
HAL Id: tel-03948419
https://theses.hal.science/tel-03948419

Submitted on 20 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Skeletal semantics transformations
Guillaume Ambal

To cite this version:
Guillaume Ambal. Skeletal semantics transformations. Programming Languages [cs.PL]. Université
Rennes 1, 2022. English. �NNT : 2022REN1S057�. �tel-03948419�

https://theses.hal.science/tel-03948419
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

L’UNIVERSITÉ DE RENNES 1

ÉCOLE DOCTORALE NO 601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Informatique

Par

Guillaume AMBAL
Skeletal Semantics Transformations

Thèse présentée et soutenue à Rennes, le 19 Octobre 2022
Unité de recherche : IRISA (UMR 6074)

Rapporteurs avant soutenance :

Dariusz BIERNACKI Associate Professor — University of Wrocław, Poland
Christine TASSON Professeure — Sorbonne Université, Paris

Composition du Jury :
Président : Nathalie BERTRAND Directrice de recherche — Inria Rennes
Examinateurs : Dariusz BIERNACKI Associate Professor — University of Wrocław, Pologne

Christine TASSON Professeure — Sorbonne Université, Paris
Daniel HIRSCHKOFF Maître de Conférences — LIP, ENS de Lyon
Jean-Marie MADIOT Chargé de Recherche — Inria Paris

Dir. de thèse : Alan SCHMITT Directeur de Recherche — Inria Rennes
Co-enc. de thèse : Sergueï LENGLET Maître de Conférences — Université de Lorraine, Nancy

...................................

.....

.....

.....

.....

.....

...................................
...............

.........................
.....

.....
...............

.....

.....

...............

..........
..........

...............

.....

.....

.....
..........

...................................

.....

.....

.....

.....

.....

...................................

REMERCIEMENTS

Merci à mes directeur et co-directeur co-encadrant de thèse de m’avoir guidé jusque là.
Merci aux rapporteurs d’avoir pris le temps de relire ce pavé.

Merci à toute la liste Platypus pour les discussions et les soirées.

Merci à ma famille pour son soutien et les kiwis.
Merci à ma sœur pour ses élans chaotiques arbitraires.

Muxu.

3

RÉSUMÉ EN FRANÇAIS

Langages et Sémantiques

En informatique, le développement d’algorithmes et de logiciels se fait au moyen de langages de
programmation. Ces langages permettent, indirectement, la communication entre les program-
meurs et les ordinateurs. Définir formellement ces langages devient donc primordial afin d’éviter
les problèmes d’interprétation entre humains et machines.

La définition d’un langage se compose d’une syntaxe et d’une sémantique. La syntaxe exprime
quels objets sont considérés comme des programmes valides, et peut facilement être formalisée à
l’aide d’une grammaire. Par exemple, en supposant l’existence de variables (x) et d’entiers (n),
on peut définir des expressions (e) et des programmes (c) avec la grammaire suivante :

e ::= x | n | Plus(e1, e2) | . . .

c ::= skip | while e do c | . . .

Ensuite, la sémantique d’un langage donne un sens à ces programmes. Dans ce document,
nous nous concentrons sur les sémantiques opérationnelles, où un programme est interprété
comme une séquence de calculs. Une sémantique opérationnelle explique donc comment exécuter
un programme. Formaliser une sémantique opérationnelle peut s’avérer délicat. Pour de petits
langages, il est préférable d’utiliser des règles d’inférence qui seront sans ambiguïté. Pour la
syntaxe ci-dessus, on définit les règles suivantes.

s(x) = n

s, x ⇓ s, n

s, e1 ⇓ s1, n1 s1, e2 ⇓ s2, n2 n1 + n2 = n

s, Plus(e1, e2) ⇓ s2, n
. . .

s, e ⇓ s1, true s1, c ⇓ s2 s2, while e do c ⇓ s3

s, while e do c ⇓ s3

s, e ⇓ s1, false

s, while e do c ⇓ s1

Évaluer Plus(e1, e2) consiste à évaluer successivement e1 et e2, puis à additionner les résultats.
Pour évaluer une boucle while e do c, on évalue d’abord la condition e ; si le résultat est vrai, on
évalue la commande c avant de boucler sur while e do c ; sinon, on arrête le calcul.

Pour des langages plus conséquents, les règles d’inférence peuvent être encombrantes et
difficiles à lire, écrire et modifier. Il est donc fréquent de décrire la sémantique d’un langage à
l’aide d’explications en anglais. Tous les langages ne sont ainsi pas définis avec le même niveau

5

de précision. Par exemple, la sémantique de JavaScript est très détaillée et peut être vue comme
une traduction en anglais de règles d’inférence, alors que la documentation de Python est une
description de plus haut niveau du comportement attendu.

Ces définitions informelles limitent les utilisations possibles des sémantiques des langages
de programmation. Il est difficile de les utiliser pour de la vérification ou de la certification. À
l’inverse, une sémantique mécanisée sur ordinateur peut servir de référence pour prouver des
propriétés du langage, ou pour certifier certains outils associés tels qu’un interpréteur ou un
débogueur.

Cette mécanisation peut être faite dans des logiciels génériques, comme des assistants de
preuve (Coq [52], Isabelle [39], ...), ou avec des outils spécialisés tels que K [48] et les sémantiques
squelettiques [17]. Dans ce document, nous utilisons les sémantiques squelettiques qui permettent
une manipulation très simple des sémantiques opérationnelles.

Sémantiques Squelettiques

Les sémantiques squelettiques sont un cadre logique pour formaliser les sémantiques opération-
nelles de langages de programmation à l’aide d’un petit métalangage nommé Skel. La sémantique
d’un langage est représentée par un objet écrit dans la syntaxe de Skel. Cette définition peut
être vue comme un morceau de code (du métalangage) ou un interpréteur. Cela permet aux
sémantiques d’être plus facile à écrire, lire et manipuler. Une telle définition est rendue formelle
et non ambiguë indirectement, via la sémantique du métalangage Skel définie par des règles
d’inférence.

Le métalangage Skel est pensé pour permettre une grande modularité des sémantiques sque-
lettiques. Le principe fondamental est que l’on peut définir précisément la structure d’une fonc-
tion d’évaluation (séquences d’opérations, appels récursifs, branchements non déterministes, ...)
tout en gardant abstrait le comportement des opérations de base (comparaison de deux entiers,
mise à jour d’un environnement, ...). La structure peut ainsi être analysée, transformée, ou
certifiée indépendamment des choix d’implémentation des opérations de base.

Par exemple, on peut formaliser le petit langage précédent de la manière suivante :
type ident

type expr =
| Var ident
| Plus of expr * expr
| ...
type stmt =
| Skip
| While of expr * stmt
| ...

val add : ...

hook hexpr (s: state, e: expr) matching e =
| Var (x) -> ...
| Plus (e1, e2) ->

let (s1, n1) = hexpr (s, e1) in
let (s2, n2) = hexpr (s1, e2) in
let n = add (n1, n2) in
(s2, n)

| ...

6

On garde ainsi l’idée qu’évaluer Plus(e1, e2) consiste à évaluer successivement e1 et e2 (par
appels récursifs), puis à additionner les résultats. Ceci est indépendant du comportement de
l’addition (add).

Les sémantiques squelettiques, et leur implémentation en OCaml [36] appelée Necro [21],
peuvent ensuite traiter automatiquement ces définitions. Différents outils permettent notamment
d’exporter le langage en une définition Coq, ou de générer automatiquement un interpréteur et
un débogueur à partir de la sémantique.

Le cadre des sémantiques squelettiques a été progressivement enrichi, et ce document couvre
deux versions différentes du métalangage Skel. La différence principale étant que la version
utilisée en Partie I de ce document n’autorise pas les fonctions d’ordre supérieur.

Contributions

Il existe différents formats de sémantiques opérationnelles. Par exemple, on trouve des séman-
tiques à grand pas, reliant un programme à son résultat final, des sémantiques à petit pas,
explicitant les calculs intermédiaires, et des machines abstraites, détaillant très précisément la
gestion des différents éléments. Ces formats ont chacun leurs avantages et inconvénients. Les
sémantiques à grand pas sont les plus intuitives et les plus répandues, mais ne peuvent pas
rendre compte de tous les comportements observables avec d’autres types de sémantique. Selon
les propriétés que l’on souhaite vérifier, il est parfois nécessaire de manipuler plusieurs version
de la sémantique d’un même langage.

Cependant, formaliser plusieurs fois le même langage à la main n’est pas idéal. En plus
de nécessiter davantage de travail, il faut s’assurer que les différentes définitions sont toutes
équivalentes. Il est donc préférable de développer des méthodes systématiques pour générer
toutes ces définitions à partir d’une seule, avec le plus de garanties possibles. Ce document
approfondit ainsi les interdérivations de sémantiques opérationnelles, à la fois au niveau des
langages utilisateurs et du métalangage Skel.

Transformation Automatique de Grand Pas en Petit Pas

La première partie de cette thèse présente une nouvelle méthode pour transformer automati-
quement une sémantique squelettique à grand pas en une sémantique squelettique à petit pas
équivalente.

La difficulté principale de cette transformation en petit pas est la création de nouveaux
constructeurs. En effet, la syntaxe initiale n’est pas toujours suffisante pour exprimer les calculs
intermédiaires qui peuvent apparaître durant une évaluation. Cette situation apparaît en général
lorsqu’un argument a besoin d’être évalué plusieurs fois. Par exemple, pour le constructeur
Plus(e1, e2), la règle d’inférence commence par une prémisse s, e1 ⇓ s1, n1. En petit pas, si l’on

7

commence le calcul de e1 avec une prémisse s, e1 → s′, e′
1, on peut sans problèmes écraser la

valeur initiale de e1. Notre méthode génère donc la règle suivante.

s, e1 → s′, e′
1

s, Plus(e1, e2) → s′, Plus(e′
1, e2)

Pour le constructeur while e do c en revanche, on ne peut pas avoir de règle similaire. Si on
commence à évaluer e avec une prémisse s, e → s′, e′, on ne peut pas écraser la valeur initiale de
e avec e′, puisque l’on doit potentiellement réévaluer while e do c plus tard. La transformation
étend alors la syntaxe, et introduit un nouveau constructeur (nommé While1) capable de stocker
le résultat intermédiaire nécessaire.

Cette transformation se découpe en plusieurs étapes. Notamment, une phase d’analyse par-
court la sémantique pour déterminer quels points de programme nécessitent l’ajout de nouveaux
constructeurs, et essaie de réutiliser les constructeurs existants autant que possible. Une dernière
phase produit la sémantique à petit pas en utilisant ces nouveaux constructeurs.

Il est également important de vérifier que cet algorithme est correct, c’est à dire que la
sémantique à petit pas en sortie est effectivement équivalente à la sémantique à grand pas fournie
en entrée. Comme la phase d’analyse est complexe et sujette à des optimisations, la version
complète de l’algorithme se prête mal à une certification directe. À la place, nous développons
deux approches différentes et complémentaires pour s’assurer que la transformation produit le
résultat escompté.

Tout d’abord, nous présentons une preuve papier que la transformation sans analyse est
correcte. En pratique, cette version simplifiée produit une sémantique à petit pas moins optimisée
avec plus de constructeurs que nécessaire. La preuve mathématique garantie que la stratégie
fondamentale est valide sur tous les langages.

Ensuite, pour attester de l’implémentation de la version complète, nous générons également,
pour chaque langage, un certificat Coq de l’équivalence entre les sémantiques d’entrée et de
sortie. Necro permet d’obtenir les définitions Coq des deux sémantiques, et la stratégie connue
de preuve d’équivalence ne dépend pas de ces sémantiques. Il nous est donc possible de générer
un script de preuve Coq spécialisé pour chaque langage. Cette certification à posteriori permet
à la fois de garantir l’équivalence directement sur le langage qui nous intéresse, mais aussi de
ne pas craindre la présence de bugs dans l’implémentation puisque l’on ne vérifie que le résultat
final.

Combiner cette transformation à l’environnement Necro nous permet également de générer
automatiquement un interpréteur petit pas pour n’importe quel langage.

8

Nouvelles Sémantiques pour le Métalangage

Comme la sémantique squelettique d’un langage est écrite dans le métalangage Skel, elle n’a de
sens qu’à travers la sémantique du métalangage lui-même. Skel est défini avec une sémantique à
grand pas non déterministe, appelée interprétation concrète. Bien qu’utile pour de nombreuses
preuves sur les langages et leurs programmes, cette interprétation concrète ne permet ni de
raisonner sur des programmes qui ne terminent pas, ni d’exécuter ces programmes. Pour pallier
cela, nous proposons deux nouvelles interprétations de Skel sous forme de machines abstraites
déterministe et non déterministe.

Nous ne créons pas ces nouvelles sémantiques à la main, mais nous les générons en utilisant la
technique de correspondence fonctionnelle [5] à partir de l’interprétation concrète. Il s’agit d’une
méthode systématique pour déduire une machine abstraite à partir d’une sémantique à grand
pas. Elle combine plusieurs transformation connues pour progressivement réécrire la sémantique
en une forme interruptible.

Puisque l’interprétation concrète est non déterministe, lui appliquer la correspondance fonc-
tionnelle nous permet d’obtenir une machine abstraite non déterministe équivalente. Cette nou-
velle sémantique est intéressante, mais ne permet toujours pas d’exécuter un programme en
pratique. Pour créer une machine abstraite déterministe, nous utilisons une version plus sophis-
tiquée de la correspondance fonctionnelle. Cela consiste à introduire des points de contrôle dans
la partie non déterministe de la sémantique, permettant à l’exécution de revenir en arrière en cas
de problème. Nous obtenons ainsi une sémantique déterministe et exécutable pour le métalan-
gage Skel. Cette machine abstraite est correcte par rapport à l’interprétation concrète : lorsque
la machine obtient un résultat, il s’agit d’un résultat correcte. En revanche, tous les résultats
corrects ne sont pas forcement accessible

Les deux machines abstraites (non déterministe et déterministe) ont été formalisées dans
l’assistant de preuve Coq, et nous avons prouvé que ces deux nouvelles sémantiques sont effec-
tivement respectivement équivalentes et correctes par rapport à l’interprétation concrète.

Nous utilisons également le système d’extraction de Coq pour obtenir une version OCaml
exécutable de la machine abstraite déterministe, exécutant le métalangage Skel. En utilisant
les outils de Necro, cette machine peut être automatiquement instancié pour n’importe quelle
sémantique squelettique, fournissant ainsi un interpréteur certifié pour tout langage défini en
Skel.

Plan du Manuscrit

La Section 2 de ce document présente les principales formes de sémantiques opérationnelles :
sémantique à grand pas, sémantique à petit pas, sémantique à réduction, et machine abstraites.

La Partie I présente une stratégie pour transformer automatiquement une sémantique sque-

9

lettique à grand pas en une sémantique squelettique à petit pas. Cette transformation est im-
plémentée dans une ancienne version de Necro pour les sémantiques squelettiques sans fonctions
d’ordre supérieur. Nous montrons, par une preuve papier, qu’une version légèrement simplifiée
de la transformation est correcte. Nous ne certifions pas la version complète de l’algorithme, mais
pour chaque utilisation nous générons une garantie de résultat. L’implémentation produit donc
automatiquement à la fois une sémantique à petit pas équivalente, et un script Coq vérifiant
cette équivalence.

La Partie II de ce manuscrit se concentre sur le métalangage (Skel) des sémantiques sque-
lettiques d’ordre supérieure actuelles. Nous utilisons des méthodes connues pour transformer
l’interprétation concrète et ainsi générer des machines abstraites déterministe et non détermi-
niste pour Skel. Nous montrons en Coq que la version non déterministe est équivalente à la
sémantique de départ, et que la version déterministe est correcte par rapport à la sémantique à
grand pas. Extraire la version déterministe nous permet d’obtenir un interpréteur certifié pour
tout langage défini en Skel.

10

TABLE OF CONTENTS

1 Introduction 16
1.1 Contributions . 17
1.2 Organization of the Document . 19

2 Operational Semantics 20
2.1 Syntax of IMP . 20
2.2 Big-Step Semantics . 21
2.3 Small-Step Semantics . 23
2.4 Reduction Semantics . 28
2.5 Abstract Machine . 30
2.6 Interderivation . 34

I Object Language Transformation 37

3 Skeletal Semantics 38
3.1 Example . 38
3.2 Syntax of Skel . 41
3.3 Concrete Interpretation . 42
3.4 Coinductive Interpretation . 45
3.5 Necro . 45

4 Small-Step Transformation 47
4.1 Overview on an Example . 47

4.1.1 Coercions . 47
4.1.2 New Constructors . 48
4.1.3 Make the Skeletons Small-Step . 50

4.2 Formal Transformation Phases . 53
4.2.1 Coercions . 53
4.2.2 New Constructors . 54
4.2.3 Distribute Branchings . 60
4.2.4 Make the Skeletons Small-Step . 61

11

TABLE OF CONTENTS

5 Certification of the Transformation 66
5.1 Pen-and-Paper Proof . 66

5.1.1 Proof Sketch . 67
5.1.2 Transformation Properties . 68
5.1.3 Initial and Extended Big-Step Semantics 70
5.1.4 Small-Step Implies Extended Big-Step . 70
5.1.5 Extended Big-Step implies Small-Step . 72

5.2 Coq Proof Script Generation . 73
5.2.1 Proof Sketch . 73
5.2.2 Initial and Extended Big-Step . 74
5.2.3 Small-Step Implies Extended Big-Step . 75
5.2.4 Extended Big-Step Implies Small-Step . 76

6 Implementation and Evaluation 78
6.1 Implementation . 78

6.1.1 Options and Optimization . 78
6.1.2 Ocaml Interpreter . 79

6.2 Evaluation . 80

7 Conclusion of Part I 83
7.1 Related Work . 83
7.2 Limitations and Perspectives . 85

7.2.1 Polymorphism . 85
7.2.2 Anonymous Functions . 86

II Meta-Language Transformation 89

8 Higher-Order Skeletal Semantics 90
8.1 Syntax . 92
8.2 Concrete Interpretation . 94

9 Primer on Functional Correspondence 99
9.1 Rewrite the Semantics in Pseudo-Code . 99
9.2 CPS Transform . 100
9.3 Defunctionalization . 101
9.4 Abstract Machine . 103

12

TABLE OF CONTENTS

10 Non-Deterministic Abstract Machine for Skeletal Semantics 104
10.1 Pseudo-interpreter . 104
10.2 CPS-Transform . 105
10.3 Defunctionalization . 106
10.4 Abstract Machine . 108
10.5 Certification . 109

11 Deterministic Abstract Machine for Skeletal Semantics 112
11.1 CPS-Transform . 112
11.2 Defunctionalization and Abstract Machine . 114
11.3 Certification . 116

12 Certified Interpreter 118

13 Conclusion of Part II 122

Conclusion 126

Bibliography 129

A Functional Correspondence on IMP 135
A.1 Syntax and Big-Step Semantics . 135
A.2 CPS Transform . 136
A.3 Defunctionalization . 137
A.4 Abstract Machine . 139

B Successive Transformations of IMP in Skeletal Semantics 141
B.1 Initial IMP Skeletal Semantics . 141
B.2 After Adding Coercions . 143
B.3 After Creating New Constructors . 145
B.4 Final Small-Step Skeletal Semantics . 148
B.5 Extended Big-Step for Coq Certification . 151
B.6 Resulting Small-Step without Reuse . 153

C Proof of the Transformation 159
C.1 Definitions and Proof Structure . 159
C.2 Basic Lemmas . 163
C.3 SSA . 167
C.4 Properties of the Transformation Phases . 170
C.5 Big-Step and Extended Big-Step . 177

13

TABLE OF CONTENTS

C.6 Extended Big-Step Implies Small-Step . 178
C.7 Small-Step implies Extended Big-Step . 184

D Complete Derivation of the NDAM and AM 193
D.1 Successive Phases of the NDAM Pseudo-code . 193

D.1.1 Initial Pseudo-Code . 193
D.1.2 CPS Transform . 196
D.1.3 Defunctionalization . 199
D.1.4 Non-Deterministic Abstract Machine . 203

D.2 Successive Phases of the AM Pseudo-code . 206
D.2.1 CPS Transform . 206
D.2.2 Defunctionalization . 210
D.2.3 Deterministic Abstract Machine . 215

14

Introduction

15

Chapter 1

INTRODUCTION

Software development uses programming languages as a communication tool between human
programmers and our computers. Formal definitions of these languages are thus crucial to prevent
translation issues between humans and electronic devices.

The syntax of a language expresses which objects are valid programs of the language. Pro-
grams can be considered mathematical objects, and are easily described with a grammar. The
semantics of a language gives meaning to these programs and are essential to reason about them.
Depending on the use case, this “meaning” could be a logical relation, or even another mathe-
matical object. In this document, we limit ourselves to operational semantics where a program
is interpreted as a sequence of computations. I.e., an operational semantics explains how we can
run a program.

Formalizing operational semantics can be problematic. When able, as with small languages,
it is preferable to use unambiguous inference rules. However, for more substantial languages,
inference rules can be difficult to read, write, and maintain. As such, semantic behaviors are
often stated in plain text, with varied levels of detail. For instance, the semantics of JavaScript
is very precise and can be seen as an English translation of inference rules, while the Python
documentation offers higher-level explanations of the expected behaviors.

Informal paper definitions are not adapted for the certification of language properties or the
verification of algorithms or tools. To this end, it is preferable to mechanize the semantics on a
computer, either in a generic proof assistant or in a specialized framework. Theorem provers are
comprehensive tools that do not limit the range of expressible semantics, but they can require
an effort of calibration for each language. Notable examples include JSCert [16], a Coq [52]
formalization of the semantics of JavaScript, and CakeML [33], a language fully formalized in
the Isabelle [39] proof assistant.

Specialized frameworks can ease the formalization process and automatically provide relevant
tools, such as generating an executable interpreter from a semantics. For instance, Ott [50] and
Lem [42] are lightweight tools providing a definition format—akin to inference rules—that can
then be exported to multiple different formats, including LaTeX typesetting and several proof
assistants. The predominant tool for language formalization is the K framework [48]. Semantics
of languages are defined using small-step rewriting systems that can be applied under any

16

1.1. Contributions

context. The authors also automatically provides an executable interpreter and access to their
own verification tool. However, users are limited by the implementation of the framework and
the rewriting semantics. Besides, there is no library to access the internal representation of the
language, and no practical way to perform semantics manipulation.

In this document, we use skeletal semantics [17] where semantics of languages are expressed as
objects of a meta-language called Skel. It is a convenient choice because it offers a straightforward
access to the manipulation of user-defined semantics, and because definitions can be easily
exported to Coq for further certifications. The use of a meta-language means semantics can easily
be handled as data structures, and different semantics of the meta-language provide different
interpretations of these objects. Since the skeletal semantics framework has been expanded
during the PhD, this document actually covers two slightly different versions, the main difference
being that the skeletal semantics used in the first half does not allow higher-order functions.

The framework is not the only choice to make to formally describe a semantics: the format of
the semantics itself is also of importance. Within the domain of operational semantics, one could
use for instance a big-step semantics to relate a program to its result, a small-step semantics to
express intermediate computations, or an abstract machine to precisely describe the manipula-
tion of the different arguments. Each format has benefits and drawbacks, e.g., big-step semantics
are concise and intuitive, but cannot be used to express partial computations. Depending on
the kind of properties we are interested in, it is sometimes necessary to manipulate several ver-
sions of the semantics of a language. For instance, the semantics of the high-level language of
CompCert [34] was initially defined in big-step, and was later rewritten as small-step.

However, defining the same language multiple times by hand is far from optimal. Besides the
additional formalization work, one has to make sure the different semantics are all equivalent. A
better approach is to build generic transformations able to generate one format from another,
and use them to automatically derive everything from a single main semantics.

Our work focuses on this idea of interderiving operational semantics formats. We apply known
techniques to the skeletal semantics meta-language to expand its use cases. We also present a
new interderivation strategy from big-step to small-step skeletal semantics.

1.1 Contributions

The first part of this document introduces a novel generic method to automatically transform
a big-step skeletal semantics into an equivalent small-step skeletal semantics. It has also been
implemented in OCaml, within the Necro [21] toolbox for the manipulation of skeletal semantics.
Combined with other tools, we can also automatically generate an OCaml small-step interpreter
for any language.

As the initial syntax is, in general, not sufficient to express partial computations, the trans-

17

Chapter 1 – Introduction

formation needs to extend this syntax with new constructors. The main difficulty comes from
determining which new constructors are actually necessary, as to not clutter the output small-
step semantics, and is settled through a complex analysis phase.

Ensuring the correctness of this transformation is essential. I.e., we want to make sure that
the output small-step semantics is equivalent to the input big-step semantics. Since the analysis
phase is involved and contains optimizations, certifying the complete transformation would be
challenging. Instead, we present two complementary results to ensure the correctness of the
approach.

First, we produce a paper proof that the transformation without the analysis phase is correct.
This version would produce a less optimized small-step semantics, with more constructors than
necessary. This proof establishes that the fundamental strategy is valid and applicable to any
language.

Second, to confirm the correctness of the implementation of the full transformation, we
generate for each language an a posteriori Coq certificate of equivalence between input and
output semantics. The Necro toolbox can export a semantics into a Coq definition file, and we
make use of it to check the result of the transformation. This ensures the equivalence at the
level of the user-defined language, and bypasses certifying the analysis optimizations and the
implementation.

The second part of this document focuses on the semantics of the Skel meta-language. Its
reference definition is a non-deterministic big-step semantics formalized with inference rules,
called concrete interpretation. While useful to prove some properties of a language or of programs,
this interpretation cannot reason about non-terminating programs and cannot run them.

We thus derive two new alternative semantics, in the form of non-deterministic and determin-
istic abstract machines. We use the known strategy of functional correspondence [5] to generate
the new semantics. It is a generic interderivation technique, combining several known trans-
formations, to progressively rewrite a big-step semantics into an equivalent abstract machine.
Applying it on the concrete interpretation produces a non-deterministic abstract machine. The
deterministic variant is obtained similarly, but we introduce checkpoints and backtracking by
hand during the transformation to force a deterministic evaluation.

Both abstract machines are formalized in the Coq proof assistant, and we certify they behave
as expected: the non-deterministic version is equivalent to the initial concrete interpretation; the
determining version is sound (but not complete) with respect to the other two semantics.

We use the Coq extraction mechanism on the deterministic abstract machine to obtain
a OCaml interpreter running the meta-language Skel. By instantiating it, we automatically
generate a certified OCaml interpreter for any language defined in skeletal semantics.

As a summary, the main contributions are the following.

18

1.2. Organization of the Document

• A novel generic and automatic transformation from big-step to small-step skeletal seman-
tics, implemented in OCaml;

• A paper proof of the correctness of the transformation, in a simplified case;

• An automatic a posteriori Coq proof script checking the equivalence between the input
and output semantics;

• A non-deterministic abstract machine semantics for the meta-language Skel, proved equiv-
alent to the base big-step semantics;

• A deterministic abstract machine semantics for Skel, proved sound with respect to the
non-deterministic one;

• A generic certified OCaml interpreter for the meta-language Skel, that can be automatically
instantiated with any skeletal semantics.

The transformation from big-step to small-step has been presented to the Principles and
Practice of Declarative Programming (PPDP) 2022 conference under the title Certified Deriva-
tion of Small-Step From Big-Step Skeletal Semantics [10]. The abstract machine derivation and
the certified interpreter have been presented to the Certified Programs and Proofs (CPP) 2022
conference under the title Certified Abstract Machines for Skeletal Semantics [6]. At the start
of my PhD position, in the continuation of a previous internship, I also briefly worked on the
formalization of HOπ in Coq. This work lead to a journal publication [7], but is not presented
in this document.

1.2 Organization of the Document

Chapter 2 presents the different formats of operational semantics (big-step semantics, small-
step semantics, reduction semantics, and abstract machines) and some known interderivation
methods.

Part I introduces a novel strategy to automatically transform a big-step skeletal semantics
into an equivalent small-step skeletal semantics. Chapter 3 presents the legacy skeletal semantics
used in this first part. Chapter 4 displays and formalizes the transformation phases. Chapter 5
presents two complementary methods ensuring the correctness of the transformation. Chapter 6
discusses the implementation and the practical results, while Chapter 7 details the limits of the
algorithm and its relation to the previous scientific literature.

Part II of this document focuses on the semantics of the higher-order skeletal semantics meta-
language, defined in Chapter 8. We describe the known strategy of functional correspondence in
Chapter 9 before applying it to the Skel meta-language. Chapter 10 presents the derivation of the
non-deterministic abstract machine and the proof of equivalence, while Chapter 11 introduces the
deterministic one and the proof of soundness. Finally, Chapter 12 describes how this deterministic
abstract machine is used to automatically provide a certified interpreter for any language.

19

Chapter 2

OPERATIONAL SEMANTICS

Denotational semantics [49] is an approach where expressions are linked to mathematical objects,
which represent their meaning. Programs might for instance be associated with game states, or
mathematical functions. This approach is notably used for model-checking, to certify that a
system respects a specification. Denotational semantics is defined by induction on the syntax
of the language, which may simplify proofs at the cost of a more complex semantics to capture
recursive constructs.

Axiomatic semantics is a different approach based on Hoare logic [30]. In it, we consider
assertions on program states in first-order logic. The meaning of a computation is then the
effect it has on these assertions as the program state is modified.

In this document, we exclusively focus on operational semantics, where a computation is
associated to its result. The semantics simply describes how an evaluation is performed. Different
flavors of operational semantics allow for different levels of detail.

In this chapter, we present the main four styles of operational semantics: big-step semantics
(Section 2.2); small-step semantics (Section 2.3); reduction semantics (Section 2.4); and abstract
machine (Section 2.5). As a running example, we use a very simple imperative programming
language (IMP) with while loops, described in Section 2.1. Finally, Section 2.6 presents different
known strategies for transforming a semantics from one style to another.

2.1 Syntax of IMP

We use b to denote booleans, i.e., elements of B ≜ {⊤; ⊥}. We also use the standard notion
of boolean conjunction (∧) and negation (¬), e.g., ⊥ ∧ ⊤ ≜ ⊥ and ¬⊥ ≜ ⊤. We use n to
denote integers in Z, with addition (+) and equality test (?=), e.g., (3 ?= 4) ≜ ⊥. We assume
an infinite set V of variables, ranged over by x. We define arithmetic expressions (a), boolean
expressions (e), and commands (c) as follows.

a ::= x | n | Plus(a1, a2)

e ::= b | Equal(a1, a2) | And(e1, e2) | Neg(e)

c ::= skip | if e then c1 else c2 | while e do c | c1 ; c2 | x := a

20

2.2. Big-Step Semantics

In the syntax above, c1 ; c2 is a sequence of computations; x := a is an assignment operation;
and skip can be seen as an empty or finished computation. For expressions, we use explicitly
named constructors, e.g., Plus(a1, a2), to tell them apart from the corresponding mathematical
operation, e.g., n1 + n2.

To evaluate a program, we need a state (σ) mapping variables to integers. We note AExp

(respectively BExp, CExp, and State) the set of all arithmetic expressions (resp. boolean ex-
pressions, commands, and states). States are partial maps with a finite domain. We note ϵ the
empty state, and {x1 7→ n1; . . . ; xm 7→ nm} the state mapping each xi to the corresponding
ni. For x in the domain of σ, σ(x) is the associated integer. States σ can be extended with a
new association x1 7→ n1. If the variable x is already part of the domain of σ, the extension
overwrites the associated integer instead.

(σ[x 7→ n])(y) ≜
{

n if x = y

σ(y) otherwise

We use the word term to refer to either a command or an arithmetic or boolean expression.
The different operational semantics presented below evaluate configurations ⟨σ, c⟩ containing a
state and a term.

2.2 Big-Step Semantics

Big-step operational semantics, also known as natural semantics, is the most common and in-
tuitive form of operational semantics. It directly relates a computation to its final result. Most
programming languages, such as JavaScript [29] or Standard ML [38], are defined in big-step.

For our IMP example, we create three evaluation predicates. They are defined in Figure 2.1
using inference rules.

• Arithmetic expressions evaluation (⇓a) takes as input a state and an expression and outputs
an integer, so that ⇓a ⊆ (State × AExp) × Z.

• Boolean expressions evaluate to booleans: ⇓b ⊆ (State × BExp) × B.

• Commands return a final evaluation state: ⇓ ⊆ (State × CExp) × State.

Integers and booleans evaluate to themselves. Variables are read from the state used for the
evaluation. For arithmetic and boolean operations, we evaluate each subexpression before ap-
plying the appropriate mathematical operation. A skip command does nothing. An assignment
leads to an extension of the state. A sequence computes both commands in order, using the
output state of the first command to compute the second command. For conditional branchings
and loops, we start by evaluating the boolean expression; depending on the resulting boolean,
we can have two different behaviors.

21

Chapter 2 – Operational Semantics

⟨σ, x⟩ ⇓a σ(x) ⟨σ, n⟩ ⇓a n

⟨σ, a1⟩ ⇓a n1 ⟨σ, a2⟩ ⇓a n2

⟨σ, Plus(a1, a2)⟩ ⇓a n1 + n2

⟨σ, b⟩ ⇓b b

⟨σ, e⟩ ⇓b b

⟨σ, Neg(e)⟩ ⇓b ¬b

⟨σ, a1⟩ ⇓a n1 ⟨σ, a2⟩ ⇓a n2

⟨σ, Equal(a1, a2)⟩ ⇓b (n1
?= n2)

⟨σ, e1⟩ ⇓b b1 ⟨σ, e2⟩ ⇓b b2

⟨σ, And(e1, e2)⟩ ⇓b (b1 ∧ b2)

⟨σ, skip⟩ ⇓ σ

⟨σ, a⟩ ⇓a n

⟨σ, x := a⟩ ⇓ σ[x 7→ n]
⟨σ, c1⟩ ⇓ σ′ ⟨σ′, c2⟩ ⇓ σ′′

⟨σ, c1 ; c2⟩ ⇓ σ′′

⟨σ, e⟩ ⇓b ⊤ ⟨σ, c1⟩ ⇓ σ′

⟨σ, if e then c1 else c2⟩ ⇓ σ′
⟨σ, e⟩ ⇓b ⊥ ⟨σ, c2⟩ ⇓ σ′

⟨σ, if e then c1 else c2⟩ ⇓ σ′

⟨σ, e⟩ ⇓b ⊤ ⟨σ, c⟩ ⇓ σ′ ⟨σ′, while e do c⟩ ⇓ σ′′

⟨σ, while e do c⟩ ⇓ σ′′
⟨σ, e⟩ ⇓b ⊥

⟨σ, while e do c⟩ ⇓ σ

Figure 2.1: Big-Step Semantics for IMP

Proving that a program evaluates to a certain result is done by providing a derivation tree
using the inference rules of the semantics.

Example 2.2.1. Consider the following program.

x := 1 ; if Equal(x, 2) then (x := 3) else (x := 4)

Evaluating it results in a state where x is mapped to 4, as demonstrated with the following tree,
where σ1 is {x 7→ 1}.

⟨ϵ, 1⟩ ⇓a 1
⟨ϵ, x := 1⟩ ⇓ σ1

⟨σ1, x⟩ ⇓a 1 ⟨σ1, 2⟩ ⇓a 2
⟨σ1, Equal(x, 2)⟩ ⇓b ⊥

⟨σ1, 4⟩ ⇓a 4
⟨σ1, x := 4⟩ ⇓ {x 7→ 4}

⟨σ1, if Equal(x, 2) then (x := 3) else (x := 4)⟩ ⇓ {x 7→ 4}

⟨ϵ, x := 1 ; if Equal(x, 2) then (x := 3) else (x := 4)⟩ ⇓ {x 7→ 4}

Unlike the other flavors of operational semantics presented later, a big-step derivation con-
tains the whole evaluation of a program in a single object. This makes proofs by induction on
this structure very simple and quite intuitive.

Big-step operational semantics also has important limitations. Notably, a wide variety of

22

2.3. Small-Step Semantics

behaviors are not captured by this definition. For instance, we cannot assign a meaning to stuck
computations (like ⟨ϵ, x := Plus(x, 1)⟩) or diverging computations (like ⟨σ, while ⊤ do skip⟩),
which means we cannot tell them apart. Some extensions of big-step semantics recover this
distinction, usually at the cost of an explicit error constructor added to the language. Big-step is
not suitable for concurrent semantics (see next section), as it does not provide a way to interrupt
a computation. As such, it is not adapted to low-level programs such as in operating systems.

2.3 Small-Step Semantics

The next format we present is small-step operational semantics, also known as structural oper-
ational semantics. Instead of connecting a program to its final value, this semantics is a relation
transition from computations to computations. It describes how a program can perform a small
part of the computation (a step), and then re-express what is left to compute as a new program.
For instance, while a big-step semantics would directly relate (1 + 2) + (4 + 1) ⇓ 8, a small-step
semantics allows for a more detailed sequence of reductions (1 + 2) + (4 + 1) → 3 + (4 + 1) →
3 + 5 → 8, presenting the intermediate phases of the computation. This relation transition is
syntax-oriented, which means that the behavior of a computation is expressed using the behavior
if its subcomputations.

For our IMP example, we create three relations, defined in Figure 2.2 using inference rules.

• For arithmetic expressions: →a ⊆ (State × AExp) × (State × AExp).

• For boolean expressions: →b ⊆ (State × BExp) × (State × BExp).

• For commands: → ⊆ (State × CExp) × (State × CExp).

It is important to note that, for each relation, the input type is the same as the output type.
Evaluating a configuration produces a new configuration. It allows us to create sequences of
reductions, as we are mostly interested in the reflexive transitive closure (→∗) of these relations.
In the case of arithmetic and booleans expressions, the output state is not modified, so inference
rules have premises of the form ⟨σ, a⟩ →a ⟨σ, a′⟩, reusing σ—we do not need to introduce a
different state variable.

For variables, we simply look up the associated value in the given state, as previously. For
the Plus constructor, we need to write three inference rules. If the first subexpression can do a
step, then the whole expression can do the same step. The symmetric situation is when the first
subexpression is an integer (and thus cannot reduce further), and the second subexpression can
reduce. Finally, an expression Plus(n1, n2) where both subexpressions are integers can perform
the addition and reduce to n1 +n2. We have similar cases for the other boolean operators, where
we need two to three rules for each.

23

Chapter 2 – Operational Semantics

⟨σ, x⟩ →a ⟨σ, σ(x)⟩
⟨σ, a1⟩ →a ⟨σ, a′

1⟩
⟨σ, Plus(a1, a2)⟩ →a ⟨σ, Plus(a′

1, a2)⟩

⟨σ, a2⟩ →a ⟨σ, a′
2⟩

⟨σ, Plus(n1, a2)⟩ →a ⟨σ, Plus(n1, a′
2)⟩ ⟨σ, Plus(n1, n2)⟩ →a ⟨σ, n1 + n2⟩

⟨σ, a1⟩ →a ⟨σ, a′
1⟩

⟨σ, Equal(a1, a2)⟩ →b ⟨σ, Equal(a′
1, a2)⟩

⟨σ, a2⟩ →a ⟨σ, a′
2⟩

⟨σ, Equal(n1, a2)⟩ →b ⟨σ, Equal(n1, a′
2)⟩

⟨σ, Equal(n1, n2)⟩ →b ⟨σ, (n1
?= n2)⟩

⟨σ, e1⟩ →b ⟨σ, e′
1⟩

⟨σ, And(e1, e2)⟩ →b ⟨σ, And(e′
1, e2)⟩

⟨σ, e2⟩ →b ⟨σ, e′
2⟩

⟨σ, And(b1, e2)⟩ →b ⟨σ, And(b1, e′
2)⟩ ⟨σ, And(b1, b2)⟩ →b ⟨σ, (b1 ∧ b2)⟩

⟨σ, e⟩ →b ⟨σ, e′⟩
⟨σ, Neg(e)⟩ →b ⟨σ, Neg(e′)⟩ ⟨σ, Neg(b)⟩ →b ⟨σ, ¬b⟩

⟨σ, a⟩ →a ⟨σ, a′⟩
⟨σ, x := a⟩ → ⟨σ, x := a′⟩ ⟨σ, x := n⟩ → ⟨σ[x 7→ n], skip⟩

⟨σ, c1⟩ → ⟨σ′, c′
1⟩

⟨σ, c1 ; c2⟩ → ⟨σ′, c′
1 ; c2⟩

⟨σ, skip ; c2⟩ → ⟨σ, c2⟩
⟨σ, e⟩ →b ⟨σ, e′⟩

⟨σ, if e then c1 else c2⟩ → ⟨σ, if e′ then c1 else c2⟩

⟨σ, if ⊤ then c1 else c2⟩ → ⟨σ, c1⟩ ⟨σ, if ⊥ then c1 else c2⟩ → ⟨σ, c2⟩

⟨σ, while e do c⟩ → ⟨σ, if e then (c ; while e do c) else skip⟩

Figure 2.2: Small-Step Semantics for IMP

24

2.3. Small-Step Semantics

This shows the structure of small-step inference rules, as each rule has either zero or exactly
one premise, where the reduction of a subterm takes place. In this document, we call the latter
congruence rules: they state that if a subterm is able to reduce on its own, we can simply
propagate the result to the whole term, keeping the other parts unchanged. We call inference
rules without premises contraction rules [22]. They correspond to basic reduction steps, usually
either the application of a basic operator or a simplification of the term.

For assignment commands, we have two rules: a congruence rule stating we can reduce
the arithmetic expression, and a contraction rule to extend the state with an integer. In the
second case, we return a skip command to represent a finished computation. For sequences, we
reduce the first command if able, or drop a leading skip otherwise. For conditional branchings,
a congruence rule allows us to reduce the boolean expression; when we have a boolean, two
contraction rules then let us drop the part of the command we no longer need.

For loops, we bypass an important issue of small-step semantics with a peculiar rule. Nor-
mally, we would expect a congruence rule of the following form.

⟨σ, e⟩ →b ⟨σ, e′⟩

⟨σ, while e do c⟩ → ⟨σ, while e′ do c⟩

However, such a rule would completely break the semantics. We need to evaluate e to check
whether to enter the loop; if we do, i.e., e evaluates to ⊤, we need to loop back to (while e do c)
later on. Since the infinite loop (while ⊤ do c) clearly does not have the intended semantics, we
cannot permanently overwrite e with e′.

One of the main difficulties of small-step semantics is that the syntax of the language is
sometimes not expressive enough to represent all partial computations. In this overview, we use
a common trick to sidestep the problem: notice that while e do c has the same behavior as
if e then (c ; while e do c) else skip, so we simply add a contraction rule going from the first to
the second. This bigger program carries two versions of e and c, and is able to express partial
computations.

In the general case, we can systematically extend the language with new constructors in
such problematic situations. For IMP, it would require two additional constructors While1 and
While2, the first of which remembers both the initial boolean expression e and the computation
in progress e′: see Figure 2.3. Similarly, if skip did not exist, we would need to create it to
represent finished computations.

Note that there are no rules for the base elements. We do not want contraction rules of
the form ⟨σ, b⟩ →b ⟨σ, b⟩, ⟨σ, n⟩ →a ⟨σ, n⟩, or ⟨σ, skip⟩ → ⟨σ, skip⟩, as they would yield infinite
reduction sequences. A reduction sequence represents a computation, and we do not want a
computation to stay locked onto a base element without progressing further.

Small-step semantics allows for a more precise control of the behavior of programs, and make

25

Chapter 2 – Operational Semantics

c ::= . . . | while e do c | While1(e0, e, c) | While2(c0, e, c)

⟨s, while e do c⟩ → ⟨s, While1(e, e, c)⟩
⟨s, e0⟩ →b ⟨s, e′

0⟩
⟨s, While1(e0, e, c)⟩ → ⟨s, While1(e′

0, e, c)⟩

⟨s, While1(⊥, e, c)⟩ → ⟨s, skip⟩ ⟨s, While1(⊤, e, c)⟩ → ⟨s, While2(c, e, c)⟩

⟨s, c0⟩ → ⟨s′, c′
0⟩

⟨s, While2(c0, e, c)⟩ → ⟨s′, While2(c′
0, e, c)⟩ ⟨s, While2(s, skip, e, c)⟩ → ⟨s, While(e, c)⟩

Figure 2.3: Alternative Small-Step Syntax and Semantics for While Loop

up for the limitations of big-step semantics. For example, we can tell apart stuck computations
that do not reduce, e.g., ⟨ϵ, x := Plus(x, 1)⟩, from diverging computations, e.g.:

⟨σ, while ⊤ do skip⟩ → ⟨σ, if ⊤ then (skip ; while ⊤ do skip) else skip⟩

→ ⟨σ, skip ; while ⊤ do skip⟩

→ ⟨σ, while ⊤ do skip⟩

→ ⟨σ, if ⊤ then (skip ; while ⊤ do skip) else skip⟩

→ . . .

Small-step semantics can be used to reason about infinite derivations, using the concepts of
traces and prefix of execution. Small-step semantics can also easily capture notions of concur-
rency and interleaving.

Example 2.3.1. For instance, IMP can be extended with a parallel operator as follows.

c ::= skip | . . . | c1 ∥ c2

Then, we simply need to extend the semantics with two congruence rules and a contraction rule.

⟨σ, c1⟩ → ⟨σ′, c′
1⟩

⟨σ, c1 ∥ c2⟩ → ⟨σ′, c′
1 ∥ c2⟩

⟨σ, c2⟩ → ⟨σ′, c′
2⟩

⟨σ, c1 ∥ c2⟩ → ⟨σ′, c1 ∥ c′
2⟩ ⟨σ, skip ∥ skip⟩ → ⟨σ, skip⟩

I.e., when we have two programs in parallel, if either is able to reduce on its own, then the whole
computation can progress. This cannot be stated using big-step semantics, where inference rules
can only fully evaluate subterms. Alternating between two computations require a notion of
partial or interrupted computations.

Example 2.3.2. We show how to reduce the example program of Example 2.2.1. It requires 6

26

2.3. Small-Step Semantics

successive small steps to evaluate it fully. Once again, σ1 represents the state {x 7→ 1}.

1.
⟨ϵ, x := 1⟩ → ⟨σ1, skip⟩

⟨ϵ, x := 1 ; if Equal(x, 2) then (x := 3) else (x := 4)⟩ → ⟨σ1, skip ; if . . . then . . . else . . .⟩

2.
⟨σ1, skip ; if . . . then . . . else . . .⟩ → ⟨σ1, if Equal(x, 2) then (x := 3) else (x := 4)⟩

3.

⟨σ1, x⟩ → ⟨σ1, 1⟩

⟨σ1, Equal(x, 2)⟩ → ⟨σ1, Equal(1, 2)⟩
⟨σ1, if Equal(x, 2) then (x := 3) else (x := 4)⟩ → ⟨σ1, if Equal(1, 2) then (x := 3) else (x := 4)⟩

4.
⟨σ1, Equal(1, 2)⟩ → ⟨σ1, ⊥⟩

⟨σ1, if Equal(1, 2) then (x := 3) else (x := 4)⟩ → ⟨σ1, if ⊥ then (x := 3) else (x := 4)⟩

5.
⟨σ1, if ⊥ then (x := 3) else (x := 4)⟩ → ⟨σ1, x := 4⟩

6.
⟨σ1, x := 4⟩ → ⟨{x 7→ 4}, skip⟩

By joining the different small steps, we construct the following sequence of reductions.

⟨ϵ, x := 1 ; if Equal(x, 2) then (x := 3) else (x := 4)⟩ →∗ ⟨{x 7→ 4}, skip⟩

In general, big-step and small-step semantics define the same behavior. A big-step evaluation
should correspond to a sequence of small-step reductions. This is formalized in the following
theorem.

Theorem 2.3.3. For all programs c and states σ and σ′,

⟨σ, c⟩ ⇓ σ′ ⇐⇒ ⟨σ, c⟩ →∗ ⟨σ′, skip⟩

Proof. The proof is quite standard, and can be done by induction on the big-step derivation and
on the length of the small-step reduction sequence. See for instance [41].

The additional control offered by the small-step semantics rules can be useful for certifying
some properties. Notably, it is a common representation for proving type safety of a language,
by checking the properties of progress and preservation. However, small-step semantics is more
verbose and less intuitive than big-step, as manipulating a sequence of reduction is harder than

27

Chapter 2 – Operational Semantics

a self-contained derivation tree. It also often requires an extended syntax, as would be the case
for while loops without the above sidestep.

2.4 Reduction Semantics

Reduction semantics is a rephrasing of small-step semantics where we separate the basic reduc-
tion rules (i.e., contraction rules) from the location in the term where they can be applied. For
IMP, we have the following contraction rules (⇝).

⟨σ, x⟩⇝ ⟨σ, σ(x)⟩

⟨σ, Plus(n1, n2)⟩⇝ ⟨σ, n1 + n2⟩

⟨σ, Equal(n1, n2)⟩⇝ ⟨σ, n1
?= n2⟩

⟨σ, And(b1, b2)⟩⇝ ⟨σ, b1 ∧ b2⟩

⟨σ, Neg(b)⟩⇝ ⟨σ, ¬b⟩

⟨σ, x := n⟩⇝ ⟨σ[x 7→ n], skip⟩

⟨σ, skip ; c2⟩⇝ ⟨σ, c2⟩

⟨σ, if ⊤ then c1 else c2⟩⇝ ⟨σ, c1⟩

⟨σ, if ⊥ then c1 else c2⟩⇝ ⟨σ, c2⟩

⟨σ, while e do c⟩⇝ ⟨σ, if e then (c ; while e do c) else skip⟩

As seen in Figure 2.2, a large proportion of small-step inference rules are simply congruence
rules, with very similar structure. In reduction semantics, we replace congruence rules with
evaluation contexts, specifying where subcomputations are allowed. In the case of IMP, we have
the following contexts.

E ::= [·] | Plus(E, a) | Plus(n, E) | Equal(E, a) | Equal(n, E) | And(E, e)

| And(b, E) | Neg(E) | if E then c1 else c2 | E ; c2 | x := E

Contexts are terms with a single hole ([·]) that can be filled with another term. For instance,
if E ≜ Equal(n, Plus([·], a)), then E[a′] ≜ Equal(n, Plus(a′, a)). A more formal definition
of reduction semantics would distinguish different kinds of contexts depending on the type
(AExp/BExp/CExp) of the hole and the type of the produced term. In this overview, we simplify
the notations by regrouping them in a single definition.

Then, we can apply the contraction rules (⇝) above at any depth in our language programs

28

2.4. Reduction Semantics

with the following congruence rule1, making use of evaluation contexts. For all terms t:

⟨σ, t⟩⇝ ⟨σ′, t′⟩

⟨σ, E[t]⟩ →RS ⟨σ′, E[t′]⟩

Evaluation contexts are defined such that each case corresponds exactly to a congruence rule
of the small-step semantics (Figure 2.2). This approach leads to objects (evaluation contexts)
representing where computations can happen, separated from the reduction rules of the different
base cases.

Example 2.4.1. Evaluating the example program presented before (Example 2.3.2), we simi-
larly have ⟨ϵ, x := 1 ; if Equal(x, 2) then (x := 3) else (x := 4)⟩ →∗

RS ⟨{x 7→ 4}, skip⟩ with the
same 6 steps.

1. The first step reduces under the context [·] ; if Equal(x, 2) then (x := 3) else (x := 4) and
uses the contraction rule ⟨ϵ, x := 1⟩⇝ ⟨{x 7→ 1}, skip⟩.

2. The second step directly uses the contraction rule ⟨{x 7→ 1}, skip; if . . . then . . . else . . .⟩⇝
⟨{x 7→ 1}, if . . . then . . . else . . .⟩ (i.e., with the empty context [·]).

3. The third step reduces under the context if Equal([·], 2) then (x := 3) else (x := 4) and
uses the contraction rule ⟨{x 7→ 1}, x⟩⇝ ⟨{x 7→ 1}, 1⟩.

4. The fourth step reduces under the context if [·] then (x := 3) else (x := 4) and uses the
contraction rule ⟨{x 7→ 1}, Equal(1, 2)⟩⇝ ⟨{x 7→ 1}, ⊥⟩.

5. The fifth step directly uses the contraction rule
⟨{x 7→ 1}, if ⊥ then (x := 3) else (x := 4)⟩⇝ ⟨{x 7→ 1}, x := 4⟩.

6. Finally, the last step directly uses the rule ⟨{x 7→ 1}, x := 4⟩⇝ ⟨{x 7→ 4}, skip⟩.

As expected, we can easily show that the small-step semantics and reduction semantics define
the exact same behavior.

Theorem 2.4.2. For all programs c and c′ and states σ and σ′,

⟨σ, c⟩ → ⟨σ′, c′⟩ ⇐⇒ ⟨σ, c⟩ →RS ⟨σ′, c′⟩

Proof. By simply specifying the one-to-one correspondence between context constructors and
congruence rules.

Reduction semantics offers several quality-of-life improvements over small-step semantics.
It separates the computational part, i.e., reducing a subterm, from the navigation necessary

1. If we take the more formal approach, we need one congruence rule per kind of context.

29

Chapter 2 – Operational Semantics

to reach the subterm. This eliminates the need for a tree structure, and produces a cleaner
representation. Notably, reconstruction is simply defined as plugging the result into a context,
instead of painfully traversing the derivation tree in reverse. Having access to the evaluation
context as an independent object also allows for more refined manipulations. As such, reduction
semantics proves to be a useful format for languages with control operators, such as the callcc

operator in Scheme.
However, reduction semantics is still mostly a rephrasing of small-step semantics, and does

not provide, in practice, a clear method for decomposing a term into an evaluation context and
a reducible term.

2.5 Abstract Machine

The last format we present is abstract machines. It is similar to reduction semantics, in the
sense that we have a reification of evaluation contexts, but it also goes further by providing
an explicit strategy for manipulating them. An abstract machine is a reduction system between
objects, called machine states, which represent the internal state of a virtual computer executing
a program of the language. Machines states are usually configurations (e.g., ⟨σ, c⟩) extended
with the additional information needed by the virtual computer (memory, evaluation modes,
flags, . . .).

In the case of IMP, the extra information we need are continuations (κ), objects representing
what is left to compute after we finish executing the term under focus. For IMP, they are lists
of elementary evaluation contexts and represent what is around the term we are evaluating.

κ ::= • | Plus([·], a) :: κ | Plus(n, [·]) :: κ | . . . | x := [·] :: κ

The ellipsis hides the same cases as in the definition of evaluation contexts in reduction semantics,
and • is the empty continuation signaling there is no more computation to perform.

Machine states are then separated into two different evaluation modes, depending on the
kind of computations we are performing2. ⟨σ, c | κ⟩e is a state in computation mode, and
can be seen as a computer currently evaluating ⟨σ, c⟩ with pending computations κ. Meanwhile,
⟨κ | σ, c⟩k is in continuation mode, and corresponds to applying the continuation κ to a result c

(here, c is either an integer, a boolean, or skip). We swap the order of arguments to visually
contrast the two evaluation modes.

We cannot directly use evaluation contexts as continuations, as the abstract machine would
need to modify the inside of a context when changing focus (see below). Instead, continuations
can be seen as evaluation contexts in reverse. For instance, the context Equal(Plus(n, [·]), a)

2. To be more formal, we would need 6 modes: 3 computation modes and 3 continuation modes, depending
on the type of the term.

30

2.5. Abstract Machine

in Section 2.4 corresponds to the continuation Plus(n, [·]) :: Equal([·], a) :: • in an abstract
machine state.

The steps of the abstract machine for IMP are given in Figure 2.4. For the sake of readability,
we reuse the notation (→), previously used for small-step semantics, for the reduction of abstract
machines. There should be no confusion, as the objects being reduced are different.

For machine states in computation mode (e.g., ⟨σ, Plus(a1, a2) | κ⟩e), we do not need to
look up the current continuation. If we need to evaluate a subterm, we focus on it and push the
rest of the term on the continuation (e.g., ⟨σ, a1 | Plus([·], a2) :: κ⟩e). If we are focused on a
value (e.g., skip) we switch to continuation mode. In some cases (variable and while loop), we
can also directly perform a contraction rule.

For machine states in continuation mode, we need to look at the beginning of the contin-
uation, which corresponds to the area immediately around the result under focus. If we have
a first elementary context, we apply the appropriate action, usually either focusing on another
subterm or applying a contraction rule (e.g. ⟨Neg([·]) :: κ | σ, b⟩k → ⟨κ | σ, ¬b⟩k). There
is no rule for the empty continuation, as in that case, we are done computing and the abstract
machine stops.

In practice, to evaluate a configuration ⟨σ, c⟩, we start the machine with the empty contin-
uation ⟨σ, c | •⟩e and repeatedly reduce. The machine stops when no rule is applicable, in a
machine state of the form ⟨• | σ′, skip⟩k.

31

Chapter 2 – Operational Semantics

⟨σ, n | κ⟩e → ⟨κ | σ, n⟩k

⟨σ, b | κ⟩e → ⟨κ | σ, b⟩k

⟨σ, skip | κ⟩e → ⟨κ | σ, skip⟩k

⟨σ, x | κ⟩e → ⟨κ | σ, σ(x)⟩k

⟨σ, Plus(a1, a2) | κ⟩e → ⟨σ, a1 | Plus([·], a2) :: κ⟩e

⟨σ, Equal(a1, a2) | κ⟩e → ⟨σ, a1 | Equal([·], a2) :: κ⟩e

⟨σ, And(e1, e2) | κ⟩e → ⟨σ, e1 | And([·], e2) :: κ⟩e

⟨σ, Neg(e) | κ⟩e → ⟨σ, e | Neg([·]) :: κ⟩e

⟨σ, x := a | κ⟩e → ⟨σ, a | x := [·] :: κ⟩e

⟨σ, c1 ; c2 | κ⟩e → ⟨σ, c1 | [·] ; c2 :: κ⟩e

⟨σ, if e then c1 else c2 | κ⟩e → ⟨σ, e | if [·] then c1 else c2 :: κ⟩e

⟨σ, while e do c | κ⟩e → ⟨σ, if e then (c ; while e do c) else skip | κ⟩e

⟨Plus([·], a2) :: κ | σ, n1⟩k → ⟨σ, a2 | Plus(n1, [·]) :: κ⟩e

⟨Plus(n1, [·]) :: κ | σ, n2⟩k → ⟨κ | σ, n1 + n2⟩k

⟨Equal([·], a2) :: κ | σ, n1⟩k → ⟨σ, a2 | Equal(n1, [·]) :: κ⟩e

⟨Equal(n1, [·]) :: κ | σ, n2⟩k → ⟨κ | σ, n1
?= n2⟩k

⟨And([·], e2) :: κ | σ, b1⟩k → ⟨σ, e2 | And(b1, [·]) :: κ⟩e

⟨And(b1, [·]) :: κ | σ, b2⟩k → ⟨κ | σ, b1 ∧ b2⟩k

⟨Neg([·]) :: κ | σ, b⟩k → ⟨κ | σ, ¬b⟩k

⟨x := [·] :: κ | σ, n⟩k → ⟨κ | σ[x 7→ n], skip⟩k

⟨[·] ; c2 :: κ | σ, skip⟩k → ⟨σ, c2 | κ⟩e

⟨if [·] then c1 else c2 :: κ | σ, ⊤⟩k → ⟨σ, c1 | κ⟩e

⟨if [·] then c1 else c2 :: κ | σ, ⊥⟩k → ⟨σ, c2 | κ⟩e

Figure 2.4: Abstract Machine for IMP

32

2.5. Abstract Machine

Example 2.5.1. We describe the evaluation of the small program used in previous examples.

⟨ϵ, x := 1 ; if Equal(x, 2) then (x := 3) else (x := 4) | •⟩e

→ ⟨ϵ, x := 1 | [·] ; if Equal(x, 2) then (x := 3) else (x := 4) :: •⟩e

→ ⟨ϵ, 1 | x := [·] :: [·] ; if Equal(x, 2) then (x := 3) else (x := 4) :: •⟩e

→ ⟨x := [·] :: [·] ; if Equal(x, 2) then (x := 3) else (x := 4) :: • | ϵ, 1⟩k

→ ⟨[·] ; if Equal(x, 2) then (x := 3) else (x := 4) :: • | {x 7→ 1}, skip⟩k

→ ⟨{x 7→ 1}, if Equal(x, 2) then (x := 3) else (x := 4) | •⟩e

→ ⟨{x 7→ 1}, Equal(x, 2) | if [·] then (x := 3) else (x := 4) :: •⟩e

→ ⟨{x 7→ 1}, x | Equal([·], 2) :: if [·] then (x := 3) else (x := 4) :: •⟩e

→ ⟨Equal([·], 2) :: if [·] then (x := 3) else (x := 4) :: • | {x 7→ 1}, 1⟩k

→ ⟨{x 7→ 1}, 2 | Equal(1, [·]) :: if [·] then (x := 3) else (x := 4) :: •⟩e

→ ⟨Equal(1, [·]) :: if [·] then (x := 3) else (x := 4) :: • | {x 7→ 1}, 2⟩k

→ ⟨if [·] then (x := 3) else (x := 4) :: • | {x 7→ 1}, ⊥⟩k

→ ⟨{x 7→ 1}, x := 4 | •⟩e

→ ⟨{x 7→ 1}, 4 | x := [·] :: •⟩e

→ ⟨x := [·] :: • | {x 7→ 1}, 4⟩k

→ ⟨• | {x 7→ 4}, skip⟩k

This abstract machine produces the same behavior as the previous forms of operational
semantics.

Theorem 2.5.2. For all programs c and states σ and σ′,

⟨σ, c | •⟩e →∗ ⟨• | σ′, skip⟩k ⇐⇒ ⟨σ, c⟩ →∗
RS ⟨σ′, skip⟩

Proof Sketch. The proof uses an even stronger relation between reduction semantics and abstract
machine. We show that machine states ⟨σ, c | κ⟩e and ⟨κ | σ, c⟩k are both equivalent to a
configuration ⟨σ, Eκ[c]⟩, where Eκ is the context corresponding to the continuation κ.

Whenever the abstract machine takes a step, either it adjusts the term under focus by
changing the continuation, as with the rule ⟨σ, Plus(a1, a2) | κ⟩e → ⟨σ, a1 | Plus([·], a2) :: κ⟩e,
and nothing happens in reduction semantics; or we apply a rule equivalent to a contraction rule
in reduction semantics, e.g., ⟨x := [·] :: κ | σ, n⟩k → ⟨κ | σ[x 7→ n], skip⟩k is equivalent to
using the contraction rule ⟨σ, x := n⟩⇝ ⟨σ[x 7→ n], skip⟩ under the context Eκ.

Once this is formalized, the theorem is only a special case, proved by a simple induction on
the length of the sequence.

33

Chapter 2 – Operational Semantics

Big Step

Abstract
Machine

Small Step

Reduction
Semantics

PBS

Huizing 10 [31], Vesely ESOP19 [53]

Ciobâcă IFM13 [20]

Poulsen Mosses ESOP14 [45]

A
ge

r
LO

PS
T

R
04

[2
]

Fu
nc

tio
na

lC
or

re
sp

on
de

nc
e

D
anvy

IC
FP08

[22]

Refocusing
Danvy 04 [28], IFL10 [51], FSCD17 [12]

Part I

Pa
rt

II

Figure 2.5: Related Work on Interderivation of Operational Semantics

The main advantage of abstract machines is that every decision, every change of focus, is
made entirely explicit. After a computation step, we do not fully rebuilt a term, but navigate to
the next subterm to be evaluated. This produces a semantics very close to an actual implemen-
tation, and it can easily be simulated and executed in practice. This fine-grain description of
steps of executions is also sometimes used as reference for defining complexity classes. Notably,
abstract machines can be used for modeling and measuring the complexity of algorithms [1].

2.6 Interderivation

Each of the operational semantics flavor presented above has its own strengths and drawbacks.
Depending on the use case, it is sometimes necessary to manipulate several versions of a seman-

34

2.6. Interderivation

tics. To limit human errors and efforts when duplicating definitions, systematic interderivation
strategies have been developed. Figure 2.5 displays some of them. However, the correctness of
most strategies is not properly certified; they should be seen as time-tested guidelines on how
to transform a semantics.

The most studied relation is the connection between big-step and abstract machines. The
most widespread method is functional correspondence [5], a systematic approach for converting
big-step semantics, written as interpreters3, to abstract machines and back. It combines several
known techniques, such as CPS translation [44] and defunctionalization [47], to progressively re-
structure the semantics of a language. It has been applied to languages with various features [13,
3, 43, 14, 11, 4, 25, 32], and has recently been implemented into a tool for the automatic trans-
lations of Racket interpreters [18]. The reverse direction is also possible. An abstract machine
can be transformed into a direct-style big-step semantics by following the sequence of reverse
transformations [5]. This requires the abstract machine to be fully defunctionalized (i.e., the
continuations are only dispatch by a single mechanism), but a few ad-hoc techniques can often
be used to tweak the abstract machine to meet this requirement [27, 15]. We use functional
correspondence to transform a semantics in Part II of this document, and we describe this strat-
egy in more details in Chapter 9. Ager [2] also proposes a translation from big-step to abstract
machine by directly manipulating inference rules, creating continuations keeping track of the
big-step premise being evaluated.

From small-step to big-step semantics, the main issue is that the small-step format is more ex-
pressive, and some behaviors cannot be defined in big-step, such as interleaving (Example 2.3.1).
The different known approaches are partial and assume some structural properties to be applied.
Notable transformations include the works of Ciobâcă [20] and Poulsen and Mosses [45], which
manipulate small-step inference rules and assemble them. In the second paper, the output is in a
format called pretty-big-step (PBS) semantics [19]. It is a subset of big-step where rules can only
evaluate a single subterm, and then might need to perform a tail call for further computations.
Terms are still related to their final result, but tree derivations are more vertical and there is no
need to duplicate rules when extending the language to account for exceptions and divergence.

Transformation from big-step to small-step semantics has been less investigated. Huizing
et al. [31] describe a very generic certified translation manipulating big-step inference rules,
but the output small-step semantics is unusual and not intuitive: configurations are extended
with a stack, and we guess starting states each time we focus on a new big-step premise. More
recently, Vesely and Fisher [53] present a new approach for translating big-step interpreters. They
combine numerous small known transformations—including CPS and direct-style translations
and defunctionalization—into a complete pipeline for deriving a small-step semantics. In Part I

3. I.e., a semantics not written using inference rules, but in a form similar to a program, either in pseudo-code
or in a meta-language—usually an extended λ-calculus or an ML-like language.

35

Chapter 2 – Operational Semantics

of this document, we present a novel systematic big-step to small-step translation, for languages
written in a specific framework called skeletal semantics. We compare our translation to previous
techniques in Chapter 7.

Small-step and reduction semantics are quite similar, since the difference is only the rep-
resentation of evaluation contexts. These contexts can be made explicit by performing a CPS
transformation and giving names to the continuations [22].

From there, the strategy for constructing a proper abstract machine is called refocusing [28].
In reduction semantics, after every step we plug the result in the evaluation context, forgetting
about the location where the contraction rule was applied. Using this strategy for an abstract
machine would be extremely inefficient. Refocusing corresponds to searching for a new evalua-
tion context from the focus point of the last step. This removes the need to fully unzoom and
rezoom at every application of a contraction rule. This refocusing method has been formalized,
generalized, and certified [51, 12] in the Coq proof assistant[52]. The authors proved, indepen-
dently from the target language, that the resulting abstract machine perfectly simulates the
initial reduction semantics. To the best of our knowledge, this interderivation is the only related
work of Figure 2.5 to be fully certified.

36

Part I

Object Language Transformation

37

Chapter 3

SKELETAL SEMANTICS

Skeletal semantics is a framework to formalize the operational semantics of programming lan-
guages. Users can describe the semantics they are interested in using using a small meta-language
named Skel. The fundamental idea of the approach is to only specify the structure of evaluation
functions (e.g., sequences of operations, non-deterministic choices, recursive calls) while keep-
ing abstract basic operations (e.g., updating an environment or comparing two values). The
motivation for this semantics is that the structure can be analyzed, transformed, or certified
independently from the implementation choices of the basic operations.

We present the formal definition of skeletal semantics we use to describe the transformation
in Section 4.2 and state the equivalence results in Chapter 5. The framework has evolved since
its first definition [17], and Part I uses an updated description [21]. The version presented in this
part also slightly differs from the high-order skeletal semantics of Part II that allows function
types and anonymous functions.

3.1 Example

A skeletal semantics is composed of types, filters, hooks, and rules. Types represent categories
for the elements of the language. We distinguish between base and program types. Base types
are left unspecified and correspond to the base elements of the language, like environments or
identifiers for variables. Program types are defined with a list of constructors, each having a
precise typing.

Example 3.1.1 (Types). We write examples using the legacy Necro syntax [21], and use as a
running example an imperative language called IMP. It is slightly different from the language
presented in Chapter 2, as we merge arithmetic and boolean expressions into a single category.
Types are defined with the keyword type; base types (int, bool, ident, state, and value)
are only declared, while program types (expr and stmt) are declared alongside the signature of
their constructors, like an algebraic datatype definition in OCaml.

38

3.1. Example

type int
type bool
type expr =
| Iconst of int
| Bconst of bool
| Var of ident
| Plus of expr * expr
| Equal of expr * expr
| Not of expr

type ident
type state
type value
type stmt =
| Skip
| Assign of ident * expr
| Seq of stmt * stmt
| If of expr * stmt * stmt
| While of expr * stmt

Types int and bool represent integers and booleans, collected under the type value. The
type ident represents identifiers for the variables of the language and state represents environ-
ments mapping variables to values. The two program types define the expressions and statements
of the language.

A distinctive feature of skeletal semantics is that we do not need to further specify the im-
plementation of base types. The only way we can manipulate them is through typed unspecified
functions called filters, which represent the basic operations of the language. We can reason on
the semantics as a whole by assuming some properties on these filters. For instance, the final
representation of state does not matter as long as we define read and write operations as filters.

Example 3.1.2 (Filters). Filters are declared with the keyword val. They are explicitly typed,
using the keyword unit in case of a missing input or output. We consider the following filters
for IMP.

val add : value * value -> value
val eq : value * value -> value
val neg : value -> value
val isTrue : value -> unit
val isFalse : value -> unit
val intToVal : int -> value
val boolToVal : bool -> value
val read : ident * state -> value
val write : ident * state * value -> state

Hooks correspond to the evaluation functions we want to define, operating on a program
type it pattern-matches: the behavior of the hook on a constructor is defined with a rule, whose
main component is a skeleton. A skeleton represents the semantic behavior of a reduction. It is a
sequence of skeleton elements, or skelements, linked via a LetIn structure. A skelement represents
a single operation, that can either be a function call (filter or hook), a return of values, or a
branching corresponding to a non-deterministic choice over several possible skeletons.

Example 3.1.3 (Hooks). We define the hooks hexpr and hstmt for the evaluation of respec-
tively expressions and statements in Figure 3.1; the matched term is declared with the keyword

39

Part I, Chapter 3 – Skeletal Semantics

hook hexpr (s : state, e : expr)
matching e : state * value =

| Iconst (i) ->
let v = intToVal (i) in
(s, v)

| Bconst (b) ->
let v = boolToVal (b) in
(s, v)

| Var (x) ->
let v = read (x, s) in
(s, v)

| Plus (e1, e2) ->
let (s1, v1) = hexpr (s, e1) in
let (s2, v2) = hexpr (s1, e2) in
let v = add (v1, v2) in
(s2, v)

| Equal (e1, e2) ->
let (s1, v1) = hexpr (s, e1) in
let (s2, v2) = hexpr (s1, e2) in
let v = eq (v1, v2) in
(s2, v)

| Not (e1) ->
let (s1, v) = hexpr (s, e1) in
let v' = neg (v) in
(s1, v')

hook hstmt (s : state, t : stmt)
matching t : state =

| Skip -> s
| Assign (x, e) ->

let (s1, v) = hexpr (s, e) in
write (x, s1, v)

| Seq (t1, t2) ->
let s1 = hstmt (s, t1) in
hstmt (s1, t2)

| If (e1, t2, t3) ->
let (s1, v) = hexpr (s, e1) in
branch

let () = isTrue (v) in
hstmt (s1, t2)

or
let () = isFalse (v) in
hstmt (s1, t3)

end
| While (e1, t2) ->

let (s1, v) = hexpr (s, e1) in
branch

let () = isTrue (v) in
let s2 = hstmt (s1, t2) in
hstmt (s2, While (e1, t2))

or
let () = isFalse (v) in
s1

end

Figure 3.1: Hooks in IMP

matching. Branchings are written branch .. (or ..)* end, while the other sorts of skelements
(filter call, hook call, return) are not preceded by keywords, as we can easily tell them apart.

The rules for If and While illustrate branchings. In both cases, we evaluate the first term
to get a value v. In most programming languages, we would then branch depending on v. We
encode this behavior with the non-deterministic branchings of skeletal semantics by starting
each branch with a filter either isTrue or isFalse, which causes one of the branches to fail.

Evaluating expressions with hexpr returns a state although it is never modified. This choice
prepares for extensions of the language, such as function calls, where the state could be mutated.

This version of skeletal semantics also supports basic parametric polymorphism. We do not
present this feature, as it is not supported by neither the Coq extraction (Section 3.5) nor the
small-step transformation (Chapter 4).

40

3.2. Syntax of Skel

3.2 Syntax of Skel

Formally, we write ã for a (possibly empty) tuple (a1, . . . , an), and ∥ã∥ for its size, here n.
Unless explicitly stated, tuples are not expected to have the same arity. We write ã, b and ã, b̃

for the extension of a tuple on the right, and we have ∥ã, b̃∥ = ∥ã∥ + ∥b̃∥. We write ai ∈ ã to
state that ai is an element of the tuple ã. Given a function or relation f , we write f̃(a) for
(f(a1), . . . , f(an)) assuming ∥ã∥ = n. Similarly, assuming ∥ã∥ = ∥b̃∥ = n, we write g̃(a, b) for
(g(a1, b1), . . . , g(an, bn)).

We let c, f , and h range over respectively constructor, filter, and hook names. Assuming a
countable set V of variables ranged over by v (and also w, x, y, and z), the grammar of terms (t),
skeletons (S), and skelements (K) is defined as follows.

t ::= v | c(t̃)

S ::= let ṽ = K in S | K

K ::= Filter f (t̃) | Hook h (t̃, t) | Return (t̃) | Branching (S̃)

The skeletal semantics of a language consists in:

• a set (T = Tb ∪Tp) of types ranged over by s, combining base types Tb, and program types
Tp ranged over by sp;

• a set C of constructors, with a typing function ctype : C → T̃ × Tp;

• a set F of filters, with a typing function ftype : F → T̃ × T̃ ;

• a set H of hooks, with a typing function htype : H → (T̃ × Tp) × T̃ ;

• a set R of rules of the form h(ỹ, c(x̃)) := S, assuming we have htype(h) = ((s̃, sp), s̃′),
ctype(c) = (s̃′′, sp), ∥ỹ∥ = ∥s̃∥, and ∥x̃∥ = ∥s̃′′∥.

The typing of constructors restricts their output to a term of program type, while filters may
produce terms of any type. The input of a hook T̃ × Tp is composed of auxiliary terms of type
T̃ and of the term being evaluated of program type Tp. We define three projections htypein,
htypep, and htypeout so that if htype(h) = ((s̃, sp), s̃′), then htypein(h) = s̃, htypep(h) = sp,
and htypeout(h) = s̃′.

The Skel meta-language is strongly statically typed. As such, the variables v in terms and
skeletons are associated with a base or program type. As hinted at in Section 3.1, the typing
system is polymorphic but we ignore the details for the sake of simplicity.

A rule h(ỹ, c(x̃)) := S defines the behavior of h on the constructor c by the skeleton S, which
describes the sequence of reductions to perform using the input variables x̃ and ỹ. We assume
the variables x̃, ỹ to be pairwise distinct, and to contain the free variables of S. We suppose that

41

Part I, Chapter 3 – Skeletal Semantics

at most one rule handling c for h exists in R. The matching does not have to be exhaustive: a
hook h without a rule for c simply cannot reduce terms with c as head constructor.

3.3 Concrete Interpretation

The dynamic of a skeletal semantics is given by the concrete interpretation of the rules defining
its hooks [17], which corresponds to a big-step semantics. This interpretation computes the
result of applying a hook to a term by inductively interpreting the skeleton of the rule of the
corresponding constructor and hook, under some environment mapping skeleton variables to
values.

The interpretation supposes an instantiation of the base types and filters. For every base type
s ∈ Tb we assume given a set C(s), representing its values. For every program type sp ∈ Tp, we
inductively construct its set of closed program terms C(sp) from the constructors of the skeletal
semantics and the values of the different sets C(s) for s ∈ T . For every filter f ∈ F with typing
ftype(f) = s̃, s̃′, we assume a relation Rf between the elements of C̃(s) and C̃(s′). If ã are values
of C̃(s) and b̃ are values of C̃(s′), we write Rf (ã) ⇓ b̃ when the interpretation of f relates ã to b̃.

Example 3.3.1. For IMP, we instantiate the base type ident with strings, int with integers (Z),
bool with Booleans (B = {⊤; ⊥}), value with the disjoint union (Z∪B), and store with partial
functions from strings to values. The interpretations of the different filters are the following:

• intToVal and boolToVal inject their arguments in (Z ∪ B);

• read(x,s) returns the result of applying s to x;

• write(x,s,v) returns the partial function mapping x to v and every y ̸= x to s(y);

• eq(x,y) returns ⊤ if both values are equal, ⊥ otherwise;

• add(x,y) is only defined on integers so that Radd(i1, i2) ⇓ (i1 + i2) for any i1 and i2;

• neg is only defined on booleans so that Rneg(⊤) ⇓ (⊥) and Rneg(⊥) ⇓ (⊤);

• isTrue only accepts ⊤ so that RisTrue(⊤) ⇓ ();

• isFalse only accepts ⊥ so that RisFalse(⊥) ⇓ ().

The relations above make the distinction between integers and booleans. We can define an inter-
pretation where conditional branching on an integer is allowed, by extending the interpretation
of the filters isTrue and isFalse as follows:

RisFalse(0) ⇓ (); ∀i ̸= 0, RisTrue(i) ⇓ ()

The strength of skeletal semantics is that this choice is local to the interpretation of filters: we
do not have to change anything in the definitions or interpretations of the hooks.

42

3.3. Concrete Interpretation

Σ(t̃) ⇓h b̃

Σ ⊢ Hook h t̃ ⇓ b̃

Rf (Σ̃(t)) ⇓ b̃

Σ ⊢ Filter f t̃ ⇓ b̃

Σ̃(t) = b̃

Σ ⊢ Return t̃ ⇓ b̃

Si ∈ S̃ Σ ⊢ Si ⇓ b̃

Σ ⊢ Branching S̃ ⇓ b̃

Σ ⊢ K ⇓ ã Σ + ˜{v 7→ a} ⊢ S ⇓ b̃

Σ ⊢ let ṽ = K in S ⇓ b̃

h(ỹ, c(x̃)) := S ∈ R ˜{y 7→ a} + ˜{x 7→ a′} ⊢ S ⇓ b̃

(ã, c(ã′)) ⇓h b̃

Figure 3.2: Inference Rules for the (Inductive) Concrete Interpretation

We write Σ for an environment mapping a finite set of variables in V (its domain) to values
in ⋃

s∈T C(s). We write Σ(v) to access the mapping associated to v in Σ, and we extend the
notation to terms Σ(t) as follows: Σ(c(t̃)) = c(Σ̃(t)). The environment mapping a single variable
v to a value b is written {v 7→ b}, and we write Σ + Σ′ for the update of Σ with Σ′, so that
(Σ + Σ′)(v) = Σ′(v) if v is in the domain of Σ′, and (Σ + Σ′)(v) = Σ(v) otherwise.

The interpretation Σ ⊢ S ⇓ b̃, defined in Figure 3.2, is a relation stating that S outputs the
values b̃ under the environment Σ; it assumes that the free variables of S are in the domain of
Σ. A LetIn structure is evaluated sequentially, starting with K under Σ and then continuing
with S under the environment updated with the outputs of K. The environment Σ is used when
interpreting skelements to turn the input terms t̃ into values. These values are simply returned
in the case of a Return skelement. A filter call looks for a possible result related to these values
in Rf . A branching returns the result of one of its branches; it does not matter if some branches
are stuck or non-terminating as long as one branch succeeds. To evaluate a hook call, we first
compute the arguments of the hook, and find the rule corresponding to its constructor. We then
interpret the skeleton of the rule under a new environment mapping the free variables of the
skeleton to the appropriate values taken from Σ. Figure 3.2 uses an auxiliary judgment ã ⇓h b̃

saying that the hook h taking ã as input can output b̃. This allows for simpler definitions and is
use extensively in the proofs (see Chapter 5).

Note that our approach differs from the one of [17]: they take the smallest fixpoint of a
functional describing one step of the relation, whereas we directly define the semantics as an
inductive definition. This interpretation is inherently big-step, as a judgment Σ ⊢ S ⇓ b̃ computes
the final value returned by S. It is also non-deterministic, as apparent in the rules for branching
and filter call, since Rf may relate several results to the same input.

43

Part I, Chapter 3 – Skeletal Semantics

Example 3.3.2. We interpret the following statement st with the hook hstmt:

st := (If Equal(Var("length"),Plus(Var("width"),2))

Assign("width",Iconst(4))

Assign("flag",Bconst(⊥)))

The program is a simple conditional: if length ?= width + 2, then width := 4, otherwise
flag := ⊥. We evaluate this statement in the state a0 = {length 7→ 4 ; width 7→ 2}, so
we expect the result to be a1 = {length 7→ 4 ; width 7→ 4}. We remind that the rule is
hstmt(s, If(e1,t2,t3)) := SIf, where SIf is the following skeleton (cf. Figure 3.1):

let (s1, v) = hexpr (s, e1) in
branch

let () = isTrue (v) in (* | S1 *)
hstmt (s1, t2) (* | *)

or
let () = isFalse (v) in (* || S2 *)
hstmt (s1, t3) (* || *)

end

We interpret this skeleton in the initial environment:

Σ0 = {s 7→ a0 ; e1 7→ Equal(Var("length"),Plus(Var("width"),2));

t2 7→ Assign("width",Iconst(4)) ; t3 7→ Assign("flag",Bconst(⊥))}

We recursively evaluate the first hook call on the values Σ0(s, e1) by finding the corresponding
rule hexpr(s, Equal(e1,e2)) := SEqual in R. We interpret SEqual under the new environment
Σ2 = {s 7→ a0 ; e1 7→ Var("length") ; e2 7→ Plus(Var("width"),2)}, which results in (a0, ⊤).

We then evaluate the branching in the extended environment Σ1 = Σ0 + {s1 7→ a0; v 7→ ⊤}.
Only the branch guarded by isTrue can succeed; given our definition of RisTrue, we have
RisTrue(Σ1(v)) ⇓ (), meaning that we pass this filter call.

Finally, we compute the recursive call on the values (a0, Assign("width",Iconst(4))). Once
again we look for the corresponding rule in R and create a new environment for this evaluation.

44

3.4. Coinductive Interpretation

Σ(t̃) ⇑h

Σ ⊢ Hook h t̃ ⇑
==============

h(ỹ, c(x̃)) := S ∈ R ˜{y 7→ a} + ˜{x 7→ a′} ⊢ S ⇑

(ã, c(ã′)) ⇑h

==

Si ∈ S̃ Σ ⊢ Si ⇑

Σ ⊢ Branching S̃ ⇑
==================

Σ ⊢ K ⇑

Σ ⊢ let ṽ = K in S ⇑
======================

Σ ⊢ K ⇓ ã Σ + ˜{v 7→ a} ⊢ S ⇑

Σ ⊢ let ṽ = K in S ⇑
================================

Figure 3.3: Coinductive Interpretation

As expected, this computation returns a1 and it closes the derivation of Σ0 ⊢ SIf ⇓ a1.

...
Σ2 ⊢ SEqual ⇓ (a0, ⊤)

Σ0 ⊢ hexpr (s,e1) ⇓ (a0, ⊤)

RisTrue(⊤) ⇓ ()
Σ1 ⊢ isTrue (v) ⇓ ()

...
Σ3 ⊢ SAssign ⇓ a1

Σ1 ⊢ hstmt (s1,t2) ⇓ a1

Σ1 ⊢ S1 ⇓ a1

Σ1 ⊢ Branching(S1, S2) ⇓ a1

Σ0 ⊢ SIf ⇓ a1

3.4 Coinductive Interpretation

The concrete interpretation defined in Section 3.3 is a standard big-step semantics, and cannot
be used to express infinite computations. As an additional tool, we define a coinductive semantics
for the meta-language Skel. The rules are given in Figure 3.3, where the double lines mean the
rules must be interpreted coinductively.

There is no rule for returns and filters, as they cannot diverge. A hook call diverges if the
evaluation of the corresponding skeleton diverges. A branching diverges if one of the branches
diverges. For LetIns, we have two different rules, as there is two opportunities for infinite behav-
iors. A sequence diverges if either the first skelement diverges, or the skelement succeeds (using
the concrete interpretation) but the rest of the computation then diverges.

This coinductive interpretation is used in Chapter 5 to prove that the transformation of
Chapter 4 preserves infinite behaviors.

3.5 Necro

Necro [21] is an OCaml implementation for the manipulation of skeletal semantics. Users can
easily define programming languages via the readable syntax we use for our examples (e.g.,

45

Part I, Chapter 3 – Skeletal Semantics

Figure 3.1). Necro then provides tools to manipulate skeletal semantics. The transformation
presented in Chapter 4 is implemented in this framework.

The main feature of Necro is its ability to create an OCaml interpreter from a skeletal se-
mantics. The interpreter is parameterized by the types and functions representing the base types
and filters. Once these have been instantiated, the interpreter provides a module containing an
evaluation function for each hook of the skeletal semantics. The evaluation follows the approach
of the concrete interpretation presented in Section 3.3, recursively calling the evaluation function
each time a hook is encountered. We extend the tool to also generate a small-step interpreter
(see Section 6.1).

More importantly, Necro is able to export a skeletal semantics into a formal Coq definition
of the language. This tool outputs a deep embedding—i.e., a data structure containing the user
definitions but without any semantic meaning—parameteric in the base types and filters. The
concrete interpretation of Section 3.3 is independently formalized in Coq, and can be applied
to give a semantics to user languages. We extensively use this tool to automatically provide
equivalence certificates for the results of our transformation (see Section 5.2).

46

Chapter 4

SMALL-STEP TRANSFORMATION

Given a big-step skeletal semantics, we transform it to produce a skeletal semantics whose
concrete interpretation behaves like a small-step interpretation of the initial semantics. We first
present the main steps of the transformation on the IMP language (defined in Section 3.1),
before defining the transformation formally in Section 4.2.

4.1 Overview on an Example

4.1.1 Coercions

The first phase of our transformation is to coerce return values into terms. Since we want small-
step reductions to transform a term into another term of the same program type, it means that
values returned by hooks need to be considered as terms of the corresponding input type.

In our example, we need to add constructors corresponding to the return types of the two
hooks, one of type (state, value) → expr for hexpr, and one of type state → stmt for hstmt.
The program types become:

type expr =
| Iconst of int
| ...
| Ret_hexpr of state * value

type stmt =
| Skip
| ...
| Ret_hstmt of state

In the final small-step semantics, we need to be able to extract these coerced values. To this
end, we define hooks to unpack the values for each constructor we introduce. In our example,
we get the two following functions:

hook getRet_hexpr (e : expr) matching e : state * value =
| Ret_hexpr (v1, v2) -> (v1, v2)
hook getRet_hstmt (t : stmt) matching t : state =
| Ret_hstmt v1 -> v1

These hooks are only defined for the corresponding newly created constructors, as trying to
unpack the value of a term not fully reduced should fail.

The transitory semantics at this point of the transformation is available in Appendix B.2.

47

Part I, Chapter 4 – Small-Step Transformation

4.1.2 New Constructors

The second phase is to determine which new constructors are required in order to produce a
small-step semantics. Most reduction rules use the state and the arguments of the constructor
only once. For instance, the evaluation of the term Plus(e1, e2) consists of first evaluating e1,
then evaluating e2, then combining the results. If we make progress on one subterm, let us say
e1 → e′

1, then we reconstruct the term as Plus(e′
1, e2). We can discard the initial value of e1

because the variables standing for e1 and e2 appear only once in the skeleton for Plus(e1, e2).
This allows us to reuse the constructor to rebuild a term after a step of computation.

In some cases, however, we cannot reconstruct using the same constructor after a step. The
different problematic situations are detailed in Section 4.2.2; here we only describe the main
problem, namely that we cannot remember two versions of the same term.

Unlike Plus, some constructors make use of their arguments several times in their reduction
rules, such as While. The reduction of While(e1, t2) might evaluate both e1 and t2 before cycling
back to the original term While(e1, t2). In a small-step setting, to reduce e1, we need to remember
both a working copy e′

1 of the expression and its initial value to cycle back. We cannot store
both e1 and e′

1 in the While constructor, so we create a new one While1 to do so.
In practice, the second phase of our transformation analyzes each hook call to determine in

which of the following categories if falls in.

• It is a tail-call, i.e., a final hook call forwarding its return values. Then there is nothing to
do.

• The terms being evaluated are only used once. In this case, we can reuse the same con-
structor to reconstruct a term.

• Some of the evaluated terms are used elsewhere. The naive reconstruction does not work,
and we need to create an additional constructor.

In the third case, the additional constructor we create mirrors the situation at the program point
and carries two copies of the terms evaluated several times. We also extend the corresponding
hook with a new reduction rule for this new constructor, which is roughly the remainder of the
initial skeleton rooted at the analyzed hook call.

We illustrate our analysis on several IMP constructors. For Plus, we can reuse the constructor
after each hook call:

| Plus (e1, e2) ->
let (s1, v1) = hexpr (s, e1) in (* reuse *)
let (s2, v2) = hexpr (s1, e2) in (* reuse *)
let v = add (v1, v2) in
(s2, v)

48

4.1. Overview on an Example

In both cases, the arguments of the calls—respectively s, e1 and s1, e2—are not needed in the
rest of the skeleton, so we can reconstruct at each program point reusing Plus.

For Seq, we have:

| Seq (t1, t2) ->
let s1 = hstmt (s, t1) in (* reuse *)
hstmt (s1, t2) (* tail-call *)

As before, we can reuse Seq after the first hook call as s and t1 are utilized only once. The
second hook call is simply a tail-call, so there is no need to worry about reconstruction.

The analysis gets more interesting for While:

| While (e1, t2) ->
let (s1, v) = hexpr (s, e1) in (* new constr: While1 *)
branch

let () = isTrue (v) in
let s2 = hstmt (s1, t2) in (* new constr: While2 *)
hstmt (s2, While (e1, t2)) (* tail-call *)

or
let () = isFalse (v) in
s1

end

The third hook call is a tail-call, as it is the final instruction of one of the reduction paths.
When analyzing the first one, we see that e1 is needed later, thus we cannot reuse While here.
Similarly, we cannot reuse the constructor for the second hook call since t2 is needed in the
tail-call.

For each of these two calls, we need to create a new constructor corresponding to their respec-
tive program point. The new constructors are built with two different kinds of arguments. Firstly,
we create an argument for every term being evaluated at the analyzed hook call, namely s, e1

for the first one, and s1, t2 for the other. Secondly, we create arguments for the variables needed
in the rest of the skeleton; in our example, it means keeping e1 and t2 in both cases. However,
we do not need to duplicate s1 nor add an argument for v as they are no longer necessary.
As a result, while most variables appear only once in the arguments of a new constructor, the
contentious ones—used in and after the corresponding hook call—are duplicated. In the end, we
extend the definition of IMP with the following constructors:

type stmt =
| ...
| While of expr * stmt
| While1 of state * expr * expr * stmt
| While2 of state * stmt * expr * stmt
| Ret_hstmt of state

49

Part I, Chapter 4 – Small-Step Transformation

We also add a new rule for each constructor introduced. The new skeleton consists in resuming
the computation from the corresponding analyzed hook call, updating the input of the call to
make use of the new arguments of the constructor. The resulting rule for While1 is almost the
same as the one for While, while the skeleton of While2 covers only its last two skelements. We
do not modify the rules for While or the other constructors at this stage.

hook hstmt (s : state, t : stmt) matching t : state =
| ...
| While1 (s0, e0, e1, t2) ->

let (s1, v) = hexpr (s0, e0) in
branch

let () = isTrue (v) in
let s2 = hstmt (s1, t2) in
hstmt (s2, While (e1, t2))

or
let () = isFalse (v) in
s1

end
| While2 (s0, t0, e1, t2) ->

let s2 = hstmt (s0, t0) in
hstmt (s2, While (e1, t2))

The added rules become useful when we change the rules to introduce calls to While1 and
While2, as part of the last step of the transformation. Note that these added rules already
include the information from the analysis, see Section 4.2.2 for details.

The transitory semantics at this point of the transformation is provided in Appendix B.3.

4.1.3 Make the Skeletons Small-Step

Previous phases set the stage for the main transformation, but our semantics is still big-step at
this point, since the hooks fully compute their arguments. The last phase of the transformation
makes the hooks behave in a small-step way.

Firstly, we need to change the output types of every hook to make them match the input
ones. The headers of the hooks become:

hook hexpr (s : state, e : expr) matching e : state * expr = ...
hook hstmt (s : state, t : stmt) matching t : state * stmt = ...

Doing so makes the types coherent with a small-step reduction process meant to be iterated.
More importantly, we need to update the skeletons themselves. We recall that skeletons are

sequences of operations (skelements), which are mostly composed of filter calls and hook calls.
For our transformation, we consider that only hook calls correspond to reduction steps. The
reason is that filters represent simple atomic operations that are not meant to be interrupted,

50

4.1. Overview on an Example

while hook calls often correspond to the evaluation of a subterm. Thus, this last phase essentially
focuses on transforming hook calls. We also need to take care of the result returned at the end
of a skeleton, so that its type matches the updated output type of its hook.

We distinguish four cases, that we illustrate with rules from IMP. In each example, for
readability, we provide small-step inference rules equivalent to the concrete interpretation of the
output skeletal semantics rules.

1 If the last skelement of a skeleton is not a tail-call, then we need to wrap the results differently
to match the new typing of the hook. The final result needs to be coerced to the input program
type using one of the new constructors defined in the first phase (Section 4.1.1). For type
checking, we also have to return the other arguments of the hook, even if they are not of any use.
For instance, the output of the rule for the Iconst constructor in the initial big-step skeleton is
(s, v) (cf. Figure 3.1). Using a coercion, we turn this pair into an expression Ret_hexpr(s, v);
if we could we would return this term only, but the output type of the hexpr hook is (state *

expr), so we also return a useless copy of s. The rule for Iconst is thus as follows.
| Iconst i ->

let v = intToVal (i) in
(s, Ret_hexpr (s, v)) s, i → s, (s, intToVal(i))

2 The most interesting case is when we reach a hook call where we know we can reuse the
constructor. In this situation, we are at a program point corresponding to the evaluation of a
subterm, and we have two possibilities: either the subterm needs to be evaluated further, in
which case we need to take a reduction step and reconstruct, or the subterm has been fully
evaluated, and we need to extract its value and continue the reduction according to the rest of
the skeleton. We distinguish the two behaviors in skeletal semantics using branches. For instance,
transforming the first hook call of the Plus constructor produces a rule structured as follows:
| Plus (e1, e2) ->

branch
let (w1, w2) = hexpr (s, e1) in
(w1, Plus (w2, e2))

or
let (s1, v1) = getRet_hexpr (e1) in
...

end

s, e1 → w1, w2

s, e1 + e2 → w1, w2 + e2

e1 = (s1, v1) . . .

s, e1 + e2 → . . .

where the dots correspond to the transformation of the second hook call. In the first branch, we
reconstruct as (w1, Plus (w2, e2)), overwriting the variables s and e1 with the new terms
resulting from the reduction step. In the second branch, we extract the coerced value using the
hook defined alongside the constructor in Section 4.1.1. Even though we use a branching, the
reduction is deterministic, as the definition of getRet_hexpr is restricted to coerced values,

51

Part I, Chapter 4 – Small-Step Transformation

while hexpr operates only on terms that are not coerced values.

3 If we reach a hook call where we are not able to reuse the constructor, i.e., one of the calls
for which we created a new constructor during the analysis, then the small-step function has to
change the constructor after a reduction step. To simplify the semantics, we can equivalently
decide to duplicate the necessary terms and change the constructor before reducing. To simplify
even further, we consider the change of constructor to be a reduction step by itself; the next small
step can then reduce the hook call. For instance, the reduction rule for the While constructor
becomes:
| While (e1, t2) ->

(s, While1 (s, e1, e1, t2)) s, While(e1, t2) → s, While1(s, e1, e1, t2)

We simply duplicate s and e1 using the new constructor While1. We immediately return this
new configuration. Calling the hook hstmt after that would then executes the skeleton for While1

where the next reduction step and reconstruction actually take place. Similarly, we call the new
constructor While2 in the rule created for While1:
| While1 (s0, e0, e1, t2) ->

branch (* | *)
let (w1, w2) = hexpr (s0, e0) in (* | first hook call *)
(s, While1 (w1, w2, e1, t2)) (* | transformed as *)

or (* | previously *)
let (s1, v) = getRet_hexpr (e0) in (* | *)
branch (* # initial structure *)

let () = isTrue (v) in (* # *)
(s, While2 (s1, t2, e1, t2)) (* || second hook call *)

or (* # *)
let () = isFalse (v) in (* # *)
(s, Ret_hstmt s1) (* ## coerced return *)

end (* # *)
end (* | *)

s0, e0 → w1, w2

s, While1(s0, e0, e1, t2) → s, While1(w1, w2, e1, t2)

e0 = (s1, v) isTrue(v)
s, While1(s0, e0, e1, t2) → s, While2(s1, t2, e1, t2)

e0 = (s1, v) isFalse(v)
s, While1(s0, e0, e1, t2) → s, s1

This shows that the final transformation phase operates not only on the rules of the initial
semantics, but also on the ones created during the analysis.

4 Finally, we also cut the tail-calls to simplify the semantics. This creates administrative small-
steps of the form s, If(True, t2, t3) → s, t2 where no subcomputation takes place. It generates

52

4.2. Formal Transformation Phases

behaviors closer to usual pen-and-paper definitions. We can see this with the Seq constructor:
the first hook call is transformed as previously, but the second is turned into a return.

| Seq (t1, t2) ->
branch (* | *)

let (w1, w2) = hstmt (s, t1) in (* | first hook call *)
(w1, Seq (w2, t2)) (* | transformed as previously *)

or (* | *)
let s1 = getRet_hstmt (t1) in (* | *)
(s1, t2) (* || 2nd call becomes return *)

end (* | *)

s, t1 → w1, w2

s, t1; t2 → w1, w2; t2

t1 = s′

s, t1; t2 → s′, t2

This final phase produces a small-step skeletal semantics where each hook call reduces its
arguments only once. It is equivalent to the initial big-step one, in the sense that evaluating a
term with either semantics produces the same value. The result of the complete transformation
on IMP, as well as the different intermediate semantics, can be found in Appendix B. We state
the equivalence between the two semantics in Section 5.2.

4.2 Formal Transformation Phases

We define formally the different phases of our transformation using the notations introduced in
Section 3.2. We start with a given skeletal semantics (Tb, Tp, C0, F, H0, RBS, ctype, ftype, htype).
The elements describing types and filters (i.e., Tb, Tp, F , and ftype) are not modified by the
transformation, and are implicitly carried over to all intermediate semantics. The sets of con-
structors (C0) and hooks (H0), as well as their typing functions ctype and htype, are expanded
during the transformation. To simplify the notations, we do not change the names of the typing
functions throughout the transformation. The main focus of the transformation is the set of
rules defining the semantics of the user language. We start with a set RBS, and each phase of
the translation expands or modifies it. Intermediate semantics are thus described by their sets
of constructors and hooks, but most importantly by their set of rules.

4.2.1 Coercions

The first step is to add coercions for return values like in Section 4.1.1. For every hook we add
a new constructor to pack its result as well as the corresponding hook to unpack it.

C1 = C0 ∪ {Ret_h | h ∈ H0} with ctype(Ret_h) = (htypeout(h), htypep(h))

H1 = H0 ∪ {getRet_h | h ∈ H0} with htype(getRet_h) = (((), htypep(h)), htypeout(h))

53

Part I, Chapter 4 – Small-Step Transformation

We remind that htypein, htypep, and htypeout are the projections of the typing function
htype : H0 → (T̃ × Tp) × T̃ , representing respectively the types of input states, the program
type being reduced, and the output type of the hook. Each coercion turns the return values
htypeout(h) of the corresponding hook into an executable program of type htypep(h).

Each extracting hook takes this program type as its single input, as it does not depend on
any environment type to reduce. It is defined only for the constructor it destructs. We know
how many variables it returns by looking at the output type of the hook.

RgetRet = {getRet_h(Ret_h ṽ) := Return ṽ | h ∈ H0 ∧ ∥htypeout(h)∥ = ∥ṽ∥}

Note that the rules RgetRet do not need to be transformed further. The following phases of
the transformation focus on changing the initial big-step rules. We finish this phase with the
constructors C1, hooks H1, and rules RBS ∪ RgetRet.

4.2.2 New Constructors

As presented in the overview, the second phase consists in an analysis of the hook calls to split
them into three different categories. We exploit the results of the analysis during the final stage
of the transformation. For the formal presentation, we introduce an extended skeletal semantics
as an intermediate representation to carry over the information we need—the implementation
uses ad-hoc data structures instead. We annotate hook calls with either Tail for a tail-call,
Reuse for calls from which we can reconstruct while reusing the same constructor, or New c

when we create a new constructor c.

a ::= New c | Tail | Reuse

S ::= let ṽ = K in S | K

K ::= Filter f t̃ | Hook a h (t̃, t) | Return t̃ | Branching S̃

We proceed in two steps: we first analyze the rules to annotate the hook calls, then we create
the needed new constructors and their rules.

Analysis

A simple way to make the semantics small-step would be to introduce a new constructor for
each hook call. While it is safe to do so, the resulting semantics would be unnecessarily bloated,
as we can reuse constructors and reconstruct in many cases. Our goal is to reuse them as much
as possible to obtain a semantics close to the usual small-step semantics. It turns out that
constructor reuse is not possible in the following cases:

• after a filter call;

54

4.2. Formal Transformation Phases

• in the continuation of a branching;

• if an argument of the hook call is not a variable, or if it is used several times in the skeleton.

Firstly, even if we do not consider computing a filter as a step, we do not want to recompute
the same filter several times. A reuse implies that the whole skeleton is evaluated up to the hook
call at each reduction step, meaning that a filter placed before the hook call would be called
at every reduction step. This could have unintended consequences if the filters are defined with
side effects. We therefore give up on reuse if the analyzed hook call is after a filter call.

Secondly, we need to take into account the non-determinism induced by a branching. In a
skeleton like let ṽ = Branching(Hook h1 t̃1, Hook h2 t̃2) in Hook h t̃, two different reduc-
tion paths lead to the hook call after the branching. The premise of constructor reuse is that
reevaluating the skeleton from the start should lead to the same evaluation context. However,
reevaluating the skeleton in such a situation may take a different path and reach the last hook
call with different values bound to the variables in ṽ. As such, we give up on reuse if the analyzed
hook call is in the continuation of a branching.

Lastly, as illustrated in the overview, reusing constructors means that we should be able to
store the partially reduced terms in the constructor being evaluated. It is not possible if some of
the arguments of the constructor are not variables, or if these variables are reused in the skeleton.

Formally, the annotation process of a given skeleton S is noted [S]hr,V
L,b , where:

L is a boolean indicating if we are at the toplevel of the LetIn structure of the main skeleton,
used to detect tail-calls;

b is a boolean indicating if we are at a position allowing for reuse, i.e., indicating whether
we are after a filter call or in the continuation of a branching;

V is the list of the variables that are only used once throughout the whole initial skeleton;

hr is the name of the hook corresponding to the rule being analyzed, also used to detect
tail-calls, as detailed below.

The analysis is defined in Figure 4.1. Given a rule h(ỹ, c(x̃)) := S, we compute the set of
variables that are used exactly once in S, written SglUse(S), and we fix V and h as respectively
SglUse(S) and h. The parameter V and hr are constants while L and b are initialized at ⊤ and
may change during the analysis.

The analysis goes through the skeleton, leaving filters calls and returned values unchanged.
As expected, the boolean b is set to ⊥ after going through a filter call or a branching. Similarly,
L is switched to ⊥ in the first part of a LetIn structure.

A final hook call is considered a tail-call if and only if it is situated at the toplevel of the
main skeleton (L = ⊤) and if the hook being called is the one being analyzed (h = hr). The

55

Part I, Chapter 4 – Small-Step Transformation

[Branching(S1, . . . , Sn)]hr,V
L,b ≜ Branching([S1]hr,V

L,b , . . . , [Sn]hr,V
L,b)

[Filter f t̃]hr,V
L,b ≜ Filter f t̃

[Return t̃]hr,V
L,b ≜ Return t̃

[Hook h t̃]hr,V
L,b ≜ Hook Tail h t̃ if L = ⊤, h = hr

[Hook h w̃]hr,V
L,b ≜ Hook Reuse h w̃ if b = ⊤, w̃ ∈ V

[Hook h t̃]hr,V
L,b ≜ Hook (New c) h t̃ otherwise, c fresh

[let ṽ = K in S]hr,V
L,b ≜ let ṽ = [K]hr,V

⊥,b in [S]hr,V
L,⊥ if K ̸= Hook h t̃

[let ṽ = Hook h w̃ in S]hr,V
L,b ≜ let ṽ = Hook Reuse h w̃ in [S]hr,V

L,b if b = ⊤, w̃ ∈ V

[let ṽ = Hook h t̃ in S]hr,V
L,b ≜ let ṽ = Hook (New c) h t̃ in [S]hr,V

L,b otherwise, c fresh

Figure 4.1: Hook calls analysis

second condition prevents typing issues. In the initial big-step semantics, a rule from a hook h1

can make a final call to a hook h2 if they have the same return types. For instance, we could
define the evaluation of a list of expressions as simply evaluating the head of the list:

hook h2 (e : expr) matching e : value = ...
hook h1 (l : exprlist) matching l : value =
| Cons(e, l1) -> h2 (e)

However, a small-step hook should have the same return type as its input type, a change we do
in the last phase of the transformation:

hook h2 (e : expr) matching e : expr = ...
hook h1 (l : exprlist) matching l : exprlist = ...

The call to h2 has to be modified to make the types match, hence it cannot be a tail-call.
A hook call can only reuse its constructor if it is not after a filter call or a branching (b = ⊤)

and every term is a variable not used elsewhere (w̃ ∈ V). In the case a hook call can be annotated
with either Tail or Reuse, we choose to give precedence to the former, because tail-calls are
more specific and lead to simpler skeletal semantics at the end of the transformation. Hook calls
that cannot be annotated Tail or Reuse are instead associated with a fresh constructor name
created on the fly.

We apply the analysis to every skeleton in the semantics, updating the set of rules as follows.

Rlbl = {h(ỹ, c(x̃)) := [S]h,SglUse(S)
⊤,⊤ | (h(ỹ, c(x̃)) := S) ∈ RBS}

We now have the extended set of rules Rlbl ∪ RgetRet, on constructors C1 and hooks H1.

56

4.2. Formal Transformation Phases

Generation

After the analysis, we process every hook call annotated with a fresh constructor name c to
compute its type and generate a fresh rule for c. When traversing a skeleton to find such a
call, we construct its continuation—the rest of the computation, represented as a context—as
it is used to create the fresh skeleton of the new rule. To do so, we define a monadic bind on
skeletons, noted < S1 | x̃ | S2 >, which executes S1, binds the results to x̃ then executes S2.

< let ỹ = K in S1 | x̃ | S2 > ≜ let ỹ = K in < S1 | x̃ | S2 >

< K | x̃ | S2 > ≜ let x̃ = K in S2

We define contexts representing the continuation of a specific skelement or skeleton as follows.

E ::= [·] | < [·] | x̃ | S >

The generation process for a hook call annotated with c in a given rule r = (hr(ỹ, cr(x̃)) :=
Sr) is done in two steps: we go through Sr to find the call and build its continuation, then we
update the semantics by adding c, its typing, and its rule. We write JSKr

E for the first step, where
r is the rule under consideration, E the continuation built so far, and S the skeleton we traverse
(initially Sr). We write generate(c, h, r, E) for the second step, i.e., extending the hook h with
a rule for c built from r and E.

The operation JSKr
E inductively goes through S, building the continuation in its parameter

E and returning the set of new rules.

JBranching (S1, . . . , Sn)Kr
E ≜ JS1Kr

E ∪ . . . ∪ JSnKr
E

JFilter f t̃Kr
E = JReturn t̃Kr

E ≜ ∅

JHook Reuse h t̃Kr
E = JHook Tail h t̃Kr

E ≜ ∅

JHook (New c) h t̃Kr
E ≜ {generate(c, h, r, E)}

Jlet ṽ = K in SKr
E ≜ JKKr

<[·]|ṽ|E[S]> ∪ JSKr
E

Once a hook call h needing c is found, we generate the corresponding rule using generate(c, h, r, E).
Assuming r = (hr(ỹ, cr(x̃)) := Sr), we proceed as follows.

We first compute the variables needed as arguments of c and their respective type. We start
with the variables z̃ (with type s̃) needed to evaluate E, which are the ones occurring in E,
but not defined in E and not in ỹ. We do not need to include the variables ỹ as arguments of c

since they are already accessible at that program point. We then introduce fresh variables w̃ to
evaluate the current hook call h, as it is the first skelement of the new rule for c. The types ũ

of the variables w̃ are given by the input types of h, i.e., ũ = (htypein(h), htypep(h)). Finally,

57

Part I, Chapter 4 – Small-Step Transformation

the typing of c is ctype(c) = ((ũ, s̃), htypep(hr)), since the new constructor should build the
program type evaluated by the analyzed rule.

We then create the new rule for c as hr(ỹ, c(w̃, z̃)) := E[Hook Reuse h w̃]: it evaluates h with
the variables w̃ and then E with ỹ and z̃. The call h can reuse the new constructor c as the
variables have been defined so that there is no overlap in their uses.

Example 4.2.1. We apply the generation process to the second hook call in the rule for While

presented in Section 4.1.2. We reach this hook call K in a context E:

K := Hook (New While2) hstmt (s1, t2)

E := < [·] | s2 | Hook Tail hstmt (s2, While (e1, t2)) >

The new constructor needs the variables (e1 : expr) and (t2 : stmt) to evaluate E, but not
s2, as it is defined by E. We get the input types ũ = (state, stmt) of the hook call, for which
we create the fresh variables w̃ = (s0, t0). From there we type the new constructor and create
its rule:

ctype(While2) = (state, stmt, expr, stmt), stmt

hstmt(s, While2(s0, t0, e1, t2)) :=

let s2 = Hook Reuse hstmt (s0, t0) in Hook Tail hstmt (s2, While (e1, t2))

It roughly corresponds to the following big-step inference rule, with annotations to help us
transform it to small-step.

s0, t0 ⇓ s2 s2, While(e1, t2) ⇓ s3

s, While2(s0, t0, e1, t2) ⇓ s3

Example 4.2.2 (Without constructor reuse). If we do not aim at reusing initial constructors,
the analysis simply creates a fresh constructor for each hook call, which are processed exactly
as above. To evaluate terms of the form Plus(e1, e2), we create Plus1 for the evaluation of e1

and Plus2 for e2.

hexpr(s, Plus1(s0, e0, e2)) := let (s1, v1) = Hook Reuse hexpr (s0, e0) in ...

hexpr(s, Plus2(s0, e0, v1)) := let (s2, v2) = Hook Reuse hexpr (s0, e0) in ...

They roughly corresponds to the following big-step inference rules.

s0, e0 ⇓ s1, v1 s1, e2 ⇓ s2, v2

s, (s0, e0) +1 e2 ⇓ s2, (v1 + v2)
s0, e0 ⇓ s2, v2

s, (s0, e0) +2 v1 ⇓ s2, (v1 + v2)

58

4.2. Formal Transformation Phases

To sum up, the generation phase consists of running the scanning JSrKr
[·] for every rule

r = (hr(ỹ, cr(x̃)) := Sr) ∈ Rlbl, resulting in a new set C2 ⊇ C1 of constructors and a new set
Rgen ⊇ Rlbl of rules.

We now have a set of rules Rgen ∪ RgetRet, defined on constructors C2 and hooks H1.

Optimization

With the first analysis, we determine which hook calls can be reconstructed reusing the initial
constructor. The resulting annotations are still present in the new rules we create, but may not
be as accurate as they could be in presence of the new constructors. With a constructor restarting
the computation at a closer program point, some hook calls can now reuse their constructors. A
common example, presented below, is a rule evaluating two values with the same state.

As an optional optimization, we can repeat the analysis on the newly created skeletons to
increase the number of constructor reuse. However, such an optimization also requires to garbage
collect constructors and rules that have been introduced but are no longer needed. For this, we
go through the final skeletal semantics and remove the constructors and rules that are no longer
reachable from an initial term.

Example 4.2.3. Consider the following hook and constructor:

hook h (s : state, t : term) matching t : value :=
| C(t1, t2) ->

let v1 = h (s, t1) in
let v2 = h (s, t2) in
merge (v1, v2)

Both hook calls make use of the variable s, so s is not part of the set SglUse(S) used for the
analysis. As a result, none of the hook calls can reuse the constructor C, and the analysis creates
two constructors C1 and C2. Then the generation phase builds the corresponding rules and we
reach the following situation:

hook h (s : state, t : term) matching t : value :=
| C(t1, t2) ->

let v1 = h (s, t1) in (* new constr: C1 *)
let v2 = h (s, t2) in (* new constr: C2 *)
merge (v1, v2)

| C1(s0, t0, t2) ->
let v1 = h (s0, t0) in (* reuse *)
let v2 = h (s, t2) in (* new constr: C2 *)
merge (v1, v2)

| C2(s0, t0, v1) ->
let v2 = h (s0, t0) in (* reuse *)
merge (v1, v2)

59

Part I, Chapter 4 – Small-Step Transformation

Inside the new evaluation rule of C1, the second hook call can be reconstructed reusing C since s

is now only used once. Intuitively, there is no need for a second new constructor C2. By repeating
the analysis on the new rules we find a new possible constructor reuse:

| C1(s0, t0, t2) ->
let v1 = h (s0, t0) in (* reuse *)
let v2 = h (s, t2) in (* reuse *)
merge (v1, v2)

At this point, C2 still appears in the rule for C so we cannot get rid of it. However, at the end of
the full transformation it will be apparent that C immediately uses the constructor C1 and that
C2 cannot be reached. We garbage collect it at this point.

4.2.3 Distribute Branchings

This phase is not present in the extended example as the issue it solves does not occur in IMP.
Reconstructing terms is problematic for hooks in nested computations. In the structure

let x = (let y = Hook eval t in S1) in S2, a small-step transformation of eval may return
a partially evaluated term which ends up stored in x, while S2 may expect x to contain a value; for
example S2 may start by filtering x with isTrue. We avoid the issue by sequencing such nested
computations as let y = Hook eval t in let x = S1 in S2, and the hook transformation of
Section 4.2.4 ensures that x may only contain a value.

The grammar of skeletal semantics of Section 3.2 does not allow for nested LetIn, but the
same issue is present for branchings inside LetIn. We therefore recursively transform a skeleton
of the form (let ṽ = Branching(S1, S2) in S) into Branching(let ṽ = S1 in S, let ṽ =
S2 in S), so that hook calls in S1 and S2 can be transformed in the final phase.

The distribution of LetIn over Branching, noted ⌈S⌋ is recursive and makes use of the
binding on skeletons < S1 | ṽ | S2 > defined previously.

⌈Branching(S1, . . . , Sn)⌋ ≜ Branching(⌈S1⌋, . . . , ⌈Sn⌋)

⌈K⌋ ≜ K if K ̸= Branching(..)

⌈let ṽ = Branching(S1, . . . , Sn) in S⌋ ≜ Branching(⌈< S1 | ṽ | S >⌋, . . . , ⌈< Sn | ṽ | S >⌋)

⌈let ṽ = K in S⌋ ≜ let ṽ = K in ⌈S⌋ if K ̸= Branching(..)

We apply this operation to every skeleton of our semantics:

Rdist = {h(ỹ, c(x̃)) := ⌈S⌋ | (h(ỹ, c(x̃)) := S) ∈ Rgen}

Note that duplicating the continuations recursively will not exponentially grow the size of the
final small-step semantics. We generate new constructors before this phase, hence the generated

60

4.2. Formal Transformation Phases

constructors are shared between branches, avoiding any unwanted bloat. As an optimization,
this distribution and duplication could also be skipped for branchings only containing filter calls
and no hook calls.

The output of this phase is the set of rules Rdist ∪ RgetRet, still defined on C2 and H1.

4.2.4 Make the Skeletons Small-Step

With the results of the analysis and generation phase done so far, we are ready to make the
initial hooks small-step. As explained in the overview, we first update their output types.

Forall h ∈ H0 with htype(h) = ((s̃, sp), ũ), we redefine: htype(h) = ((s̃, sp), (s̃, sp))

We only change the initial hooks—the ones in H0—as the hooks getRet_h added in H1 have
been created with the desired, and different, output types: they actually extract the value from
a term.

We then treat the skeletons defining these hooks, including the rules added in Section 4.2.2.
At this stage of the transformation, we argue these skeletons respect the following simplified
grammar, either directly or with a simple modification.

S ::= let ṽ = K in S | Branching S̃ | Hook Tail h t̃ | Return t̃

K ::= Filter f t̃ | Hook Reuse h w̃ | Hook (New c) h t̃ | Return t̃

A skeleton let ṽ = Branching S̃ in S is impossible because of the distribution step of Sec-
tion 4.2.3. A tail-call is necessarily a final hook, so a skeleton let ṽ = Hook Tail h t̃ in S is
also not possible. Whenever a hook call is annotated Reuse, the analysis of Section 4.2.2 implies
that its input terms are all variables w̃. If a skeleton ends with K that is not a tail-call (i.e.,
a skelement Filter f t̃ or Hook a h t̃ with a ̸= Tail), we can transform it into an equivalent
skeleton following the grammar above by delaying the return. For this, we replace K with the
skeleton let z̃ = K in Return z̃, where z̃ are freshly created variables, in number correspond-
ing to the output type of K. As such, it is sufficient to define our transformation process on
skeletons respecting the simplified grammar.

The transformation relies on a substitution to remember how the initial arguments of the
rule are changed through the different hook calls, as we show in Example 4.2.5. A substitution σ

is a total mapping from variables to terms equal to the identity except on a finite set of variables
called its domain. We write xσ for the application of σ to x, ϵ for the identity substitution, and
[t/x] for the substitution whose domain is {x} and such that xσ = t. We extend the notion to
terms tσ and tuples t̃σ as expected. Given two substitutions σ and σ′, we define their sequence
σ ; σ′ so that x(σ ; σ′) = (xσ)σ′ for all x.

61

Part I, Chapter 4 – Small-Step Transformation

Assuming r = (hr(ỹ, cr(x̃)) := Sr),

∥ Branching (S1, . . . , Sn) ∥r
σ ≜ Branching (∥ S1 ∥r

σ, . . . , ∥ Sn ∥r
σ)

∥ let ṽ = Return t̃ in S ∥r
σ ≜ let ṽ = Return t̃ in ∥ S ∥r

σ

∥ let ṽ = Filter f t̃ in S ∥r
σ ≜ let ṽ = Filter f t̃ in ∥ S ∥r

σ

∥ Return t̃ ∥r
σ ≜ Return (ỹ, Ret_hr(t̃))

∥ Hook Tail hr t̃ ∥r
σ ≜ Return t̃

∥ let ṽ = Hook (New c) h t̃ in S ∥r
σ ≜ Return (ỹ, c(t̃, z̃c))

where (hr(ỹ, c(w̃c, z̃c)) := Sc) ∈ Rdist

∥ let ṽ = Hook Reuse h (w̃′, w) in S ∥
r

σ ≜ Branching(S1, S2) where

S1 = let z̃ = Hook h w̃ in Return (ỹ, cr(x̃))(σ ; [̃z/w]) z̃ fresh, w̃ = (w̃′, w)
S2 = let ṽ = Hook getRet_h (w) in ∥ S ∥r

σ ; [Ret_h(ṽ)/w]

Figure 4.2: Transformation of a Skeleton

Given an extended skeleton Sr, a rule r = (hr(ỹ, cr(x̃)) := Sr), and a substitution σ rep-
resenting the knowledge accumulated so far, the transformation ∥ Sr ∥r

σ defined in Figure 4.2
results in a plain skeleton—without annotations. The first three rules are simple inductive cases,
while the last four are the cases sketched in the overview (Section 4.1.3).

We coerce the results of a final Return skelement with the constructor Ret_hr defined in
Section 4.2.1. We remind that we also return the environment variables ỹ of the rule to respect
the updated typing of the hook.

A tail-call is simply turned into a return, as the hook being called is identical to the one
where the current rule is defined (see Figure 4.1).

As explained in Section 4.1.3, a hook call annotated (New c) is turned into a return with a
term built with c, so that the rule created for c in Section 4.2.2 can later perform the expected
small-step reduction. One might be surprised the hook call disappears, it is simply delegated to
the rule for the new constructor c (see Section 4.2.2 right before Example 4.2.1). To compute
the arguments of c, we distinguish in its rule rc = (hr(ỹ, c(w̃c, z̃c)) := Sc) the variables w̃c used
as input of the analyzed call from the ones z̃c necessary to compute Sc. The resulting skelement
is then Return (ỹ, c(t̃, z̃c)), where we replace w̃c with the terms t̃ being reduced. We know the
variables z̃c exist at the program point we are transforming, because they have been extracted
from the same hook call in r during the analysis. Similarly, the variables ỹ of rc are the same as
the environment variables of r by construction, so we can reuse them.

Example 4.2.4. The call for which we need to create While2 is of the form (cf. Section 4.1.2):

62

4.2. Formal Transformation Phases

hook hstmt (s : state, t : stmt) matching t : state =
...
| While1 (s0, e0, e1, t2) ->

...
let (s1, v) = ... in
...
let s2 = hstmt (new While2) (s1, t2) in ...

The rule created for While2 in Example 4.2.1 is of the form hstmt(s, While2(s0, t0, e1,

t2)) := S, where w̃c = (s0, t0) and z̃c = (e1, t2) are used to compute respectively the analyzed
call and the rest of the skeleton. Replacing (s0, t0) with the arguments of the call (s1, t2),
the resulting skelement is Return (s, While2 (s1, t2, e1, t2)), and we see that s, e1,
and t2 are bound at the point we transform.

We change a hook call that can reuse its constructor into a branching representing its
possible behaviors. The first branch begins by reducing the hook one step further let z̃ =
Hook h w̃ in ..., storing the results in some fresh variables z̃. We then reconstruct a config-
uration using the constructor cr of the rule being processed. Starting from the initial input
(ỹ, cr(x̃)), we apply σ before changing w̃ by their new values z̃. The substitution σ is necessary
if one of the variables w̃ is not part of the initial arguments but defined from a previous hook
call, as we can see in the Plus example below. The second branch covers the case where the
term represented by w is a coerced set of values. We extract the content of w into the variables
ṽ of the initial skeleton and continue transforming S, remembering that w is equal to Ret_h(ṽ).

Example 4.2.5. Consider the rule for Plus:
| Plus (e1, e2) ->

let (s1, v1) = hexpr (s, e1) in (* reuse *)
let (s2, v2) = hexpr (s1, e2) in (* reuse *)
let v = add (v1, v2) in
(s2, v)

The first call is turned into two branches, the first one stepping once (s, e1) into some fresh
variables (z1, z2). The reconstructed configuration is simply the input (s, Plus (e1, e2))

where s and e1 are replaced by z1 and z2. In the second branch, we extract the content of e1,
and then transform the rest of the skeleton, remembering that e1 = Ret_hexpr(s1, v1) in σ.

Transforming the second hook call illustrates why we need σ. As for the first call, the first
branch steps once (s1, e2) into some fresh variables (z3, z4) and then reconstructs a con-
figuration. We see that s1 does not occur in the initial configuration (s, Plus (e1, e2)); we
therefore apply the substitution to create (s, Plus (Ret_hexpr(s1, v1), e2)), and now we
can turn (s1, e2) into (z3, z4), resulting in the configuration (s, Plus (Ret_hexpr(z3,

v1), z4)). The second branch continues transforming the rest of the skeleton, where we no
longer need the substitution. In the end, we obtain:

63

Part I, Chapter 4 – Small-Step Transformation

hook hexpr (s : state, e : expr) matching e : state * expr =
| Plus (e1, e2) ->

branch (* | *)
let (z1, z2) = hexpr (s, e1) in (* | first hook call *)
(z1, Plus (z2, e2)) (* | *)

or (* | *)
let (s1, v1) = getRet_hexpr (e1) in (* | *)
branch (* || *)

let (z3, z4) = hexpr (s1, e2) in (* || second hook call *)
(s, Plus (Ret_hexpr (z3, v1), z4)) (* || <- need substitution *)

or (* || *)
let (s2, v2) = getRet_hexpr (e2) in (* || *)
let v = add (v1, v2) in (* # filter unchanged *)
(s, Ret_hexpr (s2, v)) (* ## coerced return *)

end (* || *)
end (* | *)

s, e1 → z1, z2

s, e1 + e2 → z1, z2 + e2

e1 = (s1, v1) s1, e2 → z3, z4

s, e1 + e2 → s, (z3, v1) + z4

e1 = (s1, v1) e2 = (s2, v2)
s, e1 + e2 → s, (s2, v1 + v2)

If we do not reuse the initial constructors, we do not need the substitution σ as we cannot
have nested hook calls where we reuse constructors. Instead, we change constructor, e.g., going
from Plus1 to Plus2. As a result, the small-step transformation without reuse is written ∥ S ∥r

and the skeletons S1 and S2 of the last case of Figure 4.2 become:

S1 = let z̃ = Hook h w̃ in Return (ỹ, cr(x̃))[̃z/w] z̃ fresh, w̃ = (w̃′, w)

S2 = let ṽ = Hook getRet_h (w) in ∥ S ∥r

Example 4.2.6 (Without constructor reuse). If we do not reuse Plus, the rules for Plus, Plus1,
and Plus2 behave as follows. Unlike Plus in Example 4.2.5, the new constructors takes three
arguments by default (c.f., Example 4.2.2 and Appendix B.6).

s, e1 + e2 → s, (s, e1) +1 e2

s0, e0 → z1, z2

s, (s0, e0) +1 e2 → s, (z1, z2) +1 e2

s, (s0, v1) +1 e2 → s, v1 +2 (s0, e2)
s0, e0 → z1, z2

s, v1 +2 (s0, e0) → s, v1 +2 (z1, z2)

s, v1 +2 (s0, v2) → s, (s0, v1 + v2)

Once again, the last phase of the transformation is applied only to the rules Rdist defining

64

4.2. Formal Transformation Phases

the hooks h ∈ H0. We also merge in the rules RgetRet for the hooks getRet_h generated in
Section 4.2.1 to create the final small-step rule set RSS.

RSS = {h(ỹ, c(x̃)) := ∥ S ∥h(ỹ,c(x̃)):=S
ϵ | (h(ỹ, c(x̃)) := S) ∈ Rdist} ∪ RgetRet

The set RSS, defined on C2 and H1 (where htype has been updated), is the final result of
the transformation. It is a set of rules where every h ∈ H0 makes a single step of computation.

65

Chapter 5

CERTIFICATION OF THE

TRANSFORMATION

We prove that the transformation is correct, i.e., that the initial and transformed semantics
are equivalent. To deal with the complexity of the approach, we provide two complementary
correctness results. The first one is a pen-and-paper proof that the transformation without con-
structor reuse is correct. The proof is available in Appendix C, and we present the results in
Section 5.1. To further our trust in the transformation and to deal with constructor reuse, we
provide a mechanized approach to correctness, presented in Section 5.2. This second approach
does not attempt to formalize the whole transformation nor the reuse analysis, but it instead
generates a fully automatic Coq proof of the equivalence of the initial and transformed semantics
instantiated on a given language.

The pen-and-paper proof gives us confidence that the generation will not fail in the absence
of constructor reuse, and the automatic Coq proof shows the correctness of the analysis for
constructor reuse for a given language. The generated Coq proof can thus be considered as a
certificate for an instance of the transformation.

To state the equivalence theorems between the two semantics, we use the interpretation
judgments of Section 3.3 (Figure 3.2). In summary, we write ã ⇓h b̃ to state that h takes the
values ã as input and output the values b̃. As the transformation provides several intermediate
semantics (i.e., set of rules), we extend the notation to include the rule set used, writing for
instance ã ⇓BS

h b̃ for the initial big-step semantics, and ã ⇓SS
h b̃ for the generated small-step

semantics of Section 4.2.4, without reuse in Section 5.1, and with reuse in Section 5.2.
We recall that the inductive interpretation is inherently big-step, as a judgment computes the

whole skeleton, so we keep the formal notation ⇓SS
h even for the output semantics. However, the

resulting set of rules is created such that its interpretation corresponds to a standard small-step
reduction.

5.1 Pen-and-Paper Proof

As said above, we do not certify the analysis of Section 4.2.2, as it would make the proof
substantially more complex. We would need to justify the correctness of the analysis and that

66

5.1. Pen-and-Paper Proof

the information is used properly, including for instance the substitution in Section 4.2.4. We only
certify the base transformation without reuse, but extend the proof to both finite and diverging
computations. The full proof is available in Appendix C.

We prove that a big-step evaluation is possible if and only if a sequence of small-step reduc-
tions can lead to the same result up to a Ret_h coercion. In the finite case, assuming the terms
ã and b̃ are written using the initial big-step semantics, we show that for all hook h

ã ⇓BS
h b̃ ⇐⇒ ∃ã′, ã (⇓SS

h)∗ (ã′, Ret_h(b̃))

where R∗ is the reflexive transitive closure of a relation R.
For diverging derivations, we define infinite small-step reductions coinductively with this

single rule:
ã ⇓SS

h b̃ b̃
∞→h

ã
∞→h

================

Big-step divergence (noted ⇑h) is defined in Section 3.4 (Figure 3.3). We prove that the following
equivalence holds for all initial terms ã and hook h.

ã ⇑BS
h ⇐⇒ ã

∞→h

5.1.1 Proof Sketch

The interesting direction is to show that a sequence of small-step reductions implies a big-step
evaluation, which can be done in two ways. A first technique [40] is to recognize subcomputations
in the sequence of small steps which correspond to subtrees of the big-step derivation. For
example, if Plus(e1, e2) evaluates into v with small steps, it means that e1 evaluates to some
v1, e2 evaluates to some v2, and v = v1 + v2. By induction, the two subcomputations for e1 and
e2 can be turned into big-step derivations which are then combined to create the derivation for
Plus(e1, e2).

Another strategy [46, 35] relies on a concatenation lemma, stating that we can merge a small
step into a big step: if e makes a small step to e′ and e′ evaluates in a big step to v, then e

evaluates in a big step to v. We use this technique as it is easier to automatize for the Coq
certification (see Section 5.2). It only works for finite sequences, however; we use a different
strategy when dealing with divergence.

The downside of the approach based on the concatenation lemma is that the big-step and
small-step semantics need to be defined on the same constructors. However, the initial big-step
semantics is not defined on the newly created constructors, such as While1, While2, Plus1, or
Plus2—remember that we do not reuse the initial constructors in the proof of this section. To
bridge the gap between the initial big-step (BS) and the small-step (SS) semantics, we consider

67

Part I, Chapter 5 – Certification of the Transformation

an extended big-step semantics (EBS) defined on all constructors.
The rule set for EBS is noted REBS. It corresponds to the situation before going small-step

(see Section 4.2.3), i.e., Rdist (after delaying returns), but with additional custom rules so that
the coercion constructors Ret_h can be evaluated.

REBS ≜ Rdist ∪ {h(ỹ, Ret_h(ṽ)) := Return ṽ | h ∈ H0}

The additional rules allow derivations of the following form (see Lemma C.4.4).

(ã, Ret_h(b̃)) ⇓EBS
h b̃

As an example, the EBS semantics for IMP—with constructor reuse however—can be found in
Appendix B.5.

We thus manipulate three semantics in this proof: the initial BS semantics written by the
user, the EBS semantics generated in the middle of the transformation, and the SS semantics,
result of the transformation. The proof strategy is to show that BS and EBS are equivalent on
initial terms, and then prove that EBS is equivalent to SS on all terms (including the extended
ones). In the end, we get that BS is equivalent to SS on initial terms. The first equivalence is
straightforward since EBS has almost the same rules as BS for the initial constructors. Proving
that SS implies EBS relies on the concatenation lemma in the finite case, and on the splitting
strategy in the infinite one. The opposite direction is done by induction on the EBS derivation.

After some preliminary results, we detail each step in the following subsections.

5.1.2 Transformation Properties

Before stating the equivalence theorems, the proof introduces a few properties and certifies the
behavior of the different phases of the transformation.

We define free (fv) and bound (bv) variables of terms and skeletons as expected (see Defini-
tions 1 and 2). We also note NoRedef(S) the statement that a skeleton S does not bind multiple
times the same variable name, defined as follows.

NoRedef(K) ≜ ⊤ if (K ̸= Branching(. . .))

NoRedef(Branching (S1, . . . , Sn)) ≜ ∀i, NoRedef(Si)

NoRedef(let ṽ = K in S) ≜

{ṽ}, bv(K), and bv(S) are disjoint

NoRedef(K)
NoRedef(S)

From this, we specify a Static Single Assignment form for skeletons, noted SSA(S) and defined

68

Nice! 5.1. Pen-and-Paper Proof

as follows1.
SSA(S) ≜ NoRedef(S) ∧ fv(S) ∩ bv(S) = ∅

It states that a skeleton S does not reuse variables names. The transformation is supposed to
be applied to such skeletons. A consequent but straightforward part of the proof (Section C.3)
ensures the different phases of the transformation preserve the SSA conditions, as to not inad-
vertently capture free variables.

Then, we prove a few results showing that the different transformation phases work as in-
tended. For example, we verify that the distribution of branchings does not modify the semantics
(Lemma C.4.1).

Lemma 5.1.1. For all skeleton S, state Σ, and terms ã such that SSA(S),

Σ ⊢ S ⇓ ã ⇐⇒ Σ ⊢ ⌈S⌋ ⇓ ã

This equivalence relies on a plain but important lemma (C.2.7), stating that, under some
freshness conditions, the monadic bind on skeletons operates exactly like a LetIn structure:

Σ ⊢< S1 | x̃ | S2 >⇓ ã ⇐⇒ ∃b̃,

 Σ ⊢ S1 ⇓ b̃

Σ + ˜{x 7→ b} ⊢ S2 ⇓ ã

I.e., < S1 | x̃ | S2 > behaves like let x̃ = Branching([S1]) in S2, which we could write, with
an abuse of notation, as let x̃ = S1 in S2. The proof of Lemma 5.1.1 is then a straightfor-
ward induction on S. Similarly, the distribution of branchings does not modify the coinductive
semantics for diverging computations (see Lemma C.4.2).

The most important result at this point synthesizes the effects of both the generation of new
constructors and the distribution of branchings to relate constructor names in labels and rules
in the extended big-step semantics (Lemma C.4.13).

Lemma 5.1.2. For all rule (h(ỹ, c(x̃)) := S) in REBS, if (let ṽ = Hook (New c0) h1 t̃ in S0) is
a subskeleton of S, then REBS contains a rule of the following form.

h(ỹ, c0(w̃, z̃)) := let ṽ = Hook Reuse h1 w̃ in S0

It states that if we encounter a hook call annotated with a fresh constructor c0 in the extended
big-step skeletal semantics, then we indeed previously generated the corresponding constructor c0

and its skeleton. Remember that the last phase of the transformation (see Section 4.2.4) changes
(let ṽ = Hook (New c0) h1 t̃ in S0) into Return(ỹ, c0(t̃, z̃)). This lemma ensures indirectly that

1. The naming “SSA” is a slight abuse, as parallel branchings are allowed to define the same variables. However,
every execution of the skeleton follows a single branch and never overwrites the content of a variable.

69

Part I, Chapter 5 – Certification of the Transformation

the small-step behavior is not modified, as running h again still computes h1 t̃ followed by (the
transformed version of) S0. The proof mainly checks that the contexts E of Section 4.2.2 used
to define new skeletons interacts well with the distribution of branchings of Section 4.2.3.

With the effects of of the different transformation phases made explicit, we state and prove
the equivalences between the different rule sets.

5.1.3 Initial and Extended Big-Step Semantics

The intermediate EBS semantics extends the initial BS one. It contains the user-defined rules
for the initial constructors (e.g. Plus), and the rules created during the generation phase of
Section 4.2.2 for the added constructors, like the rules for While1 and While2 in Section 4.2.2
or for Plus1 and Plus2 in Example 4.2.2.

The only significant transformation between the two semantics is the distribution of branch-
ings (Section 4.2.3), but we prove it does not modify the semantics (Lemma 5.1.1). Thus, the
equivalence holds on initial terms (Theorems C.5.1 and C.5.2). To state the theorems, we write
|t| for the the canonical injection of an initial term t into the extended semantics.

Theorem 5.1.3 (BS⇒EBS). For all hook h and initial terms ã and b̃,

ã ⇓BS
h b̃ =⇒ |̃a| ⇓EBS

h |̃b|

Theorem 5.1.4 (EBS⇒BS). For all hook h, initial terms ã, and extended terms b̃′,

|̃a| ⇓EBS
h b̃′ =⇒ ∃b̃, b̃′ = |̃b| ∧ ã ⇓BS

h b̃

We follow the same strategy for diverging computations. Similarly, the corresponding lemma
(C.4.2) assures us there is no problem with the distribution of branchings for coinduction, and
we can deduce the equivalence between BS and EBS on initial terms (Theorem C.5.3).

Theorem 5.1.5 (Div: BS⇔EBS). For all hook h and initial terms ã,

ã ⇑BS
h ⇐⇒ |ã| ⇑EBS

h

The equivalence between big-step and extended big-step is the only part manipulating both
initial and extended terms. In the following subsections, all results manipulate extended terms
only.

5.1.4 Small-Step Implies Extended Big-Step

We prove a sequence of small-step reductions can be turned into a big-step evaluation in the
following sense (Theorem C.7.2).

70

5.1. Pen-and-Paper Proof

Theorem 5.1.6 (SS⇒EBS). For all hook h and terms ã, ã′, and b̃,

ã (⇓SS
h)∗ (ã′, Ret_h(b̃)) =⇒ ã ⇓EBS

h b̃

As explained previously, in the finite setting, we rely on a concatenation lemma (C.7.1),
stating that we can merge a small step into a big step.

Lemma 5.1.7 (Concatenation). For all hook h and terms ã, ã′, and b̃,

ã ⇓SS
h ã′ ∧ ã′ ⇓EBS

h b̃ =⇒ ã ⇓EBS
h b̃

The main theorem then follows from iterating this result, starting from (ã′, Ret_h(b̃)) ⇓EBS
h b̃

as a base case. We also use this strategy for the Coq certification, as generating automatically
splitting lemmas would be more difficult (see Section 5.2).

For this concatenation result, because the evaluation of tuples (⇓h) is defined mutually with
the evaluation of skeletons (· ⊢ · ⇓ ·), we need to prove in parallel a second property2:

Σ ⊢ ∥ S ∥r ⇓SS ã′ ∧ ã′ ⇓EBS
h b̃ =⇒ Σ ⊢ S ⇓EBS b̃

We proceed by mutual induction on the derivations of ã ⇓SS
h ã′ and Σ ⊢ ∥ S ∥r ⇓SS ã′.

The main difficulty is to show that changing constructor in small-step corresponds to an EBS
derivation where such a change does not occur. For this, we use Lemma 5.1.2 presented in
Section 5.1.2. We discuss the issue in more details in the next section for the reverse implication,
where we encounter the same difficulty.

For infinite behaviors, we prove the following theorem (C.7.4).

Theorem 5.1.8 (Div: SS⇒EBS). For all hook h and terms ã,

ã
∞→h =⇒ ã ⇑EBS

h

The concatenation lemma cannot be used here as we no longer have a base case to start its
iteration. Instead, we show that ã

∞→h satisfies the big-step coinductive rules of Figure 3.3 by
splitting the infinite sequence of small steps into subderivations.

Such a subderivation may occur when evaluating a constructor c(x̃, ỹ) with a rule (let ṽ =
Hook Reuse h1 x̃ in S) in REBS (such rules are present for new constructors, see Example 4.2.2).
We distinguish two cases: either the small-step divergence occurs when evaluating x̃, which
correspond to the hook call h1, or when evaluating S. In the first case, by coinduction, we
have a diverging EBS derivation for that skelement, and therefore the complete LetIn structure

2. The actual property has a couple additional hypothesis, stating notably that S is part of the semantics and
thus has gone through the generation phase, see Lemma C.7.1

71

Part I, Chapter 5 – Certification of the Transformation

diverges. Otherwise, the evaluation of x̃ terminates, and S diverges. Using Theorem 5.1.6 above
for the finite case, we get a finite EBS derivation for x̃, and by coinduction, a diverging EBS
derivation for S, and the complete LetIn structures diverges as well.

5.1.5 Extended Big-Step implies Small-Step

Lastly, we prove we can transform a big-step evaluation into a sequence of small-step reductions
(Theorem C.6.1).

Theorem 5.1.9 (EBS⇒SS). For all hook h and terms ã and b̃,

ã ⇓EBS
h b̃ =⇒ ∃ã′, ã (⇓SS

h)∗ (ã′, Ret_h(b̃))

As before, we need to prove in parallel a similar result for skeletons3

Σ ⊢ S ⇓EBS b̃ =⇒ ∃ã, ã′. Σ ⊢ ∥ S ∥r ⇓SS ã ∧ ã (⇓SS
h)∗ (ã′, Ret_h(b̃))

and proceed by mutual induction on the derivations of ã ⇓EBS
h b̃ and Σ ⊢ S ⇓EBS b̃. The proof is

quite long because of the large number of cases.
The main difficulty is in changing constructors when needed. Indeed the EBS semantics does

not make use of the newly defined constructors in the evaluation of the original constructors,
unlike the small-step semantics, which for instance switches from While to While1. When we
have Σ ⊢ SWhile ⇓EBS b̃, we need to argue that the skeleton for While1 is almost the same as the
one for While to be able to use the hypotheses we have at this point. This is where Lemma 5.1.2
becomes crucial: the first hook call in the rule for While is annotated with (New While1), and
thus, by construction, we know the rule for While1 uses (almost) the same skeleton and behaves
similarly.

For infinite behaviors, we state the result as follows (Theorem C.6.4).

Theorem 5.1.10 (Div: EBS⇒SS). For all hook h and terms ã,

ã ⇑EBS
h =⇒ ã

∞→h

By coinduction on the definition of ã
∞→h, the proof needs to show that ã ⇑EBS

h satisfies the
corresponding property (Lemma C.6.3).

Lemma 5.1.11. For all hook h and terms ã,

ã ⇑EBS
h =⇒ ∃b̃, ã ⇓SS

h b̃ ∧ b̃ ⇑EBS
h

3. Once again, there is a couple additional hypothesis omitted here stating that S is a legitimate skeleton of
the semantics, so we can leverage its properties (see Theorem C.6.1).

72

5.2. Coq Proof Script Generation

This result can be seen as the reverse of a concatenation lemma, i.e., a big-step divergence can
be split into a small-step reduction and another big-step divergence. We proceed by induction
on ã, and by case analysis on the definition of ã ⇑EBS

h . We conclude in each case with a proof
very similar to the corresponding case in the proof of Theorem 5.1.9 for finite evaluations.

5.2 Coq Proof Script Generation

The paper proof of Section 5.1 comforts us in the correctness of (most of) the transformation.
However, a mechanized proof is still valuable, as it protects us from human error in both the
proof and the implementation.

A complete formalization of the transformation in a proof assistant seems out of reach because
of its many intermediary steps. Instead, we follow the easier route of providing an a-posteriori
certification alongside the resulting semantics. To this end, we rely on the possibility offered by
Necro to export a skeletal semantics into a Coq representation. We automatically generate proof
scripts showing that the produced small-step semantics corresponds to the initial big-step one.
We explain how to generate the scripts using IMP as an example; the repository [8] contains
examples of Coq scripts for other languages as well as the script generator.

5.2.1 Proof Sketch

Just like the paper proof of Section 5.1, we rely on the concrete interpretation judgment of
Section 3.3 (see Figure 3.2).

In the case of IMP, the equivalence theorem between the semantics is as follows.

Theorem 5.2.1. For all (s, s0 : state), (e : expr), (t : stmt), and (v : value),

(s, e) ⇓BS
hexpr (s0, v) ⇐⇒ ∃s′, (s, e) (⇓SS

hexpr)∗ (s′, Ret_hexpr(s0, v))

(s, t) ⇓BS
hstmt s0 ⇐⇒ ∃s′, (s, t) (⇓SS

hstmt)∗ (s′, Ret_hstmt(s0))

A big-step evaluation is possible if and only if a sequence of small-step reductions can lead to
the same result up to coercions.

For the sake of readability, we limit the examples of this section to expressions and deliber-
ately ignore the states. We also write Ret for Ret_hexpr, and use a more intuitive notations for
the concrete interpretation of the small-step semantics (→

SS
).

The challenging direction is to transform a sequence of small-step reductions into a big-step
evaluation. The textbook proof method [40] relies on auxiliary lemmas to split the sequences of
reductions in order to recreate big-step derivation trees, such as the following result for Plus.

Plus(e1, e2) →
SS

k v =⇒ ∃k1, k2, v1, v2. (k = k1 + k2 + 1) ∧ e1 →
SS

k1 v1 ∧ e2 →
SS

k2 v2 ∧ (v = v1 + v2)

73

Part I, Chapter 5 – Certification of the Transformation

This technique depends a lot on the semantics of the language, as each lemma must be
derived from the constructor skeleton. We instead reuse the strategy of Section 5.1.4, with a
concatenation lemma stating that we can merge a small step into a big step.

e →
SS

e′ ⇓BS v =⇒ e ⇓BS v

Such a local result can be verified with language-independent tactics that simply decompose the
small-step reduction. We then iterate the lemma to get the desired result.

Since the concatenation lemma requires a common syntax, we generate the extended big-step
semantics (EBS) we used in the paper proof (Section 5.1.1), defined on all constructors. The three
semantics we need—the user-defined BS semantics, the EBS semantics generated in the middle of
the transformation, and the resulting SS semantics—are transformed into Coq definitions using
the export function of Necro. Necro also provides a Coq definition of the concrete interpretation,
which itself depends on interpretations for the base types and filters. Our proof script takes as
global parameters such interpretations for the initial BS, which are carried to the other two
semantics through coercions. This way, the certification is independent from the behavior and
implementation of these basic elements.

The proof strategy is therefore similar to the paper proof: to show that BS and EBS are
equivalent on initial terms, and then prove that EBS is equivalent to SS on all terms (including
the extended ones). In the end, we get that BS is equivalent to SS on initial terms, as stated in
Theorem 5.2.1.

5.2.2 Initial and Extended Big-Step

The intermediate EBS semantics extends the initial BS one on all constructors. It contains
the (mostly unchanged) user-defined rules for the initial constructors (e.g. Plus), and the rules
generated during the processing phase of Section 4.2.2 for the added constructors; see for instance
the rules generated for While1 and While2 in Section 4.1.2. Finally, we add a rule for each return
constructor to extract its resulting values, such as Ret(v) ⇓EBS v. In the examples, we prefix the
types of the extended semantics with a letter e, writing for instance estate for extended states,
and we write |t| for the the canonical injection of an initial term t into the extended semantics.
The complete EBS generated for IMP can be found in Appendix B.5.

The first step of the certification checks that EBS and BS agree on the initial terms. It is easy
to verify since EBS is a conservative extension of BS: we simply match every behavior—every
applied rule—of each big-step semantics with exactly the same one on the other side. The
distribution of branchings (Section 4.2.3) might reorganize skeletons a bit, but following a path
would give out the same hypothesis, so Coq has no problem matching the two behaviors. The
only difficulty is the manipulation of coercions back and forth between initial and extended

74

5.2. Coq Proof Script Generation

terms, but a few general lemmas are enough to automate the rewriting.

Theorem 5.2.2 (BS⇒EBS). For all (s, s0 : state), (e : expr), (t : stmt), and (v : value),

(s, e) ⇓BS
hexpr (s0, v) =⇒ (|s|, |e|) ⇓EBS

hexpr (|s0|, |v|)

(s, t) ⇓BS
hstmt s0 =⇒ (|s|, |t|) ⇓EBS

hstmt |s0|

Theorem 5.2.3 (EBS⇒BS). For all (s : state), (e : expr), (t : stmt), (s′
0 : estate), and

(v′ : evalue),

(|s|, |e|) ⇓EBS
hexpr (s′

0, v′) =⇒ ∃s0, v, (s′
0, v′) = (|s0|, |v|) ∧ (s, e) ⇓BS

hexpr (s0, v)

(|s|, |t|) ⇓EBS
hstmt s′

0 =⇒ ∃s0, s′
0 = |s0| ∧ (s, t) ⇓BS

hstmt s0

This proof step is the only one at the interface between initial and extended terms and as such,
the only one using coercions. Henceforth, the results are stated on extended terms (eexpr and
estmt).

5.2.3 Small-Step Implies Extended Big-Step

As explained before, the strategy for this direction relies on a concatenation lemma merging a
small step and an extended big step together. The proof is done by induction on the small step;
in each case, we also need a case analysis on the big-step hypothesis which generates numerous
subcases. Fortunately, the proof principle is simple enough that elementary tactics are sufficient
for Coq to automatically reconstruct the extended big step in all cases. For instance, if the small
step comes from a congruence, i.e.,

Plus(e1, e2) →
SS

Plus(e′
1, e2) ⇓EBS v from e1 →

SS
e′

1, e′
1 ⇓EBS v1, e2 ⇓EBS v2, and v = v1 + v2,

we apply the induction hypothesis to get e1 ⇓EBS v1 and reconstruct a big step from our pieces.
To automate this reasoning, we need tactics to automatically apply the induction hypothesis,

which are straightforward and language-independent, and tactics to recreate an extended big
step from the right hypotheses. Concluding each case can be automated without prior knowledge
of the language because we only have to check the result and there is nothing to guess. For Plus,
we want Plus(e1, e2) ⇓EBS v: we know the term to evaluate, we know the resulting value, and
we have the necessary subevaluations and filter hypotheses. The checking tactic simply opens
the skeleton and verifies that there is indeed a path from the initial term to the resulting one.

75

Part I, Chapter 5 – Certification of the Transformation

Lemma 5.2.4 (Concatenation). For all (s, s′, s0 : estate), (e, e′ : eexpr), (t, t′ : estmt),
(v : evalue),

(s, e) ⇓SS
hexpr (s′, e′) ⇓EBS

hexpr (s0, v) =⇒ (s, e) ⇓EBS
hexpr (s0, v)

(s, t) ⇓SS
hstmt (s′, t′) ⇓EBS

hstmt s0 =⇒ (s, t) ⇓EBS
hstmt s0

Then, using this concatenation lemma, a simple induction on the reflexive and transitive
closure gives us the desired results.

Theorem 5.2.5 (SS⇒EBS). For all (s, s′, s0 : estate), (e : eexpr), (t : estmt), and (v : evalue),

(s, e) (⇓SS
hexpr)∗ (s′, Ret_hexpr(s0, v)) =⇒ (s, e) ⇓EBS

hexpr (s0, v)

(s, t) (⇓SS
hstmt)∗ (s′, Ret_hstmt(s0)) =⇒ (s, t) ⇓EBS

hstmt s0

5.2.4 Extended Big-Step Implies Small-Step

Proving that a big-step evaluation of an extended term corresponds to a small-step sequence of
reduction is done by induction on the derivation of the big-step evaluation. In each case, we need
to build a complete sequence of small steps from the partial sequences we get from using the
induction hypothesis. For instance, decomposing the evaluation Plus(e1, e2) ⇓EBS v produces
the hypotheses e1 →

SS
∗ Ret(v1), e2 →

SS
∗ Ret(v2), and v = v1 + v2, from which we want to show

Plus(e1, e2) →
SS

∗ Ret(v).

As in the previous section, we could let Coq conclude in a bruteforce way, by trying to derive
the desired conclusion from the hypotheses, without any knowledge of the semantics of the
language. It requires Coq to guess the intermediary configurations; e.g., if e1 →

SS
e′

1 →
SS

∗ Ret(v1),
then the final sequence should go through Plus(e′

1, e2). On complex cases, we may also need to
change constructors (e.g. While1(..) →

SS
While2(..)). A lot of trial-and-error may be necessary to

find these intermediary configurations, notably for cases involving non-determinism where several
small-step reductions are possible. Overall, such bruteforce tactics are not efficient enough: it
works on small languages such as IMP, but not for more complex languages such as our miniML
example.

Instead, we help Coq by generating congruence results about the small-step reduction. With
them, we still might need backtracking to find the right combination of lemmas to apply, but all
possible small-step reduction cases have been defined so we are not repeatedly losing exploration

76

5.2. Coq Proof Script Generation

time to regenerate them in each search. In the case of Plus, we need lemmas of the form:

e1 →
SS

∗ e′
1 =⇒ Plus(e1, e2) →

SS
∗ Plus(e′

1, e2)

e2 →
SS

∗ e′
2 =⇒ Plus(Ret(v1), e2) →

SS
∗ Plus(Ret(v1), e′

2)

v = v1 + v2 =⇒ Plus(Ret(v1), Ret(v2)) →
SS

∗ Ret(v)

Combining them lets us prove the desired result. Such congruence results come for free if the
reduction is written using small-step inference rules. In our case, we have skeletons and the
concrete interpretation, so we need to derive them. It is the only part of the proof script that
really depends on the semantics of the language, as we read the skeletons to generate these
lemmas.

Each lemma corresponds to a path in a small-step rule. In the case of Plus (whose skeleton
is detailed in Example 4.2.5), following the different branches gives us three different paths:

- let (z1, z2) = hexpr (s, e1) in (z1, Plus (z2, e2))
- let (s1, v1) = getRet_hexpr (e1) in

let (z3, z4) = hexpr (s1, e2) in (s, Plus (Ret_hexpr (z3, v1), z4))
- let (s1, v1) = getRet_hexpr (e1) in let (s2, v2) = getRet_hexpr (e2) in

let v = add (v1, v2) in (s, Ret_hexpr (s2, v))

For each path, the LetIn definition contains the hypothesis of the lemma, while the final result
is the configuration to step towards. If we forget about the state, we see that we obtain exactly
the three previous lemmas. They are proved either by unfolding the definitions or doing a
straightforward induction; each proof is simple since the structure of the lemma matches a path
of the skeleton.

Once this is done, the proof of the main theorem is simply done by induction on the extended
big step. In each case, we apply the induction hypothesis on every big-step premise, which
gives us several small-step sequences on subcomputations. Then, the congruence lemmas are
automatically applied and the results merged together by Coq to create the wanted small-step
sequence.

Theorem 5.2.6 (EBS⇒SS). For all (s, s0 : estate), (e : eexpr), (t : estmt), and (v : evalue),

(s, e) ⇓EBS
hexpr (s0, v) =⇒ ∃s′, (s, e) (⇓SS

hexpr)∗ (s′, Ret_hexpr(s0, v))

(s, t) ⇓EBS
hstmt s0 =⇒ ∃s′, (s, t) (⇓SS

hstmt)∗ (s′, Ret_hstmt(s0))

77

Chapter 6

IMPLEMENTATION AND EVALUATION

The transformation and the self-certification have been implemented in Necro [21], with a number
of options (Section 6.1.1) to tailor the transformation to specific needs. Using the existing Necro
tools, we can generate a Coq version of the small-step semantics to prove properties on it—on top
of the equivalence with the big-step one already automatically proved as presented in Section 5.2.
We also generate an OCaml interpreter for the language allowing for small-step and big-step
reductions (Section 6.1.2). In practice, we tested our transformation and automatic certification
on a variety of user languages, with and without reuse. Section 6.2 presents our empirical results.

6.1 Implementation

6.1.1 Options and Optimization

The small-step transformation is part of the expanding Necro toolbox for the manipulation of
skeletal semantics. We make the transformation more flexible by providing a few options for it.

Limiting the Transformation. Skeletal semantics can be defined with different levels
of precision. For instance, booleans and their basic operations can either be left abstract by
considering them a basic type with filters, or explicitly defined as a program type with True/False
constructors and hooks. In the second case, these hooks can be converted to small-step reduction
processes.

However, sometimes we are only interested in the big-picture of the reduction of main expres-
sions and do not wish to stop and reconstruct when computing boolean operations. For these
situations, we propose an option to only transform a specific subset of hooks. High-level evalua-
tion processes can thus be turned into a small-step reduction while keeping low-level operations
in their big-step form.

On the IMP language example, we could wish to only transform the evaluation of statements.
This is akin to considering a small-step operational semantics for statements and a denotational
semantics for expressions.

No Reuse. Our transformation tries to reuse the user defined constructors as much as
possible in order to reduce the number of additional constructors. If need be, an option forces
the creation of new constructors for each hook call. This would lead to more terms, but also to

78

6.1. Implementation

significantly simpler skeletons as every constructor would focus on a specific hook call. Depending
on the purpose of the small-step semantics, it might be an interesting trade-off.

No Additional Steps. The transformation presented above makes additional administra-
tive steps when changing constructor or refocusing, as it is common on paper to reduce the
number of inference rules of the language. However, this is not necessary, and an option forces
the transformation to keep tail-calls and perform a recursive call after changing constructor.
This leads for instance to skeletons mimicking the rules:

s, t2 → s′, t′
2

s, If(True, t2, t3) → s′, t′
2

s, e1 → s′, e′
1

s, While(e1, t2) → s, While1(s′, e′
1, e1, t2)

The Coq certification generator is compatible with the two previous options but not this
one, as the implemented proof script expects the administrative steps.

Optimization. The difficulty of the transformation is to reconstruct and reuse as much of
the initial semantics as possible, as well as simplify the necessary new constructors. To help
and clean up the results, we implemented a few optimizations, and further extensions are still
possible.

For instance, we implemented a small optimization to reduce the number of unnecessary
arguments. When a hook call is the only one to use a state, and we need a new constructor
for it, duplicating the state is not necessary. This happens for instance for While1, where our
implementation outputs:

| While (e1, t2) ->
(s, While1 (e1, e1, t2))

| While1 (e0, e1, t2) ->
branch

let (w1, w2) = hexpr (s, e0) in
(w1, While1 (w2, e1, t2))

or ... end

However, this check is not sufficient for all cases, and While2 still has 4 arguments as it evaluates
s1 which is not the main state. To recover the usual hand-written semantics, we would need to
overwrite s with the content of s1. We are not certain overwriting states is always preferable,
as it might conflict with other potential optimizations such as detecting read-only states (see
Section 6.2).

6.1.2 Ocaml Interpreter

As presented in Section 3.5, Necro provides a tool to automatically generate an OCaml inter-
preter from a skeletal semantics. Using the transformation of this paper as an intermediate step,
we are able to create an interpreter providing both big-step and small-step implementations

79

Part I, Chapter 6 – Implementation and Evaluation

of hooks. As terms now include values, which may be present as subterms of constructors, the
small-step interpreter operates on a syntax extending the one used in big-step. We therefore
automatically create separate program types for extended terms (e.g., eexpr and estmt for the
IMP example), and generate new hooks to bridge the gap between the initial and extended
program types (e.g., ext_expr : expr → eexpr and unext_eexpr : eexpr → expr). Using
coercions, the small-step interpreter requires the same instantiated types and functions as the
big-step one, so it provides an executable small-step semantics at no additional cost.

6.2 Evaluation

The transformation can be applied to any semantics written in skeletal semantics. The theorems
of Chapter 5 hold even if the input semantics has an unusual shape. However, the result only
seems useful if the input follows the big-step paradigm. For instance, if the input is already small-
step, then the output would be an odd semantics akin to a malformed abstract machine [8]. In
this section, we limit the evaluation to the transformation of big-step semantics.

We compare the sizes of the generated small-step semantics and equivalence proof scripts for
various languages in Table 6.1. The examples include variants of the call-by-value (CBV) and call-
by-name (CBN) λ-calculus implemented with closures, and evaluated in an environment mapping
variables to closures; CBV has also been extended with non-determinism and exceptions. The
examples written in an imperative style include a small language roughly corresponding to IMP
expressions (Arithmetic), and extensions of IMP with local (IMP, LetIn) or global (IMP, write)
state modification, and with exceptions and handlers (IMP, try/catch). Lastly, miniML is an
ML-like language, extending the λ-calculus with arithmetic and boolean operations as well as
constructs to define algebraic datatypes and perform pattern-matching on them. The generated
small-step semantics and proofs for all the examples can be found in the source repository [8].

In the certification, about 500 lines of code are completely independent of the input language
and contain definitions of skeletons or concrete interpretation. About 450 lines of code are
templates which are filled with basic information about the syntax of the input semantics (the
names of the hooks, constructors, and filters): these are general definitions, results, and tactics
to manipulate concrete interpretation or coercions. They are part of the generated proof script,
but are not counted in Table 6.1, where we lists the sizes of the language-dependent parts of the
proof.

We see that the resulting small-step semantics are significantly longer than the initial big-
step ones. This is because recursive computations are replaced with case disjunctions using
branchings, quickly increasing the number of lines of the rules but not their complexity, as we
can see with IMP. We also observe that the language-dependent part of the Coq proof scripts
remains linear in the size of the small-step semantics. Indeed, it is composed mostly of the

80

6.2. Evaluation

Lines of Code Constructors
Language Big-Step Small-Step Coq Big-Step Small-Step No Reuse
Call-by-Name 28 41 110 3 4 5
Call-by-Value 22 41 100 3 4 5
CBV, choice 29 48 120 4 5 6
CBV, fail 42 60 150 5 6 7
Arithmetic 32 81 160 5 5 13
IMP 79 144 330 11 13 21
IMP, write in exp 84 154 350 12 14 23
IMP, LetIn 85 166 360 12 16 24
IMP, try/catch 123 192 420 15 17 26
MiniML 155 299 720 18 28 33

Table 6.1: Size of the Generated Semantics and Proof Scripts

generated lemmas of the EBS implies SS part of the proof, which themselves depend on the
number of different paths in the small-step rules, as explained in Section 5.2.4.

W.r.t. to the number of constructors, we see the impact of reusing them, especially for IMP
where we go from two new constructors (While1 and While2) with reuse to ten without.

The effectiveness of reusing constructors depends on how the input skeletal semantics is
written. First, it depends on the ordering of the skelements in the initial rules. The process is
more efficient when hook calls are grouped at the beginning of skeletons, since we do not reuse
constructors after filter calls. For instance, the two following equivalent rules lead to respectively
one and two new constructors.

hook eval (s : env, t : lambdaterm) matching t : clos =

| App (t1, t2) ->
let c1 = eval (s, t1) in
let c2 = eval (s, t2) in
let (x, t3, s1) = getClos (c1) in
let s2 = extEnv (s1, x, c2) in
eval (s2, t3)

| App (t1, t2) ->
let c1 = eval (s, t1) in
let (x, t3, s1) = getClos (c1) in
let c2 = eval (s, t2) in
let s2 = extEnv (s1, x, c2) in
eval (s2, t3)

Second, our transformation does not identify read-only states and forcefully copies them.
For instance, the evaluation of expressions of an IMP language could return only values, as the
state is never modified.

hook hexpr (s : state, e : expr) matching e : value =
| ...
| Plus (e1, e2) ->

let v1 = hexpr (s, e1) in
let v2 = hexpr (s, e2) in
add (v1, v2)

81

Part I, Chapter 6 – Implementation and Evaluation

The transformation would compute that the state s is used twice and thus create a new con-
structor with a copy of it to evaluate e1. A small-step operational semantics written by hand
would rely on the fact that hexpr does not modify the state to avoid introducing a new construc-
tor in that case. Such an analysis requires a global understanding of the semantics which goes
beyond the local study of hook calls our transformation is based on. This discrepancy occurs in
the miniML language, for which we create 10 new constructors (with reuse, cf. Table 6.1), when
only 9 are strictly necessary.

82

Chapter 7

CONCLUSION OF PART I

We present a fully automatic transformation from a big-step to a small-step skeletal semantics
with or without reuse of the initial constructors. With reuse, we generate new constructors only
for problematic program points. This allows users to benefit from the convenience of big-step
definitions, while having access to the fine control of small-step semantics when necessary.

The resulting small-step skeletal semantics can then be given to Necro to generate OCaml in-
terpreters or Coq formalizations. We exploit the latter feature to automatically and a-posteriori
certify the correctness of the result of the transformation with reuse on any language for ter-
minating evaluations. Equivalence proofs between big-step and small-step semantics are well-
known [40, 46, 35] but repetitive for large languages, so they benefit greatly from the automation
and trust of proof assistants. The transformation without reuse is also proved to be correct in-
dependently from the input language in the terminating and diverging cases.

The transformations and the proofs make no assumptions about filters, and the filters defined
for the big-step input are used by the small-step outputs up to coercions. Our work remains
parametric in the implementation of filters, in the spirit of skeletal semantics.

In practice, this automated transformation and certification have been successfully tested
on a wide variety of languages. The transformation with reuse produces small-step skeletal
semantics close to the SOS rules that one would write by hand. The current implementation
still has some limitations discussed below (see Section 7.2), but we believe the core idea of the
transformation can be expanded to handle these cases.

7.1 Related Work

While several approaches go from a small-step to a big-step setting by manipulating either
inference rules [45, 20] or interpreters [26, 23], the other direction has been less pursued.

Vesely and Fisher [53] propose an automatic transformation from a big-step to a small-step
interpreter. The input interpreter contains functions for small operations (e.g., updating a state)
and a single evaluation function eval. Roughly, the transformation starts with a partial CPS-
transform of eval to turn recursive calls into continuations, considered as newly created terms.
After making eval a stepping function, it ends with an inverse CPS-transform recreating a
small-step interpreter. As in our work, creating a new constructor for every continuation would

83

Part I, Chapter 7 – Conclusion of Part I

be correct but the authors aim for an output closer to a semantics written by hand. For this,
they substitute continuations that can be expressed as initial terms in order to simplify the
resulting interpreter.

Vesely and Fisher’s approach only considers subcomputations as reduction steps, as they
transform only eval calls—similar to hook calls in our case—and ignore other simple functions
calls—filter calls—or focus changes. The input interpreter, defined in an ad-hoc language, may
not be as expressive as skeletal semantics, in particular because only one evaluation function is
possible. It is not clear whether the approach scales to several mutually recursive functions.

An important difference is that their resulting small-step function only recreates a term and
not a configuration. This systematically leads to a new constructor C packing a state and a term.
It is not necessarily less efficient than our approach, as they do not need new constructors when
only state variables are reused. For instance, to reduce a λ-calculus term App(t1, t2) with a sub-
reduction s, t1 → s′, t′

1, we would reconstruct a configuration as s, App(t1, t2) → s, App1(s′, t′
1, t2)

while they would reconstruct a term as s ⊢ App(t1, t2) → App(C(s′, t′
1), t2). As a result, it is

difficult to compare the outputs of the two approaches based on the number of additional con-
structors or rules, but the output semantics are very close to usual small-step definitions, with
a minimal number of created constructors in both cases.

The strategy for simplifying the output semantics is also quite different. Our transforma-
tion performs an analysis first to avoid generating and using useless constructors, while they
transform every eval call into a new constructors and rely on an a posteriori analysis to fac-
torize constructors that behave the same. The analysis they present is lightweight and cannot
regroup terms using other variables (e.g., states) differently. This does not seem as general as
our approach, but it could probably be solved by embedding a stronger analysis if needed.

Finally, Vesely and Fisher [53] claim to have informal proofs of several parts of their transfor-
mation. We have a language-independent proof of the transformation without initial constructors
reuse for terminating and diverging evaluations. With reuse, we generate an equivalence proof
script for terminating evaluations for any input semantics.

Huizing et al. [31] present a transformation from a big-step to a small-step semantics, by
directly manipulating inference rules. Small-step configurations are extended with a stack to
keep track of the big-step premises that have already been computed. For each non-axiom
big-step rule, they create several terms to indicate which premise is under evaluation, and a
multitude of small-step rules to either initiate/conclude the big-step rule, change the premise
under consideration, or reduce it. Rules for focusing on a new premise also guess an input state
for the subcomputation; coherence is only checked when concluding the big-step rule. Guessing
intermediate states, and delaying the unification until the end of the corresponding big-step rule,
make the transformation very generic and interesting for languages with complicated control
flow. However, the large number of small-step rules and new terms as well as the stack make

84

7.2. Limitations and Perspectives

the resulting semantics very different from usual SOS definitions.

7.2 Limitations and Perspectives

Our current small-step transformation has a few limitations, and cannot be applied to every
language expressible in the recent higher-order skeletal semantics. In this section, we informally
present the two problematic cases, and discuss potential solutions.

7.2.1 Polymorphism

The version of skeletal semantics used in this first part supports polymorphism, even if we did
not detail it in Chapter 3. However, our transformation do not apply to polymorphic hooks, as
they present additional challenges. As an example, consider the following function.

type list<a> =
| Nil
| Cons of a * list<a>

(** truncates a list 'l' and keeps the 'n' first elements *)
hook firstn<a> (l:list<a>, n:nat) matching n : list<a> =
| Zero -> Nil<a>
| Succ (m) ->

branch
let Cons(x, l2) = l in
let q = firstn l2 m in
Cons(x, q)

or
let Nil = l in Nil<a>

end

If we consider this hook to be a basic operation to be evaluated atomically (i.e., keep it in
big-step form), our implementation can transform the rest of the semantics without issue1. If
we instead want a small-step version of this operation, the transformation of Chapter 4 needs
to be extended.

If all the polymorphic variables of the hook (here, a) are included in the polymorphic vari-
ables of the matched program type, our transformation should be applicable with very little
modifications. A coercion can be added from the output type to the matched type. Intermediate
program points can also be transformed into new constructors for the program type.

However, if the matched program type is not “polymorphic enough”, then the procedure
might fail. In the example above, the type nat is not polymorphic, so we cannot create a coercion

1. However, the legacy Coq export mechanism does not support polymorphic types, so we cannot generate an
equivalence certificate.

85

Part I, Chapter 7 – Conclusion of Part I

from list<a> to nat2. A relatively simple solution would be to create a new (polymorphic)
configuration program type with a single constructor, and modify the hook to take a single
argument. In our example above, it would generate something along the lines of:

type config<a> =
| Conf of list<a> * nat

hook firstn<a> (c : config<a>) matching c : list<a> =
| Conf (l, n) ->

branch
let Zero = n in Nil<a>

or
let Succ m = n in
branch

let Cons(x, l2) = l in
let q = firstn Conf(l2, m) in
Cons(x, q)

or
let Nil = l in Nil<a>

end
end

Then, the transformation of Chapter 4 could apply. However, this approach has two limita-
tions. First, it requires a new type and the modification of every call to the polymorphic function.
Second, since hook calls to the polymorphic hook now explicitly use the new constructor (e.g.,
firstn Conf(l2, m)), partial results cannot be stored and the transformation systematically
requires new constructors (see analysis of Section 4.2.2). User-provided constructors cannot be
reused, which complicates the resulting small-step semantics.

7.2.2 Anonymous Functions

The legacy skeletal semantics presented in this first part does not allow the definition of anony-
mous functions. However, the recent version used in the second part of this document does (see
Chapter 8). This creates new problematic cases, as it is unclear how to transform anonymous
functions that might call upon evaluation functions.

A first solution would be to precede our transformation with a phase of defunctionalization
(see Chapter 9), i.e., transform every anonymous function into object types before applying the
strategy of Chapter 4. While it is a correct approach, semantics making heavy use of higher-
order functions and anonymous functions would be heavily modified, and the resulting small-step
semantics might be hard to follow.

2. Of course, in this toy example, the code could be re-written to pattern-match on the list instead of the
integer. This would solve the issue. But in general, this problem cannot always be side-stepped.

86

7.2. Limitations and Perspectives

Notably, the recent skeletal semantics supports the use of monads, allowing users to factorize
common data manipulations. Since monads make use of anonymous functions, reshaping them
properly becomes crucial. For instance, consider the following example using the syntax of the
recent skeletal semantics (see Chapter 8).

type m<a> = ...
val ret<a> (v : a) : m<a> = ...
val bind<a,b> (w : m<a>) (f : a → m) : m = ...
binder @ := bind

type value =
| Int int
| ...

type term =
| Plus (term, term)
| ...

val add : int -> int -> int

val eval (t : term) : m<value> =
branch

let Plus (t1, t2) = t in
let Int n1 =@ eval t1 in
let Int n2 =@ eval t2 in
let n = add n1 n2 in
ret<value> (Int n)

or ... end

Here, let p =@ eval t in s is syntactic sugar for let temp = eval t in bind temp (λp.s).
Evaluating a term Plus(t1, t2) still consists into evaluating t1 and t2, recovering two integers,

and adding them. The monad type m can hide a number of data structures and additional
operations. It can for instance contain a state to evaluate variables, or be able to raise an
exception if something goes wrong (e.g., division by zero). Eliminating anonymous functions
before applying the small-step transformation would completely reshape the semantics and make
the structure of the evaluation of Plus(t1, t2) difficult to follow.

A general strategy to transform arbitrary anonymous functions to small-step seems out of
reach, however monads use them in a very controlled way, so a strategy with some restrictions
might be feasible.

If we try to create, by hand, an equivalent small-step reduction function of type term ->

term, we quickly notice that extracting the result from the monad type is not always possible,
depending on the type of monad we want. However, an interesting opportunity appears if we
preserve the monad around the small-step output type. For the example above, we could write

87

Part I, Chapter 7 – Conclusion of Part I

the following small-step function, independently from the choice of monad.

type term =
| Plus (term, term)
| ...
| Value value

val evalss (t : term) : m<term> =
branch

let Plus (t1, t2) = t in
branch

let t1' =@ evalss t1 in
ret<term> (Plus(t1', t2))

or
let Value (Int n1) = t1 in
branch

let t2' =@ evalss t2 in
ret<term> (Plus(Value (Int n1), t2'))

or
let Value (Int n2) = t2 in
let n = add n1 n2 in
ret<term> (Value (Int n))

end
end

or ... end

We recover a similar structure to the small-step evaluation of IMP in Example 4.2.5. If t1 can
be computed further, we do so and reconstruct Plus(t′

1, t2), and inject it into the monad type.
Otherwise t1 is an integer, and we can proceed similarly with t2. Note that the monadic bind
on t1 can potentially shortcut the evaluation and return something else, just like it is possible
in the big-step version of this function.

The main advantages are that we preserve the structure of the semantics while introducing
a stepping function that should be equivalent to the initial evaluation function. However, the
resulting small-step semantics is very unconventional, as the output type is not the same as
the input type. We cannot chain the reduction by repeatedly applying evalss, but instead we
should integrate the initial term in the monad and repeatedly apply (λw. bind w evalss).

t
ret−−→ w0

bind _ evalss−−−−−−−−−→ w1
bind _ evalss−−−−−−−−−→ w2

bind _ evalss−−−−−−−−−→ . . .

Assessing the correctness and feasibility of this approach is left as a future work.

88

Part II

Meta-Language Transformation

89

Chapter 8

HIGHER-ORDER SKELETAL SEMANTICS

The legacy skeletal semantics, used in Part I of this document, has two shortcomings that make
expressing complex semantics tedious. They are resolved with the recent Skel meta-language.

First, associating a behavior to a constructor can only be done when defining a top-level
evaluation function. For behaviors depending on the presence of several constructors, the user
has to define auxiliary functions, resulting in tangled and unclear formalizations. For instance,
the transformation of Section 4 needs to create auxiliary functions named getRet because there
is no direct way to associate a behavior to specific terms such as Plus(Ret(v1), e2). This issue
also applies to functions that need to pattern-match on several arguments.

The problem is solved by strengthening the LetIn structure. We allow pattern recognition
on the result of the first computation. For instance, the extraction of a value previously noted
let v1 = getRet e1 in ... can now be performed with a skeleton let Ret(v1) = e1 in ...,
without the need for an auxiliary function. If the term e1 uses the constructor Ret, then the
variable v1 is bound as expected and the computation continues; else, there is no behavior and
the evaluation of the skeleton fails.

Combining this pattern recognition with branchings, it is possible to simulate a usual pattern-
matching. As such, we no longer enforce a mandatory pattern-matching when defining an evalu-
ation function. For instance, Figure 8.1 contains a semantics for Call-by-Value λ-calculus using
the recent Skel meta-language and Necro syntax. The skeleton for the eval function starts with
a branching, and each branch enforces a specific constructor, allowing us to associate a behavior
to each constructor.

Second, the legacy skeletal semantics does not support anonymous functions. There is no
function type, and it is not possible to bind a variable to a function. While anonymous functions
are not necessary to transcribe usual inference rules for small programming languages, they are
frequently used in interpreters and complex languages. The legacy skeletal semantics is notably
unpractical for languages making use of monads, such as JavaScript.

The recent skeletal semantics allows for function types and anonymous functions of the form
(λp → s), where the input p is a pattern that may enforce a specific constructor, and s is a
skeleton. This also enables the formalization of higher-order evaluation functions. For instance,
we can define the standard head and map operations on lists as follows:

90

type ident

type lterm =
| Lam (ident, lterm)
| Var ident
| App (lterm, lterm)
type clos =
| Clos (ident, lterm, env)

type env

val extEnv : (env, ident, clos) → env
val getEnv : (ident, env) → clos

val eval (s : env) (l : lterm) : clos =
branch

let Lam (x, t) = l in
Clos (x, t, s)

or
let Var x = l in
getEnv (x, s)

or
let App (t1, t2) = l in
let Clos (x, t, s1) = eval s t1 in
let w = eval s t2 in
let s2 = extEnv (s1, x, w) in
eval s2 t

end

Figure 8.1: Skeletal Semantics for Call-by-Value λ-calculus

type list<a> =
| Nil
| Cons (a, list<a>)

val head<a> : (list<a> → a) =
λ Cons(x, _) → x

val map<a,b> (f : a → b) (l : list<a>) : list =
branch

let Nil = l in Nil
or

let Cons(x1, l1) = l in
let x2 = f x1 in
let l2 = map f l1 in
Cons (x2, l2)

end

The recent skeletal semantics also include several quality-of-life changes, including the follow-
ings. Skelements are merged with skeletons, allowing skeletons of the form let p = s1 in s2.
Record types are supported. Filters and hooks are renamed to unspecified and specified eval-
uation functions, simplifying the notion of applying a function. Skeletons allow for existential
quantification.

The Necro toolbox has also been expanded. Notably, it provides syntactic sugar for a con-
venient usage of monads, and it allows the import of other definition files. The most important
feature is still the Coq extraction mechanism. Languages defined in skeletal semantics can au-
tomatically be exported into a Coq definition file. We remind that the tool provides a deep
embedding, i.e., it generates a Coq data structure encompassing the definitions of types and

91

Part II, Chapter 8 – Higher-Order Skeletal Semantics

evaluation functions of the language. Combined with the formalized deterministic abstract ma-
chine of Chapter 12, we can use the OCaml extraction provided by Coq to obtain a certified
OCaml interpreter for any user-defined language.

8.1 Syntax

We now introduce the new syntax of skeletal semantics. We write [] for an empty list and (a :: l)
for adding an element a to a list l. We note [a1; . . . ; an] for the list (a1 :: . . . :: an :: []). We write
l1 ++ l2 the concatenation of two lists, [a1; . . . ; an] ++ [b1; . . . ; bm] ≜ [a1; . . . ; an; b1; . . . ; bm].

The skeletal semantics of a language is composed of:

• a set of unspecified types;

• a set of specified types, with either typed constructors (for abstract datatypes) or typed
field names (for record types);

• a set of typed unspecified skelterms;

• a set of typed specified skelterms.

We use the word “skelterm” for terms of the Skel meta-language to avoid confusion with terms
of the embedded language (e.g., λ-terms). In the example of Figure 8.1, ident is an unspecified
type; lterm a specified type with three constructors, getEnv is an unspecified skelterm, and
eval a specified skelterm.

An unspecified skelterm is an identifier representing an abstract object/function not given
when defining the language. To execute the language in practice, we would need to determine
how to interpret this identifier (see Section 8.2). In the Necro syntax (see Figure 8.1), they are
introduced with the keyword val.

We call specified skelterms identifiers associated to an explicit skelterm. We note SpecDecl

the mapping from identifiers (i.e., strings) to their corresponding skelterm. They are also intro-
duced with the keyword val, but require a definition.

We let c range over constructors; n and m over natural number; and x and d over identifiers
(i.e., strings). For any entity e, we note le for lists of elements of this entity: for instance, lc repre-
sents a list of constructors. The grammar of types (T), variables (v), patterns (p), skelterms (t),
and skeletons (S) is defined as follows.

92

8.1. Syntax

T ::= TyVar(x) | TyBase(x, lT) | TyProd(lT) | TyArrow(T1, T2)

v ::= VLet(x, T) | VUnspec(x, T, lT) | VSpec(x, T, lT)

p ::= PWild(T) | PVar(x, T) | PConstr(c, lT , p) | PTuple(lp)

| PRec([(d1, lT1 , p1); . . . ; (dm, lTm , pm)])

t ::= TVar(v) | TConstr(c, lT , t) | TTuple(lt) | TNth(t, lT , n) | TFunc(p, S)

| TRec(topt, [(d1, lT1 , t1); . . . ; (dm, lTm , tm)]) | TField(t, lT , d)

topt ::= Some(t) | None

S ::= Branching(T, lS) | LetIn(p, S1, S2) | Apply(t, lt) | Return(t) | Exists(p, S, T)

Just like the previous version, this new skeletal semantics is strongly and statically typed.
Every piece of syntax is associated with a precise type. TyVar(x) is a variable used to create
polymorphic types. TyBase(x, lT) represents the basic types defined by the user, either specified
or unspecified. The type of λ-terms in Figure 8.1 is TyBase("lterm", []). The second argument is
used for polymorphism; e.g., a polymorphic list would be typed as TyBase("list", [TyVar("a")]),
whereas a list of λ-terms would be typed TyBase("list", [TyBase("lterm", [])]). Then, TyProd(lT)
is a product type corresponding to tuples. Notably, the unit type is TyProd([]), with the unit el-
ement being TTuple([]). Finally, TyArrow(T1, T2) represents a function type taking an argument
of type T1 and returning a result of type T2.

Constructors are associated with a triple indicating the polymorphic variables, the input
types, and the name of the output base type. For instance in the example of Figure 8.1, the con-
structor Lam is associated with ([], TyProd([TyBase("ident", []); TyBase("lterm", [])]), "lterm"),
while Cons is mapped to (["a"], TyProd([TyVar("a"); TyBase("list", [TyVar("a")])]), "list").

Skelterms are typed objects, usually representing completed computations. They are recur-
sively composed of constructors, tuples, and records. Records are maps from datafields (d) to
skelterms, and are implemented using lists. Base elements are either variables or functions. TNth

can be used to extract part of a tuple based on positioning; TField to extract a field from a
record (see Section 8.2). Lists of types are needed in some cases to instantiate polymorphism.
Patterns are very similar to terms and used for pattern-matching, with a special constructor
PWild to ignore part of a term.

A skeleton represents a computation to perform. It can either be a LetIn structure with
pattern-matching (let p = S1 in S2) chaining two computations, a non-deterministic choice
among several computations (Branching(T, lS)), an application of a function to a list of argu-
ments (Apply(t, lt)), or simply returning a skelterm. Branchings require an output type in case
the list is empty. Skeletal semantics also allows for the existential quantification of a result we

93

Part II, Chapter 8 – Higher-Order Skeletal Semantics

do not know how to compute (Exists(p, S, T)). It can be interpreted as let p = (? : T) in S.
It is used to transcribe programming languages where inference rules are not syntax-directed,
such as transitivity rules for subtyping.

Skeletal typed variables v correspond to the different strings which may appear in a skelterm,
pattern, or skeleton. A variable of the language is defined using PVar(x, T) in a pattern and used
with VLet(x, T). A specified skelterm is referenced using VSpec(x, T, lT), an unspecified one using
VUnspec(x, T, lT). Once again, lists of types are used to instantiate polymorphism.

As an example, the skelterm of the eval function of Figure 8.1 is of the following form—we
only detail the second branch let Var x = l in getEnv (x, s).

SpecDecl("eval") = t

t ≜ TFunc(PVar("s", Ts), Return(TFunc(PVar("l", Tl), S)))

S ≜ Branching(Tc, [. . . ; LetIn(p, S1, S2); . . .])

p ≜ PConstr("Var", [], PVar("x", Tx))

S1 ≜ Return(TVar(VLet("l", Tl)))

S2 ≜ Apply(TVar(VUnspec("getEnv", TgetEnv, [])), [txs])

txs ≜ TTuple([TVar(VLet("x", Tx)); TVar(VLet("s", Ts))])

Ts ≜ TyBase("env", []) Tl ≜ TyBase("lterm", [])

Tc ≜ TyBase("clos", []) Tx ≜ TyBase("ident", [])

TgetEnv ≜ TyArrow(TyProd([Tx; Ts]), Tc)

8.2 Concrete Interpretation

We keep the name concrete interpretation for the standard big-step semantics of the meta-
language Skel. In part I, it simply related input terms to (closed) output terms. Now that terms
contain functions, the concrete interpretation can also output closures, i.e., a function paired
with the environment it should be evaluated with. We create a new type for the results of this
evaluation, called concrete values, or cvalues for short. The grammar of concrete values (r), and
environments (Σ) is defined as follows.

r ::= CVTuple(lr) | CVConstr(c, r) | CVClos(Σ, p, S) | CVUnspec(x, n, lT , lr)

| CVRec([(d1, r1); . . . ; (dm, rm)]) | CVBase(a)

Σ ::= [(x1, r1); . . . ; (xm, rm)]

Environments are simply lists mapping identifiers to results. CVTuple(lr) represents a tu-
ple of results, CVConstr(c, r) a constructor packing another cvalue. CVClos(Σ, p, S) is a clo-

94

8.2. Concrete Interpretation

sure, corresponding to the skelterm TFunc(p, S) bundled with an evaluation environment Σ.
CVUnspec(x, n, lT , lr) represents a partially applied unspecified function x, with partial argu-
ments lr (see below for more details). CVRec(ldr) is a record mapping fields to cvalues.

Once again, the argument lT is used for polymorphism. From now on, we stop specifying
the internal types of skeletal semantics, as they use a standard system and are not relevant
to the work presented here. We also present the semantics of Skel ignoring types (see below
and Figures 8.2 and 8.3), when the full version would have a few additional side-conditions and
polymorphic instantiations.

Finally, CVBase(a) is an injection from base values of unspecified types to cvalues. Indeed,
the concrete interpretation assumes given an instantiation of unspecified types and unspecified
skelterms. For each unspecified type, we expect a set representing its values (e.g., N for "nat",
or {⊤; ⊥} for "bool"). In the grammar above, a represents an object in the interpretation of an
unspecified type.

For each unspecified skelterm, we require an arity and a function producing a list of possible
results. For notation purposes, we group these elements in two main auxiliary functions: Arity

of type (string → nat); and UnspecDecl of type (string → cvalue list → cvalue list).
For an unspecified skelterm x, UnspecDecl(x) takes as argument a list of size Arity(x) and
outputs a list of possible results.

Example 8.2.1. To simulate an If/Then/Else construction, we can provide unspecified skel-
terms "isTrue" and "isFalse" of type ("bool" → ()) with the following definitions:

Arity("isTrue") = 1

UnspecDecl("isTrue")[CVBase(⊤)] = [CVTuple([])]

UnspecDecl("isTrue")[CVBase(⊥)] = []

and similarly for "isFalse". This shows that an empty list result can be interpreted as a failure.
A conditional branching “If v then . . . else . . . ” can be simulated with branchings, as with the
legacy skeletal semantics (Section 3.1):

Example 8.2.2. A list of multiple results can also represent non-determinism. For instance, for
choosing a number in an interval, we can use:

Arity("randInt") = 2

UnspecDecl("randInt")[CVBase(5); CVBase(10)] = [CVBase(5); CVBase(6); . . . ; CVBase(10)]

The non-deterministic inductive inference rules of Figure 8.2 and 8.3 express how the different
structures of skeletal semantics are evaluated. The important rules are those for the evaluation
of skelterms (Σ ⊢ t ⇓t r) and skeletons (Σ ⊢ S ⇓s r) to concrete values.

95

Part II, Chapter 8 – Higher-Order Skeletal Semantics

Most of the rules are self-explanatory. For instance, evaluating a skeleton LetIn(p, S1, S2)
under Σ corresponds to evaluating S1 under Σ to get r′, performing a pattern-matching between
p and r′ to expand the environment to Σ′, and finally evaluating S2 under Σ′. Some premises
might not be doable, for instance the pattern-matching between p and r′ could fail. In this case,
the rule does not apply and the skeleton cannot be evaluated.

For records, we usually simply evaluate each subterm. An optional record can be given to
serve as a template, and it would then be extended with new fields, similarly to the OCaml
notation {rc with d1 = t1 ; ... ; dn = tn}. Note that the new datafields and values are
added to the beginning of the list, and thus overwrite previous definitions on the initial record.

Environment lookup (Σ(x) = r) corresponds to finding the first pair of the form (x, r) in Σ.
Pattern-matching (Σ+{p 7→ r} ⇓p Σ′) corresponds to extending Σ into Σ′ with pairs (xi, ri), and
is only valid if p and r have (recursively) tuples of the same arity and use the same constructors.
Patterns can also read fields from records.

The evaluation of unspecified skelterms is probably the least intuitive, as the concrete in-
terpretation allows for partially applied unspecified functions. If we encounter an unspecified
skelterm of arity 0, we immediately apply its interpretation. Otherwise, (Arity(x) = n + 1),
we create a concrete value CVUnspec(x, n, []), keeping track of the missing number of arguments
(n + 1) and the already given arguments (starting with an empty list).

The behavior of application for unspecified skelterms depends on the number of arguments.
If there is none, we simplify as expected. Else we have (m + 1) arguments. If we have enough
new arguments (m + 1 ≥ n + 1, simplified to m ≥ n in Figure 8.3) we apply the interpretation
of the skelterm. Otherwise (m < n), we expand the list of partial arguments and diminish the
counter of missing arguments.

A few rules of Figure 8.2 are non-deterministic, as we sometimes pick an element in a list.
This happens when choosing a branch in a branching, which can be seen as an internal source of
non-determinism; and when selecting a result from the interpretation of unspecified skelterms,
which can be seen as external non-determinism. The use of the Exists(p, S) constructor is also
fundamentally non-deterministic, but a derivation for it can only be provided by hand.

Note that there is no rule for generating or consuming base values CVBase(a) of unspecified
types, as they can only be handled by unspecified skelterms.

96

8.2. Concrete Interpretation

Interpretation of Skelterms:

Σ(x) = r

Σ ⊢ TVar(VLet(x)) ⇓t r

Arity(x) = 0 r ∈ UnspecDecl(x)[]
Σ ⊢ TVar(VUnspec(x)) ⇓t r

Arity(x) = n + 1
Σ ⊢ TVar(VUnspec(x)) ⇓t CVUnspec(x, n, [])

SpecDecl(x) = t [] ⊢ t ⇓t r

Σ ⊢ TVar(VSpec(x)) ⇓t r

Σ ⊢ t ⇓t r

Σ ⊢ TConstr(c, t) ⇓t CVConstr(c, r)
∀i, Σ ⊢ ti ⇓t ri

Σ ⊢ TTuple([t1; . . . ; tn]) ⇓t CVTuple([r1; . . . ; rn])

Σ ⊢ t ⇓t TTuple([r0; . . . ; rm]) n ≤ m

Σ ⊢ TNth(t, n) ⇓t rn Σ ⊢ TFunc(p, S) ⇓t CVClos(Σ, p, S)

Σ ⊢ t ⇓t CVRec(ldr) ldr(d) = r

Σ ⊢ TField(t, d) ⇓t r

∀i, Σ ⊢ ti ⇓t ri

Σ ⊢ TRec(None, [(d1, t1); . . . ; (dm, tm)]) ⇓t CVRec([(d1, r1); . . . ; (dm, rm)])

Σ ⊢ t ⇓t CVRec(ldr) Σ ⊢ TRec(None, l′dt) ⇓t CVRec(l′dr)
Σ ⊢ TRec(Some(t), l′dt) ⇓t CVRec(l′dr ++ ldr)

Interpretation of Skeletons:

S ∈ l Σ ⊢ S ⇓s r

Σ ⊢ Branching(l) ⇓s r

Σ ⊢ t ⇓t r

Σ ⊢ Return(t) ⇓s r

Σ ⊢ t ⇓t r0 ∀i, Σ ⊢ ti ⇓t ri r0 $ [r1; . . . ; rn] ⇓a r

Σ ⊢ Apply(t, [t1; . . . ; tn]) ⇓s r

Σ ⊢ S1 ⇓s r′ Σ + {p 7→ r′} ⇓p Σ′ Σ′ ⊢ S2 ⇓s r

Σ ⊢ LetIn(p, S1, S2) ⇓s r

Σ + {p 7→ r′} ⇓p Σ′ Σ′ ⊢ S ⇓s r

Σ ⊢ Exists(p, S) ⇓s r
for any r′

Figure 8.2: Concrete Interpretation (part 1)

97

Part II, Chapter 8 – Higher-Order Skeletal Semantics

Environment Lookup:

((x, r) :: Σ)(x) = r

x ̸= y Σ(x) = r

((y, r) :: Σ)(x) = r

Interpretation of Application:

r $ [] ⇓a r

Σ + {p 7→ r0} ⇓p Σ′ Σ′ ⊢ S ⇓s r1 r1 $ lr ⇓a r

CVClos(Σ, p, S) $ (r0 :: lr) ⇓a r

m ≥ n r′ ∈ UnspecDecl(x)(l ++ [r0; . . . ; rn]) r′ $ [rn+1; . . . ; rm] ⇓a r

CVUnspec(x, n, l) $ [r0; . . . ; rm] ⇓a r

m < n n′ = n − (m + 1) l′ = l ++ [r0; . . . ; rm]
CVUnspec(x, n, l) $ [r0; . . . ; rm] ⇓a CVUnspec(x, n′, l′)

Pattern-Matching:

Σ + {PWild 7→ r} ⇓p Σ Σ + {PVar(x) 7→ r} ⇓p (x, r) :: Σ

Σ + {p 7→ r} ⇓p Σ′

Σ + {PConstr(c, p) 7→ CVConstr(c, r)} ⇓p Σ′ Σ + {PTuple([]) 7→ CVTuple([])} ⇓p Σ

Σ + {p 7→ r} ⇓p Σ′ Σ′ + {PTuple(lp) 7→ CVTuple(lr)} ⇓p Σ′′

Σ + {PTuple(p :: lp) 7→ CVTuple(r :: lr)} ⇓p Σ′′

Σ + {PRec([]) 7→ CVRec(ldr)} ⇓p Σ

ldr(d) = r Σ + {p 7→ r} ⇓p Σ′ Σ′ + {PRec(ldp) 7→ CVRec(ldr)} ⇓p Σ′′

Σ + {PRec((d, p) :: ldp) 7→ CVRec(ldr)} ⇓p Σ′′

Figure 8.3: Concrete Interpretation (part 2)

98

Chapter 9

PRIMER ON FUNCTIONAL

CORRESPONDENCE

Functional correspondence [5] is a systematic approach for converting a big-step semantics into
an abstract machine. It has been manually applied to many languages with different features
[13, 3, 43, 14, 11, 4, 25, 32], showing its robustness and usefulness. In Chapters 10 and 11,
we use it to rephrase the semantics of Skel—the meta-language of skeletal semantics— into
non-deterministic and deterministic abstract machines.

Starting from an interpreter, the transformation combines several known techniques, notably
CPS translation [44] (Section 9.2) and defunctionalization [47] (Section 9.3) to progressively
generate an abstract machine (Section 9.4).

The strategy can also be reversed to transform a large range of abstract machines into
big-step semantics, under some conditions [5, 27, 15]. In this overview, we focus only on the
transformation from big-step semantics to abstract machines, as it is the only direction we use
in this document.

Throughout this chapter, we use the arithmetic expressions from Chapter 2 as a small run-
ning example. For readability, the pseudo-code is written in an OCaml-like syntax. The full
transformation on the complete IMP example is also available in Appendix A.

9.1 Rewrite the Semantics in Pseudo-Code

Functional correspondence was designed to bridge the gap between abstract machines and in-
terpreters, i.e., semantics written either in pseudo-code or in a functional meta-language. If the
input interpreter uses higher-order functions, the first step of functional correspondence would
be to get rid of anonymous functions with free variables. This can be done by defunctionalization
(as in Section 9.3 below).

In this document, the starting point is instead a big-step semantics defined with inference
rules. We therefore rewrite the input semantics into an interpreter using pseudo-code. As an
example, we transform the following toy language.

a ::= x | n | Plus(a1, a2)

99

Part II, Chapter 9 – Primer on Functional Correspondence

⟨σ, x⟩ ⇓a σ(x) ⟨σ, n⟩ ⇓a n

⟨σ, a1⟩ ⇓a n1 ⟨σ, a2⟩ ⇓a n2

⟨σ, Plus(a1, a2)⟩ ⇓a n1 + n2

For each type defined in the syntax, we similarly define the same type in pseudo-code. Since
we do not explicitly define variables (x), integers (n), and states (σ), we simply assume the
corresponding types exists in the pseudo-code.

type aexp =
| Var of string
| Nat of nat
| Plus of aexp * aexp

Then, for each evaluation predicate (here, ⇓a), we create an evaluation function (here named
eval). The input elements are the terms being evaluated; the output type is the result of the eval-
uation. The body of the evaluation function should merge the behaviors of the different inference
rules. Notably, each premise assuming an evaluation predicate (e.g., ⟨σ, a1⟩ ⇓a n1) is translated
into a call to the corresponding evaluation function (e.g., let n1 = eval s a1 in ...). When
the semantics is deterministic, like here, the function can easily be defined using a pattern-
matching on the term to evaluate. Otherwise, we also need to introduce a non-deterministic
choice operator in the pseudo-code (see Section 10.1).

let eval (s : state) (a : aexp) : nat =
match a with
| Var(x) -> lookup s x
| Nat(n) -> n
| Plus(a1, a2) ->

let n1 = eval s a1 in
let n2 = eval s a2 in
n1 + n2

Since we create temporary pseudo-code, only used as a transition between big-step and
abstract machine, we can invent names for the different basic operations. For instance, for a
state s, we note lookup s x for looking up the associated integer.

We obtain a pseudo-interpreter corresponding to our big-step semantics. Since the initial
inference rules do not manipulate functions, the pseudo-code does not use higher-order functions,
and we do not need to perform any additional manipulation.

9.2 CPS Transform

The next phase of functional correspondence is to transform all evaluation functions into Con-
tinuation Passing Style [44].

100

9.3. Defunctionalization

This first change makes the order of operations more explicit by creating tail-recursive func-
tion calls. At every program point, the rest of the computation is expressed as a function called
a continuation. The CPS transformation modifies every evaluation function to take such a con-
tinuation as an additional argument. In practice, we apply two modifications throughout the
pseudo-code.

First, at every return point of every evaluation function, instead of directly returning the
obtained result, we call the current continuation with the result as argument. For instance,
instead of returning an integer n, we make the function call k n.

Second, we make use of continuations to prevent nested computations. Every function call
of the form let n = eval .. in .. is changed into a final call eval .. (fun n -> ..). The
chaining in the computation is replaced by a continuation, containing what is computed after
the in keyword.

For our running example, we obtain the following pseudo-code.

let eval s a (k : nat -> nat) : nat =
match a with
| Var(x) -> k (lookup s x)
| Nat(n) -> k n
| Plus(a1, a2) ->

eval s a1 (fun n1 ->
eval s a2 (fun n2 ->
k (n1+n2)))

In the general case, the typing should be let eval s a (k : nat -> 't) : 't = ..., i.e.,
continuations can be made polymorphic. Since we do not need it, we output a nat for simplicity.

This creates a very directed semantics where every behavior—ignoring basic operations like
lookup and addition—is simply a final call to another function, either a continuation or an
evaluation function.

9.3 Defunctionalization

The next main phase of functional correspondence is to defunctionalize the continuations gener-
ated previously. Abstract machines manipulate explicit objects, and not functions nor closures.
As such, we need to reify—i.e., transform into objects—the anonymous functions used as con-
tinuations.

For each function type among the anonymous functions in the pseudo-code, we create a
new associated object type. For our example, we only have a single function type used by all
continuations: nat -> nat. We create a corresponding object type named kt.

Then, we create a new constructor (of the associated type) for each anonymous function. The
arguments of the constructor are the free variables of the anonymous function. In our example,

101

Part II, Chapter 9 – Primer on Functional Correspondence

we have two anonymous functions, the second being (fun n2 -> k (n1+n2)). Since its free
variables are n1 and k, we create an associated constructor KPlus2 of nat * kt. Similarly,
the first anonymous function has three free variables (s, a2, and k), and the corresponding
constructor has three arguments.

The goal is to replace each anonymous function with a corresponding object. However, con-
tinuations can be applied (e.g., k n) while objects cannot. For each new object type (here, kt), we
create what we call a dispatch function (here named disp) that will trigger the evaluation of the
corresponding anonymous function. For an anonymous function of type t1 -> t2 for which we
created a new object of type kt, we also create a dispatch function of type kt -> t1 -> t2. The
dispatch function associates to each new constructor the code of its corresponding anonymous
function.

Then, we can replace every anonymous function with an object using the corresponding new
constructor. At the same time, we change every continuation call to use the dispatch function,
replacing for instance k n with disp k n.

type kt =
| KID
| KPlus1 of state * aexp * kt
| KPlus2 of nat * kt

let disp (k : kt) (n : nat) : nat =
match k with
| KPlus1(s, a2, k') ->

eval s a2 KPlus2(n, k')
| KPlus2(n1, k') ->

disp k' (n1+n)

let eval s a (k : kt) : nat =
match a with
| Var(x) -> disp k (lookup s x)
| Nat(n) -> disp k n
| Plus(a1, a2) ->

eval s a1 KPlus1(s, a2, k)

We obtain an equivalent semantics without anonymous functions. Continuations are now
objects, even if they still indirectly contain the rest of the computation to perform. Applying a
continuation now requires an explicit call to the corresponding dispatch function.

Additionally, we create a continuation constructor KID without arguments. It can be seen as
an empty continuation, or the identity function (λn.n), and is used to start and stop a compu-
tation (see next section). In disp, there is no dispatch rule for KID, as there is no computation
left to perform and we expect the abstract machine to stop.

102

9.4. Abstract Machine

9.4 Abstract Machine

The pseudo-code at the end of the previous section is almost an abstract machine. The only
difference is that we want to stage a computation into several tiny steps, so we need to introduce
a pause at every function call. We also stop using pseudo-code, and introduce more standard
notations.

Types can easily be transformed into usual syntactic definitions.

a ::= x | n | Plus(a1, a2)

k ::= Kid | KPlus1(σ, a, k) | KPlus2(n1, k)

For each function of the pseudo-code, we create an evaluation mode for our new abstract
machine. For each evaluation mode, the arguments of the machine states are simply the ar-
guments of the corresponding function. For our example, we have machine states of the form
⟨σ, a, k⟩e for the function eval, and of the form ⟨k, n⟩k for the function disp. I.e., a machine
state corresponds to the computation of one of the functions of the pseudo-code.

Then, the steps of the abstract machine follow the different cases of the pseudo-code.
For each behavior of the pseudo-code, we create a step: the left-hand side state corresponds
to the evaluation of the input arguments; the right-hand side state corresponds to the fi-
nal function call of the behavior. For instance, running the eval function with arguments
s Nat(n) k makes a function call to disp k n; this is translated into a step ⟨σ, n, k⟩e → ⟨k, n⟩k.

For arithmetic expressions, we end up with five steps.

⟨σ, x, k⟩e → ⟨k, σ(x)⟩k

⟨σ, n, k⟩e → ⟨k, n⟩k

⟨σ, Plus(a1, a2), k⟩e → ⟨σ, a1, KPlus1(σ, a2, k)⟩e

⟨KPlus1(σ, a, k), n⟩k → ⟨σ, a, KPlus2(n, k)⟩e

⟨KPlus2(n1, k), n⟩k → ⟨k, (n1 + n)⟩k

Note that there is no step for the evaluation of the basic continuation Kid, as there is no cor-
responding behavior in the pseudo-code. This continuation is used as a base for starting and
stopping a computation, like the continuation • in the example of Section 2.5. To evaluate a con-
figuration ⟨s, a⟩ with this abstract machine, we would create an initial machine state ⟨s, a, Kid⟩e

and repeatedly reduce. The machine would stop at a state of the form ⟨Kid, n⟩k, indicating that
the result is n.

The derivation and the final abstract machine for the complete IMP example are available
in Appendix A.

103

Chapter 10

NON-DETERMINISTIC ABSTRACT

MACHINE FOR SKELETAL SEMANTICS

The first step towards a certified interpreter is to transform the big-step interpretation of skele-
tons into an abstract machine while keeping the non-determinism of the concrete interpretation.
We thus derive a Non-Deterministic Abstract Machine (NDAM) from the concrete interpreta-
tion. While the NDAM obtained in this chapter is not executable, the transformation we present
serves as a basis to generate a deterministic abstract machine in Chapter 11. Also, we use the
NDAM in Coq as an intermediate semantics to certify the correctness of the final deterministic
abstract machine with respect to the initial concrete interpretation.

We follow the textbook strategy of functional correspondence presented in Chapter 9. After
rewriting the concrete interpretation from inference rules to pseudo-code (Section 10.1), we
perform a CPS-transformation (Section 10.2), a phase of defunctionalization (Section 10.3), and
create the abstract machine proper and its evaluation modes (Section 10.4). Finally, Section 10.5
presents the Coq equivalence result between the resulting non-deterministic abstract machine
and the rules of Figure 8.2.

In each code snippet illustrating the different phases of the transformation, we use a gray
background to indicate changes relative to previous sections. All intermediate phases of this
derivation are available in Appendix D.1.

10.1 Pseudo-interpreter

We translate the concrete interpretation into pseudo-code, using an OCaml-like syntax [36]
where natural numbers have constructors Z and S. We translate each predicate of Figure 8.2
into evaluation functions, resulting into the following pseudo-code for skeletons:

let eval_sk (sk : skeleton) (e : env) : cvalue =
match sk with
| Branching (skl) ->

(* oracle picking the correct skeleton *)
let sk' = pick skl in
eval_sk sk' e

104

10.2. CPS-Transform

| ...
| LetIn (p, sk1, sk2) ->

let r = eval_sk sk1 e in
let e2 = eval_pat p r e in
eval_sk sk2 e2

The non-determinism of the evaluation of a branching is reflected by the pick function which
behaves like an oracle. It is able to choose, within a list, an appropriate element that will make
the whole evaluation succeed and output a result.

Similarly, we use the same function for unspecified skelterms. As presented before, the eval-
uation of such a skelterm depends on its arity. If it does not require arguments, we immediately
call its interpretation, and then arbitrarily select a result from the obtained list, using pick.
Otherwise, we create a partially applied skelterm initialized with zero arguments.

let eval_trm (t : skelterm) (e : env) : cvalue =
match t with
| TVar (v) -> match v with

| VLet (x) -> lookup e x
| VSpec (h) -> eval_trm (specdecl h) []
| VUnspec (f) -> match arity f with

| Z -> let rl = unspecdecl f [] in
(* oracle picking the correct cvalue *)
let r = pick rl in
r

| S m -> CVUnspec (f, m, [])
| TConstr (c, t') ->

let r = eval_trm t' e in
CVConstr (c, r)

| ...

We also define evaluation functions for lists of skelterms and lists of pattern-matchings. The
former corresponds to mapping the evaluation function for skelterms over the list, while the
latter behaves like a fold over the list, in accordance with the rules of Figure 8.2.

The full initial pseudo-code is available in Appendix D.1.1.

10.2 CPS-Transform

We apply a CPS transformation to the main evaluation functions: eval_trm, eval_sk, eval_pat,
lookup, etc. We do not modify the parametric functions (pick / specdecl / arity / unspecdecl)
nor the basic functions such as the concatenation of two lists.

let eval_trm t e (k : cvalue -> cvalue) : cvalue =
match t with

105

Part II, Chapter 10 – Non-Deterministic Abstract Machine for Skeletal Semantics

| TVar (v) -> match v with
| VLet (x) -> lookup e x k
| VSpec (h) -> eval_trm (specdecl h) [] k
| VUnspec (f) -> match arity f with

| Z -> let r = pick (unspecdecl f []) in
k r

| S m -> k (CVUnspec (f, m, []))
| TConstr (c, t') ->

eval_trm t' e (fun r -> k (CVConstr (c, r)))
| ...

let eval_sk sk e (k : cvalue -> cvalue) : cvalue =
match sk with
| Branching (skl) ->

let sk' = pick skl in
eval_sk sk' e k

| ...
| LetIn (p, sk1, sk2) ->

eval_sk sk1 e (fun r ->
eval_pat p r e (fun e2 ->
eval_sk sk2 e2 k))

The arity zero case is an example where the result is passed to the continuation. Calls to
unmodified functions, such as pick, are left unchanged. A call to an evaluation function f is
changed so that we create a continuation for the rest of the code and make a single tail-call to
f with it. When several of such calls are chained, we build nested continuations, like for the
constructor LetIn: the continuation after evaluating sk1 consists of performing the pattern-
matching with a continuation evaluating sk2.

The full pseudo-code at this point is available in Appendix D.1.2.

10.3 Defunctionalization

For each anonymous function generated in Section 10.2, we create a fresh constructor, whose
arguments are the free variables of the function. In the code, we replace each anonymous con-
tinuation by its new corresponding constructor.

type krt =
| KRID
| KRLet of pattern * skeleton * env * krt
| ...

let eval_sk sk e (k : krt) : cvalue =
match sk with

106

10.3. Defunctionalization

| Branching (skl) ->
let sk' = pick skl in
eval_sk sk' e k

| ...
| LetIn (p, sk1, sk2) ->

eval_sk sk1 e (KRLet (p,sk2,e,k))

We create the type krt (and its corresponding dispatch function disp_kr) to represent
continuations expecting a result, i.e., a concrete value. For example, the continuation of the
evaluation of sk1 in the LetIn case of Section 10.2 is replaced by the constructor KRLet, whose
arguments are the free variables of the continuation. We also replace any application of the
continuation k r by a call disp_kr k r, like in the arity zero case. The extra constructor krid

represents the identity continuation.

let disp_kr (k : krt) (r : cvalue) : cvalue =
match k with
| KRLet (p,sk,e,k') -> eval_pat p r e (KELet (sk,k'))
| ...

let eval_trm t e (k : krt) : cvalue =
match t with
| TVar (v) -> match v with

| VLet (x) -> lookup e x k
| VSpec (h) -> eval_trm (specdecl h) [] k
| VUnspec (f) -> match arity f with

| Z -> let r = pick (unspecdecl f []) in
disp_kr k r

| S m -> disp_kr k (CVUnspec (f, m, []))
| ...

Continuations expecting concrete values are not the only possibility in our CPS-transformed
evaluator: some expect either a list of concrete values, an environment, or the content of a record.
Therefore, we also create new types klt, ket, and kdt corresponding to continuations expecting
respectively lists of cvalues, environments, and record contents. These three types are also given
their own identity continuation: klid, keid, and kdid.

type ket =
| KEID
| KELet of skeleton * krt
| ...
let disp_ke (k : ket) (e : env) : cvalue =
match k with
| KELet (sk, k') -> eval_sk sk e k'
| ...

107

Part II, Chapter 10 – Non-Deterministic Abstract Machine for Skeletal Semantics

⟨Branching(l), Σ, k⟩sk → ⟨S, Σ, k⟩sk for (S ∈ l)
⟨LetIn(p, S1, S2), Σ, k⟩sk → ⟨S1, Σ, KRLet(p, S2, Σ, k)⟩sk

· · · → · · ·
⟨krid, r⟩kr ̸→ (* end of computation *)

⟨KRLet(p, S, Σ, k), r⟩kr → ⟨p, r, Σ, KELet(S, k)⟩pat

· · · → · · ·
⟨KELet(S, k), Σ⟩ke → ⟨S, Σ, k⟩sk

· · · → · · ·

Figure 10.1: Non-Deterministic Abstract Machine

We can see KELet being used when we dispatch the continuation KRLet in disp_kr: it corresponds
to the continuation of the evaluation of the pattern p in the LetIn case of Section 10.2.

The full pseudo-code at this point is available in Appendix D.1.3.

10.4 Abstract Machine

We can now generate the non-deterministic abstract machine. Each evaluation and dispatch
function of the pseudo-interpreter becomes a mode of the abstract machine, with the same
arguments as the ones of the function. For instance, the function eval_sk S Σ k is turned into
the state ⟨S, Σ, k⟩sk, while disp_kr k r corresponds to ⟨k, r⟩kr.

Each path in the code of Section 10.3 produces a step of the abstract machine, where the
resulting state corresponds to the tail-call. The parametric functions (such as specdecl and
pick), can be translated as guarding conditions of the abstract machine. For instance, the LetIn
case of the pseudo-code generates the following step.

⟨LetIn(p, S1, S2), Σ, k⟩sk → ⟨S1, Σ, KRLet(p, S2, Σ, k)⟩sk

This correctly produces a stepping relation. Some of the steps of the NDAM are given in
Figure 10.1. The full abstract machine is available in Appendix D.1.4.

The initial states of the NDAM correspond to injections ⟨t, [], krid⟩trm and ⟨S, [], krid⟩sk for
evaluating respectively a skelterm t and a skeleton S. Running this abstract machine in practice
would require an oracle, as the rule ⟨Branching([S1, . . . , Sn]), Σ, k⟩sk → ⟨Si, Σ, k⟩sk for branch-
ings is non-deterministic. If a wrong branch is selected, the abstract machine might fail to
produce a result. If the NDAM reaches a final state of the form ⟨krid, r⟩kr, then r is a valid result
of the evaluation.

108

10.5. Certification

For all states a and b, we write a →∗ b for the reflexive and transitive closure of the stepping
relation of the abstract machine, and a →n b for a sequence of n steps with n ∈ N.

10.5 Certification

The NDAM is formalized in Coq in the file Concrete_ndam.v (see the implementation [9]), and
we prove this NDAM to be sound and complete with respect to the concrete interpretation. The
Coq proof is done at the meta level (parametric in the skeletal semantics), as such it is valid
independently from the language we are interested in (e.g., λ-calculus).

Intuitively, each big-step relation of the concrete interpretation (see Figure 8.2) corresponds
to an evaluation mode of the NDAM. For instance, we have:

Σ ⊢ S ⇓s r iff ⟨S, Σ, krid⟩sk →∗ ⟨krid, r⟩kr

We call krid, keid, klid, and kdid the basic continuations of the abstract machine. States stuck
evaluating a basic continuation, e.g., ⟨krid, r⟩kr, are called final states.

Since the NDAM also manipulates reified continuations, we need a few results to reshape
them when appropriate. We first define continuation composition k[k′]. Given two continuations
k and k′, we write k[k′] for the substitution of the basic continuation inside k by k′, defined as
follows:

krid[k′] ≜ k′

KRLet(p, S, Σ, k)[k′] ≜ KRLet(p, S, Σ, k[k′])

. . . ≜ . . .

This continuation composition can be naturally extended to machine states, e.g., ⟨S, Σ, k⟩sk[k′] ≜
⟨S, Σ, k[k′]⟩sk.

Because the NDAM never pattern-matches on basic continuations, machine steps are pre-
served by continuation composition.

Lemma 10.5.1. For all a, b, and k, a → b implies a[k] → b[k].

This lemma is sufficient to prove the completeness part. Henceforth, we state lemmas and
theorems for the skeleton mode of the machine, but they can be stated similarly for the other
modes.

Theorem 10.5.2. For all S, Σ, and r, if Σ ⊢ S ⇓s r, then ⟨S, Σ, krid⟩sk →∗ ⟨krid, r⟩kr.

From the concrete interpretation to the NDAM, we proceed by structural induction on the
inductive properties of the concrete interpretation (Figure 8.2), and simply apply the induction
hypothesis and merge sequences, using Lemma 10.5.1.

109

Part II, Chapter 10 – Non-Deterministic Abstract Machine for Skeletal Semantics

Sketch. For instance, for the constructor LetIn:

Σ ⊢ S1 ⇓s r′ Σ + {p 7→ r′} ⇓p Σ′ Σ′ ⊢ S2 ⇓s r

Σ ⊢ LetIn(p, S1, S2) ⇓s r

Applying the induction hypothesis on each premise gives us:

(1) ⟨S1, Σ, krid⟩sk →∗ ⟨krid, r′⟩kr

(2) ⟨p, r′, Σ, keid⟩pat →∗ ⟨keid, Σ′⟩ke

(3) ⟨S2, Σ′, krid⟩sk →∗ ⟨krid, r⟩kr

We then merge them to reconstruct a sequence, held by a few additional steps. The identity
continuations are lifted using Lemma 10.5.1 when necessary.

⟨LetIn(p, S1, S2), Σ, krid⟩sk

→ ⟨S1, Σ, KRLet(p, S2, Σ, krid)⟩sk Definition

→∗ ⟨KRLet(p, S2, Σ, krid), r′⟩kr (1) + Lemma

→ ⟨p, r′, Σ, KELet(S2, krid)⟩pat Definition

→∗ ⟨KELet(S2, krid), Σ′⟩ke (2) + Lemma

→ ⟨S2, Σ′, krid⟩sk Definition

→∗ ⟨krid, r⟩kr (3)

For the reverse implication, we make explicit where continuations are needed by splitting
sequences of steps at the point where the continuation is actually focused on. Up to that
point, the continuation could be replaced by a basic continuation, as stated in the follow-
ing result. If the sequence does not use the continuation (e.g., ⟨LetIn(p, S1, S2), Σ, k⟩sk →
⟨S1, Σ, KRLet(p, S2, Σ, k)⟩sk), there is no splitting point for us to exploit. To avoid this case,
the lemma assumes the sequence leads to a final state, ensuring the continuation is used.

Lemma 10.5.3. For all S, Σ, k, n, and final state b, if we have ⟨S, Σ, k⟩sk →n b then there exist
n1, n2, and r such that ⟨S, Σ, krid⟩sk →n1 ⟨krid, r⟩kr, ⟨k, r⟩kr →n2 b, and n = n1 + n2.

The proof is by strong induction on the length of the sequence of steps. Intuitively, it holds
because we stop at the first step pattern-matching the initial continuation; the steps before the
cut are still valid after changing the unused continuation.

With this lemma, we can tackle the soundness part of the certification.

Theorem 10.5.4. For all S, Σ, and r, if ⟨S, Σ, krid⟩sk →∗ ⟨krid, r⟩kr, then Σ ⊢ S ⇓s r.

110

10.5. Certification

We proceed by strong induction on the length of the sequence of steps, and make use of
Lemma 10.5.3.

Sketch. For instance, for the constructor LetIn, we start with:

⟨LetIn(p, S1, S2), Σ, krid⟩sk →∗ ⟨krid, r⟩kr.

Using the definition of the NDAM (Figure 10.1) and Lemma 10.5.3 several times, we can cut
the sequence into the following pieces:

• ⟨S1, Σ, krid⟩sk →∗ ⟨krid, r′⟩kr

• ⟨p, r′, Σ, keid⟩pat →∗ ⟨keid, Σ′⟩ke

• ⟨S2, Σ′, krid⟩sk →∗ ⟨krid, r⟩kr

Each piece is strictly shorter than the initial sequence, so we can apply the induction hypothesis
on each of them. We obtain the premises of the LetIn concrete interpretation (cf. Figure 8.2) so
we can conclude. The other cases are similar.

111

Chapter 11

DETERMINISTIC ABSTRACT MACHINE

FOR SKELETAL SEMANTICS

The abstract machine of Chapter 10 is non-deterministic, and thus does not offer a computable
semantics for the empirical evaluation of skelterms and skeletons. In this chapter, we show
how to obtain a deterministic machine using explicit backtracking. The deterministic machine
returns at most one of the possible results; computing all of them is impossible in presence of
non-terminating executions. We choose to try branches in order and to backtrack if necessary.

To this end, we consider a more complex CPS transformation with a failure continuation
(Section 11.1). We then derive the resulting deterministic abstract machine through defunction-
alization in Section 11.2, and present the Coq certification of its soundness in Section 11.3.

11.1 CPS-Transform

Starting from the big-step evaluator of Section 10.1, we modify every evaluation function to take
two continuations [24]:

• a success continuation k as in Section 10.2, indicating what to do if the computation
succeeds, and

• a failure continuation fk, remembering the last checkpoint to backtrack to in case of failure.

When the evaluator of Section 10.1 chooses between several results using pick, we instead
decide to always evaluate the first of the possible choices and create a checkpoint for the other
possibilities. For branchings, it means evaluating the first branch, and remembering the others
in the failure continuation. When we reach an empty branching, it means that all the evaluations
of all the branches failed, and we need to backtrack by calling fk. Once again, we use a gray
background to indicate changes or new functions, here relative to the initial pseudo-code of
Section 10.1.

let eval_sk sk e
(k : cvalue -> (() -> cvalue) -> cvalue)
(fk : () -> cvalue) : cvalue =

112

11.1. CPS-Transform

match sk with
| Branching (skl) -> match skl with

| [] -> fk ()
| sk'::l ->

eval_sk sk' e k
(fun _ -> eval_sk (Branching(l)) e k fk)

| ...
| LetIn (p, sk1, sk2) ->

eval_sk sk1 e (fun r fk2 ->
eval_pat p r e (fun e2 fk3 ->
eval_sk sk2 e2 k fk3) fk2) fk

The other source of non-determinism is the evaluation of unspecified skelterms, which returns
a list of possible results (see Figure 8.2). In this case, we create a new evaluation function
select_list which follows the same principle as for branchings: it sequentially tries the elements
of the list, and otherwise calls the failure continuation.

let select_list rl
(k : cvalue -> (() -> cvalue) -> cvalue)
(fk : () -> cvalue) : cvalue =

match rl with
| [] -> fk ()
| r::l -> k r (fun _ -> select_list l k fk)

Also, we complete the pattern-matchings of the pseudo-code to make them total, and back-
track in the problematic cases. Initially, the pseudo-code follows the rules of Figure 8.2 and does
not cover cases that cannot evaluate. For instance, the rules for looking up a variable in an
environment assumes the environment to have at least one entry:

def lookup e x : cvalue = match e with
| (y,r)::e2 -> if x=y then r

else lookup e2 x

Here, to cover all possible behaviors, we add a case for when the environment is empty. We add
similar backtracking cases at several points throughout the pseudo-code.

def lookup e x k fk : cvalue = match e with
| [] -> fk ()
| (y,r)::e2 -> if x=y then k r fk

else lookup e2 x k fk

Lastly, we need to pass the current failure continuation as an argument of the success con-
tinuation k. The reason is that a computation can seemingly succeed at first and fail later on;
we would then need to backtrack to checkpoints unknown to k. This is obvious for functions

113

Part II, Chapter 11 – Deterministic Abstract Machine for Skeletal Semantics

such as select_list: it succeeds in selecting an element of the list, but the continuation might
fail later.

The extra failure continuation does not fundamentally change how deterministic constructors
are CPS-transformed, as we can see with the resulting code for LetIn in the above eval_sk

function: we just need to pass along the failure continuation, and be mindful of the new type of
success continuations.

The full pseudo-code after CPS transformation is available in Appendix D.2.1.

11.2 Defunctionalization and Abstract Machine

On top of the types krt, klt, ket, and kdt of Section 10.3, this defunctionalization phase
generates a new type fkt and its dispatch function disp_fk for failure continuations.

type fkt =
| FEmpty
| FSK of skeleton * env * krt * fkt
| FList of (cvalue list) * krt * fkt
let disp_fk fk = match fk with
| FSK(sk, e, k, fk') -> eval_sk sk e k fk'
| FList(rl, k, fk') -> select_list rl k fk'

The constructors FSK and FList correspond to the anonymous functions of Section 11.1 where we
construct backtracking checkpoints for trying respectively the arguments of a branching or the
list of possible interpretations of an unspecified skelterm. We also create a constructor FEmpty

representing an empty failure continuation, used to start a computation. It has no rule in the
dispatch function, since no backtrack is possible.

let select_list rl (k : krt) (fk : fkt): cvalue =
match rl with
| [] -> disp_fk fk

| r::l -> k r (FList (l, k, fk))

let eval_sk sk e (k : krt) (fk : fkt): cvalue =
match sk with
| Branching (skl) -> match skl with

| [] -> disp_fk fk
| sk'::l -> eval_sk sk' e k

(FSK (Branching(l), e, k, fk))
| ...

As previously, the new constructors replace the anonymous functions, and we add a call to
the dispatch function at every backtrack point.

114

11.2. Defunctionalization and Abstract Machine

⟨Branching([]), Σ, k, f⟩sk → ⟨f⟩fk

⟨Branching(S :: l), Σ, k, f⟩sk → ⟨S, Σ, k, FSK(Branching(l), Σ, k, f)⟩sk

⟨LetIn(p, S1, S2), Σ, k, f⟩sk → ⟨S1, Σ, KRLet(p, S2, Σ, k), f⟩sk

· · · → · · ·
⟨[], k, f⟩lst → ⟨f⟩fk

⟨r :: l, k, f⟩lst → ⟨k, r, FList(l, k, f)⟩kr

· · · → · · ·
⟨krid, r, f⟩kr ̸→ (* end of computation *)

⟨KRLet(p, S, Σ, k), r, f⟩kr → ⟨p, r, Σ, KELet(S, k), f⟩pat

· · · → · · ·
⟨KELet(S, k), Σ, f⟩ke → ⟨S, Σ, k, f⟩sk

· · · → · · ·
⟨FEmpty⟩fk ̸→ (* failure *)

⟨FSK(S, Σ, k, f)⟩fk → ⟨S, Σ, k, f⟩sk

⟨FList(l, k, f)⟩fk → ⟨l, k, f⟩lst

Figure 11.1: Deterministic Abstract Machine

The full pseudo-code at this point is available in Appendix D.2.2.
Transforming the defunctionalized evaluator produces a deterministic abstract machine, as

each machine state is either stuck or reduces to exactly one machine state. Compared to the
non-deterministic machine of Section 10.4, the states carry an extra argument corresponding to
the failure continuation.

The deterministic machine has two additional modes lst and fk, which correspond to the
functions (select_list and disp_fk): we present their steps in Figure 11.1. As expected, the
lst mode tries the continuation on each element of the list, and triggers the backtracking mode
fk on the empty list; it is also invoked on an empty branching. The fk mode then restores the
backtracking checkpoint, unless the failure continuation is empty, in which case the machine
stops.

We initialize the machine with either ⟨t, [], krid, FEmpty⟩trm to evaluate a skelterm t or
⟨S, [], krid, FEmpty⟩sk for a skeleton S. There are three possible outcomes:

• the machine gets stuck at ⟨krid, r, f⟩kr, which means r is a result (there might be other
correct results, but we stop at the first);

• it gets stuck at ⟨FEmpty⟩fk, which means all possible branches have been tried and there
is no result;

115

Part II, Chapter 11 – Deterministic Abstract Machine for Skeletal Semantics

• the evaluation does not terminate, as the abstract machine can loop on an infinite branch
(there might be correct results on other branches).

The complete deterministic abstract machine is available in Appendix D.2.3.

11.3 Certification

The deterministic Abstract Machine (AM) is formalized in Coq in the file Concrete_am.v (see
the implementation [9]), and once again the certification is independent from the skeletal se-
mantics (language) we are interested in.

We prove in Coq that the AM is sound with respect to the NDAM: if the AM finds a result,
then the NDAM can also find the same result. Because the NDAM is sound with respect to the
concrete interpretation, so is the AM. However it is not complete: the AM can find at most one
of the results, and may loop in an infinite branch even if there is a valid result elsewhere.

To avoid confusion, the stepping relations of the abstract machines are written (→AM) and
(→ND) in this section. We note x̃ for a sequence (x1, . . . , xn), ⟨x̃⟩m for a NDAM state of mode
m, and ⟨x̃, f⟩m for an AM state of mode m—failure continuations are always the last argument
in the deterministic case.

Unlike in Section 10.5, both semantics use success continuations so there is no need for
lemmas to manipulate them. However, only the AM uses failure continuations, so we do need a
few results to handle them.

Firstly, we define failure continuation composition f [f ′] which replaces the empty failure
continuation in f by f ′.

FEmpty[f ′] ≜ f ′

FSK(S, Σ, k, f)[f ′] ≜ FSK(S, Σ, k, f [f ′])

FList(l, k, f)[f ′] ≜ FList(l, k, f [f ′])

We extend it to AM states so that ⟨x̃, f⟩m[f ′] ≜ ⟨x̃, f [f ′]⟩m.
As previously, steps hold after composition:

Lemma 11.3.1. For all a, b, and f , a →AM b implies a[f] →AM b[f].

Secondly, we prove another lemma to discard failure continuations. If a sequence never uses it,
we can remove it from both the head and tail states. Otherwise, we can split this sequence at the
point where it is called, and the first part can be written without using the failure continuation.

Lemma 11.3.2. For all n, AM mode m, and states ⟨x̃, f⟩m and b, if ⟨x̃, f⟩m →n
AM b then either:

• there exists b′ such that ⟨x̃, FEmpty⟩m →n
AM b′ and b = b′[f], or

116

11.3. Certification

• there exist n1 and n2 such that ⟨x̃, FEmpty⟩m →n1
AM ⟨FEmpty⟩fk, ⟨f⟩fk →n2

AM b, and n =
n1 + n2.

The proof is done by strong induction on the length of the sequence of steps, and uses a few
basic results about composition, such as associativity.

Lastly, we can pose our main theorem. It states that the AM is sound with respect to the
NDAM.

Theorem 11.3.3. For all l, k, r, and f , if ⟨l, k, FEmpty⟩lst →∗
AM ⟨krid, r, f⟩kr then there exists

r′ ∈ l such that ⟨k, r′⟩kr →∗
ND ⟨krid, r⟩kr.

For all NDAM mode m (i.e., other than lst and fk), for all ⟨x̃, FEmpty⟩m, r, and f , if
⟨x̃, FEmpty⟩m →∗

AM ⟨krid, r, f⟩kr then ⟨x̃⟩m →∗
ND ⟨krid, r⟩kr.

In particular, for the mode evaluating skeletons sk, the following holds.

Corollary 11.3.4. For all S, Σ, r, and f , if

⟨S, Σ, krid, FEmpty⟩sk →∗
AM ⟨krid, r, f⟩kr,

then ⟨S, Σ, krid⟩sk →∗
ND ⟨krid, r⟩kr.

The mode lst is treated differently in the theorem because there is no corresponding mode
in the NDAM. It amounts to choosing the first cvalue r′ ∈ l that would produce a result. In the
NDAM, we would have an oracle picking the right element of l to evaluate.

The proof is done by strong induction on the sequence of the AM. We follow the AM sequence,
and most steps correspond to similar steps in the NDAM. We restrict ourselves to sequences
with an empty failure continuation to make use of the induction hypothesis. When the AM
would create a checkpoint, we use Lemma 11.3.2; a case disjunction on the result allows us to
pick the correct branch for the NDAM and keep an empty failure continuation.

Remark. In the proof of Theorem 11.3.3, an AM state with an empty failure continuation and
the corresponding NDAM state have exactly the same success continuation. This is why we no
longer need the continuation composition of Section 10.5 (and the associated lemmas) to handle
them.

Finally, since the NDAM is sound w.r.t. the concrete interpretation, so is the AM.

Theorem 11.3.5. For all S, Σ, r, and f , if

⟨S, Σ, krid, FEmpty⟩sk →∗
AM ⟨krid, r, f⟩kr,

then Σ ⊢ S ⇓s r.

Proof. From Theorems 11.3.3 and 10.5.4.

117

Chapter 12

CERTIFIED INTERPRETER

We show how to use the deterministic abstract machine of Section 11 to automatically generate
a certified OCaml interpreter from a skeletal description of a language.

As stated before, the two abstract machines have been implemented and certified in Coq.
Since the NDAM is not computable, it is coded as a relation:

Inductive step : state -> state -> Prop

However, the AM is computable and coded as a partial function. The only states not being
mapped are the final states (i.e., blocked on krid/klid/keid or FEmpty):

Definition step (a : state) : option state

This stepping function can be repeated to form a partial evaluation function. Since Coq only
accepts terminating functions, we need a fuel parameter, bounding the number of steps the
function can do.

Fixpoint evalfuel (n : nat) (a : state) : option cvalue

This function extracts the result r of a final state ⟨krid, r, f⟩kr, it fails on n = 0 or a = ⟨FEmpty⟩fk,
and it steps then recurses with one less fuel otherwise.

From these definitions, using Coq extraction to OCaml [37], we generate an executable
version of the deterministic abstract machine. This extraction only has do be done once and it
is independent of the user-defined skeletal semantics. The output has been slightly reorganized
to make better use of OCaml modules.

At this point, the generated OCaml functions can simulate the evaluation of skeletons. This
generic interpreter still needs to be instantiated with an actual OCaml representation of a
skeletal semantics. To this end, we use the Necro tool to deeply embed the semantics into Coq,
which we then extract to OCaml. I.e., the user definition is translated successively into a Coq
datatype and an OCaml datatype. A small script is provided to perform this translation and
automatically generate an OCaml module to instantiate the generic abstract machine.

As explained before, the Coq deep embedding—and thus the OCaml module—is parametric
in the representation of unspecified types and skelterms (e.g., ident, env, extEnv, and getEnv

for the λ-calculus of Chapter 8 and Figure 12.1 below). To exploit this module, a user then

118

needs to provide OCaml types and functions for them before having access to the AM functions,
notably evalfuel to launch an evaluation.

The soundness proofs of Sections 10.5 and 11.3 are parameterized by the used skeletal seman-
tics. As such, they are valid for any language. So this OCaml interpreter, extracted from the AM
and specialized with a language, is sound with respect to the initial concrete interpretation of
Section 8.2. If an execution of evalfuel produces a result, then this result is a correct behavior
of the skeletal semantics. Once again, if the interpreter does not produce a result, we have no
guarantees: the interpreter might need more fuel, it might be stuck in an infinite loop, or there
might be no correct result at all.

The advantage of working at the meta-level, i.e., proving correction once and for all languages,
has a drawback: the execution happens in the meta-language, namely Skel, while a user may
prefer working at the level of the language, e.g., λ-terms. This deep embedding requires the
user to understand the Skel meta-language. For instance, the user-defined OCaml functions
representing unspecified skelterms (filters) manipulate concrete values. Using OCaml macros
can alleviate notations, but cannot resolve fully this gap. Furthermore, an abstract machine for
the language itself would be more efficient than the abstract machine for the meta-language.

As examples, we instantiated this meta-interpreter with different languages. The main ones
are an imperative language with mutable state, and an extended lambda-calculus with features
(pairs, fix-point recursion, etc.). The specialized interpreters, as well as the rest of this work, are
available online [9].

As an example, we detail the process to create an interpreter for the λ-calculus language
defined in Chapter 8, copied below.

type ident

type lterm =
| Lam (ident, lterm)
| Var ident
| App (lterm, lterm)
type clos =
| Clos (ident, lterm, env)

type env

val extEnv : (env, ident, clos) → env
val getEnv : (ident, env) → clos

val eval (s : env) (l : lterm) : clos =
branch

let Lam (x, t) = l in
Clos (x, t, s)

or
let Var x = l in
getEnv (x, s)

or
let App (t1, t2) = l in
let Clos (x, t, s1) = eval s t1 in
let w = eval s t2 in
let s2 = extEnv (s1, x, w) in
eval s2 t

end

Figure 12.1: Skeletal Semantics for Call-by-Value λ-calculus

The first step for the user is to write its own language, e.g., the λ-calculus semantics above

119

Part II, Chapter 12 – Certified Interpreter

(Figure 12.1). Once the language is formalized in skeletal semantics, our tool can automatically
generate an OCaml module. There is no need to open it as the content is equivalent to the Skel
definition, and contains for instance the following lines.

let base_type = "clos" :: ("env" :: ("ident" :: ("lterm" :: [])))
let constructor = "App" :: ("Lam" :: ("Var" :: ("Clos" :: [])))
let unspec_term = "extEnv" :: ("getEnv" :: [])
let spec_term = "eval" :: []
...

As can be seen, this file is a crude translation from Skel to Coq to OCaml, and as such is not
meant to be easily readable by humans. Every piece of the language is transformed into an
OCaml value, including types, rules, skeletons, etc.

This module is almost enough to instantiate the generic deterministic abstract machine
presented in Section 11.2. Now, we need to create a new OCaml file to provide the missing
pieces. For unspecified types, we create an OCaml type representing basic concrete values (see
Section 8.2). For the λ-calculus, we need to cover the two unspecified types ident and env.

type basevalue =
| Vident of string
| Venv of (string * cvalue) list

We choose to represent variables using OCaml strings, and environments using OCaml lists.
For unspecified skelterms (extEnv and getEnv), we define OCaml functions implementing

the desired behavior.

let function_extenv = function
| Cval_tuple ([Cval_base (Venv st); Cval_base (Vident x); v])::[] ->

[Cval_base (Venv ((x,v)::st))]
| _ -> []

Here, for extEnv, we check that the function is given a single argument, which is a triple
composed of an environment, a variable name, and a cvalue to write. If something is off, the
implementation fails by returning an empty list, which would cause the abstract machine to
backtrack. Else, we return an extended environment, by adding the pair (x,v) to the beginning
of the list. We also write a similar function for getEnv.

Now we have all the definitions required to instantiate the abstract machine. It can then be
used to execute programs. We can for instance write the following OCaml code.

(* shortcuts for readability *)
let xlam x t = Cval_constructor ("Lam", Cval_tuple [Cval_base (Vident x); t])
let xapp t1 t2 = Cval_constructor ("App", Cval_tuple [t1; t2])
let xvar x = Cval_constructor ("Var", Cval_base (Vident x))
let emptyenv = Cval_base (Venv [])

120

let _ =
(* (λx. x x) (λy. y) *)
let lambdaterm = xapp (xlam "x" (xapp (xvar "x") (xvar "x")))

(xlam "y" (xvar "y"))
let sk = ... in
let amstate = inject_skel sk [("s", emptyenv); ("t", lambdaterm)] in
let r = evalfuel 614 amstate in
...

In this example, sk is the skeleton Apply("eval", [s; t]), with some required type annotations.
The functions inject_skel and evalfuel are already defined in the abstract machine mod-

ule: the former creates an AM state from a skeleton and an environment, while the latter launches
the computation on a machine state. In the rest of the program, r contains the expected result,
i.e., an option, containing the closure λy.y in an empty environment.

In this example, 614 is the smallest amount of fuel needed to perform two beta-reductions
and return a result. The computation is noticeably inefficient as we simulate the evaluation
of the meta-language Skel. For instance, even evaluating a λ-abstraction into a λ-closure, by
following the skeleton let Lam (x, t) = l in Clos (x, t, s), takes dozens of steps. The
substitutions to perform (l at first, and (x,t,s) later) trigger the abstract machine to go
through the environment several times. Also, the pattern-matching needs to recursively scan
the term and bind the variables x and t one by one, which leads to the creation of multiple
continuations and several changes of focus.

121

Chapter 13

CONCLUSION OF PART II

We present two new semantics for the meta-language Skel in the form of a non-deterministic
and a deterministic abstract machine. They are derived from the initial big-step semantics using
a known transformation strategy called functional correspondence. A novelty of our approach is
to use these classic tools (CPS transformation and defunctionalization) at the meta-level. This
yields a generic abstract machine than can be proved sound once and for all, independently of
the input language.

We implement the machines in the Coq proof assistant to certify their soundness. Using
previous tools and the Coq extraction mechanism, we can automatically generate a certified
OCaml interpreter for the deterministic abstract machine specialized for any skeletal semantics.
This can be used as a certified interpreter for any language written using skeletal semantics. We
summarize the transformations needed to reach our goal in Figure 13.1.

As a future work, we would like to create a deterministic abstract machine in the form of a
breadth-first search of all possible behaviors. Unlike the one presented in this document, it would
not risk being stuck in a loop, ensuring it to eventually find a result if there exists one. Also,
the certified interpreter could be transformed into a debugger, to make use of the certification
of the evaluation in a setting where the drawback of inefficiency is not decisive.

Previous works Part II

Meta-language
(Skel) NDAM

concrete interpretation

AM

User language
(e.g., λ-calculus)

Coq
specif.

funct. corresp.

funct. corresp.

generic certified
interpreter

extraction

skeletal
semantics OCaml

interpreter

[17]

[21]

OCaml
module

extraction certified
interpreter

import

language
definition

Racket
interpreter

funct. corresp.
[18]

Figure 13.1: Summary of Part II and comparison with related work

122

Related Work

The technique of functional correspondence has been applied by hand to many languages with
many different features. Automatic application of the technique is only very recent. Buszka and
Biernacki [18] present an algorithm and a tool to automatically generate abstract machines
from evaluators, based on the same transformations with a more complex static analysis. We
probably could have used their tool to create the NDAM, but the AM would have required the
introduction of backtracking by hand. Their approach is general, in the sense that they can
automatically generate an abstract machine for any language. On our side, we created a single
AM for the meta-language Skel, that can then be automatically specialized for any language.
They did not certify their tool, while we prove the soundness of our AM in Coq.

In [21], the authors propose a tool to automatically generate a shallow embedding of a skeletal
semantics into an OCaml interpreter. Skel types are directly translated into OCaml types, and
skelterms into OCaml functions. Because the meta-language Skel is completely transparent,
the interpreter is at the level of the language we are interested in, and more intuitive to use.
However, unlike our approach, their ad-hoc translation is not certified and offers no guarantees
on the behavior of the interpreter.

123

Conclusion

125

CONCLUSION

As presented before, different operational semantics styles have different benefits. For instance,
the simplicity and readability of big-step semantics make it the preferred style for defining pro-
gramming languages, but small-step semantics are better suited to reason about non-terminating
or stuck computations. Formalizing the same language multiple times by hand is not a reason-
able solution, as it requires a great deal of work and cross-reviewing. We address this issue with
the development of interderivation techniques, allowing the use of a central definition and the
systematic derivation of other formats when needed. Skeletal semantics is a suitable framework
for defining and implementing such interderivations, as it offers an easy manipulation of lan-
guage semantics as data structures. Regrouping different transformation techniques under the
same setting also allows us to compare them and, hopefully, compose them into more complex
translations.

Our first contribution is a novel generic and automatic translation of a big-step skeletal
semantics into an equivalent small-step skeletal semantics. The complexity of the transformation
lies in the creation of new constructors to allow the reconstruction of partially evaluated terms.
This method is implemented in the Necro toolbox for the manipulation of skeletal semantics.
We prove on paper that the core of the transformation (without constructor reuse) is correct.
We also ensure, in practice, that the resulting small-step semantics corresponds to the big-
step one by producing for any input language an equivalence certificate verifiable in Coq. This
generic automatic transformation from big-step to small-step, with the corresponding proofs, is
submitted for publication.

Our second contribution is the application of known interderivation techniques to the meta-
language Skel itself. We use functional correspondence to obtain an equivalent non-deterministic
abstract machine, and a slightly modified approach to create a deterministic version. We certify
in Coq that this last semantics is indeed correct with respect to the initial (big-step) concrete
interpretation of Skel. While the translation techniques used are already established, applying
them to the meta-level indirectly benefits any language written in skeletal semantics. Similarly,
the Coq correctness proof only has to be done once. We extract an executable OCaml interpreter
for Skel from the abstract machine, which can be instantiated with any language. These abstract
machines, their derivations, as well as the certified interpreter, have been presented to the CPP
2022 conference [6].

126

Big Step

Abstract
Machine

Small Step

Reduction
Semantics

PBS

Huizing 10 [31], Vesely ESOP19 [53]

Ciobâcă IFM13 [20]

Poulsen Mosses ESOP14 [45]
A

ge
r

LO
PS

T
R

04
[2

]

Fu
nc

tio
na

lC
or

re
sp

on
de

nc
e

D
anvy

IC
FP08

[22]

Refocusing
Danvy 04 [28], IFL10 [51], FSCD17 [12]

Part I
Pa

rt
II

Figure 13.2: Related Work on Interderivation of Operational Semantics

Future Work

As discussed in Chapter 7 and 13, the contributions presented in this document can also be
expanded. For the big-step to small-step transformation, we would like to generalize the trans-
lation to polymorphic functions, and support the use of monads by generating, when able, a
monadic small-step skeletal semantics. For the deterministic abstract machine, we could gener-
ate a breadth-first version that would not fail on infinite loops. Also, it would be interesting to
combine the certified interpreter with other tools to generate trustworthy (albeit slow) debug-
gers.

Our main objective is to expand and develop the interderivation of different semantic formats,
both for the meta-language Skel and to provide as tools to user-defined languages. Notably, we
plan to cover the transformations missing from Figure 13.2, but also the own already known,

127

which are defined so far at various degrees of precision. One is presented on an example only [22],
others are defined on a meta-language—either previously known [45] or somewhat ad-hoc [2, 20,
12, 18]—, and only one has been formalized in a proof assistant [12].

Using the same framework to express them all would allow to combine them, and see if dif-
ferent translation paths generate similar results. The restrictions on the input semantics would
also be expressed in the same framework. For example, the functional correspondence transfor-
mation from abstract machines to big-step assumes the input machine to be in defunctionalized
form, a criterion we could try to characterize at the level of the input skeletal semantics.

It would also allow for comparisons between transformations. For instance, the current trans-
formations from small-step to big-step [20, 45] have restrictions expressed w.r.t. their respective
meta-language. It is not clear if one is more expressive than the other, or how they rule out the
small-step semantics they cannot cover, such as the ones with interleaving. A unified framework
would make such expressiveness comparisons possible.

128

BIBLIOGRAPHY

[1] Beniamino Accattoli, “The Complexity of Abstract Machines”, in: Proceedings Third Inter-
national Workshop on Rewriting Techniques for Program Transformations and Evaluation,
WPTE@FSCD 2016, Porto, Portugal, 23rd June 2016, ed. by Horatiu Cirstea and Santi-
ago Escobar, vol. 235, EPTCS, 2016, pp. 1–15, url: https://doi.org/10.4204/EPTCS.

235.1.

[2] Mads Sig Ager, “From Natural Semantics to Abstract Machines”, in: Logic Based Program
Synthesis and Transformation, 14th International Symposium, LOPSTR 2004, Verona,
Italy, August 26-28, 2004, Revised Selected Papers, ed. by Sandro Etalle, vol. 3573, Lecture
Notes in Computer Science, Springer, 2004, pp. 245–261, isbn: 3-540-26655-0, url: https:

//doi.org/10.1007/11506676_16.

[3] Mads Sig Ager, Olivier Danvy, and Jan Midtgaard, “A functional correspondence between
call-by-need evaluators and lazy abstract machines”, in: Inf. Process. Lett. 90.5 (2004),
pp. 223–232, url: https://doi.org/10.1016/j.ipl.2004.02.012.

[4] Mads Sig Ager, Olivier Danvy, and Jan Midtgaard, “A functional correspondence between
monadic evaluators and abstract machines for languages with computational effects”, in:
Theor. Comput. Sci. 342.1 (2005), pp. 149–172, url: https://doi.org/10.1016/j.tcs.

2005.06.008.

[5] Mads Sig Ager et al., “A functional correspondence between evaluators and abstract ma-
chines”, in: Proceedings of the 5th International ACM SIGPLAN Conference on Principles
and Practice of Declarative Programming, 27-29 August 2003, Uppsala, Sweden, ACM,
2003, pp. 8–19, url: https://doi.org/10.1145/888251.888254.

[6] Guillaume Ambal, Sergueï Lenglet, and Alan Schmitt, “Certified abstract machines for
skeletal semantics”, in: CPP ’22: 11th ACM SIGPLAN International Conference on Cer-
tified Programs and Proofs, Philadelphia, PA, USA, January 17 - 18, 2022, ed. by Andrei
Popescu and Steve Zdancewic, ACM, 2022, pp. 55–67, url: https://doi.org/10.1145/

3497775.3503676.

[7] Guillaume Ambal, Sergueï Lenglet, and Alan Schmitt, “HOπ in Coq”, in: J. Autom. Rea-
son. 65.1 (2021), pp. 75–124, url: https://doi.org/10.1007/s10817-020-09553-0.

[8] Guillaume Ambal, Sergueï Lenglet, and Alan Schmitt, Implementation of "Automatic
Transformation of a Big-Step Skeletal Semantics into Small-Step", 2020, url: https :

//gitlab.inria.fr/skeletons/necro/-/tree/RRsmallstep.

129

https://doi.org/10.4204/EPTCS.235.1
https://doi.org/10.4204/EPTCS.235.1
https://doi.org/10.1007/11506676_16
https://doi.org/10.1007/11506676_16
https://doi.org/10.1016/j.ipl.2004.02.012
https://doi.org/10.1016/j.tcs.2005.06.008
https://doi.org/10.1016/j.tcs.2005.06.008
https://doi.org/10.1145/888251.888254
https://doi.org/10.1145/3497775.3503676
https://doi.org/10.1145/3497775.3503676
https://doi.org/10.1007/s10817-020-09553-0
https://gitlab.inria.fr/skeletons/necro/-/tree/RRsmallstep
https://gitlab.inria.fr/skeletons/necro/-/tree/RRsmallstep

[9] Guillaume Ambal, Sergueï Lenglet, and Alan Schmitt, Implementation of "Certified Ab-
stract Machines for Skeletal Semantics", 2021, url: https://gitlab.inria.fr/skeletons/

necro-coq/-/tree/CPP2022.

[10] Guillaume Ambal et al., “Certified Derivation of Small-Step From Big-Step Skeletal Se-
mantics”, in: PPDP 2022: 24th International Symposium on Principles and Practice of
Declarative Programming, Tbilisi, Georgia, September 20 - 22, 2022, ACM, 2022, 11:1–
11:48, url: https://doi.org/10.1145/3551357.3551384.

[11] Malgorzata Biernacka, Dariusz Biernacki, and Olivier Danvy, “An Operational Foundation
for Delimited Continuations in the CPS Hierarchy”, in: Log. Methods Comput. Sci. 1.2
(2005), url: https://doi.org/10.2168/LMCS-1(2:5)2005.

[12] Malgorzata Biernacka, Witold Charatonik, and Klara Zielinska, “Generalized Refocus-
ing: From Hybrid Strategies to Abstract Machines”, in: 2nd International Conference on
Formal Structures for Computation and Deduction, FSCD 2017, September 3-9, 2017,
Oxford, UK, ed. by Dale Miller, vol. 84, LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2017, 10:1–10:17, isbn: 978-3-95977-047-7, url: https://doi.org/10.4230/

LIPIcs.FSCD.2017.10.

[13] Malgorzata Biernacka et al., “An Abstract Machine for Strong Call by Value”, in: Program-
ming Languages and Systems - 18th Asian Symposium, APLAS 2020, Fukuoka, Japan,
November 30 - December 2, 2020, Proceedings, ed. by Bruno C. d. S. Oliveira, vol. 12470,
Lecture Notes in Computer Science, Springer, 2020, pp. 147–166, url: https://doi.org/

10.1007/978-3-030-64437-6_8.

[14] Dariusz Biernacki and Olivier Danvy, “From Interpreter to Logic Engine by Defunctional-
ization”, in: Logic Based Program Synthesis and Transformation, 13th International Sym-
posium LOPSTR 2003, Uppsala, Sweden, August 25-27, 2003, Revised Selected Papers, ed.
by Maurice Bruynooghe, vol. 3018, Lecture Notes in Computer Science, Springer, 2003,
pp. 143–159, url: https://doi.org/10.1007/978-3-540-25938-1_13.

[15] Dariusz Biernacki, Olivier Danvy, and Kevin Millikin, “A Dynamic Continuation-Passing
Style for Dynamic Delimited Continuations”, in: ACM Trans. Program. Lang. Syst. 38.1
(2015), 2:1–2:25, url: https://doi.org/10.1145/2794078.

[16] Martin Bodin et al., “A trusted mechanised JavaScript specification”, in: The 41st Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
’14, San Diego, CA, USA, January 20-21, 2014, ed. by Suresh Jagannathan and Peter
Sewell, ACM, 2014, pp. 87–100, url: https://doi.org/10.1145/2535838.2535876.

[17] Martin Bodin et al., “Skeletal semantics and their interpretations”, in: Proc. ACM Pro-
gram. Lang. 3.POPL (2019), 44:1–44:31, url: https://doi.org/10.1145/3290357.

130

https://gitlab.inria.fr/skeletons/necro-coq/-/tree/CPP2022
https://gitlab.inria.fr/skeletons/necro-coq/-/tree/CPP2022
https://doi.org/10.1145/3551357.3551384
https://doi.org/10.2168/LMCS-1(2:5)2005
https://doi.org/10.4230/LIPIcs.FSCD.2017.10
https://doi.org/10.4230/LIPIcs.FSCD.2017.10
https://doi.org/10.1007/978-3-030-64437-6_8
https://doi.org/10.1007/978-3-030-64437-6_8
https://doi.org/10.1007/978-3-540-25938-1_13
https://doi.org/10.1145/2794078
https://doi.org/10.1145/2535838.2535876
https://doi.org/10.1145/3290357

[18] Maciej Buszka and Dariusz Biernacki, “Automating the Functional Correspondence be-
tween Higher-Order Evaluators and Abstract Machines”, in: LOPSTR 2021, vol. abs/2108.07132,
2021, arXiv: 2108.07132, url: https://arxiv.org/abs/2108.07132.

[19] Arthur Charguéraud, “Pretty-Big-Step Semantics”, in: Programming Languages and Sys-
tems - 22nd European Symposium on Programming, ESOP 2013, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2013, Rome,
Italy, March 16-24, 2013. Proceedings, ed. by Matthias Felleisen and Philippa Gardner,
vol. 7792, Lecture Notes in Computer Science, Springer, 2013, pp. 41–60, isbn: 978-3-642-
37035-9, url: https://doi.org/10.1007/978-3-642-37036-6_3.

[20] Ştefan Ciobâcă, “From Small-Step Semantics to Big-Step Semantics, Automatically”, in:
Integrated Formal Methods, 10th International Conference, IFM 2013, Turku, Finland,
June 10-14, 2013. Proceedings, ed. by Einar Broch Johnsen and Luigia Petre, vol. 7940,
Lecture Notes in Computer Science, Springer, 2013, pp. 347–361, isbn: 978-3-642-38612-1,
url: https://doi.org/10.1007/978-3-642-38613-8_24.

[21] Nathanaël Courant, Enzo Crance, and Alan Schmitt, “Necro: Animating Skeletons”, in:
ML 2019, Berlin, Germany, Aug. 2019.

[22] Olivier Danvy, “Defunctionalized interpreters for programming languages”, in: Proceeding
of the 13th ACM SIGPLAN international conference on Functional programming, ICFP
2008, Victoria, BC, Canada, September 20-28, 2008, ed. by James Hook and Peter Thie-
mann, ACM, 2008, pp. 131–142, isbn: 978-1-59593-919-7, url: https://doi.org/10.

1145/1411204.1411206.

[23] Olivier Danvy, “From Reduction-based to Reduction-free Normalization”, in: Electron.
Notes Theor. Comput. Sci. 124.2 (2005), pp. 79–100, url: https://doi.org/10.1016/

j.entcs.2005.01.007.

[24] Olivier Danvy and Andrzej Filinski, “Abstracting Control”, in: Proceedings of the 1990
ACM Conference on LISP and Functional Programming, LFP 1990, Nice, France, 27-29
June 1990, ACM, 1990, pp. 151–160, url: https://doi.org/10.1145/91556.91622.

[25] Olivier Danvy and Jacob Johannsen, “Inter-deriving semantic artifacts for object-oriented
programming”, in: J. Comput. Syst. Sci. 76.5 (2010), pp. 302–323, url: https://doi.

org/10.1016/j.jcss.2009.10.004.

[26] Olivier Danvy, Jacob Johannsen, and Ian Zerny, “A walk in the semantic park”, in: Pro-
ceedings of the 2011 ACM SIGPLAN Workshop on Partial Evaluation and Program Ma-
nipulation, PEPM 2011, Austin, TX, USA, January 24-25, 2011, ed. by Siau-Cheng Khoo
and Jeremy G. Siek, ACM, 2011, pp. 1–12, url: https://doi.org/10.1145/1929501.

1929503.

131

https://arxiv.org/abs/2108.07132
https://arxiv.org/abs/2108.07132
https://doi.org/10.1007/978-3-642-37036-6_3
https://doi.org/10.1007/978-3-642-38613-8_24
https://doi.org/10.1145/1411204.1411206
https://doi.org/10.1145/1411204.1411206
https://doi.org/10.1016/j.entcs.2005.01.007
https://doi.org/10.1016/j.entcs.2005.01.007
https://doi.org/10.1145/91556.91622
https://doi.org/10.1016/j.jcss.2009.10.004
https://doi.org/10.1016/j.jcss.2009.10.004
https://doi.org/10.1145/1929501.1929503
https://doi.org/10.1145/1929501.1929503

[27] Olivier Danvy and Kevin Millikin, “A Rational Deconstruction of Landin’s SECD Machine
with the J Operator”, in: Log. Methods Comput. Sci. 4.4 (2008), url: https://doi.org/

10.2168/LMCS-4(4:12)2008.

[28] Olivier Danvy and Lasse R. Nielsen, “Refocusing in Reduction Semantics”, in: vol. 11,
2004, url: https://doi.org/10.7146/brics.v11i26.21851.

[29] ECMA International, ed., ECMAScript language specification. Standard ECMA-262, 2021,
url: https://262.ecma-international.org/.

[30] C. A. R. Hoare, “An Axiomatic Basis for Computer Programming”, in: Commun. ACM
12.10 (1969), pp. 576–580, url: https://doi.org/10.1145/363235.363259.

[31] Cornelis Huizing, Ron Koymans, and Ruurd Kuiper, “A Small Step for Mankind”, in: Con-
currency, Compositionality, and Correctness, Essays in Honor of Willem-Paul de Roever,
ed. by Dennis Dams, Ulrich Hannemann, and Martin Steffen, vol. 5930, Lecture Notes
in Computer Science, Springer, 2010, pp. 66–73, isbn: 978-3-642-11511-0, url: https:

//doi.org/10.1007/978-3-642-11512-7_5.

[32] Wojciech Jedynak, Malgorzata Biernacka, and Dariusz Biernacki, “An operational foun-
dation for the tactic language of Coq”, in: 15th International Symposium on Principles
and Practice of Declarative Programming, PPDP ’13, Madrid, Spain, September 16-18,
2013, ed. by Ricardo Peña and Tom Schrijvers, ACM, 2013, pp. 25–36, url: https :

//doi.org/10.1145/2505879.2505890.

[33] Ramana Kumar et al., “CakeML: a verified implementation of ML”, in: The 41st Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
’14, San Diego, CA, USA, January 20-21, 2014, ed. by Suresh Jagannathan and Peter
Sewell, ACM, 2014, pp. 179–192, url: https://doi.org/10.1145/2535838.2535841.

[34] Xavier Leroy, “Formal verification of a realistic compiler”, in: Commun. ACM 52.7 (2009),
pp. 107–115, url: https://doi.org/10.1145/1538788.1538814.

[35] Xavier Leroy and Hervé Grall, “Coinductive big-step operational semantics”, in: Inf. Com-
put. 207.2 (2009), pp. 284–304, url: https://doi.org/10.1016/j.ic.2007.12.004.

[36] Xavier Leroy et al., The OCaml system: Documentation and user’s manual, version 4.12,
INRIA, 2021, url: https://ocaml.org/manual/.

[37] Pierre Letouzey, “A New Extraction for Coq”, in: Types for Proofs and Programs, Second
International Workshop, TYPES 2002, Berg en Dal, The Netherlands, April 24-28, 2002,
Selected Papers, ed. by Herman Geuvers and Freek Wiedijk, vol. 2646, Lecture Notes in
Computer Science, Springer, 2002, pp. 200–219, url: https://doi.org/10.1007/3-540-

39185-1_12.

132

https://doi.org/10.2168/LMCS-4(4:12)2008
https://doi.org/10.2168/LMCS-4(4:12)2008
https://doi.org/10.7146/brics.v11i26.21851
https://262.ecma-international.org/
https://doi.org/10.1145/363235.363259
https://doi.org/10.1007/978-3-642-11512-7_5
https://doi.org/10.1007/978-3-642-11512-7_5
https://doi.org/10.1145/2505879.2505890
https://doi.org/10.1145/2505879.2505890
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1016/j.ic.2007.12.004
https://ocaml.org/manual/
https://doi.org/10.1007/3-540-39185-1_12
https://doi.org/10.1007/3-540-39185-1_12

[38] Robin Milner et al., The Definition of Standard ML, Revised Edition, May 1997, isbn:
978-0-2626-3181-5.

[39] Wolfgang Naraschewski and Tobias Nipkow, Isabelle/HOL, 2020, url: http://www.cl.

cam.ac.uk/research/hvg/Isabelle/.

[40] Hanne Riis Nielson and Flemming Nielson, Semantics with applications - a formal intro-
duction, Wiley professional computing, Wiley, 1992, isbn: 978-0-471-92980-2.

[41] Hanne Riis Nielson and Flemming Nielson, Semantics with Applications: An Appetizer,
Undergraduate Topics in Computer Science, Springer, 2007, isbn: 978-1-84628-691-9, url:
https://doi.org/10.1007/978-1-84628-692-6.

[42] Scott Owens et al., “Lem: A Lightweight Tool for Heavyweight Semantics”, in: Interac-
tive Theorem Proving - Second International Conference, ITP 2011, Berg en Dal, The
Netherlands, August 22-25, 2011. Proceedings, ed. by Marko C. J. D. van Eekelen et al.,
vol. 6898, Lecture Notes in Computer Science, Springer, 2011, pp. 363–369, url: https:

//doi.org/10.1007/978-3-642-22863-6%5C_27.

[43] Maciej Piróg and Dariusz Biernacki, “A systematic derivation of the STG machine verified
in Coq”, in: Proceedings of the 3rd ACM SIGPLAN Symposium on Haskell, Haskell 2010,
Baltimore, MD, USA, 30 September 2010, ed. by Jeremy Gibbons, ACM, 2010, pp. 25–36,
url: https://doi.org/10.1145/1863523.1863528.

[44] Gordon D. Plotkin, “Call-by-Name, Call-by-Value and the lambda-Calculus”, in: Theor.
Comput. Sci. 1.2 (1975), pp. 125–159, url: https://doi.org/10.1016/0304-3975(75)

90017-1.

[45] Casper Bach Poulsen and Peter D. Mosses, “Deriving Pretty-Big-Step Semantics from
Small-Step Semantics”, in: Programming Languages and Systems - 23rd European Sym-
posium on Programming, ESOP 2014, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014,
Proceedings, ed. by Zhong Shao, vol. 8410, Lecture Notes in Computer Science, Springer,
2014, pp. 270–289, isbn: 978-3-642-54832-1, url: https://doi.org/10.1007/978-3-

642-54833-8_15.

[46] Casper Bach Poulsen and Peter D. Mosses, “Flag-based big-step semantics”, in: J. Log.
Algebraic Methods Program. 88 (2017), pp. 174–190, url: https://doi.org/10.1016/j.

jlamp.2016.05.001.

[47] John C. Reynolds, “Definitional interpreters for higher-order programming languages”, in:
Proceedings of the ACM annual conference, ACM 1972, 1972, Volume 2, ed. by John J.
Donovan and Rosemary Shields, ACM, 1972, pp. 717–740, url: https://doi.org/10.

1145/800194.805852.

133

http://www.cl.cam.ac.uk/research/hvg/Isabelle/
http://www.cl.cam.ac.uk/research/hvg/Isabelle/
https://doi.org/10.1007/978-1-84628-692-6
https://doi.org/10.1007/978-3-642-22863-6%5C_27
https://doi.org/10.1007/978-3-642-22863-6%5C_27
https://doi.org/10.1145/1863523.1863528
https://doi.org/10.1016/0304-3975(75)90017-1
https://doi.org/10.1016/0304-3975(75)90017-1
https://doi.org/10.1007/978-3-642-54833-8_15
https://doi.org/10.1007/978-3-642-54833-8_15
https://doi.org/10.1016/j.jlamp.2016.05.001
https://doi.org/10.1016/j.jlamp.2016.05.001
https://doi.org/10.1145/800194.805852
https://doi.org/10.1145/800194.805852

[48] Grigore Rosu and Traian-Florin Serbanuta, “An overview of the K semantic framework”,
in: J. Log. Algebraic Methods Program. 79.6 (2010), pp. 397–434, url: https://doi.

org/10.1016/j.jlap.2010.03.012.

[49] Dana S. Scott and Christopher S. Strachey, “Toward a mathematical semantics for com-
puter languages”, in: 1971.

[50] Peter Sewell et al., “Ott: Effective tool support for the working semanticist”, in: J. Funct.
Program. 20.1 (2010), pp. 71–122, url: https://doi.org/10.1017/S0956796809990293.

[51] Filip Sieczkowski, Malgorzata Biernacka, and Dariusz Biernacki, “Automating Derivations
of Abstract Machines from Reduction Semantics: - A Generic Formalization of Refocusing
in Coq”, in: Implementation and Application of Functional Languages - 22nd International
Symposium, IFL 2010, Alphen aan den Rijn, The Netherlands, September 1-3, 2010, Re-
vised Selected Papers, ed. by Jurriaan Hage and Marco T. Morazán, vol. 6647, Lecture
Notes in Computer Science, Springer, 2010, pp. 72–88, url: https://doi.org/10.1007/

978-3-642-24276-2_5.

[52] The Coq Development Team, The Coq Proof Assistant, version 8.13, Jan. 2021, url:
https://doi.org/10.5281/zenodo.4501022.

[53] Ferdinand Vesely and Kathleen Fisher, “One Step at a Time - A Functional Derivation
of Small-Step Evaluators from Big-Step Counterparts”, in: Programming Languages and
Systems - 28th European Symposium on Programming, ESOP 2019, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2019, Prague,
Czech Republic, April 6-11, 2019, Proceedings, ed. by Luís Caires, vol. 11423, Lecture
Notes in Computer Science, Springer, 2019, pp. 205–231, isbn: 978-3-030-17183-4, url:
https://doi.org/10.1007/978-3-030-17184-1_8.

134

https://doi.org/10.1016/j.jlap.2010.03.012
https://doi.org/10.1016/j.jlap.2010.03.012
https://doi.org/10.1017/S0956796809990293
https://doi.org/10.1007/978-3-642-24276-2_5
https://doi.org/10.1007/978-3-642-24276-2_5
https://doi.org/10.5281/zenodo.4501022
https://doi.org/10.1007/978-3-030-17184-1_8

Appendix A

FUNCTIONAL CORRESPONDENCE ON

IMP

A.1 Syntax and Big-Step Semantics

a ::= x | n | Plus(a1, a2)

e ::= b | Equal(a1, a2) | And(e1, e2) | Neg(e)

c ::= skip | if e then c1 else c2 | while e do c | c1 ; c2 | x := a

let eval_a (s : state) (a : aexp) : nat =
match a with
| Var(x) -> lookup s x
| Nat(n) -> n
| Plus(a1, a2) ->

let n1 = eval_a s a1 in
let n2 = eval_a s a2 in
n1 + n2

let eval_b (s : state) (e : bexp) : bool =
match e with
| Bool(b) -> b
| Equal(a1, a2) ->

let n1 = eval_a s a1 in
let n2 = eval_a s a2 in
n1 == n2

| And(e1, e2) ->
let b1 = eval_b s e1 in
let b2 = eval_b s e2 in
b1 && b2

| Neg(e') ->
let b = eval_b s e' in
not b

let eval_c (s : state) (c : cexp) : state =
match c with

135

| Skip -> s
| If(e, c1, c2) ->

let b = eval_b s e in
match b with
| true -> eval_c s c1
| false -> eval_c s c2

| While(e, c) ->
let b = eval_b s e in
match b with
| true ->

let s' = eval_c s c in
eval_c s' While(e, c)

| false -> s
| Seq(c1, c2) ->

let s' = eval_c s c1 in
eval_c s' c2

| Assign(x, a) ->
let n = eval_a s a in
extend s x n

A.2 CPS Transform

let eval_a s a (k : nat -> state) : state =
match a with
| Var(x) -> k (lookup s x)
| Nat(n) -> k n
| Plus(a1, a2) ->

eval_a s a1 (fun n1 ->
eval_a s a2 (fun n2 ->
k (n1+n2)))

let eval_b s e (k : bool -> state) : state =
match e with
| Bool(b) -> k b
| Equal(a1, a2) ->

eval_a s a1 (fun n1 ->
eval_a s a2 (fun n2 ->
k (n1 == n2)))

| And(e1, e2) ->
eval_b s e1 (fun b1 ->
eval_b s e2 (fun b2 ->
k (b1 && b2)))

| Neg(e') ->
eval_b s e' (fun b ->
k (not b))

136

let eval_c s c (k : state -> state) : state =
match c with
| Skip -> k s
| If(e, c1, c2) ->

eval_b s e (fun b ->
match b with
| true -> eval_c s c1 k
| false -> eval_c s c2 k)

| While(e, c) ->
eval_b s e (fun b ->
match b with
| true ->

eval_c s c (fun s' ->
eval_c s' While(e, c) k)

| false -> k s)
| Seq(c1, c2) ->

eval_c s c1 (fun s' ->
eval_c s' c2 k)

| Assign(x, a) ->
eval_a s a (fun n ->
k (extend s x n))

A.3 Defunctionalization

type kat =
| KAID
| KAPlus1 of state * aexp * kat
| KAPlus2 of nat * kat
| KAEqual1 of state * aexp * kbt
| KAEqual2 of nat * kbt
| KAAssign of state * var * kct

let disp_ka (k : kat) (n : nat) : state =
match k with
| KAPlus1(s, a2, k') ->

eval_a s a2 KAPlus2(n, k')
| KAPlus2(n1, k') ->

disp_ka k' (n1+n)
| KAEqual1(s, a2, k') ->

eval_a s a2 KAEqual2(n, k')
| KAEqual2(n1, k') ->

disp_kb k' (n1 == n)
| KAAssign(s, x, k') ->

disp_kc k' (extend s x n)

137

let eval_a s a (k : kat) : state =
match a with
| Var(x) -> disp_ka k (lookup s x)
| Nat(n) -> disp_ka k n
| Plus(a1, a2) ->

eval_a s a1 KAPlus1(s, a2, k)

type kbt =
| KBID
| KBAnd1 of state * bexp * kbt
| KBAnd2 of bool * kbt
| KBNeg of kbt
| KBIf of state * cexp * cexp * kct
| KBWhile of state * cexp * bexp * kct

let disp_kb (k : kbt) (b : bool) : state =
match k with
| KBAnd1(s, e2, k') ->

eval_b s e2 KBAnd2(b, k')
| KBAnd2(b1, k') ->

disp_kb k' (b1 && b)
| KBNeg(k') ->

disp_kb k' (not b)
| KBIf(s, c1, c2, k') ->

match b with
| true -> eval_c s c1 k'
| false -> eval_c s c2 k'

| KBWhile(s, c, e, k') ->
match b with
| true ->

eval_c s c KCWhile(e, c, k')
| false -> disp_kb k' s

let eval_b s e (k : kbt) : state =
match e with
| Bool(b) -> disp_kb k b
| Equal(a1, a2) ->

eval_a s a1 KAEqual1(s, a2, k)
| And(e1, e2) ->

eval_b s e1 KBAnd1(s, e2, k)
| Neg(e') ->

eval_b s e' KBNeg(k)

type kct =
| KCID
| KCWhile of bexp * cexp * kct

138

| KCSeq of cexp * kct

let disp_kc (k : kct) (s : state) : state =
match k with
| KCWhile(e, c, k') ->

eval_c s While(e, c) k'
| KCSeq(c, k') ->

eval_c s c k'

let eval_c s c (k : kct) : state =
match c with
| Skip -> disp_kc k s
| If(e, c1, c2) ->

eval_b s e KBIf(s, c1, c2, k)
| While(e, c) ->

eval_b s e KBWhile(s, c, e, k)
| Seq(c1, c2) ->

eval_c s c1 KCSeq(c2, k)
| Assign(x, a) ->

eval_a s a KAAssign(s, x, k)

Yes, KCWhile(e,c,k) is equivalent to KCSeq(While(e,c),k). The final semantics could be
simplified.

A.4 Abstract Machine

Mode ka:

⟨kaid, n⟩ka ̸→ (* end of computation *)

⟨KAPlus1(σ, a, k), n⟩ka → ⟨σ, a, KAPlus2(n, k)⟩a

⟨KAPlus2(n1, k), n⟩ka → ⟨k, (n1 + n)⟩ka

⟨KAEqual1(σ, a, k), n⟩ka → ⟨σ, a, KAEqual2(n, k)⟩a

⟨KAEqual2(n1, k), n⟩ka → ⟨k, (n1
?= n)⟩kb

⟨KAAssign(σ, x, k), n⟩ka → ⟨k, σ[x 7→ n]⟩kc

Mode a:

⟨σ, x, k⟩a → ⟨k, σ(x)⟩ka

⟨σ, n, k⟩a → ⟨k, n⟩ka

⟨σ, Plus(a1, a2), k⟩a → ⟨σ, a1, KAPlus1(σ, a2, k)⟩a

139

Mode kb:

⟨kbid, b⟩kb ̸→ (* end of computation *)

⟨KBAnd1(σ, e, k), b⟩kb → ⟨σ, e, KBAnd2(b, k)⟩b

⟨KBAnd2(b1, k), b⟩kb → ⟨k, (b1 ∧ b)⟩kb

⟨KBNeg(k), b⟩kb → ⟨k, ¬b⟩kb

⟨KBIf(σ, c1, c2, k), ⊤⟩kb → ⟨σ, c1, k⟩c

⟨KBIf(σ, c1, c2, k), ⊥⟩kb → ⟨σ, c2, k⟩c

⟨KBWhile(σ, c, e, k), ⊤⟩kb → ⟨σ, c, KCWhile(e, c, k)⟩c

⟨KBWhile(σ, c, e, k), ⊥⟩kb → ⟨k, σ⟩kc

Mode b:

⟨σ, b, k⟩b → ⟨k, b⟩kb

⟨σ, Equal(a1, a2), k⟩b → ⟨σ, a1, KAEqual1(σ, a2, k)⟩a

⟨σ, And(e1, e2), k⟩b → ⟨σ, e1, KBAnd1(σ, e2, k)⟩b

⟨σ, Neg(e), k⟩b → ⟨σ, e, KBNeg(k)⟩b

Mode kc:

⟨kcid, σ⟩kc ̸→ (* end of computation *)

⟨KCWhile(e, c, k), σ⟩kc → ⟨σ, while e do c, k⟩c

⟨KCSeq(c, k), σ⟩kc → ⟨σ, c, k⟩c

Mode c:

⟨σ, skip, k⟩c → ⟨k, σ⟩kc

⟨σ, if e then c1 else c2, k⟩c → ⟨σ, e, KBIf(σ, c1, c2, k)⟩b

⟨σ, while e do c, k⟩c → ⟨σ, e, KBWhile(σ, c, e, k)⟩b

⟨σ, c1 ; c2, k⟩c → ⟨σ, c1, KCSeq(c2, k)⟩c

⟨σ, x := a, k⟩c → ⟨σ, a, KAAssign(σ, x, k)⟩a

140

Appendix B

SUCCESSIVE TRANSFORMATIONS OF

IMP IN SKELETAL SEMANTICS

B.1 Initial IMP Skeletal Semantics

type int
type bool
type ident
type state
type value

type expr =
| Not of expr
| Bconst of bool
| Equal of expr * expr
| Iconst of int
| Plus of expr * expr
| Var of ident
type stmt =
| Assign of ident * expr
| If of expr * stmt * stmt
| Seq of stmt * stmt
| Skip
| While of expr * stmt

val add : value * value -> value
val boolToVal : bool -> value
val eq : value * value -> value
val intToVal : int -> value
val isFalse : value -> unit
val isTrue : value -> unit
val neg : value -> value
val read : ident * state -> value
val write : ident * state * value -> state

hook hexpr (s : state, e : expr) matching e : state * value =

141

| Iconst (i) ->
let v = intToVal (i) in
(s, v)

| Bconst (b) ->
let v = boolToVal (b) in
(s, v)

| Var (x) ->
let v = read (x, s) in
(s, v)

| Plus (e1, e2) ->
let (s1, v1) = hexpr (s, e1) in
let (s2, v2) = hexpr (s1, e2) in
let v = add (v1, v2) in
(s2, v)

| Equal (e1, e2) ->
let (s1, v1) = hexpr (s, e1) in
let (s2, v2) = hexpr (s1, e2) in
let v = eq (v1, v2) in
(s2, v)

| Not (e1) ->
let (s1, v) = hexpr (s, e1) in
let v1 = neg (v) in
(s1, v1)

hook hstmt (s : state, t : stmt) matching t : state =
| Skip -> s
| Assign (x, e) ->

let (s1, v) = hexpr (s, e) in
write (x, s1, v)

| Seq (t1, t2) ->
let s1 = hstmt (s, t1) in
hstmt (s1, t2)

| If (e1, t2, t3) ->
let (s1, v) = hexpr (s, e1) in
branch

let () = isTrue (v) in
hstmt (s1, t2)

or
let () = isFalse (v) in
hstmt (s1, t3)

end
| While (e1, t2) ->

let (s1, v) = hexpr (s, e1) in
branch

let () = isTrue (v) in

142

let s2 = hstmt (s1, t2) in
hstmt (s2, While (e1, t2))

or
let () = isFalse (v) in
s1

end

B.2 After Adding Coercions
type int
type bool
type ident
type state
type value

type expr =
| Not of expr
| Bconst of bool
| Equal of expr * expr
| Iconst of int
| Plus of expr * expr
| Var of ident
| Ret_hexpr of state * value
type stmt =
| Assign of ident * expr
| If of expr * stmt * stmt
| Seq of stmt * stmt
| Skip
| While of expr * stmt
| Ret_hstmt of state

val add : value * value -> value
val boolToVal : bool -> value
val eq : value * value -> value
val intToVal : int -> value
val isFalse : value -> unit
val isTrue : value -> unit
val neg : value -> value
val read : ident * state -> value
val write : ident * state * value -> state

hook getRet_hexpr (e : expr) matching e : state * value =
| Ret_hexpr (v1, v2) ->

(v1, v2)

143

hook getRet_hstmt (t : stmt) matching t : state =
| Ret_hstmt v1 ->

v1

hook hexpr (s : state, e : expr) matching e : state * value =
| Not e1 ->

let (s1, v) = hexpr (s, e1) in
let v1 = neg (v) in
(s1, v1)

| Bconst b ->
let v = boolToVal (b) in
(s, v)

| Equal (e1, e2) ->
let (s1, v1) = hexpr (s, e1) in
let (s2, v2) = hexpr (s1, e2) in
let v = eq (v1, v2) in
(s2, v)

| Iconst i ->
let v = intToVal (i) in
(s, v)

| Plus (e1, e2) ->
let (s1, v1) = hexpr (s, e1) in
let (s2, v2) = hexpr (s1, e2) in
let v = add (v1, v2) in
(s2, v)

| Var x ->
let v = read (x, s) in
(s, v)

hook hstmt (s : state, t : stmt) matching t : state =
| Assign (x, e) ->

let (s1, v) = hexpr (s, e) in
write (x, s1, v)

| If (e1, t2, t3) ->
let (s1, v) = hexpr (s, e1) in
branch

let () = isTrue (v) in
hstmt (s1, t2)

or
let () = isFalse (v) in
hstmt (s1, t3)

end
| Seq (t1, t2) ->

let s1 = hstmt (s, t1) in
hstmt (s1, t2)

144

| Skip ->
s

| While (e1, t2) ->
let (s1, v) = hexpr (s, e1) in
branch

let () = isTrue (v) in
let s2 = hstmt (s1, t2) in
hstmt (s2, (While (e1, t2)))

or
let () = isFalse (v) in
s1

end

B.3 After Creating New Constructors
type int
type bool
type ident
type state
type value

type expr =
| Not of expr
| Bconst of bool
| Equal of expr * expr
| Iconst of int
| Plus of expr * expr
| Var of ident
| Ret_hexpr of state * value
type stmt =
| Assign of ident * expr
| If of expr * stmt * stmt
| Seq of stmt * stmt
| Skip
| While of expr * stmt
| While1 of state * expr * expr * stmt
| While2 of state * stmt * expr * stmt
| Ret_hstmt of state

val add : value * value -> value
val boolToVal : bool -> value
val eq : value * value -> value
val intToVal : int -> value
val isFalse : value -> unit
val isTrue : value -> unit

145

val neg : value -> value
val read : ident * state -> value
val write : ident * state * value -> state

hook getRet_hexpr (e : expr) matching e : state * value =
| Ret_hexpr (v1, v2) ->

(v1, v2)

hook getRet_hstmt (t : stmt) matching t : state =
| Ret_hstmt v1 ->

v1

hook hexpr (s : state, e : expr) matching e : state * value =
| Not e1 ->

let (s1, v) = hexpr (s, e1) in (* reuse *)
let v1 = neg (v) in
(s1, v1)

| Bconst b ->
let v = boolToVal (b) in
(s, v)

| Equal (e1, e2) ->
let (s1, v1) = hexpr (s, e1) in (* reuse *)
let (s2, v2) = hexpr (s1, e2) in (* reuse *)
let v = eq (v1, v2) in
(s2, v)

| Iconst i ->
let v = intToVal (i) in
(s, v)

| Plus (e1, e2) ->
let (s1, v1) = hexpr (s, e1) in (* reuse *)
let (s2, v2) = hexpr (s1, e2) in (* reuse *)
let v = add (v1, v2) in
(s2, v)

| Var x ->
let v = read (x, s) in
(s, v)

hook hstmt (s : state, t : stmt) matching t : state =
| Assign (x, e) ->

let (s1, v) = hexpr (s, e) in (* reuse *)
write (x, s1, v)

| If (e1, t2, t3) ->
let (s1, v) = hexpr (s, e1) in (* reuse *)
branch

let () = isTrue (v) in

146

hstmt (s1, t2) (* tail-call *)
or

let () = isFalse (v) in
hstmt (s1, t3) (* tail-call *)

end
| Seq (t1, t2) ->

let s1 = hstmt (s, t1) in (* reuse *)
hstmt (s1, t2) (* tail-call *)

| Skip ->
s

| While (e1, t2) ->
let (s1, v) = hexpr (s, e1) in (* new constr: While1 *)
branch

let () = isTrue (v) in
let s2 = hstmt (s1, t2) in (* new constr: While2 *)
hstmt (s2, (While (e1, t2))) (* tail-call *)

or
let () = isFalse (v) in
s1

end
| While1 (s0, e0, e1, t2) ->

let (s1, v) = hexpr (s0, e0) in (* reuse *)
branch

let () = isTrue (v) in
let s2 = hstmt (s1, t2) in (* new constr: While2 *)
hstmt (s2, (While (e1, t2))) (* tail-call *)

or
let () = isFalse (v) in
s1

end
| While2 (s0, t0, e1, t2) ->

let s2 = hstmt (s0, t0) in (* reuse *)
hstmt (s2, (While (e1, t2))) (* tail-call *)

147

B.4 Final Small-Step Skeletal Semantics

type int
type bool
type ident
type state
type value

type expr =
| Bconst of bool
| Equal of expr * expr
| Iconst of int
| Not of expr
| Plus of expr * expr
| Var of ident
| Ret_hexpr of state * value
type stmt =
| Assign of ident * expr
| If of expr * stmt * stmt
| Seq of stmt * stmt
| Skip
| While of expr * stmt
| While1 of state * expr * expr * stmt
| While2 of state * stmt * expr * stmt
| Ret_hstmt of state

val add : value * value -> value
val boolToVal : bool -> value
val eq : value * value -> value
val intToVal : int -> value
val isFalse : value -> unit
val isTrue : value -> unit
val neg : value -> value
val read : ident * state -> value
val write : ident * state * value -> state

hook getRet_hexpr (e : expr) matching e : state * value =
| Ret_hexpr (v1, v2) -> (v1, v2)

hook getRet_hstmt (t : stmt) matching t : state =
| Ret_hstmt v1 -> v1

148

hook hexpr (s : state, e : expr) matching e : state * expr =
| Bconst b ->

let v = boolToVal (b) in
(s, Ret_hexpr (s, v))

| Equal (e1, e2) ->
branch

let (z1, z2) = hexpr (s, e1) in
(z1, Equal (z2, e2))

or
let (s1, v1) = getRet_hexpr (e1) in
branch

let (z3, z4) = hexpr (s1, e2) in
(s, Equal (Ret_hexpr (z3, v1), z4))

or
let (s2, v2) = getRet_hexpr (e2) in
let v = eq (v1, v2) in
(s, Ret_hexpr (s2, v))

end
end

| Iconst i ->
let v = intToVal (i) in
(s, Ret_hexpr (s, v))

| Not e1 ->
branch

let (z1, z2) = hexpr (s, e1) in
(z1, Not z2)

or
let (s1, v) = getRet_hexpr (e1) in
let v1 = neg (v) in
(s, Ret_hexpr (s1, v1))

end
| Plus (e1, e2) ->

branch
let (z1, z2) = hexpr (s, e1) in
(z1, Plus (z2, e2))

or
let (s1, v1) = getRet_hexpr (e1) in
branch

let (z3, z4) = hexpr (s1, e2) in
(s, Plus (Ret_hexpr (z3, v1), z4))

or
let (s2, v2) = getRet_hexpr (e2) in
let v = add (v1, v2) in
(s, Ret_hexpr (s2, v))

end
end

s, b → s, (s, boolToVal(b))

s, e1 → z1, z2

s, (e1
?= e2) → z1, (z2

?= e2)

e1 = (s1, v1) s1, e2 → z3, z4

s, (e1
?= e2) → s, ((z3, v1) ?= z4)

e1 = (s1, v1) e2 = (s2, v2)

s, (e1
?= e2) → s, (s2, (v1

?= v2))

s, i → s, (s, intToVal(i))

s, e1 → z1, z2

s, Not(e1) → z1, Not(z2)

e1 = (s1, v)
s, Not(e1) → s, (s1, ¬v)

s, e1 → z1, z2

s, e1 + e2 → z1, z2 + e2

e1 = (s1, v1) s1, e2 → z3, z4

s, e1 + e2 → s, (z3, v1) + z4

e1 = (s1, v1) e2 = (s2, v2)
s, e1 + e2 → s, (s2, v1 + v2)

149

| Var x ->
let v = read (x, s) in
(s, Ret_hexpr (s, v))

hook hstmt (s : state, t : stmt) matching t : state * stmt =
| Assign (x, e) ->

branch
let (z1, z2) = hexpr (s, e) in
(z1, Assign (x, z2))

or
let (s1, v) = getRet_hexpr (e) in
let z3 = write (x, s1, v) in
(s, Ret_hstmt z3)

end
| If (e1, t2, t3) ->

branch
let (z1, z2) = hexpr (s, e1) in
(z1, If (z2, t2, t3))

or
let (s1, v) = getRet_hexpr (e1) in
branch

let () = isTrue (v) in
(s1, t2)

or
let () = isFalse (v) in
(s1, t3)

end
end

| Seq (t1, t2) ->
branch

let (z1, z2) = hstmt (s, t1) in
(z1, Seq (z2, t2))

or
let s1 = getRet_hstmt (t1) in
(s1, t2)

end
| Skip ->

(s, Ret_hstmt s)
| While (e1, t2) ->

(s, (While1 (s, e1, e1, t2)))

s, x → s, (s, s(x))

s, e → z1, z2

s, (x := e) → z1, (x := z2)

e = (s1, v)
s, (x := e) → s, (s1[x 7→ v])

s, e1 → z1, z2

s, If(e1, t2, t3) → z1, If(z2, t2, t3)

e1 = (s1, v) isTrue(v)
s, If(e1, t2, t3) → s1, t2

e1 = (s1, v) isFalse(v)
s, If(e1, t2, t3) → s1, t3

s, t1 → z1, z2

s, t1; t2 → z1, z2; t2

t1 = (s1)
s, t1; t2 → s1, t2

s, Skip → s, (s)

s, While(e1, t2) → s, While1(s, e1, e1, t2)

150

| While1 (s0, e0, e1, t2) ->
branch

let (z1, z2) = hexpr (s0, e0) in
(s, While1 (z1, z2, e1, t2))

or
let (s1, v) = getRet_hexpr (e0) in
branch

let () = isTrue (v) in
(s, (While2 (s1, t2, e1, t2)))

or
let () = isFalse (v) in
(s, Ret_hstmt s1)

end
end

| While2 (s0, t0, e1, t2) ->
branch

let (z1, z2) = hstmt (s0, t0) in
(s, While2 (z1, z2, e1, t2))

or
let s2 = getRet_hstmt (t0) in
(s2, (While (e1, t2)))

end

s0, e0 → z1, z2

s, While1(s0, e0, e1, t2) → s, While1(z1, z2, e1, t2)

e0 = (s1, v) isTrue(v)
s, While1(s0, e0, e1, t2) → s, While2(s1, t2, e1, t2)

e0 = (s1, v) isFalse(v)
s, While1(s0, e0, e1, t2) → s, (s1)

s0, t0 → z1, z2

s, While2(s0, t0, e1, t2) → s, While2(z1, z2, e1, t2)

t0 = (s2)
s, While2(s0, t0, e1, t2) → s2, While(e1, t2)

B.5 Extended Big-Step for Coq Certification

type int
type bool
type ident
type state
type value

type expr =
| Not of expr
| Bconst of bool
| Equal of expr * expr
| Iconst of int
| Plus of expr * expr
| Var of ident
| Ret_hexpr of state * value
type stmt =
| Assign of ident * expr
| If of expr * stmt * stmt
| Seq of stmt * stmt
| Skip
| While of expr * stmt

151

| While1 of state * expr * expr * stmt
| While2 of state * stmt * expr * stmt
| Ret_hstmt of state

val add : value * value -> value
val boolToVal : bool -> value
val eq : value * value -> value
val intToVal : int -> value
val isFalse : value -> unit
val isTrue : value -> unit
val neg : value -> value
val read : ident * state -> value
val write : ident * state * value -> state

hook hexpr (s : state, e : expr) matching e : state * value =
| Not e1 ->

let (s1, v) = hexpr (s, e1) in
let v1 = neg (v) in
(s1, v1)

| Bconst b ->
let v = boolToVal (b) in
(s, v)

| Equal (e1, e2) ->
let (s1, v1) = hexpr (s, e1) in
let (s2, v2) = hexpr (s1, e2) in
let v = eq (v1, v2) in
(s2, v)

| Iconst i ->
let v = intToVal (i) in
(s, v)

| Plus (e1, e2) ->
let (s1, v1) = hexpr (s, e1) in
let (s2, v2) = hexpr (s1, e2) in
let v = add (v1, v2) in
(s2, v)

| Var x ->
let v = read (x, s) in
(s, v)

| Ret_hexpr (v1, v2) ->
(v1, v2)

hook hstmt (s : state, t : stmt) matching t : state =
| Assign (x, e) ->

let (s1, v) = hexpr (s, e) in
write (x, s1, v)

152

| If (e1, t2, t3) ->
let (s1, v) = hexpr (s, e1) in
branch

let () = isTrue (v) in
hstmt (s1, t2)

or
let () = isFalse (v) in
hstmt (s1, t3)

end
| Seq (t1, t2) ->

let s1 = hstmt (s, t1) in
hstmt (s1, t2)

| Skip ->
s

| While (e1, t2) ->
let (s1, v) = hexpr (s, e1) in
branch

let () = isTrue (v) in
let s2 = hstmt (s1, t2) in
hstmt (s2, (While (e1, t2)))

or
let () = isFalse (v) in
s1

end
| While1 (s0, e0, e1, t2) ->

let (s1, v) = hexpr (s0, e0) in
branch

let () = isTrue (v) in
let s2 = hstmt (s1, t2) in
hstmt (s2, (While (e1, t2)))

or
let () = isFalse (v) in
s1

end
| While2 (s0, t0, e1, t2) ->

let s2 = hstmt (s0, t0) in
hstmt (s2, (While (e1, t2)))

| Ret_hstmt v1 -> v1

B.6 Resulting Small-Step without Reuse
type int
type bool
type ident
type state

153

type value

type expr =
| Not of expr
| Not1 of state * expr
| Bconst of bool
| Equal of expr * expr
| Equal1 of state * expr * expr
| Equal2 of state * expr * value
| Iconst of int
| Plus of expr * expr
| Plus1 of state * expr * expr
| Plus2 of state * expr * value
| Var of ident
| Ret_hexpr of state * value
type stmt =
| Assign of ident * expr
| Assign1 of state * expr * ident
| If of expr * stmt * stmt
| If1 of state * expr * stmt * stmt
| Seq of stmt * stmt
| Seq1 of state * stmt * stmt
| Skip
| While of expr * stmt
| While1 of state * expr * expr * stmt
| While2 of state * stmt * expr * stmt
| Ret_hstmt of state

val add : value * value -> value
val boolToVal : bool -> value
val eq : value * value -> value
val intToVal : int -> value
val isFalse : value -> unit
val isTrue : value -> unit
val neg : value -> value
val read : ident * state -> value
val write : ident * state * value -> state

hook getRet_hexpr (e : expr) matching e : state * value =
| Ret_hexpr (v1, v2) -> (v1, v2)

hook getRet_hstmt (t : stmt) matching t : state =
| Ret_hstmt v1 -> v1

154

hook hexpr (s : state, e : expr) matching e : state * expr =
| Not e1 ->

(s, Not1 (s, e1))
| Not1 (s0, e0) ->

branch
let (z1, z2) = hexpr (s0, e0) in
(s, Not1 (z1, z2))

or
let (s1, v) = getRet_hexpr (e0) in
let v1 = neg (v) in
(s, Ret_hexpr (s1, v1))

end
| Bconst b ->

let v = boolToVal (b) in
(s, Ret_hexpr (s, v))

| Equal (e1, e2) ->
(s, Equal1 (s, e1, e2))

| Equal1 (s0, e0, e2) ->
branch

let (z1, z2) = hexpr (s0, e0) in
(s, Equal1 (z1, z2, e2))

or
let (s1, v1) = getRet_hexpr (e0) in
(s, Equal2 (s1, e2, v1))

end
| Equal2 (s0, e0, v1) ->

branch
let (z1, z2) = hexpr (s0, e0) in
(s, Equal2 (z1, z2, v1))

or
let (s2, v2) = getRet_hexpr (e0) in
let v = eq (v1, v2) in
(s, Ret_hexpr (s2, v))

end
| Iconst i ->

let v = intToVal (i) in
(s, Ret_hexpr (s, v))

| Plus (e1, e2) ->
(s, Plus1 (s, e1, e2))

| Plus1 (s0, e0, e2) ->
branch

let (z1, z2) = hexpr (s0, e0) in
(s, Plus1 (z1, z2, e2))

or
let (s1, v1) = getRet_hexpr (e0) in
(s, Plus2 (s1, e2, v1))

end

s, Not(e1) → s, Not1(s, e1)

s0, e0 → z1, z2

s, Not1(s0, e0) → s, Not1(z1, z2)

e0 = (s1, v)
s, Not1(s0, e0) → s, (s1, ¬v)

s, b → s, (s, boolToVal(b))

s, (e1
?= e2) → s, ((s, e1) ?=1 e2)

s0, e0 → z1, z2

s, ((s0, e0) ?=1 e2) → s, ((z1, z2) ?=1 e2)

e0 = (s1, v1)

s, ((s0, e0) ?=1 e2) → s, (v1
?=2 (s1, e2))

s0, e0 → z1, z2

s, (v1
?=2 (s0, e0)) → s, (v1

?=2 (z1, z2))

e0 = (s2, v2)

s, (v1
?=2 (s0, e0)) → s, (s2, (v1

?= v2))

s, i → s, (s, intToVal(i))

s, (e1 + e2) → s, ((s, e1) +1 e2)

s0, e0 → z1, z2

s, ((s0, e0) +1 e2) → s, ((z1, z2) +1 e2)

e0 = (s1, v1)
s, ((s0, e0) +1 e2) → s, (v1 +2 (s1, e2))

155

| Plus2 (s0, e0, v1) ->
branch

let (z1, z2) = hexpr (s0, e0) in
(s, Plus2 (z1, z2, v1))

or
let (s2, v2) = getRet_hexpr (e0) in
let v = add (v1, v2) in
(s, Ret_hexpr (s2, v))

end
| Var x ->

let v = read (x, s) in
(s, Ret_hexpr (s, v))

s0, e0 → z1, z2

s, (v1 +2 (s0, e0)) → s, (v1 +2 (z1, z2))

e0 = (s2, v2)
s, (v1 +2 (s0, e0)) → s, (s2, (v1 + v2))

s, x → s, (s, s(x))

hook hstmt (s : state, t : stmt) matching t : state * stmt =
| Assign (x, e) ->

(s, Assign1 (s, e, x))
| Assign1 (s0, e0, x) ->

branch
let (z1, z2) = hexpr (s0, e0) in
(s, Assign1 (z1, z2, x))

or
let (s1, v) = getRet_hexpr (e0) in
let z3 = write (x, s1, v) in
(s, Ret_hstmt z3)

end
| If (e1, t2, t3) ->

(s, If1 (s, e1, t2, t3))
| If1 (s0, e0, t2, t3) ->

branch
let (z1, z2) = hexpr (s, e0) in
(s, If1 (z1, z2, t2, t3))

or
let (s1, v) = getRet_hexpr (e0) in
branch

let () = isTrue (v) in
(s1, t2)

or
let () = isFalse (v) in
(s1, t3)

end
end

s, x := e → s, x :=1 (s, e)

s0, e0 → z1, z2

s, x :=1 (s0, e0) → s, x :=1 (z1, z2)

e0 = (s1, v)
s, x :=1 (s0, e0) → s, (s1[x 7→ v])

s, If(e1, t2, t3) → s, If1(s, e1, t2, t3)

s0, e0 → z1, z2

s, If1(s0, e0, t2, t3) → s, If1(z1, z2, t2, t3)

e0 = (s1, v) isTrue(v)
s, If1(s0, e0, t2, t3) → s1, t2

e0 = (s1, v) isFalse(v)
s, If1(s0, e0, t2, t3) → s1, t3

156

| Seq (t1, t2) ->
(s, Seq1 (s, t1, t2))

| Seq1 (s0, t0, t2) ->
branch

let (z1, z2) = hstmt (s0, t0) in
(s, Seq1 (z1, z2, t2))

or
let s1 = getRet_hstmt (t0) in
(s1, t2)

end
| Skip ->

(s, Ret_hstmt s)
| While (e1, t2) ->

(s, While1 (s, e1, e1, t2))
| While1 (s0, e0, e1, t2) ->

branch
let (z1, z2) = hexpr (s0, e0) in
(s, While1 (z1, z2, e1, t2))

or
let (s1, v) = getRet_hexpr (e0) in
branch

let () = isTrue (v) in
(s, While2 (s1, t2, e1, t2))

or
let () = isFalse (v) in
(s, Ret_hstmt s1)

end
end

| While2 (s0, t0, e1, t2) ->
branch

let (z1, z2) = hstmt (s0, t0) in
(s, While2 (z1, z2, e1, t2))

or
let s2 = getRet_hstmt (t0) in
(s2, While (e1, t2))

end

s, t1; t2 → s, (s, t1) ;1 t2

s0, t0 → z1, z2

s, (s0, t0) ;1 t2 → s, (z1, z2) ;1 t2

t0 = (s1)
s, (s0, t0) ;1 t2 → s1, t2

s, Skip → s, (s)

s, While(e1, t2) → s, While1(s, e1, e1, t2)

s0, e0 → z1, z2

s, While1(s0, e0, e1, t2) → s, While1(z1, z2, e1, t2)

e0 = (s1, v) isTrue(v)
s, While1(s0, e0, e1, t2) → s, While2(s1, t2, e1, t2)

e0 = (s1, v) isFalse(v)
s, While1(s0, e0, e1, t2) → s, (s1)

s0, t0 → z1, z2

s, While2(s0, t0, e1, t2) → s, While2(z1, z2, e1, t2)

t0 = (s2)
s, While2(s0, t0, e1, t2) → s2, While(e1, t2)

157

Appendix C

PROOF OF THE TRANSFORMATION

We present a pen-and-paper proof that the transformation of Chapter 4 is correct, in the sim-
plified case where we do not perform the analysis of Section 4.2.2 and systematically create new
constructors.

C.1 Definitions and Proof Structure

We recall the rules for the inductive (Figure C.1) and coinductive (Figure C.2) interpretation of
skeletal semantics. The main differences with is that, for coinduction, there is no rule for returns
or filters—as we do not allow filters to diverge—and there are two rules for the LetIn construct.
Indeed, let ṽ = K in S diverges because either K or S diverges.

The skeletal semantics (Chapter 3) as well as the different phases of the transformation
(Section 4.2) are presented earlier in this document. We only redefine the last phase of the
transformation (Figure C.3), as it can be simplified to not use substitutions.

We start with a few necessary definitions used in the different proofs.

Σ(t̃) ⇓h b̃

Σ ⊢ Hook h t̃ ⇓ b̃

Rf (Σ̃(t)) ⇓ b̃

Σ ⊢ Filter f t̃ ⇓ b̃

Σ̃(t) = b̃

Σ ⊢ Return t̃ ⇓ b̃

Si ∈ S̃ Σ ⊢ Si ⇓ b̃

Σ ⊢ Branching S̃ ⇓ b̃

Σ ⊢ K ⇓ ã Σ + ˜{v 7→ a} ⊢ S ⇓ b̃

Σ ⊢ let ṽ = K in S ⇓ b̃

h(ỹ, c(x̃)) := S ∈ R ˜{y 7→ a} + ˜{x 7→ a′} ⊢ S ⇓ b̃

(ã, c(ã′)) ⇓h b̃

Figure C.1: Inductive Interpretation

159

Σ(t̃) ⇑h

Σ ⊢ Hook h t̃ ⇑
============== Div-Pc

Si ∈ S̃ Σ ⊢ Si ⇑

Σ ⊢ Branching S̃ ⇑
================== Div-Br

Σ ⊢ K ⇑

Σ ⊢ let ṽ = K in S ⇑
====================== Div-LetL

h(ỹ, c(x̃)) := S ∈ R ˜{y 7→ a} + ˜{x 7→ a′} ⊢ S ⇑

(ã, c(ã′)) ⇑h

== Div-tuple

Σ ⊢ K ⇓ ã Σ + ˜{v 7→ a} ⊢ S ⇑

Σ ⊢ let ṽ = K in S ⇑
================================ Div-LetR

Figure C.2: Coinductive Interpretation

Definition 1. We note fv(S) the free variables of a tuple/term/skelement/skeleton/context.

fv((a1, . . . , an)) ≜ fv(a1) ∪ . . . ∪ fv(an) fv(v) ≜ {v}

fv(c(t̃)) ≜ fv(t̃) fv(Filter f (t̃)) ≜ fv(t̃)

fv(Hook h (t̃, t)) ≜ fv(t̃) ∪ fv(t) fv(Return (t̃)) ≜ fv(t̃)

fv(Branching (S̃)) ≜ fv(S̃) fv(let ṽ = K in S) ≜ (fv(S) \ {ṽ}) ∪ fv(K)

fv([·]) ≜ ∅ fv(< [·] | ṽ | S >) ≜ fv(S) \ {ṽ}

Definition 2. We note bv(S) the variables defined in a skeleton.

bv(Filter f (t̃)) ≜ ∅

bv(Hook h (t̃, t)) ≜ ∅

bv(Return (t̃)) ≜ ∅

bv(Branching (S1, . . . , Sn)) ≜ bv(S1) ∪ . . . ∪ bv(Sn)

bv(let ṽ = K in S) ≜ {ṽ} ∪ bv(S)

Definition 3. We note SSA(S) the statement that a skeleton S does not reuse variables names.
This can be seen as a Static Single Assignment form.

160

Assuming r = (hr(ỹ, cr(x̃)) := Sr),

∥ Branching (S1, . . . , Sn) ∥r ≜ Branching (∥ S1 ∥r, . . . , ∥ Sn ∥r)
∥ let ṽ = Return t̃ in S ∥r

≜ let ṽ = Return t̃ in ∥ S ∥r

∥ let ṽ = Filter f t̃ in S ∥r
≜ let ṽ = Filter f t̃ in ∥ S ∥r

∥ Return t̃ ∥r
≜ Return (ỹ, Ret_hr(t̃))

∥ let ṽ = Hook (New c) h t̃ in S ∥r
≜ Return (ỹ, c(t̃, z̃c))

where (hr(ỹ, c(w̃c, z̃c)) := Sc) ∈ Rdist

∥ let ṽ = Hook Reuse h (w̃′, w) in S ∥
r
≜ Branching(S1, S2) where

S1 = let z̃ = Hook h w̃ in Return (ỹ, cr(x̃))[̃z/w] z̃ fresh; w̃ = (w̃′, w)
S2 = let ṽ = Hook getRet_h (w) in ∥ S ∥r

Figure C.3: Small-Step Transformation of a Skeleton without Analysis

SSA(S) ≜ NoRedef(S) ∧ fv(S) ∩ bv(S) = ∅

NoRedef(Filter f (t̃)) ≜ ⊤

NoRedef(Hook h (t̃, t)) ≜ ⊤

NoRedef(Return (t̃)) ≜ ⊤

NoRedef(Branching (S1, . . . , Sn)) ≜ ∀i, NoRedef(Si)

NoRedef(let ṽ = K in S) ≜

bv(K) ∩ {ṽ} = ∅
bv(S) ∩ {ṽ} = ∅

bv(K) ∩ bv(S) = ∅
NoRedef(K)
NoRedef(S)

Our transformation is meant to apply to such skeletons. If need be, a first transformation putting
skeletons in SSA form can be necessary. Note that the naming “SSA” is an abuse, as parallel
branchings are allowed to define the same variables. However, every execution of the skeleton
follows a single branch and never overwrites the content of a variable.

Definition 4. We note S1 ∈ S2 when S1 is a subskeleton of S2. This property is the reflexive

161

transitive closure of the following rules.

K ∈ let ṽ = K in S

S ∈ let ṽ = K in S

Si ∈ Branching (S1, . . . , Sn)

Definition 5. We note S1 ◁S2 when S1 is a tail subskeleton of S2. This property is the reflexive
transitive closure of the following two rules.

S ◁ let ṽ = K in S

Si ◁ Branching (S1, . . . , Sn)

This definition does not consider subskeletons inside subevaluations.
For instance, Si ⋪ let ṽ = Branching (S1, . . . , Sn) in S′.

The proof uses the sets of rules at the different phases of the transformation to state and
certify results. As explained in Chapter 5, we additionally introduce a set REBS, corresponding
to an extended big-step semantics, to simplify the proof strategy. We recall the notations for the
different sets and the semantics they represent.

• RBS : initial rules, input of the transformation;

• Rgen : rules after generation of new constructors and rules;

• Rdist : rules after distributing branchings;

• REBS : similar to Rdist (after delaying returns), with rules for Ret_h constructors;

REBS ≜ Rdist ∪ {h(ỹ, Ret_h(ṽ)) := Return ṽ | h ∈ H0}

• RSS : result of the transformation after going small-step, with getRet_h hooks.

We use these sets to specify the notations for derivation judgments. We write for instance
Σ ⊢ S ⇓RBS b̃ and ã ⇓RBS

h b̃ for the concrete evaluation, and Σ ⊢ S ⇑RBS and ã ⇑RBS
h for the

divergence of the initial big-step semantics.

Definition 6. We note ã
∞→h the divergence in the small-step skeletal semantics. It is defined

coinductively with the following rule.

ã ⇓RSS
h b̃ b̃

∞→h

ã
∞→h

=================

Other equivalent definitions include:

162

• ã
∞→h is the maximal predicate Q satisfying the following property.

Q(ã, h) =⇒ ∃b̃, ã ⇓RSS
h b̃ ∧ Q(b̃, h)

• Let F (X) = {(ã, h) | ∃b̃, ã ⇓RSS
h b̃ ∧ (b̃, h) ∈ X}, we have:

∞→ = {(ã, h) | ã
∞→h} ≜ νX.F (X)

We also recall notations from the transformation phases (Section 4.2). We use the following.

• < S1 | x̃ | S2 > for the monadic bind of two skeletons;

• JSKr
E for the generation of new constructors, skeletons, and big-step rules (after adding a

“New c” annotation to every hook call);

• ⌈S⌋ for the distribution of branchings;

• ∥ S ∥r for the final small-step transformation, redefined with simpler rules in Figure C.3.

A first section (C.2) covers simple lemmas about our different definitions, unconnected to
the different rule sets. Afterwards, we check that our SSA property is preserved throughout
the transformation (C.3). Then we certify important properties of the different phases of the
transformation, to make sure they behave as intended (C.4). Using these results, we finally prove
the equivalences between the different semantics. Section C.5 covers the equivalence between Big-
Step and Extended Big-Step. Section C.6 certifies that an EBS evaluation/divergence implies
a small-step (in)finite sequence. Finally, Section C.7 proves the reverse direction: a small-step
(in)finite reduction sequence implies an EBS evaluation/divergence.

C.2 Basic Lemmas

The simple proofs of the first few trivial lemmas are omitted.

Lemma C.2.1. For all S1, ṽ, S2, w̃, and S3,

<< S1 | ṽ | S2 >| w̃ | S3 > = < S1 | ṽ |< S2 | w̃ | S3 >>

Lemma C.2.2. For all Σ1, Σ2, and Σ3,

(Σ1 + Σ2) + Σ3 = Σ1 + (Σ2 + Σ3)

Lemma C.2.3. For all Σ1, Σ2, and Σ3,

• ∀x, x /∈ (dom(Σ2) \ dom(Σ3)) =⇒ (Σ1 + Σ3)(x) = (Σ1 + Σ2 + Σ3)(x)

163

• ∀t, (dom(Σ2) \ dom(Σ3)) ∩ fv(t) = ∅ =⇒ (Σ1 + Σ3)(t) = (Σ1 + Σ2 + Σ3)(t)

• ∀t̃, (dom(Σ2) \ dom(Σ3)) ∩ fv(t̃) = ∅ =⇒ (Σ1 + Σ3)(t̃) = (Σ1 + Σ2 + Σ3)(t̃)

Lemma C.2.4. For all S, Σ1, Σ2, Σ3, and ã, if (dom(Σ2) \ dom(Σ3)) ∩ fv(S) = ∅, then

Σ1 + Σ3 ⊢ S ⇓ ã ⇐⇒ Σ1 + Σ2 + Σ3 ⊢ S ⇓ ã

Proof. By structural induction on S.

• If S = Return (t̃)
Σ1 + Σ3 ⊢ Return (t̃) ⇓ ã

⇐⇒ ˜(Σ1 + Σ3)(t) = ã

⇐⇒ ˜(Σ1 + Σ2 + Σ3)(t) = ã using Lemma C.2.3 (because fv(t̃) = fv(S))
⇐⇒ Σ1 + Σ2 + Σ3 ⊢ Return (t̃) ⇓ ã

• If S is of the form Filter f (t̃) or Hook h (t̃, t), similarly

• If S = Branching (S̃)
Σ1 + Σ3 ⊢ Branching (S̃) ⇓ ã

⇐⇒ ∃Si ∈ S̃, Σ1 + Σ3 ⊢ Si ⇓ ã

⇐⇒ ∃Si ∈ S̃, Σ1 + Σ2 + Σ3 ⊢ Si ⇓ ã using induction hypothesis
⇐⇒ Σ1 + Σ2 + Σ3 ⊢ Branching (S̃) ⇓ ã

• If S = (let ṽ = K in S′)
Σ1 + Σ3 ⊢ let ṽ = K in S′ ⇓ ã

⇐⇒ ∃b̃,

 Σ1 + Σ3 ⊢ K ⇓ b̃

Σ1 + Σ3 + ˜{v 7→ b} ⊢ S′ ⇓ ã

⇐⇒ ∃b̃,

 Σ1 + Σ2 + Σ3 ⊢ K ⇓ b̃

Σ1 + Σ2 + (Σ3 + ˜{v 7→ b}) ⊢ S′ ⇓ ã
using IH twice and Lemma C.2.2.

fv(S′) ⊂ fv(S) ∪ {ṽ}, so (dom(Σ2) \ (dom(Σ3) ∪ {ṽ})) ∩ fv(S′) = ∅
⇐⇒ Σ1 + Σ2 + Σ3 ⊢ let ṽ = K in S′ ⇓ ã

Lemma C.2.5. For all S, Σ1, Σ2, and Σ3, if (dom(Σ2) \ dom(Σ3)) ∩ fv(S) = ∅, then

Σ1 + Σ3 ⊢ S ⇑ ⇐⇒ Σ1 + Σ2 + Σ3 ⊢ S ⇑

Proof. This lemma is similar to Lemma C.2.4, but for divergence. See Figure C.2 for the coin-
ductive definition of Σ ⊢ S ⇑. The proof is done by a straightforward induction on S, and case
analysis on the rule used. The only two places where the environment Σ is used are:

164

• in rule Div-Pc, where both environments agree on the mapping of the variables t̃ by
hypothesis.

• in the first leaf of rule Div-LetR, where we can use Lemma C.2.4 to go from one environment
to the other.

Lemma C.2.6. For all S1, x, S2, and Σ, if (bv(S1) \ {x̃}) ∩ fv(S2) = ∅, then

Σ ⊢< S1 | x̃ | S2 >⇑ ⇐⇒

Σ ⊢ S1 ⇑
OR

∃b̃,

 Σ ⊢ S1 ⇓ b̃

Σ + ˜{x 7→ b} ⊢ S2 ⇑

I.e., < S1 | x̃ | S2 > diverges if either S1 or S2 diverges.

Proof. This lemma is similar to Lemma C.2.7, but for divergence. It is also done by structural
induction on S1.

If S1 is a skelement K, then < K | x̃ | S2 > is defined as let x̃ = K in S2 and the result
comes directly from the definition (see rules Div-LetR and Div-LetL of Figure C.2).

If S1 = (let ṽ = K in S′), then < S1 | x̃ | S2 > is defined as let ṽ = K in < S′ | x̃ | S2 >.
Then:

Σ ⊢< S1 | x̃ | S2 >⇑

⇐⇒

Σ ⊢ K ⇑
OR

∃c̃,

 Σ ⊢ K ⇓ c̃

Σ + ˜{v 7→ c} ⊢< S′ | x̃ | S2 >⇑

by either rule Div-LetL or Div-LetR.

⇐⇒

Σ ⊢ K ⇑
OR

∃c̃,

Σ ⊢ K ⇓ c̃

Σ + ˜{v 7→ c} ⊢ S′ ⇑ OR ∃b̃,

 Σ + ˜{v 7→ c} ⊢ S′ ⇓ b̃

Σ + ˜{v 7→ c} + ˜{x 7→ b} ⊢ S2 ⇑

by IH

⇐⇒

Σ ⊢ S1 ⇑
OR

∃b̃,

 Σ ⊢ S1 ⇓ b̃

Σ + ˜{v 7→ c} + ˜{x 7→ b} ⊢ S2 ⇑

by definitions

165

⇐⇒

Σ ⊢ S1 ⇑
OR

∃b̃,

 Σ ⊢ S1 ⇓ b̃

Σ + ˜{x 7→ b} ⊢ S2 ⇑

by Lemma C.2.5

{ṽ} ⊂ bv(S1), so our hypothesis implies ({ṽ}\{x̃})∩fv(S2) = ∅, enough to use Lemma C.2.5.

Lemma C.2.7. For all S1, x, S2, Σ, and ã, if (bv(S1) \ {x̃}) ∩ fv(S2) = ∅, then

Σ ⊢< S1 | x̃ | S2 >⇓ ã ⇐⇒ ∃b̃,

 Σ ⊢ S1 ⇓ b̃

Σ + ˜{x 7→ b} ⊢ S2 ⇓ ã

Proof. By structural induction on S1.
If S1 is a skelement K, then < K | x̃ | S2 > is defined as let x̃ = K in S2 and the result

comes directly from the definition (see Figure C.1).
If S1 is of the form let ṽ = K in S′, then < S1 | x̃ | S2 > is defined as let ṽ = K in <

S′ | x̃ | S2 >, and we have the following.
Σ ⊢< S1 | x̃ | S2 >⇓ ã

⇐⇒ ∃c̃,

 Σ ⊢ K ⇓ c̃

Σ + ˜{v 7→ c} ⊢< S′ | x̃ | S2 >⇓ ã
by definition

⇐⇒ ∃c̃,

Σ ⊢ K ⇓ c̃

∃b̃,

 Σ + ˜{v 7→ c} ⊢ S′ ⇓ b̃

Σ + ˜{v 7→ c} + ˜{x 7→ b} ⊢ S2 ⇓ ã

by induction hypothesis

⇐⇒ ∃c̃, b̃,

Σ ⊢ K ⇓ c̃

Σ + ˜{v 7→ c} ⊢ S′ ⇓ b̃

Σ + ˜{x 7→ b} ⊢ S2 ⇓ ã

by Lemma C.2.4

{ṽ} ⊂ bv(S1), so our hypothesis implies ({ṽ} \ {x̃}) ∩ fv(S2) = ∅

⇐⇒ ∃b̃,

Σ ⊢ let ṽ = K in S′ ⇓ b̃

Σ + ˜{x 7→ b} ⊢ S2 ⇓ ã
by definition

Lemma C.2.8. For all S1, ṽ, and S2, ⌈S2⌋ ◁ ⌈< S1 | ṽ | S2 >⌋

Proof. By induction on S1. Note that this lemma holds only because we assume branchings to
always contain at least one skeleton.

• If S1 = Branching (S′
1, . . . , S′

n), then ⌈< S1 | ṽ | S2 >⌋ = Branching (⌈< S′
1 | ṽ | S2 >

⌋,) and we have our result by applying our induction hypothesis on S′
1.

• If S1 = K is not a branching, then ⌈< S1 | ṽ | S2 >⌋ = (let ṽ = K in ⌈S2⌋) and we
immediately have our result.

166

• If S1 = (let w̃ = Branching (S′
1, . . . , S′

n) in S′
0), then

⌈< S1 | ṽ | S2 >⌋ = ⌈let w̃ = Branching (S′
1, . . . , S′

n) in < S′
0 | ṽ | S2 >⌋ =

Branching (⌈< S′
1 | w̃ |< S′

0 | ṽ | S2 >>⌋, . . .).

We first use our induction hypothesis on S′
1, giving ⌈< S′

0 | ṽ | S2 >⌋ ◁ ⌈< S1 | ṽ | S2 >⌋.
Then we have our result by applying our induction hypothesis a second time with S′

0.

• If S1 = (let w̃ = K in S′
0) where K is not a branching, then ⌈< S1 | ṽ | S2 >⌋ =

(let w̃ = K in ⌈< S′
0 | ṽ | S2 >⌋) and we have our result from our induction hypothesis

on S′
0.

Lemma C.2.9. Forall S1, ṽ, S2, E, and KH , where KH is not a branching, if
E[KH] ◁ ⌈< S1 | ṽ | S2 >⌋ and KH ̸∈ S1, then E[KH] ◁ ⌈S2⌋.

Proof. By structural induction on S1. All cases are straightforward. The only interesting case is
when S1 = (let w̃ = Branching(S′

1, . . . , S′
n) in S′) as we need to use our induction hypothesis

twice.
In this case, by definition: ⌈< S1 | ṽ | S2 >⌋ ≜ Branching(⌈< S′

1 | w̃ |< S′ | ṽ | S2 >>⌋,

. . . , ⌈< S′
n | w̃ |< S′ | ṽ | S2 >>⌋). From E[KH] ◁ ⌈< S1 | ṽ | S2 >⌋, there is an S′

i such that
E[KH] ◁ ⌈< S′

i | w̃ |< S′ | ṽ | S2 >>⌋. We use our induction hypothesis a first time knowing that
KH ̸∈ S′

i, and we get E[KH] ◁ ⌈< S′ | ṽ | S2 >⌋. Then we use our induction hypothesis a second
time, knowing KH ̸∈ S′, to get the desired result.

C.3 SSA

Lemma C.3.1. Forall S′ ∈ S, if SSA(S) then SSA(S′).

Proof. By simply following Definitions 3 and 4.

Lemma C.3.2. For all S1, S2, ṽ, if SSA(let ṽ = Branching(S1) in S2), then:

• SSA(< S1 | ṽ | S2 >)

• bv(let ṽ = Branching(S1) in S2) = bv(< S1 | ṽ | S2 >)

• fv(let ṽ = Branching(S1) in S2) = fv(< S1 | ṽ | S2 >)

Remark. Note that the reverse of the first point is not true. See for instance S1 = (let y =
K in S) and S2 = Return y.

Proof. First, by unfolding definitions, note that we always have:

167

• NoRedef(Branching(S1)) ⇐⇒ NoRedef(S1)

• bv(Branching(S1)) = bv(S1)

• fv(Branching(S1)) = fv(S1)

We proceed by structural induction on S1. If S1 = K is a skelement, then < S1 | ṽ | S2 >

= (let ṽ = K in S2). We can easily unfold the definitions and check the desired results hold,
using the three points above.

Else S1 is of the form (let w̃ = K in S).

Cutting our hypothesis gives us:

fv(. . .) ∩ bv(. . .) = ∅
bv(S1) ∩ ṽ = ∅
bv(S2) ∩ ṽ = ∅

bv(S1) ∩ bv(S2) = ∅
NoRedef(S1)
NoRedef(S2)

We have bv(S1) = w̃ ∪ bv(K) ∪ bv(S) so:

fv(. . .) ∩ bv(. . .) = ∅
(w̃ ∪ bv(K) ∪ bv(S)) ∩ ṽ = ∅

bv(S2) ∩ ṽ = ∅
(w̃ ∪ bv(K) ∪ bv(S)) ∩ bv(S2) = ∅

bv(K) ∩ w̃ = ∅
bv(S) ∩ w̃ = ∅

bv(K) ∩ bv(S) = ∅
NoRedef(K)
NoRedef(S)

NoRedef(S2)

We can reformulate into:

fv(. . .) ∩ bv(. . .) = ∅
elements of {ṽ; w̃; bv(K); bv(S1); bv(S2)} are 2 by 2 disjoints

NoRedef(K)
NoRedef(S)
NoRedef(S2)

This is enough to first prove SSA(let w̃ = K in let ṽ = Branching(S) in S2) by checking
the definition. Using our induction hypothesis, we have:

• SSA(< S | ṽ | S2 >)

• bv(< S | ṽ | S2 >) = ṽ ∪ bv(S) ∪ bv(S2)

• fv(< S | ṽ | S2 >) = fv(S) ∪ (fv(S2) \ ṽ) = fv(S) ∪ fv(S2)

Then, we have enough pieces to prove our desired result, once again by directly checking the
definition:

168

• SSA(let w̃ = K in < S | ṽ | S2 >)

• bv(let w̃ = K in < S | ṽ | S2 >) = ṽ ∪ w̃ ∪ bv(K) ∪ bv(S) ∪ bv(S2)

• fv(let w̃ = K in < S | ṽ | S2 >) = fv(K) ∪ fv(S) ∪ fv(S2)

Lemma C.3.3. SSA form is preserved during the generation phase creating new skeletons. I.e.:

• If SSA(E[Branching (S1, . . . , Sn)]) then SSA(E[Si]).

• If SSA(E[let ṽ = K in S]) then SSA(E[S]).

• If SSA(E[let ṽ = K in S]) then SSA(< [·] | ṽ | E[S] > [K]).

Proof. If E = [·], the three points simplify to:

• If SSA(Branching (S1, . . . , Sn)) then SSA(Si).

• If SSA(let ṽ = K in S) then SSA(S).

• If SSA(let ṽ = K in S) then SSA(let ṽ = K in S).

The third case is trivial, the other two are solved using Lemma C.3.1.
Else E =< [·] | w̃ | SE > for some w̃ and SE . The three points simplify to:

• If SSA(let w̃ = Branching (S1, . . . , Sn) in SE) then SSA(< Si | w̃ | SE >).

• If SSA(let ṽ = K in < S | w̃ | SE >) then SSA(< S | w̃ | SE >).

• If SSA(let ṽ = K in < S | w̃ | SE >) then SSA(let ṽ = K in < S | w̃ | SE >).

Once again, the third case is trivial, and the second can be solved using Lemma C.3.1. The
remaining (first) point can be cut in two halves, by proving the intermediate result SSA(let w̃ =
Branching (Si) in SE). The first half can be checked directly by following Definition 3. The
second half is proved separately (Lemma C.3.2).

Lemma C.3.4. The distribution of branchings preserves SSA form.
I.e., for all skeleton S, if SSA(S), then SSA(⌈S⌋).

Proof. For this, we prove the following by structural induction on S.

∀S, SSA(S) =⇒

SSA(⌈S⌋)

bv(S) = bv(⌈S⌋)
fv(S) = fv(⌈S⌋)

Most cases are straightforward. The only interesting case is when S is of the form
let ṽ = Branching(S1, . . . , Sn) in S′. Then by definition
⌈S⌋ ≜ Branching(⌈< S1 | ṽ | S′ >⌋, . . . , ⌈< Sn | ṽ | S′ >⌋).

169

First, we check by following Definition 3 that we have SSA(let ṽ = Branching(Si) in S′)
for each i. Then, using Lemma C.3.2, we get:

• SSA(< Si | ṽ | S′ >)

• ṽ ∪ bv(Si) ∪ bv(S′) = bv(< Si | ṽ | S′ >)

• fv(Si) ∪ fv(S′) = fv(< Si | ṽ | S′ >)

And we can conclude:

• bv(⌈S⌋) = ⋃
i bv(< Si | ṽ | S′ >) = ⋃

i(ṽ ∪ bv(Si) ∪ bv(S′)) = (⋃i bv(Si)) ∪ (ṽ ∪ bv(S′)) =
bv(S)

• fv(⌈S⌋) = ⋃
i fv(< Si | ṽ | S′ >) = ⋃

i(fv(Si) ∪ fv(S′)) = (⋃i fv(Si)) ∪ fv(S′) = fv(S)

• SSA(⌈S⌋) by definition, using bv(S) ∩ fv(S) = ∅ and SSA(< Si | ṽ | S′ >)

Lemma C.3.5. If all initial skeletons are in SSA form, then the new skeletons created during
the generation phase respect the SSA conditions. I.e., if for all rule (h(ỹ, c(z̃)) := S) ∈ RBS we
initially have SSA(S), then for all rule (h(ỹ, c(z̃)) := S) ∈ Rgen we also have SSA(S).

Proof. Initial rules are left untouched, so we only need to check SSA(S) for new skeletons,
constructed from a generation operation JHook (New c) h t̃Kr

E . The important part of the proof is
to check SSA(E[Hook h t̃]), as the new skeleton is then E[Hook h w̃] where w̃ are fresh variables,
and the property trivially ensues.

For this, we check we have SSA(E[S]) at every step JSKr
E . Initially, we start with a given

skeleton S (from a rule of RBS, for which we now SSA(S)) and an environment E = [·], so it
holds. Then, the preservation of the property comes from Lemma C.3.3.

C.4 Properties of the Transformation Phases

Lemma C.4.1. For all environment Σ, terms ã, and skeleton S such that SSA(S),

Σ ⊢ S ⇓ ã ⇐⇒ Σ ⊢ ⌈S⌋ ⇓ ã

I.e., the distribution of branchings preserves the concrete interpretation.

Proof. The proof is done by induction on the size of S, and dealing with the different forms
S can take. Three of the four cases are trivial (see Section 4.2.3 for the definition). The only
interesting case is when S is of the form let ṽ = Branching(S1, . . . , Sn) in S′. Then, by
definition, ⌈S⌋ ≜ Branching(⌈< S1 | ṽ | S′ >⌋, . . . , ⌈< Sn | ṽ | S′ >⌋).

170

Σ ⊢ S ⇓ ã

⇐⇒ ∃b̃, Si,

 Σ ⊢ Si ⇓ b̃

Σ + ˜{v 7→ b} ⊢ S′ ⇓ ã
by definition (using two rules)

⇐⇒ ∃Si, Σ ⊢< Si | ṽ | S′ >⇓ ã using Lemma C.2.7

We have (bv(Si) \ {ṽ}) ∩ fv(S′) = ∅ from

bv(S) ∩ fv(S) = ∅ from SSA(S)

fv(S′) ⊂ fv(S) ∪ {ṽ}
bv(Si) ⊂ bv(S)

⇐⇒ ∃Si, Σ ⊢ ⌈< Si | ṽ | S′ >⌋ ⇓ ã using IH, since < Si | ṽ | S′ > is smaller than S

⇐⇒ Σ ⊢ ⌈S⌋ ⇓ ã

Lemma C.4.2. For all environment Σ and skeleton S such that SSA(S),

Σ ⊢ S ⇑ ⇐⇒ Σ ⊢ ⌈S⌋ ⇑

I.e., the distribution of branchings also preserves the coinductive semantics.

Proof. This lemma is similar to Lemma C.4.1, and so is the proof. This is done by a straight-
forward induction on S. Instead of using Lemma C.2.7, we use the similar Lemma C.2.6 for
divergence. Also, we directly use Lemma C.4.1 instead of the induction hypothesis for finite
subevaluations.

Lemma C.4.3. Delaying returns does not impact the inductive interpretation. Thus, the rules
common to Rdist and REBS behave the same way.

Proof. This is done by induction on skeletons. The induction case is trivial, and the base case
is to check that Σ ⊢ Filter f t̃ ⇓ ã ⇐⇒ Σ ⊢ let w̃ = Filter f t̃ in Return w̃ ⇓ ã

(and similarly for hooks, with the same reasoning). This comes from the two following derivation
trees having the same leaf Rf (Σ̃(t)) ⇓ ã.

Rf (Σ̃(t)) ⇓ ã

Σ ⊢ Filter f t̃ ⇓ ã

Rf (Σ̃(t)) ⇓ ã

Σ ⊢ Filter f t̃ ⇓ ã

(Σ + ˜{w 7→ a})(w̃) = ã

Σ + ˜{w 7→ a} ⊢ Return w̃ ⇓REBS ã

Σ ⊢ let w̃ = Filter f t̃ in Return w̃ ⇓REBS ã

The following two lemmas show that the rules added to create REBS (from Rdist) behave as
intended.

171

Lemma C.4.4. For all hook h and terms ã, b̃, and d̃,

b̃ = d̃ ⇐⇒ (ã, Ret_h(b̃)) ⇓REBS
h d̃

Proof. This comes from the following derivation tree, either by creating it or because there is
only one possible inversion of the rules of Figure C.1.

(h(ỹ, Ret_h(x̃)) := Return x̃) ∈ REBS

(˜{y 7→ a} + ˜{x 7→ b})(x̃) = b̃

˜{y 7→ a} + ˜{x 7→ b} ⊢ Return x̃ ⇓REBS b̃

(ã, Ret_h(b̃)) ⇓REBS
h b̃

Lemma C.4.5. For all hook h and terms b̃ and d̃,

b̃ = d̃ ⇐⇒ Ret_h(b̃) ⇓RSS
getRet_h d̃

Proof. This comes from the following derivation tree, either by creating it or because there is
only one possible inversion of the rules of Figure C.1.

(getRet_h(Ret_h(x̃)) := Return x̃) ∈ RSS

˜{x 7→ b}(x̃) = b̃

˜{x 7→ b} ⊢ Return x̃ ⇓RSS b̃

Ret_h(b̃) ⇓RSS
getRet_h b̃

The following two lemmas show the small-step semantics exhibits the usual congruence rules
for hook calls labeled Reuse.

Lemma C.4.6. If (h(ỹ, c(w̃, z̃)) := let ṽ = Hook Reuse h1 w̃ in S) ∈ REBS, then

(ẽ, e0) ⇓RSS
h1

(ẽ, e′
0) =⇒ (ã, c((ẽ, e0), ã′)) ⇓RSS

h (ã, c((ẽ, e′
0), ã′))

Proof. Let r be the rule in the formulation of the lemma.

(. . . := ∥ . . . ∥r) ∈ RSS

(ẽ, e0) ⇓RSS
h1

(ẽ, e′
0)

Σ′(ỹ, c(ũ, z̃)) = (ã, c((ẽ, e′
0), ã′))

Σ′ ⊢ Return (ỹ, c(ũ, z̃)) ⇓RSS (ã, c((ẽ, e′
0), ã′))

Σ ⊢ let ũ = Hook h1 w̃ in Return (ỹ, c(ũ, z̃)) ⇓RSS (ã, c((ẽ, e′
0), ã′))

Σ ⊢ ∥ let ṽ = Hook Reuse h1 w̃ in S ∥r ⇓RSS (ã, c((ẽ, e′
0), ã′))

(ã, c((ẽ, e0), ã′)) ⇓RSS
h (ã, c((ẽ, e′

0), ã′))

172

where Σ = ˜{y 7→ a} + {w̃ 7→ (ẽ, e0)} + ˜{z 7→ a′} and Σ′ = Σ + {ũ 7→ (ẽ, e′
0)}.

Lemma C.4.7. If (h(ỹ, c(w̃, z̃)) := let ṽ = Hook Reuse h1 w̃ in S) ∈ REBS, and e0 is not of
the form Ret_h1(...), then

(ã, c((ẽ, e0), ã′)) ⇓RSS
h d̃ =⇒ ∃e′

0,

{
d̃ = (ã, c((ẽ, e′

0), ã′))
ẽ, e0 ⇓RSS

h1
(ẽ, e′

0)

This Lemma is the converse of Lemma C.4.6 above.

Proof. The property holds because the only possible evaluation tree is the one presented in the
proof of Lemma C.4.6 above. Indeed [Σ ⊢ let ṽ = Hook getRet_h1 (w) in ∥ S ∥r ⇓RSS . . .],
with Σ(w) = e0, is not possible since getRet_h1 only has a rule for the constructor Ret_h1.

The following two lemmas show the small-step semantics can also extract coerced values and
continue a computation, for hook calls labeled Reuse when the first computation is finished.

Lemma C.4.8. If (h(ỹ, c((w̃, w), z̃)) := let ṽ = Hook Reuse h1 (w̃, w) in S) ∈ REBS, then

˜{y 7→ a} + ˜{z 7→ a′} + ˜{v 7→ b} ⊢ ∥ S ∥r ⇓RSS d̃ =⇒ (ã, c((ẽ, Ret_h1(b̃)), ã′)) ⇓RSS
h d̃

Proof. Let r be the rule in the formulation of the lemma.

(. . . := ∥ . . . ∥r) ∈ RSS

Ret_h1(b̃) ⇓RSS
getRet_h1 b̃ Σ′ ⊢ ∥ S ∥r ⇓RSS d̃

Σ ⊢ let ṽ = Hook getRet_h1 (w) in ∥ S ∥r ⇓RSS d̃

Σ ⊢ ∥ let ṽ = Hook Reuse h1 (w̃, w) in S ∥r ⇓RSS d̃

(ã, c((ẽ, Ret_h1(b̃)), ã′)) ⇓RSS
h d̃

With Σ = ˜{y 7→ a}+ ˜{w 7→ e}+{w 7→ Ret_h1(b̃)}+ ˜{z 7→ a′} and Σ′ = Σ+ ˜{v 7→ b}. The first
leaf uses Lemma C.4.5. The second leaf uses Lemma C.2.4 to go from ˜{y 7→ a} + ˜{z 7→ a′} + ˜{v 7→ b}
to Σ′ since the variables (w̃, w) do not appear in S by construction.

Lemma C.4.9. If (h(ỹ, c((w̃, w), z̃)) := let ṽ = Hook Reuse h1 (w̃, w) in S) ∈ REBS, then

(ã, c((ẽ, Ret_h1(b̃)), ã′)) ⇓RSS
h d̃ =⇒ ˜{y 7→ a} + ˜{z 7→ a′} + ˜{v 7→ b} ⊢ ∥ S ∥r ⇓RSS d̃

This Lemma is the converse of Lemma C.4.8 above.

Proof. The property holds because the only possible evaluation tree is the one presented in the
proof of Lemma C.4.8 above. Indeed [Σ ⊢ let ũ = Hook h1 (w̃, w) in Return (ỹ, c(ũ, z̃)) ⇓RSS

173

. . .], with Σ(w) = Ret_h1(b̃), is not possible since, in RSS, the hook h1 does not have a rule for
the constructor Ret_h1. We also use Lemma C.2.4 to simplify the environment.

Lemma C.4.10. For every rule r = (h(ỹ, c(x̃)) := S) ∈ RBS, during the generation phase with
the skeleton S, every time we apply the generation operation on a subskeleton, i.e. JS0Kr

E , we
have ⌈E[S0]⌋ ◁ ⌈S⌋.

Proof. The property trivially holds at the start (JSKr
[·]) of the generation, since ⌈S⌋ ◁ ⌈S⌋ by

reflexivity. Now we check that we preserve this property during the generation, assuming we are
at the point JS0Kr

E with ⌈E[S0]⌋ ◁ ⌈S⌋.
▶ If S0 is a skelement.

• If S0 is not a branching, there is no recursive call to the generation operation and we are
done.

• If S0 = Branching (S1, . . . , Sn), for each i we generate JSiKr
E , and so we want to show

⌈E[Si]⌋ ◁ ⌈S⌋. Note that we necessarily have ⌈E[S0]⌋ = Branching (⌈E[S1]⌋, . . . , ⌈E[Sn]⌋).
If E = [·], this is trivial. If E is of the form < [·] | ṽ | S′ >, we have:

⌈E[S0]⌋ = ⌈< Branching (S1, . . . , Sn) | ṽ | S′ >⌋

= ⌈let ṽ = Branching (S1, . . . , Sn) in S′⌋

= Branching (⌈< S1 | ṽ | S′ >⌋, . . . , ⌈< Sn | ṽ | S′ >⌋)

= Branching (⌈E[S1]⌋, . . . , ⌈E[Sn]⌋)

So by transitivity we have ⌈E[Si]⌋ ◁ ⌈E[S0]⌋ ◁ ⌈S⌋.

▶ If S0 is of the form let ṽ = K in S1. Now we need to check to the property for the two
recursive calls JKKr

<[·]|ṽ|E[S1]> and JS1Kr
E .

We notice that E[S0] = (let ṽ = K in E[S1]) = (< [·] | ṽ | E[S1] >)[K], so the property
holds for the first one from our assumption ⌈E[S0]⌋ ◁ ⌈S⌋.

We are left with checking the property for JS1Kr
E , i.e., we want to show that ⌈E[S1]⌋ ◁ ⌈S⌋.

• If we have K = Branching (S′
1, . . . , S′

n), then ⌈E[S0]⌋ = Branching (. . . , ⌈< S′
i | ṽ |

E[S1] >⌋, . . .). Using Lemma C.2.8, we conclude ⌈E[S1]⌋ ◁ ⌈< S′
i | ṽ | E[S1] >⌋ ◁ ⌈E[S0]⌋ ◁

⌈S⌋.

• Lastly, if K is not a branching, we simply have ⌈E[S0]⌋ = let ṽ = K in ⌈E[S1]⌋, so we
also have ⌈E[S1]⌋ ◁ ⌈E[S0]⌋ ◁ ⌈S⌋ by definition.

174

The next two lemmas explain where the rules for new constructors come from. If after
distribution, we have an initial skeleton with E[KH] (where KH = Hook (New c0) h1 t̃) as its
tail, then it comes from the distribution of a skeleton of the form E′[KH]. The new rule for c0

is the distribution of E′[KH], which results in E[KH] as well.
E.g., if the skeleton of While ends with let ṽ = Hook (New While2) h t̃ in S then the

skeleton of While2 is necessarily of the form let ṽ = Hook Reuse h w̃ in S.

Lemma C.4.11. Forall S0, E, E0, r, c0, h1, t̃, let KH ≜ Hook (New c0) h1 t̃.
If we generate JS0Kr

E0
, and know that KH ∈ S0, KH ̸∈ E0, and that E[KH] ◁ ⌈E0[S0]⌋, then

there exists E′ such that we also generate JKHKr
E′ and have ⌈E′[KH]⌋ = E[KH].

Proof. Note that KH appears exactly once in S0, since KH is annotated with a fresh constructor
name c0. We prove this lemma by induction on S0.

• If S0 = Branching (S′
1, . . . , S′

n), then there is exactly one S′
i that contains KH and we

generate JS′
iK

r
E0

. Also ⌈E0[S0]⌋ = Branching (⌈E0[S′
1]⌋, . . . , ⌈E0[S′

n]⌋), so we can deduce
that E[KH] ◁ ⌈E0[S′

i]⌋. By using our induction hypothesis with S′
i, we immediately get our

desired result.

• If S0 = K is not a branching, then KH ∈ S0 implies that S0 = KH . We take E′ = E0

and need to check ⌈E0[KH]⌋ = E[KH]. We know that E[KH] ◁ ⌈E0[KH]⌋. If E0 = [·], then
E = [·] and we have the equality. Else ⌈E0[KH]⌋ is of the form let . . . = KH in ⌈. . .⌋,
and since KH ̸∈ E0, it does not appear in the “. . .” parts. Necessarily (from Definition 5),
we have E[KH] = ⌈E0[KH]⌋.

• If S0 = (let ṽ = Branching (S′
1, . . . , S′

n) in S′) and there is exactly one S′
i that contains

KH . Let E1 =< [·] | ṽ | E0[S′] >, we generate JS′
iK

r
E1

. Also ⌈E0[S0]⌋ = Branching (⌈<

S′
1 | ṽ | E0[S′] >⌋, . . . , ⌈< S′

n | ṽ | E0[S′] >⌋), so we can deduce that E[KH] ◁ ⌈< S′
i | ṽ |

E0[S′] >⌋ = ⌈E1[S′
i]⌋. We can use our induction hypothesis with E1 and S′

i to immediately
get our desired result.

• If S0 = (let ṽ = Branching (S′
1, . . . , S′

n) in S′) and KH ∈ S′. Then KH does not appear
in any S′

i and we generate JS′Kr
E0

. Also ⌈E0[S0]⌋ = Branching (⌈< S′
1 | ṽ | E0[S′] >

⌋, . . . , ⌈< S′
n | ṽ | E0[S′] >⌋). Since E[KH] ◁ ⌈E0[S0]⌋, there is an S′

i such that E[KH] ◁ ⌈<

S′
1 | ṽ | E0[S′] >⌋. We use Lemma C.2.9 to get more precisely that E[KH] ◁ ⌈E0[S′]⌋. Then

we can use our induction hypothesis on E0 and S′ to get our desired result.

• If S0 = (let ṽ = KH in S′). let E1 =< [·] | ṽ | E0[S′] >, we generate JKHKr
E1

. We take
E′ = E1, and need to show that E[KH] is equal to ⌈E1[KH]⌋ = (let ṽ = KH in ⌈E0[S′]⌋).
Once again, E[KH] ◁ ⌈E1[KH]⌋ and KH does not appear in ⌈E0[S′]⌋, so E[KH] ⋪ ⌈E0[S′]⌋
and we have the equality from the only possible case of Definition 5.

175

• If S0 = (let ṽ = K in S′) where K ̸= KH is not a branching, then KH ∈ S′ and we
generate JS′Kr

E0
. Also ⌈E0[S0]⌋ = (let ṽ = K in ⌈E0[S′]⌋). Thus E[KH] ◁ ⌈E0[S′]⌋ and

we have our desired result by using our induction hypothesis on E0 and S′.

Lemma C.4.12. For all rule (h(ỹ, c(x̃)) := ⌈S⌋) ∈ Rdist, if E[Hook (New c0) h1 t̃] ◁ ⌈S⌋, then
Rdist contains a rule of the form:

h(ỹ, c0(w̃, z̃)) := E[Hook Reuse h1 w̃]

where w̃ does not appear in fv(E).

Proof. Firstly, if c is not an initial constructor, we can recover the same kind of hypotheses with
an initial constructor. In this case, our rule is of the form

h(ỹ, c(x̃1, x̃2)) := ES [Hook Reuse h2 x̃1] ∈ Rgen

with x̃ = x̃1, x̃2. So it has been created from a generation operation JHook (New c) h2 t̃′K
r

ES
, with

r = (h(ỹ, c′(ṽ)) := S0) ∈ RBS where c′ is an initial constructor. Using Lemma C.4.10, we have
⌈S⌋ = ⌈ES [Hook Reuse h2 x̃1]⌋ ◁ ⌈S0⌋. So by transitivity we recover the following hypothesis:
(h(ỹ, c′(ṽ)) := ⌈S0⌋) ∈ Rdist where c′ is an initial constructor and E[Hook (New c0) h1 t̃] ◁ ⌈S0⌋.

Now, we can assume without loss of generality that c is an initial constructor, and so that
we have r = (h(ỹ, c(x̃)) := S) ∈ RBS. We use Lemma C.4.11 with JSKr

[·] to get E′ such that we
generate JHook (New c0) h1 t̃Kr

E′ and have ⌈E′[Hook (New c0) h1 t̃]⌋ = E[Hook (New c0) h1 t̃]. Thus
the creation of new skeletons produces a rule (h(ỹ, c0(w̃, z̃)) := E′[Hook Reuse h1 w̃]) ∈ Rgen

with fresh variables w̃. And after distributing branchings we have

(h(ỹ, c0(w̃, z̃)) := E[Hook Reuse h1 w̃]) ∈ Rdist

Lemma C.4.13. ∀(h(ỹ, c(x̃)) := S) ∈ REBS, if (let ṽ = Hook (New c0) h1 t̃ in S0) ◁ S, then
REBS contains a rule of the form:

h(ỹ, c0(w̃, z̃)) := let ṽ = Hook Reuse h1 w̃ in S0

where w̃ does not appear in fv(S0).

Proof. Directly from Lemma C.4.12, as we go from Rdist to REBS by only delaying returns at
the end of skeletons. This operation does the same modifications on both rules (we assume it
selects the same fresh variables for simplicity), and does not create new free variables.

176

C.5 Big-Step and Extended Big-Step

The following three theorems state the equivalence between the initial and extended big-step
semantics. For this, we note |t| the canonical injection of a term t into the extended semantics.
We show that the behavior is preserved when we limit ourselves to initial terms, i.e., to terms
using only constructors in C0 (see Section 4.2), and not newly created constructors (e.g., While1

or Ret_h).

Theorem C.5.1 (BS⇒EBS). For all h and initial terms ã, and b̃,

ã ⇓RBS
h b̃ =⇒ |̃a| ⇓REBS

h |̃b|

Proof. Our hypothesis comes from a rule of the form h(ỹ, c(x̃)) := S ∈ RBS ⊆ Rgen with
ã = d̃, c(d̃′) and a derivation ˜{y 7→ d}+ ˜{x 7→ d′} ⊢ S ⇓ b̃. By definition, h(ỹ, c(x̃)) := ⌈S⌋ is a rule
of Rdist. And from Lemma C.4.1, we have ˜{y 7→ d} + ˜{x 7→ d′} ⊢ ⌈S⌋ ⇓ b̃ and |̃a| ⇓Rdist

h |̃b|. Since
delaying returns does not change the behavior (Lemma C.4.3), we also have |̃a| ⇓REBS

h |̃b|.

Theorem C.5.2 (EBS⇒BS). For all h, initial terms ã and extended terms b̃′,

|̃a| ⇓REBS
h b̃′ =⇒ ∃b̃, b̃′ = |̃b| ∧ ã ⇓RBS

h b̃

Proof. Since ã are initial terms and do not use coercion constructors of the form Ret_h, we also
have |̃a| ⇓Rdist

h b̃′ from Lemma C.4.3.
This comes from a rule of the form h(ỹ, c(x̃)) := ⌈S⌋ ∈ Rdist with ã = d̃, c(d̃′) and a

derivation ˜{y 7→ d} + ˜{x 7→ d′} ⊢ ⌈S⌋ ⇓ b̃. By definition, h(ỹ, c(x̃)) := S is a rule of Rgen, and
from Lemma C.4.1, we have |̃a| ⇓Rgen

h b̃′.
Since ã are initial terms and do not use newly generated constructors (e.g., While1), then c

is an initial constructor, h(ỹ, c(x̃)) := S is also a rule of RBS, and we have ã ⇓RBS
h b̃′. This shows

that b̃′ is necessarily restricted to initial constructors, which can be stated as

∃b̃, b̃′ = |̃b| ∧ ã ⇓RBS
h b̃

Theorem C.5.3 (Div: BS⇔EBS). For all h and initial terms ã,

ã ⇑RBS
h ⇐⇒ |ã| ⇑REBS

h

Proof. Similarly to the two previous theorems. Since we only focus on initial terms (no new
generated constructors), ã ⇑RBS

h ⇐⇒ |ã| ⇑Rgen
h . From the definition of Rdist and Lemma C.4.2,

177

|ã| ⇑Rgen
h ⇐⇒ |ã| ⇑Rdist

h . Since we only focus on initial terms (no coerced returns) and delaying
returns is also equivalent for coinduction, |ã| ⇑Rdist

h ⇐⇒ |ã| ⇑REBS
h .

C.6 Extended Big-Step Implies Small-Step

We first certify the finite case with the following theorem.

Theorem C.6.1 (EBS ⇒ SS). For all ã, c, ã′, b̃, and h,

(ã, c(ã′)) ⇓REBS
h b̃ =⇒ (ã, c(ã′)) (⇓RSS

h)∗ (ã, Ret_h(b̃))

Proof. Since (ã, c(ã′)) ⇓REBS
h b̃ is defined mutually with the evaluation of skeletons (Σ ⊢ S ⇓REBS

b̃), we will prove two results at the same time: Forall ã, c, ã′, b̃, h, ỹ, x̃, S0, Σ, S, we have:

◦ (ã, c(ã′)) ⇓REBS
h b̃ =⇒ (ã, c(ã′)) (⇓RSS

h)∗ (ã, Ret_h(b̃))

◦

r = (h(ỹ, c(x̃)) := S0) ∈ REBS

S ◁ S0

Σ(ỹ) = ã

Σ ⊢ S ⇓REBS b̃

S has no Reuse label

=⇒ ∃d,

{
Σ ⊢ ∥ S ∥r ⇓RSS (ã, d)

(ã, d) (⇓RSS
h)∗ (ã, Ret_h(b̃))

The second result says that if S evaluates to b̃ as part of a big-step evaluation, then ∥ S ∥r

can be (small-step) reduced to an intermediate configuration (ã, d) that can reduce further to
(ã, Ret_h(b̃)).

We reason by mutual induction on the derivations of (ã, c(ã′)) ⇓REBS
h b̃ and Σ ⊢ S ⇓REBS b̃.

▶ For the first result, our hypothesis is (ã, c(ã′)) ⇓REBS
h b̃.

• If c = Ret_h, using Lemma C.4.5 we have ã′ = b̃ and this is trivial as we take zero
small-steps.

• If c is a new constructor, the bottom of the derivation is of the form

h(ỹ, c(w̃, z̃)) := . . .

Σ0(w̃) ⇓REBS
h1

b̃′ Σ0 + ˜{v 7→ b′} ⊢ S ⇓REBS b̃

Σ0 ⊢ let ṽ = Hook Reuse h1 w̃ in S ⇓REBS b̃

(ã, c((ã′
0, a′

1), ã′
2)) ⇓REBS

h b̃

where ã′ = ((ã′
0, a′

1), ã′
2), Σ0 = ˜{y 7→ a} + {w̃ 7→ (ã′

0, a′
1)} + ˜{z 7→ a′

2}, and we use the rule
h(ỹ, c(w̃, z̃)) := let ṽ = Hook Reuse h1 w̃ in S.

178

Using our induction hypothesis on the first leaf we get (ã′
0, a′

1) (⇓RSS
h1

)∗ (ã′
0, Ret_h1(b̃′)).

By Lemma C.4.6, we then have (ã, c((ã′
0, a′

1), ã′
2)) (⇓RSS

h)∗ (ã, c((ã′
0, Ret_h1(b̃′)), ã′

2)).

We can also use our induction hypothesis on the second leaf (with S) to get d such that
Σ0 + ˜{v 7→ b′} ⊢ ∥ S ∥r ⇓RSS (ã, d) and (ã, d) (⇓RSS

h)∗ (ã, Ret_h(b̃)).

Finally, using Lemma C.4.8 (and Lemma C.2.4 to rewrite the environment), we have
(ã, c((ã′

0, Ret_h1(b̃′)), ã′
2)) ⇓RSS

h (ã, d), and we just have to assemble the three pieces by
transitivity.

• Otherwise, if c is an initial constructor, the bottom of the tree derivation is of the form:

h(ỹ, c(x̃)) := S ∈ REBS

. . .

Σ0 ⊢ S ⇓REBS b̃

(ã, c(ã′)) ⇓REBS
h b̃

Where Σ0 = ˜{y 7→ a} + ˜{x 7→ a′} and S does not start with a label Reuse.

We use our induction hypothesis with Σ0 ⊢ S ⇓REBS b̃ to obtain d such that Σ0 ⊢
∥ S ∥r ⇓RSS (ã, d) and (ã, d) (⇓RSS

h)∗ (ã, Ret_h(b̃)). Now we can complete our goal as such:

h(ỹ, c(x̃)) := ∥ S ∥r ∈ RSS Σ0 ⊢ ∥ S ∥r ⇓RSS (ã, d)
(ã, c(ã′)) ⇓RSS

h (ã, d) (ã, d) (⇓RSS
h)∗ (ã, Ret_h(b̃))

(ã, c(ã′)) (⇓RSS
h)∗ (ã, Ret_h(b̃))

▶ For the second result, we assume

r = (h(ỹ, c(x̃)) := S0) ∈ REBS

S ◁ S0

Σ(ỹ) = ã

Σ ⊢ S ⇓REBS b̃

S has no Reuse label

Note that we have SSA(S0), either from assumption for the initial skeletons, or by using
Lemmas C.3.5 and C.3.4 for new skeletons. Thus we know extending the environment Σ will not
change the mapping of variables ỹ.

As said previously, we proceed by induction on the derivation of Σ ⊢ S ⇓REBS b̃.

179

• If S is of the form Return t̃, then we choose d = Ret_h(b̃):

Σ(t̃) = b̃

Σ ⊢ Return t̃ ⇓REBS b̃
=⇒

Σ(ỹ, Ret_h(t̃)) = (ã, Ret_h(b̃))
Σ ⊢ Return (ỹ, Ret_h(t̃)) ⇓RSS (ã, Ret_h(b̃))

(ã, Ret_h(b̃)) (⇓RSS
h)∗ (ã, Ret_h(b̃)) (with zero steps)

• If S is of the form Branching (S1, . . . , Sn), using the induction hypothesis with Si:

Σ ⊢ Si ⇓REBS b̃

Σ ⊢ Branching (S1, . . . , Sn) ⇓REBS b̃
=⇒

Σ ⊢ ∥ Si ∥r ⇓RSS (ã, d)

Σ ⊢ Branching (∥ S1 ∥r, . . . , ∥ Sn ∥r) ⇓RSS (ã, d)

(ã, d) (⇓RSS
h)∗ (ã, Ret_h(b̃))

• If S is of the form let ṽ = Filter f t̃ in S0, using the induction hypothesis with S0:

Rf (Σ̃(t)) ⇓ b̃′

Σ ⊢ Filter f t̃ ⇓ b̃′ Σ + ˜{v 7→ b′} ⊢ S0 ⇓REBS b̃

Σ ⊢ let ṽ = Filter f t̃ in S0 ⇓REBS b̃
=⇒

Rf (Σ̃(t)) ⇓ b̃′

Σ ⊢ Filter f t̃ ⇓ b̃′ Σ + ˜{v 7→ b′} ⊢ ∥ S0 ∥r ⇓RSS (ã, d)
Σ ⊢ let ṽ = Filter f t̃ in ∥ S0 ∥r ⇓RSS (ã, d)

(ã, d) (⇓RSS
h)∗ (ã, Ret_h(b̃))

(similarly for S := let ṽ = Return t̃ in S0)
• If S is of the form let ṽ = Hook (New c0) h1 t̃ in S0, we have:

Σ(t̃) ⇓REBS
h1

b̃′

Σ ⊢ Hook (New c0) h1 t̃ ⇓REBS b̃′ Σ + ˜{v 7→ b′} ⊢ S0 ⇓REBS b̃

Σ ⊢ let ṽ = Hook (New c0) h1 t̃ in S0 ⇓REBS b̃

Let us name Σ(t̃) = (ẽ, et). We use our induction hypothesis on the first leaf and get
(ẽ, et) (⇓RSS

h1
)∗ (ẽ, Ret_h1(b̃′)). We also use our induction hypothesis on the second leaf and we

have d0 such that Σ + ˜{v 7→ b′} ⊢ ∥ S0 ∥r ⇓RSS (ã, d0) and (ã, d0) (⇓RSS
h)∗ (ã, Ret_h(b̃)).

From Lemma C.4.13, REBS contains a rule of the form

180

h(ỹ, c0(w̃, z̃)) := let ṽ = Hook Reuse h1 w̃ in S0.

With d = c0(Σ(t), Σ(z)) = c0(ẽ, et, Σ(z)), we have ∥ S ∥r = Return (ỹ, c0(t̃, z̃)) and thus:

Σ(ỹ, c0(t̃, z̃)) = (ã, d)
Σ ⊢ Return (ỹ, c0(t̃, z̃)) ⇓RSS (ã, d)

To conclude, we are missing (ã, d) (⇓RSS
h)∗ (ã, d0) which can be cut into two pieces:

. . .

(ã, d) (⇓RSS
h)∗ (ã, c0(ẽ, Ret_h1(b̃′), Σ(z̃)))

. . .

(ã, c0(ẽ, Ret_h1(b̃′), Σ(z̃))) ⇓RSS
h (ã, d0)

(ã, d) (⇓RSS
h)∗ (ã, d0)

The first part comes directly from iterating Lemma C.4.6. Also, Lemma C.4.8 gives us:

˜{y 7→ a} + ˜{z 7→ Σ(z)} + ˜{v 7→ b′} ⊢ ∥ S0 ∥r ⇓RSS (ã, d0)
(ã, c0(ẽ, Ret_h1(b̃′), Σ(z̃))) ⇓RSS

h (ã, d0)

Which is enough for the second part, using Σ+ ˜{v 7→ b′} ⊢ ∥ S0 ∥r ⇓RSS (ã, d0) and Lemma C.2.4.

We know tackle the infinite case. The proof can be separated in two successive lemmas.

Lemma C.6.2. For all h, ỹ, c, x̃, S0, Σ, S, and ã,

r = (h(ỹ, c(x̃)) := S0) ∈ REBS

S ◁ S0

Σ(ỹ) = ã

Σ ⊢ S ⇑REBS

S has no Reuse label

=⇒ ∃d,

{
Σ ⊢ ∥ S ∥r ⇓RSS (ã, d)

(ã, d) ⇑REBS
h

In other words, if evaluating S diverges during a (big-step) evaluation, then ∥ S ∥r can be
(small-step) reduced into an intermediate configuration (ã, d) whose (big-step) evaluation also
diverges.

Proof. We prove this by induction on S.

181

▶ If S is of the form Branching (S1, . . . , Sn), using the induction hypothesis with Si:

Σ ⊢ Si ⇑REBS
============

Σ ⊢ Branching (S1, . . . , Sn) ⇑REBS
================================= =⇒

Σ ⊢ ∥ Si ∥r ⇓RSS (ã, d)

Σ ⊢ Branching (∥ S1 ∥r, . . . , ∥ Sn ∥r) ⇓RSS (ã, d)

(ã, d) ⇑REBS
h

▶ If S is of the form let ṽ = K in S0, where K is a filter or a return, using the induction
hypothesis with S0:

Σ ⊢ K ⇓ b̃′ Σ + ˜{v 7→ b′} ⊢ S0 ⇑REBS
=======================

Σ ⊢ let ṽ = K in S0 ⇑REBS
== =⇒

Σ ⊢ K ⇓ b̃′ Σ + ˜{v 7→ b′} ⊢ ∥ S0 ∥r ⇓RSS (ã, d)
Σ ⊢ let ṽ = K in ∥ S0 ∥r ⇓RSS (ã, d)

(ã, d) ⇑REBS
h

▶ If S is of the form let ṽ = Hook (New c0) h1 t̃ in S0, we have:
From Lemma C.4.13, REBS contains a rule of the form

h(ỹ, c0(w̃, z̃)) := let ṽ = Hook Reuse h1 w̃ in S0

We choose d = c0(Σ(t̃), Σ(z̃)), we have ∥ S ∥r = Return (ỹ, c0(t̃, z̃)) and thus:

Σ(ỹ, c0(t̃, z̃)) = (ã, d)
Σ ⊢ Return (ỹ, c0(t̃, z̃)) ⇓RSS (ã, d)

We also need to check (ã, d) ⇑REBS
h . For this we have the following tree:

h(ỹ, c0(w̃, z̃)) := ... ∈ REBS Σ′ ⊢ let ṽ = Hook Reuse h1 w̃ in S0 ⇑REBS
===

(ã, d) ⇑REBS
h

=== Div-tuple

where Σ′ = ˜{y 7→ a} + ˜{w 7→ Σ(t)} + ˜{z 7→ Σ(z)}. The leaf comes from our hypothesis Σ ⊢
S ⇑REBS . If the hook call (Hook (New c0) h1 t̃) diverges, this is straightforward as Σ(t̃) = Σ′(w̃).
If evaluating S0 diverges, we go from Σ to Σ′ using Lemma C.2.5.

182

Lemma C.6.3. For all ã, c, ã′, and h,

(ã, c(ã′)) ⇑REBS
h =⇒ ∃b̃, (ã, c(ã′)) ⇓RSS

h b̃ ∧ b̃ ⇑REBS
h

Proof. We prove this result by induction on (ã, c(ã′)), keeping h universally quantified. We
distinguish the different cases of (ã, c(ã′)) ⇑REBS

h .

• If it comes from a tree

h(ỹ, c(w̃, z̃)) := . . . ∈ REBS

ã1 ⇑REBS
h1

Σ ⊢ Hook h1 w̃ ⇑REBS
==================== Div-Pc

Σ ⊢ let ṽ = Hook Reuse h1 w̃ in S ⇑REBS
=== Div-LetL

(ã, c(ã1, ã3)) ⇑REBS
h

=== Div-tuple

with Σ = ˜{y 7→ a} + ˜{w 7→ a1} + ˜{z 7→ a3} and ã′ = (ã1, ã3), then we can use our induction
hypothesis since ã1 is a subterm of (ã, c(ã′)).

So there is b̃′ such that ã1 ⇓RSS
h1

b̃′ and b̃′ ⇑REBS
h1

. We choose b̃ = (ã, c(b̃′, ã3)) and we have
(ã, c(ã1, ã3))) ⇓RSS

h b̃ from Lemma C.4.6 and b̃ ⇑REBS
h from a tree similar to the one above

(replacing ã1 by b̃′).

• If it comes from a tree

h(ỹ, c(w̃, z̃)) := . . . ∈ REBS

ã1, a2 ⇓REBS
h1

d̃

Σ ⊢ Hook h1 w̃ ⇓REBS d̃
−−−−−−−−−−−−−−−−−−−−−−

Σ′ ⊢ S ⇑REBS
============

Σ ⊢ let ṽ = Hook Reuse h1 w̃ in S ⇑REBS
== Div-LetR

(ã, c(ã1, a2, ã3)) ⇑REBS
h

=== Div-tuple

with Σ = ˜{y 7→ a} + {w̃ 7→ (ã1, a2)} + ˜{z 7→ a3}, Σ′ = Σ + ˜{v 7→ d} and ã′ = (ã1, a2, ã3), there
is two subcases.

If a2 is not of the form Ret_h1(..), then Theorem C.6.1 gives us ã1, a2 (⇓RSS
h1

)∗ ã1, Ret_h1(d̃)
which implies there is a′

2 such that ã1, a2 ⇓RSS
h1

ã1, a′
2 (⇓RSS

h1
)∗ ã1, Ret_h1(d̃). We take b̃ =

(ã, c(ã1, a′
2, ã3)), we have (ã, c(ã1, a2, ã3))) ⇓RSS

h b̃ from Lemma C.4.6 and b̃ ⇑REBS
h from a tree

similar to the one above (replacing a2 by a′
2).

Otherwise we have a2 = Ret_h1(d̃) from Lemma C.4.4. Using Lemma C.6.2 above, there is
d0 such that Σ′ ⊢ ∥ S ∥r ⇓RSS (ã, d0) and (ã, d0) ⇑REBS

h , where r is the rule on the tree above.
We choose b̃ = (ã, d0) and can conclude (ã, c(ã′)) ⇓RSS

h b̃ using Lemma C.4.8.

183

• Lastly, if it comes from a tree

h(ỹ, c(x̃)) := S ∈ REBS Σ0 ⊢ S ⇑REBS
============

(ã, c(ã′)) ⇑REBS
h

== Div-tuple

where S does not start with a Reuse label, with Σ0 = ˜{y 7→ a} + ˜{x 7→ a′}.
Once again we use Lemma C.6.2 and there is d such that Σ0 ⊢ ∥ S ∥r ⇓RSS (ã, d) and

(ã, d) ⇑REBS
h , where r = (h(ỹ, c(x̃)) := S). Then we complete our goal as such:

h(ỹ, c(x̃)) := ∥ S ∥r ∈ RSS Σ0 ⊢ ∥ S ∥r ⇓RSS (ã, d)
(ã, c(ã′)) ⇓RSS

h (ã, d)

Theorem C.6.4 (Div: EBS ⇒ SS). For all hook h and terms ã,

ã ⇑REBS
h =⇒ ã

∞→h

Proof. Given Definition 6 of ã
∞→h, by coinduction, we want to show that ã ⇑REBS

h satisfies the
stated property. Thus it is sufficient to prove:

∀ã, h, ã ⇑REBS
h =⇒ ∃b̃, ã ⇓RSS

h b̃ ∧ b̃ ⇑REBS
h

We prove this separately in Lemma C.6.3 above.

C.7 Small-Step implies Extended Big-Step

We first certify the finite case. This is done by iterating the following concatenation lemma.

Lemma C.7.1 (Concatenation). For all ã, c, ã′, d, b̃, and h,
{

(ã, c(ã′)) ⇓RSS
h (ã, d)

(ã, d) ⇓REBS
h b̃

=⇒ (ã, c(ã′)) ⇓REBS
h b̃

Proof. Once again (ã, c(ã′)) ⇓RSS
h (ã, d) is defined mutually with the evaluation of skeletons

(Σ ⊢ ∥ S ∥r ⇓RSS (ã, d)), so we will prove two results at the same time:
Forall ã, c, ã′, d, b̃, h, ỹ, x̃, S0, Σ, S, we have:

184

◦
{

(ã, c(ã′)) ⇓RSS
h (ã, d)

(ã, d) ⇓REBS
h b̃

=⇒ (ã, c(ã′)) ⇓REBS
h b̃

◦

r = (h(ỹ, c(x̃)) := S0) ∈ REBS

S ◁ S0

Σ(ỹ) = ã

Σ ⊢ ∥ S ∥r ⇓RSS (ã, d)
(ã, d) ⇓REBS

h b̃

S has no Reuse label

=⇒ Σ ⊢ S ⇓REBS b̃

The second result says that, if ∥ S ∥r (small-step) reduces to a configuration (ã, d) that
(big-step) evaluates to b̃, then we can create a big-step evaluation of S to b̃.

We reason by mutual induction on (ã, c(ã′)) ⇓RSS
h b̃ and on S.

▶ First result, by induction on (ã, c(ã′)) ⇓RSS
h (ã, d).

• If c is a new constructor, the main rule r ∈ REBS is of the form h(ỹ, c(w̃, z̃)) := let ṽ =
Hook Reuse h1 w̃ in S0. and we have ã′ = ((ã′

0, a′
1), ã′

2).

⊛ If a′
1 is not of the form Ret_h1(. . .), then the small-step reduction uses the first branch

and our small-step hypothesis corresponds to the following tree.

(. . . := ∥ . . . ∥r) ∈ RSS

(ã′
0, a′

1) ⇓RSS
h1

(ã′
0, a′′

1)
Σ′(ỹ, c(ũ, z̃)) = (ã, d)

Σ′ ⊢ Return (ỹ, c(ũ, z̃)) ⇓RSS (ã, d)
Σ0 ⊢ let ũ = Hook h1 w̃ in Return (ỹ, c(ũ, z̃)) ⇓RSS (ã, d)

Σ0 ⊢ ∥ let ṽ = Hook Reuse h1 w̃ in S0 ∥r ⇓RSS (ã, d)
(ã, c((ã′

0, a′
1), ã′

2)) ⇓RSS
h (ã, d)

where d = c((ã′
0, a′′

1), ã′
2)), and Σ0 = ˜{y 7→ a} + {w̃ 7→ (ã′

0, a′
1)} + ˜{z 7→ a′

2}, and Σ′ =
Σ0 + {ũ 7→ (ã′

0, a′′
1)}.

Our second hypothesis is still (ã, c((ã′
0, a′′

1), ã′
2))) ⇓REBS

h b̃, corresponding to the tree:

(. . . := . . .) ∈ REBS

(ã′
0, a′′

1) ⇓REBS
h1

b̃′ Σ1 + ˜{u 7→ b′} ⊢ S0 ⇓REBS b̃

Σ1 ⊢ let ṽ = Hook Reuse h1 w̃ in S0 ⇓REBS b̃

(ã, c((ã′
0, a′′

1), ã′
2)) ⇓REBS

h b̃

with Σ1 = ˜{y 7→ a} + {w̃ 7→ (ã′
0, a′′

1)} + ˜{z 7→ a′
2}.

We can use our first induction hypothesis to combine (ã′
0, a′

1) ⇓RSS
h1

(ã′
0, a′′

1) and

185

(ã′
0, a′′

1) ⇓REBS
h1

b̃′ and produce our goal, i.e. (ã, c(ã′)) ⇓REBS
h b̃:

(. . . := . . .) ∈ REBS

(ã′
0, a′

1) ⇓REBS
h1

b̃′ Σ0 + ˜{u 7→ b′} ⊢ S0 ⇓REBS b̃

Σ0 ⊢ let ṽ = Hook Reuse h1 w̃ in S0 ⇓REBS b̃

(ã, c((ã′
0, a′

1), ã′
2)) ⇓REBS

h b̃

where we go from Σ1 to Σ0 with Lemma C.2.4, since w̃ does not appear in S0.

⊛ If a′
1 = Ret_h1(b̃′), then the small-step reduction uses the second branch. We can single

out the last variable of the hook call to simplify notations:
h(ỹ, c((w̃, w), z̃)) := let ṽ = Hook Reuse h1 (w̃, w) in S0, with a state
Σ0 = ˜{y 7→ a} + ˜{w 7→ a′

0} + {w 7→ Ret_h1(b̃′)} + ˜{z 7→ a′
2}. Our first hypothesis then

corresponds to the following tree.

(. . . := ∥ . . . ∥r) ∈ RSS

Ret_h1(b̃′) ⇓RSS
getRet_h1 b̃′ Σ0 + ˜{v 7→ b′} ⊢ ∥ S0 ∥r ⇓RSS (ã, d)

Σ0 ⊢ let ṽ = Hook getRet_h1 (w) in ∥ S0 ∥r ⇓RSS (ã, d)
Σ0 ⊢ ∥ let ṽ = Hook Reuse h1 (w̃, w) in S0 ∥r ⇓RSS (ã, d)

(ã, c((ã′
0, Ret_h1(b̃′)), ã′

2)) ⇓RSS
h (ã, d)

We can now use our second induction hypothesis (with S0 and the second leaf) to get
Σ0 + ˜{v 7→ b′} ⊢ S0 ⇓REBS b̃, which allows us to create our goal derivation:

h(ỹ, c((w̃, w), z̃)) := . . .

(ã′
0, Ret_h1(b̃′)) ⇓REBS

h1
b̃′ Σ0 + ˜{v 7→ b′} ⊢ S0 ⇓REBS b̃

Σ0 ⊢ let ṽ = Hook Reuse h1 (w̃, w) in S0 ⇓REBS b̃

(ã, c((ã′
0, Ret_h1(b̃′)), ã′

2)) ⇓REBS
h b̃

where the other leaf comes from Lemma C.4.4.

• If c is an initial constructor, the bottom of the tree derivation is of the form:

h(ỹ, c(x̃)) := ∥ S ∥r ∈ RSS

. . .

Σ0 ⊢ ∥ S ∥r ⇓RSS (ã, d)
(ã, c(ã′)) ⇓RSS

h (ã, d)

Where r = (h(ỹ, c(x̃)) := S) ∈ REBS, S does not start with a Reuse label, and Σ0 =
˜{y 7→ a} + ˜{x 7→ a′}.

186

We use our induction hypothesis on the leaf, and we complete our goal as such:

h(ỹ, c(x̃)) := S ∈ REBS

. . .

Σ0 ⊢ S ⇓REBS b̃

(ã, c(ã′)) ⇓REBS
h b̃

▶ Second result, with hypotheses

r = (h(ỹ, c(x̃)) := S0) ∈ REBS

S ◁ S0

Σ(ỹ) = ã

Σ ⊢ ∥ S ∥r ⇓RSS (ã, d)
(ã, d) ⇓REBS

h b̃

S has no Reuse label

We perform an induction on S.

• If S is of the form Return t̃:

Σ(ỹ, Ret_h(t̃)) = (ã, d)
Σ ⊢ Return (ỹ, Ret_h(t̃)) ⇓RSS (ã, d)

(ã, d) ⇓REBS
h b̃

implies, from Lemma C.4.4, that we have d = Ret_h(b̃) and so b̃ = Σ(t̃). So we have our goal:

Σ(t̃) = b̃

Σ ⊢ Return t̃ ⇓REBS b̃

• If S is of the form Branching (S1, . . . , Sn), using the induction hypothesis with Si:

Σ ⊢ ∥ Si ∥r ⇓RSS (ã, d)
Σ ⊢ Branching (∥ S1 ∥r, . . . , ∥ Sn ∥r) ⇓RSS (ã, d)

(ã, d) ⇓REBS
h b̃

=⇒
Σ ⊢ Si ⇓REBS b̃

Σ ⊢ Branching (S1, . . . , Sn) ⇓REBS b̃

• If S is of the form let ṽ = K in S0, where K is a filter or a return, using the induction
hypothesis with S0:

187

Σ ⊢ K ⇓ b̃′ Σ + ˜{v 7→ b′} ⊢ ∥ S0 ∥r ⇓RSS (ã, d)
Σ ⊢ let ṽ = K in ∥ S0 ∥r ⇓RSS (ã, d)

(ã, d) ⇓REBS
h b̃

=⇒
Σ ⊢ K ⇓ b̃′ Σ + ˜{v 7→ b′} ⊢ S0 ⇓REBS b̃

Σ ⊢ let ṽ = K in S0 ⇓REBS b̃

• If S is of the form let ṽ = Hook (New c0) h1 t̃ in S0, then from Lemma C.4.13, REBS

contains a rule of the form h(ỹ, c0(w̃, z̃)) := let ṽ = Hook Reuse h1 w̃ in S0. We have:

Σ(ỹ, c0(t̃, z̃)) = (ã, d)
Σ ⊢ Return (ỹ, c0(t̃, z̃)) ⇓RSS (ã, d)

(ã, d) ⇓REBS
h b̃

From which we can deduce d = c0(Σ(t̃), Σ(z̃)), and our second hypothesis corresponds, with
Σ′ = ˜{y 7→ a} + ˜{w 7→ Σ(t)} + ˜{z 7→ Σ(b)}, to a tree of the form:

h(ỹ, c0(w̃, z̃)) := ... ∈ REBS

Σ′(w̃) ⇓REBS
h1

b̃′

Σ′ ⊢ Hook Reuse h1 w̃ ⇓ b̃′ Σ′ + ˜{v 7→ b′} ⊢ S0 ⇓REBS b̃

Σ′ ⊢ let ṽ = Hook Reuse h1 w̃ in S0 ⇓REBS b̃

(ã, d) ⇓REBS
h b̃

Note that Σ′(w̃) = Σ(t̃). Also, using Lemma C.2.4, we can deduce Σ+ ˜{v 7→ b′} ⊢ S0 ⇓REBS b̃

and create our goal derivation:

Σ(t̃) ⇓REBS
h1

b̃′

Σ ⊢ Hook (New c0) h1 t̃ ⇓ b̃′ Σ + ˜{v 7→ b′} ⊢ S0 ⇓REBS b̃

Σ ⊢ let ṽ = Hook (New c0) h1 t̃ in S0 ⇓REBS b̃

Theorem C.7.2 (SS ⇒ EBS).

∀ã, c, ã′, b̃, h, (ã, c(ã′)) (⇓RSS
h)∗ (ã, Ret_h(b̃)) =⇒ (ã, c(ã′)) ⇓REBS

h b̃

Proof. We prove it by induction on the number of small-step reductions. If c(ã′) = Ret_h(b̃),
i.e. there is zero small steps, the result holds from Lemma C.4.4. Otherwise, the induction case

188

comes directly from Lemma C.7.1 above.

We now certify the infinite case. This time, we cannot use a concatenation result. Instead,
we check the infinite sequence satisfies the properties of the coinductive interpretation. Before
this, we need the following small lemma to split the infinite sequence when needed.

Lemma C.7.3. Assuming (h(ỹ, c((w̃, w), z̃)) := let ṽ = Hook Reuse h1 (w̃, w) in S) ∈ REBS,
if we have a small-step divergence

(b̃, c((ã, a0), b̃′)) ∞→h

then either the first hook call diverges

(ã, a0) ∞→h1

or the first hook call finishes and the rest of the computation diverges

∃ã′,

{
(ã, a0) (⇓RSS

h1
)∗ (ã, Ret_h1(ã′))

(b̃, c((ã, Ret_h1(ã′)), b̃′)) ∞→h

Proof. We use the excluded middle axiom, and perform a case disjunction on whether there is
a tuple of the form (b̃, c((ã, Ret_h1(ã′)), b̃′)) in the infinite sequence of reduction.

• If there is, we take the first such tuple and we have:

(b̃, c((ã, a0), b̃′)) (⇓RSS
h)∗ (b̃, c((ã, Ret_h1(ã′)), b̃′)) ∞→h

Now we show by induction on (b̃, c((ã, a0), b̃′)) (⇓RSS
h)∗ (b̃, c((ã, Ret_h1(ã′)), b̃′)) that we have

(ã, a0) (⇓RSS
h1

)∗ (ã, Ret_h1(ã′)). The base case (zero steps) is trivial. For the induction case, note
that a0 cannot be of the form Ret_h1(. . .) as we chose (b̃, c((ã, Ret_h1(ã′)), b̃′)) to be the first of
this form. We then use Lemma C.4.7 to transform the first step, and the induction hypothesis
to transform the rest.

• If there is no such tuple, we show (ã, a0) ∞→h1 by coinduction. We cut our hypothesis and
there is t̃ such that (b̃, c((ã, a0), b̃′)) ⇓RSS

h t̃
∞→h. From Lemma C.4.7, we have t̃ = (b̃, c((ã, a′

0), b̃′))
with (ã, a0) ⇓RSS

h1
(ã, a′

0). Also, (b̃, c((ã, a′
0), b̃′)) ∞→h still has the property of not having any

intermediate tuple of the form (b̃, c((ã, Ret_h1(ã′)), b̃′)), so we can use our induction hypothesis
with it to conclude.

Theorem C.7.4 (Div: SS ⇒ EBS). For all hook h and terms ã,

ã
∞→h =⇒ ã ⇑REBS

h

189

Proof. Since ã ⇑REBS
h is defined mutually with Σ ⊢ S ⇑REBS , we show two properties at the same

time:

◦ ∀ã, h, ã
∞→h =⇒ ã ⇑REBS

h

◦ ∀h, ỹ, c, x̃, S0, Σ, S, b̃,

r = (h(ỹ, c(x̃)) := S0) ∈ REBS

S ◁ S0

Σ ⊢ ∥ S ∥r ⇓RSS b̃

b̃
∞→h

S has no Reuse label

=⇒ Σ ⊢ S ⇑REBS

We note the predicates
Q = {(ã, h) | ã

∞→h}

Q′ =
{

(Σ, S)
∣∣∣∣∣ ∃h, b̃, (h(...) := S0) ∈ REBS, such that

S ◁ S0 ∧ Σ ⊢ ∥ S ∥r ⇓RSS b̃ ∧ b̃
∞→h ∧ S has no Reuse label

}

To prove both these result by coinduction, we show that the two predicates satisfy the
properties corresponding to the rules of Figure C.2. I.e., for every element of Q and Q′, we can
create a derivation of the goal statement using at least one rule of Figure C.2 and using elements
of Q and Q′ as leaves.

▶ For elements of Q. We assume (ã, c(ã′)) ∞→h.

• If c is an initial constructor, then REBS contains a rule r of the form h(ỹ, c(x̃)) := S0 where
S0 has no label Reuse. We note Σ = ˜{y 7→ a} + ˜{x 7→ a′}. Splitting the first small-step of the
infinite reduction, we have b̃ such that Σ ⊢ ∥ S0 ∥r ⇓RSS b̃ and b̃

∞→h. We immediately have
(Σ, S0) ∈ Q′ using r and S0 ◁ S0, so we can start constructing a derivation as follows.

(h(ỹ, c(x̃)) := S0) ∈ REBS (Σ, S0) ∈ Q′

(ã, c(ã′)) ⇑REBS
h

== Div-tuple

• If c is a new constructor, then REBS contains a rule r of the form

h(ỹ, c(w̃, z̃)) := let ṽ = Hook Reuse h1 w̃ in S0

where S0 has no label Reuse. We have ã′ = (ã1, ã2), we note Σ = ˜{y 7→ a}+ ˜{w 7→ a1}+ ˜{z 7→ a2}.
We use Lemma C.7.3 to perform a case disjunction on the behavior of ã, c(ã1, ã2) ∞→h.

190

⊛ If ã1
∞→h1 , then we can start constructing our goal as such:

h(ỹ, c(w̃, z̃)) := . . . ∈ REBS

(ã1, h1) ∈ Q

Σ ⊢ Hook h1 w̃ ⇑REBS
==================== Div-Pc

Σ ⊢ let ṽ = Hook Reuse h1 w̃ in S0 ⇑REBS
== Div-LetL

ã, c(ã1, ã2) ⇑REBS
h

== Div-tuple

⊛ Else there is ã′
1 such that ã1 (⇓RSS

h1
)∗ (. . . , Ret_h1(ã′

1)) and (ã, c(. . . , Ret_h1(ã′
1), ã2)) ∞→h.

Using Theorem C.7.2 on the first point, we get ã1 ⇓REBS
h1

ã′
1. Using Lemma C.4.9 on the second

point (after splitting a step), we get there is b̃ such that Σ′ ⊢ ∥ S0 ∥r ⇓RSS b̃ and b̃
∞→h, where

Σ′ = ˜{y 7→ a} + ˜{z 7→ a2} + ˜{v 7→ a′
1}. We can add the mapping of the unused variables w̃ with

Lemma C.2.4, and so (Σ + ˜{v 7→ a′
1}, S0) ∈ Q′ using rule r, and we can construct our goal as

such:

h(ỹ, c(w̃, z̃)) := . . . ∈ REBS

ã1 ⇓REBS
h1

ã′
1

Σ ⊢ Hook h1 w̃ ⇓REBS ã′
1

−−−−−−−−−−−−−−−−−−−−−−−
(Σ + ˜{v 7→ a′

1}, S0) ∈ Q′

Σ ⊢ let ṽ = Hook Reuse h1 w̃ in S0 ⇑REBS
== Div-LetR

ã, c(ã1, ã2) ⇑REBS
h

== Div-tuple

▶ For elements of Q′. We assume

r = (h(ỹ, c(x̃)) := S0) ∈ REBS

S ◁ S0

Σ ⊢ ∥ S ∥r ⇓RSS b̃

b̃
∞→h

S has no Reuse label
First, we can see certain cases for S are not possible. S cannot be a hook or filter, because

we delayed returns to create the set REBS. Also, S cannot be a return, because b̃ would be of
the form (. . . , Ret_h(. . .)) and b̃

∞→h contradicts this.

• If S = Branching (S1, . . . , Sn), then Σ ⊢ Branching (∥ S1 ∥r, . . . , ∥ Sn ∥r) ⇓RSS b̃ implies
there is Si such that Σ ⊢ ∥ Si ∥r ⇓RSS b̃. We have (Σ, Si) ∈ Q′ using the same rule and terms,
since Si ◁ S ◁ S0. We can then start the derivation of the goal as follows.

Si ∈ (S1, . . . , Sn) (Σ, Si) ∈ Q′

Σ ⊢ Branching (S1, . . . , Sn) ⇑REBS
================================= Div-Br

• If S = (let ṽ = K in S′) where K is a return or a filter, then there is b̃′ such that
Σ ⊢ K ⇓RSS b̃′ and Σ′ ⊢ ∥ S′ ∥r ⇓RSS b̃, where we note Σ′ = Σ + ˜{v 7→ b′}. We have (Σ′, S′) ∈ Q′

191

and can start the derivation of the goal as follows.

Σ ⊢ K ⇓REBS b̃′ (Σ′, S′) ∈ Q′

Σ ⊢ let ṽ = K in S′ ⇑REBS
=============================== Div-LetR

Note that we have Σ ⊢ K ⇓RSS b̃′ ⇐⇒ Σ ⊢ K ⇓REBS b̃′ for filters and returns, as evaluating
these skelements do not look up any rule.

• If S = (let ṽ = Hook (New c0) h1 t̃ in S′) then, from Lemma C.4.13, REBS contains a rule
r′ of the form

h(ỹ, c0(w̃, z̃)) := let ṽ = Hook Reuse h1 w̃ in S′

Let ã0 = Σ(ỹ), ã1 = Σ(t̃), and ã2 = Σ(z̃). We have ∥ S ∥r = Return (ỹ, c0(t̃, z̃)) and so
b̃ = (ã0, c0(ã1, ã2)). We use Lemma C.7.3 to perform a case disjunction on the behavior of
ã0, c0(ã1, ã2) ∞→h.
⊛ If ã1

∞→h1 , then we can start constructing our goal as such:

(ã1, h1) ∈ Q

Σ ⊢ Hook h1 t̃ ⇑REBS
=================== Div-Pc

Σ ⊢ let ṽ = Hook (New c0) h1 t̃ in S′ ⇑REBS
=== Div-LetL

⊛ Else there is ã′
1 such that ã1 (⇓RSS

h1
)∗ (. . . , Ret_h1(ã′

1)) and (ã0, c0(. . . , Ret_h1(ã′
1), ã2)) ∞→h.

Using Theorem C.7.2 on the first point, we get ã1 ⇓REBS
h1

ã′
1. Using Lemma C.4.9 on the second

point (after splitting a step), we get there is b̃′ such that Σ′ ⊢ ∥ S′ ∥r′
⇓RSS b̃′ and b̃′ ∞→h, where

Σ′ = ˜{y 7→ a0} + ˜{z 7→ a2} + ˜{v 7→ a′
1}. We can add the mapping of the unused variables w̃ with

Lemma C.2.4, and so (Σ + ˜{v 7→ a′
1}, S′) ∈ Q′ using rule r′, and we can construct our goal as

such:
ã1 ⇓REBS

h1
ã′

1

Σ ⊢ Hook h1 t̃ ⇓REBS ã′
1

−−−−−−−−−−−−−−−−−−−−−−
(Σ + ˜{v 7→ a′

1}, S′) ∈ Q′

Σ ⊢ let ṽ = Hook (New c0) h1 t̃ in S′ ⇑REBS
=== Div-LetR

192

Appendix D

COMPLETE DERIVATION OF THE NDAM
AND AM

D.1 Successive Phases of the NDAM Pseudo-code

D.1.1 Initial Pseudo-Code

def eval_trm t e : cvalue = match t with
| TVar (v) -> match v with

| VLet (x) -> lookup e x
| VSpec (h) -> eval_trm (specdecl h) []
| VUnspec (f) -> match arity f with

| Z -> let rl = unspecdecl f [] in
(* oracle picking the correct cvalue *)
let r = pick rl in
r

| S m -> CVUnspec(f, m, [])
| TConstr (c, t') ->

let r = eval_trm t' e in
CVConstr (c, r)

| TTuple (tl) ->
let rl = eval_trmlst tl e in
CVTuple (rl)

| TFunc (p, sk) -> CVClos (e, p, sk)
| TField (t', d) ->

let r = eval_trm t' e in
getfield r d

| TNth (t', n) ->
let r = eval_trm t' e in
getnth r n

| TRec (topt, ldt) -> match topt with
| Some t' -> let r = eval_trm t' e in

uprec r ldt e
| None -> let ldr = eval_ldt ldt e in

CVRec (ldr)

193

def uprec r ldt e : cvalue = match r with
| CVRec ldr1 ->

let ldr2 = eval_ldt ldt e in
CVRec (ldr2++ldr1)

def getfield r d : cvalue = match r with
| CVRec ldr -> lookup ldr d

def getnth r n : cvalue = match r with
| TTuple rl ->

let ropt = nth rl n in
getsome ropt

def getsome ropt : cvalue = match ropt with
| Some r -> r

def eval_ldt ldt e : (string * cvalue) list = match ldt with
| [] -> []
| (d, t)::ldt' ->

let r = eval_trm t e in
let ldr = eval_ldt ldt' e in
(d, r)::ldr

def lookup e x : cvalue = match e with
| (y, r)::e2 ->

if x=y then r
else lookup e2 x

def eval_trmlst tl e : cvalue list = match tl with
| [] -> []
| t::l ->

let r = eval_trm t e in
let rl = eval_trmlst l e in
r::rl

def eval_sk sk e : cvalue = match sk with
| Branching (skl) ->

(* oracle picking the correct skeleton *)
let sk' = pick skl in
eval_sk sk' e

| LetIn (p, sk1, sk2) ->
let r = eval_sk sk1 e in
let e2 = eval_pat p r e in
eval_sk sk2 e2

| Return t -> eval_trm t e

194

| Apply (t, arglist) ->
let r = eval_trm t e in
let rl = eval_trmlst arglist e in
apply_res r rl

| Exists (p, sk) ->
(* different oracle for the existential *)
let r = magic () in
let e2 = eval_pat p r e in
eval_sk sk e2

def apply_res r arglist = match arglist with
| [] -> r
| arg::al -> match r with

| CVUnspec (f, Z, parg) ->
let rl = unspecdecl f (parg++[arg]) in
(* oracle picking the correct cvalue *)
let r' = pick rl in
apply_res r' al

| CVUnspec (f, S n, parg) ->
apply_res (CVUnspec (f, n, parg++[arg])) al

| CVClos (e, p, sk) ->
let e' = eval_pat p arg e in
let r' = eval_sk sk e' in
apply_res r' al

def eval_pat p r e : env = match p, r with
| PWild, _ -> e
| PVar (x), _ -> (x, r)::e
| PConstr (c, p2), CVConstr (c2, r2) when (c=c2) ->

eval_pat p2 r2 e
| PTuple (pl), CVTuple (rl) ->

eval_patlst pl rl e
| PRec (ldp), CVRec (ldr) ->

eval_patldp ldp ldr e

def eval_patldp ldp ldr e : env = match ldp with
| [] -> e
| (d, p)::ldp' ->

let r = lookup ldr d in
let e2 = eval_pat p r e in
eval_patldp ldp' ldr e2

def eval_patlst pl rl e : env = match pl, rl with
| [], [] -> e
| p::l1, r::l2 ->

195

let e2 = eval_pat p r e in
eval_patlst l1 l2 e2

D.1.2 CPS Transform

def eval_trm (t : skelterm) (e : env) (k : cvalue -> cvalue) : cvalue =
match t with
| TVar (v) -> match v with

| VLet (x) -> lookup e x k
| VSpec (h) -> eval_trm (specdecl h) [] k
| VUnspec (f) -> match arity f with

| Z -> let r = pick (unspecdecl f []) in
k r

| S m -> k (CVUnspec (f, m, []))
| TConstr (c, t') ->

eval_trm t' e (fun r ->
k (CVConstr (c, r)))

| TTuple (tl) ->
eval_trmlst tl e (fun rl ->
k (CVTuple (rl)))

| TFunc (p, sk) -> k (CVClos (e, p, sk))
| TField (t', d) ->

eval_trm t' e (fun r ->
getfield r d k)

| TNth (t', n) ->
eval_trm t' e (fun r ->
getnth r n k)

| TRec (topt, ldt) -> match topt with
| Some t' -> eval_trm t' e (fun r ->

uprec r ldt e k)
| None -> eval_ldt ldt e (fun ldr ->

k (CVRec (ldr)))

def uprec (r : cvalue) (ldt : (string * skelterm) list)
(e : env) (k : cvalue -> cvalue) : cvalue = match r with

| CVRec ldr1 ->
eval_ldt ldt e (fun ldr2 ->
k (CVRec (ldr2++ldr1)))

def getfield (r : cvalue) (d : string) (k : cvalue -> cvalue) : cvalue =
match r with
| CVRec ldr -> lookup ldr d k

def getnth (r : cvalue) (n : int) (k : cvalue -> cvalue) : cvalue =
match r with

196

| TTuple rl ->
getsome (nth rl n) k

def getsome (ropt : cvalue option) (k : cvalue -> cvalue) : cvalue =
match ropt with
| Some r -> k r

def eval_ldt (ldt : (string * skelterm) list) (e : env)
(k : (string * cvalue) list -> cvalue) : cvalue = match ldt with

| [] -> k []
| (d, t)::ldt' ->

eval_trm t e (fun r ->
eval_ldt ldt' e (fun ldr ->
k ((d, r)::ldr)))

def lookup (e : env) (x : string) (k : cvalue -> cvalue) : cvalue =
match e with
| (y, r)::e2 ->

if x=y then k r
else lookup e2 x k

def eval_trmlst (tl : skelterm list) (e : env)
(k : cvalue list -> cvalue) : cvalue = match tl with

| [] -> k []
| t::l ->

eval_trm t e (fun r ->
eval_trmlst l e (fun rl ->
k (r::rl)))

def eval_sk (sk : skeleton) (e : env) (k : cvalue -> cvalue) : cvalue =
match sk with
| Branching (skl) ->

let sk' = pick skl in
eval_sk sk' e k

| LetIn (p, sk1, sk2) ->
eval_sk sk1 e (fun r ->
eval_pat p r e (fun e2 ->
eval_sk sk2 e2 k))

| Return t -> eval_trm t e k
| Apply (t, arglist) ->

eval_trm t e (fun r ->
eval_trmlst arglist e (fun rl ->
apply_res r rl k))

| Exists (p, sk) ->
let r = magic () in

197

eval_pat p r e (fun e2 ->
eval_sk sk e2 k)

def apply_res (r : cvalue) (arglist : cvalue list)
(k : cvalue -> cvalue) : cvalue = match arglist with

| [] -> k r
| arg::al -> match r with

| CVUnspec (f, Z, parg) ->
let r' = pick (unspecdecl f (parg++[arg])) in
apply_res r' al k

| CVUnspec (f, S n, parg) ->
apply_res (CVUnspec (f, n, parg++[arg])) al k

| CVClos (e, p, sk) ->
eval_pat p arg e (fun e' ->
eval_sk sk e' (fun r' ->
apply_res r' al k))

def eval_pat (p : pattern) (r : cvalue) (e : env)
(k : env -> cvalue) : cvalue = match p, r with

| PWild, _ -> k e
| PVar (x), _ -> k ((x, r)::e)
| PConstr (c, p2), CVConstr (c2, r2) when (c=c2) ->

eval_pat p2 r2 e k
| PTuple (pl), CVTuple (rl) ->

eval_patlst pl rl e k
| PRec (ldp), CVRec (ldr) ->

eval_patldp ldp ldr e k

def eval_patldp (ldp : (string * pattern) list)
(ldr : (string * cvalue) list) (e : env) (k : env -> cvalue) : cvalue =

match ldp with
| [] -> k e
| (d, p)::ldp' ->

lookup ldr d (fun r ->
eval_pat p r e (fun e2 ->
eval_patldp ldp' ldr e2 k))

def eval_patlst (pl : pattern list) (rl : cvalue list) (e : env)
(k : env -> cvalue) : cvalue = match pl, rl with

| [], [] -> k e
| p::l1, r::l2 ->

eval_pat p r e (fun e2 ->
eval_patlst l1 l2 e2 k)

198

D.1.3 Defunctionalization

(* corresponds to functions (cvalue -> cvalue) *)
type krt =
| KRID
| KRConstr of string * krt
| KRList of (skelterm list) * env * klt
| KRLet of pattern * skeleton * env * krt
| KRApp1 of (skelterm list) * env * krt
| KRApp3 of (cvalue list) * krt
| KRField of string * krt
| KRNth of int * krt
| KRUp of ((string * skelterm) list) * env * krt
| KRLdt of ((string * skelterm) list) * env * string * kdt
| KRLdp of pattern * env * ((string * pattern) list)

* ((string * cvalue) list) * ket

def disp_kr (k : krt) (r : cvalue) = match k with
| KRConstr (c, k') -> disp_kr k' (CVConstr (c, r))
| KRList (l, e, k') -> eval_trmlst l e KLList(k', r)
| KRLet (p, sk, e, k') -> eval_pat p r e KELet(sk, k')
| KRApp1 (al, e, k') -> eval_trmlst al e KLApp2(r, k')
| KRApp3 (al, k') -> apply_res r al k'
| KRField (d, k') -> getfield r d k'
| KRNth (n, k') -> getnth r n k'
| KRUp (ldt, e, k') -> uprec r ldt e k'
| KRLdt (ldt, e, d, k') -> eval_ldt ldt e KDCons(d, r, k')
| KRLdp (p, e, ldp, ldr, k') -> eval_pat p r e KELdp(ldp, ldr, k')

(* corresponds to functions ((string * cvalue) list -> cvalue) *)
type kdt =
| KDID
| KDRec of krt
| KDUp of ((string * cvalue) list) * krt
| KDCons of string * cvalue * kdt

def disp_kd (k : kdt) (ldr : (string * cvalue) list) = match k with
| KDRec (k') -> disp_kr k' (CVRec (ldr))
| KDUp (ldr1, k') -> disp_kr k' (CVRec (ldr++ldr1))
| KDCons (d, r, k') -> disp_kd k' ((d, r)::ldr)

(* corresponds to functions (cvalue list -> cvalue) *)
type klt =
| KLID
| KLTuple of krt
| KLList of klt * cvalue

199

| KLApp2 of cvalue * krt

def disp_kl (k : klt) (rl : cvalue list) = match k with
| KLTuple k' -> disp_kr k' (CVTuple (rl))
| KLList (k', r) -> disp_kl k' (r::rl)
| KLApp2 (r, k') -> apply_res r rl k'

(* corresponds to functions (env -> cvalue) *)
type ket =
| KEID
| KELet of skeleton * krt
| KEPat of (pattern list) * (cvalue list) * ket
| KEApp of skeleton * (cvalue list) * krt
| KELdp of ((string * pattern) list) * ((string * cvalue) list) * ket

def disp_ke (k : ket) (e : env) = match k with
| KELet (sk, k') -> eval_sk sk e k'
| KEPat (l, rl, k') -> eval_patlst l rl e k'
| KEApp (sk, al, k') -> eval_sk sk e KRApp3(al, k')
| KELdp (ldp, ldr, k') -> eval_patldp ldp ldr e k'

def eval_trm (t : skelterm) (e : env) (k : krt) : cvalue =
match t with
| TVar (v) -> match v with

| VLet (x) -> lookup e x k
| VSpec (h) -> eval_trm (specdecl h) [] k
| VUnspec (f) -> match arity f with

| Z -> let r = (unspecdecl f []) in
disp_kr k r

| S m -> disp_kr k (CVUnspec (f, m, []))
| TConstr (c, t') ->

eval_trm t' e KRConstr(c, k)
| TTuple (tl) ->

eval_trmlst tl e KLTuple(k)
| TFunc (p, sk) -> disp_kr k (CVClos (e, p, sk))
| TField (t', d) ->

eval_trm t' e KRField(d, k)
| TNth (t', n) ->

eval_trm t' e KRNth(n, k)
| TRec (topt, ldt) -> match topt with

| Some t' -> eval_trm t' e KRUp(ldt, e, k)
| None -> eval_ldt ldt e KDRec(k)

def uprec (r : cvalue) (ldt : (string * skelterm) list)
(e : env) (k : krt) : cvalue = match r with

200

| CVRec ldr1 ->
eval_ldt ldt e KDUp(ldr1, k)

def getfield (r : cvalue) (d : string) (k : krt) : cvalue =
match r with
| CVRec ldr -> lookup ldr d k

def getnth (r : cvalue) (n : int) (k : krt) : cvalue =
match r with
| TTuple rl ->

getsome (nth rl n) k

def getsome (ropt : cvalue option) (k : krt) : cvalue =
match ropt with
| Some r -> disp_kr k r

def eval_ldt (ldt : (string * skelterm) list)
(e : env) (k : kdt) : cvalue = match ldt with

| [] -> disp_kd k []
| (d, t)::ldt' ->

eval_trm t e KRLdt(ldt', e, d, k)

def lookup (e : env) (x : string) (k : krt) : cvalue =
match e with
| (y, r)::e2 ->

if x=y then disp_kr k r
else lookup e2 x k

def eval_trmlst (tl : skelterm list) (e : env) (k : klt) : cvalue =
match tl with
| [] -> disp_kl k []
| t::l -> eval_trm t e KRList(l, e, k)

def eval_sk (sk : skeleton) (e : env) (k : krt) : cvalue =
match sk with
| Branching (skl) ->

let sk' = pick skl in
eval_sk sk' e k

| LetIn (p, sk1, sk2) ->
eval_sk sk1 e KRLet(p, sk2, e, k)

| Return t -> eval_trm t e k
| Apply (t, arglist) ->

eval_trm t e KRApp1(arglist, e, k)
| Exists (p, sk) ->

let r = magic () in

201

eval_pat p r e KELet(sk, k)

def apply_res (r : cvalue) (argl : cvalue list) (k : krt) : cvalue =
match argl with
| [] -> disp_kr k r
| arg::al -> match r with

| CVUnspec (f, Z, parg) ->
let r' = pick (unspecdecl f (parg++[arg])) in
apply_res r' al k

| CVUnspec (f, S n, parg) ->
apply_res (CVUnspec (f, n, parg++[arg])) al k

| CVClos (e, p, sk) ->
eval_pat p arg e KEApp(sk, al, k)

def eval_pat (p : pattern) (r : cvalue) (e : env) (k : ket) : cvalue =
match p, r with
| PWild, _ -> disp_ke k e
| PVar (x), _ -> disp_ke k ((x, r)::e)
| PConstr (c, p2), CVConstr (c2, r2) when (c=c2) ->

eval_pat p2 r2 e k
| PTuple (pl), CVTuple (rl) ->

eval_patlst pl rl e k
| PRec (ldp), CVRec (ldr) ->

eval_patldp ldp ldr e k

def eval_patldp (ldp : (string * pattern) list)
(ldr : (string * cvalue) list) (e : env) (k : ket) : cvalue =

match ldp with
| [] -> disp_ke k e
| (d, p)::ldp' ->

lookup ldr d KRLdp(p, e, ldp', ldr, k)

def eval_patlst (pl : pattern list) (rl : cvalue list) (e : env)
(k : ket) : cvalue = match pl, rl with

| [], [] -> disp_ke k e
| p::l1, r::l2 ->

eval_pat p r e KEPat(l1, l2, k)

202

D.1.4 Non-Deterministic Abstract Machine

Mode kr:

⟨krid, r⟩kr ̸→ (* end of computation *)

⟨KRConstr(c, k), r⟩kr → ⟨k, CVConstr(c, r)⟩kr

⟨KRList(l, Σ, k), r⟩kr → ⟨l, Σ, KLList(k, r)⟩trml

⟨KRLet(p, S, Σ, k), r⟩kr → ⟨p, r, Σ, KELet(S, k)⟩pat

⟨KRApp1(l, Σ, k), r⟩kr → ⟨l, Σ, KLApp2(r, k)⟩trml

⟨KRApp3(l, k), r⟩kr → ⟨l, r, k⟩app

⟨KRField(d, k), r⟩kr → ⟨r, d, k⟩getf

⟨KRNth(n, k), r⟩kr → ⟨r, n, k⟩getn

⟨KRUp(ldt, Σ, k), r⟩kr → ⟨r, ldt, Σ, k⟩uprec

⟨KRLdt(ldt, Σ, d, k), r⟩kr → ⟨ldt, Σ, KDCons(d, r, k)⟩ldt

⟨KRLdt(p, Σ, ldp, ldr, k), r⟩kr → ⟨p, r, Σ, KELdp(ldp, ldr, k)⟩pat

Mode kd:

⟨kdid, ldr⟩kd ̸→ (* end of computation *)

⟨KDRec(k), ldr⟩kd → ⟨k, CVRec(ldr)⟩kr

⟨KDUp(l′dr, k), ldr⟩kd → ⟨k, CVRec(ldr ++ l′dr)⟩kr

⟨KDCons(d, r, k), ldr⟩kd → ⟨k, ((d, r) :: ldr)⟩kd

Mode kl:

⟨klid, l⟩kl ̸→ (* end of computation *)

⟨KLTuple(k), l⟩kl → ⟨k, CVTuple(l)⟩kr

⟨KLList(k, r), l⟩kl → ⟨k, (r :: l)⟩kl

⟨KLApp2(r, k), l⟩kl → ⟨l, r, k⟩app

203

Mode ke:

⟨keid, Σ⟩ke ̸→ (* end of computation *)

⟨KELet(S, k), Σ⟩ke → ⟨S, Σ, k⟩sk

⟨KEPat(lp, lr, k), Σ⟩ke → ⟨lp, lr, Σ, k⟩patl

⟨KEApp(S, la, k), Σ⟩ke → ⟨S, Σ, KRApp3(la, k)⟩sk

⟨KELdp(ldp, ldr, k), Σ⟩ke → ⟨ldp, ldr, Σ, k⟩patldp

Mode trm:

⟨TVar(VLet(x)), Σ, k⟩trm → ⟨Σ, x, k⟩lkup

⟨TVar(VSpec(x)), Σ, k⟩trm → ⟨SpecDecl(x), [], k⟩trm

⟨TVar(VUnspec(x)), Σ, k⟩trm → ⟨k, r⟩kr if Arity(x) = 0 ∧ r ∈ UnspecDecl(x)[]

⟨TVar(VUnspec(x)), Σ, k⟩trm → ⟨k, CVUnspec(x, m, [])⟩kr if Arity(x) = m + 1

⟨TConstr(c, t), Σ, k⟩trm → ⟨t, Σ, KRConstr(c, k)⟩trm

⟨TTuple(l), Σ, k⟩trm → ⟨l, Σ, KLTuple(k)⟩trml

⟨TFunc(p, S), Σ, k⟩trm → ⟨k, CVClos(Σ, p, S)⟩kr

⟨TField(t, d), Σ, k⟩trm → ⟨t, Σ, KRField(d, k)⟩trm

⟨TNth(t, n), Σ, k⟩trm → ⟨t, Σ, KRNth(n, k)⟩trm

⟨TRec(Some(t), ldt), Σ, k⟩trm → ⟨t, Σ, KRUp(ldt, Σ, k)⟩trm

⟨TRec(None, ldt), Σ, k⟩trm → ⟨ldt, Σ, KDRec(k)⟩ldt

Modes uprec, getf, getn, and gets:

⟨CVRec(ldr), ldt, Σ, k⟩uprec → ⟨ldt, Σ, KDUp(ldr, k)⟩ldt

⟨CVRec(ldr), d, k⟩getf → ⟨ldr, d, k⟩lkup

⟨CVTuple(lr), n, k⟩getn → ⟨(nth lr n), k⟩gets

⟨Some(r), k⟩gets → ⟨k, r⟩kr

Note: nth is defined as:

nth [x0; . . . ; xm] n ≜ Some(xn) if n ≤ m

nth [x0; . . . ; xm] n ≜ None if n > m

204

Mode ldt:

⟨[], Σ, k⟩ldt → ⟨k, []⟩kd

⟨(d, t) :: ldt, Σ, k⟩ldt → ⟨t, Σ, KRLdt(ldt, Σ, d, k)⟩trm

Mode lkup:

⟨(y, r) :: l, x, k⟩lkup → ⟨k, r⟩kr if x = y

⟨(y, r) :: l, x, k⟩lkup → ⟨l, x, k⟩lkup if x ̸= y

Mode trml:

⟨[], Σ, k⟩trml → ⟨k, []⟩kl

⟨t :: l, Σ, k⟩trml → ⟨t, Σ, KRList(l, Σ, k)⟩trm

Mode sk:

⟨Branching(lS), Σ, k⟩sk → ⟨S, Σ, k⟩sk if S ∈ lS

⟨LetIn(p, S1, S2), Σ, k⟩sk → ⟨S1, Σ, KRLet(p, S2, Σ, k)⟩sk

⟨Return(t), Σ, k⟩sk → ⟨t, Σ, k⟩trm

⟨Apply(t, l), Σ, k⟩sk → ⟨t, Σ, KRApp1(l, Σ, k)⟩trm

⟨Exists(p, S), Σ, k⟩sk → ⟨p, r, Σ, KELet(S, k)⟩pat for any r

Mode app:
(note: arguments swapped to pattern-match the first)

⟨[], r, k⟩app → ⟨k, r⟩kr

⟨a :: la, CVUnspec(x, 0, l), k⟩app → ⟨la, r, k⟩app if r ∈ UnspecDecl(x)(l ++ [a])

⟨a :: la, CVUnspec(x, m + 1, l), k⟩app → ⟨la, CVUnspec(x, m, l ++ [a]), k⟩app

⟨a :: la, CVClos(Σ, p, S), k⟩app → ⟨p, a, Σ, KEApp(S, la, k)⟩pat

205

Mode pat:

⟨PWild, r, Σ, k⟩pat → ⟨k, Σ⟩ke

⟨PVar(x), r, Σ, k⟩pat → ⟨k, (x, r) :: Σ⟩ke

⟨PConstr(c, p), CVConstr(c2, r), Σ, k⟩pat → ⟨p, r, Σ, k⟩pat if c = c2

⟨PTuple(lp), CVTuple(lr), Σ, k⟩pat → ⟨lp, lr, Σ, k⟩patl

⟨PRec(ldp), CVRec(ldr), Σ, k⟩pat → ⟨ldp, ldr, Σ, k⟩patldp

Mode patldp:

⟨[], ldr, Σ, k⟩patldp → ⟨k, Σ⟩ke

⟨(d, p) :: ldp, ldr, Σ, k⟩patldp → ⟨ldr, d, KRLdt(p, Σ, ldp, ldr, k)⟩lkup

Mode patl:

⟨[], [], Σ, k⟩patl → ⟨k, Σ⟩ke

⟨p :: lp, r :: lr, Σ, k⟩patl → ⟨p, r, Σ, KEPat(lp, lr, k)⟩pat

D.2 Successive Phases of the AM Pseudo-code

We start over from the pseudo-code of Section D.1.1. However, we ignore the Exists constructor
as we cannot propose an evaluation for it.

D.2.1 CPS Transform

def eval_trm (t : skelterm) (e : env)
(k : cvalue -> (() -> cvalue) -> cvalue)
(fk : () -> cvalue) : cvalue = match t with

| TVar (v) -> match v with
| VLet (x) -> lookup e x k fk
| VSpec (h) -> eval_trm (specdecl h) [] k fk
| VUnspec (f) -> match arity f with

| Z -> select_list (unspecdecl f []) k fk
| S m -> k (CVUnspec (f, m, [])) fk

| TConstr (c, t') ->
eval_trm t' e (fun r fk2 ->
k (CVConstr (c, r)) fk2) fk

| TTuple (tl) ->
eval_trmlst tl e (fun rl fk2 ->
k (CVTuple (rl)) fk2) fk

| TFunc (p, sk) -> k (CVClos (e, p, sk)) fk

206

| TField (t', d) ->
eval_trm t' e (fun r fk2 ->
getfield r d k fk2) fk

| TNth (t', n) ->
eval_trm t' e (fun r fk2 ->
getnth r n k fk2) fk

| TRec (topt, ldt) -> match topt with
| Some t' -> eval_trm t' e (fun r fk2 ->

uprec r ldt e k fk2) fk
| None -> eval_ldt ldt e (fun ldr fk2 ->

k (CVRec (ldr)) fk2) fk

def uprec (r : cvalue) (ldt : (string * skelterm) list) (e : env)
(k : cvalue -> (() -> cvalue) -> cvalue)
(fk : () -> cvalue) : cvalue = match r with

| CVRec ldr1 ->
eval_ldt ldt e (fun ldr2 fk2 ->
k (CVRec (ldr2++ldr1)) fk2) fk

| _ -> fk ()

def getfield (r : cvalue) (d : string)
(k : cvalue -> (() -> cvalue) -> cvalue)
(fk : () -> cvalue) : cvalue = match r with

| CVRec ldr -> lookup ldr d k fk
| _ -> fk ()

def getnth (r : cvalue) (n : int)
(k : cvalue -> (() -> cvalue) -> cvalue)
(fk : () -> cvalue) : cvalue = match r with

| TTuple rl ->
getsome (nth rl n) k fk

| _ -> fk ()

def getsome (ropt : cvalue option)
(k : cvalue -> (() -> cvalue) -> cvalue)
(fk : () -> cvalue) : cvalue = match ropt with

| Some r -> k r fk
| None -> fk ()

def eval_ldt (ldt : (string * skelterm) list) (e : env)
(k : (string * cvalue) list -> (() -> cvalue) -> cvalue)
(fk : () -> cvalue) : cvalue = match ldt with

| [] -> k [] fk
| (d, t)::ldt' ->

eval_trm t e (fun r fk2 ->

207

eval_ldt ldt' e (fun ldr fk3 ->
k ((d, r)::ldr) fk3) fk2) fk

def lookup (e : env) (x : string)
(k : cvalue -> (() -> cvalue) -> cvalue)
(fk : () -> cvalue) : cvalue = match e with

| [] -> fk ()
| (y, r)::e2 ->

if x=y then k r fk
else lookup e2 x k fk

def eval_trmlst (tl : skelterm list) (e : env)
(k : cvalue list -> (() -> cvalue) -> cvalue)
(fk : () -> cvalue) : cvalue = match tl with

| [] -> k [] fk
| t::l ->

eval_trm t e (fun r fk2 ->
eval_trmlst l e (fun rl fk3 ->
k (r::rl) fk3) fk2) fk

(* Note: there is no rule for Exists as we cannot compute it *)
def eval_sk (sk : skeleton) (e : env)

(k : cvalue -> (() -> cvalue) -> cvalue)
(fk : () -> cvalue) : cvalue = match sk with

| Branching (skl) -> match skl with
| [] -> fk ()
| sk'::l -> eval_sk sk' e k

(fun _ -> eval_sk (Branching l) e k fk)
| LetIn (p, sk1, sk2) ->

eval_sk sk1 e (fun r fk2 ->
eval_pat p r e (fun e2 fk3 ->
eval_sk sk2 e2 k fk3) fk2) fk

| Return t -> eval_trm t e k fk
| Apply (t, arglist) ->

eval_trm t e (fun r fk2 ->
eval_trmlst arglist e (fun rl fk3 ->
apply_res r rl k fk3) fk2) fk

def apply_res (r : cvalue) (arglist : cvalue list)
(k : cvalue -> (() -> cvalue) -> cvalue)
(fk : () -> cvalue) : cvalue = match arglist with

| [] -> k r fk
| arg::al -> match r with

| CVUnspec (f, Z, parg) ->
let rl = unspecdecl f (parg++[arg]) in

208

select_list rl (fun r' fk2 ->
apply_res r' al k fk2) fk

| CVUnspec (f, S n, parg) ->
apply_res (CVUnspec (f, n, parg++[arg])) al k fk

| CVClos (e, p, sk) ->
eval_pat p arg e (fun e' fk2 ->
eval_sk sk e' (fun r' fk3 ->
apply_res r' al k fk3) fk2) fk

| _ -> fk ()

def select_list (rl : cvalue list)
(k : cvalue -> (() -> cvalue) -> cvalue)
(fk : () -> cvalue) : cvalue = match rl with

| [] -> fk ()
| r::l -> k r (fun _ -> select_list l k fk)

def eval_pat (p : pattern) (r : cvalue) (e : env)
(k : env -> (() -> cvalue) -> cvalue)
(fk : () -> cvalue) : cvalue = match p with

| PWild -> k e fk
| PVar (x) -> k ((x, r)::e) fk
| PConstr (c, p2) -> match r with

| CVConstr (c2, r2) ->
if c=c2 then eval_pat p2 r2 e k fk

else fk ()
| _ -> fk ()

| PTuple (pl) -> match r with
| CVTuple (rl) -> eval_patlst pl rl e k fk
| _ -> fk ()

| PRec (ldp) -> match r with
| CVRec (ldr) -> eval_patldp ldp ldr e k fk
| _ -> fk ()

def eval_patldp (ldp : (string * pattern) list)
(ldr : (string * cvalue) list) (e : env)
(k : env -> (() -> cvalue) -> cvalue)
(fk : () -> cvalue) : cvalue = match ldp with

| [] -> k e fk
| (d, p)::ldp' ->

lookup ldr d (fun r fk2 ->
eval_pat p r e (fun e2 fk3 ->
eval_patldp ldp' ldr e2 k fk3) fk2) fk

def eval_patlst (pl : pattern list) (rl : cvalue list) (e : env)
(k : env -> (() -> cvalue) -> cvalue)

209

(fk : () -> cvalue) : cvalue = match pl with
| [] -> match rl with

| [] -> k e fk
| _ -> fk ()

| p::l1 -> match rl with
| [] -> fk ()
| r::l2 ->
eval_pat p r e (fun e2 fk2 ->
eval_patlst l1 l2 e2 k fk2) fk

D.2.2 Defunctionalization

(* corresponds to functions (cvalue -> (() -> cvalue) -> cvalue) *)
type krt =
| KRID
| KRConstr of string * krt
| KRList of (skelterm list) * env * klt
| KRLet of pattern * skeleton * env * krt
| KRApp1 of (skelterm list) * env * krt
| KRApp3 of (cvalue list) * krt
| KRField of string * krt
| KRNth of int * krt
| KRUp of ((string * skelterm) list) * env * krt
| KRLdt of ((string * skelterm) list) * env * string * kdt
| KRLdp of pattern * env * ((string * pattern) list)

* ((string * cvalue) list) * ket

def disp_kr (k : krt) (r : cvalue) (fk : fkt) =
match k with
| KRConstr (c, k') -> disp_kr k' (CVConstr (c, r)) fk
| KRList (l, e, k') -> eval_trmlst l e KLList(k', r) fk
| KRLet (p, sk, e, k') -> eval_pat p r e KELet(sk, k') fk
| KRApp1 (al, e, k') -> eval_trmlst al e KLApp2(r, k') fk
| KRApp3 (al, k') -> apply_res r al k' fk
| KRField (d, k') -> getfield r d k' fk
| KRNth (n, k') -> getnth r n k' fk
| KRUp (ldt, e, k') -> uprec r ldt e k' fk
| KRLdt (ldt, e, d, k') -> eval_ldt ldt e KDCons(d, r, k') fk
| KRLdp (p, e, ldp, ldr, k') -> eval_pat p r e KELdp(ldp, ldr, k') fk

(* corresponds to functions of type
((string * cvalue) list -> (() -> cvalue) -> cvalue) *)

type kdt =
| KDID
| KDRec of krt

210

| KDUp of ((string * cvalue) list) * krt
| KDCons of string * cvalue * kdt

def disp_kd (k : kdt) (ldr : (string * cvalue) list) (fk : fkt) =
match k with
| KDRec (k') -> disp_kr k' (CVRec (ldr)) fk
| KDUp (ldr1, k') -> disp_kr k' (CVRec (ldr++ldr1)) fk
| KDCons (d, r, k') -> disp_kd k' ((d, r)::ldr) fk

(* corresponds to functions (cvalue list -> (() -> cvalue) -> cvalue) *)
type klt =
| KLID
| KLTuple of krt
| KLList of klt * cvalue
| KLApp2 of cvalue * krt

def disp_kl (k : klt) (rl : cvalue list) (fk : fkt) =
match k with
| KLTuple k' -> disp_kr k' (CVTuple (rl)) fk
| KLList (k', r) -> disp_kl k' (r::rl) fk
| KLApp2 (r, k') -> apply_res r rl k' fk

(* corresponds to functions (env -> (() -> cvalue) -> cvalue) *)
type ket =
| KEID
| KELet of skeleton * krt
| KEPat of (pattern list) * (cvalue list) * ket
| KEApp of skeleton * (cvalue list) * krt
| KELdp of ((string * pattern) list) * ((string * cvalue) list) * ket

def disp_ke (k : ket) (e : env) (fk : fkt) =
match k with
| KELet (sk, k') -> eval_sk sk e k' fk
| KEPat (l, rl, k') -> eval_patlst l rl e k' fk
| KEApp (sk, al, k') -> eval_sk sk e KRApp3(al, k') fk
| KELdp (ldp, ldr, k') -> eval_patldp ldp ldr e k' fk

(* corresponds to functions (() -> cvalue) *)
type fkt =
| FEmpty
| FSK of skeleton * env * krt * fkt
| FList of (cvalue list) * krt * fkt

def disp_fk (fk : fkt) = match fk with
| FSK(sk, e, k, fk') -> eval_sk sk e k fk'

211

| FList(rl, k, fk') -> select_list rl k fk'

def eval_trm (t : skelterm) (e : env)
(k : krt) (fk : fkt) : cvalue = match t with

| TVar (v) -> match v with
| VLet (x) -> lookup e x k fk
| VSpec (h) -> eval_trm (specdecl h) [] k fk
| VUnspec (f) -> match arity f with

| Z -> select_list (unspecdecl f []) k fk
| S m -> disp_kr k (CVUnspec (f, m, [])) fk

| TConstr (c, t') ->
eval_trm t' e KRConstr(c, k) fk

| TTuple (tl) ->
eval_trmlst tl e KLTuple(k) fk

| TFunc (p, sk) -> disp_kr k (CVClos (e, p, sk)) fk
| TField (t', d) ->

eval_trm t' e KRField(d, k) fk
| TNth (t', n) ->

eval_trm t' e KRNth(n, k) fk
| TRec (topt, ldt) -> match topt with

| Some t' -> eval_trm t' e KRUp(ldt, e, k) fk
| None -> eval_ldt ldt e KDRec(k) fk

def uprec (r : cvalue) (ldt : (string * skelterm) list) (e : env)
(k : krt) (fk : fkt) : cvalue = match r with

| CVRec ldr1 ->
eval_ldt ldt e KDUp(ldr1, k) fk

| _ -> disp_fk fk

def getfield (r : cvalue) (d : string)
(k : krt) (fk : fkt) : cvalue = match r with

| CVRec ldr -> lookup ldr d k fk
| _ -> disp_fk fk

def getnth (r : cvalue) (n : int)
(k : krt) (fk : fkt) : cvalue = match r with

| TTuple rl ->
getsome (nth rl n) k fk

| _ -> disp_fk fk

def getsome (ropt : cvalue option)
(k : krt) (fk : fkt) : cvalue = match ropt with

| Some r -> disp_kr k r fk
| _ -> disp_fk fk

212

def eval_ldt (ldt : (string * skelterm) list) (e : env)
(k : kdt) (fk : fkt) : cvalue = match ldt with

| [] -> disp_kd k [] fk
| (d, t)::ldt' ->

eval_trm t e KRLdt(ldt', e, d, k) fk

def lookup (e : env) (x : string)
(k : krt) (fk : fkt) : cvalue = match e with

| [] -> disp_fk fk
| (y, r)::e2 ->

if x=y then disp_kr k r fk
else lookup e2 x k fk

def eval_trmlst (tl : skelterm list) (e : env)
(k : klt) (fk : fkt) : cvalue = match tl with

| [] -> disp_kl k [] fk
| t::l -> eval_trm t e KRList(l, e, k) fk

def eval_sk (sk : skeleton) (e : env)
(k : krt) (fk : fkt) : cvalue = match sk with

| Branching (skl) -> match skl with
| [] -> disp_fk fk
| sk'::l -> eval_sk sk' e k FSK(Branching l, e, k, fk)

| LetIn (p, sk1, sk2) ->
eval_sk sk1 e KRLet(p, sk2, e, k) fk

| Return t -> eval_trm t e k fk
| Apply (t, arglist) ->

eval_trm t e KRApp1(arglist, e, k) fk

def apply_res (r : cvalue) (argl : cvalue list)
(k : krt) (fk : fkt) : cvalue = match argl with

| [] -> disp_kr k r fk
| arg::al -> match r with

| CVUnspec (f, Z, parg) ->
let rl = unspecdecl f (parg++[arg]) in
select_list rl KRApp3(al, k) fk

| CVUnspec (f, S n, parg) ->
apply_res (CVUnspec (f, n, parg++[arg])) al k fk

| CVClos (e, p, sk) ->
eval_pat p arg e KEApp(sk, al, k) fk

| _ -> disp_fk fk

def select_list (rl : cvalue list)
(k : krt) (fk : fkt) : cvalue = match rl with

| [] -> disp_fk fk

213

| r::l -> k r FList(l, k, fk)

def eval_pat (p : pattern) (r : cvalue) (e : env)
(k : ket) (fk : fkt) : cvalue = match p with

| PWild -> disp_ke k e fk
| PVar (x) -> disp_ke k ((x, r)::e) fk
| PConstr (c, p2) -> match r with

| CVConstr (c2, r2) ->
if c=c2 then eval_pat p2 r2 e k fk

else disp_fk fk
| _ -> disp_fk fk

| PTuple (pl) -> match r with
| CVTuple (rl) -> eval_patlst pl rl e k fk
| _ -> disp_fk fk

| PRec (ldp) -> match r with
| CVRec (ldr) -> eval_patldp ldp ldr e k fk
| _ -> disp_fk fk

def eval_patldp (ldp : (string * pattern) list)
(ldr : (string * cvalue) list) (e : env)
(k : ket) (fk : fkt) : cvalue = match ldp with

| [] -> disp_ke k e fk
| (d, p)::ldp' ->

lookup ldr d KRLdp(p, e, ldp', ldr, k) fk

def eval_patlst (pl : pattern list) (rl : cvalue list) (e : env)
(k : ket) (fk : fkt) : cvalue = match pl with

| [] -> match rl with
| [] -> disp_ke k e fk
| _ -> disp_fk fk

| p::l1 -> match rl with
| [] -> disp_fk fk
| r::l2 -> eval_pat p r e KEPat(l1, l2, k) fk

214

D.2.3 Deterministic Abstract Machine

Mode kr:

⟨krid, r, f⟩kr ̸→ (* end of computation *)

⟨KRConstr(c, k), r, f⟩kr → ⟨k, CVConstr(c, r), f⟩kr

⟨KRList(l, e, k), r, f⟩kr → ⟨l, e, KLList(k, r), f⟩trml

⟨KRLet(p, S, Σ, k), r, f⟩kr → ⟨p, r, Σ, KELet(S, k), f⟩pat

⟨KRApp1(l, e, k), r, f⟩kr → ⟨l, e, KLApp2(r, k), f⟩trml

⟨KRApp3(l, k), r, f⟩kr → ⟨l, r, k, f⟩app

⟨KRField(d, k), r, f⟩kr → ⟨r, d, k, f⟩getf

⟨KRNth(n, k), r, f⟩kr → ⟨r, n, k, f⟩getn

⟨KRUp(ldt, Σ, k), r, f⟩kr → ⟨r, ldt, Σ, k, f⟩uprec

⟨KRLdt(ldt, Σ, d, k), r, f⟩kr → ⟨ldt, Σ, KDCons(d, r, k), f⟩ldt

⟨KRLdt(p, Σ, ldp, ldr, k), r, f⟩kr → ⟨p, r, Σ, KELdp(ldp, ldr, k), f⟩pat

Mode kd:

⟨kdid, ldr, f⟩kd ̸→ (* end of computation *)

⟨KDRec(k), ldr, f⟩kd → ⟨k, CVRec(ldr), f⟩kr

⟨KDUp(l′dr, k), ldr, f⟩kd → ⟨k, CVRec(ldr ++ l′dr), f⟩kr

⟨KDCons(d, r, k), ldr, f⟩kd → ⟨k, ((d, r) :: ldr), f⟩kd

Mode kl:

⟨klid, l, f⟩kl ̸→ (* end of computation *)

⟨KLTuple(k), l, f⟩kl → ⟨k, CVTuple(l), f⟩kr

⟨KLList(k, r), l, f⟩kl → ⟨k, r :: l, f⟩kl

⟨KLApp2(r, k), l, f⟩kl → ⟨l, r, k, f⟩app

215

Mode ke:

⟨keid, Σ, f⟩ke ̸→ (* end of computation *)

⟨KELet(S, k), Σ, f⟩ke → ⟨S, Σ, k, f⟩sk

⟨KEPat(lp, lr, k), Σ, f⟩ke → ⟨lp, lr, Σ, k, f⟩patl

⟨KEApp(S, la, k), Σ, f⟩ke → ⟨S, Σ, KRApp3(la, k), f⟩sk

⟨KELdp(ldp, ldr, k), Σ, f⟩ke → ⟨ldp, ldr, Σ, k, f⟩patldp

Mode fk:

⟨FEmpty⟩fk ̸→ (* fail *)

⟨FSK(S, Σ, k, f)⟩fk → ⟨S, Σ, k, f⟩sk

⟨FList(l, k, f)⟩fk → ⟨l, k, f⟩lst

Mode trm:

⟨TVar(VLet(x)), Σ, k, f⟩trm → ⟨Σ, x, k, f⟩lkup

⟨TVar(VSpec(x)), Σ, k, f⟩trm → ⟨SpecDecl(x), [], k, f⟩trm

⟨TVar(VUnspec(x)), Σ, k, f⟩trm → ⟨UnspecDecl(x)[], k, f⟩lst if Arity(x) = 0

⟨TVar(VUnspec(x)), Σ, k, f⟩trm → ⟨k, CVUnspec(x, m, []), f⟩kr if Arity(x) = m + 1

⟨TConstr(c, t), Σ, k, f⟩trm → ⟨t, Σ, KRConstr(c, k), f⟩trm

⟨TTuple(l), Σ, k, f⟩trm → ⟨l, Σ, KLTuple(k), f⟩trml

⟨TFunc(p, S), Σ, k, f⟩trm → ⟨k, CVClos(Σ, p, S), f⟩kr

⟨TField(t, d), Σ, k, f⟩trm → ⟨t, Σ, KRField(d, k), f⟩trm

⟨TNth(t, n), Σ, k, f⟩trm → ⟨t, Σ, KRNth(n, k), f⟩trm

⟨TRec(Some(t), ldt), Σ, k, f⟩trm → ⟨t, Σ, KRUp(ldt, Σ, k), f⟩trm

⟨TRec(None, ldt), Σ, k, f⟩trm → ⟨ldt, Σ, KDRec(k), f⟩ldt

216

Modes uprec, getf, getn, and gets:

⟨CVRec(ldr), ldt, Σ, k, f⟩uprec → ⟨ldt, Σ, KDUp(ldr, k), f⟩ldt

⟨_, ldt, Σ, k, f⟩uprec → ⟨f⟩fk otherwise

⟨CVRec(ldr), d, k, f⟩getf → ⟨ldr, d, k, f⟩lkup

⟨_, d, k, f⟩getf → ⟨f⟩fk otherwise

⟨CVTuple(lr), n, k, f⟩getn → ⟨(nth lr n), k, f⟩gets

⟨_, n, k, f⟩getn → ⟨f⟩fk otherwise

⟨Some(r), k, f⟩gets → ⟨k, r, f⟩kr

⟨None, k, f⟩gets → ⟨f⟩fk

Mode ldt:

⟨[], Σ, k, f⟩ldt → ⟨k, [], f⟩kd

⟨(d, t) :: ldt, Σ, k, f⟩ldt → ⟨t, Σ, KRLdt(ldt, Σ, d, k), f⟩trm

Mode lkup:

⟨[], x, k, f⟩lkup → ⟨f⟩fk

⟨(y, r) :: l, x, k, f⟩lkup → ⟨k, r, f⟩kr if x = y

⟨(y, r) :: l, x, k, f⟩lkup → ⟨l, x, k, f⟩lkup if x ̸= y

Mode trml:

⟨[], Σ, k, f⟩trml → ⟨k, [], f⟩kl

⟨t :: l, Σ, k, f⟩trml → ⟨t, Σ, KRList(l, Σ, k), f⟩trm

Mode sk:

⟨Branching([]), Σ, k, f⟩sk → ⟨f⟩fk

⟨Branching(S :: l), Σ, k, f⟩sk → ⟨S, Σ, k, FSK(Branching(l), Σ, k, f)⟩sk

⟨LetIn(p, S1, S2), Σ, k, f⟩sk → ⟨S1, Σ, KRLet(p, S2, Σ, k), f⟩sk

⟨Return(t), Σ, k, f⟩sk → ⟨t, Σ, k, f⟩trm

⟨Apply(t, l), Σ, k, f⟩sk → ⟨t, Σ, KRApp1(l, Σ, k), f⟩trm

⟨Exists(p, S), Σ, k, f⟩sk → ⟨f⟩fk

217

Mode app:
(note: arguments swapped to pattern-match the first)

⟨[], r, k, f⟩app → ⟨k, r, f⟩kr

⟨a :: la, CVUnspec(x, 0, l), k, f⟩app → ⟨UnspecDecl(x)(l ++ [a]), KRApp3(la, k), f⟩lst

⟨a :: la, CVUnspec(x, m + 1, l), k, f⟩app → ⟨la, CVUnspec(x, m, l ++ [a]), k, f⟩app

⟨a :: la, CVClos(Σ, p, S), k, f⟩app → ⟨p, a, Σ, KEApp(S, la, k), f⟩pat

⟨a :: la, _, k, f⟩app → ⟨f⟩fk otherwise

Mode lst:

⟨[], k, f⟩lst → ⟨f⟩fk

⟨r :: l, k, f⟩lst → ⟨k, r, FList(l, k, f)⟩kr

Mode pat:

⟨PWild, r, Σ, k, f⟩pat → ⟨k, Σ, f⟩ke

⟨PVar(x), r, Σ, k, f⟩pat → ⟨k, (x, r) :: Σ, f⟩ke

⟨PConstr(c, p), CVConstr(c2, r), Σ, k, f⟩pat → ⟨p, r, Σ, k, f⟩pat if c = c2

⟨PTuple(lp), CVTuple(lr), Σ, k, f⟩pat → ⟨lp, lr, Σ, k, f⟩patl

⟨PRec(ldp), CVRec(ldr), Σ, k, f⟩pat → ⟨ldp, ldr, Σ, k, f⟩patldp

⟨_, _, Σ, k, f⟩pat → ⟨f⟩fk otherwise

Mode patldp:

⟨[], ldr, Σ, k, f⟩patldp → ⟨k, Σ, f⟩ke

⟨(d, p) :: ldp, ldr, Σ, k, f⟩patldp → ⟨ldr, d, KRLdt(p, Σ, ldp, ldr, k), f⟩lkup

Mode patl:

⟨[], [], Σ, k, f⟩patl → ⟨k, Σ, f⟩ke

⟨p :: lp, r :: lr, Σ, k, f⟩patl → ⟨p, r, Σ, KEPat(lp, lr, k), f⟩pat

⟨_, _, Σ, k, f⟩patl → ⟨f⟩fk otherwise

218

Titre : Transformations de Sémantiques Squelettiques

Mots-clés : Sémantiques Squelettiques, Sémantiques Opérationnelles, Grand-Pas, Petit-Pas,
Machines Abstraites, Interprétation Certifiée

Résumé : Les sémantiques squelettiques
sont un cadre logique pour décrire les séman-
tiques opérationnelles.

Tout d’abord, nous présentons une trans-
formation automatique d’une sémantique
squelettique écrite en style grand-pas vers
une sémantique équivalente en style petit-
pas. Cette transformation est implémentée
dans l’outil Necro, ce qui nous permet
de générer automatiquement un interpréteur
OCaml pour la sémantique petit-pas ainsi
qu’une formalisation Coq des deux séman-
tiques. Nous certifions la transformation de
deux manières : nous donnons une preuve pa-
pier du cœur de la transformation, et nous gé-
nérons des scripts de preuve Coq spécialisés
durant la transformation.

Nous proposons également une méthode
automatique pour générer un interpréteur
OCaml certifié pour n’importe quel langage
défini en sémantiques squelettiques. Pour
cela, nous présentons deux nouvelles in-
terprétations des sémantiques squelettiques,
sous la forme de machines abstraites détermi-
niste et non-déterministe. Ces machines sont
obtenues à partir de l’interprétation grand-pas
principale en utilisant la correspondence fonc-
tionnelle, une méthode connue pour transfor-
mer un évaluateur en machine abstraite. Ces
nouvelles interprétations sont formalisées en
Coq, et nous vérifions leur correction. Enfin,
nous utilisons le système d’extraction de Coq
vers OCaml pour obtenir un interpréteur certi-
fié.

Title: Skeletal Semantics Transformations

Keywords: Skeletal Semantics, Operational Semantics, Big-Step, Small-Step, Abstract Ma-
chines, Certified Interpretation

Abstract: Skeletal semantics is a framework
to describe the operational semantics of pro-
gramming languages.

We first present an automatic translation of
a skeletal semantics written in big-step style
into an equivalent structural operational se-
mantics. This translation is implemented on
top of the Necro tool, which lets us automat-
ically generate an OCaml interpreter for the
small-step semantics and a Coq mechaniza-
tion of both semantics. We prove the transfor-
mation correct in two ways: we provide a pa-
per proof of the core of the translation, and
we generate Coq certification scripts along-
side the transformation.

We also propose an automatic generation
of a certified OCaml interpreter for any lan-
guage written in skeletal semantics. To this
end, we introduce two new interpretations,
i.e., formal meanings, of skeletal semantics, in
the form of non-deterministic and deterministic
abstract machines. These machines are de-
rived from the usual big-step interpretation of
skeletal semantics using functional correspon-
dence, a standard transformation from big-
step evaluators to abstract machines. All these
interpretations are formalized in the Coq proof
assistant and we certify their soundness. We
finally use the extraction from Coq to OCaml
to obtain the certified interpreter.

	Introduction
	Contributions
	Organization of the Document

	Operational Semantics
	Syntax of IMP
	Big-Step Semantics
	Small-Step Semantics
	Reduction Semantics
	Abstract Machine
	Interderivation

	I Object Language Transformation
	Skeletal Semantics
	Example
	Syntax of Skel
	Concrete Interpretation
	Coinductive Interpretation
	Necro

	Small-Step Transformation
	Overview on an Example
	Coercions
	New Constructors
	Make the Skeletons Small-Step

	Formal Transformation Phases
	Coercions
	New Constructors
	Distribute Branchings
	Make the Skeletons Small-Step

	Certification of the Transformation
	Pen-and-Paper Proof
	Proof Sketch
	Transformation Properties
	Initial and Extended Big-Step Semantics
	Small-Step Implies Extended Big-Step
	Extended Big-Step implies Small-Step

	Coq Proof Script Generation
	Proof Sketch
	Initial and Extended Big-Step
	Small-Step Implies Extended Big-Step
	Extended Big-Step Implies Small-Step

	Implementation and Evaluation
	Implementation
	Options and Optimization
	Ocaml Interpreter

	Evaluation

	Conclusion of Part I
	Related Work
	Limitations and Perspectives
	Polymorphism
	Anonymous Functions

	II Meta-Language Transformation
	Higher-Order Skeletal Semantics
	Syntax
	Concrete Interpretation

	Primer on Functional Correspondence
	Rewrite the Semantics in Pseudo-Code
	CPS Transform
	Defunctionalization
	Abstract Machine

	Non-Deterministic Abstract Machine for Skeletal Semantics
	Pseudo-interpreter
	CPS-Transform
	Defunctionalization
	Abstract Machine
	Certification

	Deterministic Abstract Machine for Skeletal Semantics
	CPS-Transform
	Defunctionalization and Abstract Machine
	Certification

	Certified Interpreter
	Conclusion of Part II
	Conclusion
	Bibliography
	Functional Correspondence on IMP
	Syntax and Big-Step Semantics
	CPS Transform
	Defunctionalization
	Abstract Machine

	Successive Transformations of IMP in Skeletal Semantics
	Initial IMP Skeletal Semantics
	After Adding Coercions
	After Creating New Constructors
	Final Small-Step Skeletal Semantics
	Extended Big-Step for Coq Certification
	Resulting Small-Step without Reuse

	Proof of the Transformation
	Definitions and Proof Structure
	Basic Lemmas
	SSA
	Properties of the Transformation Phases
	Big-Step and Extended Big-Step
	Extended Big-Step Implies Small-Step
	Small-Step implies Extended Big-Step

	Complete Derivation of the NDAM and AM
	Successive Phases of the NDAM Pseudo-code
	Initial Pseudo-Code
	CPS Transform
	Defunctionalization
	Non-Deterministic Abstract Machine

	Successive Phases of the AM Pseudo-code
	CPS Transform
	Defunctionalization
	Deterministic Abstract Machine

