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Introduction

Mankind has been discovering elements as early as the Neolithic, as the discovery of
Copper (Cu) happened around 9000 BC. The first modern discovery of an element is
considered to be the discovery of Phosphorus (Ph) in 1669 by H. Brand. The first clas-
sification of these elements is attributed to A. Lavoisier in 1789, before the first periodic
table of D. Mendeleev in 1869. Since this era, the periodic table has been completed from
element number 1, Hydrogen (H), to element number 118, Oganesson (Og), first synthe-
sized in 2002 [1]. In 1911, E. Rutherford provides the experimental proof of the existence
of the atomic nucleus, as a dense core of positively charged matter at the heart of the
atom. The current simplest description of the nucleus is that of a many-body system
composed of Z protons and of N neutrons, making up together A nucleons. Whereas the
protons repel each other as they are positively charged, all the nucleons are tied together
thanks to the strong interaction. Two years after this founding experiment, the existence
of isotopes is proposed by F. Soddy. A nucleus is defined as an isotope of an element
when it has the same number of protons but a different number of neutrons. This opened
the gates to the discovery and the study of stable nuclei and their isotopic variations.
There are approximately 300 known stable nuclei and almost 3300 isotopes in total have
already been discovered [2]. They are represented on the nuclide chart, first proposed
by K. Guggenheimer in 1934, with N as the z-axis of the chart, and Z as its y-axis.
It is shown in figure 1. Unifying the behavior of these 3300 systems with universal and
fundamental properties is an immensely difficult task and is the endeavor of the nuclear
physicists. Having such a range of different systems also has the perk of providing that
many testing grounds for theoreticians and experimentalists.

Since the high energy experiments providing evidences for the Standard model of parti-
cle physics, it is known that protons and neutrons are not elementary particles and are
themselves composed of quarks. One way of studying the atomic nucleus would be to ex-
plain the nuclear properties from the study of quarks directly. Quantum chromodynamics
(QCD) provide the tools to study the interaction between quarks, but such computations
are not feasible beyond few-body systems. An attempt has been performed by N. Ishii,
S. Aoki and T. Hatsuda [4]. T. Hatsuda discusses the limitations of such a method [5].
One could then treat protons and neutrons as elementary particles and apply quantum
perturbation theory (QPT) on a system of A nucleons. However, the shape of the strong
interaction between nucleons is not well defined and would be a too intense perturbation
to apply QPT. One could then try to rely on macroscopic techniques and consider the
atomic nucleus like a fluid. Such a development was first performed with the liquid drop
model, in which the atomic nucleus is represented by a liquid drop. This representation
lead to the semi-empirical Bethe-Weizsdcker mass formula, which provides the binding
energy of a nucleus as a function of N and Z, and also enabled a first representation of
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Figure 1: The nuclide chart. The two areas of interest for this thesis are indicated. Image
from |[3].

the nuclear deformations. However, this model does not reproduce quantum effects, such
as shell effects (detailed in chapter 1). As a consequence, the need for new theoretical
tools has been identified rapidly, with the two main goals of providing a realistic nuclear
potential and a method to solve the Schrodinger equation, with the nuclear Hamiltonian.
Historically, the most widely used model is the Shell Model. The fundamental premise of
the shell model is that nucleons behave in first approximation as independent particles in
a common potential generated by the net effect of all the other particles. Different imple-
mentations have been provided in different regions of the nuclide chart and managed to
successfully reproduce experimental observations [6].

One can try to find nuclear potentials from first principles, using ab initio methods, con-
sidering the nucleons as the degrees of freedom. A method inherited from QCD named
nuclear Effective Field Theory (EFT) is widely studied for the determination of nuclear
forces [7]. One can mention the No Core Shell Model (NCSM) [8], the Coupled-Cluster
(CC) method [9], the self-consistent Green’s functions method [9], the In-Medium Sim-
ilarity Renormalization Group (IMSRG) [10], as methods solving the resulting nuclear
Hamiltonian. Progresses made in the implementation of these methods made it possible
to compute the structure of light and medium-mass nuclei from first principles, as it is
shown in [11], from which figure 2 is taken.

To be able to describe heavier systems, mean-field approaches are also considered, where
the potential is averaged over all nucleons. One can mention mean-field potentials such
as the Woods-Saxon potential [12], the Skyrme [13], Migdal [14] or the Gogny interaction
[15]. Coupled with self-consistent methods, such as the Hartree-Fock (HF) method [16]
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Figure 2: The nuclide chart with accessible nuclei via ab initio methods per year. Figure from
[11].

and its further development, the Time-Dependent Hartree-Fock method (TDHF) or the
Hartree-Fock-Bogoliubov (HFB) method, based on a variational principle and a density-
dependent potential, mean-field calculations are able to provide structure calculations
for medium-weight and heavy nuclei. Density Functional Theory (DFT) [17], based on
the Kohn-Hohenberg theorem and on an adaptation of the self-consistent Kohn-Sham
algorithm to the nuclear case, is also a widely used self-consistent method providing
mean-field potentials. One can note that efforts have been made recently to link DFT
with ab initio methods [18]. Overall, theoreticians progress towards an implementation
of all the aforementioned methods and models to the whole nuclide chart, starting with
small, experimentally well-known systems, reaching heavier and more exotic nuclei. Some
studies have recently started exploring the opposite dynamic, performing calculations
for nuclear matter, an ideal system of nucleons of infinite size, and applying the results
to the structure calculations of medium-weight nuclei, namely Ca isotopes in the case
of [19,20]. From all these considerations, the goal of nuclear structure theories is ultimately

to find a comprehensive representation for the whole nuclide chart, that is computationally
affordable.

From the experimental point of view, the challenge resides in the measurement of observ-
ables in as many nuclides as possible, getting closer and even beyond the drip lines, which
are the limits in terms of Z and N for which a nucleus starts decaying via the emission of
one or several nucleons. Thanks to technical breakthroughs, beams of exotic nuclei have
become more and more intense. High intensity primary beams are now produced at the
Radioactive Isotope Beam Factory (RIBF,Japan), at the Gesellschaft fiir Schwerlonen-
forschung (GSI, Germany), at the Grand Accélérateur National d’Ions Lourds (GANIL,
France), and at the brand new Facility for Rare Isotopes Beams (FRIB, United States).
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After undergoing fragmentation, these beams provide secondary beams that are intense
enough to allow the study of more and more exotic systems. The Facility for Antipro-
ton and Ion Research (FAIR, Germany) is expected to provide beams of high energy
and high intensity from 2025 on. RIBF, GSI and FRIB provide beams of high energy,
from 100 MeV /nucleon to few GeV /nucleon. However, not only beams of various masses,
but beams of various energies are required to probe specific nuclear properties, with ap-
plications in nuclear structure or in nuclear astrophysics. The Isotope Separator Online
DEvice facility (ISOLDE, CERN, Switzerland), the SPES (Selective Production of Exotic
Species, Legnaro, Italy) project, or the TRIUMF accelerators (Vancouver, Canada), aim
at providing low energy beams of all masses. The Optimized Energy Degrading Optics
project (OEDO, [21]) at the RIBF facility has recently been designed with the purpose
of producing low energy beams of heavy radioactive ions.

One of the issues in nuclear physics is the immense variety of existing complex systems.
As a consequence, both theoreticians and experimentalists of the nuclear community have
to design an immense variety of versatile methods. In this context, this thesis provides the
results for two experimental studies of the structure of exotic nuclei, with modern setups.
One will focus on nuclei close to the proton drip line, with the inelastic excitation of 192Sn,
10Cd and *®Pd. The other will focus on the neutron drip line, with the two-neutron decay
of ¥Li and ''Li.



Part 1

Inelastic excitation of 1"?Sn, Cd and
98Pd
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Chapter 1

Tin isotopes and nuclear structure

Contents
1.1 Magic numbers and their evolution . . . . . ... ... ... .. 9
1.2 Multipole operators and their matrix elements . . . . . .. .. 13
1.3 The case of Tin isotopes . . . . ... ... ... ... ... 15

The wide variety of existing nuclei, usually represented in the nuclide chart, provides a
large number of systems enabling the benchmark of the current knowledge on nuclear
structure. The Sn isotopes constitute the longest isotopic chain between two doubly
magic nuclei, namely ®Sn (N = Z = 50) and ?Sn (Z = 50 and N = 82). As a
consequence, this isotopic chain provides a large panel of structures enabling the study of
different systematics. In the following paragraphs, the concept of magicity will be briefly
introduced as well as how it relates to the study of Sn isotopes. The efforts to understand
the unexpected collectivity of light Sn isotopes will be presented, providing the context
of the study described in the first part of this thesis.

1.1 Magic numbers and their evolution

The concept of magic numbers is inherently linked to the nuclear shell model. To under-
stand better the concept of shells in atomic nuclei, one can start from the time-dependent
Schrodinger equation for the atomic nucleus:

Hip(7 1) = ih%ﬁ’t), (1.1)

with H the Hamiltonian of the system, and @ZJ(?, t) the wave-function of the system. The
Hamiltonian can be written in the following way:

~

H=T+U (1.2)



10 CHAPTER 1. TIN ISOTOPES AND NUCLEAR STRUCTURE

with 7" the kinetic energy, and U the potential of the system. These two quantities can
themselves be written the following way:

A
-3

i=1 (1.3)
U= VzB,ij + Z Vgaz‘jk + Z ‘ZLB,ijkm +

i) ik i jhAm

with A the mass number, 7} the kinetic energy for each nucleon, Vs B,i; the interaction
between each pair of nucleons, Vg,B,ijk the interaction between each group of three nu-
cleons, ‘A/ZLB’ijkm the interaction between each group of four nucleons. The sum goes on
until the interaction between the whole group of A nucleons. This Hamiltonian has the
general form of the Hamiltonian for many-body problems. Solving many-body problems
is still an ongoing challenge in various fields of physics, including nuclear physics, as no
analytical solution of the Schrodinger equation with such an operator has been found yet
in the general case. A simplified way of viewing these operators is to consider, as a first
approximation, the two-body interaction only, to consider each nucleon individually and
to use a mean-field approach for the potential. This way, the wave function ¢ can be
written as:

A
v=]]¢: (1.4)
i=1
with ¢; the single-particle wave function. One can also 