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Abstract

Parareal algorithm is well known in the literature for its ability in exploiting parallelism in
time for solving time dependent problems. Having the same idea of domain decomposition
methods, but instead of decomposing in space, parareal decomposes the time direction. In
this thesis, we first present an interpretation of parareal as a two-level domain decomposi-
tion preconditioner so-called the two-level additive Schwarz in time preconditioner and,
based on that, a variant that accelerates convergence by using a GMRES-type procedure.
Connections to the MGRIT generalization of parareal are shown. The interpretation also
allows us to derive convergence results for multiple variations of the method where we
vary the number and order of coarse and fine level iterations. GMRES shows its potential in
improving parareal’s convergence rate, especially in solving reaction-advection-diffusion
equation when advection and reaction coefficients are large. We also present the idea
of using a different model so-called the reduced model which is based on the two-scale
asymptotic expansion for the coarse propagator in parareal framework. This coupling
strategy is studied for efficiently solving oscillatory singularly perturbed ODEs which
are characteristics of a six-dimensional Vlasov equation. The coupling strategy shows its
accuracy and efficiency in various numerical experiments with a uniform convergence
rate. In the last part of the thesis, we study the acceleration of GMRES using a deflation
technique of the smallest singular values of the problem. We present a new deflation
method using sparse QR, especially Strong Rank Revealing QR (Strong RRQR) factoriza-
tion with tournament pivoting strategy and nested dissection partition. The coupling
strategy shows that the smallest singular values close to zero are replaced by larger ones.
Furthermore, the combination between the deflation and the Block Jacobi preconditioner
results in much faster convergence of GMRES.
Keywords: parareal, two-level additive Schwarz in time preconditioner, MGRIT, GM-

RES, reaction-advection-diffusion equation, two-scale asymptotic expansion, Vlasov equa-
tion, deflation technique, strong RRQR, tournament pivoting, nested dissection partition,
Block Jacobi preconditioner.
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1 Contexte

Le calcul parallèle joue un rôle très important en informatique et dans les mathématiques
appliquées. Surtout avec un nombre croissant de processeurs et d’ordinateurs massivement
parallèles, des millions voire des milliards de calculs peuvent être exécutés en même temps.
Cela nous permet d’exploiter le parallélisme dans la résolution rapide et efficace des
problèmes de Cauchy. En effet, les méthodes de décomposition de domaine sont bien
connues dans la littérature, voir [16] pour plus de détails. Ces méthodes reposent sur
la décomposition d’un problème posé dans un domaine en sous-problèmes posés dans
des sous-domaines. Chaque sous-problème est alors résolu dans chaque sous-domaine
et communique avec les autres sous-problèmes par la condition de transmission sur les
interfaces. Pour un problème elliptique dans l’espace, il est prouvé que les méthodes de
décomposition de domaine convergent indépendamment avec la taille du maillage si le
chevauchement entre les sous-domaines est suffisamment grand, voir [16]. Cependant,
lorsque le nombre de sous-domaines devient trop grand, le taux de convergence se détériore
à cause du manque d’information globale couplant les sous-domaines. Afin d’obtenir un
algorithme de décomposition de domaine évolutif qui dépend faiblement du nombre
de sous-domaines, un espace grossier peut être utilisé pour coupler les informations
globales de tous les sous-domaines. Cela conduit à l’idée de préconditionneurs de type
décomposition de domaine à deux niveaux. Pour le premier niveau, une méthode de
Schwarz additive ou multiplicative peut être appliquée, puis une correction d’espace
grossier est effectuée pour coupler les informations de tous les sous-domaines. Sur des
machines parallèles, ces méthodes passent bien à l’échelle sur des milliers de processeurs,
mais leurs performances se dégradent lorsque le nombre de processeurs augmente encore.
Il est donc important de développer de nouvelles méthodes qui exploitent également le
parallélisme en temps.
Par conséquent, nous considérons dans ce travail l’algorithme pararéel et nous nous

intéressons à accélérer sa convergence. L’approche pararéelle provient des méthodes
de décomposition de domaine mais au lieu de traiter du parallélisme dans l’espace, elle
traite du parallélisme dans le temps. S’appuyant sur la décomposition de tout le domaine
temporel en sous-domaines temporels, l’algorithme pararéel utilise deux solveurs, un
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grossier qui est facile et pas coûteux en termes de calcul et un solveur fin qui est plus
précis mais plus coûteux en termes de coût de calcul. À partir d’une solution initiale
obtenue en utilisant séquentiellement le solveur grossier, l’algorithme pararéel la corrige
itérativement par la différence entre la solution fine obtenue en parallèle à l’aide du solveur
fin et la solution grossière obtenue à l’itération précédente. Il a été montré dans [36] que
l’algorithme peut être écrit comme un schéma de correction résiduelle au niveau grossier.
Dans ce travail nous considérons le pararéel comme un schéma de correction résiduelle
avec un préconditionneur au niveau fin dans le but d’améliorer sa convergence. Notre
objectif est de construire une matrice de préconditionnement telle qu’elle agisse comme
l’approche pararéelle au niveau fin. Cette matrice de préconditionnement, appelée SC, est
formée par le produit de deux termes, le terme de Schwarz additif et le terme de correction
temporelle grossière. Outre les méthodes de décomposition de domaine et le pararéel, les
méthodes multigrilles sont également bien connues dans la littérature pour résoudre des
EDP en parallèle, en particulier la méthode de réduction en temps multigrille (MGRIT),
voir [20, 25, 36]. Dans cette thèse, nous avons d’abord prouvé que le préconditionneur SC
en temps à deux niveaux de type Schwarz additif est équivalent à MGRIT avec F-relaxation.
Ensuite, il a été montré dans [20, 25, 30] que l’algorithme pararéel est équivalent à MGRIT
avec F-relaxation. Ainsi, les trois méthodes, pararéelle, MGRIT avec F-relaxation et le
préconditionneur SC en temps à deux niveaux de type Schwarz additif sont équivalentes.
Deuxièmement, nous montrons que des étapes supplémentaires de propagation fine ou
grossière dans le préconditionneur conduisent à des procédures équivalentes à MGRIT
avec FCF-relaxation et à MGRIT avec F(CF)2-relaxation ou superposition pararéelle [36].
Nous proposons une variante, appelée SCS2, qui converge plus rapidement et exploite
efficacement le calcul parallèle. En outre, l’approche par le schéma de correction résiduelle
au niveau fin avec ce préconditionneur temporel nous permet d’explorer l’utilisation des
méthodes de sous-espace de Krylov, à savoir GMRES (Generalized Minimal Residual) [91]
pour accélérer l’algorithme pararéel. Troisièmement, il est connu [78, 89, 99] que les petites
valeurs propres qui sont proches de zéro affectent mal le comportement de convergence de
GMRES, et ceci est également vrai pour les plus petites valeurs singulières [96]. Une idée
très intéressante pour surmonter cette difficulté est de supprimer l’impact de ces petites
valeurs singulières dans le spectre en utilisant un sous-espace de déflation. Suivant cette
idée, dans ce travail nous étudions les approximations des plus petites valeurs singulières
et de l’espace nul en utilisant pour la technique de déflation qui sont basées sur le QR
sparse, en particulier le rang fort révélant la factorisation QR (strong RRQR) [19, 48] avec
stratégie de pivotement de tournoi [19, 46]. Ici, notre objectif est d’utiliser le pivotement
de tournoi pour obtenir un calcul efficace et hautement parallèle de l’espace à diminuer. Le
pivotement de tournoi a été introduit pour approximer les plus grandes valeurs singulières
et les vecteurs singuliers associés, et nous avons modifié l’algorithme de manière à pouvoir
l’utiliser pour notre objectif. Enfin, dans le cadre de la résolution d’équations différentielles
ordinaires fortement oscillatoires, nous appliquons l’idée d’utiliser un modèle (réduit)
différent pour le solveur grossier de l’algorithme pararéel. L’avantage d’utiliser de tels
modèles réduits est leur faible coût de calcul.
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2 Résumé et contributions

Cette thèse a été financée par l’Agence Nationale de la Recherche (ANR) Contrat ANR-15-
CE23-0019 (projet CINE-PARA), projet dans lequel nousmenons des études sur l’algorithme
pararéel afin d’accélérer ses performances. La thèse contient quatre chapitres.

Au chapitre 1, nous rappelons d’abord le contexte de l’algorithme pararéel, des précondi-
tionneurs de décomposition de domaine à deux niveaux et de MGRIT afin de souligner leur
équivalence. On rappelle également la méthode GMRES qui conduit à une accélération
pararéelle. Ensuite, nous détaillons la factorisation RRQR forte, la stratégie de pivotement
du tournoi et la technique de déflation afin de dériver un préconditionneur de déflation
des plus petites valeurs singulières du problème pour accélérer le taux de convergence
de GMRES. De plus, par une méthode de développements asymptotiques à deux échelles,
nous obtenons des modèles réduits que nous utilisons pour la résolution grossière dans
le cadre pararéel. Ces modèles sont des approximations d’équations différentielles ordi-
naires fortement oscillatoires qui sont les caractéristiques d’une équation de Vlasov à six
dimensions.

Au chapitre 2, nous montrons l’équivalence entre pararéel, MGRIT avec F-relaxation et
SC Schwarz additif à deux niveaux dans le préconditionneur temporel. Plus précisément,
nous rappelons d’abord l’exécution pararéelle d’un point de vue algébrique qui conduit
à l’expression de pararéel comme une itération stationnaire préconditionnée au niveau
fin. Cette approche nous permet de décrire une interprétation du pararéel en tant que
préconditionneur de Schwarz additif à deux niveaux dans le domaine temporel appelé
préconditionneur de Schwarz additif à deux niveaux SC en temps. Sur la base de ce
préconditionneur additif Schwarz en temps à deux niveaux, nous introduisons quelques
variantes comme SCS, S(CS)2 préconditionneur additif Schwarz en temps à deux niveaux
et montrons leur équivalence à MGRIT avec FCF-relaxation, et à MGRIT avec F(CF)2-
relaxation ou superposition pararéelle. En outre, nous proposons une variante appelée
SCS2 additif Schwarz à deux niveaux dans le préconditionneur temporel qui converge
plus rapidement et exploite efficacement le calcul parallèle. Dans la partie suivante, nous
présentons l’analyse de convergence et l’estimation de convergence du SC Schwarz ad-
ditif à deux niveaux dans le préconditionneur temporel et ses variantes. Nous discutons
également des coûts de mise en œuvre et du compromis de ces variantes. Dans la suite
de ce chapitre, nous menons des expériences numériques pour montrer l’équivalence
entre l’algorithme pararéel et SC Schwarz additif à deux niveaux dans le préconditionneur
temporel, la comparaison entre SC additif à deux niveaux Schwarz dans le précondition-
neur temporel et ses variantes, le pararéel avec accélération GMRES pour le problème
de Dahlquist, l’équation de la chaleur et l’équation d’advection-réaction-diffusion. En
particulier, nous étudions l’impact de l’accélération GMRES du pararéel pour l’équation
d’advection-réaction-diffusion dans deux cas: un dominé par la diffusion et l’autre dominé
par l’advection. On verra que GMRES améliore la convergence pararéelle surtout dans le
cas où les coefficients d’advection et de réaction sont grands devant le terme de diffusion.
Enfin, nous montrons les comportements de convergence du pararéel et du pararéel avec
accélération GMRES avec une méthode différente pour le propagateur fin.
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Au chapitre 3, nous considérons la résolution d’équations de Vlasov raides en six dimen-
sions, pour modéliser la dynamique de charges particules dans un champ magnétique fort.
L’idée est d’utiliser des modèles réduits qui sont dérivés de développements asymptotiques
à deux échelles et se sont avérés approximer l’équation initiale de Vlasov en des temps
finaux courts. Cependant, nous avons trouvé par des expériences numériques que leur ap-
proximation devient imprécise en temps long. Dans ce cadre, nous appliquons l’algorithme
pararéel en utilisant des modèles réduits pour la résolution grossière. Nous montrons
numériquement la convergence rapide de l’algorithme pararéel pour plusieurs cas tests.
Plus précisément, nous rappelons d’abord le développement asymptotique à deux échelles,
puis les modèles réduits d’ordre zéro et d’ordre un, qui résultent de [28]. Ensuite, nous
présentons le cas d’un champ magnétique constant, qui comprend un champ électrique
uniforme qui varie dans le temps et un champ électrique stationnaire non uniforme, et
le cas d’un champ magnétique variable. Ensuite, nos simulations montrent l’efficacité
de la stratégie avec l’algorithme pararéel, en obtenant la convergence de l’algorithme en
quelques itérations, alors que le nombre des fenêtres de temps est assez élevé. Les cas-test
sont pertinents pour la physique des plasmas, comme dynamique de particules dans un
piégeage de Penning, la séparation isotopique par résonance cyclotronique ionique et un
exemple de dynamique d’une particule dans un champ magnétique variable.

Au chapitre 4, nous présentons la déflation des plus petites valeurs singulières basée sur le
QR parcimonieux, en particulier la factorisation RRQR forte avec la stratégie de pivotement
de tournoi. Plus précisément, nous rappelons d’abord la factorisation QR révélatrice du
rang fort (strong RRQR) et la stratégie de pivotement du tournoi. Ensuite, nous présentons
et analysons une étape de la stratégie de couplage avec partition de dissection imbriquée
sur 𝑨𝑇𝑨. Dans la partie suivante, nous dérivons une nouvelle technique de déflation
des plus petites valeurs singulières basée sur une factorisation QR parcimonieuse avec
une stratégie de pivotement de tournoi et une partition de dissection imbriquée. Nous
combinons ensuite le préconditionneur de déflation et le préconditionneur de bloc Jacobi
pour obtenir un taux de convergence plus rapide de GMRES. La déflation de vecteurs
singuliers basée sur une factorisation RRQR forte est également présentée. Dans la suite de
ce chapitre, nous effectuons des tests numériques pour montrer l’efficacité de la technique
de déflation. En particulier, nous donnons d’abord une comparaison entre le GMRES
déflaté par RRQR fort et le GMRES déflaté par SVD et discutons des coûts de mise en
œuvre et du compromis. Ensuite, nous présentons les résultats numériques de la déflation
de l’approximation des plus petites valeurs singulières par QR parcimonieux avec stratégie
de pivotement de tournoi et partition de dissection imbriquée sur 𝑨𝑇𝑨. Enfin, nous
présentons la comparaison entre la déflation, le bloc Jacobi et les préconditionneurs mixtes
s’appliquant au GMRES.

Dans la dernière partie de la thèse, nous donnons la conclusion et les perspectives.
Cette thèse a donné lieu aux publications suivantes.
Article de revue publié
L. Grigori, S. A. Hirstoaga, V. T. Nguyen and J. Salomon. Reduced model-based parareal

simulations of oscillatory singularly perturbed ordinary differential equations. In: Journal of
Computational Physics, Volume 436, 1 July 2021, 110282, ISSN 0021-9991,

https://doi.org/10.1016/j.jcp.2021.110282.
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1 Context

Parallel computing plays a very important role in computer science. Especially with an
increasing number of processors and massively parallel computers, millions even billions
computations can be executed at the same time. This allows us to exploit parallelism
in solving initial value problems quickly and effectively. Indeed, domain decomposition
methods are well-known in the literature for that purpose, see [16] for further details.
Those methods rely on decomposing the problem in the domain into subproblems in
subdomains. Each subproblem is then solved in each subdomain and communicates with
each other by the transmission condition on the boundaries. For an elliptic problem in
space, domain decomposition methods are proven to converge independently with the
mesh size if the overlapping between subdomains is large enough, see [16]. However,
when the number of subdomains becomes too large, the convergence rate deteriorates
because of the lack of global information coupling the subdomains. In order to obtain
a scalable domain decomposition algorithm which depends weakly on the number of
subdomains, a coarse space can be used to couple global information of all subdomains.
This leads to the idea of two-level domain decomposition preconditioners. For the first
level, additive or multiplicative Schwarz can be applied and then a coarse space correction
is performed to couple information of all subdomains. On parallel machines those methods
scale well on thousands of processors, however their performance degrades when the
number of processors is increased further. It is important hence to develop new methods
that exploit parallelism in the time direction as well.
Therefore, we consider in this work the parareal algorithm and we are interested in

accelerating its convergence. The parareal approach comes from domain decomposition
methods but instead of dealing with parallelism in space, it deals with parallelism in time.
Relying on decomposing the whole time domain into time subdomains, parareal uses two
solvers, a coarse one which is very cheap and easy to compute, and a fine one which is
more accurate but more expensive in terms of computational cost. From an initial solution
obtained by using sequentially the coarse solver, parareal iteratively corrects it by the
difference between the fine solution obtained in parallel using the fine solver and the
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coarse solution obtained from the previous iteration. It was shown in [36] that parareal
can be written as a residual correction scheme at the coarse level. In this work we consider
parareal as a residual correction scheme with a preconditioner at the fine level with the
aim of improving its convergence. Our goal is to build a preconditioner matrix such that it
acts like parareal at the fine level. This preconditioner matrix, called SC, is formed by the
product of two terms, the additive Schwarz term and the coarse time correction term. Beside
domain decomposition methods and parareal, multigrid methods are also well known in
the literature for solving PDEs with parallelism, especially the multigrid reduction in time
(MGRIT) method, see [20, 25, 36]. In this thesis, we first proved that the SC two-level
additive Schwarz in time preconditioner is equivalent to MGRIT with F-relaxation. Then,
it was shown in [20, 25, 30] that parareal is equivalent to MGRIT with F-relaxation. Thus,
the three methods, parareal, MGRIT with F-relaxation and SC two-level additive Schwarz
in time preconditioner are equivalent. Second, we show that additional fine or coarse
propagation steps in the precondtioner lead to procedures equivalent to MGRIT with FCF-
relaxation and to MGRIT with F(CF)2-relaxation or overlapping parareal [36]. We propose
a variant, called SCS2, which converges faster and efficiently exploits parallel computing.
Furthermore, approaching by the residual correction scheme at the fine level with SC
two-level additive Schwarz in time preconditioner allows us to explore the usage of Krylov
subspace methods, namely GMRES (Generalized Minimal Residual) [91] to accelerate the
parareal algorithm. Third, it is known from [78, 89, 99] that the small eigenvalues which
are close to zero badly affect the convergence behavior of GMRES, and this is also true
for the smallest singular values [96]. A very interesting idea to overcome this difficulty is
to remove the impact of those small singular values in the spectrum by using a deflation
subspace. Following this idea, in this work we study the approximations of the smallest
singular values and the null space using for the deflation technique which are based on
the sparse QR , especially strong rank revealing QR factorization (strong RRQR) [19, 48]
with tournament pivoting strategy [19, 46]. Here our goal is to use tournament pivoting
to get an efficient and highly parallel computation of the space to be deflated. Tournament
pivoting was introduced to approximate the largest singular values and associated singular
vectors, and we have modified the algorithm such that we can use it for our goal. Finally,
in the framework of solving highly oscillatory ordinary differential equations, we apply
the idea of using a different (reduced) model for the coarse solver of parareal algorithm.
The advantage of using such reduced models is their low computational cost.

2 Summary and contributions

This thesis was funded by the French National Research Agency (ANR) Contract ANR-15-
CE23-0019 (project CINE-PARA) in which we conduct studies around parareal algorithm
topic in order to accelerate its performance. This thesis contains four chapters.

In Chapter 1, we first recall the background of the parareal algorithm, two-level domain
decomposition preconditioners and MGRIT in order to emphasize the equivalence between
them. We also recall GMRES method which leads to parareal acceleration. Then, we
detail the strong RRQR factorization, the tournament pivoting strategy and the deflation
technique in order to derive a deflation preconditioner of the smallest singular values

xxiv



2 Summary and contributions

of the problem to accelerate GMRES’s convergence rate. A part from that, by means of
two-scale asymptotic expansions, we obtain reduced models that we use for coarse solving
in the parareal framework. These models are approximations of highly oscillatory ordinary
differential equations which are characteristics of a six-dimensional Vlasov equation.

In Chapter 2, we show the equivalence between parareal, MGRIT with F-relaxation
and SC two-level additive Schwarz in time preconditioner. More specifically, we first
recall parareal execution from an algebraic point of view which leads to the expression of
parareal as a preconditioned stationary iteration at the fine level. This approach allows us
to describe an interpretation of parareal as a two-level additive Schwarz preconditioner in
the time domain so-called SC two-level additive Schwarz in time preconditioner. Based on
this two-level additive Schwarz in time preconditioner, we introduce some variants as SCS,
S(CS)2 two-level additive Schwarz in time preconditioner and show their equivalence to
MGRIT with FCF-relaxation, and to MGRIT with F(CF)2-relaxation or overlapping parareal.
Additionally, we propose a variant referred to as SCS2 two-level additive Schwarz in time
preconditioner which converges faster and efficiently exploits parallel computing. In
the following part, we present the convergence analysis and convergence estimate of SC
two-level additive Schwarz in time preconditioner and its variants. We also discuss about
the implementation costs and the trade-off of those variants. In the rest of this chapter, we
conduct numerical experiments to show the equivalence between parareal and SC two-level
additive Schwarz in time preconditioner, the comparison between SC two-level additive
Schwarz in time preconditioner and its variants, the parareal with GMRES acceleration for
Dahlquist problem, heat equation and advection-reaction-diffusion equation. In particular,
we study the impact of GMRES acceleration of parareal for the advection-reaction-diffusion
equation in two cases, diffusion dominated and advection dominated. It will be seen that
GMRES improves parareal convergence especially in the case when the advection and
reaction coefficients are large compared to the diffusion term. In the end, we show the
convergence behaviors of parareal and parareal with GMRES acceleration with a different
method for the fine propagator.

In Chapter 3, we consider solving stiff Vlasov equations in six dimensions, for modeling
the dynamics of charged particles in a strong magnetic field. The idea is to use reduced
models which are derived from two-scale asymptotic expansions and are proved to approx-
imate the initial Vlasov equation in short final times. However, we found by numerical
experiments that their approximation becomes inaccurate in long times. In this framework,
we apply the parareal algorithm with the strategy of using reduced models for the coarse
solving. We show numerically the rapid convergence of the parareal algorithm for several
test cases. More specifically, we first recall the two-scale asymptotic expansion and then
the zero and first order reduced models that result from [28]. Next, we present the case
of a constant magnetic field, which includes a uniform time varying electric field and a
non uniform stationary electric field, and the case of a variable magnetic field. Then, our
simulations show the efficiency of the strategy with parareal, by obtaining convergence of
the algorithm in a few iterations, while the number of time slices is quite high. The test
cases are relevant for plasma physics, as particles in a Penning trap, isotope separation by
ion cyclotron resonance and an example of dynamics in a variable magnetic field.
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In Chapter 4, we present the deflation of the smallest singulars values based on the
sparse QR, especially strong RRQR factorization with tournament pivoting strategy. More
specifically, we first recall the strong rank revealing QR (strong RRQR) factorization and
the tournament pivoting strategy. Then, we present and analyze one step of the coupling
strategy with nested dissection partition on 𝑨𝑇𝑨. In the following part, we derive a
new deflation technique of smallest singular values based on sparse QR factorization
with tournament pivoting strategy and nested dissection partition. We then combine the
deflation preconditioner and block Jacobi preconditioner to obtain faster convergence rate
of GMRES. The deflation of singular vectors based on strong RRQR factorization is also
presented. In the rest of this chapter, we perform numerical tests to show the efficiency of
the deflation technique. In particular, we first give a comparison between strong RRQR
deflated GMRES and SVD deflated GMRES and discuss about the implementation costs and
the trade-off. Thenwe presents numerical results of the deflation of smallest singular values
approximation by sparse QR with tournament pivoting strategy and nested dissection
partition on 𝑨𝑇𝑨. Finally, we present the comparison between the deflation, block Jacobi
and mixed preconditioners applying to GMRES.

In the last part of the thesis, we give the conclusion and perspectives.
This thesis has led to the following publications.
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Journal paper in preparation
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1.1 Parareal algorithm

Introduced by J.L. Lions et at. [68] in 2001, parareal (parallel in real time) algorithm has
become very attractive over the past 20 years for the solution of initial value problems.
Because of its strong effectiveness in exploiting parallelism in time for real time problems,
a wide range of its applications has been studied in various fields around the world. For
example in the field of multiscale modeling, parareal can be very useful for molecular
dynamics simulations [5], unsteady hydrodynamic simulations [23], the kinetic neutron
diffusion equation [8, 9], the Navier-Stokes equations [27, 98], the Korteveg-deVries-
Burgers’ equations [61] or the Hamiltonian systems [17, 34]. In industry, parareal can also
be applied for the morphological transformation in cubic alloys [55], heat transfer and heat
flow [39], plasma turbulence [85, 93], automotive industry [70], fusion plasma edge [92],
power systems dynamic simulations [22, 50, 51, 94]. Even in medical applications, parareal
can also be used for skin transport [64]. In financial mathematics, parareal is also very
efficient for the Black-Scholes equations using option pricing models for an American put
[7, 72, 81]. Despite of its potential in exploiting parallelism in time for parabolic problems,
parareal does not seem very efficient for hyperbolic equations [6, 26]. Difficulties come
from dealing with complex eigenvalue problems that cause instability in convergence,
mainly because of the regularity of the solution which strongly depends on the initial
conditions [17]. An analysis has also been done in [87] for a better understanding of what
causes instability problems for hyperbolic equations, and the author determines that the
phase errors in the coarse propagator are the reasons so that with specifically tailored
coarse level methods, the stability problems could be solved. Many interpretations as well

1



1 State-of-the-art

as variants of parareal have been studied. M. Gander and S. Vandewalle gave a derivation
of the parareal algorithm as a multiple shooting method [37]. M. Minion and S. A. Williams
investigated using spectral deferred corrections in the framework of parareal [75, 76].
Coupling parareal with non-overlapping domain decomposition method [49], parareal
with Schwarz Waveform Relaxation methods [32, 35] are also very promising directions.

The parareal algorithm is a two-level method in which its idea comes from domain
decomposition methods, but instead of decomposing in space, it decomposes the time
direction. Therefore, the algorithm displays its advantage by covering various fields of
applications where it exploits very efficiently parallel computing over a large number of
processors to solve problems in real time constraint context. Since its conception, the
algorithm has been intensively analyzed [6, 33, 37, 97]. The parareal algorithm’s version
used nowadays is much simpler and easier to implement than the original one but the
main idea is still the same, see [37]. Let us briefly recall this approach. Consider the simple
time dependent problem

d𝑢
d𝑡

= 𝑓 (𝑢) in (0,𝑇 ), 𝑢 (0) = u0. (1.1)

The time interval [0,𝑇 ] is decomposed into 𝑁 uniform time slices [𝑇𝑛,𝑇𝑛+1], for 𝑛 ∈
{0, . . . , 𝑁 − 1}. Let F (𝑇𝑛+1,𝑇𝑛,𝑈𝑛) denote the fine solver, which gives a very accurate
approximation of the solution at time 𝑇𝑛+1 with the initial solution𝑈𝑛 at time 𝑇𝑛 and let
G(𝑇𝑛+1,𝑇𝑛,𝑈𝑛) denote the coarse solver, which gives a coarse approximation of the solution
at time 𝑇𝑛+1 also with the initial solution𝑈𝑛 at time 𝑇𝑛 . The coarse solver is to be chosen
such that its cost is much lower than the one of the fine solver. A popular strategy consists
in using the approximation method considered in the fine solver but with a larger time
step [37]. Alternatively, one can use an approximation method with lower accuracy, or
even use a different model from the original problem as long as it can give a reasonable
coarse and fast approximation of the solution of the original problem [71].
The parareal algorithm aims at computing a sequence (𝑈 𝑘

𝑛 )𝑘,𝑛 of approximations of𝑢 (𝑇𝑛) for
𝑛 ∈ {0, . . . , 𝑁 } for every 𝑘 in the following way. At the first step, the initial approximation
𝑈 0
𝑛 at coarse time points 0 = 𝑇0 < 𝑇1 < · · · < 𝑇𝑁 = 𝑇 can be computed sequentially using

the coarse solver that reads

𝑈 0
𝑛+1 = G(𝑇𝑛+1,𝑇𝑛,𝑈

0
𝑛 ), 𝑈 0

0 = 𝑢0,

and then for 𝑘 = 0, 1, . . . with𝑈 𝑘+1
0 = 𝑢0, the parareal algorithm computes a more accurate

approximation

𝑈 𝑘+1
𝑛+1 = G(𝑇𝑛+1,𝑇𝑛,𝑈

𝑘+1
𝑛 ) + F (𝑇𝑛+1,𝑇𝑛,𝑈

𝑘
𝑛 ) − G(𝑇𝑛+1,𝑇𝑛,𝑈

𝑘
𝑛 ).

In this iteration, the terms F (𝑇𝑛+1,𝑇𝑛,𝑈
𝑘
𝑛 ) have the largest computational cost. Therefore,

all these fine computations could be performed in parallel over each interval [𝑇𝑛,𝑇𝑛+1], the
main goal of parareal being to speed up the computation time. However, in order to achieve
a real speed-up, the algorithm should converge in a number of iterations significantly
smaller than the number of time intervals. Furthermore, one can also use a coarsened
spatial mesh for the coarse solver, see [86], the parareal iteration becomes

2



1.1 Parareal algorithm

𝑈 𝑘+1
𝑛+1 = 𝑰G(𝑇𝑛+1,𝑇𝑛, 𝑹𝑈

𝑘+1
𝑛 ) + F (𝑇𝑛+1,𝑇𝑛,𝑈

𝑘
𝑛 ) − 𝑰G(𝑇𝑛+1,𝑇𝑛, 𝑹𝑈

𝑘
𝑛 ),

where 𝑹 and 𝑰 denote interpolation and restriction operators between the two spatial
meshes. For the sake of simplicity, linear interpolations are used for 𝑰 while 𝑹 is always a
simple injection.

In the following discussion we give some numerical results of parareal algorithm from
the literature. The figures were obtained by running the Matlab code from [31]. We first
consider the Dahlquist problem which is a simple scalar linear ODE,

𝑑𝑢

𝑑𝑡
= 𝑎𝑢, 𝑢 (0) = u0, 𝑡 ∈ [0,𝑇 ] . (1.2)

Figure 1.1 shows the convergence behavior of parareal algorithm applied to Dahlquist
problem and the theoretical linear and super linear error bounds, which can be found
in [37]. We consider next the Lorenz equation coming from a very simplified model for
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Figure 1.1: Error in maximum norm between approximate solution and fine sequential
solution for Dahlquist problem 𝑑𝑢

𝑑𝑡
= 𝑎𝑢 using backward Euler discretization

with 𝑎 = −1, 𝑇 = 0.25, 1, 10, 50, 𝑢0 = 1, 𝑁 = 10.

weather prediction, including a system of 3 ODEs,

¤𝑥 = −𝜎𝑥 + 𝜎𝑦 , 𝑥 (0) = 𝑥0,

¤𝑦 = −𝑥𝑧 + 𝑟𝑥 − 𝑦 , 𝑦 (0) = 𝑦0, (1.3)
¤𝑧 = 𝑥𝑦 − 𝑏𝑧 , 𝑧 (0) = 𝑧0,
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with the parameters 𝜎, 𝑟, 𝑏 ∈ R. In Figure 1.2 we show the approximate solution (on red
dotted lines), the fine solution (solid blue line) and the error convergence after 20 iterations
of parareal algorithm applied to the Lorenz equation (1.2). We give next some results on
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Figure 1.2: Solution (left) and error (right) in maximum norm between approximate solu-
tion and fine sequential solution for Lorenz equation (1.3) using forward Euler
discretization with 𝜎 = 10, 𝑟 = 28, 𝑏 = 8/3, 𝑇 = 5, 𝑢0 = [20; 5;−5], 𝑁 = 500.

PDEs, in particular the 1D heat equation which simulates the temperature in a nail as
discussed in [31],

𝜕𝑡𝑢 (𝑥, 𝑡) = 𝜕𝑥𝑥𝑢 (𝑥, 𝑡) in (0, 𝜋) × (0,𝑇 ],
𝑢 (𝑥, 0) = 𝑢0(𝑥) in (0, 𝜋), (1.4)
𝑢 (0, 𝑡) = 0 in (0,𝑇 ],
𝑢 (𝜋, 𝑡) = 0 in (0,𝑇 ] .

Figure 1.3 shows the solution and the error convergence after 16 iterations of parareal
algorithm applied to the 1D heat equation (1.4). Finally, we give some results for the
transport equation,

𝜕𝑡𝑢 (𝑥, 𝑡) + 𝑎𝜕𝑥𝑢 (𝑥, 𝑡) = 0 in R × (0,𝑇 ],
𝑢 (𝑥, 0) = 𝑢0(𝑥) in R, (1.5)

with the velocity 𝑎 ∈ R. We show in Figure 1.4 the solution and the error after 16 iterations
of parareal algorithm applied to the transport equation (1.5). The convergence analysis
and further discussion of parareal algorithm for PDEs can also be found in [37].
The main idea of parareal comes from domain decomposition methods in time, so

it is natural to think about the equivalence between them. Indeed, by constructing a
preconditioner matrix from the stationary iteration for the fine level and combine with
domain decomposition strategy, we can show the equivalence between parareal and the
two-level domain decomposition preconditioner in time. Additionally in the convergence
we prove that the two-level domain decomposition preconditioner in time has the same
error propagation with MGRIT with F-relaxation at the coarse time points, see [25, 30].
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Figure 1.3: Parareal solution (left) and error (right) inmaximumnorm between approximate
solution and fine sequential solution for 1D heat equation (1.4) using backward
Euler discretization with 𝑇 = 8, 𝑢0 = 0, 𝑁 = 16, 𝛿𝑡 = 0.05,Δ𝑡 = 0.5.
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Figure 1.4: Parareal solution (left) and error (right) in maximum norm between approxi-
mate solution and fine sequential solution for transport equation (1.5) using
backward Euler discretization with 𝑎 = 0.25,𝑇 = 4, 𝑢0 = sin(2𝜋𝑥), 𝑁 = 16, 𝛿𝑡 =
0.0125,Δ𝑡 = 0.25.

This leads to the conclusion that the three algorithms, parareal, MGRIT and the two-level
domain decomposition preconditioner in time are equivalent. This also confirms again
the equivalence between parareal and MGRIT as already proven in [30]. Furthermore,
using the idea of Krylov subspace methods to accelerate the parareal algorithm also
gives promising results. By combining parareal with Krylov subspace methods, we can
exploit the parallelism both in time and space. There are many techniques to improve the
parallelism in space, exploiting the information of the Krylov subspace as well as building
a coarse space generated from last iterations. Ideas of recycling a subspace that minimizes
the loss of orthogonality with the Krylov subspace from the previous system can be found
in [1, 78]. Recycled subspace is utilized by minimizing the residual over this subspace and
then maintaining orthogonality with the image of this space in the Arnoldi recurrence.
However in this work, we aim at building a deflation preconditioner which removes the
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bad impact of the smallest singular values on the convergence of Krylov subspace methods,
namely GMRES. In the next section we give a brief introduction about two-level domain
decomposition preconditioners which lead to the idea of the two-level additive Schwarz in
time preconditioner or parareal.

1.2 Two-level domain decomposition preconditioners

In parallel computing, domain decomposition [16, 21, 83] is one of the most interesting
methods that can exploit the massive parallelism in spatial domain by decomposing the
original problem into subproblems on subdomains. Each subdomain problem is iteratively
solved in parallel then the information of solution is exchanged between subdomains by
some transmission condition. For their potential parallel efficiency, domain decomposition
methods have been well studied in various application fields, see [60, 84, 105]. They can be
either applied directly to solve the PDEs, or used as preconditioners for Krylov subspace
methods. In this work, we put our interest in the latter use and we first briefly recall its
formulation. Consider a large sparse symmetric positive definite linear system which is
obtained from the discretization of an elliptic problem by Finite Difference method or
Finite Element method

𝐴𝑢 = 𝑓 . (1.6)

The condition number of 𝐴 in (1.6) can be large. To avoid that, a transformation can be
applied to make (1.6) easier to solve with a much smaller condition number, e.g., instead
of solving (1.6), we now solve

𝑀−1𝐴𝑢 = 𝑀−1𝑓 , (1.7)

in which 𝑀 is called the preconditioner of the matrix 𝐴 such that 𝑀−1𝐴 has a smaller
condition number than 𝐴.
The one-level domain decomposition such as additive and multiplicative Schwarz are

well-known in the literature for domain decomposition in space, especially for elliptic
problems, see [16]. Those Schwarz methods are used as preconditioners for Krylov sub-
space methods in which the original problem is decomposed into subproblems whose
solution only gives an approximate correction to the global error. Consider solving on
each subdomain approximately the linear system involving 𝐴𝑖 , the accuracy is ensured in
the preconditioner because we are still solving the original problem on the entire domain.
However, the iterative linear system solver must have some mechanism for the global
communication of informations at each iteration. Suppose that we have two overlapping
subdomains {Ω1,Ω2} with the corresponding restriction matrices 𝑅1, 𝑅2 and prolongation
matrices 𝑅𝑇1 , 𝑅

𝑇
2 such that

𝐴1 = 𝑅1𝐴𝑅
𝑇
1 , 𝐴2 = 𝑅2𝐴𝑅

𝑇
2

are principal submatrices of 𝐴.
Hence, to solve the linear system𝐴𝑢 = 𝑓 , we start with an initial guess𝑢0 and a sequence

of iterates 𝑢0, 𝑢1, . . . are generated following

𝑢𝑘+
1
2 = 𝑢𝑘 + 𝑅𝑇1𝐴−1

1 𝑅1(𝑓 −𝐴𝑢𝑘),
𝑢𝑘+1 = 𝑢𝑘+

1
2 + 𝑅𝑇2𝐴−1

2 𝑅2(𝑓 −𝐴𝑢𝑘+
1
2 ),
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we can combine the two steps and obtain

𝑢𝑘+1 = 𝑢𝑘 + (𝑅𝑇1𝐴−1
1 𝑅1 + 𝑅𝑇2𝐴−1

2 𝑅2 − 𝑅𝑇2𝐴−1
2 𝑅2𝐴𝑅

𝑇
1𝐴

−1
1 𝑅1) (𝑓 −𝐴𝑢𝑘).

As stated in [16], the iteration above corresponds to a generalization of the block Gauss-
Seidel iteration with overlapping blocks and the two subdomain solvers 𝐴−1

1 and 𝐴−1
2 are

required for each iteration. By defining

𝑃𝑖 ≡ 𝑅𝑇𝑖 𝐴−1
𝑖 𝑅𝑖𝐴, 𝑖 = 1, 2,

this procedure is referred to as a multiplicative Schwarz iteration since its convergence is
governed by the iteration matrix (𝐼 − 𝑃2) (𝐼 − 𝑃1).

The additive Schwarz preconditioner can be analogously defined using the block Jacobi
as

𝑢𝑘+
1
2 = 𝑢𝑘 + 𝑅𝑇1𝐴−1

1 𝑅1(𝑓 −𝐴𝑢𝑘),
𝑢𝑘+1 = 𝑢𝑘+

1
2 + 𝑅𝑇2𝐴−1

2 𝑅2(𝑓 −𝐴𝑢𝑘),

and by eliminating 𝑢𝑘+
1
2 we obtain

𝑢𝑘+1 = 𝑢𝑘 + (𝑅𝑇1𝐴−1
1 𝑅1 + 𝑅𝑇2𝐴−1

2 𝑅2) (𝑓 −𝐴𝑢𝑘).

Following this strategy, we can exploit the parallelism since the two subdomain solvers
can be executed in parallel. This is also equivalent to a Richardson iteration with an
additive Schwarz preconditioner

𝑀−1 = 𝑅𝑇1𝐴
−1
1 𝑅1 + 𝑅𝑇2𝐴−1

2 𝑅2.

With sufficient overlap, both multiplicative and additive Schwarz iterations can converge
with a rate independent of the mesh size. However, their convergence rate deteriorates
when the number of subdomains becomes large because of a lack of global information
coupling the subdomains. In order to obtain a scalable domain decomposition algorithm
which depends weakly on the number of subdomains, a coarse space can be used to couple
global information of all subdomains. Thus, the two-level additive Schwarz preconditioner
is defined as

𝑀−1
𝐴𝑆 =

𝑀∑︁
𝑗=1

𝑅𝑇𝑗 𝐴
−1
𝑗 𝑅 𝑗 + 𝑅𝑇0𝐵−1𝑅0,

which is equivalent to the iterates

𝑢𝑘+1 = 𝑢𝑘 + (𝑅𝑇0𝐵−1𝑅0 +
𝑀∑︁
𝑗=1

𝑅𝑇𝑗 𝐴
−1
𝑗 𝑅 𝑗 ) (𝑓 −𝐴𝑢𝑘),

and the two-level multiplicative Schwarz preconditioner is analogously defined as

𝑀−1
𝑀𝑆 =

[
𝐼 − (𝐼 − 𝑅𝑇0𝐵−1𝑅0𝐴)

(
𝐼 −

𝑀∑︁
𝑗=1

𝑅𝑇𝑗 𝐴
−1
𝑗 𝑅 𝑗𝐴

)]
𝐴−1,
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which is equivalent to the iterates

𝑢𝑘+
1
2 = 𝑢𝑘 +

𝑀∑︁
𝑗=1

𝑅𝑇𝑗 𝐴
−1
𝑗 𝑅 𝑗 (𝑓 −𝐴𝑢𝑘),

𝑢𝑘+1 = 𝑢𝑘+
1
2 + 𝑅𝑇0𝐵−1𝑅0(𝑓 −𝐴𝑢𝑘+

1
2 ),

where 𝐴 𝑗 for 𝑗 = 1, . . . , 𝑀 denotes the 𝑖𝑡ℎ subdomain matrix of 𝐴, 𝑀 is the number of
subdomains, 𝐵 is the coarse problem matrix with the corresponding restriction matrix 𝑅0
and prolongation matrix 𝑅𝑇0 .
This leads to the idea of two-level domain decomposition preconditioners in time in

which each subdomain problem can be solved in parallel and then a coarse time correction
can be performed sequentially to couple information between all temporal subdomains.
This strategy results in a very similar framework with parareal and indeed, one can figure
out that it is equivalent to parareal by Lemma 2.2.1 and Lemma 2.3.1 in Chapter 2. It will
be seen that parareal is equivalent to using the preconditioned stationary iteration which
computes a new approximate solution𝑈 𝑘+1

𝐹
from𝑈 𝑘

𝐹
,

𝑈 𝑘+1
𝐹 = 𝑈 𝑘

𝐹 +𝑀−1
𝑆𝐶 (𝑓 −𝐴𝑈

𝑘
𝐹 ),

where𝑀−1
𝑆𝐶

is a two-level additive Schwarz in time preconditioner defined as,

𝑀−1
𝑆𝐶 = (𝑅𝑇0𝐴−1

0 𝑅0 + I − 𝑅𝑇0𝑅0) ©­«
𝑁̂∑︁
𝑖=1

𝑅𝑇𝑖 𝐴
−1
𝑖 𝑅𝑖

ª®¬ . (1.8)

One can know from [25] that parareal is equivalent to MGRIT with F-relaxation. In this
work, we show that the two-level domain decomposition preconditioner in time also has
the same error propagation as MGRIT after one iteration with F-relaxation at coarse time
points. For that reason, the next section is dedicated to the multigrid reduction in time or
MGRIT method.

1.3 Multigrid reduction in time (MGRIT) method

The multigrid method is well studied in the literature [12, 52, 101, 103], especially its
typical application to solving numerically elliptic problems [88]. The most interesting
characteristic of multigrid methods is that they can give very accurate numerical solutions
to very complicated non-symmetric and nonlinear systems of equations like the Navier-
Stokes equations [95] in many domains and many boundary conditions. Similarly to
domain decomposition methods, multigrid methods can be either used as direct solvers
for PDEs, or used as preconditioners for Krylov subspace methods. Given that multigrid
methods rely on combining the use of a coarse and a fine grid, those methods first reduce
the high frequency errors by some relaxation methods, then the residual error of the fine
grid problem is computed and transferred to the coarse grid by a restriction operator.
The coarse grid problem is then solved to produce a correction between the coarse grid
problem solution and the restriction of the fine grid problem solution. This correction is

8



1.3 Multigrid reduction in time (MGRIT) method

transferred back to the fine grid by a prolongation operator. The final step is to correct
the fine solution by adding the prolongated correction from the coarse grid problem. We
represent those steps by considering the discretization of a linear PDE on a spatial domain
by using the fine mesh to obtain the linear system

𝐴𝐹𝑢𝐹 = 𝑓𝐹 , (1.9)

where𝐴𝐹 stands for the discretization of the problem , 𝑢𝐹 and 𝑓𝐹 stand for the approximate
solution and the right hand side on the fine mesh. We consider additionally the error
equation on the fine mesh

𝐴𝐹𝑒𝐹 = 𝑟𝐹 , (1.10)

where 𝑒𝐹 = 𝑢𝑒𝑥,𝐹 −𝑢𝐹 stands for the error between the exact solution and the approximate
solution and 𝑟𝐹 = 𝑓𝐹 −𝐴𝐹𝑢𝐹 stands for the residual of (1.9). If 𝑒𝐹 is known, then the solution
𝑢𝐹 to (1.9) can be approximated by

𝑢𝐹 = 𝑢𝐹 + 𝑒𝐹 . (1.11)

Figure 1.5: Two-level spatial mesh with the coarse level at yellow nodes and the fine level
at all nodes.

The main idea of multigrid methods is to approximate the error 𝑒𝐹 of the fine grid
problem by the error from the coarse grid problem. If the error on the coarse grid is known,
it can be linearly interpolated back to the fine grid and used as a correction. This coarse
grid problem is cheaper, easier to solve and provides an acceptable approximate error 𝑒𝐶
for 𝑒𝐹 . Hence to obtain the error 𝑒𝐶 we need to solve the error equation

𝐴𝐶𝑒𝐶 = 𝑟𝐶, (1.12)

where𝐴𝐶 stands for the coarse problemmatrix, 𝑒𝐶 = 𝑢𝑒𝑥,𝐶−𝑢𝐶 stands for the error between
the exact solution and the approximate solution and 𝑟𝐶 stands for the residual of the coarse
grid problem. The residual 𝑟𝐶 of (1.12) is not known, however it can be approximated by

9



1 State-of-the-art

the residual 𝑟𝐹 of (1.10) which is known. Denote by 𝑅𝑇 the prolongation matrix of linear
interpolation from the coarse grid to the fine grid and by 𝑅 the restriction matrix from the
fine grid to the coarse grid. A simple coarse grid correction can be derived by

𝑢𝐹 = 𝑢𝐹 + 𝑅𝑇𝐴−1
𝑐 𝑅(𝑓𝐹 −𝐴𝐹𝑢𝐹 ),

it means, we compute the residual on the fine grid, restrict it to the coarse grid then solve
the coarse grid problem and prolongate the coarse grid correction to the fine grid. Multigrid
methods then perform some post-smoothing step and repeat until the convergence is
obtained following their strategies. Those are the main steps of multigrid methods for
solving PDEs on spatial domains, in this work we only consider the use of multigrid
methods for time dependent problems. Thus we briefly recall the multigrid reduction in
time (MGRIT) method following [20]. Consider a time dependent problem in which we
can compute approximately the numerical solution iteratively by following steps

𝑢0 = 𝑔0,

𝑢 𝑗 = 𝜙𝑢 𝑗−1 + 𝑔 𝑗 , 𝑗 = 1, 2, . . . , 𝑁𝑡 ,

in which 𝑢 𝑗 ∈ R𝑁𝑥 , where 𝑁𝑥 stands for the spatial dimension, 𝜙 stands for the one-step
time discretization matrix. We can represent those steps in a linear system of equations

𝐴𝑢 :=


I
−𝜙 I

. . .
. . .

−𝜙 I



𝑢0
𝑢1
...

𝑢𝑁𝑡


=


𝑔0
𝑔1
...

𝑔𝑁𝑡


=: 𝑔. (1.13)

The system (1.13) is discretized on a temporal mesh with 𝑡 𝑗 = 𝑗𝛿𝑡, 𝑗 = 0, 1, . . . , 𝑁𝑡 and
the time step 𝛿𝑡 = 𝑇 /𝑁𝑡 . Instead of sequentially solving this system, MGRIT exploits the
parallelism by combining the sequential solve of the original time-stepping problem with
a coarse grid approximation. Thus, a coarse grid is defined at 𝑇𝑗 = 𝑗Δ𝑡, 𝑗 = 0, 1, . . . , 𝑁𝑇
and the coarse time step Δ𝑡 = 𝑇 /𝑁𝑇 =𝑚𝛿𝑡 where𝑚 is the coarsening factor and 𝑁𝑇 is the
number of coarse time points.

Figure 1.6: Two-level temporal mesh with the coarse level (C-points) at blue nodes and
the fine level (F-points) at all nodes.

By eliminating all F-points values, a coarse grid problem can be obtained at all C-points

𝑢0 = 𝑔0,

𝑢𝑘𝑚 = 𝜙𝑚𝑢(𝑘−1)𝑚 +
𝑚−1∑︁
𝑖=0

𝜙𝑖𝑔𝑘𝑚−𝑖,

10



1.4 Generalized minimal residual (GMRES) method

this coarse grid problem produces exactly the same solution as the system (1.13) at coarse
time points. However it is not much easier to solve than the original problem. Thus,
MGRIT reduces the cost of 𝜙𝑚 by an approximate operator 𝜙Δ and combines the use of
both 𝜙 and 𝜙Δ in the following Algorithm 1, which can be found in [20].
Algorithm 1: MGRIT(𝜙, 𝜙Δ𝑡 , 𝑢, 𝑔)
1 repeat
2 Relax the approximate solution using 𝜙 .
3 Compute the residual on the coarse grid with 𝜙 .
4 Solve the coarse-grid correction problem using 𝜙Δ𝑡 .
5 Correct the approximate solution at the C-points.
6 Update the solution at the F-points with 𝜙 .
7 until norm of residual is small enough.
Algorithm 1 presents the two-level MGRIT algorithm. One can obtain a multilevel

algorithm by recursively applying the algorithm in step 4. There are several approaches
that can be used to relax the approximate solution using 𝜙 in step 2. Basically they come
from the F-relaxation and the C-relaxation in which F-relaxation propagates to obtain the
approximate solution at fine time points based on the coarse time points, and C-relaxation
propagates to obtain the approximate solution at coarse time points based on the previous
fine time points. Additionally, one can combine both F-relaxation and C-relaxation to
obtain the FCF-relaxation in which the solution is relaxing by first using the F-relaxation,
then the C-relaxation and followed by one more F-relaxation. The FCF-relaxation produces
more accurate approximate solution than just only using the F-relaxation in step 2. The
error propagation as well as the convergence behavior of MGRIT are well studied in [20].

It is known from [37] that parareal can be interpreted as a two-level multigrid method.
In this work, we present a new interpretation of parareal algorithm as a two-level Schwarz
preconditioner which produces the same error propagation as MGRIT after one iteration
with F-relaxation at coarse time points. Furthermore, we find that adding more coarse or
fine propagation steps in the two-level preconditioner in time gives faster convergence.
In particular the preconditioner produces the same error propagation as MGRIT with
FCF-relaxation or F(CF)2-relaxation. However, there is a trade-off to be considered in
terms of computational costs and parallel implementation, which will be discussed in more
detail in Chapter 2. Based on this interpretation, a variant that accelerates convergences
by using a GMRES-type procedure is also presented.

1.4 Generalized minimal residual (GMRES) method

As stated in the previous section, parareal can be interpreted as a two-level Schwarz
preconditioner. We consider the preconditioned system obtained from the discretization
of a linear time dependent problem

𝑀−1𝑨𝑢 = 𝑀−1𝑓 , (1.14)

in whichM stands for the two-level Schwarz preconditioner whose form is given in detail in
Chapter 2,𝑨, 𝑢 are the same as in the system (1.13) and 𝑓 stands for the right-hand side. It is
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1 State-of-the-art

obvious that thematrix𝐴 is not symmetric, thus if wewant to accelerate the preconditioned
system (1.14) by some Krylov subspace method, GMRES becomes a bright candidate since it
is a Krylov method designed for non-symmetric linear systems. Introduced by Yousef Saad
and Martin H. Schultz in 1986 [90], GMRES shows its effectiveness in solving linear sparse
systems especially when combined with some preconditioners [4, 73, 77, 80]. Furthermore,
parallelism conducted on massively parallel computer allows to effectively reduce the
computation time as studied in ILU-preconditioned GMRES [102]. We briefly recall the
GMRES algorithm together with the Krylov subspaces and the Arnoldi procedure by
considering a linear sparse system obtained from the discretization of some PDEs using
finite difference or finite elements methods

𝑨𝑥 = 𝑏, (1.15)

where 𝑨 ∈ R𝑛×𝑛 is non-singular and diagonalizable, 𝑏 ∈ R𝑛 is the right-hand side and
𝑥 ∈ R𝑛 is the unknown vector. The Krylov subspace of dimension 𝑘 > 0 associated to 𝑨
and 𝑏 is defined as

𝐾𝑘 (𝐴,𝑏) = 𝑠𝑝𝑎𝑛{𝑏,𝑨𝑏, . . . ,𝑨𝑘−1𝑏}.

An orthogonalization procedure, namely Arnoldi is used to construct the basis vectors for
the Krylov subspace and we obtain at each iteration 𝑘 the relation

𝑨𝑉𝑘 = 𝑉𝑘+1𝐻𝑘 ,

where 𝑉𝑘 = {𝑣1, . . . , 𝑣𝑘},𝑉𝑘+1 = [𝑉𝑘 , 𝑣𝑘+1], and 𝐻𝑘 = (ℎ𝑖, 𝑗 )1≤𝑖≤𝑘+1,1≤ 𝑗≤𝑘 . GMRES approxi-
mates the exact solution of (1.15) by the vector 𝑥𝑘 ∈ 𝐾𝑘 such that the Euclidean norm of the
residual 𝑟𝑘 = 𝑨𝑥𝑘 −𝑏 is minimized. Starting from an initial guess 𝑥0 ≠ 0, the vector 𝑥𝑘 ∈ 𝐾𝑘
can be approximated by 𝑥𝑘 = 𝑥0 +𝑉𝑘𝑦𝑘 , where 𝑦𝑘 ∈ R𝑛 is obtained from solving the linear
least squares problem min

𝑦𝑘
| |𝑟𝑘 | |2 = min

𝑦𝑘
| |𝐻𝑘𝑦𝑘−𝛽𝑒1 | |2 with 𝛽 = 𝑏−𝑨𝑥0, 𝑒1 = (1, 0, 0, . . . , 0)𝑇

and𝑉𝑘 is a matrix whose columns form an orthonormal basis {𝑣1, . . . , 𝑣𝑘} of𝐾𝑘 . Specifically,
𝑥𝑘 is approximated as in Algorithm 2 which displays GMRES, where𝑉𝑘 and 𝐻𝑘 come from
the Arnoldi procedure in Algorithm 3.
GMRES algorithm repeats until the residual is less than some given tolerance. It will

be seen that GMRES improves slightly the convergence of parareal and it allows to solve
problems for which parareal has difficulty to converge , as in the case when the advection
and reaction coefficients are large compared to the diffusion term for the advection-reaction-
diffusion problem . However in general it does not improve drastically the convergence
of parareal for our test problems, and this was also observed in previous works as [79]
which studied the acceleration of waveform relaxation methods.

It has been studied in [78, 89, 99] that the convergence rate of Krylov methods is
significantly affected by the spectrum of the coefficient matrix 𝑨. The authors showed
that the small eigenvalues which are close to zero make the convergence rate become
slow. In the work of Simoncini [96] for unsymmetric matrices, small singular values also
affect the convergence of Krylov methods, namely GMRES. As it can be seen in Example 1
from [96], the coefficient matrix 𝐴 is obtained using centered finite differences method
discretization for the equation,

(−𝑒−𝑥𝑦𝑢𝑥 )𝑥 + (−𝑒−𝑥𝑦𝑢𝑦)𝑦 + 10(𝑢𝑥 + 𝑢𝑦) − 60𝑢 = 𝑓 , (1.16)
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1.4 Generalized minimal residual (GMRES) method

Algorithm 2: GMRES
Input: Coefficient matrix 𝑨, right-hand side 𝑏, initial guess 𝑥0, Krylov subspace

dimension 𝑘 , (𝑘 + 1) × 𝑘 Hessenberg matrix 𝐻𝑘 of coefficients
(ℎ𝑖, 𝑗 )1≤𝑖≤𝑘+1,1≤ 𝑗≤𝑘 initialized to 0.

1 Compute 𝑟0 = 𝑏 −𝑨𝑥0, 𝛽 := | |𝑟0 | |2 and 𝑣1 := 𝛽−1𝑟0
2 𝑗 := 1
3 while 𝑗 < 𝑘 do
4 Compute𝑤 := 𝑨𝑣 𝑗
5 for 𝑖 = 1 : 𝑗 do
6 ℎ𝑖, 𝑗 := 𝑤𝑇 𝑣𝑖
7 𝑤 := 𝑤 − ℎ𝑖, 𝑗𝑣𝑖
8 ℎ 𝑗+1, 𝑗 := | |𝑤 | |2
9 if ℎ 𝑗+1, 𝑗 ≠ 0 then
10 𝑣 𝑗+1 := ℎ−1

𝑗+1, 𝑗𝑤

11 else
12 Set𝑚 = 𝑗 and go to line 14
13 𝑗 := 𝑗 + 1
14 Compute 𝑦𝑘 that minimizes | |𝛽𝑒1 − 𝐻𝑘𝑦𝑘 | |2 with 𝑒1 = (1, 0, 0, . . . , 0)𝑇
15 Update the initial guess 𝑥𝑘 = 𝑥0 +𝑉𝑘𝑦𝑘 where 𝑉𝑘 = {𝑣1, . . . , 𝑣𝑘}

Algorithm 3: Arnoldi(𝑨, 𝑣1,𝑚)
Input: Normal vector 𝑣1 ∈ R𝑛 , coefficient matrix 𝑨 ∈ R𝑛×𝑛 , number of iterations𝑚.
Output: Orthonormal basis vectors 𝑉𝑚 , Hessenberg matrix 𝐻𝑚 ∈ R(𝑚+1)×𝑚 .

1 for 𝑗 = 1 :𝑚 do
2 𝑤 = 𝑨𝑣 𝑗
3 for 𝑖 = 1 : 𝑗 do
4 ℎ𝑖, 𝑗 = 𝑣

𝐻
𝑖 𝑤

5 𝑤 = 𝑤 − ∑ 𝑗

𝑖=1 ℎ𝑖, 𝑗𝑣𝑖
6 ℎ 𝑗+1, 𝑗 = | |𝑤 | |2
7 if ℎ 𝑗+1, 𝑗 = 0 then
8 set𝑚 = 𝑗, 𝑣𝑚+1 = 0
9 else
10 𝑣 𝑗+1 =

𝑤
ℎ 𝑗+1, 𝑗

11 𝑉𝑚 = {𝑣1, . . . , 𝑣𝑚}, 𝑉𝑚+1 = [𝑉𝑚, 𝑣𝑚+1], 𝐻𝑚 = (ℎ𝑖, 𝑗 )𝑖, 𝑗

with homogeneous Dirichlet boundary conditions on the unit square. The size of the
coefficient matrix is 𝑛 = 100, the 2 smallest singular values are 𝜎99 = 1.1982 × 10−1 and
𝜎100 = 8.4646× 10−3. The convergence history of GMRES together with MinPert (restarted
minimum perturbation method) and FOM (restarted full orthogonalization method) are
shown with different choices of right-hand side and 𝑚 = 10 (dimension of the Krylov
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subspace). We can observe that GMRES almost stagnates while the two other methods
converge. In Example 2 from [96], the coefficient matrix 𝐴1 is obtained from 𝐴 as, 𝐴1 :=
𝐴−𝑢9911𝑢𝑇99 and the two smallest singular values are 𝜎99 = 9.815×10−3, 𝜎100 = 8.4646×10−3.
The right-hand side 𝑏 = 𝑏/| |𝑏 | | with 𝑏 = 𝑢99 − 𝑢100. It can be seen from this example
that GMRES stagnates with𝑚 = 15 while FOM(15) and Minpert(15) converge. To avoid
stagnation as well as to obtain fast convergence with robustness, a deflation subspace can
be used to remove the impact of those small singular values in the spectrum. In this work
we aim at building a deflation preconditioner which replaces the smallest singular values
of 𝑨 which are close to zero by much larger ones. For that purpose, we first introduce
again the strong rank revealing QR (RRQR) from [19, 48] to show how the smallest singular
values of 𝑨 can be approximated and the tournament pivoting strategy which was proved
in [19, 46] to be an efficient and highly parallel algorithm to build the space to be deflated
in GMRES. The combination results in building a deflation precondtioner using 𝑄2 and
𝑅22 from (1.17) which removes the smallest singular values of 𝑨 that are approximated by
the singular values of 𝑅22 in the QR factorization of the permuted original matrix obtained
from tournament pivoting strategy.

1.5 Strong Rank Revealing QR (strong RRQR) factorization

Strong rank revealing QR factorization is well-known in defining a basis for the approx-
imate right null space of 𝑨, especially in rank-deficient least-squares problems [44, 45].
We can also find its applications in subspace selection and linear dependency analysis as
in [43, 62, 104] since its property allows to identify the linearly independent columns of 𝑨.
Furthermore, its interesting application can also be found in subspace tracking [11]. In
this work we focus on approximating the smallest singular values of 𝑨. For that purpose,
we recall the definition of the strong rank revealing QR (RRQR) factorization following
[48, Theorem 3.2] and [19, Theorem 2.4].

Theorem 1.5.1. ([48, Theorem 3.2] and [19, Theorem 2.4]) Let 𝑨 be an𝑚 × 𝑛 matrix and
1 ≤ 𝑘 ≤ min(𝑚,𝑛). Let 𝑓 > 1 and Π be a permutation matrix such that the decomposition

𝐴Π = 𝑄𝑅 =
[
𝑄1 𝑄2

] [
𝑅11 𝑅12

𝑅22

]
, (1.17)

verifies for all (𝑖, 𝑗) ∈ [1, 𝑘] × [1, 𝑛 − 𝑘],

𝛾2
𝑗 (𝑅−1

11 𝑅12) + 𝛾2
𝑗 (𝑅22)/𝜎2

min(𝑅11) ≤ 𝑘 𝑓 2. (1.18)

Then for any 1 ≤ 𝑗 ≤ 𝑛 − 𝑘 and 1 ≤ 𝑖 ≤ 𝑘 ,

1 ≤ 𝜎𝑖 (𝐴)
𝜎𝑖 (𝑅11)

≤
√︁

1 + 𝑘 𝑓 2(𝑛 − 𝑘), 1 ≤
𝜎 𝑗 (𝑅22)
𝜎𝑘+ 𝑗 (𝐴)

≤
√︁

1 + 𝑘 𝑓 2(𝑛 − 𝑘), (1.19)

where Π ∈ R𝑛×𝑛, 𝑅11 ∈ R𝑘×𝑘 , 𝑅12 ∈ R𝑘×(𝑛−𝑘), 𝑅22 ∈ R(𝑚−𝑘)×(𝑛−𝑘), 𝑄1 ∈ R𝑚×𝑘 and 𝑄2 ∈
R𝑚×(𝑛−𝑘), 𝛾 𝑗 (𝑅22) is the 2-norm of the 𝑗 th column of 𝑅22, 𝜎𝑖 (𝐴), 1 ≤ 𝑖 ≤ min(𝑚,𝑛) denotes
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the 𝑖th singular value of 𝑨 and 𝜎min(𝑅11) is the smallest singular value of 𝑅11. We note
in (1.19) that the lower bounds always hold for any permutation Π thanks to the interlacing
property of singular values.
We can see from (1.19) that the QR factorization in Theorem 1.5.1 reveals the rank of

𝑨 by considering the singular values of 𝑅11 as approximations of the 𝑘 largest singular
values of 𝑨, and the singular values of 𝑅22 as approximations of the min(𝑚,𝑛) −𝑘 smallest
singular values of 𝑨. This is called strong rank revealing factorization as the upper bound
of (1.19) is expressed likely by a low degree polynomial in 𝑛. The factorization (1.17) was
presented in [42], such QR factorization can be derived using QR factorization with column
pivoting (QRCP). We present here Algorithm 4 and Algorithm 5 following [48] to compute
a permutation matrix Π and a QR factorization (1.17) that satisfies (1.18) and (1.19).

Algorithm 4: QR with column pivoting
Input: Coefficient matrix 𝑨, tolerance 𝛿 > 0.

1 𝑘 := 0, 𝑅 := 𝑨, Π := 𝐼
2 while max1≤ 𝑗≤𝑛−𝑘 (𝛾 𝑗 (𝑅22)) ≥ 𝛿 do
3 𝑗max := 𝑎𝑟𝑔𝑚𝑎𝑥1≤ 𝑗≤𝑛−𝑘 (𝛾 𝑗 (𝑅22))
4 𝑘 := 𝑘 + 1
5 Compute 𝑅 := R where R is the triangular matrix obtained from

𝑄𝑅(𝑅Π𝑘,𝑘+ 𝑗max−1) and Π := Π Π𝑘,𝑘+ 𝑗max−1

Algorithm 5: Strong RRQR factorization
Input: Coefficient matrix 𝑨, tolerance 𝛿 > 0, 𝑘 > 0, 𝑓 ≥ 1.

1 𝑅 := R, where R is the triangular matrix obtained from 𝑄𝑅(𝑨), Π := 𝐼

2 while there exist 𝑖 and 𝑗 such that det(𝑅11)/det(𝑅11) > 𝑓 , where 𝑅 =

[
𝑅11 𝑅12

𝑅22

]
and

R̄ =

[
𝑅11 𝑅12

𝑅22

]
, where R̄ is the triangular matrix obtained from 𝑄𝑅(𝑅Π𝑖, 𝑗+𝑘) do

3 Find such an 𝑖 and 𝑗
4 Compute 𝑅 := R̄ and Π := Π Π𝑖, 𝑗+𝑘

As mentioned previously, in this work we study the approximations of the smallest
singular values of 𝑨, which are the singular values of 𝑅22. For that reason, 1.5.1 is applied
differently, which will be given in more detail in Chapter 4 to adapt that purpose. We
note that the results and the proof are similar to the original version in 1.5.1. In the next
section we give a brief introduction about tournament pivoting strategy, which is very
effective in communication avoiding algorithms [19, 46].

1.6 Tournament pivoting strategy

Tournament pivoting idea was introduced in [19, 46] as a communication avoiding tech-
nique for LU and strong RRQR factorizations. The goal of the technique is to select
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𝑘 columns from the input matrix 𝑨. We present again the tournament pivoting strat-
egy following [10]. Suppose that the matrix 𝑨 can be divided into 4 blocks of columns,
𝑨 =

[
𝐴11 𝐴12 𝐴13 𝐴14

]
. In the first step, strong RRQR is performed to select 𝑘 columns

from each column block 𝑨1𝑖, 1 ≤ 𝑖 ≤ 4, the set of indices of selected columns corre-
sponding to each column block 𝑨1𝑖 is denoted by 𝐼𝑖0, 1 ≤ 𝑖 ≤ 4. In the next step, we
put the sets of selected columns from the previous step two by two together following a
reduction binary tree then perform strong RRQR to select 𝑘 columns from each pair. For
example in this case for the second step we perform strong RRQR to select 𝑘 columns from
𝑨(:, 𝐼10∪ 𝐼20) and 𝑘 columns from𝑨(:, 𝐼30∪ 𝐼40), where𝑨(:, 𝐼 ) denotes the submatrix whose
columns come from the indices 𝐼 of 𝑨. Those sets of selected columns from the second
step are denoted by 𝐼𝑖1, 1 ≤ 𝑖 ≤ 2. We then put the 2𝑘 selected columns from the second
step together as 𝑨(:, 𝐼11 ∪ 𝐼21) and perform strong RRQR to select the final set of 𝑘 columns
which is denoted by 𝐼12. However in this work we do not use a reduction binary tree, the
selected columns from the first step are concatenated and then strong RRQR is performed
to select the final set of 𝑘 columns. All steps of the tournament pivoting technique to select
𝑘 columns from the columns of matrix 𝑨 are presented in the following Algorithm 6.
Algorithm 6: Tournament pivoting for 1D column partitioned matrices
Input: 𝑨1, · · · ,𝑨𝑝 submatrices of rank 𝑘 approximation

1 Perform strong RRQR to select 𝑘 columns from each 𝑨𝑖 , indices of selected columns
are denoted by 𝐼𝑖, 1 ≤ 𝑖 ≤ 𝑝

2 Selected columns are concatenated in 𝑨̃ = [𝑨1(:, 𝐼1) · · ·𝑨𝑝 (:, 𝐼𝑝)]
3 Perform again strong RRQR of 𝑨̃ to select 𝑘 columns
Output: indices of 𝑘 rank revealing columns of 𝑨
It was shown in [46] that

𝛾2
𝑗 (𝑅−1

11 𝑅12) + 𝛾2
𝑗 (𝑅22)/𝜎2

min(𝑅11) ≤ 𝐹 2
𝑇𝑃 , (1.20)

and the singular values of 𝑨 can be approximated by the singular values of 𝑅11, 𝑅22 in the
sense that for any 1 ≤ 𝑗 ≤ 𝑛 − 𝑘 and 1 ≤ 𝑖 ≤ 𝑘 ,

1 ≤ 𝜎𝑖 (𝐴)
𝜎𝑖 (𝑅11)

≤
√︃

1 + 𝐹 2
𝑇𝑃

(𝑛 − 𝑘), 1 ≤
𝜎 𝑗 (𝑅22)
𝜎𝑘+ 𝑗 (𝐴)

≤
√︃

1 + 𝐹 2
𝑇𝑃

(𝑛 − 𝑘), (1.21)

| |𝑅−1
11 𝑅12 | |max ≤ 𝐹𝑇𝑃 , (1.22)

where 𝐹𝑇𝑃 depends on 𝑘, 𝑓 , 𝑛, the shape of reduction tree for tournament pivoting, and the
number of iterations of CARRQR. For a binary reduction tree of depth log2(𝑛/𝑘),

𝐹𝑇𝑃 ≤ 1
√

2𝑘
(𝑛/𝑘)log2 (

√
2𝑓 𝑘) . (1.23)

Although tournament pivoting was introduced to approximate the largest singular values
and associated singular vectors for example see [10, 19, 46], in this work the algorithm is
modified to approximate the smallest singular values and associated singular vectors of 𝑨,
which will be described in more detail in Chapter 4.

In the following section we give a short introduction of the deflation based on eigenvec-
tors associated to the smallest eigenvalues leading to the idea of the deflation of singular
vectors associated to the smallest singular values.
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1.7 Deflation technique

We introduce the deflation of eigenvalues and eigenvectors strategies following [1]. Denote
by 𝑆 an 𝑨-invariant subspace of dimension 𝑘 > 0 associated to the smallest eigenvalues of
the matrix 𝑨. Denote by 𝑍 ∈ R𝑛×𝑘 a matrix whose columns form an orthonormal basis of
the subspace 𝑆 and𝑇 the projection of 𝑨 on the subspace 𝑆 , i.e.,𝑇 = 𝑍𝐻𝑨𝑍 . The following
relation holds

𝑨𝑍 = 𝑍𝑇 .

Let {𝜆1, . . . , 𝜆𝑛} be the eigenvalues of 𝑨 such that |𝜆1 | ≤ · · · ≤ |𝜆𝑛 |. Consider the
preconditioned system

(𝐼 + 𝑍 (𝑇 −1 − 𝐼 )𝑍𝐻 )𝑨𝑥 = (𝐼 + 𝑍 (𝑇 −1 − 𝐼 )𝑍𝐻 )𝑏. (1.24)

By adding a low-rank correction, the following [24, Theorem 1] describes how to deflate
the eigenvalues of the matrix 𝑨 .

Theorem 1.7.1. ([24, Theorem 1]) The eigenvalues of the matrix 𝑨+𝑍 (𝑇 −1 − 𝐼 )𝑍𝐻𝑨 are
{1, . . . , 1, 𝜆𝑘+1, . . . , 𝜆𝑛}. The equation (1.24) can be rewritten as

((𝑨 − 𝑍𝑍𝐻𝑨) + 𝑍𝑇 −1𝑍𝐻𝑨)𝑥 = ((𝑏 − 𝑍𝑍𝐻𝑏) + 𝑍𝑇 −1𝑍𝐻𝑏). (1.25)

Hence, to solve (1.15), we approximate the solution in two subspaces, one is inside 𝑆 , the
other is outside 𝑆 . The first subspace approximates the part of the solution generated by the
basis vectors 𝑉 by solving the deflation subspace problem with the matrix 𝑇 . The second
subspace approximates the part that is orthogonal to 𝑆 using the Krylov method. In the
next discussion, we introduces the deflation of singular vectors based on [1, Theorem 2].

Theorem 1.7.2. [1, Theorem 2] Let 𝑥∗ be the exact solution of 𝑨𝑥 = 𝑏. Let 𝑨 = 𝑈 Σ𝑉𝐻 be
the singular value decomposition of 𝑨 such that the singular values are ordered increasingly.
Let 𝑘𝜏 be the number of singular values smaller than a given threshold 𝜏 > 0. Consider the
splitting of the SVD decomposition

𝑨 = 𝑈1Σ1𝑉
𝐻
1 +𝑈2Σ2𝑉

𝐻
2 ,

where Σ2 ∈ R𝑘𝜏×𝑘𝜏 is a diagonal matrix whose diagonal elements are the singular values
smaller than 𝜏 . Consider 𝑥 an approximate solution of the following linear system of equations

(𝐼 −𝑈2𝑈
𝐻
2 )𝑨𝑥 = (𝐼 −𝑈2𝑈

𝐻
2 )𝑏, (1.26)

such that | |𝑥 − 𝑥 | |2 ≤ 𝜖 , where 𝑥 is an exact solution of 1.26 and 𝜖 > 0. Then, the following
holds

| |𝑥∗ − (𝐼 −𝑉2𝑉
𝐻
2 )𝑥 −𝑉2Σ

−1
2 𝑈

𝐻
2 𝑏 | |2 ≤ 𝜖.

The approximate solution of 𝑨𝑥 = 𝑏 then can be recovered as

𝑥 = (𝐼 −𝑉2𝑉
𝐻
2 )𝑥 +𝑉2𝑥2, (1.27)
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where 𝑥2 = Σ−1
2 𝑈

𝐻
2 𝑏 and 𝑥 is the approximation solution of (1.26) given by the Krylov

method.
Based on the deflation of singular vectors introduced above, we derive a new deflation

strategy using strong Rank Revealing QR (RRQR) factorization [48]. The matrix 𝑨 is first
partitioned by using nested dissection on 𝑨𝑇𝑨 and we apply sparse QR, especially strong
RRQR with tournament pivoting to obtain a matrix with the last 𝑘 columns corresponding
to the 𝑘 smallest singular values. From the QR factorization of that permuted matrix, 𝑄2
and 𝑉̃2 are used for the deflation of singular vectors, as it can be seen in the following
Theorem 1.7.3, which will be discussed in more detail in Chapter 4.

Theorem 1.7.3. Let 𝑥∗ be the exact solution of 𝑨𝑥 = 𝑏. Consider the QR factorization of
𝑨 with the last 𝑘 columns corresponding to the 𝑘 smallest singular values,

𝑨Π = 𝑄𝑅 =
[
𝑄1 𝑄2

] [
𝑅11 𝑅12

𝑅22

]
. (1.28)

where Π is such that for all (𝑖, 𝑗) ∈ [1, 𝑛 − 𝑘] × [1, 𝑘],

𝛾2
𝑗 (𝑅−1

11 𝑅12) + 𝛾2
𝑗 (𝑅22)/𝜎2

min(𝑅11) ≤ (𝑛 − 𝑘) 𝑓 2, (1.29)

If | |𝑅22 | |2 is small, then

𝑉̃2 = Π

[
−𝑅−1

11 𝑅12
𝐼𝑘

]
, (1.30)

is an approximate right null space of 𝑨 where 𝑉̃2 ∈ R𝑛×𝑘 ,Π ∈ R𝑛×𝑛, 𝑅11 ∈ R(𝑛−𝑘)×(𝑛−𝑘), 𝑅12 ∈
R(𝑛−𝑘)×𝑘 , 𝑅22 ∈ R𝑘×𝑘 , 𝑄1 ∈ R𝑛×(𝑛−𝑘), 𝑄2 ∈ R𝑛×𝑘 and 𝐼𝑛, 𝐼𝑘 denote the identity matrices of
order 𝑛, 𝑘 respectively.
Consider 𝑥 an approximate solution of the following linear system of equations

(𝐼𝑛 −𝑄2𝑄
𝐻
2 )𝑨𝑥 = (𝐼𝑛 −𝑄2𝑄

𝐻
2 )𝑏, (1.31)

such that | |𝑥 − 𝑥 | |2 ≤ 𝜖 , where 𝑥 is an exact solution of (4.43) and 𝜖 > 0. Then, the following
holds

| |𝑥∗ − (𝐼𝑛 − 𝑉̃2
[
0 𝐼𝑘

]
Π𝐻 )𝑥 − 𝑉̃2𝑅

−1
22𝑄

𝐻
2 𝑏 | |2 ≤ 𝜖. (1.32)

Given that the deflation based on strong RRQR is not as good as the deflation based on
SVD in the sense that it only deflates the approximations of the smallest singular values of
𝑨, in compensation we gain in terms of computation cost by exploiting parallel computing
through tournament pivoting strategy.
In order to have better performance in deflated GMRES as well as the convenience in

combination with other preconditioners later, 𝑄2 and 𝑅22 in the QR factorization can be
used to define a deflation preconditioner which allows to replace the smallest singular
values which are close to zero by much larger ones following [48, Theorem 3.2] , so that
GMRES is not affected by those smallest singular values and converges faster. In particular,
we build a deflation preconditioner from 𝑄2, 𝑅22 as,

𝑀−1 = (𝐼𝑛 −𝑄2𝑄
𝑇
2 ) +𝑄2𝑅

−1
22𝑄

𝑇
2 . (1.33)
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Theorem 1.7.4. [48, Theorem 3.2] Let 𝑅 ≡
(
𝐴𝑘 𝐵𝑘

𝐶𝑘

)
= R𝑘 (𝑀Π) satisfy 𝜌 (𝑅, 𝑘) ≤ 𝑓 .

Then

𝜎𝑖 (𝐴𝑘) ≥
𝜎𝑖 (𝑀)√︁

1 + 𝑓 2𝑘 (𝑛 − 𝑘)
, 1 ≤ 𝑖 ≤ 𝑘,

and

𝜎 𝑗 (𝐶𝑘) ≤ 𝜎 𝑗+1(𝑀)
√︁

1 + 𝑓 2𝑘 (𝑛 − 𝑘), 1 ≤ 𝑗 ≤ 𝑛 − 𝑘.

In the context of this thesis, 𝐴𝑘 ≡ 𝑅11, 𝐵𝑘 ≡ 𝑅12 and 𝐶𝑘 ≡ 𝑅22, 𝑀 stands for 𝑨,Π is the
permutation matrix from strong RRQR with tournament pivoting strategy and 𝜌 (𝑅, 𝑘) =
max1≤𝑖≤𝑛−𝑘,1≤ 𝑗≤𝑘

√︃
(𝑅−1

11 𝑅12)2
𝑖 𝑗
+ (𝛾 𝑗 (𝑅22)/𝜔𝑖 (𝑅11))2, with 1/𝜔𝑖 (𝑅11) denotes the 2-norm of

the 𝑖th row of 𝑅−1
11 .

Furthermore, we also combine the deflation preconditioner with the block Jacobi pre-
conditioner to obtain better convergence rate of GMRES method. Apart from the Krylov
subspace acceleration of parareal, we give next the background on two-scale asymptotic
expansion, which provides a very good candidate for the coarse propagator in the context
of parareal algorithm.

1.8 Two-scale asymptotic expansion

As mentioned in section 1.1, there are various choices for the coarse propagator in the
framework of parareal algorithm. In this work, we consider the idea of using a different
model so-called the reduced model for the coarse propagator. This is not a new idea, there
are similar approaches in the literature, e.g., Maday used a reduced model of stiff molecular
kinetic reactions for the coarse solver in [71]. Haut and Wingate used a classical averaged
model for the coarse solver to solve PDEs with linear high oscillating term in [53]. Ariel,
Kim and Tsai used a multi-scale method solving the slow evolution for the coarse solver
in [3]. In our work, we obtained the reduced model by using a two-scale asymptotic
expansion and this reduced model is proved to provide an accurate approximation of
the original equation when the small parameter 𝜀 vanishes [28]. The first advantage of
using such reduced models is that, they are not stiff ODEs and can be computed with low
computational cost. However, they contain information about the high oscillations and
capture well the phase of the solution for the coarse solver. These are very important
characteristics in solving stiff system of equations and thus they become very good choices
for the coarse propagator in parareal algorithm. In the following discussion, we present the
principles and the main result of two-scale asymptotic expansion leading to the reduced
models. For that purpose, we consider the general singularly perturbed dynamical system

dX𝜀
d𝑡

= a(𝑡,X𝜀) +
1
𝜀
b(𝑡,X𝜀), X𝜀 (𝑠) = X, (1.34)

where X𝜀 : R → R𝑑 and a and b are given fields satisfying suitable assumptions and 𝑠
is the initial time. We recall from [28] the asymptotic two-scale expansion method to

19
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approximate the solution X𝜀 (𝑡) when 𝜀 → 0. Under regularity assumptions on a and b
and assuming the solution Z(𝑡 ;𝜃, z) to equation

dZ
d𝜃

= b(𝑡,Z), Z(𝑡 ; 0, z) = z (1.35)

to be periodic in 𝜃 , for every 𝑡 ∈ R and every z ∈ R𝑑 , it is proved in [28] that X𝜀 can be
approximated by the following two-scale expansion in time

X𝜀 (𝑡) = X0
(
𝑡,
𝑡 − 𝑠
𝜀

)
+ 𝜀 X1

(
𝑡,
𝑡 − 𝑠
𝜀

)
+ 𝜀2 X2

(
𝑡,
𝑡 − 𝑠
𝜀

)
+ . . . , (1.36)

when 𝜀 → 0 and where the functions X𝑖 (𝑡, 𝜃 ) are periodic in 𝜃 for every 𝑖 ∈ N. On the
other hand, strong convergence theorems are proved, giving that for the zero-th order
two-scale model solution we have

X𝜀 (𝑡) ∼ X0
(
𝑡,
𝑡 − 𝑠
𝜀

)
, when 𝜀 → 0,

and for the first order two-scale model solution,

X𝜀 (𝑡) ∼ X0
(
𝑡,
𝑡 − 𝑠
𝜀

)
+ 𝜀 X1

(
𝑡,
𝑡 − 𝑠
𝜀

)
, when 𝜀 → 0.

The following [28, Theorem 1.1] shows the convergence result for the two-scale limit
model or the zero-th order approximation in the case of a six dimensional space (𝑑 = 6).

Theorem 1.8.1. [28, Theorem 1.1] We assume that1 a ∈
(
𝐶1
𝑏
(R ×R6)

)6 and b ∈
(
𝐶2
𝑏
(R ×

R6)
)6. Assume also that the solution of (1.35) is 2𝜋-periodic in 𝜃 , for every 𝑡 ∈ R and every

z ∈ R6. Then, for every initial condition X ∈ R6, every 𝜀 > 0, and every Δ𝑆 > 0, the solution
X𝜀 of (1.34) exists on [𝑠, 𝑠 + Δ𝑆], is unique and satisfies

lim
𝜀→0

sup
𝑡∈[𝑠,𝑠+Δ𝑆]

���X𝜀 (𝑡) − X0
(
𝑡,
𝑡 − 𝑠
𝜀

)��� = 0, (1.37)

where | · | stands for the Euclidean norm on R6 and X0 satisfies

X0(𝑡, 𝜃 ) = Z
(
𝑡 ;𝜃,Y0(𝑡)

)
(1.38)

and where Y0 is the solution to

dY0

d𝑡
= 𝛼 (𝑡,Y0), Y0(𝑠) = X, (1.39)

with 𝛼 defined by

𝛼 (𝑡,Y) = 1
2𝜋

∫ 2𝜋

0
{∇Z(𝑡 ;𝜃,Y)}−1

{
a(𝑡,Z(𝑡 ;𝜃,Y)) − 𝜕Z

𝜕𝑡
(𝑡 ;𝜃,Y)

}
𝑑𝜃 .

Hence, it can be seen that (1.39) is just a very simple ODE, we can easily compute Y0

from (1.39), then we obtain X0 by (1.38) as a zero-th order two-scale model solution.
The efficiency of coupling parareal with reduced model based on the two-scale asymp-

totic expansion for the coarse propagator will be seen in Chapter 3, in which the conver-
gence is obtained uniformly for various test cases of charged particle simulations.
1𝐶𝑚

𝑏
stands for the space of continuous functions with bounded derivatives to the order𝑚.
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Abstract

We describe an interpretation of parareal as a two-level additive Schwarz preconditioner
in the time domain. We show that this two-level preconditioner in time is equivalent to
parareal and to multigrid reduction in time (MGRIT) with F-relaxation. We also discuss
the case when additional fine or coarse propagation steps are applied in the preconditioner.
This leads to procedures equivalent to MGRIT with FCF-relaxation and to MGRIT with
F(CF)2-relaxation or overlapping parareal. Numerical results show that these variants have
faster convergence in some cases. In addition, we also apply a Krylov subspace method,
namely GMRES (Generalized Minimal Residual), to accelerate the parareal algorithm.
Better convergence is obtained, especially for the advection-reaction-diffusion equation in
the case when advection and reaction coefficients are large.

Keywords: Parareal, Two-level additive Schwarz in time preconditioner, MGRIT with
F-relaxation, FCF-relaxation, F(CF)2-relaxation, GMRES.

2.1 Introduction

In this chapter we focus on parareal, an algorithm introduced by J.L. Lions et al. [68]
in 2001, which allows to exploit parallelism in time for initial value problems. Over the
last two decades, this algorithm has been studied for a range of applications, going from
molecular dynamics simulations [5], unsteady hydrodynamic simulations [23], kinetic
neutron diffusion equation [8, 9], the Korteveg-deVries-Burgers’ equations [61], Hamilto-
nian systems [17, 34], to financial mathematics as the Black-Scholes equations [7, 72, 81].
Its stability and convergence are studied in a series of papers, e.g. [6, 33, 37, 97].

Given a time dependent problem, parareal allows parallel in time integration by relying
on a combination between a fine propagator, which gives a very accurate approximate
of the solution, and a coarse propagator, which is less expensive and gives a coarse
approximate of the solution. For this, the time domain is decomposed into a number
of uniform time subdomains. From an initial solution obtained by sequentially using
the coarse propagator, parareal iteratively corrects it by the difference between the fine
solution obtained in parallel using the fine propagator and the coarse solution obtained
from the previous iteration.
Several different interpretations of parareal exist in the literature. A derivation of the

parareal algorithm as a multiple shooting method is given in [37]. An investigation of
the usage of spectral deferred corrections in the framework of parareal is given in [75,
76]. Coupling parareal in time with Schwarz waveform relaxation methods [32, 35] to
exploit parallelism in both time and space are promising directions of research as well.
Parareal can also be interpreted as a multigrid method in time, referred to as MGRIT with
F-relaxation [25, 30]. Following this interpretation, several different variants have been
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investigated, as MGRIT with FCF-relaxation, MGRIT with F(CF)2-relaxation, e.g. [25, 58],
where F refers to the F-relaxation and C refers to the C-relaxation.

Given that parareal relies on a decomposition of the time domain into subdomains, in
this work we study the connection between parareal and domain decomposition methods.
Traditionally domain decomposition methods are used for solving a linear system of
equations 𝐴̃𝑢̃ = 𝑓 , 𝐴̃ ∈ R𝑛×𝑛 , arising from the discretization of a PDE by using for example
the finite element method, and they rely on a decomposition of the space domain into
subdomains. We consider here the case in which this linear system is solved by using an
iterative method as a Krylov subspace method, preconditioned by 𝑀̃−1,

𝑀̃−1𝐴̃𝑢̃ = 𝑀̃−1𝑓 ,

where 𝑀̃−1 is a domain decomposition method. One-level domain decomposition precon-
ditioners such as additive and multiplicative Schwarz preconditioners are well-known in
the literature for domain decomposition in space, see e.g. [16]. However, their convergence
rate deteriorates when the number of subdomains becomes large because of a lack of global
information coupling the subdomains. In order to obtain a scalable domain decomposition
algorithm which depends weakly on the number of subdomains, a coarse space can be
used to couple global information of all subdomains. This leads to the idea of two-level
domain decomposition preconditioners. Given a spatial decomposition of the degrees
of freedom of 𝐴̃ into 𝑁̃ subdomains, the restriction of 𝐴̃ to a spatial subdomain 𝑖 , for
𝑖 = 1, . . . , 𝑁̃ , is referred to as 𝐴̃𝑖 and is obtained by defining a restriction matrix 𝑅̃𝑖 together
with a prolongation matrix 𝑅̃𝑇𝑖 , such that 𝐴̃𝑖 = 𝑅̃𝑖𝐴̃𝑅̃𝑇𝑖 . By defining the coarse matrix 𝐴̃0
and corresponding restriction and prolongation matrices 𝑅̃0, 𝑅̃

𝑇
0 , the two-level additive

Schwarz preconditioner is defined as,

𝑀̃−1
𝐴𝑆2 = 𝑅̃

𝑇
0 𝐴̃

−1
0 𝑅̃0 +

𝑁̃∑︁
𝑖=1

𝑅̃𝑇𝑖 𝐴̃
−1
𝑖 𝑅̃𝑖,

and the two-level multiplicative Schwarz preconditioner is analogously defined as

𝑀̃−1
𝑀𝑆2 =

I − (I − 𝑅̃𝑇0 𝐴̃−1
0 𝑅̃0𝐴̃)

𝑁̃∏
𝑖=1

(I − 𝑅̃𝑇𝑖 𝐴̃−1
𝑖 𝑅̃𝑖𝐴̃)

 𝐴̃−1.

To show the equivalence between parareal and two-level domain decomposition meth-
ods, we consider the linear time dependent problem,

𝑑𝑢

𝑑𝑡
= 𝑓 (𝑢), 𝑢 (0) = u0, 𝑢 (𝑡) ∈ R𝑑 , 𝑡 in (0,𝑇 ), (2.1)

and an algebraic framework in which the solution to (2.1) can be obtained by solving with
a residual correction scheme the linear system of equations,

𝐴𝑈𝐹 = 𝑓 , (2.2)
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where the time domain (0,𝑇 ) was decomposed into𝑁 time subdomains,𝐴 ∈ R(𝑁+1)𝑑×(𝑁+1)𝑑

is bidiagonal and denotes the time-stepping coefficient matrix with the form,

𝐴 :=


I
−𝜙 I

. . .
. . .

−𝜙 I


.

In this equation I ∈ R𝑑×𝑑 is the identity matrix, 𝜙 ∈ R𝑑×𝑑 denotes an arbitrary stable
discretization method in space and time,𝑈𝐹 := [𝑢0, . . . , 𝑢𝑁 ]𝑇 denotes the solution at fine
time steps and 𝑓 := [u0, 0 . . . , 0]𝑇 is the right-hand side. The matrix 𝐴 includes all the time
steps for the whole time domain. If 𝑁 and 𝑑 become large, (2.2) results in a very large and
sparse system. This is the case where domain decomposition type methods show their
advantages. We consider the problem on a uniform grid, the time steps and space steps do
not change from one to the next so the discretization matrix for each time step, namely
𝜙 , does not change . We show that parareal is equivalent to using the preconditioned
stationary iteration which computes a new approximate solution𝑈 𝑘+1

𝐹
from𝑈 𝑘

𝐹
,

𝑈 𝑘+1
𝐹 = 𝑈 𝑘

𝐹 +𝑀−1
𝑆𝐶 (𝑓 −𝐴𝑈

𝑘
𝐹 ),

where𝑀−1
𝑆𝐶

is a two-level additive Schwarz in time preconditioner defined as,

𝑀−1
𝑆𝐶 = (𝑅𝑇0𝐴−1

0 𝑅0 + I − 𝑅𝑇0𝑅0) ©­«
𝑁̂∑︁
𝑖=1

𝑅𝑇𝑖 𝐴
−1
𝑖 𝑅𝑖

ª®¬ . (2.3)

We give in section 2.3 the exact definitions of the subdomain matrices 𝐴𝑖 , for 𝑖 = 1, . . . , 𝑁̂ ,
the coarse time correction matrix 𝐴0, as well as the restriction and prolongation matrices
𝑅𝑖, 𝑅

𝑇
𝑖 , for 𝑖 = 0, . . . , 𝑁̂ , where 𝑁̂ is the number of subdomain matrices of 𝐴. The matrix

I ∈ R(𝑁+1)𝑑×(𝑁+1)𝑑 is the identity matrix. The first term denotes an additive Schwarz
preconditioner in time, which is computed in parallel by using the fine propagators,
followed by a coarse correction in time, based on a coarse propagator, which is computed
sequentially and transfers the information globally between the different time subdomains.

Furthermore, we show that this two-level additive Schwarz in time preconditioner has
the same error propagation as MGRIT with F-relaxation at coarse time points, discussed
in [20, 25, 30]. As expected, this shows that the three algorithms parareal, MGRIT with F-
relaxation, and two-level additive Schwarz in time preconditioner from (2.3) are equivalent.
We also discuss that applying additional fine or coarse propagation steps in the two-level
additive Schwarz in time preconditioner is equivalent to MGRIT with FCF-relaxation
and MGRIT with F(CF)2-relaxation or overlapping parareal, discussed in [36]. Faster
convergence can be achieved in some cases, but the trade-off is also important to consider.
To improve the convergence, a variant of two-level domain decompositionmethod, referred
to as SCS2 two-level additive Schwarz in time preconditioner, provides a good alternative,
since it relies on increasing the number of additive Schwarz in time steps, while keeping
only one coarse correction step, which is performed in sequential. Note that the notations
S and C used here in the context of two-level additive Schwarz in time preconditioner
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correspond to the use of fine and coarse propagators. They are different from F-relaxation
and C-relaxation used in MGRIT. Specifically, S and C propagation steps in the two-level
additive Schwarz in time preconditioner start from the same coarse time points and
propagate to obtain the approximate solution at the end of each time subdomain. While
F-relaxation propagates to obtain the approximate solution at fine time points based on
the coarse time points, and C-relaxation propagates to obtain the approximate solution
at coarse time points based on the previous fine time points, for more detail see [20].
We also explore the usage of Krylov subspace methods for solving the system (2.2). This
gives promising numerical results, especially for solving the advection-reaction-diffusion
equation with large advection and reaction terms.

The paper is organised as follows. Section 2.2 recalls parareal algorithm and its formu-
lation as a residual correction scheme. Section 2.3 introduces an interpretation of parareal
as a two-level additive Schwarz in time preconditioner. Section 2.4 discusses several
variants of this two-level additive Schwarz in time preconditioner and gives their conver-
gence analysis. Further, theoretical convergence bounds are given in section 2.5. Several
numerical experiments are presented in section 2.6, where we consider the Dahlquist
problem, the heat equation, and the advection-reaction-diffusion equation. Conclusions
and perspectives are given in section 2.7.

2.2 Parareal algorithm

In this section we describe the parareal algorithm by following its presentation from
e.g. [37]. For the simplicity of the exposition, we consider the scalar linear time dependent
problem,

𝑑𝑢

𝑑𝑡
= 𝑓 (𝑢) , 𝑢 (0) = u0, 𝑢 (𝑡) ∈ R𝑑 , 𝑡 in (0,𝑇 ), (2.4)

The time interval [0,𝑇 ] is decomposed into 𝑁𝐶 uniform time subdomains [𝑇𝑛,𝑇𝑛+1] with
𝑛 = 0, . . . , 𝑁𝐶−1. Parareal uses two solvers, a fine solver F (𝑇𝑛+1,𝑇𝑛,𝑈𝑛), which gives a very
good approximate, and a coarse solver G(𝑇𝑛+1,𝑇𝑛,𝑈𝑛), which gives a coarse approximate
of the solution at time 𝑇𝑛+1 starting from the initial solution 𝑈𝑛 at time 𝑇𝑛 . The initial
approximate𝑈 0

𝑛 at coarse time points is obtained typically by using sequentially the coarse
solver,

𝑈 0
𝑛+1 = G(𝑇𝑛+1,𝑇𝑛,𝑈

0
𝑛 ), 𝑈 0

0 = u0.

From this initial solution in time, parareal iteratively computes a new approximate of the
solution of equation (2.4) until some convergence criterion is met. At each iteration 𝑘 + 1,
𝑘 ≥ 0, a new approximate is computed as,

𝑈 𝑘+1
𝑛+1 = G(𝑇𝑛+1,𝑇𝑛,𝑈

𝑘+1
𝑛 ) + F (𝑇𝑛+1,𝑇𝑛,𝑈

𝑘
𝑛 ) − G(𝑇𝑛+1,𝑇𝑛,𝑈

𝑘
𝑛 ). (2.5)

The coarse and the fine solvers can be chosen in various ways. Very often a higher order
approximation is used for the fine solver and a lower order approximation is used for the
coarse solver. The coarse solver can also solve a different problem, which is simpler to
solve than the original one, as long as it gives an acceptable approximate of the solution.
However, the coarse solver plays an important role in the convergence of the parareal
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algorithm. It should be chosen in such a way that it is cheap but accurate enough compared
to the fine one, otherwise parareal algorithm can converge slowly. One simple approach
is to choose the same discretizations in both time and space for both coarse and fine
solvers, but with larger time step Δ𝑡 for the coarse solver and smaller 𝛿𝑡 for the fine solver.
Furthermore, one can also use a coarsened spatial mesh for the coarse solver, see [86].

2.2.1 Parareal execution from an algebraic point of view

Consider the time dependent problem from equation (2.4) for which the time interval
[0,𝑇 ] is divided into 𝑁 uniform time slices [𝑡𝑛, 𝑡𝑛+1] with length 𝛿𝑡 , for 𝑛 = 0, . . . , 𝑁 − 1.
On the other hand, [0,𝑇 ] is also partitioned into 𝑁𝐶 uniform coarse time intervals [𝑇𝑙 ,𝑇𝑙+1]
with length Δ𝑇 , for 𝑙 = 0, . . . , 𝑁𝐶 − 1. We denote by 𝜙 a stable discretization method in
time such as forward Euler, backward Euler, Runge-Kutta or higher order methods, and by
𝜙Δ𝑇 the coarse solver for which the same methods are used but with larger time step, or
lower order methods or spatial coarsening, in particular 𝜙Δ𝑇 approximates the fine solver
𝜙𝑚. Let 𝛿𝑡 be the fine time step and Δ𝑡 = Δ𝑇 =𝑚𝛿𝑡 be the coarse time step (we use one
coarse time step for the coarse solver on each coarse time interval), in which𝑚 denotes the
number of fine time steps on each coarse time interval. We note that the error propagation
and convergence analysis in sections 2.3, 2.4, 2.5 are studied with the assumption that 𝜙
and 𝜙Δ𝑇 can be diagonalized by the same set of eigenvectors, in cases when 𝜙 and 𝜙Δ𝑇
have the same spatial discretization, as stated in [20]. Furthermore, the analysis of spatial
discretization can also be found in [59]. Without loss of generality, we consider in this
work the same discretization methods in both time and space for both coarse and fine
solvers, namely the backward Euler in time and centered finite difference method in space.
However discretizations as forward Euler, Runge-Kutta or higher order methods can also
be used in the same framework , we illustrate this by using Runge-Kutta 4 for the fine
solver in section 2.6.4. In this work we focus on the linear constant-coefficient partial
differential equations, in particular the heat equation and the advection-reaction-diffusion
equation. By sequentially applying 𝜙 , the linear system of equations obtained has the
form:

𝐴𝑈𝐹 :=


I
−𝜙 I

. . .
. . .

−𝜙 I



𝑢0
𝑢1
...

𝑢𝑁


=


u0
0
...

0


=: 𝑓 , (2.6)

where 𝐴 ∈ R(𝑁+1)𝑑×(𝑁+1)𝑑 denotes the time-stepping coefficient matrix, I ∈ R𝑑×𝑑 denotes
the identity matrix and 𝜙 ∈ R𝑑×𝑑 denotes the discretization matrix. This system of
equations can be solved by using a direct method in which the solutions 𝑢𝑖, 𝑖 = 0, . . . , 𝑁 at
different time steps are obtained sequentially. This results in a complexity of 𝑁 time steps,
each time step being solved by using 𝜙 . But instead of just using 𝜙 , parareal combines the
use of both coarse and fine solvers to result in a faster algorithm in which the fine solvers
are performed in parallel.

We describe parareal by considering a simple two-level temporal mesh for which𝑚 = 2,
as displayed in Figure 2.1. With this choice, the fine nodes are defined at all time points
{𝑡0, 𝑡1, 𝑡2, . . . , 𝑡𝑁 }, while the coarse nodes are defined at even time points {𝑡0, 𝑡2, . . . , 𝑡𝑁 }. At
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Figure 2.1: Two-level temporal mesh and parareal execution.

the initial step 𝑘 = 0, the initial approximate of the coarse solution is obtained by applying
𝜙Δ𝑇 sequentially and the fine solution is obtained by interpolating. Let F (𝑇𝑛+1,𝑇𝑛,𝑈

𝑘
𝑛 ) :=

𝜙2𝑈 𝑘
𝑛 be the fine propagator and G(𝑇𝑛+1,𝑇𝑛,𝑈

𝑘
𝑛 ) := 𝜙Δ𝑇𝑈

𝑘
𝑛 be the coarse propagator,

parareal iteration from (2.5) becomes,

𝑈 𝑘+1
𝑛+1 = 𝜙Δ𝑇𝑈

𝑘+1
𝑛 + 𝜙2𝑈 𝑘

𝑛 − 𝜙Δ𝑇𝑈 𝑘
𝑛 ,

where 𝑈 𝑘
𝑛 corresponds to 𝑢𝑘2𝑛 which denotes the parareal solution at coarse time point

𝑡2𝑛, 𝑛 = 0, . . . , 𝑁 /2 and iteration 𝑘 . In detail, parareal computes the approximate solutions
at fine time points as follows,

𝑢𝑘+1
𝑖 =


u0, if 𝑖 = 0,

𝜙𝑢𝑘𝑖−1, for 𝑖 = 1, 3, . . . , 𝑁 − 1,
𝜙Δ𝑇𝑢

𝑘+1
𝑖−2 + 𝜙𝑢𝑘+1

𝑖−1 − 𝜙Δ𝑇𝑢𝑘𝑖−2, for 𝑖 = 2, 4, . . . , 𝑁 .
(2.7)

As it can be seen from Figure 2.1, the fine approximate solutions can be computed in
parallel based on the coarse approximate solutions from the previous iterations. Generally
for arbitrary𝑚 ≥ 2, we have similarly,

𝑈 𝑘+1
𝑛+1 = 𝜙Δ𝑇𝑈

𝑘+1
𝑛 + 𝜙𝑚𝑈 𝑘

𝑛 − 𝜙Δ𝑇𝑈 𝑘
𝑛 . (2.8)

2.2.2 Expression of the standard residual correction scheme

As presented in e.g. [36], parareal algorithm can be seen as a preconditioned residual
correction scheme of a reduced system representing only the coarse time solutions, which
is obtained from the original system of equations (2.6). For this, a coarse matrix 𝐴𝐶
represents the time steps of the coarse level (here we keep every second time point on
each time interval), 𝑈𝐶 represents the unknown solutions and 𝑓𝐶 the right-hand side at
coarse time points,

𝐴𝐶𝑈𝐶 :=



I
−𝜙2 I

. . .
. . .

−𝜙2 I
−𝜙2 I





𝑢0
𝑢2
...

𝑢𝑁−2
𝑢𝑁


=



u0
0
...

0
0


=: 𝑓𝐶 . (2.9)
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This reduced system of equations (2.9) produces exactly the same solutions as the original
system (2.6) at coarse time points. A preconditioner 𝑀̃ which approximates the coarse
matrix 𝐴 is obtained by approximating each fine time integration propagator 𝜙2 by one
coarse integration propagator 𝜙Δ𝑇 ,

𝑀̃ :=



I
−𝜙Δ𝑇 I

. . .
. . .

−𝜙Δ𝑇 I
−𝜙Δ𝑇 I


.

By using the preconditioned stationary iteration at the coarse level, we obtain at iteration
𝑘 ,

𝑈 𝑘+1
𝐶 = 𝑈 𝑘

𝐶 + 𝑀̃−1(𝑓𝐶 −𝐴𝐶𝑈 𝑘
𝐶 ), (2.10)

which can be written as,

𝑀̃ (𝑈 𝑘+1
𝐶 −𝑈 𝑘

𝐶 ) = 𝑓𝐶 −𝐴𝐶𝑈 𝑘
𝐶 , (2.11)

or explicitly written as,

I
−𝜙Δ𝑇 I

. . .
. . .

−𝜙Δ𝑇 I
−𝜙Δ𝑇 I





𝑢𝑘+1
0 − 𝑢𝑘0
𝑢𝑘+1

2 − 𝑢𝑘2
...

𝑢𝑘+1
𝑁−2 − 𝑢

𝑘
𝑁−2

𝑢𝑘+1
𝑁

− 𝑢𝑘
𝑁


=



u0 − 𝑢𝑘0
𝜙2𝑢𝑘0 − 𝑢𝑘2

...

𝜙2𝑢𝑘
𝑁−4 − 𝑢

𝑘
𝑁−2

𝜙2𝑢𝑘
𝑁−2 − 𝑢

𝑘
𝑁


. (2.12)

It can be easily seen that the solutions 𝑢𝑘+1
2𝑖 for 𝑖 = 0, . . . , 𝑁 /2 obtained by solving equation

(2.12) are the same as the solutions obtained by parareal in equation (2.7).
We consider now solving the system 𝐴𝑈𝐹 = 𝑓 from equation (2.6) at the fine level. We

introduce a matrix 𝑀𝑆𝐶 and we show that parareal algorithm is equivalent to solving
𝐴𝑈𝐹 = 𝑓 by using a stationary iteration preconditioned by 𝑀−1

𝑆𝐶
. The preconditioned

stationary iteration for solving 𝐴𝑈𝐹 = 𝑓 at the fine level becomes,

𝑈 𝑘+1
𝐹 = 𝑈 𝑘

𝐹 +𝑀−1
𝑆𝐶 (𝑓 −𝐴𝑈

𝑘
𝐹 ), (2.13)

or equivalently,
𝑀𝑆𝐶 (𝑈 𝑘+1

𝐹 −𝑈 𝑘
𝐹 ) = 𝑓 −𝐴𝑈

𝑘
𝐹 , (2.14)

Note that (2.14) acts at the fine level, so𝑀𝑆𝐶 is different from 𝑀̃ in (2.11). In other words,
𝑀𝑆𝐶 has to deal with both unknowns at coarse and fine time points. The matrix 𝑀𝑆𝐶 is
defined in the following lemma.

Lemma 2.2.1. Let F (𝑇𝑛+1,𝑇𝑛, 𝑢
𝑘
𝑛) := 𝜙𝑚𝑢𝑘𝑛 and G(𝑇𝑛+1,𝑇𝑛, 𝑢

𝑘
𝑛) := 𝜙Δ𝑇𝑢𝑘𝑛 denote the fine

and the coarse solvers, respectively. For𝑚 ≥ 2, (2.14) is equivalent to parareal algorithm with
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𝑀𝑆𝐶 defined as,

𝑀𝑆𝐶 :=



I
I
−𝜙 I

. . .

−𝜙Δ𝑇 −𝜙 I


𝑚𝑑 ×𝑚𝑑

. . .

I
−𝜙 I

. . .

−𝜙Δ𝑇 −𝜙 I



. (2.15)

Proof. For𝑚 = 2, (2.14) becomes,

I
I

−𝜙Δ𝑇 −𝜙 I
. . .

I
−𝜙Δ𝑇 −𝜙 I





𝑢𝑘+1
0 − 𝑢𝑘0
𝑢𝑘+1

1 − 𝑢𝑘1
𝑢𝑘+1

2 − 𝑢𝑘2
...

𝑢𝑘+1
𝑁−1 − 𝑢

𝑘
𝑁−1

𝑢𝑘+1
𝑁

− 𝑢𝑘
𝑁


=



u0 − 𝑢𝑘0
𝜙𝑢𝑘0 − 𝑢𝑘1
𝜙𝑢𝑘1 − 𝑢𝑘2

...

𝜙𝑢𝑘
𝑁−2 − 𝑢

𝑘
𝑁−1

𝜙𝑢𝑘
𝑁−1 − 𝑢

𝑘
𝑁


. (2.16)

Simplifying (2.16) gives

𝑢𝑘+1
𝑖 =


u0, if 𝑖 = 0,

𝜙𝑢𝑘𝑖−1, for 𝑖 = 1, 3, . . . , 𝑁 − 1,
𝜙Δ𝑇𝑢

𝑘+1
𝑖−2 + 𝜙𝑢𝑘+1

𝑖−1 − 𝜙Δ𝑇𝑢𝑘𝑖−2, for 𝑖 = 2, 4, . . . , 𝑁 .

Generalize for𝑚 > 2, for 𝑗 = 0,𝑚, 2𝑚, . . . , 𝑁 −𝑚 and by induction we have,

𝑢𝑘+1
0 = u0,

𝑢𝑘+1
𝑗+1 = 𝜙𝑢𝑘𝑗 ,

𝑢𝑘+1
𝑗+2 = 𝜙𝑢𝑘+1

𝑗+1 ,

...

𝑢𝑘+1
𝑗+𝑚−1 = 𝜙𝑢

𝑘+1
𝑗+𝑚−2,

𝑢𝑘+1
𝑗+𝑚 = 𝜙Δ𝑇𝑢

𝑘+1
𝑗 + 𝜙𝑢𝑘+1

𝑗+𝑚−1 − 𝜙Δ𝑇𝑢𝑘𝑗 = 𝜙Δ𝑇𝑢𝑘+1
𝑗 + 𝜙𝑚𝑢𝑘𝑗 − 𝜙Δ𝑇𝑢𝑘𝑗 ,

which is identical to (2.8) and concludes the proof.

Hence, instead of solving the system equation (2.6) by using a direct method, parareal
algorithm uses the stationary iteration defined in equation (2.13) preconditioned by𝑀𝑆𝐶

as defined in (2.15). In addition, Krylov subspace methods as GMRES can also be used
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to accelerate the convergence of parareal. In the numerical experiments section 2.6.3 we
present results obtained by using GMRES for solving the preconditioned linear system,

𝑀−1
𝑆𝐶𝐴𝑈𝐹 = 𝑀−1

𝑆𝐶 𝑓 .

It will be seen that GMRES improves slightly the convergence of parareal and it allows
to solve problems for which parareal has difficulty to converge, as in the case when
the advection and reaction coefficients are large compared to the diffusion term for the
advection-reaction-diffusion problem. However in general it does not improve drastically
the convergence of parareal for our test problems, and this was also observed in previous
works as [79] which studied the acceleration of waveform relaxation methods.

2.3 Interpretation of parareal as a two-level additive Schwarz
in time preconditioner

In this sectionwe present an interpretation of parareal as a two-level domain decomposition
method. For this we show that the inverse of the preconditioner𝑀𝑆𝐶 from (2.15) can be
expressed as a first level additive Schwarz preconditioner that relies on using the fine
propagator 𝜙𝑚 in each time subdomain, followed by a coarse time correction based on
using the coarse propagator 𝜙Δ𝑇 .

We introduce first some notations. Let𝐴 ∈ R(𝑁+1)𝑑×(𝑁+1)𝑑 be the time-stepping matrix as
defined in section 2.2.1. The matrices I ∈ R(𝑁+1)𝑑×(𝑁+1)𝑑 andI ∈ R𝑑×𝑑 are identity matrices.
The matrix𝐴 is decomposed into 𝑁𝐶 +1 non-overlapping subdomains {Ω𝑖}1≤𝑖≤𝑁𝐶+1, where
𝑁𝐶 = 𝑁 /𝑚 denotes the number of coarse time intervals. The matrix 𝐴 is a block matrix,
the blocks being defined as {𝐴𝑖 𝑗 }1≤𝑖, 𝑗≤𝑁+1 ∈ R𝑑×𝑑 . As displayed in equation (2.6), 𝐴𝑖 𝑗 can
be the 𝜙 matrix, the identity or the zero matrix. Let𝔑 = {1, . . . , 𝑁 + 1} be the set of indices
of 𝐴, which corresponds to the fine time steps {𝑡0, . . . , 𝑡𝑁 }. Let 𝔑𝑖 , 𝑖 ∈ {1, . . . , 𝑁𝐶 + 1} be
the subset of 𝔑 such that 𝔑𝑖 represents the subset of indices of subdomain 𝑖 , we define 𝔑𝑖

as,

𝔑𝑖 =

{
{1}, if 𝑖 = 1,

{𝑚(𝑖 − 2) + 2, . . . ,𝑚(𝑖 − 1) + 1}, for 𝑖 = 2, . . . , 𝑁𝐶 + 1, (2.17)

the restriction matrix 𝑅𝑖 is defined as,

𝑅𝑖 =

{
I, if 𝑖 = 1,

I(𝔑𝑖, :), for 𝑖 = 2, . . . , 𝑁𝐶 + 1, (2.18)

where I(𝔑𝑖, :) denotes the submatrix of I formed by the rows whose indices belong to 𝔑𝑖 .
The prolongation matrix 𝑅𝑇𝑖 is the transpose of 𝑅𝑖 . The subdomain matrices {𝐴𝑖}1≤𝑖≤𝑁𝐶+1
are defined as,

𝐴𝑖 =



I, if 𝑖 = 1,

𝑅𝑖𝐴𝑅
𝑇
𝑖 =



I
−𝜙 I

. . .
. . .

−𝜙 I
−𝜙 I


, for 𝑖 = 2, . . . , 𝑁𝐶 + 1.
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For 𝑖 ≥ 2, 𝐴𝑖 = 𝑅𝑖𝐴𝑅𝑇𝑖 is an𝑚𝑑 ×𝑚𝑑 block matrix. The inverse of 𝐴𝑖 can be computed as,

𝐴−1
𝑖 =



I, if 𝑖 = 1,

I
𝜙 I
𝜙2 𝜙 I
𝜙3 𝜙2 𝜙 I
...

...
. . .

. . .

𝜙𝑚−2 𝜙𝑚−3 . . . 𝜙 I
𝜙𝑚−1 𝜙𝑚−2 . . . 𝜙 I


, for 𝑖 = 2, . . . , 𝑁𝐶 + 1.

The first level additive Schwarz in time preconditioner is
∑𝑁𝐶+1
𝑖=1 𝑅𝑇𝑖 𝐴

−1
𝑖 𝑅𝑖 as presented in

the introduction section. The second level coarse time correction is defined as following.
Let 𝔑0 = {1 + 𝑖𝑚}0≤𝑖≤𝑁𝐶

be the set of indices corresponding to coarse time points and
𝐴0 ∈ R(𝑁𝐶+1)𝑑×(𝑁𝐶+1)𝑑 be the coarse matrix that solves the reduced system from equation
(2.6) at every coarse time point by using the coarse integration propagator 𝜙Δ𝑇 ,

𝐴0 =



I
−𝜙Δ𝑇 I

. . .
. . .

−𝜙Δ𝑇 I
−𝜙Δ𝑇 I


. (2.19)

The coarse problem at coarse time points in the time domain is obtained by using a
restriction matrix 𝑅0 ∈ R(𝑁𝐶+1)𝑑×(𝑁+1)𝑑 , defined such that the entries of 𝑅0 are identities
at positions corresponding to the coarse time points and 0 elsewhere. In particular, 𝑅0 is
defined as,

𝑅0 = I(𝔑0, :), (2.20)

in which 𝔑0 = {1, 1 +𝑚, 1 + 2𝑚, . . . , 1 + 𝑁𝐶𝑚} and the prolongation matrix for the coarse
problem is the transpose of 𝑅0. The inverse of 𝐴0 can be computed as,

𝐴−1
0 =



I
𝜙Δ𝑇 I
𝜙2
Δ𝑇 𝜙Δ𝑇 I
𝜙3
Δ𝑇 𝜙2

Δ𝑇 𝜙Δ𝑇 I
...

...
. . .

. . .

𝜙
𝑁𝐶−1
Δ𝑇 𝜙

𝑁𝐶−2
Δ𝑇 . . . 𝜙Δ𝑇 I

𝜙
𝑁𝐶

Δ𝑇 𝜙
𝑁𝐶−1
Δ𝑇 . . . 𝜙Δ𝑇 I


.

Lemma 2.3.1. The matrix𝑀𝑆𝐶 defined in (2.15) can be factored as,

𝑀𝑆𝐶 =

(
𝑁𝐶+1∑︁
𝑖=1

𝑅𝑇𝑖 𝐴𝑖𝑅𝑖

)
(𝑅𝑇0𝐴0𝑅0 + I − 𝑅𝑇0𝑅0),
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2.3 Interpretation of parareal as a two-level additive Schwarz in time preconditioner

and the additive Schwarz in time preconditioner𝑀−1
𝑆𝐶

is formed by the product of the additive
Schwarz term

∑𝑁𝐶+1
𝑖=1 𝑅𝑇𝑖 𝐴

−1
𝑖 𝑅𝑖 and the coarse time correction term 𝑅𝑇0𝐴

−1
0 𝑅0 + I − 𝑅𝑇0𝑅0,

𝑀−1
𝑆𝐶 = (𝑅𝑇0𝐴−1

0 𝑅0 + I − 𝑅𝑇0𝑅0)
(
𝑁𝐶+1∑︁
𝑖=1

𝑅𝑇𝑖 𝐴
−1
𝑖 𝑅𝑖

)
. (2.21)

Proof. We have (
𝑁𝐶+1∑︁
𝑖=1

𝑅𝑇𝑖 𝐴𝑖𝑅𝑖

)
(𝑅𝑇0𝐴0𝑅0 + I − 𝑅𝑇0𝑅0)

=



I
I
−𝜙 I

. . .

−𝜙 I


𝑚𝑑 ×𝑚𝑑

. . .

I
−𝜙 I

. . .

−𝜙 I





I
I

I
. . .

−𝜙Δ𝑇 I


𝑚𝑑 ×𝑚𝑑

. . .

I
I

. . .

−𝜙Δ𝑇 I



=



I
I

−𝜙 I
. . .

−𝜙Δ𝑇 −𝜙 I


𝑚𝑑 ×𝑚𝑑

. . .

I
−𝜙 I

. . .

−𝜙Δ𝑇 −𝜙 I



= 𝑀𝑆𝐶 .

We observe that the matrix (𝑅𝑇0𝐴0𝑅0 + I−𝑅𝑇0𝑅0) can be permuted to a matrix whose first
diagonal block is 𝐴0 followed by an identity matrix. Additionally the term

∑𝑁𝐶+1
𝑖=1 𝑅𝑇𝑖 𝐴𝑖𝑅𝑖

is a block diagonal matrix. Thus we obtain,

𝑀−1
𝑆𝐶 = (𝑅𝑇0𝐴0𝑅0 + I − 𝑅𝑇0𝑅0)−1

(∑𝑁𝐶+1
𝑖=1 𝑅𝑇𝑖 𝐴𝑖𝑅𝑖

)−1

= (𝑅𝑇0𝐴−1
0 𝑅0 + I − 𝑅𝑇0𝑅0)

(∑𝑁𝐶+1
𝑖=1 𝑅𝑇𝑖 𝐴

−1
𝑖 𝑅𝑖

)
.

The preconditioner𝑀−1
𝑆𝐶

is applied to a vector at each iteration of the residual correction
scheme (2.13). The inverses 𝐴−1

𝑖 and 𝐴−1
0 are never formed explicitly, they are applied
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to a vector by using a backward solve. We refer to this preconditioner as the SC two-
level additive Schwarz in time preconditioner. It is formed by the additive Schwarz
preconditioner

∑𝑁𝐶+1
𝑖=1 𝑅𝑇𝑖 𝐴

−1
𝑖 𝑅𝑖 , which corresponds to the use of the fine propagators

computed in parallel, followed by a coarse time correction 𝑅𝑇0𝐴
−1
0 𝑅0 + I − 𝑅𝑇0𝑅0, which

corresponds to the use of the coarse propagator computed sequentially.

Corollary 2.3.1. Solving (2.6) by using parareal is equivalent to using the residual correc-
tion scheme from equation (2.13) at the fine level, preconditioned by the SC two-level additive
Schwarz in time preconditioner. Each iteration becomes:

𝑈 𝑘+1
𝐹 = 𝑈 𝑘

𝐹 + (𝑅𝑇0𝐴−1
0 𝑅0 + I − 𝑅𝑇0𝑅0)

𝑁𝐶+1∑︁
𝑗=1

𝑅𝑇𝑗 𝐴
−1
𝑗 𝑅 𝑗 (𝑓 −𝐴𝑈 𝑘

𝐹 ). (2.22)

Proof. The proof is done by combining lemma 2.2.1 and lemma 2.3.1.

Figure 2.2: Non-overlapping time subdomains with𝑚 = 2. The fine nodes are defined at
all time points {𝑡0, 𝑡1, 𝑡2, . . . , 𝑡𝑁 } and the coarse nodes are defined at even time
points {𝑡0, 𝑡2, 𝑡4, . . . , 𝑡𝑁 }. The first time subdomain is always defined at {𝑡0},
while following time subdomains are defined at {𝑡𝑛, 𝑡𝑛+1} for 𝑛 = 1, . . . , 𝑁 − 1.

We illustrate these results by considering the simple linear time dependent problem
(2.4) with𝑚 = 2, as it can be seen in Figure 2.2. After discretization, the linear system
from equation (2.6) needs to be solved. We first decompose the whole time domain into
non-overlapping subdomains with indices 𝔑𝑖 given by (2.17), with the restriction matrices
𝑅1 ∈ R𝑑×(𝑁+1)𝑑 , 𝑅𝑖 ∈ R𝑚𝑑×(𝑁+1)𝑑 , and the prolongation matrices 𝑅𝑇1 ∈ R(𝑁+1)𝑑×𝑑 , 𝑅𝑇𝑖 ∈
R(𝑁+1)𝑑×𝑚𝑑 for 𝑖 = 2, . . . , 𝑁𝐶 + 1 satisfy (2.18) such that their entries are I at positions
corresponding to the 𝑖𝑡ℎ subdomain and 0 elsewhere, specifically,

𝑅1 =
[
I 0 0 0 . . . 0 0

]
, 𝑅2 =

[
0 I 0 0 0 . . . 0
0 0 I 0 0 . . . 0

]
, . . . , 𝑅𝑁𝐶+1 =

[
0 0 0 0 . . . I 0
0 0 0 0 . . . 0 I

]
.

The subdomain matrices 𝐴𝑖 = 𝑅𝑖𝐴𝑅𝑇𝑖 , for 𝑖 = 1, . . . , 𝑁𝐶 + 1, become,

𝐴𝑖 =


I, for 𝑖 = 1,[

I 0
−𝜙 I

]
, for 𝑖 = 2, . . . , 𝑁𝐶 + 1.

Let 𝔑0 = {1, 3, 5, . . . , 𝑁 + 1} be the set of indices corresponding to coarse time points
{𝑡0, 𝑡2, . . . 𝑡𝑁 } as displayed in Figure 2.3. Let 𝐴0 ∈ R(𝑁𝐶+1)𝑑×(𝑁𝐶+1)𝑑 be the coarse matrix as
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Figure 2.3: Coarse time correction defined at even time points {𝑡0, 𝑡2, 𝑡4, . . . , 𝑡𝑁 }.

defined in (2.19) and the restriction matrix 𝑅0 ∈ R(𝑁𝐶+1)𝑑×(𝑁+1)𝑑 satisfies (2.20), namely,

𝑅0 =



I 0 0 0 0 . . . 0
0 0 I 0 0 . . . 0
0 0 0 0 I . . . 0
...

...
...

...
...

. . .
...

0 0 0 0 0 0 I


.

The matrix𝑀𝑆𝐶 becomes,

𝑀𝑆𝐶 =

𝑁𝐶+1∑︁
𝑖=1

𝑅𝑇𝑖 𝐴𝑖𝑅𝑖 (𝑅𝑇0𝐴0𝑅0 + I − 𝑅𝑇0𝑅0)

=



I
0 I

−𝜙 I
0 I

−𝜙 I
. . .

. . .

0 I
−𝜙 I





I
0 I

−𝜙Δ𝑇 0 I
0 I

−𝜙Δ𝑇 0 I
. . .

. . .

0 0 I
−𝜙Δ𝑇 0 I



=



I
0 I

−𝜙Δ𝑇 −𝜙 I
0 I

−𝜙Δ𝑇 −𝜙 I
. . .

. . .

0 0 I
−𝜙Δ𝑇 −𝜙 I


. (2.23)

It can be seen that𝑀𝑆𝐶 from (2.23) is the same as the matrix𝑀𝑆𝐶 defined in lemma 2.2.1 in
case𝑚 = 2, the preconditioner𝑀−1

𝑆𝐶
is computed following lemma 2.3.1,

𝑀−1
𝑆𝐶 = (𝑅𝑇0𝐴−1

0 𝑅0 + I − 𝑅𝑇0𝑅0)
𝑁𝐶+1∑︁
𝑖=1

𝑅𝑇𝑖 𝐴
−1
𝑖 𝑅𝑖,

and then corollary 2.3.1 gives the residual correction scheme of the problem (2.4) at the
fine level (2.22) with SC two-level additive Schwarz in time preconditioner𝑀−1

𝑆𝐶
which is

equivalent to parareal.
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It was shown in a series of papers, e.g. [25, 37], that MGRIT with F-relaxation is
equivalent to parareal algorithm. We show now that MGRIT with F-relaxation is also
equivalent to SC two-level additive Schwarz in time preconditioner by computing the error
propagation matrix at coarse time points. The error propagation of (2.22) is governed by

𝑒𝑘+1 = (I −𝑀−1
𝑆𝐶𝐴)𝑒

𝑘 , (2.24)

where 𝑒𝑘 := 𝑈𝐹 −𝑈 𝑘
𝐹
, and𝑈𝐹 ,𝑈 𝑘

𝐹
denote the exact solution and the approximate solution,

respectively. The iteration matrix has the form,

I −𝑀−1
𝑆𝐶𝐴 = I − (𝑅𝑇0𝐴−1

0 𝑅0 + I − 𝑅𝑇0𝑅0)
𝑁𝐶+1∑︁
𝑖=1

𝑅𝑇𝑖 𝐴
−1
𝑖 𝑅𝑖𝐴.

Note that we consider𝑀−1
𝑆𝐶

as a two-level additive Schwarz preconditioner in the time
domain and the matrix𝐴 is not symmetric. Hence we cannot exploit the theory of Schwarz-
type algorithms for symmetric positive definite matrices for which the preconditioned
system 𝑀−1

𝑆𝐶
𝐴 can be expressed as sums of orthogonal projection matrices 𝑃𝑖 , for 𝑖 =

1, 2, . . . , 𝑁𝐶 + 1, for further details see [16]. Instead we study the error propagation matrix
produced in the residual correction scheme (2.22). The following lemma shows that the
error propagation matrix produces exactly the same error after one iteration at coarse
time points as MGRIT with F-relaxation, for which the error is given in [20, Lemma 3.1].

Remark 2.3.1. The error propagation matrix I−𝑀−1
𝑆𝐶
𝐴 in (2.24) describes the propagation

of errors of (2.22) at both coarse and fine levels. In the following sections, e.g., lemma 2.3.2,
2.4.1, 2.4.2 and 2.4.3, for the convenience of comparison with parareal and the variants,
we only consider the error propagation matrices at the coarse level. We also remark that 𝜙
and 𝜙Δ𝑇 commute due to the assumption that they can be diagonalized by the same set of
eigenvectors.

Lemma 2.3.2. Let 𝑈𝐹 be the exact solution of (2.6), 𝑈 𝑘
𝐹
be an approximate solution from

(2.13), 𝑒𝑘 := 𝑈𝐹 −𝑈 𝑘
𝐹
and denote by 𝑒𝑘𝑗 the error at iteration 𝑘 and time 𝑡 𝑗 with 𝑗 = 1, 2, . . . , 𝑁 .

The error at coarse time points generated at iteration 𝑘 +1 of (2.13) with SC two-level additive
Schwarz in time preconditioner defined in (2.21) satisfies:

𝑒𝑘+1
0 = 0,

𝑒𝑘+1
ℎ𝑚

=

ℎ−1∑︁
𝑟=0

𝜙ℎ−1−𝑟
Δ𝑇 (𝜙𝑚 − 𝜙Δ𝑇 )𝑒𝑘𝑟𝑚, ℎ = 1, 2, . . . , 𝑁𝐶 .

(2.25)

Proof. We denote by 𝑒𝑘
𝐶,𝑆𝐶

and 𝑒𝑘+1
𝐶,𝑆𝐶

the errors at coarse time points at iteration 𝑘 and
𝑘 + 1 respectively and by 𝐸𝑆𝐶 the error propagation matrix at coarse time points for SC
two-level additive Schwarz in time preconditioner. The error propagation from equation
(2.24) at coarse time points yields,

𝑒𝑘+1
𝐶,𝑆𝐶 = 𝐸𝑆𝐶𝑒

𝑘
𝐶,𝑆𝐶, (2.26)
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2.4 Variants of SC two-level additive Schwarz in time preconditioner and convergence
analysis

note that 𝜙 and 𝜙Δ𝑇 commute, so (2.26) can also be written as,

𝑒𝑘+1
0
𝑒𝑘+1
𝑚

𝑒𝑘+1
2𝑚
𝑒𝑘+1

3𝑚
...

𝑒𝑘+1
𝑁𝐶𝑚


= (𝜙𝑚 − 𝜙Δ𝑇 )



0 0 0 . . . 0 0
I 0 0 . . . 0 0
𝜙Δ𝑇 I 0 . . . 0 0
𝜙2
Δ𝑇 𝜙Δ𝑇 I . . . 0 0
...

...
...

. . .
...

...

𝜙
𝑁𝐶−1
Δ𝑇 𝜙

𝑁𝐶−2
Δ𝑇 𝜙

𝑁𝐶−3
Δ𝑇 . . . I 0





𝑒𝑘0
𝑒𝑘𝑚
𝑒𝑘2𝑚
𝑒𝑘3𝑚
...

𝑒𝑘
𝑁𝐶𝑚


.

Equation (2.25) follows.

2.4 Variants of SC two-level additive Schwarz in time
preconditioner and convergence analysis

In this section we study several variants of SC two-level additive Schwarz in time pre-
conditioner and discuss their equivalence with MGRIT with FCF-relaxation, MGRIT with
F(CF)2-relaxation or overlapping parareal. In addition, we derive a method, referred to
as SCS2 two-level additive Schwarz in time preconditioner, and discuss its suitability for
exploiting parallel computing.

We first describe the SCS variant of SC two-level additive Schwarz in time preconditioner.
It is obtained by first applying SC two-level additive Schwarz in time preconditioner, that
is one fine solve followed by one coarse solve, and then adding one more fine solve. In
detail, one iteration of the residual correction scheme is performed as follows:

𝑈
𝑘+ 1

2
𝐹

= 𝑈 𝑘
𝐹 + (𝑅𝑇0𝐴−1

0 𝑅0 + I − 𝑅𝑇0𝑅0)
𝑁𝐶+1∑︁
𝑗=1

𝑅𝑇𝑗 𝐴
−1
𝑗 𝑅 𝑗 (𝑓 −𝐴𝑈 𝑘

𝐹 ),

𝑈 𝑘+1
𝐹 = 𝑈

𝑘+ 1
2

𝐹
+
𝑁𝐶+1∑︁
𝑗=1

𝑅𝑇𝑗 𝐴
−1
𝑗 𝑅 𝑗 (𝑓 −𝐴𝑈

𝑘+ 1
2

𝐹
).

The error propagation matrix is defined as,[
I −

𝑁𝐶+1∑︁
𝑗=1

𝑅𝑇𝑗 𝐴
−1
𝑗 𝑅 𝑗𝐴

] [
I − (𝑅𝑇0𝐴−1

0 𝑅0 + I − 𝑅𝑇0𝑅0)
𝑁𝐶+1∑︁
𝑗=1

𝑅𝑇𝑗 𝐴
−1
𝑗 𝑅 𝑗𝐴

]
.

The following lemma gives the error propagation of the SCS variant of SC two-level
additive Schwarz in time preconditioner. It can be seen that the error propagation matrix
produces exactly the same error at coarse time points after one iteration as MGRIT with
FCF-relaxation. The result for MGRIT with FCF-relaxation is described in [20, Lemma 3.2].

Lemma 2.4.1. Let 𝑈𝐹 be the exact solution of (2.4), 𝑈 𝑘
𝐹
be an approximate solution from

(2.13), 𝑒𝑘 := 𝑈𝐹 −𝑈 𝑘
𝐹
and denote by 𝑒𝑘𝑗 the error at iteration 𝑘 and time 𝑡 𝑗 with 𝑗 = 1, 2, . . . , 𝑁 .

The error at coarse time points generated at iteration 𝑘 + 1 of the residual correction scheme

37
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from equation (2.13) preconditioned by SCS two-level additive Schwarz in time preconditioner
satisfies:

𝑒𝑘+1
0 = 0,
𝑒𝑘+1
𝑚 = 0,

𝑒𝑘+1
ℎ𝑚

=

ℎ−2∑︁
𝑟=0

𝜙ℎ−2−𝑟
Δ𝑇 (𝜙𝑚 − 𝜙Δ𝑇 )𝜙𝑚𝑒𝑘𝑟𝑚, ℎ = 2, 3, . . . , 𝑁𝐶 .

(2.27)

Proof. We denote by 𝑒𝑘
𝐶,𝑆𝐶𝑆

and 𝑒𝑘+1
𝐶,𝑆𝐶𝑆

the errors at coarse time points at iteration 𝑘 and
𝑘 + 1 respectively and by 𝐸𝑆𝐶𝑆 the error propagation matrix at coarse time points for SCS
two-level additive Schwarz in time preconditioner. We have the relation,

𝑒𝑘+1
𝐶,𝑆𝐶𝑆 = 𝐸𝑆𝐶𝑆𝑒

𝑘
𝐶,𝑆𝐶𝑆 , (2.28)

in which 𝐸𝑆𝐶𝑆 =

(𝜙𝑚 − 𝜙Δ𝑇 )𝜙𝑚



0 0 0 0 . . . 0 0
0 0 0 0 . . . 0 0
I 0 0 0 . . . 0 0
𝜙Δ𝑇 I 0 0 . . . 0 0
𝜙2
Δ𝑇 𝜙Δ𝑇 I 0 . . . 0 0
...

...
...

. . .
...

...
...

𝜙
𝑁𝐶−2
Δ𝑇 𝜙

𝑁𝐶−3
Δ𝑇 𝜙

𝑁𝐶−4
Δ𝑇 . . . I 0 0


.

The relations in equation (2.27) follow.

The SCS2 variant of SC two-level additive Schwarz in time preconditioner is obtained
by adding one more fine solve based on additive Schwarz as follows:

𝑈
𝑘+ 1

3
𝐹

= 𝑈 𝑘
𝐹 + (𝑅𝑇0𝐴−1

0 𝑅0 + I − 𝑅𝑇0𝑅0)
𝑁𝐶+1∑︁
𝑗=1

𝑅𝑇𝑗 𝐴
−1
𝑗 𝑅 𝑗 (𝑓 −𝐴𝑈 𝑘

𝐹 ),

𝑈
𝑘+ 1

2
𝐹

= 𝑈
𝑘+ 1

3
𝐹

+
𝑁𝐶+1∑︁
𝑗=1

𝑅𝑇𝑗 𝐴
−1
𝑗 𝑅 𝑗 (𝑓 −𝐴𝑈

𝑘+ 1
3

𝐹
),

𝑈 𝑘+1
𝐹 = 𝑈

𝑘+ 1
2

𝐹
+
𝑁𝐶+1∑︁
𝑗=1

𝑅𝑇𝑗 𝐴
−1
𝑗 𝑅 𝑗 (𝑓 −𝐴𝑈

𝑘+ 1
2

𝐹
).

The error propagation matrix is defined as,[
I −

𝑁𝐶+1∑︁
𝑗=1

𝑅𝑇𝑗 𝐴
−1
𝑗 𝑅 𝑗𝐴

]2 [
I − (𝑅𝑇0𝐴−1

0 𝑅0 + I − 𝑅𝑇0𝑅0)
𝑁𝐶+1∑︁
𝑗=1

𝑅𝑇𝑗 𝐴
−1
𝑗 𝑅 𝑗𝐴

]
.

Lemma 2.4.2. Let 𝑈𝐹 be the exact solution of (2.4), 𝑈 𝑘
𝐹
be an approximate solution from

(2.13), 𝑒𝑘 := 𝑈𝐹 −𝑈 𝑘
𝐹
and denote by 𝑒𝑘𝑗 the error at iteration 𝑘 and time 𝑡 𝑗 with 𝑗 = 1, 2, . . . , 𝑁 .
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The error at coarse time points generated at iteration 𝑘 + 1 of the residual correction scheme
from equation (2.13) with SCS2 two-level additive Schwarz in time preconditioner satisfies:

𝑒𝑘+1
0 = 0,
𝑒𝑘+1
𝑚 = 0,
𝑒𝑘+1

2𝑚 = 0,

𝑒𝑘+1
ℎ𝑚

=

ℎ−3∑︁
𝑟=0

𝜙ℎ−3−𝑟
Δ𝑇 (𝜙𝑚 − 𝜙Δ𝑇 )𝜙2𝑚𝑒𝑘𝑟𝑚, ℎ = 3, 4, . . . , 𝑁𝐶 .

(2.29)

Proof. Let 𝑒𝑘
𝐶,𝑆𝐶𝑆2 and 𝑒𝑘+1

𝐶,𝑆𝐶𝑆2 be the errors at coarse time points at iteration 𝑘 and 𝑘 + 1
respectively and let 𝐸𝑆𝐶𝑆2 be the error propagation matrix at coarse time points for SCS2

two-level additive Schwarz in time preconditioner. We have the relation,

𝑒𝑘+1
𝐶,𝑆𝐶𝑆2 = 𝐸𝑆𝐶𝑆2𝑒𝑘

𝐶,𝑆𝐶𝑆2, (2.30)

in which 𝐸𝑆𝐶𝑆2 =

(𝜙𝑚 − 𝜙Δ𝑇 )𝜙2𝑚



0 0 0 0 . . . 0 0 0
0 0 0 0 . . . 0 0 0
0 0 0 0 . . . 0 0 0
I 0 0 0 . . . 0 0 0
𝜙Δ𝑇 I 0 0 . . . 0 0 0
𝜙2
Δ𝑇 𝜙Δ𝑇 I 0 . . . 0 0 0
...

...
...

. . .
...

...
...

...

𝜙
𝑁𝐶−3
Δ𝑇 𝜙

𝑁𝐶−4
Δ𝑇 𝜙

𝑁𝐶−5
Δ𝑇 . . . I 0 0 0


.

Equation (2.29) follows.
A variant known in the literature as MGRIT with F(CF)𝜈-relaxation or overlapping

parareal has been shown to converge at most after 𝑘 = [𝑁 /(𝜈 + 1)] iterations [36, The-
orem 5]. For the case 𝜈 = 2, in the framework of domain decomposition, this variant is
referred to as S(CS)2 two-level additive Schwarz in time preconditioner and it is obtained
as follows:

𝑈
𝑘+ 1

3
𝐹

= 𝑈 𝑘
𝐹 + (𝑅𝑇0𝐴−1

0 𝑅0 + I − 𝑅𝑇0𝑅0)
𝑁𝐶+1∑︁
𝑗=1

𝑅𝑇𝑗 𝐴
−1
𝑗 𝑅 𝑗 (𝑓 −𝐴𝑈 𝑘

𝐹 ),

𝑈
𝑘+ 1

2
𝐹

= 𝑈
𝑘+ 1

3
𝐹

+ (𝑅𝑇0𝐴−1
0 𝑅0 + I − 𝑅𝑇0𝑅0)

𝑁𝐶+1∑︁
𝑗=1

𝑅𝑇𝑗 𝐴
−1
𝑗 𝑅 𝑗 (𝑓 −𝐴𝑈

𝑘+ 1
3

𝐹
),

𝑈 𝑘+1
𝐹 = 𝑈

𝑘+ 1
2

𝐹
+
𝑁𝐶+1∑︁
𝑗=1

𝑅𝑇𝑗 𝐴
−1
𝑗 𝑅 𝑗 (𝑓 −𝐴𝑈

𝑘+ 1
2

𝐹
).

The error propagation matrix is defined as,[
I −

𝑁𝐶+1∑︁
𝑗=1

𝑅𝑇𝑗 𝐴
−1
𝑗 𝑅 𝑗𝐴

] [
I − (𝑅𝑇0𝐴−1

0 𝑅0 + I − 𝑅𝑇0𝑅0)
𝑁𝐶+1∑︁
𝑗=1

𝑅𝑇𝑗 𝐴
−1
𝑗 𝑅 𝑗𝐴

]2

.
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For completeness we give in the following lemma the error of this variant.

Lemma 2.4.3. Let 𝑈𝐹 be the exact solution of (2.4), 𝑈 𝑘
𝐹
be an approximate solution from

(2.13), 𝑒𝑘 := 𝑈𝐹 −𝑈 𝑘
𝐹
and denote by 𝑒𝑘𝑗 the error at iteration 𝑘 and time 𝑡 𝑗 with 𝑗 = 1, 2, . . . , 𝑁 .

The error at coarse time points generated at iteration 𝑘 + 1 of (2.13) with S(CS)2 two-level
additive Schwarz in time preconditioner satisfies:

𝑒𝑘+1
0 = 0,
𝑒𝑘+1
𝑚 = 0,
𝑒𝑘+1

2𝑚 = 0,

𝑒𝑘+1
ℎ𝑚

=

ℎ−3∑︁
𝑟=0

(ℎ − 2 − 𝑟 )𝜙ℎ−3−𝑟
Δ𝑇 (𝜙𝑚 − 𝜙Δ𝑇 )2𝜙𝑚𝑒𝑘𝑟𝑚, ℎ = 3, 4, . . . , 𝑁𝐶 .

(2.31)

Proof. We denote by 𝑒𝑘
𝐶,𝑆 (𝐶𝑆)2 and 𝑒𝑘+1

𝐶,𝑆 (𝐶𝑆)2 the errors at coarse time points at iteration 𝑘
and 𝑘 + 1 respectively and by 𝐸𝑆 (𝐶𝑆)2 the error propagation matrix at coarse time points
for S(CS)2 two-level additive Schwarz in time preconditioner. We obtain the relation,

𝑒𝑘+1
𝐶,𝑆 (𝐶𝑆)2 = 𝐸𝑆 (𝐶𝑆)2𝑒𝑘

𝐶,𝑆 (𝐶𝑆)2, (2.32)

in which 𝐸𝑆 (𝐶𝑆)2 =

(𝜙𝑚 − 𝜙Δ𝑇 )2𝜙𝑚



0 0 0 0 . . . 0 0 0
0 0 0 0 . . . 0 0 0
0 0 0 0 . . . 0 0 0
I 0 0 0 . . . 0 0 0

2𝜙Δ𝑇 I 0 0 . . . 0 0 0
3𝜙2

Δ𝑇 𝜙Δ𝑇 I 0 . . . 0 0 0
...

...
...

. . .
...

...
...

...

(𝑁𝐶 − 2)𝜙𝑁𝐶−3
Δ𝑇 (𝑁𝐶 − 3)𝜙𝑁𝐶−4

Δ𝑇 (𝑁𝐶 − 4)𝜙𝑁𝐶−5
Δ𝑇 . . . I 0 0 0


from which equation (2.31) follows.

These different variants have different costs in a parallel environment. Given that the
fine solve phase based on additive Schwarz is done in parallel and the coarse solve phase
has to be done in sequential, the coarse solve is the major limiting factor. For that reason,
the SCS2 variant becomes more noticeable since it uses more fine solve phases based on
additive Schwarz while it just performs one coarse solve phase which is done in sequential.
The impact of additional fine or coarse solve phases in the preconditioner to the error
convergence as well as the computational costs will be discussed in more detail in the next
section.

2.5 Convergence estimate

In this section we estimate the convergence of SC two-level additive Schwarz in time
preconditioner and its variants by computing the norms of the error propagation matrices.
The convergence is estimated based on an eigenvalue analysis for which the coarse and the
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2.5 Convergence estimate

fine propagators must have the same eigenvectors. As the assumption in section 2.2 that 𝜙
and 𝜙Δ𝑇 have the same eigenvectors, there exists a unitary matrix 𝑋 , e.g., 𝑋 ∗𝑋 = 𝑋𝑋 ∗ = I
such that 𝜙 and 𝜙Δ𝑇 can be diagonalized as,

Λ = 𝑋 ∗𝜙𝑋 = 𝑑𝑖𝑎𝑔(𝜆1, 𝜆2, . . . , 𝜆𝑑),
ΛΔ𝑇 = 𝑋 ∗𝜙Δ𝑇𝑋 = 𝑑𝑖𝑎𝑔(𝜇1, 𝜇2, . . . , 𝜇𝑑),

with |𝜆𝑖 | < 1 and |𝜇𝑖 | < 1 for 𝑖 = 1, 2, . . . , 𝑑 since 𝜙 and 𝜙Δ𝑇 are stable time-stepping
methods.

The matrix 𝐸𝑆𝐶 defined in equation (2.26) is the error propagation matrix corresponding
to SC two-level additive Schwarz in time preconditioner, each element of this matrix is
a block matrix of dimension 𝑑 × 𝑑 . The error propagation matrices 𝐸𝑆𝐶𝑆 , 𝐸𝑆𝐶𝑆2, 𝐸𝑆 (𝐶𝑆)2

corresponding to the variants of SC two-level additive Schwarz in time preconditioner are
defined in (2.28), (2.30), (2.32). We then have,

| |𝐸𝑆𝐶 | |1 = | |𝐸𝑆𝐶 | |∞ ≤ max
1≤ 𝑗≤𝑁𝐶

(
𝑁𝐶∑︁
𝑖=1

| | (𝐸𝑆𝐶 )𝑖 𝑗 | |1

)
=

𝑁𝐶−1∑︁
𝑖=0

| |𝜙𝑖Δ𝑇 (𝜙
𝑚 − 𝜙Δ𝑇 ) | |1

≤ ||𝜙𝑚 − 𝜙Δ𝑇 | |1
𝑁𝐶−1∑︁
𝑖=0

| |𝜙Δ𝑇 | |𝑖1 = | |𝜙𝑚 − 𝜙Δ𝑇 | |1
1 − ||𝜙Δ𝑇 | |𝑁𝐶

1
1 − ||𝜙Δ𝑇 | |1

, (2.33)

where (𝐸𝑆𝐶)𝑖 𝑗 refers to the block component at row 𝑖 and column 𝑗 of 𝐸𝑆𝐶 . On the other
hand, we also have,

| |𝐸𝑆𝐶 | |2 ≤
√︁
| |𝐸𝑆𝐶 | |1 | |𝐸𝑆𝐶 | |∞ ≤ ||𝜙𝑚 − 𝜙Δ𝑇 | |1

1 − ||𝜙Δ𝑇 | |𝑁𝐶

1
1 − ||𝜙Δ𝑇 | |1

≤ ||𝑋 (Λ𝑚 − ΛΔ𝑇 )𝑋 ∗) | |1
1 − ||𝑋Λ𝑁𝐶

Δ𝑇𝑋
∗ | |1

1 − ||𝑋ΛΔ𝑇𝑋
∗ | |1

≤ max
1≤ 𝑗≤𝑑

{
|𝜆𝑚𝑗 − 𝜇 𝑗 |

1 − |𝜇 𝑗 |𝑁𝐶

1 − |𝜇 𝑗 |

}
. (2.34)

Similarly we have,

| |𝐸𝑆𝐶𝑆 | |2 ≤ max
1≤ 𝑗≤𝑑

{
|𝜆𝑚𝑗 − 𝜇 𝑗 |

1 − |𝜇 𝑗 |𝑁𝐶−1

1 − |𝜇 𝑗 |
|𝜆 𝑗 |𝑚

}
, (2.35)

| |𝐸𝑆𝐶𝑆2 | |2 ≤ max
1≤ 𝑗≤𝑑

{
|𝜆𝑚𝑗 − 𝜇 𝑗 |

1 − |𝜇 𝑗 |𝑁𝐶−2

1 − |𝜇 𝑗 |
|𝜆 𝑗 |2𝑚

}
, (2.36)

| |𝐸𝑆 (𝐶𝑆)2 | |2 ≤ max
1≤ 𝑗≤𝑑

C𝑗 , (2.37)

in which

C𝑗 = (𝜆𝑚𝑗 − 𝜇 𝑗 )2 1 − (𝑁𝐶 − 1) |𝜇 𝑗 |𝑁𝐶−2 + (𝑁𝐶 − 2) |𝜇 𝑗 |𝑁𝐶−1

(1 − |𝜇 𝑗 |)2 |𝜆 𝑗 |𝑚 . (2.38)

The 2-norm of the errors is estimated in the following theorem.
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Theorem 2.5.1. Let 𝜙 and 𝜙Δ𝑇 be simultaneously diagonalizable by the same unitary
matrix 𝑋 and be stable time-stepping methods with eigenvalues 𝜆𝑖 and 𝜇𝑖 respectively , e.g.,
|𝜆𝑖 | < 1 and |𝜇𝑖 | < 1 for 𝑖 = 1, . . . , 𝑑 . The error at coarse time points generated at iteration
𝑘 + 1 of (2.13) satisfy:

| |𝑒𝑘+1
𝐶,𝑆𝐶 | |2 ≤ max

1≤ 𝑗≤𝑑

{
|𝜆𝑚𝑗 − 𝜇 𝑗 |

1 − |𝜇 𝑗 |𝑁𝐶

1 − |𝜇 𝑗 |

}
| |𝑒𝑘𝐶,𝑆𝐶 | |2, (2.39)

| |𝑒𝑘+1
𝐶,𝑆𝐶𝑆 | |2 ≤ max

1≤ 𝑗≤𝑑

{
|𝜆𝑚𝑗 − 𝜇 𝑗 |

1 − |𝜇 𝑗 |𝑁𝐶−1

1 − |𝜇 𝑗 |
|𝜆 𝑗 |𝑚

}
| |𝑒𝑘𝐶,𝑆𝐶𝑆 | |2, (2.40)

| |𝑒𝑘+1
𝐶,𝑆𝐶𝑆2 | |2 ≤ max

1≤ 𝑗≤𝑑

{
|𝜆𝑚𝑗 − 𝜇 𝑗 |

1 − |𝜇 𝑗 |𝑁𝐶−2

1 − |𝜇 𝑗 |
|𝜆 𝑗 |2𝑚

}
| |𝑒𝑘
𝐶,𝑆𝐶𝑆2 | |2, (2.41)

| |𝑒𝑘+1
𝐶,𝑆 (𝐶𝑆)2 | |2 ≤ max

1≤ 𝑗≤𝑑
C𝑗 | |𝑒𝑘𝐶,𝑆 (𝐶𝑆)2 | |2, (2.42)

where C𝑗 is defined in (2.38).
Proof. Combining (2.33)-(2.34), (2.35), (2.36) and (2.37) leads to the desired results.
The convergence bounds for SC from (2.39) and SCS from (2.40) are already given in

the context of MGRIT with F-relaxation and with FCF-relaxation, see [20], in which the
authors estimate the convergence by using the eigenvector expansion of the error to
compute the error norm for each eigenmode. In this chapter, we estimate the convergence
of SC two-level additive Schwarz in time preconditioner and its variants by computing
directly the norms of the error propagation matrices generated at iteration 𝑘 + 1 of the
residual correction scheme from equation (2.13). The theoretical convergence bounds we
obtained for SC and SCS two-level additive Schwarz in time preconditioner are exactly the
same with those for MGRIT with F-relaxation and with FCF-relaxation. This once again
confirms the equivalence between parareal, MGRIT with F-relaxation and SC two-level
additive Schwarz in time preconditioner.
As the work presented in [20], those estimates have a removable singularity that is

when |𝜇 𝑗 | tends to 1. They are also shown to be bounded independently of 𝑁𝐶 in many
applications. Furthermore, the nominator 1−|𝜇 𝑗 |𝑁𝐶 can be replaced by 1 since the estimates
hold for all 𝑁𝐶 .

As mentioned in the end of the previous section, these variants have different computa-
tional costs for implementation. To make this clear, we follow our setting in section 2.2 to
recall the speedup of parareal algorithm from [74] as,

S(𝑁 ) =
𝑁𝑚𝜏𝑓

𝑁𝜏𝐶 + 𝐾 (𝑁𝜏𝐶 +𝑚𝜏𝑓 )
, (2.43)

in which the numerator describes the runtime for the fine propagator over 𝑁 coarse
time intervals while the denominator shows the runtime of parareal algorithm with 𝑁
processors and 𝐾 iterations, and 𝜏𝐶, 𝜏𝑓 denote the computational cost of one step of the
coarse and fine propagator. Depend on the number of coarse and fine propagator phases
in the preconditioner, we then have different speedup of the variants, more precisely,

S𝑆𝐶𝑆 (𝑁 ) =
𝑁𝑚𝜏𝑓

𝑁𝜏𝐶 + 𝐾 (𝑁𝜏𝐶 + 2𝑚𝜏𝑓 )
, (2.44)
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S𝑆𝐶𝑆2 (𝑁 ) =
𝑁𝑚𝜏𝑓

𝑁𝜏𝐶 + 𝐾 (𝑁𝜏𝐶 + 3𝑚𝜏𝑓 )
, (2.45)

S𝑆 (𝐶𝑆)2 (𝑁 ) =
𝑁𝑚𝜏𝑓

𝑁𝜏𝐶 + 𝐾 (2𝑁𝜏𝐶 + 3𝑚𝜏𝑓 )
. (2.46)

It is obvious that the speedup becomes less efficient as the number of coarse or fine
propagator phases increases. However those fine propagator phases are totally performed
in parallel, this is a very important characteristic that we can exploit. By adding one or
two additional fine propagation steps in the preconditioner, the convergence of parareal
from (2.39) can be reduced by a factor of |𝜆 𝑗 |𝑚 or |𝜆 𝑗 |2𝑚 as it can be seen in (2.40), (2.41),
especially in the case when the eigenvalues are very small and the number of fine time step
per time slice𝑚 is very large. Since the S(CS)2 variant consists of two coarse propagation
steps which are performed sequentially, it is not very efficient in a parallel environment.
On the other hand, SCS2 can really off-set the added computational cost since we can take
advantage of the parallel computing of the fine solver.

2.6 Numerical results

In this section we first discuss results that show the equivalence between parareal and SC
two-level additive Schwarz in time preconditioner for three different problems, Dahlquist
problem, heat equation, and advection-reaction-diffusion equation. Numerical experiments
investigate the behavior of the convergence rates on short and long time intervals when
𝑁𝐶 and𝑚 vary. We then discuss the convergence of different variants of two-level domain
decomposition preconditioners in time. A comparison between parareal or SC two-level
additive Schwarz in time preconditioner and parareal with GMRES acceleration is also
conducted. The three linear test cases considered here are the Dahlquist problem with
𝑎0 = −1, u0 = 1,

𝑑𝑢

𝑑𝑡
= 𝑎0𝑢, 𝑢 (0) = u0, 𝑡 ∈ [0,𝑇 ], (2.47)

the heat equation with 𝑎∗ = 3, 𝐿 = 1,Δ𝑥 = 0.1, the exact solution 𝑢𝑒𝑥𝑎𝑐𝑡 = 𝑥 (𝐿 −
𝑥)2 exp(−2𝑡), 

𝜕𝑢
𝜕𝑡

= 𝑎∗ 𝜕
2𝑢
𝜕𝑥2 + 𝑓 𝑖𝑛 (0, 𝐿) × (0,𝑇 ),

𝑢 (𝑥, 0) = 𝑢0(𝑥) 𝑥 ∈ (0, 𝐿),
𝑢 (0, 𝑡) = 𝑢 (𝐿, 𝑡) = 0 𝑡 ∈ (0,𝑇 ),

(2.48)

and the advection-reaction-diffusion equation with 𝑎 = 1, 𝑏 = 1, 𝑐 = 1, 𝐿 = 1,Δ𝑥 = 0.1, the
exact solution 𝑢𝑒𝑥𝑎𝑐𝑡 = sin(2𝜋𝑥) exp(−2𝑡),

𝜕𝑢
𝜕𝑡

= 𝑎 𝜕
2𝑢
𝜕𝑥2 − 𝑏 𝜕𝑢𝜕𝑥 + 𝑐𝑢 + 𝑓 𝑖𝑛 (0, 𝐿) × (0,𝑇 ),

𝑢 (𝑥, 0) = 𝑢0(𝑥) 𝑥 ∈ (0, 𝐿),
𝑢 (0, 𝑡) = 𝑢 (𝐿, 𝑡) = 0 𝑡 ∈ (0,𝑇 ),

(2.49)

in which the unknowns𝑢 (𝑥, 𝑡) in (2.48) and (2.49) are considered in (0, 𝐿) × (0,𝑇 ) ⊂ R𝑑 ×R,
where 𝑑 is the space dimension. The source term is denoted by 𝑓 and is chosen to
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obtain the desired exact solution. For simplicity we consider the Dirichlet boundary
condition, however the periodic boundary condition is also used in 2.6.4. Note that the
same discretization methods are used for both coarse and fine solvers, namely centered
finite difference in space and backward Euler in time except the end of section 2.6.4 in
which Runge-Kutta 4 is used for the fine solver.

2.6.1 Equivalence between parareal and SC two-level additive Schwarz in
time preconditioner

In order to study the short time interval behavior, we use 𝑁𝐶 = 20,𝑇 = 1, while for the long
time interval behavior, we use 𝑁𝐶 = 100,𝑇 = 100. With time steps Δ𝑡 = 𝑇 /𝑁𝐶, 𝛿𝑡 = Δ𝑡/𝑚,
for𝑚 = 20, the 2-norm (spectral norm) of the error between the approximate solution and
the fine sequential solution (obtained by sequentially using the fine solver) is displayed
in figure 2.4 for the three test cases. We observe that the convergence curves of parareal
and SC two-level additive Schwarz in time preconditioner are almost the same, except for
the last iterations, when this may happen because of round-off errors. The bound for SC
two-level additive Schwarz in time preconditioner derived in equation (2.39) is sharp, in
particular for long time intervals.

For the Dahlquist problem, the errors of parareal and SC two-level additive Schwarz in
time preconditioner are in superlinear convergence regime on short time intervals and in
linear convergence regime on long time intervals. This behavior is also outlined in [37]. In
particular on short time intervals they reach 10−13 after 5 iterations while with the same
number of iterations, the attained error is 10−4 on long time interval.
For the heat equation, a convergence to 10−16 is observed for short time interval after

18 iterations. For long time interval, both parareal and SC two-level additive Schwarz in
time preconditioner converge to an error of 10−17 after 10 iterations.

For the advection-reaction-diffusion equation, in particular for short time interval, both
parareal and SC two-level additive Schwarz in time preconditioner converge to an error of
10−14 after 18 iterations. For long time interval, both parareal and SC two-level additive
Schwarz in time preconditioner converge to an error of 10−16 after 15 iterations.

2.6.2 Comparison between variants of SC two-level additive Schwarz in time
preconditioner

Numerical experiments are performed to study the convergence of several variants of
the SC two-level additive Schwarz in time preconditioner that use additional coarse or
fine propagation steps. Similarly to the previous section, the short time interval behavior
uses 𝑁𝐶 = 20 and 𝑇 = 1, and the long time interval behavior uses 𝑁𝐶 = 100 and 𝑇 = 100.
Figures 2.5, 2.6, and 2.7 display the error, in 2-norm, between the approximate solution and
the fine sequential solution, with time steps Δ𝑡 = 𝑇 /𝑁𝐶, 𝛿𝑡 = Δ𝑡/𝑚, and𝑚 ∈ {2, 20}, for the
Dahlquist problem, heat equation, and advection-reaction-diffusion equation, respectively.

For the Dahlquist problem, Figure 2.5, on short time interval the improvement of
SCS, SCS2 is not very important compared to SC two-level additive Schwarz in time
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Figure 2.4: Error between approximate solution and fine sequential solution with𝑚 = 20
for Dahlquist problem (top), heat equation (middle) and advection-reaction-
diffusion equation (bottom), 𝑇 = 1, 𝑁𝐶 = 20 (first column), and 𝑇 = 100, 𝑁𝐶 =

100 (second column).

preconditioner except the S(CS)2 which converges faster than the others. However on
long time interval, the improvement becomes more important. In particular for𝑚 = 2, SC
two-level additive Schwarz in time preconditioner converges to an error of 10−16 after 16
iterations, while SCS and SCS2 converge in 11 and 9 iterations respectively, and S(CS)2
converges in just 7 iterations to an error of 10−17. For 𝑚 = 20, after 20 iterations SC
two-level additive Schwarz in time preconditioner converges to an error of 10−13, while
SCS, S(CS)2, and SCS2 converge to much smaller errors, below 10−16.

For the heat problem, Figure 2.6, on short time interval SCS, SCS2 and S(CS)2 converge
faster than SC two-level additive Schwarz in time preconditioner. In particular for𝑚 = 2,
SC converges to an error around 10−16 after 13 iterations, while SCS, SCS2, and S(CS)2 need
9, 6, and 5 iterations, respectively. For𝑚 = 20, the improvement becomes more important,
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Figure 2.5: Error between approximate solution and fine sequential solution for Dahlquist
problem with𝑚 = 2 (first column) and𝑚 = 20 (second column), 𝑇 = 1, 𝑁𝐶 = 20
(first row), and 𝑇 = 100, 𝑁𝐶 = 100 (second row).

specifically it takes 18 iterations for SC two-level additive Schwarz in time preconditioner
to converge to an error of 10−16, while SCS reaches this error in 10 iterations, and both
SCS2 and S(CS)2 require only 7 iterations. We also observe that SCS2 has a convergence
rate close to S(CS)2. On long time interval, both SCS, SCS2 have a convergence rate close
to the one of S(CS)2, and SCS2 converges faster than the other variants. In particular for
𝑚 = 2, SC two-level additive Schwarz in time preconditioner converges to an error of
10−17 after 10 iterations, while it takes 4 iterations for SCS and 3 iterations for both SCS2

and S(CS)2 to converge to the same error. For𝑚 = 20, SCS2 converges to an error around
10−17 after one iteration, SCS and S(CS)2 converge to the same error in 2 iterations, while
SC two-level additive Schwarz in time preconditioner requires 10 iterations.
For the advection-reaction-diffusion problem, Figure 2.7, the convergence behavior is

similar to the heat equation for𝑚 = 2. For short time interval and𝑚 = 20, SC two-level
additive Schwarz in time preconditioner converges to an error of 10−14 in 18 iterations,
while SCS, SCS2, and S(CS)2 converge to the same error in 9, 7, and 6 iterations, respectively.
On long time interval and𝑚 = 20, it takes 15 iterations for SC two-level additive Schwarz
in time preconditioner to converge to an error of 10−16, while SCS, S(CS)2, and SCS2 reach
the same error in 4, 3, and 2 iterations, respectively.

In summary, the SC two-level additive Schwarz in time preconditioner with no additional
coarse or fine propagation steps has a slower convergence than the other variants for all
our test cases. This indicates that the usage of additional coarse or fine propagation steps
leads to a more efficient preconditioner. The S(CS)2 variant, corresponding to overlapping
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Figure 2.6: Error between approximate solution and fine sequential solution for heat equa-
tion with𝑚 = 2 (first column) and𝑚 = 20 (second column), 𝑇 = 1, 𝑁𝐶 = 20
(first row), and 𝑇 = 100, 𝑁𝐶 = 100 (second row).

parareal or MGRIT with F(CF)2-relaxation, converges faster than the other variants in case
of short time interval simulation. However, it costs 2 coarse propagation steps, which are
computed sequentially, and hence in a parallel environment this leads to a less efficient
algorithm. The SCS2 variant converges faster than SCS for all our test cases. It is close to
the convergence rate of S(CS)2 for short time interval simulation, and it is even faster than
S(CS)2 for the heat equation (2.48) and the advection-reaction-diffusion equation (2.49)
on long time interval. It is efficient when m increases, for example for𝑚 = 20, it reaches
an error of 10−17 after one iteration. Since it has only one coarse propagation step, and
the additional steps are performed in parallel, it allows to exploit efficiently a parallel
computer.

2.6.3 Parareal with GMRES acceleration

In this section we discuss the results obtained by parareal with GMRES acceleration. The
tolerance for GMRES is set to 10−16. For Dahlquist problem, the 2-norm of the error
between the approximate solution and the fine sequential solution and of the relative
residual are displayed in Figure 2.8 for 𝑁𝐶 = 20,𝑇 = 1, and for 𝑁𝐶 = 100,𝑇 = 100. In
both tests, Δ𝑡 = 𝑇 /𝑁𝐶, 𝛿𝑡 = Δ𝑡/𝑚,𝑚 ∈ {5, 20}. On short time interval, we observe that
while the relative residual of parareal with GMRES acceleration is slightly smaller, the
convergence rate of the error is not improved much. However, on long time interval,
GMRES improves the convergence rate of parareal. For example for 𝑚 = 20, parareal
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Figure 2.7: Error between approximate solution and fine sequential solution for advection-
reaction-diffusion equation with 𝑚 = 2 (first column) and 𝑚 = 20 (second
column), 𝑇 = 1, 𝑁𝐶 = 20 (first row), and 𝑇 = 100, 𝑁𝐶 = 100 (second row).

with GMRES acceleration converges to an error of 10−15 after 19 iterations, while parareal
converges to an error of 10−13 after 20 iterations. For the relative residual, parareal with
GMRES acceleration converges to 10−15 after 20 iterations, while parareal converges to
10−11 after the same numbers of iterations.

Since the convergence behavior of the error and the relative residual is similar for
the heat equation and the advection-reaction-diffusion equation, we present only the
convergence results for the latter equation. They are displayed in Figure 2.9 for short
and long time intervals. On short time interval, we observe that the convergence rate
of parareal with GMRES acceleration is slightly improved for both the error and the
relative residual. Parareal with GMRES acceleration allows to reach the same error as
parareal, while requiring 2 iterations less. For example for𝑚 = 20, parareal with GMRES
acceleration converges to an error of 10−14 after 16 iterations, while parareal converges
to the same error after 18 iterations. On long time interval, the improvement is even less
important.

It can be seen that GMRES improves slightly the convergence of parareal for the three
test cases as mentioned in the end of section 2.2.2.
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Figure 2.8: Error between approximate solution and fine sequential solution (first column)
and relative residual (second column) in 2-norm for Dahlquist problem, 𝑇 =

1, 𝑁𝐶 = 20 (first row), 𝑇 = 100, 𝑁𝐶 = 100 (second row) with𝑚 = 20 in both
cases.

2.6.4 Impact of GMRES acceleration for the advection-reaction-diffusion
equation with different coefficients

We study in this section the convergence of parareal with GMRES acceleration for the
advection-reaction-diffusion equation with different coefficients than in the beginning
of section 2.6. We consider the following setting: 𝐿 = 1,𝑇 = 1, 𝑎 = 0.01, 𝑏 = 0.5, 𝑐 = 100,
𝑁𝐶 = 20,Δ𝑥 ∈ {0.2, 0.05}, Δ𝑡 = 𝑇 /𝑁𝐶, 𝛿𝑡 = Δ𝑡/𝑚,𝑚 = 2. The exact solution is 𝑢𝑒𝑥𝑎𝑐𝑡 =
sin(2𝜋𝑥) exp(−2𝑡). The 2-norm of the error between the approximate solution and the fine
sequential solution and of the relative residual are displayed in Figure 2.10. We observe
that both parareal and parareal with GMRES acceleration converge within 20 iterations.
However the error and relative residual of parareal seem to stagnate (Δ𝑥 ∈ {0.2, 0.05})
and even increase (Δ𝑥 = 0.05), while those of parareal with GMRES acceleration always
decrease. Specifically for Δ𝑥 = 0.2, parareal converges slowly within the first 5 iterations,
then stagnates, and continues to converge after 16 iterations. Hence GMRES acceleration
provides a more robust approach on short time interval 𝑇 = 1. However, on long time
interval 𝑇 = 100, both methods converge with the same rate.
In this section we also present numerical experiments for the advection-reaction-

diffusion equation in two cases, diffusion dominated and advection dominated. For both
cases, we consider the advection-reaction-diffusion equation (2.49) with the periodic
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Figure 2.9: Error between approximate solution and fine sequential solution (first column)
and relative residual (second column) in 2-norm for advection-reaction-diffusion
equation, 𝑇 = 1, 𝑁𝐶 = 20,𝑚 = 20 (first row), and 𝑇 = 100, 𝑁𝐶 = 100,𝑚 = 5
(second row).

boundary condition {
𝑢 (0, 𝑡) = 𝑢 (𝐿 − Δ𝑥, 𝑡),
𝑢 (𝐿, 𝑡) = 𝑢 (Δ𝑥, 𝑡),

with 𝐿 = 1,𝑇 = 1, 𝑁𝐶 = 20,Δ𝑥 = 0.025,Δ𝑡 = 𝑇 /𝑁𝐶, 𝛿𝑡 = Δ𝑡/𝑚,𝑚 = 5 and the exact
solution 𝑢𝑒𝑥𝑎𝑐𝑡 = sin(2𝜋 (𝑥 − 𝑏𝑡)) exp(−2𝑡). For the advective case, we consider 𝑎 =

0.0005, 𝑏 = 1, 𝑐 = 1, and for the diffusive case, we consider 𝑎 = 1, 𝑏 = 0.0005, 𝑐 = 1. The
2-norm of the error between the approximate solution and the fine sequential solution and
of the relative residual are displayed in Figure 2.11. We observe that parareal with GMRES
acceleration always converges faster than the plain parareal in both cases. In particular
for the advective case, parareal converges to the error of 10−12 after 20 iterations while
parareal with GMRES acceleration converges to the same error after 19 iterations. For the
diffusive case, after 18 iterations, parareal with GMRES acceleration converges to the error
of 10−9 while parareal only converges to the error of 10−6. It can be seen that GMRES again
improves slightly the convergence of parareal as the numerical results in section 2.6.3.

Additionally in the end of this section, we show the convergence behaviors of parareal
and parareal with GMRES acceleration with a different method for the fine propagator. In
particular, we keep using backward Euler in time for the coarse propagator but Runge-
Kutta 4 for the fine propagator. For the discretization in space, we keep the same centered
finite difference method for both coarse and fine propagators. Follow the same setting
with the periodic boundary condition and Δ𝑥 = 0.1, the convergence results are shown in
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Figure 2.10: Error between approximate solution and fine sequential solution (first col-
umn) and relative residual (second column) in 2-norm for advection-reaction-
diffusion equation with the Dirichlet boundary condition, 𝑇 = 1, 𝑁𝐶 = 20,
𝑚 = 2, Δ𝑥 = 0.2 (first row), and Δ𝑥 = 0.05 (second row), with backward Euler
for both propagators.

Figure 2.12. In particular for the advective case, parareal converges to the error of 10−14 after
20 iterations while parareal with GMRES acceleration converges to the same error after 18
iterations. For the diffusive case, we observe that both parareal and parareal with GMRES
acceleration converge with a faster rate than the advective case. In particular parareal with
GMRES acceleration needs 16 iterations to converge to the error of 10−14 while parareal
needs 18 iterations to converge to the same error. We observe that parareal with GMRES
acceleration slightly improves the convergence in both cases as the previous results in
Figure 2.11. Moreover, with the more accurate discretization for the fine propagator Runge-
Kutta 4, the convergence curves are slightly faster than the ones using backward Euler in
Figure 2.11. Specifically in the diffusive case, parareal with GMRES acceleration converges
to the error of 10−14 after 16 iterations while it needs 20 iterations to converge to the
same error in case of using backward Euler for the fine propagator as it can be seen in
Figure 2.11.

2.7 Conclusions and perspectives

In this chapter, we propose an interpretation of parareal algorithm based on a domain
decomposition strategy, that we refer to as SC two-level additive Schwarz in time precon-
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Figure 2.11: Error between approximate solution and fine sequential solution (first col-
umn) and relative residual (second column) in 2-norm for advection-reaction-
diffusion equationwith the periodic boundary condition,𝑇 = 1, 𝑁𝐶 = 20,𝑚 = 5
for advective case (first row), and for diffusive case (second row), with back-
ward Euler for both propagators.

ditioner. This preconditioner in time is equivalent to MGRIT with F-relaxation. We study
variants of this preconditioner and show that additional fine or coarse propagation steps
lead to MGRIT with FCF-relaxation, MGRIT with F(CF)2-relaxation or overlapping parareal.
We also find that SCS2 two-level additive Schwarz in time preconditioner converges faster
than MGRIT with F(CF)2-relaxation or overlapping parareal on long time interval and
with a large number of subdomains. This allows to exploit parallelism while having only
one sequential coarse propagation step. Theoretical convergence bounds are verified and
numerical results show that they are sharp especially for long time interval simulation. We
also propose using Krylov subspace method, especially GMRES, to accelerate the parareal
algorithm. We find that for a specific case of the advection-reaction-diffusion equation in
which the advection and reaction coefficients are large compared to the diffusion term, the
error of parareal stagnates or even increases for the first iterations, while GMRES provides
a faster decrease of the error. This phenomena as well as the convergence analysis of
parareal with GMRES acceleration will be studied in our future work.
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Figure 2.12: Error between approximate solution and fine sequential solution (first col-
umn) and relative residual (second column) in 2-norm for advection-reaction-
diffusion equationwith the periodic boundary condition,𝑇 = 1, 𝑁𝐶 = 20,𝑚 = 5
for advective case (first row), and for diffusive case (second row), with back-
ward Euler for the coarse propagator and Runge-Kutta 4 for the fine propaga-
tor.
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Abstract

We propose a new strategy for solving by the parareal algorithm highly oscillatory ordinary
differential equations which are characteristics of a six-dimensional Vlasov equation.
For the coarse solvers we use reduced models, obtained from the two-scale asymptotic
expansions in [28]. Such reduced models have a low computational cost since they are
free of high oscillations. The parareal method allows to improve their accuracy in a few
iterations through corrections by fine solvers of the full model. We demonstrate the
accuracy and the efficiency of the strategy in numerical experiments of short time and long
time simulations of charged particles submitted to a large magnetic field. In addition, the
convergence of the parareal method is obtained uniformly with respect to the vanishing
stiff parameter.
Keywords: parareal algorithm, two-scale expansion, multi-scale models, Vlasov char-

acteristics, electric and magnetic fields.

3.1 Introduction

In this paper we propose a new coupling strategy in the parareal framework [68, 71] to
efficiently solve the following six dimensional dynamical system for 0 < 𝜀 ≪ 1

dx𝜀
d𝑡

= v𝜀, x𝜀 (𝑠) = x,

dv𝜀
d𝑡

=
1
𝜀

(
v𝜀 × B𝜀 (x𝜀)

)
+ E(𝑡, x𝜀), v𝜀 (𝑠) = v,

(3.1)

where (x, v) is an initial condition given at the initial time 𝑡 = 𝑠 . The system in (3.1)
models the dynamics of a charged particle under the influence of an external electro-
magnetic field. This is a typical characteristic curve of the Vlasov equation. In this context,
x𝜀 : R → R3 stands for the position unknown, v𝜀 : R → R3 for the velocity unknown,
and E : R × R3 → R3 and 1

𝜀
B𝜀 : R3 → R3 for a given electro-magnetic field. We assume

|B𝜀 | = 1 and that the mass and the charge particle are both equal to 1. The parameter
1/𝜀 in front of the v𝜀 × B𝜀 (x𝜀) term means that the magnetic field is assumed high with
respect to the electric term, in view of plasma confinement considerations [54]. More
precisely, 1/𝜀 denotes the strength of the magnetic field and thus, since the charge-to-mass
ratio is assumed to be 1, the cyclotron frequency is also equal to 1/𝜀. The difficulty of
the problem is that the large magnetic field introduces a rapid time scale, the rotation of
particles around the magnetic field line, which is much smaller than the one driven by the
electric field. We are thus faced with a multi-scale problem whose numerical solution by
standard methods requires high computational cost, since a standard but accurate enough
numerical integrator requires time steps that are of the order of the fastest oscillation.
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This is an issue to be avoided in applications, and therefore, in this paper we are interested
in solving equations in (3.1) with a time step which is not constraint by 𝜀.

The parareal algorithm is an efficient method performing real time simulations with the
help of parallel computing, for the numerical solving of a very large class of time dependent
equations. The literature is huge, we cite only [27, 34, 68, 71]. The method involves a
fine expensive solver that is only applied in parallel, and a coarse but cheap solver which
is used in sequential. A basic way to apply parareal in practice consists in taking large
time steps Δ𝑡 for a coarse solver and in refining the solutions in parallel using smaller
time steps 𝛿𝑡 . This can reduce the computational time if the parareal iterations converge
rapidly and if the ratio Δ𝑡/𝛿𝑡 is large.
However, when solving stiff equations like (3.1), regardless of the numerical scheme used
for the coarse solver, the time step should satisfy Δ𝑡 ∼ 𝜀 to achieve enough accuracy leading
to a rapid convergence of the parareal scheme [37]. This is due to the high oscillations
in time (with period of order 𝜀) in the solution. Therefore, it can be interesting to use a
different model to define the coarse solver in such a way that it remains computationally
cheap but with a time step satisfying Δ𝑡 ≫ 𝜀. Eventually, it is also important that the coarse
solver be accurate enough so that the parareal iterations converge rapidly. In the case of
equation (3.1), it is crucial for the coarse solver to provide an accurate approximation of the
high oscillations, since otherwise the solver accumulates large errors, parareal requires a
large number of iterations and thus the computational speed-up deteriorates. The purpose
of our work is to obtain a convergent parareal algorithm with a large ratio Δ𝑡/𝛿𝑡 and a
small number of iterations (𝑘 ≪ 𝑁 , see section 3.2 for notation).

In this paper, we use the parareal algorithm to efficiently integrate equation (3.1), by using
a reduced model to define the coarse solver. Roughly speaking, such a reduced model
reads 

dY
d𝑡

= 𝑓 (Y,U), Y(𝑠) = x,

dU
d𝑡

= 𝑔(Y,U), U(𝑠) = v,
(3.2)

where Y, U are used to approximate x𝜀 , v𝜀 thanks to(
x𝜀 (𝑡), v𝜀 (𝑡)

)
∼ 𝑍

(
(𝑡 − 𝑠)/𝜀,

(
Y(𝑡),U(𝑡)

) )
when 𝜀 → 0,

and where 𝑍 is an operator for which an explicit form is to be derived in practice.
Specifically, we illustrate the idea above with an example in a similar context, as detailed
in [53]. Thus, if instead of equation (3.1) we consider

du𝜀
d𝑡

+ 1
𝜀
𝐿u𝜀 = 𝑁 (u𝜀), u𝜀 (0) = 𝑢0,

where 𝐿 is a linear operator and 𝑁 (u𝜀) is a specific nonlinear term, then it is well-known
that under suitable assumptions, the solution u𝜀 (𝑡) has the asymptotic approximation
u𝜀 (𝑡) = exp(− 𝑡

𝜀
𝐿)u(𝑡) + O(𝜀), where the slowly varying function u is the solution to the

reduced model
du
d𝑡

= 𝑁 (u), u(0) = 𝑢0, (3.3)
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where the 𝑁 (u) term is obtained by time averaging

𝑁 (u(𝑡)) = lim
𝑇→∞

1
𝑇

∫ 𝑇

0
𝑒𝜃𝐿 𝑁 (𝑒−𝜃𝐿u(𝑡))𝑑𝜃 .

It is important to note that u(𝑡) and its derivatives are formally bounded independently of
𝜀 and therefore, large time steps Δ𝑡 ≫ 𝜀 can be taken to solve (3.3) (see [53]).

In our approach, the reduced model is obtained through a two-scale asymptotic expansion
and is proved to provide an accurate approximation of the initial equation when the small
parameter 𝜀 vanishes [28]. More precisely, we use either a zero-th order or a first order
two-scale model, depending on the availability of practical equations. Indeed, it is possible
that the first order model is too complex to be solved, analytically or numerically and
in this case, only the zero-th order model will be considered. These models have two
advantages: the low computational cost and the capability to give a good approximation of
the high frequency oscillations through the operator 𝑍 enclosing the smallest scale, under
the assumption that these oscillations are periodic and can be analytically computed [28].

The idea of using a different model for the coarse solver is not new. As an example, a
similar approach has been used in chemical kinetics [71], where a reduction of a linear
kinetic system with multiple scales was applied for the coarse solving. In [67], a slow
manifold projector is used as coarse solver for solving ordinary differential equations
with dissipative stiffness. We also mention two contributions closely related to our work.
First, a parareal method for PDEs with linear high oscillating term is proposed in [53].
On the basis of a classical averaged model, the method needs exact knowledge of the fast
variable to obtain a convergent parareal algorithm. Though our strategy also assumes
the period of the fastest motion to be known, the high oscillating term is not necessarily
linear in our case (see section 3.5). Additionally, we consider first-order asymptotic terms
which provide a more accurate averaged model and can accelerate the convergence of the
parareal method. Second, in the frame of models similar to (3.1), a multi-scale method for
solving the slow evolution was successfully used as coarse solver in [3], without requiring
explicit knowledge of the fast and slow variables. However a tedious alignment algorithm
is required to achieve convergence of parareal. Specifically, the method needs to make
the alignment of the fast phases of the coarse and fine solvers with sufficient efficiency
and accuracy. On the contrary, our reduced model accurately synchronizes phase with the
fine solution, which allows us to avoid such an alignment algorithm to get the numerical
convergence of the parareal method. The drawback of our approach is that the small period
of the fast oscillation must to be known. However, this particular framework covers several
models which solve interesting problems in plasma physics, as illustrated in section 3.6.

The paper is organized as follows. In section 3.2, we briefly present the parareal method
and describe our strategy as applied in the context of stiff ordinary differential equations.
In section 3.3, we introduce the two-scale asymptotic expansion at the base of the reduced
models and we justify their use as coarse solvers of our parareal algorithm. In sections 3.4
and 3.5, we present three ODE models which enter into the general form (3.1) and derive
their first order and zero-th order reduced equations following [28]. The full equations
under consideration apply to different models in plasma physics: isotope separation by
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ion cyclotron resonance, storing of charged particles in a Penning trap, and an example
of charged particle confinement by strong variable magnetic field. For these models, we
present in section 3.6 numerical experiments that show that the parareal strategy provides
accurate results together with computational efficiency through parallelism.

3.2 The parareal algorithm

Introduced in 2001 [68], the parareal (parallel in real time) algorithm displays its advan-
tage by covering various fields of applications where it exploits very efficiently parallel
computing over a large number of processors to solve problems in real time constraint
context. Since its conception, the algorithm has been intensively analyzed [6, 33, 37, 97].
Let us briefly recall this approach. Consider the simple time dependent problem

d𝑢
d𝑡

= 𝑓 (𝑢) in (0,𝑇 ), 𝑢 (0) = u0. (3.4)

The time interval [0,𝑇 ] is decomposed into 𝑁 uniform time slices [𝑇𝑛,𝑇𝑛+1], for 𝑛 ∈
{0, . . . , 𝑁 − 1}. Let F (𝑇𝑛+1,𝑇𝑛,𝑈𝑛) denote the fine solver, which gives a very accurate
approximation of the solution at time 𝑇𝑛+1 with the initial solution𝑈𝑛 at time 𝑇𝑛 and let
G(𝑇𝑛+1,𝑇𝑛,𝑈𝑛) denote the coarse solver, which gives a coarse approximation of the solution
at time𝑇𝑛+1 also with the initial solution𝑈𝑛 at time𝑇𝑛 . The coarse solver is to be chosen in
such a way that, its cost is much lower than the one of the fine solver. A popular strategy
consists in using the approximation method considered in the fine solver but with a larger
time step [37]. Alternatively, one can use an approximation method with lower accuracy,
or even use a different model from the original problem as long as it can give a reasonable
coarse and fast approximation of the solution of the original problem [71].
In this paper, we follow the latter approach and focus on the idea of using a reduced
model of the original problem for the coarse solver. For that reason, the coarse solver
G(𝑇𝑛+1,𝑇𝑛,𝑈𝑛) is always assigned to the solution of the reduced model (3.2) and the fine
solver F (𝑇𝑛+1,𝑇𝑛,𝑈𝑛) is always assigned to the (approximated) solution of the original
problem (3.1). In addition, we let the coarse propagator perform a single time step per
time slice [𝑇𝑛,𝑇𝑛+1].
The parareal algorithm aims at computing a sequence (𝑈 𝑘

𝑛 )𝑘,𝑛 of approximations of𝑢 (𝑇𝑛) for
𝑛 ∈ {0, . . . , 𝑁 } for every 𝑘 in the following way. At the first step, the initial approximation
𝑈 0
𝑛 at coarse time points 0 = 𝑇0 < 𝑇1 < · · · < 𝑇𝑁 = 𝑇 can be computed sequentially using

the coarse solver that reads

𝑈 0
𝑛+1 = G(𝑇𝑛+1,𝑇𝑛,𝑈

0
𝑛 ), 𝑈 0

0 = 𝑢0,

and then for 𝑘 = 0, 1, . . . with𝑈 𝑘+1
0 = 𝑢0, the parareal algorithm computes a more accurate

approximation

𝑈 𝑘+1
𝑛+1 = G(𝑇𝑛+1,𝑇𝑛,𝑈

𝑘+1
𝑛 ) + F (𝑇𝑛+1,𝑇𝑛,𝑈

𝑘
𝑛 ) − G(𝑇𝑛+1,𝑇𝑛,𝑈

𝑘
𝑛 ).

In this iteration, the terms F (𝑇𝑛+1,𝑇𝑛,𝑈
𝑘
𝑛 ) have the largest computational cost. Therefore,

all these fine computations could be performed in parallel over each interval [𝑇𝑛,𝑇𝑛+1], the
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main goal of parareal being to speed up the computing time. However, in order to achieve
a real speed-up, the algorithm should converge in a number of iterations significantly
smaller than the number of time intervals.

3.3 Two-scale asymptotic expansion

In this section, we summarize the principles and the main result of two-scale asymptotic
expansion allowing to obtain reduced models. The equation (3.1) is a particular instance
of the more general singularly perturbed dynamical system

dX𝜀
d𝑡

= a(𝑡,X𝜀) +
1
𝜀
b(𝑡,X𝜀), X𝜀 (𝑠) = X, (3.5)

where X𝜀 : R → R𝑑 and a and b are given fields satisfying suitable assumptions and 𝑠
plays the role of the initial time. Following [28], we briefly recall the asymptotic two-
scale expansion method in order to approximate the solution X𝜀 (𝑡) when 𝜀 → 0. Under
regularity assumptions on a and b and assuming the solution Z(𝑡 ;𝜃, z) to equation

dZ
d𝜃

= b(𝑡,Z), Z(𝑡 ; 0, z) = z (3.6)

to be periodic in 𝜃 , for every 𝑡 ∈ R and every z ∈ R𝑑 , it is proved in [28] that X𝜀 admits
the following two-scale expansion in time

X𝜀 (𝑡) = X0
(
𝑡,
𝑡 − 𝑠
𝜀

)
+ 𝜀 X1

(
𝑡,
𝑡 − 𝑠
𝜀

)
+ 𝜀2 X2

(
𝑡,
𝑡 − 𝑠
𝜀

)
+ . . . (3.7)

when 𝜀 → 0 and where the functions X𝑖 (𝑡, 𝜃 ) are periodic in 𝜃 for every 𝑖 ∈ N. In this
setting, ordinary differential equations characterizing the terms of the expansion (3.7) are
derived in [28, Theorems 1.1 & 1.3]. In addition, strong convergence theorems are proved,
justifying the approximation results asserting that, e.g., at the zero-th order we have

X𝜀 (𝑡) ∼ X0
(
𝑡,
𝑡 − 𝑠
𝜀

)
, when 𝜀 → 0,

and at the first order,

X𝜀 (𝑡) ∼ X0
(
𝑡,
𝑡 − 𝑠
𝜀

)
+ 𝜀 X1

(
𝑡,
𝑡 − 𝑠
𝜀

)
, when 𝜀 → 0.

For the sake of completeness, we give below the result concerning the two-scale limit
model or the zero-th order approximation [28, Theorem 1.1] in the case of a six dimensional
space (𝑑 = 6).

Theorem 1.1.We assume that1 a ∈
(
𝐶1
𝑏
(R × R6)

)6 and b ∈
(
𝐶2
𝑏
(R × R6)

)6. Assume also
that the solution of (3.6) is 2𝜋-periodic in 𝜃 , for every 𝑡 ∈ R and every z ∈ R6. Then, for

1𝐶𝑚
𝑏
stands for the space of continuous functions with bounded derivatives to the order𝑚.
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every initial condition X ∈ R6, every 𝜀 > 0, and every Δ𝑆 > 0, the solution X𝜀 of (3.5) exists
on [𝑠, 𝑠 + Δ𝑆], is unique and satisfies

lim
𝜀→0

sup
𝑡∈[𝑠,𝑠+Δ𝑆]

���X𝜀 (𝑡) − X0
(
𝑡,
𝑡 − 𝑠
𝜀

)��� = 0, (3.8)

where | · | stands for the Euclidean norm on R6 and X0 satisfies

X0(𝑡, 𝜃 ) = Z
(
𝑡 ;𝜃,Y0(𝑡)

)
(3.9)

and where Y0 is the solution to

dY0

d𝑡
= 𝛼 (𝑡,Y0), Y0(𝑠) = X, (3.10)

with 𝛼 defined by

𝛼 (𝑡,Y) = 1
2𝜋

∫ 2𝜋

0
{∇Z(𝑡 ;𝜃,Y)}−1

{
a(𝑡,Z(𝑡 ;𝜃,Y)) − 𝜕Z

𝜕𝑡
(𝑡 ;𝜃,Y)

}
𝑑𝜃 .

Remark 3.3.1. We remark that the limit model in (3.10) does not contain high oscillations
in time so that cheap numerical schemes can be used to compute Y0. Then, when Z is known
in (3.6), we obtain the term X0 by (3.9), as an approximation of the solution X𝜀 in the sense
of (3.8). Though obtained at a low computational cost, the approximation X0 still contains
information about the high oscillations in the solution, through the operator Z.
These facts underline that the solution to the limit model given by (3.9)-(3.10) is a good
candidate for a coarse solving in the parareal framework.

In the subsequent sections, we develop this framework for equations of the type of equation
(3.1), by using the notation X = (x, v)𝑇 , where, as in classical mechanics, x = (x1, x2, x3)𝑇
stands for the position vector and v = (v1, v2, v3)𝑇 for the velocity vector. In this setting,
it is important to note the particular form of the system (3.6). The solution Z captures
only the rotation of the particle velocity following the magnetic field: Z = (xZ, vZ)𝑇 is the
solution to 

dxZ
d𝜃

= 0, xZ(0) = x,

dvZ
d𝜃

= vZ × B(xZ), vZ(0) = v.

This motion is assumed to be 2𝜋-periodic in the theory we use. We denote in the sequel
the cyclotron period in time by 𝑃 = 2𝜋𝜀 and the cyclotron frequency by 1/𝜀, which are
associated to the full system (3.1).

3.4 The case of a constant magnetic field

In this section we consider equation (3.1) provided with a constant magnetic field B𝜀 =−→𝑒1 ,
where {−→𝑒1,

−→𝑒2,
−→𝑒3} is the frame of R3 and with a given external electric field. In this way, the
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term v𝜀 × B𝜀 (x𝜀) in the velocity equation of (3.1) writes (v𝜀)⊥ = (0, (v𝜀)3,−(v𝜀)2)𝑇 . Thus,
we can see that the basic assumption of periodicity of the solution of (3.6) is satisfied. The
common feature of the test cases we treat in this section is that we can compute analytically
the solutions of equation (3.1) and of the corresponding reduced model. Therefore, when
applying the parareal algorithm we will be able to use the exact flows for the fine and the
coarse solvers.

3.4.1 A uniform time varying electric field

In this section, we take an electric field which is only highly oscillating in time. In this
case, system (3.1) writes

dx𝜀
d𝑡

= v𝜀, x𝜀 (𝑠) = x,

dv𝜀
d𝑡

=
1
𝜀
(v𝜀)⊥ + E

( 𝑡
𝜀

)
, v𝜀 (𝑠) = v,

(3.11)

where E has the form E(𝜏) =
(
𝐸1, 𝐸2(𝜏), 𝐸3(𝜏)

)𝑇 , with 𝐸1 ∈ R and 𝐸2, 𝐸3 are 2𝜋-periodic
functions, see [28, Section 3.1]. This system can be used for modelling ion cyclotron
resonance with application in isotope separation in plasmas, see [29] and the references
therein. In magnetized plasmas, the ions are heated by an oscillating perpendicular electric
field at frequencies corresponding to the ion cyclotron frequency. Thus, the cyclotron
resonance leads to a growth of the amplitude of motion in time. In the sequel, we consider
for illustration the following electric field

𝐸1 = 0, 𝐸2(𝜏) = sin(𝜏), 𝐸3(𝜏) = cos(𝜏). (3.12)

However, all the following results can be derived in a similar form for a general electric
field with the above properties. Next, we need the following matrices denoted by

𝑃 =
©­«

1 0 0
0 0 0
0 0 0

ª®¬, 𝑅(𝜃 ) = ©­«
1 0 0
0 cos𝜃 sin𝜃
0 − sin𝜃 cos𝜃

ª®¬,R(𝜃 ) = ©­«
0 0 0
0 sin𝜃 1 − cos𝜃
0 cos𝜃 − 1 sin𝜃

ª®¬. (3.13)

It is convenient to put the solution of (3.11)-(3.12) in the form(
x𝜀 (𝑡)
v𝜀 (𝑡)

)
= A

(
x
v

)
+ B, (3.14)

where the 6 × 6 matrix A and the vector B are given by

A =

(
𝐼3 (𝑡 − 𝑠)𝑃 + 𝜀R

(
𝑡−𝑠
𝜀

)
𝑂3 𝑅

(
𝑡−𝑠
𝜀

) )
and

B =

(
𝜀 (𝑡 − 𝑠)

(
0,− cos(𝑡/𝜀), sin(𝑡/𝜀)

)𝑇 + 𝜀2 (0, sin(𝑡/𝜀) − sin(𝑠/𝜀), cos(𝑡/𝜀) − cos(𝑠/𝜀)
)𝑇

(𝑡 − 𝑠)
(
0, sin(𝑡/𝜀), cos(𝑡/𝜀)

)𝑇 )
,
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with 𝐼3 the 3 × 3 identity matrix and 𝑂3 the 3 × 3 zero matrix.

Next, we derive the reduced model for equation (3.11). We apply [28, Theorems 3.1, 3.2] to
equations (3.11)-(3.12) to obtain the first order two-scale model. The approximation of the
solution is

G(𝑡) =
©­­­«
x0

(
𝑡,
𝑡 − 𝑠
𝜀

)
v0

(
𝑡,
𝑡 − 𝑠
𝜀

) ª®®®¬ + 𝜀
©­­­«
x1

(
𝑡,
𝑡 − 𝑠
𝜀

)
v1

(
𝑡,
𝑡 − 𝑠
𝜀

) ª®®®¬ , (3.15)

where the terms in the expansion are given by(
x0(𝑡, 𝜃 )
v0(𝑡, 𝜃 )

)
=

(
y0(𝑡)

𝑅(𝜃 ) u0(𝑡)

)
(3.16)

and (
x1(𝑡, 𝜃 )
v1(𝑡, 𝜃 )

)
=

©­«
y1(𝑡) + R(𝜃 ) u0(𝑡)

𝑅(𝜃 ) u1(𝑡) + 𝑅(𝜃 )
(∫ 𝜃

0
𝑑𝜎 − 𝜃

2𝜋

∫ 2𝜋

0
𝑑𝜎

) (
𝑅(−𝜎)E(𝜎)

) ª®¬ . (3.17)

Then, in the particular case of the electric field in (3.12), we have that
(
y0(𝑡), u0(𝑡)

)
is

solution to
dy0

d𝑡
=

©­«
(u0)1

0
0

ª®¬ , du0

d𝑡
=

©­«
0
0
1

ª®¬ and
{
y0(𝑠) = x,
u0(𝑠) = v, (3.18)

with (x, v) the initial condition in (3.11) and that
(
y1(𝑡), u1(𝑡)

)
is solution to

dy1

d𝑡
=

©­«
(u1)1
−1
0

ª®¬ , du1

d𝑡
= 0 and

{
y1(𝑠) = 0,
u1(𝑠) = 0. (3.19)

Equations (3.18)-(3.19) are easy to solve, their solutions are{
y0(𝑡) =

(
v1(𝑡 − 𝑠) + x1, x2, x3

)𝑇
,

u0(𝑡) =
(
v1, v2, (𝑡 − 𝑠) + v3

)𝑇
,

and respectively {
y1(𝑡) =

(
0,−(𝑡 − 𝑠), 0

)𝑇
,

u1(𝑡) =
(
0, 0, 0

)𝑇
.

Replacing these formulas in (3.16)-(3.17) and getting the result in (3.15) we obtain the
analytical form of the first-order two-scale approximation G(𝑡). However, it is interesting
to write G as the solution of the original system was derived in equation (3.14). We have

G(𝑡) = A
(
x
v

)
+ C, (3.20)
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where the matrix A is as in (3.14) and C is given by

C =

(
𝜀 (𝑡 − 𝑠)

(
0,− cos((𝑡 − 𝑠)/𝜀), sin((𝑡 − 𝑠)/𝜀)

)𝑇
(𝑡 − 𝑠)

(
0, sin((𝑡 − 𝑠)/𝜀), cos((𝑡 − 𝑠)/𝜀)

)𝑇 )
.

Remark 3.4.1. We notice that in the general case where E has the form

E(𝜏) =
(
𝐸1, 𝐸2(𝜏), 𝐸3(𝜏)

)𝑇
, with 𝐸1 ∈ R and 2𝜋-periodic functions𝐸2, 𝐸3,

the solutions of the full model and of the reduced one keep similar expressions to those in
(3.14) and (3.20) respectively. More precisely, the matrix A will be the same, the difference
appearing in the vectors B and C which will contain averages in the fast variable against
sin(·) and cos(·) of the functions 𝐸2 and 𝐸3.

3.4.2 A non uniform stationary electric field

In this part, we consider an electric field which is not dependent of time but of space and
we use the framework in [28, Section 3.2]. In this case, system (3.1) writes

dx𝜀
d𝑡

= v𝜀, x𝜀 (𝑠) = x,

dv𝜀
d𝑡

=
1
𝜀
(v𝜀)⊥ + E(x𝜀), v𝜀 (𝑠) = v.

(3.21)

Then, following a standard strategy we can find an explicit form of a linear application
E leading to highly oscillating solution but which is bounded in time. Nevertheless, by
taking in (3.21) the electric field given by

E(x) = 𝑐 ©­«
−x1
x2/2
x3/2

ª®¬ , (3.22)

with an arbitrary constant 𝑐 > 0, the system describes the dynamics of a charged particle
in an ideal Penning trap [65] (we fix to 1 both the charge and the mass of the particle).
Under the condition 𝜀 <

√︁
1/(2𝑐), the solution of (3.21)-(3.22) is

x𝜀 (𝑡) = ©­«
𝑐1 cos(

√
𝑐 (𝑡 − 𝑠)) + 𝑐2 sin(

√
𝑐 (𝑡 − 𝑠))

𝑎1 sin(𝑎𝜀 (𝑡 − 𝑠)) − 𝑎2 cos(𝑎𝜀 (𝑡 − 𝑠)) + 𝑏1 sin(𝑏𝜀 (𝑡 − 𝑠)) − 𝑏2 cos(𝑏𝜀 (𝑡 − 𝑠))
𝑎1 cos(𝑎𝜀 (𝑡 − 𝑠)) + 𝑎2 sin(𝑎𝜀 (𝑡 − 𝑠)) + 𝑏1 cos(𝑏𝜀 (𝑡 − 𝑠)) + 𝑏2 sin(𝑏𝜀 (𝑡 − 𝑠))

ª®¬ ,
v𝜀 (𝑡) =

dx𝜀
d𝑡

(𝑡), (3.23)

where

𝑎𝜀 =
1 +

√
1 − 2𝑐𝜀2

2𝜀
, 𝑏𝜀 =

1 −
√

1 − 2𝑐𝜀2

2𝜀
, (3.24)

and 𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑐1, 𝑐2 are constants to be found from the initial condition.
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Remark 3.4.2.
A Penning trap is a device for storing charged particles using a homogeneous magnetic
field and an inhomogeneous quadrupole electric field. The constant 𝑐 in (3.22) entails the
geometry of the trap and the voltage between the electrodes, while 1/𝜀 is the magnitude
of the magnetic field. The condition for having a stable periodic trajectory [65] is

1
𝜀
>
√

2𝑐. (3.25)

Otherwise, the particle escapes from the trap due to a magnetic field which is weaker
than the electric field. This corresponds to a solution with growing amplitude of motion
in time.

1.2. We notice that the three frequencies
√
𝑐 , 𝑎𝜀 , and 𝑏𝜀 are denoted in literature [65] by 𝜔𝑥 ,

𝜔+, and 𝜔− respectively, and they verify the relation

𝜔± =
1
2
(
𝜔𝑐𝑦 ±

√︃
𝜔2
𝑐𝑦 − 2𝜔2

𝑥

)
,

where 𝜔𝑐𝑦 is the cyclotron frequency. In our notation 𝜔𝑐𝑦 = 1/𝜀.

3. It is clear that the motion in the −→𝑒1 direction is decoupled from the motion in the other
two directions. More precisely, a charged particle performs in an ideal Penning trap
three independent motions with characteristic frequencies: a modified cyclotron motion
(at frequency 𝜔+), the axial motion (at frequency 𝜔𝑥 ), and the magnetron motion or
the E × B drift (at frequency 𝜔−).

4. We have 𝑎𝜀 ∼ 1
𝜀
and 𝑏𝜀 ∼ 𝜀 when 𝜀 → 0. Therefore, the solution in (3.23) oscillates in

time at three scales, 2𝜋𝜀, 1 and 2𝜋/𝜀. In addition, we can identify initial conditions
leading to solutions which are oscillating at the desired scale(s) by equating to zero the
corresponding coefficients.

Next, we derive the reduced model for equation (3.21). More precisely, we apply [28,
Theorem 3.3] to write the specific first order two-scale model to the system (3.21)-(3.22).
Recalling the formula in [28, Theorem 3.3], the first-order approximation of the solution
to the model (3.21)-(3.22) is given by

G(𝑡) =
©­­­«
x0

(
𝑡,
𝑡 − 𝑠
𝜀

)
v0

(
𝑡,
𝑡 − 𝑠
𝜀

) ª®®®¬ + 𝜀
©­­­«
x1

(
𝑡,
𝑡 − 𝑠
𝜀

)
v1

(
𝑡,
𝑡 − 𝑠
𝜀

) ª®®®¬ , (3.26)

where, as in section 3.4.1, the terms in the expansion are given by(
x0(𝑡, 𝜃 )
v0(𝑡, 𝜃 )

)
=

(
y0(𝑡)

𝑅(𝜃 ) u0(𝑡)

)
(3.27)

and (
x1(𝑡, 𝜃 )
v1(𝑡, 𝜃 )

)
=

(
y1(𝑡) + R(𝜃 ) u0(𝑡)

𝑅(𝜃 ) u1(𝑡) + R(𝜃 ) E(y0(𝑡))

)
. (3.28)

66



3.5 The case of a variable magnetic field

Then, in the particular case of the electric field in (3.22), we have that
(
y0(𝑡), u0(𝑡)

)
is

solution to

dy0

d𝑡
=

©­«
(u0)1

0
0

ª®¬ , du0

d𝑡
=

©­«
−𝑐 (y0)1

0
0

ª®¬ and
{
y0(𝑠) = x,
u0(𝑠) = v, (3.29)

with (x, v) the initial condition in (3.21) and that
(
y1(𝑡), u1(𝑡)

)
is solution to

dy1

d𝑡
=

©­«
(u1)1
𝑐
2 (y

0)3
−𝑐

2 (y
0)2

ª®¬ , du1

d𝑡
=

©­«
−𝑐 (y1)1
−𝑐

2 (u
0)3

𝑐
2 (u

0)2

ª®¬ and
{
y1(𝑠) = 0,
u1(𝑠) = 0. (3.30)

Equations (3.29)-(3.30) are easy to solve, their solutions are{
y0(𝑡) =

(
x1 cos(

√
𝑐 (𝑡 − 𝑠)) + v1√

𝑐
sin(

√
𝑐 (𝑡 − 𝑠)), x2, x3

)𝑇
,

u0(𝑡) =
(
− x1

√
𝑐 sin(

√
𝑐 (𝑡 − 𝑠)) + v1 cos(

√
𝑐 (𝑡 − 𝑠)), v2, v3

)𝑇
,

and respectively {
y1(𝑡) =

(
0, 𝑐2x3(𝑡 − 𝑠), −𝑐

2x2(𝑡 − 𝑠)
)𝑇
,

u1(𝑡) =
(
0, −𝑐

2v3(𝑡 − 𝑠), 𝑐2v2(𝑡 − 𝑠)
)𝑇
.

Replacing (3.27)-(3.28) in (3.26), we obtain

G(𝑡) =
(

y0(𝑡)
𝑅( 𝑡−𝑠

𝜀
)u0(𝑡)

)
+ 𝜀

(
y1(𝑡) + R( 𝑡−𝑠

𝜀
)u0(𝑡)

𝑅( 𝑡−𝑠
𝜀
)u1(𝑡) + R( 𝑡−𝑠

𝜀
)E(y0(𝑡))

)
, (3.31)

and thus, getting the analytic expressions of y0, u0, y1, u1, E and of matrices 𝑅 and R in
the above formula leads to the analytic form of the approximation G(𝑡) to the solution(
x𝜀 (𝑡), v𝜀 (𝑡)

)
when 𝜀 is small enough and at any time 𝑡 ∈ [𝑠, 𝑠 +Δ𝑆]. The obtained formula

will be used in section 3.6 for the coarse solver.

3.5 The case of a variable magnetic field

In this section we study the case of a magnetic field with a strong part which is variable
and a bounded part which is constant (see [28, Section 3.4]). In addition, we restrict to the
case without electric field. More precisely, we consider equation (3.1) in the form

dx𝜀
d𝑡

= v𝜀, x𝜀 (𝑠) = x,

dv𝜀
d𝑡

=
1
𝜀

(
v𝜀 ×M(x𝜀)

)
+ v𝜀 × −→𝑒3, v𝜀 (𝑠) = v,

(3.32)

where

M(x) = 1√︁
x12 + x22

©­«
−x2
x1
0

ª®¬ .
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We first notice that the assumption on the 2𝜋-periodicity of the solution Z to equation (3.6)
is satisfied. Then, unlike the test cases in section 3.4, we do not have an analytic expression
for the solution of equation (3.32). The reduced model we will use in the parareal method
for this case, is the two-scale limit and not the first order approximation. The reason is
that using the first order term in the asymptotic expansion becomes almost impossible
due to its complex form (see [28, Theorem 3.6 & Appendix A]).

Next, we detail the two-scale limit model approximating equation (3.32) when 𝜀 → 0.
Following [28, Theorem 3.6], the limit term in the expansion is given by(

x0(𝑡, 𝜃 )
v0(𝑡, 𝜃 )

)
=

(
y0(𝑡)

Zv
(
𝑡 ;𝜃, y0(𝑡), u0(𝑡)

) )
,

where the components of Z(𝑡 ;𝜃, x, v) =
(
Zx(𝑡 ;𝜃, x, v),Zv(𝑡 ;𝜃, x, v)

)𝑇 are Zx(𝑡 ;𝜃, x, v) =
x andZv(𝑡 ;𝜃, x, v) = 𝐶 (𝜃, x)v, with

𝐶 (𝜃, x) =
©­­­­­«

x1
2 cos𝜃+x2

2

x12+x22
x1x2 (cos𝜃−1)

x12+x22 − x1 sin𝜃√
x12+x22

x1x2 (cos𝜃−1)
x12+x22

x2
2 cos𝜃+x1

2

x12+x22 − x2 sin𝜃√
x12+x22

x1 sin𝜃√
x12+x22

x2 sin𝜃√
x12+x22

cos𝜃

ª®®®®®¬
and where

(
y0(𝑡), u0(𝑡)

)
is solution to

dy0

d𝑡
= 𝐴(y0)u0,

du0

d𝑡
= 𝛽 (y0, u0) and

{
y0(𝑠) = x,
u0(𝑠) = v, (3.33)

with (x, v) the initial condition in (3.32) and with

𝐴(y) = 1
y12 + y22

©­«
y2

2 −y1y2 0
−y1y2 y1

2 0
0 0 0

ª®¬ , 𝛽 (y, u) =
©­­«

u2 (u1y2−u2y1)
y12+y22

u1 (u2y1−u1y2)
y12+y22

0

ª®®¬ .
Thus, in this case, the approximation G(𝑡) to the solution

(
x𝜀 (𝑡), v𝜀 (𝑡)

)
when 𝜀 is small

enough, is obtained first by solving the system (3.33) and then

G(𝑡) =
(

y0(𝑡)
𝐶

(
𝑡−𝑠
𝜀
, y0(𝑡)

)
u0(𝑡)

)
. (3.34)

3.6 Numerical results

First, in section 3.6.1 we analyze the time interval of validity and the accuracy of the
reduced models for each test case. Then, we present numerical experiments illustrating
the convergence of the parareal algorithm. In all the cases we consider, we obtained the
numerical convergence with a number of parareal iterations 𝐾 much smaller than the
number 𝑁 of the time slices of the interval [0,𝑇 ].
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The reduced models that we use are zero-th or first order approximations of the initial
stiff equation until a final time of order 1. The parareal algorithm allows us to perform
simulations in long times, of order 1/𝜀 or larger, by using the reduced model on time
intervals where the latter is proved to be valid. For each case, we study the convergence
of the algorithm when 𝜀 is fixed and also when making the parameter 𝜀 vanishing. This
last issue is meaningful from the application viewpoint, since in realistic plasma physics
phenomena such parameters are not fixed to a single value during the simulation but they
can decrease in time.

3.6.1 Validity of the reduced models

The theorems from [28] prove convergence over time intervals of length 1 of the original
models to the reduced models when the parameter 𝜀 vanishes. Therefore we cannot expect,
in theory, that the approximation be valid over intervals of length 1/𝜀 or larger. In addition,
to the best of our knowledge, there are no estimates for the rate of convergence. In this
section, we consequently assess numerically the quality of approximation of the reduced
models in valid final times, i.e. in times of order O(1). We then check how large the final
time can be such that the reduced models still provide satisfactory approximations. To
this end, we plot the relative error

Error(𝑇𝑛) =
∥G𝑛 − X(𝑇𝑛)∥1

∥X(𝑇𝑛)∥1
, (3.35)

where ∥ · ∥1 stands for the ℓ1 norm in R6, G𝑛 stands for the reduced model solution at time
𝑇𝑛 and X(𝑇𝑛) stands for the original model solution at time 𝑇𝑛 . Recall that G𝑛 and X(𝑇𝑛)
have analytic forms for the test case in section 3.4.2, whereas numerical approximations
are used for both for the test case in section 3.5. Next, we do not discuss the case described
in section 3.4.1 since writing the solutions of the original and the reduced models in the
forms (3.14) and (3.20) respectively, shows that convergence occurs after one iteration
(see next section).

For the case considered in section 3.4.2 we recall that both the original and the first-order
reduced models have analytic solutions given by (3.23) and (3.31). First, we remark that the
exact solutions corresponding to the values of 𝜀 ∈ {0.1, 0.04} are not well-approximated
by the reduced model, see Fig. 3.3. We can see that beyond the final time 𝑇 = 50 the
approximations are not acceptable anymore. In contrast, for 𝜀 = 0.01 or smaller, the relative
error is below 0.1 till the final time 𝑇 = 2500, meaning that 𝜀 is small enough so that the
reduced model provides a good approximation. Thus, if 𝜀 = 0.01, we obtain an acceptable
relative error at the final time 𝑇 = 2500, which means almost 40000 cyclotron orbits.

We now consider the test case of section 3.5. Here, we solve both models numerically,
since no analytic expressions of their solutions are available. More precisely, we solve the
system (3.32) by the symmetric and volume-preserving method 𝐺4 of order 4 described
in [56] and the limit model in (3.33) by the explicit Runge-Kutta 4 method. We use for the
limit model approximation a time step equal to 0.625, whereas for the original dynamics
we use a time step about 2𝜋𝜀/80 to accurately solve the cyclotron motion. We consider
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two initial conditions
x = (0, 1, 1)𝑇 , v = (1, 𝜀, 0)𝑇 (3.36)

and
x = (1, 1, 1)𝑇 , v = (1, 𝜀, 0)𝑇 . (3.37)

Let us do some qualitative remarks about the trajectories of both particles. First, notice
that the solutions obtained with these initial conditions behave differently: for the first
particle, the solution oscillates at two time scales (a rapid oscillation of order 𝜀 and a slower
oscillation of order 1) whereas for the second one, the solution entails additionally a slow
motion, consisting of a linear drift in the −→𝑒3 direction (see Fig. 3.1). Also, the amplitude of
the rapid oscillation in position in the −→𝑒3 direction is of order 𝜀2 for one particle and of
order 𝜀 for the other.
Then, as we can deduce from (3.33), the two-scale limit model does not capture the

motion in the −→𝑒3 direction, providing only an approximation of the projected motion on
the perpendicular plane to −→𝑒3 . Thus, the limit model misses the −→𝑒3-drift motion of the
particle in (3.37). Eventually, the right panel in Fig. 3.1 shows that the planar angular
velocity of the particle in (3.36) is larger than that of the particle in (3.37). We plot the
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Figure 3.1: The position trajectories until final time 5 of two particles: (3.36) at the left
panel and (3.37) at the center, following the model in (3.32). The projection of
their motion on the perpendicular plane to ®𝑒3 is at the right panel.

relative error of the reduced (limit) model for several values of 𝜀 in Fig. 3.4. We can see
that the behaviour of the error displays significant difference between these two initial
conditions. More precisely, we observe that at final time 𝑇 = 100, the reduced model does
not provide a good approximation of the original model when 𝜀 ∈ {0.1, 0.05} in the case of
the initial condition given by (3.37). On the contrary, when the initial condition is given
by (3.36), the error is acceptable. However, for both particles, we deduce from Fig. 3.4
that the errors are large for times of order 2500, for any value of 𝜀. In addition, when
diminishing the time step for the numerical solver of the reduced model, we observe that
the error drastically decreases when using the initial condition in (3.36). This result does
not hold for the initial condition in (3.37), see Fig. 3.5.

In conclusion, we obtained for the first test case that the reduced model accurately ap-
proximates the original model in large times if 𝜀 is sufficiently small. For the second test
case the reduced model fails to approximate the original dynamics in long times for every
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Figure 3.2: The position trajectories until final time 50 of two particles: (3.36) at the left
panel and (3.37) at the right, following the model in (3.32).

considered value of 𝜀. We show in the next sections that the parareal algorithm allows to
enhance the situation.
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Figure 3.3: Evolution with respect to time of the relative errors of the reduced model
solution in (3.31) with respect to the solution in (3.23) with the initial condition
in (3.38), in short time (at left) and long time (at right), for several values of 𝜀.

3.6.2 The test cases with strong constant magnetic field

First, we discuss about the case in section 3.4.1 of a uniform but time varying electric force
in equation (3.11). Assume we fix an initial condition and we fix 𝜀 to a small value, say
𝜀 = 0.01. Then we use the exact solutions in (3.14) and (3.20) for the fine propagator F
and respectively the coarse solver G. We observe that the parareal algorithm writes in
this case

𝑈 𝑘+1
𝑛+1 = F (𝑇𝑛+1,𝑇𝑛,𝑈

𝑘+1
𝑛 ), ∀𝑛 ∈ {0, . . . , 𝑁 − 1},∀𝑘 ≥ 0.

In particular, for 𝑘 = 1 we have

𝑈 1
𝑛+1 = F (𝑇𝑛+1,𝑇𝑛,𝑈

1
𝑛 ), ∀𝑛 ∈ {0, . . . , 𝑁 − 1}
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Figure 3.4: Evolution with respect to time of the relative errors of the numerical approxi-
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Figure 3.5: Evolution with respect to time of the relative errors of the reduced model in
(3.34) with respect to the solution of (3.32) with the initial condition in (3.37) (at
left) and that in (3.36) (at right). The fast cyclotron period is denoted by 𝑃 = 2𝜋𝜀
where 𝜀 = 0.01. Two time steps for the reduced model are used: 0.625 ∼ 10𝑃
and 0.3125 ∼ 5𝑃 .

and therefore, since the exact flows are used for the propagators F and G, the parareal
algorithm provides an exact solution in one iteration. Though easy to solve, this test case
underlines the strength of the strategy: thanks to the writing of the original and reduced
flows as (3.14) and (3.20) respectively, the use of the reduced model through the parareal
algorithm leads to high accuracy in one iteration, whereas the error of the reduced model
alone is very large (of order 1, following our simulations when 𝜀 is fixed to 𝜀 = 0.01).

We now treat the case in section 3.4.2. We consider the initial condition

x = (1, 1, 1)𝑇 , v = (1, 1, 1)𝑇 (3.38)

for solving the model (3.21)-(3.22). We set 𝑐 = 2 and we vary 𝜀 verifying (3.25). The solution
issued from this initial condition oscillates at three definite time scales (see Remark 3.4.2).
• We first fix 𝜀 = 0.01. As a first approach, we apply the parareal method in a standard
way, meaning that we use for the coarse propagator G the classical Runge-Kutta 4 method
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for the initial model, with a bigger time step than that for the fine propagator. However,
the coarse time step still needs to solve the smallest scale in order to have stability and
reasonable accuracy. In this case, we have only to investigate the needed number of the
parareal iterations for achieving convergence. More precisely, we first set the final time
𝑇 = 2𝜋𝜀 (one rapid oscillation), 𝑁 ∈ {8, 16} (larger 𝑁 is not interesting), Δ𝑡 = 𝑇 /𝑁 , the
number of coarse time steps on each time slice𝑀𝐺 = 1 and the number of fine time steps
on each time slice𝑀𝐹 = 80/𝑁 . Thus, the fine time step 𝛿𝑡 = 𝑇 /80 is fixed with respect to
𝑁 and additionally is small enough for capturing the smallest scale. We plot at the top of
Fig. 3.6 the relative error (in 𝐿∞ [0,𝑇 ]) between the solution X(𝑡𝑛) obtained with the fine
solver and the parareal solution𝑈 𝑘

𝑛 , as a function of the number 𝑘 of parareal iterations

Error(𝑘) =
max𝑛∈{1,...,𝑁 } ∥𝑈 𝑘

𝑛 − X(𝑡𝑛)∥1

max𝑛∈{1,...,𝑁 } ∥X(𝑡𝑛)∥1
, (3.39)

where ∥ · ∥1 stands for the ℓ1 norm in R6. We obtain convergence of the algorithm for
small 𝑘 (4 or 5), however in a case of a too small 𝑇 from the application point of view.
When taking a larger final time𝑇 = 8𝜋𝜀 (4 oscillations) with𝑀𝐹 = 320/𝑁 and 𝛿𝑡 = 𝑇 /320,
we have convergence of parareal for 𝑘 very close to 𝑁 (see the bottom of Fig. 3.6 for
𝑁 ∈ {8, 16}). We can conclude that this parareal strategy provides convergence after
𝑘 ≲ 𝑁 iterations and with a ratio Δ𝑡/𝛿𝑡 ∼ 1, which is not an interesting approach.
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Figure 3.6: Convergence rate of standard parareal algorithm for the test case in section 3.4.2.

•We now propose to use for the coarse solver G the reduced model in section 3.4.2 and
we thus make use of the analytic expression in (3.31). In addition, we use for the fine

73



3 Reduced Model-Based Parareal Simulations of Oscillatory Singularly Perturbed Ordinary
Differential Equations

𝑁 = 2 𝑁 = 4 𝑁 = 8 𝑁 = 16 𝑁 = 32 𝑁 = 64 𝑁 = 128
Δ𝑡/𝑃 39.79 19.89 9.95 4.97 2.49 1.24 0.62

Table 3.1: Numbers of cyclotron periods (𝑃 = 2𝜋/𝑎𝜀) enclosed in a time step of the coarse
solver for several values of 𝑁 . We have 𝑇 = 5, Δ𝑡 = 𝑇 /𝑁 , and 𝜀 = 0.01.

solver F the explicit form of the solution in (3.23). We start by illustrating the convergence
of the algorithm in short time simulations. We fix the final time 𝑇 = 5 and the interval
[0,𝑇 ] is partitioned in 𝑁 ∈ {2, 4, 8, 16, 32, 64, 128} sub-intervals. The big time step is thus
Δ𝑡 = 𝑇 /𝑁 . It is interesting to note the size of the coarse time step Δ𝑡 with respect to the
small cyclotron period 𝑃 , when 𝑁 varies (see Table 3.1). Larger is Δ𝑡/𝑃 , larger is the ratio
Δ𝑡/𝛿𝑡 and thus, cheaper is the coarse propagator.
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Figure 3.7: Convergence of the parareal algorithm for the Penning trap test case at short
final time 𝑇 = 5. The fast cyclotron period is denoted by 𝑃 ∼ 2𝜋𝜀.

We plot in Fig. 3.7 the relative error in 𝐿∞ [0,𝑇 ] defined in (3.39) by taking the solution
in (3.23) for X(𝑡𝑛). The case 𝑘 = 0 corresponds to the relative error of the solution of
the reduced model with respect to the exact solution of the original model. We obtained
convergence of the algorithm after a maximum of 6 iterations for all the considered values
of 𝑁 .

•We now analyze the behaviour of the parareal algorithm when 𝜀 decreases, in which case
the reduced model becomes a more accurate approximation for the initial equation. We
display in Fig. 3.10 the relative errors illustrating the convergence of the parareal algorithm.
We plot for each value of 𝑁 in the set {8, 16, 32, 64} the errors for several values of 𝜀 at final
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time 𝑇 = 500𝜀 which corresponds to approximately 80 cyclotron periods. As expected, the
initial errors of the parareal method (i.e. 𝑘 = 0) are decreasing when 𝜀 becomes smaller.
Also, the smaller is 𝜀, the faster is the convergence of the parareal algorithm since the
better is the approximation of the reduced model. We already observed in section 3.6.1
that for 𝜀 ∈ {0.1, 0.04}, the reduced model induces a much bigger error than for the other
smaller values of 𝜀. However, with the parareal strategy we obtain acceptable convergence
results for 𝜀 = 0.1, which entails a O(1) error for the reduced model: the parareal method
convergences after 𝑘 = 10 (resp. 𝑘 = 14) iterations when 𝑁 = 32 (resp. 𝑁 = 64). Except
for the values of 𝜀 ∈ {0.1, 0.04}, the convergence of the parareal algorithm for all the
considered values of 𝑁 is obtained after a maximum of 𝑘 = 5 iterations. We also emphasize
the achievement of an uniform error with respect to 𝜀.

• Then, we consider the more challenging case of a long time simulation (of order 1/𝜀). We
fix the final time 𝑇 = 600 ∼ 2𝜋/𝑏𝜀 , where 𝑏𝜀 is defined in (3.24) and we take 𝑁 in the set
{120, 240, 480, 960}. As previously, we plot in Fig. 3.8 the relative errors between the exact
solution and the parareal solution, as a function of the number 𝑘 of parareal iterations. For
this case, we can conclude with underlying the strength of using the parareal algorithm.
The reduced model is not proved to be an approximation of the initial model in time
of order 1/𝜀. However, in a few number of parareal iterations we obtain high accuracy
by applying the reduced model on valid intervals. Thus, if parallelism is to be used, the
computational cost in the case of 𝑁 = 480 (resp. 𝑁 = 960) could drastically be reduced,
achieving a round-off error in only 7 parareal iterations. In this case, a time slice includes
approximately 20 (resp. 10) rapid oscillations.
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Figure 3.8: Convergence of the parareal algorithm for the Penning trap test case at final
time 𝑇 = 600. The fast cyclotron period is denoted by 𝑃 ∼ 2𝜋𝜀.
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• Finally, we show the outcome of much longer simulations, where we keep the coarse time
step fixed while the final time is increased with 𝑁 . This framework is relevant for applica-
tions where one needs to integrate over very long times. We fix 𝜀 = 0.01 and the coarse time
step to Δ𝑡 = 1.25. The final time 𝑇 is chosen in the set {2000, 4000, 8000, 16000, 32000},
see Fig. 3.9. Setting 𝑁 = 25600, we observe that when 𝑇 = 32000 , i.e. 𝑇 larger than
500000 cyclotron orbits, the convergence of the parareal algorithm is obtained in 𝑘 = 21
iterations, with an error around 10−13. In our opinion this is an excellent result which is
due to the accuracy of the reduced model. Being of first order, the model provides good
approximations of the slow motion and of the fast oscillation.
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Figure 3.9: Convergence of the parareal algorithm for the Penning trap test case when the
coarse time step is kept constant to 1.25 and the final time 𝑇 is increasing with
𝑁 . The fast cyclotron period is denoted by 𝑃 ∼ 2𝜋𝜀.

3.6.3 The test case with strong variable magnetic field

We now consider solving the problem in (3.32) with the initial conditions in (3.36) and
(3.37). As in the previous section, we discuss the results of our simulations when 𝜀 = 0.01
in final times of order 1 and 1/𝜀, and then we perform simulations in short final times by
varying the values of 𝜀. We recall that we use a symmetric and volume-preserving scheme
and the classical Runge-Kutta 4 method for the models in (3.32) and (3.33) respectively, for
the fine and respectively the coarse propagators. However, while the F propagator needs
a time step 𝛿𝑡 which is a fraction of the rapid oscillation (𝑃 ∼ 2𝜋𝜀), the G propagator is
computed with a time step Δ𝑡 much larger than 2𝜋𝜀 (see typical values in Table 3.1).

• We first set 𝜀 = 0.01. We fix the final time 𝑇 = 5 and we partitioned the interval
[0,𝑇 ] in 𝑁 ∈ {2, 4, 8, 16, 32, 64, 128} sub-intervals. The coarse time step is Δ𝑡 = 𝑇 /𝑁 and
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Figure 3.10: Convergence of the parareal algorithm in short final times, 𝑇 = 500𝜀 ∼ 80𝑃 ,
for several small values of 𝜀, for the test case in section 3.4.2.

the fine time step is fixed to 𝛿𝑡 = 𝑇 /6400, which is sufficiently small to solve the rapid
oscillation. We plot at the top of Fig. 3.11 the relative error defined in (3.39) of the parareal
solution with respect to the reference one computed with the F propagator. We observe
convergence after a maximum of 𝑘 = 9 iterations when 𝑁 ∈ {32, 64, 128} which could lead
to satisfactory speed-up if parallel processing is set up.

• Then, we plot in Fig. 3.12 the errors of the parareal algorithm when 𝜀 vanishes. For
a fixed number of time slices of [0,𝑇 = 500𝜀] we perform simulations when 𝜀 goes in
{0.01, 0.04, 0.01, 0.004, 0.001, 0.0004, 0.0001}. We find numerically the property of smaller
errors with smaller 𝜀, for every 𝑘 , due to the smaller error of the reduced model with
respect to the initial equation. We obtain unsatisfactory results when 𝜀 = 0.1, since we
recall from the left panel of Fig. 3.4 that the reduced model is not a good approximation at
𝑇 = 50 for this case. On the contrary, the value of 𝜀 = 0.04 leads to satisfactory parareal
results, when 𝑁 ∈ {32, 64}. For the other smaller values of the parameter, we observe
convergence of the algorithm for all 𝑁 after a maximum of 𝑘 = 9 iterations. As for the test
case in the previous section, we obtain uniform error with respect to 𝜀.

• However, the most interesting problem is that of a long time simulation. We now fix
𝑇 = 50 and we take 𝑁 in the set {20, 40, 80, 160}. A bigger value of 𝑇 can be treated
similarly, since the trajectories of both particles evolve as until 𝑇 = 50, with a linear
drift in the −→𝑒3 direction for the particle in (3.37) (see Fig. 3.2). The fine time step is set to
𝛿𝑡 = 𝑇 /64000. We plot the relative error at the bottom of Fig. 3.11. We obtained when 𝑁
is small much larger errors of the parareal algorithm for the particle in (3.36) because of
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its larger perpendicular angular velocity, as mentioned above. Indeed, when 𝑁 is small,
i.e. when the time step is big, the error of the limit model is too large so that the parareal
method (or the fine solver) can catch a convenient accuracy in a small number of iterations.
At the top of Fig. 3.11, 𝑁 = 2 means a coarse time step of almost 40 rapid oscillations;
we have the same remark for 𝑁 = 20 at the bottom of the figure. Nevertheless, we note
that in the interesting case of 𝑁 = 80 (resp. 𝑁 = 160), we achieve convergence after
only 𝑘 = 9 iterations. This value of 𝑁 corresponds to a coarse time step of almost 10
(resp. 5) rapid oscillations and to a ratio Δ𝑡/𝛿𝑡 of 800 (resp. 400). Thus, coupled to the
parallel computations of the fine solver, this strategy could be very effective in terms of
computational costs.

• Finally, we perform longer simulations, by keeping the coarse time step fixed while the
final time increases with 𝑁 . The obtained results (see Fig. 3.13) are not as good as those
reported in the previous section, as a consequence of the accuracy of the approximation
of the reduced model (compare Fig. 3.4 to Fig. 3.3). We fix 𝜀 = 0.01, the coarse time
step to Δ𝑡 = 1.25 and we use the initial condition in (3.37); smaller values of Δ𝑡 do not
significantly improve the error of the reduced model. As for the particle in (3.36), we fix
Δ𝑡 = 0.625, in order to approximate the slow circular motion with a similar accuracy as
for the other particle. When considering the initial condition in (3.37), the results of the
parareal algorithm are not fully satisfactory when the final time is large (see Fig. 3.13): for
example, when 𝑇 = 1000, i.e. almost 16000 cyclotron periods, we obtain an error of order
10−5 after less than 𝑘 = 60 iterations (recall 𝑁 = 800) but afterwards, the error decays
very slowly, a quite large number of parareal iterations being necessary to achieve a much
smaller error. The situation is completely different when using the initial condition in
(3.36). We obtain good convergence results of the parareal algorithm in large times: at
𝑇 = 1000, for 𝑁 = 1600 time slices, we achieve a 10−10 error after 𝑘 = 25 iterations.

To further understand the rationale behind the slow convergence of the algorithm for this
test case, we assess the long-term energy error, which is a major issue in applications. First,
we verified that the volume-preserving numerical scheme𝐺4, used as fine solver, preserves
the Hamiltonian of the system (3.32), at the accuracy of the machine precision. More
precisely, the Hamiltonian isH(x, v) = |v|2/2, since there is no electric term. Following
[34], we plot in Fig. 3.14 the error in the energy

H(x𝑘𝑛, v𝑘𝑛) − H (x0, v0) (3.40)

where (x0, v0) is the initial condition and (x𝑘𝑛, v𝑘𝑛) is the 𝑘-th iterate of the parareal algo-
rithm. We display, for both initial conditions given by (3.36) and (3.37), the energy error
corresponding to the first 6 parareal iterations and then, the 𝑘 = 10-th iterate respectively
the 𝑘 = 50-th iterate, taking into account when the parareal convergence is achieved (see
Fig. 3.13). We can see that the energy error of the particle in (3.36) has no large amplitude
oscillations in time and the convergence is quite fast, unlike the particle in (3.37). This is
in accordance with the results in Fig. 3.13.
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Figure 3.11: Convergence of the parareal algorithm for the test case in section 3.5 in short
final time 𝑇 = 5 ∼ 80𝑃 (at the top) for the initial conditions in (3.36) (left
panel) and (3.37) (right panel) and in longer time 𝑇 = 50 (at the bottom).

3.7 Conclusions and perspectives

In this paper, we proposed a coupling strategy using the limit model based on the two-
scale asymptotic expansion for the coarse propagator in the parareal algorithm, for ef-
ficiently solving oscillatory singularly perturbed ODEs which are characteristics of a
six-dimensional Vlasov equation. Rapid convergence of the parareal algorithm is obtained
in simulations of charged particles, tests of a Penning trap and of isotope separation by ion
cyclotron resonance and test of an example of strong variable magnetic field. The method
was shown to be accurate and efficient with a uniform convergence rate. The convergence
analysis as well as the Vlasov-Poisson equation using the same strategy will be studied in
the future work.
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Figure 3.12: Convergence of the parareal algorithm in short final times, 𝑇 = 500𝜀 ∼ 80𝑃 ,
for several small values of 𝜀, for the initial condition in (3.37), for the test case
in section 3.5.

Figure 3.13: Convergence of the parareal algorithm for the test case in section 3.5 when
the coarse time step Δ𝑡 is kept constant and the final time is increasing with
𝑁 . At the left panel: the initial condition in (3.36) and Δ𝑡 = 0.625. At the right
panel: the initial condition in (3.37) and Δ𝑡 = 1.25. The fast cyclotron period
is denoted by 𝑃 = 2𝜋𝜀.
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Figure 3.14: Evolution of the energy error defined in (3.40) of the parareal algorithm for the
test case in section 3.5, until the final time 𝑇 = 1000 = 15915𝑃 with 𝑃 = 2𝜋𝜀.
Left panel: the initial condition in (3.36) with Δ𝑡 = 0.625 for the coarse solver.
Right panel: the initial condition in (3.37) with Δ𝑡 = 1.25 for the coarse solver.
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Abstract

We construct a deflation preconditioner based on sparse QR factorization with tournament
pivoting strategy and nested dissection partitioning. This preconditioner aims at replacing
the smallest singular values which are close to zero by larger ones in order to improve
the convergence rate of Krylov methods, namely GMRES. We combine the deflation
preconditioner with block Jacobi preconditioner to obtain better convergence rate of
GMRES. We also present the deflation of singular vectors based on QR factorization and
discuss the comparison between strong RRQR deflated GMRES and SVD deflated GMRES.

Keywords: QR factorization, strong RRQR factorization, tournament pivoting, nested
dissection, deflation preconditioner, GMRES, SVD, block Jacobi preconditioner.

4.1 Introduction

In the context of parareal algorithm, two solvers are used to propagate the solution from
one time point to the next, these are the coarse and the fine solvers. The coarse solver
relies on a low order approximation that gives a coarse approximate for the solution
sequentially. In the opposite, the fine solver relies on a high order approximation and
gives a very accurate approximate for the solution. Despite of being computed in parallel,
the fine solver is often very expensive terms of computational cost, especially when
the size of the problem becomes large. It requires solving large sparse linear systems
arising from the discretization of the problem, which are often ill-conditioned, slowly
convergent and require a lot of computational efforts. For this, a promising approach is to
exploit the information generated from previous iterations, particularly in [38] the authors
used information generated from the fine solver of previous iterations to obtain a more
accurate approximation for the coarse solver by constructing an enhanced Krylov subspace
of known fine evolution. We know from [24, 78, 89, 99] that small eigenvalues of the
coefficient matrix can badly affect the convergence of the solver. The linear system changes
from one time step to the next, hence information generated from previous iterations can
be exploited, so recycling Krylov subspace solvers, see [82], namely the GCRO-DR [18] or
GMRES-DR [78] method can be used for the fine solver. Those methods are the Krylov
subspace solvers as Conjugate gradient and GMRES, but instead of executing alone, they
are combined with some deflation strategy to remove the smallest eigenvalues, and are
designed to be restarted to keep only some useful information for memory requirement
purposes, for more details see [24]. Following the work in [1], motivated by the work of
Simoncini studying the relation between the singular vectors associated to the smallest
singular values and the convergence of some restarted Krylov methods, see [96], in this
work, we also aim at studying the deflation of the singular vectors associated to the
smallest singular values. But instead of using the SVD factorization, we use the strong
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rank revealing QR (RRQR) factorization combined with tournament pivoting strategy
and nested dissection partitioning on 𝑨𝑇𝑨. Strong RRQR factorization was shown to
efficiently approximate the largest singular values, see [10, 19]. We show in our study that
it also provides good approximations for the smallest singular values with a reasonable
computational cost compared to the SVD factorization. By combining with the tournament
pivoting strategy, our goal is to obtain an efficient and highly parallel computation of the
space to be deflated in GMRES method. This strategy results in constructing a deflation
preconditioner which replaces the smallest singular values close to zero by much larger
ones so that GMRES will not suffer from bad convergence due to the impact of those
smallest singular values in the spectrum. Then by using additionally the block Jacobi
preconditioner, GMRES results in a much faster convergence rate. This chapter is organized
as follows, we recall the strong RRQR factorization in section 4.2 and the tournament
pivoting strategy in section 4.3. The combination between strong RRQR and tournament
pivoting strategy is presented in section 4.4. Section 4.5 is dedicated to the construction of
the deflation preconditioner. In section 4.6 we briefly recall the block Jacobi preconditioner
and the combination between the deflation and block Jacobi preconditioners. We give in
section 4.7 the deflation of singular vectors based on strong RRQR factorization and the
numerical results are given in section 4.8.

4.2 Strong Rank Reavealing QR (Strong RRQR) factorization

Since introduced in [42] and the first algorithm so-called QR with column pivoting (QRCP)
was developed in [13], RRQR factorization shows its efficiency in many applications such
as low rank approximations, least square computations, nonsymmetric eigenproblems and
regularization (see [14, 15, 42, 45, 66]). However, RRQR is not a stable algorithm since the
elements of the term 𝑅−1

11 𝑅12 in the factorization can be very large as stated in [48]. To
overcome this problem, the authors introduced in [48] a new factorization so-called strong
RRQR. One of the most important application of strong rank revealing QR factorization
is to build a basis for the approximate right null space of 𝑨, especially in rank-deficient
least-squares problems, subspace selection and linear dependency analysis or subspace
tracking,(see [11, 43, 44, 45, 62, 104]). In this work we mainly focus on the rank revealing
of the QR factorization to approximate the smallest singular values of 𝑨. Our main results
come from the strong rank revealing QR (RRQR) factorization definition following [48,
Theorem 3.2] and [19, Theorem 2.4] as,

Theorem 4.2.1. ([48, Theorem 3.2] and [19, Theorem 2.4]) Let 𝑨 be an𝑚 × 𝑛 matrix and
1 ≤ 𝑘 ≤ min(𝑚,𝑛). Let 𝑓 > 1 and Π be a permutation matrix such that the decomposition

𝑨Π = 𝑄𝑅 =
[
𝑄1 𝑄2

] [
𝑅11 𝑅12

𝑅22

]
, (4.1)

verifies for all (𝑖, 𝑗) ∈ [1, 𝑘] × [1, 𝑛 − 𝑘],

𝛾2
𝑗 (𝑅−1

11 𝑅12) + 𝛾2
𝑗 (𝑅22)/𝜎2

min(𝑅11) ≤ 𝑘 𝑓 2. (4.2)
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Then for any 1 ≤ 𝑗 ≤ 𝑛 − 𝑘 and 1 ≤ 𝑖 ≤ 𝑘 ,

1 ≤ 𝜎𝑖 (A)
𝜎𝑖 (𝑅11)

≤
√︁

1 + 𝑘 𝑓 2(𝑛 − 𝑘), 1 ≤
𝜎 𝑗 (𝑅22)
𝜎𝑘+ 𝑗 (A)

≤
√︁

1 + 𝑘 𝑓 2(𝑛 − 𝑘), (4.3)

where Π ∈ R𝑛×𝑛, 𝑅11 ∈ R𝑘×𝑘 , 𝑅12 ∈ R𝑘×(𝑛−𝑘), 𝑅22 ∈ R(𝑚−𝑘)×(𝑛−𝑘), 𝑄1 ∈ R𝑚×𝑘 and 𝑄2 ∈
R𝑚×(𝑛−𝑘), 𝛾 𝑗 (𝑅22) is the 2-norm of the 𝑗 th column of 𝑅22, 𝜎𝑖 (𝑨), 1 ≤ 𝑖 ≤ min(𝑚,𝑛) denotes
the 𝑖th singular value of 𝑨 and 𝜎min(𝑅11) is the smallest singular value of 𝑅11. We note
in (4.3) that the lower bounds always hold for any permutation Π thank to the interlacing
property of singular values.

Since in this work we put our interest in approximations for the smallest singular values
of 𝑅22 and we restrict the problem in a square matrix 𝑨, which results in remark 4.2.2 a
slightly different version of Theorem 4.2.1 but the results and the proof remain the same
as in Theorem [48, Theorem 3.2] and [19, Theorem 2.4],

Remark 4.2.2. Let𝑨 be an𝑛×𝑛matrix and 1 ≤ 𝑘 ≤ 𝑛. Let 𝑓 > 1 andΠ be a permutation
matrix such that the decomposition

𝑨Π = 𝑄𝑅 =
[
𝑄1 𝑄2

] [
𝑅11 𝑅12

𝑅22

]
, (4.4)

verifies for all (𝑖, 𝑗) ∈ [1, 𝑛 − 𝑘] × [1, 𝑘],

𝛾2
𝑗 (𝑅−1

11 𝑅12) + 𝛾2
𝑗 (𝑅22)/𝜎2

min(𝑅11) ≤ (𝑛 − 𝑘) 𝑓 2. (4.5)

Then for any 1 ≤ 𝑗 ≤ 𝑘 and 1 ≤ 𝑖 ≤ 𝑛 − 𝑘 ,

1 ≤ 𝜎𝑖 (𝑨)
𝜎𝑖 (𝑅11)

≤
√︁

1 + 𝑘 𝑓 2(𝑛 − 𝑘), 1 ≤
𝜎 𝑗 (𝑅22)
𝜎𝑛−𝑘+ 𝑗 (𝑨)

≤
√︁

1 + 𝑘 𝑓 2(𝑛 − 𝑘), (4.6)

where Π ∈ R𝑛×𝑛, 𝑅11 ∈ R(𝑛−𝑘)×(𝑛−𝑘), 𝑅12 ∈ R(𝑛−𝑘)×𝑘 , 𝑅22 ∈ R𝑘×𝑘 , 𝑄1 ∈ R𝑛×(𝑛−𝑘) and 𝑄2 ∈
R𝑛×𝑘 , 𝛾 𝑗 (𝑅22) is the 2-norm of the 𝑗th column of 𝑅22, 𝜎𝑖 (𝑨), 1 ≤ 𝑖 ≤ 𝑛 denotes the 𝑖th
singular value of 𝑨 and 𝜎min(𝑅11) is the smallest singular value of 𝑅11.
In the following discussion we describe how to combine sparse QR, especially strong

RRQR with tournament pivoting strategy to build a deflation preconditioner of the smallest
singular values of 𝑨.

4.3 Tournament pivoting strategy

In the need of minimizing the communication cost as well as effectively exploit the
parallel computing in such algorithms as LU, QR, RRQR,... tournament pivoting strategy
was introduced and became a very promising candidate. Introduced in [19, 46] as a
communication avoiding technique for LU and strong RRQR factorizations, tournament
pivoting aims to select 𝑘 columns from the input matrix 𝑨. Let us briefly recall the
tournament pivoting strategy following [10]. Consider a matrix𝑨which can be partitioned
into 4 blocks of columns, 𝑨 =

[
𝐴11 𝐴12 𝐴13 𝐴14

]
. We first perform strong RRQR to

select 𝑘 columns from each column block 𝑨1𝑖, 1 ≤ 𝑖 ≤ 4, we denote by 𝐼𝑖0, 1 ≤ 𝑖 ≤ 4
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the set of indices of selected columns corresponding to each column block 𝑨1𝑖 . Next
we concatenate the sets of selected columns from the previous step together in pair
following a reduction binary tree then perform strong RRQR to select 𝑘 columns from
each pair. In particular in the second step, we perform strong RRQR to select 𝑘 columns
from 𝑨(:, 𝐼10 ∪ 𝐼20) and 𝑘 columns from 𝑨(:, 𝐼30 ∪ 𝐼40), where 𝑨(:, 𝐼 ) denotes the submatrix
whose columns come from the indices 𝐼 of 𝑨. We denote by 𝐼𝑖1, 1 ≤ 𝑖 ≤ 2 the sets of
selected columns from the second step. The 2𝑘 selected columns from the second step
are then concatenated as 𝑨(:, 𝐼11 ∪ 𝐼21) and we perform strong RRQR again to select the
final set of 𝑘 columns which is denoted by 𝐼12. We summarize all steps of the tournament
pivoting technique to select 𝑘 columns from the columns of matrix 𝑨 in the following
Algorithm 7, which was recalled in Chapter 1,
Algorithm 7: Tournament pivoting for 1D column partitioned matrices,
one reduction step to select the 𝑘 columns
Input: 𝑨1, · · · ,𝑨𝑝 submatrices of rank 𝑘 approximation

1 Perform strong RRQR to select 𝑘 columns from each 𝑨𝑖 , indices of selected columns
are denoted by 𝐼𝑖, 1 ≤ 𝑖 ≤ 𝑝

2 Selected columns are concatenated in 𝑨̃ = [𝑨1(:, 𝐼1) · · ·𝑨𝑝 (:, 𝐼𝑝)]
3 Perform again strong RRQR of 𝑨̃ to select 𝑘 columns
Output: indices of 𝑘 rank revealing columns of 𝑨
Although tournament pivoting was introduced to approximate the largest singular

values and associated singular vectors for example see [10], in this work the algorithm
is modified to approximate the smallest singular values and associated singular vectors,
which will be described in more detail in the next section 4.4.

4.4 Approximation of the smallest singular values of A by
sparse QR with tournament pivoting and nested dissection

In this section we present our strategy by performing sparse QR with tournament pivoting
and nested dissection partitioning to select 𝑘 columns that allow to approximate the 𝑘
smallest singular values and corresponding singular vectors of𝐴. Nested dissection [40, 41,
69] is a fill-reducing ordering technique that relies on a divide-and-conquer strategy of the
graph of a symmetric matrix. The original graph is first partitioned into two subgraphs that
are connected by a separator. The bisection is then recursively executed on each subgraph.
Specifically in this work, the matrix 𝑨 is partitioned by applying nested dissection on the
graph of 𝑨𝑇𝑨 using METIS library, see [63]. The standard nested dissection requires the
input matrix to be symmetric, this explains why we use the nested dissection partition on
𝑨𝑇𝑨 for 𝑨. In the following, we consider a matrix 𝑨 ∈ R𝑛×𝑛 that is partitioned by using
nested dissection on 𝑨𝑇𝑨 as,

𝑨 =


𝑨11 𝑨13

𝑨22 𝑨23
𝑨31 𝑨32 𝑨33

 ,
where 𝑨𝑖𝑖 ∈ R𝑛𝑖×𝑛𝑖 , 𝑖 = 1 : 3, and 𝑛1 + 𝑛2 + 𝑛3 = 𝑛.
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4.4 Approximation of the smallest singular values of A by sparse QR with tournament
pivoting and nested dissection

The nested dissection partitioning is necessary for the convenient computation of the
inverse of some blocks, this will be explained in more detail later. We note that each
𝑨𝑗

𝑖𝑖
, 𝑖, 𝑗 = 1 : 2 is a subdomains of the nested dissection partition, for that reason with a

nested partition of 4 subdomains, we can write 𝑨 as,

𝑨 =



𝐴1
11 𝐴1

13 𝐴10
𝐴1

22 𝐴1
23 𝐴20

𝐴1
31 𝐴1

32 𝐴1
33 𝐴30

𝐴2
11 𝐴2

13 𝐴40
𝐴2

22 𝐴2
23 𝐴50

𝐴2
31 𝐴2

32 𝐴2
33 𝐴60

𝐴𝑇10 𝐴𝑇20 𝐴𝑇30 𝐴𝑇40 𝐴𝑇50 𝐴𝑇60 𝐴70


,

where 𝐴1
𝑖3, 𝑖 = 1 : 3 denote the local interface corresponding to the first and the second

subdomains, 𝐴2
𝑖3, 𝑖 = 1 : 3 denote the local interface corresponding to the third and the

fourth subdomains and 𝐴𝑖0, 𝑖 = 1 : 7 denote the global interface of 𝑨. In addition, we
denote by 𝐼𝑝, 𝑝 = 1 : 4 the indices of columns corresponding to the 𝑝th subdomain of 𝑨,
by 𝐼𝑖 𝑗 the indices of the local interface corresponding to the 𝑖th, 𝑗th subdomains and by 𝐼0
the indices of columns corresponding to the global interface.

We first perform strong RRQR on a subdomain plus the columns corresponding to the
interfaces to select the last 𝑘 columns, e.g. for the first subdomain 𝐴1

11 we consider the
matrix,

𝑨(:, 𝐼1 ∪ 𝐼12 ∪ 𝐼0)Π1
1 =



𝐴1
11 𝐴1

13 𝐴10
𝐴1

23 𝐴20
𝐴1

31 𝐴1
33 𝐴30

𝐴40
𝐴50
𝐴60

𝐴𝑇10 𝐴𝑇30 𝐴70


Π1

1.

For the second subdomain 𝐴1
22, we consider the matrix

𝑨(:, 𝐼2 ∪ 𝐼12 ∪ 𝐼0)Π2
1 =



𝐴1
13 𝐴10

𝐴1
22 𝐴1

23 𝐴20
𝐴1

32 𝐴1
33 𝐴30

𝐴40
𝐴50
𝐴60

𝐴𝑇20 𝐴𝑇30 𝐴70


Π2

1,

and for the third and the fourth subdomains, we have
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𝑨(:, 𝐼3 ∪ 𝐼34 ∪ 𝐼0)Π1
2 =



𝐴10
𝐴20
𝐴30

𝐴2
11 𝐴2

13 𝐴40
𝐴2

23 𝐴50
𝐴2

31 𝐴2
33 𝐴60

𝐴𝑇40 𝐴𝑇60 𝐴70


Π1

2,

𝑨(:, 𝐼4 ∪ 𝐼34 ∪ 𝐼0)Π2
2 =



𝐴10
𝐴20
𝐴30

𝐴2
13 𝐴40

𝐴2
22 𝐴2

23 𝐴50
𝐴2

32 𝐴2
33 𝐴60

𝐴𝑇50 𝐴𝑇60 𝐴70


Π2

2.

Here Π 𝑗

𝑖
, 𝑖, 𝑗 = 1 : 2 correspond to the permutation matrices determined by strong RRQR

factorization. This allows to select the last 𝑘 columns from each subdomain and the
interfaces. Each 𝑘 selected columns are then concatenated in pairs following a reduction
binary tree and strong RRQR factorization is performed until the final set of 𝑘 columns is
selected.

However in this work we do not use a binary reduction tree, the selected columns from
the first step are all concatenated and then strong RRQR is performed to select the final
set of 𝑘 columns, known as a flat reduction tree. More specifically, after selecting the last
𝑘 columns from the matrices formed by 𝐴1

11, 𝐴
1
22, 𝐴

2
11, 𝐴

2
22 plus the interfaces, we then put

all the selected columns together and perform a strong RRQR to select the last 𝑘 columns.
Let 𝐼0 𝑗 , 𝑗 = 1 : 4 denote the indices of the 𝑘 selected columns from each subdomain and
the interfaces in the previous step, we have

𝑨(:, 𝐼01 ∪ 𝐼02 ∪ 𝐼03 ∪ 𝐼04)Π𝑏 =



𝐴1
10 𝐴2

10 𝐴3
10 𝐴4

10
𝐴1

20 𝐴2
20 𝐴3

20 𝐴4
20

𝐴1
30 𝐴2

30 𝐴3
30 𝐴4

30
𝐴1

40 𝐴2
40 𝐴3

40 𝐴4
40

𝐴1
50 𝐴2

50 𝐴3
50 𝐴4

50
𝐴1

60 𝐴2
60 𝐴3

60 𝐴4
60

𝐴1
70 𝐴2

70 𝐴3
70 𝐴4

70


Π𝑏,

where 𝐴𝑝
𝑖0, 𝑝 = 1 : 4, 𝑖 = 1 : 7 denote the selected columns from each 𝑝th subdomain plus

the interfaces and Π𝑏 denotes the permutation matrix obtained from the strong RRQR
factorization. All steps of combining the sparse QR factorization with tournament pivoting
strategy and nested dissection on 𝑨𝑇𝑨 are described in Algorithm 8.
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4.4 Approximation of the smallest singular values of A by sparse QR with tournament
pivoting and nested dissection

Algorithm 8: Sparse QR with tournament pivoting and nested dissection to
approximate the smallest singular values
Input: matrix 𝑨 ∈ R𝑛×𝑛 , number of subdomains 𝑝

1 Partition the matrix 𝑨 using nested dissection on 𝑨𝑇𝑨
2 Perform strong RRQR to select the last 𝑘 columns from each matrix corresponding

to each subdomain 𝑨𝑙𝑖𝑖, 𝑖 = 1 : 2, 𝑙 = 1 : 𝑝/2 plus the interfaces, indices of selected
columns are denoted by 𝐼0 𝑗 , 1 ≤ 𝑗 ≤ 𝑝

3 Selected columns are concatenated in 𝑨̃ = [𝑨(:, 𝐼01) · · ·𝑨(:, 𝐼0𝑝)]
4 Perform again strong RRQR of 𝑨̃ to select 𝑘 columns
Output: indices of the last 𝑘 columns corresponding to the last 𝑘 smallest singular

values of 𝑨
We refer to Algorithm 8 as sparse QR with tournament pivoting and nested dissection

to approximate the smallest singular values. The cost of performing strong RRQR on a
matrix formed by each subdomain plus the interfaces in step 2 is O(𝑛𝑛ℎ𝑘) flops, where
𝑛ℎ, ℎ = 1 : 𝑝 denotes the size of columns corresponding to subdomain𝑨𝑙𝑖𝑖 and the interfaces.
We can consider that 𝑛ℎ approaches 𝑛/𝑃 when the size of the interfaces is much smaller
than the size of the subdomains and the subdomains have approximately the same size. The
cost of performing strong RRQR of 𝑨̃ is O(𝑛𝑝𝑘2). We also remark that the strong RRQR
of each subdomain plus the interfaces in step 2 can be performed in parallel. Moreover,
strong RRQR factorizations in step 2 can exploit more efficient parallel computing by using
a 2D tournament pivoting strategy, see [10]. In the next section we give an analysis of
one step of performing the sparse QR with tournament pivoting and nested dissection to
approximate the smallest singular values.

4.4.1 Analyzing one step of sparse QR with tournament pivoting and nested
dissection to approximate the smallest singular values of A

In this section we perform strong RRQR factorization following Algorithm 8 and Re-
mark 4.2.2 to analyze one step of tournament pivoting strategy with nested dissection
partitioning on 𝑨𝑇𝑨. For simplicity, we consider again a matrix 𝑨 ∈ R𝑛×𝑛 that is parti-
tioned by using nested dissection on 𝑨𝑇𝑨 as,

𝑨 =


𝐴11 𝐴13

𝐴22 𝐴23
𝐴31 𝐴32 𝐴33

 ,
where 𝐴𝑖𝑖 ∈ R𝑛𝑖×𝑛𝑖 , 𝑖 = 1 : 3, and 𝑛1 +𝑛2 +𝑛3 = 𝑛. Following Algorithm 8 and Remark 4.2.2,
we first perform strong RRQR factorization for the columns corresponding to the first
subdomain and the interface,

𝐵1Π1 =


𝐴11 𝐴13

𝐴23
𝐴31 𝐴33

 Π1 =


𝐴1

11 𝐴1
12 𝐴1

13
𝐴1

22 𝐴1
23

𝐴1
31 𝐴1

32 𝐴1
33

 = 𝑄1𝑅1 = 𝑄1

[
𝑅1

11 𝑅1
12
𝑅1

22

]
=

[
𝑄1

1 𝑄1
2 𝑄1

3
] 
𝑅̃1

11 𝑅̃1
12 𝑅̃1

13
𝑅̃1

22 𝑅̃1
23
𝑅̃1

33

 ,
(4.7)
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where the matrix sizes are the following: 𝐴1
11 ∈ R𝑛1×𝑛′1, 𝐴1

12 ∈ R𝑛1×(𝑛1+𝑛3−𝑛′1−𝑘), 𝐴1
13 ∈

R𝑛1×𝑘 with 𝑛1 − 𝑘 ≤ 𝑛′1 ≤ 𝑛1, 𝐴1
22 ∈ R𝑛2×(𝑛1+𝑛3−𝑛′1−𝑘), 𝐴1

23 ∈ R𝑛2×𝑘 , 𝐴1
31 ∈ R𝑛3×𝑛′1, 𝐴1

32 ∈
R𝑛3×(𝑛1+𝑛3−𝑛′1−𝑘), 𝐴1

33 ∈ R𝑛3×𝑘 , 𝑄1 ∈ R𝑛×𝑛, 𝑅1
11 ∈ R(𝑛−𝑘)×(𝑛−𝑘), 𝑅1

12 ∈ R(𝑛−𝑘)×𝑘 , 𝑅1
22 ∈ R𝑘×𝑘 ,

and where Π1 is the permutation matrix from the strong RRQR factorization (4.7) such
that for given 𝐹1 > 1 and 1 ≤ 𝑗 ≤ 𝑛1 + 𝑛3 − 𝑘 ,

𝛾2
𝑗 (𝑅1

11
−1
𝑅1

12) + 𝛾2
𝑗 (𝑅1

22)/𝜎2
min(𝑅1

11) ≤ 𝐹 2
1 . (4.8)

By identifying 𝑅1
11 ≡

[
𝑅̃1

11 𝑅̃1
12
𝑅̃1

22

]
, 𝑅1

12 ≡
[
𝑅̃1

13
𝑅̃1

23

]
, 𝑅1

22 ≡ 𝑅̃1
33, (4.8) becomes

𝛾2
𝑗 (𝑅̃1

11
−1𝑅̃1

13 − 𝑅̃1
11
−1𝑅̃1

12𝑅̃
1
22
−1𝑅̃1

23) + 𝛾2
𝑗 (𝑅̃1

22
−1𝑅̃1

23) + 𝜎2
max(𝑅1

11
−1)𝛾2

𝑗 (𝑅̃1
11) ≤ 𝐹 2

1 . (4.9)

Similarly, we next perform strong RRQR factorization for the columns corresponding to
the second subdomain and the interface,

𝐵2Π2 =


𝐴13

𝐴22 𝐴23
𝐴32 𝐴33

 Π2 =


𝐴2

12 𝐴2
13

𝐴2
21 𝐴2

22 𝐴2
23

𝐴2
31 𝐴2

32 𝐴2
33

 = 𝑄2𝑅2 = 𝑄2

[
𝑅2

11 𝑅2
12
𝑅2

22

]
=

[
𝑄2

1 𝑄2
2 𝑄2

3
] 
𝑅̃2

11 𝑅̃2
12 𝑅̃2

13
𝑅̃2

22 𝑅̃2
23
𝑅̃2

33

 ,
(4.10)

where the matrix sizes are the following: 𝐴2
21 ∈ R𝑛2×𝑛′2, 𝐴2

22 ∈ R𝑛2×(𝑛2+𝑛3−𝑛′2−𝑘), 𝐴1
23 ∈

R𝑛2×𝑘 with 𝑛2 − 𝑘 ≤ 𝑛′2 ≤ 𝑛2, 𝐴2
12 ∈ R𝑛1×(𝑛2+𝑛3−𝑛′2−𝑘), 𝐴2

13 ∈ R𝑛1×𝑘 , 𝐴2
31 ∈ R𝑛3×𝑛′2, 𝐴2

32 ∈
R𝑛3×(𝑛2+𝑛3−𝑛′2−𝑘), 𝐴2

33 ∈ R𝑛3×𝑘 , 𝑄2 ∈ R𝑛×𝑛, 𝑅2
11 ∈ R(𝑛−𝑘)×(𝑛−𝑘), 𝑅2

12 ∈ R(𝑛−𝑘)×𝑘 , 𝑅2
22 ∈ R𝑘×𝑘 ,

and where Π2 is the permutation matrix from the strong RRQR factorization (4.10) such
that for given 𝐹2 > 1 and 1 ≤ 𝑗 ≤ 𝑛2 + 𝑛3 − 𝑘 ,

𝛾2
𝑗 (𝑅2

11
−1
𝑅2

12) + 𝛾2
𝑗 (𝑅2

22)/𝜎2
min(𝑅2

11) ≤ 𝐹 2
2 . (4.11)

By identifying 𝑅2
11 ≡

[
𝑅̃2

11 𝑅̃2
12
𝑅̃2

22

]
, 𝑅2

12 ≡
[
𝑅̃2

13
𝑅̃2

23

]
, 𝑅2

22 ≡ 𝑅̃2
33, (4.11) becomes

𝛾2
𝑗 (𝑅̃2

11
−1𝑅̃2

13 − 𝑅̃2
11
−1𝑅̃2

12𝑅̃
2
22
−1𝑅̃2

23) + 𝛾2
𝑗 (𝑅̃2

22
−1𝑅̃2

23) + 𝜎2
max(𝑅2

11
−1)𝛾2

𝑗 (𝑅̃2
11) ≤ 𝐹 2

2 . (4.12)

We then form a new matrix from the last 𝑘 selected columns of 𝐵1Π1 and the last 𝑘
selected columns of 𝐵2Π2 and perform its strong RRQR as,

𝐵3Π3 =


𝐴1

13 𝐴2
13

𝐴1
23 𝐴2

23
𝐴1

33 𝐴2
33

 Π3 =


𝐴3

11 𝐴3
12

𝐴3
21 𝐴3

22
𝐴3

31 𝐴3
32

 = 𝑄3𝑅3 =
[
𝑄3

1 𝑄3
2
] [
𝑅3

11 𝑅3
12
𝑅3

22

]
=

[
𝑄3

1 𝑄3
2
] 
𝑅̃3

11 𝑅̃3
12
𝑅̃3

22
𝑅̃3

32

 ,
(4.13)

where 𝑄3 ∈ R𝑛×2𝑘 , 𝑅3
11 ∈ R𝑘×𝑘 , 𝑅3

12 ∈ R𝑘×𝑘 , 𝑅3
22 ∈ R𝑘×𝑘 and where Π3 is the permutation

matrix from the strong RRQR factorization (4.13) such that for given 𝐹3 > 1 and 1 ≤ 𝑗 ≤ 𝑘 ,

𝛾2
𝑗 (𝑅3

11
−1
𝑅3

12) + 𝛾2
𝑗 (𝑅3

22)/𝜎2
min(𝑅3

11) ≤ 𝐹 2
3 . (4.14)
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The final set of 𝑘 selected columns from 𝐵3Π3 is permuted to the end and we perform
the final permutation of 𝑨 and its QR factorization as,

𝑨Π =


𝐴1

11 𝐴4
13 𝐴3

11 𝐴3
12

𝐴2
21 𝐴4

23 𝐴3
21 𝐴3

22
𝐴1

31 𝐴2
31 𝐴4

33 𝐴3
31 𝐴3

32

 = 𝑄

[
𝑅11 𝑅12

𝑅22

]
= 𝑄1

1𝑄
2
1𝑄3𝑄

3
2


𝑅11 𝑅13 𝑅14

𝑅22 𝑅23 𝑅24
𝑅33 𝑅34

𝑅44

 ,
(4.15)

where

𝐴4

13
𝐴4

23
𝐴4

33

 ≡

𝐴1

12 𝐴2
12

𝐴1
22 𝐴2

22
𝐴1

32 𝐴2
32

 , 𝑄3 ≡
[
𝑄1

2 𝑄2
2 𝑄3

1
]
, 𝑅22 ≡ 𝑅44 ∈ R𝑘×𝑘 .

To be able to show that this strategy allows to approximate the smallest singular values
of 𝑨, we would need to prove that

𝛾2
𝑗 (𝑅11

−1𝑅12) + 𝛾2
𝑗 (𝑅22)/𝜎2

min(𝑅11) ≤ 𝐹 2, (4.16)

where 𝐹 > 1 and 1 ≤ 𝑗 ≤ 𝑛 − 𝑘, or by identifying 𝑅11 ≡

𝑅11 𝑅13

𝑅22 𝑅23
𝑅33

 , 𝑅12 ≡

𝑅14
𝑅24
𝑅34

 and
𝑅22 ≡ 𝑅44, (4.16) is equivalent to

𝛾2
𝑗 (𝑅−1

11 𝑅14 − 𝑅−1
11 𝑅13𝑅

−1
33 𝑅34) + 𝛾2

𝑗 (𝑅−1
22 𝑅24 − 𝑅−1

22 𝑅23𝑅
−1
33 𝑅34) + 𝛾2

𝑗 (𝑅−1
33 𝑅34) + 𝜎2

max(𝑅−1
11 )𝛾2

𝑗 (𝑅44) ≤ 𝐹 2.

(4.17)

We were not able to prove this inequality for the moment. However given the sparsity of
A and the nested dissection ordering, it is possible that this inequality is satisfied for an F
which depends on 𝑛 and 𝑘 .

4.5 Deflation preconditioner

In this section we introduce a preconditioner that allows to deflate the smallest singular
values. As described in the previous section, by applying Algorithm 8, the matrix 𝑨 is
first partitioned by using nested dissection on 𝑨𝑇𝑨 and then sparse QR with tourna-
ment pivoting and nested dissection is used to determine a permutation that allows to
approximate the 𝑘 smallest singular values of 𝐴. We denote by 𝑃𝑁𝐷 the nested dissection
permutation matrix from𝑨𝑇𝑨, and Π the permutation matrix from sparse QR factorization
with tournament pivoting strategy. For any 𝑓 > 1, consider that the QR factorization
computes a decomposition

𝑃𝑇𝑁𝐷𝑨𝑃𝑁𝐷Π = 𝑄𝑅 =
[
𝑄1 𝑄2

] [
𝑅11 𝑅12

𝑅22

]
, (4.18)

where Π is such that for any 1 ≤ 𝑖 ≤ 𝑛 − 𝑘, 1 ≤ 𝑗 ≤ 𝑘

(𝑅−1
11 𝑅12)2

𝑖 𝑗 + 𝛾2
𝑗 (𝑅22)/𝜔2

𝑖 (𝑅11) ≤ 𝑓 2, (4.19)
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or we can rewrite it as the relaxed form as in (4.5) by summing over 𝑖

𝛾2
𝑗 (𝑅−1

11 𝑅12) + 𝛾2
𝑗 (𝑅22)/𝜎2

min(𝑅11) ≤ (𝑛 − 𝑘) 𝑓 2, (4.20)

where 𝛾 𝑗 (𝑅22) denotes the 2-norm of the 𝑗th column of 𝑅22, 1/𝜔𝑖 (𝑅11) denotes the 2-norm
of the 𝑖th row of 𝑅−1

11 and (𝑅−1
11 𝑅12)𝑖, 𝑗 is the element at row 𝑖th and column 𝑗 th of the matrix

𝑅−1
11 𝑅12. The singular values of 𝑅11 in (4.18) can be considered as good approximations

of the largest singular values of 𝑨 and the singular values of 𝑅22 can be considered as
good approximations of the smallest singular values of 𝑨, see [19]. Our goal is to define a
deflation preconditioner which allows to replace the smallest singular values close to zero
by much larger ones, so that GMRES is not affected by those small singular values and
converges faster. In particular, we build a deflation preconditioner from𝑄2, 𝑅22 in (4.18) as,

𝑀−1 = (𝐼𝑛 −𝑄2𝑄
𝑇
2 ) +𝑄2𝑅

−1
22𝑄

𝑇
2 . (4.21)

Let {𝜎1(𝑨), . . . , 𝜎𝑛 (𝑨)} denote the singular values of 𝑨 such that 𝜎1(𝑨) ≥ · · · ≥ 𝜎𝑛 (𝑨).
The following Theorem 4.5.1 shows that the preconditioner 𝑀−1 defined in (4.21) can
deflate the smallest singular values of 𝑃𝑇

𝑁𝐷
𝑨𝑃𝑁𝐷Π.

Theorem 4.5.1. Given 𝑓 > 1, by taking 𝑓 = max1≤ 𝑗≤𝑘{𝑓 , 𝑓

𝛾 𝑗 (𝑅22) }, where 𝛾 𝑗 (𝑅22) denotes
the 2-norm of the 𝑗 th column of 𝑅22, the singular values of the matrix𝑀−1𝑃𝑇

𝑁𝐷
𝑨𝑃𝑁𝐷Π, where

𝑀−1 is from (4.21) and 𝑃𝑇
𝑁𝐷

𝑨𝑃𝑁𝐷Π is from the strong RRQR factorization (4.18) in which
𝑃𝑁𝐷 denotes the permutation from nested dissection and Π denotes the permutation of strong
RRQR, are bounded by

𝜎𝑖 (𝑀−1𝑃𝑇
𝑁𝐷

𝑨𝑃𝑁𝐷) ≤ 𝜎𝑖 (𝑅11)
√︃

1 + 𝑓 2𝑘 (𝑛 − 𝑘), 1 ≤ 𝑖 ≤ 𝑛 − 𝑘,

𝜎𝑛−𝑘+ 𝑗 (𝑀−1𝑃𝑇
𝑁𝐷

𝑨𝑃𝑁𝐷) ≥ 1/
√︃

1 + 𝑓 2𝑘 (𝑛 − 𝑘), 1 ≤ 𝑗 ≤ 𝑘.
(4.22)

Proof. The strong RRQR factorization of 𝑨 with permutation matrices 𝑃𝑁𝐷 and Π
in (4.18) can be rewritten as

𝑃𝑇𝑁𝐷𝑨𝑃𝑁𝐷Π = 𝑄1
[
𝑅11 𝑅12

]
+𝑄2

[
0 𝑅22

]
, (4.23)

where Π is such that for any 1 ≤ 𝑖 ≤ 𝑛 − 𝑘, 1 ≤ 𝑗 ≤ 𝑘 ,

(𝑅−1
11 𝑅12)2

𝑖 𝑗 + 𝛾2
𝑗 (𝑅22)/𝜔2

𝑖 (𝑅11) ≤ 𝑓 2, (4.24)

which is equivalent to

max
1≤𝑖≤𝑛−𝑘,1≤ 𝑗≤𝑘

√︃
(𝑅−1

11 𝑅12)2
𝑖 𝑗
+ (𝛾 𝑗 (𝑅22)/𝜔𝑖 (𝑅11))2 ≤ 𝑓 . (4.25)

By applying the deflation preconditioner𝑀−1 defined in (4.21) we obtain

𝑀−1𝑃𝑇𝑁𝐷𝑨𝑃𝑁𝐷Π = (𝐼𝑛 −𝑄2𝑄
𝑇
2 )𝑨Π +𝑄2𝑅

−1
22𝑄

𝑇
2𝑨Π = 𝑄1

[
𝑅11 𝑅12

]
+𝑄2𝑅

−1
22

[
0 𝑅22

]
= 𝑄1

[
𝑅11 𝑅12

]
+𝑄2

[
0 𝐼𝑘

]
=

[
𝑄1 𝑄2

] [
𝑅11 𝑅12

𝐼𝑘

]
.
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Now that 𝑅22 is replaced by identity, we define 𝑅 ≡
[
𝑅11 𝑅12

𝐼𝑘

]
and we need to find an 𝑓

such that
𝜌 (𝑅, 𝑘) = max

1≤𝑖≤𝑛−𝑘,1≤ 𝑗≤𝑘

√︃
(𝑅−1

11 𝑅12)2
𝑖 𝑗
+ (1/𝜔𝑖 (𝑅11))2 ≤ 𝑓 .

The condition max1≤𝑖≤𝑛−𝑘,1≤ 𝑗≤𝑘
√︃
(𝑅−1

11 𝑅12)2
𝑖 𝑗
+ (𝛾 𝑗 (𝑅22)/𝜔𝑖 (𝑅11))2 ≤ 𝑓 is required in [48,

Theorem 3.2] to obtain the bound on strong RRQR factorization. We apply [48, Theorem 3.2]
to obtain the results on the bounds of the singular values which correspond to equations
(8) and (9) in [48, Theorem 3.2],

𝜎𝑖 (𝐴𝑘) ≥
𝜎𝑖 (𝑴)√︁

1 + 𝑓 2𝑘 (𝑛 − 𝑘)
, 1 ≤ 𝑖 ≤ 𝑘,

and

𝜎 𝑗 (𝐶𝑘) ≤ 𝜎 𝑗+𝑘 (𝑴)
√︁

1 + 𝑓 2𝑘 (𝑛 − 𝑘), 1 ≤ 𝑗 ≤ 𝑛 − 𝑘.

By identifying 𝑴 ≡ 𝑀−1𝑃𝑇
𝑁𝐷

𝑨𝑃𝑁𝐷 , 𝐴𝑘 ≡ 𝑅11, 𝐵𝑘 ≡ 𝑅12 and 𝐶𝑘 ≡ 𝐼𝑘 , we derive the

matrix 𝑅 =

[
𝑅11 𝑅12

𝐼𝑘

]
in our context which satisfies the condition 𝜌 (𝑅, 𝑘) ≤ 𝑓 , with

𝑓 = max1≤ 𝑗≤𝑘{𝑓 , 𝑓

𝛾 𝑗 (𝑅22) } , then the bounds are obtained directly from [48, Theorem 3.2] as,

𝜎𝑖 (𝑅11) ≥
𝜎𝑖 (𝑀−1𝑃𝑇

𝑁𝐷
𝑨𝑃𝑁𝐷)√︃

1 + 𝑓 2𝑘 (𝑛 − 𝑘)
, 1 ≤ 𝑖 ≤ 𝑛 − 𝑘, (4.26)

and

𝜎 𝑗 (𝐼𝑘) ≤ 𝜎𝑛−𝑘+ 𝑗 (𝑀−1𝑃𝑇𝑁𝐷𝑨𝑃𝑁𝐷)
√︃

1 + 𝑓 2𝑘 (𝑛 − 𝑘), 1 ≤ 𝑗 ≤ 𝑘. (4.27)

Hence we can deduce from (4.26),(4.27) the bound for the 𝑛 − 𝑘 largest singular values of
𝑀−1𝑃𝑇

𝑁𝐷
𝑨𝑃𝑁𝐷 as

𝜎𝑖 (𝑀−1𝑃𝑇𝑁𝐷𝑨𝑃𝑁𝐷) ≤ 𝜎𝑖 (𝑅11)
√︃

1 + 𝑓 2𝑘 (𝑛 − 𝑘), 1 ≤ 𝑖 ≤ 𝑛 − 𝑘, (4.28)

and the bound for the 𝑘 smallest singular values of𝑀−1𝑃𝑇
𝑁𝐷

𝑨𝑃𝑁𝐷 as

𝜎𝑛−𝑘+ 𝑗 (𝑀−1𝑃𝑇𝑁𝐷𝑨𝑃𝑁𝐷) ≥
1√︃

1 + 𝑓 2𝑘 (𝑛 − 𝑘)
, 1 ≤ 𝑗 ≤ 𝑘. (4.29)

We can see from 4.29 that the smallest singular values of𝑀−1𝑃𝑇
𝑁𝐷

𝑨𝑃𝑁𝐷 are larger than

1/
√︃

1 + 𝑓 2𝑘 (𝑛 − 𝑘). This can be considered as a very good bound for the deflation in
practical problems since it is much larger than the smallest singular values of 𝑨.
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Lemma 4.5.1. The bound in (4.29) can be improved by a factor of 𝜎1(𝑨), where 𝜎1(𝑨) is
the largest singular value of𝑨. In this case, the deflation preconditioner in (4.21) is formulated
as,

𝑀−1 = (𝐼𝑛 −𝑄2𝑄
𝑇
2 ) +𝑄2𝜎1(𝑨)𝑅−1

22𝑄
𝑇
2 , (4.30)

and the bound for the 𝑘 smallest singular values of𝑀−1𝑃𝑇
𝑁𝐷

𝑨𝑃𝑁𝐷 becomes,

𝜎𝑛−𝑘+ 𝑗 (𝑀−1𝑃𝑇𝑁𝐷𝑨𝑃𝑁𝐷) ≥
𝜎1(𝑨)√︃

1 + 𝑓 2𝑘 (𝑛 − 𝑘)
, 1 ≤ 𝑗 ≤ 𝑘. (4.31)

Proof. The proof is similar to the proof in Theorem 4.5.1.

Lemma 4.5.1 is useful in the case when the largest singular value of 𝑨 is known or is well
approximated and it is is very large. In that case it could be used to increase the lower
bound of the smallest singular values as in equation (4.31). However we do not explore
this option further in this work.
In the following discussion we show how to apply the deflation preconditioner 𝑀−1

defined in (4.21) to the original system (4.32). Let 𝑨 ∈ R𝑛×𝑛 and 𝑏 ∈ R𝑛 , we want to solve
the linear system

𝑨𝑥 = 𝑏. (4.32)

As a consequence of Theorem 4.5.1, the following Lemma 4.5.2 shows how the precon-
ditioner𝑀−1 can deflate the smallest singular values of 𝑨.

Lemma 4.5.2. The singular values of the matrix 𝑀̃−1𝑨 are bounded by
𝜎𝑖 (𝑀̃−1𝑨) ≤ 𝜎𝑖 (𝑅11)

√︃
1 + 𝑓 2𝑘 (𝑛 − 𝑘), 1 ≤ 𝑖 ≤ 𝑛 − 𝑘,

𝜎𝑛−𝑘+ 𝑗 (𝑀̃−1𝑨) ≥ 1/
√︃

1 + 𝑓 2𝑘 (𝑛 − 𝑘), 1 ≤ 𝑗 ≤ 𝑘,
(4.33)

where 𝑀̃−1 = 𝑀−1𝑃𝑇
𝑁𝐷

and 𝑓 defined in Theorem 4.5.1.

Proof. Given that 𝑃𝑁𝐷 and Π are orthonormal permutation matrices, it is obvious that
𝜎𝑖 (𝑃𝑇𝑁𝐷𝑨𝑃𝑁𝐷Π) = 𝜎𝑖 (𝑨), 1 ≤ 𝑖 ≤ 𝑛. From Theorem 4.5.1, we have

𝑀−1𝑃𝑇𝑁𝐷𝑨𝑃𝑁𝐷Π =
[
𝑄1 𝑄2

] [
𝑅11 𝑅12

𝐼𝑘

]
, (4.34)

or it can be rewritten as,

𝑀̃−1𝑨 =
[
𝑄1 𝑄2

] [
𝑅11 𝑅12

𝐼𝑘

]
Π𝑇𝑃𝑇𝑁𝐷 . (4.35)

The rest of the proof is similar to the proof in Theorem 4.5.1.
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The original system (4.32) can now be preconditioned by multiplying both sides by 𝑀̃−1

from Remark 4.5.2, which yields

𝑀̃−1𝑨𝑥 = 𝑀̃−1𝑏. (4.36)

We can see from Remark 4.5.2 that 𝑀̃−1 also deflates the smallest singular values of
𝑨. This can help Krylov subspace methods like GMRES avoid suffering from the bad
convergence behavior due to the impact of those smallest singular values in the spectrum.

Remark 4.5.2. The deflation preconditioner 𝑀̃−1 in (4.36) is obtained from 𝑀−1𝑃𝑇
𝑁𝐷

which requires 𝑄2 and 𝑅22 in (4.18). Tournament pivoting allows to efficiently compute a
permutation that allows to separate the largest singular values from the small ones that
are captured by 𝑅22. However once this permutation is known, in our current work we still
require to perform the QR factorization of a permuted matrix 𝑃𝑇

𝑁𝐷
𝐴𝑃𝑁𝐷Π. The overall cost

for obtaining 𝑄2 and 𝑅22 to build the deflation preconditioner 𝑀̃−1 is thus expensive. In our
future work, we plan to combine this with domain decomposition approaches in which a
coarse space would be constructed from contributions from each subdomain. This would allow
to require computing the QR factorization of each subdomain, and this could be performed in
parallel.

4.6 Deflation and block Jacobi combination

In this section we combine the deflation preconditioner with the block Jacobi precon-
ditioner. In the context of preconditioning, together with SSOR, incomplete Cholesky
factorization, incomplete LU factorization, multigrid preconditioning, block Jacobi precon-
ditioner is one of the most used preconditioners thanks to its simplicity in implementation
and its effectiveness in parallel computing. For an overview as well as some of its practical
applications, see [2, 47, 57, 89]. We briefly recall that block Jacobi preconditioner is well
known as the simplest preconditioner which exploits parallel computing and communica-
tion avoiding. Relying on the multiplication 𝑦 = 𝑃−1𝑨𝑥 , where

𝑀𝐵𝐽 =


𝐴1

𝐴2
. . .

𝐴𝑝


=


𝐿1𝑈1

𝐿2𝑈2
. . .

𝐿𝑝𝑈𝑝


, (4.37)

each block-diagonal of 𝑨 can be factorized using LU factorization as, 𝐴𝑖 = 𝐿𝑖𝑈𝑖, 𝑖 = 1 : 𝑝 .
Each 𝐴𝑖 can be assigned to corresponding processor 𝑖th and the corresponding unknowns
can be solved in parallel through the following expression,

𝑀−1
𝐵𝐽 =

𝑝∑︁
𝑖=1

𝑅𝑇𝑖 (𝑅𝑖𝑨𝑅𝑇𝑖 )−1𝑅𝑖, (4.38)

where 𝑅𝑖 ∈ R𝑛×𝑁 denotes the restriction matrix corresponding to the unknowns in block-
diagonal 𝑖th and 𝑅𝑖𝑨𝑅𝑇𝑖 ∈ R𝑛×𝑛 stands for the diagonal block𝐴𝑖 of 𝑨which corresponds to
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the unknowns on the processor 𝑖th. It can be seen from (4.38) that the unknowns from each
diagonal block 𝑖th, 𝑅𝑖𝑨𝑅𝑇𝑖 , can be solved independently in parallel and then be prolongated
to the global unknowns through the operator 𝑅𝑇𝑖 (𝑅𝑖𝑨𝑅𝑇𝑖 )−1𝑅𝑖 .
In particular in this work, the matrix 𝑨 is first partitioned into diagonal blocks by

performing the 𝑘-way partitioning using METIS library, see [63]. We briefly recall 𝑘-way
partition from [63], which relies on the recursive bisection. First the bisection is applied
to the original graph of the matrix to obtain a 2-way partitioning. Then, it is recursively
applied to each of the resulting partition. The 𝑘 partitions of the original graph are obtained
after log𝑘 steps. To that goal, the restriction matrix 𝑅𝑖 in (4.38) is chosen to be the 𝑘-way
partitioning permutation matrix corresponding to unknowns on the diagonal block 𝐴𝑖 .

In the following discussion we present the combination between the deflation precondi-
tioner 𝑀̃−1 from (4.36) and the block Jacobi preconditioner𝑀−1

𝐵𝐽
from (4.38). Consider again

the linear system (4.32), we first apply the block Jacobi preconditioner 𝑀−1
𝐵𝐽

from (4.38)
and then the deflation preconditioner 𝑀̃−1 from (4.36), which yields

𝑀̃−1𝑀−1
𝐵𝐽𝑨𝑥 = 𝑀̃−1𝑀−1

𝐵𝐽 𝑏. (4.39)

The combination results in a mixed preconditioner which gives faster convergence for
GMRES since the smallest singular values are deflated and the condition number becomes
smaller. In the next section we present the deflation of singular vectors based on strong
RRQR factorization of a general invertible matrix.

4.7 Deflation of singular vectors based on strong RRQR
factorization

Apart from the deflation preconditioner, in this section we present the theory of deflation
of singular vectors for a general invertible matrix which is motivated by the work in [1,
99]. By applying Algorithm 8, we first obtained the matrix 𝑨 with the last 𝑘 columns
corresponding to the 𝑘 smallest singular values, then the deflation is described in the
following Theorem 4.7.1,

Theorem 4.7.1. Let 𝑥∗ be the exact solution of 𝑨𝑥 = 𝑏. Consider the QR factorization of
𝑨 with the last 𝑘 columns corresponding to the 𝑘 smallest singular values,

𝑨Π = 𝑄𝑅 =
[
𝑄1 𝑄2

] [
𝑅11 𝑅12

𝑅22

]
, (4.40)

where Π is such that for all (𝑖, 𝑗) ∈ [1, 𝑛 − 𝑘] × [1, 𝑘],

𝛾2
𝑗 (𝑅−1

11 𝑅12) + 𝛾2
𝑗 (𝑅22)/𝜎2

min(𝑅11) ≤ (𝑛 − 𝑘) 𝑓 2. (4.41)

If | |𝑅22 | |2 is small, then

𝑉̃2 = Π

[
−𝑅−1

11 𝑅12
𝐼𝑘

]
(4.42)
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is an approximate right null space of 𝑨 where 𝑉̃2 ∈ R𝑛×𝑘 ,Π ∈ R𝑛×𝑛, 𝑅11 ∈ R(𝑛−𝑘)×(𝑛−𝑘), 𝑅12 ∈
R(𝑛−𝑘)×𝑘 , 𝑅22 ∈ R𝑘×𝑘 , 𝑄1 ∈ R𝑛×(𝑛−𝑘), 𝑄2 ∈ R𝑛×𝑘 and 𝐼𝑛, 𝐼𝑘 denote the identity matrices of
order 𝑛, 𝑘 respectively.

Consider 𝑥 an approximate solution of the following linear system of equations

(𝐼𝑛 −𝑄2𝑄
𝑇
2 )𝑨𝑥 = (𝐼𝑛 −𝑄2𝑄

𝑇
2 )𝑏, (4.43)

such that | |𝑥 − 𝑥 | |2 ≤ 𝜖 , where 𝑥 is an exact solution of (4.43) and 𝜖 > 0. Then, the following
holds

| |𝑥∗ − (𝐼𝑛 − 𝑉̃2
[
0 𝐼𝑘

]
Π𝑇 )𝑥 − 𝑉̃2𝑅

−1
22𝑄

𝑇
2𝑏 | |2 ≤ 𝜖. (4.44)

Proof. We have

𝑨𝑉̃2 = 𝑄2𝑅22

𝑉̃2 = 𝑨−1𝑄2𝑅22

𝑉̃2𝑅
−1
22 = 𝑨−1𝑄2. (4.45)

We have

𝑨Π = 𝑄1
[
𝑅11 𝑅12

]
+𝑄2

[
0 𝑅22

]
𝑅−1

22𝑄
𝑇
2𝑨Π = 𝑅−1

22𝑄
𝑇
2 (𝑄1

[
𝑅11 𝑅12

]
+𝑄2

[
0 𝑅22

]
)

𝑅−1
22𝑄

𝑇
2𝑨Π =

[
0 𝐼𝑘

]
𝑅−1

22𝑄
𝑇
2𝑨 =

[
0 𝐼𝑘

]
Π𝑇

𝑅−1
22𝑄

𝑇
2 =

[
0 𝐼𝑘

]
Π𝑇𝑨−1. (4.46)

We remark that 𝑥∗ is a solution of (4.43) and the set of solutions of (4.43) can be written
as 𝑆 = {𝑥 = 𝑥∗ + 𝑉̃2𝑢, 𝑢 ∈ R𝑘}. Indeed, let 𝑥 be a solution of (4.43), we have

𝑨𝑥 = (𝐼𝑛 −𝑄2𝑄
𝑇
2 )𝑏 +𝑄2𝑄

𝑇
2𝑨𝑥

𝑨𝑥 = 𝑨𝑥∗ −𝑄2𝑄
𝑇
2 (𝑏 −𝑨𝑥), (4.47)

multiplying both sides of (4.47) by 𝑨−1 and using (4.45), (4.46) lead to

𝑥 = 𝑥∗ +𝑨−1𝑄2𝑄
𝑇
2 (𝑨𝑥 − 𝑏)

= 𝑥∗ + 𝑉̃2𝑅
−1
22𝑄

𝑇
2 (𝑨𝑥 − 𝑏)

= 𝑥∗ + 𝑉̃2𝑅
−1
22𝑄

𝑇
2𝑨𝑥 − 𝑉̃2𝑅

−1
22𝑄

𝑇
2𝑏

= 𝑥∗ + 𝑉̃2𝑅
−1
22𝑄

𝑇
2𝑨ΠΠ

𝑇𝑥 − 𝑉̃2𝑅
−1
22𝑄

𝑇
2𝑏

= 𝑥∗ + 𝑉̃2
[
0 𝐼𝑘

]
Π𝑇𝑥 − 𝑉̃2𝑅

−1
22𝑄

𝑇
2𝑏. (4.48)

On the opposite direction, suppose that 𝑥 = 𝑥∗ + 𝑉̃2𝑢, 𝑢 ∈ R𝑘 , we prove that 𝑥 is a
solution of (4.43).

(𝐼𝑛 −𝑄2𝑄
𝑇
2 )𝑨𝑥 = (𝐼𝑛 −𝑄2𝑄

𝑇
2 )𝑏

(𝐼𝑛 −𝑄2𝑄
𝑇
2 )𝑨(𝑥∗ + 𝑉̃2𝑢) = (𝐼𝑛 −𝑄2𝑄

𝑇
2 )𝑏

(𝐼𝑛 −𝑄2𝑄
𝑇
2 )𝑨𝑥∗ + (𝐼𝑛 −𝑄2𝑄

𝑇
2 )𝑨𝑉̃2𝑢 = (𝐼𝑛 −𝑄2𝑄

𝑇
2 )𝑏

(𝐼𝑛 −𝑄2𝑄
𝑇
2 )𝑨𝑥∗ + (𝐼𝑛 −𝑄2𝑄

𝑇
2 )𝑄2𝑅22𝑢 = (𝐼𝑛 −𝑄2𝑄

𝑇
2 )𝑏. (4.49)
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On the other hand, thanks to (4.46) we have

𝑉̃2
[
0 𝐼𝑘

]
Π𝑇𝑥∗ = 𝑉̃2

[
0 𝐼𝑘

]
Π𝑇A−1𝑏

= 𝑉̃2𝑅
−1
22𝑄

𝑇
2𝑏. (4.50)

Hence, we can write

𝑥∗ = (𝐼𝑛 − 𝑉̃2
[
0 𝐼𝑘

]
Π𝑇 )𝑥∗ + 𝑉̃2

[
0 𝐼𝑘

]
Π𝑇𝑥∗

= (𝐼𝑛 − 𝑉̃2
[
0 𝐼𝑘

]
Π𝑇 )𝑥 + 𝑉̃2𝑅

−1
22𝑄

𝑇
2𝑏, (4.51)

thus

𝑥∗ − (𝐼𝑛 − 𝑉̃2
[
0 𝐼𝑘

]
Π𝑇 )𝑥 − 𝑉̃2𝑅

−1
22𝑄

𝑇
2𝑏 = (𝐼𝑛 − 𝑉̃2

[
0 𝐼𝑘

]
Π𝑇 ) (𝑥 − 𝑥). (4.52)

Finally, we obtain

| |𝑥∗ − (𝐼𝑛 − 𝑉̃2
[
0 𝐼𝑘

]
Π𝑇 )𝑥 − 𝑉̃2𝑅

−1
22𝑄

𝑇
2𝑏 | |2 ≤ ||(𝐼𝑛 − 𝑉̃2

[
0 𝐼𝑘

]
Π𝑇 ) (𝑥 − 𝑥) | |2

≤ ||𝑥 − 𝑥 | |2
≤ 𝜖. (4.53)

So the approximate solution to 𝑨𝑥 = 𝑏 can be recovered as

𝑥 = (𝐼𝑛 − 𝑉̃2
[
0 𝐼𝑘

]
Π𝑇 )𝑥 + 𝑉̃2𝑅

−1
22𝑄

𝑇
2𝑏, (4.54)

and 𝑥 is the approximate solution to (4.43) given by the Krylov method.

4.8 Numerical results

In this section we conduct numerical experiments to illustrate the proposed deflation
technique on the convergence of various linear systems arising from PDEs discretizations
such as fluid mechanics, oil reservoir modeling, finite element modeling. We remark that
for the nested dissection partition on 𝑨𝑇𝑨, we set the number of subdomain to 8 for all
test cases. Table 4.1 gives information about the matrices used in our tests. For all test
cases, the right-hand side 𝑏 is chosen randomly with the normalization 𝑏 = 𝑏

| |𝑏 | |2 .

4.8.1 Strong RRQR deflated GMRES and SVD deflated GMRES comparison

The first test matrix in this section is the e20r0100 matrix arsing from the 2D fluid flow
modeling in a driven cavity with the Reynold number 𝑅𝑒 = 100, it is non-symmetric
and indefinite and not easy to solve using iterative methods like preconditioned Krylov
subspace methods since it is difficult to find an effective preconditioner.

In Figure 4.1 we show the impact of deflating the smallest singular values based on the
two different methods, the strong RRQR deflated GMRES and the SVD deflated GMRES. In
each method, 50 vectors are computed approximately to a tolerance of 10−6. The deflation
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Number Name Size Description

1 e20r0100 4241 × 4241 2D fluid flow in a driven cavity
2 e20r5000 4241 × 4241 2D fluid flow in a driven cavity
3 e30r5000 9661 × 9661 2D fluid flow in a driven cavity
4 e40r5000 17281 × 17281 2D fluid flow in a driven cavity
5 fidap012 3973 × 3973 Finite element modeling
6 bcsstk24 3562 × 3562 Dynamic analyses in structural engineering
7 bcsstk35 30237 × 30237 Stiffness matrix, automobile seat frame and body attachment
8 crystk03 24696 × 24696 Stiffness matrix, FEM crystal free vibration
9 saylr4 3564 × 3564 Oil reservoir modeling
10 sherman3 5005 × 5005 Oil reservoir modeling
11 lshp3025 3025 × 3025 Finite element model problem
12 lshp3466 3466 × 3466 Finite element model problem
13 msc01440 1440 × 1440 Structural Problem

Table 4.1: Test matrices.
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Figure 4.1: Convergence history of singular vectors based on strong RRQR and SVD
deflated GMRES. Results for non-deflated GMRES is also plotted, for the matrix
e20r0100 in MATLAB 2017, 𝑅𝑒 = 100. 50 singular vectors are approximated
with a tolerance of 10−6.

of the singular vectors based on SVD following [1], recalled in section 1.7 as it can be seen
in the preconditioned linear system

(𝐼 −𝑈2𝑈
𝑇
2 )𝑨𝑥 = (𝐼 −𝑈2𝑈

𝑇
2 )𝑏, (4.55)

where 𝑈2 = 𝑨𝑉2Σ
−1
2 denotes the approximated left singular vectors. The solution is

approximated by 𝑥 = (𝐼 −𝑉2𝑉
𝑇
2 )𝑥 +𝑉2𝑥2, where 𝑥 denotes the solution of (4.55) obtained

by GMRES and 𝑥2 = Σ−1
2 𝑈

𝑇
2 𝑏. The deflation of the singular vectors based on the strong

RRQR factorization as introduced in section 4.7 that we can rewrite,

(𝐼𝑛 −𝑄2𝑄
𝑇
2 )𝑨𝑥 = (𝐼𝑛 −𝑄2𝑄

𝑇
2 )𝑏, (4.56)
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where 𝑄2 = 𝑨𝑉̃2𝑅
−1
22 is the approximated singular vectors. The solution is recovered as

𝑥 = (𝐼𝑛−𝑉̃2
[
0 𝐼𝑘

]
Π𝑇 )𝑥 +𝑉̃2𝑥2,where 𝑥 denotes the solution of (4.56) obtained by GMRES

and 𝑥2 = 𝑅
−1
22𝑄

𝑇
2𝑏.We observe that the convergence rate for both deflation techniques are

approximately the same, however the strong RRQR variant is slightly faster. In particular
in the first iterations, GMRES and the SVD variant stagnate while the strong RRQR variant
has a sharper convergence curve.

The second test matrix we consider in this section is the e20r5000 matrix from the same
problem with the first one but with larger Reynold number, 𝑅𝑒 = 5000. We observe from
Figure 4.2 that both methods suffer from a long stagnation and converge to the desired
tolerance of 10−6 after more than 3500 iterations with a slightly faster rate for the SVD
deflated GMRES curve.
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Figure 4.2: Convergence history of singular vectors based on strong RRQR and SVD
deflated GMRES. Results for non-deflated GMRES is also plotted, for the matrix
e20r5000 in MATLAB 2017, 𝑅𝑒 = 5000. 50 singular vectors are approximated
with a tolerance of 10−6.

In the next test cases we consider the fidap012 matrix arising from the finite element
modeling generated by the FIDAP package and the bcsstk24 matrix from dynamic analyses
in structural engineering. We observe in Figure 4.3 that GMRES almost stagnates while
the two deflation technique curves are quite sharp with a small advantage for the SVD
deflated GMRES curve.

For the final test cases in this section, we consider the bcsstk35 matrix arising from the
automobile seat frame and body attachment problem and the crystk03 matrix from the
finite element method of crystal free vibration problem. It can be seen from Figure 4.4 that
GMRES totally stagnates, on the contrary, the two deflation technique curves converge
quite fast with a faster rate for the SVD deflated GMRES curve.
The deflation technique based on sparse QR with tournament pivoting and nested

dissection deflates the approximations of the smallest singular values of 𝑨, hence it is
not as precise as the deflation based on SVD. However, the trade-off is considerable in
the sense that we can exploit parallel computing with tournament pivoting strategy and
reduce the computational cost. In particular for dense matrices, the cost for the strong
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Figure 4.3: Convergence history of singular vectors based on strong RRQR and SVD
deflated GMRES. Results for the matrix fidap012 (left) and bcsstk24 (right) in
MATLAB 2017. 50 singular vectors are approximated with a tolerance of 10−6.
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Figure 4.4: Convergence history of singular vectors based on strong RRQR and SVD
deflated GMRES. Results for the matrix bcsstk35 (left) and crystk03 (right) in
MATLAB 2017. 50 singular vectors are approximated with a tolerance of 10−6.

RRQR factorization 𝑨Π = 𝑄𝑅 is O(𝑛3) flops in the worst case, as stated in [48], while the
overall cost of SVD is O(13𝑛3) flops, as stated in [100], for a square dense matrix𝑨 ∈ R𝑛×𝑛 .

4.8.2 Deflation of smallest singular values approximation by sparse QR with
tournament pivoting and nested dissection

In section 4.7 and 4.8.1, we present the deflation of singular vectors based on strong RRQR
factorization. By applying Algorithm 8, the matrix 𝑨 is first partitioned by using nested
dissection on 𝑨𝑇𝑨 then sparse QR with tournament pivoting are performed to obtain a
matrix with the last 𝑘 columns corresponding to the 𝑘 smallest singular values. From
the QR factorization of that permuted matrix, 𝑄2 = 𝑨𝑉̃2𝑅

−1
22 , the approximated singular
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vectors, and 𝑉̃2 = Π

[
−𝑅−1

11 𝑅12
𝐼𝑘

]
, the approximate right null space are used for the deflation

of singular vectors as it can be seen in equation (4.56). This allows us to compare deflated
GMRES based on strong RRQR with tournament pivoting and deflated GMRES based
on SVD which was described in [1]. The deflation preconditioner from section 4.5, 4.8.2
and 4.8.3 is built from 𝑄2 and 𝑅22 of the QR factorization of the matrix 𝑨 with the last 𝑘
columns corresponding to the 𝑘 smallest singular values, as𝑀−1 = (𝐼𝑛 −𝑄2𝑄

𝑇
2 ) +𝑄2𝑅

−1
22𝑄

𝑇
2 .

This deflation preconditioner can be combined with other preconditioners such as block
Jacobi.
More specifically, in this section we show in the numerical experiments the approxi-

mation of the smallest singular values of 𝑨 using sparse QR with tournament pivoting
strategy and nested dissection on 𝑨𝑇𝑨 and then the deflation results. We are interested
in the cases where there is a large gap among the smallest singular values of 𝑨. For that
reason, we consider the two test matrices crystk03 which is the crystal free vibration
stiffness matrix from finite element method and bcsstk35 which is the stiffness matrix
from automobile seat frame and body attachment. We remark that if the ratio between the
maximum and the minimum elements of 𝐾 is less than some threshold, for example we
take 0.1, then the matrix is scaled by 𝑎𝑖 𝑗√

𝐾𝑖𝐾 𝑗

, where 𝐾 is a vector containing the maximum

element on each row and 𝑎𝑖 𝑗 is the element at row 𝑖th and column 𝑗𝑡ℎ of 𝑨, 1 ≤ 𝑖, 𝑗 ≤ 𝑛.
We show in Figure 4.5 the approximation of smallest singular values of𝑨 and the impact

of the deflation preconditioner for the two test cases, the crystk03 matrix arising from finite
element method for crystal free vibration and the bcsstk35 matrix from the automobile
seat frame and body attachment problem. We observe that the smallest singular of 𝑅22
approximate quite well the smallest singular values of 𝑨, in particular the error is of order
one for crystk03 and less than one for bcsstk35. The smallest singular values of 𝑨 are
replaced by larger ones in both test cases, especially for the last 6 smallest singular values,
under the impact of the deflation preconditioner 𝑀̃ .
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Figure 4.5: 50 smallest singular values of𝑨, 𝑅22 and 𝑀̃−1𝑨. Results for the matrix crystk03
(left) and bcsstk35 (right) in MATLAB 2017.
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Figure 4.6 shows the numerical results for the matrix sherman3 arising from the oil
resevoir modeling and the matrix msc01440 from the structural problem. We can see that
the smallest singular values of 𝑨 are well approximated by the smallest ones of 𝑅22 and
they are also replaced by larger ones when the deflation preconditioner 𝑀̃ is applied.
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Figure 4.6: 50 smallest singular values of𝑨, 𝑅22 and 𝑀̃−1𝑨. Results for thematrix sherman3
(left) and msc01440 (right) in MATLAB 2017.

In Figure 4.7 we show the numerical results for the matrix e20r5000 and e40r5000 from
the 2D fluid flow in a driven cavity with the Reynold number 𝑅𝑒 = 5000. As the previous
test cases, the smallest singular values of 𝑅22 can be considered as good approximations
for the smallest ones of 𝑨. They also become larger under the impact of the deflation
preconditioner 𝑀̃ .

0 5 10 15 20 25 30 35 40 45 50

Singular value index

10
-7

10
-6

10
-5

10
-4

10
-3

A
b

s
o

lu
te

 m
a

g
n

it
u

d
e

Smallest singular values

0 5 10 15 20 25 30 35 40 45 50

Singular value index

10
-7

10
-6

10
-5

10
-4

10
-3

A
b

s
o

lu
te

 m
a

g
n

it
u

d
e

Smallest singular values

Figure 4.7: 50 smallest singular values of𝑨, 𝑅22 and 𝑀̃−1𝑨. Results for the matrix e20r5000
(left) and e40r5000 (right) in MATLAB 2017.
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4.8.3 Comparison between deflation, block Jacobi and mixed
preconditioners when used with GMRES

In this section we give the comparison results between deflation preconditioner, block
Jacobi preconditioner and their combination when used with GMRES. To be more specific,
we consider the following linear system and preconditioned systems,

𝑨𝑥 = 𝑏, (4.57)
𝑀̃−1𝑨𝑥 = 𝑀̃−1𝑏, (4.58)
𝑀−1
𝐵𝐽𝑨𝑥 = 𝑀−1

𝐵𝐽 𝑏, (4.59)

𝑀̃−1𝑀−1
𝐵𝐽𝑨𝑥 = 𝑀̃−1𝑀−1

𝐵𝐽 𝑏, (4.60)

where 𝑨 is the test matrix and the right hand side 𝑏 is a random orthonormal vector.
We remark that the linear system (4.57) corresponds to the non-preconditioned case,
the preconditioned system (4.58) corresponds to the deflation preconditioner case, (4.59)
corresponds to the block Jacobi preconditioner case, and (4.60) corresponds to the mixed
preconditioner case. We also remark that the number of diagonal blocks in the block Jacobi
preconditioner is set to 8 for all test cases. With 𝑡𝑜𝑙 = 10−6, the maximum number of
iteration𝑚𝑎𝑥𝑖𝑡 = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑏), we apply GMRES for the 4 systems (4.57) and the results are
given in Table 4.2.
We observe from Table 4.2 that the mixed preconditioner always results in a much

smaller number of iterations compared to non-preconditioned GMRES. Specifically for
crystk03, it converges after 6 iterations to the error of 10−6 while non-preconditioned
GMRES does not converge after 5266 iterations, deflation and block Jacobi preconditioners
seem to be stagnated. For bcsstk35, the mixed preconditioned converges to the error
of 10−5 after only 48 iterations while for the non-preconditioned GMRES it takes 29333
iterations to converge to the error of 10−3. For e40r5000, it takes 128 iterations for the
mixed preconditioner compared to 13793 for the non-preconditioned GMRES to converge
to the error of 10−7.
GMRES with deflation preconditioner converges faster than the non-preconditioned

GMRES in all cases. However for the test matrices from 2D fluid flow in a driven cavity
the difference is small. For example for e20r5000, it takes 3430 iterations compared to
4047 iterations of the non-preconditioned GMRES. For e30r5000, it takes 7449 iterations
compared to 8139 iterations and for e40r5000, it takes 12491 compared to 13793 of the
non-preconditioned GMRES. The difference becomes significant in the cases of mixed
preconditioner GMRES, with the help of block Jacobi preconditioner.

4.9 Conclusion and perspectives

In this work we study a new deflation technique based on the sparse QR with tournament
pivoting and nested dissection, which allows to reduce the computational costs as well
as exploit parallel computing. The smallest singular values of 𝑨 are shown to be well
approximated by the smallest singular values of 𝑅22 in the QR factorization following our
strategy. The deflation technique based on QR factorization is not as good as the deflation
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technique based on SVD in terms of accuracy. However it significantly reduces the compu-
tational costs and allows us to effectively exploit parallelism. Especially the combination
between the deflation technique based on QR with the block Jacobi preconditioner results
in a very small number of iterations compare to the non-preconditioned case for GMRES
for our test cases. Parallel computing experiments of the method and the combination
with block Jacobi preconditioner as well as the computational costs will be studied in the
future work.
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Test matrix Type of preconditioner Relative residual Number of iteration

Non-preconditioned 9.8817e-07 1600
saylr4 Deflation preconditioner 9.5106e-07 132

3564 × 3564 Block Jacobi preconditioner 8.5713e-07 312
Mixed preconditioner 8.7417e-07 51

Non-preconditioned 8.1486e-07 433
sherman3 Deflation preconditioner 8.3483e-07 74

5005 × 5005 Block Jacobi preconditioner 9.2290e-07 42
Mixed preconditioner 8.7324e-07 18

Non-preconditioned 9.9674e-07 3095
lshp3466 Deflation preconditioner 9.9289e-07 1376

3466 × 3466 Block Jacobi preconditioner 7.0979e-07 293
Mixed preconditioner 9.9508e-07 228

Non-preconditioned 6.7470e-07 2700
lshp3025 Deflation preconditioner 9.8547e-07 1199

3025 × 3025 Block Jacobi preconditioner 9.6807e-07 307
Mixed preconditioner 6.2170e-07 245

Non-preconditioned 5.5625e+00 5266
crystk03 Deflation preconditioner 2.1876e-01 286

24696 × 24696 Block Jacobi preconditioner 1.0644e-01 509
Mixed preconditioner 9.3349e-06 6

Non-preconditioned 9.6790e-07 809
msc01440 Deflation preconditioner 9.9560e-07 168

1440 × 1440 Block Jacobi preconditioner 7.7009e-07 189
Mixed preconditioner 9.4425e-07 58

Non-preconditioned 9.8670e-07 4047
e20r5000 Deflation preconditioner 9.7713e-07 3430

4241 × 4241 Block Jacobi preconditioner 9.9383e-07 168
Mixed preconditioner 9.7225e-07 171

Non-preconditioned 9.6887e-07 8139
e30r5000 Deflation preconditioner 9.9700e-07 7449

9661 × 9661 Block Jacobi preconditioner 7.9167e-07 160
Mixed preconditioner 9.2968e-07 143

Non-preconditioned 9.5896e-07 13793
e40r5000 Deflation preconditioner 9.8871e-07 12491

17281 × 17281 Block Jacobi preconditioner 9.5714e-07 154
Mixed preconditioner 8.5884e-07 128

Non-preconditioned 1.3054e-03 29333
bcsstk35 Deflation preconditioner 3.4782e-05 77

30237 × 30237 Block Jacobi preconditioner 2.0646e-05 1662
Mixed preconditioner 5.9531e-05 48

Table 4.2: GMRES convergence comparison.
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Conclusion and Perspectives

In this thesis, we presented a new preconditioner so-called SC two-level additive Schwarz
in time preconditioner. Connection between this preconditioner, MGRIT with F-relaxation
and parareal was made. By studying SC two-level additive Schwarz preconditioner and
its variants, we proposed a variant so-called SCS2 that can effectively exploit parallel
computing for the fine propagator. Numerical experiments and convergence analysis were
given for SC two-level additive Schwarz preconditioner and its variants. Furthermore,
one can accelerate the parareal algorithm via SC two-level additive Schwarz in time
preconditioner by using some Krylov methods, namely GMRES. We found that for the
advection-reaction-diffusion equation, in the case where the advection and reaction terms
are large compared to the diffusion term, parareal with GMRES acceleration shows its
advantage while the plain parareal stagnates. The convergence analysis of parareal with
GMRES accelerationwill be studied further in our future work. Also in this workwe applied
parareal for solving oscillatory singularly perturbed ODEs which are characteristics of a
six-dimensional Vlasov equation. By using a limit model based on the two-scale asymptotic
expansion for the coarse solver, we obtained rapid convergence in simulations of charged
particles in a Penning trap, isotope separation by ion cyclotron resonance or in a strong
variable magnetic field. Convergence results obtained from various numerical experiments
show that the coupling strategy is efficient with a uniform rate. The same coupling strategy
for solving the Vlasov-Poisson equation together with the convergence analysis are left
for future work. Finally in this work, we derived a new deflation preconditioner for the
smallest singular values of the coefficient matrix 𝑨, based on sparse QR, especially strong
RRQR factorization with tournament pivoting strategy and nested dissection partition
on 𝑨. This coupling strategy approximates well the smallest singular values of 𝑨 and
replaces them with larger ones. Furthermore, it also allows us to take advantages of
parallel computing thank to the tournament pivoting strategy. Combination between
the deflation preconditioner and block Jacobi preconditioner gives promising results for
GMRES’s convergence. In the future work, we aim at parallelizing the method as well as
the combination with block Jacobi preconditioner.
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