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Introduction

Remote sensing systems offer an increased opportunity to record multitemporal and multi-dimensional images of the earth's surface by improving temporal and spatial resolution. Indeed, in the recent years, many countries and companies have deployed satellites or run UAV (Unmanned Aerial Vehicle) for earth observation. Examples of these remote sensing instruments are the Sentinel, Landsat and TerraSAR-X satellites or the UAVSAR. This big increase in the number, performance and diversity of these systems enables the development of many applications such as the monitoring of the environment (e.g. glaciers, forests, urbanism), major events (e.g. earthquakes, floods), human activity (e.g. maritime and borders surveillance) as well as weather forecasting. These opportunities greatly increase the interest of data processing tools based on multivariate image time series.

A recent trend in machine learning, mostly coming from the EEG/MEG (Electroencephalography/Magnetoencephalography) community, proposes to estimate covariance matrices from data and then to classify them using Riemannian geometry. Indeed, the theory of Riemannian geometry and its subfield, the information geometry, suits well to covariances matrices which are then seen as parameters of centered multivariate Gaussian distributions. In this case, the classical straight line is replaced by geodesics, the Euclidean distance by Riemannian distances and the arithmetic mean by Riemannian centers of mass. In practice, the use of Riemannian geometry gives much better performance than its Euclidean counterpart when dealing with covariance matrices. In this thesis, we propose to apply this clusteringclassification pipeline to remote sensing data and to extend it in multiple ways. The contributions are fourfold.

First, statistical estimators are developed by leveraging the theory of optimization on Riemannian manifolds. In particular, gradient descent methods are developed to estimate jointly locations (centers of the distribution) and covariance matrices. This is of first importance for applications where the location is a discriminative feature contrary to EEG/MEG. Furthermore, in practice data can not always be assumed to be distributed as Gaussian distribution due to outliers or heavy tailed distributions. To remediate to this problem, we leverage the theory of robust statistics to construct new Riemannian based robust estimators. Finally, estimators are developed for structured covariance matrices when dealing with high dimensional data. All these Riemannian base estimators are fast and suit well for large scale datasets.

Second, intrinsic Cramér-Rao bounds (ICRB) are derived to analyze the performance of estimators of structured covariance matrices. These ICRBs lower bound the mean squared Riemannian distance between estimated pa-rameters and the true one. This enables to take into account constraints of the parameter space.

Third, divergences between statistics and their associated centers of mass are proposed. These divergences, and the associated centers of mass, are chosen with respect to the statistical model to obtain better performance in practice. Also, gradient based Riemannian optimization algorithms are derived to compute efficiently these centers of mass.

A fourth contribution is the development of metric learning algorithms. Metric learning methods propose to cluster or classify raw data with a learned Mahalanobis distance. In this thesis, we demonstrate that some classical metric learning problems can be seen as covariance estimation problems. With this novel view, we derive two new Riemannian based metric learning algorithms.

All these contributions are tested on generated data as well as real datasets such as the Indian pines image and the large scale crop type mapping dataset Breizhcrops and show promising results. 

-Statistical learning for time series

This chapter introduces the framework of this manuscript. It presents the basics of the concepts discussed in the next chapters starting from the Earth observation and its growing number of applications, then addressing some notions of statistics and machine learning and ending with the incorporation of the theory of Riemannian geometry in all these problematics. It should be noted that the Riemannian geometry is only briefly discussed at the end of this chapter and that the next chapter (Chapter 2) is entirely dedicated to it.

First of all, we present multivariate image time series for Earth observation in Section 1.1. The use of these data is motivated and multispectral imagery is presented. Furthermore, two datasets of classification are introduced: Indian Pines [START_REF] Baumgardner | Band AVIRIS Hyperspectral Image Data Set[END_REF] and Breizhcrops [START_REF] Rußwurm | BreizhCrops: A Time Series Dataset for Crop Type Mapping[END_REF]. Then, a clustering/classification pipeline is detailed in Section 1.2. It aims at the clustering/classification of multivariate image time series and is composed of 3 steps: vectors extraction, features estimation and features clustering/classification. Section 1.3 introduces the basics of the feature estimation step with some central definitions to statistics such as the maximum likelihood estimators. Section 1.4 presents two standard machine learning algorithms [START_REF] Hastie | The elements of statistical learning: data mining, inference, and prediction[END_REF]: the K-means++ [START_REF] Arthur | K-Means++: The Advantages of Careful Seeding[END_REF] for clustering and the Nearest centroïd classifier for classification. This chapter finishes with the motivation of the usage of Riemannian geometry for the presented clustering/classification pipeline. Indeed, some statistical features lie on non-Euclidean spaces called Riemannian manifolds and their curvatures can be taken into account in the clustering/classification pipeline.

. Earth observation and datasets

. Earth observation and multispectral imagery

Earth observation provides a unique way of gathering informations about our planet. For this purpose, many remote sensing instruments have been developed and deployed in recent years. They are the cornerstone of many applications such as monitoring the evolution of our environment (e.g. glaciers, forests, urbanism), major events (e.g. earthquakes, floods), human activity (e.g. maritime and borders surveillance) as well as weather forecasting. Examples of these remote sensing instruments are

• Synthetic Aperture Radar (SAR) satellites: TerraSAR-X1 , Sentinel • airborne radars: UAVSAR5 ,

• spectrometer satellites: Sentinel 5P,

• altimeter satellites: Sentinel 6A,

• and multispectral satellites: Sentinel 2 and 3, and landsat6 . Figure 1.1 illustrates these sensors with two images: a SAR image and a multispectral image.

In the rest of the manuscript, we focus on multispectral imagery due to the availability of annotated data, i.e. data which come with ground truths. However the different developed methods along the chapters also apply to other types of data such as radar imagery.

Classical digital cameras measure the solar radiation reflected on given surfaces for three different wavelengths of the electromagnetic spectrum. These wavelengths correspond to three colors: Red, Green and Blue (RGB). Each pixel of such an image contains the three values of radiances associated with these colors. Hence, an image is stored as a datacube, also called tensor, X ∈ R w×h×3 where w and h are the number of pixels of width and height respectively. Multispectral imagery [START_REF] Goetz | Imaging spectrometry for earth remote sensing[END_REF] proposes to extend this process by measuring radiances across many more different wavelengths. Thus, each pixel contains as much values as the number p of considered wavelengths and thus a multispectral image is stored as a datacube X ∈ R w×h×p . The interest of considering many wavelengths is to enable a fine analysis of what is on the ground. A classic example of the use of these bands is the normalized difference vegetation index (NDVI) which is ρ NIR -ρ VIS ρ NIR +ρ VIS with ρ NIR being the reflectance measured in the near infrared (∼ 800nm) and ρ VIS the reflectance measured in the visible (∼ 600nm). This index is correlated with the physical properties of the vegetation canopy such as the biomass or the fractional vegetation recover [START_REF] Carlson | On the relation between NDVI, fractional vegetation cover, and leaf area index[END_REF]. Thus, it provides valuable informations on the vegetation canopy. An illustration of a multispectral image is presented in Figure 1.2. In this figure, five wavelengths are measured and thus each pixel contains five values.

Multispectral images of simple scenes can be modeled with mixing models [START_REF] Keshava | Spectral unmixing[END_REF]. Indeed, in multispectral imagery, it is assumed that s ≤ p materials, also called endmembers, (e.g. water, grass, wood) constitute the observed scene and that there is no interactions between endmembers. The last assumption means that any given package of incident radiation interacts only with one endmember (e.g. a light beam reflects on a piece of wood and then hits the multispectral sensor). Thus a pixel x i ∈ R p is the linear combination, also called linear mixing, of the endmembers spectra with coefficients equal to the proportions of the areas covered by the endmembers. These coefficients are called fractional abundances. Mathematically, this linear mixing model writes

x i = Aw i + n i (1.1)
where A ∈ R p×s is the full rank mixing matrix whose columns are the spectra of the endmembers, w i ∈ ∆ s = (t 1 , • • • , t s ) T ∈ R s : t i ≥ 0, s i=1 t i = 1 contains the fractional abundances, and n i is an observation additive noise. The vectors w i are important for classification problems since they contain abundances of the endmembers which are closely related to the classes. However, in practice, A, w i and n i are unknown. Thus, an approach is to estimate A and w i such that x i ≈ Aw i , e.g. see [START_REF] Hong | An Augmented Linear Mixing Model to Address Spectral Variability for Hyperspectral Unmixing[END_REF][START_REF] Bendoumi | Hyperspectral Image Resolution Enhancement Using High-Resolution Multispectral Image Based on Spectral Unmixing[END_REF]. Another approach is to develop machine learning algorithms that are invariant to mixing models. Indeed, divergence-based algorithms, such as the K-means++ algorithm, can be equipped with affine invariant divergences. These divergences measure the proximity between hidden vectors w i by measuring the proximity between observed vectors x i . This point of view is developed in Section 1.5.

. Multivariate image time series

So far, we have presented Earth observation images. In practice, the same area of the Earth is revisited regularly by the same satellite. Indeed, the travels of a satellite are cyclic. The time elapsed between two visits of the same place is called the revisit time and corresponds to the time elapsed for the satellite to complete one cycle. For example, the Sentinel 2A satellite has a revisit time of ten days: it takes ten days to complete a full cycle. This revisit time can be shortened by using multiple satellites. For example, Sentinel 2A and 2B together have a revisit time of five days. Thus, several images of the same area are taken over time with a given frequency and each image has several measurements (e.g. different wavelengths in multispectral imagery). This is called a multivariate image time series and is stored as a tensor X T ×w×h×p where T is the number of dates/images. These time series are rich since they contain three diversities: the temporal, the spatial, and the sensor diversity (measured wavelengths for multispectral imagery, polar for SAR). A scheme of a multivariate image time series is represented in Figure 1.3. In the following, we take advantage of these data to propose solutions to some of the applications mentioned earlier.

Earlier, we presented many applications that leverage Earth observation. Here, we focus on applications that can be casted as K-class segmentation problems. In its general form, the problem we consider is the following: a tensor X of pixels is available and we must predict a label in 1, K for each pixel. In Figure 1.3, the tensor X is the whole time series. Classes are any discrete and non-ordered valuable informations for a given application. For crop type mapping, examples of labels are corn, wheat and meadow. We refer to a classification problem when a part of X has already been labeled, called a training set, and only the remaining part, called the test set, must be segmented (supervised learning ). A clustering problem is when X is not at all labeled and thus there is only a test set (unsupervised learning ). Thus pixels in X must be partitioned into K sets. In practice, the test set is also labeled but these labels are kept hidden until the evaluation of a proposed solution to the clustering/classification problem. The association of X and labels is called a dataset. In the following, we present two datasets of multispectral imagery.

. Datasets: Indian Pines and Breizhcrops

The first dataset is called Indian Pines [START_REF] Baumgardner | Band AVIRIS Hyperspectral Image Data Set[END_REF] and is a w × h = 145 × 145 pixels hyperspectral image. This image consists of p = 200 spectral bands in the wavelength range 0.4-2.5µm. The task is to segment it into K = 16 classes without training data: it is a clustering problem. Figure 1. [START_REF] Amari | Natural Gradient Works Efficiently in Learning[END_REF] shows the image as well as the ground truth. Table 1.1 in Appendix 1.A.1 gives the classes names as well as the number of samples per class. In practice, we apply a sliding window of size w s × w s before doing the clustering. Thus, mathematically, the task is to cluster a datacube X ∈ R M ×p×n , where M = w × h and n = w s × w s , into K clusters. The clustering is represented by a vector in 1, K M . By reshaping this vector into a w × h matrix, we get a segmentation map as in Figure 1.4b.

The second dataset is called Breizhcrops [START_REF] Rußwurm | BreizhCrops: A Time Series Dataset for Crop Type Mapping[END_REF] 7 . This crop type mapping dataset gathers more than 600, 000 time series to classify8 . These data have been measured with the Sentinel-2 satellite from January 1, 2017 to December 31, 2017 across the whole region of Brittany, France (see the maps of Figure 1.5). Each time series has p = 13 spectral bands, a length of n = 45 and belongs to one of the K = 9 classes presented in [START_REF] Rußwurm | BreizhCrops: A Time Series Dataset for Crop Type Mapping[END_REF] is a time series dataset that have been measured across the whole region of Brittany, France. Three departments of this region are used to construct the training set and the remaining one constitutes the test set. Figure courtesy [START_REF] Rußwurm | BreizhCrops: A Time Series Dataset for Crop Type Mapping[END_REF].
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Sentinel 2 Satellite Spectral Bands of M train time series from three departments of Brittany and a test set of M test time series from the remaining department. Two time series from two different classes are presented in Figure 1.6. These illustrate the importance of the temporal dimension for classification. Indeed, we observe that the two time series are very close from January to March even though they belong to two different classes. If measurements are made only at the beginning of the year, it is difficult to classify them, whereas measurements from April onwards allow us to differentiate them. Thus, mathematically, the task is to train a classifier on the training datacube X train ∈ R M train ×p×n with the vector of labels in 1, K M train and then to predict the labels of the test datacube X test ∈ R Mtest×p×n . The prediction takes the form of a vector in 1, K Mtest .

. Clustering and classification pipeline

In this section, the objective is to address segmentation problems that arise as depicted in the previous section. To do so, we present a clustering/classification pipeline, illustrated in Figure 1.7. We emphasis that it applies to both clustering and classification problems. This pipeline decomposes into three steps:

1. vectors extraction, 

features estimation,

features clustering/classification.

This pipeline is meant to be general and applies to many data. Here, we focus on data that presents as the datasets of Subsection 1.1.3.

. Vectors extraction

The first step, called vectors extraction, consists in extracting data batches {x i } n i=1 ⊂ R p of the same cardinality n. Sometimes, this step is direct as for the Breizhcrops dataset since it has already been preprocessed. Indeed, the latter is presented as X train ∈ R M train ×p×n and X test ∈ R Mtest×p×n . Thus, M train and M test data batches are easily extracted for the training and test sets respectively. The batches correspond to time series; it is a temporal extraction. In other cases, an extraction must be explicitly achieved as in the Indian Pines dataset. Indeed, and as explained in Subsection 1.1.3, a w s × w s sliding window is applied to get X ∈ R M ×p×n with n = w s × w s . This way M = h × w, with h and w being the height and the width of the image respectively, data batches are extracted. In this case, we performed a spatial extraction.

. Features estimation

The second step of the pipeline is the features estimation. Once we have data batches from the previous step, we estimate features from them. Indeed, the use of statistical descriptors is classical in machine learning since they are often more discriminant than raw data; e.g. see [START_REF] Barachant | Multiclass Brain-Computer Interface Classification by Riemannian Geometry[END_REF][START_REF] Tuzel | Human Detection via Classification on Riemannian Manifolds[END_REF][START_REF] Turaga | Statistical computations on Grassmann and Stiefel manifolds for image and video-based recognition[END_REF]. Thus, each batch of raw data {x i } n i=1 is transformed into a feature θ. This estimation is written as a minimization problem of a loss function L : M → R over a given set M, possibly constrained,

minimize θ∈M L(θ|{x i } n i=1 ).
(1.

2)

It should be noted that θ can take many different forms: it can be a vector, a vector and a covariance matrix, a subspace, and so on ... Thus, this step is general and encompasses many classical algorithms such as the Principal Component Analysis (PCA), the Sample Covariance Matrix (SCM), etc ... As done for the previous step, we present the implications the feature estimation step has on the two datasets Indian Pines and Breizhcrops. The previous step extracts batches {x i } n i=1 spatially for the Indian Pines. This means that this features estimation step transforms local patches of the image into features. Thus, each pixel is characterized by one feature θ. For the Breizhcrops dataset, each batch corresponds to one time series. Hence, the feature estimation step transforms each time series into a feature θ. Hence, in both datasets, the datacube X ∈ R M ×p×n becomes a set of features

{θ i } M i=1 . The formulation (1.
2) is discussed with more details in Section 1.3, which is dedicated to statistical estimation. Finally, we emphasis that this features estimation step could be applied to many other datasets. The only requirement is that to have batches of data {x i } n i=1 .

. Features clustering/classification

Once we have a set of features {θ i } M i=1 , it remains to cluster/classify it. This is the third step: the features clustering/classification step. We distinguish two cases: clustering and classification.

In the first case, the objective is to partition {θ i } M i=1 into K sets in an unsupervised manner, i.e. without informations about the desired classes. In practice this is achieved by grouping features θ i that are close to each other using, for example, the K-means++ algorithm [START_REF] Arthur | K-Means++: The Advantages of Careful Seeding[END_REF] presented in Section 1.4. The Indian Pines dataset can be used as a clustering dataset. Indeed, clustering the features {θ i } M i=1 into K sets gives a clustering of the pixels since each θ i is associated to one pixel x i .

In the second case, the set of features {θ i } M i=1 is divided into two nonoverlapping sets: a training set {θ i } M train i=1 with labels {y i } M train i=1 and a test set {θ i } Mtest i=1 . The goal is to classify the test set by leveraging the training that provides informations on the classes. An example of a classifier is the Nearest centroïd classifier presented in Section 1.4. Briefly, it computes the center of mass, sometimes called the mean, of each class in the training set. Then, it classifies the test set by searching the closest the center of mass of a given point. On the Breizhcrops dataset, we recall that each feature θ i is associated with a time series. Thus, a classifier learns to classify time series with the training set. Then, it infers the labels of the features from the test set. By doing so, we get a classification of the time series of original test set.

. Statistical models and their features

In Section 1.2, we presented the clustering/classification pipeline from Figure 1.7. Its second step performs statistical estimation. The objective of this section is to go more into details on the estimation theory. We mention the essential concepts to understand the following sections and chapters of the manuscript. For a complete presentation of the topic, the reader is referred to the book [START_REF] Kay | Fundamentals of statistical signal processing: estimation theory[END_REF].

. Some reminders on the estimation theory

In this section, we recall some classical definitions and results from the estimation theory. Given a measurement {x i } n i=1 in the sample space X , we seek a parameter θ in the parameter space E, a linear space (e.g. R q , the set of symmetric matrices, ...). Indeed, we assume that samples follow a statistical distribution for which a probability density function (PDF) exists. The latter depends on the parameter θ which is assumed to be a discriminant feature for a given application. Therefore, θ must be estimated. To motivate the introduction of the estimation theory, we point out that many problems can be written as estimation problems. They typically arise in many signal processing and machine learning topics such as change detection [START_REF] Mian | New Robust Statistics for Change Detection in Time Series of Multivariate SAR Images[END_REF][START_REF] Mian | Robust Low-Rank Change Detection for Multivariate SAR Image Time Series[END_REF], dimensionality reduction [START_REF] Tipping | Probabilistic principal component analysis[END_REF], graphical model estimation [START_REF] Friedman | Sparse inverse covariance estimation with the graphical lasso[END_REF] and clustering [START_REF] Hosseini | An alternative to EM for Gaussian mixture models: batch and stochastic Riemannian optimization[END_REF]. Before going any further, it is worth noting that the parameter space E is a q-dimensional linear space. We endow it with the Euclidean inner product ⟨θ 1 , θ 2 ⟩ E = vec(θ 1 ) T vec(θ 2 ) and the Euclidean distance d E (θ 1 , θ 2 ) = ∥vec(θ 1 ) -vec(θ 2 )∥ 2 where vec : E → R q vectorizes the input by stacking its coordinates into a vector. It should be noted that the definitions and results stated in this subsection are extended to possibly non-linear spaces M in Chapter 2, Section 2.5.

In practice, an estimate θ of θ is produced from the measurement {x i } n i=1 . The corresponding mapping from X to E is called an estimator. Definition 1. An estimator θ : X → E maps every measurement {x i } n i=1 to an estimate θ({x i } n i=1 ). It should be noted that, as mentioned earlier, the estimators presented in this section are associated with statistical distributions. However, this is not mandatory. Indeed, estimators can be defined without assuming that data follow a given statistical distribution, e.g. see the M -estimators [START_REF] Maronna | Robust M-estimators of multivariate location and scatter[END_REF][START_REF] Huber | Robust statistics[END_REF]. Then, a central tool to the estimation theory is the negative log-likelihood (NLL) function. Let a measurement {x i } n i=1 ∈ X be a realization of a random variable X following a PDF f parametrized by θ ∈ E, i.e.

X ∼ f (.; θ),

(1.3)
then, the NLL L is defined as minus the logarithm of f .

Definition 2. Given {x

i } n i=1 ∈ X and a PDF such that ∀θ ∈ E f ({x i } n i=1 ; θ) > 0, the negative log-likelihood (NLL) function L : E → R is defined by L(θ|{x i } n i=1 ) = -log f ({x i } n i=1 ; θ).
In the rest of the subsection, we assume that the NLL is at least twice differentiable, which is verified for usual distributions. The definition of the NLL on E enables the derivation of an estimator of the true parameter θ called the maximum likelihood estimator (MLE). The intuition is to find the PDF θ → f ({x i } n i=1 ; θ) that is the most likely to produce the measurement {x i } n i=1 ∈ X . The MLE realizes this maximization. By recalling that maximizing θ → f ({x i } n i=1 ; θ) is equivalent to minimizing θ → -log f ({x i } n i=1 ; θ), we get the following definition.

Definition 3. Given {x i } n i=1 ∈ X , the MLE θ ∈ E is the minimizer of the NLL function θ = arg min θ∈E L(θ|{x i } n i=1 ).
Once an estimator is defined, the question of its performance arises. To answer this question, the theory of Cramér-Rao bounds (CRB) has been developed [START_REF] Cramér | Mathematical methods of statistics[END_REF][START_REF] Rao | Information and the accuracy attainable in the estimation of statistical parameters[END_REF]. Indeed, the latter lower bounds, in the Loewner sense, the covariance matrices of estimators for a given statistical problem. Thus, inequalities are derived and estimators are compared to these lower bounds.

In the following, the estimator θ is seen as a random variable. Indeed, each new measurement {x i } n i=1 is associated with a new value for the estimator. Thus statistics of θ can be computed. We begin by defining the bias of an estimator.

Definition 4.

The bias of an estimator θ ∈ E for a given parameter θ ∈ E is the mean error vector

b θ = E vec( θ) -vec(θ) .
An estimator is unbiased if its bias is zero everywhere

b θ = 0 for all θ ∈ E.
For simplicity, in the following, we focus on unbiased estimators. However, the following definitions can be extended to biased estimators. Then, the covariance matrix of an unbiased estimator is presented. To do so, we recall the definitions of two sets. The sets of q × q symmetric matrices and q × q symmetric positive semidefinite matrices are defined as

S q = Σ ∈ R q×q : Σ T = Σ , (1.4) and S + q = Σ ∈ S q : ∀x ∈ R q , x T Σx ≥ 0 (1.5)
respectively.

Definition 5. For an unbiased estimator θ, the covariance matrix C θ ∈ R q×q is a symmetric, positive semidefinite matrix given by

C θ = E (vec( θ) -vec(θ))(vec( θ) -vec(θ)) T .
From Definition 5, the trace of C θ is the variance of the estimator θ

Tr(C θ ) = E d 2 E ( θ, θ) = E || vec( θ) -vec(θ)|| 2 2 .
(1.6)

This variance is also sometimes referred as the Mean Squared Error (MSE) since it measures the quadratic error between the estimator θ and the true parameter θ in average. A last definition in this subsection is the Fisher information matrix. This matrix is leveraged to derive CRBs.

Definition 6. The Fisher information matrix F θ is the q × q symmetric, positive semidefinite matrix whose entries are given by

(F θ ) ij = E ∂L(θ|{x i } n i=1 ) ∂θ i ∂L(θ|{x i } n i=1 ) ∂θ j = E ∂ 2 L(θ|{x i } n i=1 ) ∂θ i ∂θ j
where L is the NLL from Definition 2, ∂. ∂θ i the partial derivative with respect to the i th coordinate of θ and ∂ 2 . ∂θ i θ j the second partial derivative with respect to the i th and j th coordinates of θ.

With the tools defined previously, we are now able to present the main theorem of CRBs for unbiased estimators.

Theorem 1. Let θ ∈ E and consider an estimation problem on E such that the Fisher information matrix F θ is invertible. Then, for any unbiased estimator, the covariance matrix C θ obeys the following matrix inequality

C θ ⪰ F -1 θ where ⪰ is the Loewner inequality, i.e. C θ -F -1 θ ∈ S + q .
From Theorem 1, we get the following CRB

E d 2 E ( θ, θ) = E || vec( θ) -vec(θ)|| 2 2 ≥ Tr F -1 θ . (1.7)
In general, the MLEs are consistent, i.e. they tend to the true parameter when the number of measurements tends to the infinity. Also they are asymptotically unbiased and efficient, i.e. they reach the CRB of the estimation problem when the number of measurements tends to the infinity. This means that these estimators are asymptotically optimal which justifies their use. In practice, the convergence of the MLE towards their CRBs is fast and thus the optimal variance is reached for reasonable numbers of samples.

The following theorem is restricted to independent and identically distributed samples however it can be extended to other cases; see [START_REF] Kay | Fundamentals of statistical signal processing: estimation theory[END_REF]Chapter 7]. Theorem 2. Assuming that the samples from the measurement {x i } n i=1 are independent realizations of an identical random variable of PDF f satisfying some mild regularity conditions described in [START_REF] Kay | Fundamentals of statistical signal processing: estimation theory[END_REF]Chapter 7], then the MLE θ of the unknown parameter θ is asymptotically distributed according to

√ n vec( θ) -vec(θ) ---→ n→∞ N (0, F -1 θ )
where F θ is the Fisher information matrix of a single sample x i evaluated at the true value of the unknown parameter, i.e.

(F θ ) ij = E ∂L(θ|x i ) ∂θ i ∂L(θ|x i ) ∂θ j = E ∂ 2 L(θ|x i ) ∂θ i ∂θ j . 1.3.2

. Gaussian distribution and Tyler's M -estimator

We presented some of the basics of the estimation theory in the previous subsection. Two standard estimators are presented in this subsection. In signal processing and machine learning, a classical statistical model is the multivariate Gaussian distribution. Indeed, signal and noise are often modeled with this distribution thanks to the Central Limit Theorem. The latter states that the sum of n independent and identically distributed random variables with finite mean and variance converge to a Gaussian distribution as n → ∞. Furthermore, classical classification algorithms, such as the linear discriminant analysis, assume that data are Gaussian. This assumption gives simple closed form formula for the classification rules and good performance in practice. The Gaussian distribution is parametrized by the location µ ∈ R p and the covariance matrix Σ ∈ S ++ p where S ++ p is the set of p × p symmetric positive definite matrices

S ++ p = Σ ∈ S p : ∀x ̸ = 0 ∈ R p , x T Σx > 0 . (1.8)
To make the transition with the previous sections, here the feature is θ = (µ, Σ), M is the non-linear space R p × S ++ p and E is the Euclidean space

R p × R p(p+1) 2
that contains the location and the upper triangular part of the covariance matrix. Then, the formal definition of the Gaussian distribution is given.

Definition 7. A random vector x ∈ R p follows a multivariate Gaussian distribution if its PDF writes f G (x; µ, Σ) = (2π) -p 2 |Σ| -1 2 exp - 1 2 (x -µ) T Σ -1 (x -µ) where µ = E[x] ∈ R p is the location and Σ = E (x -µ)(x -µ) T ∈
R p×p is the covariance matrix. In this case, we write x ∼ N (µ, Σ).

It should be noted that the PDF of the Gaussian distribution is entirely determined by the location and covariance matrix. The latter are easily estimated using the MLEs which solve the following problem

minimize (µ,Σ)∈R p ×S ++ p L G (µ, Σ|{x i } n i=1 ) = log |Σ|+ 1 n n i=1 (x i -µ) T Σ -1 (x i -µ) .
(1.9) Proposition 1. Given a measurement {x i } n i=1 , the MLEs of the parameters µ and Σ of the Gaussian distribution N (µ, Σ) are the sample mean and the sample covariance matrix 9 (SCM).

         μSM = 1 n n i=1 x i ΣSCM = 1 n n i=1 (x i -μSM )(x i -μSM ) T .
From Proposition 1, the minimization problem (1.9) admits a solution if and only if the centered data matrix is full rank (or row full rank), i.e. rank([

x 1 - μSM , • • • , x n -μSM ]) = p.
Indeed, if its not full rank, ΣSCM only belongs to S + p and not to S ++ p . However, the Gaussian distribution is not always well suited. Indeed, the noise can be impulsive or data can include outliers such as mislabeled data in classification. In these cases, the Gaussian MLEs are biased towards these outliers and thus performance are deteriorated. Many statistical tools exist to remediate to this problem such as the elliptically contoured distributions (complex elliptically symmetric distribution for complex data) [START_REF] Cambanis | On the theory of elliptically contoured distributions[END_REF][START_REF] Ollila | Complex Elliptically Symmetric Distributions: Survey, New Results and Applications[END_REF] or the M -estimators [START_REF] Maronna | Robust M-estimators of multivariate location and scatter[END_REF][START_REF] Huber | Robust statistics[END_REF]. Here, we present non-centered mixtures of scaled Gaussian distributions (NC-MSG), i.e.

x i d = µ + √ τ i Σ 1 2 n i (1.10) with d
= means "equal in distribution" (same cumulative distribution functions), τ i > 0 is the sample dependent scale (sometimes called deterministic texture), and n i ∼ N (0, I p ) are independent. For example, this model has been successfully applied to radar imaging [START_REF] Mian | New Robust Statistics for Change Detection in Time Series of Multivariate SAR Images[END_REF][START_REF] Ovarlez | Multivariate Linear Time-Frequency modeling and adaptive robust target detection in highly textured monovariate SAR image[END_REF] and radar detection [START_REF] Conte | Recursive estimation of the covariance matrix of a compound-Gaussian process and its application to adaptive CFAR detection[END_REF][START_REF] Ovarlez | Covariance Matrix Estimation in SIRV and Elliptical Processes and Their Applications in Radar Detection[END_REF] to model the clutter.

Definition 8. A set of independent random vectors {x

i } n i=1 ⊂ R p follows
a NC-MSG (also called compound Gaussian distribution with deterministic textures) if its PDF writes

f NC-MSG ({x i } n i=1 ; µ, Σ, τ ) = n i=1 f G (x i ; µ, τ i Σ)
where µ is the location, Σ is the scatter matrix, τ contains the textures {τ i } n i=1 and f G is the Gaussian PDF from Definition 7. In this case, we write

x i ∼ N (µ, τ i Σ).
Then, the NLL of the MSG is minimized to estimate its parameters,

minimize (µ,Σ,τ )∈R p ×S ++ p ×(R + * ) n n i=1 L G (µ, τ i Σ|{x i } n i=1 ) (1.11)
where L G is defined in (1.9). The solution of this problem satisfies a system stated in the next proposition.

Proposition 2. Given a measurement {x i } n i=1 , the MLEs μ, Σ and τ of the parameters of a NC-MSG

x i ∼ N (µ, τ i Σ) satisfy                    μ = n i=1 1 τi -1 n i=1 x i τi Σ = 1 n n i=1 (x i -μ)(x i -μ) T τi τi = 1 p (x i -μ) T Σ-1 (x i -μ).
If the location parameter µ is known and all x i ̸ = µ then solving the system from Proposition 2 reduces to solving the following equation

Σ = p n n i=1 (x i -µ)(x i -µ) T (x i -µ) T Σ-1 (x i -µ) ≜ H Ty Σ (1.12)
with respect to Σ and then computing the textures with

τi = 1 p (x i -µ) T Σ-1 (x i -µ).
(1.13)

Fixed point Equation (1.12) has been extensively studied in [START_REF] Tyler | A Distribution-Free M -Estimator of Multivariate Scatter[END_REF][START_REF] Pascal | Covariance structure maximum-likelihood estimates in compound Gaussian noise: Existence and algorithm analysis[END_REF][START_REF] Pascal | Performance analysis of covariance matrix estimates in impulsive noise[END_REF][START_REF] Ollila | Complex Elliptically Symmetric Distributions: Survey, New Results and Applications[END_REF][START_REF] Franks | Rigorous guarantees for Tyler's Mestimator via quantum expansion[END_REF] and the following proposition gives its solution.

Proposition 3. If n > p and for any p two by two distinct indices

i(1) < • • • < i(p) chosen in 1, n the centered data {x i(j) -µ} p
j=1 are linearly independent then Equation (1.12) has a unique solution (up to a strictly positive scale factor). In this case, it is solved iteratively with the following iterates We illustrate the robustness to outliers of the Tyler's M -estimator compared to the SCM in Figure 1.8. Unfortunately, when the location µ is unknown, the system from Proposition 2 does not necessarily admit a solution. If it admits one, there is no guarantee that fixed point iterations converge to it. In practice, µ is estimated with the sample mean μSM = 1 n n i=1 x i . Then, it is subtracted to the samples x i before applying (1.14) to estimate the scatter matrix and (1.13) to estimate the textures.

Σ(l+1) = H Ty Σ(l) (1.14 

. Regularized and low rank structure estimators

In the previous subsection, we presented the MLEs of the Gaussian distribution in Proposition 1. We said that the SCM is the MLE if only if the centered data matrix is full rank, i.e. rank([

x 1 -μSM , • • • , x n -μSM ]) = p.
Otherwise, the SCM does not belong to S ++ p since its rank is strictly inferior to p. This problem arises when n < p, i.e. when the number of data is inferior to their dimension. This can easily happen in multi-spectral imagery since p can be several hundred whereas n is the number of data in a neighborhood of pixel and thus cannot exceed several dozens. Another problem is when the conditioning of the SCM is large; i.e. when the ratio of its largest eigenvalue over its lowest one is large. This is problematic since a small perturbation in the eigenvalues heavily affects the output of algorithms using this estimator. Several approaches have been proposed in the literature to remediate to these problems. We present two of them: the regularized estimators and estimators with a low rank structure. It should be noted that all the presented reasoning can be applied to the Tyler's M -estimator. Some references on regularized and structured Tyler's M -estimators are [START_REF] Ollila | Regularized M -estimators of scatter matrix[END_REF][START_REF] Sun | Regularized Tyler's Scatter Estimator: Existence, Uniqueness, and Algorithms[END_REF][START_REF] Ollila | Shrinking the eigenvalues of M-estimators of covariance matrix[END_REF] and [START_REF] Sun | Robust Estimation of Structured Covariance Matrix for Heavy-Tailed Elliptical Distributions[END_REF][START_REF] Bouchard | A Riemannian Framework for Low-Rank Structured Elliptical Models[END_REF] respectively.

We begin with the regularized estimators which are estimators shrunk towards a target. This shrinkage is defined with the help of a penalty, also sometimes referred as a regularization. A classical example is the SCM shrunk towards the identity. Given β ∈ [0, 1], we define the following optimization problem which is the minimization of the Gaussian NLL (1.9) with an additional penalty,

minimize (µ,Σ)∈R p ×S ++ p L G (µ, Σ|{x i } n i=1 ) + β Tr Σ -1 Tr( ΣSCM ) p I p -ΣSCM penalty . (1.15) 
The minimizer of this optimization problem is presented in the next proposition.

Proposition 4. The minimizer of (1.15) is the sample mean and the SCM shrunk towards the identity

         μSM = 1 n n i=1 x i , Σ = (1 -β) ΣSCM + β Tr( ΣSCM ) p I p .
From Proposition 4, the penalty from Equation (1.15) simply shrinks the eigenvalues of the SCM towards their mean. If β = 0, we recover the MLE of the Gaussian distribution. Otherwise, if β ∈]0, 1], Equation (1.15) admits a minimizer if and only if at least one centered data

x i -μSM is not zero, i.e. rank([x 1 -μSM , • • • , x n -μSM )] ≥ 1.
Hence, this estimator does not require the centered data matrix to be of full rank as for the SCM. Furthermore, the conditioning of the estimator Σ is improved since λmax λ min → 1 as β → 1; where λ max and λ min are the maximum and minimum eigenvalues of Σ respectively. We mention that various strategies to choose automatically the hyperparameter β have been proposed; e.g. see [START_REF] Ledoit | A well-conditioned estimator for largedimensional covariance matrices[END_REF][START_REF] Chen | Shrinkage algorithms for MMSE covariance estimation[END_REF][START_REF] Ollila | Optimal Shrinkage Covariance Matrix Estimation Under Random Sampling From Elliptical Distributions[END_REF].

Then, we present an estimator with a low-rank structure derived in [START_REF] Tipping | Probabilistic principal component analysis[END_REF]. This estimator is the MLE of a statistical model that assumes that a Gaussian signal is embedded in a white Gaussian noise (WGN). For all rank k < min{p, n}, this model writes

x ∼ N (µ, Σ) (1.16)
where Σ = Σ LR + σ 2 I p with Σ LR ∈ S + p , rank(Σ LR ) = k and σ 2 > 0. Σ LR is the covariance of the signal whereas σ 2 I p is the covariance of the noise. Then, the optimization problem to estimate the parameters µ and Σ is the minimization of the Gaussian NLL while respecting the structure of the covariance matrix,

minimize (µ,Σ LR ,σ 2 )∈R p ×S + p ×R + * L G (µ, Σ|{x i } n i=1 )
(1.17)

subject to Σ = Σ LR + σ 2 I p , rank(Σ LR ) = k.
The solution of (1.17) is given in the following proposition.

Proposition 5. The minimizer of (1.17) is the sample mean and the SCM whose p -k lowest eigenvalues have been averaged

     μSM = 1 n n i=1 x i Σ = ΣLR + σ2 I p where ΣLR = U k (Λ k -σ2 I k )U T k , σ2 = 1 p -k p-k i=1 (Λ p-k )
ii with the singular value decomposition (SVD) of the SCM, with eigenvalues in the descending order, denoted

ΣSCM SVD = U k , U p-k Λ k (0) (0) Λ p-k U k , U p-k T .
If k is chosen such as k < rank( ΣSCM ) then (1.17) admits the solution of Proposition 5. Thus, n can be arbitrary small and Σ from Proposition 5 still belongs to S ++ p . Thus, Equation (1.17) admits a minimizer if and only if at least one centered data x i -μSM is not zero, i.e. rank([x 1 -μSM , • • • , x n -μSM )] ≥ 1, as for the regularized estimation from Equation (1.15). A second remark is that the conditioning of Σ is greater than the one of the SCM since σ2 ≥ λ min where λ min is the lowest eigenvalue of the SCM. Finally, it should be noted that there exists methods to choose automatically the rank k; see e.g. [START_REF] Minka | Automatic choice of dimensionality for PCA[END_REF].

. K-means++ and Nearest centroïd classifier

Once the statistical features are estimated, it remains to cluster/classify them. It is the third step of the pipeline from Figure 1.7. To do so, we leverage two simple machine learning algorithms: K-means++ [START_REF] Arthur | K-Means++: The Advantages of Careful Seeding[END_REF] and Nearest centroid classifier. The first one is a clustering algorithm, i.e. it does not make use of labels. The second one uses labels and thus is a classification algorithm. In the following, a feature is denoted θ and belongs to the set M. For example, a feature can be the SCM which is a symmetric positive definite matrix, i.e. θ = ΣSCM ∈ M = S ++ p . We insist on the fact that the described algorithms are general. Indeed, they also apply to couples of parameters, e.g. the MLE of the Gaussian distribution θ = ( μ, ΣSCM ), to parameters with constraints, e.g. belonging to a sphere, and etc ...

. Divergence, distance, and center of mass

Before going further, we give several definitions that are central for these algorithms. The first is one is that of divergence. This divergence measures the proximity between pairs of features θ i and is leveraged in the definition of the center of mass.

Definition 9. Given a set M, the function

δ : M×M → R is a divergence if it satisfies the following conditions for all θ 1 , θ 2 ∈ M 1. δ(θ 1 , θ 2 ) ≥ 0 (positivity), 2. δ(θ 1 , θ 2 ) = 0 if and only if θ 1 = θ 2 (separability).
Given a subset of indices I ⊂ N * , a definition of the center of mass c, associated with δ, of a set of features {θ i } i∈I is a minimizer of the variance V [START_REF] Karcher | Riemannian center of mass and mollifier smoothing[END_REF],

c = arg min θ∈M V (θ) = 1 Card (I) i∈I δ(θ, θ i ) (1.18)
where Card is the operator that returns the cardinality of a given set. We add two remarks to this definition. First, the minimum (1.18) is not necessarily unique and thus the center of mass of {θ i } i∈I is also not necessarily unique. Second, in practice δ is differentiable with regards to its two arguments and we will simply look for a stationary point, i.e. grad V (θ) = 0 with grad V is a gradient of V . A subset of the divergences which is to be distinguished is that of the distances, i.e. symmetrical divergences that respect the triangle inequality.

Definition 10. Given a set M, the function d : M × M → R is a distance if it is a divergence (Definition 9) and if it satisfies the following conditions

for all θ 1 , θ 2 , θ 3 ∈ M 1. d(θ 1 , θ 2 ) = d(θ 2 , θ 1 ) (symmetry), 2. d(θ 1 , θ 2 ) ≤ d(θ 1 , θ 3 ) + d(θ 3 , θ 2 ) (triangle inequality).
Often divergences (that are not distances) are homogeneous to squared distances. Thus, (1.18) becomes

c = arg min θ∈M V (θ) = 1 Card (I) i∈I d 2 (θ, θ i ) . (1.19)
Then, we give two examples. The first one presents the Gaussian Kullback Leibler (KL) divergence on S ++ p and its associated center of mass which is the harmonic mean. The second one presents the Euclidean distance between matrices and its associated center of mass which is the arithmetic mean. Both examples give practical divergences between covariance matrices Σ i ∈ S ++ p as well as practical centers of mass.

Example 1. Let {Σ i } i∈I ⊂ S ++ p with I ⊂ N * , the Gaussian KL divergence on S ++ p is δ KL (Σ i , Σ j ) = 1 2 Tr Σ -1 j Σ i + log Σ j Σ -1 i -p .
(1.20)

The center of mass C ∈ R p×n is defined as

C = arg min Σ∈S ++ p V (Σ) = 1 Card (I) i∈I δ KL (Σ, Σ i ) . (1.21)
By cancelling the gradient of V , we get that the center of mass is the harmonic mean

C = 1 Card (I) i∈I Σ -1 i -1 . (1.22) Example 2. Let {A i } i∈I ⊂ R p×n with I ⊂ N * , a distance on R p×n is d R p×n (A i , A j ) = ∥A i -A j ∥ 2 = Tr (A i -A j ) T (A i -A j ) . (1.23)
The center of mass Y ∈ R p×n is defined as

C = arg min Y ∈R p×n V (Y ) = 1 Card (I) i∈I d 2 R p×n (Y , A i ) .
(1.24)

By cancelling the gradient of V , we get that the center of mass is the classical elementwise arithmetic mean

C = 1 Card (I) i∈I A i .
(1.25) We now have defined the necessary tools to implement K-means++ and Nearest centroïd classifier associated to any divergence δ. We begin by describing K-means++. In the following, we assume having a set of features {θ i } M i=1 to partition into K subsets. In the following, the partition is denoted

P (c j = θ i ) = D 2 (θ i ) 2 M m=1 D 2 (θm)
S = {S 1 , • • • , S K }.
We recall that such a partition is a set of K nonempty subsets such that every element of {θ i } M i=1 belongs to exactly one of these subsets. Since every θ i is associated with one data point X i , a partition of {θ i } M i=1 gives a partition of the original data {X i } M i=1 . First of all, K-means++ initializes cluster centers {c j } K j=1 by recursively choosing points θ i with probability [START_REF] Arthur | K-Means++: The Advantages of Careful Seeding[END_REF]. Here, D(θ i ) denotes the divergence δ from θ i to the closest center among those already chosen. Intuitively, this initialization is performed such that cluster centers are far away from each other at the initialization. We will see later that this initialization gives a theoretical guarantee to K-means++. Once these cluster centers are initialized, K-means++ iteratively applies two steps [START_REF] Arthur | K-Means++: The Advantages of Careful Seeding[END_REF]:

D(θ i ) M m=1 D(θm)
1. Assignment step: each θ i is assigned to the cluster S j whose center c j is the closest using the divergence δ, 2. Update step: each new cluster center c j is computed as (1.18).

Once terminated, K-means++ outputs the partition S. Intuitively, K-means++ finds clusters S j whose points θ i ∈ S j are close to each other using the divergence δ.

To analyze the performance of K-means++ algorithm, we begin by defining the within-cluster sum of squares (WCSS),

ϕ(S) = K j=1 θ i ∈S j δ(c j , θ i ).
(1.26)

Unfortunately, finding the optimal partition that reaches ϕ OPT , the minimum value of (1.26), is a NP-hard problem [START_REF] Mahajan | The Planar k-Means Problem is NP-Hard[END_REF]. However, we can prove that K-means++ algorithm decreases (1.26) and converges. Indeed, both steps "Assignment step" and "Update step" decrease (1.26) and, since δ is a divergence, ϕ(S) ≥ 0 for all the partitions S. Remarkably, [START_REF] Arthur | K-Means++: The Advantages of Careful Seeding[END_REF] goes much further by proving that if δ is a squared distance, i.e. δ ≡ d 2 , then in expectation the WCSS of a partition produced by K-means++ algorithm is upper bounded with respect to ϕ OPT E[ϕ] ≤ 8(ln K + 2)ϕ OPT (1.27) where the expectation is taken with respect to the seeding procedure of the initialization. 10 This property is central to K-means++ algorithm since it is proven that a plain K-means [START_REF] Macqueen | Some methods for classification and analysis of multivariate observations[END_REF] cannot admit such a bound. Moreover, this bound is true from the initialization of K-means++ algorithm. However, the clustering returned by K-means++ is still not necessarily a global minimum of (1.26). Hence, a standard practice is to run the algorithm several times with different initializations and then to keep the clustering with the lowest WCSS (1.26). K-means++ on M associated with the divergence δ and with the strategy of several initializations is presented in Algorithm 1.

. Nearest centroïd classifier

Let a K-class classification problem on a set M endowed with a divergence δ and a center of mass computation (1.18). Thus, a training set 

T train = {(θ i , y i )} M train i=1 ⊂ M × 1, K

. Riemannian perspectives of the clustering-classification pipeline

So far, we defined M as being a set containing the estimates of a given statistical estimator. In Section 1.3, we gave some examples of these estimators and we mentioned that they belong to many different sets M such as S ++ p , R p × S ++ p , R p × S + p , S + p with rank = k, ... All these sets can be formalized as Riemannian manifolds. The interests of this formalization are numerous such as transforming non-convex estimation problems to geodesically convex ones, handling constraints of the parameter space, developing fast estimators, computing Fisher-Rao distances (for machine learning applications), deriving Intrinsic Cramér-Rao bounds (ICRBs), ... Therefore, in the following, M is a Riemannian manifold. The latter generalizes the classical Euclidean sets. Its formalism as well as the motivation of its usage are detailed latter. We begin this section with an implementation of the clustering-classification pipeline from Section 1.2 on the Riemannian manifold S ++ p . Then, we highlight the different contributions of this manuscript on this pipeline.

. Riemannian geometry in the clustering-classification pipeline

Shortly, a Riemannian manifold is a set that can be curved but is locally Euclidean. An example is the p -1-dimensional sphere S p-1 in R p with the Euclidean inner product. Other examples are the different parameter spaces of the cost functions from Section 1.3. The theory of the Riemannian geometry [START_REF] Absil | Optimization Algorithms on Matrix Manifolds[END_REF][START_REF]An introduction to optimization on smooth manifolds[END_REF] is introduced in Chapter 2 and no prior knowledge in this field of the mathematics is required to read this manuscript.

To motivate the use of the Riemannian geometry, we detail a basic implementation of the clustering-classification pipeline, presented in Section 1.2, on the Riemannian manifold of the symmetric positive definite matrices S ++ p . This Riemannian manifold is introduced in Chapter 2. Here, we only use its Riemannian distance. The pipeline we present in this section has been applied with great successes in the last decade in the EEG/MEG (Electroencephalography/Magnetoencephalography) community [START_REF] Barachant | Multiclass Brain-Computer Interface Classification by Riemannian Geometry[END_REF][START_REF] Congedo | Riemannian geometry for EEG-based brain-computer interfaces; a primer and a review[END_REF] as well as in the SAR community [START_REF] Formont | On the use of matrix information geometry for polarimetric SAR image classification[END_REF]. First of all, [START_REF] Barachant | Multiclass Brain-Computer Interface Classification by Riemannian Geometry[END_REF] assumes that data {x i } n i=1 are independent realizations of a random variable x following a centered Gaussian distribution, i.e. x ∼ N (0, Σ). Thus, in the feature estimation step (second step), the corresponding NLL is minimized by the SCM ΣSCM = arg min

Σ∈S ++ p L G (Σ|{x i } n i=1 ).
(1.28)

Hence, each batch of data {x i } n i=1 is transformed into a covariance matrix that belongs to S ++ p . It implies that the classification (third step) must be performed on S ++ p . To do so, [START_REF] Barachant | Multiclass Brain-Computer Interface Classification by Riemannian Geometry[END_REF] uses the Riemannian distance on S ++ p . Given Σ 1 , Σ 2 ∈ S ++ p , it writes

d S ++ p (Σ 1 , Σ 2 ) = log Σ -1 2 1 Σ 2 Σ -1 2 1 2 (1.29)
where log : S ++ p → S p is the matrix logarithm. One of the key properties of d S ++ p is its affine invariance. Indeed, we have that, for all A ∈ GL p , the set of p × p invertible matrices,

d S ++ p AΣ 1 A T , AΣ 2 A T = d S ++ p (Σ 1 , Σ 2 ).
(1.30)

This means that for data with a linear mixing model (1.1) x i = Aw i (neglecting the noise) with A ∈ GL p , we have11 

d S ++ p (Σ 1 , Σ 2 ) = d S ++ p (Θ 1 , Θ 2 ) (1.31)
where Σ 1 , Σ 2 are SCMs computed on raw data x i and Θ 1 , Θ 2 are the corresponding SCMs computed on unmixed signals w i , i.e.

Θ 1 = A -1 Σ 1 A -T
and Θ 2 = A -1 Σ 2 A -T . Intuitively, this means that we can measure a distance between covariances of unmixed signals w i by measuring a distance between covariances of raw data x i . This way, we remove the need of a preprocessing step to unmix the signal. Also, Equation (1.30) is true for all A ∈ GL p , hence it is robust to A contrary to a preprocessing step that would unmix the signal with an estimated A. Then, from Equation (1.19), the center of mass Σ of a set of covariance matrices {Σ i } i∈I is

Σ = arg min Σ∈S ++ p 1 Card(I) i∈I d 2 S ++ p (Σ, Σ i ). (1.32)
This minimization problem can be achieved with a Riemannian gradient descent on S ++ p . The algorithm of the Riemannian gradient descent generalizes the classical gradient descent to Riemannian manifolds and is detailed in Chapter 2. It should be noted that, using the affine invariance (1.30), if Σ is the center of mass of {Σ i } i∈I , then Θ = A -1 ΣA -T is the center of mass of {Θ i = A -1 Σ i A -T } i∈I . Finally, [START_REF] Barachant | Multiclass Brain-Computer Interface Classification by Riemannian Geometry[END_REF] uses the distance (1.29) and the center of mass (1.32) in the Nearest centroïd classifier described in Algorithm 2 to classify the SCMs. In a clustering problem, the Nearest centroïd classifier can be replaced by K-means++ described in Algorithm 1. This ends a first implementation of the clustering-classification pipeline described in Section 1.2. An important remark is that, thanks to the affine invariance (1.30), classifying (with a Nearest centroïd classifier or a K-means++) the raw data x i or the unmixed signal w i gives exactly the same labels prediction with this pipeline. From a practical point of view, we report that using this pipeline, on the Breizhcrops dataset, with the Euclidean distance between SCM (1.23) gives 23% of OA versus 56% with the affine invariant distance (1.30).

. Contributions

Many contributions can be done on the presented pipeline. A first axis of contributions concerns the feature estimation step. Indeed, other estimators of the covariance matrix than the SCM can be used. For example, [START_REF] Formont | On the use of matrix information geometry for polarimetric SAR image classification[END_REF] uses the Tyler's M -estimator (1.12) instead of the SCM for SAR image classification. Many other possibilities exist: robust estimators, joint estimators of the location and the covariance matrix, subspaces estimators, and etc ... All these estimators are solutions of a cost function (1.2) over a Riemannian manifold M. In the case where a closed form formula of the solution is not known, Riemannian optimization can be employed on M. This is the first axis of contributions: the development of estimators that rely on Riemannian optimization. The advantages of the Riemannian optimization compared to other more classical methods such as fixed points estimators are numerous. We mention some of them:

• constrained estimators: easily handles constraints on the parameters, e.g. estimation of an orthogonal basis of a subspace,

• diversity of optimizers: many different Riemannian optimization algorithms can be employed depending on the problem,

• guarantee of convergence: under reasonable conditions (which are counterparts of Euclidean gradient based optimization algorithms conditions) Riemannian gradient based optimization algorithms converge to a solution,

• large scale learning: fast estimators with the Riemannian stochastic gradient descent,

• geodesic convexity (convexity along geodesics, extension of straight lines to manifolds): changing geodesics can transform a non-convex problem to a convex one: uniqueness of the solution and fast optimization on strongly geodesically convex cost functions,

• fast estimators with statistical manifolds (Riemannian manifolds equipped with the Fisher information metric) for estimation problems, etc ...

Contributions on this axis are presented in Chapters 3 and 4.

A second axis of contributions concerns the second step with the computation of ICRB (CRBs on Riemannian manifolds). The latter illustrate the performance of a given estimator on a Riemannian manifold. They present several advantages compared to classical CRBs:

• constrained estimators: the Riemannian distance and the ICRB take into account the constraints of the estimation problem, e.g. constraints of orthogonality of a subspace basis, and thus are more interpretable and easier to derive than their Euclidean counterparts

• parameter-free bounds: when the distance associated with the Fisher information metric is known, the ICRB is the dimension of the parameter space and thus is parameter-free (this point of view is presented in Chapter 2, Section 2.5).

Contributions on this axis are presented in Chapter 4 with the ICRBs of a subspace estimation problem.

A third axis of contributions concerns the third step. Once features are estimated, a divergence and its corresponding center of mass must be defined. When a covariance matrix is estimated on S ++ p then the Riemannian distance (1.29) and its associated center of mass (1.32) can be used. Indeed, it is affine invariant (1.30) and gives very good performance in practice compared to other more simple divergences such as the Euclidean distance. However, when M ̸ = S ++ p , e.g. when the location is added, M = R p ×S ++ p , then other divergences must be developed. Indeed, the Riemannian distance on a given given statistical manifold (different than S ++ p ) is often intractable. Chapter 3 presents contributions on the use of geodesic triangles on the statistical manifold of non-centered Gaussian distributions, i.e. M = R p ×S ++ p . Two affine invariant divergences are proposed and the associated centers of mass are estimated using Riemannian optimization. When geodesics on the statistical manifold are not known (which is often the case), other choices must be made. Chapter 3 describes contributions on the use of a KL divergence on the statistical manifold of NC-MSGs, i.e. M = R p × S ++ p × (R + * ) n . The associated center of mass is estimated using Riemannian optimization. Finally, Chapter 4 presents a simplification of the Fisher information metric of a low-rank structured statistical model in order to get a closed form formula of the Riemannian distance. Then, the associated center of mass is derived using Riemannian optimization.

A fourth axis of contribution is the metric learning presented in Chapter 5. So far, we estimate parameters θ that belong Riemannian manifolds M. These parameters are clustered-classified using divergences and centers of mass. The metric learning approach is different. Instead of using a predefined metric on the parameter space M, we learn a metric directly on the sample space X . Once this metric has been learned, data x i are whitened by this metric and then classified directly on X . Chapter 5 shows that this problem is closely related to covariance estimation problems. Two geodesically convex minimization problems are formulated and they are solved using fast Riemannian optimizers.

The different contributions on the pipeline as well as the statistical models are summarized in Figure 1.9.

Step 1: vectors extraction

Step 2: features estimation Chapter 3:

x i ∼ N (µ, τ i Σ):
estimation using a product metric and the Fisher information metric. Chapter 4:

x i ∼ N (0, τ i U U T + I p )
(low-rank + identity model): estimation using the Fisher information metric, ICRBs on the subspace span(U ) and the textures τ i .

Step 3: features clustering/classification Chapter 3:

x i ∼ N (µ, Σ):
Nearest centroïd classifier using geodesic triangles: divergences and centers of mass,

x i ∼ N (µ, τ i Σ):
Nearest centroïd classifier using a KL divergence: divergence and center of mass. Chapter 4:

x i ∼ N (0, τ i U U T + I p ) K-means++ using a product metric: distance and center of mass. Chapter 5: classification on raw data x i : learning metrics with geodesically convex estimation problems. 

{x i } n i=1 minimize θ∈M L (θ| {x i } n i=1 ) θ 1 + θ 2 + θ 3 + θ 4 + θ 5 + θ 6 + θ 8 + θ 9

-Riemannian geometry, optimization and intrinsic Cramér-Rao bounds

Riemannian geometry [START_REF] Absil | Optimization Algorithms on Matrix Manifolds[END_REF][START_REF]An introduction to optimization on smooth manifolds[END_REF] has received an increasing interest over the years both for being theoretically appealing and for its multiple applications in signal processing and machine learning. This chapter is devoted to the introduction of the theory of Riemannian geometry as well as giving some Examples of Riemannian manifolds. This presentation is meant to be selfcontained and requires only basic knowledge of linear algebra and calculus. Riemannian geometry being a very rich theory, we concentrate only on the exposition of the necessary tools for the following chapters. Several Riemannian manifolds needed for these chapters are presented: the manifold of p×p symmetric positive definite matrices with the affine invariance Riemannian metric denoted S ++ p , the manifold of p × p symmetric positive definite matrices with unit determinant denoted SS ++ p , the manifold of n-dimensional strictly positive vectors denoted (R + * ) n , the compact Stiefel manifold denoted St p,k , and the Grassmann quotient manifold of k-dimensional subspaces in R p denoted Gr p,k .

Two uses of Riemannian geometry will follow us throughout this manuscript: statistical estimation and classification on manifold. These applications typically make use of smooth embedded submanifolds of linear spaces. Examples are the sphere or the set of symmetric positive definite matrices (and its submanifolds). Thus, Section 2.1 begins by introducing what is a Riemannian manifold with the smooth embedded submanifolds of linear spaces. This introduction heavily relies on the excellent books [START_REF] Absil | Optimization Algorithms on Matrix Manifolds[END_REF][START_REF]An introduction to optimization on smooth manifolds[END_REF] and does not make use of more advanced tools such as charts or atlases. Furthermore, the presented concepts will be illustrated on the sphere in order to build an intuition. Then, in Section 2.3, concepts from Section 2.1 are extended to Riemannian quotient manifolds. These manifolds are of particular interest when dealing with functions with invariances such as functions of linear subspaces. Examples of important manifolds for the next chapters are presented in Sections 2.4. Finally, Intrinsic Cramér-Rao bounds are covered in Section 2.5.

. Elements of Riemannian geometry

As explained in the introduction of this section, most smooth manifold used in signal processing or machine learning are smooth embedded submanifold of linear spaces. A linear space (or vector space) over the reals, denoted E in the following, is a set whose elements may be added together and multiplied by real numbers. Classical examples of linear spaces are R d , R n×p , S p (set of p × p real symmetric matrices). This definition can be extended to any field such as the complex numbers. In order to define smooth embedded submanifolds of linear spaces, linear maps and differentials are introduced. Given E, F two linear spaces, f : E → F is a linear map if f (ax + by) = af (x) + bf (y) for all x, y ∈ E, a, b ∈ R. Let U, V be open sets in two linear spaces E, F. A map f : U → V is smooth if it is infinitely differentiable on its domain. The differential of f at x is the linear map D f (x) : E → F defined by

D f (x)[ξ] = lim t→0 f (x + tξ) -f (x) t (2.1)
where ξ ∈ E. D f (x)[ξ] is called the directional derivative of f at x in the direction ξ. Some classical rules of differentiation have their extensions for the directional derivatives. Given maps f, g : U → V the sum rule writes

D(f + g)(x)[ξ] = D f (x)[ξ] + D g(x)[ξ].
(2.2)

where (f + g)(x) = f (x) + g(x)
. Then, the product rule writes

D(f × g)(x)[ξ] = D f (x)[ξ]g(x) + f (x) D g(x)[ξ] (2.3) 
where (f × g)(x) = f (x)g(x). Finally, the chain rule writes

D(f • g)(x)[ξ] = D f (g(x))[D g(x)[ξ]] (2.4) 
where (f • g)(x) = f (g(x)). We give the directional derivates of some classical maps on matrices in the following example.

Example 3. In this example, some directional derivatives of classical maps are computed.

• Constant function: f (X) = C, for C ∈ R p×n . D f (X)[ξ] = lim t→0 C -C t = 0. • Identity function: f (X) = X, for X ∈ R p×n . D f (X)[ξ] = lim t→0 X + tξ -X t = ξ. • Trace function: f (X) = Tr(X), for X ∈ R p×p . D f (X)[ξ] = lim t→0
Tr(X + tξ) -Tr(X) t = Tr(ξ).

• Inverse function: f (X) = X -1 , for X ∈ GL p .

To compute the directional derivative of f , we use the directive derivative of the constant function f (X)X = I p and the product rule,

D(X → f (X)X)[ξ] = D f (X)[ξ]X + f (X)ξ = 0.
Thus, we get the directional derivative of f

D f (X)[ξ] = -X -1 ξX -1 .
• Quadratic function: f (x) = 1 2 x T Ax, for x ∈ R p and A ∈ S p the set of p × p symmetric matrices.

First, we remark that

f (x + tξ) -f (x) = 1 2 (x + tξ) T A(x + tξ) - 1 2 x T Ax = tx T Aξ + O(t 2 ).
Thus, we get the directional derivative of f First, we notice that for Σ ∈ S p

D f (x)[ξ] = lim t→0 f (x + tξ) -f (x) t = x T Aξ. • Log-det function: f (Σ) = log |Σ|, for Σ ∈ S ++
|Σ + tξ| = |Σ||I p + tΣ -1 2 ξΣ -1 2 |.
Thus, we get that for t small enough

log |Σ + tξ| -log |Σ| = log |Σ| + log |I p + tΣ -1 2 ξΣ -1 2 | -log |Σ| = log |I p + tΣ -1 2 ξΣ -1 2 | = i log(1 + tλ i )
where the λ i are the (real) eigenvalues of

Σ -1 2 ξΣ -1 2 . It follows that log |Σ + tξ| -log |Σ| = i log(1 + tλ i ) = t i λ i + O(t 2 ) = t Tr(Σ -1 ξ) + O(t 2 ).
Hence, we get the directional derivative of the log-det function

D f (Σ)[ξ] = lim t→0 log |Σ + tξ| -log |Σ| t = Tr(Σ -1 ξ).
• Determinant function: f (Σ) = |Σ|, for Σ ∈ S ++ p . To compute this directional derivative, we use the classical chain rule applied on the log-det function. For all ξ ∈ S p , we have

D log |Σ|[ξ] = D f (Σ)[ξ] |Σ| = Tr(Σ -1 ξ).
Thus, we get the desired directional derivative We move on to the definition of smooth embedded submanifolds, denoted by M, of linear spaces E. Informally, these are subsets of E that are either opens or defined by constraints h : E → R k with k > 0. In the latter case, a point x ∈ E belong to M if and only if h(x) = 0. Two important remarks are made about h. First, it should be a smooth function. Second, its rank should be constant and maximal, i.e. span(D h(x)) = R k . This last property is enforced so that ker(D h(x)) is a linearization (latter called tangent space) of M at x and thus M is locally diffeomorphic to R k . Definition 11 (Definition 3.10 of [START_REF]An introduction to optimization on smooth manifolds[END_REF]). Let E be a linear space of dimension d. A nonempty subset M of E is a smooth embedded submanifold of E of dimension q if either 1. q = d and M is open in E -we also call this an open submanifold or 2. q = d -k for some k ≥ 1 and, for each x ∈ M, there exists a neighborhood U of x in E and a smooth function h :

D f (Σ)[ξ] = |Σ| Tr(Σ -1 ξ).
U → R k such that (a) If y is in U , then h(y) = 0 if only if y ∈ M; and (b) rank(D h(x)) = k.
Such a function h is called a local defining function for M at x.

If M is a linear subspace, we also call it a linear manifold.

Then, smooth curves c : I → M, with I an open interval of R, are defined on M. Collecting velocities of the curves passing through x ∈ M, we get the tangent space at x. Informally, it corresponds to a linearization of M at x. The tangent spaces are of utmost importance. Indeed, we will see later that they are linear spaces. Thus, classical operations such as addition or multiplication, and operations related to inner products are possible on the tangent space contrary to the manifold (which often is not a linear space !).

Definition 12 (Definition 3.14 of [START_REF]An introduction to optimization on smooth manifolds[END_REF]). Let M be a subset of E. For all x ∈ M, define

T x M = { ċ(0)|c : I → M is smooth and c(0) = x} (2.5)
where I is any open interval containing t = 0 and ċ(t) = d dt c(t). That is, v is in T x M if and only if there exists a smooth curve on M passing through x with velocity v. Definition 12 is not of practical interest. Thus, another characterization of the tangent space is given in Theorem 3. Indeed, this theorem gives a way to compute the tangent space at x that is directly related to Definition 11 of embedded submanifolds of linear spaces.

Theorem 3 (Theorem 3.15 of [START_REF]An introduction to optimization on smooth manifolds[END_REF]). Let M be an embedded submanifold of E. Consider x ∈ M and the set

T x M (2.5). If M is an open submanifold, then T x M = E.
Otherwise, Example 4 (Example 3.17 from [START_REF]An introduction to optimization on smooth manifolds[END_REF]). The set R d is a linear manifold of dimension d with tangent spaces

T x M = ker(D h(x)) = {ξ ∈ E : D h(x)[ξ] = 0}
T x M = R d for all x ∈ R d .
Example 5 (Example 3.18 from [START_REF]An introduction to optimization on smooth manifolds[END_REF]). The sphere

S d-1 = x ∈ R d : x T x = 1 is the zero level set of h(x) = x T x -1, smooth from R d to R. Since D h(x)[ξ] = 2x T ξ, it is clear that rank(D h(x)) = 1 for all x ∈ S d-1 . As a result, S d-1 is an embedded submanifold of R d of dimension d -1. Furthermore, its tangent spaces are given by T x S d-1 = ker(D h(x)) = ξ ∈ R d : x T ξ = 0 .

. Riemannian structure

So far, we only have presented embedded submanifolds M of linear spaces E. In order to be a Riemannian manifold, M must be endowed with a Riemannian metric on its tangent spaces. Before introducing Riemannian metrics, we first define the tangent bundle of M in Definition 13.

E M • x T x M ξ Figure 2.1: Illustration of a smooth embedded submanifold with the circle M = S 1 ⊂ E = R 2 , its tangent space T x M = ξ ∈ R 2 : x T ξ = 0 at a given x ∈ M and a tangent vector ξ ∈ T x M.
It is the disjoint union of the tangent spaces of M in the sense that every ξ ∈ T x M is paired with x. The disjoint union is of first importance when ξ belongs to several tangent spaces such the tangent vectors of the manifold R d . Definition 13 (Definition 3.42 from [START_REF]An introduction to optimization on smooth manifolds[END_REF]). The tangent bundle of a manifold M is the disjoint union of the tangent spaces of M:

T M = {(x, ξ) : x ∈ M and ξ ∈ T x M} .
(2.6) It remains to define vector fields and inner products before defining Riemannian metrics. Vector fields are introduced in Definition 14. These are map from M onto the tangent bundle T M. An easy to visualize example is the wind map over the Earth (here assumed to be spherical): at each given point x ∈ M, a vector ξ ∈ T x M gives the orientation and the magnitude of the wind.

Definition 14 (Definition 3.44 from [19]). A vector field on a manifold M is a map

ξ : M → T M such that ξ(x) is in T x M for all x ∈ M. If ξ is a
smooth map, we say it is a smooth vector field. The set of smooth vector fields is denoted by X(M).

Then, inner products are defined on tangent spaces of the manifold. The choice on inner products on the different tangent spaces T x M is called the metric.

Definition 15 (Definition 3.51 from [START_REF]An introduction to optimization on smooth manifolds[END_REF]). An inner product on T x M is a bilinear, symmetric, positive definite function ⟨., .⟩

x : T x M × T x M → R. It induces a norm for tangent vectors : ∥ξ∥ x = ⟨ξ, ξ⟩ x . A metric on M is a choice of inner product ⟨., .⟩ x for each x ∈ M. E M • x T x M T ⊥ x M ξ P M x (ξ) P M,⊥ x (ξ) Figure 2.2: Illustration of the embedded submanifold M = S 1 , its tan- gent space T x M at a given x ∈ M, a vector ξ / ∈ T x M and its orthogonal projection P M x (ξ) onto T x M.
Thanks to the previous definitions, we can introduce the concept of Riemannian metric. This concept is very important since it is the basis of many other Riemannian objects. For example, geodesics, gradients, hessians and distances on manifolds are defined with respect to this metric. The Riemannian metric is defined in Definition 16 and is simply a metric that varies smoothly between tangent spaces. A manifold endowed with a Riemannian metric is a Riemannian manifold. The sphere S d-1 presented in Example 5 is turned into Riemannian manifold in Example 6.

Definition 16 (Definition 3.52 from [START_REF]An introduction to optimization on smooth manifolds[END_REF]). A metric ⟨., .⟩ x on M is a Riemannian metric if it varies smoothly with x, in the sense that for all smooth vector fields ξ, η on M the function x → ⟨ξ(x), η(x)⟩ x is smooth from M to R.

Example 6 (Example 3.56 from [START_REF]An introduction to optimization on smooth manifolds[END_REF]). Endow R d with the standard metric ⟨ξ, η⟩ = ξ T η and consider the sphere S d-1 embedded in R d . With the inherited metric ⟨ξ, η⟩ x = ⟨ξ, η⟩ = ξ T η on each tangent space T x S d-1 , the sphere S d-1 becomes a Riemannian manifold.

. Orthogonal projection

So far, we defined inner products ⟨., .⟩ x on tangent spaces T x M of M. If this inner product also defines an inner product in the ambient space, i.e. if (ξ, η) ∈ E × E → ⟨ξ, η⟩ x is a bilinear, symmetric, positive definite function for all x ∈ M, ξ, η ∈ E, then an orthogonal projection P M

x : E → T x M can be defined. Indeed, since an inner product is defined on all the ambient space E, the subspace T x M ⊂ E admits an orthogonal complement which is the normal space and defined as

T ⊥ x M = {ξ ∈ E : ⟨ξ, η⟩ x = 0 ∀η ∈ T x M} .
(2.7)

Thus, every element ξ ∈ E is uniquely decomposed as

ξ = P M x (ξ) + P M,⊥ x (ξ) (2.8)
with the orthogonal projectors P M

x : E → T x M and P M,⊥

x

: E → T ⊥ x M.
Example 7. Consider R d with the standard metric ⟨ξ, η⟩ = ξ T η and the sphere S d-1 embedded in R d . The ambient space R d is the sum of two complementary and orthogonal spaces

R d = T x S d-1 + T ⊥ x S d-1 with T ⊥ x S d-1 = {αx : α ∈ R} . To project ξ ∈ E onto T x S d-1 , it suffices to remove its component in T ⊥ x S d-1 , i.e. P S d-1 x (ξ) = ξ -(x T ξ)x = (I d -xx T )ξ.

. Levi-Civita connection

To define affine connections, we introduce scalar fields. A simple and illustrative example of the latter is the temperature on Earth (assumed to be spherical). Indeed, at each point of the earth corresponds a temperature, and thus defines a scalar fields. The definition of scalar fields is important since in the next chapters, functions on manifolds are minimized. Definition 17 (Definition 3.32 from [START_REF]An introduction to optimization on smooth manifolds[END_REF]). A scalar field on a manifold M is a function f : M → R. If f is a smooth function, we say it is a smooth scalar field. The set of smooth scalar fields on M is denoted by F(M).

Since vector and scalar fields are now defined, we can move on to affine connections. Affine connections are central in Riemannian geometry since they define the acceleration along a curve on a manifold and this acceleration defines geodesics. Definition 18 of affine connections is axiomatic: desired properties are specified and then the object, if it exists, is studied. Definition 18 (Definition from [START_REF] Absil | Optimization Algorithms on Matrix Manifolds[END_REF]). Let X(M) denote the set of smooth vector fields on M. An affine connection ∇ on a manifold M is a mapping

∇ : X(M) × X(M) → X(M),
which is denoted by (ξ, η) ∇ → ∇ ξ η and satisfies the following properties:

1. F(M)-linearity in ξ: ∇ f ξ+gχ η = f ∇ ξ η + g ∇ χ η, 2. R-linearity in η: ∇ ξ (aη + bζ) = a ∇ ξ η + b ∇ ξ ζ, 3. Product rule (Leibniz' law): ∇ ξ (f η) = (ξf )η + f ∇ ξ η, in which η, χ, ξ, ζ ∈ X(M), f, g ∈ F(M), and a, b ∈ R. ξf is the vector field such that (ξf )(x) = D f (x)[ξ(x)].
The vector field ∇ ξ η is called the covariant derivative of η with respect to ξ for the affine connection ∇.

First of all, it should be noted that no Riemannian metric is mentioned in Definition 18. Thus, a smooth embedded submanifold is enough to define affine connections. A second remark is that Definition 18 extends the classical derivative of vector fields on a linear space E. Indeed, for ξ, η ∈ X(E)

(∇ ξ η) x = lim t→0 η(x + tξ(x)) -η(x) t = D η(x)[ξ(x)] (2.9)
is an affine connection on E. In practice, for a given manifold, many affine connections exist. The fundamental theorem of Riemannian geometry states that, given a Riemannian manifold, there is a unique affine connection that is torsion-free and is compatible with the Riemannian metric. Furthermore, this theorem gives an explicit formula, the Koszul formula, to compute this connection called the Levi-Civita connection.

Theorem 4 (Theorem 5.3.1 from [START_REF] Absil | Optimization Algorithms on Matrix Manifolds[END_REF]). On a Riemannian manifold M there exists a unique connection ∇ that satisfies 

1. ∇ η ξ -∇ ξ η = [η, ξ] (
2⟨∇ χ η, ξ⟩ = χ⟨η, ξ⟩ + η⟨ξ, χ⟩ -ξ⟨χ, η⟩ -⟨χ, [η, ξ]⟩ + ⟨η, [ξ, χ]⟩ + ⟨ξ, [χ, η]⟩.
(2.10)

For all ξ, η, χ ∈ E, a Euclidean space (linear space endowed with the classical Euclidean metric), we get ξ⟨η, χ⟩ = ⟨ξη, χ⟩ + ⟨η, ξχ⟩ and the Koszul formula (2.10) reduces to ⟨χη, ξ⟩ = ⟨∇ χ η, ξ⟩. Thus, the affine connection of Equation 2.9 is the Levi-Civita connection.

Example 8. The sphere S d-1 is a Riemannian manifold thus it has a unique Levi-Civita connection. Using the Koszul formula (2.10), for all η, ξ ∈ X(S d-1 ) and x ∈ S d-1 , it is

(∇ S d-1 ξ η) x = P S d-1 x (D η(x)[ξ(x)]) = (I d -xx T ) D η(x)[ξ(x)].
All the Riemannian manifolds defined in the following are equipped with their Levi-Civita connections. x .

E M • x T x M ξ • exp M x (ξ)

. Acceleration, geodesic and exponential map

This Levi-Civita connection allows us to introduce geodesics. In a linear space E, the geodesic γ :

I → E, I an open interval of R, with initial conditions γ(0) = x and γ(0) = ξ is the classical straight line γ(t) = x + tξ.
A characteristic of these straight lines is their zero acceleration: γ(t) = 0 for all t ∈ I. This acceleration is extended to Riemannian manifolds in Definition 19. Then, geodesics on manifolds are introduced in Definition 20 as C 2 curves with zero acceleration. Definition 19 (Definition 2.19 from [START_REF]Optimization and estimation on manifolds[END_REF]). Let M be a Riemannian manifold with its Levi-Civita connection ∇. Let γ : I → M with I an open interval of R be a C 2 curve on M. The acceleration along γ is given by:

t → ∇ γ(t) γ(t) ∈ T γ(t) M.
In order to respect Definition 18 of the connection, γ is supposed to be smoothly extended to an arbitrary vector field X ∈ X(M) such that X(γ(t)) = γ(t) for all t.

Definition 20 (Definition 2.20 from [21]). A smooth curve γ : I → M, with I an open interval of R, is a geodesic if and only if it has zero acceleration on all its domain.

Then, the exponential mapping is defined. This smooth map retracts a tangent vector ξ onto the manifold by following a geodesic with an initial direction ξ. The exponential mapping is illustrated in Figure 2.3.

E M • x T x M log M x (y)
• y θ 

O = {(x, ξ) ∈ T M : γ ξ is defined on an interval containing [0, 1]} .
The exponential map exp M : O → M is defined by

exp M (x, ξ) = exp M x (ξ) = γ ξ (1)
.

The restriction exp M

x is defined on O x = {ξ ∈ T x M : (x, ξ) ∈ O}.

Proposition 6 (Proposition 10.17 from [START_REF]An introduction to optimization on smooth manifolds[END_REF]). The exponential map is smooth on its domain O, which is an open in T M.

Example 9. Let S d-1 be the Riemannian manifold of the sphere in R d . The geodesic γ : R → S d-1 with initial conditions γ(0) = x and γ(0

) = ξ ̸ = 0 is γ(t) = cos(t ∥ξ∥)x + sin(t ∥ξ∥) ξ ∥ξ∥ .
Indeed, for all t ∈ R γ(t) T γ(t) = 1, γ respect the initial conditions and it has a zero acceleration. To verify this last assertion, we compute the second derivative of γ at t γ(t) = -∥ξ∥ 2 γ(t).

Then, we check the zero acceleration

∇ S d-1 γ(t) γ(t) = (I d -γ(t)γ(t) T )γ(t) = -∥ξ∥ 2 (I d -γ(t)γ(t) T )γ(t) = 0.
It follows that the exponential mapping exp S d-1

x :

T x S d-1 \ {0} → S d-1 is exp S d-1
x (ξ) = cos(∥ξ∥)x + sin(∥ξ∥) ξ ∥ξ∥ .

In the case ξ = 0, exp S d-1

x is smoothly extended using the limit sin(x) x → 1 when x → 0.

. Injectivity radius, logarithmic map and distance

Remarkably, given x ∈ M, the exponential mapping exp M

x is locally a diffeomorphism around the origin 0 x of T x M. This means that there exists a neighborhood U ⊂ T x M around 0 x such that exp M

x is a smooth one-toone correspondence between U and exp M

x (U ) ⊂ M. When it exists, the inverse map of the exponential mapping is called the logarithmic map. Given x, y ∈ M, it returns the tangent vector ξ ∈ T x M such that exp M

x (ξ) = y. It is introduced in Definition 22 and is illustrated in 

log M x (y) = arg min ξ∈Ox ∥ξ∥ x subject to exp M x (ξ) = y,
with domain such that this is uniquely defined.

Then, the length of a curve on a Riemannian manifold as well as the Riemannian distance are defined.

Definition 23 (Definitions 2.21 and 2.22 from [START_REF]Optimization and estimation on manifolds[END_REF]). The length of a C 1 curve, γ : [a, b] → M, on a Riemannian manifold is defined by

length(γ) = b a ⟨ γ(t), γ(t)⟩ γ(t) dt = b a ∥ γ(t)∥ γ(t) dt.
The geodesic distance on M is given by

d M (p, q) = inf γ∈Γ length(γ) (2.11) where Γ is the set of C 1 curves γ : [0, 1] → M such that γ(0) = p and γ(1) = q.
A curve achieving the infimum (2.11) is called a minimizing curve. It should be noted that Definition 23 of the Riemannian distance does not make use of geodesics. Previously, we defined geodesics γ : I → M as C 2 curves with zero acceleration and remarkably these geodesics are locally minimizing curves. This means that for all t ∈ I, there exists a neighborhood U ⊂ I containing t such that the geodesic restricted to U is a minimizing curve. Before going further, we define an open ball B(x, inj(x)) ⊂ T x M where the exponential mapping is a diffeomorphism. This domain is important for the following since, for all ξ ∈ B(x, inj(x)), the curve t → exp M x (tξ) is a minimizing curve. This open ball as well as the injectivity radius x → inj(x) are introduced in Definition 24.

Definition 24 (Definition 10.19 from [START_REF]An introduction to optimization on smooth manifolds[END_REF]). The injectivity radius of a Riemannian manifold M at a point x, denoted by inj(x), is the supremum over radii r > 0 such that exp M

x is defined and is a diffeomorphism on the open ball

B(x, r) = {ξ ∈ T x M : ∥ξ∥ x < r} .
We now have all the tools to establish a link between the geodesic, the exponential map, the logarithmic map and the Riemannian distance This relationship is presented in Proposition 7.

Proposition 7 (Proposition 10.22 from [START_REF]An introduction to optimization on smooth manifolds[END_REF]).

If ∥ξ∥ x < inj(x), the geodesic c(t) = exp M x (tξ) on the interval [0, 1] is the minimizing curve connecting x to y = exp M
x (ξ), unique up to parametrization. In particular, d M (x, y) = ∥ξ∥ x , and log M

x (y) = ξ.

Example 10. Let S d-1 be the Riemannian manifold of the sphere in R d . The objective is to find the logarithmic mapping. To do so, for x, y ∈ S d-1 such that y ̸ = ±x, we look for ξ ∈ T x S d-1 satisfying exp S d-1

x (ξ) = y. First of all, we have

x T y = cos(∥ξ∥).

Thus, we get that

y = (x T y)x + sin(∥ξ∥) ξ ∥ξ∥ .
This implies that the orthogonal projection of y onto

T x S d-1 is proportional to ξ (I d -xx T )y = P S d-1 x (y) = sin(∥ξ∥) ξ ∥ξ∥ .
Thus the normalized projection is

P S d-1 x (y) P S d-1 x (y) = sign(sin(∥ξ∥)) ξ ∥ξ∥
where sign is the sign function. Furthermore, if the domain of exp S d-1

x is restricted to ξ such that ∥ξ∥ < π we get that sign(sin(∥ξ∥)) = 1, and x T y = cos(∥ξ∥) has a unique solution which is ∥ξ∥ = arccos(x T y) where arccos :

E M • x = γ(0) T x M ξ • y = γ(1)
T y M T x,y (ξ) • γ(t)
[-1, 1] → [0, π]. This implies that ξ = arccos(x T y) P S d-1 x (y) P S d-1 x (y)
.

Since ξ is the unique solution,

log S d-1
x (y) = arccos(x T y) P S d-1

x (y) P S d-1

x (y) .

(2.12)

is the logarithmic mapping for y ̸ = ±x and log S d-1

x (y) = 0 for y = x. One can check that for all y ∈ S d-1 \ {-x}

exp S d-1 x (log S d-1 x (y)) = y (2.13) and conversely. Thus, exp S d-1 x : B(x, π) → S d-1 \ {-x} is a diffeomor- phism and d S d-1 (x, y) = log S d-1
x (y) = arccos(x T y). Finally, it should be noted that y = -x is the antipodal point of x. Thus, there is an infinite number of ξ such that exp S d-1

x (ξ) = y and there is no logarithmic map for y = -x.

. Parallel transport

In Euclidean spaces, we are used to compare vectors, e.g. by computing an angle between them. However, these operations of comparison are not relevant on Riemannian manifolds for vectors that belong to different tangent spaces. Indeed, a vector ξ belonging to a given tangent space T x M does not necessarily belong to another tangent space T y M. Thus, it must first be "moved" to T y M along a curve γ such that γ(0) = x and γ(1) = y before being compared to vectors of T y M. To do so, a vector field η ∈ X(M) such that η(γ(0)) = ξ that is parallel along γ is computed. By "constant" we mean that its covariant derivative with respect to γ along γ is zero. This property and the resulting parallel transport are formally presented in the next two definitions.

Definition 25. Given a smooth curve

γ on M with γ(0) = x and γ(1) = y, the vector field η ∈ X(M) is parallel along γ if for all t ∈ [0, 1] ∇ γ(t) η(γ(t)) = 0.
Definition 26. Given a smooth curve γ on M with γ(0) = x and γ(1) = y, the parallel transport of tangent vectors at x to the tangent space T y M along γ is the map

T M x,y : T x M → T y M defined by T M x,y (ξ) = η(γ(1)), where η ∈ X(M) is a constant vector field along γ such that η(γ(0)) = ξ.
It should be noted that the application T M

x,y depends on the chosen curve γ ! In the following, when M is a Riemannian manifold, the chosen curve is the geodesic between x and y. This notion of parallel transport is illustrated with the sphere in R d in Example 11 and in Figure 2.5.

Example 11. Let S d-1 be the Riemannian manifold of the sphere in R d . From [START_REF] Qi | An efficient BFGS algorithm for Riemannian optimization[END_REF], the parallel transport of ξ ∈ T x M along the geodesic γ such that γ(0) = x, γ(1) = y and γ(0

) = η = log S d-1 x (y) is T S d-1
x,y (ξ

) = I d + (cos(∥η∥) -1) ηη T ∥η∥ 2 -sin(∥η∥) xη T ∥η∥ ξ.

. Elements of optimization on manifolds

In this section, we present algorithms to minimize smooth functions on manifolds, i.e.

minimize x∈M h(x) (2.14)
where M is a manifold and h is a smooth scalar field, i.e. a smooth function from M to R, called the cost function. In the following, we assume that h is lower bounded on M. This assumption is met for most well posed optimization problems, otherwise this means that h has no minimum.

Assumption 1.

There exists h * ∈ R such that h(x) ≥ h * for all x ∈ M.

A problem (2.14) on the sphere manifold is presented in the following example.

Example 12.

Let A be a p × p symmetric matrix. A minimization problem on the sphere is

minimize x∈S d-1 h(x) = 1 2 x T Ax .
The cost function h respects Assumption 1 since it is continuous and S d-1 is compact.

Generally speaking, we are interested in problems (2.14) for which no closed form formula exists or is of no practical interest, e.g. for computational cost reasons. Since h is smooth, the general idea is to adapt classical gradientbased optimization algorithms developed for Euclidean spaces, such as gradient descent or conjugate gradient, to Riemannian manifolds.

. Gradient based optimization on manifolds

We begin with the definition of the Riemannian gradient which extends the definition of the gradient on Euclidean spaces to Riemannian manifolds. Definition 27 (Definition 3.58 from [START_REF]An introduction to optimization on smooth manifolds[END_REF]). Let h : M → R be smooth on a Riemannian manifold M. The Riemannian gradient of h is the vector field grad M h on M uniquely defined by the following identities:

∀(x, ξ) ∈ T M, D h(x)[ξ] = ⟨grad M h(x), ξ⟩ x , (2.

15)

where D h(x) is as in Equation (2.1) and ⟨., .⟩ x is the Riemannian metric.

So far, we only said we want to tackle the minimization problem (2.14) without additional specifications. The ideal objective would be to find the global minimum of h. However, this is a difficult task (as on Euclidean spaces) without any further assumption on h. A more realizable objective is to find the critical points of h on M. This goal is classical in optimization on Euclidean spaces and here extended to Riemannian manifolds.

Definition 28. A point x ∈ M is critical (or stationary) for a smooth function

h : M → R if grad M h(x) = 0.
Targeting these points gives a necessary condition for a point x to be a local minimizer. This is called the first-order necessary optimality condition. Indeed, any local minimizer of h is also a critical point.

Definition 29. A point x ∈ M is a local minimizer of a function h : M → R if there exists a neighborhood U of x in M such that h(y) ≥ h(x) for all y ∈ U .

Proposition 8 (Proposition 4.5 from [19]). Any local minimizer of a smooth function

h : M → R is a critical point of h.
This necessary condition is applied on the cost function of Example 12 to find that the minimum is an eigenvector of the symmetric matrix A.

Example 13. We continue Example 12. To find the critical points, we com-

pute the gradient of h. Given ξ ∈ T x S d-1 D h(x)[ξ] = ξ T Ax = ⟨Ax, ξ⟩ = ⟨(I d -xx T )Ax, ξ⟩.
Thus, the gradient of

h at x is grad S d-1 h(x) = (I d -xx T )Ax.
By cancelling this gradient, we get the following necessary condition for x ∈ S d-1 to be a minimum of h Ax = (x T Ax)x.

Therefore, the minimum of h is met at the eigenvector of unit norm x associated with the lowest eigenvalue λ = x T Ax of A.

To find these critical points, gradient-based optimization algorithms on Euclidean spaces are adapted to Riemannian manifolds M. The main difficulty comes from the non-linearity (in general) of M. Indeed, a gradient descent step does not necessarily returns a point on M, i.e. for a given iterate x (l) ∈ M and a step size α > 0

x (l+1) = x (l) -α grad M h(x (l) ) / ∈ M (in general).
(

2.16)

To overcome this issue, we look for iterative algorithms that move along smooth curves c :

I → M, with I an open interval of R around 0. At a given iterate x (l) ∈ M, if c is such that c(0) = x (l) and h(c(α)) < h(x (l) )
for some step size α > 0 then

x (l+1) = c(α) ∈ M
(2.17)

and h(x (l+1) ) < h(x (l)
). Thus, we found a new iterate which belongs to the manifold and that decreases the value of h ! The challenge is to find such a curve c. In Section 2.1, we introduced the geodesic and the exponential map which are smooth maps to move on manifolds. Thus, they are good candidates for c. For all ξ ∈ T x M, t → h(exp M x (tξ)) is smooth by composition, therefore it admits a Taylor expansion. Recalling that exp

M x (0) = x and d dt exp M x (tξ) t=0 = ξ, we get h(exp M x (tξ)) = h(x) + t D h(x)[ξ] + O(t 2 ).
(2.18)

Using Definition 27 of the Riemannian gradient, this Taylor expansion is rewritten

h(exp M x (tξ)) = h(x) + t⟨grad M h(x), ξ⟩ M x + O(t 2 ).
(2.19)

Thus for α > 0 small enough, the cost function is decreased if and only if ξ is a descent direction, i.e.

h(exp M x (αξ)) -h(x) < 0 ⇐⇒ ⟨grad M h(x), ξ⟩ M x < 0.
(2.20)

Using (2.20), we build an iterative algorithm. At a given iterate x (l) , let α > 0 be a small enough step size and ξ ∈ T x (l) M be a descent direction, i.e. ⟨grad M h(x), ξ⟩ M x < 0, the next iterate is given by

x (l+1) = exp M x (l) (αξ) ∈ M (2.21)
and h(x (l+1) ) < h(x (l) ). Before going further, we notice that we only used the smoothness, the initial position and speed of the exponential map to derive (2.21). Thus, any curves satisfying these properties could be used in place of the exponential mapping. This motivates the introduction of retractions.

Definition 30 (Definition 3.47 from [START_REF]An introduction to optimization on smooth manifolds[END_REF]). A retraction on a manifold M is a smooth map

R M : T M → M : (x, ξ) → R M x (ξ)
such that each curve c(t) = R M x (tξ) satisfies c(0) = x and ċ(0) = ξ. It should be noted that exponential maps are retractions. Therefore, retractions generalize exponential maps and only respect the important properties to do optimization. Retractions can be developed when the exponential mapping is not available in closed form, or too expensive to compute or not stable numerically. An example of a retraction on the sphere in R d is given.

Example 14. Let x ∈ S d-1 and ξ ∈ T x S d-1 , then a retraction is R S d-1 x (ξ) = x + ξ ∥x + ξ∥ .
Given a retraction on M, (2.21) is rewritten

x (l+1) = R M x (l) (αξ).
(

2.22)

In order to implement (2.22), it remains to provide a descent direction ξ ∈ T x (l) M. Many possibilities exist, two of them are presented in the following.

The first one implements the Riemannian gradient descent algorithm and the second the Riemannian conjugate gradient algorithm.

Algorithm 3: Riemannian gradient descent

Input: Initialization:

x (0) ∈ M Output: x (l) ∈ M for l = 0 to convergence do ξ (l) = -grad M h(x (l) ) α = Linesearch(x (l) , ξ (l) ) x (l+1) = R M x (l) αξ (l)

. Riemannian gradient descent

A first descent direction to implement (2. 22)

is ξ = -grad M h(x (l) ). Indeed, it is a descent direction since ⟨grad M h(x (l) ), -grad M h(x (l) )⟩ M x (l) = -grad M h(x (l) ) 2 
x (l) < 0. (2.23) Using this descent direction along with (2.22) is the Riemannian gradient descent described in Algorithm 3. It can be proven that an iterate x (l) with an arbitrary small gradient can be found using this algorithm. To get this result, a second assumption is added on the decrease at each iteration of the cost function.

Assumption 2. At each iteration, the algorithm achieves sufficient de-

crease for h, in that there exists a constant c > 0 such that, for all k, h(x (l+1) ) -h(x (l) ) ≤ -c grad M h(x (l) ) 2 x (l) . Some conditions on the pullback function h • R M : T M → R can be added to ensure that Assumption 2 is met; see [START_REF]An introduction to optimization on smooth manifolds[END_REF]Chapter 4] for a detailed discussion. In practice, a line-search looks for a step size such that Assumption 2 is respected. Indeed, classical Euclidean line-searches such as the backtracking one have their Riemannian counterparts; see [START_REF] Absil | Optimization Algorithms on Matrix Manifolds[END_REF]Chapter 4]. Then, when both Assumptions 1 and 2 are met, the next proposition states that, as desired, the norm of the gradient tends to zero as the iteration number tends to the infinite. Furthermore, it gives a non-asymptotic convergence rate of

O 1 √ L
for the gradient norm. It should be noted that both results are without conditions on the initialization. Proposition 9 (Proposition 4.7 from [START_REF]An introduction to optimization on smooth manifolds[END_REF]). Let h be a smooth function satisfying Assumption 1 on a Riemmannian manifold M. Let x (0) , x (1) , x (2) , • • • be iterates satisfying Assumption 2 with constant c. Then,

lim k→+∞ grad M h(x (l) ) x (l) = 0. Furthermore, for all L ≥ 1, there exists l in 0, • • • , L -1 such that grad M h(x (l) ) x (l) ≤ h(x (0) ) -h * c 1 √ L .

Algorithm 4: Riemannian conjugate gradient

Input: Initialization:

x (0) ∈ M, ξ (0) = -g (0) = -grad M h(x (0) ) Output: x (l) ∈ M for l = 0 to convergence do if ⟨g (l) , ξ (l) ⟩ x (l) ≥ 0 then ξ (l) = -g (l) α = Linesearch(x (l) , ξ (l) ) x (l+1) = R M x (l) αξ (l) g (l+1) = grad M h(x (l+1) ) ξ (l) T = T M x (l) ,x (l+1) (ξ (l) ) g (l) T = T M x (l) ,x (l+1) (g (l)
)

β = max 0, g (l+1) -g (l)
T ,g (l+1)

x (l+1)

g (l+1) -g (l)
T ,ξ

(l) T x (l+1) ξ (l+1) = -g (l+1) + βξ (l) T

. Riemannian conjugate gradient

In the previous subsection, we presented the Riemannian gradient descent algorithm which gives the following iterate for a given x (l) ,

x (l+1) = R M x (l) (αξ (l) ) (2.24)
where α is a small enough step size and ξ (l) = -grad M h(x (l) ). The Riemannian gradient descent is the simplest gradient-based optimization algorithm on manifold but empirically suffers from a convergence that can be slow. To alleviate this problem, other descent directions can be used in (2.24). For example, the Riemannian conjugate gradient proposes to add some inertia. As in (2.16), the non-linearity of the Riemannian manifold requires to adapt the classical conjugate gradient. Indeed, on a Euclidean space, the conjugate gradient linearly combines the gradient of h at x (l) and the descent direction ξ (l-1) . This cannot be done on a Riemannian manifold since, in general,

T x (l) M ̸ = T x (l-1) M. Thus, the descent direction ξ (l-1) is first transported to T x (l) M using the parallel transport T M x (l-1) ,x (l) : T x (l-1) M → T x (l)
M and then linearly combined to the gradient of h at x (l)

ξ (l) = -grad M h(x (l) ) + β T M x (l-1) ,x (l) (ξ (l-1) ) (2.25)
where β > 0. It should be noted that ξ (l) is not necessarily a descent direction. In this case, β is set to 0 and thus ξ (l) = -grad M h(x (l) ) which is the descent direction of the Riemannian gradient descent. This Riemannian conjugate gradient is presented in Algorithm 4. In this algorithm, the inertia 

M π -1 ( π ( x ) ) • x T x M V x H x π M • x = π(x) T x M
= π(x) ∈ M is the equivalence class π -1 (π(x)) ⊂ M. The tangent space T x M is decom- posed into the vertical space V x = T x π -1 (π(x)
) and its orthogonal complement, the horizontal space H x , which provides proper representatives for tangent vectors in T x M. parameter β is computed using the Hestenes-Stiefel rule. Others could be used, e.g. see the survey [START_REF] Hager | A survey of nonlinear conjugate gradient methods[END_REF]. A last remark is that we used the parallel transport in Equation (2.25), however it is not always available in closed form or can be expensive to compute. Previously, we said that the retraction generalizes the exponential mapping. This leads to cheaper and easier to derive formulas to move on the manifold while keeping the important properties for optimization. In the same way, a generalization of the parallel transport is the vector transport; see [START_REF] Absil | Optimization Algorithms on Matrix Manifolds[END_REF]Chapter 8] for more details.

. Riemannian quotient manifolds

Riemannian quotient manifolds are a ubiquitous tool when optimizing functions with symmetries on Riemannian manifolds. A classical problem is the estimation of a subspace whose orthogonal basis is defined up to rotations. This problem is presented later on in this section; see [START_REF] Zhang | From Symmetry to Geometry: Tractable Nonconvex Problems[END_REF] for other functions with symmetries. Riemannian quotient manifolds are an advanced topic and thus requires the introduction of many other concepts of Riemannian geometry to be well defined. The reader is referred to [START_REF] Absil | Optimization Algorithms on Matrix Manifolds[END_REF]Chapter 3] or [START_REF]An introduction to optimization on smooth manifolds[END_REF]Chapters 8 and 9] for a proper introduction. In this section, we focus on the practical aspect, i.e. how to recognize these manifolds and how to manipulate their elements.

. Some elements on Riemannian quotient manifolds

Let M be a Riemannian manifold embedded in a linear space E with the Riemannian metric at x ∈ M, (ξ, η) ∈ T x M × T x M → ⟨ξ, η⟩ M

x . Riemannian quotient manifolds arise when some points are "equivalent", e.g. rotations of M that leave the values of a function h : M → R unchanged. In this case, points of M can be grouped together to form a new set M. We begin by recalling some definitions related to quotient sets. Let ∼ be an equivalence relation, i.e. a binary relation on M that is reflexive, symmetric, and transitive. Then the corresponding equivalence classes are

[x] = y ∈ M : y ∼ x , (2.26)
and the associated quotient set is defined by

M = M/ ∼= [x] ∈ M : x ∈ M . (2.27)
The natural (or canonical ) projection π associates points of M to those of

M π(x) = [x]. (2.28) 
If M respect some properties, then it admits a unique structure that turns it into a quotient manifold. Elements of a quotient manifold, such as points and tangent vectors, are abstracts. Thus, we leverage the elements of M, that are easily handled, to work with elements of M. For example, an equivalence class x ∈ M is represented by a point x ∈ M such that π(x) = x. Admitting that the tangent space T x M is properly defined, this asks the question of the representation of its points. To do so, the tangent space T x M is decomposed into two orthogonal subspaces. First of all, the vertical space is defined as the tangent space to the equivalent class π -1 (π(x)) ⊂ M and thus collects tangent vectors that "have no effect on π(x)"

V x = T x π -1 (π(x)) ⊂ T x M.
(2.29)

Then, the horizontal space is defined as the orthogonal complement of

V x in T x M H x = {ξ ∈ T x M : ⟨ξ, η⟩ M x = 0 for all η ∈ V x }.
(2.30)

Thus, V x and H x are in direct sum in the tangent space of M at x, i.e. T x M = V x +H x and orthogonal projections P V

x : E → V x and P H

x : E → H x can be defined. Figure 2.6 illustrates these concepts. Then, it can be shown that for each element ξ ∈ T π(x) M, there exists a unique ξ ∈ H x such that ξ = D π(x)[ξ] (admitting that this directional derivative is well defined). ξ is called the horizontal lift of ξ at the lifting point x and can also be denoted lift x (ξ). Thus, every ξ ∈ T π(x) M is represented by a unique element ξ ∈ H x . If for every x ∈ M and every ξ, η ∈ T x M, the inner product (ξ, η) → ⟨ξ, η⟩ M

x does not depend on the lifting point x, i.e.

x ∼ y =⇒ ⟨lift x (ξ), lift x (η)⟩ M x = ⟨lift y (ξ), lift y (η)⟩ M y (2.31) then ⟨ξ, η⟩ M x = ⟨lift x (ξ), lift x (η)⟩ M x (2.32)
defines a Riemannian metric on M and M becomes a Riemannian quotient manifold of M.

. Optimization on Riemannian quotient manifolds

In the following chapters, we are mainly focused on optimization when dealing with Riemannian quotient manifolds. These minimization problems write minimize

x∈M h(x) (2.33)
for a cost function h : M → R invariant along equivalence classes i.e.

h(x) = h(y) for all x ∼ y.

(2.34)

Thus, we are only interested in the equivalence classes x = π(x) and not in the elements x of M. Formally, (2.33) is rewritten

minimize x∈M h(x).
(2. [START_REF] Carlson | On the relation between NDVI, fractional vegetation cover, and leaf area index[END_REF])

with h such that h = h • π : M → R.
The next example illustrates the presented tools with a subspace estimation problem.

Example 15. The objective of this example is to motivate the introduction to Riemannian quotient manifolds and to show how problems on these sets can arise. First of all, the previously presented sphere S p-1 ⊂ R p can be seen be seen as the set of orthogonal bases of 

1-dimensional subspaces in R p . A natural extension is the set of orthogonal bases of k-dimensional subspaces in R p St p,k = U ∈ R p×k : U T U = I k .
h(U ) = 1 2 X -U U T X 2 2 .
(2.36) 

This
U ∈ St p,k h(U O) = h(U ) for all O ∈ O k .
Thus, it is interesting to consider the following equivalence relation

U ∼ U ′ ⇐⇒ U O = U ′ for some O ∈ O k , which induces the following equivalent classes in St p,k [U ] = {U ′ ∈ St p,k : U ′ ∼ U } .
Then, the associated quotient set is (2.37)

Gr p,k = St p,k / ∼= {[U ] : U ∈ St p,k } .

This set is a Riemannian quotient manifold, is presented in details in

We will see later that the dimension of the parameter space in (2.36) is

pk -k(k+1) 2 whereas in (2.37) it is (p -k)k. This way, k(k-1) 2 dimensions have been removed (which is the dimension of O k ).
As presented in previous sections, to perform first order Riemannian optimization, we essentially need two tools: the Riemannian gradient and a retraction. The Riemannian gradient of h at x = π(x), denoted grad M h(x) and that belongs to T x M, is represented by the Riemannian gradient grad M h(x) ∈ H x of h at x. By definition, the gradient is the only tangent vector in T x M satisfying

D h(x)[ξ] = ⟨grad M h(x), ξ⟩ M x for all ξ ∈ T x M.
(2.38)

Note that this vector always belongs to the horizontal space H x due to the invariance of h along equivalence classes. To obtain a point on M from a descent direction (represented by a vector in H x ), we need a retraction, i.e., a map R M : T M → M. Let R M be a retraction on M such that for all

x ∈ M and ξ ∈ T x M π(R M x (lift x (ξ))) = π(R M y (lift y (ξ))) (2.39)
for all x, y ∈ π -1 (x) with lift x (ξ) and lift y (ξ) being the horizontal lifts of ξ at x and y respectively. Then,

R M x (ξ) = π(R M x (lift x (ξ))) (2.40)
defines a retraction on M.

We conclude this section by pointing out that all the Riemannian tools defined in the previous sections such as the Levi-Civita connection, the exponential map, the logarithmic map and the Riemannian distance can be extended to Riemannian quotient manifolds. These extensions are made in the same spirit as what we have just done for the retraction: the Levi-Civita connection on M is represented by a vector field on M, the geodesic on M is represented by a geodesic on M and so on. We do not go into more details since, for these Riemannian quotient manifolds, we use already established results for these tools; for example see the Grassmann manifold presented in Section 2.4. This section aims to present examples of Riemannian manifolds that will be used throughout the manuscript. Each manifold will be presented in details as well as the tools of interest for optimization. The presented manifolds are:

. Some important

• the manifold of p × p symmetric positive definite matrices with the affine invariance Riemannian metric denoted S ++ p ,

• the manifold of p × p symmetric positive definite matrices with unit determinant denoted SS ++ p ,

• the manifold of n-dimensional strictly positive vectors denoted (R + * ) n ,

• the compact Stiefel manifold denoted St p,k ,

• and the Grassmann quotient manifold of k-dimensional subspaces in R p denoted Gr p,k .

. S ++ p : manifold of symmetric positive definite matrices

An important Riemannian manifold is the one of symmetric positive definite matrices with the affine invariant metric. Before introducing this Riemannian manifold, we motivate its increasing use in the literature over the years. First of all, an abundant literature has developed around optimization on this Riemannian manifold. Indeed, recent theoretical advances have shown that some non-convex problems are geodesically convex on this manifold (i.e. convex along the geodesics). This geodesic convexity, abbreviated g-convexity, gives interesting properties on first order stationary points (zero gradient) similar to convexity and thus allows global optimization. Detailed presentations of the concept of g-convexity are made in [START_REF]An introduction to optimization on smooth manifolds[END_REF]Chapter 11] and [START_REF] Sra | Conic Geometric Optimization on the Manifold of Positive Definite Matrices[END_REF]. Moreover, this g-convexity gives fast optimization algorithms and therefore convenient to use [START_REF] Zhang | First-order Methods for Geodesically Convex Optimization[END_REF]. Examples of applications of these g-convexity properties are covariance estimation [START_REF] Wiesel | Geodesic convexity and covariance estimation[END_REF], Gaussian mixtures estimation [START_REF] Hosseini | Matrix Manifold Optimization for Gaussian Mixtures[END_REF][START_REF] Hosseini | An alternative to EM for Gaussian mixture models: batch and stochastic Riemannian optimization[END_REF], metric learning [START_REF] Zadeh | Geometric Mean Metric Learning[END_REF] and geometric mean computation [START_REF] Moakher | A Differential Geometric Approach to the Geometric Mean of Symmetric Positive-Definite Matrices[END_REF]. In addition to its relevance in optimization, the Riemannian manifold of symmetric positive definite matrices has been successfully used in many covariance-based applications such as brain-computer interface classification [START_REF] Barachant | Multiclass Brain-Computer Interface Classification by Riemannian Geometry[END_REF] and detection of pedestrians [START_REF] Tuzel | Human Detection via Classification on Riemannian Manifolds[END_REF] or in signal processing for diffusion tensor magnetic resonance imaging [START_REF] Fletcher | Riemannian geometry for the statistical analysis of diffusion tensor data[END_REF]. We now turn to the description of this Riemannian manifold. Only the main tools are presented. Detailed descriptions can be found in [START_REF] Skovgaard | A Riemannian Geometry of the Multivariate Normal Model[END_REF][START_REF] Pennec | A Riemannian framework for tensor computing[END_REF][START_REF] Bhatia | Positive Definite Matrices[END_REF].

First of all, the sets of p × p symmetric matrices and p × p symmetric positive definite matrices are defined as

S p = Σ ∈ R p×p : Σ T = Σ , (2.41) and S ++ p = Σ ∈ S p : ∀x ∈ R p \ {0}, x T Σx > 0 (2.42)
respectively. Thus, S p is a linear space in the ambient space R p×p and S ++

p is an open in S p . Thus and by definition, S ++ p is a smooth embedded submanifold of S p . This induces that the tangent space at Σ ∈ S ++ p is

T Σ S ++ p = S p = ξ ∈ R p×p : ξ T = ξ . (2.43)
Then, every tangent space T Σ S ++ p is equipped with the following Riemannian metric, for all ξ, η ∈ T Σ S ++ p ⟨ξ, η⟩

S ++ p Σ = Tr Σ -1 ξΣ -1 η . (2.44)
It is sometimes referred to the affine invariant Riemannian metric due to its invariance to affine transformations, i.e.

⟨D ϕ S ++ p (Σ)[ξ], D ϕ S ++ p (Σ)[η]⟩ S ++ p ϕ S ++ p (Σ) = ⟨ξ, η⟩ S ++ p Σ (2.45)
where ϕ S ++ p (Σ) = AΣA T with A ∈ GL p . It should be noted that many other Riemannian metrics exist on S ++ p such as the log-Euclidean metric, the Bures-Wasserstein metric or the Bogoliubov-Kubo-Mori metric [START_REF] Arsigny | Geometric Means in a Novel Vector Space Structure on Symmetric Positive-Definite Matrices[END_REF][START_REF] Thanwerdas | O(n)-invariant Riemannian metrics on SPD matrices[END_REF]. However, the affine invariant metric (2.44) is proportional to the Fisher information metric1 associated with the centered Gaussian distributions and thus is closely related to the statistical models we study in this manuscript. The presented geometry is sometimes referred as the information geometry of the centered Gaussian distributions, see [START_REF] Amari | Information geometry and its applications[END_REF] for a presentation of the information geometry. An additional remark is that it is a particular case of a class of affine invariant metrics, see [START_REF] Pennec | Statistical computing on manifolds: from Riemannian geometry to computational anatomy[END_REF] for more details. Then the orthogonal projection from

R p×p onto T Σ S ++ p is P S ++ p Σ (ξ) = sym(ξ) (2.46)
where sym(ξ) = 1 2 ξ + ξ T . For two smooth vector fields ξ, η ∈ X(S ++ p ), the Levi-Civita connection on

S ++ p is ∇ S ++ p ξ η = D η[ξ] -sym ηΣ -1 ξ . (2.47) The corresponding geodesic γ S ++ p with initial conditions γ S ++ p (0) = Σ and γS ++ p (0) = ξ is γ S ++ p (t) = Σ 1 2 exp tΣ -1 2 ξΣ -1 2 Σ 1 2 (2.48)
where exp is the matrix exponential and for all t ∈ R and A ∈ R p×p , A t = exp(t log(A)) when the matrix logarithm log(A) exists 2 . The geodesic

γ S ++ p with endpoints conditions γ S ++ p (0) = Σ 1 and γ S ++ p (1) = Σ 2 is γ S ++ p (t) = Σ 1 2 1 Σ -1 2 1 Σ 2 Σ -1 2 1 t Σ 1 2 1 (2.49)
Then, the exponential mapping on S ++

p at Σ is exp S ++ p Σ (ξ) = Σ 1 2 exp Σ -1 2 ξΣ -1 2 Σ 1 2 .
(2.50)

The parallel transport between Σ 1 ∈ S ++ 

T S ++ p Σ 1 ,Σ 2 (ξ) = Σ 2 Σ -1 1 1 2 ξ Σ 2 Σ -1 1 1 2 T . (2.51) Then, the logarithm mapping of Σ 2 ∈ S ++ p at Σ 1 ∈ S ++ p is log S ++ p Σ 1 (Σ 2 ) = Σ 1 2 1 log Σ -1 2 1 Σ 2 Σ -1 2 1 Σ 1 2
1 .

(2.52)

Finally, the Riemannian distance on S ++ p is d S ++ p (Σ 1 , Σ 2 ) = log Σ -1 2 2 Σ 1 Σ -1 2 2 2
.

(2.53)

Since, this distance is associated to the Riemannian metric (2.44), it is also invariant to affine transformations, i.e.

d S ++ p ϕ S ++ p (Σ 1 ), ϕ S ++ p (Σ 2 ) = d S ++ p (Σ 1 , Σ 2 ) .
(2.54)

We now detail how to minimize a smooth function h : S ++ p → R. Indeed, there are two tools left to minimize h:

1. the Riemannian gradient of h at any given point on S ++ p , 2. a retraction defined on any tangent space T Σ S ++ p .

The Riemannian gradient of h at Σ is given as a transformation of G ∈ R p×p , the Euclidean gradient of h at Σ. Indeed, the Euclidean gradient is easily computed using automatic differentiation libraries such as Autograd [START_REF] Maclaurin | Autograd: Effortless Gradients in Pure Numpy[END_REF] or JAX [START_REF] Bradbury | JAX: composable transformations of Python+NumPy programs[END_REF]. Thus, using this transformation, the Riemannian gradient can be automatically computed. The Riemannian gradient of h at Σ is

grad S ++ p h(Σ) = Σ sym(G)Σ.
(2.55)

It remains to provide a retraction R S ++ p Σ : T Σ S ++ p → S ++ p .
The exponential mapping (2.50) is of course a valid one. However, in practice we will use the following retraction for its numerical stability:

R S ++ p Σ (ξ) = Σ + ξ + 1 2 ξΣ -1 ξ. (2.56)
This retraction is a second order approximation of the exponential mapping (2.50):

exp S ++ p Σ (tξ) = R S ++ p Σ (tξ) + O(t 3 ). (2.

57)

It can also be seen as a second order retraction in the sense that ∇ An important and related manifold to S ++ p is SS ++ p , the manifold of p×p symmetric positive definite matrices of unitary determinant. An example of application is the estimation of the scatter matrix of the compound Gaussian distribution [START_REF] Bouchard | Riemannian geometry for compound Gaussian distributions: Application to recursive change detection[END_REF]. This manifold is a Riemannian geodesic submanifold of S ++ p : the geodesics of SS ++ p are geodesics of S ++ p . Thus, knowing S ++ p , the geometry of SS ++ p is easily derived. We begin with the formal definition of SS ++ p , the set of p × p symmetric positive definite matrices with a unit determinant,

SS ++ p = Σ ∈ S ++ p : |Σ| = 1 .
(2.58)

By denoting h(Σ) = |Σ| -1, we get that D h(Σ)[ξ] = Tr(Σ -1 ξ) for all ξ ∈ S p . By taking ξ = α p Σ, we get that D h(Σ)[ξ] = α for all α ∈ R. Thus rank(D h(Σ)) = 1 for all Σ ∈ SS ++ p and SS ++ p is a smooth embedded submanifold of S p . This induces that the tangent space at Σ ∈ SS ++ p is T Σ SS ++ p = ξ ∈ S p : Tr(Σ -1 ξ) = 0 . (2.59)
Then, every tangent space T Σ SS ++ p is equipped with the affine invariant metric defined in (2.44), i.e. for all ξ, η ∈ T Σ S ++ p ⟨ξ, η⟩

SS ++ p Σ = ⟨ξ, η⟩ S ++ p Σ = Tr Σ -1 ξΣ -1 η . (2.

60)

The orthogonal projection from R p×p onto T Σ SS ++ p is

P SS ++ p Σ (ξ) = sym(ξ) - 1 p Tr(Σ -1 ξ)Σ (2.61)
where sym(ξ) = 1 2 ξ + ξ T . For two smooth vector fields ξ, η ∈ X(SS ++ p ), the Levi-Civita connection on

S ++ p is ∇ SS ++ p ξ η = P SS ++ p Σ ∇ S ++ p ξ η = P SS ++ p Σ D η[ξ] -sym ηΣ -1 ξ . (2.62) Remarkably, the geodesic γ S ++ p on S ++ p with initial conditions γ S ++ p (0) = Σ ∈ SS ++ p and γSS ++ p (0) = ξ ∈ T Σ SS ++ p
has a unit determinant for all t ∈ R. Indeed, we have

γ SS ++ p (t) = Σ 1 2 exp tΣ -1 2 ξΣ -1 2 Σ 1 2 = exp Tr Σ -1 ξ = 1. (2.63)
Thus, the corresponding geodesic

γ SS ++ p with initial conditions γ SS ++ p (0) = Σ and γSS ++ p (0) = ξ is γ SS ++ p (t) = Σ 1 2 exp tΣ -1 2 ξΣ -1 2 Σ 1 2 .
(2.64)

The geodesic γ SS ++ p with endpoints conditions γ SS ++ p (0) = Σ 1 and

γ SS ++ p (1) = Σ 2 is γ SS ++ p (t) = Σ 1 2 1 Σ -1 2 1 Σ 2 Σ -1 2 1 t Σ 1 2
1 .

(2.65)

Then, the exponential mapping on SS ++

p at Σ is exp SS ++ p Σ (ξ) = Σ 1 2 exp Σ -1 2 ξΣ -1 2 Σ 1 2 .
(2.66)

The parallel transport between Σ 1 ∈ SS ++ 

T SS ++ p Σ 1 ,Σ 2 (ξ) = Σ 2 Σ -1 1 1 2 ξ Σ 2 Σ -1 1 1 2 T .
(2.67)

Then, the logarithm mapping of

Σ 2 ∈ SS ++ p at Σ 1 ∈ SS ++ p is log SS ++ p Σ 1 (Σ 2 ) = Σ 1 2 1 log Σ -1 2 1 Σ 2 Σ -1 2 1 Σ 1 2
1 .

(2.68)

Finally, the Riemannian distance on

SS ++ p is d SS ++ p (Σ 1 , Σ 2 ) = log Σ -1 2 2 Σ 1 Σ -1 2 2 2
.

(2.69)

We now detail how to minimize a smooth function h : SS ++ p → R. Indeed, there are two tools left to minimize h:

1. the Riemannian gradient of h at any given point on SS ++ p , 2. a retraction defined on any tangent space T Σ SS ++ p . The Riemannian gradient of h at Σ is given as a transformation of G ∈ R p×p , the Euclidean gradient of h at Σ,

grad SS ++ p h(Σ) = P SS ++ p Σ (ΣGΣ) .
(2.70)

It remains to provide a retraction R S ++ p Σ : T Σ SS ++ p → SS ++ p .
The exponential mapping (2.50) is of course a valid one. However, in practice we will use the following retraction for its numerical stability:

R SS ++ p Σ (ξ) = Σ + ξ + 1 2 ξΣ -1 ξ Σ + ξ + 1 2 ξΣ -1 ξ 1 p . (2.71)
It is a second order retraction in the sense that ∇ Another manifold of interest is the one of matrices with strictly positive entries. This manifold has recently gain some interest in applications with constraints of positivity such as robust covariance estimation [START_REF] Bouchard | Riemannian geometry for compound Gaussian distributions: Application to recursive change detection[END_REF] or optimal transport [START_REF] Mishra | Manifold optimization for non-linear optimal transport problems[END_REF]. In the rest of the chapters, we will only handle constraints of positivity in vectors (and not in general rectangle matrices). Thus, this subsection presents the manifold of vectors with strictly positive entries.

We now present this manifold. First of all, the set of n-dimensional vectors with strictly positive entries is

(R + * ) n = {τ ∈ R n : τ i > 0} (2.72)
where τ i is the i-th component of τ . R n is a linear space and (R + * ) n is an open in R n . Thus and by definition, (R + * ) n is a smooth embedded submanifold of R n . This induces that the tangent space at τ ∈ (R + * ) n is

T τ (R + * ) n = R n .
(2.73)

Then, every tangent space T τ (R + * ) n is equipped with the following Riemannian metric, for all ξ, η ∈ T

τ (R + * ) n ⟨ξ, η⟩ (R + * ) n τ = τ ⊙-1 ⊙ ξ T τ ⊙-1 ⊙ η (2.74)
where . 

⟨D ϕ (R + * ) n (τ )[ξ], D ϕ (R + * ) n (τ )[η]⟩ (R + * ) n ϕ (R + * ) n (τ ) = ⟨ξ, η⟩ (R + * ) n τ (2.75)
where

ϕ (R + * ) n (τ ) = a ⊙ τ , a ∈ R n with nonzero elements. The orthogonal projection from R p×p onto T τ (R + *
) n is the identity mapping

P (R + * ) n τ (ξ) = ξ.
(2.76)

For two smooth vector fields ξ, η ∈ X((R + * ) n ), the Levi-Civita connection on (R + * ) n is ∇ (R + * ) n ξ η = D η[ξ] -η ⊙ τ ⊙-1 ⊙ ξ.
(2.77) 1. the Riemannian gradient of h at any given point on (R + * ) n , 2. a retraction defined on any tangent space T τ (R + * ) n . The Riemannian gradient of h at τ is given as a transformation of g ∈ R n , the Euclidean gradient of h at τ :

grad (R + * ) n h(τ ) = τ ⊙2 ⊙ g.
(2.85)

It remains to provide a retraction R (R + * ) n τ : T τ (R + * ) n → (R + * ) n .
The exponential mapping (2.80) is of course a valid one. However, in practice we will use the following retraction for its numerical stability:

R (R + * ) n τ (ξ) = τ + ξ + 1 2 τ ⊙-1 ⊙ ξ ⊙2 . (2.86)
This retraction is a second order approximation of the exponential mapping (2.80):

exp (R + * ) n τ (tξ) = R (R + * ) n τ (tξ) + O(t 3 ).
(2.87)

It can also be seen as a second order retraction in the sense that Many signal processing and machine learning algorithms rely on linear subspace estimation or classification. A standard subspace estimation algorithm is the Principal Component Analysis (PCA) [START_REF] Jolliffe | Principal Component Analysis[END_REF]. This method computes an orthogonal basis of a linear subspace where most of the variance of the original data lies in. PCA is fast and easy to implement which makes it a very common algorithm and applied in numerous applications. Thus, an rich literature has developed since the original formulation of PCA. For example, the variance based cost function can be tweaked to enforce desired properties such as sparsity [START_REF] Zou | Sparse Principal Component Analysis[END_REF][START_REF] Journée | Generalized Power Method for Sparse Principal Component Analysis[END_REF] or robustness against outliers [START_REF] Maunu | A Well-Tempered Landscape for Non-convex Robust Subspace Recovery[END_REF][START_REF] Neumayer | On the rotational invariant L1-norm PCA[END_REF]. This leads us to introduce the manifold of subspaces: the Grassmann manifold [START_REF] Absil | Riemannian geometry of Grassmann manifolds with a view on algorithmic computation[END_REF][START_REF] Edelman | The geometry of algorithms with orthogonality constraints[END_REF][START_REF] Absil | Optimization Algorithms on Matrix Manifolds[END_REF][START_REF] Bendokat | A Grassmann Manifold Handbook: Basic Geometry and Computational Aspects[END_REF]. Indeed, this Riemannian manifold enables the minimization of cost functions that rely on subspaces such the PCA-based ones. Furthermore, it describes the geometry of subspaces and thus, geodesics, distances and barycentres between subspaces can be computed. From a theoretical point of view, this has enabled the development of Intrinsic Cramér-Rao bounds (bounds on manifold) for the estimation of subspaces [START_REF] Smith | Covariance, subspace, and intrinsic Cramér-Rao bounds[END_REF]. These bounds have shown in numerical experiments the efficiency of the PCA algorithm. Since the Grassmann manifold describes the geometry of subspaces, it is of broader interest than PCA. Indeed, many other applications rely on this manifold. We mention some of them: low rank completion for recommender systems [START_REF] Boumal | RTRMC: A Riemannian trust-region method for low-rank matrix completion[END_REF][START_REF] Boumal | Low-rank matrix completion via preconditioned optimization on the Grassmann manifold[END_REF], dictionary learning [START_REF] Harandi | Dictionary Learning on Grassmann Manifolds[END_REF] and video based face recognition [START_REF] Yamaguchi | Face recognition using temporal image sequence[END_REF][START_REF] Huang | Projection Metric Learning on Grassmann Manifold with Application to Video based Face Recognition[END_REF].

∇ (R + * ) n ṙ(t) ṙ(t) t=0 = 0 with r(t) = R (R + * ) n τ (tξ) and ṙ(t) = d dt r(t).
We now described the required tools of the Grassmann manifold for the next chapters. First of all, the Grassmann manifold is the set of k-dimensional

linear subspaces of R p Gr p,k = {span(U ) : U ∈ St p,k } . (2.

88)

Its elements can be represented by orthonormal basis. This leads us to introduce the set of orthonormal basis that spans k-dimensional subspaces in R p called the Stiefel manifold and denoted St p,k . It is the zero level set of

h(U ) = U T U -I k (smooth map from R p×k to R k×k ) St p,k = U ∈ R p×k : U T U = I k . (2.89)
It should be noted that for k = p, the Stiefel manifold amounts to the orthogonal group

O k = U ∈ R k×k : U T U = I k . (2.90)
We briefly explain why St p,k is a smooth manifold. For ξ ∈ R p×k , the linear map D h(U ) : R p×k → S k is

D h(U )[ξ] = U T ξ + ξ T U . (2.91) Thus, the kernel of D h(U ) is ker(D h(U )) = ξ ∈ R p×k : U T ξ + ξ T U = 0 k×k . (2.92)
Then the linear map D h(U ) is surjective. Indeed, for all η ∈ S k , it suffices to take the direction ξ = 1 2 U η in order to get

D h(U )[ξ] = U T 1 2 U η + 1 2 U η T U = η. (2.93) 
Thus, we get that span(D h(U )) = S k which induces a constant and maximal rank:

rank(D h(U )) = k(k+1)

2

. Using the rank-nullity theorem, it follows that dim(ker(D(h(U )))) = pk -k(k + 1) 2 .

(2.94)

This shows that St p,k is a smooth embedded submanifold in R p×k of dimension pk -k(k+1)

2
with the following tangent space at U

T U St p,k = ker(D h(U )) = ξ ∈ R p×k : U T ξ + ξ T U = 0 k×k . (2.95)
Another parametrization of T U St p,k that is useful in the following is

T U St p,k = U A + U ⊥ B : A ∈ A k , B ∈ R (p-k)×k (2.96)
where A k is the set k × k skew-symmetric matrices

A k = X ∈ R k×k : X T = -X .
(2.97) Since the Stiefel manifold is defined, we move on with the Grassmann manifold. As said previously, the Grassmann manifold Gr p,k is the set of k-dimensional linear subspaces of R p and its elements will be represented with elements of St p,k . Indeed, two orthogonal basis U , U ′ ∈ St p,k represent the same subspace i.e. span(U ) = span(U ′ ) if and only if U O = U ′ for some O ∈ O k . This brings us to define the equivalence relation

and U ⊥ ∈ St p,p-k is such that U T U ⊥ = 0 k×k . It can be verified that the right part of (2.96) is indeed T U St p,k by checking that its dimension is pk -k(k+1)
∼ on St p,k U ∼ U ′ ⇐⇒ U O = U ′ for some O ∈ O k . (2.99)
Remarkably, it can be shown that there is a one-to-one correspondence between subspaces span(U ) and the equivalence classes

{U O : O ∈ O k } ⊂ St p,k
. This leads us to give another definition of the Grassmann manifold, this time as a smooth quotient manifold of St p,k ,

Gr p,k = St p,k /O k = {π(U ) : U ∈ St p,k } , (2.100) where π : St p,k → Gr p,k is the map π(U ) = {U O : O ∈ O k }.
We refer the reader to [START_REF]An introduction to optimization on smooth manifolds[END_REF]Chapter 9] for a proof that Gr p,k (2.100) is indeed a smooth quotient manifold. It should be noted that, using Definition (2.100), every element π(U ) of Gr p,k can be represented by an arbitrary

U ′ ∈ St p,k such that U ∼ U ′ . Then, the dimension of Gr p,k is dim(Gr p,k ) = dim(St p,k ) -dim(O k ) = (p -k)k.
(2.101)

In order to represent elements of the tangent space of Gr p,k at π(U ), the tangent space T U St p,k is decomposed into two complementary subspaces, the vertical one V U and the horizontal one

H U T U St p,k = V U + H U . (2.102)
Using the definition of the map π and the tangent space of O k at I k , the vertical space is

V U = T U π -1 (π(U )) = {U A : A ∈ A k } . (2.103) From (2.96), every ξ ∈ T U St p,k can be parametrized as ξ = U A + U ⊥ B with A ∈ A k , B ∈ R (p-k)×k . Let ξ ∈ V U , thus there exists A ∈ A k such that ξ = U A. Since for all B ∈ R (p-k)×k we have ⟨U A, U ⊥ B⟩ St p,k U = 0, the horizontal space at U is H U = ξ ∈ R p×k : U T ξ = 0 k×k . (2.104)
The associated orthogonal projection of ξ ∈ R p×k onto H U is

P Gr p,k U (ξ) = (I -U U T )ξ. (2.105)
As explained in Section 2.3, every element ξ ∈ T π(U ) Gr p,k is represented by a unique element lift U (ξ) ∈ H U , called the horizontal lift, such that ξ = D π(U )[lift U (ξ)]. Remarkably on Gr p,k , there is an explicit relationship between horizontal lifts taken at different lifting points of a same tangent vector,

lift U Q (ξ) = lift U (ξ)Q for all Q ∈ O k .
(2.106)

To prove this assertion, it suffices to take two different smooth curves on St p,k . The first one is such that c(0) = U and c ′ (0) = lift U (ξ) while the second one is c(t) = c(t)Q. Thus, we get that c(0

) = U Q, c′ (0) = lift U (ξ)Q and (π • c)(t) = (π • c)(t)
for all t where c and c are defined. This induces that (π . To be a Riemannian metric it remains to prove that it is invariant to the lifting point, i.e., for all Q ∈ O k , we must have

• c) ′ (0) = (π • c) ′ (0). By applying the chain rule, it follows that ξ = D π(U Q)[lift U (ξ)Q]. Since lift U (ξ)Q ∈ H U
⟨lift U Q (ξ), lift U Q (η)⟩ St p,k U Q = ⟨lift U (ξ), lift U (η)⟩ St p,k U
. This is readily checked using Equation (2.106). Thus, ⟨ξ, η⟩

Gr p,k π(U ) = ⟨lift U (ξ), lift U (η)⟩ St p,k U (2.107)
is a Riemannian metric on Gr p,k . Hence, Gr p,k becomes a Riemannian quotient manifold of St p,k . Then, classical tools of Riemannian geometry for the Grassmann manifold are given in the following. Given two smooth vector fields ξ, η ∈ X(Gr p,k ), two associated smooth vector fields ξ, η ∈ X(St p,k ) are derived using the horizontal lift, ξ(U ) = lift U (ξ(π(U ))) and η(U ) = lift U (η(π(U ))). Using these vector fields, the Levi-Civita on Gr p,k is represented by its horizontal lift which is

∇ Gr p,k ξ η = P Gr p,k (D η[ξ]) (2.108)
where, for a given χ ∈ X(R p×k ), P Gr p,k (χ) :

U ∈ St p,k → P Gr p,k U (χ(U )) ∈ H U .
The corresponding geodesic with initial position π(U ) and initial speed ξ, of horizontal lift ξ at U , is represented by

γ Gr p,k (t) = U Y cos(tΣ) + X sin(tΣ) (2.109)
where ξ = XΣY T is the thin Singular Value Decomposition (SVD). Then, the exponential mapping on Gr p,k of ξ at π(U ) is represented by

exp Gr p,k U (ξ) = U Y cos(Σ) + X sin(Σ) (2.110)
where ξ = XΣY T is the thin SVD. The associated logarithmic mapping of π(U ′ ) at π(U ) is represented by its horizontal lift at U ,

log Gr p,k U (U ′ ) = XΘY T (2.111)
where XΘY T is computed using the SVD of (I -U U T )U ′ (U T U ′ ) -1 = X tan(Θ)Y T . The matrix Θ contains the principal angles between span(U ) and span(U ′ ). It follows that the Riemannian distance between π(U ) and

π(U ′ ) is d Gr p,k (U , U ′ ) = ∥Θ∥ 2 .
(2.112)

It should be noted that the principal angles between span(U ) and span(U ′ ) can also be computed using the SVD

U T U ′ = O 1 cos(Θ)O T 2 .
We now detail how to minimize a smooth function h : St p,k → R that is invariant along equivalence classes, i.e.

h(U Q) = h(U ) for all Q ∈ O k . (2.113)
Thanks to these invariances, a cost function h : Gr p,k → R can be defined

h(π(U )) = h(U ) for all π(U ) ∈ Gr p,k .
(2.114)

It remains to define two tools to minimize h:

1. the Riemannian gradient of h at any given point on Gr p,k , 2. a retraction defined on any tangent space T π(U ) Gr p,k .

The Riemannian gradient of h at π(U ) is represented by its horizontal lift at U which is

grad Gr p,k h(U ) = P Gr p,k U (G) (2.115) 
where G ∈ R p×k is the Euclidean gradient of h at U . It remains to provide a retraction. The exponential mapping (2.110) is of course a valid one. However, a more numerically stable retraction is represented by

R Gr p,k U (ξ) = XY T (2.116)
where U + ξ = XΣY T is the thin SVD. Thus, given an iterate π(U (k) ), an iterate of the Riemannian gradient descent is obtained with

π U (k+1) = π R Gr p,k U (k) (-α grad Gr p,k h(U (k) )) (2.117)
where α > 0 is a stepsize.

. Statistical estimation and intrinsic Cramér-Rao bounds

In Chapter 1, Section 1.3, the estimation theory is introduced. Here, we present the extension of this estimation theory on Euclidean sets to Riemannian manifolds. Given a measurement {x i } n i=1 in the sample space X , we seek a parameter θ in the parameter space M, a Riemannian manifold. To do so, an estimate θ of θ is produced from the measurement {x i } n i=1 and the corresponding mapping from X to M is called an estimator. Definition 31. An estimator θ : X → M maps every measurement {x i } n i=1 to an estimate θ({x i } n i=1 ). In the following, some of the definitions and properties from Section 1.3 are extended to Riemannian manifolds. First of all, the negative log-likelihood is redefined as well as maximum likelihood estimators. Then intrinsic Cramér-Rao bounds (iCRBs) are introduced: they generalize CRBs to Riemannian manifolds. Indeed, they lower bound the variance of the estimator θ which is measured with the Riemannian distance on M instead of the classical Euclidean MSE. These bounds have two interests:

• distances related with the statistical model can be used, resulting with simple and sometimes even parameters free iCRBs,

• iCRBS are intrinsic and thus take into account constraints of the estimation problem (such as orthogonality constraints) that are not easily handled with classical CRBs.

This section highlights the main results from the seminal paper [START_REF] Smith | Covariance, subspace, and intrinsic Cramér-Rao bounds[END_REF] and mainly relies on the gentle introduction to iCRBs proposed in [START_REF]Optimization and estimation on manifolds[END_REF]Chapter 6]. The presented iCRBs only hold at high SNR and this for two reasons. First, the covariance matrix of the estimator uses the logarithmic map which is only defined locally. Thus, all estimates θ must be in a neighborhood of the true parameter θ where the logarithmic map is defined. Second, the proof of the main presented result (Theorem 5) relies on Taylor expansions that are valid only when the curvature of the Riemannian manifold M is not too high.

. Some definitions for statistical estimation

First of all, we give some classical definitions from the estimation theory. Let a measurement {x i } n i=1 ∈ X be a realization of a random variable X following a probability density function f parametrized by θ ∈ M, i.e.

X ∼ f (.; θ), (2.118) then, the negative log-likelihood function L is defined as minus the logarithm of f . In the following, we assume that L is at least twice differentiable on M. Definition 32. Given {x i } n i=1 ∈ X , the negative log-likelihood function L : M → R is defined by

L(θ|{x i } n i=1 ) = -log f ({x i } n i=1 ; θ).
Then, the maximum likelihood estimator is defined as the minimizer of the negative log-likelihood on the Riemannian manifold M. Definition 33. Given {x i } n i=1 ∈ X , the maximum likelihood estimator θ ∈ M is a minimizer of the negative log-likelihood function

θ = arg min θ∈M L(θ|{x i } n i=1 ).
Using the negative log-likelihood function, the Fisher information metric is defined.

Definition 34. For a negative log-likelihood L : M → R, the Fisher information metric is defined for all ξ, η ∈ T θ M as

⟨ξ, η⟩ FIM θ = E[D L(θ|{x i } n i=1 )[ξ] D L(θ|{x i } n i=1 )[η]] = E[D 2 L(θ|{x i } n i=1 )[ξ, η]].
Then, an orthonormal basis of each tangent space T θ M is needed to derive components of tangent vectors. Let q = dim(M), an orthonormal basis of

T θ M is denoted e θ = {e 1 θ , • • • , e q θ }.
(2.119)

The score vector3 is a vector whose components are the directional derivatives of the negative log-likelihood with respect to each element of e θ . This vector has a zero mean and its covariance matrix is called the Fisher information matrix.

Definition 35. The score vector s θ ∈ R q is defined with respect to the orthonormal basis e θ as

(s θ ) i = D L(θ|{x i } n i=1 )[e i θ ]
. Lemma 1. The score vector has a zero mean, i.e. E[s θ ] = 0.

Definition 36. The Fisher information matrix F θ is the q × q symmetric, positive semidefinite matrix defined with respect to the basis e θ as

F θ = E[s θ s T θ ]
. Thus, the entries of F θ are given by

(F θ ) ij = ⟨e i
θ , e j θ ⟩ FIM θ .

. Intrinsic Cramér-Rao bounds

With the tools defined previously, we are now able to present the main Theorem of intrinsic Cramér-Rao bounds for unbiased estimators.

Theorem 5. Let M be a Riemannian manifold, let θ ∈ M and let e θ be an orthonormal basis of T θ M. Consider an estimation problem on M such that the Fisher information matrix F θ is invertible. Then, for any unbiased estimator, the covariance matrix C θ obeys the following matrix inequality, where both F θ and C θ are expressed with respect to the basis e θ C θ ⪰ F -1 θ + curvature terms where ⪰ is the Loewner inequality.

In Theorem 5 the curvature terms are not specified for simplicity and they will be considered negligible in the following. From Theorem 5 and neglecting the curvature terms, we get the following iCRB

E d 2 M (θ, θ) ≥ Tr F -1 θ . (2.121) 
To illustrate the presented tools and Equation (2.121), we finish this section with an example on the iCRB of the covariance matrix estimation problem of the centered multivariate Gaussian distribution.

Example 16.

Let {x i } n i=1 ⊂ R p , a set of independent and identically distributed realizations of a random variable x following a centered multivariate Gaussian distribution

x ∼ N (0, Σ) (2.122)
where Σ ∈ S ++ p is called the covariance matrix and parametrizes the distribution. The goal of this example is to derive a lower bound of the variance of any unbiased estimator Σ of Σ. It should be understood that this variance can be defined using any squared Riemannian distance between the true parameter and an unbiased estimator. In this example, we consider the Riemannian manifold of symmetric positive definite matrices presented in the subsection 2.4.1. Indeed, its Riemannian metric is proportional to the Fisher information metric associated with the model (2.122) and thus the obtained iCRB is simple. To derive this iCRB, we begin by writing the negative log-likelihood function associated with the distribution (2.122),

L(Σ|{x i } n i=1 ) = n 2 log |Σ| + Tr Σ -1 ΣSCM + constant
where ΣSCM is the SCM

ΣSCM = 1 n n i=1
x i x T i .

(2.123)

Using the expectation E[ ΣSCM ] = Σ, the Fisher information metric writes is

⟨ξ, η⟩ FIM Σ = E D 2 L(Σ|{x i } n i=1 )[ξ, η] = n 2 Tr(Σ -1 ξΣ -1 η) = n 2 ⟨ξ, η⟩
e i Σ 1≤i≤p(p+1)/2 = Σ -1 2 E ij Σ -1 2 for all i, j ∈ 1, p such that j ≥ i
where E ij ∈ S p and its ij th and ji th elements are 2 -1 2 if i ̸ = j and 1 otherwise. All other elements of E ij are equal to 0. Using this orthonormal basis, we are able to compute the elements of the Fisher information matrix

(F Σ ) ij = ⟨e i Σ , e j Σ ⟩ FIM Σ = n 2 if i = j 0 otherwise.
Hence, the Fisher information matrix is proportional to the identity

F Σ = n 2 I p(p+1)/2 .
This leads to a simple closed form formula of the iCRB

E d 2 S ++ p (Σ, Σ) ≥ Tr F -1 Σ = p(p + 1) n .
(2.124)

Remarkably, this iCRB is parameter free and is in O p 2 n . Hence, the bound is quadratic with respect to the dimension of the data and is in one over the number of data. In comparaison, the classical Euclidean CRB for any unbiased estimator Σ is (see [START_REF] Smith | Covariance, subspace, and intrinsic Cramér-Rao bounds[END_REF] for a complete derivation)

E Σ -Σ 2 2 ≥ 2 i≤j Σ 2 ij + i<j Σ ii Σ jj n .
(2.125)

Finally, in [START_REF] Smith | Covariance, subspace, and intrinsic Cramér-Rao bounds[END_REF], it is shown that ΣSCM is asymptotically unbiased, i.e. b Σ → 0 as n → ∞ for all Σ ∈ S ++ p with b Σ defined in Definition 38. (2.124) is illustrated in the Figure 2.7 in which we observe that the MSE of ΣSCM reaches the iCRB for n large. We also observe that for n small, there is a discrepancy between the MSE of ΣSCM and the iCRB. [121] shows that this discrepancy is due to the bias and the inefficiency of ΣSCM on S ++ p . This contradicts the classical analysis on the Euclidean space derived from the Figure 2.8. Thus, studying the estimation error with an intrinsic point of view can also lead to much different results than its Euclidean counterpart. with 1000 Monte-Carlo versus n, the number of samples of dimension p = 10 to estimate ΣSCM .

. Conclusions

We began this chapter by defining Riemannian manifolds as embedded submanifolds of linear spaces with metrics that vary smoothly between tangent spaces. This Definition allowed us to simply define important Riemannian manifolds such as the sphere. Then, we introduced some tools of Riemannian manifolds: orthogonal projection, Levi-Civita connection, geodesic, exponential map, logarithmic map, geodesic distance and parallel transport. Taylor expansions on curves as well as first-order optimization algorithms on Riemannian manifolds have been presented. Also, Assumptions on costs functions have been introduced in order to guarantee convergence to critical points. Then, we presented the usefulness of Riemannian quotient manifolds as well as their properties for signal processing and machine learning problems such as subspace estimation. Next, we detailed some Riemannian manifolds that are used in the subsequent chapters. Finally, we presented intrinsic Cramér-Rao bounds to compute the minimum variance of an unbiased statistical estimator on a given Riemannian manifold.

-Robust estimation and classification of non centered data

Classically, many signal processing applications or machine learning algorithms make use of the second order statistic. Indeed, a standard distribution is the multivariate centered Gaussian distribution. The latter is fully parametrized by its covariance matrix which turns out to be an interesting feature to discriminate data in machine learning problems. Recently, the Riemannian geometry S ++ p associated with the Fisher information metric (FIM) of the centered Gaussian distribution [START_REF] Skovgaard | A Riemannian Geometry of the Multivariate Normal Model[END_REF] has been used with great successes on classification problems, e.g. on EEG data [START_REF] Barachant | Multiclass Brain-Computer Interface Classification by Riemannian Geometry[END_REF], in detection of pedestrians [START_REF] Tuzel | Human Detection via Classification on Riemannian Manifolds[END_REF] or in Diffusion tensor imaging [START_REF] Pennec | A Riemannian framework for tensor computing[END_REF]. These successes are described in Chapter 1 Section 1.5 and the geometry of S ++ p is presented in Chapter 2 Section 2.4.1. We recall some of its elements here since they are important for this chapter. The distance of the Riemannian manifold S ++ p between two covariance matrices Σ 1 , Σ 2 ∈ S ++ p benefits from a simple closed form formula,

d S ++ p (Σ 1 , Σ 2 ) = log Σ -1 2 1 Σ 2 Σ -1 2 1 2 . (3.1) 
Notably, this distance is affine invariant, i.e ∀A ∈ GL p ,

d S ++ p (AΣ 1 A T , AΣ 2 A T ) = d S ++ p (Σ 1 , Σ 2 ). (3.2)
This invariance property is of particular interest for applications based on mixing models [START_REF] Shimabukuro | The least-squares mixing models to generate fraction images derived from remote sensing multispectral data[END_REF][START_REF] Cardoso | Blind signal separation: statistical principles[END_REF], i.e the measured signal is assumed to be a linear combination of non-measurable and discriminative source signals. In this case, the distances in the source space are equal to those in the measured signal space. Then, many classification-clustering algorithms, e.g. the Nearest centroid classifier or K-means++, need to compute centers of mass. The Riemannian center of mass of {Σ i } M i=1 , denoted Σ, associated with the distance (3.1), is defined as the minimizer of the variance [START_REF] Karcher | Riemannian center of mass and mollifier smoothing[END_REF][START_REF] Moakher | A Differential Geometric Approach to the Geometric Mean of Symmetric Positive-Definite Matrices[END_REF],

Σ = arg min Σ∈S ++ p 1 M M i=1 d 2 S ++ p (Σ, Σ i ). (3.3)
A gradient descent achieves this minimization, see Chapter 2 Section 2.2.

As mentioned earlier, this geometry assumes that the signal is centered. Indeed, it is the information geometry [START_REF] Amari | Information geometry and its applications[END_REF][START_REF] Smith | Covariance, subspace, and intrinsic Cramér-Rao bounds[END_REF][START_REF] Skovgaard | A Riemannian Geometry of the Multivariate Normal Model[END_REF] of the centered Gaussian distribution. Hence, Equation (3.1) is the distance between centered Gaussian distributions. It does not use the mean/location whereas it can be a discriminative feature, e.g. in multispectral imaging where signals are non-centered [START_REF] Manolakis | Statistics of hyperspectral imaging data[END_REF]. Performance could be improved if data were modeled with non-centered distributions and classified with associated Riemannian manifolds (or statistical manifolds if the FIM is considered). Furthermore, some applications such as SAR images segmentation or time series classification can benefit from other statistical models such as robust statistical models [START_REF] Ollila | Complex Elliptically Symmetric Distributions: Survey, New Results and Applications[END_REF][START_REF] Tyler | A Distribution-Free M -Estimator of Multivariate Scatter[END_REF]. Thus, the objective of this chapter is to extend the pipeline, presented in Chapter 1 Section 1.2, to other statistical models than the centered Gaussian one. In particular, we propose to use the location, in addition to the covariance matrix, as a clustering-classification feature. This has two practical consequences. The first one is the development of joint location-covariance statistical estimators. The second one is the realization of machine learning algorithms that handle jointly these two statistics.

The chapter is organized as follows. First of all, Sections 3.1, 3.2 and 3.3 present a clustering-classification pipeline for non-centered Gaussian data. The information geometry M p of multivariate Gaussian distributions is leveraged to derive affine invariant divergences between couples of locations and covariance matrices. A Riemannian gradient descent is proposed to optimize functions of Gaussian distributions. In this chapter, it is used to compute centers of mass associated with the proposed divergences. The proposed pipeline is applied on the Breizhcrops dataset and robustness to transformations of data are presented. The rest of the chapter proposes to model data with the non-centered mixtures of scaled Gaussian distributions (NC-MSG). Section 3.4 presents the model and its parameter space M p,n . Then, Sections 3.5 and 3.6 establish two Riemannian geometries for M p,n . These geometries are developed to optimize functions of NC-MSGs such the negative log-likelihood (NLL) and variances to compute centers of mass. The first geometry uses a product metric and thus is simple to derive. However, this geometry gives optimization algorithms that are slow in practice. Hence, we derive a second Riemannian geometry that uses the FIM of the NC-MSG. This geometry is only known locally, i.e. geodesics and distances between arbitrary points remain unknown. Since, geodesics are unknown, we propose to classify NC-MSGs with a Kullback-Leibler (KL) divergence. The associated center of mass is derived. Finally, the proposed algorithms are extensively studied though simulations and applied on real data with the Breizhcrops dataset. Robustness to transformation of the data are presented. The parameters µ ∈ R p and Σ ∈ S ++ p are the location and covariance matrix respectively. The negative log-likelihood is defined on the set M p = R p ×S ++ p and given υ = (µ, Σ) writes (neglecting terms that do not depend on υ)

L G (υ) = log |Σ| + 1 n n i=1 (x i -µ) T Σ -1 (x i -µ).
(3.5)

The maximum likelihood estimators of the Gaussian distribution are the well known sample mean and SCM,

μSM = 1 n n i=1 x i , ΣSCM = 1 n n i=1 (x i -μSM )(x i -μSM ) T . (3.6) 
Then, M p is turned into a Riemannian manifold. The tangent space T υ M p of M p at υ is identified to the product space R p × S p with S p the set of symmetric matrices. Moreover, M p is equipped with the FIM associated with the negative log-likelihood (3.5). Let ξ = ξ µ , ξ Σ , η = η µ , η Σ ∈ T υ M p , this metric writes [START_REF] Skovgaard | A Riemannian Geometry of the Multivariate Normal Model[END_REF] ⟨ξ, η⟩ Mp

υ = ξ T µ Σ -1 η µ + 1 2 Tr(Σ -1 ξ Σ Σ -1 η Σ ). (3.7) 
Remarkably, the FIM (3.7) is invariant under affine transformations. Given A ∈ GL p and µ 0 ∈ R p we verify that

⟨D ϕ Mp (υ)[ξ], D ϕ Mp (υ)[η]⟩ Mp ϕ Mp (υ) = ⟨ξ, η⟩ Mp υ , (3.8) 
where the affine transformation writes, ϕ Mp (υ) = (Aµ + µ 0 , AΣA T ).

(3.9)

A geodesic γ(t) = (µ(t), Σ(t)) : R → M p associated with the FIM (3.7) must have a zero acceleration [START_REF] Calvo | AN EXPLICIT SOLUTION OF INFORMA-TION GEODESIC EQUATIONS FOR THE MULTIVARIATE NORMAL MODEL[END_REF] 

μ(t) -Σ(t)Σ(t) -1 μ(t) = 0 Σ(t) + μ(t) μ(t) T -Σ(t)Σ(t) -1 Σ(t) = 0.
(3.10) An explicit expression of the geodesic on M p with initial position γ(0) = υ and initial velocity γ(0) = ξ is derived in [START_REF] Calvo | AN EXPLICIT SOLUTION OF INFORMA-TION GEODESIC EQUATIONS FOR THE MULTIVARIATE NORMAL MODEL[END_REF],

N (µ 1 , Σ 1 ) N (µ 2 , Σ) N (µ 2 , Σ 2 ) M p • • • Figure 
γ(t) = (µ(t), Σ(t)) = 2Σ 1 2 R(t) sinh t 2 G G -Σ -1 2 ξ µ + µ, Σ 1 2 R(t)R(t) T Σ 1 2 (3.11) 
where

G 2 = Σ -1 2 ξ Σ Σ -1 2 2 + 2Σ -1 2 ξ µ ξ T µ Σ -1 2 , R(t) = cosh t 2 G -Σ -1 2 ξ Σ Σ -1 2 G -sinh t 2 G -T
, and G -is the Moore-Penrose inverse of G. However (3.11) only gives an expression of a geodesic with initial position and velocity. Unfortunately, in the general case, a closed form expression of a geodesic between two points υ 1 = (µ 1 , Σ 1 ) and υ 2 = (µ 2 , Σ 2 ) remains unknown. Hence, the distance between υ 1 and υ 2 associated with the FIM (3.7) is also unknown. Using other metrics than the FIM could give closed form distances but they would not necessarily have the affine transformation invariance property. Instead, we propose to use geodesic triangles derived from (3.11).

. Geodesic triangles and divergences

Geodesic triangles between υ 1 and υ 2 using the expression (3.11) can be derived. Indeed, by carefully choosing intermediate points υ, geodesics are obtained between υ 1 and υ and then between υ and υ 2 . Hence, we get geodesic triangles υ 1 → υ → υ 2 . The squared arc-length of one of these geodesic triangles is then measured to get a divergence denoted δ Mp . By construction, these divergences δ Mp are invariant by affine transformation,

δ Mp (ϕ Mp (υ 1 ), ϕ Mp (υ 2 )) = δ Mp (υ 1 , υ 2 ). (3.12)
To construct those triangles, we recall that the manifold with a fixed location vector M p µ = {(µ, Σ) : Σ ∈ S ++ p } endowed with metric (3.7) is a geodesic submanifold of M p , i.e. the geodesics of M p µ are geodesics of M p . Hence, in the case µ 1 = µ 2 , the squared distance on M p is

d 2 Mp (υ 1 , υ 2 ) = 1 2 d 2 S ++ p (Σ 1 , Σ 2 ) (3.13)
Thus, to create a triangle between υ 1 and υ 2 , it suffices to find an intermediate point υ = (µ 2 , Σ), where Σ is determined such that a geodesic (3.11) is known between υ 1 and υ. These geodesic triangles are represented in Figure 3.1. Based on this scheme, [START_REF] Calvo | AN EXPLICIT SOLUTION OF INFORMA-TION GEODESIC EQUATIONS FOR THE MULTIVARIATE NORMAL MODEL[END_REF] proposed to use a rescaling of the initial covariance matrix as an intermediate point, i.e.

υ c = (µ 2 , cΣ 1 ), (3.14 
)

with c = Σ -1 1 Σ 2 1 p = arg min c∈R + * d 2 Mp (υ c , υ 2 ).
Using this point, a first invariant under affine transformations (3.9) divergence on M p is proposed in Corollary 1.

Corollary 1 (Divergence δ c,Mp

). An invariant under affine transforma- tions (3.9) divergence on M p is

δ c,Mp (υ 1 , υ 2 ) = 2 acosh c -1 2 2 c + 1 + 1 2 ∆µ T Σ -1 1 ∆µ 2 + (p -1) 2 log (c) 2 + 1 2 log cΣ -1 2 2 Σ 1 Σ -1 2 2 2 2
.

where ∆µ = µ 2 -µ 1 and c = Σ -1 1 Σ 2 1 p .
Proof. Using the intermediate point υ c = (µ 2 , cΣ 1 ), and applying the construction of triangles explained earlier, we get

δ c,Mp (υ 1 , υ 2 ) = ρ 2 (υ 1 , υ c ) + d 2 Mp (υ c , υ 2 ), (3.15) 
where ρ is the arc length of a geodesic (3.11) computed in Equation ( 18)

of [START_REF] Calvo | AN EXPLICIT SOLUTION OF INFORMA-TION GEODESIC EQUATIONS FOR THE MULTIVARIATE NORMAL MODEL[END_REF]. Then, ρ is simplified. By denoting µ = Σ

-1 2 
1 ∆µ, we get

1 2 ρ 2 (υ 1 , υ c ) = acosh c -1 2 2 (I p + cI p + 1 2 µ µ T ) 2 2 (3.16) = acosh c -1 2 2 (c + 1 + 1 2 µ T µ) 2 
(3.17) In [START_REF] Tang | Information Geometric Approach to Multisensor Estimation Fusion[END_REF], the authors proved that the orthogonal projection of

+ (p -1) acosh c -1 2 + c
υ 1 onto N p µ 2 is υ ⊥ = µ 2 , Σ 1 + 1 2 ∆µ∆µ T . (3.19)
The squared arc length of the geodesic between υ 1 and υ ⊥ is also computed in [START_REF] Tang | Information Geometric Approach to Multisensor Estimation Fusion[END_REF],

δ ⊥ (υ 1 , υ ⊥ ) = 1 2 acosh 1 + ∆µ T Σ -1 1 ∆µ 2 .
(3.20)

Hence, using the intermediate point υ ⊥ and summing Equation (3.20) with Equation (3.13) we get a second invariant under affine transformations (3.9) divergence on M p . This divergence is proposed in Corollary 2.

Corollary 2 (Divergence δ ⊥,Mp

). An invariant under affine transformations (3.9), divergence on M p is

δ ⊥,Mp (υ 1 , υ 2 ) = 1 2 acosh 1 + ∆µ T Σ -1 1 ∆µ 2 + log Σ -1 2 2 Σ 1 + 1 2 ∆µ∆µ T Σ -1 2 2 2 2 .

. Riemannian optimization on M p and estimation of centers of mass

. Riemannian optimization

In machine learning, some important clustering-classification algorithms, e.g. K-means++ or the Nearest centroïd classifier, require a divergence and an algorithm to compute centers of mass. Since we proposed two divergences in Corollaries 1 and 2, it only remains to explicit an algorithm to compute centers of mass. Such an algorithm relies on optimization on the Riemannian manifold M p . Hence, we begin by presenting tools to perform gradient based optimization on M p . In this subsection we consider a function h : M p → R. The objective is to find the parameter υ minimizing h on M p , minimize υ∈Mp h(υ).

(3.21)

Since M p is a Riemannian manifold, we leverage the framework of optimization on Riemannian manifolds [START_REF] Absil | Optimization Algorithms on Matrix Manifolds[END_REF] to compute (3.21). Thus, we provide two important tools for Riemannian optimization, both associated with the metric (3. With these tools, we can apply gradient based algorithms on M p to minimize h. The corresponding Riemannian gradient descent is given in the Algorithm 5.

Proposition 10 (Riemannian gradient). Let υ ∈ M p , the Riemannian gradient of h at υ is

grad Mp h(υ) = P Mp υ (ΣG µ , 2ΣG Σ Σ)
where ∀ξ ∈ R p × R p×p , P Mp υ (ξ) = (ξ µ , sym(ξ Σ )), with sym(ξ) = 1 2 (ξ + ξ T ), is the orthogonal projection according to the FIM (3.7) onto T υ M p and

grad ϵ h(υ) = (G µ , G Σ ) is the Euclidean gradient of h in R p × R p×p .
Proof. See Appendix 3.A.1.

Proposition 11 (Second order retraction). A second order retraction at

υ ∈ M p of ξ ∈ T υ M p is, R Mp υ (ξ) = µ + ξ µ + 1 2 ξ Σ Σ -1 ξ µ , Σ + ξ Σ + 1 2 ξ Σ Σ -1 ξ Σ -ξ µ ξ T µ .
Proof. See Appendix 3.A.2.

. Estimation of centers of mass

We now have all the elements to compute centers of mass of sets of points S = {υ i } M i=1 ⊂ M p . These centers are associated with divergences, which in our case are the divergences δ Mp ∈ {δ c,Mp , δ ⊥,Mp }, defined in the Hence, gradient based algorithms can be applied to achieve (3.22) (e.g. using Algorithm 5). The only remaining element to compute is the Riemannian gradient of the variance defined in (3.22). Using the Proposition 10, computing the Riemannian gradient of the variance defined in (3.22) amounts to computing its Euclidean gradient. The latter is easily numerically computed using automatic differentiation libraries like Autograd [START_REF] Maclaurin | Autograd: Effortless Gradients in Pure Numpy[END_REF] or JAX [START_REF] Bradbury | JAX: composable transformations of Python+NumPy programs[END_REF].

. Application

In this subsection, we provide an application of the theoretical framework developed earlier on the large-scale crop type mapping dataset Breizhcrops [START_REF] Rußwurm | BreizhCrops: A Time Series Dataset for Crop Type Mapping[END_REF], presented in Chapter 1 Subsection 1.1.3. To classify these crops, we apply a Nearest centroïd classifier algorithm on descriptors as presented in Chapter 1. We recall that this classification algorithm works in three steps.

1. For each crop X ∈ R p×n , a descriptor is computed (e.g. the sample mean or the SCM (3.6)).

2. Then, on the training set, the center of mass of the descriptors of each class is computed.

3. Finally, on the test set, each descriptor is associated with the nearest center of mass.

Thus, we get a classification of the X. The different descriptors used in the application are the following.

• Two descriptors are the batches themselves X and their sample means μSM (3.6). Their associated geometry is the Euclidean one with the Euclidean distance as presented in Chapter 1 Example 2. The center of mass is the classical element-wise arithmetic mean.

• Then, two estimators are the SCMs ΣSCM (3.6) with location assumed to be known or not. In the case of known location, the SCM is estimated as ΣSCM = 1 n n i=1 x i x T i whereas in the case of unknown location it is estimated as ΣSCM = • Finally, two descriptors use both the sample mean and the SCM, ( μSM , ΣSCM ) from (3.6). These estimators are used with the geometry M p and the two divergences δ 2 c,Mp and δ 2 ⊥,Mp presented in Corollaries 1 and 2 respectively. Riemannian centers of mass are computed using Algorithm 5, implemented using Pymanopt [START_REF] Townsend | Pymanopt: A Python Toolbox for Optimization on Manifolds Using Automatic Differentiation[END_REF] (the python version of Manopt [START_REF] Boumal | Manopt, a Matlab Toolbox for Optimization on Manifolds[END_REF]).

x i → (1 -t)x i
The goal of this application is to show the robustness of the proposed methods when the test set undergoes transformations. The intuition is that using both the location and the covariance matrix, instead of only using the covariance matrix, should improve the robustness of the classifier. To do so, we estimate the centers of mass on the raw training set and then we classify a transformed version of the test set. The objective is to keep good performance while the test set is being transformed. Denoting x i the vectors in the test set, the two continuous transformations are the following.

• The rotation transformation is:

x i → Q(t) T x i for all t ∈ [0, 1] where Q(t) = exp(tξ) with ξ T = -ξ.
• The scale transformation is:

x i → (1 -t)x i for all t ∈ [0, 1].
It should be noted that when t = 0, the test set is left unchanged and as t is increased, the test set undergoes an increasingly important transformation. Figure 3.2 presents the Overall Accuracy results of the different descriptors and geometries on the Breizhcrops dataset. First of all, we observe that the estimators using ΣSCM along with the FIM clearly outperform the others whatever the transformation and its intensity. Furthermore, all the estimators/geometries perform equally well when t = 0 (no transformation of the test set). However, when t is increased, the two proposed methods that use δ Mp ∈ {δ c,Mp , δ ⊥,Mp } perform better than those using only ΣSCM along with the geometry of S ++ p . This shows the interest of considering both first and second order statistics along with the FIM for classification. A final remark is that the Nearest centroïd classifier using δ c,Mp performs slightly better than the one using δ ⊥,Mp when the scale transformation is applied. A good point is that the difference in performance between δ c,Mp and δ ⊥,Mp is marginal compared to the difference with the other methods when a transformation is applied. This means that the proposed Nearest centroïd classifier is robust to the chosen intermediate point of the different triangles.

So far, we have proposed two affine invariant divergences that handle both first and second order statistics of the Gaussian distribution. The Riemannian geometry associated with the FIM has been studied and an algorithm to compute Riemannian centers of mass associated with these divergences has been proposed. Finally, these tools have been applied on a classification problem to show the interest of the proposed method. Many signal processing and machine learning tasks require estimates of the first and second order statistical moments of the sample set {x i } n i=1 [START_REF] Manolakis | Statistics of hyperspectral imaging data[END_REF][START_REF] Manolakis | Detection Algorithms in Hyperspectral Imaging Systems: An Overview of Practical Algorithms[END_REF][START_REF] Frontera-Pons | Hyperspectral Anomaly Detectors Using Robust Estimators[END_REF][START_REF] Reed | Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution[END_REF]. An example of such an application has been given in the previous section. In the latter, these first and second order moments have been estimated using the empirical mean and the SCM that correspond to the MLE of the Gaussian distribution. However, these estimates tend to perform poorly in the context of heavy-tailed distributions or when the set contains outliers, which motivates the use of robust estimation methods. In such setups, one can obtain a better fit to empirical distributions by considering more general statistical models, such as the elliptical distributions [START_REF] Kai-Tai | Generalized multivariate analysis[END_REF]. Within this broad family of distributions, M -estimators of the location and scatter [START_REF] Maronna | Robust M-estimators of multivariate location and scatter[END_REF] appear as generalized MLEs and have been leveraged for their robustness properties in many fields (see [START_REF] Ollila | Complex Elliptically Symmetric Distributions: Survey, New Results and Applications[END_REF] for an extensive review).

An important subfamily of elliptical distributions are the compound Gaussian distributions, which models samples as

x d = µ + √ τ u
, where µ ∈ R p is the center (also referred as location) of the distribution, u ∼ N (0, Σ) is the speckle (centered Gaussian distribution with covariance matrix Σ), and τ ∈ R + is an independent random scaling factor called the texture. The flexibility regarding the choice of the PDF for τ results in various models for x. Compound Gaussian distributions encompass for example the t-distribution (that also includes the Cauchy distribution), and the K-distribution. In practice, the underlying distribution is generally unknown, which is why the textures have often been modeled as unknown and deterministic in the centered case, i.e., x i ∼ N (0, τ i Σ). Such models have been presented Chapter 1 Section 1.3 and are referred to as mixture of scaled Gaussian distributions (MSG) [START_REF] Wiesel | Regularized covariance estimation in scaled Gaussian models[END_REF]. The MLE of the covariance matrix Σ of this model coincides with Tyler's M -estimator of the scatter up to a scale factor [START_REF] Tyler | A Distribution-Free M -Estimator of Multivariate Scatter[END_REF], which attracted considerable activity due to its robustness and distribution-free properties over the elliptical distributions family [START_REF] Conte | Recursive estimation of the covariance matrix of a compound-Gaussian process and its application to adaptive CFAR detection[END_REF][START_REF] Pascal | Performance analysis of covariance matrix estimates in impulsive noise[END_REF][START_REF] Frahm | Tyler's M-estimator, random matrix theory, and generalized elliptical distributions with applications to finance[END_REF][START_REF] Zhang | Marčenko-Pastur law for Tyler's M-estimator[END_REF]. However, its transposition to the non-centered case from the model x i ∼ N (µ, τ i Σ) received less interest1 . This might notably be due to the fact that the usual fixed-point iterations to evaluate its maximum likelihood may diverge in practice, which motivated the present work.

In the following sections, we tackle optimization problems related to parameter estimation and classification for non-centered mixture of scaled Gaussian distributions (NC-MSG). The contribution are threefold:

First, we derive a Riemannian gradient descent and a Riemannian conjugate gradient algorithms based on the Riemannian manifold of the parameter space (location, covariance, textures) endowed with a product Riemannian metric. These algorithms are simple to derive and enough to cast a gradient descent applicable to any function of the parameters. However, they are slow in practice. Hence, we derive a second Riemannian gradient descent algorithm. The latter is based on the Fisher-Rao information geometry of the considered statistical model. Indeed the parameter space is endowed with the FIM of the NC-MSG and is inherently well suited to the natural geometry of the data [START_REF] Nielsen | The many faces of information geometry[END_REF]. In this scope we derive the Riemannian gradient (also referred to as natural gradient) and a second order retraction of this geometry in order to develop a Riemannian gradient descent. We focus on two main examples that are regularized maximum likelihood estimation and center of mass computation. Simulations evidence that this last algorithm allows for a fast computation of critical points, as it can converge with up to one order of magnitude less of iterations compared to the two previous Riemannian descent approaches.

The second line of contributions concerns the problem of maximum likelihood estimation, for which we propose a new class of regularization penalties. A main issue with NC-MSGs is that the existence of the maximum likelihood is not guaranteed. This is due to attraction points where the likelihood function diverges. This also explains why standard fixed-point algorithms to evaluate the solution may diverge in practice. Related issues are well known in the context of M -estimators because their existence is subject to strict conditions that are not always met in practice [START_REF] Maronna | Robust M-estimators of multivariate location and scatter[END_REF][START_REF] Tyler | A Distribution-Free M -Estimator of Multivariate Scatter[END_REF][START_REF] Ollila | Complex Elliptically Symmetric Distributions: Survey, New Results and Applications[END_REF], for example when there is insufficient sample support (n < p). In such setups, it is now common to rely on regularization penalties to ensure the existence of a solution, and the stability of corresponding iterative algorithms. In the centered case of elliptical distributions, several works considered shrinkage of M -estimators to a target covariance matrix [START_REF] Pascal | Generalized robust shrinkage estimator and its application to STAP detection problem[END_REF][START_REF] Sun | Regularized Tyler's Scatter Estimator: Existence, Uniqueness, and Algorithms[END_REF][START_REF] Ollila | Regularized M -estimators of scatter matrix[END_REF], and regularizing both the mean and the covariance for the non-centered t-distribution was studied in [START_REF] Sun | Regularized robust estimation of mean and covariance matrix under heavy-tailed distributions[END_REF]. Other regularization formulated on the spectrum of the covariance matrix were proposed in [START_REF] Wiesel | Regularized covariance estimation in scaled Gaussian models[END_REF][START_REF] Breloy | Spectral Shrinkage of Tyler's M -Estimator of Covariance Matrix[END_REF][START_REF] Yi | Shrinking the covariance matrix using convex penalties on the matrix-log transformation[END_REF] for the centered case. For NC-MSGs, we propose here a family of penalties that can be interpreted as a divergence between the initial model and a white Gaussian one (i.e., that shrinks both the textures and eigenvalues of the covariance matrix to a pre-defined κ ∈ R + * ). We derive the general conditions for these penalties to ensure existence of a solution of the regularized MLE. Interestingly, we show that this existence is only conditioned to the design of the penalty, and does not depend on the size of the sample support. We also also study the invariance properties of the resulting estimators.

Finally, we apply the proposed algorithms to perform Riemannian classification. We consider the framework where statistical features of sample batches are used to discriminate between classes [START_REF] Barachant | Multiclass Brain-Computer Interface Classification by Riemannian Geometry[END_REF][START_REF] Tuzel | Human Detection via Classification on Riemannian Manifolds[END_REF][START_REF] Tuzel | Pedestrian detection via classification on Riemannian manifolds[END_REF][START_REF] Formont | On the use of matrix information geometry for polarimetric SAR image classification[END_REF]. The Riemannian approach then consists in generalizing usual classification algorithms (e.g., the Nearest centroïd classifier ) by replacing the Euclidean distance and arithmetic mean by a divergence and its corresponding center of mass [START_REF] Karcher | Riemannian center of mass and mollifier smoothing[END_REF][START_REF] Arnaudon | Medians and Means in Riemannian Geometry: Existence, Uniqueness and Computation[END_REF][START_REF] Chevallier | Review of Riemannian distances and divergences, applied to SSVEP-based BCI[END_REF]. In particular, this framework has been presented in Chapter 1. In this setup, the information geometry can help in designing meaningful distances between the features, and improve the output performance [START_REF] Barachant | Multiclass Brain-Computer Interface Classification by Riemannian Geometry[END_REF][START_REF] Formont | On the use of matrix information geometry for polarimetric SAR image classification[END_REF]. Unfortunately, the geodesic distance associated with the Fisher information metric of the NC-MSG remains unobtainable in closed form (it is still unknown for the non-centered multivariate Gaussian model [START_REF] Calvo | AN EXPLICIT SOLUTION OF INFORMA-TION GEODESIC EQUATIONS FOR THE MULTIVARIATE NORMAL MODEL[END_REF][START_REF] Tang | Information Geometric Approach to Multisensor Estimation Fusion[END_REF][START_REF] Collas | On the Use of Geodesic Triangles between Gaussian Distributions for Classification Problems[END_REF]). Instead, we propose to rely on the Kullback-Leibler (KL) divergence and its associated center of mass (computed using the proposed Riemannian optimization algorithm). We apply such Riemannian classification framework to the Breizhcrops dataset [START_REF] Rußwurm | BreizhCrops: A Time Series Dataset for Crop Type Mapping[END_REF]. Our experiments evidence that regularizing the estimation greatly improves the accuracy. Thanks to the invariance properties of the proposed estimators, we we also show that this process exhibits a good robustness to rigid transformations of the samples during the inference.

The rest of the chapter is organized as follows. The next subsection presents NC-MSGs and casts their parameter space as a manifold. Section 3.5 presents a Riemannian geometry with a product metric for the parameter space of the NC-MSG. Section 3.6 studies the Fisher-Rao information geometry of the NC-MSG. Section 3.7 discusses parameter estimation in the considered model, presents a new class of regularized estimators, and studies some of their properties (existence, invariances). Section 3.8 derives the KL divergence of the model, and its associated center of mass. Section 3.9 concludes with validation simulations, and an application to Riemannian classification of the Breizhcrops dataset.

. Non-centered mixture of scaled Gaussian distributions

Let a set of n data points {x i } n i=1 belonging to R p and distributed according to the following statistical model

x i d = µ + √ τ i Σ 1 2 u , (3.23) 
where u follows a centered circular Gaussian distribution i.e. u ∼ N (0, I p ).

The variables µ ∈ R p and Σ ∈ S ++ p are respectively named the location and covariance parameters. Then, the unknown texture parameters {τ i } n i=1 are stacked into the vector τ ∈ (R + * ) n . If these textures admit a PDF, then the random variables x i follow a Compound Gaussian distribution [START_REF] Ollila | Compound-Gaussian Clutter Modeling With an Inverse Gaussian Texture Distribution[END_REF][START_REF] Ollila | Complex Elliptically Symmetric Distributions: Survey, New Results and Applications[END_REF]. However, in general, this PDF is unknown. Hence, to be robust to any underlying Compound Gaussian distributions the textures are often assumed to be deterministic [START_REF] Pascal | Covariance structure maximum-likelihood estimates in compound Gaussian noise: Existence and algorithm analysis[END_REF][START_REF] Pascal | Performance analysis of covariance matrix estimates in impulsive noise[END_REF]. In this case, the random variable x i follow a NC-MSG, i.e.

x i ∼ N (µ, τ i Σ).

(3.24)

Thus x i admits a PDF f defined from the Gaussian one f

G f (x i ; µ, Σ, τ i ) = f G (x i ; µ, τ i Σ) (3.25) with ∀x ∈ R p f G (x; µ, Σ) = (2π) -p 2 |Σ| -1 2 exp - 1 2 (x -µ) T Σ -1 (x -µ) .
(3.26)

The NLL of the sample set {x i } n i=1 is then defined on the set of parameters θ = (µ, Σ, τ ) ∈ R p × S ++ p × (R + * ) n as (neglecting terms not depending on θ)

L(θ|{x i } n i=1 ) = 1 2 n i=1 log |τ i Σ| + (x i -µ) T Σ -1 (x i -µ) τ i . (3.27) 
One can observe the presence of an ambiguity between the textures τ and the scatter matrix Σ. Indeed, ∀α ∈ R + * , we have

L µ, αΣ, α -1 τ |{x i } n i=1 = L (µ, Σ, τ |{x i } n i=1 ) .
(3.28)

Thus, to identify the textures and covariance matrix parameters, a constraint on τ or Σ can be added. Here the choice is made to constrain the textures by fixing their product to be equal to one, i.e. n i=1 τ i = 1. We point out that most of the results in the rest of the chapter could be obtained by constraining the covariance matrix instead of the textures, with a unit determinant constraint, i.e. |Σ| = 1 [START_REF] Breloy | Intrinsic Cramér-Rao Bounds for Scatter and Shape Matrices Estimation in CES Distributions[END_REF][START_REF] Bouchard | Riemannian geometry for compound Gaussian distributions: Application to recursive change detection[END_REF]. The parameter space of interest is

M p,n = R p × S ++ p × S(R + * ) n (3.29)
where S(R + * ) n is the set of textures with unit product,

S(R + * ) n = τ ∈ (R + * ) n : n i=1 τ i = 1 .
(3.30)

The choice of adding a constraint is motivated by two results additional to the identifiability:

• it reduces the dimension of the parameter space by removing the indeterminacy (3.28),

• the associated FIM (see Proposition 12) admits a simpler expression, which will be instrumental from Section 3.6 as it turns M p,n into a Riemannian manifold. Its simple formula could not have been obtained without adding this constraint (either on τ or its counterpart on Σ).

In the rest of the chapter, the goal is to optimize several cost functions h : M p,n → R. Notably, two cost functions are studied in this chapter: a regularized NLL in Section 3.7, and a cost function to compute centers of mass of sets of points {θ i } ⊂ M p,n in Section 3.8. To do so, M p,n is turned into two different Riemannian manifolds. The first one, denoted M Dec.

p,n , is described in Section 3.5 and uses a "product Riemannian metric". This metric allows a simple derivation of geometric tools (exponential mapping, parallel transport, ...) since it leverages three well known Riemannian manifolds. However, the induced optimizers are slow as shown in the numerical experiments of Section 3.9. Thus, a second Riemannian manifold, denoted M FIM p,n , is developed. This one uses the FIM of the NC-MSG. The geometric tools are harder to derive but the induced optimizers are faster than those of M Dec.

p,n in the numerical experiments of Section 3.9. In Sections (3.5 and 3.6) M Dec.

p,n and M FIM p,n are presented. In Chapter 1 Section 1.3, we introduced NC-MSG dealing with non-Gaussian data. Indeed, the estimation of their scatter matrices reduce to the Tyler's M -estimator when the location is known [START_REF] Tyler | A Distribution-Free M -Estimator of Multivariate Scatter[END_REF]. This estimator is known for its many good properties such as its distribution-free property over the class of elliptically contoured distributions. However, the extension of the Tyler's M -estimator to non-centered sample sets, i.e. when the location is unknown, is not straightforward.

. M Dec.

p,n : parameter space M p,n endowed with a product Riemannian metric

In this section M p,n is turned into a Riemannian geometry using a "product Riemannian metric". To do so, we begin by defining the ambient space of the parameter space M p,n ,

E p,n = R p × R p×p × R n . (3.31)
Therefore, the tangent space of M p,n at θ is a subspace of the ambient space E p,n

T θ M p,n = {ξ = (ξ µ , ξ Σ , ξ τ ) ∈ R p × S p × R n : ξ T τ τ ⊙-1 = 0} (3.32)
where S p is the set of p × p symmetric matrices and . ⊙-1 is the elementwise inverse operator.

. Riemannian geometry

To turn M p,n into a Riemannian geometry, we introduce a Riemannian metric in Definition 40.

Definition 40 (Product Riemannian metric). Let θ ∈ M p,n and ξ, η ∈ E p,n , an inner product on M p,n is defined by ⟨ξ, η⟩

M Dec. p,n θ = ξ T µ η µ + Tr(Σ -1 ξ T Σ Σ -1 η Σ ) + (ξ τ ⊙ τ ⊙-1 ) T (η τ ⊙ τ ⊙-1
) where ⊙ is the elementwise product operator. Restricted to elements ξ, η ∈ The Riemannian metric from Definition 40 is called a "product Riemannian metric" since it can be written as the sum of three independent Riemannian metrics of three Riemannian manifolds: R p , S ++ p and S(R + * ) n . Indeed, for all ξ, η ∈ T θ M p,n , it is rewritten as ⟨ξ, η⟩

T θ M p,n , (ξ, η) → ⟨ξ, η⟩ M Dec.
M Dec. p,n θ = ⟨ξ µ , η µ ⟩ R p µ + ⟨ξ Σ , η Σ ⟩ S ++ p Σ + ⟨ξ τ , η τ ⟩ S(R + * ) n τ (3.33)
where

• ⟨ξ µ , η µ ⟩ R p µ = ξ T µ η µ , • ⟨ξ Σ , η Σ ⟩ S ++ p Σ = Tr(Σ -1 ξ Σ Σ -1 η Σ ), • ⟨ξ τ , η τ ⟩ S(R + * ) n τ = (ξ τ ⊙ τ ⊙-1 ) T (η τ ⊙ τ ⊙-1 ).
Hence, M Dec.

p,n is a product Riemannian manifold of three well known Riemannian manifolds: R p , S ++ p , and S(R + * ) n [START_REF] Skovgaard | A Riemannian Geometry of the Multivariate Normal Model[END_REF][START_REF] Pennec | A Riemannian framework for tensor computing[END_REF][START_REF] Bhatia | Positive Definite Matrices[END_REF][START_REF] Sra | Conic Geometric Optimization on the Manifold of Positive Definite Matrices[END_REF]. The Riemannian manifold S ++ p is presented in Chapter 2 Section 2.4 and the Riemannian manifold S(R + * ) n is deduced from the one of SS ++ p , Riemannian manifold of p × p symmetric positive definite matrices of unit determinant. The Riemannian manifold R p is straightforward to derive. The proofs of the following results directly arise from properties of product manifolds [START_REF] Absil | Optimization Algorithms on Matrix Manifolds[END_REF]. We begin the description of M Dec.

p,n with the orthogonal projection from E p,n onto T θ M p,n which is

P M Dec. p,n θ (ξ) = ξ µ , sym(ξ Σ ), ξ τ - ξ T τ τ ⊙-1 n τ (3.34)
where sym(ξ) = 1 2 ξ + ξ T . Then, the exponential mapping exp

M Dec. p,n θ : T θ M p,n → M Dec. p,n is exp M Dec. p,n θ (ξ) = exp R p µ (ξ µ ), exp S ++ p Σ (ξ Σ ), exp S(R + * ) n τ (ξ τ ) (3.35)
with Algorithm 6: Riemannian gradient descent on M Dec.

p,n

Input: Initialization θ (0) ∈ M p,n Output: Iterates θ (k) ∈ M p,n for k = 0 to convergence do Compute a step size α (see [START_REF] Absil | Optimization Algorithms on Matrix Manifolds[END_REF]Ch. 4]) and set

θ (k+1) = R M Dec. p,n θ (k) -α grad M Dec. p,n h(θ (k) ) • exp R p µ (ξ µ ) = µ + ξ µ ,
• exp

S ++ p Σ (ξ Σ ) = Σ 1 2 exp Σ -1 2 ξ Σ Σ -1 2 Σ 1 2 ,
• exp

S(R + * ) n τ (ξ τ ) = τ ⊙ exp (τ ⊙-1 ⊙ ξ τ ).
Finally, the parallel transport between θ 1 ∈ M p,n and θ 2 ∈ M p,n , denoted

T M Dec.
p,n θ 1 ,θ 2 , moves vectors from the first tangent space T θ 1 M p,n onto the second one T θ 2 M p,n while preserving the Riemannian metric. For ξ ∈ T θ 1 M p,n , it writes

T M Dec. p,n θ 1 ,θ 2 (ξ) = T R p µ 1 ,µ 2 (ξ µ ), T S ++ p Σ 1 ,Σ 2 (ξ Σ ), T S(R + * ) n τ 1 ,τ 2 (ξ τ ) , (3.36) 
with

• T R p µ 1 ,µ 2 (ξ µ ) = ξ µ , • T S ++ p Σ 1 ,Σ 2 (ξ Σ ) = Σ 2 Σ -1 1 1 2 ξ Σ Σ 2 Σ -1 1 1 2 T , • T S(R + * ) n τ 1 ,τ 2 (ξ τ ) = τ 2 ⊙ τ ⊙-1 1 ⊙ ξ τ .

. Riemannian optimization

To minimize a given smooth function h : M p,n → R using gradient based Riemannian optimization algorithms, it remains to provide

• the Riemannian gradient of h associated with the product Riemannian metric from Definition 40,

• a retraction R M Dec. p,n θ : T θ M p,n → M p,n .
These two tools are directly derived from the fact that M Dec. p,n is a Riemannian product manifold. Hence, the Riemannian gradient of h at θ is

grad M Dec. p,n h(θ) = P M Dec. p,n θ G µ , ΣG Σ Σ, τ ⊙2 ⊙ G τ (3.37)
Algorithm 7: Riemannian conjugate gradient on M Dec.

p,n

Input: Initialization θ (0) ∈ M p,n Output: Iterates θ (k) ∈ M p,n ξ (0) := -grad M Dec. p,n h(θ (0) ) for k = 0 to convergence do Compute a step size α (see [START_REF] Absil | Optimization Algorithms on Matrix Manifolds[END_REF]Ch 4]) and set Ch 8]) and set

θ (k+1) = R M Dec. p,n θ (k) (αξ (k) ) Compute β (see [1,
ξ (k+1) = -grad M Dec. p,n h(θ (k+1) ) + β T M Dec. p,n θ (k) ,θ (k+1) (ξ (k) )
where grad

h(θ) = (G µ , G Σ , G τ ) is the Euclidean gradient of h in R p × R p×p × R n . A second order retraction on M Dec. p,n at θ is R M Dec. p,n θ (ξ) = R R p µ (ξ µ ), R S ++ p Σ (ξ Σ ), R S(R + * ) n τ (ξ τ ) (3.38)
where

• R R p µ (ξ µ ) = µ + ξ µ , • R S ++ p Σ (ξ Σ ) = Σ + ξ Σ + 1 2 ξ Σ Σ -1 ξ Σ , • R S(R + * ) n τ (ξ τ ) = N τ + ξ τ + 1 2 ξ ⊙2 τ ⊙ τ ⊙-1 with ∀x ∈ (R + * ) n , N (x) = ( n i=1 x i ) -1/n x.
With all the presented tools, two Riemannian optimization algorithms are derived: a Riemannian gradient descent (Algorithm 6) and a Riemannian conjugate gradient (Algorithm 7). These two algorithms are implementations of algorithms presented in Chapter 2.2. Unfortunately, they are quite slow in practice (see Section 3.9). Hence, the next section derives the information geometry of the NC-MSG to get faster optimization algorithms.

3.6 . M FIM p,n : parameter space M p,n endowed with the Fisher information metric

. Information geometry

The objective of this section is to present the information geometry of the NC-MSG (3.24); i.e. the Riemannian geometry of M p,n with the FIM as a Riemannian metric [START_REF] Amari | Information geometry and its applications[END_REF]. It is expected to give faster optimization algorithms than those associated with the product Riemannian metric from Definition 40. This intuition is confirmed in Section 3.9 thanks numerical experiments. We begin by deriving the FIM of the statistical model (3.24).

Proposition 12 (Fisher information metric). Let θ ∈ M p,n and ξ, η ∈ E p,n , the FIM at θ associated with the NLL (3.27) is ⟨ξ, η⟩

M FIM p,n θ = n i=1 1 τ i ξ T µ Σ -1 η µ + n 2 Tr(Σ -1 ξ T Σ Σ -1 η Σ ) + p 2 (ξ τ ⊙ τ ⊙-1 ) T (η τ ⊙ τ ⊙-1 )
where ⊙ is the elementwise product operator. Restricted to elements of the tangent spaces T θ M p,n , the FIM defines a Riemannian metric on M p,n which becomes a Riemannian manifold and is denoted M FIM p,n .

Proof. See Appendix 3.A.3.

Then, the orthogonal projection according to the FIM from E p,n onto T θ M p,n is given in Proposition 13.

Proposition 13 (Orthogonal projection). The orthogonal projection associated with the FIM of the Proposition 12 from E p,n onto T θ M p,n is

P M FIM p,n θ (ξ) = ξ µ , sym(ξ Σ ), ξ τ - ξ T τ τ ⊙-1 n τ .
Proof. See Appendix 3.A.4.

The orthogonal projection proves useful to derive elements in tangent spaces such as the Riemannian gradient or the Levi-Civita connection. The latter is given for the manifold M FIM p,n in the Proposition 14.

Proposition 14 (Levi-Civita connection). Let θ ∈ M p,n and ξ, η ∈ T θ M p,n , the Levi-Civita connection of M FIM p,n evaluated at θ is,

∇ M FIM p,n ξ η = P M FIM p,n θ ∇ M FIM p,n ξ η where ∇ M FIM p,n ξ η = D η[ξ]+ - 1 2 ξ T τ τ ⊙-2 n i=1 1 τ i I p + ξ Σ Σ -1 η µ + η T τ τ ⊙-2 n i=1 1 τ i I p + η Σ Σ -1 ξ µ , 1 n n i=1 1 τ i η µ ξ T µ -ξ Σ Σ -1 η Σ , 1 p ξ T µ Σ -1 η µ 1 -ξ τ ⊙ η τ ⊙ τ ⊙-1 .
Algorithm 8: Riemannian gradient descent on M FIM p,n

Input: Initialization θ (0) ∈ M p,n Output: Iterates θ (k) ∈ M p,n for k = 0 to convergence do Compute a step size α (see [START_REF] Absil | Optimization Algorithms on Matrix Manifolds[END_REF]Ch. 4]) and set

θ (k+1) = R M FIM p,n θ (k) -α grad M FIM p,n h(θ (k) )
Proof. See Appendix 3.A.5.

As detailed in Chapter 2, the Levi-Civita connection defines geodesics on a Riemannian manifold. Indeed, for I an open interval of R, a geodesic γ : I → M p,n with initial position γ(0) = θ ∈ M p,n and initial velocity

γ(0) = ξ ∈ T θ M p,n must respect ∇ M FIM p,n γ(t) γ(t) = 0, ∀t ∈ I. (3.39)
However an analytical solution of (3.39) remains unknown in this case. A retraction (approximation of the geodesic) can still be obtained (see Proposition 16) which allows us to optimize functions on M p,n . This implies that the geodesic between two points θ 1 and θ 2 is unknown. Thus, the geodesic distance is also unknown. This is not surprising since the geodesic and the Riemannian distance between two Gaussian distributions with different locations are unknown [START_REF] Skovgaard | A Riemannian Geometry of the Multivariate Normal Model[END_REF][START_REF] Calvo | AN EXPLICIT SOLUTION OF INFORMA-TION GEODESIC EQUATIONS FOR THE MULTIVARIATE NORMAL MODEL[END_REF][START_REF] Tang | Information Geometric Approach to Multisensor Estimation Fusion[END_REF][START_REF] Collas | On the Use of Geodesic Triangles between Gaussian Distributions for Classification Problems[END_REF]. To alleviate this problem, a divergence associated with the NC-MSG (3.24) is proposed in Section 3.8.

. Riemannian optimization

We propose tools to minimize smooth functions h : M p,n → R with the Riemannian manifold M FIM p,n . To do so, we consider a Riemannian steepest descent on M FIM p,n . Only the tools required for this algorithm are derived here:

• the Riemannian gradient of h associated with the FIM from the Proposition 12,

• a retraction that maps tangent vectors from T θ M p,n ∀θ ∈ M p,n onto M p,n .

We begin with the Riemannian gradient of h at θ which can be computed from the Euclidean gradient of h.

Proposition 15 (Riemannian gradient). Let θ ∈ M p,n and h be a real valued function defined on M p,n . The Riemannian gradient of h at θ is

grad M FIM p,n h(θ) = P M FIM p,n θ n i=1 1 τ i -1 ΣG µ , 2 n ΣG Σ Σ, 2 p τ ⊙2 ⊙ G τ where grad h(θ) = (G µ , G Σ , G τ ) is the Euclidean gradient of h in R p × R p×p × R n .
Proof. See Appendix 3.A.6.

Then, it remains to define a retraction for every θ on M p,n . A retraction

R M FIM p,n θ maps every ξ ∈ T θ M p,n to a point R M FIM p,n θ (ξ) ∈ M p,n and is such that R M FIM p,n θ (ξ) = θ + ξ + o(∥ξ∥)
. Several retractions could be obtained from this definition. Furthermore, it should be noted that a map respecting this definition is not necessarily related to the Riemannian metric of M FIM p,n . Thus, we choose to enforce an additional property: the desired retraction must be a second order retraction. This means that it must have a zero initial acceleration, ∇

M FIM p,n ṙ(t) ṙ(t) t=0 = 0 (3.40)
where

ṙ(t) = d dt R M FIM p,n θ
(tξ) and ∇ M FIM p,n is the Levi-Civita connection from the Proposition 14. Furthermore, the property of zero initial acceleration is linked to the definition of the geodesic. Indeed, a geodesic has a zero acceleration ∀t along its path (see (3.39)) whereas here this condition is only needed at t = 0. By respecting this property, the retraction is associated with the Riemannian metric of the Proposition 12 since the Levi-Civita connection is itself derived from this Riemannian metric. Such a retraction is presented in the Proposition 16.

Proposition 16 (Second order retraction). Let θ ∈ M p,n and ξ ∈ T θ M p,n . There exists t max > 0 (specified in the Appendix 3.A.7) such that ∀t ∈ [0, t max [, a second order retraction on

M FIM p,n at θ is R M FIM p,n θ (tξ) = µ + tξ µ + t 2 2 ξ T τ τ ⊙-2 n i=1 1 τ i I p + ξ Σ Σ -1 ξ µ , Σ + tξ Σ + t 2 2 ξ Σ Σ -1 ξ Σ - 1 n n i=1 1 τ i ξ µ ξ T µ , N τ + tξ τ + t 2 2 ξ ⊙2 τ ⊙ τ ⊙-1 - 1 p ξ T µ Σ -1 ξ µ 1 where ∀x ∈ (R + * ) n , N is defined as N (x) = ( n i=1 x i ) -1/n x.
Proof. See Appendix 3.A.7.

With this retraction and the Riemannian gradient from Proposition 15, we have all the tools required to derive a Riemannian steepest descent. The latter is presented in Algorithm 8.

. Estimation of mixtures of scaled Gaussian distributions: existence and regularization

. A pathological example

In the two previous sections, tools to perform optimization on M p,n have been developed. In this subsection, the objective is to leverage these tools to estimate parameters of the NC-MSG (3.23). In the following, we assume having n ≥ 1 data points {x i } n i=1 ⊂ R p . The estimation of the parameters of the statistical model (3.24) is performed by maximizing the associated likelihood on M p,n : minimize

θ∈Mp,n L (θ|{x i } n i=1 ) (3.41)
where L is the NLL (3.27). However, the existence of a solution to this problem is not guaranteed. To build an intuition, we present a short example of a problematic case where µ gets attracted by one data point x j . Let k be the current iteration of a given optimizer of (3.41). For k → +∞, if µ (k) → x j faster than τ (k) j → 0 and ∀i ̸ = j, τ

(k) i
→ +∞, then the quadratic form in L (3.27) tends to zero, which is its minimum,

n i=1 (x i -µ (k) ) T Σ (k) -1 (x i -µ (k) ) τ (k) i ----→ k→+∞ 0.
(3.42)

Then, if an eigenvalue λ (k) of Σ (k) tends to 0 slower than the respective limits of µ (k) , τ

(k) i and τ (k) j and since n i=1 log |τ i Σ| = n log(Σ), we obtain that L θ (k) |{x i } n i=1 ----→ k→+∞ -∞. (3.43)
Hence, depending on the data points {x i } n i=1 , a solution of the problem (3.41) does not necessarily exist.

. Regularization and existence

To overcome this issue, we present a regularized version of the NLL (3.27)

L Rκ (θ|{x i } n i=1 ) = L (θ|{x i } n i=1 ) + βR κ (θ) (3.44)
where β ∈ R + * and R κ : M p,n → R is a regularization. Thus, the minimization problem (3.41) becomes

minimize θ∈Mp,n L Rκ (θ|{x i } n i=1 ) . (3.45) Name R κ (θ) r κ (x)
L1 penalty

(diag(τ ) ⊗ Σ) -1 -κ -1 I n×p 1 = i,j (τ i λ j ) -1 -κ -1 |x -1 -κ -1 | L2 penalty (diag(τ ) ⊗ Σ) -1 -κ -1 I n×p 2 2 = i,j (τ i λ j ) -1 -κ -1 2 (x -1 -κ -1 ) 2
Bures-Wasserstein squared distance

d 2 BW (diag(τ ) ⊗ Σ) -1 , κ -1 I n×p = i,j (τ i λ j ) -1 2 -κ -1 2 2 x -1 2 -κ -1 2 2 Gaussian KL divergence δ KL (κI n×p , diag(τ ) ⊗ Σ) = 1 2 i,j κ (τ i λ j ) -1 + log (τ i λ j ) - np(1 + log(κ)) 1 2 κx -1 + log(x) -(1 + log(κ))
Table 3.1: Examples of regularizations R κ respecting Assumptions 3, 4 and 5. ∀q ∈ N * , ∥.∥ q is the Schatten norm, i.e. ∀A ∈ S p ∥A∥ q q = i |λ i | q where λ i are the eigenvalues of A. The diagonal matrix whose elements are those of τ is denoted diag(τ ). The Kronecker product between matrices is denoted ⊗.

Though (3.45) is a generic formulation, we will focus on several proposals that ensure the existence of a solution. The proposed approach is to rewrite R κ as a sum of regularizations r κ on the eigenvalues of τ i Σ. This rewriting is formalized in Assumption 3.

Assumption 3. The regularization R κ is a sum of regularizations on the eigenvalues of τ

i Σ R κ (θ) = n i=1 p j=1 r κ (τ i λ j )
where λ j ∈ R + * are the eigenvalues of Σ and r κ : R + * → R is a continuous function.

In the following, we assume that R κ respects Assumption 3. To prevent the eigenvalues of τ i Σ to take values that are too large nor too small, a second assumption is added. Indeed, Assumption 4 states that the regularization r κ goes to infinite when its argument goes to 0 + or +∞. This assumption is made so that if an eigenvalue of τ i Σ tends to 0 + or +∞ then L Rκ → +∞. 

θ → L Rκ (θ|{x i } n i=1 ) = L (θ|{x i } n i=1 ) + βR κ (θ),
with L being the NLL defined in (3.27), admits a minimum in M p,n .

Proof. See Appendix 3.A.8.

So far, the regularization has been chosen to guarantee the existence of a solution to the problem (3.45). However, this regularization shrinks the estimation towards an unknown parameter θ. In order to define this parameter, a third assumption is added. Indeed, Assumption 5 states that the regularization R κ is a divergence (see Definition 41) on the set S ++ p . This implies that the minima of R κ are known and are derived in Proposition 18.

Definition 41 (Divergence). Given a set E, the function δ : E × E → R is a divergence if it satisfies the following conditions for all x, y ∈ E 1. δ(x, y) ≥ 0 (positivity), 2. δ(x, y) = 0 if and only if x = y (separability). It should be noted that the regularizations from Table 3.1 respect Assumption 5. Thus, the minimum of (3.45) tends to 1 n n i=1 x i , κI p , 1 as β → +∞. This corresponds to a Gaussian distribution with a covariance matrix proportional to the identity. Thus, the β hyperparameter makes the trade-off between a NC-MSG (3.24) and a circular Gaussian distribution.

Assumption 5. The regularization R κ can be written as

R κ (θ) = δ S ++ p (diag(τ ) ⊗ Σ, κI n×p ) where δ S ++
We finish this section with a remark on the estimation of the parameter θ when data undergo a rigid transformation. Given Q ∈ O p and µ 0 ∈ R p , the rigid transformation ψ of a set of data {x i } n i=1 is defined as

ψ ({x i } n i=1 ) = Q T x i + µ 0 n i=1 .
(3.46)

These rigid transformations define isometries on R p since 

∥ψ (x i ) -ψ (x j )∥ 2 = ∥x i -x j ∥ 2 (3.47) ∀x i , x j ∈ R p .
L Rκ (θ|{x i } n i=1 ) , then, given Q ∈ O p and µ 0 ∈ R p , a minimum of the regularized NLL computed on the transformed data ψ ({x i } n i=1 ) = Q T x i + µ 0 n i=1 is ϕ(θ ⋆ ) = Q T µ + µ 0 , Q T ΣQ, τ , i.e. ϕ(θ ⋆ ) = arg min θ∈Mp,n L Rκ (θ|ψ ({x i } n i=1 )) .
Proof. See Appendix 3.A.10.

. Classification on M p,n

In the previous section, we proposed to optimize the regularized NLL (3.45) of the NC-MSG (3.24). Once these parameters are estimated, they can be used as features for Riemannian clustering-classification algorithms as presented in Chapter 1. To do this clustering-classification, two tools are presented in this section. Firstly, since no closed form formula of the Riemannian distance on M p,n is known, a divergence between pairs of parameters is defined. The proposed one is the KL divergence between two NC-MSG (3.24). It benefits from a simple closed form formula that is presented in Subsection 3.8.1. Secondly, simple clustering-classification algorithms, such as K-means++ or the Nearest centroïd classifier, rely on an algorithm to average parameters. Thus, an algorithm to compute centers of mass of estimated parameters θ must be defined. This center of mass is defined using the KL divergence and is presented in Subsection 3.8.2. Its computation is realized with Algorithm 8.

. Kullback-Leibler divergence

Clustering-classification algorithms, such as K-means++ or the Nearest centroïd classifier, rely on a divergence between points. Thus, it remains to define a divergence on M p,n . The latter must be related to the NC-MSG (3.24) since the objective is to classify its parameters θ. In the context of measuring proximities between distributions admitting PDFs, a classical divergence is the KL one. The latter measures the similarity between two PDFs. Definition 42 gives the general formula of the KL divergence.

Definition 42 (KL divergence). Given two PDFs p and q defined on the sample space X , the KL divergence is

δ KL (p, q) = X p(x) log p(x) q(x) dx.
Applied to NC-MSGs, the KL divergence is derived from the Gaussian one and is presented in Proposition 20. It benefits from a simple closed form formula and therefore is of practical interest.

Proposition 20 (KL divergence). Given the random variable

x = (x 1 , . . . , x n ) and two NC-MSGs of PDFs p θ 1 (x) = n i=1 f (x i ; µ 1 , Σ 1 , τ 1,i ) and p θ 2 (x) = n i=1 f (x i ; µ 2 , Σ 2 , τ 2,i ) the KL divergence is δ KL (θ 1 , θ 2 ) = 1 2 n i=1 τ 1,i τ 2,i Tr Σ -1 2 Σ 1 + n i=1 1 τ 2,i ∆µ T Σ -1 2 ∆µ + n log |Σ 2 | |Σ 1 | -np with ∆µ = µ 2 -µ 1 .
Proof. See Appendix 3.A.11.

Finally, this KL divergence is non-symmetrical. We rely on the classical symmetrization to define the proposed divergence δ Mp,n : M p,n ×M p,n → R,

δ Mp,n (θ 1 , θ 2 ) = 1 2 (δ KL (θ 1 , θ 2 ) + δ KL (θ 2 , θ 1 )) .
(3.48)

. Estimation of centers of mass

To implement simple machine learning algorithms, it remains to define an averaging algorithm on M p,n . To do so, we leverage a classical definition of centers of mass which are minimizers of variances [START_REF] Karcher | Riemannian center of mass and mollifier smoothing[END_REF][START_REF] Moakher | A Differential Geometric Approach to the Geometric Mean of Symmetric Positive-Definite Matrices[END_REF]. Given a set of parameters {θ i } M i=1 , its center of mass on M p,n is defined as the solution of minimize θ∈Mp,n

1 M M i=1 δ Mp,n (θ, θ i ) (3.49)
where δ Mp,n is the symmetrized KL divergence from the equation (3.48). To realize (3.49), Algorithm 8 can be employed.

. Numerical experiments

The objective of this section is to show the practical interests of the tools developed in the previous sections. More precisely, this section presents numerical experiments and is divided into two parts.

First, Subsection 3.9.1 studies the performance of Algorithms 6, 7 and 8, in terms of speed of convergence on the cost functions (3.45) and (3.49) through simulations. Algorithm 8 is shown to be fast. Indeed, it requires from 5 to 30 times less iterations to minimize costs functions (3.45) and (3.49) compared to other sophisticated optimization algorithms. This demonstrates the interest of the choice of the FIM to develop Riemannian optimization algorithms. Also, the estimation error on the cost function (3.41) realized by Algorithm 8 is studied on simulated data. This algorithm gives lower estimation errors than other classical estimators such as the Tyler joint meancovariance one and the Gaussian ones.

Second, an application on the crop classification dataset Breizhcrops [START_REF] Rußwurm | BreizhCrops: A Time Series Dataset for Crop Type Mapping[END_REF] is presented in Subsection 3.9.2. This dataset consists of 600 000 time series to be classified into 9 classes. The application implements a Nearest centroïd classsifier on M p,n using the divergence (3.48) and the Riemannian center of mass (3.49). Three results ensue. First, the proposed algorithms can be used on large scale datasets. Second, the proposed regularization in Section 3.7 plays an important role in classification. Third, considering a NC-MSG (3.23) is interesting for time series especially when data undergo a rigid transformation (3.46).

Python code implementing the different experiments can be found at https://github.com/antoinecollas/optim_compound.

. Simulations

In this simulation setting we set the parameters θ = (µ, Σ, τ ) ∈ M p,n as follows. First, each component of µ is sampled from a univariate Gaussian distribution N (0, 1). Second, Σ is generated using its eigendecomposition Σ = U ΛU T . U ∈ O p is drawn from the uniform distribution on O p [START_REF] Mezzadri | How to generate random matrices from the classical compact groups[END_REF] using the module "scipy.stats" from the Scipy library [START_REF] Virtanen | SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python[END_REF]. Then, the elements on the diagonal of the diagonal matrix Λ are drawn from a χ 2 1 distribution. Third, the τ i are drawn from a Γ(ν, 1/ν) distribution with ν a parameter to be chosen. The smaller the ν, the greater the variance. In order to respect the constraint n i=1 τ i = 1, the vector τ is normalized. The speed of convergence of Algorithms 6, 7 and 8 is studied on two cost functions: the regularized NLL (3.45) and the cost function (3.49) to compute the center of mass associated to the KL divergence of Proposition 20.

We begin with the minimization of the regularized NLL (3.45). n = 150 data x i ∈ R 10 are drawn from a NC-MSG, i.e. x i ∼ N (µ, τ i Σ). The parameter θ = (µ, Σ, τ ) of this distribution is generated as explained in the introduction of Subsection 3.9.1 with ν = 1. Different parameters β in (3.45) are considered: β ∈ {0, 10 -5 }. The chosen regularization is the L2 penalty from Table 3.1. When β = 0 the NLL is the plain one, i.e. it is not regularized. We point out that, in this setup, the optimization goes well although the existence of a solution to this problem is not proven. When β > 0 a solution to the minimization problem exists from Proposition 17. The results of this experiment are presented in Figure 3.3. We observe that Algorithm 8 is much faster than the two others regardless of the β parameter. Indeed, for β ∈ {0, 10 -5 }, Algorithm 8 is at least 100 times faster than Algorithm 6 and 10 times faster than Algorithm 7.

Then, a similar experiment is performed with the cost function (3.49) to compute centers of mass. M ∈ {2, 100} parameters θ are generated as described in the introduction of Subsection 3.9.1 with ν = 1. The minimization is performed with the same optimization algorithms as previously. The results of this experiment are presented in Figure 3.4. We observe that Algorithm 8 is much faster than the two others regardless of M . Indeed, when M = 2 Algorithm 8 converges in 40 iterations whereas Algorithm 6 requires 300 iterations and Algorithm 7 still has not converged after 1000 iterations. When M = 100, Algorithm 8 converges in less than 60 iterations which is 4 times faster than Algorithm 7. It should be noted that Algorithm 6 has not converged after 1000 in the case M = 100.

Then, the estimation error made by Algorithm 8 applied on the NLL (3.27) (β = 0) is studied with numerical experiments on simulated data. We do not measure the estimation errors made by Algorithms 6 and 7 since they minimize the same cost function as Algorithm 8 and return the same values of likelihood once the convergence reached. n ∈ 20, 1000 data x i are sampled from the NC-MSG (3.24). The parameter θ = (µ, Σ, τ ) of this distribution is generated as presented in the introduction of Subsection 3.9.1 with ν = 0.1 in order to have heterogeneous textures τ i . The considered estimators for this numerical experiment are the following:

• Gaussian estimators: the sample mean μSM = 1 n n i=1 x i and the sample covariance matrix ΣSCM =

1 n n i=1 (x i -μSM ) (x i -μSM ) T .
• Tyler's joint location-covariance matrix estimator [START_REF] Tyler | A Distribution-Free M -Estimator of Multivariate Scatter[END_REF] denoted μTy and ΣTy .

• Tyler's M -estimator with location known [START_REF] Tyler | A Distribution-Free M -Estimator of Multivariate Scatter[END_REF]. The sampled data x i are centered with the true location µ and then Σ is estimated. This estimator is denoted ΣTy,µ .

• The proposed estimator denoted μIG and ΣIG . Algorithm for the estimated location μ and the estimated covariance Σ respectively. Then, they are averaged with 2000 Monte-Carlo on the samples x i . The MSE on the location and the covariance versus the number of samples x i are plotted in Figure 3.5. First of all, we observe on both figures that the Gaussian estimators have a high MSE. This shows the interest of considering robust estimators such as the Tyler's joint location-covariance matrix estimator or the proposed one when the textures τ i are heterogeneous. Then, the proposed estimators realize a much lower MSE than the Tyler's joint location-covariance estimator. We can note that when enough samples are provided, the MSE on the location realized by the proposed estimator reaches the machine precision and is therefore negligible. Finally, we compare the performance of the proposed estimator with the Tyler's M -estimator for the covariance estimation. Indeed, when the location is known, the Tyler's M -estimator is the MLE of the NC-MSG (3.24). We observe that when enough samples are provided, the proposed estimator matches the MSE of the Tyler's M -estimator.

Overall, this experimental subsection illustrates the good performance of the proposed estimator when data are sampled from a NC-MSG (3.24). 

. Application

In the previous subsection, the different theoretical results derived in Sections from 3.4 to 3.8 showed several interests on synthetic data. We now focus on applying a Nearest centroïd classifier on M p,n to real data using the estimation framework developed in Section 3.7, the divergence and the Riemannian center of mass from Section 3.8 as well as the optimization framework using the FIM from Section 3.6. This classifier is compared to several other Nearest centroïd classifiers associated with different estimators and divergences.

To do so, we consider the dataset Breizhcrops [START_REF] Rußwurm | BreizhCrops: A Time Series Dataset for Crop Type Mapping[END_REF]: a large scale dataset of more than 600 000 crop time series from the Sentinel-2 satellite to classify. This dataset is presented in Chapter 1 Section 1.1. To classify these crops, we apply a Nearest centroïd classifier on descriptors. This classification algorithm works in three steps.

1. For each time series X ∈ R n×p , a descriptor is computed, e.g. a parameter θ ∈ M p,n from the minimization of the regularized NLL (3.44).

2. Then, on the training set, the center of mass of the descriptors of each class is computed. This center of mass is always computed by minimizing the variance associated with a divergence between descriptors. For example, the center of mass on M p,n is computed as in (3.49).

3. Finally, on the test set, each descriptor is labeled with the class of the nearest center of mass with respect to the chosen divergence.

Six Nearest centroïd classifiers are considered and they are grouped according to the divergence they use: the Euclidean distance, the symmetrized KL divergence between Gaussian distributions, or the symmetrized KL divergence (3.48) between NC-MSG. For each divergence, several Nearest centroïd classifiers are derived using several estimators. These estimators correspond to different assumptions on the data.

Three Nearest centroïd classifiers rely on the Euclidean distance between matrices (1.23). From this geometry, three Nearest centroïd classifiers are derived using three estimators: the batch itself X, the sample mean μSM and

Σµ=0 SCM = 1 n n i=1 x i x T i .
The last two estimators correspond the assumption that data follow a Gaussian distribution (either with same covariance matrix for all batches or same location).

Two Nearest centroïd classifiers rely on the symmetrized KL divergence between Gaussian distributions. Let M p = R p × S ++ p . Given two pairs of parameters υ 1 = (µ 1 , Σ 1 ) ∈ M p and υ 2 = (µ 2 , Σ 2 ) ∈ M p , this divergence is given by (a) Mean transformation:

δ Mp (υ 1 , υ 2 ) = 1 2 (δ KL (υ 1 , υ 2 ) + δ KL (υ 2 , υ 1 )) (3.
x i → x i + µ(t) with µ(0) = 0 10 -3 10 -2 0 0.2 0.4 0.6
(b) Rotation transformation:

x i → Q(t) T x i with Q(0) = I p 10 -3 10 -2 0 0.2 0.4 0.6
(c) Joint mean and rotation transformation: where

x i → Q(t) T x i + µ(t)
δ KL (υ 1 , υ 2 ) = 1 2 Tr Σ -1 2 Σ 1 + ∆µ T Σ -1 2 ∆µ + log |Σ 2 | |Σ 1 | -p . (3.51) 
The center of mass of {υ i } M i=1 is the solution of

minimize υ∈Mp 1 M M i=1 δ Mp (υ, υ i ). (3.52) 
Then, two Nearest centroïd classifiers are derived using two estimators: Σµ=0 SCM (and thus µ is assumed to be zero) and the MLE of the Gaussian distribution ( μSM , ΣSCM ).

Finally, the proposed Nearest centroïd classifier on M p,n relies on the symmetrized KL divergence (3.48) between NC-MSGs. The center of mass is computed as explained in Section 3.8 and the estimation is described in Section 3.7 with the L2 penalty for the regularization.

The data are divided into two sets: a training set and a test set with 485 649 and 122 614 batches respectively. Among the six Nearest centroïd classifiers, only the one on M p,n has a hyperparameter which the parameter β of the regularized NLL (3.44). Several values of β are tested on a small training set and a small validation set that both are subsets of the original training set. The performance is measured with the "Overall Accuracy" metric used in [START_REF] Rußwurm | BreizhCrops: A Time Series Dataset for Crop Type Mapping[END_REF] and is plotted in Figure 3.6. The value of β with the highest "Overall Accuracy" metric is 10 -11 . Hence, we use this value in the rest of the section. Then, we propose an experiment to illustrate Proposition 19 on the invariance of the estimation of textures under rigid transformations. Indeed, we train the six Nearest centroïd classifiers on a subset of the original training set and apply them on the full test set with a rigid transformation. Thus, the more a Nearest centroïd classifier is robust to these rigid transformations, the better the "Overall Accuracy" metric. Given t ∈ [0, 1], three different rigid transformations are performed: transformation of the mean

x i → x i + µ(t) with µ(t) = ta for a given a ∈ R p , rotation transformation x i → Q(t) T x i with Q(t) = exp(tξ) for a given skew-symmetric ξ ∈ R p×p (hence Q(t) ∈ O p )
, and the joint mean and rotation transformation x i → Q(t) T x i + µ(t). It should be noted that at t = 0, the data are left unchanged. The results are presented in Figure 3.7.

The conclusions of these experiments are fourfold. First, the proposed Nearest centroïd classifier is applicable to large scale datasets such as the Breizhcrops dataset. Second, the regularization proposed in Section 3.7 is important to get good classification performance. Indeed, we observe from Figure 3.6 that if β is too small then the "Overall Accuracy" metric becomes very low. Also, if β is too large then the "Overall Accuracy" metric becomes also very low. Third, using KL divergences and their associated centers of mass to classify estimators give much better performance compared to the classical Euclidean distance. Indeed, even when data do not undergo rigid transformations, Nearest centroïd classifiers based on KL divergence outperform Euclidean Nearest centroïd classifiers in Figure 3.7. Fourth, considering NC-MSGs, as well as its KL divergence, instead of the Gaussian distribution is interesting to classify time series especially when rigid transformations are applied on the data. Indeed, in Figure 3.7, we observe a large improvement of performance when data are considered distributed from a NC-MSG and undergo rigid transformations.

. Conclusions

This chapter proposed novel statistical methods to handle non-centered data that are potentially non-Gaussian. We began with the information geometry of the non-centered multivariate Gaussian distribution and proposed two divergences. The latter that can be used in place of the Riemannian distance whose expression has no known closed form formula. An optimization algorithm has been developed to compute centers of mass, associated with the proposed divergences, of pairs location-covariance matrix. These divergences along with their centers of mass enabled us to implement a Nearest centroïd classifier. The latter has been applied on the Breizhcrops dataset and proved to be more robust than classifiers that rely only on the covariance matrix.

Then, we studied the statistical model of the NC-MSG. This model is well known when its location is assumed to be known but little work has been done when the location is unknown. In this study, we tackle the problem of the joint estimation of the location, the scatter matrix and the textures as well as their classification. To do so, two Riemannian manifolds and Riemannian optimization algorithms have been developed. The existence of a solution to the estimation problem is proven when a regularization is added to the NLL. Thus, this regularized NLL can be minimized using one the proposed Riemannian optimization algorithms to estimate the parameters. Once estimated, these parameters are classified with a Nearest centroïd classifier based on a KL divergence and its associated center of mass. The latter is also computed using one of the proposed Riemannian optimization algorithms. In particular, one of these algorithms is shown to be fast on both cost functions (the regularized NLL and the center of mass computation cost function). This allowed us to apply the proposed Nearest centroïd classifier on the dataset Breizhcrops. The proposed classifier is shown to be more robust than classifiers that rely on a Gaussian assumption. is a smooth mapping from T υ M p onto M p . To be a second order retraction, it remains to check the three following properties [1, Ch. 4 and 5]:

∈ T υ M p D h(υ)[ξ] = G T µ ξ µ + Tr G T Σ ξ Σ (3.53) = (ΣG µ ) T Σ -1 ξ µ + 1 2 Tr Σ -1 2ΣG T Σ Σ Σ -1 ξ Σ (3.54) = (ΣG µ ) T Σ -1 ξ µ + 1 2 Tr Σ -1 sym(2ΣG T Σ Σ)Σ -1 ξ Σ (3.55) = ⟨P Mp υ (ΣG µ , 2ΣG Σ Σ) , ξ⟩ Mp υ . ( 3 
∀ξ ∈ T υ M p R Mp υ (0) = υ, D R Mp υ (0 υ )[ξ] = ξ, D 2 dt 2 R Mp υ (tξ) t=0 = 0 (3.57)
where 0 υ denotes the zero element of T υ M p and D 2 dt 2 γ denotes the acceleration of the curve t → γ(t) on M p (see [START_REF] Absil | Optimization Algorithms on Matrix Manifolds[END_REF]Ch. 5]). The first two properties are easily verified. By denoting R Mp υ (tξ) = (µ(t), Σ(t)), and using Equation (3.10), the third property is equivalent to

μ(0) -Σ(0)Σ(0) -1 μ(0) = 0 Σ(0) + μ(0) μ(0) T -Σ(0)Σ(0) -1 Σ(0) = 0, (3.58) 
which is also verified.

3.A.3 . Proof of Proposition 12: Fisher information metric

First, we recall the definition of the FIM. See Chapter 2 for a more indepth presentation. Let {x 1 , • • • , x n } be n data points. Assuming that the underlying distribution admits a PDF, the corresponding NLL is denoted L and maps parameters θ, belonging to the parameter space M, onto R. By denoting T θ M the tangent space of M at θ ∈ M, and under conditions of regularity of L, the FIM is defined ∀ξ, η ∈ T θ M as

⟨ξ, η⟩ M θ = E[D L(θ)[ξ] D L(θ)[η]] = E[D 2 L(θ)[ξ, η]]. (3.59) 
To derive the FIM of the NC-MSG given in Proposition 12, we recall classical formulas for the Gaussian distribution. To do so, we denote the set of its parameters (i.e. the set of locations and covariance matrices) as

M p = R p × S ++ p . (3.60) 
The NLL at υ = (µ, Σ) ∈ M p and associated to one data point x is (neglecting terms not depending on υ)

L g x (υ) = 1 2 log |Σ| + (x -µ) T Σ -1 (x -µ) (3.61) 
Since M p is an open set in the vector space R p × S p , the tangent space of M p at υ is

T υ M p = R p × S p . (3.62) 
Finally, ∀ξ = (ξ µ , ξ Σ ), η = (η µ , η Σ ) ∈ T υ M p , the FIM of the Gaussian distribution associated to the NLL (3.61) is (see [START_REF] Skovgaard | A Riemannian Geometry of the Multivariate Normal Model[END_REF] for a derivation)

⟨ξ, η⟩ Mp υ = ξ T µ Σ -1 η µ + 1 2 Tr(Σ -1 ξ Σ Σ -1 η Σ ). (3.63) 
Then, we derive the FIM associated to the NLL of the NC-MSG (3.27). We begin by writing (3.27) as a sum of Gaussian NLL (3.61). Indeed, ∀θ ∈ M p,n , we have

L(θ|{x i } n i=1 ) = n i=1 (L g x i • φ i )(θ), (3.64) 
where φ i (θ) = (µ, τ i Σ). Thus, ∀θ ∈ M p,n , ∀ξ, η ∈ T θ M p,n , and following the reasoning of [START_REF] Bouchard | A Riemannian Framework for Low-Rank Structured Elliptical Models[END_REF]Proposition 6] and [18, Proposition 3.1], the FIM of the mixture of scaled Gaussian is expressed as a sum of FIM of the Gaussian distribution (3.63)

⟨ξ, η⟩

M FIM p,n θ = E D 2 L(θ|{x i } n i=1 )[ξ, η] (3.65) 
= n i=1 E D 2 (L g x i • φ i )(θ)[ξ, η] (3.66) 
= n i=1 E D(L g x i • φ i )(θ)[ξ] D(L g x i • φ i )(θ)[η] (3.67) 
= n i=1 E D(L g x i (φ i (θ)))[D φ i (θ)[ξ]] D(L g x i (φ i (θ)))[D φ i (θ)[η]] (3.68) 
= n i=1 ⟨D φ i (θ)[ξ], D φ i (θ)[η]⟩ Mp φ i (θ) . (3.69) 
In the following, the i-th components of ξ τ and η τ are denoted ξ i and η i respectively. Therefore, the directional derivative of the function φ i is

D φ i (θ)[ξ] = (ξ µ , ξ i Σ + τ i ξ Σ ). (3.70) 
Thus, we get ⟨ξ, η⟩

M FIM p,n θ = n i=1 ξ T µ (τ i Σ) -1 η µ (3.71) + 1 2 Tr (τ i Σ) -1 (ξ i Σ + τ i ξ Σ )(τ i Σ) -1 (η i Σ + τ i η Σ ) = n i=1 1 τ i ξ T µ Σ -1 η µ + 1 2 p ξ i η i τ 2 i + 1 2 
ξ i τ i Tr(Σ -1 η Σ ) (3.72) 
+ 1 2 
η i τ i Tr(Σ -1 ξ Σ ) + 1 2 Tr(Σ -1 ξ Σ Σ -1 η Σ ) = n i=1 1 τ i ξ T µ Σ -1 η µ + n 2 Tr(Σ -1 ξ Σ Σ -1 η Σ ) (3.73) 
+ p 2 ξ τ ⊙ τ -1 T η τ ⊙ τ -1 + 1 2 ξ T τ τ ⊙-1 Tr(Σ -1 η Σ ) + 1 2 η T τ τ ⊙-1 Tr(Σ -1 ξ Σ ) Since ξ τ , η τ ∈ T τ S(R + * ) n , we have ξ T τ τ ⊙-1 = η T τ τ ⊙-1 = 0.
Thus, the last two terms of (3.74) cancel and the expression of the FIM from Proposition 12 is obtained ⟨ξ, η⟩

M FIM p,n θ = n i=1 1 τ i ξ T µ Σ -1 η µ + n 2 Tr(Σ -1 ξ Σ Σ -1 η Σ ) + p 2 ξ τ ⊙ τ -1 T η τ ⊙ τ -1 . (3.74)
It should be noted that this formula defines an inner product on E p,n if a transpose is added to ξ Σ . Thus, ⟨., .

⟩ M FIM p,n
.

is extended ∀ξ, η ∈ E p,n as presented in Proposition 12. First of all, ∀θ ∈ M p,n the ambient space E p,n defined in (3.31) is decomposed into two complementary subspaces

E p,n = T θ M p,n + T ⊥ θ M p,n (3.75) 
where T θ M p,n is the tangent space at θ defined in (3.32) and T ⊥ θ M p,n is the orthogonal complement

T ⊥ θ M p,n = ξ ∈ E p,n : ⟨ξ, η⟩ M FIM p,n θ = 0 ∀η ∈ T θ M p,n . (3.76) 
It can be checked that this orthogonal complement is

T ⊥ θ M p,n = {0} × A p × ατ : α ∈ R + * (3.77)
where A p is the set of p × p skew-symmetric matrices. Indeed, the elements of (3.77) verify Definition (3.76) and dim(E

p,n ) = dim(T θ M p,n ) + dim(T ⊥ θ M p,n ).
Using the equations (3.75) and (3.77), the orthogonal pro-

jection of ξ = (ξ µ , ξ Σ , ξ τ ) ∈ E p,n onto T θ M p,n is P M FIM p,n θ (ξ) = ξ µ , ξ Σ -A, ξ τ -ατ (3.78)
where A ∈ A p and α ∈ R + * have to be determined. Furthermore, ∀η = (0, η Σ , βτ

) ∈ T ⊥ θ M p,n with β ∈ R + * , we must have ⟨P M FIM p,n θ (ξ), η⟩ M FIM p,n θ = 0. (3.79) 
This induces that

ξ Σ -A = sym(ξ Σ ) α = ξ T τ τ ⊙-1 n (3.80) 
where sym(ξ First of all, the FIM defined in Proposition 12 is rewritten with a function g. Indeed, let θ ∈ M p,n and ξ, η ∈ T θ M, the function g is defined as

Σ ) = 1 2 (ξ Σ + ξ T Σ ). Thus the orthogonal projection from E p,n onto T θ M p,n is P M FIM p,n θ (ξ) = ξ µ , sym(ξ Σ ), ξ τ - ξ T τ τ ⊙-1 n τ .
g θ (ξ, η) = ⟨ξ, η⟩ M FIM p,n θ . (3.82)
This function g is of primary importance for the development of the Levi Civita connection.

We briefly introduce the Levi-Civita connection. The general theory of it can be found in [START_REF] Absil | Optimization Algorithms on Matrix Manifolds[END_REF]Ch. 5]. The Levi-Civita connection, simply denoted

∇ M FIM p,n : (ξ, η) → ∇ M FIM p,n ξ
η, is characterized by the Koszul formula. Let ν ∈ T θ M p,n , in our case the Koszul formula writes

g θ (∇ M FIM p,n ξ η, ν) -g θ (D η[ξ], ν) = 1 2 (D g θ [ξ](η, ν) + D g θ [η](ξ, ν) -D g θ [ν](ξ, η)) (3.83)
where D g θ [ν](ξ, η) is the directional derivative of the function g • (ξ, η) : θ → g θ (ξ, η). We begin by computing D g θ [ν](ξ, η):

-D g θ [ν](ξ, η) = n i=1 ν i τ 2 i ξ T µ Σ -1 η µ + n i=1 1 τ i ξ T µ Σ -1 ν Σ Σ -1 η µ (3.84) 
+ n Tr Σ -1 sym(ξ Σ Σ -1 η Σ )Σ -1 ν Σ + p ξ τ ⊙ η τ ⊙ τ ⊙-2 T ν τ ⊙ τ ⊙-1 .
Since the objective is to identify ∇ M FIM p,n ξ η using (3.83) and the FIM from Proposition 12, (3.84) needs to be rewritten. To do so, the following two terms are rewritten

n i=1 ν i τ 2 i ξ T µ Σ -1 η µ = p 1 p ξ T µ Σ -1 η µ 1 n ⊙ τ ⊙-1 T ν ⊙ τ ⊙-1 , (3.85) 
and, since ν Σ ∈ S p n i=1

1 τ i ξ T µ Σ -1 ν Σ Σ -1 η µ = n i=1 1 τ i Tr Σ -1 sym(η µ ξ T µ )Σ -1 ν Σ . (3.86) 
Hence, we get that

-D g θ [ν](ξ, η) = n i=1 1 τ i Tr Σ -1 sym(η µ ξ T µ )Σ -1 ν Σ (3.87) 
+ n Tr(Σ -1 sym(ξ Σ Σ -1 η Σ )Σ -1 ν Σ ) + p 1 p ξ T µ Σ -1 η µ 1 n ⊙ τ ⊙-1 T ν τ ⊙ τ ⊙-1 + p ξ τ ⊙ η τ ⊙ τ ⊙-2 T ν τ ⊙ τ ⊙-1 = n Tr Σ -1 1 n n i=1 1 τ i sym(η µ ξ T µ ) (3.88) 
+ sym(ξ Σ Σ -1 η Σ ) Σ -1 ν Σ + p 1 p ξ T µ Σ -1 η µ 1 n + ξ τ ⊙ η τ ⊙ τ ⊙-1 ⊙ τ ⊙-1 T ν τ ⊙ τ ⊙-1 .
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We then compute D g θ [ξ](η, ν):

D g θ [ξ](η, ν) = - n i=1 ξ i τ 2 i η T µ Σ -1 ν µ - n i=1 1 τ i η T µ Σ -1 ξ Σ Σ -1 ν µ (3.89) -n Tr(Σ -1 η Σ Σ -1 ν Σ Σ -1 ξ Σ ) -p η τ ⊙ ν τ ⊙ τ ⊙-2 T ξ τ ⊙ τ ⊙-1 = - n i=1 1 τ i η T µ ξ T τ τ ⊙-2 n i=1 1 τ i I p + Σ -1 ξ Σ Σ -1 ν µ (3.90) -n Tr(Σ -1 sym(ξ Σ Σ -1 η Σ )Σ -1 ν Σ ) -p ξ τ ⊙ η τ ⊙ τ ⊙-2 T ν τ ⊙ τ ⊙-1 .
Using (3.84) and (3.89), we can calculate the right-hand side of the Koszul formula (3.83),

1 2 (D g θ [ξ](η, ν) + D g θ [η](ξ, ν) -D g θ [ν](ξ, η)) (3.91) = n i=1 1 τ i - 1 2 η T µ ξ T τ τ ⊙-2 n i=1 1 τ i I p + Σ -1 ξ Σ + ξ T µ η T τ τ ⊙-2 n i=1 1 τ i I p + Σ -1 η Σ Σ -1 ν µ + n 2 Tr Σ -1 1 n n i=1 1 τ i sym(η µ ξ T µ ) -sym(ξ Σ Σ -1 η Σ ) Σ -1 ν Σ + p 2 1 p ξ T µ Σ -1 η µ 1 n -ξ τ ⊙ η τ ⊙ τ ⊙-1 ⊙ τ ⊙-1 T ν τ ⊙ τ ⊙-1 .
Using formulas (3.83) and (3.91) and by identification, we get that the Levi Civita connection is

∇ M FIM p,n ξ η = P M FIM p,n θ (∇ M FIM p,n ξ η) (3.92) 
where

∇ M FIM p,n ξ η = D η[ξ] + - 1 2 ξ T τ τ ⊙-2 n i=1 1 τ i I p + ξ Σ Σ -1 η µ + η T τ τ ⊙-2 n i=1 1 τ i I p + η Σ Σ -1 ξ µ , 1 n n i=1 1 τ i η µ ξ T µ -ξ Σ Σ -1 η Σ , 1 p ξ T µ Σ -1 η µ 1 n -ξ τ ⊙ η τ ⊙ τ ⊙-1 . 3.A.6 . Proof of Proposition 15: Riemannian gradient on M FIM p,n
Let h : M p,n → R be a smooth function and θ be a point in M p,n . We present the correspondence between the Euclidean gradient of h (which can be computed using automatic differentiation libraries such as Autograd [START_REF] Maclaurin | Autograd: Effortless Gradients in Pure Numpy[END_REF] and JAX [START_REF] Bradbury | JAX: composable transformations of Python+NumPy programs[END_REF]) and the Riemannian gradient associated with the FIM defined in Proposition 12. The Euclidean gradient grad h

(θ) = (G µ , G Σ , G τ ) of h at θ ∈ M p,n is defined as the unique element in R p × R p×p × R n such that ∀ξ ∈ R p × R p×p × R n D h(θ)[ξ] = ⟨grad h(θ), ξ⟩ θ = G T µ ξ µ + Tr G T Σ ξ Σ + G T τ ξ τ . (3.93) 
Then, the Riemannian gradient grad

M FIM p,n h(θ) = (G M FIM p,n µ , G M FIM p,n Σ , G M FIM p,n τ ) is defined as the unique element in T θ M p,n such that ∀ξ ∈ T θ M p,n D h(θ)[ξ] = ⟨grad M FIM p,n h(θ), ξ⟩ M FIM p,n θ . (3.94) 
Hence, ∀ξ ∈ T θ M p,n , we get that

D h(θ)[ξ] = G T µ ξ µ + Tr G T Σ ξ Σ + G T τ ξ τ (3.95) = n i=1 1 τ i   n i=1 1 τ i -1 ΣG µ   T Σ -1 ξ µ (3.96) + n 2 Tr Σ -1 2 n ΣG Σ Σ T Σ -1 ξ Σ + p 2 τ ⊙-1 ⊙ 2 p τ ⊙2 ⊙ G τ T τ ⊙-1 ⊙ ξ τ = n i=1 1 τ i η T µ Σ -1 ξ µ + n 2 Tr Σ -1 η T Σ Σ -1 ξ Σ (3.97) + p 2 τ ⊙-1 ⊙ η τ T τ ⊙-1 ⊙ ξ τ where η = η µ , η Σ , η τ = n i=1 1 τ i -1 ΣG µ , 2 n ΣG Σ Σ, 2 p τ ⊙2 ⊙ G τ .
To get the Riemannian gradient, it remains to project η into the tangent space T θ M p,n using the orthogonal projection P

M FIM p,n θ
. Thus, we get that

grad M FIM p,n h(θ) = P M FIM p,n θ (η), (3.98) 
which is exactly the Riemannian gradient defined in Proposition 15. Let θ ∈ M p,n , ξ ∈ T θ M p,n and t ∈ [0, t max [ where t max is to be defined. We denote r(t) = R(tξ) where R is defined in Proposition 16, i.e.

r(t) = µ + tξ µ + t 2 2 ξ T τ τ ⊙-2 n i=1 1 τ i I p + ξ Σ Σ -1 ξ µ , (3.99) 
Σ + tξ Σ + t 2 2 ξ Σ Σ -1 ξ Σ - 1 n n i=1 1 τ i ξ µ ξ T µ , (3.100) 
N τ + tξ τ + t 2 2 ξ ⊙2 τ ⊙ τ ⊙-1 - 1 p ξ T µ Σ -1 ξ µ 1 n , (3.101) 
where ∀x ∈ (R + * ) n , N is defined as

N (x) = ( n i=1 x i ) -1/n
x. The objective is to prove that r is a second order retraction on M FIM p,n . The different properties of the definition of a second order retraction are verified in the following; see [START_REF] Absil | Optimization Algorithms on Matrix Manifolds[END_REF]Ch. 4 and 5] for a complete definition.

First of all, we define t max such that r is a valid retraction. Indeed, r must respect some constraints of positivity,

Σ + tξ Σ + t 2 2 ξ Σ Σ -1 ξ Σ - 1 n n i=1 1 τ i ξ µ ξ T µ ≻ 0, (3.102) 
τ + tξ τ + t 2 2 ξ ⊙2 τ ⊙ τ ⊙-1 - 1 p ξ T µ Σ -1 ξ µ 1 n > 0, (3.103) 
where for A ∈ S p , A ≻ 0 means A is positive definite and for x ∈ R n , x > 0 means the components of x are strictly positive. Of course, (3.102) and (3.103) are not necessarily respected depending on the value of t. To define the value of t max such that (3.102) and (3.103) are respected, we begin by studying the eigenvalues of the left side of (3.102).

To do so, let λ -(A) be the smallest eigenvalue of A and Σ(t) be the left side of (3.102). Thus, we get that

λ -(Σ(t)) ≥ λ -(Σ) + tλ -(ξ Σ ) + t 2 2 λ -ξ Σ Σ -1 ξ Σ - 1 n n i=1 1 τ i ξ µ 2 2 (3.104) 
≥ λ -(Σ) + tλ -(ξ Σ ) - t 2 2n n i=1 1 τ i ξ µ 2 2 . (3.105) 
A sufficient condition to satisfy (3.102) is that the right side of (3.105) is strictly positive. This is achieved whenever t is in [0, t 1 [ where t 1 is defined as followed

• if ξ µ ̸ = 0, t 1 = √ ∆ 1 -λ -(ξ Σ ) 2λ -(Σ)
and

∆ 1 = λ -(ξ Σ ) 2 + 2 n λ -(Σ) n i=1 1 τ i ξ µ 2 2 , • if ξ µ = 0, t 1 = λ -(Σ) |λ -(ξ Σ )| for λ -(ξ Σ ) < 0, t 1 = +∞ otherwise.
Lets denote the minimum value of x ∈ R n by (x) min . Using the same reasoning as before, one can show that whenever t is in [0, t 2 [, where t 2 is defined in the following, (3.103) is satisfied.

• If ξ µ ̸ = 0, t 2 = √ ∆ 2 -(ξ τ ) min 2(τ ) min and ∆ 2 = (ξ τ ) 2 min + 2 p (τ ) min Σ -1 2 ξ µ 2 2 . • If ξ µ = 0, t 2 = (τ ) min |(ξ τ ) min | for (ξ τ ) min < 0, t 2 = +∞ otherwise.
Hence, we get

t max = min{t 1 , t 2 } > 0 such that ∀t ∈ [0, t max [, r(t) ∈ M p,n .
Then, to be a second order retraction, it remains to check that the three following properties are respected,

       r(0) = θ, ṙ(0) = ξ, ∇ M FIM p,n ṙ ṙ t=0 = 0, (3.106) where ṙ(t) = d dt r(t) and ∇ M FIM p,n
is the Levi-Civita connection defined in Proposition 14. The first property is easily verified. In the rest of the proof, the following notations are used: r(t) = (µ(t), Σ(t), τ (t)), ṙ(t) = ( μ(t), Σ(t), τ (t)) and r(t) = ( μ(t), Σ(t), τ (t)).

We verify the second property of (3.106) which is ṙ(0) = ξ. It is readily check that μ(0) = ξ µ and Σ(0) = ξ Σ . It remains to verify that τ (0) = ξ τ . Computing the derivative of N (defined in Proposition 14) at a point x(t) ∈ (R + * ) n , we get that

d dt (N • x)(t) = n i=1 x i (t) -1/n ẋ(t) - ẋ(t) T x(t) ⊙-1 n x(t) , (3.107) 
where ẋ(t) = d dt x(t) (and simply denoted ẋ(t)). Using this derivative and the constraints n i=1 τ i = 1 and ξ T τ τ ⊙-1 = 0, the desired property is derived

τ (0) = d dt N • τ + tξ τ + t 2 2 ξ ⊙2 τ ⊙ τ ⊙-1 - 1 p ξ T µ Σ -1 ξ µ 1 n t=0 (3.108) = ξ τ . (3.109) 
It remains to verify the third condition of (3.106). Using the first two conditions of (3.106), we find that ∇

M FIM p,n ṙ ṙ t=0 = 0 if and only if                μ(0) = ξ T τ τ ⊙-2 n i=1 1 τ i I p + ξ Σ Σ -1 ξ µ , Σ(0) = ξ Σ Σ -1 ξ Σ -1 n n i=1 1 
τ i ξ µ ξ H µ , P S(R + * ) n τ (τ (0)) = P S(R + * ) n τ ξ ⊙2 τ ⊙ τ ⊙-1 -1 p ξ H µ Σ -1 ξ µ 1 n , (3.110) 
where, ∀ξ ∈ R n , P

S(R + * ) n τ (ξ) = ξ -ξ T τ ⊙-1 n τ .
It is readily checked that the first two conditions of (3.110) are met. Thus, only the third condition remains to be verified. To do so, we differentiate (3.107) to get the second derivative of N ,

d 2 dt 2 (N • x)(t) = - 1 n n i=1 x i (t) ẋ(t) T x(t) ⊙-1 n i=1
x i (t)

-1 n -1 (3.111) × ẋ(t) - 1 n ẋ(t) T x(t) ⊙-1 x(t) + n i=1 x i (t) -1 n ẍ(t) - 1 n ẍ(t) T x(t) ⊙-1 x(t) + 1 n ẋ(t) ⊙2 T x(t) ⊙-2 x(t)- 1 n ẋ(t) T x(t) ⊙-1 ẋ(t) = 1 n n i=1 x i (t) -1 n nẍ(t) (3.112) 
+ ẋ(t) ⊙2 T x(t) ⊙-2 -ẍ(t) T x(t) ⊙-1 x(t) -2 ẋ(t) T x(t) ⊙-1 ẋ(t) + 1 n ẋ(t) T x(t) ⊙-1 2 x(t) .
where ẍ(t) = d 2 dt 2 x(t). Using this derivative and the constraints n i=1 τ i = 1 and ξ T τ τ ⊙-1 = 0, the following expression of τ (0) is derived

τ (0) = d 2 dt 2 N • τ + tξ τ + t 2 2 ξ ⊙2 τ ⊙ τ ⊙-1 - 1 p ξ T µ Σ -1 ξ µ 1 n t=0 (3.113) = ξ ⊙2 τ ⊙ τ ⊙-1 - 1 p ξ T µ Σ -1 ξ µ 1 n (3.114) 
+ 1 n ξ ⊙2 τ T τ ⊙-2 -ξ ⊙2 τ ⊙ τ ⊙-1 - 1 p ξ T µ Σ -1 ξ µ 1 n T τ ⊙-1 τ = ξ ⊙2 τ ⊙ τ ⊙-1 - 1 p ξ T µ Σ -1 ξ µ 1 n + 1 np ξ T µ Σ -1 ξ µ 1 T n τ ⊙-1 τ . (3.115)
Using the linearity of the projection P

S(R + * ) n τ , (3.114) implies that P S(R + * ) n τ (τ (0)) = P S(R + * ) n τ ξ ⊙2 τ ⊙ τ ⊙-1 - 1 p ξ T µ Σ -1 ξ µ 1 n + P S(R + * ) n τ 1 np ξ T µ Σ -1 ξ µ 1 T n τ ⊙-1 τ . (3.116) 
Finally, one can check that ∀α ∈ R, P S(R + * ) n τ (ατ ) = 0. Hence, we get the desired expression

P S(R + * ) n τ (τ (0)) = P S(R + * ) n τ ξ ⊙2 τ ⊙ τ ⊙-1 - 1 p ξ T µ Σ -1 ξ µ 1 n , (3.117) 
which completes the proof. 

lim θ→∂θ L Rκ (θ|{x i } n i=1 ) = +∞ (3.118)
where ∂θ is the boundary of M p,n . First, it is easily checked that, for Σ and τ not tending to the boundaries ∂S ++ p and ∂S(R + * ) n of S ++ p and S(R + * ) n respectively, we have

lim ∥µ∥→+∞ L Rκ (θ|{x i } n i=1 ) = +∞. (3.119) 
Second, we handle the cases where Σ → ∂S ++ p and/or τ → ∂S(R + * ) n . This means that, at least, one λ j → ∂R +

* and/or one τ i → ∂R + * , with ∂R +

* being the boundary of R + * , i.e. 0 + or +∞. Using the positivity of the quadratic form in the NLL (3.27), we get the following inequality

L(θ|{x i } n i=1 ) ≥ n i=1 log |τ i Σ| . (3.120) 
Hence, we get the resulting inequality on the regularized cost function

L Rκ (θ|{x i } n i=1 ) ≥ n i=1 p j=1 [log(τ i λ j ) + βr κ (τ i λ j )] . (3.121) 
We can remark that the lower bound (3.121) does not depend on µ. Hence, in the rest of the proof, we consider µ to be either such that ∥µ∥ < +∞ or such that ∥µ∥ → +∞. Then, we give a sufficient condition to prove Thus, to prove (3.118), a sufficient condition, when Σ → ∂S ++ p and/or τ → ∂S(R + * ) n , is that there exists at least one term τ i λ j such that

τ i λ j → ∂R + * . (3.123) 
Since Σ → ∂S ++ p and/or τ → ∂S(R + * ) n , there exists at least one λ j → ∂R + * and/or one τ i → ∂R + * . The condition (3.123) is of course met in the four following cases λ j → 0 + and/or

τ i → 0 + , (3.124) 
λ j → +∞ and/or τ i → +∞, (3.125) 
λ j → 0 + and τ i → +∞ such that τ i λ j → ∂R + * , (3.126) 
λ j → +∞ and τ i → 0 + such that τ i λ j → ∂R + * . (3.127) 
Finally, we treat the case where ∀l ∈ {1, • • • , n}, λ l → ∂R + * and τ i → ∂R + * such that the limit of τ i λ l is not ∂R + * (i.e. τ i λ l ↛ ∂R + * ). Since n i=1 τ i = 1, there exists at least one τ q , with q ̸ = i, such that τ q λ j → ∂R + * . Hence, the condition (3.123) is met, which completes the proof. Using Assumption 5, we know that R κ (θ) ≥ 0 and R κ (θ) = 0 ⇐⇒ diag(τ ) ⊗ Σ = κI n×p . Thus, the minimum of R κ is 0 and is reached at diag(τ ) ⊗ Σ = κI n×p , ∀µ ∈ R p . This implies that the minimum satisfies the following system of equations

τ i λ j = κ ∀i, j. (3.129)
Hence, we deduce that

τ 1 = • • • = τ n . Using the constraint n i=1 τ i = 1, we get that τ 1 = • • • = τ n = 1. Thus, λ 1 = • • • = λ p = κ. This means that {(µ, κI n×p , 1 n ) : µ ∈ R p } = arg min θ∈Mp,n R κ (θ) (3.130)
which is Proposition 18. First of all, given Q ∈ O p and µ 0 ∈ R p , one can check that

L θ| Q T x i + µ 0 n i=1 = L (θ| {x i } n i=1 ) (3.131)
where L is the NLL defined in (3.27), θ = (µ, Σ, τ ) and θ = Q T µ + µ 0 , Q T ΣQ, τ . Then, R κ satisfies Assumption 3 and thus only depends on the eigenvalues of the matrices τ i Σ. This implies that R κ ( θ) = R κ (θ) and hence we get that

L Rκ θ| Q T x i + µ 0 n i=1 = L Rκ (θ| {x i } n i=1 ) . (3.132) 
The equation (3.132) implies that, if

θ = arg min θ∈Mp,n L Rκ (θ|{x i } n i=1 ) , (3.133) 
then θ = arg min θ∈Mp,n L Rκ θ| Q T x i + µ 0 n i=1 (3.134) 
which is exactly Proposition 19.

3.A.11 . Proof of Proposition 20: Kullback-Leibler divergence

In the following, we show that the KL divergence between two NC-MSGs is equal to the sum of KL divergences between Gaussian distributions with specific mean and covariance matrices:

δ KL (θ 1 , θ 2 ) = p θ 1 (x) log p θ 1 (x) p θ 2 (x) dx (3.135) = n i=1 f (x i ; µ 1 , Σ 1 , τ 1,i ) log n i=1 f (x i ; µ 1 , Σ 1 , τ 1,i ) f (x i ; µ 2 , Σ 2 , τ 2,i ) dx 1 • • • dx n (3.136) 
= n i=1 n j=1 f (x j ; µ 1 , Σ 1 , τ 1,j ) log f (x i ; µ 1 , Σ 1 , τ 1,i ) f (x i ; µ 2 , Σ 2 , τ 2,i ) dx 1 • • • dx n (3.137) = n i=1 f (x i ; µ 1 , Σ 1 , τ 1,i ) log f (x i ; µ 1 , Σ 1 , τ 1,i ) f (x i ; µ 2 , Σ 2 , τ 2,i ) dx i (3.138) = n i=1 f G (x i ; µ 1 , τ 1,i Σ 1 ) log f G (x i ; µ 1 , τ 1,i Σ 1 ) f G (x i ; µ 2 , τ 2,i Σ 2 ) dx i . (3.139) 
Using the KL divergence between Gaussian distributions and the constraint

n i=1 τ 1,i = n i=1 τ 2,i = 1, we get the desired formula δ KL (θ 1 , θ 2 ) = 1 2 n i=1 τ 1,i τ 2,i Tr Σ -1 2 Σ 1 + n i=1 1 τ 2,i ∆µ T Σ -1 2 ∆µ + n log |Σ 2 | |Σ 1 | -np . (3.140)

-Probabilistic PCA from heteroscedastic signals

Principal Component Analysis (PCA) [START_REF] Tipping | Probabilistic principal component analysis[END_REF][START_REF] Jolliffe | Principal Component Analysis[END_REF] is a standard tool used in signal processing and machine learning literature for dimensional reduction and statistical interpretation. In this scope, Probabilistic PCA (PPCA) refers to a reformulation of PCA as a parametric estimation problem; see Chapter 1 Section 1.3 for a detailed presentation of PPCA. This approach was proposed in [START_REF] Tipping | Probabilistic principal component analysis[END_REF], which considered a model of White Gaussian Noise (WGN) plus a linear mapping of a low-dimensional centered Gaussian latent space with unit variance (the signal contribution). Leveraging the statistical formulation of PPCA allows going beyond Gaussian models. For example, the two independent contributions (either signal or noise) can be generalized to the distribution of compound Gaussian. The latter represents a family of elliptical distributions (cf. review in [START_REF] Ollila | Complex Elliptically Symmetric Distributions: Survey, New Results and Applications[END_REF]) that encompasses numerous standard heavy-tailed models, such as the multivariate t-distribution. Its stochastic representation involves a Gaussian vector multiplied by an independent random power factor referred to as texture. In order to be robust to various underlying distributions, this parameter is often assumed to be unknown deterministic. This assumption yields the so-called mixture of scaled Gaussian distributions (MSG) [START_REF] Wiesel | Regularized covariance estimation in scaled Gaussian models[END_REF], also referred to as heteroscedastic [START_REF] Hong | Probabilistic PCA for Heteroscedastic Data[END_REF], and presented in Chapter 1 Section 1.3. In this scope [START_REF] Breloy | Clutter Subspace Estimation in Low Rank Heterogeneous Noise Context[END_REF][START_REF] Besson | Bounds for a Mixture of Low-Rank Compound-Gaussian and White Gaussian Noises[END_REF][START_REF] Sun | Low-Complexity Algorithms for Low Rank Clutter Parameters Estimation in Radar Systems[END_REF] considered MSGs for the signal component to perform robust PCA for non-Gaussian signals.

Conversely, [START_REF] Hong | Probabilistic PCA for Heteroscedastic Data[END_REF] considered Gaussian signals embedded in white MSG noise to model data where some samples are noisier than others. Alternatively, [START_REF] Chen | Robust probabilistic PCA with missing data and contribution analysis for outlier detection[END_REF] uses a t-distribution to model both of the contributions. Finally, [START_REF] Breloy | A robust signal subspace estimator[END_REF] considered a mixture of three components to account for potential outliers (the thirds contribution being orthogonal to the signal subspace).

In the following, we will focus on MSG plus WGN model [START_REF] Breloy | Clutter Subspace Estimation in Low Rank Heterogeneous Noise Context[END_REF][START_REF] Besson | Bounds for a Mixture of Low-Rank Compound-Gaussian and White Gaussian Noises[END_REF][START_REF] Sun | Low-Complexity Algorithms for Low Rank Clutter Parameters Estimation in Radar Systems[END_REF]] which is interpreted as impulsive signals (power variation across samples) plus thermal noise due to electronics. A common relaxation of this model is to assume that eigenvalues of the (low-rank) signal covariance matrix are identical as in [START_REF] Raghavan | Statistical Interpretation of a Data Adaptive Clutter Subspace Estimation Algorithm[END_REF][START_REF] Breloy | Maximum likelihood estimation of clutter subspace in non homogeneous noise context[END_REF]. Indeed, this hypothesis is relevant since we still estimate the power variations which contain, the information of the eigenvalues. Moreover, [START_REF] Breloy | Clutter Subspace Estimation in Low Rank Heterogeneous Noise Context[END_REF][START_REF] Breloy | A robust signal subspace estimator[END_REF][START_REF] Ben Abdallah | Bayesian signal subspace estimation with compound Gaussian sources[END_REF] showed that neglecting the differences between eigenvalues does not harm the accuracy of subspace estimation while allowing for a more meaningful statistical interpretation [START_REF] Raghavan | Statistical Interpretation of a Data Adaptive Clutter Subspace Estimation Algorithm[END_REF].

Yet, the previous studies still left some unanswered issues: first, the algorithms in [START_REF] Raghavan | Statistical Interpretation of a Data Adaptive Clutter Subspace Estimation Algorithm[END_REF][START_REF] Breloy | Maximum likelihood estimation of clutter subspace in non homogeneous noise context[END_REF] are dedicated bloc-coordinate descent type. Thus, they can be limited in practice, as they offer no generalization to on-line (or stochastic) settings. It would then be relevant for the estimation problem to be cast in a more generic optimization framework that can account for the parameter structure (e.g., subspaces, vectors with strictly positive values). Second, the MLE of the considered model is the solution of a nonconvex problem with no guarantee for global optimality. Thus, it would be interesting to derive performance bound in order to assess for various algorithms performance. Such bound is not trivial for these models because structured parameters require accounting for specific constraints, as well as for the use of relevant distances as error measure (e.g. to ensure for some invariance). Finally, one can inquire if the features of such statistical model can be meaningfully leveraged in machine learning tasks such as clustering.

Therefore, this chapter conducts a study of the MSG plus WGN model [START_REF] Raghavan | Statistical Interpretation of a Data Adaptive Clutter Subspace Estimation Algorithm[END_REF][START_REF] Breloy | Maximum likelihood estimation of clutter subspace in non homogeneous noise context[END_REF] through the prism of Riemannian geometry, as this theoretical framework allows us to propose a unified view to tackle the aforementioned questions. The contributions concern the following directions:

1. Riemannian optimization framework for model features: MSG plus WGN model involves parameters that are textures (power factors) and a low-rank subspace. Endowing this parameter space with a Riemannian metric yields a Riemannian manifold, which can be leveraged in an optimization framework [START_REF] Absil | Optimization Algorithms on Matrix Manifolds[END_REF] as presented in Chapter 2. In this context, we consider the model's Fisher information metric (FIM). We then obtain several essential tools (tangent space, Riemannian gradient, retraction) from established results on the Grassman manifold [START_REF] Edelman | The geometry of algorithms with orthogonality constraints[END_REF] presented in Chapter 2 Section 2.4. These tools are then used to propose algorithms in order to compute the MLE, as well as the Riemannian means used in clustering algorithms (cf. next points). We notably propose a Riemannian stochastic gradient descent algorithm [START_REF] Zhang | Riemannian SVRG: Fast Stochastic Optimization on Riemannian Manifolds[END_REF] suited to large datasets (or online settings [START_REF] Zhou | Fast, Asymptotically Efficient, Recursive Estimation in a Riemannian Manifold[END_REF]).

Performance bounds:

We show that the FIM of the considered model (and its corresponding Riemannian distance) permits to derive closed forms and product intrinsic Cramér-Rao lower bound (ICRB) for the model's parameters. These lower bounds represent partial extensions of [START_REF] Besson | Bounds for a Mixture of Low-Rank Compound-Gaussian and White Gaussian Noises[END_REF] (Euclidean CRB in the case of colored signals) to the ICRB framework of [START_REF] Smith | Covariance, subspace, and intrinsic Cramér-Rao bounds[END_REF], introduced Chapter 2 Section 2.5. Interestingly, the proposed approach offers a new interpretable result regarding problem dimensions and signal-to-noise ratio (SNR). Then, we assess the performance of different estimation algorithms numerically. We show that both the proposed estimation algorithm and the previously established block-coordinate algorithm [START_REF] Breloy | Maximum likelihood estimation of clutter subspace in non homogeneous noise context[END_REF] are statistically efficient for the signal subspace estimation. In a low SNR scenario, they also both outperform subspace estimated by Singular Value Decomposition (SVD) in terms of MSE.

3. Applications to clustering: we propose a Riemannian clustering algorithm for data following the MSG plus WGN model. Here, we extend the methodology presented Chapter 1 Section 1.5 to the considered statistical model using a K-means++ [START_REF] Arthur | K-Means++: The Advantages of Careful Seeding[END_REF]. Replacing the Euclidean distance by a Riemannian one allows for this clustering algorithm to takes into account the geometrical constraints of the parameter space (invariance properties of subspaces and positivity of powers), which is shown to improve the clustering performance on the hyperspectral image Indian Pines benchmark [START_REF] Baumgardner | Band AVIRIS Hyperspectral Image Data Set[END_REF].

This chapter is organized as follows. Section 4.1 presents the statistical model and the parameter space as a manifold. Section 4.2 presents a Riemannian geometry for this manifold, and essential tools driven from two possible metrics. Section 4.3 presents results related to parameter estimation (MLE based on Riemannian optimization and ICRBs). Section 4.4 presents a clustering algorithm (Riemannian K-means++) adapted to the considered parameter manifold. Numerical results are presented in Section 4.5. Appendix 4.A contains the technical proofs.

In the rest of the chapter, the model, ICRBs and clustering algorithm are derived for complex valued data and all the calculus are realised with complex numbers. This is opposed to all other chapters of this manuscript that have been written with real numbers. However, it should be noted that the calculus, formulas and algorithms of this chapter can easily be adapted to real valued data and to the model of real valued MSG plus real valued WGN noise. Moreover, the clustering pipeline is applied to the Indian pines dataset which are real valued data which is coherent with Chapter 1. Let {x i } n i=1 be a dataset of p-dimensional complex vectors. We consider a k-dimensional linear signal representation embedded in white Gaussian noise, i.e. the model:

. Heteroschedastic signal model and its parameter space

x d = U g + n, (4.1) 
where g ∈ C k is the signal of interest, n ∼ CN (0, σ 2 I p ) is a white Gaussian noise, and U ∈ St p,k is an orthonormal basis of the signal subspace, where

St p,k = U ∈ C p×k : U H U = I k , (4.2) 
denotes the complex Stiefel manifold. In array-processing literature it is classically assumed that g ∼ CN (0, Σ), which yields a low-rank structured Gaussian model, also referred to as the (Gaussian) Probabilistic PCA (PPCA) model in [START_REF] Tipping | Probabilistic principal component analysis[END_REF]. Note that these models often rely on the unconstrained identification x d = W g + n, with W = U Σ 1 /2 and g ∼ CN (0, I k ). However, using U ∈ St p,k is here more coherent with later developments.

In order to model heavy-tailed signals (e.g., outliers or power discrepancies), several works [START_REF] Raghavan | Statistical Interpretation of a Data Adaptive Clutter Subspace Estimation Algorithm[END_REF][START_REF] Breloy | Clutter Subspace Estimation in Low Rank Heterogeneous Noise Context[END_REF][START_REF] Besson | Bounds for a Mixture of Low-Rank Compound-Gaussian and White Gaussian Noises[END_REF][START_REF] Sun | Low-Complexity Algorithms for Low Rank Clutter Parameters Estimation in Radar Systems[END_REF] considered generalizing the Gaussian PPCA to compound Gaussian distributions [START_REF] Ollila | Complex Elliptically Symmetric Distributions: Survey, New Results and Applications[END_REF]. Such signal model yields

x i |τ i d = √ τ i U g + n, (4.3) 
where g ∼ CN (0, Σ) and τ i ∈ R + * is a random power factor referred to as texture, which is statistically independent of g. Starting from this representation, we make the following additional assumptions:

• Known noise floor : The variance σ 2 is considered known. If σ 2 is unknown in practice, it can be accurately pre-estimated by averaging lowest eigenvalues of the SCM [START_REF] Tipping | Probabilistic principal component analysis[END_REF]. The hypothesis of known σ 2 simplifies the exposition and does not change significantly the performance in practice when compared to a joint estimation scheme (see e.g. [START_REF] Mian | Robust Low-Rank Change Detection for Multivariate SAR Image Time Series[END_REF]). Without loss of generality, such assumption allows us to set σ 2 = 1.

• Unknown deterministic textures: In order to provide a model that is robust to any underlying compound Gaussian distribution, it is often assumed that the textures {τ i } n i=1 are unknown deterministic rather than assigning it a predetermined probability density function [START_REF] Breloy | Clutter Subspace Estimation in Low Rank Heterogeneous Noise Context[END_REF][START_REF] Besson | Bounds for a Mixture of Low-Rank Compound-Gaussian and White Gaussian Noises[END_REF][START_REF] Sun | Low-Complexity Algorithms for Low Rank Clutter Parameters Estimation in Radar Systems[END_REF]. Such distribution is then referred to as MSG. • Isotropic signal : We consider the relaxation from [START_REF] Raghavan | Statistical Interpretation of a Data Adaptive Clutter Subspace Estimation Algorithm[END_REF][START_REF] Breloy | Maximum likelihood estimation of clutter subspace in non homogeneous noise context[END_REF], assuming that the eigenvalues of the signal covariance matrix are identical, i.e., g ∼ CN (0, σ s I k ). This relaxation greatly simplifies the study of the statistical model as well as the Riemannian geometry of its parameter space. Indeed, considering non equal eigenvalues forces to develop more complicated Riemannian quotient manifolds than the one presented in Section 4.2; see for example [START_REF] Bouchard | A Riemannian Framework for Low-Rank Structured Elliptical Models[END_REF]. In conjunction with the unknown deterministic textures assumption, considering identical eigenvalues allows the change of variable τi = σ s τ i , and thus setting σ s = 1 without loss of generality. While apparently not realistic, this hypothesis is still representative since the average signal power information is accounted for by the texture parameters. Moreover, [START_REF] Breloy | Clutter Subspace Estimation in Low Rank Heterogeneous Noise Context[END_REF][START_REF] Breloy | A robust signal subspace estimator[END_REF][START_REF] Ben Abdallah | Bayesian signal subspace estimation with compound Gaussian sources[END_REF] showed that neglecting the differences between eigenvalues does not harm the accuracy of subspace estimation while allowing for a more meaningful statistical interpretation [START_REF] Raghavan | Statistical Interpretation of a Data Adaptive Clutter Subspace Estimation Algorithm[END_REF]. Finally, we have the data {x i } n i=1 distributed as in (4.3) where g ∼ CN (0, I k ) and n ∼ CN (0, I p ). The unknown model parameters are the textures {τ i } p i=1 (denoted by the vector τ ∈ (R + * ) n ) and the signal subspace, represented by a basis U ∈ St p,k . The following section will recast this parameter space as a manifold. This reformulation will then allow us to leverage tools from the Riemannian geometry in order to derive distances, intrinsic Cramér-Rao Bounds and optimization methods with a unified view. 

ψ i : M p,k,n → H ++ p (U , τ ) → I p + τ i U U H . (4.4)
It follows that the negative log-likelihood corresponding to model (4.3) is given, for all θ = (U , τ ) ∈ M p,k,n , by

L(θ) = i log ψ i (θ) + x H i ψ i (θ) -1 x i . (4.5) 
The model (4.3) is ambiguous since the representation by the basis U is invariant by rotation: for all O ∈ U k (where U k is the unitary group of degree k), (U O, τ ) is equivalent to (U , τ ), i.e., it yields the same scaled covariance matrices in H ++ p . The consequence is that the manifold M p,k,n is not optimal with respect to the model of interest. In terms of optimization, for instance for maximum likelihood estimation, it is possible to exploit M p,k,n directly but it is advantageous to take into account the invariance. Moreover, to measure estimation errors or perform geometrical classification and clustering, employing a distance function onto M p,k,n is not ideal: the distance between two equivalent points is not equal to zero. It thus appears very attractive to take this invariance into account.

Fortunately, it is possible to naturally handle this rotation invariance from a geometrical perspective. It is achieved by considering the Grassmann manifold Gr p,k (set of all k-dimensional subspaces of C p ) presented in Chapter 2 Section 2.4. The Grassmann manifold can be identified to the quotient manifold [START_REF] Edelman | The geometry of algorithms with orthogonality constraints[END_REF][START_REF] Absil | Riemannian geometry of Grassmann manifolds with a view on algorithmic computation[END_REF][START_REF] Absil | Optimization Algorithms on Matrix Manifolds[END_REF] 

Gr p,k = {{U O : O ∈ U k } : U ∈ St p,k }. (4.6)
From there, to optimally embed the parameters of model (4.3), we construct the manifold M p,k,n = Gr p,k × (R + * ) n . This manifold can be viewed as a quotient manifold of M p,k,n (see Chapter 2 Section 2.3 for an introduction to quotient manifolds). Indeed, it can be defined as

M p,k,n = {π(θ) : θ ∈ M p,k,n }, (4.7)
where, for all θ = (U , τ ) ∈ M p,k,n , the equivalence class is defined as

π(θ) = {(U O, τ ) : O ∈ U k }. (4.8)
Functions ψ i defined onto M p,k,n induce functions ψ i onto M p,k,n , i.e. ψ i (θ) = ψ i (π(θ)). Thus, x i in (4.3) is drawn as x i ∼ CN (0, ψ i (θ)). It follows that the log-likelihood L in (4.5) defined onto M p,k,n can also be defined onto M p,k,n by using functions ψ i instead of ψ i . This log-likelihood function is denoted L in the following.

Besides acknowledging the model invariances, considering M p,k,n as a manifold allows for advantageously exploiting Riemannian geometry, i.e., the geometries of M p,k,n induced by Riemannian metrics. In particular for signal processing applications, it can be leveraged for:

1. Estimation: the Riemannian optimization framework can be employed to compute maximum likelihood estimators (Section 4.3.1) and Riemannian means (Section 4.4) in various practical scenarios.

2. Performance measuring: the Riemannian distance naturally defines an error measure, which can then be bounded using the framework of intrinsic Cramér-Rao bound [START_REF] Smith | Covariance, subspace, and intrinsic Cramér-Rao bounds[END_REF]. This point will be detailed in Section 4.3.2.

3. Machine learning: the Riemannian distance can also be exploited to cluster and classify various data which follow model (4.3), which will be further discussed in Section 4.4.

In order to achieve these, different geometrical objects are needed. Section 4.2 will introduce these tools conditionally to the choice of the Riemannian metric.

. Riemannian manifolds of interest

Various choices of Riemannian geometries are available for M p,k,n , entirely depending on the choice of the Riemannian metric. Among different possibilities, one is optimal with respect to the considered statistical model: the Fisher information metric [START_REF] Amari | Information geometry and its applications[END_REF]. Indeed, it is derived from the log-likelihood function of the distribution at hand and thus perfectly captures the particularities of the model. However, the geometry induced by the Fisher information metric is often hard to fully leverage. One has therefore to compromise and define an alternate geometry (induced by a metric as close as possible to the Fisher one) in order to obtain tractable expressions for the needed geometrical tools. In this section, we first provide an introduction on M p,k,n viewed as a Riemannian quotient manifold in Section 4.2.1. We then study the Fisher information metric of likelihood (4.5) and derive the geometrical objects needed for Riemannian optimization in Section 4.2.2. However, required objects related to Riemannian distances cannot be obtained in closed-form. An alternate geometry using a product metric (close to the Fisher one) is thus proposed in order to achieve these in Section 4.2.3. The obtained results are summarized in Tables 4.1 and 4.2. The tangent space T θ M p,k,n of θ = π(θ) ∈ M p,k,n can be represented by a subspace of the tangent space T θ M p,k,n . First, we note that

T θ M p,k,n = T U St p,k × T τ (R + * ) n (4.9) = {(ξ U , ξ τ ) ∈ C p×k × R n : U H ξ U + ξ H U U = 0}. (4.10) 
thanks to T θ M p,k,n being a product manifold, and standard results on St p,k and (R + * ) n respectively. The tangent space T θ M p,k,n can now be decomposed into two complementary subspaces: the vertical and horizontal subspaces [START_REF] Absil | Optimization Algorithms on Matrix Manifolds[END_REF]. The vertical space is defined as the tangent space T θ π -1 (π(θ)) of the equivalence class π -1 (π(θ)) at θ. In the case of M p,k,n , the vertical space at θ is

V θ = {(U A, 0) : A ∈ H ⊥ k }, (4.11) 
where H ⊥ k = {A ∈ C k×k : A H = -A} is the set of k × k skew-Hermitian matrices. The orthogonal complement of the vertical space V θ is the horizontal space H θ , which provides proper representations of the tangent vectors in T θ M p,k,n called horizontal lifts. Indeed, there is a one-to-one correspondence between elements of T θ M p,k,n and those of H θ , i.e. each element ξ ∈ T θ M p,k,n is represented by its unique horizontal lift, denoted lift θ (ξ), in H θ . Note that the notion of orthogonal complement is conditioned by the choice of an inner product ⟨•, •⟩ θ defined on T θ M p,k,n , which will also turn M p,k,n into a Riemannian manifold.

Indeed, a Riemannian manifold is a manifold endowed with a Riemmanian metric (inner product defined for every tangent space). In the case of a Riemannian quotient manifold, such metric can be represented by a metric on M p,k,n , i.e., an inner product ⟨•, •⟩ θ defined for T θ M p,k,n at each point θ.

Still, for M p,k,n to be properly defined as a Riemannian quotient manifold, this metric on M p,k,n has to be invariant along each equivalence class. In our case, for all

O ∈ U k , θ = (U , τ ) ∈ M p,k,n , ξ = (ξ U , ξ τ ) and η = (η U , η τ ) in T θ M p,k,n , we must have ⟨ξ, η⟩ θ = ⟨(ξ U O, ξ τ ), (η U O, η τ )⟩ (U O,τ ) .
(4.12)

The choice of such Riemannian metric on M p,k,n will then induce a specific geometry (and corresponding theoretical tools) for this space.

. Fisher information metric: geometry for optimization

First, we consider the geometry resulting from the Fisher information metric of corresponding to likelihood (4.5) on M p,k,n . Since the statistical model is invariant along equivalence classes, the corresponding Fisher metric satisfies (4.12). It thus induces a Riemannian metric onto M p,k,n . To do so, we first derive this metric in Proposition 21.

Proposition 21 (Fisher information metric). The Fisher information metric at θ corresponding to the negative likelihood (4.5) is, for all ξ, η ∈

T θ M p,k,n , ⟨ξ, η⟩ FIM θ = 2 n c τ Re Tr ξ H U η U + k ξ τ ⊙ (1 + τ ) ⊙-1 T η τ ⊙ (1 + τ ) ⊙-1 , (4.13) where c τ = 1 n n i=1 τ 2 i 1 + τ i . Proof. See Appendix 4.A.1.
The part of the Fisher metric in the above proposition which is related to U , i.e., the part that depends on components ξ U and η U , is equal to the classical metric on Grassmann [START_REF] Absil | Riemannian geometry of Grassmann manifolds with a view on algorithmic computation[END_REF][START_REF] Absil | Optimization Algorithms on Matrix Manifolds[END_REF][START_REF] Edelman | The geometry of algorithms with orthogonality constraints[END_REF], up to the factor 2nc τ . We can also note that this factor does not affect the classical definition of the horizontal space of the Grassmann manifold. This directly yields that the horizontal space H θ in T θ M p,k,n associated with the metric of Proposition 21 is

H θ = {(ξ U , ξ τ ) ∈ C p×k × R n : U H ξ U = 0}. (4.14)
Unfortunately, the geometry of M p,k,n associated with the Fisher information metric of Proposition 21 is complicated to fully characterize. In particular, finding the geodesics of M p,k,n (curves of minimal length between two points in M p,k,n ) is very hard because of the factor c τ in the metric. In this part, we will focus on the use of the Fisher information metric in the framework of Riemannian optimization [START_REF] Absil | Optimization Algorithms on Matrix Manifolds[END_REF]. Alternate tractable geometric tools regarding geodesics and distance measurements (Riemannian exponential and logarithm mapping, Riemannian distance), will be obtained from a product metric in Section 4.2.3.

We will consider optimization problems of the form

minimize θ∈M p,k,n h(θ) (4.15)
for a cost function h : M p,k,n → R, induced by h : M p,k,n → R invariant along equivalence classes (i.e., h = h • π). In order to perform first order Riemannian optimization algorithms, we need a retraction (operator transforming tangent vectors into points onto the manifold) [START_REF] Absil | Optimization Algorithms on Matrix Manifolds[END_REF].

To obtain a point on M p,k,n from a descent direction (vector in H θ ) one needs a retraction, i.e., an operator R

(ξ)) = π(R M p,k,n (U O,τ ) ((ξ U O, ξ τ )), for all O ∈ U k , θ = (U , τ ) ∈ M p,k,n and ξ = (ξ U , ξ τ ) ∈ T θ M p,k,n .
Notice that the notion of retraction does not depend on the choice of the metric, so several options are generally available. In this Chapter, we consider the following retraction from classical results on St p,k [START_REF] Manton | Optimization algorithms exploiting unitary constraints[END_REF] and (R + * ) n . This retraction defined on M p,k,n for all θ = (U , τ ) ∈ M p,k,n and ξ = (ξ U , ξ τ ) ∈ H θ as

R M p,k,n θ (ξ) = XY H , τ + ξ τ + 1 2 τ ⊙-1 ξ ⊙2 τ , (4.16) 
where U + ξ U = XΣY H is the thin SVD. Notice that for the part that concerns τ , we have a second degree polynom in ξ τ with a negative discriminant, thus the resulting vector contains strictly positive numbers. It can be checked that the two conditions are satisfied, and this option was chosen for its numerical stability.

. Product metric: geometry for distances

Riemannian distances can be used either for performance assessment, or in machine learning algorithms (e.g. for clustering). Their interest can notably be their natural invariances with respect to the manifold and/or metric of interest. These distances are obtained by measuring the length of geodesics, which generalize straight lines onto manifolds while taking into account the curvature induced by the metric and geometric constraints. Unfortunately the Riemannian distance induced by the Fisher information metric of Proposition 21 cannot be obtained in closed-form. To overcome this difficulty, we propose to use a product metric from the following definition.

Definition 43 (Product metric). The Riemannian metric

⟨•, •⟩ M p,k,n • is de- fined, for all θ = (U , τ ) ∈ M p,k,n , ξ = (ξ U , ξ τ ) and η = (η U , η τ ) ∈ T θ M p,k,n , as ⟨ξ, η⟩ M p,k,n θ = αRe Tr ξ H U η U + β ξ τ ⊙ τ ⊙-1 T η τ ⊙ τ ⊙-1 , (4.17)
where α, β > 0.

Notice that the product metric has a structure similar to the Fisher information metric in Proposition 21: it consists in a scaled combination of standard metrics on Gr p,k [2, 1, 52] and (R + * ) n [START_REF] Bouchard | Riemannian geometry for compound Gaussian distributions: Application to recursive change detection[END_REF]. The main difference is that the weights α and β remain constant in the product metric, which will yield a geometry from well-known results. Another particular interest is that the flexibility regarding this factors allows emphasizing a parameter (subspace spanned by U or textures τ ) in the considered geometry. This is notably interesting for clustering applications (see Section 4.4) where we want to control the importance of each feature.

First, one can check that the horizontal space at θ in M p,k,n for the Riemannian metric in Definition 43 is the same as the one given in (4.14) corresponding to the Fisher information metric of Proposition 21. It is thus also denoted H θ in the following. where L : M p,k,n → R is the negative log-likelihood defined in (4.5). To solve this estimation problem, a block coordinate descent (BCD) has been proposed in [START_REF] Breloy | Maximum likelihood estimation of clutter subspace in non homogeneous noise context[END_REF]. Here, we present an alternative algorithm leveraging the information geometry presented in Section 4.2.2.

A first alternative is to use a Riemannian gradient descent (RGD) [START_REF] Absil | Optimization Algorithms on Matrix Manifolds[END_REF]. An iteration of this algorithm consists in computing the gradient of L and then retracting minus the gradient multiplied by a step size. Given the iterate θ (l) represented by θ (l) , the RGD algorithm yields

θ (l+1) = R M p,k,n θ (l) -ν t grad M p,k,n L(θ (l) ) , (4.23) 
where ν t is a step size, grad M p,k,n L(θ (l) ) is a representative of the Riemannian gradient associated to the Fisher information metric of Proposition 23, and R

M p,k,n θ (l)
is the retraction defined in (4. [START_REF] Bonnabel | Stochastic Gradient Descent on Riemannian Manifolds[END_REF]). Hence, it also corresponds to the so-called natural gradient as defined in [START_REF] Amari | Natural Gradient Works Efficiently in Learning[END_REF], which regained interest due to its link with second order optimization methods [START_REF] Martens | New Insights and Perspectives on the Natural Gradient Method[END_REF].

Here, we propose a more flexible approach following the recent works [START_REF] Bonnabel | Stochastic Gradient Descent on Riemannian Manifolds[END_REF][START_REF] Hosseini | An alternative to EM for Gaussian mixture models: batch and stochastic Riemannian optimization[END_REF]: we derive a Riemannian stochastic gradient descent (R-SGD) on M p,k,n . The R-SGD is a Riemannian optimization algorithm that computes the gradient of the function to minimize only on a subset A of all measured signals {x i } n i=1 . Hence, contrary to the BCD or the RGD, this algorithm can be used on large scale datasets and the cost of an iteration can be modulated according to the computing capacity. Since the number of samples A can be chosen arbitrarily set, this algorithm also encompasses the "plain" R-SGD (A = {x i }) and the classical RGD [START_REF] Absil | Optimization Algorithms on Matrix Manifolds[END_REF] (A = {x i } n i=1 ). Additionally, the R-SGD will be shown to have a lower complexity (per iteration) than the BCD.

In order to derive the R-SGD, the negative log-likelihood L defined on M p,k,n is rewritten

L(θ) = n i=1 L i (θ), (4.24)
where L i is the negative log-likelihood defined on the sample x i . Hence, the same notation applies to the negative log-likelihood (4.5) defined on M p,k,n :

L(θ) = n i=1 L i (θ).
In short, given the actual iterate θ (l) , an iteration of R-SGD proceeds in three steps:

1. a set A of samples is randomly drawn from {x i } n i=1 , 2. then the gradient of x i ∈A L i (θ (l) ) is computed, 3. finally a new iterate is given by retracting minus the gradient times a step size.

Since a retraction on M p,k,n is provided in Section 4.2.2, the only remaining element to provide is the Riemannian gradient of L i (θ). This gradient is given in the following proposition:

Proposition 22 (Riemannian gradient). Given θ = π (U , τ ) ∈ M p,k,n represented by θ = (U , τ ) ∈ M p,k,n , the representative in H U × T τ (R ++ ) n of the Riemannian gradient of L i at θ is grad M p,k,n L i (θ) = (G U , G τ )
where

G U = - τ i nc τ (1 + τ i ) (I -U U H )x i x H i U ,
and the j th element of G τ is

(G τ ) j = 1 + τ i -1 k x H i U U H x i for j = i 0 otherwise. Proof. See Appendix 4.A.2.
Following from this gradient, the resulting R-SGD on M p,k,n is detailed in the box Algorithm 9. Concerning the computation of the step size, several options exist. When the gradient is computed on all data, i.e. A = {x i } n i=1 , a line search (e.g. [1, §4.2]) is recommended. When the gradient is computed on a subset of all data, a step size proportional to 1/t, where t is the number of iterations, can be used as in [START_REF] Amari | Natural Gradient Works Efficiently in Learning[END_REF].

By rearranging the operations of G U in Proposition 22, the computational complexity of the gradient of x i ∈A L i (θ) is O(mpk+n), where m the number of samples in A. In practice, c τ can be approximated using only the textures associated with the samples in A, i.e. c τ ≈ 1

m x i ∈A τ 2 i 1+τ i .
Hence, the complexity of the gradient becomes O(mpk). Then, the complexity of the retraction (4.16) is O(pk 2 + m), as we only retract the non-zero elements of the gradient G τ from Proposition 22. Hence, the total complexity of each iteration of Algorithm 9 is O(mpk + pk 2 ), which is much lower than the O(np 2 + p 3 ) of the BCD in [START_REF] Breloy | Maximum likelihood estimation of clutter subspace in non homogeneous noise context[END_REF] (which involves the SVD of the scaled SCM at each step). in (4. [START_REF]An introduction to optimization on smooth manifolds[END_REF], which is expected to better reflect breakdown points at low sample support (cf. [START_REF] Smith | Covariance, subspace, and intrinsic Cramér-Rao bounds[END_REF] for an example regarding covariance matrix estimation).

Intrinsic (i.e., manifold oriented) versions of the Cramér-Rao inequality have been established [START_REF] Smith | Covariance, subspace, and intrinsic Cramér-Rao bounds[END_REF] and extended to quotient manifolds in [START_REF]On intrinsic Cramér-Rao bounds for Riemannian submanifolds and quotient manifolds[END_REF]. They are presented in details in Chapter 2 Section 2.5. The main difference compared to the classical CRBs is that the parameter θ is treated as being in a Riemmanian manifold endowed by an arbitrary chosen "error" metric. The estimation error is thus measured using the Riemannian distance d that emanated from this error metric. The obtained inequality is of the form

C ⪰ F -1 + curvature terms, (4.26)
where C is the covariance matrix of the error vector (defined as the Riemannian logarithm mapping log θ ( θ), which is induced by the error metric), and F -1 is the inverse of the Fisher information matrix (which depends on both the chosen metric and the Fisher information metric). Neglecting the curvature terms and taking the trace of (4.26) yields the inequality E d 2 (θ, θ) ≥ Tr(F -1 ) for an unbiased estimator θ, which will be here our primary interest.

In our context, we consider M p,k,n endowed with the product metric from Definition 43 in order to bound the error measure defined by d 2 M p,k,n as in (4.18). For the sake of exposition, the obtained results are directly reported in the two following propositions, while the technical details are let in the Appendix 4.A.3.

Proposition 23 (Fisher information matrix). The Fisher information matrix F θ on M p,k,n admits the structure 

F θ =     F U 0 0 F τ     , with the blocks F U = 2 α -1 n c τ I 2(p-k)k , and F τ = β -1 k diag (τ ⊙2 ⊙ (1 + τ ) ⊙-2 ),
E[d 2 M p,k,n ( θ, θ)] ≥ α CRB U + β CRB τ . (4.27) 
where

CRB U = (p -k) k n c τ and CRB τ = 1 k n i=1 (1 + τ i ) 2 τ 2 i .
Furthermore, two iCRB, on Gr p,k and (R + * ) n respectively, are given by

E[d 2 Gr p,k (π( Û ), π(U ))] ≥ CRB U , (4.28 
)

E[d 2 (R + * ) n (τ , τ )] ≥ CRB τ . (4.29) Proof. See Appendix 4.A.3.
Notice that the problem of estimating a subspace should not depend on its basis U , as two estimates Û and Û Q yield the same subspace estimate (but would yield different MSEs for the basis U ). The obtained bound on d 2

Gr p,k satisfies this property. Furthermore, Proposition 24 shows that the subspace estimation problem for model (4.3) does not depend on the underlying subspace itself, but rather only on its dimension and the SNR, which is theoretically appealing. Conversely, the euclidean CRBs in [START_REF] Besson | Bounds for a Mixture of Low-Rank Compound-Gaussian and White Gaussian Noises[END_REF], bounding the MSE on U U H (orthogonal projector) as in (4.25) does not exhibit such direct interpretability. Finally, in the specific case of data following a Gaussian low-rank (spiked) model for which τ i = SNR so that x i ∼ CN (0, SNR × U U H + I p ), we retrieve the iCRB of [START_REF] Smith | Covariance, subspace, and intrinsic Cramér-Rao bounds[END_REF]Eq.145], i.e.,

E[d 2

Gr p,k (π( Û ), π(U ))] ≥

(p -k) k (1 + SNR) n SNR 2 .
(4.30)

. Clustering of subspaces and textures

In this section, we apply the statistical model developed in Section 4.1 with its Riemannian geometry M p,k,n , presented in Section 4.2.3, to clustering problems. More specifically, we assume that we have M batches X i (e.g. sets of local pixels of an image, EEG epochs of measurements, ...). Each X i ∈ C p×n is a column-wise concatenation of n observations x j ∈ C p defined in Section 4.1. Furthermore, each batch X i belongs to an unknown class y ∈ 1, K .

The use of statistical descriptors is a classical procedure in machine learning as they are often more discriminative than raw data (see e.g. [START_REF] Barachant | Multiclass Brain-Computer Interface Classification by Riemannian Geometry[END_REF][START_REF] Tuzel | Human Detection via Classification on Riemannian Manifolds[END_REF]). Hence, we begin by estimating a descriptor θ i ∈ M p,k,n of the batch X i following Section 4.3.1. Then, the aim is to partition the descriptors {θ i } M i=1 in S = {S 1 , S 2 , • • • , S K }. Thus, we get a partition of the original batches {X i } M i=1 . Each parameter θ i is represented by a couple, i.e. θ i = π (U i , τ i ). Our contribution is to cluster both components (subspace and power) in a unified manner, leveraging the geometry of M p,k,n featured in Section 4.2.3. This section is focused on the application of a K-means++ [START_REF] Arthur | K-Means++: The Advantages of Careful Seeding[END_REF] on M p,k,n with the tools developed earlier. However, the proposed methodology is flexible: (i) descriptors θ i can be replaced by other statistical estimates with their associated Riemannian geometries, (ii) many Euclidean based clustering Algorithms can be transformed to Riemannian ones (replacing distances and means by their Riemannian counterparts).

. Distance and mean computations

Most clustering Algorithms, including K-means++ [START_REF] Arthur | K-Means++: The Advantages of Careful Seeding[END_REF], rely on distance and mean computations. Since θ i lies on a Riemannian manifold we first need to define distance and mean computations other than simple Euclidean ones.

A natural choice is the use of the distance d M p,k,n defined in (4.18). In the context of clustering, the distance on Gr p,k and the one on (R + * ) n do not necessarily have the same amplitude or the same ability to discriminate. Thus, the parameters α, β of the metric of Definition 43 are to be chosen carefully. We propose a 2-step strategy to select α, β: (i) correction of the scale effect and (ii) choice of a trade-off between the distances on Gr p,k and (R + * ) n . To correct the scale effect we propose to normalize the squared distances by their mean values on the samples {θ i } M i=1 . Then, a trade-off can be made between the two distances. More precisely, ∀γ ∈ [0, 1], we define

α = 1 -γ 1 M 2 q,l∈ 1,M d 2 Gr p,k (U q , U l ) , β = γ 1 M 2 q,l∈ 1,M d 2 (R + * ) n (τ q , τ l ) . (4.31) 
It remains to define a mean computation Algorithm on a set of parameters S j . In [START_REF] Karcher | Riemannian center of mass and mollifier smoothing[END_REF], the mean of a set of points on a Riemannian manifold is defined as the minimizer of the variance of this set. Let m = Card(S j ), the variance V of S j at θ = π(θ) ∈ M p,k,n is defined as, Denoting c = (U , τ ), one can check that the mean τ corresponding to the distance d (R + * ) n is simply the geometric mean

V (θ) = 1 m θ i ∈S j d 2 M p,k,n (θ, θ i ).
τ =   ⊙ θ i ∈S j τ i   ⊙ 1/m , (4.34) 
where ⊙ is the elementwise product. Similarly, the mean corresponding to distance d Gr p,k is well-known [START_REF] Absil | Riemannian geometry of Grassmann manifolds with a view on algorithmic computation[END_REF]. Unfortunately, no closed form is known to compute it. It is obtained through the following Riemannian gradient descent: given U (l) , the iterate U (l+1) is

U (l+1) = exp Gr p,k U (l)   ν t m θ i ∈S j log Gr p,k U (l) (U i )   , (4.35) 
where ν t is the step size which can be computed thanks to a line search [START_REF] Absil | Optimization Algorithms on Matrix Manifolds[END_REF]. Since we get one mean per class, in the rest of the Chapter, the mean of S j is noted c j .

. K-means++ on M p,k,n

With the distance and mean computation Algorithms explained above, we use a K-means++ on M p,k,n to partition {θ i } M i=1 in S (and thus partition {X i } M i=1 ). The K-means++ Algorithm on a given set endowed with a divergence and a center of mass computation has been presented in the subsection 1.4.2. We briefly recall the main steps of a K-means++, here adapted to the Riemannian manifold M p,k,n .

Instead of choosing class centers c j uniformly at random from {θ i } M i=1 , K-means++ initializes them by recursively choosing a new center θ i with probability D(θ i ) 2 θ j D(θ j ) 2 [START_REF] Arthur | K-Means++: The Advantages of Careful Seeding[END_REF]. Here, D(θ i ) denotes the distance d M p,k,n from θ i to the closest center among those already chosen. Once these class centers are initialized, K-means++ on M p,k,n iteratively applies two steps [START_REF] Arthur | K-Means++: The Advantages of Careful Seeding[END_REF]:

1. Assignment step: each θ i is assigned to the cluster S j whose center c j is the closest using the distance d M p,k,n , 2. Update step: each new class center c j is computed using (4.34) and (4.35).

Once terminated, K-means++ on M p,k,n outputs the partition S. Intuitively, K-means++ finds clusters S j whose points θ i ∈ S j are close to each other using the distance d M p,k,n .

. Theoretical properties

We recall the main theoretical property of the K-means++ Algorithm, presented in the subsection 1.4.2 and here adapted to M p,k,n . To analyze the performance of K-means++ on M p,k,n , we define the within-cluster sum of squares (WCSS),

ϕ(S) = K j=1 θ i ∈S j d 2 M p,k,n (c j , θ i ). (4.36)
The main property of the K-means++ Algorithm is its output partition satisfies

E[ϕ] ≤ 8(ln K + 2)ϕ OPT (4.37)
where the expectation is taken with respect to the seeding procedure and ϕ OPT is a minimum of (4.36). This property is central to K-means++ since it is proven that a plain K-means [START_REF] Macqueen | Some methods for classification and analysis of multivariate observations[END_REF] cannot admit such a bound. However, the clustering from a K-means++ is not necessarily a global minimum of the WCSS (4.36). Hence, a standard practice is to run the Algorithm several times with different initializations and then to keep the clustering with the lowest inertia (4.36). K-means++ on M p,k,n with the strategy of several initializations is presented in Algorithm 10.

. Numerical experiments

. Simulations

This section illustrates the performance of the Algorithm 9 as well as the Cramér-Rao bounds developed in Section 4.3. The covariance matrix of the simulated data follows the model Σ i = I p + τ i U U H . The basis U is a random matrix in St p,k . The textures τ i are randomly drawn from a Log-normal(-s 2 2 , s 2 ) multiplied by the desired SNR. Hence, we get E[τ i ] = SNR. The shape parameter s 2 controls the heterogeneity of the textures: the higher the s 2 , the greater the heterogeneity. We generate sets {x i } n i=1 , with n ∈ 10, 1000 , from the zero mean complex Gaussian multivariate distribution with covariance Σ i . For each value of n, N sets {x i } n i=1 are simulated and estimators Û , τ are computed in each case.

Here are the considered estimators in the simulations:

1. SCM: the k first principal eigenvectors of the SCM of {x i } n i=1 are concatenated to get U SCM .

2. BCD: the MLE estimate is done using BCD algorithm on {x i } n i=1 [START_REF] Breloy | Maximum likelihood estimation of clutter subspace in non homogeneous noise context[END_REF] . The estimators are denoted U BCD and τ BCD . algorithm performs identically to the block coordinate Algorithm [START_REF] Breloy | Maximum likelihood estimation of clutter subspace in non homogeneous noise context[END_REF] in every scenario. Also, both estimators are statistically efficient, i.e. reach the lower bound (4.28) when n is sufficiently large. Finally, in the case of a low SNR (i.e., SNR = 1), the block coordinate descent and our Riemannian gradient descent outperform the projected SCM regardless of texture heterogeneity.

Figure 4.3 presents the texture estimation error as a function of SNR with two different s 2 . Firstly, our proposed estimation algorithm performs identically to the block coordinate Algorithm [START_REF] Breloy | Maximum likelihood estimation of clutter subspace in non homogeneous noise context[END_REF]. Interestingly, the rate of convergence of the estimation error in the case of low heterogeneity, i.e. s 2 = 2, is much faster than in the case of high heterogeneity, i.e. s 2 = 4. Moreover, both estimators reach the lower bound (4.29) for a high enough SNR.

A final simulation is conducted on high dimensional data. In Section 4.3, we recalled that the complexity of the BCD grows linearly with the number of data n and quadratically with the dimension p of the data. Hence, the BCD is no longer practicable when both n and p get large. However, in Section 4.3, we showed that the R-SGD proposed in Algorithm 9 has a constant complexity for the number of data and linear for the dimension of the data. Figure 4.4 illustrates this situation with n ∈ 10 3 , 10 4 , p = 10 4 and k = 10 (dimensions for which the iteration of BCD cannot be computed on the tested setup). This shows the efficiency of the proposed R-SGD.

. Clustering: application to image segmentation

To illustrate the interest of the Riemannian geometry M p,k,n and of the parameters of the statistical model (4.3) used as descriptors, we apply the Algorithm 10 to the hyperspectral image segmentation problem Indian Pines presented in the Chapter 1. Figure 4.5 shows the ground truth with the 16 classes.

After centering the image by subtracting the global mean, a sliding window of size w × w is applied to the image. One descriptor θ i is estimated using the n = w 2 observations in each window denoted X i ∈ R p×n . Thus, we get a set of descriptors {θ i } to cluster using a K-means++ [START_REF] Arthur | K-Means++: The Advantages of Careful Seeding[END_REF].

We compare the descriptors of the considered statistical model (MSG+WGN) with different descriptors and geometries. Due to the data's high dimensionality, some methods require a PCA on the whole image as a preprocessing. Then, we keep only the k first components. We begin by presenting these different methods:

1. "center pixel": we extract the center vector of the window. K-means++ cluster these pixels using the Euclidean metric (i.e., classical inner product). It amounts to cluster directly the image using a classical K-means++. 2. "mean pixel": we average the pixels inside the window. Then K-means++ cluster these means using the Euclidean metric.

3. "SCM": we compute the SCM using pixels inside the window. K-means++ cluster these matrices using the Riemannian geometry of symmetric positive definite matrices S ++ p (see [START_REF] Skovgaard | A Riemannian Geometry of the Multivariate Normal Model[END_REF][START_REF] Bhatia | Positive Definite Matrices[END_REF][START_REF] Pennec | A Riemannian framework for tensor computing[END_REF]).

Next, we present the different methods that take into account this high dimensionality. Therefore, we do not use any dimensional reduction preprocessing.

1. "subspace SCM": the k first eigenvectors of the SCM are retained.

Then, they are clustered using a K-means++ on Gr p,k .

2. "robust subspace γ = 0": our method. Subspaces and textures are estimated following statistical model (4.3). Only the subspaces are clustered using a K-means++ on Gr p,k . σ 2 is pre-estimated using the p -k lowest eigenvalues of the SCM.

3. "robust subspace γ > 0": our method. Subspaces and textures are estimated following statistical model (4.3). The textures and subspaces are clustered using a K-means++ on M p,k,n as explained in Section 4.4 and detailed in Algorithm 10. σ 2 is pre-estimated using the p -k lowest eigenvalues of the SCM. i=1 λ i , with respect to k ∈ 1, 30 . {λ i } p i=1 are the eigenvalues in descending order of the SCM computed with all pixels of Indian Pines [START_REF] Baumgardner | Band AVIRIS Hyperspectral Image Data Set[END_REF]. Only the first 30 eigenvalues out of p = 200 are plotted. We notice that the first 5 principle eigenvectors contain more than 95% of the cumulative variance.

Because Indian Pines [START_REF] Baumgardner | Band AVIRIS Hyperspectral Image Data Set[END_REF] has 16 classes, we set the number of clusters K to 16. Furthermore, we set k = 5. Indeed, from Figure 4.6, we observe that the first 5 principal eigenvectors of the SCM calculated on Indian Pines [START_REF] Baumgardner | Band AVIRIS Hyperspectral Image Data Set[END_REF] contain more than 95% of the total variance. Since we use an unsupervised algorithm, the output classes are not necessarily the same as the ground truth. Hence, a Kuhn-Munkres algorithm is applied to the segmentation to recover ground truth's classes. Furthermore, we do 10 different initializations (parameter l in Algorithm 10) and keep the clustering with the lowest inertia (4.36). To measure the variability of the results, each K-means++ is run 10 times. The averaged Overall Accuracy (OA), as well as the averaged mean Intersection over Union (mIoU), are reported with their standard deviations (std) in Table 4.3.

First of all, the methods based on non-Euclidean geometries all surpass the other methods ("center pixel" and "mean pixel") by at least 8.9% in terms of averaged Overall Accuracy. This proves the interest in using Riemannian geometries other than the simple Euclidean one. Secondly, "robust subspace, γ = 0" slightly exceeds "subspace SCM" which shows the interest of robust estimation of subspaces. Thirdly, "robust subspace" with γ = 0.1 outperform "robust subspace γ = 0" by nearly 4%. Finally, our method "robust subspace γ = 0.1" outperforms the strong baseline "SCM" by 2.8% in terms of Overall Accuracy. However, "SCM" performs better in terms of mIoU, by nearly 2%, compared to "robust subspace, γ = 0.1". This means "SCM" better classifies classes with small number of samples.

As mentioned in Section 4. with w = 7 and k = 5.

subspaces' distance and textures' distance. A hyperparameter γ ∈ [0, 1] realizes this trade-off. Figure 4.7 shows that our method "robust subspace" outperforms the "SCM" when we emphasis the Gr p,k distance. Figure 4.7 illustrates that our method works for an interval of γ and therefore does not need a critical choice to maximize Overall Accuracy. However, to maximize mIoU, the smaller γ the better. Figure 4.9 presents the segmentations of 4 methods: "center pixel", "SCM", "robust subspace γ = 0" and "robust subspace γ = 0.1". The segmentations are those with the lowest inertia (4.36) for each method. We note a significant improvement occurs on class 14 (lower right part) between baseline "SCM" in Figure 4.9b and our method "robust subspace γ = 0.1" in Figure 4.9d. Also, the textures help to better cluster classes 8 and 14, see Figure 4.9c versus 4.9d.

Finally, our method "robust subspace γ = 0.1" converges quickly, i.e. in less than 20 iterations (see Figure 4.8). Interestingly, the WCSS (4.36) decreases a lot in the first iterations and hence the K-means++ can be stopped after few iterations to faster computation.

. Conclusions

This chapter proposed to study the information geometry of heteroscedastic signals embedded in WGN. This geometric approach offered a unified framework in order to 1) derive new optimization algorithm based on Riemannian stochastic gradient descent; 2) obtain iCRBs (error bounds space" with respect to parameter γ on Indian Pines [START_REF] Baumgardner | Band AVIRIS Hyperspectral Image Data Set[END_REF] with w = 7 and k = 5. Mean performance are reported with their standard deviations (with error bars for "robust subspace" and in dashed blue lines for "SCM"). driven by a Riemannian distance) with interesting interpretations; 3) propose a new Riemannian clustering algorithm based on the model features, which was applied it to a hyperspectral image to illustrate the interest of the approach. By definition of the Fisher information metric [START_REF] Smith | Covariance, subspace, and intrinsic Cramér-Rao bounds[END_REF],

4.A . Appendix

⟨ξ, η⟩ FIM θ = E[D L(θ)[ξ] D L(θ)[η]] = E[D 2 L(θ)[ξ, η]]
L defined in (4.5) can be written as 

L(θ) = n i=1 L g x (ψ i (θ)), where L g x (Σ) = log |Σ| + x H Σ -1 x
= n i=1 ⟨D ψ i (θ)[ξ], D ψ i (θ)[η]⟩ FIM,g ψ i (θ) , (4.38) 
where ⟨ξ

Σ , η Σ ⟩ FIM,g Σ = Tr(Σ -1 ξ Σ Σ -1 η Σ )
is the Fisher information metric of the Gaussian distribution on H ++ p ; see e.g. [START_REF] Smith | Covariance, subspace, and intrinsic Cramér-Rao bounds[END_REF]. The definition (4.4) of

ψ i (θ) and D ψ i (θ)[ξ] = τ i (U ξ H U + ξ U U H ) + (ξ τ ) i U U H yields ⟨D ψ i (θ)[ξ], D ψ i (θ)[η]⟩ FIM,g ψ i (θ) = (ξ τ ) i (η τ ) i ⟨U U H , U U H ⟩ FIM,g ψ i (θ) + (ξ τ ) i τ i ⟨U U H , U η H U + η U U H ⟩ FIM,g ψ i (θ) + τ i (η τ ) i ⟨U ξ H U + ξ U U H , U U H ⟩ FIM,g ψ i (θ) + (τ i ) 2 ⟨U ξ H U + ξ U U H , U η H U + η U U H ⟩ FIM,g ψ i (θ) (4.39) 
Then we compute each term separately:

⟨U U H , U U H ⟩ FIM,g ψ i (θ) = k (1 + τ i ) 2 (4.40) ⟨U U H , U η H U + η U U H ⟩ FIM,g ψ i (θ) = 0 (4.41) ⟨U ξ H U + ξ U U H , U U H ⟩ FIM,g ψ i (θ) = 0 (4.42) ⟨U ξ H U + ξ U U H , U η H U + η U U H ⟩ FIM,g ψ i (θ) = 2 1 + τ i Re Tr ξ H U η U (4.43)
The Fisher information metric stated in Proposition 

M p,k,n L i (θ) ∈ H U × T τ (R ++ ) n . By definition, ∀ξ ∈ T θ M p,k,n , D L i (θ)[ξ] = ⟨grad M p,k,n L i (θ), ξ⟩ FIM θ [1]. Notice that ψ i (θ) = (1 + τ i ) k and (ψ i (θ)) -1 = I p - τ i 1 + τ i U U H (Woodbury formula). It follows that D L i (θ)[ξ] = -2 τ i 1 + τ i Re Tr xx H U ξ H U + k (1 + τ i ) -x H U U H x (1 + τ i ) 2 (ξ τ ) i = 2nc τ ⟨- τ i nc τ (1 + τ i ) x x H U , ξ U ⟩ St p,k U + ⟨a, ξ τ ⟩ (R + * ) n τ
where a ∈ R n is a vector such that [START_REF] Absil | Optimization Algorithms on Matrix Manifolds[END_REF], which is enough to conclude.

a j = 1 + τ i -1 k x H U U H x for j = i 0 otherwise.

To obtain the Riemannian gradient grad

M p,k,n L(θ) by identification, it remains to project -τ i ncτ (1+τ i ) x x H U onto H U with P Gr p,k U (ξ U ) = I p -U U H ξ U

4.A.3 . Proof of Proposition 23 and 24

In this section we derive the elements of the generic iCRB inequality (4.26) for the estimation problem of θ ∈ M p,k,n (and data model in (4.3)) when the chosen error metric is the product one from Definition 43. To do so, we need to select a proper system of coordinates of the tangent space T θ M p,k,n so that the entries of F -1 can be actually obtained: M p,k,n being a quotient manifold, there are two solutions in order to represent this object. The first one is to simply consider coordinates of T θ M p,k,n without restrictions. The resulting Fisher information matrix will then be singular, but its pseudoinverse still yields the desired inequality [START_REF]On intrinsic Cramér-Rao bounds for Riemannian submanifolds and quotient manifolds[END_REF]. The second option, which will be chosen here, is to consider only coordinates in the horizontal space H θ , which is given in our case in (4.14).

Two ingredients are thus needed to establish the Fisher information matrix as in (4.26):

(i) The Fisher information metric ⟨•, •⟩ FIM θ , which was given in Proposition 21.

(ii) A basis of the horizontal space H θ in (4.14) that is orthonormal with respect to the error metric (i.e., the product metric from Definition (43)), which is given in the following proposition.

Remarkably, F θ will turn to be diagonal which enables us to obtain closed forms iCRB on M p,k,n , Gr p,k and (R + * ) n respectively. To show that F θ is block diagonal, it suffices to notice that there are no crossed terms between tangent vectors of U and τ in the Fisher information metric of Proposition 23. Computing the elements of F U yields

⟨(α -1 2 U K ij , 0), (α -1 2 U K lm , 0)⟩ FIM θ = 2 α -1 n c τ if ij = l m 0 otherwise ⟨(α -1 2 iU K ij , 0), (α -1 2 i U K lm , 0)⟩ FIM θ = 2α -1 n c τ if ij = l m 0 otherwise ⟨(α -1 2 U K ij , 0), (α -1 2 i U K lm , 0)⟩ FIM θ = 0 Hence, F U = 2α -1 n c τ I 2 (p-k) k .
Computing the elements of F τ yields ⟨(0, β -1 2 τ i e i ), (0, β - This concludes the proof of Proposition 24.

-Robust Geometric Metric Learning

Many classification algorithms rely on the distance between data points. These algorithms include the classical K-means, Nearest centroïd classifier, k-nearest neighbors and their variants. The definition of the distance is thus of crucial importance since it determines which points will be considered similar or not, thus implies the classification rule. In previous chapters, statistical features θ were estimated from samples sets {x i } n i=1 . Then, these features were classified using divergences that respect constraints of the parameter space and are associated to the considered statistical model. Here, the approach is different: the classification is performed directly on the data x i and thus no statistical estimation is performed. To do so, classification algorithms most generally rely on the Euclidean distance, which is d Ip (x i , x j ) = ∥x i -x j ∥ 2 for x i , x j ∈ R p . However, this distance is prone to several issues. A pathological example is when two classes have a high variance along one common axis: within this configuration, two data points from the same class can be far away from each other, while two data points from two different classes can be very close.

To find a more relevant distance for classification, the problem of metric learning has been proposed. Metric learning aims at finding a Mahalanobis distance d A (x i , x j ) = (x i -x j ) T A -1 (x i -x j ) , (5.1) that brings data points from same class closer, and furthers data points from different classes away. Mathematically, metric learning is an optimization problem of a loss function that relies on d A . This minimization is achieved over A, a matrix that belongs to S ++ p the set of p × p symmetric positive definite matrices. The constraints of symmetry and positivity are enforced so that d A is a distance. An illustration of data {x i } and their whitened counterpart {A -1 2 x i } is presented in Figure 5.1. In this chapter, we focus on developing metric learning methods that are robust to outliers using robust statistics (as presented in Chapter 1) and fast using Riemannian optimization (theory presented in Chapter 2).

In the following, we consider being in a supervised regime with K classes, i.e. m data points {x 1 , . . . , x m } in R p with their labels in 1, K are available. Data points can be grouped by classes and the elements of the k th class are denoted {x kl }. Then, n k pairs, (x kl , x kq ) with kl ̸ = kq, of elements of the class k are formed. The set S k contains all these pairs and S contains the n S = K k=1 n k pairs of all the classes. When S is used, the class of a pair is not relevant, thus it is denoted by (x l , x q ) instead of (x kl , x kq ). The ratio n k n S is denoted π k . Then, each vector s ki is defined as the subtraction over similar data while constraining dissimilar data to be far away from each other. MMC writes subject to (x l ,xq)∈D d A (x l , x q ) ≥ 1.

(5.2)

Notice that d A (rather than d 2 A ) is involved in the constraint in order to avoid a trivial rank-one solution.

Then, ITML [START_REF] Davis | Information-Theoretic Metric Learning[END_REF] (Information-Theoretic Metric Learning) proposed to find a matrix A that stays close to a predefined matrix A 0 while respecting constraints of similarities and dissimilarities. The proximity between A and A 0 is measured with the Gaussian Kullback-Leibler divergence D KL (A 0 , A) = Tr(A -1 A 0 ) + log |AA -1 0 |. ITML writes minimize A (x l , x q ) ≤ u, (x l , x q ) ∈ S, d 2 A (x l , x q ) ≥ l, (x l , x q ) ∈ D, (5.3) where u, v ∈ R are threshold parameters, chosen to enforce closeness of similar points and farness of dissimilar points. Usually A 0 is chosen as the identity matrix or as the sample covariance matrix (SCM) of the set {s ki }.

Next, GMML (Geometric Mean Metric Learning) [START_REF] Zadeh | Geometric Mean Metric Learning[END_REF] is an algorithm of great interest. Indeed, it achieves impressive performance on several datasets while being very fast thanks to a closed form formula. The GMML problem writes minimize A∈S ++ p 1 n S (x l ,xq)∈S d 2 A (x l , x q ) + 1 n D (x l ,xq)∈D d 2 A -1 (x l , x q ).

(5.4)

The intuition behind this problem is that d A -1 should be able to further away dissimilar points while d A close together similar points. Then, GMML formulation (5.4) can be rewritten (5.6)

Then, [START_REF] Zadeh | Geometric Mean Metric Learning[END_REF] proposes to generalize this solution by A -1 = S -1 # t D with t ∈ [0, 1] (i.e. t is no longer necessarily 1 2 ).

For example, if d is the Euclidean distance d E (A, A k ) = ∥A -A k ∥ 2 , then the minimum of (5.11) is the arithmetic mean K k=1 π k A k . In the rest of the chapter, we consider the Riemannian distance on S ++ p [START_REF] Skovgaard | A Riemannian Geometry of the Multivariate Normal Model[END_REF], that is

d S ++ p (A, A k ) = log A -1 2 A k A -1 2 2
.

(5.12)

A nice property of d S ++ p (5.12) is its affine invariance. Indeed, for any C invertible, we have d S ++ p (CAC T , CA k C T ) = d S ++ p (A, A k ). Thus, if {s ki } is transformed to {Cs ki } then the minimum (A, {A k }) of (5.13) becomes CAC T , CA k C T . Another nice property of this distance is its geodesic convexity, as it will be discussed in Section 5. We emphasis that the optimization of (5.13) is performed with respect to all the matrices A and {A k } at the same time. Thus it both estimates regularized covariance matrices {A k } while averaging them to estimate their unknown barycenter A.

. RGML Gaussian

To get a practical cost function L (5.13), it only remains to specify the functions L k . The most classical assumption on the data distribution is the Gaussian one (e.g. considered in ITML with the SCM as prior). Thus, the first functions L k considered are the centered multivariate Gaussian negative log-likelihoods

L G,k (A) = 1 n k n k i=1
s T ki A -1 s ki + log |A|. (5.15)

. RGML Tyler

When data is non-Gaussian, robust covariance matrix estimation methods are a preferred choice. This occurs whenever the probability distribution of the data is heavy-tailed or a small proportion of the samples represents -α grad M p,K L G (θ (l) )

outlier behavior. In a classification setting, the latter happens when data are mislabeled. A classical robust estimator is the Tyler's estimator [START_REF] Tyler | A Distribution-Free M -Estimator of Multivariate Scatter[END_REF] which is a minimizer of the following cost function (5.16)

An important remark is that (5.16) is invariant to the scale of A. Indeed ∀α > 0, it is easily checked that L T,k (αA) = L T,k (A). Thus, a constraint of unit determinant is added to (5.13) to fix the scales of {A k }. Furthermore, the Riemannian distance (5.12) is also the one on SS ++ p . Thus, we choose to also constrain A so that it is the Riemannian mean of {A k } on SS ++ p . We denote by SM p,K this new parameter space (5.18)

. Riemannian optimization and geodesic convexity

The objective of this section is to present Algorithms 11 and 12 which minimize (5.15) and (5.18) respectively. They leverage the Riemannian optimization framework [START_REF] Absil | Optimization Algorithms on Matrix Manifolds[END_REF][START_REF]An introduction to optimization on smooth manifolds[END_REF]. The products manifolds M p,K and SM p,K (directly inherited from S ++ -α grad SM p,K L T (θ (l) )

5.3.2 . SM p,K : a geodesic submanifold of M p,K

In (5.17), SM p,K is defined as a subset of M p,K . In fact, SM p,K can even be turned into a Riemannian submanifold of M p,K . First of all, the tangent space of SM p,K at θ is .

Finally, L T (5.18) is g-convex on SM p,K . Indeed, [START_REF] Ollila | Simultaneous penalized M-estimation of covariance matrices using geodesically convex optimization[END_REF] proved that L T is g-convex on M p,K and SM p,K is a geodesic submanifold of M p,K . In this section, we exhibit a practical interest of the RGML method developed in Sections 5.2 and 5.3. All implementations of the following experiments are available at https://github.com/antoinecollas/robust_ metric_learning. We apply it on real datasets from the UCI machine learning repository [START_REF] Dua | UCI Machine Learning Repository[END_REF]. The three considered datasets are: Wine, Vehicle, and Iris. They are classification datasets, and their data dimensions along with their number of classes are presented in Table 5.1. These datasets are well balanced, i.e. they roughly have the same number of data for all the classes. The numbers of generated pairs in S and D are n S = n D = 75 K(K -1) (as in [START_REF] Davis | Information-Theoretic Metric Learning[END_REF] and [START_REF] Zadeh | Geometric Mean Metric Learning[END_REF]).

The classification is done following a very classical protocol in metric learning.

1. A matrix A is estimated via a metric learning method.

2. The data {x l } are multiplied by A -1 2 to get {A -1 2 x l }.

3. The data {A -1 2 x l } are classified using a k-nearest neighbors with 5 neighbors.

Thus, the classification is performed using the Mahalanobis distance d A defined by (5.1) in the Introduction. This classification is repeated 200 times via cross-validation. The proportion of the training/test sets is 50/50. The error of classification is computed for each fold and the mean error is reported in Table 5.1. In order to show the robustness of the proposed method, mislabeled data are introduced. To do so, we randomly select data in the training set whose labels are then randomly changed for new labels.

The implementations of the cross-validation as well as the k-nearest neighbors are from the scikit-learn library [START_REF] Pedregosa | Scikit-learn: Machine Learning in Python[END_REF]. The proposed methods RGML Gaussian and RGML Tyler have been implemented using JAX [START_REF] Bradbury | JAX: composable transformations of Python+NumPy programs[END_REF]. The chosen value of parameter λ is 0.05. Its value has little impact on performance as long as it is neither too small nor too large. The proposed algorithms are compared to the classical metric learning algorithms: the identity matrix (called Euclidean in Table 5.1), the SCM computed on all the data, ITML [START_REF] Davis | Information-Theoretic Metric Learning[END_REF], GMML [START_REF] Zadeh | Geometric Mean Metric Learning[END_REF], and LMNN [START_REF] Weinberger | Distance metric learning for large margin nearest neighbor classification[END_REF]. The implementations of the metric-learn library [START_REF] Vazelhes | metric-learn: Metric Learning Algorithms in Python[END_REF] are used for the last three algorithms.

From Table 5.1, several observations are made. First of all, on the raw data (i.e. when the mislabeling rate is 0%) the RGML Gaussian is always the best performing algorithm among those tested. Also, the RGML Tyler always comes close with a maximum discrepancy of 0.26% versus the RGML Gaussian. Then, the RGML Tyler is the best performing algorithm when the mislabeling rate is 5% or 10%. When the mislabeling rate is 15%, RGML Tyler is the best performing algorithm for the Vehicle dataset and it is only beaten by ITML -Identity on the two other datasets. This shows the interest of considering robust cost functions such the Tyler's cost function (5.16) in the presence of poor labeling.

Finally, the RGML algorithms are fast. Indeed, Figure 5.2 shows that both RGML Gaussian and RGML Tyler converge in less than 20 iterations on the Wine dataset.

. Conclusions

This chapter has proposed to view some classical metric learning problems as covariance matrix estimation problems. From this point of view, the RGML optimization problem has been formalized. It aims at estimating regularized covariance matrices, in a robust manner, while computing their Riemannian mean. The formulation is broad and several more specific costs functions have been studied. The first one leverages the classical Gaussian likelihood and the second one the Tyler's cost function. In both cases, the RGML problem is g-convex and thus any local minimizer is a global one. Two Riemannian-based optimization algorithms are proposed to minimize these cost functions. Finally, the performance of the proposed approach is studied on several datasets. They improve the classification accuracy and are robust to mislabeled data. The mislabeling rates indicate the percentage of labels that are randomly changed in the training set.

Wine

-Conclusions and perspectives

. Conclusions

This manuscript proposed new methods for statistical estimation and classification. They have been tested on remote sensing applications and have shown practical interests whether in terms of speed or precision. To do so, we began this manuscript with the description of a clustering-classification pipeline. The latter is based on statistical estimation and decomposes in three steps: vectors extraction, features estimation and features clustering or classification. The first step is a preprocessing step: data are transformed into batches to be clustered or classified. Then, the second step performs statistical estimation. Each batch of data is assumed to follow a parametrized statistical distribution. Classically, data are considered to be Gaussian with a known center. In this case, the estimated feature is the SCM which is the MLE. The third step consists of clustering or classifying these covariance matrices. To do so, we mentioned that, in the literature, the Riemannian distance as well as the Riemannian center of mass, both on the set of symmetric positive definite matrices, are often leveraged to implement K-means++ or Nearest centroïd classifier. The objective of this manuscript was to go beyond this assumption of Gaussianity in steps two and three. Indeed, data are not necessarily Gaussian due to the presence of outliers (e.g. mislabeled data) or heavy tailed distributed data. Furthermore, data can be in high dimension which makes the classical estimation of the SCM ill posed.

To go beyond the Gaussian assumption, we leveraged the field of robust statistics, i.e. statistics that are robust to outliers and/or heavy tailed distributed data. Also, we considered structured covariance matrices as well as regularized models to handle high dimensional data. A first contribution was to propose new estimators for such statistics leveraging the theory of Riemannian geometry. Indeed, the parameter to estimate belongs to a constrained set that can be formalized as a Riemannian manifold. This formalization has many advantages: deriving estimators respecting constraints, flexibility in the optimizers (stochastic, second order, ...), geodesic convexity, ... Among all possible Riemannian manifolds, we focused on statistical manifolds i.e. manifolds endowed with the FIM. The latter tightly links the parameter space with the considered statistical model. Thus, we derived fast and scalable estimators that minimize negative log-likelihoods. A second contribution was the derivation of ICRBs to analyse the performance of estimators of structured covariance matrices. They lower bound the mean squared Riemannian distance between estimated parameters and the true one while taking into account constraints of the parameter space. Then, the third axis focused on the third step by proposing new divergences. The latter measure the proximity between parameters and are associated to the considered statistical model. We also developed algorithms to compute the associated Riemannian centers of mass of parameters. These algorithms are Riemannian based optimizers in order to get fast and scalable estimators that respect the constraints of the parameter space. Finally, a forth contribution was the development of metric learning algorithms. These are different from the clustering-classification pipeline presented earlier since they directly operate on the raw data. Indeed, metric learning problems propose to learn a Mahalanobis distance such that data from a same class are close from each other whereas data that belong to different classes are far from each other. In this manuscript, we proposed geodesically convex problems, called RGML, that are solved efficiently using Riemannian optimization.

All these contributions have been tested on generated data as well as real datasets such as the Indian pines image and the large scale crop type mapping dataset Breizhcrops and show promising results.

. Perspectives

Throughout the manuscript choices have been made and many things remain to explore. A first perspective is the application of the metric learning algorithms we derived to more "richer" datasets. Indeed, to show the interest of RGML, we tested it on datasets from the UCI repository. These datasets are quite small, old and not related to remote sensing. Therefore, it should interesting to apply RGML to the bigger and newer dataset Breizhcrops. RGML is fast and thus this application should enforce this advantage of speed compared to other metric learning algorithms. If RGML is too slow, due to the big amount of data, it could be accelerated using a Riemannian stochastic gradient descent or one of its extensions with variance reduction [START_REF] Bonnabel | Stochastic Gradient Descent on Riemannian Manifolds[END_REF][START_REF] Zhang | Riemannian SVRG: Fast Stochastic Optimization on Riemannian Manifolds[END_REF]. Others extensions of RGML are possible such as adding a low-rank structure to covariance matrices [START_REF] Harandi | Joint Dimensionality Reduction and Metric Learning: A Geometric Take[END_REF]. This should help to get the existence of solutions and faster optimization for RGML problems when data are in high dimensions.

A second perspective is to transform the proposed clustering-classification pipeline to a fully differentiable one. Indeed, with the advances in geometric deep learning [START_REF] Bronstein | Geometric deep learning: going beyond euclidean data[END_REF][START_REF] Huang | A riemannian network for spd matrix learning[END_REF] and in the associated frameworks such as JAX [START_REF] Bradbury | JAX: composable transformations of Python+NumPy programs[END_REF], it becomes an increasingly practice to integrate every steps (preprocessing, statistical estimation and clustering-classification) in a single differentiable function. This has the advantage that each step can include parameters that are tuned with gradient descent to maximize the precision on the training set. For example, the preprocessing step can include a projection onto a learnable subspace (instead of a pre-defined PCA) or a learnable data time wrapping [START_REF] Cuturi | Soft-dtw: a differentiable loss function for time-series[END_REF].

A third perspective is domain adaptation. We showed empirically that the proposed methods in Chapter 3 are robust to transformations of the test set. However, the experiments are limited to geometrical transformations (rotations, scaling factors, translations, ...). It would be valuable to investigate more realistic transformations such as a sensor change for hyperspectral or SAR images and see if results hold. This asks the question of, if a transformation is too strong, how to adapt the proposed clustering-classification pipeline. Domain adaptation [START_REF] Daume | Domain adaptation for statistical classifiers[END_REF][START_REF] Zhang | Bridging Theory and Algorithm for Domain Adaptation[END_REF] is the field for these problems: given a test set with a distribution shift from the training set, how to adjust parameters of the pipeline, in an unsupervised manner, to account this shift. An idea would be to re-calebrate the distribution of estimated parameters {θ i } such that the distribution on the test set is equal to the one on the training set.

-Résumé en français

Les systèmes de télédétection offrent une possibilité accrue d'enregistrer des images multitemporelles et multidimensionnelles de la surface de la terre en améliorant la résolution temporelle et spatiale. En effet, ces dernières années, de nombreux pays et entreprises ont déployé des satellites ou utilisé des drones pour l'observation de la terre. Les satellites Sentinel, Landsat et TerraSAR-X ou l'UAVSAR sont des exemples de ces instruments de télédétection. Cette forte augmentation du nombre, de la performance et de la diversité de ces systèmes permet le développement de nombreuses applications telles que la surveillance de l'environnement (par exemple, les glaciers, les forêts, l'urbanisme), les événements majeurs (par exemple, les tremblements de terre, les inondations), l'activité humaine (par exemple, la surveillance maritime et des frontières) ainsi que les prévisions météorologiques. Ces opportunités augmentent considérablement l'intérêt des outils de traitement de données basés sur des séries temporelles d'images multivariées.

Une tendance récente de l'apprentissage automatique, provenant principalement de la communauté EEG/MEG (Electroencephalography / Magnetoencephalography), propose d'estimer les matrices de covariance des données et ensuite de les classer en utilisant la géométrie riemannienne. En effet, la théorie de la géométrie riemannienne et son sous-domaine, la géométrie de l'information, s'adapte bien aux matrices de covariance qui sont alors vues comme des paramètres de distributions gaussiennes multivariées centrées. Dans ce cas, la ligne droite classique est remplacée par des géodésiques, la distance euclidienne par des distances riemanniennes et la moyenne arithmétique par des centres de masse riemanniens. En pratique, l'utilisation de la géométrie riemanienne donne de bien meilleures performances que sa contrepartie euclidienne lorsqu'on traite des matrices de covariance. Dans cette thèse, nous proposons d'appliquer ce pipeline de regroupement-classification aux données de télédétection et de l'étendre de multiples façons. Les contributions sont de quatre ordres.

Premièrement, des estimateurs de statistiques robustes sont développés en s'appuyant sur la théorie de l'optimisation sur les variétés riemanniennes. En particulier, des méthodes de descente de gradient sont développées pour estimer conjointement les localisations (centres de distributions) et les matrices de covariance, ainsi que pour estimer des matrices de covariance structurées à partir de données de haute dimension. Ces estimateurs sont rapides et conviennent bien aux ensembles de données de grande échelle.

Deuxièmement, des bornes intrinsèques de Cramér-Rao (ICRB) sont dérivées pour analyser la performance des estimateurs de matrices de covariance structurées. Ces ICRB bornent les moyennes de distances rieman-niennes au carré entre les paramètres estimés et les vrais paramètres. Ceci permet de prendre en compte les contraintes de l'espace des paramètres.

Troisièmement, des divergences entre les statistiques et leurs centres de masse associés sont proposés. Ces divergences, et les centres de masse associés, sont choisis par rapport au modèle statistique pour obtenir de meilleures performances en pratique. De plus, des algorithmes d'optimisation riemannienne basés sur le gradient sont développés pour calculer efficacement ces centres de masse.

Une quatrième contribution est le développement d'algorithmes d'apprentissage de distances. Les méthodes d'apprentissage de distances proposent de regrouper ou de classer des données brutes à l'aide d'une distance de Mahalanobis apprise. Dans cette thèse, nous démontrons que certains problèmes classiques d'apprentissage de distances peuvent être considérés comme des problèmes d'estimation de covariance. Avec cette nouvelle vision, nous dérivons deux nouveaux algorithmes d'optimisation riemannienne pour l'apprentissage de distances. Toutes ces contributions sont testées sur des données générées ainsi que sur des jeux de données réels tels que l'image de Indian pines et le jeu de données de cartographie de type de culture à Breizhcrops et montrent des résultats prometteurs.
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  (a) Example of a SAR image (from nasa.gov). (b) Example of a multispectral image (from nasa.gov).

Figure 1 . 1 :

 11 Figure 1.1: Different types of earth observation data: SAR and multispectral images.
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Figure 1 . 2 :

 12 Figure 1.2: Multispectral imagery measures the radiance across different wavelengths of the electromagnetic spectrum. A multispectral image is the concatenation of these measurements. (Figure from www.edmundoptics.jp)

Figure 1 . 3 :

 13 Figure 1.3: Scheme of a multivariate image time series. Several images of a same area on the Earth are taken over time. Each image has several measurements ("Sensor diversity" in the scheme).

  (a) Magnitude of the Indian Pines image.

  Ground truth. The background (no class available) is represented by the class 0.

Figure 1 . 4 :

 14 Figure 1.4: Indian Pines: a multispectral dataset [9].

  (a) Map of the Europe with the Brittany region in orange. (b) Map of the Brittany region with its four departments. Training set: Finistère, Côtesd'Armor, and Ille-et-Vilaine. Test set: Morbihan.

Figure 1 . 5 :

 15 Figure 1.5: The Breizhcrops dataset [118] is a time series dataset that have been measured across the whole region of Brittany, France. Three departments of this region are used to construct the training set and the remaining one constitutes the test set. Figure courtesy [118].

  A time series of corn.

Figure 1 . 6 :

 16 Figure 1.6: Reflectances ρ of two different time series. Figure courtesy [118].

Figure 1 . 7 :

 17 Figure 1.7: Clustering-classification pipeline.

Figure 1 . 8 :

 18 Figure 1.8: Set of data points {x i } n i=1 ⊂ R 2 with outliers. The sample covariance matrix (SCM), from Proposition 1, is biased towards the outliers whereas the Tyler's M -estimator, from Proposition 3, is robust to them.

  p . This estimator is called the Tyler's M -estimator.

Figure 1 . 9 :

 19 Figure 1.9: Summary of the contributions.
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  the set of p × p symmetric positive definite matrices.
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 11 Smooth embedded submanifold of a linear space

  with h any local defining function at x.Two examples are given. Example 4 states that R d is a smooth manifold which is obvious using Definition 11. Its tangent spaces are also R d which is also obvious using Theorem 3. Then, the sphere in R d , denoted by S d-1 , is presented as a smooth manifold in Example 5. A two dimensional illustration of this example is presented in Figure2.1.

  symmetry or tension-free), and 2. χ⟨η, ξ⟩ = ⟨∇ χ η, ξ⟩ + ⟨η, ∇ χ ξ⟩ (compatibility with the Riemannian metric), for all χ, η, ξ ∈ X(M). [., .] is the Lie bracket, i.e. [ξ, η] = ξη -ηξ. This affine connection ∇, called the Levi-Civita connection or the Riemannian connection of M, is characterized by the Koszul formula

Figure 2 . 3 :

 23 Figure 2.3: Illustration of the Riemannian manifold M = S 1 , its tangent space T x M at a given x ∈ M, a tangent vector ξ ∈ T x M and the exponential mapping exp M

Figure 2 . 4 :

 24 Figure 2.4: Illustration of the Riemannian manifold M = S 1 , the logarithmic mapping log M x and the Riemannian distance d M (x, y) = log M x (y) x = θ.
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 24 Definition 22 (Definition 10.20 from[START_REF]An introduction to optimization on smooth manifolds[END_REF]). For x ∈ M, let log M x denote the logarithmic map at x,

Figure 2 . 5 :

 25 Figure 2.5: Illustration of the Riemannian manifold M = S 1 and the parallel transport of ξ ∈ T x M to another tangent space T y M along the geodesic γ.

Figure 2 . 6 :

 26 Figure 2.6: Illustration of the quotient manifold M represented by elements of M. The set of all representations of x= π(x) ∈ M is the equivalence class π -1 (π(x)) ⊂ M. The tangent space T x M is decomposed into the vertical space V x = T x π -1 (π(x)) and its orthogonal complement, the horizontal space H x , which provides proper representatives for tangent vectors in T x M.

  Section 2.4 and is called the Grassmann manifold. Considering the canonical projection π : U → [U ], the symmetry of h is removed with h : Gr p,k → R such that h = h • π. Finally, the optimization problem (2.36) can be rewritten as a minimization over equivalence classes minimize π(U )∈Gr p,k h(π(U )).

p and Σ 2

 2 ∈ S ++ p moves vectors ξ ∈ T Σ 1 S ++ p onto the tangent space T Σ 2 S ++ p while preserving the Riemannian metric and has the following formula[START_REF] Sra | Conic Geometric Optimization on the Manifold of Positive Definite Matrices[END_REF] 

S

  ++ p ṙ(t) ṙ(t) t=0 = 0 with r(t) = R S ++ p Σ (tξ) and ṙ(t) = d dt r(t).
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 42 SS ++ p : manifold of symmetric positive definite matrices with unit determinant

p and Σ 2

 2 ∈ SS ++ p moves vectors ξ ∈ T Σ 1 SS ++ p onto the tangent space T Σ 2 SS ++ p and has the following formula

  and ṙ(t) = d dt r(t). Indeed, by differentiating twice, we get that d dt r(0) = ξ and d 2 dt 2 r(0) = ξΣ -1 ξ. Thus, we have the desired property ∇ SS ++ p ṙ(t) ṙ(t) t=0 = 0.
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 43 (R + * ) n : manifold of vectors with strictly positive entries

2. 4 . 4 .

 44 Gr p,k : manifold of subspaces

2

  and that each of its elements ξ is such that D h(U )[ξ] = 0 k×k . Then, St p,k is turned into a Riemannian manifold by endowing it with the Euclidean metric on its tangent spaces, for all ξ, η ∈ T U St p,k ⟨ξ, η⟩ St p,k U = Tr ξ T η .

Σ

  for all ξ, η ∈ T Σ S ++ p = S p . Then, an orthonormal basis of the tangent space T Σ S ++ p with respect to the Riemannian metric ⟨., .⟩ S ++ p .
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Figure 2 . 7 :

 27 Figure 2.7: Mean Squared Error (MSE) computed as E d 2 S ++ p (Σ, ΣSCM ) with 1000 Monte-Carlo versus n, the number of samples of dimension p = 10 to estimate ΣSCM .

Figure 2 . 8 :

 28 Figure 2.8: Mean Squared Error (MSE) computed as E Σ -ΣSCM 2 2
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 1 Non -centered multivariate Gaussian distribution 3.1.1 . Parameter space M p and information geometryLet a set of n data points x i ∈ R p sampled from a random variable x following a Gaussian distribution x ∼ N (µ, Σ).
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 31 Figure 3.1: Illustration of a geodesic triangle on the Riemannian manifold M p . If the covariance matrix Σ is well chosen, then the geodesic triangle N (µ 1 , Σ 1 ) → N (µ 2 , Σ) → N (µ 2 , Σ 2 ) is known with closed formed formulas. The arc length of the path in red is δ Mp .
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 124 log(c)2 and Equation (3.13), we get the divergence δ c,Mp .

  7) : Input : Initial iterate υ 1 ∈ M p . Output: Sequence of iterates {υ k }. k := 1; while no convergence do Compute a step size α (see [1, Ch. 4]) and set υ k+1 := R Mp υ k (-α grad Mp h(υ k )); k := k + 1; end • the Riemannian gradient in the Proposition 10, • a second order retraction in the Proposition 11 (approximation of the geodesic (3.11) with lower calculation cost and better numerical stability).
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 312 Similarly to(3.3), the Riemannian center of mass υ is defined as the minimizer of the variance of S υ Mp (υ, υ i ).
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 3 i -μSM )(x i -μSM ) T . The associated geometry is S ++ p as presented in Equations (3.1) and (p×n μSM , R p ΣSCM with µ = 0, S ++ p ΣSCM , S ++ p ( μSM , ΣSCM ), M p with δ c,Mp ( μSM , ΣSCM ), M p with δ ⊥,Mp (a) Rotation transformation:x i → Q(t) T x i with Q(0) = I p

Figure 3 . 2 :

 32 Figure 3.2: "Overall Accuracy" versus the parameter t of two different data transformations applied to the test set of the Breizhcrops dataset. The different Nearest centroïd classifiers estimate the centers of mass on the training set. Then, the classification is performed on the test set which can undergo two transformations: a rotation transformation and a scale transformation. For t = 0, the test set is unchanged and then the larger the t the more the test set is transformed. Six different Nearest centroïd classifiers are compared: each one is a combination of an estimator, a divergence and its associated center of mass computation. The two proposed one are denoted "( μSM , ΣSCM ), M p with δ c,Mp " and "( μSM , ΣSCM ), M p with δ ⊥,Mp ".

3. 4 .

 4 Non centered mixture of scaled Gaussian distributions 3.4.1 . From the Gaussian distribution to the mixture of scaled Gaussian distributions

  metric on M p,n which becomes a Riemannian manifold and is denoted M Dec. p,n .

p

  is a divergence on the set S ++ p and κ ∈ R + * . Proposition 18 (Minima of R κ ). Under Assumption 5, the set of minima in M p,n of the regularization R κ is {θ = (µ, κI p , 1) : µ ∈ R p } .

Figure 3 . 3 : 5 IterationsFigure 3 . 4 :

 33534 Figure 3.3: Regularized NLL (3.45) and its gradient norm versus the iterations of Algorithms 6, 7 and 8. The chosen regularization is the L2 penalty (see Table3.1) and two different regularization intensities β are considered: 0 in the left column and 10 -5 in the right one. Each estimation is performed on n = 150 samples in R 10 sampled from a NC-MSG. The regularized NLL are normalized so that their minimum value is 1.

  8 minimizes the NLL (3.27). The errors of estimation are measured with the Mean Squared Errors (MSE). These errors are computed as ∥ μ -µ∥ 2 2 and Σ -Σ 2 2

Figure 3 . 5 :

 35 Figure 3.5: MSE over 2000 simulated sets {x i } n i=1 ⊂ R 10 versus the number samples x i for the considered estimators μ ∈ { μSM , μTy , μIG } and Σ ∈ { ΣSCM , ΣTy,µ , ΣTy , ΣIG }. The proposed estimators μIG and ΣIG are computed as in (3.41) (β = 0) using Algorithm 8.

124 10 - 7 0Figure 3 . 6 :

 10736 Figure 3.6: "Overall Accuracy" metric achieved by the proposed Nearest centroïd classifier on the Breizhcrops dataset versus the parameter of regularization β in (3.44). The chosen regularization is the L2 penalty from Table 3.1.

Figure 3 . 7 :

 37 Figure 3.7: "Overall Accuracy" metric versus the parameter t associated with three transformations applied to the test set of the Breizhcrops dataset. The different Nearest centroïd classifiers estimate the centers of mass on the training data without transformations. Then, the classification is performed on the test set with three different transformations. For t = 0, the test set is not transformed, and the larger t is, the more the test set is transformed. Six different Nearest centroïd classifiers are compared: each one is a combination of an estimator, a divergence and its associated center of mass computation. The proposed one is denoted "θ -sym. KL". The latter uses Equations (3.45),(3.48) and(3.49) for the estimation, the divergence and the center of mass computation respectively. The regularization parameter β is fixed at 10 -11 and the regularization is the L2 penalty from Table3.1.
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1 .

 1 Proof of Proposition 10: Riemannian gradient on M p Using the definition of the gradient associated with the Euclidean metric [1, Ch. 3], we get ∀ξ

3.A. 4 .

 4 Proof of Proposition 13: Orthogonal projection on M FIM p,n

(3. 81 ) 3 .A. 5 .

 8135 Proof of Proposition 14: Levi-Civita connection on M FIM p,n

3.A. 7 .

 7 Proof of Proposition 16: Second order retraction on M FIM p,n

(3. 118 )

 118 when Σ → ∂S ++ p and/or τ → ∂S(R + * ) n . To give this sufficient condition, we first recall Assumption 3, ∀β ∈ R + * lim x→∂R + * log(x) + βr(x) = +∞.(3.122)

  3.A.9 . Proof of Proposition 18: Minima of R κThe objective of this proof is to solve minimize θ∈Mp,n R κ (θ).

  3.A.10 . Proof of Proposition 19: Minima of L Rκ and rigid transformations

4. 1 . 1 .

 11 Statistical model

4. 1 . 2 .

 12 Manifold approach to the parameter space Due to their specific geometrical structure, the parameters (U , τ ) of model (4.3) can be embedded into the product manifold M p,k,n = St p,k × (R + * ) n . With this model, from M p,k,n , the scaled covariance matrix in H ++ p of sample x i is obtained through the function

4. 2 . 1 .

 21 M p,k,n as a Riemannian quotient manifold Since Gr p,k is a quotient manifold of St p,k with respect to the action ofU k [52], M p,k,n = Gr p,k × (R + * ) n is a quotient of M p,k,n = St p,k × (R + * ) n . To handle elements of M p,k,n ,which are equivalence classes {(U O, τ ) : O ∈ U k }, one usually exploits the canonical projection π : M p,k,n → M p,k,n in (4.8). Equivalence classes are obtained through π as {(U O, τ ) : O ∈ U k } = π -1 (π(U , τ )) and each element θ ∈ M p,k,n can be represented by any θ = (U , τ ) ∈ M p,k,n such that θ = π(θ). In general, geometrical

Figure 4 . 1 :

 41 Figure 4.1: Illustration of the quotient M p,k,n represented by elements of M p,k,n . The set of all representations of θ= π(θ) ∈ M p,k,n is the equivalence class π -1 (π(θ)) ⊂ M p,k,n .The tangent space T θ M p,k,n can be decomposed into the vertical space V θ = T U π -1 (π(θ)) and its orthogonal complement, the horizontal space H θ , which provides proper representatives for tangent vectors in T θ M p,k,n . See Chapter 2 Section 2.3 for an introduction to Riemannian quotient manifolds.

4. 3 .L

 3 Estimation and intrinsic Cramér-Rao bounds 4.3.1 . Maximum Likelihood Estimation with Riemannian optimization In this section, we cast the MLE as an optimization problem on M p,k,n minimize θ∈M p,k,n

(4. 32 ) 2 V

 322 The mean c = π(c) ∈ M p,k,n of the set of points S j is obtained from the minimization of the variance, c = arg min θ∈M p,k,n 1 (θ).

Figure 4 . 2 :

 42 Figure 4.2: MSE over N = 100 simulated sets {x i } n i=1 (p = 100 and k = 20) with respect to the number of samples n for the three considered estimators. The textures are generated with s 2 = 4 (left part), s 2 = 2 (right part), SNR = 1 (upper part), SNR = 10 (lower part).

10 2 Figure 4 . 3 :

 243 Figure 4.3: MSE over N = 100 simulated sets {x i } n i=1 (n = 10 4 , p = 100 and k = 20) with respect to the SNR for the BCD and RGD estimators. The textures are generated with s 2 = 4 (left) and s 2 = 2 (right).

Figure 4 . 4 :

 44 Figure 4.4: MSE over N = 100 simulated sets {x i } n i=1 (p = 10 4 and k = 10) with respect to the number of samples n for the R-SGD estimator. 150 samples are used for each computation of the gradient. The textures are generated with s 2 = 2 and SNR = 10 3 .

Figure 4 . 5 :

 45 Figure 4.5: Ground truth of the image Indian Pines [9]. The background (no class available) is represented by the class 0.

Figure 4 . 6 :

 46 Figure 4.6: Cumulative variance, i.e.

Figure 4 . 7 :

 47 Figure 4.7: Overall accuracy and mIoU of our method "robust sub-

Figure 4 . 8 :

 48 Figure 4.8: WCSS (4.36) versus the iterations of K-means++ [7] for "robust subspace" γ = 0.1 corresponding to Figure 4.9d. The curves correspond to 10 initializations.

  "robust subspace γ = 0": OA = 43.3%, mIoU = 27.3% "robust subspace γ = 0.1": OA = 47.2%, mIoU = 29.3%

Figure 4 . 9 :

 49 Figure 4.9: Indian Pines[START_REF] Baumgardner | Band AVIRIS Hyperspectral Image Data Set[END_REF] segmentation results achieved using 4 methods: "center pixel", "SCM", "robust subspace" γ = 0 and "robust subspace" γ = 0.1 (w = 7 and k = 5 for all methods). These segmentations are those with the lowest WCSS computed with their respective distances.

4.A. 1 .

 1 Proof of Proposition 21

1 2 τ 2 i( 1 +( 1 + τ i ) 2 τ 2 i. 1 θ( 4 . 45 )E[d 2 E[d 2 (

 22112144522 j e j )⟩ FIM θ = β -1 k τ i τ j (1 + τ i ) (1 + τ j ) τ i ) 2 if i = j 0 otherwise Hence, F τ = β -1 k diag (τ ⊙2 ⊙ (1 + τ ) ⊙-2), which concludes the part concerning the proof of Proposition 23.Finally, we note thatTr F -1 U = α(p -k) k n c τ and Tr F -1It follows that the error of an unbiased estimator θ of the true parameter θ in M p,k,n admits the iCRBE[d 2 M p,k,n ( θ, θ)] ≥ Tr F -if we neglect the curvature terms when applying Theorem 2 of[START_REF] Smith | Covariance, subspace, and intrinsic Cramér-Rao bounds[END_REF]. Since F θ is block-diagonal we also get two separated iCRB for the parameters on Gr p,k and (R + * ) n respectively, i.e.: Gr p,k (π( Û ), π(U ))] ≥ α -1 Tr(F -1 R + * ) n (τ , τ )] ≥ β -1 Tr(F

2 A

 2 (x l , x q )

  A∈S ++ p Tr(A -1 A 0 ) + log |A| subject to d 2

2 D

 2 d i d T i . In[START_REF] Zadeh | Geometric Mean Metric Learning[END_REF], the solution of (5.5) is derived. It is the geodesic mid-point between S -1 and D, i.e. A -1 = S -1 #1 whereS -1 # t D = S -

3 .

 3 With this Riemannian distance, the general formulation of the RGML optimization problem (5.9) becomes minimizeθ∈M p,K L(θ) = K k=1 π k L k (A k ) + λd 2 S ++ p (A, A k ) .

(5. 14 )

 14 With this negative log-likelihood, the RGML optimization problem (5.13) becomesminimize θ∈M p,K L G (θ) = K k=1 π k L G,k (A k ) + λd 2 S ++ p (A, A k ) .

Algorithm 11 :

 11 Riemannian gradient descent to minimize L G(5.15) Input: Data {s ki }, initialization θ (0) ∈ M p,K Output: θ (l) ∈ M p,K for l = 0 to convergence do Compute a step size α (see[START_REF] Absil | Optimization Algorithms on Matrix Manifolds[END_REF] Ch. 4]) and setθ (l+1) = R M p,K θ (l)

L

  T,k (A) = p n k n k i=1 log s T ki A -1 s ki + log |A|.

  SM p,K = {θ ∈ M p,K , |A| = |A k | = 1, ∀k ∈ 1, K } .

( 5 . 17 )

 517 Thus, the RGML optimization problem (5.13) with the Tyler cost function (5.16) becomesminimize θ∈SM p,K L T (θ) = K k=1 π k L T,k (A k ) + λd 2 S ++ p (A, A k ) .

5. 3 . 1 .

 31 Riemannian optimization and g-convexity on M p,K Since, M p,K is an open set in a vector space, the tangent space T θ M p,K (linearization of the Riemannian manifold at a given point) is identified to L T(5.18) Input: Data {s ki }, initialization θ (0) ∈ SM p,K Output: θ (l) ∈ SM p,K for l = 0 to convergence do Compute a step size α (see[START_REF] Absil | Optimization Algorithms on Matrix Manifolds[END_REF] Ch. 4]) and set θ (l+1) = R SM p,K θ(l) 

T- 1 p

 1 θ SM p,K = ξ ∈ T θ M p,K : Tr(A -1 ξ) = 0,Tr(A -1 k ξ k ) = 0 ∀k ∈ 1, K . (5.26)By endowing SM p,K with the Riemannian metric of M p,K , it becomes a Riemannian submanifold. ∀ξ, η ∈ T θ SM p,K we have ⟨ξ, η⟩SM p,K θ = ⟨ξ, η⟩ M p,K θ. The orthogonal projection from the ambient space onto the tangent space at θ is P Tr A -1 sym (ξ) A. A remarkable result is that SM p,K is a geodesic submanifold of M p,K , i.e., the geodesics of SM p,K are those of M p,K . It results that the exponential mapping on SM p,K is expSM p,K θ (ξ) = exp M p,K θ (ξ).Then, for a loss function h : SM p,K → R, the Riemannian gradient at θ isgrad SM p,K h(θ) = P SM p,K θ (AGA, {A k G k A k }) ,(5.28)where (G, {G k }) is the classical Euclidean gradient of h at θ. Once again, a retraction that approximates the exponential mapping is leveraged to improve the numerical stability,

Figure 5 . 2 :

 52 Figure 5.2: Left: Gaussian (5.15) and Tyler (5.18) costs functions with respect to the number of iterations of Algorithms 11 and 12 respectively. Right: Riemannian gradient norms of Gaussian (5.15) and Tyler (5.18) costs functions. The optimization is performed on the Wine dataset.
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	Notations General symbols x Scalar (lowercase character) x Vector (bold lowercase character) X Matrix (bold uppercase character) p Dimension of data n Number of data per batch M Number of batches K Number of classes acosh Inverse hyperbolic cosine Card Cardinality operator, i.e. returns the number of elements of a given set Re(x) Real part of x i Imaginary unit (i R Set of real numbers R p Set of real valued vectors of size p R + * Set of strictly positive real numbers (R + * ) n Set of n dimensional vectors with strictly positive entries C Set of complex numbers C p Set of complex valued vectors of size p GL p Set of p × p invertible matrices S p-1 p -1 dimensional sphere in R p O p Set of p × p orthogonal matrices U p Set of p × p unitary matrices St p,k Set of orthogonal basis of Set of p × p symmetric matrices S + p Set of p × p symmetric positive semi definite matrices S ++ p Set of p × p symmetric positive definite matrices SS ++ p Set of p × p symmetric positive definite matrices with unit determinant A p Set of p × p skew-symmetric matrices H p Set of p × p Hermitian matrices H ++ p Set of p × p Hermitian positive definite matrices Linear algebra d = Equality of distribution f (.; θ) Probability density function parametrized by θ N Gaussian distribution CN Complex Gaussian distribution X Sample space (a linear space) X Random variable x i Vector sample M Feature space (a Riemannian manifold) θ Parameter E[X] Expectation of the random variable X L (Negative) log-likelihood µ π(θ) Location μSM Sample mean, i.e. μSM = 1 n n i=1 x i Σ Covariance/Scatter matrix ΣSCM Sample covariance matrix, i.e. ΣSCM = 1 n n i=1 (x i -μSM )(x i -μSM ) T τ Texture parameters U Orthogonal basis (element of the Stiefel manifold St p,k ) F θ Fisher information matrix Riemannian quotient manifolds M Riemannian manifold T θ M Tangent space at θ ∈ M η, ξ Tangent vectors of T θ M ∼ Equivalence relation [θ] Equivalence class Acronyms AA Average Accuracy BCD Block Coordinate Descent CRB Cramér-Rao bound EEG Electroencephalography ICRB Intrinsic Cramér-Rao bound k-dimensional subspaces in R S p . T , . H KL Kullback-Leibler divergence Riemannian geometry MEG Magnetoencephalography Transpose, transpose conjugate ⊗ MLE Maximum Likelihood Estimator Kronecker product E E Ambient space MSE Mean Squared Error A vector space M Riemannian manifold T θ M Tangent space at θ ∈ M MSG Mixture of Scaled Gaussian distributions NC-MSG Non-Centered Mixture of Scaled Gaussian distributions span(A) Determinant of A Tr(A) η, ξ Tangent vectors NLL Negative Log Likelihood Trace of A P M θ Orthogonal projection from E onto T θ M OA Overall Accuracy rank(A) Rank of A F(M) Set of scalar fields X(M) Set of vector fields γ Geodesic inj Injectivity radius ∇ M Levi-Civita connection exp M θ Riemannian exponential mapping T M θ 1 ,θ 2 θ Riemannian logarithmic mapping d M Riemannian distance PCA Principal Component Analysis PDF Probability Density Function PPCA Probabilistic Principal Component Analysis SAR Synthetic Aperture Radar SCM Sample Covariance Matrix SNR Signal-to-Noise Ratio SVD Singular Value Decomposition UAV Unmanned Aerial Vehicle WCSS Within-Cluster Sum of Squares sym(A) Statistics R M WGN White Gaussian Noise

2 = -1) sign Sign function: sign(x) returns 1 if x ≥ 0 and -1 otherwise minimize θ h(θ) Minimization problem of the real valued function h arg min θ h(θ) Argument minimizing the real valued function h D h(θ)[ξ] Directional derivative of h at θ in the direction ξ grad h(θ) Gradient of h at θ Sets n 1 , n 2 Set of integers from n 1 and n 2 p (or C p ) (Stiefel manifold) Gr p,k Set of k-dimensional subspaces of R p (or C p ) (Grassmann manifold) 2 herm(A) Hermitian part of A, i.e. herm(A) = A+A H 2 vec(θ) Vectorize θ, i.e. stacks the coordinates of θ into a vector diag(x) Diagonal matrix whose diagonal contains the elements of the vector x 0 l×m Zero matrix of size l × m I p Identity matrix of size p × p 1 p Vector of size p whose elements are equal to 1 θ Retraction r Curve associated to a retraction, i.e. r(t) = R M θ (tξ) ṙ Derivative of r, i.e. ṙ(t) = d dt r(t) r Second derivative of r, i.e. r(t) = d 2 dt 2 r(t) grad M h(θ) Natural/Canonical projection, i.e. π(θ) = [θ]

Table 1 .

 1 2 in Appendix 1.A.2. The dataset is geographically split into a training set

do Assignment step: ∀i

  ∈ 1, M assign θ i to the cluster S j with the nearest c j , j ∈ 1, K , using the divergence δ. Update step: Compute new centers c j of clusters S j , ∀j ∈ 1, K , using (1.18).

	2
	end
	# K-means
	while no convergence end
	Compute ϕ(S) with (1.26).
	if ϕ(S) < ϕ ⋆ then S ⋆ ← S
	ϕ ⋆ ← ϕ(S)
	end
	end
	1.4.2 . K-means++

  as well as a test set T test = {υ i } The objective is to present Nearest centroïd classifier to predict the labels of the test set. This algorithm is simple and consists of two steps. First, it computes the center of mass of each class, also called class center, i.e. it computes the center of mass of {θ i ∈ T train |y i = j} for all j ∈ 1, K . Then, it assigns to each υ i ∈ T test the label of the closest class center using the divergence δ. Nearest centroïd classifier is detailed in Algorithm 2.

	Algorithm 2: Nearest centroïd classifier on M with the diver-
	gence δ
	Input : A training set T train = {(θ i , y i )} M train i=1 ⊂ M × 1, K and a test set T test = {υ i } M test i=1 ⊂ M. Output: Predictions of the test set {y i } M test i=1 ⊂ 1, K .
	# Training
	for j = 1 to K do
	Compute the center of mass c j of {θ i ∈ T train |y i = j} using
	(1.18).
	end
	# Testing
	for i = 1 to M test do
	Assign υ i to the class with the nearest center of mass c j
	using the divergence δ.
	end
	available.
	Mtest i=1 ⊂ M are

  This set can be endowed with a Riemannian structure and thus becomes a Riemannian manifold called the Stiefel manifold. It should be noted that for k = 1, the Stiefel manifold coincides with the Riemannian manifold of the sphere S p-1 and for k = p, it coincides with the orthogonal group O

p . Then, for n > p, we assume having a data matrix X ∈ R p×n (n data vectors in R p concatenated). A classical problem, in machine learning and signal processing, is to look for a k-dimensional subspace represented by an orthogonal basis U ∈ St p,k for which projected data are close to the original ones, i.e., minimize u∈St p,k

  minimization problem is solved by the Principal Component Analysis and has a closed form solution: the k orthogonal eigenvectors of XX T associated with the k highest eigenvalues. In this example, we are interested in the parameter space of h. A first remark is that h has a symmetry, indeed for all

  Q and by uniqueness, lift U (ξ)Q is the horizontal lift of ξ at U Q which proves (2.106). It remains to endow Gr p,k with a Riemannian metric. A candidate is to leverage the Riemannian metric of St p,k , i.e., for all ξ, η ∈ T π(U ) Gr p,k , (ξ, η) → ⟨lift U (ξ), lift U (η)⟩

	St p,k
	U

Assumption 4 .

 4 The function r κ admits the following limit ∀β ∈ R + * Assumptions 3 and 4 are sufficient to solve the problem of existence stated earlier. Indeed, when R κ respects these assumptions, Proposition 17 states that the problem (3.45) has a solution, i.e. L Rκ admits a minimum in M p,n . Finally, Assumptions 3 and 4 are quite easy to meet in practice. Indeed, several regularizations respecting these assumptions are proposed in Table3.1.

	lim x→∂R + *	log(x) + βr κ (x) = +∞,
	with ∂R + * is a border of R +	

* , i.e. 0 + or +∞. Proposition 17 (Existence). Under Assumptions 3 and 4, and ∀β ∈ R + * , the regularized NLL

  Rκ is a continuous function on M p,n . Hence, to prove the existence of a solution of the minimization problem(3.45), it is enough to show that

	3.A.8 . Proof of Proposition 17: Existence of a regularized MLE in
	M p,n
	L

Table 4 .

 4 1: Summary of the geometric tools of M p,k,n for optimization. Symbol ∼ means that it is not provided in this Chapter but that it could be easily derived.

					Tools for
				Riemmanian optimization
		Horizontal	Riemannian	
	Metric	space H θ	gradient	Retraction
	Fisher information				
	metric (4.13)	(4.14)	Prop. 22 for L		(4.16)
	Product					
	metric (4.17)	(4.14)	∼			∼
					Tools for
				Riemannian distances
		Horizontal	Orthonormal		
	Metric	space H θ	basis of H θ	Distance	Exp.	Log.
	Fisher information					
	metric (4.13)	(4.14)	∼		x		x	x
	Product					
	metric (4.17)	(4.14)	Prop. 25	(4.18)-(4.19) (4.21) (4.20)

Table 4 .

 4 2: Summary of the geometric tools of M p,k,n for distances. Symbol ∼ means that it is not provided in this Chapter but that it could be easily derived; and symbol x means that it is complicated to find and remains unknown.

  and where diag(•) returns the diagonal matrix formed with the elements of its argument.

	Proof. See Appendix 4.A.3.
	Proposition 24 (iCRB). Let {x i } n i=1 be a sample set following the model in (4.3). Let θ be an estimate of θ ∈ M p,k,n for the model. The estimation
	error defined by d 2 M p,k,n as in (4.18) is bounded as

Table 4 .

 4 3: Performance of the different descriptors on Indian Pines[START_REF] Baumgardner | Band AVIRIS Hyperspectral Image Data Set[END_REF] 

	PCA	Descriptor	OA ± std	mIoU ± std
		center pixel	32.66 ± 0.84	18.30 ± 0.82
	Yes	mean pixel	34.02 ± 0.48	20.17 ± 2.00
		SCM	45.08 ± 1.58 29.95 ± 1.87
		subspace SCM	42.95 ± 0.71	27.06 ± 0.76
	No	robust subspace, γ = 0	43.93 ± 0.93	28.11 ± 0.63
		robust subspace, γ = 0.1 47.89 ± 2.67 28.00 ± 1.49

2, a trade-off must be made between the

  Since Gr p,k is a quotient manifold of St p,k , grad M p,k,n L i (θ) is represented by grad

21 is obtained by combining (4.38), (4.39), (4.42), and (4.43).

.96 22.11 23.58 2.48 2.96 4.65 7.83Table 5 .

 5 .[START_REF] Collas | A Tyler-type estimator of location and scatter leveraging Riemannian optimization[END_REF] 31.40 32.40 38.27 38.58 39.46 40.35 3.93 4.47 5.31 6.70 SCM 10.03 11.62 13.70 17.57 23.59 24.27 25.24 26.51 12.57 13.38 14.93 16.68 .25 23.86 23.82 24.89 26.30 3.05 13.38 14.92 16.67 .86 20.96 24.23 26.28 28.89 3.53 9.59 11.19 12.22 1: Misclassification errors on 3 datasets: Wine, Vehicle and Iris. Best results and those within 0.05% are in bold.

	RGML Tyler 2.12 2.90 4.51 8.31 19.90 20	8.90 12.73 5.15 7.83 9RGML Gaussian 2.07 2.93 LMNN 4.27 6.47 9.20 19.76 21.19 22.52 24.21 2.47 5.10	9.30 12.62 6.71 10GMML ITML -SCM 2.45 4.76 2.16 3.58 5.71 9.86 21.43 22.49 23.58 25.11 2.60 5.61	5.31 6.70 30.12 30ITML -Identity Euclidean 3.12 4.15 5.40 7.74 24.21 23.91 24.77 26.03 3.04 4.47	10% 15% 0% 5% 10% 15% 0% 5% 10% 15% 0% 5%	Method Mislabeling rate Mislabeling rate Mislabeling rate

https://earth.esa.int/eogateway/missions/terrasar-x-and-tandem-x

https://sentinels.copernicus.eu/web/sentinel/home

https://www.capellaspace.com

https://www.iceye.com

https://uavsar.jpl.nasa.gov

https://landsat.gsfc.nasa.gov

https://breizhcrops.org/

The Breizhcrops dataset is composed with two processing levels. Here, we use the raw reflectances at the top-of-atmosphere (level 1C).

Sometimes, the SCM has 1 n-1 factor instead of[START_REF] Absil | Optimization Algorithms on Matrix Manifolds[END_REF] n in order to be an unbiased estimator of the covariance matrix. In the rest of the manuscript, the SCM refers to the MLE of the covariance matrix of the Gaussian distribution, i.e. has a 1 n factor.

The proof in[START_REF] Arthur | K-Means++: The Advantages of Careful Seeding[END_REF] relies on the Euclidean distance between vectors however it can be easily extended to any distance as stated in[START_REF] Nielsen | Total Jensen divergences: Definition, Properties and k-Means++ Clustering[END_REF].

In the case where A has more rows than columns, then the data x i must first be expressed with respect to a basis of span(A); e.g. doing a principal component analysis.

The notion of Fisher information metric is defined in Section

2.5.[START_REF] Absil | Riemannian geometry of Grassmann manifolds with a view on algorithmic computation[END_REF] If A ∈ S ++ p then the matrix logarithm log(A) exists and is unique.

Usually, the score vector is defined with the log-likelihood instead of the negative log-likelihood. However, since we only use its outer product, both definitions are equivalent.

Notice that D. E. Tyler also proposes an M -estimator of location and scatter that is a solution of a fixed point equation in[START_REF] Tyler | A Distribution-Free M -Estimator of Multivariate Scatter[END_REF]. While the MLE of x i ∼ N (0, τ i Σ) and Tyler's estimator (i.e., scatter only) coincide, this is not the case for the non-centered model[START_REF] Collas | A Tyler-type estimator of location and scatter leveraging Riemannian optimization[END_REF].

M p,k,n θ

Note that we consider the case of equal eigenvalues, but this restriction has been carefully motivated in the model introduction section. The extension to the general case could be considered using recent derivations from[START_REF] Bouchard | A Riemannian Framework for Low-Rank Structured Elliptical Models[END_REF] but this complex issue goes far beyond the scope of this chapter.
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Second, we can deduce several geometric tools from classical results about Gr p,k [START_REF] Absil | Riemannian geometry of Grassmann manifolds with a view on algorithmic computation[END_REF][START_REF] Absil | Optimization Algorithms on Matrix Manifolds[END_REF][START_REF] Edelman | The geometry of algorithms with orthogonality constraints[END_REF] and (R + * ) n [START_REF] Bouchard | Riemannian geometry for compound Gaussian distributions: Application to recursive change detection[END_REF] presented in Chapter 2 Section 2.4. The squared Riemannian distance between θ 1 = π(θ 1 ) and θ 2 = π(θ 2 ) in M p,k,n is given by

where d 2 Gr p,k and d 2 (R + * ) n are the squared Riemannian distances of Gr p,k and (R + * ) n , respectively. They are defined as

where Θ is obtained from the SVD

An additional tool linked to the Riemannian distance is the Riemannian logarithm mapping. Given a reference point θ 1 = π(θ 1 ) and a second point θ 2 = π(θ 2 ) both in M p,k,n , the Riemannian logarithm mapping is an operator that provides a vector of T θ 1 M p,k,n that points towards θ 2 and whose squared norm with respect to the metric from Definition 43 is d 2 M p,k,n (θ 1 , θ 2 ) (as defined in (4.18)). Here, the representation in H θ 1 of the Riemannian logarithm mapping log

where XΘY H is defined through the SVD

Conversely, the inverse of this application is the Riemannian exponential mapping exp

where ξ U = XΣY H is the SVD such that X ∈ C p×k and Σ, Y ∈ C k×k . These operators provide mappings between the manifold and its tangent space, which will notably be instrumental in in Section 4.3.2 to define an estimation error vector, and in Section 4.4 in order to define Riemannian means.

Algorithm 9: Riemannian stochastic gradient descent

Output: Sequence of iterates {θ (l) }.

for l = 0 to convergence do Randomly draw a subset A ⊂ {x i } n i=1 and set

Compute a step size ν l and set

Obtaining performance bounds for the model in (4.3) is a complex issue, notably because the signal subspace is represented by a point in Gr p,k . A first approach was proposed in [START_REF] Besson | Bounds for a Mixture of Low-Rank Compound-Gaussian and White Gaussian Noises[END_REF] for the model x i ∼ CN (0, τ i GG H + I), where G ∈ C p×k is a lower-triangular matrix with positive diagonal elements. Such parameterization is carefully chosen in order to obtain a minimal and essentially unconstrained parametrization of the low-rank signal covariance matrix. This allows obtaining the standard Cramér-Rao inequality for the parameter g = vec(G).

CRB(π) =

∂π ∂g T CRB(g)

thus enabling to assess approximately the minimum distance between the estimated and the true signal subspace. Another option could have been to start with the constrained parameterization G = U D 1 /2 and to directly handle the orthonormality constraints U H U = I k with the the theory of constrained CRBs [START_REF] Gorman | Lower bounds for parametric estimation with constraints[END_REF][START_REF] Stoica | On the Cramér-Rao bound under parametric constraints[END_REF][START_REF] Moore | The constrained Cramér-Rao bound from the perspective of fitting a model[END_REF][START_REF] Nitzan | Cramér-Rao Bound for Constrained Parameter Estimation Using Lehmann-Unbiasedness[END_REF] to obtain CRB(vec(U )), then deriving the same result as in (4.25) from π = vec(U U H ). This method is expected to yield the same result as in [START_REF] Besson | Bounds for a Mixture of Low-Rank Compound-Gaussian and White Gaussian Noises[END_REF] from a different path of derivations.

While the obtained inequality in (4.25) allows for an analysis with numerical experiments, it still lacks some interpretable closed-form. In the following, we will directly treat the signal subspace as a point in Gr p,k 1 and rely on the intrinsic CRB theory from [START_REF] Smith | Covariance, subspace, and intrinsic Cramér-Rao bounds[END_REF][START_REF]On intrinsic Cramér-Rao bounds for Riemannian submanifolds and quotient manifolds[END_REF]. The interest is twofold: first it will yield a simple and interpretable closed form for the bound on the subspace estimation. Second, this bound will be obtained for natural distance on Gr p,k

Algorithm 10: K-means++ on M p,k,n

Input : A set {θ i } M i=1 ⊂ M p,k,n to partition, a number of clusters K and a number of initializations n init .

Take one center c 1 , chosen uniformly at random from

end # K-means while no convergence do

Assignment step: ∀i ∈ 1, M assign θ i to the cluster S j with the nearest c j , j ∈ 1, K . Update step: Calculate new centers c j of clusters S j , ∀j ∈ 1, K , using (4.34) and (4.35).

end

Compute ϕ(S) with (4.36). if ϕ(S) < ϕ ⋆ then S ⋆ ← S ϕ ⋆ ← ϕ(S) end end 3. RGD: Algorithm 9 is performed using all samples at each iteration, i.e. A = {x i } n i=1 . Pymanopt library [START_REF] Townsend | Pymanopt: A Python Toolbox for Optimization on Manifolds Using Automatic Differentiation[END_REF] (builds upon the Manopt library [START_REF] Boumal | Manopt, a Matlab Toolbox for Optimization on Manifolds[END_REF]) achieves this optimization. The estimators are denoted U RGD and τ RGD .

To measure the subspace estimation performance of the considered estimators, we compute the mean squared error (MSE) between the estimators Û ∈ {U SCM , U BCD , U RGD } and the real parameter U . We compute the MSE as the mean squared distance on Gr p,k (4.19) between estimated parameters Û and real parameter U . Texture estimation performance is also assessed. The MSE is computed between the estimators τ ∈ {τ BCD , τ RGD } and real parameter τ as the mean squared distance on (R + * ) n (4. [START_REF]An introduction to optimization on smooth manifolds[END_REF]). The subspace estimation performance is studied for two different s 2 along two SNR in Figure 4.2. Firstly, we observe that our proposed estimation Proposition 25 (Orthonormal basis). Given θ ∈ M p,k,n , an orthonormal basis of the horizontal space H θ defined in (4.14) with respect to the Rie- mannian metric of Definition 43 is of the elements of each pair in S k , i.e. s ki = x kl -x kq for (x kl , x kq ) ∈ S k , i being the index of the pair and l, q the indices of the elements of this i th pair. Thus, the set {s ki } contains n k elements. Then, the set D contains n D pairs of vectors that do not belong to the same class. Each vector d i is defined as the subtraction of the elements of each pair in D, i.e. This chapter is organized as follows. Section 5.1 presents the state of the art of metric learning and relates it to covariance estimation. Then, Section 5.2 introduces the RGML estimation problem. Solving this minimization problem estimates a covariance matrix that is meant to be used in the Mahalanobis distance 5.1. The formulation of RGML is general and two costs functions called RGML Gaussian and RGML Tyler are specified. In Section 5.3, two Riemannian gradient descents are proposed to minimize RGML Gaussian and RGML Tyler. Finally, these two algorithms are applied on real datasets in Section 5.4.

. Metric learning: state of the art and covariance estimation

. State of the art

Many metric learning problems have been formulated over the years (see e.g. [START_REF] Suárez | A tutorial on distance metric learning: Mathematical foundations, algorithms, experimental analysis, prospects and challenges[END_REF] for a complete survey). In the following, we present notable ones that are related to our proposal.

MMC [START_REF] Xing | Distance Metric Learning, With Application To Clustering With Side-Information[END_REF] (Mahalanobis Metric for Clustering) was one of the earliest paper in this field. This method minimizes the sum of squared distances

. Metric learning as covariance matrix estimation

In this sub-section, some metric learning problems are expressed as covariance matrix estimation problems.

The first remark concerns the ITML formulation (5.3). Indeed, when the latter is written with the SCM as a prior matrix, it amounts to maximizing the likelihood of a multivariate Gaussian distribution under constraints. Therefore, ITML can be viewed as a covariance matrix estimation problem.

The second remark concerns the GMML solution of (5.5) which is gen-

In their experiments on real datasets, the authors often get their best performance with t small (or even null) (see Figure 3 of [START_REF] Zadeh | Geometric Mean Metric Learning[END_REF]). In this case, the GMML algorithm gives A = S. This simple, yet effective, solution can be reinterpreted with an additional assumption on the data. Let us assume that data points of each class are realizations of independent random vectors with class-dependent first and second order moments,

k (u kl -u kq ). Hence, the covariance matrix of s ki is twice the covariance matrix of the k th class,

It results that, in expectation, S is twice the arithmetic mean of the covariance matrices of the different classes,

(5.8)

The only additional assumption added to GMML to get (5.8) is (5.7). This hypothesis is broad since it encompasses classical assumptions such as the Gaussian one. Also notice that using S in the Mahalanobis distance (5.1) is reminiscent of the linear discriminant analysis (LDA) pre-whitening step of the data.

. Motivations and contributions

From Section 5.1.2, GMML can be interpreted as a 2-steps method that computes, first, the SCM of each class and, two, their arithmetic mean. Thus, this simple approach is not robust to outliers (e.g. mislabeled data) since it uses the SCM as an estimator. Moreover, other mean computation can be used, such as the Riemannian mean which benefits from many properties compared to its Euclidean counterpart [START_REF] Yuan | Averaging Symmetric Positive-Definite Matrices[END_REF]. We propose a metric learning framework that jointly estimates regularized covariance matrices, in a robust manner, while computing their Riemannian mean. We name this framework Riemannian Geometric Metric Learning (RGML). This idea of estimating covariance matrices while averaging them was firstly proposed in [START_REF] Ollila | Simultaneous penalized M-estimation of covariance matrices using geodesically convex optimization[END_REF]. The novelty here is fourfold:

1. this formulation is applied to the problem of metric learning (see Section 5.2), 2. it makes use of the Riemannian distance on S ++ p which was not covered by [START_REF] Ollila | Simultaneous penalized M-estimation of covariance matrices using geodesically convex optimization[END_REF] (see Section 5.2), 3. we leverage the Riemannian geometries of S ++ p and SS ++ p [START_REF] Skovgaard | A Riemannian Geometry of the Multivariate Normal Model[END_REF][START_REF] Pennec | A Riemannian framework for tensor computing[END_REF] along with the framework of Riemannian optimization [START_REF] Absil | Optimization Algorithms on Matrix Manifolds[END_REF] and hence the proposed algorithms are flexible and could be applied to other cost functions than the Gaussian and Tyler [START_REF] Tyler | A Distribution-Free M -Estimator of Multivariate Scatter[END_REF] ones (see Section 5.3), 4. the framework is applied on real datasets and shows strong performance while being robust to mislabeled data (see Section 5.4).

. Problem formulation of Robust Geometric Metric Learning

. General formulation of RGML

The formulation of the RGML optimization problem is

where θ = (A, {A k }), M p,K is the K + 1 product set of S ++ p , i.e. M p,K = S ++ p K+1 , L k is a covariance matrix estimation loss on {s ki }, λ > 0 and d is a distance between matrices. In the next subsections two costs will be considered: the Gaussian negative log-likelihood and the Tyler cost function. Once (5.9) is achieved, the center matrix A is used in the Mahalanobis distance (5.1) and the A k are discarded. The cost function L is explained more in details in the following.

First of all, for a fixed center matrix A, (5.9) reduces to k separable problems minimize

whose solutions are estimates of {Σ k } that are regularized towards A.

Second, for {A k } fixed, solving (5.9) averages the matrices {A k }. Indeed, in this case, (5.9) reduces to minimize

(5.11) (S p ) K+1 . Then, the affine invariant metric is chosen as the Riemannian metric [START_REF] Skovgaard | A Riemannian Geometry of the Multivariate Normal Model[END_REF]

(5.19)

Thus the orthogonal projection from the ambient space onto the tangent space at θ is P

where sym(ξ) = 1 2 (ξ + ξ T ). Then, the exponential map (function that maps tangent vectors, such as gradients of loss functions, to points on the manifold) is

where exp We finish this subsection by presenting the geodesic convexity of L G (5.15) on M p,K (see [START_REF]An introduction to optimization on smooth manifolds[END_REF]Chapter 11] for a presentation of the geodesic convexity). First of all, the geodesic on M p,K between a = (A, {A k }) and b = (B, {B k }) is (5.25)

If h is g-convex, then any local minimizer is a global minimizer. [START_REF] Ollila | Simultaneous penalized M-estimation of covariance matrices using geodesically convex optimization[END_REF] proves that L G (5.15) is g-convex. Hence, any local minimizer of (5.15) is a global minimizer.