerabilities present in the remote working use case network

Figure 48: Remote working use case network

II.2.2 System modeling

To model the attack paths present in a system, we relied on the work done on logic-based

attack graphs [31]. As a reminder, the MulVAL framework was presented in the survey section

page 26. The properties of the system are represented with literals. A literal is a logical formula

that can take a Boolean value True or False, and it is composed of a predicate followed by its

parameters. A predicate represents a type of information such as the presence of a vulnerability

or a network connection. The parameters allow this information to be contextualized with

respect to the system being modeled. For example, the parameters of the predicate vulExists

indicate the name of the vulnerability and its impact on the system.

Definition 1 A literal L is defined as a predicate P applied to its parameters (x1, · · · ,xn) such

that L := P(x1, · · · ,xn). A literal set LS j is the set of literals formed with the same predicate Pj

such that L := Pj(x1, · · · ,xn).

For example the vulnerability CVE-2017-12617 present on the web service can be modeled

with the predicate vulExists followed by its parameters:

89 Chapter II DYNAMIC SECURITY ASSESSMENT OF COMPLEX SYSTEMS

vulExists(webServer, ’CVE-2017-12617’, httpd, remoteExploit, privEscalation)

This literal indicates that the vulnerability CVE-2017-12617 present on the httpd service

of the web server can be exploited remotely and allows an attacker to execute code with the

privileges of the service. Several predicates are predefined in the MulVAL framework. We

decided to define new predicates in our tool to model computer systems more accurately. The

complete list of the predicates are defined in Table 14 in the appendices.

To model the changes of states of the system, we assign time intervals IS = {I1, I2, · · · , Im}
to each literal. Each time interval Ii = (ti, t ′i , pi) assigned to a literal defines a time period

during which it is equal to the Boolean value True with probability pi. These literals are called

temporal literals.

Definition 2 A temporal literal L is defined as a predicate P applied to its parameters (x1, · · · ,xn)

and on a set of time intervals IS such that L := P(x1, · · · ,xn, IS). A temporal literal set LS j is

the set of temporal literals formed with the same predicate Pj such that L := Pj(x1, · · · ,xn).

These temporal literals are used to model network topology changes, time periods between

the discovery of a vulnerability and the application of a patch, as well as the wipe of a computer

component. The probabilities associated with the time intervals allow to model the uncertainty

that we may have about an information. For example, if we are not totally sure that the

vulnerability CVE-2017-12617 is present on the web server, we can set the probability p to

0.8.

Changes in the network connections of a computer device can be modeled with the temporal

literal vlanInterface. For example, in the home working use case, the network change of the

computer station during the three weeks can be modeled with the following two temporal

literals:

(1) vlanInterface(workstation, userLAN).[(2021-01-04 00:00:00, 2021-01-10 23:59:59, 1),

(2021-01-18 00:00:00, 2021-01-24 23:59:59, 1)]

(2) vlanInterface(workstation, homeNetwork).[(2021-01-11 00:00:00, 2021-01-17 23:59:59, 1)]

90 Chapter II DYNAMIC SECURITY ASSESSMENT OF COMPLEX SYSTEMS

The first literal indicates that the user’s computer is connected to the company network

from 2021-01-04 00:00:00 to 2021-01-10 23:59:59 with probability 1, from 2021-01-11 00:00:00

to 2021-01-17 23:59:59 with probability 0 and from 2021-01-18 00:00:00 to 2021-01-24 23:59:59

with probability 1. The second literal indicates that the user station is connected to the home

network from 2021-01-04 00:00:00 to 2021-01-10 23:59:59 with probability 0, from 2021-01-11

00:00:00 to 2021-01-17 23:59:59 with probability 1 and from 2021-01-18 00:00:00 to 2021-01-24

23:59:59 with probability 0.

The time between the publication of a vulnerability and the application of a patch can be

modeled with the temporal literal vulExists. For example in our use case, the vulnerability

CVE-2020-0796 was published on 2020-12-03 00:00:00 and a patch was applied on 2021-02-01

12:00:00. This information can be modeled with the following temporal literal:

vulExists(workstation, ’CVE-2020-0796’, smb, remoteExploit, privEscalation).[(2020-12-03

00:00:00, 2021-02-01 12:00:00, 1)]

This temporal literal indicates that the CVE-2020-0796 vulnerability is only present on the

SMB service of the user station from 2020-12-03 00:00:00 to 2021-02-01 12:00:00 with probability

1 and with probability 0 otherwise.

The wipe of a computer component has the consequence of cancelling the compromises

previously made by the attacker. This can be modeled with the temporal literals execCode,

availability, DDoS (Distributed Denial of Service) and confidentiality. For example in our use

case, it is possible to model the wipe of the computer with the following literals:

execCode(workstation, root).[(2021-01-22 00:00:00, 2021-01-22 23:59:59, 0)]

availability(workstation, smb).[(2021-01-22 00:00:00, 2021-01-22 23:59:59, 0)]

ddos(workstation, root).[(2021-01-22 00:00:00, 2021-01-22 23:59:59, 0)]

confidentiality(workstation data).[(2021-01-22 00:00:00, 2021-01-22 23:59:59, 0)]

These literals indicate that the workstation wipe started on 2021-01-22 at 00:00:00 and ended

on 2021-01-22 at 23:59:59. The wipe of a component can be decided by the security teams in

case for example a compromise has been detected.

91 Chapter II DYNAMIC SECURITY ASSESSMENT OF COMPLEX SYSTEMS

The interactions that take place in the system are modeled with Horn clauses [90] and are

written in the Datalog environment [32]. A Horn clause is a logical formula written as a rule.

They allow to model reasoning rules and to deduce new information about the system from

already known facts.

Definition 3 A reasoning rule R is a relation that allows to deduce a new literal LR from the

product of literal sets LS = LS1×·· ·×LSn such that R : LS 7→ {LR,NULL}.

It is possible to model the exploitation of a vulnerability by an attacker with the following

reasoning rule:

execCode(H, Perm) :-

vulExists(H, , Software, remoteExploit, privEscalation),

networkServiceInfo(H, , Software, Protocol, Port, Perm),

netAccess(H, Protocol, Port)

This reasoning rule indicates that if a remotely exploitable elevation of privilege vulnerability

is present on a service of a computer component, that this service is running and communicating

on the network, and that the attacker has access to the listening port with the right protocol,

then he can exploit it and execute code on the machine with the service rights. In other words,

if the literals vulExists, networkServiceInfo and netAccess exist in the system with the correct

parameters, then a new literal execCode is created. In the reasoning rules, the parameters

that start with a capital letter are variables that allow to logically link the different literals.

For example the variable Software must contain the same value in the literal vulExists and

networkServiceInfo for the literal execCode to be created. The presence of an underscore means

that any value can be present in this literal parameter. The list of reasoning rules predefined

in MulVAL can be found in [31]. We have defined other rules to model new interactions in the

computer system and they are presented in Table 15 given in the Appendix.

We assign clocks to the reasoning rules in order to model the time required for the realization

of interactions in the system. A clock indicates the time during which the set of preconditions

must remain True in a reasoning rule for the new literal to be created. We call these rules

temporal reasoning rules. In the remote working use case, to model the time te required to

exploit the vulnerability CVE-2020-0796, we associate a clock h = te to the reasoning rule

execCode when the parameter vulID of the literal VulExists is equal to ’CVE-2020-0796’. But

92 Chapter II DYNAMIC SECURITY ASSESSMENT OF COMPLEX SYSTEMS

the changes of states of the system can change the time required to perform some interactions

in the system. For example, the difficulty of exploiting the vulnerability CVE-2020-0796 was

initially considered important because there was no publicly available exploit code. But on

June 29, 2020, a PoC (Proof of Concept) was published on a GitHub, making the attacker’s job

much easier. To model these changes, several clocks can be defined on different time intervals.

For example, for the exploitation of the vulnerability CVE-2020-0796, a first clock h1 can be

assigned from March 12, 2020, date of its publication, to June 29, 2020, date of the POC

publication. Then a second clock h2 from June 29, 2020 until today, with h1 >> h2. More

formally, a clock set CS = {C1, · · · ,Cn} is assigned to a reasoning rule R, with Ci = (ti, t ′i ,colcki)

a clock of duration clocki valid from time ti to time t ′i .

Definition 4 A temporal reasoning rule R is a relation that allows to deduce a new temporal

literal LR from the product of a temporal literal set LS and a clock set CS such that R : LS×CS 7→
{LR,NULL}, and R(L1, · · · ,Ln,clocki) = LR⇒ clocki ≤ 0 | (ti, t ′i ,clocki) ∈CS.

The value clocki of a clock Ci ∈CS may in some cases not be known exactly. For example,

the time it takes for the attacker to exploit a vulnerability depends on a large number of factors

unknown to the defender, such as the level of the attacker or the resources deployed. To take

this uncertainty into consideration, we have decided to represent the value of a clock with a

probability distribution.

In [91], the authors look for the probability distribution that best fits the time spent by

an attacker to compromise a system. This analysis is based on intrusions detected on more

than 260,000 computer systems. The lognormal distribution with parameters µ = 4.005 and

σ = 1.247 is the one that best fits the observed data. We therefore used this probability

distribution to model the time required for an attacker to exploit a vulnerability in the attack

graph.

We propose a solution to compute the parameters µ and σ of the log normal distribution of

a clock associated with a vulnerability exploitation. First, we compute a score that measures

the difficulty of exploiting the vulnerability from the CVSS metrics. The CVSS metrics of a

vulnerability can be found in databases like NVD. There are two versions of the CVSS score.

In the case of version 2, we use the metrics Access Complexity and Authentication to compute

our normalized exploitation score exploit score ∈ [0,1] with the following equation:

93 Chapter II DYNAMIC SECURITY ASSESSMENT OF COMPLEX SYSTEMS

exploit score =
−1

0.34234
× x+(1+

0.1575
0.34234

)

with x = access complexity×authentication
(47)

The metric Access Complexity considers the privileges required to exploit the vulnerability,

the additional actions to be performed or the interactions required with the victim. The metric

Authentication indicates whether the attacker must authenticate to exploit the vulnerability.

We do not consider the metric Access Vector which indicates the way of access to the vulnerable

service, because this information is encoded in the structure of the attack graph. In version 3 of

the CVSS score, we use the metrics Attack Complexity, Privileges Required, and User Interaction

to calculate our normalized exploitation score exploit score ∈ [0,1] with the following equation:

exploit score =
−1

0.482669
× x+(1+

0.073656
0.482669

)

with x = attack complexity× privileges required×user interaction
(48)

The metric Attack Complexity takes into account the conditions required to exploit the

vulnerability that are not under the control of the attacker. The metric Privileges Required

measures the level of privileges required by the attacker. The metric User Interaction indicates

whether a user must perform some actions for the attacker to exploit the vulnerability. As

with version 2 of the CVSS score, we do not consider the metric Attack Vector because this

information is contained in the structure of the attack graph. The choice between the equation

(47) and (48) depends on the availability of the version of the CVSS score associated with the

vulnerability. The equation (47) should only be used if version 3 of CVSS score is unavailable.

The objective is now to calculate the mean time M required for an attacker to exploit a

vulnerability from its previously calculated exploitation score exploit score. To do this, we have

to make several assumptions: (1) the time required to exploit a vulnerability is at least 3,600

seconds for an easily exploitable vulnerability, and at most 2,678,400 seconds or 1 month for a

vulnerability that is very difficult to exploit. (2) The mean exploitation time of a vulnerability

evolves linearly with the exploitation score exploit score. We can now calculate the mean

exploitation time of a vulnerability from the exploitation score exploit score with equation

(49).

94 Chapter II DYNAMIC SECURITY ASSESSMENT OF COMPLEX SYSTEMS

M = 2678400× exploit score+3600 (49)

Now that we have calculated the mean exploitation time of a vulnerability, we need to

define a value for the standard deviation SD in order to model the uncertainty. As a reminder,

in [91], the time required to compromise a system is modeled by a lognormal distribution of

parameters µ = 4.005 and σ = 1.247. From these parameters, we calculated with equation 50

and 51 the mean value M of the data as well as the standard deviation SD, respectively equal

to 119 and 231. As a reminder, the variance is the square of the standard deviation. The

standard deviation is equal to 200% of the mean value of the observed data. We therefore used

this percentage of uncertainty to calculate the standard deviation associated with the mean

exploitation time of a vulnerability.

M = exp(µ +
σ2

2
) (50)

V = (exp(σ2)−1)× exp(2×µ +σ
2) (51)

It is possible to calculate the parameters µ and σ of the log normal distribution with the

mean and variance of the random variable with equations (52) and (53). The calculations

that led to these equations are detailed in demonstration (1). In our tool, we automated the

calculation of the parameters µ and σ from the data stored in the NVD database.

σ
2 = ln(

V
exp(2× ln(M))

+1) (52)

µ =
ln(V

exp(σ2)−1)−σ2

2
(53)

We also propose to model the learning of the attacker during its infiltration in the system.

To do this we decided to reduce the mean time to exploit a vulnerability by 40% if the attacker

has already exploited it in the past. For example, the parameters of the normal log distribution

representing the exploitation time of the vulnerability CVE-2020-0796 are initially µ = 7.38397
and σ = 1.26864. But if the attacker exploits this vulnerability a second time, the parameters

are recalculated taking into account the 40% decrease of the mean exploitation time and we

obtain µ = 6.4308 and σ = 1.57928.

95 Chapter II DYNAMIC SECURITY ASSESSMENT OF COMPLEX SYSTEMS

The nodes in the dynamic attack graph representing a literal deduced by a reasoning rule

can have a memory. This memory indicates that if the literal is true at time t, then it will

remain True for all times t ′ > t. This makes it possible to model phenomena that persist in

time even when the initial preconditions are no longer satisfied. For example, we have assigned

a memory to the literal execCode because when an attacker manages to meet the necessary

conditions to exploit a vulnerability and execute code on a machine, this code continues to run

even if the vulnerability is patched. The only way for the code to stop running is for security

teams to detect the attack and decide to stop the execution of the malicious program.

96 Chapter II DYNAMIC SECURITY ASSESSMENT OF COMPLEX SYSTEMS

Demonstration 1

Let V be the variance of a log normal distribution [92]

(exp(σ2)−1)× exp(2×µ +σ
2) =V

=⇒ exp(2×µ +σ
2) =

V
exp(σ2)−1

=⇒ 2×µ +σ
2 = ln(

V
exp(σ2)−1

)

=⇒ 2×µ = ln(
V

exp(σ2)−1
)−σ

2

=⇒ µ =
ln(V

exp(σ2)−1)−σ2

2

Let M be the mean of a log normal distribution [92]

exp(µ +
σ2

2
) = M

=⇒ µ +
σ2

2
= ln(M)

=⇒
ln(V

exp(σ2)−1)−σ2

2
+

σ2

2
= ln(M)

=⇒ ln(
V

exp(σ2)−1
)−σ

2 +σ
2 = 2× ln(M)

=⇒ ln(
V

exp(σ2)−1
) = 2× ln(M)

=⇒ V
exp(σ2)−1

= exp(2× ln(M))

=⇒ exp(σ2)−1 =
V

exp(2× ln(M))

=⇒ exp(σ2) =
V

exp(2× ln(M))
+1

=⇒ σ
2 = ln(

V
exp(2× ln(M))

+1)

(54)

Definition 5 A literal L with a memory is defined as Eval(L, ti) = T RUE =⇒ ∀ j ∈ [i+1,+∞],

Eval(L, t j) = T RUE.

97 Chapter II DYNAMIC SECURITY ASSESSMENT OF COMPLEX SYSTEMS

Now that the system modeling step has been explained, the construction of the dynamic

attack graph will be detailed in the next section.

II.2.3 Attack graph generation

We rely on the work done in paper [31] to build our dynamic attack graph. This framework

uses the Prolog system XSB to recursively derive new literals from the initial literals and

reasoning rules. This succession of deduction of new literals is represented in the form of a graph

which is called logic-based attack graph. The initial literals are represented by rectangles and are

the root nodes of the graph. The reasoning rules are represented by ovals. Their parent nodes

are literals, initial or inferred, and their child node is an inferred literal. The inferred literals are

represented with diamonds. The advantage of this attack graph construction solution is that it

allows to model the attack paths present in any type of system. Indeed, this framework offers

the possibility to define literals and reasoning rules adapted to the properties of the studied

system. The construction of the dynamic attack graph works as follows:

1. our algorithm retrieves the temporal literals and temporal reasoning rules that the user

has defined to model the system.

2. to generate the attack graph with the MulVAL framework, we must temporarily remove

the time intervals associated with the literals and the clocks associated with the reasoning

rules.

3. the MulVAL framework is then used to generate an attack graph. Therefore, the resulting

graph contains more attack paths than actually exist in the system since we temporarily

consider that the literals are true all the time and that the reasoning rules are instanta-

neous.

4. the time intervals are then attributed again to the literals present in the graph, while the

clocks are attributed again to the reasoning rules.

Figure 49 represents the dynamic attack graph that was constructed to represent the attack

paths present in the remote working use case. The green rectangles represent the initial literals

that are true all the time. The gradient rectangles indicate an evolution of the probability of

the literal being true. The white ovals represent the instantaneous reasoning rules with a clock

set to 0. The gradient ovals indicate that a delay is required to trigger the reasoning rule. The

two colored rectangles in gradients correspond to the two literals VlanInterface which represent

the connection changes of the user’s computer. The two colored ovals in gradients correspond

98 Chapter II DYNAMIC SECURITY ASSESSMENT OF COMPLEX SYSTEMS

to the two vulnerability exploits that the attacker can perform in the system. The clocks

associated with these nodes follow the log-normal distribution visible on the figure. However,

a dynamic attack graph does not allow easy visualization of the attack paths because of the

temporal characteristics associated with the nodes. In the next section, we will show how this

graph can be used to approximate the attacker’s success probabilities.

99 Chapter II DYNAMIC SECURITY ASSESSMENT OF COMPLEX SYSTEMS

Figure 49: Dynamic attack graph for the remote working use case

100 Chapter II DYNAMIC SECURITY ASSESSMENT OF COMPLEX SYSTEMS

II.3 Assessment of the risk of compromise based on

dynamic attack graphs

II.3.1 Simulation of an attack

Our objective is to measure the risk to compromise the system from the dynamic attack

graph built previously. To do this, we compute for each node of the graph its probability of

being True as a function of time. For the nodes representing a literal, the value TRUE means

that the property represented by the literal is true. For the nodes representing a reasoning

rule, the value TRUE means that the reasoning rule is activated. We aim to approximate this

probability by performing several simulations of an attacker progressing through the system.

Each simulation allows to explore all the attack paths present in the graph. We have chosen

to use an approximate solution because it allows to manage efficiently large systems as we will

see in the next section. The different parameters required for this simulation are a start date

ts, an end date te and a progress step τ . The simulation step τ allows to define the frequency

with which the attacker’s progress is calculated. A smaller step value will result in a more

accurate simulation but will also require more time to complete. The start and end date of the

simulation depends on how long the attacker is willing to spend to compromise the system. An

opportunistic attack can last several days while a cybercriminal group or a state is able to stay

several months or even years. The chosen dates will also define the existing vulnerabilities at

that time as well as potential releases of exploit code. We will now see how these simulations

allow to approximate the probability for each node of the attack graph to be True as a function

of time.

A matrix M2 = (ai, j), i ∈ I, j ∈ J is defined such that I = {t ∈ N|(t− ts) mod τ = 0}, J = {v ∈
N|1 ≤ v ≤ m} with m the size of the graph and ai j ∈ {0,1}. The rows of the matrix represent

the different time slices ti while the columns represent the nodes of the attack graph v j. An

element of the matrix ai j is equal to 1 if the node v j is True at time ti and 0 otherwise. The aim

of the simulation is to fill this matrix by traversing all the nodes v j of the graph for each time

slice ti. In our simulation, we modeled an attacker with unlimited budget and human resources.

There are several reasons for this choice: (1) we are sure to explore all the attack paths present

in the graph and obtain a complete analysis of the system security. (2) The unlimited number

of human resources allows to parallelize the exploration of the different attack paths during the

simulation and significantly increases the performance of our algorithm. We therefore perform

a worst-case security analysis.

101 Chapter II DYNAMIC SECURITY ASSESSMENT OF COMPLEX SYSTEMS

Our algorithm works as follows:

1. an initialization phase at time t0 = ts allows to assign a Boolean value to all the literals

that have a probability pn such that (tn, t ′n, pn) ∈ In, In ∈ IS|L j := p(x1, ·,xn, IS). A Boolean

value True is assigned to the literal L j with probability pn and a value False with proba-

bility qn = 1− pn. The clocks associated with the reasoning rules whose value is defined

by a probability distribution are also initialized. To do this, we sample the probability

distribution and assign the resulting value to the clock.

2. the attack graph is then traversed with a modified Depth-First Search (DFS) algorithm

for each time slice ti. A first loop in the algorithm goes through all the nodes that have

been previously initialized. For each of these nodes, we look for the child nodes that

can be calculated. This verification as well as the calculation of the node is done with the

Algorithm 2 that we will detail further in this section. This algorithm recursively traverses

the nodes of the attack graph to assign them a Boolean value True or False.

3. once the attack graph is traversed for a time slice ti, the Boolean values assigned to all

nodes v j are written in row i of the matrix M2 such that ai j = 1↔ v j = True, and 0

otherwise. Once the graph is traversed for each time slice ti, the matrix M2 is completed.

102 Chapter II DYNAMIC SECURITY ASSESSMENT OF COMPLEX SYSTEMS

Algorithm 2 Function ComputeNode

Input: v ∈ NODES, t ∈ T
1: if (v, ti, t ′i ,booli) ∈ Ii | t ∈ [ti, t ′i] then
2: if booli = true then
3: T RUE = T RUE ∪ (v, t)
4: else
5: FALSE = FALSE ∪ (v, t)
6: end if
7: else if (v, t− τ) ∈ (T RUE ∩STAT E) then
8: T RUE = T RUE ∪ (v, t)
9: else if v ∈ LIT ERALS then

10: if ∃(p,v) ∈ E | (p, t) ∈ T RUE then
11: T RUE = T RUE ∪ (v, t)
12: else
13: FALSE = FALSE ∪ (v, t)
14: end if
15: else if v ∈ RULES then
16: if ∀(p,v) ∈ E | (p, t) ∈ T RUE then
17: clocki = clocki−∆t | (v,di,d′i ,clocki) ∈Ci∧ t ∈ [di,d′i]
18: if clocki ≤ 0 then
19: T RUE = T RUE ∪ (v, t)
20: REINIT(clocki)
21: else
22: FALSE = FALSE ∪ (v, t)
23: end if
24: else
25: T RUE = T RUE ∪ (v, t)
26: end if
27: else
28: FALSE = FALSE ∪ (v, t)
29: end if
30: COMPUT ED =COMPUT ED∪ (v, t)
31: for (v,child) ∈ E do
32: if (child, t) /∈COMPUT ED∧∀(p,child) ∈ E | (p, t) ∈ T RUE then
33: ComputeNode((child, t))
34: else if child ∈ LIT ERALS then
35: if (child, t) /∈COMPUT ED∧∃(p,child) ∈ E | (p, t) ∈ T RUE then
36: ComputeNode((child, t))
37: end if
38: end if
39: end for

103 Chapter II DYNAMIC SECURITY ASSESSMENT OF COMPLEX SYSTEMS

Algorithm 2 recursively traverses the nodes of the attack graph for each time slice ti to assign
a Boolean value True or False. The algorithm works as follows:

1. the first line allows to check if the node v j given in parameter is a literal with a Boolean

value that has been assigned during the initialization phase. If so, the value is retained.

2. line 7 checks whether the node v j is a literal with a memory and with a Boolean value

True assigned at time ti−1. In this case, a Boolean value True is assigned to the node.

3. line 9 checks whether the node v j is a literal. If there is a parent node of v j with a Boolean

value True assigned at time ti, then a Boolean value True is assigned to node v j. Otherwise,

a Boolean value False is assigned.

4. line 15 checks if the node v j is a reasoning rule. If all parent nodes of v j have a Boolean

value True assigned at time ti, then the clock associated with node v j is decremented by

the duration of one simulation step τ . If the final value of this clock is less than 0, then a

Boolean value True is assigned to node v j and the clock value is reset. If the value of the

clock remains greater than 0 or if one of the parent nodes of v j is not True at time ti, then
a Boolean value False is assigned to node v j.

5. line 31 allows to traverse all the child nodes of node v j to check if they can be recursively

traversed by the Algorithm 2.

6. line 32 checks if the child node has not yet been traversed and if all its parent nodes are

True at time ti. In this case, Algorithm 2 is called recursively for this node.

7. line 34 checks if the child node is a literal. If this node has not yet been traversed and at

least one of its parent nodes is True, then Algorithm 2 is called recursively for this child

node.

Let us take as an example the traversal of the attack graph in the remote working use case

at time t169. The result of the simulation is visible on the figure 50. This time slice corresponds

to the moment when the user connects its computer to the home network that has already been

compromised by the attacker. In this use case, the simulation starts on 2021-01-04 00:00:00 and

ends on 2021-04-24 23:59:59 with a step τ of 3600 seconds. The nodes which have been assigned

a Boolean value during the initialization phase are progressively traversed with Algorithm 2.

The graph traversal works as follows:

1. node v1 is the first node to be traversed. A Boolean value True was assigned to it at time

t169 during the initialization phase and this value is therefore retained. Its only child node,

104 Chapter II DYNAMIC SECURITY ASSESSMENT OF COMPLEX SYSTEMS

node v3, cannot yet be traversed because it represents a reasoning rule and all its parents

have not yet been traversed.

2. node v2 is the next node to be traversed. A Boolean value True was assigned to it at time

t169 during the initialization phase and this value is therefore retained. Its only child node,

node v3, can this time be traversed because all its parents have been traversed and are all

True at time t169. Algorithm 2 is therefore called recursively to traverse this node.

3. the node v3 represents a reasoning rule and all its parent nodes are True at time t169.

The clock associated with this node is equal to 0 and the rule can therefore be activated

immediately. A Boolean value True is assigned to node v3. Its only child node, node v4,

has not yet been traversed. This node represents a literal and at least one of its parents

is True, so Algorithm 2 can be called recursively.

4. a Boolean value True is assigned to node v4. Its only child node, node v7, cannot yet be

traversed because it is a reasoning rule and all its parents have not yet been traversed.

5. node v5 is the next node to be traversed. A Boolean value True was assigned to it at time

t169 during the initialization phase and this value is therefore retained. Its only child node,

node v7, still cannot be traversed because all its parent nodes have not yet been traversed.

6. node v6 is the next node to be traversed. A Boolean value True was assigned to it at time

t169 during the initialization phase and this value is therefore retained. Its only child node,

node v7, can be traversed this time because all its parent nodes have been traversed.

7. Algorithm 2 is thus called recursively to deal with node v7. The node v7 represents a

reasoning rule whose clock value is associated with a probability distribution. During the

initialization phase, this distribution was used to sample a value and assign it to the clock.

In this example, the clock is equal to 5,000 seconds. All parent nodes of node v7 being

True, the clock is decremented by the duration of one simulation step and is finally equal

to 1,400 seconds. The value of the clock is not less than 0 and a Boolean value False is

therefore assigned to node v7. Therefore its only child node, node v8, cannot be traversed.

8. Algorithm 2 will continue to be called for each node that has been assigned a Boolean

value during the initialization phase, but without activating new reasoning rules.

9. finally, a Boolean value False is assigned to all nodes of the attack graph that have not

been traversed at time t169.

In the next section, we show how the matrix M2 allows to evaluate the risk in a system.

105 Chapter II DYNAMIC SECURITY ASSESSMENT OF COMPLEX SYSTEMS

Figure 50: Results of the simulation at time t169

II.3.2 Metric calculation

As a reminder, the matrix M2 = (ai j) contains the Boolean values of all the nodes v j of

the attack graph for each time slice ti. The objective is to approximate the probability for

a node v j to be True during the time slice ti. Let Xv j,ti ∈ {True,False} be a random variable

representing the Boolean value assigned to a node v j during the time slice ti after the execution of

a simulation, such as Xv j,ti = ai j. After performing d simulations, we obtain a new tridimensional

matrix M3 = (ai jk),k ∈ K with K = {s ∈N|1≤ s≤ d}. An element of the matrix ai jk is equal to

1 if the node v j of the simulation sk is True during the time slice ti, and 0 otherwise. Let Sv j,ti

be the set of d random variables Xk
v j,ti obtained after the realization of all the simulations such

that Sv j,ti = {X1
v j,ti, · · · ,X

d
v j,ti}, with Xk

v j,ti = ai jk. It is possible to approximate the probability for

a node v j to be True during time slice ti from the matrix M3 with the following equation:

P(Xv j,ti) = Sv j,ti =
1
d
×|ST

v j,ti| ,with ST
v j,ti = {X

k
v j,ti|X

k
v j,ti = True} (55)

A new matrix R2 = (ri j) can then be defined such that ri j = P(Xv j,ti). This metric allows

to graphically represent the evolution of the probability that each node of the attack graph is

106 Chapter II DYNAMIC SECURITY ASSESSMENT OF COMPLEX SYSTEMS

true.

In the remote working use case, we chose to perform 1,000 simulations to get an accurate

result. Figure 51a represents the evolution of the compromise probability of the user station.

As illustrated, the attacker does not manage to compromise the user workstation the first

week because he does not have access to the company’s internal network. A rapid increase in

probability is visible at the beginning of the second week when the user station is connected

to the home network. At this point, the attacker who has already compromised this network,

accesses the vulnerable SMB service on the computer and easily exploits the vulnerability. The

exploitation of this vulnerability is greatly simplified thanks to the release of an exploit code,

which allows the attacker to execute malicious code on the user’s machine. This code will

continue to run until the end of the simulation because the attack has not been detected by the

security teams. Figure 51b illustrates the evolution of the compromise probability of the web

server. As we can see, the probability was zero during the first two weeks. Indeed, the attacker

only succeed to compromise the user workstation at the beginning of the second week and

has to wait until the third week for the machine to be reconnected to the company’s internal

network. At this moment, the attacker has access to the web service from the user workstation

over which he has taken remote control. The vulnerability present on this service is difficult to

exploit, so the attacker has only an 50% probability of having compromised the web server by

the end of the third week.

(a) Evolution of the workstation compromise probability (b) Evolution of the web server compromise probability

Figure 51: Evolution of the compromise probability of the system components when no patch is applied

We performed other simulations from the remote working use case by changing some param-

eters. We modeled the workstation wipe between 2021-01-02 00:00:00 and 2021-01-22 23:59:59,

after the security teams has detected the attack. Figure 52a represents the evolution of the

compromise probability of the user station. We can see that the probability of compromise of

107 Chapter II DYNAMIC SECURITY ASSESSMENT OF COMPLEX SYSTEMS

the user station drops to zero on 2021-01-02 00:00:00 and does not increase anymore because

the attacker no longer has access to the vulnerable SMB service. Figure 51b illustrates the

evolution of the compromise probability of the web server. We can see that the workstation

wipe reduces the probability of web server compromise to 35%.

(a) Evolution of the workstation compromise probability (b) Evolution of the web server compromise probability

Figure 52: Evolution of the compromise probability of the system components when the user station is wiped
in the third week

We modeled the patch of the vulnerability present on the web service. Figure 53a represents

the evolution of the compromise probability of the user station. We see that the application

of the patch on the web server has no influence on this probability. Figure 53b illustrates the

evolution of the compromise probability of the web server. We can see that the attacker is

no longer able to compromise the web server. When the vulnerability present on the Remote

Desktop Protocol (RDP) service of the user station is patched, the attacker can no longer

compromise anything because he cannot use the user station to access the company’s internal

network.

108 Chapter II DYNAMIC SECURITY ASSESSMENT OF COMPLEX SYSTEMS

(a) Evolution of the workstation compromise probability (b) Evolution of the web server compromise probability

Figure 53: Evolution of the compromise probability of the system components when the vulnerability present
on the web service is patched

On the other hand, we performed simulations where the vulnerabilities are patched during

the time period studied. We modeled the patch of the vulnerability present on the web service

on 2021-01-23 00:00:00. Figure 54a represents the evolution of the compromise probability

of the user station. We note that the patch has no impact on this probability. Figure 54b

illustrates the evolution of the compromise probability of the web server. The probability has

stopped increasing on 2021-01-23 00:00:00 and stabilized at 40%.

(a) Evolution of the workstation compromise probability (b) Evolution of the web server compromise probability

Figure 54: Evolution of the compromise probability of the system components when the vulnerability on the
web service is patched on 2021-01-23 00:00:00

We modeled the patch of the vulnerability present on the SMB service of the workstation on

2021-01-13 00:00:00. Figure 55a represents the evolution of the compromise probability of the

user station. We note that the patch has no impact on this probability because the vulnerability

109 Chapter II DYNAMIC SECURITY ASSESSMENT OF COMPLEX SYSTEMS

is patched too late while it is very easily exploitable. Therefore, there is also no difference in

the probability of web server compromise, as we can see in Figure 55b.

(a) Evolution of the workstation compromise probability (b) Evolution of the web server compromise probability

Figure 55: Evolution of the compromise probability of the system components when the SMB vulnerability is
patched on 2021-01-13 00:00:00

A second metric, noted TTC (Time To Compromise), has been defined to measure the time

required for a node of the attack graph to be True with a probability higher than a threshold

value ps defined by the user. This time is calculated with equation (56) from the matrix R2

containing the results of the simulation. TTC values can be represented with a color gradient

to display a heatmap of the system showing the components most impacted by the attack.

T TC(v j) =
1

is× τ
, such as ∄ri j ≥ ps , with i < is and ris+1 j > ps (56)

A third metric allows to measure the impact of a configuration change in the system by

comparing the probabilities of compromise of the system components between two simulations.

For example, Figure 56a and 56b show the comparison of the probability of compromise of the

user workstation and the web server, between the simulation without patching and the one with

the wipe of the workstation on 2021-01-02 00:00:00. In Figure 56a, we can see that there is no

difference in the probability of compromise the workstation before the station is wiped. After

the wipe of the workstation, the difference is 100% until the end of the third week. In Figure

56b, we can also see that there is no difference in the probability of compromise the web server

before the station is wiped. After the wipe of the workstation, the difference gradually increases

until the end of the third week, reaching 18%. This metric can also be used to measure the

impact of one or a set of vulnerabilities. To do this, two simulations are compared, one with

the vulnerabilities and the other with the patches.

110 Chapter II DYNAMIC SECURITY ASSESSMENT OF COMPLEX SYSTEMS

(a) Evolution of the workstation compromise probability (b) Evolution of the web server compromise probability

Figure 56: Evolution of the difference in probability between the simulation without patch and the simulation
with the user station wipe

In the next section, we will see the performance of our solution by evaluating the complexity

of the algorithms used and by performing several benchmarks.

Chapter III

Performance evaluation of the

solution

112 Chapter III PERFORMANCE EVALUATION OF THE SOLUTION

III.1 Evaluation of the algorithms complexity

III.1.1 Definition of variables

The proposed solution should be able to analyze the security of large systems composed of

several thousands of components. It is therefore essential that the worst-case time complexity of

the algorithms used is adapted to this context. But first, let’s look at the difficulty of modeling

the system. Indeed, one of the first difficulties we encounter when we are interested in the

analysis of the security of complex systems is to be able to model them. In our solution, the

modeling step consists in writing a set of temporal literals and reasoning rules. This step can

quickly become difficult when thousands of literals must be written to represent the properties

of all the components of the system. Therefore, we have set up a system of variables that allows

us to simplify the writing of these literals.

A variable represents a type of object in the system and can take several values. In our model,

we have defined the variable VAR ADDC which represents the set of domain controllers present

in the system such that VAR ADDC = [’ADDC-PA’, ’ADDC-ST’, ’ADDC-MA’, ’ADDC-LY’,

’ADDC-BR’]. A variable must start with an uppercase letter to differentiate it from a con-

stant. These variables can then be used in the parameters of a literal. For example, the literal

vulExists(VAR-ADDC, ’CVE-2022-26809’, rpc, remoteExploit, privEscalation) indicates that

the vulnerability CVE-2022-26809 is present on the Remote Procedure Call (RPC) service of

all domain controllers in the system. Several variables can be used in the same literal. In

this case, a Cartesian product is realized between the sets of values represented by the vari-

ables. For example the literal vulExists(VAR-ADDC, VAR-VULN-RPC, rpc, remoteExploit,

privEscalation), with VAR-VULN-RPC = [’CVE-2022-26809’, ’CVE-2021-27091’] indicates

that both vulnerabilities CVE-2022-26809 and CVE-2021-27091 are present on the RPC ser-

vice of all domain controllers in the system. The literals containing variables are then replaced

by literals containing the value of the variables in parameter, before being used by the MulVAL

framework.

III.1.2 Analysis of the complexity of the attack graph generation algorithm

The complexity of the MulVAL attack graph generation algorithm has already been studied

in [34]. The complexity of the evaluation of a Datalog program in XSB depends essentially on

the evaluation of the reasoning rules. This evaluation is performed in two steps. Let’s take the

113 Chapter III PERFORMANCE EVALUATION OF THE SOLUTION

following rule as an example.

netAccess(Attacker, H2, Protocol, Port) :-

execCode(Attacker, H1, User),

hacl(H1, H2, Protocol, Port)

In this example, XSB first lists all the machines on which the attacker can execute code,

then lists all the accesses allowed between two machines on the network with the port and

protocol specified in the rule. Once this step is done, XSB will look for the literals that match

each other and that allow to infer the deduced literal netAccess. This step is however well

managed in XSB with the use of hash tables and can therefore be ignored in the evaluation of

the complexity. Therefore, the evaluation of the complexity of a Datalog program in XSB can

be simplified to the first step which consists in computing all the literals that correspond to

the parameters of the reasoning rule.

In the default rules defined in the MulVAL framework, it is the reasoning rule presented

above that corresponds to the worst case. Indeed, to check the literals corresponding to the

parameter hacl(H1, H2, Protocol, Port), it is necessary to list all the possible connections

between two machines of the system, which makes in the worst case (n−1)2 connections, with

n the number of machines present on the network. We were careful when creating our reasoning

rules to avoid increasing the complexity of the Datalog program by not creating a rule with

more than two different machines in a rule’s parameter literal.

If we add the complexity of the attack graph generation algorithm, the overall worst-case

complexity of MulVAL algorithm is O(N2× log(N)), with N the number of hosts, according to

[34]. Once the attack graph is generated with MulVAl, dynamic properties such as clocks and

time intervals are added to each node. In our implementation, the graph is traversed a first

time to be loaded in memory and a second time to add the dynamic properties. The worst-case

time complexity of this step is therefore O(2×n), with n the size of the attack graph.

III.1.3 Optimization of the attack graph size

The size of the attack graph generated by MulVAL evolves in the worst case quadratically

with respect to the number of machines in the system. The size of the attack graph has a

significant impact on the performance of our solution when our attack simulation algorithm

must traverse it. We have therefore aimed to control the size of the attack graph generated by

114 Chapter III PERFORMANCE EVALUATION OF THE SOLUTION

MulVAL.

A large number of literals in an attack graph are not analyzed by security teams and are only

used as intermediate nodes. For example, the predicates execCode, availability, confidentiality

and ddos are used to measure the success of the attacker in compromising the system. But the

predicates netAccess and lanAccess have no interest for security teams and are only used to

describe intermediate steps in the construction of the attack graph.

We therefore looked for a way to reduce the size of the attack graph by removing some

intermediate nodes. When an intermediate node vi is deleted, the reconstruction of the attack

graph consists of deleting the parent node and the child nodes of vi, and then creating a new

reasoning rule for each path between a grandparent node of vi with the grandchild node of vi.

To explain our approach, we will take as an example the attack graph visible in Figure 57.

The first reasoning rule, represented by the node v5, allows to deduce that the attacker has

access to a network service. The second reasoning rule, represented by the node v9, allows to

deduce that the attacker can execute code on the machine. In this example, the information

of interest to the security teams is the possible compromise of the system by the attacker,

represented by the literal execCode and the node v6 in the graph. The literal netAccess is

therefore only an intermediate node, and it is represented by the node v10 in the graph.

We propose a solution that reduces the size of the attack graph by removing the intermediate

literal v6, which gives the result visible in Figure 58. The size of the graph has been reduced

from 10 to 8 nodes. However, in some cases, deleting an intermediate node can actually increase

the size of the graph. Figure 59 shows three cases where an intermediate node is removed. In

the first case, the deletion of node v2 reduced the size of the attack graph from 5 to 3 nodes.

In the second case, deleting the intermediate node v3 does not change the size of the attack

graph. Finally, in the third case, the deletion of node v4 increases the size of the attack graph

from 7 to 9 nodes.

To know if deleting an intermediate node will reduce the size of the attack graph, we need

to compare the number of nodes deleted and created during the reconstruction of the graph.

Let vi be an intermediate node that we want to delete. So initially we have node vi, its parents

indegree(vi) and its children outdegree(vi), which makes a total of indegree(vi)+outdegree(vi)+1
nodes. After replacing the intermediate node vi, we have indegree(vi)×outdegree(vi) new nodes

that are created. Therefore, to find out whether deleting an intermediate node vi will reduce the

size of the attack graph, the condition (1) must be verified. We have developed an algorithm to

traverse an attack graph generated by MulVAl to remove intermediate nodes when the condition

(1) is verified.

115 Chapter III PERFORMANCE EVALUATION OF THE SOLUTION

Figure 57: Part of an attack graph Figure 58: Part of an attack graph after removing
the node v6

Condition 1 indegree(vi)×outdegree(vi)< indegree(vi)+outdegree(vi)+1

In some cases, the addition of an intermediate node reduces the size of the attack graph.

For example, we faced a problem of rapid growth in the size of the graph when we started to

model the possible connections between the machines present on the same network with the

following reasoning rule:

netAccess(HostB, ,) :-

vlanInterface(HostA, Vlan),

vlanInterface(HostB, Vlan),

execCode(HostA, Perm)

This reasoning rule had the effect of creating a new literal netAccess(Host, Prot, Port) for

each pair of hosts present on the same network. But there are (n− 1)2 possible connections

between n machines connected on the same network, which made the size of the attack graph

increase quadratically. To deal with this problem, we have added a new intermediate node

lanAccess(vlan) that can be deduced with the following reasoning rule:

lanAccess(Vlan) :-

execCode(Host, Perm),

vlanInterface(Host, Vlan)

Then we modified the reasoning rule to derive the literal netAccess(Host, Prot, Port) such

116 Chapter III PERFORMANCE EVALUATION OF THE SOLUTION

Figure 59: Three cases of deletion of an intermediate node in an attack graph

that:

netAccess(Host, Prot, Port) :-

lanAccess(Vlan),

vlanInterface(Host, Vlan)

Figure 60 illustrates how adding this intermediate node reduces the size of the attack graph.

Figure 60: Addition of the intermediate node v5 lanAccess to reduce the size of the attack graph

117 Chapter III PERFORMANCE EVALUATION OF THE SOLUTION

III.1.4 Analysis of the complexity of the simulation algorithm

We also studied the complexity of our graph traversal Algorithm 2 used in the simulation.

Let G = (V,E) be an attack graph, with V = Li∪Ld∪R and E = Er∪El such that Li is the set of

initial literals, Ld the set of inferred literals, R the set of reasoning rules, Er the incoming arcs to

a reasoning rule and El the incoming arcs to a literal. The Algorithm 2 is called for all nodes vi

which have been assigned a Boolean value during the initialization phase. The number of these

nodes is equal in the worst case to the number of literals present in the graph, that is |Li∪Ld|. In
the worst case, the attack graph to be traversed is constructed such that an arc e = (v j,v′j)∈ Er

exists for all nodes v j ∈ (Li∪Ld) and v′j ∈ R. We will first look at the number of checks made

on line 31 of Algorithm 2 to know if a child node can be traversed. For a node v j ∈ (Li∪Ld),

all its child nodes v′j ∈ R are verified, which makes |R|× |(Li∪Ld)| checks. For a node v j ∈ R,
it is its single child node v′j ∈ (Li ∪Ld) that is verified, which makes |R| checks. Concerning

node traversal by Algorithm 2, a node v j ∈ R can only be traversed once during a recursive

call. A node v j ∈ (Li∪Ld) can be traversed once recursively by Algorithm 2 and another time

when traversing the nodes having a Boolean value assigned during the initialization phase. We

thus have a total of 2×|(Li∪Ld)|+ |R| nodes traversed by Algorithm 2. As the attack graph

is traversed for each time slice ti|i ∈ I, we thus have a worst-case time complexity of Algorithm

2 equal to O([(2+ |R|)×|(Li∪Ld)|+ 2×|R|]×|I|). The different simulations that need to be

performed can be executed in parallel on several CPU cores or on several machines, which does

not increase the overall algorithmic complexity. If we assume that the attack graph contains

as many literals as reasoning rules, we can simplify the complexity to O([n2

2 +n]×|I|), with n
the size of the graph.

III.2 Results of benchmarks

III.2.1 Test environment

We also studied the real performance of our algorithms by performing a series of benchmarks

in different configurations. We used the network presented in the use case of remote working

where one third of the users work from home every week. We measured the performance of our

solution in 6 different configurations:

• with a variation in the number of hosts and without optimization;

• with a variation in the number of vulnerabilities and without optimization;

118 Chapter III PERFORMANCE EVALUATION OF THE SOLUTION

• with a variation in the number of initial literals and without optimization;

• with a variation in the number of hosts and with optimization;

• with a variation in the number of vulnerabilities and with optimization;

• with a variation in the number of initial literals and with optimization;

We measured for each execution of our solution the number of hosts or vulnerabilities in the

system, the number of initial literals, the size of the attack graph, the computation time of the

optimization if it is performed, the execution time of the MulVAL algorithm and the execution

time of the simulation. The tests were performed on an Ubuntu 20.04 virtual machine with a

Linux kernel 5.15.0-41-generic, and with 16 CPUs at 2 GHz and 64 GB of memory. A least

squares polynomial regression is used on the benchmark results to assess the degree of the

polynomial that best fits the observed data, and the coefficient of determination R-squared is

used to measure the quality of the regression.

III.2.2 Evolution of the attack graph size

We measured the evolution of the size of the attack graph in several configurations. Figure

61a shows how the size changes as the number of hosts increases. By performing a polynomial

regression, we obtained that the polynomial 14x+12 perfectly matches the observed data with

a R-squared of 1. Figure 61b shows the evolution of the attack graph size with optimization.

The polynomial regression indicates that the polynomial 12x+8 perfectly matches the observed

data with a R-squared of 1. We can clearly see an improvement in the size of the graph thanks

to our optimization algorithm. This improvement is more important as the number of hosts

increases, with a difference in size equal to 2n+4, with n the number of machines in the system.

119 Chapter III PERFORMANCE EVALUATION OF THE SOLUTION

(a) Evolution of the attack graph size without optimization (b) Evolution of the attack graph size with optimization

Figure 61: Benchmark results in blue and polynomial regression in red showing the evolution of the attack
graph size in relation to the number of hosts present in the system

We made the same measures but this time according to the number of vulnerabilities present

on the web service. Figure 62a shows this evolution when the graph size is not optimized. The

polynomial regression indicates that the polynomial 2x+52 perfectly matches the observed data

with a R-squared of 1. Figure 62b shows this evolution when the size of the attack graph is

optimized. The polynomial regression indicates that the polynomial 2x+44 perfectly matches

the observed data with a R-squared of 1. We see here that the improvement in the size of the

attack graph brought by our optimization algorithm is much less important. It is 8 nodes and

does not evolve with the number of vulnerabilities.

(a) Evolution of the attack graph size without optimization (b) Evolution of the attack graph size with optimization

Figure 62: Benchmark results in blue and polynomial regression in red showing the evolution of the attack
graph size in relation to the number of vulnerabilities present in the system

Finally, the same measures were performed as a function of the numbers of literals given as

parameters to MulVAL. Figure 63a shows the results of this evolution without any optimization.

120 Chapter III PERFORMANCE EVALUATION OF THE SOLUTION

The polynomial regression that was performed on the data issued from the benchmark shows

that the size of the attack graph evolves linearly as a function of the number of input literals,

following the polynomial 2.33×x−2 , with a R-squared of 1. Figure 63b shows the benchmark

results of the evolution of the attack graph size as a function of the number of literals and

after applying the optimization algorithm. We can see that the size also evolves linearly by

following the polynomial 2× x− 4, with a R-squared of 1. This evolution is slower thanks to

the optimization performed on the graph, with a difference that evolves linearly following the

polynomial 0.33× x+2.

(a) Evolution of the attack graph size without optimization (b) Evolution of the attack graph size with optimization

Figure 63: Benchmark results in blue and polynomial regression in red showing the evolution of the attack
graph size in relation to the number of initial literals

III.2.3 Evolution of the execution time of the attack graph generation al-

gorithm

We will now see how the execution time of the MulVAL algorithm that generates the at-

tack graph evolves. Figure 64a shows the evolution of the execution time as a function of the

number of hosts present on the network. The polynomial regression indicates that the polyno-

mial 8.39×10−07x2 +1.22×10−03x+4.11×10−01 fits the observed data well with a R-squared

of 0.99. Figure 64b shows this same evolution but this time as a function of the number of

vulnerabilities present on the web service. The polynomial regression indicates that the poly-

nomial 2.33×10−04x+4.18×10−01 corresponds to the observed data with a R-squared of 0.97.

It can be seen that the number of vulnerabilities present in the system has less impact on

MulVAL’s computation time than the number of hosts. Finally, we have measured the evo-

lution of the execution time of the MulVAL algorithm as a function of the number of initial

121 Chapter III PERFORMANCE EVALUATION OF THE SOLUTION

literals. The benchmark results can be seen on Figure 64c and show that the execution time

evolves quadratically with respect to the number of initial literals following the polynomial

2.33×10−08x2 +2.02×10−04x+0.41, with an R-squared of 0.99.

(a) In relation to the number of hosts
present in the system

(b) In relation to the number of vulnera-
bilities present in the system

(c) In relation to the number of initial lit-
erals

Figure 64: Benchmark results in blue and polynomial regression in red showing the evolution of the execution
time of the MulVAL algorithm

III.2.4 Evolution of the execution time of the simulation algorithm

Finally, we were interested in measuring the evolution of the execution time of the simulation

algorithm in different configurations. Figure 65a shows the evolution of the computation time as

a function of the number of hosts present on the network. The polynomial regression indicates

that the polynomial 0.019x+0.068 fits the observed data well with a R-squared of 0.99. Figure

65b shows the same evolution but in the case where the size of the attack graph is reduced

thanks to the optimization algorithm. The polynomial regression indicates that the polynomial

0.015x+0.027 matches the observed data with a R-squared of 0.99. However, the time required

to optimize the graph must be considered if we want to compare these results. Figure 66

shows the evolution of the execution time of the optimization algorithm as a function of the

number of hosts present in the system. The polynomial regression indicates that the polynomial

2.13× 10−06x2 + 4.5× 10−04x− 3.38× 10−02 matches the observed data with a R-squared of

0.99. The total execution time including the graph optimization and the simulation is therefore

equal to 2.13×10−06x2+1.55×10−02x−6.8×10−03. If we compare this equation with the one

representing the execution time of the simulation without optimization, we notice that for all

x > 1687, the optimization is not interesting anymore. It would be interesting to verify in future

works if the optimization algorithm cannot be improved to be used on very large systems. In

the next section, we will test our model on a complex use case representing an IT system of a

huge company.

122 Chapter III PERFORMANCE EVALUATION OF THE SOLUTION

(a) Evolution of the execution time of the simulation
algorithm without optimization

(b) Evolution of the execution time of the simulation algo-
rithm with optimization

Figure 65: Benchmark results in blue and polynomial regression in red showing the evolution of the execution
time of the simulation algorithm in relation to the number of hosts present in the system

Figure 66: Evolution of the execution time of the attack graph size optimization algorithm in relation to the
number of hosts present in the system

III.3 Results of the scalability test

III.3.1 Test environment

We tested our model on a complex use case to validate its ability to analyze the security

of large systems. Our use case represents the IT system of a large French company present

on several sites throughout the country. The network is distributed across the cities of Paris,

Brest, Strasbourg, Lyon and Marseille. These different networks are connected through an

inter-site Virtual Private Network (VPN). The network is segmented into several Virtual Local

Area Networks (VLANs):

123 Chapter III PERFORMANCE EVALUATION OF THE SOLUTION

• VLAN 100 is used to connect the administrators’ machines and to access the administration

interfaces of the different components of the system.

• VLAN 200 is a classified network that does not have access to the Internet or to internal

company services.

• VLAN 300 is the unclassified user network.

• VLAN 400 is the company’s service network where all the organization’s servers are con-

nected.

• VLAN 500 is the Demilitarized Zone (DMZ) network. It is on this network that the servers

accessible from the outside are connected.

• VLAN 600 is a guest network dedicated to people outside the company who wish to access

the Internet. This network is accessible through a Wireless Access Point (WAP) present

in each lobby of the company’s sites.

• VLAN 700 is the company’s remote access network that is accessible through a VPN. This

network allows users connected remotely from home to have access to the same services

as if they were connected on the internal unclassified user network.

• VLAN 800 is the VPN network that interconnects all the sites of the organization.

The network configuration is identical for each site. The internal firewall allows to inter-

connect the different VLANs and to manage the access rights to the different services of the

company. These servers are all connected to the service network (VLAN 400) of the Paris site.

The network configuration is described as fllowing.

• The internal firewall allows to interconnect the different VLANs and to manage the access

rights to the different services of the company.

• Internet access from the unclassified user network is done through a Blue Coat proxy. The

access to the various services of the company is always done through a proxy F5 BIG-IP.

This proxy allows to perform load balancing and to distribute the incoming connections

on the different instances of the backend servers.

• A first server is used for Human Resources (HR) management. It is an Apache Tomcat

service hosted on a Red Hat Enterprise 7. There are three instances of this server that all

have access to the same Oracle MySQL database server.

124 Chapter III PERFORMANCE EVALUATION OF THE SOLUTION

• There are 4 Red Hat Enterprise 7 application servers used by users to manage the com-

pany’s business processes. Two of these servers host an Apache Tomcat web service dis-

tributed over 3 instances. The first one has access to the MySQL Oracle and PostgreSQL

database servers, while the second one only has access to the PostgreSQL server. The

third application server is distributed over 2 instances, each hosting an Apache Axis web

service. Both instances have access to an Oracle database. The fourth application server

is distributed over two instances, each hosting a Splunk service. This service allows to

manage the logs coming from the different components of the system. Each instance has

access to the MySQL Oracle database. The externally accessible Red Hat Enterprise 7

web server is connected to the DMZ network of the Paris site.

• An F5 BIG-IP proxy is used to distribute the load over three web server instances, each

hosting an Apache Tomcat service. Each of these instances has access to the MySQL

Oracle database server.

• An Exchange 2019 server is used to send and receive mail from the connected stations on

the unclassified user network.

• Each user has a Cisco Internet Protocol (IP) phone. The phones are interconnected

through Autocom servers located on each site of the organization.

• A Windows 2016 Domain Controller (DC) is present on each site and is used to manage

the access rights of the different users. Each DC is synchronized with the one located in

Paris in order to replicate the data of all the sites of the organization. There is a forest

.admin.corpo.int for administrators and a forest .user.corpo.int for users.

• People outside the company connected to the guest network have access to the Internet,

which is directly routed through the company’s internal and external firewalls without go-

ing through the Blue Coat proxy. Users working remotely must connect to the Stormshield

VPN on the external firewall to access the various company services. The interconnection

of the different sites goes through a dedicated physical network and is protected by a VPN

tunnel established between the external firewalls.

• HP A3 multifunction printers are present on each site of the company and can be used by

all users.

• The user stations can be either laptops or desktop computers. The Windows operating

system is installed on all these stations but with different versions. There are Windows

XP 2002 SP3, Windows 7 7601 SP1 and Windows 10 1803. Only laptops can be used by

users who work remotely. The interconnection of the different networks is managed by

Cisco switches.

125 Chapter III PERFORMANCE EVALUATION OF THE SOLUTION

• There are 30,000 employees in this company, each with a computer and a phone. 1% of

these employees are network administrators, 19% work on a classified network and the

remaining 80% are connected to the unclassified network. Among users who do not work

on classified data, 10% of them work remotely 2 days a week. Table 17 shows a complete

inventory of the equipment present on the company’s network with their version numbers.

• Several vulnerabilities are present on the system components. They are all listed in Table

16 with their main characteristics.

III.3.2 Presentation of the results

We performed our tests in 6 different configurations:

• with 6,000 machines connected to the network and 25% of unclassified users working at

home;

• with 6,000 machines connected to the network and 10% of unclassified users working at

home;

• with 6,000 machines connected to the network and no users working from home;

• with 60,000 machines connected to the network and 25% of unclassified users working at

home;

• with 60,000 machines connected to the network and 10% of unclassified users working at

home;

• with 60,000 machines connected to the network and no users working from home.

The simulation results for each of these 6 configurations are summarized in Table 13.

We will describe in more detail the results obtained in the configuration with 60,000 machines

connected to the corporate network and with 10% of the unclassified users working at home.

To model this system, 35,445 literals were written and 175 variables were defined. After the

literals containing variables as parameters were expanded, we obtained a total of 206,102 initial

literals. We can see here the importance of variables to make the system modeling step easier.

Here, they have allowed to divide by 6 the number of initial literals to write. We simulated

an attack between 2021-01-04 00:00:00 and 2021-01-10 23:59:59 with a simulation step of 3,600

seconds. 1,000 simulations were executed which allowed us to obtain a very accurate result.

We used the same server as for the previous tests, which is an Ubuntu 20.04 virtual machine

126 Chapter III PERFORMANCE EVALUATION OF THE SOLUTION

Number of assets 6,000 60,000
Percentage of

unclassified users
working at home

0% 10% 25% 0% 10% 25%

Number of initial literals 21,728 22,112 22,799 201,728 206,102 212,975
Attack graph generation

time (s)
350 532 935 31,147 256,874 617,557

Memory usage during
the construction of the

attack graph (GB)

1.75 1.78 1.56 2.24 2.15 2.17

Attack graph size
(number of nodes)

253,653 304,109 273,506 9,435,135 10,119,121 10,002,158

Time to load the attack
graph and to associate

the temporal
characteristics for each

node (s)

11 12 12 314 334 331

Execution time of a
simulation (s)

392 610 480 13,500 14,220 14,400

Memory usage during
simulation (GB)

2.14 2.29 1.99 18.9 20 19.7

Size of a file containing
the result of a simulation

(GB)

85 102 92 3,170 3,400 3,361

Table 13: Results of the tests performed on the complex use case with different configurations

with a linux kernel 5.15.0-41-generic, 16 CPUs at 2GHz and 64 GB of memory. The MulVAL

algorithm was used to generate an attack graph of 10 millions nodes. The execution took 71

hours and consumed 2.15 GB of memory. The attack graph was then loaded in memory and

the dynamic properties of the system were added to each node. This step lasted 334 seconds.

The simulations were run in parallel by groups of 16. Each simulation required 237 minutes of

computing time. Therefore, the execution of the 1,000 simulations took 247 hours. During the

simulation phase, 20 GB of memory was consumed by all the processes. During the execution

of a simulation, each process also writes the result directly to a file on the hard disk. We

consumed a total of 3.4 TB of storage space.

We can see that the number of initial literals evolves linearly with the number of assets

present in the system. This number is multiplied by 9.28, for example, when comparing results

without remote working and when the number of assets is multiplied by 10. The increase in the

number of remote working users slightly increases the number of initial literals. In the system

composed of 6,000 elements, it increases by 1.8% between 0% and 10% of remote working users,

and by 3.1% between 10% and 25%.

127 Chapter III PERFORMANCE EVALUATION OF THE SOLUTION

There is a rapid increase in computation time between the situation with and without remote

working users, especially when it concerns the system with 60,000 components. This increase is

due to the non-linear complexity of the execution time of the attack graph generation algorithm

as a function of the number of initial literals, as shown by the results of the benchmarks

previously performed.

The amount of memory used by the attack graph generation algorithm changes slowly as the

system size increases. It is, for example, multiplied by 1.28 when the system size is multiplied

by 10 and without remote working users.

The size of the generated attack graph increases slightly faster than the number of compo-

nents in the system. For example, when the system size is multiplied by 10 and without remote

working users, the size of the attack graph is multiplied by 37.

The time required to load the attack graph into memory with the addition of the dynamic

characteristics increases slightly faster than the system size. For example, it is multiplied by

29 when the size of the system is multiplied by 10 and without remote working users.

The execution time of a simulation increases faster than the system size but at the same

rate as the size of the attack graph. For example, when the number of system components

is multiplied by 10 and without remote working users, the execution time of a simulation is

multiplied by 34 while the size of the attack graph is multiplied by 37.

The memory consumption during the execution of a simulation increases at the same rate

as the system size. It is, for example, multiplied by 8.8 when the system size is multiplied by

10 and without remote working users.

Finally, the size of a file containing the result of a simulation increases faster than the system

but at the same speed as the size of the attack graph. For example, when the system size is

multiplied by 10 and without remote working users, the file size as well as the attack graph size

are multiplied by 37.

III.3.3 Conclusion

These results show that our solution is able to assess the security of complex systems in

a reasonable time. If all simulations are run in parallel, either on several CPU cores or on

different machines, the total execution time is about 12 hours for the configuration with 60,000

machines and without remote working users. However, there are some points which can be

128 Chapter III PERFORMANCE EVALUATION OF THE SOLUTION

drawn from our results:

1. we limited ourselves to a simulation time period of one week. The variations of this time

period make the execution time of a simulation evolve linearly. If we wanted to simulate

this same attack over a period of one month, the execution time would be 24 hours.

2. further work is required to define new types of attacks. For the moment, we have mainly

limited ourselves to attacks exploiting a local or remote vulnerability present on a system

component. But it would be possible to model other actions that the attacker is likely to

perform. For example, we could add a reasoning rule to represent phishing attacks.

3. we are currently limited by the execution time of the MulVAL algorithm which does not

evolve linearly with the size of the system. Indeed, we can see from the results presented in

Table 13 that when the number of assets in the system is multiplied by 9.32, the execution

time of MulVAL is multiplied by 483. Nevertheless, we managed to control the evolution

of the size of the generated attack graph so that it evolves linearly with the size of the

system. Indeed, we can see that the size of the graph is multiplied by 33 when the number

of assets in the system is multiplied by 10.

4. it would also be interesting to make the system modeling step easier. An Human Machine

Interface (HMI) could be developed to make it easier to model the system and then convert

this modeling into literals for MulVAL. This HMI could also make it easier for all the

players responsible for IT security to work together. The modeling should also allow the

reuse of some objects to avoid having to redefine each component when analyzing a new

system. It would be interesting to try to make the system modeling step fully or partially

automated. Information such as firewall rules, system logs or network scan results could

be retrieved automatically and used to maintain a real-time system map [93], [94].

In the next section, we will discuss the advantages and disadvantages of our solution, and

how it could create new opportunities in the field of risk assessment.

III.4 Discussion

III.4.1 Advantages of the solution

The main breakthrough of our solution is the ability to analyze large systems while modeling

its dynamic behavior. It is possible to represent a wide variety of systems by defining the

129 Chapter III PERFORMANCE EVALUATION OF THE SOLUTION

appropriate literals and reasoning rules. Literals allow to model all the properties of a system,

whether it is an IT system, an industrial network or connected objects. For example, it would be

possible to define a literal plcInput(PLCid, NumPort, Function) to describe a Programmable

Logic Controller (PLC) input. Similarly, reasoning rules allow to represent any interactions

taking place in a system. These logic tools also allow to accurately model the attacker’s actions

and the impact of the attacks on the system. We have enhanced these modeling tools to allow

the representation of dynamic system behaviors. Temporal literals can be used to model network

topology changes, vulnerability discoveries, patch application or component wipe. On the other

hand, the temporal reasoning rules allow to represent the time required for the realization of

the interactions in the system. Therefore, we have a set of logical tools that allow us to model

very finely any computer system by taking into consideration their dynamic behaviors.

We have added a system of variables that makes it easier to model complex systems by

reducing the number of initial literals to write. The modeling of complex systems is also made

possible by the use of efficient algorithms able to process large volumes of data. The execution

time of the MulVAL algorithm has a worst-case complexity O(N2× log(N)), with N the number

of system components. We have managed to limit the size of the attack graph generated by

MulVAL. We have shown that in some cases, adding an intermediate node can reduce the

number of nodes in the graph. For example, this is what we did by adding the literal lanAccess,

which reduced the number of literals netAccess between machines on the same network. We

also developed an algorithm to remove intermediate nodes when this reduces the size of the

attack graph. The execution time of our simulation algorithm has a worst-case complexity

O([n2

2 + n]× |I|), with n the size of the graph and |I| the number of time intervals. We then

carried out several benchmarks to test the real performance of our solution, before finally

applying it to a use case representing a computer network of a large company. These tests

allowed us to validate its ability to analyze the security of complex systems.

We have defined several metrics to quantitatively assess the impact of an attack on the

system. We generate curves for each node of the attack graph showing the evolution of the

probability that the node is True as a function of time. This metric allows to visualize the

evolution of the risk of compromise of the different components of the system. We also com-

pute a score that represents the time required for the attacker to reach a given probability of

compromising a component. This score is then used to display a heatmap of the system in order

to identify the components most affected by the attack. We propose to visualize the impact

of a change in system configuration or attack conditions by displaying a curve for each node

representing the difference in probability of being True between two simulations. This metric

can for example be used to visualize the impact of a vulnerability on the security of the system

130 Chapter III PERFORMANCE EVALUATION OF THE SOLUTION

by comparing the simulation with and without it.

III.4.2 Identified limitations

However, the ability of our solution to analyze very large systems is limited by the execution

time of the attack graph generation algorithm MulVAL. Indeed, we have noticed during the

realization of our benchmarks and the test on the complex use case that the execution time

of this algorithm could quickly increase in some cases. It would be interesting to check if it

is not possible to group components with the same properties to reduce the number of initial

literals sent to MulVAL. It would also be interesting to try to improve the performance of the

attack graph size optimization algorithm so that it can be used for systems greater than 1,600

components. Finally, we could try to parallelize the execution of the Datalog program in XSB

when generating the attack graph.

It is important to note that we use an approximate algorithm to calculate the compromise

probabilities of the different system components. Although our solution does not give exact

results, it has allowed us to analyze large systems in a reasonable amount of time. Future work

could be done to measure the difference on small systems between the results of our approximate

algorithm and the exact calculations. The use of approximate algorithms seems to us to be

mandatory for the analysis of complex systems, whether they are sampling algorithms like those

used to infer probabilities in Bayesian networks [54], or simulation algorithms like those used

in [81] or in our solution. Work must also be done to make the system modeling step easier.

An HMI could for example be developed to (1) propose a graphical way to model the system

which is then converted into literals, (2) make it easier for all security actors to work together

and (3) allow the reuse of objects used in the models. It would also be interesting to work on

a way to automate totally or partially the modeling step by proposing, for example, real-time

system mapping tools.

In our simulations, we currently consider that the attacker has unlimited human and budget

resources. This assumption allowed us to increase the time performance of our simulation

algorithm. Indeed, when several actions are possible at a time t, we consider that the attacker

can parallelize their exploitation. Besides the fact that it allows to go through all the attack

paths without increasing the simulation time, it also avoids having to make a choice in the

actions to perform. For example, if we consider that the attacker is alone and that he cannot

parallelize the actions, a choice will have to be made when traversing the attack graph and

several arcs lead to different reasoning rule nodes. Future work could be done to integrate the

real capabilities of the attacker during the simulation of an attack and define criteria to choose

131 Chapter III PERFORMANCE EVALUATION OF THE SOLUTION

the actions to be performed in priority.

III.4.3 Opportunities

Our solution currently allows for an accurate assessment of the system’s security. But it

would also be interesting to model the impact of attacks on the organization’s business pro-

cesses. Business processes could for example be modeled with a Business Process Management

(BPM) by integrating the impact of the attack on the system and to check if the business

processes are still operational. Our solution could also be extended to identify the protective

measures to be put in place as a priority, taking into consideration the human and budgetary

limitations of the organization. This would allow system security teams to optimize their in-

vestments to effectively reduce the risk of compromise. It would also be possible to propose an

algorithm to identify the optimal attack path to achieve a compromise target in the system.

This could, for example, help offensive security teams such as pentesters or red teams to achieve

their compromise goals.

III.4.4 Identified risks

We would like to end with a global review of risk analysis solutions based on attack path

modeling. Although these solutions allow for a very accurate analysis of how a system can

be compromised by a malicious actor, the amount of information required to model all attack

paths can quickly become very important, especially for large systems. Indeed, in order for

the risk analysis to be consistent and for the result to be as reliable as possible, it is necessary

that the modeling of the system and the attacker’s capabilities be as exhaustive as possible.

Therefore, the interest of this type of modeling depends greatly on the possibility of obtaining

large volumes of information about the system to be analyzed. In addition, some information

can be very difficult to obtain. For example, it may be difficult to identify whether the password

associated with an administration account is strong enough to resist a brute force attack by the

attacker. Although in a defensive context, the entire system must be modeled exhaustively in

order to guarantee a reliable assessment of the risk of compromise, it is sufficient for attackers

to find an attack path that allows them to achieve their objectives. There is therefore a major

difference in the investment required to model the system between security teams who need to

be comprehensive and attackers who only need to find an attack path.

The complexity of modeling the system also comes from the uncertainty in the value of some

parameters. For example, it is difficult to define the exact time required for a malicious actor to

132 Chapter III PERFORMANCE EVALUATION OF THE SOLUTION

exploit a vulnerability. In our solution, we modeled uncertainty by associating probabilities for

a literal to be True over an interval of time and by representing the timing of clocks associated

with reasoning rules with probability distributions. We therefore believe that the greatest

difficulty in risk analysis of complex systems is to accurately model the system as well as the

real capabilities of the attacker, and that this problem should be the subject of further interest.

III.5 Conclusion

In this section, we have presented the results of our work carried out to answer the research

problem of this thesis. We have shown how it was possible to build an attack graph representing

the attack paths present in a system by taking into account its dynamic characteristics. We

have shown that taking these dynamic characteristics into account allows us to identify new

attack paths that a static representation could not find.

We then proposed a solution to calculate the risk of compromise for each component of the

system. The calculations are based on the simulation of several attacks performed from the

previously constructed dynamic attack graph.

Then we demonstrated that the solution proposed in this thesis was able to analyze security

in complex systems. We evaluated the worst-case time complexity of all the algorithms we used.

Several benchmarks have been performed to evaluate the real complexity of these algorithms.

Finally, we applied our solution on our dataset representing the architecture of an IT system

of a large organization. The results obtained confirm that our model can be used in systems

made up of several thousands of components.

Finally, we have discussed the scientific challenges addressed by our approach as well as the

limitations identified. We have also discussed the scientific challenges that have been addressed

by our approach as well as the limitations that remain to be solved in order to fully address

the research problem of this thesis.

Chapter IV

Conclusion

134 Chapter IV CONCLUSION

Risk analysis in complex computer systems is currently a serious challenge. These systems

have become ubiquitous in our modern societies and are increasingly used in critical systems,

such as in the management of nuclear power plants or in weapons systems. The current methods

used, such as EBIOS in France or the one proposed by the NIST in the USA, are not adapted

to the high complexity of modern systems. Indeed, these methods rely on too much human

work, making the analysis subjective and error-prone.

In this dissertation, we analyzed and compared several research works that provided a partial

answer to this problem. Most of these solutions are based on modeling the attack paths that

allow malicious actors to achieve their compromise objectives. But these models are based on a

static representation of the system to be analyzed and therefore omit some dynamic properties.

This can have an impact on the identification of the attack paths present in the system as we

have shown in our work.

Some research works have proposed solutions to calculate the attacker’s chances of success

based on an attack graph and the difficulty of exploiting the vulnerabilities. Nevertheless, the

calculations performed are rarely adapted to complex systems and do not allow to obtain results

in a reasonable amount of time.

Several work are interested to the problem of modeling a complex system. However, the

information available about the properties of the system and its components is often difficult

to obtain as the system is large and complex. Some of this information may also be uncertain

or unknown by nature, such as how long it will take for the attacker to exploit a vulnerability.

Our objective was therefore to propose a risk analysis solution that would overcome the

limitations previously defined, that is to model the attack paths from a dynamic representation

of the system based on a limited and uncertain source of information, as well as to calculate

the risk of compromise in a reasonable amount of time despite the large size of the system to

be analyzed. We also aimed to simplify the system modeling step as much as possible so that

this task would be feasible despite its high complexity.

To achieve this we perform a set of studies on existing solutions in the literature. Our work

takes advantage of previously studied solutions. We designed and developed a solution to model

the attack paths from dynamic description of the system. The proposed solution is based on

MulVAl which allows to generate logic-based attack graphs. We have enhanced this model by

defining new logical tools able to represent the dynamic properties of systems. The temporal

literals allow to represent the changes of properties of the system over time, while the temporal

reasoning rules allow to represent the time required for the realization of the interactions that

take place in the system.

135 Chapter IV CONCLUSION

We also simplified the system modeling step by developing a system of variables that can

be used in the parameters of the literals and that significantly reduces their number. We have

set up a way to represent the uncertainty related to some information: probabilities defined on

time intervals are associated to literals and allow to model the evolution of the likelihood of a

system property over time. Probability distributions have been used to model the activation

times of the reasoning rules, which allows representing the uncertainty about this value.

Then we redeveloped the attack graph generation algorithm to take into account these new

logical tools and to list all the attack paths from a dynamic description of the system.

In a second step, our work has allowed us to propose a method to assess the risk of compro-

mise. This method consists in performing several simulations of an attack from the dynamic

attack graph previously built. The result of these simulations allows us to approximate the

probability of compromise of each component of the system as a function of time.

We have also proposed a method to measure the impact of one or a set of vulnerabilities

on the security of the system. To do this, we calculate for each component of the system the

difference in risk of compromise between two simulations: the first simulation is performed

from a representation of the system including all the vulnerabilities, and the second from a

representation excluding the vulnerabilities for which we want to assess the impact.

Finally, our work consisted in proving that our solution could be used in complex systems

composed of several thousands of elements. We started by assessing the worst-case time com-

plexity of the algorithms used. Then we performed a series of benchmarks to estimate the real

performance of our algorithms. These tests showed that the average time complexity was linear

for all our algorithms, except for the attack graph construction algorithm which is quadratic.

Lastly, we tested our solution on a complex system representing the IT network of a large

company composed of thousands of elements.

The purpose of this thesis was to address the requirements defined in the introduction, which

are as follows:

1. the method must be applicable in any kind of computer system;

2. the method must be able to be used in complex and dynamic systems. In this thesis,

we set ourselves the objective of analyzing the security of systems composed of several

thousands of elements;

3. the calculations made to assess risk must be as objective as possible. To do this, the

security analysis must be based on real information directly issued from the studied system;

136 Chapter IV CONCLUSION

4. the risk assessment process should be automated as much as possible to reduce the amount

of work that needs to be done by humans and to avoid errors;

5. the risk analysis method must also be able to assess the impact of one or a set of vulner-

abilities on the system.

Requirement 1 has been met because the method used to generate the attack graph is an

abstract method capable of modeling all types of systems. We only need to define the literals

and the reasoning rules that represent the system to be analyzed. The computations performed

subsequently from the attack graph to evaluate the security of the system do not depend on

the nature of the literals and the reasoning rules defined previously. Our method can therefore

be used in any kind of computer system, whether it is an IT network or a CPS.

Requirement 2 is partially addressed. Our model is able to represent the dynamic behavior

of the studied system. We have performed numerous performance tests, and in particular we

have applied our solution on an IT system composed of several thousands elements. These tests

show that our method is applicable in complex systems. But the non-linear evolution of the

generation time of the attack graph prevents us from analyzing systems whose size is greater

than several hundreds thousands of elements.

Requirement 3 is partially addressed. The attack graph generation algorithm allows to list

exhaustively all the attack paths present in the system. However, compromise risk calculations

are always based on subjective information. For example, the time required to exploit a vul-

nerability is based on its CVSS score. The metrics used to calculate this score are based on

a subjective assessment by experts and it is not uncommon to find different CVSS score for

the same vulnerability. However, to overcome this problem as well as the sometimes unreliable

information about the properties of the system, we have adapted our model to represent this

uncertainty.

Requirement 4 is partially addressed. Although the construction of the attack graph as well

as the calculation of the risk of compromise is fully automated, the modeling of the system is

not. We have not been able to propose an algorithm to automatically retrieve this information

from the real system because it strongly depends on the nature and composition of the studied

system. For an IT network, it would be possible to retrieve this information from the filtering

rules present on the firewalls or to perform network scans to obtain a matrix of access rights

between the system components. Some of the vulnerabilities can also be obtained automatically

by performing security scans with Nessus or OpenVAS for example.

Requirement 5 is partially addressed. Our solution allows to assess the impact of one or

137 Chapter IV CONCLUSION

a set of vulnerabilities by comparing the result of attack simulations with and without them.

However, the measure of the impact remains limited to the risk of compromise of the system

components.

Future work should be done to remove the various limitations that we have highlighted. We

should seek to improve the performance of the attack graph generation algorithm in order to

analyze increasingly complex systems. The system modeling stage should be further automated.

For each kind of computer system, a solution should be developed to automatically retrieve

the system properties and convert them into literals and reasoning rules. Finally, the impact

of an attack should be assessed at the organizational level. To do this, missions and business

processes must be modeled by integrating the impact of attacks at the system level.

138 Chapter IV CONCLUSION

Appendix

140 APPENDIX

Appendix A. Definition of literals

and reasoning rules used in the

MulVAL framework

141 APPENDIX

Literal Description
Initial literal

networkServiceInfo(Host, Vlan,
Program, Protocol, Port, User)

Indicates that service Program is running on machine Host with
rights User and is listening on port Port of interface Vlan using

protocol Protocol
vulExists(Host, VulID, Program,

Range, Consequence)
Indicates that the vulnerability VulID is present on the program

Program of the machine Host, can be exploited with the
conditions Range and has as consequences Consequence

firewallRule(HostS, Vlan1, HostD,
Vlan2, Protocol, Port)

Indicates that a firewall rule authorizes the machine HostS
connected on the network Vlan1 to communicate towards the
machine HostD connected on the network Vlan2 on the port

Protocol with the protocol Port
vlanInterface(Host, Vlan) Indicates that the machine Host is connected to the network

Vlan
attackerLocated(Vlan) Indicates that the attacker is present on the network Vlan

softwareInfo(Host, Software, Perm) Indicates that software Software is installed on machine Host
and can be run with user rights Perm

isProxy(Proxy, PortS, Srv, PortD) Indicates that the proxy Proxy listens on port PortS and
redirects all traffic to port PortD of the machine Srv

receivePhishingMail(Host) Indicates that a malicious e-mail has been sent to the mailbox of
the machine Host

isDC(DC, Domain) Indicates that the domain controller DC is responsible for the
domain Domain

networkStream(HostS, HostD, Port,
Protocol, Vlan, Data)

Indicates that a connection is ongoing between the machine
HostS and the machine HostD on the port Port with the protocol
Protocol, and the data Data are transiting on the network Vlan.

openMaliciousFile(Host, User, Perm,
Software)

Indicates that user User has opened a malicious file on machine
Host with software Software and rights Perm

mitm(HostS, HostD, Vlan) Indicates that it is possible to intercept communications between
the machine HostS and the machine HostD on the network Vlan

noCheckAuth(Host, Port, Prot) Indicates that communications to machine Host on port Port
with protocol prot do not require authentication

isDomainMember(Host, DC, Domain) Indicates that the machine Host is part of the domain Domain
managed by the domain controller DC

Derived literal
execCode(Host, User) Indicates that the attacker is able to execute code on the

machine Host with the rights User
availability(Host, Software) Indicates that the attacker is able to make program Software

unavailable on machine Host
confidentiality(Data) Indicates that the attacker is capable of compromising the

confidentiality of data Data
ddos(Host, Software) Indicates that the attacker is able to launch a distributed denial

of service attack on the service Software of the machine Host
netAccess(Machine, Protocol, Port) Indicates that the attacker has network access to machine

Machine on port Port with protocol Protocol
lanAccess(Vlan) Indicates that the attacker has access to the network Vlan

Table 14: Description of the literals used in the MulVAL framework

142 APPENDIX

Reasoning rule Description
execCode

execCode(HostD, Perm) :-
vulExists(HostD, , Software,

remoteExploit, privEscalation),
networkServiceInfo(HostD, ,

Software, Protocol, Port, Perm),
netAccess(HostD, Protocol, Port)

Indicates that the attacker can execute code on machine HostD
with rights Perm if a remotely exploitable vulnerability of type

Elevation of privileges is present on service Software of
machine HostD, that this service is running and listening on port
Port with protocol Protocol, and that the attacker has access to

this service
execCode(HostD, Perm2) :-
vulExists(HostD, , Software,
localExploit, privEscalation),

softwareInfo(HostD, Software, Perm2),
execCode(HostD, Perm1)

Indicates that the attacker can execute code on machine HostD
with privileges Perm2 if a locally exploitable vulnerability of type

Elevation of privileges is present on the program Software of
machine HostD, that this program is running with privileges

Perm2, and that the attacker already has control over machine
HostD with privileges Perm1

execCode(HostD, Perm) :-
softwareInfo(HostD, Software,),

receivePhishingMail(HostD),
openMaliciousFile(HostD, , Perm,

Software)

Indicates that the attacker can execute code on machine HostD
with privileges Perm if the user opens a malicious file received
by mail on machine HostD with program Software running with

privileges Perm

execCode(Host, root) :- execCode(DC,
root), isDC(DC, Domain),

isDomainMember(Host, DC, Domain)

Indicates that the attacker can execute code on machine Host
with privileges root if machine Host belongs to the domain

Domain managed by the domain controller DC and the attacker
is already executing code on the domain controller DC with root

privileges
availability

availability(HostD, Software) :-
vulExists(HostD, , Software,

remoteExploit, dos),
networkServiceInfo(HostD, ,

Software, Protocol, Port, Perm),
netAccess(HostD, Protocol, Port)

Indicates that the attacker can make service Software
unavailable on machine HostD if a remotely exploitable

vulnerability of type dos is present on service Software of
machine HostD, that this service is running and listening on port
Port with protocol Protocol, and that the attacker has access to

this service
ddos

ddos(HostD, Software) :-
vlanInterface(HostD, ’internet’),

networkServiceInfo(HostD, ’internet’,
Software, , ,)

Indicates that the attacker can launch a distributed denial of
service attack on the service Software present on the machine

HostD if this service is accessible from Internet

confidentiality
confidentiality(Data) :-

networkStream(HostS, HostD, Port,
Protocol, Vlan, Data),

noCheckAuth(HostD, Port, Protocol),
mitm(HostS, HostD, Vlan)

Indicates that the attacker can compromise the confidentiality of
data Data if the attacker can intercept a network flow on the

network Vlan because no authentication is required

143 APPENDIX

netAccess
netAccess(HostD, Protocol, Port) :-

execCode(HostS, Perm),
firewallRule(HostS, Vlan1, HostD,

Vlan2, Protocol, Port),
vlanInterface(HostS, Vlan1),
vlanInterface(HostD, Vlan2)

Indicates that the attacker has access to machine HostD on port
Port with protocol Protocol if he executes code on a machine

HostS connected to network Vlan1 and that a firewall rule allows
connections from network Vlan1 to access machine HostD

connected to network Vlan2 on port Port with protocol Protocol

netAccess(HostD, Protocol, Port) :-
attackerLocated(Vlan1), firewallRule(,

Vlan1, HostD, , Protocol, Port),
vlanInterface(HostD,)

Indicates that the attacker has access to machine HostD on port
Port with protocol Protocol if he has access to network Vlan1

and that a firewall rule allows connections from network Vlan1 to
machine HostD on port Port with protocol Protocol

netAccess(Host, Protocol, Port) :-
attackerLocated(Vlan),

vlanInterface(Host, Vlan)

Indicates that the attacker has access to machine Host on port
Port with protocol Protocol if the attacker has access to network

Vlan and machine Host is connected on the same network
netAccess(HostD, Protocol, PortD) :-

execCode(HostS, Perm),
vlanInterface(HostS, Vlan1),

isProxy(Proxy, PortP, HostD, PortD),
firewallRule(HostS, Vlan1, Proxy, , ,
PortP), firewallRule(Proxy, , HostD, ,

Protocol, PortD)

Indicates that the attacker has access to machine HostD on port
PortD with protocol Protocol if the attacker executes code on a
machine HostS connected to network Vlan1, that a firewall rule
authorizes connections from network Vlan1 to proxy Proxy on

port PortP and that another firewall rule authorizes connections
from proxy to machine HostD on port PortD with protocol

Protocol
netAccess(HostD, Protocol, PortD) :-

attackerLocated(Vlan1),
isProxy(Proxy, PortP, HostD, PortD),
firewallRule(HostS, Vlan1, Proxy, , ,
PortP), firewallRule(Proxy, , HostD, ,

Protocol, PortD)

Indicates that the attacker has access to machine HostD on port
PortD with protocol Protocol if the attacker has access to

network Vlan1, that a firewall rule authorizes connections from
network Vlan1 to proxy Proxy on port PortP and that another

firewall rule authorizes connections from proxy to machine
HostD on port PortD with protocol Protocol

netAccess(HostD, Protocol, Port) :-
execCode(HostS, Perm),

firewallRule(HostS, internet, HostD,
Vlan2, Protocol, Port),

vlanInterface(HostS, homeNetwork),
vlanInterface(HostD, Vlan2)

Indicates that the attacker has access to machine HostD on port
Port with protocol Protocol if he executes code on a machine
HostS that is connected to a home network and that a firewall
rule allows connections from the Internet to access a machine

HostD on port Port with protocol Protocol

netAccess(HostD, Protocol, Port) :-
lanAccess(Vlan), vlanInterface(HostD,

Vlan)

Indicates that the attacker has access to machine HostD on port
Port with protocol Protocol if he has access to network Vlan and

machine HostD is connected on this network.
lanAccess

lanAccess(Vlan) :- execCode(Host,
Perm), vlanInterface(Host, Vlan)

Indicates that the attacker has access to the network Vlan if he
is already executing code on a machine Host and this machine

is connected to the network Vlan

Table 15: Description of the reasoning rules used in the MulVAL framework

144 APPENDIX

Appendix B. Description of the

assets and vulnerabilities present in

the use case of the complex

computer network

145 APPENDIX

CVE ID Asset Description CVSSv3:
Attack

Complexity
(AC),

CVSSv2:
Access

Complexity
(AC)

CVSSv3:
Privileges
Required

(PR)

CVSSv3:
User

Interaction
(UI)

CVSSv2: Authentication (AU)
CVE-2010-0425 Internal

firewalls
Remote

code
execution

Low (0.71) None

CVE-2008-4609 Switch Denial of
service

Medium (0.61) None

CVE-2021-22992 Proxy BIG-IP Denial of
service

Low (0.77) None (0.85) None (0.85)

CVE-2021-22986 Proxy BIG-IP Remote
code

execution

Low (0.77) None (0.85) None (0.85)

CVE-2016-8740 SRV APP 01,
SRV APP 02,
SRV WEB 01

Denial of
service

Low (0.77) None (0.85) None (0.85)

CVE-2019-3855 SRV APP 02,
SRV APP 03,
SRV APP 04,
SRV WEB 01

Remote
code

execution

Low (0.77) None (0.85) Required
(0.62)

CVE-2019-0199 SRV APP 01 Denial of
service

Low (0.77) None (0.85) None (0.85)

CVE-2020-1938 SRV APP 02 Remote
code

execution

Low (0.77) None (0.85) None (0.85)

CVE-2020-9484 SRV APP 02 Remote
code

execution

High (0.44) Low (0.62) None (0.85)

CVE-2020-11996 SRV APP 01 Denial of
service

Low (0.71) None (0.85) None (0.85)

CVE-2020-13934 SRV APP 01 Denial of
service

Low (0.71) None (0.85) None (0.85)

CVE-2021-30639 SRV APP 01 Denial of
service

Low (0.71) None (0.85) None (0.85)

CVE-2021-34473 SRV MAIL 01 Remote
code

execution

Low (0.77) None (0.85) None (0.85)

CVE-2019-12827 SRV IPBX Denial of
service

Low (0.71) Low (0.62) None (0.85)

CVE-2019-13161 SRV IPBX Denial of
service

High (0.44) Low (0.62) None (0.85)

CVE-2019-18790 SRV IPBX Denial of
service

Low (0.71) None (0.85) None (0.85)

146 APPENDIX

CVE-2020-35652 SRV IPBX Denial of
service

Low (0.71) Low (0.62) None (0.85)

CVE-2021-26717 SRV IPBX Denial of
service

Low (0.71) None (0.85) None (0.85)

CVE-2020-35776 SRV IPBX Denial of
service

Low (0.71) None (0.85) Required
(0.62)

CVE-2021-26906 SRV IPBX Denial of
service

High (0.44) None (0.85) None (0.85)

CVE-2019-15297 SRV IPBX Denial of
service

Low (0.71) None (0.85) None (0.85)

CVE-2021-31878 SRV IPBX Denial of
service

Low (0.71) Low (0.62) None (0.85)

CVE-2021-32686 SRV IPBX Denial of
service

High (0.44) None (0.85) None (0.85)

CVE-2020-0796 PF WIN7,
PP WIN7,

PF XP, PP XP

Remote
code

execution

Low (0.71) None (0.85) None (0.85)

Table 16: Characteristics of the vulnerabilities present in the complex use case network

147 APPENDIX

Asset Description Count
FW-XX-INT Internal firewall, one for each site of the company 5
FW-XX-EXT External firewall, one for each site of the company 5
SWO-XX-

YY
Cisco switches used at each site to connect workstations to the

corporate network
135

SWS-XX-YY Cisco switches used at each site to connect servers to the
corporate network

15

SRV-APP-
YY

Enterprise application servers 10

SRV-WEB-
YY

Company’s web server 3

SRV-BDD-
YY

Enterprise database servers 3

SRV-MAIL-
01

Company’s mail server 1

SRV-XX-
IPBX

Company IP telephony server, one for each site 5

ADDC-XX Domain controller servers, one for each company site 5
PF-W10-YY Desktop workstations equipped with the Windows 10 operating

system, deployed on the different sites of the company
5,000

PF-W7-YY Desktop workstations equipped with the Windows 7 operating
system, deployed on the different sites of the company

5,000

PF-XP-YY Desktop workstations equipped with the Windows XP operating
system, deployed on the different sites of the company

5,000

PP-W10-YY Laptop workstations equipped with the Windows 10 operating
system, deployed on the different sites of the company

5,000

PP-W7-YY Laptop workstations equipped with the Windows 7 operating
system, deployed on the different sites of the company

5,000

PP-XP-YY Laptop workstations equipped with the Windows XP operating
system, deployed on the different sites of the company

5,000

IPC-YY IP phones distributed throughout the company’s sites 30,000
IMP-XX-YY HP printers present on all the sites of the company 120

AP-XX Access point Wifi present in the lobby of each site of the
organization

5

Table 17: List of assets present in the network of the complex use case (XX ∈ {PA,ST,MA,LY,BR}, YY ∈ N)

References

[1] “CrowdStrike’s work with the Democratic National Committee: Setting the record straight.” (), [Online].
Available: https://www.crowdstrike.com/blog/bears-midst-intrusion-democratic-national-
committee/.

[2] L. Skyttner, General Systems Theory: An Introduction. 1996.

[3] J. Ladyman, K. Wiesner, and J. Lambert, “What is a complex system?” European Journal for Philosophy
of Science, vol. 3, pp. 33–67, 2013.

[4] “MITRE ATT&CK.” (), [Online]. Available: https://attack.mitre.org/.

[5] D. A. Fernandes, L. F. Soares, J. V. Gomes, M. M. Freire, and P. R. Inácio, “Chapter 25 - A Quick
Perspective on the Current State in Cybersecurity,” in Emerging Trends in ICT Security, B. Akhgar and
H. R. Arabnia, Eds. 2014, pp. 423–442.

[6] M. D. L. Maxat Akbanov Vassilios G. Vassilakis, “WannaCry Ransomware: Analysis of Infection, Persis-
tence, Recovery Prevention and Propagation Mechanisms,” Journal of Telecommunications and Infor-
mation Technology, pp. 113–124, 2019.

[7] E. D. Wolff, K. M. Growley, M. O. Lerner, M. B. Welling, M. G. Gruden, and J. Canter, “Navigating the
SolarWinds Supply Chain Attack,” The Procurement Lawyer, vol. 56, no. 2, 2021.

[8] “Advanced Persistent Threats: Learn the ABCs of APTs - Part A.” (), [Online]. Available: https://www.
secureworks.com/blog/advanced-persistent-threats-apt-a.

[9] J. E. Sullivan and D. Kamensky, “How cyber-attacks in Ukraine show the vulnerability of the U.S. power
grid,” The Electricity Journal, vol. 30, no. 3, pp. 30–35, 2017.

[10] N. Falliere, L. O. Murchu, and E. Chien, “W32.Stuxnet Dossier,” Symantec Security Response, Tech.
Rep., 2011.

[11] Nessus scanner. [Online]. Available: https://www.tenable.com/products/nessus.

[12] “La méthode EBIOS Risk Manager.” (), [Online]. Available: https://www.ssi.gouv.fr/entreprise/
management-du-risque/la-methode-ebios-risk-manager/.

[13] “NIST Risk Management Framework (RMF).” (), [Online]. Available: https://csrc.nist.gov/projects/
risk-management/about-rmf.

[14] “Guide for Conducting Risk Assessments.” (), [Online]. Available: https://nvlpubs.nist.gov/nistpubs/
Legacy/SP/nistspecialpublication800-30r1.pdf.

[15] E. Doyle, D. McGovern, and S. McCarthy, “Compliance-Innovation Enabling strategic growth White Paper
April 13,” Nov. 2013.

https://www.crowdstrike.com/blog/bears-midst-intrusion-democratic-national-committee/
https://www.crowdstrike.com/blog/bears-midst-intrusion-democratic-national-committee/
https://attack.mitre.org/
https://www.secureworks.com/blog/advanced-persistent-threats-apt-a
https://www.secureworks.com/blog/advanced-persistent-threats-apt-a
https://www.tenable.com/products/nessus
https://www.ssi.gouv.fr/entreprise/management-du-risque/la-methode-ebios-risk-manager/
https://www.ssi.gouv.fr/entreprise/management-du-risque/la-methode-ebios-risk-manager/
https://csrc.nist.gov/projects/risk-management/about-rmf
https://csrc.nist.gov/projects/risk-management/about-rmf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-30r1.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-30r1.pdf

149 REFERENCES

[16] M. M. H. Onik, C.-S. KIM, and J. Yang, “Personal Data Privacy Challenges of the Fourth Industrial Revo-
lution,” Feb. 2019, pp. 635–638. DOI: 10.23919/ICACT.2019.8701932.

[17] G. Liang and W. Li, “A novel industrial control architecture based on Software-Defined Network,” Mea-
surement and Control, vol. 51, p. 002 029 401 878 431, Jul. 2018. DOI: 10.1177/0020294018784310.

[18] “A full range of high-performance systems.” (), [Online]. Available: https://www.naval-group.com/en/
systems.

[19] V. Nagaraju, L. Fiondella, and T. Wandji, “A survey of fault and attack tree modeling and analysis for
cyber risk management,” IEEE Conference on Technologies for Homeland Security, 2017.

[20] M. Audinot, S. Pinchinat, and B. Kordy, “Guided Design of Attack Trees: A System-Based Approach,”
Computer Security Foundations Workshop, pp. 61–75, 2018.

[21] A. E. M. AL-Dahasi and B. N. A. Saqib, “Attack tree Model for Potential Attacks Against the SCADA
System,” Telecommunications Forum (TELFOR), 2019.

[22] R. Maciel, J. Araujo, J. Dantas, C. Melo, E. Guedes, and P. Maciel, “Impact of a DDoS attack on computer
systems: An approach based on an attack tree model,” Annual IEEE Systems Conference, 2018.

[23] H.-K. Kong, M. K. Hong, and T.-S. Kim, “Security risk assessment framework for smart car using the
attack tree analysis,” Journal of Ambient Intelligence and Humanized Computing, vol. 9, pp. 531–551,
2018.

[24] R. W. Ritchey and P. Ammann, “Using Model Checking to Analyze Network Vulnerabilities,” IEEE Sym-
posium on Security and Privacy, pp. 156–165, 2000.

[25] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. M. Wing, “Automated Generation and Analysis of
Attack Graphs,” IEEE Symposium on Security and Privacy, pp. 273–284, 2002.

[26] P. Ammann, D. Wijesekera, and S. Kaushik, “Scalable, Graph-Based Network Vulnerability Analysis,”
Proceedings of the 9th ACM Conference on Computer and Communications Security, 2002.

[27] M. S. Barik, A. Sengupta, and C. Mazumdar, “Attack Graph Generation and Analysis Techniques,” De-
fence Science Journal, vol. 66, no. 6, pp. 559–567, 2016.

[28] S. Jajodia and S. Noel, “Topological Vulnerability Analysis: A Powerful New Approach For Network Attack
Prevention, Detection, and Response,” in Statistical Science and Interdisciplinary Research, S. K. Pal,
Ed. 2008, vol. 3, pp. 285–305.

[29] S. Jajodia, S. Noel, and B. O’Berry, “Topological Analysis of Network Attack Vulnerability,” in Managing
Cyber Threats, V. Kumar, J. Srivastava, and A. Lazarevic, Eds. 2005, pp. 247–266.

[30] Retina IoT (RIoT). [Online]. Available: https://www.beyondtrust.com/press/offers-free-cloud-
based-enterprise-iot-vulnerability-scanner.

[31] X. Ou, S. Govindavajhala, and A. W. Appel, “MulVAL: A Logic-based Network Security Analyzer,” in
Proceedings of the 14th, USENIX, Security Symposium, 2005.

[32] S. Ceri, G. Gottlob, and L. Tanca, “What you Always Wanted to Know About Datalog (And Never Dared
to Ask),” IEEE Transactions on Knowledge and Data Engineering, vol. 1, no. 1, pp. 146–166, 1989.

[33] K. Sagonas, T. Swift, and D. S. Warren, “XSB as an Efficient Deductive Database Engine,” ACM SIGMOD
Record, vol. 23, no. 2, 1999.

https://doi.org/10.23919/ICACT.2019.8701932
https://doi.org/10.1177/0020294018784310
https://www.naval-group.com/en/systems
https://www.naval-group.com/en/systems
https://www.beyondtrust.com/press/offers-free-cloud-based-enterprise-iot-vulnerability-scanner
https://www.beyondtrust.com/press/offers-free-cloud-based-enterprise-iot-vulnerability-scanner

150 REFERENCES

[34] X. Ou, W. F. Boyer, and M. A. McQueen, “A Scalable Approach to Attack Graph Generation,” Conference
on Computer and Communications Security, pp. 336–345, 2006.

[35] K. Ingols, R. Lippmann, and K. Piwowarski, “Practical Attack Graph Generation for Network Defense,”
ACSAC’06, IEEE, Ed., pp. 121–130, 2006.

[36] B. Yiğit, G. Gür, F. Alagöz, and B. Tellenbach, “Cost-aware securing of IoT systems using attack graphs,”
Ad Hoc Networks, vol. 86, pp. 23–35, 2019.

[37] L. Wang, A. Singhal, and S. Jajodia, “Measuring the Overall Security of Network Configurations Using
Attack Graphs,” IFIP Annual Conference on Data and Applications Security and Privacy, pp. 98–112,
2007.

[38] K. Bi, D. Han, and J. Wang, “K maximum probability attack paths dynamic generation algorithm,” Com-
puter Science and Information Systems, vol. 13, no. 2, pp. 677–689, 2016.

[39] F. Dai, Y. Hu, K. Zheng, and B. Wu, “Exploring risk flow attack graph for security risk assessment,” IET
Information Security, vol. 9, no. 6, pp. 344–353, 2015.

[40] U. Garg, G. Sikka, and L. K. Awasthi, “Empirical analysis of attack graphs for mitigating critical paths and
vulnerabilities,” Computers & Security, vol. 77, pp. 349–359, 2018.

[41] N. Polatidis, M. Pavlidis, and H. Mouratidis, “Cyber-attack path discovery in a dynamic supply chain
maritime risk management system,” Computer Standards & Interfaces, vol. 56, pp. 74–82, 2018.

[42] B. Sultan, F. Dagnat, and C. Fontaine, “A Methodology to Assess Vulnerabilities and Countermeasures
Impact on the Missions of a Naval System,” Computer Security, pp. 63–76, 2017.

[43] P. Johnson, A. Vernotte, M. Ekstedt, and R. Lagerström, “pwnPr3d: an Attack-Graph-Driven Probabilis-
tic Threat-Modeling Approach,” 11th International Conference on Availability, Reliability and Security
(ARES), pp. 278–283, 2016.

[44] Y. Yun, X. Xi-shan, and Q. Zhi-chang, “A Probabilistic Computing Approach of Attack Graph-Based
Nodes in Large-Scale Network,” Procedia Environmental Sciences, vol. 10, pp. 3–8, 2011.

[45] A. Singhal and X. Ou, “Security Risk Analysis of Enterprise Networks Using Probabilistic Attack Graphs,”
Network Security Metrics, pp. 53–73, 2017.

[46] L. Wang, T. Islam, T. Long, A. Singhal, and S. Jajodia, “An Attack Graph-Based Probabilistic Security
Metric,” in Data and Applications Security XXII, V. Atluri, Ed. 2008, pp. 283–296.

[47] J. Homer, X. Ou, and D. Schmidt, A Sound and Practical Approach to Quantifying Security Risk in En-
terprise Networks, Technical Reports from Department of Computing and Information Sciences, Kansas
State University, 2009.

[48] OMG Meta Object Facility (MOF) Core Specification. [Online]. Available: https://www.omg.org/spec/
MOF/2.5.1/PDF.

[49] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, “Section 24.3: Dijkstra’s algorithm,” Introduction to
Algorithms, pp. 595–601, Jan. 2001.

[50] N. Juha-Pekka, K. Ilmari, and V. Janne, “BAYESIAN NETWORKS – AN EXAMPLE OF SOFTWARE AND
SOME DEFENCE APPLICATIONS,” (R)evolution of War, 2015.

https://www.omg.org/spec/MOF/2.5.1/PDF
https://www.omg.org/spec/MOF/2.5.1/PDF

151 REFERENCES

[51] L. Muñoz-González, D. Sgandurra, M. Barrère, and E. C. Lupu, “Exact Inference Techniques for the
Analysis of Bayesian Attack Graphs,” IEEE Transactions on Dependable and Secure Computing, vol. 16,
no. 2, pp. 231–244, 2019.

[52] J. Pearl, “Reverend Bayes on Inference Engines: A Distributed Hierarchical Approach,” in Probabilistic
and Causal Inference: The Works of Judea Pearl. 2022, pp. 129–138.

[53] M. Vasimuddin, S. P. Chockalingam, and S. Aluru, “A Parallel Algorithm for Bayesian Network Inference
using Arithmetic Circuits,” IEEE International Parallel and Distributed Processing Symposium (IPDPS),
pp. 34–43, 2018.

[54] L. Muñoz-González, D. Sgandurra, A. Paudice, and E. C. Lupu, “Efficient Attack Graph Analysis through
Approximate Inference,” ACM Transactions on Privacy and Security, vol. 20, no. 3, 2016.

[55] K. W. Afrassa, A. Z. Boz, M. F. Amasyali, and S. Tahar, “Benchmarking BNT Inference Engines using an
Early Warning System,” Innovations in Intelligent Systems and Applications Conference (ASYU), 2020.

[56] “Inference in Bayesian networks.” (), [Online]. Available: https://courses.csail.mit.edu/6.034s/
handouts/spring12/chapter14_mod_b.pdf.

[57] S. Geman and D. Geman, “Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of
Images,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-6, no. 6, pp. 721–
741, 1984.

[58] N. Poolsappasit, R. Dewri, and I. Ray, “Dynamic Security Risk Management Using Bayesian Attack
Graphs,” Transactions on Dependable and Secure Computing, vol. 9, no. 1, pp. 61–74, 2012.

[59] X. Li, M. Li, and H. Wang, “Research on Network Security Risk Assessment Method Based on Bayesian
Reasoning,” International Conference on Electronics Information and Emergency Communication, 2019.

[60] J. Sembiring, M. Ramadhan, Y. S. Gondokaryono, and A. A. Arman, “Network Security Risk Analysis
using Improved MulVAL Bayesian Attack Graphs,” International Journal on Electrical Engineering and
Informatics, vol. 7, no. 4, pp. 735–753, 2015.

[61] P. Xie, J. H. Li, X. Ou, P. Liu, and R. Levy, “Using Bayesian networks for cyber security analysis,” Inter-
national Conference on Dependable Systems and Networks (DSN), 2010.

[62] Q. Zhang, C. Zhou, Y.-C. Tian, N. Xiong, Y. Qin, and B. Hu, “A Fuzzy Probability Bayesian Network
Approach for Dynamic Cybersecurity Risk Assessment in Industrial Control Systems,” IEEE Transactions
on Industrial Informatics, vol. 14, no. 6, pp. 2497–2506, 2018.

[63] A. Behfarnia and A. Eslami, “Risk Assessment of Autonomous Vehicles Using Bayesian Defense Graphs,”
IEEE 88th Vehicular Technology Conference (VTC-Fall), 2018.

[64] M. Frigault, L. Wang, A. Singhal, and S. Jajodia, “Measuring Network Security Using Dynamic Bayesian
Network,” Conference on Computer and Communications Security, pp. 23–30, 2008.

[65] S. Chockalingam, W. Pieters, A. Teixeira, and P. van Gelder, “Bayesian Network Models in Cyber Secu-
rity: A Systematic Review,” Nordic Conference on Secure IT Systems, pp. 105–122, 2017.

[66] M. J. Pappaterra and F. Flammini, “A Review of Intelligent Cybersecurity with Bayesian Networks,” IEEE
International Conference on Systems, Man and Cybernetics, pp. 445–452, 2019.

[67] S. E. Shimony and J. Eugene Santos, “Exploiting Case-Based Independence for Approximating Marginal
Probabilities,” International Journal of Approximate Reasoning, vol. 14, no. 1, pp. 25–54, 1996.

https://courses.csail.mit.edu/6.034s/handouts/spring12/chapter14_mod_b.pdf
https://courses.csail.mit.edu/6.034s/handouts/spring12/chapter14_mod_b.pdf

152 REFERENCES

[68] “Petri nets,” Université Paris Saclay. [Online]. Available: http://www.lsv.fr/~schwoon/enseignement/
verification/ws1617/nets.pdf.

[69] Y. Xu and R. Fu, “Petri Net-based Power CPS Network Attack and Impact Modeling,” International Con-
ference on Cloud Computing and Intelligence Systems (CCIS), pp. 1107–1110, 2018.

[70] M. H.Henry, R. M.Layer, and D. R.Zaret, “Coupled Petri nets for computer network risk analysis,” Inter-
national Journal of Critical Infrastructure Protection, vol. 3, no. 2, pp. 67–75, 2010.

[71] X. Liu, J. Zhang, and P. Zhu, “Modeling cyber-physical attacks based on probabilistic colored Petri
nets and mixed-strategy game theory,” International Journal of Critical Infrastructure Protection, vol. 16,
pp. 13–25, 2017.

[72] M. D. Traore, H. Jin, D. Zou, W. Qiang, and G. Xiang, “RAPn: Network Attack Prediction Using Ranking
Access Petri Net,” ChinaGrid Annual Conference (ChinaGrid), pp. 108–115, 2011.

[73] T. M. Chen, J. C. Sanchez-Aarnoutse, and J. Buford, “Petri Net Modeling of Cyber-Physical Attacks on
Smart Grid,” IEEE Transactions on Smart Grid, vol. 2, no. 4, pp. 741–749, 2011.

[74] M. Szpyrka and B. Jasiul, “Evaluation of Cyber Security and Modelling of Risk Propagation with Petri
Nets,” Symmetry, vol. 9, no. 3, 2017.

[75] L. M. Almutairi and S. Shetty, “Generalized Stochastic Petri Net Model Based Security Risk Assessment
of Software Defined Networks,” MILCOM, IEEE, Ed., pp. 545–550, 2017.

[76] W. Knottenbelt, “PIPE v2.5: A Petri net tool for performance modelling,” Proc. 23rd Latin American Con-
ference on Informatics (CLEI’07), 2007.

[77] R. Wu, W. Li, and H. Huang, “An Attack Modeling Based on Hierarchical Colored Petri Nets,” International
Conference on Computer and Electrical Engineering, pp. 918–921, 2008.

[78] M. López, A. Peinado, and A. Ortiz, “An extensive validation of a SIR epidemic model to study the
propagation of jamming attacks against IoT wireless networks,” Computer Networks, 2019.

[79] D. D. Guglielmo, S. Brienza, and G. Anastasi, “IEEE 802.15.4e: A survey,” Computer Communications,
vol. 88, pp. 1–24, 2016.

[80] C. Del-Valle-Soto, C. Mex-Perera, R. Monroy, and J. A. Nolazco-Flores, “On the Routing Protocol In-
fluence on the Resilience of Wireless Sensor Networks to Jamming Attacks,” Special Issue ”Wireless
Sensor Networks and the Internet of Things”, vol. 15, no. 4, pp. 7619–7649, 2015.

[81] S. König, S. Rass, S. Schauer, and A. Beck, “Risk Propagation Analysis and Visualization using Perco-
lation Theory,” IJACSA, vol. 7, no. 1, pp. 694–701, 2016.

[82] K. Christensen. “Percolation Theory.” (), [Online]. Available: https://web.mit.edu/ceder/publications/
Percolation.pdf.

[83] P. Erdös and A. Rényi, “On random graphs,” Publicationes Mathematicae Debrecen, vol. 6, p. 290, 1959.

[84] R. A. Hanneman. “Introduction to social network methods.” (), [Online]. Available: https://faculty.
ucr.edu/~hanneman/nettext/C11_Cliques.html.

[85] W. Chunlei, M. Qing, and F. Lan, “A COMPLEX NETWORK ANALYSIS MODEL FOR CYBERSPACE
SURVIVABILITY,” International Conference on Information and Network Security (ICINS), 2014.

http://www.lsv.fr/~schwoon/enseignement/verification/ws1617/nets.pdf
http://www.lsv.fr/~schwoon/enseignement/verification/ws1617/nets.pdf
https://web.mit.edu/ceder/publications/Percolation.pdf
https://web.mit.edu/ceder/publications/Percolation.pdf
https://faculty.ucr.edu/~hanneman/nettext/C11_Cliques.html
https://faculty.ucr.edu/~hanneman/nettext/C11_Cliques.html

153 REFERENCES

[86] P. Panigrahi and somnath Maity, “Vulnerability Analysis of Weighted Indian Power Grid Network Based
on Complex Network Theory,” 14th IEEE India Council International Conference (INDICON), 2017.

[87] A. Singh and P. K. Mishra, “Performance Analysis of Floyd Warshall Algorithm vs Rectangular Algorithm,”
International Journal of Computer Applications, vol. 107, no. 16, 2014.

[88] P. Bellini, R. Mattolini, and P. Nesi, “Temporal Logics for Real-Time System Specification,” ACM Comput-
ing Surveys, vol. 32, no. 1, pp. 12–42, 2000.

[89] P. Ammann, J. Pamula, R. Ritchey, and J. Street, “A Host-Based Approach to Network Attack Chaining
Analysis,” Annual Computer Security Applications Conference, pp. 84–94, 2005.

[90] A. Horn, “On sentences which are true of direct unions of algebras,” Journal of Symbolic Logic, vol. 16,
no. 1, pp. 14–21, 1951.

[91] H. Holm, “A Large-Scale Study of the Time Required to Compromise a Computer System,” Transactions
on Dependable and Secure Computing, pp. 2–15, 2014.

[92] “The Log Normal Distribution.” (), [Online]. Available: https://web.mit.edu/~r/current/arch/amd64_
linux26/lib/R/library/stats/html/Lognormal.html.

[93] “SolarWinds Network Discovery Tool.” (), [Online]. Available: https://www.solarwinds.com/network-
performance-monitor/use-cases/network-discovery-tool?CMP=BIZ-RVW-SWTH-AssetDiscvryTlsClsfctin-

NPM.

[94] “Automated Asset Discovery.” (), [Online]. Available: https://www.balbix.com/solutions/it-asset-
discovery-inventory-management/.

https://web.mit.edu/~r/current/arch/amd64_linux26/lib/R/library/stats/html/Lognormal.html
https://web.mit.edu/~r/current/arch/amd64_linux26/lib/R/library/stats/html/Lognormal.html
https://www.solarwinds.com/network-performance-monitor/use-cases/network-discovery-tool?CMP=BIZ-RVW-SWTH-AssetDiscvryTlsClsfctin-NPM
https://www.solarwinds.com/network-performance-monitor/use-cases/network-discovery-tool?CMP=BIZ-RVW-SWTH-AssetDiscvryTlsClsfctin-NPM
https://www.solarwinds.com/network-performance-monitor/use-cases/network-discovery-tool?CMP=BIZ-RVW-SWTH-AssetDiscvryTlsClsfctin-NPM
https://www.balbix.com/solutions/it-asset-discovery-inventory-management/
https://www.balbix.com/solutions/it-asset-discovery-inventory-management/

154 REFERENCES

List of Abbreviations

AC: Alternating Current.

AODV: Ad-hoc On-demand Distance Vector.

APT: Advanced Persistence Threat.

ANSSI: Agence Nationale de la Sécurité des Systèmes d’Information.

BAG: Bayesian Attack Graph.

BFS: Breadth-First Search.

BPM: Business Process Management.

BYOD: Bring Your Own Device.

CPS: Cyber-Physical System.

CPT: Conditional Probability Table.

CPU: Central Processing Unit.

CVE: Common Vulnerabilities Exposures.

CVSS: Common Vulnerability Scoring System.

DBN: Dynamic Bayesian Network.

156 ABBREVIATIONS

DC: Domain Controller.

DDoS: Distributed Denial of Service.

DFS: Depth-First Search.

DMZ: Demilitarized Zone.

DPID: Datapath ID.

DSR: Dynamic Source Routing.

FTP: File Transfer Protocol.

GB: Gigabyte.

GSPN: Generalized Stochastic Petri Nets.

HMI: Human-Machine Interface.

HR: Human Resources.

ICS: Industrial Control System.

IoT: Internet of Things.

IP: Internet Protocol.

IT: Information Technology.

LLDP: Link Layer Discovery Protocol.

MAC: Medium Access Control.

MOF: Meta Object Facility.

MPHP: Multi-Parent Hierarchical Protocol.

MulVAL: Multi host, multi stage Vulnerability Analysis tool.

NetSPA: Network Security Planning Architecture.

NIST: National Institute of Standards and Technology.

157 ABBREVIATIONS

NVD: National Vulnerability Database.

OSI: Open Systems Interconnection.

PIPE: Platform-Independent Petri net Editor.

PLC: Programmable Logic Controller.

PoC: Proof of Concept.

RDP: Remote Desktop Protocol.

RMF: Risk Management Framework.

RPC: Remote Procedure Call.

SDN: Software-Defined Networking.

SMB: Server Message Block.

SSH: Secure Shell.

TB: Terabyte.

TTC: Time To Compromise.

TTP: Tactics, Techniques and Procedures.

TVA: Topological Vulnerability Analysis.

USA: United States of America.

USB: Universal Serial Bus.

VLAN: Virtual Local Area Network.

VPN: Virtual Private Network.

WAP: Wireless Access Point.

158 ABBREVIATIONS

Titre: Une approche basée sur les graphes d’attaque dynamiques pour l’évaluation de l’impact des vulnérabilités
dans les systèmes informatiques complexes

Mots clés: Évaluation des risques, sécurité des réseaux, système dynamique, graphe d’attaque, simulation,
graphe d’attaque dynamique

Résumé: De nos jours, les réseaux informatiques sont
utilisés dans de nombreux domaines et leur défaillance
peut avoir un fort impact sur notre vie quotidienne.
L’évaluation de leur sécurité est une nécessité pour
réduire le risque de compromission par un attaquant.
Néanmoins, les solutions proposées jusqu’à présent
sont rarement adaptées à la grande complexité des
systèmes informatiques modernes. Elles reposent sou-
vent sur un travail humain trop important et les al-
gorithmes utilisés ne sont pas assez performants. De
plus, l’évolution du système dans le temps est rarement
modélisée et n’est donc pas prise en compte dans
l’évaluation de sa sécurité.
Dans cette thèse, nous proposons un nouveau modèle
de graphe d’attaque construit à partir d’une descrip-
tion dynamique du système. Nous avons mis en
évidence à travers nos expériences que notre modèle
permettait d’identifier davantage de chemins d’attaque
qu’un modèle de graphe d’attaque statique. Nous
avons ensuite proposé un algorithme de simulation
d’attaques permettant d’approximer les chances de
succès de compromission du système par un acteur

malveillant.
Nous avons également prouvé que notre solution était
capable d’analyser la sécurité de systèmes complexes.
La complexité en temps dans le pire des cas a été
évaluée pour chaque algorithme utilisé et plusieurs
tests ont été réalisés pour mesurer leurs performances
réelles. Pour terminer, nous avons appliqué notre solu-
tion sur un réseau informatique composé de plusieurs
milliers d’éléments.
De futurs travaux devraient être réalisés pour
améliorer les performances de l’algorithme de
génération des graphes d’attaque afin de permettre
d’analyser des systèmes toujours plus complexes. Des
solutions devraient également être trouvées pour fa-
ciliter l’étape de modélisation du système qui reste
encore à ce jour une tâche difficile à réaliser, surtout
par des humains. Enfin, l’algorithme de simulation
pourrait être amélioré pour être plus réaliste et tenir
compte des réelles capacités de l’attaquant. Il serait
également intéressant d’évaluer l’impact des attaques
au niveau de l’organisation et de ses processus métiers.

Title: A Dynamic Attack Graphs based approach for Impact Assessment of Vulnerabilities in Complex Com-
puter Systems

Keywords: risk assessment, network security, dynamic system, attack graph, simulation, dynamic attack graph

Abstract: Nowadays, computer networks are used in
many fields and their breakdown can strongly impact
our daily life. Assessing their security is a neces-
sity to reduce the risk of compromise by an attacker.
Nevertheless, the solutions proposed so far are rarely
adapted to the high complexity of modern computer
systems. They often rely on too much human work and
the algorithms used don’t scale well. Furthermore, the
evolution of the system over time is rarely modeled
and is therefore not considered in the evaluation of its
security.
In this thesis, we propose a new attack graph model
built from a dynamic description of the system. We
have shown through our experimentations that our
model allows to identify more attack paths than a
static attack graph model. We then proposed an at-
tack simulation algorithm to approximate the chances

of success of system compromise by a malicious actor.
We also proved that our solution was able to analyze
the security of complex systems. The worst-case time
complexity was assessed for each algorithm used. Sev-
eral tests were performed to measure their real per-
formances. Finally, we applied our solution on an IT
network composed of several thousands elements.
Future work should be done to improve the perfor-
mance of the attack graph generation algorithm in or-
der to analyze increasingly complex systems. Solutions
should also be found to facilitate the system modeling
step which is still a difficult task to perform, especially
by humans. Finally, the simulation algorithm could
be improved to be more realistic and take into account
the real capabilities of the attacker. It would also be
interesting to assess the impact of the attacks on the
organization and its business processes.

Institut Polytechnique de Paris

91120 Palaiseau, France

	Abstract
	Acknowledgement
	Table of contents
	List of figures
	List of tables
	Introduction
	Context and motivation
	Scientific challenges
	Main contributions and objectives
	Manuscript outline

	Review of the literature
	Introduction
	Example of computer systems
	IT system
	CPS system
	Embedded systems

	Multi-step attack modeling
	Definition
	Attack graph generation
	Attack graph-based risk assessment
	Bayesian attack graph
	Petri net based attack graphs
	Conclusion

	Epidemiological models
	Definition
	Deterministic assessment
	Stochastic assessment
	Conclusion

	Complex network theory
	Definition
	Cyberspace survivability
	Powergrid survivability
	Conclusion

	State-based modeling
	Definition
	Security assessment of a naval system
	Conclusion

	Discussion
	Conclusion

	Dynamic security assessment of complex systems
	Introduction
	Presentation of the dynamic attack graph model
	Presentation of the use case
	System modeling
	Attack graph generation

	Assessment of the risk of compromise based on dynamic attack graphs
	Simulation of an attack
	Metric calculation

	Performance evaluation of the solution
	Evaluation of the algorithms complexity
	Definition of variables
	Analysis of the complexity of the attack graph generation algorithm
	Optimization of the attack graph size
	Analysis of the complexity of the simulation algorithm

	Results of benchmarks
	Test environment
	Evolution of the attack graph size
	Evolution of the execution time of the attack graph generation algorithm
	Evolution of the execution time of the simulation algorithm

	Results of the scalability test
	Test environment
	Presentation of the results
	Conclusion

	Discussion
	Advantages of the solution
	Identified limitations
	Opportunities
	Identified risks

	Conclusion

	Conclusion
	Appendix
	Appendix A. Definition of literals and reasoning rules used in the MulVAL framework

	Appendix B. Description of the assets and vulnerabilities present in the use case of the complex computer network
	List of abbreviations

