
HAL Id: tel-03947676
https://theses.hal.science/tel-03947676v1

Submitted on 19 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Goal-oriented exploration for reinforcement learning
Jean Tarbouriech

To cite this version:
Jean Tarbouriech. Goal-oriented exploration for reinforcement learning. Artificial Intelligence [cs.AI].
Université de Lille, 2022. English. �NNT : 2022ULILB014�. �tel-03947676�

https://theses.hal.science/tel-03947676v1
https://hal.archives-ouvertes.fr

Université de Lille
École Doctorale MADIS

Thèse de Doctorat

Spécialité Informatique

présentée par
Jean Tarbouriech

Goal-Oriented Exploration for Reinforcement Learning
Exploration d’états buts pour l’apprentissage par renforcement

sous la direction de Philippe Preux et d’Alessandro Lazaric,
ainsi que l’encadrement deMichal Valko.

Soutenue publiquement le 6 juillet 2022 à Paris, devant le jury composé de

Aurélien Garivier Professeur, École Normale Supérieure de Lyon Rapporteur & Président
Yishay Mansour Professeur, Tel Aviv University Rapporteur
Doina Precup Professeure associée, McGill University, DeepMind Examinatrice
Michal Valko Chercheur, DeepMind Encadrant
Philippe Preux Professeur, Université de Lille, Inria Directeur de thèse
Alessandro Lazaric Chercheur, Meta AI Co-directeur de thèse

Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL),
UMR 9189 Équipe Scool, 59650, Villeneuve d’Ascq, France

Centre de Recherche en Informatique,
 Signal et Automatique de Lille

À Pops et Mops.

Remerciements

My first words of acknowledgement are for my advisors Alessandro and Michal. Thank you both for
your constant scientific and human support, whether it be to challengemyself evenmore during the good
moments, or to helpme overcome the difficult moments. Alessandro, your patience, kindness and clarity
not only convinced me to pursue a PhD after my internship with you but also helped me throughout
my PhD experience. Michal, I am very grateful for your research drive and useful advice, as well as
your care and invitations for social activities which were such a boon during the tough WFH period.

Je remercie également Philippe, mon directeur de thèse, pour sa disponibilité et la liberté qu’il m’a
accordée pendant ma thèse. I would also like to express my great gratitude to all my jury members.
I thank Aurélien and Yishay for taking the time to review my manuscript, as well as Doina for her
thoughtful questions during the defense.

I was very lucky to collaborate with some brilliant researchers and fellow PhD students. Matteo, a
warm thank you for your great help throughout my PhD, whether it be to push a paper over the finish
line or to boost my confidence during moments of doubt. I also learned a lot frommy other collaborators:
Evrard, Mohammad, Shekhar, Simon, Runlong, Ludovic, Pierre-Alexandre, Omar, Pierre.

J’en viens à l’exceptionnelle équipe des CIFRE qui a rendu cette expérience de thèse tellement plus
agréable à vivre au quotidien. Je remercie notamment Evrard : on s’est cassés la tête sur SSP ensemble
(cf. le fameux domac de rue Réaumur à 23h), on s’est plaints ensemble, et surtout on s’est marrés
ensemble. Je remercie aussi Pierre-Alexandre et Jean-Baptiste qui ont complété notre quatuor magique
de FIFA; un grand merci pour tous les délires partagés. Je salue aussi Guillaume, Stéphane, Gautier,
Charlotte, Hubert, Lina, Rui, Baptiste, Laurent, Virginie, Léonard, Louis.

Je remercie également la team lilloise. Tout particulièrement, Omar, merci pour ta bonne humeur de
tous les instants et nos moments inoubliables en soirées et voyages. Clin d’œil à nos Jitsi, Haxball et
BombSquad pendant les interminables confinements; je salue également mon autre demi-frère de thèse
lillois Xuedong. Je pense aussi à Pierre, Réda, Edouard, Antoine, Nathan, Sarah, Dorian, Julien.

De belles amitiés nées avant la thèse ont rendu mon expérience doctorale bien plus sympa. Un merci
spécial à Ibrahim, Mhamed, Michel, Julien, Edouard, Samba, Eduardo, Sami, Kevin, Victor, Louis, pour
les UrbanSoccer de feu et les soirées de folie.

Ces trois dernières années furent riches, intenses, surprenantes, marquées de plein fouet par les
multiples confinements. Je tiens à remercier Akiko qui plus que personne a partagé cette aventure avec
moi. Tu as été mon roc pendant ma thèse et je te remercie infiniment pour tout ce que tu m’as apporté.

Pour finir, je n’aurais pas traversé ces années sans ma famille qui m’a entouré, et je tiens à souligner
à quel point je vous en suis reconnaissant. Paul et Joseph, merci pour les délires fraternels. Merci à mes
parents pour leur affection et encouragements constants : je ne serais pas arrivé jusque là sans vous.

Résumé

Apprendre à atteindre des buts est une compétence à acquérir à grande pertinence pratique
pour des agents intelligents. Par exemple, ceci englobe de nombreux problèmes de navigation
(se diriger vers telle destination), de manipulation robotique (atteindre telle position du bras
robotique) ou encore certains jeux (gagner en accomplissant tel objectif). En tant qu’être vivant
interagissant avec le monde, je suis constamment motivé par l’atteinte de buts, qui varient en
portée et difficulté.

L’Apprentissage par Renforcement (AR) est un paradigme prometteur pour formaliser et
apprendre des comportements d’atteinte de buts. Un but peut être modélisé comme une config-
uration spécifique d’états de l’environnement qui doit être atteinte par interaction séquentielle
et exploration de l’environnement inconnu. Bien que divers algorithmes en AR dit “profond”
aient été proposés pour ce modèle d’apprentissage conditionné par des états buts, les méth-
odes existantes manquent de compréhension rigoureuse, d’efficacité d’échantillonnage et de
capacités polyvalentes. Il s’avère que l’analyse théorique de l’AR conditionné par des états buts
demeurait très limitée, même dans le scénario basique d’un nombre fini d’états et d’actions.

Premièrement, nous nous concentrons sur le scénario supervisé, où un état but qui doit être
atteint en minimisant l’espérance des coûts cumulés est fourni dans la définition du problème.
Après avoir formalisé le problème d’apprentissage incrémental (ou “online”) de ce modèle
souvent appelé Plus Court Chemin Stochastique, nous introduisons deux algorithmes au regret
sous-linéaire (l’un est le premier disponible dans la littérature, l’autre est quasi-optimal).

Au delà d’entraîner l’agent d’AR à résoudre une seule tâche, nous aspirons ensuite qu’il
apprenne de manière autonome à résoudre une grande variété de tâches, dans l’absence de
toute forme de supervision en matière de récompense. Dans ce scénario non-supervisé, nous
préconisons que l’agent sélectionne lui-même et cherche à atteindre ses propres états buts.
Nous dérivons des garanties non-asymptotiques de cette heuristique populaire dans plusieurs
cadres, chacun avec son propre objectif d’exploration et ses propres difficultés techniques. En
guise d’illustration, nous proposons une analyse rigoureuse du principe algorithmique de viser
des états buts “incertains”, que nous ancrons également dans le cadre de l’AR profond.

L’objectif et les contributions de cette thèse sont d’améliorer notre compréhension formelle
de l’exploration d’états buts pour l’AR, dans les scénarios supervisés et non-supervisés. Nous
espérons qu’elle peut aider à suggérer de nouvelles directions de recherche pour améliorer
l’efficacité d’échantillonnage et l’interprétabilité d’algorithmes d’AR basés sur la sélection et/ou
l’atteinte d’états buts dans des applications pratiques.

Abstract

Learning to reach goals is a competence of high practical relevance to acquire for intelligent
agents. For instance, this encompasses many navigation tasks (“go to target X”), robotic
manipulation (“attain position Y of the robotic arm”), or game-playing scenarios (“win the
game by fulfilling objective Z”). As a living being interacting with the world, I am constantly
driven by goals to reach, varying in scope and difficulty.

Reinforcement Learning (RL) holds the promise to frame and learn goal-oriented behavior.
Goals can be modeled as specific configurations of the environment that must be attained
via sequential interaction and exploration of the unknown environment. Although various
deep RL algorithms have been proposed for goal-oriented RL, existing methods often lack
principled understanding, sample efficiency and general-purpose effectiveness. In fact, very
limited theoretical analysis of goal-oriented RL was available, even in the basic scenario of
finitely many states and actions.

We first focus on a supervised scenario of goal-oriented RL, where a goal state to be reached
in minimum total expected cost is provided as part of the problem definition. After formalizing
the online learning problem in this setting often known as Stochastic Shortest Path (SSP), we
introduce two no-regret algorithms (one is the first available in the literature, the other attains
nearly optimal guarantees).

Beyond training our RL agent to solve only one task, we then aspire that it learns to au-
tonomously solve a wide variety of tasks, in the absence of any reward supervision. In this
challenging unsupervised RL scenario, we advocate to “Set Your Own Goals” (SYOG), which
suggests the agent to learn the ability to intrinsically select and reach its own goal states. We
derive finite-time guarantees of this popular heuristic in various settings, each with its specific
learning objective and technical challenges. As an illustration, we propose a rigorous analysis
of the algorithmic principle of targeting “uncertain” goals which we also anchor in deep RL.

The main focus and contribution of this thesis are to instigate a principled analysis of
goal-oriented exploration in RL, both in the supervised and unsupervised scenarios. We hope
that it helps suggest promising research directions to improve the interpretability and sample
efficiency of goal-oriented RL algorithms in practical applications.

viii

Contents

1 Introduction 1

1.1 Context and Scope . 1
1.2 Reinforcement Learning (RL) . 3
1.3 Goal-Oriented RL . 6
1.4 Outline and Contributions . 8

I Online Stochastic Shortest Path: Learning to Reach a Goal 14

2 Stochastic Shortest Path (SSP) 16

2.1 The SSP model . 17
2.2 Proper Policies . 19
2.3 Two Special Cases of SSP: Finite-Horizon and Discounted MDPs 21
2.4 On the Optimal Solution in SSP . 22
2.5 Planning in SSP, with a Focus on Value Iteration 24
2.6 A Simulation Lemma for SSP . 26
2.7 Extensions . 27

3 Online Stochastic Shortest Path 30

3.1 Formalizing Exploration in SSP: Minimizing Regret 31
3.2 A Special Case: Uniform-Cost Online SSP . 33
3.3 Three Desirable Properties of an Algorithm for Online SSP 35
3.4 On Regret-to-PAC in SSP . 36

Contents

4 UC-SSP, the First Algorithm for Online SSP 39

4.1 Preliminaries . 40
4.2 The UC-SSP Algorithm . 41
4.3 Regret Guarantee . 44
4.4 Regret Analysis . 46
4.5 Relaxation of Assumptions . 49
4.6 Discussion and Bibliographical Remarks . 50

5 EB-SSP, an Optimal Algorithm for Online SSP 52

5.1 The EB-SSP Algorithm . 53
5.2 Properties of VISGO . 55
5.3 Regret Analysis . 56
5.4 Regret Bounds for Known B⋆ . 57
5.5 Regret Bounds for Unknown B⋆ with Parameter-Free EB-SSP 59
5.6 Discussion and Bibliographical Remarks . 60

II Unsupervised Reinforcement Learning: Learning to Set Your Own Goals 65

6 Overview of Unsupervised RL & SYOG (Set Your Own Goals) 67

6.1 High-level Motivations behind URL . 68
6.2 Short Review of Empirical Studies of URL . 69
6.3 Short Review of Theoretical Studies of URL . 69
6.4 The SYOG Principle . 73

7 SYOG in Reward-Free Reset-Free Communicating MDPs 77

7.1 Motivation . 78
7.2 Problem Definition . 79
7.3 Online Learning for Sampling Oracle Simulation with GOSPRL 81
7.4 Applications of GOSPRL . 85
7.5 Experiments . 89

x

Contents

7.6 Discussion . 91

8 SYOG in Reward-Free Resettable MDPs 93

8.1 The Multi-Goal Exploration (MGE) Problem . 94
8.2 Our AdaGoal Approach . 97
8.3 Sample Complexity Guarantees . 101
8.4 Analysis Overview . 103
8.5 Operationalizing AdaGoal in Deep RL . 105

9 Incremental SYOG in Reward-Free Resettable MDPs 109

9.1 Incremental Autonomous Exploration . 110
9.2 The DisCo Algorithm . 114
9.3 Sample Complexity Analysis . 116
9.4 Numerical Simulation . 121
9.5 Discussion and Bibliographical Remarks . 122

10 General Conclusion and Perspectives 125

10.1 Conclusion on our Contributions . 125
10.2 Perspectives . 125

A Complements on Chapter 2 130

B Complements on Chapter 3 133

C Complements on Chapter 4 139

D Complements on Chapter 5 163

E Complements on Chapter 7 203

F Complements on Chapter 8 239

G Complements on Chapter 9 273

List of Figures 293

xi

Contents

List of Algorithms 297

List of Tables 298

List of References 300

xii

Chapter 1

Introduction

1.1 Context and Scope

As a living being interacting with the world, I am constantly driven by goals to pursue, which
can vary in scope and difficulty, from perennial goals of arriving to work on time or finding
food, to cognitive goals of winning a game of chess or writing a doctoral thesis, to Utopian
goals of scoring a goal in a World Cup final or solving Goldbach’s conjecture. How might one
define a “goal”? Goal setting theorists Locke and Latham (2002, page 705) suggest:

A goal is the object or aim of an action, for example, to attain a specific standard of proficiency, usually
within a specified time limit.

Alternatively, Elliot and Fryer (2008, page 245) propose:

A goal is a cognitive representation of a future object that the organism is committed to approach or avoid.

The acclaimed book “Artificial Intelligence: AModern Approach” of Russell and Norvig (2002),
which defines an agent as “anything that can be viewed as perceiving its environment through
sensors and acting upon that environment through actuators”, argues that along with “simple
reflex”, “model-based reflex” and “utility-based” agents,

Goal-based agents [are one of the] four basic kinds of agent programs that embody the principles
underlying almost all intelligent systems. [...] The agent needs some sort of goal information that

describes situations that are desirable [...] to choose actions that achieve the goal.

In this thesis, we study goals and goal-oriented behavior under the light of the mathemat-
ical and algorithmic framework of Reinforcement Learning (RL). In this paradigm, an agent
sequentially interacts with an unknown environment, by taking an action in the current state,

1

Introduction

Figure 1.1 – A goal-based agent. It keeps track of the world state as well as a set of goals it is trying to
achieve, and chooses an action that will (eventually) lead to the achievement of its goals. Figure from
Russell and Norvig (2002, Figure 2.13).

transitioning to the next state and (optionally) receiving a reward (or incurring a cost). A goal
can be seen as a specific configuration of the environment that must be achieved, while optionally
maximizing some notion of cumulative reward (or equivalently, minimizing some notion of
cumulative cost). In particular, a goal may be represented as a particular target state or a set of
target states: we will frame goals as such throughout the thesis and thus use the expression
goal or goal state interchangeably. The agent is said to be goal-oriented, or goal-conditioned, if its
behavior is directly influenced by the goal that it pursues, until the said goal is attained (or
abandoned); at which point, another goal (either the same or different) may be considered.
The agent must learn how the environment behaves (exploration), while learning how to act
optimally to reach the goal (exploitation). Goals can be separated into two main categories:

• A goal is said to be extrinsic, or supervised, when it is prescribed by the environment
along with a goal-dependent cost function over the state-action space. The objective of
the agent is to minimize the total expected cost to reach the goal state. In the special case
where costs are uniform, this is equivalent to minimizing the expected time to reach the
goal state.

• A goal is said to be intrinsic, or unsupervised, when it is autonomously set by the agent,
which aims to reach it (by optionally minimizing an intrinsically generated cost function).
This scenario is particularly relevant when the RL environment does not provide any
reward/cost function nor goal to reach, or alternatively provides many of them (i.e.,
numerous rewards/costs and/or numerous goals), or finally when the agent chooses
to ignore them if they are not informative enough.1 This falls under the umbrella of
unsupervised RL, which refers to methods where the agent defines alternative and/or
complementary objectives that are not directly driven by an extrinsic signal.

1For instance, an extrinsic reward/cost signal may be too sparse, time-varying or delayed, while an extrinsic goal
state may be too difficult to reach from the starting state in a reasonable amount of time.

2

1.2 Reinforcement Learning (RL)

The structure of this thesis will mirror this fundamental distinction: Part I will focus on
extrinsic/supervised goals and Part II will focus on intrinsic/unsupervised goals.

The main motivation for studying goal-oriented behavior is its prevalence in practical
applications. Take, for instance, many navigation tasks (“go to target X”), robotic manipulation
(“attain position Y of the robotic arm”), or game-playing scenarios (“win the game by fulfilling
objective Z”). Some representative RL research environments that display a goal-oriented flavor
include:

• AntMaze (Fu et al., 2020), a navigation domain simulating a 8-DoF “Ant” quadraped
robot to reach a fixed goal location;

• FetchReach (Plappert et al., 2018), a robotic manipulation environment that simulates a
7-DoF Fetch arm that must move the gripper to a target location;

• Breakout, an Atari 2600 game implemented in the Arcade Learning Environment (Belle-
mare et al., 2013), where the agent is presented with a high-dimensional visual input
(210× 160 RGB video at 60Hz) and its objective is to destroy all bricks on the screen.

Strikingly, although goal-oriented RL effectively models many tasks and has garnered increasing
empirical attention in deep RL, its rigorous quantitative evaluation and theoretical analysis had remained
elusive at the beginning of this PhD thesis in 2019, even in the basic scenario with finitely many states
and actions.

This thesis is motivated by the objective of improving our formal understanding of goal-
oriented exploration in RL. By partly filling this gap in the literature, we hope this work helps
suggest promising research directions to improve the empirical performance (i.e., sample
efficiency) and the underlying principles (i.e., interpretability) of practical RL algorithms in
effectively generating and/or solving goal-reaching tasks.

1.2 Reinforcement Learning (RL)

In the traditional RL paradigm, an agent interacts with an environment modeled as a Markov
decision process (Puterman, 2014, MDP). At each time step t ∈ N⋆ (where N⋆ denotes the set
of positive integers), the environment is in a state st ∈ S and the agent takes an action at ∈ A,
where S andA denote the sets of possible states and actions, respectively. As a consequence, the
agent transitions to a next state st+1 ∈ S , drawn from a conditional distribution P (·|st, at) that
we call the transition dynamics P : S ×A → ∆(S), where ∆(X) denotes the set of probability
distributions over ameasurable setX . At each time step t, the agentmay also receive a supervised
signal in the form of an instantaneous cost c(st, at) ∈ [0, 1],2 otherwise in the unsupervised case

2While we often consider deterministic costs for simplicity, the extension to stochastic costs drawn i.i.d. from a
distribution on [0, 1] with expectation c(st, at) is rather straightforward.

3

Introduction

the agent may generate its own cost function over the state-action space. Equivalently, one
may translate costs into rewards by simply considering negation. An MDP is thus defined as
the tupleM ≜ ⟨S,A, s0, P, c⟩, where s0 ∈ S denotes the initial state.3 We say that an MDP is
reward-free (or cost-free) if it is defined as the tupleM ≜ ⟨S,A, s0, P ⟩.

An RL agent’s actions can be drawn from a state-dependent distribution π(at | st), called
the policy π : S → ∆(A). Quantifying the behavior of policies depends on the nature of the
interaction that the agent has with the environment, which prescribes the objective that should
be optimized. In all generality, the performance of a policy can be informed by a time-dependent
weighting of the sequence of costs incurred by executing the policy in the environment.

Definition 1.1 (Policy return). Consider any sequence of weights ω : N⋆ → R+ such that there
exists Ω ∈ [0,+∞] that ensures the existence of the following limit

Ω ≜ lim
T→+∞

T∑
t=1

ω(t). (1.1)

Then the (possibly infinite) return Uπ of a policy π is a random variable defined as the weighted
sum of the instantaneous costs

Uπ ≜ lim
T→+∞

T∑
t=1

ω(t) · c(st, at) (1.2)

accumulated along a trajectory τ = (s1, a1, s2, a2, . . .) induced by the policy at ∼ π(·|st) and
transition dynamics st+1 ∼ P (· | st, at).

Definition 1.1 subsumes the two most common performance criteria considered in the RL
literature:

• Infinite-horizon discounted criterion: The policy is evaluated by the infinite sum of dis-
counted costs, where the aversion for long-term costs is controlled by a constant γ ∈ [0, 1)
called the discount factor. The weights are defined as ω(t) ≜ γt−1 (note that Ω = 1/(1−γ)).

• Finite-horizon criterion: The policy is evaluated by its cumulative costs over a fixed length
ofH ∈ N⋆ time steps called the horizon. The weights are defined as ω(t) ≜ 1[t ≤ H] (note
that Ω = H).

A third criterion, called the infinite-horizon undiscounted criterion, can also be characterized
by Definition 1.1. In this case, the policy is evaluated by its average cumulative cost over an

3It is straightforward to extend to the case where the starting state s0 is sampled from a possibly unknown
distribution in ∆(S).

4

1.2 Reinforcement Learning (RL)

infinite interaction period, therefore the weights can be defined uniformly as ω(t) ≜ 1/T in
Equation (1.2).

Given the random variable of the policy return, taking its expectation yields the value
function which quantifies how well the policy performs on average.

Definition 1.2 (Value functions). The state value V π(s) of a policy π is the expected return of
the policy when starting in state s ∈ S, i.e.,

V π(s) =∆ E
[
Uπ | s1 = s

]
,

where the expectation is w.r.t. the random trajectory generated by executing π starting from state
s ∈ S. Similarly, the state-action value Qπ(s, a) of a policy π is the expected return of the policy
when starting in state s ∈ S and taking action a ∈ A, i.e.,

Qπ(s, a) =∆ E
[
Uπ | s1 = s, a1 = a

]
.

This allows to define the generic objective of an RL agent: finding an optimal policy π⋆.

Definition 1.3 (Optimality). If it exists, a policy π⋆ is said to be optimal if it minimizes the
value functions V π and Qπ in every state and action. If they exist, we also define the optimal value
functions V ⋆ and Q⋆ as

∀s ∈ S, V ⋆(s) =∆ V π⋆(s) = min
π
V π(s),

∀(s, a) ∈ S ×A, Q⋆(s, a) =∆ Qπ
⋆(s, a) = min

π
Qπ(s, a).

Both the infinite-horizon discounted and finite-horizon criteria verify some convenient
properties. First, due to the boundedness of costs in [0, 1], it is easy to see that the value function
of any policy π starting from any state s is bounded, i.e., V π(s) ≤ 1/(1 − γ) and V π(s) ≤ H ,
respectively. Moreover, if S and A are finite, there always exists an optimal policy π⋆ that is
stationary and deterministic (that is, a mapping from states to actions, i.e., π⋆ : S → A); and
when P and c are known, π⋆ can be computed efficiently using standard planning techniques,
e.g., value iteration, policy iteration or linear programming (Bertsekas, 1995; Puterman, 2014).

The RL scenario deals with the more realistic yet challenging setting where P and c are
unknown to the agent. The high-level learning objective is to achieve a performance as close

5

Introduction

and as quickly as possible to the optimal policy π⋆. Several performance measures have been
introduced to evaluate RL algorithms, such as regret and sample complexity. Both criteria have
been analyzed by an extensive line of research (representative works include e.g., Kearns and
Singh, 2002; Brafman and Tennenholtz, 2002; Kakade, 2003; Strehl and Littman, 2008; Azar
et al., 2017; Dann et al., 2017; Jin et al., 2018; Zanette and Brunskill, 2019).

Despite their thorough study (both theoretically and empirically), both the finite-horizon
and infinite-horizon discounted settings assume that there exists a fixed intrinsic horizon (re-
spectivelyH and 1/(1− γ)4) known to the learning agent. Depending on the convention, H
or γ can be explicitly part of the problem definition (i.e., selected by a higher-level agent, e.g.,
a human), or must be selected by the learning agent to define its optimization objective on
the MDP. Either way, in many common RL applications (e.g., objective of accumulating more
reward than a specific threshold, or of navigating to a specific state), it is not clear how to
define H or γ to ensure that these applications can be adequately solved by optimizing the
corresponding finite-horizon or discounted model. On the one hand, setting H (and/or γ) too
small will generate a bias in the optimal behavior. On the other hand, setting H (and/or γ)
too large will increase the range of the quantities of interest (i.e., value functions), which can
lead to numerical instabilities as well as vacuous theoretical guarantees (since the majority of
existing regret or sample complexity guarantees explicitly scale with H or 1/(1− γ)).

As a result, carefully presetting an adequate horizon H (and/or γ) is non-trivial and it
requires strong task- and environment-dependent prior knowledge. In particular, both the
finite-horizon and infinite-horizon discounted criteria may poorly capture tasks where the
interaction only ends if a stopping condition is adaptively met (i.e., if the stopping condition is
not predefined but depends on the online interaction). In particular, goal-oriented tasks, where
the objective is to minimize the total expected costs to a goal state, have an intrinsic horizon
(i.e., the time to reach the goal) that (in most cases) is a random hitting time that depends on
the agent’s behavior and is unknown in advance. Hence, they cannot be effectively modeled by
either the finite-horizon or infinite-horizon (discounted) criterion.

1.3 Goal-Oriented RL

Whether goals are extrinsically or intrinsically generated, formally analyzing goal-oriented
behavior in RL requires, at the bare minimum, to define a goal space G which defines the set of
possible goals on which the agent may condition its behavior, and a goal-achievement function
Ψ : S ×G → {0, 1}which assesses the achievement of the goal at the agent’s current state s ∈ S .
We focus on goals that can be expressed as target features of the state that the agent desires

4The quantity 1/(1 − γ) uppers bounds the return of any policy under the discounted setting since the instanta-
neous costs are in [0, 1] and∑∞

t=1 γ
t−1 = 1/(1 − γ) for any 0 ≤ γ < 1.

6

1.3 Goal-Oriented RL

to achieve.5 It is often considered that there exists a known and tractable mapping ϕ : S → G
that defines a goal representation (which is usually of lower dimensionality than the state
space when the latter is high-dimensional). Meanwhile, the goal-achievement function could
for example be defined as Ψ(s, g) ≜ 1[d(ϕ(s), g) ≤ ε], for some metric d : G × G → R+ (e.g.,
the Euclidean distance) and a given threshold ε ≥ 0, where 1 denotes the indicator function.
Note that in practice a sparse and binary goal-driven reward signal may be derived from Ψ as
Rg(s) ≜ Ψ(s, g) or Rg(s) ≜ Ψ(s, g)− 1 and used to train the RL agent (Plappert et al., 2018).

Throughout most of the thesis, we consider that the MDP is finite, i.e., both S and A are
finite with cardinalities denoted by S and A, respectively. While this restricts the scope of our
investigation, we will see that even in this basic scenario our understanding of goal-oriented
RL had remained elusive, thus making it a natural starting point for future research on more
applicable settings. Formally, we consider that G ⊆ S, i.e., goals can be expressed as states of
the environment that the agent desires to reach; and that a goal g ∈ G is achieved when the
current state s coincides with g, i.e., when Ψ(s, g) ≜ 1[s = g].

According the goal-oriented criterion, the agent’s objective is to minimize the expected
cumulative costs until the goal state g is reached (the goal and cost function can be either
extrinsically or intrinsically generated). This is often called the Stochastic Shortest Path (SSP)
objective (Bertsekas, 1995). It can be formalized by instantiating Definition 1.1 with the weights
ω(t) ≜

∏t
i=1 1[si ̸= g], which we can equivalently write ω(t) ≜ 1[t ≤ inf{i ≥ 0 : si+1 = g}].

This choice of weights captures that the agent’s interaction should last as long as the goal state g
has not been reached. Compared to the finite-horizon or infinite-horizon discounted weights, the
SSP weights possess the unique feature of being random variables that depend on the trajectory
(i.e., the state sequence (st)t≥1) and thus on the policy. Indexing the weights by the policy π
and denoting by ωπ(t) the associated random variable, we set Ωπ ≜ limT→+∞ E[

∑T
t=1 ωπ(t)].

SSP is a general criterion which includes both the finite-horizon and discounted criteria as
special cases, as we will see in Chapter 2. With such modeling flexibility comes new technical
challenges. Indeed, we first notice that there may exist policies π for which Ωπ = +∞; in
fact, in environments where the goal is non-trivial to reach, this will be the case for many
policies. Moreover, an infinite Ωπ may imply an infinite value function V π at some states; for
example this holds if all non-goal costs are positive (i.e., c(s, a) > 0 for all (s, a) ∈ S \ {g} ×A).
In addition, there may not exist a policy π⋆ that minimizes the value function as defined in
Definition 1.3. Finally, even if there exists one, it may never reach the goal, i.e., it may hold that
Ωπ⋆ = +∞. These observations give us a glimpse that careful technical attention and extra
assumptions are required to properly optimize the goal-oriented criterion, which will be the
focus of Chapters 2 and 3.

5In all generality, some goals cannot be expressed as target state features, see for instance the survey of Colas
et al. (2020, Section 4) for a general typology of goal representations in the RL literature.

7

Introduction

Criterion Finite-horizon Infinite-horizon
discounted Goal-oriented (a.k.a. SSP)

Weights ω(t)
of policy return 1[t ≤ H] γt−1

∏t
i=1 1[si ̸= g]

= 1[t ≤ inf{i ≥ 0 : si+1 = g}]
Do the weights
require some
parameter /

prior knowledge?
Horizon H Discount γ

None
(apart from goal state

identity g)
Do the weights
adapt to the

agent’s behavior?
No No Yes

Intrinsic horizon Ω H 1
1−γ

?
(→ +∞ for some policies)

Table 1.1 – Characteristics of the weights of policy return (see Definition 1.1) for different performance
criteria: finite-horizon, infinite-horizon discounted, and goal-oriented (a.k.a. stochastic shortest path).

1.4 Outline and Contributions

The general research question driving this thesis can be framed as:

Under which learning objectives, environment assumptions and algorithmic designs
can we perform provably efficient exploration in goal-oriented RL,
driven by either extrinsically or intrinsically generated goals?

As a first step in such an endeavour, in Part I we focus on an extrinsically predefined goal
state and tackle the unaddressed research question of how to effectively reach it in minimum
total expected cost. In Chapter 3, we formalize the online learning problem in the Stochastic
Shortest Path setting (online SSP in short) and identify the unique technical challenges that
arise, with a particular focus on the regret minimization framework. In Chapter 4, we propose
the first no-regret algorithm for online SSP. In Chapter 5, we advance the state-of-the-art for
online SSP by designing an algorithm that is simultaneously regret-optimal and fully agnostic
to the difficulty of reaching the goal (a.k.a. parameter-free). This result conveys the conceptual
message that it is possible to design intelligent agents that are able to adapt to the unknown
difficulty of the task at hand (i.e., the goal-reaching horizon) without sacrificing learning
performance.

Beyond training our RL agent to solve only one goal-reaching task, in Part II we aspire that
it learns to autonomously solve a wide variety of tasks, in the absence of any reward/cost/goal
supervision. In this challenging unsupervised RL scenario, we advocate to “Set Your Own Goals”
— in short, SYOG — which suggests the agent to learn the ability to intrinsically select and
reach its own goal states. This general-purpose technique has already been widely studied
from an empirical viewpoint, as we review in Chapter 6. Our main contribution is a thorough

8

1.4 Outline and Contributions

and formal analysis of SYOG in various settings, each with its specific exploration objective and
technical challenges. At a high level, we demonstrate how SYOG allows to provably efficiently
perform either total, local, or incremental coverage of the state space, respectively. ▷ In Chapter 7,
we study SYOG in reward-free reset-free communicating6 MDPs. We introduce a new decoupled
approach for online RL which isolates the (objective-specific) prescription of state-action
samples to collect and the (objective-agnostic) goal-driven collection of the desired samples.
We show how this decoupled approach allows us to tackle in a unifying manner a variety of
“unsupervised RL” objectives (e.g., cover the state space, estimate the transition dynamics, or
learn a set of accurate goal-reaching policies). ▷ In Chapter 8, we examine SYOG in reward-free
resettable7 MDPs. We introduce the multi-goal exploration objective, which consists of learning
a near-optimal goal-conditioned policy for the (initially unknown) set of goal states that are
reachable within a given number of steps in expectation from the starting state. We tackle it
by designing an intrinsic goal selection scheme that leverages a measure of uncertainty of the
agent’s goal-reaching ability to adaptively target goals that are neither too difficult nor too
easy. We also investigate, conceptually and empirically, how this idea can be operationalized
in deep RL. ▷ Finally, in Chapter 9, we analyze an incremental8 (or compositional) version of
SYOG in reward-free resettable MDPs. Building on the formalism of Lim and Auer (2012), we
refine the learning objective and introduce the first algorithm able to learn an incrementally
near-optimal goal-conditioned policy. Throughout Part II, we will stress on the dependencies
of our theoretical guarantees and compare them between the settings and assumptions, with a
closing focus on avoiding a dependence on the total number of states in the learning guarantees.

6An MDP is said to be communicating if for any pair of states (s, s′), there exists a policy that can reach s′

starting from swith probability 1.
7An MDP is said to be resettable if the action space contains a known action areset that deterministically resets

the agent to the starting state s0.
8At a high level, this means focusing on states that satisfy a (a priori unknown) recursive structure: a state is said

to be incrementally reachable if it can be attained by a policy going through states that are themselves incrementally
reachable. A policy is then said to be incrementally near-optimal if it is near-optimal among the class of policies
that go through states that are incrementally reachable (and execute the action areset in the other states).

9

Introduction

Chapter 1
Introduction

Part I: Learning to Reach a Predefined Goal
⇝ Supervised Goal-Oriented RL

Chapter 2
Stochastic Shortest Path

(SSP)

Chapter 3
Exploration in SSP

(Online SSP)

Chapter 4
First algorithm
for online SSP

Chapter 5
Optimal algorithm

for online SSP

Part II: Learning to Set Your Own Goals (SYOG)
⇝ Unsupervised Goal-Oriented RL

Chapter 6
Unsupervised RL
& SYOG principle

Chapter 7
SYOG in reward-free

reset-free
communicating MDPs

Chapter 8
SYOG in reward-free
resettable MDPs

Chapter 9
Incremental SYOG
in reward-free
resettable MDPs

Chapter 10
Conclusion

Figure 1.2 – This thesis is structured around the way goal states are generated. We start with the
supervised scenario of Part I where a goal state to be reached in minimum total expected cost is provided
as part of the problem definition. Leveraging its technical findings, we then move to the unsupervised
scenario of Part II that focuses on learning to autonomously solve a variety of tasks in the absence of any
reward supervision, by intrinsically generating and reaching a sequence of goals.

10

1.4 Outline and Contributions

List of publications in international conferences with proceedings

Publications presented in this thesis

• Jean Tarbouriech, Omar Darwiche Domingues, Pierre Ménard, Matteo Pirotta, Michal
Valko, Alessandro Lazaric. Adaptive Multi-Goal Exploration. In International Conference
on Artificial Intelligence and Statistics (AISTATS), 2022 (presented in Chapter 8)

• Jean Tarbouriech, Matteo Pirotta, Michal Valko, Alessandro Lazaric. A Provably Effi-
cient Sample Collection Strategy for Reinforcement Learning. In Neural Information
Processing Systems (NeurIPS), 2021 (presented in Chapter 7)

• Jean Tarbouriech∗, RunlongZhou∗, Simon S. Du,Matteo Pirotta,Michal Valko, Alessandro
Lazaric. Stochastic Shortest Path: Minimax, Parameter-Free and Towards Horizon-
Free Regret. In Neural Information Processing Systems (NeurIPS), 2021 (presented in
Chapters 3 and 5)

• Jean Tarbouriech, Matteo Pirotta, Michal Valko, Alessandro Lazaric. Improved Sample
Complexity for Incremental Autonomous Exploration in MDPs. In Neural Information
Processing Systems (NeurIPS), 2020 (presented in Chapter 9)

• Jean Tarbouriech, Evrard Garcelon, Michal Valko, Matteo Pirotta, Alessandro Lazaric.
No-Regret Exploration inGoal-Oriented Reinforcement Learning. In International Con-
ference on Machine Learning (ICML), 2020 (presented in Chapters 3 and 4)

Publications discussed in this thesis

• Pierre-Alexandre Kamienny∗, Jean Tarbouriech∗, Sylvain Lamprier, Alessandro Lazaric,
Ludovic Denoyer. Direct then Diffuse: Incremental Unsupervised Skill Discovery for
State Covering andGoal Reaching. In International Conference on Learning Representations
(ICLR), 2022 (discussed in Chapter 10)

• Jean Tarbouriech, Matteo Pirotta, Michal Valko, Alessandro Lazaric. Sample Complexity
Bounds for Stochastic Shortest Path with a Generative Model. In Algorithmic Learning
Theory (ALT), 2021 (discussed in Chapter 3)

• Jean Tarbouriech, Shubhanshu Shekhar, Matteo Pirotta, Mohammad Ghavamzadeh,
Alessandro Lazaric. Active Model Estimation in Markov Decision Processes. In Uncer-
tainty in Artificial Intelligence (UAI), 2020 (discussed in Chapter 6)

• Jean Tarbouriech, Alessandro Lazaric. Active Exploration in Markov Decision Pro-
cesses. In International Conference on Artificial Intelligence and Statistics (AISTATS), 2019
(discussed in Chapter 6)

∗denotes equal contribution.

11

Introduction

Collaborations not mentioned in this thesis

• Evrard Garcelon, Baptiste Rozière, Laurent Meunier, Jean Tarbouriech, Olivier Teytaud,
Alessandro Lazaric, Matteo Pirotta. Adversarial Attacks on Linear Contextual Bandits.
In Neural Information Processing Systems (NeurIPS), 2020

12

Part I

Online Stochastic Shortest Path:
Learning to Reach a Predefined Goal

Overview of Part I:

? Open research question: Given an extrinsically predefined goal state in an unknown
environment, learn how to effectively reach it while minimizing the total expected costs.

� Key contribution: We formalize the setting of exploration in the Stochastic Shortest
Path problem (a.k.a. online SSP) and derive two no-regret algorithms.

✓ Relevance: The SSP setting is general (encompassing both finite-horizon and dis-
counted MDPs) and it models numerous RL tasks (e.g., navigation, game playing).

Chapter 2

Stochastic Shortest Path (SSP)

In this chapter, we provide a technical overview of the Stochastic Shortest Path (SSP)
problem, where the objective is to minimize the expected cumulative cost to reach a specific
goal state. We review some results available in the literature on planning in SSP, i.e., on the
existence and computation of the optimal policy when all parameters of the SSP model are
known. We also show how the two commonly studied settings of finite-horizon MDPs and
infinite-horizon discounted MDPs can be cast as special cases of SSP. Lastly, we derive a
simulation lemma for SSP to illustrate some SSP-specific technical challenges. This chapter lays
the technical foundations for the online formulation of SSP that we will introduce and analyze
in the remainder of Part I.

Contents
2.1 The SSP model . 17

2.2 Proper Policies . 19

2.3 Two Special Cases of SSP: Finite-Horizon and Discounted MDPs 21

2.4 On the Optimal Solution in SSP . 22

2.5 Planning in SSP, with a Focus on Value Iteration 24

2.6 A Simulation Lemma for SSP . 26

2.7 Extensions . 27

16

2.1 The SSP model

2.1 The SSP model

The stochastic shortest path (SSP) problem was first introduced by Eaton and Zadeh (1962) in
the context of pursuit-evasion games and it was then studied thoroughly for the first time by
Bertsekas and Tsitsiklis (1991), whose work lays the technical foundations for Chapter 2. As
argued by Guillot and Stauffer (2020), “SSP arises naturally in robot motion planning, from
maneuvering a vehicle over unfamiliar terrain, steering a flexible needle through human tissue
or guiding a swimming micro-robot through turbulent water for instance (Alterovitz et al.,
2007). It has also many applications in operations research, artificial intelligence and economics:
from inventory control, reinforcement learning to asset pricing (see e.g., White, 1993; Merton,
1973; Bäuerle and Rieder, 2011; Sutton, Barto, et al., 1998).”

Definition 2.1 (SSP-MDP). An SSP instance is an MDP M ≜ ⟨S,A, P, c, s0, g⟩, where S
is the finite state space with cardinality S, A is the finite action space with cardinality A, and
s0 ∈ S is the initial state. We denote by g /∈ S the goal state, and we set S ′ ≜ S ∪ {g} (and
S′ ≜ S+1). Taking action a in state s incurs a (instantaneous) cost drawn i.i.d. from a distribution
on [0, 1] with expectation c(s, a), and the next state s′ ∈ S ′ is selected with probability P (s′|s, a)
(where∑s′∈S′ P (s′|s, a) = 1). The goal state g is absorbing and zero-cost, i.e., P (g|g, a) = 1 and
c(g, a) = 0 for any action a, which effectively implies that the agent ends its interaction withM
once it reaches the goal g. Finally, let cmin ≜ mins∈S,a∈A c(s, a) ∈ [0, 1] denote the minimum cost
over S ×A.

Notation. A stationary and deterministic policy π : S → A is a mapping from state s to
action π(s), and we denote by Π the set of such policies. For notational convenience, let Ps,a ≜
P (·|s, a), Ps,a,s′ ≜ P (s′|s, a). For any two vectors X,Y of size S′, we write their inner product
as XY ≜ ∑s∈S′ X(s)Y (s), we denote ∥X∥∞ ≜ maxs∈S′ |X(s)|, ∥X ∦=g∞ ≜ maxs∈S |X(s)|, and
if p is a probability distribution on S ′, then we define the variance of X w.r.t. p as V(p,X) ≜∑
s∈S′ p(s)X(s)2 − (

∑
s∈S′ p(s)X(s))2.

Objective. The SSP objective is to minimize its expected cumulative cost incurred until the
goal is reached. The following definitions ground the performance of a policy in SSP (note
that they are equivalent to the definitions given in Chapter 1 with the ω(t) notation since the
goal state is absorbing and zero-cost by Definition 2.1).

Definition 2.2 (Expected cost-to-goal). The (possibly infinite) expected cost-to-goal — which
we call the value function — of a policy π ∈ Π and its (possibly infinite) associated Q-function are

17

Stochastic Shortest Path (SSP)

defined for any (s, a) ∈ S ×A as

V π(s) ≜ lim
T→∞

E
[T∑
t=1

ct(st, π(st))
∣∣ s1 = s

]
,

Qπ(s, a) ≜ lim
T→∞

E
[T∑
t=1

ct(st, π(st))
∣∣ s1 = s, π(s1) = a

]
,

where ct ∈ [0, 1] is the (instantaneous) cost incurred at time t at state-action pair (st, π(st)), and
the expectation is w.r.t. the random sequence of states generated by executing π starting from state
s ∈ S (and taking action a ∈ A in the second case). By definition of the goal, we set V π(g) ≜ 0
and Qπ(g, a) ≜ 0 for all policies π ∈ Π and actions a ∈ A.

Definition 2.3 (Expected time-to-goal). For any policy π ∈ Π and state s ∈ S , let τπ(s) be the
(possibly infinite) hitting time from s to g when executing π, i.e.,

τπ(s) ≜ inf
{
t ≥ 0 : st+1 = g| s1 = s, π

}
.

The (possibly infinite) expected time-to-goal of a policy π ∈ Π is then defined for any s ∈ S as

T π(s) ≜ E
[
τπ(s)

]
= lim

T→∞
E
[T∑
t=1

1[st ̸= g]
∣∣ s1 = s

]
.

We now define the standard Bellman operators for the SSP model.

Definition 2.4 (Bellman operators). For any V ∈ RS and s ∈ S , we define the policy evaluation
Bellman operator Lπ for any policy π ∈ Π as well as the optimal Bellman operator L as follows

LπV (s) ≜ c(s, π(s)) + Ps,π(s)V, (2.1)
LV (s) ≜ min

a∈A

{
c(s, a) + Ps,aV

}
. (2.2)

Remark 2.5. The conventional fixed point equations V ⋆ = LV ⋆ and V π = LπV π are referred to
as Bellman’s equations for the optimal value function and for the value function ofπ, respectively.
They are generally expected to hold in MDP models (it is indeed the case in discounted MDPs
or finite-horizon MDPs), yet this may not be the case in SSP-MDPs. Before going further in
understanding why, we need to review an important SSP-specific characterization of proper
policies.

18

2.2 Proper Policies

2.2 Proper Policies

Definition 2.6 (Proper policies). A policy π is said to be proper if it reaches the goal g with
probability 1 when starting from any state in S . Otherwise, it is said to be improper. We denote by
Πproper ⊆ Π the set of proper, stationary and deterministic policies.

Throughout Part I, wemake the following basic assumptionwhich ensures that the SSP problem
is well-posed.

Assumption 2.7. For the MDPM there exists at least one proper policy, i.e., Πproper ̸= ∅.

Properties. We have the following important relations between the quantities of interest in
Definitions 2.2 and 2.3, which depend on whether the policy is proper and on the value of the
minimum cost cmin.
• A proper policy has a finite expected time-to-goal and a finite expected cost-to-goal, i.e.,

∀π ∈ Πproper, ∀s ∈ S, T π(s) < +∞, V π(s) < +∞.

This stems from the fact that the Markov chain induced by any proper policy on the
MDP M is absorbing with recurrent state g and a finite number of S transient states,
hence from standard Markov chain theory (see e.g., Norris, 1998), the expected time until
absorption has a finite expectation. The value function is then finite by boundedness of
the instantaneous costs.

• An improper policy has an expected time-to-goal with at least one unbounded component,
which may also be the case for its value function (e.g., in the special case when all non-goal
costs are positive), i.e.,

∀π /∈ Πproper, ∃s ∈ S, T π(s) = +∞.

cmin > 0 =⇒ ∀π /∈ Πproper, ∃s ∈ S, V π(s) = +∞.

• The expected time-to-goal and cost-to-goal of a policy can be related as follows

∀π ∈ Πproper, ∀s ∈ S, V π(s) ≤ T π(s) ≤ V π(s)
cmin

, (2.3)

where the first inequality always holds since costs are in [0, 1] and the second inequality
only holds if cmin > 0. This anticipates the key role of cmin in SSP analysis, as we will see
in Sections 2.4 to 2.6 and the subsequent chapters.

19

Stochastic Shortest Path (SSP)

• From Bertsekas (1995), for any proper policy π ∈ Πproper, the operator Lπ is a contraction
w.r.t. some weighted sup-norm ∥·∥∞,ψπ on RS , defined for some vector ψπ ∈ RS , ψπ > 0
by ∥J∥∞,ψπ ≜ maxs∈S |J(s)|/ψπ(s). On the other hand, for any improper policy π, Lπ is
not a contraction w.r.t. any norm. Finally, in the special case where all policies are proper,
L is a weighted sup-norm contraction,1 but in the general case Lmay not be a contraction
w.r.t. any norm.
In the following definition we introduce the concept of SSP-diameter which measures the

complexity of navigating to the goal starting from any state. We choose this name to relate
to the conventional diameter in infinite-horizon undiscounted MDPs, which measures the
complexity of navigating between any two pair of states (Jaksch et al., 2010).

Definition 2.8 (SSP-diameter). We define the SSP-diameter D as the shortest path between any
starting state and the goal state, i.e.,

D ≜ max
s∈S

min
π∈Π

T π(s).

Note that Assumption 2.7 implies that D < +∞.

A simple (yet unsatisfactory) modification of policies to make them all proper. The above
discussion shows that a key separation of policies is between those that are proper and improper.
While computing a proper policy (there exists at least one from Assumption 2.7) may require
some effort, the following lemma shows that it is not difficult to find some proper policy, namely
the uniform random policy. As an immediate corollary, any policy can be made proper by
simply injecting enough randomization over the action space (e.g., via an ε-greedy strategy),
albeit with possibly very large expected time-to-goal and thus poor goal-reaching behavior.

Lemma 2.9. For any SSP problem satisfying Assumption 2.7, the uniform random policy is proper.

Proof. ByAssumption 2.7, there exists some proper policy µ ∈ Πproper. Its expected time-to-goal
is upper bounded component-wise, that is, there exists some m ∈ N⋆ such that Tµ(s) ≤ m

for every s ∈ S. By Markov’s inequality, P(τµ(s) > 2m) ≤ Tµ(s)/(2m) ≤ 1/2. Denote
by πu the uniform random policy, which selects an action at random based on a uniform

1Specifically, when all policies are proper, letting ψ(s) ≜ supπ Tπ(s), it holds that Lπ (for any policy π) and L
are contractions w.r.t. the weighted sup-norm ∥·∥∞,ψ with modulus α ≜ maxs∈S(ψ(s) − 1)/ψ(s) < 1, i.e.,

∥LπJ − LπJ ′∥∞,ψ ≤ α∥J − J ′∥∞,ψ , ∥LJ − LJ ′∥∞,ψ ≤ α∥J − J ′∥∞,ψ.

20

2.3 Two Special Cases of SSP: Finite-Horizon and Discounted MDPs

probability distribution over the action space. Then πu executes the same action as policy µ for
2m consecutive stages with probability (1/A)2m > 0. It follows that the probability of reaching
the goal state within 2m stages by following the uniform random policy is greater than or equal
to (1/A)2m/2, starting from any state. As a result, we can write

T πu(s) =
+∞∑
n=0

P
(
τπu(s) > n

)
≤ 2m

+∞∑
j=0

P
(
τπu(s) > 2mj

)
≤ 2m

+∞∑
j=0

(
1− (1/A)2m/2

)j ≤ 4mA2m,

which concludes that the uniform random policy is proper. Nonetheless, note that its goal-
reaching behavior can be quite poor, as the bound on its expected time-to-goal scales exponen-
tially inm (as a power of the number of actions A).

2.3 TwoSpecialCases of SSP: Finite-Horizon andDiscountedMDPs

The general SSP problem features two possibly conflicting objectives — reaching the goal
vs.minimizing cost. If we make additional assumptions and only focus on one of these two
objectives, we can relate SSP to simpler and more commonly studied settings.

First, we can assume that there exists a known upper bound H on the hitting time of any
policy π ∈ Π starting from any state s ∈ S , i.e., ππ(s) ≤ H almost surely. This is often called the
loop-free SSP version, which is quite restrictive and fails to hold in many realistic environments
(as explained at the end of this section). In this case, the SSPproblem is equivalent to the popular
finite-horizon RL problem, where the objective is to minimize the expected costs accumulated
over H steps.

Second, we can assume that all costs are uniform and that all transitions are deterministic
(i.e., P : S × A → S). This scenario is for example captured by a simple deterministic
navigation problem, where the state of the agent is its current location, the four actions are
deterministically moving 1 step along each of east, west, north or south, and the agent has a
goal state g that it is trying to reach as quickly as possible. Then the SSP problem is equivalent
to a discounted RL problem for any choice of discount factor γ ∈ (0, 1), where the objective is to
minimize the expected cumulative discounted costs. Intuitively, the discount factor provides
incentive to reach the goal state earlier in the trajectory, hence the optimal behavior in the
discounted setting corresponds to finding the shortest path from the initial state to the goal
state. This is because the discounted value function of a state given a deterministic policy is
ϕ(d, γ) ≜

∑d−1
t=0 γ

t = (1 − γd)/(1 − γ), where d denotes the number of steps required by the
policy to reach the goal state, and ϕ(d, γ) is a monotonically increasing function in d for any
γ ∈ (0, 1).

21

Stochastic Shortest Path (SSP)

We have thus demonstrated that there exist special cases of SSP that recover both the finite-
horizon objective and the discounted objective. Conversely, as alluded to in Chapter 1, any
finite-horizon or discounted problem can be cast as an SSP problem. We detail below this claim:

• Any finite-horizon MDP with horizon H ∈ N⋆ can be interpreted as having a goal state g
that is guaranteed to be reached at step H + 1. Formally, it can be embedded into an SSP
problemby extending the state space toS×[H+1] and choosingP ((g,H+1)|(s,H), a) = 1
for all (s, a) ∈ S ×A.

• Any infinite-horizon discounted MDP with discount factor γ < 1 can be reduced to an
equivalent SSP problem in which, for every state-action pair, there is a probability (1− γ)
of making a transition to the goal state, with the other transition probabilities normalized.

Observe that for the SSP problems created by these two reductions, all policies are proper, i.e.,
Πproper = Π. In fact, the special case of SSP where all policies are proper is easier to study
mathematically (Bertsekas, 1995), although this assumption is often unrealistic. Indeed, in
many problems it is possible for the agent to “loop” back to states, such as in navigation where
cardinal actions can cancel each other’s effects.

2.4 On the Optimal Solution in SSP

Equipped with Assumption 2.7 and an additional condition defined below (that all improper
policies incur high cost), one can derive the following important properties on proper policies.

Proposition 2.10 (Bertsekas and Tsitsiklis, 1991, Lemma1). Suppose that Assumption 2.7
holds and that the following additional condition holds
(♣) For every improper policy π′ there exists at least one state s ∈ S such that V π′(s) = +∞.
Let π be any policy, then

• If there exists a vector U : S → R such that U(s) ≥ LπU(s) for all s ∈ S, then π is proper,
and V π(s) ≤ U(s) for all s ∈ S.

• If π is proper, then its value function V π is the unique solution to the Bellman equations
V π(s) = LπV π(s) for all s ∈ S.

The first property of Proposition 2.10 follows from the monotonicity of the operator Lπ
(Bertsekas, 1995) and the fact that for any arbitrary vector U , limi→+∞(Lπ)iU = V π. It will turn
out to be a useful technical tool to prove subsequent results (e.g., Lemmas 2.13 and 2.14). The
second property, which shows that a policy is proper if and only if its value function satisfies

22

2.4 On the Optimal Solution in SSP

the Bellman equations, paves the way for the following important results on the optimal policy
in SSP.

Proposition 2.11 (Bertsekas and Tsitsiklis, 1991; Yu and Bertsekas, 2013). Under the condi-
tions of Proposition 2.10, the policy that minimizes the value function component-wise is stationary,
deterministic, and proper; let us denote it by π⋆. Moreover, V ⋆ = V π⋆ is the unique solution of the
optimality equations V ⋆ = LV ⋆ and V ⋆(s) < +∞ for any s ∈ S. Finally, the optimal Q-value,
denoted by Q⋆ = Qπ⋆ , is related to the optimal value function, for all (s, a) ∈ S ×A, as follows

Q⋆(s, a) = c(s, a) + Ps,aV
⋆,

V ⋆(s) = min
a∈A

Q⋆(s, a).

Under the two conditions of Propositions 2.10 and 2.11, the policy that minimizes the value
function is necessarily proper, hence the two objectives (minimizing costs and reaching the
goal) coincide. If we relax condition (♣), this may no longer be the case. Indeed, consider the
simple scenario where there exists an action a† ∈ A such that P (s0|s0, a

†) = 1 and c(s0, a
†) = 0.

Then, a strategy to incur minimal (namely, zero) total cost would be simply to execute action
a† forever at the initial state s0, however the goal would never be reached. Since reaching the
goal is one of the agent’s main objectives, we thus expect the agent to target the optimal proper
policy, i.e.,

π⋆ ∈ arg min
π∈Πproper

V π.

Now, we can handle the second requirement (♣) of Propositions 2.10 and 2.11 as follows
(Bertsekas and Yu, 2013). First, the requirement is in particular verified if all instantaneous
costs are strictly positive. To deal with the case of non-negative costs, we can introduce a small
perturbation η ∈ (0, 1] to all costs to yield a new (strictly positive) cost function cη(s, a) ≜
max{c(s, a), η}. In this cost-perturbed MDP, the conditions of Propositions 2.10 and 2.11 hold
so we get an optimal policy π⋆η that is stationary, deterministic and proper and has a finite value
function V ⋆

η . Taking the limit as η → 0, we have that π⋆η → π⋆ and V ⋆
η → V π⋆ , where π⋆ is the

optimal proper policy in the original model that is also stationary and deterministic, and V π⋆

denotes its value function (Bertsekas and Yu, 2013). This enables to circumvent the second
condition of Propositions 2.10 and 2.11 and only require Assumption 2.7 to hold.

23

Stochastic Shortest Path (SSP)

Algorithm 2.1: Value Iteration for SSP (VI-SSP) with precision level η
1 Input: Goal g, states S, actions A, transitions P , costs c and VI precision level η > 0.
2 Set u0 ≜ 0S and n ≜ 0.
3 Compute u1 ≜ Lu0.
4 while ∥un+1 − un∥∞ > η do
5 un+1 ≜ Lun.
6 Set U ≜ un and π(s) ∈ arg mina∈A

{
c(s, a) + Ps,aU

}
for any s ∈ S.

7 Output: Value vector U and greedy policy π.

2.5 Planning in SSP, with a Focus on Value Iteration

Early work by Bertsekas and Tsitsiklis (1991), followed by a rich line of research (e.g., Bertsekas,
1995; Bonet, 2007; Kolobov et al., 2011; Hansen, 2011; Bertsekas and Yu, 2013; Guillot and
Stauffer, 2020), examine the planning problem in SSP, i.e., how to compute an optimal policy
when all parameters of the SSP model are known (i.e., transitions P and costs c). Under
Assumption 2.7 and the additional condition (♣), the optimal policy is proper, deterministic
and stationary and can be computed efficiently using standard planning techniques, e.g., value
iteration, policy iteration or linear programming.

Value iteration (VI). Throughout the thesis, our algorithms will compute policies using
VI-based planning procedures, hence we focus our discussion on it. Value Iteration (VI)
(Bellman, 1966) is a dynamic programming approach that starts with an initial estimate of
the states’ values, V0, and iteratively applies the optimal Bellman operator L to them, i.e.,
Vi+1 ← LVi = Li+1V0. The optimal value function V ⋆ is the unique fixed point of L and
repeated application of this operator provably forces VI to converge to V ⋆ irrespectively of the
initializing value function V0, i.e., limi→∞ Vi = V ⋆ component-wise.

For an RL algorithm to be computationally efficient, we cannot expect it to have a planning
procedure that iterates infinitely. As a result, we now study the impact of a finite number of
iterations on the convergence speed and the suboptimality gap of the VI procedure, which will
turn out to be useful throughout the thesis. In what follows, we consider a positive cost function
lower bounded by cmin > 0.

Formally, the procedure VI-SSP (Algorithm 2.1) considers the following inputs: a goal g /∈ S ,
states S, actions A, transitions probabilities P , a cost function c with (non-goal) costs lower
bounded by cmin > 0, and a VI precision level η > 0. It outputs an S-sized vector U and a
policy π that is greedy w.r.t. the vector U .

24

2.5 Planning in SSP, with a Focus on Value Iteration

Convergence speed. To bound the number of iterations required to reach the termination
condition (line 4 in Algorithm 2.1), we can use the following useful result of Bonet (2007).

Proposition 2.12 (Bonet, 2007, Corollary 4.1). Assume that the SSP instance satisfies Assump-
tion 2.7 and cmin > 0. Moreover, assume that the model does not admit self-loops (apart from at the
goal), i.e., P (s, a, s) = 0 for all (s, a) ∈ S ×A (this assumption is a non-restrictive technicality
since a model can be “converted” into an equivalent model that satisfies the no-self-loop assumption,
see Bertsekas, 1995, page 89, Bonet, 2007, Section 3). Let V be an admissible initial value vector,
i.e., 0 ≤ V ≤ V ⋆. Then applying the value iteration algorithm for SSP achieves a residual of
||V ⋆ − LnV ||∞ ≤ ε in a number of iterations n bounded as

n = O

(
||V ⋆||2∞S2

c2
min

+
(

log ||V ⋆||∞ + | log ε|
) ||V ⋆||∞S

cmin

)
.

Combining Proposition 2.12 with the triangle inequality directly ensures that VI-SSP (Algo-
rithm 2.1) is computationally efficient in the sense that it terminates in a number of iterations
that is polynomially bounded by ||V ⋆||∞, c−1

min, S and | log η|.

Suboptimality gap. We now seek to bound the suboptimality gap ||V ⋆ − V π||∞. Note that U
is not the value function of π, however both quantities can be related according to the following
lemma, whose proof is deferred to Section A.1. Note that similar suboptimality bounds have
also been derived by Bertsekas (1995) (in the special case of only proper policies) and Hansen
(2011).

Lemma 2.13. Let (U, π) ≜ VI-SSP(g,S,A, P, c, η) be the solution computed by VI-SSP (Algo-
rithm 2.1). The following component-wise inequalities hold

• U ≤ V ⋆ ≤ V π.

• If the VI precision level verifies η ≤ cmin
2 , then V π ≤

(
1 + 2η

cmin

)
U .

Combining the two inequalities above gives that if the VI precision level verifies η ≤ cmin
2 , then

||V π − V ⋆||∞ ≤
2η||V ⋆||∞
cmin

·

25

Stochastic Shortest Path (SSP)

2.6 A Simulation Lemma for SSP

One of the most basic and fundamental results in RL is called the simulation lemma, which
quantifies how much error we incur in evaluating policies if we build an approximate MDPM
for the true MDPM . Akin to the existing simulation lemmas in finite-horizon or discounted
MDPs (see e.g., Kearns and Singh, 2002), we nowderive a simulation lemma tailored to SSP (see
proof in Section A.2), with the purpose of showcasing some SSP-specific technical challenges.

Lemma 2.14 (Simulation Lemma for SSP). Consider any accuracy level η > 0 and any two
models P and P ∈ P(P)

η , where P(P)
η represents the set of models “close” to P and is formally

defined as follows

P(P)
η ≜

{
P ′ ∈ RS

′×A×S′ : ∀(s, a) ∈ S ′ ×A, P ′(·|s, a) ∈ ∆(S ′), ∥P (·|s, a)− P ′(·|s, a)∥1 ≤ η
}
.

Assume that for each model P and P , there exists at least one proper policy w.r.t. the goal state g.
Consider a known cost function in [0, 1] with minimum non-goal cost cmin > 0. Consider any
policy π that is proper in P , with value function denoted by V π, such that the following condition is
verified

η∥V π∥∞ ≤ 2cmin. (2.4)

Then π is proper in P (i.e., its value function verifies V π < +∞ component-wise), and we have

∀s ∈ S, V π(s) ≤
(

1 + 2η∥V π∥∞
cmin

)
V
π(s),

and conversely,

∀s ∈ S, V π(s) ≤
(

1 + η∥V π∥∞
cmin

)
V π(s).

Combining the two inequalities above yields

∥V π − V π∥∞ ≤
7η∥V π∥2∞
cmin

·

For comparison let us now recall the classical simulation lemma for discounted MDPs.

26

2.7 Extensions

Proposition 2.15 (Simulation Lemma for discounted MDPs, see e.g., Kearns and Singh,
2002). Consider any two models P and P ∈ P(p)

η for any η > 0. Consider as value function
in P the expected discounted cumulative reward, i.e., for any policy π and state s ∈ S, V π(s) ≜
E
[∑+∞

t=1 γ
tr(st, π(st)) | s1 = s

]
; andV π is the value function inP . Suppose that the instantaneous

rewards are known and bounded in [0, 1]. Then for any policy π, we have

∥V π − V π∥∞ ≤
γη

2(1− γ)2 ·

We spell out the key differences between the simulation lemma in the discounted setting
(Proposition 2.15) and in SSP (Lemma 2.14), bringing to light the criticalities in the latter
setting. Due to the lack of contraction property for the Bellman operators in SSP, we need
to take a different path than the discounted analysis; specifically, we cast the error between
the models as a translation of the instantaneous costs, which enables us to find a suitable
vector to apply the first property of Proposition 2.10. We also observe that the guarantee of
Lemma 2.14 requires condition (2.4), which involves both the accuracy η and the value function
of π in P ∈ P(P)

η . This is due to the fact that in SSP the performance (i.e., value function) of a
policy may be arbitrarily bad (even infinite), whereas in discounted MDPs it is always upper
bounded by the intrinsic horizon 1/(1−γ). In Lemma 2.14, such “trajectory length” is captured
by the ratio between the infinity norm of the value function of the policy and the minimum
cost cmin, which upper bounds the expected time-to-goal of the policy starting from any state
(cf. Equation (2.3)). This anticipates the key role of the minimum cost cmin in the analysis of
the online formulation of the SSP problem, as we will see in the subsequent chapters.

2.7 Extensions

Heuristic search methods. Since VI stores values for the entire state space, it may run out
of memory as the size of the SSP model increases. A line of research has focused on deriving
methods with smaller memory consumption and faster run-time than VI. Many of them, e.g.,
LRTDP (Bonet and Geffner, 2003b), LAO∗ (Hansen and Zilberstein, 2001) or FRET (Kolobov
et al., 2011), fall under the heuristic search paradigm, conceptually described by the Find-and-
Revise (F&R) framework (Bonet and Geffner, 2003a). F&R algorithms use the knowledge of
the initial state and an admissible heuristic (i.e., an initial estimate for the value function that
does not underestimate the values of any states under V ⋆) to compute the optimal policy for
an SSP problem while avoiding visits to many of the states that are not part of that policy. It
could be an interesting direction of future investigation to apply such techniques in the learning

27

Stochastic Shortest Path (SSP)

formulation of SSP that we introduce in Chapter 3 so as to design learning algorithms that are
more tractable than VI-based ones.

SSP with dead-end states. While Assumption 2.7 is natural, it does not encompass various
scenarios that contain at least one dead-end state fromwhich reaching the goal g is impossible. To
this end, various alternative objectives have been analyzed with VI-based and heuristic search
algorithms, such as assigning a finite and fixed penalty for not reaching the goal (Finite-Penalty,
Kolobov et al., 2012), maximizing the probability of getting to the goal while ignoring the
expected cost (Max-Prob, Kolobov et al., 2011), or minimizing the expected cost among the
policies with maximum goal-reaching probability (Min-Cost given Max-Prob, Trevizan et al.,
2017). Throughout Part I, we mostly consider that Assumption 2.7 holds, except in Section 4.5
where we discuss a way to relax this assumption in the learning formulation of SSP (using the
Finite-Penalty approach). In Part II, we will also study goal-driven objectives in environments
that may not satisfy Assumption 2.7.

28

Chapter 3

Online Stochastic Shortest Path

In this chapter, we formalize for the first time the online learning problem in the SSP
setting (a.k.a. online SSP), where both the transition dynamics and the cost function are initially
unknown. We structure the agent’s interaction in episodes of indefinite length, that terminate
(and reset the agent) if and only if the goal is reached. We propose an adequate notion of regret
to quantify the performance of the learning agent (i.e., how well the behavior of the optimal
policy is approximated). We also identify desirable properties for a learning algorithm in online
SSP (i.e., minimax-optimal, parameter-free, horizon-free). This chapter lays the foundations
for the two no-regret algorithms that we will introduce in Chapters 4 and 5. 1

Contents
3.1 Formalizing Exploration in SSP: Minimizing Regret 31

3.2 A Special Case: Uniform-Cost Online SSP . 33

3.3 Three Desirable Properties of an Algorithm for Online SSP 35

3.4 On Regret-to-PAC in SSP . 36

1This chapter is based on material from three articles published in the proceedings of the 37 th International
Conference on Machine Learning (ICML 2020), the 34 th Conference on Neural Information Processing Systems
(NeurIPS 2021) and the 32nd International Conference on Algorithmic Learning Theory (ALT 2021) (Tarbouriech
et al., 2020a; Tarbouriech et al., 2021c; Tarbouriech et al., 2021b).

30

3.1 Formalizing Exploration in SSP: Minimizing Regret

3.1 Formalizing Exploration in SSP: Minimizing Regret

We formalize the online learning problem in SSP where the agent does not have any prior
knowledge of the cost function c or transition function P . Each episode starts at the initial state
s0 ∈ S (the extension to any possibly unknown distribution of initial states is straightforward),
and ends onlywhen the goal state g is reached (note that this may never happen if the agent does
not reach the goal). We introduce the following performance metric to capture the high-level
objective of approximating as quickly as possible the optimal goal-reaching behavior.

Definition 3.1 (SSP-regret). We evaluate the performance of the agent afterK ≥ 1 episodes by
its SSP-regret, which we define as

RK ≜
K∑
k=1

Ik∑
h=1

ckh −K · min
π∈Πproper

V π(s0), (3.1)

where Ik is the (random) time needed to complete episode k and ckh is the cost incurred in the h-th
step of episode k when visiting (skh, akh). Also let TK ≜

∑K
k=1 I

k be the total time elapsed over the
K episodes. If there exists k such that Ik is infinite, then we define RK =∞ and TK =∞.

A few remarks on the proposed definition of SSP-regret are in order. First, we notice that
we consider as optimal comparator the quantity minπ∈Πproper V

π instead of minπ∈Π V
π as would

be done in other settings (e.g., finite-horizon, infinite-horizon). This stems from the fact that
in SSP the policy that minimizes the value function may not be proper, yet we expect our
agent to reach the goal at each episode in order to terminate it, therefore we compare to the
best proper policy, as motivated in Chapter 2. On the one hand, the definition of SSP-regret
resembles the infinite-horizon undiscounted regret, where the performance of the algorithm is
evaluated by the costs accumulated by executing the possibly non-stationary policy executed at
episode k denoted by µk. At the same time, it incorporates the episodic nature of finite-horizon
problems, where the performance of the optimal policy is evaluated by its value function at
the initial state. Nonetheless, notice that we cannot use the finite-horizon regret definition,
i.e.,∑K

k=1 V
µk(s0)− V ⋆(s0), where a policy µk is chosen at the beginning of the episode and

run until its termination. Indeed, the fact that a random realization of µk reaches the goal (i.e.,
Ik <∞) does not imply that µk is proper; in fact, we have a priori no guarantee that it is proper,
yet the execution of a single non-proper policy µk would directly lead to an unbounded regret
since V µk(s0) = +∞. Finally, a unique feature of SSP-regret is that it is infinite as soon as one
episode is unable to terminate at the goal, which implies that proving that the SSP-regret is
linear inK is already non-trivial.

31

Online Stochastic Shortest Path

Definition 3.2 (Quantities of interest of the optimal proper policy). We denote the optimal
proper policy by π⋆, i.e., for all s ∈ S,

π⋆(s) ∈ arg min
π∈Πproper

V π(s).

We also set

V ⋆(s) ≜ V π⋆(s) = min
π∈Πproper

V π(s),

Q⋆(s, a) ≜ Qπ⋆(s, a) = min
π∈Πproper

Qπ(s, a).

Let B⋆ > 0 bound the values of V ⋆, i.e.,

B⋆ ≜ max
s∈S

V ⋆(s).

Note that Q⋆(s, a) ≤ 1 +B⋆. Finally, let T⋆ > 0 bound the expected time-to-goal of π⋆, i.e.,

T⋆ ≜ max
s∈S

T π
⋆(s).

Since the costs lie in [0, 1], we can order the different quantities as

B⋆ ≤ D ≤ T⋆ < +∞, (3.2)

where their boundedness is guaranteed by Assumption 2.7 (recall the definition of the SSP-
diameterD in Definition 2.8). Moreover, in the case of positive costs lower bounded by cmin > 0,
then T⋆ ≤ B⋆/cmin.

Notation. Throughout Part I, we will report high-probability upper bounds on the SSP-regret
(Definition 3.1). For any given threshold δ ∈ (0, 1), we write that RK = Õ

(
f(K,S,A,B⋆, T⋆)

)
if there exists polynomial functions q ≜ poly(S,A,B⋆, T⋆), q′ ≜ poly(K,S,A,B⋆, T⋆, δ−1) and
absolute constants α, β > 0 (i.e., independent of the MDP instance) such that with probability
at least 1−δ, for anyK ≥ q,RK ≤ α ·f(K,S,A,B⋆, T⋆, δ−1) · logβ q′; and we similarly write that
RK = O

(
g(K,S,A,B⋆, T⋆)

)
if RK ≤ α · g(K,S,A,B⋆, T⋆, δ−1). Finally, we write that f = Ω(g)

if there exists an absolute constant c > 0 such that f ≥ c · g.

32

3.2 A Special Case: Uniform-Cost Online SSP

3.2 A Special Case: Uniform-Cost Online SSP

In this section, to gain intuition on the unique challenges of online SSP, we focus on the special
case of SSP problems with uniform costs. We show that in this case the online SSP problem
can be cast as an infinite-horizon problem and that an algorithm such as UCRL2 (Jaksch et al.,
2010) can be directly applied and achieve sublinear regret guarantees.

Assumption 3.3 (only in Section 3.2). The costs c(s, a) are constant (equal to 1 w.l.o.g.) for
all (s, a) ∈ S ×A.

Note that under Assumption 3.3, it holds that B⋆ = D = T⋆.
We introduce the infinite-horizon reward-based MDP M∞ ≜ ⟨S,A, g, r∞, P∞, s0⟩, with

reward r∞ ≜ 1g and P∞(· | s, a) ≜ P (· | s, a) for s ̸= g and P∞(· | g, a) ≜ 1s0 for all a. In words,
the transitions inM∞ behave as inM and give zero rewards except at g where all actions give
a reward of 1 and loop back to s0 instead of self-looping with probability 1. We show that the
solution ofM∞ coincides with solving the original online SSP and we bound the SSP-regret of
UCRL2 applied to this problem.

Theorem 3.4. For any policy π ∈ Π, let ρπ ≜ limT→+∞ Eπ
[∑T

t=1 rt/T
] be the average reward

of π in the MDPM∞, where rt denotes the reward received at time t. Under Assumption 3.3, we
have

π⋆ = arg min
π

V π(s0) = arg min
π

T π(s0) = arg max
π

ρπ.

With probability 1− δ, UCRL2 run for anyK ≥ 1 episodes suffers a regret

RK ≤ 34
(
V ⋆(s0)+1

)
DS

√
ATK log

(TK
δ

)
, (3.3)

where we recall that TK ≜
∑K
k=1 I

k denotes the (random) total time elapsed over theK episodes.
Moreover, under the same high-probability event, it holds that

TK ≤ 2(V ⋆(s0) + 1)K + Õ
(
V ⋆(s0)2D2S2A

)
. (3.4)

Proof sketch and discussion. Solving SSPwith uniform costs corresponds to computing the policy
that minimizes the expected time to reach the goal g. We first prove that solving its online
formulation (which resets the agent once the goal is reached) is equivalent to maximizing the

33

Online Stochastic Shortest Path

long-term average reward (or gain) inM∞. Then, we apply a similar analysis to Jaksch et al.
(2010, Theorem 2) to derive an upper bound on the reward-based infinite-horizon regret of
UCRL2, which we recall is defined as R∞

T ≜ Tρπ⋆ −
∑T
t=1 rt for any time T ≥ 1. Importantly,

we refine the conventional regret bound of UCRL2 from Õ(D∞S
√
AT) to Õ(DS

√
AT), i.e., we

replace the infinite-horizon diameter D∞ ≜ maxs ̸=s′∈S′ minπ∈Π E [τπ(s→ s′)] (Jaksch et al.,
2010), which measures the longest shortest path between any two states.2 In general D ≤ D∞

and the gap between the two may be arbitrarily large. In fact, Assumption 2.7 does not imply
thatM∞ is communicating, which is needed for proving regret bounds for UCRL2 in general
MDPs. We show that even whenM∞ is weakly-communicating (D∞ = +∞) and some states
may not be accessible from one another, UCRL2 is able to adapt to the SSP nature of the problem
and achieve a bounded regret. We conclude the proof by relating the reward-based infinite-
horizon regret of any algorithm to its SSP-regret as RK = (V ⋆(s0) + 1)R∞

TK
, which stems from

the fact that ρπ⋆ = 1/(V ⋆(s0) + 1) by Markov chain theory (see Section B.1 for details).

It is worth mentioning that no assumption is made about the properness of the policies.
The key for UCRL2 to manage policies that may never reach the goal state is the construction of
internal episodes, where policies are interrupted when the number of samples collected in a
state-action pair is doubled. This allows UCRL2 to avoid accumulating too much regret when
executing non-proper policies (they are eventually stopped) and, at the same time, perform
well when the current policy is near-optimal (it is not stopped too early). Note that the stopping
condition only relies on the number of samples and it is completely agnostic to the episodic
nature of the SSP problem.

While the previous analysis suggests that algorithms for infinite-horizon MDPs could be
readily executed in online SSP problems with strong regret guarantees, this is no longer the
case when moving to the general setting of non-uniform costs. Indeed, in order to estimate
the performance of a stationary policy w.r.t. its value function, we cannot use the average-cost
criterion since it does not capture the incentive to reach the goal state. As an illustrative example,
consider the deterministic two-state SSPM from Figure 3.1. The optimal SSP policy π⋆ always
selects action a2 since it has minimal value V ⋆(s0) = cmax. The optimal infinite-horizon policy
π∞ always selects action a1 since it has minimal average cost ρπ∞ = cmin, whereas ρπ⋆ = cmax/2.
Consequently, running UCRL2 in general SSP may converge to a suboptimal policy and yield
linear SSP-regret.

In an attempt to encourage the visit of the goal g, a natural idea could be to add a large
reward R whenever it is reached. However, this may lead to policies that aim to reach g as fast
as possible, completely disregarding the costs accumulated on the trajectory to g. Ideally R

2While the analysis of UCRL2 leverages the fact that the range of the vector vn computed by extended value
iteration is bounded by D∞, we can show that vn can in fact be bounded by D in uniform-cost SSP problems.
Furthermore, the condition thatD∞ < +∞ is not required for the convergence of extended value iteration, since a
sufficient condition for this is thatM∞ is weakly-communicating.

34

3.3 Three Desirable Properties of an Algorithm for Online SSP

s0 g

action a1,
cost cmin

action a2,
cost cmax

Figure 3.1 – Deterministic two-state SSPM with two
available actions: a1 self-loops on s0 with cost cmin
and a2 goes from s0 to g with cost cmax > 2cmin.

should be tuned to appropriately balance between the two objectives (minimize costs and reach
the goal), yet doing so seems tricky without prior knowledge on the MDP and the optimal
policy.

3.3 Three Desirable Properties of an Algorithm for Online SSP

We begin by stating the information-theoretic lower bound on the regret in SSP.

Proposition 3.5 (Rosenberg et al., 2020; Cohen et al., 2021).
• Let B⋆ ≥ 2, then there exists an SSP problem instance for S ≥ 2, A ≥ 16, K ≥ SA, such

that the expected regret of any learner afterK episodes satisfies E[RK] ≥ 1
1024B⋆

√
SAK.

• Let B⋆ ≤ 1
2 , then there exists an SSP problem instance for S ≥ 2, A ≥ 2,K ≥ B⋆SA, such

that the expected regret of any learner afterK episodes satisfies E[RK] ≥ 1
32
√
B⋆SAK.

We now identify three desirable properties of a learning algorithm for online SSP.

• Desired property 1: Minimax. From Proposition 3.5, the information-theoretic lower bound
on the regret scales as Ω(

√
(B2

⋆ +B⋆)SAK).

An algorithm for online SSP is (nearly) minimax optimal if its regret is bounded by
Õ(
√

(B2
⋆ +B⋆)SAK), up to logarithmic factors and lower-order terms.

• Desired property 2: Parameter-free. Another relevant dimension is the amount of prior
knowledge required by the algorithm. While the knowledge of S, A, and the cost (or reward)
range [0, 1] is standard across regret-minimization settings (e.g., finite-horizon, discounted,
average-reward), the complexity of learning in SSP problems may be linked to SSP-specific
quantities such as B⋆ and T⋆.

An algorithm for online SSP is parameter-free if it relies neither on T⋆ nor B⋆ prior knowledge.

35

Online Stochastic Shortest Path

• Desiredproperty 3: Horizon-free. Acore challenge in SSP is to trade off betweenminimizing
costs and quickly reaching the goal state. This is accentuated when the instantaneous costs
are small, i.e., when there is a mismatch between B⋆ and T⋆. Indeed, while B⋆ ≤ T⋆ always
holds since the cost range is [0, 1], the gap between the two may be arbitrarily large (see e.g.,
the simple example of Section B.2). The lower bound (Proposition 3.5) stipulates that the
regret does depend on B⋆, while the “time horizon” of the problem, i.e., T⋆ should a priori
not impact the regret, even as a lower-order term.

An algorithm for online SSP is (nearly) horizon-free if its regret depends only logarithmically
on T⋆.

Our definition extends the property of so-called horizon-free bounds recently uncovered
in finite-horizon MDPs with total reward bounded by 1 (Wang et al., 2020a; Zhang et al.,
2021d; Zhang et al., 2021e). These bounds depend only logarithmically on the horizon H ,
which is the number of time steps by which any policy terminates. Such notion of horizon
would clearly be too strong in the more general class of SSP, where some (even most) policies
may never reach the goal, thus having unbounded time horizon. A more adequate notion
of horizon in SSP is T⋆, which bounds the expected time of the optimal policy to terminate
the episode starting from any state. The fact that T⋆ is (a priori) unknown looks to be a
significant difficulty than does not appear in finite-horizon where H is known and fixed.

Remark 3.6. Finally, while the previous properties focus on the learning aspects of the
algorithm, another important consideration is computational efficiency. It is desirable that
a learning algorithm has run-time complexity at most polynomial inK,S,A,B⋆, and T⋆.
The two algorithms for online SSP proposed in this thesis (Chapters 4 and 5) meet such
requirement.

3.4 On Regret-to-PAC in SSP

Assuming thatwe have access to a no-regret algorithm in SSPwith an associated high-probability
bound on its SSP-regret, a natural question that arises is whether we readily recover a PAC
bound for SSP. Recall that the probably approximately correct (PAC) learning setting for RL
provides sample complexity guarantees to find a near-optimal policy at the fixed initial state,
i.e., a policy π such that |V ⋆(s0) − V π(s0)| ≤ ε for a prescribed accuracy level ε > 0 (with
high probability). For instance, in finite-horizon MDPs, a regret bound can be converted to a
PAC guarantee by selecting as a candidate optimal solution any policy chosen at random out
of all episodes (Jin et al., 2018). Unfortunately, we make the observation that this procedure

36

3.4 On Regret-to-PAC in SSP

cannot be applied in SSP. In fact, we recall from Definition 3.1 that the SSP-regret differs from
the finite-horizon regret, since at each episode it compares the empirical costs accumulated
along one trajectory with the optimal value function. As motivated in Section 3.1, a no-regret
algorithm may need to change policies within an episode, and moreover none of them may
actually be proper (i.e., have bounded value function). As such, it is unclear which policy
should be retained or generated as a PAC solution candidate. In fact, it has been shown in the
existing regret analyses for SSP (as we will see in Chapters 4 and 5) that explicitly guaranteeing
the properness of the executed policies is not an intermediate step that is required to derive the
regret bounds.

As a result, we notice that specific attention is required to derive sample complexity bounds
for SSP. A first, simplified setting to do so is the generative model, which for any state-action pair
(s, a) returns a sample drawn from P (·|s, a). In Tarbouriech et al. (2021b), we investigate: How
many calls to the generative model are sufficient to compute a near-optimal policy from any starting state
with high probability? In the interest of conciseness, we omit the details of our sample complexity
analysis and refer an interested reader to Tarbouriech et al. (2021b). We point out that the latter
bounds are not tight, and it is an interesting future direction to derive tight sample complexity
bounds for SSP with a generative model, in a similar vein to the research line in the discounted
MDP setting (Azar et al., 2013; Jiang, 2020; Agarwal et al., 2020; Li et al., 2020). Finally, moving
beyond the generative model, we argue that deriving sample complexity bounds for fully online
SSP adds a layer of complexity. Specifically, we will later prove in Lemma 8.7 that, without
an additional assumption on the ability of the agent to take an anytime deterministic “reset”
action to the initial state s0, the sample complexity bounds that we can expect in online SSP are
unavoidably worse that those in the generative model case.

37

Chapter 4

UC-SSP, the First Algorithm
for Online SSP

In this chapter, we introduce UC-SSP (Upper Confidence for Stochastic Shortest Path), the
first no-regret algorithm for online SSP. It relies on the principle of optimism in the face of
uncertainty, and it handles the trade-off between minimizing costs and reaching the goal by
crafting a novel stopping rule, such that UC-SSP may interrupt the current policy if it is taking
too long to achieve the goal and switch to alternative policies that are designed to rapidly
terminate the episode. Excluding the other dependencies, the regret bound of UC-SSP scales
as Õ(

√
K/cmin) (when costs are lower bounded by cmin > 0) or as Õ(K2/3) (under general

non-negative costs), whereK denotes the number of episodes. 1

Contents
4.1 Preliminaries . 40

4.2 The UC-SSP Algorithm . 41

4.3 Regret Guarantee . 44

4.4 Regret Analysis . 46

4.5 Relaxation of Assumptions . 49

4.6 Discussion and Bibliographical Remarks . 50

1This chapter is based on an article published in the proceedings of the 37 th International Conference onMachine
Learning (ICML 2020) (Tarbouriech et al., 2020a).

39

UC-SSP, the First Algorithm for Online SSP

4.1 Preliminaries

Additional Technical Tools. We first complement Chapters 2 and 3 with technical tools that
will be of use exclusively in this chapter. For any π ∈ Πproper, its (almost surely finite) hitting
time to reach the goal starting from any state in S follows a discrete phase-type distribution,
or in short discrete PH distribution (see e.g., Latouche and Ramaswami, 1999, Section 2.5 for
an introduction). Indeed, its induced Markov chain is terminating with a single absorbing
state g and all the other states are transient. The transition matrix associated to π, denoted by
Pπ ∈ R(S+1)×(S+1), can thus be arranged in the following canonical form

Pπ =
[
Qπ Rπ

0 1

]
,

where Qπ ∈ RS×S is the transition matrix between non-absorbing states (i.e., S) and Rπ ∈ RS

is the transition vector from S to g. Note that Qπ is strictly substochastic (Qπ1 ≤ 1 where
1 ≜ (1, . . . , 1)T ∈ RS and ∃j s.t. (Qπ1)j < 1). Denoting by 1s the S-sized one-hot vector at the
position of state s ∈ S, the following result holds (see e.g., Latouche and Ramaswami, 1999,
Theorem. 2.5.3).

Proposition 4.1. For any π ∈ Πproper, s ∈ S and n > 0,

P(τπ(s) > n) = 1⊤
s Q

n
π1 =

∑
s′∈S

(Qnπ)ss′ .

Finally, for any X ∈ Rm×n we define the∞-matrix-norm ∥X∥∞ ≜ max1≤i≤m
∑n
j=1|Xij |.

Analysis Road Map. First, we assume that the costs are strictly positive, which ensures that
the conditions of Proposition 2.11 hold, thus making it easier analysis-wise.

Assumption 4.2 (for Sections 4.2 to 4.4). The costs are known, deterministic and positive, i.e.,
there exist constants 0 < cmin ≤ cmax such that c(s, a) ∈ [cmin, cmax] for all (s, a) ∈ S ×A.

Extending the setting to unknown, stochastic costs poses no major difficulty, as long as
the learner knows in advance the range of the costs, i.e., the constant cmin and cmax. Then, in
Section 4.5, we derive a variant of our algorithm that can handle zero costs (i.e., cmin = 0) by
performing a cost perturbation argument.

40

4.2 The UC-SSP Algorithm

Algorithm 4.1: Algorithm UC-SSP
1 Input: Confidence δ ∈ (0, 1), costs, S ′,A.
2 Initialization: Set the state-action counter N0,0(s, a) ≜ 0 for any (s, a) ∈ S ×A and the time

step t ≜ 1.
3 Set k ≜ 0. \\ episode index
4 Set G0,0 ≜ 0. \\ number of attempts in phases ②
5 while k < K do
6 Increment k += 1.
7 Set j ≜ 0. \\ attempts in phase ② of episode k
8 while st ̸= g do
9 Set tk,j ≜ t and counter νk,j(s, a) ≜ 0.
10 Set Gk,j = Gk,0 + j.
11 Compute (π̃k,j , Hk,j) ≜ EVISSP(k, j).
12 while t ≤ tk,j +Hk,j and st ̸= g do
13 Execute action at = π̃k,j(st), observe cost c(st, at) and next state st+1.
14 Set νk,j(st, at) += 1 and t += 1.
15 if st ̸= g then
16 \\ Switch to phase ②

17 Set Nk,j+1(s, a) ≜ Nk,j(s, a) + νk,j(s, a) and increment j += 1.

18 Set Nk+1,0(s, a) ≜ Nk,j(s, a) + νk,j(s, a) and Gk+1,0 ≜ Gk,j .

4.2 The UC-SSP Algorithm

Recall that the general SSP problem requires (i) to quickly reach the goal state while (ii) at
the same time minimizing the cumulative costs. As shown in Section 3.2, if we constrain the
costs to be all equal, objectives (i) and (ii) coincide and the SSP problem can for example be
addressed using infinite-horizon algorithms.

In Algorithm 4.1 we present UC-SSP (Upper Confidence for Stochastic Shortest Path),
the first algorithm for efficient exploration in general SSP problems. At a high level, UC-SSP
proceeds through each episode k in a two-phase fashion and handles the aforementioned trade-
off by crafting a novel stopping rule. In phase ①, UC-SSP executes a policy trying to solve
the SSP problem by tackling both objectives (i) and (ii) (i.e., reach the goal while minimizing
the cumulative costs). We refer to this first policy as an attempt in phase ①. As UC-SSP relies
on estimates of the true (unknown) SSP, it may select a non-proper policy that would never
reach the goal state and incur an unbounded regret. In order to avoid this situation, if the goal
state is not reached after a given pivot horizon, the algorithm deems the whole episode as a
failure and it switches to phase ②, whose only objective is to terminate the episode as fast as
possible (i.e., it only considers objective (i) and disregards the costs). Nonetheless, optimizing
an estimate of the hitting time (i.e., objective (i)) does not guarantee that the corresponding
policy successfully reaches the goal state (i.e., is proper) and multiple attempts (i.e., policies)
in phase ② may be needed. Similar to phase ①, whenever the goal state is not reached after a

41

UC-SSP, the First Algorithm for Online SSP

Algorithm 4.2: EVISSP planning procedure
1 Input: Attempt index (k, j) and Nk,j(s, a) samples for every (s, a).
2 if j = 0 then
3 εk,0 ≜

cmin
2tk,0

, γk,j ≜ 1√
k
.

4 else
5 εk,j ≜ 1

2tk,j
, γk,j ≜ 1√

Gk,j

.

6 Compute estimates P̂k,j and confidence setMk,j with the Nk,j samples collected so far.
7 Define the extended optimal Bellman operator L̃k,j as in Equation (4.1).
8 \\ EVI scheme
9 Setm ≜ 0, v0 ≜ 0 (S-sized vector) and v1 ≜ L̃k,jv0.
10 while ∥vm+1 − vm∥∞ > εk,j do
11 m += 1 and vm+1 ≜ L̃k,jvm.
12 Set ṽk,j ≜ vm.
13 Compute π̃k,j the optimistic greedy policy w.r.t. ṽk,j .
14 Compute P̃k,j the corresponding optimistic model.
15 Compute Q̃k,j the transition matrix of π̃k,j in the model P̃k,j over S, i.e., for any (s, s′) ∈ S2,

Q̃k,j(s, s′) ≜
∑
a∈A

π̃k,j(a|s)P̃k,j(s′|s, a).

16 Compute Hk,j ≜ min
{
n > 1 : ∥Q̃n−1

k,j ∥∞ ≤ γk,j

}
.

17 Output: policy π̃k,j and horizon Hk,j .

certain pivot horizon, the current policy is terminated and a new policy is computed. Phase ②

and the overall episode ends when the goal state is eventually reached. Notation-wise, the k-th
phase ① is indexed by (k, 0) (note that k coincides with the current number of episodes), while
the j-th attempt in the phase ② of episode k is indexed by (k, j) for j ≥ 1. Moreover, we denote
by Jk the number of attempts performed during the phase ② of episode k, and by Gk,j the total
number of attempts in phases ② up to (and including) attempt (k, j).

Optimistic policies. UC-SSP relies on the principle of optimism in face of uncertainty. At each
attempt, it executes a policy with either lowest optimistic (cost-weighted) value for an attempt
in phase ①, or with lowest optimistic expected hitting time for an attempt in phase ②. At the
beginning of any attempt (k, j), the algorithm computes a set of plausible MDPs defined as
Mk,j ≜ {⟨S,A, c, P̃ ⟩ | P̃ (·|s, a) ∈ Bk,j(s, a)} where Bk,j(s, a) is a high-probability confidence
set on the transition probabilities of the true MDPM . We set

Bk,j(s, a) ≜
{
P̃ ∈ C | P̃ (· | g, a) = 1g, ∥P̃ (· | s, a)− P̂k,j(· | s, a)∥1 ≤ βk,j(s, a)

}
,

42

4.2 The UC-SSP Algorithm

with C the S′-dimensional simplex, P̂k,j the empirical average of transitions prior to attempt
(k, j) and

βk,j(s, a) ≜

√√√√8S log
(
2AN+

k,j(s, a) δ−1)
N+
k,j(s, a)

,

where N+
k,j(s, a) ≜ max{1, Nk,j(s, a)}with Nk,j being the state-action counts prior to attempt

(k, j). The construction of βk,j(s, a) guarantees thatM ∈Mk,j with high probability, as shown
in the following lemma.

Lemma 4.3. Introduce the event E ≜ ⋂+∞
k=1

⋂Jk
j=1{M ∈Mk,j}. Then P(E) ≥ 1− δ

3 .

OnceMk,j has been computed, UC-SSP applies an extended value iteration (EVI) scheme
(Algorithm 4.2) to compute a policy with lowest optimistic value (if j = 0) or lowest optimistic
expected hitting time (if j ≥ 1). Formally, we define the extended optimal Bellman operator
L̃k,j such that for any v ∈ RS and s ∈ S,

L̃k,jv(s) ≜ min
a∈A

{
ck,j(s, a) + min

P̃∈Bk,j(s,a)

∑
y∈S

P̃ (y | s, a)v(y)
}
, (4.1)

where the costs ck,j depend on the phase as follows

ck,j(s, a) ≜
{
c(s, a) if j = 0
1 otherwise.

As explained by Jaksch et al. (2010, Section 3.1), we can combine all the MDPs inMk,j into
a single MDP M̃ with extended action set A′. Using the generalization of the SSP results to
a compact action set (see e.g., Bertsekas and Yu, 2013), it holds that EVISSP converges to a
vector denoted by Ṽ ⋆

k,j . We have the following component-wise inequalities when the stopping
condition of Algorithm 4.2 is met.2

Lemma 4.4. For any attempt (k, j), denote by ṽk,j the output of EVISSP with operator L̃k,j and
accuracy εk,j . Then L̃k,j ṽk,j ≤ ṽk,j + εk,j . Furthermore, under the event E we have ṽk,j ≤ V ⋆ if
j = 0 or ṽk,j ≤ minπ E[τπ] otherwise.

2Note that the stopping condition is different from the standard one for VI for average reward MDPs (see e.g.,
Puterman, 2014; Jaksch et al., 2010) that is defined in span seminorm. Also note that as opposed to standard VI, we
do not have guarantees of the type ∥vn − Ṽ ⋆k,j∥∞ ≤ εwhere Ṽ ⋆k,j = L̃k,j Ṽ ⋆k,j .

43

UC-SSP, the First Algorithm for Online SSP

The optimistic policy π̃k,j executed during attempt (k, j) is the greedy policy w.r.t. ṽk,j . We
also denote by P̃k,j the optimistic transition probabilities and by Q̃k,j the transition matrix of
π̃k,j in P̃k,j over the non-goal states S.

The pivot horizon. A crucial aspect for the correct functioning of the algorithm is to
carefully select the “pivot” horizon. If the pivot horizon is too small, the algorithm may switch
from phase ① to ② too quickly and may perform too many attempts in phase ②. As the policies
in phase ② completely disregard the costs, they may lead to suffer large regret. On the other
hand, if the pivot horizon is too large and UC-SSP selects a non-proper policy in phase ①, then
the regret accumulated during phase ① would be too large.

We select the following length for attempt (k, j)

Hk,j = min
{
n>1 : ∥(Q̃k,j)n−1∥∞ ≤

1j=0√
k

+ 1j≥1√
Gk,j

}
. (4.2)

If π̃k,j is executed for Hk,j steps without reaching g, then attempt (k, j) is said to have failed
and the next attempt (k, j + 1) (necessarily in phase ②) is performed. Otherwise, the attempt
is said to have succeeded, a new episode begins and the next attempt (k + 1, 0) (in phase ①) is
performed.

Denote by τ̃k,j the hitting time to the goal in the model P̃k,j of the policy π̃k,j . We first prove
that π̃k,j is proper in P̃k,j by connecting its value function to ṽk,j , which is finite from Lemma 4.4
(see Section C.1.4 and Equation (C.9)). As a result, τ̃k,j follows a discrete PH distribution and
plugging Proposition 4.1 into Equation (4.2) entails that

max
s∈S

P(τ̃k,j(s) ≥ Hk,j) ≤
1j=0√
k

+ 1j≥1√
Gk,j

.

Hk,j is thus selected so that the tail probability of the optimistic hitting time is small enough, i.e.,
there is a high probability that π̃k,j will optimistically reach g within Hk,j steps. The maximum
over s ∈ S guarantees this property for any state s from which attempt (k, j) begins (since
attempts in phase ② do not necessarily start at s0).

4.3 Regret Guarantee

As shown below, UC-SSP is the first no-regret learning algorithm in the general SSP setting.

Theorem 4.5. With overwhelming probability, for anyK ≥ 1, if at each attempt (k, j) EVISSP is
run with accuracy εk,j ≜ cmin1j=0+1j≥1

2tk,j , where tk,j is the time index at the beginning of the attempt,

44

4.3 Regret Guarantee

then UC-SSP suffers a regret

RK = Õ

(
cmaxDS

√
cmax
cmin

ADK + cmaxS
2AD2

)
.

Dependence onK and D. Significantly, under positive costs, UC-SSP achieves an overall
rate Õ(

√
K) which is optimal w.r.t. the number of episodesK. The bound also illustrates how

UC-SSP is able to adapt to the complexity of navigating through the MDP as shown by the
dependency on the SSP-diameterD, which measures the longest shortest path to the goal from
any state. Interestingly, this is achieved without any prior knowledge either on an upper bound
of the optimal value function V ⋆ (or of the SSP-diameter itself), i.e., UC-SSP is parameter-free.
We can further inspect the dependency on D by rewriting the regret bound of UC-SSP, which
scales as D3/2√K in Theorem 4.5, as D√TK , where TK is the total number of steps executed
until the end of episode of K.3 As shown in Equation (3.2), up to a factor of cmax, the SSP-
diameter D is an upper bound on the range of the optimal value function and as such it can
be (qualitatively) related to the horizon H in the finite-horizon setting and the diameter D∞

in the infinite-horizon setting, which bound the range of the optimal value function and bias
function respectively.

Dependence on cost range. The multiplicative constant cmax
cmin

appearing in the bound quan-
tifies the range of the cost function and accounts for the difference from the uniform-cost setting.
Interestingly, the presence of the ratio cmax

cmin
implies that the regret bound is not invariant w.r.t. a

uniform additive perturbation of all costs. This behavior, which does not appear in the finite-
or infinite-horizon settings, stems from the fact that an additive offset of costs may alter the
optimal policy in the SSP sense (see Lemma C.5, Section C.2).

While the previous discussion shows that UC-SSP successfully tackles general SSP problems,
we can also study its behavior in the limit (and much simpler) cases of uniform-cost and loop-
free SSP, and compare its regret to infinite- and finite-horizon algorithms respectively.

Uniform-cost SSP. Under Assumption 3.3, UC-SSP achieves a regret of Õ(DS
√
ADK), in

contrast with the bound Õ(V ⋆(s0)DS
√
AV ⋆(s0)K) of UCRL2 derived in Section 3.2. While in

this restricted setting UCRL2 performs better when s0 is a privileged starting state to reach
g compared to the rest of states in S, UC-SSP yields an improvement over UCRL2 whenever
V ⋆(s0) ≥ D1/3. Our experiments in Section C.3 illustrate that UC-SSP suffers smaller regret
than UCRL2 in a gridworld with uniform costs, showcasing that UC-SSP manages to better
adapt to the goal-oriented structure of the problem.

3Even though TK is a random quantity, inspecting the proof (see Section 4.4) provides a bound TK ≲ DK forK
large enough.

45

UC-SSP, the First Algorithm for Online SSP

Loop-free SSP. Let us assume that there exists a known upper bound H on the hitting time
of any policy. Then a slight variation of the finite-horizon algorithm UCBVI (Azar et al., 2017)
can be applied. While its bound would scale as Õ(

√
HSAT) and showcase an improved

√
S-

dependency, it would regrettably scale with
√
H which may be much larger than the D factor

appearing in Theorem 4.5 as soon as the hitting times τπ differ significantly across policies π.
Moreover, UC-SSP does not require the prior knowledge of H , as opposed to UCBVI or any
other existing algorithm in the finite-horizon or loop-free setting.

The analysis of UC-SSP reveals the crucial role of the pivot horizon in shaping the behavior
and performance of the algorithm. In the uniform-cost case, EVISSP and standard EVI used
in UCRL2 both converge to the same policy. The main difference between the two algorithms
consists in the stopping criterion for the execution of the optimistic policy. While UCRL2 applies
a generic doubling scheme (i.e., an internal episode is terminated when the number of samples
is doubled in at least a state-action pair), UC-SSP leverages the episodic nature of the SSP
problem and sets a pivot horizon such that the current policy should successfully terminate
with high (optimistic) probability. In the loop-free setting, UCBVI picks a single policy per
episode and waits until termination. While all policies are guaranteed to terminate in finite
time, the length of the episode may still be very long. On the other hand, UC-SSP goes through
different policies within each episode whenever they are taking too long to reach the goal state.

4.4 Regret Analysis

In this section, we provide a proof sketch of Theorem 4.5. The SSP-regret introduced in
Definition 3.1 can neither be managed by a step-by-step comparison between the algorithmic
and optimal performances as in infinite-horizon, nor by an episode-by-episode comparison as
in finite-horizon. We thus need to derive a new analysis to handle the specificities of the SSP-
regret. Denoting by TK the total number of steps at the end of episodeK, we decompose TK =
TK,1 + TK,2, with TK,1 (resp.TK,2) the total time during attempts in phase ① (resp. phase ②).
We introduce the truncated regret

WK ≜
K∑
k=1

[(Hk,0∑
h=1

c(sk,h, π̃k,0(sk,h))
)
− V ⋆(s0)

]
, (4.3)

which is obtained by considering the cumulative cost up toHk,0 steps rather than for the actual
duration of each attempt in phase ①. By assigning a regret of cmax to each step in phase ②, we
can then decompose the regret of UC-SSP as

RK ≤ WK + cmaxTK,2. (4.4)

46

4.4 Regret Analysis

This decomposition directly justifies the different nature of the two phases employed by UC-SSP.
While phase ① directly tries to minimizeWK , phase ② only needs to keep TK,2 under control,
which requires executing policies that reach the goal state as quickly as possible.

Bound on WK . We first bound WK by drawing inspiration from techniques in the finite-
horizon setting (see e.g., Azar et al., 2017), by successively unrolling the Bellman operator
to get a telescopic sum which can be bounded using the Azuma-Hoeffding inequality and a
pigeonhole principle.

Lemma 4.6. Introduce ΩK ≜ maxk∈[K]Hk,0. With probability at least 1− δ,

WK = O

(
cmaxDS

√
AΩKK log

(ΩKK

δ

))
.

Bound on ΩK . On the one hand, sinceWK directly scales with √ΩK , we must ensure that
the lengths of attempts in phase ① are not too long. Ideally, we would set them as relatively
tight upper bounds of V ⋆(s0) or D, yet these are critically unknown. Instead, in Equation (4.2)
we tune the lengths Hk,0 depending on optimistic quantities (which can be easily computed at
the start of each attempt), and prove in the following lemma that they crucially scale as Õ(D).

Lemma 4.7. Under the event E ,

ΩK ≤
⌈
6cmax
cmin

D log(2
√
K)
⌉
.

Proof sketch. Consider a state y ∈ S such that

∥(Q̃k,0)Hk,0−2∥∞ = 1⊤
y (Q̃k,0)Hk,0−21.

From Proposition 4.1, the above is equal to P(τ̃k,0(y) ≥ Hk,0 − 1). To bound it, we apply a
corollary of Markov’s inequality

P(τ̃k,0(y) ≥ Hk,0 − 1) ≤ E [(τ̃k,0)r]
(Hk,0 − 1)r ,

for a carefully chosen exponent r ≜ ⌈log(2
√
k)⌉ ≥ 1. We then prove that τ̃k,0 follows a discrete

PH distribution that satisfies E [τ̃k,0(s)] ≤ 2cmaxD
cmin

for all s ∈ S . This leads us to derive an upper

47

UC-SSP, the First Algorithm for Online SSP

bound on the r-th moment of any hitting time distribution with bounded expectation starting
from any state (Lemma C.2, which may be of independent interest). Applying it to τ̃k,0 yields

E [(τ̃k,0)r] ≤ 2
(
r

2cmaxD

cmin

)r
,

which gives on the one hand

∥(Q̃k,0)Hk,0−2∥∞ ≤
2
(
r 2cmaxD

cmin

)r
(Hk,0 − 1)r .

On the other hand, the choice of Hk,0 in Equation (4.2) entails that

1√
k
< ∥(Q̃k,0)Hk,0−2∥∞.

Combining the two previous inequalities finally provides the desired upper bound onHk,0.

Bound on TK,2. On the other hand, since TK,2 increases with the number of attempts in
phase ②, we must ensure that there are not too many of such attempts and that their lengths can
be adequately controlled. In light of this and leveraging the way the length Hk,0 is constructed
in Equation (4.2), we bound the number of failed attempts in phase ① up to episodeK, which
we denote by FK .

Lemma 4.8. With probability at least 1− δ,

FK ≤ 2
√
K + 2

√
2ΩKK log

(2(ΩKK)2

δ

)
+ 4S

√
8AΩKK log

(2AΩKK

δ

)
.

Proof sketch. We decompose FK = F ′
K + F ′′

K , where F ′
K ≜

∑K
k=1 P(τ̃k,0(s0) > Hk,0) and

F ′′
K ≜

∑K
k=1

[
1{τk,0(s0)>Hk,0} − P(τ̃k,0(s0) > Hk,0)

]
. A martingale argument and the pigeon-

hole principle bound F ′′
K , while the choice of Hk,0 controls each summand of F ′

K .

Equipped with Lemma 4.8, we proceed in bounding the total duration of the attempts in
phase ②.

Lemma 4.9. With probability at least 1− δ,

TK,2 = Õ

(
DS

√
cmax
cmin

ADK + S2AD2
)
.

48

4.5 Relaxation of Assumptions

Proof sketch. We have TK,2 ≤ Ω′
KGK , where we set Ω′

K ≜ maxk∈[K] maxj∈[Jk]Hk,j and GK ≜∑K
k=1 Jk which is the total number of attempts in phase ② up to episodeK. Ω′

K can be bounded
in a similar way as done in Lemma 4.7. GK can be bounded by decomposing it as the sum of
the number of attempts in phase ② that succeed in reaching g (equal to FK which is upper
bounded by Lemma 4.8) and of the number of attempts in phase ② that fail in reaching g
(which can be upper bounded in the same vein as in Lemma 4.8).

Putting everything together, we obtain Theorem 4.5 by plugging Lemma 4.6, 4.7 and 4.9
into Equation (4.4). Note that while the regret decomposition in the two-phase process of
Equation (4.4) has the advantage of making the analysis intuitive and modular, it renders
Bernstein techniques less effective in capturing low-variance deviations, as opposed to the
analysis of UCBVI and UCRL2B (Fruit et al., 2020) which can shave off a term of

√
H or √D∞

for large enough time steps in the finite- and infinite-horizon settings, respectively.

4.5 Relaxation of Assumptions

Although Assumptions 2.7 and 4.2 seem natural in the SSP problem, we design variants of
UC-SSP that can handle dead-end states and/or zero costs. We defer to Section C.2 the complete
analysis.

Relaxation of Assumption 4.2 (cmin = 0). We observe that having cmin = 0 renders the
bound on ΩK of Lemma 4.7 vacuous. To circumvent this issue, we introduce an additive
perturbation ηk,0 > 0 to the cost of each transition in the optimistic model of each attempt (k, 0).
Our resulting variant of UC-SSP achieves a Õ(K2/3) regret bound (see Lemma C.6 for the
complete bound). The difference in rate (K2/3 vs.

√
K) compared to Theorem 4.5 stems from

the fact that our procedure of offsetting the costs introduces a bias, which we minimize with
the choice of perturbation ηk,0 = 1/k1/3.

Relaxation of Assumption 2.7 (D = +∞). IfM is non-SSP-communicating, there exists at
least one (possibly unknown) dead-end state from which reaching the goal g is impossible.
This implies that EVISSP, which operates on the entire state space S , fails to converge since the
values at dead-end states are infinite. To tackle this problem, we assume that the agent has
prior knowledge on an upper bound J ≥ V ⋆(s0) and that it has at any time step the “resetting”
ability to transition with probability 1 to s0 with a cost of J (to prevent it from getting stuck).
Equipped with these two assumptions, by optimizing a value function that is truncated at J
(Kolobov et al., 2012), we prove that a variant of UC-SSP achieves a regret guarantee identical
to Theorem 4.5 except that the infinite term D is replaced by J (see Lemma C.4).

49

UC-SSP, the First Algorithm for Online SSP

4.6 Discussion and Bibliographical Remarks

In this chapter, we presented UC-SSP, the first algorithm for online SSP with sublinear regret
guarantees. Note that UC-SSP is parameter-free, as it does not require prior knowledge on the
difficulty of reaching the goal. Excluding the other dependencies, the regret bound scales as
Õ(
√
K/cmin) (when costs are lower bounded by cmin > 0) or as Õ(K2/3) (under general non-

negative costs). These bounds display a gap with respect to the lower bound (Proposition 3.5).
A first natural question opened by our work was whether the dependence on c−1

min could be
removed in the leading term, which would allow Õ(

√
K) regret under general non-negative

costs. This was answered positively by the work of Rosenberg et al. (2020), which devised an
algorithm that utilizes confidence sets based on the Bernstein concentration inequality (instead
of Hoeffding inequality), which enables to be sensitive to the variance of the value function at a
next state given some state-action pair visited by the algorithm. Their improved regret bounds
scale as Õ(B3/2

⋆ S
√
AK) (or Õ(B⋆S

√
AK) if B⋆ is known). This still reveals a√B⋆S (resp.

√
S)

mismatch with respect to the lower bound Ω(B⋆
√
SAK) for B⋆ ≥ 1 (Rosenberg et al., 2020).

In Chapter 5 we will see how this gap can be closed.
An extension of online SSP is when the costs are allowed to adversarially change, which

is also known as adversarial SSP. This was recently investigated by Rosenberg and Mansour
(2021), Chen et al. (2021c), and Chen and Luo (2021), by building on the online mirror
descent framework for online convex optimization. Adversarial SSP poses additional technical
challenges, and it remains an open question to derive tight regret guarantees in this setting.
Interestingly, the lower bound in adversarial SSP showcases an extra dependence on T⋆, as it is
Ω(
√
DT⋆K +D

√
SAK) for the full information setting and Ω(

√
SADT⋆K +D

√
SAK) for the

bandit feedback setting (Chen and Luo, 2021).

50

Chapter 5

EB-SSP, an Optimal Algorithm
for Online SSP

In this chapter, we introduce EB-SSP (Exploration Bonus for Stochastic Shortest Path). The
algorithm relies on carefully skewing the empirical transitions and perturbing the empirical
costs with an exploration bonus to induce an optimistic SSP problem whose associated value
iteration scheme is guaranteed to converge. We prove that EB-SSP achieves the minimax regret
rate of Õ(

√
(B⋆ +B2

⋆)SAK), where we recall thatK is the number of episodes, S is the number
of states,A is the number of actions, andB⋆ bounds the expected cumulative cost of the optimal
policy from any state, thus closing the gap with the lower bound. EB-SSP obtains this result
while being parameter-free, i.e., it does not require any prior knowledge of B⋆, nor of T⋆,
which bounds the expected time-to-goal of the optimal policy from any state. Furthermore, we
illustrate various cases (e.g., positive costs, or general costs when an order-accurate estimate
of T⋆ is available) where the regret only contains a logarithmic dependence on T⋆, thus yielding
the first (nearly) horizon-free regret bound beyond the finite-horizon MDP setting. 1

Contents
5.1 The EB-SSP Algorithm . 53

5.2 Properties of VISGO . 55

5.3 Regret Analysis . 56

5.4 Regret Bounds for Known B⋆ . 57

5.5 Regret Bounds for Unknown B⋆ with Parameter-Free EB-SSP 59

5.6 Discussion and Bibliographical Remarks . 60

1This chapter is based on an article published in the proceedings of the 34 th Conference on Neural Information
Processing Systems (NeurIPS 2021) (Tarbouriech et al., 2021c).

52

5.1 The EB-SSP Algorithm

5.1 The EB-SSP Algorithm

We introduce our algorithm EB-SSP (Exploration Bonus for Stochastic Shortest Path) in Algo-
rithm 5.1. It takes as input the state-action space S ×A and confidence level δ ∈ (0, 1). For now
it considers that an estimate B such that B ≥ max{B⋆, 1} is available, and we later handle the
case of unknown B⋆ (Section 5.5 and Section D.7). As explained in Section 2.4, the algorithm
enforces the conditions of Proposition 2.11 to hold by adding a small cost perturbation η ∈ [0, 1]
(cf. lines 3, 12 in Algorithm 5.1) — either η = 0 if the agent is aware that all costs are already
positive, otherwise a careful choice of η > 0 is provided in Section 5.3.

Our algorithm builds on a value-optimistic approach by sequentially constructing optimistic
lower bounds on the optimal Q-function and executing the policy that greedily minimizes
them. Similar to the MVP algorithm of Zhang et al. (2021d) designed for finite-horizon RL, we
adopt the doubling update framework (first proposed by Jaksch et al., 2010): whenever the
number of visits of a state-action pair is doubled, the algorithm updates the empirical cost and
transition probability of this state-action pair, and computes a new optimistic Q-estimate and
optimistic greedy policy. Note that this slightly differs from MVP which waits for the end of its
finite-horizon episode to update the policy. In SSP, however, having this delay may yield linear
regret as the episode has the risk of never terminating under the current policy (e.g., if it is
improper), which is why we perform the policy update instantaneously when the doubling
condition is met.

The main algorithmic component lies in how to compute the Q-values (w.r.t.which the
policy is greedy) when a doubling condition is met. To this purpose, we introduce a procedure
called VISGO, for (Value Iteration with Slight GoalOptimism). Starting with optimistic values
V (0) = 0, it iteratively computes V (i+1) = L̃V (i) for a carefully defined operator L̃. It ends when
a stopping condition is met, specifically once ∥V (i+1)−V (i)∥∞ ≤ εVI for a precision level εVI > 0
(specified later), and it outputs the values V (i+1) (and Q-values Q(i+1)). We now explain how
we design L̃ and then provide some intuition. Let P̂ and ĉ be the current empirical transition
probabilities and costs, and let n(s, a) be the current number of visits to state-action pair (s, a)
(and n+(s, a) = max{n(s, a), 1}). We first define transition probabilities P̃ that are slightly
skewed towards the goal w.r.t. P̂ , as follows

P̃s,a,s′ ≜
n(s, a)

n(s, a) + 1 P̂s,a,s
′ + I[s′ = g]

n(s, a) + 1 . (5.4)

Given the estimate B, specific positive constants c1, c2, c3, c4 and a state-action dependent
logarithmic term ιs,a, we then define the exploration bonus function, for any state-action pair

53

EB-SSP, an Optimal Algorithm for Online SSP

Algorithm 5.1: Algorithm EB-SSP
1 Input: S, s0 ∈ S, g ̸∈ S, A, δ.
2 Input: an estimate B guaranteeing B ≥ max{B⋆, 1} (see Section 5.5 and Section D.7 if not

available).
3 Optional input: cost perturbation η ∈ [0, 1].
4 Specify: Trigger set N ← {2j−1 : j = 1, 2, . . .}. Constants

c1 = 6, c2 = 36, c3 = 2
√

2, c4 = 2
√

2.
5 For (s, a, s′) ∈ S ×A× S ′, set N(s, a)← 0; n(s, a)← 0; N(s, a, s′)← 0; P̂s,a,s′ ← 0;

θ(s, a)← 0; ĉ(s, a)← 0; Q(s, a)← 0; V (s)← 0.
6 Set initial time step t← 1 and trigger index j ← 0.
7 for episode k = 1, 2, . . . do
8 Set st ← s0
9 while st ̸= g do
10 Take action at = arg mina∈A Q(st, a), incur cost ct and observe next state

st+1 ∼ P (·|st, at).
11 Set (s, a, s′, c)← (st, at, st+1,max{ct, η}) and t← t+ 1.
12 Set N(s, a)← N(s, a) + 1, θ(s, a)← θ(s, a) + c, N(s, a, s′)← N(s, a, s′) + 1.
13 if N(s, a) ∈ N then
14 \\ Update triggered: VISGO procedure.
15 Set ĉ(s, a)← I[N(s, a) ≥ 2] 2θ(s,a)

N(s,a) + I[N(s, a) = 1]θ(s, a) and θ(s, a)← 0.
16 For s′ ∈ S ′, set P̂s,a,s′ ← N(s, a, s′)/N(s, a), n(s, a)← N(s, a), and P̃s,a,s′ as in

Equation (5.4).
17 Set j ← j + 1, εVI ← 2−j/(SA) and i← 0, V (0) ← 0, V (−1) ← +∞.
18 For all (s, a) ∈ S ×A, set n+(s, a)← max{n(s, a), 1} and

ιs,a ← ln
(

12SAS′[n+(s,a)]2

δ

)
.

19 while ∥V (i) − V (i−1)∥∞ > εVI do
20 For all (s, a) ∈ S ×A, set

b(i+1)(s, a) ← b(V (i), s, a), \\ see Equation (5.5) for bonus expression (5.1)
Q(i+1)(s, a) ← max

{
ĉ(s, a) + P̃s,aV

(i) − b(i+1)(s, a), 0
}
, (5.2)

V (i+1)(s) ← min
a
Q(i+1)(s, a). (5.3)

21 Set V (i+1)(g) = 0 and i← i+ 1.
22 Set Q← Q(i), V ← V (i).

(s, a) ∈ S ×A and vector V ∈ RS′ such that V (g) = 0, as follows

b(V, s, a) ≜ max
{
c1

√√√√V(P̃s,a, V)ιs,a
n+(s, a) , c2

Bιs,a
n+(s, a)

}
+ c3

√
ĉ(s, a)ιs,a
n+(s, a) + c4

B
√
S′ιs,a

n+(s, a) . (5.5)

Note that the last term in Equation (5.5) accounts for the skewing of P̃ w.r.t. P̂ (see Lemma D.5).
Given the transitions P̃ and exploration bonus b, we are ready to define the operator L̃ as

L̃V (s) ≜ max
{

min
a∈A

{
ĉ(s, a) + P̃s,aV − b(V, s, a)

}
, 0
}
. (5.6)

54

5.2 Properties of VISGO

5.2 Properties of VISGO

We see that the operator L̃ promotes optimism in two different ways:
(i) On the empirical cost function ĉ, via the bonus b in Equation (5.5) that intuitively lowers

the costs to ĉ− b;
(ii) On the empirical transition function P̂ , via the transitions P̃ in Equation (5.4) that slightly

bias P̂ with the addition of a non-zero probability of reaching the goal from every state-
action pair.

While the first feature (i) is standard in finite-horizon approaches, the second (ii) is SSP-specific,
and is required to cope with the fact that the empirical model P̂ may not admit any proper
policy, meaning that executing value iteration for SSP on P̂ may diverge. Our simple transition
skewing actually guarantees that all policies are proper in P̃ , for any fixed and bounded cost
function.2 By decaying the extra goal-reaching probability inversely with n(s, a), we can tightly
control the gap between P̃ and P̂ and ensure that it only accounts for a lower-order regret term,
cf. last term of Equation (5.5).

Equipped with these two sources of optimism, as long as B ≥ B⋆, we are able to prove that
a VISGO procedure verifies the following two key properties:
(1) Optimism: VISGO outputs an optimistic estimator of the optimal Q-function at each

iteration step, i.e., Q(i)(s, a) ≤ Q⋆(s, a), ∀i ≥ 0,
(2) Finite-time near-convergence: VISGO terminates within a finite number of iteration steps

(note that the final iterate V (j) approximates the fixed point of L̃ up to an error scaling
with εVI).

To satisfy (1), we derive similarly to MVP (Zhang et al., 2021d) a monotonicity property for
the operator L̃, which is achieved by carefully tuning the constants c1, c2, c3, c4 in the bonus of
Equation (5.5). On the other hand, the requirement (2) is SSP-specific, since it is not needed
in finite-horizon where value iteration requires exactly H backward induction steps. Without
bonuses, the design of P̃ would have directly entailed that L̃ is contractive and convergent
(Bertsekas, 1995). However, our variance-aware exploration bonuses introduce a subtle cor-
relation between value iterates, i.e., b depends on V in Equation (5.5), which leads to a cost
function that varies across iterates. By directly analyzing L̃, we establish that it is contractive
with modulus ρ ≜ 1− ν < 1, where ν ≜ mins,a P̃ s,a,g > 0. This contraction property guarantees
a polynomially bounded number of iterations before terminating, i.e., (2).

2In fact this transition skewing implies that an SSP problem defined on P̃ is equivalent to a discounted RL
problem, with a varying state-action dependent discount factor. Also note that for different albeit mildly related
purposes, a perturbation trick is sometimes used in regret minimization for average-reward MDPs (e.g., Fruit et al.,
2018b; Qian et al., 2019), where a non-zero probability of reaching an arbitrary state at each state-action is added to
guarantee that all policies are unichain and that value iteration variants nearly converge in finite-time.

55

EB-SSP, an Optimal Algorithm for Online SSP

5.3 Regret Analysis

Besides ensuring the computational efficiency of EB-SSP, the properties of VISGO lay the
foundations for our regret analysis (Section D.3) to yield the following general guarantee.

Theorem 5.1. Assume that B ≥ max{B⋆, 1} and that the conditions of Proposition 2.11 hold.
Then with probability at least 1−δ the regret of EB-SSP (Algorithm 5.1 with η = 0) can be bounded
by

RK = O

(√
(B2

⋆ +B⋆)SAK log
(max{B⋆, 1}SAT

δ

)
+BS2A log2

(max{B⋆, 1}SAT
δ

))
,

with T the accumulated time within theK episodes.

Proof idea. We decompose the regret into three parts: X1 (error on the optimistic V -values),
X2 (Bellman error) and X3 (cost estimation error), and among them the major part is X2.
Later, X1 and X2 introduce the intermediate quantities X4 (variance of the optimistic V -
values) and X5 (variance of the differences V ⋆ − V), which are bounded using the recursion
technique generalized from Zhang et al. (2021d), where we normalize the values by 1/B⋆ to
avoid an exponential blow-up in the recursions. At a high-level, the key idea is to calculate
errors of different orders, F (1), F (2), . . . , F (d), . . . (see Lemma D.17 and D.18), and recursively
bound F (i)’s variance by a sublinear function of F (i+ 1). Throughout the proof, we bound
quantities by solving inequalities that contain the unknown quantities on both sides, such
as X3 ≤ Õ(

√
X3 + CK) or X2 ≤ Õ(

√
X2 + CK), where the random variable CK denotes

the cumulative cost over the K episodes. Indeed, the analysis at each time step t brings
out the instantaneous cost ct and it is important to combine them so that we can make CK
appear explicitly. Ultimately, we obtain a regret bound scaling as RK = Õ((

√
B⋆ + 1)

√
SACK).

Since the regret in SSP is defined as RK = CK −KV ⋆(s0), we obtain a quadratic inequality
in CK , which we solve to eliminate the dependence on the random variable CK and to get the
Õ(
√

(B2
⋆ +B⋆)SAK) regret bound.

Theorem 5.1 is an intermediate result for the regret of EB-SSP, as it depends on the random
and possibly unbounded total number of steps T executed overK episodes, it requires the possibly
restrictive second condition of Proposition 2.11, and it relies on the parameter B being properly
tuned. Nonetheless, it already displays interesting properties: 1) The dependence on T is
limited to logarithmic terms; 2) The parameter B only affects the lower order term, while the
main order term naturally scales with the exact range B⋆; 3) Up to dependence on T , the main
order term displays minimax optimal dependencies on B⋆, S, A, andK.

56

5.4 Regret Bounds for Known B⋆

Throughout the rest of the chapter, we consider for ease of exposition that B⋆ ≥ 1.3 For
simplicity, when tuning the cost perturbations later, we assume as in prior works (e.g., Rosen-
berg et al., 2020; Chen et al., 2021c; Chen and Luo, 2021) that the total number of episodesK is
known to the agent (this knowledge can be eliminated with the standard doubling trick).

5.4 Regret Bounds for Known B⋆

First we assume that B = B⋆ (i.e., the agent has prior knowledge of B⋆) and we instantiate the
regret achieved by EB-SSP under various conditions on the SSP model.

5.4.1 Positive Costs

We first focus on the case of positive costs.

Assumption 5.2. All costs are lower bounded by a constant cmin > 0 which is unknown to the
agent.

Assumption 5.2 guarantees that the conditions of Proposition 2.11 hold. Moreover, denoting
by C the cumulative cost overK episodes, the total time satisfies T ≤ C/cmin. By simplifying
the bound of Theorem 5.1 as C ≤ B⋆K +RK ≤ O(B⋆S2AK ·

√
B⋆TSA/δ), we loosely obtain

that T = O(B3
⋆S

5A3K2/(c2
minδ)).

Corollary 5.3. Under Assumption 5.2, running EB-SSP (Algorithm 5.1) withB = B⋆ and η = 0
gives the following regret bound with probability at least 1− δ

RK = O

(
B⋆
√
SAK log

(
KB⋆SA

cminδ

)
+B⋆S

2A log2
(
KB⋆SA

cminδ

))
.

The bound of Corollary 5.3 only depends polynomially onK,S,A,B⋆. We note that T⋆ ≤
B⋆/cmin and that this upper bound only appears in the logarithms. Under positive costs, the
regret of EB-SSP is thus (nearly)minimax and horizon-free. Furthermore, in Section D.1 we
introduce an alternative assumption on the SSP problem (which is weaker thanAssumption 5.2)
that considers that there are no almost-sure zero-cost cycles. In this case also, the regret of
EB-SSP is (nearly) minimax and horizon-free.

3Otherwise, all later bounds hold by replacing B⋆ with max{B⋆, 1}, except for the B⋆ factor in the leading term
that becomes √

B⋆. This matches the lower bound of Ω(
√
B⋆SAK) for B⋆ < 1 (see Proposition 3.5).

57

EB-SSP, an Optimal Algorithm for Online SSP

5.4.2 General Costs and T⋆ Unknown

We now handle the case of non-negative costs, with no assumption other than Assumption 2.7.
We use a cost perturbation argument to generalize the results from positive to general costs
(as done in Chapter 4). As reviewed in Section 2.4, this circumvents the second condition
of Proposition 2.11 (which holds in the cost-perturbed MDP) and target the optimal proper
policy in the original MDP up to a bias scaling with the cost perturbation. Indeed, running
EB-SSP with costs cη(s, a)← max{c(s, a), η} for η ∈ (0, 1] gives the bound of Corollary 5.3 with
cmin ← η, B⋆ ← B⋆ + ηT⋆ and an additive bias of ηT⋆K. We then pick η to balance these terms.

Corollary 5.4. Let L ≜ log
(
KT⋆SAδ

−1). Running EB-SSP (Algorithm 5.1) with B = B⋆ and
η = K−n for any choice of constant n > 1 gives the following regret bound with probability at least
1− δ

RK = O
(
nB⋆
√
SAKL + T⋆

Kn−1 + nT⋆
√
SAL

Kn−1/2 + n2B⋆S
2AL2

)
.

This bound can be decomposed as (i) a
√
K leading term and (ii) an additive term that

depends on T⋆ and vanishes asK → +∞ (we omit the last term that does not depend polyno-
mially on eitherK or T⋆). Note that the second term (ii) can be made as small as possible by
increasing the choice of exponent n in the cost perturbation, at the cost of the multiplicative
constant n in (i). Equipped only with Assumption 2.7, the regret of EB-SSP is thus (nearly)
minimax, and it may be dubbed as horizon-vanishing whenK is given in advance, insofar as it
contains an additive term that depends on T⋆ and that becomes negligible for large values ofK
(ifK is unknown in advance, the application of the doubling trick yields an additive term (ii)
scaling as T⋆). We now show that the trade-off between (i) and (ii) can be resolved with loose
knowledge of T⋆ and leads to a horizon-free bound.

5.4.3 General Costs and Order-Accurate Estimate of T⋆ Available

We now consider that an order-accurate estimate of T⋆ is available. It may be a constant
lower-bound approximation away from T⋆, or a polynomial upper-bound approximation away
from T⋆.

Assumption 5.5. The agent has prior knowledge of a quantity T ⋆ that verifies T⋆
υ ≤ T ⋆ ≤ λT ζ⋆

for some unknown constants υ, λ, ζ ≥ 1. (Note that υ = λ = ζ = 1 when T⋆ is known.)

58

5.5 Regret Bounds for Unknown B⋆ with Parameter-Free EB-SSP

We now tune the cost perturbation η using T ⋆. Specifically, selecting η ≜ (T ⋆K)−1 ensures
that the bias satisfies ηT⋆K ≤ υ = O(1). We thus obtain the following guarantee (see SectionD.2
for the explicit dependencies on the constant terms υ, λ, ζ which only appear as multiplicative
and additive factors).

Corollary 5.6. Under Assumption 5.5, running EB-SSP (Algorithm 5.1) with B = B⋆ and
η = (T ⋆K)−1 gives the following regret bound with probability at least 1− δ

RK = O

(
B⋆
√
SAK log

(
KT⋆SA

δ

)
+B⋆S

2A log2
(
KT⋆SA

δ

))
.

This bound depends polynomially on K,S,A,B⋆, and only logarithmically on T⋆. Thus
under general costs with an order-accurate estimate of T⋆, EB-SSP’s regret is (nearly) minimax
and horizon-free.

5.5 Regret Bounds for Unknown B⋆ with Parameter-Free EB-SSP

In this section, we introduce a parameter-free version of EB-SSP that bypasses the requirement
of B ≥ B⋆ (line 2 of Algorithm 5.1). Note that the challenge of not knowing the range of the
optimal value function does not appear in finite-horizon MDPs, where the bound H (or 1 for
Zhang et al., 2021d) is assumed to be known to the agent. In SSP, if the agent does not have a
valid estimate B ≥ B⋆, then it may design an under-specified exploration bonus which cannot
guarantee optimism. The case of unknown B⋆ is non-trivial: it appears impossible to properly
estimate B⋆ (since some states may never be visited) and it is unclear how a standard doubling
trick may be used.

Parameter-free EB-SSP initializes a proxy B̃ = 1 and increases it over the learning interaction
according to a carefully defined schedule. We need to ensure that the proxy B̃ does not remain
below B⋆ for too long, since in this case, the regret may keep growing linearly. Thus, our
first condition to increase B̃ is whenever a new episode k begins, specifically we set B̃ ←
max{B̃,

√
k/(S3/2A1/2)}, which ensures that B̃ ≥ B⋆ for large enough episodes. However, this

is not enough: indeed notice that when B̃ < B⋆, the agent may never reach the goal and thus
get stuck in the episode, so we cannot exclusively rely on the end of an episode as a trigger for
increasing B̃. Our second condition to increase B̃ is to set B̃ ← 2B̃ whenever the cumulative cost
exceeds a carefully defined threshold (that depends on B̃, S, A, δ and the current episode and
time indexes k and t, which are all computable quantities). Since the regret is upper bounded
by the cumulative cost, this second condition prevents the learner from accumulating too large
regret when B̃ < B⋆. Finally, we introduce a third condition to increase B̃ in order to ensure the

59

EB-SSP, an Optimal Algorithm for Online SSP

computational efficiency, since VISGO may diverge when B̃ < B⋆ (specifically, we track the
range of the value V (i) at each VISGO iteration i and if ∥V (i)∥∞ > B̃, then we terminate VISGO
and increase B̃ ← 2B̃). At a high-level, the analysis of the scheme proceeds as follows: we
bound the regret by the cumulative cost when B̃ < B⋆ (first regime), and by the regret bound
of Theorem 5.1 when B̃ ≥ B⋆ (second regime). Note that this two-regime decomposition is
only implicit (i.e., at the level of analysis), since the agent is unable to know in which regime
it is (since B⋆ is unknown). The full pseudo-code and analysis of parameter-free EB-SSP is
deferred to Section D.7.

Theorem 5.7 (Extension of Theorem 5.1 to unknown B⋆). Assume the conditions of Propo-
sition 2.11 hold. Then with probability at least 1− δ the regret of parameter-free EB-SSP (Algo-
rithm D.1, Section D.7) can be bounded by

RK = O

(
R⋆K log

(
B⋆SAT

δ

)
+B3

⋆S
3A log3

(
B⋆SAT

δ

))
,

where T is the cumulative time within theK episodes and R⋆K bounds the regret afterK episodes
of EB-SSP in the case of known B⋆ (i.e., the bound of Theorem 5.1 with B = B⋆).

Theorem 5.7 implies that we can remove the condition of B ≥ max{B⋆, 1} in Theorem 5.1,
i.e., we make the statement parameter-free. Hence, all the regret bounds from Section 5.4 in the
case of known B⋆ (i.e., Corollaries D.2, 5.3, 5.4 and 5.6) still hold up to additional logarithmic
and lower-order terms when B⋆ is unknown.

5.6 Discussion and Bibliographical Remarks

In this chapter, we presented EB-SSP, a new algorithm for online SSP. It introduces a value-
optimistic scheme to efficiently compute optimistic policies for SSP, by both perturbing the
empirical costs with an exploration bonus and slightly biasing the empirical transitions towards
reaching the goal from each state-action pair with positive probability. Under these biased
transitions, all policies are in fact proper, and the bias is decayed over time in a way that it
only contributes to a lower-order regret term. The guarantees of EB-SSP are significant in the
following ways:

1. EB-SSP is the first algorithm to achieve theminimax regret rate of Õ(B⋆
√
SAK) while

simultaneously being parameter-free: it does not require to know nor estimate T⋆, and
it is able to bypass the knowledge of B⋆ at the cost of only logarithmic and lower-order
contributions to the regret. In fact, this result is the first to show that it is possible to devise
an adaptive exploration bonus strategy in an RL setting where no prior knowledge of the

60

5.6 Discussion and Bibliographical Remarks

“optimal range” is available (this was an open question raised by Qian et al., 2019 whose
exploration-bonus-based approach in average-reward MDPs requires prior knowledge of
an upper bound on the optimal bias span).

2. EB-SSP is the first algorithm to achieve horizon-free regret for SSP in various cases: i)
positive costs, ii) no almost-sure zero-cost cycles, and iii) the general cost case when an
order-accurate estimate of T⋆ is available (i.e., a value T ⋆ such that T⋆/υ ≤ T ⋆ ≤ λT ζ⋆ for
some unknown constants υ, λ, ζ ≥ 1 is available). This property is especially relevant if
T⋆ is much larger than B⋆, which can occur in SSP models with very small instantaneous
costs. Moreover, EB-SSP achieves its horizon-free guarantees while maintaining the
minimax rate. For instance, under general costs when relying on T⋆ and B⋆, its regret is
Õ(B⋆

√
SAK +B⋆S

2A).4 Our result is the first to show that the concept of horizon-free
regret can be extended beyond finite-horizon MDPs (Wang et al., 2020a; Zhang et al.,
2021d; Zhang et al., 2021e). In fact, it is perhaps even more meaningful in the goal-
oriented setting, by virtue of the already present distinction between “optimal length”
(T⋆) and “optimal return” (B⋆). Indeed we do not make any extra assumption on the
SSP problem, as opposed to the finite-horizon set-up which requires the assumption of
different episode length (H) and episode return of any trajectory (at most 1) so as to
uncover horizon-free properties.

Concurrently to our work, Cohen et al. (2021) proposed an algorithm for online SSP that is
interestingly based on a very different algorithmic idea to ours. Whereas we operate at the level
of the non-truncated SSP model, they rely on a black-box reduction from SSP to finite-horizon
MDPs. Specifically, their approach successively tackles finite-horizon problems with horizon
set toH = Ω(T⋆) and costs augmented by a terminal cost set to cH(s) = Ω(B⋆I(s ̸= g)), where
g denotes the goal state. This finite-horizon construction guarantees that its optimal policy
has a similar value function to the optimal policy in the original SSP instance up to a lower-
order bias. Their algorithm comes with a regret bound of O(B⋆

√
SAKL + T 4

⋆ S
2AL5), with

L = log(KT⋆SAδ−1) (with probability at least 1 − δ). It achieves a nearly minimax-optimal
rate, however it relies on both T⋆ and B⋆ prior knowledge to tune the horizon and terminal cost
in the reduction, respectively.56 In addition, their bound is not horizon-free: indeed, even in the
case of known T⋆ and B⋆, which implies that the conditions of Corollary 5.6 hold, the bound of

4We conjecture the optimal problem-independent regret in SSP to be Õ(B⋆
√
SAK +B⋆SA) (by analogy with

the conjecture of Menard et al., 2021 for finite-horizon MDPs), which shows the tightness of our bound up to an S
lower-order factor.

5As mentioned by Cohen et al. (2021, Section 3.1), if B⋆ is unknown it may be estimated on the fly using the SSP
regret minimization algorithm of Rosenberg et al. (2020) as initial subroutine, see Remark D.29 for more discussion
and comparison with our scheme for unknown B⋆ for parameter-free EB-SSP.

6As mentioned by Cohen et al. (2021, Remark 2), in the case of positive costs lower bounded by cmin > 0, their
knowledge of T⋆ can be bypassed by replacing it with the upper bound T⋆ ≤ B⋆/cmin. However, when generalizing
from the cmin case to general costs with a perturbation argument, their regret guarantee worsens from Õ(

√
K+c−4

min)
to Õ(K4/5), because of the poor additive dependence on c−1

min.

61

EB-SSP, an Optimal Algorithm for Online SSP

Corollary 5.6 is strictly tighter, since it always holds that B⋆ ≤ T⋆ and the gap between the two
may be arbitrarily large (see e.g., Section B.2), especially when some instantaneous costs are
very small.

While EB-SSP is computationally efficient (see Section D.6 for details), its poly(K) com-
plexity is a limitation shared by all existing parameter-free algorithms in SSP. On the other
hand, the algorithm of Cohen et al. (2021) can obtain a log(K) computational complexity but
only with T⋆ prior knowledge: without it, using the upper bound T⋆ ≤ B⋆/cmin, where c−1

min
becomes poly(K) when applying the cost perturbation trick, also leads to poly(K) complexity.
It is an interesting open question whether it is possible in SSP to have log(K) computational
complexity while staying parameter-free.

All the aforementioned algorithms for online SSP are model-based. Chen et al. (2021a)
later proposed the first model-free algorithm, which is minimax optimal under strictly positive
costs. Their analysis relies on a technique called implicit finite-horizon approximation, which
approximates the SSP model by a finite-horizon counterpart only in the analysis without
explicit implementation. Using this template, they also develop a model-based algorithm,
which performs one-step planning (instead of full planning) and exactly matches the regret
guarantees of EB-SSP.

While the above algorithms are based on the principle of Optimism in the Face of Uncertainty
(OFU), Jafarnia-Jahromi et al. (2021) later developed the first no-regret algorithm for online SSP
that is based on Posterior Sampling (also known as Thompson Sampling). Meanwhile, Chen
et al. (2022) recently initiated the study of policy optimization for the SSP problem in a range
of settings (including stochastic and adversarial environments under full information or bandit
feedback). They propose an approximation scheme of SSP that they call Stacked Discounted
Approximation (see their discussion in Chen et al., 2022, Section 3), which is interestingly a
hybrid of a finite-horizon MDP approximation (Chen and Luo, 2021; Cohen et al., 2021) and
a discounted MDP approximation (that we adopt in EB-SSP, see Remark D.7). A take-away
message from Chapter 5 and these related works on online SSP is that a pertinent solution to
tackle SSP is to consider either implicit or explicit approximations by other MDP models with
more convenient analytical and/or computational properties, namely finite-horizon MDPs,
discounted MDPs or a combination thereof.

Finally, all the aforementioned algorithms for online SSP are for the tabular setting and
their associated regret bounds (unavoidably) scale with S and A. Recently, Vial et al. (2021)
and Min et al. (2021) developed the first algorithms for online SSP with linear function ap-
proximation, respectively linear SSP (where the transition kernel and cost vector are linear in
known d-dimensional feature vectors) and linear-mixture SSP (where the transition kernel is
parameterized by a linear function over known feature mappings defined on the triplet of state,
action, and next state). The regret bounds were then improved by Chen et al. (2021b), who

62

5.6 Discussion and Bibliographical Remarks

also derived the first logarithmic instance-dependent expected regret bounds for SSP. Note that
these three works still consider that theMDP has a finite number of states S. This is to be expected
given the way a goal is currently modeled (at the granular level of states), independently of
how large the state space is, where it may be very hard to visit specific states. Learning in SSP
beyond a finite state space is an interesting direction of future investigation.

63

Part II

Unsupervised Reinforcement Learning:
Learning to Set Your Own Goals

Overview of Part II:

? Open-ended research question: In the absence of any reward supervision, how to
learn to autonomously and efficiently solve a wide variety of tasks?

� Key contribution: We instigate a thorough and formal analysis of the general-purpose
principle of SYOG — “Set Your Own Goals” — for various learning objectives.

✓ Relevance: SYOG is a popular heuristic that has already yielded promising empirical
results in unsupervised deep RL.

Chapter 6

Overview of Unsupervised RL
& SYOG (Set Your Own Goals)

Beyond training our RL agent to solve only one goal-oriented task as in Part I, we now aspire
in Part II that it learns to autonomously solve a wide variety of tasks, in the absence of any
reward/cost/goal supervision. In this chapter, we review some existing approaches for un-
supervised RL, both on the empirical and theoretical sides, and we present a general-purpose
principle dubbed SYOG — for “Set Your Own Goals” — which suggests the agent to learn
the ability to intrinsically select and reach its own goal states. SYOG has already found wide
empirical success in unsupervised deep RL methods. The main contribution of Part II is to
instigate a thorough and formal analysis of the SYOG principle in various settings, each with its
specific learning objective and set of technical challenges.

Contents
6.1 High-level Motivations behind URL . 68

6.2 Short Review of Empirical Studies of URL . 69

6.3 Short Review of Theoretical Studies of URL 69

6.4 The SYOG Principle . 73

67

Overview of Unsupervised RL & SYOG (Set Your Own Goals)

Throughout Part II, we use the term unsupervised RL (URL) to describe the setting where the
environment does not provide any supervision signal, i.e., the agent is given no reward/cost
function nor specific goal to reach. Formally, the agent interacts with a reward-free MDP
M ≜ ⟨S,A, P, s0⟩, where S is the state space, A is the action space, P : S ×A → ∆(S) denotes
the transition probabilities and s0 ∈ S is the initial state. In this case, the conventional RL
objective of maximizing cumulative reward cannot be optimized, and must be replaced by
alternative objectives intrinsically set by the learning agent.

6.1 High-level Motivations behind URL

Absent reward signal. A first motivation to investigate unsupervised RL is quite “AI-ish”,
almost existential in nature: imagine a robot deployed in an unknown environment (e.g., a
far-away, unexplored planet), with no explicit supervision signal from the environment nor
any human intervention. This gives rise to the open-ended question: how should it explore its
environment, i.e., driven by which intrinsic objective(s)?

Sparse reward signal. In many RL applications, a pre-specified reward function is available
yet it is rarely informative. A sparse reward task is typically characterized by a meagre amount
of states in the state space that return a feedback signal. A typical situation is when an agent
has to reach a goal and only receives a positive reward signal when it enters the goal state
(see e.g., Koenig and Simmons, 1996, Section 4.1 and references therein). This can render the
optimization process quite ineffective in converging towards an optimal behavior, and can
motivate to augment the sparse extrinsic reward with some carefully constructed intrinsic
rewards to facilitate the discovery of rewarding states.

Multiple/Varying reward signal. In some settings, there are multiple reward functions of
interest, e.g., in constrained RL formulations (Altman, 1999; Achiam et al., 2017; Tessler et
al., 2019). To strike a balance between the multiple (possibly conflicting) objectives, reward
functions are often iteratively engineered to encourage desired behavior via trial and error. In
such cases, repeatedly invoking the same RL algorithm with different reward functions can be
quite sample inefficient. In the batch RL setting (Bertsekas and Tsitsiklis, 1995), data collection
and planning are explicitly separated, which highlights the potential benefit of performing
an initial phase of task-agnostic learning. In hierarchical and multi-task RL (Dietterich, 2000;
Tessler et al., 2017; Oh et al., 2017), the agent aims at simultaneously learning a set of skills. In
the robotic navigation problem (Rimon and Koditschek, 1992; Kretzschmar et al., 2016), the
agent needs to navigate to not only one goal state, but a set of states in the environment.

68

6.2 Short Review of Empirical Studies of URL

6.2 Short Review of Empirical Studies of URL

The works of Schmidhuber (1991), Chentanez et al. (2005), Singh et al. (2009), Singh et
al. (2010), Oudeyer and Kaplan (2009), and Baranes and Oudeyer (2010) (among others)
established computational theories of intrinsic reward signals (and how it might help with
downstream learning of tasks). In the Deep Reinforcement Learning (DRL) community, there
has been an increasing interest in designing algorithms that can learn without the supervision
of a well-designed reward function. Some approaches design intrinsic rewards to drive the
learning process, for instance via state visitation counts (Bellemare et al., 2016; Tang et al.,
2017), novelty or prediction errors (Houthooft et al., 2016; Pathak et al., 2017; Azar et al., 2019;
Badia et al., 2020). Other recent methods perform information-theoretic skill discovery to
learn a set of diverse and task-agnostic behaviors (Gregor et al., 2016; Eysenbach et al., 2019;
Sharma et al., 2020; Campos et al., 2020; Kamienny et al., 2022). Alternatively, goal-conditioned
policies learned by carefully designing the sequence of goals during the learning process are
often used to solve sparse reward problems (Ecoffet et al., 2020) and a variety of goal-reaching
tasks (Florensa et al., 2018; Colas et al., 2019; Warde-Farley et al., 2019; Pong et al., 2020), as
further discussed in Section 6.4.

6.3 Short Review of Theoretical Studies of URL

To the best of our knowledge, Lim andAuer (2012) are the first to propose a formal performance
measure accompanied with a theoretical analysis of an unsupervised RL agent. They focus on
the restricted class of incremental autonomous exploration, where the objective is to identify and
learn to reliably reach all the states that are incrementally reliably reachable from a reference
starting state s0 to which the agent can reset (at a high level, the incrementally reliably reachable
states are those that admit some unknown order s0, s1, . . . such that si is reliably reachable by
a policy defined only on s0, . . . , si−1). We defer to Chapter 9 the detailed description of this
setting on which we will build.

More recently and contemporarily to this thesis, a growing line of research has focused on
analyzing some provably efficient unsupervised RL objectives. We can broadly separate them
in the two following classes:

• “One-shot” unsupervised exploration (Section 6.3.1): Given a specific desiderata (e.g.,
behavior or prediction) specified before exploration, the agent should be able to ap-
proximate it accurately. Examples include to mimic the behavior of a certain policy
π† (measured by some function F : Π → R), or to predict some unknown functions
{F (s, a)}s,a of state-action pairs whose visits provide possibly noisy observations (e.g.,
the transition probability P (·|s, a)).

69

Overview of Unsupervised RL & SYOG (Set Your Own Goals)

• “End-to-end” finite-horizon unsupervised exploration (Section 6.3.2): After a reward-
free exploration phase, the agent should be able to compute near-optimal policies for
some set of possible reward functions revealed only during the subsequent planning
phase (either a finite number of them, or any possibly adversarial reward function).

6.3.1 “One-shot” unsupervised exploration

This class of objective can be parametrized in state-action stationary distributions λ ∈ Λ and
cast as a convex optimization problem

min
λ∈Λ

F (λ), (6.1)

for some convex function F : Λ→ R, where the set Λ is defined as

Λ ≜
{
λ ∈ ∆(S ×A) : ∀s ∈ S,

∑
b∈A

λ(s, b) =
∑

s′∈S,a∈A
P (s|s′, a)λ(s′, a)

}
.

Note that this parametrization is used in the dual formulation of reward-basedMDP (Puterman,
2014, Section 8). Recall that Λ is a convex set, and that any λ ∈ Λ with∑a∈A λ(s, a) > 0 for all
s ∈ S induces a stationary policy πλ : S → ∆(A) defined as

πλ(a|s) ≜ λ(s, a)∑
a∈A λ(s, a) .

Contemporarily to the works of Hazan et al. (2019) and Cheung (2019), in Tarbouriech and
Lazaric (2019) followed by Tarbouriech et al. (2020c) we investigated how to sequentially
optimize problems of the type Equation (6.1) by generating a sequence of intrinsic reward
signals rt(s) ≜ −∇F (λ̂t), where λ̂t denotes the state-action empirical frequency at time t, i.e.,
the normalized number of times that action a has been executed in state s after t time steps. The
approximation loss, or regret, can be defined as F (λ̂t) − F (λ⋆), where λ⋆ ∈ arg minλ∈Λ F (λ).
If F is convex, Lipschitz-continuous and smooth, the analysis can build on the Frank-Wolfe
optimization principle. For the interest of conciseness we do not delve into the technical details
but rather give an overview of the guarantees. In particular, in the communicating MDP setting
with diameter D (recall that D measures the longest shortest path between any two states, see
Jaksch et al., 2010), the algorithm of Cheung (2019) comes with the following guarantee

F (λ̂t)− F (λ⋆) =

Õ
(
t−1/2

)
if F is smooth,

Õ
(
t−1/3

)
if F is non-smooth,

where the Õ hides polynomial dependencies on MDP-dependent quantities (e.g., S, A,D) and
f -dependent quantities (e.g., Lipschitz-continuity constant, smoothness constant).

70

6.3 Short Review of Theoretical Studies of URL

As illustrated below, there are two main categories of desiderata that can be addressed
with this framework: to visit the state(-action) space according to a prescribed behavior (e.g.,
“MaxEnt”), or to make accurate predictions about state-action outcomes (e.g., “ModEst”).

Example①: Mimic a target distribution. Here the agent receives as input a target state-action
distribution ρ ∈ ∆(S ×A), and its objective is to minimize the following mean squared error

F (λ) ≜ 1
SA

∑
s,a

(
ρ(s, a)− λ(s, a)

)2
.

We note that F is convex, Lipschitz continuous and smooth. For instance, the algorithm of
Cheung (2019) in communicating MDPs yields

F (λ̂T)− F (λ⋆) = Õ

(
DSA1/2

T 1/2

)
.

Example ②: Maximize the state entropy (MaxEnt). Here the agent seeks to learn a policy
that induces a distribution over the state space that is as uniform as possible, which can be
measured in an entropic sense (Hazan et al., 2019). Let U ≜ {

µ ∈ ∆(S) : ∃λ ∈ Λ, ∀s ∈
S, µ(s) =

∑
a∈A λ(s, a)

}, then we can define the function to optimize F : U → R as well as an
auxiliary function Hη : U → R for η > 0 as follows

F (µ) ≜
∑
s

µ(s) log
(
µ(s)

)
, Hη(µ) ≜

∑
s

µ(s) log
(
µ(s) + η

)
.

While F is only convex in µ, Hη is convex, Lipschitz continuous and smooth in µ for any
η > 0. The analysis is thus applied to Hη for a carefully selected η such that the bias w.r.t.F is
adequately controlled. Let µ⋆ ∈ arg minµ∈U F (µ). For instance, the algorithm of Cheung (2019)
in communicating MDPs yields

F (µ̂T)− F (µ⋆) = Õ

(
DS1/3

T 1/3 + DSA1/2

T 1/2

)
.

We can also mention that some recent works have empirically studied the MaxEnt problem
beyond the tabular case with non-parametric entropy estimation (Mutti et al., 2021; Liu and
Abbeel, 2021) or with variations to the entropy objective, such as geometry-awareness (Guo
et al., 2021) and Rényi generalization (Zhang et al., 2021a).

71

Overview of Unsupervised RL & SYOG (Set Your Own Goals)

Example ③: Accurately estimate the transition model (ModEst). A possible objective to
quantify how well the transition dynamics are estimated can be to minimize

Gt(π) ≜
∑
s,a

∣∣∣∣∣∣P̂π,t(·|s, a)− P (·|s, a)
∣∣∣∣∣∣

1
,

where P̂π,t is the estimate (i.e., empirical average) of the transition dynamics P after t time steps
of executing the (possibly non-stationary) policy π. Since directly optimizing the objective
function appears highly non-trivial, in Tarbouriech et al. (2020c) we propose to upper bound it
with Bernstein’s inequality and then reparametrize it in λ, as loosely shown below

Gt(π) ≲ Bt(π) ≜
∑
s,a

 V (s, a)√
Nπ,t(s, a)

+ S

Nπ,t(s, a)

 = 1√
t

∑
s,a

 V (s, a)√
λ̂π,t(s, a)

+ 1√
t

S

λ̂π,t(s, a)

 ,
where Nπ,t(s, a) denotes the number of visits to (s, a) after t time steps under policy π, and
V (s, a) is a term that depends on the variance of P (·|s, a) which is a priori unknown but can
be estimated by an upper confidence bound (Maurer and Pontil, 2009). The objective can thus
be cast as optimizing the following function on the Λ space,

min
λ∈Λ

F (λ) ≜ 1√
t

∑
s,a

(
V (s, a)√
λ(s, a)

+ 1√
t

S

λ(s, a)

)
.

Unfortunately, while F is convex, it has a poorly behaved optimization landscape; in particular
it is not Lipschitz continuous. A solution can be to “artificially” make the function well-behaved,
by optimizing minλ∈Λη F (λ) on a restricted simplex

Λη ≜
{
λ ∈ Λ : ∀(s, a) ∈ S ×A, λ(s, a) ≥ η

}
,

where η < (SA)−1 is a small positive constant. Ultimately, we show in Tarbouriech et al.
(2020c) that it is possible to obtain a polynomially bounded sample complexity guarantee (i.e.,
Gn(π) ≤ ε for any accuracy level ε > 0), but the analysis requires the strong ergodicity assumption
as well as the condition η ≤ mins,a λ⋆(s, a), which implies non-trivial prior knowledge.

Discussion. Consider that we are able to cast our unsupervised objective as minimizing some
function F (λ) over the space of state-(action) stationary distribution. If F is “optimization-
friendly”, i.e., convex with bounded gradients, then the Frank-Wolfe-based strategy of feeding
the current gradient −∇F (λ̂t) as intrinsic reward yields satisfying results (e.g., example ①

and to a lesser extent ②). Unfortunately, many problems do not admit these nice properties
(e.g., example ③), which makes such an optimization-based, “first-order” method not ideal. In
Chapter 7, we will instead propose a sampling-based, “zero-order” method that will come with

72

6.4 The SYOG Principle

stronger theoretical guarantees. Finally, we point out a limitation of the aforementioned Frank-
Wolfe-based approaches, even when F has a well-behaved optimization landscape. Indeed,
they may not learn how to effectively reach any state of the environment and thus may not be
sufficient to efficiently solve downstream tasks. In other words, there is no theoretical evidence
(yet) that they produce re-usable policies.

6.3.2 “End-to-end” finite-horizon unsupervised exploration

Another relevant take for theoretical unsupervised RL is the paradigm of Jin et al. (2020) in
finite-horizon MDPs with horizon denoted by H . It consists of an exploration phase followed
by a planning phase. In the exploration phase, an agent interacts with the unknown environ-
ment without the supervision of reward signals. Afterwards, in the planning phase, without
additional environment interaction and only based on its exploration experiences, the agent
is required to compute a near-optimal policy for some revealed reward function. If the reward func-
tion can be designed arbitrarily (including adversarially), the problem is called reward-free
exploration (RFE) (Jin et al., 2020; Kaufmann et al., 2021; Ménard et al., 2021; Zhang et al.,
2021c; Zanette et al., 2020; Wang et al., 2020b; Chen et al., 2021d; Zhang et al., 2021b). If
there is only a finite number of possible reward functions that are fixed yet unknown during
exploration (i.e., independent of the randomness used in the exploration phase), the problem
is called task-agnostic exploration (TAE) (Zhang et al., 2020a; Wu et al., 2020; Wu et al., 2021).
The agent’s performance is measured by the sample complexity, i.e., the number of samples that
the algorithm needs to collect during the exploration phase in order to complete the planning
task near-optimally up a small error ε > 0 (with probability at least 1− δ). The aforementioned
works have shown that the minimax sample complexity is

Õ
(
poly(H)S2Aε−2

)
for RFE,

Õ
(
poly(H) log(N)SAε−2

)
for TAE with N possible reward functions.

Discussion. We notice that the theoretical price to pay for allowing an infinite number of
rewards (or adversarial rewards) is the quadratic dependence on S in the sample complexity.
While the frameworks of TAE and (even more) RFE yield strong end-to-end guarantees, they
are limited to the finite-horizon setting and thus do not extend to goal-reaching tasks.

6.4 The SYOG Principle

We now give an overview of the SYOG principle, for “Set Your Own Goals”.

73

Overview of Unsupervised RL & SYOG (Set Your Own Goals)

High-level algorithmic structure of SYOG

Alternate between:

(GS) Goal Selection: select one or multiple goal states to reach;

(PE) Policy Execution: execute an explorative policy conditioned on this goal until it
is reached or a (predefined or adaptive) stopping condition is met (and store
the experience accumulated over the trajectory).

The SYOG approach can be cast as intrinsically motivated goal-conditioned RL (GC-RL, see
e.g., Colas et al., 2020, for an excellent survey). In this framework, the agent must learn a goal-
conditioned policy, which learns a distribution over actions conditioned not only on the current
state but also on a goal state that it must reach as quickly as possible (in expectation). For the
goal-conditioned policy to be able to reach a variety of goals in the unknown environment, the
agent must autonomously set its own goals (via e.g., a curriculum) and learn to effectively
reach them. Learning how to execute shortest paths between various (ideally all) pairs of states
suggests a thorough understanding of the environment dynamics.

Recently, GC-RL has been extensively studied in the context of deep RL (see e.g., Schaul
et al., 2015; Andrychowicz et al., 2017; Florensa et al., 2018; Warde-Farley et al., 2019; Nair et al.,
2018; Colas et al., 2019; Zhao et al., 2019; Hartikainen et al., 2020; Ecoffet et al., 2020; Pong et al.,
2020; Zhang et al., 2020b; Pitis et al., 2020). GC-RL has notably been shown to be a powerful
heuristic to tackle navigation problems (e.g., Florensa et al., 2018), game playing (e.g., Ecoffet
et al., 2020, on Montezuma’s Revenge) or real-world robotic manipulation tasks (e.g., Pong
et al., 2020).

Given the simple and unifying algorithmic structure of alternating between (GS) and (PE)
steps, the core differences between the methods lie in the goal sampling distribution and in
ways to take advantage of each policy execution as much as possible to speed up the learning.
The specific choice of (GS) and (PE) steps directly influences the learning speed as well as the
quality of the goal-conditioned policy returned by the algorithm. (PE) is typically improved
by goal relabeling (Andrychowicz et al., 2017) or encoding goal states in lower-dimensional
representations (Pong et al., 2020). We now review two popular approaches to prioritize (GS),
beyond the canonical uniform goal sampling distribution (Kaelbling, 1993; Schaul et al., 2015;
Andrychowicz et al., 2017).

Sampling goals of intermediate difficulty. GoalGan (Florensa et al., 2018) assigns feasibility
scores to goals as the proportion of time that the agents successfully reaches it. Based on this
data, a generative adversarial network (GAN) is trained to generate goals of intermediate
difficulty, whose feasibility scores are contained within an intermediate range. Meanwhile,

74

6.4 The SYOG Principle

Zhang et al. (2020b) perform Value Disagreement based Sampling (VDS) by selecting goals that
maximize the disagreement in an ensemble of goal-conditioned value functions. Value functions
agree when the goals are too easy (the agent always manages to reach them) or too hard (the
agent always fails to reach them) but disagree for goals of intermediate difficulty, on the fringe
of the agent’s current mastery of the environment. Interestingly, the theoretically grounded
goal selection scheme that we introduce in Chapter 8 has similar high-level motivations with
VDS, which can be seen as a way of operationalizing our provably efficient approach in deep RL.

Sampling goals to optimize novelty - diversity. Pong et al. (2020), Warde-Farley et al. (2019),
and Pitis et al. (2020) bias the selection of goals towards sparsely visited areas of the goal space.
For this purpose, they train density models in the goal space. While Pong et al. (2020) and
Warde-Farley et al. (2019) target a uniform coverage of the goal space (diversity), Pitis et al.
(2020) further skew the distribution of selected goals, effectively maximizing novelty. These
algorithms have strong connections with empowerment-based methods (e.g., Mohamed and
Rezende, 2015; Gregor et al., 2016; Eysenbach et al., 2019; Choi et al., 2021). Indeed, the mutual
information (MI) between goals (denoted by the random variable G) and states (denoted
by the random variable S) that empowerment methods aim to maximize can be written as
I(S;G) = H(G) −H(G|S), where H denotes the entropy function. As a result, maximizing
empowerment can be interpreted as maximizing the entropy of the goal distribution while
minimizing the entropy of goals given experienced states. Algorithms that simultaneously learn
to sample diverse goals (H(G) ↑) and learn to represent goals with variational auto-encoders
(H(G|S) ↑) can thus be seen as maximizing empowerment.

While these aforementioned SYOG-based approaches effectively leverage deep RL tech-
niques and are able to achieve impressive results in complex domains, they tend to be sample
inefficient and driven by heuristics that lack substantial theoretical understanding and guaran-
tees, even when restricted to the tabular case. The focus of Part II is to instigate a thorough
and formal analysis of the SYOG principle in various settings, each with its specific technical
challenges. We will systematically ask the following questions:

① What is the exact learning objective and how do we measure its achievement (i.e., sample
complexity)?

② What upper bound on the sample complexity can we obtain?

③ What are the assumptions on the environment that we require?

④ What are the key algorithmic designs that allow us to establish our guarantee?

75

Chapter 7

SYOG in Reward-Free Reset-Free
Communicating MDPs

In this chapter, we investigate the SYOG principle in reward-free reset-free communicating
MDPs. We posit that many unsupervised objectives (i.e., that do not rely on an informative
extrinsic reward signal) can be tackled by a decoupled approach composed of: 1) An “objective-
specific” algorithm that (adaptively) prescribes how many samples to collect at which states, as
if it has access to a generative model (i.e., a simulator of the environment); 2) An “objective-
agnostic” sample collection exploration strategy responsible for generating the prescribed
samples as fast as possible. By casting the latter as a (multi-goal varying) SSP exploration
problem, we are able to leverage the techniques developed in Part I. Our decoupled approach
allows us to tackle a variety of settings — e.g., model estimation, sparse reward discovery,
goal-free cost-free exploration — for which we obtain improved or novel sample complexity
guarantees. 1

Contents
7.1 Motivation . 78

7.2 Problem Definition . 79

7.3 Online Learning for Sampling Oracle Simulation with GOSPRL 81

7.4 Applications of GOSPRL . 85

7.5 Experiments . 89

7.6 Discussion . 91

1This chapter is based on an article published in the proceedings of the 34 th Conference on Neural Information
Processing Systems (NeurIPS 2021) (Tarbouriech et al., 2021a).

77

SYOG in Reward-Free Reset-Free Communicating MDPs

7.1 Motivation

One of the challenges in online reinforcement learning (RL) is that the agent needs to trade off
the exploration of the environment and the exploitation of the samples to optimize its behavior.
Whenever the agent needs to gather information about a specific region of the Markov decision
process (MDP), it must plan for a policy to reach the desired states, despite not having exact
knowledge of the environment dynamics. This makes solving the exploration-exploitation
problem in RL highly non-trivial and it requires designing a specific strategy depending on the
learning objective, such as PAC-MDP learning (e.g., Brafman and Tennenholtz, 2002; Strehl
et al., 2009; Wang et al., 2019), regret minimization (e.g., Jaksch et al., 2010; Azar et al., 2017;
Jin et al., 2018; Zhang et al., 2020c) or pure exploration (e.g., Jin et al., 2020; Kaufmann et al.,
2021; Ménard et al., 2021; Zhang et al., 2020a; Zhang et al., 2021c).

A simpler scenario considered in the literature is to assume access to a generative model or
sampling oracle (SO) (Kearns et al., 2002). Given any state-action pair (s, a), the SO returns a
next state s′ drawn from the transition probability P (·|s, a) and a reward r(s, a). In this case, it is
possible to focus exclusively on where and howmany samples to collect, while disregarding the
problem of finding a suitable policy to obtain them. For instance, an SO can be used to obtain
samples from the environment, which are combined with dynamic programming techniques
to compute a near-optimal policy. SO-based algorithms can be as simple as prescribing the
same amount of samples from each state-action pair (e.g. Kearns et al., 2000; Kearns et al.,
2002; Azar et al., 2013; Chen and Wang, 2016; Sidford et al., 2018; Agarwal et al., 2020; Li
et al., 2020) or they may adaptively change the sample requirements on different state-action
pairs (e.g. Chen et al., 2018; Wang, 2017; Zanette et al., 2019). An SO is also used inMonte-Carlo
planning Szörényi et al., 2014; Grill et al., 2016; Bartlett et al., 2019 which focuses on computing
the optimal action at the current state by optimizing over rollout trajectories sampled from the
SO. Finally, in multi-armed bandit (Lattimore and Szepesvári, 2020), there are cases where
each arm corresponds to a state (or state-action), and “pulling” an arm translates into a call to
an SO (see e.g., the pure exploration setting that we introduced in Tarbouriech and Lazaric,
2019). Unfortunately, while an SO may be available in domains such as simulated robotics and
computer games, this is not the case in the more general online RL setting.

In this chapter, we tackle the exploration-exploitation problem in online RL by drawing
inspiration from the SO assumption. Specifically, we define an approach that is decoupled in
two parts: 1) an “objective-specific” algorithm that assumes access to an SO that (adaptively)
prescribes the samples needed to achieve the learning objective of interest, and 2) an “objective-
agnostic” algorithm that takes on the exploration challenge of collecting the samples requested
by the SO-based algorithm as quickly as possible.2

2Alternatively, we can view it as a general approach to take any SO-based algorithm and convert it into an online
RL algorithm.

78

7.2 Problem Definition

7.2 Problem Definition

We consider that theMDPM ≜ ⟨S,A, P, r, s0⟩ is finite and reset-free, with arbitrary starting state
s0 ∈ S . Calling an SO in any state-action pair (s, a) leads to two outcomes: a next state sampled
from the transition probability distribution P (·|s, a) ∈ ∆(S), and (optionally) a scalar reward
r(s, a) ∈ R. For any policy π and pair of states (s, s′), let τπ(s→ s′) be the (possibly infinite)
hitting time from s to s′ when executing π, i.e., τπ(s → s′) ≜ inf{t ≥ 0 : st+1 = s′| s1 = s, π},
where st is the state visited at time step t. We define

Dss′ ≜ min
π∈Π

E
[
τπ(s→ s′)

]
, Ds′ ≜ max

s∈S\{s′}
Dss′ , D ≜ max

s′∈S
Ds′ ,

where Dss′ is the shortest-path distance between s and s′, Ds′ is the SSP-diameter of s′ (see
Chapter 3) and D is the MDP diameter (Jaksch et al., 2010).

We now formalize the problem of simulating an SO (i.e., to generate the samples prescribed
by an SO-based algorithm). At each time step t ≥ 1, the agent receives a function

bt : S ×A → N,

where bt(s, a) defines the total number of samples that need to be collected at (s, a) by time step t.
We consider that (bt)t≥1 is an arbitrary sequence with each bt measurable w.r.t. the filtration up
to time t (i.e., it may depend on the samples observed so far).3 We focus on the objective of
designing an online algorithm that minimizes the time required to collect the prescribed samples.
Since the environment is initially unknown, we need to trade off between exploring states and
actions to improve estimates of the dynamics and exploiting current estimates to collect the
required samples as quickly as possible. We formally define the performance metric as follows.

Definition 7.1. For any state-action pair, we denote byNt(s, a) ≜
∑t
i=1 1{(si,ai)=(s,a)} the number

of visits to state s and action a up to (and including) time step t. Given a sampling requirement
sequence b ≜ (bt)t≥1 with bt : S ×A → N and a confidence level δ ∈ (0, 1), we define the sample
complexity of a learning algorithm A as

C
(
A, b, δ

)
≜ min

{
t > 0 : P

(
∀(s, a) ∈ S ×A, Nt(s, a) ≥ bt(s, a)

)
≥ 1− δ

}
.

With no additional condition, it is trivial to define problems such that C(A, b, δ) = +∞ for
any algorithm. To avoid this case, we introduce the following assumptions.

3Allowing adaptive sampling requirements enables to pair GOSPRL with SO-based algorithms that adjust their
requirements online as samples are being generated (see e.g., Section 7.4.2).

79

SYOG in Reward-Free Reset-Free Communicating MDPs

Assumption 7.2. The MDPM is communicating with a finite and unknown diameter D < +∞.

Assumption 7.3. There exist an unknown and bounded function b : S × A → N such that the
sequence (bt)t≥1 verifies: ∀t ≥ 1, ∀(s, a) ∈ S ×A, bt(s, a) ≤ b(s, a).

Assumption 7.2 guarantees that whatever state needs to be sampled, there exists at least
one policy that can reach it in finite time almost-surely. Assumption 7.3 ensures that the
sequence of sampling requirements does not diverge and can thus be fulfilled in finite time.
These assumptions guarantee that the problem in Definition 7.1 is well-posed and the sample
complexity is bounded.

A variety of problems can be cast under our decoupled approach, in the sense that they can
be tackled by solving the problem of Definition 7.1 under a specific instantiation of the sampling
requirement sequence (bt)t≥1. For instance, consider the problem of covering the state-action
space (e.g., to discover a hidden sparse reward), then the requirement is immediately defined
as bt(s, a) = 1. In Sections E.8 and 7.4, we review problems where defining bt can be as simple
as computing the sufficient number of samples needed to reach a certain level of accuracy in
estimating a quantity of interest (e.g., model estimation) or can be directly extracted from
existing literature (e.g., ε-optimal policy learning).

We now provide a simple worst-case lower bound on the sample complexity (details in
Section E.3).

Lemma 7.4. For any S ≥ 1, there exists an MDP with S states satisfying Assumption 7.2 such
that for any sampling requirement b : S → N satisfying Assumption 7.3,

min
A
C
(
A, b, 1

2
)

= Ω
(∑
s∈S

Dsb(s)
)
.

Lemma 7.4 shows that the (possibly non-stationary) policy minimizing the time to collect
all samples requires Ω

(∑
sDsb(s)

) time steps in a worst-case MDP. We also notice that when
the total sampling requirementB is concentrated on the state s for whichDs = D (i.e., b(s′) = 0,
∀s′ ̸= s), the previous bound reduces to Ω(BD).

80

7.3 Online Learning for Sampling Oracle Simulation with GOSPRL

Algorithm 7.1: Algorithm GOSPRL
1 Input: sampling requirement sequence (bt)t≥1 with bt : S ×A → N revealed at time t (or

anytime before).
2 Initialize: Set G1 ≜ {s ∈ S : ∃a ∈ A, b1(s, a) > 0}, time step t ≜ 1, counters N1(s, a) ≜ 0,

attempt index k ≜ 1 and attempt counters U1(s, a) ≜ 0, ν1(s, a) ≜ 0.
3 while Gk is not empty do
4 Define the SSP problemMk with goal states Gk, and compute its optimistic shortest-path

policy π̃k.
5 Set flag = True and counter νk(s, a) ≜ 0.
6 while flag do
7 Execute action at ≜ π̃k(st) and observe next state st+1 ∼ P (·|st, at).
8 Increment counters νk(st, at) and Nt(st, at).
9 if st+1 ∈ Gk or νk(st, at) > {Uk(st, at) ∨ 1} then
10 Set flag = False.
11 Set t += 1.
12 if st ∈ Gk then
13 Execute an action a ∈ A such that Nt(st, a) < bt(st, a), observe next state

st+1 ∼ P (·|st, a) and set t += 1.
14 Set Uk+1(s, a) ≜ Uk(s, a) + νk(s, a), k += 1.
15 Update the set of goal states Gk ≜

{
s ∈ S : ∃a ∈ A, Nt−1(s, a) < bt−1(s, a)

}.
7.3 Online Learning for SamplingOracle SimulationwithGOSPRL

In this section, we introduce our algorithm for the problem in Definition 7.1, bound its sample
complexity and discuss several extensions.

7.3.1 The GOSPRL Algorithm

In Algorithm 7.1 we outline GOSPRL (Goal-based Optimistic Sampling Procedure for Reinforcement
Learning). At each time step t, GOSPRL receives a sampling requirement bt : S ×A → N. The
algorithm relies on the principle of optimism in the face of uncertainty and proceeds through
attempts to collect relevant samples. We index the attempts by k = 1, 2, . . . and denote by tk
the time step at the start of attempt k and by Uk ≜ Ntk−1 the number of samples available at
the start of attempt k. At each attempt, GOSPRL goes through the following steps: 1) Cast the
under-sampled states as goal states and define an associated unit-cost multi-goal SSP instance
(with unknown transitions); 2) Compute an optimistic SSP policy; 3) Execute the policy until
either a goal state is reached or a stopping condition is satisfied; 4) If a sought-after goal state
denoted by g has been reached, execute an under-sampled action (i.e., an action a such that
Nt(g, a) < bt(g, a)). The algorithm ends when the sampling requirements are met, i.e., at the
first time t ≥ 1 where Nt(s, a) ≥ bt(s, a) for all (s, a).

81

SYOG in Reward-Free Reset-Free Communicating MDPs

Step 1. At any attempt k we begin by defining the set of all under-sampled states

Gk ≜
{
s ∈ S : ∃a ∈ A, Ntk−1(s, a) < btk−1(s, a)

}
.

We then cast the sample collection problem as a goal-reaching objective (see Part I), by con-
structing a multi-goal SSP problem denoted byMk ≜ ⟨Sk,A, Pk, ck,Gk⟩, with:4

• Gk denotes the set of goal states, Sk := S \ Gk the set of non-goal states and A the set of
actions.

• The transition model Pk is the same as the original P except for the transitions exiting the
goal states which are redirected as a self-loop, i.e., Pk(s′|s, a) ≜ P (s′|s, a) and Pk(g|g, a) ≜ 1
for any (s, s′, a, g) ∈ Sk × S ×A× Gk.

• The cost function ck is defined as follows: for any a ∈ A, any goal state g ∈ Gk is zero-cost
(ck(g, a) ≜ 0), while the non-goal costs are unitary (ck(s, a) ≜ 1 for s ∈ Sk).

According to Proposition 2.11, Assumption 7.2 and the positive non-goal costs ck entail that
solvingMk is a well-posed SSP problem and that there exists an optimal policy that is proper
(i.e., that eventually reaches one of the goal states with probability 1 when starting from any
s ∈ Sk). Crucially, the objective of collecting a sample from the under-sampled states Gk
coincides with the SSP objective of minimizing the expected cumulative cost to reach a goal
state inMk.

Step 2. Since Pk is unknown, we cannot directly compute the shortest-path policy forMk.
Instead, leveraging the samples collected so far, we apply an extended value iteration scheme
for SSP which implicitly skews the empirical transitions P̂k towards reaching the goal states.
This procedure can be done efficiently as shown in Chapter 4,5 and it outputs an optimistic
shortest-path policy π̃k.

Step 3. π̃k is then executed with the aim of quickly reaching an under-sampled state. Along
its trajectory, the counter Nt is updated for each visited state-action. Because of the error in
estimating the model, π̃k may never reach one of the goal states (i.e., it may not be proper in
Pk). Thus π̃k is executed until either one of the goals in Gk is reached, or the number of visits
is doubled in a state-action pair in Sk ×A, a standard termination condition first introduced
by Jaksch et al. (2010). If a sought-after goal state is reached, the agent executes an under-
sampled action according to the current sampling requirements at that state. At the end of
each attempt, the statistics (e.g., model estimate) are updated.

The algorithmic design of GOSPRL is conceptually simple and can flexibly incorporate vari-
ous modifications driven by slightly different objectives or prior knowledge, without altering

4If the current state stk is under-sampled (i.e., stk ∈ Gk), we duplicate the state and consider it to be both a goal
state in Gk and a non-goal state from which the attempt k starts (and whose outgoing dynamics are the same as
those of stk), which ensures that the state at the start of each attempt cannot be a goal state.

5The only difference is that here we leverage a Bernstein-based construction of confidence intervals, as also done
by Rosenberg et al. (2020) (details in Section E.1).

82

7.3 Online Learning for Sampling Oracle Simulation with GOSPRL

Theorem 7.5. (i) Any non-unit SSP costs can be designed as long as they are positive and
bounded: deterring costs may e.g., be assigned to “trap” states with large negative environ-
mental reward that the agent may seek to avoid. (ii) Penalizing the visitation of sufficiently
visited states (with costs larger than one) may give the agent incentive to even out its sample
collection and thus avoid over-sampling some areas of the state space. (iii) It is possible to
focus on specific goal states instead of the set of all under-sampled states. In practice, using
such a meta-goal makes the optimal SSP policy more robust to noise. While the SSP solution to
Mk indeed seeks to reach the closest under-sampled state, random transitions may move the
agent closer to any other state in Gk and this would naturally trigger the policy to focus on such
closer state. On the other hand, providing the SSP policy with a single goal state may lead to
much longer and wasteful attempts. (iv) We remark that if the entire state space is initially
under-sampled, any action would produce a “useful” sample and different heuristics can be
implemented in prioritizing actions accordingly.

7.3.2 Sample Complexity Guarantee of GOSPRL

Theorem 7.5 establishes the sample complexity guarantee of GOSPRL (Algorithm 7.1).

Theorem 7.5. Under Assumption 7.2 and 7.3, for any sampling requirement sequence b = (bt)t≥1

and any confidence level δ ∈ (0, 1), the sample complexity of GOSPRL is bounded as

C
(
GOSPRL, b, δ

)
= Õ

(
BD +D3/2S2A

)
, (7.1)

C
(
GOSPRL, b, δ

)
= Õ

(∑
s∈S

(
Dsb(s) +D3/2

s S2A
))
, (7.2)

where the Õ notation hides logarithmic dependencies on S, A, D, 1/δ and b(s) ≜∑a∈A b(s, a) and
B ≜

∑
s∈S b(s). Recall that Ds ≤ D is the SSP-diameter of state s and captures the difficulty of

collecting a sample at state s starting at any other state in the MDP.

We notice that in practice GOSPRL stops at the first random step τ at which the sampling
requirement bτ (s, a) is achieved for all (s, a). Theorem 7.5 provides a worst-case upper bound
on the stopping time of GOSPRL using the possibly loose bound bτ (s, a) ≤ b(s, a). On the
other hand, in the special case of b : S → N when the requirements are both time-independent
(i.e., given as initial input to the algorithm) and action-independent, the actual sampling
requirement b(s) (resp.B ≜∑s∈S b(s)) replaces b(s) (resp.B) in the bound. In the following,
we consider this case for the ease of exposition.

Proof idea. The key step (see Section E.2 for the full derivation) is to link the sample complexity
of GOSPRL to the regret accumulated over the sequence of multi-goal SSP problemsMk gener-

83

SYOG in Reward-Free Reset-Free Communicating MDPs

ated across multiple attempts. Indeed, extending Definition 3.1 (on the regret in SSP with a
single fixed goal), we can define the regret at attempt k as the gap between the performance of
the SSP-optimal policy π⋆k solvingMk (i.e., the minimum expected number of steps to reach any
of the states in Gk starting from stk) and the actual number of steps executed by GOSPRL before
terminating the attempt. In what follows we build on the SSP regret minimization analysis
of Rosenberg et al. (2020), although a similar reasoning holds for the algorithm and analysis
used in Chapter 4 or Chapter 5. Specifically, while traditional SSP regret minimization analyses
assume that the goal is fixed, we show that it is possible to bound the regret accumulated across
different attempts for any arbitrary sequence of goals. The proof is concluded by bounding the
cumulative performance of the SSP-optimal policies and it leads to the bound Õ(BD+D3/2S2A

)
where B ≜∑s∈S b(s). On the other hand, the refined bound in Equation (7.2) requires a more
careful analysis, where we no longer directly translate regret bounds into sample complexity
and we rather focus on relating the performance to state-dependent quantities Ds and b(s).
Finally, we show that the extension to the general case of time-dependent action-dependent
sampling requirements is straightforward and obtain Theorem 7.5.

Interpretation of Theorem 7.5. We can decompose Equation (7.1) as a linear term inB and a
constant term. In the regime of large sample requirements (i.e., largeB), the sample complexity
thus reduces to Õ(BD), which adds at most an extra “cost” factor of D w.r.t. an SO. As this
may be loose in many cases, the more refined analysis of Equation (7.2) stipulates a cost of Ds

to collect a sample at state s, which better captures the connectivity of the MDP. In fact the
lower bound in Lemma 7.4 shows that this cost of Ds is unavoidable in the worst case, and that
GOSPRL is only constant and logarithmic terms off w.r.t. to the best sample complexity that can
be achieved in the worst case. While an extra attempt of refinement would be to avoid being
worst-case w.r.t. the starting state in the definition of Ds,6 this seems particularly challenging
as the randomness of the environment makes it hard to control and analyze the sequence of
states traversed by the agent.

Optimal solution. GOSPRL targets a greedy-optimal strategy, which seeks to sequentially mini-
mize each expected time to reach an under-sampled state. Alternatively, one may wonder if it
is possible to design a learning algorithm that approaches the performance of the exact-optimal
solution, i.e., a (non-stationary) policy explicitly minimizing the number of steps required to
fulfill the sampling requirements.7 Such strategy can be characterized as the optimal policy of
an SSP problem for an MDP with state space augmented by the current sampling requirements
and goal state corresponding to the case when all desired samples are collected. Even under

6For instance, consider a simple deterministic chain with a requirement of one sample per state. If the agent
starts on the leftmost state, then a policy that keeps moving right has sample complexity S without extra factorD.

7Notice that as illustrated in the lower bound of Lemma 7.4, the exact-optimal and greedy-optimal have the
same performance in the worst case.

84

7.4 Applications of GOSPRL

known dynamics, the computational complexity of computing the optimal policy in this MDP
(e.g., via value iteration) is exponential (scaling in BS). When the dynamics is unknown, it
appears highly challenging to obtain any learning algorithm whose performance is comparable
to the exact-optimal strategy for any finite sample requirement B.

Beyond Communicating MDPs. In Section E.4 we design an extension of GOSPRL to poorly
or weakly communicating environments. In this setting, it is expected to assess online the
“reachability” of certain sampling requirements and discard themwhenever associated to states
that are too difficult to reach or unreachable. Given as input a “reachability” threshold L, we
derive sample complexity guarantees for our variant of GOSPRL where the (possibly large or
infinite) diameter D is fittingly replaced by L.

7.4 Applications of GOSPRL

An appealing feature of GOSPRL is that it can be integrated with techniques that compute
the (fixed or adaptive) sampling requirements to readily obtain an online RL algorithm with
theoretical guarantees. In this section, we focus on three specific problems where in our
decoupled approach the SO-based algorithm is either trivial or can be directly extracted
from existing literature, and its combination with the sample collection strategy of GOSPRL
yields improved or novel guarantees. Other applications (e.g., PAC-policy learning, diameter
estimation, bridging bandits and MDPs) are illustrated in Section E.8.

7.4.1 Sparse Reward Discovery (Treasure)

A number of recent methods focus on the state-space coverage problem, where each state
in the MDP needs to be reached as quickly as possible. This problem is often motivated by
environments where a one-hot reward signal, called the treasure, is hidden and can only be
discovered by reaching a specific state and taking a specific action. Not only the environment
but also the treasure state-action pair is unknown, and the agent does not receive any side
information to guide its search (e.g., a measure of closeness to the treasure). Thus the agent
must perform exhaustive exploration to find the treasure.

Definition 7.6. Given a confidence δ ∈ (0, 1), the Treasure sample complexity of a learning
algorithm A is defined as

CTreasure(A, δ) ≜ min
{
t > 0 : P

(
∀(s, a) ∈ S ×A, Nt(s, a) ≥ 1

)
≥ 1− δ

}
.

85

SYOG in Reward-Free Reset-Free Communicating MDPs

In this case, a SO-based algorithm would immediately solve the problem by collecting one
sample from each state-action pair. As a result, we can directly apply GOSPRL for Treasure
by simply setting b(s, a) = 1 for each (s, a) and from Theorem 7.5 with B = SAwe obtain the
following guarantee.

Lemma 7.7. GOSPRL with b(s, a) = 1 verifies CTreasure(GOSPRL, δ) = Õ
(
D3/2S2A

)
.

We now compare this result to alternative approaches to the problem, showing that GOSPRL
has state-of-the-art guarantee for Treasure (see Section E.6 for details).
• First, reward-free exploration methods (e.g., Jin et al., 2020; Zhang et al., 2021c; Kaufmann

et al., 2021; Ménard et al., 2021, see Section 6.3.2) are designed for finite-horizon problems so
their guarantees cannot be directly translated to sample complexity for the Treasure problem.
Nonetheless, we draw inspiration from their algorithmic principles and analyze a reward-free
variant of UCRL2 (Jaksch et al., 2010; Fruit et al., 2020). Specifically we consider 0/1-UCRL,
which runsUCRL by setting a reward of 1 to under-sampled states and 0 otherwise. However,
we obtain a Treasure sample complexity for 0/1-UCRL of Õ (∑s∈S D

3
sS

2A
), which is always

worse than the bound in Lemma 7.7.
• Second, we can adapt the MaxEnt approach (Hazan et al., 2019; Cheung, 2019, see Sec-

tion 6.3.1) to state-action coverage so that it targets a policy whose stationary state-action
distribution λmaximizes H(λ) ≜ −

∑
s,a λ(s, a) log λ(s, a). While optimizing this entropy

does not provably solve Treasure, it encourages us to take a “worst-case” approach w.r.t. the
state-action visitations, and rather maximize F (λ) ≜ min(s,a)∈S×A λ(s, a). We show that the
learning algorithm of Cheung (2019) instantiated to maximize F yields a Treasure sample
complexity of at least Ω

(
min

{
D2S2A/(ω⋆)2, D3/(ω⋆)3}) with ω⋆ ≜ minλ F (λ) ≤ (SA)−1,

which is significantly poorer than Lemma 7.7. In fact, in contrast to MaxEnt-inspired meth-
ods that optimize for a single stationary policy, GOSPRL realizes a non-stationary strategy
that gradually collects the required samples by tackling successive learning problems.

7.4.2 Model Estimation (ModEst)

We now study the problem of accurately estimating the unknown transition dynamics in a
reward-free communicating environment. It was discussed in Section 6.3.1 and we refer to it as
the model-estimation problem, or ModEst for short.

Definition 7.8. Given an accuracy level η > 0 and a confidence level δ ∈ (0, 1), the ModEst
sample complexity of an online learning algorithm A is defined as

CModEst(A, η, δ) ≜ min
{
t > 0 : P

(
∀(s, a) ∈ S ×A, ∥P̂A,t(·|s, a)− P (·|s, a)∥1 ≤ η

)
≥ 1− δ

}
,

86

7.4 Applications of GOSPRL

where P̂A,t is the estimate (i.e., empirical average) of the transition dynamics P after t time steps.

Unlike in Treasure, here the sampling requirements are not immediately prescribed by the
problem. To define the SO-based algorithm we first upper-bound the estimation error using an
empirical Bernstein inequality and then invert it to derive the amount of samples bt(s, a) needed
to achieve the desired level of accuracy η (see Section E.5). Specifically, letting σ̂2

t (s′|s, a) ≜
P̂t(s′|s, a)(1− P̂t(s′|s, a)) be the estimated variance of the transition from (s, a) to s′ after t steps,
we set

bt(s, a) ≜
⌈57(

∑
s′ σ̂t(s′|s, a))2

η2 log2
(

8e(
∑

s′ σ̂t(s′|s, a))2
√

2SA
√
δη

)
+ 24S

η
log
(

24S2A

δη

)⌉
. (7.3)

Since the estimated variance changes depending on the samples observed so far, the sampling
requirements are adapted over time. Given that σ̂2

t (s′|s, a) ≤ 1/4, bt(s, a) is always bounded so
Theorem 7.5 provides the following guarantee.

Lemma 7.9. Let Γ ≜ maxs,a∥P (·|s, a)∥0 ≤ S be the maximal support of P (·|s, a) over the
state-action pairs (s, a). Running GOSPRL with the sampling requirements in Equation (7.3)
yields

CModEst(GOSPRL, η, δ) = Õ
(DΓSA

η2 + DS2A

η
+D3/2S2A

)
.

Lemma 7.9 improves over our Frank-Wolfe-based approach for ModEst reviewed in Sec-
tion 6.3.1 (example ③) and studied in Tarbouriech et al. (2020c). First, the latter suffers from
an inverse dependency on the stationary state-action distribution that optimizes a proxy objec-
tive function used in the derivation of their algorithm. Second, while the Frank-Wolfe-based
approach requires an ergodicity assumption, Lemma 7.9 is the first sample complexity result
for ModEst in the more general communicating setting.

7.4.3 Goal-Free & Cost-Free Exploration in Communicating MDPs

We finally delve into the paradigm of reward-free exploration introduced by Jin et al. (2020) and
reviewed in Section 6.3.2. While the problem has been exclusively analyzed in the finite-horizon
setting, here we study themore general and challenging setting of goal-conditioned RL.We define
the goal-free cost-free objective as follows: after the exploration phase, the agent is expected
to compute a near-optimal goal-conditioned policy for any goal state and any cost function

87

SYOG in Reward-Free Reset-Free Communicating MDPs

(w.l.o.g.we consider a maximum possible cost cmax = 1). Recall from Part I that given a goal
state g and costs c, the (possibly unbounded) SSP value function of a policy π is

V π(s→ g) ≜ E
[τπ(s→g)∑

t=1
c(st, π(st))

∣∣ s1 = s

]
.

Given a slack parameter θ ∈ [1,+∞], we say that a policy π̂ is (ε, θ)-optimal if 8

V π̂(s→ g) ≤ min
π:E[τπ(s→g)]≤θDs,g

V π(s→ g) + ε.

In this setting, constructing an efficient SO-based algorithm is considerably more complex than
Treasure andModEst. Relying on the sample complexity analysis for the fixed-goal SSP problem
with a generative model that we derive in Tarbouriech et al. (2021b) (see Section 3.4), we define
the (adaptive) number of samples needed in each state-action pair for our online objective.
Although the number depends on the unknown diameter, we estimate D using GOSPRL. The
resulting sequence of sampling requirements is then fed online to GOSPRL. Combining the
sample complexity bound with generative model and the properties of GOSPRL yields the
following guarantee (see Section E.7).

Lemma 7.10. Consider any MDP satisfying Assumption 7.2 and the goal-free cost-free exploration
problem with accuracy level 0 < ε ≤ 1, confidence level δ ∈ (0, 1), minimum cost cmin ∈ [0, 1],
slack parameter θ ∈ [1,+∞]. We can instantiate GOSPRL so that its exploration phase (i.e., number
of time steps) is bounded with probability at least 1− δ by

Õ

(
D4ΓSA
ωε2 + D3S2A

ωε
+ D3ΓSA

ω2

)
,

where ω ≜ max
{
cmin, ε/(θD)

}
> 0 (thus, either cmin = 0 or θ = +∞, but not both simultane-

ously). Following the exploration phase, the algorithm can compute in the planning phase, for any
goal state g ∈ S and any cost function c in [cmin, 1], a policy π̂g,c that is (ε, θ)-optimal.

Lemma 7.10 establishes the first sample complexity guarantee for general goal-free, cost-
free exploration. While the objective is demanding and the upper bound on the length of the
exploration phase can be large, the main purpose of this result is to showcase how GOSPRL
can be readily instantiated to tackle a challenging exploration problem for which no existing
solution can be easily leveraged. Comparing our analysis to the finite-horizon objective of Jin
et al. (2020) reveals two interesting properties:

8This reduces to standard ε-optimality for θ = +∞. We only consider θ < +∞ in the case of minimum possible
cost cmin = 0 and it ensures that the algorithm targets proper policies (see Section E.7).

88

7.5 Experiments

GOSPRL

0/1-UCRL

0-UCRL

MaxEnt

Uniform

0 100 200 300 400

0

0.2

0.4

0.6

0.8

1

time t

P
ro
p
or
ti
o
n
P t

0 2,000 4,000 6,000 8,000

0

0.2

0.4

0.6

0.8

1

time t

P
ro
p
or
ti
on

P t

0 1,000 2,000 3,000 4,000 5,000 6,000

0

0.2

0.4

0.6

0.8

1

time t

P
ro
p
or
ti
on

P t

Figure 7.1 – Treasure-10 problem (i.e., with b(s, a) = 10): Proportion Pt of states meeting the require-
ments at time t, averaged over 30 runs. By definition of the sample complexity, the metric of interest is
not the rate of increase of Pt over time but only the time needed to reach the line of success Pt = 1. Left:
6-state RiverSwim, Center: 24-state corridor gridworld, Right: 43-state 4-room gridworld (see Section F.4
for details on the domains).

• The goal-free aspect: moving from finite-horizon to goal-conditioned renders unavoidable
both the communicating requirement (Assumption 7.2) and the bound’s dependency on
the unknown diameter D (which partly captures the role of the known horizon H in the
bound of Jin et al., 2020).

• The cost-free aspect: in contrast to finite-horizon, the value of cmin has an important impact
on the type of performance guarantees we can obtain; in particular our analysis distinguishes
between positive and non-negative costs (as also done in existing SSP analysis, see Part I).

7.5 Experiments

In this section, we report a preliminary numerical validation of our theoretical findings. While
GOSPRL can be integrated in many different contexts, here we focus on the problems where our
theory suggests that GOSPRL performs better than state-of-the-art online learning methods.

Treasure-type problem. We consider a Treasure-type problem (Section 7.4.1), where for all
(s, a) we set b(s, a) = 10 instead of 1 (we call it the Treasure-10 problem).9 We begin by showing
in Figure 7.4 that it is easy to construct a worst-case problemwhere the sample complexity scales
linearly with the diameter, which is consistent with the theoretical discussion in Sections 7.2
and 7.3.

We compare to two heuristics based on UCRL2B (Jaksch et al., 2010; Fruit et al., 2020):
0-UCRL, where the reward used in computing the optimistic policy is set proportional to
([N(s, a)− b(s, a)]+)−1/2, and 0/1-UCRLwith reward 1 for undersampled state-action pairs and

9Since GOSPRL and our baselines are all based on upper confidence bounds, they tend to display similar
behaviors in the initial phases of learning, since the estimates when N(s, a) = 0 are similar. As the number of
samples required in each state-action increases, the difference between the algorithms’ design starts making a real
difference in the behavior and eventually their performance. This is why we study here Treasure-10 instead of the
Treasure-1 problem for which empirical performance is comparable between learning algorithms.

89

SYOG in Reward-Free Reset-Free Communicating MDPs

Garnet 1 Garnet 2 Garnet 3 Garnet 4 Garnet 5

4

6

8

·103

S
a
m
p
le

co
m
p
le
x
it
y

5 random instances of G(10, 5, 5)

Garnet 1 Garnet 2 Garnet 3 Garnet 4 Garnet 5

2

2.2

2.4

·104

S
a
m
p
le

co
m
p
le
x
it
y

5 random instances of G(50, 5, 5)

Figure 7.2 – Sample complexity boxplots of GOSPRL (in red) and
0/1-UCRL (in blue). Each column represents 30 runs on a randomly
generated Garnet G(S,A = 5, β = 5) with randomly generated state-
action sampling requirements b : S ×A → U(0, 100). Left: S = 10, Right:
S = 50.

0 1 2 3 4 5

·104

0

1

2

3
·10−1

time t

` 1
-e
rr
o
r
E t

NoisyRiverSwim(36)

Uniform
Weighted MaxEnt
GOSPRL

0 1 2 3 4 5

·104

0

2

4

6

8

·10−2

time t

` 1
-e
rr
o
r
E t

Wheel(30)

Uniform
Weighted MaxEnt
GOSPRL

0 1 2 3 4 5

·104

0

0.5

1

1.5
·10−1

time t

` 1
-e
rr
o
r
E t

Garnet(50,5,25)

Uniform
Weighted MaxEnt
GOSPRL

Figure 7.3 – ModEst problem: ℓ1-error Et ≜ (SA)−1 ·
∑

s,a∥p̂t(·|s, a) −
p(·|s, a)∥1, averaged over 30 runs. Left: NoisyRiverSwim(36), Center:
Wheel(30), Right: Randomly generated Garnet G(50, 5, 25).

s0 s1 s2
a0

ν

1− ν

a0

a0ν1− ν

a1

101 102 103
102

103

104

Diameter D (≈ 1/ν)

S
am

p
le

co
m
p
.(
G
O
S
P
R
L
)

Figure 7.4 – Simple three-
state reward-free domain
(Fruit et al., 2018b) and
Treasure-10 sample com-
plexity of GOSPRL (aver-
aged over 30 runs) as a func-
tion of the diameter D ≈
1/ν.

0 otherwise. We also compare with the MaxEnt algorithm (Cheung, 2019) that maximizes
entropy over the state-action space, and with a uniformly random baseline policy. We test on
the RiverSwim domain (Strehl and Littman, 2008) and various gridworlds (see Section F.4
for details and more results). Figure 7.1 reports the proportion Pt of states that satisfy the
sampling requirements at time t. Our metric of interest is the time needed to collect all required
samples, and we see that GOSPRL reaches the Pt = 1 line of success consistently, and faster than
0/1-UCRL, while the other heuristics struggle. The steady increase of Pt illustrates GOSPRL’s
design to progressively meet the sampling requirements, and not exhaust them state after state.

Random MDPs and sampling requirements. To study the generality of GOSPRL to collect
arbitrary sought-after samples, we further compare GOSPRL with 0/1-UCRL which is the best
heuristic from the previous experiment. We test on a variety of randomly generated configura-
tions, that we define as follows: each configuration corresponds to i) a randomly generated
Garnet environment G(S,A, β) (with S states, A actions and branching factor β, see Bhatnagar
et al., 2009), and ii) randomly generated requirements b(s, a) ∈ U(0, U), where the maximum
budget is set to U = 100 to have a wide range of possible requirements across each environment.
The boxplots in Figure 7.2 provide aggregated statistics on the sample complexity for different
configurations. We observe that GOSPRL consistently meets the sampling requirements faster
than 0/1-UCRL, as well as suffers from lower variance across runs.

90

7.6 Discussion

ModEst problem. Finally, we empirically evaluate GOSPRL for the ModEst problem (Sec-
tion 7.4.2). We compare to the fully online WeightedMaxEnt heuristic that we proposed in
Tarbouriech et al. (2020c), whose idea is to weigh the state-action entropy components with
an optimistic estimate of the next-state transition variance. In Tarbouriech et al. (2020c) we
showed that it performed empirically better than our theoretically-grounded Frank-Wolfe-
based approach for ModEst reviewed in Section 6.3.1 (example ③). We now test on the two
same environments (NoisyRiverSwim and Wheel) that we had considered in Tarbouriech et al.
(2020c) for their high level of stochasticity, as well as on a randomly generated Garnet. To
facilitate the comparison, we consider a GOSPRL-for-ModEst algorithm where the sampling
requirements are computed using a decreasing error η (see Section F.4 for details). We observe
in Figure 7.3 that GOSPRL outperforms the WeightedMaxEnt heuristic.

7.6 Discussion

In this chapter, we introduced the online learning problem of simulating a sampling oracle (Sec-
tion 7.2) and derived the algorithm GOSPRLwith its sample complexity guarantee (Section 7.3).
We then illustrated how it can be used to tackle in a unifying fashion a variety of applications
without having to design a specific online algorithm for each, while at the same time obtaining
improved or novel sample complexity guarantees (Section 7.4). Going forward, we believe
that GOSPRL can be used as a competitive off-the-shelf baseline when a new application is
introduced.

Our sample complexity bounds for the general sample collection problem and its various
applications are worst-case and it would be interesting to derive finer problem-dependent
bounds, by for instance building on the recent logarithmic instance-dependent expected regret
bounds for SSP of Chen et al. (2021b). Another exciting direction of future investigation can be
to extend the scope of the chapter beyond the tabular setting. Handling a continuous state space
or linear function approximation requires redefining the notion of reaching a specific state (e.g.,
via adequate discretization or by considering requirements based on the covariance matrix).
Studying the SSP problem (Part I) beyond a finite state space may provide insights. On the
more algorithmic side, GOSPRL hinges on knowing the sampling requirement function bt and
deriving a shortest-path policy π̃. Interestingly, we can identify algorithmic counterparts to
both modules in deep RL. The computation of π̃ can be entrusted to a goal-conditioned network
(using e.g., Andrychowicz et al., 2017), while the specification of bt can be related to goal-
sampling selection mechanisms that elect hard-to-reach (Florensa et al., 2018) or rare (Pong
et al., 2020) states as goals.

91

Chapter 8

SYOG in Reward-Free
Resettable MDPs

In this chapter, we investigate the SYOG principle in reward-free resettable MDPs. We bypass
the communicating assumption required in Chapter 7 by allowing for a reset action to the
starting state s0. As a means of quantifying the agent’s ability to efficiently navigate the
vicinity of s0, we introduce the multi-goal exploration problem. The objective is to learn a near-
optimal goal-conditioned policy for the (initially unknown) set of goal states that are reachable
within a given number of steps in expectation from s0. We achieve this with nearly minimax-
optimal sample complexity by designing a novel goal selection scheme, coined AdaGoal, which
leverages a measure of uncertainty of the agent’s goal-reaching ability in order to adaptively
target goals that are neither too difficult nor too easy. We also analyze AdaGoal with linear
function approximation, specifically in linear mixture MDPs, whose structural assumption
on the transition kernel allows us to eliminate the dependence on the total number of states
and actions in the sample complexity. Finally, beyond its strong theoretical guarantees, we
anchor AdaGoal in goal-conditioned deep reinforcement learning, both conceptually and
empirically, by connecting its idea of selecting “uncertain” goals to maximizing value ensemble
disagreement. 1

Contents
8.1 The Multi-Goal Exploration (MGE) Problem 94

8.2 Our AdaGoal Approach . 97

8.3 Sample Complexity Guarantees . 101

8.4 Analysis Overview . 103

8.5 Operationalizing AdaGoal in Deep RL . 105

1This chapter is based on an article published in the proceedings of the 25 th International Conference on
Artificial Intelligence and Statistics (AISTATS 2022) (Tarbouriech et al., 2022).

93

SYOG in Reward-Free Resettable MDPs

8.1 The Multi-Goal Exploration (MGE) Problem

Let s0 ∈ S be a designated initial state in the unknown reward-free MDP. We measure the
performance of a policy in navigating the MDP and define the shortest-path distance as follows.

Definition 8.1. For any policy π ∈ Π and a pair of states (s, s′) ∈ S2, let V π(s→ s′) ∈ [0,+∞]
be the expected number of steps it takes to reach s′ starting from s when executing policy π, i.e.,

V π(s→ s′) ≜ E
[
inf{i ≥ 0 : si+1 = s′} | s1 = s, π,M

]
,

where the expectation is w.r.t. the random sequence of states generated by executing π inM starting
from state s. (Note that V π(s→ s′) corresponds to the SSP value function of policy π in the SSP
instance with initial state s, goal state s′ and unit cost function, see Part I.)

Moreover, for any state g ∈ S , let V ⋆(s0 → g) ∈ [0,+∞] be the shortest-path distance from s0

to g, i.e.,
V ⋆(s0 → g) ≜ min

π∈Π
V π(s0 → g).

Finally, let D0 ∈ [0,+∞] and D ∈ [0,+∞] be respectively the (possibly infinite) s0-diameter and
diameter of the MDP, i.e.,

D0 ≜ max
g∈S

V ⋆(s0 → g), D ≜ max
s,g

V ⋆(s→ g).

We denote by G ⊆ S the goal space, which corresponds to the set of goal states that the agent
may condition its goal-conditioned policy on (in the absence of prior knowledge on the goal
space we simply set G = S). In environments with arbitrary dynamics, there may be some
goal states in G that are too difficult for the agent to reliably reach in a reasonable number of
exploration steps, or even completely unreachable from s0. Consequently, we consider the
high-level objective of learning an accurate goal-conditioned policy for all the goal states that are
reliably reachable from s0.

Definition 8.2 (Reliably L-reachable goal states GL). For any threshold L ≥ 1, we define a goal
state g ∈ G to be reliably L-reachable if V ⋆(s0 → g) ≤ L, and we denote by GL the set of such goal
states, i.e.,

GL ≜
{
g ∈ G : V ⋆(s0 → g) ≤ L

}
.

94

8.1 The Multi-Goal Exploration (MGE) Problem

We thus seek to learn a goal-conditioned policy that is accurate in reaching the goals
in GL. A challenge in solving this objective comes from the fact that the set of goals of interest
GL is initially unknown and it has to be discovered online at the same time as learning their
corresponding optimal policy. The threshold L can be interpreted as the user’s exploration
radius of interest around s0. In the absence of a pre-specified threshold, the agent can build its
own curriculum for L to guide its learning process.

Since in environments with arbitrary dynamics the agent may get stuck in a state without
being able to return to s0, we introduce the following “reset” assumption.2 In Lemma 8.7 we
will formally motivate its role in solving our learning objective.

Assumption 8.3. The action space contains a known action areset ∈ A such thatP (s0|s, areset) = 1
for any state s ∈ S.

Consider as input an exploration radius L ≥ 1, an accuracy level ε ∈ (0, 1] and a confidence
level δ ∈ (0, 1). We now formally define our exploration objective.

Definition 8.4 (Multi-Goal Exploration — MGE). An algorithm is said to be (ε, δ, L,G)-PAC
for MGE if
• it stops after some (possibly random) number of exploration steps τ that is less than some

polynomial in the relevant quantities (S,A,L, ε−1, log δ−1) with probability at least 1− δ,
• it returns a set of goal states X and a set of policies {π̂g}g∈X such that P(C1 ∩C2

)
≥ 1− δ, where

we define the conditions

C1 ≜
{
∀g ∈ X , V π̂g(s0 → g)− V ⋆(s0 → g) ≤ ε

}
,

C2 ≜
{
GL ⊆ X ⊆ GL+ε

}
.

The objective is to build an (ε, δ, L,G)-PAC algorithm for which the MGE sample complexity, that is
the number of exploration steps τ , is as small as possible.

Remark 8.5. Since the goal set GL is unknown, it may not be possible to exactly identify it within
a reasonable number of exploration steps. Thus we allow the learner to output a larger set X of
candidate goals and policies. Nonetheless, we constrain an (ε, δ, L,G)-PAC algorithm for MGE
to return a set X that is at most contained in the slightly larger set GL+ε (i.e., X ⊆ GL+ε).

2This setting should be contrasted with the finite-horizon setting, where each policy resets automatically afterH
steps, or assumptions on the MDP dynamics such as ergodicity or bounded diameter, which guarantee that it is
always possible to find a policy navigating between any two states.

95

SYOG in Reward-Free Resettable MDPs

Remark 8.6. Consider that G = S. Then the inclusion GL ⊆ S is an equality ifM is commu-
nicating (i.e., D < +∞) and if the (unknown) D0 is lower or equal to L (note that under
Assumption 8.3, D ≤ D0 + 1).

MGE vs. reset-freeMGE. Lemma 8.7 establishes an exponential separation between MGE and
reset-free MGE (i.e., MGE without Assumption 8.3). This motivates the use of Assumption 8.3
to solve our learning objective in a reasonable number of exploration steps.

Lemma 8.7. MGE can be solved in poly(S,L, ε−1, A) steps. On the other hand, there exists an
MDP and a goal space where any algorithm requires at least Ω(D) steps to solve reset-free MGE,
where D is exponentially larger than L, S,A, ε−1.

MGE lower bound. We now give a worst-case lower bound on the MGE problem (details in
Appendix F.1).

Lemma 8.8. For any algorithm that is (ε, δ, L,G)-PAC for MGE for any MDP and goal space
G, there exists an MDP and a goal space where the algorithm requires, in expectation, at least
Ω(L3SAε−2) exploration steps to stop.

Remark 8.9. We can relate the dependencies in Lemma 8.8 with the lower bound of the time
steps needed to identify an ε-optimal policy in both γ-discountedMDPswith a generativemodel
— i.e., Ω((1−γ)−3SAε−2) (Azar et al., 2013)— and online stationary finite-horizonMDPs— i.e.,
Ω(H3SAε−2) (Domingues et al., 2021b). This correspondence is not surprising as L captures
the “range” of the MGE problem, similar to the effective horizon 1/(1− γ) or the horizon H .
Also recall that, as mentioned in Chapter 2, both discounted MDPs and finite-horizon MDPs
are subclasses of goal-oriented MDPs, i.e., SSP-MDPs.

MGE under linear function approximation. Lemma 8.8 shows that the MGE sample com-
plexity must scale with SA in the worst case, which may be prohibitive in the case of large
state-action spaces. This motivates us to further analyzeMGE under linear function approximation.
In particular, we focus on the linear mixture MDP setting (Ayoub et al., 2020; Zhou et al., 2021),
which assumes that the transition probability is a linear mixture of d signed basis measures.

96

8.2 Our AdaGoal Approach

Definition 8.10 (Linear Mixture MDP, Ayoub et al., 2020; Zhou et al., 2021). The un-
known transition probability P is a linear combination of d signed basis measures ϕi(s′|s, a),
i.e., P (s′|s, a) ≜

∑d
i=1 ϕi(s′|s, a)θ⋆i . Meanwhile, for any V : S → [0, 1], i ∈ [d], (s, a) ∈ S × A,

the summation ∑s′∈S ϕi(s′|s, a)V (s′) is computable. For simplicity, let ϕ ≜ [ϕ1, . . . , ϕd]⊤,
θ⋆ ≜ [θ⋆1, . . . , θ⋆d]⊤ and ψV (s, a) ≜

∑
s′∈S ϕ(s′|s, a)V (s). Without loss of generality, we assume

∥θ⋆∥2 ≤ B, ∥ψV (s, a)∥2 ≤ 1 for all V : S → [0, 1] and (s, a) ∈ S ×A.

8.2 Our AdaGoal Approach

In Algorithm 8.1, we introduce the common algorithmic structure based on AdaGoal. We use
it to design AdaGoal-UCBVI that tackles the MGE problem in tabular MDPs, and AdaGoal-
UCRL·VTR that tackles the MGE problem in linear mixture MDPs. Both follow the goal-
conditioned structure of SYOG described in Section 6.4. The agent sets a horizon of H =
Ω(L logLε−1) and splits its learning interaction in algorithmic episodes of length H . At the
beginning of each algorithmic episode, it (GS) selects a candidate goal state and (PE) deploys
an explorative (i.e., optimistic) policy conditioned on this goal for H steps before resetting to
s0. It alternates between these two steps until an adaptive stopping rule is met, at which point
the algorithm terminates.3

□ (PE) step. Goal-conditioned finite-horizon Q-functions (Kaelbling, 1993; Schaul et al.,
2015) are maintained optimistically. At each episode k and episode step h ∈ [H], Qk,h(s, a, g)
approximates (from below) the number of (expected) steps required to reach any goal g ∈ G
starting from any state-action pair (s, a) ∈ S×A and executing the optimal goal-reaching policy
forH − h steps. Intuitively, theQ-functions will gradually increase, more so for goal states that
the agent struggles to reach. This is essentially done by initializing theQ-functions optimistically
(i.e., at 0), considering that the cost (i.e., negative reward) is +1 (resp. 0) per time step if the
conditioned goal is not reached (resp. reached), and carefully subtracting an exploration bonus
to maintain optimism. Given a goal gk ∈ G selected at the beginning of episode k, the (PE)
step simply amounts to deploying an explorative policy conditioned on gk, that is, a policy πk,h
that greedily minimizes the current Q-functions, i.e., πk,h(s) ∈ arg mina∈AQk,h(s, a, gk).

□ (GS) step. To elect a relevant sequence of candidate goals (gk)k≥1, we introduce AdaGoal,
an adaptive goal selection scheme based on a simple constrained optimization problem. It

3Indeed recall from Definition 8.4 that the algorithm must adaptively decide when to terminate its learning
interaction.

97

SYOG in Reward-Free Resettable MDPs

Algorithm 8.1: AdaGoal-based algorithmic structure. Blue text denotes AdaGoal-
UCBVI specific steps and purple text denotes AdaGoal-UCRL·VTR specific steps.
1 Input: Exploration radius L ≥ 1, accuracy level ε ∈ (0, 1], confidence level δ ∈ (0, 1).
2 Input: Number of states S, number of actions A.
3 Input: Dimension of feature mapping d, bound B on ℓ2-norm of θ⋆.
4 Input: Goal space G ⊆ S (otherwise set G = S).
5 Set as horizon H ≜ ⌈5(L+ 2) log

(
10(L+ 2)/ε

)
/ log(2)⌉.

6 Initialize: algorithmic episode index k = 1, distance estimates D1(g) = 1[g ̸= s0], error
estimates E1(g) = H1[g ̸= s0], goal-conditioned finite-horizon Q-values
Q1,h(s, a, g) = 1[s ̸= g], for all (g, s, a, h) ∈ G × S ×A× [H].

7 while stopping rule (8.1) is not met do
8 i Goal selection rule:
9 Select as goal state

gk ∈ arg max
g∈G

Ek(g)

subject to: Dk(g) ≤ L.

ii Policy execution rule:
10 For a duration of H steps, run the optimistic goal-conditioned policy πkgk such that

at step h, πkgk,h(s) ∈ arg mina∈AQk,h(s, a, gk) (note that
Dk(gk) = mina∈AQk,1(s0, a, gk)).

11 Then execute action areset and increment episode index k += 1.
12 iii Update and check stopping rule:
13 Update estimates Qk, Dk, Ek according to (F.4), (F.5), (F.6) using samples collected

so far.
14 Update estimates Qk, Dk, Ek according to (F.26), (F.27), (F.28) using samples

collected so far.
15 Stop the algorithm if

max
g∈G: Dk(g)≤L

Ek(g) ≤ ε. (8.1)

16 end
17 Let κ ≜ inf

{
k ∈ N : maxg∈G: Dk(g)≤L Ek(g) ≤ ε

}.
18 Output: Goal states Xκ ≜ {g ∈ G : Dκ(g) ≤ L}, and for every g ∈ Xκ, a deterministic,

non-stationary policy π̂g that at time step i and state s selects action a according to:

π̂g(a|s, i) ≜


arg mina∈AQκ,h(s, a, g)

if i ≡ h (mod H + 1) for h ∈ [H],
areset

if i ≡ 0 (mod H + 1).

98

8.2 Our AdaGoal Approach

relies on the agent’s ability to compute two types of goal-conditioned quantities for any goal
g ∈ G and episode k ≥ 1:
• a distance estimate from s0 to g, denoted by Dk(g);
• an error of estimating this distance, denoted by Ek(g).
Conveniently, the distance estimates can be simply instantiated asDk(g) ≜ mina∈AQk,1(s0, a, g).
Formally, we require the following properties of D and E to hold (with high probability):
• Property 1: D is an optimistic distance estimate, i.e.,

Dk(g) ≤ D⋆H(g), ∀k ≥ 1, ∀g ∈ G,

where D⋆H(g) ≜ minπ E
[
ωπ(s0 → g) ∧ H

] denotes the shortest-path distance from s0 to g
truncated at H steps. Note that D⋆H(g) ∈ [0, H] and that limH→+∞D⋆H(g) = V ⋆(s0 → g).

• Property 2: E is an upper bound on the following error

|D⋆H(g)−Dk(g)| ≤ Ek(g), ∀k ≥ 1,∀g ∈ G.

Given these two goal-conditioned quantities, AdaGoal selects at episode k a candidate goal
that solves the following constrained optimization problem:

gk ∈ arg max
g∈G

Ek(g)

subject to: Dk(g) ≤ L.

(8.2a)

(8.2b)

Interpretation. The agent sequentially selects a goal state with highest error E among those
whose distance estimate D is not too large. If the agent is confident that a goal g is either too
easy or too hard to reach, it will assign a low error E(g). As a result, the objective function in
(8.2a) adaptively samples goal states on the frontier of the learning process. The constraint in
(8.2b), although it is not required for the final sample complexity result, further tightens the
goal selection process. Indeed, for any k ≥ 1, let

Xk ≜
{
g ∈ G : Dk(g) ≤ L

}
, εk ≜ max

g∈Xk
Ek(g).

Then, if as a warm-up we take the limit H → +∞, injecting Properties 1 and 2 in (8.2a-8.2b)
entails that

GL ⊆ Xk ⊆ GL+εk . (8.3)

We thus see that the constraint in (8.2b) does not remove valid goals in GL from the set Xk of
candidate goal states to sample. Second, decreasing εk has the dual impact of making the set

99

SYOG in Reward-Free Resettable MDPs

Figure 8.1 – Goal sampling frequency of AdaGoal-UCBVI over 1000 episodes of length H = 50 (with
L = 40). The grid-world has S = 52 states, starting state s0 = (0, 0) (top left), A = 5 actions (4 cardinal
ones and areset). The 4 states of the bottom right room can only be accessed from s0 by any cardinal
action with probability η = 0.001 (their associated V ⋆(s0 → ·) thus scale with η−1).

of candidates goals Xk closer to GL and improving their distance estimates, which motivates
the goal selection scheme in (8.2a). In practice, we consider a finite truncation H (line 5 in
Algorithm 8.1), thus we need to account for the bias ρg ≜ V ⋆(s0 → g) − D⋆H(g), which can
be arbitrarily large for goals g that are hard or impossible to reach. Fortunately, our AdaGoal
strategy will be able to gradually discard such states, hence the final MGE sample complexity
will not pay for such terms. In fact, wewill later see that the choice of horizonH = Ω(L logLε−1)
ensures that ρg = O(ε) for all the (unknown) goal states of interest g ∈ GL.

Choice ofQ,D, E . A key algorithmic design is how to build and update the goal-conditioned
Q-functions and the estimates D and E . In Appendices F.2 and F.3, we will carefully construct
them with exact bonus-based estimates for both tabular MDPs and linear mixture MDPs. As
suggested by the algorithms’ names, the estimates of the former are inspired from BPI-UCBVI
(Ménard et al., 2021), an algorithm for best policy identification in finite-horizon tabular MDPs,
while those of the latter are inspired fromUCRL-VTR (Ayoub et al., 2020), an algorithm for regret
minimization in finite-horizon linear mixture MDPs. Since all our estimates are optimistic, we
see that Algorithm 8.1 relies on the principle of optimism in the face of uncertainty both for the
goal selection and the policy execution. Finally, in Section 8.5, we propose a way to instantiate
Q,D, E for a practical implementation in deep RL.

□ Adaptive stopping rule. At the end of each algorithmic episode, the estimates are updated
using the samples collected so far, and the algorithm checks whether a stopping rule (8.1)
based on AdaGoal is triggered, in which case it terminates. This occurs when the errors E of
all the goal states that meet the AdaGoal constraint (8.2b) are below the prescribed accuracy
level ε. These states then form the set of candidate goal states output by Algorithm 8.1, along
with their associated optimistic goal-reaching policies.

Empirical validation. In Figure 8.1 (see Section F.4 for details), we empirically study the
sequence of goals selected by AdaGoal-UCBVI during learning. We design a two-room grid-

100

8.3 Sample Complexity Guarantees

world with a very small probability of reaching the second room. We see that AdaGoal is able
to discard the states from the second room and target as goals the states in the first room that
are “furthest” away from s0, which effectively correspond to the fringe of what the agent can
reliably reach.

8.3 Sample Complexity Guarantees

□ Guarantee for AdaGoal-UCBVI. We first bound the MGE sample complexity of AdaGoal-
UCBVI. For simplicity we consider that G = S, i.e., the goal space spans the entire state space
(the results trivially extend to any G ⊆ S).

Theorem 8.11. AdaGoal-UCBVI is (ε, δ, L,S)-PAC for MGE and, with probability at least 1− δ,
for ε ∈ (0, 1/S] its MGE sample complexity is of order4 Õ(L3SAε−2).

Lemma 8.8 and Theorem 8.11 imply that the MGE sample complexity of AdaGoal-UCBVI is
nearly minimax optimal for small enough ε and up to logarithmic terms.

In the absence of a pre-specified exploration radiusL, the agent can build its own curriculum
for L (i.e., design a sequence of increasing L’s) to guide its learning. In this case, the total
sample complexity is (up to a logarithmic factor) the same of AdaGoal-UCBVI run with the
final value of L, as stated below.

Corollary 8.12. The successive execution of AdaGoal-UCBVI for an increasing sequence L ∈
{2, 22, ..., 2f} with f ∈ N∗ is (ε, δ, Lf,S)-PAC for MGE and, with probability at least 1 − δ, for
ε ∈ (0, 1/S] its MGE sample complexity is of order Õ(L3

f SAε
−2), where Lf = 2f .

Finally, we can investigate the special case whereM is communicating and the objective is
to learn an ε-optimal goal-conditioned policy for every goal state. Since the s0-diameter D0 is
unknown, we can use as an initial subroutine the GOSPRL algorithm of Chapter 7 to compute
an estimate D̃ such that D0 ≤ D̃ ≤ 2D0 in Õ(D3

0S
2A) time steps (see Lemma E.18). Then we

can execute AdaGoal-UCBVI with L = D̃, which leads to the following guarantee.

Corollary 8.13. Assume that the MDPM has a finite and unknown s0-diameter D0. Then the
above strategy is (ε, δ,D0,S)-PAC for MGE and, with probability at least 1− δ, for ε ∈ (0, 1/S],
its MGE sample complexity is of order Õ(D3

0SAε
−2).

101

SYOG in Reward-Free Resettable MDPs

We can compare Corollary 8.13 with the approach based on GOSPRL described in Chapter 7
to tackle the different although related problem of cost-free goal-free exploration in communi-
cating MDPs (Section 7.4.3), where the agent must find an ε-optimal goal-conditioned policy
for any arbitrary starting state, goal state and positive cost function. For small enough ε, the
bound of Lemma 7.10 in the unit-cost case scales as Õ(D4ΓSAε−2), where Γ is the branching
factor which in the worst case is S. We see that Corollary 8.13 improves over that result by
a factor D0 as well as a factor Γ ≤ S. Although Lemma 7.10 considers a more demanding
cost-free objective (i.e., for any positive cost function), it is unable to avoid its superlinear
dependence in S when instantiated in the current scenario of unit cost functions, since the
design of GOSPRL is to estimate uniformly well the transition kernel.

□ Guarantee for AdaGoal-UCRL·VTR. We now bound the MGE sample complexity of Algo-
rithm 8.1 in linear mixture MDPs (Definition 8.10). Since the state space S may be large, we
consider that the known goal space is in all generality a subset of it, i.e., G ⊆ S , where G ≜ |G|
denotes the cardinality of the goal space.

Theorem 8.14. In linear mixture MDPs, for ε ∈ (0, 1], AdaGoal-UCRL·VTR is (ε, δ, L,G)-PAC
for MGE and, with probability at least 1− δ, its MGE sample complexity is of order5 Õ (L4d2ε−2),
where d is the dimension of the feature mapping.

To the best of our knowledge, Theorem 8.14 yields the first goal-oriented PAC guarantee
with linear function approximation. The algorithm’s choice of E , D, Q relies on two regression-
based goal-conditioned estimators, one standard “value-targeted” estimator inspired from
UCRL-VTR (Ayoub et al., 2020) and one novel “error-targeted” estimator, see Section F.3. We
expect that the bound of Theorem 8.14 can be refined using tighter Bernstein-based estimates,
for instance inspired from UCRL-VTR+ (Zhou et al., 2021), which we leave as future work. Note
that the Õ notation in Theorem 8.14 contains a log(G) factor (which appears when performing
a union bound argument over all goals g ∈ G), and the computational complexity of AdaGoal-
UCRL·VTR scales with G (since the algorithm maintains goal-conditioned estimates). We point
out that herewe still consider that theMDP has a finite number of states S. This is to be expected
given the way a goal is currently modeled (at the granular level of states), independently of
how large the state space is, where it may be very hard to visit specific states. Learning in single-
or multi-goal RL beyond a finite state space is an interesting direction of future investigation.
Note that, as mentioned in Section 5.6, existing works on single-goal exploration (i.e., SSP
regret minimization) with linear function approximation (Vial et al., 2021; Min et al., 2021;
Chen et al., 2021b) also assume that the state space is finite.

102

8.4 Analysis Overview

8.4 Analysis Overview

The proofs of Theorems 8.11 and 8.14 (see Appendices F.2 and F.3) are decomposed in the
same following key steps.

▷ Key step ①: Optimism and gap bounds. We prove that Properties 1 and 2 hold with high
probability, i.e., (i) the quantities D are optimistic estimates of the optimal goal-conditioned
finite-horizon value functions D⋆H and (ii) the quantities E are valid upper bounds to the
goal-conditioned finite-horizon gaps.

▷ Key step ②: Bounding the cumulative gap bounds. We make explicit a function fM (de-
pending on the MDPM) that is strictly decreasing inK with fM(K)→K→∞ 0, such that with
high probability,

K∑
k=1
D⋆H(gk)−Dk(gk) ≤

K∑
k=1
Ek(gk) ≤ K · fM(K), (8.4)

for any number of algorithmic episodesK. Specifically, we establish that

fM(K) =
{
Õ
(√

KH2SA+H2S2A
)

for AdaGoal-UCBVI,
Õ
(√

KH3d2 +H2d3/2
)

for AdaGoal-UCRL·VTR.

(8.4) resembles a no-regret property of the exploration algorithm that receives as input the se-
quence of goals (gk)k≥1 prescribed by AdaGoal and performs the (PE) step. Indeed, intuitively,
the aim of the (PE) step is to improve the estimation of Dk(gk) and make it closer to D⋆H(gk),
i.e., to decrease the error Ek(gk).

▷ Key step ③: Bounding the sample complexity. To bound κ the episode index at which Algo-
rithm 8.1 terminates, we combine (8.4) and the termination condition (8.1) to simultaneously
lower and upper bound (with high probability) the cumulative errors E as

ε · (κ− 1) ≤
κ−1∑
k=1
Ek(gk) ≤ (κ− 1) · fM(κ− 1).

Inverting this functional inequality in κ yields that κ is finite and bounded as

κ ≤ f−1
M (ε) + 2. (8.5)

103

SYOG in Reward-Free Resettable MDPs

The sample complexity is (H + 1) · κ with H = Õ(L), thus AdaGoal-UCBVI (resp.AdaGoal-
UCRL·VTR) stops in Õ(L3SAε−2 + L3S2Aε−1) (resp. Õ(L4d2ε−2)) time steps, with high proba-
bility.

▷ Key step ④: Connecting to the original MGE objective. The key remaining step is to prove
that the MGE objective is indeed fulfilled.

Remark 8.15. Algorithm 8.1 relies on a finite-horizon construction, with algorithmic episodes
of length H . This relates to the reduction of SSP to finite-horizon studied in some SSP regret
minimization works (Cohen et al., 2021; Chen and Luo, 2021), which as reviewed in Part I rely
on the idea that an SSP problem can be approximated by a finite-horizon problem if the horizon
is large enough w.r.t.T⋆, the optimal policy’s expected hitting time to the goal starting from
any state. Two main differences arise in our MGE setting: (i) first, in these works, the goal state
is fixed throughout learning and T⋆ is assumed known, whereas we need to deal with goal
selection and find the relevant goals of interest while having to discard those that are poorly
reachable or unreachable. (ii) Second, these works ensure that the empirical goal-reaching
performance of the algorithm’s non-stationary policy over the whole learning interaction is good
enough (by definition of the regret objective in SSP). As such, they do not show that the expected
performance of some candidate policy is good enough (i.e., the SSP value function is small
enough) – in fact, they do not even explicitly prove that the executed policies are proper. The
latter property may actually not be possible to obtain since standard regret-to-PAC conversion
may not work in SSP as mentioned in Section 3.4. In our MGE objective, the key difference lies
in the availability of the reset action (Assumption 8.3), as we will now see.

Our analysis builds on the following reasoning: given a goal state in GL+ε, we can find a
candidate policy with near-optimal goal-reaching behavior (i.e., SSP value function) by: (i)
first computing a near-optimal policy π̃ in the finite-horizon reduction (using the stopping rule
(8.1)), (ii) and then expanding π̃ into an infinite-horizon policy via the reset action every H
time steps to get our desired candidate policy.

Now, importantly, the above reasoning only holds for the goals in GL+ε, which is an unknown
set. This is where our AdaGoal strategy comes into the picture, as it provides a simple and
computable sufficient condition for a goal to belong to GL+ε.

Lemma 8.16. With probability at least 1 − δ, if a goal state g ∈ G satisfies Dk(g) ≤ L and
Ek(g) ≤ ε for an episode k ≥ 1, then g ∈ GL+ε.

We are now ready to put everything together and prove that AdaGoal-UCBVI and AdaGoal-
UCRL·VTR are (ε, δ, L)-PAC for MGE. The candidate goal states are Xκ ≜ {g ∈ S : Dκ(g) ≤ L},

104

8.5 Operationalizing AdaGoal in Deep RL

with candidate policies π̂g ≜ (πκ+1
g)|H . In what follows we reason with high probability.

Property 1 ensures that GL ⊆ Xκ, while Lemma 8.16 entails that Xκ ⊆ GL+ε. Finally, for any
g ∈ Xκ, combining Property 2 and the termination condition (8.1) gives that πκ+1

g is ε/9-optimal
inMg,H . As a result, the translation from the finite-horizon to goal-oriented objective (which
holds since g ∈ GL+ε and by choice of the horizon H = Ω(L logLε−1), see Lemma F.16) yields
that V π̂g

g (s0) ≤ V ⋆
g (s0) + ε, i.e., π̂g is ε-optimal for the original SSP objective. This concludes the

proofs of Theorems 8.11 and 8.14.

8.5 Operationalizing AdaGoal in Deep RL

In this section, we present a way to operationalize the AdaGoal idea of targeting goals with
high uncertainty on the agent’s ability in reaching them. We show it can be implemented
similar to the deep RL algorithm of Zhang et al. (2020b), and we investigate an aspect that was
not considered in the latter paper, which pertains to the capability of AdaGoal to adapt to an
unknown target goal set (GL) given a goal set that is possibly misspecified (G).

First, we notice that Q and D in Algorithm 8.1 can be learned in practice with a goal-
conditioned value-based neural network (Schaul et al., 2015). Meanwhile, the errors E can
be approximated by the disagreement between an ensemble of goal-conditioned Q-functions.
Interestingly, this approach has already been investigated in the deep GC-RL algorithm VDS
(Zhang et al., 2020b), which considers a similar goal-proposal module to prioritize goals that
maximize the epistemic uncertainty of the Q-function of the current policy, in order to sample
goals at the frontier of the set of goals that the agent is able to reach.

Specifically, we take an ensemble {Qj}1≤j≤J of J randomly initialized goal-conditioned
Q-functions and we instantiate E(g) as the standard deviation of the ensemble’s Qj values
conditioned on goal g. Since computing the maximum over g ∈ G in (8.2a) is expensive if the
goal space G is large, the procedure is replaced by first uniformly sampling a set of candidate
goals {g(n)}Nn=1 ⊂ G, and then selecting a goal g(n) with probability

qn ≜
E(g(n))∑N

n′=1 E(g(n′))
, E(g) ≜ std

1≤j≤J

{
min
a∈A

Qj(s0, a, g)
}
.

Moreover, approximating H ≈ L renders the constraint in (8.2b) always valid so it can be
omitted. Hence, this approximation of AdaGoal exactly recovers the goal sampling scheme of
Zhang et al. (2020b), which pairs it with Hindsight Experience Replay (HER, Andrychowicz
et al., 2017) that performs uniform goal sampling.

We consider the multi-goal environments of FetchPush and FetchPickAndPlace, which
are sparse-reward simulated robotic manipulation tasks from OpenAI Gym (Plappert et al.,
2018). We empirically compare the performance of such an adaptive goal selection with the

105

SYOG in Reward-Free Resettable MDPs

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

Epoch

S
u
cc
es
s
R
a
te

FetchPush-v1

Adaptive
Uniform

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

Epoch

S
u
cc
es
s
R
a
te

FetchPickAndPlace-v1

Adaptive
Uniform

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

Epoch

S
u
cc
es
s
R
at
e

FetchPush-v1 w/ Goal-Space Misspecification

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

Epoch
S
u
cc
es
s
R
at
e

FetchPickAndPlace-v1 w/ Goal-Space Misspecification

Figure 8.2 – Success rate evaluated on Gtest with the latest policy trained on Gtrain. The shaded region
represents confidence over 5 random seeds. The adaptive goal sampling scheme improves the learning
performance over the uniform sampling of HER. This is especially the case in the presence of goal-space
misspecification (bottom row), where the training goal space Gtrain (delimited in purple) is larger than
the test goal space Gtest (delimited in yellow).

performance of HER’s uniform goal selection (see Section F.5 for implementation details).
We observe in Figure 8.2 (top row) that the adaptive goal sampling scheme outperforms the
uniform one of HER, which is consistent with the results of Zhang et al. (2020b).

In the above experimental set-up (which is in fact considered by most deep GC-RL works),
the goal space Gtrain seen at train time is the same as the goal space Gtest on which the agent
is evaluated at test time, i.e., the white rectangular table. In the language of the previous
sections, by relating Gtrain ↔ G and Gtest ↔ GL, this means that the environment is considered
communicating and G = GL. However, in some cases, there may be some misspecification in
the goal space seen during the learning interaction. This may occur if the agent is unaware
of the goals of interest, in which case we have that GL ⊊ G, where we recall that GL is a priori
unknown. We design an experiment to model this scenario by translating the x-y range of
Gtrain by a factor of λ ≥ 1. Specifically, denoting by (x0, y0, z0) the center of the table and letting
r ≜ 0.15, we leave Gtest unchanged yet we expand Gtrain ⊃ Gtest as

Gtest ≜
{
(x0 + U(−r, r), y0 + U(−r, r), z0)

}
,

Gtrain ≜
{
(x0 + U(−λr, λr), y0 + U(−λr, λr), z0)

}
,

106

8.5 Operationalizing AdaGoal in Deep RL

where λFetchPush = 10, λFetchPickAndPlace = 5, and where U(a, b) denotes the continuous uniform
distribution in [a, b]. In this scenario, Figure 8.2 (bottom row) shows that an adaptive goal
sampling scheme is particularly pertinent. Intuitively, it enables to discard the set of goals
Gtrain \ Gtest that cannot be reached and thus hinder learning when the agent conditions its
behavior on them. This empirically corroborates AdaGoal’s (theoretically established) ability
to adapt to an unknown target goal set (GL) given a goal set that is possibly misspecified (G).

107

Chapter 9

Incremental SYOG
in Reward-Free Resettable MDPs

In this chapter, we carry on our investigation of the SYOG principle in reward-free resettable
MDPs initiated in Chapter 8, by restricting our attention to the incrementally reliably reachable
states around the reference state s0, as defined by Lim and Auer (2012). We strenghten their
learning objective for incremental autonomous exploration and derive the first algorithm able
to learn an incrementally near-optimal goal-conditioned policy. Interestingly, in contrast to
Chapter 8, the incremental focus enables to obtain a sample complexity bound that depends
only logarithmically on the total number of states. 1

Contents
9.1 Incremental Autonomous Exploration . 110

9.2 The DisCo Algorithm . 114

9.3 Sample Complexity Analysis . 116

9.4 Numerical Simulation . 121

9.5 Discussion and Bibliographical Remarks . 122

1This chapter is based on an article published in the proceedings of the 33 th Conference on Neural Information
Processing Systems (NeurIPS 2020) (Tarbouriech et al., 2020b).

109

Incremental SYOG in Reward-Free Resettable MDPs

9.1 Incremental Autonomous Exploration

In this chapter, we build on the setting formalized by Lim and Auer (2012) and introduce a
more challenging objective for incremental autonomous exploration. We consider that the
reward-free MDP has a possibly large state space S, with a known upper bound S on its
cardinality, i.e., |S| ≤ S.2 Throughout this chapter, we consider that Assumption 8.3 holds,
which we recall below.

Assumption 8.3. The action space contains a known action areset ∈ A such thatP (s0|s, areset) = 1
for any state s ∈ S.

We make explicit the states where a policy π takes action areset in the following definition.

Definition 9.1 (Policy restricted on a subset). For any S ′ ⊆ S, a policy π is restricted on S ′ if
π(s) = areset for any s /∈ S ′. We denote by Π(S ′) the set of policies restricted on S ′.

We now introduce the following restricted optimality measure.

Definition 9.2 (Restricted optimality). For any policy π and state s ∈ S, recall from Defini-
tion 8.1 that V π(s0 → s) denotes the expected hitting time from s0 to s following π. Then for any
subset S ′ ⊆ S, we denote by

V ⋆
S′(s0 → s) ≜ min

π∈Π(S′)
V π(s0 → s),

the length of the shortest path to s, restricted to policies resetting to s0 from any state outside S ′.

Note that by definition of V ⋆ in Definition 8.1, it holds that V ⋆ = V ⋆
S . Moreover, Assump-

tion 8.3 entails the following simple optimality ordering.

Lemma 9.3. For any two sets X ,Y such that X ⊆ Y ⊆ S and any state s ∈ X , it holds that
V ⋆

X (s0 → s) ≥ V ⋆
Y (s0 → s).

As in Chapter 8, the objective of the learning agent is to control efficiently the environment in
the vicinity of the reference state s0. We say that a state s is controlled if the agent can reliably
navigate to it from s0, that is, there exists an effective SSP policy from s0 to s.

2Lim and Auer (2012) originally considered a countable, possibly infinite state space; however this leads to a
technical issue in the analysis of UcbExplore (acknowledged by the authors via personal communication and
explained in Section G.2.3), which disappears by considering only finite state spaces.

110

9.1 Incremental Autonomous Exploration

Figure 9.1 – Two environmentswhere the starting
state s0 is in white. Left: Each transition between
states is deterministic and depicted with an edge.
Right: Each transition from s0 to the first layer
is equiprobable and the transitions in the succes-
sive layers are deterministic. If we set L = 3,
then the states belonging to SL are colored in red.
As the right figure illustrates, L-controllability
is not necessarily linked to a notion of distance
between states and an L-controllable state may
be achieved by traversing states that are not L-
controllable themselves.

Definition 9.4 (L-controllable states). Given a reference state s0, we say that a state s is L-
controllable if there exists a policy π such that V π(s0 → s) ≤ L. The set of L-controllable states is
then defined as

SL ≜
{
s ∈ S : min

π∈Π
V π(s0 → s) ≤ L

}
. (9.1)

We illustrate the concept of controllable states in Figure 9.1 for L = 3. Interestingly, in the
right figure, the black states are not L-controllable. In fact, there is no policy that can directly
choose which one of the black states to reach. On the other hand, the red state, despite being
in some sense further from s0 than the black states, does belong to SL. In general, there is a
crucial difference between the existence of a random realization where a state s is reached from
s0 in less than L steps (i.e., black states) and the notion of L-controllability, which means that
there exists a policy that consistently reaches the state in a number of steps less or equal than
L on average (i.e., red state). This explains the choice of the term controllable over reachable,
since a state s is often said to be reachable if there is a policy π with a non-zero probability to
eventually reach it, which is a weaker requirement.

Unfortunately, Lemma 8.8 shows that in order to discover all the states in SL, the learner
may require a number of exploration steps that directly scales with the total number of states S,
which may be large.3 To avoid this dependence, we follow Lim and Auer (2012) and constrain
the learner to focus on the set of incrementally controllable states.

3This result can be complemented by those of Lim and Auer (2012) that showed that in order to discover all the
states in SL, the learner may require a number of exploration steps that is exponential in L or |SL|. Intuitively, this
negative result is due to the fact that the minimum in Equation (9.1) is over the set of all possible policies, including
those that may traverse states that are not in SL. We refer the reader to Lim and Auer (2012, Section 2.1) for a more
formal and complete characterization of this negative result.

111

Incremental SYOG in Reward-Free Resettable MDPs

Definition 9.5 (Incrementally controllable states S→
L). Let ≺ be some partial order on S . The

set S≺
L of states controllable in L steps w.r.t. ≺ is defined inductively as follows:

• the initial state s0 belongs to S≺
L by definition,

• if there exists a policy π restricted on {s′ ∈ S≺
L : s′ ≺ s} with V π(s0 → s) ≤ L, then s ∈ S≺

L .
The set S→

L of incrementally L-controllable states is defined as

S→
L ≜

⋃
≺
S≺
L ,

where the union is over all possible partial orders.

By way of illustration, in Figure 9.1 for L = 3, it holds that S→
L = SL in the left figure,

whereas S→
L = {s0} ≠ SL in the right figure. Indeed, while the red state is L-controllable, it

requires traversing the black states, which are not L-controllable.

AX Objectives. We are now ready to formalize two alternative objectives for Autonomous
eXploration (AX) in MDPs.

Definition 9.6 (AXL sample complexity, Lim and Auer, 2012). Fix any exploration radius
L ≥ 1, error threshold ε > 0 and confidence level δ ∈ (0, 1). The sample complexity CAXL(A, L, ε, δ)
is defined as the number of time steps required by a learning algorithm A to identify a set K ⊇ S→

L

such that with probability at least 1 − δ, it has learned a set of policies {πs}s∈K that verifies the
following requirement

∀s ∈ K, V πs(s0 → s) ≤ L+ ε.

Definition 9.7 (AX⋆ sample complexity). Fix any exploration radius L ≥ 1, error threshold
ε > 0 and confidence level δ ∈ (0, 1). The sample complexity CAX⋆(A, L, ε, δ) is defined as the
number of time steps required by a learning algorithm A to identify a set K ⊇ S→

L such that
with probability at least 1 − δ, it has learned a set of policies {πs}s∈K that verifies the following
requirement

∀s ∈ K, V πs(s0 → s) ≤ V ⋆
S→
L

(s0 → s) + ε.

112

9.1 Incremental Autonomous Exploration

AXL is the original objective introduced by Lim and Auer (2012) and it requires the agent
to discover all the incrementally L-controllable states as fast as possible.4 At the end of the
learning process, for each state s ∈ S→

L the agent should return a policy that can reach s from
s0 in at most L steps (in expectation). Unfortunately, this may correspond to a rather poor
performance in practice. Consider a state s ∈ S→

L such that V ⋆
S→
L

(s0 → s)≪ L, i.e., the shortest
path between s0 to s following policies restricted on S→

L is much smaller than L. Satisfying
AXL only guarantees that a policy reaching s in L steps is found. On the other hand, objective
AX⋆ is more demanding, as it requires learning a near-optimal shortest-path policy for each
state in S→

L . Since V ⋆
S→
L

(s0 → s) ≤ L and the gap between the two quantities may be arbitrarily
large, especially for states close to s0 and far from the fringe of S→

L , AX⋆ is a significantly tighter
objective than AXL and it is thus preferable in practice.

Remark 9.8. In the special case where S→
L = SL, theAX⋆ objective of Definition 9.7 is equivalent

to the MGE objective of Definition 8.4 and can thus be effectively solved by the AdaGoal-UCBVI
algorithm introduced in Chapter 8, at the expense of having a sample complexity bound directly
scaling with the total number of states S (Theorem 8.11). As motivated in the introduction
of this chapter, we aim here to remove this dependence. Interestingly, note that the special
case of S→

L = SL holds when the environment is deterministic (i.e., when the next state st+1

is uniquely determined by the current state st and action at), which covers many standard
control or robotic environments (Plappert et al., 2018). This observation motivates the practical
relevance of the incremental autonomous exploration objective, despite its quite intrincate
definition at first glance.

We say that an exploration algorithm solves an AX problem if its sample complexity
CAX(A, L, ε, δ) in Definition 9.6 or 9.7 is polynomial in |K|, A, L, ε−1 and log(S). Notice that
requiring a logarithmic dependence on the size of S is crucial but nontrivial, since the overall
state space may be large and we do not want the agent to waste time trying to reach states that
are not L-controllable. The dependence on the (algorithmic-dependent and random) set K can
be always replaced using the upper bound |K| ≤ |S→

L+ε|, which is implied with high probability
by both AXL and AX⋆ conditions. Finally, notice that the error threshold ε > 0 has a two-fold
impact on the performance of the algorithm. First, ε defines the largest set S→

L+ε that could be
returned by the algorithm: the larger ε, the bigger the set. Second, as ε increases, the quality
(in terms of controllability and navigational precision) of the output policies worsens w.r.t. the
shortest-path policy restricted on S→

L .
Lim and Auer (2012) designed the UcbExplore algorithm to tackle the AXL objective. It

comes with the following sample complexity bound.
4Note that we translated the condition of Lim and Auer (2012) of a relative error of Lε to an absolute error of ε,

to align it with the common formulation of sample complexity in RL.

113

Incremental SYOG in Reward-Free Resettable MDPs

Proposition 9.9 (Lim and Auer, 2012, Theorem 8).

CAXL(UcbExplore, L, ε, δ) = Õ

(
L6|S→

L+ε|A
ε3

)
.

Nonetheless, UcbExplore is unable to tackle the more challenging AX⋆ objective. In the
following section, we propose an algorithm that does so.

9.2 The DisCo Algorithm

In this section, we introduce the algorithm DisCo — short for Discover and Control — de-
signed to tackle the AX⋆ objective. It is detailed in Algorithm 9.1. Similar to UcbExplore, it
maintains a set K of “controllable” states and a set U of states that are considered “uncon-
trollable” so far. A state s is tagged as controllable when a policy to reach s in at most L+ ε

steps (in expectation from s0) has been found with high confidence, and we denote by πs
such policy. The states in U are states that have been discovered as potential members of
S→
L , but the algorithm has yet to produce a policy to control any of them in less than L + ε

steps. The algorithm stores an estimate of the transition model and it proceeds through rounds,
which are indexed by k and incremented whenever a state in U gets transferred to the set K,
i.e., when the transition model reaches a level of accuracy sufficient to compute a policy to
control one of the states encountered before. We denote by Kk (resp.Uk) the set of controllable
(resp. uncontrollable) states at the beginning of round k. DisCo stops at a roundK when it can
confidently claim that all the remaining states outside of KK cannot be L-controllable.

At each round, the algorithm uses all samples observed so far to build an estimate of the
transition model denoted by P̂ (s′|s, a) = N(s, a, s′)/N(s, a), where N(s, a) and N(s, a, s′) are
counters for state-action and state-action-next state visitations. Each round is divided into two
phases. The first is a sample collection phase. At the beginning of round k, the agent collects
additional samples until nk ≜ ϕ(Kk) samples are available at each state-action pair in Kk ×A
(step ①). A key challenge lies in the careful (and adaptive) choice of the allocation function ϕ,
which we report in the statement of Theorem 9.11 (see Equation (G.8) in Section G.1.4 for its
exact definition). Importantly, the incremental construction of Kk entails that sampling at each
state s ∈ Kk can be done efficiently. In fact, for all s ∈ Kk the agent has already confidently
learned a policy πs to reach s in at most L+ε steps on average (see how such policy is computed
in the second phase). The generation of transitions (s, a, s′) for (s, a) ∈ Kk ×A achieves two
objectives at once. First, it serves as a discovery step, since all observed next states s′ not in Uk
are added to it — in particular this guarantees sufficient exploration at the fringe (or border)

114

9.2 The DisCo Algorithm

Algorithm 9.1: Algorithm DisCo
1 Input: Actions A, initial state s0, confidence parameter δ ∈ (0, 1), error threshold ε > 0, L ≥ 1

and (possibly adaptive) allocation function ϕ : P(S)→ N (where P(S) denotes the
power set of S).

2 Initialize k ≜ 0, K0 ≜ {s0}, U0 ≜ {} and a restricted policy πs0 ∈ Π(K0).
3 Set ε ≜ min{ε, 1} and continue ≜ True.
4 while continue do
5 Set k += 1. //new round
6 // ① Sample collection on K
7 For each (s, a) ∈ Kk ×A, execute policy πs until the total number of visits Nk(s, a) to (s, a)

satisfies Nk(s, a) ≥ nk ≜ ϕ(Kk). For each (s, a) ∈ Kk ×A, add s′ ∼ P (·|s, a) to Uk if
s′ /∈ Kk.

8 // ② Restriction of candidate states U
9 Compute transitions P̂k(s′|s, a) andWk ≜

{
s′ ∈ Uk : ∃(s, a) ∈ Kk ×A, P̂k(s′|s, a) ≥ 1−ε/2

L

}
·

10 ifWk is empty then
11 Set continue ≜ False. //condition STOP1

12 else
13 // ③ Computation of the optimistic policies on K
14 for each state s′ ∈ Wk do
15 Compute (ũs′ , π̃s′) ≜

OVISSP
(

goal = s′, states = Kk ∪ {x}, samples = Nk, costs = 1, precision γ ≜ ε
6L

)
(see Algorithm G.1).

16 Let s† ≜ arg mins∈Wk
ũs(s0) and ũ† ≜ ũs†(s0).

17 if ũ† > L then
18 Set continue ≜ False. //condition STOP2

19 else
20 // ④ State transfer from U to K
21 Set Kk+1 ≜ Kk ∪ {s†}, Uk+1 ≜ Uk \ {s†} and πs† ≜ π̃s† .

22 // ⑤ Policy consolidation: computation on the final set K
23 SetK ≜ k.
24 for each state s ∈ KK do
25 Compute (_, πs) ≜

OVISSP
(

goal = s, states = Kk ∪ {x}, samples = Nk, costs = 1, precision γ ≜ ε
6L

)
.

26 Output: the states s in KK and their corresponding policy πs.

of the set Kk. Second, it improves the accuracy of the model p in the states in Kk, which is
essential in computing near-optimal policies and thus fulfilling the AX⋆ condition.

The second phase does not require interacting with the environment and it focuses on the
computation of optimistic policies. The agent begins by significantly restricting the set of candidate
states in each round to alleviate the computational complexity of the algorithm. Namely, among
all the states in Uk, it discards those that do not have a high probability of belonging to S→

L

by considering a restricted setWk ⊆ Uk (step ②). In fact, if the estimated probability P̂k of
reaching a state s ∈ Uk from any of the controllable states in Kk is lower than (1 − ε/2)/L,

115

Incremental SYOG in Reward-Free Resettable MDPs

then no shortest-path policy restricted on Kk could get to s from s0 in less than L+ ε steps on
average. Then for each state s′ inWk, DisCo computes an optimistic policy restricted on Kk to
reach s′. Formally, for any candidate state s′ ∈ Wk, we define the induced SSP-MDPM ′

k with
goal state s′ as follows (cf. Part I).

Definition 9.10. We define the SSP-MDPM ′
k ≜ ⟨S,A′

k(·), c′
k, P

′
k⟩ with goal state s′, where the

action space is such that A′
k(s) = A for all s ∈ Kk and A′

k(s) = {areset} otherwise (i.e., we focus
on policies restricted on Kk). The cost function is such that for all a ∈ A, c′

k(s′, a) = 0, and for
any s ̸= s′, c′

k(s, a) = 1. The transition model is P ′
k(s′|s′, a) = 1 and P ′

k(·|s, a) = P (·|s, a)
otherwise.5

The solution of M ′
k is the optimal SSP policy from s0 to s′ restricted on Kk. Since P ′

k is
unknown, DisCo cannot compute the exact solution ofM ′

k, but instead, it executes optimistic
value iteration (OVISSP) for SSP (Rosenberg et al., 2020) to obtain a value function ũs′ and its
associated greedy policy π̃s′ restricted on Kk (see Section G.1.1 for more details).

The agent then chooses a candidate goal state s† for which the value ũ† ≜ ũs†(s0) is the
smallest. This step can be interpreted as selecting the optimistically most promising new state
to control. Two cases are possible. If ũ† ≤ L, then s† is added to Kk (step ④), since the accuracy
of the model estimate on the state-action space Kk ×A guarantees that the policy π̃s† is able
to reach the state s† in less than L + ε steps in expectation with high probability (i.e., s† is
incrementally (L + ε)-controllable). Otherwise, we can guarantee that S→

L ⊆ Kk with high
probability. In the latter case, the algorithm terminates and, using the current estimates of the
model, it recomputes an optimistic shortest-path policy πs restricted on the final set KK for
each state s ∈ KK (step ⑤). This policy consolidation step is essential to identify near-optimal
policies restricted on the final set KK (and thus on S→

L): indeed the expansion of the set of the
so far controllable states may alter and refine the optimal goal-reaching policies restricted on it.

Computational Complexity. Note that algorithmically, we do not need to defineM ′
k (Def-

inition 9.10) over the whole state space S as we can limit it to Kk ∪ {s′}, i.e., the candidate
state s′ and the set Kk of so far controllable states. As shown in Theorem 9.11, this set can be
significantly smaller than S . In particular this implies that the computational complexity of the
value iteration algorithm used to compute the optimistic policies is independent from S (see
Section G.1.9 for more details).

9.3 Sample Complexity Analysis

We now present our main result: a sample complexity guarantee for DisCo for the AX⋆ objective,
which directly implies that AXL is also satisfied.

116

9.3 Sample Complexity Analysis

Theorem 9.11. There exists an absolute constant α > 0 such that for any L ≥ 1, ε ∈ (0, 1], and
δ ∈ (0, 1), if we set the allocation function ϕ as

ϕ : X → α ·
(
L4Θ̂(X)

ε2 log2
(
LSA

εδ

)
+ L2|X |

ε
log

(
LSA

εδ

))
, (9.2)

with
Θ̂(X) ≜ max

(s,a)∈X ×A

(∑
s′∈X

√
P̂ (s′|s, a)(1− P̂ (s′|s, a))

)2
,

then the algorithm DisCo (Algorithm 9.1) satisfies the following sample complexity bound for AX⋆

CAX⋆(DisCo, L, ε, δ) = Õ

(
L5ΓL+εSL+εA

ε2 +
L3S2

L+εA

ε

)
, (9.3)

where SL+ε ≜ |S→
L+ε| and

ΓL+ε ≜ max
(s,a)∈S→

L+ε×A
∥{P (s′|s, a)}s′∈S→

L+ε
∥0 ≤ SL+ε

is the maximal support of the transition probabilities P (·|s, a) restricted to the set S→
L+ε.

Given the definition of AX⋆, Theorem 9.11 implies that DisCo

1. terminates after CAX⋆(DisCo, L, ε, δ) time steps,

2. discovers a set of states K ⊇ S→
L with |K| ≤ SL+ε,

3. and for each s ∈ K outputs a policy πs which is ε-optimal w.r.t. policies restricted on S→
L ,

i.e., V πs(s0 → s) ≤ V ⋆
S→
L

(s0 → s) + ε.
Note that Equation (9.3) displays only a logarithmic dependence on S, the total number of
states. This property on the sample complexity of DisCo, along with its S-independent compu-
tational complexity, is significant when the state space S grows large w.r.t. the unknown set of
interest S→

L .

9.3.1 Proof Sketch of Theorem 9.11

While the complete proof is reported in Section G.1, we now provide the main intuition behind
the analysis of DisCo.

117

Incremental SYOG in Reward-Free Resettable MDPs

State Transfer from U to K (step ④). Let us focus on a round k and a state s† ∈ Uk that gets
added to Kk. For clarity we remove in the notation the round k, goal state s† and starting state
s0. We denote by v and ṽ the value functions of the candidate policy π̃ in the true and optimistic
model respectively, and by ũ the quantity w.r.t.which π̃ is optimistically greedy. We aim to
prove that s† ∈ S→

L+ε (with high probability). The main chain of inequalities underpinning the
argument is

v ≤ |v − ṽ|+ ṽ
(a)
≤ ε

2 + ṽ
(b)
≤ ε

2 + ũ+ ε

2
(c)
≤ L+ ε, (9.4)

where (c) is guaranteed by algorithmic construction and (b) stems from the chosen level of
value iteration accuracy. Inequality (a) has the flavor of a simulation lemma for SSP (see
Lemma 2.14), by relating the SSP value function of a same policy between two models (the
true one and the optimistic one). Importantly, when restricted to K these two models are close
in virtue of the algorithmic design which enforces the collection of a minimum amount of
samples at each state-action pair of K ×A, denoted by n. Specifically, we obtain that

|v − ṽ| = Õ
(√L4ΓK

n
+ L2|K|

n

)
, with ΓK ≜ max

(s,a)∈K×A
∥{P (s′|s, a)}s′∈K∥0 ≤ |K|.

Note thatΓK is the branching factor restricted to the setK. Our choice ofn given in Equation (9.2)
is then dictated to upper bound the above quantity by ε/2 in order to satisfy inequality (a).

Termination of the Algorithm. Since S→
L is unknown, we have to ensure that none of the

states in S→
L are “missed”. As such, we prove that with overwhelming probability, we have

S→
L ⊆ KK when the algorithm terminates at a round denoted byK. There remains to justify the

final near-optimal guarantee w.r.t. the set of policies Π(S→
L). Leveraging that step ⑤ recomputes

the policies (πs)s∈KK on the final set KK , we establish the following chain of inequalities

v ≤ |v − ṽ|+ ṽ
(a)
≤ ε

2 + ṽ
(b)
≤ ε

2 + ũ+ ε

2
(c)
≤ V ⋆

KK + ε
(d)
≤ V ⋆

S→
L

+ ε, (9.5)

where (a) and (b) are as in Equation (9.4), (c) leverages optimism and (d) stems from the
inclusion S→

L ⊆ KK .

Sample Complexity Bound. The choice of allocation function ϕ in Equation (9.2) bounds
nK which is the total number of samples required at each state-action pair in KK × A. We
then compute a high-probability bound ψ on the time steps needed to collect a given sample,
and show that it scales as Õ(L). Since the sample complexity is solely induced by the sample
collection phase (step ①), it can be bounded by the quantity ψ nK |KK |A. Putting everything
together yields the bound of Theorem 9.11.

118

9.3 Sample Complexity Analysis

9.3.2 Comparison with UcbExplore (Lim and Auer, 2012)

We start recalling the critical distinction that DisCo succeeds in tackling problem AX⋆, while
UcbExplore fails to do so. Nonetheless, in the following we show that even if we restrict our
attention to AXL, for which UcbExplore is designed, DisCo can yield a better sample complexity
in many cases. Proposition 9.9 shows that the sample complexity of UcbExplore is linear in
SL+ε, while for DisCo the dependence is somewhat worse. In the main-order term Õ(1/ε2) of
Equation (9.3), the bound depends linearly on SL+ε but also grows with the branching factor
ΓL+ε, which is not the “global” branching factor but denotes the number of possible next states
in S→

L+ε starting from S→
L+ε. While in general we only have ΓL+ε ≤ SL+ε, in many practical

domains (e.g., robotics, user modeling), each state can only transition to a small number of
states, i.e., we often have ΓL+ε = O(1) as long as the dynamics is not too “chaotic”. While DisCo
does suffer from a quadratic dependence on SL+ε in the second term of order Õ(1/ε), we notice
that for any SL+ε ≤ L3ε−2 the bound of DisCo is still preferable. Furthermore, since for ε→ 0,
SL+ε tends to SL, the condition is always verified for small enough ε.

Compared to DisCo, the sample complexity of UcbExplore is worse in both ε and L. As
stressed in Section 9.1, the better dependence on ε both improves the quality of the output
goal-reaching policies as well as reduces the number of incrementally (L + ε)-controllable
states returned by the algorithm. It is interesting to investigate why the bound of UcbExplore
(Proposition 9.9) inherits a Õ(ε−3) dependence. As reviewed in Section G.2, UcbExplore al-
ternates between two phases of state discovery and policy evaluation. The optimistic policies
computed by UcbExplore solve a finite-horizon problem (with horizon set to HUcb). However,
minimizing the expected time to reach a target state is intrinsically an SSP problem, which is
exactly what DisCo leverages. By computing policies that solve a finite-horizon problem (note
that it resets everyHUcb time steps), UcbExplore sets the horizon toHUcb ≜ ⌈L+L2ε−1⌉, which
leads to a policy-evaluation phase with sample complexity scaling as Õ(HUcbε−2) = Õ(ε−3).
Since the rollout budget of Õ(ε−3) is hard-coded into the algorithm, the dependence on ε of
UcbExplore’s sample complexity cannot be improved by a more refined analysis; instead a
different algorithmic approach is required such as the one employed by DisCo.

9.3.3 Goal-Free Cost-Free Incremental Exploration on S→
L with DisCo

A compelling advantage of DisCo is that it achieves an accurate estimation of the environment’s
dynamics restricted to the unknown subset of interest S→

L . In contrast to UcbExplore which
needs to restart its sample collection from scratch whenever L, ε or some transition costs
change, DisCo can thus be robust to changes in such problem parameters. At the end of its
exploration phase in Algorithm 9.1, DisCo is able to perform zero-shot planning to solve other
tasks restricted on S→

L , such as cost-sensitive ones. Indeed in the following we show how the

119

Incremental SYOG in Reward-Free Resettable MDPs

DisCo agent is able to compute an ε/cmin-optimal policy for any SSP problem on S→
L with goal

state s ∈ S→
L (i.e., s is absorbing and zero-cost) and cost function lower bounded by cmin > 0.

Corollary 9.12. There exists an absolute constant β > 0 such that for any L ≥ 1, ε ∈ (0, 1] and
cmin ∈ (0, 1] verifying ε ≤ β · (Lcmin), with probability at least 1 − δ, for whatever goal state
s ∈ S→

L and whatever cost function c in [cmin, 1], DisCo can compute (after its exploration phase,
without additional environment interaction) a policy π̂s,c whose SSP value function V π̂s,c verifies

V π̂s,c(s0 → s) ≤ V ⋆
S→
L

(s0 → s) + ε

cmin
,

where V π(s0 → s) ≜ E
[∑τπ(s0→s)

t=1 c(st, π(st))
∣∣ s1 = s0

]
is the SSP value function of policy π

and V ⋆
S→
L

(s0 → s) ≜ minπ∈Π(S→
L) V

π(s0 → s) is the optimal SSP value function restricted on S→
L .

It is interesting to compare Corollary 9.12 with the reward-free exploration framework
introduced by Jin et al. (2020) in finite-horizon MDPs and reviewed in Section 6.3.2. At a
high level, the result in Corollary 9.12 can be seen as a counterpart of Jin et al. (2020) beyond
finite-horizon problems, specifically in the goal-conditioned setting. Compared to the GOSPRL-
based result of Lemma 7.10, Corollary 9.12 does not require the MDP to be communicating
and its sample complexity bound does not scale with the (possibly infinite) diameter. While
the parameter L defines the horizon of interest for DisCo, resetting after every L steps (as
in finite-horizon) would prevent the agent to identify L-controllable states and lead to poor
performance. This explains the distinct technical tools used: while Jin et al. (2020) executes
finite-horizon no-regret algorithms, DisCo deploys SSP policies restricted on the set of states
that it “controls” so far. Algorithmically, both approaches seek to build accurate estimates of
the transitions on a specific (unknown) state space of interest: the so-called “significant” states
withinH steps for Jin et al. (2020), and the incrementally L-controllable states S→

L for DisCo.
Bound-wise, the cost-sensitiveAX⋆ problem inherits the critical role of the minimum cost cmin in
SSP problems (see Part I), which is reflected in the accuracy of Corollary 9.12 scaling inversely
with cmin. Another interesting element of comparison is the dependence on the size of the state
space. While the algorithm of Jin et al. (2020) is robust w.r.t. states that can be reached with
very low probability, it still displays a polynomial dependence on the total number of states S.
On the other hand, DisCo has only a logarithmic dependence on S, while it directly depends on
the number of (L+ ε)-controllable states, which shows that DisCo effectively adapts to the state
space of interest and it ignores all other states. This result is significant since not only SL+ε can
be arbitrarily smaller than S, but also because the set S→

L+ε itself is initially unknown to the
algorithm.

120

9.4 Numerical Simulation

0 1 2 3 4 5 6

·106

0.2

0.4

0.6

0.8

1

Time

Pr
op

or
tio

n
of

L-
co

nt
ro

lla
bl

e
st

at
es

ε=0.1

UcbExplore
DisCo

0 0.2 0.4 0.6 0.8 1 1.2

·105

0.2

0.4

0.6

0.8

1

Time

Pr
op

or
tio

n
of

L-
co

nt
ro

lla
bl

e
st

at
es

ε=0.4

UcbExplore
DisCo

0 0.5 1 1.5 2 2.5

·104

0.2

0.4

0.6

0.8

1

Time

Pr
op

or
tio

n
of

L-
co

nt
ro

lla
bl

e
st

at
es

ε=0.8

UcbExplore
DisCo

Figure 9.2 – Proportion of the incrementally L-controllable states identified by DisCo and UcbExplore
in a confusing chain domain for L = 4.5 and ε ∈ {0.1, 0.4, 0.8}. Values are averaged over 50 runs.

9.4 Numerical Simulation

In this section, we provide the first evaluation of algorithms in the incremental autonomous
exploration setting. In the implementation of both DisCo and UcbExplore, we remove the
logarithmic and constant terms for simplicity. We also boost the empirical performance of
UcbExplore in various ways, for example by considering confidence intervals derived from the
empirical Bernstein inequality (seeAzar et al., 2017) as opposed to the Hoeffding inequality as
done by Lim and Auer (2012). We refer the reader to Section G.3 for details on the algorithmic
configurations and on the environments considered.

We compare the sample complexity empirically achieved by DisCo and UcbExplore. Fig-
ure 9.2 depicts the time needed to identify all the incrementally L-controllable states when
L = 4.5 for different values of ε, on a confusing chain domain. Note that the sample com-
plexity is achieved soon after, when the algorithm can confidently discard all the remaining
states as non-controllable (it is reported in Table G.1 of Section G.3). We observe that DisCo
outperforms UcbExplore for any value of ε. In particular, the gap in performance increases as ε
decreases, which matches the theoretical improvement in sample complexity from Õ(ε−3) for
UcbExplore to Õ(ε−2) for DisCo. On a second environment — the combination lock problem
introduced by Azar et al. (2012) — we notice that DisCo again outperforms UcbExplore, as
shown in Section G.3.

Another important feature of DisCo is that it targets the tighter objective AX⋆, whereas
UcbExplore is only able to fulfill objective AXL and may therefore elect suboptimal policies. In
Section G.3 we show empirically that, as expected theoretically, this directly translates into
higher-quality goal-reaching policies recovered by DisCo.

121

Incremental SYOG in Reward-Free Resettable MDPs

9.5 Discussion and Bibliographical Remarks

In this chapter, we strengthened the objective of incremental autonomous exploration proposed
by Lim and Auer (2012) and derived DisCo, the first algorithm able to learn an incrementally
near-optimal goal-conditioned policy for all states in S→

L (i.e., the AX⋆ objective). Due to
its model-based nature, DisCo can in fact readily compute an ε/cmin-optimal policy for any
cost-sensitive SSP problem defined on the S→

L with minimum cost cmin. This result serves as a
goal-conditioned counterpart to the reward-free exploration framework proposed by Jin et al.
(2020) for the finite-horizon setting. A significant feature of the incremental setting is that
the sample complexity of DisCo (and UcbExplore) depends only logarithmically on the total
number of states.

The main drawback of the algorithmic design of DisCo is its exhaustive and poorly adaptive
goal selection scheme to collect relevant samples, which results in the extra Γ→

L+ε dependence
and suboptimal L dependence in the AX⋆ sample complexity bound. A natural future direction
to design an algorithm with improved theoretical performance could be to build on the more
refined and adaptive AdaGoal algorithmic scheme of Chapter 8.

Note that the AX⋆ setting introduces subtle technical challenges when trying to tighten the
theoretical dependences, as recently argued by Cai et al. (2022). Indeed one should build con-
centratation inequalities on (P̂s,a −Ps,a)V ⋆

K(· → g) for the goals g ∈ K, instead of ||P̂s,a −Ps,a||1
as done in the analysis of DisCo. However, the setK of “controllable” states is dependent on the
samples collected, therefore P̂s,a and V ⋆

K are interdependent, which makes the analysis more
challenging that in the non-incremental case of Chapter 8 where we consider the algorithmic-
independent V ⋆ quantity. Cai et al. (2022) introduced new algorithms with improved sample
complexity bounds (e.g., Õ(L3S2LAε

−2)), as well as a lower bound of Ω(L3SLAε
−2). They

connect theAX⋆ problem to a tabular multi-goal SSP problem, which is a special case of theMGE
problem that we have introduced in Chapter 8 when all the states of the MDP are reachable
within L steps in expectation from the initial state. In this sub-problem, they achieve the same
nearly minimax sample complexity of Õ(L3SAε−2) as AdaGoal-UCBVI.

There remain some interesting directions for future investigation in the incremental au-
tonomous exploration setting:
• Deriving a minimax-optimal algorithm for the AX problems;
• Eludicating whether a known and finite upper bound on the total number of states is

required for the analysis;
• Integrating the (unknown) range of the SSP value functions into the accuracy level, i.e.,

consider the AX⋆ objective of Definition 9.7 with the requirement that ∀s ∈ K, V πs(s0 →
s) ≤ V ⋆

S→
L

(s0 → s)(1 + ε), instead of the currently studied conditions of V πs(s0 → s) ≤
V ⋆

S→
L

(s0 → s) + ε or V πs(s0 → s) ≤ V ⋆
S→
L

(s0 → s) + Lε.

122

9.5 Discussion and Bibliographical Remarks

• Extending the problem to continuous state space and function approximation;
• Relaxing the definition of incrementally controllable states and relaxing the performance

definition towards allowing the agent to have a non-zero but limited sample complexity of
learning a shortest-path policy for any state at test time.

123

Chapter 10

General Conclusion and Perspectives

10.1 Conclusion on our Contributions

In this thesis, we undertook a formal and thorough investigation of what constitutes provably
efficient — and ideally optimal — goal-oriented exploration for reinforcement learning (GO-EX-
RL). This general scenario encompasses multiple variations in the learning objectives and
environment assumptions. In Part I, we focused on a supervised scenario of GO-EX-RL. We
formalized the online learning problem for Stochastic Shortest Path (SSP), where a goal state
to be reached in minimum total expected cost is provided as part of the problem definition. We
also presented two no-regret algorithms, each of which extended our understanding of SSP at
the time of writing. Then we shifted our attention to the challenging scenario of unsupervised
GO-EX-RL, where the agent must intrinsically set its own goals and cost functions (SYOG).
This general-purpose principle, already widely used in deep RL, had been lacking theoretical
underpinning, which was the main motivation and focus of Part II. We rigorously analyzed
SYOG in various settings, whose assumptions (e.g., the availability of reset, the incremental
restriction) conditioned the dependencies of our theoretical guarantees. We point out that
while Part I tackled the traditional regret minimization objective, the metric of interest in Part II
was the “pure exploration” sample complexity, which is a particularly relevant scenario in
environments where failures are free but samples are costly.

Table 10.1 provides a visual summary of the different results presented in this thesis.

10.2 Perspectives

This thesis only scratches the surface of the foundations of GO-EX-RL. We now discuss some
of the (subjectively) most exciting directions for future investigation in GO-EX-RL, both on
theoretical and empirical viewpoints.

125

General Conclusion and Perspectives

Part I II

Setting “Supervised” (a.k.a. SSP) “Unsupervised”
Reward

Supervision
Specific goal state
and cost function None

Chapter Chapters 3 to 5 Chapter 7 Chapter 8 Chapter 8 Chapter 9
Reset

Supervision Reset at goal None
(reset-free) Anytime reset to initial state

Extra
Assumption

Goal is reachable
from any state

Communi-
cating None Linear

mixture Incremental

Input
Parameters K (optional) ε L, ε

Guarantee
type Regret Sample complexity

Algorithm UC-SSP
& EB-SSP GOSPRL AdaGoal-UCBVI AdaGoal-UCRL·VTR DisCo

Bound
poly in S,A,B⋆,K S,A,D, ε−1 S,A,L, ε−1 d, L, ε−1 X,A,L, ε−1

Table 10.1 – Visual summary of the scope and contributions of this thesis on goal-oriented RL. Notation:
S ≜ |S| denotes the number of states (known), A ≜ |A| denotes the number of actions (known),
B⋆ bounds the optimal SSP value function from any state (unknown),K denotes the number of SSP
episodes (unknown), D denotes the diameter of the MDP (unknown), L denotes the exploration
radius around the initial state (known), ε denotes the required accuracy level (known), d denotes the
dimension of the feature mapping in the linear mixture MDP (known),X ≜ |S→

L+ε| denotes the number
of incrementally reliably (L+ ε)-reachable states (unknown).

Going beyond a finite state space. As motivated in Chapter 1, we focused our study on
finitely many states and actions, since even in this basic scenario the formalism of GO-EX-RL
had remained under the research radar. However, an important next step is to model a goal
beyond a singleton state and thus go beyond a finite state space. For instance, a way to study
GO-EX-RL in continuous state spaces could be to adequately discretize the state space (the
choice of discretization is a trade-off between precision and computation time and depends
on the amount of prior knowledge available). Note that discretization was for example used
by Guillot and Stauffer (2020) to model the golfer’s problem as an SSP in their study of golf
strategy optimization for professional golfers performances estimation on the PGA Tour. When
the state space is large, visiting a specific single state can be very difficult, hence it may be
necessary to model a goal as a region (e.g., a closed set with a nonempty interior as done by
Yershov and LaValle, 2013). Rigorously modeling GO-EX-RL beyond a finite state space is a
relevant direction of future investigation to bridge the gap between theory and practice.

Towards horizon-agnostic deep RL algorithms. Existing algorithms in deep RL tackle a
goal-reaching task by designing episodes of a carefully predefined length H (oftentimes further

126

10.2 Perspectives

adding a fixed discount factor γ < 1). However, presetting an adequate horizonH is non-trivial
and it requires strong task- and environment-dependent prior knowledge. Set H (and/or γ)
too small and this will generate a bias in the optimal goal-reaching policy. SetH (and/or γ) too
large and the range of value functions will increase, which may lead to numerical instabilities
(as well as vacuous theoretical guarantees). In Chapter 5, we have been able to design an
algorithm for online SSP that is both minimax-optimal and parameter-free. This theoretical
result conveys the conceptual message that it is possible to design intelligent agents that are
able to adapt to the unknown difficulty of the task at hand (i.e., the goal-reaching horizon),
without sacrificing learning performance. This is promising for improvements in (goal-based)
deep RL, where the hope would be to design algorithms that are able to circumvent prior
knowledge of the task horizon, for instance learning when to reset via a curriculum of increasing
episode lengths. In particular, it could be relevant to further investigate (both from a theoretical
and practical point of view) how to dynamically select the value of the exploration radius L
considered in the formalism of Chapters 8 and 9.

Connecting safe exploration and goal-oriented exploration. The ability of designing a care-
ful sequence of goals and learning when to reset shares high-level similarities with safe ex-
ploration, which is an important issue to address before RL can be adopted in real-world
applications (Amodei et al., 2016). In this case, the agent seeks to minimize safety violations
and avoid “unsafe” regions of the state space. This seems related to the incremental autonomous
exploration formulation (Chapter 9), where “non-controllable” regions of the state space are
avoided, as a “controllable” region is gradually expanded around the initial state. Enforcing
safe exploration through the angle of goal-driven exploration could be an interesting connection
to study.

Designing “goal” curricula. Expanding the concept of goals used to drive learning in un-
supervised RL, beyond goal states, appears very promising. Indeed, some goals may not be
expressed as state features, see for instance Colas et al. (2020, Section 4) for a general typology
of goal representations in the RL literature. For example, this can include goals represented
by a sequence of behaviors to achieve and expressed in language. It also seems intriguing
to explore the connections between goal-based RL and the recent studies on Unsupervised
Environment Design (Dennis et al., 2020), which seek to fully specify environments (of increas-
ing complexity), rather than just goals within a fixed environment (as for instance done in
Chapter 8). I am convinced that designing adaptive curricula of increasing “goal” difficulty, for
some notion of “goal”, is a relevant general idea for training more generally capable RL agents.

Blending goal-basedRLandMI-basedRL formore sample-efficient unsupervisedRL. The
broad focus of Part II is the setting of Unsupervised RL (URL), where no reward/cost function

127

General Conclusion and Perspectives

nor goal to reach are provided to the agent. While we restricted our discussion to learning to
reach goal states, another popular framework for unsupervised RL is that of learning diverse
task-agnostic policies called skills via mutual information (MI) maximization (e.g., Gregor
et al., 2016; Eysenbach et al., 2019). I also took part in a collaboration exploring this direction
(Kamienny et al., 2022). In this work, we learned a growing tree-structured policy that com-
poses directed skills to perform an adaptive and thorough coverage of the state space, and we
showed that our method is able to effectively solve sparse-reward (i.e., unknown goal-based)
downstream tasks in hard-to-explore continuous navigation and control environments. An
interesting feature of our approach is that it does not require prior knowledge on a sensible
number of policies, nor on a suitable policy length (i.e., environment diameter).

Trying to smartly combine these two branches of unsupervised RL represents an exciting
direction to explore in the near future. On the one hand, we are still lacking a rigorous under-
standing of what provably constitutes finite-time learning for MI-based objectives, despite the
increasing number of empirical works out there, and the finite-time learning guarantees for
goal-based RL derived in this thesis could be a relevant source of inspiration. Moreover, there
seems to be a whole spectrum on “policy conditioning” that has not yet been fully explored in
deep RL, between the two extremes of goal-based RL (grounded conditioning on specific states)
and MI-based RL (abstract conditioning on latent variables). In fact, Choi et al. (2021) recently
showed that standard goal-conditioned RL is encapsulated by the optimization objective of
variational empowerment, and studied the connections between these two principles, which
paves the way towards devising goal-conditioned reward functions or developing representa-
tion learning techniques1 in goal-based RL. I believe that further investigating the connections
between goal-conditioned RL and MI-based RL may help improve our understanding and the
performance of URL.

1Indeed, when the goal space is high-dimensional, the problem of learning an adequate lower-dimensional goal
representation becomes important, although most existing deep RL methods rely on off-the-shelf representation
learning (e.g., Nair et al., 2018) optimized prior to or separately from reinforcement learning.

128

Appendix A

Complements on Chapter 2

A.1 Proof of Lemma 2.13

Let (U, π) ≜ VI-SSP(g,S,A, P, c, η) be the solution computed byAlgorithm 2.1. The initial vector
u0 = 0 verifies u0 ≤ V ⋆, where it holds that V ⋆ = LV ⋆ by Proposition 2.11. By monotonicity of
the operator L (Bertsekas, 1995), we thus obtain un ≤ V ⋆ for any iteration n ≥ 0, which entails
that U ≤ V ⋆.

Moreover, the termination condition implies that for any s ∈ S ,Lun(s)−un(s) ≤ η, therefore

c(s, π(s)) + Ps,π(s)U ≤ U(s) + η ≤ U(s) + η
c(s, π(s))
cmin

.

We define the vector

U ′ ≜
(

1− η

cmin

)−1
U.

We see that c(s, π(s)) + Ps,π(s)U
′ ≤ U ′(s). Hence, from Proposition 2.10, π is proper and

V π(s) ≤ U ′(s) ≤
(

1 + 2η
cmin

)
U(s),

where in the last inequality we used the assumption that the VI precision level verifies η ≤ cmin
2

and that

∀ 0 ≤ x ≤ 1
2 ,

1
1− x ≤ 1 + 2x. (A.1)

130

A.2 Proof of Lemma 2.14

A.2 Proof of Lemma 2.14

First, we assume that the policy π is proper in the model P . This implies that its value function,
which we denote by V , is bounded component-wise. Moreover, from Proposition 2.10, the
Bellman equation holds for any s ∈ S as follows

V (s) = c(s, π(s)) + P s,π(s)V = c(s, π(s)) + Ps,π(s)V + (P s,π(s) − Ps,π(s))V . (A.2)

By successively using Hölder’s inequality and that P ∈ P(p)
η and c(s, π(s)) ≥ cmin, we get

V (s) ≥ c(s, π(s))− η∥V ∥∞ + P (·|s, π(s))V ≥ c(s, π(s))
(
1− η∥V ∥∞

cmin

)
+ P (·|s, π(s))V .

Let us now introduce the vector V ′ ≜
(

1− η∥V ∥∞
cmin

)−1
V . Then for all s ∈ S,

V ′(s) ≥ c(s, π(s)) + Ps,π(s)V
′.

Hence, from Proposition 2.10, π is proper in P , i.e., its associated value function denoted by V
is bounded component-wise, and we have

V ≤ V ′ ≤
(

1 + 2η∥V ∥∞
cmin

)
V , (A.3)

where the last inequality stems from condition (2.4) and the simple algebraic inequality of
Equation (A.1). Conversely, analyzing Equation (A.2) from the other side, we get

V (s) ≤ c(s, π(s))
(

1 + η∥V ∥∞
cmin

)
+ P (·|s, π(s))V .

Let us now introduce the vector V ′′ ≜
(

1 + η∥V ∥∞
cmin

)−1
V . Then

V ′′(s) ≤ c(s, π(s)) + Ps,π(s)V
′′.

We then obtain in the same vein as Proposition 2.10 (by leveraging the monotonicity of the
Bellman operator LπU(s) ≜ c(s, π(s)) + P⊤

s,π(s)U) that V ′′ ≤ V , and therefore

V ≤
(

1 + η∥V ∥∞
cmin

)
V. (A.4)

131

Complements on Chapter 2

Combining Equations (A.3) and (A.4) yields component-wise

∥V − V ∥∞ ≤ 2η∥V ∥∞
cmin

∥V ∥∞ + η∥V ∥∞
cmin

∥V ∥∞ ≤ 7η∥V ∥
2
∞

cmin
,

where the last inequality stems from plugging condition (2.4) into Equation (A.3).
Note that here P and P play symmetric roles; we can perform the same reasoning in the

case where π is proper in the model P and it would yield an equivalent result by switching the
dependencies on V and V .

132

Appendix B

Complements on Chapter 3

B.1 Proof of Theorem 3.4

Recall that we introduce the MDP M∞ ≜ ⟨S ′,A, r∞, P∞, s0⟩, with reward r∞ ≜ 1g and
P∞(· | s, a) ≜ P (· | s, a) for s ̸= g and P∞(· | g, a) ≜ 1s0 for all a. The SSP problem with
uniform costs boils down to minimizing the expected hitting time of the goal state, which
according to the following lemma is equivalent to maximizing the long-term average reward
(or gain) in M∞. Recall that for any policy π ∈ Π, its gain ρπ(s) starting from any s ∈ S is
defined as

ρπ(s) ≜ lim
T→+∞

Eπ

[
1
T

T∑
t=1

r∞(st, π(st))
∣∣∣ s] .

Lemma B.1. Let π∞ ∈ arg maxπ ρπ(s). Then π∞ is optimal in the SSP sense and its constant
gain ρ∞ verifies

ρ∞ = 1
V ⋆(s0) + 1 .

Proof. Let π be a policy such that g is reachable from s0. Denote by Sπ the set of communicating
states for policy π inM∞. Then the underlying Markov chain (restricted to Sπ) is irreducible
with a finite number of states and is thus recurrent positive (see e.g., Brémaud, 2013, Thm. 3.3).
Denoting by µπ its unique stationary distribution, we have almost surely that

ρπ(s) = lim
T→+∞

Eπ

[∑T
t=1 rt
T

]
= lim

T→+∞
Eπ

[∑T
t=1 1{st=g}

T

]
(a)=
∑
s∈Sπ

1{s=g}µπ(s) (b)= 1
1 + E [τπ(s0)] ,

133

Complements on Chapter 3

where (a) comes from the Ergodic Theorem for Markov Chains (see e.g., Brémaud, 2013,
Thm. 4.1) and (b) uses the fact that 1/µπ(g) corresponds to the mean return time in state g,
i.e., the expected time to reach g starting from g. We conclude with the fact that V π(s0) =
E [τπ(s0)].

Hence, we can prove that UCRL2 satisfies the following SSP-regret bound.

Lemma B.2. Under Assumption 3.3, with probability at least 1− δ, for anyK ≥ 1, the SSP-regret
of UCRL2 can be bounded as

RK ≤ 34 (V ⋆(s0) + 1)DS
√
ATK log

(
TK
δ

)
,

where we recall that TK ≜
∑K
k=1 I

k.

Proof. Using the fact thatK =
∑TK
t=1 1{st=g}, the SSP-regret can be written as

RK =
K∑
k=1

 Ik∑
t=1

1{st ̸=g} − V ⋆(s0)

 = TK −K − V ⋆(s0)K = TK − (V ⋆(s0) + 1)K.

For any T ≥ 1 denote by R∞
T the (reward-based) infinite-horizon total regret of an algorithm

after T steps in M∞, i.e., R∞
T = Tρ† −

∑T
t=1 rt where ρ† ≜ maxπ ρπ(s) for all s ∈ S. From

Lemma B.1 we have ρ† = ρ∞. Moreover, since the rewards satisfy r∞ = 1g, we have∑TK
t=1 rt =

K. Putting everything together yields

RK = TK − (V ⋆(s0) + 1)K = (V ⋆(s0) + 1)(TKρ† −K) = (V ⋆(s0) + 1)R∞
TK
.

Note thatM∞ is weakly-communicating, where its communicating set of states corresponds
to all the states in S ′ that are accessible from s0 with non-zero probability. Although it is
weakly-communicating, the specific reward structure, combined with the fact that rewards are
necessarily known (since we consider the uniform-cost SSP setting and since the goal state g is
assumed to be known), allows to run UCRL2 on this problem (see the Remark at the end of
Section B.1 for more detail).

Technically, EVI is guaranteed to converge since the associated extended MDP is weakly-
communicating and by Puterman (2014) it is sufficient for convergence of value iteration, see
e.g., Puterman (2014, Chapter 9) for finite action space or Schweitzer (1985, Theorem1) for
compact spaces.

From Jaksch et al. (2010, Theorem2) and using the anytime nature of UCRL2, we have with
probability at least 1− δ for any T > 1 the following bound on the average-reward regret of

134

B.1 Proof of Theorem 3.4

UCRL2 inM∞,

R∞
T ≤ 34D∞S

√
AT log(T

δ
),

where D∞ ≜ maxs ̸=s′∈S′ minπ∈ΠSD(M∞) E [τπ(s→ s′)] is the diameter of M∞. However, this
boundmay be vacuous since it depends onD∞ whichmay be equal to+∞. By slightly changing
the analysis of this result we can obtain an improved dependency on the SSP-diameter D. In
particular it is sufficient to prove that for any UCRL2 episode k and for any iteration i of
the optimal extended Bellman operator LMk

(with h0 = 0 and hi = (LMk
)ih0), we have

that sp(hi) ≤ D instead of the conventional upper bound D∞. The remainder of the proof
shows this result. It is straightforward that hi(g) ≥ hi(s) for any s ∈ S (this can be proved by
recurrence on i using the definition of hi = LMk

hi−1 and the fact that the reward inMk is equal
to 1g). Introduce s ∈ arg mins hi(s) and φM̃ (s→ g) the minimum expected shortest path from
s to g in any MDP M̃ . Then from Lemma B.4 we have sp(hi) = hi(g) − hi(s) ≤ φMk

(s → g).
Since the “true” MDP M∞ ∈ Mk, we have φMk

(s → g) ≤ φM∞(s → g). Furthermore,
φM∞(s→ g) = φM (s→ g) ≤ D. Putting everything together, we obtain that sp(hi) ≤ D. We
thus have with probability at least 1− δ for any T > 1,

R∞
T ≤ 34DS

√
AT log(T

δ
).

While we would like to assess the dependency of the regret on the number of episodesK
(as in the finite-horizon case), the bound in Lemma B.2 contains the random total number
of steps TK needed to reach K episodes. In light of this, we derive in the following lemma
an upper bound of TK that depends on the quantity of interestK. Plugging it in Lemma B.2
yields the result of Theorem 3.4.

Lemma B.3. Under the same event for which Lemma B.2 holds with probability at least 1− δ, we
have

TK ≤ 2 (V ⋆(s0) + 1)K + Õ

(
V ⋆(s0)2D2S2A log

(1
δ

))
.

Proof. With probability at least 1− δ, we have from the proof of Lemma B.2 that

TK − (V ⋆(s0) + 1)K ≤ 34 (V ⋆(s0) + 1)DS
√
ATK log

(
TK
δ

)
.

135

Complements on Chapter 3

s0s1 g
a10 a01

a00 ag0

r(s1) = 0 r(s0) = 0 r(g) = 1

Figure B.1 – A toy example of SSP-communicating (D = 2) reward-based MDP.

This implies that

TK ≤ 2 (V ⋆(s0) + 1)K −TK + 68 (V ⋆(s0) + 1)DS
√
ATK log

(
TK
δ

)
︸ ︷︷ ︸

≜(y)

,

where (y) can be bounded using Lemma E.15 (with the constants a1 = 68 (V ⋆(s0) + 1)DS
√
A,

a2 = 1
δ and a3 = 1) as follows

(y) ≤ 16
9
(
68 (V ⋆(s0) + 1)DS

√
A
)2
[
log

(
136 (V ⋆(s0) + 1)DS

√
Ae√

δ

)]2

.

Lemma B.4. Consider an (extended) MDP M̃ and define L
M̃

as the associated optimal (extended)
Bellman operator (of undiscounted value iteration). Given h0 = 0 and hi = (L

M̃
)ih0 we have that

∀s1, s2 ∈ S ′, hi(s2)− hi(s1) ≤ rmax φM̃ (s1 → s2),

where φ
M̃

(s1 → s2) is the minimum expected shortest path from s1 to s2 in M̃ and rmax is the
maximal state-action reward.

Proof. The proof follows from the application of the argument of Jaksch et al. (2010, Sec-
tion 4.3.1).

Lemma B.5 (Kazerouni et al., 2017, Lemma8). For any x ≥ 2 and a1, a2, a3 > 0, the following
holds

−a3x+ a1
√
x log(a2x) ≤ 16a2

1
9a3

[
log

(2a1
√
a2e

a3

)]2
.

136

B.1 Proof of Theorem 3.4

Remark B.6. Consider the reward-based SSPM in Figure B.1. M is SSP-communicating while
the associated MDP M∞ is weakly-communicating since s1 is transient under every policy.
There are just two possible deterministic policies: π0(s0) = a00 and π1(s0) = a01. If rewards are
unknown, UCRL2 will periodically alternate between policy π0 and π1 without converging to
any of the two. This is due to the fact that, in the set of plausible MDPsMk there will always
be (i.e., ∀k > 0) an MDP with arbitrarily small but non-zero transition probability p̃ to state s1,
where, due to maximum uncertainty, there will be a self loop with probability 1 and reward
rmax (since Nk(s1, a10) ∈ {0, 1} depending on the initial state for any k). The probability p̃ will
be sometimes higher for action a00 and sometimes for a01 depending on the counterNk. This is
why UCRL2 will never converge. However, if the rewards are known (which is always the case
under Assumption 3.3 and as long as the goal state g is known), after a burn-in phase, it will be
clear to UCRL2 that action a00 is suboptimal. Even if there is probability p̃ > 0 to go to s1, in s1

the optimistic behaviour will be to go to g since it is the only one to provide reward. However,
this imagined policy is suboptimal since it has an additional step and thus UCRL2 will select
π1. Note that while it is possible to make the MDP stochastic, this will lead to a longer burn-in
phase but will not change the behaviour of UCRL2 in the long run.

137

Complements on Chapter 3

B.2 T⋆ can be arbitrarily larger than B⋆, S, A

Here we provide a simple illustration that the in-
equality B⋆ ≤ T⋆ may be arbitrarily loose, which
shows that scaling with T⋆ can be much worse than
scaling with B⋆. Recall that B⋆ bounds the total ex-
pected cost of the optimal policy starting from any
state, and T⋆ bounds the expected time-to-goal of
the optimal policy from any state.
Let us consider an SSP instance whose optimal pol-
icy induces the absorbing Markov chain depicted
in Figure B.2. It is easy to see that B⋆ = 1 and that
T⋆ = Ω(S p−1

min). Hence, the gap between B⋆ and T⋆
can grow arbitrarily large as pmin → 0.
This simple example illustrates the benefit of having
a bound that is (nearly) horizon-free (cf. desired prop-
erty 3 in Section 3.3). Indeed, a bound that is not
horizon-free scales polynomially with T⋆ and thus
with p−1

min, which may be arbitrarily large if pmin → 0.
In contrast, a horizon-free bound only scales log-
arithmically with p−1

min and can therefore be much
tighter.

s0
s1

s−1

s2

. . .sS−3

sS−2

g

1− pmin

pmin
c = 0

c = 0

c = 1

c = 0

c = 0

c = 0

c = 0

c = 0

Figure B.2 – Markov chain of the opti-
mal policy of an SSP instance with S
states. Transitions in green incur a cost
of 0, while the transition in red lead-
ing to the goal state g incurs a cost of 1.
All transitions are deterministic, apart
from the one starting from s0, which
reaches state s−1 with probability pmin
and state s1 with probability 1 − pmin,
where pmin > 0.

138

Appendix C

Complements on Chapter 4

C.1 Proofs

C.1.1 Proof of Lemma 4.4

The first inequality comes from the chosen stopping condition. As for the second, since
we consider the initial vector v(0) = 0, we know that v(0) ≤ Ṽ ⋆

k,j with Ṽ ⋆
k,j = L̃k,j Ṽ ⋆

k,j . By
monotonicity of the operator L̃k,j (Puterman, 2014; Bertsekas, 1995) we obtain ṽk,j ≤ Ṽ ⋆

k,j . If
M ∈ Mk,j and j = 0, then Ṽ ⋆

k,j ≤ V ⋆. IfM ∈ Mk,j and j ≥ 1, then all costs are equal to 1 so
the optimal value function is minπ E(τπ) and hence Ṽ ⋆

k,j ≤ minπ E(τπ).

C.1.2 Proof of Lemma G.4

The proof is almost identical to the proof of Fruit et al. (2020, Theorem10) and we report
it below for completeness. Recall that we defineMk,j ≜ {⟨S,A, c, P̃ ⟩ | P̃ ∈ Bk,j} to be the
extended MDP defined by the confidence interval Bk,j ≜ {P̃ ∈ C | P̃ (·|g, a) = 1g and ∀(s, a) ∈
S ×A, ∥P̃ (·|s, a)− P̂k,j(·|s, a)∥1 ≤ βk,j(s, a)}, with C the S′-dimensional simplex and

βk,j(s, a) ≜

√√√√√√8S log
(

2AN+
k,j

(s,a)
δ

)
N+
k,j(s, a)

.

Furthermorewe introduceBk,j(s, a) ≜ {P̃ ∈ C : ∥P̃ (·|s, a)−P̂k,j(·|s, a)∥1 ≤ βk,j(s, a)} (and sim-
ilarly forBk,j(s, a, s′)). Wewant to bound the probability of event EC ≜

⋃+∞
k=1

⋃Jk
j=1 {M ̸∈ Mk,j}.

As explained by Lattimore and Szepesvári (2020, Chapter 5), when (s, a) is visited for the n-th
times, the next state that we observe is the n-th element of an infinite sequence of i.i.d. r.v. lying
in S ′ with probability density function P (·|s, a). In UCRL2 (Jaksch et al., 2010), the sample

139

Complements on Chapter 4

means P̂k,j and the confidence intervalsBk,j are defined as depending on (k, j). Actually, these
quantities depend only on the first Nk,j(s, a) elements of the infinite i.i.d. sequences that we
just mentioned. For the rest of the proof, we will therefore slightly change our notations and
denote by P̂n(s′|s, a) and Bn(s′|s, a) the sample means and confidence intervals after the first
n visits in (s, a). Thus, the random variable that we denoted by P̂k,j actually corresponds to
P̂Nk,j(s,a) with our new notation (and similarly for Bk,j). This change of notation will make the
proof easier.

If M ̸∈ Mk,j , then there exists a k ≥ 1 and j ≥ 0 s.t. P (·|s, a) ̸∈ BNk,j(s,a)(s, a) for at
least one (s, a, s′) ∈ S × A × S ′. This means that there exists at least one value n ≥ 0 s.t.
P (s′|s, a) ̸∈ Bn(s, a, s′). Consequently we have the following inclusion

EC ⊆
⋃
s,a

+∞⋃
n=0
{P (·|s, a) ̸∈ Bn(s, a)} .

Using Boole’s inequality we have

P(EC) ≤
∑
s,a

+∞∑
n=0

P(P (·|s, a) ̸∈ Bn(s, a)).

Let us fix a tuple (s, a) ∈ S ×A and define for all n ≥ 0

εn(s, a) ≜

√
2 log ((2S′ − 2)5SA(n+)2/δ)

n+ ,

where n+ ≜ max{n, 1}. Since S′ = S + 1 ≤ 2S, it is immediate to verify that almost surely,
εn(s, a) ≤ βn(s, a). Using Weissman’s inequality (Weissman et al., 2003; Jaksch et al., 2010) we
have that for all n ≥ 1

P
(
∥P (·|s, a)− P̂n(·|s, a)∥1 ≥ βn(s, a)

)
≤ P

(
∥P (·|s, a)− P̂n(·|s, a)∥1 ≥ εn(s, a)

)
≤ δ

5n2SA
.

Note that when n = 0 (i.e., when there has not been any observation of (s, a)), ε0(s, a) ≥ 2 so
P(∥P (·|s, a)− P̂0(·|s, a)∥1 ≥ ε0(s, a)) = 0 by definition. As a result, we have that for all n ≥ 1

P
(
P (·|s, a) /∈ Bn(s, a)

)
≤ δ

5n2SA
,

and this probability is equal to 0 if n = 0. Finally we obtain

P
(
∃k ≥ 1,∃j ∈ [0, Jk], s.t.M ̸∈ Mk,j

)
≤
∑
s,a

(
0 +

+∞∑
n=1

δ

5n2SA

)
= π2δ

30 ≤
δ

3 ,

which concludes the proof.

140

C.1 Proofs

C.1.3 Proof of Lemma 4.6

For notational ease, in Section C.1.3 we adopt the notationHk ≜ Hk,0, π̃k ≜ π̃k,0, εk ≜ εk,0 (i.e.,
we remove the subscript 0). Furthermore, for any k ∈ [K] and h ∈ [Hk], we denote by sk,h the
state visited in the h-th step of episode k. Assume from now on that the event E holds. From
Lemma 4.4 we have

WK =
K∑
k=1

Hk∑
h=1

c(sk,h, π̃k(sk,h))

− V ⋆(s0)


≤

K∑
k=1

Hk∑
h=1

c(sk,h, π̃k(sk,h))

− ṽk(s0)


=

K∑
k=1

Θk,1(sk,1),

where sk,1 ≜ s0, and for any k ∈ [K] and h ∈ [Hk], we introduce

Θk,h(sk,h) ≜
Hk∑
t=h

c(sk,t, π̃k(sk,t))− ṽk(sk,h).

For any h ∈ [Hk − 1], we introduce

Φk,h ≜ ṽk(sk,h+1)−
∑
y∈S

P (y | sk,h, π̃k(sk,h))ṽk(y).

We then have

Θk,h(sk,h) =
Hk∑
t=h

c(sk,t, π̃k(sk,t))− ṽk(sk,h)

≤
Hk∑
t=h

c(sk,t, π̃k(sk,t))− L̃kṽk(sk,h) + εk

(a)=
Hk∑
t=h

c(sk,t, π̃k(sk,t))− c(sk,h, π̃k(sk,h))−
∑
y∈S

P̃k(y | sk,h, π̃k(sk,h))ṽk(y) + εk

=
Hk∑

t=h+1
c(sk,t, π̃k(sk,t))−

∑
y∈S

[P̃k(y | sk,h, π̃k(sk,h))− P (y | sk,h, π̃k(sk,h))

+ P (y | sk,h, π̃k(sk,h))]ṽk(y) + εk (C.1)
(b)
≤

Hk∑
t=h+1

c(sk,t, π̃k(sk,t))−
∑
y∈S

P (y | sk,h, π̃k(sk,h))ṽk(y)

+ ∥P (· |sk,h, π̃k(sk,h))− P̃k(· |sk,h, π̃k(sk,h))∥1∥ṽk∥∞ + εk

141

Complements on Chapter 4

(c)
≤

Hk∑
t=h+1

c(sk,t, π̃k(sk,t))−
∑
y∈S

P (y | sk,h, π̃k(sk,h))ṽk(y)

+ 2βk(sk,h, π̃k(sk,h))cmaxD + εk (C.2)
= Θk,h+1(sk,h+1) + ṽk(sk,h+1)−

∑
y∈S

P (y | sk,h, π̃k(sk,h))ṽk(y)

+ 2βk(sk,h, π̃k(sk,h))cmaxD + εk (C.3)
= Θk,h+1(sk,h+1) + Φk,h + 2βk(sk,h, π̃k(sk,h))cmaxD + εk, (C.4)

where (a) stems from the fact that π̃k is the greedy policy with respect to (ṽk, εk), (b) leverages
that ṽk ≥ 0 component-wise and (c) combines Lemma 4.4 and the fact that ∥V ⋆∥∞ ≤ cmaxD.
Furthermore, whatever the value of sk,Hk we have

Θk,Hk(sk,Hk) = c(sk,Hk , π̃k(sk,Hk))− ṽk(sk,Hk)

≤ c(sk,Hk , π̃k(sk,Hk))− L̃kṽk(sk,Hk) + εk

= c(sk,Hk , π̃k(sk,Hk))− c(sk,Hk , π̃k(sk,Hk))−
∑
y∈S

P̃k(y | sk,Hk , π̃k(sk,Hk)) ṽk(y)︸ ︷︷ ︸
≥0

+εk

≤ εk.

By telescopic sum, using Equation (C.4), it holds that

Θk,1(sk,1) =
Hk−1∑
h=1

(Θk,h(sk,h)−Θk,h+1(sk,h+1)) + Θk,Hk(sk,Hk)

≤
Hk−1∑
h=1

Φk,h + 2cmaxD
Hk−1∑
h=1

βk(sk,h, π̃k(sk,h)) + (Hk − 1)εk + Θk,Hk(sk,Hk)

≤
Hk−1∑
h=1

Φk,h + 2cmaxD
Hk−1∑
h=1

βk(sk,h, π̃k(sk,h)) +Hkεk.

Summing over the episode index k yields

K∑
k=1

Θk,1(sk,1) ≤
K∑
k=1

Hk−1∑
h=1

Φk,h︸ ︷︷ ︸
≜XK

+2cmaxD
K∑
k=1

Hk−1∑
h=1

βk(sk,h, π̃k(sk,h))︸ ︷︷ ︸
≜YK

+
K∑
k=1

Hkεk︸ ︷︷ ︸
≜ZK

.

In order to bound XK , we can write

P

 K∑
k=1

Hk−1∑
h=1

Φk,h ≥ 2cmaxD

√√√√√√2
(

K∑
k=1

Hk

)
log

2
(∑K

k=1Hk

)2

δ




142

C.1 Proofs

≤
+∞∑
n=1

P

 K∑
k=1

Hk∑
h=1

Φk,h ≥ 2cmaxD

√
2n log

(2n2

δ

) ⋂ K∑
k=1

Hk = n


≤

+∞∑
n=1

P

 n∑
t=1

Φ̃t ≥ 2cmaxD

√
2n log

(2n2

δ

) ,
where we introduce for any t > 0,

Φ̃t =

 Φ
k̃t,t−Zt

if t > Zt,

Φ
k̃t+1,1 otherwise,

where k̃t = max {k |
∑k
k′=1Hk′ ≤ t} andZt =

∑k̃t−1
k′=1 Hk′ +1, i.e., wemap a value t to the double

index (k, h). Denote by Gq the history of all random events up to (and including) step h of
episode k (i.e., q =

∑k−1
k′=1Hk + h). We have E [Φk,h|Gq] = 0 (since ṽk(g) = 0), and furthermore

the stopping time Hk is selected at the beginning of episode k so it is adapted w.r.t.Gq. Hence,
(Φ̃t) is a martingale difference sequence, such that |Φ̃t| ≤ 2cmaxD. For any fixed n > 0, we thus
have from Azuma-Hoeffding’s inequality that

P

 n∑
t=1

Φ̃t ≥ 2cmaxD

√
2n log

(2n2

δ

) ≤ δ

2n2 .

As a result, from a union bound over all possible values of n > 0, we have with probability at
least 1− 2δ

3 ,

K∑
k=1

Hk−1∑
h=1

Φk,h ≤ 2cmaxD

√√√√√√2
(

K∑
k=1

Hk

)
log

3
(∑K

k=1Hk

)2

δ

. (C.5)

We now proceed in bounding YK using a pigeonhole principle. Denoting by N (1) the counter
of samples only collected during attempts in phase ①, we get

K∑
k=1

Hk−1∑
h=1

√√√√ 1
N

(1)
k (sk,h, π̃k(sk,h))

≤
∑
s,a

N
(1)
K (s,a)∑
n=1

√
1
n
≤
∑
s,a

2
√
N

(1)
K (s, a)

≤ 2
√
SA

√∑
s,a

N
(1)
K (s, a)

≤ 2
√
SATK,1.

143

Complements on Chapter 4

We have N+
k (s, a) ≥ N (1)+

k (s, a) so by applying the technical Lemma C.1 (and considering that
A ≥ 2 since if A = 1 there is no learning problem), we get

βk(s, a) =

√√√√√8S log
(

2AN+
k

(s,a)
δ

)
N+
k (s, a)

≤

√√√√√√8S log
(

2AN(1)+
k

(s,a)
δ

)
N

(1)+
k (s, a)

.

Therefore we obtain
K∑
k=1

Hk−1∑
h=1

βk(sk,h, π̃k(sk,h)) ≤ 2S
√

8ATK,1 log
(2ATK,1

δ

)
. (C.6)

We finally bound ZK . We have for any k ∈ [K], Hk ≤ ΩK and we select εk = cmin
2tk,0 , hence we

have TK,1 ≤ ΩKK and

K∑
k=1

Hkεk ≤
cmin

2

TK,1∑
t=1

ΩK

t
≤ cmin

2 ΩK (1 + log(ΩKK)) .

Putting everything together, a union bound and Lemma G.4 yields with probability at least
1− δ,

K∑
k=1

Hk∑
h=1

c(sk,h, π̃k(sk,h))

− ṽk(s0)

 ≤ 4cmaxDS

√
8ATK,1 log

(2ATK,1
δ

)

+ 2cmaxD

√√√√2TK,1 log
(

3T 2
K,1
δ

)

+ cmin
2 ΩK (1 + log(ΩKK)) .

Lemma C.1. For any constant c ≥ 4, the function f(x) ≜
√

log(cx)
x is a non-increasing function

for x ≥ 1.

Proof. Introduce the function g(x) ≜ f(x)2. We have g′(x) = 1−log(cx)
x2 ≤ 0 since x ≥ 1 ≥ e

c . So
g is non-increasing, hence by composition of functions, f = √g is also non-increasing.

Interestingly, the bound of Lemma 4.6 resembles a combination of finite- and infinite-
horizon guarantees. On the one hand, we have the standard dependency of finite-horizon
problems on the horizon H and number of episodes K. On the other hand, H is no longer
bounding the range of the value functions, which is replaced by cmaxD as in infinite-horizon
problems.

144

C.1 Proofs

C.1.4 Proof of Lemma 4.7

We start the proof of Lemma 4.7 by deriving a general result — which may be of independent
interest — that upper bounds the moments of any discrete PH distribution.1

Lemma C.2. Consider an absorbing Markov Chain with state space Y ∪ {y}, a single absorbing
state y and |Y| transient states. Denote by Q ∈ RY×Y the transition matrix within the states in Y
and by τ(y) ≜ τ(y → y) the first hitting time of state y starting from state y. Suppose that there
exists a constant λ ≥ 2 such that for any state y ∈ Y , we have E [τ(y → y)] ≤ λ. Then for any
r ≥ 1 and any state y ∈ Y , we have

E [τ(y)r] ≤ 2 (rλ)r .

Proof. We first leverage a closed-form expression of the factorial moments of discrete PH dis-
tributions. For any r ≥ 1, denoting by (τ)r the r-th factorial moment of τ , i.e., (τ)r ≜
τ(τ − 1)...(τ − r + 1), we have (see e.g., Latouche and Ramaswami, 1999, Equation 2.15)
that for any starting state y ∈ Y ,

E [(τ)r(y)] = r!1⊤
y (I −Q)−rQr−11.

Recalling that the ∥·∥∞ (resp. ∥·∥1) norm of a matrix is equal to its maximum absolute row
(resp. column) sum, we have by Hölder’s inequality, for any j ∈ [r],

E [(τ)j(y)] = j!
〈
(1⊤
y (I −Q)−j)⊤, Qj−11

〉
≤ j!∥(1⊤

y (I −Q)−j)⊤∥1∥Qj−11∥∞
= j!∥((I −Q)−j)⊤1y∥1∥Qj−11∥∞
≤ j!∥((I −Q)−j)⊤∥1∥1y∥1∥Qj−1∥∞∥1∥∞
≤ j!∥(I −Q)−j∥∞∥Qj−1∥∞
≤ j!∥(I −Q)−1∥j∞, (C.7)

where the last inequality uses the fact that ∥Qj−1∥∞ ≤ 1 since the matrix Qj−1 is substochastic.
There remains to upper bound the quantity ∥(I −Q)−1∥∞. Consider a state

z ∈ arg max
y∈Y

∑
y′∈Y

(I −Q)−1
yy′ .

1Note that while there actually exists a closed-form expression of the moments of a continuous PH distribution
(see e.g., Latouche and Ramaswami, 1999, Equation 2.13), it does not extend to the discrete case.

145

Complements on Chapter 4

By choice of z and non-negativity of the matrix (I −Q)−1, we have

∥(I −Q)−1∥∞ =
∑
y′∈Y
|(I −Q)−1

zy′ | =
∑
y′∈Y

(I −Q)−1
zy′ = 1⊤

z (I −Q)−11 =
∞∑
n=0

1⊤
z Q

n1.

Since τ(z) follows a discrete PH distribution, we have from Proposition 4.1 that

1⊤
z Q

n1 = P(τ(z) > n).

Consequently,

∥(I −Q)−1∥∞ =
∞∑
n=0

P(τ(z) > n) = E[τ(z)] ≤ λ. (C.8)

Plugging Equation (C.8) into Equation (C.7) thus yields for any y ∈ Y ,

E [(τ)j(y)] ≤ j!λj .

Furthermore, the (raw) moment of a random variable can be expressed in terms of its factorial
moments by the following formula (see e.g., Joarder and Mahmood, 1997, Equation 3.1)

E [τ(y)r] =
r∑
j=1

{
r

j

}
E [(τ)j(y)] ,

where the curly braces denote Stirling numbers of the second kind, i.e.,

{
r

j

}
≜

1
j!

j∑
i=0

(−1)j−i
(
j

i

)
ir.

Using the upper bound (see e.g., Canfield and Pomerance, 2002, Equation 9){
r

j

}
≤ jr

j! ,

we obtain

E [τ(y)r] ≤
r∑
j=1

jrλj .

We conclude the proof of Lemma C.2 with the fact that
r∑
j=1

jrλj ≤ rr
r∑
j=1

λj ≤ rrλλ
r − 1
λ− 1 ≤ r

r2λr,

146

C.1 Proofs

where the last inequality holds since λ ≥ 2.

We are now ready to prove Lemma 4.7. For notational ease, in Section C.1.4 we adopt the
notationHk ≜ Hk,0, π̃k ≜ π̃k,0, εk ≜ εk,0 (i.e., we remove the subscript 0). Denote by Gk−1 the
history of all random events up to (and including) episode k − 1. In this section as well as in
Section C.1.5, we will write E

[
1{τPπ (s)>Hk−1} | Gk−1

]
= P(τPπ (s) > Hk − 1), i.e. the probability P

is only over the randomization of the sequence of states generated by the policy π in the model
P starting from state s (i.e., it is conditioned on Gk−1, the policy π, the model P and the starting
state s).

Suppose that the event E holds and fix an episode k ∈ [K]. Denote by Q̃ ≜ QP̃k
π̃k

the
optimistic transition matrix within S of policy π̃k in the transition model P̃k. Also, for any
state s ∈ S, denote by τ̃(s) ≜ τ P̃k

π̃k
(s) the hitting time of g starting from s following policy π̃k

in the transition model P̃k. Finally, let Ṽπ̃k(s) ≜ E
P̃k

[∑τ̃(s)
t=1 c(st, π̃k(st)) | s1 = s

]
be the value

function of policy π̃k in the model P̃k.
From Lemma 2.13, the choice of EVI precision level εk ≤ cmin

2 and ∥V ⋆∥∞ ≤ cmaxD, it holds
that

E[τ̃(s)] ≤
Ṽπ̃k(s)
cmin

≤
(

1 + 2εk
cmin

)
ṽk(s)
cmin

≤ 2V ⋆(s)
cmin

≤ 2cmaxD

cmin
. (C.9)

Fix any r ≥ 1 and s ∈ S. According to a corollary of Markov’s inequality (since x 7→ xr is a
monotonically increasing non-negative function for the non-negative reals), we have

P(τ̃(s) ≥ Hk − 1) ≤ E [τ̃(s)r]
(Hk − 1)r .

We can apply Lemma C.2 to the discrete PH distribution τ̃ with the choice of λ ≜ 2cmaxD
cmin

guaranteed by Equation (C.9). This yields

E [τ̃(s)r] ≤ 2
(
r

2cmaxD

cmin

)r
.

Hence, we have

P(τ̃(s) ≥ Hk − 1) ≤
2
(
r 2cmaxD

cmin

)r
(Hk − 1)r . (C.10)

There exists y ∈ S such that

∥Q̃Hk−2∥∞ = 1⊤
y Q̃

Hk−21 = P(τ̃(y) > Hk − 2) = P(τ̃(y) ≥ Hk − 1), (C.11)

147

Complements on Chapter 4

where the before-last equality uses Proposition 4.1 applied to π̃k ∈ Π(⟨S ′,A, c, P̃k, y⟩) (the
fact that π̃k is proper in P̃k stems from Equation (C.9)), while the last equality uses that the
hitting time τ̃(y) is an integer. By definition of Hk ≜ min

{
n > 1 : ∥Q̃n−1∥∞ ≤ 1√

k

}
, we have

∥Q̃Hk−2∥∞ > 1√
k
. Combining this with Equation (C.10) and (C.11) yields

2
(
r 2cmaxD

cmin

)r
(Hk − 1)r >

1√
k
,

which implies that

Hk − 1 < r
2cmaxD

cmin

(
2
√
k
) 1
r .

In particular, selecting r ≜ ⌈log(2
√
k)⌉ yields

Hk − 1 < 2cmaxD

cmin
⌈log(2

√
k)⌉(2

√
k)

1
⌈log(2

√
k)⌉

≤ 2cmaxD

cmin
⌈log(2

√
k)⌉ (2

√
k)

1
log(2

√
k)︸ ︷︷ ︸

=e

.

Hence,

ΩK ≤
⌈
6cmax
cmin

D log(2
√
K)
⌉
.

C.1.5 Proof of Lemma 4.8

For notational ease, in Section C.1.5 we adopt the notationHk ≜ Hk,0, π̃k ≜ π̃k,0, εk ≜ εk,0 (i.e.,
we remove the subscript 0).

We denote by τk(s) (resp. τ̃k(s)) the hitting time to the goal of policy πk in the true model
P (resp. in the optimistic model P̃k) starting from state s. For any h ∈ [Hk] we define

Γk,h(sk,h) = 1{τk(sk,h)>Hk−h} − P(τ̃k(sk,h) > Hk − h).

Since FK =
∑K
k=1 1{τk(sk,1)>Hk−1}, we have

FK =
K∑
k=1

Γk,1(sk,1) +
K∑
k=1

P(τ̃k(s0) > Hk − 1).

We have for h ∈ [Hk − 1], 1{τk(sk,h)>Hk−h} = 1{τk(sk,h+1)>Hk−h−1} and therefore

Γk,h(sk,h) = 1{τk(sk,h+1)>Hk−h−1} −
∑
y∈S′

P̃k(y | sk,h, π̃k(sk,h))P(τ̃k(y) > Hk − h− 1)

148

C.1 Proofs

≤ 1{τk(sk,h+1)>Hk−h−1} −
∑
y∈S′

P (y | sk,h, π̃k(sk,h))P(τ̃k(y) > Hk − h− 1)

+ 2βk(sk,h, π̃k(sk,h))

= Γk,h+1(sk,h+1) + Ψk,h + 2βk(sk,h, π̃k(sk,h)),

where we define

Ψk,h = P(τ̃k(sk,h+1) > Hk − h− 1)−
∑
y∈S′

P (y | sk,h, π̃k(sk,h))P(τ̃k(y) > Hk − h− 1).

Furthermore, whatever the value of sk,Hk we have

Γk,Hk(sk,Hk) = 1{τk(sk,Hk)>0} − P(τ̃k(sk,Hk) > 0) = 1{sk,Hk ̸=g} − 1{sk,Hk ̸=g} = 0.

By telescopic sum we thus get

Γk,1(sk,1) =
Hk−1∑
h=1

(Γk,h(sk,h)− Γk,h+1(sk,h+1)) + Γk,Hk(sk,Hk)

≤
Hk−1∑
h=1

Ψk,h + 2
Hk−1∑
h=1

βk(sk,h, π̃k(sk,h)).

Summing over the episode index k yields

FK ≤
K∑
k=1

Hk−1∑
h=1

Ψk,h + 2
K∑
k=1

Hk−1∑
h=1

βk(sk,h, π̃k(sk,h)) +
K∑
k=1

P(τ̃k(s0) > Hk − 1).

(Ψk,h) is a martingale difference sequence with |Ψk,h| ≤ 2, so from Azuma-Hoeffding’s inequal-
ity, in the same vein as in Equation (C.5), we have with probability at least 1− 2δ

3

K∑
k=1

Hk−1∑
h=1

Ψk,h ≤ 2

√√√√√√2
(

K∑
k=1

Hk

)
log

3
(∑K

k=1Hk

)2

δ

 ≤ 2
√

2ΩKK log
(3(ΩKK)2

δ

)
.

By the pigeonhole principle (Equation (C.6)), we have

K∑
k=1

Hk−1∑
h=1

βk(sk,h, π̃k(sk,h)) ≤ 2S
√

8AΩKK log
(2AΩKK

δ

)
.

From Proposition 4.1 and Hölder’s inequality, we have

K∑
k=1

P(τ̃k(s0) > Hk − 1) =
K∑
k=1

1s0(QP̃k
π̃k

)Hk−11 ≤
K∑
k=1
∥1s0∥1∥(Q

P̃k
π̃k

)Hk−11∥∞ ≤
K∑
k=1
∥(QP̃k

π̃k
)Hk−1∥∞.

149

Complements on Chapter 4

Consequently, by choice of Hk ≜ min{n > 1 | ∥(QP̃k
π̃k

)n−1∥∞ ≤ 1√
k
}, we get

K∑
k=1

P(τ̃k(s0) > Hk − 1) ≤
K∑
k=1

1√
k
≤ 2
√
K.

C.1.6 Proof of Lemma 4.9

Recall that TK,2 is the number of time steps during attempts in phase ② up to the end of
environmental episode K. We introduce Ω′

K ≜ maxk∈[K] maxj∈[Jk]Hk,j and GK ≜
∑K
k=1 Jk

which is the total number of attempts in phase ② up to episode K. This means that TK,2 ≤
Ω′
KGK . First, by adapting Lemma 4.7 and using that in attempts in phase ② we have cmax =

cmin = 1, we have under the event E ,

Ω′
K ≤

⌈
6D log(2

√
GK)

⌉
. (C.12)

We can decomposeGK as the sum of attempts that succeed in reaching g (equal to FK which is
upper bounded by Lemma 4.8) and of those that fail in reaching g, whose number we denote
by F †

K . We then have

GK ≤ FK + F †
K . (C.13)

By adapting Lemma 4.8, we have the following high-probability bound, for any value of GK ,

F †
K = O

S
√
AΩ′

KGK log
(
AΩ′

KGK
δ

) . (C.14)

Plugging Equation (C.12) and (C.13) into Equation (C.14) yields

GK ≤ FK +O

(
S
√
ADGK log

(
ADGK

δ

))
.

Hence we get

GK ≤ 2FK −GK +O

(
S
√
ADGK log

(
ADGK

δ

))
︸ ︷︷ ︸

≜(y)

,

where (y) can be bounded using the technical Lemma E.15 as follows

(y) ≤ O
(
S2AD

[
log

(
SAD√

δ

)]2
)
.

150

C.1 Proofs

Plugging in the result of Lemma 4.8 yields

GK = Õ

(
S

√
cmax
cmin

ADK log
(
K

δ

)
+ S2AD log

(1
δ

))
.

This bound can be translated in a bound on TK,2 using Equation (C.12) as follows

TK,2 = O
(
DGK log(S

√
GK)

)
= Õ

(
DS

√
cmax
cmin

ADK log
(
K

δ

)
log(K) + S2AD2 log

(1
δ

)
log(K)

)
.

C.1.7 Proof of Theorem 4.5

The (possibly non-stationary) policy µk that is executed at each episode k can be written as
(π̃k,0, π̃k,1, . . . , π̃k,Jk). As explained in Section 4.4, by assigning a regret of cmax to each time step
during attempts in phase ② (i.e., during the executions of the policies π̃k,1, . . . , π̃k,Jk), we can
decompose the regret of UC-SSP as

RK =
K∑
k=1

 Ik∑
h=1

c(sk,h, µk(sk,h))

− V ⋆(s0)


≤

K∑
k=1

Hk,0∑
h=1

c(sk,h, π̃k,0(sk,h))

− V ⋆(s0)

+ cmaxTK,2.

Suppose from now on that the event E is true (this holds with probability at least 1 − δ
3).

Lemma 4.6 yields that with probability at least 1− 2δ
3 ,

K∑
k=1

Hk,0∑
h=1

c(sk,h, π̃k,0(sk,h))

− V ⋆(s0)

 ≤ 4cmaxDS

√
8AΩKK log

(2AΩKK

δ

)

+ 2cmaxD

√
2ΩKK log

(3(ΩKK)2

δ

)
+ cmin

2 ΩK (1 + log(ΩKK)) ,

where according to Lemma 4.7,

ΩK ≤
⌈
6cmax
cmin

D log(2
√
K)
⌉
.

151

Complements on Chapter 4

On the other hand, Lemma 4.9 yields

TK,2 = Õ

(
DS

√
cmax
cmin

ADK log
(
K

δ

)
log(K) + S2AD2 log

(1
δ

)
log(K)

)
.

Putting everything together finally yields that with probability at least 1− δ, for anyK ≥ 1,

RK = Õ

(
cmaxDS

√
cmax
cmin

ADK log
(
K

δ

)
log(K) + cmaxS

2AD2 log
(1
δ

)
log(K)

)
.

C.2 Relaxation of Assumptions

C.2.1 Straightforward extension to unknown, stochastic costs

Although we assume (as in e.g., Azar et al., 2017) that the costs are known and deterministic
for ease of exposition, we emphasize that extending the setting to unknown stochastic costs
poses no major difficulty. The only requirement is that the learner needs to know in advance
the range of the non-goal costs, i.e., the constants cmin and cmax. In that case, at the beginning
of each attempt (k, 0) (i.e., in phase ①), the confidence setMk,0 is not only defined with the
confidence interval on the transition probabilities but also with a confidence interval on the
costs. Namely, we consider

Mk,0 ≜
{
⟨S,A, c̃, P̃ ⟩ | P̃ (·|s, a) ∈ Bk,0(s, a), c̃(s, a) ∈ B′

k,0(s, a)
}
,

where Bk,0(s, a) is defined as in Section 4.2, and where for any a ∈ A, c̃(g, a) = 0 while for any
s ∈ S,

B′
k,0(s, a) ≜ [ĉk,0(s, a)− β′

k,0(s, a), ĉk,0(s, a) + β′
k,0(s, a)] ∩ [cmin, cmax],

with ĉk,0(s, a) the empirical costs and

β′
k,0(s, a) ≜ 2

√√√√√√ log
(

6SAN+
k,0(s,a)
δ

)
N+
k,0(s, a)

.

The analysis on the regret bound of UC-SSP then only adds an additional error term on
estimating the transition costs, which is subsumed by the other terms. Consequently, we obtain
exactly the same regret bound as in Theorem 4.5.

152

C.2 Relaxation of Assumptions

C.2.2 Relaxation of Assumption 2.7 (i.e., D = +∞)

The requirement that the goal is reachable from any state (Assumption 2.7) is a natural and
inherent assumption of the SSP problem as introduced in Bertsekas (1995). However, a reason-
able extension is to allow for the existence of (potentially unknown) dead-end states, i.e., states
from which reaching the goal is impossible. In that case, EVISSP, which operates of the entire
state space S, fails to converge since the values at dead-end states are infinite. Kolobov et al.
(2012) propose to put a “cap” on any state’s cost by optimizing the truncated value function, or
Finite-Penalty criterion,

V π
J (s) ≜ min {J, V π(s)} ,

where J > 0 corresponds to a penalty incurred if a dead-end state is visited. From Kolobov et al.
(2012), there exists an optimal policy π⋆J(s) that minimizes V π

J (s) and the optimal truncated
value function V ⋆

J is a fixed point of the modified Bellman operator LJ defined as

LJV (s) ≜ min
{
J, min

a∈A

[
c(s, a) +

∑
y∈S

P (y|s, a)V (y)
]}
.

Denote by SDE ⊊ S the set of dead-end states. We replace Assumption 2.7 with the following
assumptions.

Assumption C.3. 1) s0 /∈ SDE . 2) V ⋆(s0) < +∞ and an upper bound J on V ⋆(s0) is known. 3)
We augment the action spaceA with an action a that causes a transition from any state in S to the target
state with probability 1 and cost J (i.e., we place ourselves in a resetting environment).

Note that 1) and 3) of Assumption C.3 are required to make the learning problem and the
definition of regret sensible (i.e., we have V ⋆(s0) < +∞ and we have the possibility to reset
whenever we are stuck in a dead-end state). Moreover, 2) guarantees that V ⋆(s0) = V ⋆

J (s0)
and that if we run EVISSP on LJ instead of L, then J is an upper bound on the optimistic value
function output by EVISSP(instead of cmaxD which is vacuous when D = +∞). Note that 2) is
tightly related to the requirement of Fruit et al. (2018b) of prior knowledge on an upper bound
of the span of the optimal bias function, and that 1) is similar to the assumption of a starting
state belonging to the set of communicating states in TUCRL (Fruit et al., 2018a).

With those assumptions at hand, we consider the algorithm UC-SSP-LJ , which differs from
UC-SSP in 3 ways: it iterates EVISSP on the operator LJ , the length of the k-th phase ① is set to
H

(J)
k ≜ 6 J

cmin
log(2

√
k), and it executes action a at the end of each attempt ① (this means that

there is no more phase ②, and the k-th attempt ① exactly corresponds to the k-th environmental
episode).

153

Complements on Chapter 4

Lemma C.4. Under Assumption C.3 and 4.2, with probability at least 1 − δ, the regret of
UC-SSP-LJ can be bounded as

RK(UC-SSP-LJ) = O

(
JS

√
AΩ(J)

K K log
(

Ω(J)
K K

δ

))
,

where Ω(J)
K ≜ 6 J

cmin
log(2

√
K).

Proof. We have

RK(UC-SSP-LJ) =
K∑
k=1

 Ik∑
h=1

c(sk,h, π̃k(sk,h))

− V ⋆
J (s0)


≤

K∑
k=1


H

(J)
k∑

h=1
c(sk,h, π̃k(sk,h))

− V ⋆
J (s0)

+ JFK ,

where the double sum can be bounded by

O

(
JS

√
AΩKK log

(ΩKK

δ

))

by adapting the proof of Lemma 4.6, since π̃k is the greedy policy w.r.t. the optimistic value
function ṽ(J)

k which satisfies both ṽ(J)
k (s0) ≤ V ⋆

J (s0) and ∥ṽ(J)
k ∥∞ ≤ J .

Note that the optimistic hitting time τ P̃k
π̃k

starting from any state in S \ SDE still follows a
discrete PH distribution with |SDE |+ 1 absorbing states (which can be reduced to a discrete
PH distribution with a single absorbing state and with the same distribution of the time to
absorption). Consequently, using the same reasoning as in the proof of Lemma 4.7, we can
prove that under the event E ,

P(τ P̃k
π̃k

(s0) ≥ H(J)
k) ≤ 1√

k
.

Hence we can bound FK exactly as in Lemma 4.8. We obtain the desired regret bound by using
that Ω(J)

K ≜ maxk∈[K]H
(J)
K = 6 J

cmin
log(2

√
K) by choice of H(J)

k .

Interesting future directions in the setting where D = +∞ could be to attempt to remove
the need for the prior knowledge J (i.e., weaken Assumption C.3), or to focus on the related
problem of maximizing the probability of reaching the goal state while keeping cumulative
costs low (see e.g., Kolobov et al., 2012, Section 6).

154

C.2 Relaxation of Assumptions

s0 g

s1 s2

a0,0

a0,1

a1,0
a2,0

Figure C.1 – SSP instance used in the proof of Lemma C.5.

C.2.3 Relaxation of Assumption 4.2 (i.e., if cmin = 0)

The existence of cmin > 0 is leveraged in our analysis to bound ΩK , more specifically in Equa-
tion (C.9), which uses that the property of optimism w.r.t. the value functions (i.e., ṽk,0 ≤
V ⋆ component-wise) yields a “cost-weighted optimism” w.r.t. the expected hitting times,
i.e., E(τ̃k,0) ≤ 2cmax

cmin
E(τπ⋆) component-wise. Yet if zero costs are possible (i.e., cmin = 0),

then this implication fails to hold.
To circumvent this problem a natural idea is to introduce an additive perturbation ηk,0 > 0

to the cost of each transition in the true SSP (note that a small offset of costs to avoid to tricky
case of zero costs is also performed by Bertsekas and Yu, 2013). One may hope that this would
not affect the behavior of the optimal policy, yet whereas in finite- and infinite-horizon this is
indeed the case (i.e., offsetting the costs by a positive constant does not affect the behavior of
the optimal policy), Lemma C.5 shows that this property does not hold in the SSP setting.

Lemma C.5. For any η > 0, there exists an SSP instance whose optimal policy is different from the
one of an identical SSP with all of its transition costs offset by η.

Proof. Let us consider the SSP from Figure C.1, whose costs are c(s0, a0,0) = 4η and c(s0, a0,1) =
c(s1, a1,0) = c(s2, a2,0) = η. The optimal policy executes action a0,0 in state s0. Yet if the costs
are all offset by η, the optimal policy executes action a0,1 in state s0.

Offsetting the costs thus introduces a bias which should be adequately controlled by the
choice of ηk,0. We consider the algorithmUC-SSP-Lη, which differs fromUC-SSP by introducing
an additive perturbation ηk,0 > 0 to the cost of each transition in the optimistic model for each
attempt (k, 0) (i.e., in phase①), i.e., the algorithm iterates EVISSP up to an accuracy of εk,0 ≜ cmax

tk,0

on the operator Lη defined as

LηV (s) ≜ min
a∈A

[
c(s, a) + η +

∑
y∈S

P (y|s, a)V (y)
]
,

where η > 0 depends on the episode k ∈ [K].

155

Complements on Chapter 4

Lemma C.6. If cmin = 0, under Assumption 2.7, by selecting ηk,0 = 1
k1/3 , we get with overwhelm-

ing probability that

RK(UC-SSP-Lη) = Õ
(
cmaxDS

√
cmaxDAK

2/3 + T⋆K
2/3 + cmaxDS

√
T⋆AK

+T⋆S
√
cmaxDAK

1/3 + T⋆S
√
T⋆AK

1/6 + S2AD2
)
,

where we recall that T⋆ ≜ ∥E [τπ⋆]∥∞ bounds the hitting time of the optimal policy π⋆ in the original
SSP (i.e., without any cost offset) starting from any state.

Proof. For notational ease, throughout the proof of Lemma C.6 we adopt the notation ηk ≜ ηk,0,
Hk ≜ Hk,0, π̃k ≜ π̃k,0, εk ≜ εk,0 (i.e., we remove the subscript 0).

UC-SSP-Lη modifies the EVI procedure so that it selects a pair (π̃k, P̃k) that satisfies for any
s ∈ S,

(π̃k, P̃k) ∈ arg min
π̃,P̃

ṽ
(η)
π̃,P̃

(s), (C.15)

where

ṽ
(η)
π̃,P̃

(s) ≜ E
P̃

τπ̃(s)∑
t=1

c(st, π̃(st)) + ηk
∣∣∣ s
 = E

P̃

τπ̃(s)∑
t=1

c(st, π̃(st))
∣∣∣ s
+ ηkEP̃

[
τπ̃(s)

]
,

and we let for ease of notation ṽ(η)
k (s) ≜ ṽ(η)

π̃k,P̃k
(s) and ṽk(s) ≜ E

P̃k

[∑τπ̃k (s)
t=1 c(st, π̃k(st))

∣∣∣ s].
From Equation (C.15) we have that under the event E , ṽ(η)

k (s) ≤ ṽ(η)
π⋆,p(s), or equivalently by

expanding,

ṽ
(η)
k (s) = ṽk(s) + ηkEP̃k

[
τπ̃k(s)

]
≤ Ep

[τπ⋆∑
t=1

c(st, π⋆(st)) + ηk
∣∣∣ s] = V ⋆(s) + ηkE [τπ⋆(s)] .

(C.16)

Plugging into Equation (C.16) that ṽk(s) ≥ 0 and ∥V ⋆∥∞ ≤ cmaxD yields

∥E
P̃k

[
τπ̃k

]
∥∞ ≤

cmaxD

ηk
+ T⋆. (C.17)

Hence the term cmaxD
cmin

in Equation (C.9) (and thus in Lemma 4.7) can be replaced by the upper
bound in Equation (C.17), which implies that under the event E ,

ΩK ≤ 6
(
cmaxD

ηK
+ T⋆

)
log(S

√
K).

156

C.2 Relaxation of Assumptions

Furthermore, using Equation (C.16) the regret can be decomposed as

K∑
k=1

 Ik∑
h=1

c(sk,h, π̃k(sk,h))

− V ⋆(s0)


≤

K∑
k=1

Hk∑
h=1

c(sk,h, π̃k(sk,h))

− ṽ(η)
k (s0)

+ T⋆

K∑
k=1

ηk + cmaxTK,2,

where the double sum can be bounded by (excluding lower-order terms)

O

(
(cmaxD + ηKT⋆)S

√
AΩKK log

(ΩKK

δ

))
,

by adapting the proof of Lemma 4.6, since π̃k is the greedy policy w.r.t. the optimistic value
function ṽ(η)

k which satisfies ∥ṽ(η)
k ∥∞ ≤ cmaxD + ηkT⋆ from Equation (C.16). Moreover, we can

bound TK,2 as in Section 4.4 by using Lemma 4.9.
Hence selecting ηk = 1

k1/3 and plugging in the bound on ΩK yields the desired bound.

C.2.4 Summary

We report in Table C.1 the regret guarantees of UC-SSP (by isolating the dependencies onK and
on D or J), depending on the assumptions made (and the corresponding choices of Bellman
operator for EVISSP). We notice that ifD = +∞ and under Assumption C.3, UC-SSP-LJ satisfies
a regret bound where the infinite termD is replaced with the known upper bound J ≥ V ⋆(s0).
Moreover, UC-SSP-Lη can deal with the existence of zero costs, however the rate worsens
from

√
K (in Theorem 4.5 which requires cmin > 0) to K2/3, due to the bias introduced by

offsetting the costs in the optimistic model. Finally, it is straightforward to combine the two
aforementioned variants and derive UC-SSP-LJ,η which can handle both D = +∞ (under
Assumption C.3) and cmin = 0.

Assumptions Regret bound

cmin > 0 (Assumption 4.2) and D <∞ (Assumption 2.7) Õ(D3/2√K)

cmin > 0 (Assumption 4.2) and V ⋆(s0) ≤ J w/ RESET (Assumption C.3) Õ(J3/2√K)

cmin = 0 and D <∞ (Assumption 2.7) Õ(D3/2K2/3)

cmin = 0 and V ⋆(s0) ≤ J w/ RESET (Assumption C.3) Õ(J3/2K2/3)

Table C.1 – Regret guarantees of UC-SSP depending on the assumptions made.

157

Complements on Chapter 4

0 1,000 2,000 3,000
0

2,000

4,000

6,000

8,000

Episode to goal (k)

C
u

m
u

la
ti

v
e

re
g
re

t
∆

(A
,k

t
)

UCRL

UC-SSP

0 0.5 1 1.5 2

·104

0

2,000

4,000

6,000

Time (t)

C
u
m

u
la

ti
v
e

re
g
re

t
∆

(A
,k

t
)

UCRL

UC-SSP

0 1,000 2,000 3,000
0

10

20

30

Episodes to goal (k)

L
en

g
th

o
f
E
p
is
o
d
e

UCRL

UC-SSP Phase ¬ + ­

UC-SSP Phase ¬

UC-SSP Phase ­

E[τ?(s0)]

0 500 1,000 1,500 2,000 2,500
0

5

10

Episodes to goal (k)

H
k
,·

Hk,0

E[τ?(s0)]

Figure C.2 – Comparison of UC-SSP and UCRL in the case of uniform-cost SSP. The plots are averaged
over 200 repetitions. We report the mean and the maximum and minimum value for top line and figure
bottom right. For the bottom-left figure, we report the standard deviation of the mean at 96% to simplify
the visualization.

C.3 Experiments

S

G

0 1 2 3

0

1

2

In this section, we empirically validate our theoretical findings and perform an ablation
study of the algorithms. We consider 3 scenarios: 1) uniform-cost SSP; 2) SSP with cmin > 0
and 3) SSP with cmin = 0. In all the experiments, we consider the same (3×4) gridworld but we
modify the cost function. The agent canmove using the cardinal actions (Right, Down, Left, Up).
An action fails with probability pf = 0.05. In this case (failure), the agent uniformly follows
one of the other directions. Walls are absorbing, i.e., if the action leads against the wall, the
agent stays in the current position with probability 1. For example, P ((0, 0)|(0, 0), right) = 2pf

3 ,
P ((1, 0)|(0, 0), right) = pf

3 and P ((0, 1)|(0, 0), right) = 1 − pf . If we consider Up, we have
P ((0, 0)|(0, 0), Up) = 1. For the experiments we used the theoretical confidence intervals
without constants, i.e., βk,j(s, a) =

√
SL

N+
k,j

(s,a) with L = log(SAN+
k,j(s, a)/0.1). The remaining

parameters are set as prescribed by the theory. All the results are averaged over 200 runs.
1) The first experiment aims to compare UCRL2 (Jaksch et al., 2010) and UC-SSP in the

case of uniform-cost SSP described in Section 3.2 (see Figure C.2). We set c(s, a) = 1 for
any (s, a) ∈ S × A, and c(g, a) = 0 for all a ∈ A. We evaluate the algorithms at K = 3000
episodes. Figure C.2(top left) shows that the regret of both algorithms is sublinear, as stated

158

C.3 Experiments

S

P

G

0 1 2 3

0

1

2

0 500 1,000 1,500 2,000 2,500 3,000
0

1

2

3

4

·104

Episodes to goal (k)
N

o
rm

a
li

ze
d

re
g
re

t
∆

(A
,k

)

UC-SSP- cmin = 0.001

UC-SSP- cmin = 0.01

UC-SSP- cmin = 0.1

UC-SSP- cmin = 0.5

Figure C.3 – Evaluation of the effect of cmin > 0 on the regret of UC-SSP. Results are averaged over 200
runs. We report mean value and maximum and minimum observed values.

by the theoretical analysis. Interestingly, the regret of UCRL is higher than the one incurred by
UC-SSP. This is possibly due to algorithmic structure of UCRL, which behaves in epochs (or
algorithmic episodes) and each epoch ends when the number of visits to some state-action
pair is doubled. UCRL computes the policy only at the beginning of an epoch. As shown by the
vertical lines in Figure C.2(top left), between each planning step, the agent may reach the goal
multiple times. While this can be computationally efficient, the drawback is that UCRL may
execute sub-optimal policies for long time. On the other hand, we believe that by planning
more often, UC-SSP is able to execute better policies than UCRL. In fact, Figure C.2(bottom left)
shows that the time required by UCRL to reach the goal g is often higher than the one of UC-SSP.
It also shows that the length of phase ② in UC-SSP quickly goes to zero, meaning that policy
executed by UC-SSP is able to quickly reach the goal. Figure C.2(top right) shows that UCRL
requires more time (i.e., steps) than UC-SSP to successfully complete 2000 episodes. This test
sheds light on the relationship between UCRL and UC-SSP and shows that, despite the good
regret guarantees, UCRL may not exploit the specific structure of the SSP problem and poorly
performs compared to UC-SSP. Finally, we also plot the estimate of the hitting time computed
by UC-SSP (see Figure C.2(bottom right)). As expected, it is a “tight” upper-bound to the
expected hitting time of the optimal SSP policy (E[τπ⋆(s0)] = 5.3), except in the initial episodes
where the optimistic model is far away from the true one. In the latter case, the imagined SSP
problem has high probability of reaching g from any other state due to the high uncertainty.

2) The second experiment focuses on non-uniform cost. At each step, the agent incurs a
cost of β > 0 except when in s̃ = (1, 1) = P where the cost is 1. The state s̃ is considered to be a
sand pit and has the effect of slowing down the agent (i.e., higher cost). Formally, c(s, a) = β

for all (s, a) ∈ (S \ {s̃}) × A, c(s̃, a) = 1 for all a ∈ A, and c(g, a) = 0 for all a ∈ A. Clearly,
cmin = β > 0. Note that the optimal SSP policy is the same for all the selected values of β. As
before, we evaluate the algorithms at K = 3000 episodes. In Figure C.3(right) we show the

159

Complements on Chapter 4

S

Z

GZZ

0 1 2 3

0

1

2

Z

0 500 1,000 1,500 2,000 2,500 3,000
0

1

2

3

4

·104

Episodes to goal (k)

N
o
rm

a
li

ze
d

re
g
re

t
∆

(A
,k

)

UC-SSP- cmin = 0.001

UC-SSP- cmin = 0.01

UC-SSP- cmin = 0.1

UC-SSP- cmin = 0.5

0 1,000 2,000 3,000 4,000 5,000 6,000
0

10

20

30

Episodes to goal (k)

L
en

g
th

o
f
ep

is
o
d
e

UC-SSP Phase ¬ + ­

UC-SSP Phase ¬

UC-SSP Phase ­

E[τ?(s0)]

0 1,000 2,000 3,000 4,000 5,000 6,000
0

10

20

30

Episodes to goal (k)

H
k
,·

Hk,0

Hk,j≥1

E[τ?(s0)]

Figure C.4 – Evaluation of UC-SSP for cmin = 0. See Figure C.2 for details.

impact of cmin on the regret of UC-SSP. First of all, we show how cmin affects the true solution
of the SSP problem. To do so, we run VI on the true model with ε = 1.e− 10 and obtain

V ⋆(s0|β = 0.5) = 2.66, V ⋆(s0|β = 0.1) = 0.55,

V ⋆(s0|β = 0.01) = 0.07, V ⋆(s0|β = 0.001) = 0.02.

To remove the impact of the different magnitude of the cost, we consider the normalized regret
∆(A,K) ≜ ∆(A,K)

V ⋆(s0) . Figure C.3(right) shows that the complexity of the learning problem scales
inversely with cmin.

3)Thefinal experiment dealswith the case cmin = 0. We consider the states (0, 0), (0, 1), (1, 1)
and (1, 0) to have zero cost, see Figure C.4(left). All the other states have cost defined as in
experiment 2) with β = 0.4. Note that there exists loops with zero costs, which means that
there exist improper policies with finite V -values. As mentioned in App.C.2.3, in this case we
compete against the optimal proper policy (see Figure C.4(top left)). To compute the optimal
proper policy and its value V , we use VI with perturbation of 1e− 10 (Bertsekas and Yu, 2013).
We evaluate the algorithms atK = 3000 episodes. We notice that UC-SSP has sublinear regret
as expected. The perturbation of the costs has a large impact on the initial phase of UC-SSP
when both uncertainty and perturbation are high. In this case, UC-SSP highly overestimates
the hitting time of the optimal policy, leading to the execution of suboptimal policies for a long
time (due to Phase ①). Once the perturbation and/or the uncertainty decreases, we notice that
the estimated hitting time drops rapidly and approaches the true value. It is also interesting to

160

C.3 Experiments

0 500 1,000 1,500 2,000 2,500 3,000
600

800

1,000

1,200

1,400

1,600

Episode to goal (k)

C
u

m
u

la
ti

v
e

re
g
re

t
∆

(A
,k

t
)

UCRL-SSP-B

UCRL-SSP-B + pivot

UCRL-B

UC-SSP-B

Figure C.5 – Evaluation of the algorithms with Bernstein inequalities and uniform cost. See Figure C.2
for details. We average the results over 200 runs and report the standard deviation of the mean at 96%.

notice that the estimated hitting time of phase ② is never too high. This is due to the fact that
phase ② aims to find the policy reaching the goal state in the smallest time.

C.3.1 Bernstein Inequalities

In this section, we provide an evaluation of the proposed algorithm with Bernstein inequalities
and perform empirical comparisonwith later work (Rosenberg et al., 2020). Similar to e.g., Azar
et al. (2017) and Fruit et al. (2020), we consider the following concentration inequality of the
transition probabilities: ∀(s, a, s′) ∈ S ×A× S ′,

∣∣∣P̃ (s′|s, a)− P̂k,j(s′|s, a)
∣∣∣ ≤ βk,j(s, a, s′) ≈

√√√√σ2
p(s, a, s′)L
N+
k,j(s, a)

+ L

N+
k,j(s, a)

(C.18)

where L = log(SAN+
k,j(s, a)/0.1) and σ2

p(s, a, s′) = P̂k,j(s′|s, a)(1 − P̂k,j(s′|s, a)). Optimistic
SSP planning can be performed using extended value iteration (as in Alg. 4.2). We thus use the
optimistic Bellman operator defined in Equation (4.1) with Bk,j(s, a) ≜ {P̃ ∈ C | P̃ (· | g, a) =
1g, |P̃ (s′ | s, a)− P̂k,j(s′ | s, a)| ≤ βk,j(s, a, s′)}.

We comparewith UCRL-SSP (Rosenberg et al., 2020). UCRL-SSP is a variant of UCRL2B (Fruit
et al., 2020) where the average reward planning is replaced with the SSP planning. When
cmin = 0, UCRL-SSP leverages the same perturbation idea used by UC-SSP. The cost is then
defined as c(s, a) = max{c(s, a), ε}with ε = S2A

K .
The main goal of this section is to empirically show that, despite the K2/3 regret bound

when cmin = 0, UC-SSP is competitive with UCRL-SSP whose regret bound scales as
√
K. We

also show the role of the pivot horizon used by UC-SSP.

161

Complements on Chapter 4

0 1,000 2,000 3,000 4,000 5,000 6,000

100

200

300

400

Episode to goal (k)

C
u
m

u
la

ti
v
e

re
g
re

t
∆

(A
,k

t
)

UCRL-SSP-B

UCRL-SSP-B + pivot

UC-SSP-B

0 1,000 2,000 3,000 4,000 5,000 6,000
0

5

10

15

Episodes to goal (k)

L
en

g
th

o
f
E
p
is
o
d
e

UC-SSP-B - Phase ¬ + ­

UC-SSP-B - Phase ¬

UC-SSP-B - Phase ­

E[τ?(s0)]

Figure C.6 – Evaluation of the algorithms with Bernstein inequalities and cmin = 0. See Figure C.4 for
details. Right figure shows the average length of Phase ① and ② for UC-SSP with Bernstein inequalities.

As done in the previous section, we start considering the uniform cost case. Figure C.5
shows that UC-SSP outperforms UCRL-SSP. From Figure C.5 we can see that the lower regret
of UC-SSP comes from the use of the pivot horizon. Indeed, when we integrate the pivot
horizon idea in UCRL-SSP2 the algorithms behave similarly. In Figure C.5 we can see that
UCRL-SSP behaves as UCRL2B. This is due to the fact that SSP planning is equivalent to average
reward planning in this setting (i.e., uniform cost). Furthermore, it shows that, in this domain,
UCRL-SSP is not able to leverage the structure of the SSP problem. In contrast, UC-SSP adapts
to the SSP problem thanks to the pivot horizon.

The second experiment focuses on the case when cmin = 0. As shown in Figure C.6(left),
UC-SSP has a low regret even in this case. UCRL-SSP achieves the same performance of UC-SSP
only when using the pivot horizon as a stopping condition of the algorithmic episode. This
shows again that the stopping condition based on pivot horizon allows the algorithms to better
adapt to the the SSP structure of this problem. Finally, Figure C.6(right) shows that phase ②

happens only at the early stages of the learning process. As a consequence, UC-SSP does not
suffer additional regret due to phase ② in this domain.

2UCRL-SSP uses the same condition of UCRL2B to terminate an algorithmic episode, i.e., when the number
of visits to a state-action pair is doubled, the algorithmic episode ends. When using the pivot horizon, we simply
limit the number of steps in the algorithmic episode to be at most the pivot horizon (as done for UC-SSP). We
also integrated the condition of planning every time the goal state is reached but we didn’t observe any significant
change in this domain.

162

Appendix D

Complements on Chapter 5

D.1 An Alternative Assumption on the SSP Problem: No Almost-
Sure Zero-Cost Cycles

Here we complement Section 5.4 by introducing an alternative assumption on the SSP problem
(which is weaker than Assumption 5.2) and we analyze the regret bound achieved by EB-SSP
(under the set-up of Section 5.4). We draw inspiration from the common assumption in the
deterministic shortest path setting that the transition graph does not possess any cycle of
zero costs (Bertsekas, 1991). In the following we introduce a “stochastic” counterpart of this
assumption.

Assumption D.1. There exist unknown constants c† > 0 and q† > 0 such that:

P
(⋂
s′∈S

⋂
ω∈Ωs′

{ |ω|∑
i=1

ci ≥ c†
})
≥ q†,

where for every state s′ ∈ S we denote by Ωs′ the set of all possible trajectories in the SSP-MDP that
start from state s′ and end in state s′, and we denote by c1, . . . , c|ω| the sequence of costs incurred
during a trajectory ω.

Assumption D.1 is strictly weaker than the assumption of positive costs (Assumption 5.2)
and it guarantees that the conditions of Proposition 2.11 hold. Intuitively, it implies that the
agent has a non-zero probability of gradually accumulating some positive cost as its trajectory
length increases. In particular, under Assumption D.1, any trajectory of length S + 1 that does
not reach the goal must accumulate costs of at least c† with probability at least q†.

163

Complements on Chapter 5

When z ≥ ln(T/δ)/q† ≥ ln(T/δ)
− ln(1−q†) , it is guaranteed that (1 − q†)z ≤ δ/T . Repeatedly

applying this argument means that with probability at least 1 − δ/T , for z ≥ ln(T/δ)/q†

it holds that either ∑z(S+1)
i=1 ci ≥ c†, or the agent has reached the goal in the trajectory in-

dexed by the time steps [1, z(S + 1)]. Denote z0 ≜ ⌈ln(T/δ)/q†⌉. For each episode, di-
vide time steps in it into chunks with length z0(S + 1), with the exception that the last
chunk in it may have length less than or equal to z0(S + 1) (just like taking modulo). So
in each episode, the agent accumulates cost of at least c† in each chunk except for the last
one, and in the last chunk the agent reaches g. If we define Z as the total number of chunks
with cost at least c† in all episodes, then Z ≥ T−Kz0(S+1)

z0(S+1) . Thus from C ≥ Zc† we have
T ≤ O

(
S log(T/δ)

q†

(
C
c† +K

))
≤ O(S(T/δ)1/4CK/(q†c†)), with C the cumulative cost. Using the

loose bound C ≤ O(B⋆S2AK ·
√
B⋆TSA/δ) and isolating T (with the same reasoning as in the

case of positive costs in Section 5.4) gives that T ≤ O(B6
⋆S

14A6K8/((q†c†)4δ3)) and thus that
log T = O(log(KB⋆SA/(c†q†δ))). Plugging this in Theorem 5.1 yields the following.

Corollary D.2. Under Assumption D.1, running EB-SSP (Algorithm 5.1) with B = B⋆ ≥ 1 and
η = 0 gives the following regret bound with probability at least 1− δ

RK = O

(
B⋆
√
SAK log

(
KB⋆SA

c†q†δ

)
+B⋆S

2A log2
(
KB⋆SA

c†q†δ

))
.

The regret bound of Corollary D.2 is (nearly) minimax and horizon-free (and it can be
made parameter-free by executing Algorithm D.1 instead of Algorithm 5.1). The bound de-
pends logarithmically on the inverse of the constants c†, q†. We observe that i) it no longer
becomes relevant if one constant is exponentially small, ii) spelling out c†, q† satisfying As-
sumption D.1 is challenging as they subtly depend on both the cost function and the transition
dynamics, although iii) the agent does not need to know nor estimate c† and q† to achieve the
regret bound of Corollary D.2.

D.2 Full Statement of Corollary 5.6

Here we make explicit the constant terms υ, λ, ζ in the regret bound of Corollary 5.6.
Recall that Assumption 5.5 considers that the agent has prior knowledge of a quantity T ⋆

that verifies T⋆/υ ≤ T ⋆ ≤ λT ζ⋆ for some unknown constants υ, λ, ζ ≥ 1 (note that υ = λ = ζ = 1
when T⋆ is known). Under Assumption 5.5, running EB-SSP (Algorithm 5.1) with B = B⋆ and

164

D.3 Proof of Theorem 5.1

η = (T ⋆K)−1 gives the following regret bound with probability at least 1− δ

RK = O

((
B⋆ + ν

K

)√
SAKζ log

(
λKT⋆SA

δ

)
+
(
B⋆ + ν

K

)
S2Aζ2 log2

(
λKT⋆SA

δ

)
+ ν

)
.

D.3 Proof of Theorem 5.1

In this section, we present the proof of Theorem 5.1 (the missing proofs of the intermediate
results within the section are deferred to Section D.4). We recall that throughout Section D.3
we analyze Algorithm 5.1 without cost perturbation (i.e., η = 0) and we assume that 1) the
estimate verifies B ≥ max{B⋆, 1} and 2) the conditions of Proposition 2.11 hold.

D.3.1 High-Probability Event

Definition D.3 (High-probability event). We define the event E ≜ E1 ∩ E2 ∩ E3, where

E1 ≜

∀(s, a) ∈ S × A, ∀n(s, a) ≥ 1 : |(P̂s,a − Ps,a)V ⋆| ≤ 2

√
V(P̂s,a, V ⋆)ιs,a

n(s, a) + 14B⋆ιs,a
3n(s, a)

 , (D.1)

E2 ≜

{
∀(s, a) ∈ S × A, ∀n(s, a) ≥ 1 : |ĉ(s, a) − c(s, a)| ≤ 2

√
2ĉ(s, a)ιs,a
n(s, a) + 28ιs,a

3n(s, a)

}
, (D.2)

E3 ≜

{
∀(s, a, s′) ∈ S × A × S′, ∀n(s, a) ≥ 1 : |Ps,a,s′ − P̂s,a,s′ | ≤

√
2Ps,a,s′ιs,a
n(s, a) + ιs,a

n(s, a)

}
, (D.3)

where ιs,a ≜ ln
(

12SAS′[n+(s,a)]2
δ

)
.

Lemma D.4. It holds that P(E) ≥ 1− δ.

Proof. The events E1 and E2 holdwith probability at least 1−2δ/3 by the concentration inequality
of Lemma D.20 and by union bound over all (s, a) ∈ S ×A. The event E3 holds with probability
at least 1− δ/3 by Bennett’s inequality (Lemma D.19, anytime version), by Lemma D.26 and
by union bound over all (s, a, s′) ∈ S ×A× S ′.

D.3.2 Analysis of a VISGO Procedure

A VISGO procedure in Algorithm 5.1 computes iterates of the form V (i+1) = L̃V (i), where L̃ is
an operator that we define as follows. For any U ∈ RS′ such that U(g) = 0, we set L̃U(g) ≜ 0

165

Complements on Chapter 5

and for s ∈ S we set L̃U(s) ≜ mina∈A L̃U(s, a), where

L̃U(s, a) ≜ max
{
ĉ(s, a) + P̃s,aU −max

{
c1

√√√√V(P̃s,a, U)ιs,a
n+(s, a) , c2

Bιs,a
n+(s, a)

}

− c3

√
ĉ(s, a)ιs,a
n+(s, a) − c4

B
√
S′ιs,a

n+(s, a) , 0
}
. (D.4)

Starting from an optimistic initialization V (0) = 0 at each state, we show the following two
properties:
• Optimism: with high probability, Q(i)(s, a) ≤ Q⋆(s, a),∀i ≥ 0;

• Finite-time near-convergence: Given any error εVI > 0, the procedure stops at a finite iteration
j such that ∥V (j) − V (j−1)∥∞ ≤ εVI, which implies that the vector V (j) verifies some fixed
point equation for L̃ up to an error scaling with εVI.

Properties of the slightly skewed transitions P̃

Lemma D.5 shows that the bias introduced by replacing P̂s,a with P̃s,a decays inversely with
n(s, a), the number of visits to state-action pair (s, a).

Lemma D.5. For any non-negative vector U ∈ RS′ such that U(g) = 0, for any (s, a) ∈ S ×A,
it holds that

P̃s,aU ≤ P̂s,aU ≤ P̃s,aU + ∥U∥∞
n(s, a) + 1 ,

∣∣V(P̃s,a, U)− V(P̂s,a, U)
∣∣ ≤ 2∥U∥2∞S′

n(s, a) + 1 .

Denote by ν the probability of reaching the goal from any state-action pair in P̃ , i.e.,

νs,a ≜ P̃s,a,g, ν ≜ min
s,a

νs,a. (D.5)

By construction of P̃ , the quantity ν is strictly positive. This immediately implies the following
result.

Lemma D.6. In the SSP-MDP associated to P̃ with any bounded cost function, all policies are
proper.

166

D.3 Proof of Theorem 5.1

Remark D.7 (Mapping to a discounted problem). In an SSP problemwith only proper policies,
the (optimal) Bellman operator is usually contractive only w.r.t. a weighted-sup norm (Bert-
sekas, 1995). Here, the construction of P̃ entails that any SSP defined on it with fixed bounded
costs has a (optimal) Bellman operator that is a sup-norm contraction. In fact, the SSP problem
on P̃ can be cast as a discounted problem with a (state-action dependent) discount factor
γs,a ≜ 1− νs,a < 1 (we recall that discounted MDPs are a subclass of SSP-MDPs). Intuitively,
at insufficiently visited state-action pairs, the agent behaves optimistically which increases the
chance of reaching the goal and terminating the trajectory. Equivalently, we can interpret the
agent as being uncertain about its future predictions and it is thus encouraged to act more
myopically, which is connected to lowering the discount factor in the discounted RL setting.

Important auxiliary function f and its properties

Lemma D.8 examines an auxiliary function f that plays a key role in the analysis. Indeed, we
see that an instantiation of f surfaces in the definition of the operator L̃ in Equation (D.4).
While the first property (monotonicity) is similar to the one required in Zhang et al. (2021d),
the third property (contraction) is SSP-specific and is crucial to guarantee the (finite-time)
near-convergence of a VISGO procedure.

LemmaD.8. Let Υ ≜ {v ∈ RS′ : v ≥ 0, v(g) = 0, ∥v∥∞ ≤ B}. Let f : ∆S′×Υ×R×R×R→
R with f(p, v, n,B, ι) ≜ pv −max

{
c1

√
V(p,v)ι
n , c2

Bι
n

}
, with c1 = 6 and c2 = 36 (here taking

any pair of constants such that c2
1 ≤ c2 works). Then f satisfies, for all p ∈ ∆S′ , v ∈ Υ and

n, ι > 0,
1. f(p, v, n,B, ι) is non-decreasing in v(s), i.e.,

∀(v, v′) ∈ Υ2, v ≤ v′ =⇒ f(p, v, n,B, ι) ≤ f(p, v′, n,B, ι);

2. f(p, v, n,B, ι) ≤ pv − c1
2

√
V(p,v)ι
n − c2

2
Bι
n ≤ pv − 2

√
V(p,v)ι
n − 14Bιn ;

3. If p(g) > 0, then f(p, v, n,B, ι) is ρp-contractive in v(s), with ρp ≜ 1− p(g) < 1 , i.e.,

∀(v, v′) ∈ Υ2, |f(p, v, n,B, ι)− f(p, v′, n,B, ι)| ≤ ρp∥v − v′∥∞.

Optimism of VISGO

We now show that with the bonus defined in Equation (5.1), theQ-function is always optimistic
with high probability.

167

Complements on Chapter 5

Lemma D.9. Conditioned on the event E , for any output Q of the VISGO procedure (line 22 of
Algorithm 5.1) and for any state-action pair (s, a) ∈ S ×A, it holds that

Q(s, a) ≤ Q⋆(s, a).

Proof idea. We prove the result by induction on the inner iterations i of VISGO, i.e., Q(i)(s, a) ≤
Q⋆(s, a). We use the update of the Q-value (line 5.2), Lemma D.5, the definition of event E
combined with the fact that B ≥ B⋆, as well as the first two properties of Lemma D.8 applied
to f(P̃s,a, V (i), n+(s, a), B, ιs,a).

Finite-time near-convergence of VISGO

Warm-up: convergence with no bonuses. For the sake of discussion, let us first examine an
idealized case where n(s, a)→ +∞ for all (s, a), which means b(s, a) = 0 for all (s, a). In that
case, the iterates verifyV (i+1) = L̃⋆V (i), where L̃⋆U(s) ≜ mina

{
c(s, a)+P̃s,aU

}, ∀U ∈ RS , s ∈ S .
Thus L̃⋆ is the optimal Bellman operator of the SSP instance M̃ with transitions P̃ and cost
function c. From Lemma D.6, all policies are proper in M̃ . As a result, the operator L̃⋆ is
contractive (cf. Remark D.7) and convergent (Bertsekas, 1995).

Convergence with bonuses. In VISGO, however, wemust account for the bonuses b(s, a). Setting
aside the truncation of each iterate V (i) (i.e., the lower bounding by 0), we notice that a update
for V (i+1) can be interpreted as the (truncated) Bellman operator of an SSP problem with cost
function c(s, a)− b(i+1)(s, a). However, b(i+1)(s, a) depends on V (i), the previous iterate. This
dependence means that the cost function is no longer fixed and the reasoning from the previous
paragraph no longer holds. As a result, we directly analyze the properties of the operator L̃
that defines the sequence of iterates V (i+1) = L̃V (i) in VISGO, see Equation (D.4)).

Lemma D.10. The sequence (V (i))i≥0 is non-decreasing. Combining this with the fact that it is
upper bounded by V ⋆ from Lemma D.9, the sequence must converge.

While Lemma D.10 states that L̃ ultimately converges starting from a vector of zeros, the
following result guarantees that it can approximate in finite time its fixed point within any
(arbitrarily small) positive component-wise accuracy.

168

D.3 Proof of Theorem 5.1

Lemma D.11. Denote by ν > 0 the probability of reaching the goal from any state-action pair in P̃ ,
i.e., ν ≜ mins,a P̃s,a,g. Then L̃ is a ρ-contractive operator with modulus ρ ≜ 1− ν < 1.

Proof idea. For any state-action pair (s, a) we can apply the third property (contraction) of
Lemma D.8 to the function f(P̃s,a, V (i), n+(s, a), B, ιs,a). Taking the maximum over (s, a) pairs
yields the contraction property of L̃.

Remark D.12. Lemma D.11 guarantees that ∥V (i+1) − V (i)∥∞ ≤ εVI for i ≥ log(max{B⋆,1}/εVI)
1−ρ ,

which yields the desired property of finite-time near-convergence of VISGO (i.e., it always
stops at a finite iteration i). Moreover, by definition of εVI we have log(1/εVI) = O(SA log(T)),
the (possibly loose) lower bound 1− ρ = ν ≥ 1

T+1 , and there are at most O(SA log T) VISGO
procedures in total, thus we see that EB-SSP has a polynomially bounded computational
complexity.

D.3.3 Interval Decomposition and Notation

Interval decomposition. In the analysis we split the time steps into intervals. The first interval
begins at the first time step, and an interval ends once either (1) the goal state g is reached; (2)
or the trigger condition holds (i.e., the visit to a state-action pair is doubled). We see that an
update is triggered (line 13 of Algorithm 5.1) whenever condition (2) is met.

Notation. We index intervals bym = 1, 2, . . . and the length of intervalm is denoted by Hm

(it is bounded almost surely). The trajectory visited in interval m is denoted by Um =
(sm1 , am1 , . . . , smHm , amHm , smHm+1), where amh is the action taken in state smh . The concatenation
of the trajectories of the intervals up to and including interval m is denoted by U

m, i.e.,
U
m =

⋃m
m′=1 U

m′ . Moreover, cmh denotes the cost in the h-th step of interval m. We use
the notation Qm(s, a), V m(s), P̂ms,a, P̃ms,a and εmVI to denote the values (computed in lines 14-22)
of Q(s, a), V (s), P̂s,a, P̃s,a and εVI in the beginning of interval m. Let nm(s, a) and ĉm(s, a)
denote the values of max{n(s, a), 1} and ĉ(s, a) used for computing Qm(s, a). Finally, we set

bm(s, a) ≜ max

c1

√√√√V(P̃s,a, V m)ιs,a
nm(s, a) , c2

Bιs,a
nm(s, a)

+ c3

√
ĉm(s, a)ιs,a
nm(s, a) + c4

B
√
S′ιs,a

nm(s, a) .

169

Complements on Chapter 5

D.3.4 Bounding the Bellman Error

Lemma D.13. Conditioned on the event E , for any intervalm and state-action pair (s, a) ∈ S ×A,

|c(s, a) + Ps,aV
m −Qm(s, a)| ≤ min

{
βm(s, a), B⋆ + 1

}
,

where we define

βm(s, a) ≜ 4bm(s, a) +
√

2V(Ps,a, V ⋆)ιs,a
nm(s, a) +

√
2S′V(Ps,a, V ⋆ − V m)ιs,a

nm(s, a)

+ 3B⋆S′ιs,a
nm(s, a) +

(
1 + c1

√
ιs,a/2

)
εmVI .

Proof idea. We use that V m approximates the fixed point of L̃ up to an error scaling with εVI.
We end up decomposing and bounding the difference Ps,aV m − P̃s,aV m ≤ (P̂s,a − P̃s,a)V m +
(Ps,a − P̂s,a)V ⋆ + (Ps,a − P̂s,a)(V m − V ⋆), where the first term is bounded by Lemma D.5 and
D.9, while the second and third terms are bounded using the definition of the event E .

D.3.5 Regret Decomposition

We assume that the event E defined inDef. D.3 holds. In particular it guarantees that LemmaD.9
and Lemma D.13 hold for all intervalsm simultaneously.

We denote byM the total number of intervals in which the firstK episodes elapse. For any
M ′ ≤ M , we denote byM0(M ′) the set of intervals which are among the firstM ′ intervals,
and constitute the first intervals in each episode (i.e., either it is the first interval or its previous
interval ended in the goal state). We also denote byKM ′ ≜ |M0(M ′)|, TM ′ ≜

∑M ′
m=1H

m and
CM ′ ≜

∑M ′
m=1

∑Hm

h=1 c
m
h . Note that K and T are equivalent to KM and TM , respectively, and

CM ′ is the cumulative cost in the firstM ′ intervals.
Instead of bounding the regretRK from Equation (3.1), we bound R̃M ′ ≜ CM ′−KM ′V ⋆(s0)

for any fixed choice ofM ′ ≤ M , as done in Rosenberg et al. (2020). We see that R̃M = RK ,
the true regret withinK episodes. To derive Theorem 5.1, we will show thatM is finite and
instantiateM ′ = M . In the following we do the analysis for arbitraryM ′ ≤ M as it will be
useful for the parameter-free case studied in Section D.7 (i.e., when no estimate B ≥ B⋆ is
available).

170

D.3 Proof of Theorem 5.1

We decompose R̃M ′ as follows

R̃M ′
(i)
≤

M ′∑
m=1

Hm∑
h=1

cmh −
∑

m∈M0(M ′)
V m(s0),

(ii)
≤

M ′∑
m=1

Hm∑
h=1

cmh +
M ′∑
m=1

(
Hm∑
h=1

V m(smh+1)− V m(smh)
)

+ 2SA log2(TM ′) max
1≤m≤M ′

∥V m∥∞

(iii)
≤

M ′∑
m=1

Hm∑
h=1

[
cmh + Psm

h
,am
h
V m − V m(smh)

]
+

M ′∑
m=1

Hm∑
h=1

[
V m(smh+1)− Psm

h
,am
h
V m

]
+ 2B⋆SA log2(TM ′)

(iv)
≤

M ′∑
m=1

Hm∑
h=1

[
V m(smh+1)− Psm

h
,am
h
V m

]
︸ ︷︷ ︸

≜X1(M ′)

+
M ′∑
m=1

Hm∑
h=1

βm(smh , amh)︸ ︷︷ ︸
≜X2(M ′)

+
M ′∑
m=1

Hm∑
h=1

cmh − c(smh , amh)︸ ︷︷ ︸
≜X3(M ′)

+ 2B⋆SA log2(TM ′),

where (i) uses the optimism property of Lemma D.9, (ii) stems from the construction of
intervals (Lemma D.15), (iii) uses that max1≤m≤M ′∥V m∥∞ ≤ B⋆ (from Lemma D.9), and (iv)
comes from Lemma D.13. We now focus on bounding the terms X1(M ′), X2(M ′) and X3(M ′).
To this end, we introduce the following useful quantities

X4(M ′) ≜
M ′∑
m=1

Hm∑
h=1

V(Psm
h
,am
h
, V m), X5(M ′) ≜

M ′∑
m=1

Hm∑
h=1

V(Psm
h
,am
h
, V ⋆ − V m).

The X1(M ′) term

X1(M ′) could be viewed as a martingale, so by taking c = max{B⋆, 1} in the technical
Lemma D.23, we have with probability at least 1− δ,

|X1(M ′)| ≤ 2
√

2X4(M ′)(log2((max{B⋆, 1})2TM ′) + ln(2/δ))

+ 5(max{B⋆, 1})(log2((max{B⋆, 1})2TM ′) + ln(2/δ)).

To bound X1(M ′), we only need to bound X4(M ′).

The X3(M ′) term

Taking c = 1 in the technical Lemma D.23, we have

P

|X3(M ′)| ≥ 2

√√√√2
M ′∑
m=1

Hm∑
h=1

Var(smh , amh)(log2(TM ′) + ln(2/δ)) + 5(log2(TM ′) + ln(2/δ))

 ≤ δ,
171

Complements on Chapter 5

whereVar(st, at) ≜ E[(ct−c(st, at))2] (ct denotes the cost incurred at time step t). By LemmaD.26,

M ′∑
m=1

Hm∑
h=1

Var(smh , amh) ≤
M ′∑
m=1

Hm∑
h=1

c(smh , amh)

=
M ′∑
m=1

Hm∑
h=1

(c(smh , amh)− cmh) + CM ′

≤ |X3(M ′)|+ CM ′ .

Therefore we have

P
[
|X3(M ′)| ≥ 2

√
2(|X3(M ′)|+ CM ′)(log2(TM ′) + ln(2/δ)) + 5(log2(TM ′) + ln(2/δ))

]
≤ δ,

which implies that |X3(M ′)| ≤ O
(
log2(TM ′) + ln(2/δ) +

√
CM ′(log2(TM ′) + ln(2/δ))

)
with

probability at least 1− δ.

The X2(M ′) term

The full proof of the bound on X2(M ′) is deferred to Section D.4.3. Here we provide a brief
sketch. First, we bound βm and apply a pigeonhole principle to obtain

X2(M ′) ≤ O
(√

SA log2(TM ′)ιM ′X4(M ′) +
√
S2A log2(TM ′)ιM ′X5(M ′)

+

√√√√SA log2(TM ′)ιM ′

M ′∑
m=1

Hm∑
h=1

ĉm(smh , amh)

+B⋆S
2A log2(TM ′) +BS3/2A log2(TM ′)ιM ′ +

M ′∑
m=1

Hm∑
h=1

(1 + c1

√
ιM ′/2)εmVI

)

with the logarithmic term ιM ′ ≜ ln
(

12SAS′T 2
M′

δ

)
which is the upper-bound of ιs,a when consid-

ering only time steps in the firstM ′ intervals. The regret contributions of the estimated costs
and the VISGO precision errors are respectively

M ′∑
m=1

Hm∑
h=1

ĉm(smh , amh) ≤ 2SA(log2(TM ′) + 1) + 2CM ′ ,

M ′∑
m=1

Hm∑
h=1

(1 + c1

√
ιM ′/2)εmVI = O(SA log2(TM ′)√ιM ′).

To bound X4(M ′) and X5(M ′), we perform a recursion-based analysis on the value functions
normalized by 1/B⋆. We split the analysis on the intervals, and not on the episodes as done in

172

D.3 Proof of Theorem 5.1

Zhang et al. (2021d). In LemmaD.17 and D.18 we establish that with overwhelming probability,

X4(M ′) ≤ O
(
B⋆(CM ′ +X2(M ′)) + (B2

⋆SA+B⋆)(log2(TM ′) + ln(2/δ))
)
,

X5(M ′) ≤ O
(
B2
⋆SA(log2(TM ′) + ln(2/δ)) +B⋆X2(M ′)

)
.

As a result, we obtain

X2(M ′) ≤ O
(√

SAX4(M ′)ιM ′ +
√
S2AX5(M ′)ιM ′

+ SAι
3/2
M ′ +

√
SACM ′ιM ′ +B⋆S

2Aι2M ′ +BS3/2Aι2M ′

)
,

X4(M ′) ≤ O
(
B⋆(CM ′ +X2(M ′)) + (B2

⋆SA+B⋆)ιM ′

)
,

X5(M ′) ≤ O
(
B2
⋆SAιM ′ +B⋆X2(M ′)

)
.

with the logarithmic term ιM ′ ≜ ln
(

12SAS′T 2
M′

δ

)
+ log2((max{B⋆, 1})2TM ′) + ln

(
2
δ

)
. Isolating

the X2(M ′) term finally yields

X2(M ′) ≤ O((
√
B⋆ + 1)

√
SACM ′ιM ′ +BS2Aι2M ′).

Putting Everything Together

Ultimately, with probability at least 1− 6δ we have

R̃M ′ ≤ X1(M ′) +X2(M ′) +X3(M ′) + 2B⋆SA log2(TM ′)

≤ O((
√
B⋆ + 1)

√
SACM ′ιM ′ +BS2Aι2M ′).

Noting that R̃M ′ = CM ′ −KM ′V ⋆(s0), we have

CM ′ ≤ KM ′V ⋆(s0) +O((
√
B⋆ + 1)

√
SACM ′ιM ′ +BS2Aι2M ′),

CM ′
(i)
≤
(
O
(
(
√
B⋆ + 1)

√
SAιM ′

)
+
√
KM ′V ⋆(s0) +O(BS2Aι2M ′)

)2

≤ KM ′V ⋆(s0) +O

(
(
√
B⋆ + 1)

√
V ⋆(s0)SAKM ′ιM ′ +BS2Aι2M ′

)
≤ KM ′V ⋆(s0) +O

(
(B⋆ +

√
B⋆)

√
SAKM ′ιM ′ +BS2Aι2M ′

)
,

where (i) uses Lemma D.28, V ⋆(s0) ≤ B⋆ and
√
B⋆ + 1 ≤ O(

√
B⋆ + 1) ≤ O(

√
B). Hence

R̃M ′ ≤ O
(√

(B2
⋆ +B⋆)SAKM ′ιM ′ +BS2Aι2M ′

)
.

173

Complements on Chapter 5

By scaling δ ← δ/6 we have the following important bound

R̃M ′ ≤ O
(√

(B2
⋆ +B⋆)SAKM ′ log

(max{B⋆, 1}SATM ′

δ

)

+BS2A log2
(max{B⋆, 1}SATM ′

δ

))
. (D.6)

The proof of Theorem 5.1 is concluded by takingM ′ = M , whereM denotes the number of
intervals in which the firstK episodes elapse.

D.4 Missing Proofs

D.4.1 Proofs of Lemmas D.5, D.8, D.9, D.10, D.11, D.13

Restatement of Lemma D.5. For any non-negative vector U ∈ RS′ such that U(g) = 0, for any
(s, a) ∈ S ×A, it holds that

P̃s,aU ≤ P̂s,aU ≤ P̃s,aU + ∥U∥∞
n(s, a) + 1 ,

∣∣V(P̃s,a, U)− V(P̂s,a, U)
∣∣ ≤ 2∥U∥2∞S′

n(s, a) + 1 .

Proof. The proof uses the definition of P̃ in Equation (5.4) and simple algebraic manipulation.
For any s′ ̸= g, we have P̃s,a,s′ ≤ P̂s,a,s′ and U(s′) ≥ 0, as well as U(g) = 0, so P̃s,aU ≤ P̂s,aU ,
and

(P̂s,a − P̃s,a)U =
(
1− n(s, a)

n(s, a) + 1
)
P̂s,aU ≤

∥U∥∞
n(s, a) + 1 .

In addition, for any s′ ∈ S ′,

|P̃s,a,s′ − P̂s,a,s′ | ≤
∣∣∣ n(s, a)
n(s, a) + 1 − 1

∣∣∣P̂s,a,s′ + I[s′ = g]
n(s, a) + 1 ≤

2
n(s, a) + 1 .

Therefore we have that

V(P̂s,a, U) =
∑
s′∈S′

P̂s,a,s′(U(s′)− P̂s,aU)2 ≤
∑
s′∈S′

P̂s,a,s′(U(s′)− P̃s,aU)2

≤
∑
s′∈S′

(
P̃s,a,s′ + 2

n(s, a) + 1

)
(U(s′)− P̃s,aU)2 ≤ V(P̃s,a, U) + 2∥U∥2∞S′

n(s, a) + 1 ,

174

D.4 Missing Proofs

where the first inequality is by the fact that z⋆ =
∑
i pixi minimizes the quantity∑i pi(xi − z)2.

Conversely,

V(P̃s,a, U) =
∑
s′∈S′

P̃s,a,s′(U(s′)− P̃s,aU)2 ≤
∑
s′∈S′

P̃s,a,s′(U(s′)− P̂s,aU)2

≤
∑
s′∈S′

(
P̂s,a,s′ + 2

n(s, a) + 1

)
(U(s′)− P̂s,aU)2 ≤ V(P̂s,a, U) + 2∥U∥2∞S′

n(s, a) + 1 .

Restatement of Lemma D.8. Let Υ ≜ {v ∈ RS′ : v ≥ 0, v(g) = 0, ∥v∥∞ ≤ B}. Let f :
∆S′ ×Υ×R×R×R→ Rwith f(p, v, n,B, ι) ≜ pv−max

{
c1

√
V(p,v)ι
n , c2

Bι
n

}
, with c1 = 6 and

c2 = 36 (here taking any pair of constants such that c2
1 ≤ c2 works). Then f satisfies, for all

p ∈ ∆S′ , v ∈ Υ and n, ι > 0,
1. f(p, v, n,B, ι) is non-decreasing in v(s), i.e.,

∀(v, v′) ∈ Υ2, v ≤ v′ =⇒ f(p, v, n,B, ι) ≤ f(p, v′, n,B, ι);

2. f(p, v, n,B, ι) ≤ pv − c1
2

√
V(p,v)ι
n − c2

2
Bι
n ≤ pv − 2

√
V(p,v)ι
n − 14Bιn ;

3. If p(g) > 0, then f(p, v, n,B, ι) is ρp-contractive in v(s), with ρp ≜ 1− p(g) < 1 , i.e.,

∀(v, v′) ∈ Υ2, |f(p, v, n,B, ι)− f(p, v′, n,B, ι)| ≤ ρp∥v − v′∥∞.

Proof. The second claim holds by max{x, y} ≥ (x + y)/2, ∀x, y, by the choices of c1, c2 and
because both

√
V(p,v)ι
n and Bι

n are non-negative. To verify the first and third claims, we fix all
other variables but v(s) and view f as a function in v(s). Because the derivative of f in v(s)
does not exist only when c1

√
V(p,v)ι
n = c2

Bι
n , where the condition has at most two solutions, it

suffices to prove that ∂f

∂v(s) ≥ 0 when c1

√
V(p,v)ι
n ̸= c2

Bι
n . Direct computation gives

∂f

∂v(s) = p(s)− c1I

c1

√
V(p, v)ι

n
≥ c2

Bι

n

 p(s)(v(s)− pv)ι√
nV(p, v)ι

≥ min
{
p(s), p(s)− c2

1
c2B

p(s)
(
v(s)− pv

)}
(i)
≥ min

{
p(s), p(s)− c2

1
c2
p(s)

}
≥ p(s)

(
1− c2

1
c2

)
= 0.

Here (i) is by v(s) − pv ≤ v(s) ≤ B. For the third claim, we perform a distinction of cases.
If c1

√
V(p,v)ι
n = c2

Bι
n , where the condition has at most two solutions, then f(v) = pv − c2

Bι
n ,

175

Complements on Chapter 5

which corresponds to a ρp-contraction since

|f(v1)− f(v2)| =
∣∣∣∣∣∑
s∈S

p(s)(v1(s)− v2(s))
∣∣∣∣∣ ≤∑

s∈S
p(s) · ∥v1 − v2∥∞ = (1− p(g))∥v1 − v2∥∞.

Otherwise c1

√
V(p,v)ι
n ̸= c2

Bι
n , then the derivative of f in v(s) exists and it verifies

∥∥∥∥∂f∂v
∥∥∥∥

1
=
∑
s∈S

∣∣∣∣ ∂f

∂v(s)

∣∣∣∣ =
∑
s∈S

∂f

∂v(s)

=
∑
s∈S

p(s)− c1I

c1

√
V(p, v)ι

n
≥ c2

Bι

n

 p(s)(v(s)− pv)ι√
nV(p, v)ι


= 1− p(g)− c1I

c1

√
V(p, v)ι

n
≥ c2

Bι

n

√ ι

nV(p, v) [pv − (1− p(g)) · pv]
}

≤ 1− p(g).

In this case, by the mean value theorem we obtain that f is ρp-contractive.

Restatement of Lemma D.9. Conditioned on the event E , for any output Q of the VISGO
procedure (line 22 of Algorithm 5.1) and for any state-action pair (s, a) ∈ S ×A, it holds that

Q(s, a) ≤ Q⋆(s, a).

Proof. We prove by induction that for any inner iteration i of VISGO, Q(i)(s, a) ≤ Q⋆(s, a). By
definition we have Q(0) = 0 ≤ Q⋆. Assume that the property holds for iteration i, then

Q(i+1)(s, a) = max
{
ĉ(s, a) + P̃s,aV

(i) − b(i+1)(s, a), 0
}
,

where

ĉ(s, a) + P̃s,aV
(i) − b(i+1)(s, a)

= ĉ(s, a) + P̃s,aV
(i) − max

{
c1

√
V(P̃s,a, V (i))ιs,a

n+(s, a) , c2
Bιs,a
n+(s, a)

}
− c3

√
ĉ(s, a)ιs,a
n+(s, a) − c4

B
√
S′ιs,a

n+(s, a)

(i)
≤ c(s, a) + P̃s,aV

(i) − max
{
c1

√
V(P̃s,a, V (i))ιs,a

n+(s, a) , c2
Bιs,a
n+(s, a)

}
+ 28ιs,a

3n+(s, a) − c4
B
√
S′ιs,a

n+(s, a)

= c(s, a) + f(P̃s,a, V (i), n+(s, a), B, ιs,a) + 28ιs,a
3n+(s, a) − c4

B
√
S′ιs,a

n+(s, a)
(ii)
≤ c(s, a) + f(P̃s,a, V ⋆, n+(s, a), B, ιs,a) + 28ιs,a

3n+(s, a) − c4
B
√
S′ιs,a

n+(s, a)

(iii)
≤ c(s, a) + P̃s,aV

⋆ − 2

√
V(P̃s,a, V ⋆)ιs,a

n+(s, a) − 14Bιs,a
3n+(s, a) − c4

B
√
S′ιs,a

n+(s, a)

176

D.4 Missing Proofs

(iv)
≤ c(s, a) + P̂s,aV

⋆ − 2

√
V(P̃s,a, V ⋆)ιs,a

n+(s, a) − 14Bιs,a
3n+(s, a) − c4

B
√
S′ιs,a

n+(s, a)

(v)
≤ c(s, a) + Ps,aV

⋆ + 2

√
V(P̂s,a, V ⋆)ιs,a

n+(s, a) − 2

√
V(P̃s,a, V ⋆)ιs,a

n+(s, a) − (B −B⋆) 14ιs,a
3n+(s, a) − c4

B
√
S′ιs,a

n+(s, a)

(vi)
≤ c(s, a) + Ps,aV

⋆ + 2

√
|V(P̂s,a, V ⋆) − V(P̃s,a, V ⋆)|ιs,a

n+(s, a) − (B −B⋆) 14ιs,a
3n+(s, a) − c4

B
√
S′ιs,a

n+(s, a)

(vii)
≤ c(s, a) + Ps,aV

⋆︸ ︷︷ ︸
=Q⋆(s,a)

−(B −B⋆)

(
14ιs,a

3n+(s, a) +
2
√

2S′ιs,a

n+(s, a)

)
≤ Q⋆(s, a),

where (i) is by definition of E2 and choice of c3, (ii) uses the first property of Lemma D.8 and
the induction hypothesis that V (i) ≤ V ⋆, (iii) uses the second property of Lemma D.8 and
assumption B ≥ max{B⋆, 1}, (iv) uses Lemma D.5, (v) is by definition of E1, (vi) uses the
inequality ∣∣√x−√y∣∣ ≤ √|x− y|, ∀x, y ≥ 0, and (vii) uses the second inequality of Lemma D.5
and the choice of c4. Ultimately,

Q(i+1)(s, a) ≤ max
{
Q⋆(s, a), 0

}
= Q⋆(s, a).

Restatement of Lemma D.10. The sequence (V (i))i≥0 is non-decreasing. Combining this with
the fact that it is upper bounded by V ⋆ from Lemma D.9, the sequence must converge.

Proof. We recognize that V (i+1)(s) ← minaQ(i+1)(s, a), with

Q(i+1)(s, a)← max
{
ĉ(s, a) + f

(
P̃s,a, V

(i), n+(s, a), B, ιs,a

)︸ ︷︷ ︸
≜gs,a(V (i))

−c3

√
ĉ(s, a)ιs,a

n+(s, a) − c4
B
√
S′ιs,a

n+(s, a) , 0
}
,

where we introduce the function gs,a(V) ≜ f
(
P̃s,a, V, n

+(s, a), B, ιs,a
) for notational ease as all

other parameters (apart from V) will remain the same throughout the analysis.
We prove by induction on the iterations indexed by i that Q(i) ≤ Q(i+1). First, it holds that

Q(0) = 0 ≤ Q(1). Now assume that Q(i−1) ≤ Q(i). Then

Q(i+1)(s, a) = max
{
ĉ(s, a) + gs,a(V (i))− c3

√
ĉ(s, a)ιs,a
n+(s, a) − c4

B
√
S′ιs,a

n+(s, a) , 0
}

≥ max
{
ĉ(s, a) + gs,a(V (i−1))− c3

√
ĉ(s, a)ιs,a
n+(s, a) − c4

B
√
S′ιs,a

n+(s, a) , 0
}

= Q(i)(s, a),

177

Complements on Chapter 5

where the inequality uses the induction hypothesis V (i) ≥ V (i−1) and the fact that gs,a is
non-decreasing from the first claim of Lemma D.8.

Restatement of Lemma D.11. Denote by ν > 0 the probability of reaching the goal from any
state-action pair in P̃ , i.e., ν ≜ mins,a P̃s,a,g. Then L̃ is a ρ-contractive operator with modulus
ρ ≜ 1− ν < 1.

Proof. Take any two vectors U1, U2, then for any state s ∈ S,

|L̃U1(s)− L̃U2(s)| =
∣∣∣min

a
L̃U1(s, a)−min

a
L̃U2(s, a)

∣∣∣
≤
∣∣∣max

a

{
L̃U1(s, a)− L̃U2(s, a)

}∣∣∣,
and we have that for any action a ∈ A,

|L̃U1(s, a)− L̃U2(s, a)| ≤
∣∣max

{
ĉ(s, a) + gs,a(U1), 0} −max

{
ĉ(s, a) + gs,a(U2), 0}

∣∣
≤
∣∣gs,a(U1)− gs,a(U2)

∣∣
(i)
≤ ρs,a∥U1 − U2∥∞.

The third claim of Lemma D.8 is employed to justify inequality (i): gs,a is ρs,a-contractive
(where gs,a is defined in the proof of Lemma D.10) with modulus

ρs,a ≜ 1− P̃s,a,g = 1− νs,a.

Taking the maximum over (s, a) pairs, L̃ is thus ρ-contractive with modulus ρ ≜ 1− ν < 1.

Restatement of Lemma D.13. Conditioned on the event E , for any intervalm and state-action
pair (s, a) ∈ S ×A,

|c(s, a) + Ps,aV
m −Qm(s, a)| ≤ min

{
βm(s, a), B⋆ + 1

}
,

where we define

βm(s, a) ≜ 4bm(s, a) +
√

2V(Ps,a, V ⋆)ιs,a
nm(s, a) +

√
2S′V(Ps,a, V ⋆ − V m)ιs,a

nm(s, a)

+ 3B⋆S′ιs,a
nm(s, a) +

(
1 + c1

√
ιs,a/2

)
εmVI .

Proof. Firstwe see that c(s, a)+Ps,aV m−Qm(s, a) ≤ c(s, a)+Ps,aV ⋆ = Q⋆(s, a) ≤ B⋆+1 and that
Qm(s, a)− c(s, a)− Ps,aV m ≤ Q⋆(s, a) ≤ B⋆ + 1, from Lemma D.9 and the Bellman optimality
equation (Proposition 2.11). Now we prove that |c(s, a) + Ps,aV

m −Qm(s, a)| ≤ βm(s, a).

178

D.4 Missing Proofs

Bounding c(s, a)+Ps,aV
m−Qm(s, a). From the VISGO loop of Algorithm 5.1, the vectorsQm

and V m can be associated to a finite iteration l of a sequence of vectors (Q(i))i≥0 and (V (i))i≥0

such that
(i) Qm(s, a) ≜ Q(l)(s, a),
(ii) V m(s) ≜ V (l)(s),
(iii) ∥V (l) − V (l−1)∥∞ ≤ εmVI ,
(iv) bm(s, a) ≜ b(l+1)(s, a) = max

{
c1

√
V(P̃s,a,V (l))ιs,a

nm(s,a) , c2
Bιs,a

nm(s,a)

}
+ c3

√
ĉm(s,a)ιs,a

nm(s,a) + c4
B

√
S′ιs,a

nm(s,a) .

First, we examine the gap between the exploration bonuses at the final VISGO iterations l and
l + 1 as follows

b(l)(s, a)
(i)
≤ c1

√√√√V(P̃s,a, V (l−1))ιs,a
n+(s, a) + c2

Bιs,a
n+(s, a) + c3

√
ĉ(s, a)ιs,a
n+(s, a) + c4

B
√
S′ιs,a

n+(s, a)

(ii)
≤ c1

√√√√2V(P̃s,a, V (l))ιs,a
n+(s, a) + c1

√√√√2V(P̃s,a, V (l−1) − V (l))ιs,a
n+(s, a) + c2

Bιs,a
n+(s, a)

+ c3

√
ĉ(s, a)ιs,a
n+(s, a) + c4

B
√
S′ιs,a

n+(s, a)
(iii)
≤ 2
√

2b(l+1)(s, a) + c1

√
(εmVI)2ιs,a
2n+(s, a)

≤ 2
√

2b(l+1)(s, a) + εmVI c1
√
ιs,a/2,

where (i) uses max{x, y} ≤ x+y; (ii) usesV(P,X+Y) ≤ 2(V(P,X)+V(P, Y)) and√x+ y ≤
√
x +√y; (iii) uses x + y ≤ 2 max{x, y} and Popoviciu’s inequality (Lemma D.21) applied

to V (l−1) − V (l) ∈ [−εmVI , 0]. Moreover, we have that Q(l)(s, a) ≥ ĉ(s, a) + P̃s,aV
(l−1) − b(l)(s, a)

from Equation (5.2). Combining everything yields

−Qm(s, a) ≤ −ĉ(s, a)− P̃s,a(V m − εVI) + εVIc1
√
ιs,a/2 + 2

√
2bm(s, a)

≤ −ĉ(s, a)− P̃s,aV m + 2
√

2bm(s, a) +
(

1 + c1
√
ιs,a/2

)
εmVI .

Therefore, we have

c(s, a) + Ps,aV
m −Qm(s, a)

≤ c(s, a) + Ps,aV
m − ĉm(s, a)− P̃s,aV m + 2

√
2bm(s, a) +

(
1 + c1

√
ιs,a/2

)
εmVI

(i)
≤ Ps,aV m − P̂s,aV m + B⋆

nm(s, a) + 1 + 4bm(s, a) +
(

1 + c1
√
ιs,a/2

)
εmVI

≤ (Ps,a − P̂s,a)V ⋆︸ ︷︷ ︸
≜Y1

+ (Ps,a − P̂s,a)(V m − V ⋆)︸ ︷︷ ︸
≜Y2

+ B⋆
nm(s, a) + 4bm(s, a) +

(
1 + c1

√
ιs,a/2

)
εmVI ,

179

Complements on Chapter 5

where (i) comes from Lemma D.5, the event E2, Lemma D.9 and (loosely) bounding |c(s, a)−
ĉ(s, a)| ≤ bm(s, a). It holds under the event E1 that

|Y1| ≤
√

2V(Ps,a, V ⋆)ιs,a
nm(s, a) + B⋆ιs,a

nm(s, a) .

Moreover, we have

|Y2|
(i)=
∣∣∣∣∣∑
s′

(P̂s,a,s′ − Ps,a,s′)(V m(s′)− V ⋆(s′)− Ps,a(V m − V ⋆))
∣∣∣∣∣

≤
∑
s′

|Ps,a,s′ − P̂s,a,s′ ||V m(s′)− V ⋆(s′)− Ps,a(V m − V ⋆)|

(ii)
≤
∑
s′

√
2Ps,a,s′ιs,a
nm(s, a) |V

m(s′)− V ⋆(s′)− Ps,a(V m − V ⋆)|+ B⋆S
′ιs,a

nm(s, a)

(iii)
≤
√

2S′V(Ps,a, V m − V ⋆)ιs,a
nm(s, a) + B⋆S

′ιs,a
nm(s, a) ,

where the shift performed in (i) is by∑s′ Ps,a,s′ =
∑
s′ P̂s,a,s′ = 1; (ii) holds under the event E3

and Lem. D.9 (V m(s) ∈ [0, B⋆]); (iii) is by Cauchy-Schwarz inequality.

Bounding Qm(s, a)− c(s, a)− Ps,aV m. If Qm(s, a) = Q(l)(s, a) = 0, then Qm(s, a)− ĉ(s, a)−
Ps,aV

m ≤ 0 ≤ min
{
βm(s, a), B⋆

}. Otherwise, we have Qm(s, a) = Q(l)(s, a) = ĉ(s, a) +
P̃s,aV

(l−1)−b(l)(s, a). Using thatV m ≥ V (l−1) (LemmaD.10) and P̂s,aV m ≥ P̃s,aV m (LemmaD.5),
we get

Qm(s, a)− c(s, a)− Ps,aV m ≤ Qm(s, a)− ĉ(s, a)− Ps,aV m + bm(s, a)

= P̃s,aV
(l−1) − b(l)(s, a)− Ps,aV m + bm(s, a)

≤ P̂s,aV m − Ps,aV m + bm(s, a)

= (P̂s,a − Ps,a)V ⋆ − (P̂s,a − Ps,a)(V ⋆ − V m) + bm(s, a)

≤ |Y1|+ |Y2|+ bm(s, a),

which can be bounded as above.

D.4.2 Additional lemmas

180

D.4 Missing Proofs

Lemma D.14. Let Q̃m(s, a) ≜ Q⋆(s, a) − Qm(s, a) and Ṽ m(s) ≜ V ⋆(s) − V m(s). Then
conditioned on the event E , we have that for all (s, a,m, h),

Ṽ (smh)− Psm
h
,am
h
Ṽ (smh+1) ≤ βm(smh , amh).

Proof. We write that

Ṽ m(smh)− Psm
h
,am
h
Ṽ m(smh+1) = V ⋆(smh)− Psm

h
,am
h
V ⋆ + Psm

h
,am
h
V m − V m(smh)

≤ Q⋆(smh , amh)− Psm
h
,am
h
V ⋆ + Psm

h
,am
h
V m − V m(smh)

(i)= c(smh , amh) + Psm
h
,am
h
V m −Qm(smh , amh)

(ii)
≤ βm(smh , amh),

where (i) uses the Bellman optimality equation (Proposition 2.11) and the fact that V m(smh) =
Qm(smh , amh), and (ii) comes from Lemma D.13.

Lemma D.15. For anyM ′ ≤M , it holds that

M ′∑
m=1

(
Hm∑
h=1

V m(smh)− V m(smh+1)
)
−

∑
m∈M0(M ′)

V m(s0) ≤ 2SA log2(TM ′) max
1≤m≤M ′

∥V m∥∞.

Proof. We recall that we denote byM0(M ′) the set of intervals among the firstM ′ intervals
that constitute the first intervals in each episode. From the analytical construction of intervals,
an intervalm < M ′ can end due to one of the following three conditions:
(i) If intervalm ends in the goal state, then

V m+1(sm+1
1)− V m(smHm+1) = V m+1(s0)− V m(g) = V m+1(s0).

This happens for all the intervalsm+ 1 ∈M0(M ′).

(ii) If intervalm ends when the count to a state-action pair is doubled, then we replan with a
VISGO procedure. Thus we get

V m+1(sm+1
1)− V m(smHm+1) ≤ V m+1(sm+1

1) ≤ max
1≤m≤M ′

∥V m∥∞.

This happens at most 2SA log2(TM ′) times.

181

Complements on Chapter 5

Combining the three conditions above implies that

M ′∑
m=1

(
Hm∑
h=1

V m(smh) − V m(smh+1)

)

=
M ′∑
m=1

V m(sm1) − V m(smHm+1)

=
M ′−1∑
m=1

(
V m+1(sm+1

1) − V m(smHm+1)
)

+
M ′−1∑
m=1

(
V m(sm1) − V m+1(sm+1

1)
)

︸ ︷︷ ︸
=V 1(s1

1)−V M′ (sM′
1)

+VM
′
(sM

′

1) −VM
′
(sM

′

HM′ +1)︸ ︷︷ ︸
≤0

≤
M ′−1∑
m=1

(
V m+1(sm+1

1) − V m(smHm+1)
)

+ V 1(s0)

≤
M ′−1∑
m=1

V m+1(s0)I[m+ 1 ∈ M0(M ′)] + 2SA log2(TM ′) max
1≤m≤M ′

∥V m∥∞ + V 1(s0)

=
∑

m∈M0(M ′)

V m(s0) + 2SA log2(TM ′) max
1≤m≤M ′

∥V m∥∞.

D.4.3 Full proof of the bound on X2(M ′)

① First, bound βm.

Recall that we assume that the event E holds. From Lemma D.13, we have for anym, s, a,

βm(s, a) = O

(√√√√V(P̃s,a, V m)ιs,a
nm(s, a) +

√
V(Ps,a, V ⋆)ιs,a

nm(s, a) +
√
SV(Ps,a, V ⋆ − V m)ιs,a

nm(s, a)

+
√
ĉm(s, a)ιs,a
nm(s, a) + B⋆Sιs,a

nm(s, a) + B
√
Sιs,a

nm(s, a) +
(

1 + c1
√
ιs,a/2

)
εmVI

)
.

Here we interchange S′ and S since we use theO() notation. From Lemma D.5 and Lemma D.9,
for anym, s, a,

V(P̃s,a, V m) ≤ V(P̂s,a, V m) + 2B2
⋆S

′

nm(s, a) + 1 < V(P̂s,a, V m) + 2B2
⋆S

′

nm(s, a) .

Under the event E3, it holds that

P̂s,a,s′ ≤ Ps,a,s′ +
√

2Ps,a,s′ιs,a
nm(s, a) + ιs,a

nm(s, a) ≤
3
2Ps,a,s

′ + 2ιs,a
nm(s, a) .

182

D.4 Missing Proofs

Thus, it holds that for anym, s, a,

V(P̂s,a, V m) =
∑
s′

P̂s,a,s′

(
V m(s′)− P̂s,aV m

)2

(i)
≤
∑
s′

P̂s,a,s′
(
V m(s′)− Ps,aV m)2

≤
∑
s′

(3
2Ps,a,s

′ + 2ιs,a
nm(s, a)

) (
V m(s′)− Ps,aV m)2

≤ 3
2V(Ps,a, V m) + 2B2

⋆S
′ιs,a

nm(s, a) .

(i) is by the fact that z⋆ =
∑
i pixi minimizes the quantity∑i pi(xi − z)2. As a result,

V(P̃s,a, V m) < 3
2V(Ps,a, V m) + 2B2

⋆S
′

nm(s, a) + 2B2
⋆S

′ιs,a
nm(s, a) .

Utilizing V(P,X + Y) ≤ 2(V(P,X) +V(P, Y)) withX = V ⋆− V m and Y = V m and√x+ y ≤
√
x+√y, finally we have

βm(s, a) ≤ O
(√

V(Ps,a, V m)ιs,a
nm(s, a) +

√
SV(Ps,a, V ⋆ − V m)ιs,a

nm(s, a)

+
√
ĉ(s, a)ιs,a
nm(s, a) + B⋆Sιs,a

nm(s, a) + B
√
Sιs,a

nm(s, a) +
(

1 + c1
√
ιs,a/2

)
εmVI

)
.

② Second, bound a special type of summation.

Lemma D.16. Let w = {wmh ≥ 0 : 1 ≤ m ≤M, 1 ≤ h ≤ Hm} be a group of weights, then for
anyM ′ ≤M ,

M ′∑
m=1

Hm∑
h=1

√
wmh

nm(smh , amh) ≤ O


√√√√SA log2(TM ′)

M ′∑
m=1

Hm∑
h=1

wmh

 .

Proof. Form ≤M ′, nm(s, a) ∈ {2i : i ∈ N, i ≤ log2(TM ′)}. We can count the occurrences of a
fixed value of nm(s, a) by the doubling property of VISGO: ∀i, s, a

M ′∑
m=1

Hm∑
h=1

I[(smh , amh) = (s, a), nm(s, a) = 2i] ≤ 2i.

183

Complements on Chapter 5

Thus
M ′∑
m=1

Hm∑
h=1

1
nm(smh , amh) =

∑
s,a

∑
0≤i≤log2(TM′)

M ′∑
m=1

Hm∑
h=1

I[(smh , amh) = (s, a), nm(s, a) = 2i] 1
2i

=
∑
s,a

∑
0≤i≤log2(TM′)

1

≤ SA(log2(TM ′) + 1) (D.7)
≤ O(SA log2(TM ′)).

By Cauchy-Schwarz inequality,

M ′∑
m=1

Hm∑
h=1

√
wmh

nm(smh , amh) ≤

√√√√(M ′∑
m=1

Hm∑
h=1

wmh

)(
M ′∑
m=1

Hm∑
h=1

1
nm(smh , amh)

)

≤ O


√√√√SA log2(TM ′)

M ′∑
m=1

Hm∑
h=1

wmh

 .

By setting successively wmh = V(Psm
h
,am
h
, V m), V(Psm

h
,am
h
, V ⋆ − V m) and ĉ(smh , amh), and

relaxing ιsm
h
,am
h
to its upper-bound ιM ′ = ln

(
12SAS′T 2

M′
δ

)
we have

X2(M ′) ≤ O
(√√√√√√√√SA log2(TM ′)ιM ′

M ′∑
m=1

Hm∑
h=1

V(Psm
h
,am
h
, V m)︸ ︷︷ ︸

≜X4(M ′)

+

√√√√√√√√S
2A log2(TM ′)ιM ′

M ′∑
m=1

Hm∑
h=1

V(Psm
h
,am
h
, V ⋆ − V m)︸ ︷︷ ︸

≜X5(M ′)

+

√√√√SA log2(TM ′)ιM ′

M ′∑
m=1

Hm∑
h=1

ĉ(smh , amh) +B⋆S
2A log2(TM ′)

+BS3/2A log2(TM ′)ιM ′ +
M ′∑
m=1

Hm∑
h=1

(1 + c1

√
ιM ′/2)εmVI

)
.

③ Third, bound each summation separately.

184

D.4 Missing Proofs

Regret contribution of the estimated costs. From line 15 in EB-SSP, we have that ĉ(s, a) ≤
2θ(s,a)
N(s,a) . Let θm(s, a) denote the value of θ(s, a) for calculating ĉm. By definition,

θm(smh , amh) =
M ′∑
m′=1

Hm′∑
h′=1

I[(smh , amh) = (sm′
h′ , am

′
h′), nm(smh , amh) = 2nm′(sm′

h′ , am
′

h′)]cm′
h′

− I[first occurrence of (m′, h′) such that (smh , a
m
h) = (sm

′

h′ , a
m′

h′), nm(smh , a
m
h) = 2nm

′
(sm

′

h′ , a
m′

h′)]cm′
h′

+ I[first occurrence of (m′, h′) such that (smh , a
m
h) = (sm

′

h′ , a
m′

h′), nm(smh , a
m
h) = nm

′
(sm

′

h′ , a
m′

h′)]cm′
h′

≤
M ′∑
m′=1

Hm′∑
h′=1

I[(smh , amh) = (sm′
h′ , am

′
h′), nm(smh , amh) = 2nm′(sm′

h′ , am
′

h′)]cm′
h′ + 1.

For anyM ′ ≤M we have

M ′∑
m=1

Hm∑
h=1

ĉm(smh , amh)

≤
M ′∑
m=1

Hm∑
h=1

2θm(smh , amh)
nm(smh , amh)

=
M ′∑
m=1

Hm∑
h=1

M ′∑
m′=1

Hm′∑
h′=1

I[(smh , amh) = (sm′
h′ , am

′
h′), nm(smh , amh) = 2nm′(sm′

h′ , am
′

h′)] 2cm′
h′

nm(smh , amh)

+
M ′∑
m=1

Hm∑
h=1

2
nm(smh , amh)

(i)
≤

M ′∑
m′=1

Hm′∑
h′=1

cm
′

h′

nm′(sm′
h′ , am

′
h′)
·
M ′∑
m=1

Hm∑
h=1

I[(smh , amh) = (sm′
h′ , am

′
h′), nm(smh , amh) = 2nm′(sm′

h′ , am
′

h′)]

+ 2SA(log2(TM ′) + 1)

≤ 2SA(log2(TM ′) + 1) +
M ′∑
m′=1

Hm′∑
h′=1

cm
′

h′

nm′(sm′
h′ , am

′
h′)
· 2nm′(sm′

h′ , am
′

h′)

= 2SA(log2(TM ′) + 1) + 2
M ′∑
m′=1

Hm′∑
h′=1

cm
′

h′

= 2SA(log2(TM ′) + 1) + 2CM ′ ,

where (i) comes from Equation (D.7).

Regret contribution of the VISGO precision errors. For any M ′ ≤ M , denote by JM ′ the
(unknown) total number of triggers in the firstM ′ intervals. For 1 ≤ j ≤ JM ′ , denote by Lj
the number of time steps elapsed between the (j − 1)-th and the j-th trigger. The doubling
condition implies that Lj ≤ 2jSA and that there are at most JM ′ = O(SA log2(TM ′/(SA)))

185

Complements on Chapter 5

triggers. Using that Algorithm 5.1 selects as error εjVI = 2−j/(SA), we have that

M ′∑
m=1

Hm∑
h=1

(1 + c1

√
ιM ′/2)εmVI ≤ (1 + c1

√
ιM ′/2)

JM′∑
j=1

Ljε
j
VI

≤ (1 + c1

√
ιM ′/2)JM ′

= O
(
SA log2(TM ′)√ιM ′

)
.

We proceed with bounding X4(M ′) and X5(M ′) in Lemmas D.17 and D.18. In the proofs
of these two lemmas, we use the following notation for simplicity: for any vector X of size S′

and any integer j ≥ 1, we denote by Xj the vector [X(1)j , X(2)j , . . . , X(S′)j]⊤.

Lemma D.17. Conditioned on Lemma D.13, for a fixedM ′ ≤M with probability 1− 2δ,

X4(M ′) ≤ O
(
B⋆(CM ′ +X2(M ′)) + (B2

⋆SA+B⋆)(log2(TM ′) + ln(2/δ))
)
.

Proof. We introduce the normalized value function V m
≜ V m/B⋆ ∈ [0, 1]. Define

F (d) ≜
M ′∑
m=1

Hm∑
h=1

(Psm
h
,am
h

(V m)2d − (V m(smh+1))2d), G(d) ≜
M ′∑
m=1

Hm∑
h=1

V(Psm
h
,am
h
, (V m)2d).

Then X4(M ′) = B2
⋆G(0). Direct computation gives that

G(d) =
M ′∑
m=1

Hm∑
h=1

(
Psm

h
,am
h

(V m)2d+1 − (Psm
h
,am
h

(V m)2d)2
)

(i)
≤

M ′∑
m=1

Hm∑
h=1

(
Psm

h
,am
h

(V m)2d+1 − (V m(smh+1))2d+1) +
M ′∑
m=1

(V m(smHm+1))2d+1

︸ ︷︷ ︸
≤M ′

1

+
M ′∑
m=1

Hm∑
h=1

(
(V m(smh))2d+1 − (Psm

h
,am
h
V
m)2d+1) − M ′∑

m=1
(V m(sm1))2d+1

︸ ︷︷ ︸
≤0

(ii)
≤ F (d+ 1) +M ′

1 + 2d+1
M ′∑
m=1

Hm∑
h=1

max{V m(smh)− Psm
h
,am
h
V
m
, 0}

= F (d+ 1) +M ′
1 + 2d+1

B⋆

M ′∑
m=1

Hm∑
h=1

max{Qm(smh , amh)− Psm
h
,am
h
V m, 0}

(iii)
≤ F (d+ 1) +M ′

1 + 2d+1

B⋆

M ′∑
m=1

Hm∑
h=1

(c(smh , amh) + βm(smh , amh))

186

D.4 Missing Proofs

= F (d+ 1) +M ′
1 + 2d+1

B⋆

M ′∑
m=1

Hm∑
h=1

(cmh + βm(smh , amh) + (c(smh , amh)− cmh))

≤ F (d+ 1) +M ′
1 + 2d+1

B⋆
(CM ′ +X2(M ′) + |X3(M ′)|),

whereM ′
1 denotes the number of intervals satisfying V m(smHm+1) ̸= 0; (i) is by convexity of

f(x) = x2d ; (ii) is by Lemma D.27; (iii) is by Lemma D.13.
For a fixed d, F (d) is a martingale. By taking c = 1 in Lemma D.23, we have

P
[
F (d) > 2

√
2G(d)(log2(TM ′) + ln(2/δ)) + 5(log2(TM ′) + ln(2/δ))

]
≤ δ.

Taking δ′ = δ/(log2(TM ′) + 1), using x ≥ ln(x) + 1 and finally swapping δ and δ′, we have that

P
[
F (d) > 2

√
2G(d)(2 log2(TM ′) + ln(2/δ)) + 5(2 log2(TM ′) + ln(2/δ))

]
≤ δ

log2(TM ′) + 1 .

Taking a union bound over d = 1, 2, . . . , log2(TM ′), we have that with probability 1− δ,

F (d)
(i)
≤2
√

2(2 log2(TM ′) + ln(2/δ)) ·
√
F (d+ 1) + 2d+1 · CM

′ +X2(M ′) + |X3(M ′)|
B⋆

+ 5(2 log2(TM) + ln(2/δ)) + 2
√

2(2 log2(TM ′) + ln(2/δ))M ′
1.

From Lemma D.25, taking λ1 = TM ′ , λ2 = 2
√

2(2 log2(TM ′) + ln(2/δ)), λ3 = (CM ′ +X2(M ′) +
|X3(M ′)|)/B⋆, λ4 = 5(2 log2(TM) + ln(2/δ)) + 2

√
2(2 log2(TM ′) + ln(2/δ))M ′

1, we have that

F (1) ≤ O
(

log2(TM ′) + ln(2/δ) + CM ′ +X2(M ′) + |X3(M ′)|
B⋆

+M ′
1

)
.

Hence

X4(M ′) ≤ O
(
B⋆(CM ′ +X2(M ′) + |X3(M ′)|) +B2

⋆(log2(TM ′) + ln(2/δ) +M ′
1)
)
.

By definition, M ′
1 ≤ O(SA log2(TM ′)) since only those intervals ending by triggering the

doubling condition are taken into account. From the bound of |X3(M ′)|, the following holds
with probability 1− 2δ:

X4(M ′) ≤ O
(
B⋆(CM ′ +X2(M ′)) + (B2

⋆SA+B⋆)(log2(TM ′) + ln(2/δ))
)
.

Throughout the proof, the inequality O(√xy) ≤ O(x+ y) is utilized to simplify the bound.

187

Complements on Chapter 5

Lemma D.18. Conditioned on Lemma D.13, for a fixedM ′ ≤M with probability 1− δ,

X5(M ′) ≤ O
(
B2
⋆SA(log2(TM ′) + ln(2/δ)) +B⋆X2(M ′)

)
.

Proof. We introduce the normalized quantity Ṽ
m
≜ Ṽ m/B⋆ ∈ [−1, 1] (recall the definition in

Lemma D.14). Define

F̃ (d) ≜
M ′∑
m=1

Hm∑
h=1

(Psm
h
,am
h

(Ṽ
m

)2d − (Ṽ
m

(smh+1))2d), G̃(d) ≜
M ′∑
m=1

Hm∑
h=1

V(Psm
h
,am
h
, (Ṽ

m
)2d).

Then X5(M ′) = G̃(0)B2
⋆ . Direct computation gives that

G̃(d) =
M ′∑
m=1

Hm∑
h=1

(
Psm

h
,am
h

(Ṽ
m

)2d+1 − (Psm
h
,am
h

(Ṽ
m

)2d)2
)

≤
M ′∑
m=1

Hm∑
h=1

(
Psm

h
,am
h

(Ṽ
m

)2d+1 − (Ṽ
m

(smh+1))2d+1) +
M ′∑
m=1

(Ṽ
m

(smHm+1))2d+1

︸ ︷︷ ︸
≤M̃ ′

1

+
M ′∑
m=1

Hm∑
h=1

(
(Ṽ

m
(smh))2d+1 − (Psm

h
,am
h
Ṽ
m

)2d+1) − M ′∑
m=1

(Ṽ
m

(sm1))2d+1

︸ ︷︷ ︸
≤0

≤ F̃ (d+ 1) + M̃ ′
1 + 2d+1

M ′∑
m=1

Hm∑
h=1

max{Ṽ
m

(smh)− Psm
h
,am
h
Ṽ
m
, 0}

= F̃ (d+ 1) + M̃ ′
1 + 2d+1

B⋆

M ′∑
m=1

Hm∑
h=1

max{Ṽ m(smh)− Psm
h
,am
h
Ṽ m, 0}

(i)
≤ F̃ (d+ 1) + M̃ ′

1 + 2d+1

B⋆

M ′∑
m=1

Hm∑
h=1

βm(smh , amh)

= F̃ (d+ 1) + M̃ ′
1 + 2d+1

B⋆
X2(M ′),

where M̃ ′
1 denotes the number of intervals satisfying Ṽ

m
(smHm+1) ̸= 0; (i) come fromLemmaD.14.

For a fixed d, F̃ (d) is a martingale. By taking c = 1 in Lemma D.23, we have

P
[
F̃ (d) > 2

√
2G̃(d)(log2(TM ′) + ln(2/δ)) + 5(log2(TM ′) + ln(2/δ))

]
≤ δ.

188

D.4 Missing Proofs

Taking δ′ = δ/(log2(TM ′) + 1), using x ≥ ln(x) + 1 and finally swapping δ and δ′, we have that

P
[
F̃ (d) > 2

√
2G̃(d)(2 log2(TM ′) + ln(2/δ)) + 5(2 log2(TM ′) + ln(2/δ))

]
≤ δ

log2(TM ′) + 1 .

Taking a union bound over d = 1, 2, . . . , log2(TM ′), we have that with probability 1− δ,

F̃ (d) ≤2
√

2(2 log2(TM ′) + ln(2/δ)) ·
√
F̃ (d+ 1) + 2d+1X2(M ′)

B⋆

+ 5(2 log2(TM ′) + ln(2/δ)) + 2
√

2(2 log2(TM ′) + ln(2/δ))M̃ ′
1.

FromLemmaD.25, takingλ1 = TM ′ , λ2 = 2
√

2(2 log2(TM ′) + ln(2/δ)), λ3 = X2(M ′)/B⋆, λ4 =
5(2 log2(TM ′) + ln(2/δ)) + 2

√
2(2 log2(TM ′) + ln(2/δ))M̃ ′

1, we have that

F̃ (1) ≤ O
(

log2(TM ′) + ln(2/δ) + X2(M ′)
B⋆

+ M̃ ′
1

)
.

Since V ⋆(g) − V m(g) = 0 − 0 = 0, similar as boundingM ′
1, we have M̃ ′

1 ≤ O(SA log2(TM ′)).
Hence with probability 1− δ, we have

X5(M ′) ≤ O
(
B2
⋆SA(log2(TM ′) + ln(2/δ)) +B⋆X2(M ′)

)
.

Throughout the proof, the inequality O(√xy) ≤ O(x+ y) is utilized to simplify the bound.

④ Finally, bind them together.

Let ιM ′ ≜ ln
(

12SAS′T 2
M′

δ

)
+log2((max{B⋆, 1})2TM ′)+ln

(
2
δ

)
be the upper bound of all previous

log terms.

X2(M ′) ≤ O
(√

SAX4(M ′)ιM ′ +
√
S2AX5(M ′)ιM ′

+ SAι
3/2
M ′ +

√
SACM ′ιM ′ +B⋆S

2Aι2M ′ +BS3/2Aι2M ′

)
,

X4(M ′) ≤ O
(
B⋆(CM ′ +X2(M ′)) + (B2

⋆SA+B⋆)ιM ′

)
,

X5(M ′) ≤ O
(
B2
⋆SAιM ′ +B⋆X2(M ′)

)
.

This implies that

X2(M ′)
(i)
≤ O

(√
B⋆S2AιM ′ ·

√
X2(M ′) + (

√
B⋆ + 1)

√
SACM ′ιM ′ +BS2Aι2M ′

)
≤ O

(
max

{√
B⋆S2AιM ′ ·

√
X2(M ′), (

√
B⋆ + 1)

√
SACM ′ιM ′ +BS2Aι2M ′

})
,

189

Complements on Chapter 5

where (i) uses the assumption B ≥ max{B⋆, 1} to simplify the bound. Considering terms in
max{} separately, we obtain two bounds:

X2(M ′) ≤ O(B⋆S2Aι2M ′),

X2(M ′) ≤ O((
√
B⋆ + 1)

√
SACM ′ιM ′ +BS2Aι2M ′).

By taking the maximum of these bounds, we have

X2(M ′) ≤ O((
√
B⋆ + 1)

√
SACM ′ιM ′ +BS2Aι2M ′).

D.5 Technical Lemmas

Lemma D.19 (Bennett’s Inequality, anytime version). Let Z,Z1, . . . , Zn be i.i.d. random
variables with values in [0, b] and let δ > 0. Define V[Z] = E[(Z − E[Z])2]. Then we have

P

∀n ≥ 1,
∣∣∣∣∣E[Z]− 1

n

n∑
i=1

Zi

∣∣∣∣∣ >
√

2V[Z] ln(4n2/δ)
n

+ b ln(4n2/δ)
n

 ≤ δ.

Proof. From Bennett’s inequality, if the variables have values in [0, 1], then for a specific n ≥ 1,

P

∣∣∣∣∣E[Z]− 1
n

n∑
i=1

Zi

∣∣∣∣∣ >
√

2V[Z] ln(2/δ)
n

+ ln(2/δ)
n

 ≤ δ.
We then choose δ ← δ

2n2 and take a union bound over all possible values of n ≥ 1, and the
result follows given that∑n≥1

δ
2n2 < δ. To account for the case b ̸= 1 we apply the result to

(Zn/b).

Lemma D.20 (Theorem 4 in Maurer and Pontil, 2009, anytime version). Let
Z,Z1, . . . , Zn (n ≥ 2) be i.i.d. random variables with values in [0, b] and let δ > 0. Define
Z̄ = 1

nZi and V̂n = 1
n

∑n
i=1(Zi − Z̄)2. Then we have

P

∀n ≥ 1,
∣∣∣∣∣E[Z]− 1

n

n∑
i=1

Zi

∣∣∣∣∣ >
√

2V̂n ln(4n2/δ)
n− 1 + 7b ln(4n2/δ)

3(n− 1)

 ≤ δ.

190

D.5 Technical Lemmas

Lemma D.21 (Popoviciu’s Inequality). Let X be a random variable whose value is in a fixed
interval [a, b], then V[X] ≤ 1

4(b− a)2.

LemmaD.22 (Lemma 11 in Zhang et al., 2021f). Let (Mn)n≥0 be a martingale such thatM0 = 0
and |Mn −Mn−1| ≤ c for some c > 0 and any n ≥ 1. Let Varn =

∑n
k=1 E[(Mk −Mk−1)2|Fk−1]

for n ≥ 0, where Fk = σ(M1, . . . ,Mk). Then for any positive integer n and any ε, δ > 0, we have
that

P
[
|Mn| ≥ 2

√
2Varn ln(1/δ) + 2

√
ε ln(1/δ) + 2c ln(1/δ)

]
≤ 2

(
log2

(
nc2

ε

)
+ 1

)
δ.

Lemma D.23. Let (Mn)n≥0 be a martingale such that M0 = 0 and |Mn − Mn−1| ≤ c for
some c > 0 and any n ≥ 1. Let Varn =

∑n
k=1 E[(Mk − Mk−1)2|Fk−1] for n ≥ 0, where

Fk = σ(M1, . . . ,Mk). Then for any positive integer n and δ ∈ (0, 2(nc2)1/ ln 2], we have that

P
[
|Mn| ≥ 2

√
2Varn(log2(nc2) + ln(2/δ)) + 2

√
log2(nc2) + ln(2/δ) + 2c(log2(nc2) + ln(2/δ))

]
≤ δ.

Proof. Take ε = 1 and δ′ = 2(log2(nc2) + 1)δ in Lemma D.22. By x ≥ ln(x) + 1, we have

ln(1/δ) = ln(2(log2(nc2) + 1)/δ′) = ln(log2(nc2) + 1) + ln(2/δ′) ≤ log2(nc2) + ln(2/δ′).

Hence,

P
[
|Mn| ≥ 2

√
2Varn(log2(nc2) + ln(2/δ′)) + 2

√
log2(nc2) + ln(2/δ′) + 2c(log2(nc2) + ln(2/δ′))

]
≤ P

[
|Mn| ≥ 2

√
2Varn ln(1/δ) + 2

√
ln(1/δ) + 2c ln(1/δ)

]
≤ δ′.

By swapping δ and δ′ we complete the proof.

Lemma D.24 (Lemma 11 in Zhang et al., 2021d). Let λ1, λ2, λ4 ≥ 0, λ3 ≥ 1 and i′ = log2 λ1.
Let a1, a2, . . . , ai′ be non-negative reals such that ai ≤ λ1 and ai ≤ λ2

√
ai+1 + 2i+1λ3 + λ4 for

any 1 ≤ i ≤ i′. Then we have that a1 ≤ max{(λ2 +
√
λ2

2 + λ4)2, λ2
√

8λ3 + λ4}.

191

Complements on Chapter 5

Lemma D.25. Let λ1, λ2, λ4 ≥ 0, λ3 ≥ 1 and i′ = log2 λ1. Let a1, a2, . . . , ai′ be non-negative
reals such that ai ≤ λ1 and ai ≤ λ2

√
ai+1 + 2i+1λ3 + λ4 for any 1 ≤ i ≤ i′. Then we have that

a1 ≤ O(λ2
2 + λ3 + λ4).

Proof. Since max{a, b} ≤ a+ b and 2ab ≤ a2 + b2 for any choice of non-negative a and b, we
can transform the result of Lemma D.24 into

a1 ≤ max
{(

λ2 +
√
λ2

2 + λ4

)2
, λ2

√
8λ3 + λ4

}

≤ O
((

λ2 +
√
λ2

2 + λ4

)2
+ λ2

√
8λ3 + λ4

)
≤ O(λ2

2 + λ2
2 + λ4 + λ2

2 + λ3 + λ4)

≤ O(λ2
2 + λ3 + λ4).

Lemma D.26. For random variable Z ∈ [0, 1], V[Z] ≤ E[Z].

Proof. V[Z] = E[Z2]− (E[Z])2 ≤ E[Z2] ≤ E[Z].

Lemma D.27. For any a, b ∈ [0, 1] and k ∈ N, ak − bk ≤ kmax{a− b, 0}.

Proof. ak − bk = (a− b)
∑k−1
i=0 a

ibk−1−i ≤ max{a− b, 0} ·
∑k−1
i=0 1 = kmax{a− b, 0}.

Lemma D.28. For a, b, x ≥ 0, x ≤ a
√
x+ b implies x ≤ (a+

√
b)2.

Proof. x ≤ a√x+ b⇒ x ≤
(
a+

√
a2+b
2

)2
≤ (a+

√
b)2.

D.6 Computational Complexity of EB-SSP

Here we complement Remark D.12 on the computational complexity of EB-SSP (Algorithm 5.1).
The computational complexity of a VISGO procedure can be bounded as O(S2A

1−ρ log(B⋆/εVI))
(assuming for simplicity that B⋆ ≥ 1, otherwise replace max{B⋆, 1} ← B⋆). By the fact
that total number of VISGO procedure is bounded by O(SA log T), we derive log(B⋆/εVI) =

192

D.7 Unknown B⋆: Parameter-Free EB-SSP

O(SA log(B⋆T)) by choice of εVI. As a result, the total computational complexity for EB-SSP is
O(TS2A ·SA log(B⋆T) ·SA log T), which is polynomially bounded and in particular near-linear
in T . Also note that T is bounded polynomially w.r.t.K as shown in the various cases of
Section 5.4. Indeed, in the case of positive costs lower bounded by cmin > 0, Corollary 5.3
entails that T ≤ c−1

minKV
⋆(s0) + c−1

minÕ
(
B⋆
√
SAK +B⋆S

2A
). In the general cost case, the cost

perturbation trick is applied and the minimum cost becomesK−n for Corollary 5.4 or (T ⋆K)−1

for Corollary 5.6, i.e., c−1
min depends polynomially onK.

We note that the analysis of the computational complexity of EB-SSP may likely be refined.
Indeed, we see that i) on the one hand, if n(s, a) is small, then the optimistic skewing of P̃s,a is
not too small so the probability of reaching the goal from (s, a) is not too small (so the associated
contraction modulus is bounded away from 1) and ii) on the other hand, if n(s, a)→ +∞, then
P̃s,a → P̂s,a → Ps,a, so to the limit we should recover the convergence properties of VI of the
optimal Bellman operator under the true model, which by assumption admits a proper policy
in P . Thus we see that studying further the “intermediate regime” may bring into the picture
the computational complexity of running VI in the true model, yet this is not our main focus
here, as our complexity analysis is sufficient to ensure the computational efficiency of EB-SSP.

D.7 Unknown B⋆: Parameter-Free EB-SSP

In this section, we relax the assumption that (an upper bound of) B⋆ is known to EB-SSP. In
Algorithm D.1 we propose a parameter-free EB-SSP that bypasses the requirement B ≥ B⋆

(line 2 of Algorithm 5.1) to tune the exploration bonus. As in Section 5.3 we consider for ease
of exposition that B⋆ ≥ 1. We structure the section as follows: Section D.7.1 presents our
algorithm and provides intuition, Section D.7.2 spells out its regret guarantee, and Section D.7.3
gives its proof.

D.7.1 Algorithm and Intuition

Parameter-free EB-SSP (Algorithm D.1) initializes an estimate B̃ = 1 and decomposes the
time steps into phases, indexed by ϕ. The execution of a phase is reported in the subroutine
PHASE (Algorithm D.2). Given any estimate B̃, a subroutine PHASE has the same structure as
Algorithm 5.1, up to two key differences:
• Halting due to exceeding cumulative cost. PHASE tracks the cumulative cost within the

current phase, and terminates whenever it exceeds a threshold Cbound that depends on B̃, S,
A, δ and the current episode and time indexes k and t, which are all computable quantities
to the agent, see Equation (D.10).

193

Complements on Chapter 5

• Halting due to exceeding VISGO range. During each VISGO procedure, PHASE tracks the
range of the value function V (i) at each VISGO iteration i, and terminates if ∥V (i)∥∞ > B̃.

The estimate B̃ can be incremented in two different ways and speeds:
• Doubling increment of B̃. On the one hand, whenever a phase ends (i.e., one of the two

halting conditions above is met), B̃ is doubled (B̃ ← 2B̃).
• Episode-driven increment of B̃. On the other hand, at the beginning of each new episode k,

the estimate is automatically increased to B̃ ← max{B̃,
√
k/(S3/2A1/2)}.

We now explain the rationale behind our scheme:
• Reason for episode-driven increment of B̃. The fact that B̃ grows as a function of k implies that

at some (unknown) point it will hold that B̃ ≥ B⋆ for large enough k. This will enable us to
recover the analysis and the regret bound of Theorem 5.1.

• Reason for doubling increment of B̃. The doubling increment comes into play whenever a phase
terminates due to an exceeding cumulative cost or VISGO range. At this point, the agent
becomes aware that B̃ is too small and thus it doubles it. It is crucial to allow intra-episode
increments of B̃ to avoid getting stuck in an episode with an underestimate B̃ < B⋆.

• Reason for cumulative cost halting. The cost threshold Cbound is designed so that (w.h.p.) it
can be exceeded at most once in the case of B̃ ≥ B⋆, and so that it can serve as a tight enough
bound on the regret in the case of B̃ < B⋆.

• Reason for VISGO range halting. The threshold B̃ on the range of the VISGO value functions is
chosen so that (w.h.p.) it is never exceeded in the case of B̃ ≥ B⋆, and so that it can serve
as a guarantee of finite-time near-convergence of a VISGO procedure (i.e., the contraction
property) in the case of B̃ < B⋆.

D.7.2 Regret Guarantee of Parameter-Free EB-SSP

Parameter-free EB-SSP satisfies the following guarantee (which extends Theorem 5.1 to un-
known B⋆).
Restatement of Theorem 5.7. Assume the conditions of Proposition 2.11 hold. Then with
probability at least 1− δ the regret of parameter-free EB-SSP (Algorithm D.1, Section D.7) can
be bounded by

RK = O

(
R⋆K log

(
B⋆SAT

δ

)
+B3

⋆S
3A log3

(
B⋆SAT

δ

))
,

where T is the cumulative time within the K episodes and R⋆K bounds the regret after K
episodes of EB-SSP in the case of known B⋆ (i.e., the bound of Theorem 5.1 with B = B⋆).

As a result, parameter-free EB-SSP is able to circumvent the knowledge of B⋆ at the cost of
only logarithmic and lower-order terms.

194

D.7 Unknown B⋆: Parameter-Free EB-SSP

D.7.3 Proof of Theorem 5.7

We begin by defining notations and concepts exclusively used in this section:
• Ct denotes the cumulative cost up to time step t (included) that is accumulated in the

execution of the subroutine PHASE in which time step t belongs. Importantly, note that the
cumulative costCt is initialized to 0 at the beginning of each PHASE (line 5 of AlgorithmD.2).
Also note that re-planning (i.e., a VISGO procedure) occurs whenever the estimate B̃ is
changed.

• Denote by tm the time step at the end of the current intervalm, and by km the episode in
which the time step tm belongs. B̃m denotes the value of B̃ at time step tm. Cm denotes Ctm ,
i.e., the cumulative cost up to intervalm (included) in the execution of the PHASE in which
intervalm belongs.
Unlike EB-SSP of Algorithm 5.1, the parameter-free version has an increasing B̃ throughout

the process. To utilize the regret bounds (Theorem 5.1 and Equation (D.6)) in the case of
B̃ ≥ B⋆, slight modifications are needed to be applied to the algorithm and some lemmas.
Modification to EB-SSP. Previously, EB-SSP accepted a single value B ≥ max{B⋆, 1} to
compute the bonuses in Equation (5.1). To satisfy the same regret bound when B̃ changes, we
require EB-SSP to accept a series of Bk for k ∈ N+, such that max{B⋆, 1} ≤ Bk ≤ B for any k.
In any episode k, the analysis simply substitutes Bk for B in Equation (5.1).
Modifications to the proofs of Lemmas D.9, D.10 and D.13. In the original version of the
proofs, we proved the lemmas for any update of value functions, without mentioning any time
relevant variables. Now sinceB relies on episode k, the modified proofs need to incorporate the
changes. Suppose that we are examining Q(s, a), V (s), b(s, a) and β(s, a) for any state-action
pair (s, a) ∈ S × A in episode k. Lemma D.9 and Lemma D.10 utilize the property stated in
Lemma D.8, and the B in Lemma D.8 is a parameter that is able to vary each time step we
utilize Lemma D.8. Thus, in the proofs of Lemma D.9, D.10 and D.13, all theB’s are substituted
with Bk’s to ensure that these lemmas are compatible with our modified setting.
Modification to the proof of bounding βm in Section D.4.3. Suppose that interval m is in
episode k and recall that Bk ≤ B, then

bm(s, a) = max

c1

√√√√V(P̃s,a, V (l))ιs,a
nm(s, a) , c2

Bkιs,a
nm(s, a)

+ c3

√
ĉm(s, a)ιs,a
nm(s, a) + c4

Bk
√
S′ιs,a

nm(s, a)

≤ O


√√√√V(P̃s,a, V (l))ιs,a

nm(s, a) + Bιs,a
nm(s, a) +

√
ĉm(s, a)ιs,a
nm(s, a) +

B
√
Sιs,a

nm(s, a)

 .
Combining the above bound of bm(s, a) with Lemma D.13, we get that the bound of βm in
Section D.4.3 is unchanged.

195

Complements on Chapter 5

Equippedwith the slight modifications mentioned above, we now derive two key properties
on which the analysis of parameter-free EB-SSP relies:
Property 1: Optimism avoids the first halting condition. Let us study any phase starting with
estimate B̃ ≥ B⋆. From Equation (D.6) (which is the interval-generalization of Theorem 5.1),
for a fixed initial state s0 and a fixed interval m, the cumulative cost can be bounded with
probability 1− δ by

kmV
⋆(s0) + x

(
B⋆
√
SAkm log2

(
B⋆tmSA

δ

)
+ B̃mS

2A log2
2

(
B⋆tmSA

δ

))
, (D.8)

where x > 0 is a large enough absolute constant (which can be retraced in the analysis leading to
Equation (D.6)). By scaling δ ← δ/(2St2m) for eachm ≤M , we have the following cumulative
cost bound that holds for any initial state in S and any intervalm ≤M , with probability 1− δ,

Cm ≤ kmV ⋆(s0) + x

(
B⋆
√
SAkm log2

(
B⋆tmSA · 2St2m

δ

)
+ B̃mS

2A log2
2

(
B⋆tmSA · 2St2m

δ

))

≤ kmB⋆ + 3x
(
B⋆
√
SAkm log2

(
B⋆tmSA

δ

)
+ B̃mS

2A log2
2

(
B⋆tmSA

δ

))
.

Since we are in the case of B̃m ≥ B⋆, we have

Cm ≤ kmB̃m + 3x
(
B̃m

√
SAkm log2

(
B̃mtmSA

δ

)
+ B̃mS

2A log2
2

(
B̃mtmSA

δ

))
. (D.9)

Since costs are non-negative, for any t ≤ tm, we have Ct ≤ Cm hence Ct must also satisfy
the bound of Equation (D.9). There remains to predict the values of km, tm, B̃m, given the
current kcur, tcur, B̃cur. The upper bounds for km and B̃m are kcur and B̃cur respectively, since
they can only be incremented when reaching the goal g, which is a condition for ending the
current interval. The upper bound for tm can be derived using the pigeonhole principle: since
tcur =

∑
(s,a)∈S×A n(s, a), we know that 2tcur >

∑
(s,a)∈S×A(2n(s, a) − 1). Thus by time step

2tcur there must exist a trigger condition, which is a condition for ending the current interval.
Hence, by replacing km ← kcur, B̃m ← B̃cur and tm ← 2tcur in Equation (D.9), we get, with
probability at least 1− δ, that the cumulative cost within a phase that starts with B̃ ≥ B⋆ has
the following anytime upper bound

Ctcur ≤ kcurB̃cur + 3x
(
B̃cur

√
SAkcur log2

(
2B̃curtcurSA

δ

)
+ B̃curS2A log2

2

(
2B̃curtcurSA

δ

))
.

Note that this bound corresponds exactly to the cumulative cost threshold Cbound in Equa-
tion (D.10). This means that with probability at least 1− δ, the first halting condition cannot
be met in a phase that starts with B̃ ≥ B⋆.

196

D.7 Unknown B⋆: Parameter-Free EB-SSP

Property 2: Optimism avoids the second halting condition. Let us consider the case of B̃ ≥ B⋆
whenever the algorithm re-plans (i.e., running VISGO procedure). The proof of Lemma D.9
ensures that at any iteration, ∥V (i)∥∞ ≤ B⋆ ≤ B̃, so the second halting condition is never met
under the same high-probability event as above.
Implications. The two properties above indicate that, if a phase starts with estimate B̃ ≥ B⋆,
with probability at least 1− δ, this phase will never halt due to the two halting conditions (it
can only terminate if it completes the final episodeK), and Algorithm D.1 will thus never enter
a new phase. Due to the doubling increment of B̃ every time a phase ends, we can therefore
bound the total number of phases as Φ ≤ ⌈log2(B⋆)⌉+ 1.
Analysis. We now split the analysis of the regret contributions of the episodes in two regimes.
To this end, let κ⋆ ≜ ⌈B2

⋆S
3A⌉ denote a special episode (note that it is unknown to the learner

since it depends on B⋆). We consider that the high-probability event mentioned above holds
(which is the case with probability at least 1− δ). Recall that at the beginning of each episode
k, the algorithm sets B̃ ← max{B̃,

√
k/(S3/2A1/2)}.

① Regret contribution in the first regime (i.e., episodes k < κ⋆).

We denote respectively by R1→κ⋆ and C1→κ⋆ the cumulative regret and the cumulative cost
incurred by the algorithm before episode κ⋆ begins. For any phase ϕ, we denote by
• C

(ϕ)
1→κ⋆ the cumulative cost incurred during the time steps that are both in phase ϕ and in an

episode k < κ⋆;
• k(ϕ) the episode when phase ϕ ends;
• t(ϕ) the time step when phase ϕ ends;
• B̃(ϕ) the value of B̃ at the end of phase ϕ.
Observe that

C1→κ⋆ =
Φ∑
ϕ=1

C
(ϕ)
1→κ⋆ .

Now, by definition of κ⋆, the episode-driven increment of B̃ never exceeds B⋆, unless B̃ is
already larger or equal to B⋆ at the beginning of the phase. But Property 1 ensures that if
B̃ ≥ B⋆ in the beginning of a phase, then B̃ will never be doubled afterwards. Hence, we are
guaranteed that within the episodes k < κ⋆, the final value of the estimate B̃ is at most 2B⋆.

Since PHASE tracks the cumulative cost at each step using the threshold in Equation (D.10)
and since ct ≤ 1, by the fact that Cbound is monotonously increasing with respect to t, we have
that for any phase ϕ,

C
(ϕ)
1→κ⋆

≤ k(ϕ)B̃(ϕ) + 3x
(
B̃(ϕ)

√
SAk(ϕ) log2

(
2B̃(ϕ)t(ϕ)SA

δ

)
+ B̃(ϕ)S2A log2

2

(
2B̃(ϕ)t(ϕ)SA

δ

))
+ 1

197

Complements on Chapter 5

≤ κ⋆(2B⋆) + 3x
(

(2B⋆)
√
SAκ⋆ log2

(
2(2B⋆)TSA

δ

)
+ (2B⋆)S2A log2

2

(
2(2B⋆)TSA

δ

))
+ 1

≤ O
(
B3
⋆S

3A+B2
⋆S

2A log
(
B⋆TSA

δ

)
+B⋆S

2A log2
(
B⋆TSA

δ

))
.

In addition, we recall that Φ ≤ ⌈log2(B⋆)⌉+ 1. Hence, by plugging in the definition of κ⋆, we
can bound the cost (and thus the regret) accumulated over the episodes k < κ⋆ as follows

R1→κ⋆ ≤ C1→κ⋆ ≤
⌈log2(B⋆)⌉+1∑

ϕ=1

O

(
B3

⋆S
3A+B2

⋆S
2A log

(
B⋆TSA

δ

)
+B⋆S

2A log2
(
B⋆TSA

δ

))
≤ O

(
B3

⋆S
3A log(B⋆) +B2

⋆S
2A log

(
B⋆TSA

δ

)
log(B⋆)

+B⋆S
2A log2

(
B⋆TSA

δ

)
log(B⋆)

)
≤ O

(
B3

⋆S
3Aι+B2

⋆S
2Aι2 +B⋆S

2Aι3
)
.

② Regret contribution in the second regime (i.e., episodes k ≥ κ⋆).

We denote respectively by Rκ⋆→K and Cκ⋆→K the cumulative regret and the cumulative cost
incurred during the episodes k ≥ κ⋆. By definition of κ⋆, the episode-driven increment of B̃
ensures that B̃ ≥ B⋆. During this second regime there may be at most two phases: one that
started at an episode k < κ⋆ (i.e., in the first regime) and that overlaps the two regimes, and
one starting after that (note that properties 1 and 2 ensure that at this point neither halting
condition can end this phase since it started with estimate B̃ ≥ B⋆, thus it lasts until the end of
the learning interaction). In addition, we can upper bound B̃ as follows

B̃ ≤ max
{

2B⋆,
2
√
K

S3/2A1/2

}
.

We now introduce a fourth condition of stopping an interval to the analysis performed in
Section D.3.3: (4) an interval ends when a subroutine PHASE ends. This implies that the policy
always stays the same within an interval when running Algorithm D.1. Condition (4) is met at
most once in the second regime.

We now focus on only the second regime: we re-index intervals by 1, 2, . . . ,M ′ and let Tm
denote the time step counting from the beginning of κ⋆ to the end of interval m. To bound
Rκ⋆→K , we need to adapt the proofs in Section D.3.5 and Section D.4.3 to be compatible with
our new interval decomposition. Concretely, there are two slight modifications in the analysis
of the second regime:
• Statistics: For any statistic (i.e., N(s, a, s′), θ(s, a) and ĉ(s, a) for any (s, a, s′) ∈ S ×A× S ′),

instead of learning from scratch, PHASE reuses all samples collected thus far. This difference

198

D.7 Unknown B⋆: Parameter-Free EB-SSP

does not affect the regret bound and the probability, since it can be viewed by taking a
partial sum of terms in R̃M ′ .

• The regret decomposition: In the proof of Lemma D.15, we need to incorporate condition
(4) which is met at most once during the second regime. It falls into case (ii) in the proof
of Lemma D.15, which thus happens at most 2SA log2(TM ′) + 1 times, and the regret
decomposition should be

R̃M ′ ≤ X1(M ′) +X2(M ′) +X3(M ′) + 2B⋆SA log2(TM ′) +B⋆.

Hence by incorporating these slightmodifications in the proof of Theorem5.1, we get probability
at least 1− δ,

Rκ⋆→K ≤ O
(
B⋆
√
SAK log

(
B⋆TSA

δ

)
+ S2AB̃M ′ log2

(
B⋆TSA

δ

))
≤ O

(
B⋆
√
SAK log

(
B⋆TSA

δ

)
+ S2A

√
K

S3/2A1/2 log2
(
B⋆TSA

δ

))
≤ O

(
B⋆
√
SAKι+

√
SAKι2

)
.

③ Combining the regret contributions in the two regimes.

The overall regret is bounded with probability at least 1− δ by

RK = R1→κ⋆ +Rκ⋆→K ≤ O
(
B⋆
√
SAKι+

√
SAKι2 +B3

⋆S
3Aι+B2

⋆S
2Aι2 +B⋆S

2Aι3
)
.

There remains to plug in the definition of ι. Denote by T the cumulative time within the
K episodes and by R⋆K the regret after K episodes of EB-SSP in the case of known B⋆ (i.e.,
the bound of Theorem 5.1 with B = B⋆). Then with probability at least 1 − δ the regret of
parameter-free EB-SSP can be bounded as

RK = O

(
R⋆K +

√
SAK log2

(
B⋆SAT

δ

)
+B3

⋆S
3A log3

(
B⋆SAT

δ

))
= O

(
R⋆K log

(
B⋆SAT

δ

)
+B3

⋆S
3A log3

(
B⋆SAT

δ

))
.

This concludes the proof of Theorem 5.7.

Remark D.29. At a high level, our analysis to circumvent the knowledge of B⋆ boils down to
the following argument: if the estimate is too small, we bound the regret by the cumulative
cost; otherwise if it is large enough, we recover the regret bound under a known upper bound
on B⋆. Interestingly, this somewhat resembles the reasoning behind the schemes for unknown
SSP-diameter D in the adversarial SSP algorithms of Rosenberg and Mansour (2021, App. I)
and Chen and Luo (2021, App. E) (recall that D ≜ maxs∈S minπ∈Πproper T

π(s) and that B⋆ ≤

199

Complements on Chapter 5

Algorithm D.1: Algorithm for unknown B⋆: Parameter-free EB-SSP
1 Input: S, s0 ∈ S, g ̸∈ S, A, δ.
2 Optional input: cost perturbation η ∈ [0, 1].
3 Set up global constants: S, A, s0 ∈ S, g ̸∈ S, η.
4 Set up global variables: t, j, N(), n(), P̂ , θ(), ĉ(), Q(), V ().
5 Set estimate B̃ ← 1.
6 Set current starting state sstart ← s0.
7 Set t← 1, k ← 1, j ← 0.
8 For (s, a, s′) ∈ S ×A× S ′, set N(s, a)← 0; n(s, a)← 0; N(s, a, s′)← 0; P̂s,a,s′ ← 0; θ(s, a)←

0; ĉ(s, a)← 0; Q(s, a)← 0; V (s)← 0.
9 Set phase counter ϕ← 1.
10 while True do
11 Set scur, B̃cur, kcur ← PHASE (sstart, B̃, k) (Algorithm D.2).
12 \\ PHASE halts because of B⋆ underestimation, entering a new phase
13 Set sstart ← scur, k ← kcur, B̃ ← 2B̃cur, and increment phase index ϕ← ϕ+ 1.

D ≤ T⋆). Note, however, that these schemes change their algorithms’ structure: whenever
the agent is in a state that is insufficiently visited, it executes the Bernstein-SSP algorithm of
Rosenberg et al. (2020) with unit costs until the goal is reached. In other words, these schemes
first learn to reach the goal (regardless of the costs) and then focus on minimizing the costs
to goal. In contrast, our scheme for unknown B⋆ targets the original SSP objective from the
start and it does not fundamentally alter our algorithm EB-SSP with known B⋆. Indeed, the
only addition of parameter-free EB-SSP is a dual tracking of the cumulative costs and VISGO
ranges, and a careful increment of the estimate B̃ in the bonus. Finally, our scheme only adds
“horizon-free” lower-order terms (i.e., B⋆, S,A) as shown in Theorem 5.7, as opposed to the
aforementioned schemes that introduce a lower-order dependence on the SSP-diameter D,
which may be much larger than B⋆.

200

D.7 Unknown B⋆: Parameter-Free EB-SSP

Algorithm D.2: Subroutine PHASE
1 Input: sstart ∈ S, B̃, k.
2 Global constants: S, A, s0 ∈ S, g ̸∈ S, η.
3 Global variables: t, j, N(), n(), P̂ , θ(), ĉ(), Q(), V ().
4 Specify: Trigger set N ← {2j−1 : j = 1, 2, . . .}. Constants

c1 = 6, c2 = 36, c3 = 2
√

2, c4 = 2
√

2. Large enough absolute constant x > 0 (so that
Equation (D.8) holds, see Section D.7.3).

5 Set C ← 0. \\ Reinitialize cumulative cost tracker
6 for episode kcur = k, k + 1, . . . do
7 if

√
kcur/(S3/2A1/2) > B̃ then

8 Set B̃ ← √kcur/(S3/2A1/2), and set j ← j + 1, εVI ← 2−j/(SA).
9 Info, Q, V ← VISGO (B̃, εVI).
10 if Info = Fail then
11 \\ Second halting condition: VISGO range exceeds threshold
12 return st, B̃, kcur.
13 Set st ←

{
sstart, kcur = k,
s0, otherwise.

14 while st ̸= g do
15 Take action at = arg mina∈A Q(st, a), incur cost ct and observe next state

st+1 ∼ P (·|st, at).
16 Set (s, a, s′, c)← (st, at, st+1,max{ct, η}) and t← t+ 1.
17 Set N(s, a)← N(s, a) + 1, θ(s, a)← θ(s, a) + c, C ← C + c, N(s, a, s′)← N(s, a, s′) + 1,

and set

Cbound ← kcurB̃ + 3x
(
B̃
√
SAkcur log2

(
2B̃tSA

δ

)
+ B̃S2A log2

2

(
2B̃tSA

δ

))
.

(D.10)
18 if C > Cbound then
19 \\ First halting condition: cumulative cost exceeds threshold
20 return st, B̃, kcur.
21 if N(s, a) ∈ N then
22 Set ĉ(s, a)← I[N(s, a) ≥ 2] 2θ(s,a)

N(s,a) + I[N(s, a) = 1]θ(s, a) and θ(s, a)← 0.
23 For all s′ ∈ S, set P̂s,a,s′ ← N(s, a, s′)/N(s, a), n(s, a)← N(s, a), and set

j ← j + 1, εVI ← 2−j/(SA).
24 Info, Q, V ← VISGO (B̃, εVI).
25 if Info = Fail then
26 \\ Second halting condition: VISGO range exceeds threshold
27 return st, B̃, kcur.

201

Complements on Chapter 5

Algorithm D.3: Subroutine VISGO
1 Inputs: B̃, εVI.
2 Global constants: S, A, s0 ∈ S, g ̸∈ S, η.
3 Global variables: t, j, N(), n(), P̂ , θ(), ĉ(), Q(), V ().
4 For all (s, a, s′) ∈ S ×A× S ′, set

P̃s,a,s′ ← n(s, a)
n(s, a) + 1 P̂s,a,s′ + I[s′ = g]

n(s, a) + 1 .

5 For all (s, a) ∈ S ×A, set n+(s, a)← max{n(s, a), 1}, ιs,a ← ln
(

12SAS′[n+(s,a)]2

δ

)
.

6 Set i← 0, V (0) ← 0, V (−1) ← +∞.
7 while ∥V (i) − V (i−1)∥∞ > εVI do
8 For all (s, a) ∈ S ×A, set

b(i+1)(s, a) ← max
{
c1

√
V(P̃s,a, V (i))ιs,a

n+(s, a) , c2
B̃ιs,a

n+(s, a)

}
+ c3

√
ĉ(s, a)ιs,a

n+(s, a) + c4
B̃
√
S′ιs,a

n+(s, a) ,

(D.11)
Q(i+1)(s, a) ← max

{
ĉ(s, a) + P̃s,aV

(i) − b(i+1)(s, a), 0
}
, (D.12)

V (i+1)(s) ← min
a
Q(i+1)(s, a). (D.13)

9 Set V (i+1)(g)← 0 and i← i+ 1.
10 if ∥V (i)∥∞ > B̃ then
11 \\ Second halting condition: VISGO range exceeds threshold
12 return Fail, Q(i), V (i).

13 return Success, Q(i), V (i).

202

Appendix E

Complements on Chapter 7

E.1 Efficient Computation of Optimistic SSP Policy

In this section, we recall how to compute an optimistic stochastic shortest path (SSP) policy
using an extended value iteration (EVI) scheme tailored to SSP, as explained in Chapter 4. The
only difference here is that we leverage a Bernstein-based construction of confidence intervals,
as done by e.g., Rosenberg et al. (2020).

Consider as input an SSP-MDP instanceM † ≜ ⟨S†,A, c, P, s†⟩, with goal s†, non-goal states
S† = S \ {s†}, actions A, unknown dynamics P , and known cost function with costs in [cmin, 1]
where cmin > 0. We assume that there exists at least one proper policy (i.e., that reaches
the goal s† with probability one when starting from any state in S†). Note that in particular
such condition is verified under Assumption 7.2. We denote by N(s, a) the current number
of samples available at the state-action pair (s, a) and set N+(s, a) ≜ max{1, N(s, a)}. We also
denote by P̂ the current empirical average of transitions: P̂ (s′|s, a) = N(s, a, s′)/N(s, a). The
algorithm first computes a set of plausible SSP-MDPs defined as

M† ≜
{
⟨S†,A, c, P̃ , s†⟩ | P̃ (s†|s†, a) = 1, P̃ (s′|s, a) ∈ B(s, a, s′),

∑
s′

P̃ (s′|s, a) = 1
}
,

where for any (s, a) ∈ S† ×A, B(s, a, s′) is a high-probability confidence set on the dynamics
of the true SSP-MDP M †. Specifically, we define the compact sets B(s, a, s′) ≜ [P̂ (s′|s, a) −
β(s, a, s′), P̂ (s′|s, a) + β(s, a, s′)] ∩ [0, 1], where

β(s, a, s′) ≜ 2
√
σ̂2(s′|s, a)
N+(s, a) log

(2SAN+(s, a)
δ

)
+

6 log
(

2SAN+(s,a)
δ

)
N+(s, a) ,

203

Complements on Chapter 7

where σ̂2(s′|s, a) ≜ P̂ (s′|s, a)(1− P̂ (s′|s, a)) is the variance of the empirical transition P̂ (s′|s, a).
Importantly, the choice of β(s, a, s′) guarantees thatM † ∈M† with high probability. Indeed,
let us now spell out the high-probability event. Denote by E the event under which for any
time step t ≥ 1 and for any state-action pair (s, a) ∈ S ×A and next state s′ ∈ S, it holds that

|P̂t(s′|s, a)− P (s′|s, a)| ≤ βt(s, a, s′). (E.1)

Given the way the confidence intervals are constructed using the empirical Bernstein inequality
(see e.g., Audibert et al., 2009; Fruit et al., 2020; Rosenberg et al., 2020), we have P(E) ≥ 1− δ.
Throughout the remainder of the analysis, we will assume that the event E holds.

OnceM† has been computed, the algorithm applies an extended value iteration (EVI)
scheme to compute a policy with lowest optimistic value. Formally, it defines the extended
optimal Bellman operator L̃ such that for any vector ṽ ∈ RS† and non-goal state s ∈ S†,

L̃ṽ(s) ≜ min
a∈A

{
c(s, a) + min

P̃∈B(s,a)

∑
s′∈S†

P̃ (s′|s, a)ṽ(s′)
}
.

We consider an initial vector ṽ0 ≜ 0 and set iteratively ṽi+1 ≜ L̃ṽi. For a predefined VI precision
µVI > 0, the stopping condition is reached for the first iteration j such that ∥ṽj+1 − ṽj∥∞ ≤ µVI.
The policy π̃ is then selected to be the optimistic greedy policy w.r.t. the vector ṽj . While ṽj is
not the value function of π̃ in the optimistic model P̃ , which we denote by Ṽ π̃, both quantities
can be related according to the following lemma, which stems exactly from Lemma 2.13. We
denote by V ⋆ (resp. Ṽ ⋆) the optimal value function in the true (resp. optimistic) SSP instance.

Lemma E.1. Under the event E , the following component-wise inequalities hold: 1) ṽj ≤ V ⋆, 2)
ṽj ≤ Ṽ ⋆ ≤ Ṽ π̃, 3) If the VI precision level verifies µVI ≤ cmin

2 , then Ṽ π̃ ≤
(
1 + 2µVI

cmin

)
ṽj .

Note that for the purposes of GOSPRL (Algorithm 7.1), the VI precision µVI can for example
be selected as in Chapter 4 equal to 1/(2tk) with tk the current time step, which only translates
in a negligible, lower-order error in the sample complexity result of Corollary E.2.

E.2 Proof of Theorem 7.5

We first focus on the special case where the sampling requirements are time- and action-
independent, i.e., b : S → N.

204

E.2 Proof of Theorem 7.5

Corollary E.2. Under Assumption 7.2, for any input sampling requirements b : S → N with
B ≜

∑
s∈S b(s) and for any confidence level δ ∈ (0, 1),

C
(
GOSPRL, b, δ

)
= Õ

(
BD +D3/2S2A

)
, (E.2)

C
(
GOSPRL, b, δ

)
= Õ

(∑
s∈S

(
Dsb(s) +D3/2

s S2A
))
. (E.3)

E.2.1 Proof of Corollary E.2

Wedenote by E the event—which holds with probability at least 1−δ—such that the empirical
Bernstein inequalities stated in Equation (E.1) hold simultaneously for each time step t and
each state-action-next-state triplet (s, a, s′) ∈ S ×A× S , i.e.,

|P̂t(s′|s, a)− P (s′|s, a)| ≤ βt(s, a, s′),

where

βt(s, a, s′) ≜ 2

√√√√ σ̂2
t (s′|s, a)
N+
t (s, a)

log
(

2SAN+
t (s, a)
δ

)
+

6 log
(

2SAN+
t (s,a)
δ

)
N+
t (s, a)

.

We recall that at the beginning of each episode j, the under-sampled states Gj are cast as
goal states.1 GOSPRL then constructs an SSP-MDP instanceMj ≜ ⟨Sj ,A, Pj , cj ,Gj⟩, where Gj
encapsulates the goal states and Sj := S \ Gj the non-goal states. The transition model Pj is the
same as the original P except for the transitions exiting the goal states which are redirected as
a self-loop, i.e., Pj(s′|s, a) ≜ P (s′|s, a) and Pj(g|g, a) ≜ 1 for any (s, s′, a, g) ∈ Sj × S ×A× Gj .
As for the cost function cj , for any action a ∈ A, any goal state g ∈ Gj is zero-cost (i.e.,
cj(g, a) ≜ 0), while the non-goal costs are unitary (i.e., cj(s, a) ≜ 1 for all s ∈ Sj).

We nowmakemore explicit theway the SSP optimistic policy is constructed at the beginning
of any episode j. Denote by P̂j the empirical transitions of the induced SSP-MDP Mj . We
consider the following confidence intervals β′

j in the optimistic SSP policy computation from
Section E.1

∀(a, s′) ∈ A× S, ∀s /∈ Gj , β′
j(s, a, s′) ≜ βt(s, a, s′), ∀s ∈ Gj , β′

j(s, a, s′) = 0.

1In the case of state-only requirements, a state s is considered under-sampled if∑
a∈A Nt−1(s, a) < b(s). In the

case of state-action requirements, a state s is considered under-sampled if ∃a ∈ A, Nt−1(s, a) < b(s, a).

205

Complements on Chapter 7

We denote by P̃j the optimistic model computed by the EVI scheme with such confidence
intervals. Now, denoting by P(S) the power set of the state space S, we have the following
event inclusion

E ⊆ E ′ ≜
{
∀j ≥ 1, ∀Gj ∈ P(S), ∀(a, s′) ∈ A× S,

∀s /∈ Gj , |P̃j(s′|s, a)− P̂j(s′|s, a)| ≤ β′
j(s, a, s′),

∀s ∈ Gj , P̃j(s|s, a) = 1
}
.

Indeed, the only transitions that are redirected from P to Pj are those that exit from states
in Gj and they are set to deterministically self-loop, which implies that they do not contain
any uncertainty. Note that E ′ is the event that we require to hold so that the SSP analysis goes
through for any considered SSP-MDPMj . From the inclusion above, we have that the event E ′

holds with probability at least 1− δ, and we assume from now on that it holds.
We denote by Hj the length of each episode j, specifically Hj ≜ minh≥1{sj,h ∈ Gj}, where

we denote by sj,h the h-th state visited during episode j. We denote by sj ≜ sj,Hj the goal state
in Gj that is reached at the end of episode j. Correspondingly, the starting state of each episode
j, denoted by sj , also varies: if j = 1 it is the initial state s0 of the learning interaction, otherwise
it is equal to sj−1 which is the reached goal state at the end of the previous episode j − 1.2 The
important property is that both the starting state sj and the goal states Gj are measurable (i.e.,
known and fixed) at the beginning of each episode j.

We define RJ the regret after J episodes as follows

RJ ≜
J∑
j=1

Hj∑
h=1

cj(sj,h, aj,h)−
J∑
j=1

min
π
V π
j (sj), (E.4)

where we denote by V π
j (s) the value function of a policy π starting from state s in the SSP-MDP

instanceMj . We also denote by C(GOSPRL, b) the random variable of the total time accumulated
by GOSPRL until the sampling requirements b are met.

On the one hand, the regret RJ can be lower bounded almost surely as follows

RJ
(a)=

J∑
j=1

Hj −
J∑
j=1

min
π

E
[
τπ(sj → Gj)

]
2This choice of initial state for episodes is when we have state-only sampling requirements. If we instead have

state-action requirements, the action taken at each reached goal state matters. In that case, when episode j − 1
reaches a goal state sj−1, the agent takes a relevant action aj−1 and we then consider that the starting state sj
at the next episode j is distributed according to P (·|sj−1, aj−1). The action aj−1 is naturally specified by the
algorithm depending on the current and desired requirements N(sj−1, ·) and b(sj−1, ·), i.e., we should select
aj−1 ∈ {a ∈ A : N(sj−1, a) < b(sj−1, a)} with N the state-action counter at the end of episode j − 1. We explain
in Section F.4 the way we select this action in our experiments.

206

E.2 Proof of Theorem 7.5

(b)= C(GOSPRL, b)−
J∑
j=1

min
π

E
[
τπ(sj → Gj)

]
(c)
≥ C(GOSPRL, b)−DB, (E.5)

where (a) stems from the fact that all the non-goal costs are unitary, (b) comes from the
definition of the index J (i.e., the episode at which all the sampling requirements are met)
and (c) combines that J ≤ B almost surely and that E

[
τπ(sj → Gj)

]
≤ D by definition of the

diameter D.
On the other hand, retracing the analysis of Rosenberg et al. (2020), the derivation of the

regret bound can be easily extended to varying initial states and varying (possibly multiple3)
goal states across episodes, as long as they are all known to the learner at the beginning of each
episode (which is our case here). In particular, the high-probability event is E ′ ⊇ E defined
above, which holds with probability at least 1− δ. Under this event, we have from Rosenberg
et al. (2020, Thm. 2.4) that GOSPRL satisfies

RJ = Õ
(
DS
√
AJ +D3/2S2A

)
. (E.6)

Combining Equation (E.5) and E.6 yields that with probability at least 1− δ, we have

C(GOSPRL, b) ≤ Õ
(
BD +DS

√
AJ +D3/2S2A

)
.

Given that J ≤ B almost surely, we get

C(GOSPRL, b, δ) ≤ Õ
(
BD +DS

√
AB +D3/2S2A

)
. (E.7)

We now proceed with a separation of cases. IfB ≥ S2A, we haveDS
√
AB ≤ BD. Otherwise, if

B ≤ S2A, we have DS
√
AB ≤ D3/2S2A. This implies that the second summand in the Õ sum

in Equation (E.7) can be removed, which yields the first sought-after bound of Equation (E.2).
In order to obtain the second more state-dependent bound of Equation (E.3), the bound of

Equation (E.6) is too loose, hence we need to extend the analysis of Rosenberg et al. (2020)
to bring out dependencies on b(s) and Ds. In particular, we consider a similar decomposition

3Note that the SSP formulation can easily handle multiple goal states. To justify this statement, we make explicit
an SSP instance with single goal state that is strictly equivalent to the SSP instance Mj at hand with multiple
goals Gj . To do so, we introduce an artificial terminal state λ and define the SSP-MDP Qj with S ∪ {λ} states (the
non-goals are S while the unique goal is λ). Its transition dynamics qj is defined as follows: qj(λ|λ, a) = 1, ∀s /∈
Gj , qj(s′|s, a) = Pj(s′|s, a), and ∀s ∈ Gj , qj(λ|s, a) = 1. Its cost function is set to the original costs cj for states not in
Gj , and to 0 (or equivalently any constant) for states in Gj , and finally to 0 for the terminal state λ. This construction
mirrors the one proposed by Bertsekas in the lecture https://web.mit.edu/dimitrib/www/DP_Slides_2015.pdf
(page 25). Note that the SSP instanceMj withmultiple goal states Gj is equivalent to the single-goal SSP instanceQj .
The artificial terminal state λ is not formally necessary; it justifies why having multiple goal states is well-defined
from an analysis point of view.

207

Complements on Chapter 7

in epochs and intervals that we carefully adapt for our purposes of varying goal states. The
first epoch starts at the first time step and each epoch ends once the number of visits to some
state-action pair is doubled. We denote by Gm the goal states that are considered during
intervalm and by DGm the SSP-diameter of the goal states Gm. The first interval starts at the
initial time step and each intervalm (with goal states Gm) ends once one of the four following
conditions holds: (i) the length of the interval reaches DGm ; (ii) an unknown state-action pair
is reached (where a state-action pair (s, a) becomes known if its total number of visits exceeds
αDGmS log(DGmSA/δ) for some constant α > 0); (iii) the current episode ends, i.e., the a goal
state in Gm is reached; (iv) the current epoch ends, i.e., the number of visits to some state-action
pair is doubled. Finally, we denote byHm the length of each intervalm, byM the total number
of intervals and by TM ≜

∑M
m=1Hm the total time steps. As such, TM amounts to the sample

complexity that we seek to bound. Note that the goal states Gm are measurable at the beginning
of the attemptm. Hence we can extend the reasoning of Rosenberg et al. (2020, Appendix B.2.7
& B.2.8) to varying goal states using the decomposition described above. Assuming throughout
that the high-probability events hold, we get4

TM = Õ

 ∑
m∈M(iii)

DGm + S
√
A

√√√√ M∑
m=1

D2
Gm +DS2A

 , (E.8)

whereM(iii) is defined as the set of intervals that end according to condition (iii). We now
proceed with the following decomposition, which is analogous to Rosenberg et al. (2020,
Observation 4.1)

M∑
m=1

D2
Gm ≤

∑
m:Hm≥DGm

D2
Gm +

∑
m:Hm<DGm

D2
Gm .

Using that DGm ≤ D, the first term can be bounded as

∑
m:Hm≥DGm

D2
Gm ≤ D

∑
m:Hm≥DGm

DGm ≤ D
∑

m:Hm≥DGm

Hm ≤ D
M∑
m=1

Hm = DTM .

As for the second term, we observe that it removes intervals ending under the condition (i) and
thus only accounts for intervals ending under the conditions (ii), (iii) or (iv). We now perform
the following key partition of intervals: each interval is categorized depending on the first goal
state that ends up being reached at the end or after the considered interval. We call this goal
state the retrospective goal state of the interval. This retrospective categorization of intervals can be

4The intuition behind Equation (E.8) comes from the Cauchy-Schwarz inequality. For instance, let us consider the
objective of bounding the quantity Y ≜∑

m
xm

√
ym, where the (xm) correspond to the SSP-diameters considered

at each intervalm and the (ym) are the summands whose sums are bounded by Rosenberg et al. (2020, LemmaB.16).
In the latter work, denoting by x the common upper bound on the (xm), the analysis yields Y ≤ x

∑
m

√
ym ≤

x
√
M
√∑

m
ym. In contrast, our setting requires to perform the tighter inequality Y ≤

√∑
m
x2
m

√∑
m
ym.

208

E.2 Proof of Theorem 7.5

performed since it does not appear at an algorithmic level, but only appears at an analysis-level
after Equation (E.8) is obtained, in order to simplify it. For any intervalm, we denote by sm
its retrospective goal. Likewise, let us denote byMs (resp.Ms) the number (resp. the set) of
intervals with retrospective goal state s. Finally, for any j ∈ {ii, iii, iv}, we denote we denote
byM (j) (resp.M(j)) the number (resp. the set) of intervals that end according to condition
(j), and byM (j)

s (resp.M(j)
s) the number (resp. the set) of intervals with retrospective goal

state s that end according to condition (j). We can now write
∑

m:Hm<DGm

D2
Gm =

∑
m∈M(ii)

D2
Gm +

∑
m∈M(iii)

D2
Gm +

∑
m∈M(iv)

D2
Gm =

∑
j∈{ii,iii,iv}

∑
m∈M(j)

D2
Gm .

Now, for any j ∈ {ii, iii, iv},
∑

m∈M(j)

D2
Gm =

∑
m∈M(j)

(∑
s∈S

1{sm=s}
)
D2

Gm =
∑
s∈S

∑
m∈M(j)

s

D2
Gm

(a)
≤
∑
s∈S

∑
m∈M(j)

s

D2
s

=
∑
s∈S

M (j)
s D2

s ,

where inequality (a) comes from Lemma E.3 stated later. Moreover, we have

M (ii)
s = Õ

(
DsS

2A
)

; M (iii)
s ≤ b(s); M (iv) ≤ 2SA log(TM).

While the first and third bounds above are similar to those considered by Rosenberg et al. (2020),
the key difference lies in the second bound, which leverages that the number of intervals that
end in the goal state s is, by definition of our problem, upper bounded by the number of
samples required at state s, i.e., b(s). All in all, this implies that

∑
m:Hm<DGm

D2
Gm ≤ Õ

(∑
s∈S

D3
sS

2A

)
+
∑
s∈S

b(s)D2
s + Õ

(
D2SA

)
.

Moreover, in a similar manner as above, we bound the first term of Equation (E.8) as follows
∑

m∈M(iii)

DGm =
∑
s∈S

M (iii)
s Ds ≤

∑
s∈S

Dsb(s).

Putting everything together back into Equation (E.8) and simplifying using the subadditivity
of the square root, we get

TM = Õ

∑
s∈S

Dsb(s) +DS2A+ S
√
ADTM + S

√
A

√∑
s∈S

b(s)D2
s + S2A

∑
s∈S

D3/2
s

 .
209

Complements on Chapter 7

Using that x ≤ c1
√
x+ c2 implies x ≤ (c1 +√c2)2 for c1 ≥ 0 and c2 ≥ 0, we obtain

TM = Õ


S√DA+

√∑
s∈S

Dsb(s) +
√√√√S√A√∑

s∈S
b(s)D2

s +
√
S2A

∑
s∈S

D
3/2
s


2 . (E.9)

We now apply the Cauchy-Schwarz inequality to simplify the third summand

S
√
A

√∑
s∈S

b(s)D2
s ≤

∑
s∈S

√
S2ADs

√
Dsb(s) ≤

√∑
s∈S

Dsb(s)
√
S2A

∑
s∈S

Ds.

Let us introduce x ≜
√∑

s∈S Dsb(s) and y ≜
√
S2A

∑
s∈S D

3/2
s . Plugging the simplifications

into Equation (E.9) finally yieldswith probability at least 1−δ that TM = Õ
((
x+√xy + y

)2) =

Õ
(
(x+ y)2

)
= Õ

(
x2 + y2). Since TM amounts to the sample complexity, we get the desired

bound of Equation (E.3), which reads

C(GOSPRL, b, δ) = Õ

(∑
s∈S

Dsb(s) + S2A
∑
s∈S

D3/2
s

)
.

Lemma E.3. For any set of goals G ⊊ S, we introduce the meta SSP-diameter DG ≜

maxs∈S\G minπ E [τπ(s→ G)], where we define τπ(s→ G) ≜ min{t ≥ 0 : st+1 ∈ G | s1 = s, π}.
Then we have

DG ≤ min
s∈G

Ds.

Proof. For any g ∈ G, s ∈ S \ G and policy π, we have E [τπ(s→ G)] ≤ E [τπ(s→ g)]. In
particular, this implies that for any g ∈ G, DG ≤ Dg, which immediately gives the result.

E.2.2 From Corollary E.2 to Theorem 7.5

We now consider the general case of possibly action-dependent and time-dependent sampling
requirements.

State-action requirements. First, GOSPRL can be easily extended from state requirements
b(s) to state-action requirements b(s, a). Indeed, the only difference between these two settings
occurs w.r.t. which action the algorithm takes at the end of a given episode (i.e., when a sought-
after goal state is reached): for state-action requirements, any under-sampled action is taken
(see footnote 2 for details). Bound-wise, the number of times where this scenario occurs is

210

E.3 Lower Bound

at most B (since there are at most B episodes), hence the guarantee from Corollary E.2 is
unaffected whatever the action executed once a goal state is reached.

Adaptive requirements. GOSPRL can be also easily extended to requirements (bt(s, a))t≥1

that vary over time, where bt may be chosen adaptively depending on the samples observed
so far (i.e., bt is measurable w.r.t. the filtration up to time t). Indeed, the important property
required in the derivations of Section E.2.1 that both the starting state and the goal states
should be measurable (i.e., known and fixed) at the beginning of each episode still holds. As
such, the sample complexity result of Corollary E.2 can be naturally extended by defining
Bτ ≜

∑
s,a bτ (s, a), where τ is the first (random) time step when all the sampling requirements

are met. In order for the sample complexity to remain bounded, a sufficient condition is
Assumption 7.3. In particular, considering the sequence bt(s, a) to be upper bounded by
a fixed threshold b(s, a) for each (s, a), the bound from Corollary E.2 trivially holds with
B ≜

∑
s,a b(s, a).

E.2.3 Remark

Notice that the “comparator” we are using in the definition of the regret in Equation (E.4) may
not be the “global” optimum in terms of sample complexity. Indeed, the optimal sequence of
strategies would result in a non-stationary policy π⋆C ∈ arg minπ C(π, b, δ). Yet in our analysis,
we compare the algorithmic performance with the larger quantity∑J

j=1 minπ V π
Gj (sj), which

corresponds to “greedily” minimizing each time to reach an under-sampled state in a sequen-
tial fashion. This highlights that GOSPRL does not track any optimal sampling allocation or
distribution (i.e., it does not seek to “imitate” π⋆C), insofar as it discards the effect of traversing
other states while reaching an undersampled goal state. While this means that some areas of
the state space may be oversampled, GOSPRL is able to devote its full attention to the objective
of minimizing the total sample complexity, instead of being mindful to avoid certain areas of
the state space which it has already visited. We argue that this is what results in the appeal-
ing sample complexity of GOSPRL, whereas other techniques specifically designed to track
distributions (via e.g., the Frank-Wolfe algorithmic scheme) struggle to minimize the sample
complexity, as explained in Sections E.6 and 7.4.1.

E.3 Lower Bound

In this section, we provide three complementary results that lower bound the sample complexity
of the problem of Definition 7.1.

211

Complements on Chapter 7

① First, as stated in Lemma 7.4, we construct a simple MDP such that for any arbitrary
sampling requirements b(s), the (possibly non-stationary) policy minimizing the time to collect
all samples has sample complexity of order Ω

(∑
s∈S Dsb(s)

). We begin with a useful result.

Lemma E.4. Let q ∈ (0, 1) and consider the Markov chainMq with two states x, y whose dynamics
pq are as follows: pq(y|x) = q, pq(x|x) = 1 − q and pq(x|y) = 1. ThenMq is communicating
with diameter Dq ≜ 1

q . Moreover, denote by TB the (random) time of the B-th visit to state
y starting from any state, and assume that B ≥ 5. Then with probability at least 1

2 , we have
TB ≥ B

2q +B = BDq
2 +B.

Proof. Introduce X ≜∑n
i=1Xi where Xi ∼ Ber(q) (i.e., it follows a Bernoulli with parameter

q) and we set n ≜ B
2q . We have E [X] = nq = B

2 . Moreover, the Chernoff inequality entails that

P (X ≥ B) = P (X ≥ 2E[X]) ≤ exp
(
− E[X]

3
)

= exp
(
− B

6
)
≤ 1

2 ,

where the last inequality holds whenever B ≥ 6 log(2). Note that the random variable TB
follows a negative binomial distribution for which each success accounts for two time steps
instead of one. This means that with probability at least 1

2 ,

TB ≥ n+B = B

2q +B = BDq

2 +B.

Let us now consider a state space S ≜ {s1, . . . , sS} and arbitrary sampling requirements
b : S → N. We construct a wheel MDP with state space S ∪ {s0}, where s0 is the starting
center state. There are A = S actions available and the dynamics P are defined w.r.t. a set
(εi) ∈ (0, 1)S such that ∀i ∈ [S], P (si|s0, ai) = εi, P (s0|s0, ai) = 1 − εi, and for every action
a, P (s0|si, a) = 1. Note that by having such A = S actions, the attempts to collect relevant
samples are independent, in the sense that at any s ∈ S , the learner cannot rely on the attempts
performed for the other states s′ ̸= s. Let us assume that b(s) ≥ 6 log(2S). From Lemma E.4,
for any state s ∈ S , with probability 1− 1

2S , the time needed to collect b(s) samples from state s
is lower bounded by b(s)

2εi + b(s), and furthermore we have Ds = 1
εi

+ 1. Taking a union bound
over the S states in S means that with probability at least 1

2 , the time to collect the required
samples is lower bounded by∑s∈S

b(s)(Ds−1)
2 + b(s).

② Second, we show that the family of worst-case MDPs is relatively large. In fact, for any
MDP with diameter D, we can perform a minor change to its dynamics without affecting the
overall diameter and show that when the sampling requirements are concentrated in a single

212

E.3 Lower Bound

state, any policy would take at least Ω(BD) steps to collect all the B samples. More specifically,
there exists a class C of MDPs such that, for each MDP in C, there exists a requirement function
b and a finite threshold (that depends on the considered MDP) such that the Ω(BD) lower
bound holds whenever B exceeds this threshold. The class C effectively encompasses a large
number of environments: indeed, take any MDPM , then we can find an MDPM ′ in C such
thatM andM ′ differ in their transitions only at one state and have the same diameter. Formally,
we have the following statement (proof in Section E.3.1).

Lemma E.5. Fix any positive natural numbers S, A and D, and any MDP M with S = |S|
states, A = |A| actions and diameter D. There exists a modification of the transitions of M at
only one state which yields an MDPM ′ with the same diameter D, and there exists a finite integer
WA,M ′,δ (depending on A,M ′) such that for any total requirement B ≥ WA,M ′,δ, there exists a
function b† : S → N with∑s∈S b(s) = B, such that, for any arbitrary starting state, the optimal
non-stationary policy A⋆ needs C(A⋆, b†) time steps to collect the desired samples in the modified
MDPM ′, where

P
(
C(A⋆, b†) > (B − 1)D

2

)
≥ 1

2 .

③ Third, we note that both results above do not take into account the added difficulty for the
agent to have to deal with a learning process. To do so, we can draw inspiration from the lower
bound on the expected regret for learning in an SSP problem derived by Rosenberg et al. (2020).
Indeed, let us consider a environmentM with one state s in which all the required samples are
concentrated, i.e., b ≜ B1s with B ≥ SA. The S − 1 other states s each contain a special action
a⋆s. The transition dynamics P are defined as follows: P (s|s, a⋆s) = 1

Ds
, P (s|s, a⋆s) = 1 − 1

Ds
,

P (s|s, a) = 1−ν
Ds

, P (s|s, a) = 1− 1−ν
Ds

for any other action a ∈ A\{a⋆s}, and finallyP (s|s, a) = 1
S−1

for any action a ∈ A, with ν ≜ √(S − 1)AB/64. Recall that Ds is the SSP-diameter of state s.
The communicating, non-episodic structure ofM naturally mimics the interaction of an agent
with an SSP problem with goal state s. Denoting by C(A, b) the (random) time required by
any algorithm A to collect the b sought-after samples, we obtain from Rosenberg et al. (2020,
Thm. 2.7) that

E [C(A, b = B1s)] ≥ ϕ(B) ≜ (Ds + 1)B︸ ︷︷ ︸
≜ϕ1(B)

+ 1
1024Ds

√
(S − 1)AB︸ ︷︷ ︸

≜ϕ2(B)

=
∑
s∈S

(
(Ds + 1)b(s) + 1

1024Ds

√
(S − 1)Ab(s)

)
.

This lower bound on the expected time to collect the samples implies in particular that no
algorithm can meet the sampling requirements in less than Õ(ϕ(B)) time steps with high

213

Complements on Chapter 7

probability. Importantly, note that this result is not contradictory with Corollary E.2. Indeed,
as fleshed out in the proof in Section E.2, the upper bound of Corollary E.2 actually contains
such a square root term ϕ2(B), yet it is subsumed in the final bound by either the main-order
term in ∑s b(s)Ds or the lower-order term constant w.r.t.B (see Equation (E.7)). We can
decompose ϕ(B) in two factors: the second term ϕ2(B) comes from the learning process of
trying to match the behavior of the optimal policy, while the first term ϕ1(B) stems from the
need to navigate through the environment as opposed to the generative model assumption (as
such, it is incurred even if the optimal policy is deployed from the start). Part ② of this section
actually shows that such a term ϕ1(B) is unavoidable in multiple MDPs.

E.3.1 Proof of Lemma E.5

Here we give the proof of Lemma E.5. For any positive natural numbers S, A, D, we consider
any MDPM with S states, A actions and diameter D. We consider

(s, s) ∈ arg max
s ̸=s′∈S

{
min
π∈Π

E
[
τπ(s→ s′)

]}
.

We modify the transition structure of M , so that P (s|s, a) = 1 for all actions a ∈ A. Note
that the diameter is not affected by this operation. Throughout, whatever the value of B, we
will consider the following sampling requirements: b(s) ≜ B1{s=s}. We denote by s0 ∈ S the
arbitrary starting state of the learning process.

Consider any learning algorithm A. We denote by π the (possibly non-stationary) policy
that is executed by A. In virtue of Assumption 7.2, we can naturally (and without loss of
generality) restrict our attention to a policy π whose expected hitting time to s is finite starting
from any state in S —we denote by µπ such an upper bound. We denote by T (i)

π the random
time required by policy π to collect the i-th sample at state s, starting from s0 if i = 1 or from s

if 2 ≤ i ≤ B.

LemmaE.6. The (T (i)
π)2≤i≤B are i.i.d. sub-exponential random variables whose expectation satisfies

µπ ≜ E
[
T

(i)
π

]
≥ D for all 2 ≤ i ≤ B.

Proof. Consider the SSP problem with unitary costs, starting state s and zero-cost, absorbing
terminal state s. As seen in Chapter 2, Assumption 7.2 and the fact that the costs are all positive
guarantee that the optimal value function of this SSP problem is achieved by a stationary deter-
ministic policy. This implies that minπ′∈Π E [τπ′(s→ s)] ≤ E [τπ(s→ s)], and thus by definition
of D and µπ, we get the inequality D ≤ µπ. There remains to prove the sub-exponential nature

214

E.3 Lower Bound

of the random variable Tπ. For any λ ∈ R, we have

E
[
eλ(Tπ−µπ)

]
= e−λµπE

[+∞∑
n=0

1
n!λ

nTnπ

]
= e−λµπ

+∞∑
n=0

1
n!λ

nE [Tnπ] ≤ 2e−λµπ
+∞∑
n=0

1
n!n

n(λµπ)n,

where the last inequality comes from Lemma C.2 which can be applied to bound the moments
E [Tnπ] ≤ 2(nµπ)n, since the random variable Tπ satisfies E [Tπ(s→ s)] ≤ µπ for all s ∈ S by
definition of µπ. From Lemma E.7, the series above converges whenever |λ| < 1

eµπ
. This proves

that Tπ is sub-exponential according to the second condition of Definition E.8.

Lemma E.7. The series
+∞∑
n=0

nn

n! x
n converges absolutely for all |x| < 1

e .

Proof. Introduce the summand of the series an(x) ≜ nn

n! x
n. We then have

an+1(x)
an(x) = n!

(n+ 1)!
(n+ 1)n+1

nn
x =

(
1 + 1

n

)n
x −−−−−→

n→+∞
ex.

Hence, for any |x| < 1
e , we have |an+1(x)

an(x) | < 1, which means from d’Alembert’s ratio test that
the series converges absolutely.

Since Tπ is sub-exponential, from Definition E.8, there exists a pair (σπ, θπ) of finite positive
parameters that verifies

E
[
eλ(Tπ−µπ)

]
≤ e

σ2
πλ

2
2 for all |λ| < 1

θπ
.

We now apply the concentration inequality for sub-exponential random variables stated in
Proposition E.9.

∀y > σ2
π

θπ
, P

(
B∑
i=2

T (i)
π ≤ µπ(B − 1)− y

)
≤ exp

(
− y

2θπ

)
.

We now fix the integer

Wπ ≜ 1 + 2 max
{⌈

θπ
µπ

⌉
,

⌈
σ2
π

θπµπ

⌉}
.

Consider any total sampling requirement B ≥Wπ. Then setting y ≜ µπ(B−1)
2 > σ2

π
θπ

yields

P
(

B∑
i=2

T (i)
π ≤

µπ(B − 1)
2

)
≤ exp

(
−µπ(B − 1)

4θπ

)
≤ 1

2 ,

215

Complements on Chapter 7

since we have B ≥ 4θπ
µπ

log(2) + 1. This implies that with probability at least 1
2 ,

B∑
i=1

T (i)
π ≥

B∑
i=2

T (i)
π >

µπ(B − 1)
2 ≥ (B − 1)D

2 ,

where the last inequality stems from Lemma E.6. As a result, there exists a finite integerWπ,δ

(depending on π and the environment at hand) such that, for any total sampling requirement
B ≥Wπ, the algorithm A that executes policy π verifies

P
(
C(A, B1{s}) > (B − 1)D

2

)
≥ 1

2 ,

which gives the proof of Lemma E.5.
We recall here the definition of sub-exponential random variables.

Definition E.8 (Wainwright, 2015). A random variable X with mean µ < +∞ is said to be
sub-exponential if one of the following equivalent conditions is satisfied:
1. (Laplace transform condition) There exists (σ, θ) ∈ R+ × R+⋆ such that, for all |λ| < 1

θ ,

E
[
eλ(X−µ)

]
≤ e

σ2λ2
2 .

2. There exists c0 > 0 such that E
[
eλ(X−µ)

]
< +∞ for all |λ| ≤ c0.

For any pair (σ, θ) satisfying condition 1, we write X ∼ SubExp(σ, θ).

We finally recall a concentration inequality satisfied by sub-exponential random variables.

Proposition E.9 (Wainwright, 2015). Let (Xi)1≤i≤n be a collection of independent sub-
exponential random variables such that for all i ∈ [n], Xi ∼ SubExp(σi, θi) and µi ≜ E [Xi].
Set σ ≜

√∑n

i=1 σ
2
i

n and θ ≜ maxi∈[n]{θi}. The following concentration inequalities hold for any
t ≥ 0,

P
(

n∑
i=1

Xi −
n∑
i=1

µi ≥ t
)
≤

e
− t2

2nσ2 if 0 ≤ t ≤ σ2

θ

e− t
2θ if t > σ2

θ

,

P
(

n∑
i=1

Xi −
n∑
i=1

µi ≤ −t
)
≤

e
− t2

2nσ2 if 0 ≤ t ≤ σ2

θ

e− t
2θ if t > σ2

θ

.

216

E.4 GOSPRL Beyond the Communicating Setting

E.4 GOSPRL Beyond the Communicating Setting

Sections E.3 and 7.3.1 demonstrate that the diameter D and/or the SSP-diameters dictate the
performance of a sampling procedure in a communicating environment. Indeed, both the
GOSPRL upper bound and the worst-case lower bound containD and/orDs as a multiplicative
factor w.r.t. the total sampling requirementB. However, in many environments, there may exist
some states that are hard to reach, or plainly impossible to reach. In that case, the diameter is
prohibitively large and even possibly infinite, thus rendering the sample complexity guarantee
of Corollary E.2 vacuous. To circumvent this issue, a desirable property of the algorithm would
be the ability to assess online the “feasibility” of the sampling requirements, by discarding
states that are indeed too difficult to reach. For ease of exposition, we consider throughout
Section E.4 the special case of time- and action-independent sampling requirements b : S → N
(as explained in Section E.2.2 the extension to the general case of adaptive action-dependent
sampling requirements follows straightforwardly).

Formally, we consider any environment that need not be communicating (i.e., it may not
satisfy Assumption 7.2). The learning agent receives as input an integer parameterL ≥ 1, which
acts as a reachability threshold that partitions the state space between the states from which
we expect sample collection and those that we categorize as too difficult to reach. Specifically,
given a sampling requirement b : S → N, the desiderata of the agent is to minimize the time
it requires, for each state s ∈ S, to i) either collect the b(s) samples, ii) or discard the sample
collection at state s only if there exists a state (accessible from the starting state) that cannot
reach s within L steps in expectation. In other words, we do not allow for samples to be
discarded if the state is actually below the reachability threshold L. We introduce the following
new definition of the sample complexity.

Definition E.10. Given a reachability threshold L ≥ 1, sampling requirements b : S → N, starting
state s0 ∈ S and a confidence level δ ∈ (0, 1), the sample complexity of a learning algorithm A is
defined as

C(A, b, δ, L, s0) ≜ min
{
t > 0 : P

(
∀s ∈ SL, Nt(s) ≥ b(s) ∧ IA(t) = 1

)
≥ 1− δ

}
,

where SL ≜ {s ∈ S : max{y∈S:Ds0y<+∞}Dys ≤ L} and where IA(t) corresponds to a Boolean
equal to 1 if the algorithm A considers at time t that none of the states that remain to be sampled (if
there remains any) belong to SL.5

AlgorithmGOSPRL-L. Wenowpropose a simple adaptation of GOSPRL to handle this setting,
and call the corresponding algorithm GOSPRL-L since it receives as input a reachability thresh-
old L. We split time in episodes indexed by j, where the first episode begins at the first time step

217

Complements on Chapter 7

and the j-th episode ends when the j-th desired sample is collected. From Corollary E.2 we
know that in a communicating environment with diameterD, there exists an absolute constant
α > 0 (here we exclude logarithmic terms for ease of exposition) such that with probability at
least 1− δ, after any j episodes (i.e., after the j-th desired sample is collected), Tj the (total)
time step at the end of the j episodes is upper bounded as follows

Tj ≤ αjD + αjD3/2S2A.

The key idea is to run GOSPRL and stop its execution if its total duration at some point exceeds
a certain threshold depending on L and the current episode. Specifically, in the j-th episode,
this threshold is set to Φ(j) ≜ αjL+ αjL3/2S2A. If the accumulated duration never exceeds
the threshold, the algorithm is naturally run until all the sampling requirements are met.

Lemma E.11. Consider any reachability threshold L ≥ 1, starting state s0 ∈ S, confidence level
δ ∈ (0, 1) and sampling requirements b : S → N, with B =

∑
s∈S b(s). Then running the

algorithm GOSPRL-L in any environment yields a sample complexity that can be upper bounded as

C(GOSPRL-L, b, δ, L, s0) = Õ
(
BL+ L3/2S2A

)
.

Proof. The result is obtained by performing a reductio ad absurdum reasoning. We initially make
the assumptionH that for all episodes j ≥ 1, we have DGj ≤ L, where we recall that DGj is the
SSP-diameter of the goal states Gj considered during episode j. The condition that is checked
at any time step is whether it is smaller or larger than the threshold Φ(j) ≜ αjL+ αjL3/2S2A,
where j is the current episode. i) In the first case, the total duration is always smaller (or equal)
than its threshold and the algorithm performs J episodes until the sampling requirements
are met. Since J ≤ B and Φ is an increasing function, the sample complexity is bounded
by Φ(J) ≤ Φ(B) = Õ

(
BL+ L3/2S2A

)
. ii) In the second case, there exists an episode j′ ≥ 1

and a time step (during that episode) which is larger than the threshold Φ(j′). This implies
that with probability at least 1 − δ, assumption H is wrong. Thus there exists an episode
1 ≤ j ≤ j′ such that DGj > L. Since Gj′ ⊂ Gj , we have DGj ≤ DGj′ , thus DGj′ > L, which
implies from Lemma E.3 that for all s ∈ Gj′ , Ds > L. Hence the algorithm can terminate
and confidently guarantee that none of the states that remain to be sampled belong to SL.
Given that j′ ≤ B, the sample complexity (in the sense of Definition E.10) is bounded by
Φ(j′) ≤ Φ(B) = Õ

(
BL+ L3/2S2A

)
.

The algorithm GOSPRL-L requires no computational overhead w.r.t.GOSPRL, as it simply
tracks the total duration of GOSPRL and terminates if it exceeds a threshold depending on L.
Under the new appropriate definition of sample complexity of Definition E.10, the dependency

218

E.5 Application: Model Estimation (ModEst)

in Corollary E.2 on the possibly very large or infinite diameter D is effectively replaced by the
reachability threshold L. A large value of L signifies that the sample collection is required
at quite difficult-to-reach states, while a small value of L keeps in check the duration of the
sampling procedure.

Narrowing the sample collection to states in SL may seem at first glance restrictive. In-
deed, the presence of states in which the agent may get stuck could disrupt the learning
process. However, assume for instance that we consider the canonical assumption made in
episodic RL of a resetting environment, i.e., an environment that contains a reset action that
brings the agent with probability 1 to a reference starting state s0 (where here we consider
that the reset action can be executed at any time step for simplicity). Then we have that
{s ∈ S : minπ E [τπ(s0 → s)] ≤ L− 1} ⊆ SL, which shows that numerous states can effectively
belong to the set SL.

Finally, let us delve into the particular case of a weakly communicating MDP, whose state
space S can be partitioned into two subspaces (Puterman, 2014, Section 8.3.1): a communi-
cating set of states (denoted SC) with each state in SC accessible — with non-zero proba-
bility — from any other state in SC under some stationary deterministic policy, and a (pos-
sibly empty) set of states that are transient under all policies (denoted ST). The sets SC
and ST form a partition of S, i.e., SC ∩ ST = ∅ and SC ∪ ST = S. Finally, we denote by
DC < +∞ the diameter of the communicating part ofM (i.e., restricted to the set SC), i.e.,
DC ≜ maxs ̸=s′∈SC minπ∈Π E [τπ(s→ s′)] < +∞. Assume that the starting state s0 belongs to
SC. We expect the optimal strategy to perform the sample collection at states in SC and discard
the sample collection at states in ST. This is what GOSPRL-L does if we have SL = SC, i.e.,
whenever DC ≤ L. Hence, in that setting, the optimal (yet critically unknown) value of the
threshold Lwould be DC.

E.5 Application: Model Estimation (ModEst)

In this sectionwe demonstrate that GOSPRL can be readily applied to tackle theModEst problem,
as well as a “robust” variant called RModEst, both of which are defined as follows. The agent A
interacts with the environment and, after t time steps, it must return an estimate P̂A,t of the
transition dynamics, which naturally corresponds to the empirical average of the transition
probabilities. The accuracy of the estimate and the corresponding sample complexity are
evaluated as follows.

Definition E.12. Given an accuracy level η > 0 and a confidence level δ ∈ (0, 1), the ModEst and
RModEst sample complexity of an online learning algorithm A are defined as

CModEst(A, η, δ) ≜ min
{
t > 0 : P

(
∀(s, a) ∈ S × A, ∥P̂A,t(·|s, a) − P (·|s, a)∥1 ≤ η

)
≥ 1 − δ

}
,

219

Complements on Chapter 7

CRModEst(A, η, δ) ≜ min
{
t > 0 : P

(
∀(s′, s, a) ∈ S2 × A, |P̂A,t(s′|s, a) − P (s′|s, a)| ≤ η

)
≥ 1 − δ

}
,

where P̂A,t is the estimate (i.e., empirical average) of the transition dynamics P after t time steps.

We have the following sample complexity guarantees.

Lemma E.13. Instantiating GOSPRL with two different sequences of sampling requirements yields
respectively

CRModEst(GOSPRL, η, δ) = Õ
(DSA

η2 +D3/2S2A
)
,

CModEst(GOSPRL, η, δ) = Õ
(DΓSA

η2 + DS2A

η
+D3/2S2A

)
.

Proof. We first focus on the RModEst objective with desired accuracy level η. From Defini-
tion E.12, we would like that, for any state-action pair (s, a) and next state s′, the following
condition holds:

|P̂t(s′|s, a)− P (s′|s, a)| ≤ η. (E.10)

From the empirical Bernstein inequality (see e.g., Audibert et al., 2009; Fruit et al., 2020), we
have with probability at least 1− δ, for any time step t ≥ 1 and for any state-action pair (s, a)
and next state s′,

|P̂t(s′|s, a)− P (s′|s, a)| ≤ 2

√√√√ σ̂2
t (s′|s, a)
N+
t (s, a)

log
(

2SAN+
t (s, a)
δ

)
+

6 log
(

2SAN+
t (s,a)
δ

)
N+
t (s, a)

, (E.11)

whereN+
t (s, a) ≜ max{1, Nt(s, a)} and where the σ̂2

t are the population variance of transitions,
i.e., σ̂2

t (s′|s, a) ≜ P̂t(s′|s, a)(1− P̂t(s′|s, a)). Let us now define, for any X,Y ≥ 0, the quantity

Φ(X,Y) ≜

57X2

η2

[
log

(
8eX
√

2SA√
δη

)]2

+ 24Y
η

log
(24Y SA

δη

) .
Using a technical lemma (Lemma E.14), we can prove that condition (E.10) holds whenever
the number of samples at the pair (s, a) becomes at least equal to

ϕRModEst
t (s, a) ≜ Φ (X,Y) , X ≜ max

s′∈S

√
σ̂2
t (s′|s, a), Y ≜ 1.

220

E.5 Application: Model Estimation (ModEst)

We thus execute GOSPRL until there exists a time step t ≥ 1 such that bt(s, a) ≜ ϕRModEst
t (s, a)

samples have been collected at each state-action pair (s, a) ∈ S ×A. Although the sampling
requirement bt depends on the time step t, this is not an issue from Section 7.3.2 since for any
s ∈ S and t ≥ 1, bt(s, a) is bounded from above due to the fact that σ̂2

t (s′|s, a) ≤ 1
4 . This means

that the total requirement for RModEst is BRModEst = Õ
(
SA/η2), which yields the first bound

of Lemma E.13.
We now turn to the ModEst objective. GOSPRL collects samples until there exists a time step

t such that the number of samples at each pair (s, a) is at least equal to

ϕModEst
t (s, a) ≜ Φ (X,Y) , X ≜

∑
s′∈S

√
σ̂2
t (s′|s, a), Y ≜ S.

Introducing Γ(s, a) ≜ ∥P (·|s, a)∥0 the maximal support of P (·|s, a), we use the following
inequality (valid at any time step t ≥ 1): ∑s′∈S σ̂t(s′|s, a) ≤

√
Γ(s, a)− 1 (see e.g., Fruit

et al., 2020, Lemma4). This means that the total requirement for ModEst is BModEst =

Õ

(∑
s,a

Γ(s,a)
η2 + S2A

η

)
. Plugging in the result of Corollary E.2 finally yields the second bound

of Lemma E.13 (which corresponds to the statement of Lemma 7.9 in Section 7.4.2).

Lemma E.14. For any x ≥ 2 and a1, a2, a3, a4 > 0 such that a3x ≤ a1
√
x log(a2x)+a4 log(a2x),

the following holds

x ≤ 4a4
a3

log
(2a4a2

a3

)
+ 128a2

1
9a2

3

[
log

(4a1
√
a2e

a3

)]2
.

Proof. Assume that a3x ≤ a1
√
x log(a2x) + a4 log(a2x). Then we have that a3

2 x ≤ −
a3
2 x +

a1
√
x log(a2x) + a4 log(a2x). From Lemma E.15 we have

−a3
2 x+ a1

√
x log(a2x) ≤ 32a2

1
9a3

[
log

(4a1
√
a2e

a3

)]2

︸ ︷︷ ︸
≜a0

.

Thus we have x ≤ 2a4
a3

log(a2x) + 2a0
a3

and we conclude the proof using Lemma E.16.

Lemma E.15 (Kazerouni et al., 2017, Lemma8). For any x ≥ 2 and a1, a2, a3 > 0, the following
holds

−a3x+ a1
√
x log(a2x) ≤ 16a2

1
9a3

[
log

(2a1
√
a2e

a3

)]2
.

221

Complements on Chapter 7

Lemma E.16. Let b1, b2 and b3 be three positive constants such that log(b1b2) ≥ 1. Then any
x > 0 satisfying x ≤ b1 log(b2x) + b3 also satisfies x ≤ 2b1 log(2b1b2) + 2b3.

Proof. Assume that x ≤ b1 log(b2x) + b3 and set y = x − b3. If y ≤ b3, then we have x ≤ 2b3.
Otherwise, we can write y ≤ b1 log(b2y + b2b3) ≤ b1 log(2b2y). From Lemma E.17 we have
y ≤ 2b1 log(2b1b2), which concludes the proof.

Lemma E.17 (Kazerouni et al., 2017, Lemma9). Let b1 and b2 be two positive constants such
that log(b1b2) ≥ 1. Then any x > 0 satisfying x ≤ b1 log(b2x) also satisfies x ≤ 2b1 log(b1b2).

E.6 Application: Sparse Reward Discovery (Treasure Problem)

In this section, we focus on the canonical sampling requirement of the Treasure problem of
Section 7.4.1, where each state-action pair must be visited at least once. We illustrate how
direct adaptations of existing algorithms are not able to match the guarantees of GOSPRL in
Lemma 7.7.

Discussion on finite-horizon or discounted PAC-MDP algorithms. At first glance, an ap-
proach to tackle the Treasure problem could be to consider a well-known PAC exploration
algorithm such as RMax (Brafman and Tennenholtz, 2002) (the same discussion holds for E3
of Kearns and Singh, 2002). In particular, we can examine the ZeroRMax variant proposed
by Jin et al. (2020). Indeed the demarcation between known states and unknown states is an
algorithmic principle related to the problem at hand: a state is considered known when the
number of times each action has been executed at that state is at leastm for a suitably chosen
m and its reward is set to 0, while an unknown state receives a reward of 1. The set of known
states captures what has been sufficiently sampled (and the empirical estimate of the transitions
is used), while the set of unknown states drives exploration to collect additional samples. The
central concept for analyzing the sample complexity of the algorithm is the escape probability
(i.e., the probability of visiting the unknown states), which, in the case ofm = 1, would amount
exactly to the probability of collecting a required sample in the Treasure problem. However,
despite the similarities, ZeroRMax (as well as RF-RL-Explore of Jin et al., 2020) are designed
in the infinite-horizon discounted setting or the finite-horizon setting. As such, only a finite
number of steps is relevant, and the episode lengths (and resulting sample complexity) directly
depend on the discount factor γ or on the horizon H , respectively. Such approach cannot be

222

E.6 Application: Sparse Reward Discovery (Treasure Problem)

employed in the setting of communicating MDPs, where there is no known imposed horizon
of the problem, and where the agent must interweave the policy planning and policy execution
processes by defining algorithmic episodes. As such, despite bearing high-level similarity
with GOSPRL at an algorithmic level, such finite-horizon (or discounted) guarantees cannot be
translated to sample complexity for the Treasure problem.

Leveraging UCRL. We now analyze UCRL2 (Jaksch et al., 2010), an efficient algorithm for
reward-dependant exploration in the infinite-horizon undiscounted setting. In order to tackle
the Treasure problem, a first approach could be to consider true rewards of zero everywhere
while the uncertainty around the rewards remains, i.e., the algorithm observes as reward
r(s, a) ∼

√
1

N+(s,a) , which corresponds to the usual uncertainty on the rewards (Jaksch et al.,
2010), with N(s, a) denoting the number of visits of (s, a) so far. The underlying idea is that
as the algorithm visits a state-action pair, its observed reward will decrease, thus favoring
the visitation of non-sampled state-action pairs. Yet while this algorithm is fairly intuitive, it
appears tricky to directly leverage the analysis of UCRL2 to obtain a guarantee on the time
the algorithm requires to solve the Treasure problem. Indeed, the inspection of the tools used
in the regret derivation of UCRL2 does not point out to a step in the analysis which explicitly
lower bounds state-action visitations.

Another possibility is to design a non-stationary reward signal to feed to UCRL2. Namely,
assigning a reward of 1 if the state is under-sampled and 0 otherwise, corresponds to a sensible
strategy (note that this reward signal changes according to the behavior of the algorithm).
Yet as explained in Section 3.2, for any SSP problem with unit costs, the SSP-regret bound
that is obtained from the analysis of average-reward techniques (by assigning a reward of 1
at the goal state, and 0 everywhere else) is worse than that obtained from the analysis of SSP
goal-oriented techniques. This difference directly translates into a worse performance of UCRL2-
based approaches for the Treasure problem. Indeed, retracing the analysis of Section B.1, we
obtain that Õ(D3

sS
2A) time steps are required to collect a sought-after sample when running the

algorithm UCRL2B (Fruit et al., 2020) (which is a variant of UCRL2 that constructs confidence
intervals based on the empirical Bernstein inequality rather than Hoeffding’s inequality and
thus yields tighter regret guarantees). Since the analysis renders the re-use of samples difficult,
performing this reasoning for each sought-after state to sample yields a total Treasure sample
complexity of Õ (∑s∈S D

3
sS

2A
), which is always worse than the bound in Lemma 7.7 since

maxsDs = D.

Leveraging MaxEnt. At first glance, an alternative and natural approach to visit each state-
action pair at least once may be to optimize the MaxEnt objective over the state-action space,

223

Complements on Chapter 7

i.e., maximize the entropy function H over the stationary state-action distributions λ ∈ Λ,

H(λ) ≜
∑

(s,a)∈S×A
−λ(s, a) log(λ(s, a)).

This objective—over the state space, yet the extension to the state-action space is straightforward
— was studied by Hazan et al. (2019) in the infinite-horizon discounted setting and by Cheung
(2019) in the infinite-horizon undiscounted setting. Following the latter, there exists a learning
algorithm such that, with overwhelming probability,

H(λ⋆)−H(λ̃t) = Õ

(
DS1/3

t1/3 + DS
√
A√
t

)
, (E.12)

where λ⋆ ∈ arg maxλ∈ΛH(λ) and λ̃t is the empirical state-action frequency at time t, i.e.,
λ̃t(s, a) = Nt(s,a)

t . The Treasure sample complexity translates into the first time step t ≥ 1
such that λ̃t(s, a) ≥ 1

t for all (s, a) ∈ S ×A. However, the state-action entropy H corresponds
to the sum of a function related to each state-action frequency, and maximizing it provides
no guarantee on each summand, i.e., on each state-action frequency. Indeed, assume that
there exists a time t such that λ̃t(s, a) ≥ 1

t for all (s, a) ∈ S × A. This implies that H(λ̃t) ≥
SA
t log(t). However, the regret bound of Equation (E.12) cannot be leveraged to show that
t must necessarily be small enough. Overall, it seems that directly optimizing MaxEnt is
unfruitful in guaranteeing the visitation of each state-action pair at least once, and thus in
provably enforcing the Treasure objective.

Instead of maximizing MaxEnt, the discussion above encourages us to optimize the “worst-
case” summand of the entropy function, by maximizing over Λ the following function

F (λ) ≜ min
(s,a)∈S×A

λ(s, a).

It is straightforward to show that F is concave in λ (as theminimum of S×A concave functions),
as well as 1-Lipschitz-continuous w.r.t. the Euclidean norm ∥·∥2, i.e.,

∀(λ, λ′) ∈ Λ2, |F (λ)− F (λ′)| ≤ ∥λ− λ′∥∞ ≤ ∥λ− λ′∥2.

However, F is a non-smooth function, therefore the Frank-Wolfe algorithmic design of Hazan et
al. (2019) andCheung (2019) cannot be leveraged. Instead, we propose to use themirror descent
algorithmic design of Cheung (2019, Section 5) that can handle general concave functions. It
guarantees that there exists a constant β > 0 such that, with overwhelming probability (here
we exclude logarithmic terms for ease of exposition)

F (λ⋆)− F (λ̃t) ≤
βD

t1/3 + βDS
√
A√

t
.

224

E.7 Application: Goal-Free Cost-Free Exploration in Communicating MDPs

Introduce ω⋆ ≜ F (λ⋆) = mins,a λ⋆(s, a) ∈ (0, 1
SA]. We then have

F (λ̃t) ≥ ω⋆ −
βD

t1/3 −
βDS

√
A√

t
. (E.13)

Equipped with Equation (E.13), we can easily prove that if

t = Ω
(

min
{
D2S2A

(ω⋆)2 ,
D3

(ω⋆)3

})
, (E.14)

then F (λ̃t) ≥ 1
t , which immediately implies that the Treasure is discovered. This sample

complexity result is quite poor compared to Lemma 7.7. In particular, it depends polynomially
on (ω⋆)−1, which cannot be smaller than SA.

E.7 Application: Goal-Free Cost-Free Exploration in Communicat-
ing MDPs

E.7.1 Reward-Free Exploration in Finite-Horizon MDPs vs. Cost-Free Exploration
in Goal-Conditioned RL

Jin et al. (2020) introduced the reward-free framework in the finite-horizon case, which we
recall is a special case of a goal-oriented (i.e., SSP) problemwhere each episode terminates after
exactlyH steps. The agent receives as input an accuracy level ε > 0, a confidence level δ ∈ (0, 1),
the state and action spaces, and the horizon H , while no knowledge is provided about the
transition model P . The learning process is decomposed into two phases. ① Exploration phase:
The agent first collects trajectories from the MDP without a pre-specified reward function and
returns an estimate of the transition model P̂ . ② Planning phase: The agent receives an arbitrary
reward function and is tasked with computing an ε-optimal policy with probability at least
1− δ, without any additional interaction with the environment. The objective is to minimize the
duration of the exploration phase needed to simultaneously enforce any requested planning
guarantee.

In Jin et al. (2020) the reward-free exploration problem is studied for any arbitrary MDP,
where there may exist states that are difficult or impossible to reach. The core mechanism
in their analysis is to partition the states depending on their ease of being reached within H
steps. Specifically, they distinguish between significant states, that can be sufficiently visited and
whose transition probability can thus be accurately estimated, and insignificant states that are
too difficult to reach within H steps, but therefore have negligible contribution to any reward
optimization.

225

Complements on Chapter 7

Interestingly, in the goal-conditioned setting this distinction may no longer be meaningful.
By way of illustration, consider any fixed horizon H and the toy environment in Figure E.1.
Suppose that the objective is to quickly reach state z (i.e., the goal state is z, the starting state
is x and all costs are equal to 1). Even though state y is insignificant within H steps (in the
finite-horizon sense of Jin et al., 2020, for any positive “significance level”), it is actually crucial
in solving the objective, as z can be reached deterministically in 1 step from y. Extrapolating
this scenario, in the goal-conditioned setting, we may have an effective horizon of H = +∞ for
some goals, which implies that the transition model P must be accurately estimated across the
entire state-action space to ensure that a near-optimal goal-conditioned policy can be computed.

x

z

y
Figure E.1 – The agent starts at state
x and reaches z inH steps with prob-
ability 1/2, and y in H + 1 steps with
probability 1/2. From state y the
agent deterministically transitions to
state z in 1 step.

Hence the challenges that emerge in the cost-free exploration problem in goal-conditioned
RL are orthogonal to the ones in finite-horizon (Jin et al., 2020): a constraint on the environment is
added (all states must now be reachable, Assumption 7.2), allowing the removal of the constraint
on performance (which is not limited to H steps anymore) and thus enabling to tackle the more
general class of goal-oriented problems.

For a designated goal state g ∈ S, recall from Part I that the SSP objective is to compute a
policy π : S → Aminimizing the cumulative cost before reaching g. Formally, the (possibly
unbounded) SSP value function is defined as

Vπ(s→ g) ≜ E
[τπ(s→g)∑

t=1
c(st, π(st))

∣∣ s1 = s

]
,

where τπ(s → g) ≜ inf{t ≥ 0 : st+1 = g | s1 = s, π} is the (random) number of steps needed
to reach g from s when executing policy π. An optimal policy (if it exists) is denoted by
π⋆ ∈ arg minπ Vπ(s→ g).

Without loss of generality, we consider throughout that the maximum cmax of the cost
functions that we intend to consider in the planning phase is equal to 1. On the other hand, the
minimum value cmin has a more subtle impact on the type of performance guarantees we can
obtain. For any cost function c and any pair of initial and goal states s and g, we introduce a
slack parameter θ ∈ [1,+∞] and we say that a policy π̂ is (ε, θ)-optimal if 6

V π̂(s→ g) ≤ min
π:E[τπ(s→g)]≤θDs,g

V π(s→ g) + ε. (E.15)

6This reduces to standard ε-optimality for θ → ∞.

226

E.7 Application: Goal-Free Cost-Free Exploration in Communicating MDPs

We consider this restricted optimality only in the general cost case of cmin = 0, where the
(ε,+∞)-optimal policy may not be proper (as seen in Chapter 2). In that case, we are interested
in finding the best proper policy, which is what the restricted optimality in Equation (E.15)
enables as it constrains the targeted policy to be proper. This consideration is required when
translating the performance from the cost-perturbed MDP to the original MDP, which needs
constraining the expected goal-reaching time of the targeted policy.

We are now ready to formally define the goal-free cost-free exploration problem. It is character-
ized by an accuracy level 0 < ε ≤ 1, a confidence level δ ∈ (0, 1), a minimum cost cmin ∈ [0, 1]
and a slack parameter θ ∈ [1,+∞] (and we allow either cmin = 0 or θ = +∞, but not both
simultaneously). After its exploration phase (whose number of time steps defines the sample
complexity of the problem), the agent is expected to be able to compute, with probability at
least 1 − δ, an (ε, θ)-optimal goal-conditioned policy π̂ for any goal state g ∈ S and any cost
function c ∈ [cmin, 1], i.e., satisfying Equation (E.15) for all s ∈ S.

E.7.2 Proof of Lemma 7.10

We show that instantiatingGOSPRL for carefully selected sampling requirements bt(s, a) enables
to obtain the guarantee of Lemma 7.10. To do so, we build on the sample complexity analysis
of solving a fixed-goal SSP problem with a generative model that we derive in Tarbouriech et al.
(2021b). Specifically, we introduce the following sampling requirement function

ϕ(X, y) ≜ α ·
(
X3Γ̂
yε2 log

(
XSA

yεδ

)
+ X2S

yε
log

(
XSA

yεδ

)
+ X2Γ̂

y2 log2
(
XSA

yδ

))
, (E.16)

where α > 0 is a numerical constant and Γ̂ ≜ maxs,a∥P̂ (·|s, a)∥0 ≤ Γ is the largest support
of P̂ . The sampling requirement function of Equation (E.16) instantiated for specific values
of X and y is used to guide the GOSPRL algorithm. Specifically, the analysis distinguishes
between two cases: either cmin > 0 and the cost function considered in the planning phase can
be the same as the original one, or cmin = 0 and all costs incur an additive perturbation of
ε/(θD) > 0. As stated in Section 7.4.3, we set ω ≜ max

{
cmin, ε/(θD)

}, which is guaranteed to
be positive since we enforce either cmin = 0 or θ = +∞, but not both simultaneously. As such,
in Equation (E.16) we define y ≜ ω to be equal to the minimum cost of either the true or the
perturbed cost function. As for the value of X , we perform the following distinction of cases.

① First let us assume that the learning agent has prior knowledge of the diameter D of
the MDP. Then we set X ≜ D. Since our sample complexity analysis of SSP with a generative
model in Tarbouriech et al. (2021b) accurately estimates the transition kernel and thus holds
for arbitrary cost function in [ω, 1], we can ensure that collecting at least ϕ(D,ω) samples from
each state-action pair provides the ε-optimality cost-free planning guarantee of Lemma 7.10.

227

Complements on Chapter 7

The total time required to collect such samples is upper bounded by DSAϕ(D,ω−1), which
directly yields the sample complexity guarantee stated in Lemma 7.10.

② Second we show that we can relax the assumption of knowing the diameter D without
altering the sample complexity guarantee. To do so, we begin the algorithm by a procedure
which computes a quantity D̂ such that D ≤ D̂ ≤ D(1 + ε) with high probability. From
Section E.8.1, this can be done in Õ(D3S2A/ε2) time steps by leveraging GOSPRL. We thus
begin the algorithm by running such diameter-estimation subroutine. Crucially, we note that
its sample complexity is subsumed in the total sample complexity of Lemma 7.10. Then we
simply apply the reasoning in case ① by consideringX ≜ D̂ in the allocation of Equation (E.16)
instead of X = D. Since D̂ is a sufficiently tight upper bound on D (i.e., D̂ = O(D)), we
ultimately obtain the same sample complexity guarantee as in case ①.

E.8 Other Applications

In this section, we provide additional applications where GOSPRL can be leveraged to readily
obtain an online learning algorithm. We first summarize them here.

Diameter estimation (see Section E.8.1). GOSPRL can be leveraged to estimate the MDP
diameterD. In Section E.8.1 we develop a GOSPRL-based procedure that computes an estimate
D̂ such that D ≤ D̂ ≤ (1 + ε)D in Õ(D3S2A/ε2) time steps. This improves on the diameter
estimation procedure recently devised by Zhang and Ji (2019) by a multiplicative factor of
DS2. As D̂ provides an upper bound on the optimal bias span sp(h⋆), our procedure may be
of independent interest for initializing average-reward regret-minimization algorithms that
leverage prior knowledge of sp(h⋆) (as done by e.g., Zhang and Ji, 2019).

PAC-policy learning (see Section E.8.2). One of the most common SO-based settings
is the computation of an ε-optimal policy via sample-based value iteration. Since GOSPRL
is agnostic to how the sampling requirements are generated, we can easily integrate it with
any state-of-the-art SO-based algorithm and directly inherit its properties. For instance, in
Section E.8.2 we show that GOSPRL can be easily combined with Bespoke (Zanette et al., 2019)
to obtain a competitive online learning algorithm for the policy learning problem. In fact, the
sample complexity of the resulting algorithm is only a factor D worse than existing online
learning algorithms in the worst case and, leveraging the refined problem-dependent bounds
of Bespoke, it is likely to be superior in many MDPs.

Bridging bandits and MDPs with GOSPRL (see Section E.8.3). In multi-armed bandit
(MAB) an agent directly collects samples by pulling arms. If we map each arm to a state-action
pair, we can see any MAB algorithm as having access to an SO. As such, we can readily turn
any bandit algorithm into an RL online linear algorithm by calling GOSPRL to generate the
samples needed by the MAB algorithm. Exploiting this procedure, in Section E.8.3 we show

228

E.8 Other Applications

howwe can tackle problems such as best-state identification and active exploration (i.e., state-signal
estimation) in the communicating MDP setting, for which no specific online learning algorithm
exists yet.

E.8.1 Application: Diameter Estimation

GOSPRL can be leveraged to estimate the diameter D which is a quantity of interest in the
average-reward setting. Indeed, D dictates the performance of reward-based no-regret algo-
rithms (Jaksch et al., 2010), and some works assume that an upper bound on the optimal bias
span sp(h⋆) is known (e.g., Qian et al., 2019). Since we have sp(h⋆) ≤ rmaxD (e.g., Bartlett and
Tewari, 2009), upper bounding D enables to relax this assumption. Recently, for such purpose
of upper bounding sp(h⋆), (Zhang and Ji, 2019) developed an initial procedure based on suc-
cessive applications of UCRL2 that can compute an estimate D̂ such that D ≤ D̂ ≤ (1 + ε)D
in Õ(D4S4A/ε2) time steps (see Zhang and Ji, 2019, AppendixD & Alg. 3 “LD: Learn the
Diameter”). In Algorithm E.1 we derive an iterative estimation procedure based on GOSPRL
which can compute such upper bound of D faster, namely in Õ(D3S2A/ε2) time steps, while
simultaneously providing an accurate estimation of the transition dynamics. As such it may be
an initial procedure of independent interest for regret-minimization algorithms in the average-
reward setting. We define a notation used throughout the section, ∥U∥∞∞ ≜ maxs,s′ U(s→ s′),
which holds for any quantity U that can be naturally mapped to a S × S matrix.

Lemma E.18. With probability at least 1− δ, Algorithm E.1:
• has a sample complexity bounded by Õ (D3S2A/ε2),
• requires at most log2 (D(1 + ε)) + 1 inner iterations,
• solves the ModEst problem for an accuracy level η > 0 and outputs an optimistic S × S matrix
ṽ such that ε

2D ≤ η ≤
ε

∥ṽ∥∞
∞
,

• outputs a quantity D̂ ≜ (1 + 2η∥ṽ∥∞∞) ∥ṽ∥∞∞ that verifiesD ≤ D̂ ≤ (1 + 2ε(1 + ε)) (1 + ε)D.

Proof. We will assume throughout that the event E (defined in Section E.1) holds. We now
give a useful statement stemming from optimism:

“At any stage of Algorithm E.1, for any given goal state, denote by ṽ the vector computed
using EVI for SSP. Then under the event E , we have component-wise (i.e., starting from any
non-goal state): ṽ ≤ minπ V π

p ≤ D.”
To prove this useful statement, we observe that the first inequality stems from Lemma E.1

of Section E.1 while the second inequality uses the definition of the diameter D and the fact
that the considered costs are equal to 1.

229

Complements on Chapter 7

Algorithm E.1: GOSPRL-based procedure to estimate the diameter
1 Input: accuracy ε > 0, confidence level δ ∈ (0, 1).
2 SetW ≜ 1

2 and ∥ṽ∥∞
∞ ≜ 1.

3 while ∥ṽ∥∞
∞ > W do

4 SetW ← 2W .
5 Set the accuracy η ≜ ε

W .
6 Collect additional samples by running GOSPRL for the ModEst problem with accuracy η

2
and confidence level δ.

7 for each state s ∈ S do
8 Compute a vector ṽ(· → s) using EVI for SSP, with goal state s, unit costs and VI

precision µVI ≜
min{1,ε}

2 (see Section E.1).

9 Output: the quantity D̂ ≜ (1 + 2η∥ṽ∥∞
∞) ∥ṽ∥∞

∞.

Now, denote by n the iteration index of the Algorithm E.1 (starting at n = 1), so that
Wn = 2n. Introduce N ≜ min{n ≥ 1 : ∥ṽn∥∞∞ ≤ Wn}. We have ∥ṽn∥∞∞ ≤ D at any iteration
n ≥ 1 from the useful statement on optimism above. Since (Wn)n≥1 is a strictly increasing
sequence, Algorithm E.1 is bound to end in a finite number of iterations (i.e., N < +∞), and
given thatWN−1 ≤ ∥ṽN−1∥∞∞ ≤ D, we get N ≤ log2 (D) + 1. Moreover, we have ∥ṽN∥∞∞ ≤WN

and ηN = ε
WN

, which implies that ηN ≤ ε
∥ṽN∥∞

∞
. Moreover, combining WN−1 ≤ D and

WN−1 = WN
2 = ε

2ηN yields that ε
2D ≤ ηN .

Denote by η ≜ ηN the achieved ModEst accuracy at the end of Algorithm E.1. Plugging in
the guarantee of Prop. 7.9 yields a sample complexity of

Õ
(DS2A

η2

)
= Õ

(D3S2A

ε2

)
.

Denote by ṽ ≜ ṽN the optimistic matrix output by Algorithm E.1. Consider the pair of states
(s1, s2) ∈ arg max(s,s′) minπ E [τπ(s→ s′)]. Denote by π̃ the greedy policy w.r.t. the vector ṽ(· →
s2) in the optimistic model with goal state s2. Then we have

D = min
π

E [τπ(s1 → s2)]E
[
τπ̃(s1 → s2)

] (a)
≤
(
1 + 2η∥E

[
τ̃π̃
]
∥∞∞
)
E
[
τ̃π̃(s1 → s2)

]
(b)
≤ (1 + 2η(1 + ε)∥ṽ∥∞∞) (1 + ε)ṽ(s1 → s2) ≤ (1 + 2η(1 + ε)∥ṽ∥∞∞) (1 + ε)∥ṽ∥∞∞ ≜ D̂
(c)
≤ (1 + 2η(1 + ε)∥ṽ∥∞∞) (1 + ε)D

(d)
≤ (1 + 2ε(1 + ε)) (1 + ε)D,

where (a) corresponds to the SSP simulation lemma (see Lemma 2.14) given that a ModEst
accuracy of η is fulfilled, (b) comes from the value iteration precision µVI ≜

min{1,ε}
2 which

implies that E [τ̃π̃] ≤ (1 + 2µVI)ṽ ≤ (1 + ε)ṽ component-wise according to Lemma E.1, (c) is
implied by the useful statement on optimism given at the beginning of the proof, and finally
(d) leverages that η∥ṽ∥∞∞ ≤ ε.

230

E.8 Other Applications

E.8.2 Application: PAC-Policy Learning

One of the most common SO-based settings is the computation of an ε-optimal policy via
sample-based value iteration. Since GOSPRL is agnostic to how the sampling requirements are
generated, we can easily integrate it with any state-of-the-art SO-based algorithm and directly
inherit its properties. For instance, consider the Bespoke algorithm introduced by Zanette et al.
(2019). Bespoke proceeds through phases and at the beginning of each phase k, it determines
the additional number of samples nk+1

sa that need to be generated at each state-action pair
(s, a) based on the estimates of the model and reward of the MDP computed so far. Then
it simply queries the SO as needed and it moves to the following phase. In order to turn
Bespoke into an online learning algorithm, we can simply replace the query step by running
GOSPRL until nk+1

sa samples are generated and then move to the next phase. Furthermore, let
b(s, a) be the total number of samples required by Bespoke in each state-action pair as stated by
Zanette et al. (2019, Theorem2), then we can directly apply Corollary E.2 and obtain the sample
complexity of the online version of Bespoke (Online-Bespoke). As discussed in Section 7.3
the resulting complexity is at most a factor D larger than the one of (offline) Bespoke plus an
additional term of order Õ(D3/2S2A) independent from the desired accuracy ε. It is interesting
to contrast this result with existing online algorithms for this problem. While to the best of our
knowledge, there is no algorithm specifically designed for optimal policy learning, we can rely
on regret-to-PAC conversion (see e.g., Jin et al., 2018, Section 3.1) to derive sample complexity
guarantees for existing regret minimization algorithms and do a qualitative comparison.7 For
instance, we can use Euler (Zanette and Brunskill, 2019) to derive an ε-optimal policy. If we
consider a worst-case analysis, Euler achieves the same sample complexity of Bespoke, which
in turn matches the lower bound of Azar et al. (2013). As a result, Online-Bespoke would
be a factor D suboptimal w.r.t. to Euler. Nonetheless, our SO-to-online learning conversion
approach enables Online-Bespoke to directly benefit from the problem-dependent performance
of Bespoke, which in many MDPs may outperform the guarantees obtained by using Euler as
a online learning algorithm for policy optimization.

E.8.3 Application: Bandit Problems with MDP Dynamics

Algorithmic protocol

The sampling procedure GOSPRL provides an effective way to collect samples for states of the
agent’s choosing, and can thus be related to the multi-armed bandit setting by mapping arms
(in bandits) to states (in MDPs). From Corollary E.2, each state can now be “pulled” within

7Regret minimization guarantees are usually provided for the finite-horizon setting, while Bespoke is designed
for the discounted setting. Furthermore, the ε-optimality guarantees for SO-based algorithms are typically defined
in ℓ∞ norm, while the regret-to-PAC conversion only provides guarantees on average w.r.t. the initial distribution.

231

Complements on Chapter 7

Õ(D) time steps (instead of a single time step in the bandit case). This allows to naturally
extend some pure exploration problems from the bandit setting to the communicating MDP
setting. The algorithmic protocol alternates between the two following strategies:

1 the “bandit algorithm” identifies the arm(s), i.e., state(s), fromwhich a sample is desired,

2 GOSPRL is executed to collect a sought-after sample as fast as possible.
To illustrate our decoupled approach we consider the two following problems: best-state

identification (Section E.8.3) and reward-estimation, a.k.a. active exploration (Section E.8.3).

Best-state identification

This is the MDP extension of the best-arm identification problem in bandits (Audibert and
Bubeck, 2010). Each state s ∈ S ≜ {1, . . . , S} is characterized by a reward function rs. For the
sake of simplicity, we assume that the rewards are in [0, 1] and that there is a unique highest-
rewarding state s⋆ ≜ arg maxs rs. Let r⋆ ≜ rs⋆ . Consider a budget of n steps. The objective
is to bound the probability of error en ≜ P(Jn ̸= s⋆), where Jn is the state from which we
desire a sample at step n. For s ̸= s⋆, we introduce the following suboptimality measure of
state s: ∆s ≜ r⋆ − rs. We introduce the notation (i) ∈ {1, . . . , S} to denote the i–th best arm
(with ties break arbitrarily). The hardness of the task will be characterized by the following
quantities H1 ≜

∑
s∈S

1
∆2
s
and H2 ≜ maxs∈S s∆−2

(s). These quantities are equivalent up to a
logarithmic factor since we haveH2 ≤ H1 ≤ log(2S)H2. A fully connected MDP with known
and deterministic transitions amounts to a multi-armed bandit problem ofK ≜ S arms for our
problem, thus the Successive Rejects algorithm (Audibert and Bubeck, 2010) directly yields the
following bound after j time steps

ej ≤
S(S − 1)

2 exp
(
− j − SA

log(S)H2

)
, where log(S) ≜ 1

2 +
S∑
i=1

1
i
.

In a general MDP, we combine GOSPRL (for the sample collection) with the Successive Rejects
algorithm (for deciding which sample to collect). Consider any large enough budget of n =
Ω(D3/2S2A) time steps. Denote by jn the number of time steps duringwhichGOSPRL effectively
collects the desired sample stipulated by the Successive Rejects algorithm. Corollary E.2 yields
that n = Õ

(
Djn +D3/2S2A

)
, which means that jn = Ω̃

(
n−D3/2S2A

D

)
. Therefore we obtain the

following guarantee.

Lemma E.19. In any unknown communicating MDP with unique highest-rewarding state s⋆,
combining GOSPRL with the Successive Rejects algorithm (Audibert and Bubeck, 2010) yields the
existence of a polynomial function p such that the probability en of wrongly identifying the “best

232

E.8 Other Applications

state” s⋆ at time step n is upper bounded by

en ≤ p(S,A,D, n) exp
(
−n−D

3/2S2A

D log(S)H2

)
,

which corresponds to an exponential decrease w.r.t.n whenever n is large enough (i.e., after the
D3/2S2A burn-in phase).

Reward estimation (a.k.a. active exploration)

The objective of this problem in bandits (resp.MDPs) is to accurately estimate the mean pay-off
(resp. the average reward signal) at each arm (resp. state). Note that this problemwas originally
studied in the bandit setting (see e.g., Carpentier et al., 2011) and we extended it in ergodic
MDPs in Tarbouriech and Lazaric (2019) using a Frank-Wolfe approach. The extension to
communicatingMDPs remained an open question, and it becomes immediately addressed with
GOSPRL. We recall the problem formulation: for a desired accuracy ε > 0, for each state-action
pair (s, a) ∈ S ×A with mean reward rs,a in [0, 1], we seek to output an estimate r̂s,a such that
|r̂s,a − rs,a| ≤ ε. Under the GOSPRL framework, it is sufficient to visit each state-action pair at
least Ω

(
ε−2) times, which directly induces the following sample complexity guarantee.

Lemma E.20. In any unknown communicating MDP, GOSPRL can reach any reward-estimation
accuracy ε > 0 with high probability under a sample complexity scaling as

Õ

(
DSA

ε2 +D3/2S2A

)
.

Comment: Distinction between regret and sample complexity. Note that the results above
(Lemma E.19 and E.20) do not provide any guarantee on the regret of the corresponding
algorithms (which is often themetric of interest in sequential learning). Indeed, our algorithmic
approach does not track nor adapt to a notion of optimal performance. Likewise, there remains
to derive lower bounds on these problems extended toMDPs, in order to quantity the optimality
of our procedure. Nonetheless, our decoupled approach is, to the best of our knowledge, the
first method with provably bounded sample complexity that can successfully extend classical
bandit problems (such as the two aforementioned ones) to communicating MDPs.

Comment: On the link between MDPs and bandits with a special form of transportation
costs. Under the mapping between bandit arms and MDP states, our sampling paradigm has

233

Complements on Chapter 7

s1 s2 sS−1 sS

0.4 0.6 0.350.6

0.05
0.35

0.05 0.05
0.35 0.6

0.4

1 1 1 1 1

(a) Reward-free RiverSwim (S = 6 states)
(b) Corridor gridworld (S = 24
states)

(c) 4-room gridworld (S = 43
states)

Figure E.2 – The three domains considered in Figure 7.1. For the gridworlds (b) and (c), the red tile
is the starting state, yellow tiles are terminal states that reset to the starting state, and black tiles are
reflecting walls (see §“Details on environments”).

the effect of casting any MDP as a bandit problemwith transportation costs between arms. In our
setting, the transportation cost from a state to another is unknown, initially unbounded and has
to be refined over the learning process (the asymptotically optimal cost amounts to the shortest
path distance between the two states). We believe that such a setting of unknown and learnable
transportation costs is an interesting formalism to study in the bandit setting, as it may then
be applied to the MDP extension and allow for smart algorithms that take into account each
transportation cost when proposing the arm/state from which a sample is desired (i.e., in
part 1 of the algorithmic protocol given at the beginning of Section E.8.3). For completeness, it
is worth mentioning that some papers study various settings of movement/switching costs
between arms (see e.g., Dekel et al., 2014; Koren et al., 2017), yet none of these settings can be
leveraged for our problem.

E.9 Experiments

This section complements the experiments reported in Section 7.5. We provide details about
the algorithmic configurations and the environments as well as additional experiments.

Details on Figure 7.1 and Figure E.3. Figure 7.1 reports, as a function of time t, the propor-
tion Pt of states that at time t satisfy the sampling requirements of the Treasure-10 problem
(i.e., b(s, a) = 10). Formally, Pt ≜ |{s ∈ S : ∀a ∈ A, Nt(s, a) ≥ b(s, a)}| · S−1. As such, all
sampling requirements are met as soon as Pt = 1, meaning that the black line y = 1 on the
y-axis characterizes our objective. Furthermore, we report in Figure E.3 results on additional
domains (see below).

Details on environments. The three domains considered in Figure 7.1 are given in Fig-
ure E.2. The first one corresponds to a reward-free version of the RiverSwim domain introduced
by Strehl and Littman (2008), which is a stochastic chain with 6 states and 2 actions classically
used for testing exploration algorithms. The other two domains are gridworlds. In Figure E.3

234

E.9 Experiments

GOSPRL

0/1-UCRL

0-UCRL

MaxEnt

Uniform

Figure E.3 – Proportion Pt of
states that satisfy the sampling
requirements at time t, averaged
over 30 runs, on the Treasure-
10 problem with b(s, a) = 10.
Top left: RiverSwim(36) with
36 states (see Figure E.2a), Top
right: 10-state gridworld with
high-cost state, Bottom left: 20-
state 4-room symmetric grid-
world, Bottom right: 48-state
CliffWalk-type gridworld.

0 1 2 3 4

·103

0

0.2

0.4

0.6

0.8

1

time t

P
ro
p
o
rt
io
n
P t

0 1 2 3 4

·103

0

0.2

0.4

0.6

0.8

1

time t

P
ro
p
o
rt
io
n
P t

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·103

0

0.2

0.4

0.6

0.8

1

time t

P
ro
p
or
ti
on
P t

0 0.2 0.4 0.6 0.8 1 1.2

·104

0

0.2

0.4

0.6

0.8

1

time t

P
ro
p
o
rt
io
n
P t

(a) Gridworld with high-cost state
. (S = 10 states)

(b) 4-room symmetric gridworld
. (S = 20 states)

(c) CliffWalk-type gridworld
(S = 48 states)

Figure E.4 – The three gridworlds considered in Figure E.3. The blue tile in (a) is a “trap state” that
incurs large negative environmental reward and should thus be avoided as much as possible.

we test on a larger RiverSwim domain with 36 states and three additional gridworlds that
are given in Figure E.4. Throughout our experiments, the gridworld domains are defined as
follows. The agent can move using the cardinal actions (Right, Down, Left, Up). An action
fails with probability pf = 0.1, in which case the agent follows (uniformly) one of the other
directions. The starting state is shown in red. Yellow tiles are terminal states that, when reached,
deterministically reset to the starting state. The black walls act as reflectors, i.e., if the action
leads against the wall, the agent stays in the current position with probability 1. The gridworlds
are all reward-free, except the one in Figure E.4a where the blue tile incurs large negative
environmental reward: it is thus a trap state which should be avoided as much as possible.
Finally, in the experiments with the randomly generated Garnet environments and state-action
requirements (Figure 7.2), we guarantee the MDPs randomly generated to be communicating
by setting P (s0|s, a) ≥ 0.001 for every (s, a) and an arbitrary state s0.

235

Complements on Chapter 7

Table E.1 – For the Treasure-
10 problem, we report the
quantities BD, ∑

s b(s)Ds

and the sample complexity
of GOSPRL run with known
dynamics (averaged over 30
runs), on the 3 domains of
Figure E.2.

Environment BD
∑

s b(s)Ds

Sample comp. of
GOSPRL run with
known dynamics P

RiverSwim(6) 1766.7 958.7 249.9
Corridor gridworld(24) 24375.6 13695.2 3156.5
4-room gridworld(43) 27399.7 19048.3 3342.5

Algorithmic details. For all experiments and all considered algorithms, we choose a
scaling factor αp = 0.1 of the confidence intervals of the transition probabilities (which enables
to speed up the learning, see e.g., Fruit et al., 2018b), as well as a confidence level set to
δ = 0.1. Recall that for GOSPRL, in the case of state-only requirements, a state s is considered
as under-sampled and is thus a goal state if∑a∈AN(s, a) < b(s), while in the case of state-
action requirements, a state s is considered as under-sampled if ∃a ∈ A, N(s, a) < b(s, a).
We consider the following initial phase for GOSPRL (i.e., when all states are under-sampled):
we select as goal states those minimizing the “remaining budget” b(s)−N(s) for state-only
requirements (or∑a∈A max{b(s, a)−N(s, a), 0} for state-action requirements), which has the
effect of shortening the length of the initial phase. In the case of state-action requirements, once
a sought-after goal state s is reached, GOSPRL selects an under-sampled action awhose gap
b(s, a)−N(s, a) is maximized. We note that this design choice can be observed in Figure 7.1
and E.3 where GOSPRL seeks to “even out” its sampling strategy, with a steady increase in (Pt),
instead of exhausting the requirements state after state.

GOSPRL-for-ModEst algorithm. Here we detail the GOSPRL-for-ModEst algorithm used
in the ModEst experiment of Figure 7.3. The GOSPRL sampling requirements are computed
using a decreasing ModEst accuracy η, which enables the algorithm to be accuracy-agnostic
like the WeightedMaxEnt heuristic to which it is compared. GOSPRL-for-ModEst starts at an
initial accuracy of η ← 1 and iteratively performs the two following steps until the algorithm
ends: i) it requires a sampling requirement of bModEst

t (s, a) = αb · Φ
(∑

s′∈S

√
σ̂2
t (s′|s, a) , S

),
where Φ is defined after Equation (7.3) for accuracy η and where αb = 0.01 is a scaling factor
to speed up the learning; and ii)when the sampling requirements are fulfilled by GOSPRL, it
sets η ← η/2 and goes back to the first step.

Dependencies. For each environment of Figure E.2 on the Treasure-10 problem (i.e.,
b(s, a) = 10, B = 10SA), we compute in Table E.1 the sample complexity of GOSPRL run
with known dynamics, to put aside the learning component so that its corresponding sam-
ple complexity can be bounded exactly by BD or by∑s b(s)Ds according to the analysis in
Section 7.3.1. Both bounds are reported in Table E.1: we observe that the second (more state-
dependent) quantity is tighter and more preferable than the first. Despite both bounds being
loose w.r.t. the actual algorithmic performance, they can effectively capture the difficulty of the

236

E.9 Experiments

0 20 40 60 80 100 120 140
0

2

4

6

·104

Number of states S

S
am

p
le

co
m
p
le
x
it
y

GOSPRL

Figure E.5 – Sample complexity of GOSPRL in ran-
domly generated GarnetMDPs for increasing values
of S, with all other parameters fixed (A, β, U) as in
Figure 7.2. Results are averaged over 5 Garnets, each
for 12 runs.

0 200 400 600 800 1,0001,2001,4001,600

0

0.2

0.4

0.6

0.8

1

time t

P
ro
p
o
rt
io
n
P t

GOSPRL

GOSPRL w/o goal aggreg.

Figure E.6 – Impact of goal aggregation
on GOSPRL. Proportion Pt averaged over
30 runs, on the Treasure-10 problem with
b(s, a) = 10 on the environment of Fig-
ure E.4b.

Table E.2 – Impact of cost shaping on GOSPRL.
On the environment of Figure E.4a, sampling
requirement are concentrated at the yellow ter-
minal state y ∈ S , i.e., b(y, a) = 10 for all a ∈ A.
Cost-weighted GOSPRL sets a cost of 10 (in-
stead of 1) at the blue trap state during each
SSP planning step. Values are averaged over 30
runs.

GOSPRL
(Algorithm 7.1)

Cost-weighted
GOSPRL

Sample
complexity 253.1 520.0

Visits to
trap state 44.6 4.7

problem (in a relative sense where the higher the bounds, the higher the sample complexity).
We also recall from Section 7.5 that there exist simple worst-case problems (see e.g., Figure 7.4)
where these bounds are tight, i.e., where the sample complexity of GOSPRL (whether the
dynamics are known or not) must directly scale with these diameter quantities. Notice that
running GOSPRL with known dynamics corresponds to deploying an optimal greedy strategy
(i.e., by minimizing each time to reach under-sampled states in a sequential fashion), which is
likely not the optimal non-stationary solution (which would involve solving a sort of highly
difficult, online travelling salesman problem), see Section E.2.3 for additional discussion. Fi-
nally, we study the sample complexity of GOSPRL across similar MDPs with increasing number
of states to see how that dependence pans out. Figure E.5 reports the sample complexity of
GOSPRL in randomly generated Garnet MDPs for increasing values of S. We observe that as
expected, the sample complexity scales linearly with S.

Impact of goal aggregation on GOSPRL. GOSPRL iteratively aggregates the undersampled
states into a meta-goal for which it computes an optimistic goal-oriented policy. While it is
possible to focus on specific goal states as mentioned in Section 7.3 without affecting the sample
complexity guarantee, performing the goal aggregation leads to shorter and more successful
sample collection attempts. We observe in Figure E.6 that this indeed translates into better
empirical performance. Indeed, GOSPRL collects the prescribed samples faster than a version

237

Complements on Chapter 7

of GOSPRL that selects uniformly at random a single goal state among all undersampled states
(i.e., that does not perform goal state aggregation).

Impact of cost shaping onGOSPRL.WhileGOSPRL in Algorithm 7.1 considers unit costs for
each SSP problem it constructs, any non-unit costs can be designed as long as they are positive
and bounded. In particular, detering costs may be assigned to trap states with large negative
environmental reward that the agent seeks to avoid. To study this, we consider the gridworld
of Figure E.4a where the blue tile is a trap state that the agent must avoid as much as possible.
For ease of exposition we consider here sampling requirements concentrated at the terminal
state in yellow denoted by y ∈ S, i.e., b(y, a) = 10 for any a ∈ A. We compare GOSPRL with a
cost-weighted GOSPRL where a cost of 10 is set at the blue trap state during each SSP planning
step. Table E.2 shows that while the sample complexity of cost-weighted GOSPRL is worsened,
the number of visits to the undesirable trap state is considerably decreased w.r.t.GOSPRL.
This makes sense since the shortest path from the red starting state to the sought-after yellow
terminal state goes through the blue trap state, so a trade-off appears between minimizing
the sample complexity and visiting undesirable states. This numerical simulation shows that
GOSPRL can naturally adjust this trade-off by cost-weighting the successive SSP problems it
tackles.

238

Appendix F

Complements on Chapter 8

F.1 Proofs

Proof of Equation (8.3). Here we take the limit H → +∞. Let g ∈ GL, then Property 1 entails
that Dk(g) ≤ V ⋆(s0 → g) ≤ L, thus g ∈ Xk, therefore GL ⊆ Xk. Now let g ∈ Xk, then by
Property 2 and definition of εk, we have that V ⋆(s0 → g) ≤ Dk(g) +Ek(g) ≤ L+Ek(g) ≤ L+ εk,
therefore Xk ⊆ GL+εk .

Proof of Equation (8.5). Fix any finite episode index K < κ, where κ denotes the (possibly
unbounded) episode index at which AdaGoal-UCBVI terminates. By design of AdaGoal, we
have that ε ≤ Ek(gk) for every k ≤ K. We assume that κ > 1 otherwise the result is trivially true.
Define κ′ ≜ min{κ− 1,K} ≥ 1. Summing the inequality above yields ε · κ′ ≤

∑κ′
k=1 Ek(gk) ≤

κ′ · fM(κ′). This implies that ε ≤ fM(κ′), in which case f−1
M (ε) ≥ κ′, since f−1

M is strictly
decreasing (like fM). Since the last inequality holds for any finite K < κ, letting K → +∞
implies that κ is finite and bounded by f−1

M (ε) + 2.

F.1.1 Proof of Lemma 8.7

We assume throughout that L ≥ 2 and ε ∈ (0, 1]. On the one hand, Theorem 8.11 proves
that AdaGoal-UCBVI is (ε, δ, L,G)-PAC for MGE with sample complexity of order Õ(L3SAε−2),
thereforeMGE is solvable in poly(S,L, ε−1, A) steps (up to poly-log factors). On the other hand,
reset-freeMGE is a special case of the cost-free goal-free exploration problem in communicating
MDPs studied in Section 7.4.3, where we showed that a GOSPRL-based algorithm can solve it
in poly(S,D, ε−1, A) steps (up to poly-log factors). Now we prove that there exists an MDP
such that any algorithm requires at least Ω(D) steps to solve the reset-free MGE problem (i.e.,
without Assumption 8.3), where the MDP’s diameterD can be made exponentially larger than
L, S,A, ε−1.

239

Complements on Chapter 8

To this end, we design in Figure F.1 a communicating MDPMa† that does not satisfy
Assumption 8.3, with A ≥ 4 actions (including a special action a† ∈ A) and S = 5 states, where
S ≜ {s0, g, x, s̃, s}, and all states apart from s are reliablyL-reachable from s0. We define as goal
space G ≜ {g}. We consider the problem of learning an ε-optimal goal-reaching policywith goal
state g from the starting state s0, i.e., finding a policy π such that V π(s0 → g) ≤ V ⋆(s0 → g) + ε,
which is a sub-problem of the MGE objective.

s0 x g

s̃ s

1− η ζ

1 − ζ

η

a = a†

a ̸= a†

1− η/2

η/2

Figure F.1 – Illustration of the MDP in-
stanceMa† .

Given η ∈ (0, 1) and an unknown action a† ∈ A,
we define the following transition probabilities for all
a ∈ A,

P (s̃|s0, a) ≜ η, P (x|s0, a) ≜ 1− η,

P (g|x, a) ≜ ζ, P (x|x, a) ≜ 1− ζ,

P (g|s̃, a) ≜ 1[a = a†], P (s|s̃, a) ≜ 1[a ̸= a†],

P (g|s, a) ≜ η

2 , P (s|s, a) ≜ 1− η

2 ,

P (s0|g, a) ≜ 1,

where we can set any ζ = O(1/L) such that g is reli-
ably L-reachable from s0 (i.e., V ⋆(s0 → g)). It is easy
to see that the MDP’s diameter verifiesD = αη−1 for
a constant α > 0. Finally, we denote by F the family
of MDPs of the form of Figure F.1 parameterized by a† ∈ {1, . . . A}, i.e., F ≜ {Ma†}a†∈{1,...A}.

We define the event Jt that state s̃ has never been visited by the agent by time t (recalling
that it initially starts at state s0), i.e., Jt ≜ {nt(s̃) = 0} (note that its probability is the same
for all MDPs in F). We now fix an MDPMa† and denote by π⋆ its optimal policy, i.e., π⋆ ∈
arg minπ V π(· → g), which in particular selects action a† at state s̃. First, we consider any
deterministic algorithm A whose candidate policy π̂ does not select action a† when it is in state
s̃. Then it holds that

V π̂(s̃→ g) = 1 +
∑
y∈S

P (y|s0, π̂(s̃))V π̂(y → g) ≥ 1 + V π̂(s→ g) = 1 + 2
η
, (F.1)

V π̂(s̃→ g)− V π⋆(s̃→ g) ≥ 2
η
,

V π(s0 → g) = 1 + ηV π(s̃→ g) + (1− η)V π(x→ g), ∀π,

V π̂(s0 → g)− V π⋆(s0 → g) = (1− η)
(
V π̂(x→ g)− V π⋆(x→ g)︸ ︷︷ ︸

≥0

) (F.2)

+ η
(
V π̂(s̃→ g)− V π⋆(s̃→ g)︸ ︷︷ ︸

≥2/η

)
≥ 2 > ε, (F.3)

240

F.1 Proofs

thus π̂ has a sub-optimality gap larger than ε. This means that under the event Jt, where the
algorithm cannot know which is the favorable action a†, it holds that with probability at least
1 − 1

A ≥
3
4 , any deterministic algorithm’s candidate policy π̂ does not select the action a† at

state s̃ thus its value function is not ε-optimal. Second, we note that we can easily extent to
the case where A outputs stochastic actions at state s̃. Given that a† is unknown, in the best
case scenario it can set π̂(·|s̃) = 1/A. Then we can retrace the reasoning above and replace (F.1)
with V π̂(s̃) ≥ 1 + A−1

A
2
η , and thus (F.3) with V π̂(s0) − V π⋆(s0) ≥ 2A−1

A > 1 ≥ ε since A > 2,
which leads to the same result that π̂ is not ε-optimal on at least one of the MDPs in F .

Now we study how the probability of the event Jt evolves over time t, i.e. we bound the
time required to visit s̃ at least once, which we denote by T̃ . Recall that s̃ can only be reached
with probability η from s0 following any action. The random variable T̃ can be seen as an
upper bound of a random variable distributed geometrically with success probability η, thus
Chernoff’s inequality entails that with probability at least 1

2 we have T̃ ≥ 1
9η , i.e., the event Jt

for t = ⌊1/(9η)⌋ holds with probability at least 1
2 .

Putting everything together, there exists an MDP in F such that with probability at least
1
4 , the number of time steps required to output a candidate policy that is ε-optimal for goal
state g is at least 1

9η = Ω(D), where η can be made arbitrarily small, so in particular D can
be exponentially larger than L. Hence in this MDP instance, no algorithm can solve MGE in
poly(L) steps with overwhelming probability. While here we considered S = 5 for simplicity,
note that the result easily holds for any S ≥ 5 by replacing the state x in the construction above
with a set of S − 4 states; the only property that must be still verified is that g remains reliably
L-reachable from s0.

Therefore, for any L ≥ 2, S ≥ 5, A ≥ 4, ε ∈ (0, 1], there exists an MDP instance and a goal
space for which any algorithm requires at least Ω(D) time steps to solve reset-free MGE, where
the diameter D can be exponentially larger than L, S,A, ε−1, which concludes the proof of
Lemma 8.7.

F.1.2 Proof of Lemma 8.8

In the following, we will prove in Lemma F.2 a lower bound on the expected number of
exploration steps to find an ε-optimal SSP policy from s0 for a specific goal state g that is
reliably L-reachable from s0. Such BPI-SSP objective corresponds to our MGE objective with
goal space G = {g} and it thus induces a lower bound on theMGE problem, whichwill conclude
the proof of Lemma 8.8.

Notation. We largely follow the notations and definitions of Domingues et al. (2021b). We
define an RL algorithm as a history-dependent policy π used to interact with the environment.
In the BPI setting, where we eventually stop and recommend a policy, an algorithm is defined

241

Complements on Chapter 8

as a triple (π, τ, π̂τ) where τ is a stopping time and π̂τ is a Markov policy recommended after τ
time steps. We now write more formally our objective.

Definition F.1 (BPI-SSP). An algorithm (π, τ, π̂τ) is (ε, δ, L)-PAC for best-policy identification
in a stochastic shortest path problem satisfying Assumption 8.3 (BPI-SSP) if V ⋆(s0) ≤ L and if
the policy π̂τ returned after τ time steps satisfies, for the initial state s0,

Pπ,M
[
V π̂τ (s0)− V ∗(s0) ≤ ε

]
≥ 1− δ,

where we denote the goal state by g and the SSP value of any policy π at any state s by V π(s) ≜
Eπ,M [inf{i ≥ 0 : si+1 = g} | s1 = s], and V ⋆(s) ≜ minπ V π(s).

Lemma F.2 (BPI-SSP Lower Bound). There exist absolute constants L0, S0, A0, ε0, δ0 such that,
for any L ≥ L0, A ≥ A0, ε ≤ ε0, δ ≤ δ0 and S0 ≤ S ≤ A

L
3 −2, and for any algorithm (π, τ, π̂τ)

that is (ε, δ, L)-PAC for BPI-SSP in any finite MDP with S states and A actions, there exists an
MDPM with a goal state belonging to GL and an absolute constant β such that

Eπ,M [τ] ≥ βL
3SA

ε2 log
(1
δ

)
.

Proof of Lemma F.2.
We first define our family of hard MDPs for S = 4
states, and the extension to any S states can be
done as in Domingues et al., 2021b as explained
later. Consider the hard MDP illustrated in Fig-
ure F.2, where all states incur a cost of 1 apart from
the goal state sg (a.k.a. “good” state). The agent
stays in the initial state s0 with probability 1 − q,
and goes to a decision state sd with probability q.
For any action a taken in sd, the agent reaches sg
with probability 1/2 and a “bad” state sbwith prob-
ability 1/2, except if an action a⋆ is chosen, that
increases to 1/2 + ε̃ the probability of reaching sg.
From sb, the agent returns to the initial state s0

with probability 1. The goal state sg is absorbing,
and the agent stays there unless the reset action is
taken, which brings the agent back to s0.

s0

sd

sgsb cost = 0

q

1− q

1
2 + ε̃

1
2

1
2

1
2 − ε̃

1

1

Figure F.2 – Illustration of the hard MDP con-
sidered in the proof of Lemma F.2.

242

F.1 Proofs

Note that the MDP satisfies Assumption 8.3 (the arrows of the reset action from sd to s0 and
from sg to s0 are not represented in Figure F.2 for visual convenience). Moreover, we define
the following parameters

H ≜ ⌈L2 − 1⌉, q ≜ 1/H, ε̃ ≜
ε

2(H + 1) .

Note that this hard MDP instance is inspired from hard MDPs used in prior lower-bound
constructions (see e.g., Lattimore and Hutter, 2012; Domingues et al., 2021b), albeit with slight
modifications. Indeed, a key difference with respect to the discounted MDP setting (Lattimore
and Hutter, 2012) or the finite-horizon MDP setting (Domingues et al., 2021b) is that in our
case, the agent has access to an anytime reset action (Assumption 8.3). This implies that we
cannot do as prior works that rely on absorption properties of states in the MDP (e.g., the
“good” and “bad” states sb and sg) in order to compound errors and add an extra effective
horizon term (either 1/(1− γ) or H) in the sample complexity (i.e., to go from quadratic to
cubic). The only absorption property we can rely on here is at the initial state s0. It turns out
that this will be sufficient in our setting to compound error and go from L2 to L3 dependence.
The intuition for this is that the SSP value function generates a cost of +1 at each time step
until the goal state is reached, which compounds errors more than the usual reward-based
value function in the sparse-reward MDP constructions of Lattimore and Hutter (2012) and
Domingues et al. (2021b).

We consider a family of MDPs of the form of Figure F.2, parameterized by a⋆ ∈ {1, . . . A},
where we denote byMa⋆ the MDP such that a⋆ increases the probability by ε̃ of reaching the
goal state sg from state sd. For any policy π we denote its SSP value (with goal state sg) at state
s inMa⋆ by V π

a⋆(s).
We also define a referenceMDPM0, where ε̃ = 0, that is, there is no special action increasing

the probability of reaching the goal state sg. We denote by Pa⋆ [·] and Ea⋆ [·] the probability
measure and the expectation in the MDPMa⋆ by following the algorithm π and by P0 [·] and
E0 [·] the corresponding operators inM0.

The optimal value function does not depend on the MDP parameter a⋆, and for any MDP
Ma⋆ we get

V ⋆(s0) = 1
q

+
(1

2 + ε̃
)

+
(
1− 1

2 − ε̃
)(

1 + V ⋆(s0)
)

=⇒ V ⋆(s0) =
(1
q

+ 1
) 1

1/2 + ε̃
.

Note that by our choice of q, it importantly holds that V ⋆(s0) ≤ L, i.e., sg ∈ GL.

243

Complements on Chapter 8

Meanwhile, the value function of the recommended policy π̂τ inMa⋆ is

V π̂τ
a⋆ (s0) =

(1
q

+ 1
) 1

1/2 + ε̃ · π̂τ (a⋆|sd)
.

As a result,

V π̂τ
a⋆ (s0)− V ⋆(s0) =

(1
q

+ 1
) ε̃(1− π̂τ (a⋆|sd))

(1/2 + ε̃)(1/2 + ε̃ · π̂τ (a⋆|sd))
≤ 4

(1
q

+ 1
)
ε̃︸ ︷︷ ︸

=2ε

·(1− π̂τ (a⋆|sd)),

and thus

V π̂τ
a⋆ (s0)− V ⋆(s0) < ε ⇐⇒ π̂τ (a⋆|sd) >

1
2 .

We observe that this analysis of the suboptimality gap of π̂τ in terms of SSP value functions can
be mapped to the one of Domingues et al. (2021b, Proof of Theorem 7) for their finite-horizon
value functions, despite the different MDP constructions. This means that we can retrace the
steps of Domingues et al. (2021b, Proof of Theorem 7). In the following, we use the notation

(D)
≥

to signify that the inequality stems from following the same corresponding steps of Domingues
et al. (2021b, Proof of Theorem 7). In particular, we similarly define the event

Eτa⋆ ≜
{
π̂τ (a⋆|sd) >

1
2
}
,

and since the algorithm is assumed to be (ε, δ, L)-PAC for BPI-SSP for any MDP, we have

Pa⋆
[
Eτa⋆
]

= Pa⋆
[
V π̂τ
a⋆ (s0) < V ⋆(s0) + ε

]
≥ 1− δ.

We now proceed with lower bounding the expectation of the sample complexity τ in the
reference MDPM0. We define

N τ
a⋆ ≜

τ∑
t=1

1[St = sd, At = a⋆], N τ ≜
∑
a⋆
N τ
a⋆ .

Following the steps of Domingues et al. (2021b, Proof of Theorem 7), we have that

E0
[
N τ
a⋆

]
4ε̃2 (D)

≥ E0
[
N τ
a⋆

]
kl
(1

2 ,
1
2 + ε̃

) (D)
≥

[(
1− P0

[
Eτa⋆
])

log
(1
δ

)
− log(2)

]
,

thus

E0
[
N τ
a⋆

]
≥ 1

4ε̃2

[(
1− P0

[
Eτa⋆
])

log
(1
δ

)
− log(2)

]
.

244

F.2 DETAILS OF AdaGoal-UCBVI AND ANALYSIS

Summing all over MDP instances, we obtain following Domingues et al. (2021b, Proof of
Theorem 7) that

E0
[
N τ
]

=
∑
a⋆

E0
[
N τ
a⋆

] (D)
≥ A

8ε̃2 log
(1
δ

)
.

While the proof of Domingues et al. (2021b, Theorem 7) can stop at this stage, our proof
requires an additional step of linking this back to the sample complexity τ , since the latter is
not defined in terms of number of episodes but in terms of number of time steps.

For any i ≤ τ , denote by Wi(s0 → sd) the random variable of the number of time steps
required to reach sd starting from s0 for the i-th time — note importantly that this quantity is
independent of the algorithm and of theMDPparameter a⋆, andwe canwriteE [Wi(s0 → sd)] =
E [W (s0 → sd)] = 1

q . Then fromWald’s equation we have

E0[τ] ≥ E0

[
Nτ∑
i=1

Wi(s0 → sd)
]

= E [W (s0 → sd)] · E0 [N τ] ≥ 1
q
· α 1
ε̃2A log

(1
δ

)
≥ α′L

3A

ε2 log
(1
δ

)
,

where α and α′ are absolute constants.
Finally, as mentioned, the extension to any S to make appear the multiplicative dependence

on S can be done by following the steps done in Domingues et al. (2021b, Proof of Theorem
7) (which relies on their Assumption 1, see their Theorem 10 for the relaxed statement). The
idea of the construction is to consider not just 1 decision state sd but S − 3 of them, where only
one of them possesses the favorable action a⋆; intuitively this generates SA actions instead of A
(see e.g., Lattimore and Szepesvári, 2020, Section 38.7), thus leading to the additional S factor
in the sample complexity.

F.2 DETAILS OF AdaGoal-UCBVI AND ANALYSIS

In this section, we focus on AdaGoal-UCBVI. In Section F.2.1, we introduce useful notation. In
Section F.2.2, we define the exact choice of estimatesD, E , Q used by AdaGoal-UCBVI (line 13 of
Algorithm 8.1). Then in Section F.2.3, we provide the full proof of Theorem 8.11, by establishing
the key steps followed in Section 8.3. Throughout the analysis we consider that G = S , ε ∈ (0, 1]
and δ ∈ (0, 1).

245

Complements on Chapter 8

F.2.1 Notation

Given a goal state g ∈ G, denote byMg the unit-cost SSP-MDPwhich adds a self-loop at g to the
original MDPM, and denote by Pg(its transition function and cg its cost function. Formally, let

cg(s, a) ≜ 1[s ̸= g], Pg(s′|s, a) ≜
{
P (s′|s, a) if s ̸= g

1[s′ = g] if s = g.

For any (possibly non-stationary) policy π = (πh)h≥1, let V π
g be its SSP value function (i.e.,

expected cost-to-go) inMg, i.e.,

V π
g (s0) ≜ E

[+∞∑
h=1

cg(sh, ah)
∣∣ s1 = s0, π,Mg

]
,

where ah ≜ πh(sh) and sh+1 ∼ Pg(sh, ah). Let π⋆g ∈ arg minπ V π
g and V ⋆

g ≜ V
π⋆g
g . We now define

the set of finite-horizon goal-conditioned models.

Definition F.3 (Finite-Horizon Goal-Conditioned Models). Fix a horizon H ≥ 1. For any
goal state g ∈ G, denote byMg,H the finite-horizon model that corresponds to starting from state s0

and interacting for H steps with the original MDPM in which state g is made absorbing.Mg,H

admits as cost function cg ≜ cg and as transition function P g ≜ Pg.

Remark F.4. Note that for a given goal state g ∈ G, the cost function cg is known to the agent,
while the MDP transitions P g are unknown with some (known) goal-specific changes w.r.t. the
original MDPM (namely, the self-loop at g). An alternative way of framing the problem is
that there is one single MDP with state space S × G, i.e., with state variable (s, g).

For a finite-horizon policy π ∈ ΠH , denote by V π
g,h its finite-horizon value function at step

1 ≤ h ≤ H in the finite-horizon instanceMg,H , i.e.,

V
π
g,h(s0) ≜ E

[
H∑

h′=h
cg(sh′ , ah′)

∣∣ s1 = s0, π,Mg,H

]
.

We define the corresponding optimal value function as V ⋆
g,h ≜ minπ V

π
g,h. Observe that

V
⋆
g,1(s0) = D⋆H(g) (notation used in Properties 1 and 2 of Section 8.2).
Let (si, ai, si+1) be the state, action and next state observed by an algorithm at time step i.

Let nk(s, a) ≜
∑kH
i=1 1[(si, ai) = (s, a)] be the number of times state-action pair (s, a) was

visited in the first k episodes and nk(s, a, s′) ≜
∑kH
i=1 1[(si, ai, si+1) = (s, a, s′)]. We define the

empirical transitions as P̂ k(s′|s, a) ≜ nk(s, a, s′)/nk(s, a) if nk(s, a) > 0, and P̂ k(s′|s, a) ≜ 1/S
otherwise. Also, PX(s, a) ≜ Es′∼P (·|s,a) [X(s′)] denotes the expectation operator w.r.t. the

246

F.2 DETAILS OF AdaGoal-UCBVI AND ANALYSIS

transition probabilities P and πhY (s) ≜ Y (s, πh(s)) denotes the composition with policy π at
step h, so that PπhZ(s, a) ≜ Es′∼P (·|s,a) [Z(s′, πh(s′))]. Finally, we denote the clip function by
clip(x, y, z) ≜ max(min(x, z), y).

Finally, in the analysis we denote by pkg,h(s, a) the probability of reaching state-action pair
(s, a) at step h under policy πkg in the true MDP. We also define the pseudo-counts as nk(s, a) ≜∑H

h=1
∑k
l=1 p

l
gl,h

(s, a), where gl ∈ S denotes the goal state selected by AdaGoal-UCBVI at the
beginning of algorithmic episode l.

F.2.2 Algorithmic Choices of D, E , Q for AdaGoal-UCBVI

We generalize to our goal-conditioned scenario the estimates used by BPI-UCBVI (Ménard et al.,
2021), a recent algorithm designed for Best-Policy Identification (BPI) in finite-horizon non-
stationary MDPs. First, we build the optimistic goal-conditioned Q-values and value functions
in the finite-horizon modelsMg,H for g ∈ S and h ≤ H as follows, Q̃0

g,h(s, a) ≜ 1[s ̸= g],

Q̃
k

g,h(s, a) ≜ clip
(
1[s ̸= g]− 3

√
Var

P̂ k(Ṽ
k

g,h+1)(s, a)β
⋆(nk(s, a), δ)
nk(s, a) − 14H2β(nk(s, a), δ)

nk(s, a)

− 1
H
P̂ k(

˜
V
k
g,h+1 − Ṽ

k

g,h+1)(s, a) + P̂ kṼ
k

g,h+1(s, a), 0, H
)
,

Ṽ
k

g,h(s) ≜ min
a∈A

Q̃
k

g,h(s, a), Ṽ
k

g,h(g) ≜ 0, Ṽ
k

g,H+1(s) ≜ 0,

where we define the variance of Ṽ k

g,h+1 with respect to P̂ k(·|s, a) as Var
P̂ k (Ṽ

k

g,h+1)(s, a) ≜∑
s′ P̂ k(s′|s, a)

(
Ṽ

k

g,h+1(s′) − P̂ kṼ
k

g,h+1(s, a)
)2, where the quantities β(n, δ) = Õ(S log(n/δ)) and

β⋆(n, δ) = Õ(log(n/δ)) are some exploration thresholds, and
˜
V
k
g is a pessimistic finite-horizon

goal-conditioned value function; see Appendix F.2.3 for the complete definitions. Let πk+1
g,h be

the greedy policy with respect to the lower bounds Q̃kg,h. We recursively define the functions
U
k
g for g ∈ S and h ≤ H as follows, U 0

g,h(s, a) ≜ H1[s ̸= g],

U
k
g,h(s, a) ≜ clip

(
6
√

Var
P̂k

(Ṽ
k

g,h+1)(s, a)β
⋆(nk(s, a), δ)
nk(s, a) + 36H2β(nk(s, a), δ)

nk(s, a)

+
(

1 + 3
H

)
P̂ kπk+1

g,h+1U
k
g,h+1(s, a), 0, H

)
,

U
k
g,h(g, a) ≜ 0, U

k
g,H+1(s, a) ≜ 0,

247

Complements on Chapter 8

We are now ready to define the distance and error estimates of AdaGoal-UCBVI (Algorithm 8.1)
as follows

Qk,h(s, a, g) ≜ Q̃
k−1
g,h (s, a), (F.4)

Dk(g) ≜ Ṽ
k−1
g,1 (s0), (F.5)

Ek(g) ≜ πkg,1U
k−1
g,1 (s0) + 8ε

9 . (F.6)

F.2.3 Proof of Theorem 8.11

In this section, we provide the full proof of Theorem 8.11, by establishing the key steps followed
in Section 8.3. First, we prove “key steps ①, ②, ③”, which focuses on more “standard” technical
tools (e.g., high-probability events, variance-aware concentration inequalities); in particular
building on the analysis of Ménard et al. (2021) on the sample complexity of BPI in finite-
horizon MDPs and extending it to our goal-conditioned scenario. Then we prove “key step ④”,
which focuses on the technical novelty of the AdaGoal goal selection scheme that is specific to
the multi-goal exploration setting.

We begin by stating a simple property that we will rely on throughout the analysis.

Lemma F.5. For any state-action pair (s, a) ∈ S × A and goal state g ∈ S, consider any vector
Y ∈ RS such that Y (g) = 0, then PY (s, a) = PgY (s, a), where we recall that

Pg(s′|s, a) ≜
{
P (s′|s, a) if s ̸= g

1[s′ = g] if s = g.

Proof. It is easy to see that

PY (s, a) =
∑

s′∈S\{g}
P (s′|s, a)Y (s′) + P (g|s, a)Y (g)︸ ︷︷ ︸

=0

=
∑

s′∈S\{g}
Pg(s′|s, a)Y (s′) + Pg(g|s, a)Y (g)︸ ︷︷ ︸

=0

= PgY (s, a).

Thanks to the above observation, our analysis will not require to handle goal-conditioned
(true or empirical) transition probabilities, andwill only need to dealwith the (true or empirical)
transition probabilities of the original MDPM.

248

F.2 DETAILS OF AdaGoal-UCBVI AND ANALYSIS

□ Proof of “key step ①”

Concentration events. Here we define the high-probability event U on which we condition
our statements. We follow the notation of Ménard et al. (2021, Appendix A) and define the
three following favorable events: E the event where the empirical transition probabilities are
close to the true ones, Ecnt the event where the pseudo-counts are close to their expectation,
and E⋆ where the empirical means of the optimal goal-conditioned value functions are close to
the true ones. Denoting by KL the Kullback-Leibler divergence, we set

E ≜
{
∀k ∈ N, ∀(s, a) ∈ S ×A : KL

(
p̂ k(·|s, a), P (·|s, a)

)
≤ β(nk(s, a), δ)

nk(s, a)

}
,

Ecnt ≜
{
∀k ∈ N,∀(s, a) ∈ S ×A : nk(s, a) ≥ 1

2 n̄
k(s, a)− βcnt(δ)

}
,

E⋆ ≜
{
∀k ∈ N, ∀h ∈ [H], ∀(s, a) ∈ S ×A, ∀g ∈ S :

∣∣(P̂ k − p)V ⋆
g,h+1(s, a)

∣∣ ≤ min
(
H,

√
2Varp(V

⋆
g,h+1)(s, a)β

⋆(nk(s, a), δ)
nk(s, a)

+ 3Hβ⋆(nk(s, a), δ)
nk(s, a)

)}
·

We define the intersection of these events as

U ≜ E ∩ Ecnt ∩ E⋆. (F.7)

We prove that for the right choice of the functions β the above event holds with high probability.

Lemma F.6. For the following choices of functions β,

β(n, δ) ≜ log(3S2AH/δ) + S log (8e(n+ 1)) ,

βcnt(δ) ≜ log
(
3S2AH/δ

)
,

β⋆(n, δ) ≜ log(3S2AH/δ) + log (8e(n+ 1)) ,

it holds that P(U) ≥ 1− δ.

Proof. The only difference with respect to the concentration inequalities of Ménard et al. (2021,
Appendix A) is that we need to take a union bound over the goal states g ∈ S when concen-
trating our optimal goal-conditioned value functions. We thus set δ ← δ/S in the choices of
functions β compared to Ménard et al. (2021). As a result, by Ménard et al. (2021, Theorem 3

249

Complements on Chapter 8

& 4 & 5) we have that P(E) ≥ 1− δ
3 , P(Ecnt) ≥ 1− δ

3 and P(E⋆) ≥ 1− δ
3 , respectively. Applying

a union to the above three inequalities, we conclude that P(U) ≥ 1− δ.

We recall the definitions of the functions Ukg , Q̃
k

g,h and Ṽ
k

g,h in Section F.2.2. They rely on
the pessimistic finite-horizon goal-conditioned values

˜
V
k
g defined as

˜
Q
k
g,h(s, a) ≜ clip

(
1[s ̸= g] + 3

√
Var

P̂ k(Ṽ
k

g,h+1)(s, a)β
⋆(nk(s, a), δ)
nk(s, a) + 14H2β(nk(s, a), δ)

nk(s, a)

+ 1
H
P̂ k(

˜
V
k
g,h+1 − Ṽ

k

g,h+1)(s, a) + P̂ k

˜
V
k
g,h+1(s, a), 0, H

)
,

˜
V
k
g,h(s) ≜min

a∈A ˜
Q
k
g,h(s, a),

˜
V
k
g,h(g) ≜ 0,

˜
V
k
g,H+1(s) ≜ 0.

Finally, we define the following quantities

Q̊
k
g,h(s, a) ≜ max

(
1[s ̸= g] + pV̊ g,h+1(s, a),

clip
(
1[s ̸= g] + 3

√
Var

P̂ k(Ṽ
k

g,h+1)(s, a)β
⋆(nk(s, a), δ)
nk(s, a) + 14H2β(nk(s, a), δ)

nk(s, a)

+ 1
H
P̂ k(

˜
V
k
g,h+1 − Ṽ

k

g,h+1)(s, a) + P̂ kṼ
k

g,h+1(s, a), 0, H
))

,

V̊
k
g,h(s) ≜ πk+1

g,h Q̊
k
g,h(s, a),

V̊
k
g,h(g) ≜ 0,

V̊
k
g,H+1(s) ≜ 0.

We have the following property, which is the equivalent of Ménard et al. (2021, Lemma 6)
and is proved likewise.

Lemma F.7. On the event U , for all (s, a, g, h) ∈ S × A × S × [H] and for every episode k, it
holds that

Q̊
k
g,h(s, a) ≥ max

(
˜
Q
k
g,h(s, a), Qπ

k+1
g

g,h (s, a)
)
,

V̊
k
g,h(s) ≥ max

(
˜
V
k
g,h(s), V πk+1

g

g,h (s)
)
.

We now derive “key step ①” by establishing that Properties 1 and 2 hold. Specifically,
we show that (i) the functions Ṽ g,1 are optimistic estimates of the optimal goal-conditioned

250

F.2 DETAILS OF AdaGoal-UCBVI AND ANALYSIS

finite-horizon value functions and (ii) the functions Ug,1 serve as valid upper bounds to the
goal-conditioned finite-horizon gaps, as shown below.

Lemma F.8. On the event U , it holds that for every episode k and goal g ∈ S,

V
πk+1
g,1
g,1 (s0)− V ⋆

g,1(s0) ≤ V
πk+1
g,1
g,1 (s0)− Ṽ

k

g,1(s0)

≤ πk+1
g,1 U

k
g,1(s0).

Proof. On the event U , using Lemma F.7, we upper bound the goal-conditioned gap at episode t
as

V
πk+1
g,1
g,1 (s0)− V ⋆

g,1(s0) ≤ V
πk+1
g,1
g,1 (s0)− Ṽ

k

g,1(s0) ≤ V̊ k
g,1(s0)− Ṽ

k

g,1(s0).

Next, following the same reasoning as in Ménard et al. (2021, Proof of Lemma 2), we obtain by
induction on h that for all state-action pairs (s, a) and goal states g,

Q̊
k
g,h(s, a)− Q̃

k

g,h(s, a) ≤ Ukg,h(s, a). (F.8)

In particular for the initial layer h = 1 and initial state s = s0, we get that

V̊
k
g,1(s0)− Ṽ

k

g,1(s0) = πk+1
g,1 (Q̊kg,1 − Q̃

k

g,1)(s0) ≤ πk+1
g,1 U

k
g,1(s0).

□ Proof of “key step ②”

Lemma F.9. On the event U , for every goal state g ∈ S and episode k, it holds that

πk+1
g,1 U

k
g,1(s0) ≤ 24e13H

√√√√ H∑
h=1

∑
s,a

pk+1
g,h (s, a)β

⋆(n̄k(s, a), δ)
n̄k(s, a) ∨ 1

+ 336e13H2∑
s,a

[
H∑
h=1

pk+1
g,h (s, a)β(n̄k(s, a), δ)

n̄k(s, a) ∨ 1

]
∧ 1,

where we recall that pk+1
g,h (s, a) denotes the probability of reaching (s, a) at step h under policy πk+1

g .

251

Complements on Chapter 8

Proof. Similar to Ménard et al. (2021, Steps 1 & 2 in proof of Theorem 2), we begin by upper-
bounding Ukg,h(s, a) for all (s, a, h, g, k). If nk(s, a) > 0, by definition of Ukg,h we have that

U
k
g,h(s, a) ≤ 6

√
Varp̂ k(Ṽ

k

g,h+1)(s, a)β
⋆(nk(s, a), δ)
nk(s, a) + 36H2β(nk(s, a), δ)

nk(s, a) (F.9)

+
(

1 + 3
H

)
p̂ kπk+1

g,h+1U
k
g,h+1(s, a). (F.10)

We now replace the empirical transition probabilities with the true ones. Using the Bernstein-
type technical inequality of Ménard et al. (2021, Lemma 10) and that 0 ≤ U

k
g,h ≤ H , we

get

(P̂ k − p)πk+1
g,h+1U

k
g,h+1(s, a) ≤

√
2Varp(πk+1

g,h+1U
k
g,h+1)(s, a)β(nk(s, a), δ)

nk(s, a) + 2
3H

β(nk(s, a), δ)
nk(s, a)

≤ 1
H
pπk+1

g,h+1U
k
g,h+1(s, a) + 3H2β(nk(s, a), δ)

nk(s, a)
,

where in the last line we used Varp(πk+1
h+1U

k
g,h+1)(s, a) ≤ Hπk+1

g,h+1U
k
g,h+1(s, a) and√xy ≤ x+ y

for all x, y ≥ 0. We then replace the variance of the upper confidence bound under the empirical
transition probabilities by the variance of the optimal value function under the true transition
probabilities. Using the technical lemmas of Ménard et al. (2021, Lemma 11 & 12) that control
the deviation in variances w.r.t. the choice of transition probabilities, we obtain that

Var
P̂ k(Ṽ

k

g,h+1)(s, a) ≤ 2Varp(Ṽ
k

g,h+1)(s, a) + 4H2β(nk(s, a), δ)
nk(s, a)

≤ 4Varp(V
πk+1
g

g,h+1)(s, a) + 4Hp(Ṽ
k

g,h+1 − V
πk+1
g

g,h+1)(s, a) + 4H2β(nk(s, a), δ)
nk(s, a)

≤ 4Varp(V
πk+1
g

g,h+1)(s, a) + 4Hpπk+1
g,h+1U

k
g,h+1(s, a) + 4H2β(nk(s, a), δ)

nk(s, a)
,

where we used (F.8) in the last inequality. Next, using √x+ y ≤
√
x+√y,√xy ≤ x+ y, and

β⋆(n, δ) ≤ β(n, δ) leads to√
Varp̂ k(Ṽ

k

g,h+1)(s, a)β
⋆(nk(s, a), δ)
nk(s, a) ≤ 2

√
Varp(V

πk+1
g

g,h+1)(s, a)β
⋆(nk(s, a), δ)
nk(s, a)

+ (2H + 4H2)β(nk(s, a), δ)
nk(s, a) + 1

H
pπk+1

g,h+1U
k
g,h+1(s, a)

≤ 2
√

Varp(V
πk+1
g

g,h+1)(s, a)β
⋆(nk(s, a), δ)
nk(s, a) + 6H2β(nk(s, a), δ)

nk(s, a)

+ 1
H
pπk+1

g,h+1U
k
g,h+1(s, a).

252

F.2 DETAILS OF AdaGoal-UCBVI AND ANALYSIS

Combining these two inequalities with (F.10) yields

U
k
g,h(s, a) ≤ 12

√
Varp(V

πk+1
g

g,h+1)(s, a)β
⋆(nk(s, a), δ)
nk(s, a) + 36H2β(nk(s, a), δ)

nk(s, a)

+ 6
H
pπk+1

g,h+1U
k
g,h+1(s, a) + 36H2β(nk(s, a), δ)

nk(s, a)

+
(

1 + 3
H

) 1
H
pπk+1

g,h+1U
k
g,h+1 +

(
1 + 3

H

)
3H2β(nk(s, a), δ)

nk(s, a)

+
(

1 + 3
H

)
pπk+1

g,h+1U
k
g,h+1(s, a)

≤ 12
√

Varp(V
πk+1
g

g,h+1)(s, a)β
⋆(nk(s, a), δ)
nk(s, a) + 84H2β(nk(s, a), δ)

nk(s, a)

+
(

1 + 13
H

)
pπk+1

g,h+1U
k
g,h+1(s, a).

Since by construction, U k
g,h(s, a) ≤ H,we have that for all nk(s, a) ≥ 0,

U
k
g,h(s, a) ≤ 12

√√√√Varp(V
πk+1
g

g,h+1)(s, a)
(
β⋆(nk(s, a), δ)

nk(s, a) ∧ 1
)

+ 84H2
(
β(nk(s, a), δ)
nk(s, a) ∧ 1

)

+
(

1 + 13
H

)
pπk+1

g,h+1U
k
g,h+1(s, a).

Unfolding the previous inequality and using (1 + 13/H)H ≤ e13 we get

πk+1
g,1 U

k
g,1(s0) ≤ 12e13

H∑
h=1

∑
s,a

pk+1
g,h (s, a)

√√√√Varp(V
πk+1
g

g,h+1)(s, a)
(
β⋆(nk(s, a), δ)

nk(s, a) ∧ 1
)

+ 84e13H2
H∑
h=1

∑
s,a

pk+1
g,h (s, a)

(
β(nk(s, a), δ)
nk(s, a) ∧ 1

)
.

Using that πk+1
g,1 U

k
g,1(s0) ≤ H , we can clip the above bound as follows

πk+1
g,1 U

k
g,1(s0) ≤ 12e13

H∑
h=1

∑
s,a

pk+1
g,h (s, a)

√√√√Varp(V
πk+1
g

g,h+1)(s, a)
(
β⋆(nk(s, a), δ)

nk(s, a) ∧ 1
)

+ 84e13H2∑
s,a

[
H∑
h=1

pk+1
g,h (s, a)

(
β(nk(s, a), δ)
nk(s, a) ∧ 1

)]
∧ 1. (F.11)

From the technical lemma of Ménard et al. (2021, Lemma 8) that relates counts to pseudo-
counts,

β(nk(s, a), δ)
nk(s, a) ∧ 1 ≤ 4β(n̄k(s, a), δ)

n̄k(s, a) ∨ 1 ,

253

Complements on Chapter 8

thus we can replace the counts by the pseudo-counts in (F.11) as

πk+1
g,1 U

k
g,1(s0) ≤ 24e13

H∑
h=1

∑
s,a

pk+1
g,h (s, a)

√
Varp(V

πk+1
g

g,h+1)(s, a)β
⋆(n̄k(s, a), δ)
n̄k(s, a) ∨ 1

+ 336e13H2∑
s,a

[
H∑
h=1

pk+1
g,h (s, a)β(n̄k(s, a), δ)

n̄k(s, a) ∨ 1

]
∧ 1. (F.12)

We now apply the law of total variance (see e.g., Azar et al., 2017 or Ménard et al., 2021, Lemma
7) in order to further upper-bound the first sum in (F.12). In particular, by Cauchy-Schwarz
inequality, we obtain

H∑
h=1

∑
s,a

pk+1
g,h (s, a)

√
Varp(V

πk+1
g

g,h+1)(s, a)β
⋆(n̄k(s, a), δ)
n̄k(s, a) ∨ 1

≤

√√√√ H∑
h=1

∑
s,a

pk+1
g,h (s, a)Varp(V

πk+1
g

g,h+1)(s, a)

√√√√ H∑
h=1

∑
s,a

pk+1
g,h (s, a)β

⋆(n̄k(s, a), δ)
n̄k(s, a) ∨ 1

≤

√√√√√Eπk+1
g

(H∑
h=1

1[sh ̸= g]− V πk+1
g

g,1 (s0)
)2

√√√√ H∑
h=1

∑
s,a

pk+1
g,h (s, a)β

⋆(n̄k(s, a), δ)
n̄k(s, a) ∨ 1

≤ H

√√√√ H∑
h=1

∑
s,a

pk+1
g,h (s, a)β

⋆(n̄k(s, a), δ)
n̄k(s, a) ∨ 1 ·

Plugging this in (F.12) concludes the proof of Lemma F.9.

We are now ready to derive “key step ②” which controls the cumulative gap bounds, see
Equation (8.4).

Lemma F.10. On the event U , for any number of episodesK ≥ 1, it holds that

K−1∑
k=0

πk+1
gk+1,1U

k
gk+1,1(s0) ≤ 48e13√K

√
H2SA log(HK + 1)β⋆(K, δ)

+ 1344e13H2SAβ(K, δ) log(HK + 1) + 48e13H2SA
√
β⋆(K, δ).

Proof. Plugging in the bound of Lemma F.9 yields

K−1∑
k=0

πk+1
gk+1,1U

k
gk+1,1(s0)

254

F.2 DETAILS OF AdaGoal-UCBVI AND ANALYSIS

≤ 24e13H
K−1∑
k=0

√√√√ H∑
h=1

∑
s,a

pk+1
gk+1,h

(s, a)β
⋆(n̄k(s, a), δ)
n̄k(s, a) ∨ 1

+ 336e13H2
K−1∑
k=0

∑
s,a

[
H∑
h=1

pk+1
g,h (s, a)β(n̄k(s, a), δ)

n̄k(s, a) ∨ 1

]
∧ 1

≤ 24e13H
√
β⋆(HK, δ)

K−1∑
k=0

√√√√∑
s,a

n̄k+1(s, a)− n̄k(s, a)
n̄k(s, a) ∨ 1

+ 336e13H2β(HK, δ)
∑
s,a

K−1∑
k=0

[
n̄k+1(s, a)− n̄k(s, a)

n̄k(s, a) ∨ 1

]
∧ 1,

where we used that β(., δ) and β⋆(., δ) are increasing. We defineJ ≜ {k ∈ [0,K−1] : n̄k(s, a) <
n̄k+1(s, a)− n̄k(s, a)− 1}. Applying Lemma F.11 gives that

∑
k∈J

√√√√∑
s,a

n̄k+1(s, a)− n̄k(s, a)
n̄k(s, a) ∨ 1 ≤

∑
s,a

∑
k∈J

√
n̄k+1(s, a)− n̄k(s, a)

n̄k(s, a) ∨ 1︸ ︷︷ ︸
≤2H

≤ 2SAH,

∑
k/∈J

√√√√∑
s,a

n̄k+1(s, a)− n̄k(s, a)
n̄k(s, a) ∨ 1 ≤

√
K

√√√√√√√
∑
s,a

∑
k/∈J

n̄k+1(s, a)− n̄k(s, a)
n̄k(s, a) ∨ 1︸ ︷︷ ︸

≤4 log(HK+1)

≤ 2
√
KSA log(HK + 1),

∑
s,a

K−1∑
k=0

[
n̄k+1(s, a)− n̄k(s, a)

n̄k(s, a) ∨ 1

]
∧ 1︸ ︷︷ ︸

≤4 log(HK+1)

≤ 4SA log(HK + 1).

Putting everything together yields Lemma F.10. Note that as opposed to Ménard et al. (2021),
we are in the setting of stationary transition probabilities (and cost functions), which is why
we are able to shave a factor H in the main order term of the bound of the cumulative gap
bounds (also recall that their sample complexity bound is in terms of exploration episodes and
not exploration steps as ours).

Lemma F.11 (Technical lemma). For T ∈ N⋆ and (ut)t∈N⋆ , for any sequence where ut ∈ [0, H]
for some constant H > 0 and Ut ≜

∑t
l=1 uℓ, let Ω ≜ {t ∈ [0, T] : Ut < ut+1 − 1} and

ω ≜ max{t ∈ Ω}. Then it holds that
∑
t∈Ω

√
ut+1
Ut ∨ 1 ≤ 2H,

∑
t/∈Ω

ut+1
Ut ∨ 1 ≤ 4 log(UT+1 + 1),

255

Complements on Chapter 8

T∑
t=0

[
ut+1
Ut ∨ 1

]
∧ 1 ≤ 4 log(UT+1 + 1).

Proof. First, note that for any t ∈ Ω, ut+1
Ut∨1 ≥ 1, therefore

∑
t∈Ω

√
ut+1
Ut ∨ 1 ≤

∑
t∈Ω

ut+1
Ut ∨ 1 ≤

∑
t∈Ω

ut+1 ≤
ω∑
t=0

ut+1 = Uω+1 = Uω + uω ≤ uω+1 − 1 + uω ≤ 2H.

Second, if t /∈ Ω, then 2Ut + 2 ≥ Ut+1 + 1, therefore

ut+1
Ut ∨ 1 ≤ 4 ut+1

2Ut + 2 ≤ 4Ut+1 − Ut
Ut+1 + 1 ,

which yields that

∑
t/∈Ω

ut+1
Ut ∨ 1 ≤ 4

∑
t/∈Ω

Ut+1 − Ut
Ut+1 + 1 ≤ 4

T∑
t=0

∫ Ut+1

Ut

1
x+ 1dx ≤ 4 log(UT+1 + 1).

Third, combining the two cases above and noticing that 4Ut+1−Ut
Ut+1+1 = 4ut+1

Ut+ut+1+1 ≥
4ut+1
2ut+1

≥ 1 for
all t ∈ Ω, it holds that [

ut+1
Ut ∨ 1

]
∧ 1 ≤ 4Ut+1 − Ut

Ut+1 + 1 ,

thus
T∑
t=0

[
ut+1
Ut ∨ 1

]
∧ 1 ≤ 4

T∑
t=0

Ut+1 − Ut
Ut+1 + 1 ≤ 4

T∑
t=0

∫ Ut+1

Ut

1
x+ 1dx ≤ 4 log(UT+1 + 1).

□ Proof of “key step ③”

Lemma F.12. The MGE sample complexity τ of algorithm AdaGoal-UCBVI can be bounded with
probability at least 1− δ by1

τ = O

(
L3SA

ε2 · log3
(LSA
εδ

)
· log3

(L
ε

)
+ L3S2A

ε
· log3

(LSA
εδ

)
· log3

(L
ε

))
.

256

F.2 DETAILS OF AdaGoal-UCBVI AND ANALYSIS

Proof. We assume that the event U holds and fix a (finite) episode K < κ, where κ denotes
the (possibly unbounded) episode index at which AdaGoal-UCBVI terminates. For any k ≤ K,
denote by gk the goal selected by AdaGoal-UCBVI at the beginning of episode k, then by design
of the stopping rule (8.1) and by choice of error Ek (F.6), it holds that

ε ≤ πkgk,1U
k−1
gk,1(s0) + 8ε

9 .

By summing the previous inequality for all k ≤ K and plugging in the bound of Lemma F.10,
we get that

ε

9K ≤ 48e13√K
√
H2SA log(HK + 1)β⋆(K, δ) + 1344e13H2SAβ(K, δ) log(HK + 1)

+ 48e13H2SA
√
β⋆(K, δ).

We assume that κ > 1 otherwise the result is trivially true. Defining κ′ ≜ min{κ− 1,K} and
using the definition of β and β⋆ given in Lemma F.6, we get the following functional inequality
in κ′

εκ′ ≤ x1

√
κ′H2SA log(Hκ′)

(
log(3S2AH/δ) + log(16eκ′)

)
+ x2H

2S2A log(3S2AH/δ) log2(Hκ′),

for some absolute constants x1, x2. There remains to invert the above inequality to obtain an
upper bound on κ′. We use the auxiliary inequality of Lemma F.13 instantiated with scalars
B = x1

√
H2SA log(3S2AH/δ)/ε, C = x2H

2S2A log(3S2AH/δ)/ε and α = 16eH . This yields
that

κ′ ≤ O
(
H2SA

ε2 log3
(
HSA

εδ

)
+ H2S2A

ε
log3

(
HSA

δε

))
. (F.13)

Since (F.13) holds for κ′ = min{κ− 1,K} for any finiteK < κ, lettingK → +∞ implies that κ
is finite and bounded as in (F.13).

The last step is to relate the above bound on the number of algorithmic episodes κ to the
MGE sample complexity of AdaGoal-UCBVI denoted by τ . Since the algorithmic episodes
are of length H and separated by a one-step execution of the reset action areset, it holds that
τ ≤ (H + 1)κ. We finally plug in the choice of horizonH ≜ ⌈5(L+ 2) log

(
10(L+ 2)/ε

)
/ log(2)⌉

to conclude the proof of Lemma F.12.

Lemma F.13 (An auxiliary inequality). For any positive scalars B,C ≥ 1 and α ≥ e, it holds
for any X ≥ 2 that

X ≤ B
√
X log(αX) + C log2(αX) =⇒ X ≤ O

(
B2 log2(αB) + C log2(αC)

)
.

257

Complements on Chapter 8

Proof. On the one hand, assume that X ≤ B
√
X log(αX), then X

2 ≤ −
X
2 + B

√
X log(αX).

From the technical lemma of Kazerouni et al. (2017, Lemma 8), −X
2 + B

√
X log(αX) ≤

32B2

9 [log(4B
√
αe)]2, thus X ≤ 64B2

9 [log(4B
√
αe)]2. On the other hand, assume that X ≤

C log2(αX). Using that log(x) ≤ xβ/β for all x ≥ 0, β > 0, we get X ≤ C(8α1/8X1/8)2 ≤
64Cα1/4X1/4, thus X ≤ (64C)4/3α1/3, thus X ≤ C log2(64α4/3C4/3). Now, assume that
X ≤ B

√
X log(αX) +C log2(αX). ThenX ≤ 2 max{B

√
X log(αX), C log2(αX)}. From above

we can bound each term separately, which concludes the proof.

□ Proof of “key step ④” We finally establish “key step ④”, which focuses on the technical
novelty of the AdaGoal goal selection scheme that is specific to the multi-goal exploration
setting.

Recall for any H ∈ N∗ the definition of the finite-horizon MDPMg,H = {H,S,A, P g, cg},
where we recall that P g = Pg and cg = cg. We denote by π⋆g,H the optimal policy inMg,H

as well as V g,H,h(s) the optimal value function starting from state s at step h. We also define
P
πg,H
g,H (sH ̸= g|s1 = s) the probability of reaching state g starting from state swith the policy

π ∈ ΠH in the MDPMg,H . When it is clear from the context we drop the dependence on the
horizon H in the previous notations.

The following lemma controls the probability of not reaching a goal in GL+εwith the optimal
policy in the finite-horizon reduction MDP.

Lemma F.14. For g ∈ GL+ε, for all H ≥ 2(L+ 2), for all s ∈ S,

P
π⋆g,H
g,H (sH ̸= g|s1 = s) ≤ e− log(2)H/

(
4(L+2)

)
.

Proof. By induction it holds

P
π⋆g,H
g,H (sH ̸= g|s1 = s) =

∑
s′ ̸=g

P
π⋆g,H
g,H (sH−M+1 = s′|s1 = s)P

π⋆g,H
g,H (sH ̸= g|sH−M+1 = s′)

≤ P
π⋆g,H
g,H (sH−M+1 ̸= g|s1 = s) max

s′
P
π⋆g,H
g,H (sH ̸= g|sH−M+1 = s′)

≤
⌊H/M⌋∏
j=0

max
s′

P
π⋆g,H
g,H (sH−jM ̸= g|sH−(j+1)M+1 = s′) .

258

F.2 DETAILS OF AdaGoal-UCBVI AND ANALYSIS

Then thanks to the Markov inequality and the optimal Bellman equations solved by π⋆g,H we
obtain

P
π⋆g,H
g,H (sH−jM ̸= g|sH−(j+1)M+1 = s′) ≤ P

π⋆g,H
g,H (sH ̸= g|sH−(j+1)M+1 = s′)

≤
V
⋆
g,H,H−(j+1)+1(s′)

M

=
V
⋆
g,(j+1)M,1(s′)

M

≤
V
⋆
g,(j+1)M,1(s′)

M
≤
V ⋆
g (s′)
M

≤ L+ 2
M

,

where the last inequality uses the existence of a resetting action (Assumption 8.3) and the fact
that g ∈ GL+ε with ε ≤ 1. ChoosingM = 2(L+ 2) allows us to conclude

P
π⋆g,H
g,H (sH ̸= g|s1 = s) ≤ e−⌊H/M⌋ log(2) ≤ e− log(2)H/

(
4(L+2)

)
,

where in the last inequality we used ⌊x⌋ ≥ x/2 for x ≥ 1.

We define the class of non-stationary, infinite-horizon policies that perform the reset action
whenever the goal state is not reached after H steps.

Definition F.15 (Resetting policies). For any π, we denote by π|H the non-stationary policy that,
until the goal is reached, successively executes the actions prescribed by π for H steps and takes
action areset, i.e., at time step i and state s it executes the following action:

π|H(a|s, i) ≜
{
areset if i ≡ 0 (mod H + 1),
π(a|s, i) otherwise.

We denote by Π|H the set of such resetting policies.

We now establish two key lemmas. First, we show that, equipped with a near-optimal
policy for the finite-horizon modelMg,H , expanding it into an infinite-horizon policy via the
reset provides a near-optimal goal-reaching policy in the original MDPMg as long as the goal
state g belongs to GO(L) and the horizon H is large enough.

Lemma F.16. For g ∈ GL+ε and H ≥ 5(L+ 2) log
(
10(L+ 2)/ε

)
/ log(2), it holds that

V
⋆
g,1(s0) ≤ V ⋆

g (s0) ≤ V ⋆
g,1(s0) + ε

9 ,

259

Complements on Chapter 8

and if a policy π̃ is ε/9-optimal inMg,H then

V π̃|H
g (s0) ≤ V ⋆

g (s0) + ε .

Proof. We have trivially V ⋆
g,H,1(s0) ≤ V ⋆

g (s0). Thanks to Lemma F.14 it holds

q⋆g,H ≜ P
π⋆g,H
g,H (sH+1 ̸= g|s1 = s0) ≤ P

π⋆g,H
g,H (sH ̸= g|s1 = s0) ≤ ε

10(L+ 2) ≤
1
30 . (F.14)

Thanks to (F.14) and the definition of a resetting policy, we can conclude that

V ⋆
g (s0) ≤ V

π⋆g,H
|H

g (s0) = V
⋆
g,H,1(s0) + q⋆g,H(1 + V

π⋆g,H
|H

g (s0))

= V
⋆
g,H,1(s0) +

q⋆g,H
1− q⋆g,H

(1 + V
⋆
g,H,1(s0))

≤ V ⋆
g,H,1(s0) + 30

29
ε

10(L+ 2)(1 + L+ ε)

≤ V ⋆
g,H,1(s0) + ε

9 .

Thus it holds that
V
⋆
g,H,1(s0) ≤ V ⋆

g (s0) ≤ V ⋆
g,H,1(s0) + ε

9 . (F.15)

For the second part of the lemma, first note that

V
π̃
g,H,1(s0) =

H∑
h=1

P
π̃
g,H(sh ̸= g|s1 = s0) ≥ V π̃

g,H−L,1(s0) + LP
π̃
g,H(sH ̸= g|s1 = s0) ,

where in the inequality we used that P π̃g,H(sh ̸= g|s1 = s0) ≥ P
π̃
g,H(sH ̸= g|s1 = s0). Using

successively the fact that π̃ is ε
9 -optimal inMg,H , the inequality above and (F.15) we obtain

V ⋆
g (s0) + ε

9 ≥ V
⋆
g,H,1(s0) + ε

9
≥ V π̃

g,H,1(s0)

≥ V π̃
g,H−L,1(s0) + LP

π̃
g,H(sH ̸= g|s0)

≥ V ⋆
g (s0)− ε

9 + LP
π̃
g,H(sH ̸= g|s0) .

The previous sequence of inequalities entails that P π̃g,H(sH ̸= g) ≤ (2ε)/(9L). Now we can
upper bound the value of the resetting extension of π̃. Indeed, for q̃ ≜ P

π̃
g,H(sH+1 ̸= g|s1 =

260

F.2 DETAILS OF AdaGoal-UCBVI AND ANALYSIS

s0) ≤ P π̃g,H(sH ̸= g|s1 = s0) we have using that π̃ is ε
9 -optimal inMg,H with g ∈ GL+ε that

V π̃|H
g (s0) = V

π̃
g,H,1(s0) + q̃

1− q̃
(
1 + V

π̃
g,H,1(s0)

)
≤ V ⋆

g,H,1(s0) + ε

9 + 2ε
9L

1
1− 2/9

(
1 + L+ ε+ ε

9

)
≤ V ⋆

g (s0) + ε .

The second key lemma that we prove is that any goal state that meets the constraint (8.2b)
with small enough error (8.2a) must belong to GL+ε.

Restatement of Lemma 8.16. With probability at least 1−δ, if a goal state g ∈ G satisfiesDk(g) ≤ L
and Ek(g) ≤ ε for an episode k ≥ 1, then g ∈ GL+ε.

Proof. Consider that the event U defined in (F.7) holds. Consider a goal state g such that
Dk(g) ≤ L and Ek(g) ≤ ε at an episode k ≥ 1. Then

V
⋆
g,H,1(s0)

(i)
≤ Ṽ

k

g,H,1(s0) + πk+1
g,1 U

k
g,1(s0)

(ii)= Dk(g) + Ek(g)− 8ε
9

(iii)
≤ L+ ε

9 , (F.16)

where (i) comes from Lemma F.8, (ii) stems from the choice of D and E estimates and (iii)
comes from the conditions on g. Following the steps of the proof of Lemma F.14, we have that

P
π⋆g,H
g,H (sH ̸= g|s1 = s) ≤

⌊H/M⌋∏
j=0

max
s′

P
π⋆g,H
g,H (sH−jM ̸= g|sH−(j+1)M+1 = s′),

and that

P
π⋆g,H
g,H (sH−jM ̸= g|sH−(j+1)M+1 = s′) ≤

V
⋆
g,(j+1)M,1(s′)

M

≤
V
⋆
g,H,1(s′)
M

≤
1 + V

⋆
g,H,1(s0)
M

≤ 1 + L+ ε/9
M

,

261

Complements on Chapter 8

where the before last inequality uses the existence of a resetting action (Assumption 8.3) and
the last inequality uses (F.16). ChoosingM = 2(L+ 2) gives

P
π⋆g,H
g,H (sH ̸= g|s1 = s) ≤ e− log(2)H/

(
4(L+2)

)
. (F.17)

We now follow the steps of the proof of Lemma F.16. Thanks to (F.17) and the choice of H it
holds

q⋆g,H ≜ P
π⋆g,H
g,H (sH+1 ̸= g|s1 = s0) ≤ P

π⋆g,H
g,H (sH ̸= g|s1 = s0) ≤ ε

10(L+ 2) ≤
1
30 . (F.18)

Thanks to (F.18) and the definition of a resetting policy, we obtain that

V ⋆
g (s0) ≤ V

π⋆g,H
|H

g (s0) = V
⋆
g,H,1(s0) + q⋆g,H(1 + V

π⋆g,H
|H

g (s0))

= V
⋆
g,H,1(s0) +

q⋆g,H
1− q⋆g,H

(1 + V
⋆
g,H,1(s0))

(i)
≤ L+ ε

9 + 30
29

ε

10(L+ 2)
(
1 + L+ ε

9
)

≤ L+ 2ε
9 ,

where (i) uses (F.16). Therefore we have that g ∈ GL+ε, which concludes the proof.

We now have all the tools to prove that when AdaGoal-UCBVI terminates, it fulfills the MGE
objective of Definition 8.4.

Lemma F.17. If the algorithm AdaGoal-UCBVI stops, it is (ε, δ, L)-PAC for MGE.

Proof. Consider that the event U defined in (F.7) holds, and that the algorithm AdaGoal-UCBVI
has stopped at episode κ. Recall that we define Dκ(g) ≜ Ṽ

κ

g,1(s0) and Eκ(g) ≜ πκ+1
g,1 U

κ
g,1(s0) +

8ε
9 . Denoting Xκ ≜ {g ∈ S : Dκ(g) ≤ L}, the stopping rule (Equation (8.1)) implies that

maxg∈Xκ Eκ(g) ≤ ε. We now prove that GL ⊆ Xκ ⊆ GL+ε. On the one hand, it holds that

Dκ(g) = Ṽ
κ

g,1(s0) ≤ V ⋆
g,1(s0) ≤ V ⋆

g (s0),

which ensures that GL ⊆ Xκ. On the other hand, consider that g ∈ Xκ, then Dκ(g) ≤ L and
Eκ(g) ≤ ε, which implies that g ∈ GL+ε from Lemma 8.16, therefore Xκ ⊆ GL+ε.

We now prove that the candidate policies of AdaGoal-UCBVI are near-optimal goal-reaching
policies. Consider any g ∈ Xκ. Combining the result of Lemma F.8 and Equation (8.1), we

262

F.3 Details of AdaGoal-UCRL·VTR and Analysis

obtain that

V
πκ+1
g,1
g,1 (s0)− V ⋆

g,1(s0) ≤ πκ+1
g,1 U

κ
g,1(s0) ≤ Eκ(g)− 8ε

9 ≤
ε

9 ,

thus the policy πκ+1
g is ε9 -optimal inMg,H . As a result, denoting by π̂g ≜ (πκ+1

g)|H the candidate
policy of AdaGoal-UCBVI, we have from Lemma F.16 that

V π̂g
g (s0) ≤ V ⋆

g (s0) + ε ,

i.e., π̂g is ε-optimal for the original SSP objective. Putting everything together, we have that

P
(
{GL ⊆ Xκ ⊆ GL+ε} ∩

{
∀g ∈ Xκ, V π̂g(s0 → g)− V ⋆(s0 → g) ≤ ε

})
≥ P(U) ≥ 1− δ.

which ensures that AdaGoal-UCBVI is (ε, δ, L)-PAC for MGE.

F.2.4 Putting everything together

Restatement of Theorem 8.11. AdaGoal-UCBVI is (ε, δ, L,S)-PAC for MGE and, with probability
at least 1− δ, for ε ∈ (0, 1/S] its MGE sample complexity is of order2 Õ(L3SAε−2).

Proof. The result comes from combining Lemmas F.12 and F.17.

F.3 Details of AdaGoal-UCRL·VTR and Analysis

In this section, we provide details on the AdaGoal-UCRL·VTR algorithm and the guarantee of
Theorem 8.14 which bounds its MGE sample complexity in linear mixture MDPs. Recall that
since the state space S may be large, we consider that the known goal space is in all generality
a subset of it, i.e., G ⊆ S, where G ≜ |G| denotes the cardinality of the goal space.

First of all, we extend the linear mixture definition (Definition 8.10) to handle ourmulti-goal
setting. For any goal g ∈ G, we define

Pg(s′|s, a) ≜ ⟨ϕg(s′|s, a), θ⋆g⟩,

where

θ⋆g ≜

(
θ⋆

1

)
∈ Rd+1, ϕg(s′|s, a) ≜

(
1[s ̸= g]ϕ(s′|s, a)
1[s = g]1[s′ = g]

)
∈ Rd+1.

2The notation Õ in Theorem 8.11 hides poly-log terms in ε−1, S,A, L, δ−1. See Lemma F.12 in Appendix F.2.3
for a more detailed bound that includes the poly-log terms.

263

Complements on Chapter 8

We see that by construction,

Pg(s′|s, a) =
{
P (s′|s, a) if s ̸= g

1[s′ = g] if s = g.

F.3.1 Overview of AdaGoal-UCRL·VTR and Choice of E , D, Q in line 14 of Algo-
rithm 8.1

Here we focus on the specificities of AdaGoal-UCRL·VTR in the linear mixture MDP setting
(refer to Section 8.2 for the description of the algorithmic structure that is common to AdaGoal-
UCBVI), i.e., we explain how to define the estimates D, E , Q in line 14 of Algorithm 8.1. At a
high level, AdaGoal-UCRL·VTR uses two regression-based goal-conditioned estimators of the
unknown parameter vector θ⋆g of each goal g ∈ G:

• Value-targeted estimator. The first estimator minimizes a ridge regression problem with the
target being the past value functions. This is similar to the UCRL-VTR algorithm for linear
mixture MDPs (Ayoub et al., 2020) and follow-up work (e.g., Zhou et al., 2021; Zhang
et al., 2021b). This step is used to compute the distance estimates D (andQ) for AdaGoal.

• Error-targeted estimator. The second estimator is novel and minimizes a ridge regression
problem with the target being past “error functions”, that are computable upper bounds
on the goal-conditioned gaps. This step is used to compute the errors E for AdaGoal.

▷ Value-targeted estimator. First, AdaGoal-UCRL·VTR builds a goal-conditioned estimator θg for
the unknown parameter vector θ⋆g of each goal g ∈ G, as well as a goal-conditioned covariance
matrix Σg of the feature mappings, which characterizes the uncertainty of the estimator θg.
Similar to UCRL-VTR, θg is computed as the minimizer to a ridge regression problem with the
target being the past value functions, i.e.,

θg,k+1 ← arg min
θ∈Rd+1

λ∥θ∥2 +
k∑

k′=1

H∑
h=1

(〈
θ,ϕVg,k′,h(sk′

h , a
k′
h)
〉
− Vg,k′,h(sk′

h+1)
)
,

which has a closed-form solution given in (F.20). Leveraging θg and subtracting an exploration
bonus term, AdaGoal-UCRL·VTR builds optimistic goal-conditioned estimatorsQg,k,h(·, ·) (F.22)
and Vg,k,h(·) (F.24) for the optimal action-value and value functions Q⋆g,h(·, ·) and V ⋆

g,h(·). The
associated goal-conditioned policy is the greedy policy of the calculated optimistic Q-values
(F.23).

▷ Error-targeted estimator. Themain addition compared to existingworks on linearmixtureMDPs
is that AdaGoal-UCRL·VTR also builds goal-conditioned errors denoted by Ug,k,h (F.25) that
upper bound the goal-conditioned gaps (defined as the difference between the value function
of the current greedy policy and the optimistic value estimates). They rely on an additional

264

F.3 Details of AdaGoal-UCRL·VTR and Analysis

estimator θ̊g,k and covariance matrix Σ̊g,k based on the errors {Ug,k′,h}k′≤k−1,h, instead of the
values {Vg,k′,h}k′≤k−1,h as considered before. Specifically, θ̊g minimizes the ridge regression
problem with contexts ϕUg,k′,h(sk′

h , a
k′
h) and targets Ug,k′,h(sk′

h+1), i.e.,

θ̊g,k+1 ← arg min
θ∈Rd+1

λ∥θ∥2 +
k∑

k′=1

H∑
h=1

(〈
θ,ϕUg,k′,h(sk′

h , a
k′
h)
〉
− Ug,k′,h(sk′

h+1)
)
,

which has a closed-form solution given in (F.21).

▷ Algorithmic notation and updates.
LetB be an upper bound of the ℓ2-norm of θ⋆ (see Definition 8.10) and set as regularization

parameter λ ≜ 1/(B + 1)2. Also define the confidence radius

βk ≜ H
√
d log(3(1 + kH3(B + 1)2)/δ) + 1. (F.19)

At the first episode indexed by k = 1, we initialize for every goal g ∈ G and h ∈ [H] the
following quantities

Σg,1,h, Σ̊g,1,h ≜ λI, bg,1,h, b̊g,1,h ≜ 0, θg,1, θ̊g,1,h ≜ 0, Vg,1,H+1(·) ≜ 0, Ug,1,H+1(·) ≜ 0.

We now explain how the various estimates are updated during an episode k with goal state
denoted by gk. Over the trajectory of episode k, given the current state visited at step h denoted
by skh, the executed action is denoted by akh ≜ πkgk,h(skh) and the next state is denoted by skh+1.
Then for every goal g ∈ G and for h = 1, . . . ,H , we set

Σg,k,h+1 ≜ Σg,k,h + ϕVg,k,h(skh, akh)ϕVg,k,h(skh, akh)⊤,

bg,k,h+1 ≜ bg,k,h + ϕVg,k,h(skh, akh)Vg,k,h(skh+1),

Σ̊g,k,h+1 ≜ Σ̊g,k,h + ϕUg,k,h(skh, akh)ϕUg,k,h(skh, akh)⊤,

b̊g,k,h+1 ≜ b̊g,k,h + ϕUg,k,h(skh, akh)Ug,k,h(skh+1),

and for every goal g ∈ G, we set

Σg,k+1,1 ≜ Σg,k,H+1, bg,k+1,1 ≜ bg,k,H+1, θg,k+1 ≜ Σ−1
g,k+1,1bg,k+1,1, (F.20)

Σ̊g,k+1,1 ≜ Σ̊g,k,H+1, b̊g,k+1,1 ≜ b̊g,k,H+1, θ̊g,k+1 ≜ Σ̊−1
g,k+1,1̊bg,k+1,1. (F.21)

We proceed by recursively defining for every episode k, goal g ∈ G and h = H, . . . , 1,

Qg,k,h(·, ·) ≜ clip
(
1[· ≠ g] +

〈
θg,k,ϕVg,k,h+1(·, ·)

〉
− βk

∥∥∥Σ−1/2
g,k,1ϕVg,k,h+1(·, ·)

∥∥∥
2
, 0, H

)
, (F.22)

πkg,h(·) ≜ arg min
a∈A

Qg,k,h(·, a), (F.23)

265

Complements on Chapter 8

Vg,k,h(·) ≜ min
a∈A

Qg,k,h(·, a), (F.24)

Ug,k,h(·) ≜ clip
(
2βk

∥∥∥Σ−1/2
g,k,1ϕVg,k,h+1(s, πkg,h(s))

∥∥∥
2

+
〈
ϕUg,k,h+1(s, πkg,h(s)), θ̊g,k

〉
+ βk

∥∥∥Σ̊−1/2
g,k,1ϕUg,k,h+1(s, πkg,h(s))

∥∥∥
2
, 0, H

)
. (F.25)

▷ Choice of estimates D, E , Q of AdaGoal-UCRL·VTR (line 14 of Algorithm 8.1):

Qk,h(s, a, g) ≜ Qg,k,h(s, a), (F.26)
Dk(g) ≜ Vg,k,1(s0), (F.27)

Ek(g) ≜ Ug,k,1(s0) + 8ε
9 . (F.28)

F.3.2 Proof sketch of Theorem 8.14

The analysis of AdaGoal-UCRL·VTR follows the same key steps considered in Section 8.3 for the
analysis of AdaGoal-UCBVI. We now sketch the AdaGoal-UCRL·VTR equivalent of the various
key steps.

First, note that similar to LemmaF.5 in the tabular case, for any state-action pair (s, a) ∈ S×A,
goal state g ∈ G and vector Y ∈ RS such that Y (g) = 0, it holds that [PY](s, a) = [PgY](s, a).

We now build the high-probability events. By using the standard self-normalized concen-
tration inequality for vector-valued martingales of Abbasi-Yadkori et al. (2011, Theorem 2), it
holds that with probability at least 1− δ/3, for any k ≥ 1 and g ∈ G, θ⋆g lies in the ellipsoid

Cg,k ≜
{
θ ∈ Rd+1 :

∥∥∥Σ1/2
g,k,1(θg,k − θ)

∥∥∥
2
≤ βk

}
.

The proof of the above statement follows the steps of e.g., Zhang et al. (2021b, Lemma A.2), the
only slight difference being that we take an additional union bound over all goals g ∈ G, hence
the presence of G in the confidence radius (F.19). Furthermore, following the exact same steps
as above and by definition of Σ̊ and θ̊, it holds that with probability at least 1− δ/3, for any
k ≥ 1 and g ∈ G, θ⋆g lies in the ellipsoid

C′
g,k ≜

{
θ ∈ Rd+1 :

∥∥∥Σ̊1/2
g,k,1(̊θg,k − θ)

∥∥∥
2
≤ βk

}
.

Here the confidence radius is the same as the one in Cg,k since it is chosen to be proportional
to the magnitude of the Ug,k,h+1(·) function, which lies in [0, H], as does the value function
Vg,k,h+1(·). In what follows, we assume that the two high-probability events considered above

266

F.3 Details of AdaGoal-UCRL·VTR and Analysis

hold, i.e., that the following event holds (it does so with probability at least 1− 2δ/3){
∀k ≥ 1,∀g ∈ G, θ⋆g ∈ Cg,k ∩ C′

g,k

}
. (F.29)

▷ Key step ①: Optimism and gap bounds. The optimism property is standard: following
e.g., Zhang et al. (2021b, Lemma A.1) (see also Zhou et al., 2021, Lemma C.4), it holds that
Qg,k,h(s, a) ≤ Q⋆g,h(s, a) and Vg,k,h(s) ≤ V ⋆

g,h(s) for any (s, a, g) ∈ S ×A× G, h ∈ [H], k ≥ 1.
We nowdepart from a usual regretminimization analysis and examine our errorsU , proving

that they upper bound the goal-conditioned gaps, formally defined as

Wg,k,h(s) ≜ V πkg
g,h(s)− Vg,k,h(s).

We now prove by induction that Wg,k,h(s) ≤ Ug,k,h(s). The property holds at H + 1 since
Wg,k,h(s) = 0 = Ug,k,h(s). Assume that Wg,k,h+1(s) ≤ Ug,k,h+1(s), then we start by noticing,
similar to Zhou et al. (2021, Equation C.10); Zhang et al. (2021b, Lemma A.1), that

Wg,k,h(s) ≤ 2βk
∥∥∥Σ−1/2

g,k,1ϕVg,k,h+1(s, πkg,h(s))
∥∥∥

2
+ [pV πk

g,h+1](s, πkg,h(s))− [pVg,k,h+1](s, πkg,h(s))︸ ︷︷ ︸
≜X

.

We bound X as follows

X = [pWg,k,h+1](s, πkg,h(s))
(i)
≤ [pUg,k,h+1](s, πkg,h(s))

=
〈
ϕUg,k,h+1(s, πkg,h(s)),θ⋆g

〉
=
〈
ϕUg,k,h+1(s, πkg,h(s)), θ̊g,k

〉
+
〈
ϕUg,k,h+1(s, πkg,h(s)),θ⋆g − θ̊g,k

〉
(ii)
≤
〈
ϕUg,k,h+1(s, πkg,h(s)), θ̊g,k

〉
+
∥∥∥Σ̊1/2

g,k,1(̊θg,k − θ⋆g)
∥∥∥

2

∥∥∥Σ̊−1/2
g,k,1ϕUg,k,h+1(s, πkg,h(s))

∥∥∥
2

(iii)
≤
〈
ϕUg,k,h+1(s, πkg,h(s)), θ̊g,k

〉
+ βk

∥∥∥Σ̊−1/2
g,k,1ϕUg,k,h+1(s, πkg,h(s))

∥∥∥
2
,

where (i) comes from the induction hypothesis and because P is a monotone operator w.r.t. the
partial ordering of functions, (ii) is byCauchy-Schwarz, (iii) holds by event (F.29). Finally, using
thatWg,k,h(s) ∈ [0, H] and by definition of Ug,k,h(s), we conclude thatWg,k,h(s) ≤ Ug,k,h(s).

▷Key step②: Bounding the cumulative gap bounds. Wenowbound∑K
k=1 Ugk,k,1(s0). It holds

that

Ug,k,h(sk,h)− Ug,k,h+1(sk,h+1)

≤ 2βk min
{

1,
∥∥∥Σ−1/2

g,k,1ϕVg,k,h+1(sk,h, πkg,h(sk,h))
∥∥∥

2

}

267

Complements on Chapter 8

+ βk min
{

1,
∥∥∥Σ̊−1/2

g,k,1ϕUg,k,h+1(sk,h, πkg,h(sk,h))
∥∥∥

2

}
+ min

{ 〈
ϕUg,k,h+1(sk,h, πkg,h(sk,h)), θ̊g,k

〉
− Ugk,k,h+1(sk,h+1)︸ ︷︷ ︸

≜Y

, H
}
,

where

Y ≤
∣∣〈ϕUg,k,h+1(sk,h, πkg,h(sk,h)),θ⋆g − θ̊g,k

〉∣∣+ 〈
ϕUg,k,h+1(sk,h, πkg,h(sk,h)),θ⋆g

〉
− Ug,k,h+1(sk,h+1)

≤
∥∥∥Σ̊1/2

g,k,1(̊θg,k − θ⋆g)
∥∥∥

2

∥∥∥Σ̊−1/2
g,k,1ϕUg,k,h+1(sk,h, πkg,h(sk,h))

∥∥∥
2

+ [PgUg,k,h+1](sk,h, πkg,h(sk,h))− Ug,k,h+1(sk,h+1)

≤ βk
∥∥∥Σ̊−1/2

g,k,1ϕUg,k,h+1(sk,h, πkg,h(sk,h))
∥∥∥

2
+ [PgUg,k,h+1](sk,h, πkg,h(sk,h))− Ug,k,h+1(sk,h+1).

Therefore we get by telescopic sum

K∑
k=1

Ugk,k,1(s0) =
K∑
k=1

H∑
h=1

(
Ugk,k,h(sk,h)− Ugk,k,h+1(sk,h+1)

)
≤ 2βK

K∑
k=1

H∑
h=1

min
{

1,
∥∥∥Σ−1/2

gk,k,1ϕVgk,k,h+1(sk,h, ak,h)
∥∥∥

2

}
︸ ︷︷ ︸

≜Z1

+ 2βK
K∑
k=1

H∑
h=1

min
{

1,
∥∥∥Σ̊−1/2

gk,k,1ϕUgk,k,h+1(sk,h, ak,h)
∥∥∥

2

}
︸ ︷︷ ︸

≜Z2

+
K∑
k=1

H∑
h=1

[PgkUgk,k,h+1](sk,h, ak,h)− Ugk,k,h+1(sk,h+1)︸ ︷︷ ︸
≜Z3

.

We bound Z1 and Z2 using Cauchy-Schwarz and the elliptical potential lemma from linear
bandits (Abbasi-Yadkori et al., 2011, Lemma 11), see e.g., Zhang et al. (2021b, Proof of Lemma
A.3). This yields

Z1 ≤
√
KH

√√√√ K∑
k=1

H∑
h=1

min
{

1,
∥∥∥Σ−1/2

gk,k,1ϕVgk,k,h+1(sk,h, ak,h)
∥∥∥2

2

}

≤
√

2
√
KH

√√√√ K∑
k=1

H∑
h=1

min
{

1,
∥∥∥Σ−1/2

gk,k,h
ϕVgk,k,h+1(sk,h, ak,h)

∥∥∥2

2

}
+ 2Hd log(1 + kH3/λ)

≤
√

2KHd log(1 +KH3/(dλ) + 2Hd log(1 + kH3/λ),

268

F.3 Details of AdaGoal-UCRL·VTR and Analysis

and likewise for Z2. The term Z3 can be bounded by the Azuma-Hoeffding inequality since
its summands form a martingale difference sequence, thus with probability at least 1− δ/3, it
holds that Z3 ≤ H

√
2HK log(3/δ).

Putting everything together and using that βK = Õ(H
√
d), we obtain

K∑
k=1

Ugk,k,1(s0) = Õ
(
dH3/2√K +H2d3/2

)
.

▷ Key step ③: Bounding the sample complexity. We follow the reasoning given in Section 8.3.
By construction of the stopping rule (8.1), the algorithm terminates at an episode κ that verifies

ε · (κ− 1) ≤
κ−1∑
k=1
Ek(gk) = 8ε

9 · (κ− 1) + Õ
(
dH3/2√κ+H2d3/2

)
.

Solving this functional inequality in κ yields

κ = Õ

(
H3d2

ε2 + H2d3/2

ε

)
.

Using that the sample complexity is bounded by κ(H + 1) and that H = Õ(L), we conclude
the proof.

▷ Key step ④: Connecting to the original MGE objective. The proof of this step is identical
to the one of AdaGoal-UCBVI in Section F.2.3.

269

Complements on Chapter 8

Figure F.3 – Goal sampling frequency of UniGoal-UCBVI (top row), RareGoal-UCBVI (middle row) and
AdaGoal-UCBVI (bottom row) over 1000 episodes, split over episodes 0 − 333 (left column), episodes
334− 666 (middle column) and episodes 667− 999 (right column). Episodes are of length H = 50, the
environment is a grid-world with S = 52 states, starting state s0 = (0, 0) (i.e., the top left state), A = 5
actions (the 4 cardinal actions plus areset). The black walls act as reflectors, i.e., if the action leads against
the wall, the agent stays in the current position with probability 1. An action fails with probability
pf = 0.1, in which case the agent follows (uniformly) one of the other directions. The 4 states of the
bottom right room can only be accessed from s0 by any cardinal action with probability η = 0.001, thus
they are extremely hard to reliably reach as their associated V ⋆(s0 → ·) is very large (scaling with η−1).
We select L = 40 for AdaGoal, and α = 0.1 for RareGoal. For the three methods we follow the practice
of Menard et al. (2021, Section 4) and use their proposed simplified form for the exploration bonuses.
The experiment is based on the rlberry framework (Domingues et al., 2021a).

F.4 ABLATION OF THE GOAL SELECTION SCHEME & PROOF
OF CONCEPT EXPERIMENT

In this section, we single out the role of the adaptive goal selection scheme of AdaGoal, i.e.,
step iO in Algorithm 8.1. For simplicity we focus on the tabular case and consider that G = S.
Keeping the remainder of the AdaGoal-UCBVI algorithm fixed, we compare it to two other
ad-hoc goal sampling alternatives:

270

F.4 ABLATION OF THE GOAL SELECTION SCHEME & PROOF OF CONCEPT
EXPERIMENT

• UniGoal: the goal state is sampled uniformly in S \ {s0}, i.e., with probability

puni(g) ≜
(
S − 1

)−1;

• RareGoal: the goal state is sampled proportionally to its rarity, i.e., with probability

prareα (g) ≜ (nkα(g))−1∑
s∈S\{s0}(nkα(s))−1 ,

where nk(s) ≜∑kH
t=1 1[st = s] denotes the number of times state swas visited in the first k

episodes, and nkα(s) ≜ max{nk(s), α} for α ∈ (0, 1].
We can find equivalents of these two goal selection schemes in existing goal-conditioned deep
RL methods. The case of a uniform goal sampling distribution prescribed by the environment
(i.e., UniGoal) is the most common, see e.g., Schaul et al. (2015) and Andrychowicz et al. (2017).
Meanwhile, the goal sampling scheme of Skew-Fit (Pong et al., 2020), a recent state-of-the-art
algorithm for deep GC-RL, gives higher sampling weight to rarer goal states, where rarity
is measured by a learned generative model. In the tabular case, a goal state’s rarity can be
characterized by the inverse of its visitation count, which corresponds to RareGoal.

On the one hand, it is straightforward to show that UniGoal achieves a sample complexity
of at most Õ(L3S2Aε−2). Intuitively, it pays for an extra S since it may sample goals that are
too easy or too hard, in either case they are not very useful for the agent to improve its learning
(and there may be in the worst case S − 2 of such non-informative goal states).

On the other hand, we can see that by design RareGoal relies on the communicating
assumption and may require poly(S,A,D, ε−1) samples to learn an ε-optimal goal-conditioned
policy on GL. Here the dependence on the diameter D is somewhat problematic. Indeed,
imagine there exist a set of states Shard such that 1≪ V ⋆(s0 → s) ≤ D for s ∈ Shard (i.e., very
hard to reach states, e.g., by chance due to environment stochasticity). Then throughout the
learning process, RareGoal will strive to reach the states in Shard and select them as goals,
which leads to unsuccessful episodes and a possible waste of samples. Consequently, when
goals have varying reachability (e.g., if the environment is highly stochastic), RareGoal suffers
from an issue of goal prioritizing, i.e., too-hard-to-reach states are given too much goal sampling
importance.

Finally, we empirically complement our discussion above on the sequence of goals selected
by UniGoal, RareGoal and AdaGoal. We design a simple two-room grid-world with a very
small probability of reaching the second room, and illustrate in Figure F.3 the goal sampling
frequency of UniGoal-UCBVI, RareGoal-UCBVI and AdaGoal-UCBVI. We see that over the course
of the learning interaction, as opposed to the designs of RareGoal and UniGoal, our AdaGoal
strategy is able to successfully discard the states from the bottom right room, which have a

271

Complements on Chapter 8

negligible probability of being reached. In addition, AdaGoal is able to target as goals the states
in the first room that are furthest away from s0, i.e., those at the center of the “spiral”, which
effectively correspond to the fringe of what the agent can reliably reach.

F.5 Implementation details of Section 8.5

Here we provide the implementation details of our experiments reported in Section 8.5. Our
implementation and hyperparameters of HER (Andrychowicz et al., 2017) are based on the
PyTorch open-source codebase of https://github.com/TianhongDai/hindsight-experience-
replay, which follows the official implementation of HER. As explained in Section 8.5, we
approximate AdaGoal by computing the disagreement (i.e., standard deviation) of an ensemble
of J goal-conditioned Q-functions and selecting a goal proportionally to it amongN uniformly
sampled goals. Then the policy is conditioned on this goal and executed for an episode of
lengthH = 50. This recovers the VDS algorithm of Zhang et al. (2020b). We thus follow the
implementation details given in the latter paper. In particular, the value ensemble (for goal
selection) is treated as a separate module from the policy optimization (for goal-conditioned
policy execution). In each training epoch, each Q-function in the ensemble performs Bellman
updates with independently sampled mini-batches, and the policy is updated with DDPG
(Lillicrap et al., 2015). Each Q-function in the ensemble is trained with its target network, with
learning rate 1e-3, polyak coefficient 0.95, buffer size 1e6, and batch size 1000. Finally, we set
J = 3 and N = 1000.

272

https://github.com/TianhongDai/hindsight-experience-replay
https://github.com/TianhongDai/hindsight-experience-replay

Appendix G

Complements on Chapter 9

G.1 Proof of Theorem 9.11

G.1.1 Computation of the Optimistic Policies

At each round k, for each goal state s† ∈ Wk, DisCo computes an optimistic goal-oriented policy
associated to the MDPM ′

k(s†) constructed as in Definition 9.10. This MDP is defined over the
entire state space S and restricts the action to the only action areset outside Kk. We can build an
equivalent MDP by restricting the focus on Kk. To this end, we define the following SSP-MDP.

Definition G.1. DefineM †
k(s†) ≜ ⟨S†

k,A
†
k(·), c

†
k, P

†
k ⟩ where S†

k ≜ Kk∪{s†, x} and S†
k = |S†

k| =
|Kk|+ 2. State x is a meta-state that encapsulates all the states that have been observed so far and are
not inKk. The action spaceA†

k(·) is such thatA†
k(s) = A for all states s ∈ Kk andA†

k(s) = {areset}
for s ∈ {s†, x}. The cost function is c†

k(x, a) = 0 for any a ∈ A†
k(x) and c†

k(s, a) = 1 everywhere
else. The transition function is defined as P †

k (s†|s†, a) = P †
k (s0|x, a) = 1 for any a, P †

k (y|s, a) =
P (y|s, a) for any (s, a, y) ∈ Kk ×A× (Kk ∪ {s†}) and P †

k (x|s, a) = 1−
∑
y∈Kk∪{s†} P

†
k (y|s, a).

Note that solvingM †
k yields a policy effectively restricted to the set Kk insofar as we can

interpret the meta-state x as S \ {Kk ∪ {s†}}. Since P is unknown, we cannot constructM †
k(s†).

Let Nk be the state-action counts accumulated up until now. We denote by P̂k the “global”
empirical estimates, i.e., P̂k(y|s, a) = Nk(s, a, y)/Nk(s, a). Given them,we define the “restricted”
empirical estimates P̂ †

k as follows: P̂ †
k (y|s, a) ≜ P̂k(y|s, a) for any (s, a, y) ∈ Kk×A×(Kk∪{s†})

and P̂ †
k (x|s, a) ≜ 1 −

∑
y∈Kk∪{s†} P̂

†
k (y|s, a). Denoting N+

k (s, a) ≜ max{1, Nk(s, a)}, we then

273

Complements on Chapter 9

Algorithm G.1: OVISSP planning procedure
1 Input: goal s†, states Kk ∪ {x}, samples Nk, precision level γ > 0.
2 Output: Value vector ũ† and policy π̃†.
3 Estimate transitions probabilities P̂k using Nk.
4 Compute the optimistic SSP-MDP M̃ †

k as detailed in Definition G.2.
5 Compute (ũ†

k, π̃
†
k) = VI-SSP(s†,K†

k ∪ {x},A
†
k, c

†
k, P̃

†
k , γ) (see Algorithm 2.1).

define the following bonuses for any (s, a, y) ∈ Kk ×A× (Kk ∪ {s†}),

βk(s, a, y) ≜ 2

√√√√ P̂k(y|s, a)(1− P̂k(y|s, a))
N+
k (s, a)

log
(

2SAN+
k (s, a)
δ

)
+

6 log
(

2SAN+
k

(s,a)
δ

)
N+
k (s, a)

, (G.1)

βk(s, a, x) ≜
∑

y∈Kk∪{s†}
βk(s, a, y). (G.2)

Moreover, we set the uncertainty about the MDP at the meta-state x and at the goal state s† to 0
by construction (since their outgoing transitions are deterministic, respectively to s0 and s†).

We now leverage the construction of an optimistic SSP model of Rosenberg et al. (2020).

Definition G.2. We denote by M̃ †
k(s†) = ⟨S†

k,A
†
k(·), c

†
k, P̃

†
k ⟩ the optimistic MDP associated to

M †
k(s†) defined in Definition G.1. Then, ∀(s, a) ∈ Kk ×A,

P̃ †
k (y|s, a) ≜ max

{
P̂k(y|s, a)− βk(s, a, y), 0

}
, ∀y ∈ Kk ∪ {x}, (G.3)

P̃ †
k (s†|s, a) ≜ 1−

∑
y∈Kk∪{x}

P̃ †
k (y|s, a), (G.4)

P̃ †
k (s†|s†, a) = P̃ †

k (s0|x, a) = 1. (G.5)

Given this MDP, we can compute the optimistic value vector ũ†
k and policy π̃†

k using value
iteration for SSP: (ũ†

k, π̃
†
k) = VI-SSP(s†,K†

k ∪ {x},A
†
k, c

†
k, P̃

†
k , γ) with precision level γ = ε

4L (see
Algorithm 2.1). We summarize the construction of the optimistic model and the computation
of value function and policy in Algorithm G.1 (OVISSP).

Remark. Note that, given the possibly large number of states in the total environment S,
the way we compute the optimistic policies requires the construction of the meta-state x that
encapsulates all the states in S \ {Kk ∪ {s†}}, where s† is the candidate goal state considered
at round k. As a result, the uncertainty on the transitions reaching x needs to be summed
over multiple states, as shown in Equation (G.2). This extra uncertainty at a single state in

274

G.1 Proof of Theorem 9.11

the induced MDP has the effect of canceling out Bernstein techniques seeking to lower the
prescribed requirement of the state-action samples that the algorithm should collect. In turn
this implies that such variance-aware techniques would not lead to any improvement in the
final sample complexity bound.

G.1.2 High-Probability Event

Lemma G.3. It holds with probability at least 1 − δ that for any time step t ≥ 1 and for any
state-action pair (s, a) and next state s′,

|p̂t(s′|s, a)− P (s′|s, a)| ≤ 2

√√√√ σ̂2
t (s′|s, a)
N+
t (s, a)

log
(

2SAN+
t (s, a)
δ

)
+

6 log
(

2SAN+
t (s,a)
δ

)
N+
t (s, a)

,

(G.6)

where N+
t (s, a) ≜ max{1, Nt(s, a)} and where σ̂2

t are the population variance of transitions, i.e.,
σ̂2
t (s′|s, a) ≜ P̂t(s′|s, a)(1− P̂t(s′|s, a)).

Proof. The confidence intervals in Equation (G.6) are constructed using the empirical Bernstein
inequality, which guarantees that the considered event holds with probability at least 1− δ, see
e.g., Fruit et al. (2020).

Define the set of plausible transition probabilities as

C†
k ≜

⋂
(s,a)∈S†

k
×A

C†
k(s, a),

where

C†
k(s, a) ≜ {p̃ ∈ C | p̃(· | s†, a) = 1s† , p̃(· |x, a) = 1s0 , |p̃(s′|s, a)− p̂k(s′|s, a)| ≤ βk(s, a, s′)},

with C the S†
k-dimensional simplex and p̂k the empirical average of transitions.

Lemma G.4. Introduce the event Θ ≜
⋂+∞
k=1

⋂
s†∈Wk

{P †
k ∈ C

†
k}. Then P(Θ) ≥ 1− δ

3 .

Proof. We have with probability at least 1 − δ
3 that, for any y ̸= x, |P †

k (y|s, a) − P̂ †
k (y|s, a)| ≤

βk(s, a, y) from the empirical Bernstein inequality (see Equation (G.6)), andmoreover |P̂ †
k (x|s, a)−

P †
k (x|s, a)| =

∣∣∣1−∑y∈Kk∪{s†} P
†
k (y|s, a)−

(
1−

∑
y∈Kk∪{s†} P̂

†
k (y|s, a)

)∣∣∣ ≤∑y∈Kk∪{s†}|P
†
k (y|s, a)−

P̂ †
k (y|s, a)| ≤ βk(s, a, x).

275

Complements on Chapter 9

Lemma G.5. Under the event Θ, for any round k and any goal state s† ∈ Wk, the optimistic model
P̃ †
k constructed in Definition G.2 verifies P̃ †

k ∈ P
(P †
k

)
ηk , with ηk ≜ 4βk(s, a, x) where βk is defined

in Equation (G.2).

Proof. Combining the construction in Definition G.2, the proof of Lemma G.4 and the triangle
inequality yields
∑

y∈Kk∪{x}
|P̃ †
k (y|s, a)− P †

k (y|s, a)| ≤
∑

y∈Kk∪{x}
|P̃ †
k (y|s, a)− P̂ †

k (y|s, a)|+ |P̂ †
k (y|s, a)− P †

k (y|s, a)|

≤
∑

y∈Kk∪{x}
βk(s, a, y) + 2βk(s, a, x)

≤ 4βk(s, a, x).

Throughout the remainder of the proof, we assume that the event Θ holds.

G.1.3 Properties of the Optimistic Policies and Value Vectors

We recall notation. Let us fix any round k and any goal state s† ∈ Wk. We denote by π̃†
k the

greedy policy w.r.t. ũ†
k(· → s†) in the optimistic model P̃ †

k . Let ṽ†
k(s→ s†) be the value function

of policy π̃†
k starting from state s in the model P̃ †

k . We can apply Lemma E.1 (indeed, we have
cmin = 1 > 0 and there exists at least one proper policy to reach the goal state s† since it belongs
toWk). Moreover, we have that Ṽ ⋆

Kk(s0 → s†) ≤ V ⋆
Kk(s0 → s†) given the way the optimistic

model P̃ †
k is computed (i.e., by maximizing the probability of transitioning to the goal at any

state-action pair), see Rosenberg et al. (2020, LemmaB.12). Hence we get the two following
important properties.

Lemma G.6. For any round k, goal state s† ∈ Wk and state s ∈ Kk ∪ {x}, we have under the
event Θ,

ũ†
k(s→ s†) ≤ V ⋆

Kk(s→ s†).

276

G.1 Proof of Theorem 9.11

Lemma G.7. For any round k, goal state s† ∈ Wk and state s ∈ Kk ∪ {x}, we have

ṽ†
k(s→ s†) ≤ (1 + 2γ)ũ†

k(s→ s†).

G.1.4 State Transfer from U to K (step ④)

We fix any round k and any goal state s† ∈ Wk that is added to the set of “controllable” states
K, i.e., for which ũ†

k(s0 → s†) ≤ L.

Lemma G.8. Under the event Θ, we have both following inequalities
v

†
k(s0 → s†) ≤ L+ ε,

v†
k(s0 → s†) ≤ V ⋆

Kk(s0 → s†) + ε.

In particular, the first inequality entails that s† ∈ S→
L+ε, which justifies the validity of the state

transfer from U to K.

Proof. We have

ṽ†
k(s0 → s†)

(a)
≤ (1 + 2γ)ũ†

k(s0 → s†) ≤


(b)
≤ L+ ε

3
(c)
≤ V ⋆

Kk(s0 → s†) + ε
3 ,

(G.7)

where inequality (a) comes fromLemmaG.7, inequality (b) combines the algorithmic condition
ũ†
k(s0 → s†) ≤ L and the VI precision level γ ≜ ε

6L , and finally inequality (c) combines
Lemma G.6 and the VI precision level. Moreover, for any state in Kk,

ṽ†
k(s→ s†)

(a)
≤ Ṽ ⋆

Kk(s→ s†) + ε

3
(b)
≤ Ṽ ⋆

Kk(s0 → s†) + 1 + ε

3 ≤ ṽ
†
k(s0 → s†) + 1 + ε

3 ,

where (a) comes from Lemma G.6 and (b) stems from the presence of the areset action (As-
sumption 8.3).

We now provide the exact choice of allocation function ϕ in Algorithm 9.1. We introduce

γ ≜
2ε

12(L+ 1 + ε)(L+ ε
3) .

277

Complements on Chapter 9

(Note that γ = O(ε/L2).) We set the following requirement of samples for each state-action
pair (s, a) at round k,

nk = ϕ(Kk) =

57X2
k

γ2

[
log

(
8eXk

√
2SA√

δγ

)]2

+ 24|S†
k|

γ
log

(
24|S†

k|SA
δγ

) , (G.8)

where we define
Xk ≜ max

(s,a)∈S†
k

×A

∑
s′∈S†

k

√
σ̂2
k(s′|s, a),

with σ̂2
k(s′|s, a) ≜ P̂ †

k (s′|s, a)(1−P̂ †
k (s′|s, a)) the estimated variance of the transition from (s, a) to

s′. Leveraging the empirical Bernstein inequality (Lemma G.3) and perfoming simple algebraic
manipulations (see e.g., Kazerouni et al., 2017, Lemma8 and 9) yields that βk(s, a, x) ≤ γ.
From Lemma G.5, this implies that P̃ †

k ∈ P
(P †
k

)
η with η ≜ 4γ. We can then apply Lemma 2.14

(whose condition 2.4 is verified), which gives

v†
k(s0 → s†) ≤

(
1 + η∥ṽ†

k(· → s†)∥∞
)
ṽ†
k(s0 → s†) (G.9)

≤ (1 + η(L+ 1 + ε)) ṽ†
k(s0 → s†)

≤ ṽ†
k(s0 → s†) + 2ε

3 ,

where the last inequality uses that η(L + 1 + ε)(L + ε
3) = 2ε

3 by definition of γ. Plugging in
Equation (G.7) yields the sought-after inequalities.

G.1.5 Termination of the Algorithm

Lemma G.9 (Variant of Lemma17 of Lim and Auer, 2012). Suppose that for every state s ∈ S ,
each action a ∈ A is executed b ≥ ⌈L log

(
3ALS
δ

)
⌉ times. Let S ′

s,a be the set of all next states visited
during the b executions of (s, a). Denote by Λ the complementary of the event{

∃(s′, s, a) ∈ S2 ×A : P (s′|s, a) ≥ 1
L
∧ s′ /∈ S ′

s,a

}
.

Then P(Λ) ≥ 1− δ
3 .

Lemma G.10. Under the event Θ ∩ Λ, for any round k, either S→
L ⊆ Kk, or there exists a state

s† ∈ S→
L \ Kk such that s† ∈ Wk and is L-controllable with a policy restricted to Kk. Moreover,

|Wk| ≤ 2LA|Kk|.

278

G.1 Proof of Theorem 9.11

Proof. Consider a round k such that S→
L \Kk is non-empty. Due to the incremental construction

of the set S→
L (Definition 9.5), there exists a state s† ∈ S→

L and a policy restricted to Kk that can
reach s† in at mostL steps (in expectation). Hence there exists a state-action pair (s, a) ∈ Kk×A
such that P (s†|s, a) ≥ 1

L . Since ϕ(Kk) ≥ ⌈L log
(

3ALS
δ

)
⌉ samples are available at each state-

action pair, according to Lemma G.9, we get that, under the event Λ, s† is found during the
sample collection procedure for the state-action pair (s, a) (step ①), which implies that s† ∈ Uk.

Moreover, the choice of allocation function ϕ guarantees in particular that there are more
than Ω(4L2

ε2 log(2LSA
δε)) samples available at each state-action pair (s, a) ∈ Kk × A. From the

empirical Bernstein inequality of Equation (G.6), we thus have that |P (s†|s, a)− P̂k(s†|s, a)| ≤
ε

2L under the event Θ. Consequently we have

P̂k(s†|s, a) ≥ 1
L
− |P (s†|s, a)− P̂k(s†|s, a)| ≥

1− ε
2

L
,

which implies that s† ∈ Wk. Furthermore, we can decomposeWk the following way

Wk =
⋃

(s,a)∈Kk×A
Yk(s, a),

where we introduce the subset

Yk(s, a) ≜
{
s′ ∈ Uk : P̂k(s′|s, a) ≥

1− ε
2

L

}
.

We then have

1 =
∑
s′∈S

P̂k(s′|s, a) ≥
∑

s′∈Yk(s,a)
P̂k(s′|s, a) ≥

1− ε
2

L
|Yk(s, a)|.

We conclude the proof by writing that

|Wk| ≤
∑

(s,a)∈Kk×A
|Yk(s, a)| ≤ L

1− ε
2
A|Kk| ≤ 2LA|Kk|,

where the last inequality uses that ε ≤ 1 (from line 3 of Algorithm 9.1).

Lemma G.11. Under the event Θ ∩ Λ, when either condition STOP1 or STOP2 is triggered (at a
round indexed byK), we have S→

L ⊆ KK .

Proof. If condition STOP1 is triggered, Lemma G.10 immediately guarantees that S→
L ⊆ KK

under the event Λ. If condition STOP2 is triggered, we have for all s ∈ WK , ũs(s0 → s) > L.
From Lemma G.6 this means that, under the event Θ, for all s ∈ WK , V ⋆

KK (s0 → s) > L. Hence

279

Complements on Chapter 9

none of the states in WK can be reached in at most L steps (in expectation) with a policy
restricted to KK . We conclude the proof using Lemma G.10.

Lemma G.12. Under the event Θ ∩ Λ, when DisCo terminates at roundK, for any state s ∈ KK ,
the policy πs computed during step ⑤ verifies

V πs(s0 → s) ≤ min
π∈Π(S→

L)
V π(s0 → s) + ε.

Moreover, we have that S→
L ⊆ KK ⊆ S→

L+ε.

Proof. Assume that the event Θ ∩ Λ holds. Then when the final set KK is considered and the
new policies are computed using all the samples, Lemma G.8 yields for all s ∈ KK ,

V πs(s0 → s) ≤ min
π∈Π(KK)

V π(s0 → s) + ε.

Moreover Lemma G.11 entails that KK ⊇ S→
L . This implies from Lemma 9.3 that

min
π∈Π(KK)

V π(s0 → s) ≤ min
π∈Π(S→

L)
V π(s0 → s),

which means that KK ⊆ S→
L+ε.

G.1.6 High Probability Bound on the Sample Collection Phase (step ①)

Denote byK the (random) index of the last round during which the algorithm terminates. We
focus on the sample collection procedure for any state s ∈ KK . We denote by ks the index of
the round during which swas added to the set of “controllable” states K. To collect samples
at state s, the learner uses the shortest-path policy πs. We say that an attempt to collect a
specific sample is a rollout. We denote by ZK ≜ |KK |ANK the total number of samples that the
learner needs to collect. As such, at most ZK rollouts must take place. Assume that the event
Θ holds. Then from Lemma G.12, we have KK ⊆ S→

L+ε. Hence, denoting SL+ε ≜ |S→
L+ε|, we

have ZK ≤ ZL+ε ≜ SL+εAΦ(S→
L+ε). The following lemma provides a high-probability upper

bound on the time steps required to meet the sampling requirements.

Lemma G.13. Assume that the event Θ holds. Set

ψ ≜ 4(L+ ε+ 1) log
(6ZL+ε

δ

)
,

280

G.1 Proof of Theorem 9.11

and introduce the following event

T ≜
{
∃ one rollout (with goal state s) s.t. τπs(s0 → s) > ψ

}
.

We have P (T) ≤ δ
3 .

Proof. Assume that the event Θ holds. Leveraging a union bound argument and applying
Lemma G.14 to policy πs which verifies V πs(s′ → s) ≤ L+ ε+ 1 for any s′ ∈ Kks , we get

P (T) ≤
∑

rollouts

2 exp
(
− ψ

4(L+ ε+ 1)

)
≤ 2ZL+ε exp

(
− ψ

4(L+ ε+ 1)

)
≤ δ

3 ,

where the last inequality comes from the choice of ψ.

Lemma G.14 (Rosenberg et al., 2020, LemmaB.5). Let π be a proper policy such that for some
d > 0, V π(s) ≤ d for every non-goal state s. Then the probability that the cumulative cost of π to reach
the goal state from any state s is more thanm, is at most 2e−m/(4d) for allm ≥ 0. Note that a cost of at
mostm implies that the number of steps is at mostm/cmin.

G.1.7 Putting Everything Together: Sample Complexity Bound

The sample complexity of the algorithm is solely induced by the sample collection procedure
(step ①). Recall that we denote byK the index of the round at which the algorithm terminates.
With probability at least 1 − 2δ

3 , Lemma G.11 holds, and so does the event Θ. Hence the
algorithm discovers a set of states KK ⊇ S→

L . Moreover, from Lemma G.12, the algorithm
outputs for each s ∈ KK a policy πs with E [τπs(s0 → s)] ≤ V ⋆

S→
L

(s) + ε. Hence we also have
|KK | ≤ SL+ε ≜ |S→

L+ε|.
We denote by ZK ≜ |KK |Aϕ(KK) the total number of samples that the learner needs to

collect. From Lemma G.13, with probability at least 1− δ
3 , the total sample complexity of the

algorithm is at most ψZK , where ψ ≜ 4(L+ ε+ 1) log
(

6ZL+ε
δ

)
.

Now, from Equation (G.8) there exists an absolute constant α > 0 such that DisCo selects as
allocation function ϕ

ϕ : X → α ·
(
L4Θ̂(X)

ε2 log2
(
LSA

εδ

)
+ L2|X |

ε
log

(
LSA

εδ

))
,

281

Complements on Chapter 9

where

Θ̂(X) ≜ max
(s,a)∈X ×A

∑
s′∈X

√
P̂ (s′|s, a)(1− P̂ (s′|s, a))

2

.

The total requirement is ϕ(KK). Note that from Cauchy-Schwarz’s inequality, we have

Θ̂(KK) ≤ ΓK ≜ max
(s,a)∈KK×A

∥{P (s′|s, a)}s′∈KK∥0 ≤ |KK |.

Combining everything yields with probability at least 1− δ,

ψZK = Õ

(
L5ΓK |KK |A

ε2 + L3|KK |2A
ε

)
.

We finally use that KK ⊂ S→
L+ε from Lemma G.12, which implies that

CAX⋆(DisCo, L, ε, δ) = Õ

(
L5ΓL+εSL+εA

ε2 +
L3S2

L+εA

ε

)
,

whereΓL+ε ≜ max(s,a)∈S→
L+ε×A∥{P (s′|s, a)}s′∈S→

L+ε
∥0. This concludes the proof of Theorem 9.11.

G.1.8 Proof of Corollary 9.12

The result given in Corollary 9.12 comes from retracing the analysis of Lemma G.12 and
therefore Lemma G.8 by considering non-uniform costs between [cmin, 1] instead of costs all
equal to 1. Specifically, Equation (G.9) needs to account for the inverse dependency on cmin of
the simulation lemma of Lemma 2.14. This induces the final ε/cmin accuracy level achieved
by the policies output by DisCo. There remains to guarantee that condition 2.4 of Lemma 2.14
is verified. In particular the condition holds if η(L + 1 + ε) ≤ 2cmin, where η is the model
accuracy prescribed in the proof of Lemma G.8. We see that this is the case whenever we have
ε = O(Lcmin) due to the fact that η = Ω(ε/L2).

G.1.9 Computational Complexity of DisCo

The overall computational complexity of DisCo can be expressed as ∑K
k=1 |Wk| · C(OVISSP),

where C(OVISSP) denotes the complexity of an OVISSP procedure and where we recall thatK
denotes the (random) index of the last round during which the algorithm terminates. Note that
it holds with high probability that K ≤ |S→

L+ε| and |Wk| ≤ 2LA|Kk| ≤ 2LA|S→
L+ε|. Moreover

C(OVISSP) captures the complexity of the value iteration (VI) algorithm for SSP, which was
proved by Bonet (2007) to converge in time quadratic w.r.t. the size of the considered state

282

G.2 The UcbExplore Algorithm (Lim and Auer, 2012)

space (here, Kk) and ∥V ⋆∥∞/cmin. Here we have cmin = 1, and we can easily prove that in all
the SSP instances considered by DisCo, the optimal value function V ⋆ verifies ∥V ⋆∥∞ = O(L2),
due to the restriction of the goal state inWk (indeed this restriction implies that there exists a
state-action pair in Kk ×A that transitions to the goal state with probability Ω(1/L) in the true
MDP). Putting everything together gives DisCo’s computational complexity. Interestingly, we
notice that while it depends polynomially on SL+ε, L and A, it is independent from S the size
of the global state space.

G.2 The UcbExplore Algorithm (Lim and Auer, 2012)

G.2.1 Outline of the Algorithm

TheUcbExplore algorithmwas introduced by Lim and Auer (Lim and Auer, 2012) to specifically
tackle condition AXL. The algorithm maintains a set K of “controllable” states and a set
U of “uncontrollable” states. It alternates between two phases of state discovery and policy
evaluation. In a state discovery phase, new candidate states are discovered as potential members
of the set of controllable states. Any policy evaluation phase is called a round and it relies on
an optimistic principle: it attempts to reach an “optimistic” state s (i.e., the easiest state to
reach based on information collected so far) among all the candidate states by executing an
optimistic policy πs that minimizes the optimistic expected hitting time truncated at a horizon
of HUcb ≜ ⌈L+ L2ε−1⌉. Within the round of evaluation of policy πs, the algorithm proceeds
through at most λUcb ≜

⌈
6L3ε−3 log

(
16|K|2δ−1)⌉ episodes, each of which begins at s0 and ends

either when πs successfully reaches s or whenHUcb steps have been executed. If the empirical
performance of πs is poor (measured through a performance check done after each episode), the
round is said to have failed. Otherwise, the round is successfulwhich means that s is controllable
and an acceptable policy (πs) has been discovered. A failure round leads to selecting another
candidate state-policy pair for evaluation, while a success round leads to a state discovery phase
which in turn adds more candidate states for the subsequent rounds. Note that UcbExplore is
unable to tackle the more challenging objective AX⋆.

G.2.2 Minor Issue and Fix in the Analysis of UcbExplore

The key insight of UcbExplore is to bound the number of failure rounds of the algorithm, by
lower- and upper-bounding the so-called “regret” contribution of failure rounds, where the
regret of a failure round k is defined as

ek∑
j=1

[
HUcb − L−

Γ−1∑
i=0

ri
]
,

283

Complements on Chapter 9

where ek ≤ λUcb is the actual number of episodes executed in round k and where the reward
ri ∈ {0, 1} is equal to 1 only if the state is the goal state. However, upper bounding the regret
contribution of failure rounds implies applying a concentration inequality on only specific
rounds that are chosen given their empirical performance. Hence Lim and Auer Lim and Auer,
2012, Lemma18 improperly use a martingale argument to bound a sum whose summands are
chosen in a non-martingale way, i.e., depending on their realization.

To avoid the aforementioned issue, one must upper and lower bound the cumulative regret
of the entire set of rounds and not only the failure rounds in order to obtain a bound on the
number of failure rounds. However, this would yield a sample complexity that has a second
term scaling as Õ(ε−4). Following personal communication with the authors, the fix is to
change the definition of regret of a round, making it equal to

ek∑
j=1

ũHUcb(s0 → s)−
HUcb−1∑
i=0

ri,

where s is the considered goal state and ũHUcb(s0 → s) is the optimistic HUcb-step reward
(where the reward is equal to 1 only at state s). With this new definition, it is possible to recover
the sample complexity provided by Lim and Auer (2012) scaling as Õ(ε−3).

G.2.3 Issue with a Possibly Infinite State Space

Lim and Auer (2012) claim that their setting can cope with a countable, possibly infinite state
space. However, this leads to a technical issue, which has been acknowledged by the authors
via personal communication and as of now has not been resolved. Indeed, it occurs when a
union bound over the unknown set U is taken to guarantee high-probability statements (e.g.,
the Lemma14 or 17 of Lim and Auer, 2012). Yet for each realization of the algorithm, we do
not know what the set U , or equivalently K, looks like, hence it is improper to perform a union
bound over a set of unknown identity. Simple workarounds to circumvent this issue are to
impose a finite state space, or to assume prior knowledge over a finite superset of U . In this
paper we opt for the first option. It remains an open and highly non-trivial question as to how
(and whether) the framework can cope with an infinite state space.

G.2.4 Effective Horizon of the AX Problem and its Dependency on ε

UcbExplore (Lim and Auer, 2012) designs finite-horizon problems with horizonHUcb ≜ ⌈L+
L2ε−1⌉ and outputs policies that reset everyHUcb time steps. In the following we prove that the
effective horizon of the AX problem actually scales as O (log(Lε−1)L

), i.e., only logarithmically
w.r.t. ε−1. We begin by defining the concept of “resetting” policies as follows.

284

G.2 The UcbExplore Algorithm (Lim and Auer, 2012)

Definition G.15. For any π ∈ Π and horizon H ≥ 0, we denote by π|H the non-stationary policy
that executes the actions prescribed by π and performs the areset action every H steps, i.e.,

π
|H
t (a|s) ≜

{
areset if t ≡ 0 (mod H),
π(a|s) otherwise.

We denote by Π|H the set of such “resetting” policies.

The following lemma captures the effective horizonHeff of the problem, in the sense that
restricting our attention toΠ|H(S→

L) forH ≥ Heff does not compromise the possibility of finding
policies that achieve the performance required by AX⋆ (and thus also by AXL).

Lemma G.16. For any ε ∈ (0, 1] and L ≥ 1, whenever

H ≥ Heff ≜ 4(L+ 1)
⌈

log
(4(L+ 1)

ε

)⌉
,

we have for any s† ∈ S→
L ,

min
π|H∈Π|H(S→

L)
vπ|H (s0 → s†) ≤ V ⋆

S→
L

(s0 → s†) + ε.

Proof. Consider any goal state s† ∈ S→
L . Set ε′ ≜ ε

2(L+1) ≤
1
2 . Denote by π ∈ Π(S→

L) the
minimizer of V ⋆

S→
L

(s0 → s†). For any horizonH ≥ 0, we introduce the truncated value function
vπ,H(s → s′) ≜ E [τπ(s→ s′) ∧H] and the tail probability qπ,H(s → s′) ≜ P(τπ(s → s′) > H).
Due to the presence of the areset action, the value function of π can be bounded for all states
s ∈ S→

L \ {s†} as

V π(s→ s†) ≤ V ⋆
S→
L

(s0 → s†) + 1 ≤ L+ 1.

This entails that the probability of the goal-reaching time decays exponentially. More
specifically, we have

qπ,H(s0 → s†) ≤ 2 exp
(
− H

4(L+ 1)

)
≤ ε′, (G.10)

where the first inequality stems from Lemma G.14 and the second inequality comes from the
choice of H ≥ 4(L+ 1)

⌈
log

(2
ε′
)⌉. Furthermore, we have τπ(s→ s′) ∧H ≤ τπ(s→ s′) and thus

285

Complements on Chapter 9

E [τπ(s→ s′) ∧H] ≤ E [τπ(s→ s′)]. Consequently,

vπ,H(s0 → s†) ≤ V π(s0 → s†) = V ⋆
S→
L

(s0 → s†). (G.11)

Now, from Lim andAuer, 2012, Equation 4, the value function of π can be related to its truncated
value function and tail probability as follows

vπ|H = vπ,H + qπ,H
1− qπ,H

. (G.12)

Plugging Equations (G.10) and (G.11) into Equation (G.12) yields

vπ|H (s0 → s†) ≤
V ⋆

S→
L

(s0 → s†) + ε′

1− ε′ .

Notice that the inequalities 1
1−x ≤ 1 + 2x and x

1−x ≤ 2x hold for any 0 < x ≤ 1
2 . Applying them

for x = ε′ yields

V ⋆
S→
L

(s0 → s†) + ε′

1− ε′ ≤ (1 + 2ε′)V ⋆
S→
L

(s0 → s†) + 2ε′.

From the inequality V ⋆
S→
L

(s0 → s†) ≤ L and the definition of ε′, we finally obtain

vπ|H (s0 → s†) ≤ V ⋆
S→
L

(s0 → s†) + ε,

which completes the proof.

Lemma G.16 reveals that the effective horizonHeff of the AX problem scales only logarith-
mically and not linearly in ε−1. This highlights that the design choice in UcbExplore to tackle
finite-horizon problems with horizon HUcb unavoidably leads to a suboptimal dependency
on ε in its AXL sample complexity bound. In contrast, by designing SSP problems and thus
leveraging the intrinsic goal-oriented nature of the problem, DisCo can (implicitly) capture
the effective horizon of the problem. This observation is at the heart of the improvement
in the ε dependency from Õ(ε−3) of UcbExplore (Lim and Auer, 2012) to Õ(ε−2) of DisCo
(Theorem 9.11).

G.3 Experiments

This section complements the experimental findings partially reported in Section 9.4. We
provide details about the algorithmic configurations and the environments as well as additional
experiments.

286

G.3 Experiments

G.3.1 Algorithmic Configurations

Experimental improvements to UcbExplore (Lim and Auer, 2012). We introduce several
modifications to UcbExplore in order to boost its practical performance. We remove all the
constants and logarithmic terms from the requirement for state discovery and policy evaluation
(refer to Lim and Auer, 2012, Figure 1). Furthermore, we remove the constants in the definition
of the accuracy ε′ = ε/L used by UcbExplore (while their original algorithm requires ε′ to be
divided by 8, we remove this constant). We also significantly improve the planning phase of
UcbExplore (Lim and Auer, 2012, Figure 2). Their procedure requires to divide the samples
into H := (1 + 1/ε′)L disjoint sets to estimate the transition probability of each stage h of
the finite-horizon MDP. This substantially reduces the accuracy of the estimated transition
probability since for each stage h only Nk(s, a)/H are used. In our experiments, we use all
the samples to estimate a stationary MDP (i.e., P̂k(s′|s, a) = Nk(s, a, s′)/Nk(s, a)) rather than a
stage-dependent model. Estimating a stationary model instead of bucketing the data is simpler
and more efficient since leads to a higher accuracy of the estimated model. To avoid to move
too far away from the original UcbExplore, we decided to define the confidence intervals as
if bucketing was used. We thus consider Nk(s, a) = Nk(s, a)/H for the construction of the
confidence intervals. For planning, we use the optimistic backward induction procedure as
in Azar et al. (2017). We thus leverage empirical Bernstein inequalities —which are much
tighter— rather than Hoeffding inequalities as suggested in Lim and Auer (2012). In particular,
we further approximate the bonus suggested in Azar et al. (2017, Algorithm4) as

bh(s, a) =
√
V ars′∼p̂k(·|s,a)[Vk,h+1(s′)]

Nk(s, a) ∨ 1 + (H − h)
Nk(s, a) ∨ 1 .

For DisCo, we follow the same approach of removing constants and logarithmic terms. We
thus use the definition of ϕ as in Theorem 9.11 with α = 1 and without log-terms. For plan-
ning, we use the procedure described in Section G.1 with bk(s, a, s′) =

√
P̂k(s′|s,a)(1−P̂k(s′|s,a))

Nk(s,a)∨1 +
1

Nk(s,a)∨1 . Finally, in the experiments we use a state-action dependent value Θ̂(s, a,Kk) =(∑
s′∈Kk

√
P̂k(s′|s, a)(1− P̂k(s′|s, a))

)2 instead of taking the maximum over (s, a).
Even though we boosted the practical performance of UcbExplore w.r.t. the original algo-

rithm proposed by Lim and Auer (2012) (e.g., the use of Bernstein), we believe it makes the
comparison between DisCo and UcbExplore as fair as possible.

G.3.2 Confusing Chain

The confusing chain environment referred to in Section 9.4 is constructed as follows. It is an
MDP composed of an initial state s0, a chain of length C (states are denoted by s1, . . . , sC) and

287

Complements on Chapter 9

ε DisCo UcbExplore-Bernstein
0.1 374, 263 (13, 906) 5, 076, 688 (92, 643)
0.2 105, 569 (4, 645) 636, 580 (13, 716)
0.4 29, 160 (829) 108, 894 (2, 305)
0.6 15, 349 (475) 40, 538 (805)
0.8 9, 891 (244) 21, 270 (441)

Table G.1 – Sample complexity of DisCo and UcbExplore-Bernstein, on the confusing chain domain.
Values are averaged over 50 runs and the 95%-confidence interval of the mean is reported in parenthesis.

a set ofK confusing states (sC+1, . . . , sC+K). Two actions are available in each state. In state
s0, we have a forward action a0 that moves to the chain with probability pc (P (s1|s0, a0) = pc

and P (s0|s0, a0) = 1 − pc) and a confusing action that has uniform probability of reaching
any confusing state (P (si|s0, a1) = 1/K for any i ∈ {C + 1, . . . , C + K}). In the confusing
states, all actions move deterministically to the end of the chain (P (sC |si, a) = 1 for any
i ∈ {C+1, . . . , C+K} and a). In each state of the chain, there is a forward action a0 that behaves
as in s0 (P (smin(C,i+1)|si, a0) = pc and P (si|si, a0) = 1 − pc, for any i ∈ {1, . . . , C − 1}) and a
skip action a1 that moves tom states ahead with probability pskip (P (smin(C,i+m)|si, a0) = pskip

and P (si|si, a0) = 1− pskip, for any i ∈ {1, . . . , C − 1}). Finally, P (s0|sc, a) = 1 for any action a.
In our experiments, we setm = 4, pskip = 1/3, pc = 1, C = 5,K = 6, L = 4.5.

Sample complexity. We provide in Table G.1 the sample complexity of the algorithms for
varying values of ε. As mentioned in Section 9.4, DisCo outperforms UcbExplore for any value
of ε, and increasingly so when ε decreases. Figure G.3 complements Figure 9.2 for additional
values of ε.

Quality of goal-reaching policies. We now investigate the quality of the policies recovered
by DisCo and UcbExplore. In particular, we show that DisCo is able to find the incrementally
near-optimal shortest-path policies to any goal state, while UcbExplore may only recover sub-
optimal policies. On the confusing chain domain, the intuition is that the set of confusing states
makes sC reachable in just 2 steps but the confusing states are not in the controllable set and
thus the algorithms are not able to recover the shortest-path policy to sC . On the other hand,
state sC is controllable through two policies: 1) the policies π1 that takes always the forward
action a0 reaches sC in 5 steps; 2) the policy π2 that takes the skip action a1 in s1 reaches sC in
4 steps. We observed empirically that DisCo always recovers policy π1 (i.e., the fastest policy)
while UcbExplore selects policy π2 in several cases. This is highlighted in Table G.2 where we
report the expected hitting time of the policies recovered by the algorithms. This finding is not
surprising since, as we explain in Section 9.3, UcbExplore is designed to find policies reaching
states in at most L steps on average, yet it is not able to recover incrementally near-optimal
shortest-path policies, as opposed to DisCo.

288

G.3 Experiments

UcbExplore-Bernstein
ε Expected hitting time vπ(s0 → si)

s0 s1 s2 s3 s4 s5
0.1, 0.2 0 1 2 3 4 4

0.4 0 1 2 3 4 4.94 (0.04)
0.6 0 1 2 3.36 (0.11) 4 4.53 (0.07)
0.8 0 1 2 3.38 (0.11) 4.07 (0.07) 4.53 (0.06)

Table G.2 – Expected hitting time of state si of the goal-oriented policy πsi recovered by UcbExplore-
Bernstein, on the confusing chain domain. DisCo recovers the optimal goal-oriented policy in all the
runs and for all ε. The advantage of DisCo lies in its final policy consolidation step. Values are averaged
over 50 runs and the 95%-confidence interval of the mean is reported in parenthesis (it is omitted when
equal to 0). This shows that UcbExplore recovers the optimal goal-oriented policy in every run only for
ε equal to 0.1 and 0.2.

s0 s1 s2 s3 s4 s5

a0
a1

1 2/3
1/3 6/11

3/11
2/11

12/25
6/25

4/25
3/25

60/137
30/137

20/137
15/137

12/137

Figure G.1 – Combination lock domain with S = 6 states. Expected hitting times from the initial state s3
are vπ(s3 → s) = (2.18, 1.91, 1.64, 0, 1, 2). Consider L = 3, the set of incrementally L-controllable states
is S→

L = {s2, s3, s4, s5}. The goal-oriented policy to reach s4 and s5 takes always the right action a1,
while the policy for s2 always selects the left action a0.

G.3.3 Combination Lock

We consider the combination lock problem introduced by Azar et al. (2012). The domain is
a stochastic chain with S = 6 states and A = 2 actions. In each state sk, action right (a1) is
deterministic and leads to state sk+1, while action left (a0) moves to a state sk−l with probability
proportional to 1/(k − l) (i.e., inversely proportional to the distance of the states). Formally,
we have that

n(xk, xl) =


1
k−l if l < k

0 otherwise
and P (xl|xk, a0) = n(xk, xl)∑

s n(xk, s)
.

We set the initial state to be at 2/3 of the chain, i.e.,
⌊
2N/3

⌋
. The actions in the end states are

absorbing, i.e., P (s0|s0, a0) = 1 and P (sN−1|sN−1, a1) = 1, while the remaining actions behave
normally. See Figure G.1 for an illustration of the domain.

289

Complements on Chapter 9

0 0.2 0.4 0.6 0.8 1

·105

0.4

0.6

0.8

1

Time

Pr
op

or
tio

n
of

L-
co

nt
ro

lla
bl

e
st

at
es

ε=0.2

UcbExplore
DisCo

Figure G.2 – Proportion of the incrementally L-controllable states identified by DisCo and UcbExplore
in the combination lock domain for L = 2.7 and ε = 0.2. Values are averaged over 20 runs.

Sample complexity. We evaluate the two algorithms DisCo and UcbExplore on the combina-
tion lock domain, for ε = 0.2 and L = 2.7. We further boost the empirical performance of
UcbExplore by using N instead of N for the construction of the confidence intervals (i.e., we do
not account for the data bucketing in Lim and Auer, 2012, see Section G.3.1). To preserve the
robustness of the algorithm, we use log(|Kk|2)/(ε′)3 episodes for UcbExplore’s policy evaluation
phase (indeed we noticed that the removal of the logarithmic term here sometimes leads
UcbExplore to miss some states in S→

L in this domain). For the same reason, in DisCo we use
the value Θ̂(Kk) = maxs,a Θ̂(s, a,Kk) prescribed by the theoretical algorithm instead of the
state-action dependent values used in the previous experiment. We average the experiments
over 20 runs and obtain a sample complexity of 30, 117 (2, 087) for DisCo and 90, 232 (2, 592) for
UcbExplore. Figure G.2 reports the proportion of incrementally L-controllable states identified
by the algorithms as a function of time. We notice that once again DisCo clearly outperforms
UcbExplore.

290

G.3 Experiments

0 1 2 3 4 5 6

·106

0.2

0.4

0.6

0.8

1

Time

Pr
op

or
tio

n
of

L-
co

nt
ro

lla
bl

e
st

at
es

ε=0.1

UcbExplore
DisCo

0 2 4 6 8

·105

0.2

0.4

0.6

0.8

1

Time

Pr
op

or
tio

n
of

L-
co

nt
ro

lla
bl

e
st

at
es

ε=0.2

UcbExplore
DisCo

0 0.2 0.4 0.6 0.8 1 1.2

·105

0.2

0.4

0.6

0.8

1

Time

Pr
op

or
tio

n
of

L-
co

nt
ro

lla
bl

e
st

at
es

ε=0.4

UcbExplore
DisCo

0 1 2 3 4

·104

0.2

0.4

0.6

0.8

1

Time

Pr
op

or
tio

n
of

L-
co

nt
ro

lla
bl

e
st

at
es

ε=0.6

UcbExplore
DisCo

0 0.5 1 1.5 2 2.5

·104

0.2

0.4

0.6

0.8

1

Time

Pr
op

or
tio

n
of

L-
co

nt
ro

lla
bl

e
st

at
es

ε=0.8

UcbExplore
DisCo

Figure G.3 – Proportion of the incrementally L-controllable states identified by DisCo and UcbExplore
on the confusing chain domain for L = 4.5 and ε ∈ {0.1, 0.2, 0.4, 0.6, 0.8}. Values are averaged over 50
runs. UcbExplore uses Bernstein confidence intervals for planning.

291

List of Figures

1.1 A goal-based agent. It keeps track of the world state as well as a set of goals it
is trying to achieve, and chooses an action that will (eventually) lead to the
achievement of its goals. Figure from Russell and Norvig (2002, Figure 2.13). . 2

1.2 This thesis is structured around the way goal states are generated. We start with
the supervised scenario of Part I where a goal state to be reached in minimum
total expected cost is provided as part of the problem definition. Leveraging
its technical findings, we then move to the unsupervised scenario of Part II that
focuses on learning to autonomously solve a variety of tasks in the absence of
any reward supervision, by intrinsically generating and reaching a sequence of
goals. 10

3.1 Deterministic two-state SSPM with two available actions: a1 self-loops on s0

with cost cmin and a2 goes from s0 to g with cost cmax > 2cmin. 35

7.1 Treasure-10 problem (i.e., with b(s, a) = 10): Proportion Pt of states meeting
the requirements at time t, averaged over 30 runs. By definition of the sample
complexity, the metric of interest is not the rate of increase of Pt over time
but only the time needed to reach the line of success Pt = 1. Left: 6-state
RiverSwim, Center: 24-state corridor gridworld, Right: 43-state 4-room gridworld
(see Section F.4 for details on the domains). 89

7.2 Sample complexity boxplots of GOSPRL (in red) and 0/1-UCRL (in blue). Each
column represents 30 runs on a randomly generated Garnet G(S,A = 5, β = 5)
with randomly generated state-action sampling requirements b : S × A →
U(0, 100). Left: S = 10, Right: S = 50. 90

7.3 ModEst problem: ℓ1-error Et ≜ (SA)−1 ·
∑
s,a∥p̂t(·|s, a) − p(·|s, a)∥1, averaged

over 30 runs. Left: NoisyRiverSwim(36), Center: Wheel(30), Right: Randomly
generated Garnet G(50, 5, 25). 90

293

List of Figures

7.4 Simple three-state reward-free domain (Fruit et al., 2018b) and Treasure-10
sample complexity of GOSPRL (averaged over 30 runs) as a function of the
diameter D ≈ 1/ν. 90

8.1 Goal sampling frequency of AdaGoal-UCBVI over 1000 episodes of length H = 50
(with L = 40). The grid-world has S = 52 states, starting state s0 = (0, 0) (top
left), A = 5 actions (4 cardinal ones and areset). The 4 states of the bottom
right room can only be accessed from s0 by any cardinal action with probability
η = 0.001 (their associated V ⋆(s0 → ·) thus scale with η−1). 100

8.2 Success rate evaluated on Gtest with the latest policy trained on Gtrain. The shaded
region represents confidence over 5 random seeds. The adaptive goal sampling
scheme improves the learning performance over the uniform sampling of HER.
This is especially the case in the presence of goal-space misspecification (bottom
row), where the training goal space Gtrain (delimited in purple) is larger than
the test goal space Gtest (delimited in yellow). 106

9.1 Two environments where the starting state s0 is in white. Left: Each transition
between states is deterministic and depicted with an edge. Right: Each transition
from s0 to the first layer is equiprobable and the transitions in the successive layers
are deterministic. If we set L = 3, then the states belonging to SL are colored in
red. As the right figure illustrates, L-controllability is not necessarily linked to a
notion of distance between states and an L-controllable state may be achieved
by traversing states that are not L-controllable themselves. 111

9.2 Proportion of the incrementally L-controllable states identified by DisCo and
UcbExplore in a confusing chain domain for L = 4.5 and ε ∈ {0.1, 0.4, 0.8}.
Values are averaged over 50 runs. 121

B.1 A toy example of SSP-communicating (D = 2) reward-based MDP. 136
B.2 Markov chain of the optimal policy of an SSP instancewithS states. Transitions in

green incur a cost of 0, while the transition in red leading to the goal state g incurs
a cost of 1. All transitions are deterministic, apart from the one starting from
s0, which reaches state s−1 with probability pmin and state s1 with probability
1− pmin, where pmin > 0. 138

C.1 SSP instance used in the proof of Lemma C.5. 155

294

List of Figures

C.2 Comparison of UC-SSP and UCRL in the case of uniform-cost SSP. The plots
are averaged over 200 repetitions. We report the mean and the maximum and
minimum value for top line and figure bottom right. For the bottom-left figure,
we report the standard deviation of the mean at 96% to simplify the visualization.158

C.3 Evaluation of the effect of cmin > 0 on the regret of UC-SSP. Results are averaged
over 200 runs. We report mean value and maximum and minimum observed
values. 159

C.4 Evaluation of UC-SSP for cmin = 0. See Figure C.2 for details. 160
C.5 Evaluation of the algorithms with Bernstein inequalities and uniform cost. See

Figure C.2 for details. We average the results over 200 runs and report the
standard deviation of the mean at 96%. 161

C.6 Evaluation of the algorithms with Bernstein inequalities and cmin = 0. See
Figure C.4 for details. Right figure shows the average length of Phase ① and ②

for UC-SSP with Bernstein inequalities. 162

E.1 The agent starts at state x and reaches z in H steps with probability 1/2, and
y inH + 1 steps with probability 1/2. From state y the agent deterministically
transitions to state z in 1 step. 226

E.2 The three domains considered in Figure 7.1. For the gridworlds (b) and (c),
the red tile is the starting state, yellow tiles are terminal states that reset to the
starting state, and black tiles are reflecting walls (see §“Details on environments”).234

E.3 Proportion Pt of states that satisfy the sampling requirements at time t, aver-
aged over 30 runs, on the Treasure-10 problem with b(s, a) = 10. Top left: River-
Swim(36) with 36 states (see Figure E.2a), Top right: 10-state gridworld with
high-cost state, Bottom left: 20-state 4-room symmetric gridworld, Bottom right:
48-state CliffWalk-type gridworld. 235

E.4 The three gridworlds considered in Figure E.3. The blue tile in (a) is a “trap state”
that incurs large negative environmental reward and should thus be avoided as
much as possible. 235

E.5 Sample complexity of GOSPRL in randomly generated Garnet MDPs for increas-
ing values of S, with all other parameters fixed (A, β, U) as in Figure 7.2. Results
are averaged over 5 Garnets, each for 12 runs. 237

E.6 Impact of goal aggregation on GOSPRL. Proportion Pt averaged over 30 runs, on
the Treasure-10 problem with b(s, a) = 10 on the environment of Figure E.4b. . 237

F.1 Illustration of the MDP instanceMa† . 240

295

List of Figures

F.2 Illustration of the hard MDP considered in the proof of Lemma F.2. 242
F.3 Goal sampling frequency of UniGoal-UCBVI (top row), RareGoal-UCBVI (middle

row) and AdaGoal-UCBVI (bottom row) over 1000 episodes, split over episodes
0− 333 (left column), episodes 334− 666 (middle column) and episodes 667− 999
(right column). Episodes are of length H = 50, the environment is a grid-world
with S = 52 states, starting state s0 = (0, 0) (i.e., the top left state), A = 5
actions (the 4 cardinal actions plus areset). The black walls act as reflectors,
i.e., if the action leads against the wall, the agent stays in the current position
with probability 1. An action fails with probability pf = 0.1, in which case the
agent follows (uniformly) one of the other directions. The 4 states of the bottom
right room can only be accessed from s0 by any cardinal action with probability
η = 0.001, thus they are extremely hard to reliably reach as their associated
V ⋆(s0 → ·) is very large (scaling with η−1). We select L = 40 for AdaGoal, and
α = 0.1 for RareGoal. For the three methods we follow the practice of Menard
et al. (2021, Section 4) and use their proposed simplified form for the exploration
bonuses. The experiment is based on the rlberry framework (Domingues et al.,
2021a). 270

G.1 Combination lock domain with S = 6 states. Expected hitting times from the
initial state s3 are vπ(s3 → s) = (2.18, 1.91, 1.64, 0, 1, 2). Consider L = 3, the set
of incrementally L-controllable states is S→

L = {s2, s3, s4, s5}. The goal-oriented
policy to reach s4 and s5 takes always the right action a1, while the policy for s2

always selects the left action a0. 289
G.2 Proportion of the incrementally L-controllable states identified by DisCo and

UcbExplore in the combination lock domain for L = 2.7 and ε = 0.2. Values are
averaged over 20 runs. 290

G.3 Proportion of the incrementally L-controllable states identified by DisCo andUcb-
Explore on the confusing chain domain for L = 4.5 and ε ∈ {0.1, 0.2, 0.4, 0.6, 0.8}.
Values are averaged over 50 runs. UcbExplore uses Bernstein confidence intervals
for planning. 291

296

List of Algorithms

2.1 Value Iteration for SSP (VI-SSP) with precision level η 24

4.1 Algorithm UC-SSP . 41
4.2 EVISSP planning procedure . 42

5.1 Algorithm EB-SSP . 54

7.1 Algorithm GOSPRL . 81

8.1 AdaGoal-based algorithmic structure. Blue text denotes AdaGoal-UCBVI specific
steps and purple text denotes AdaGoal-UCRL·VTR specific steps. 98

9.1 Algorithm DisCo . 115

D.1 Algorithm for unknown B⋆: Parameter-free EB-SSP 200
D.2 Subroutine PHASE . 201
D.3 Subroutine VISGO . 202

E.1 GOSPRL-based procedure to estimate the diameter 230

G.1 OVISSP planning procedure . 274

297

List of Tables

1.1 Characteristics of the weights of policy return (see Definition 1.1) for differ-
ent performance criteria: finite-horizon, infinite-horizon discounted, and goal-
oriented (a.k.a. stochastic shortest path). 8

10.1 Visual summary of the scope and contributions of this thesis on goal-oriented
RL. Notation: S ≜ |S| denotes the number of states (known), A ≜ |A| denotes
the number of actions (known), B⋆ bounds the optimal SSP value function from
any state (unknown), K denotes the number of SSP episodes (unknown), D
denotes the diameter of the MDP (unknown), L denotes the exploration radius
around the initial state (known), ε denotes the required accuracy level (known),
d denotes the dimension of the feature mapping in the linear mixture MDP
(known), X ≜ |S→

L+ε| denotes the number of incrementally reliably (L + ε)-
reachable states (unknown). 126

C.1 Regret guarantees of UC-SSP depending on the assumptions made. 157

E.1 For the Treasure-10 problem, we report the quantities BD,∑s b(s)Ds and the
sample complexity of GOSPRL run with known dynamics (averaged over 30
runs), on the 3 domains of Figure E.2. 236

E.2 Impact of cost shaping on GOSPRL. On the environment of Figure E.4a, sampling
requirement are concentrated at the yellow terminal state y ∈ S , i.e., b(y, a) = 10
for all a ∈ A. Cost-weighted GOSPRL sets a cost of 10 (instead of 1) at the blue
trap state during each SSP planning step. Values are averaged over 30 runs. . . 237

G.1 Sample complexity of DisCo and UcbExplore-Bernstein, on the confusing chain
domain. Values are averaged over 50 runs and the 95%-confidence interval of
the mean is reported in parenthesis. 288

298

List of Tables

G.2 Expected hitting time of state si of the goal-oriented policy πsi recovered by
UcbExplore-Bernstein, on the confusing chain domain. DisCo recovers the optimal
goal-oriented policy in all the runs and for all ε. The advantage of DisCo lies
in its final policy consolidation step. Values are averaged over 50 runs and the
95%-confidence interval of the mean is reported in parenthesis (it is omitted
when equal to 0). This shows that UcbExplore recovers the optimal goal-oriented
policy in every run only for ε equal to 0.1 and 0.2. 289

299

List of References

Abbasi-Yadkori, Yasin, Dávid Pál, and Csaba Szepesvári (2011). Improved algorithms for linear
stochastic bandits. Advances in neural information processing systems 24, pp. 2312–2320.

Achiam, Joshua, David Held, Aviv Tamar, and Pieter Abbeel (2017). Constrained policy opti-
mization. In International Conference on Machine Learning. PMLR, pp. 22–31.

Agarwal, Alekh, Sham Kakade, and Lin F Yang (2020). Model-based reinforcement learning
with a generative model is minimax optimal. In Conference on Learning Theory. PMLR, pp. 67–
83.

Alterovitz, Ron, Thierry Siméon, and Ken Goldberg (2007). The stochastic motion roadmap: A
sampling framework for planning with Markov motion uncertainty. In Robotics: Science and
systems.

Altman, Eitan (1999). Constrained Markov decision processes. Vol. 7. CRC Press.
Amodei, Dario, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané

(2016). Concrete problems in AI safety. arXiv preprint arXiv:1606.06565.
Andrychowicz, Marcin, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder,

et al. (2017). Hindsight experience replay. InAdvances in neural information processing systems,
pp. 5048–5058.

Audibert, Jean-Yves and Sébastien Bubeck (2010). Best Arm Identification in Multi-Armed
Bandits. In COLT - 23th Conference on Learning Theory.

Audibert, Jean-Yves, Rémi Munos, and Csaba Szepesvári (2009). Exploration–exploitation
tradeoff using variance estimates in multi-armed bandits. Theoretical Computer Science 410.19,
pp. 1876–1902.

Ayoub, Alex, Zeyu Jia, Csaba Szepesvari, Mengdi Wang, and Lin Yang (2020). Model-based
reinforcement learning with value-targeted regression. In International Conference onMachine
Learning. PMLR, pp. 463–474.

Azar, Mohammad Gheshlaghi, Vicenç Gómez, and Hilbert J Kappen (2012). Dynamic policy
programming. Journal of Machine Learning Research 13.Nov, pp. 3207–3245.

Azar, Mohammad Gheshlaghi, Rémi Munos, and Hilbert J Kappen (2013). Minimax PAC
bounds on the sample complexity of reinforcement learning with a generative model.
Machine learning 91.3, pp. 325–349.

Azar, Mohammad Gheshlaghi, Ian Osband, and Rémi Munos (2017). Minimax regret bounds
for reinforcement learning. In International Conference on Machine Learning. PMLR, pp. 263–
272.

300

List of References

Azar, Mohammad Gheshlaghi, Bilal Piot, Bernardo Avila Pires, Jean-Bastian Grill, Florent
Altché, and Rémi Munos (2019). World discovery models. arXiv preprint arXiv:1902.07685.

Badia, Adrià Puigdomènech, Pablo Sprechmann, Alex Vitvitskyi, Daniel Guo, Bilal Piot, Steven
Kapturowski, et al. (2020). Never Give Up: Learning Directed Exploration Strategies. In
International Conference on Learning Representations.

Baranes, Adrien and Pierre-Yves Oudeyer (2010). Intrinsically motivated goal exploration for
active motor learning in robots: A case study. In 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, pp. 1766–1773.

Bartlett, Peter L and Ambuj Tewari (2009). REGAL: a regularization based algorithm for
reinforcement learning in weakly communicating MDPs. In Proceedings of the Twenty-Fifth
Conference on Uncertainty in Artificial Intelligence.

Bartlett, Peter, Victor Gabillon, Jennifer Healey, and Michal Valko (2019). Scale-free adaptive
planning for deterministic dynamics & discounted rewards. In International Conference on
Machine Learning. PMLR, pp. 495–504.

Bäuerle, Nicole and Ulrich Rieder (2011).Markov decision processes with applications to finance.
Springer Science & Business Media.

Bellemare,Marc G, YavarNaddaf, Joel Veness, andMichael Bowling (2013). The arcade learning
environment: An evaluation platform for general agents. Journal of Artificial Intelligence
Research 47, pp. 253–279.

Bellemare, Marc, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi
Munos (2016). Unifying count-based exploration and intrinsic motivation. In Advances in
neural information processing systems, pp. 1471–1479.

Bellman, Richard (1966). Dynamic programming. Science 153.3731, pp. 34–37.
Bertsekas, Dimitri (1991). Linear network optimization: algorithms and codes. Mit Press.
— (1995). Dynamic programming and optimal control. Vol. 2.
Bertsekas, Dimitri and JohnN Tsitsiklis (1991). An analysis of stochastic shortest path problems.

Mathematics of Operations Research 16.3, pp. 580–595.
— (1995). Neuro-dynamic programming: an overview. In Proceedings of 1995 34th IEEE confer-

ence on decision and control. Vol. 1. IEEE, pp. 560–564.
Bertsekas, Dimitri and Huizhen Yu (2013). Stochastic shortest path problems under weak

conditions. Lab. for Information and Decision Systems Report LIDS-P-2909, MIT.
Bhatnagar, Shalabh, Richard S Sutton, Mohammad Ghavamzadeh, and Mark Lee (2009). Natu-

ral actor–critic algorithms. Automatica 45.11, pp. 2471–2482.
Bonet, Blai (2007). On the speed of convergence of value iteration on stochastic shortest-path

problems.Mathematics of Operations Research 32.2, pp. 365–373.
Bonet, Blai and Hector Geffner (2003a). Faster heuristic search algorithms for planning with

uncertainty and full feedback. In IJCAI, pp. 1233–1238.
— (2003b). Labeled RTDP: Improving the Convergence of Real-Time Dynamic Programming.

In ICAPS. Vol. 3, pp. 12–21.

301

List of References

Brafman, Ronen I and Moshe Tennenholtz (2002). R-max-a general polynomial time algorithm
for near-optimal reinforcement learning. Journal of Machine Learning Research 3.Oct, pp. 213–
231.

Brémaud, Pierre (2013).Markov chains: Gibbs fields, Monte Carlo simulation, and queues. Vol. 31.
Springer Science & Business Media.

Cai, Haoyuan, Tengyu Ma, and Simon Shaolei Du (2022). Near-Optimal Algorithms for Au-
tonomous Exploration and Multi-Goal Stochastic Shortest Path.

Campos, Víctor, Alex Trott, Caiming Xiong, Richard Socher, Xavier Giró Nieto, and Jordi Torres
Viñals (2020). Explore, discover and learn: unsupervised discovery of state-covering skills.
In International Conference on Machine Learning. PMLR, pp. 1317–1327.

Canfield, E Rodney andCarl Pomerance (2002). On the problemof uniqueness for themaximum
Stirling number(s) of the second kind. INTEGERS: Electronic Journal of Combinatorial Number
Theory 2.A01, p. 2.

Carpentier, Alexandra, Alessandro Lazaric, Mohammad Ghavamzadeh, Rémi Munos, and
Peter Auer (2011). Upper-confidence-bound algorithms for active learning in multi-armed
bandits. In International Conference on Algorithmic Learning Theory.

Chen, Liyu, Mehdi Jafarnia-Jahromi, Rahul Jain, and Haipeng Luo (2021a). Implicit Finite-
Horizon Approximation and Efficient Optimal Algorithms for Stochastic Shortest Path.
arXiv preprint arXiv:2106.08377.

Chen, Liyu, Rahul Jain, and Haipeng Luo (2021b). Improved No-Regret Algorithms for Stochas-
tic Shortest Path with Linear MDP. arXiv preprint arXiv:2112.09859.

Chen, Liyu and Haipeng Luo (2021). Finding the Stochastic Shortest Path with Low Regret:
the Adversarial Cost and Unknown Transition Case. In Proceedings of the 38th International
Conference on Machine Learning. PMLR, pp. 1651–1660.

Chen, Liyu, Haipeng Luo, and Aviv Rosenberg (2022). Policy Optimization for Stochastic
Shortest Path. arXiv preprint arXiv:2202.03334.

Chen, Liyu, Haipeng Luo, and Chen-Yu Wei (2021c). Minimax regret for stochastic shortest
path with adversarial costs and known transition. In Conference on Learning Theory. PMLR,
pp. 1180–1215.

Chen, Xiaoyu, Jiachen Hu, Lin F Yang, and Liwei Wang (2021d). Near-Optimal Reward-Free
Exploration for Linear Mixture MDPs with Plug-in Solver. arXiv preprint arXiv:2110.03244.

Chen, Yichen, Lihong Li, and Mengdi Wang (2018). Scalable Bilinear π Learning Using State
and Action Features. arXiv preprint arXiv:1804.10328.

Chen, Yichen andMengdiWang (2016). Stochastic primal-dualmethods and sample complexity
of reinforcement learning. arXiv preprint arXiv:1612.02516.

Chentanez, Nuttapong, Andrew G Barto, and Satinder P Singh (2005). Intrinsically motivated
reinforcement learning. In Advances in neural information processing systems, pp. 1281–1288.

Cheung, Wang Chi (2019). Exploration-exploitation trade-off in reinforcement learning on on-
line markov decision processes with global concave rewards. arXiv preprint arXiv:1905.06466.

302

List of References

Choi, Jongwook, Archit Sharma, Honglak Lee, Sergey Levine, and Shixiang Shane Gu (2021).
Variational Empowerment as Representation Learning for Goal-Conditioned Reinforcement
Learning. In International Conference on Machine Learning. PMLR, pp. 1953–1963.

Cohen, Alon, Yonathan Efroni, Yishay Mansour, and Aviv Rosenberg (2021). Minimax regret
for stochastic shortest path. Advances in Neural Information Processing Systems 34.

Colas, Cédric, Pierre Fournier, Mohamed Chetouani, Olivier Sigaud, and Pierre-Yves Oudeyer
(2019). CURIOUS: intrinsically motivated modular multi-goal reinforcement learning. In
International conference on machine learning. PMLR, pp. 1331–1340.

Colas, Cédric, Tristan Karch, Olivier Sigaud, and Pierre-Yves Oudeyer (2020). Intrinsically moti-
vated goal-conditioned reinforcement learning: a short survey. arXiv preprint arXiv:2012.09830.

Dann, Christoph, Tor Lattimore, and Emma Brunskill (2017). Unifying PAC and regret: Uniform
PAC bounds for episodic reinforcement learning. arXiv preprint arXiv:1703.07710.

Dekel, Ofer, Jian Ding, Tomer Koren, and Yuval Peres (2014). Bandits with switching costs:
T 2/3 regret. In Proceedings of the forty-sixth annual ACM symposium on Theory of computing,
pp. 459–467.

Dennis, Michael, Natasha Jaques, Eugene Vinitsky, Alexandre Bayen, Stuart Russell, Andrew
Critch, et al. (2020). Emergent complexity and zero-shot transfer via unsupervised environ-
ment design. Advances in Neural Information Processing Systems 33, pp. 13049–13061.

Dietterich, Thomas G (2000). Hierarchical reinforcement learning with the MAXQ value func-
tion decomposition. Journal of artificial intelligence research 13, pp. 227–303.

Domingues, Omar Darwiche, Yannis Flet-Berliac, Edouard Leurent, Pierre Ménard, Xuedong
Shang, and Michal Valko (2021a). rlberry-A Reinforcement Learning Library for Research and
Education.

Domingues, Omar Darwiche, Pierre Ménard, Emilie Kaufmann, and Michal Valko (2021b).
Episodic reinforcement learning in finite mdps: Minimax lower bounds revisited. In Algo-
rithmic Learning Theory. PMLR, pp. 578–598.

Eaton, JH and LA Zadeh (1962). Optimal pursuit strategies in discrete-state probabilistic
systems.

Ecoffet, Adrien, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune (2020). First
return then explore. arXiv preprint arXiv:2004.12919.

Elliot, Andrew J and James W Fryer (2008). The goal construct in psychology. Handbook of
motivation science 18, pp. 235–250.

Eysenbach, Benjamin, Abhishek Gupta, Julian Ibarz, and Sergey Levine (2019). Diversity is
All You Need: Learning Skills without a Reward Function. In International Conference on
Learning Representations.

Florensa, Carlos, David Held, Xinyang Geng, and Pieter Abbeel (2018). Automatic Goal Gener-
ation for Reinforcement Learning Agents. In International Conference on Machine Learning,
pp. 1515–1528.

Fruit, Ronan, Matteo Pirotta, and Alessandro Lazaric (2018a). Near optimal exploration-
exploitation in non-communicating markov decision processes. In Advances in Neural Infor-
mation Processing Systems, pp. 2994–3004.

303

List of References

Fruit, Ronan, Matteo Pirotta, and Alessandro Lazaric (2020). Improved analysis of ucrl2 with
empirical bernstein inequality. arXiv preprint arXiv:2007.05456.

Fruit, Ronan, Matteo Pirotta, Alessandro Lazaric, and Ronald Ortner (2018b). Efficient bias-
span-constrained exploration-exploitation in reinforcement learning. In International Confer-
ence on Machine Learning. PMLR, pp. 1578–1586.

Fu, Justin, Aviral Kumar, OfirNachum, George Tucker, and Sergey Levine (2020). D4rl: Datasets
for deep data-driven reinforcement learning. arXiv preprint arXiv:2004.07219.

Gregor, Karol, Danilo Jimenez Rezende, and DaanWierstra (2016). Variational intrinsic control.
arXiv preprint arXiv:1611.07507.

Grill, Jean-Bastien, Michal Valko, and Rémi Munos (2016). Blazing the trails before beating the
path: Sample-efficient Monte-Carlo planning. In Advances in Neural Information Processing
Systems, pp. 4680–4688.

Guillot, Matthieu and Gautier Stauffer (2020). The stochastic shortest path problem: a poly-
hedral combinatorics perspective. European Journal of Operational Research 285.1, pp. 148–
158.

Guo, Zhaohan Daniel, Mohammad Gheshlaghi Azar, Alaa Saade, Shantanu Thakoor, Bilal
Piot, Bernardo Avila Pires, et al. (2021). Geometric entropic exploration. arXiv preprint
arXiv:2101.02055.

Hansen, Eric A (2011). Suboptimality bounds for stochastic shortest path problems. In Proceed-
ings of the Twenty-Seventh Conference on Uncertainty in Artificial Intelligence, pp. 301–310.

Hansen, Eric A and Shlomo Zilberstein (2001). LAO*: A heuristic search algorithm that finds
solutions with loops. Artificial Intelligence 129.1-2, pp. 35–62.

Hartikainen, Kristian, Xinyang Geng, Tuomas Haarnoja, and Sergey Levine (2020). Dynamical
Distance Learning for Semi-Supervised and Unsupervised Skill Discovery. In International
Conference on Learning Representations.

Hazan, Elad, Sham Kakade, Karan Singh, and Abby Van Soest (2019). Provably Efficient
Maximum Entropy Exploration. In International Conference on Machine Learning, pp. 2681–
2691.

Houthooft, Rein, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel (2016).
Variational information maximizing exploration. Advances in Neural Information Processing
Systems (NIPS).

Jafarnia-Jahromi, Mehdi, Liyu Chen, Rahul Jain, and Haipeng Luo (2021). Online Learning for
Stochastic Shortest Path Model via Posterior Sampling. arXiv preprint arXiv:2106.05335.

Jaksch, Thomas, Ronald Ortner, and Peter Auer (2010). Near-optimal Regret Bounds for Rein-
forcement Learning. Journal of Machine Learning Research 11.4.

Jiang, Nan (2020). Notes on Tabular Methods.
Jin, Chi, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan (2018). Is Q-learning

provably efficient? Advances in neural information processing systems 31.
Jin, Chi, Akshay Krishnamurthy, Max Simchowitz, and Tiancheng Yu (2020). Reward-free

exploration for reinforcement learning. In International Conference on Machine Learning.
PMLR, pp. 4870–4879.

304

List of References

Joarder, Anwar H and Munir Mahmood (1997). An Inductive Derivation of Stirling Numbers
of the Second Kind and their Applications in Statistics.

Kaelbling, Leslie Pack (1993). Learning to achieve goals. In IJCAI. Citeseer, pp. 1094–1099.
Kakade, Sham Machandranath (2003). On the sample complexity of reinforcement learning. Univer-

sity of London, University College London (United Kingdom).
Kamienny, Pierre-Alexandre, Jean Tarbouriech, Alessandro Lazaric, and Ludovic Denoyer

(2022). Direct then Diffuse: Incremental Unsupervised Skill Discovery for State Covering
and Goal Reaching. In International Conference on Learning Representations.

Kaufmann, Emilie, Pierre Ménard, Omar Darwiche Domingues, Anders Jonsson, Edouard
Leurent, andMichal Valko (2021). Adaptive reward-free exploration. InAlgorithmic Learning
Theory. PMLR, pp. 865–891.

Kazerouni, Abbas, Mohammad Ghavamzadeh, Yasin Abbasi, and Benjamin Van Roy (2017).
Conservative contextual linear bandits. In Advances in Neural Information Processing Systems,
pp. 3910–3919.

Kearns, Michael, Yishay Mansour, and Andrew Y Ng (2000). Approximate planning in large
POMDPs via reusable trajectories. In Advances in Neural Information Processing Systems,
pp. 1001–1007.

— (2002). A sparse sampling algorithm for near-optimal planning in large Markov decision
processes.Machine learning 49.2-3, pp. 193–208.

Kearns, Michael and Satinder Singh (2002). Near-optimal reinforcement learning in polynomial
time.Machine learning 49.2, pp. 209–232.

Koenig, Sven and Reid G Simmons (1996). The effect of representation and knowledge on
goal-directed exploration with reinforcement-learning algorithms.Machine Learning 22.1,
pp. 227–250.

Kolobov, Andrey, Mausam, and Daniel S Weld (2012). A theory of goal-oriented MDPs with
dead ends. In Proceedings of the Twenty-Eighth Conference on Uncertainty in Artificial Intelligence.
AUAI Press, pp. 438–447.

Kolobov, Andrey, Mausam, Daniel Weld, and Hector Geffner (2011). Heuristic search for
generalized stochastic shortest path MDPs. In Proceedings of the International Conference on
Automated Planning and Scheduling. Vol. 21. 1.

Koren, Tomer, Roi Livni, and Yishay Mansour (2017). Bandits with movement costs and
adaptive pricing. In Conference on Learning Theory. PMLR, pp. 1242–1268.

Kretzschmar, Henrik, Markus Spies, Christoph Sprunk, and Wolfram Burgard (2016). Socially
compliant mobile robot navigation via inverse reinforcement learning. The International
Journal of Robotics Research 35.11, pp. 1289–1307.

Latouche, Guy and Vaidyanathan Ramaswami (1999). Introduction to matrix analytic methods in
stochastic modeling. SIAM.

Lattimore, Tor and Marcus Hutter (2012). PAC bounds for discounted MDPs. In International
Conference on Algorithmic Learning Theory. Springer, pp. 320–334.

Lattimore, Tor and Csaba Szepesvári (2020). Bandit algorithms. Cambridge University Press.

305

List of References

Li, Gen, Yuting Wei, Yuejie Chi, Yuantao Gu, and Yuxin Chen (2020). Breaking the Sample
Size Barrier in Model-Based Reinforcement Learning with a Generative Model. Advances in
neural information processing systems.

Lillicrap, Timothy P, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval
Tassa, et al. (2015). Continuous control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971.

Lim, Shiau Hong and Peter Auer (2012). Autonomous exploration for navigating in MDPs. In
Conference on Learning Theory, pp. 40–1.

Liu, Hao and Pieter Abbeel (2021). Behavior from the void: Unsupervised active pre-training.
Advances in Neural Information Processing Systems 34.

Locke, Edwin A and Gary P Latham (2002). Building a practically useful theory of goal setting
and task motivation: A 35-year odyssey. American psychologist 57.9, p. 705.

Maurer, Andreas and Massimiliano Pontil (2009). Empirical Bernstein bounds and sample
variance penalization. arXiv preprint arXiv:0907.3740.

Ménard, Pierre, Omar Darwiche Domingues, Anders Jonsson, Emilie Kaufmann, Edouard
Leurent, andMichal Valko (2021). Fast active learning for pure exploration in reinforcement
learning. In International Conference on Machine Learning. PMLR, pp. 7599–7608.

Menard, Pierre, Omar Darwiche Domingues, Xuedong Shang, and Michal Valko (2021). UCB
Momentum Q-learning: Correcting the bias without forgetting. In Proceedings of the 38th
International Conference on Machine Learning. PMLR, pp. 7609–7618.

Merton, Robert C (1973). An intertemporal capital asset pricing model. Econometrica: Journal of
the Econometric Society, pp. 867–887.

Min, Yifei, Jiafan He, Tianhao Wang, and Quanquan Gu (2021). Learning Stochastic Shortest
Path with Linear Function Approximation. arXiv preprint arXiv:2110.12727.

Mohamed, Shakir and Danilo Jimenez Rezende (2015). Variational information maximisation
for intrinsicallymotivated reinforcement learning. InAdvances in neural information processing
systems, pp. 2125–2133.

Mutti, Mirco, Lorenzo Pratissoli, and Marcello Restelli (2021). Task-agnostic exploration via
policy gradient of a non-parametric state entropy estimate. In Proceedings of the AAAI
Conference on Artificial Intelligence. Vol. 35. 10, pp. 9028–9036.

Nair, Ashvin V, Vitchyr Pong, Murtaza Dalal, Shikhar Bahl, Steven Lin, and Sergey Levine
(2018). Visual Reinforcement Learning with Imagined Goals. Advances in Neural Information
Processing Systems 31, pp. 9191–9200.

Norris, James R (1998).Markov chains. 2. Cambridge university press.
Oh, Junhyuk, Satinder Singh, Honglak Lee, and Pushmeet Kohli (2017). Zero-shot task general-

ization with multi-task deep reinforcement learning. In International Conference on Machine
Learning. PMLR, pp. 2661–2670.

Oudeyer, Pierre-Yves and Frederic Kaplan (2009). What is intrinsic motivation? A typology of
computational approaches. Frontiers in neurorobotics 1, p. 6.

306

List of References

Pathak, Deepak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell (2017). Curiosity-driven
exploration by self-supervised prediction. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, pp. 16–17.

Pitis, Silviu, Harris Chan, Stephen Zhao, Bradly Stadie, and Jimmy Ba (2020). Maximum
entropy gain exploration for long horizonmulti-goal reinforcement learning. In International
Conference on Machine Learning. PMLR, pp. 7750–7761.

Plappert, Matthias, Marcin Andrychowicz, Alex Ray, BobMcGrew, Bowen Baker, Glenn Powell,
et al. (2018). Multi-goal reinforcement learning: Challenging robotics environments and
request for research. arXiv preprint arXiv:1802.09464.

Pong, Vitchyr, Murtaza Dalal, Steven Lin, Ashvin Nair, Shikhar Bahl, and Sergey Levine (2020).
Skew-Fit: State-Covering Self-Supervised Reinforcement Learning. In International Conference
on Machine Learning. PMLR, pp. 7783–7792.

Puterman, Martin L (2014).Markov decision processes: discrete stochastic dynamic programming.
John Wiley & Sons.

Qian, Jian, Ronan Fruit, Matteo Pirotta, and Alessandro Lazaric (2019). Exploration Bonus for
Regret Minimization in Discrete and Continuous Average Reward MDPs. In Advances in
Neural Information Processing Systems, pp. 4891–4900.

Rimon, Elon and Daniel E Koditschek (1992). Exact Robot Navigation Using Artificial Potential
Functions. Departmental Papers (ESE), p. 323.

Rosenberg, Aviv, Alon Cohen, Yishay Mansour, and Haim Kaplan (2020). Near-optimal regret
bounds for stochastic shortest path. In International Conference on Machine Learning. PMLR,
pp. 8210–8219.

Rosenberg, Aviv and Yishay Mansour (2021). Stochastic Shortest Path with Adversarially
Changing Costs. In Proceedings of the Thirtieth International Joint Conference on Artificial
Intelligence, IJCAI-21, pp. 2936–2942.

Russell, Stuart and Peter Norvig (2002). Artificial intelligence: a modern approach.
Schaul, Tom, Daniel Horgan, Karol Gregor, and David Silver (2015). Universal value function

approximators. In International conference on machine learning, pp. 1312–1320.
Schmidhuber, Jürgen (1991). A possibility for implementing curiosity and boredom in model-

building neural controllers. In Proc. of the international conference on simulation of adaptive
behavior: From animals to animats, pp. 222–227.

Schweitzer, Paul J (1985). On undiscounted Markovian decision processes with compact action
spaces. RAIRO-Operations Research 19.1, pp. 71–86.

Sharma, Archit, Shixiang Gu, Sergey Levine, Vikash Kumar, and Karol Hausman (2020).
Dynamics-Aware Unsupervised Discovery of Skills. In International Conference on Learning
Representations.

Sidford, Aaron, Mengdi Wang, Xian Wu, Lin Yang, and Yinyu Ye (2018). Near-optimal time
and sample complexities for solving Markov decision processes with a generative model. In
Advances in Neural Information Processing Systems, pp. 5186–5196.

Singh, Satinder, Richard L Lewis, and Andrew G Barto (2009). Where do rewards come from.
In Proceedings of the annual conference of the cognitive science society. Cognitive Science Society,
pp. 2601–2606.

307

List of References

Singh, Satinder, Richard L Lewis, Andrew G Barto, and Jonathan Sorg (2010). Intrinsically moti-
vated reinforcement learning: An evolutionary perspective. IEEE Transactions on Autonomous
Mental Development 2.2, pp. 70–82.

Strehl, Alexander L, Lihong Li, and Michael L Littman (2009). Reinforcement learning in finite
MDPs: PAC analysis. Journal of Machine Learning Research 10.Nov, pp. 2413–2444.

Strehl, Alexander L and Michael L Littman (2008). An analysis of model-based interval estima-
tion for Markov decision processes. Journal of Computer and System Sciences 74.8, pp. 1309–
1331.

Sutton, Richard S, Andrew G Barto, et al. (1998). Introduction to reinforcement learning. Vol. 135.
MIT press Cambridge.

Szörényi, Balázs, Gunnar Kedenburg, and Rémi Munos (2014). Optimistic planning in Markov
decision processes using a generative model. Advances in Neural Information Processing
Systems 27, pp. 1035–1043.

Tang, Haoran, Rein Houthooft, Davis Foote, Adam Stooke, Xi Chen, Yan Duan, et al. (2017).
exploration: A study of count-based exploration for deep reinforcement learning. In
Advances in neural information processing systems, pp. 2753–2762.

Tarbouriech, Jean, Omar Darwiche Domingues, Pierre Ménard, Matteo Pirotta, Michal Valko,
and Alessandro Lazaric (2022). Adaptive Multi-Goal Exploration. In International Conference
on Artificial Intelligence and Statistics. PMLR, pp. 7349–7383.

Tarbouriech, Jean, Evrard Garcelon, Michal Valko, Matteo Pirotta, and Alessandro Lazaric
(2020a). No-regret exploration in goal-oriented reinforcement learning. In International
Conference on Machine Learning. PMLR, pp. 9428–9437.

Tarbouriech, Jean and Alessandro Lazaric (2019). Active exploration in markov decision pro-
cesses. In The 22nd International Conference on Artificial Intelligence and Statistics. PMLR,
pp. 974–982.

Tarbouriech, Jean, Matteo Pirotta, Michal Valko, and Alessandro Lazaric (2020b). Improved
sample complexity for incremental autonomous exploration in mdps. Advances in Neural
Information Processing Systems 33, pp. 11273–11284.

— (2021a). A provably efficient sample collection strategy for reinforcement learning.Advances
in Neural Information Processing Systems 34, pp. 7611–7624.

— (2021b). Sample complexity bounds for stochastic shortest path with a generative model.
In Algorithmic Learning Theory. PMLR, pp. 1157–1178.

Tarbouriech, Jean, Shubhanshu Shekhar, Matteo Pirotta, Mohammad Ghavamzadeh, and
Alessandro Lazaric (2020c). Active model estimation in markov decision processes. In
Conference on Uncertainty in Artificial Intelligence. PMLR, pp. 1019–1028.

Tarbouriech, Jean, Runlong Zhou, Simon S Du, Matteo Pirotta, Michal Valko, and Alessandro
Lazaric (2021c). Stochastic shortest path:Minimax, parameter-free and towards horizon-free
regret. Advances in Neural Information Processing Systems 34, pp. 6843–6855.

Tessler, Chen, Shahar Givony, Tom Zahavy, Daniel Mankowitz, and Shie Mannor (2017). A
deep hierarchical approach to lifelong learning in minecraft. In Proceedings of the AAAI
Conference on Artificial Intelligence. Vol. 31. 1.

308

List of References

Tessler, Chen, Daniel J Mankowitz, and Shie Mannor (2019). Reward Constrained Policy Opti-
mization. In International Conference on Learning Representations.

Trevizan, Felipe W, Florent Teichteil-Königsbuch, and Sylvie Thiébaux (2017). Efficient solu-
tions for Stochastic Shortest Path Problems with Dead Ends. In UAI.

Vial, Daniel, Advait Parulekar, Sanjay Shakkottai, and R Srikant (2021). Regret Bounds for
Stochastic Shortest Path Problems with Linear Function Approximation. arXiv preprint
arXiv:2105.01593.

Wainwright, Martin (2015). Course on Mathematical Statistics, chapter 2: Basic tail and concentration
bounds. University of California at Berkeley, Department of Statistics.

Wang, Mengdi (2017). Primal-Dual π Learning: Sample Complexity and Sublinear Run Time
for Ergodic Markov Decision Problems. arXiv preprint arXiv:1710.06100.

Wang, Ruosong, Simon S. Du, Lin F. Yang, and Sham M. Kakade (2020a). Is Long Horizon RL
More Difficult Than Short Horizon RL? In Advances in Neural Information Processing Systems.

Wang, Ruosong, Simon S Du, Lin Yang, and Russ R Salakhutdinov (2020b). On Reward-
Free Reinforcement Learning with Linear Function Approximation. In Advances in Neural
Information Processing Systems. Vol. 33, pp. 17816–17826.

Wang, Yuanhao, Kefan Dong, Xiaoyu Chen, and Liwei Wang (2019). Q-learning with UCB
Exploration is Sample Efficient for Infinite-Horizon MDP. In International Conference on
Learning Representations.

Warde-Farley, David, Tom Van de Wiele, Tejas Kulkarni, Catalin Ionescu, Steven Hansen, and
Volodymyr Mnih (2019). Unsupervised Control Through Non-Parametric Discriminative
Rewards. In International Conference on Learning Representations.

Weissman, Tsachy, Erik Ordentlich, Gadiel Seroussi, Sergio Verdu, and Marcelo J Weinberger
(2003). Inequalities for the L1 deviation of the empirical distribution. Hewlett-Packard Labs,
Tech. Rep.

White, Douglas J (1993). A survey of applications of Markov decision processes. Journal of the
operational research society 44.11, pp. 1073–1096.

Wu, Jingfeng, Vladimir Braverman, and Lin F Yang (2020). Accommodating Picky Customers:
Regret Bound and Exploration Complexity for Multi-Objective Reinforcement Learning.
arXiv preprint arXiv:2011.13034.

— (2021). Gap-Dependent Unsupervised Exploration for Reinforcement Learning. arXiv
preprint arXiv:2108.05439.

Yershov, Dmitry S and Steven M LaValle (2013). Simplicial Label Correcting Algorithms for
continuous stochastic shortest path problems. In 2013 IEEE International Conference on
Robotics and Automation. IEEE, pp. 5062–5067.

Yu, Huizhen and Dimitri Bertsekas (2013). On boundedness of Q-learning iterates for stochastic
shortest path problems.Mathematics of Operations Research 38.2, pp. 209–227.

Zanette, Andrea and Emma Brunskill (2019). Tighter problem-dependent regret bounds in rein-
forcement learningwithout domain knowledge using value function bounds. In International
Conference on Machine Learning. PMLR, pp. 7304–7312.

309

List of References

Zanette, Andrea, Mykel J Kochenderfer, and Emma Brunskill (2019). Almost Horizon-Free
Structure-Aware Best Policy Identification with a Generative Model. In Advances in Neural
Information Processing Systems, pp. 5626–5635.

Zanette, Andrea, Alessandro Lazaric, Mykel J Kochenderfer, and Emma Brunskill (2020).
Provably Efficient Reward-Agnostic Navigation with Linear Value Iteration. In Advances in
Neural Information Processing Systems. Vol. 33, pp. 11756–11766.

Zhang, Chuheng, YuanyingCai, LongboHuang, and Jian Li (2021a). Exploration bymaximizing
Rényi entropy for reward-free RL framework. In Proceedings of the AAAI Conference on
Artificial Intelligence. Vol. 35. 12, pp. 10859–10867.

Zhang, Weitong, Dongruo Zhou, and Quanquan Gu (2021b). Reward-Free Model-Based Re-
inforcement Learning with Linear Function Approximation. In Thirty-Fifth Conference on
Neural Information Processing Systems.

Zhang, Xuezhou, Yuzhe Ma, and Adish Singla (2020a). Task-agnostic Exploration in Reinforce-
ment Learning. Advances in Neural Information Processing Systems 33.

Zhang, Yunzhi, Pieter Abbeel, and Lerrel Pinto (2020b). Automatic Curriculum Learning
through Value Disagreement. In Advances in Neural Information Processing Systems. Vol. 33,
pp. 7648–7659.

Zhang, Zihan, Simon Du, and Xiangyang Ji (2021c). Near Optimal Reward-Free Reinforcement
Learning. In International Conference on Machine Learning. PMLR, pp. 12402–12412.

Zhang, Zihan and Xiangyang Ji (2019). Regret minimization for reinforcement learning by
evaluating the optimal bias function. In Advances in Neural Information Processing Systems,
pp. 2823–2832.

Zhang, Zihan, Xiangyang Ji, and Simon Du (2021d). Is reinforcement learning more difficult
than bandits? a near-optimal algorithm escaping the curse of horizon. In Conference on
Learning Theory. PMLR, pp. 4528–4531.

Zhang, Zihan, Jiaqi Yang, Xiangyang Ji, and Simon S Du (2021e). Variance-Aware Confidence
Set: Variance-Dependent Bound for Linear Bandits and Horizon-Free Bound for Linear
Mixture MDP. arXiv preprint arXiv:2101.12745.

Zhang, Zihan, Yuan Zhou, and Xiangyang Ji (2020c). Almost Optimal Model-Free Reinforce-
ment Learning via Reference-Advantage Decomposition. Advances in Neural Information
Processing Systems 33.

— (2021f). Model-Free Reinforcement Learning: from Clipped Pseudo-Regret to Sample
Complexity. In Proceedings of the 38th International Conference on Machine Learning. PMLR,
pp. 12653–12662.

Zhao, Rui, Xudong Sun, and Volker Tresp (2019). Maximum Entropy-Regularized Multi-Goal
Reinforcement Learning. In International Conference on Machine Learning, pp. 7553–7562.

Zhou, Dongruo, Quanquan Gu, and Csaba Szepesvari (2021). Nearly minimax optimal rein-
forcement learning for linear mixture markov decision processes. In Conference on Learning
Theory. PMLR, pp. 4532–4576.

310

311

