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Résumé:

Les systèmes de télédétection offrent une
opportunité accrue d’enregistrer des séries tem-
porelles d’images multivariées de la surface de la
Terre. Ainsi, l’intérêt pour les outils automatiques
de traitement de ces données augmente consid-
érablement. Dans cette thèse, nous proposons
un pipeline de partitionnement et de classification
pour segmenter des séries temporelles d’images
multivariées. Pour ce faire, des paramètres de lois
de probabilité sont estimés de manière robuste puis
partitionnés ou classifiés. Une grande partie de la
thèse est consacrée à la théorie de la géométrie rie-
mannienne et à son sous-domaine, la géométrie de
l’information, qui étudie les variétés riemanniennes
dont les points sont des distributions de probabil-
ité. Elle permet d’estimer des paramètres de lois

de probabilité très rapidement, même sur des prob-
lèmes à grande échelle, mais aussi de calculer des
centres de masse riemanniens. En effet, des di-
vergences sont développées pour mesurer les prox-
imités entre les paramètres estimés. Ensuite, des
groupes de paramètres sont moyennés en calculant
leurs centres de masse riemanniens associés à ces
divergences. Ainsi, nous adaptons des algorithmes
classiques d’apprentissage automatique tels que le
K-means++ ou le classifieur du centroïde le plus
proche à des variétés riemanniennes. Ces algo-
rithmes ont été mis en œuvre pour de nombreuses
combinaisons de paramètres, divergences et cen-
tres de masse riemanniens et testés sur des jeux
de données réels tels que l’image Indian pines et
le grand jeu de données de cartographie des types
de cultures Breizhcrops.

Title: Riemannian geometry for statistical estimation and learning: application to remote sensing
Keywords: signal processing, machine learning, Riemannian geometry, optimization, robust statistics,
earth observation
Abstract:

Remote sensing systems offer an increased
opportunity to record multi-temporal and multi-
dimensional images of the earth’s surface. This
opportunity greatly increases the interest in data
processing tools based on multivariate image time
series. In this thesis, we propose a clustering-
classification pipeline to segment these data. To
do so, robust statistics are estimated and then
clustered or classified to obtain a segmentation
of the original multivariate image time series. A
large part of the thesis is devoted to the theory of
Riemannian geometry and its subfield, the infor-
mation geometry, which studies Riemannian man-
ifolds whose points are probability distributions. It

allows to estimate robust statistics very quickly,
even on large scale problems, but also to compute
Riemannian centers of mass. Indeed, divergences
are developed to measure the proximities between
the estimated statistics. Then, groups of statis-
tics are averaged by computing their Riemannian
centers of mass associated to these divergences.
Thus, we adapt classical machine learning algo-
rithms such as the K-means++ or the Nearest
centroid classifier to Riemannian manifolds. These
algorithms have been implemented for many dif-
ferent combinations of statistics, divergences and
Riemannian centers of mass and tested on real
datasets such as the Indian pines image and the
large crop type mapping dataset Breizhcrops.
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Introduction

Remote sensing systems offer an increased opportunity to record multi-
temporal and multi-dimensional images of the earth’s surface by improving
temporal and spatial resolution. Indeed, in the recent years, many countries
and companies have deployed satellites or run UAV (Unmanned Aerial Vehi-
cle) for earth observation. Examples of these remote sensing instruments are
the Sentinel, Landsat and TerraSAR-X satellites or the UAVSAR. This big
increase in the number, performance and diversity of these systems enables
the development of many applications such as the monitoring of the envi-
ronment (e.g. glaciers, forests, urbanism), major events (e.g. earthquakes,
floods), human activity (e.g. maritime and borders surveillance) as well as
weather forecasting. These opportunities greatly increase the interest of data
processing tools based on multivariate image time series.

A recent trend in machine learning, mostly coming from the EEG/MEG
(Electroencephalography/Magnetoencephalography) community, proposes
to estimate covariance matrices from data and then to classify them us-
ing Riemannian geometry. Indeed, the theory of Riemannian geometry and
its subfield, the information geometry, suits well to covariances matrices
which are then seen as parameters of centered multivariate Gaussian dis-
tributions. In this case, the classical straight line is replaced by geodesics,
the Euclidean distance by Riemannian distances and the arithmetic mean by
Riemannian centers of mass. In practice, the use of Riemannian geometry
gives much better performance than its Euclidean counterpart when dealing
with covariance matrices. In this thesis, we propose to apply this clustering-
classification pipeline to remote sensing data and to extend it in multiple
ways. The contributions are fourfold.

First, statistical estimators are developed by leveraging the theory of op-
timization on Riemannian manifolds. In particular, gradient descent methods
are developed to estimate jointly locations (centers of the distribution) and
covariance matrices. This is of first importance for applications where the
location is a discriminative feature contrary to EEG/MEG. Furthermore, in
practice data can not always be assumed to be distributed as Gaussian dis-
tribution due to outliers or heavy tailed distributions. To remediate to this
problem, we leverage the theory of robust statistics to construct new Rieman-
nian based robust estimators. Finally, estimators are developed for structured
covariance matrices when dealing with high dimensional data. All these Rie-
mannian base estimators are fast and suit well for large scale datasets.

Second, intrinsic Cramér-Rao bounds (ICRB) are derived to analyze the
performance of estimators of structured covariance matrices. These ICRBs
lower bound the mean squared Riemannian distance between estimated pa-
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rameters and the true one. This enables to take into account constraints of
the parameter space.

Third, divergences between statistics and their associated centers of mass
are proposed. These divergences, and the associated centers of mass, are
chosen with respect to the statistical model to obtain better performance
in practice. Also, gradient based Riemannian optimization algorithms are
derived to compute efficiently these centers of mass.

A fourth contribution is the development of metric learning algorithms.
Metric learning methods propose to cluster or classify raw data with a learned
Mahalanobis distance. In this thesis, we demonstrate that some classical
metric learning problems can be seen as covariance estimation problems.
With this novel view, we derive two new Riemannian based metric learning
algorithms.

All these contributions are tested on generated data as well as real
datasets such as the Indian pines image and the large scale crop type mapping
dataset Breizhcrops and show promising results.
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Notations

General symbols

x Scalar (lowercase character)
x Vector (bold lowercase character)
X Matrix (bold uppercase character)
p Dimension of data
n Number of data per batch
M Number of batches
K Number of classes
acosh Inverse hyperbolic cosine
Card Cardinality operator,

i.e. returns the number of elements of a given set
Re(x) Real part of x
i Imaginary unit (i2 = −1)
sign Sign function: sign(x) returns 1 if x ≥ 0 and −1 otherwise
minimize

θ
h(θ) Minimization problem of the real valued function h

argmin
θ

h(θ) Argument minimizing the real valued function h

Dh(θ)[ξ] Directional derivative of h at θ in the direction ξ
gradh(θ) Gradient of h at θ

Sets

Jn1, n2K Set of integers from n1 and n2

R Set of real numbers
Rp Set of real valued vectors of size p
R+

∗ Set of strictly positive real numbers
(R+

∗ )
n Set of n dimensional vectors with strictly positive entries

C Set of complex numbers
Cp Set of complex valued vectors of size p
GLp Set of p× p invertible matrices
Sp−1 p− 1 dimensional sphere in Rp

Op Set of p× p orthogonal matrices
Up Set of p× p unitary matrices
Stp,k Set of orthogonal basis of

k-dimensional subspaces in Rp (or Cp) (Stiefel manifold)
Grp,k Set of k-dimensional subspaces of Rp (or Cp) (Grassmann manifold)
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Sp Set of p× p symmetric matrices
S+
p Set of p× p symmetric positive semi definite matrices
S++
p Set of p× p symmetric positive definite matrices
SS++

p Set of p× p symmetric positive definite matrices with unit determinant
Ap Set of p× p skew-symmetric matrices
Hp Set of p× p Hermitian matrices
H++
p Set of p× p Hermitian positive definite matrices

Linear algebra

.T , .H Transpose, transpose conjugate
⊗ Kronecker product
E A vector space
span(A) Span/image of A, i.e. {Ax : for all x ∈ Rp}
|A| Determinant of A
Tr(A) Trace of A
rank(A) Rank of A
sym(A) Symmetric part of A, i.e. sym(A) = A+AT

2

herm(A) Hermitian part of A, i.e. herm(A) = A+AH

2

vec(θ) Vectorize θ, i.e. stacks the coordinates of θ into a vector
diag(x) Diagonal matrix whose diagonal contains the elements of the vector x
0l×m Zero matrix of size l ×m
Ip Identity matrix of size p× p
1p Vector of size p whose elements are equal to 1

Statistics

d
= Equality of distribution
f(.; θ) Probability density function parametrized by θ
N Gaussian distribution
CN Complex Gaussian distribution
X Sample space (a linear space)
X Random variable
xi Vector sample
M Feature space (a Riemannian manifold)
θ Parameter
E[X] Expectation of the random variable X
L (Negative) log-likelihood
µ Location
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µ̂SM Sample mean, i.e. µ̂SM =
1

n

n∑
i=1

xi

Σ Covariance/Scatter matrix

Σ̂SCM Sample covariance matrix, i.e. Σ̂SCM =
1

n

n∑
i=1

(xi − µ̂SM)(xi − µ̂SM)
T

τ Texture parameters
U Orthogonal basis (element of the Stiefel manifold Stp,k)
F θ Fisher information matrix

Riemannian geometry

E Ambient space
M Riemannian manifold
TθM Tangent space at θ ∈M
η, ξ Tangent vectors
PM
θ Orthogonal projection from E onto TθM

F(M) Set of scalar fields
X(M) Set of vector fields
γ Geodesic
inj Injectivity radius
∇M Levi-Civita connection
expM

θ Riemannian exponential mapping
T M
θ1,θ2

Parallel transport from Tθ1M onto Tθ2M
logMθ Riemannian logarithmic mapping
dM Riemannian distance
RM
θ Retraction

r Curve associated to a retraction, i.e. r(t) = RM
θ (tξ)

ṙ Derivative of r, i.e. ṙ(t) = d
dt
r(t)

r̈ Second derivative of r, i.e. r̈(t) = d2

dt2
r(t)

gradM h(θ) Riemannian gradient of h at θ ∈M

Riemannian quotient manifolds

M Riemannian manifold
TθM Tangent space at θ ∈M
η, ξ Tangent vectors of TθM
∼ Equivalence relation
[θ] Equivalence class
π(θ) Natural/Canonical projection, i.e. π(θ) = [θ]
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Vθ,Hθ Vertical and Horizontal spaces
M Riemannian quotient manifold, i.e. M =M/ ∼
TθM Tangent space at θ = [θ] ∈M
η, ξ Tangent vectors of TθM
liftθ(ξ) Horizontal lift of ξ at θ
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Acronyms

AA Average AccuracyBCD Block Coordinate DescentCRB Cramér-Rao boundEEG ElectroencephalographyICRB Intrinsic Cramér-Rao boundKL Kullback-Leibler divergenceMEG MagnetoencephalographyMLE Maximum Likelihood EstimatorMSE Mean Squared ErrorMSG Mixture of Scaled Gaussian distributionsNC-MSG Non-Centered Mixture of Scaled Gaussian distributionsNLL Negative Log LikelihoodOA Overall AccuracyPCA Principal Component AnalysisPDF Probability Density FunctionPPCA Probabilistic Principal Component AnalysisSAR Synthetic Aperture RadarSCM Sample Covariance MatrixSNR Signal-to-Noise RatioSVD Singular Value DecompositionUAV Unmanned Aerial VehicleWCSS Within-Cluster Sum of SquaresWGN White Gaussian Noise
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1 - Statistical learning for time series

This chapter introduces the framework of this manuscript. It presents the
basics of the concepts discussed in the next chapters starting from the Earth
observation and its growing number of applications, then addressing some
notions of statistics and machine learning and ending with the incorporation
of the theory of Riemannian geometry in all these problematics. It should be
noted that the Riemannian geometry is only briefly discussed at the end of
this chapter and that the next chapter (Chapter 2) is entirely dedicated to
it.

First of all, we present multivariate image time series for Earth ob-
servation in Section 1.1. The use of these data is motivated and mul-
tispectral imagery is presented. Furthermore, two datasets of classifica-
tion are introduced: Indian Pines [9] and Breizhcrops [118]. Then, a
clustering/classification pipeline is detailed in Section 1.2. It aims at the
clustering/classification of multivariate image time series and is composed
of 3 steps: vectors extraction, features estimation and features cluster-
ing/classification. Section 1.3 introduces the basics of the feature estima-
tion step with some central definitions to statistics such as the maximum
likelihood estimators. Section 1.4 presents two standard machine learning
algorithms [64]: the K-means++ [7] for clustering and the Nearest cen-
troïd classifier for classification. This chapter finishes with the motivation of
the usage of Riemannian geometry for the presented clustering/classification
pipeline. Indeed, some statistical features lie on non-Euclidean spaces called
Riemannian manifolds and their curvatures can be taken into account in the
clustering/classification pipeline.

1.1 . Earth observation and datasets

1.1.1 . Earth observation and multispectral imagery

Earth observation provides a unique way of gathering informations about
our planet. For this purpose, many remote sensing instruments have been
developed and deployed in recent years. They are the cornerstone of many ap-
plications such as monitoring the evolution of our environment (e.g. glaciers,
forests, urbanism), major events (e.g. earthquakes, floods), human activity
(e.g. maritime and borders surveillance) as well as weather forecasting. Ex-
amples of these remote sensing instruments are

• Synthetic Aperture Radar (SAR) satellites: TerraSAR-X 1, Sentinel

1https://earth.esa.int/eogateway/missions/terrasar-x-and-tandem-x
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(a) Example of a SAR image (from
nasa.gov). (b) Example of a multispectral im-age (from nasa.gov).
Figure 1.1: Different types of earth observation data: SAR and multi-spectral images.

1 2, Capella 3, and ICEYE 4,

• airborne radars: UAVSAR 5,

• spectrometer satellites: Sentinel 5P,

• altimeter satellites: Sentinel 6A,

• and multispectral satellites: Sentinel 2 and 3, and landsat 6.

Figure 1.1 illustrates these sensors with two images: a SAR image and a
multispectral image.

In the rest of the manuscript, we focus on multispectral imagery due to
the availability of annotated data, i.e. data which come with ground truths.
However the different developed methods along the chapters also apply to
other types of data such as radar imagery.

Classical digital cameras measure the solar radiation reflected on given
surfaces for three different wavelengths of the electromagnetic spectrum.
These wavelengths correspond to three colors: Red, Green and Blue (RGB).
Each pixel of such an image contains the three values of radiances associated
with these colors. Hence, an image is stored as a datacube, also called
tensor, X ∈ Rw×h×3 where w and h are the number of pixels of width
and height respectively. Multispectral imagery [59] proposes to extend this
process by measuring radiances across many more different wavelengths.
Thus, each pixel contains as much values as the number p of considered
wavelengths and thus a multispectral image is stored as a datacube X ∈

2https://sentinels.copernicus.eu/web/sentinel/home3https://www.capellaspace.com4https://www.iceye.com5https://uavsar.jpl.nasa.gov6https://landsat.gsfc.nasa.gov
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Figure 1.2: Multispectral imagery measures the radiance across dif-ferent wavelengths of the electromagnetic spectrum. A multispec-tral image is the concatenation of these measurements. (Figure from
www.edmundoptics.jp)
Rw×h×p. The interest of considering many wavelengths is to enable a fine
analysis of what is on the ground. A classic example of the use of these
bands is the normalized difference vegetation index (NDVI) which is ρNIR−ρVIS

ρNIR+ρVIS

with ρNIR being the reflectance measured in the near infrared (∼ 800nm)
and ρVIS the reflectance measured in the visible (∼ 600nm). This index is
correlated with the physical properties of the vegetation canopy such as the
biomass or the fractional vegetation recover [35]. Thus, it provides valuable
informations on the vegetation canopy. An illustration of a multispectral
image is presented in Figure 1.2. In this figure, five wavelengths are measured
and thus each pixel contains five values.

Multispectral images of simple scenes can be modeled with mixing mod-
els [77]. Indeed, in multispectral imagery, it is assumed that s ≤ p materials,
also called endmembers, (e.g. water, grass, wood) constitute the observed
scene and that there is no interactions between endmembers. The last as-
sumption means that any given package of incident radiation interacts only
with one endmember (e.g. a light beam reflects on a piece of wood and then
hits the multispectral sensor). Thus a pixel xi ∈ Rp is the linear combina-
tion, also called linear mixing, of the endmembers spectra with coefficients
equal to the proportions of the areas covered by the endmembers. These co-
efficients are called fractional abundances. Mathematically, this linear mixing
model writes

xi = Awi + ni (1.1)
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where A ∈ Rp×s is the full rank mixing matrix whose columns are the spectra
of the endmembers, wi ∈ ∆s =

{
(t1, · · · , ts)T ∈ Rs : ti ≥ 0,

∑s
i=1 ti = 1

}
contains the fractional abundances, and ni is an observation additive noise.
The vectors wi are important for classification problems since they con-
tain abundances of the endmembers which are closely related to the classes.
However, in practice, A, wi and ni are unknown. Thus, an approach is to
estimate A and wi such that xi ≈ Awi, e.g. see [66, 12]. Another ap-
proach is to develop machine learning algorithms that are invariant to mixing
models. Indeed, divergence-based algorithms, such as the K-means++ algo-
rithm, can be equipped with affine invariant divergences. These divergences
measure the proximity between hidden vectors wi by measuring the proximity
between observed vectors xi. This point of view is developed in Section 1.5.

1.1.2 . Multivariate image time series
So far, we have presented Earth observation images. In practice, the

same area of the Earth is revisited regularly by the same satellite. Indeed,
the travels of a satellite are cyclic. The time elapsed between two visits of
the same place is called the revisit time and corresponds to the time elapsed
for the satellite to complete one cycle. For example, the Sentinel 2A satellite
has a revisit time of ten days: it takes ten days to complete a full cycle.
This revisit time can be shortened by using multiple satellites. For example,
Sentinel 2A and 2B together have a revisit time of five days. Thus, several
images of the same area are taken over time with a given frequency and each
image has several measurements (e.g. different wavelengths in multispectral
imagery). This is called a multivariate image time series and is stored as
a tensor XT×w×h×p where T is the number of dates/images. These time
series are rich since they contain three diversities: the temporal, the spatial,
and the sensor diversity (measured wavelengths for multispectral imagery,
polar for SAR). A scheme of a multivariate image time series is represented
in Figure 1.3. In the following, we take advantage of these data to propose
solutions to some of the applications mentioned earlier.

Earlier, we presented many applications that leverage Earth observation.
Here, we focus on applications that can be casted as K-class segmentation
problems. In its general form, the problem we consider is the following: a
tensor X of pixels is available and we must predict a label in J1, KK for each
pixel. In Figure 1.3, the tensor X is the whole time series. Classes are any
discrete and non-ordered valuable informations for a given application. For
crop type mapping, examples of labels are corn, wheat and meadow. We
refer to a classification problem when a part of X has already been labeled,
called a training set, and only the remaining part, called the test set, must
be segmented (supervised learning). A clustering problem is when X is
not at all labeled and thus there is only a test set (unsupervised learning).
Thus pixels in X must be partitioned into K sets. In practice, the test
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Figure 1.3: Scheme of a multivariate image time series. Several imagesof a same area on the Earth are taken over time. Each image has sev-eral measurements ("Sensor diversity" in the scheme).

set is also labeled but these labels are kept hidden until the evaluation of a
proposed solution to the clustering/classification problem. The association
of X and labels is called a dataset. In the following, we present two datasets
of multispectral imagery.

1.1.3 . Datasets: Indian Pines and Breizhcrops

The first dataset is called Indian Pines [9] and is a w × h = 145 × 145
pixels hyperspectral image. This image consists of p = 200 spectral bands
in the wavelength range 0.4-2.5µm. The task is to segment it into K = 16
classes without training data: it is a clustering problem. Figure 1.4 shows
the image as well as the ground truth. Table 1.1 in Appendix 1.A.1 gives
the classes names as well as the number of samples per class. In practice,
we apply a sliding window of size ws×ws before doing the clustering. Thus,
mathematically, the task is to cluster a datacube X ∈ RM×p×n, where
M = w×h and n = ws×ws, into K clusters. The clustering is represented
by a vector in J1, KKM . By reshaping this vector into a w × h matrix, we
get a segmentation map as in Figure 1.4b.

The second dataset is called Breizhcrops [118] 7. This crop type mapping
dataset gathers more than 600, 000 time series to classify8. These data
have been measured with the Sentinel-2 satellite from January 1, 2017 to
December 31, 2017 across the whole region of Brittany, France (see the
maps of Figure 1.5). Each time series has p = 13 spectral bands, a length
of n = 45 and belongs to one of the K = 9 classes presented in Table 1.2
in Appendix 1.A.2. The dataset is geographically split into a training set

7https://breizhcrops.org/8The Breizhcrops dataset is composed with two processing levels. Here, we usethe raw reflectances at the top-of-atmosphere (level 1C).
23
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(a) Magnitude of the Indian Pinesimage.
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(b) Ground truth. The background(no class available) is representedby the class 0.
Figure 1.4: Indian Pines: a multispectral dataset [9].

(a) Map of the Europe with theBrittany region in orange. (b) Map of the Brittany region withits four departments.Training set: Finistère, Côtes-d’Armor, and Ille-et-Vilaine.Test set: Morbihan.
Figure 1.5: The Breizhcrops dataset [118] is a time series dataset thathave been measured across the whole region of Brittany, France.Three departments of this region are used to construct the training setand the remaining one constitutes the test set. Figure courtesy [118].
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(a) A time series of meadows.
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(b) A time series of corn.
Figure 1.6: Reflectances ρ of two different time series. Figure cour-tesy [118].
of Mtrain time series from three departments of Brittany and a test set of
Mtest time series from the remaining department. Two time series from two
different classes are presented in Figure 1.6. These illustrate the importance
of the temporal dimension for classification. Indeed, we observe that the two
time series are very close from January to March even though they belong
to two different classes. If measurements are made only at the beginning
of the year, it is difficult to classify them, whereas measurements from April
onwards allow us to differentiate them. Thus, mathematically, the task is
to train a classifier on the training datacube X train ∈ RMtrain×p×n with the
vector of labels in J1, KKMtrain and then to predict the labels of the test
datacube X test ∈ RMtest×p×n. The prediction takes the form of a vector in
J1, KKMtest .

1.2 . Clustering and classification pipeline

In this section, the objective is to address segmentation problems that
arise as depicted in the previous section. To do so, we present a cluster-
ing/classification pipeline, illustrated in Figure 1.7. We emphasis that it
applies to both clustering and classification problems. This pipeline decom-
poses into three steps:

1. vectors extraction,

2. features estimation,
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Step 1: vectors extraction Step 2: features estimation
Step 3: featuresclustering/classification

{xi}ni=1 minimize
θ∈M

L (θ| {xi}ni=1)

θ1+ θ2+
θ3+

θ4+θ5+

θ6+ θ8+θ9+

2 classes: white and red

Figure 1.7: Clustering-classification pipeline.
3. features clustering/classification.

This pipeline is meant to be general and applies to many data. Here, we
focus on data that presents as the datasets of Subsection 1.1.3.

1.2.1 . Vectors extraction
The first step, called vectors extraction, consists in extracting data

batches {xi}ni=1 ⊂ Rp of the same cardinality n. Sometimes, this step
is direct as for the Breizhcrops dataset since it has already been pre-
processed. Indeed, the latter is presented as X train ∈ RMtrain×p×n and
X test ∈ RMtest×p×n. Thus, Mtrain and Mtest data batches are easily extracted
for the training and test sets respectively. The batches correspond to time
series; it is a temporal extraction. In other cases, an extraction must be
explicitly achieved as in the Indian Pines dataset. Indeed, and as explained
in Subsection 1.1.3, a ws×ws sliding window is applied to get X ∈ RM×p×n

with n = ws × ws. This way M = h × w, with h and w being the height
and the width of the image respectively, data batches are extracted. In this
case, we performed a spatial extraction.

1.2.2 . Features estimation
The second step of the pipeline is the features estimation. Once we have

data batches from the previous step, we estimate features from them. Indeed,
the use of statistical descriptors is classical in machine learning since they are
often more discriminant than raw data; e.g. see [8, 134, 133]. Thus, each
batch of raw data {xi}ni=1 is transformed into a feature θ. This estimation
is written as a minimization problem of a loss function L :M→ R over a
given setM, possibly constrained,

minimize
θ∈M

L(θ|{xi}ni=1). (1.2)
It should be noted that θ can take many different forms: it can be a vector,
a vector and a covariance matrix, a subspace, and so on ... Thus, this step
is general and encompasses many classical algorithms such as the Principal
Component Analysis (PCA), the Sample Covariance Matrix (SCM), etc ... As
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done for the previous step, we present the implications the feature estimation
step has on the two datasets Indian Pines and Breizhcrops. The previous
step extracts batches {xi}ni=1 spatially for the Indian Pines. This means
that this features estimation step transforms local patches of the image
into features. Thus, each pixel is characterized by one feature θ. For the
Breizhcrops dataset, each batch corresponds to one time series. Hence, the
feature estimation step transforms each time series into a feature θ. Hence,
in both datasets, the datacube X ∈ RM×p×n becomes a set of features
{θi}Mi=1. The formulation (1.2) is discussed with more details in Section 1.3,
which is dedicated to statistical estimation. Finally, we emphasis that this
features estimation step could be applied to many other datasets. The only
requirement is that to have batches of data {xi}ni=1.

1.2.3 . Features clustering/classification

Once we have a set of features {θi}Mi=1, it remains to cluster/classify
it. This is the third step: the features clustering/classification step. We
distinguish two cases: clustering and classification.

In the first case, the objective is to partition {θi}Mi=1 into K sets in an
unsupervised manner, i.e. without informations about the desired classes. In
practice this is achieved by grouping features θi that are close to each other
using, for example, the K-means++ algorithm [7] presented in Section 1.4.
The Indian Pines dataset can be used as a clustering dataset. Indeed, clus-
tering the features {θi}Mi=1 into K sets gives a clustering of the pixels since
each θi is associated to one pixel xi.

In the second case, the set of features {θi}Mi=1 is divided into two non-
overlapping sets: a training set {θi}Mtrain

i=1 with labels {yi}Mtrain
i=1 and a test

set {θi}Mtest
i=1 . The goal is to classify the test set by leveraging the training

that provides informations on the classes. An example of a classifier is the
Nearest centroïd classifier presented in Section 1.4. Briefly, it computes the
center of mass, sometimes called the mean, of each class in the training set.
Then, it classifies the test set by searching the closest the center of mass of
a given point. On the Breizhcrops dataset, we recall that each feature θi is
associated with a time series. Thus, a classifier learns to classify time series
with the training set. Then, it infers the labels of the features from the test
set. By doing so, we get a classification of the time series of original test
set.

1.3 . Statistical models and their features

In Section 1.2, we presented the clustering/classification pipeline from
Figure 1.7. Its second step performs statistical estimation. The objective of
this section is to go more into details on the estimation theory. We mention
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the essential concepts to understand the following sections and chapters of
the manuscript. For a complete presentation of the topic, the reader is
referred to the book [76].

1.3.1 . Some reminders on the estimation theory
In this section, we recall some classical definitions and results from the

estimation theory. Given a measurement {xi}ni=1 in the sample space X ,
we seek a parameter θ in the parameter space E , a linear space (e.g. Rq,
the set of symmetric matrices, ...). Indeed, we assume that samples fol-
low a statistical distribution for which a probability density function (PDF)
exists. The latter depends on the parameter θ which is assumed to be
a discriminant feature for a given application. Therefore, θ must be esti-
mated. To motivate the introduction of the estimation theory, we point out
that many problems can be written as estimation problems. They typically
arise in many signal processing and machine learning topics such as change
detection [91, 90], dimensionality reduction [131], graphical model estima-
tion [57] and clustering [67]. Before going any further, it is worth noting that
the parameter space E is a q-dimensional linear space. We endow it with
the Euclidean inner product ⟨θ1, θ2⟩E = vec(θ1)

T vec(θ2) and the Euclidean
distance dE(θ1, θ2) = ∥vec(θ1)− vec(θ2)∥2 where vec : E → Rq vectorizes
the input by stacking its coordinates into a vector. It should be noted that
the definitions and results stated in this subsection are extended to possibly
non-linear spacesM in Chapter 2, Section 2.5.

In practice, an estimate θ̂ of θ is produced from the measurement {xi}ni=1.
The corresponding mapping from X to E is called an estimator.

Definition 1. An estimator θ̂ : X → E maps every measurement {xi}ni=1

to an estimate θ̂({xi}ni=1).

It should be noted that, as mentioned earlier, the estimators presented in
this section are associated with statistical distributions. However, this is not
mandatory. Indeed, estimators can be defined without assuming that data
follow a given statistical distribution, e.g. see the M -estimators [86, 71].
Then, a central tool to the estimation theory is the negative log-likelihood
(NLL) function. Let a measurement {xi}ni=1 ∈ X be a realization of a
random variable X following a PDF f parametrized by θ ∈ E , i.e.

X ∼ f(.; θ), (1.3)
then, the NLL L is defined as minus the logarithm of f .

Definition 2. Given {xi}ni=1 ∈ X and a PDF such that ∀θ ∈ E
f({xi}ni=1; θ) > 0, the negative log-likelihood (NLL) function L : E → R
is defined by

L(θ|{xi}ni=1) = − log f({xi}ni=1; θ).
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In the rest of the subsection, we assume that the NLL is at least twice
differentiable, which is verified for usual distributions. The definition of
the NLL on E enables the derivation of an estimator of the true parame-
ter θ called the maximum likelihood estimator (MLE). The intuition is to
find the PDF θ 7→ f({xi}ni=1; θ) that is the most likely to produce the
measurement {xi}ni=1 ∈ X . The MLE realizes this maximization. By
recalling that maximizing θ 7→ f({xi}ni=1; θ) is equivalent to minimizing
θ 7→ − log f({xi}ni=1; θ), we get the following definition.

Definition 3. Given {xi}ni=1 ∈ X , the MLE θ̂ ∈ E is the minimizer of the
NLL function

θ̂ = argmin
θ∈E

L(θ|{xi}ni=1).

Once an estimator is defined, the question of its performance arises. To
answer this question, the theory of Cramér-Rao bounds (CRB) has been
developed [47, 116]. Indeed, the latter lower bounds, in the Loewner sense,
the covariance matrices of estimators for a given statistical problem. Thus,
inequalities are derived and estimators are compared to these lower bounds.
In the following, the estimator θ̂ is seen as a random variable. Indeed, each
new measurement {xi}ni=1 is associated with a new value for the estimator.
Thus statistics of θ̂ can be computed. We begin by defining the bias of an
estimator.

Definition 4. The bias of an estimator θ̂ ∈ E for a given parameter θ ∈ E
is the mean error vector

bθ = E
[
vec(θ̂)− vec(θ)

]
.

An estimator is unbiased if its bias is zero everywhere

bθ = 0 for all θ ∈ E .

For simplicity, in the following, we focus on unbiased estimators. However,
the following definitions can be extended to biased estimators. Then, the
covariance matrix of an unbiased estimator is presented. To do so, we recall
the definitions of two sets. The sets of q × q symmetric matrices and q × q
symmetric positive semidefinite matrices are defined as

Sq =
{
Σ ∈ Rq×q : ΣT = Σ

}
, (1.4)

and
S+
q =

{
Σ ∈ Sq : ∀x ∈ Rq, xTΣx ≥ 0

} (1.5)
respectively.
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Definition 5. For an unbiased estimator θ̂, the covariance matrix Cθ ∈
Rq×q is a symmetric, positive semidefinite matrix given by

Cθ = E
[
(vec(θ̂)− vec(θ))(vec(θ̂)− vec(θ))T

]
.

From Definition 5, the trace of Cθ is the variance of the estimator θ̂

Tr(Cθ) = E
[
d2E(θ̂, θ)

]
= E

[
|| vec(θ̂)− vec(θ)||22

]
. (1.6)

This variance is also sometimes referred as the Mean Squared Error (MSE)
since it measures the quadratic error between the estimator θ̂ and the true
parameter θ in average. A last definition in this subsection is the Fisher
information matrix. This matrix is leveraged to derive CRBs.

Definition 6. The Fisher information matrix F θ is the q × q symmetric,
positive semidefinite matrix whose entries are given by

(F θ)ij = E
[
∂L(θ|{xi}ni=1)

∂θi
∂L(θ|{xi}ni=1)

∂θj

]
= E

[
∂2L(θ|{xi}ni=1)

∂θi∂θj

]
where L is the NLL from Definition 2, ∂.

∂θi
the partial derivative with respect

to the ith coordinate of θ and ∂2.
∂θiθj

the second partial derivative with respect
to the ith and jth coordinates of θ.

With the tools defined previously, we are now able to present the main the-
orem of CRBs for unbiased estimators.

Theorem 1. Let θ ∈ E and consider an estimation problem on E such
that the Fisher information matrix F θ is invertible. Then, for any unbiased
estimator, the covariance matrix Cθ obeys the following matrix inequality

Cθ ⪰ F−1
θ

where ⪰ is the Loewner inequality, i.e. Cθ − F−1
θ ∈ S+

q .

From Theorem 1, we get the following CRB

E
[
d2E(θ̂, θ)

]
= E

[
|| vec(θ̂)− vec(θ)||22

]
≥ Tr

(
F−1
θ

)
. (1.7)

In general, the MLEs are consistent, i.e. they tend to the true parame-
ter when the number of measurements tends to the infinity. Also they are
asymptotically unbiased and efficient, i.e. they reach the CRB of the estima-
tion problem when the number of measurements tends to the infinity. This
means that these estimators are asymptotically optimal which justifies their
use. In practice, the convergence of the MLE towards their CRBs is fast
and thus the optimal variance is reached for reasonable numbers of samples.
The following theorem is restricted to independent and identically distributed
samples however it can be extended to other cases; see [76, Chapter 7].
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(a) SCM (b) Tyler’sM -estimator
Figure 1.8: Set of data points {xi}ni=1 ⊂ R2 with outliers. The samplecovariance matrix (SCM), from Proposition 1, is biased towards the out-liers whereas the Tyler’sM -estimator, from Proposition 3, is robust tothem.
Theorem 2. Assuming that the samples from the measurement {xi}ni=1

are independent realizations of an identical random variable of PDF f sat-
isfying somemild regularity conditions described in [76, Chapter 7], then the
MLE θ̂ of the unknown parameter θ is asymptotically distributed according
to √

n
(
vec(θ̂)− vec(θ)

)
−−−→
n→∞

N (0,F−1
θ )

where F θ is the Fisher information matrix of a single sample xi eval-
uated at the true value of the unknown parameter, i.e. (F θ)ij =

E
[
∂L(θ|xi)
∂θi

∂L(θ|xi)
∂θj

]
= E

[
∂2L(θ|xi)
∂θi∂θj

]
.

1.3.2 . Gaussian distribution and Tyler’s M-estimator
We presented some of the basics of the estimation theory in the previous

subsection. Two standard estimators are presented in this subsection. In
signal processing and machine learning, a classical statistical model is the
multivariate Gaussian distribution. Indeed, signal and noise are often mod-
eled with this distribution thanks to the Central Limit Theorem. The latter
states that the sum of n independent and identically distributed random vari-
ables with finite mean and variance converge to a Gaussian distribution as
n → ∞. Furthermore, classical classification algorithms, such as the linear
discriminant analysis, assume that data are Gaussian. This assumption gives
simple closed form formula for the classification rules and good performance
in practice. The Gaussian distribution is parametrized by the location µ ∈ Rp

and the covariance matrix Σ ∈ S++
p where S++

p is the set of p×p symmetric
positive definite matrices

S++
p =

{
Σ ∈ Sp : ∀x ̸= 0 ∈ Rp, xTΣx > 0

}
. (1.8)
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To make the transition with the previous sections, here the feature is θ =
(µ,Σ), M is the non-linear space Rp × S++

p and E is the Euclidean space

Rp ×R
p(p+1)

2 that contains the location and the upper triangular part of the
covariance matrix. Then, the formal definition of the Gaussian distribution
is given.

Definition 7. A random vector x ∈ Rp follows a multivariate Gaussian
distribution if its PDF writes

fG(x;µ,Σ) = (2π)−
p
2 |Σ|−

1
2 exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
where µ = E[x] ∈ Rp is the location and Σ = E

[
(x− µ)(x− µ)T

]
∈

Rp×p is the covariance matrix. In this case, we write x ∼ N (µ,Σ).

It should be noted that the PDF of the Gaussian distribution is entirely
determined by the location and covariance matrix. The latter are easily
estimated using the MLEs which solve the following problem

minimize
(µ,Σ)∈Rp×S++

p

{
LG(µ,Σ|{xi}ni=1)=log |Σ|+1

n

n∑
i=1

(xi−µ)TΣ−1(xi−µ)

}
.

(1.9)
Proposition 1. Given ameasurement {xi}ni=1, the MLEs of the parameters
µ and Σ of the Gaussian distribution N (µ,Σ) are the sample mean and
the sample covariance matrix9 (SCM).

µ̂SM =
1

n

n∑
i=1

xi

Σ̂SCM =
1

n

n∑
i=1

(xi − µ̂SM)(xi − µ̂SM)
T .

From Proposition 1, the minimization problem (1.9) admits a solution if and
only if the centered data matrix is full rank (or row full rank), i.e. rank([x1−
µ̂SM, · · · ,xn − µ̂SM]) = p. Indeed, if its not full rank, Σ̂SCM only belongs
to S+

p and not to S++
p .

However, the Gaussian distribution is not always well suited. Indeed, the
noise can be impulsive or data can include outliers such as mislabeled data
in classification. In these cases, the Gaussian MLEs are biased towards these
outliers and thus performance are deteriorated. Many statistical tools exist

9Sometimes, the SCM has 1
n−1 factor instead of 1

n in order to be an unbiased esti-mator of the covariance matrix. In the rest of the manuscript, the SCM refers to theMLE of the covariance matrix of the Gaussian distribution, i.e. has a 1
n factor.
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to remediate to this problem such as the elliptically contoured distributions
(complex elliptically symmetric distribution for complex data) [33, 104] or
the M -estimators [86, 71]. Here, we present non-centered mixtures of scaled
Gaussian distributions (NC-MSG), i.e.

xi
d
= µ+

√
τiΣ

1
2ni (1.10)

with d
= means "equal in distribution" (same cumulative distribution func-

tions), τi > 0 is the sample dependent scale (sometimes called deterministic
texture), and ni ∼ N (0, Ip) are independent. For example, this model has
been successfully applied to radar imaging [91, 106] and radar detection [46,
107] to model the clutter.

Definition 8. A set of independent random vectors {xi}ni=1 ⊂ Rp follows
a NC-MSG (also called compound Gaussian distribution with deterministic
textures) if its PDF writes

fNC-MSG({xi}ni=1;µ,Σ, τ ) =
n∏
i=1

fG(xi;µ, τiΣ)

where µ is the location, Σ is the scatter matrix, τ contains the textures
{τi}ni=1 and fG is the Gaussian PDF from Definition 7. In this case, we write
xi ∼ N (µ, τiΣ).

Then, the NLL of the MSG is minimized to estimate its parameters,

minimize
(µ,Σ,τ )∈Rp×S++

p ×(R+
∗ )n

n∑
i=1

LG(µ, τiΣ|{xi}ni=1) (1.11)

where LG is defined in (1.9). The solution of this problem satisfies a system
stated in the next proposition.

Proposition 2. Given a measurement {xi}ni=1, the MLEs µ̂, Σ̂ and τ̂ of the
parameters of a NC-MSG xi ∼ N (µ, τiΣ) satisfy

µ̂ =

(
n∑
i=1

1

τ̂i

)−1 n∑
i=1

xi
τ̂i

Σ̂ =
1

n

n∑
i=1

(xi − µ̂)(xi − µ̂)T

τ̂i

τ̂i =
1

p
(xi − µ̂)T Σ̂

−1
(xi − µ̂).
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If the location parameter µ is known and all xi ̸= µ then solving the system
from Proposition 2 reduces to solving the following equation

Σ̂ =
p

n

n∑
i=1

(xi − µ)(xi − µ)T

(xi − µ)T Σ̂
−1
(xi − µ)

≜ HTy

(
Σ̂
) (1.12)

with respect to Σ̂ and then computing the textures with

τ̂i =
1

p
(xi − µ)T Σ̂

−1
(xi − µ). (1.13)

Fixed point Equation (1.12) has been extensively studied in [136, 108, 110,
104, 56] and the following proposition gives its solution.

Proposition 3. If n > p and for any p two by two distinct indices i(1) <
· · · < i(p) chosen in J1, nK the centered data {xi(j)−µ}pj=1 are linearly inde-
pendent then Equation (1.12) has a unique solution (up to a strictly positive
scale factor). In this case, it is solved iteratively with the following iterates

Σ̂
(l+1)

= HTy

(
Σ̂

(l)
) (1.14)

which converge in S++
p for all initializations Σ̂(1)

∈ S++
p . This estimator is

called the Tyler’sM -estimator.

We illustrate the robustness to outliers of the Tyler’s M -estimator compared
to the SCM in Figure 1.8. Unfortunately, when the location µ is unknown,
the system from Proposition 2 does not necessarily admit a solution. If it
admits one, there is no guarantee that fixed point iterations converge to it.
In practice, µ is estimated with the sample mean µ̂SM = 1

n

∑n
i=1 xi. Then, it

is subtracted to the samples xi before applying (1.14) to estimate the scatter
matrix and (1.13) to estimate the textures.

1.3.3 . Regularized and low rank structure estimators
In the previous subsection, we presented the MLEs of the Gaussian dis-

tribution in Proposition 1. We said that the SCM is the MLE if only if the
centered data matrix is full rank, i.e. rank([x1− µ̂SM, · · · ,xn− µ̂SM]) = p.
Otherwise, the SCM does not belong to S++

p since its rank is strictly inferior
to p. This problem arises when n < p, i.e. when the number of data is
inferior to their dimension. This can easily happen in multi-spectral imagery
since p can be several hundred whereas n is the number of data in a neigh-
borhood of pixel and thus cannot exceed several dozens. Another problem is
when the conditioning of the SCM is large; i.e. when the ratio of its largest
eigenvalue over its lowest one is large. This is problematic since a small
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perturbation in the eigenvalues heavily affects the output of algorithms us-
ing this estimator. Several approaches have been proposed in the literature
to remediate to these problems. We present two of them: the regularized
estimators and estimators with a low rank structure. It should be noted that
all the presented reasoning can be applied to the Tyler’s M -estimator. Some
references on regularized and structured Tyler’s M -estimators are [103, 126,
100] and [127, 17] respectively.

We begin with the regularized estimators which are estimators shrunk
towards a target. This shrinkage is defined with the help of a penalty,
also sometimes referred as a regularization. A classical example is the SCM
shrunk towards the identity. Given β ∈ [0, 1], we define the following opti-
mization problem which is the minimization of the Gaussian NLL (1.9) with
an additional penalty,

minimize
(µ,Σ)∈Rp×S++

p

LG(µ,Σ|{xi}ni=1) + β Tr

(
Σ−1

[
Tr(Σ̂SCM)

p
Ip − Σ̂SCM

])
︸ ︷︷ ︸

penalty

.

(1.15)
The minimizer of this optimization problem is presented in the next propo-
sition.

Proposition 4. The minimizer of (1.15) is the sample mean and the SCM
shrunk towards the identity

µ̂SM =
1

n

n∑
i=1

xi,

Σ̂ = (1− β)Σ̂SCM + β
Tr(Σ̂SCM)

p
Ip.

From Proposition 4, the penalty from Equation (1.15) simply shrinks the
eigenvalues of the SCM towards their mean. If β = 0, we recover the MLE
of the Gaussian distribution. Otherwise, if β ∈]0, 1], Equation (1.15) admits
a minimizer if and only if at least one centered data xi− µ̂SM is not zero, i.e.
rank([x1−µ̂SM, · · · ,xn−µ̂SM)] ≥ 1. Hence, this estimator does not require
the centered data matrix to be of full rank as for the SCM. Furthermore,
the conditioning of the estimator Σ̂ is improved since λmax

λmin
→ 1 as β →

1; where λmax and λmin are the maximum and minimum eigenvalues of Σ̂
respectively. We mention that various strategies to choose automatically the
hyperparameter β have been proposed; e.g. see [78, 37, 101].

Then, we present an estimator with a low-rank structure derived in [131].
This estimator is the MLE of a statistical model that assumes that a Gaussian

35



signal is embedded in a white Gaussian noise (WGN). For all rank k <
min{p, n}, this model writes

x ∼ N (µ,Σ) (1.16)
where Σ = ΣLR + σ2Ip with ΣLR ∈ S+

p , rank(ΣLR) = k and σ2 > 0.
ΣLR is the covariance of the signal whereas σ2Ip is the covariance of the
noise. Then, the optimization problem to estimate the parameters µ and Σ
is the minimization of the Gaussian NLL while respecting the structure of
the covariance matrix,

minimize
(µ,ΣLR,σ2)∈Rp×S+

p ×R+
∗

LG(µ,Σ|{xi}ni=1) (1.17)
subject to Σ = ΣLR + σ2Ip,

rank(ΣLR) = k.

The solution of (1.17) is given in the following proposition.

Proposition 5. The minimizer of (1.17) is the sample mean and the SCM
whose p− k lowest eigenvalues have been averagedµ̂SM =

1

n

n∑
i=1

xi

Σ̂ = Σ̂LR + σ̂2Ip

where Σ̂LR = U k(Λk− σ̂2Ik)U
T
k , σ̂2 =

1

p− k

p−k∑
i=1

(Λp−k)ii with the singular

value decomposition (SVD) of the SCM, with eigenvalues in the descending
order, denoted

Σ̂SCM
SVD
=
[
U k,U p−k

](Λk (0)
(0) Λp−k

)[
U k,U p−k

]T
.

If k is chosen such as k < rank(Σ̂SCM) then (1.17) admits the solution of
Proposition 5. Thus, n can be arbitrary small and Σ̂ from Proposition 5 still
belongs to S++

p . Thus, Equation (1.17) admits a minimizer if and only if at
least one centered data xi− µ̂SM is not zero, i.e. rank([x1− µ̂SM, · · · ,xn−
µ̂SM)] ≥ 1, as for the regularized estimation from Equation (1.15). A second
remark is that the conditioning of Σ̂ is greater than the one of the SCM
since σ̂2 ≥ λmin where λmin is the lowest eigenvalue of the SCM. Finally, it
should be noted that there exists methods to choose automatically the rank
k; see e.g. [92].
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1.4 . K-means++ and Nearest centroïd classifier

Once the statistical features are estimated, it remains to cluster/classify
them. It is the third step of the pipeline from Figure 1.7. To do so, we lever-
age two simple machine learning algorithms: K-means++ [7] and Nearest
centroid classifier. The first one is a clustering algorithm, i.e. it does not
make use of labels. The second one uses labels and thus is a classification
algorithm. In the following, a feature is denoted θ and belongs to the set
M. For example, a feature can be the SCM which is a symmetric positive
definite matrix, i.e. θ = Σ̂SCM ∈ M = S++

p . We insist on the fact that
the described algorithms are general. Indeed, they also apply to couples of
parameters, e.g. the MLE of the Gaussian distribution θ = (µ̂, Σ̂SCM), to
parameters with constraints, e.g. belonging to a sphere, and etc ...

1.4.1 . Divergence, distance, and center of mass
Before going further, we give several definitions that are central for these

algorithms. The first is one is that of divergence. This divergence measures
the proximity between pairs of features θi and is leveraged in the definition
of the center of mass.

Definition 9. Given a setM, the function δ :M×M→ R is a divergence
if it satisfies the following conditions for all θ1, θ2 ∈M

1. δ(θ1, θ2) ≥ 0 (positivity),

2. δ(θ1, θ2) = 0 if and only if θ1 = θ2 (separability).

Given a subset of indices I ⊂ N∗, a definition of the center of mass c,
associated with δ, of a set of features {θi}i∈I is a minimizer of the variance
V [75],

c = argmin
θ∈M

{
V (θ) =

1

Card (I)
∑
i∈I

δ(θ, θi)

}
(1.18)

where Card is the operator that returns the cardinality of a given set. We add
two remarks to this definition. First, the minimum (1.18) is not necessarily
unique and thus the center of mass of {θi}i∈I is also not necessarily unique.
Second, in practice δ is differentiable with regards to its two arguments and
we will simply look for a stationary point, i.e. gradV (θ) = 0 with gradV is
a gradient of V . A subset of the divergences which is to be distinguished is
that of the distances, i.e. symmetrical divergences that respect the triangle
inequality.

Definition 10. Given a setM, the function d :M×M→ R is a distance
if it is a divergence (Definition 9) and if it satisfies the following conditions
for all θ1, θ2, θ3 ∈M
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1. d(θ1, θ2) = d(θ2, θ1) (symmetry),

2. d(θ1, θ2) ≤ d(θ1, θ3) + d(θ3, θ2) (triangle inequality).

Often divergences (that are not distances) are homogeneous to squared dis-
tances. Thus, (1.18) becomes

c = argmin
θ∈M

{
V (θ) =

1

Card (I)
∑
i∈I

d2(θ, θi)

}
. (1.19)

Then, we give two examples. The first one presents the Gaussian Kullback
Leibler (KL) divergence on S++

p and its associated center of mass which
is the harmonic mean. The second one presents the Euclidean distance
between matrices and its associated center of mass which is the arithmetic
mean. Both examples give practical divergences between covariance matrices
Σi ∈ S++

p as well as practical centers of mass.

Example 1. Let {Σi}i∈I ⊂ S++
p with I ⊂ N∗, the Gaussian KL divergence

on S++
p is

δKL(Σi,Σj) =
1

2

(
Tr
(
Σ−1
j Σi

)
+ log

∣∣ΣjΣ
−1
i

∣∣− p) . (1.20)
The center of mass C ∈ Rp×n is defined as

C = argmin
Σ∈S++

p

{
V (Σ) =

1

Card (I)
∑
i∈I

δKL(Σ,Σi)

}
. (1.21)

By cancelling the gradient of V , we get that the center of mass is the har-
monic mean

C =

(
1

Card (I)
∑
i∈I

Σ−1
i

)−1

. (1.22)
Example 2. Let {Ai}i∈I ⊂ Rp×n with I ⊂ N∗, a distance on Rp×n is

dRp×n(Ai,Aj) = ∥Ai −Aj∥2 =
√

Tr
(
(Ai −Aj)

T (Ai −Aj)
)
. (1.23)

The center of mass Y ∈ Rp×n is defined as

C = argmin
Y ∈Rp×n

{
V (Y ) =

1

Card (I)
∑
i∈I

d2Rp×n(Y ,Ai)

}
. (1.24)

By cancelling the gradient ofV , we get that the center ofmass is the classical
elementwise arithmetic mean

C =
1

Card (I)
∑
i∈I

Ai. (1.25)
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Algorithm 1: K-means++ onM with the divergence δ
Input : A set {θi}Mi=1 ⊂M to partition, a number of clustersKand a number of initializations ninit.
Output: Best partition S⋆.
ϕ⋆ ← +∞
for 1 to ninit do# InitializationTake one center c1, drawn uniformly from {θi}Mi=1.

while Card({ci}) < K do
Draw a new center cj ∈ {θi}Mi=1 with probability
P (cj = θi) =

D2(θi)
2∑M

m=1D
2(θm)2

end# K-means
while no convergence do

Assignment step: ∀i ∈ J1,MK assign θi to the cluster Sjwith the nearest cj , j ∈ J1, KK, using the divergence δ.
Update step: Compute new centers cj of clusters Sj ,
∀j ∈ J1, KK, using (1.18).

endCompute ϕ(S) with (1.26).
if ϕ(S) < ϕ⋆ then

S⋆ ← S
ϕ⋆ ← ϕ(S)

end
end

1.4.2 . K-means++

We now have defined the necessary tools to implement K-means++ and
Nearest centroïd classifier associated to any divergence δ. We begin by
describing K-means++. In the following, we assume having a set of features
{θi}Mi=1 to partition into K subsets. In the following, the partition is denoted
S = {S1, · · · , SK}. We recall that such a partition is a set of K non-
empty subsets such that every element of {θi}Mi=1 belongs to exactly one
of these subsets. Since every θi is associated with one data point X i, a
partition of {θi}Mi=1 gives a partition of the original data {X i}Mi=1. First
of all, K-means++ initializes cluster centers {cj}Kj=1 by recursively choosing
points θi with probability D(θi)∑M

m=1D(θm)
[7]. Here, D(θi) denotes the divergence

δ from θi to the closest center among those already chosen. Intuitively,
this initialization is performed such that cluster centers are far away from
each other at the initialization. We will see later that this initialization
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gives a theoretical guarantee to K-means++. Once these cluster centers are
initialized, K-means++ iteratively applies two steps [7]:

1. Assignment step: each θi is assigned to the cluster Sj whose center
cj is the closest using the divergence δ,

2. Update step: each new cluster center cj is computed as (1.18).
Once terminated, K-means++ outputs the partition S. Intuitively, K-
means++ finds clusters Sj whose points θi ∈ Sj are close to each other
using the divergence δ.

To analyze the performance of K-means++ algorithm, we begin by defin-
ing the within-cluster sum of squares (WCSS),

ϕ(S) =
K∑
j=1

∑
θi∈Sj

δ(cj, θi). (1.26)
Unfortunately, finding the optimal partition that reaches ϕOPT, the minimum
value of (1.26), is a NP-hard problem [81]. However, we can prove that
K-means++ algorithm decreases (1.26) and converges. Indeed, both steps
"Assignment step" and "Update step" decrease (1.26) and, since δ is a
divergence, ϕ(S) ≥ 0 for all the partitions S. Remarkably, [7] goes much
further by proving that if δ is a squared distance, i.e. δ ≡ d2, then in
expectation the WCSS of a partition produced by K-means++ algorithm is
upper bounded with respect to ϕOPT

E[ϕ] ≤ 8(lnK + 2)ϕOPT (1.27)
where the expectation is taken with respect to the seeding procedure of the
initialization. 10 This property is central to K-means++ algorithm since it is
proven that a plain K-means [80] cannot admit such a bound. Moreover, this
bound is true from the initialization of K-means++ algorithm. However, the
clustering returned by K-means++ is still not necessarily a global minimum
of (1.26). Hence, a standard practice is to run the algorithm several times
with different initializations and then to keep the clustering with the lowest
WCSS (1.26). K-means++ onM associated with the divergence δ and with
the strategy of several initializations is presented in Algorithm 1.

1.4.3 . Nearest centroïd classifier
Let a K-class classification problem on a set M endowed with a diver-

gence δ and a center of mass computation (1.18). Thus, a training set Ttrain =
{(θi, yi)}Mtrain

i=1 ⊂M× J1, KK as well as a test set Ttest = {υi}Mtest
i=1 ⊂M are

10The proof in [7] relies on the Euclidean distance between vectors however it canbe easily extended to any distance as stated in [98].
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Algorithm 2: Nearest centroïd classifier onM with the diver-gence δ
Input : A training set Ttrain = {(θi, yi)}Mtrain

i=1 ⊂M× J1, KK and atest set Ttest = {υi}Mtest
i=1 ⊂M.

Output: Predictions of the test set {yi}Mtest
i=1 ⊂ J1, KK.# Training

for j = 1 toK doCompute the center of mass cj of {θi ∈ Ttrain|yi = j} using(1.18).
end# Testing
for i = 1 toMtest doAssign υi to the class with the nearest center of mass cjusing the divergence δ.
end

available. The objective is to present Nearest centroïd classifier to predict
the labels of the test set. This algorithm is simple and consists of two steps.
First, it computes the center of mass of each class, also called class center,
i.e. it computes the center of mass of {θi ∈ Ttrain|yi = j} for all j ∈ J1, KK.
Then, it assigns to each υi ∈ Ttest the label of the closest class center using
the divergence δ. Nearest centroïd classifier is detailed in Algorithm 2.

1.5 . Riemannian perspectives of the clustering-classification
pipeline

So far, we definedM as being a set containing the estimates of a given
statistical estimator. In Section 1.3, we gave some examples of these esti-
mators and we mentioned that they belong to many different sets M such
as S++

p , Rp × S++
p , Rp × S+

p , S+
p with rank = k, ... All these sets can be

formalized as Riemannian manifolds. The interests of this formalization are
numerous such as transforming non-convex estimation problems to geodesi-
cally convex ones, handling constraints of the parameter space, developing
fast estimators, computing Fisher-Rao distances (for machine learning ap-
plications), deriving Intrinsic Cramér-Rao bounds (ICRBs), ... Therefore,
in the following, M is a Riemannian manifold. The latter generalizes the
classical Euclidean sets. Its formalism as well as the motivation of its usage
are detailed latter. We begin this section with an implementation of the
clustering-classification pipeline from Section 1.2 on the Riemannian mani-
fold S++

p . Then, we highlight the different contributions of this manuscript
on this pipeline.
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1.5.1 . Riemannian geometry in the clustering-classification pipeline
Shortly, a Riemannian manifold is a set that can be curved but is locally

Euclidean. An example is the p − 1-dimensional sphere Sp−1 in Rp with
the Euclidean inner product. Other examples are the different parameter
spaces of the cost functions from Section 1.3. The theory of the Riemannian
geometry [1, 19] is introduced in Chapter 2 and no prior knowledge in this
field of the mathematics is required to read this manuscript.

To motivate the use of the Riemannian geometry, we detail a basic imple-
mentation of the clustering-classification pipeline, presented in Section 1.2,
on the Riemannian manifold of the symmetric positive definite matrices S++

p .
This Riemannian manifold is introduced in Chapter 2. Here, we only use its
Riemannian distance. The pipeline we present in this section has been applied
with great successes in the last decade in the EEG/MEG (Electroencephalog-
raphy/Magnetoencephalography) community [8, 45] as well as in the SAR
community [54]. First of all, [8] assumes that data {xi}ni=1 are independent
realizations of a random variable x following a centered Gaussian distribu-
tion, i.e. x ∼ N (0,Σ). Thus, in the feature estimation step (second step),
the corresponding NLL is minimized by the SCM

Σ̂SCM = argmin
Σ∈S++

p

LG(Σ|{xi}ni=1). (1.28)
Hence, each batch of data {xi}ni=1 is transformed into a covariance matrix
that belongs to S++

p . It implies that the classification (third step) must be
performed on S++

p . To do so, [8] uses the Riemannian distance on S++
p .

Given Σ1,Σ2 ∈ S++
p , it writes

dS++
p

(Σ1,Σ2) =
∥∥∥log (Σ− 1

2
1 Σ2Σ

− 1
2

1

)∥∥∥
2

(1.29)
where log : S++

p → Sp is the matrix logarithm. One of the key properties of
dS++

p
is its affine invariance. Indeed, we have that, for all A ∈ GLp, the set

of p× p invertible matrices,

dS++
p

(
AΣ1A

T ,AΣ2A
T
)
= dS++

p
(Σ1,Σ2). (1.30)

This means that for data with a linear mixing model (1.1) xi = Awi (ne-
glecting the noise) with A ∈ GLp, we have11

dS++
p

(Σ1,Σ2) = dS++
p

(Θ1,Θ2) (1.31)
where Σ1,Σ2 are SCMs computed on raw data xi and Θ1,Θ2 are the cor-
responding SCMs computed on unmixed signals wi, i.e. Θ1 = A−1Σ1A

−T

11In the case where A has more rows than columns, then the data xi must firstbe expressed with respect to a basis of span(A); e.g. doing a principal componentanalysis.
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and Θ2 = A−1Σ2A
−T . Intuitively, this means that we can measure a dis-

tance between covariances of unmixed signals wi by measuring a distance
between covariances of raw data xi. This way, we remove the need of a
preprocessing step to unmix the signal. Also, Equation (1.30) is true for all
A ∈ GLp, hence it is robust to A contrary to a preprocessing step that
would unmix the signal with an estimated Â. Then, from Equation (1.19),
the center of mass Σ of a set of covariance matrices {Σi}i∈I is

Σ = argmin
Σ∈S++

p

1

Card(I)
∑
i∈I

d2S++
p

(Σ,Σi). (1.32)
This minimization problem can be achieved with a Riemannian gradient de-
scent on S++

p . The algorithm of the Riemannian gradient descent general-
izes the classical gradient descent to Riemannian manifolds and is detailed in
Chapter 2. It should be noted that, using the affine invariance (1.30), if Σ is
the center of mass of {Σi}i∈I , then Θ = A−1ΣA−T is the center of mass
of {Θi = A−1ΣiA

−T}i∈I . Finally, [8] uses the distance (1.29) and the cen-
ter of mass (1.32) in the Nearest centroïd classifier described in Algorithm 2
to classify the SCMs. In a clustering problem, the Nearest centroïd classi-
fier can be replaced by K-means++ described in Algorithm 1. This ends a
first implementation of the clustering-classification pipeline described in Sec-
tion 1.2. An important remark is that, thanks to the affine invariance (1.30),
classifying (with a Nearest centroïd classifier or a K-means++) the raw data
xi or the unmixed signal wi gives exactly the same labels prediction with this
pipeline. From a practical point of view, we report that using this pipeline,
on the Breizhcrops dataset, with the Euclidean distance between SCM (1.23)
gives 23% of OA versus 56% with the affine invariant distance (1.30).

1.5.2 . Contributions
Many contributions can be done on the presented pipeline. A first axis of

contributions concerns the feature estimation step. Indeed, other estimators
of the covariance matrix than the SCM can be used. For example, [54] uses
the Tyler’s M -estimator (1.12) instead of the SCM for SAR image classifi-
cation. Many other possibilities exist: robust estimators, joint estimators
of the location and the covariance matrix, subspaces estimators, and etc ...
All these estimators are solutions of a cost function (1.2) over a Riemannian
manifoldM. In the case where a closed form formula of the solution is not
known, Riemannian optimization can be employed on M. This is the first
axis of contributions: the development of estimators that rely on Riemannian
optimization. The advantages of the Riemannian optimization compared to
other more classical methods such as fixed points estimators are numerous.
We mention some of them:

• constrained estimators: easily handles constraints on the parameters,
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e.g. estimation of an orthogonal basis of a subspace,

• diversity of optimizers: many different Riemannian optimization algo-
rithms can be employed depending on the problem,

• guarantee of convergence: under reasonable conditions (which are
counterparts of Euclidean gradient based optimization algorithms con-
ditions) Riemannian gradient based optimization algorithms converge
to a solution,

• large scale learning: fast estimators with the Riemannian stochastic
gradient descent,

• geodesic convexity (convexity along geodesics, extension of straight
lines to manifolds): changing geodesics can transform a non-convex
problem to a convex one: uniqueness of the solution and fast opti-
mization on strongly geodesically convex cost functions,

• fast estimators with statistical manifolds (Riemannian manifolds
equipped with the Fisher information metric) for estimation problems,
etc ...

Contributions on this axis are presented in Chapters 3 and 4.
A second axis of contributions concerns the second step with the com-

putation of ICRB (CRBs on Riemannian manifolds). The latter illustrate the
performance of a given estimator on a Riemannian manifold. They present
several advantages compared to classical CRBs:

• constrained estimators: the Riemannian distance and the ICRB take
into account the constraints of the estimation problem, e.g. constraints
of orthogonality of a subspace basis, and thus are more interpretable
and easier to derive than their Euclidean counterparts

• parameter-free bounds: when the distance associated with the Fisher
information metric is known, the ICRB is the dimension of the param-
eter space and thus is parameter-free (this point of view is presented
in Chapter 2, Section 2.5).

Contributions on this axis are presented in Chapter 4 with the ICRBs of a
subspace estimation problem.

A third axis of contributions concerns the third step. Once features are
estimated, a divergence and its corresponding center of mass must be de-
fined. When a covariance matrix is estimated on S++

p then the Riemannian
distance (1.29) and its associated center of mass (1.32) can be used. Indeed,
it is affine invariant (1.30) and gives very good performance in practice
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compared to other more simple divergences such as the Euclidean distance.
However, whenM ≠ S++

p , e.g. when the location is added,M = Rp×S++
p ,

then other divergences must be developed. Indeed, the Riemannian distance
on a given given statistical manifold (different than S++

p ) is often intractable.
Chapter 3 presents contributions on the use of geodesic triangles on the sta-
tistical manifold of non-centered Gaussian distributions, i.e. M = Rp×S++

p .
Two affine invariant divergences are proposed and the associated centers of
mass are estimated using Riemannian optimization. When geodesics on the
statistical manifold are not known (which is often the case), other choices
must be made. Chapter 3 describes contributions on the use of a KL diver-
gence on the statistical manifold of NC-MSGs, i.e. M = Rp×S++

p ×(R+
∗ )

n.
The associated center of mass is estimated using Riemannian optimization.
Finally, Chapter 4 presents a simplification of the Fisher information metric
of a low-rank structured statistical model in order to get a closed form for-
mula of the Riemannian distance. Then, the associated center of mass is
derived using Riemannian optimization.

A fourth axis of contribution is the metric learning presented in Chap-
ter 5. So far, we estimate parameters θ that belong Riemannian manifolds
M. These parameters are clustered-classified using divergences and centers
of mass. The metric learning approach is different. Instead of using a pre-
defined metric on the parameter spaceM, we learn a metric directly on the
sample space X . Once this metric has been learned, data xi are whitened
by this metric and then classified directly on X . Chapter 5 shows that this
problem is closely related to covariance estimation problems. Two geodesi-
cally convex minimization problems are formulated and they are solved using
fast Riemannian optimizers.

The different contributions on the pipeline as well as the statistical models
are summarized in Figure 1.9.
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1.A . Appendix

1.A.1 . Classes of the Indian Pines dataset

# Class Number of samples1 Alfalfa 462 Corn-notill 1, 4283 Corn-mintill 7184 Corn 2295 Grass-pasture 4386 Grass-trees 7307 Grass-pasture-mowed 288 Hay-windrowed 4789 Oats 2010 Soybean-notill 94311 Soybean-mintill 2, 37112 Soybean-clean 57713 Wheat 20514 Woods 1, 26515 Buildings-Grass-Trees-Drives 29016 Stone-Steel-Towers 93Total 9, 859

Table 1.1: Indian Pines [9] classes.

1.A.2 . Classes of the Breizhcrops dataset

# Class Number of samples1 Barley 36, 9052 Wheat 89, 5553 Rapeseed 14, 7324 Corn 153, 9085 Sunflower 196 Orchards 3, 0707 Nuts 498 Permanent meadows 127, 8139 Temporary meadows 182, 212Total 608, 263

Table 1.2: Breizhcrops [118] classes.
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2 - Riemannian geometry, optimization and
intrinsic Cramér-Rao bounds

Riemannian geometry [1, 19] has received an increasing interest over the
years both for being theoretically appealing and for its multiple applications
in signal processing and machine learning. This chapter is devoted to the
introduction of the theory of Riemannian geometry as well as giving some
Examples of Riemannian manifolds. This presentation is meant to be self-
contained and requires only basic knowledge of linear algebra and calculus.
Riemannian geometry being a very rich theory, we concentrate only on the
exposition of the necessary tools for the following chapters. Several Rieman-
nian manifolds needed for these chapters are presented: the manifold of p×p
symmetric positive definite matrices with the affine invariance Riemannian
metric denoted S++

p , the manifold of p× p symmetric positive definite ma-
trices with unit determinant denoted SS++

p , the manifold of n-dimensional
strictly positive vectors denoted (R+

∗ )
n, the compact Stiefel manifold denoted

Stp,k, and the Grassmann quotient manifold of k-dimensional subspaces in
Rp denoted Grp,k.

Two uses of Riemannian geometry will follow us throughout this
manuscript: statistical estimation and classification on manifold. These ap-
plications typically make use of smooth embedded submanifolds of linear
spaces. Examples are the sphere or the set of symmetric positive definite
matrices (and its submanifolds). Thus, Section 2.1 begins by introducing
what is a Riemannian manifold with the smooth embedded submanifolds of
linear spaces. This introduction heavily relies on the excellent books [1, 19]
and does not make use of more advanced tools such as charts or atlases.
Furthermore, the presented concepts will be illustrated on the sphere in order
to build an intuition. Then, in Section 2.3, concepts from Section 2.1 are
extended to Riemannian quotient manifolds. These manifolds are of particu-
lar interest when dealing with functions with invariances such as functions of
linear subspaces. Examples of important manifolds for the next chapters are
presented in Sections 2.4. Finally, Intrinsic Cramér-Rao bounds are covered
in Section 2.5.

2.1 . Elements of Riemannian geometry

As explained in the introduction of this section, most smooth manifold
used in signal processing or machine learning are smooth embedded sub-
manifold of linear spaces. A linear space (or vector space) over the reals,
denoted E in the following, is a set whose elements may be added together
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and multiplied by real numbers. Classical examples of linear spaces are Rd,
Rn×p, Sp (set of p× p real symmetric matrices). This definition can be ex-
tended to any field such as the complex numbers. In order to define smooth
embedded submanifolds of linear spaces, linear maps and differentials are
introduced. Given E ,F two linear spaces, f : E → F is a linear map if
f(ax + by) = af(x) + bf(y) for all x, y ∈ E , a, b ∈ R. Let U, V be open
sets in two linear spaces E ,F . A map f : U → V is smooth if it is infinitely
differentiable on its domain. The differential of f at x is the linear map
D f(x) : E → F defined by

D f(x)[ξ] = lim
t→0

f(x+ tξ)− f(x)
t

(2.1)
where ξ ∈ E . D f(x)[ξ] is called the directional derivative of f at x in the
direction ξ. Some classical rules of differentiation have their extensions for
the directional derivatives. Given maps f, g : U → V the sum rule writes

D(f + g)(x)[ξ] = D f(x)[ξ] + D g(x)[ξ]. (2.2)
where (f + g)(x) = f(x) + g(x). Then, the product rule writes

D(f × g)(x)[ξ] = D f(x)[ξ]g(x) + f(x)D g(x)[ξ] (2.3)
where (f × g)(x) = f(x)g(x). Finally, the chain rule writes

D(f ◦ g)(x)[ξ] = D f(g(x))[D g(x)[ξ]] (2.4)
where (f ◦ g)(x) = f(g(x)). We give the directional derivates of some
classical maps on matrices in the following example.

Example 3. In this example, some directional derivatives of classical maps
are computed.

• Constant function: f(X) = C , for C ∈ Rp×n.

D f(X)[ξ] = lim
t→0

C −C

t
= 0.

• Identity function: f(X) = X , forX ∈ Rp×n.

D f(X)[ξ] = lim
t→0

X + tξ −X

t
= ξ.

• Trace function: f(X) = Tr(X), forX ∈ Rp×p.

D f(X)[ξ] = lim
t→0

Tr(X + tξ)− Tr(X)

t
= Tr(ξ).
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• Inverse function: f(X) = X−1, forX ∈ GLp.
To compute the directional derivative of f , we use the directive deriva-
tive of the constant function f(X)X = Ip and the product rule,

D(X 7→ f(X)X)[ξ] = D f(X)[ξ]X + f(X)ξ = 0.

Thus, we get the directional derivative of f

D f(X)[ξ] = −X−1ξX−1.

• Quadratic function: f(x) = 1
2
xTAx, for x ∈ Rp andA ∈ Sp the set

of p× p symmetric matrices.
First, we remark that

f(x+ tξ)− f(x) = 1

2
(x+ tξ)TA(x+ tξ)− 1

2
xTAx

= txTAξ +O(t2).

Thus, we get the directional derivative of f

D f(x)[ξ] = lim
t→0

f(x+ tξ)− f(x)
t

= xTAξ.

• Log-det function: f(Σ) = log |Σ|, for Σ ∈ S++
p the set of p × p

symmetric positive definite matrices.
First, we notice that for Σ ∈ Sp

|Σ+ tξ| = |Σ||Ip + tΣ− 1
2ξΣ− 1

2 |.

Thus, we get that for t small enough

log |Σ+ tξ| − log |Σ| = log |Σ|+ log |Ip + tΣ− 1
2ξΣ− 1

2 | − log |Σ|

= log |Ip + tΣ− 1
2ξΣ− 1

2 |

=
∑
i

log(1 + tλi)

where the λi are the (real) eigenvalues of Σ− 1
2ξΣ− 1

2 . It follows that

log |Σ+ tξ| − log |Σ| =
∑
i

log(1 + tλi)

= t
∑
i

λi +O(t2)

= tTr(Σ−1ξ) +O(t2).

Hence, we get the directional derivative of the log-det function

D f(Σ)[ξ] = lim
t→0

log |Σ+ tξ| − log |Σ|
t

= Tr(Σ−1ξ).
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• Determinant function: f(Σ) = |Σ|, for Σ ∈ S++
p .

To compute this directional derivative, we use the classical chain rule
applied on the log-det function. For all ξ ∈ Sp, we have

D log |Σ|[ξ] = D f(Σ)[ξ]

|Σ|
= Tr(Σ−1ξ).

Thus, we get the desired directional derivative

D f(Σ)[ξ] = |Σ|Tr(Σ−1ξ).

2.1.1 . Smooth embedded submanifold of a linear space
We move on to the definition of smooth embedded submanifolds, denoted

by M, of linear spaces E . Informally, these are subsets of E that are either
opens or defined by constraints h : E → Rk with k > 0. In the latter case,
a point x ∈ E belong toM if and only if h(x) = 0. Two important remarks
are made about h. First, it should be a smooth function. Second, its rank
should be constant and maximal, i.e. span(Dh(x)) = Rk. This last property
is enforced so that ker(Dh(x)) is a linearization (latter called tangent space)
ofM at x and thusM is locally diffeomorphic to Rk.

Definition 11 (Definition 3.10 of [19]). Let E be a linear space of dimension
d. A nonempty subsetM of E is a smooth embedded submanifold of E of
dimension q if either

1. q = d andM is open in E - we also call this an open submanifold
or

2. q = d − k for some k ≥ 1 and, for each x ∈ M, there exists a
neighborhood U of x in E and a smooth function h : U → Rk such
that

(a) If y is in U , then h(y) = 0 if only if y ∈M; and
(b) rank(Dh(x)) = k.

Such a function h is called a local defining function forM at x.

IfM is a linear subspace, we also call it a linear manifold.

Then, smooth curves c : I →M, with I an open interval of R, are defined
on M. Collecting velocities of the curves passing through x ∈ M, we get
the tangent space at x. Informally, it corresponds to a linearization ofM at
x. The tangent spaces are of utmost importance. Indeed, we will see later
that they are linear spaces. Thus, classical operations such as addition or
multiplication, and operations related to inner products are possible on the
tangent space contrary to the manifold (which often is not a linear space !).
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Definition 12 (Definition 3.14 of [19]). LetM be a subset of E . For all
x ∈M, define

TxM = {ċ(0)|c : I →M is smooth and c(0) = x} (2.5)
where I is any open interval containing t = 0 and ċ(t) = d

dt
c(t). That is, v

is in TxM if and only if there exists a smooth curve onM passing through
x with velocity v.

Definition 12 is not of practical interest. Thus, another characterization of
the tangent space is given in Theorem 3. Indeed, this theorem gives a way
to compute the tangent space at x that is directly related to Definition 11
of embedded submanifolds of linear spaces.

Theorem 3 (Theorem 3.15 of [19]). LetM be an embedded submanifold
of E . Consider x ∈M and the set TxM (2.5). IfM is an open submanifold,
then

TxM = E .

Otherwise,

TxM = ker(Dh(x)) = {ξ ∈ E : Dh(x)[ξ] = 0}

with h any local defining function at x.

Two examples are given. Example 4 states that Rd is a smooth manifold
which is obvious using Definition 11. Its tangent spaces are also Rd which is
also obvious using Theorem 3. Then, the sphere in Rd, denoted by Sd−1, is
presented as a smooth manifold in Example 5. A two dimensional illustration
of this example is presented in Figure 2.1.

Example 4 (Example 3.17 from [19]). The set Rd is a linear manifold of
dimension d with tangent spaces TxM = Rd for all x ∈ Rd.

Example 5 (Example 3.18 from [19]). The sphere Sd−1 ={
x ∈ Rd : xTx = 1

}
is the zero level set of h(x) = xTx − 1, smooth

from Rd to R. Since Dh(x)[ξ] = 2xTξ, it is clear that rank(Dh(x)) = 1
for all x ∈ Sd−1. As a result, Sd−1 is an embedded submanifold of
Rd of dimension d − 1. Furthermore, its tangent spaces are given by
TxSd−1 = ker(Dh(x)) =

{
ξ ∈ Rd : xTξ = 0

}
.

2.1.2 . Riemannian structure
So far, we only have presented embedded submanifolds M of linear

spaces E . In order to be a Riemannian manifold, M must be endowed
with a Riemannian metric on its tangent spaces. Before introducing Rie-
mannian metrics, we first define the tangent bundle of M in Definition 13.
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M

•x TxM
ξ

Figure 2.1: Illustration of a smooth embedded submanifold with thecircleM = S1 ⊂ E = R2, its tangent space TxM =
{
ξ ∈ R2 : xTξ = 0

}
at a given x ∈M and a tangent vector ξ ∈ TxM.
It is the disjoint union of the tangent spaces of M in the sense that every
ξ ∈ TxM is paired with x. The disjoint union is of first importance when ξ
belongs to several tangent spaces such the tangent vectors of the manifold
Rd.

Definition 13 (Definition 3.42 from [19]). The tangent bundle of a mani-
foldM is the disjoint union of the tangent spaces ofM:

TM = {(x, ξ) : x ∈M and ξ ∈ TxM} . (2.6)
It remains to define vector fields and inner products before defining Rieman-
nian metrics. Vector fields are introduced in Definition 14. These are map
fromM onto the tangent bundle TM. An easy to visualize example is the
wind map over the Earth (here assumed to be spherical): at each given point
x ∈ M, a vector ξ ∈ TxM gives the orientation and the magnitude of the
wind.

Definition 14 (Definition 3.44 from [19]). A vector field on a manifoldM
is a map ξ :M → TM such that ξ(x) is in TxM for all x ∈ M. If ξ is a
smooth map, we say it is a smooth vector field. The set of smooth vector
fields is denoted by X(M).

Then, inner products are defined on tangent spaces of the manifold. The
choice on inner products on the different tangent spaces TxM is called the
metric.

Definition 15 (Definition 3.51 from [19]). An inner product on TxM is a
bilinear, symmetric, positive definite function ⟨., .⟩x : TxM×TxM→ R. It
induces a norm for tangent vectors : ∥ξ∥x =

√
⟨ξ, ξ⟩x. A metric onM is a

choice of inner product ⟨., .⟩x for each x ∈M.
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Figure 2.2: Illustration of the embedded submanifoldM = S1, its tan-gent spaceTxM at a givenx ∈M, a vector ξ /∈ TxM and its orthogonalprojection PM
x (ξ) onto TxM.

Thanks to the previous definitions, we can introduce the concept of Rieman-
nian metric. This concept is very important since it is the basis of many
other Riemannian objects. For example, geodesics, gradients, hessians and
distances on manifolds are defined with respect to this metric. The Rie-
mannian metric is defined in Definition 16 and is simply a metric that varies
smoothly between tangent spaces. A manifold endowed with a Riemannian
metric is a Riemannian manifold. The sphere Sd−1 presented in Example 5
is turned into Riemannian manifold in Example 6.

Definition 16 (Definition 3.52 from [19]). A metric ⟨., .⟩x onM is a Rie-
mannian metric if it varies smoothly with x, in the sense that for all smooth
vector fields ξ, η onM the function x 7→ ⟨ξ(x), η(x)⟩x is smooth fromM
to R.
Example 6 (Example 3.56 from [19]). Endow Rd with the standard metric
⟨ξ,η⟩ = ξTη and consider the sphere Sd−1 embedded in Rd. With the
inherited metric ⟨ξ,η⟩x = ⟨ξ,η⟩ = ξTη on each tangent space TxSd−1, the
sphere Sd−1 becomes a Riemannian manifold.

2.1.3 . Orthogonal projection
So far, we defined inner products ⟨., .⟩x on tangent spaces TxM of M.

If this inner product also defines an inner product in the ambient space, i.e.
if (ξ, η) ∈ E ×E 7→ ⟨ξ, η⟩x is a bilinear, symmetric, positive definite function
for all x ∈ M, ξ, η ∈ E , then an orthogonal projection PM

x : E → TxM
can be defined. Indeed, since an inner product is defined on all the ambient
space E , the subspace TxM ⊂ E admits an orthogonal complement which
is the normal space and defined as

T⊥
xM = {ξ ∈ E : ⟨ξ, η⟩x = 0 ∀η ∈ TxM} . (2.7)
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Thus, every element ξ ∈ E is uniquely decomposed as

ξ = PM
x (ξ) + PM,⊥

x (ξ) (2.8)
with the orthogonal projectors PM

x : E → TxM and PM,⊥
x : E → T⊥

xM.

Example 7. Consider Rd with the standard metric ⟨ξ,η⟩ = ξTη and the
sphere Sd−1 embedded in Rd. The ambient space Rd is the sum of two
complementary and orthogonal spaces

Rd = TxSd−1 + T⊥
x Sd−1

with
T⊥
x Sd−1 = {αx : α ∈ R} .

To project ξ ∈ E ontoTxSd−1, it suffices to remove its component inT⊥
x Sd−1,i.e.

P Sd−1

x (ξ) = ξ − (xTξ)x = (Id − xxT )ξ.

2.1.4 . Levi-Civita connection
To define affine connections, we introduce scalar fields. A simple and

illustrative example of the latter is the temperature on Earth (assumed to
be spherical). Indeed, at each point of the earth corresponds a temperature,
and thus defines a scalar fields. The definition of scalar fields is important
since in the next chapters, functions on manifolds are minimized.

Definition 17 (Definition 3.32 from [19]). A scalar field on a manifoldM
is a function f :M → R. If f is a smooth function, we say it is a smooth
scalar field. The set of smooth scalar fields onM is denoted by F(M).

Since vector and scalar fields are now defined, we can move on to affine
connections. Affine connections are central in Riemannian geometry since
they define the acceleration along a curve on a manifold and this acceleration
defines geodesics. Definition 18 of affine connections is axiomatic: desired
properties are specified and then the object, if it exists, is studied.

Definition 18 (Definition from [1]). Let X(M) denote the set of smooth
vector fields onM. An affine connection∇ on a manifoldM is a mapping

∇ : X(M)× X(M)→ X(M),

which is denoted by (ξ, η) ∇→ ∇ξ η and satisfies the following properties:

1. F(M)-linearity in ξ: ∇fξ+gχ η = f ∇ξ η + g∇χ η,

2. R-linearity in η: ∇ξ(aη + bζ) = a∇ξ η + b∇ξ ζ ,
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3. Product rule (Leibniz’ law): ∇ξ(fη) = (ξf)η + f ∇ξ η,

in which η, χ, ξ, ζ ∈ X(M), f, g ∈ F(M), and a, b ∈ R. ξf is the vector
field such that (ξf)(x) = D f(x)[ξ(x)]. The vector field ∇ξ η is called the
covariant derivative of η with respect to ξ for the affine connection∇.

First of all, it should be noted that no Riemannian metric is mentioned in
Definition 18. Thus, a smooth embedded submanifold is enough to define
affine connections. A second remark is that Definition 18 extends the classical
derivative of vector fields on a linear space E . Indeed, for ξ, η ∈ X(E)

(∇ξ η)x = lim
t→0

η(x+ tξ(x))− η(x)
t

= D η(x)[ξ(x)] (2.9)
is an affine connection on E . In practice, for a given manifold, many affine
connections exist. The fundamental theorem of Riemannian geometry states
that, given a Riemannian manifold, there is a unique affine connection that
is torsion-free and is compatible with the Riemannian metric. Furthermore,
this theorem gives an explicit formula, the Koszul formula, to compute this
connection called the Levi-Civita connection.

Theorem4 (Theorem5.3.1 from [1]). On a RiemannianmanifoldM there
exists a unique connection∇ that satisfies

1. ∇η ξ −∇ξ η = [η, ξ] (symmetry or tension-free), and

2. χ⟨η, ξ⟩ = ⟨∇χ η, ξ⟩ + ⟨η,∇χ ξ⟩ (compatibility with the Riemannian
metric),

for all χ, η, ξ ∈ X(M). [., .] is the Lie bracket, i.e. [ξ, η] = ξη − ηξ. This
affine connection ∇, called the Levi-Civita connection or the Riemannian
connection ofM, is characterized by the Koszul formula

2⟨∇χ η, ξ⟩ = χ⟨η, ξ⟩+η⟨ξ, χ⟩− ξ⟨χ, η⟩−⟨χ, [η, ξ]⟩+ ⟨η, [ξ, χ]⟩+ ⟨ξ, [χ, η]⟩.(2.10)
For all ξ, η, χ ∈ E , a Euclidean space (linear space endowed with the clas-
sical Euclidean metric), we get ξ⟨η, χ⟩ = ⟨ξη, χ⟩ + ⟨η, ξχ⟩ and the Koszul
formula (2.10) reduces to ⟨χη, ξ⟩ = ⟨∇χ η, ξ⟩. Thus, the affine connection
of Equation 2.9 is the Levi-Civita connection.

Example 8. The sphere Sd−1 is a Riemannian manifold thus it has a
unique Levi-Civita connection. Using the Koszul formula (2.10), for all
η, ξ ∈ X(Sd−1) and x ∈ Sd−1, it is

(∇Sd−1

ξ η)x = P Sd−1

x (Dη(x)[ξ(x)]) = (Id − xxT )Dη(x)[ξ(x)].

All the Riemannian manifolds defined in the following are equipped with their
Levi-Civita connections.
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Figure 2.3: Illustration of the Riemannian manifoldM = S1, its tangentspace TxM at a given x ∈ M, a tangent vector ξ ∈ TxM and theexponential mapping expM
x .

2.1.5 . Acceleration, geodesic and exponential map

This Levi-Civita connection allows us to introduce geodesics. In a linear
space E , the geodesic γ : I → E , I an open interval of R, with initial
conditions γ(0) = x and γ̇(0) = ξ is the classical straight line γ(t) = x+ tξ.
A characteristic of these straight lines is their zero acceleration: γ̈(t) = 0
for all t ∈ I. This acceleration is extended to Riemannian manifolds in
Definition 19. Then, geodesics on manifolds are introduced in Definition 20
as C2 curves with zero acceleration.

Definition 19 (Definition 2.19 from [21]). LetM be a Riemannian man-
ifold with its Levi-Civita connection ∇. Let γ : I → M with I an open
interval of R be a C2 curve onM. The acceleration along γ is given by:

t 7→ ∇γ̇(t) γ̇(t) ∈ Tγ(t)M.

In order to respect Definition 18 of the connection, γ̇ is supposed to be
smoothly extended to an arbitrary vector field X ∈ X(M) such that
X(γ(t))= γ̇(t) for all t.

Definition 20 (Definition 2.20 from [21]). A smooth curve γ : I → M,
with I an open interval of R, is a geodesic if and only if it has zero acceler-
ation on all its domain.

Then, the exponential mapping is defined. This smooth map retracts a
tangent vector ξ onto the manifold by following a geodesic with an initial
direction ξ. The exponential mapping is illustrated in Figure 2.3.
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Figure 2.4: Illustration of the Riemannian manifold M = S1, thelogarithmic mapping logMx and the Riemannian distance dM(x,y) =∥∥logMx (y)
∥∥
x
= θ.

Definition 21 (Definition 10.16 from [19]). For every (x, ξ) ∈ TM, let
γξ : I → M be the unique geodesic with γξ(0) = x, γ̇ξ(0) = ξ and I as
large as possible. Consider the following subset of the tangent bundle:

O = {(x, ξ) ∈ TM : γξ is defined on an interval containing [0, 1]} .
The exponential map expM : O →M is defined by

expM(x, ξ) = expM
x (ξ) = γξ(1).

The restriction expM
x is defined on Ox = {ξ ∈ TxM : (x, ξ) ∈ O}.

Proposition 6 (Proposition 10.17 from [19]). The exponential map is
smooth on its domain O, which is an open in TM.

Example 9. Let Sd−1 be the Riemannian manifold of the sphere in Rd. The
geodesic γ : R → Sd−1 with initial conditions γ(0) = x and γ̇(0) = ξ ̸= 0
is

γ(t) = cos(t ∥ξ∥)x+ sin(t ∥ξ∥) ξ

∥ξ∥
.

Indeed, for all t ∈ R γ(t)Tγ(t) = 1, γ respect the initial conditions and it
has a zero acceleration. To verify this last assertion, we compute the second
derivative of γ at t

γ̈(t) = −∥ξ∥2 γ(t).

Then, we check the zero acceleration

∇Sd−1

γ̇(t) γ̇(t) = (Id − γ(t)γ(t)T )γ̈(t) = −∥ξ∥2 (Id − γ(t)γ(t)T )γ(t) = 0.
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It follows that the exponential mapping expSd−1

x : TxSd−1 \ {0} → Sd−1 is

expSd−1

x (ξ) = cos(∥ξ∥)x+ sin(∥ξ∥) ξ

∥ξ∥
.

In the case ξ = 0, expSd−1

x is smoothly extended using the limit sin(x)
x
→ 1

when x→ 0.

2.1.6 . Injectivity radius, logarithmic map and distance
Remarkably, given x ∈ M, the exponential mapping expM

x is locally a
diffeomorphism around the origin 0x of TxM. This means that there exists
a neighborhood U ⊂ TxM around 0x such that expM

x is a smooth one-to-
one correspondence between U and expM

x (U) ⊂ M. When it exists, the
inverse map of the exponential mapping is called the logarithmic map. Given
x, y ∈ M, it returns the tangent vector ξ ∈ TxM such that expM

x (ξ) = y.
It is introduced in Definition 22 and is illustrated in Figure 2.4.

Definition 22 (Definition 10.20 from [19]). For x ∈ M, let logMx denote
the logarithmic map at x,

logMx (y) = argmin
ξ∈Ox

∥ξ∥x subject to expM
x (ξ) = y,

with domain such that this is uniquely defined.

Then, the length of a curve on a Riemannian manifold as well as the Rie-
mannian distance are defined.

Definition 23 (Definitions 2.21 and 2.22 from [21]). The length of a C1
curve, γ : [a, b]→M, on a Riemannian manifold is defined by

length(γ) =

∫ b

a

√
⟨γ̇(t), γ̇(t)⟩γ(t)dt =

∫ b

a

∥γ̇(t)∥γ(t) dt.

The geodesic distance onM is given by

dM(p, q) = inf
γ∈Γ

length(γ) (2.11)
where Γ is the set of C1 curves γ : [0, 1] → M such that γ(0) = p and
γ(1) = q.

A curve achieving the infimum (2.11) is called a minimizing curve. It should
be noted that Definition 23 of the Riemannian distance does not make use
of geodesics. Previously, we defined geodesics γ : I → M as C2 curves
with zero acceleration and remarkably these geodesics are locally minimizing
curves. This means that for all t ∈ I, there exists a neighborhood U ⊂ I
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containing t such that the geodesic restricted to U is a minimizing curve.
Before going further, we define an open ball B(x, inj(x)) ⊂ TxM where
the exponential mapping is a diffeomorphism. This domain is important for
the following since, for all ξ ∈ B(x, inj(x)), the curve t 7→ expM

x (tξ) is a
minimizing curve. This open ball as well as the injectivity radius x 7→ inj(x)
are introduced in Definition 24.

Definition 24 (Definition 10.19 from [19]). The injectivity radius of a Rie-
mannian manifoldM at a point x, denoted by inj(x), is the supremum
over radii r > 0 such that expM

x is defined and is a diffeomorphism on the
open ball

B(x, r) = {ξ ∈ TxM : ∥ξ∥x < r} .

We now have all the tools to establish a link between the geodesic, the
exponential map, the logarithmic map and the Riemannian distance This
relationship is presented in Proposition 7.

Proposition 7 (Proposition 10.22 from [19]). If ∥ξ∥x < inj(x), the geodesic
c(t) = expM

x (tξ) on the interval [0, 1] is the minimizing curve connecting x
to y = expM

x (ξ), unique up to parametrization. In particular, dM(x, y) =
∥ξ∥x, and logMx (y) = ξ.

Example 10. Let Sd−1 be the Riemannian manifold of the sphere in Rd.
The objective is to find the logarithmic mapping. To do so, for x,y ∈ Sd−1

such that y ̸= ±x, we look for ξ ∈ TxSd−1 satisfying expSd−1

x (ξ) = y. First
of all, we have

xTy = cos(∥ξ∥).

Thus, we get that

y = (xTy)x+ sin(∥ξ∥) ξ

∥ξ∥
.

This implies that the orthogonal projection of y onto TxSd−1 is proportional
to ξ

(Id − xxT )y = P Sd−1

x (y) = sin(∥ξ∥) ξ

∥ξ∥
.

Thus the normalized projection is

P Sd−1

x (y)∥∥P Sd−1

x (y)
∥∥ = sign(sin(∥ξ∥)) ξ

∥ξ∥

where sign is the sign function. Furthermore, if the domain of expSd−1

x is
restricted to ξ such that ∥ξ∥ < π we get that sign(sin(∥ξ∥)) = 1, and
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Figure 2.5: Illustration of the Riemannian manifoldM = S1 and theparallel transport of ξ ∈ TxM to another tangent space TyM along thegeodesic γ.
xTy = cos(∥ξ∥) has a unique solution which is ∥ξ∥ = arccos(xTy) where
arccos : [−1, 1]→ [0, π]. This implies that

ξ = arccos(xTy)
P Sd−1

x (y)∥∥P Sd−1

x (y)
∥∥ .

Since ξ is the unique solution,

logSd−1

x (y) = arccos(xTy)
P Sd−1

x (y)∥∥P Sd−1

x (y)
∥∥ . (2.12)

is the logarithmic mapping for y ̸= ±x and logSd−1

x (y) = 0 for y = x. One
can check that for all y ∈ Sd−1 \ {−x}

expSd−1

x (logSd−1

x (y)) = y (2.13)
and conversely. Thus, expSd−1

x : B(x, π) → Sd−1 \ {−x} is a diffeomor-
phism and dSd−1(x,y) =

∥∥∥logSd−1

x (y)
∥∥∥ = arccos(xTy). Finally, it should be

noted that y = −x is the antipodal point of x. Thus, there is an infinite
number of ξ such that expSd−1

x (ξ) = y and there is no logarithmic map for
y = −x.

2.1.7 . Parallel transport
In Euclidean spaces, we are used to compare vectors, e.g. by computing

an angle between them. However, these operations of comparison are not
relevant on Riemannian manifolds for vectors that belong to different tangent
spaces. Indeed, a vector ξ belonging to a given tangent space TxM does
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not necessarily belong to another tangent space TyM. Thus, it must first be
"moved" to TyM along a curve γ such that γ(0) = x and γ(1) = y before
being compared to vectors of TyM. To do so, a vector field η ∈ X(M)
such that η(γ(0)) = ξ that is parallel along γ is computed. By "constant"
we mean that its covariant derivative with respect to γ̇ along γ is zero. This
property and the resulting parallel transport are formally presented in the
next two definitions.

Definition 25. Given a smooth curve γ onMwith γ(0) = x and γ(1) = y,
the vector field η ∈ X(M) is parallel along γ if for all t ∈ [0, 1]

∇γ̇(t) η(γ(t)) = 0.

Definition 26. Given a smooth curve γ onMwith γ(0) = x and γ(1) = y,
the parallel transport of tangent vectors at x to the tangent space TyM
along γ is the map

T M
x,y : TxM→ TyM

defined by T M
x,y(ξ) = η(γ(1)), where η ∈ X(M) is a constant vector field

along γ such that η(γ(0)) = ξ.

It should be noted that the application T M
x,y depends on the chosen curve γ

! In the following, when M is a Riemannian manifold, the chosen curve is
the geodesic between x and y. This notion of parallel transport is illustrated
with the sphere in Rd in Example 11 and in Figure 2.5.

Example 11. Let Sd−1 be the Riemannian manifold of the sphere in Rd.
From [114], the parallel transport of ξ ∈ TxM along the geodesic γ such
that γ(0) = x,γ(1) = y and γ̇(0) = η = logSd−1

x (y) is

T Sd−1

x,y (ξ) =

(
Id + (cos(∥η∥)− 1)

ηηT

∥η∥2
− sin(∥η∥)xη

T

∥η∥

)
ξ.

2.2 . Elements of optimization on manifolds

In this section, we present algorithms to minimize smooth functions on
manifolds, i.e.

minimize
x∈M

h(x) (2.14)
whereM is a manifold and h is a smooth scalar field, i.e. a smooth function
from M to R, called the cost function. In the following, we assume that
h is lower bounded on M. This assumption is met for most well posed
optimization problems, otherwise this means that h has no minimum.

Assumption 1. There exists h∗ ∈ R such that h(x) ≥ h∗ for all x ∈M.
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A problem (2.14) on the sphere manifold is presented in the following example.

Example 12. LetA be a p× p symmetric matrix. A minimization problem
on the sphere is

minimize
x∈Sd−1

{
h(x) =

1

2
xTAx

}
.

The cost function h respects Assumption 1 since it is continuous and Sd−1 is
compact.

Generally speaking, we are interested in problems (2.14) for which no closed
form formula exists or is of no practical interest, e.g. for computational cost
reasons. Since h is smooth, the general idea is to adapt classical gradient-
based optimization algorithms developed for Euclidean spaces, such as gra-
dient descent or conjugate gradient, to Riemannian manifolds.

2.2.1 . Gradient based optimization on manifolds
We begin with the definition of the Riemannian gradient which extends

the definition of the gradient on Euclidean spaces to Riemannian manifolds.

Definition 27 (Definition 3.58 from [19]). Let h :M→ R be smooth on a
Riemannian manifoldM. The Riemannian gradient of h is the vector field
gradM h onM uniquely defined by the following identities:

∀(x, ξ) ∈ TM, Dh(x)[ξ] = ⟨gradM h(x), ξ⟩x, (2.15)
where Dh(x) is as in Equation (2.1) and ⟨., .⟩x is the Riemannian metric.
So far, we only said we want to tackle the minimization problem (2.14)
without additional specifications. The ideal objective would be to find the
global minimum of h. However, this is a difficult task (as on Euclidean
spaces) without any further assumption on h. A more realizable objective is
to find the critical points of h on M. This goal is classical in optimization
on Euclidean spaces and here extended to Riemannian manifolds.

Definition 28. A point x ∈M is critical (or stationary) for a smooth func-
tion h :M→ R if

gradM h(x) = 0.

Targeting these points gives a necessary condition for a point x to be a
local minimizer. This is called the first-order necessary optimality condition.
Indeed, any local minimizer of h is also a critical point.

Definition 29. A point x ∈M is a local minimizer of a function h :M→
R if there exists a neighborhood U of x inM such that h(y) ≥ h(x) for all
y ∈ U .
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Proposition 8 (Proposition 4.5 from [19]). Any local minimizer of a
smooth function h :M→ R is a critical point of h.

This necessary condition is applied on the cost function of Example 12 to
find that the minimum is an eigenvector of the symmetric matrix A.

Example 13. We continue Example 12. To find the critical points, we com-
pute the gradient of h. Given ξ ∈ TxSd−1

Dh(x)[ξ] = ξTAx

= ⟨Ax, ξ⟩
= ⟨(Id − xxT )Ax, ξ⟩.

Thus, the gradient of h atx is gradSd−1 h(x) = (Id−xxT )Ax. By cancelling
this gradient, we get the following necessary condition for x ∈ Sd−1 to be a
minimum of h

Ax = (xTAx)x.

Therefore, the minimum of h is met at the eigenvector of unit norm x as-
sociated with the lowest eigenvalue λ = xTAx ofA.

To find these critical points, gradient-based optimization algorithms on Eu-
clidean spaces are adapted to Riemannian manifoldsM. The main difficulty
comes from the non-linearity (in general) ofM. Indeed, a gradient descent
step does not necessarily returns a point on M, i.e. for a given iterate
x(l) ∈M and a step size α > 0

x(l+1) = x(l) − α gradM h(x(l)) /∈M (in general). (2.16)
To overcome this issue, we look for iterative algorithms that move along
smooth curves c : I → M, with I an open interval of R around 0. At a
given iterate x(l) ∈ M, if c is such that c(0) = x(l) and h(c(α)) < h(x(l))
for some step size α > 0 then

x(l+1) = c(α) ∈M (2.17)
and h(x(l+1)) < h(x(l)). Thus, we found a new iterate which belongs to the
manifold and that decreases the value of h ! The challenge is to find such
a curve c. In Section 2.1, we introduced the geodesic and the exponential
map which are smooth maps to move on manifolds. Thus, they are good
candidates for c. For all ξ ∈ TxM, t 7→ h(expM

x (tξ)) is smooth by compo-
sition, therefore it admits a Taylor expansion. Recalling that expM

x (0) = x

and d
dt
expM

x (tξ)
∣∣∣
t=0

= ξ, we get

h(expM
x (tξ)) = h(x) + tDh(x)[ξ] +O(t2). (2.18)
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Using Definition 27 of the Riemannian gradient, this Taylor expansion is
rewritten

h(expM
x (tξ)) = h(x) + t⟨gradM h(x), ξ⟩Mx +O(t2). (2.19)

Thus for α > 0 small enough, the cost function is decreased if and only if ξ
is a descent direction, i.e.

h(expM
x (αξ))− h(x) < 0 ⇐⇒ ⟨gradM h(x), ξ⟩Mx < 0. (2.20)

Using (2.20), we build an iterative algorithm. At a given iterate x(l), let
α > 0 be a small enough step size and ξ ∈ Tx(l)M be a descent direction,
i.e. ⟨gradM h(x), ξ⟩Mx < 0, the next iterate is given by

x(l+1) = expM
x(l)(αξ) ∈M (2.21)

and h(x(l+1)) < h(x(l)). Before going further, we notice that we only used
the smoothness, the initial position and speed of the exponential map to
derive (2.21). Thus, any curves satisfying these properties could be used
in place of the exponential mapping. This motivates the introduction of
retractions.

Definition 30 (Definition 3.47 from [19]). A retraction on a manifoldM
is a smooth map

RM : TM→M : (x, ξ) 7→ RM
x (ξ)

such that each curve c(t) = RM
x (tξ) satisfies c(0) = x and ċ(0) = ξ.

It should be noted that exponential maps are retractions. Therefore, retrac-
tions generalize exponential maps and only respect the important properties
to do optimization. Retractions can be developed when the exponential
mapping is not available in closed form, or too expensive to compute or not
stable numerically. An example of a retraction on the sphere in Rd is given.

Example 14. Let x ∈ Sd−1 and ξ ∈ TxSd−1, then a retraction is

RSd−1

x (ξ) =
x+ ξ

∥x+ ξ∥
.

Given a retraction onM, (2.21) is rewritten

x(l+1) = RM
x(l)(αξ). (2.22)

In order to implement (2.22), it remains to provide a descent direction ξ ∈
Tx(l)M. Many possibilities exist, two of them are presented in the following.
The first one implements the Riemannian gradient descent algorithm and
the second the Riemannian conjugate gradient algorithm.
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Algorithm 3: Riemannian gradient descent
Input: Initialization: x(0) ∈M
Output: x(l) ∈M
for l = 0 to convergence do

ξ(l) = − gradM h(x(l))
α = Linesearch(x(l), ξ(l))
x(l+1) = RM

x(l)

(
αξ(l)

)
2.2.2 . Riemannian gradient descent

A first descent direction to implement (2.22) is ξ = − gradM h(x(l)).
Indeed, it is a descent direction since

⟨gradM h(x(l)),− gradM h(x(l))⟩Mx(l) = −
∥∥gradM h(x(l))

∥∥2
x(l)

< 0. (2.23)
Using this descent direction along with (2.22) is the Riemannian gradient
descent described in Algorithm 3. It can be proven that an iterate x(l) with
an arbitrary small gradient can be found using this algorithm. To get this
result, a second assumption is added on the decrease at each iteration of the
cost function.

Assumption 2. At each iteration, the algorithm achieves sufficient de-
crease for h, in that there exists a constant c > 0 such that, for all k,

h(x(l+1))− h(x(l)) ≤ −c
∥∥gradM h(x(l))

∥∥2
x(l)

.

Some conditions on the pullback function h ◦RM : TM→ R can be added
to ensure that Assumption 2 is met; see [19, Chapter 4] for a detailed discus-
sion. In practice, a line-search looks for a step size such that Assumption 2 is
respected. Indeed, classical Euclidean line-searches such as the backtracking
one have their Riemannian counterparts; see [1, Chapter 4]. Then, when
both Assumptions 1 and 2 are met, the next proposition states that, as de-
sired, the norm of the gradient tends to zero as the iteration number tends
to the infinite. Furthermore, it gives a non-asymptotic convergence rate of
O
(

1√
L

)
for the gradient norm. It should be noted that both results are

without conditions on the initialization.

Proposition 9 (Proposition 4.7 from [19]). Let h be a smooth function sat-
isfying Assumption 1 on a RiemmannianmanifoldM. Let x(0), x(1), x(2), · · ·
be iterates satisfying Assumption 2 with constant c. Then,

lim
k→+∞

∥∥gradM h(x(l))
∥∥
x(l)

= 0.

Furthermore, for all L ≥ 1, there exists l in 0, · · · , L− 1 such that∥∥gradM h(x(l))
∥∥
x(l)
≤
√
h(x(0))− h∗

c

1√
L
.
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Algorithm 4: Riemannian conjugate gradient
Input: Initialization: x(0) ∈M, ξ(0) = −g(0) = − gradM h(x(0))
Output: x(l) ∈M
for l = 0 to convergence do

if ⟨g(l), ξ(l)⟩x(l) ≥ 0 then
ξ(l) = −g(l)

α = Linesearch(x(l), ξ(l))
x(l+1) = RM

x(l)

(
αξ(l)

)
g(l+1) = gradM h(x(l+1))

ξ
(l)
T = T M

x(l),x(l+1)(ξ(l))

g
(l)
T = T M

x(l),x(l+1)(g(l))

β = max

(
0,

〈
g(l+1)−g(l)T ,g(l+1)

〉
x(l+1)〈

g(l+1)−g(l)T ,ξ
(l)
T

〉
x(l+1)

)
ξ(l+1) = −g(l+1) + βξ

(l)
T

2.2.3 . Riemannian conjugate gradient
In the previous subsection, we presented the Riemannian gradient descent

algorithm which gives the following iterate for a given x(l),

x(l+1) = RM
x(l)(αξ

(l)) (2.24)
where α is a small enough step size and ξ(l) = − gradM h(x(l)). The Rieman-
nian gradient descent is the simplest gradient-based optimization algorithm
on manifold but empirically suffers from a convergence that can be slow. To
alleviate this problem, other descent directions can be used in (2.24). For
example, the Riemannian conjugate gradient proposes to add some inertia.
As in (2.16), the non-linearity of the Riemannian manifold requires to adapt
the classical conjugate gradient. Indeed, on a Euclidean space, the conjugate
gradient linearly combines the gradient of h at x(l) and the descent direction
ξ(l−1). This cannot be done on a Riemannian manifold since, in general,
Tx(l)M ̸= Tx(l−1)M. Thus, the descent direction ξ(l−1) is first transported
to Tx(l)M using the parallel transport T M

x(l−1),x(l) : Tx(l−1)M→ Tx(l)M and
then linearly combined to the gradient of h at x(l)

ξ(l) = − gradM h(x(l)) + β T M
x(l−1),x(l)(ξ

(l−1)) (2.25)
where β > 0. It should be noted that ξ(l) is not necessarily a descent di-
rection. In this case, β is set to 0 and thus ξ(l) = − gradM h(x(l)) which is
the descent direction of the Riemannian gradient descent. This Riemannian
conjugate gradient is presented in Algorithm 4. In this algorithm, the inertia
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M

π−1(π(x))

•
x

TxM
Vx

Hx

π

M•
x = π(x)

TxM

Figure 2.6: Illustration of the quotient manifoldM represented by el-ements ofM. The set of all representations of x = π(x) ∈ M is theequivalence class π−1(π(x)) ⊂ M. The tangent space TxM is decom-posed into the vertical space Vx = Txπ
−1(π(x)) and its orthogonal com-plement, the horizontal space Hx, which provides proper representa-tives for tangent vectors in TxM.

parameter β is computed using the Hestenes-Stiefel rule. Others could be
used, e.g. see the survey [61]. A last remark is that we used the parallel
transport in Equation (2.25), however it is not always available in closed form
or can be expensive to compute. Previously, we said that the retraction gen-
eralizes the exponential mapping. This leads to cheaper and easier to derive
formulas to move on the manifold while keeping the important properties for
optimization. In the same way, a generalization of the parallel transport is
the vector transport; see [1, Chapter 8] for more details.

2.3 . Riemannian quotient manifolds

Riemannian quotient manifolds are a ubiquitous tool when optimizing
functions with symmetries on Riemannian manifolds. A classical problem
is the estimation of a subspace whose orthogonal basis is defined up to
rotations. This problem is presented later on in this section; see [151] for
other functions with symmetries. Riemannian quotient manifolds are an
advanced topic and thus requires the introduction of many other concepts of
Riemannian geometry to be well defined. The reader is referred to [1, Chapter
3] or [19, Chapters 8 and 9] for a proper introduction. In this section, we
focus on the practical aspect, i.e. how to recognize these manifolds and how
to manipulate their elements.
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2.3.1 . Some elements on Riemannian quotient manifolds

Let M be a Riemannian manifold embedded in a linear space E with
the Riemannian metric at x ∈ M, (ξ, η) ∈ TxM × TxM 7→ ⟨ξ, η⟩Mx .
Riemannian quotient manifolds arise when some points are "equivalent", e.g.
rotations of M that leave the values of a function h :M→ R unchanged.
In this case, points of M can be grouped together to form a new set M.
We begin by recalling some definitions related to quotient sets. Let ∼ be an
equivalence relation, i.e. a binary relation onM that is reflexive, symmetric,
and transitive. Then the corresponding equivalence classes are

[x] =
{
y ∈M : y ∼ x

}
, (2.26)

and the associated quotient set is defined by

M =M/ ∼=
{
[x] ∈M : x ∈M

}
. (2.27)

The natural (or canonical) projection π associates points ofM to those of
M

π(x) = [x]. (2.28)
IfM respect some properties, then it admits a unique structure that turns it
into a quotient manifold. Elements of a quotient manifold, such as points and
tangent vectors, are abstracts. Thus, we leverage the elements of M, that
are easily handled, to work with elements ofM. For example, an equivalence
class x ∈M is represented by a point x ∈M such that π(x) = x. Admitting
that the tangent space TxM is properly defined, this asks the question of the
representation of its points. To do so, the tangent space TxM is decomposed
into two orthogonal subspaces. First of all, the vertical space is defined as
the tangent space to the equivalent class π−1(π(x)) ⊂M and thus collects
tangent vectors that "have no effect on π(x)"

Vx = Txπ
−1(π(x)) ⊂ TxM. (2.29)

Then, the horizontal space is defined as the orthogonal complement of Vx in
TxM

Hx = {ξ ∈ TxM : ⟨ξ, η⟩Mx = 0 for all η ∈ Vx}. (2.30)
Thus, Vx and Hx are in direct sum in the tangent space of M at x, i.e.
TxM = Vx+Hx and orthogonal projections P V

x : E → Vx and PH
x : E → Hx

can be defined. Figure 2.6 illustrates these concepts. Then, it can be shown
that for each element ξ ∈ Tπ(x)M, there exists a unique ξ ∈ Hx such that
ξ = Dπ(x)[ξ] (admitting that this directional derivative is well defined).
ξ is called the horizontal lift of ξ at the lifting point x and can also be
denoted liftx(ξ). Thus, every ξ ∈ Tπ(x)M is represented by a unique element
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ξ ∈ Hx. If for every x ∈ M and every ξ, η ∈ TxM, the inner product
(ξ, η) 7→ ⟨ξ, η⟩Mx does not depend on the lifting point x, i.e.

x ∼ y =⇒ ⟨liftx(ξ), liftx(η)⟩Mx = ⟨lifty(ξ), lifty(η)⟩My (2.31)
then

⟨ξ, η⟩Mx = ⟨liftx(ξ), liftx(η)⟩Mx (2.32)
defines a Riemannian metric onM andM becomes a Riemannian quotient
manifold ofM.

2.3.2 . Optimization on Riemannian quotient manifolds
In the following chapters, we are mainly focused on optimization when

dealing with Riemannian quotient manifolds. These minimization problems
write

minimize
x∈M

h(x) (2.33)
for a cost function h :M→ R invariant along equivalence classes i.e.

h(x) = h(y) for all x ∼ y. (2.34)
Thus, we are only interested in the equivalence classes x = π(x) and not in
the elements x ofM. Formally, (2.33) is rewritten

minimize
x∈M

h(x). (2.35)
with h such that h = h ◦ π : M → R. The next example illustrates the
presented tools with a subspace estimation problem.

Example 15. The objective of this example is to motivate the introduction
to Riemannian quotient manifolds and to show how problems on these sets
can arise. First of all, the previously presented sphere Sp−1 ⊂ Rp can be
seen be seen as the set of orthogonal bases of 1-dimensional subspaces
in Rp. A natural extension is the set of orthogonal bases of k-dimensional
subspaces in Rp

Stp,k = {U ∈ Rp×k : UTU = Ik
}
.

This set can be endowed with a Riemannian structure and thus becomes a
Riemannian manifold called the Stiefel manifold. It should be noted that
for k = 1, the Stiefel manifold coincides with the Riemannian manifold
of the sphere Sp−1 and for k = p, it coincides with the orthogonal group
Op. Then, for n > p, we assume having a data matrix X ∈ Rp×n (n data
vectors in Rp concatenated). A classical problem, in machine learning and
signal processing, is to look for a k-dimensional subspace represented by
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an orthogonal basis U ∈ Stp,k for which projected data are close to the
original ones, i.e.,

minimize
u∈Stp,k

{
h(U) =

1

2

∥∥X −UUTX
∥∥2
2

}
. (2.36)

This minimization problem is solved by the Principal Component Analysis
and has a closed form solution: the k orthogonal eigenvectors of XXT

associatedwith the k highest eigenvalues. In this example, we are interested
in the parameter space of h. A first remark is that h has a symmetry, indeed
for all U ∈ Stp,k

h(UO) = h(U) for allO ∈ Ok.
Thus, it is interesting to consider the following equivalence relation

U ∼ U ′ ⇐⇒ UO = U ′ for someO ∈ Ok,

which induces the following equivalent classes in Stp,k
[U ] = {U ′ ∈ Stp,k : U ′ ∼ U} .

Then, the associated quotient set is

Grp,k = Stp,k/ ∼= {[U ] : U ∈ Stp,k} .
This set is a Riemannian quotient manifold, is presented in details in Sec-
tion 2.4 and is called the Grassmann manifold. Considering the canonical
projection π : U 7→ [U ], the symmetry of h is removed with h : Grp,k → R
such that h = h ◦ π. Finally, the optimization problem (2.36) can be rewrit-
ten as a minimization over equivalence classes

minimize
π(U)∈Grp,k h(π(U)). (2.37)

We will see later that the dimension of the parameter space in (2.36) is
pk − k(k+1)

2
whereas in (2.37) it is (p − k)k. This way, k(k−1)

2
dimensions

have been removed (which is the dimension of Ok).

As presented in previous sections, to perform first order Riemannian optimiza-
tion, we essentially need two tools: the Riemannian gradient and a retraction.
The Riemannian gradient of h at x = π(x), denoted gradM h(x) and that be-
longs to TxM, is represented by the Riemannian gradient gradM h(x) ∈ Hx

of h at x. By definition, the gradient is the only tangent vector in TxM
satisfying

Dh(x)[ξ] = ⟨gradM h(x), ξ⟩Mx for all ξ ∈ TxM. (2.38)
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Note that this vector always belongs to the horizontal space Hx due to the
invariance of h along equivalence classes. To obtain a point on M from a
descent direction (represented by a vector in Hx), we need a retraction, i.e.,
a map RM : TM →M. Let RM be a retraction on M such that for all
x ∈M and ξ ∈ TxM

π(RM
x (liftx(ξ))) = π(RM

y (lifty(ξ))) (2.39)
for all x, y ∈ π−1(x) with liftx(ξ) and lifty(ξ) being the horizontal lifts of ξ
at x and y respectively. Then,

RM
x (ξ) = π(RM

x (liftx(ξ))) (2.40)
defines a retraction onM.

We conclude this section by pointing out that all the Riemannian tools
defined in the previous sections such as the Levi-Civita connection, the ex-
ponential map, the logarithmic map and the Riemannian distance can be
extended to Riemannian quotient manifolds. These extensions are made in
the same spirit as what we have just done for the retraction: the Levi-Civita
connection onM is represented by a vector field onM, the geodesic onM
is represented by a geodesic onM and so on. We do not go into more details
since, for these Riemannian quotient manifolds, we use already established
results for these tools; for example see the Grassmann manifold presented in
Section 2.4.

2.4 . Some important Riemannian manifolds: S++
p , SS++

p , (R+
∗ )

n

and Grp,k

This section aims to present examples of Riemannian manifolds that
will be used throughout the manuscript. Each manifold will be presented
in details as well as the tools of interest for optimization. The presented
manifolds are:

• the manifold of p × p symmetric positive definite matrices with the
affine invariance Riemannian metric denoted S++

p ,

• the manifold of p × p symmetric positive definite matrices with unit
determinant denoted SS++

p ,

• the manifold of n-dimensional strictly positive vectors denoted (R+
∗ )

n,

• the compact Stiefel manifold denoted Stp,k,

• and the Grassmann quotient manifold of k-dimensional subspaces in
Rp denoted Grp,k.
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2.4.1 . S++
p : manifold of symmetric positive definite matrices

An important Riemannian manifold is the one of symmetric positive def-
inite matrices with the affine invariant metric. Before introducing this Rie-
mannian manifold, we motivate its increasing use in the literature over the
years. First of all, an abundant literature has developed around optimiza-
tion on this Riemannian manifold. Indeed, recent theoretical advances have
shown that some non-convex problems are geodesically convex on this man-
ifold (i.e. convex along the geodesics). This geodesic convexity, abbreviated
g-convexity, gives interesting properties on first order stationary points (zero
gradient) similar to convexity and thus allows global optimization. Detailed
presentations of the concept of g-convexity are made in [19, Chapter 11]
and [122]. Moreover, this g-convexity gives fast optimization algorithms
and therefore convenient to use [148]. Examples of applications of these
g-convexity properties are covariance estimation [140], Gaussian mixtures
estimation [68, 67], metric learning [146] and geometric mean computa-
tion [94]. In addition to its relevance in optimization, the Riemannian man-
ifold of symmetric positive definite matrices has been successfully used in
many covariance-based applications such as brain-computer interface clas-
sification [8] and detection of pedestrians [134] or in signal processing for
diffusion tensor magnetic resonance imaging [53]. We now turn to the de-
scription of this Riemannian manifold. Only the main tools are presented.
Detailed descriptions can be found in [120, 113, 15].

First of all, the sets of p × p symmetric matrices and p × p symmetric
positive definite matrices are defined as

Sp =
{
Σ ∈ Rp×p : ΣT = Σ

}
, (2.41)

and
S++
p =

{
Σ ∈ Sp : ∀x ∈ Rp \ {0}, xTΣx > 0

} (2.42)
respectively. Thus, Sp is a linear space in the ambient space Rp×p and
S++
p is an open in Sp. Thus and by definition, S++

p is a smooth embedded
submanifold of Sp. This induces that the tangent space at Σ ∈ S++

p is

TΣS++
p = Sp =

{
ξ ∈ Rp×p : ξT = ξ

}
. (2.43)

Then, every tangent space TΣS++
p is equipped with the following Riemannian

metric, for all ξ,η ∈ TΣS++
p

⟨ξ,η⟩S
++
p

Σ = Tr
(
Σ−1ξΣ−1η

)
. (2.44)

It is sometimes referred to the affine invariant Riemannian metric due to its
invariance to affine transformations, i.e.

⟨DϕS++
p

(Σ)[ξ],DϕS++
p

(Σ)[η]⟩S
++
p

ϕS++
p

(Σ) = ⟨ξ,η⟩
S++
p

Σ (2.45)
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where ϕS++
p

(Σ) = AΣAT with A ∈ GLp. It should be noted that many
other Riemannian metrics exist on S++

p such as the log-Euclidean metric,
the Bures-Wasserstein metric or the Bogoliubov-Kubo-Mori metric [6, 130].
However, the affine invariant metric (2.44) is proportional to the Fisher in-
formation metric 1 associated with the centered Gaussian distributions and
thus is closely related to the statistical models we study in this manuscript.
The presented geometry is sometimes referred as the information geome-
try of the centered Gaussian distributions, see [3] for a presentation of the
information geometry. An additional remark is that it is a particular case
of a class of affine invariant metrics, see [112] for more details. Then the
orthogonal projection from Rp×p onto TΣS++

p is

P
S++
p

Σ (ξ) = sym(ξ) (2.46)
where sym(ξ) = 1

2

(
ξ + ξT

)
. For two smooth vector fields ξ,η ∈ X(S++

p ),
the Levi-Civita connection on S++

p is

∇S++
p

ξ η = Dη[ξ]− sym
(
ηΣ−1ξ

)
. (2.47)

The corresponding geodesic γS
++
p with initial conditions γS

++
p (0) = Σ and

γ̇S
++
p (0) = ξ is

γS
++
p (t) = Σ

1
2 exp

(
tΣ− 1

2ξΣ− 1
2

)
Σ

1
2 (2.48)

where exp is the matrix exponential and for all t ∈ R and A ∈ Rp×p,
At = exp(t log(A)) when the matrix logarithm log(A) exists2. The geodesic
γS

++
p with endpoints conditions γS

++
p (0) = Σ1 and γS

++
p (1) = Σ2 is

γS
++
p (t) = Σ

1
2
1

(
Σ

− 1
2

1 Σ2Σ
− 1

2
1

)t
Σ

1
2
1 (2.49)

Then, the exponential mapping on S++
p at Σ is

exp
S++
p

Σ (ξ) = Σ
1
2 exp

(
Σ− 1

2ξΣ− 1
2

)
Σ

1
2 . (2.50)

The parallel transport between Σ1 ∈ S++
p and Σ2 ∈ S++

p moves vectors ξ ∈
TΣ1S++

p onto the tangent space TΣ2S++
p while preserving the Riemannian

metric and has the following formula [122]

T S++
p

Σ1,Σ2
(ξ) =

(
Σ2Σ

−1
1

) 1
2 ξ
((

Σ2Σ
−1
1

) 1
2

)T
. (2.51)

1The notion of Fisher information metric is defined in Section 2.5.2IfA ∈ S++
p then the matrix logarithm log(A) exists and is unique.
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Then, the logarithm mapping of Σ2 ∈ S++
p at Σ1 ∈ S++

p is

log
S++
p

Σ1
(Σ2) = Σ

1
2
1 log

(
Σ

− 1
2

1 Σ2Σ
− 1

2
1

)
Σ

1
2
1 . (2.52)

Finally, the Riemannian distance on S++
p is

dS++
p

(Σ1,Σ2) =
∥∥∥log (Σ− 1

2
2 Σ1Σ

− 1
2

2

)∥∥∥
2
. (2.53)

Since, this distance is associated to the Riemannian metric (2.44), it is also
invariant to affine transformations, i.e.

dS++
p

(
ϕS++

p
(Σ1), ϕS++

p
(Σ2)

)
= dS++

p
(Σ1,Σ2) . (2.54)

We now detail how to minimize a smooth function h : S++
p → R. Indeed,

there are two tools left to minimize h:

1. the Riemannian gradient of h at any given point on S++
p ,

2. a retraction defined on any tangent space TΣS++
p .

The Riemannian gradient of h at Σ is given as a transformation of G ∈ Rp×p,
the Euclidean gradient of h at Σ. Indeed, the Euclidean gradient is easily
computed using automatic differentiation libraries such as Autograd [79] or
JAX [25]. Thus, using this transformation, the Riemannian gradient can be
automatically computed. The Riemannian gradient of h at Σ is

gradS++
p
h(Σ) = Σ sym(G)Σ. (2.55)

It remains to provide a retraction RS++
p

Σ : TΣS++
p → S++

p . The exponential
mapping (2.50) is of course a valid one. However, in practice we will use the
following retraction for its numerical stability:

R
S++
p

Σ (ξ) = Σ+ ξ +
1

2
ξΣ−1ξ. (2.56)

This retraction is a second order approximation of the exponential map-
ping (2.50):

exp
S++
p

Σ (tξ) = R
S++
p

Σ (tξ) +O(t3). (2.57)
It can also be seen as a second order retraction in the sense that
∇S++

p

ṙ(t) ṙ(t)
∣∣∣
t=0

= 0 with r(t) = R
S++
p

Σ (tξ) and ṙ(t) = d
dt
r(t).

76



2.4.2 . SS++
p : manifold of symmetric positive definite matrices with

unit determinant
An important and related manifold to S++

p is SS++
p , the manifold of p×p

symmetric positive definite matrices of unitary determinant. An example of
application is the estimation of the scatter matrix of the compound Gaussian
distribution [18]. This manifold is a Riemannian geodesic submanifold of
S++
p : the geodesics of SS++

p are geodesics of S++
p . Thus, knowing S++

p ,
the geometry of SS++

p is easily derived.
We begin with the formal definition of SS++

p , the set of p×p symmetric
positive definite matrices with a unit determinant,

SS++
p =

{
Σ ∈ S++

p : |Σ| = 1
}
. (2.58)

By denoting h(Σ) = |Σ| − 1, we get that Dh(Σ)[ξ] = Tr(Σ−1ξ) for all
ξ ∈ Sp. By taking ξ = α

p
Σ, we get that Dh(Σ)[ξ] = α for all α ∈ R. Thus

rank(Dh(Σ)) = 1 for all Σ ∈ SS++
p and SS++

p is a smooth embedded
submanifold of Sp. This induces that the tangent space at Σ ∈ SS++

p is

TΣSS++
p =

{
ξ ∈ Sp : Tr(Σ−1ξ) = 0

}
. (2.59)

Then, every tangent space TΣSS++
p is equipped with the affine invariant

metric defined in (2.44), i.e. for all ξ,η ∈ TΣS++
p

⟨ξ,η⟩SS
++
p

Σ = ⟨ξ,η⟩S
++
p

Σ = Tr
(
Σ−1ξΣ−1η

)
. (2.60)

The orthogonal projection from Rp×p onto TΣSS++
p is

P
SS++

p

Σ (ξ) = sym(ξ)− 1

p
Tr(Σ−1ξ)Σ (2.61)

where sym(ξ) = 1
2

(
ξ + ξT

)
. For two smooth vector fields ξ,η ∈ X(SS++

p ),
the Levi-Civita connection on S++

p is

∇SS++
p

ξ η = P
SS++

p

Σ

(
∇S++

p

ξ η
)
= P

SS++
p

Σ

(
Dη[ξ]− sym

(
ηΣ−1ξ

))
. (2.62)

Remarkably, the geodesic γS
++
p on S++

p with initial conditions γS
++
p (0) =

Σ ∈ SS++
p and γ̇SS

++
p (0) = ξ ∈ TΣSS++

p has a unit determinant for all
t ∈ R. Indeed, we have∣∣∣γSS++

p (t)
∣∣∣ = ∣∣∣Σ 1

2 exp
(
tΣ− 1

2ξΣ− 1
2

)
Σ

1
2

∣∣∣ = exp
(
Tr
(
Σ−1ξ

))
= 1. (2.63)

Thus, the corresponding geodesic γSS
++
p with initial conditions γSS

++
p (0) =

Σ and γ̇SS
++
p (0) = ξ is

γSS
++
p (t) = Σ

1
2 exp

(
tΣ− 1

2ξΣ− 1
2

)
Σ

1
2 . (2.64)
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The geodesic γSS
++
p with endpoints conditions γSS

++
p (0) = Σ1 and

γSS
++
p (1) = Σ2 is

γSS
++
p (t) = Σ

1
2
1

(
Σ

− 1
2

1 Σ2Σ
− 1

2
1

)t
Σ

1
2
1 . (2.65)

Then, the exponential mapping on SS++
p at Σ is

exp
SS++

p

Σ (ξ) = Σ
1
2 exp

(
Σ− 1

2ξΣ− 1
2

)
Σ

1
2 . (2.66)

The parallel transport between Σ1 ∈ SS++
p and Σ2 ∈ SS++

p moves vectors
ξ ∈ TΣ1SS++

p onto the tangent space TΣ2SS++
p and has the following

formula
T SS++

p

Σ1,Σ2
(ξ) =

(
Σ2Σ

−1
1

) 1
2 ξ
((

Σ2Σ
−1
1

) 1
2

)T
. (2.67)

Then, the logarithm mapping of Σ2 ∈ SS++
p at Σ1 ∈ SS++

p is

log
SS++

p

Σ1
(Σ2) = Σ

1
2
1 log

(
Σ

− 1
2

1 Σ2Σ
− 1

2
1

)
Σ

1
2
1 . (2.68)

Finally, the Riemannian distance on SS++
p is

dSS++
p

(Σ1,Σ2) =
∥∥∥log (Σ− 1

2
2 Σ1Σ

− 1
2

2

)∥∥∥
2
. (2.69)

We now detail how to minimize a smooth function h : SS++
p → R.

Indeed, there are two tools left to minimize h:

1. the Riemannian gradient of h at any given point on SS++
p ,

2. a retraction defined on any tangent space TΣSS++
p .

The Riemannian gradient of h at Σ is given as a transformation of G ∈ Rp×p,
the Euclidean gradient of h at Σ,

gradSS++
p
h(Σ) = P

SS++
p

Σ (ΣGΣ) . (2.70)
It remains to provide a retraction RS++

p

Σ : TΣSS++
p → SS++

p . The exponen-
tial mapping (2.50) is of course a valid one. However, in practice we will use
the following retraction for its numerical stability:

R
SS++

p

Σ (ξ) =
Σ+ ξ + 1

2
ξΣ−1ξ∣∣Σ+ ξ + 1

2
ξΣ−1ξ

∣∣ 1p . (2.71)

It is a second order retraction in the sense that ∇SS++
p

ṙ(t) ṙ(t)
∣∣∣
t=0

= 0 with

r(t) = R
SS++

p

Σ (tξ) and ṙ(t) = d
dt
r(t). Indeed, by differentiating twice, we

get that d
dt
r(0) = ξ and d2

dt2
r(0) = ξΣ−1ξ. Thus, we have the desired

property ∇SS++
p

ṙ(t) ṙ(t)
∣∣∣
t=0

= 0.
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2.4.3 . (R+
∗ )

n: manifold of vectors with strictly positive entries
Another manifold of interest is the one of matrices with strictly positive

entries. This manifold has recently gain some interest in applications with
constraints of positivity such as robust covariance estimation [18] or optimal
transport [93]. In the rest of the chapters, we will only handle constraints
of positivity in vectors (and not in general rectangle matrices). Thus, this
subsection presents the manifold of vectors with strictly positive entries.

We now present this manifold. First of all, the set of n-dimensional
vectors with strictly positive entries is

(R+
∗ )

n = {τ ∈ Rn : τi > 0} (2.72)
where τi is the i-th component of τ . Rn is a linear space and (R+

∗ )
n is an open

in Rn. Thus and by definition, (R+
∗ )

n is a smooth embedded submanifold of
Rn. This induces that the tangent space at τ ∈ (R+

∗ )
n is

Tτ (R+
∗ )

n = Rn. (2.73)
Then, every tangent space Tτ (R+

∗ )
n is equipped with the following Rieman-

nian metric, for all ξ,η ∈ Tτ (R+
∗ )

n

⟨ξ,η⟩(R
+
∗ )n

τ =
(
τ⊙−1 ⊙ ξ

)T (
τ⊙−1 ⊙ η

) (2.74)
where .⊙−1 and ⊙ are the elementwise inverse and multiplication respectively.
With this Riemannian metric (R+

∗ )
n becomes a Riemannian manifold. It is

tightly linked to S++
n described in Subsection 2.4.1. Indeed, there is a one-to-

one correspondence between (R+
∗ )

n and D++
n (set of n-dimensional positive

definite matrices) using the diffeomorphism diag : (R+
∗ )

n → D++
n that puts

elements of a vector onto the diagonal of the n× n zero matrix. D++
n itself

is a geodesically submanifold of S++
n . Thus, all the following formulas are

counterparts of formulas from Subsection 2.4.1. This means that D++
n is a

submanifold of S++
n and its geodesics are geodesics of S++

n . It is sometimes
referred to the affine invariant Riemannian metric due to its invariance to
affine transformations, i.e.

⟨Dϕ(R+
∗ )n(τ )[ξ],Dϕ(R+

∗ )n(τ )[η]⟩
(R+

∗ )n

ϕ
(R+∗ )n

(τ ) = ⟨ξ,η⟩
(R+

∗ )n

τ (2.75)
where ϕ(R+

∗ )n(τ ) = a⊙ τ , a ∈ Rn with nonzero elements. The orthogonal
projection from Rp×p onto Tτ (R+

∗ )
n is the identity mapping

P (R+
∗ )n

τ (ξ) = ξ. (2.76)
For two smooth vector fields ξ,η ∈ X((R+

∗ )
n), the Levi-Civita connection

on (R+
∗ )

n is
∇(R+

∗ )n

ξ η = Dη[ξ]− η ⊙ τ⊙−1 ⊙ ξ. (2.77)
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The corresponding geodesic γ(R
+
∗ )n with initial conditions γ(R

+
∗ )n(0) = τ and

γ̇(R
+
∗ )n(0) = ξ is

γ(R
+
∗ )n(t) = τ ⊙ exp

(
tτ⊙−1 ⊙ ξ

)
. (2.78)

The geodesic γ(R
+
∗ )n with endpoints conditions γ(R

+
∗ )n(0) = τ 1 and

γ(R
+
∗ )n(1) = τ 2 is

γ(R
+
∗ )n(t) = τ

⊙(1−t)
1 ⊙ τ⊙t

2 . (2.79)
Then, the exponential mapping on (R+

∗ )
n at τ is

exp(R+
∗ )n

τ (ξ) = τ ⊙ exp
(
τ⊙−1 ⊙ ξ

)
. (2.80)

The parallel transport between τ 1 ∈ (R+
∗ )

n and τ 2 ∈ (R+
∗ )

n moves vectors
ξ ∈ Tτ1(R+

∗ )
n onto the tangent space Tτ2(R+

∗ )
n and has the following

formula
T (R+

∗ )n

τ1,τ2
(ξ) = τ 2 ⊙ τ⊙−1

1 ⊙ ξ. (2.81)
Then, the logarithm mapping of τ 2 ∈ (R+

∗ )
n at τ 1 ∈ (R+

∗ )
n is

log(R
+
∗ )n

τ1
(τ 2) = τ 1 ⊙ log

(
τ⊙−1
1 ⊙ τ 2

)
. (2.82)

Finally, the Riemannian distance on (R+
∗ )

n is

d(R+
∗ )n(τ 1, τ 2) = ∥log(τ 1)− log(τ 2)∥2 . (2.83)

Since, this distance is associated to the Riemannian metric (2.74), it is also
invariant to affine transformations, i.e.

d(R+
∗ )n

(
ϕ(R+

∗ )n(τ 1), ϕ(R+
∗ )n(τ 2)

)
= d(R+

∗ )n (τ 1, τ 2) . (2.84)
We now detail how to minimize a smooth function h : (R+

∗ )
n → R.

Indeed, there are two tools left to minimize h:

1. the Riemannian gradient of h at any given point on (R+
∗ )

n,

2. a retraction defined on any tangent space Tτ (R+
∗ )

n.

The Riemannian gradient of h at τ is given as a transformation of g ∈ Rn,
the Euclidean gradient of h at τ :

grad(R+
∗ )n h(τ ) = τ⊙2 ⊙ g. (2.85)

It remains to provide a retraction R(R+
∗ )n

τ : Tτ (R+
∗ )

n → (R+
∗ )

n. The expo-
nential mapping (2.80) is of course a valid one. However, in practice we will
use the following retraction for its numerical stability:

R(R+
∗ )n

τ (ξ) = τ + ξ +
1

2
τ⊙−1 ⊙ ξ⊙2. (2.86)
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This retraction is a second order approximation of the exponential map-
ping (2.80):

exp(R+
∗ )n

τ (tξ) = R(R+
∗ )n

τ (tξ) +O(t3). (2.87)
It can also be seen as a second order retraction in the sense that
∇(R+

∗ )n

ṙ(t) ṙ(t)
∣∣∣
t=0

= 0 with r(t) = R
(R+

∗ )n

τ (tξ) and ṙ(t) = d
dt
r(t).

2.4.4 . Grp,k: manifold of subspaces

Many signal processing and machine learning algorithms rely on linear
subspace estimation or classification. A standard subspace estimation algo-
rithm is the Principal Component Analysis (PCA) [72]. This method com-
putes an orthogonal basis of a linear subspace where most of the variance of
the original data lies in. PCA is fast and easy to implement which makes it a
very common algorithm and applied in numerous applications. Thus, an rich
literature has developed since the original formulation of PCA. For example,
the variance based cost function can be tweaked to enforce desired properties
such as sparsity [153, 73] or robustness against outliers [88, 96]. This leads
us to introduce the manifold of subspaces: the Grassmann manifold [2, 52,
1, 11]. Indeed, this Riemannian manifold enables the minimization of cost
functions that rely on subspaces such the PCA-based ones. Furthermore,
it describes the geometry of subspaces and thus, geodesics, distances and
barycentres between subspaces can be computed. From a theoretical point
of view, this has enabled the development of Intrinsic Cramér-Rao bounds
(bounds on manifold) for the estimation of subspaces [121]. These bounds
have shown in numerical experiments the efficiency of the PCA algorithm.
Since the Grassmann manifold describes the geometry of subspaces, it is of
broader interest than PCA. Indeed, many other applications rely on this man-
ifold. We mention some of them: low rank completion for recommender sys-
tems [23, 22], dictionary learning [62] and video based face recognition [143,
69].

We now described the required tools of the Grassmann manifold for the
next chapters. First of all, the Grassmann manifold is the set of k-dimensional
linear subspaces of Rp

Grp,k = {span(U ) : U ∈ Stp,k} . (2.88)
Its elements can be represented by orthonormal basis. This leads us to
introduce the set of orthonormal basis that spans k-dimensional subspaces
in Rp called the Stiefel manifold and denoted Stp,k. It is the zero level set of
h(U) = UTU − Ik (smooth map from Rp×k to Rk×k)

Stp,k =
{
U ∈ Rp×k : UTU = Ik

}
. (2.89)

81



It should be noted that for k = p, the Stiefel manifold amounts to the
orthogonal group

Ok =
{
U ∈ Rk×k : UTU = Ik

}
. (2.90)

We briefly explain why Stp,k is a smooth manifold. For ξ ∈ Rp×k, the linear
map Dh(U ) : Rp×k → Sk is

Dh(U)[ξ] = UTξ + ξTU . (2.91)
Thus, the kernel of Dh(U) is

ker(Dh(U)) =
{
ξ ∈ Rp×k : UTξ + ξTU = 0k×k

}
. (2.92)

Then the linear map Dh(U) is surjective. Indeed, for all η ∈ Sk, it suffices
to take the direction ξ = 1

2
Uη in order to get

Dh(U)[ξ] = UT

(
1

2
Uη

)
+

(
1

2
Uη

)T
U = η. (2.93)

Thus, we get that span(Dh(U)) = Sk which induces a constant and maxi-
mal rank: rank(Dh(U)) = k(k+1)

2
. Using the rank-nullity theorem, it follows

that
dim(ker(D(h(U )))) = pk − k(k + 1)

2
. (2.94)

This shows that Stp,k is a smooth embedded submanifold in Rp×k of dimen-
sion pk − k(k+1)

2
with the following tangent space at U

TUStp,k = ker(Dh(U )) =
{
ξ ∈ Rp×k : UTξ + ξTU = 0k×k

}
. (2.95)

Another parametrization of TUStp,k that is useful in the following is

TUStp,k =
{
UA+U⊥B : A ∈ Ak,B ∈ R(p−k)×k} (2.96)

where Ak is the set k × k skew-symmetric matrices

Ak =
{
X ∈ Rk×k : XT = −X

}
. (2.97)

and U⊥ ∈ Stp,p−k is such that UTU⊥ = 0k×k. It can be verified that
the right part of (2.96) is indeed TUStp,k by checking that its dimension is
pk − k(k+1)

2
and that each of its elements ξ is such that Dh(U)[ξ] = 0k×k.

Then, Stp,k is turned into a Riemannian manifold by endowing it with the
Euclidean metric on its tangent spaces, for all ξ,η ∈ TUStp,k

⟨ξ,η⟩Stp,k
U = Tr

(
ξTη

)
. (2.98)
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Since the Stiefel manifold is defined, we move on with the Grassmann
manifold. As said previously, the Grassmann manifold Grp,k is the set
of k-dimensional linear subspaces of Rp and its elements will be repre-
sented with elements of Stp,k. Indeed, two orthogonal basis U ,U ′ ∈ Stp,k
represent the same subspace i.e. span(U) = span(U ′) if and only if
UO = U ′ for some O ∈ Ok. This brings us to define the equivalence
relation ∼ on Stp,k

U ∼ U ′ ⇐⇒ UO = U ′ for some O ∈ Ok. (2.99)
Remarkably, it can be shown that there is a one-to-one correspondence be-
tween subspaces span(U) and the equivalence classes {UO : O ∈ Ok} ⊂
Stp,k. This leads us to give another definition of the Grassmann manifold,
this time as a smooth quotient manifold of Stp,k,

Grp,k = Stp,k/Ok = {π(U ) : U ∈ Stp,k} , (2.100)
where π : Stp,k → Grp,k is the map π(U) = {UO : O ∈ Ok}. We refer the
reader to [19, Chapter 9] for a proof that Grp,k (2.100) is indeed a smooth
quotient manifold. It should be noted that, using Definition (2.100), every
element π(U) of Grp,k can be represented by an arbitrary U ′ ∈ Stp,k such
that U ∼ U ′. Then, the dimension of Grp,k is

dim(Grp,k) = dim(Stp,k)− dim(Ok) = (p− k)k. (2.101)
In order to represent elements of the tangent space of Grp,k at π(U), the
tangent space TUStp,k is decomposed into two complementary subspaces,
the vertical one VU and the horizontal one HU

TUStp,k = VU +HU . (2.102)
Using the definition of the map π and the tangent space of Ok at Ik, the
vertical space is

VU = TUπ
−1(π(U )) = {UA : A ∈ Ak} . (2.103)

From (2.96), every ξ ∈ TUStp,k can be parametrized as ξ = UA + U⊥B
with A ∈ Ak,B ∈ R(p−k)×k. Let ξ ∈ VU , thus there exists A ∈ Ak such
that ξ = UA. Since for all B ∈ R(p−k)×k we have ⟨UA,U⊥B⟩

Stp,k
U = 0,

the horizontal space at U is

HU =
{
ξ ∈ Rp×k : UTξ = 0k×k

}
. (2.104)

The associated orthogonal projection of ξ ∈ Rp×k onto HU is

P
Grp,k
U (ξ) = (I −UUT )ξ. (2.105)
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As explained in Section 2.3, every element ξ ∈ Tπ(U)Grp,k is represented
by a unique element liftU (ξ) ∈ HU , called the horizontal lift, such that
ξ = Dπ(U)[liftU (ξ)]. Remarkably on Grp,k, there is an explicit relationship
between horizontal lifts taken at different lifting points of a same tangent
vector,

liftUQ(ξ) = liftU (ξ)Q for all Q ∈ Ok. (2.106)
To prove this assertion, it suffices to take two different smooth curves on
Stp,k. The first one is such that c(0) = U and c′(0) = liftU (ξ) while
the second one is c̃(t) = c(t)Q. Thus, we get that c̃(0) = UQ, c̃′(0) =
liftU (ξ)Q and (π ◦ c)(t) = (π ◦ c̃)(t) for all t where c and c̃ are defined.
This induces that (π ◦ c)′(0) = (π ◦ c̃)′(0). By applying the chain rule,
it follows that ξ = Dπ(UQ)[liftU (ξ)Q]. Since liftU (ξ)Q ∈ HUQ and
by uniqueness, liftU (ξ)Q is the horizontal lift of ξ at UQ which proves(2.106). It remains to endow Grp,k with a Riemannian metric. A candidate
is to leverage the Riemannian metric of Stp,k, i.e., for all ξ, η ∈ Tπ(U)Grp,k,
(ξ, η) 7→ ⟨liftU (ξ), liftU (η)⟩

Stp,k
U . To be a Riemannian metric it remains to

prove that it is invariant to the lifting point, i.e., for all Q ∈ Ok, we must have
⟨liftUQ(ξ), liftUQ(η)⟩

Stp,k
UQ = ⟨liftU (ξ), liftU (η)⟩

Stp,k
U . This is readily checked

using Equation (2.106). Thus,

⟨ξ, η⟩Grp,k
π(U) = ⟨liftU (ξ), liftU (η)⟩

Stp,k
U (2.107)

is a Riemannian metric on Grp,k. Hence, Grp,k becomes a Riemannian
quotient manifold of Stp,k. Then, classical tools of Riemannian geome-
try for the Grassmann manifold are given in the following. Given two
smooth vector fields ξ, η ∈ X(Grp,k), two associated smooth vector fields
ξ,η ∈ X(Stp,k) are derived using the horizontal lift, ξ(U) = liftU (ξ(π(U)))
and η(U) = liftU (η(π(U))). Using these vector fields, the Levi-Civita on
Grp,k is represented by its horizontal lift which is

∇Grp,k
ξ η = PGrp,k(Dη[ξ]) (2.108)

where, for a given χ ∈ X(Rp×k), PGrp,k(χ) : U ∈ Stp,k 7→ P
Grp,k
U (χ(U)) ∈

HU . The corresponding geodesic with initial position π(U) and initial speed
ξ, of horizontal lift ξ at U , is represented by

γGrp,k(t) = UY cos(tΣ) +X sin(tΣ) (2.109)
where ξ = XΣY T is the thin Singular Value Decomposition (SVD). Then,
the exponential mapping on Grp,k of ξ at π(U) is represented by

exp
Grp,k
U (ξ) = UY cos(Σ) +X sin(Σ) (2.110)
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where ξ = XΣY T is the thin SVD. The associated logarithmic mapping of
π(U ′) at π(U ) is represented by its horizontal lift at U ,

log
Grp,k
U (U ′) = XΘY T (2.111)

where XΘY T is computed using the SVD of (I − UUT )U ′(UTU ′)−1 =
X tan(Θ)Y T . The matrix Θ contains the principal angles between span(U)
and span(U ′). It follows that the Riemannian distance between π(U) and
π(U ′) is

dGrp,k(U ,U
′) = ∥Θ∥2 . (2.112)

It should be noted that the principal angles between span(U) and span(U ′)
can also be computed using the SVD UTU ′ = O1 cos(Θ)OT

2 .
We now detail how to minimize a smooth function h : Stp,k → R that is

invariant along equivalence classes, i.e.

h(UQ) = h(U) for all Q ∈ Ok. (2.113)
Thanks to these invariances, a cost function h : Grp,k → R can be defined

h(π(U)) = h(U) for all π(U) ∈ Grp,k. (2.114)
It remains to define two tools to minimize h:

1. the Riemannian gradient of h at any given point on Grp,k,

2. a retraction defined on any tangent space Tπ(U)Grp,k.

The Riemannian gradient of h at π(U) is represented by its horizontal lift
at U which is

gradGrp,k h(U) = P
Grp,k
U (G) (2.115)

where G ∈ Rp×k is the Euclidean gradient of h at U . It remains to pro-
vide a retraction. The exponential mapping (2.110) is of course a valid one.
However, a more numerically stable retraction is represented by

R
Grp,k
U (ξ) = XY T (2.116)

where U + ξ = XΣY T is the thin SVD. Thus, given an iterate π(U (k)),
an iterate of the Riemannian gradient descent is obtained with

π
(
U (k+1)

)
= π

(
R

Grp,k
U (k) (−α gradGrp,k h(U

(k)))
) (2.117)

where α > 0 is a stepsize.
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2.5 . Statistical estimation and intrinsic Cramér-Rao bounds

In Chapter 1, Section 1.3, the estimation theory is introduced. Here, we
present the extension of this estimation theory on Euclidean sets to Rieman-
nian manifolds. Given a measurement {xi}ni=1 in the sample space X , we
seek a parameter θ in the parameter space M, a Riemannian manifold. To
do so, an estimate θ̂ of θ is produced from the measurement {xi}ni=1 and
the corresponding mapping from X toM is called an estimator.

Definition 31. An estimator θ̂ : X → M maps every measurement
{xi}ni=1 to an estimate θ̂({xi}ni=1).
In the following, some of the definitions and properties from Section 1.3 are
extended to Riemannian manifolds. First of all, the negative log-likelihood is
redefined as well as maximum likelihood estimators. Then intrinsic Cramér-
Rao bounds (iCRBs) are introduced: they generalize CRBs to Riemannian
manifolds. Indeed, they lower bound the variance of the estimator θ̂ which
is measured with the Riemannian distance on M instead of the classical
Euclidean MSE. These bounds have two interests:

• distances related with the statistical model can be used, resulting with
simple and sometimes even parameters free iCRBs,

• iCRBS are intrinsic and thus take into account constraints of the esti-
mation problem (such as orthogonality constraints) that are not easily
handled with classical CRBs.

This section highlights the main results from the seminal paper [121] and
mainly relies on the gentle introduction to iCRBs proposed in [21, Chapter
6]. The presented iCRBs only hold at high SNR and this for two reasons.
First, the covariance matrix of the estimator uses the logarithmic map which
is only defined locally. Thus, all estimates θ̂ must be in a neighborhood of
the true parameter θ where the logarithmic map is defined. Second, the
proof of the main presented result (Theorem 5) relies on Taylor expansions
that are valid only when the curvature of the Riemannian manifoldM is not
too high.

2.5.1 . Some definitions for statistical estimation
First of all, we give some classical definitions from the estimation theory.

Let a measurement {xi}ni=1 ∈ X be a realization of a random variable X
following a probability density function f parametrized by θ ∈M, i.e.

X ∼ f(.; θ), (2.118)
then, the negative log-likelihood function L is defined as minus the logarithm
of f . In the following, we assume that L is at least twice differentiable on
M.
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Definition 32. Given {xi}ni=1 ∈ X , the negative log-likelihood function
L :M→ R is defined by

L(θ|{xi}ni=1) = − log f({xi}ni=1; θ).

Then, the maximum likelihood estimator is defined as the minimizer of the
negative log-likelihood on the Riemannian manifoldM.

Definition 33. Given {xi}ni=1 ∈ X , the maximum likelihood estimator
θ̂ ∈M is a minimizer of the negative log-likelihood function

θ̂ = argmin
θ∈M

L(θ|{xi}ni=1).

Using the negative log-likelihood function, the Fisher information metric is
defined.

Definition 34. For a negative log-likelihood L :M→ R, the Fisher infor-
mation metric is defined for all ξ, η ∈ TθM as

⟨ξ, η⟩FIMθ = E[DL(θ|{xi}ni=1)[ξ] DL(θ|{xi}ni=1)[η]] = E[D2 L(θ|{xi}ni=1)[ξ, η]].

Then, an orthonormal basis of each tangent space TθM is needed to derive
components of tangent vectors. Let q = dim(M), an orthonormal basis of
TθM is denoted

eθ = {e1θ, · · · , e
q
θ}. (2.119)

The score vector 3 is a vector whose components are the directional deriva-
tives of the negative log-likelihood with respect to each element of eθ. This
vector has a zero mean and its covariance matrix is called the Fisher infor-
mation matrix.

Definition 35. The score vector sθ ∈ Rq is defined with respect to the
orthonormal basis eθ as

(sθ)i = DL(θ|{xi}ni=1)[e
i
θ].

Lemma 1. The score vector has a zero mean, i.e. E[sθ] = 0.

Definition 36. The Fisher information matrix F θ is the q × q symmetric,
positive semidefinite matrix defined with respect to the basis eθ as

F θ = E[sθsTθ ].

Thus, the entries of F θ are given by

(F θ)ij = ⟨eiθ, e
j
θ⟩

FIM
θ .

3Usually, the score vector is defined with the log-likelihood instead of the negativelog-likelihood. However, since we only use its outer product, both definitions areequivalent.
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Now that the Fisher information matrix is defined, we move on to the vari-
ance. As indicated in the introduction of this section, the variance is defined
using the Riemannian distance. To do so, the error vector between θ and θ̂
is defined as

ξθ = logMθ (θ̂) ∈ TθM. (2.120)
If M is a vector space, we recover the classical error vector ξθ = θ̂ − θ.
Using the coordinates of TθM, the error vector is defined as follows.

Definition 37. The error vector between θ̂ and θ is denoted ξθ ∈ Rq and
its coordinates, with respect to the basis eθ of TθM, are

(ξθ)i =
〈
logMθ (θ̂), eiθ

〉M
θ
.

It should be noted that the norm of the error vector ξθ is equal to the
Riemannian distance onM between θ and θ̂. Indeed, we have

∥ξθ∥
2 = ξTθ ξθ =

∑
i

(〈
logMθ (θ̂), eiθ

〉M
θ

)2

=

〈
logMθ (θ̂),

∑
i

〈
logMθ (θ̂), eiθ

〉M
θ
eiθ

〉M

θ

=
∥∥∥logMθ (θ̂)

∥∥∥2
θ
= d2M(θ, θ̂).

Then, the bias vector is defined: it is the mean of the error vector. If the
bias vector is zero everywhere onM, then θ̂ is called an unbiased estimator.
In the following, it is assumed that θ̂ is unbiased. Finally, the covariance
matrix of ξθ is defined.

Definition 38. The bias of an estimator θ̂ ∈ M for a given parameter
θ ∈M is the mean error vector

bθ = E[ξθ].

An estimator is unbiased if its bias is zero everywhere

bθ = 0 for all θ ∈M.

Definition 39. For an unbiased estimator θ̂, the covariance matrix Cθ ∈
Rq×q with respect to the basis eθ of TθM is a symmetric, positive semidefi-
nite matrix defined by

Cθ = E[ξθξTθ ].

Thus, the trace of Cθ is the variance of the estimator θ̂

Tr(Cθ) = E
[
d2M(θ, θ̂)

]
.
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2.5.2 . Intrinsic Cramér-Rao bounds
With the tools defined previously, we are now able to present the main

Theorem of intrinsic Cramér-Rao bounds for unbiased estimators.

Theorem 5. LetM be a Riemannian manifold, let θ ∈M and let eθ be an
orthonormal basis of TθM. Consider an estimation problem onM such
that the Fisher information matrix F θ is invertible. Then, for any unbiased
estimator, the covariance matrixCθ obeys the following matrix inequality,
where both F θ and Cθ are expressed with respect to the basis eθ

Cθ ⪰ F−1
θ + curvature terms

where ⪰ is the Loewner inequality.

In Theorem 5 the curvature terms are not specified for simplicity and they will
be considered negligible in the following. From Theorem 5 and neglecting
the curvature terms, we get the following iCRB

E
[
d2M(θ, θ̂)

]
≥ Tr

(
F−1
θ

)
. (2.121)

To illustrate the presented tools and Equation (2.121), we finish this section
with an example on the iCRB of the covariance matrix estimation problem
of the centered multivariate Gaussian distribution.

Example 16. Let {xi}ni=1 ⊂ Rp, a set of independent and identically dis-
tributed realizations of a random variablex following a centeredmultivari-
ate Gaussian distribution

x ∼ N (0,Σ) (2.122)
whereΣ ∈ S++

p is called the covariancematrix and parametrizes the distri-
bution. The goal of this example is to derive a lower bound of the variance
of any unbiased estimator Σ̂ of Σ. It should be understood that this vari-
ance can be defined using any squared Riemannian distance between the
true parameter and an unbiased estimator. In this example, we consider
the Riemannianmanifold of symmetric positive definite matrices presented
in the subsection 2.4.1. Indeed, its Riemannian metric is proportional to the
Fisher information metric associated with the model (2.122) and thus the
obtained iCRB is simple. To derive this iCRB, we begin by writing the nega-
tive log-likelihood function associated with the distribution (2.122),

L(Σ|{xi}ni=1) =
n

2

[
log |Σ|+ Tr

(
Σ−1Σ̂SCM

)]
+ constant

where Σ̂SCM is the SCM

Σ̂SCM =
1

n

n∑
i=1

xix
T
i . (2.123)
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Using the expectation E[Σ̂SCM] = Σ, the Fisher information metric writes

⟨ξ,η⟩FIMΣ = E
[
D2 L(Σ|{xi}ni=1)[ξ,η]

]
=
n

2
Tr(Σ−1ξΣ−1η) =

n

2
⟨ξ,η⟩S

++
p

Σ

for all ξ,η ∈ TΣS++
p = Sp. Then, an orthonormal basis of the tangent

space TΣS++
p with respect to the Riemannian metric ⟨., .⟩S++

p
. is{

eiΣ
}
1≤i≤p(p+1)/2

=
{
Σ− 1

2EijΣ− 1
2 for all i, j ∈ J1, pK such that j ≥ i

}
where Eij ∈ Sp and its ijth and jith elements are 2− 1

2 if i ̸= j and 1 other-
wise. All other elements ofEij are equal to 0. Using this orthonormal basis,
we are able to compute the elements of the Fisher information matrix

(FΣ)ij = ⟨eiΣ, e
j
Σ⟩

FIM
Σ =

{
n
2
if i = j

0 otherwise.
Hence, the Fisher information matrix is proportional to the identity

FΣ =
n

2
Ip(p+1)/2.

This leads to a simple closed form formula of the iCRB

E
[
d2S++

p
(Σ, Σ̂)

]
≥ Tr

(
F−1

Σ

)
=
p(p+ 1)

n
. (2.124)

Remarkably, this iCRB is parameter free and is inO
(
p2

n

)
. Hence, the bound

is quadratic with respect to the dimension of the data and is in one over
the number of data. In comparaison, the classical Euclidean CRB for any
unbiased estimator Σ̂ is (see [121] for a complete derivation)

E
[∥∥∥Σ− Σ̂

∥∥∥2
2

]
≥

2
(∑

i≤j Σ
2
ij +

∑
i<j ΣiiΣjj

)
n

. (2.125)
Finally, in [121], it is shown that Σ̂SCM is asymptotically unbiased, i.e.

bΣ → 0 as n→∞ for allΣ ∈ S++
p with bΣ defined in Definition 38. (2.124)

is illustrated in the Figure 2.7 in which we observe that the MSE of Σ̂SCM
reaches the iCRB for n large. We also observe that for n small, there is a
discrepancy between the MSE of Σ̂SCM and the iCRB. [121] shows that this
discrepancy is due to the bias and the inefficiency of Σ̂SCM on S++

p . This
contradicts the classical analysis on the Euclidean space derived from the
Figure 2.8. Thus, studying the estimation error with an intrinsic point of
view can also lead to much different results than its Euclidean counterpart.

90



101 102 103
10−1

100

101

n

E
[ d

2 S
+
+

p
(Σ
,Σ̂

SCM
)] SCMiCRB (2.124)

Figure 2.7: Mean Squared Error (MSE) computed as E [d2S++
p

(Σ, Σ̂SCM)
]

with 1000 Monte-Carlo versus n, the number of samples of dimension
p = 10 to estimate Σ̂SCM.

101 102 103

100

101

n

E
[ ∥ ∥ ∥Σ

−
Σ̂

SCM
∥ ∥ ∥2 2

] SCMCRB (2.125)

Figure 2.8: Mean Squared Error (MSE) computed as E
[∥∥∥Σ− Σ̂SCM

∥∥∥2
2

]
with 1000 Monte-Carlo versus n, the number of samples of dimension
p = 10 to estimate Σ̂SCM.

2.6 . Conclusions

We began this chapter by defining Riemannian manifolds as embedded
submanifolds of linear spaces with metrics that vary smoothly between tan-
gent spaces. This Definition allowed us to simply define important Rieman-
nian manifolds such as the sphere. Then, we introduced some tools of Rie-
mannian manifolds: orthogonal projection, Levi-Civita connection, geodesic,
exponential map, logarithmic map, geodesic distance and parallel transport.
Taylor expansions on curves as well as first-order optimization algorithms
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on Riemannian manifolds have been presented. Also, Assumptions on costs
functions have been introduced in order to guarantee convergence to critical
points. Then, we presented the usefulness of Riemannian quotient mani-
folds as well as their properties for signal processing and machine learning
problems such as subspace estimation. Next, we detailed some Riemannian
manifolds that are used in the subsequent chapters. Finally, we presented in-
trinsic Cramér-Rao bounds to compute the minimum variance of an unbiased
statistical estimator on a given Riemannian manifold.
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3 - Robust estimation and classification of
non centered data

Classically, many signal processing applications or machine learning al-
gorithms make use of the second order statistic. Indeed, a standard distri-
bution is the multivariate centered Gaussian distribution. The latter is fully
parametrized by its covariance matrix which turns out to be an interesting
feature to discriminate data in machine learning problems. Recently, the
Riemannian geometry S++

p associated with the Fisher information metric
(FIM) of the centered Gaussian distribution [120] has been used with great
successes on classification problems, e.g. on EEG data [8], in detection of
pedestrians [134] or in Diffusion tensor imaging [113]. These successes are
described in Chapter 1 Section 1.5 and the geometry of S++

p is presented
in Chapter 2 Section 2.4.1. We recall some of its elements here since they
are important for this chapter. The distance of the Riemannian manifold
S++
p between two covariance matrices Σ1,Σ2 ∈ S++

p benefits from a simple
closed form formula,

dS++
p

(Σ1,Σ2) =
∥∥∥log (Σ− 1

2
1 Σ2Σ

− 1
2

1

)∥∥∥
2
. (3.1)

Notably, this distance is affine invariant, i.e ∀A ∈ GLp,

dS++
p

(AΣ1A
T ,AΣ2A

T ) = dS++
p

(Σ1,Σ2). (3.2)
This invariance property is of particular interest for applications based on
mixing models [119, 34], i.e the measured signal is assumed to be a linear
combination of non-measurable and discriminative source signals. In this
case, the distances in the source space are equal to those in the measured
signal space. Then, many classification-clustering algorithms, e.g. the Near-
est centroid classifier or K-means++, need to compute centers of mass.
The Riemannian center of mass of {Σi}Mi=1, denoted Σ, associated with the
distance (3.1), is defined as the minimizer of the variance [75, 94],

Σ = argmin
Σ∈S++

p

1

M

M∑
i=1

d2S++
p

(Σ,Σi). (3.3)
A gradient descent achieves this minimization, see Chapter 2 Section 2.2.

As mentioned earlier, this geometry assumes that the signal is centered.
Indeed, it is the information geometry [3, 121, 120] of the centered Gaus-
sian distribution. Hence, Equation (3.1) is the distance between centered
Gaussian distributions. It does not use the mean/location whereas it can
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be a discriminative feature, e.g. in multispectral imaging where signals are
non-centered [83]. Performance could be improved if data were modeled
with non-centered distributions and classified with associated Riemannian
manifolds (or statistical manifolds if the FIM is considered). Furthermore,
some applications such as SAR images segmentation or time series classi-
fication can benefit from other statistical models such as robust statistical
models [104, 136]. Thus, the objective of this chapter is to extend the
pipeline, presented in Chapter 1 Section 1.2, to other statistical models than
the centered Gaussian one. In particular, we propose to use the location, in
addition to the covariance matrix, as a clustering-classification feature. This
has two practical consequences. The first one is the development of joint
location-covariance statistical estimators. The second one is the realization
of machine learning algorithms that handle jointly these two statistics.

The chapter is organized as follows. First of all, Sections 3.1, 3.2 and 3.3
present a clustering-classification pipeline for non-centered Gaussian data.
The information geometryMp of multivariate Gaussian distributions is lever-
aged to derive affine invariant divergences between couples of locations and
covariance matrices. A Riemannian gradient descent is proposed to optimize
functions of Gaussian distributions. In this chapter, it is used to compute
centers of mass associated with the proposed divergences. The proposed
pipeline is applied on the Breizhcrops dataset and robustness to transfor-
mations of data are presented. The rest of the chapter proposes to model
data with the non-centered mixtures of scaled Gaussian distributions (NC-
MSG). Section 3.4 presents the model and its parameter spaceMp,n. Then,
Sections 3.5 and 3.6 establish two Riemannian geometries for Mp,n. These
geometries are developed to optimize functions of NC-MSGs such the neg-
ative log-likelihood (NLL) and variances to compute centers of mass. The
first geometry uses a product metric and thus is simple to derive. However,
this geometry gives optimization algorithms that are slow in practice. Hence,
we derive a second Riemannian geometry that uses the FIM of the NC-MSG.
This geometry is only known locally, i.e. geodesics and distances between ar-
bitrary points remain unknown. Since, geodesics are unknown, we propose to
classify NC-MSGs with a Kullback-Leibler (KL) divergence. The associated
center of mass is derived. Finally, the proposed algorithms are extensively
studied though simulations and applied on real data with the Breizhcrops
dataset. Robustness to transformation of the data are presented.

3.1 . Non -centered multivariate Gaussian distribution

3.1.1 . Parameter space Mp and information geometry

94



Let a set of n data points xi ∈ Rp sampled from a random variable x
following a Gaussian distribution

x ∼ N (µ,Σ). (3.4)
The parameters µ ∈ Rp and Σ ∈ S++

p are the location and covariance
matrix respectively. The negative log-likelihood is defined on the setMp =
Rp×S++

p and given υ = (µ,Σ) writes (neglecting terms that do not depend
on υ)

LG(υ) = log |Σ|+ 1

n

n∑
i=1

(xi − µ)TΣ−1(xi − µ). (3.5)
The maximum likelihood estimators of the Gaussian distribution are the well
known sample mean and SCM,

µ̂SM =
1

n

n∑
i=1

xi,

Σ̂SCM =
1

n

n∑
i=1

(xi − µ̂SM)(xi − µ̂SM)
T .

(3.6)

Then,Mp is turned into a Riemannian manifold. The tangent space TυMp

of Mp at υ is identified to the product space Rp × Sp with Sp the set of
symmetric matrices. Moreover,Mp is equipped with the FIM associated with
the negative log-likelihood (3.5). Let ξ =

(
ξµ, ξΣ

)
, η =

(
ηµ,ηΣ

)
∈ TυMp,

this metric writes [120]

⟨ξ, η⟩Mp
υ = ξTµΣ

−1ηµ +
1

2
Tr(Σ−1ξΣΣ

−1ηΣ). (3.7)
Remarkably, the FIM (3.7) is invariant under affine transformations. Given
A ∈ GLp and µ0 ∈ Rp we verify that

⟨DϕMp(υ)[ξ],DϕMp(υ)[η]⟩
Mp

ϕMp (υ)
= ⟨ξ, η⟩Mp

υ , (3.8)
where the affine transformation writes,

ϕMp(υ) = (Aµ+ µ0,AΣAT ). (3.9)
A geodesic γ(t) = (µ(t),Σ(t)) : R → Mp associated with the FIM (3.7)
must have a zero acceleration [32]{

µ̈(t)− Σ̇(t)Σ(t)−1µ̇(t) = 0

Σ̈(t) + µ̇(t)µ̇(t)T − Σ̇(t)Σ(t)−1Σ̇(t) = 0.
(3.10)
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Figure 3.1: Illustration of a geodesic triangle on the Riemannian mani-foldMp. If the covariance matrix Σ is well chosen, then the geodesictriangle N (µ1,Σ1) → N (µ2,Σ) → N (µ2,Σ2) is known with closedformed formulas. The arc length of the path in red is δMp .
An explicit expression of the geodesic on Mp with initial position γ(0) = υ
and initial velocity γ̇(0) = ξ is derived in [32],

γ(t) = (µ(t),Σ(t)) =
(
2Σ

1
2R(t) sinh

(
t

2
G

)
G−Σ− 1

2ξµ + µ,

Σ
1
2R(t)R(t)TΣ

1
2

) (3.11)
where

G2 =
(
Σ− 1

2ξΣΣ
− 1

2

)2
+ 2Σ− 1

2ξµξ
T
µΣ

− 1
2 ,

R(t) =
(
cosh

( t
2
G
)
−Σ− 1

2ξΣΣ
− 1

2G− sinh
( t
2
G
))−T

,

and G− is the Moore–Penrose inverse of G. However (3.11) only gives an
expression of a geodesic with initial position and velocity. Unfortunately, in
the general case, a closed form expression of a geodesic between two points
υ1 = (µ1,Σ1) and υ2 = (µ2,Σ2) remains unknown. Hence, the distance
between υ1 and υ2 associated with the FIM (3.7) is also unknown. Using
other metrics than the FIM could give closed form distances but they would
not necessarily have the affine transformation invariance property. Instead,
we propose to use geodesic triangles derived from (3.11).

3.1.2 . Geodesic triangles and divergences
Geodesic triangles between υ1 and υ2 using the expression (3.11) can be

derived. Indeed, by carefully choosing intermediate points υ, geodesics are
obtained between υ1 and υ and then between υ and υ2. Hence, we get
geodesic triangles υ1 → υ → υ2. The squared arc-length of one of these
geodesic triangles is then measured to get a divergence denoted δMp . By
construction, these divergences δMp are invariant by affine transformation,

δMp(ϕMp(υ1), ϕMp(υ2)) = δMp(υ1, υ2). (3.12)
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To construct those triangles, we recall that the manifold with a fixed location
vectorMpµ = {(µ,Σ) : Σ ∈ S++

p } endowed with metric (3.7) is a geodesic
submanifold ofMp, i.e. the geodesics ofMpµ are geodesics ofMp. Hence,
in the case µ1 = µ2, the squared distance onMp is

d2Mp
(υ1, υ2) =

1

2
d2S++

p
(Σ1,Σ2) (3.13)

Thus, to create a triangle between υ1 and υ2, it suffices to find an interme-
diate point υ = (µ2,Σ), where Σ is determined such that a geodesic (3.11)
is known between υ1 and υ. These geodesic triangles are represented in Fig-
ure 3.1. Based on this scheme, [32] proposed to use a rescaling of the initial
covariance matrix as an intermediate point, i.e.

υc = (µ2, cΣ1), (3.14)
with c =

∣∣Σ−1
1 Σ2

∣∣ 1p = argmin
c∈R+

∗

d2Mp
(υc, υ2). Using this point, a first in-

variant under affine transformations (3.9) divergence on Mp is proposed in
Corollary 1.

Corollary 1 (Divergence δc,Mp). An invariant under affine transforma-
tions (3.9) divergence onMp is

δc,Mp(υ1, υ2) = 2 acosh

(
c−

1
2

2

(
c+ 1 +

1

2
∆µTΣ−1

1 ∆µ

))2

+
(p− 1)

2
log (c)2 +

1

2

∥∥∥log (cΣ− 1
2

2 Σ1Σ
− 1

2
2

)∥∥∥2
2
.

where ∆µ = µ2 − µ1 and c =
∣∣Σ−1

1 Σ2

∣∣ 1p .
Proof. Using the intermediate point υc = (µ2, cΣ1), and applying theconstruction of triangles explained earlier, we get

δc,Mp(υ1, υ2) = ρ2(υ1, υc) + d2Mp
(υc, υ2), (3.15)

where ρ is the arc length of a geodesic (3.11) computed in Equation (18)
of [32]. Then, ρ is simplified. By denoting µ̃ = Σ

− 1
2

1 ∆µ, we get
1

2
ρ2(υ1, υc) =

∥∥∥∥∥acosh
(
c−

1
2

2
(Ip + cIp +

1

2
µ̃µ̃T )

)∥∥∥∥∥
2

2

(3.16)

= acosh

(
c−

1
2

2
(c+ 1 +

1

2
µ̃T µ̃)

)2

(3.17)

+ (p− 1) acosh

(
c−

1
2 + c

1
2

2

)2

(3.18)
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Using acosh
(
c−

1
2+c

1
2

2

)2
= log(c

1
2 )2 = 1

4
log(c)2 and Equation (3.13), we

get the divergence δc,Mp .
In [129], the authors proved that the orthogonal projection of υ1 onto

N p
µ2

is

υ⊥ =

(
µ2,Σ1 +

1

2
∆µ∆µT

)
. (3.19)

The squared arc length of the geodesic between υ1 and υ⊥ is also computed
in [129],

δ⊥(υ1, υ⊥) =
1

2
acosh

(
1 + ∆µTΣ−1

1 ∆µ
)2
. (3.20)

Hence, using the intermediate point υ⊥ and summing Equation (3.20) with
Equation (3.13) we get a second invariant under affine transformations (3.9)
divergence onMp. This divergence is proposed in Corollary 2.

Corollary 2 (Divergence δ⊥,Mp). An invariant under affine transforma-
tions (3.9), divergence onMp is

δ⊥,Mp(υ1, υ2) =
1

2

[
acosh

(
1 + ∆µTΣ−1

1 ∆µ
)2

+

∥∥∥∥log(Σ− 1
2

2

(
Σ1 +

1

2
∆µ∆µT

)
Σ

− 1
2

2

)∥∥∥∥2
2

]
.

3.2 . Riemannian optimization onMp and estimation of centers
of mass

3.2.1 . Riemannian optimization
In machine learning, some important clustering-classification algorithms,

e.g. K-means++ or the Nearest centroïd classifier, require a divergence and
an algorithm to compute centers of mass. Since we proposed two divergences
in Corollaries 1 and 2, it only remains to explicit an algorithm to compute
centers of mass. Such an algorithm relies on optimization on the Riemannian
manifoldMp. Hence, we begin by presenting tools to perform gradient based
optimization onMp. In this subsection we consider a function h :Mp 7→ R.
The objective is to find the parameter υ minimizing h onMp,

minimize
υ∈Mp

h(υ). (3.21)
Since Mp is a Riemannian manifold, we leverage the framework of opti-
mization on Riemannian manifolds [1] to compute (3.21). Thus, we provide
two important tools for Riemannian optimization, both associated with the
metric (3.7) :
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Algorithm 5: Riemannian gradient descent [1]
Input : Initial iterate υ1 ∈Mp.
Output: Sequence of iterates {υk}.
k := 1;
while no convergence doCompute a step size α (see [1, Ch. 4]) and set

υk+1 := R
Mp
υk (−α gradMp

h(υk));
k := k + 1;

end

• the Riemannian gradient in the Proposition 10,

• a second order retraction in the Proposition 11 (approximation of the
geodesic (3.11) with lower calculation cost and better numerical stabil-
ity).

With these tools, we can apply gradient based algorithms on Mp to min-
imize h. The corresponding Riemannian gradient descent is given in the
Algorithm 5.

Proposition 10 (Riemannian gradient). Let υ ∈ Mp, the Riemannian
gradient of h at υ is

gradMp
h(υ) = PMp

υ (ΣGµ, 2ΣGΣΣ)

where ∀ξ ∈ Rp × Rp×p, PMp
υ (ξ) = (ξµ, sym(ξΣ)), with sym(ξ) = 1

2
(ξ +

ξT ), is the orthogonal projection according to the FIM (3.7) onto TυMp and
gradϵ h(υ) = (Gµ,GΣ) is the Euclidean gradient of h in Rp × Rp×p.

Proof. See Appendix 3.A.1.
Proposition 11 (Second order retraction). A second order retraction at
υ ∈Mp of ξ ∈ TυMp is,

RMp
υ (ξ) =

(
µ+ ξµ +

1

2
ξΣΣ

−1ξµ,Σ+ ξΣ +
1

2

(
ξΣΣ

−1ξΣ − ξµξ
T
µ

) )
.

Proof. See Appendix 3.A.2.
3.2.2 . Estimation of centers of mass

We now have all the elements to compute centers of mass of sets of
points S = {υi}Mi=1 ⊂ Mp. These centers are associated with divergences,
which in our case are the divergences δMp ∈ {δc,Mp , δ⊥,Mp}, defined in the
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subsection 3.1.2. Similarly to (3.3), the Riemannian center of mass υ is
defined as the minimizer of the variance of S

υ = argmin
υ∈Mp

1

M

M∑
i=1

δMp(υ, υi). (3.22)
Hence, gradient based algorithms can be applied to achieve (3.22) (e.g. using
Algorithm 5). The only remaining element to compute is the Riemannian
gradient of the variance defined in (3.22). Using the Proposition 10, com-
puting the Riemannian gradient of the variance defined in (3.22) amounts to
computing its Euclidean gradient. The latter is easily numerically computed
using automatic differentiation libraries like Autograd [79] or JAX [25].

3.3 . Application

In this subsection, we provide an application of the theoretical frame-
work developed earlier on the large-scale crop type mapping dataset
Breizhcrops [118], presented in Chapter 1 Subsection 1.1.3. To classify
these crops, we apply a Nearest centroïd classifier algorithm on descriptors
as presented in Chapter 1. We recall that this classification algorithm works
in three steps.

1. For each crop X ∈ Rp×n, a descriptor is computed (e.g. the sample
mean or the SCM (3.6)).

2. Then, on the training set, the center of mass of the descriptors of each
class is computed.

3. Finally, on the test set, each descriptor is associated with the nearest
center of mass.

Thus, we get a classification of the X. The different descriptors used in the
application are the following.

• Two descriptors are the batches themselves X and their sample means
µ̂SM (3.6). Their associated geometry is the Euclidean one with the
Euclidean distance as presented in Chapter 1 Example 2. The center
of mass is the classical element-wise arithmetic mean.

• Then, two estimators are the SCMs Σ̂SCM (3.6) with location assumed
to be known or not. In the case of known location, the SCM is es-
timated as Σ̂SCM = 1

n

∑n
i=1 xix

T
i whereas in the case of unknown

location it is estimated as Σ̂SCM = 1
n

∑n
i=1(xi − µ̂SM)(xi − µ̂SM)

T .
The associated geometry is S++

p as presented in Equations (3.1) and(3.3).
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Figure 3.2: “Overall Accuracy" versus the parameter t of two differentdata transformations applied to the test set of the Breizhcrops dataset.The different Nearest centroïd classifiers estimate the centers of masson the training set. Then, the classification is performed on the testset which can undergo two transformations: a rotation transformationand a scale transformation. For t = 0, the test set is unchanged andthen the larger the t the more the test set is transformed. Six different
Nearest centroïd classifiers are compared: each one is a combination ofan estimator, a divergence and its associated center of mass computa-tion. The two proposed one are denoted “(µ̂SM, Σ̂SCM),Mp with δc,Mp”and “(µ̂SM, Σ̂SCM),Mp with δ⊥,Mp".
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• Finally, two descriptors use both the sample mean and the SCM,
(µ̂SM, Σ̂SCM) from (3.6). These estimators are used with the geometry
Mp and the two divergences δ2c,Mp

and δ2⊥,Mp
presented in Corollaries 1

and 2 respectively. Riemannian centers of mass are computed using
Algorithm 5, implemented using Pymanopt [132] (the python version
of Manopt [24]).

The goal of this application is to show the robustness of the proposed
methods when the test set undergoes transformations. The intuition is that
using both the location and the covariance matrix, instead of only using the
covariance matrix, should improve the robustness of the classifier. To do
so, we estimate the centers of mass on the raw training set and then we
classify a transformed version of the test set. The objective is to keep good
performance while the test set is being transformed. Denoting xi the vectors
in the test set, the two continuous transformations are the following.

• The rotation transformation is: xi 7→ Q(t)Txi for all t ∈ [0, 1] where
Q(t) = exp(tξ) with ξT = −ξ.

• The scale transformation is: xi 7→ (1− t)xi for all t ∈ [0, 1].

It should be noted that when t = 0, the test set is left unchanged and as t is
increased, the test set undergoes an increasingly important transformation.

Figure 3.2 presents the Overall Accuracy results of the different descrip-
tors and geometries on the Breizhcrops dataset. First of all, we observe that
the estimators using Σ̂SCM along with the FIM clearly outperform the others
whatever the transformation and its intensity. Furthermore, all the estima-
tors/geometries perform equally well when t = 0 (no transformation of the
test set). However, when t is increased, the two proposed methods that use
δMp ∈ {δc,Mp , δ⊥,Mp} perform better than those using only Σ̂SCM along with
the geometry of S++

p . This shows the interest of considering both first and
second order statistics along with the FIM for classification. A final remark is
that the Nearest centroïd classifier using δc,Mp performs slightly better than
the one using δ⊥,Mp when the scale transformation is applied. A good point
is that the difference in performance between δc,Mp and δ⊥,Mp is marginal
compared to the difference with the other methods when a transformation is
applied. This means that the proposed Nearest centroïd classifier is robust
to the chosen intermediate point of the different triangles.

So far, we have proposed two affine invariant divergences that handle both
first and second order statistics of the Gaussian distribution. The Riemannian
geometry associated with the FIM has been studied and an algorithm to
compute Riemannian centers of mass associated with these divergences has
been proposed. Finally, these tools have been applied on a classification
problem to show the interest of the proposed method.
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3.4 . Non centered mixture of scaled Gaussian distributions

3.4.1 . From the Gaussian distribution to the mixture of scaled
Gaussian distributions

Many signal processing and machine learning tasks require estimates of
the first and second order statistical moments of the sample set {xi}ni=1 [84,
82, 58, 117]. An example of such an application has been given in the
previous section. In the latter, these first and second order moments have
been estimated using the empirical mean and the SCM that correspond to
the MLE of the Gaussian distribution. However, these estimates tend to
perform poorly in the context of heavy-tailed distributions or when the set
contains outliers, which motivates the use of robust estimation methods. In
such setups, one can obtain a better fit to empirical distributions by consid-
ering more general statistical models, such as the elliptical distributions [74].
Within this broad family of distributions, M -estimators of the location and
scatter [86] appear as generalized MLEs and have been leveraged for their
robustness properties in many fields (see [104] for an extensive review).

An important subfamily of elliptical distributions are the compound Gaus-
sian distributions, which models samples as x

d
= µ +

√
τu, where µ ∈ Rp

is the center (also referred as location) of the distribution, u ∼ N (0,Σ) is
the speckle (centered Gaussian distribution with covariance matrix Σ), and
τ ∈ R+ is an independent random scaling factor called the texture. The flex-
ibility regarding the choice of the PDF for τ results in various models for x.
Compound Gaussian distributions encompass for example the t-distribution
(that also includes the Cauchy distribution), and the K-distribution. In prac-
tice, the underlying distribution is generally unknown, which is why the tex-
tures have often been modeled as unknown and deterministic in the centered
case, i.e., xi ∼ N (0, τiΣ). Such models have been presented Chapter 1
Section 1.3 and are referred to as mixture of scaled Gaussian distributions
(MSG) [141]. The MLE of the covariance matrix Σ of this model coincides
with Tyler’s M -estimator of the scatter up to a scale factor [136], which at-
tracted considerable activity due to its robustness and distribution-free prop-
erties over the elliptical distributions family [46, 110, 55, 149]. However,
its transposition to the non-centered case from the model xi ∼ N (µ, τiΣ)
received less interest1. This might notably be due to the fact that the usual
fixed-point iterations to evaluate its maximum likelihood may diverge in prac-
tice, which motivated the present work.

In the following sections, we tackle optimization problems related to

1Notice that D. E. Tyler also proposes anM -estimator of location and scatter thatis a solution of a fixed point equation in [136]. While the MLE of xi ∼ N (0, τiΣ) andTyler’s estimator (i.e., scatter only) coincide, this is not the case for the non-centeredmodel [40].
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parameter estimation and classification for non-centered mixture of scaled
Gaussian distributions (NC-MSG). The contribution are threefold:

First, we derive a Riemannian gradient descent and a Riemannian conju-
gate gradient algorithms based on the Riemannian manifold of the parameter
space (location, covariance, textures) endowed with a product Riemannian
metric. These algorithms are simple to derive and enough to cast a gradient
descent applicable to any function of the parameters. However, they are
slow in practice. Hence, we derive a second Riemannian gradient descent
algorithm. The latter is based on the Fisher-Rao information geometry of
the considered statistical model. Indeed the parameter space is endowed
with the FIM of the NC-MSG and is inherently well suited to the natural
geometry of the data [97]. In this scope we derive the Riemannian gradient
(also referred to as natural gradient) and a second order retraction of this
geometry in order to develop a Riemannian gradient descent. We focus on
two main examples that are regularized maximum likelihood estimation and
center of mass computation. Simulations evidence that this last algorithm
allows for a fast computation of critical points, as it can converge with up
to one order of magnitude less of iterations compared to the two previous
Riemannian descent approaches.

The second line of contributions concerns the problem of maximum likeli-
hood estimation, for which we propose a new class of regularization penalties.
A main issue with NC-MSGs is that the existence of the maximum likelihood
is not guaranteed. This is due to attraction points where the likelihood
function diverges. This also explains why standard fixed-point algorithms to
evaluate the solution may diverge in practice. Related issues are well known
in the context of M -estimators because their existence is subject to strict
conditions that are not always met in practice [86, 136, 104], for example
when there is insufficient sample support (n < p). In such setups, it is
now common to rely on regularization penalties to ensure the existence of
a solution, and the stability of corresponding iterative algorithms. In the
centered case of elliptical distributions, several works considered shrinkage
of M -estimators to a target covariance matrix [109, 126, 103], and regular-
izing both the mean and the covariance for the non-centered t-distribution
was studied in [125]. Other regularization formulated on the spectrum of
the covariance matrix were proposed in [141, 29, 144] for the centered case.
For NC-MSGs, we propose here a family of penalties that can be interpreted
as a divergence between the initial model and a white Gaussian one (i.e.,
that shrinks both the textures and eigenvalues of the covariance matrix to
a pre-defined κ ∈ R+

∗ ). We derive the general conditions for these penalties
to ensure existence of a solution of the regularized MLE. Interestingly, we
show that this existence is only conditioned to the design of the penalty, and
does not depend on the size of the sample support. We also also study the

104



invariance properties of the resulting estimators.
Finally, we apply the proposed algorithms to perform Riemannian clas-

sification. We consider the framework where statistical features of sample
batches are used to discriminate between classes [8, 134, 135, 54]. The Rie-
mannian approach then consists in generalizing usual classification algorithms
(e.g., the Nearest centroïd classifier) by replacing the Euclidean distance and
arithmetic mean by a divergence and its corresponding center of mass [75,
5, 38]. In particular, this framework has been presented in Chapter 1. In this
setup, the information geometry can help in designing meaningful distances
between the features, and improve the output performance [8, 54]. Unfortu-
nately, the geodesic distance associated with the Fisher information metric
of the NC-MSG remains unobtainable in closed form (it is still unknown
for the non-centered multivariate Gaussian model [32, 129, 41]). Instead,
we propose to rely on the Kullback-Leibler (KL) divergence and its associ-
ated center of mass (computed using the proposed Riemannian optimiza-
tion algorithm). We apply such Riemannian classification framework to the
Breizhcrops dataset [118]. Our experiments evidence that regularizing the
estimation greatly improves the accuracy. Thanks to the invariance proper-
ties of the proposed estimators, we we also show that this process exhibits a
good robustness to rigid transformations of the samples during the inference.

The rest of the chapter is organized as follows. The next subsection
presents NC-MSGs and casts their parameter space as a manifold. Sec-
tion 3.5 presents a Riemannian geometry with a product metric for the pa-
rameter space of the NC-MSG. Section 3.6 studies the Fisher-Rao informa-
tion geometry of the NC-MSG. Section 3.7 discusses parameter estimation
in the considered model, presents a new class of regularized estimators, and
studies some of their properties (existence, invariances). Section 3.8 de-
rives the KL divergence of the model, and its associated center of mass.
Section 3.9 concludes with validation simulations, and an application to Rie-
mannian classification of the Breizhcrops dataset.

3.4.2 . Non-centered mixture of scaled Gaussian distributions
Let a set of n data points {xi}ni=1 belonging to Rp and distributed ac-

cording to the following statistical model

xi
d
= µ+

√
τiΣ

1
2 u , (3.23)

where u follows a centered circular Gaussian distribution i.e. u ∼ N (0, Ip).
The variables µ ∈ Rp and Σ ∈ S++

p are respectively named the location
and covariance parameters. Then, the unknown texture parameters {τi}ni=1

are stacked into the vector τ ∈ (R+
∗ )

n. If these textures admit a PDF,
then the random variables xi follow a Compound Gaussian distribution [105,
104]. However, in general, this PDF is unknown. Hence, to be robust to any
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underlying Compound Gaussian distributions the textures are often assumed
to be deterministic [108, 110]. In this case, the random variable xi follow a
NC-MSG, i.e.

xi ∼ N (µ, τiΣ). (3.24)
Thus xi admits a PDF f defined from the Gaussian one fG

f(xi;µ,Σ, τi) = fG(xi;µ, τiΣ) (3.25)
with ∀x ∈ Rp

fG(x;µ,Σ) = (2π)−
p
2 |Σ|−

1
2 exp

[
−1

2
(x− µ)TΣ−1(x− µ)

]
. (3.26)

The NLL of the sample set {xi}ni=1 is then defined on the set of parame-
ters θ = (µ,Σ, τ ) ∈ Rp×S++

p × (R+
∗ )

n as (neglecting terms not depending
on θ)

L(θ|{xi}ni=1) =
1

2

n∑
i=1

[
log |τiΣ|+

(xi − µ)TΣ−1(xi − µ)

τi

]
. (3.27)

One can observe the presence of an ambiguity between the textures τ and
the scatter matrix Σ. Indeed, ∀α ∈ R+

∗ , we have

L
(
µ, αΣ, α−1τ |{xi}ni=1

)
= L (µ,Σ, τ |{xi}ni=1) . (3.28)

Thus, to identify the textures and covariance matrix parameters, a constraint
on τ or Σ can be added. Here the choice is made to constrain the textures
by fixing their product to be equal to one, i.e.

∏n
i=1 τi = 1. We point

out that most of the results in the rest of the chapter could be obtained
by constraining the covariance matrix instead of the textures, with a unit
determinant constraint, i.e. |Σ| = 1 [27, 18]. The parameter space of
interest is

Mp,n = Rp × S++
p × S(R+

∗ )
n (3.29)

where S(R+
∗ )

n is the set of textures with unit product,

S(R+
∗ )

n =

{
τ ∈ (R+

∗ )
n :

n∏
i=1

τi = 1

}
. (3.30)

The choice of adding a constraint is motivated by two results additional to
the identifiability:

• it reduces the dimension of the parameter space by removing the in-
determinacy (3.28),
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• the associated FIM (see Proposition 12) admits a simpler expression,
which will be instrumental from Section 3.6 as it turns Mp,n into a
Riemannian manifold. Its simple formula could not have been obtained
without adding this constraint (either on τ or its counterpart on Σ).

In the rest of the chapter, the goal is to optimize several cost functions
h :Mp,n → R. Notably, two cost functions are studied in this chapter: a
regularized NLL in Section 3.7, and a cost function to compute centers of
mass of sets of points {θi} ⊂ Mp,n in Section 3.8. To do so,Mp,n is turned
into two different Riemannian manifolds. The first one, denoted MDec.

p,n , is
described in Section 3.5 and uses a "product Riemannian metric". This
metric allows a simple derivation of geometric tools (exponential mapping,
parallel transport, ...) since it leverages three well known Riemannian man-
ifolds. However, the induced optimizers are slow as shown in the numerical
experiments of Section 3.9. Thus, a second Riemannian manifold, denoted
MFIM

p,n , is developed. This one uses the FIM of the NC-MSG. The geometric
tools are harder to derive but the induced optimizers are faster than those
of MDec.

p,n in the numerical experiments of Section 3.9. In Sections (3.5 and
3.6)MDec.

p,n andMFIM
p,n are presented.

In Chapter 1 Section 1.3, we introduced NC-MSG dealing with non-
Gaussian data. Indeed, the estimation of their scatter matrices reduce to
the Tyler’s M -estimator when the location is known [136]. This estimator is
known for its many good properties such as its distribution-free property over
the class of elliptically contoured distributions. However, the extension of the
Tyler’s M -estimator to non-centered sample sets, i.e. when the location is
unknown, is not straightforward.

3.5 . MDec.
p,n : parameter space Mp,n endowed with a product

Riemannian metric

In this sectionMp,n is turned into a Riemannian geometry using a "prod-
uct Riemannian metric". To do so, we begin by defining the ambient space
of the parameter spaceMp,n,

Ep,n = Rp × Rp×p × Rn. (3.31)
Therefore, the tangent space of Mp,n at θ is a subspace of the ambient
space Ep,n

TθMp,n = {ξ = (ξµ, ξΣ, ξτ ) ∈ Rp × Sp × Rn : ξTτ τ
⊙−1 = 0} (3.32)

where Sp is the set of p× p symmetric matrices and .⊙−1 is the elementwise
inverse operator.
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3.5.1 . Riemannian geometry
To turn Mp,n into a Riemannian geometry, we introduce a Riemannian

metric in Definition 40.

Definition 40 (Product Riemannian metric). Let θ ∈ Mp,n and ξ, η ∈
Ep,n, an inner product onMp,n is defined by

⟨ξ, η⟩M
Dec.
p,n

θ = ξTµηµ + Tr(Σ−1ξTΣΣ
−1ηΣ) + (ξτ ⊙ τ⊙−1)T (ητ ⊙ τ⊙−1)

where⊙ is the elementwise product operator. Restricted to elements ξ, η ∈
TθMp,n, (ξ, η) 7→ ⟨ξ, η⟩

MDec.
p,n

θ defines a Riemannian metric onMp,n which
becomes a Riemannian manifold and is denotedMDec.

p,n .

The Riemannian metric from Definition 40 is called a "product Riemannian
metric" since it can be written as the sum of three independent Riemannian
metrics of three Riemannian manifolds: Rp, S++

p and S(R+
∗ )

n. Indeed, for
all ξ, η ∈ TθMp,n, it is rewritten as

⟨ξ, η⟩M
Dec.
p,n

θ = ⟨ξµ,ηµ⟩R
p

µ + ⟨ξΣ,ηΣ⟩
S++
p

Σ + ⟨ξτ ,ητ ⟩S(R
+
∗ )n

τ (3.33)
where

• ⟨ξµ,ηµ⟩R
p

µ = ξTµηµ,

• ⟨ξΣ,ηΣ⟩
S++
p

Σ = Tr(Σ−1ξΣΣ
−1ηΣ),

• ⟨ξτ ,ητ ⟩
S(R+

∗ )n

τ = (ξτ ⊙ τ⊙−1)T (ητ ⊙ τ⊙−1).

Hence,MDec.
p,n is a product Riemannian manifold of three well known Rieman-

nian manifolds: Rp, S++
p , and S(R+

∗ )
n [120, 113, 15, 122]. The Riemannian

manifold S++
p is presented in Chapter 2 Section 2.4 and the Riemannian

manifold S(R+
∗ )

n is deduced from the one of SS++
p , Riemannian manifold

of p× p symmetric positive definite matrices of unit determinant. The Rie-
mannian manifold Rp is straightforward to derive. The proofs of the following
results directly arise from properties of product manifolds [1]. We begin the
description ofMDec.

p,n with the orthogonal projection from Ep,n onto TθMp,n

which is

P
MDec.

p,n

θ (ξ) =

(
ξµ, sym(ξΣ), ξτ −

ξTτ τ
⊙−1

n
τ

)
(3.34)

where sym(ξ) = 1
2

(
ξ + ξT

)
. Then, the exponential mapping exp

MDec.
p,n

θ :
TθMp,n →MDec.

p,n is

exp
MDec.

p,n

θ (ξ) =
(
expRp

µ (ξµ), exp
S++
p

Σ (ξΣ), exp
S(R+

∗ )n

τ (ξτ )
) (3.35)

with
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Algorithm 6: Riemannian gradient descent onMDec.
p,n

Input: Initialization θ(0) ∈Mp,n

Output: Iterates θ(k) ∈Mp,n

for k = 0 to convergence doCompute a step size α (see [1, Ch. 4]) and set
θ(k+1) = R

MDec.
p,n

θ(k)

(
−α gradMDec.

p,n
h(θ(k))

)

• expRp

µ (ξµ) = µ+ ξµ,

• exp
S++
p

Σ (ξΣ) = Σ
1
2 exp

(
Σ− 1

2ξΣΣ
− 1

2

)
Σ

1
2 ,

• exp
S(R+

∗ )n

τ (ξτ ) = τ ⊙ exp (τ⊙−1 ⊙ ξτ ).

Finally, the parallel transport between θ1 ∈ Mp,n and θ2 ∈ Mp,n, denoted

T MDec.
p,n

θ1,θ2
, moves vectors from the first tangent space Tθ1Mp,n onto the second

one Tθ2Mp,n while preserving the Riemannian metric. For ξ ∈ Tθ1Mp,n, it
writes

T MDec.
p,n

θ1,θ2
(ξ) =

(
T Rp

µ1,µ2
(ξµ), T

S++
p

Σ1,Σ2
(ξΣ), T S(R+

∗ )n

τ1,τ2
(ξτ )

)
, (3.36)

with

• T Rp

µ1,µ2
(ξµ) = ξµ,

• T S++
p

Σ1,Σ2
(ξΣ) =

(
Σ2Σ

−1
1

) 1
2 ξΣ

((
Σ2Σ

−1
1

) 1
2

)T
,

• T S(R+
∗ )n

τ1,τ2
(ξτ ) = τ 2 ⊙ τ⊙−1

1 ⊙ ξτ .

3.5.2 . Riemannian optimization
To minimize a given smooth function h :Mp,n → R using gradient based

Riemannian optimization algorithms, it remains to provide

• the Riemannian gradient of h associated with the product Riemannian
metric from Definition 40,

• a retraction R
MDec.

p,n

θ : TθMp,n →Mp,n.

These two tools are directly derived from the fact thatMDec.
p,n is a Riemannian

product manifold. Hence, the Riemannian gradient of h at θ is

gradMDec.
p,n

h(θ) = P
MDec.

p,n

θ

(
Gµ,ΣGΣΣ, τ

⊙2 ⊙Gτ

) (3.37)
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Algorithm 7: Riemannian conjugate gradient onMDec.
p,n

Input: Initialization θ(0) ∈Mp,n

Output: Iterates θ(k) ∈Mp,n

ξ(0) := − gradMDec.
p,n
h(θ(0))

for k = 0 to convergence doCompute a step size α (see [1, Ch 4]) and set
θ(k+1) = R

MDec.
p,n

θ(k)
(αξ(k))Compute β (see [1, Ch 8]) and set

ξ(k+1) = − gradMDec.
p,n
h(θ(k+1)) + β T MDec.

p,n

θ(k),θ(k+1)(ξ
(k))

where gradh(θ) = (Gµ,GΣ,Gτ ) is the Euclidean gradient of h in Rp ×
Rp×p × Rn. A second order retraction onMDec.

p,n at θ is

R
MDec.

p,n

θ (ξ) =
(
RRp

µ (ξµ), R
S++
p

Σ (ξΣ), R
S(R+

∗ )n

τ (ξτ )
) (3.38)

where

• RRp

µ (ξµ) = µ+ ξµ,

• RS++
p

Σ (ξΣ) = Σ+ ξΣ + 1
2
ξΣΣ

−1ξΣ,

• RS(R+
∗ )n

τ (ξτ ) = N
(
τ + ξτ + 1

2

(
ξ⊙2
τ ⊙ τ⊙−1

))
with ∀x ∈ (R+

∗ )
n,

N(x) = (
∏n

i=1 xi)
−1/n

x.

With all the presented tools, two Riemannian optimization algorithms are
derived: a Riemannian gradient descent (Algorithm 6) and a Riemannian
conjugate gradient (Algorithm 7). These two algorithms are implementations
of algorithms presented in Chapter 2.2. Unfortunately, they are quite slow in
practice (see Section 3.9). Hence, the next section derives the information
geometry of the NC-MSG to get faster optimization algorithms.

3.6 . MFIM
p,n : parameter space Mp,n endowed with the Fisher

information metric

3.6.1 . Information geometry
The objective of this section is to present the information geometry of

the NC-MSG (3.24); i.e. the Riemannian geometry of Mp,n with the FIM
as a Riemannian metric [3]. It is expected to give faster optimization al-
gorithms than those associated with the product Riemannian metric from
Definition 40. This intuition is confirmed in Section 3.9 thanks numerical
experiments. We begin by deriving the FIM of the statistical model (3.24).
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Proposition 12 (Fisher informationmetric). Let θ ∈Mp,n and ξ, η ∈ Ep,n,
the FIM at θ associated with the NLL (3.27) is

⟨ξ, η⟩M
FIM
p,n

θ =
n∑
i=1

(
1

τi

)
ξTµΣ

−1ηµ +
n

2
Tr(Σ−1ξTΣΣ

−1ηΣ)

+
p

2
(ξτ ⊙ τ⊙−1)T (ητ ⊙ τ⊙−1)

where ⊙ is the elementwise product operator. Restricted to elements of
the tangent spaces TθMp,n, the FIM defines a Riemannian metric onMp,n

which becomes a Riemannian manifold and is denotedMFIM
p,n.

Proof. See Appendix 3.A.3.
Then, the orthogonal projection according to the FIM from Ep,n onto TθMp,n

is given in Proposition 13.

Proposition 13 (Orthogonal projection). The orthogonal projection as-
sociated with the FIM of the Proposition 12 from Ep,n onto TθMp,n is

P
MFIM

p,n

θ (ξ) =

(
ξµ, sym(ξΣ), ξτ −

ξTτ τ
⊙−1

n
τ

)
.

Proof. See Appendix 3.A.4.
The orthogonal projection proves useful to derive elements in tangent spaces
such as the Riemannian gradient or the Levi-Civita connection. The latter is
given for the manifoldMFIM

p,n in the Proposition 14.

Proposition 14 (Levi-Civita connection). Let θ ∈ Mp,n and ξ, η ∈
TθMp,n, the Levi-Civita connection ofMFIM

p,n evaluated at θ is,

∇MFIM
p,n

ξ η = P
MFIM

p,n

θ

(
∇MFIM

p,n

ξ η
)

where

∇MFIM
p,n

ξ η =D η[ξ]+(
− 1

2

[(
ξTτ τ

⊙−2∑n
i=1

1
τi

Ip + ξΣΣ
−1

)
ηµ +

(
ηTτ τ

⊙−2∑n
i=1

1
τi

Ip + ηΣΣ
−1

)
ξµ

]
,

1

n

n∑
i=1

(
1

τi

)
ηµξ

T
µ − ξΣΣ

−1ηΣ,

1

p
ξTµΣ

−1ηµ1− ξτ ⊙ ητ ⊙ τ⊙−1

)
.
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Algorithm 8: Riemannian gradient descent onMFIM
p,n

Input: Initialization θ(0) ∈Mp,n

Output: Iterates θ(k) ∈Mp,n

for k = 0 to convergence doCompute a step size α (see [1, Ch. 4]) and set
θ(k+1) = R

MFIM
p,n

θ(k)

(
−α gradMFIM

p,n
h(θ(k))

)

Proof. See Appendix 3.A.5.
As detailed in Chapter 2, the Levi-Civita connection defines geodesics on
a Riemannian manifold. Indeed, for I an open interval of R, a geodesic
γ : I → Mp,n with initial position γ(0) = θ ∈ Mp,n and initial velocity
γ̇(0) = ξ ∈ TθMp,n must respect

∇MFIM
p,n

γ̇(t) γ̇(t) = 0, ∀t ∈ I. (3.39)
However an analytical solution of (3.39) remains unknown in this case. A
retraction (approximation of the geodesic) can still be obtained (see Propo-
sition 16) which allows us to optimize functions onMp,n. This implies that
the geodesic between two points θ1 and θ2 is unknown. Thus, the geodesic
distance is also unknown. This is not surprising since the geodesic and the
Riemannian distance between two Gaussian distributions with different loca-
tions are unknown [120, 32, 129, 41]. To alleviate this problem, a divergence
associated with the NC-MSG (3.24) is proposed in Section 3.8.

3.6.2 . Riemannian optimization

We propose tools to minimize smooth functions h :Mp,n → R with the
Riemannian manifold MFIM

p,n . To do so, we consider a Riemannian steepest
descent on MFIM

p,n . Only the tools required for this algorithm are derived
here:

• the Riemannian gradient of h associated with the FIM from the Propo-
sition 12,

• a retraction that maps tangent vectors from TθMp,n ∀θ ∈Mp,n onto
Mp,n.

We begin with the Riemannian gradient of h at θ which can be computed
from the Euclidean gradient of h.
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Proposition 15 (Riemannian gradient). Let θ ∈ Mp,n and h be a real
valued function defined onMp,n. The Riemannian gradient of h at θ is

gradMFIM
p,n
h(θ) = P

MFIM
p,n

θ

((
n∑
i=1

1

τi

)−1

ΣGµ,
2

n
ΣGΣΣ,

2

p
τ⊙2 ⊙Gτ

)
where gradh(θ) = (Gµ,GΣ,Gτ ) is the Euclidean gradient of h in Rp ×
Rp×p × Rn.

Proof. See Appendix 3.A.6.
Then, it remains to define a retraction for every θ on Mp,n. A retraction

R
MFIM

p,n

θ maps every ξ ∈ TθMp,n to a point R
MFIM

p,n

θ (ξ) ∈ Mp,n and is such

that R
MFIM

p,n

θ (ξ) = θ + ξ + o(∥ξ∥). Several retractions could be obtained
from this definition. Furthermore, it should be noted that a map respecting
this definition is not necessarily related to the Riemannian metric of MFIM

p,n .
Thus, we choose to enforce an additional property: the desired retraction
must be a second order retraction. This means that it must have a zero
initial acceleration,

∇MFIM
p,n

ṙ(t) ṙ(t)
∣∣∣
t=0

= 0 (3.40)
where ṙ(t) = d

dt
R

MFIM
p,n

θ (tξ) and ∇MFIM
p,n is the Levi-Civita connection from the

Proposition 14. Furthermore, the property of zero initial acceleration is linked
to the definition of the geodesic. Indeed, a geodesic has a zero acceleration
∀t along its path (see (3.39)) whereas here this condition is only needed at
t = 0. By respecting this property, the retraction is associated with the
Riemannian metric of the Proposition 12 since the Levi-Civita connection is
itself derived from this Riemannian metric. Such a retraction is presented in
the Proposition 16.

Proposition 16 (Secondorder retraction). Let θ ∈Mp,n and ξ ∈ TθMp,n.
There exists tmax > 0 (specified in the Appendix 3.A.7) such that ∀t ∈
[0, tmax[, a second order retraction onMFIM

p,n at θ is

R
MFIM

p,n

θ (tξ) =

(
µ+ tξµ +

t2

2

[
ξTτ τ

⊙−2∑n
i=1

1
τi

Ip + ξΣΣ
−1

]
ξµ,

Σ+ tξΣ +
t2

2

(
ξΣΣ

−1ξΣ −
1

n

n∑
i=1

(
1

τi

)
ξµξ

T
µ

)
,

N

(
τ + tξτ +

t2

2

(
ξ⊙2
τ ⊙ τ⊙−1 − 1

p
ξTµΣ

−1ξµ1

)))

where ∀x ∈ (R+
∗ )

n, N is defined as N(x) = (
∏n

i=1 xi)
−1/n

x.
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Proof. See Appendix 3.A.7.
With this retraction and the Riemannian gradient from Proposition 15, we
have all the tools required to derive a Riemannian steepest descent. The
latter is presented in Algorithm 8.

3.7 . Estimation of mixtures of scaled Gaussian distributions:
existence and regularization

3.7.1 . A pathological example
In the two previous sections, tools to perform optimization onMp,n have

been developed. In this subsection, the objective is to leverage these tools
to estimate parameters of the NC-MSG (3.23). In the following, we assume
having n ≥ 1 data points {xi}ni=1 ⊂ Rp. The estimation of the parameters
of the statistical model (3.24) is performed by maximizing the associated
likelihood onMp,n:

minimize
θ∈Mp,n

L (θ|{xi}ni=1) (3.41)
where L is the NLL (3.27). However, the existence of a solution to this
problem is not guaranteed. To build an intuition, we present a short example
of a problematic case where µ gets attracted by one data point xj. Let
k be the current iteration of a given optimizer of (3.41). For k → +∞, if
µ(k) → xj faster than τ (k)j → 0 and ∀i ̸= j, τ (k)i → +∞, then the quadratic
form in L (3.27) tends to zero, which is its minimum,

n∑
i=1

(xi − µ(k))T
(
Σ(k)

)−1

(xi − µ(k))

τ
(k)
i

−−−−→
k→+∞

0. (3.42)
Then, if an eigenvalue λ(k) of Σ(k) tends to 0 slower than the respective
limits of µ(k), τ (k)

i and τ
(k)
j and since

∑n
i=1 log |τiΣ| = n log(Σ), we obtain

that
L
(
θ(k)|{xi}ni=1

)
−−−−→
k→+∞

−∞. (3.43)
Hence, depending on the data points {xi}ni=1, a solution of the problem (3.41)
does not necessarily exist.

3.7.2 . Regularization and existence
To overcome this issue, we present a regularized version of the NLL (3.27)

LRκ (θ|{xi}ni=1) = L (θ|{xi}ni=1) + βRκ(θ) (3.44)
where β ∈ R+

∗ and Rκ :Mp,n → R is a regularization. Thus, the minimiza-
tion problem (3.41) becomes

minimize
θ∈Mp,n

LRκ (θ|{xi}ni=1) . (3.45)
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Name Rκ(θ) rκ(x)

L1 penalty
∥∥∥(diag(τ )⊗Σ)

−1 − κ−1In×p

∥∥∥
1
=∑

i,j

∣∣∣(τiλj)
−1 − κ−1

∣∣∣ |x−1 − κ−1|

L2 penalty
∥∥∥(diag(τ )⊗Σ)

−1 − κ−1In×p

∥∥∥2
2
=∑

i,j

(
(τiλj)

−1 − κ−1
)2 (x−1 − κ−1)2

Bures-Wassersteinsquared distance
d2BW

(
(diag(τ )⊗Σ)−1, κ−1In×p

)
=∑

i,j

(
(τiλj)

− 1
2 − κ− 1

2

)2 (
x− 1

2 − κ− 1
2

)2

GaussianKL divergence

δKL(κIn×p,diag(τ )⊗Σ) =

1
2

[∑
i,j

(
κ (τiλj)

−1
+ log (τiλj)

)
−

np(1 + log(κ))

]
1
2

[
κx−1 + log(x)

−(1 + log(κ))
]

Table 3.1: Examples of regularizationsRκ respecting Assumptions 3, 4and 5. ∀q ∈ N∗, ∥.∥q is the Schatten norm, i.e. ∀A ∈ Sp ∥A∥qq =∑i |λi|
q

where λi are the eigenvalues of A. The diagonal matrix whose ele-ments are those of τ is denoted diag(τ ). The Kronecker product be-tween matrices is denoted ⊗.
Though (3.45) is a generic formulation, we will focus on several proposals
that ensure the existence of a solution. The proposed approach is to rewrite
Rκ as a sum of regularizations rκ on the eigenvalues of τiΣ. This rewriting
is formalized in Assumption 3.

Assumption 3. The regularization Rκ is a sum of regularizations on the
eigenvalues of τiΣ

Rκ(θ) =
n∑
i=1

p∑
j=1

rκ(τiλj)

where λj ∈ R+
∗ are the eigenvalues of Σ and rκ : R+

∗ → R is a continuous
function.

In the following, we assume that Rκ respects Assumption 3. To prevent the
eigenvalues of τiΣ to take values that are too large nor too small, a second
assumption is added. Indeed, Assumption 4 states that the regularization rκ
goes to infinite when its argument goes to 0+ or +∞. This assumption is
made so that if an eigenvalue of τiΣ tends to 0+ or +∞ then LRκ → +∞.
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Assumption 4. The function rκ admits the following limit ∀β ∈ R+
∗

lim
x→∂R+

∗

log(x) + βrκ(x) = +∞,

with ∂R+
∗ is a border of R+

∗ , i.e. 0+ or +∞.

Assumptions 3 and 4 are sufficient to solve the problem of existence stated
earlier. Indeed, when Rκ respects these assumptions, Proposition 17 states
that the problem (3.45) has a solution, i.e. LRκ admits a minimum in
Mp,n. Finally, Assumptions 3 and 4 are quite easy to meet in practice.
Indeed, several regularizations respecting these assumptions are proposed in
Table 3.1.

Proposition 17 (Existence). Under Assumptions 3 and 4, and ∀β ∈ R+
∗ ,

the regularized NLL

θ 7→ LRκ (θ|{xi}ni=1) = L (θ|{xi}ni=1) + βRκ(θ),

with L being the NLL defined in (3.27), admits a minimum inMp,n.

Proof. See Appendix 3.A.8.
So far, the regularization has been chosen to guarantee the existence of a
solution to the problem (3.45). However, this regularization shrinks the esti-
mation towards an unknown parameter θ. In order to define this parameter,
a third assumption is added. Indeed, Assumption 5 states that the regular-
ization Rκ is a divergence (see Definition 41) on the set S++

p . This implies
that the minima of Rκ are known and are derived in Proposition 18.

Definition 41 (Divergence). Given a set E, the function δ : E ×E → R is
a divergence if it satisfies the following conditions for all x, y ∈ E

1. δ(x, y) ≥ 0 (positivity),

2. δ(x, y) = 0 if and only if x = y (separability).

Assumption 5. The regularizationRκ can be written as

Rκ(θ) = δS++
p

(diag(τ )⊗Σ, κIn×p)

where δS++
p

is a divergence on the set S++
p and κ ∈ R+

∗ .

Proposition 18 (Minima of Rκ). Under Assumption 5, the set of minima
inMp,n of the regularizationRκ is

{θ = (µ, κIp,1) : µ ∈ Rp} .
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Proof. See Appendix 3.A.9.
It should be noted that the regularizations from Table 3.1 respect Assump-
tion 5. Thus, the minimum of (3.45) tends to

(
1
n

∑n
i=1 xi, κIp,1

)
as

β → +∞. This corresponds to a Gaussian distribution with a covariance
matrix proportional to the identity. Thus, the β hyperparameter makes the
trade-off between a NC-MSG (3.24) and a circular Gaussian distribution.

We finish this section with a remark on the estimation of the parameter
θ when data undergo a rigid transformation. Given Q ∈ Op and µ0 ∈ Rp,
the rigid transformation ψ of a set of data {xi}ni=1 is defined as

ψ ({xi}ni=1) =
{
QTxi + µ0

}n
i=1

. (3.46)
These rigid transformations define isometries on Rp since

∥ψ (xi)− ψ (xj)∥2 = ∥xi − xj∥2 (3.47)
∀xi,xj ∈ Rp. These are important in machine learning problems since
they transform data without changing distances. An important property of
the regularized NLL (3.44) is that the estimated textures of the model are
invariant under rigid transformations of the data; see Proposition 19. This
is interesting since having parameters invariant to these transformations can
improve performances when transformations happen between the training
and the test sets for a given supervised problem. Numerical experiments in
Section 3.9 leverage this property and show robust performances when data
undergo a rigid transformation during the testing phase.

Proposition 19 (Minima of LRκ and rigid transformations). LetRκ be a
regularization satisfying Assumption 3, and θ⋆ = (µ,Σ, τ ) be a minimum
of the regularized NLL (3.45) computed on data {xi}ni=1, i.e.

θ⋆ = argmin
θ∈Mp,n

LRκ (θ|{xi}ni=1) ,

then, given Q ∈ Op and µ0 ∈ Rp, a minimum of the regularized NLL
computed on the transformed data ψ ({xi}ni=1) =

{
QTxi + µ0

}n
i=1

is
ϕ(θ⋆) =

(
QTµ+ µ0,Q

TΣQ, τ
)
, i.e.

ϕ(θ⋆) = argmin
θ∈Mp,n

LRκ (θ|ψ ({xi}ni=1)) .

Proof. See Appendix 3.A.10.
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3.8 . Classification on Mp,n

In the previous section, we proposed to optimize the regularized
NLL (3.45) of the NC-MSG (3.24). Once these parameters are estimated,
they can be used as features for Riemannian clustering-classification algo-
rithms as presented in Chapter 1. To do this clustering-classification, two
tools are presented in this section. Firstly, since no closed form formula
of the Riemannian distance on Mp,n is known, a divergence between pairs
of parameters is defined. The proposed one is the KL divergence between
two NC-MSG (3.24). It benefits from a simple closed form formula that is
presented in Subsection 3.8.1. Secondly, simple clustering-classification al-
gorithms, such as K-means++ or the Nearest centroïd classifier, rely on an
algorithm to average parameters. Thus, an algorithm to compute centers
of mass of estimated parameters θ must be defined. This center of mass
is defined using the KL divergence and is presented in Subsection 3.8.2. Its
computation is realized with Algorithm 8.

3.8.1 . Kullback-Leibler divergence
Clustering-classification algorithms, such as K-means++ or the Nearest

centroïd classifier, rely on a divergence between points. Thus, it remains
to define a divergence on Mp,n. The latter must be related to the NC-
MSG (3.24) since the objective is to classify its parameters θ. In the context
of measuring proximities between distributions admitting PDFs, a classical
divergence is the KL one. The latter measures the similarity between two
PDFs. Definition 42 gives the general formula of the KL divergence.

Definition 42 (KL divergence). Given two PDFs p and q defined on the
sample space X , the KL divergence is

δKL(p, q) =

∫
X
p(x) log

(
p(x)

q(x)

)
dx.

Applied to NC-MSGs, the KL divergence is derived from the Gaussian one
and is presented in Proposition 20. It benefits from a simple closed form
formula and therefore is of practical interest.

Proposition 20 (KL divergence). Given the random variable x =
(x1, . . . ,xn) and two NC-MSGs of PDFs pθ1(x) =

∏n
i=1 f(xi;µ1,Σ1, τ1,i)

and pθ2(x) =
∏n

i=1 f(xi;µ2,Σ2, τ2,i) the KL divergence is

δKL(θ1, θ2) =
1

2

(
n∑
i=1

τ1,i
τ2,i

Tr
(
Σ−1

2 Σ1

)
+

n∑
i=1

1

τ2,i
∆µTΣ−1

2 ∆µ+ n log

(
|Σ2|
|Σ1|

)
− np

)
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with ∆µ = µ2 − µ1.

Proof. See Appendix 3.A.11.
Finally, this KL divergence is non-symmetrical. We rely on the classical
symmetrization to define the proposed divergence δMp,n :Mp,n×Mp,n → R,

δMp,n(θ1, θ2) =
1

2
(δKL(θ1, θ2) + δKL(θ2, θ1)) . (3.48)

3.8.2 . Estimation of centers of mass
To implement simple machine learning algorithms, it remains to define

an averaging algorithm onMp,n. To do so, we leverage a classical definition
of centers of mass which are minimizers of variances [75, 94]. Given a set of
parameters {θi}Mi=1, its center of mass onMp,n is defined as the solution of

minimize
θ∈Mp,n

1

M

M∑
i=1

δMp,n(θ, θi) (3.49)
where δMp,n is the symmetrized KL divergence from the equation (3.48). To
realize (3.49), Algorithm 8 can be employed.

3.9 . Numerical experiments

The objective of this section is to show the practical interests of the
tools developed in the previous sections. More precisely, this section presents
numerical experiments and is divided into two parts.

First, Subsection 3.9.1 studies the performance of Algorithms 6, 7 and 8,
in terms of speed of convergence on the cost functions (3.45) and (3.49)
through simulations. Algorithm 8 is shown to be fast. Indeed, it requires from
5 to 30 times less iterations to minimize costs functions (3.45) and (3.49)
compared to other sophisticated optimization algorithms. This demonstrates
the interest of the choice of the FIM to develop Riemannian optimization
algorithms. Also, the estimation error on the cost function (3.41) realized
by Algorithm 8 is studied on simulated data. This algorithm gives lower
estimation errors than other classical estimators such as the Tyler joint mean-
covariance one and the Gaussian ones.

Second, an application on the crop classification dataset
Breizhcrops [118] is presented in Subsection 3.9.2. This dataset con-
sists of 600 000 time series to be classified into 9 classes. The application
implements a Nearest centroïd classsifier on Mp,n using the diver-
gence (3.48) and the Riemannian center of mass (3.49). Three results
ensue. First, the proposed algorithms can be used on large scale datasets.
Second, the proposed regularization in Section 3.7 plays an important role
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in classification. Third, considering a NC-MSG (3.23) is interesting for time
series especially when data undergo a rigid transformation (3.46).

Python code implementing the different experiments can be found at
https://github.com/antoinecollas/optim_compound.

3.9.1 . Simulations
In this simulation setting we set the parameters θ = (µ,Σ, τ ) ∈Mp,n as

follows. First, each component of µ is sampled from a univariate Gaussian
distribution N (0, 1). Second, Σ is generated using its eigendecomposition
Σ = UΛUT . U ∈ Op is drawn from the uniform distribution on Op [89] us-
ing the module “scipy.stats" from the Scipy library [138]. Then, the elements
on the diagonal of the diagonal matrix Λ are drawn from a χ2

1 distribution.
Third, the τi are drawn from a Γ(ν, 1/ν) distribution with ν a parameter to
be chosen. The smaller the ν, the greater the variance. In order to respect
the constraint

∏n
i=1 τi = 1, the vector τ is normalized.

The speed of convergence of Algorithms 6, 7 and 8 is studied on two cost
functions: the regularized NLL (3.45) and the cost function (3.49) to com-
pute the center of mass associated to the KL divergence of Proposition 20.

We begin with the minimization of the regularized NLL (3.45). n = 150
data xi ∈ R10 are drawn from a NC-MSG, i.e. xi ∼ N (µ, τiΣ). The
parameter θ = (µ,Σ, τ ) of this distribution is generated as explained in
the introduction of Subsection 3.9.1 with ν = 1. Different parameters β
in (3.45) are considered: β ∈ {0, 10−5}. The chosen regularization is the
L2 penalty from Table 3.1. When β = 0 the NLL is the plain one, i.e. it is
not regularized. We point out that, in this setup, the optimization goes well
although the existence of a solution to this problem is not proven. When
β > 0 a solution to the minimization problem exists from Proposition 17.
The results of this experiment are presented in Figure 3.3. We observe
that Algorithm 8 is much faster than the two others regardless of the β
parameter. Indeed, for β ∈ {0, 10−5}, Algorithm 8 is at least 100 times
faster than Algorithm 6 and 10 times faster than Algorithm 7.

Then, a similar experiment is performed with the cost function (3.49)
to compute centers of mass. M ∈ {2, 100} parameters θ are generated as
described in the introduction of Subsection 3.9.1 with ν = 1. The minimiza-
tion is performed with the same optimization algorithms as previously. The
results of this experiment are presented in Figure 3.4. We observe that Al-
gorithm 8 is much faster than the two others regardless of M . Indeed, when
M = 2 Algorithm 8 converges in 40 iterations whereas Algorithm 6 requires
300 iterations and Algorithm 7 still has not converged after 1000 iterations.
When M = 100, Algorithm 8 converges in less than 60 iterations which is 4
times faster than Algorithm 7. It should be noted that Algorithm 6 has not
converged after 1000 in the case M = 100.

Then, the estimation error made by Algorithm 8 applied on the NLL (3.27)
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Figure 3.3: Regularized NLL (3.45) and its gradient norm versus the it-erations of Algorithms 6, 7 and 8. The chosen regularization is the L2penalty (see Table 3.1) and two different regularization intensities β areconsidered: 0 in the left column and 10−5 in the right one. Each estima-tion is performed on n = 150 samples in R10 sampled from a NC-MSG.The regularized NLL are normalized so that their minimum value is 1.
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Figure 3.4: Cost function (3.49) and its gradient norm versus the itera-tions of Algorithms 6, 7 and 8. The dimensions of the parameter spaceare p = 10 and n = 150. Two different numbers of pointsM are consid-ered: 2 in the left column and 100 in the right one. The cost functionsare normalized so that their minimum value is 1.
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(β = 0) is studied with numerical experiments on simulated data. We do
not measure the estimation errors made by Algorithms 6 and 7 since they
minimize the same cost function as Algorithm 8 and return the same values
of likelihood once the convergence reached. n ∈ J20, 1000K data xi are
sampled from the NC-MSG (3.24). The parameter θ = (µ,Σ, τ ) of this
distribution is generated as presented in the introduction of Subsection 3.9.1
with ν = 0.1 in order to have heterogeneous textures τi. The considered
estimators for this numerical experiment are the following:

• Gaussian estimators: the sample mean µ̂SM = 1
n

∑n
i=1 xi and the

sample covariance matrix Σ̂SCM = 1
n

∑n
i=1 (xi − µ̂SM) (xi − µ̂SM)

T .

• Tyler’s joint location-covariance matrix estimator [136] denoted µ̂Ty

and Σ̂Ty.

• Tyler’s M -estimator with location known [136]. The sampled data xi
are centered with the true location µ and then Σ is estimated. This
estimator is denoted Σ̂Ty,µ.

• The proposed estimator denoted µ̂IG and Σ̂IG. Algorithm 8 minimizes
the NLL (3.27).

The errors of estimation are measured with the Mean Squared Errors

(MSE). These errors are computed as ∥µ̂− µ∥22 and
∥∥∥Σ̂−Σ

∥∥∥2
2

for the es-

timated location µ̂ and the estimated covariance Σ̂ respectively. Then, they
are averaged with 2000 Monte-Carlo on the samples xi. The MSE on the
location and the covariance versus the number of samples xi are plotted in
Figure 3.5. First of all, we observe on both figures that the Gaussian esti-
mators have a high MSE. This shows the interest of considering robust esti-
mators such as the Tyler’s joint location-covariance matrix estimator or the
proposed one when the textures τi are heterogeneous. Then, the proposed es-
timators realize a much lower MSE than the Tyler’s joint location-covariance
estimator. We can note that when enough samples are provided, the MSE
on the location realized by the proposed estimator reaches the machine pre-
cision and is therefore negligible. Finally, we compare the performance of
the proposed estimator with the Tyler’s M -estimator for the covariance esti-
mation. Indeed, when the location is known, the Tyler’s M -estimator is the
MLE of the NC-MSG (3.24). We observe that when enough samples are pro-
vided, the proposed estimator matches the MSE of the Tyler’s M -estimator.
Overall, this experimental subsection illustrates the good performance of the
proposed estimator when data are sampled from a NC-MSG (3.24).
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Figure 3.5: MSE over 2000 simulated sets {xi}ni=1 ⊂ R10 versus the num-ber samples xi for the considered estimators µ̂ ∈ {µ̂SM, µ̂Ty, µ̂IG} and
Σ̂ ∈ {Σ̂SCM, Σ̂Ty,µ, Σ̂Ty, Σ̂IG}. The proposed estimators µ̂IG and Σ̂IG arecomputed as in (3.41) (β = 0) using Algorithm 8.

3.9.2 . Application
In the previous subsection, the different theoretical results derived in

Sections from 3.4 to 3.8 showed several interests on synthetic data. We
now focus on applying a Nearest centroïd classifier on Mp,n to real data
using the estimation framework developed in Section 3.7, the divergence and
the Riemannian center of mass from Section 3.8 as well as the optimization
framework using the FIM from Section 3.6. This classifier is compared to
several other Nearest centroïd classifiers associated with different estimators
and divergences.

To do so, we consider the dataset Breizhcrops [118]: a large scale dataset
of more than 600 000 crop time series from the Sentinel-2 satellite to classify.
This dataset is presented in Chapter 1 Section 1.1. To classify these crops,
we apply a Nearest centroïd classifier on descriptors. This classification
algorithm works in three steps.

1. For each time series X ∈ Rn×p, a descriptor is computed, e.g. a pa-
rameter θ ∈Mp,n from the minimization of the regularized NLL (3.44).

2. Then, on the training set, the center of mass of the descriptors of each
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Figure 3.6: “Overall Accuracy" metric achieved by the proposed Nearest
centroïd classifier on the Breizhcrops dataset versus the parameter ofregularization β in (3.44). The chosen regularization is the L2 penaltyfrom Table 3.1.

class is computed. This center of mass is always computed by mini-
mizing the variance associated with a divergence between descriptors.
For example, the center of mass onMp,n is computed as in (3.49).

3. Finally, on the test set, each descriptor is labeled with the class of the
nearest center of mass with respect to the chosen divergence.

Six Nearest centroïd classifiers are considered and they are grouped ac-
cording to the divergence they use: the Euclidean distance, the symmetrized
KL divergence between Gaussian distributions, or the symmetrized KL diver-
gence (3.48) between NC-MSG. For each divergence, several Nearest centroïd
classifiers are derived using several estimators. These estimators correspond
to different assumptions on the data.

Three Nearest centroïd classifiers rely on the Euclidean distance between
matrices (1.23). From this geometry, three Nearest centroïd classifiers are
derived using three estimators: the batch itself X, the sample mean µ̂SM and
Σ̂

µ=0

SCM = 1
n

∑n
i=1 xix

T
i . The last two estimators correspond the assumption

that data follow a Gaussian distribution (either with same covariance matrix
for all batches or same location).

Two Nearest centroïd classifiers rely on the symmetrized KL divergence
between Gaussian distributions. Let Mp = Rp × S++

p . Given two pairs of
parameters υ1 = (µ1,Σ1) ∈ Mp and υ2 = (µ2,Σ2) ∈ Mp, this divergence
is given by

δMp(υ1, υ2) =
1

2
(δKL(υ1, υ2) + δKL(υ2, υ1)) (3.50)
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Figure 3.7: “Overall Accuracy"metric versus the parameter t associatedwith three transformations applied to the test set of the Breizhcropsdataset. The different Nearest centroïd classifiers estimate the centersof mass on the training data without transformations. Then, the clas-sification is performed on the test set with three different transforma-tions. For t = 0, the test set is not transformed, and the larger t is, themore the test set is transformed. Six different Nearest centroïd classi-
fiers are compared: each one is a combination of an estimator, a diver-gence and its associated center of mass computation. The proposedone is denoted "θ - sym. KL". The latter uses Equations (3.45), (3.48)and (3.49) for the estimation, the divergence and the center of masscomputation respectively. The regularization parameter β is fixed at
10−11 and the regularization is the L2 penalty from Table 3.1.
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where

δKL(υ1, υ2) =
1

2

(
Tr
(
Σ−1

2 Σ1

)
+∆µTΣ−1

2 ∆µ+ log

(
|Σ2|
|Σ1|

)
− p
)
.

(3.51)
The center of mass of {υi}Mi=1 is the solution of

minimize
υ∈Mp

1

M

M∑
i=1

δMp(υ, υi). (3.52)
Then, two Nearest centroïd classifiers are derived using two estimators:
Σ̂

µ=0

SCM (and thus µ is assumed to be zero) and the MLE of the Gaussian
distribution (µ̂SM, Σ̂SCM).

Finally, the proposed Nearest centroïd classifier on Mp,n relies on the
symmetrized KL divergence (3.48) between NC-MSGs. The center of mass
is computed as explained in Section 3.8 and the estimation is described in
Section 3.7 with the L2 penalty for the regularization.

The data are divided into two sets: a training set and a test set with
485 649 and 122 614 batches respectively. Among the six Nearest centroïd
classifiers, only the one onMp,n has a hyperparameter which the parameter
β of the regularized NLL (3.44). Several values of β are tested on a small
training set and a small validation set that both are subsets of the original
training set. The performance is measured with the “Overall Accuracy"
metric used in [118] and is plotted in Figure 3.6. The value of β with
the highest “Overall Accuracy" metric is 10−11. Hence, we use this value
in the rest of the section. Then, we propose an experiment to illustrate
Proposition 19 on the invariance of the estimation of textures under rigid
transformations. Indeed, we train the six Nearest centroïd classifiers on
a subset of the original training set and apply them on the full test set
with a rigid transformation. Thus, the more a Nearest centroïd classifier
is robust to these rigid transformations, the better the “Overall Accuracy"
metric. Given t ∈ [0, 1], three different rigid transformations are performed:
transformation of the mean xi 7→ xi + µ(t) with µ(t) = ta for a given
a ∈ Rp, rotation transformation xi 7→ Q(t)Txi with Q(t) = exp(tξ) for a
given skew-symmetric ξ ∈ Rp×p (hence Q(t) ∈ Op), and the joint mean and
rotation transformation xi 7→ Q(t)Txi + µ(t). It should be noted that at
t = 0, the data are left unchanged. The results are presented in Figure 3.7.

The conclusions of these experiments are fourfold. First, the proposed
Nearest centroïd classifier is applicable to large scale datasets such as the
Breizhcrops dataset. Second, the regularization proposed in Section 3.7 is
important to get good classification performance. Indeed, we observe from
Figure 3.6 that if β is too small then the “Overall Accuracy" metric becomes
very low. Also, if β is too large then the “Overall Accuracy" metric becomes
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also very low. Third, using KL divergences and their associated centers of
mass to classify estimators give much better performance compared to the
classical Euclidean distance. Indeed, even when data do not undergo rigid
transformations, Nearest centroïd classifiers based on KL divergence outper-
form Euclidean Nearest centroïd classifiers in Figure 3.7. Fourth, considering
NC-MSGs, as well as its KL divergence, instead of the Gaussian distribution
is interesting to classify time series especially when rigid transformations are
applied on the data. Indeed, in Figure 3.7, we observe a large improvement
of performance when data are considered distributed from a NC-MSG and
undergo rigid transformations.

3.10 . Conclusions

This chapter proposed novel statistical methods to handle non-centered
data that are potentially non-Gaussian. We began with the information ge-
ometry of the non-centered multivariate Gaussian distribution and proposed
two divergences. The latter that can be used in place of the Riemannian dis-
tance whose expression has no known closed form formula. An optimization
algorithm has been developed to compute centers of mass, associated with
the proposed divergences, of pairs location-covariance matrix. These diver-
gences along with their centers of mass enabled us to implement a Nearest
centroïd classifier. The latter has been applied on the Breizhcrops dataset
and proved to be more robust than classifiers that rely only on the covariance
matrix.

Then, we studied the statistical model of the NC-MSG. This model is
well known when its location is assumed to be known but little work has been
done when the location is unknown. In this study, we tackle the problem
of the joint estimation of the location, the scatter matrix and the textures
as well as their classification. To do so, two Riemannian manifolds and Rie-
mannian optimization algorithms have been developed. The existence of a
solution to the estimation problem is proven when a regularization is added
to the NLL. Thus, this regularized NLL can be minimized using one the
proposed Riemannian optimization algorithms to estimate the parameters.
Once estimated, these parameters are classified with a Nearest centroïd clas-
sifier based on a KL divergence and its associated center of mass. The latter
is also computed using one of the proposed Riemannian optimization algo-
rithms. In particular, one of these algorithms is shown to be fast on both
cost functions (the regularized NLL and the center of mass computation cost
function). This allowed us to apply the proposed Nearest centroïd classifier
on the dataset Breizhcrops. The proposed classifier is shown to be more
robust than classifiers that rely on a Gaussian assumption.
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3.A . Appendix

3.A.1 . Proof of Proposition 10: Riemannian gradient on Mp

Using the definition of the gradient associated with the Euclidean met-
ric [1, Ch. 3], we get ∀ξ ∈ TυMp

Dh(υ)[ξ] = GT
µξµ + Tr

(
GT

ΣξΣ

) (3.53)
= (ΣGµ)

T Σ−1ξµ +
1

2
Tr
(
Σ−1

(
2ΣGT

ΣΣ
)
Σ−1ξΣ

) (3.54)
= (ΣGµ)

T Σ−1ξµ +
1

2
Tr
(
Σ−1 sym(2ΣGT

ΣΣ)Σ−1ξΣ
) (3.55)

= ⟨PMp
υ (ΣGµ, 2ΣGΣΣ) , ξ⟩Mp

υ . (3.56)
Using the definition of the Riemannian gradient [1, Ch. 3] Dh(υ)[ξ] =

⟨gradMp
h(υ), ξ⟩Mp

υ , we get Proposition 10.

3.A.2 . Proof of Proposition 11: Second order retraction on Mp

∀υ ∈ Mp, R
Mp
υ is a smooth mapping from TυMp onto Mp. To be a

second order retraction, it remains to check the three following properties [1,
Ch. 4 and 5]: ∀ξ ∈ TυMp

RMp
υ (0) = υ,DRMp

υ (0υ)[ξ] = ξ,
D2

dt2
RMp
υ (tξ)

∣∣∣
t=0

= 0 (3.57)
where 0υ denotes the zero element of TυMp and D2

dt2
γ denotes the accelera-

tion of the curve t 7→ γ(t) onMp (see [1, Ch. 5]). The first two properties
are easily verified. By denoting R

Mp
υ (tξ) = (µ(t),Σ(t)), and using Equa-

tion (3.10), the third property is equivalent to{
µ̈(0)− Σ̇(0)Σ(0)−1µ̇(0) = 0

Σ̈(0) + µ̇(0)µ̇(0)T − Σ̇(0)Σ(0)−1Σ̇(0) = 0,
(3.58)

which is also verified.

3.A.3 . Proof of Proposition 12: Fisher information metric
First, we recall the definition of the FIM. See Chapter 2 for a more in-

depth presentation. Let {x1, · · · ,xn} be n data points. Assuming that the
underlying distribution admits a PDF, the corresponding NLL is denoted L
and maps parameters θ, belonging to the parameter space M, onto R. By
denoting TθM the tangent space ofM at θ ∈M, and under conditions of
regularity of L, the FIM is defined ∀ξ, η ∈ TθM as

⟨ξ, η⟩Mθ = E[DL(θ)[ξ] DL(θ)[η]] = E[D2 L(θ)[ξ, η]]. (3.59)
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To derive the FIM of the NC-MSG given in Proposition 12, we recall
classical formulas for the Gaussian distribution. To do so, we denote the set
of its parameters (i.e. the set of locations and covariance matrices) as

Mp = Rp × S++
p . (3.60)

The NLL at υ = (µ,Σ) ∈ Mp and associated to one data point x is
(neglecting terms not depending on υ)

Lgx(υ) =
1

2

[
log |Σ|+ (x− µ)TΣ−1(x− µ)

] (3.61)
Since Mp is an open set in the vector space Rp × Sp, the tangent space of
Mp at υ is

TυMp = Rp × Sp. (3.62)
Finally, ∀ξ = (ξµ, ξΣ), η = (ηµ,ηΣ) ∈ TυMp, the FIM of the Gaussian
distribution associated to the NLL (3.61) is (see [120] for a derivation)

⟨ξ, η⟩Mp
υ = ξTµΣ

−1ηµ +
1

2
Tr(Σ−1ξΣΣ

−1ηΣ). (3.63)
Then, we derive the FIM associated to the NLL of the NC-MSG (3.27).

We begin by writing (3.27) as a sum of Gaussian NLL (3.61). Indeed, ∀θ ∈
Mp,n, we have

L(θ|{xi}ni=1) =
n∑
i=1

(Lgxi
◦ φi)(θ), (3.64)

where φi(θ) = (µ, τiΣ). Thus, ∀θ ∈ Mp,n, ∀ξ, η ∈ TθMp,n, and following
the reasoning of [17, Proposition 6] and [18, Proposition 3.1], the FIM of
the mixture of scaled Gaussian is expressed as a sum of FIM of the Gaussian
distribution (3.63)
⟨ξ, η⟩M

FIM
p,n

θ = E
[
D2 L(θ|{xi}ni=1)[ξ, η]

] (3.65)
=

n∑
i=1

E
[
D2(Lgxi

◦ φi)(θ)[ξ, η]
] (3.66)

=
n∑
i=1

E
[
D(Lgxi

◦ φi)(θ)[ξ] D(Lgxi
◦ φi)(θ)[η]

] (3.67)

=
n∑
i=1

E
[
D(Lgxi

(φi(θ)))[Dφi(θ)[ξ]] D(Lgxi
(φi(θ)))[Dφi(θ)[η]]

]
(3.68)

=
n∑
i=1

⟨Dφi(θ)[ξ],Dφi(θ)[η]⟩Mp

φi(θ)
. (3.69)
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In the following, the i-th components of ξτ and ητ are denoted ξi and ηi
respectively. Therefore, the directional derivative of the function φi is

Dφi(θ)[ξ] = (ξµ, ξiΣ+ τiξΣ). (3.70)
Thus, we get

⟨ξ, η⟩M
FIM
p,n

θ =
n∑
i=1

[
ξTµ(τiΣ)−1ηµ (3.71)

+
1

2
Tr
(
(τiΣ)−1(ξiΣ+ τiξΣ)(τiΣ)−1(ηiΣ+ τiηΣ)

) ]
=

n∑
i=1

[
1

τi
ξTµΣ

−1ηµ +
1

2
p
ξiηi
τ 2i

+
1

2

ξi
τi
Tr(Σ−1ηΣ) (3.72)

+
1

2

ηi
τi

Tr(Σ−1ξΣ) +
1

2
Tr(Σ−1ξΣΣ

−1ηΣ)

]
=

n∑
i=1

(
1

τi

)
ξTµΣ

−1ηµ +
n

2
Tr(Σ−1ξΣΣ

−1ηΣ) (3.73)
+
p

2

(
ξτ ⊙ τ−1

)T (
ητ ⊙ τ−1

)
+

1

2
ξTτ τ

⊙−1Tr(Σ−1ηΣ) +
1

2
ηTτ τ

⊙−1Tr(Σ−1ξΣ)

Since ξτ ,ητ ∈ TτS(R+
∗ )

n, we have ξTτ τ
⊙−1 = ηTτ τ

⊙−1 = 0. Thus, the last
two terms of (3.74) cancel and the expression of the FIM from Proposition 12
is obtained

⟨ξ, η⟩M
FIM
p,n

θ =
n∑
i=1

(
1

τi

)
ξTµΣ

−1ηµ +
n

2
Tr(Σ−1ξΣΣ

−1ηΣ)

+
p

2

(
ξτ ⊙ τ−1

)T (
ητ ⊙ τ−1

)
. (3.74)

It should be noted that this formula defines an inner product on Ep,n if
a transpose is added to ξΣ. Thus, ⟨., .⟩MFIM

p,n
. is extended ∀ξ, η ∈ Ep,n as

presented in Proposition 12.

3.A.4 . Proof of Proposition 13: Orthogonal projection on MFIM
p,n

First of all, ∀θ ∈ Mp,n the ambient space Ep,n defined in (3.31) is de-
composed into two complementary subspaces

Ep,n = TθMp,n + T⊥
θ Mp,n (3.75)

where TθMp,n is the tangent space at θ defined in (3.32) and T⊥
θ Mp,n is

the orthogonal complement

T⊥
θ Mp,n =

{
ξ ∈ Ep,n : ⟨ξ, η⟩M

FIM
p,n

θ = 0 ∀η ∈ TθMp,n

}
. (3.76)
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It can be checked that this orthogonal complement is

T⊥
θ Mp,n = {0} × Ap ×

{
ατ : α ∈ R+

∗
} (3.77)

where Ap is the set of p × p skew-symmetric matrices. Indeed, the ele-
ments of (3.77) verify Definition (3.76) and dim(Ep,n) = dim(TθMp,n) +
dim(T⊥

θ Mp,n). Using the equations (3.75) and (3.77), the orthogonal pro-
jection of ξ = (ξµ, ξΣ, ξτ ) ∈ Ep,n onto TθMp,n is

P
MFIM

p,n

θ (ξ) =
(
ξµ, ξΣ −A, ξτ − ατ

) (3.78)
where A ∈ Ap and α ∈ R+

∗ have to be determined. Furthermore, ∀η =
(0,ηΣ, βτ ) ∈ T⊥

θ Mp,n with β ∈ R+
∗ , we must have

⟨PMFIM
p,n

θ (ξ), η⟩M
FIM
p,n

θ = 0. (3.79)
This induces that {

ξΣ −A = sym(ξΣ)

α = ξTτ τ⊙−1

n

(3.80)
where sym(ξΣ) = 1

2
(ξΣ + ξTΣ). Thus the orthogonal projection from Ep,n

onto TθMp,n is

P
MFIM

p,n

θ (ξ) =

(
ξµ, sym(ξΣ), ξτ −

ξTτ τ
⊙−1

n
τ

)
. (3.81)

3.A.5 . Proof of Proposition 14: Levi-Civita connection on MFIM
p,n

First of all, the FIM defined in Proposition 12 is rewritten with a function
g. Indeed, let θ ∈Mp,n and ξ, η ∈ TθM, the function g is defined as

gθ(ξ, η) = ⟨ξ, η⟩
MFIM

p,n

θ . (3.82)
This function g is of primary importance for the development of the Levi
Civita connection.

We briefly introduce the Levi-Civita connection. The general theory of
it can be found in [1, Ch. 5]. The Levi-Civita connection, simply denoted

∇MFIM
p,n : (ξ, η) 7→ ∇MFIM

p,n

ξ η, is characterized by the Koszul formula. Let
ν ∈ TθMp,n, in our case the Koszul formula writes

gθ(∇
MFIM

p,n

ξ η, ν)− gθ(D η[ξ], ν) =
1

2
(D gθ[ξ](η, ν) + D gθ[η](ξ, ν)−D gθ[ν](ξ, η)) (3.83)
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where D gθ[ν](ξ, η) is the directional derivative of the function g·(ξ, η) : θ 7→
gθ(ξ, η). We begin by computing D gθ[ν](ξ, η):

−D gθ[ν](ξ, η) =
n∑
i=1

(
νi
τ 2i

)
ξTµΣ

−1ηµ +
n∑
i=1

(
1

τi

)
ξTµΣ

−1νΣΣ
−1ηµ

(3.84)
+ nTr

(
Σ−1 sym(ξΣΣ

−1ηΣ)Σ
−1νΣ

)
+ p

(
ξτ ⊙ ητ ⊙ τ⊙−2

)T (
ντ ⊙ τ⊙−1

)
.

Since the objective is to identify ∇MFIM
p,n

ξ η using (3.83) and the FIM from
Proposition 12, (3.84) needs to be rewritten. To do so, the following two
terms are rewritten

n∑
i=1

(
νi
τ 2i

)
ξTµΣ

−1ηµ = p

(
1

p
ξTµΣ

−1ηµ1n ⊙ τ⊙−1

)T (
ν ⊙ τ⊙−1

)
, (3.85)

and, since νΣ ∈ Sp
n∑
i=1

(
1

τi

)
ξTµΣ

−1νΣΣ
−1ηµ =

n∑
i=1

(
1

τi

)
Tr
(
Σ−1 sym(ηµξ

T
µ)Σ

−1νΣ

)
.

(3.86)
Hence, we get that

−D gθ[ν](ξ, η) =
n∑
i=1

(
1

τi

)
Tr
(
Σ−1 sym(ηµξ

T
µ)Σ

−1νΣ

) (3.87)
+ nTr(Σ−1 sym(ξΣΣ

−1ηΣ)Σ
−1νΣ)

+ p

(
1

p
ξTµΣ

−1ηµ1n ⊙ τ⊙−1

)T (
ντ ⊙ τ⊙−1

)
+ p

(
ξτ ⊙ ητ ⊙ τ⊙−2

)T (
ντ ⊙ τ⊙−1

)
= nTr

(
Σ−1

[
1

n

n∑
i=1

(
1

τi

)
sym(ηµξ

T
µ) (3.88)

+ sym(ξΣΣ
−1ηΣ)

]
Σ−1νΣ

)
+ p

([
1

p
ξTµΣ

−1ηµ1n

+ ξτ ⊙ ητ ⊙ τ⊙−1

]
⊙ τ⊙−1

)T (
ντ ⊙ τ⊙−1

)
.

133



We then compute D gθ[ξ](η, ν):

D gθ[ξ](η, ν) = −
n∑
i=1

(
ξi
τ 2i

)
ηTµΣ

−1νµ −
n∑
i=1

(
1

τi

)
ηTµΣ

−1ξΣΣ
−1νµ

(3.89)
− nTr(Σ−1ηΣΣ

−1νΣΣ
−1ξΣ)

− p
(
ητ ⊙ ντ ⊙ τ⊙−2

)T (
ξτ ⊙ τ⊙−1

)
= −

n∑
i=1

(
1

τi

)
ηTµ

(
ξTτ τ

⊙−2∑n
i=1

1
τi

Ip +Σ−1ξΣ

)
Σ−1νµ (3.90)

− nTr(Σ−1 sym(ξΣΣ
−1ηΣ)Σ

−1νΣ)

− p
(
ξτ ⊙ ητ ⊙ τ⊙−2

)T (
ντ ⊙ τ⊙−1

)
.

Using (3.84) and (3.89), we can calculate the right-hand side of the Koszul
formula (3.83),

1

2
(D gθ[ξ](η, ν) + D gθ[η](ξ, ν)−D gθ[ν](ξ, η)) (3.91)

=
n∑
i=1

(
1

τi

)[
− 1

2

[
ηTµ

(
ξTτ τ

⊙−2∑n
i=1

1
τi

Ip +Σ−1ξΣ

)

+ ξTµ

(
ηTτ τ

⊙−2∑n
i=1

1
τi

Ip +Σ−1ηΣ

)]]
Σ−1νµ

+
n

2
Tr

(
Σ−1

[
1

n

n∑
i=1

(
1

τi

)
sym(ηµξ

T
µ)− sym(ξΣΣ

−1ηΣ)

]
Σ−1νΣ

)

+
p

2

([
1

p
ξTµΣ

−1ηµ1n − ξτ ⊙ ητ ⊙ τ⊙−1

]
⊙ τ⊙−1

)T (
ντ ⊙ τ⊙−1

)
.

Using formulas (3.83) and (3.91) and by identification, we get that the Levi
Civita connection is

∇MFIM
p,n

ξ η = P
MFIM

p,n

θ (∇MFIM
p,n

ξ η) (3.92)
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where

∇MFIM
p,n

ξ η = D η[ξ] +

(
− 1

2

[(
ξTτ τ

⊙−2∑n
i=1

1
τi

Ip + ξΣΣ
−1

)
ηµ

+

(
ηTτ τ

⊙−2∑n
i=1

1
τi

Ip + ηΣΣ
−1

)
ξµ

]
,

1

n

n∑
i=1

(
1

τi

)
ηµξ

T
µ − ξΣΣ

−1ηΣ,

1

p
ξTµΣ

−1ηµ1n − ξτ ⊙ ητ ⊙ τ⊙−1

)
.

3.A.6 . Proof of Proposition 15: Riemannian gradient on MFIM
p,n

Let h :Mp,n → R be a smooth function and θ be a point inMp,n. We
present the correspondence between the Euclidean gradient of h (which can
be computed using automatic differentiation libraries such as Autograd [79]
and JAX [25]) and the Riemannian gradient associated with the FIM defined
in Proposition 12. The Euclidean gradient gradh(θ) = (Gµ,GΣ,Gτ ) of h
at θ ∈Mp,n is defined as the unique element in Rp × Rp×p × Rn such that
∀ξ ∈ Rp × Rp×p × Rn

Dh(θ)[ξ] = ⟨gradh(θ), ξ⟩θ = GT
µξµ + Tr

(
GT

ΣξΣ

)
+GT

τ ξτ . (3.93)

Then, the Riemannian gradient gradMFIM
p,n
h(θ) = (G

MFIM
p,n

µ ,G
MFIM

p,n

Σ ,G
MFIM

p,n
τ )

is defined as the unique element in TθMp,n such that ∀ξ ∈ TθMp,n

Dh(θ)[ξ] = ⟨gradMFIM
p,n
h(θ), ξ⟩M

FIM
p,n

θ . (3.94)
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Hence, ∀ξ ∈ TθMp,n, we get that

Dh(θ)[ξ] = GT
µξµ + Tr

(
GT

ΣξΣ

)
+GT

τ ξτ (3.95)

=

(
n∑
i=1

1

τi

)( n∑
i=1

1

τi

)−1

ΣGµ

T

Σ−1ξµ (3.96)

+
n

2
Tr

(
Σ−1

(
2

n
ΣGΣΣ

)T
Σ−1ξΣ

)

+
p

2

(
τ⊙−1 ⊙

(
2

p
τ⊙2 ⊙Gτ

))T (
τ⊙−1 ⊙ ξτ

)
=

(
n∑
i=1

1

τi

)
ηTµΣ

−1ξµ +
n

2
Tr
(
Σ−1ηTΣΣ

−1ξΣ
) (3.97)

+
p

2

(
τ⊙−1 ⊙ ητ

)T (
τ⊙−1 ⊙ ξτ

)
where η =

(
ηµ,ηΣ,ητ

)
=

((∑n
i=1

1
τi

)−1

ΣGµ,
2
n
ΣGΣΣ,

2
p
τ⊙2 ⊙Gτ

)
.

To get the Riemannian gradient, it remains to project η into the tangent
space TθMp,n using the orthogonal projection P

MFIM
p,n

θ . Thus, we get that

gradMFIM
p,n
h(θ) = P

MFIM
p,n

θ (η), (3.98)
which is exactly the Riemannian gradient defined in Proposition 15.

3.A.7 . Proof of Proposition 16: Second order retraction on MFIM
p,n

Let θ ∈Mp,n, ξ ∈ TθMp,n and t ∈ [0, tmax[ where tmax is to be defined.
We denote r(t) = R(tξ) where R is defined in Proposition 16, i.e.

r(t) =

(
µ+ tξµ +

t2

2

[
ξTτ τ

⊙−2∑n
i=1

1
τi

Ip + ξΣΣ
−1

]
ξµ, (3.99)

Σ+ tξΣ +
t2

2

(
ξΣΣ

−1ξΣ −
1

n

n∑
i=1

(
1

τi

)
ξµξ

T
µ

)
, (3.100)

N

(
τ + tξτ +

t2

2

(
ξ⊙2
τ ⊙ τ⊙−1 − 1

p
ξTµΣ

−1ξµ1n

)))
, (3.101)

where ∀x ∈ (R+
∗ )

n, N is defined as N(x) = (
∏n

i=1 xi)
−1/n

x.
The objective is to prove that r is a second order retraction on MFIM

p,n .
The different properties of the definition of a second order retraction are
verified in the following; see [1, Ch. 4 and 5] for a complete definition.
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First of all, we define tmax such that r is a valid retraction. Indeed, r
must respect some constraints of positivity,

Σ+ tξΣ +
t2

2

(
ξΣΣ

−1ξΣ −
1

n

n∑
i=1

(
1

τi

)
ξµξ

T
µ

)
≻ 0, (3.102)

τ + tξτ +
t2

2

(
ξ⊙2
τ ⊙ τ⊙−1 − 1

p
ξTµΣ

−1ξµ1n

)
> 0, (3.103)

where for A ∈ Sp, A ≻ 0 means A is positive definite and for
x ∈ Rn, x > 0 means the components of x are strictly positive. Of
course, (3.102) and (3.103) are not necessarily respected depending on the
value of t. To define the value of tmax such that (3.102) and (3.103) are
respected, we begin by studying the eigenvalues of the left side of (3.102).
To do so, let λ−(A) be the smallest eigenvalue of A and Σ(t) be the left
side of (3.102). Thus, we get that

λ− (Σ(t)) ≥ λ− (Σ) + tλ− (ξΣ) +
t2

2

[
λ−
(
ξΣΣ

−1ξΣ
)
− 1

n

n∑
i=1

(
1

τi

)∥∥ξµ∥∥22
]

(3.104)
≥ λ− (Σ) + tλ− (ξΣ)−

t2

2n

n∑
i=1

(
1

τi

)∥∥ξµ∥∥22 . (3.105)

A sufficient condition to satisfy (3.102) is that the right side of (3.105) is
strictly positive. This is achieved whenever t is in [0, t1[ where t1 is defined
as followed

• if ξµ ̸= 0, t1 =
√
∆1−λ−(ξΣ)
2λ−(Σ)

and ∆1 = λ−(ξΣ)
2 +

2
n
λ−(Σ)

∑n
i=1

(
1
τi

)∥∥ξµ∥∥22,
• if ξµ = 0, t1 =

λ−(Σ)
|λ−(ξΣ)| for λ−(ξΣ) < 0, t1 = +∞ otherwise.

Lets denote the minimum value of x ∈ Rn by (x)min. Using the same
reasoning as before, one can show that whenever t is in [0, t2[, where t2 is
defined in the following, (3.103) is satisfied.

• If ξµ ̸= 0, t2 =
√
∆2−(ξτ )min

2(τ )min
and ∆2 = (ξτ )

2
min+

2
p
(τ )min

∥∥∥Σ− 1
2ξµ

∥∥∥2
2
.

• If ξµ = 0, t2 =
(τ )min

|(ξτ )min| for (ξτ )min < 0, t2 = +∞ otherwise.

Hence, we get tmax = min{t1, t2} > 0 such that ∀t ∈ [0, tmax[, r(t) ∈Mp,n.
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Then, to be a second order retraction, it remains to check that the three
following properties are respected,

r(0) = θ,

ṙ(0) = ξ,

∇MFIM
p,n

ṙ ṙ
∣∣∣
t=0

= 0,

(3.106)

where ṙ(t) = d
dt
r(t) and ∇MFIM

p,n is the Levi-Civita connection defined
in Proposition 14. The first property is easily verified. In the rest of
the proof, the following notations are used: r(t) = (µ(t),Σ(t), τ (t)),
ṙ(t) = (µ̇(t), Σ̇(t), τ̇ (t)) and r̈(t) = (µ̈(t), Σ̈(t), τ̈ (t)).

We verify the second property of (3.106) which is ṙ(0) = ξ. It is readily
check that µ̇(0) = ξµ and Σ̇(0) = ξΣ. It remains to verify that τ̇ (0) = ξτ .
Computing the derivative of N (defined in Proposition 14) at a point x(t) ∈
(R+

∗ )
n, we get that

d

dt
(N ◦ x)(t) =

(
n∏
i=1

xi(t)

)−1/n [
ẋ(t)− ẋ(t)Tx(t)⊙−1

n
x(t)

]
, (3.107)

where ẋ(t) = d
dt
x(t) (and simply denoted ẋ(t)). Using this derivative and

the constraints
∏n

i=1 τi = 1 and ξTτ τ
⊙−1 = 0, the desired property is derived

τ̇ (0) =
d

dt

(
N ◦

(
τ + tξτ +

t2

2

(
ξ⊙2
τ ⊙ τ⊙−1 − 1

p
ξTµΣ

−1ξµ1n

))) ∣∣∣
t=0(3.108)

= ξτ . (3.109)
It remains to verify the third condition of (3.106). Using the first two condi-
tions of (3.106), we find that ∇MFIM

p,n

ṙ ṙ
∣∣∣
t=0

= 0 if and only if



µ̈(0) =

[
ξTτ τ⊙−2∑n

i=1
1
τi

Ip + ξΣΣ
−1

]
ξµ,

Σ̈(0) = ξΣΣ
−1ξΣ − 1

n

∑n
i=1

(
1
τi

)
ξµξ

H
µ ,

P
S(R+

∗ )n

τ (τ̈ (0)) = P
S(R+

∗ )n

τ

(
ξ⊙2
τ ⊙ τ⊙−1 − 1

p
ξHµΣ

−1ξµ1n

)
,

(3.110)

where, ∀ξ ∈ Rn, P S(R+
∗ )n

τ (ξ) = ξ − ξT τ⊙−1

n
τ . It is readily checked that

the first two conditions of (3.110) are met. Thus, only the third condition
remains to be verified. To do so, we differentiate (3.107) to get the second
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derivative of N ,

d2

dt2
(N ◦ x)(t) = − 1

n

(
n∏
i=1

xi(t)

)(
ẋ(t)Tx(t)⊙−1

)( n∏
i=1

xi(t)

)− 1
n
−1

(3.111)
×
[
ẋ(t)− 1

n

(
ẋ(t)Tx(t)⊙−1

)
x(t)

]

+

(
n∏
i=1

xi(t)

)− 1
n [

ẍ(t)− 1

n

(
ẍ(t)Tx(t)⊙−1

)
x(t)

+
1

n

[(
ẋ(t)⊙2)T x(t)⊙−2

]
x(t)− 1

n

(
ẋ(t)Tx(t)⊙−1

)
ẋ(t)

]

=
1

n

(
n∏
i=1

xi(t)

)− 1
n [
nẍ(t) (3.112)

+
((

ẋ(t)⊙2)T x(t)⊙−2 − ẍ(t)Tx(t)⊙−1
)
x(t)

− 2
(
ẋ(t)Tx(t)⊙−1

)
ẋ(t) +

1

n

(
ẋ(t)Tx(t)⊙−1

)2
x(t)

]
.

where ẍ(t) = d2

dt2
x(t). Using this derivative and the constraints

∏n
i=1 τi = 1

and ξTτ τ
⊙−1 = 0, the following expression of τ̈ (0) is derived

τ̈ (0) =
d2

dt2

(
N ◦

(
τ + tξτ +

t2

2

(
ξ⊙2
τ ⊙ τ⊙−1 − 1

p
ξTµΣ

−1ξµ1n

))) ∣∣∣
t=0(3.113)

= ξ⊙2
τ ⊙ τ⊙−1 − 1

p
ξTµΣ

−1ξµ1n (3.114)
+

1

n

[ (
ξ⊙2
τ

)T
τ⊙−2 −

(
ξ⊙2
τ ⊙ τ⊙−1 − 1

p
ξTµΣ

−1ξµ1n

)T
τ⊙−1

]
τ

= ξ⊙2
τ ⊙ τ⊙−1 − 1

p
ξTµΣ

−1ξµ1n +
1

np
ξTµΣ

−1ξµ
(
1Tnτ

⊙−1
)
τ . (3.115)

Using the linearity of the projection P S(R+
∗ )n

τ , (3.114) implies that

P S(R+
∗ )n

τ (τ̈ (0)) = P S(R+
∗ )n

τ

(
ξ⊙2
τ ⊙ τ⊙−1 − 1

p
ξTµΣ

−1ξµ1n

)
+ P S(R+

∗ )n

τ

(
1

np
ξTµΣ

−1ξµ
(
1Tnτ

⊙−1
)
τ

)
.

(3.116)

Finally, one can check that ∀α ∈ R, P S(R+
∗ )n

τ (ατ ) = 0. Hence, we get the
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desired expression

P S(R+
∗ )n

τ (τ̈ (0)) = P S(R+
∗ )n

τ

(
ξ⊙2
τ ⊙ τ⊙−1 − 1

p
ξTµΣ

−1ξµ1n

)
, (3.117)

which completes the proof.

3.A.8 . Proof of Proposition 17: Existence of a regularized MLE in
Mp,n

LRκ is a continuous function onMp,n. Hence, to prove the existence of
a solution of the minimization problem (3.45), it is enough to show that

lim
θ→∂θ
LRκ(θ|{xi}ni=1) = +∞ (3.118)

where ∂θ is the boundary ofMp,n.
First, it is easily checked that, for Σ and τ not tending to the boundaries

∂S++
p and ∂S(R+

∗ )
n of S++

p and S(R+
∗ )

n respectively, we have

lim
∥µ∥→+∞

LRκ(θ|{xi}ni=1) = +∞. (3.119)
Second, we handle the cases where Σ → ∂S++

p and/or τ → ∂S(R+
∗ )

n.
This means that, at least, one λj → ∂R+

∗ and/or one τi → ∂R+
∗ , with

∂R+
∗ being the boundary of R+

∗ , i.e. 0+ or +∞. Using the positivity of the
quadratic form in the NLL (3.27), we get the following inequality

L(θ|{xi}ni=1) ≥
n∑
i=1

log |τiΣ| . (3.120)
Hence, we get the resulting inequality on the regularized cost function

LRκ(θ|{xi}ni=1) ≥
n∑
i=1

p∑
j=1

[log(τiλj) + βrκ(τiλj)] . (3.121)
We can remark that the lower bound (3.121) does not depend on µ. Hence,
in the rest of the proof, we consider µ to be either such that ∥µ∥ < +∞ or
such that ∥µ∥ → +∞. Then, we give a sufficient condition to prove (3.118)
when Σ → ∂S++

p and/or τ → ∂S(R+
∗ )

n. To give this sufficient condition,
we first recall Assumption 3, ∀β ∈ R+

∗

lim
x→∂R+

∗

log(x) + βr(x) = +∞. (3.122)
Thus, to prove (3.118), a sufficient condition, when Σ → ∂S++

p and/or
τ → ∂S(R+

∗ )
n, is that there exists at least one term τiλj such that

τiλj → ∂R+
∗ . (3.123)
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Since Σ→ ∂S++
p and/or τ → ∂S(R+

∗ )
n, there exists at least one λj → ∂R+

∗
and/or one τi → ∂R+

∗ . The condition (3.123) is of course met in the four
following cases

λj → 0+ and/or τi → 0+, (3.124)
λj → +∞ and/or τi → +∞, (3.125)

λj → 0+ and τi → +∞ such that τiλj → ∂R+
∗ , (3.126)

λj → +∞ and τi → 0+ such that τiλj → ∂R+
∗ . (3.127)

Finally, we treat the case where ∀l ∈ {1, · · · , n}, λl → ∂R+
∗ and τi → ∂R+

∗
such that the limit of τiλl is not ∂R+

∗ (i.e. τiλl ↛ ∂R+
∗ ). Since

∏n
i=1 τi = 1,

there exists at least one τq, with q ̸= i, such that τqλj → ∂R+
∗ . Hence, the

condition (3.123) is met, which completes the proof.

3.A.9 . Proof of Proposition 18: Minima of Rκ
The objective of this proof is to solve

minimize
θ∈Mp,n

Rκ(θ). (3.128)
Using Assumption 5, we know that Rκ(θ) ≥ 0 and Rκ(θ) = 0 ⇐⇒
diag(τ ) ⊗ Σ = κIn×p. Thus, the minimum of Rκ is 0 and is reached at
diag(τ ) ⊗ Σ = κIn×p, ∀µ ∈ Rp. This implies that the minimum satisfies
the following system of equations

τiλj = κ ∀i, j. (3.129)
Hence, we deduce that τ1 = · · · = τn. Using the constraint

∏n
i=1 τi = 1, we

get that τ1 = · · · = τn = 1. Thus, λ1 = · · · = λp = κ. This means that

{(µ, κIn×p,1n) : µ ∈ Rp} = argmin
θ∈Mp,n

Rκ(θ) (3.130)
which is Proposition 18.

3.A.10 . Proof of Proposition 19: Minima of LRκ and rigid trans-
formations

First of all, given Q ∈ Op and µ0 ∈ Rp, one can check that

L
(
θ̃|
{
QTxi + µ0

}n
i=1

)
= L (θ| {xi}ni=1) (3.131)

where L is the NLL defined in (3.27), θ = (µ,Σ, τ ) and θ̃ =(
QTµ+ µ0,Q

TΣQ, τ
)
. Then, Rκ satisfies Assumption 3 and thus only

depends on the eigenvalues of the matrices τiΣ. This implies that Rκ(θ̃) =
Rκ(θ) and hence we get that

LRκ

(
θ̃|
{
QTxi + µ0

}n
i=1

)
= LRκ (θ| {xi}

n
i=1) . (3.132)
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The equation (3.132) implies that, if

θ = argmin
θ∈Mp,n

LRκ (θ|{xi}ni=1) , (3.133)
then

θ̃ = argmin
θ∈Mp,n

LRκ

(
θ|
{
QTxi + µ0

}n
i=1

) (3.134)
which is exactly Proposition 19.

3.A.11 . Proof of Proposition 20: Kullback-Leibler divergence
In the following, we show that the KL divergence between two NC-MSGs

is equal to the sum of KL divergences between Gaussian distributions with
specific mean and covariance matrices:

δKL(θ1, θ2) =

∫
pθ1(x) log

(
pθ1(x)

pθ2(x)

)
dx (3.135)

=

∫ n∏
i=1

f(xi;µ1,Σ1, τ1,i) log

(
n∏
i=1

f(xi;µ1,Σ1, τ1,i)

f(xi;µ2,Σ2, τ2,i)

)
dx1 · · · dxn

(3.136)
=

n∑
i=1

∫ n∏
j=1

f(xj;µ1,Σ1, τ1,j) log

(
f(xi;µ1,Σ1, τ1,i)

f(xi;µ2,Σ2, τ2,i)

)
dx1 · · · dxn

(3.137)
=

n∑
i=1

∫
f(xi;µ1,Σ1, τ1,i) log

(
f(xi;µ1,Σ1, τ1,i)

f(xi;µ2,Σ2, τ2,i)

)
dxi

(3.138)
=

n∑
i=1

∫
fG(xi;µ1, τ1,iΣ1) log

(
fG(xi;µ1, τ1,iΣ1)

fG(xi;µ2, τ2,iΣ2)

)
dxi.

(3.139)
Using the KL divergence between Gaussian distributions and the constraint∏n

i=1 τ1,i =
∏n

i=1 τ2,i = 1, we get the desired formula

δKL(θ1, θ2) =
1

2

(
n∑
i=1

τ1,i
τ2,i

Tr
(
Σ−1

2 Σ1

)
+

n∑
i=1

1

τ2,i
∆µTΣ−1

2 ∆µ+ n log

(
|Σ2|
|Σ1|

)
− np

)
. (3.140)
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4 - Probabilistic PCA from heteroscedastic
signals

Principal Component Analysis (PCA) [131, 72] is a standard tool used in
signal processing and machine learning literature for dimensional reduction
and statistical interpretation. In this scope, Probabilistic PCA (PPCA) refers
to a reformulation of PCA as a parametric estimation problem; see Chapter 1
Section 1.3 for a detailed presentation of PPCA. This approach was proposed
in [131], which considered a model of White Gaussian Noise (WGN) plus a
linear mapping of a low-dimensional centered Gaussian latent space with
unit variance (the signal contribution). Leveraging the statistical formula-
tion of PPCA allows going beyond Gaussian models. For example, the two
independent contributions (either signal or noise) can be generalized to the
distribution of compound Gaussian. The latter represents a family of ellipti-
cal distributions (cf. review in [104]) that encompasses numerous standard
heavy-tailed models, such as the multivariate t-distribution. Its stochastic
representation involves a Gaussian vector multiplied by an independent ran-
dom power factor referred to as texture. In order to be robust to various
underlying distributions, this parameter is often assumed to be unknown de-
terministic. This assumption yields the so-called mixture of scaled Gaussian
distributions (MSG) [141], also referred to as heteroscedastic [65], and pre-
sented in Chapter 1 Section 1.3. In this scope [26, 13, 128] considered MSGs
for the signal component to perform robust PCA for non-Gaussian signals.
Conversely, [65] considered Gaussian signals embedded in white MSG noise
to model data where some samples are noisier than others. Alternatively, [36]
uses a t-distribution to model both of the contributions. Finally, [30] con-
sidered a mixture of three components to account for potential outliers (the
thirds contribution being orthogonal to the signal subspace).

In the following, we will focus on MSG plus WGN model [26, 13, 128]
which is interpreted as impulsive signals (power variation across samples)
plus thermal noise due to electronics. A common relaxation of this model
is to assume that eigenvalues of the (low-rank) signal covariance matrix
are identical as in [115, 28]. Indeed, this hypothesis is relevant since we
still estimate the power variations which contain, the information of the
eigenvalues. Moreover, [26, 30, 10] showed that neglecting the differences
between eigenvalues does not harm the accuracy of subspace estimation while
allowing for a more meaningful statistical interpretation [115].

Yet, the previous studies still left some unanswered issues: first, the al-
gorithms in [115, 28] are dedicated bloc-coordinate descent type. Thus,
they can be limited in practice, as they offer no generalization to on-line (or
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stochastic) settings. It would then be relevant for the estimation problem to
be cast in a more generic optimization framework that can account for the
parameter structure (e.g., subspaces, vectors with strictly positive values).
Second, the MLE of the considered model is the solution of a nonconvex
problem with no guarantee for global optimality. Thus, it would be inter-
esting to derive performance bound in order to assess for various algorithms
performance. Such bound is not trivial for these models because structured
parameters require accounting for specific constraints, as well as for the use
of relevant distances as error measure (e.g. to ensure for some invariance).
Finally, one can inquire if the features of such statistical model can be mean-
ingfully leveraged in machine learning tasks such as clustering.

Therefore, this chapter conducts a study of the MSG plus WGN
model [115, 28] through the prism of Riemannian geometry, as this theo-
retical framework allows us to propose a unified view to tackle the aforemen-
tioned questions. The contributions concern the following directions:

1. Riemannian optimization framework for model features: MSG plus
WGN model involves parameters that are textures (power factors) and
a low-rank subspace. Endowing this parameter space with a Rieman-
nian metric yields a Riemannian manifold, which can be leveraged in an
optimization framework [1] as presented in Chapter 2. In this context,
we consider the model’s Fisher information metric (FIM). We then
obtain several essential tools (tangent space, Riemannian gradient, re-
traction) from established results on the Grassman manifold [52] pre-
sented in Chapter 2 Section 2.4. These tools are then used to propose
algorithms in order to compute the MLE, as well as the Riemannian
means used in clustering algorithms (cf. next points). We notably pro-
pose a Riemannian stochastic gradient descent algorithm [147] suited
to large datasets (or online settings [152]).

2. Performance bounds: We show that the FIM of the considered model
(and its corresponding Riemannian distance) permits to derive closed
forms and product intrinsic Cramér-Rao lower bound (ICRB) for the
model’s parameters. These lower bounds represent partial extensions
of [13] (Euclidean CRB in the case of colored signals) to the ICRB
framework of [121], introduced Chapter 2 Section 2.5. Interestingly,
the proposed approach offers a new interpretable result regarding prob-
lem dimensions and signal-to-noise ratio (SNR). Then, we assess the
performance of different estimation algorithms numerically. We show
that both the proposed estimation algorithm and the previously estab-
lished block-coordinate algorithm [28] are statistically efficient for the
signal subspace estimation. In a low SNR scenario, they also both out-
perform subspace estimated by Singular Value Decomposition (SVD)
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in terms of MSE.

3. Applications to clustering: we propose a Riemannian clustering algo-
rithm for data following the MSG plus WGN model. Here, we extend
the methodology presented Chapter 1 Section 1.5 to the considered
statistical model using a K-means++ [7]. Replacing the Euclidean
distance by a Riemannian one allows for this clustering algorithm to
takes into account the geometrical constraints of the parameter space
(invariance properties of subspaces and positivity of powers), which
is shown to improve the clustering performance on the hyperspectral
image Indian Pines benchmark [9].

This chapter is organized as follows. Section 4.1 presents the statis-
tical model and the parameter space as a manifold. Section 4.2 presents
a Riemannian geometry for this manifold, and essential tools driven from
two possible metrics. Section 4.3 presents results related to parameter esti-
mation (MLE based on Riemannian optimization and ICRBs). Section 4.4
presents a clustering algorithm (Riemannian K-means++) adapted to the
considered parameter manifold. Numerical results are presented in Section
4.5. Appendix 4.A contains the technical proofs.

In the rest of the chapter, the model, ICRBs and clustering algorithm
are derived for complex valued data and all the calculus are realised with
complex numbers. This is opposed to all other chapters of this manuscript
that have been written with real numbers. However, it should be noted that
the calculus, formulas and algorithms of this chapter can easily be adapted
to real valued data and to the model of real valued MSG plus real valued
WGN noise. Moreover, the clustering pipeline is applied to the Indian pines
dataset which are real valued data which is coherent with Chapter 1.

4.1 . Heteroschedastic signal model and its parameter space

4.1.1 . Statistical model
Let {xi}ni=1 be a dataset of p-dimensional complex vectors. We consider a

k-dimensional linear signal representation embedded in white Gaussian noise,
i.e. the model:

x
d
= U g + n, (4.1)

where g ∈ Ck is the signal of interest, n ∼ CN (0, σ2Ip) is a white Gaussian
noise, and U ∈ Stp,k is an orthonormal basis of the signal subspace, where

Stp,k =
{
U ∈ Cp×k : UHU = Ik

}
, (4.2)

denotes the complex Stiefel manifold. In array-processing literature it is
classically assumed that g ∼ CN (0,Σ), which yields a low-rank structured
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Gaussian model, also referred to as the (Gaussian) Probabilistic PCA (PPCA)
model in [131]. Note that these models often rely on the unconstrained
identification x

d
= W g̃ + n, with W = UΣ

1/2 and g̃ ∼ CN (0, Ik).
However, using U ∈ Stp,k is here more coherent with later developments.

In order to model heavy-tailed signals (e.g., outliers or power discrepan-
cies), several works [115, 26, 13, 128] considered generalizing the Gaussian
PPCA to compound Gaussian distributions [104]. Such signal model yields

xi|τi
d
=
√
τiU g + n, (4.3)

where g ∼ CN (0,Σ) and τi ∈ R+
∗ is a random power factor referred to as

texture, which is statistically independent of g. Starting from this represen-
tation, we make the following additional assumptions:
• Known noise floor : The variance σ2 is considered known. If σ2 is unknown
in practice, it can be accurately pre-estimated by averaging lowest eigenval-
ues of the SCM [131]. The hypothesis of known σ2 simplifies the exposition
and does not change significantly the performance in practice when compared
to a joint estimation scheme (see e.g. [90]). Without loss of generality, such
assumption allows us to set σ2 = 1.
• Unknown deterministic textures: In order to provide a model that is robust
to any underlying compound Gaussian distribution, it is often assumed that
the textures {τi}ni=1 are unknown deterministic rather than assigning it a pre-
determined probability density function [26, 13, 128]. Such distribution is
then referred to as MSG. • Isotropic signal : We consider the relaxation from
[115, 28], assuming that the eigenvalues of the signal covariance matrix are
identical, i.e., g ∼ CN (0, σsIk). This relaxation greatly simplifies the study
of the statistical model as well as the Riemannian geometry of its parame-
ter space. Indeed, considering non equal eigenvalues forces to develop more
complicated Riemannian quotient manifolds than the one presented in Sec-
tion 4.2; see for example [17]. In conjunction with the unknown deterministic
textures assumption, considering identical eigenvalues allows the change of
variable τ̃i = σsτi, and thus setting σs = 1 without loss of generality. While
apparently not realistic, this hypothesis is still representative since the av-
erage signal power information is accounted for by the texture parameters.
Moreover, [26, 30, 10] showed that neglecting the differences between eigen-
values does not harm the accuracy of subspace estimation while allowing for
a more meaningful statistical interpretation [115].
Finally, we have the data {xi}ni=1 distributed as in (4.3) where g ∼
CN (0, Ik) and n ∼ CN (0, Ip). The unknown model parameters are the
textures {τi}pi=1 (denoted by the vector τ ∈ (R+

∗ )
n) and the signal sub-

space, represented by a basis U ∈ Stp,k. The following section will recast
this parameter space as a manifold. This reformulation will then allow us to
leverage tools from the Riemannian geometry in order to derive distances,
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intrinsic Cramér-Rao Bounds and optimization methods with a unified view.

4.1.2 . Manifold approach to the parameter space
Due to their specific geometrical structure, the parameters (U , τ ) of

model (4.3) can be embedded into the product manifold Mp,k,n = Stp,k ×
(R+

∗ )
n. With this model, fromMp,k,n, the scaled covariance matrix in H++

p

of sample xi is obtained through the function

ψi : Mp,k,n → H++
p

(U , τ ) 7→ Ip + τiU UH .

(4.4)

It follows that the negative log-likelihood corresponding to model (4.3) is
given, for all θ = (U , τ ) ∈Mp,k,n, by

L(θ) =
∑
i

log
∣∣ψi(θ)∣∣+ xHi

(
ψi(θ)

)−1
xi. (4.5)

The model (4.3) is ambiguous since the representation by the basis U
is invariant by rotation: for all O ∈ Uk (where Uk is the unitary group of
degree k), (UO, τ ) is equivalent to (U , τ ), i.e., it yields the same scaled
covariance matrices in H++

p . The consequence is that the manifold Mp,k,n

is not optimal with respect to the model of interest. In terms of optimiza-
tion, for instance for maximum likelihood estimation, it is possible to exploit
Mp,k,n directly but it is advantageous to take into account the invariance.
Moreover, to measure estimation errors or perform geometrical classification
and clustering, employing a distance function onto Mp,k,n is not ideal: the
distance between two equivalent points is not equal to zero. It thus appears
very attractive to take this invariance into account.

Fortunately, it is possible to naturally handle this rotation invariance from
a geometrical perspective. It is achieved by considering the Grassmann man-
ifold Grp,k (set of all k-dimensional subspaces of Cp) presented in Chapter 2
Section 2.4. The Grassmann manifold can be identified to the quotient
manifold [52, 2, 1]

Grp,k = {{UO : O ∈ Uk} : U ∈ Stp,k}. (4.6)
From there, to optimally embed the parameters of model (4.3), we construct
the manifold Mp,k,n = Grp,k × (R+

∗ )
n. This manifold can be viewed as a

quotient manifold of Mp,k,n (see Chapter 2 Section 2.3 for an introduction
to quotient manifolds). Indeed, it can be defined as

Mp,k,n = {π(θ) : θ ∈Mp,k,n}, (4.7)
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where, for all θ = (U , τ ) ∈Mp,k,n, the equivalence class is defined as

π(θ) = {(UO, τ ) : O ∈ Uk}. (4.8)
Functions ψi defined onto Mp,k,n induce functions ψi onto Mp,k,n, i.e.
ψi(θ) = ψi(π(θ)). Thus, xi in (4.3) is drawn as xi ∼ CN (0, ψi(θ)). It
follows that the log-likelihood L in (4.5) defined onto Mp,k,n can also be
defined ontoMp,k,n by using functions ψi instead of ψi. This log-likelihood
function is denoted L in the following.

Besides acknowledging the model invariances, considering Mp,k,n as a
manifold allows for advantageously exploiting Riemannian geometry, i.e., the
geometries ofMp,k,n induced by Riemannian metrics. In particular for signal
processing applications, it can be leveraged for:

1. Estimation: the Riemannian optimization framework can be employed
to compute maximum likelihood estimators (Section 4.3.1) and Rie-
mannian means (Section 4.4) in various practical scenarios.

2. Performance measuring: the Riemannian distance naturally defines an
error measure, which can then be bounded using the framework of
intrinsic Cramér-Rao bound [121]. This point will be detailed in Sec-
tion 4.3.2.

3. Machine learning: the Riemannian distance can also be exploited to
cluster and classify various data which follow model (4.3), which will
be further discussed in Section 4.4.

In order to achieve these, different geometrical objects are needed. Sec-
tion 4.2 will introduce these tools conditionally to the choice of the Rieman-
nian metric.

4.2 . Riemannian manifolds of interest

Various choices of Riemannian geometries are available for Mp,k,n, en-
tirely depending on the choice of the Riemannian metric. Among different
possibilities, one is optimal with respect to the considered statistical model:
the Fisher information metric [3]. Indeed, it is derived from the log-likelihood
function of the distribution at hand and thus perfectly captures the particular-
ities of the model. However, the geometry induced by the Fisher information
metric is often hard to fully leverage. One has therefore to compromise
and define an alternate geometry (induced by a metric as close as possible
to the Fisher one) in order to obtain tractable expressions for the needed
geometrical tools.
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Tools forRiemmanian optimization
Metric HorizontalspaceHθ

Riemanniangradient Retraction
Fisher informationmetric (4.13) (4.14) Prop. 22 for L (4.16)

Productmetric (4.17) (4.14) ∼ ∼

Table 4.1: Summary of the geometric tools ofMp,k,n for optimization.Symbol∼means that it is not provided in this Chapter but that it couldbe easily derived.
Tools forRiemannian distances

Metric HorizontalspaceHθ

Orthonormalbasis ofHθ Distance Exp. Log.
Fisher informationmetric (4.13) (4.14) ∼ x x x

Productmetric (4.17) (4.14) Prop. 25 (4.18)-(4.19) (4.21) (4.20)
Table 4.2: Summary of the geometric tools ofMp,k,n for distances. Sym-bol ∼means that it is not provided in this Chapter but that it could beeasily derived; and symbol x means that it is complicated to find andremains unknown.

In this section, we first provide an introduction on Mp,k,n viewed as a
Riemannian quotient manifold in Section 4.2.1. We then study the Fisher in-
formation metric of likelihood (4.5) and derive the geometrical objects needed
for Riemannian optimization in Section 4.2.2. However, required objects re-
lated to Riemannian distances cannot be obtained in closed-form. An al-
ternate geometry using a product metric (close to the Fisher one) is thus
proposed in order to achieve these in Section 4.2.3. The obtained results are
summarized in Tables 4.1 and 4.2.

4.2.1 . Mp,k,n as a Riemannian quotient manifold
Since Grp,k is a quotient manifold of Stp,k with respect to the action of

Uk [52], Mp,k,n = Grp,k × (R+
∗ )

n is a quotient of Mp,k,n = Stp,k × (R+
∗ )

n.
To handle elements of Mp,k,n, which are equivalence classes {(UO, τ ) :
O ∈ Uk}, one usually exploits the canonical projection π :Mp,k,n →Mp,k,n

in (4.8). Equivalence classes are obtained through π as {(UO, τ ) : O ∈
Uk} = π−1(π(U , τ )) and each element θ ∈ Mp,k,n can be represented by
any θ = (U , τ ) ∈ Mp,k,n such that θ = π(θ). In general, geometrical
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Mp,k,n

π−1(π(θ))

•
θ

TθMp,k,n
Vθ

Hθ

π

Mp,k,n•
θ = π(θ)

TθMp,k,n

Figure 4.1: Illustration of the quotientMp,k,n represented by elementsofMp,k,n. The set of all representations of θ = π(θ) ∈ Mp,k,n is theequivalence class π−1(π(θ)) ⊂ Mp,k,n. The tangent space TθMp,k,n canbe decomposed into the vertical space Vθ = TUπ
−1(π(θ)) and its or-thogonal complement, the horizontal spaceHθ, which provides properrepresentatives for tangent vectors in TθMp,k,n. See Chapter 2 Sec-tion 2.3 for an introduction to Riemannian quotient manifolds.

objects on Mp,k,n can be represented by objects on Mp,k,n. A schematic
illustration of the quotient manifold is provided in Figure 4.1.

The tangent space TθMp,k,n of θ = π(θ) ∈ Mp,k,n can be represented
by a subspace of the tangent space TθMp,k,n. First, we note that

TθMp,k,n = TUStp,k × Tτ (R+
∗ )

n (4.9)
= {(ξU , ξτ ) ∈ Cp×k × Rn : UHξU + ξHUU = 0}. (4.10)

thanks to TθMp,k,n being a product manifold, and standard results on Stp,k
and (R+

∗ )
n respectively. The tangent space TθMp,k,n can now be decom-

posed into two complementary subspaces: the vertical and horizontal sub-
spaces [1]. The vertical space is defined as the tangent space Tθπ

−1(π(θ))
of the equivalence class π−1(π(θ)) at θ. In the case of Mp,k,n, the vertical
space at θ is

Vθ = {(UA,0) : A ∈ H⊥
k }, (4.11)

where H⊥
k = {A ∈ Ck×k : AH = −A} is the set of k × k skew-Hermitian

matrices. The orthogonal complement of the vertical space Vθ is the horizon-
tal space Hθ, which provides proper representations of the tangent vectors
in TθMp,k,n called horizontal lifts. Indeed, there is a one-to-one correspon-
dence between elements of TθMp,k,n and those of Hθ, i.e. each element
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ξ ∈ TθMp,k,n is represented by its unique horizontal lift, denoted liftθ(ξ), in
Hθ. Note that the notion of orthogonal complement is conditioned by the
choice of an inner product ⟨·, ·⟩θ defined on TθMp,k,n, which will also turn
Mp,k,n into a Riemannian manifold.

Indeed, a Riemannian manifold is a manifold endowed with a Riemmanian
metric (inner product defined for every tangent space). In the case of a
Riemannian quotient manifold, such metric can be represented by a metric
onMp,k,n, i.e., an inner product ⟨·, ·⟩θ defined for TθMp,k,n at each point θ.
Still, for Mp,k,n to be properly defined as a Riemannian quotient manifold,
this metric onMp,k,n has to be invariant along each equivalence class. In our
case, for all O ∈ Uk, θ = (U , τ ) ∈Mp,k,n, ξ = (ξU , ξτ ) and η = (ηU ,ητ )
in TθMp,k,n, we must have

⟨ξ, η⟩θ = ⟨(ξUO, ξτ ), (ηUO,ητ )⟩(UO,τ ). (4.12)
The choice of such Riemannian metric onMp,k,n will then induce a specific
geometry (and corresponding theoretical tools) for this space.

4.2.2 . Fisher information metric: geometry for optimization
First, we consider the geometry resulting from the Fisher information

metric of corresponding to likelihood (4.5) on Mp,k,n. Since the statistical
model is invariant along equivalence classes, the corresponding Fisher metric
satisfies (4.12). It thus induces a Riemannian metric ontoMp,k,n. To do so,
we first derive this metric in Proposition 21.

Proposition 21 (Fisher informationmetric). The Fisher information met-
ric at θ corresponding to the negative likelihood (4.5) is, for all ξ, η ∈
TθMp,k,n,

⟨ξ, η⟩FIM
θ

= 2n cτ Re
(
Tr
(
ξHU ηU

))
+ k

(
ξτ ⊙ (1+ τ )⊙−1

)T (
ητ ⊙ (1+ τ )⊙−1

)
, (4.13)

where cτ =
1

n

n∑
i=1

τ 2i
1 + τi

.

Proof. See Appendix 4.A.1.
The part of the Fisher metric in the above proposition which is related to
U , i.e., the part that depends on components ξU and ηU , is equal to the
classical metric on Grassmann [2, 1, 52], up to the factor 2ncτ . We can also
note that this factor does not affect the classical definition of the horizontal
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space of the Grassmann manifold. This directly yields that the horizontal
space Hθ in TθMp,k,n associated with the metric of Proposition 21 is

Hθ = {(ξU , ξτ ) ∈ Cp×k × Rn : UHξU = 0}. (4.14)
Unfortunately, the geometry of Mp,k,n associated with the Fisher in-

formation metric of Proposition 21 is complicated to fully characterize. In
particular, finding the geodesics ofMp,k,n (curves of minimal length between
two points in Mp,k,n) is very hard because of the factor cτ in the metric.
In this part, we will focus on the use of the Fisher information metric in the
framework of Riemannian optimization [1]. Alternate tractable geometric
tools regarding geodesics and distance measurements (Riemannian exponen-
tial and logarithm mapping, Riemannian distance), will be obtained from a
product metric in Section 4.2.3.

We will consider optimization problems of the form

minimize
θ∈Mp,k,n

h(θ) (4.15)
for a cost function h : Mp,k,n → R, induced by h : Mp,k,n → R invari-
ant along equivalence classes (i.e., h = h ◦ π). In order to perform first
order Riemannian optimization algorithms, we need a retraction (operator
transforming tangent vectors into points onto the manifold) [1].

To obtain a point onMp,k,n from a descent direction (vector in Hθ) one
needs a retraction, i.e., an operator RMp,k,n

θ : TθMp,k,n → Mp,k,n which
maps tangent vectors onto the manifold. Chapter 2 Section 2.2 presents
the notion of retractions as well as their use in optimization algorithms.
In the same chapter, Section 2.3 introduces the required properties by a
retraction to be valid on a quotient manifold. These properties are briefly
recalled in the following. Such retraction on Mp,k,n can be obtained by

a retraction on Mp,k,n (denoted R
Mp,k,n

θ
: TθMp,k,n → Mp,k,n) using the

relation RMp,k,n

θ (ξ) = π(R
Mp,k,n

θ
(ξ)). This requires two conditions

1. RMp,k,n

θ
is a proper retraction on Mp,k,n: ∀ θ ∈ Mp,k,n and ξ ∈

TθMp,k,n, R
Mp,k,n

θ
(0) = θ and DR

Mp,k,n

θ
(0)[ξ] = ξ.

2. The induced retraction on Mp,k,n invariant along the equiva-

lence classes: in our case, this translates into π(R
Mp,k,n

θ
(ξ)) =

π(R
Mp,k,n

(UO,τ )((ξUO, ξτ )), for all O ∈ Uk, θ = (U , τ ) ∈ Mp,k,n and
ξ = (ξU , ξτ ) ∈ TθMp,k,n.

Notice that the notion of retraction does not depend on the choice of the
metric, so several options are generally available. In this Chapter, we consider
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the following retraction from classical results on Stp,k [85] and (R+
∗ )

n. This
retraction defined onMp,k,n for all θ = (U , τ ) ∈Mp,k,n and ξ = (ξU , ξτ ) ∈
Hθ as

R
Mp,k,n

θ
(ξ) =

(
XY H , τ + ξτ +

1

2
τ⊙−1ξ⊙2

τ

)
, (4.16)

where U + ξU = XΣY H is the thin SVD. Notice that for the part that
concerns τ , we have a second degree polynom in ξτ with a negative discrim-
inant, thus the resulting vector contains strictly positive numbers. It can be
checked that the two conditions are satisfied, and this option was chosen for
its numerical stability.

4.2.3 . Product metric: geometry for distances
Riemannian distances can be used either for performance assessment,

or in machine learning algorithms (e.g. for clustering). Their interest can
notably be their natural invariances with respect to the manifold and/or
metric of interest. These distances are obtained by measuring the length of
geodesics, which generalize straight lines onto manifolds while taking into
account the curvature induced by the metric and geometric constraints. Un-
fortunately the Riemannian distance induced by the Fisher information metric
of Proposition 21 cannot be obtained in closed-form. To overcome this dif-
ficulty, we propose to use a product metric from the following definition.

Definition 43 (Product metric). The Riemannian metric ⟨·, ·⟩Mp,k,n
· is de-

fined, for all θ = (U , τ ) ∈ Mp,k,n, ξ = (ξU , ξτ ) and η = (ηU ,ητ ) ∈
TθMp,k,n, as

⟨ξ, η⟩Mp,k,n

θ
= αRe

(
Tr
(
ξHU ηU

))
+ β

(
ξτ ⊙ τ⊙−1

)T (
ητ ⊙ τ⊙−1

)
, (4.17)

where α, β > 0.

Notice that the product metric has a structure similar to the Fisher in-
formation metric in Proposition 21: it consists in a scaled combination of
standard metrics on Grp,k [2, 1, 52] and (R+

∗ )
n [18]. The main difference

is that the weights α and β remain constant in the product metric, which
will yield a geometry from well-known results. Another particular interest
is that the flexibility regarding this factors allows emphasizing a parameter
(subspace spanned by U or textures τ ) in the considered geometry. This
is notably interesting for clustering applications (see Section 4.4) where we
want to control the importance of each feature.

First, one can check that the horizontal space at θ in Mp,k,n for the
Riemannian metric in Definition 43 is the same as the one given in (4.14)
corresponding to the Fisher information metric of Proposition 21. It is thus
also denoted Hθ in the following.
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Second, we can deduce several geometric tools from classical results
about Grp,k [2, 1, 52] and (R+

∗ )
n [18] presented in Chapter 2 Section 2.4.

The squared Riemannian distance between θ1 = π(θ1) and θ2 = π(θ2) in
Mp,k,n is given by

d2Mp,k,n
(θ1, θ2) = αd2Grp,k(U 1,U 2) + βd2

(R+
∗ )n

(τ 1, τ 2), (4.18)
where d2Grp,k and d2

(R+
∗ )n

are the squared Riemannian distances of Grp,k and
(R+

∗ )
n, respectively. They are defined as

d2Grp,k(U 1,U 2) = ∥Θ∥22 ,

d2
(R+

∗ )n
(τ 1, τ 2) = ∥log(τ 1)− log(τ 2)∥22 ,

(4.19)

where Θ is obtained from the SVD UH
1 U 2 = O1 cos(Θ)OH

2 . An additional
tool linked to the Riemannian distance is the Riemannian logarithm map-
ping. Given a reference point θ1 = π(θ1) and a second point θ2 = π(θ2)
both inMp,k,n, the Riemannian logarithm mapping is an operator that pro-
vides a vector of Tθ1Mp,k,n that points towards θ2 and whose squared norm
with respect to the metric from Definition 43 is d2Mp,k,n

(θ1, θ2) (as defined
in (4.18)). Here, the representation in Hθ1

of the Riemannian logarithm
mapping log

Mp,k,n

θ1
(θ2) onMp,k,n is

logθ1(θ2) =
(
log

Grp,k
U1

(U 2), log
(R+

∗ )n

τ1
(τ 2)

)
,

log
Grp,k
U1

(U 2) = XΘY H ,

log(R
+
∗ )n

τ1
(τ 2) = τ 1 ⊙ log(τ⊙−1

1 ⊙ τ 2),

(4.20)

where XΘY H is defined through the SVD (Ip −U 1U
H
1 )U 2(U

H
1 U 2)

−1 =
X tan(Θ)Y H . Conversely, the inverse of this application is the Riemannian
exponential mapping exp

Mp,k,n

θ (ξ) onMp,k,n, whose representation inMp,k,n

is given by
expθ(ξ) =

(
exp

Grp,k
U (ξU ), exp

(R+
∗ )n

τ (ξτ )
)
,

exp
Grp,k
U (ξU ) = U Y cos(Σ) +X sin(Σ),

exp(R+
∗ )n

τ (ξτ ) = τ ⊙ exp(τ⊙−1 ⊙ ξτ ),

(4.21)

where ξU = XΣY H is the SVD such that X ∈ Cp×k and Σ, Y ∈ Ck×k.
These operators provide mappings between the manifold and its tangent
space, which will notably be instrumental in in Section 4.3.2 to define an
estimation error vector, and in Section 4.4 in order to define Riemannian
means.
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4.3 . Estimation and intrinsic Cramér-Rao bounds

4.3.1 . Maximum Likelihood Estimation with Riemannian optimiza-
tion

In this section, we cast the MLE as an optimization problem onMp,k,n

minimize
θ∈Mp,k,n

L(θ), (4.22)
where L : Mp,k,n → R is the negative log-likelihood defined in (4.5). To
solve this estimation problem, a block coordinate descent (BCD) has been
proposed in [28]. Here, we present an alternative algorithm leveraging the
information geometry presented in Section 4.2.2.

A first alternative is to use a Riemannian gradient descent (RGD) [1]. An
iteration of this algorithm consists in computing the gradient of L and then
retracting minus the gradient multiplied by a step size. Given the iterate θ(l)

represented by θ
(l)

, the RGD algorithm yields

θ
(l+1)

= R
Mp,k,n

θ
(l)

(
−νt gradMp,k,n

L(θ(l))
)
, (4.23)

where νt is a step size, gradMp,k,n
L(θ(l)) is a representative of the Rieman-

nian gradient associated to the Fisher information metric of Proposition 23,
and RMp,k,n

θ
(l) is the retraction defined in (4.16). Hence, it also corresponds to

the so-called natural gradient as defined in [4], which regained interest due
to its link with second order optimization methods [87].

Here, we propose a more flexible approach following the recent works [16,
67]: we derive a Riemannian stochastic gradient descent (R-SGD) onMp,k,n.
The R-SGD is a Riemannian optimization algorithm that computes the gra-
dient of the function to minimize only on a subset A of all measured signals
{xi}ni=1. Hence, contrary to the BCD or the RGD, this algorithm can be
used on large scale datasets and the cost of an iteration can be modulated
according to the computing capacity. Since the number of samples A can
be chosen arbitrarily set, this algorithm also encompasses the “plain” R-SGD
(A = {xi}) and the classical RGD [1] (A = {xi}ni=1). Additionally, the
R-SGD will be shown to have a lower complexity (per iteration) than the
BCD.

In order to derive the R-SGD, the negative log-likelihood L defined on
Mp,k,n is rewritten

L(θ) =
n∑
i=1

Li(θ), (4.24)
where Li is the negative log-likelihood defined on the sample xi. Hence, the
same notation applies to the negative log-likelihood (4.5) defined onMp,k,n:
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L(θ) =
∑n

i=1 Li(θ). In short, given the actual iterate θ(l), an iteration of
R-SGD proceeds in three steps:

1. a set A of samples is randomly drawn from {xi}ni=1,

2. then the gradient of
∑

xi∈A Li(θ
(l)) is computed,

3. finally a new iterate is given by retracting minus the gradient times a
step size.

Since a retraction onMp,k,n is provided in Section 4.2.2, the only remaining
element to provide is the Riemannian gradient of Li(θ). This gradient is
given in the following proposition:

Proposition 22 (Riemannian gradient). Given θ = π (U , τ ) ∈ Mp,k,n

represented by θ = (U , τ ) ∈Mp,k,n, the representative inHU×Tτ (R++)n

of the Riemannian gradient of Li at θ is

gradMp,k,n
Li(θ) = (GU ,Gτ )

where
GU = − τi

ncτ (1 + τi)
(I −U UH)xix

H
i U ,

and the jth element ofGτ is

(Gτ )j =

{
1 + τi − 1

k
xHi UUHxi for j = i

0 otherwise.

Proof. See Appendix 4.A.2.
Following from this gradient, the resulting R-SGD on Mp,k,n is detailed in
the box Algorithm 9. Concerning the computation of the step size, several
options exist. When the gradient is computed on all data, i.e. A = {xi}ni=1,
a line search (e.g. [1, §4.2]) is recommended. When the gradient is computed
on a subset of all data, a step size proportional to 1/t, where t is the number
of iterations, can be used as in [4].

By rearranging the operations of GU in Proposition 22, the computa-
tional complexity of the gradient of

∑
xi∈A Li(θ) isO(mpk+n), wherem the

number of samples in A. In practice, cτ can be approximated using only the
textures associated with the samples in A, i.e. cτ ≈ 1

m

∑
xi∈A

τ2i
1+τi

. Hence,
the complexity of the gradient becomes O(mpk). Then, the complexity of
the retraction (4.16) is O(pk2 + m), as we only retract the non-zero ele-
ments of the gradient Gτ from Proposition 22. Hence, the total complexity
of each iteration of Algorithm 9 is O(mpk+ pk2), which is much lower than
the O(np2 + p3) of the BCD in [28] (which involves the SVD of the scaled
SCM at each step).
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Algorithm 9: Riemannian stochastic gradient descent
Input : Initial iterate θ(0) ∈Mp,k,n.
Output: Sequence of iterates {θ(l)}.
for l = 0 to convergence doRandomly draw a subset A ⊂ {xi}ni=1 and set

ξ(l) =
∑

xi∈A gradMp,k,n
Li(θ

(l)
)Compute a step size νl and set

θ
(l+1)

= R
Mp,k,n

θ
(l) (−νlξ(l))

end

4.3.2 . Intrinsic Cramér-Rao bounds
Obtaining performance bounds for the model in (4.3) is a complex issue,

notably because the signal subspace is represented by a point in Grp,k. A
first approach was proposed in [13] for the model xi ∼ CN (0, τiGGH +I),
where G ∈ Cp×k is a lower-triangular matrix with positive diagonal elements.
Such parameterization is carefully chosen in order to obtain a minimal and
essentially unconstrained parametrization of the low-rank signal covariance
matrix. This allows obtaining the standard Cramér-Rao inequality for the
parameter g = vec(G).

CRB(π) =
∂π

∂gT
CRB(g)

∂πT

∂g
⇒ E

[
||Π− Π̂||2F

]
≥ Tr {CRB(π)}

(4.25)
thus enabling to assess approximately the minimum distance between the
estimated and the true signal subspace. Another option could have been
to start with the constrained parameterization G = UD

1/2 and to directly
handle the orthonormality constraints UHU = Ik with the the theory of
constrained CRBs [60, 123, 95, 99] to obtain CRB(vec(U)), then deriving
the same result as in (4.25) from π = vec(UUH). This method is expected
to yield the same result as in [13] from a different path of derivations.

While the obtained inequality in (4.25) allows for an analysis with numeri-
cal experiments, it still lacks some interpretable closed-form. In the following,
we will directly treat the signal subspace as a point in Grp,k1 and rely on the
intrinsic CRB theory from [121, 20]. The interest is twofold: first it will
yield a simple and interpretable closed form for the bound on the subspace
estimation. Second, this bound will be obtained for natural distance on Grp,k

1Note that we consider the case of equal eigenvalues, but this restriction has beencarefully motivated in the model introduction section. The extension to the generalcase could be considered using recent derivations from [17] but this complex issuegoes far beyond the scope of this chapter.
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in (4.19), which is expected to better reflect breakdown points at low sample
support (cf. [121] for an example regarding covariance matrix estimation).

Intrinsic (i.e., manifold oriented) versions of the Cramér-Rao inequal-
ity have been established [121] and extended to quotient manifolds in [20].
They are presented in details in Chapter 2 Section 2.5. The main difference
compared to the classical CRBs is that the parameter θ is treated as being
in a Riemmanian manifold endowed by an arbitrary chosen “error” metric.
The estimation error is thus measured using the Riemannian distance d that
emanated from this error metric. The obtained inequality is of the form

C ⪰ F−1 + curvature terms, (4.26)
where C is the covariance matrix of the error vector (defined as the Rie-
mannian logarithm mapping logθ(θ̂), which is induced by the error metric),
and F−1 is the inverse of the Fisher information matrix (which depends
on both the chosen metric and the Fisher information metric). Neglect-
ing the curvature terms and taking the trace of (4.26) yields the inequality
E
[
d2(θ, θ̂)

]
≥ Tr(F−1) for an unbiased estimator θ̂, which will be here our

primary interest.
In our context, we considerMp,k,n endowed with the product metric from

Definition 43 in order to bound the error measure defined by d2Mp,k,n
as in(4.18). For the sake of exposition, the obtained results are directly reported

in the two following propositions, while the technical details are let in the
Appendix 4.A.3.

Proposition 23 (Fisher information matrix). The Fisher information ma-
trix F θ onMp,k,n admits the structure

F θ =

FU 0

0 F τ

 ,

with the blocks FU = 2α−1 n cτ I2(p−k)k, and F τ =
β−1 k diag (τ⊙2 ⊙ (1+ τ )⊙−2), and where diag(·) returns the diago-
nal matrix formed with the elements of its argument.

Proof. See Appendix 4.A.3.
Proposition 24 (iCRB). Let {xi}ni=1 be a sample set following the model
in (4.3). Let θ̂ be an estimate of θ ∈ Mp,k,n for the model. The estimation
error defined by d2Mp,k,n

as in (4.18) is bounded as
E[d2Mp,k,n

(θ̂, θ)] ≥ αCRBU + β CRBτ . (4.27)
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where

CRBU =
(p− k) k
n cτ

and CRBτ =
1

k

n∑
i=1

(1 + τi)
2

τ 2i
.

Furthermore, two iCRB, on Grp,k and (R+
∗ )

n respectively, are given by

E[d2Grp,k(π(Û), π(U))] ≥ CRBU , (4.28)
E[d2

(R+
∗ )n

(τ̂ , τ )] ≥ CRBτ . (4.29)

Proof. See Appendix 4.A.3.
Notice that the problem of estimating a subspace should not depend on

its basis U , as two estimates Û and ÛQ yield the same subspace esti-
mate (but would yield different MSEs for the basis U). The obtained bound
on d2Grp,k satisfies this property. Furthermore, Proposition 24 shows that
the subspace estimation problem for model (4.3) does not depend on the
underlying subspace itself, but rather only on its dimension and the SNR,
which is theoretically appealing. Conversely, the euclidean CRBs in [13],
bounding the MSE on UUH (orthogonal projector) as in (4.25) does not
exhibit such direct interpretability. Finally, in the specific case of data fol-
lowing a Gaussian low-rank (spiked) model for which τi = SNR so that
xi ∼ CN (0, SNR×UUH + Ip), we retrieve the iCRB of [121, Eq.145],
i.e.,

E[d2Grp,k(π(Û), π(U))] ≥ (p− k) k (1 + SNR)
n SNR2 . (4.30)

4.4 . Clustering of subspaces and textures

In this section, we apply the statistical model developed in Section 4.1
with its Riemannian geometry Mp,k,n, presented in Section 4.2.3, to clus-
tering problems. More specifically, we assume that we have M batches X i

(e.g. sets of local pixels of an image, EEG epochs of measurements, ...).
Each X i ∈ Cp×n is a column-wise concatenation of n observations xj ∈ Cp

defined in Section 4.1. Furthermore, each batch X i belongs to an unknown
class y ∈ J1, KK.

The use of statistical descriptors is a classical procedure in machine learn-
ing as they are often more discriminative than raw data (see e.g. [8, 134]).
Hence, we begin by estimating a descriptor θi ∈ Mp,k,n of the batch X i

following Section 4.3.1. Then, the aim is to partition the descriptors {θi}Mi=1
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in S = {S1, S2, · · · , SK}. Thus, we get a partition of the original batches
{X i}Mi=1.

Each parameter θi is represented by a couple, i.e. θi = π (U i, τ i).
Our contribution is to cluster both components (subspace and power) in a
unified manner, leveraging the geometry ofMp,k,n featured in Section 4.2.3.
This section is focused on the application of a K-means++[7] on Mp,k,n

with the tools developed earlier. However, the proposed methodology is
flexible: (i) descriptors θi can be replaced by other statistical estimates with
their associated Riemannian geometries, (ii) many Euclidean based clustering
Algorithms can be transformed to Riemannian ones (replacing distances and
means by their Riemannian counterparts).

4.4.1 . Distance and mean computations
Most clustering Algorithms, including K-means++ [7], rely on distance

and mean computations. Since θi lies on a Riemannian manifold we first
need to define distance and mean computations other than simple Euclidean
ones.

A natural choice is the use of the distance dMp,k,n
defined in (4.18). In

the context of clustering, the distance on Grp,k and the one on (R+
∗ )

n do
not necessarily have the same amplitude or the same ability to discriminate.
Thus, the parameters α, β of the metric of Definition 43 are to be chosen
carefully. We propose a 2-step strategy to select α, β: (i) correction of the
scale effect and (ii) choice of a trade-off between the distances on Grp,k
and (R+

∗ )
n. To correct the scale effect we propose to normalize the squared

distances by their mean values on the samples {θi}Mi=1. Then, a trade-off can
be made between the two distances. More precisely, ∀γ ∈ [0, 1], we define

α =
1− γ

1
M2

∑
q,l∈J1,MK d

2
Grp,k(U q,U l)

,

β =
γ

1
M2

∑
q,l∈J1,MK d

2
(R+

∗ )n
(τ q, τ l)

.
(4.31)

It remains to define a mean computation Algorithm on a set of parameters
Sj. In [75], the mean of a set of points on a Riemannian manifold is defined
as the minimizer of the variance of this set. Let m = Card(Sj), the variance
V of Sj at θ = π(θ) ∈Mp,k,n is defined as,

V (θ) =
1

m

∑
θi∈Sj

d2Mp,k,n
(θ, θi). (4.32)

The mean c = π(c) ∈ Mp,k,n of the set of points Sj is obtained from the
minimization of the variance,

c = argmin
θ∈Mp,k,n

1

2
V (θ). (4.33)
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Denoting c = (U , τ ), one can check that the mean τ corresponding to
the distance d(R+

∗ )n is simply the geometric mean

τ =

 ⊙∏
θi∈Sj

τ i

⊙ 1/m

, (4.34)

where
⊙∏

is the elementwise product. Similarly, the mean corresponding to
distance dGrp,k is well-known [2]. Unfortunately, no closed form is known
to compute it. It is obtained through the following Riemannian gradient
descent: given U (l), the iterate U (l+1) is

U (l+1) = exp
Grp,k
U (l)

νt
m

∑
θi∈Sj

log
Grp,k
U (l) (U i)

 , (4.35)

where νt is the step size which can be computed thanks to a line search [1].
Since we get one mean per class, in the rest of the Chapter, the mean of

Sj is noted cj.

4.4.2 . K-means++ on Mp,k,n

With the distance and mean computation Algorithms explained above,
we use a K-means++ on Mp,k,n to partition {θi}Mi=1 in S (and thus par-
tition {X i}Mi=1). The K-means++ Algorithm on a given set endowed with
a divergence and a center of mass computation has been presented in the
subsection 1.4.2. We briefly recall the main steps of a K-means++, here
adapted to the Riemannian manifoldMp,k,n.

Instead of choosing class centers cj uniformly at random from {θi}Mi=1,
K-means++ initializes them by recursively choosing a new center θi with
probability D(θi)

2∑
θj
D(θj)2

[7]. Here, D(θi) denotes the distance dMp,k,n
from θi

to the closest center among those already chosen. Once these class centers
are initialized, K-means++ onMp,k,n iteratively applies two steps [7]:

1. Assignment step: each θi is assigned to the cluster Sj whose center
cj is the closest using the distance dMp,k,n

,

2. Update step: each new class center cj is computed using (4.34) and(4.35).
Once terminated, K-means++ onMp,k,n outputs the partition S. Intuitively,
K-means++ finds clusters Sj whose points θi ∈ Sj are close to each other
using the distance dMp,k,n

.
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4.4.3 . Theoretical properties

We recall the main theoretical property of the K-means++ Algorithm,
presented in the subsection 1.4.2 and here adapted to Mp,k,n. To analyze
the performance of K-means++ onMp,k,n, we define the within-cluster sum
of squares (WCSS),

ϕ(S) =
K∑
j=1

∑
θi∈Sj

d2Mp,k,n
(cj, θi). (4.36)

The main property of the K-means++ Algorithm is its output partition sat-
isfies

E[ϕ] ≤ 8(lnK + 2)ϕOPT (4.37)
where the expectation is taken with respect to the seeding procedure and
ϕOPT is a minimum of (4.36). This property is central to K-means++ since
it is proven that a plain K-means [80] cannot admit such a bound. However,
the clustering from a K-means++ is not necessarily a global minimum of
the WCSS (4.36). Hence, a standard practice is to run the Algorithm several
times with different initializations and then to keep the clustering with the
lowest inertia (4.36). K-means++ on Mp,k,n with the strategy of several
initializations is presented in Algorithm 10.

4.5 . Numerical experiments

4.5.1 . Simulations

This section illustrates the performance of the Algorithm 9 as well as
the Cramér-Rao bounds developed in Section 4.3. The covariance matrix
of the simulated data follows the model Σi = Ip + τiU UH . The basis
U is a random matrix in Stp,k. The textures τi are randomly drawn from a
Log-normal(− s2

2
, s2) multiplied by the desired SNR. Hence, we get E[τi] =

SNR. The shape parameter s2 controls the heterogeneity of the textures:
the higher the s2, the greater the heterogeneity. We generate sets {xi}ni=1,
with n ∈ J10, 1000K, from the zero mean complex Gaussian multivariate
distribution with covariance Σi. For each value of n, N sets {xi}ni=1 are
simulated and estimators Û , τ̂ are computed in each case.

Here are the considered estimators in the simulations:

1. SCM: the k first principal eigenvectors of the SCM of {xi}ni=1 are
concatenated to get USCM.

2. BCD: the MLE estimate is done using BCD algorithm on {xi}ni=1 [28]
. The estimators are denoted UBCD and τBCD.
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Algorithm 10: K-means++ onMp,k,n

Input : A set {θi}Mi=1 ⊂Mp,k,n to partition, a number ofclustersK and a number of initializations ninit.
Output: Best partition S⋆.
ϕ⋆ ← +∞
for 1 to ninit do# InitializationTake one center c1, chosen uniformly at random from
{θi}Mi=1.
while #{ci} < K doTake a new center cj , choosing θi ∈ {θi}Mi=1 with

probability D(θi)
2∑

θm
D(θm)2

.
end# K-means
while no convergence do

Assignment step: ∀i ∈ J1,MK assign θi to the cluster Sjwith the nearest cj , j ∈ J1, KK.
Update step: Calculate new centers cj of clusters Sj ,
∀j ∈ J1, KK, using (4.34) and (4.35).

endCompute ϕ(S) with (4.36).
if ϕ(S) < ϕ⋆ then

S⋆ ← S
ϕ⋆ ← ϕ(S)

end
end

3. RGD: Algorithm 9 is performed using all samples at each iteration,
i.e. A = {xi}ni=1. Pymanopt library [132] (builds upon the Manopt
library [24]) achieves this optimization. The estimators are denoted
URGD and τRGD.

To measure the subspace estimation performance of the considered esti-
mators, we compute the mean squared error (MSE) between the estimators
Û ∈ {USCM,UBCD,URGD} and the real parameter U . We compute the
MSE as the mean squared distance on Grp,k (4.19) between estimated pa-
rameters Û and real parameter U . Texture estimation performance is also
assessed. The MSE is computed between the estimators τ̂ ∈ {τBCD, τRGD}
and real parameter τ as the mean squared distance on (R+

∗ )
n (4.19).

The subspace estimation performance is studied for two different s2 along
two SNR in Figure 4.2. Firstly, we observe that our proposed estimation
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algorithm performs identically to the block coordinate Algorithm [28] in every
scenario. Also, both estimators are statistically efficient, i.e. reach the lower
bound (4.28) when n is sufficiently large. Finally, in the case of a low SNR
(i.e., SNR = 1), the block coordinate descent and our Riemannian gradient
descent outperform the projected SCM regardless of texture heterogeneity.

Figure 4.3 presents the texture estimation error as a function of SNR
with two different s2. Firstly, our proposed estimation algorithm performs
identically to the block coordinate Algorithm [28]. Interestingly, the rate
of convergence of the estimation error in the case of low heterogeneity, i.e.
s2 = 2, is much faster than in the case of high heterogeneity, i.e. s2 = 4.
Moreover, both estimators reach the lower bound (4.29) for a high enough
SNR.

A final simulation is conducted on high dimensional data. In Section 4.3,
we recalled that the complexity of the BCD grows linearly with the number
of data n and quadratically with the dimension p of the data. Hence, the
BCD is no longer practicable when both n and p get large. However, in
Section 4.3, we showed that the R-SGD proposed in Algorithm 9 has a
constant complexity for the number of data and linear for the dimension of
the data. Figure 4.4 illustrates this situation with n ∈ J103, 104K, p = 104

and k = 10 (dimensions for which the iteration of BCD cannot be computed
on the tested setup). This shows the efficiency of the proposed R-SGD.

4.5.2 . Clustering: application to image segmentation

To illustrate the interest of the Riemannian geometryMp,k,n and of the
parameters of the statistical model (4.3) used as descriptors, we apply the
Algorithm 10 to the hyperspectral image segmentation problem Indian Pines
presented in the Chapter 1. Figure 4.5 shows the ground truth with the 16
classes.

After centering the image by subtracting the global mean, a sliding win-
dow of size w × w is applied to the image. One descriptor θi is estimated
using the n = w2 observations in each window denoted X i ∈ Rp×n. Thus,
we get a set of descriptors {θi} to cluster using a K-means++ [7].

We compare the descriptors of the considered statistical model
(MSG+WGN) with different descriptors and geometries. Due to the data’s
high dimensionality, some methods require a PCA on the whole image as a
preprocessing. Then, we keep only the k first components. We begin by
presenting these different methods:

1. “center pixel”: we extract the center vector of the window. K-
means++ cluster these pixels using the Euclidean metric (i.e., clas-
sical inner product). It amounts to cluster directly the image using a
classical K-means++.
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Figure 4.2: MSE over N = 100 simulated sets {xi}ni=1 (p = 100 and k =
20) with respect to the number of samples n for the three consideredestimators. The textures are generated with s2 = 4 (left part), s2 = 2(right part), SNR = 1 (upper part), SNR = 10 (lower part).
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Figure 4.5: Ground truth of the image Indian Pines [9]. The background(no class available) is represented by the class 0.
2. “mean pixel”: we average the pixels inside the window. Then K-

means++ cluster these means using the Euclidean metric.

3. “SCM”: we compute the SCM using pixels inside the window. K-
means++ cluster these matrices using the Riemannian geometry of
symmetric positive definite matrices S++

p (see [120, 14, 113]).

Next, we present the different methods that take into account this high
dimensionality. Therefore, we do not use any dimensional reduction prepro-
cessing.

1. “subspace SCM”: the k first eigenvectors of the SCM are retained.
Then, they are clustered using a K-means++ on Grp,k.

2. “robust subspace γ = 0”: our method. Subspaces and textures are
estimated following statistical model (4.3). Only the subspaces are
clustered using a K-means++ on Grp,k. σ2 is pre-estimated using the
p− k lowest eigenvalues of the SCM.

3. “robust subspace γ > 0”: our method. Subspaces and textures are
estimated following statistical model (4.3). The textures and subspaces
are clustered using a K-means++ on Mp,k,n as explained in Section
4.4 and detailed in Algorithm 10. σ2 is pre-estimated using the p− k
lowest eigenvalues of the SCM.
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Figure 4.6: Cumulative variance, i.e. ∑k
i=1 λi/

∑p
i=1 λi, with respect to

k ∈ J1, 30K. {λi}pi=1 are the eigenvalues in descending order of the SCMcomputedwith all pixels of Indian Pines [9]. Only the first 30 eigenvaluesout of p = 200 are plotted. We notice that the first 5 principle eigenvec-tors contain more than 95% of the cumulative variance.

Because Indian Pines [9] has 16 classes, we set the number of clusters K
to 16. Furthermore, we set k = 5. Indeed, from Figure 4.6, we observe that
the first 5 principal eigenvectors of the SCM calculated on Indian Pines [9]
contain more than 95% of the total variance. Since we use an unsupervised
algorithm, the output classes are not necessarily the same as the ground
truth. Hence, a Kuhn–Munkres algorithm is applied to the segmentation to
recover ground truth’s classes. Furthermore, we do 10 different initializations
(parameter l in Algorithm 10) and keep the clustering with the lowest inertia(4.36). To measure the variability of the results, each K-means++ is run 10
times. The averaged Overall Accuracy (OA), as well as the averaged mean
Intersection over Union (mIoU), are reported with their standard deviations
(std) in Table 4.3.

First of all, the methods based on non-Euclidean geometries all surpass
the other methods (“center pixel” and “mean pixel”) by at least 8.9% in terms
of averaged Overall Accuracy. This proves the interest in using Riemannian
geometries other than the simple Euclidean one. Secondly, “robust subspace,
γ = 0” slightly exceeds “subspace SCM” which shows the interest of robust
estimation of subspaces. Thirdly, “robust subspace” with γ = 0.1 outperform
“robust subspace γ = 0” by nearly 4%. Finally, our method “robust subspace
γ = 0.1” outperforms the strong baseline “SCM” by 2.8% in terms of Overall
Accuracy. However, “SCM” performs better in terms of mIoU, by nearly 2%,
compared to “robust subspace, γ = 0.1”. This means “SCM” better classifies
classes with small number of samples.

As mentioned in Section 4.2, a trade-off must be made between the
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PCA Descriptor OA± std mIoU± std

Yes
center pixel 32.66± 0.84 18.30± 0.82

mean pixel 34.02± 0.48 20.17± 2.00

SCM 45.08± 1.58 29.95 ± 1.87

No
subspace SCM 42.95± 0.71 27.06± 0.76

robust subspace, γ = 0 43.93± 0.93 28.11± 0.63

robust subspace, γ = 0.1 47.89 ± 2.67 28.00± 1.49

Table 4.3: Performance of the different descriptors on Indian Pines [9]with w = 7 and k = 5.
subspaces’ distance and textures’ distance. A hyperparameter γ ∈ [0, 1]
realizes this trade-off. Figure 4.7 shows that our method “robust subspace”
outperforms the “SCM” when we emphasis the Grp,k distance. Figure 4.7
illustrates that our method works for an interval of γ and therefore does not
need a critical choice to maximize Overall Accuracy. However, to maximize
mIoU, the smaller γ the better.

Figure 4.9 presents the segmentations of 4 methods: “center pixel”,
“SCM”, “robust subspace γ = 0” and “robust subspace γ = 0.1”. The
segmentations are those with the lowest inertia (4.36) for each method. We
note a significant improvement occurs on class 14 (lower right part) between
baseline “SCM” in Figure 4.9b and our method “robust subspace γ = 0.1” in
Figure 4.9d. Also, the textures help to better cluster classes 8 and 14, see
Figure 4.9c versus 4.9d.

Finally, our method “robust subspace γ = 0.1” converges quickly, i.e.
in less than 20 iterations (see Figure 4.8). Interestingly, the WCSS (4.36)
decreases a lot in the first iterations and hence the K-means++ can be
stopped after few iterations to faster computation.

4.6 . Conclusions

This chapter proposed to study the information geometry of het-
eroscedastic signals embedded in WGN. This geometric approach offered
a unified framework in order to 1) derive new optimization algorithm based
on Riemannian stochastic gradient descent; 2) obtain iCRBs (error bounds
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Figure 4.8: WCSS (4.36) versus the iterations of K-means++ [7] for “ro-bust subspace” γ = 0.1 corresponding to Figure 4.9d. The curves cor-respond to 10 initializations.
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(a) “center pixel”:OA = 31.2%, mIoU = 18.8%
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(b) “SCM”:OA = 45.2%, mIoU = 31.5%
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(c) “robust subspace γ = 0”:OA = 43.3%, mIoU = 27.3%
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(d) “robust subspace γ = 0.1”:OA = 47.2%, mIoU = 29.3%

Figure 4.9: Indian Pines [9] segmentation results achieved using 4meth-ods: “center pixel”, “SCM”, “robust subspace” γ = 0 and “robust sub-space” γ = 0.1 (w = 7 and k = 5 for all methods). These segmentationsare those with the lowest WCSS computed with their respective dis-tances.
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driven by a Riemannian distance) with interesting interpretations; 3) pro-
pose a new Riemannian clustering algorithm based on the model features,
which was applied it to a hyperspectral image to illustrate the interest of the
approach.
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4.A . Appendix

4.A.1 . Proof of Proposition 21
By definition of the Fisher information metric [121],

⟨ξ, η⟩FIM
θ

= E[DL(θ)[ξ] DL(θ)[η]] = E[D2 L(θ)[ξ, η]]

L defined in (4.5) can be written as

L(θ) =
n∑
i=1

Lgx(ψi(θ)),

where Lgx(Σ) = log |Σ| + xHΣ−1x is the negative Gaussian log-likelihood
on H++

p . Thus, following the reasoning of [17, Proposition 6] and [18,
Proposition 3.1], one can show

⟨ξ, η⟩FIM
θ

=
n∑
i=1

⟨Dψi(θ)[ξ],Dψi(θ)[η]⟩FIM,g
ψi(θ)

, (4.38)
where ⟨ξΣ,ηΣ⟩

FIM,g
Σ = Tr(Σ−1ξΣΣ

−1ηΣ) is the Fisher information metric
of the Gaussian distribution on H++

p ; see e.g. [121]. The definition (4.4) of
ψi(θ) and Dψi(θ)[ξ] = τi(UξHU + ξUU

H) + (ξτ )iUUH yields

⟨Dψi(θ)[ξ],Dψi(θ)[η]⟩FIM,g
ψi(θ)

=

(ξτ )i(ητ )i⟨UUH ,UUH⟩FIM,g
ψi(θ)

+ (ξτ )i τi⟨UUH ,UηHU + ηUU
H⟩FIM,g

ψi(θ)

+ τi (ητ )i⟨UξHU + ξUU
H ,UUH⟩FIM,g

ψi(θ)

+ (τi)
2 ⟨UξHU + ξUU

H ,UηHU + ηUU
H⟩FIM,g

ψi(θ)

(4.39)

Then we compute each term separately:

⟨UUH ,UUH⟩FIM,g
ψi(θ)

=
k

(1 + τi)2
(4.40)

⟨U UH ,U ηHU + ηU UH⟩FIM,g
ψi(θ)

= 0 (4.41)
⟨U ξHU + ξU UH ,U UH⟩FIM,g

ψi(θ)
= 0 (4.42)

⟨UξHU + ξUU
H ,UηHU + ηUU

H⟩FIM,g
ψi(θ)

=

2

1 + τi
Re
(
Tr
(
ξHUηU

)) (4.43)
The Fisher information metric stated in Proposition 21 is obtained by com-
bining (4.38), (4.39), (4.42), and (4.43).
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4.A.2 . Proof of Proposition 22
Since Grp,k is a quotient manifold of Stp,k, gradMp,k,n

Li(θ) is represented
by gradMp,k,n

Li(θ) ∈ HU × Tτ (R++)n. By definition, ∀ξ ∈ TθMp,k,n,
DLi(θ)[ξ] = ⟨gradMp,k,n

Li(θ), ξ⟩FIM
θ

[1]. Notice that
∣∣ψi(θ)∣∣ = (1 + τi)

k

and (ψi(θ))
−1 = Ip −

τi
1 + τi

U UH (Woodbury formula). It follows that

DLi(θ)[ξ] = −2
τi

1 + τi
Re
(
Tr
(
xxHUξHU

))
+
k (1 + τi)− xH U UH x

(1 + τi)2
(ξτ )i

= 2ncτ ⟨−
τi

ncτ (1 + τi)
xxH U , ξU⟩

Stp,k
U + ⟨a, ξτ ⟩(R

+
∗ )n

τ

where a ∈ Rn is a vector such that

aj =

{
1 + τi − 1

k
xHUUHx for j = i

0 otherwise.

To obtain the Riemannian gradient gradMp,k,n
L(θ) by identification,

it remains to project − τi
ncτ (1+τi)

xxH U onto HU with P
Grp,k
U (ξU ) =(

Ip −U UH
)
ξU [1], which is enough to conclude.

4.A.3 . Proof of Proposition 23 and 24
In this section we derive the elements of the generic iCRB inequality (4.26)

for the estimation problem of θ ∈ Mp,k,n (and data model in (4.3)) when
the chosen error metric is the product one from Definition 43. To do so, we
need to select a proper system of coordinates of the tangent space TθMp,k,n

so that the entries of F−1 can be actually obtained: Mp,k,n being a quotient
manifold, there are two solutions in order to represent this object. The first
one is to simply consider coordinates of TθMp,k,n without restrictions. The
resulting Fisher information matrix will then be singular, but its pseudo-
inverse still yields the desired inequality [20]. The second option, which will
be chosen here, is to consider only coordinates in the horizontal space Hθ,
which is given in our case in (4.14).

Two ingredients are thus needed to establish the Fisher information matrix
as in (4.26):

(i) The Fisher information metric ⟨·, ·⟩FIM
θ

, which was given in Proposition
21.

(ii) A basis of the horizontal space Hθ in (4.14) that is orthonormal with re-
spect to the error metric (i.e., the product metric from Definition (43)),
which is given in the following proposition.
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Proposition 25 (Orthonormal basis). Given θ ∈Mp,k,n, an orthonormal
basis of the horizontal space Hθ defined in (4.14) with respect to the Rie-
mannian metric of Definition 43 is

{eq
θ
}1≤q≤2(p−k)k+n = BU ∪Bτ ,

with

BU =
⋃

1≤i≤p−k
1≤j≤k

{(
α− 1

2U⊥Kij ,0
)
,
(
α− 1

2 iU⊥Kij ,0
)}

,

Bτ =
⋃

1≤i≤n

{(0, β− 1
2 τiei)},

where U⊥ ∈ Stp,kp,p−k such that UH U⊥ = 0;Kij ∈ R(p−k)×k: its ijth ele-
ment is 1, zeros elsewhere; and ei ∈ Rn: its ith element is 1, zero elsewhere.

Proof. As {eq
θ
} contains the right amount of elements, it suffices toshow that, ∀q, l ∈ J1, 2(p − k)k + nK such that q ̸= l, we have

⟨eq
θ
, el
θ
⟩Mp,k,n

θ
= 0 and ⟨eq

θ
, eq
θ
⟩Mp,k,n

θ
= 1. This can easily be checked bycalculation.

Using this system of coordinates, the qlth element of the Fisher information
matrix F θ is then represented by

(F θ)ql = ⟨eqθ, e
l
θ
⟩FIM
θ
. (4.44)

Remarkably, F θ will turn to be diagonal which enables us to obtain closed
forms iCRB on Mp,k,n, Grp,k and (R+

∗ )
n respectively. To show that F θ is

block diagonal, it suffices to notice that there are no crossed terms between
tangent vectors of U and τ in the Fisher information metric of Proposi-
tion 23. Computing the elements of FU yields

⟨(α− 1
2UKij,0), (α

− 1
2UK lm,0)⟩FIM

θ
=

{
2α−1 n cτ if ij = l m

0 otherwise

⟨(α− 1
2 iUKij,0), (α

− 1
2 iUK lm,0)⟩FIM

θ
=

{
2α−1 n cτ if ij = l m

0 otherwise

⟨(α− 1
2UKij,0), (α

− 1
2 iUK lm,0)⟩FIM

θ
= 0
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Hence, FU = 2α−1 n cτ I2 (p−k) k. Computing the elements of F τ yields

⟨(0, β− 1
2 τiei), (0, β

− 1
2 τjej)⟩FIM

θ
= β−1 k

τi τj
(1 + τi) (1 + τj)

ei
Tej

=

β−1 k
τ 2i

(1 + τi)2
if i = j

0 otherwise

Hence, F τ = β−1k diag (τ⊙2 ⊙ (1+ τ )⊙−2), which concludes the part con-
cerning the proof of Proposition 23.

Finally, we note that

Tr
(
F−1

U

)
=
α(p− k) k

n cτ
and Tr

(
F−1

τ

)
=
β

k

n∑
i=1

(1 + τi)
2

τ 2i
.

Furthermore, we get,

Tr
(
F−1
θ

)
=
α(p− k) k

n cτ
+
β

k

n∑
i=1

(1 + τi)
2

τ 2i
.

It follows that the error of an unbiased estimator θ̂ of the true parameter θ
inMp,k,n admits the iCRB

E[d2Mp,k,n
(θ̂, θ)] ≥ Tr

(
F−1
θ

) (4.45)
if we neglect the curvature terms when applying Theorem 2 of [121]. Since
F θ is block-diagonal we also get two separated iCRB for the parameters on
Grp,k and (R+

∗ )
n respectively, i.e.:

E[d2Grp,k(π(Û), π(U ))] ≥ α−1Tr(F−1
U ) =

(p− k)k
ncτ

, (4.46)

E[d2
(R+

∗ )n
(τ̂ , τ )] ≥ β−1Tr(F−1

τ ) =
1

k

n∑
i=1

(1 + τi)
2

τ 2i
. (4.47)

This concludes the proof of Proposition 24.
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5 - Robust Geometric Metric Learning

Many classification algorithms rely on the distance between data points.
These algorithms include the classical K-means, Nearest centroïd classifier,
k-nearest neighbors and their variants. The definition of the distance is
thus of crucial importance since it determines which points will be consid-
ered similar or not, thus implies the classification rule. In previous chap-
ters, statistical features θ were estimated from samples sets {xi}ni=1. Then,
these features were classified using divergences that respect constraints of
the parameter space and are associated to the considered statistical model.
Here, the approach is different: the classification is performed directly on
the data xi and thus no statistical estimation is performed. To do so, clas-
sification algorithms most generally rely on the Euclidean distance, which is
dIp(xi,xj) = ∥xi − xj∥2 for xi,xj ∈ Rp. However, this distance is prone
to several issues. A pathological example is when two classes have a high
variance along one common axis: within this configuration, two data points
from the same class can be far away from each other, while two data points
from two different classes can be very close.

To find a more relevant distance for classification, the problem of metric
learning has been proposed. Metric learning aims at finding a Mahalanobis
distance

dA(xi,xj) =
√

(xi − xj)TA
−1(xi − xj) , (5.1)

that brings data points from same class closer, and furthers data points from
different classes away. Mathematically, metric learning is an optimization
problem of a loss function that relies on dA. This minimization is achieved
over A, a matrix that belongs to S++

p the set of p × p symmetric positive
definite matrices. The constraints of symmetry and positivity are enforced
so that dA is a distance. An illustration of data {xi} and their whitened
counterpart {A− 1

2xi} is presented in Figure 5.1. In this chapter, we focus on
developing metric learning methods that are robust to outliers using robust
statistics (as presented in Chapter 1) and fast using Riemannian optimization
(theory presented in Chapter 2).

In the following, we consider being in a supervised regime with K classes,
i.e. m data points {x1, . . . ,xm} in Rp with their labels in J1, KK are avail-
able. Data points can be grouped by classes and the elements of the kth class
are denoted {xkl}. Then, nk pairs, (xkl,xkq) with kl ̸= kq, of elements of
the class k are formed. The set Sk contains all these pairs and S contains
the nS =

∑K
k=1 nk pairs of all the classes. When S is used, the class of a

pair is not relevant, thus it is denoted by (xl,xq) instead of (xkl,xkq). The
ratio nk

nS
is denoted πk. Then, each vector ski is defined as the subtraction
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{
xi
} {

A− 1
2xi
}

Figure 5.1: Example of the whitening effect by a matrixA learned witha metric learning optimization problem. On the left: data that belongto two classes, blue and red, are stretched along a common axis. Onthe right: the same data are whitened byA.

of the elements of each pair in Sk, i.e. ski = xkl−xkq for (xkl,xkq) ∈ Sk, i
being the index of the pair and l, q the indices of the elements of this ith pair.
Thus, the set {ski} contains nk elements. Then, the set D contains nD pairs
of vectors that do not belong to the same class. Each vector di is defined
as the subtraction of the elements of each pair in D, i.e. di = xl − xq for
(xl,xq) ∈ D. Finally, Sp is the set of p× p symmetric matrices, S++

p is the
set of p × p symmetric positive definite matrices, and SS++

p is the set of
p× p symmetric positive definite matrices with unit determinant.

This chapter is organized as follows. Section 5.1 presents the state of
the art of metric learning and relates it to covariance estimation. Then,
Section 5.2 introduces the RGML estimation problem. Solving this mini-
mization problem estimates a covariance matrix that is meant to be used
in the Mahalanobis distance 5.1. The formulation of RGML is general and
two costs functions called RGML Gaussian and RGML Tyler are specified.
In Section 5.3, two Riemannian gradient descents are proposed to minimize
RGML Gaussian and RGML Tyler. Finally, these two algorithms are applied
on real datasets in Section 5.4.

5.1 . Metric learning: state of the art and covariance estimation

5.1.1 . State of the art

Many metric learning problems have been formulated over the years (see
e.g. [124] for a complete survey). In the following, we present notable ones
that are related to our proposal.

MMC [142] (Mahalanobis Metric for Clustering) was one of the earliest
paper in this field. This method minimizes the sum of squared distances

178



over similar data while constraining dissimilar data to be far away from each
other. MMC writes

minimize
A∈S++

p

∑
(xl,xq)∈S

d2A(xl,xq)

subject to
∑

(xl,xq)∈D

dA(xl,xq) ≥ 1.
(5.2)

Notice that dA (rather than d2A) is involved in the constraint in order to
avoid a trivial rank-one solution.

Then, ITML [50] (Information-Theoretic Metric Learning) proposed to
find a matrix A that stays close to a predefined matrix A0 while re-
specting constraints of similarities and dissimilarities. The proximity be-
tween A and A0 is measured with the Gaussian Kullback-Leibler divergence
DKL(A0,A) = Tr(A−1A0) + log |AA−1

0 |. ITML writes

minimize
A∈S++

p

Tr(A−1A0) + log |A|

subject to d2A(xl,xq) ≤ u, (xl,xq) ∈ S,
d2A(xl,xq) ≥ l, (xl,xq) ∈ D,

(5.3)

where u, v ∈ R are threshold parameters, chosen to enforce closeness of
similar points and farness of dissimilar points. Usually A0 is chosen as the
identity matrix or as the sample covariance matrix (SCM) of the set {ski}.

Next, GMML (Geometric Mean Metric Learning) [146] is an algorithm of
great interest. Indeed, it achieves impressive performance on several datasets
while being very fast thanks to a closed form formula. The GMML problem
writes

minimize
A∈S++

p

1

nS

∑
(xl,xq)∈S

d2A(xl,xq) +
1

nD

∑
(xl,xq)∈D

d2A−1(xl,xq). (5.4)
The intuition behind this problem is that dA−1 should be able to further
away dissimilar points while dA close together similar points. Then, GMML
formulation (5.4) can be rewritten

minimize
A∈S++

p

Tr(A−1S) + Tr(AD) , (5.5)
where S = 1

nS

∑K
k=1

∑nk

i=1 skis
T
ki and D = 1

nD

∑nD

i=1 did
T
i . In [146], the

solution of (5.5) is derived. It is the geodesic mid-point between S−1 and
D, i.e. A−1 = S−1# 1

2
D where

S−1#tD = S− 1
2

(
S

1
2DS

1
2

)t
S− 1

2 with t ∈ [0, 1]. (5.6)
Then, [146] proposes to generalize this solution by A−1 = S−1#tD with
t ∈ [0, 1] (i.e. t is no longer necessarily 1

2
).
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5.1.2 . Metric learning as covariance matrix estimation
In this sub-section, some metric learning problems are expressed as co-

variance matrix estimation problems.
The first remark concerns the ITML formulation (5.3). Indeed, when the

latter is written with the SCM as a prior matrix, it amounts to maximiz-
ing the likelihood of a multivariate Gaussian distribution under constraints.
Therefore, ITML can be viewed as a covariance matrix estimation problem.

The second remark concerns the GMML solution of (5.5) which is gen-
eralized to A−1 = S−1#tD with t ∈ [0, 1]. In their experiments on real
datasets, the authors often get their best performance with t small (or even
null) (see Figure 3 of [146]). In this case, the GMML algorithm gives A = S.
This simple, yet effective, solution can be reinterpreted with an additional
assumption on the data. Let us assume that data points of each class are
realizations of independent random vectors with class-dependent first and
second order moments,

xkl
d
= µk +Σ

1
2
kukl , (5.7)

with µk ∈ Rp, Σk ∈ S++
p , E[ukl] = 0 and E[ukluTkq] = Ip if kl = kq,

0p otherwise. Thus, it follows that ski
d
= Σ

1
2
k (ukl − ukq). Hence, the

covariance matrix of ski is twice the covariance matrix of the kth class,
E[skisTki]

d
= 2Σk. It results that, in expectation, S is twice the arithmetic

mean of the covariance matrices of the different classes,

E[S] =
1

nS

K∑
k=1

nk∑
i=1

E[skisTki] = 2
K∑
k=1

πkΣk. (5.8)
The only additional assumption added to GMML to get (5.8) is (5.7). This
hypothesis is broad since it encompasses classical assumptions such as the
Gaussian one. Also notice that using S in the Mahalanobis distance (5.1) is
reminiscent of the linear discriminant analysis (LDA) pre-whitening step of
the data.

5.1.3 . Motivations and contributions
From Section 5.1.2, GMML can be interpreted as a 2-steps method that

computes, first, the SCM of each class and, two, their arithmetic mean.
Thus, this simple approach is not robust to outliers (e.g. mislabeled data)
since it uses the SCM as an estimator. Moreover, other mean computation
can be used, such as the Riemannian mean which benefits from many prop-
erties compared to its Euclidean counterpart [145]. We propose a metric
learning framework that jointly estimates regularized covariance matrices, in
a robust manner, while computing their Riemannian mean. We name this
framework Riemannian Geometric Metric Learning (RGML).
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This idea of estimating covariance matrices while averaging them was
firstly proposed in [102]. The novelty here is fourfold:

1. this formulation is applied to the problem of metric learning (see Sec-
tion 5.2),

2. it makes use of the Riemannian distance on S++
p which was not covered

by [102] (see Section 5.2),

3. we leverage the Riemannian geometries of S++
p and SS++

p [120, 113]
along with the framework of Riemannian optimization [1] and hence
the proposed algorithms are flexible and could be applied to other cost
functions than the Gaussian and Tyler [136] ones (see Section 5.3),

4. the framework is applied on real datasets and shows strong performance
while being robust to mislabeled data (see Section 5.4).

5.2 . Problem formulation of Robust Geometric Metric Learning

5.2.1 . General formulation of RGML

The formulation of the RGML optimization problem is

minimize
θ∈Mp,K

{
L(θ) =

K∑
k=1

πk
[
Lk(Ak) + λd2(A,Ak)

]}
, (5.9)

where θ = (A, {Ak}),Mp,K is the K+1 product set of S++
p , i.e. Mp,K =(

S++
p

)K+1, Lk is a covariance matrix estimation loss on {ski}, λ > 0 and
d is a distance between matrices. In the next subsections two costs will be
considered: the Gaussian negative log-likelihood and the Tyler cost function.
Once (5.9) is achieved, the center matrix A is used in the Mahalanobis
distance (5.1) and the Ak are discarded. The cost function L is explained
more in details in the following.

First of all, for a fixed center matrix A, (5.9) reduces to k separable
problems

minimize
Ak∈S++

p

Lk(Ak) + λd2(A,Ak), (5.10)
whose solutions are estimates of {Σk} that are regularized towards A.

Second, for {Ak} fixed, solving (5.9) averages the matrices {Ak}. In-
deed, in this case, (5.9) reduces to

minimize
A∈S++

p

K∑
k=1

πkd
2(A,Ak). (5.11)
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For example, if d is the Euclidean distance dE(A,Ak) = ∥A−Ak∥2, then
the minimum of (5.11) is the arithmetic mean

∑K
k=1 πkAk. In the rest of the

chapter, we consider the Riemannian distance on S++
p [120], that is

dS++
p

(A,Ak) =
∥∥∥log (A− 1

2AkA
− 1

2

)∥∥∥
2
. (5.12)

A nice property of dS++
p

(5.12) is its affine invariance. Indeed, for any C

invertible, we have dS++
p

(CACT ,CAkC
T ) = dS++

p
(A,Ak). Thus, if {ski}

is transformed to {Cski} then the minimum (A, {Ak}) of (5.13) becomes(
CACT ,

{
CAkC

T
})

. Another nice property of this distance is its geodesic
convexity, as it will be discussed in Section 5.3.

With this Riemannian distance, the general formulation of the RGML
optimization problem (5.9) becomes

minimize
θ∈Mp,K

{
L(θ) =

K∑
k=1

πk

[
Lk(Ak) + λd2S++

p
(A,Ak)

]}
. (5.13)

We emphasis that the optimization of (5.13) is performed with respect to
all the matrices A and {Ak} at the same time. Thus it both estimates
regularized covariance matrices {Ak} while averaging them to estimate their
unknown barycenter A.

5.2.2 . RGML Gaussian
To get a practical cost function L (5.13), it only remains to specify the

functions Lk. The most classical assumption on the data distribution is the
Gaussian one (e.g. considered in ITML with the SCM as prior). Thus, the
first functions Lk considered are the centered multivariate Gaussian negative
log-likelihoods

LG,k(A) =
1

nk

nk∑
i=1

sTkiA
−1ski + log |A|. (5.14)

With this negative log-likelihood, the RGML optimization problem (5.13)
becomes

minimize
θ∈Mp,K

{
LG(θ) =

K∑
k=1

πk

[
LG,k(Ak) + λd2S++

p
(A,Ak)

]}
. (5.15)

5.2.3 . RGML Tyler
When data is non-Gaussian, robust covariance matrix estimation methods

are a preferred choice. This occurs whenever the probability distribution
of the data is heavy-tailed or a small proportion of the samples represents
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Algorithm 11: Riemannian gradient descent to minimize
LG (5.15)
Input: Data {ski}, initialization θ(0) ∈Mp,K

Output: θ(l) ∈Mp,K

for l = 0 to convergence doCompute a step size α (see [1, Ch. 4]) and set
θ(l+1) = R

Mp,K

θ(l)

(
−α gradMp,K

LG(θ(l))
)

outlier behavior. In a classification setting, the latter happens when data are
mislabeled. A classical robust estimator is the Tyler’s estimator [136] which
is a minimizer of the following cost function

LT,k(A) =
p

nk

nk∑
i=1

log
(
sTkiA

−1ski
)
+ log |A|. (5.16)

An important remark is that (5.16) is invariant to the scale of A. Indeed
∀α > 0, it is easily checked that LT,k(αA) = LT,k(A). Thus, a constraint
of unit determinant is added to (5.13) to fix the scales of {Ak}. Furthermore,
the Riemannian distance (5.12) is also the one on SS++

p . Thus, we choose
to also constrain A so that it is the Riemannian mean of {Ak} on SS++

p .
We denote by SMp,K this new parameter space

SMp,K = {θ ∈Mp,K , |A| = |Ak| = 1, ∀k ∈ J1, KK} . (5.17)
Thus, the RGML optimization problem (5.13) with the Tyler cost func-
tion (5.16) becomes

minimize
θ∈SMp,K

{
LT (θ) =

K∑
k=1

πk

[
LT,k(Ak) + λd2S++

p
(A,Ak)

]}
. (5.18)

5.3 . Riemannian optimization and geodesic convexity

The objective of this section is to present Algorithms 11 and 12 which
minimize (5.15) and (5.18) respectively. They leverage the Riemannian op-
timization framework [1, 19]. The products manifolds Mp,K and SMp,K

(directly inherited from S++
p and SS++

p which have presented in Chapter 2
Section 2.4) are presented.

5.3.1 . Riemannian optimization and g-convexity on Mp,K

Since,Mp,K is an open set in a vector space, the tangent space TθMp,K

(linearization of the Riemannian manifold at a given point) is identified to
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(Sp)K+1. Then, the affine invariant metric is chosen as the Riemannian
metric [120], ∀ξ = (ξ, {ξk}) ,∀η = (η, {ηk}) ∈ TθMp,K

⟨ξ, η⟩Mp,K

θ = Tr
(
A−1ξA−1η

)
+

K∑
k=1

Tr
(
A−1
k ξkA

−1
k ηk

)
. (5.19)

Thus the orthogonal projection from the ambient space onto the tangent
space at θ is

P
Mp,K

θ (ξ) = (sym(ξ), {sym(ξk)}) , (5.20)
where sym(ξ) = 1

2
(ξ + ξT ). Then, the exponential map (function that

maps tangent vectors, such as gradients of loss functions, to points on the
manifold) is

exp
Mp,K

θ (ξ) =
(
exp

S++
p

A (ξ),
{
exp

S++
p

Ak
(ξk)

})
, (5.21)

where expS++
p

A (ξ) = A exp(A−1ξ). Then, for a loss function h :Mp,K → R,
the Riemannian gradient at θ denoted gradMp,K

h(θ) is defined as the unique

element such that ∀ξ ∈ TθMp,K , Dh(θ)[ξ] = ⟨gradMp,K
h(θ), ξ⟩Mp,K

θ where
D is the directional derivative. It results that

gradMp,K
h(θ) = P

Mp,K

θ (AGA, {AkGkAk}) , (5.22)
where (G, {Gk}) is the classical Euclidean gradient of h at θ. With the
exponential map (5.21), and the Riemannian gradient (5.22), we have the
main tools to minimize (5.15). However, to improve the numerical stability,
a retraction (approximation of the exponential map (5.21)) is preferred,

R
Mp,K

θ (ξ) =
(
R

S++
p

A (ξ),
{
R

S++
p

Ak
(ξk)

})
, (5.23)

where RS++
p

A (ξ) = A + ξ + 1
2
ξA−1ξ. A Riemannian gradient descent mini-

mizing (5.15) is presented in Algorithm 11.
We finish this subsection by presenting the geodesic convexity of

LG (5.15) onMp,K (see [19, Chapter 11] for a presentation of the geodesic
convexity). First of all, the geodesic on Mp,K between a = (A, {Ak}) and
b = (B, {Bk}) is

a#tb = (A#tB, {Ak#tBk}) , (5.24)
where # is the geodesic (5.6) on S++

p and t ∈ [0, 1]. Then, a loss function
h is said to be geodesically convex (or g-convex) if

h (a#tb) ≤ t h(a) + (1− t)h(b), ∀t ∈ [0, 1]. (5.25)
If h is g-convex, then any local minimizer is a global minimizer. [102] proves
that LG (5.15) is g-convex. Hence, any local minimizer of (5.15) is a global
minimizer.
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Algorithm 12: Riemannian gradient descent to minimize
LT (5.18)
Input: Data {ski}, initialization θ(0) ∈ SMp,K

Output: θ(l) ∈ SMp,K

for l = 0 to convergence doCompute a step size α (see [1, Ch. 4]) and set
θ(l+1) = R

SMp,K

θ(l)

(
−α gradSMp,K

LT (θ(l))
)

5.3.2 . SMp,K : a geodesic submanifold of Mp,K

In (5.17), SMp,K is defined as a subset of Mp,K . In fact, SMp,K can
even be turned into a Riemannian submanifold of Mp,K . First of all, the
tangent space of SMp,K at θ is

TθSMp,K =
{
ξ ∈ TθMp,K : Tr(A−1ξ) = 0,

Tr(A−1
k ξk) = 0 ∀k ∈ J1, KK

}
. (5.26)

By endowing SMp,K with the Riemannian metric ofMp,K , it becomes a Rie-
mannian submanifold. ∀ξ, η ∈ TθSMp,K we have ⟨ξ, η⟩SMp,K

θ = ⟨ξ, η⟩Mp,K

θ .
The orthogonal projection from the ambient space onto the tangent space
at θ is

P
SMp,K

θ (ξ) =
(
P

SS++
p

A (ξ),
{
P

SS++
p

Ak
(ξk)

})
, (5.27)

where P SS++
p

A (ξ) = sym (ξ)− 1
p
Tr
(
A−1 sym (ξ)

)
A. A remarkable result is

that SMp,K is a geodesic submanifold ofMp,K , i.e., the geodesics of SMp,K

are those of Mp,K . It results that the exponential mapping on SMp,K is
exp

SMp,K

θ (ξ) = exp
Mp,K

θ (ξ). Then, for a loss function h : SMp,K → R, the
Riemannian gradient at θ is

gradSMp,K
h(θ) = P

SMp,K

θ (AGA, {AkGkAk}) , (5.28)
where (G, {Gk}) is the classical Euclidean gradient of h at θ. Once again, a
retraction that approximates the exponential mapping is leveraged to improve
the numerical stability,

R
SMp,K

θ (ξ) =
(
R

SS++
p

A (ξ),
{
R

SS++
p

Ak
(ξk)

})
, (5.29)

where RSS++
p

A (ξ) =
A+ ξ + 1

2
ξA−1ξ∣∣A+ ξ + 1

2
ξA−1ξ

∣∣ 1p .

Finally, LT (5.18) is g-convex on SMp,K . Indeed, [102] proved that LT
is g-convex onMp,K and SMp,K is a geodesic submanifold ofMp,K .
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5.4 . Application
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Figure 5.2: Left: Gaussian (5.15) and Tyler (5.18) costs functions withrespect to the number of iterations of Algorithms 11 and 12 respectively.Right: Riemannian gradient norms of Gaussian (5.15) and Tyler (5.18)costs functions. The optimization is performed on the Wine dataset.

In this section, we exhibit a practical interest of the RGML method de-
veloped in Sections 5.2 and 5.3. All implementations of the following exper-
iments are available at https://github.com/antoinecollas/robust_
metric_learning. We apply it on real datasets from the UCI machine learn-
ing repository [51]. The three considered datasets are: Wine, Vehicle, and
Iris. They are classification datasets, and their data dimensions along with
their number of classes are presented in Table 5.1. These datasets are well
balanced, i.e. they roughly have the same number of data for all the classes.
The numbers of generated pairs in S and D are nS = nD = 75K(K − 1)
(as in [50] and [146]).

The classification is done following a very classical protocol in metric
learning.

1. A matrix A is estimated via a metric learning method.

2. The data {xl} are multiplied by A− 1
2 to get {A− 1

2xl}.

3. The data {A− 1
2xl} are classified using a k-nearest neighbors with 5

neighbors.

Thus, the classification is performed using the Mahalanobis distance dA
defined by (5.1) in the Introduction. This classification is repeated 200 times
via cross-validation. The proportion of the training/test sets is 50/50. The
error of classification is computed for each fold and the mean error is reported
in Table 5.1. In order to show the robustness of the proposed method,
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mislabeled data are introduced. To do so, we randomly select data in the
training set whose labels are then randomly changed for new labels.

The implementations of the cross-validation as well as the k-nearest
neighbors are from the scikit-learn library [111]. The proposed methods
RGML Gaussian and RGML Tyler have been implemented using JAX [25].
The chosen value of parameter λ is 0.05. Its value has little impact on
performance as long as it is neither too small nor too large. The proposed
algorithms are compared to the classical metric learning algorithms: the iden-
tity matrix (called Euclidean in Table 5.1), the SCM computed on all the
data, ITML [50], GMML [146], and LMNN [139]. The implementations of
the metric-learn library [137] are used for the last three algorithms.

From Table 5.1, several observations are made. First of all, on the raw
data (i.e. when the mislabeling rate is 0%) the RGML Gaussian is always
the best performing algorithm among those tested. Also, the RGML Tyler
always comes close with a maximum discrepancy of 0.26% versus the RGML
Gaussian. Then, the RGML Tyler is the best performing algorithm when the
mislabeling rate is 5% or 10%. When the mislabeling rate is 15%, RGML
Tyler is the best performing algorithm for the Vehicle dataset and it is only
beaten by ITML - Identity on the two other datasets. This shows the interest
of considering robust cost functions such the Tyler’s cost function (5.16) in
the presence of poor labeling.

Finally, the RGML algorithms are fast. Indeed, Figure 5.2 shows that
both RGML Gaussian and RGML Tyler converge in less than 20 iterations
on the Wine dataset.

5.5 . Conclusions

This chapter has proposed to view some classical metric learning problems
as covariance matrix estimation problems. From this point of view, the
RGML optimization problem has been formalized. It aims at estimating
regularized covariance matrices, in a robust manner, while computing their
Riemannian mean. The formulation is broad and several more specific costs
functions have been studied. The first one leverages the classical Gaussian
likelihood and the second one the Tyler’s cost function. In both cases, the
RGML problem is g-convex and thus any local minimizer is a global one. Two
Riemannian-based optimization algorithms are proposed to minimize these
cost functions. Finally, the performance of the proposed approach is studied
on several datasets. They improve the classification accuracy and are robust
to mislabeled data.
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6 - Conclusions and perspectives

6.1 . Conclusions

This manuscript proposed new methods for statistical estimation and
classification. They have been tested on remote sensing applications and
have shown practical interests whether in terms of speed or precision. To do
so, we began this manuscript with the description of a clustering-classification
pipeline. The latter is based on statistical estimation and decomposes in three
steps: vectors extraction, features estimation and features clustering or clas-
sification. The first step is a preprocessing step: data are transformed into
batches to be clustered or classified. Then, the second step performs sta-
tistical estimation. Each batch of data is assumed to follow a parametrized
statistical distribution. Classically, data are considered to be Gaussian with
a known center. In this case, the estimated feature is the SCM which is
the MLE. The third step consists of clustering or classifying these covariance
matrices. To do so, we mentioned that, in the literature, the Riemannian dis-
tance as well as the Riemannian center of mass, both on the set of symmetric
positive definite matrices, are often leveraged to implement K-means++ or
Nearest centroïd classifier. The objective of this manuscript was to go be-
yond this assumption of Gaussianity in steps two and three. Indeed, data
are not necessarily Gaussian due to the presence of outliers (e.g. mislabeled
data) or heavy tailed distributed data. Furthermore, data can be in high
dimension which makes the classical estimation of the SCM ill posed.

To go beyond the Gaussian assumption, we leveraged the field of robust
statistics, i.e. statistics that are robust to outliers and/or heavy tailed dis-
tributed data. Also, we considered structured covariance matrices as well
as regularized models to handle high dimensional data. A first contribu-
tion was to propose new estimators for such statistics leveraging the theory
of Riemannian geometry. Indeed, the parameter to estimate belongs to a
constrained set that can be formalized as a Riemannian manifold. This for-
malization has many advantages: deriving estimators respecting constraints,
flexibility in the optimizers (stochastic, second order, ...), geodesic convex-
ity, ... Among all possible Riemannian manifolds, we focused on statistical
manifolds i.e. manifolds endowed with the FIM. The latter tightly links the
parameter space with the considered statistical model. Thus, we derived
fast and scalable estimators that minimize negative log-likelihoods. A sec-
ond contribution was the derivation of ICRBs to analyse the performance of
estimators of structured covariance matrices. They lower bound the mean
squared Riemannian distance between estimated parameters and the true
one while taking into account constraints of the parameter space. Then,
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the third axis focused on the third step by proposing new divergences. The
latter measure the proximity between parameters and are associated to the
considered statistical model. We also developed algorithms to compute the
associated Riemannian centers of mass of parameters. These algorithms are
Riemannian based optimizers in order to get fast and scalable estimators that
respect the constraints of the parameter space. Finally, a forth contribution
was the development of metric learning algorithms. These are different from
the clustering-classification pipeline presented earlier since they directly op-
erate on the raw data. Indeed, metric learning problems propose to learn a
Mahalanobis distance such that data from a same class are close from each
other whereas data that belong to different classes are far from each other.
In this manuscript, we proposed geodesically convex problems, called RGML,
that are solved efficiently using Riemannian optimization.

All these contributions have been tested on generated data as well as
real datasets such as the Indian pines image and the large scale crop type
mapping dataset Breizhcrops and show promising results.

6.2 . Perspectives

Throughout the manuscript choices have been made and many things
remain to explore. A first perspective is the application of the metric learning
algorithms we derived to more "richer" datasets. Indeed, to show the interest
of RGML, we tested it on datasets from the UCI repository. These datasets
are quite small, old and not related to remote sensing. Therefore, it should
interesting to apply RGML to the bigger and newer dataset Breizhcrops.
RGML is fast and thus this application should enforce this advantage of speed
compared to other metric learning algorithms. If RGML is too slow, due to
the big amount of data, it could be accelerated using a Riemannian stochastic
gradient descent or one of its extensions with variance reduction [16, 147].
Others extensions of RGML are possible such as adding a low-rank structure
to covariance matrices [63]. This should help to get the existence of solutions
and faster optimization for RGML problems when data are in high dimensions.

A second perspective is to transform the proposed clustering-classification
pipeline to a fully differentiable one. Indeed, with the advances in geometric
deep learning [31, 70] and in the associated frameworks such as JAX [25],
it becomes an increasingly practice to integrate every steps (preprocessing,
statistical estimation and clustering-classification) in a single differentiable
function. This has the advantage that each step can include parameters that
are tuned with gradient descent to maximize the precision on the training
set. For example, the preprocessing step can include a projection onto a
learnable subspace (instead of a pre-defined PCA) or a learnable data time
wrapping [48].

190



A third perspective is domain adaptation. We showed empirically that
the proposed methods in Chapter 3 are robust to transformations of the test
set. However, the experiments are limited to geometrical transformations
(rotations, scaling factors, translations, ...). It would be valuable to investi-
gate more realistic transformations such as a sensor change for hyperspectral
or SAR images and see if results hold. This asks the question of, if a trans-
formation is too strong, how to adapt the proposed clustering-classification
pipeline. Domain adaptation [49, 150] is the field for these problems: given
a test set with a distribution shift from the training set, how to adjust pa-
rameters of the pipeline, in an unsupervised manner, to account this shift.
An idea would be to re-calebrate the distribution of estimated parameters
{θi} such that the distribution on the test set is equal to the one on the
training set.
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7 - Résumé en français

Les systèmes de télédétection offrent une possibilité accrue d’enregistrer
des images multitemporelles et multidimensionnelles de la surface de la terre
en améliorant la résolution temporelle et spatiale. En effet, ces dernières
années, de nombreux pays et entreprises ont déployé des satellites ou utilisé
des drones pour l’observation de la terre. Les satellites Sentinel, Landsat et
TerraSAR-X ou l’UAVSAR sont des exemples de ces instruments de télédé-
tection. Cette forte augmentation du nombre, de la performance et de la di-
versité de ces systèmes permet le développement de nombreuses applications
telles que la surveillance de l’environnement (par exemple, les glaciers, les
forêts, l’urbanisme), les événements majeurs (par exemple, les tremblements
de terre, les inondations), l’activité humaine (par exemple, la surveillance
maritime et des frontières) ainsi que les prévisions météorologiques. Ces op-
portunités augmentent considérablement l’intérêt des outils de traitement de
données basés sur des séries temporelles d’images multivariées.

Une tendance récente de l’apprentissage automatique, provenant princi-
palement de la communauté EEG/MEG (Electroencephalography / Magne-
toencephalography), propose d’estimer les matrices de covariance des don-
nées et ensuite de les classer en utilisant la géométrie riemannienne. En effet,
la théorie de la géométrie riemannienne et son sous-domaine, la géométrie de
l’information, s’adapte bien aux matrices de covariance qui sont alors vues
comme des paramètres de distributions gaussiennes multivariées centrées.
Dans ce cas, la ligne droite classique est remplacée par des géodésiques, la
distance euclidienne par des distances riemanniennes et la moyenne arithmé-
tique par des centres de masse riemanniens. En pratique, l’utilisation de la
géométrie riemanienne donne de bien meilleures performances que sa con-
trepartie euclidienne lorsqu’on traite des matrices de covariance. Dans cette
thèse, nous proposons d’appliquer ce pipeline de regroupement-classification
aux données de télédétection et de l’étendre de multiples façons. Les contri-
butions sont de quatre ordres.

Premièrement, des estimateurs de statistiques robustes sont développés
en s’appuyant sur la théorie de l’optimisation sur les variétés riemanniennes.
En particulier, des méthodes de descente de gradient sont développées pour
estimer conjointement les localisations (centres de distributions) et les ma-
trices de covariance, ainsi que pour estimer des matrices de covariance struc-
turées à partir de données de haute dimension. Ces estimateurs sont rapides
et conviennent bien aux ensembles de données de grande échelle.

Deuxièmement, des bornes intrinsèques de Cramér-Rao (ICRB) sont
dérivées pour analyser la performance des estimateurs de matrices de co-
variance structurées. Ces ICRB bornent les moyennes de distances rieman-
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niennes au carré entre les paramètres estimés et les vrais paramètres. Ceci
permet de prendre en compte les contraintes de l’espace des paramètres.

Troisièmement, des divergences entre les statistiques et leurs centres de
masse associés sont proposés. Ces divergences, et les centres de masse asso-
ciés, sont choisis par rapport au modèle statistique pour obtenir de meilleures
performances en pratique. De plus, des algorithmes d’optimisation rieman-
nienne basés sur le gradient sont développés pour calculer efficacement ces
centres de masse.

Une quatrième contribution est le développement d’algorithmes
d’apprentissage de distances. Les méthodes d’apprentissage de distances pro-
posent de regrouper ou de classer des données brutes à l’aide d’une distance
de Mahalanobis apprise. Dans cette thèse, nous démontrons que certains
problèmes classiques d’apprentissage de distances peuvent être considérés
comme des problèmes d’estimation de covariance. Avec cette nouvelle vi-
sion, nous dérivons deux nouveaux algorithmes d’optimisation riemannienne
pour l’apprentissage de distances. Toutes ces contributions sont testées sur
des données générées ainsi que sur des jeux de données réels tels que l’image
de Indian pines et le jeu de données de cartographie de type de culture à
Breizhcrops et montrent des résultats prometteurs.
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