The main objective of the present thesis is to devise, construct and validate computationally efficient hp-adaptive discontinuous Galerkin schemes of the Navier-Stokes equations by bringing together the flexibility of a posteriori error driven adaptation and the accuracy of multiresolution-based adaptation. The performance of the hp-algorithm is illustrated by several steady flows in one and two dimensions.
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RÉSUMÉ

L'objectif principal de cette thèse est de développer une approche adaptative à la hp-méthode efficace en termes de calcul pour les schémas Galerkin discontinus des équations de Navier-Stokes, en combinant la flexibilité de l'adaptation a posteriori et la précision de l'adaptation multi-résolution. Les performances de l'algorithme de la hp-méthode sont illustrées par plusieurs flux stables en une et deux dimensions.

La nouveauté de l'étude réside dans l'utilisation des multi-ondelettes et la façon dont leurs propriétés remarquables peuvent apporter un éclairage nouveau sur la conduite du processus d'adaptation. Ceci est motivé par le fait que les multi-ondelettes décomposent n'importe quelle entrée en une hiérarchie de données de basse résolution et ensuite de détails plus fins. Notre méthodologie utilise les propriétés des multi-ondelettes tout en étant locale à l'élément, en gardant ainsi l'efficacité parallèle du shéma de DG.

La première direction de recherche emploie une nouvelle méthodologie basée sur les multi-ondelettes pour estimer l'erreur de discrétisation de la solution numérique dans le contexte des simulations adaptives à la h-méthode. Cette nouvelle méthodologie est ensuite comparée à des estimateurs d'erreur bien établis dans la littérature afin d'évaluer leur efficacité globale. Les résultats démontrent clairement la viabilité de la h-méthode pour atteindre un gain de calcul significatif par rapport aux maillages uniformément raffinés. La méthodologie basée sur les multi-ondelettes est nettement plus performante que les estimateurs de la littérature, en particulier pour les simulations d'ordre inférieur. Plus particulièrement, la fiabilité et la précision de la méthodologie proposée augmentent avec les ordres de simulation plus élevés grâce à la plus grande quantité d'informations récupérées avec succès par les multiondelettes.

La deuxième ligne d'investigation aborde l'analyse et le développement d'une nouvelle stratégie adaptative à la hp-méthode basée sur la décroissance du spectre des multi-ondelettes pour diriger les simulations adaptatives à la hpméthode. Cette stratégie permet de discriminer avec succès les régions caractérisées par une grande régularité et des phénomènes discontinus, ainsi que leur proximité. Nous nous concentrons sur l'étude de la distribution optimale de la hp-méthode et de ses performances globales par rapport à l'adaptation pure par la h-ou p-méthode. Les analyses globales et locales menées de cette manière indiquent une réduction significative du coût de calcul de la simulation lorsque la hp-méthode est sélectionnée par rapport à la h-ou p-méthode. De manière remarquable, l'algorithme d'adaptation à la hp-méthode développé est capable d'atteindre la haute précision caractéristique des solutions numériques d'ordre élevé tout en évitant les oscillations indésirables en adoptant des approximations d'ordre réduit à proximité des singularités.

The first research direction employs a new multiwavelet-based methodology to estimate the discretization error of the numerical solution in the context of h-adaptive simulations. This novel methodology is then compared against well-established error estimators from the literature to evaluate their overall performance. The results certainly demonstrate the viability of h-refinement to reach a significant computational gain with respect to uniformly refined grids. The multiwavelet-based methodology performs substantially better than the literature estimators, and in particular for low-order simulations. Most notably, the reliability and accuracy of the proposed methodology increases with higher simulation orders thanks to the higher amount of information successfully retrieved by the multiwavelets.

The second line of investigation addresses the analysis and development of a new hp-adaptive strategy based on the decay of the multiwavelet spectrum to drive hp-adaptive simulations. The strategy successfully discriminates between regions characterized by high regularity and discontinuous phenomena and their vicinity. We focus our attention on studying the optimal hpdistribution and its overall performance with respect to single h-or p-adaptation. Both global and local analyses conducted in this manner report a significant reduction in the computational cost of the simulation when hp is selected over either h or p. Remarkably, the developed hp-adaptation algorithm is able to achieve the high accuracy characteristic of high-order numerical solutions while avoiding unwanted oscillations by adopting low-order approximations in the proximity of singularities.
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INTRODUCTION

1.1 BACKGROUND AND MOTIVATION

In this day and age computational fluid dynamics (CFD) has become an invaluable vehicle to understand the complex behavior of fluid flow. The set of conservation laws that governs the motion of fluids are represented as a system of partial differential equations (PDEs), for which, in the general case, no analytical solution is available besides some very specific conditions in the laminar regime. As an alternative, a great number of techniques to numerically approximate the solution to these equations has been historically put forward and developed. Among the most illustrative techniques we identify the finite-volume methods (FVMs) [START_REF] Leveque | Finite Volume Methods for Hyperbolic Problems[END_REF][START_REF] Ferziger | Computational Methods for Fluid Dynamics[END_REF] and the finite-element methods (FEMs) [START_REF] Donéa | Finite element methods for flow problems[END_REF][START_REF] Reddy | The Finite Element Method in Heat Transfer and Fluid Dynamics[END_REF]. These methods are based on the discretization of the physical domain into a computational grid consisting of a collection of elements where the numerical solution is defined.

Since their first use in the 1960s, finite-volume methods have been extensively studied and advanced by the CFD community [START_REF] Godlewski | Numerical Approximation of Hyperbolic Systems of Conservation Laws[END_REF][START_REF] Eymard | Finite volume methods[END_REF]. Their numerical solution is represented by an averaged value of the solution in a control volume obtained by flux balance across the volume interfaces. The physical fluxes at the interfaces are replaced by numerical fluxes solving the problem of discontinuity between left and right elements (Riemann solver for the convective term) [START_REF] Toro | Riemann Solvers and Numerical Methods for Fluid Dynamics[END_REF]. Conventional FVMs are second order accurate and offer a simple and robust formulation suitable for both structured and unstructured grids. However, FVMs with higher orders of accuracy involve wider stencils, which considerably reduce their flexibility.

Finite-element methods were introduced to CFD in the late 1970s and have also proved to be very successful in fluid dynamics [START_REF] Babuvška | The Finite Element Method with Lagrangian Multipliers[END_REF][START_REF] Pironneau | Finite Element Methods for Fluids[END_REF]. Unlike FVMs, their numerical solution is locally defined by a linear combination of polynomials assumed to be continuous across element interfaces. Originally, FEMs were designed with polynomials of low degree [START_REF] Boyd | Chebyshev and Fourier Spectral Methods[END_REF]. The extension to higher degrees receives the name of spectral elements methods (SEMs) [START_REF] Patera | A spectral element method for fluid dynamics: Laminar flow in a channel expansion[END_REF], which inherit the properties of high-order accuracy and low-dispersion errors of spectral methods [START_REF] Karniadakis | Spectral/hp Element Methods for Computational Fluid Dynamics[END_REF]. However, these methods rely on polynomials with continuous global support, which introduces potential stability problems when dealing with hyperbolic configurations [START_REF] Hesthaven | Nodal Discontinuous Galerkin Methods[END_REF].
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A compact combination of the spectral-element and the finite-volume methods, which seems to offer many of the required characteristics, consists in using high-order polynomials with spectral accuracy that mirror the spectral element method while retaining the conservativity of the finite volume method. This selective combination plus the introduction of a highly local stencil catalyzes into the discontinuous Galerkin method (DGM).

Discontinuous Galerkin methods have the benefit of attaining high parallel efficiency on distributed memory machines thanks to their local nature, their large on-processor operation count, and a small communication footprint [START_REF] Giraldo | A study of spectral element and discontinuous Galerkin methods for the Navier-Stokes equations in nonhydrostatic mesoscale atmospheric modeling: Equation sets and test cases[END_REF]. These factors make the DGMs especially well-adapted for high-performance computing (HPC).

Solutions of the conservation laws governing fluid dynamics are often characterized by heterogeneous flow features with different length scales. As such, in some regions the solution is smooth, whereas in other regions non-regular structures such as strong gradients, shear layers, or shocks occur. For a fixed target accuracy, the smallest scale of these events determines the resolution of the spatial discretization. An uniform resolution approach, such as refining uniformly the grid, extends this resolution throughout the computational domain. Conversely, adaptive resolution approaches, such as remeshing [START_REF] Mavriplis | Adaptive mesh generation for viscous flows using triangulation[END_REF] or h/p adaptation [START_REF] Wackers | Adaptive grid refinement for hydrodynamic flows[END_REF]Rueda-Ramírez et al., 2019a), allow for the optimization of the spatial discretization by selectively adjusting its resolution to the localization of the event. In this way, resources are distributed more efficiently and the computational cost is significantly reduced without compromising the overall accuracy.

In particular, DGMs are especially well-suited to efficiently adapt the spatial resolution of the numerical solution by either modifying the local mesh size (h-adaptation), the local polynomial degree (p-adaptation), or both simultaneously (hp-adaptation). By this line of thought, smooth regions are better tailored to p-adaptation, which helps to improve the accuracy of the numerical solution; whereas regions featuring non-regular behavior (e.g. shocks and boundary layers) are better captured using h-adaptation, so that the production of numerical fluctuations and errors is minimized. Overall, the process should maintain to a feasible extent the same accuracy than the uniformly refined grid (for the same minimum effective mesh size), yet for a lower number of degrees of freedom (DOFs).

To guide any of the aforementioned adaptation approaches we must firstly come up with some mechanism to estimate the error distribution in the numerical solution. There are multiple a posteriori methodologies accessible to secure these estimates (Ainsworth and Oden, 1997). Examples range from feature-based estimators, which originate from the study of certain physical features of the flow [START_REF] Kasmai | Feature-based adaptive mesh refinement for wingtip vortices[END_REF], to goal-oriented estimators, which measures the error of a specific target quantity by solving an adjoint problem [START_REF] Kast | An Introduction to Adjoints and Output Error Estimation in Computational Fluid Dynamics[END_REF], to local error-based estimators, which assess the local error of the numerical solution. In the context of DGMs, the latter technique is of particular significance. In this category, we can highlight two methods based on the estimation of the discretization error. Either by extrapolating 1.1 BACKGROUND AND MOTIVATION 3 selected Legendre expansion coefficients (Mavriplis, 1994), or by evaluating the higher-order modes of the numerical solution [START_REF] Naddei | A comparison of refinement indicators for 𝑝adaptive discontinuous Galerkin methods for the Euler and Navier-Stokes equations[END_REF].

Another methodology of special interest is the so-called multiresolution-based grid adaptation (Gottschlich- [START_REF] Gottschlich-Müller | Adaptive Finite Volume Schemes for Conservation Laws Based on Local Multiresolution Techniques[END_REF]. This approach is designed with unsteady problems in mind and does not depend on a posteriori estimation, but relies on the concept of multiresolution analysis (MRA) [START_REF] Müller | Adaptive Multiscale Schemes for Conservation Laws[END_REF]. This theory refers to the possibility of representing the numerical solution as a hierarchy of increasingly fine details built on wavelets [START_REF] Mallat | A Wavelet Tour of Signal Processing[END_REF] plus a coarse-scale component which offers an overall picture of the solution.

The decay of these details provides information on the local regularity of the solution which, in turn, allows for the local truncation error to be measured [START_REF] Schneider | Wavelet Methods in Computational Fluid Dynamics[END_REF]. By applying an appropriate thresholding to the wavelet details one can perform error control and guide grid adaptation.

The fundamental idea of the MRA-based grid adaptation is to perform a multiresolution analysis of the reference solution and evolve only meaningful local information in time.

The idea behind multiresolution analysis emerges from the work of [START_REF] Harten | Multiresolution Representation of Data: A General Framework[END_REF] who, in the context of finite-volume methods, designed a cost-effective flux evaluation based on MRA. Despite reducing the number of flux evaluations, Harten's original concept did not consider grid adaptation and was only applied to uniform grids.

A fully adaptive FVM-MRA approach based on MRA was later developed by [START_REF] Müller | Adaptive Multiscale Schemes for Conservation Laws[END_REF][START_REF] Müller | Adaptive Multiscale Schemes for Conservation Laws[END_REF] by explicitly using biorthogonal wavelets to represent the numerical solution. In his work, Müller applies data compression based on the values of the wavelet coefficients, which in turn defines a locally refined grid. [START_REF] Roussel | A Conservative Fully Adaptive Multiresolution Algorithm for Parabolic PDEs[END_REF], [START_REF] Domingues | Space-Time Adaptive Multiresolution Methods for Hyperbolic Conservation Laws: Applications to Compressible Euler Equations[END_REF] and [START_REF] Deiterding | Adaptive Multiresolution or Adaptive Mesh Refinement? A Case Study for 2D Euler Equations[END_REF][START_REF] Deiterding | Comparison of Adaptive Multiresolution and Adaptive Mesh Refinement Applied to Simulations of the Compressible Euler Equations[END_REF] independently developed another fully adaptive FVM-MRA method which relies on the recursive use of projection and prediction operators to define the coarse and fine levels of the cell-averaged values of the solution.

A later extension to the DGM framework by [START_REF] Hovhannisyan | Adaptive Multiresolution Discontinuous Galerkin Schemes for Conservation Laws[END_REF], Gerhard et al. (2015a,b), and [START_REF] Müller | Adaptive Multiresolution Discontinuous Galerkin Schemes for Conservation Laws: multi-dimensional case[END_REF] involve the use of multiwavelets (MWs), which are commonly described as the vector variant of wavelets [START_REF] Strela | Multiwavelets-theory and applications[END_REF]. Multiwavelets can be easily combined with the DGM thanks to their flexibility in matching the high-order of the approximation while keeping compact support [START_REF] Gerhard | An adaptive multiresolution discontinuous Galerkin scheme for conservation laws[END_REF]. A similar DGM-MRA which includes the numerical solution along with the derivative operators from the partial differential equation in a MRA representation was also developed independently by [START_REF] Shelton | A multi-resolution discontinuous Galerkin method for unsteady compressible flows[END_REF] and [START_REF] Archibald | Adaptive discontinuous Galerkin methods in multiwavelets bases[END_REF]. On a different line of research, the works of [START_REF] Vuik | Multiwavelets and outlier detection for troubled-cell indication in discontinuous Galerkin methods[END_REF]Ryan (2014, 2016) and [START_REF] Vuik | Multiwavelets and outlier detection for troubled-cell indication in discontinuous Galerkin methods[END_REF] combine the DGM and MWs for the detection of shocks in 2-D configurations.

The concept of MRA-based grid adaptation, while soundly based on wavelet theory and accurate [START_REF] Hovhannisyan | Adaptive Multiresolution Discontinuous Galerkin Schemes for Conservation Laws[END_REF], also faces some limitations.

In principle, a solution on a uniform sufficiently fine reference grid should 1 introduction be initially foreknown. This is required so that the multi-scale structure is defined at the initial time and the relevant information correctly captured for subsequent time steps.

In the context of unsteady problems, [START_REF] Gerhard | An adaptive multiresolution discontinuous Galerkin scheme for conservation laws[END_REF] avoids the application of the fine reference grid to initialize the grid by using a MRA version of the reference grid (approximation) as initialization instead. In order to reduce the computational complexity of the reference grid, they apply an algorithm on the initial solution 𝒖 0 that proceeds level-wise from coarse to fine scale. However, this strategy may overlook significant information on higher scales and thus it must be applied prudently.

In the framework of steady problems, [START_REF] Bramkamp | An adaptive multiscale finite volume solver for unsteady and steady state flow computations[END_REF] and [START_REF] Müller | A multilevel finite volume method with multiscale-based grid adaptation for steady compressible flows[END_REF] have demonstrated that the MRA strategy can be efficiently applied when combined with a multilevel strategy. In this manner, the authors effectively circumvent the use of the costly reference grid. In particular, they employ the Full Approximation Storage algorithm (FAS, see [START_REF] Brandt | Multi-Level Adaptive Solutions to Boundary-Value Problems[END_REF]), which is suitable for an adaptive multigrid approach, together with MRA using biorthogonal wavelets in the context of FVMs. However, this approach requires two different grids associated with the multigrid scheme: at level 𝐿 (fine grid) and at level 𝐿 -1 (coarse grid).

A second constraint resides in the fact that only grids which support uniform dyadic subdivisions of the elements are allowed, which mean that the elements are split into sub-elements of equal size and shape. This methodology can also be applied on triangles as presented by [START_REF] Yu | Barysymmetric Multiwavelets on Triangle[END_REF]. An alternative approach is the wavelet-free method developed by [START_REF] Gerhard | An adaptive multiresolution discontinuous Galerkin scheme for conservation laws[END_REF], which extends the MRA to non-uniform grid hierarchies. Finally, another limitation of the MRA-based grid adaptation is that, due to the pyramidal structure of the MRA technique, parallelization might prove challenging.

SCOPE OF THE THESIS

The main goal of this work is to develop computationally efficient hp-adaptive DG schemes of the Navier-Stokes equations by drawing together the flexibility of a posteriori driven adaptation and the accuracy of multiresolution-based adaptation. The validation of the methodology is performed for several steady flows in one and two dimensions.

In a first research direction, we focus exclusively on h-adaptation. The idea is to examine the constraints of traditional multiresolution-based adaptation and come up with an alternative multiwavelet-based methodology compatible with a posteriori local error estimation. In a second line of investigation, we look further from the h-adaptivity of the original MRA-based approach and investigate novel ways of providing the new multiwavelet-based methodology with hp-capabilities.

In order to address the shortcomings of MRA-based grid adaptation, the new multiwavelet expansion of the numerical solution is performed locally 1.3 FRAMEWORK OF THE THESIS within each element. By being local to the element, adaptation can be applied by starting from a coarse mesh. In this manner, we avoid the need to operate a costly reference grid. Besides, more general grids may also be used (not limited by the strict translation and dilation properties of multiwavelets) and the compacity and thus parallel efficiency of the original DG method is conserved.

This new methodology requires that the original DG element-wise solution undergoes a post-processing treatment, so that the new local multiwavelet expansion may extract significant information. This is done by employing a reconstruction process involving the current element and its immediate neighbors. The multiwavelet decomposition is then locally performed on the new reconstructed DG solution. The resulting details then constitute the backbone of the multiwavelet-based error estimation.

We give prominence to configurations that exhibit physical and/or geometrical singularities, which would significantly benefit from h-adaptation. For the h-adaptive simulations, we compare our multiwavelet-based estimation against pertinent error estimators from the literature and measure their overall performance.

The extension to hp-adaptation is based on an evaluation of the local smoothness of the solution. Following on the footsteps of the previous multiwaveletbased error estimator, we give evidence of a consistent association between local solution regularity and the decay of the multiwavelet spectrum. This measurement constitutes an estimation of the error and, together with an appropriate hp-decision strategy, determines whether to perform mesh size or polynomial degree adaptation.

To validate the proposed hp-strategy, we perform a series of hp-adaptive simulations on flow configurations characterized by both, regions of smooth and non-regular solution behavior. We then focus our attention on studying the optimal hp-distribution and on its overall performance with respect to single h-or p-adaptation.

FRAMEWORK OF THE THESIS

The present work is performed in the context of the development of the CFD solver Aghora at ONERA. The Aghora solver is built on a high-order discontinuous Galerkin discretization based on either modal or nodal formulations for the simulation of compressible flows on unstructured non-conforming grids. The solver is written in Fortran90 and benefits from distributed memory and CPU-based parallelization using MPI. Different publications have corroborated the capabilities of the solver. These studies range from turbulence modeling in DNS [START_REF] Chapelier | Inviscid and Viscous Simulations of the Taylor-Green Vortex Flow Using a Modal Discontinuous Galerkin Approach[END_REF][START_REF] Chapelier | Evaluation of a High-Order Discontinuous Galerkin Method for the DNS of Turbulent Flows[END_REF], RANS [START_REF] Renac | Aghora: A High-Order DG Solver for Turbulent Flow Simulations[END_REF], and LES [START_REF] De La Llave Plata | On the use of a high-order discontinuous Galerkin method for DNS and LES of wall-bounded turbulence[END_REF][START_REF] Lorteau | Turbulent jet simulation using high-order DG methods for aeroacoustic analysis[END_REF]; to simulations of two-phase flows [START_REF] Rai | An entropy stable high-order discontinuous Galerkin spectral element method for the Baer-Nunziato two-phase flow model[END_REF]. More recently added h/pcapabilities allow the solver to benefit from local degree adaptation [START_REF] Naddei | A comparison of refinement indicators for 𝑝adaptive discontinuous Galerkin methods for the Euler and Navier-Stokes equations[END_REF][START_REF] Naddei | A Comparison of Refinement Indicators for 𝑝-adaptive Simulations of Steady and Unsteady Flows Using Discontinuous Galerkin Methods[END_REF] and local mesh refinement [START_REF] Naddei | Simulation adaptative des grandes échelles d'écoulements turbulents fondée sur une méthode Galerkine discontinue[END_REF]. This PhD 1 introduction thesis builds on the solver's h-adaptive capability and paves the way to full hp-adaptation.

This PhD thesis is part of the Marie Skłodowska-Curie Innovative Training Network (ITN) Stability and Sensitivity Methods for Industrial Design (SSeMID) funded by the European Union's Horizon 2020 research and innovation programme.

OUTLINE OF THE THESIS

Besides the current chapter serving as the introduction to the thesis, the remaining chapters are organized into three major parts as follows:

Part I presents an overview of the physical models spanning this work and the discretization methodology to numerically approximate their solution. Additionally, multiresolution analysis based on multiwavelets is introduced as a mathematical tool to better understand the features of the numerical solution.

Chapter 2 briefly describes the two-dimensional Navier-Stokes equations and the one-dimensional Burgers equation used for the validation of the methodology. We spend most of the chapter covering the discontinuous Galerkin method and the details of the spatial and temporal discretizations used throughout this work. Chapter 3 starts by providing a brief historical context to multiresolution analysis. We then discuss the basics of wavelet theory and conclude the chapter by focusing our attention on multiwavelets and their associated multiresolution analysis.

Part II details the roadmap to our hp-adaptive scheme. We start by tailoring the DG solution to fit a multiwavelet expansion. We then measure the solution error and regularity of the solution, based on such expansion, and clearly lay out the ingredients required by the hpadaptation algorithm.

Chapter 4 begins by finding common ground between the multiwavelet expansion and the DG formulation. We aim to improve previous approaches in the literature by proposing a new local expansion applied to a reconstructed enriched version of the original DG solution.

Chapter 5 provides a comprehensive literature review of error estimator techniques, adaptation approaches, and hp-adaptive strategies. After that, we describe our novel multiwavelet-based error estimator and regularity indicator, the latter of which originates from a thorough interpretation of the multiwavelet spectrum. These two ingredients plus additional marking and hp-decision criteria constitute the structure of the hp-algorithm.

OUTLINE OF THE THESIS

Part III presents the numerical results from h-and hp-adaptive simulations of three different steady configurations. The considered configurations allow for the analysis of the performance of our adaptive algorithm under various parameters of interest.

Chapter 6 provides a comparison of our multiwavelet-based estimator against selected estimators from the literature in the context of h-adaptive simulations. We evaluate their overall performance by analyzing relevant quantities of interest. We focus our attention on the 1-D viscous Burgers equation in the presence of a shock, and the 2-D laminar flow over a backward-facing step.

Chapter 7 offers an evaluation of the performance of our multiwavelet-based hp-strategy in driving hp-adaptation. To assess the performance of our strategy we compare the optimal hp-distribution to equivalent purely h-and p-adaptive simulations. The 2-D laminar backward-facing step and square cylinder configurations are considered in these studies.

Finally, Chapter 8 wraps up the thesis with the main conclusions and perspectives for future work.

Part I

BACKGROUND

Chapter 2

PHYSICAL MODEL AND NUMERICAL METHODS

In this chapter we establish the physical models adopted throughout the present work and the theoretical bedrock to numerically calculate their solution.

Section 2.1 presents the general expression that underpins these physical models. The subsequent Section 2.1.1 introduces the two-dimensional compressible Navier-Stokes equations as the principal physical model of this work.

Section 2.1.2 discusses the one-dimensional viscous Burgers equation as a simplification of the Navier-Stokes equations and its role as an early litmus test.

Section 2.2 introduces the discontinuous Galerkin method applied to the aforementioned physical models. After a short account of the historical evolution of the method, we describe how the domain is accommodated to the discretization in Section 2.2.1. 

PHYSICAL MODEL

In this work we make use of the two-dimensional compressible Navier-Stokes equations and the one-dimensional viscous Burgers equation. Let Ω ⊂ ℝ 𝑑 be a bounded domain, where 𝑑 is the spatial dimension. Given appropriate boundary conditions on 𝜕Ω and in the absence of source terms, these equations can be written under the general expression

𝜕𝒖 𝜕𝑡 + ∇ ⋅ [ 𝓕 𝑐 (𝒖) -𝓕 𝑣 (𝒖, ∇𝒖) ] = 0 , ∀𝒙 ∈ Ω , 𝑡 > 0 ,
(2.1)

𝒖(𝒙, 𝑡) = 𝒖 0 (𝒙), ∀𝒙 ∈ Ω , at 𝑡 = 0 , (2.2)
where 𝒖 is the state vector of conservative variables. The vectors 𝓕 𝑐 , and 𝓕 𝑣 are the convective and viscous fluxes, respectively.

Navier-Stokes equations

We define the domain Ω ⊂ ℝ 2 . The state vector and the fluxes of Eqs. (2.1, 2.2) are given, respectively, by

𝒖 = ⎡ ⎢ ⎢ ⎢ ⎣ 𝜌 𝜌𝒗 𝜌𝐸 ⎤ ⎥ ⎥ ⎥ ⎦ , 𝓕 𝑐 = ⎡ ⎢ ⎢ ⎢ ⎣ 𝜌𝒗 𝑇 𝜌𝒗 ⊗ 𝒗 + 𝑝𝑰 (𝜌𝐸 + 𝑝)𝒗 𝑇 ⎤ ⎥ ⎥ ⎥ ⎦ , and 𝓕 𝑣 = ⎡ ⎢ ⎢ ⎢ ⎣ 0 𝝉 𝝉 ⋅ 𝒗 -𝒒 𝑇 ⎤ ⎥ ⎥ ⎥ ⎦ ;
(2.3) with 𝜌 representing the density. The velocity vector, 𝒗, and the specific total energy, 𝐸, are defined, respectively, by

𝒗 = [ 𝑢 𝑣]
, and 𝐸 = 𝑝 (𝛾 -1)𝜌 + 1 2 (𝒗 ⋅ 𝒗);

(2.4)

where 𝛾 = 𝐶 𝑝 𝐶 𝑣 > 1 is the ratio of specific-heat coefficients, and 𝑝 is the static pressure, as defined by the perfect-gas law 𝑝 = 𝜌𝑅𝑇 , (2.5) with 𝑅 the specific gas constant and 𝑇 the temperature. The static pressure represents the normal component of the stress tensor, whereas the shear-stress component is described by

𝝉 = 2𝜇 ( 𝑫 -1 3 tr(𝑫)𝑰 ) ;
(2.6) 𝑫 = 1 2 ( ∇𝒗 + (∇𝒗) 𝑇 ) , tr(𝑫) = ∇ ⋅ 𝒗;

(2.7)

where 𝑫 and tr(𝑫) are the instantaneous strain-rate tensor and its trace, respectively. The dynamic viscosity, 𝜇, is defined by Sutherland's law [START_REF] Schlichting | Boundary-Layer Theory[END_REF]. Finally, the heat-flux vector, 𝒒, follows Fourier's law:

𝒒 = -𝑘∇𝑇 ,
(2.8)

with 𝑘 being the thermal conductivity given by

𝑘 = 𝜇 Pr 𝐶 𝑝 , 𝐶 𝑝 = 𝛾 𝛾 -1 𝑅 ,
(2.9)

where Pr denotes the Prandtl number, that is assumed to have a constant value of 0.72.

We measure the contribution of the different terms in Eqs. (2.1-2.3) by establishing two dimensionless parameters based on characteristic quantities of the phenomenon considered. The Reynolds number, Re, represents the ratio of convective to viscous effects: ity to the sound speed:

Re = 𝜌 ref 𝑣 ref 𝐿 ref 𝜇 ref , ( 2 
Ma = 𝑣 ref √𝛾𝑅𝑇 ref (2.11)

Burgers equation

The Burgers equation can be understood as a simplified version of the Navier-Stokes equations [START_REF] Burgers | Mathematical Examples Illustrating Relations Occurring in the Theory of Turbulent Fluid Motion[END_REF], for which exact solutions are known. In later chapters, we justify the use of this equation as an early benchmark problem for our adaptation approach.

To obtain the Burgers equation we assume that the flow is incompressible. Therefore, we can integrate the continuity equation to the momentum equation and drop the state and energy equations. Additionally, we also neglect the effect of the pressure. With these considerations, the state vector and fluxes of Eq. ( 2.3) can be simplified to 𝒖 = 𝒗, 𝓕 𝑐 = 𝒗 ⊗ 𝒗, and 𝓕 𝑣 = 2𝜈𝑫;

(2.12)

where 𝜈 = 𝜇/𝜌 represents the kinematic viscosity. Unlike the Navier-Stokes equations, the Burgers equation can be studied in one-spatial dimension. In this particular case Ω ⊂ ℝ and Eq. (2.12) simply becomes 𝒖 = 𝑢, 𝓕 𝑐 = 1 2 𝑢 2 , and 𝓕 𝑣 = 𝜈 𝜕𝑢 𝜕𝑥 ,

(2.13) in which 𝜈 is considered to be constant.

THE DISCONTINUOUS GALERKIN METHOD

The origins of the discontinuous Galerkin method (DGM) can be traced back to the pioneering work of [START_REF] Reed | Triangular mesh methods for the neutron transport equation[END_REF] on approximating the hyperbolic neutron transport equation. The discretization was later brought to hyperbolic problems in fluid dynamics by [START_REF] Cockburn | The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems[END_REF]. Soon after, generalizations to parabolic and elliptic problems were also developed [START_REF] Cockburn | The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems[END_REF][START_REF] Baumann | A discontinuous hp finite element method for convectiondiffusion problems[END_REF][START_REF] Arnold | Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems[END_REF]. These led to the first DGM discretization of the compressible Navier-Stokes equations by [START_REF] Bassi | A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations[END_REF]. Since its conception, the DGM has experienced a constant growth in many areas of computational physics and engineering, such as aerodynamics (Van der Vegt and van der Ven, 2002) and in particular turbulent flows [START_REF] Chapelier | Inviscid and Viscous Simulations of the Taylor-Green Vortex Flow Using a Modal Discontinuous Galerkin Approach[END_REF][START_REF] Wurst | A high-order Discontinuous Galerkin Chimera method for laminar and turbulent flows[END_REF].

Domain discretization

The underlying notion of the DGM is to transfer the continuous problem in Eqs. (2.1-2.2) into a discrete counterpart from which an approximate solution can be reached. We start by partitioning the domain Ω into a shape-regular grid, Ω ℎ , formed by 𝑁 𝐾 non-overlapping and non-empty elements 𝐾 of characteristic size ℎ 𝐾 . Interior and boundary faces in Ω ℎ are defined by ℰ 𝑖 and ℰ 𝑏 , respectively, such that ℰ ℎ = ℰ 𝑖 ∪ ℰ 𝑏 . This process is illustrated in Figure 2.1.

In our study, we are concerned with quadrilaterals, therefore we will be using the designations element/quadrilateral interchangeably.

Additionally, we introduce the reference (square) element K = {-1, 1} 𝑑 , where 𝑑 refers to the dimension of the present problem. We define for every 𝐾 ∈ Ω ℎ the bijective transformation 𝜩 𝐾 , such that 𝐾 = 𝜩 𝐾 ( K ) , which relates the coordinates of the reference element, 𝝃 = (𝜉, 𝜂) ∈ K , to their counterparts in the physical element, 𝒙 = (𝑥, 𝑦) ∈ 𝐾. This is equivalent to the notation 𝒙 = 𝜩 𝐾 ( 𝝃 ) , also called parametric mapping [START_REF] Karniadakis | Spectral/hp Element Methods for Computational Fluid Dynamics[END_REF]. Finally, the Jacobian associated with the transformation is represented by 𝓙 𝐾 = ∇𝜩 𝐾 , with determinant 𝒥 𝐾 = det(𝓙 𝐾 ).

Solution approximation

We now proceed to approximate the solution of Eqs. (2.1-2.2) on the new discretized domain Ω ℎ . Therefore, we approximate 𝒖 by a polynomial expansion 𝒖 ℎ such that 𝒖 ℎ ∈ 𝒱 𝑝 ℎ , where 𝒱 𝑝 ℎ is the approximation space defined as

𝒱 𝑝 ℎ = { Φ ℎ ∈ 𝐿 2 (Ω ℎ ) ∶ Φ ℎ|𝐾 = 𝜙 ( 𝜩 -1 𝐾 (𝒙) ) , ∀𝐾 ∈ Ω ℎ} , (2.14) 
where 𝜙 ∈ 𝒫 𝑝 ( K ) is a function of the subspace of continuous polynomials with degree at most 𝑝 defined on the reference element K , and (2.16)

and the polynomial expansion 𝒖 ℎ can be then expressed as

𝒖 ℎ (𝒙, 𝑡) = ∑ 𝐾 𝑁 𝑝 ∑ ℓ=1 𝑼 ℓ 𝐾 (𝑡) 𝜙 ℓ ( 𝜩 -1 𝐾 (𝒙) ) , 𝒙 ∈ 𝐾, ∀𝐾 ∈ Ω ℎ , ∀𝑡 > 0 ,
(2.17)

where the coefficients (𝑼 ℓ 𝐾 ) 1≤ℓ≤𝑁 𝑝 are the degrees of freedom (DOFs) representing the approximate solution on element 𝐾. Examples of approximate solutions of varying degree are illustrated in Figure 2.2.

The idea of prescribing the coefficients or modes of the local expansion in Eq. (2.17) as the unknowns to solve is called modal representation. In contrast, a nodal representation would portray the local expansion through an interpolating polynomial, with given quadrature points (e.g., Gauss or Gauss-Lobatto points) as the unknowns to evaluate. The two representations are mathematically equivalent but computationally different [START_REF] Hesthaven | Nodal Discontinuous Galerkin Methods[END_REF]. In this work, the use of a modal representation is justified by the use of the multiresolution analysis (MRA), as will become apparent in Chapter 3.

Expansion basis

We now describe the expansion basis employed in Eqs. (2.15-2.16). Similarly to the question of modal versus nodal, the choice of the expansion basis determines the numerical efficiency and accuracy of the DGM [START_REF] Boyd | Chebyshev and Fourier Spectral Methods[END_REF]. Following the path of other studies that combine a form of DGM and MRA (e.g., [START_REF] Vuik | Multiwavelets and outlier detection for troubled-cell indication in discontinuous Galerkin methods[END_REF]Ryan (2014, 2016)), we select the Legendre polynomials as our expansion basis. They represent the optimal selection when paired with Alpert's multiwavelets [START_REF] Alpert | Adaptive Solution of Partial Differential Equations in Multiwavelet Bases[END_REF].

The definition of a tensor-product basis within the reference element K allows us to build the basis functions as follows:

𝜙 ℓ (𝝃) = ℎ 𝑖 (𝜉)ℎ 𝑗 (𝜂), ℓ = 1, ..., 𝑁 𝑝 , (2.18) where { ℎ 𝑖 } 𝑝+1 𝑖=1 is a basis for 𝒫 𝑝 ([-1, 1]).
In particular, we choose the scaled Legendre polynomials

ℎ 𝑖 (𝜉) = √ 𝑖 -1 2 𝑃 𝑖 (𝜉), (2.19) 
so that we insure orthonormality in the 𝐿 2 -norm ‖ ℎ 𝑖 (𝜉) ‖ 𝐿 2 = 1. Moreover, the basis is hierarchical, meaning that ℎ 𝑖 ⊂ ℎ 𝑖+1 . Both properties of orthonormality and being hierarchical are inherited by the basis 𝜙 ℓ (𝝃).

Discontinuous Galerkin formulation

The discrete variational form of Eq. (2.1) is obtained by multiplying the system of equations by a test function Φ ℎ ∈ 𝒱 𝑝 ℎ and integrating over the tessellation Ω ℎ . It yields

𝜕 𝜕𝑡 ∫ Ω ℎ 𝒖 ℎ Φ ℎ d𝑉 + ∫ Ω ℎ ∇ ⋅ [ 𝓕 ( 𝒖 ℎ , ∇𝒖 ℎ) ] Φ ℎ d𝑉 = 0, (2.20)
where

𝓕 ( 𝒖 ℎ , ∇𝒖 ℎ) = 𝓕 𝑐 ( 𝒖 ℎ) -𝓕 𝑣 ( 𝒖 ℎ , ∇𝒖 ℎ) (2.21)
collects the convective and viscous fluxes in one term. If we apply the divergence theorem to the second term in Eq. (2.20), we get where 𝒏 is the normal unit vector on the boundary ℰ ℎ . To allow information to propagate between elements, the last term of Eq. (2.22) must be evaluated at the interfaces between adjacent elements. However, the flux 𝓕 is not uniquely defined at the interfaces due to 𝒖 ℎ and Φ ℎ being discontinuous. Therefore, we replace 𝓕 by a numerical flux 𝓕 * , which is a function of both interface states. Additionally, by restricting our analysis to the physical element 𝐾 ∈ Ω ℎ , the vectors 𝒖 ℎ and Φ ℎ become 𝒖 ℎ|𝐾 and 𝜙 = Φ ℎ|𝐾 , respectively; and we can express Eq. (2.22) in the following elemental form 

𝜕 𝜕𝑡 ∫ Ω ℎ 𝒖 ℎ Φ ℎ d𝑉 -∫ Ω ℎ 𝓕 ( 𝒖 ℎ , ∇𝒖 ℎ) ⋅ ∇Φ ℎ d𝑉 + ∫ ℰ ℎ [ 𝓕 ( 𝒖 ℎ , ∇𝒖 ℎ) ⋅ 𝒏 ] Φ ℎ d𝑆 = 0, ( 2 
{ {𝜙} } = 1 2 ( 𝜙 + + 𝜙 -) , [[𝜙]] = 𝜙 + -𝜙 -, { {𝒖 ℎ|𝐾 ± } } = 1 2 ( 𝒖 + ℎ|𝑒 + 𝒖 - ℎ|𝑒 ) , [[𝒖 ℎ|𝐾 ± ]] = ( 𝒖 + ℎ|𝑒 -𝒖 - ℎ|𝑒 ) ⊗ 𝒏 .
(2.25) (2.26)

where ℒ 𝑐 and ℒ 𝑣 represent the discrete variational projection of the convective and the viscous terms onto 𝒱 𝑝 ℎ . They will be described in the following sections for the Navier-Stokes equations and the Burgers equation.

Discretization of convective terms

Navier-Stokes equations The discrete variational form of the convective terms in Eq. (2.26) reads

ℒ 𝑐 ( 𝒖 ℎ|𝐾 , 𝜙 ) = -∫ 𝐾 𝓕 𝑐 ( 𝒖 ℎ|𝐾 ) ⋅ ∇𝜙 d𝑉 + ∫ 𝜕 𝑖 𝐾 𝓕 * 𝑐 ( 𝒖 ± ℎ|𝜕 𝑖 𝐾 ; 𝒏 ) [[𝜙]] d𝑆 + ∫ 𝜕 𝑏 𝐾 [ 𝓕(𝒖 𝑏 ) ⋅ 𝒏 ] 𝜙 + d𝑆 , (2.27)
The convective numerical flux 𝓕 * 𝑐 must satisfy the conditions of consistency and conservativity [START_REF] Cockburn | An Introduction to the Discontinuous Galerkin Method for Convection-Dominated Problems[END_REF]. There are several numerical flux functions satisfying the above criteria such as the Lax-Friedrichs, Roe, or Godunov [START_REF] Bassi | A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations[END_REF]; which are also used in finite-volume methods [START_REF] Toro | Riemann Solvers and Numerical Methods for Fluid Dynamics[END_REF]. In this work we use the local Lax-Friedrichs flux (LLF) [START_REF] Cockburn | An Introduction to the Discontinuous Galerkin Method for Convection-Dominated Problems[END_REF]:

𝓕 * 𝑐 ( 𝒖 ± ℎ|𝜕 𝑖 𝐾 ; 𝒏 ) = { { 𝓕 𝑐 ( 𝒖 ℎ|𝐾 ± )} } ⋅ 𝒏 + 1 2 𝛼 LLF [[𝒖 ℎ|𝐾 ± ]] ,
(2.28)

with

𝛼 LLF = max { 𝜌 𝑠( 𝓙(𝒖) ) ∶ 𝒖 = 𝒖 ± ℎ|𝜕 𝑖 𝐾 } , (2.29) 
where 𝓙(𝒖) = ∇ 𝒖 ( 𝓕 𝑐 (𝒖) ⋅ 𝒏 ) denotes the Jacobian matrix of the convective fluxes in the direction of 𝒏, and 𝜌 𝑠 is its spectral radius.

Burgers equation

The discrete variational projection of the convective terms in Eq. (2.26) yields

ℒ 𝑐 ( 𝑢 ℎ|𝐾 , 𝜙 ) = -∫ 𝐾 ℱ 𝑐 ( 𝑢 ℎ|𝐾 ) d𝜙 d𝑥 d𝑥 + ∑ 𝑒∈𝜕 𝑖 𝐾 ℱ * 𝑐 ( 𝑢 ± ℎ|𝑒 ) [[𝜙]] + ℱ 𝑐 (𝑢 𝑏 ) 𝜙 + ,
(2.30) with ℱ 𝑐 (𝑢) = 1 2 𝑢 2 . The structure follows the arrangement presented by Alhawwary and [START_REF] Alhawwary | On the Accuracy and Stability of Various DG Formulations for Diffusion[END_REF]. The approximation of the numerical convective flux ℱ * 𝑐 on the internal faces is fully defined by the local Lax-Friedrichs flux, similarly to Eqs. (2.28-2.29).

Discretization of viscous terms

Navier-Stokes equations For the discrete variational form of the viscous terms, we employ the Bassi-Rebay-2 scheme (BR2) presented by Bassi and Rebay (2000), in which the authors consider the gradient of the state vector ∇𝒖 = 𝝈 as an auxiliary variable. This new variable is then accommodated in a discrete variational formulation, which in turn introduces several new terms. These new terms are bundled up under the so called global lifting operator 𝑳 ℎ such that

𝝈 ℎ = ∇𝒖 ℎ + 𝑳 ℎ .
(2.31) At this point, the resulting scheme is known as the Bassi-Rebay-1 scheme (BR1) [START_REF] Bassi | A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations[END_REF]. This scheme is not compact as the computation of 𝑳 ℎ|𝐾 at the interior faces of the current element 𝐾 extends the stencil farther than just its neighbours [START_REF] Bassi | Discontinuous Galerkin solution of the Reynoldsaveraged Navier-Stokes and k-𝜔 turbulence model equations[END_REF]. Conversely, the BR2 scheme replaces 𝑳 ℎ|𝐾 by the so called local lifting operator 𝒍 𝑒 ℎ , which satisfies:

∫ 𝐾 + ∪𝐾 - 𝜙 𝒍 𝑒 ℎ d𝑉 = -∫ 𝑒 [[𝜙]][[𝒖 ℎ|𝐾 ± ]] d𝑆 , 𝑒 ∈ 𝜕 𝑖 𝐾 .
(2.32)

The use of the local lifting operator makes the BR2 scheme compact, as only the interface integrals at 𝑒 ∈ 𝜕 𝑖 𝐾 need to be evaluated. An analogous equation consistent with the boundary conditions can be obtained for the boundary faces 𝜕 𝑏 𝐾. The global lifting operator 𝑳 ℎ|𝐾 can be then reconstructed as the sum of the local lifting operators, that is

𝑳 ℎ|𝐾 = ∑ 𝑒∈𝜕 𝑖 𝐾 𝒍 𝑒 ℎ .
(2.33)

The discrete variational form of the viscous terms in Eq. (2.26) therefore reads with ℱ 𝑣 = 𝜈 𝜕𝑢 𝜕𝑥 . The numerical viscous fluxes ℎ 𝑣 and Θ 𝑣 are approximated by the symmetric interior penalty method (SIP) described by [START_REF] Arnold | Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems[END_REF]. They read

ℒ 𝑣( 𝒖 ℎ|𝐾 , 𝜙 ) = ∫ 𝐾 𝓕 𝑣( 𝒖
ℎ 𝑣( 𝑢 ± ℎ|𝑒 ) = 1 2 [[𝑢 ℎ|𝐾 ± ]] ,
(2.40)

Θ 𝑣 ( 𝑢 ± ℎ|𝑒 , d d𝑥 𝑢 ± ℎ|𝑒) = { { ℱ 𝑣 ( d d𝑥 𝑢 ℎ|𝐾 ± )} } -𝛼 SIP [[𝑢 ℎ|𝐾 ± ]] .
(2.41)

The penalty parameter, 𝛼 SIP , depends on the size of the element and the polynomial degree 𝑝 [START_REF] Alhawwary | On the Accuracy and Stability of Various DG Formulations for Diffusion[END_REF].

Time integration

Navier-Stokes equations Once every term has been defined, Eq. (2.26) results in a non-linear system of ordinary differential equations. By using Eq. (2.17), this system of equations can be written as

𝑴 ℓ𝓇 𝐾 𝜕𝑼 ℓ 𝐾 𝜕𝑡 + 𝑹 ( 𝑼 ℓ 𝐾 ) = 0, ℓ, 𝓇 = 1, ..., 𝑁 𝑝 ,
(2.42)

where the degrees of freedom, 𝑼 ℓ 𝐾 (𝑡), are the unknowns to be determined; 𝑹 is the local residual vector, which includes the convective and viscous terms ℒ 𝑐 and ℒ 𝑣 ; and 𝑴 𝐾 is the diagonal mass matrix of element 𝐾, defined as

𝑴 ℓ𝓇 𝐾 = ∫ 𝐾 𝜙 ℓ 𝜙 𝓇 d𝑉 . (2.43)
By considering the contribution of all elements 𝐾 ∈ Ω ℎ , Eq. (2.42) becomes

𝑴 𝜕𝑼 𝜕𝑡 + 𝑹(𝑼 ) = 0 , (2.44)
where 𝑴, 𝑼 and 𝑹 denote the block diagonal mass matrix, the global vector of degrees of freedom, and the residual vector, respectively. The system in Eq.

(2.44) can be linearized by Newton's method and its solution advanced in time by means of the implicit Euler scheme, which can be written as

𝑴 Δ𝑡 ( 𝑼 𝑛+1 -𝑼 𝑛 ) + 𝑹(𝑼 𝑛 ) + 𝜕𝑹(𝑼 𝑛 ) 𝜕𝑼 ( 𝑼 𝑛+1 -𝑼 𝑛 ) = 0
(2.45)

As mentioned earlier, we focus on steady problems. Therefore, we start the temporal discretization scheme in Eq. (2.45) from the initial condition 𝒖 ℎ (𝒙, 0) and advance the solution in time until the steady-state solution is reached.

Every temporal step in Eq. (2.45) requires the solution of a linear system of equations. If we describe the system as 𝑨𝒙 + 𝒃 = 0, the term 𝑨 represents a 𝑁 𝐾 × 𝑁 𝐾 block sparse matrix, with 𝑁 𝐾 denoting the total number of elements. In turn, each block can be regarded as a (𝑁 eq 𝑁 𝑝 ) × (𝑁 eq 𝑁 𝑝 ) matrix, with 𝑁 eq being the number of fields of the state vector 𝒖 and 𝑁 𝑝 the number of degrees of freedom per element 𝐾. Finally, the linear system 𝑨𝒙 + 𝒃 = 0 is solved by means of the GMRES iterative method with an incomplete LU preconditioning [START_REF] Bassi | Discontinuous Galerkin solution of the Reynoldsaveraged Navier-Stokes and k-𝜔 turbulence model equations[END_REF][START_REF] Renac | Aghora: A High-Order DG Solver for Turbulent Flow Simulations[END_REF].

In general, simulations are started with a low CFL (CFL ≈ 1) and then it is progressively increased up to CFL ≈ 1×10 3 or even CFL ≈ 1×10 6 , depending on the configuration, polynomial degree and mesh analysed. The choice of uniform or local step size depends on the overall convergence behavior. The time evolution is stopped once the time residual of the conservative variables is dropped below 1 × 10 -10 .

Burgers equation Unlike the Navier-Stokes equations, in which an implicit scheme has been used to evolve the solution in time, for the Burgers equation we use an explicit scheme instead. In particular, the solution in Eq. (2.44) is advanced in time by means of the explicit strong stability preserving (SSP) 3rd-order 4-stage Runge-Kutta method. We refer the reader to the work of Carpenter and Kennedy (1994) for further details on this scheme.

The time restriction in the explicit scheme is controlled by insuring that for the entire simulation the imposed time step dt is always smaller than the the internal time step dt CFL calculated for every element. In turn, the internal time step is selected as the minimum value of the convective and viscous contributions. The time evolution is stopped once the time residual is dropped below 1 × 10 -12 .

Quadrature rules

Volume integrals Regarding the computation of the volume integrals in Eq.

(2.26) we employ Gaussian quadrature. In particular, the coordinates of the physical element 𝐾 are mapped to their counterparts in the reference element K and the integrals are evaluated numerically by Gauss-Legendre quadrature with 𝑄 = 𝑝 + 1 quadrature points along the 𝜉 and 𝜂 directions (see Figure 2.1). For a smooth integrand 𝑓 (𝒙), we have

∫ 𝐾 𝑓 (𝒙) d𝒙 = ∫ K 𝑓 ( 𝜩 𝐾 (𝝃) ) 𝒥 𝐾 (𝝃) d𝝃 = 𝑄 ∑ 𝑖,𝑗=1
𝜔 𝑖 𝜔 𝑗 𝑓 ( 𝜩 𝐾 (𝜉 𝑖 , 𝜂 𝑗 ) ) 𝒥 𝐾 (𝜉 𝑖 , 𝜂 𝑗 ) , (2.46) where 𝜉 𝑖 , 𝜂 𝑗 are the quadrature points at which the integrand 𝑓 (𝝃) is evaluated, 𝜔 𝑖 , 𝜔 𝑗 are the weights, and 𝒥 𝐾 is the determinant of the Jacobian of the transformation, defined as

𝒥 𝐾 = | | | | | 𝜕𝑥 𝜕𝜉 𝜕𝑥 𝜕𝜂 𝜕𝑦 𝜕𝜉 𝜕𝑦 𝜕𝜂 | | | | | = 𝜕𝑥 𝜕𝜉 𝜕𝑦 𝜕𝜂 - 𝜕𝑥 𝜕𝜂 𝜕𝑦 𝜕𝜉 .
(2.47)

The points of the Gauss-Legendre quadrature are interior to the interval -1 < 𝜉 𝑖 , 𝜂 𝑗 < 1 for 𝑖, 𝑗 = 1, ..., 𝑄 [START_REF] Karniadakis | Spectral/hp Element Methods for Computational Fluid Dynamics[END_REF]. By using Eq. (2.46) we can integrate exactly a polynomial of degree lower than or equal to 2𝑄 -1.

Surface integrals

The surface integrals in Eq. (2.26) can be evaluated as a series of integrals over the different faces of the element. For example, by choosing 𝑒 ∈ 𝜕 𝑖 𝐾 + from Figure 2.3, we have the following line integral

∫ 𝑒 𝑓 (𝒙) d𝑆 = ∫ 1 -1 𝑓 ( 𝜩 𝐾 (1, 𝜂) ) 𝒥 𝑒 (1, 𝜂) d𝜂 = 𝑄 ∑ 𝑗=1 𝜔 𝑗 𝑓 ( 𝜩 𝐾 (1, 𝜂 𝑗 ) ) 𝒥 𝑒 (1, 𝜂 𝑗 ) ,
(2.48)

where d𝑆 is the differential length, and 𝒥 𝑒 is the evaluation of the surface Jacobian. We can relate the differential change in physical coordinates 𝒙 in terms of the differential change in reference coordinates 𝝃 using the chain rule [START_REF] Karniadakis | Spectral/hp Element Methods for Computational Fluid Dynamics[END_REF]: Chapter 3

d𝑥 = 𝜕𝑥 𝜕𝜉 d𝜉 + 𝜕𝑥 𝜕𝜂

MULTIRESOLUTION ANALYSIS FUNDAMENTALS

In this chapter we introduce the foundations of multiresolution analysis based on multiwaveles as a mathematical tool which deconstructs any given signal and allows us to better interpret its component parts.

Section 3.1 provides a brief historical context to multiresolution analysis. In particular, Sections 3.1.1 and 3.1.2 highlight the contributions from classical Fourier and Windowed Fourier transform. The limitations of these approaches are outlined in Section 3.1.3.

As an alternative to overcome these limitations, Section 3.2 presents the basics of wavelet theory. The more numerically efficient orthonormal wavelets are introduced in Section 3.2.1, together with the concept of multiresolution analysis. Section 3.3 concludes the chapter by describing the one-and two-dimensional multiwavelets and their properties. Multiwavelets become especially relevant in the context of discontinuous Galerkin schemes, as we will demonstrate in Chapter 4.

CLASSICAL SIGNAL ANALYSIS

The history of wavelets is closely linked to the history of Fourier analysis [START_REF] Hubbard | The World According to Wavelets: The Story of a Mathematical Technique in the Making[END_REF]. Thus it seems natural to start by giving a brief introduction to Fourier's contribution. In its essence, Fourier analysis states that certain signals or functions can be represented as a sum of sines and cosines. This process is called Fourier series for periodic functions, and Fourier transform when dealing with nonperiodic functions. Next we will describe the latter.

Fourier transform

The Fourier transform disassembles a function into the frequencies that constitute it. We are interested in functions that vary with space, therefore we transform a function 𝑓 (𝑥) ∈ 𝐿 2 into a new function f (𝜆) ∈ 𝐿 2 that depends on the wave number 𝜆, which is inversely proportional to 𝑥. That is with 𝑖 = √-1. An example will help us understand how Eq. (3.1) works. Given the sample signal from Figure 3.1a, the Fourier transform is able to distinctly extract its spatial frequencies, as illustrated by Figure 3.1b.

ℱ { 𝑓 (𝑥) } = f (𝜆) = 1 √2𝜋 ∫ ∞ -∞ 𝑓 (𝑥) e -𝑖𝑥𝜆 d𝑥 , (3.1) 𝑓 (𝑥) = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ cos(2𝜋𝑥), -1 < 𝑥 ≤ -1 2 cos(2𝜋2𝑥), -1 2 < 𝑥 ≤ 0 cos(2𝜋4𝑥), 0 < 𝑥 < 1 2 cos(2𝜋8𝑥), 1 2 < 𝑥 ≤ 1 (a) Sample signal.
From the Fourier transform we can reconstruct the original function, meaning that no information is lost during the transformation. However, the Fourier transform hides information about space, in the same manner that the original function is not explicit about the wave number. Moreover, the Fourier analysis is poorly adapted to brief or sudden changes in 𝑓 (𝑥) (e.g. high frequency bursts). These confined changes would lose its locality and become spread throughout the entire transform [START_REF] Hubbard | The World According to Wavelets: The Story of a Mathematical Technique in the Making[END_REF]. This phenomenon can be certainly observed in Figure 3.1b, where spurious oscillations between wave numbers are due to the discontinuity of the signal 𝑓 (𝑥).

Windowed Fourier transform

The shortcomings of the Fourier analysis led to the development of the windowed Fourier transform, in which space and wave number can be studied simultaneously within certain constraints [START_REF] Gabor | Theory of communication[END_REF]. The idea is to window the function 𝑓 (𝑥) so that the space interval remains fixed in size, and then applying the Fourier transform defined in Eq. (3.1). By defining the regularly spaced intervals 𝑥 = 𝑗𝑥 0 and 𝜆 = 𝑚𝜆 0 , with 𝑗, 𝑚 ∈ ℤ and 𝑥 0 , 𝜆 0 > 0, we have the discrete windowed Fourier transform:

ℱ win (𝑚,𝑗) { 𝑓 (𝑥) } = ∫ ∞ -∞
𝑓 (𝑠) 𝑔 ( 𝑠 -𝑗𝑥 0) 𝑒 -𝑖𝑚𝜆 0 𝑠 d𝑠 .

(3.2)

with 𝑖 = √-1. Adjusting 𝑗 amounts to shifting the window by increments of 𝑥 0 and its multiples along the signal. The window function 𝑔 is normally well located in both space and wave number, thus providing a description of 𝑓 in the time-frequency plane [START_REF] Dahmen | Wavelet methods for PDEs -some recent developments[END_REF].

Examples of the windowed Fourier transform applied to the sample signal in Figure 3.1a are illustrated in Figures 3.1c and 3.1d. In these examples the window function 𝑔 is composed by a summation of cosines given by Blackman and Tukey (1958). Figure 3.1c represents a short window, so that higher wave numbers peaks are clearly located, in detriment of lower wave number components. On the other hand, Figure 3.1d employs a large window resulting on a full representation of the spatial frequencies of the signal. However, spatial localization is lost, with no clear distinction where the peaks occur.

The windowed Fourier transform has two major shortcomings. Firstly, different resolutions require different window sizes to be properly localized. In this regard, the fixed resolution of the windowed Fourier analysis imposes a severe compromise. Secondly, the relation between spatial resolution and wave number resolution is guided by the Heisenberg uncertainty principle [START_REF] Keinert | Wavelets and Multiwavelets[END_REF], which we will briefly discuss next. [START_REF] Farge | Wavelet Transforms and their Applications to Turbulence[END_REF].

Heisenberg uncertainty principle

The Heisenberg principle states that a signal cannot be defined simultaneously in space and in wave number [START_REF] Hubbard | The World According to Wavelets: The Story of a Mathematical Technique in the Making[END_REF]. For a function 𝑓 (𝑥) ∈ 𝐿 2 with ‖𝑓 (𝑥)‖ 𝐿 2 = 1 (where 𝑓 is a normalized signal), we define the mean and the standard deviation of 𝑥 as

𝜇 = ∫ ∞ -∞ 𝑥|𝑓 (𝑥)|d𝑥, 𝜎 = (∫ ∞ -∞ (𝑥 -𝜇) 2 |𝑓 (𝑥)| 2 d𝑥 ) 1 2 , (3.3) 
and the corresponding μ, σ of 𝜆 in the Fourier space (by application of Eq. (3.1)).

The uncertainty principle states that 𝜎 ⋅ σ ≥ 1 2 .

(3.4) Therefore, the more 𝑓 is focused in a short spatial window (better 𝑥-localization), the smaller 𝜎 will be. In turn, the range of spatial frequencies of f will be more spread out, resulting in a larger σ (worse 𝜆-localization).

This compromise can be illustrated with the so-called space-wave number plane [START_REF] Farge | Wavelet Transforms and their Applications to Turbulence[END_REF][START_REF] Hubbard | The World According to Wavelets: The Story of a Mathematical Technique in the Making[END_REF], in which space is measured horizontally and wave number vertically, as shown by Figure 3.2. This plane is then tiled with rectangles of size 𝜎 by σ known as Heisenberg boxes.

Equation 3.4 requires each box to have a minimum area of 1/2, but depending on the analysis used, they will have different forms and placements. In physical space the boxes become tall, narrow bands spanning multiple wave numbers (Figure 3.2a); whereas in Fourier space the boxes are short, wide bands over a long spatial distance (Figure 3.2b).

With windowed Fourier analysis, the shape of the Heisenberg boxes is provided by the size of the window function 𝑔. A narrow window gives more precision about space at the cost of worse wave number resolution, as shown in Figure 3.2c. Conversely, Figure 3.2d displays a wide window, which increases wave number resolution at the expense of being vague about space.

In both cases, they build a rectangular grid of fixed cell shape, providing the same spatial and wave number resolution everywhere.

However, the windowed Fourier analysis imposes some compromises. By fixating the window size we either miss the large scales (short window), or the small scales (wide window). This brings us to an alternative approach called wavelet analysis. They will allow us to study a signal at different scales by stretching or compressing the size of the window, as shown in Figure 3.2e.

WAVELET ANALYSIS

The wavelet transform also decomposes a given signal simultaneously by space and by scale (related to wave number) [START_REF] Hubbard | The World According to Wavelets: The Story of a Mathematical Technique in the Making[END_REF]. Similarly to Eq. (3.2) we have

𝒲 (𝑚,𝑗){ 𝑓 (𝑥) } = 𝑎 𝑚/2 0 ∫ ∞ -∞ 𝑓 (𝑥) 𝜓 (𝑚,𝑗) (𝑥) d𝑥 , (3.5) 
where 𝜓 (𝑚,𝑗) (𝑥) is used to create a family of wavelets 𝜓 ( 𝑎 𝑚 0 𝑥-𝑗𝑏 0) with 𝑗, 𝑚 ∈ ℕ and 𝑎 0 > 1, 𝑏 0 > 0 fixed. By definition [START_REF] Dahmen | Wavelet methods for PDEs -some recent developments[END_REF],

𝜓 (𝑚,𝑗) (𝑥) satisfies ∫ ∞ -∞ 𝜓 (𝑚,𝑗) (𝑥) d𝑥 = 0 .
(3.6)

The dilation parameter 𝑚 controls the deformation of the wavelet (the shape of the wavelet does not change). Higher values of 𝑚 produce a compressed 𝜓 to better capture brief, high wave number components. On the other hand, lower 𝑚 values result in a stretched 𝜓, more adequate to record long-lived, low wave number components. Lastly, the translation parameter 𝑗 shifts the spatial localization of the wavelet. The effects of dilation and translations are distinctly displayed in Figure 3.3. This structure paves the way to multiresolution analysis (MRA) [START_REF] Mallat | Multiresolution Approximations and Wavelet Orthonormal Bases of L2(R)[END_REF][START_REF] Harten | Multiresolution Representation of Data: A General Framework[END_REF]. By this analysis, the function is studied at a coarse scale to obtain a global picture and at ever increasing resolutions to capture gradually finer details.

Without further constraints the inverse of the transformation in Eq. (3.5), that is 𝒲 -1 (𝑚,𝑗) , leads to a redundant recovery of the original signal [START_REF] Dahmen | Wavelet methods for PDEs -some recent developments[END_REF]. In this case an orthogonal transformation may be desired. It provides an accurate reconstruction of the original signal while avoiding redundancy [START_REF] Hubbard | The World According to Wavelets: The Story of a Mathematical Technique in the Making[END_REF]. Moreover, orthogonality ensures that the energy of the signal is preserved in the transformation.

Orthonormal wavelets and multiresolution

By setting 𝑎 0 = 2 (dyadic dilation) and 𝑏 0 = 1, the 𝜓 (𝑚,𝑗) in Eq. (3.5) becomes 𝜓 (𝑚,𝑗) (𝑥) = 2 𝑚/2 𝜓 ( 2 𝑚 𝑥 -𝑗 ) , 𝑗, 𝑚 ∈ ℕ , (3.7) Additionally, we set 𝜓 (𝑚,𝑗) to constitute an orthonormal basis in 𝐿 2 (ℝ), leading to the definition of the wavelet subspace 𝑊 𝑚 = { 𝜓 (𝑚,𝑗)} 𝑗,𝑚∈ℕ . This means that any 𝐿 2 -function 𝑓 can be represented by a linear combination of the 𝜓 (𝑚,𝑗) (Daubechies, 1992). Next we introduce a cascade of subspaces { 𝑉 𝑚} 𝑚∈ℕ representing the successive resolution levels. A given level would contain all the information of coarser resolutions. That is

𝑉 𝑚 ⊂ 𝑉 𝑚+1 , ∀𝑚 ∈ ℕ .
(3.8) Multiresolution analysis is achieved by further requiring that all the subspaces 𝑉 𝑚 in Eq. (3.8) are scaled variations of the initial space 𝑉 0 . That is 

𝑓 (𝑥) ∈ 𝑉 0 ⟺ 𝑓 (2 𝑚 𝑥) ∈ 𝑉 𝑚 , 𝑚 ∈ ℕ , (3.9 
𝑉 𝑚 = 𝑉 0 ⊕ 𝑊 0 ⊕ 𝑊 1 ⊕ ... ⊕ 𝑊 𝑚-1 .
(3.18) By considering Eq. (3.14) and Eq. (3.17 which is commonly known as the multiscale decomposition of the signal 𝑓 [START_REF] Mallat | Multiresolution Approximations and Wavelet Orthonormal Bases of L2(R)[END_REF]. In summary, multiresolution analysis requires the conditions from Eq. (3.8) to Eq. (3.11) to be met. Then, the signal can be represented by a series of approximations which differ from each other by a factor of two, as shown by Eq. (3.14). These successive estimations approximate the signal with higher and higher precision, approaching the original. This hierarchy is rendered by Eq. (3.19). The difference of information from one resolution to the next is encoded by the wavelet coefficients, as described in Eq. (3.17) [START_REF] Hubbard | The World According to Wavelets: The Story of a Mathematical Technique in the Making[END_REF].

The hierarchical nature of the development in Eq. (3.19) can be observed in Figure 3.4, where a multiresolution analysis has been performed by using the Haar basis [START_REF] Haar | Zur Theorie der orthogonalen Funktionensysteme[END_REF]. The Haar basis is the simplest wavelet generating
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-1 -0.5 0 0.5 1 an orthonormal family of wavelets. It is built from

-
𝜓(𝑥) = ⎧ ⎪ ⎨ ⎪ ⎩ -1, -1 < 𝑥 < 0 1, 0 ≤ 𝑥 < 1 0, elsewhere , and 𝜙(𝑥) = { 1, -1 < 𝑥 < 1 0, elsewhere (3.20)
The pair of Haar functions 𝜙, 𝜓 are illustrated in Figure 3.3a and Figure 3.3b, respectively.

The Haar basis is compactly supported and discontinuous, which makes them a very good fit to the discontinuous Galerkin framework presented in Chapter 2. However, they are not very efficient at approximating signals with higher-order terms (high frequency) due to their low-order nature. To remedy this, the work of Daubechies (1992) developed higher-order orthogonal wavelets with compact support. However, they are computed as the limit of an iterative process. Consequently, the commonly named Daubechies wavelets can not be created from analytical formulas.

The target is to find higher order wavelets with compact support that are analytically defined, so that they can be easily connected to the discontinuous Galerkin method presented in Chapter 2. These conditions can be fulfilled by using multiple scaling functions and wavelets, the so-called multi-scaling functions and multiwavelets, respectively [START_REF] Alpert | A Class of Bases in L 2 for the Sparse Representation of Integral Operators[END_REF][START_REF] Plonka | From Wavelets to Multiwavelets[END_REF].

MULTIWAVELETS

As described in the previous section, multiresolution analysis allows us to decompose a given signal into a hierarchy of approximations of that signal at different levels of resolution. The changes between successive resolutions are captured by the wavelets. Multiwavelets (MWs) constitute a generalization of this approach, by allowing several wavelet functions to be used simultaneously. For this purpose, we will be employing the so-called Alpert multiwavelet [START_REF] Alpert | A Class of Bases in L 2 for the Sparse Representation of Integral Operators[END_REF][START_REF] Alpert | Adaptive Solution of Partial Differential Equations in Multiwavelet Bases[END_REF], which is a compactly supported, orthonormal, piecewise polynomial multiwavelet. For a detailed introduction to the theory behind multiwavelets, we refer to the work of [START_REF] Strela | Multiwavelets-theory and applications[END_REF]. Additionally, concerning the construction of other types of multiwavelets, the interested reader can refer to [START_REF] Donovan | Construction of Orthogonal Wavelets Using Fractal Interpolation Functions[END_REF] and [START_REF] Keinert | Wavelets and Multiwavelets[END_REF].

One-dimensional multiwavelets

Firstly, the concepts will be described in a one-dimensional framework. We will then move to higher spatial dimensions. Therefore, we define the multiscaling functions and multiwavelets of multiplicity 𝑟 as

𝜙 ℓ (𝑚,𝑗)
and 𝜓 ℓ (𝑚,𝑗) , ℓ = 1, … , 𝑟.

(3.21)

where 𝑟 = 𝑝 + 1 in the current 1-D context, with 𝑝 being the polynomial degree. Similarly to Section 3.2, the resolution level will be denoted by 𝑚, with the finest resolution given by 𝑚 = ℳ. How much detail is captured by a particular resolution level depends on how many subdivisions or elements, 𝑁 𝐾 , this level owns. Each element 𝐾 (𝑚,𝑗) in a given level 𝑚 is identified by the index 𝑗. Knowing that the relation between level and number of subdivisions is dyadic (i.e. given a power of two, 𝑁 𝐾 = 2 𝑚 ) and that we work in 𝐿 2 ( [-1, 1] ) , then the support of the elements is determined by

𝐾 (𝑚,𝑗) = [ -1 + 2 -𝑚+1 𝑗, -1 + 2 -𝑚+1 (𝑗 + 1) ] ,
(3.22)

with 𝑚 = 0, ..., ℳ and 𝑗 = 0, ..., 𝑁 𝐾 -1. In the same way than Section 3. (3.23)

Moreover, the conditions Eq. (3.8) to Eq. (3.11) that enable multiresolution analysis in the case of wavelets also apply for the more general case of multiwavelets with multiplicity 𝑟. For a more detailed description of the MRA in the context of multiwavelets, the interested reader may refer to [START_REF] Strela | Multiwavelets-theory and applications[END_REF].

Similarly, the orthogonal projection operators defined in Eq. (3.14) and Eq. (3.17) become, respectively: with 𝑁 𝐾 = 2 𝑚 and 𝑟 = 𝑝 + 1. These new definitions allow us to generalize the multiscale decomposition given by Eq. (3.19) to the new MRA framework with multiplicity 𝑟. Namely

𝑃 𝑝 ℳ 𝑓 = 𝑟 ∑ ℓ=1 𝑠 ℓ (0,0) 𝜙 ℓ (0,0) + ℳ-1 ∑ 𝑖=0 𝑁 𝐾 -1 ∑ 𝑗=0 𝑟 ∑ ℓ=1 𝑑 ℓ (𝑖,𝑗) 𝜓 ℓ (𝑖,𝑗) , (3.26) 
where we have chosen 𝑚 = ℳ as the highest resolution level to approximate the signal 𝑓 . The multi-scaling function coefficients at 𝑚 = 0, 𝑠 ℓ (0,0) , represent the lowest resolution approximation; while a cascade of multiwavelet coefficients, 𝑑 ℓ (𝑖,𝑗) , carry the information across resolutions up to ℳ -1. We move now on to how to build the basis 𝜙 ℓ (𝑚,𝑗) and 𝜓 ℓ (𝑚,𝑗) . We start from the coarsest level 𝑚 = 0 and build up from there. In this case the subspace of multi-scaling functions results in 𝑉 𝑝 0 , and its basis are given in the work of

-1 -0.5 0 0.5 1 -2 -1 0 1 2 𝜙 𝜙 𝜙 (a) Multi-scaling functions, 𝑝 = 1, 2. -1 -0.5 0 0.5 1 -2 -1 0 1 2 𝜓 𝜓 (b) Multiwavelets, 𝑝 = 1. -1 -0.5 0 0.5 1 -2 -1 0 1 2 𝜓 𝜓 𝜓 (c) Multiwavelets, 𝑝 = 2.
Figure 3.5: 1-D Alpert's multi-scaling functions and multiwavelets. [START_REF] Alpert | Adaptive Solution of Partial Differential Equations in Multiwavelet Bases[END_REF]. Namely:

𝜙 ℓ (0,0) (𝜉) = 𝜙 ℓ (𝜉) = ⎧ ⎪ ⎨ ⎪ ⎩ √ 2(ℓ-1)+1 2 𝑃 ℓ (𝜉), 𝜉 ∈ [-1, 1] 0, otherwise (3.27)
where 𝑃 ℓ (𝜉) indicates the Legendre polynomial of degree ℓ-1. Multi-scaling functions in Eq. (3.27) with degree 𝑝 = 1, 2 are plotted in Fig. 3.5a. On the other hand, multiwavelets undergo a more complex building process. The algorithm starts with a piecewise monomial of degree ℓ -1 defined in [-1, 1].

A Gram-Schmidt orthonormalisation is followed by an operation to increase the number of vanishing moments of the resulting function. This is enforced by ensuring orthogonality with respect to a higher degree monomial. The complete algorithm can be found in the study of [START_REF] Alpert | A Class of Bases in L 2 for the Sparse Representation of Integral Operators[END_REF]. The multiwavelets that span the subspace 𝑊 𝑝 0 are thus formed by these orthonormal functions 𝑓 (ℓ,𝑝) (𝑥) as follows:

𝜓 ℓ (0,0) (𝜉) = 𝜓 ℓ (𝜉) = ⎧ ⎪ ⎨ ⎪ ⎩ (-1) (ℓ-1)+𝑝+1 𝑓 (ℓ,𝑝) (-𝜉), 𝜉 ∈ [-1, 0] 𝑓 (ℓ,𝑝) (𝜉), 𝜉 ∈ [0, 1] 0, otherwise (3.28)
Multiwavelets in Eq. (3.28) with 𝑝 = 1, 2 are plotted in Fig. 3.5b and Fig. 3.5c, respectively. At this point, the basis of 𝑉 𝑝 0 , 𝑊 𝑝 0 have been defined. To describe the successive subspaces when 𝑚 > 0 we require the mapping 𝜉 ↦ ℎ 𝐾 ) , 𝑚 = 0, ..., ℳ.

(3.30)

Both multi-scaling functions and multiwavelets support extends to the current element defined by 𝐾 (𝑚,𝑗) . That is supp ( 𝜙 ℓ (𝑚,𝑗) ) = supp ( 𝜓 ℓ (𝑚,𝑗) ) = 𝐾 (𝑚,𝑗) . Moreover, they are 𝐿 2 -normalised, i.e. ‖ 𝜙 ℓ (𝑚,𝑗) ‖ 𝐿 2 = ‖ 𝜓 ℓ (𝑚,𝑗) ‖ 𝐿 2 = 1, and share the following orthonormality relations [START_REF] Hovhannisyan | Adaptive Multiresolution Discontinuous Galerkin Schemes for Conservation Laws[END_REF]:

⟨ 𝜙 ℓ (𝑚,𝑗) , 𝜙 ℓ ′ (𝑚,𝑗 ′ )⟩ 𝐾 (𝑚,𝑗) = 𝛿 ℓ,ℓ ′ 𝛿 𝑗,𝑗 ′ ,
(3.31a) = 0, ∀𝑃 ∈ 𝒫 𝑀 ( 𝐾 (𝑚,𝑗)) , ℓ = 1, ..., 𝑟 .

(3.32)

with 𝑟 = 𝑝 + 1. This concept will be further explored in Chapter 5.

Two-dimensional multiwavelets

We construct orthonormal multiwavelet bases for 𝐿 2 ([-1, 1] 2 ) by considering the tensor product of two one-dimensional multiresolution analyses, similarly to the generalization presented in [START_REF] Mallat | Multiresolution Approximations and Wavelet Orthonormal Bases of L2(R)[END_REF] and [START_REF] Dahmen | Wavelet methods for PDEs -some recent developments[END_REF]. Therefore, we define the initial subspace 𝑽 𝑝 0 as We observe that the detail space 𝑾 𝑝 𝑚 is made up of three contributions, denoted by the superscripts 𝛼, 𝛽 and 𝛾. This terminology follows the notation proposed by [START_REF] Vuik | Multiwavelets and outlier detection for troubled-cell indication in discontinuous Galerkin methods[END_REF]. Their respective orthonormal bases are given by

𝑽 𝑝 0 = 𝑉 𝑝 0 ⊗ 𝑉 𝑝 0 = span { 𝐹 (𝑥, 𝑦) = 𝑓 (𝑥)𝑔(𝑦) | 𝑓 , 𝑔 ∈ 𝑉 𝑝 0 } , ( 3 
𝜳 ℓ,𝛼 (𝑚,𝑗) (𝒙) = 𝜓 ℓ 𝑥 (𝑚,𝑗 𝑥 ) (𝑥) 𝜙 ℓ 𝑦 (𝑚,𝑗 𝑦 ) (𝑦) , (3.39a) 𝜳 ℓ,𝛽 (𝑚,𝑗) (𝒙) = 𝜙 ℓ 𝑥 (𝑚,𝑗 𝑥 ) (𝑥) 𝜓 ℓ 𝑦 (𝑚,𝑗 𝑦 ) (𝑦) , (3.39b) 𝜳 ℓ,𝛾 (𝑚,𝑗) (𝒙) = 𝜓 ℓ 𝑥 (𝑚,𝑗 𝑥 ) (𝑥) 𝜓 ℓ 𝑦 (𝑚,𝑗 𝑦 ) (𝑦) , (3.39c)
where 𝜙 ℓ (𝑚,𝑗) , 𝜓 ℓ (𝑚,𝑗) can be calculated by Eq. (3.29) and Eq. (3.30), in that order. The superscripts 𝛼, 𝛽 and 𝛾 denote the 𝑥-, 𝑦-, and 𝑥𝑦-directions, respectively. Therefore, they will lean toward details in those directions. Figure 3.6 shows the basis for the different contributions with 𝑝 = 1. Further details can be found in the work of [START_REF] Vuik | Multiwavelet Troubled-Cell Indicator for Discontinuity Detection of Discontinuous Galerkin Schemes[END_REF]. We can now build the gener- Part II

HP-ADAPTIVE FRAMEWORK

Chapter 4

UNITING DGM AND MULTIWAVELETS

We have spent previous chapters outlining the theoretical framework of this research. In this manner, we have presented both the physical models and their numerical discretization by means of the discontinuous Galerkin method (DGM). We have also introduced the multiresolution analysis (MRA) based on multiwavelets as a tool to better interpret a given signal.

The objective of this chapter is to unify the MRA scheme and the DGM formulation. We first review previous attempts in the literature to establish this union and then suggest an alternative approach.

Section 4.1 describes the classical approach of globally combining the MRA and the DGM (see e.g. Gerhard et al. (2015b)). Sections 4.1.1 and 4.1.2

present the union in one-and two-dimensional configurations, respectively.

Section 4.2 offers an overview of how the union of MRA and DGM sets the stage to mesh adaptation. The literature approach is examined in Section 4.2.1, and an outline of the new alternative is unveiled in Section 4.2.2.

The new approach requires a prior post-processing step, which is introduced in Section 4.3. Different one-dimensional post-processing methods are discussed in Sections 4.3.1 to 4.3.3. The extension to two-dimensions is presented in Section 4.3.4. Finally, the new approach come into being in Section 4.4. Both one-and two-dimensional configurations are explored in Sections 4.4.1 and 4.4.2, in that order. Lastly, the main conclusions of this chapter are outlined in Section 4.5.

MULTIRESOLUTION IN THE CONTEXT OF DGM

One-dimensional configuration

When describing the discontinuous Galerkin method (DGM) in Chapter 2, we characterized its discretized solution, given by Eq. (2.17), as a local polynomial expansion of degree 𝑝. We also determined that the basis employed in this polynomial expansion are built upon Legendre polynomials, as described by Eq. (2.19). If we now draw a parallel to Chapter 3, and in particular to the multiwavelet formulation from Section 3.3, we observe that the same basis is employed when expressing a signal in the (MRA) framework, Eq. (3.24).

Certainly, the signal is approximated by a summation of multi-scaling functions, which in turn are given by Eq. (3.27), as a scaled version of Legendre polynomials. Based on these observations, a direct relation can be established between the two approaches. Initially, we will establish the relation in 1-D and then move to its generalization to higher dimensions.

We consider a dyadic mesh Ω ℎ composed of 𝑁 𝐾 = 2 ℳ elements and domain

Ω = [-1, 1]
, so that the multiwavelet formulation from Section 3.3 holds.

Each element 𝐾 is then defined by Eq. (3.22) with 𝑚 = ℳ. That is

𝐾 = 𝐾 (ℳ,𝑗) = [ -1 + 2 -ℳ+1 𝑗, -1 + 2 -ℳ+1 (𝑗 + 1) ] ,
(4.1)

with 𝑗 = 0, ..., 𝑁 𝐾 -1. Here, we have combined the nomenclature of DGM and MRA. We remind the reader that the parameter ℳ refers to the highest resolution level in the MRA of a signal, and the index 𝑗 identifies each element of that level. Therefore, we have associated the concept of mesh in DGM with the notion of highest resolution level in MRA. We now define a DG solution 𝑢 ℎ (𝑥, 𝑡) in Ω ℎ as an approximation to a conservative variable 𝑢(𝑥, 𝑡) defined in Ω. By application of Eq. ( 2.17) we have:

𝑢 ℎ (𝑥, 𝑡) = ∑ 𝐾 𝑁 𝑝 ∑ ℓ=1 𝑈 ℓ 𝐾 (𝑡) 𝜙 ℓ ( Ξ -1 𝐾 (𝑥) ) = 𝑁 𝐾 -1 ∑ 𝑗=0 𝑁 𝑝 ∑ ℓ=1 𝑈 ℓ (ℳ,𝑗) (𝑡) 𝜙 ℓ ( 2(𝑥-𝑥 𝑐 ) ℎ 𝐾 ) , ∀𝑥 ∈ 𝐾 (ℳ,𝑗) , 𝐾 (ℳ,𝑗) ∈ Ω ℎ . (4.2)
with ℎ 𝐾 = 2 -ℳ+1 ; and 𝑥 𝑐 being the size and the center of element 𝐾 (ℳ,𝑗) , respectively. Additionally, by using the multiresolution framework presented in Chapter 3, we can express the conservative variable 𝑢 in terms of a singlescale decomposition [START_REF] Vuik | Multiwavelet Troubled-Cell Indicator for Discontinuity Detection of Discontinuous Galerkin Schemes[END_REF]Gerhard et al., 2015b). Certainly, we can approximate 𝑢 up to the level 𝑚 = ℳ by a multi-scaling function expansion as described in Eq. (3.24). Namely,

𝑃 𝑝 ℳ 𝑢(𝑥, 𝑡) = 𝑁 𝐾 -1 ∑ 𝑗=0 𝑟 ∑ ℓ=1 𝑠 ℓ (ℳ,𝑗) (𝑡) 𝜙 ℓ (ℳ,𝑗) (𝑥) = √ 2 ℎ 𝐾 𝑁 𝐾 -1 ∑ 𝑗=0 𝑟 ∑ ℓ=1 𝑠 ℓ (ℳ,𝑗) (𝑡) 𝜙 ℓ ( 2(𝑥-𝑥 𝑐 ) ℎ 𝐾 ) . (4.3)
where 𝜙 ℓ (ℳ,𝑗) is given by Eq. (3.29), and 𝑟 is the multiplicity of the multiresolution approach. We observe that the single-scale decomposition differs from the DG representation only by a scaling term. Hence, by comparing Eq. (4.2) to Eq. ( 4.3) and assuming 𝑟 = 𝑁 𝑝 , the relation between the DG coefficients and the single-scale coefficients is given by

𝑠 ℓ (ℳ,𝑗) (𝑡) = 2 -ℳ/2 𝑈 ℓ (ℳ,𝑗) (𝑡).
(4.4)

The result above enables us to represent the DG solution in the form of a single-scale decomposition. This is possible due to the fact that the DG basis and the multi-scaling functions both use Legendre polynomials, only set apart by a scaling term. Moreover, as discussed in Chapter 3, the single-scale decomposition in Eq. ( 4.3) can be hierarchically divided into a cascade of multiwavelet subspaces plus a baseline multi-scaling function subspace corresponding to the lowest resolution level. Consequently, by putting together Eq. (4.2) with Eq. ( 4.4), we obtain the multiscale decomposition of the approximate solution 𝑢 ℎ . Namely:

𝑢 ℎ = 𝑟 ∑ ℓ=1 ⎛ ⎜ ⎜ ⎝ 𝑠 ℓ (0,0) 𝜙 ℓ (0,0) + ℳ-1 ∑ 𝑖=0 𝑁 𝐾 -1 ∑ 𝑗=0 𝑑 ℓ (𝑖,𝑗) 𝜓 ℓ (𝑖,𝑗) ⎞ ⎟ ⎟ ⎠ , with 𝑟 = 𝑁 𝑝 , (4.5) 
where

𝑠 ℓ (𝑚,𝑗) = ⟨ 𝑢 ℎ , 𝜙 ℓ (𝑚,𝑗)⟩ 𝐾 (𝑚,𝑗) , 𝑑 ℓ (𝑚,𝑗) = ⟨ 𝑢 ℎ , 𝜓 ℓ (𝑚,𝑗)⟩ 𝐾 (𝑚,𝑗) , (4.6)
are the multi-scaling function and multiwavelet coefficients, respectively. We have already described them in Eq. (3.14) and Eq. (3.17) from Chapter 3. However, it is worth mentioning that we do not need to calculate the inner product ⟨ ⟩ to compute every coefficient of the hierarchy. Instead, these coefficients can be computed efficiently using the so-called quadrature mirror filter (QMF) coefficients, which in turn are borrowed from filter theory [START_REF] Smith | Exact reconstruction techniques for tree-structured subband coders[END_REF]. The QMF coefficients associated with Alpert's multiwavelets are described in detail in the work of [START_REF] Geronimo | Alpert Multiwavelets and Legendre-Angelesco Multiple Orthogonal Polynomials[END_REF].

In this regard, we define the lowpass QMF coefficient matrices 𝐻 (0) ℓ𝑘 and 𝐻 (1) ℓ𝑘 as follows

𝐻 (0) ℓ𝑘 = ⟨ 𝜙 ℓ (𝑚-1,𝑗) , 𝜙 𝑘 (𝑚,2𝑗)⟩ 𝐾 (𝑚-1,𝑗) , 𝐻 (1) ℓ𝑘 
= ⟨ 𝜙 ℓ (𝑚-1,𝑗) , 𝜙 𝑘 (𝑚,2𝑗+1)⟩ 𝐾 (𝑚-1,𝑗)
. (4.7) with ℓ, 𝑘 = 1, ..., 𝑟. Similarly, the highpass QMF coefficient matrices 𝐺 (0) ℓ𝑘 and

𝐺 (1)
ℓ𝑘 take the form

𝐺 (0) ℓ𝑘 = ⟨ 𝜓 ℓ (𝑚-1,𝑗) , 𝜙 𝑘 (𝑚,2𝑗)⟩ 𝐾 (𝑚-1,𝑗) , 𝐺 (1) ℓ𝑘 
= ⟨ 𝜓 ℓ (𝑚-1,𝑗) , 𝜙 𝑘 (𝑚,2𝑗+1)⟩ 𝐾 (𝑚-1,𝑗) . (4.8)
Despite the presence of the pair (𝑚, 𝑗), the QMF coefficients do not depend on the resolution level 𝑚 or element 𝑗 [START_REF] Vuik | Multiwavelets and outlier detection for troubled-cell indication in discontinuous Galerkin methods[END_REF]. Knowing that

𝐾 (𝑚-1,𝑗) = 𝐾 (𝑚,2𝑗) ∪ 𝐾 (𝑚,2𝑗+1) , (4.9) 
the coefficients measure 𝜙, 𝜓 at element 𝐾 (𝑚-1,𝑗) in terms of 𝜙 at 𝐾 (𝑚,2𝑗) and 𝐾 (𝑚,2𝑗+1) . Due to the nature of the dilation and translation properties, Eq. (3.9) and Eq. (3.10), this measurement remains constant independently of 𝑚 and 𝑗.

Therefore, the QMF coefficients only depend on the multiplicity 𝑟 used. Tabulated values for the QMF coefficients up to 𝑟 = 10 can be found in [START_REF] Geronimo | Alpert Multiwavelets and Legendre-Angelesco Multiple Orthogonal Polynomials[END_REF]. With this in mind, the multi-scaling functions and multiwavelets between two consecutive levels can be expressed as

𝜙 ℓ (𝑚-1,𝑗) = 𝑟 ∑ 𝑘=1 ( 𝐻 (0) ℓ𝑘 𝜙 𝑘 (𝑚,2𝑗) + 𝐻 (1)
ℓ𝑘 𝜙 𝑘 (𝑚,2𝑗+1)) , 𝑚 = 1, ..., ℳ;

(4.10a)

𝜓 ℓ (𝑚-1,𝑗) = 𝑟 ∑ 𝑘=1 ( 𝐺 (0) ℓ𝑘 𝜙 𝑘 (𝑚,2𝑗) + 𝐺 (1)
ℓ𝑘 𝜙 𝑘 (𝑚,2𝑗+1)) , 𝑗 = 0, ..., 2 (𝑚-1) -1 . (4.10b) 

(multiscale). The highest resolution level is ℳ = 3 and 𝑢 ℎ = ∑ 𝑗 𝒮 (ℳ,𝑗) . Level 3 ( 𝑉 𝑝 3 = 𝑉 𝑝 2 ⊕ 𝑊 𝑝 2 ) Level 2 ( 𝑉 𝑝 2 = 𝑉 𝑝 1 ⊕ 𝑊 𝑝 1 , 𝑊 𝑝 2 ) Level 1 ( 𝑉 𝑝 1 = 𝑉 𝑝 0 ⊕ 𝑊 𝑝 0 , 𝑊 𝑝 1 ) Level 0 ( 𝑉 𝑝 0 , 𝑊 𝑝 0 ) 𝒮 (3,0) 𝒮 (3,7) 𝒮 (2,0) 𝒮 (2,3) 𝒟 (2,0) 𝒟 (2,3) 𝒮 (1,0) 𝒮 (1,1) 𝒟 (1,0) 𝒟 (1,1) 𝒮 (0,0) 𝒟 (0,0) 𝐾 (3,0) ⋯ 𝐾 (3,7) 𝐾 (2,0) ⋯ 𝐾 (2,3) 𝐾 (1,0) 𝐾 (1,1)
𝐾 (0,0)

with ℓ = 1, ..., 𝑟. Similarly, by application of Eq. (4.6) plus the linearity of the inner product, the multi-scaling function and multiwavelet coefficients between two consecutive levels are given by:

𝑠 ℓ (𝑚-1,𝑗) = 𝑟 ∑ 𝑘=1 ( 𝐻 (0) ℓ𝑘 𝑠 𝑘 (𝑚,2𝑗) + 𝐻 (1) ℓ𝑘 𝑠 𝑘 (𝑚,2𝑗+1)) , (4.11a) 𝑑 ℓ (𝑚-1,𝑗) = 𝑟 ∑ 𝑘=1 ( 𝐺 (0) ℓ𝑘 𝑠 𝑘 (𝑚,2𝑗) + 𝐺 (1) ℓ𝑘 𝑠 𝑘 (𝑚,2𝑗+1)) .
(4.11b)

Coarser scales of the solution can be obtained by the successive application of Eq. (4.11a). Furthermore, the multiwavelet coefficients between scales are given by Eq. (4.11b). Figure 4.1 shows the multiscale representation for a second order DG solution. Effectively, the multiscale decomposition divides the single-scale coefficients 𝑠 ℓ (ℳ,𝑗) into a smaller group of coefficients 𝑠 ℓ (0,0) and (ℳ -1) blocks of multiwavelet or detail coefficients 𝑑 ℓ (𝑚,𝑗) . The former is a coarse approximation of the original solution and the latter carries the information between scales. This multiscale information represent the individual characteristics of the solution in a hierarchy of ascending resolution.

Two-dimensional configuration

In the 2-D context, the relation between the DG coefficients and the singlescale coefficients is equivalent to Eq. (4.4), and is now given by

𝒔 ℓ (ℳ,𝑗) = 2 -ℳ 𝑼 ℓ (ℳ,𝑗) .
(4.12)

The multiscale decomposition of the DG solution presented in Eq. (4.5) can be generalized to

𝒖 ℎ = 𝑟 2 ∑ ℓ=1 ⎛ ⎜ ⎜ ⎝ 𝒔 ℓ (0,0) 𝜱 ℓ (0,0) + ℳ-1 ∑ 𝑖=0 𝑁 2 𝐾 -1 ∑ 𝑗=0 [ 𝒅 ℓ,𝛼 (𝑖,𝑗) 𝜳 ℓ,𝛼 (𝑖,𝑗) + 𝒅 ℓ,𝛽 (𝑖,𝑗) 𝜳 ℓ,𝛽 (𝑖,𝑗) + 𝒅 ℓ,𝛾 (𝑖,𝑗) 𝜳 ℓ,𝛾 (𝑖,𝑗)] ⎞ ⎟ ⎟ ⎠ , (4.13)
where the three multiwavelet contributions 𝛼, 𝛽 and 𝛾 were previously explained in Eq. (3.39). Figure 4.2 features the multiscale representation of a 2-D second order DG solution. The coefficients can be explicitly computed as follows:

Level 2 ⎛ ⎜ ⎜ ⎝ 𝑉 𝑝 2 = 𝑽 𝑝 1 + 𝛼,𝛽,𝛾 ⨁ 𝜆 𝑾 𝑝,𝜆 1 ⎞ ⎟ ⎟ ⎠ Level 1 ⎛ ⎜ ⎜ ⎝ 𝑽 𝑝 1 = 𝑽 𝑝 0 + 𝛼,𝛽,𝛾 ⨁ 𝜆 𝑾 𝑝,𝜆 0 , { 𝑾 𝑝,𝜆 1 } ⎞ ⎟ ⎟ ⎠ Level 0 ( 𝑽 𝑝 0 , { 𝑾 𝑝,𝜆 0 } 𝜆=𝛼,𝛽,𝛾 ) 𝑷 𝑝 2 𝒖 ℎ 𝑷 𝑝 1 𝒖 ℎ 𝑷 𝑝 0 𝒖 ℎ 𝑸 𝑝,𝛽 1 𝒖 ℎ 𝑸 𝑝,𝛾 1 𝒖 ℎ 𝑸 𝑝,𝛼 1 𝒖 ℎ 𝑸 𝑝,𝛽 0 𝒖 ℎ 𝑸 𝑝,𝛾 0 𝒖 ℎ 𝑸 𝑝,𝛼 0 𝒖 ℎ 𝐾 (𝑚,𝑗)
𝒔 ℓ (𝑚,𝑗) = ⟨ 𝒖 ℎ , 𝜱 ℓ (𝑚,𝑗)⟩ 𝐾 (𝑚,𝑗) , 𝒅 ℓ,𝛼 (𝑚,𝑗) = ⟨ 𝒖 ℎ , 𝜳 ℓ,𝛼 (𝑚,𝑗)⟩ 𝐾 (𝑚,𝑗) , (4.14a) 𝒅 ℓ,𝛽 (𝑚,𝑗) = ⟨ 𝒖 ℎ , 𝜳 ℓ,𝛽 (𝑚,𝑗)⟩ 𝐾 (𝑚,𝑗) , 𝒅 ℓ,𝛾 (𝑚,𝑗) = ⟨ 𝒖 ℎ , 𝜳 ℓ,𝛾 (𝑚,𝑗)⟩ 𝐾 (𝑚,𝑗)
.

(4.14b)

Similarly to the 1-D study, we apply the QMF coefficients presented in the work of [START_REF] Geronimo | Alpert Multiwavelets and Legendre-Angelesco Multiple Orthogonal Polynomials[END_REF], and earlier described in Eq. (4.7) to Eq. (4.8).

In this case, the relation between elements of two consecutive levels given by Eq. (4.9) becomes

𝐾 (𝑚-1,𝑗) = 1 ⋃ j𝑥 , j𝑦 =0 𝐾 (𝑚,2𝑗+ j) , j = 2 j𝑥 + j𝑦 , 𝑗 = 𝑁 ′ 𝐾 𝑗 𝑥 + 𝑗 𝑦 , (4.15) 
where 𝑗 𝑥 , 𝑗 𝑦 = 0, ..., 𝑁 ′ 𝐾 -1 with 𝑁 ′ 𝐾 = 2 (𝑚-1) . Figure 4.3 shows how the elements of two successive levels are related. Consequently, the lower-lever single-scale coefficients and the multiwavelet coefficients for each component 𝛼, 𝛽 and 𝛾 can be calculated efficiently as follows:

𝐾 (𝑚,2𝑗) 𝐾 (𝑚,2𝑗+1) 𝐾 (𝑚,2𝑗+2) 𝐾 (𝑚,2𝑗+3) 𝐾 (𝑚-1,𝑗) Level 𝑚 Level 𝑚 -1 𝑗 𝑥 𝑗 𝑦 j𝑥 j 𝑦
𝒔 ℓ (𝑚-1,𝑗) = 1 ∑ j𝑥 , j𝑦 =0 𝑟 ∑ 𝑘 𝑥 ,𝑘 𝑦 =1 [ 𝐻 ( j𝑥 ) ℓ 𝑥 ,𝑘 𝑥 𝐻 ( j𝑦 ) ℓ 𝑦 ,𝑘 𝑦 𝒔 𝑘 (𝑚,2𝑗+ j)] , 𝑚 = 1, ..., ℳ; (4.16a) 𝒅 ℓ,𝛼 (𝑚-1,𝑗) = 1 ∑ j𝑥 , j𝑦 =0 𝑟 ∑ 𝑘 𝑥 ,𝑘 𝑦 =1 [ 𝐺 ( j𝑥 ) ℓ 𝑥 ,𝑘 𝑥 𝐻 ( j𝑦 ) ℓ 𝑦 ,𝑘 𝑦 𝒔 𝑘 (𝑚,2𝑗+ j)] , 𝑘 = 𝑟(𝑘 𝑥 -1) + 𝑘 𝑦 , (4.16b) 𝒅 ℓ,𝛽 (𝑚-1,𝑗) = 1 ∑ j𝑥 , j𝑦 =0 𝑟 ∑ 𝑘 𝑥 ,𝑘 𝑦 =1 [ 𝐻 ( j𝑥 ) ℓ 𝑥 ,𝑘 𝑥 𝐺 ( j𝑦 ) ℓ 𝑦 ,𝑘 𝑦 𝒔 𝑘 (𝑚,2𝑗+ j)] ,
(4.16c)

𝒅 ℓ,𝛾 (𝑚-1,𝑗) = 1 ∑ j𝑥 , j𝑦 =0 𝑟 ∑ 𝑘 𝑥 ,𝑘 𝑦 =1 [ 𝐺 ( j𝑥 ) ℓ 𝑥 ,𝑘 𝑥 𝐺 ( j𝑦 ) ℓ 𝑦 ,𝑘 𝑦 𝒔 𝑘 (𝑚,2𝑗+ j)] ,
(4.16d)

The index j is inherited from Eq. (4.15) and accounts for the fact that one coefficient at level 𝑚 -1 results from the contribution of four coefficients at level 𝑚.

PROSPECTS OF MULTIRESOLUTION AND DGM

Global coupling and mesh adaptation

Hovhannisyan et al. ( 2014) have presented one of the first studies on multiresolution-based grid adaptation formulated on multiwavelets. In that work and in the research that followed by Gerhard et al. (2015a,b) and [START_REF] Müller | Adaptive Multiresolution Discontinuous Galerkin Schemes for Conservation Laws: multi-dimensional case[END_REF], the numerical solution is simply represented as data on some coarse level plus multiwavelet coefficients which embody the individual features of the solution (see Section 4.1). Thresholding of these detail coefficients then drives the adaptation process, i.e. each multiwavelet coefficient is related to an element in the MRA cascade and nullifying a coefficient is thus analogous to removing its associated element. Therefore, the more cancelled details, the smaller the number of DOFs in the adapted grid.

In the work presented by [START_REF] Vuik | Multiwavelets and outlier detection for troubled-cell indication in discontinuous Galerkin methods[END_REF]Ryan (2014, 2016) and [START_REF] Vuik | Multiwavelets and outlier detection for troubled-cell indication in discontinuous Galerkin methods[END_REF], the same concept of MRA cascading is studied to develop a multiwavelet troubled-cell indicator to identify elements in the vicinity of a shock. However, unlike the work of [START_REF] Hovhannisyan | Adaptive Multiresolution Discontinuous Galerkin Schemes for Conservation Laws[END_REF], in which the entirety of the MRA levels are considered, here the authors base their indicator on the multiwavelet contribution from a single level (specifically, the level ℳ -1, which is the second to finest) of the MRA decomposition.

When applying the MRA-based grid adaptation, the relation between the elements in the physical domain and the intervals in the multiwavelet decomposition is bijective, which means that we have a one-to-one correspondence, as described by Eq. (4.1). This fact makes the adaptive procedure reliant on the nature of the multiwavelets. To be able to use the dilation and translation properties of the multiwavelets, as presented by Eq. (3.29) and Eq. (3.30), a sequence of nested dyadic grids is thus required. Certainly, the work of

Level ℳ ≡ Ω ref ℎ Level ℳ -1 Level ℳ -2 Level ℳ -3 𝑢 ref ℎ (a)
Global multiresolution, representative of [START_REF] Hovhannisyan | Adaptive Multiresolution Discontinuous Galerkin Schemes for Conservation Laws[END_REF]. It requires 𝑢 ref ℎ to be the initial solution calculated on a MRA approximation of the reference grid, Ω ref ℎ . Multiscale decomposition spans the entire domain.

Level ℳ ≡ Ω ref ℎ Level ℳ -1 Level ℳ -2 Level ℳ -3 Level ℳ -1 Level ℳ 𝑢 ref ℎ 𝑢 ℎ 𝑢 ℎ|𝐾 𝜅 0 𝜅 1 𝐾 ∈ Ω ℎ (b) Local multiresolution.
The initial solution 𝑢 ℎ|𝐾 is enriched locally to 𝑢 ℎ|𝐾 . Then it is subjected to a two-level multiscale decomposition. [START_REF] Hovhannisyan | Adaptive Multiresolution Discontinuous Galerkin Schemes for Conservation Laws[END_REF] in the 1-D context, and the later extension to 2-D by [START_REF] Müller | Adaptive Multiresolution Discontinuous Galerkin Schemes for Conservation Laws: multi-dimensional case[END_REF], only employ grids which satisfy this condition. Moreover, their starting grid (MRA approximation of the reference grid) must have enough resolution as to capture the relevant features of the solution. This is equivalent to starting from an accurate reference solution, which may not always be available.

On the other hand, in non-Cartesian grids, dilation and translation are no longer available and multiwavelets must be calculated separately for each level and interval of the decomposition. This represents an important constraint which increases the cost of the computation. To minimize this limitation, Gerhard (2017) developed the wavelet-free approach, which extends the MRA to non-uniform grid hierarchies. Additionally, due to the duality physical-domain/multiwavelet-domain decomposition, further difficulties as regards parallelisation may arise.

Local coupling: a new path to adaptation

As an alternative to the concept of MRA-based grid adaptation, in this work we aim at developing an adaptation algorithm that starts from a coarse solution and proceed with the refinement where required, with no initial reference grid involved. Traditionally, to deal with this problem, a posteriori error estimators have been used to drive the adaptation, which are computed from the discrete solution and try to measure the error of the adaptive solution. Examples of these indicators can be found in the work of Mavriplis (1994), [START_REF] Mitchell | A Comparison of hp-Adaptive Strategies for Elliptic Partial Differential Equations[END_REF], Bey and Oden (1996), and Adjerid et al. (2002). They will be explored in detail later in Chapter 5.

Here we propose a method which locally confines the MRA decomposition to the element. More specifically, an independent multiwavelet decomposition is performed locally for every element of the physical domain. We call our approach local multiresolution. This is a departure from the MRA-based grid adaptation approach, which is characterized by a global multiresolution covering the entire domain. In contrast with this global approach, local multiresolution may be extended to non-structured stretched Cartesian grids, in which elements of equal refinement level do not necessarily have the same size, which allows for anisotropic refinement. Additionally, dealing with each element independently simplifies its use for local hp-adaptation in the context of DGMs. Finally, the excellent parallel properties of DGMs can be perfectly exploited thanks to the local character of the error estimator. To achieve this, we manufacture a more accurate approximation for each element 𝐾 separately. Then a subsequent MRA is applied locally, producing a two-level multiscale representation within the element. In particular, we are interested in the multiwavelet part of the multiscale representation. Indeed, multiwavelet coefficients can be interpreted as messengers of individual features of the approximation [START_REF] Hovhannisyan | Adaptive Multiresolution Discontinuous Galerkin Schemes for Conservation Laws[END_REF]. Thanks to this property multiwavelets represent an excellent candidate to measure the discretization error, which can be used later to drive hp-adaptation.

In the following sections we describe in detail each of the aforementioned steps, starting with the procedure to manufacture a new local enriched approximation from the existing DG solution.

LOCAL RECONSTRUCTION OF DG SOLUTION

We intend to reach an analogue to the highly detailed approximate solution [START_REF] Hovhannisyan | Adaptive Multiresolution Discontinuous Galerkin Schemes for Conservation Laws[END_REF] and [START_REF] Müller | Adaptive Multiresolution Discontinuous Galerkin Schemes for Conservation Laws: multi-dimensional case[END_REF] start their global MRA, as illustrated in Figure 4.4a, but at a lower cost. The idea being that we can use that analogue later as a launchpad to start our local MRA, as represented in Figure 4.4b.

𝑢 ref ℎ from which
To build the analogue we turn to the work of [START_REF] Dolejší | hp-Discontinuous Galerkin Method Based on Local Higher Order Reconstruction[END_REF]. In their research, the authors assemble a high-order reconstruction of a DG solution. They then measure the new reconstruction against the original solution to guide an hp-adaptation process. By observing that the discretization error, 𝑒 ℎ = 𝑢 -𝑢 ℎ , and its approximation by the higher-order reconstruction, ℰ ℎ = ũ ℎ -𝑢 ℎ , have similar element-wise distribution, 𝑒 ℎ ≈ ℰ ℎ , they verify numerically that the reconstruction approximates better the exact solution than the original. Inspired by this idea, we build a more accurate local approximation 𝑢 ℎ|𝐾 by considering the contribution of the current element 𝐾 and its neighbours. This procedure will be presented first in the 1-D setup. The extension to higher dimensions will be described later.

We define the support of 𝑢 ℎ|𝐾 according to the two-level multiscale representation of element 𝐾, as shown in Figure 4.4b. In this context, we have

supp ( 𝑢 ℎ|𝐾 ) = 𝑁 art -1 ⋃ 𝑖=0 𝜅 𝑖 ,
with 𝑁 art = 2, (4.17)

where the artificial sub-elements 𝜅 𝑖 would originate from the twofold isotropic subdivision of element 𝐾. The new approximation 𝑢 ℎ|𝐾 is then described by 𝑁 art piecewise polynomial functions. Namely:

𝑢 ℎ|𝐾 = ∑ 𝑖 𝑢 ℎ,𝑖 , 𝑢 ℎ,𝑖 ∈ 𝒫 𝑝 (𝜅 𝑖 ), 𝑖 = 0, … , 𝑁 art -1.
(4.18)

Note that the term artificial is employed to indicate 𝜅 𝑖 . This is to emphasize the fact that no actual mesh subdivision actually occurs at this stage. In fact, our implementation associates 𝑢 ℎ|𝐾 with the element 𝐾. However we believe that the definition of 𝜅 𝑖 may help the reader to better understand the procedure. In order to assemble 𝑢 ℎ|𝐾 we propose three different approaches depending on how data from neighboring elements are accounted for:

𝐾 𝑢 ℎ ∈ 𝒱 𝑝 ℎ 𝒜 0 𝒰 ℎ,0 ∈ 𝒫 𝑝 (a) Original solution 𝑢 ℎ . + 𝐾 𝑢 ℎ ∈ 𝒱 𝑝 ℎ 𝒜 0 𝒜 1 𝒰 ℎ,0 ∈ 𝒫 𝑝 ( 𝒜 0) 𝒰 ℎ,1 ∈ 𝒫 𝑝 ( 𝒜 1) 𝑢 ℎ,0 (b) Least-square function approximation 𝒰 ℎ,𝑖 from the block 𝒜 𝑖 . + + 𝐾 𝑢 ℎ ∈ 𝒱 𝑝 ℎ 𝒜 0 𝒜 1 𝒰 ℎ,0 ∈ 𝒫 𝑝 ( 𝒜 0) 𝒰 ℎ,1 ∈ 𝒫 𝑝 ( 𝒜 1) 𝑢 ℎ,0 ∈ 𝒫 𝑝 (𝜅 0 ) 𝑢 ℎ,1 ∈ 𝒫 𝑝 (𝜅 1 ) 𝜅 0 𝜅 1 (c) Restriction of 𝒰 ℎ,𝑖 to artifi- cial sub-element 𝜅 𝑖 . + + 𝐾 𝑢 ℎ ∈ 𝒱 𝑝 ℎ 𝒜 0 𝒜 1 𝒰 ℎ,0 ∈ 𝒫 𝑝 ( 𝒜 0) 𝒰 ℎ,1 ∈ 𝒫 𝑝 ( 𝒜 1) 𝑢 ℎ,0 ∈ 𝒫 𝑝 (𝜅 0 ) 𝑢 ℎ,1 ∈ 𝒫 𝑝 (𝜅 1 ) 𝜅 0 𝜅 1 𝜅 0 𝜅 1 (d) Reconstructed piecewise polynomial function 𝑢 ℎ,𝑖 .
1. 𝜅-reconstruction: 𝑢 ℎ|𝐾 is built from the immediate neighbors of the subelements 𝜅 𝑖 . 2. 𝐾-reconstruction: 𝑢 ℎ|𝐾 is constructed from the immediate neighbors of the element 𝐾. 3. Γ-reconstruction: 𝑢 ℎ|𝐾 is set up from the solution jumps at the faces of the sub-elements 𝜅 𝑖 . 

𝜅-reconstruction

The construction of 𝑢 ℎ|𝐾 is performed by a least-square function approximation from the block 𝒜 𝑖 , defined as follows:

𝒜 𝑖 = 𝜅 (𝐾+𝑖-1) 1-𝑖 ∪ 𝜅 (𝐾) 𝑖 ∪ 𝜅 (𝐾+𝑖) 1-𝑖 , 𝑖 = 0, … , 𝑁 art -1, (4.19)
where 𝑁 art = 2 and the superscript indicates from which 𝐾 ∈ Ω ℎ the artificial sub-element 𝜅 originates. Then we define the polynomial function 𝒰 ℎ,𝑖 ∈ 𝒫 𝑝 ( 𝒜 𝑖) by

𝒰 ℎ,𝑖 (𝑥, 𝑡) = 𝑁 𝑝 ∑ ℓ=1 𝑋 ℓ 𝒜 𝑖 (𝑡) 𝜙 ℓ ( Ξ -1 𝒜 𝑖 (𝑥) ) , ∀𝑥 ∈ 𝒜 𝑖 , 𝑁 𝑝 = 𝑝 + 1 , (4.20)
where 𝑋 ℓ 𝒜 𝑖 are the unknown coefficients, and Ξ 𝒜 𝑖 is the bijective transformation which relates the coordinates of the reference element to their counterparts in the physical block 𝒜 𝑖 . The unknown coefficients are calculated by minimising the error in the least-square sense with respect to the original approximation 𝑢 ℎ . Namely:

𝑋 ℓ 𝒜 𝑖 = arg min ‖ 𝑢 ℎ|𝜅 𝑖 -𝒰 ℎ,𝑖 ‖ 2 𝐿 2 (𝒜 𝑖 ) . (4.21)
Solving the optimization problem in Eq. (4.37), we obtain the linear algebraic system

𝐴 𝑘,ℓ 𝑋 ℓ 𝒜 𝑖 = 𝑏 𝑘 , (4.22)
where:

𝐴 𝑘,ℓ = ∑ 𝜅∈𝒜 𝑖 ⟨ 𝜙 𝑘 , 𝜙 ℓ ⟩ 𝜅 , 𝑏 𝑘 = ∑ 𝜅∈𝒜 𝑖 ⟨ 𝜙 𝑘 , 𝑢 ℎ ⟩ 𝜅 , 𝑘, ℓ = 1, … , 𝑁 𝑝 . (4.23)
Now the polynomial function 𝒰 ℎ,𝑖 is fully characterized within the block 𝒜 𝑖 . Lastly, we restrict 𝒰 ℎ,𝑖 just to sub-element 𝜅 (𝐾) 𝑖 and arrive to the piecewise polynomial function 𝑢 ℎ,𝑖 . Namely:

𝑢 ℎ,𝑖 = 𝒰 ℎ,𝑖|𝜅 (𝐾) 𝑖 , 𝑖 = 0, … , 𝑁 art -1.
(4.24) The complete reconstruction procedure is featured in Figure 4.5.

+ + 𝐾 𝑢 ℎ ∈ 𝒱 𝑝 ℎ 𝒜 0 𝒜 1 𝒰 ℎ,0 ∈ 𝒫 𝑝 ( 𝒜 0) 𝒰 ℎ,1 ∈ 𝒫 𝑝 ( 𝒜 1) 𝑢 ℎ,0 ∈ 𝒫 𝑝 (𝜅 0 ) 𝑢 ℎ,1 ∈ 𝒫 𝑝 (𝜅 1 ) 𝜅 0 𝜅 1 𝜅 0 𝜅 1 (a) Original solution 𝑢 ℎ . 𝐾 𝑢 ℎ ∈ 𝒱 𝑝 ℎ 𝒜 𝐾 𝒰 ℎ ∈ 𝒫 𝑝+1 ( 𝒜 𝐾 ) 𝑤 ℎ ∈ 𝒫 𝑝+1 (𝐾) 𝒫 𝑝 spline in- terpolation 𝑢 ℎ,0 ∈ 𝒫 𝑝 (𝜅 0 ) 𝑢 ℎ,1 ∈ 𝒫 𝑝 (𝜅 1 ) 𝐾 𝐾 𝜅 0 𝜅 1 𝜅 0 𝜅 1 (b) High-order approximation 𝒰 ℎ from the block 𝒜 𝐾 . 𝒜 𝐾 𝒰 ℎ ∈ 𝒫 𝑝+1 ( 𝒜 𝐾 ) 𝑤 ℎ ∈ 𝒫 𝑝+1 (𝐾) 𝒫 𝑝 spline in- terpolation 𝑢 ℎ,0 ∈ 𝒫 𝑝 (𝜅 0 ) 𝑢 ℎ,1 ∈ 𝒫 𝑝 (𝜅 1 ) 𝐾 𝐾 𝜅 0 𝜅 1 𝜅 0 𝜅 1 (c) Restriction of 𝒰 ℎ,𝑖 to 𝐾. ) 𝑤 ℎ ∈ 𝒫 𝑝+1 (𝐾) 𝒫 𝑝 spline in- terpolation 𝑢 ℎ,0 ∈ 𝒫 𝑝 (𝜅 0 ) 𝑢 ℎ,1 ∈ 𝒫 𝑝 (𝜅 1 ) 𝐾 𝜅 0 𝜅 1 𝜅 0 𝜅 1 (d) Projecting 𝑤 ℎ on 𝜅 𝑖 . 𝒫 𝑝 spline in- terpolation 𝑢 ℎ,0 ∈ 𝒫 𝑝 (𝜅 0 ) 𝑢 ℎ,1 ∈ 𝒫 𝑝 (𝜅 1 ) 𝜅 0 𝜅 1 𝜅 0 𝜅 1 (e) Reconstructed piecewise polynomial function 𝑢 ℎ,𝑖 .

𝐾-reconstruction

The first steps in the assembly of 𝑢 ℎ|𝐾 follow the same instructions described by [START_REF] Dolejší | hp-Discontinuous Galerkin Method Based on Local Higher Order Reconstruction[END_REF]. That is, we build a high-order polynomial reconstruction by a least-square function approximation from a block 𝒜 𝐾 defined as follows:

𝒜 𝐾 = 𝐾 ∪ { 𝐾 ′ ∈ Ω ℎ | 𝐾 ′ share at least a face with 𝐾 } .
(4.25)

We then establish the higher-order polynomial 𝒰 ℎ ∈ 𝒫 𝑝+1 ( 𝒜 𝐾 ) by

𝒰 ℎ (𝑥, 𝑡) = 𝑁 ′ 𝑝 ∑ ℓ=1 𝑋 ℓ 𝒜 𝐾 (𝑡) 𝜙 ℓ ( Ξ -1 𝒜 𝐾 (𝑥) ) , ∀𝑥 ∈ 𝒜 𝐾 , 𝑁 ′ 𝑝 = 𝑝 + 2 .
(4.26)

Their unknown coefficients 𝑋 ℓ 𝒜 𝐾 are determined by solving the optimization problem presented in Eq. (4.37) and the following linear system on the new block 𝒜 𝐾 . It is worth mentioning that the optimization problem is solved by using the 𝐿 2 -norm, whereas [START_REF] Dolejší | hp-Discontinuous Galerkin Method Based on Local Higher Order Reconstruction[END_REF] employ the 𝐻 1 -norm. We have tested both norms and found very little difference in the final reconstruction. This justifies the use of the simpler and less costly 𝐿 2 -norm in our work. Next we define the higher-order piecewise polynomial 𝑤 ℎ ∈ 𝒫 𝑝+1 (𝐾) as the restriction of 𝒰 ℎ on 𝐾. Namely:

𝑤 ℎ = 𝒰 ℎ|𝐾 .
(4.27)

Once the higher-order approximation 𝑤 ℎ is restricted to 𝐾, we move to set up 𝑢 ℎ|𝐾 by using the information provided by this new approximation. If we recall the definition of 𝑢 ℎ|𝐾 , that is, Eq. (4.18):

𝑢 ℎ|𝐾 = ∑ 𝑖 𝑢 ℎ,𝑖 = ∑ 𝑖 𝑁 𝑝 ∑ ℓ=1 𝑈 ℓ 𝜅 𝑖 𝜙 ℓ ( Ξ -1
𝜅 𝑖 (𝑥) ) , ∀𝑥 ∈ 𝜅 𝑖 , 𝑖 = 0, … , 𝑁 art -1. (4.28)

In order to build 𝑢 ℎ|𝐾 we use a 𝑝-degree spline interpolation on the artificial subelements 𝜅 𝑖 . Therefore, we have 𝑁 art 𝑁 𝑝 unknown coefficients 𝑈 ℓ 𝜅 𝑖 to evaluate. The same numbers of conditions are required to evaluate the unknowns. We meet the conditions by projecting 𝑤 ℎ on a set of 𝑁 𝑝 Gauss-Lobatto integration points for each 𝜅 𝑖 . Thus reaching 𝑁 art 𝑁 𝑝 conditions for the same number of unknowns. This results in a linear system that solves for 𝑈 ℓ 𝜅 𝑖 .

Figure 4.6 shows the complete reconstruction procedure by illustrating graphically each of its steps. 

Γ-reconstruction

In the final method, 𝑢 ℎ|𝐾 is built from a simpler least-square function approximation from the block 𝒵 𝑖 . The block is defined as A detailed diagram of the reconstruction procedure is displayed in Figure 4.7.

𝒵 𝑖 = 𝜅 (𝐾) 𝑖 ∪ Γ 𝑖 , where Γ 𝑖 = { 𝜕𝜅 (𝐾-1+2𝑖) 1-𝑖 ∩ 𝜕𝜅 (𝐾) 𝑖 } , ( 4 

Two-dimensional reconstruction

In the case of a 2-D reconstruction we define the support of the new enriched approximation 𝒖 ℎ|𝐾 as follows:

supp ( 𝒖 ℎ|𝐾 ) = 𝑁 art -1 ⋃ 𝑖=0 𝜅 𝑖 , with 𝑁 art = 4, (4.33)
where 𝜅 𝑖 represent the artificial sub-elements from the 2-D isotropic subdivision of element 𝐾. The term artificial retains the same meaning as described in the 1-D reconstruction. Similarly, 𝒖 ℎ|𝐾 is composed of 𝑁 art piecewise polynomial functions. That is: are the coefficients to be calculated. Similarly to 1-D, the idea is to find which value of the coefficients minimize the difference between the original 𝒖 ℎ and the new approximation 𝓤 ℎ,𝑖 . That is: To proceed with the local MRA we remind the reader the procedure to connect the DGM and multiwavelets, as expressed by Eq. ( 4.4) and Eq. (4.12) in the one-and two-dimensional context, respectively. Although the 1-D context has been illustrated in detail in Figure 4.1, this previous development is associated with the global multiresolution approach proposed by [START_REF] Hovhannisyan | Adaptive Multiresolution Discontinuous Galerkin Schemes for Conservation Laws[END_REF] and [START_REF] Müller | Adaptive Multiresolution Discontinuous Galerkin Schemes for Conservation Laws: multi-dimensional case[END_REF], as the entire domain of the solution undergoes one unique multiscale decomposition. This approach can be visualized in Figure 4.4a. To adapt the development to our new element-wise MRA we must consider every 𝐾 ∈ Ω ℎ as harboring one independent multiscale decomposition of 𝑢 ℎ|𝐾 . Consequently, for the 1-D local MRA we have the element-wise coupling expressed as (4.41)

𝒖 ℎ|𝐾 = ∑ 𝑖 𝒖
𝑿 ℓ 𝒜 𝑖 = arg min ‖ 𝒖 ℎ|𝜅 𝑖 -𝓤 ℎ,
𝑠 ℓ (ℳ,𝑗) = 2 -ℳ/2 𝑈 ℓ (ℳ,
where the indices 𝑖 = 𝑗 = 0, 1 coincide with the numbering of the artificial sub-elements 𝜅 𝑖 defined in Eq. (4.17). Therefore, we can establish a relation between the multiwavelet nomenclature of Eq. (4.41) and the reconstruction terminology of Eq. (4.17) and Eq. (4.18). Namely:

𝑠 ℓ 𝜅 𝑖 = 1 √2 𝑈 ℓ 𝜅 𝑖 , 𝑖 = 0, … , 𝑁 art -1;
(4.42)

with 𝑁 art = 2 in the current 1-D setting. We have linked the coefficients of the new enriched approximation, 𝑈 ℓ 𝜅 𝑖 , to the single-scale coefficients, 𝑠 ℓ 𝜅 𝑖 . The remaining lower-level single-scale and multiwavelet coefficients can be obtained by applying the QMF coefficients [START_REF] Geronimo | Alpert Multiwavelets and Legendre-Angelesco Multiple Orthogonal Polynomials[END_REF] (4.43a)

𝑑 ℓ 𝐾 = 𝑟 ∑ 𝑘=1 𝑁 art -1 ∑ 𝑖=0 𝐺 (𝑖) ℓ𝑘 𝑠 𝑘 𝜅 𝑖 .
(4.43b)

We observe that the multiscale representation naturally connects the coefficients of the artificial sub-elements 𝜅 𝑖 to the coefficients of element 𝐾. Finally, the multiscale representation of 𝑢 ℎ|𝐾 can now be expressed by Eq. (4.5) as a combination of single-scale functions and multiwavelets:

𝑢 ℎ|𝐾 = 𝒮 𝐾 + 𝒟 𝐾 = 𝑟 ∑ ℓ=1 ( 𝑠 ℓ 𝐾 𝜙 ℓ + 𝑑 ℓ 𝐾 𝜓 ℓ ) , 𝐾 ∈ Ω ℎ , (4.44) 
with 𝑟 = 𝑁 𝑝 . We are particularly interested in how the multiscale information is carried by the multiwavelet contribution, 𝒟 𝐾 . This contribution carries the individual features of the new approximation 𝑢 ℎ|𝐾 and, by extension, it becomes an instrument to measure the behavior of the original DG solution 𝑢 ℎ|𝐾 . In this manner, in regions where the solution is regular 𝒟 𝐾 would report minor or negligible values, whereas regions that harbour discontinuities would translate into 𝒟 𝐾 reaching significant values. Certainly, the works of [START_REF] Shelton | A multi-resolution discontinuous Galerkin method for unsteady compressible flows[END_REF] and [START_REF] Hovhannisyan | Adaptive Multiresolution Discontinuous Galerkin Schemes for Conservation Laws[END_REF] have capitalized on the multiwavelet contribution along a hierarchy of multiple levels to perform grid adaptation.

Two-dimensional multiwavelet decomposition

In the 2-D setting, Eq. (4.42) becomes

𝒔 ℓ 𝜅 𝑖 = 1 2 𝑼 ℓ 𝜅 𝑖 , ℓ = 1, ..., 𝑟 2 ; 𝑖 = 0, … , 𝑁 art -1; (4.45)
where 𝑟 = 𝑁 𝑝 = (𝑝+1) and 𝑁 art = 4. As a reminder, the artificial sub-elements 𝜅 𝑖 originate from element 𝐾 (see Figure 4.8), and they have been previously defined in Eq. (4.33). The QMF coefficients [START_REF] Geronimo | Alpert Multiwavelets and Legendre-Angelesco Multiple Orthogonal Polynomials[END_REF] described in Eq. (4.43) can be applied to calculate the single-scale coefficients and multiwavelet coefficients along the x-,y-and xy-directions [START_REF] Vuik | Multiwavelet Troubled-Cell Indicator for Discontinuity Detection of Discontinuous Galerkin Schemes[END_REF]. They read: (4.46d)

𝒔 ℓ 𝐾 = 1 ∑ 𝑖 𝑥 ,
The link between the coefficients of element 𝐾 and the coefficients of subelements 𝜅 𝑖 has now been established. Lastly, the multiscale representation of 𝒖 ℎ|𝐾 resembles Eq. (4.44) and can be expressed as:

𝒖 ℎ|𝐾 = 𝓢 𝐾 + 𝓓 𝛼 𝐾 + 𝓓 𝛽 𝐾 + 𝓓 𝛾 𝐾 = 𝑟 2 ∑ ℓ=1 ( 𝒔 ℓ 𝐾 𝜱 ℓ + 𝒅 ℓ,𝛼 𝐾 𝜳 ℓ,𝛼 + 𝒅 ℓ,𝛽 𝐾 𝜳 ℓ,𝛽 + 𝒅 ℓ,𝛾 𝐾 𝜳 ℓ,𝛾
) .

(4.47)

CONCLUDING COMMENTARY

In this chapter we have presented a local multiresolution analysis as a new methodology to connect the multiwavelet expansion to the DG formulation.

Unlike the global multiresolution analysis developed by [START_REF] Hovhannisyan | Adaptive Multiresolution Discontinuous Galerkin Schemes for Conservation Laws[END_REF], in which the MRA decomposition involves the full computational domain, we have designed a method that locally restricts the MRA decomposition to the element.

In order to perform the new methodology, the local DG solution has been subjected to different reconstruction procedures. They have ranged from considering the contribution of the immediate neighbors to the evaluation of the solution jumps at the element interfaces. A complete analysis of their performance will be presented in Chapter 6.

By applying the multiwavelet expansion to the new reconstruction we were able to extract the individual features of the reconstructed solution and, by association, it has provided us with an instrument to monitor the behavior of the original DG solution, as we will demonstrate in Chapter 5.

Chapter 5

HP-ADAPTATION BASED ON LOCAL MULTIRESOLUTION

The goal of this chapter is to build an hp-adaptation algorithm based on the local multiresolution analysis of the DG solution developed in Chapter 4. In a first step, we present an exhaustive literature review of the different challenges in the road to adaptation and then how we address them in our algorithm.

Section 5.1 offers a complete study of the most relevant literature on error estimation techniques (Section 5.1.1) and resolution adaptation. The latter comprises Sections 5.1.2 and 5.1.3, which deal with the different approaches to adaptation and the hp-adaptive strategies, respectively.

Section 5.2 describes the hp-adaptive scheme employed in this work. The different components/steps of the algorithm are presented in the subsequent sections. In this manner, Section 5.2.1 illustrates the error estimator, while Sections 5.2.2 to 5.2.3 explains in detail the construction of the regularity indicator. Section 5.2.4 outlines the element marking and hp-decision criteria. Additionally, the mesh enrichment methodology is reported in Section 5.2.5. Lastly, an overview of the hp-algorithm is summarized in Section 5.2.6.

Section 5.3 discusses the parallel implementation followed in this work when performing both uniform and adaptive simulations. Finally, the main developments of this chapter are reviewed in Section 5.4.

ON ERROR ESTIMATION AND RESOLUTION ADAPTATION

In Chapter 2 we presented the process of discretizing of the compressible Navier-Stokes equations by means of the discontinuous Galerkin method (DGM). This set of non-linear partial differential equations is characterized by a wide range of temporal and spatial scales that can make its numerical resolution a difficult endeavor. Particularly, the range of spatial scales require appropriate spatial resolution to attain good numerical accuracy.

At this point one may ask: what is the accuracy of the numerical solution? Answer to that question is essential in the design of reliable adaptive schemes (Ainsworth and Oden, 1997). To this end, we must firstly devise some means to judge the distribution of error in a numerical solution. Generally, this error will be assessed by an error estimator, also known as refinement indicator.

The combination of the error estimator plus an adaptive approach will allow us to systematically reduce error and minimize computational cost by either changing the mesh, the order of the polynomial approximation, or both simultaneously. In this latter case that mesh and polynomial order are revised at the same time (hp-adaptation), we require a companion to the error estimator to select one of the two. The error estimator only tells you which elements should be refined, but it does not indicate which change (mesh or approximation order) is the optimal choice. A method for making that judgement is commonly called an hp-adaptive strategy [START_REF] Mitchell | A Comparison of hp-Adaptive Strategies for Elliptic Partial Differential Equations[END_REF].

Error estimation techniques

There are numerous methodologies available to obtain estimates of the accuracy of the computed numerical solution. Generally, these methods can be classified as a priori methods and a posteriori methods.

A priori methods allow us to obtain a coarse estimation of the error without computing the numerical solution. They are often insufficient since they only provide reliable information in the asymptotic range [START_REF] Roy | Review of Discretization Error Estimators in Scientific Computing[END_REF] and require strict regularity conditions of the solution [START_REF] Verfürth | A posteriori error estimation and adaptive mesh-refinement techniques[END_REF]. Examples of a priori error estimates in the DGM framework can be found in [START_REF] Johnson | An Analysis of the Discontinuous Galerkin Method for a Scalar Hyperbolic Equation[END_REF] and [START_REF] Romkes | A Priori error analyses of a stabilized discontinuous Galerkin method[END_REF].

A posteriori methods, on the other hand, provide an error estimate based on the computed numerical solution. That is, the computed solution itself is used to assess the accuracy relative to the exact solution (Ainsworth and Oden, 1997;[START_REF] Roy | Review of Discretization Error Estimators in Scientific Computing[END_REF]. The construction of a posteriori error estimates goes back to the solution of ordinary differential equations and the use of predictorcorrector schemes to produce error estimates for time-step control (Oden et al., 1989). The pioneering work of Babuvška and Rheinboldt (1978a) popularized a posteriori methods in the finite-element community, where they have seen prolific developments (e.g., the monograph of Ainsworth and Oden (1997)). Regarding the DGM, a posteriori methods have been developed for elliptic [START_REF] Rivière | A Posteriori error estimates for a discontinuous galerkin method applied to elliptic problems[END_REF][START_REF] Houston | Energy norm a posteriori error estimation of hpadaptive discontinuous Galerkin methods for elliptic problems[END_REF], hyperbolic (Adjerid et al., 2002;[START_REF] Adjerid | A posteriori discontinuous finite element error estimation for two-dimensional hyperbolic problems[END_REF], and convection-diffusion problems [START_REF] Ern | A posteriori discontinuous Galerkin error estimates for transient convectiondiffusion equations[END_REF][START_REF] Baccouch | Asymptotically exact a posteriori LDG error estimates for one-dimensional transient convection-diffusion problems[END_REF]. Additionally, several a posteriori DG error estimates have been constructed for the Euler equations (Hartmann and [START_REF] Hartmann | Adaptive Discontinuous Galerkin Finite Element Methods for the Compressible Euler Equations[END_REF] and the Navier-Stokes equations [START_REF] Barth | Space-Time Error Representation and Estimation in Navier-Stokes Calculations[END_REF][START_REF] Fidkowski | Output-based space-time mesh adaptation for the compressible Navier-Stokes equations[END_REF]. a posteriori methodologies can be also categorized according to their refinement indicator. Generally the classification criteria somewhat vary depending on the literature (cf. [START_REF] Oden | Toward a universal h-p adaptive finite element strategy, part 2. A posteriori error estimation[END_REF], Gerhard (2017), [START_REF] Naddei | Simulation adaptative des grandes échelles d'écoulements turbulents fondée sur une méthode Galerkine discontinue[END_REF], and Rueda-Ramírez (2019) for different designations), but we can broadly draw three main paradigms:

(a) Feature-based indicators stem from the study of certain physical features of the flow, which must be fully resolved to adequately represent the flow field. They are also called sensor-based indicators [START_REF] Gerhard | An adaptive multiresolution discontinuous Galerkin scheme for conservation laws[END_REF], as they are normally sensitive to changes in a broad array of flow quantities (e.g., density, pressure, vorticity), or in derived field quantities such as gradients and Hessian matrices. Examples range from vortex 5.1 ON ERROR ESTIMATION AND RESOLUTION ADAPTATION 55 detection [START_REF] Kasmai | Feature-based adaptive mesh refinement for wingtip vortices[END_REF], to shock wave detection [START_REF] Kanamori | Shock wave detection in two-dimensional flow based on the theory of characteristics from CFD data[END_REF], monitoring of boundary layer separation and reattachment [START_REF] Kenwright | Feature extraction of separation and attachment lines[END_REF], and detection of multiple flow phenomena simultaneously [START_REF] Kallinderis | Flow feature detection for grid adaptation and flow visualization[END_REF]. These indicators are economical and easy to implement, but do usually not give any control over the error and require an experienced user to perform satisfactorily.

(b) Adjoint-based indicators or goal-oriented indicators are normally used to estimate the error of specific target quantities, such as aerodynamic force coefficients (e.g., the drag or lift coefficients), by solving an adjoint problem [START_REF] Kast | An Introduction to Adjoints and Output Error Estimation in Computational Fluid Dynamics[END_REF]. The adjoint then indicates how initial numerical errors from the discretization translate into errors in the final target value (Kompenhans et al., 2016b). Moreover, the adjoint also registers where in the domain this error originates from, providing a spatial distribution of the total target error. Therefore, they provide an accurate prediction of the production and propagation of numerical errors [START_REF] Woopen | Adjoint-based error estimation and mesh adaptation for hybridized discontinuous Galerkin methods[END_REF]. These indicators were originally developed in the context of finite-element methods [START_REF] Becker | A Feed-Back Approach to Error Control in Finite Element Methods: Basic Analysis and Examples[END_REF][START_REF] Becker | A Feed-Back Approach to Error Control in Finite Element Methods: Basic Analysis and Examples[END_REF] and later extended to DGMs [START_REF] Hartmann | Adaptive Discontinuous Galerkin Finite Element Methods for the Compressible Euler Equations[END_REF], where their use has experienced a steady growth in both laminar (Hartmann and Houston, 2006) and turbulent flows [START_REF] Hartmann | Adjoint-based error estimation and adaptive mesh refinement for the RANS and k-turbulence model equations[END_REF]. These indicators require high memory storage and a high computational cost to solve the adjoint problem.

(c) Local error-based indicators attempt to measure the local numerical error for every element of the domain. They emerge as a midpoint between the feature-based and adjoint-based indicators, as they provide a reasonably accurate prediction of the numerical error while remaining computationally affordable. There exists a vast literature dedicated to those indicators. We will build upon the nomenclature proposed by [START_REF] Naddei | A comparison of refinement indicators for 𝑝adaptive discontinuous Galerkin methods for the Euler and Navier-Stokes equations[END_REF] and divide them into three main groups:

(i) DE-based indicators measure the discretization error, which is the difference between the exact solution, 𝑢, and the approximate solution, 𝑢 ℎ . Examples of these indicators include the use of a higher-order solution through local reconstruction patches (Dolejší and [START_REF] Dolejší | hp-Discontinuous Galerkin Method Based on Local Higher Order Reconstruction[END_REF] or based on the superconvergence phenomenon [START_REF] Biswas | Parallel, adaptive finite element methods for conservation laws[END_REF], the extrapolation of the available Legendre expansion coefficients [START_REF] Mavriplis | Nonconforming discretizations and a posteriori error estimators for adaptive spectral element techniques[END_REF](Mavriplis, , 1994)), the quantification of interface jumps between elements [START_REF] Krivodonova | Error Estimation for Discontinuous Galerkin Solutions of Two-Dimensional Hyperbolic Problems[END_REF], and the evaluation of the higher-order modes of the numerical solution (Persson and Peraire, 2006;[START_REF] Kuru | An Adaptive Variational Multiscale Discontinuous Galerkin Method For Large Eddy Simulation[END_REF][START_REF] Naddei | A comparison of refinement indicators for 𝑝adaptive discontinuous Galerkin methods for the Euler and Navier-Stokes equations[END_REF].

(ii) TE-based indicators estimate the truncation error, which measures the missing expansion terms between the infinite sum of the exact solution, 𝑢, and the truncated version of the same sum, Π ℎ 𝑢 [START_REF] Mavriplis | Nonconforming discretizations and a posteriori error estimators for adaptive spectral element techniques[END_REF]. The term Π ℎ 𝑢 refers to the projection of 𝑢 onto 𝒱 𝑝 ℎ , Eq. (2.14). We remark that Π ℎ 𝑢 is the best polynomial approximation to 𝑢 and thus, not necessarily equal to 𝑢 ℎ . Estimates of the 56 5 hp-adaptation based on local multiresolution truncation error in the literature include an interpolation method based on the polynomial order [START_REF] Gao | A residual-based procedure for hp-adaptation on 2-d hybrid meshes[END_REF] and the use of interpolation in the context of multiple grids [START_REF] Shih | Development and Evaluation of an a Posteriori Method for Estimating and Correcting Grid-Induced Errors in Solutions of the Navier-Stokes Equations[END_REF]. A popular approach, which also relies on the use of a hierarchy of grids, is the 𝜏-estimation method [START_REF] Brandt | Multigrid Techniques: 1984 Guide with Applications to Fluid Dynamics[END_REF]. Since its extension to DGMs [START_REF] Rubio | Quasi-a priori truncation error estimation in the DGSEM[END_REF], it has experienced a prolific development (Kompenhans et al., 2016a;Rueda-Ramírez et al., 2019a,b).

(iii) RE-based indicators use the residual error in the approximate solution 𝑢 ℎ to estimate the local error, where the residual error is a function measuring how much is left over when 𝑢 ℎ is fed to the governing PDE for the individual DG element [START_REF] Jasak | Element residual error estimate for the finite volume method[END_REF]. They have been originally developed within the finite-element community under the name element-residual method [START_REF] Ainsworth | A procedure for a posteriori error estimation for h-p finite element methods[END_REF], and successfully extended later to DGMs (Bey and Oden, 1996;[START_REF] Hartmann | Adaptive Discontinuous Galerkin Finite Element Methods for the Compressible Euler Equations[END_REF][START_REF] Dolejší | Residual based error estimates for the space-time discontinuous Galerkin method applied to the compressible flows[END_REF].

Even though we have presented the above three groups separately, there exists a relation among the discretization, truncation, and residual errors (Rueda-Ramírez, 2019). This relation is established by the discrete error transport equation [START_REF] Roy | Review of Discretization Error Estimators in Scientific Computing[END_REF], in which the residual and truncation error are featured as source terms [START_REF] Naddei | Simulation adaptative des grandes échelles d'écoulements turbulents fondée sur une méthode Galerkine discontinue[END_REF], thus controlling the behavior of the discretization error across the domain. By monitoring the error transport equation, we observe how the discretization error can be either locally generated or transported from elsewhere in the domain [START_REF] Hay | Error estimation using the error transport equation for finite-volume methods and arbitrary meshes[END_REF]. For further information, we refer the reader to the studies of [START_REF] Hay | Error estimation using the error transport equation for finite-volume methods and arbitrary meshes[END_REF] and [START_REF] Yan | Applications of the Unsteady Error Transport Equation on Unstructured Meshes[END_REF], where the error transport equation is applied to turbulent and unsteady flows, respectively.

In addition to the a priori and a posteriori classification presented above, it is also worth mentioning the so-called perturbation methods, as defined by [START_REF] Gerhard | A Wavelet-Free Approach for Multiresolution-Based Grid Adaptation for Conservation Laws[END_REF]. The idea behind this methodology is to improve the efficiency of a given reference scheme on a uniform reference grid by operating only on a smaller adapted subgrid, while maintaining the accuracy of the discretization on the full uniform grid [START_REF] Gerhard | An adaptive multiresolution discontinuous Galerkin scheme for conservation laws[END_REF]. The concept of multiresolution-based adaptation [START_REF] Calle | Wavelets and adaptive grids for the discontinuous Galerkin method[END_REF][START_REF] Domingues | Space-Time Adaptive Multiresolution Methods for Hyperbolic Conservation Laws: Applications to Compressible Euler Equations[END_REF][START_REF] Müller | Adaptive Multiscale Schemes for Conservation Laws[END_REF][START_REF] Hovhannisyan | Adaptive Multiresolution Discontinuous Galerkin Schemes for Conservation Laws[END_REF], which was introduced in Chapter 4, is a class of perturbation methods. This approach is designed around grid adaptation and does not rely on error estimation. Instead it uses an indicator based on thresholding of local details to drive adaptation.

In the current study, we focus our attention on a merge between local errorbased indicators and perturbation methods. Particularly, we will present a novel indicator, the multiwavelet error estimator, which combines the concepts of DE-based indicators and multiresolution-based adaptation. To complete the analysis, two local error-based indicators from the literature will also be described: the small-scale energy density [START_REF] Kuru | An Adaptive Variational Multiscale Discontinuous Galerkin Method For Large Eddy Simulation[END_REF][START_REF] Naddei | A comparison of refinement indicators for 𝑝adaptive discontinuous Galerkin methods for the Euler and Navier-Stokes equations[END_REF] and the spectral decay indicators (Persson and Peraire, 2006;[START_REF] Naddei | A comparison of refinement indicators for 𝑝adaptive discontinuous Galerkin methods for the Euler and Navier-Stokes equations[END_REF]. These indicators will be introduced in Section 5.2.1.

We will make use of the next section to present the different adaptation approaches commonly followed to adjust the spatial resolution in the framework of DGMs.

Approaches to resolution adaptation

Having estimated the error in the numerical solution, we need to decide how to adjust the spatial resolution of the elements involved in order to obtain a better discretization for the problem at hand (i.e., using the least number of degrees of freedom for a given target accuracy). We can consider three different approaches to adapt the spatial resolution [START_REF] Löhner | Mesh adaptation in fluid mechanics[END_REF]:

1. Mesh repositioning (r-adaptation). The idea is to optimally deform the computational grid and relocate the grid nodes so that the nodal density is increased in the areas of interest (see e.g., [START_REF] Zahr | An optimization-based approach for high-order accurate discretization of conservation laws with discontinuous solutions[END_REF] and Ben Ameur et al. ( 2022)). This approach maintains the mesh topology, thus preserving an even computational load when used in parallel computations [START_REF] Marcon | rp-adaptation for compressible flows[END_REF]. However, any increase in resolution might bring about a decrease in mesh quality (e.g. excessive element distortion), as we are constrained by the initial number of nodes and grid connectivity.

Remeshing (m-adaptation).

In this approach the computational grid is entirely rebuilt in order to generate a more suitable discretization (see e.g., [START_REF] Mavriplis | Adaptive mesh generation for viscous flows using triangulation[END_REF] and [START_REF] Alauzet | Parallel Anisotropic 3D Mesh Adaptation by Mesh Modification[END_REF]). Remeshing has the advantage of not being constrained by the existence of the original mesh, in that a completely new mesh is independently generated. However, this approach introduces extra computational costs due to the construction of a new mesh and the need to project the solution onto the new mesh [START_REF] Remacle | Anisotropic adaptive simulation of transient flows using discontinuous Galerkin methods[END_REF][START_REF] Alauzet | A decade of progress on anisotropic mesh adaptation for computational fluid dynamics[END_REF]. Moreover, the latter step may also introduce additional errors associated with the projection operation.

Mesh enrichment (h/p-adaptation).

The key here is to locally add (refinement) or locally remove (coarsening) degrees of freedom to/from a computational grid in order to return a more efficient discretization of the domain. This approach allows us either to split/agglomerate elements into new ones (h-adaptation) [START_REF] Kamkar | Feature-driven Cartesian adaptive mesh refinement for vortex-dominated flows[END_REF][START_REF] Mozaffari | Average-based mesh adaptation for hybrid RANS/LES simulation of complex flows[END_REF], or to increase/reduce the local order of the approximation (p-adaptation) [START_REF] Ekelschot | A p-adaptation method for compressible flow problems using a goal-based error indicator[END_REF][START_REF] Tugnoli | A locally p-adaptive approach for Large Eddy Simulation of compressible flows in a DG framework[END_REF]. Additionally, both h-and p-can be performed isotropically (along all space directions; see e.g., Gerhard et al. (2015b) and [START_REF] Naddei | A comparison of refinement indicators for 𝑝adaptive discontinuous Galerkin methods for the Euler and Navier-Stokes equations[END_REF]), or anisotropically (along a particular direction; see e.g., [START_REF] Wackers | Adaptive grid refinement for hydrodynamic flows[END_REF] and Rueda-Ramírez et al. (2019a)). One of the drawbacks of mesh enrichment lies in the non-conforming nature of the resulting discretization, being composed of non-conforming elements or nonconforming polynomial approximations, which needs to be considered in the implementation [START_REF] Hesthaven | Nodal Discontinuous Galerkin Methods[END_REF]. Further to this, the application of h-adaptation is prone to develop complex data structures, while p-adaptation is somewhat limited by the topology of the starting grid. Despite these challenges, the possibility of choosing between either h-or p-results in a versatile and efficient approach, as we will discuss next.

Discontinuous Galerkin methods are especially well-suited to h/p-adaptation, as they allow us to locally adjust mesh size (h) and approximation order (p). In this manner, by varying h while keeping p fixed, the numerical error is expected to decay algebraically. This choice is most suitable near discontinuous phenomena, such as shocks or singularities. Alternatively, in the case of a sufficiently smooth solution, maintaining h constant and changing p usually leads to the error converging exponentially [START_REF] Karniadakis | Spectral/hp Element Methods for Computational Fluid Dynamics[END_REF]. Moreover, DGMs are able to handle the resulting non-conforming meshes with hanging nodes and/or different polynomial orders efficiently, as elements only communicate through fluxes computed using the information of the immediate neighbours [START_REF] Rivière | Discontinuous Galerkin methods for solving elliptic and parabolic equations -theory and implementation[END_REF].

Identifying the benefits of both types of convergence, [START_REF] Szabo | Implementation of a finite element software system with H and P extension capabilities[END_REF] proposed a new method in the framework of FEMs that combined h-and p-adaptation simultaneously. Later, the work of [START_REF] Babuvška | The h, p and h-p version of the finite element method; basis theory and applications[END_REF] developed some important theoretical results that paved the way toward generating an optimal distribution of h and p. Since then there has been a blooming in the development of hp-adaptive strategies driving high-order methods, including FEMs [START_REF] Ainsworth | An adaptive refinement strategy for hp-finite element computations[END_REF][START_REF] Demkowicz | A Fully Automatic hp-Adaptivity[END_REF] and DGMs (Bey and Oden, 1996;[START_REF] Chalmers | A parallel hp-adaptive high order discontinuous Galerkin method for the incompressible Navier-Stokes equations[END_REF]. In the next section we will present some of the most common strategies that have been historically employed to determine the hp-distribution, and how that context has shaped our contribution toward a novel hp-decision criteria.

hp-adaptive strategies

Up to this point we have characterized the estimation of the error by using a refinement indicator (Section 5.1.1), and described different options to resolution adaptation (Section 5.1.2). We have concluded that, of the different approaches, h/p-adaptation is especially well suited to DGMs. The combination of h and p holds particular relevance. Unlike the pure h-version or p-version of adaptation, we can judiciously modify both h and p according to the local regularity of the analytical solution [START_REF] Rachowicz | Toward a universal h-p adaptive finite element strategy part 3. design of h-p meshes[END_REF][START_REF] Houston | A note on the design of hp-adaptive finite element methods for elliptic partial differential equations[END_REF][START_REF] Wihler | An hp-adaptive strategy based on continuous Sobolev embeddings[END_REF]. In this manner, p-adaptation would be used in regions with smooth solution behavior to deliver high accuracy, and hadaptation would be employed in areas of low regularity to avoid unbounded oscillations that may result in a loss of stability [START_REF] Wang | Adjoint-based h-p adaptive discontinuous Galerkin methods for the 2D compressible Euler equations[END_REF]. However, since the solution is usually unknown analytically, the local regularity of the solution cannot be exactly computed. In order to estimate the local smoothness of the analytical solution a regularity or smoothness indicator is usually employed instead. This indicator is paired with an hp-decision criterion to constitute a particular hp-adaptive strategy. Various hp-adaptive strategies have been developed in the literature (for a review, see e.g., [START_REF] Houston | A note on the design of hp-adaptive finite element methods for elliptic partial differential equations[END_REF], [START_REF] Eibner | An adaptive strategy for hp-FEM based on testing for analyticity[END_REF], [START_REF] Mitchell | A Comparison of hp-Adaptive Strategies for Elliptic Partial Differential Equations[END_REF], and Ringue ( 2019)). By building upon the existing classification proposed by [START_REF] Houston | A note on the design of hp-adaptive finite element methods for elliptic partial differential equations[END_REF], we have the following categories:

(A) Use of a priori knowledge. This strategy uses any a priori information about the geometrical or physical singularities occurring throughout the domain. An element is h-adapted if it contains possible irregularities, and p-adapted otherwise. This simple strategy has been employed in [START_REF] Valenciano | Space-Time Discontinuous Galerkin Finite Element Method with Dynamic Grid Motion for Inviscid Compressible Flows: I. General Formulation[END_REF] and Ainsworth and Senior (1999).

(B) Use of p-estimates. This strategy estimates the convergence rate in p by building approximations of different order. There exist various versions of this strategy. The smaller p-estimates variant [START_REF] Süli | hp-finite element methods for hyperbolic problems[END_REF] is built on 𝑝 -2 and 𝑝 -1 approximations, whereas the larger p-estimates alternative [START_REF] Ainsworth | An adaptive refinement strategy for hp-finite element computations[END_REF] is based upon 𝑝 + 1, 𝑝 + 2, and 𝑝 + 3 spaces. Finally, the so-called type-parameter [START_REF] Babuvška | The h, p and h-p Versions of the Finite Element Method in 1 Dimension. Part III. The Adaptive h-p Version[END_REF] approach can be also classified as a variant of p-estimates, as it relies on error estimates from 𝑝 and 𝑝 -1 spaces.

(C) Use of h-and p-estimates. The idea behind this strategy is to apply either h-and p-adaptation, estimate the error (using one of the techniques explained in Section 5.1.1), and then choose which of the two leads to the largest decrease of the error with respect to the number of degrees of freedom. Multiple variants of this strategy can be found in the literature. The commonly known mesh optimization strategy [START_REF] Rachowicz | Toward a universal h-p adaptive finite element strategy part 3. design of h-p meshes[END_REF][START_REF] Demkowicz | A Fully Automatic hp-Adaptivity[END_REF] solves the problem on a globally hp-refined mesh. Related, but simpler, approaches were developed in [START_REF] Solin | Higher-Order Finite Element Methods[END_REF] and [START_REF] Schmidt | A posteriori estimators for the h -p version of the finite element method in 1D[END_REF]. Another studies examine the use of h-and p-coarsening (Dolejší et al., 2016), or the use of a higher-order reconstruction [START_REF] Dolejší | hp-Discontinuous Galerkin Method Based on Local Higher Order Reconstruction[END_REF]. Lastly, the so-called Texas 3-step strategy (Bey and Oden, 1996), departs from the previous studies by using a more empirical approach. In this case, the h-and p-refinement are performed in a series of consecutive steps bounded by user-defined error tolerances.

(D) Use of smoothness assumption. This strategy relies on the prediction of what the error should be if the local solution is smooth and the optimal convergence rate (exponential convergence) has been achieved. It compares the current estimated error against a prediction on the previous mesh. If the hypothesis of smoothness is reasonable, p-enrichment is performed; otherwise h-refinement will be executed. This strategy was originally devised by [START_REF] Melenk | On residual-based a posteriori error estimation in hp-FEM[END_REF] and later applied to various studies, such as [START_REF] Heuveline | Duality-Based Adaptivity in the Hp-Finite Element Method[END_REF] and [START_REF] Eibner | An adaptive strategy for hp-FEM based on testing for analyticity[END_REF]. (F) Use of decay of Legendre expansion coefficients. This strategy was born from the influential works of [START_REF] Mavriplis | Nonconforming discretizations and a posteriori error estimators for adaptive spectral element techniques[END_REF]Mavriplis ( , 1994) ) in adaptive spectral methods. There, the high-order numerical solution is first expanded to orthogonal polynomials. A second step involves extrapolation of the expansion coefficients to insure an accurate representation of the spectrum of the solution. Then the main idea is to verify whether the resulting spectrum decays sufficiently fast. If that is the case, an exponential convergence in p can be assumed and p-enrichment is advised. In the presence of discontinuities, the decay rate is hindered and becomes slower, in which case h-refinement is performed. Since then, this strategy has been widely applied in spectral methods [START_REF] Feng | Adaptive Spectral Element Simulations of Thin Premixed Flame Sheet Deformations[END_REF], FEMs [START_REF] Eibner | An adaptive strategy for hp-FEM based on testing for analyticity[END_REF], and DGMs [START_REF] Wang | Adjoint-based h-p adaptive discontinuous Galerkin methods for the 2D compressible Euler equations[END_REF][START_REF] Leicht | Error estimation and hp-adaptive mesh refinement for discontinuous Galerkin methods[END_REF][START_REF] Chalmers | A parallel hp-adaptive high order discontinuous Galerkin method for the incompressible Navier-Stokes equations[END_REF]Basile et al., 2022).

On a side note, it is worth mentioning some recently developed alternatives to the aforementioned hp-adaptation strategies. Instead of relying on smoothness evaluation, these alternative strategies are based on optimal refinement decisions [START_REF] Balan | Adjoint-based hp-adaptivity on anisotropic meshes for highorder compressible flow simulations[END_REF] and normally paired with goal-oriented indicators (Section 5.1.1). The idea is to assume the existence of optimal distributions of degrees of freedom on the computational domain and construct an optimization-based framework for hp-adaptation accordingly. Examples range from the use of a selection process based on a merit function to locally minimize the error and the number of degrees of freedom [START_REF] Ceze | Anisotropic hp-Adaptation Framework for Functional Prediction[END_REF], to the targeting of a globally optimal metric and polynomial degree fields which minimize the global error on an output quantity of interest [START_REF] Ringue | An optimization-based framework for anisotropic hp-adaptation of high-order discretizations[END_REF].

If we return to the previous classification, we have drawn inspiration from the hp-strategy developed by [START_REF] Mavriplis | Nonconforming discretizations and a posteriori error estimators for adaptive spectral element techniques[END_REF]Mavriplis ( , 1994) ) to introduce a new smoothness indicator. We call it the multiwavelet regularity indicator. It builds upon the concepts behind the multiwavelet error estimator previously highlighted in Section 5.2.1, and it has been designed to be working as its companion, although it can also be used independently. Similarly to the smoothness indicator that Mavriplis developed as part of her hp-strategy, our indicator also measures the rate of decay of a given spectrum, this being the spectrum of the multiwavelet coefficients. Both indicators require an extra post-processing step to improve the estimation. Mavriplis's approach performs extrapolation to estimate the missing coefficients. On the other hand, our method is based on the work of [START_REF] Dolejší | hp-Discontinuous Galerkin Method Based on Local Higher Order Reconstruction[END_REF] to build a more accurate solution by considering the contributions from the neighbors (see Chapter 4). This new enriched solution is well-suited to the multiwavelet expansion, which in turn provides an estimation of the full signal spectrum. Our proposed strategy is clearly explained in the next sections.

NOVEL HP-ADAPTIVE SCHEME

In Section 5.1 we have presented the multiple challenges that any adaptive scheme in the framework of DGMs may face and how they have been historically investigated in the literature. We have also briefly hinted the ways in which the present work contributes to the topic.

In this section we will provide a thorough account of the design of our hpadaptive algorithm. We first introduce the notation of hp-mesh, Ω ℎ,𝓅 , which is simply the assignation of a local polynomial degree 𝑝 𝐾 to each 𝐾 ∈ Ω ℎ . In other words:

Ω ℎ,𝓅 = { Ω ℎ , 𝓅 } ,
with 𝓅 = { 𝑝 𝐾 , 𝐾 ∈ Ω ℎ} .

(5.1)

With this notation, the approximation space 𝒱 𝓅 ℎ that contains the corresponding DG solution 𝒖 ℎ,𝓅 ∈ 𝒱 𝓅 ℎ is an updated version of Eq. (2.14). Namely:

𝒱 𝓅 ℎ = { Φ ℎ ∈ 𝐿 2 (Ω ℎ ) ∶ Φ ℎ|𝐾 ∈ 𝒫 𝑝 𝐾 ( 𝜩 -1 𝐾 (𝐾) ) , ∀𝐾 ∈ Ω ℎ,𝓅} , (5.2) 
where 𝒫 𝑝 𝐾 ( 𝜩 -1 𝐾 (𝐾) ) denotes the space of all polynomials of degree at most 𝑝 𝐾 defined on K.

The objective is to determine a distinct sequence of hp-meshes, Ω (𝑖) ℎ,𝓅 with 𝑖 = 1, 2, …, such that the associated sequence of DG solutions 𝒖 (𝑖) ℎ,𝓅 converges at a high, desirably exponential, rate to the exact solution 𝒖. Mesh refinement of Ω ℎ will be solely guided by the multiwavelet error estimator, which will be described in detail in Section 5.2.1. Simultaneous adaptation of Ω ℎ as well as the degree distribution 𝓅 of the hp-mesh Ω ℎ,𝓅 necessitates the combination of the error estimator and the multiwavelet regularity indicator, which provides supplementary smoothness information to decide whether to perform mesh or degree adaptation. We give a prelude on how to link this information to a multiwavelet expansion in Section 5.2.2. The multiwavelet regularity indicator and the subsequent hp-decision criteria will be presented in Section 5.2.3 and Section 5.2.4, respectively. Section 5.2.5 describes how the spatial adaptation is implemented. Finally, an overview of the complete hp-algorithm is featured in Section 5.2.6.

The multiwavelet error estimator

In Chapter 4 we have described several post-enrichment methods applied to the original DG solution 𝑢 ℎ|𝐾 . These reconstruction methods have allowed us to assemble a new approximation 𝑢 ℎ|𝐾 . Subsequent to this step, we have performed a local MRA decomposition of 𝑢 ℎ|𝐾 by means of a multiwavelet expansion.

In this section we resume from the local MRA representation given by Eq. (4.44). The next step is to evaluate its multiwavelet contribution, 𝒟 𝐾 , to achieve an estimation of the discretization error on element 𝐾. As highlighted in Section 5.1.1, the resulting local indicator constitutes a hybrid approach between DE-based indicators and multiresolution-based adaptation.

The main idea is to calculate the 𝐿 2 -norm of 𝒟 𝐾 , which can be read as an evaluation of the energy associated with the individual fluctuations of 𝑢 ℎ|𝐾 . Consequently, in the 1-D context the underlying structure of the local estimator can be expressed as:

𝜂 𝐾 = ‖ 𝒟 𝐾 ‖ 𝐿 2 (𝐾) = ‖ 𝑟 ∑ ℓ=1 𝑑 ℓ 𝐾 𝜓 ℓ ‖ 𝐿 2 (𝐾) = [ 𝑟 ∑ ℓ=1 ( 𝑑 ℓ 𝐾 ) 2 ] 1/2
, 𝐾 ∈ Ω ℎ,𝓅 , (5.3)

with multiplicity 𝑟 = 𝑝+1. Moreover, we have used ⟨𝜓 ℓ , 𝜓 ℓ ′ ⟩ 𝐾 = 𝛿 ℓ,ℓ ′ from the orthonormality relations in Eq. (3.31) to simplify the final expression. We propose three alternatives to the multiwavelet estimator derived from Eq. ( 5.3).

The difference between them lies in the reconstruction method employed to reach 𝑢 ℎ and their terminology reflects this fact (see sections 4.3.1 to 4.3.3).

Consequently, we rewrite Eq. ( 5.3) to account for the post-enrichment procedure. In other words: (5.4) which are labelled as the 𝜅-, 𝐾, and Γ-multiwavelet estimator; respectively.

𝜂 𝐾 becomes either ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 𝜂 𝜅-MW 𝐾 , if
Two-dimensional estimator Similarly to the 1-D setting, we will evaluate the multiwavelet contribution resulting from applying a local MRA to the new approximation 𝒖 ℎ|𝐾 in order to assess the discretization error on element 𝐾. However, in the 2-D context only one error estimator will be developed. This estimator will be based on the 𝜅-reconstruction procedure presented in Section 4.3.4. We will further justify this choice in Chapter 6.

Hence, the 𝜅-multiwavelet estimator is defined by evaluating the 𝑥-,𝑦-and 𝑥𝑦-components of the multiwavelet contribution given by Eq. (4.47) in the 𝐿 2 -norm. Namely:

𝜂 𝜅-MW 𝐾 = ‖ 𝓓 𝛼 𝐾 + 𝓓 𝛽 𝐾 + 𝓓 𝛾 𝐾 ‖ 𝐿 2 (𝐾) = ‖ 𝑟 2 ∑ ℓ=1 ( 𝒅 ℓ,𝛼 𝐾 𝜳 ℓ,𝛼 + 𝒅 ℓ,𝛽 𝐾 𝜳 ℓ,𝛽 + 𝒅 ℓ,𝛾 𝐾 𝜳 ℓ,𝛾 )‖ 𝐿 2 (𝐾)
, 𝐾 ∈ Ω ℎ,𝓅 . (5.5)

In general, if we extend the orthonormality relations in Eq. (3.31) to the current 2-D setting and consider the extra directions given by the superscripts 𝛼,
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𝛽, and 𝛾 we have the following new orthonormality relations between components:

⟨ 𝜳 ℓ,𝛼 , 𝜳 𝑘,𝛼 ⟩ 𝐾 = 𝛿 ℓ,𝑘 , ⟨ 𝜳 ℓ,𝛼 , 𝜳 𝑘,𝛽 ⟩ 𝐾 = 0, ⟨ 𝜳 ℓ,𝛼 , 𝜳 𝑘,𝛾 ⟩ 𝐾 = 0,

(5.6a)

⟨ 𝜳 ℓ,𝛽 , 𝜳 𝑘,𝛼 ⟩ 𝐾 = 0, ⟨ 𝜳 ℓ,𝛽 , 𝜳 𝑘,𝛽 ⟩ 𝐾 = 𝛿 ℓ,𝑘 , ⟨ 𝜳 ℓ,𝛽 , 𝜳 𝑘,𝛾 ⟩ 𝐾 = 0,

(5.6b)

⟨ 𝜳 ℓ,𝛾 , 𝜳 𝑘,𝛼 ⟩ 𝐾 = 0, ⟨ 𝜳 ℓ,𝛾 , 𝜳 𝑘,𝛽 ⟩ 𝐾 = 0, ⟨ 𝜳 ℓ,𝛾 , 𝜳 𝑘,𝛾 ⟩ 𝐾 = 𝛿 ℓ,𝑘 .

(5.6c)

where ℓ, 𝑘 = 1, ..., 𝑟. Consequently, Eq. (5.5) can be simplified to

𝜂 𝜅-MW 𝐾 = [ 𝑟 2 ∑ ℓ=1 ( 𝒅 ℓ,𝛼 𝐾 ) 2 + 𝑟 2 ∑ ℓ=1 ( 𝒅 ℓ,𝛽 𝐾 ) 2 + 𝑟 2 ∑ ℓ=1 ( 𝒅 ℓ,𝛾 𝐾 ) 2 ] 1/2 , 𝐾 ∈ Ω ℎ,𝓅 .
(5.7)

Error estimators from the literature We also include two estimators extensively tested in [START_REF] Naddei | A comparison of refinement indicators for 𝑝adaptive discontinuous Galerkin methods for the Euler and Navier-Stokes equations[END_REF][START_REF] Naddei | A Comparison of Refinement Indicators for 𝑝-adaptive Simulations of Steady and Unsteady Flows Using Discontinuous Galerkin Methods[END_REF] and Taube et al. ( 2010) so that we can compare them against our MW-based estimators.

We consider the small-scale energy density (SSED) estimator [START_REF] Kuru | An Adaptive Variational Multiscale Discontinuous Galerkin Method For Large Eddy Simulation[END_REF][START_REF] Naddei | A comparison of refinement indicators for 𝑝adaptive discontinuous Galerkin methods for the Euler and Navier-Stokes equations[END_REF] and the spectral decay (SD) estimator [START_REF] Taube | hp-Adaptation in Space-Time within an Explicit Discontinuous Galerkin Framework[END_REF]. The SSED estimator measures the energy associated with the highestorder modes. It is expressed as:

𝜂 SSED 𝐾 = ‖ ∑ 𝑁 𝑝 ℓ=1 𝑼 ℓ 𝐾 𝜙 ℓ -∑ 𝑁 𝑝-1 ℓ=1 𝑼 ℓ 𝐾 𝜙 ℓ ‖ 𝐿 2 (𝐾) |𝐾| 1/2 , 𝐾 ∈ Ω ℎ,𝓅 , (5.8) 
where the normalization is made using the volume of the element, |𝐾|. The SD is similar to the SSED estimator, but instead normalised by the total energy within the element. That is:

𝜂 SD 𝐾 = ‖ ∑ 𝑁 𝑝 ℓ=1 𝑼 ℓ 𝐾 𝜙 ℓ -∑ 𝑁 𝑝-1 ℓ=1 𝑼 ℓ 𝐾 𝜙 ℓ ‖ 𝐿 2 (𝐾) ‖ ∑ 𝑁 𝑝 ℓ=1 𝑼 ℓ 𝐾 𝜙 ℓ ‖ 𝐿 2 (𝐾)
, 𝐾 ∈ Ω ℎ,𝓅 .

(5.9)

On multiwavelets and smoothness estimation

If we recall from Chapter 3, the multiwavelet coefficients resulting from applying the multiscale decomposition to a function 𝑓 are defined as

𝑑 ℓ (𝑚,𝑗) = ⟨ 𝑓 , 𝜓 ℓ (𝑚,𝑗)⟩ 𝐾 (𝑚,𝑗)
, 𝑚 = 0, ..., ℳ -1, 𝑗 = 0, ..., 2 𝑚 -1,

(5.10)

where the index 𝑚 denotes the resolution level and the value ℳ conveys the finest resolution level. Additionally, we also characterized Alpert's multiwavelets [START_REF] Alpert | A Class of Bases in L 2 for the Sparse Representation of Integral Operators[END_REF][START_REF] Alpert | Adaptive Solution of Partial Differential Equations in Multiwavelet Bases[END_REF] as having 𝑀 vanishing moments. Namely, (5.12)

𝑀 = ℓ + 𝑟 -1, ℓ = 1, ...,
To put it in another way, Alpert's multiwavelets are orthogonal to polynomials of degree 𝑀 -1 and their associated multi-scaling functions 𝜙 ℓ (𝑚,𝑗) would be able to reproduce these same polynomials exactly. For example, the related multi-scaling function of Alpert's multiwavelet with multiplicity 𝑟 = 1 (Haar wavelet, Figure 3.3b) has 𝑀 = 1 and only reproduces constant functions. If we increase the multiplicity to 𝑟 = 2, we have two multiwavelets (Fig. 3.5b) with 𝑀 = 2 and 𝑀 = 3. Their associated multi-scaling functions are able to reproduce up to linear and quadratic functions, respectively.

If we continue increasing the multiplicity, a pattern emerges. The more vanishing moments, the better the multi-scaling functions model smooth functions and the smaller the multiwavelet coefficients will be for every successive resolution level 𝑚. In other words, the information of the function will be concentrated in a small number of coefficients [START_REF] Hubbard | The World According to Wavelets: The Story of a Mathematical Technique in the Making[END_REF].

Certainly, this idea is linked to the so-called cancellation property [START_REF] Dahmen | Wavelet methods for PDEs -some recent developments[END_REF]Vuik, 2020), which describes the behavior of the multiwavelet coefficients as we increase the resolution level 𝑚 and the number of vanishing moments 𝑀. For a sufficiently smooth function 𝑓 |𝐾 𝑚,𝑗 ∈ 𝐶 𝑀 (𝐾 𝑚,𝑗 ), we have 𝑑 ℓ 𝑚,𝑗 ≤ 2 (-𝑚+1)(𝑀+1/2) 1 𝑀! ‖ 𝑓 (𝑀) ‖ 𝐿 ∞ (𝐾 (𝑚,𝑗) ) .

(5.13)

The cancellation property sets an upper bound to the rate of decay but it does not tell us which is its value. Moreover, 𝑓 may not always be given analytically (e.g., DG solution), thus making it difficult to evaluate Eq. (5.13).

Even though Eq. ( 5.13) provides limited information about the rate of decay of the multiwavelet coefficients, it does offer some insight on how, for a fixed level 𝑚 = ℳ, the higher the number of vanishing moments 𝑀, the faster the decay becomes. Then it may seem intuitive to arrange the details 𝑑 ℓ 𝑚,𝑗 from lower to higher 𝑀 and analyze their behavior.

In a first approach, we will start by selecting two analytical functions, 𝑓 (𝑥) and 𝑔(𝑥). The signal 𝑓 represents a non-polynomial smooth function, whereas 𝑔 defines a strong discontinuity. The functions are shown in Figure 5.1a and Figure 5.1b, respectively. Then, for each function, we perform a two-level multiscale decomposition with ℳ = 1, as described by Eq. (3.26). We have selected the functions so that 𝑓 , 𝑔 ∉ 𝒫 𝑀 ( 𝐾 ) . Therefore, for either 𝑓 or 𝑔, Eq. (5.10) now guarantees where for simplicity 𝑑 ℓ = 𝑑 ℓ 0,0 , 𝜓 ℓ = 𝜓 ℓ 0,0 , and 𝐾 = 𝐾 (0,0) . Figure 5.1c displays the resulting coefficients for different multiplicities 𝑟 on a log-linear scale. The number of vanishing moments associated with every coefficient, as described by Eq. (5.11), are arranged along the 𝑥-axis. We observe how the decline of the coefficients is similar to an exponential decay of the form: It also measures the quality of the fit with the Pearson coefficient, denoted by ℛ. We notice that the discontinuity in 𝑔 translates to large coefficients with slow decay (𝜍 < 0.2). Conversely, the smoother signal 𝑓 reports smaller coefficients with a rapid decay (𝜍 > 0.8). Except for low values of 𝑟, the decay parameter does not seem to be greatly affected by changes in multiplicity. Finally, the quality of the fit deteriorates when facing discontinuities, which seems to suggest that the rate of decline ceases to be of exponential nature.

𝑑 ℓ = ⟨ ⋅ , 𝜓 ℓ ⟩ 𝐾 ≠ 0 ℓ = 1, ..., 𝑟 , ( 
| 𝑑 ℓ | ∼ 𝑐10 -𝜍𝑀

Two-dimensional case

In two-dimensions the analysis becomes more elaborated. The vanishing moments are mixed due to the tensor product and we end up with horizontal, 𝛼; vertical, 𝛽; and diagonal, 𝛾, multiwavelet coefficients. Therefore, by considering Eq. (4.14) and Eq. (3.39) with ℳ = 1, we Table 5.2: Distribution of lowest mode 𝑎 𝑖𝑗 resulting from applying Eq. (5.16) to Eq. (5.17). Multiplicities 𝑟 = 2 and 𝑟 = 3 are tested along the upper and lower row, respectively. Depending on the lowest mode and the location 𝛼, 𝛽, 𝛾, we reach a different quantity of the equivalent number of vanishing moments, 𝑀 eq (circled), associated with each coefficient 𝒅 ℓ . Coefficients that share 𝑀 eq are clustered together (dotted line).

(a) Horizontal, 𝒅 with 𝜳 ℓ,𝛼 = 𝜓 ℓ 𝑥 𝜙 ℓ 𝑦 , (5.16a)

𝒅 ℓ,𝛽 = ⟨ 𝐹 , 𝜳 ℓ,𝛽 ⟩ 𝐾 ,
with 𝜳 ℓ,𝛽 = 𝜙 ℓ 𝑥 𝜓 ℓ 𝑦 , (5.16b)

𝒅 ℓ,𝛾 = ⟨ 𝐹 , 𝜳 ℓ,𝛾 ⟩ 𝐾 ,
with 𝜳 ℓ,𝛾 = 𝜓 ℓ 𝑥 𝜓 ℓ 𝑦 , (5.16c)

where ℓ = 𝑟(ℓ 𝑥 -1) + ℓ 𝑦 with ℓ 𝑥 , ℓ 𝑦 = 1, … , 𝑟. Additionally, to improve readability we have simplified the nomenclature to 𝐹 = 𝐹 (𝑥, 𝑦), 𝒅 ℓ = 𝒅 ℓ 0,0 , 𝜳 ℓ = 𝜳 ℓ 0,0 , and 𝐾 = 𝐾 (0,0) . The idea is to find out the equivalent vanishing moments 𝑀 eq associated with the horizontal, vertical and diagonal details by comparing the evolution of these details for a generic polynomial function 𝐹 = 𝑃 with 𝑃 ∈ 𝒫 𝑟+1 ( 𝐾 ) . Namely,

𝐹 (𝑥, 𝑦) = 𝑟+1 ∑ 𝑖,𝑗=0
𝑎 𝑖𝑗 𝑥 𝑖 𝑦 𝑗 .

(5.17)

The results for multiplicities 𝑟 = 2 and 𝑟 = 3 are reported in Table 5.2. The extension to higher multiplicities is straightforward. By observing the lowest non-vanishing mode 𝑎 𝑖𝑗 , we conclude that the horizontal and vertical coefficients follow the same Eq. (5.11) defined in 1-D. Certainly, their tensor product in Eq. (5.16) only involves a single multiwavelet, either along the 𝑥-or 𝑦-direction, with the remaining direction not adding any extra vanishing moments. On the other hand, the diagonal coefficient features a tensor product of two multiwavelets. This means that their vanishing moments are happening along the 𝑥-and 𝑦-direction simultaneously. Therefore, we define the number of equivalent vanishing moments as

𝑀 eq (ℓ) = ⎧ ⎪ ⎨ ⎪ ⎩ ℓ 𝑥 + 𝑟 -1 if 𝒅 ℓ,𝛼 ℓ 𝑦 + 𝑟 -1 if 𝒅 ℓ,𝛽 2(𝑟 -1) + ℓ 𝑥 + ℓ 𝑦 if 𝒅 ℓ,𝛾
(5.18) Once 𝑀 eq has been defined, we proceed to order the coefficients 𝒅 ℓ from lower to higher 𝑀 eq and monitor their behavior. The motivation here is to express the coefficients into a single decaying spectrum, in a similar manner to the one-dimensional case. To that end, we define the following energy spectrum

𝜀(𝒩 ) = ‖ 𝒅 ℓ,𝛼 + 𝒅 ℓ ′ ,𝛽 + 𝒅 ℓ ″ ,𝛾 ‖ 𝐿 2 , ∀ℓ, ℓ ′ , ℓ ″ | 𝑀 eq ( ⋅ ) = 𝒩 , (5.19) 
where 𝒩 = 𝑟, … , 3𝑟 -1 limits the possible values of 𝑀 eq . We test Eq. (5.19) by evaluating two different functions, denoted by 𝐹 (𝑥, 𝑦) and 𝐺(𝑥, 𝑦). They are illustrated in Figure 5.2a and Figure 5.2b, respectively. The behavior of the spectrum under different multiplicities 𝑟 is shown in Figure 5.2c. Additionally, the log-linear plot features a regression line for every 𝑟-family to measure the rate of decay of 𝜀(𝒩 ). The regression parameters are collected in Table 5.4.

Analogously to the 1-D case, we observe a fast exponential decay and high quality of the fit when the signal is regular (𝜍 > 0.7, ℛ > 0.9), and a slower decline when facing discontinuities (𝜍 ≈ 0.2). These behaviors remain more consistent with varying multiplicities compared to the 1-D case. This can be explained by the higher amount of data points, which helps to phase out outliers.

The multiwavelet regularity indicator

Up to this point we have proved how a clever arrangement of the multiwavelet coefficients allows us to estimate the regularity of a signal by measuring its rate of decay. However, the analysis has been only performed on analytical functions. In the next paragraphs we will described the extension to the DG framework. In particular, we will put under the microscope the new enriched solution 𝑢 ℎ|𝐾 outlined in Chapter 4 and come up with a novel estimate of the local smoothness based on a multiwavelet expansion.

Firstly, we will focus our attention on the 1-D setting. With this in mind, we recall the reader the local multiresolution procedure applied to 𝑢 ℎ|𝐾 , as de- where 𝐺 (𝑖) ℓ𝑘 are the highpass QMF coefficient matrices [START_REF] Geronimo | Alpert Multiwavelets and Legendre-Angelesco Multiple Orthogonal Polynomials[END_REF] given by Eq. (4.8), 𝑈 𝑘 𝜅 𝑖 are the coefficients of 𝑢 ℎ,𝑖 , and 𝜅 𝑖 refer to the finer echelon of the two-level multiwavelet expansion within 𝐾.

Drawing insight from the behavior of the spectrum | 𝑑 ℓ | associated with analytical functions (see Figure 5.1c), we expect to register a strong link between the regularity of 𝑢 ℎ|𝐾 and the rate of decay of its multiwavelet spectrum, given by Eq. (5.20). To evaluate this hypothesis, we examine several values of the decay parameter 𝜍 𝐾 associated with the multiwavelet expansion of 𝑢 ℎ|𝐾 and monitor the subsequent changes in 𝑑 ℓ 𝐾 . Naturally, any modification in the details will reshape the original 𝑢 ℎ|𝐾 and its regularity. We start by describing its left, 𝑢 ℎ,0 , and right side, 𝑢 ℎ,1 , with the generic coefficients

𝒶 𝑘 = 𝑈 𝑘 𝜅 0 , 𝒷 𝑘 = 𝑈 𝑘 𝜅 1 ,
(5.21) (5.22)

By assuming that the spectrum | 𝑑 ℓ 𝐾 | decays exponentially, we can replace it in Eq. (5.15). Therefore, we have:

10 -𝜍 𝐾 ( ℓ+𝑟-1 ) = 1 √2 | 𝑟 ∑ 𝑘=1 ( 𝐺 (0) ℓ𝑘 𝒶 𝑘 + 𝐺 (1) ℓ𝑘 𝒷 𝑘 ) | , ℓ = 1, … , 𝑟 ,
(5.23)

where we have injected expression (5.11) into the exponent. Additionally, without loss of generality we set that 𝑐 = 1. Finally, to move from similarity in the original equation to equality we have assumed sufficiently high quality of fit. By choosing a multiplicity 𝑟 and setting a value for the parameter 𝜍 𝐾 , Eq. (5.23) becomes an undetermined linear system with 𝑟 equations and 2𝑟 unknowns (coefficients 𝒶 ℓ and 𝒷 ℓ ). To be able to solve the system we initialize 𝒶 ℓ , which causes 𝑢 ℎ,0 to be fixed and makes 𝑢 ℎ,1 dependent on the input value of 𝜍 𝐾 .

Figure 5.3 illustrates the resolution of Eq. (5.23) for different multiplicities and values of 𝜍 𝐾 . For the lowest multiplicity value 𝑟 = 2, Figure 5.3a, shows a progressive increase in the interface jump between 𝑢 ℎ,0 and 𝑢 ℎ,1 when the rate of decay is reduced (𝜍 𝐾 → 0). Qualitatively speaking, the wider this gap grows, the larger the discontinuity and the less smooth 𝑢 ℎ|𝐾 becomes. This result is in agreement with the low values of 𝜍 𝐾 recorded for analytical functions when facing discontinuities. The same behavior can be observed for higher multiplicities (Figures 5.3b to 5.3d). (5.25c)

Two-dimensional case

where 𝑘 = 𝑟(𝑘 𝑥 -1) + 𝑘 𝑦 and ℓ = 𝑟(ℓ 𝑥 -1) + ℓ 𝑦 , with ℓ 𝑥 , ℓ 𝑦 = 1, … , 𝑟. Instead of following the single decaying spectrum from Eq. (5.19), we will exceptionally analyze the horizontal, | 𝒅 ℓ,𝛼 𝐾 | ; vertical, | 𝒅 ℓ,𝛽 𝐾 | ; and diagonal spectrum, | 𝒅 ℓ,𝛾 𝐾 | , separately so that we can provide additional equations to properly solve the ensuing linear system. Therefore, we expect an exponential rate of decay of the form:

| 𝒅 ℓ 𝐾 | ∼ 𝑐10 -𝜍 𝐾 𝑀 eq .
(5.26)

By considering the expression of the number of equivalent vanishing moments 𝑀 eq , given by Eq. (5.18), and assuming 𝑐 = 1 and a high quality of fit (see Table 5.4), Eq. (5.26) becomes

| 𝒅 ℓ,𝛼
𝐾 | = 10 -𝜍 𝐾 ( ℓ 𝑥 +𝑟-1 ) ,

(5.27a)

| 𝒅 ℓ,𝛽
𝐾 | = 10 -𝜍 𝐾 ( ℓ 𝑦 +𝑟-1 ) ,

(5.27b)

| 𝒅 ℓ,𝛾
𝐾 | = 10 -𝜍 𝐾 ( 2(𝑟-1)+ℓ 𝑥 +ℓ 𝑦) .

(5.27c)

In the same manner as in the 1-D case, by quantifying the multiplicity 𝑟 and the decay parameter 𝜍 𝐾 , the set of equations Eq. (5.27a) to Eq. (5.27c) turn into an undetermined system with 3𝑟 2 equations and 4𝑟 2 unknowns (coefficients 𝒶 𝑘 , 𝒷 𝑘 , 𝒸 𝑘 , and 𝒹 𝑘 ). Initialization of 𝒶 𝑘 enables us to solve the system by fixing the contribution 𝒖 ℎ,0 and making the remaining enriched solution unknowns { 𝒖 ℎ,𝑖} 3 𝑖=1 , dependent on the decay parameter 𝜍 𝐾 . In the next paragraphs we evaluate multiple values of 𝜍 𝐾 under different multiplicities 𝑟 and examine how they influence the final shape of 𝑢 ℎ|𝐾 .

Figure 5.4 outlines the solution to the system for 𝑟 = 2. Similarly to the behavior observed in 1-D, rapid decay rates (𝜍 𝐾 ≈ 1) report smaller interface jumps between contributions 𝒖 ℎ,𝑖 , which in turn imply a more regular final 𝒖 ℎ|𝐾 . When the rate of decay is progressively slowed down (𝜍 𝐾 → 0), the gap between interfaces widens and substantial discontinuities start to emerge, causing 𝒖 ℎ|𝐾 to lose regularity. Figure 5.5 illustrates the analysis for 𝑟 = 3, which reports comparable results.

From the study of analytical functions in Section 5.2.2 to the previous discussion on the DG solution, we have proved the existence of a consistent connection between signal regularity and the decline of the spectrum of the multiwavelet coefficients. If we focus our attention exclusively on the DG framework, this result seems to suggest that the decay parameter 𝜍 𝐾 represents a reliable estimate of the local regularity of 𝒖 ℎ|𝐾 and, by extension, of the original solution 𝒖 ℎ|𝐾 .

In light of this result, we can assign the decay parameter 𝜍 𝐾 to the role of local regularity indicator. Consequently, by putting together each multiwavelet component 𝒅 ℓ,𝛼 𝐾 , 𝒅 ℓ,𝛽 𝐾 , and 𝒅 ℓ,𝛾 𝐾 into a single decaying spectrum similarly to Eq. (5.19), and performing a least-squares fit, we finally have:

log ‖ 𝒅 ℓ,𝛼 𝐾 + 𝒅 ℓ ′ ,𝛽 𝐾 + 𝒅 ℓ ″ ,𝛾 𝐾 ‖ 𝐿 2 ∼ log 𝑐 -𝜍 𝐾 𝑀 eq ,
(5.28)

where ℓ, ℓ ′ , ℓ ″ = 1, … , 𝑟 are such that 𝑀 eq ( ⋅ ) = 𝒩 , with 𝒩 = 𝑟, … , 3𝑟 -1. The number of equivalent vanishing moments 𝑀 eq is given by Eq. (5.18).

Element marking and hp-decision criteria

Element marking criterion Once we have determined the local error estimates 𝜂 𝐾 for every 𝐾 ∈ Ω ℎ,𝓅 (see Section 5.2.1), we now will use this information to select (mark) which elements require higher spatial resolution.

Note that the error estimates could be used to identify elements which require lower spatial resolution as well. However, neither element agglomeration nor local polynomial reduction will be considered in this study.

There are numerous marking criteria developed in the literature. Based on the analysis presented in Naddei ( 2019) we have opted for the two following procedures:

(a) Local threshold criterion. It is the most intuitive and widely used criterion (see e.g. [START_REF] Oden | Toward a universal h-p adaptive finite element strategy, part 2. A posteriori error estimation[END_REF] or Rueda-Ramírez et al. ( 2019a)). The idea is to flag an element 𝐾 if the local value of the error indicator 𝜂 𝐾 is above a user-defined tolerance, 𝜂 tol . Therefore, we define the set of marked elements, Ω mark , as follows:

Ω mark = { 𝐾 ∈ Ω ℎ,𝓅 | 𝜂 𝐾 > 𝜂 tol} .
(5.29) (b) Maximum marking criterion. Initially proposed by Babuvška and Rheinboldt (1978b), it has seen widespread adoption (see e.g. [START_REF] Dörfler | Convergence of an adaptive ℎ𝑝 finite element strategy in one space dimension[END_REF]). In this case, 𝐾 is flagged if 𝜂 𝐾 is above a specified percentage of its maximum. Namely:

Ω mark = { 𝐾 ∈ Ω ℎ,𝓅 | 𝜂 𝐾 > 𝜃 max 𝐾∈Ω ℎ,𝓅 𝜂 𝐾 } ,
(5.30)

where the user-defined parameter 𝜃 ∈ [0, 1] is called marking fraction.

The lower this parameter, the higher the number of total marked elements.

hp-decision criterion

The two marking criteria presented in the previous paragraphs inform us on which elements should be spatially adapted. However, they do not tell us whether to adapt the size, or the polynomial order of the flagged elements to obtain an optimal solution. We base this judgement on the rate of decay of the multiwavelet spectrum. From the observations collected in sections 5.2.2 to 5.2.3, rapid decline of the spectrum suggests high regularity in the solution, which means that p-adaptation is indicated.

Otherwise, h-adaptation is required. Application of this hp-decision criterion leads to the following two element subsets:

Ω mark, h = { 𝐾 ∈ Ω mark | ς 𝐾 < 𝜍 tol} ,
(5.31a)

Ω mark, p = { 𝐾 ∈ Ω mark | ς 𝐾 ≥ 𝜍 tol} ,
(5.31b)

where Ω mark, h and Ω mark, p represent the subset of the elements flagged for h-and p-adaptation, respectively; and ς 𝐾 is the normalized version of the multiwavelet regularity indicator defined as

ς 𝐾 = 1 𝜍 max -𝜍 min 𝜍 𝐾 - 𝜍 min 𝜍 max -𝜍 min ,
(5.32)

with 𝜍 𝐾 given by Eq. (5.28), and the values 𝜍 min and 𝜍 max provided by

𝜍 min = min 𝐾∈Ω ℎ,𝓅 𝜍 𝐾 , 𝜍 max = max 𝐾∈Ω ℎ,𝓅 𝜍 𝐾 .
(5.33)

The normalization outlined in Eq. ( 5.32) ensures that ς 𝐾 ∈ [0, 1] for all 𝐾 ∈ Ω ℎ,𝓅 , independently of the problem under study. Additionally, the user-defined parameter 𝜍 tol ∈ [0, 1] revealed in Eq. ( 5.31) allows us to establish an hpthreshold to control the advantage of one adaptation type over the other. In other words, we can increase the overall proportion of Ω mark, h or Ω mark, p with respect to the larger set Ω mark by increasing or reducing 𝜍 tol , respectively. Namely:

Ω mark = ⎧ ⎪ ⎨ ⎪ ⎩ Ω mark, h if 𝜍 tol = 1 Ω mark, h ∪ Ω mark, p if 0 < 𝜍 tol < 1 Ω mark, p if 𝜍 tol = 0
(5.34) Finally we also have

Ω mark, h ∩ Ω mark, p = ∅ ,
(5.35) which means that any element 𝐾 ∈ Ω mark cannot be designated for both hand p-adaptation simultaneously.

Supplementary marking Right after the marking and hp-decision criteria have been applied and we have obtained Ω mark, h and Ω mark, p , additional restrictions might be enforced. In regard to h-adaptation, we limit the separation in refinement levels between neighbouring elements to at most one by marking additional elements if necessary, which we denote by the subset Ω 2∶1 . This condition is frequently called the two-to-one rule [START_REF] Demkowicz | Toward a universal h-p adaptive finite element strategy, part 1. Constrained approximation and data structure[END_REF] and safeguards that neighbouring elements are not of exceedingly different size. Therefore:

Ω 2∶1 ⊂ Ω mark, h .
(5.36) Equivalently, regarding p-adaptation we limit the change of the local polynomial degree between two neighboring elements to be no larger than one. As a result of this limitation, additional elements might be flagged for polynomial increase to fulfill this condition. If we symbolize them by the subset Ω Δ𝑝=1 we have:

Ω Δ𝑝=1 ⊂ Ω mark, p .
(5.37)

hp-mesh enrichment methodology

After selecting one of the marking criteria proposed in Section 5.2.4 together with the hp-decision criterion described in the same section, we proceed to the construction of the new hp-mesh resulting from the application of the aforementioned guidelines. The hp-mesh Ω ℎ,𝓅 is made up by the pair of sets Ω ℎ and 𝓅 (see Eq. (5.1)), each of which require separate handling.

To adapt the mesh Ω ℎ we follow the so-called local mesh refinement methodology [START_REF] Bank | Some Refinement Algorithms And Data Structures for Regular Local Mesh Refinement[END_REF], which restrict the adaptation to individual marked elements. This is in contrast to semi-local approaches such as AMR [START_REF] Berger | ℎ𝑝-Version discontinuous Galerkin methods for hyperbolic conservation laws[END_REF], in which elements of one or more regions of the mesh are refined as a group.

In particular, the element-refinement methodology pursued in this study is based on the work by [START_REF] Kuru | An Adaptive Variational Multiscale Discontinuous Galerkin Method For Large Eddy Simulation[END_REF] and [START_REF] Naddei | Simulation adaptative des grandes échelles d'écoulements turbulents fondée sur une méthode Galerkine discontinue[END_REF], where they have implemented an (isotropic) local mesh refinement approach on nonconforming curvilinear hexahedral and quadrilateral meshes. Their idea is to divide each of the marked elements into 2 𝑑 new elements, where 𝑑 is the dimension of the problem.

In our case, we consider simpler non-conforming Cartesian meshes in 2-D. Consequently, elements become rectangles that, if marked for refinement, may produce four new geometrically similar rectangles. To visualize this concept let Ω (0) ℎ be the given initial mesh and Ω (1) ℎ be the resulting mesh after one refinement step. We denote any 𝐾 (0) ∈ Ω (0) mark, h a parent element. Its associated child elements are denoted by the set {𝐾 (1) 𝑗 } 3 𝑗=0 ∈ Ω

(1) ℎ . Then, thanks to the refinement operator 𝓠 ∶ {𝐾 (0) } → {𝐾 (1) 0 , ..., 𝐾

(1) 3 } we can explicitly define the link between parent and children in physical space. The operator 𝓠 can be further expressed in the reference space as follows:

𝓠 = 𝜩 𝐾 Q 𝜩 -1 𝐾 (5.38) where Q ∶ { K } → { K 0 , ..., K
3 } denotes the operator that divides the reference element into four identical children, and 𝜩 𝐾 is the bijective transformation from reference to physical space. Because we work with rectangles, the transformation is simply a scaling of the reference space by the constant Jacobian of the transformation. Figure 5.6 describes the procedure in detail.

The second contribution of the hp-mesh Ω ℎ,𝓅 is given by the degree distribution 𝓅, which is just the allocation of a local polynomial degree 𝑝 𝐾 to each 𝐾 ∈ Ω ℎ . To adapt the vector 𝓅 we adjust the local polynomial degree 𝑝 𝐾 individually. Particularly, our approach is based on the isotropic p-adaptive 74 5 hp-adaptation based on local multiresolution 

𝐾

(1) 3 methodology described by [START_REF] Naddei | A comparison of refinement indicators for 𝑝adaptive discontinuous Galerkin methods for the Euler and Navier-Stokes equations[END_REF]. In the study the authors increase the local order of the approximation by one when the element is flagged for p-enrichment. If we consider 𝓅 (0) as the initial p-vector, the p-distribution after adaptation is given by

𝓅 (1) = { 𝑝 𝐾 , 𝐾 (0) ∉ Ω (0) mark, p } ∪ { 𝑝 𝐾 + 1, 𝐾 (0) ∈ Ω (0)
mark, p }

(5.39)

The hp-adaptive algorithm

A flow chart describing our hp-adaptive algorithm for steady problems is shown in Figure 5.7. The first step of the algorithm consists in providing an initial hp-mesh Ω (0) ℎ,𝓅 and solving for the corresponding DG approximate solution 𝒖 (0) ℎ,𝓅 . Namely, the non-linear system of ordinary differential equations given by Eq. (2.26) is first linearized by Newton's method and then the resulting linear system is solved by the GMRES iterative method combined with an incomplete LU preconditioning. In case that an explicit scheme to evolve the solution in time is used instead, we use the SSP Runge-Kutta method presented in Section 2.2.7. The time evolution is stopped once the time residual is dropped below 1 × 10 -10 (implicit) or 1 × 10 -12 (explicit). It is worth mentioning that the lowest discretizations errors reported in the numerical results (see next Chapters 6 and 7) are in the range 1 × 10 -7 to 1 × 10 -8 . Therefore, we make sure that the time residual does not dominate the discretization error.

Once the numerical solution 𝒖 (0) ℎ,𝓅 is converged, its element-wise contribution

𝒖 (0)
ℎ,𝓅|𝐾 is subjected to a series of post-processing operations. Firstly, we build a more accurate approximate solution 𝒖 (0) ℎ,𝓅|𝐾 by employing any of the reconstruction methods described in Section 4.3. determines if the spatial resolution must be upgraded. If that is the case, we proceed to flag the elements that demand higher resolution, Ω (0) mark , according to the marking strategies identified in Section 5.2.4. On the other hand, 𝜍

𝐾 and the hp-decision criterion work together to estimate the smoothness of the solution and assign either h-or p-adaptation to the elements in Ω (0) mark accordingly. We then proceed to adapt the elements belonging to Ω (0) mark, h

and Ω (0) mark, p by following the methodology presented in Section 5.2.5 to arrive to the adapted hp-mesh Ω (1) ℎ,𝓅 . The discrete problem for the new mesh is solved again and the entire procedure is repeated until certain error criteria are fulfilled.

Generally, two extra steps are applied right after obtaining Ω (1) ℎ,𝓅 . The first step is the so-called reinitialization operation. It means that the 𝐿 2 -projection of the previous solution 𝒖 (0) ℎ,𝓅 is used as the initial condition on the newly generated Ω (1) ℎ,𝓅 . The second step is load balancing in the context of parallel computations. This operation leads to a uniform distribution of the computational load by efficiently partitioning Ω (1) ℎ,𝓅 taking into account the new number of degrees of freedom and the element-wise distribution of polynomial degrees. 

PARALLEL IMPLEMENTATION

It is widely accepted that the compact stencil and discontinuous behavior of the DG spatial operators make the implementation of DGMs over multiprocessor distributed-memory architectures to scale remarkably well, as the number of processors increases (see e.g., [START_REF] Biswas | Parallel, adaptive finite element methods for conservation laws[END_REF]).

In the present work, parallelization is implemented by using message passing interface (MPI). In particular, the computational domain is divided into a number of partitions and each partition is allocated to an available MPI process. This operation is generally labelled as mesh partitioning. Since the flux evaluations in the DGM involve only the current element and its immediate neighbors, mesh partitioning guarantees that the greater part of the flux computations within an individual MPI process demand no inter-process communication. To enable communication between two distinct MPI processes a buffer of values is constructed along their shared boundary and the relevant information is delivered by carrying out a single MPI message exchange. The main goal of mesh partitioning is to distribute the workload among the available processors (load balancing), while minimizing the communication between MPI processors. In doing so, the operation of the multi-processor environment is optimized.

Load balancing becomes an important question for hp-meshes due to the number of degrees of freedom (and hence the computational load) varying from element to element. In this case, well-balanced mesh partitioning must include some element-wise measure of the computational load.

In the context of h/p-adaptations, Naddei (2019) has performed a detailed comparison of different methodologies to estimate the computational load and their effect on improving the resulting domain decomposition. Naddei evaluates the mesh partitioning quality by measuring the MPI imbalance under various circumstances. If the effect of the local polynomial degree is ignored, high MPI imbalances are obtained. Conversely, factoring in computational load estimates based on operation counts per element (proportional to the local 𝑝) seem to reduce the imbalance but the results are not consistent. The most balanced results are achieved when the estimates are based on direct measurements of computational times.

For that reason, to drive the mesh partitioning in the present work we have chosen the later approach. Most importantly, Naddei (2019) claims that it does not require to be performed every time a new simulation is launched. Once the calibration has been completed for a given set of discretization, physical model, and hardware, these parameters can be recycled for any future simulation sharing similar characteristics.

CONCLUDING COMMENTARY

In this chapter we have developed an hp-adaptive scheme built on the local multiresolution analysis of the DG solution. We have made significant devel-opments in computing the estimation of the error, in choosing the adaptive approach, and in deciding on the appropriate hp-adaptive strategy.

The estimation of the error has been assigned to the multiwavelet error estimator, which combines the concepts of discretization-based indicators and multiresolution-based adaptation by evaluating the 𝐿 2 -norm of the local multiwavelet contribution.

In order to adjust the spatial resolution, we have selected local mesh enrichment by hp-adaptation as the adaptive approach, which is especially wellsuited to discontinuous Galerkin methods. In particular, we have chosen isotropic mesh and polynomial order refinement.

Lastly, we have built a suitable hp-adaptive strategy by pairing the multiwavelet regularity indicator, which measures the rate of decay of the spectrum of the multiwavelet coefficients, with an hp-decision criterion based on the findings of a consistent connection between solution smoothness and the decline of the multiwavelet spectrum.

Part III

NUMERICAL RESULTS

Chapter 6

H-ADAPTIVE SIMULATIONS

In this chapter, the multiwavelet error estimators developed in Section 5.2.1 are assessed and compared against relevant estimators from the literature. Our objective is to evaluate their overall performance in the context of hadaptive simulations. For each error estimator we analyze the convergence history of the adaptive algorithm, the memory savings achieved, and the regions of the mesh selected for adaptation. It is well known that, local h-refinement produces optimal adaptation of the spatial resolution in the vicinity of irregular features, such as physical and geometrical singularities. Therefore, we focus our attention into two configurations that would potentially benefit from hadaptation: the one-dimensional viscous Burgers equation in the presence of a shock, and the two-dimensional laminar flow over a backward-facing step. This step acts as a geometrical singularity which has a strong influence on the downstream flow.

It is worth mentioning that in this chapter we are exclusively focused on hadaptation. Therefore, the regularity indicator, which has been presented in Section 5.2.3 as a companion of the error estimator, is not used here. We thus configure the hp-criterion from Section 5.2.4 to solely allow for mesh refinement.

This chapter is organized as follows. We begin the chapter by studying the 1-D viscous Burgers equation in Section 6.1. We describe the computational details employed in the simulations in Section 6.1.1. The effect of the different estimators on the h-adaptive results are analyzed by means of the discretization error and the effectivity index, which are the subjects of Sections 6.1.3 and 6.1.5, respectively. The 1-D configuration is followed by Section 6.2, in which we present the 2-D laminar flow over a backwardfacing step. The problem configuration is described in Section 6.2.1. In Section 6.2.2 we compare our reference solution with results from the literature to establish a solid baseline for h-refinement. Adaptation is introduced in Section 6.2.3, followed by the review of the h-adapted meshes in Section 6.2.4, and the analysis of the error in Section 6.2.5. We also discuss the memory and cpu-time gains by activating adaptation in Section 6.2.6 and 6.2.7, respectively. Additionally, Section 6.2.8 presents the evolution of separation/reattachment lengths. Finally, we close the chapter by examining the performance of the family of multiwavelet estimators in Section 6.2.9. and by outlining the main conclusions of the chapter in Section 6.3. 6 h-adaptive simulations 6.1 VISCOUS BURGERS EQUATION

Computational parameters

Based on the the one-dimensional viscous Burgers equation, which has been described in detail in Section 2.1.2, we perform a series of steady simulations on the computational domain Ω ℎ = [-1, 1]. We cover two configurations with different initial conditions (ICs) and boundary conditions (BCs). A source term is added to ensure the convergence to a forced steady solution. In addition, the corresponding steady solution is smooth without sharp gradients. Namely:

𝑆(𝑥) = (2𝜋) sin(2𝜋𝑥) cos(2𝜋𝑥) + 𝜈(2𝜋) 2 sin(2𝜋𝑥). ( 6.3)

To evolve the solution in time from either of the initial conditions up to the steady-state, the explicit scheme presented in Section 2.2.7 is employed. We then apply recursively the hp-adaptive algorithm explained in Section 5.2.6

and Figure 5.7 until we achieve the desired adapted solution. As we have mentioned in the beginning of the chapter, by calibrating the hp-criterion to uniquely allow for mesh refinement the algorithm becomes an h-adaptive procedure.

The aforementioned algorithm determines if refinement is required based on the value provided by an error estimator in conjunction with the local threshold marking strategy described by Eq. ( 5.29) in Section 5.2.4. We consider the three variations of the multiwavelet error estimator developed in Section 5.2.1 and presented in Eq. (5.4). We remind the reader of the terminology of these estimators:

1. 𝜅-multiwavelet estimator, denoted by 𝜂 𝜅-MW 𝐾 .

2. 𝐾-multiwavelet estimator, symbolized by 𝜂 𝐾-MW 𝐾 .

3. Γ-multiwavelet estimator, given by 𝜂 Γ-MW 𝐾 .

and the additional two estimators from the literature:

4. Small-scale energy density estimator, 𝜂 SSED 𝐾 [START_REF] Kuru | An Adaptive Variational Multiscale Discontinuous Galerkin Method For Large Eddy Simulation[END_REF].

6.1 VISCOUS BURGERS EQUATION 83 5. Spectral decay estimator, 𝜂 SD 𝐾 [START_REF] Taube | hp-Adaptation in Space-Time within an Explicit Discontinuous Galerkin Framework[END_REF].

Definition of errors

We now define several quantities that will be used to better understand the numerical results that will be presented in the following sections. Let 𝑢 be the exact solution to the viscous Burgers equation and 𝑢 ℎ ∈ 𝒱 𝑝 ℎ its approximate DG solution. We define the discretization error as follows:

‖𝑒 ℎ ‖ 𝐿 2 (Ω) = ‖𝑢 -𝑢 ℎ ‖ 𝐿 2 (Ω) .
(6.4) Additionally, we measure the difference between the approximate DG solution 𝑢 ℎ and the reconstruction 𝑢 ℎ ∈ 𝒱 𝑝 ℎ built in Chapter 4 by:

‖ℰ ℎ ‖ 𝐿 2 (Ω) = ‖𝑢 ℎ -𝑢 ℎ ‖ 𝐿 2 (Ω) with 𝑢 ℎ = ∑ 𝐾 𝑢 ℎ|𝐾 , ∀𝐾 ∈ Ω ℎ , (6.5)
which follows the nomenclature in [START_REF] Dolejší | hp-Discontinuous Galerkin Method Based on Local Higher Order Reconstruction[END_REF]. The authors set Eq. ( 6.5) as their estimation of the discretization error. We call this measure the Dolejší estimation. In our case, the value of 𝑢 ℎ|𝐾 is given by the reconstruction methods described in Sections 4.3.1 to 4.3.3. Therefore, we have three versions of the Dolejší estimation, corresponding to the three post-enrichment methods studied. They are denoted by ℰ 𝜅 ℎ , ℰ 𝐾 ℎ , and ℰ Γ ℎ . The Dolejší estimation becomes another entry to the comparison between the multiwavelet-based estimators and the SSED and SD estimators.

It is also interesting to measure the quality of the error estimation. To this end, we define the effectivity index as the ratio between the error given by the indicator and the discretization error. It reads

𝜄 eff = 𝜂 𝑒 ℎ , (6.6) where 𝜂 = ( ∑ 𝐾∈Ω ℎ 𝜂 2 𝐾 ) 1/2
. An index close to unity means that the estimator accurately mimics the evolution of the discretization error. For each computation of the h-adaptive algorithm, we evaluate the error estimator over the full domain, 𝜂; the discretization error, 𝑒 ℎ ; and the Dolejší estimation, ℰ ℎ , as well as the effectivity index for the selected cases.

Error analysis of the h-adaptive results

An analysis of the effect of the estimators in the adaptation of the viscous Burgers equation under IC-shock is plotted in Figure 6.1 for different degrees 𝑝 of the numerical solution. Figures 6.1a to 6.1c show the variation of the discretization error 𝑒 ℎ in the conservative variable 𝑢 versus the number of degrees of freedom (#DOFs) when uniform h-refinement is performed as well as for the locally h-adapted solution under the different error estimators. The #DOFs is calculated by evaluating the number of degrees of freedom in each element (𝑝 + 1) 𝑑 (with 𝑑 the dimension of the problem) multiplied by the 6 h-adaptive simulations 5.3), is denoted by , the estimators from the literature, Eqs. (5.8) and (5.9), are symbolized by , and the Dolejší estimation, Eq. ( 6.5), is showcased by . For all estimators, the adaptive process is performed up to the 7th adaptation step.

total number of elements in the computational domain. For every analyzed degree, the error associated with the uniform h-refinement follows the theoretical slope determined by the order of the method, as illustrated by the dashed lines.

As regards the adaptive procedure, all the estimators lead to a large decrease in the #DOFs for a given level of accuracy. The SSED and SD estimators show a marginally faster reduction of the #DOFs during the initial refinement steps. However, the multiwavelet-based estimators display a slightly better performance in the last refinement steps, especially at lower degrees of the approximation. They achieve savings in #DOFs of about 85 % in 𝑝 = 1, see Figure 6.1a, whereas the SSED and SD estimators show a reduction of around 81 % for the same degree. The savings are scaled down to 77 % for the MW-based estimators and 75 % for the SSED and SD estimators when the degree is increased to 𝑝 = 3, as can be seen in Figure 6.1c. This shows that the higher the degree, the closer is the behavior of the MW-based estimators to the SSED and SD estimators. Indeed, the difference in the savings of #DOFs goes from 4 % to 2 % when jumping from 𝑝 = 1 to 𝑝 = 3. Overall, the evolution of the MW-based estimators closely resembles the behavior of the estimators from the literature while showing slightly larger savings at lower degrees. This low-order outcome is expected, as the SSED and SD estimators are known to underperform at low orders of the approximation [START_REF] Naddei | Simulation adaptative des grandes échelles d'écoulements turbulents fondée sur une méthode Galerkine discontinue[END_REF]. These results yield a validation of our proposed estimators.

Finally, in the same figures we observe that the different Dolejší estimations behave similarly to their homologous MW-based error estimators. This further validates the idea of using reconstruction techniques as an important tool in mesh adaptation. At this point, the question of why using a multiwavelet expansion which is computationally more expensive than a direct comparison between the original DG solution and a post-enriched solution may arise. The answer resides in the fact that the multiwavelet expansion yields more detailed Different levels of refinement achieved by every error estimator at the last iteration step for selected solution orders. The dashed line corresponds to an uniform mesh with discretization error ‖𝑒 ℎ|𝐾 ‖ < 𝜂 tol for all 𝐾 ∈ Ω ℎ where 𝜂 tol = 1 × 10 -6 . The adaptive process is then performed for each estimator until we achieve 𝜂 𝐾 < 𝜂 tol in every element of the domain.

information about the solution and its local regularity. This is especially true in higher dimensions, where the details are directly given component-wisely. We will address these concerns in Chapter 7, where this extra information is used to drive hp-adaptivity. Moreover, studies of the effectivity index (not presented in this work) show a behavior closer to unity when employing the multiwavelet decomposition. Hence, these reasons motivate the use of a multiwavelet expansion to compute the error estimators.

Analysis of the h-adapted meshes

We now focus our attention on the final h-adapted mesh resulting from the activation of the three different local multiwavelet-based estimators proposed in this research. We have just seen that the SSED estimator shows a slightly better agreement with our estimators compared to the SD. Thus from now on we will only use the SSED estimator for comparison purposes.

The distributions of the refinement levels along the computational domain for each estimator are plotted in Figures 6.2a, 6.2b, and 6.2c for 𝑝 = 1, 𝑝 = 2, and 𝑝 = 3, respectively. It can be observed that, predictably, the area surrounding the discontinuity is subjected to a higher level of refinement. This is true for all estimators. When we increase the degree of the solution, the number of refinement levels decreases. This behavior is expected because we are increasing the spatial resolution by modifying the local polynomial degree and thus fewer elements are required to achieve a prescribed level of accuracy. The dashed line represents the required refinement level of an uniform mesh to reach the user defined tolerance 𝜂 tol = 1 × 10 -6 .

The activation of the 𝐾-multiwavelet and 𝜅-multiwavelet estimators leads to an almost identical pattern of refinement centered around the discontinuity, regardless of the degree. The Γ-multiwavelet estimator seems to perform marginally better by generating a narrower refined region surrounding the discontinuity. In the case of the SSED estimator, the wider refined region translates into a higher amount of #DOFs compared the MW-based estimators. Again, this is due to the better performance of the multiwavelet family in the last refinement steps. Certainly, they never surpass the dashed line. This behavior is ideal because this means that their highest refinement level remains below the level of the uniform mesh imposed by the tolerance 𝜂 tol . For the SSED estimator the behavior is different, it exceeds the threshold leading to an over-refined mesh. Particularly severe is the behavior for 𝑝 = 1, surpassing six levels above 𝜂 tol . The over-refinement is mitigated by using 𝑝 = 3, in which the difference is reduced to one level. This behavior is closely related to the effectivity index, as will be discussed in the next paragraph.

Effectivity index of the h-adaptive results

Solution with shock The evolution of the discretization error for the 𝑝 = 3 adapted and uniform grid solutions for the initial condition IC-shock is illustrated in Figure 6.3. In this figure the error on the adapted mesh is compared to the value given by the estimator. If these values show a similar evolution along the refinement process, then the effectivity index associated with the estimator, 𝜄 eff (see Eq. (6.6)), is close to unity. That is 𝜂 ≃ 𝑒 ℎ . It is understood that values of the effectivity index close to unity are desirable for a posteriori indicators (see e.g. error estimation for elliptic problems in [START_REF] Babuvška | Reliable error estimation and mesh adaptation for the finite element method[END_REF]). However, when dealing with hyperbolic or parabolic problems such as the viscous Burgers equation, you may come up with possibly less precise estimates and obtain effectivity indices higher than unity (see e.g. [START_REF] Johnson | Adaptive finite element methods for diffusion and convection problems[END_REF]).

Figure 6.3a presents the estimated error computed by the Γ-multiwavelet indicator versus the #DOFs corresponding to each iteration of the adaptation process. The estimator reports an effectivity index between 0.4 < 𝜄 eff < 0.7 during the first iterations. Then progressively drops to 𝜄 eff = 0.3 in the last steps of refinement. The same behavior is observed in Figure 6.3b for the 𝐾-multiwavelet indicator. However, the first refinement steps report a poor effectivity index for this estimator, which may explain the error overshoot on the adapted mesh. After the first iterations, the effectivity index gradually improves until achieving values close to unity in the last refinement steps.

Moving to the 𝜅-multiwavelet indicator, Figure 6.3c, we observe a more uniform behavior. Except during the first steps of refinement, the effectivity index remains mostly constant at 𝜄 eff = 2. The estimation mimics the behavior of the discretization error, while remaining slightly higher. Lastly, the SSED indicator displayed in Figure 6.3d reports an erratic behavior, with a precise estimate during the first refinement steps and effectivity ratios progressively deteriorating to 𝜄 eff > 10. This behavior may justify the over-refinement observed in Figure 6.2.

Smooth solution Before drawing any conclusion, it is worth studying the behavior of the estimators for a more regular solution. A further analysis of the effectivity index for the initial conditions IC-smooth and 𝑝 = 3 is performed in Figure 6.4. This example shows virtually no difference between the use of the uniform and the adapted mesh. This is a consequence of the regularity of the solution. In this situation, performing adaptation is not justified because the final adapted grid is nearly indistinguishable from the uniform mesh. However, a few interesting conclusions can be extracted from this analysis.

Firstly, the Γ-multiwavelet indicator, displayed in Figure 6.4a, behaves inadequately when the solution is smooth. In this case, the effectivity index steadily drops to 𝜄 eff < 0.1 in the last steps of refinement. It seems that the influence of the jump of the conservative quantity at the interface between elements is not well captured by the reconstruction. Thus the disparity between estimation and discretization error. Secondly, the 𝐾-multiwavelet indicator, illustrated in results reported in Figure 6.3b, we can resolve that the 𝐾-multiwavelet indicator is prone to this sort of behavior. The same overshoot can be observed for the SSED indicator, Figure 6.4d, though happening at later refinement stage. This estimator continues to report high values of the effectivity index, 𝜄 eff > 10, similarly to what we observed when IC-shock was studied. Finally, the 𝜅-multiwavelet indicator, Figure 6.4c, maintains its characteristic regular behavior with a nearly constant 𝜄 eff = 2 and a satisfactory tracking performance.

From the analysis of Figures 6.3 and 6.4 we thus conclude that the multiwaveletbased indicators constitute a consistent approach for tracking the discretization error of the DG approximation. They perform substantially better than the SSED indicator provided by the literature, which shows an excessively high value of the effectivity index. In particular, the 𝜅-multiwavelet indicator features a regular behavior while maintaining an acceptable effectivity index so that it can be reliably used to control the adaptation process. Based on this analysis, the 𝜅-multiwavelet indicator has been selected to drive the hadaptive algorithm in the following study of the two-dimensional backwardfacing step flow.

LAMINAR BACKWARD-FACING STEP

In this section a series of numerical simulations of a two-dimensional steady laminar flow over a backward-facing step is performed to assess the validity of the multiwavelet error estimator (see Section 5.2.1) in the context of mesh adaptation.

Computational parameters I: h-uniform simulations

The geometry of the computational domain is shown in Figure 6.5a. Following the work of [START_REF] Barton | The Entrance Effect of Laminar Flow over a Backward-Facing Step Geometry[END_REF], an extra inlet channel has been considered to reduce the influence of the step in the upstream flow region. Similarly, [START_REF] Erturk | Numerical Solutions of 2-D Steady Incompressible Flow Over a Backward-Facing Step, Part I: High Reynolds Number Solutions[END_REF] has concluded that its length must be at least five times the height of the step to be effective. Thus we have sized our inlet channel accordingly. With regard to the outlet or exit boundary, it must be located at a distance sufficiently far away from the step so that the flow becomes fully developed. Similar studies by [START_REF] Keskar | Computations of a Laminar Backward-Facing Step Flow at Re=800 with a Spectral Domain Decomposition Method[END_REF] and [START_REF] Gartling | A test problem for outflow boundary conditions-flow over a backward-facing step[END_REF] have found that placing the exit boundary at 60 step heights downstream from the step is sufficient to recover a fully developed flow. Therefore, we have sized our expanded channel in accordance. The height of the inlet channel is equal to the dimension of the step, and the channel height in the expanded region (downstream of the step), 𝐻, is twice the height of the step, ℎ. Therefore, the expansion ratio of the backward-facing step results in 𝐻/ℎ = 2. The Reynolds number of the problem is Re = 800 and defined as Re = 𝑈 𝐻 𝜈 , where 𝑈 is the inlet mean velocity, i.e. two thirds of the maximum inlet velocity. Lastly, to insure the incompressibility of the problem the Mach number is set to Ma = 0.1. (c) Number of elements (#Elts) and degrees of freedom (#DOFs) for every uniform grid in the study, both in total and along the 𝑦-direction (#Elts-𝑦 and #DOFs-𝑦) of the expanded channel. Color grouping refers to an approximate equivalence in the #DOFs between different orders in the computations. Regarding the boundary conditions, we impose at the inlet boundary a fully developed plane Poiseuille flow so that the velocity profile at the entrance of the domain is parabolic. At the exit boundary, a non-reflecting boundary condition is imposed such that the velocity profile of the numerical solution at the exit boundary matches the analytical parabolic profile of a Poiseuille flow. Finally, wall boundary conditions are imposed on the upper and bottom walls of the channel, as well as on the surface of the step. The details regarding the considered configuration are reported in Figure 6.5a.

To mesh the domain we have considered 11 different Cartesian uniform grids, depending on the order of the numerical solution at hand. Table 6.5c describes the configurations in detail. The grids are named A to K, and ordered by increasing resolution. A sample of the meshes C, E and G is displayed in Figure 6.5b. The grids A, B and C (gray shaded cells) correspond to the three initial computational grids from which the adapted grids will be built. They represent the coarsest starting meshes for 𝑝 = 1, 𝑝 = 2, and 𝑝 = 3, respectively. The grid K with 𝑝 = 2 (boxed cell) corresponds to the reference solution of the present study. Figure 6.6 showcases the behavior of the latter solution downstream of the step. The presence of the geometrical singularity generates two main recirculation regions along the upper and bottom wall, and an additional recirculation bubble at the corner beneath the step.

Those grids that retain an equivalent number of degrees of freedom (#DOFs) for different orders in the computations are labelled with the same color nomenclature. That means that their numerical solution should be comparable between computations based on different polynomial orders. Table 6.5c also reports how this equivalence in #DOFs is maintained along the 𝑦-direction of the expanded channel. The uniform grids obviously display the same #DOFs per unit distance in both 𝑥-and 𝑦-direction. Finally, for the coarser meshes (grids A to E), the region immediately after the inlet has been locally refined so that we are able to properly capture the parabolic inflow from the initial steps of the adaptation process and therefore impose an appropriate inlet profile.

Regarding the aforementioned coarser meshes, the study by [START_REF] Yee | On Spurious Behavior of CFD Simulations[END_REF] shows that when a low resolution grid is employed in the backward-facing step flow at Re = 800, a spurious oscillating numerical solution is obtained and the steady-state cannot be reached. The work of [START_REF] Erturk | Numerical Solutions of 2-D Steady Incompressible Flow Over a Backward-Facing Step, Part I: High Reynolds Number Solutions[END_REF], in which an interval of Re = [100, 3000] is investigated by solving the flow using a second order finite-difference method, employs a very fine mesh so that convergence to the steady-state can be achieved. For the low resolution meshes employed in this work, and the polynomial orders considered in the DGM, the convergence problems reported by [START_REF] Yee | On Spurious Behavior of CFD Simulations[END_REF] were not encountered, even for solutions with low polynomial degrees such as 𝑝 = 1.

Validation of reference solution

To evaluate the quality of our numerical solution, we have selected three streamwise locations along the expanded channel, as reported in Figure 6.5a. They cover the lower and upper recirculation bubbles (𝑥 = 6ℎ and 𝑥 = 14ℎ), and an overview of the developed flow far away downstream (𝑥 = 30ℎ). The idea is to extract the profiles of the relevant physical quantities along the vertical direction of the main channel. We will consider the profiles of the horizontal and vertical components of the velocity, given by 𝑢 and 𝑣. The profile vorticity, defined as 𝜔 = 𝜕𝑣/𝜕𝑥 -𝜕𝑢/𝜕𝑦, is also included in the analysis. These profiles are examined and compared to the results from the study of [START_REF] Erturk | Numerical Solutions of 2-D Steady Incompressible Flow Over a Backward-Facing Step, Part I: High Reynolds Number Solutions[END_REF] at the same streamwise locations. In that study, the author uses a grid of 101 uniform elements along the vertical direction of the expanded channel and their scheme is second order accurate. Thus we count 202 DOFs along the 𝑦-direction. In comparison, we have described our reference solution as a third order numerical solution with 384 DOFs along the same direction (see Table 6.5c).

The results comparing the solution obtained by [START_REF] Erturk | Numerical Solutions of 2-D Steady Incompressible Flow Over a Backward-Facing Step, Part I: High Reynolds Number Solutions[END_REF] versus our reference solution are shown in Figure 6.7. We observe that our computed profiles agree well with those of the literature for every physical quantity analyzed.

There are small discrepancies in the maximum values of the 𝑥-and 𝑦-velocities. We believe this is due to the fact that in our simulations the maximum 𝑥-velocity of the parabolic profile is slightly higher right at the fall of the step than at the upstream inlet. However, Erturk shows that for Re = 800, these two profiles must be nearly identical. We think that by using a compressible solver (to solve for an incompressible flow) makes it much harder to adjust the inflow/ouflow boundary conditions to attenuate the small increase in the horizontal velocity at the step. We consider that this slight deviation does not substantially affect the outcome of the h-adaptation analysis, which is the main focus of our study.

Computational parameters II: h-adaptive simulations

After validating the numerical results on uniform grids, we now investigate how to reduce the grid size locally, and thus the computational load, for a given level of accuracy. The idea is to start from a coarse mesh, such as the mesh A, B or C reported in Table 6.5c, and to detect the regions in which the approximate DG solution is underresolved and a finer local mesh resolution might be required. To that end, the algorithm described in Section 5.2.6 is applied repeatedly until the desired adapted solution is reached. We remind the reader that by adjusting the hp-criterion to exclusively allow for mesh refinement, the algorithm becomes an h-adaptive procedure. To select those elements that require h-refinement we use an error estimator (Section 5.2.1) in conjunction with an appropriate marking strategy (Section 5.2.4).

Next, we will enumerate the error estimators employed for this configuration, and later we will stress the importance of a suitable marking strategy associated with the estimation. We focus our computations on the 𝜅-multiwavelet indicator as defined by Eq. (5.7). We recall that this choice of the error estimator was justified by the encouraging results reported from the computations of the 1-D viscous Burgers equation in Section 6.1, where it proved to have the best overall behavior. The 𝜅-multiwavelet indicator may be evaluated for every conservative variable 𝒖 = (𝜌, 𝜌𝒗, 𝜌𝐸) or any other derived quantity. For the study of the backward-facing step we have selected the horizontal and vertical components of the momentum density vector (𝜌𝒗), the pressure (𝑝), and the vorticity (𝜔). They constitute relevant quantities representative of the behavior of the overall solution. Therefore we come up with three different variations of the multiwavelet-based indicator that will be used in the computations, namely:

1. 𝜅-multiwavelet on density momentum indicator (MW-𝜌𝒗), 𝜂 MW-𝜌𝒗 𝐾 .

2. 𝜅-multiwavelet on pressure indicator (MW-𝑝), given by 𝜂 MW-𝑝 𝐾 .

3. 𝜅-multiwavelet on vorticity indicator (MW-𝜔), symbolized by 𝜂 MW-𝜔 𝐾 .

It is worth mentioning that from now on we will drop the "𝜅-" terminology when symbolizing the new estimators to simplify the nomenclature. However, we remind the reader that when denoting MW-based indicators in this section, we exclusively refer to the 𝜅-multiwavelet indicator applied to selected conservative and derived quantities.

Similarly to the one-dimensional configuration in Section 6.1, the estimators proposed above will be compared to the following two estimators from the literature:

4. Small-scale energy density estimator, 𝜂 SSED 𝐾 [START_REF] Kuru | An Adaptive Variational Multiscale Discontinuous Galerkin Method For Large Eddy Simulation[END_REF].

5. Spectral decay estimator, 𝜂 SD 𝐾 [START_REF] Taube | hp-Adaptation in Space-Time within an Explicit Discontinuous Galerkin Framework[END_REF]. Regarding the marking strategy, we had initially used the local threshold strategy defined by Eq. (5.29), analogously to Section 6.1. However, this strategy proved to be inadequate when comparing estimators of different nature in the context of the more complex backward-facing step. The reason is that we are dealing with differences of several orders of magnitude between the estimators, especially when comparing the SSED and SD indicators to the multiwavelet-based indicators. Therefore it was not possible to find a userdefined tolerance that fitted them all satisfactorily and kept the comparison meaningful. In a more general framework, it might be more convenient to opt for the maximum marking strategy as defined by Eq. (5.30), in which the refining threshold is defined as a percentage of the highest value of the estimator. This allows us to set a given fraction of elements to be marked regardless of the absolute value of the estimator.

Interpretation of the h-adapted meshes

Figure 6.8 shows the final adapted grids driven by the multiwavelet-based indicators (MW-𝜌𝒗, MW-𝑝, and MW-𝜔) and the two indicators from the literature (SD and SSED). The leftmost column corresponds to the simulation 𝑝 = 1 and its associated initial uniform grid is Mesh C. The column in the middle corresponds to 𝑝 = 2 and the starting grid is Mesh B. Finally, the rightmost column corresponds to the simulation starting from Mesh A and a polynomial degree equal to 𝑝 = 3.

The adapted grids associated with the lowest degree 𝑝 = 1 exhibit the highest number of refined elements. Clearly, the SSED indicator in Figure 6.8e produces the finest grid. This is due to the fact that it tends to over-refine along the entire channel. However, it only manages to partially capture the geometrical jump. This tendency to over-refining is explained by the low-order approximation used in this simulation. It does not have enough modes to capture the high-frequency content of the solution and thus the indicator, which measures the energy of the highest modes, does not properly work [START_REF] Naddei | A comparison of refinement indicators for 𝑝adaptive discontinuous Galerkin methods for the Euler and Navier-Stokes equations[END_REF].

On the other hand, the SD indicator used in Figure 6.8d is refining aggressively at the walls and along the recirculation bubbles (locations 𝑥 = 6ℎ and 𝑥 = 14ℎ). This behavior is not surprising and is a consequence of the normalization by the total energy of the flow, which approaches zero near walls, making the values of the estimator meaningless in these wall regions. Additionally, the SD indicator detects regions that simultaneously report low values of high-frequency content and of the total energy, such as recirculation regions [START_REF] Naddei | Simulation adaptative des grandes échelles d'écoulements turbulents fondée sur une méthode Galerkine discontinue[END_REF].

By contrast, the refinement produced by the multiwavelet-based estimators is more consistent with the physics, with similar patterns of h-refinement for all indicators. Indeed, the MW-𝜌𝒗 and MW-𝜔 indicators, reported in Figures 6.8a and 6.8c, respectively, follow the dynamics of the flow and refine the stream accordingly, with the latter showing a slightly lower number of adapted elements overall. The region around the geometrical jump together with the separated shear layer yields the highest level of refinement. The top and bottom recirculation regions caused by the separation of the flow at the step corner are also adapted to a lesser extent, which can be explained by the regularity of the solution in that region. The MW-𝑝 indicator given in Figure 6.8b displays a higher tendency to refine the region around the step and the separated shear layer. Moreover, it emphasizes adaptation where the flow changes direction to fill the expanded channel (between 𝑥 = 6ℎ and 𝑥 = 14ℎ), as the pressure changes abruptly in this region.

We now draw our attention to the final adapted grid associated with 𝑝 = 3. We observe that a much lower level of h-refinement is displayed by the adapted grid. This is expected as the grid cell now holds a larger amount of information (corresponding to more DOFs). Yet, regions with geometrical singularities will stand out. Surely, the MW-𝜌𝒗 and MW-𝜔 indicators shown in Figure 6.8a and Figure 6.8c, respectively, focus the adaptation efforts on the separated shear layer and in the vicinity of the step. Indeed, a strong velocity gradient appears due to the presence of the geometrical jump. In contrast, the lower and upper recirculation regions along the expanded channel undergo little refinement. Similar conclusions can be obtained for the MW-𝑝 indicator in Figure 6.8b. The main difference lies in the further refinement along the inlet channel. The higher count of DOFs allows the SSED indicator in Figure 6.8e to amend the deficiencies reported for the low-order approximation, obtaining a similar pattern of h-refinement as compared to the multiwaveletbased indicators. Though still gaining a larger number of elements in general. Figure (6.8d) shows that the SD indicator also benefits from a larger number of DOFs per element. It does fully correct the behavior on the walls but still continues to over-refine in the lower recirculation region.

Lastly, regarding the final adapted grid obtained for the quadratic approximation 𝑝 = 2, the outcome for all estimators appears to be in between those obtained for 𝑝 = 1 and 𝑝 = 3. Indeed, Figures 6.8a to 6.8c show how the multiwavelet-based estimators moderately follow the changing stream right after the channel expansion. This behavior is less pronounced for the MW-𝑝 indicator in Figure 6.8b, which tends to refine more elements in the inlet region. As for the adaptive 𝑝 = 1 simulation, the multiwavelet estimators lead to the highest level of refinement in the shear layer and in the region in the proximity of the corner, while the more regular recirculation regions display a considerable lower refinement level, closer to the grids obtained for 𝑝 = 3. Reference #DOFs
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(a) Uniformly refined grids. With respect to the SSED and SD indicators, the increase in the number of DOFs somewhat lessens the deficiencies observed in 𝑝 = 1. Figure 6.8e shows a more targeted adaptation with the SSED indicator, though still heavily refining along the inlet and immediately after. The SD indicator in Figure 6.8d significantly reduces refinement closer to walls while excessively adapting the recirculation regions akin to 𝑝 = 1.
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Error analysis of the h-adaptive results

In order to measure the accuracy of the h-refined solutions resulting from the different error estimators, we will analyze the convergence history of the error in the 𝐿 2 -norm of the momentum density versus the number of DOFs.

Later we will study the locations of flow detachment/reattachment along the expanded channel versus the #DOFs. The reference solution employed to obtain these error quantities is based on the uniform mesh K described in Table 6.5c and 𝑝 = 2.

Figure 6.9 shows the convergence history of the error in the 𝐿 2 -norm of the momentum density under uniform and adaptive h-refinement for different orders of the DGM. The evolution of the error on the uniform grids is recorded in Figure 6.9a. We start the adaptation from relatively coarse grids and we want to make sure that we eventually achieve the asymptotic region. Indeed, the plotted data confirm that the asymptotic convergence rate is reached for sufficiently fine grids. The delayed convergence behavior observed in the higher-order solutions can be explained due to the influence of the singularity at the step.

Figures 6.9b to 6.9d describe the behavior of the error in the h-adaptive solutions driven by the five error estimators. We make the observation that the maximum local refinement level is limited to reaching the same element size as its uniform counterpart. Four uniformly refined simulations are reported, including the starting grid. Therefore, four refinement steps are performed for each indicator. As we previously explained while describing the adapted grids in Figure 6.8, the SD and SSED indicators perform poorly for low-orders of the solution. This is due to their dependency on the higher-order modes of the numerical approximation, which are not well captured for low-orders. By contrast, the multiwavelet-based estimators do not show this dependence and their behavior is more consistent for every order of the adapted solution.

This is evident in Figure 6.9b for 𝑝 = 1, where the error lines of the SD and SSED indicators lie above the uniformly refined line, meaning that no benefit is gained by activating adaptation with these estimators. In the case of the SD indicator, the extremely slow decay of the error is explained by its tendency to incorrectly refine on walls and recirculations regions, which are not the main source of error in the backward-facing step configuration. The SSED indicator actually manages to reach the same level of accuracy than the multiwavelet-based indicators but at the expense of a much larger amount of degrees of freedom, a clear sign of over-refinement. On the other hand, the family of multiwavelet-based estimators leads to a moderate reduction (30 % to 48 %) in the total number of DOFs as compared to uniform refinement, with the MW-𝑝 indicator reporting the highest savings.

When the polynomial degree is increased to 𝑝 = 2, as illustrated in Figure 6.9c, the multiwavelet-based indicators lead to a reduction of one order of magnitude in the error with respect to 𝑝 = 1 while keeping an equivalent total number of degrees of freedom. When they are measured against uniform refinement with the same total error we obtain a decrease of the total number of DOFs of approximately 80 %. By contrast, the SSED indicator achieves a similar level of accuracy yet reporting a significantly lower performance of about 66 %. Its tendency to over-refine is improved but not fully corrected.

In a similar manner, the SD indicator seems to slightly improve its behavior compared to 𝑝 = 1 but it still retains a slower convergence rate than the uniformly refined simulations and it continues to lag behind the other estimators.

Finally the highest order of the h-adapted solution with 𝑝 = 3 is reported in Figure 6.9d. Every error estimator leads to a substantial reduction of the required number of degrees of freedom to attain a given level of accuracy. Again, the error is further decreased compared to lower degrees for a similar number of DOFs. The multiwavelet-based indicators achieve the best performance, with savings of approximately 90 % compared to uniform refinement. The differences are small, but the MW-𝜌𝒗 indicator reports a small lead. The family of multiwavelet-based indicators become more accurate when we increase the number of DOFs because more information can be efficiently stored by the multiwavelet coefficients. In the same way, a higher-order solution also benefits the SSED and SD indicators. The former achieves a reduction in the total number of DOFs of about 84 %, while the latter shows a slightly slower convergence rate only reaching in accuracy the third uniformly refined simulation with savings of around 82 %.

Memory savings

Table 6.1 offers a summary of the savings in the number of degrees of freedom when the h-adaptive algorithm is activated. The multiwavelet-based indicators display a more consistent and reliable behavior with savings increasing from 30 % for 𝑝 = 1 to over 80 % for 𝑝 = 2 to almost 90 % for the highest order. By contrast, the SSED and SD indicators underperform the multiwavelet family of indicators for the lower-order simulations, and only manage to achieve savings of about 80 % for 𝑝 = 3. Finally, similar percentages in memory savings show how the number of DOFs and memory are closely linked. Certainly, the differences between these two quantities are not higher than 10 %, even when the order is increased. This happens despite the fact that implicit time integration with higher-order DG methods imposes larger memory requirements [START_REF] Renac | Aghora: A High-Order DG Solver for Turbulent Flow Simulations[END_REF].

Error #DOFs change (%) Memory change (%) estimator 𝑝 = 1 𝑝 = 2 𝑝 = 3 𝑝 = 1 𝑝 = 2 𝑝 = 3 MW-𝜌v 30 
Memory behavior is further studied in Table 6.2. Only those error estimators which reach a similar level of accuracy are analyzed. We have set the memory consumption of the uniformly refined simulation with 𝑝 = 1 as reference to measure the effect of increasing the order in memory growth. We observe a constant decrease in memory of approximately 30 % to 50 % for the multiwavelet family of estimators, almost independent of the order. Conversely, the uniformly refined simulations report an increase of about three to four times in memory requirements following the increment in order to achieve the same prescribed level of accuracy than its h-adapted counterpart. We remark that the irregular results of the SSED indicator are due to its poorly performance for low-order simulations.

Computational times

Figure 6.10 outlines the behavior of the error versus the computational cost for the different h-adaptive simulations. Interestingly, the rate of convergence in CPU-time for the h-adaptive simulations with 𝑝 = 1 is slower in the last iterations than the uniformly refined simulations, as illustrated by Figure 6.10a.

We expect this result for the SD and SSED indicators, as they report significantly higher number of degrees of freedom than the uniform simulations for a similar accuracy (see Table 6.1). However, the multiwavelet estimators do show moderate number of DOFs reductions which do not translate into computational savings. This may occur because for a similar number of DOFs adapted meshes with hanging nodes may take longer to reach convergence than uniform ones.

On the other hand, higher order simulations report clear computational gains when adaptation is activated. This is the case of Figure 6.10b with 𝑝 = 2, where most of the estimators except the SD outperform uniform refinement. This trend continues for 𝑝 = 3, with Figure 6.10c reporting substantial cost improvements for every indicator. Remarkably, the multiwavelet indicators provide the best performance among all the proposed error estimators. Computational time Computational time Computational time the final uniformly refined mesh. As reported in Figure 6.10, we observe a strong variation depending on the order of the adapted solution and the error estimator employed. In this manner, adaptation with 𝑝 = 1 underperforms compared to uniform refinement, whereas higher orders achieve significant speedups for selected estimators. The SD indicator offers the lowest performance, with no gain in 𝑝 = 2 and a speedup of three times in 𝑝 = 3. Conversely, the multiwavelet indicators are the most efficient, delivering more than 20 times faster solutions in 𝑝 = 2 and between 12 and 19 times in 𝑝 = 3. Lastly, the SSED indicator lands in between, by providing a speedup of five times in 𝑝 = 2 and of nine in 𝑝 = 3. Sensor estimation, element marking and refining times have not been included in the previous analysis. However, they never constitute more than 5 % of the total computational time.
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Measure of separation/reattachment lengths under h-adaptation

We complete the study of the adapted solutions by analyzing the normalized lengths of flow separation/reattachment. Unlike the previous analysis of the error, these quantities can be found in literature and thus it will allow us to compare and validate our results.

Table 6.4 collects some of the most relevant studies and how their values compare to the reference solution used in the present work. Their domains are slightly different with the main divergence being the length of the expanded channel and the absence/presence of the inlet channel. As reported by [START_REF] Barton | The Entrance Effect of Laminar Flow over a Backward-Facing Step Geometry[END_REF], the presence of an inlet results in the reduction of the lower reattachment length, denoted by 𝑥 1 , the upper separation length, 𝑥 2 , and to a lesser extent, the upper reattachment length, 𝑥 3 , with respect to the use of no entrance at all. Only the study of [START_REF] Erturk | Numerical Solutions of 2-D Steady Incompressible Flow Over a Backward-Facing Step, Part I: High Reynolds Number Solutions[END_REF] provides results on the separation length at the step, 𝑥 0 . Our reference solution agrees very well with the values 𝑥 0 and 𝑥 1 provided by Erturk. The lengths 𝑥 2 and 𝑥 3 , defining the upper recirculation region, show a small deviation from the study. However, the former is still within the values provided by [START_REF] Cruchaga | A study of the backward-facing step problem using a generalized streamline formulation[END_REF] and [START_REF] Barton | The Entrance Effect of Laminar Flow over a Backward-Facing Step Geometry[END_REF], and the latter, being the furthest from the step, is the least influenced by the absence/presence of the inlet channel and thus it is reasonable that it may be found to be in between the estimates given by Barton.

Figures 6.11 and 6.12 show the convergence history of the normalized separation/reattachment lengths for every error estimator and different orders of the numerical solution. The evolution of the separation length at the step, denoted by 𝑥 0 , shines a new light on indicator behavior not reported in the previous analysis of Figure 6.9. Certainly, the SD indicator shows the fastest convergence and highest accuracy of the error estimators examined. Moreover, it is the only indicator that reaches the target reference length when 𝑝 > 1 while achieving a large reduction on the number of degrees of freedom (above 90 %) compared to uniform refinement. This unexpected result can be explained by two confluent factors. These are, the weak influence on this region of the stream itself and the strong tendency of the SD indicator to refine in the low-energy regions. The first factor ameliorates the poor performance of the indicator overall, and the second factor allows for over-refinement in the recirculation regions, which is beneficial to accurately secure the separation/reattachment locations. By contrast, the rest of the indicators do not focus as much on regions of low energy and thus struggle to reach the target length.

The convergence history of the remaining locations 𝑥 1 , 𝑥 2 , and 𝑥 3 shows patterns already observed during the previous analysis of the error in Figure 6.9.

For the lowest degree 𝑝 = 1, the SD indicator reports the largest divergence on achieving the reference target length. This happens despite its tendency to heavily refine in recirculation regions and on walls, which should help converge to the target length. This contradicting result can be attributed to an insufficient resolution along the upstream flow which, in turn, has a negative impact on accurately capturing the locations further from the step. Therefore, adequate resolution adaptation along the upstream flow is key. On the other hand, the SSED indicator displays a mixed record on reaching the reference target length, together with a slower convergence rate compared to uniform refinement. Finally, the multiwavelet-based indicators show analogous rates of convergence between them when analyzing 𝑥 1 , 𝑥 2 , and 𝑥 3 for 𝑝 = 1 simulations. Apart from 𝑥 3 , for which only the MW-𝜌𝒗 indicator achieves the target, every multiwavelet-based estimator reaches the reference value with savings in the range of 45 % to 60 %.

When the order is increased to 𝑝 = 2, every indicator substantially improves their convergence rate. The SSED indicator attains a reduction of about 83 % in the number of DOFs and the multiwavelet-based indicators obtain a further decrease to be within the interval of 93 % to 95 %. The SD indicator remains as the only error estimator which does not achieve the target length.

Finally, for the highest order 𝑝 = 3 all refinement indicators reach the prescribed reference length while achieving a significant reduction in the number of DOFs. They all perform similarly with savings in the range of 93 % to 96 %. The only exception is the upper reattachment length, 𝑥 3 , for which the MW-𝜔 and the SSED indicators do not converge to the target. It is also worth mentioning that in this case the SD indicator performs better than in the previous Figure 6.9, due to the nature of the separation/reattachemt location quantity, which benefits from indicators that lean toward refinement on the recirculation regions.

Input influence on multiwavelet estimator performance

To finalize this chapter, we examine the different estimators within the multiwavelet family (i.e. the MW estimators based on different flow quantities). So far, when comparing them to the SSED and SD indicators we have treated them mainly as a group. Now we analyze their performance with respect to each other. To this end, we evaluate the error in the 𝐿 2 -norm of the different physical quantities that characterise each of the multiwavelet indicators along vertical profiles at the selected locations 𝑥 = 0, 6ℎ, 14ℎ, 30ℎ shown in Figure 6.5a.

We remind the reader that the indicators involve density momentum, pressure and vorticity, and thus the error is based on these as well. As reported in Figure 6.9, the final adapted grids associated with each indicator of the multiwavelet family have reached an similar global level of accuracy. This result ensures that we can have a fair comparison when evaluating the effect of the different flow quantities on the behavior of the estimator.

Figure 6.13 shows the comparison between the multiwavelet-based indicators. Figures 6.13a to 6.13c represent every profile location along the 𝑥-axis and its associated error along the 𝑦-axis. For each figure there are three line styles covering 𝑝 = 1 to 𝑝 = 3. Color preference is given to those indicators that typify the same physical quantity than the current error. For example, Figure 6.13a illustrates the error in momentum density, and thus the red line represents the h-adapted mesh associated with the momentum density indicator, MW-𝜌𝒗. The remaining black lines represent the h-adapted mesh driven by the pressure indicator, MW-𝑝, and vorticity indicator, MW-𝜔, in no preferential order. In general, we observe that 𝑝 = 1 reports a more even distribution of error along the channel. When we increase the approximation order the error is concentrated in the region around the step while decreasing at the other locations, a clear sign that the downstream convection of the error is ameliorated. Interestingly, the best results in these locations 𝑥 > 0 with 𝑝 > 1 are generally obtained by the indicator that shares physical variable with the error, e.g. error in pressure is better captured by the MW-𝑝 indicator. This is somehow expected, as an indicator based on a particular physical variable would usually monitor better its associated error.

ref‖ 𝐿 2 𝑝 = 1 MW-𝜌v 𝑝 = 2 MW-𝑝 𝑝 = 3 MW-𝜔 ( 
Table 6.5 measures the error of these profiles combined. We observe that for low-order and evenly distribution of the error, the MW-𝜌𝒗 indicator offers the best performance overall, reporting the most accurate results in momentum density, pressure, and vorticity. When the order is increased, the step region gains more influence and the indicator that reports lower error there will perform best. In our case it is the MW-𝜔 indicator for 𝑝 = 2 and the MW-𝜌𝒗 and MW-𝑝 indicators for 𝑝 = 3. Therefore, we believe that near a singularity there is no clear indicator that outperform the others. All of them perform similarly, with slight variations depending on the order of the simulation.

CONCLUDING COMMENTARY

In this chapter we have analyzed multiple variations of the error estimator based on the local multiresolution analysis of the DG solution to guide hadaptive simulations. Specifically, we have studied flow configurations defined by the presence of physical and geometrical discontinuities, which would considerably profit from pure mesh adaptation.

Adaptive simulations of the one-dimensional viscous Burgers equation driven by the multiwavelet methodology have shown compelling results. The multiwavelet error estimator has been tested under multiple reconstruction paradigms and they all have reported significant reductions in the number of degrees of freedom when adaptation is activated. A comparison of their performance against the modal error estimators SSED [START_REF] Kuru | An Adaptive Variational Multiscale Discontinuous Galerkin Method For Large Eddy Simulation[END_REF] and SD [START_REF] Taube | hp-Adaptation in Space-Time within an Explicit Discontinuous Galerkin Framework[END_REF] has shown that our proposed estimators report effectivity indices closer to unity, which means that they are able to better monitor the evolution of the discretization error of the numerical solution. Particularly, the 𝜅-multiwavelet estimator has reported the best performance within the multiwavelet family.

Encouraged by the promising results of the one-dimensional simulations, we have extended the 𝜅-multiwavelet estimator to higher dimensions. In this regard, we have studied a steady laminar backward-facing step flow at Re = 800 and Ma = 0.1. This more demanding configuration certainly has demonstrated the viability of the estimator to achieve a substantial computational gain with respect to uniformly refined grids. Particularly, we have applied the estimator to different physical quantities and recorded their resulting hadaptive simulations separately. For a prescribed level of accuracy, depending on the order of the simulation, the different variations of the multiwavelet estimator have achieved a peak reduction in the numbers of degrees of freedom of 48 %, 84 %, 90 % for DG 𝑝 = 1, 𝑝 = 2, and 𝑝 = 3 simulations, respectively. The convergence study of the separation/reattachment lengths has led to similar savings and has further justified the use of h-adaptation to reduce the computational load.

With regards to physical quantities put under the umbrella of the multiwavelet expansion, we have discovered that, when the underlying solution is smooth and for a prescribed level of accuracy, building the 𝜅-multiwavelet estimator on a given physical quantity (e.g. momentum density) has led to refined grids that better predict the given physical quantity. However, in the presence of a singularity, we have found that the causality seemed to be weakened and the choice of the physical quantity as input for the estimator did not have a significant effect on the final solution.

A thorough comparison of the family of 𝜅-multiwavelet estimators against the literature estimators SSED and SD has found the largest differences in behavior for the low-order simulations. These differences have been highlighted in the analysis of the h-adapted grids. In low-orders, the SSED estimator has reported the largest refined grid, whereas the SD estimator has refined aggressively at the walls and along the recirculation regions. By contrast, the multiwavelet-based estimators have displayed a more consistent adaptation, focusing the adaptation efforts on the separated shear layer and on the vicinity of the singularity. With the exception of the SD, all estimators have reported similar patterns of h-refinement as the order was increased. In this case, the multiwavelet-based estimators have become more accurate when increasing the number of DOFs per element thanks to the higher quantity of details captured during the multiwavelet decomposition. In a similar manner, the SSED and SD estimators have also benefited from a larger number of DOFs, which allowed for a better representation of the higher modes. But in spite of that, they have not achieved the performance levels of the multiwavelet-based estimators.

With respect to the computational times for the different h-adaptive simulations, we have observed underperforming results for the lowest order 𝑝 = 1 in all the estimators. We have attributed this behavior to the fact that adapted grids with hanging nodes may have taken longer to reach convergence than uniform meshes with a similar number of DOFs. In contrast, higher order h-adaptive simulations have reported conclusive computational gains. In this manner, the SD estimator has delivered the lowest performance with a peak speedup of three times in 𝑝 = 3. The SSED estimator has reported a better performance, with a maximum speedup of nine times for the same degree. Finally, the multiwavelet-based estimators have offered the best performance, with a maximum speedup of 20 times in 𝑝 = 2 and delivering between 12 and 19 times faster solutions in 𝑝 = 3.

Chapter 7

HP-ADAPTIVE SIMULATIONS

The study performed in Chapter 6 has paved the way to validate the multiwavelet indicator as a capable error estimator for h-adaptive simulations. In particular, the 𝜅-multiwavelet indicator applied on the density momentum reported the best performance. This estimator is thus selected for the research presented in this chapter.

Building on these results, we now shift our attention to the analysis of hpadaptive simulations. In contrast to the pure h-version of the adaptive simulations studied in the previous chapter and driven exclusively by error estimators, we can come up with a more suitable distribution of h and p based on the multiwavelet hp-strategy developed in Chapter 5. This strategy brings to the table the multiwavelet regularity indicator and the hp-decision criterion developed in Sections 5.2.3 and 5.2.4, respectively.

The objective of the present chapter is to evaluate the performance of our multiwavelet hp-strategy in guiding hp-adaptation in relevant steady simulations by using the algorithm showcased in Section 5.2.6. We judge the performance of our strategy by conducting two studies. Firstly, we carry out a parametric analysis of the hp-threshold to determine the optimal hp-distribution.

In a second step, the hp-adaptive results derived from this distribution are compared to equivalent purely h/p-adaptive results to determine which is the best approach. Both global and local quantities are assessed in this manner.

In each step we analyze the convergence history of different quantities and the regions of the hp-mesh subjected for adaptation. As one would expect, p-adaptation would be employed in regions characterized by regular solution behavior to provide high accuracy, and h-adaptation would be most appropriate in the proximity of discontinuous phenomena, such as shocks or singularities.

The described methodology is applied to two configurations, which form the main structure of the chapter: the 2-D laminar flow over a backward-facing step (Section 7.1) already studied in Chapter 6, and the 2-D laminar flow past a square cylinder (Section 7.2). In the first configuration we present a brief extension to hp of the results obtained in Chapter 6. The new hp-meshes are analyzed in Section 7.1.1, while the analysis of the hp-results is presented globally in Section 7.1.2 and locally in Section 7.1.3. We introduce the computational details of the second configuration in Section 7.2.1, followed by an analysis of the error across uniformly refined meshes in Section 7. Consequently, we employ once more the computational domain showcased in Figure 6.5a with Re = 800 and Ma = 0.1, and boundary conditions described in Section 6.2.1. Similarly to the h-refinement study, we use the numerical results obtained with grid K and 𝑝 = 2 from Table 6.5c as the reference solution. We remind the reader that this solution has been previously validated in Section 6.2.2.

We use the grid C from Table 6.5c as initial computational grid Ω (0) ℎ combined with the constant 𝑝-distribution 𝓅 = 1. From this pair a sequence of hp-meshes Ω (𝑖) ℎ,𝓅 is generated. We bound the local polynomial degree to the interval 𝑝 𝐾 ∈ [ 𝑝 min , 𝑝 max] with 𝑝 min = 1 and 𝑝 max = 5 being the minimum and maximum polynomial degrees permitted, respectively. We perform a sequence of simulations driven by a combination of the multiwavelet-based estimator and regularity indicator under the umbrella of the hp-algorithm. These computations are organised in three groups as follows:

(i) The first group collects uniform and adaptive mesh refinement of Ω ℎ,𝓅 under constant 𝓅. We simply refer to them as h-simulations. (ii) The second group consists of uniform and adaptive polynomial adaptation of Ω ℎ,𝓅 with 𝓅 ∈ [ 1, 5 ] and constant mesh Ω (0) ℎ . We denote them as p-simulations. (iii) The last group comprises hp-adaptation of Ω ℎ,𝓅 , with both 𝓅 and Ω ℎ subjected to change. We refer to them as hp-simulations. The hp-threshold 𝜍 tol employed in these computations is given by the interval ( 0.25 < 𝜍 tol < 0.35 ) . The refined mesh in Figure 7.1b has already been discussed in Chapter 6. We concluded that the adaptation successfully captured the geometrical jump and the separated shear layer by applying the highest level of refinement. Likewise, the top and bottom recirculation regions displayed lower levels of refinement due to the regularity of the solution in these regions.

Comparison of the h-, p-, and hp-adapted meshes

The p-adapted mesh in Figure 7.1c can be understood as a map of the local polynomial degree. By looking at this map we observe that the initial 𝑝 = 1 sits quite below the given level of accuracy, thus the minimal degree in the final mesh is increased to 𝑝 = 3. The highest value of the local polynomial occurs in the proximity of the corner and, to a lesser extent, along the shear layer. The inlet channel and the regions where the flow changes direction to adjust to the channel expansion are also subjected to moderate local degrees. The lowest values are reported in the recirculation regions. Overall, the distribution map behaves similarly to the h-refinement pattern discussed earlier.

In the single h-or p-adapted meshes described so far we can not clearly distinguish the nature of the error that drives adaptation. For example, the strong velocity gradient caused by the step justifies adaptation in that region. However, the previous analyzes are not conclusive as to whether h or p is the ideal 108 7 hp-adaptive simulations
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(a) h-uniform vs adaptive. choice. To address this issue, Figures 7.1d to 7.1g display the combination of h-refinement and p-enrichment for different iterations of the adaptive procedure. We observe how the area surrounding the geometric singularity is subjected to mesh refinement. This is a result of the regularity indicator detecting this region as non-regular. To a lesser extent, the zone in the vicinity 𝑥 = 14ℎ is also marked as non-regular. This is due to the flow stream lightly reaching the lower wall while adjusting to the expanded channel. Interestingly, as the density of the mesh increases, these zones become progressively more regular and the algorithm ends up switching to p-enrichment. Conversely, the inlet channel, recirculation bubbles, and the main stream of the flow are all flagged as smooth regions, and therefore put through p-enrichment.

Global analysis of the h-, p-, and hp-adaptive results

In order to measure the performance of the hp-simulations with respect to the single h-and p-computations, Figure 7.2 showcases the convergence history of the error in the 𝐿 2 -norm of the momentum density versus the number of degrees of freedom. In Chapter 6, we demonstrated that the asymptotic region is reached for sufficiently fine grids, as is also the case here.

Figure 7.2a illustrates the convergence history associated with the h-simulations, both uniform and adaptive. These results are those presented in Chapter 6 and used for comparison purposes. We remind the reader that we found a moderate reduction of around 40 % in the total number of DOFs as compared to uniform refinement for a given level of accuracy.

The convergence history of the uniform and adaptive p-simulations is shown in Figure 7.2b. The convergence rate is considerably faster than the reported for h-simulations, especially during the first and the last iterations of the adaptive procedure. This suggests that the singular effect of the step on the overall smoothness of the flow may be less severe than anticipated. Observe also that between the errors reported by uniform and adaptive p-simulations nearly overlap for the first iteration of the algorithm. This is due to the even distribution of the error over the course of the first iteration. In this case, the increase of the polynomial degree must be extended to the entire computational domain, as reported in Section 7.1.1. In the last steps of the adaptation and for a similar level of accuracy, we achieve a reduction in the number of DOFs of approximately 50 % with respect to p-uniform.

Moving on to hp-simulations, Figure 7.2c pictures their convergence history.

In this case, we report only three iterations for the uniform results, as the computations become quickly very expensive. The savings between uniform and adaptive hp-simulations are the largest of all the adaptation approaches, with a decrease of the total number of DOFs of roughly 92 %.

Finally, we collect the results from the h-, p-, and hp-adaptive simulations in Figure 7.2d. The p-and hp-adaptive computations behave comparably and report significantly better performance with respect to the h-adaptive computations, with savings of approximately 80 % compared to the latter. Despite behaving similarly, a close examination of p and hp reveal substantial differences. Firstly, the hp-adaptive results display a more consistent convergence rate, which means that the hp-approach is more efficient in addressing the error distribution. And secondly, the hp-approach provides a slightly higher level of accuracy for a similar number of DOFs.

Local flow field analysis of the h-, p-, and hp-adaptive results

The present section outlines a detailed comparison of multiple 𝑦-velocity profiles along the expanded channel downstream of the step. The idea is to examine the effects of each of the adaptation approaches addressed in Section 7.1.2 at a local level. Specifically, we pay particular attention to the local behavior of the p-and hp-adaptive computations, which have displayed close resemblance when studied globally.

Figure 7.3 depicts the difference between computed adaptive 𝑦-velocity and reference 𝑦-velocity at the final adaptation step. We notice how the overall error associated each adaptive simulation, recorded by the horizontal axis, is at least one order of magnitude smaller at the locations downstream of the step. In Figure 7.3b the step acts as a geometrical singularity thus it is reasonable for the largest values of the error to be concentrated in that region. Interestingly, the regions where the flow changes direction to adjust to the channel expansion (𝑦 > 1 2 in Figure 7.3c and 𝑦 < 1 2 in Figure 7.3d) report moderate With respect to each adaptive simulation individually, the h-approach underperforms the p-and hp-simulations at the locations downstream of the step. If we define the average error of a given profile as Δ𝑣 avg = 1 Δ𝑦 ∫ Δ𝑣 d𝑦 and particularize it for the profile of the h-approach, we report almost four times higher average errors in Figure 7.3c, two times in Figure 7.3d, and nine times in Figure 7.3e when compared to either the p-or hp-approach. These regions are characterized by a smoother flow and thus benefit from the increase in solution order provided by either the p-or hp-approach. Regarding these two, they seem to behave similarly from Figures 7.3c to 7.3e, with hp-adaptation slightly outperforming p-enrichment. The most significant results can be found in the region near the step, as showcased by Figure 7.3b. Here, the p-simulation features the highest error peak caused by the oscillations introduced by the higher-order solution around the singularity. By contrast, the h-simulation maintains a low polynomial order and reports a better performance, reducing around 26 % the average error with respect to the p-approach. The hp-approach further improves the percentage to 38 %. It achieves a high-order solution where the flow is smooth yet it averts the oscillations of the p-enrichment next to singularities by employing h-enrichment and low orders.

LAMINAR SQUARE CYLINDER

Throughout this section a sequence of numerical simulations of a two-dimensional steady laminar flow past a square cylinder is performed to evaluate the performance of the pair formed by the multiwavelet error estimator and the multiwavelet regularity indicator in the context of hp-adaptation.

Computational parameters

The study of the flow past bluff bodies has been historically an active field of research within the CFD community. The majority of the studies are centered on the circular cylinder (see e.g., [START_REF] Strykowski | On the formation and suppression of vortex 'shedding' at low Reynolds numbers[END_REF], [START_REF] Williamson | Vortex Dynamics in the Cylinder Wake[END_REF], and [START_REF] Gautier | A reference solution of the flow over a circular cylinder at Re=40[END_REF]), with the square counterpart receiving substantially less attention (see e.g., [START_REF] Franke | Numerical calculation of laminar vortex-shedding flow past cylinders[END_REF]). The flow around a square cylinder behaves comparably to the flow around a circular cylinder; the major deviation being that the location of the separation is anchored at the sharp corners of the cylinder.

It is well understood that the square cylinder configuration can can lead to different flow regimes depending on the value of the Reynolds number [START_REF] Breuer | Accurate computations of the laminar flow past a square cylinder based on two different methods: lattice-Boltzmann and finite-volume[END_REF], based on the edge length 𝐷 and constant inflow velocity 𝑢 0 . At Re < 1 the flow is dominated by viscous forces and no separation occurs. For There exists no clear consensus in the literature on a fixed value of Re crit . In this work, the choice of Re has been based on the conservative estimation of Re crit = 54 provided by [START_REF] Kelkar | Numerical prediction of vortex shedding behind a square cylinder[END_REF]. In particular, by choosing Re = 40 we guarantee that the flow around the square cylinder is steady.

The body is placed in the center of a squared computational domain (see Figure 7.4a). In order to reduce the influence of the inflow and outflow boundary conditions, we follow the recommendations from [START_REF] Posdziech | A systematic approach to the numerical calculation of fundamental quantities of the two-dimensional flow over a circular cylinder[END_REF] and [START_REF] Naddei | Simulation adaptative des grandes échelles d'écoulements turbulents fondée sur une méthode Galerkine discontinue[END_REF] and set the distance 𝐻 from the center to the outer boundary 𝐻 = 1000𝐷. The inflow boundary condition is made of a constant flow 𝑢 0 from left to right of the computational domain. We impose non-slip boundary conditions at the walls of the body and non-reflecting boundary conditions on the outer boundary.

Figure 7.4b illustrates the initial mesh Ω (0) ℎ . We use a Cartesian non-uniform structured mesh with 2592 elements. Starting from the outer boundary, the elements progressively decrease in size such that they are highly clustered in the vicinity of the cylinder (geometrical series).

Reference solution and mesh convergence

To achieve a sufficiently fine mesh from which to compute an adequate reference solution, we perform multiple mesh refinement iterations Ω (𝑖) ℎ of the initial grid Ω (0) ℎ . The first grids are generated by uniform global refinement. In order to limit the computational cost, we restrict the uniform refinement to the vicinity of the body, creating successive rectangular patches with ever increasing spatial resolution. Figure 7.5b depicts this process by analyzing the global 𝐿 2 -norm of the error in the momentum density of the 𝑝 = 2 solution obtained for each of the globally refined meshes. As can be seen in this graph, the last refined meshes achieve the asymptotic convergence rate. We obtain Table 7.1 presents some relevant integral flow parameters such as recirculation length and dimensionless force coefficients (drag). They are collected from some of the most relevant literature and put side by side to our reference solution. They are organised from lower to higher blockage ratio, which is defined as the ratio between the cylinder side length and the domain extension, 𝐵 = 𝐷/𝐻. This ratio helps to understand the influence of the boundary on the solution. The study of [START_REF] Posdziech | A systematic approach to the numerical calculation of fundamental quantities of the two-dimensional flow over a circular cylinder[END_REF] concluded that if the blockage ratio is decreased to 𝐵 ≤ 0.001, the solution can be considered as being grid independent. Indeed, the deviation of the drag value between our asymptotic solution and Basile et al. ( 2021) is below 0.02 % for 𝐵 = 0.001. An equally low deviation of 0.2 % is observed in the recirculation length. With increasing blockage ratios the disparity is accentuated, which means that the solution is more influenced by errors introduced by blockage. From [START_REF] Meliga | Sensitivity of aerodynamic forces in laminar and turbulent flow past a square cylinder[END_REF] to [START_REF] Franke | Numerical calculation of laminar vortex-shedding flow past cylinders[END_REF], the deviation in the drag coefficient increases from 2 % to 20 %, respectively.

Overview of the h-and p-adaptive results

We employ the initial computational grid Ω (0) ℎ described in Section 7.2.1 with the constant 𝑝-distribution 𝓅 = 2 to perform a series of h/p-pure adaptive computations. From the initial Ω (0) ℎ,𝓅 we build a series of hp-meshes for which 𝓅 (𝑖) or Ω (𝑖) ℎ remains fixed, depending on whether we perform strictly h-or psimulations. In the latter, we limit the local polynomial degree to the interval 𝑝 𝐾 ∈ [ 2, 9 ] . h/p-adapted meshes Figure 7.6 outlines the h-and p-adapted meshes resulting from the adaptive procedure. If we pay attention first to the h-refined mesh in Figure 7.6a, we observe that the vicinity of the cylinder is subjected to various levels of refinement, becoming more pronounced in the region approaching the solid body. In particular, we highlight the intense local refinement at the leading corners of the cylinder and, to a lesser extent, at the trailing edge, where the separation of the laminar boundary layers occurs. This is expected, as these sharp corners generate a sudden velocity gradient in the flow. We can also clearly notice the refinement pattern along the shear layers extending downstream. In the near-wake, the two symmetrical recirculation regions display considerably lower refinement levels, which can be justified by the smoothness of the solution in that region. Finally, the far-wake area stretching to the exit boundary (not shown here) reveals unusually high levels of refinement. This behavior was also reported by [START_REF] Naddei | A comparison of refinement indicators for 𝑝adaptive discontinuous Galerkin methods for the Euler and Navier-Stokes equations[END_REF]. The authors suggested high-aspect ratio and poor mesh quality as the cause. We also believe that, despite the large distance between the cylinder and the exit, the wake may be not fully dissipated. This fact contradicts the imposed boundary conditions, causing a spurious behavior at the outflow.

Figure 7.6b illustrates the map of the local polynomial degree. Most of the observations drawn from the h-refined mesh are applicable to p-adaptation. The areas subjected to p-enrichment are centered around the square cylinder and along the wake in the rear of the body. The highest values of the p-distribution are reported in the vicinity of the square and follow the shear layer downstream. Finally, we observe a larger spread of the p-distribution than the equivalent mesh refinement. This is due to p-enrichment being constrained by the topology of the initial mesh, which is not modified. The limitation enforced in the jump of the polynomial degree between two neighboring elements causes multiple extra elements to be marked for p-enrichment. This prompts successive iterations of the p-distribution to occupy a larger area, as the number of elements in the grid is not increased. 

Integral flow quantities

The h-and p-computations are analyzed by comparing the integral flow parameters such as recirculation lengths and drag coefficients. We also study the the contributions of the viscous and pressure forces to the total drag. Figure 7.7 shows the convergence history of the drag coefficient and its components using uniform and adaptive h-refinement with respect to the reference solution discussed in Section 7.2.2 for which the benchmark quantities are given in Table 7.1. We can observe that for a target value of the error in the drag coefficient of Δ𝐶 𝐷 = 1 × 10 -4 , we achieve a reduction of 90 % in the number of DOFs with respect to the uniform refinement, as illustrated by Figure 7.7a. We report a fast rate of decay during the first adaptive iterations. Then the procedure reports a slow down around the third iteration. We believe this is caused by the presence of the geometrical singularities at the corners of the cylinder. The converge rate is recovered after a short plateau and continues to decrease, albeit at a lower pace. The behavior of the uniform solution is equivalent, yet using a much larger number of DOFs. A similar pattern of convergence history is reported in Figures 7.7b and 7.7c for the two components of the drag. We notice an overestimation of the viscous component of the drag and an underestimation of the pressure component. While the drag achieves the target value of Δ𝐶 𝐷 = 1 × 10 -4 , its two components reach a higher error of Δ𝐶 𝐷 press = Δ𝐶 𝐷 visc = 6 × 10 -3 . This behavior comes from the cancellation of the errors due to the combination of the pressure and viscous coefficients.

Figure 7.8 summarizes the computed values for the recirculation length using uniform and adaptive h-refinement with respect to the benchmark value from the reference solution. Similarly to the drag coefficient, we reach a level of error on the recirculation length lower than that corresponding to the uniformly refined meshes.

Figure 7.9 illustrates the convergence history of the drag coefficient and its components using uniform and adaptive p-enrichment with regards to the reference drag. For a target value of the error in the drag coefficient of Δ𝐶 𝐷 = 7 × 10 -4 , the reduction in the number of DOFs in connection with the uniform refinement is of about 64 %, as showcased in Figure 7.9a. After a very fast decline in the convergence, the drag coefficient seems to become almost constant for the remaining adaptive iterations. This seem to suggest that penrichment alone is not able to overcome the effect of the singularity in the solution. A similar pattern is observed for the pressure and viscous component of the drag, Figures 7.9b and 7.9c, respectively. Interestingly, the convergence pace is much slower in those cases. Again, the separate components cancel each other, producing a much lower total value of the drag.

Figure 7.10 displays the computed quantities for the recirculation length using uniform and adaptive p-enrichment together with the reference value (horizontal dashed line). Equivalently to the drag analysis, the gains are modest with respect to uniform p-enrichment. We report a fast decay followed by a stabilization of the measured length.

Parametric hp-adaptive results I: review of hp-meshes

Similarly to the Section 7.2.3, we start from the initial computational grid Ω (0) ℎ and the initial 𝑝-distribution 𝓅 = 2 and perform a series of hp-adaptive simulations. From the initial Ω (0) ℎ,𝓅 we generate a sequence of hp-meshes Ω (𝑖) ℎ,𝓅 .

Unlike Section 7.2.3, the successive p-distributions 𝓅 (𝑖) and refined meshes

Ω (𝑖)
ℎ would be adapted simultaneously. The choice between modifying one or the other is guided by the multiwavelet regularity indicator under different ranges of the hp-threshold parameter 𝜍 tol . Again, the local polynomial degree is constrained to 𝑝 𝐾 ∈ [ 2, 9 ] . Figure 7.11 displays the resulting hp-meshes for different iterations of the adaptive procedure under 0.4 ≤ 𝜍 tol < 0.5. This configuration of the regularity indicator gives a strong preference to h-refinement over p-enrichment. At the first iteration mesh refinement is performed around the body and along the rear wake up to the exit, as illustrated in Figure 7.11a. The pattern of h-refinement near the body remains for the next iterations, including the trailing edges and the two symmetrical vortexes. On the other hand, p-enrichment is activated at later iterations in the region immediately upstream of the body and along the downstream wake. A zoomed detail of the square cylinder allows us to see that the highest levels of refinement are achieved at the frontal and rear corners, as showcased by Figure 7.11f. The highest p-value of this configuration is 𝑝 = 6, which can be found along the near-wake.

Figure 7.12 illustrates the hp-meshes under 0.3 ≤ 𝜍 tol < 0.4. This setting represents a more moderate preference toward mesh refinement. We still report adaptation of the mesh in the vicinity of the body, but it is progressively replaced by the adaptation of the local polynomial in subsequent iterations, especially along the wake extending towards the boundary. The corners, immediate shear-layer, and recirculation bubbles still require h-refinement. By looking at the magnified square cylinder in Figure 7.12f, we reveal the highest density of the grid around the upstream corners, whereas the narrow nearwake and a small region at the front of the cylinder report a polynomial degree of 𝑝 = 6, the highest value of the p-distribution in this configuration.

Figure 7.13 showcases a shift towards p-adaptation, with a hp-threshold parameter within the interval 0.2 ≤ 𝜍 tol < 0.3. In this case only the areas close to the front and rear of the body are selected for mesh refinement. Early on, p-enrichment spreads to the upstream and downstream of the cylinder, forming a clear p-distribution tail extending to the exit. The zoomed window in Figure 7.13f offers a view on the highly h-refined frontal corners, while the frontward area and the wide region starting at the near-wake collects the maximum polynomial degree of 𝑝 = 7.

Figure 7.14 is using 0.1 ≤ 𝜍 tol < 0.2 and describes an acute trend towards p-adaptation, whereas the zones that report mesh refinement are minimal. In fact, early iterations of the adaptive procedure are fully governed by penrichment, with the exception of the small regions around the forward corners of the cylinder. Later iterations only accentuate this trend. Indeed, a remarkable focus on refining the mesh is shown in Figure 7.14f, where a zoom of the cylinder is depicted. Every other element selected for adaptation is subjected to an increase in the polynomial degree. The maximum polynomial degree in this configuration is 𝑝 = 7.

Parametric hp-adaptive results II: drag coefficient

In this section we provide a detailed comparison of the possible ramifications of the multiwavelet regularity indicator regarding its hp-sensitivity. The idea is to compare different hp outcomes based on a parametric analysis of the hpthreshold 𝜍 tol . To measure the effect of the parameter 𝜍 tol into the hp-adaptive process we analyze the behavior of the drag coefficient.

Figure 7.15 portrays the convergence history of the drag coefficient and its components using hp-adaptation versus uniform h-refinement with respect to the value given by the reference solution. The different values of the hpthreshold 𝜍 tol are represented by the different colored graphs. The nomenclature is the following: (i) h++ tolerance, defined by the span 0.4 ≤ 𝜍 tol < 0.5. (ii) h+ tolerance, denoted by 0.3 ≤ 𝜍 tol < 0.4 (iii) p+ tolerance, identified by 0.2 ≤ 𝜍 tol < 0.3 (iv) p++ tolerance, represented by 0.1 ≤ 𝜍 tol < 0.2 Given a target error of Δ𝐶 𝐷 = 1 × 10 -4 in the drag coefficient, the number of DOFs with respect to the uniform refinement is significantly reduced. This is true for all of the prescribed tolerances, as illustrated by Figure 7.15a. We report savings ranging from 95 % for h++ to 98 % for p++. In a similar manner, they display a rapid downward progression, then a deceleration, and finally they feature a restored decay, yet at a slower pace. The pressure and viscous contributions to the drag, Figures 7.15b and 7.15c, display a similar behavior. However, we observe again a compensation of errors (due to the components of the drag remaining similarly underestimated and/or overpredicted) being transferred to the total drag, causing the latter to reach lower values of the error compared to its components.

The dissimilarities among the prescribed tolerances are worth investigating. The results from 𝐶 𝐷 press and 𝐶 𝐷 visc seem to suggest for this configuration a slight benefit of choosing tolerances leaning towards p-enrichment, with the tolerance p++, which seems to be the most efficient, achieving higher accuracy for the same number of adaptation steps. However, for the total drag the outcome is less clear, with the tolerances leaning towards h-refinement reporting narrowly higher accuracy. In particular, the moderate tolerance h+ outperforms all others. As discussed before, these differences between total drag and its components are likely caused by a compensation of errors. In the next section we further investigate the behavior of the hp-adaptive algorithm by looking into the recirculation bubble length.

Parametric hp-adaptive results III: recirculation region

Figure 7.16 shows the computed values of the recirculation length using hpadaptation and uniform h-refinement and compares them to those obtained from the reference solution. As for the 𝐶 𝐷 , we observe similar convergence histories for all the prescribed tolerances. However, the tolerances weighted towards p-enrichment require a larger number of adaptation steps to arrive at the same accuracy reported by either h+ or h++. Specifically, the moderate tolerance h+ seems to be the most efficient.

Global analysis for h-, p-, and hp-adaptive results

In this section we collect the best results from the different adaptive strategies for the integral flow quantities obtained from hp-adaptation (Sections 7.2.5 and 7.2.6) and compare their performance against their pure h and p counterparts obtained in Section 7.2.3.

The adaptive results for the drag coefficient and its pressure and viscous contributions are outlined in Figure 7.17. During the analysis of the total drag, Figure 7.17a, we observe that p-adaptation yields a fast error convergence during the first iterations but quickly reaches a plateau at Δ𝐶 𝐷 = 7 × 10 -4 , well above the value of Δ𝐶 𝐷 = 8 × 10 -5 reached by either h or hp. This is expected given the coarse initial grid and the presence of the strong geometrical singularity at the corners of the cylinder. We suspect that not being able to adjust the topology of the initial mesh clearly becomes a limitation. Conversely, hadaptation produces a slower convergence rate. This decay ends on a similar plateau but, unlike p-enrichment, it does not fully stagnates and it restores the error convergence to a moderate pace by upholding fine grid sizes and low order approximations around the corners of the cylinder. Clearly, hp-adaptation provides the optimal approach. On the one hand it provides the rapid error convergence characteristic of p-enrichment during the first steps of the adaptive procedure. On the other hand, it does inherit from h-refinement the possibility to overcome the effect of the geometrical singularity by locally adapting the mesh and thus producing a proper error convergence. These factors allow hp-adaptation to reach the target level of accuracy Δ𝐶 𝐷 = 8 × 10 -5 while achieving a reduction of 62 % in the total #DOFs with respect to hadaptation. These behaviors are similarly reported for 𝐶 𝐷 press and 𝐶 𝐷 visc in Figures 7.17b and 7.17c, respectively; even when we take into account the error compensation between these quantities.

Finally, Figure 7.18 showcases the adaptive results for the recirculation length.

Analogously to the drag analysis, the use of pure p-adaptation achieves early fast error convergence but ends up stagnating the progression, while the pure h-simulation improves the error convergence at the expense of using a larger #DOFs. The hp-adaptive approach appears thus as the ideal choice by attaining rapid convergence while substantially reducing the #DOFs.

Local flow field analysis for h-, p-, and hp-adaptive results

The current section presents a detailed comparison of relevant velocity and pressure profiles at several locations in the flow field. In particular, we are interested in analyzing the effects of each of the adaptation approaches discussed so far (h, p, and hp) at a local level.

Profiles in the streamwise direction First, we focus on the horizontal profiles following the direction of the flow, as illustrated in the top row of Figure 7.19. The first of these profiles spans from the frontal corner to the rear corner, and extends along the trailing edge. Figure 7.19a collects the values of the difference between the computed and the reference pressure for every adaptive iteration. If we define the average error of a given profile as Δ𝑝 avg = 1 Δ𝑥 ∫ Δ𝑝 d𝑥, the error profiles obtained for the p-enrichment strategy display a reduction of the average error between successive iterations of 24 %, with the initial steps reporting a maximum of 45 % and the later stages providing a negative reduction of -6 %. The final profile seems to be crowded with little fluctuations generated by the high-order approximations being unable to capture the singularities. This may explain the slow error convergence and stagnation of the global quantities observed in Sections 7.2.5 and 7.2.6. By contrast, h-and hp-adaptation feature a mean decrease of the error between successive adaptation steps of 47 %. Interestingly, from the fourth iteration of the adaptive algorithm the two sharp corners become the main source of the error. The average error decline is however slowed down to a minimum of 6 %. By concentrating the mesh refinement on the singularities we progressively recover the percentage to the maximum of 81 % at the final adaptation step. The differences between the final h and hp profiles are minimal. Revealingly, these profiles achieve a reduction of the average error with respect to the final p profile of approximately 95 %. play a more monotonic decline of the average error of approximately 30 %, with the average error measured as Δ𝑢 avg = 1 Δ𝑥 ∫ Δ𝑢 d𝑥. This seems to suggest that not capturing properly the singularities in the vicinity of the body affects the downstream flow. Again, there exists minimal variations between the final h and hp profiles. Similarly to the pressure analysis in Figure 7.19a, they accomplish a decrease of the average error with respect to the final p profile of about 88 %.

Profiles in the cross-stream direction Finally, we assess the pressure profiles perpendicular to the direction of the flow. Figure 7.20 illustrates the balance between computed adaptive pressure and reference pressure at the final adaptation step. We analyze three different locations upstream of the cylinder, which are ordered from farthest to closest to the body in Figures 7.20a to 7.20c. We can observe how the overall error of each adaptive approach, given by the horizontal axis, becomes larger as we approach the body. This is expected, as the singularities are the main source of the error in this configuration. Regarding each of the adaptive approaches individually and defining the average error as Δ𝑝 avg = 1 Δ𝑦 ∫ Δ𝑝 d𝑦, we notice how hp-adaptation is again the 124 7 hp-adaptive simulations most efficient of the group. With this in mind, it reports extensive savings in the average error between 93 % and 97 % when its profile is compared to the profile of the p-approach, and between 6 % and 22 % when compared to the h-approach. In this analysis the p-approach reports fluctuations in the error and wider error areas around the singularities due to the ill-fitting behavior of the high-order approximations at those points. The hp-approach manages to be higher-order where the solution is regular yet avoiding the oscillations reported by p-enrichment.

CONCLUDING COMMENTARY

In this chapter we have evaluated the performance of our multiwavelet hpadaptive scheme applied to two steady configurations at Ma = 0.1 and different Reynolds numbers: the 2-D laminar flow over a backward-facing step at Re = 800 and the 2-D laminar flow past a square cylinder at Re = 40.

These two configurations are characterized by the presence of singularities that severely impact the behavior of the flow overall. Therefore, they are especially relevant configurations to be subjected to an adaptive scheme.

With regards to the backward-facing step, we have compared the global convergence history of h-, p-, and hp-adaptive simulations with respect to simulations based on uniformly refined grids, polynomials, or both; respectively. Every adaptive approach has outperformed its uniform counterpart, with reductions in the numbers of degrees of freedom of between 40 % and 92 %. Among the adaptive approaches, both the p-and hp-approaches have reported similar behavior and they have been substantially more efficient than the pure h-approach, achieving savings of about 80 % when they were set side by side to the latter. We have further studied the local behavior of the solution and found that either the p-or hp-approach has again outperformed the h-approach in regions of high regularity of the solution, such as the the expanded channel downstream of the step. However, in regions close to the step (singularity), the p-approach introduced spurious oscillations which have worsened the quality of the approximation. By contrast, here the previously insufficient h-approach has outmatched the p-enrichment with a lower average error of about 26 %. But the best local performance has been reported by the hp-approach, further improving the savings to 38 %.

On the square cylinder configuration we have conducted a more exhaustive study of the hp-simulations by performing two different exercises. In the first place, we have investigated the optimal hp-distribution by executing a parametric evaluation of plausible tolerances for the hp-threshold. We have appointed four ranges of tolerances. On the one hand, the first two tolerances display an intense affinity towards mesh refinement (h++) or polynomial enrichment (p++), whereas the remaining two tolerances show a more moderate preference to each approach, being named h+ and p+, respectively. We have studied the convergence history of both the drag coefficient and the recirculation length to assess their performance. In this regard, we have observed savings in the number of DOFs of between 95 % and 98 % with respect to uniform mesh refinement. In particular, the moderate predisposition h+ has shown the best performance, achieving a higher accuracy for the same number of adaptation steps.

In the second place, the hp-adaptive results due to the tolerance h+ have been compared to equivalent h-and p-adaptive computations to determine which was the best adaptive approach. Both a series of global and local quantities have been analyzed in this context. In the global setting, pure h-adaptation has achieved a reduction of 90 % in the number of DOFs with respect to the uniform mesh refinement, while p-adaptation has reported more modest savings of 64 % compared to uniform polynomial refinement. However, the p-approach did not reach the target level of accuracy and showed signs of stagnation. By contrast, the hp-approach under tolerance h+ did achieve the target level of accuracy while attaining a extensive reduction of 96 % in the number of DOFs with respect to uniform mesh refinement. If hp-h+ is compared directly to pure h-adaptation, we have reported savings of 62 %.

In the local setting we have evaluated multiple pressure and velocity profiles around the cylinder and along the near wake, respectively. We have found minimal variations between the profiles associated with the h-approach and hp-approach under tolerance h+. On the other hand, the profiles related to p-enrichment were deteriorated by oscillations introduced by high-order approximations near the corners of the body (singularities). Due to this reason, either the h or hp-h+ profiles have routinely outperformed the p-profiles, with savings in the average error of about 90 % with respect to the latter.

Chapter 8

CONCLUSIONS AND FUTURE WORK

CONCLUSIONS

The main objective of this work was to develop computationally efficient hpadaptive discontinuous Galerkin methods to numerically solve the Navier-Stokes equations under various steady-flow configurations.

In order to achieve this goal, we have brought together the flexibility of a posteriori driven adaptation and the accuracy of multiresolution-based adaptation. This pairing has allowed us to overcome the limitations of traditional multiresolution-based adaptation methods and to advance an alternative multiwavelet-based methodology in the context of a posteriori local error estimation and mesh adaptation. Most interestingly, we have superseded the restriction of traditional MRA-based approaches to mesh adaptation by providing the new multiwavelet-based methodology with both grid size (h-) and polynomial degree (p-) adaptation capabilities.

In the first part of this research, we have investigated how multiwavelets could become active agents on driving adaptive discontinuous Galerkin schemes.

We have concluded that, in order for the multiwavelets to be able to extract meaningful information locally, the high-order solution must be put through a post-processing treatment to enrich its polynomial constituents. With that in mind, we have successfully developed and tested multiple reconstruction paradigms involving the current element and its immediate neighbors. This new reconstructed solution can then be broken apart into a hierarchy of lowresolution data and subsequently finer details. Based on this methodology, we have demonstrated how to make use of the multiwavelet properties while being local to the element, thereby maintaining the compacity of the DG method.

We have first employed the local multiwavelet-based methodology to measure the discretization error of the numerical solution in the context of hadaptive simulations. In order to investigate the capabilities and limitations of the method, we have selected flow configurations characterized by physical and geometrical singularities, which would significantly benefit from mesh refinement. Adaptive computations of the one-dimensional viscous Burgers equation have proved the efficiency of the multiwavelet-based methodology against relevant estimators provided in the literature (in particular the SD [START_REF] Taube | hp-Adaptation in Space-Time within an Explicit Discontinuous Galerkin Framework[END_REF] and SSED (Kuru et al., 2016) estimators). From these 128 8 conclusions and future work results, we have heralded the 𝜅-multiwavelet estimator, based on the reconstruction paradigm with the most element-neighbor interactions, as the best performing from the multiwavelet family.

Supported by the encouraging results, we have applied the estimator to the two-dimensional steady h-adaptive computations of the laminar backwardfacing step flow at Re = 800 and Ma = 0.1. This more challenging configuration has demonstrated that, for a prescribed level of accuracy in the density momentum variable, the 𝜅-multiwavelet estimator applied to various physical quantities achieves a reduction between 48 % and 90 % of the number of degrees of freedom compared to uniformly refined simulations, with the larger percentages obtained by higher-order computations. The convergence study of the separation/reattachment lengths has led to similar savings. Overall, we have identified the 𝜅-multiwavelet estimator applied on the density momentum displaying a performance slightly above all others.

We have observed how the size of the mesh and the order of the approximation have also become key drivers of the magnitude of the simulation times.

Computational times need to be interpreted with caution because they are hard to measure consistently and are subjected to many variables not always fully understood. However, the data presented have demonstrated that, by activating a multiwavelet-guided adaptation in simulations of higher order, we have achieved substantial speedup times. Particularly, in the best case scenario, the family of the 𝜅-multiwavelet estimators have enabled more than 20 times faster solutions when compared to the uniformly refined solution.

We have noticed that the 𝜅-multiwavelet estimator did not suffer from a series of deficiencies reported by the SSED and SD estimators when operating in low-order adaptive simulations and displays a more consistent behavior across different orders. Most notably, we have observed that the 𝜅-multiwavelet estimator becomes more accurate when the local order is increased thanks to the higher quantity of details captured during the multiwavelet decomposition. Admittedly, this behavior is not unique to the multiwavelet-based estimator, as the SSED and SD estimators are also known to benefit from the increase in 𝑝. However, they still did not surpass the overall performance of the 𝜅multiwavelet estimator.

The second line of investigation addressed the analysis and development of a new hp-adaptive strategy. The idea was to provide enhanced sub-optimal accuracy through mesh refinement in non-smooth regions, and simultaneously increase local polynomial order in smooth areas to reach exponential-like accuracy. We have performed a thorough study of the behavior of the multiwavelet coefficients on various analytical functions and on the post-reconstructed DG solution and we have established the existence of a consistent association between function regularity and the rate of decay of the spectrum of the multiwavelet coefficients. From here we have constructed a multiwavelet regularity indicator based on this spectrum to drive hp-adaptive simulations of the 2-D laminar backward-facing step and the steady laminar flow past a square cylinder at Re = 40 and Ma = 0.1.

For the backward-facing step configuration we have performed a sequence of h-, p-, and hp-adaptive computations. The convergence behavior of each of the adaptive approaches was compared with its equivalent uniform adaptation. Every adaptive approach has outperformed its uniform counterpart, with reductions in the numbers of degrees of freedom of between 40 % and 92 %. When it comes to the individual adaptive approaches, both the p-and hp-adaptive computations behaved equivalently and reported significantly better performance in regards to the pure h-adaptive computations, with savings of approximately 80 % compared to the latter. A further analysis of the local behavior of the solution has found that the pure p-approach introduced spurious fluctuations in the regions close to the step, due to the presence of strong gradients. This phenomena has caused the p-approach to fall behind in hp-approach in the local analysis. In this regard, we have quantified a lower average error of about 38 % when the latter is compared to the former approach. From the implications of the global and local results we have determined hp-adaptation as the most efficient adaptive approach.

We have then performed a more detailed analysis of the hp-computations for the laminar square cylinder configuration. In a first step, we have investigated the optimal hp-distribution by designing a parametric study of reasonable tolerances for the hp-threshold. By adjusting the tolerance we could have controlled the sensitivity towards polynomial enrichment or mesh refinement.

In this manner, we have selected four intervals of tolerances. From an intense affinity towards mesh refinement (h++) or polynomial enrichment (p++) to a more moderate leaning to each approach, symbolized by h+ or p+, respectively. To evaluate their performance for this configuration, we have analyzed the convergence history of both the drag coefficient and the recirculation length. Within this context, we have recorded a reduction in the number of degrees of freedom of between 95 % and 98 % with respect to uniform mesh refinement.

In particular, the moderate tolerance h+ has reported the best performance, attaining a higher accuracy for the same number of adaptation steps.

We have also compared the hp-adaptive results ascribed to the tolerance h+ to equivalent h-and p-adaptive simulations to identify the best adaptive approach. In this regard, the pure p-simulations were heavily influenced by the strong gradients in the vicinity of the sharp-edged body. This fact caused the error convergence to decay fast in the early stages of the algorithm and to progressively reach stagnation far from the target level of accuracy. Conversely, the pure h-simulations displayed a slower error convergence but their progression steadily reached the target value. Definitely, the hp-adaptation strategy under h+ provided an optimal approach. It inherited the early rapid convergence of the p-approach while adjusting to the strong gradients by locally adapting the mesh and thus retaining a proper error convergence. These factors have allowed the hp-h+ to reach the target level of accuracy while attaining a substantial reduction of 62 % in the total number of degrees of freedom with respect to the pure h-approach.

The analysis of the local flow quantities by evaluating successive pressure profiles upstream of the cylinder revealed the presence of oscillations when p-enrichment is activated. Similarly to the analysis of the backward-facing step, this was caused by the ill-fitting behavior of the high-order solution in the vicinity of the sharp corners. Conversely, the hp-approach under tolerance h+ successfully managed to become higher-order where the solution was smooth yet avoiding the fluctuations reported by the pure p-enrichment. Due to this reason, the hp-h+ profiles have substantially outperformed the p-profiles, with savings in the average error of about 90 % with respect to the latter. In summary, the hp-approach under h+ has proved best equipped to localize the regions requiring increased resolution, thus minimizing the use of the available computational resources.

PERSPECTIVES

Multiple lines of research regarding the novel hp-adaptive scheme and the local multiwavelet-based methodology have remained unexplored. In this section, general guidelines for future research are outlined and briefly discussed.

Support of more general grids The current adaptive scheme has been developed in the context of non-structured stretched Cartesian grids, where the construction of the multiwavelets is performed only once for a reference cell and then mapped to the local elements by an affine mapping. By contrast, in non-Cartesian grids no affine mapping is available and multiwavelets must be calculated element-wise, which substantially increases the cost of the computations. A possible solution would be the use of the wavelet-free approach, developed by Gerhard, 2017. This approach avoids the use of the highpass QMF coefficients associated with the multiwavelets [START_REF] Geronimo | Alpert Multiwavelets and Legendre-Angelesco Multiple Orthogonal Polynomials[END_REF]. Instead, the detail coefficients are calculated by exclusively using the lowpass QMF coefficients, which are associated with the multi-scaling functions. This alternative methodology would make the application of the MRA on non-Cartesian grids (such as grids with curved elements) significantly more efficient to compute.

Extension to three dimensions An extension to three dimensions would be straightforward. The Alpert algorithm to generate multiwavelets [START_REF] Alpert | A Class of Bases in L 2 for the Sparse Representation of Integral Operators[END_REF] is readily extended to 3-D by tensor products. In this case, the multiwavelet space would be made up of seven contributions (three along the 𝑥, 𝑦, 𝑧-axes and four along their respective diagonals). Similarly to 2-D case, the local multiwavelet error estimator, defined in Eq. (5.7), would be directly evaluated, by just adding the new contributions. By contrast, the local multiwavelet regularity indicator, given by Eq. (5.28), would require a more thorough study of the multiwavelet spectrum for the new contributions. Nevertheless, we could expect that spectrum will behave similarly to the results from Table 5.18.
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Extension to anisotropic hp-adaptation The analysis of the multiwavelet contribution along the 𝑥-, 𝑦-and 𝑥𝑦-directions opens the door to the development of an anisotropic adaptation algorithm in both h and p. In that context, the local multiwavelet error estimator could be easily reevaluated by measuring the contribution for the 𝑥-and 𝑦-direction separately. Similarly, the local multiwavelet regularity indicator would be built up as a summation of the different directional contributions (see Table 5.18), thus the analysis of the component-wise regularity would be straightforward. In addition, regarding p-anisotropy, further changes in the solver would be required to accommodate different polynomial degrees within the element.

Integration of hp-coarsening capabilities into the adaptive algorithm In this case, the local multiwavelet error estimator would need to identify a neighborhood of elements that share a similar magnitude of the error below an imposed threshold. Once detected, this group of elements could be either agglomerated (h-coarsening), or have their polynomial degree lowered (pdecreasing), depending on the average value of the local multiwavelet regularity indicator. The latter would be straightforward to put into practice, whereas the former would require a tree-like structure to keep track of the changes in the grid and would be more challenging to implement.

Application to unsteady flows The present adaptive scheme could be generalised for static hp-adaptation of unsteady periodic flows, similarly to the procedure described in [START_REF] Naddei | A comparison of refinement indicators for 𝑝adaptive discontinuous Galerkin methods for the Euler and Navier-Stokes equations[END_REF]. In this manner, we would activate the hp-adaptive algorithm once the periodic state of the flow is achieved. Then, the local multiwavelet error estimator and regularity indicator could be computed as the maximum of the instantaneous values over a defined time interval. The frequency of these instantaneous values may be adjusted to avoid their computation at every discrete time step.

Application to RANS simulations

The current implementation could be extended to high-Reynolds turbulent flows. In a first approach, we would extend the solution adaptation capability to fully developed, statistically steady flows that are well described by the RANS methodology. In particular, the local multiwavelet analysis of the eddy viscosity from the Spalart-Allmaras model [START_REF] Allmaras | Modifications and clarifications for the implementation of the Spalart-Allmaras turbulence model[END_REF] would hold special relevance. In this way, the estimation of its error and regularity would guide the hp-adaptation. The implementation would require a post-processed (enriched) version of the eddy viscosity so that the multiwavelet expansion could be applied. The first research direction employs a new multiwavelet-based methodology to estimate the discretization error of the numerical solution in the context of h-adaptive simulations. The results certainly demonstrate the viability of h-refinement to reach a significant computational gain with respect to uniformly refined grids.

The second line of investigation addresses the analysis and development of a new hp-adaptive strategy based on the decay of the multiwavelet spectrum to drive hp-adaptive simulations. The strategy successfully discriminates between regions characterized by high regularity and discontinuous phenomena and their vicinity. Remarkably, the developed hp-adaptation algorithm is able to achieve the high accuracy characteristic of high-order numerical solutions while avoiding unwanted oscillations by adopting low-order approximations in the proximity of singularities.
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 21 Figure2.1: The solution domain Ω is decomposed into a series of nonoverlapping quadrilaterals, 𝐾, which are then mapped to the reference square K to perform the relevant operations.

Figure 2

 2 Figure 2.2: DGM piecewise solution on a 1-D discretized domain for different degrees of the approximation space 𝒱 𝑝 ℎ .

  ) ) is its representation on a physical element 𝐾. If we let 𝜙 = { 𝜙 ℓ } 𝑁 𝑝 ℓ=1 , with 𝑁 𝑝 = (𝑝 + 1) 𝑑 , be a set of linearly independent basis functions of 𝒫 𝑝 ( K ), we have 𝒫 𝑝 ( K ) = span ℓ=1,...,𝑁 𝑝 { 𝜙 ℓ (𝝃), 𝝃 ∈ K } .

  means of the bijective transformation we get 𝒱 𝑝 ℎ = span ℓ=1,...,𝑁 𝑝 { 𝜙 ℓ ( 𝜩 -1 𝐾 (𝒙) ) , 𝒙 ∈ 𝐾, ∀𝐾 ∈ Ω ℎ} ,

Figure 2 . 3 :

 23 Figure 2.3: Definition of interface states 𝒖 ± ℎ|𝑒 approaching from current 𝐾 + and neighboring 𝐾 -.

  Windowed Fourier transform. Large window (better wave number resolution).

Figure 3 . 1 :

 31 Figure 3.1: Examples of classical signal analysis.

Figure 3 . 2 :

 32 Figure3.2: Different representations of the idealized space-wave number plane[START_REF] Farge | Wavelet Transforms and their Applications to Turbulence[END_REF].

Figure 3 . 3 :

 33 Figure 3.3: Example of an orthonormal family of wavelets. Different values of the dilation parameter 𝑚 and the resulting subspaces 𝑊 𝑚 and 𝑉 𝑚 . The number of functions increases by a factor of 2 𝑚 , with the translation parameter 𝑗 controlling their placement along 𝑥.
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 34 Figure 3.4: Example of wavelet analysis.

Figure 3

 3 Figure 3.6: 2-D Multi-scaling functions and multiwavelets with multiplicity 𝑟 = 2. We use the nomenclature 𝜙 ℓ = 𝜙 ℓ (0,0) and 𝜓 ℓ = 𝜓 ℓ (0,0) .

Figure 4

 4 Figure 4.1: 1-D four-level multiscale representation by multiwavelets of second order DG solution 𝑢 ℎ . We use the nomenclature 𝒮 (𝑚,𝑗) = ∑ ℓ 𝑠 ℓ (𝑚,𝑗) 𝜙 ℓ (𝑚,𝑗) (singlescale) and 𝒟 (𝑚,𝑗) = ∑ ℓ 𝑑 ℓ (𝑚,𝑗) 𝜓 ℓ (𝑚,𝑗)

Figure 4

 4 Figure 4.2: 2-D three-level multiscale representation by multiwavelets of second order DG solution 𝒖 ℎ . The terms 𝑷 𝑝 𝑚 𝒖 ℎ and 𝑸 𝑝,𝜆 𝑚 𝒖 ℎ refer to the orthogonal projection onto 𝑽 𝑝 𝑚 and 𝑾 𝑝,𝜆 𝑚 , as defined by Eq. (3.40) and Eq. (3.41), respectively. The highest resolution level is ℳ = 2. At that level we have 𝒖 ℎ = 𝑷 𝑝 ℳ 𝒖 ℎ .

Figure 4 . 3 :

 43 Figure 4.3: Relation between the elements of two consecutive multiresolution levels. Four elements at level 𝑚 contribute to one element at level 𝑚 -1.

Figure 4 . 4 :

 44 Figure 4.4: Different approaches to couple multiresolution analysis and discontinuous Galerkin methods.

Figure 4 .

 4 Figure 4.4 outlines the two approaches described above. The global MRA, Figure 4.4a, produces multiple levels of information thanks to the highly detailed approximate solution 𝑢 ref ℎ at level ℳ. On the other hand, the local MRA, Figure 4.4b, does not require such a solution. Instead, our target is to sufficiently resemble its behavior by providing extra information (enriching).To achieve this, we manufacture a more accurate approximation for each element 𝐾 separately. Then a subsequent MRA is applied locally, producing a two-level multiscale representation within the element. In particular, we
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 45 Figure 4.5: Chronological steps of the 𝜅-reconstruction procedure for an element 𝐾.

Figure 4 .

 4 Figure 4.5 to 4.7 illustrate the three methods. The following sections 4.3.1 to 4.3.3 will describe the different procedures in detail.
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 46 Figure 4.6: Sequential steps of the 𝐾-reconstruction method for an element 𝐾.

Figure 4 . 7 :

 47 Figure 4.7: Chronological steps of the Γ-reconstruction procedure for an element 𝐾.

( E )

 E Use of local Sobolev regularity. This strategy is based on the estimation of the local Sobolev regularity index associated with the analytical so-lution. There exist several ways to perform the approximation. The earliest method was proposed by[START_REF] Ainsworth | An adaptive refinement strategy for hp-finite element computations[END_REF] and relies on evaluating the Sobolev regularity index from a local refinement indicator based on different polynomial degrees. In a later approach,[START_REF] Houston | Sobolev regularity estimation for hp-adaptive finite element methods[END_REF] and[START_REF] Houston | A note on the design of hp-adaptive finite element methods for elliptic partial differential equations[END_REF] approximated the index according to the decay rate of the Legendre series expansion. More recently,[START_REF] Wihler | An hp-adaptive strategy based on continuous Sobolev embeddings[END_REF][START_REF] Fankhauser | The hp-adaptive FEM based on continuous Sobolev embeddings: Isotropic refinements[END_REF] made use of continuous Sobolev embeddings to perform the estimation.

  MW coefficients versus the number of vanishing moments under different multiplicities on a log-linear scale. Linear regression shows the rate of decay 𝜍 for every family of coefficients with multiplicity 𝑟. Solid lines refer to 𝑓 , dashed lines to 𝑔.

Figure 5

 5 Figure 5.1: 1-D multiwavelet-based spectrum of a smooth function 𝑓 (𝑥) and discontinuous function 𝑔(𝑥).Only the coefficients 𝑑 ℓ = 𝑑 ℓ 0,0 are considered.

  a straight line in a log-linear plot, as shown in Figure 5.1c. Similarly to the work of Mavriplis (1989), we employ linear regression to fit the log | 𝑑 ℓ | to the straight line ℎ(𝑀) = -𝜍𝑀 +log 𝑐.

  Energy spectrum 𝜀(𝒩 ) versus the number of equivalent vanishing moments 𝒩 on a log-linear scale. Color separates the different multiplicities 𝑟. Solid and dashed lines denotes the fit to the spectrum of 𝑓 and 𝑔, respectively.

Figure 5

 5 Figure 5.2: 2-D multiwavelet-based spectrum of a smooth function 𝐹 (𝑥, 𝑦) and discontinuous function 𝐺(𝑥, 𝑦).Only the coefficients 𝒅 ℓ = 𝒅 ℓ 0,0 are considered.
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 53 Figure 5.3: Influence of the decay parameter 𝜍 𝐾 on the enriched solution 𝑢 ℎ|𝐾 for varying multiplicities 𝑟. By delimiting 𝑢 ℎ,0 we solve Eq. (5.23) and enable 𝑢 ℎ,1 to readjust according to the value of 𝜍 𝐾 . By increasing 𝜍 𝐾 we gradually enlarge the interface jump between 𝑢 ℎ,0 and 𝑢 ℎ,1 .

  Multiplicity 𝑟 = 4. Initialization {𝒶 𝑘 } 𝑘=1,3 = 0, 𝒶 2 = 7/2, 𝒶 4 = -1/4.

  . (4.42) and Eq. (4.43), from which the multiwavelet coefficients within an element 𝐾 can be written as follows

Figure 5 . 4 :

 54 Figure5.4: Effect of the decay parameter 𝜍 𝐾 on the enriched solution 𝒖 ℎ|𝐾 with multiplicity 𝑟 = 2. We have initialized the system resulting from Eq. (5.26) and Eq. (5.27) by 𝒶 1 = 0, 𝒶 2 = 4, 𝒶 3 = -4, and 𝒶 4 = -7/4. Consequently, 𝒖 ℎ,0 is fixed and the remaining contributions change according to the parameter 𝜍 𝐾 .

Figure 5 . 5 :𝑘=1

 55 Figure 5.5: Influence of decay parameter 𝜍 𝐾 on the enriched solution 𝒖 ℎ|𝐾 for 𝑟 = 3 and initialization {𝒶 𝑘 } 6 𝑘=1 = 0, {𝒶 𝑘 } 8 𝑘=7 = 3/4, and 𝒶 9 = 0.
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 56 Figure 5.6: Isotropic h-refinement in the context of reference and physical element.

Figure 5 . 7 :

 57 Figure 5.7: Flow chart of the proposed hp-adaptive algorithm.

  (a) Firstly, a stationary front (IC-shock) which simulates the presence of a sharp gradient in the middle of the domain. For this configuration we have 𝑢(𝑥, 0) = -tanh(𝑥/2𝜈) with 𝜈 = 0.02 and 𝑢(∓1, 𝑡) = ±1 . (6.1) These conditions are analogous to the solution of the Riemann problem for large enough 𝑡 > 0. (b) The second configuration is determined by a sinusoidal function and it is representative of a smooth solution (IC-smooth). Thus we define 𝑢(𝑥, 0) = sin(2𝜋𝑥) with 𝑢(∓1, 𝑡) = 0 . (6.2)

Figure 6 . 1 :

 61 Figure 6.1: Viscous Burgers equation. Discretization error in 𝐿 2 -norm under uniform and h-adaptive refinement for selected orders of the numerical solution. Adaptation is guided by various estimators. The multiwavelet family of estimators, Eq. (5.3), is denoted by , the estimators from the literature, Eqs. (5.8) and (5.9), are symbolized by , and the Dolejší estimation, Eq. (6.5), is showcased by . For all estimators, the adaptive process is performed up to the 7th adaptation step.

Figure 6 . 2 :

 62 Figure 6.2: Viscous Burgers equation.Different levels of refinement achieved by every error estimator at the last iteration step for selected solution orders. The dashed line corresponds to an uniform mesh with discretization error ‖𝑒 ℎ|𝐾 ‖ < 𝜂 tol for all 𝐾 ∈ Ω ℎ where 𝜂 tol = 1 × 10 -6 . The adaptive process is then performed for each estimator until we achieve 𝜂 𝐾 < 𝜂 tol in every element of the domain.

  𝐾-multiwavelet estimator.

  𝜅-multiwavelet estimator.

Figure 6 . 3 :

 63 Figure 6.3: Viscous Burgers equation for IC-shock and 𝑝 = 3. Error estimator performance under h-adaptation. We compare the discretization error (solid line) versus the estimation reported by the indicator (dashed line).

  Figure 6.4b, follows the discretization error particularly well, with 𝜄 eff = 1 during the last steps of refinement. However, a slight overshoot of the estimator appears in the first stage of the refinement. This has been likely caused by under-refining during the early steps. If we pay attention to the previous 6𝐾-multiwavelet estimator.

  𝜅-multiwavelet estimator.
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 64 Figure 6.4: Viscous Burgers equation for IC-smooth and 𝑝 = 3. We measure the discretization error (solid line) against the estimation reported by the indicator (dashed line) to evaluate the performance of the said indicator.
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 65 Figure 6.5: Laminar backward-facing step. Description of the computational domain, boundary conditions, and grids employed.

Figure 6 . 7 :

 67 Figure 6.7: Laminar backward-facing step. Profiles for different physical quantities at three different streamwise locations along the expanded channel.The profiles have been extracted from our reference numerical solution (mesh K with 𝑝 = 2) and compared with the literature at the same locations.

Figure 6 . 8 :

 68 Figure 6.8: Laminar backward-facing-step. Final h-refined grids at four selected regions along the expanded channel. Figures are organized by error estimator and computational degree, from 𝑝 = 1 (left column), 𝑝 = 2 (middle column), and 𝑝 = 3 (right column).
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 69 Figure 6.9: Laminar backward-facingstep. 𝐿 2 -norm of the momentum density error under uniform and adaptive h-refinement for varying values of 𝑝.

Figure 6 . 10 :

 610 Figure 6.10: Laminar backward-facing-step. 𝐿 2 -norm of the error in momentum density vs the computational time under uniform and adaptive h-refinement for various values of 𝑝.

Figure 6 . 11 :

 611 Figure 6.11: Laminar backward-facing step. Normalized locations of flow detachment/reattachment of the lower recirculation bubble under uniform and adaptive h-refinement with varying values of 𝑝.

Figure 6 . 12 :

 612 Figure 6.12: Laminar backward-facing step. Normalized locations of flow detachment/reattachment of the upper recirculation bubble under uniform and adaptive h-refinement with varying values of 𝑝.

  a) L 2 -error in momentum density. L 2 -error in vorticity.

Figure 6 . 13 :

 613 Figure 6.13: Laminar backward-facing step. Performance comparison with varying 𝑝 among multiwavelet-based error estimators at selected profiles along the expanded channel.

Figure 7 . 1

 71 Figure 7.1 outlines the final h-, p-, and hp-adapted meshes. They correspond to the three groups of computations (i) to (iii) previously described. On the one hand, Figure 7.1b showcases the final h-adapted mesh under constant polynomial degree, as obtained in the previous Chapter 6. On the other hand, Figure 7.1c illustrates the the final p-adapted mesh under constant mesh topology. Finally, Figures 7.1d to 7.1g show the different iterations of the actual hp-mesh up to reaching the the final step.

  4th (final) hp-adapted mesh.

Figure 7 . 1 :

 71 Figure 7.1: Backward-facing step. Adapted hp-meshes resulting from multiple adaptation approaches at four regions along the expanded channel. The starting mesh and 𝑝-distribution are given by grid C from Table 6.5c and 𝓅 = 1, respectively.

  p-uniform vs adaptive.

  hp-uniform vs adaptive.

  Figure 7.2: Backward-facing step. 𝐿 2norm of the error in momentum density under various adaptation approaches.

  Local 𝑦-velocity evaluation at the step.

  adapt -𝑣 ref | (c) Local 𝑦-velocity evaluation at 6ℎ.

  adapt -𝑣 ref | (d) Local 𝑦-velocity evaluation at 14ℎ.

  adapt -𝑣 ref | (e) Local 𝑦-velocity evaluation at 30ℎ.

Figure 7 . 3 :

 73 Figure 7.3: Backward-facing step. Comparison of the h-, p-and hp-simulations at the final adaptation step. We study various 𝑦velocity profiles downstream of the step and measure the error with respect to the reference solution.

  concentrations of the error. This is coherent with the modest refining in the same area performed in Section 7.1.1. As expected, the lowest values of the error are reported in the recirculation regions and at the developed parabolic flow of Figure7.3e.

  Computational domain and BC. (b) Initial mesh.

Figure 7 . 4 :

 74 Figure 7.4: Square cylinder. Description of the computational domain, boundary conditions, and initial grid employed.

Figure 7 . 5 :

 75 Figure 7.5: Square cylinder. Overview of the configuration's relevant phenomena and roadmap to reference solution by analyzing successive uniformly refined meshes.

Figure 7 . 6 :

 76 Figure 7.6: Square cylinder. Zooming in the vicinity of the hp-mesh for pure hor p-approaches. The initial mesh and 𝑝-distribution are given by Figure 7.4b and 𝓅 = 2, respectively.

  Pressure factor on drag, 𝐶 𝐷 press . Viscous factor on drag, 𝐶 𝐷 visc .

Figure 7 . 7 :

 77 Figure 7.7: Square cylinder. Convergence history of drag coefficients (𝐶 𝐷 , 𝐶 𝐷 press , 𝐶 𝐷 visc ) in h-adaptive vs h-uniform simulations.

  Pressure factor on drag, 𝐶 𝐷 press . Viscous factor on drag, 𝐶 𝐷 visc .
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 79 Figure 7.9: Square cylinder. Convergence history of drag coefficients (𝐶 𝐷 , 𝐶 𝐷 press , 𝐶 𝐷 visc ) in p-adaptive vs p-uniform simulations.

Figure 7 . 10 :

 710 Figure 7.10: Square cylinder. Convergence history of recirculation length 𝐿 𝑏 in p-adaptive vs p-uniform simulations.

  Figure 7.11: Square cylinder. Successive iterations of the hp-meshes under hp-adaptation with a strong leaning towards h-refinement. That is, we use the h++ tolerance ( 0.4 ≤ 𝜍 tol < 0.5 ) .

  Figure7.12: Square cylinder. Successive iterations of the hp-meshes under hp-adaptation with a moderate tendency towards h-refinement. Which is to say, we follow the h+ tolerance ( 0.3 ≤ 𝜍 tol < 0.4 ) .

  Figure 7.13: Square cylinder. Successive iterations of the hp-meshes under hp-adaptation with a moderate affinity towards p-refinement. Which implies that we implement the p+ tolerance ( 0.2 ≤ 𝜍 tol < 0.3 ) .

  (a) 1st adaptation step. (b) 2nd adaptation step. (c) 3rd adaptation step. (d) 4th adaptation step. (e) 5th adaptation step. (f ) 5th adaptation step (detail).

  Local horizontal velocity analysis along the near-wake region, 0 ≤ 𝑥 ≤ 5𝐷.

Figure 7 . 19 :

 719 Figure 7.19: Square cylinder. Comparison of the h-, p-and hp-simulations at every adaptation step. We study various physical variables at selected profiles in the vicinity of the body and evaluate the error in relation to the reference solution.

Figure 7 .

 7 Figure7.19b outlines a second horizontal profile along the symmetry axis of the vortexes and follows the near-wake region behind the body. Here, we study the difference between computed adaptive and reference horizontal velocity for every iteration of the adaptive procedure. The evolution of the penrichment reports a rapid decline of its the error profile during the initial steps followed by a sudden stagnation. By contrast, the h-and hp-results dis-

Figure 7 . 20 :

 720 Figure 7.20: Square cylinder. Comparison of the h-, p-and hp-simulations at the final adaptation step. We analyze multiple pressure profiles upstream of the body and measure the error with respect to the reference solution.

Titre:

  Adaptation hp par ondelettes pour les méthodes Galerkine discontinues Mot clés : Mécanique des fluides, Navier-Stokes, méthodes numériques, méthodes adaptatives, ondelettes Résumé : L'objectif principal de cette thèse est de développer une méthode hp-adaptative efficace en termes de coût et précision pour les schémas Galerkin discontinus appliqués aux équations de Navier-Stokes, en combinant flexibilité de l'adaptation a posteriori et précision de l'adaptation multi-résolution. Les performances de l'algorithme d'adaptation hp sont illustrées sur plusieurs cas d'écoulements stationnaires en une et deux dimensions. La première direction de recherche emploie une nouvelle méthodologie basée sur les multiondelettes pour estimer l'erreur de discrétisation de la solution numérique dans le contexte de simulations avec adaptation h. Les résultats démontrent clairement la viabilité de cette méthode pour at-teindre un gain de calcul significatif par rapport à un raffinement de maillage uniforme. La deuxième voie de recherche aborde l'analyse et le développement d'une nouvelle stratégie d'adaptation hp basée sur la décroissance du spectre des multi-ondelettes comme critère adaptation hp. Cette stratégie permet de discriminer avec succès les régions caractérisées par une grande régularité de celles contenant des phénomènes discontinus. De manière remarquable, l'algorithme d'adaptation hp est capable d'atteindre une haute précision caractéristique des solutions numériques d'ordre élevé tout en évitant les oscillations indésirables en adoptant des approximations d'ordre réduit à proximité des singularités. Title: Multiwavelet-based hp-adaptation for discontinuous Galerkin methods Keywords: Fluid Mechanics, Navier-Stokes, Numerical methods, Adaptive methods, Wavelets Abstract: The main objective of the present thesis is to devise, construct and validate computationally efficient hp-adaptive discontinuous Galerkin schemes of the Navier-Stokes equations by bringing together the flexibility of a posteriori error driven adaptation and the accuracy of multiresolution-based adaptation. The performance of the hp-algorithm is illustrated by several steady flows in one and two dimensions.

  𝜕𝐾 has been broken down into internal faces, 𝜕 𝑖 𝐾 = 𝜕𝐾 ∩ ℰ 𝑖 , and boundary faces, 𝜕 𝑏 𝐾 = 𝜕𝐾 ∩ ℰ 𝑏 . The boundary values 𝒖 𝑏 = 𝒖 𝑏( 𝒖 + ℎ|𝜕 𝑏 𝐾 , 𝒖 ext ; 𝒏 ) , with 𝒖 ext a reference external state, are computed so that the boundary conditions are satisfied on ℰ 𝑏 . The presence of interface integrals requires the definition of interface states. For a given internal face 𝑒 ∈ 𝜕 𝑖 𝐾, the interior state is denoted by 𝒖 + ℎ|𝑒 and the neighboring state by 𝒖 - ℎ|𝑒 . This nomenclature originates from applying the limit of the elemental approximation 𝒖 ℎ|𝐾 ± as it approaches the interface 𝑒, i.e:

	𝜕 𝜕𝑡 ∫ 𝐾	𝒖 ℎ|𝐾 𝜙 d𝑉 -∫ 𝐾	𝓕 ( 𝒖 ℎ|𝐾 , ∇𝒖 ℎ|𝐾 ) ⋅ ∇𝜙 d𝑉
		+ ∫ 𝜕 𝑖 𝐾	𝓕 * ( 𝒖 ± ℎ|𝜕 𝑖 𝐾 , ∇𝒖 ± ℎ|𝜕 𝑖 𝐾 ; 𝒏 ) [[𝜙]] d𝑆
		+ ∫ 𝜕 𝑏 𝐾	[ 𝓕 ( 𝒖 𝑏 , ∇𝒖 𝑏) ⋅ 𝒏 ] 𝜙 + d𝑆 = 0,	(2.23)
	where the elemental boundary 𝒖 ± ℎ|𝑒 (𝒙 𝑒 ) =	

lim

𝒙→𝒙 𝑒 ,𝒙∈𝐾 ± 𝒖 ℎ|𝐾 ± (𝒙), ∀𝒙 𝑒 ∈ 𝑒,

(2.24) 

where 𝐾 + denotes the current element and 𝐾 -the neighboring element, and 𝒏 represents the outward unit vector normal to 𝐾 + . This is illustrated in Figure 2.3. In addition, we define the average { {⋅} } and jump

[[⋅]

] operators as follows:

  ℎ|𝐾 

  , 𝝈 ℎ|𝐾 ) ⋅ ∇𝜙 d𝑉The boundary values 𝒖 𝑏 , ∇𝒖 𝑏 are consistent with the boundary conditions imposed on ℰ 𝑏 , and 𝜂 BR2 is a user-defined parameter necessary for the stabilization of the method. Lastly, the numerical flux function 𝓕 *

	Burgers equation The discrete variational projection of the viscous terms in
	Eq. (2.26) yields				
	ℒ 𝑣 (𝑢 ℎ|𝐾 , 𝜙) = ∫ 𝐾	ℱ 𝑣 (	d d𝑥 𝑢 ℎ|𝐾 )	d𝜙 d𝑥	d𝑥
	-∑ 𝑒∈𝜕 𝑖 𝐾	Θ 𝑣 ( 𝑢 ± ℎ|𝑒 , d d𝑥 𝑢 ± ℎ|𝑒) [[𝜙]] -Θ 𝑣 ( 𝑢 𝑏 , d d𝑥 𝑢 𝑏 ) 𝜙 +
	-∑ 𝑒∈𝜕 𝑖 𝐾	ℎ 𝑣( 𝑢 ± ℎ|𝑒 ) [ [	d𝜙 d𝑥 ] ]	-ℎ 𝑣 (𝑢 𝑏 )	d𝜙 + d𝑥
						-∫ 𝜕 𝑖 𝐾	𝓕 * 𝑣( 𝒖 ± ℎ|𝜕 𝑖 𝐾 , 𝝈 ± ℎ|𝜕 𝑖 𝐾 ; 𝒏 ) [[𝜙]] d𝑆
						-∫ 𝜕 𝑏 𝐾	[ 𝓕 𝑣 ( 𝒖 𝑏 , 𝝈 𝑏) ⋅ 𝒏 ] 𝜙 + d𝑆 .	(2.34)
				From applying Eq. (2.31) we have
						𝝈 ℎ|𝐾 = ∇𝒖 ℎ|𝐾 + 𝑳 ℎ|𝐾 ,	(2.35)
						𝝈 ± ℎ|𝜕 𝑖 𝐾 = ∇𝒖 ± ℎ|𝜕 𝑖 𝐾 + 𝜂 BR2 𝒍 𝑒 ℎ ;	𝑒 ∈ 𝜕 𝑖 𝐾,	(2.36)
						𝝈 𝑏 = ∇𝒖 𝑏 + 𝜂 BR2 𝒍 𝑓 ℎ ;	𝑓 ∈ 𝜕 𝑏 𝐾,	(2.37)
						𝑣 in Eq. (2.34) is
				given by
						𝓕 * 𝑣( 𝒖 ± ℎ|𝜕 𝑖 𝐾 , 𝝈 ± ℎ|𝜕 𝑖 𝐾 ; 𝒏 ) = { { 𝓕 𝑐 ( 𝒖 ℎ|𝐾 ± , 𝝈 ℎ|𝐾 ± )} } ⋅ 𝒏	(2.38)

,

(2.39)

  .29) with 𝑖 = 0, … , 𝑁 art -1. Equation (4.29) is simply 𝜅 𝑖 plus the shared face of the nearest neighboring element, denoted by Γ 𝑖 . This means that this method integrates the solution jump between element 𝐾 and their neighbors 𝐾 -1 and 𝐾 +1 into 𝑢 ℎ|𝐾 . Similarly to the two earlier methods, we define the polynomial function 𝒰 ℎ,𝑖 ∈ 𝒫 𝑝 ( 𝒵 𝑖) by

		𝑁 𝑝						
	𝒰 ℎ,𝑖 (𝑥, 𝑡) =	∑ ℓ=1	𝑋 ℓ 𝒵 𝑖	(𝑡) 𝜙 ℓ ( Ξ -1 𝒵 𝑖	(𝑥) ) ,	∀𝑥 ∈ 𝒵 𝑖 , 𝑁 𝑝 = 𝑝 + 1,	(4.30)
	where the coefficients 𝑋 ℓ 𝒵 𝑖 block 𝒵 𝑖 . The resulting linear system can be expressed as are calculated by solving Eq. (4.37) on the new
						𝐴 𝑘,ℓ 𝑋 ℓ 𝒵 𝑖	= 𝑏 𝑘 ,	(4.31)
	where							
	𝐴 𝑘,ℓ = [ 𝜙 𝑘 𝜙 ℓ ] Γ 𝑖	+ ⟨ 𝜙 𝑘 , 𝜙 ℓ	⟩ 𝜅 𝑖	,	𝑏 𝑘 = [ 𝜙 𝑘 𝑢 ℎ] Γ 𝑖	+ ⟨ 𝜙 𝑘 , 𝑢 ℎ ⟩ 𝜅 𝑖	,	(4.32)

with 𝑘, ℓ = 1, … , 𝑁 𝑝 and the operator [ • ] Γ 𝑖 referring to the values at the shared face Γ 𝑖 . Finally, we define 𝑢 ℎ,𝑖 by restricting 𝒰 ℎ,𝑖 just to the sub-element 𝜅 (𝐾) 𝑖 , in the same way as Eq. (4.24).

  Original solution 𝒖 ℎ . 𝜅 𝑖 . Each of 𝜅 𝑖 and its immediate neighbors build the block 𝒜 𝑖 . 𝜕𝜅 𝑖 represent the individual faces of 𝜅 𝑖 . The next step is to define the polynomial function 𝓤 ℎ,𝑖 ∈ 𝒫 𝑝 ( 𝒜 𝑖) by

						𝒜 3
	Exact solution, 𝒖					𝒜 2
		𝒜 1					𝒖 ℎ,1
	DG solution, 𝒖 ℎ	𝒜 0					𝜅 1	𝒖 ℎ,0	𝒖 ℎ,3
	𝐾 Neighbours of 𝐾 (a) 𝜅 2 𝜅 0 (b) 2-D isotropic subdivision of el-𝜅 3 𝐾 ement 𝐾 resulting in artificial sub-elements 𝒖 ℎ,2
		𝑒 ∈ 𝜕𝜅 𝑖 𝒜 𝑖 = ⋃	{ 𝜅 + ∪ 𝜅 -} 𝑒 ,	𝑖 = 0, … , 𝑁 art -1,	(4.35)
	where 𝑒 ∈ 𝓤 ℎ,𝑖 (𝒙, 𝑡) =	𝑁 𝑝 ∑ ℓ=1	𝑿 ℓ 𝒜 𝑖	(𝑡) 𝜙 ℓ ( 𝜩 -1 𝒜 𝑖	(𝒙) ) , ∀𝒙 ∈ 𝒜 𝑖 , 𝑁 𝑝 = (𝑝 + 1) 2 ,	(4.36)
	where 𝑿 ℓ 𝒜 𝑖				

ℎ,𝑖 , with 𝒖 ℎ,𝑖 ∈ 𝒫 𝑝 (𝜅 𝑖 ), 𝑖 = 0, … , 𝑁 art -1.

(4.34) Of the three reconstructions approaches proposed in the previous 1-D setting, only the 𝜅-reconstruction method (see Section 4.3.1) will extended to 𝐾 (c) A least-square approximation is applied to every block 𝒜 𝑖 to obtain 𝓤 ℎ,𝑖 . The enriched solution 𝒖 ℎ,𝑖 results from restricting 𝓤 ℎ,𝑖 to 𝜅 𝑖 .

Figure 4.8: Chronological steps (left to right) of the 2-D reconstruction procedure for an element 𝐾.

the 2-D context. If we recall this method, the new approximation 𝒖 ℎ|𝐾 is set up by considering the immediate neighbors of sub-elements 𝜅 𝑖 . This is performed by a least-square function approximation applied to the block 𝒜 𝑖 , which is characterized by

  By solving the above system for 𝑿 ℓ 𝒜 𝑖 we have completely defined 𝓤 ℎ,𝑖 within the block 𝒜 𝑖 . Finally, 𝒖 ℎ,𝑖 is evaluated by restricting 𝓤 ℎ,𝑖 just to sub-element 𝜅 𝑖 . Namely: The reconstruction methods presented in Section 4.3 allow us to assemble a new, more accurate approximation 𝑢 ℎ|𝐾 to the exact solution than the original approximation 𝑢 ℎ|𝐾 . This new approximation becomes the starting point of the local multiresolution method, as previously shown in Figure 4.4b. By means of the local MRA we are able to perform an independent two-level multiscale decomposition of 𝑢 ℎ|𝐾 for every element 𝐾 ∈ Ω ℎ .
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	with 𝑘, ℓ = 1, … , 𝑁 𝑝 . 𝒖 ℎ,𝑖 = 𝓤 ℎ,𝑖| 𝜅 𝑖	,	𝑖 = 0, … , 𝑁 art -1.	(4.39)	
	A detailed description of the reconstruction approach is shown in Figure 4.8.		
	4.4 LOCAL MULTIRESOLUTION OF NEW RECONSTRUCTION			
	4.4.1 One-dimensional multiwavelet decomposition				
							𝑖 ‖	2 𝐿 2 (𝒜 𝑖 )	,	(4.37)
		which leads to the linear system				
			𝑨 𝑘,ℓ 𝑿 ℓ 𝒜 𝑖	= 𝒃 𝑘 , 𝑨 𝑘,ℓ = ∑ 𝜅∈𝒜 𝑖	⟨ 𝜙 𝑘 , 𝜙 ℓ	⟩ 𝜅	, 𝒃 𝑘 = ∑ 𝜅∈𝒜 𝑖	⟨ 𝜙 𝑘 , 𝒖 ℎ ⟩ 𝜅	,	(4.38)

  𝑗) are the coefficients of 𝑢 ℎ|𝐾 as calculated by one of the three reconstruction methods discussed in Section 4.3, and ℳ represents the highest level of resolution within element 𝐾. Additionally, we consider that 𝑟 = 𝑁 𝑝 , with 𝑁 𝑝 = 𝑝 + 1. By nature of the two-level multiscale decomposition of 𝑢 ℎ|𝐾 , ℳ = 1 and we can further simplify Eq. (4.40) to

	𝑗) ,	ℓ = 1, ..., 𝑟; 𝑗 = 0, ..., 2 ℳ-1 ,	(4.40)
	where 𝑈 ℓ (ℳ,𝑠 ℓ (1,𝑗) = 1 √2	𝑈 ℓ (1,𝑗) ,	𝑗 = 0, 1;

  (see Eq. (4.11)). They are rewritten as follows

	𝑠 ℓ 𝐾 =	𝑟 ∑ 𝑘=1	𝑁 art -1 ∑ 𝑖=0	𝐻 ℓ𝑘 𝑠 𝑘 (𝑖) 𝜅 𝑖 ,	ℓ = 1, ..., 𝑟;

  multiplicity 𝑟 = 𝑝 + 1. Consequently, by choosing 𝑓 = 𝑃 with 𝑃 ∈ 𝒫 𝑀-1 ( 𝐾 (𝑚,𝑗)) , we have (see Eq. (3.32)):

	64	5 hp-adaptation based on local multiresolution
			𝑑 ℓ (𝑚,𝑗) = ⟨ 𝑃 , 𝜓 ℓ (𝑚,𝑗)⟩ 𝐾 (𝑚,𝑗)	= 0,
		𝑟 ,	(5.11)

with

  Table 5.1 collects the values of the decay parameter 𝜍 for both 𝑓 and 𝑔 and different multiplicities 𝑟.

Table 6

 6 

	.1: Laminar backward-facing-
	step. #DOFs and memory compari-
	son with varying values of 𝑝 for final
	h-adapted grids. Percentages are mea-
	sured with respect to uniform grids
	that report similar solution accuracy.
	Positive percentages represent savings,
	while negative values mean higher
	#DOFs/memory consumption.

Table 6 .

 6 3 collects the CPU-time and speedup values of the h-adaptive simulations applied to the final adapted grids. These quantities are relative to
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Table 6 .

 6 4: Laminar backward-facing step. Normalized separation and reattachment locations found in the literature and how they compare to the reference solution of the present study.

		𝑥 0	𝑥 1	𝑥 2	𝑥 3	Domain
	Gartling (1990)	-12.20 9.70 20.96 60ℎ, no entrance
	Barton (1997)	-12.03 9.64 20.96 32ℎ, no entrance
		-11.51 9.14 20.66 32ℎ + inlet channel (10ℎ)
	Cruchaga (1998) -12.00 9.60 20.20 60ℎ, no entrance
		-12.00 9.40 19.40 60ℎ + inlet channel (ℎ)
	Erturk (2008)	0.15 11.83 9.47 20.55 300ℎ + inlet channel (20ℎ)
	Present study	0.15 11.81 9.31 20.83 60ℎ + inlet channel (5ℎ)

  Table6.5: Laminar backward-facing step. L 2 -norm of the total error resulting from the combination of the profiles analyzed in Figure6.13. Best result given by cell in grey.

	Error	𝑝 = 1	𝑝 = 2	𝑝 = 3
	estimator		‖ (𝜌v) ℎ -(𝜌v) ref‖ 𝐿 2	
	MW-𝜌v	1.52 × 10 -3 2.97 × 10 -4	3.51 × 10 -5
	MW-𝑝	1.61 × 10 -3	2.59 × 10 -4	4.56 × 10 -5
	MW-𝜔	2.24 × 10 -3	1.68 × 10 -4 5.19 × 10 -5
			‖ 𝑝 ℎ -𝑝 ref‖ 𝐿 2	
	MW-𝜌v	7.36 × 10 -4 1.93 × 10 -4	1.26 × 10 -4
	MW-𝑝	7.71 × 10 -4	2.80 × 10 -4	1.26 × 10 -4
	MW-𝜔	2.07 × 10 -3	1.47 × 10 -4 1.27 × 10 -4
			‖ 𝜔 ℎ -𝜔 ref‖ 𝐿 2	
	MW-𝜌v	1.31 × 10 -1 8.30 × 10 -2	5.33 × 10 -2
	MW-𝑝	2.13 × 10 -1	5.73 × 10 -2	5.08 × 10 -2
	MW-𝜔	1.65 × 10 -1	3.35 × 10 -2 5.43 × 10 -2
					10 -3
				ℎ -(𝜌v)	10 -4
				‖ (𝜌v)	10 -5
					0 6ℎ 14ℎ	30ℎ

  2.2. Section 7.2.3 outlines the h/p-results for different global quantities. The hpresults of these same quantities are described in Sections 7.2.4 to 7.2.6. We 106 7 hp-adaptive simulations perform a comparison of the h/p-and hp-results in both global and local quantities in Sections 7.2.7 and Sections 7.2.8, in that order. Finally, the main conclusions of the chapter are summarized in Section 7.3.

	7.1 LAMINAR BACKWARD-FACING STEP
	In this section we extend the h-adaptive approach of the laminar backward-
	facing step conducted in Section 6.2 of Chapter 6 to both local polynomial
	and mesh adaptation guided by the multiwavelet regularity indicator devel-
	oped in Section 5.2.3 of Chapter 5.

Table 7

 7 

	.1: Integral flow quantities found in the literature and how they com-		𝐶 𝐷	𝐶 𝐷 press	𝐶 𝐷 visc	𝐿 𝑏 /𝐷	𝐵
	pare to the reference solution from the	Franke et al. (1990)	1.98	1.69	0.029	-	0.166
	present study.	Dhiman et al. (2006) 1.7670	-	-	2.8220	0.1
		Sen et al. (2011)	1.6680	-	-	2.8552	0.02
		Meliga et al. (2014)	1.67	-	-	2.83	0.02
		Basile et al. (2021)	1.643049 1.417378 0.225671 2.8318	0.001
		Present study	1.642730 1.414128 0.228602 2.83596 0.001

  Drag coefficient, 𝐶 𝐷 . Pressure factor on drag, 𝐶 𝐷 press . Viscous factor on drag, 𝐶 𝐷 visc .Figure 7.15: Square cylinder. Convergence history of drag coefficients (𝐶 𝐷 , 𝐶 𝐷 press , 𝐶 𝐷 visc ) in hp-adaptive vs h-uniform simulations.
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		1.67	h-unif hp-h++		1.46	h-unif hp-h++		0.25	
			hp-h+			hp-h+			
	𝐶 𝐷	1.66	hp-p+ hp-p++	press 𝐶 𝐷	1.43 1.4141	hp-p+ hp-p++	visc 𝐷 𝐶	0.24 0.2286		h-unif
		1.65 1.6427			1.40			0.22 0.21		hp-h++ hp-h+ hp-p+ hp-p++
	10 5 10 5 (a) 10 5 10 6 10 7 10 6 10 7 10 -5 10 -4 10 -3 10 -2 #DOFs | 𝐶 𝐷 -𝐶 ref 𝐷 | 10 5 10 -3 10 -2 | 𝐶 𝐷 press -𝐶 ref 𝐷 press | (b) 10 5 10 6 10 7 10 6 10 7 #DOFs 10 5 10 -3 10 -2 | 𝐶 𝐷 visc -𝐶 ref 𝐷 visc | 2.85 2.87 2.89 2.91 2.836 𝐿 𝑏 (c) 10 5 #DOFs 10 6 10 6	10 6	10 7 10 7 h-unif hp-h++ hp-h+ hp-p+ hp-p++	10 7
									10 -1
								| 𝐿 𝑏 -𝐿 ref 𝑏 |	10 -3 10 -2
									10 -4	10 5	10 6	10 7
										#DOFs
								Figure 7.16: Square cylinder. Conver-
								gence history of recirculation length
								𝐿 𝑏 in hp-adaptive vs h-uniform simula-
								tions.

degree, 𝑝 𝐾 Figure 7.14: Square cylinder. Successive iterations of the hp-meshes under hp-adaptation with a strong predisposition towards p-refinement. Meaning that we apply the p++ tolerance ( 0.1 ≤ 𝜍 tol < 0.2 ) .

  Drag coefficient, 𝐶 𝐷 . Pressure factor on drag, 𝐶 𝐷 press . Viscous factor on drag, 𝐶 𝐷 visc .Figure7.17: Square cylinder. Comparison of the convergence history among h-, p-and hp-adaptive simulations for the drag coefficient 𝐶 𝐷 and its contributions 𝐶 𝐷 press and 𝐶 𝐷 visc .

	120	7 hp-adaptive simulations
				1.67	h-adapt	1.46	h-adapt
					p-adapt hp-h+		p-adapt hp-h+	0.25
			𝐶 𝐷	1.66	𝐶 𝐷 press	1.4141 1.43	𝐶 𝐷 visc	0.2286 0.24
				1.65		1.40	0.22	h-adapt
				1.6427			0.21	p-adapt hp-h+
	𝐿 𝑏	10 5 10 5 #DOFs (a) 10 5 10 6 10 6 10 -4 10 -3 10 -2 | 𝐶 𝐷 -𝐶 ref 𝐷 | 10 5 10 -3 10 -2 #DOFs | 𝐶 𝐷 press -𝐶 ref 𝐷 press | (b) 10 5 10 6 10 6 10 5 10 -3 10 -2 #DOFs | 𝐶 𝐷 visc -𝐶 ref 𝐷 visc | 10 6 2.85 2.87 2.91 2.836 h-adapt p-adapt (c) 10 5 2.89 hp-h+	10 6 10 6
		10 -1			
	|					
	𝑏 -𝐿 ref 𝑏	10 -2			
	| 𝐿					
		10 -3			
				10 5	10 6	
				#DOFs		
	Figure 7.18: Square cylinder. Compari-	
	son of the convergence history among	
	h-, p-and hp-adaptive simulations for	
	the recirculation length 𝐿 𝑏 .		
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