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ABSTRACT

5G Radio Access Network (RAN) aims to evolve new technologies spanning the Cloud infrastructure,
virtualization techniques and Software Defined Network capabilities. Advanced solutions are introduced
to split the RAN functions between centralized and distributed locations to improve the RAN flexibility.
However, one of the major concerns is to efficiently allocate RAN resources, while supporting hetero-
geneous 5G service requirements.

In this thesis, we address the problematic of the user-centric RAN slice provisioning, within a Cloud
RAN infrastructure enabling flexible functional splits. Our research aims to jointly meet the end users’
requirements, while minimizing the deployment cost. The problem is NP-hard. To overcome the great
complexity involved, we propose a number of heuristic provisioning strategies and we tackle the problem
on four stages. First, we propose a new implementation of a cost efficient C-RAN architecture, enabling
on-demand deployment of RAN resources, denoted by AgilRAN. Second, we consider the network
function placement sub-problem and propound a new scalable user-centric functional split selection
strategy named SPLIT-HPSO. Third, we integrate the radio resource allocation scheme in the functional
split selection optimization approach. To do so, we propose a new heuristic based on Swarm Particle
Optimization and Dijkstra approaches, so called E2E-USA. In the fourth stage, we consider a deep
learning based approach for user-centric RAN Slice Allocation scheme, so called DL-USA, to operate
in real-time. The results obtained prove the efficiency of our proposed strategies.

Keywords :

Cloud Radio Access Network (C-RAN), 3GPP Functional Split, Radio Resource Allocation, 5G
RAN Slicing, Software Defined RAN (SD-RAN), ETSI-NFVI, C-RAN resource orchestration, Multi-
objective optimization, Machine Learning.
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Mobile broadband services have notably proliferated over the last few years leading to the democ-
ratization of smart devices of which the number has grown into billions [1]. In order to meet such a
huge demand, next generation mobile networks need to support a scaling system capacity. This issue
is especially relevant for the Radio Access Network (RAN), which is considered as the most resource-
demanding part of mobile networks [2].

In this context, the Cloud RAN (C-RAN) architecture [2] has been proposed as a promising technol-
ogy, aiming at leveraging the Cloud infrastructure capabilities to make the RAN ecosystem more agile.
Indeed, the virtualization of network functions is the cornerstone of a successful on-demand resource
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deployment. With this scope, C-RAN is expected to respond to User Equipment’s (UE) demands, while
reducing the energy consumption and the resource provisioning cost [2].

In spite of its great success, several issues surrounding C-RAN remain open such as: the increasing
bandwidth demand on the transport connection [3], virtualization of RAN functions [4], Cloud resource
management [5], management of radio resources [6] and implementation of real-time processing algo-
rithms [7]. Thereby, C-RAN should leverage the Cloud infrastructure, while considering the stringent
UE’s requirements and the specificity of RAN applications. To overcome the aforementioned issues,
C-RAN needs to enable the deployment of flexible and scaling RAN solutions. In this thesis, we ad-
dress the problematic of optimizing the resource provisioning within the Cloud Radio Access Network
to fulfill UE QoS, while reducing the deployment cost.

This Chapter is organized as follows. First, the concept of slicing within the 5G Radio Access Net-
work is introduced. Secondly, we put forward the Cloud Radio Access Network (C-RAN) as a promising
5G RAN architecture. Thirdly, we detail the major challenges of C-RAN applications. Finally, we sum-
marize our contributing work addressing the aforementioned issues.

1.1 Slicing in 5G Radio Access Network

It is undeniable that the number of connected wireless devices accessing mobile networks is considered
as one of the primary contributors to the ever increasing global mobile traffic. It is expected that the
overall number of connections will increase from 8.8 billion in 2018 to 13.1 billion by 2023, with 10.6%

of new 5G devices and 14.4% of Low-Power Wide-Area (LPWA) connections [1]. Figure 1.1 shows the
connection growth of each mobile generation forecasted by Cisco in 2020. Besides, it is foreseen that,
by 2023, 5G will generate a traffic of nearly seven fold increase over 2019, while the traffic of former
generations is evolving without a significant increase. Figure 1.2 shows the global mobile traffic trends
per connection between 2018 and 2023.

Figure 1.1: Global mobile device and connection growth [1]
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Figure 1.2: Global mobile traffic trends per connection [1]

Additionally, a major evolution of traffic characteristics is being noticed. Indeed, three key use-
case categories are emerging with different throughput and latency requirements: enhanced Mobile
Broadband (eMBB), ultra-Reliable Low Latency Communication (uRLLC) and massive Machine Type
Communications (mMTC) [8]. eMBB is put forward for data-intensive applications and requires high
data rates of several giga bits per second with moderate latency of few milliseconds. uRLLC supports
ultra-reliable low latency communications in the order of 1 millisecond. mMTC supports smart cities
and logistic applications with high connection density and energy efficiency [9]. Figure 1.3 summarizes
the 5G requirements per use case, issued by the International Telecommunication Union (ITU) in 2015.

Figure 1.3: 5G capabilities for different use cases [10]

In this context, the network slicing concept [11] has emerged with the idea of enabling the network
architecture to deliver on-demand end-to-end allocated resources (so called slice) as per service require-
ment. Within this perspective, multiple slices can be created on the same RAN infrastructure to convey
services that have different requirements for latency, reliability and throughput.
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1.2 Cloud RAN

Mobile Network Operators (MNOs) are expected to integrate major changes in their cellular communi-
cations beyond the new radio and wider spectrum. The objective is to build a flexible and cost efficient
mobile network to cope with the exponential traffic growth and convey services for heterogeneous use
case requirements.

1.2.1 Motivations

Currently, with up to 95% of network processes performed manually [1], MNOs may be outpaced by
this rapid growth of data, struggling hence, to deploy a scalable network architecture supporting the
slicing concept. As the underlying network infrastructure becomes more complex, it is foreseen that
the OPerational EXpenditure (OPEX) will be two to three times higher than the CAPital EXpenditure
(CAPEX) [1]. Thereby, automation is essential to efficiently operate and reduce the OPEX budget, while
optimizing the return on investment as well as cutting time to market. This issue is especially relevant for
the Radio Access Network (RAN), which is considered as the costliest and the most resource-demanding
part of mobile networks [2].

Most of MNO budget is related to the building of RAN sites with almost 80% of CAPEX [2].
Figure 1.4 shows that more than 50% of RAN CAPEX budget are reserved to access site hardware and
software with their power support and air conditioning equipments. Besides, an analysis of [2] shows
that electricity and RAN operation & maintenance tasks account for over 34% of the total network
OPEX.

Figure 1.4: CAPEX and OPEX analysis of a traditional RAN network [2]

Therefore, it is crucial for MNOs to rethink the RAN architecture in order to lower the cost-per-
bit investments, while making the RAN eco-friendly. To face the aforementioned challenges, the Cloud
RAN (C-RAN) architecture has been proposed in 2011 [2], aiming at leveraging the Cloud infrastructure
capabilities to operate efficiently the RAN resources.

1.2.2 Architecture

C-RAN fosters the virtualization of BaseBand signal processing Units (BBUs), which are traditionally
located in a data unit near cell towers at the access sites. In doing so, BBUs are executed in a remote
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Cloud site, leaving simple radio units known as Remote Radio Heads (RRHs) at the access site. RRHs
and BBUs are connected via a fronthaul link. With this scope, C-RAN favors a flexible and cost efficient
deployment thanks to the multiplexing gain of RAN processing resources [12]. The CMRI in [13] proves
that C-RAN requires approximately 10 to 15% less CAPEX per square kilometer than traditional LTE
networks. Besides, C-RAN enables advanced coordinated signal processing between co-located BBUs,
which enhances the UE throughput and quality of experience [6]. Figure 1.5.(a) depicts the original
C-RAN architecture with a full baseband centralization.

(a) Full baseband centralization (b) Partial baseband centralization

Figure 1.5: C-RAN architecture [2]

Despite the aforementioned benefits, it is worth pointing out that baseband cloudification directly
impacts the resource provisioning in the fronthaul link. Indeed, 5G fronthaul may require up to 157.3

Gbps of bandwidth with 10 µs - 250 µs of latency [14]. Such stringent constraints would make the dark
fiber almost the only applicable fronthaul solution which cost increases the CAPEX, thus counteracting
the original cost saving principle of C-RAN.

In order to relax these excessive fronthaul constraints without losing the benefits from baseband
centralization, recent 5G contributors are proposing a hybrid C-RAN architecture that enables flexible
baseband function placement between the Cloud and the access sites. Thanks to such an approach,
the BBUs can be seen as a chain of virtual baseband that can be splitted at many conceivable points.
In doing so, a partial baseband centralization is enabled, while leaving some functions at the access
site. Accordingly, new interfaces between baseband functions are being identified with reference to
the traditional Long Term Evolution (LTE) architecture. These interfaces enable a set of functional
splits [15–17], wherein some baseband functions are kept in the access site, thus relaxing the bandwidth
and latency requirements of the fronthaul link.

Figure 1.5.(b) depicts a partial baseband centralization in a C-RAN architecture. Wherein, the RRHs
are equipped with computational resources to host the lower part of baseband functions, leaving the
upper part at the Cloud site. However, the functional split concept may still reduce the advantages from
baseband full centralization, while keeping some baseband functions at the access site [12].
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1.2.3 Towards standardization of a disaggregated RAN

Next Generation Mobile Networks (NGMN) alliance highlighted in [18] the need for integrating the C-
RAN architecture in next generation mobile networks. Furthermore, different requirements of functional
splits are studied in both uplink and downlink directions. On the other hand, IEEE Next Generation
Fronthaul Interface (NGFI) working group proposed in [15] an Ethernet-based Fronthaul C-RAN archi-
tecture, consisting of Remote Radio Units (RRUs) and Radio Cloud Center (RCCs), connected through
link aggregators called Radio Aggregation Units (RAUs). Wherein, the RRU includes the antenna unit
RRH along with its computational resources, while the RCC includes the cloudified BBU pool. Besides,
several standardization activities in 3GPP foster the adoption of the RAN functional split by introduc-
ing the Next Generation 5G Radio Access Network (NG-RAN) architecture [17]. The primary goal
of this design consists in enabling the deployment of different topologies tailored to the 5G use case
requirements.

Interestingly, the Open RAN (O-RAN) initiative has been proposed by an alliance of mobile op-
erators in 2016, promoting Openness and Intelligence for C-RAN [19]. The developed RAN software
is based on 3GPP standards, which is essential to support MNOs in implementing new functionalities
and services tailored to the 5G use cases. Besides, O-RAN aims at maximizing the use of common-
off-the-shelf hardware, while minimizing proprietary hardware. Additionally, there is an ongoing work
for delivering a Virtualized Infrastructure Manager (VIM) to enable both network slicing and functional
split deployment [4]. However, the O-RAN initiative is still in its early stages.

1.2.4 5G Cloud RAN open source initiatives

5G RAN stakeholders are closely collaborating to introduce innovative technologies to their C-RAN
infrastructures, bringing hence flexibility and agility. These technologies include Network Function
Virtualization (NFV) and Software-Defined RAN (SD-RAN).

OpenAirInterface (OAI) software is an open source Software Defined Radio (SDR) implementation
of radio access network, core network and user equipment of 3GPP cellular networks [20]. Specifically,
OAI allows to implement, run and evaluate the 5G C-RAN architecture, in terms of fronthaul prop-
erties and processing software latency[21]. Furthermore, OAI community is working on proposing a
multitenant architecture with disaggregated micro-service radio-processing [22].

TIP OpenRAN project group was initiated by the Telecom Infra Project (TIP) in 2017 [23]. The
objective is to build 3GPP RAN solutions with virtualized and programmable RAN functions running
on General Purpose Processing Platforms (GPPP). It is worth noting that other interesting open source
initiatives such as free5GC [24], Open5GS [25] and OMEC (Open Evolved Mobile Core) [26], which
where formed to deal with the 5G core network.

1.3 Cloud RAN challenges

The massive adoption of Cloud technology in mobile access networks has driven the operators and
vendors to work together in order to make Radio Access Network (RAN) ecosystem more agile. In
this context, the virtualization of network functions is the cornerstone of a successful Network Function
Virtualization (NFV) environment. However, the stringent use case demands alongside the strict 5G
RAN requirements, make C-RAN deployment more complex and prone to feasibility and performance
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issues.

1.3.1 RAN virtualization and cloudification

The first step towards the implementation of C-RAN consists in virtualizing and cloudifing the baseband
functions, which strongly depend on the underlying network infrastructure, configuration and topology.

The virtualization is performed by decoupling the software from hardware and making the network
functions running on virtual machines [27] or a container-based technology namely Docker [28]. The
hypervisor-based virtualization, i.e. using Virtual Machines (VMs), consists in running a complete
guest operating system (OS). This results in a high computationally resource intensive operations, that
may slow down the guest OS boot. On the other hand, the containerization technology permits the
execution of the network functions as an application in an isolated system environment called container.
Each container consumes directly the hardware resources, without requiring the deployment of a full OS,
which makes it significantly lighter and swifter compared to hypervisor-based virtualization. Therefore,
it is foreseen that the containerization is the most appropriate technology to support the C-RAN, due to
its strict delay sensitive and resource scaling requirements [29].

Network function cloudification is performed by exploiting general purpose processors to enable
on-demand deployment of network functions. The main challenges concern the feasibility of executing
some baseband functions in the Cloud. As a matter of fact, some functions in the BBU physical layer
such as the channel coding function are computational intensive. So, if not implemented on a dedicated
hardware, this may result in a significant performance degradation in terms of latency [21]. Recent
works such as in [30], investigate the use of parallel programming techniques in order to enable the
cloudification of such baseband functions.

1.3.2 RAN disaggregation

Baseband functions have different properties depending on the processed data and the layer hosting
them. Specifically, some Processing Functions (PF) perform at a user level, denoted by User-centric
Processing Functions (UPF), i.e., once executed, they deal with one user at a time. Other PFs operate
on a cell level, described as Cell-centric Processing Functions (CPF). A further challenge consists in
determining whether to perform the functional split on cell basis or user basis. In the former approach,
the BBU is splitted into a chain of CPFs aggregating, hence, UPFs of the same layer into a single CPF.
In doing so, one single functional split per cell is possible at a time. In contrast, thanks to the latter
approach, the UPFs of a single layer are decoupled to be deployed independently either in the access or
Cloud sites, allowing, hence, the deployment of multiple user functional splits per cell at a time.

1.3.3 RAN slicing

RAN disaggregation has brought more flexibility to the RAN deployment but has to consider the UE
use case requirements. On one hand, by keeping a high level of centralization, the majority of baseband
functions run in the Cloud site which implies high latency and bandwidth requirements in the fronthaul
[16, 17]. This scheme is broadly satisfied for use cases with tight latency requirement, however, in-
creases the fronthaul congestion. On the other hand, a high level of decentralization puts more baseband
functions in the access site. The latter scheme reduces the latency and bandwidth requirement in the
fronthaul, which can be a good option to relax the congestion on the fronthaul link, while satisfying use
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cases with adjustable latency requirement. Table 1.1 highlights the divergence in throughput and latency
requirements for eMBB and uRLLC use cases. It is worth noting that the main performance requirement
for a mMTC use case is the connectivity density.

Use case Latency Throughput Connectivity density
eMBB 4ms one way delay several Gbps -
uRLLC 0.5ms one way delay - -
mMTC - - up to 1 million devices

per square km

Table 1.1: Use case requirements [9]

Eventually, the objective is to meet the UE requirements in terms of throughput and latency while
considering multiple deployment designs encompassing heterogeneous RAN resources. In this context,
RAN slicing [11] is proposed to allow the RAN infrastructure to deliver end-to-end allocated resources
(so called slice) as per service requirement. With such a paradigm, multiple independent slices can be
created on the same infrastructure to convey services that have different requirements for latency, relia-
bility and throughput. In the context of C-RAN, end-to-end resources encompass radio, computational
and link resources that should be allocated efficiently.

1.3.4 Energy-efficient C-RAN

There is a direct relationship between RAN operational cost reduction and energy benefit. Indeed, C-
RAN leverages the Cloud infrastructure to allocate the computational resources on the fly, with respect to
traffic load variation. Such a flexibility reduces the overall computational resource demand for network
operation compared to the traditional RAN [2]. This fact makes C-RAN energy efficient “by design”.
Furthermore, Cloud infrastructures are characterized by an energy efficient indicator that expresses its
Power Usage Effectiveness value (PUE) [31].

Moreover, thanks to C-RAN, cooperative radio processing between co-located BaseBand units en-
ables the optimization of RRH power transmission in a predefined RRH cluster [32][33]. Other works
opt for dynamic BBU-RRH assignment, while triggering the low consumption sleep mode for inactive
cells [34].

However, in some cases, a fully centralized C-RAN architecture might become impractical due to
the high amount of energy consumption in the transport network [35]. Henceforth, a partially centralized
C-RAN scheme should be leveraged to reduce the energy consumption on end-to-end network resources
[36].

1.3.5 C-RAN orchestration

MNOs are dealing with a multi-dimensional tradeoff between conflicting objectives. Indeed, by leaving
some of the baseband functions at the access site, bandwidth needs are reduced and both latency and
jitter are relaxed. However, such a strategy reduces the opportunities of coordinated signal processing
and benefits from pooling the baseband functions. Therefore, MNOs should seek for the balance point
between baseband function centralization and decentralization in order to jointly i) minimize the Fron-
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thaul bandwidth, ii) reduce the computational resource demand with baseband cloudification, and iii)
fulfilling the stringent requirements of 5G use cases.

Radio, computational and link resource allocation impacts directly the UE Quality of Service (QoS)
and the deployment cost. This type of problem is often known as Multi Objective Combinatorial Op-
timization Problem (MOCOP), which can be expressed in an Integer Linear Problem (ILP). In general,
this type of problem is not scalable [37] where the optimal solution leads to a high resolution complexity.
Thus, there is a high need to design an efficient algorithm to solve it in a polynomial time.

Besides, the 5G context requires an up-to-date decision during each Transmission Time Interval
(TTI) period. To deal with such a high real time decision making requirement, the adaptability of slice
deployment needs to be adequately fast.

As the evolution of network management complexity progresses, the Self-Organizing Networks
(SONs) [38] have been supported by 3GPP standardization for empowering the RAN with big data ap-
plications. Specifically, the use of machine learning techniques enables the development of self-aware,
self-configuring, self-optimization, self-healing and self-protecting 5G systems, in what we call cogni-
tive network management. By enabling end-to-end on the fly resource provisioning, RAN slices can be
created, reconfigured and managed efficiently in a dynamic and scalable environment.

1.3.6 Business model transformation

5G brought radical technological improvements into the cellular networks. However, it is not expected
that MNOs revenue-per-bit will cope with the cost-per-bit investments [1]. Therefore, MNOs are strug-
gling to find a sustainable business model to monetize their offerings.

The concept of spectrum sharing has been introduced to enable the partitioning of licensed spectrum
into slices that can be delivered as a service to virtual operators, also known as micro operators (µOs)
[39]. This concept was first standardized by 3GPP in [40]. Wherein, the radio spectrum is shared besides
equipments such as: the radio masts, transport infrastructure (fiber, cables, etc.) and BaseBand process-
ing resources. Many works such as in [41–43] address the management of radio resource allocation with
isolation and sharing capabilities.

Another interesting case is to invest in the entire mobile network infrastructure and deliver anything
as a service (XaaS). This can be in the form of i) Infrastructure as a Service (IaaS), ii) Network as
a Service (NaaS), or iii) Network Slices as a Service (NSaaS). As a matter of fact, providing IaaS
helps operators to manage their network infrastructure, while leasing physical equipments. On the other
hand, NaaS which is in our case RANaaS, is about delivering the RAN connectivity, while discarding
operators from the infrastructure management complexity. Then, NSaaS is about offering a RANaaS
with a customized resource provisioning scheme to fit specific use case requirements.

1.4 Thesis contributions

Hereafter, we summarize the significant contributions of this thesis.

• State-of-the-art on C-RAN architecture

– Deep analysis of 3GPP functional split options: We provide an in-depth overview of
each 3GPP functional split option [17] in terms of requirements, advantages and limitations.
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We also give details about ongoing C-RAN initiatives and standardization efforts fostering
C-RAN implementation.

– Deep analysis of C-RAN resource provisioning strategies: We study state-of-the-art C-
RAN resource provisioning strategies. We can classify them into two main groups. The first
one includes approaches aiming at reducing the RAN deployment cost and energy consump-
tion by adopting the partial baseband placement strategy. The first group of approaches are
denoted by RAN placement approaches. The second group comprises approaches aiming at
fulfilling the UEs’ QoS requirements, while reducing the RAN deployment cost and energy
consumption. In the second approach, RAN slice allocation is performed by jointly allocat-
ing radio, link and computational resources. The second group of approaches are denoted
by RAN slice allocation approaches. It is worth noting that, in the literature, there are ad-
ditional optimization schemes addressing exclusively the radio resource allocation [41–52].
Their scope is limited, as RAN slicing also incorporates computational and link resources.
Therefore, this group of approaches is not considered in this thesis as it does not respond to
our objectives.

• Implementation of a cost efficient C-RAN framework enabling on-demand deployment of
RAN resources: We propose and implement an experimental Agile C-RAN framework, denoted
by AgilRAN. The latter is multi-sited which is in compliance with the NG-RAN 3GPP archi-
tecture [17]. We rely on Network Function Virtualization (NFV), and more specifically, on the
container technology (e.g., LinuX Container LXC and Docker) to enable the virtualization of
fine-grained baseband functions. We also refer to the latest advances of SD-RAN to monitor and
control the RAN network state, while using the SDN FlexRAN controller [53]. AgilRAN enables
a user centric split orchestration ensuring baseband function placement and their interconnection,
while taking into account the temporal load variation of users and real-time network state.

• Energy-efficient user-centric functional split solution optimizing the RAN deployment cost:

We propose a novel functional split orchestration scheme that aims at minimizing the RAN de-
ployment cost. With a fine grained approach on user basis, we show that the proposed solution
optimizes both processing and bandwidth resource usage, while minimizing the overall energy
consumption compared to i) cell-centric, ii) fully distributed and iii) fully centralized C-RAN
approaches. By enabling the selection of functional split for each user, link and computational
requirements become more tunable, which is a key to build cost effective RAN deployment so-
lutions. It is worth noting that the elaborated model is limited to one cell. Although this novelty
has brought more flexibility to 5G C-RAN, the adopted approach does not consider the UE la-
tency requirement, while performing the baseband function placement. Furthermore, the required
amounts of computational and link resources for user-centric functional splits, depend on the user
traffic load, i.e., the amount of allocated radio resource blocks. Hence, the baseband function
placement can be further optimized when integrating the radio resource allocation in the split
selection decision. At the end, by performing the joint radio, computational and link resource
allocation at the user level, in a multi-sited C-RAN environment, the RAN deployment cost can
be more tunable, while effectively considering the UE use-case requirements. This challenge
expresses the RAN slice allocation, which will be addressed in the next contribution.
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• User-centric RAN slicing allocation in 5G C-RAN

– Heuristic based approach: We put forward a user-centric RAN slicing allocation scheme
aiming at optimizing jointly radio, link and computational resources for each User Equip-
ment (UE). Our scheme fulfills each UE QoS requirement while considering the underlying
RAN infrastructure state. Our proposed heuristics are operating in a reasonable time within
tens of milliseconds. However, the 5G RAN context requires an up-to-date decision within
one Transmission Time Interval period, i.e., less than 1 ms [54]. Therefore, sophisticated
algorithms may lead to decisions, that once taken, will be already obsolete and hence not
applicable. Reactive models are highly recommended in these cases, where the allocation
scheme is generated in real-time upon input data without performing an exhaustive calcula-
tion task.

– Deep Learning based approach: We propose a Deep Learning based approach for User-
centric RAN Slice Allocation scheme. The latter is able to decide in real-time, to jointly
allocate the optimal RAN slice for each user equipment. Our proposal satisfies UE’s require-
ments in terms of throughput and latency, while minimizing the infrastructure deployment
cost.

1.5 Thesis outline

This thesis is organized as follows. In Chapter 2, we provide an in-depth overview of each 3GPP func-
tional split option and the ongoing initiatives and standardization efforts dealing with C-RAN. Then,
we discuss the different C-RAN resource provisioning strategies found in literature. In Chapter 3, we
describe the proposed AgilRAN architecture and platform implementation. Wherein, the main compo-
nents of our dynamic RAN Functional split orchestration solution are described. Chapter 4 details the
energy-efficient user-centric functional split solution, optimizing the RAN deployment cost. The pro-
posed scheme is based on the Swarm Particle Optimization approach. In Chapter 5, we present the joint
approach of radio resource allocation and functional split selection to address the user-centric RAN slice
allocation problem. The proposed scheme is based on the Swarm Particle Optimization approach and
Dijkstra Algorithm. In Chapter 6, we set out to address the real-time challenge by proposing a Deep
Learning based solution for RAN slice allocation. Finally, Chapter 7 concludes the thesis and presents
our ongoing and future work in the area.
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2.1 Introduction

C-RAN architectures are expected to play a crucial role in providing ultra-high data rate, extremely low
latency, and nearly ubiquitous connectivity for 5G and beyond networks. Thanks to their high flexibility,
the network capacity will be increased while improving energy efficiency and achieving high scalability.
However, despite the attractive advantages of C-RAN, its deployment raises new challenges related to
the design of fronthaul link and the optimization of resource provisioning.

In this Chapter, we first introduce the C-RAN Fronthaul, a key element motivating the Mobile Net-
work Operators (MNOs) to rethink their RAN architecture, towards the functional split concept. Section
2.3 presents an in-depth analysis of each split option in terms of requirements, advantages and limita-
tions. In Section 2.4, we give insights into the standardization efforts. Section 2.5 pins the problematic
of the C-RAN resource provisioning. Next, Section 2.6 identifies the objectives that should be opti-
mized to achieve an efficient provisioning approach. Afterwards, Section 2.7 describes the relevant
C-RAN resource provisioning strategies proposed in the literature. Wherein, the related strategies are
classified into two main groups. The first one performs baseband function placement in a disaggregated
RAN, aiming at reducing the RAN deployment cost and energy consumption. The second group com-
prises approaches performing RAN slice allocation by jointly allocating radio, link and computational
resources. The objective is to fulfill the UEs’ QoS requirements, while reducing the RAN deployment
cost and energy consumption.

2.2 Cloud RAN Fronthaul

The third generation of mobile networks introduced the term “fronthaul” to denote the connection link
between the Remote Radio Head (RRH) and the Baseband Unit (BBU), both located at the access site.
RRH is connected to the antenna and performs radio functions, while BBU performs the processing
functions. Then, the fourth generation of mobile networks introduced the term of BBU pool by cen-
tralizing the BBUs in a strategic location to reduce the access site rental costs. Meanwhile, the C-RAN
concept was proposed to virtualize and cloudify the BBU pool in order to enable on-demand compu-
tational resource deployment, achieving, hence, greater cost savings, cooperative inter-cell processing,
among other advantages.

However, in both cases, the BBU centralization raises a major problem when dealing with the ca-
pacity demand on the fronthaul network. Indeed, the bandwidth demand is scaling up with the radio
parameters. For example, with a configuration of a 100 MHz LTE using 8 downlink antennas and 256

Quadrature Amplitude Modulation (QAM), the bandwidth demand is up to 157.3 Gbps per RRH-BBU
connection with only 250 µs of latency [14]. MNOs may find dark fiber almost the only applicable
fronthaul solution, which counteracts the original cost saving principle of C-RAN.

In order to relax the stringent fronthaul constraints, while taking advantage of BBU centralization,
both industry and academia are rethinking the RAN architecture. The aim is to enable the adoption of
low expensive connection options such as Ethernet and wireless links, with new fronthaul solutions such
as carrier Ethernet [55], which ensure a certain QoS to time critical data.

Recently, the fifth generation of mobile network introduced a disaggregated RAN model. The aim
is to cope with use-cases requiring low latency by keeping time-critical baseband functions in the access
site, while pooling non-time critical baseband functions in a centralized location. In this context, 3GPP
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introduced in [17], the Next Generation 5G Radio Access Network (NG-RAN) architecture. Wherein,
the new 5G eNodeB (so called gNB) is decoupled into: i) Central Unit (CU), ii) Distributed Unit (DU)
and iii) antenna Radio Unit (RU). Accordingly, RU and DU are deployed at the access site, while CU
is kept in the BBU pool. The expected distance between RU and DU varies in range of [1-20] km,
those between DU and CU in range of [20-40] km and the backhaul connection can reach 300 km
[56]. Consequently, the BBUs can be splitted at many conceivable points, enabling, hence, a partial
baseband centralization, while leaving some functions at the access site. Figure 2.1 describes the RAN
Architecture of the fourth generation (4G), full centralized C-RAN and 3GPP NG-RAN architectures,
respectively.

Figure 2.1: 4G, C-RAN and 3GPP NG-RAN architectures

2.3 Functional split requirement analysis

Several functional split options for a disaggregated 5G RAN have been proposed by 3GPP in release
14 [14] as shown in Figure 2.2. The LTE protocol stack is decomposed into a chain of processing
functions, that can be splitted at many conceivable points. The latter are marked with dashed lines to
separate functions performed in CU (at the top) and the ones performed in DU (at the bottom).

Such a disaggregation raises the question of which functions to put in CU and which functions to
leave in the DU. In order to answer, a deep analysis of each functional split option is needed. In what
follows, we provide an in-depth analysis of each split option in terms of requirements, advantages and
limitations. We refer to 3GPP Specification [14], while the bandwidth requirement for each functional
split option is calculated in downlink direction assuming a radio configuration with 100 MHz LTE using
8 downlink antennas and 256 Quadrature Amplitude Modulation (QAM).
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Figure 2.2: The LTE protocol stack with functional split options proposed by 3GPP

2.3.1 3GPP Option 1 : RRC/PDCP

3GPP Option 1 centralizes the Radio Resource Control (RRC) processing function. RRC constitutes
the Control Plane (CP) of the LTE protocol stack operations such as system information, measurement
configuration and User Equipment (UE) connection control, etc,. The User Plane (UP) operations are
handled from the Packet Data Convergence Protocol (PDCP) function backwards to the Radio Frequency
(RF) function. Therefore, option 1 also refers to the CP/UP split, where the fronthaul is expected to
transport both RRC signaling and user plane traffic through radio bearers.

The latency requirement for this split option is in the order of 10 ms [57], comparing with 250 µs for
a full centralized C-RAN. Besides, this interface generates a user load dependent bitrate on the fronthaul
link achieving a bandwidth relaxation in the order of 97% compared to the traditional C-RAN [57].

With this split, RAN control functions are centralized, which is in compliance with the SD-RAN
principle. Indeed, management decisions, such as Radio Resource Management (RRM), mobility and
fast switching between Radio Access Technologies (RATs) can be further optimized leveraging the
centralized view of RRC.

However, this design becomes less efficient in wide deployment due to the important overhead of
RRC control messages that may limit the fronthaul bandwidth [58]. Besides, higher security and re-
siliency procedures should be addressed for the fronthaul. On the other hand, only few functions can
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benefit from the shared processing power, since all UP functions are decentralized. Also, advanced
techniques like inter-cell coordination cannot be supported since they require co-location of specific UP
processing functions.

2.3.2 3GPP Option 2: PDCP/RLC

3GPP Option 2 centralizes the Packet Data Convergence Protocol (PDCP) function, while keeping the
Radio Link Control (RLC) function in DU. Wherein, PDCP receives IP packets from higher layer to
perform header compression and encryption operations. IP packets are, then, transported through the
fronthaul link. It is worth noting that there is one instance of PDCP per user flow [59].

The latency requirement for this split option varies in the range of [1.5, 10] ms [57]. Similarly to
the split option 1, the fronthaul bandwidth is load dependent achieving a relaxation in the order of 97%
compared to the traditional C-RAN [57]

With this split, PDCP flows can be transported to the RLC function of multiple remote DUs, mak-
ing the split supporting the multi-connectivity, i.e., fast switching between Radio Access Technologies
(RATs).

However, split option 2 requires a buffer at both sides of the fronthaul to put IP packets in order.
This fact imposes additional processing burden adding extra latency to the fronthaul [16]. Besides, only
few functions can benefit from the shared processing power with low benefits from coordinated cell
processing.

2.3.3 3GPP Option 3: intra RLC

This split corresponds to the interface dividing RLC function into two sublayers: High-RLC and Low-
RLC. High-RLC mainly performs the Automatic Repeat Request (ARQ) retransmissions, when IP pack-
ets are received out of sequence from PDCP. Low-RLC conducts the segmentation of PDCP PDUs
following sizes indicated by the Medium Access Control (MAC). It is worth noting that there is one
instance of RLC per user flow [59].

This split places High-RLC and PDCP in the same location. It helps, hence, to reduce, the transmis-
sion delay of re-establishment procedures.

Same as option 2, the latency requirement for this split option is in the range of [1.5, 10] ms and the
fronthaul bandwidth is load dependent with a relaxation in the order of 97% compared to the traditional
C-RAN [57].

There is a handful of contributions related to this split option either in simulation or practical exper-
iment [59], which leaves room for deeper studies. In this thesis, 3GPP Option 3 is not considered as
computational and bandwidth requirements for both High-RLC and Low-RLC functions are still under
investigation [59].

2.3.4 3GPP Option 4: RLC/MAC

The functional split option 4 centralizes the RLC function while leaving the Medium Access Control
(MAC) function in the access site. The fronthaul link transports the RLC PDU to the MAC layer in
downlink direction.

However, as described earlier, the Low-RLC function is tightly related to the MAC layer. In fact, the
latter is sending frequent notification to specify the size of RLC PDUs to ensure a specific Quality of
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Service (QoS) for each data flow. In the context of 5G, it is expected that subframes will be shorter. This
fact requires more frequent decisions performed by the MAC scheduler [38], which makes the option 4

impractical.
The latency requirement for this split option is approximately 100 µs [57] which is very tight. Sim-

ilarly to split option 1, the fronthaul bandwidth is load dependent achieving a relaxation in the order of
97% compared to the traditional C-RAN [57].

2.3.5 3GPP Option 5: intra MAC

This split corresponds to the interface decomposing the MAC function into two sublayers: High-MAC
and Low-MAC. High-MAC encompasses the scheduler responsible for allocating the radio resources
in frequency and time domain, which are called Resource Blocks (RBs). The scheduling is conducted
via a controller and a random access control entity that operate at the cell level. This operation is per-
formed repeatedly each Transmission Time Interval (TTI), corresponding to 1 ms for LTE. Eventually,
the fronthaul link is transporting the multiplexed data flows and scheduling commands in downlink.

The driver behind this design is to centralize the MAC scheduler in order to enable efficient Co-
ordinated Multi Point (CoMP) processing such as multi-cell Collaborative Scheduling (CS) and Joint
Processing (JP).

According to [57], the latency requirement for this split option is in the order of hundreds of ms,
which extremely relaxes the fronthaul bandwidth, but still depends on the realization and interaction of
scheduling functions in the CU and DU [59]. Similarly to split option 1, the fronthaul bandwidth is load
dependent achieving a relaxation in the order of 97% compared to the traditional C-RAN [57].

However, in the context of 5G with an even shorter TTI of 250 us [60], the performance of central-
ized MAC scheduler can be impacted by a non-ideal fronthaul latency, thus, limiting the performance
of Coordinated Multi Point (CoMP) processing. In this thesis, 3GPP Option 5 is not considered as
computational and bandwidth requirements for both High-MAC and Low-MAC functions are still under
investigation [59].

2.3.6 3GPP Option 6: MAC-PHY

Split option 6 centralizes all the MAC sublayers, leaving the physical layer in DU. It is worth noting
that Low-MAC performs the Hybrid ARQ (HARQ) process, which is a time critical function. Indeed,
HARQ reports the scheduling operation feedback for each user periodically. In the LTE FDD setup, the
HARQ mechanism imposes a feedback timing of 4 TTIs, which provides an upper bound for the total
delay of both fronthaul link and BBU processing time. Besides, Low-MAC is responsible for building
a transport block per UE based on the UE’s context and its data buffer. It operates at the user level.
Accordingly, the fronthaul link is carrying the transport blocks with an expected extra overhead from
scheduling control and synchronization.

Being centralized, the HARQ process imposes a very tight fronthaul latency of 250 µs [14], which
is impractical in case of sub-ideal fronthaul. This constraint is kept for the remaining splits 6, 70, 71,
72 and 8, as long as the HARQ process is centralized. The fronthaul bandwidth is load dependent with
a small increase comparing to option 5 due to overhead, but keeping a relaxation in the order of 97%
compared to the traditional C-RAN [57].

This split option enables efficient inter-cell scheduling leveraging the centralized view of MAC layer.
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However, the fronthaul delay impacts the HARQ process which limits the ability of shorter subframes.
Even though the entire network layer L3 and data link layer L2 are centralized, there is only around 20%

of baseband processing resources taking benefit from the pooling gain of Cloud processing resources.
The rest is located at the L1 physical layer.

2.3.7 3GPP Option 7a: High-PHY

According to [57], there are three functional split options for intra physical layer: option 70, 71 and
72. We propose to detail hereafter option 70 which centralizes the following functions: i) attachment
of Cyclic Redundancy Check (CRC), ii) encoding and segmentation of transport blocks and iii) rate
matching. It is worth noting that these functions operate on user basis. Using this split option, codewords
are transmitted in downlink direction on the fronthaul link to be modulated in DU.

The encoding function is the most expensive in BBU LTE stack in terms of processing time [30].
Hence, a potential cloudification of this function may contribute to reduce the processing delay.

Similarly to option 6, the latency requirement for this split option is approximately 250 µs [57]
which is very tight. The fronthaul bandwidth is load dependent achieving a relaxation in the order of
85% compared to the traditional C-RAN [57].

2.3.8 3GPP Option 7b: High PHY/Low PHY

Option 71 centralizes the following functions: i) codeword scrambling, ii) Quadrature Amplitude Mod-
ulation (QAM) and iii) layer mapping. It is worth noting that these functions operate on user basis.
Therefore, option 71 transports subframe symbols with a variable bit rate on the fronthaul link. Thanks
to split option 71, downlink CoMP coherent Joint Transmission (JT) can be supported without perfor-
mance degradation.

Similarly to option 6, the latency requirement for this split option is approximately 250 µs [57]
which is very tight. The fronthaul bandwidth is load dependent ensuring a relaxation in the order of
85% compared to the traditional C-RAN [57].

2.3.9 3GPP Option 7c: Low PHY

Option 72 divides the lower part of the physical layer into two sub-parts. Hence it is called the Low PHY
split. This split option centralizes both precoding and resource element mapper functions. The former
precodes the symbols on each layer for transmission on the antenna ports. The resource element mapper
is a cell processing function responsible for converting the symbols into sub-carriers converting, hence,
the fronthaul bit rate from variable to constant bit rate. The inverse Fast Fourier Transform (iFFT) and
Cyclic Prefix (CyP) functions are left in DU side. iFFT is responsible for converting the sub-carriers
from frequency domain into IQ symbols in the time domain, while CyP helps to distinguish the frames.

Accordingly, Option 72 transports the sub-carriers on the fronthaul link with a high and constant bit
rate. In doing so, it achieves a relaxation in the order of 45% compared to the traditional C-RAN [57].
Similarly to option 6, the latency requirement for this split option is approximately 250 µs [57] which is
very tight.
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2.3.10 3GPP Option 8: PHY/RF

Split option 8 refers to the traditional full centralized C-RAN architecture, where the BBU LTE stack is
fully centralized in CU. Specifically, this split interconnects the lower processing functions part of BBU,
i.e., the physical layer, to the Radio Frequency (RF) function of RU. Hence, this interface is also referred
to as PHY/RF interface. Accordingly, the generated IQ samples are radio waveforms encapsulated in a
transport protocol such as: CPRI [61], CPRI over Ethernet [21] and compressed CPRI [62].

IQ samples are generated with a constant bit rate regardless the cell load. Indeed, the bandwidth
demand for this option depends on the radio configuration like number of antenna, that may require up
to 157.3 Gbps of bandwidth, which is non-affordable. Same as option 7, this split requires a latency of
250 µs [14].

In this configuration, all PFs are centralized, achieving the highest benefit from sharing the pro-
cessing resources, while enabling BBU cooperation at many levels. However, the required fronthaul
capacity is the highest. Besides, CPRI requires a very strict jitter that can limit the transmission over
a packet switched network such as Ethernet. Indeed, this option requires high capacity fibers and real
time communication on the fronthaul link.

Another interesting split option is proposed by the Small Cell Forum (SFC) in [16]. It further cen-
tralizes the Parallel to Serial conversion and CPRI encoding functions in case of using a fiber connection
between DU and CU.

2.4 Functional split: Standardization effort

Figure 2.3 summarizes the requirements for fronthaul bandwidth and latency according to [57], when
operating with a 100 MHz LTE using 8 downlink antennas and 256 Quadrature Amplitude Modulation
(QAM). It is worth noting that the bandwidth requirement is static (i.e., load independent) for options
72 and 8, while it is variable (i.e., load dependent) for rest of options. Therefore, we show in Figure 2.3
the highest peak of bandwidth that can be achieved by the latter split options.

Today, there is a strong interest from research and telecom industry to leverage the disaggregated
RAN design in order to provide a cost-effective transport network. Accordingly, the challenge is to build
a RAN infrastructure that flexibly deploy the optimal split option in a dynamic fashion. Thereby, the
partial C-RAN centralization solution can be offered as RANaaS. Hereafter, we give an overview of the
standardization trends and industrial work towards a C-RAN architecture enabling flexible deployment
of functional splits.

The IEEE 1914 Next Generation Fronthaul Interface (NGFI) Working Group [15] is working on
standardizing packet based fronthaul transport networks. To do so, the functional split options are ana-
lyzed in terms of required data rate, latency, synchronization [63]. Then, possible deployment scenarios
are proposed in compliance with the 3GPP specification [57]. Wherein, NGFI defines a two-level fron-
thaul: NGFI-I and NGFI-II. Accordingly, NGFI-I is the interface connecting RU and DU to deploy split
options with stringent latency and high bandwidth requirement, while NGFI-II is the interface connect-
ing DU and CU to deploy split options with low bit rate and relaxed latency requirement. Besides,
IEEE 1914 aims at using the already existing Ethernet infrastructure as a fronthaul technology by first
proposing to encapsulate the IQ data of low layer splits into Ethernet frames [64].

The ITU-T Technical Report on Transport network support of IMT-2020/5G [56] analyzes the 3GPP
NG-RAN architecture [17] and their split option requirements in terms of bit rate, latency and synchro-
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Figure 2.3: Fronthaul bandwidth and latency requirements for each functional split option

nization. They conclude that the fronthaul connection between DU and CU can support heterogeneous
service requirements that can support 5G use cases like eMBB, uRLLC and mMTC. Therefore, in sup-
port with the 5G slicing vision, it is crucial to provide a fronthaul network with flexible functional split
to transport services with heterogeneous QoS requirements.

Next Generation Mobile Networks (NGMN) alliance highlighted, in [65], the need for the functional
decomposition of RAN to meet the diverse transport performance demands and align them with the
requirements of next-generation service categories such as eMBB, uRLLC and mMTC.

In [16], the Small Cell Forum provides a very thorough study of different functional split options
while analyzing their feasibility, key benefits and requirements in terms of bit rate and latency. In-
terestingly, they propose a theoretical model to compute the fronthaul link bit rate and the bandwidth
requirements of each split option. In this thesis, we propose to rely on this calculation method to evaluate
the impact of deployment of each split on the fronthaul traffic.

Mobile Central Office Re-architected as a Datacenter (M-CORD) [66], is a project aiming at creating
an open reference datacenter implementation for 5G mobile wireless networks. The solution is cloud
native built on SDN and NFV concepts to support various access technologies.

2.5 Cloud RAN resource provisioning challenge

One of the key success of C-RAN is its ability to offer a RANaaS solution with on-demand resource
provisioning. Wherein, RAN resources encompass radio, computational and link resources, that should
be allocated efficiently. The provisioning of radio resources consists in i) UE-gNB association, ii) parti-
tioning the carrier bandwidth of each gNB among users, and iii) allocating the adequate amount of radio
power on each resource block bandwidth. The objective is to fulfill the end-users’ throughput demands,
while minimizing the inter-cell interference level. Meanwhile, the functional split approach has been
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standardized to add new deployment design capabilities, while performing flexible baseband function
placement. To do so, the deployment of a functional split consists in allocating i) computational re-
sources in CU, ii) computational resources in DU, and iii) link resources in the fronthaul link. A further
challenge consists in meeting the multitude use-case’s requirements while considering different design
models in the physical infrastructure. This challenge expresses the RAN slice allocation problem, where
an efficient provisioning scheme should address jointly i) radio, computational and link resources. In the
context of 5G, an up-to-date allocation decision is required during each TTI period. To deal with such a
high requirement, the joint RAN allocation and placement scheme should be fast enough to adapt to the
dynamic context of 5G.

2.6 Cloud RAN resource provisioning criteria

Resource provisioning in C-RAN can be performed to achieve different objectives. In what follows, we
focus on network performance metrics of optimization problems considered in the literature that can be
classified into i) resource usage, ii) throughput maximization, iii) energy consumption, and iv) delay.

• Resource usage: A natural objective to achieve efficient resource provisioning in C-RAN is the
maximization of the number of served UEs. Indeed, an efficient allocation approach with high
acceptance rate results in maximizing the revenue [67][68][69].

Another metric consists on minimizing the number of active RRHs. The idea is to exploit the
sparsity of users in the network to identify and switch off inactive RRHs for minimizing the
network power consumption [70][71][72].

Most of related work, targeting end-to-end resource allocation in C-RAN with functional splits,
put a cost value function that expresses a weighted sum of computation, link and eventually radio
resource usage [12][73][74][75][76]. The idea behind this is to offer to MNOs the ability to
tune the usage of different RAN resources by flexibly selecting the appropriate functional split as
follows:

2>BCE0;D4 = F��* . ��* + F;8=: . �� + F?A1 . %'�

In the cost value function, ��* corresponds to the usage of computational resources across RAN
sites which is the ratio between the amount of allocated computational resources and the available
computational capacity. Similarly, �� is the amount of allocated link resources on the fronthaul
link. %'� expresses the spectrum efficiency, i.e., the utilization of Physical Resource Blocks.
F��* , F;8=: and F?A1 represent the associated weights. They are normalized such that their sum
is equal to a unit value.

• Throughput: Maximizing the sum-rate is an important network performance metric that re-
flects the ability to satisfy users requirements in terms of throughput. To this end, an efficient
spectrum allocation approach that optimizes user-gNB association and PRB allocation is needed
[34][77][78][79]. As shown in the following sum-rate function, the final throughput is evaluated
as the summation of served throughput '8< from 6#� <, ∀< ∈ 6#�B, to user 8, ∀8 ∈ DB4AB.
Wherein, the sum-rate is usually maximized under the practical network constraints such as inter-
cell interference and allocated radio power.
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BD<A0C4 =
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• Energy consumption: In addition, energy consumption is one of the key objectives for C-RAN.
Therefore, several works propose to minimize the overall transmit power [80] and BBU power
consumption [81][82]. Interestingly, various works propose a linear model to translate the amount
of allocated computational resources into a consumed power [83] [36].

• Delay: Several papers target the delay minimization caused either by BBU processing [30][84]
or by fronthaul links [76] [85]. The end-to-end delay over the network is calculated as follows:

�2�34;0H =
∑
3∈�*

F3 34;0H3 +
∑
2∈�*

F2 34;0H2 +
∑
4∈��

F4 34;0H4

where 34;0H3 expresses the delay of BBU function processing in DU 3, 34;0H2 expresses the
delay of BBU function processing in CU 2 and 34;0H4 expresses the delay caused by link 4 to
transport data between 3 and 2.

2.7 Cloud RAN resource provisioning approaches

Hereafter, we provide a taxonomy of the C-RAN resource provisioning optimization approaches found
in literature. We propose to classify them into two main groups. The first one includes approaches
aiming at reducing the RAN deployment cost and energy consumption by adopting the partial baseband
placement strategy. The first group of approaches are denoted by RAN placement approaches. The
second group comprises approaches aiming at fulfilling the UEs’ QoS requirements, while reducing
the RAN deployment cost and energy consumption. In the second approach, RAN slice allocation is
performed by jointly allocating radio, link and computational resources. The second group of approaches
are denoted by RAN slice allocation approaches. It is worth noting that, in the literature, there are
additional optimization schemes addressing exclusively the radio resource allocation. Their scope is
limited, as RAN slicing also incorporates computational and link resources. Therefore, this group of
approaches is not considered in this thesis as it does not respond to our objectives.

2.7.1 RAN placement approaches

Hereafter, we detail the state of the art on ongoing research for the RAN placement optimization ap-
proaches in C-RAN:

Authors in [76], propose a graph based framework to reduce the resource allocation computational
cost in both access and Cloud sites. This framework takes into account both traffic load in the fronthaul
link and the delay requirement for each cell, which are contradictory goals. To this end, a genetic
algorithm is proposed, in order to place optimally the BBU functions across RAN sites. However, this
approach is based on the assumption that the computational, bit rate and delay requirements for each
split are static and does not reflect the most basic properties of real RAN systems.

A network calculus approach is elaborated in [85] proposing a multi objective function to minimize
the deployment cost of BBU functions, while considering the strict delay requirements of critical ser-
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vices. Unfortunately, this work does not refer to a quantitative model for the computational requirement
of each split.

In [86], authors propose a detailed Total Cost of Ownership (TCO) minimization model in a fiber
based RAN with BBU splits, which takes into account quantitative models for computational and link
resource requirements. However, this model is still considering the use of splits with a coarse grained
decision, as it generates a split per cell for all attached users.

A uRLLC slice embedding with a functional split approach is proposed in [87]. A heuristic is
elaborated to minimize the link resource requirement in the fronthaul connection. However, it is worth
noting that the aforementioned work is addressing the RAN function placement problem from a cell-
centric point of view. Wherein, a unified functional split is selected for all end-users in one 6#�.

In [88], authors present a model for minimizing the overall energy consumption of the 5G infras-
tructure by flexibly tuning the functional split on the optical transport. A Long Short-Term Memory
(LSTM) based neural network is proposed to predict functional split decision. Unfortunately, the split
deployment is cell-centric.

In [89], authors propose an ILP model for optimal functional split selection in a 3-layer RAN ar-
chitecture. The benefits of the 3-layer architecture is compared with the 2-layer architecture, showing
that the optimal centralization degree depends on processing capacity, transport network capacity and
fronthaul traffic latency. However, this model is still considering the use of splits with a coarse grained
decision, as it generates a split per cell for all attached users.

In [90], authors propose a model for RAN virtual network function placement on a physical in-
frastructure, while minimizing the bandwidth on the aggregated fronthaul link. A heuristic is proposed
to dynamically select the optimal split option, while taking into consideration the daily traffic profile,
number and placement of CU and DU elements. Unfortunately, the split deployment is cell-centric.

In [91], a BBU function placement approach is proposed, while adopting a functional split approach.
The aim is to minimize the RAN energy consumption by minimizing the active DUs, while keeping a
low latency in the fronthaul link, which is a contradictory goal. A heuristic is proposed to evaluate
the impact of dynamic resource management facilitated through Virtual Machine (VM) live migration.
Unfortunately the split deployment is cell-centric.

Authors in [12], elaborate a teletraffic theory to analyze the gain of aggregating the fronthaul traffic
of multiple cells with different split configurations. An objective function is elaborated for maximizing
the energy and cost savings. To do that, the authors evaluate the allocated amount of computational and
radio resources along with the generated data rate in the fronthaul. Interestingly, this work proves that
the gain is function of the traffic profile and monitoring method. In other words, the user load and type
of traffic deeply impacts the split gain. For this reason, we conclude that a fine-grained split approach
per user basis will certainly achieve higher benefits. However, this approach is not evaluated in [12].

Differently from above works, [73] proposes a model with user split orchestration that aims at min-
imizing the system energy and bandwidth consumption in the fronthaul link. The elaborated model is
based on quantitative models to calculate the computational and link requirements for each split. How-
ever, this work relies on unrealistic split model as the platform control function which includes the MAC
scheduler is assumed to be a user centric processing which is not accurate. In this thesis, we stick to
reliable analytical models [16][83] and we elaborate a practical scheme based on realistic properties of
each baseband processing function. Moreover, authors in [73] assume that the radio resource allocation
is fixed for each user. Whereas, in our work, we take into consideration the traffic load variation and
analyze its impact during the split decision which is the key for an efficient user-centric approach.
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In [74], the same authors elaborate an end-to-end delay model to analyze the impact of a user delay
request on split decision, which impacts in turn the total cost and energy consumption. The model
is evaluated for a single user having optimal network conditions, therefore, the split decision is still
considered as per cell basis.

As a summary, the aforementioned methods propose different approaches and models for minimiz-
ing the energy and deployment cost of C-RAN, while supporting the BBU splitting. However, the split
decision is mainly taken with coarse grained on cell basis. As for [73], even the authors formulate their
approach on a user basis, the elaborated split model seems unpractical with unrealistic assumptions.
In [74], unfortunately there is only one user considered. Consequently, this would be seen as a mono-
lithic approach, unlike our proposal in which we opt for a user-centric functional split approach based
on analytical models and a practical scheme reflecting the RAN real properties.

2.7.2 RAN slice allocation approaches

By enabling joint radio, link and computational resource provisioning, RAN slices can be created and
managed in a dynamic fashion, ensuring the RAN-as-a-Service (RANaaS) vision. One of the major
concerns is how to meet the multitude use-case’s requirements while considering different designs in
the physical infrastructure. In doing so, decisions on what amount of allocated radio resources and
what network functions to place in DU or CU raise many challenges. Eventually, RAN slice allocation
impacts directly the end-user QoS performances and the operation cost, which is essential to design an
orchestration solution able to rise these challenges. The network slicing approach that jointly optimizes
the radio resource allocation and the functional split selection has motivated many research works.

In [84], authors elaborate a joint functional split and BBU scheduling problem in order to minimize
the overall processing delay of downlink frames. The problem is formulated as a constrained shortest-
path problem and solved with a heuristic algorithm that iterates between solving the two sub-problems.
However, in this work, the functional split selection is performed on cell-basis.

An architecture for slice orchestration is proposed in [92], while supporting the BBU functional split.
The proposed network resource management scheme jointly address the cloud-computing offloading and
bandwidth allocation in the transport network. However, this work does not integrate the radio resource
allocation in the slice approach.

In [93], a RAN runtime framework for slice control and orchestration is proposed. Then, a detailed
approach on radio resource slicing with different levels of isolation and sharing is described. Although
the disaggregated deployment scheme is integrated in the framework design, there is no problem mod-
eling for functional split selection.

A multi-tenant slicing scheme in Cloud-RAN is proposed in [94], taking into account tenant priority,
BBU resources, transport network capacities and interference levels. However, this work considers only
a full centralized deployment scheme.

In [95], authors formulated a problem of the functional split selection while considering the inter-
cell interference level. A new heuristic is proposed to minimize jointly the inter-cell interference and the
bandwidth utilization on the transport network. However, the functional split approach is performed at
cell level.

Authors in [96] propose a framework for slice management with functional split selection. They
address the problem of joint radio allocation and split selection to meet the different use-case require-
ments. However, authors consider a cell-centric approach. Therefore, the current study aims to fill the
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aforementioned gaps.
In [35], authors elaborate a power consumption model for radio, network function placement and

transport network, leveraging the functional split capabilities. In one hand, a fully centralized C-RAN
architecture is needed to provide good energy performance. However, it is expected to encounter radio
performance limitation in the distance between the access site and the cloud RAN. On the other hand, the
fully Distributed RAN (D-RAN) architecture is still interesting to minimize the high power consumption
of the transport network. Thus, a partial centralization approach can achieve an optimal trade-off, subject
to the radio configuration and traffic load. However, this work does not investigate the full split option
solutions.

Unlike most existing network slicing solutions, which aim to aggregate all users traffic belonging to
the same cell, we put forward a user-centric slicing scheme which instantiates an end-to-end network
resources for each user. Our proposal is tailored to different user quality-of-service requirements and to
the diverse functional splits resource requests.

2.8 Summary

Table 2.1 presents a comprehensive survey of the aforementioned C-RAN resource allocation algorithms
found in literature. A taxonomy of these strategies in terms of: i) objective function, ii) functional split
approach, iii) radio resource allocation approach, iv) constraints, v) problem modeling, and vi) used
algorithm, are highlighted. Note that the fronthaul connection link is denoted by “FH”.

2.9 Conclusion

This Chapter provided an overview of the different C-RAN resource allocation strategies found in lit-
erature. First, we introduced the C-RAN Fronthaul as key element that motivates the MNOs to rethink
the RAN architecture. Second, we presented an in-depth analysis of each split option in terms of re-
quirements, advantages and limitations. Next, we gave an insight into the standardization efforts. Then,
we detailed the problematic of the C-RAN resource provisioning. Afterwards, we summarized the dis-
cussed related C-RAN strategies, while outlining the main objective, the proposed model and applied
algorithm. Considering all the above criteria, the problem of on-demand resource allocation in C-RAN
becomes a very challenging task. Unfortunately, the majority of the surveyed works consist in adopt-
ing a cell-centric approach for functional split deployment. Wherein, a split option is deployed for all
associated UEs. However, to achieve greater flexibility and better resource utilization, a user-centric
approach should be more exploited.

In this thesis, we address the challenge of the efficient deploying of functional splits on user basis,
while dealing with temporal load variation of users. Consequently, to the best of our knowledge, our
study is the first attempt to present an optimized RAN slice allocation in C-RAN that jointly optimizes
the radio, link and computational resource provisioning on user basis. We also take into consideration
the Quality of Service (QoS) requirements of each user in terms of throughput and latency. Our solution
is based on analytical models and a practical scheme reflecting the RAN real properties. We integrate
our proposal in a novel RAN orchestration Framework design that will be described in the next Chapter.



2.9. Conclusion 27

Table 2.1: Comparison of C-RAN resource allocation optimization strategies
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3.1 Introduction

In this chapter, we present our cost efficient C-RAN architecture design and implementation, enabling
on-demand user-centric deployment of RAN resources. First, we describe our agile RAN architecture
along with its building blocks. Second, we present our experimental C-RAN prototype, which makes use
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of Open Air Interface (OAI) [20] and FlexRAN SDN controller [53]. Finally, we evaluated quantitatively
and qualitatively the bandwidth and computational consumption for a subset of functional split options.

3.2 AgilRAN architecture overview

We propose a 5G Agile RAN architecture, denoted by AgilRAN, which is in compliance with the 3GPP
NG-RAN architecture, described previously in [Chapter 2, p. 14]. Characterized by two-level sites of
processing, AgilRAN enables the placement of baseband functions in a dynamic fashion, while con-
sidering the UE stringent requirements and RAN network state. It is straightforward to see that similar
C-RAN architectures have been proposed in the literature, such as [19]. The latter has been designed by
mobile operators to respond to their 5G vision for building a virtualized RAN on open hardware, with
embedded Artificial Intelligence powered radio control to enable SDN-like based capabilities. However,
in this work, we go a step further and adopt a “highly disaggregated” RAN model.

The main idea behind our design is to ensure a user level orchestration of baseband functions in a
hierarchical Cloud infrastructure, while using lightweight virtualization techniques. In fact, the BBU is
re-architected to be disaggregated into microservices. The latter corresponds to a decomposed baseband
functions which are instantiated into containerized network functions to perform either cell or user pro-
cessing tasks. In doing so, BBU microservices can easily interact with each other and scale separately
which make them Cloud native.

3.2.1 Disaggregated C-RAN infrastructure

We leverage the disaggregated RAN deployment approach where the 6#� BBU is splitted between
a Distributed Unit (DU) and a Central Unit (CU) connected through a fronthaul network. The latter
multiplexes the traffic of multiple gNBs to/from the cloud site, where CUs are pooled. Accordingly,
the AgilRAN architecture, as shown in Figure 3.1, is characterized by two layers in which baseband
functions can be instantiated. The lower layer, referred to as Access Site, consists of a number of
computational resources Distributed Units (DUs), which serve a set of Radio Units (RUs). Note that a
DU corresponds to a server which could be whether Commercial Off-The-Shelf (COTS) or equipped
with accelerators, e.g., FPGA (Field Programmable Gate Array). Each DU is capable of performing
partial or full BaseBand processing. The remaining subset of baseband functions can be deployed at the
second level system, a.k.a. Cloud site which hosts the Central Units (CUs) of multiple gNBs.

3.2.2 Cloud-native RAN

We rely on Network Function Virtualization (NFV), and more specifically, on the container technology
(e.g., LinuX Container LXC and Docker [28]) to enable the virtualization of fine-grained RAN network
functions in both DU and CU. It is worth noting that a container-based virtual environment guaran-
tees higher performances compared to virtual-machines based environments, as they run directly on the
kernel, use less memory and make run-time execution more efficient. Being packaged in containers in-
stead of virtual machines, PFs can be dynamically instantiated and destroyed within few microseconds.
Indeed, according to our experiments, we have quantified the average deployment time of a container-
based PF to 1.8 `s ± 0.2 `s.
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Figure 3.1: AgilRAN Framework

3.2.3 RAN function placement

As depicted in Figure 3.1, the Orchestrator module is responsible for dynamically instantiating the con-
tainers at the access and edge sites respectively, while connecting them with a fronthaul link. Therefore,
the RAN slice decision’s execution is performed by the Orchestrator module. Once the user leaves the
cell, the Orchestrator triggers the destruction of containers and deletes the slice.

3.2.4 RAN function control

We make use of an SDN controller to configure the link bandwidth and latency in the transport network.
The control is performed through a Transport SouthBound Interface (T-SBI), while the northbound API
is insured via a Transport Management Service interface (T-MaS).

Besides, RAN radio resources are allocated and configured by means of an SDN controller for radio
resource management, namely FlexRAN [53]. The latter provides an API for radio controlling over
multiple 6#�s through its Radio SouthBound Interface (R-SBI). The northbound API is insured via a
Radio Management Service interface (R-MaS).

3.2.5 RAN slice allocation & orchestration

On top of this virtualized RAN architecture, we design and implement an algorithm ensuring the opti-
mization of user-centric RAN slice allocation. As depicted in Figure 3.1, the optimization entity moni-
tors the RAN state information including radio conditions (i.e., available spectrum, interference levels,
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*� radio channel estimation), link state (i.e., available bandwidth) and server capacities (i.e., processing
power) of all RAN sites. The aim is to elaborate an optimized RAN slice allocation decision that satis-
fies both UE throughput and latency demands while keeping a cost effective RAN deployment. Hence,
based on the aforementioned parameters, an optimized RAN slice allocation is performed for each UE,
by assigning the appropriate proportions of i) radio spectrum, ii) computational resources in the DU site,
iii) computational resources in the CU site, and iv) bandwidth in the fronthaul network. This informa-
tion is registered in the slice descriptor resource requirements and then triggers the Slice Manager entity
through the Slice Management Service (S-MaS) interface.

The Slice Manager interacts with three resource management entities in order to deploy each user
slice conforming to the slice descriptor specification. First, proportions of radio resources are allocated
and configured by means of the Radio SDN controller. Second, the user processing resources are al-
located both in DU and CU sites via the Processing Management Service interface (P-MaS). At this
stage, baseband functions are instantiated into containerized network functions that can easily interact
with each other and scale separately by mean of the Orchestrator. Third, the Slice Manager entity inter-
connects the 6#�-CU and 6#�-DU containers by programming the link bandwidth provisioning and
latency control in the transport network. This is handled by the Transport SDN controller, leveraging its
centralized and abstract network view.

For instance, and as we can see in Figure 3.1, our user-centric RAN Slice Allocation algorithm in-
stantiates dynamically 3 user slices on top of the same physical infrastructure. In doing so, the algorithm
decides to centralize PF1 and PF2, while keeping the below PFs at the access site for *�1 generating
an eMBB traffic. In this specific scenario, the Orchestrator will trigger the instantiation of 2 containers
as shown in Figure 3.1. Note that PF3 and PF4 are common functions, requiring a common container
for serving all users attached to gNB1. Then, only PF1 is centralized in the cloud for *�2 generating a
high eMBB traffic. The aim is to reduce the data flow in the transport link. Meanwhile, only PF4 is kept
in the DU site for *�3 generating a uRLLC traffic. Indeed, the functional split of PF3-PF4 interface
requires a stringent transport delay which satisfies*�3 latency requirement.

Our proposed RAN Slice Allocation algorithm exposes an Optimization Management Service inter-
face (O-MaS), through which, the infrastructure provider, namely the MNO, can tune the RAN resource
usage threshold, which affects the optimal split decision. In doing so, the RAN Management System
component subscribes to the RAN state entity through an event driven interface. Thus, it can be notified
if a resource usage amount exceeds a given threshold, for example, the amount of traffic in the transport
network. When it is the case, the infrastructure provider decides to tune the optimization entity by pe-
nalizing the allocation in the transport network in order to reduce the link resource usage. Therefore, the
adopted user-centric approach offers a high level agility and considerably optimizes the resource usage
compared to a cell-centric approach.

We recall that our main objective is to maximize the total offered throughput for the users across the
network, while minimizing the total deployment cost. To achieve our objective, we jointly optimize, for
each user, i) the cell attachment and radio resource allocation, and ii) the functional split.
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Figure 3.2: Testbed architecture

3.3 C-RAN prototype

3.3.1 Disaggregated C-RAN Infrastructure implementation

We validate the feasibility of our architecture in a C-RAN prototype based on the Open Air Interface
(OAI) software [20] and FlexRAN SDN controller [53]. Note that the current version of our prototype
supports up to 3 types of functional splits, referred to as LTE (option 1), IF4p5 (option 7c) and IF5
(option 8). Accordingly, these cell-centric configurations are considered for our performance evaluation.

Distributed Unit (DU): As illustrated in Figure 3.2, our prototype makes use of the OAI software and
it is compliant with the 3GPP NG-RAN architecture, described previously in [Chapter 2, p. 14]. The
DU consists of a “Ubuntu 14.04" laptop, equipped with a CPU Intel 87 − 6500U 4-core (@2.50 GHz), a
Random Access Memory (RAM) of 16 GB and 1 Gigabit Ethernet card.

Radio Unit (RU): The DU is connected to a Universal Software Radio Peripheral (USRP) B210 card
[97] (hereinafter referred to as RU) via an USB 3.0 interface. By means of 2.4 GHz antennas co-located
with the USRP card, the RU irradiates the 4G signal to the whole cell.

Central Unit (CU): The DU is in turn connected to CU through an Ethernet “category 5e" patch cable,
supporting up to 1000 Mbps. The CU consists of a server with an Intel i7-3770 8-core (@3 GHz) CPU,
a RAM of 16 GB and running with the same operating system as DU.

Evolved Packet Core (EPC): The CU is connected to a second laptop, running “Ubuntu 16.04",
equipped with a CPU Intel 85 − E%A>, 4-core (@2.5 GHz). The latter implements the functionalities
of the Evolved Packet Core (EPC), according to the OAI software [20]. Our prototype is connected to 3

smartphones that act as Commercial Off-The-Shelf (COTS) users (UEs).
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3.3.2 Container-based environment implementation

In order to enable the flexibility required by the proposed AgilRAN architecture, we virtualized the
functions of the LTE protocol stack, by leveraging the Docker technology [28]. The latter is a tool
that allows packing applications with all their dependencies in containers. They can share the kernel
of the host operating system, while providing user space isolation. Such an isolation feature enables
running multiple virtual DUs within the same host, bypassing the limit of the classic hardware-based
implementation of OAI software. Moreover, DU and CU containers run directly on top of the kernel,
letting us to match the strict performance requirements of the OAI software [20]. Indeed, we have
quantified the average deployment time of a container-based PF to 1.8 `s ± 0.2 `s. Our prototype relies
on 2 USRP cards, making it possible to instantiate a maximum of 2 DU containers at the same host, each
connected to a different CU container.

3.3.3 RAN function placement

In order to implement the features of the AgilRAN architecture, i.e., enable on-demand functional split
deployment, we store multiple images of OAI DU and CU at the DU and CU hosts, respectively, for
each split configuration. As stated in [98], the Round Trip Time (RTT) of a flow transmission in a
one-hop 1 Gbps ethernet-based fronthaul for 5 MHz bandwidth is 300 `s with compression and 550 `s
without. Accordingly, the requirement delay of all deployed splits are respected with reference to [16].
According to the output of our RAN slice application, our prototype runs the appropriate instance of DU
and CU images, connecting them via the appropriate fronthaul interface.

3.3.4 Implementation of radio control function

Note that our prototype leverages the SDN paradigm to enable remote allocation of the bandwidth re-
sources in the CU host. In fact, as it can be seen from Figure 3.2, the CU node is connected to a specific
SDN controller, named FlexRAN [53], through a Radio SouthBound Interface (R-SBI) using Google
Protobuf [53]. By means of such an R-SBI interface, the FlexRAN Controller can easily interact with
CU and hence, collect information about the RAN network state. Moreover, FlexRAN makes available
a set of REST NorthBound Interfaces for Radio Management Service interface (R-MaS), which can be
used to manage the RAN environment in an abstract way. From the execution point of view, we are
constrained by some limitations of OAI software which does not support the dynamic configuration. In
order to partially overcome such a limitation, we have deployed a script that shuts down and re-activate
the OAI base station on-demand.

3.3.5 RAN slice allocation & orchestration implementation

On the top of FlexRAN, we have implemented 2 northbound applications, referred to as AgilRAN APP
and Slicing APP respectively. The former implements the proposed RAN slice allocation optimiza-
tion algorithm, which will be further detailed in Chapters 4, 5 and 6. The latter provides the Application
Programming Interface (API) for configuring the radio bandwidth allocation process among different
users in a centralized fashion.
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(a) Fronthaul Throughput, F [Mbps]

(b) Computational Cost at DU , G [GOPS] (c) Computational Cost at CU, G [GOPS]

Figure 3.3: Key Performance Indicators in our C-RAN Prototype

3.3.6 RAN resource consumption analysis for each functional split option

By means of experiments, we evaluate the impact of the different functional splits on the fronthaul
traffic, computation cost and power consumption. We set a bandwidth of 5 MHz, while all the UEs
are supposed to stream videos from a web-server for the whole duration of the experiments. We are
interested in evaluating the impact of the allocated radio resources on the fronthaul traffic for each split
configuration. To this end, we limit the upper bound of the available RBs at each TTI. This is made
possible by using the SDN Slicing APP. Accordingly, we evaluate the KPI of our prototype by varying
the upper limit of radio bandwidth utilization. We also define the following additional metrics.

• F refers the total fronthaul throughput measured in Mbps.

• G corresponds to the computational cost of DU or CU measured in GOPS.

Figure 3.3.(a) shows the average of one-way consumed bandwidth by the fronthaul interface for each
functional split, by varying the aforementioned upper bandwidth limit. The fronthaul traffic is measured
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by using the “nload" linux tool, that provides an average (over 300 ms) of the consumed bandwidth in a
given network interface. As it can be seen, the fronthaul throughout is constant and traffic independent.

Figure 3.3.(b) and (c) show the impact of the users’ traffic load on the computational cost � (i.e.,
CPU load) at DU and CU respectively, for each type of split. Note that the CPU load metric is made
available by the “Docker stats" tool. From Figure 3.3.(b), it can be observed that the computation amount
needed by Option 1 at DU is higher than the computation amount required by the Option 7c and Option
8 respectively. This is expected, since Option 7c and Option 8 assume to move a set of physical layer
(PHY) functions from DU to CU. Interestingly, Figure 3.3.(b) shows that Option 8 at DU outperforms
both Option 1 and Option 7c. Moreover, the Option 8 gain is higher in lower traffic load scenarios, while
decreasing with higher traffic load. It is worth noting that different from the fronthaul bandwidth model,
the computation model is load-dependent. The Option 8 requires an up to double amount of computation
at DU when 100% of spectrum is used as compared to the scenario with no traffic.

Different from DU, the Option 8 requires more computation resources at CU than the Option 7c.
This is expected since in the Option 8 case, more physical layer functions are moved to the Cloud. Note
that Option 1 does not execute any functions at CU, therefore the cost impact of Option 1 at CU will be
considered null in our case.

3.4 Conclusion

The massive adoption of Cloud technology, virtualization techniques and SDN in mobile access net-
works has driven the operators and vendors to work together in order to make the Radio Access Network
(RAN) ecosystem more agile. In this respect, we put forward AgilRAN, a flexible RAN architecture
which enables a user-centric on-demand RAN slice allocation, while considering the UE stringent re-
quirements and RAN network state. Thanks to AgilRAN, baseband processing chain is virtualized
and splitted in a fine-grained manner. The disaggregated basesband processing is then deployed while
minimizing jointly the power consumption and fronthaul traffic. Besides, to assess the feasibility of our
approach, we implement AgilRAN in an experimental C-RAN platform, based on Open Air Interface
(OAI) and FlexRAN SDN controller. In the next Chapter, we will give insight into our proposed user-
centric functional split orchestration scheme, which optimizes the allocation and placement of baseband
functions.
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4.1 Introduction

In this Chapter, we put forward a user-centric functional split orchestration solution aiming to optimize
the placement of baseband functions, while dealing with temporal load variation of users. We propose,
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in a first step, to address the aforementioned problem in the scope of one cell. Then, by enabling the
selection of a functional split for each type of traffic, data rates in the fronthaul link and computational
requirements in each site become more tunable, which is key to build cost effective RAN deployment
solutions.

Our objective is to jointly minimize the fronthaul bandwidth and the computational resource con-
sumption at both DU and CU sites. This leads to tackle a placement problem with contradictory goals.
From one side, the more baseband functions are centralized, the more energy efficiency and hence,
CAPEX and OPEX will be reduced. From the other side, high degree of centralization will increase
the fronthaul traffic, thus, resulting in higher connection costs. Therefore, we model the user-centric
functional split problem as an Integer Linear Problem (ILP), which minimizes the network deployment
cost in terms of computational and link resource usage. Our aim is to ensure the best trade-off between
baseband function centralization and fronthaul network consumption.

With high dense of user traffic, the resolution time becomes intractable. In order to operate in a
polynomial time, we propose a heuristic based on Swarm Particle Optimization approach [99], denoted
as SPLIT-HPSO. The algorithm consists in generating initially a set of potential solutions. Then,
iteratively, the candidate solutions collaborate and evolve towards the best global solution. Our scheme
is proved to be scalable, running within four Transmission Time Interval (TTI) units, which makes our
solution operational. We expect that the optimization process is triggered periodically to optimize the
deployment cost in a pro-active manner. Fourth, we validate this proposal using our experimental C-
RAN prototype detailed in Chapter 3 to enable dynamic configuration of functional splits, according to
the outputs of SPLIT-HPSO.

The remainder of this Chapter is organized as follows. In Section 4.2, we present the adopted set
of functional split options. In Section 4.3, we describe our ILP formulation, which aims at minimizing
jointly the bandwidth and computational resource allocation. In Section 4.4, we detail the proposed
heuristic SPLIT-HPSO, while a description of our simulation and experimental environments and major
results are presented in Section 4.5.

4.2 Functional split model

Hereafter, we detail the adopted functional split options depicted in Figure 4.1. We refer to the disag-
gregated 3GPP RAN model detailed previously in [Chapter 2, p. 15]. Note that Option 2, Option 3,
Option 4 and Option 5, are not taken into account at this stage. This is due to the fact that the compu-
tational model for those aforementioned splits are still under investigation. Therefore, we consider the
following splits: Option 1, Option 6, Option 7a, Option 7b, Option 7c and Option 8. Besides, it is worth
mentioning, that an additional split is considered in our work (i.e., B?;8C6), which centralizes the Parallel
to Serial conversion and CPRI encoding function, in case of using a fiber connection between DU and
CU. The latter split is detailed by the Small Cell Forum (SFC) in [16].

It is interesting to see that PF1, PF4, PF5 and PF6 are Cell-centric Processing Functions (CPF), while
PF1 and PF2 are User-centric Processing Functions UPF. Consequently, B?;8C0, B?;8C4, B?;8C5 and B?;8C6
are cell-centric splits, while B?;8C1, B?;8C2 and B?;8C3 are user-centric splits.
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Figure 4.1: Adopted functional split options

4.3 Problem Formulation

In this Section, we formulate the user-centric functional split orchestration problem. First, we describe
the computation model of each processing function and their corresponding fronthaul bandwidth re-
quirements. Afterwards, we describe the power consumption model characterizing both DU and CU
sites. Finally, we detail the problem formalization based on an ILP model.

4.3.1 Computational resource requirement Model

In order to quantitatively study the computational requirement for each split, we refer to the conducted
analysis in [83] expressing the amount of computational resources, 68 , for each PF8 in Giga Operations
Per Second (GOPS) as follows:
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It is worth noting that �A4 5
8

refers to the PF8’s GOPS value in the reference scenario. This constant
is multiplied by scaling parameters which includes the carrier bandwidth (�), number of antennas (�),
user traffic load (!) and modulation ("). As mentioned earlier, PF5 and PF6 are cell-centric for time-
domain along with PF1 that corresponds to a platform control processing. Hence, their computational
requirement is load independent. In contrast, PF2, PF3 and PF4 are processing in frequency domain so
they take into account only frequency carriers having data signals, which make them load dependent.

4.3.2 Fronthaul bandwidth requirement Model

As for the bandwidth requirement model for each type of split, we refer to [16] that quantitatively
estimates the bandwidth on the fronthaul link as follows:
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where the coefficients U8 and V8 are constants for the model with reference to [16]. ='� corresponds to
the total number of Resource Blocks (RBs) and =B refers to the sampling rate. We recall that (?;8C0 refers
to the deployment scheme, where all PFs are fully decentralized at DU. In contrast, (?;8C6 corresponds to
the conventional C-RAN, where all PFs are fully centralized in CU. (?;8C1 corresponds to the placement
of PF1 at CU, while keeping PF8 , 2 ≤ 8 ≤ 6 at DU. When (?;8C2 is triggered, only PF1 and PF2 are
placed in the Cloud. (?;8C3 and (?;8C4 refer to the PF3-PF4 and PF4-PF5 splits, respectively. Finally,
(?;8C5 corresponds to the instantiation of PF6 at DU, while moving PF8 , 1 ≤ 8 ≤ 5 to CU. We recall
that (?;8C4, (?;8C5 and (?;8C6 are generated from cell-centric processing functions. The latter form a
sequence of functions in the physical layer, where user signals are multiplexed, generating a constant bit
rate in the fronthaul link.

4.3.3 Power consumption Model

Based on the reference model presented in [83], the calculated baseband complexity in GOPS can
be multiplied by a technology-dependent factor % 5 expressing the number of operations that can
be performed per second and per Watt (W). This factor is equal to 40 GOPS/W for the reference
case and default technology, i.e., 65 =< for General Purpose CMOS (Complementary Metal-Oxide-
Semiconductor). Intuitively, we would place the processing functions in sites with less power cost. To
do that, we characterize a deployment site by an energy efficient indicator that expresses its Power Usage
Effectiveness value (PUE).

By denoting %>F8= as the input power for a given site and %>F>DC as the output power after server
processing, PUE is expressed as follows, %*� = %>F8=/%>F>DC . Consequently, the smaller is the PUE
values, the lower is the power consumption of IT resources, and hence the better is the site power.
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4.3.4 User-centric functional split problem formulation

We consider a set of # users connected to one cell in the AgilRAN infrastructure. Each user generates
a load !8 , which corresponds to an amount of RBs allocated in DL. We assume a set of  splits, as
explained in Section 4.2. We characterize a DU by a computational capacity of��* GOPS, maximum of
power consumption %�* and Power Usage Effectiveness %*��* . We recall that one DU is dedicated to
one cell. The DU is connected to CU, which is characterized by a computational capacity of��* GOPS,
maximum of power consumption %�* and Power Usage Effectiveness %*��* . The two sites are
connected via a fronthaul link of capacity � Mbps. The amount of GOPS consumed at DU (respectively
CU) for the split : of user 8 is denoted by �:

8
(respectively�:

8
). Besides, ':

8
corresponds to the fronthaul

bandwidth generated by the split : of user 8. Then, '� denotes for the aggregated fronthaul traffic of all
users.

Our aim is to minimize jointly i) the overall cost of baseband function placement defined as the sum
of computational cost across sites and ii) the bandwidth consumption on fronthaul across virtual user
traffic, which are contradictory objectives. To do so, a binary matrix - of optimal splits is generated
where G:

8
= 1 when split : is selected for user 8 and 0 otherwise. In some cases, when a cell split is

activated then all users should be affected to this split. Hence, we need to also model a set of cell splits
 24;; as a subset of the total split options  . We define H 9 ∀ 9 ∈ {0, ..,  24;;} as a binary variable that
takes the value 1 when a cell split is activated and 0 otherwise.

We model the problem of baseband function placement, while ensuring a trade off between compu-
tational and bandwidth consumption cost as an optimization problem. The latter is formulated as an ILP
detailed hereafter:
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where :%� = (1/% 5 ).
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Constraint (1) expresses that only one split can be selected for each UE8 . (2) denotes that at most one
cell split can be possibly chosen. In (3), means all attached users should deploy the activated cell split.
(4), (5) and (6) express the upper bound limit for the total generated rate in the fronthaul link, the DU
and CU computational resource requirements, respectively. Afterwards, we calculate the total amount
of consumed power in DU and CU, %� and %� respectively. Indeed, the total resource computational
demand is divided by the Power factor % 5 as shown in (9) and (10). The total generated rate on the
fronthaul link is expressed as '� in (11).

The objective function aims to find the trade off between the centralization level weighted by V

and the CU PUE factor %*��* and between the decentralization level weighted by U and the DU PUE
factor %*��* . It is worth noting that we take into account the traffic load on the fronthaul by calibrating
the weighting factor W. The latter can affect in its turn the computational and power requirement in both
DU and CU. This is a contradictory goal that is optimized if we find the appropriate set of user splits.

4.4 Proposal: SPLIT-HPSO Algorithm

4.4.1 Particle Swarm Optimization Algorithm

In this Section, we solve the optimization problem of user-centric functional split formulated in the pre-
vious Section 4.3.4 using Particle Swarm Optimization Algorithm [99]. Indeed, our formulated problem
is ILP, so it is nondeterministic polynomial hard at high scale number of users if the aim is to solve it
directly with a general-purpose ILP solver [37]. Thus, we need to design an algorithm to solve it in a
polynomial time by generating a near-optimal solution.

In this context, we make use of Particle Swarm Optimization Algorithm, which is a population-based
stochastic approach. More specifically, once a set of random initial solutions are generated, there is a
need of collaboration between them in order to share internal information and optimize the common
objective function.

4.4.2 Particle Design

We propose hereafter an adaptive approach of the Particle Swarm Optimization Algorithm to solve our
problem. The particles are candidate solutions that collaborate and evolve along the algorithm iterations
in order to find the best solution optimizing the total deployment cost expressed in LP0. Each particle
?; ? ∈ {1, .., %} is characterized by a position SPLIT ?, a velocity VL ? and the local best visited
position SPLIT !14BC, ?. The first component (position) presents the candidate solution configuration.
The second one (velocity) is the change vector that allows the particle to evolve to the next position. The
third component (best local position) is to memorize the local best solution configuration made so far,
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which is evaluated by its Cost, C(SPLIT !14BC, ?), with reference to the objective function expressed
in LP0. We define SPLIT�14BC as the best solution configuration among all the best local solutions
of particles SPLIT !14BC, ? ; ∀ ? ∈ {1, .., %}.

Algorithm 1: SPLIT-HPSO
1 Inputs: Users MCS with proportions of allocated RBs
2 Output: S>?C set of optimal user splits
3 Begin:

for : in  24;; do
if C(:) <C(SPLIT�14BC ) then
SPLIT�14BC ← k

end if
end for
for ? = 1 to % do

for 8 = 1 to # do
SPLIT ?,8 ← k ∈ random( DB4A )
VL ?,8 ← random([− DB4A |, | DB4A |])

end for
end for

repeat
for ? = 1 to % do

if C(SPLIT ?) <C(SPLIT !14BC, ?) then
SPLIT !14BC, ? ←SPLIT ?

end if
if C(SPLIT !14BC, ?) <C(SPLIT�14BC ) then
SPLIT�14BC ←SPLIT !14BC, ?

end if
end for
for ? = 1 to % do

Update the velocityVL ? according to Algorithm 2
for 8 = 1 to # do
SPLIT ?,8 ←SPLIT ?,8 +VL ?,8

end for
end for

until 8C4A = �)�'"�- ;
S>?C ←SPLIT�14BC is the optimal solution

When the algorithm is performed, each particle ? iteratively collaborates with the others in order to
define its new velocity component VL ?. This process is formulated in equation (E1) where the new
velocity VL=4F,? is constructed based on the old velocity VL>;3,? of previous iteration, SPLIT ?,
SPLIT !14BC, ? and SPLIT�14BC . In equation (E1), D1 and D2 are coefficients to improve the random
nature of the evolution process. This is essential to ensure investigating all the search space before
converging to the near-optimal configuration. Once the new velocity is determined, the new position
SPLIT ? is updated according to equation (E2).
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VL=4F,? =VL>;3,? ∩ [D1 ⊗ (SPLIT !14BC, ? 	 SPLIT ?)
+ D2 ⊗ (SPLIT�14BC 	 SPLIT ?)] (�1)

SPLIT ? =SPLIT ? ⊕ VL=4F,? (�2)
Considering the inherent characteristics of our problem, we divide the set of splits  into a subset

of cell splits  24;; and a subset of user splits  DB4A . That is,  =  24;; ∪  DB4A and  24;; ∩  DB4A = ∅.
Specifically, in our proposed algorithm, a particle is designed as a matrix of [# ∗  DB4A ]. Initially, each
user is affected a random user split : in  DB4A , meaning that for particle ? and user 8, SPLIT ?,8,: = 1

and SPLIT ?,8,:′ = 0 ; ∀ : ′ ≠ : . The velocity of each particle is a vector of [#] that calculates for each
user, the number of transitions to meet the new user split. Assuming that a user is affected a user split
: = 3. If the velocity component in particle ? for user 8 is VL ?,8 = −2, then the new user split should
be SPLIT ?,8 = : +VL ?,8 = 1. Based on this, we define the velocity space as [−| DB4A |, | DB4A |] to
limit the allowed split transitions.

4.4.3 Functional Split Orchestration based on Hybrid Particle Swarm Optimization
SPLIT-HPSO

Our proposed algorithm works as follows. We first evaluate the cost C(:) of each cell split : ∈  24;;
and update the global best solution SPLIT�14BC by choosing the cell split : with the lowest cost. In
a second stage, we search for the best solution configuration among all possible user splits : in  DB4A .
The final best solution is either a cell split from  24;; or a combination of user splits from  DB4A . The
second stage is described as follows. Initially, each user 8 in particle ? is assigned a random user split :
and a velocity valueVL ?,8. Then, iteratively,

• Each particle ? updates its local best solution SPLIT)!14BC, ?.

• The global best solution is updated accordingly.

• Each particle ? updates its velocityVL ? according to Algorithm 2.

• Each particle ? updates its new solution configuration SPLIT ? by considering the new calcu-
lated velocity.

The major steps of our proposed algorithm are described in Algorithm 1, where the procedure for im-
plementing SPLIT-HPSO is giving.

4.4.4 Velocity update strategy

The velocity update for each particle in Algorithm 1 is roughly described and we propose to detail it
in Algorithm 2. The velocity update is a complex step, where two phases are integrated: 4G?;>8C0C8>=
and 4G?;>A0C8>=. The first phase is expressed in (SPLIT !14BC, ? 	 SPLIT ?). Thanks to the latter,
we determine the velocity update vector to move from current configuration SPLIT ? to the best
local configuration SPLIT !14BC, ?. The second phase is expressed in (SPLIT�14BC 	 SPLIT ?).
Similarly, we determine the velocity update vector to move from current configuration SPLIT ? to the
best global configuration SPLIT�14BC . Note that these two phases are weighted by random values D1
and D2. Hence, one particle can move, in each iteration, towards its best local position with a probability
D1 or towards its global position with a probability D2. The aim here is to not fall into a local optima. In



4.5. Performance Evaluation 45

Algorithm 2: Velocity Update

Output: VL=4F,? of particle p
Begin:
Generate D1 and D2 with D1 + D2 <1
for 8 = 1 to # do

if D1 >D2 then
VL=4F,?,8 ←SPLIT !14BC, ?,8 - SPLIT ?,8

else
VL=4F,?,8 ←SPLIT�14BC,8 - SPLIT ?,8

end if
end for
Sort users descending with respect to user load.
for 8 = 1 to # do

if (VL>;3,?,8 ≠VL=4F,?,8) then
Calculate �1 = C(SPLIT ?,8 +VL=4F,?,8)
Calculate �2 = C(SPLIT ?,8 +VL>;3,?,8)
if (�2 <�1) then
VL=4F,?,8 ←VL>;3,?,8

end if
end if

end for

Algorithm 2, we propose a heuristic based velocity update that embeds a local optimizer to expedite the
convergence. For each user, we evaluate the gain from keeping the actual user split and the gain from
moving to the user split of the best particle. More specifically, if the cost of actual user split is lower than
the cost proposed by the best solution, then such a split is kept. The new velocity component selects,
for each user, either the actual split configuration or the user split of best particle, favoring the lowest
deployment cost.

At the end, each candidate solution is evolved towards finding the best global configuration by
applying the SPLIT-HPSO heuristic. In each iteration, we build a new and feasible configuration in a
way that constraints are satisfied in each step. The runtime of the proposed approach is computed as
O(% #2 �)�'"�- ). Such an approach can further optimize the best solution and hence, fasten the
algorithm convergence as will be shown in the simulation results.

4.5 Performance Evaluation

In this Section, we evaluate the performance of our SPLIT-HPSO proposal making use of both system-
level simulations and an experimental platform based on OAI [20], presented in Chapter 3. In the
following, we first define the performance metrics as well as the baselines used for performance com-
parison. Second, we detail the simulation environment and the generated results. To evaluate the effi-
ciency of SPLIT-HPSO, we compare it with most prominent strategies in C-RAN. Third, we provide
the details of our emulation environment. Finally, we describe the results of the experimental prototype.
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4.5.1 Simulation Performances

4.5.1.1 Simulation Baselines and Performance metrics

To assess the effectiveness of our approach while increasing the number of end users, we compare it
with a simplex algorithm, denoted by optimal-split, and different cell-centric configurations. It is
worth noting that the simplex algorithm performs an exhaustive research to reach the optimal solution.
To achieve its objective, it makes use of Branch-and-Cut algorithm after relaxing the integer variables of
our ILP problem. Besides, 7 cell-centric configurations are considered for our performance evaluation:
Distributed-RAN (D-RAN) corresponding to (?;8C0, Cloud-RAN (C-RAN) corresponding to (?;8C6, in
addition to (?;8C1, (?;8C2, (?;8C3, (?;8C4 and (?;8C5. Note that these related strategies are detailed in
[Chapter 2, p. 15].

Hereafter, we define the metrics used to gauge the performance of our proposal in the simulation
environment.

• C corresponds to the total deployment Cost as defined in the objective function in Section 4.3.4:
C = U.%*��* . %�%�* + V.%*��*

%�
%�*
+ W. '�

�
.

• P corresponds to the percentage of deployed user splits and quantifies the rate of each type of
split.

• F refers the total fronthaul throughput measured in Mbps.

• T measures the average computation time in milliseconds (ms) to solve one instance of the user-
centric problem.

4.5.1.2 Simulation environment

We designed and implemented a Java-based discrete event simulator to evaluate SPLIT-HPSO perfor-
mances, while varying the number of connected UEs. Besides, we integrated SPLIT-HPSO and the
related splitting strategies: (?;8C0, (?;8C1, (?;8C2, (?;8C3, (?;8C4, (?;8C5 and (?;8C6. We compared the
aforementioned strategies with respect to the defined performance metrics. Similarly to [83] and [31],
we consider the following benchmark scenario: We consider one DU of capacity ��* equals to 1060

GOPS and a %*��* equals to 2.3. CU has a capacity ��* equals to 1060 GOPS and a %*��* equals
to 1.5. Both DU and CU are connected via a fronthaul link of 1228.8 Mbps corresponding to the highest
required bandwidth [16]. The network configuration is detailed in Table 4.1.

Furthermore, we consider that # static UEs, varying in the range of [20; 100], are randomly placed
within the coverage of one cell. For each UE, we calculate the MCS index �"�( , the modulation
order &< of UEs as stated in Table 4.2. During each algorithm execution, each UE generates a service
demand, which consists of a) video traffic with a throughput varying in the range of [2; 13] Mbps and b)
web traffic varying in the range of [0.032; 0.064] Mbps according to [100]. Note that UEs asking video
traffic are considered as “high loaded” UEs. They are affected a higher amount of radio resources and
their proportion may vary between 3% and 15%. In the same way, we define as “low loaded” UEs those
asking for web traffic. We make use of a proportional fair scheduler to compute the number of RBs to
be allocated for each UE in Downlink traffic. Moreover, we assume that the proportion of UEs asking
for a video traffic ' inside the cell may vary between 0% and 100%.
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Table 4.1: Simulation parameters

Parameters Values
�
A4 5

1 , �A4 5

2 ,�A4 5

3 ,�A4 5

4 200 GOPS, 20 GOPS, 10 GOPS
�
A4 5

4 , �A4 5

5 , �A4 5

6 30 GOPS, 80 GOPS, 720 GOPS
�A4 5 , A 1 antenna

Ref. Bandwidth (�A4 5 ) 20 MHz
Bandwidth (B) 20 MHz

Total number of RBs, ='� 100 for data (PDSCH)
!A4 5 1 (Full load)
(!) variable in [0;1]

Transport blocks 1 TBS per sub-frame
Sampling rate 30.72 MHz

Headers per IP packet PDCP(2 bytes), RLC(5 bytes),
MAC(2 bytes)

DL FAPI overhead per UE 1.5 Mbps
Number of Res for PCFICH %�����'�B = 16

PHICH group %����'�B = 12
Aggregation level 4 %����'�B = 144

Table 4.2: Modulation Order

1-6 QPSK 2 0-9
7-9 16-QAM 4 10-16

10-15 64-QAM 6 17-28

SPLIT-HPSO parameters are set to �)�'"�- equals to 15 iterations and a population % of 10
particles. The coefficients D1 and D2 are uniformly distributed in * (0, 0.2) and * (0, 0.8), respectively.
Note that we plot the average of 30 simulations with the confidence level set to 95%. Tiny confidence
intervals are not shown in the following figures.

4.5.1.3 Simulation results

4.5.1.3.1 Convergence Analysis In what follows, we vary # in [20; 100] with a rate of UEs gen-
erating a video traffic ' = 50% in each iteration. We set the weights U, V and W to the values 0.1, 0.1
and 0.8 respectively, which corresponds to a high deployment unit cost in the fronthaul link. We aim to
evaluate the performance of SPLIT-HPSO in case of high density of UEs.

In Figure 4.2.(a), we compare SPLIT-HPSO to a simplex algorithm, which converges to the optimal
solution. It is straightforward to see that our solution generates near optimal solutions when the number
of UEs # is lower that 60. Within this range, the optimal solution provides a user split configuration
that ensures a total cost, C, lower than our proposed approach. Whereas, when # is higher than 60, our
proposed approach achieves the same cost deployment of the optimal solution.

With regards to scalability, Figure 4.2.(b) illustrates the resolution time T of the different strategies
versus the number of UEs # . Note that the Transmission Time Interval (TTI) in C-RAN is equal to 1
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Figure 4.2: SPLIT-HPSO Convergence Analysis

millisecond according to [54]. It is straightforward to see that the non-scalable optimal solution takes a
significantly longer time than SPLIT-HPSO to solve one instance of the optimization problem. Indeed,
the optimal solution struggles to scale, as it takes values in [14; 20] milliseconds to solve instances of #
higher than 60 UEs. In contrast, SPLIT-HPSO can easily solve any size of instance (i.e., # in [20, 100])
in the range of [0; 4] milliseconds. Eventually, by speeding up the computation time up to 5 orders of
magnitude than Optimal-Split, SPLIT-HPSO is able to take an up-to-date decision and execute it after
4 TTI period. Unfortunately, Optimal-Split is not able to do so since its decision, once taken, will be
already obsolete and hence not applicable.

Figure 4.3 evaluates the impact of the number of particles % and the number of iterations �)�'"�-

on the solution quality (i.e., the deployment cost). However, we should also take into account the
resolution time. Indeed, our aim is to find the trade-off between the deployment cost and the resolution
time. Figure 4.3.(a) assesses the efficiency of SPLIT-HPSO while varying the number of particles %.
Indeed, for a fixed number of UEs (i.e., # = 100) and fixed number of iterations (i.e., �)�'"�- =
15), we can observe that the deployment cost C decreases when % increases. This proves that the size
of % impacts the quality of the solution. However, it is straightforward to see that while increasing
the number of particles, the computation time T increases. It is clear to see that when the number of
particles % is higher than 8, the deployment cost C becomes stable. Such a behavior is predictable, as
the solution quality is enhanced as soon as the number of particles is increased, which in turn, requires
more computation time to solve the problem.

Figure 4.3.(b) assesses the convergence behavior of SPLIT-HPSO while varying the number of it-
erations �)�'"�- . Indeed, for a fixed number of UEs (i.e., # = 100) and a fixed number of particles
(i.e., % = 10), we can observe that the deployment cost C decreases when �)�'"�- increases. This
proves that the solution quality is iteratively enhanced, however, impacting the increase of the compu-
tation time T. It is interesting to see that starting from �)�'"�- = 15, the deployment cost is lightly
decreased while the computation cost is highly increased.
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Figure 4.3: Trade off between the Deployment Cost C and Computation Time T for SPLIT-HPSO

4.5.1.3.2 Scenario penalizing the power consumption We have performed extensive simulations in
order to gauge the impact of the rate ' of UEs generating video traffic on the split decision. Furthermore,
we evaluated the impact of the weights U, V and W on the total cost deployment C in order to analyze the
trade off between link and power consumption. Baseline methods correspond to the different cell-centric
configurations.

In what following, we assume that all the previously described parameters are kept static (i.e., % =
10 and �)�'"�- = 15) during the simulation and only the rate ' of UEs generating video traffic is
varying. In this scenario, the number of UEs is fixed to 50 and ' is varying in [0%; 100%]. The weights
U, V and W are set to 0.8, 0.1 and 0.1 respectively.

In order to emphasize the gap between our proposal and the related strategies, we evaluate, in
Figure 4.4 (a), the deployment cost C while increasing the rate of video UEs '. We notice that
SPLIT-HPSO achieves the same deployment cost as B?;8C6. Besides, it reduces this cost by 85.14%

compared with the second strategy corresponding to B?;8C5. This can be explained by the fact that the
increase of the weight U considerably impacts the deployment cost C in DU. Consequently, a fully
centralized deployment will achieve the best performances.

4.5.1.3.3 Scenario penalizing the link consumption In the same way, we assume that all the pre-
viously described parameters are kept static (i.e., % = 10 and �)�'"�- = 15, # = 50) during the
simulation and only the rate ' of UEs generating video traffic is varying in [0%; 100%]. We set the
weights U, V and W to 0.1, 0.1 and 0.8 respectively. We aim to analyze the split selection strategy of
SPLIT-HPSO when the unit cost of the fronthaul link is high.

Figure 4.4.(b) depicts the percentage % of deployed user splits versus the rate ' of UEs generating
video traffic. It is straightforward to see that SPLIT-HPSO selects B?;8C0 when there is no users requir-
ing video traffic. In this configuration, the load served for the existing UEs is distributed almost equally.
SPLIT-HPSO opts for B?;8C0 to lower the costly traffic in the fronthaul link. Whereas, when ' is in
[10%; 40%], we notice that (?;8C2 is predominantly selected to serve the UEs generating web traffic,
while B?;8C1 is selected to serve UEs generating video traffic. Note that, B?;8C0 can be selected when '
= 10%. Moreover, when the ' exceeds 50%, the competition on radio resources intensifies and the radio
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resource becomes scarce. Hence, the served load for UEs generating video traffic is reduced and the
load distribution becomes almost equal between all the cell’s UEs. Eventually, the B?;8C0 is frequently
selected when the load distribution is equal among UEs.

Indeed, B?;8C0 is a default solution to lower the costly link consumption. When the load distribution
is not equal among UEs, the computational consumption of some user processing functions UPF will
grow accordingly. Such fact will increase the DU deployment cost being weighted by U. Hence, B?;8C0
is no more a cost effective solution as it deploys all the PFs for high loaded users at DU. To contract this
side-effect, our algorithm finds a satisfactory trade off where it affects both B?;8C1 and B?;8C2 to its UEs
as following. (?;8C1 is deployed priory for UEs with higher loads. (?;8C2 is deployed for UEs with low
loads.

4.5.1.3.4 Trade off between Power and Link consumption We assume that all the previously de-
scribed parameters are kept static (i.e., % = 10 and �)�'"�- = 15, # = 50) during the simulation. '
is fixed to 50. We aim to understand the trade off between power and fronthaul link consumption. To
achieve our objective, we assume that the CU power consumption weight V is fixed as low as possible to
the value 0.01 as data centers are natively efficient in power consumption. We assume that W is increas-
ing in the range of [0, 1] while U is decreasing in the range of [0, 1]. We aim to generate the according
split decision and analyze the solution in terms of deployment cost C.
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As depicted in Figure 4.4.(c), the link consumption F is stationary for cell splits. Figure 4.4.(d)
shows that our solution adopts B?;8C6 when the fronthaul weight is lower than 0.6 meaning the DU
weight is higher than 0.3. Then, when the fronthaul consumption weight W is higher than 0.6, the
algorithm adopts mainly B?;8C1 and B?;8C2 until W reaches 0.9 in order to minimize the traffic in the
fronthaul. This explains the important decrease in the link consumption shown in Figure 4.4.(c). (?;8C1
is attributed to UEs generating video traffic while B?;8C2 is attributed to UEs generating web traffic.
When W = 1, The fronthaul consumption is highly penalized which explains the adoption of B?;8C0 is this
case.

4.5.2 Experimental Evaluation

4.5.2.1 Experimental Baselines and Performance metrics

We validate the feasibility of our approach in a C-RAN prototype based on OAI. Note that the current
version of our prototype supports up to 3 types of splits, referred to as LTE (B?;8C0), IF4p5 (B?;8C4)
and IF5 (B?;8C5). Accordingly, these cell-centric configurations are considered for our performance
evaluation. We also define the following additional metric.

• D refers to the served throughput measured in Mbps.

4.5.2.2 Experimental results

We expose here the results of a set of experiments conducted in our prototype to validate the feasibility
of the proposed approach. Note that our prototype makes use of a 5 MHz carrier bandwidth, that is
shared among 2 RUs, while using SISO antenna mode. In the baseline scenarios (i.e., B?;8C0, B?;8C4 and
B?;8C5), we assume that a static split is deployed for all the UEs. Moreover, in a scenario with 1 RU,
only 1 split can be selected by our solution SPLIT-HPSO, while 2 different splits can be selected in a
scenario with 2 RUs. In what follows, 3 static smartphone UEs, are statically located in the proximity
of the RUs, while we assume the UE load varies as follows:

1. Load for UE 1 proportionally increases, getting 0%, 20%, 40%, 60%, 80%, 100% of the available
RBs.

2. UE 2 and UE 3 shares the remaining RBs with 2/3 for UE 2 and 1/3 for UE 3.

4.5.2.2.1 Scenario penalizing the power consumption We set the weights U, V and W to 0.6, 0.1
and 0.3, respectively. Figure 4.5.(a) shows the deployment cost C for each scheme when only one RU
is deployed. In this scenario, our solution opts for B?;8C5 to lower the deployment cost C. Indeed, the
high value of U makes the deployment at DU a costly solution. Figure 4.5.(b) shows that our solution
can further lower the deployment cost C in a scenario with 2 RUs. Indeed, it can be observed from
Figure 4.5.(c) that our solution chooses mainly B?;8C4 and B?;8C5 to migrate more functions to CU. The
B?;8C0 is excluded here as it is evaluated as a costly solution. Figure 4.5.(d) shows the average throughput
in downlink (DL) of all UEs. Note that UE throughput has been measured by the Android tool “Simple
System Monitor" running at the UE smartphone. Looking at the baseline scenarios, we observe that
B?;8C4 offers a better throughput performance. Consequently, when AgilRAN opts for B?;8C5 (i.e. when
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1 RU is deployed), the UE throughput is lower than the optimal baseline. However, when AgilRAN
opts for B?;8C4 for 2 UEs and B?;8C5 for 1 UE, the served throughput is increased.

4.5.2.2.2 Scenario penalizing the link consumption We set the weights U, V and W to 0.3, 0.1 and
0.6, respectively.

As it can be seen from Figure 4.5.(e), our solution opts for B?;8C0 to lower the deployment cost
C. In fact, when the fronthaul link weight W is high, the link consumption becomes a costly solution,
which favors the decentralized scheme. From Figure 4.5.(f), it can be observed that when 2 RUs are
deployed, C is load variable for SPLIT-HPSO which employs heterogeneous split decision. As shown
in Figure 4.5.(g), our algorithm chooses mainly splits 4 and 0 to decrease the link consumption. It can
be observed from Figure 4.5.(h), that the average UE throughput in AgilRAN is lower than the baseline
scenarios, when 1 RU is used (w1). However, the performance of AgilRAN is significantly improved
in a scenario with 2 RUs (w2), thanks to the reduced interference level compared to the scenario with
only 1 RU.

4.5.2.2.3 Trade off between Power and Link consumption In this experiment, we assume that the
load of each UE is fixed as follows: 0.8 for UE 1, 0.13 for UE 2 and 0.06 for UE 3, respectively. We
assume that V is fixed as low as possible to the value 0.01, as data centers are natively efficient in power
consumption. Accordingly, we assume that W increases in the range [0, 1], while U decreases in the
same range.

As depicted in Figure 4.5.(i) and (j), the link consumption is constant for cell splits 4 and 5 as they
are load independent and with a small variations for B?;8C0, that is not visible here due to the large-scale.
As shown in Figure 4.5.(i), AgilRAN adopts for B?;8C5 till W reaches 0.5, in case of 1 RU. Then, it adopts
a full B?;8C0 decision when W is higher than 0.5. Figure 4.5.(k) shows that with 2 RUs, AgilRAN adopts
both split 5 ( 2/3 of the time) and B?;8C4 (1/3 of the time) till the W reaches 0.5. Then, it gradually
adopts B?;8C0, till the W reaches 0.8. Starting from this value, a full B?;8C0 decision is made. Finally,
Figure 4.5.(l) shows the average of UE throughput. As it can be observed, in a scenario with 1 RU (w1),
the UE throughput increases with higher values of W, while the opposite behavior is observed when 2

RUs are employed (w2). This is explained by the nature of the split decision, which favors B?;8C0 for
higher values of W.

We recall that the goal of the aforementioned experiments is to validate the feasibility to implement
the dynamic features of AgilRAN architecture in a real prototype, that in our first implementation
does not take into account the radio resource allocation process. Therefore, the UE throughput is not
optimized. We will take into account the radio allocation process in future works.

4.6 Conclusion

In this Chapter, we put forward our heuristic based approach, denoted as SPLIT-HPSO, to optimize
the orchestration of user-centric functional splits, while considering both the requirements of its RAN
resources and the capabilities of the Cloud infrastructure. Based on Particle Swarm Optimization,
SPLIT-HPSO is scalable and achieves optimized user-centric split solution in a satisfactory time. Based
on extensive simulations, we have shown that SPLIT-HPSO achieves good performances in terms of
total deployment cost and resolution time. Besides, to assess the feasibility of our approach, we eval-
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uated it on our C-RAN platform AgilRAN. Obtained results have proven that our solution ensures a
fine-grained link and computational resource allocation while achieving a low deployment cost. In the
next Chapter, we will give insight into our proposed user-centric RAN slice allocation scheme, which
jointly optimizes radio, link and computational resource allocation in 5G Cloud RAN.
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5.1 Introduction

In this Chapter, we put forward a user-centric RAN slicing scheme that provides suitable proportions of
radio, link and computational resources for each User Equipment (UE). Our scheme fulfills each UE QoS
requirement while considering the underlying RAN infrastructure state. Furthermore, in this Chapter,
we propose to address the aforementioned problem in the scope of a multi-sited RAN infrastructure.

First, we model the user-centric RAN slice allocation problem as an Integer Linear Problem (ILP)
with multi-objective function. In one hand, we aim to maximize the overall served throughput of users
across the network through radio resource allocation. We make use of the regression linear method
to approximate the final served user throughput. In the other hand, we aim to minimize the network
deployment cost, while tuning the computational and link resource usage.

Considering that the above optimization problem is NP-Hard, the resolution time becomes in-
tractable in case of high density of user traffic. In order to operate in a polynomial time, we propose
a low-cost and efficient heuristic algorithm based on the Particle Swarm Optimization approach [99].
The algorithm consists in creating initially a set of potential allocation solutions. Then, iteratively, the
candidate solutions collaborate and evolve towards a best global allocation solution.

The performance of E2E-USA is evaluated throughout extensive simulations using 3GPP eMBB
and uRLLC traffic scenarios [8]. Obtained results show the effectiveness of our proposal in terms of
scalability, QoS satisfaction and RAN deployment cost. We highlight the exploration and exploitation
dilemma during the solution generation which is ruled by the Y-greedy approach. We expect that the
optimization process is triggered periodically to optimize the user RAN slice allocation in a pro-active
manner.

The organization of this Chapter is as follows. In Section 5.2, we enumerate the adopted set of
functional split options. We detail, in Section 5.3, the user-centric RAN slice allocation model. In
Section 5.4, we describe our proposed heuristic, while a description of our simulation and major results
are presented in Section 5.5.

5.2 Functional split model

Hereafter, we detail the adopted functional split options depicted in Figure 5.1. We refer to the disag-
gregated 3GPP RAN model detailed previously in [Chapter 2, p. 15]. Note that Option 3 and Option 5
are not taken into account at this stage. This is due to the fact that, the computational model for those
aforementioned splits are still under investigation. Therefore, we consider the following splits: Option
1, Option 2, Option 4, Option 6, Option 7a, Option 7b, Option 7c and Option 8. Also, note that an ad-
ditional split is considered in our work (i.e., B?;8C6), which centralizes the Parallel to Serial conversion
and CPRI encoding function, in case of using a fiber connection between DU and CU. The latter split is
detailed by the Small Cell Forum (SFC) in [16].

It is interesting to see that PF3, PF6, PF7 and PF8 are Cell-centric Processing Functions (CPF),
while PF1, PF2, PF3 and PF4 are User-centric Processing Functions UPF. Consequently, B?;8C6, B?;8C7
and B?;8C8 are cell-centric splits, while B?;8C0, B?;8C1, B?;8C2, B?;8C3, B?;8C4 and B?;8C5 are user-centric
splits.
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Figure 5.1: Adopted functional split options

5.3 Problem Formulation

5.3.1 Functional Split Model

In this Section, we formulate the user-centric RAN slice allocation problem. First, we describe the com-
putation model of each processing function and their corresponding fronthaul bandwidth requirements.
Afterwards, we detail the problem formalization based on an ILP model.

5.3.2 Computational resource requirement Model

In order to quantitatively study the computational resource requirement for each split in each RAN site,
we refer to the conducted analysis of [83] and [101] expressing the amount of computational resources
in Giga Operations Per Second (GOPS) consumed by PF. In what follows, we denote by 6: the compu-
tational requirement model of each processing function PF: in DL direction:
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%�6 : 66({!8}) = �A4 56 .
,

,A4 5
.
�

�A4 5
.

*�B∑
8

!8!8!8 (�6)

%�7 : 67 = �
A4 5

7 .
,

,A4 5
.
�

�A4 5
(�7)

%�8 : 68 = �
A4 5

8 .
,

,A4 5
.
�

�A4 5
(�8)

where �A4 5
:

refers to the PF:’s GOPS value in the reference scenario [83]. , is the carrier bandwidth,
� is the number of antennas; ! is the proportion of allocated Resource Blocks (RB) for *�8 and &<
is the QAM modulation. It is worth noting that, PF7 and %�8 are cell-centric for time-domain while
PF3 corresponds to the platform control processing. Hence, their computational requirement is load
independent. In contrast, PF1, PF2, PF4 and PF5 perform in frequency domain, i.e., take into account
only frequency carriers having data signals which make them load dependent.

5.3.3 Fronthaul bandwidth requirement Model

Assuming the model proposed in [16], we quantitatively study the bandwidth requirement for each
functional split in the transport network. Accordingly, the generated traffic of each split interface in DL
is estimated as follows:

(?;8C0 : 50(!8 , &<8) = 20(&<8&<8&<8).�.�.!8!8!8 (�9)
(?;8C1 : 51(!8 , &<8) = 21(&<8&<8&<8).�.�.!8!8!8 (�10)
(?;8C2 : 52(!8 , &<8) = 22(&<8&<8&<8).�.�.!8!8!8 (�11)
(?;8C3 : 53(!8 , &<8) = 23(&<8&<8&<8).�.�.!8!8!8 + 24 (�12)
(?;8C4 : 54(!8 , &<8) = �.�.(25 + 26.�).!8!8!8 .&<8&<8&<8 + 27 (�13)
(?;8C5 : 55(!8) = �.�.(28 + 29.�).!8!8!8 + 210.� (�14)
(?;8C6 : 56 = 211.�.� (�15)
(?;8C7 : 57 = 212.�.=B (�16)
(?;8C8 : 58 = 213.�.=B (�17)

where coefficients 2 9 , ∀ 9 ∈ {1, 13}, are constants for the model [16]. � corresponds to the number of
RBs and =B refers to the sampling rate. It is straightforward to note that when the centralization level
of PFs increases, the computational requirement in the Cloud site increases accordingly which rises the
amount of the circulating data flow in the transport link.

5.3.4 User-centric RAN slice allocation Problem

In this Section, we consider a multi-cell RAN system with " 6#�s. Each gNB is characterized by
a Distributed Unit (DU) located near the antenna unit and a Central Unit (CU) located at the Cloud
site. The computational capacity of one DU,(respectively one CU) is denoted by ��

"�-
, (respectively

��
"�-

) Giga Operation Per Second (GOPS). We assume that a set of  functional splits can be deployed
for # *�s. Then, we consider the amount of GOPS consumed by *�8 in DU (respectively in CU)
of 6#�< when split : is deployed, is denoted by ��

8<:
(respectively ��

8<:
). By aggregating all the

computational requirements, we define ��< , respectively ��< , as the total amount of GOPS consumed
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at DU, respectively the CU, of 6#�<. The connection between both DUs and the CUs locations is
maintained via an aggregated transport link with a capacity of '"�- Mbps. Wherein, '8<: corresponds
to the amount of data flow generated for *�8 attached to 6#�< with split : . We define also ' as the
aggregated link bandwidth generated by all *�s in " 6#�s. Formally, �� , �� and ' are variables
expressed as linear functions of*� loads !. We recall that*� load ;38<, ∀8 ∈ # , ∀< ∈ " corresponds
to the fraction of allocated RB for*�8 in 6#�<.

Our aim is to find the appropriate split : for each*�8 in 6#�< that minimizes the total deployment
cost. Therefore, we define G:

8<
as the binary variable, which is equal to 1 when split : is selected for

*�8 in 6#�< and 0 otherwise. Then, we assume that the total available split options  can be divided
into 3 subsets:  2 ,  D1 and  D2 .  2 is the set of cell splits, namely splits {8, 7, 6} according to Section
5.2.  D1 is the first set of user splits, namely {0, 1, 2} according to Section 5.2. Finally  D2 is the
second set of user splits, namely {3, 4, 5}, according to Section 5.2. Let H:< be the binary variable,
∀: ∈ {0, ..,  } and ∀< ∈ {1, .., "}, that takes value 1 if the split : is activated for any*� in 6#�< and
0 otherwise. We also define the binary variable D<1 (D<2 respectively) that takes value 1 if a user split in
subset {0, 1, 2}, ({3, 4, 5} respectively) is activated in 6#�< and 0 otherwise. We model the attachment
of *�8 to 6#�< with a binary variable C8<. The latter is equal to 1 when *�8 is attached to 6#�< and
0 otherwise.

In what follows, we propose our model for RAN deployment cost minimization by optimizing the
user split selection G★. We make use of the Big-M modeling [37] to linear the different constraints.

LP1 : Min U
"∑
<=1

��<

��
"�-

+ V
"∑
<=1

��<

��
"�-

+ W. '

'"�-

s.t. : C8< =

 ∑
:=0

G:8< ,∀8 ∈ # ,∀< ∈ " (1)

G:8<.a: ≤ a8 ,∀8 ∈ # ,∀< ∈ " ,∀: ∈  (2)
#∑
8=1

G:8< ≤ "1H
:
< ,∀< ∈ " ,∀: ∈  (3)

H:< ≤
#∑
8=1

G:8< ,∀< ∈ " ,∀: ∈  (4)

#∑
8=1

G:
′
8< ≤

#∑
8=1

C8< + "1(1 − H:
′
<)

,∀< ∈ " ,∀: ′ ∈  2 (5)
#∑
8=1

G:
′
8< ≥

#∑
8=1

C8< − "1(1 − H:
′
<)

,∀< ∈ " ,∀: ′ ∈  2 (6)
 D1∑
:=1

H:< ≤ | D1 |D<1 ,∀< ∈ " (7)

D<1 ≤
 D1∑
:=1

H:< ,∀< ∈ " (8)
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 D2∑
:=1

H:< ≤ | D2 |D<2 ,∀< ∈ " (9)

D<2 ≤
 D2∑
:=1

H:< ,∀< ∈ " (10)

 2∑
:=1

H:< + D<1 + D<2 ≤ 1 ,∀< ∈ " (11)

' =

"∑
<=1

#∑
8=1

 ∑
:=0

G:8<'8<: ≤ '"�- (12)

��< =

#∑
8=1

 ∑
:=0

G:8<�
�
8<: ≤ �

�
"�- ,∀< ∈ " (13)

��< =

#∑
8=1

 ∑
:=0

G:8<�
�
8<: ≤ �

�
"�- ,∀< ∈ " (14)

G:8< ∈ {0, 1} ,∀8 ∈ # ,∀< ∈ " ,∀: ∈  (15)
H:< ∈ {0, 1} ,∀< ∈ " ,∀: ∈  (16)
D<1 , D

<
2 ∈ {0, 1} ,∀< ∈ " (17)

The objective function in LP1 expresses the ability to tune the computational and link resource
usage to minimize the RAN deployment cost while considering the infrastructure capacity and *�
latency constraints. This can be done leveraging the user functional split that helps to find a trade-off
between the centralization and decentralization levels of baseband functions. The first level of LP1

expresses the computational resource usage across DUs, weighted by U. The second level is expressed
as the computational resource usage across CUs, weighted by V. In addition, third level of the objective
function in LP1 expresses also tune the traffic in the aggregated fronthaul by calibrating the weighting
factor W.

Constraint (1) expresses that each attached*�8 in 6#�< can be assigned only one split. Constraint
(2) denotes that the selected split : for *�8 in 6#�< should satisfy the latency required by *�8 . Con-
straint (3) activates the binary variable H:< when at least one user split : is activated in 6#�<. (4)
expresses that when split : is deactivated for 6#�<, then no *� is assigned split : . (5) and (6) denote
that the activation of one cell split : ′ in 6#�<, results in assigning split : ′ for all attached *�s. Con-
straints (7) and (8) activate the variable D<1 when at least one split : in subset  D1 is activated in 6#�<.
Constraints (9) and (10) activate the variable D<2 when at least one split : in subset  D2 is activated in
6#�<. (11) denotes that for a given 6#�<, we may activate i) either one cell split : ′ in  2 or ii) a
combination of user splits in  D1 or iii) a combination of user splits in  D2 . In (12), the total generated
rate in the aggregated transport link should not exceed the link capacity '"�- . (13) and (14) express
that the total allocated computational resources in DU, respectively CU, of 6#�< must not exceed the
total computational capacity ��

"�-
, respectively ��

"�-
.

5.3.5 Radio Resource Allocation Problem

In what follows, we consider # *�s statically located in a system of " 6#�s with a frequency reuse
factor of 1, i.e., the same set � of RBs are reused by each cell, which may induce interference on RB
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level. Each*�8 , ∀8 ∈ # , generates a flow of throughput _8 and latency a8 .

Considering the DL transmission direction, we calculate the Signal to Interference plus Noise Ratio
(SINR) experienced by*�8 from 6#�<, ∀8 ∈ # , ∀< ∈ " , expressed as following:

(�#'8< =
%6#� · ℎ8<
�8< + f2

, �8< =
∑
<′≠<

%6#� · ℎ8<′ (�18)

where ℎ8< denotes for the channel gain between each 6#�< and *�8 , �8< stands for the interfering
power received by the *�8 from other 6#�s <′ ≠ <. f2 is defined as the noise power, while we
assume that every 6#� transmits a static amount of power, denoted by %6#�. Based on the SINR aver-
age estimation, we calculate the Channel Quality Indicator (CQI), the Modulation and Coding Scheme
(MCS) and the Transport Block Size Index (�) �() between*�8 and 6#�<, ∀8 ∈ # , ∀< ∈ " .

In order to proceed to radio resource allocation, we rely on following binary variables C, F and !.
We recall that C8< is a binary variable, which is equal to 1 if *�8 is attached to 6#�< and 0 otherwise.
F8<1 is equal to 1 if the RB 1 of 6#�< is allocated to*�8 and 0 otherwise. !8< expresses the radio load

of*�8 in 6#�< corresponding to the fraction of total allocated RBs to*�8 in 6#�<: !8< =
∑�
1=1 F8<1

�
.

Once allocated, a resource block is affected an amount of radio power ?'�.

Our aim is to find an attached gNB with the appropriate set of RBs in order to fulfill the throughput
requirement _8 of each *�8 . By means of the linear regression method [102], we propose an approxi-
mation of the served Transport Block Size, denoted by )̃ �(. With reference to the table 7.1.7.2.1-1 in
[103], we calculate the linear approximation )̃ �( according to each TBSI value as following:

)̃ �(()�(�) = )�(! ()�(�).�.!8<!8<!8< + )�(> ()�(�) (�19)

where �.!8<!8<!8< is the supposed number of allocated RBs for*�8 in 6#�<. ))�(! ()�(�).�.!8<!8<!8< is called
the response that depends from user load and )�(> ()�(�) is called the predictor which is independent
from user load. Consequently, we express the approximation of the final served throughput Ã8< for *�8
in 6#�<, ∀8 ∈ # , ∀< ∈ " as function of the linear approximation of the Transport Block Size )̃ �(8<
with a multiplication factor 234 for the conversion from bytes to bits per second:

Ã8< = 214.)̃ �(8< (�20)

We define a second objective function LP2 that aims at maximizing the overall served user through-
put across the network. This is achieved by finding for each*�8 , i) the best attached 6#� <, C★

8<
and ii)

the best set of RBs F★
8<1

, while keeping a low interference level:

LP2 : Max
#∑
8=1

"∑
<=1

Ã8<

_8



62 Chapter 5. Heuristic based user-centric RAN slice allocation scheme in Cloud RAN

s.t. :
"∑
<=1

C8< ≤ 1,∀8 ∈ # (18)

�∑
1=1

F8<1 ≥ C8<,∀< ∈ ",∀8 ∈ # (19)

"2C8< ≥
�∑
1=1

F8<1,∀8 ∈ #,∀< ∈ " (20)

"∑
<=1

Ã8< ≤ _8 ,∀8 ∈ # (21)

#∑
8=1

F8<1 ≤ 1,∀< ∈ ",∀1 ∈ � (22)∑
<′≠<

∑
8′≠8

.?'� .ℎ8′<′ .F8′<′1 ≤ �"�- + "3.(1 − F8<1),∀8 ∈ #,∀< ∈ ",∀1 ∈ � (23)

C8<, F8<1 ∈ {0, 1},∀8 ∈ #,∀< ∈ ",∀1 ∈ � (24)

Constraint (18) expresses that each UE should be attached at most to only one 6#�. (19) specifies that
*�8 can get more than one RB when it is attached to 6#�<. In (20), the total amount of allocated RBs
to *�8 in 6#�< is constrained by the upper bound limit "2 = �. In (21), the final served throughput
for *�8 should be less than what is required with _8 . In (22), each RB to only one *� . (23) expresses
the interference constraint for each allocated RB, where �"�- refers to the interference threshold and
"3 is a Big-M constant to tolerate interference on unallocated RBs.

To summarize, our user-centric slice allocation problem LP3 can be formulated as follows:

LP3 : Max \LP2 − `LP1

s.t : (1) − (24)

The objective is to find the trade-off between the total served user throughput expressed inLP2 weighted
by \ and the total RAN deployment cost expressed in LP1 weighted by `.

5.4 Proposal: E2E-USA: On-Demand RAN slice allocation approach

In this Section, we resolve the user-centric RAN slicing problem LP3, formulated in Section 5.3. The
problem is classified as a nondeterministic polynomial hard problem [37]. This type of problem requires
exhaustive search in the solution space in order to converge to optimal solutions. Hence, general purpose
ILP solver [37] struggles to converge in case of high-scale of *� number. For this reason, there is a
need for designing an heuristic to solve the formulated user-centric RAN slicing problem in a reasonable
time with a near-optimal solution.

In this context, we propose an adaptive approach of the Particle Swarm Optimization (PSO) Algo-
rithm [99], called E2E-USA, to solve our problem expressed in LP3. Our PSO based User-centric RAN
Slice Allocation E2E-USA proceeds as follows: during the initialization stage, an initial set of
feasible solutions is generated by affecting for each *� : i) attached gNB, proportions of RBs and ii)
split selection. Then to solve the problem, our proposal proceeds iteratively on two folds. First, a better
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radio allocation (i.e.,*� − 6#� attachment and radio resource allocation) is explored. Second,
UFSS algorithm is performed to find the optimal split selection for the already generated radio
configuration in the first phase of current iteration.

5.4.1 Particle Swarm Optimization

Radio, computational and transport resource allocation impacts directly the end-user quality of service
and the deployment cost. This type of problem is often known as Multi Objective Combinatorial Opti-
mization Problem (MOCOP) that can be solved using algorithms based on the decomposition strategy in
what we call Multi objective Evolutionary Algorithms based on Decomposition (MOEA/D). In doing so,
the problem is decomposed into a set of single-objective subproblems using the weighted sum approach
or others like the Tchebycheff approach, normal boundary intersection, etc. When solved, MOCOPs are
generally nondeterministic polynomial complete or nondeterministic polynomial hard [37]. Thus, we
need to design an algorithm to solve it in a polynomial time by generating a near-optimal solution.

In this context, Particle Swarm Optimization (PSO) approach is proposed as a population-based
stochastic optimization algorithm inspired from birds foraging behavior. More specifically, PSO algo-
rithm is characterized by an initial set of candidate solutions that collaborate to find the global optimum
of the optimization problem. In practice and thanks to its inherent characteristics (i.e., fast comput-
ing speed and the parallel processing), swarm optimization algorithm for combinatorial optimization
problem or what we call Set-based Particle Swarm Optimization S-PSO has been successfully applied
in solving many problems like scheduling problem, vehicular routing problem, flow-shop scheduling
problem, etc.

In order to solve our problem, we propose a set-based discrete particle swarm optimization based on
decomposition by combining both approaches of MOEA/D and S-PSO.

5.4.2 Initialization Stage

Each particle ?, ? ∈ {1, .., %}, is characterized by a position S?, a velocityV ? and a best local position
S!,?. The first attribute (i.e., position) corresponds to a candidate slice allocation solution. The second
attribute (i.e., velocity) expresses the change vector that allows the particle to evolve to a next position.
The third attribute (i.e., best local position) memorizes the best achieved local solution. Candidate
solutions are evaluated through the utility function UF expressed in LP3. We also denote by S� , the
best achieved solution among all best local solutions, S!,?, ∀ ? ∈ {1, .., %}.

In what follows, we design the position S? of particle ? as a 3-D matrix of [# ×" × (� + 1)]. The
entry S?

8<1
is a binary variable that takes the value 1 if*�8 is allocated the '�1 in 6#�<. Furthermore,

we affect split : to *�8 in 6#�<. Formally, S?
8<, (�+1) = : . The velocity component + ? of particle ?

is expressed as a 2-D matrix of [# × "]. The entry V ?

8<
expresses the number of RBs to be added or

removed in the next iteration for *�8 in 6#�<. Formally, V ?

8<
is in [−�"�-

8<
, +�"�-

8<
], where �"�-

8<

is the upper bound limit for*�8 allocation in 6#�< to satisfy his throughput _8 .
Initially, each *�8 , 8 ∈ {1, .., #} is attached to a random 6#�<, < ∈ {1, .., "}, with a random

number ='� of RBs. Meanwhile, we ensure that constraints (18-23) are satisfied. Constraint (18) leads
to S?

8<′1 = 0, ∀ <′ ≠ <. Constraint (19), (20) and (21) express that, S?
8<1

can be positive ='� times,
where ='� is in [−�"�-

8<
, +�"�-

8<
]. We privilege RBs suffering less interference level. Constraint (22)

implies that S?
8′<1 = 0, ∀ 8′ ≠ 8. Finally *�8 is assigned a random split : and a random velocityV ?

8<
in
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[−�"�-
8<

, +�"�-
8<
].

5.4.3 RAN Slice Allocation based on Particle Swarm Optimization

Iteratively, each particle ? evolves towards a new position S? after updating its velocityV ? as stated in
equation (�21). The velocity update process is formulated in equation (�22), where the new velocity is
constructed based on the current velocityV ?, current position S?, S!,? and S� . Wherein, we integrate
the coefficient Y to improve the random nature of the evolution process. More specifically, we define
the first action, i.e., following the best local particle S!,? with probability Y and a second action i.e.,
following the best global particle S� with probability 1-Y.

S? = S? ⊕ V ? (�21)
V ? = V ? ∩ [Y ⊗ (S!,? 	 S?) + (1 − Y) ⊗ (S� 	 S?)] (�22)

More specifically, we adopt the Y-greedy method to alternate between following i) the best local
particle S!,? with probability Y and ii) the best global particle S� with probability 1-Y. In doing so,
the challenge is to find the balance between using local knowledge (exploitation) and investigating other
options by following the global knowledge (exploration). We believe that this is essential to insure the
investigation of the entire search space before converging to the near-optimal solution. E2E-USA is
summarized in Algorithm 3.

5.4.3.1 Radio Resource Optimization

In this phase, we evaluate the utility function UF (S?) of each particle ? and update (!,? and S�
accordingly. Afterwards, each particle ? updates its velocity V ? and its new position S?. Then, our
algorithm User Functional Split Selection, denoted by UFSS is performed to calculate the optimal split
selection for each*� in particle ? based on the newly generated radio configuration.

5.4.3.2 User-centric functional Split Selection based on Shortest Path Algorithm UFSS

In each iteration, once the *� − 6#� attachment and RB allocation is updated for particle ?, our
UFSS algorithm is executed to define the optimal split configuration. In what follows, we formulate
the functional split selection optimal strategy as a shortest path problem. More specifically, we model
all split possibilities as a Directed Acyclic Graph (DAG), �, with almost # ×  nodes. Each node
(<, 8, :) is either a user split : for *�8 in 6#�<, or a cell split : for all *�s attached to 6#�<. Then,
we consider only split node (<, 8, :) which satisfy *� latency requirements, which receives links from
other nodes with weights expressing the deployment cost from selecting the node (<, 8, :). The weight
of each ongoing link to node (<, 8, :) is defined as:

U
��
8<:

��
"�-

+ V
��
8<:

��
"�-

+ W '8<:

'"�-

(�23)

The graph � without link weights is depicted in Figure 5.2, for " = 2 6#�B, # = 3*�B and  = 3

splits. Note that there are two extra nodes: B and 5 . ( is a starting point, that is connected to the all
split possibilities of first *�8 which are nodes (m,i,k) ; : ∈ {1, .., 3}. And all split possibilities of last
*�8′′ are connected to node 5 , where 5 is a finish point for the directed graph � whith all the ongoing
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Algorithm 3: E2E-USA
1 Inputs: �"�- , ��

"�-
, ��

"�-
, '"�- , %, �"�- , Y

2 _8 , a8 , ∀ 8 ∈ {1, .., #}, ∀ < ∈ {1, .., "}
3 U, V, W, \, `, a: , 6: , 5: , ∀ : ∈ {0, ..,  }
4 Output: S� with the best utility function from LP3

5 Begin
1: for ? = 1 to % do
2: for 8 = 1 to # do
3: <← random (")
4: ='� ← random ([−�"�-

8<
, +�"�-

8<
])

5: S?
8<1
← 1 ; ='� times ; { priory to RBs with less interference level}

6: S?
8<,�+1← random ( )

7: V ?

8<
← random([−�"�-

8<
, +�"�-

8<
])

8: end for
9: end for

while 8C4A <�"�- do
1: for ? = 1 to % do
2: ifUF (S?) >UF (S!,?) then
3: S!,? ←S?
4: end if
5: ifUF (S?) >UF (S�) then
6: S� ←UF (S?)
7: end if
8: end for
9: for ? = 1 to % do

10: A ← random ([0, 1])
11: for 8 = 1 to # do
12: for < = 1 to " do
13: if A < Y then
14: V̂ ?

8<
←

�∑
1=1
S!,?
8<1

-
�∑
1=1
S?
8<1

15: else
16: V̂ ?

8<
←

�∑
1=1
S�
8<1

-
�∑
1=1
S?
8<1

17: end if
18: if Ã8<(V̂ ?

8<
) > Ã8<(V ?

8<
) then

19: V ?

8<
← V̂ ?

8<
20: end if
21: end for
22: end for
23: end for
24: for ? = 1 to % do
25: for 8 = 1 to # do
26: for < = 1 to " do
27: ='� ←

�∑
1=1
S?
8<1

+V ?

8<

28: S?
8<1
← 1 ; ='� times ; { priory to RBs with less interference level}

29: end for
30: end for
31: Run UFSS as described in 5.4.3.2
32: end for
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link weighted by zero. In Figure 5.2, both *�8 and *�8′ are attached to 6#�< and *�8′′ is attached to
6#�<′. Each*� can be affected only two user splits, i.e., 1 and 2 and one cell split, i.e., 3.

Figure 5.2: In graph �, a path from B to 5 corresponds to a functional split selection strategy, where
the path cost is equal to the total deployment cost. Node (<, 8, :) denotes for selecting a user split : for
*�8 in 6#�<, while node (<, -, :) expresses the selection of cell split : all*�B in 6#�<

In doing so, a path % from B to 5 in graph �, corresponds to a selection strategy of functional
splits for *�s that are already attached to different 6#�s with a given radio load. It is worth noting
that, the sum of links’ costs traversed by the path % is equal to the deployment cost expressed in LP1.
A path %★ of minimum cost corresponds to the optimal functional split decision that minimizes the
overall deployment cost. The problem of calculating the optimal functional split selection is equivalent
to finding a min-cost path in a DAG. The latter is resolved through the Dijkstra algorithm in O(|� | +
|+ |;>6 |+ |)time, where|� | and |+ | are the number of edges and vertices. In our graph �, there exist
O(# ) nodes and O(# 2) links. So, finding the min-cost path takes O(# 2+# ;>6(# )). At the
end, the entire E2E-USA algorithm with the UFSS approach runs in O(�"�-%"�(# )2;>6# ))
time.

5.5 Performance Evaluation

In this Section, we gauge the performance of our proposal E2E-USA based on extensive simulations.
First, we describe the simulation environment setup and detail the various performance metrics. Then,
we analyze the obtained results and discuss the effectiveness of our proposal compared with: i) commer-
cial standard solvers such as IBM’s ILOG CPLEX solver, ii) full Centralized deployment approach (i.e.,
C-RAN), iii) full Decentralized deployment approach (i.e., D-RAN), and iv) Cell-centric Split deploy-
ment approach denoted by E2E-CSA. Note that the interference mitigation is inherently implemented
in the C-RAN approach, while we assume that this mechanism is adopted for the D-RAN case. We set
the number of split options  to 9, where (?;8C6, (?;8C7 and (?;8C8 are cell-centric, while (?;8C0, (?;8C1,
(?;8C2, (?;8C3, (?;8C4 and (?;8C5 are user-centric. To the best of our knowledge, there is no simulator
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Table 5.1: Simulation parameters

Number of 6#�s " = 7
Number of*�B # = 100

Inter-cell distance 50 <
Number of RBs � = 100

Spectrum Bandwidth , = 20 "�I
Antenna mode � = 1, SISO

Average RB power %'� = 10 <,

Average cell power %6#� = 1,0CC
Transmit power gain �CG = 8 3�8

Shadowing coefficient Ω = 5 3�
Thermal Noise −174 3�</�I

(�#'"�- 10 dB
Path loss model (PL) 148.1 + 37.6 ;>6(�), � in  <

Fading coefficient d =* (0, 1)
Channel gain ℎ = 10−%!/20 ·

√
�CG · Ω · d

214 10−3

�"�- ℎ∗%'�
(� #'"�-

− f2

'"�- 3686, 4 Mbps [16]
��
"�-

, ��
"�-

960 GOPS [83]
\, `, U, V, W 0.5 , 0.5 , 0.33 , 0.33 , 0.33

uRLLC*�B 40% of total*� number

for RAN slice orchestration with user functional split selection deployment so far. In the following, we
show the results of our JAVA-based simulator.

5.5.1 Simulation setup

We simulate our Cloud-RAN infrastructure with respect to our model described in Section 5.3. We
consider # *�s uniformly distributed in an OFDMA based cellular network. *�Bmay generate a traffic
in [0, 1] Mbps with a latency in {1, 2, 3, 4} <B for eMBB *�s and a latency in {0.1, 0.2, 0.3, 0.4, 0.5}
<B for uRLLC *�s [104]. *�B positions are randomly generated for each execution and remain fixed
during their whole stay in the network. It follows that we calculate the �&�, "�( and )�(� between
each*� and 6#� in order to approximate the linear function of generated TBS )̃ �( between each*�
and 6#�. Table 5.1 reports the simulation parameters that have been used for our simulations [34]. Our
results correspond to the average of 30 simulations with a confidence level set to 95%.

5.5.2 Performance metrics

We rely on following metrics to gauge the performance of our proposal E2E-USA compared with
baseline strategies.

• UF is the Utility Function in !%3 expressing the trade off between the served throughput and the
deployment cost.
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• CT is the average Convergence Time for user-centric Allocation in <B.

• TS is the Throughput Satisfaction rate expressing the ratio between the overall served and re-
quested throughputs.

• CD is the Cost of Deployment expressing the computational and link resource usage as defined in
!%1, which is expressed as the weighted sum of the resource usage in i) the DU sites weighted by
U, ii) the CU sites weighted by V, and iii) the transport link weighted by W.

• LT is the Latency penalty of Total users expressed as
∑
8
a:−a8
a8

, ∀: ∈  ,∀8 ∈ # where, a: is the
latency of split : in the transport network while a8 is the required latency from*�8 .

• S corresponds to the percentage of Splits generated by our proposal.

5.5.3 Simulation results

5.5.3.1 Convergence Analysis

In what follows, we aim to evaluate the impact of the number of particles % and the number of epochs
�"�- on the solution quality (i.e., the utility functionUF and the convergence time CT). Figure 5.3.(a)
assesses the performance of E2E-USA with different swarm population size %, while varying the num-
ber of epochs �"�- . Indeed, for a fixed number of UEs (i.e., # = 50), we can observe that the utility
function UF of each swarm population is increasing when �"�- increases. Besides, it is straightfor-
ward to see that the size of % impacts the quality of the solution. In particular, the curves corresponding
to % = 10 and % = 20 have close values that outperform both % = 5 and % = 2. Then, it is interesting to
see that UF keeps stable starting from �"�- = 8.

In Figure 5.3.(b), we study the impact of the swarm population size % on the convergence time CT.
It is clear to see that when the number of particles % increases, the convergence time CT increases as
well. Such a behavior is predictable, as the solution quality is enhanced as soon as % is increased, which
in turn, requires more computation time to solve the problem. In particular, the curve corresponding to
% = 20 costs much more computational time than the curves corresponding to % = 10, % = 5 and % = 2.
In what follows, we fix % to 10 and �"�- to 8.

Figure 5.3.(c) assesses the convergence behavior of E2E-USA with different values of Y while vary-
ing �)�'"�- . Indeed, for a fixed number of UEs (i.e., # = 50) and a fixed number of particles (i.e., %
= 10), we can observe that UF increases when �)�'"�- increases. We recall that Y is the probability
of a particle to follow the local best position according to (E22). As depicted, when Y = 1, i.e., particles
only follow their best local positions, the algorithm struggles to find an optimal solution. Meanwhile,
the solution quality is enhanced when Y is less than 0.8. This proves that particles need to collaborate
with each other to fasten the convergence process. It is interesting to see that, when �)�'"�- is lower
than 8 epochs, the curves corresponding to Y = 0.2 outperforms the one corresponding to Y = 0. This
can be explained that E2E-USA rather favors a tradeoff between exploitation (Y) and exploration (1-Y)
to achieve better results. In what follows, we fix the balance point of exploitation-exploration, Y to 0.2.

In what follows, we vary # in [20; 100] with a rate of uRLLC UEs equal to 40% in each iteration.
We set % and �"�- to 10 and 8 respectively. We aim to evaluate the performance of E2E-USA in case
of high density of UEs. In Figure 5.3.(d), we compare E2E-USA to the CPLEX solver, which converges
to the optimal solution. It is straightforward to see that our solution generates near optimal solutions
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Figure 5.3: Convergence evaluation

when the number of UEs # is equal to 20. Whereas, when # is higher than 20, our proposed approach
achieves a lower utility function with a gap of 28%.

With regards to scalability, Figure 5.3.(e) illustrates the average resolution time AT of the different
strategies versus the number of UEs # . Note that the Transmission Time Interval (TTI) in C-RAN
is equal to 1 millisecond according to [54]. It is straightforward to see that the non-scalable optimal
solution takes a significantly longer time than SPLIT-HPSO to solve one instance of the optimization
problem. Indeed, the optimal solution struggles to scale, as it takes several minutes to solve instances
of # . In contrast, E2E-USA can easily solve any size of instance (i.e., # in [20, 100]) in the range of
[66; 100] milliseconds. Eventually, E2E-USA is able to take an up-to-date decision and execute it after
100 TTI period. Unfortunately, Optimal-Split is not able to do so since its decision, once taken, will be
already obsolete and hence not applicable.

Figure 5.3.(f) illustrates T( , with respect to the radio allocation weight (\). Wherein, for a fixed
number of UEs (i.e., # = 50), we assume that \ is increasing in the range of [0, 1] while ` is decreasing
in the range of [0, 1]. As depicted, the throughput satisfaction is almost enhanced while \ is increas-
ing. Furthermore, T( reaches his maximum value at 0.77. This is explained by the fact that, when
the throughput demand is high, radio resources become scarce which makes the selection of the ap-
propriate set of resource blocks extremely challenging. Note that E2E-USA achieves nearly the same
performance as baseline scenarios D-RAN, C-RAN and E2E-CSA.
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Figure 5.4: Performance evaluation

5.5.3.2 Performance Analysis

Hereafter, we fix \ to 0.5 while ` is equal to 0.5. We also fix the RCC computational consumption weight
V to the value 0.1 as Cloud data centers are natively efficient in power consumption. We assume that
U and W are both equal to 0.45 to emphasize the tradeoff issue between minimizing DU computational
cost weighted by U and optimizing the link resource usage weighted by W.

In Figure 5.4.(a), we illustrateC� with respect to the number of*�s. It is straightforward to see that,
our approach E2E-USA further optimizes the computational and link resource usage cost comparing to
baseline approaches. Indeed, our proposal is user-centric, hence, it adopts a fine-grained approach to
optimize the resource allocation. It is worth pointing out that C-RAN and D-RAN achieves higher cost
of deployment. As a matter of fact, the C-RAN approach allocate constantly the full transport link
bandwidth, while, the D-RAN approach utilizes all the computational resources in DU sites.

Figure 5.4.(b) illustrates the penalty L) as a function of the *�s’ number. As we can see, both
approaches E2E-USA and E2E-CSA approaches keep a zero penalty which means that all *�s are
constantly served with splits satisfying their latency requirement. However, D-RAN approach causes
high penalty because all *�s are served with (?;8C0 that implies a latency in the order of 10 <B which
obviously violate the latency requirements of both eMBB and uRLLC *�s. C-RAN also implies a
latency penalty in the range of [1, 5] for some uRLLC*�B requiring a latency less than 0.2 ms.

Figure 5.4.(c) depicts the splits distribution for E2E-USA while increasing the *�s’ number. It
is straightforward to see that, our approach favors (?;8C2, (?;8C3 and (?;8C4. (?;8C0 and (?;8C1 are
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excluded since they induce a latency of 10 <B which does not satisfy neither eMBB nor uRLLC flows.
Furthermore, (?;8C5, (?;8C6, (?;8C7 and (?;8C8 are not selected because they generate a high traffic in
the transport network which impacts the deployment cost. Instead, our approach achieves a trade off
between DU computational usage and link resource usage by adopting a partial centralization scheme of
PF functions. Specifically, (?;8C2 increases proportionally with the*�s density while (?;8C4 and (?;8C3
decrease. This can be explained by the fact that, when # increases, the number of uRLLC*�B requiring
a strict latency that can only be served by (?;8C2, increases accordingly. Assuming our model, this fact
constraints 6#�B to deploy (?;8C2 for the remaining attached*�B. With reference to Section 5.3, (?;8C2
leads to a high computational deployment cost comparing to the other feasible splits. To counteract this
side-effect, E2E-USA selects (?;8C3 and (?;8C4 in other 6#�B to centralize more functions in the Cloud.

Figure 5.4.(d) assesses the split selection strategy of E2E-USA with different percentage of uRLLC
*�B. Indeed, for a fixed number of UEs (i.e., # = 50) and a fixed number of 6#�B (i.e., " = 7), we
can observe that the adoption of (?;8C2 increases at the expense of (?;8C3 and (?;8C4. This emphasis the
fact that *�B with stringent latency requirement less that 0.2 ms, restraint 6#�B to deploy only (?;8C2
excluding necessary other split options even for other attached*�B.

Figure 5.4.(e) illustrates the impact of the gNB number (i.e., ") on the split selection strategy S. For
a fixed number of UEs (i.e., # = 50), a uRLLC *�B percentage fixed to 40% and " increasing in the
range of [3, 7], the deployment of (?;8C2 decreases while the adoption for (?;8C3 and (?;8C4 increases.
The reason behind this is that, E2E-USA is not anymore constrained to deploy (?;8C2 in some 6#�B.
Instead, E2E-USA finds a greater flexibility to deploy other splits to achieve the tradeoff between DU
computational usage and link resource usage.

In Figure 5.4.(f), we study the tradeoff between the DU computational cost minimization, which is
weighted by U and the link resource usage optimization, which is weighted by W. Therefore, we assume
that W is increasing in the range of [0, 1] while U is decreasing in the range of [0, 1]. As depicted in
Figure 5.4.(f), our solution adopts B?;8C2 and B?;8C8 when W is lower than 0.4 (i.e., U is higher than 0.6).
Then, when W is equal to 0.4, the algorithm adopts mainly B?;8C2, B?;8C3 and B?;8C4 until W reaches 0.6.
Afterwards, B?;8C2 is constantly deployed. The reason behind this behavior is that E2E-USA adopts
splits with minimum DU computational cost when U is high (namely B?;8C8) while B?;8C2 is served for
some uRLLC *�B. When W is high, E2E-USA favors splits with minimum traffic flow in the transport
link (namely B?;8C2). It is interesting to see that when W is equal to 0.4 and U is fixed to 0.6, the tradeoff
is achieved by deploying simultaneously B?;8C2, B?;8C3 and B?;8C4.

5.6 Conclusion

5G-RAN stakeholders aim to build a RANaaS concept with an innovative RAN infrastructure to respond
to new 5G applications requirements. In this context, the slicing concept is introduced in order to
handle the heterogeneity of new use-cases. Despite the great advances achieved by RAN functional split
standardization, there is still a coarse grained approach in the deployment process. In this Chapter, we
propose a User-centric RAN Slice Allocation approach E2E-USA. Wherein, each user is assigned a
proportion of radio and a split option. At the end, multiple user RAN slices are created and managed
on top of the physical infrastructure tailored to users’ requirements. Our contribution is twofold. First,
we elaborated user-centric RAN slice allocation problem as an Integer Linear Problem (ILP) with multi-
objective function. Second, we propose a heuristic based on Particle Swarm Optimization that jointly
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optimizes radio, link and computational resource allocation. Based on Particle Swarm Optimization,
E2E-USA is scalable and achieves optimized user-centric RAN slice allocation solution in a satisfactory
time. Based on extensive simulations, we have shown that E2E-USA achieves good performances in
terms of total throughput satisfaction and deployment cost. In the next Chapter, we propose to operate
the RAN slice allocation in real time, by proposing a Deep Learning based user-centric RAN slice
allocation scheme.
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6.1 Introduction

The proposed heuristic in Chapter 5 generates near optimal solutions in an acceptable resolution time.
Even short, such a convergence time needs to be further minimized in order to deal with 5G RAN time
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constraint with less than 1 ms for a Transmission Time Interval [54], depending on each use-case. In
this perspective, a real-time resolution should be performed ensuring, hence, an up-to-date decision.

To deal with such a high complexity, we put forward a real-time DDDeep LLLearning approach for op-
timized UUUser-centric SSSlice AAAllocation (DL-USA) in 5G RAN. Our proposal proceeds in four stages: i)
input generation for training, ii) dataset preprocessing, iii) training, and iv) testing. During the first
phase, we solve multiple instances of the ILP problem, described previously in [Chapter 5, p. 57], in
an offline manner using a powerful solver such as IBM CPLEX [105]. The aim is to generate vari-
ous input parameters along with their corresponding optimized output decisions. During the second
phase, data is filtered and datasets are constructed. Thirdly, we train our DL-USA solution based on a
bidirectional Long-Short-Term-Memory (biLSTM) model [106]. The main objective is to construct a
predictive allocation model of RAN user slices. Finally, DL-USA is tested using a new dataset ensuring
the effectiveness of our proposed solution. Once trained, the model can be invoked in an online manner
to generate real-time RAN slice decision based on collected RAN input parameters of end-users and the
physical infrastructure.

The rest of this Chapter is organized as follows. In Section 6.2, we outline the proposed DL-USA
solution, while a description of our simulator and evaluation results are detailed in Section 6.3.

6.2 Proposal: DL-USA: Deep Learning solution for RAN slice allocation

In this Section, we give insights into our proposed solution to ensure real-time user-centric RAN slice
allocation expressed in the problem LP3. We leverage the machine learning technique using a Deep
Neural Network (DNN) model [107]. It is straightforward to see that the problem LP3 [Chapter 5, p.
57] is classified as a nondeterministic polynomial hard problem [37], where the solution corresponds to
the triplet: *� − 6#� association, RB allocation and split selection for each UE in the network. An
exhaustive search will lead to check all possible combinations. For example, for # UEs, " gNBs, �
RBs and  split options, optimal solutions will approximately calculate #"×�× combinations, which
is practically infeasible in case of high-scale of*� number. Additionally, proposed heuristics may help
to reduce the resolution time. However, the 5G RAN context requires an up-to-date decision within a
Transmission Time Interval period less than 1 ms [54]. Therefore, sophisticated algorithms may lead
to decisions, that once taken, will be already obsolete and hence not applicable. Reactive models are
highly recommended in this case, where the allocation scheme is generated in real-time upon input data
without performing an exhaustive calculation task.

6.2.1 Deep Learning approach

Recently, Artificial Intelligence (AI) and Machine Learning (ML) techniques are investigated to enable
efficient RAN resource allocation in a dynamic and scalable environment. The Self-Organizing Net-
works (SONs) [38] has been supported by 3GPP standardization for empowering the RAN with big data
applications. Indeed, the emerging ML solutions are proven to be efficient in speeding up the optimiza-
tion process as well as in finding heuristic solutions in an iterative manner [108]. With focus on the
conventional supervised ML technique, the idea is to analyze a huge amount of <radio configuration,
allocation decision> pairs for example. Then, a heuristic (trained model) is inferred to map new radio
configurations on near optimized allocation decision. Currently, the ML technique is intensively adopted
in RAN. However, related works are either limited to radio resource allocation [109–112] or addressing
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the placement problem of virtual network functions, without considering the functional split selection
problem [113–115]. Interestingly, the work in [88] adopts a Deep Learning approach with a Long Short-
Term Memory (LSTM) model for addressing the functional split selection model. In this chapter, we go
a step further and propose a Deep Learning based scheme for optimized User-centric Slice Allocation
(DL-USA) in 5G RAN.

6.2.2 DL-USA overview

Our new scheme, named Deep Learning based User Slice Allocation (DL-USA), is put forward to op-
timize the RAN user slice allocation decision. Specifically, our approach performs in four stages: i)
problem data input generation, ii) data pre-processing, iii) training phase and iv) testing phase. During
the first stage, we solve multiple instances of the LP3 problem in an offline manner while using the
B&C algorithm of IBM CPLEX solver. The aim is to generate various input parameters of problem
LP3 along with their corresponding optimized output decisions. During the second stage, we construct
datasets (i.e., sequences), each contains relevant input and output data of one execution instance. During
the third stage, we train our DL-USA solution based on these datasets to construct an efficient allocation
model of user slices. Finally, DL-USA is tested on new datasets which enables to verify the accuracy
of our proposed solution. Once trained, the model can be invoked in online manner like a simple call
function to express the slice decision based on received input parameters.

6.2.3 Data Generation Phase for training

We solve LP3 optimization problem for RAN User Slice Allocation using the Branch-and-Cut algo-
rithm B&C [105] of IBM CPLEX Solver.

6.2.4 Dataset Pre-Processing

During the pre-processing phase, data is filtered, normalized and organized into sequences in order to
be processed by the deep neural network. It is straightforward to note that the inputs of our ILP in
LP3 contain different features with different value ranges. For seek of simplicity, we assume that the
infrastructure parameters are constant: �"�- , �, " , ��

"�-
, ��

"�-
, '"�- , U, V, W, \, `, a: , 6: , 5: ,

∀ : ∈ {0, ..,  }. Their set-up will be given in Section 6.3. We vary the *� model input parameters
for: i) required data rate _8 , ∀ 8 ∈ {1, .., #}, ii) required latency a8 , ∀ 8 ∈ {1, .., #} and iii) �&�8<, ∀
< ∈ {1, .., "}, ∀ 8 ∈ {1, .., #}. Then, we conducted a detailed statistical analysis, to monitor feature-
wise values for minimum, maximum and average. We have dropped out the features with duplicate
information or constants values. Finally, this analysis resulted in [2 + "] unique features in the input
dataset.

Afterwards, we construct the input dataset � which is a vector of dimension #( , corresponding to
the number of execution time of algorithm B&C. Indeed, each element of � contains the input data of
one execution unit of algorithm B&C. Formally, one input sequence corresponds to a matrix of # × [2 +
"], where # is the number of UEs and [2 + "] is the number of features. The target output dataset $)
is a vector of #( sequences, each of which contains the corresponding output data of one execution unit
of algorithm B&C. Formally, one output sequence is a vector of # elements, each of which contains the
triplet: i) attached gNB identifier, ii) amount of allocated RBs (radio load) and iii) user split identifier.



76 Chapter 6. Deep Learning based user-centric RAN slice allocation in Cloud RAN

Figure 6.1: DL-USA

Finally, we characterize the number of categories #� , the number of triplets, i.e., RAN slices, that could
be generated by B&C.

6.2.5 Deep Neural Network model

We make use of a supervised machine learning technique with Deep Neural Networks [107] to perform
an efficient RAN Slice Allocation. More specifically, our solution DL-USA makes use of the Long
Short-Term Memory (LSTM) model [106] which converts the conventional neurons into memory cells
with gates. Such a new structure facilitate the information storage and sharing between memory cells
within the same layer. In doing so, LSTM outperforms the conventional neural networks when dealing
with complex classification problems and prediction. Besides, unlike the classical neural networks,
LSTM is capable of handling a variable-length sequence input which make it natively adapted to the
dynamic 5G context.

Figure 6.1 illustrates the workflow of the proposed DL-USA scheme. First, the sequence input layer
introduces each sequence data to the DNN network. Second, the bidirectional LSTM (biLSTM) layer
processes the UE inputs sequentially and generate the according initial RAN slices. More specifically,
the biLSTM layer consists of two sub-layers, each with # chained memory cells, both in different direc-
tion. For sake of simplicity, Figure 6.1 presents only one sub-layer. Wherein, each LSTM cell 8 performs
the following tasks: i) process the *�8 problem input and calculate the initial RAN slice 8, ii) transmit
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the latter to the next LSTM cell as a hidden state, and iii) update the cell state. The aforementioned op-
erations are insured with weighted gates of “sigmoid” activation functions which control the data flow,
while the state activation functions “tanh” are implemented to facilitate the information storage. Note
that both cell and hidden states are configured with the same number of hidden units �. Third, the
output of the second LSTM sublayer is fed into a fully connected layer which has a number of neurons
equals to the number of categories #� . Forth, the Softmax layer calculates the probability distribution
over the categories and the highest probability is selected for the output generation. At the end, the
classification layer computes the cross entropy loss between the generated and B&C target outputs.

6.2.6 Learning phase

In order to generate the allocation model, the network is trained based on the previously generated input
and target output dataset. The objective is to create a reliable model able to regenerate an approximation
$% for the target output $) with an acceptable error rate. To do so, the entire dataset is divided into
mini batches, each containing �� sequences. Then, during the training phase, the gates’ weights becomes
variables subject to an optimization problem that aims at minimizing a penalty function. We make use of
the cross-entropy operation as a loss function. Accordingly, it computes the loss between the generated
category $%8 9 and the target value $8 9 across all users among the sequences.

The categorical cross-entropy loss function is expressed in LP4 as follows:

LP4 : Minimize − 1

�� × #

#∑
8=1

��∑
9=1

($) 8 9 ;>6($%8 9) + (1 −$) 8 9) ;>6(1 −$%8 9)

We make use of Adam optimizer [116] as a stochastic gradient-decent algorithm iteratively to tune
the aforementioned parameters, starting from the final classification layer back to the first initial se-
quence input layer. The main idea is to calculate the loss function in order to decrease the weight values
with higher error rates in every layer and vice versa. By back-propagating the loss into the network, and
finding out what loss every unit is responsible for, we can decrease the total loss of the model. Note that
the entire dataset is processed within a single epoch. Therefore, we define �"�- the necessary total
number of epochs to make the network converge to an efficient allocation model.

6.2.7 Testing Phase

In general, DNN based approaches adopt an inductive reasoning which is fundamentally different from
logic-based algorithm [117]. Indeed, the former constructs a model estimating predictions with a certain
probability, while the latter make exact deduction. Therefore, the performance of a DNN based approach
should be statistically measured on a sparsely distributed data. The objective is to accurately measure
the proposed DL-USA performance in an operation context.

During the testing phase, we generate new datasets making use of the B&C algorithm, which con-
stitute 25% of the size of training data. Then, performance is measured statistically to minimize the
importance of individual error-inducing inputs.
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Table 6.1: Network parameters

Number of 6#�s " = 7
Number of*�B # = 100

Inter-cell distance 50 <
Number of RBs � = 100

Spectrum Bandwidth , = 20 "�I
Antenna mode � = 1, SISO

Average RB power %'� = 10 <,

Average cell power %C G = 1,0CC
Transmit power gain �CG = 8 3�8

Shadowing coefficient Ω = 5 3�
Thermal Noise −174 3�</�I

(�#'"�- 10 dB
Path loss model (PL) 148.1 + 37.6 ;>6(�), � in  <

Fading coefficient d =* (0, 1)
Channel gain ℎ = 10−%!/20 ·

√
�CG · Ω · d

�"�-
ℎ∗%'�

(� #'"�-
− f2

'"�- 3686, 4 Mbps [16]
��
"�-

, ��
"�-

960 �$%( per 6#� [83]
\, `, U, V, W 0.5 , 0.5 , 0.33 , 0.33 , 0.33 [Chapter 5, p. 67]

uRLLC*�B 40% of total*�B

6.3 Performance Evaluation

In this Section, we gauge the performance of our proposal DL-USA based on extensive simulations. In
first order, we describe the simulation environment setup and the performance metrics. Then, we analyze
the generated results and discuss the effectiveness of our proposal compared to the B&C algorithm. To
the best of our knowledge, there is no RAN simulator enabling the user functional split deployment so
far. In the following, we show the results of our implemented JAVA-based simulator.

6.3.1 Simulation setup

We simulate the Cloud RAN infrastructure with respect to our model described in [Chapter 5, p. 57]. We
consider # *�s uniformly distributed in an OFDMA based cellular network. *�B generate a traffic in
[0, 1] Mbps with a latency in {1, 2, 3, 4} <B for eMBB *�s and {0.1, 0.2, 0.3, 0.4, 0.5} <B for uRLLC
*�s [104]. *�B positions are randomly generated for each execution and remain fixed during their
whole stay in the network. It follows that we calculate the �&�, "�( and )�(� between each*� and
6#� in order to approximate the linear function of generated TBS )̃ �( between each*� and 6#�. Ta-
ble 6.1 reports the simulation parameters used in our simulations. Besides, we train our model DL-USA
based on 400 sequences (number of execution loops in B&C algorithm). Our performance analysis
corresponds to the average of 100 simulations with a confidence level set to 95%.
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6.3.2 Performance metrics

We use the following metrics to gauge the performance of our proposal DL-USA compared with B&C-
based scheme.

• A% is the Accuracy Percentage measured by !%4 between the output of the DL-USA trained
model and the B&C algorithm.

• UF is the Utility Function in !%3 expressing the trade off between the served throughput and the
deployment cost.

• T( expresses the Throughput Satisfaction rate corresponding to the ratio between the overall
served and requested throughputs.

• C� expresses the Cost of Deployment expressing the computational and link resource usage as
defined in !%1, which is expressed as the weighted sum of the resource usage in i) DU site
weighted by U, ii) CU site weighted by V, and iii) the fronthaul link weighted by W.

• L) denotes the Latency penalty of Total users expressed as
∑
8
;:−;8
;8

, ∀: ∈  ,∀8 ∈ # where ;: is
the latency of the user split : while ;8 is the required latency of*�8 . See [Chapter 5, p. 57].

• T' is the Average Time of Resolution in <B.

• S corresponds to the percentage of Splits generated by our proposal DL-USA.

6.3.3 Simulation results

6.3.3.1 Convergence Analysis

In what follows, we evaluate the impact of the number of hidden units � and the number of epochs
�"�- on the solution quality (i.e., accuracy percentage AP). Figure 6.2.(a) assesses the convergence
properties of DNN-USA for different number of hidden units �, while varying the number of epochs
�"�- . We recall that � is the size of both cell and hidden states of the LSTM cell. As depicted, we can
observe that the accuracy percentage AP of each DNN network is increasing when �"�- increases.
Besides, it is straightforward to see that the size of � impacts the quality of the solution. In particular,
the curve corresponding to � = 150 outperforms DNN network with � < 150. Then, it is worth noting
that AP becomes stationary, for DNN network with � = 150, starting from �"�- = 80.

In Figure 6.2.(b), we study the impact of the number of mini-bach �� and the number of epochs
�"�- on the solution quality AP. We recall that �� is the number of sequences used to compute the
loss function and trigger one training step. �� is also considered as the frequency update of the DNN
parameters. It is clear to see that AP increases efficiently when the number of mini-bach �� is equal to
1. When �� is higher than 50, the DNN network struggles to converge. This can be explained by the fact
that our DL-USA requires higher frequency update of the DNN parameters with a fine-grained tuning
(i.e., after processing each input data).

In what follows, we fix �"�- , � and �� to 80, and 150 and 1, respectively. It is worth noting that
the achieved results are conformed to the bayesian optimization method [97], which make use of the
Gaussian processes to tune the DL-USA hyper parameters.
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Figure 6.2: Convergence Analysis

6.3.3.2 Performance Analysis

Hereafter, we propose to analyze the scalability performance of our approach DL-USA. We vary # in
[25, 100] with a rate of uRLLC UEs equals to 40% in each iteration. We set �"�- , � and �� to 80,
150 and 1, respectively. We aim to evaluate the performance of DL-USA in case of high density of
UEs. In Figure 6.3.(a), we compare DL-USA to the B&C based scheme. It is straightforward to see
that our proposal generates near optimal solutions when the number of UEs # is lower than 75. Within
this range, B&C provides a RAN slice allocation with a utility function UF, greater than our proposed
approach. Whereas, when # is equal to 75, our proposed approach achieves the same utility function of
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B&C based solution.
Figure 6.3.(b) illustrates the impact of the number of UEs (i.e., #) on the resolution time TR. As

we can see, TR scales when # increases for B&C solution. The reason behind this is that B&C tries
to solve iteratively the !%3 problem with its related constraints for all # UEs. Therefore, the non-
scalable solution takes a significantly longer time than DL-USA to solve one instance of the optimization
problem. The B&C based solution struggles to operate in real time, as it takes values in [3600, 3604]
seconds to solve instances of # in [25, 100]. In contrast, DL-USA can easily solve any size of instance
(i.e., # in [25, 100]) in the range of [1, 2] milliseconds. It achieves, hence, to speed up the computation
time of 36 × 105 magnitude, DL-USA is able to take an up-to-date decision. Unfortunately, the B&C
based solution is not able to do so since its decision, once taken, will be already obsolete and hence not
applicable.

Figure 6.3.(c) illustratesT( , with respect to the number of UEs (i.e., #). As depicted, the throughput
satisfaction is decreasing almost linearly for B&C solution, while the *� density is increasing. Indeed,
when the throughput demand grows, the radio resources become scarce which makes the selection of the
appropriate set of resource blocks extremely challenging. Note that DL-USA’T( becomes stationary
with nearly the same performance as B&C when # is higher than 75.
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In Figure 6.3.(d), we illustrate C� with respect to the number of *�s. It is straightforward to see
that, both B&C and DL-USA generate an increasing C� when # in [25, 75] while DL-USA generates
a higher cost of deployment C� for # = 100. Hence, DL-USA is able to afford an acceptable amount of
cost of deployment while generating a scable allocation decision for link and computational resources.

Figure 6.4 illustrates the penalty L) in accordance of the*�s’ density. As we can see, our approach
DL-USA along with the baseline solution keep a zero penalty which implies that all*�s are constantly
served with splits satisfying their latency demands.

6.4 Conclusion

In this Chapter, we proposed a novel Deep Learning User-centric approach for RAN Slice Alloca-
tion prediction, DL-USA, that jointly optimizes link, computational and radio resource provisioning.
DL-USA jointly meets the overall user requirement in terms of served throughput and latency, while
minimizing the RAN deployment cost. The performance of DL-USA is evaluated throughout exten-
sive simulations. Obtained results highlight the effectiveness of our proposal in terms of throughput
satisfaction rate and total deployment cost, while responding within the 5G real time constraint.
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In this Chapter, we summarize our proposals outlined in this thesis and give insights into the ma-
jor obtained results. Then, we discuss the possible future research directions that can be considered as
extension to our works. Based on the discussed 5G challenges, we propose to further improve our pro-
posals on three steps following i) Short-term, ii) medium-term and iii) long-term perspectives. Finally,
we detail the list of publications that have been achieved during this thesis in Section 7.3.

7.1 Summary of contributions

In this thesis, we addressed the C-RAN resource provisioning problem within the context of 5G. The fun-
damental challenge is how to achieve optimal allocation scheme that fulfills the increased user demand
generated by heterogeneous type of services, while minimizing the operational cost of resource deploy-
ment. To do so, we propose a fine-grained resource allocation scheme, on user basis, in order to achieve
higher benefits. First, we propose a new disaggregated RAN architecture in compliance with the 3GPP
specification [14], enabling on-demand deployment of radio, computational and link resources, denoted
by AgilRAN. We propose to integrate the C-RAN concept and techniques such as Network Function
Virtualization, Software Defined Network and RAN functional splits to provide the required flexibility.
Second, we formulate the problem of user-centric RAN slice allocation as an ILP problem and solve it
based on strategies using heuristics and machine learning techniques. In the first stage, we put forward
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a novel user-centric functional split orchestration optimization scheme, so called SPLIT-HPSO. The
latter is based on the Swarm Particle Optimization approach [99], aiming at optimizing the functional
split selection for each user, while taking into consideration the load variation. Then, in the second
stage, we put forward a user-centric RAN slice allocation optimization scheme, so called E2E-USA.
The latter is based on Swarm Particle Optimization and Dijkstra approaches to deal with the joint radio,
computation and link resource allocation problem. Finally, we propose to make use of the machine
learning approach with deep learning to achieve real time performance. Wherein, we make use of the
bidirectional Long-Short-Term-Memory (biLSTM) model [106] to propose Deep Learning approach for
optimized User-centric Slice Allocation (DL-USA) in 5G RAN. Hereafter, we will summarize our main
contributions.

The first contribution is a survey on C-RAN resource provisioning strategies, that includes the partial
centralization scheme (i.e., the RAN functional split). We propose to classify the latter strategies into
two essential groups: i) RAN placement approaches and ii) RAN slice allocation approaches. The
first group of research works aim at minimizing the RAN operational cost by searching for the optimal
functional split decision. The second group integrates the radio resource allocation to achieve optimal
functional split decision. The latter approach takes into consideration the UEs QoS requirements, while
minimizing the operational cost of resource deployment.

The second contribution consists in proposing a cost efficient C-RAN architecture enabling on-
demand deployment of RAN resources, while dealing with temporal load variation of users. This Agile
C-RAN architecture, denoted by AgilRAN is multi-sited which is in compliance with 3GPP NG-RAN
architecture [Chapter 2, p. 14]. AgilRAN is managed by a user-centric split orchestration framework
which performs baseband function placement and their interconnection taking into account real-time
network state. The main idea behind our design is to ensure a user level orchestration of baseband
functions in a hierarchical Cloud infrastructure, while using lightweight virtualization techniques. Char-
acterized by two-level sites of processing, AgilRAN enables the placement of baseband processing
network functions traditionally attached to the radio, into the Cloud, while considering their stringent
requirements in terms of latency and bandwidth.

The third contribution consists in elaborating a novel user-centric functional split allocation scheme
that aims at minimizing the RAN deployment cost, while considering the requirements of its baseband
functions and the capabilities of the Cloud infrastructure. Since the problem is NP-hard and in order to
deal with its computational hardness, we propounded a new scalable heuristic based on Swarm Particle
Optimization approach [99], denoted as SPLIT-HPSO. Our scheme is proved to be scalable running
within four Transmission Time Interval (TTI) units which makes our solution operational. We expect that
the optimization process is triggered periodically to optimize the deployment cost in a pro-active manner.
We further quantify the user split gain as function of the traffic load with reference to a quantitative
model and compare it to the baseline cell splits. We have shown that SPLIT-HPSO achieves good
performances in terms of total deployment cost and resolution time. Our proposal is evaluated in large
scale high density of users. In addition, we validate the proposed solution within our experimental C-
RAN prototype, which makes use of OAI [20] and FlexRAN Controller [53]. However, the adopted
approach is limited to one cell and does not consider the UE latency requirement, while performing the
baseband function placement. Besides, the required amounts of computational and link resources for
user-centric functional splits depend on the user traffic load. Hence, the baseband function placement
can be further optimized when integrating the radio resource allocation in the split selection decision.
This challenge expresses the RAN slice allocation, which will be addressed in the next contribution.
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The fourth contribution consists in creating RAN user slices on top of the proposed architecture
with joint radio, computational and link resource allocation on user basis. The aim is to integrate the
radio resource allocation in the RAN deployment scheme. Therefore, we go a step further and propose a
RAN slicing approach with joint optimal radio resource allocation and user split selection on user basis.
Considering that the optimization problem is NP-Hard, we propose a low-cost and efficient heuristic
algorithm for RAN user-centric slice allocation, so called E2E-USA. We make use of the regression
linear method to approximate the final served user throughput. Then, our new scheme is based on the
Particle Swarm Optimization and Dijkstra approaches to achieve the required trade off. We take into
consideration the UE quality-of-service requirements in terms of required throughput and latency, while
tuning efficiently the underlying RAN resource usage, leveraging the functional split. We have shown
that E2E-USA is scalable and achieves optimized user-centric slice allocation solution in a satisfactory
time. Based on extensive simulations, E2E-USA achieves good performances in terms of joint total
throughput satisfaction and deployment cost.

The fifth contribution deals with the real time aspect of the C-RAN allocation procedure. Indeed, the
5G RAN context requires an up-to-date decision within a Transmission Time Interval period less than
1 ms [54]. Therefore, sophisticated algorithms may lead to decisions, that once taken, will be already
obsolete and hence not applicable. To this end, we propose a new scheme, named Deep Learning based
User Slice Allocation (DL-USA), to optimize the RAN user slice allocation decision taking into consid-
eration the real time 5G context. We make use of the bidirectional Long-Short-Term-Memory (biLSTM)
model [106] to construct an efficient allocation model. Once trained, the model can be invoked in an
online manner to generate real-time RAN slice decision based on collected RAN input parameters of
end-users and the physical infrastructure. Hence, the allocation scheme is generated in real-time upon
input data without performing an exhaustive calculation task.

7.2 Future work

7.2.1 Short-term perspectives

As a short-term planned work, our objective is to integrate the rest of functional split options (i.e., from
Option 2 to Option 7b, detailed in [Chapter 2, p. 15], in our AgilRAN Framework. Then, we aim to
test and validate our proposals by means of experimentation, with a large set of implemented functional
splits. Besides, we aim to extend our proposed architecture into a 3 layer RAN architecture, where the
BBU protocol stack can be disaggregated into 3 layers: Radio Unit (RU), Distributed Unit (DU) and
Central Unit (CU). Wherein, each element is able to host the baseband functions. The advantage of such
an architecture is to deploy two functional splits simultaneously as follows. The intra-PHY splits are
deployed on the RU-DU connection (F2 interface), while high split option levels are deployed on the
DU-CU connection (F1 interface). In one hand, the intra-PHY splits impose high requirements in terms
of bandwidth and latency, while the RU-DU connection implements a dark fiber on a short distance.
Eventually, this configuration seems suitable and cost effective. In the other hand, high split option
levels that corresponds to splits intra-L2 are relaxing the throughput and latency requirements on the
fronthaul link. Then, deploying them on the DU-CU connection is an adequate solution, since a non
ideal solution such as Ethernet links are operational and cost effective.
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7.2.2 Medium-term perspectives

We aim to target the energy efficiency objective in the elaborated models of RAN slice allocation (i.e.,
Chapter 5 and Chapter 6). Besides, performance evaluations in Chapter 5 and Chapter 6 have been
performed through extensive simulations. However, despite the quality of obtained results depicting the
efficiency of our algorithms, we believe that testbed experiments are essential to validate these proposals
in real 5G environment. Currently, we have implemented the C-RAN resource orchestration framework
AgilRAN to enable on-demand deployment of RAN functions. Our next step is to enable the on-
demand radio slice deployment on user basis within our SDN radio controller FlexRAN. Hence, as
future medium-term works, we aim to extend our AgilRAN implementation to enable RAN resource
deployment and validate our propositions with proper timing requirements, while also working on other
interesting algorithms for BBUs collaborative radio processing.

7.2.3 Long-term perspectives

The fronthaul link is perceived as the bottleneck issue of C-RAN and MNOs put a lot of effort to
rethink the RAN architecture in order to relax the high requirements on this connection. With the recent
evolution of 5G RAN standards bringing the functional splits and slicing concepts, it is expected that the
fronthaul link will be transformed into a multi-service network [56]. Wherein, heterogeneous 5G use
case traffics will be routed through a common transport network. Then, it is essential from a management
perceptive to provide isolation that limits the interaction between traffic from heterogeneous 5G services.
At the end, routing in the 5G transport network is another challenge to consider.

7.3 Publications

This section summarizes the publications that have resulted during this thesis:

• Journals

– Salma Matoussi, Ilhem Fajjari, Salvatore Costanzo, Nadjib Aitsaadi and Rami Langar, “5G
RAN: Functional Split Orchestration Optimization”, in IEEE Journal on Selected Areas in
Communications (J-SAC), vol. 38, no. 7, pp. 1448-1463, July 2020.

• Conference papers

– Salma Matoussi, Ilhem Fajjari, Nadjib Aitsaadi and Rami Langar, “Deep Learning Based
User Slice Allocation in 5G Radio Access Networks”, in IEEE Local Computer Networks
(LCN), Sydney, Australia, November 2020.

– Salma Matoussi, Ilhem Fajjari, Nadjib Aitsaadi and Rami Langar, “User Slicing Scheme
with Functional Split in 5G Cloud-RAN”, in IEEE Wireless Communications and Network-
ing Conference (WCNC), Seoul, South Korea, April 2020.

– Salma Matoussi, Ilhem Fajjari, Nadjib Aitsaadi, Rami Langar and Salvatore Costanzo, “Joint
Functional Split and Resource Allocation in 5G Cloud-RAN”, in IEEE International Con-
ference on Communications (ICC), Shanghai, China, May 2019.
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• Technical reports

– Salvatore Costanzo, Salma Matoussi et Rami Langar, “Implémentation d’un Réseau d’Accès
Radio en tant que Service (RANaaS)”, projet ELASTIC, Délivrable D3.2 - Logiciel et Pro-
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des ressources, Mars 2017.
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– Salma Matoussi, Salvatore Costanzo and Rami Langar, “SDN-based virtual RAN”, poster
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