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RÉSUMÉ

L’objectif principal de cette thèse est de développer une approche adapta-
tive à la hp-méthode efficace en termes de calcul pour les schémas Galerkin
discontinus des équations de Navier-Stokes, en combinant la flexibilité de
l’adaptation a posteriori et la précision de l’adaptation multi-résolution. Les
performances de l’algorithme de la hp-méthode sont illustrées par plusieurs
flux stables en une et deux dimensions.

La nouveauté de l’étude réside dans l’utilisation des multi-ondelettes et la
façon dont leurs propriétés remarquables peuvent apporter un éclairage nou-
veau sur la conduite du processus d’adaptation. Ceci est motivé par le fait
que les multi-ondelettes décomposent n’importe quelle entrée en une hiérar-
chie de données de basse résolution et ensuite de détails plus fins. Notre
méthodologie utilise les propriétés des multi-ondelettes tout en étant locale
à l’élément, en gardant ainsi l’efficacité parallèle du shéma de DG.

La première direction de recherche emploie une nouvelle méthodologie basée
sur les multi-ondelettes pour estimer l’erreur de discrétisation de la solution
numérique dans le contexte des simulations adaptives à la h-méthode. Cette
nouvelle méthodologie est ensuite comparée à des estimateurs d’erreur bien
établis dans la littérature afin d’évaluer leur efficacité globale. Les résultats
démontrent clairement la viabilité de la h-méthode pour atteindre un gain
de calcul significatif par rapport aux maillages uniformément raffinés. La
méthodologie basée sur les multi-ondelettes est nettement plus performante
que les estimateurs de la littérature, en particulier pour les simulations d’ordre
inférieur. Plus particulièrement, la fiabilité et la précision de la méthodolo-
gie proposée augmentent avec les ordres de simulation plus élevés grâce à
la plus grande quantité d’informations récupérées avec succès par les multi-
ondelettes.

La deuxième ligne d’investigation aborde l’analyse et le développement d’une
nouvelle stratégie adaptative à la hp-méthode basée sur la décroissance du
spectre des multi-ondelettes pour diriger les simulations adaptatives à la hp-
méthode. Cette stratégie permet de discriminer avec succès les régions carac-
térisées par une grande régularité et des phénomènes discontinus, ainsi que
leur proximité. Nous nous concentrons sur l’étude de la distribution optimale
de la hp-méthode et de ses performances globales par rapport à l’adaptation
pure par la h- ou p-méthode. Les analyses globales et locales menées de cette
manière indiquent une réduction significative du coût de calcul de la simula-
tion lorsque la hp-méthode est sélectionnée par rapport à la h- ou p-méthode.
De manière remarquable, l’algorithme d’adaptation à la hp-méthode dévelo-
ppé est capable d’atteindre la haute précision caractéristique des solutions
numériques d’ordre élevé tout en évitant les oscillations indésirables en adop-
tant des approximations d’ordre réduit à proximité des singularités.





ABSTRACT

The main objective of the present thesis is to devise, construct and validate
computationally efficient hp-adaptive discontinuous Galerkin schemes of the
Navier-Stokes equations by bringing together the flexibility of a posteriori er-
ror driven adaptation and the accuracy of multiresolution-based adaptation.
The performance of the hp-algorithm is illustrated by several steady flows in
one and two dimensions.

The novelty of the study resides in the use of multiwavelets and how their
remarkable properties may shed new light on driving the adaptation process.
This is motivated by the fact that multiwavelets break any input apart into a
hierarchy of low-resolution data and subsequently finer details. Our method-
ology makes use of multiwavelets’ properties while being local to the element,
thereby maintaining the parallel efficiency of the solver.

The first research direction employs a new multiwavelet-based methodology
to estimate the discretization error of the numerical solution in the context
of h-adaptive simulations. This novel methodology is then compared against
well-established error estimators from the literature to evaluate their overall
performance. The results certainly demonstrate the viability of h-refinement
to reach a significant computational gain with respect to uniformly refined
grids.Themultiwavelet-basedmethodology performs substantially better than
the literature estimators, and in particular for low-order simulations. Most
notably, the reliability and accuracy of the proposed methodology increases
with higher simulation orders thanks to the higher amount of information
successfully retrieved by the multiwavelets.

The second line of investigation addresses the analysis and development of
a new hp-adaptive strategy based on the decay of the multiwavelet spectrum
to drive hp-adaptive simulations. The strategy successfully discriminates be-
tween regions characterized by high regularity and discontinuous phenom-
ena and their vicinity. We focus our attention on studying the optimal hp-
distribution and its overall performance with respect to single h- or p-adapta-
tion. Both global and local analyses conducted in this manner report a signifi-
cant reduction in the computational cost of the simulation when hp is selected
over either h or p. Remarkably, the developed hp-adaptation algorithm is able
to achieve the high accuracy characteristic of high-order numerical solutions
while avoiding unwanted oscillations by adopting low-order approximations
in the proximity of singularities.
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Chapter1
INTRODUCTION

1.1 BACKGROUND AND MOTIVATION

In this day and age computational fluid dynamics (CFD) has become an in-
valuable vehicle to understand the complex behavior of fluid flow. The set of
conservation laws that governs the motion of fluids are represented as a sys-
tem of partial differential equations (PDEs), for which, in the general case,
no analytical solution is available besides some very specific conditions in the
laminar regime. As an alternative, a great number of techniques to numer-
ically approximate the solution to these equations has been historically put
forward and developed. Among the most illustrative techniques we identify
the finite-volume methods (FVMs) (LeVeque, 2002; Ferziger et al., 2020)
and the finite-element methods (FEMs) (Donéa and Huerta, 2003; Reddy
and Gartling, 2010). These methods are based on the discretization of the
physical domain into a computational grid consisting of a collection of ele-
ments where the numerical solution is defined.

Since their first use in the 1960s, finite-volumemethods have been extensively
studied and advanced by the CFD community (Godlewski and Raviart, 1996;
Eymard et al., 2000). Their numerical solution is represented by an averaged
value of the solution in a control volume obtained by flux balance across the
volume interfaces. The physical fluxes at the interfaces are replaced by numer-
ical fluxes solving the problem of discontinuity between left and right ele-
ments (Riemann solver for the convective term) (Toro, 2009). Conventional
FVMs are second order accurate and offer a simple and robust formulation
suitable for both structured and unstructured grids. However, FVMs with
higher orders of accuracy involve wider stencils, which considerably reduce
their flexibility.

Finite-element methods were introduced to CFD in the late 1970s and have
also proved to be very successful in fluid dynamics (Babuvška, 1973; Piron-
neau, 1989). Unlike FVMs, their numerical solution is locally defined by
a linear combination of polynomials assumed to be continuous across ele-
ment interfaces. Originally, FEMs were designed with polynomials of low
degree (Boyd, 2001). The extension to higher degrees receives the name of
spectral elements methods (SEMs) (Patera, 1984), which inherit the prop-
erties of high-order accuracy and low-dispersion errors of spectral methods
(Karniadakis and Sherwin, 2005). However, these methods rely on polyno-
mials with continuous global support, which introduces potential stability
problems when dealing with hyperbolic configurations (Hesthaven and War-
burton, 2008).



2 1 introduction

A compact combination of the spectral-element and the finite-volume meth-
ods, which seems to offer many of the required characteristics, consists in
using high-order polynomials with spectral accuracy that mirror the spec-
tral element method while retaining the conservativity of the finite volume
method. This selective combination plus the introduction of a highly local
stencil catalyzes into the discontinuous Galerkin method (DGM).

Discontinuous Galerkin methods have the benefit of attaining high paral-
lel efficiency on distributed memory machines thanks to their local nature,
their large on-processor operation count, and a small communication foot-
print (Giraldo and Restelli, 2008). These factors make the DGMs especially
well-adapted for high-performance computing (HPC).

Solutions of the conservation laws governing fluid dynamics are often charac-
terized by heterogeneous flow features with different length scales. As such,
in some regions the solution is smooth, whereas in other regions non-regular
structures such as strong gradients, shear layers, or shocks occur. For a fixed
target accuracy, the smallest scale of these events determines the resolution
of the spatial discretization. An uniform resolution approach, such as re-
fining uniformly the grid, extends this resolution throughout the computa-
tional domain. Conversely, adaptive resolution approaches, such as remeshing
(Mavriplis, 1990) or h/p adaptation (Wackers et al., 2012; Rueda-Ramírez
et al., 2019a), allow for the optimization of the spatial discretization by se-
lectively adjusting its resolution to the localization of the event. In this way,
resources are distributed more efficiently and the computational cost is sig-
nificantly reduced without compromising the overall accuracy.

In particular, DGMs are especially well-suited to efficiently adapt the spatial
resolution of the numerical solution by either modifying the local mesh size
(h-adaptation), the local polynomial degree (p-adaptation), or both simulta-
neously (hp-adaptation). By this line of thought, smooth regions are better
tailored to p-adaptation, which helps to improve the accuracy of the numeri-
cal solution; whereas regions featuring non-regular behavior (e.g. shocks and
boundary layers) are better captured using h-adaptation, so that the produc-
tion of numerical fluctuations and errors is minimized. Overall, the process
should maintain to a feasible extent the same accuracy than the uniformly re-
fined grid (for the same minimum effective mesh size), yet for a lower number
of degrees of freedom (DOFs).

To guide any of the aforementioned adaptation approaches we must firstly
come up with some mechanism to estimate the error distribution in the nu-
merical solution. There are multiple a posteriori methodologies accessible to
secure these estimates (Ainsworth and Oden, 1997). Examples range from
feature-based estimators, which originate from the study of certain physical
features of the flow (Kasmai et al., 2011), to goal-oriented estimators, which
measures the error of a specific target quantity by solving an adjoint prob-
lem (Kast, 2017), to local error-based estimators, which assess the local error
of the numerical solution. In the context of DGMs, the latter technique is
of particular significance. In this category, we can highlight two methods
based on the estimation of the discretization error. Either by extrapolating
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selected Legendre expansion coefficients (Mavriplis, 1994), or by evaluating
the higher-order modes of the numerical solution (Naddei et al., 2018).

Another methodology of special interest is the so-called multiresolution-based
grid adaptation (Gottschlich-Müller and Müller, 1999). This approach is de-
signed with unsteady problems inmind and does not depend on a posteriori es-
timation, but relies on the concept of multiresolution analysis (MRA) (Müller,
2003). This theory refers to the possibility of representing the numerical solu-
tion as a hierarchy of increasingly fine details built on wavelets (Mallat, 2008)
plus a coarse-scale component which offers an overall picture of the solution.
The decay of these details provides information on the local regularity of the
solution which, in turn, allows for the local truncation error to be measured
(Schneider and Vasilyev, 2010). By applying an appropriate thresholding to
the wavelet details one can perform error control and guide grid adaptation.
The fundamental idea of the MRA-based grid adaptation is to perform a
multiresolution analysis of the reference solution and evolve only meaningful
local information in time.

The idea behind multiresolution analysis emerges from the work of Harten
(1996) who, in the context of finite-volumemethods, designed a cost-effective
flux evaluation based on MRA. Despite reducing the number of flux evalu-
ations, Harten’s original concept did not consider grid adaptation and was
only applied to uniform grids.

A fully adaptive FVM-MRA approach based on MRA was later developed
by Müller (2003, 2009) by explicitly using biorthogonal wavelets to represent
the numerical solution. In his work, Müller applies data compression based
on the values of the wavelet coefficients, which in turn defines a locally re-
fined grid. Roussel et al. (2003), Domingues et al. (2009) and Deiterding et
al. (2009, 2016) independently developed another fully adaptive FVM-MRA
method which relies on the recursive use of projection and prediction oper-
ators to define the coarse and fine levels of the cell-averaged values of the
solution.

A later extension to the DGM framework by Hovhannisyan et al. (2014),
Gerhard et al. (2015a,b), and Gerhard and Müller (2016) involve the use of
multiwavelets (MWs), which are commonly described as the vector variant
of wavelets (Strela, 1996). Multiwavelets can be easily combined with the
DGM thanks to their flexibility in matching the high-order of the approx-
imation while keeping compact support (Gerhard, 2017). A similar DGM-
MRA which includes the numerical solution along with the derivative opera-
tors from the partial differential equation in a MRA representation was also
developed independently by Shelton (2008) and Archibald et al. (2011). On
a different line of research, the works of Vuik and Ryan (2014, 2016) and
Vuik (2017) combine the DGM and MWs for the detection of shocks in
2-D configurations.

The concept of MRA-based grid adaptation, while soundly based on wavelet
theory and accurate (Hovhannisyan et al., 2014), also faces some limitations.
In principle, a solution on a uniform sufficiently fine reference grid should
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be initially foreknown. This is required so that the multi-scale structure is
defined at the initial time and the relevant information correctly captured for
subsequent time steps.

In the context of unsteady problems, Gerhard (2017) avoids the application
of the fine reference grid to initialize the grid by using a MRA version of the
reference grid (approximation) as initialization instead. In order to reduce
the computational complexity of the reference grid, they apply an algorithm
on the initial solution 𝒖0 that proceeds level-wise from coarse to fine scale.
However, this strategy may overlook significant information on higher scales
and thus it must be applied prudently.

In the framework of steady problems, Bramkamp et al. (2004) andMüller and
Stiriba (2009) have demonstrated that the MRA strategy can be efficiently
applied when combinedwith amultilevel strategy. In this manner, the authors
effectively circumvent the use of the costly reference grid. In particular, they
employ the Full Approximation Storage algorithm (FAS, see Brandt (1977)),
which is suitable for an adaptive multigrid approach, together with MRA
using biorthogonal wavelets in the context of FVMs. However, this approach
requires two different grids associated with the multigrid scheme: at level 𝐿
(fine grid) and at level 𝐿 − 1 (coarse grid).

A second constraint resides in the fact that only grids which support uniform
dyadic subdivisions of the elements are allowed, which mean that the ele-
ments are split into sub-elements of equal size and shape. This methodology
can also be applied on triangles as presented by Yu et al. (1999). An alternative
approach is the wavelet-free method developed by Gerhard (2017), which ex-
tends the MRA to non-uniform grid hierarchies. Finally, another limitation
of the MRA-based grid adaptation is that, due to the pyramidal structure of
the MRA technique, parallelization might prove challenging.

1.2 SCOPE OF THE THESIS

Themain goal of this work is to develop computationally efficient hp-adaptive
DG schemes of the Navier-Stokes equations by drawing together the flexibil-
ity of a posteriori driven adaptation and the accuracy of multiresolution-based
adaptation. The validation of the methodology is performed for several steady
flows in one and two dimensions.

In a first research direction, we focus exclusively on h-adaptation. The idea
is to examine the constraints of traditional multiresolution-based adaptation
and come up with an alternative multiwavelet-based methodology compati-
ble with a posteriori local error estimation. In a second line of investigation,
we look further from the h-adaptivity of the original MRA-based approach
and investigate novel ways of providing the new multiwavelet-based method-
ology with hp-capabilities.

In order to address the shortcomings of MRA-based grid adaptation, the
new multiwavelet expansion of the numerical solution is performed locally
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within each element. By being local to the element, adaptation can be ap-
plied by starting from a coarse mesh. In this manner, we avoid the need to
operate a costly reference grid. Besides, more general grids may also be used
(not limited by the strict translation and dilation properties of multiwavelets)
and the compacity and thus parallel efficiency of the original DG method is
conserved.

This new methodology requires that the original DG element-wise solution
undergoes a post-processing treatment, so that the new local multiwavelet
expansion may extract significant information. This is done by employing a
reconstruction process involving the current element and its immediate neigh-
bors. The multiwavelet decomposition is then locally performed on the new
reconstructed DG solution. The resulting details then constitute the back-
bone of the multiwavelet-based error estimation.

We give prominence to configurations that exhibit physical and/or geomet-
rical singularities, which would significantly benefit from h-adaptation. For
the h-adaptive simulations, we compare our multiwavelet-based estimation
against pertinent error estimators from the literature and measure their over-
all performance.

The extension to hp-adaptation is based on an evaluation of the local smooth-
ness of the solution. Following on the footsteps of the previous multiwavelet-
based error estimator, we give evidence of a consistent association between
local solution regularity and the decay of the multiwavelet spectrum. This
measurement constitutes an estimation of the error and, together with an ap-
propriate hp-decision strategy, determines whether to perform mesh size or
polynomial degree adaptation.

To validate the proposed hp-strategy, we perform a series of hp-adaptive sim-
ulations on flow configurations characterized by both, regions of smooth and
non-regular solution behavior. We then focus our attention on studying the
optimal hp-distribution and on its overall performance with respect to single
h- or p-adaptation.

1.3 FRAMEWORK OF THE THESIS

The present work is performed in the context of the development of the CFD
solver Aghora at ONERA. The Aghora solver is built on a high-order discon-
tinuous Galerkin discretization based on either modal or nodal formulations
for the simulation of compressible flows on unstructured non-conforming
grids. The solver is written in Fortran90 and benefits from distributed mem-
ory and CPU-based parallelization using MPI. Different publications have
corroborated the capabilities of the solver. These studies range from turbu-
lence modeling in DNS (Chapelier et al., 2012, 2014), RANS (Renac et al.,
2015), and LES (De la Llave Plata et al., 2018; Lorteau et al., 2018); to
simulations of two-phase flows (Rai et al., 2021). More recently added h/p-
capabilities allow the solver to benefit from local degree adaptation (Nad-
dei et al., 2018, 2019) and local mesh refinement (Naddei, 2019). This PhD
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thesis builds on the solver’s h-adaptive capability and paves the way to full
hp-adaptation.

This PhD thesis is part of the Marie Skłodowska-Curie Innovative Train-
ing Network (ITN) Stability and Sensitivity Methods for Industrial Design
(SSeMID) funded by the European Union’s Horizon 2020 research and in-
novation programme.

1.4 OUTLINE OF THE THESIS

Besides the current chapter serving as the introduction to the thesis, the re-
maining chapters are organized into three major parts as follows:

Part I presents an overview of the physical models spanning this work
and the discretization methodology to numerically approximate their
solution. Additionally, multiresolution analysis based on multiwavelets
is introduced as a mathematical tool to better understand the features
of the numerical solution.

Chapter 2 briefly describes the two-dimensional Navier-Stokes
equations and the one-dimensional Burgers equation used for the
validation of the methodology.We spend most of the chapter cov-
ering the discontinuous Galerkin method and the details of the
spatial and temporal discretizations used throughout this work.
Chapter 3 starts by providing a brief historical context tomultires-
olution analysis. We then discuss the basics of wavelet theory and
conclude the chapter by focusing our attention on multiwavelets
and their associated multiresolution analysis.

Part II details the roadmap to our hp-adaptive scheme. We start by
tailoring the DG solution to fit a multiwavelet expansion. We then
measure the solution error and regularity of the solution, based on
such expansion, and clearly lay out the ingredients required by the hp-
adaptation algorithm.

Chapter 4 begins by finding common ground between the multi-
wavelet expansion and the DG formulation. We aim to improve
previous approaches in the literature by proposing a new local
expansion applied to a reconstructed enriched version of the orig-
inal DG solution.
Chapter 5 provides a comprehensive literature review of error esti-
mator techniques, adaptation approaches, and hp-adaptive strate-
gies. After that, we describe our novel multiwavelet-based error
estimator and regularity indicator, the latter of which originates
from a thorough interpretation of themultiwavelet spectrum.The-
se two ingredients plus additional marking and hp-decision crite-
ria constitute the structure of the hp-algorithm.
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Part III presents the numerical results from h- and hp-adaptive sim-
ulations of three different steady configurations. The considered con-
figurations allow for the analysis of the performance of our adaptive
algorithm under various parameters of interest.

Chapter 6 provides a comparison of our multiwavelet-based esti-
mator against selected estimators from the literature in the con-
text of h-adaptive simulations. We evaluate their overall perfor-
mance by analyzing relevant quantities of interest. We focus our
attention on the 1-D viscous Burgers equation in the presence of
a shock, and the 2-D laminar flow over a backward-facing step.
Chapter 7 offers an evaluation of the performance of our multiwa-
velet-based hp-strategy in driving hp-adaptation. To assess the
performance of our strategy we compare the optimal hp-distribu-
tion to equivalent purely h- and p-adaptive simulations. The 2-D
laminar backward-facing step and square cylinder configurations
are considered in these studies.

Finally, Chapter 8 wraps up the thesis with the main conclusions and per-
spectives for future work.





Part I

BACKGROUND





Chapter2
PHYSICAL MODEL AND
NUMERICAL METHODS

In this chapter we establish the physical models adopted throughout the
present work and the theoretical bedrock to numerically calculate their so-
lution.

Section 2.1 presents the general expression that underpins these physical
models. The subsequent Section 2.1.1 introduces the two-dimensional com-
pressibleNavier-Stokes equations as the principal physicalmodel of this work.
Section 2.1.2 discusses the one-dimensional viscous Burgers equation as a
simplification of the Navier-Stokes equations and its role as an early litmus
test.

Section 2.2 introduces the discontinuous Galerkin method applied to the
aforementioned physical models. After a short account of the historical evo-
lution of the method, we describe how the domain is accommodated to the
discretization in Section 2.2.1. The accompanying DG solution and its fea-
tures are covered in Sections 2.2.2 and 2.2.3. The formulation of the DG
method is explained in Section 2.2.4. We describe first the spatial discretiza-
tion of the convective and viscous terms in Sections 2.2.5 and 2.2.6; and fol-
low with the temporal discretization in Section 2.2.7. Finally, Section 2.2.8
closes the chapter by addressing the numerical computation of volume and
surface integrals.

2.1 PHYSICAL MODEL

In this workwemake use of the two-dimensional compressibleNavier-Stokes
equations and the one-dimensional viscous Burgers equation. Let Ω ⊂ ℝ𝑑 be a
bounded domain, where 𝑑 is the spatial dimension. Given appropriate bound-
ary conditions on 𝜕Ω and in the absence of source terms, these equations can
be written under the general expression

𝜕𝒖
𝜕𝑡 + ∇ ⋅ [𝓕𝑐 (𝒖) − 𝓕𝑣 (𝒖, ∇𝒖) ] = 0 , ∀𝒙 ∈ Ω , 𝑡 > 0 , (2.1)

𝒖(𝒙, 𝑡) = 𝒖0(𝒙), ∀𝒙 ∈ Ω , at 𝑡 = 0 , (2.2)

where 𝒖 is the state vector of conservative variables. The vectors 𝓕𝑐 , and 𝓕𝑣
are the convective and viscous fluxes, respectively.
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2.1.1 Navier-Stokes equations

We define the domain Ω ⊂ ℝ2. The state vector and the fluxes of Eqs. (2.1, 2.2)
are given, respectively, by

𝒖 =
⎡⎢⎢⎢⎣

𝜌
𝜌𝒗
𝜌𝐸

⎤⎥⎥⎥⎦
, 𝓕𝑐 =

⎡⎢⎢⎢⎣

𝜌𝒗𝑇

𝜌𝒗 ⊗ 𝒗 + 𝑝𝑰
(𝜌𝐸 + 𝑝)𝒗𝑇

⎤⎥⎥⎥⎦
, and 𝓕𝑣 =

⎡⎢⎢⎢⎣

0
𝝉

𝝉 ⋅ 𝒗 − 𝒒𝑇

⎤⎥⎥⎥⎦
; (2.3)

with 𝜌 representing the density. The velocity vector, 𝒗, and the specific total
energy, 𝐸, are defined, respectively, by

𝒗 =
[

𝑢
𝑣]

, and 𝐸 = 𝑝
(𝛾 − 1)𝜌 + 1

2 (𝒗 ⋅ 𝒗); (2.4)

where 𝛾 = 𝐶𝑝
𝐶𝑣

> 1 is the ratio of specific-heat coefficients, and 𝑝 is the static
pressure, as defined by the perfect-gas law

𝑝 = 𝜌𝑅𝑇 , (2.5)

with 𝑅 the specific gas constant and 𝑇 the temperature. The static pressure
represents the normal component of the stress tensor, whereas the shear-stress
component is described by

𝝉 = 2𝜇 (𝑫 − 1
3 tr(𝑫)𝑰) ; (2.6)

𝑫 = 1
2 (∇𝒗 + (∇𝒗)𝑇 ), tr(𝑫) = ∇ ⋅ 𝒗; (2.7)

where 𝑫 and tr(𝑫) are the instantaneous strain-rate tensor and its trace, re-
spectively. The dynamic viscosity, 𝜇, is defined by Sutherland’s law (Schlicht-
ing et al., 2017). Finally, the heat-flux vector, 𝒒, follows Fourier’s law:

𝒒 = −𝑘∇𝑇 , (2.8)

with 𝑘 being the thermal conductivity given by

𝑘 = 𝜇
Pr𝐶𝑝, 𝐶𝑝 = 𝛾

𝛾 − 1𝑅 , (2.9)

where Pr denotes the Prandtl number, that is assumed to have a constant
value of 0.72.

We measure the contribution of the different terms in Eqs. (2.1–2.3) by es-
tablishing two dimensionless parameters based on characteristic quantities of
the phenomenon considered. The Reynolds number, Re, represents the ratio
of convective to viscous effects:

Re = 𝜌ref 𝑣ref 𝐿ref
𝜇ref

, (2.10)

and the Mach number, Ma, denotes the ratio of the characteristic flow veloc-
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Ω

𝜕Ω

Solution domain

Quadrilateral
tessellation, Ωℎ

𝐾

𝜩−1
𝐾

ℰ𝑖

ℰ𝑏

̂𝐾

Reference square

𝜉

𝜂

𝑥

𝑦

Figure 2.1: The solution domain Ω
is decomposed into a series of non-
overlapping quadrilaterals, 𝐾, which
are then mapped to the reference square

̂𝐾 to perform the relevant operations.

ity to the sound speed:

Ma = 𝑣ref

√𝛾𝑅𝑇ref
(2.11)

2.1.2 Burgers equation

The Burgers equation can be understood as a simplified version of the Navier-
Stokes equations (Burgers, 1995), for which exact solutions are known. In
later chapters, we justify the use of this equation as an early benchmark prob-
lem for our adaptation approach.

To obtain the Burgers equation we assume that the flow is incompressible.
Therefore, we can integrate the continuity equation to the momentum equa-
tion and drop the state and energy equations. Additionally, we also neglect
the effect of the pressure. With these considerations, the state vector and
fluxes of Eq. (2.3) can be simplified to

𝒖 = 𝒗, 𝓕𝑐 = 𝒗 ⊗ 𝒗, and 𝓕𝑣 = 2𝜈𝑫; (2.12)

where 𝜈 = 𝜇/𝜌 represents the kinematic viscosity. Unlike the Navier-Stokes
equations, the Burgers equation can be studied in one-spatial dimension. In
this particular case Ω ⊂ ℝ and Eq. (2.12) simply becomes

𝒖 = 𝑢, 𝓕𝑐 = 1
2 𝑢2, and 𝓕𝑣 = 𝜈 𝜕𝑢

𝜕𝑥 , (2.13)

in which 𝜈 is considered to be constant.

2.2 THE DISCONTINUOUS GALERKIN METHOD

The origins of the discontinuous Galerkin method (DGM) can be traced
back to the pioneering work of Reed and Hill (1973) on approximating the
hyperbolic neutron transport equation. The discretization was later brought
to hyperbolic problems in fluid dynamics by Cockburn and Shu (2001). Soon
after, generalizations to parabolic and elliptic problems were also developed
(Cockburn and Shu, 1998; Baumann and Oden, 1999; Arnold et al., 2002).
These led to the first DGM discretization of the compressible Navier-Stokes
equations by Bassi and Rebay (1997). Since its conception, the DGM has
experienced a constant growth in many areas of computational physics and
engineering, such as aerodynamics (Van der Vegt and van der Ven, 2002) and
in particular turbulent flows (Chapelier et al., 2012; Wurst et al., 2015).

2.2.1 Domain discretization

The underlying notion of the DGM is to transfer the continuous problem in
Eqs. (2.1–2.2) into a discrete counterpart from which an approximate solution
can be reached. We start by partitioning the domain Ω into a shape-regular
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𝐾𝐾 − 1 𝐾 + 1

𝒖ℎ ∈ 𝒱 5
ℎ

𝒖ℎ ∈ 𝒱 3
ℎ

𝒖ℎ ∈ 𝒱 1
ℎ

Figure 2.2:DGM piecewise solution on
a 1-D discretized domain for different
degrees of the approximation space 𝒱 𝑝

ℎ .

grid, Ωℎ, formed by 𝑁𝐾 non-overlapping and non-empty elements 𝐾 of char-
acteristic size ℎ𝐾 . Interior and boundary faces in Ωℎ are defined by ℰ𝑖 and ℰ𝑏,
respectively, such that ℰℎ = ℰ𝑖 ∪ ℰ𝑏. This process is illustrated in Figure 2.1.
In our study, we are concerned with quadrilaterals, therefore we will be using
the designations element/quadrilateral interchangeably.

Additionally, we introduce the reference (square) element ̂𝐾 = {−1, 1}𝑑 , where
𝑑 refers to the dimension of the present problem. We define for every 𝐾 ∈ Ωℎ
the bijective transformation 𝜩𝐾 , such that 𝐾 = 𝜩𝐾 ( ̂𝐾), which relates the co-
ordinates of the reference element, 𝝃 = (𝜉, 𝜂) ∈ ̂𝐾, to their counterparts in the
physical element, 𝒙 = (𝑥, 𝑦) ∈ 𝐾. This is equivalent to the notation 𝒙 = 𝜩𝐾 (𝝃),
also called parametric mapping (Karniadakis and Sherwin, 2005). Finally, the
Jacobian associated with the transformation is represented by 𝓙𝐾 = ∇𝜩𝐾 ,
with determinant 𝒥𝐾 = det(𝓙𝐾 ).

2.2.2 Solution approximation

We now proceed to approximate the solution of Eqs. (2.1–2.2) on the new dis-
cretized domain Ωℎ. Therefore, we approximate 𝒖 by a polynomial expansion
𝒖ℎ such that 𝒖ℎ ∈ 𝒱 𝑝

ℎ , where 𝒱 𝑝
ℎ is the approximation space defined as

𝒱 𝑝
ℎ = {Φℎ ∈ 𝐿2(Ωℎ) ∶ Φℎ|𝐾 = 𝜙(𝜩−1

𝐾 (𝒙)), ∀𝐾 ∈ Ωℎ}, (2.14)

where 𝜙 ∈ 𝒫 𝑝( ̂𝐾) is a function of the subspace of continuous polynomi-
als with degree at most 𝑝 defined on the reference element ̂𝐾, and Φℎ|𝐾 =
𝜙(𝜩−1

𝐾 (𝒙)) is its representation on a physical element 𝐾. If we let 𝜙 = {𝜙ℓ}
𝑁𝑝
ℓ=1,

with 𝑁𝑝 = (𝑝 + 1)𝑑 , be a set of linearly independent basis functions of 𝒫 𝑝( ̂𝐾),
we have

𝒫 𝑝( ̂𝐾) = span
ℓ=1,...,𝑁𝑝

{𝜙ℓ(𝝃), 𝝃 ∈ ̂𝐾}. (2.15)

Similarly, by means of the bijective transformation we get

𝒱 𝑝
ℎ = span

ℓ=1,...,𝑁𝑝
{𝜙ℓ(𝜩−1

𝐾 (𝒙)), 𝒙 ∈ 𝐾, ∀𝐾 ∈ Ωℎ}, (2.16)

and the polynomial expansion 𝒖ℎ can be then expressed as

𝒖ℎ(𝒙, 𝑡) = ∑
𝐾

𝑁𝑝

∑
ℓ=1

𝑼 ℓ
𝐾 (𝑡) 𝜙ℓ(𝜩−1

𝐾 (𝒙)), 𝒙 ∈ 𝐾, ∀𝐾 ∈ Ωℎ, ∀𝑡 > 0 , (2.17)

where the coefficients (𝑼 ℓ
𝐾 )1≤ℓ≤𝑁𝑝 are the degrees of freedom (DOFs) rep-

resenting the approximate solution on element 𝐾. Examples of approximate
solutions of varying degree are illustrated in Figure 2.2.

The idea of prescribing the coefficients or modes of the local expansion in
Eq. (2.17) as the unknowns to solve is called modal representation. In con-
trast, a nodal representation would portray the local expansion through an in-
terpolating polynomial, with given quadrature points (e.g., Gauss or Gauss-
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Lobatto points) as the unknowns to evaluate. The two representations are
mathematically equivalent but computationally different (Hesthaven andWar-
burton, 2008). In this work, the use of a modal representation is justified by
the use of the multiresolution analysis (MRA), as will become apparent in
Chapter 3.

2.2.3 Expansion basis

We now describe the expansion basis employed in Eqs. (2.15–2.16). Similarly
to the question of modal versus nodal, the choice of the expansion basis de-
termines the numerical efficiency and accuracy of the DGM (Boyd, 2001).
Following the path of other studies that combine a form of DGM and MRA
(e.g., Vuik and Ryan (2014, 2016)), we select the Legendre polynomials as
our expansion basis. They represent the optimal selection when paired with
Alpert’s multiwavelets (Alpert et al., 2002).

The definition of a tensor-product basis within the reference element ̂𝐾 allows
us to build the basis functions as follows:

𝜙ℓ(𝝃) = ℎ𝑖(𝜉)ℎ𝑗(𝜂), ℓ = 1, ..., 𝑁𝑝, (2.18)

where {ℎ𝑖}
𝑝+1
𝑖=1 is a basis for 𝒫 𝑝([−1, 1]). In particular, we choose the scaled

Legendre polynomials
ℎ𝑖(𝜉) = √𝑖 − 1

2 𝑃 𝑖(𝜉), (2.19)

so that we insure orthonormality in the 𝐿2-norm ‖ℎ𝑖(𝜉)‖𝐿2 = 1. Moreover,
the basis is hierarchical, meaning that ℎ𝑖 ⊂ ℎ𝑖+1. Both properties of orthonor-
mality and being hierarchical are inherited by the basis 𝜙ℓ(𝝃).

2.2.4 Discontinuous Galerkin formulation

Thediscrete variational form of Eq. (2.1) is obtained bymultiplying the system
of equations by a test function Φℎ ∈ 𝒱 𝑝

ℎ and integrating over the tessellation
Ωℎ. It yields

𝜕
𝜕𝑡 ∫Ωℎ

𝒖ℎΦℎ d𝑉 + ∫Ωℎ
∇ ⋅ [𝓕 (𝒖ℎ, ∇𝒖ℎ) ]Φℎ d𝑉 = 0, (2.20)

where
𝓕 (𝒖ℎ, ∇𝒖ℎ) = 𝓕𝑐 (𝒖ℎ) − 𝓕𝑣 (𝒖ℎ, ∇𝒖ℎ) (2.21)

collects the convective and viscous fluxes in one term. If we apply the diver-
gence theorem to the second term in Eq. (2.20), we get

𝜕
𝜕𝑡 ∫Ωℎ

𝒖ℎΦℎ d𝑉 − ∫Ωℎ
𝓕 (𝒖ℎ, ∇𝒖ℎ) ⋅ ∇Φℎ d𝑉

+ ∫ℰℎ
[𝓕 (𝒖ℎ, ∇𝒖ℎ) ⋅ 𝒏] Φℎ d𝑆 = 0, (2.22)
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𝒏

𝐾+ 𝐾−

𝑒

𝒖+
ℎ|𝑒

𝒖−
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Figure 2.3: Definition of interface states
𝒖±

ℎ|𝑒 approaching from current 𝐾+ and
neighboring 𝐾−.

where 𝒏 is the normal unit vector on the boundary ℰℎ. To allow information to
propagate between elements, the last term of Eq. (2.22) must be evaluated at
the interfaces between adjacent elements.However, the flux 𝓕 is not uniquely
defined at the interfaces due to 𝒖ℎ and Φℎ being discontinuous. Therefore, we
replace 𝓕 by a numerical flux 𝓕∗, which is a function of both interface states.
Additionally, by restricting our analysis to the physical element 𝐾 ∈ Ωℎ, the
vectors 𝒖ℎ and Φℎ become 𝒖ℎ|𝐾 and 𝜙 = Φℎ|𝐾 , respectively; and we can express
Eq. (2.22) in the following elemental form

𝜕
𝜕𝑡 ∫𝐾

𝒖ℎ|𝐾 𝜙 d𝑉 − ∫𝐾
𝓕 (𝒖ℎ|𝐾 , ∇𝒖ℎ|𝐾 ) ⋅ ∇𝜙 d𝑉

+ ∫𝜕𝑖𝐾
𝓕∗(𝒖±

ℎ|𝜕𝑖𝐾
, ∇𝒖±

ℎ|𝜕𝑖𝐾
; 𝒏) [[𝜙]] d𝑆

+ ∫𝜕𝑏𝐾
[𝓕 (𝒖𝑏, ∇𝒖𝑏) ⋅ 𝒏] 𝜙+d𝑆 = 0, (2.23)

where the elemental boundary 𝜕𝐾 has been broken down into internal faces,
𝜕𝑖𝐾 = 𝜕𝐾 ∩ ℰ𝑖, and boundary faces, 𝜕𝑏𝐾 = 𝜕𝐾 ∩ ℰ𝑏. The boundary values
𝒖𝑏 = 𝒖𝑏(𝒖+

ℎ|𝜕𝑏𝐾 , 𝒖ext; 𝒏), with 𝒖ext a reference external state, are computed so
that the boundary conditions are satisfied on ℰ𝑏. The presence of interface
integrals requires the definition of interface states. For a given internal face
𝑒 ∈ 𝜕𝑖𝐾, the interior state is denoted by 𝒖+

ℎ|𝑒 and the neighboring state by
𝒖−

ℎ|𝑒. This nomenclature originates from applying the limit of the elemental
approximation 𝒖ℎ|𝐾± as it approaches the interface 𝑒, i.e:

𝒖±
ℎ|𝑒(𝒙𝑒) = lim

𝒙→𝒙𝑒,𝒙∈𝐾±
𝒖ℎ|𝐾± (𝒙), ∀𝒙𝑒 ∈ 𝑒, (2.24)

where 𝐾+ denotes the current element and 𝐾− the neighboring element, and
𝒏 represents the outward unit vector normal to 𝐾+. This is illustrated in Fig-
ure 2.3. In addition, we define the average {{⋅}} and jump [[⋅]] operators as
follows:

{{𝜙}} = 1
2 (𝜙+ + 𝜙−) , [[𝜙]] = 𝜙+ − 𝜙−,

{{𝒖ℎ|𝐾± }} = 1
2 (𝒖+

ℎ|𝑒 + 𝒖−
ℎ|𝑒) , [[𝒖ℎ|𝐾± ]] = (𝒖+

ℎ|𝑒 − 𝒖−
ℎ|𝑒) ⊗ 𝒏 .

(2.25)

Finally, if we replace Eq. (2.21) into Eq. (2.23) and adopt appropriate numer-
ical fluxes, we reach the compact elemental expression

𝜕
𝜕𝑡 ∫𝐾

𝒖ℎ|𝐾 𝜙 d𝑉 + ℒ𝑐(𝒖ℎ|𝐾 , 𝜙) + ℒ𝑣(𝒖ℎ|𝐾 , 𝜙) = 0 . (2.26)

where ℒ𝑐 and ℒ𝑣 represent the discrete variational projection of the convec-
tive and the viscous terms onto 𝒱 𝑝

ℎ . They will be described in the following
sections for the Navier-Stokes equations and the Burgers equation.
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2.2.5 Discretization of convective terms

Navier-Stokes equations Thediscrete variational form of the convective terms
in Eq. (2.26) reads

ℒ𝑐(𝒖ℎ|𝐾 , 𝜙) = − ∫𝐾
𝓕𝑐(𝒖ℎ|𝐾 ) ⋅ ∇𝜙 d𝑉

+ ∫𝜕𝑖𝐾
𝓕∗

𝑐 (𝒖±
ℎ|𝜕𝑖𝐾

; 𝒏) [[𝜙]] d𝑆

+ ∫𝜕𝑏𝐾
[𝓕(𝒖𝑏) ⋅ 𝒏] 𝜙+d𝑆 , (2.27)

The convective numerical flux 𝓕∗
𝑐 must satisfy the conditions of consistency

and conservativity (Cockburn, 1998). There are several numerical flux func-
tions satisfying the above criteria such as the Lax–Friedrichs, Roe, or Go-
dunov (Bassi and Rebay, 1997); which are also used in finite-volume meth-
ods (Toro, 2009). In this work we use the local Lax-Friedrichs flux (LLF)
(Cockburn, 1998):

𝓕∗
𝑐 (𝒖±

ℎ|𝜕𝑖𝐾
; 𝒏) = {{𝓕𝑐(𝒖ℎ|𝐾± )}} ⋅ 𝒏 + 1

2 𝛼LLF[[𝒖ℎ|𝐾± ]] , (2.28)

with

𝛼LLF = max {𝜌𝑠(𝓙(𝒖)) ∶ 𝒖 = 𝒖±
ℎ|𝜕𝑖𝐾 } , (2.29)

where 𝓙(𝒖) = ∇𝒖 (𝓕𝑐(𝒖) ⋅ 𝒏) denotes the Jacobian matrix of the convective
fluxes in the direction of 𝒏, and 𝜌𝑠 is its spectral radius.

Burgers equation The discrete variational projection of the convective terms
in Eq. (2.26) yields

ℒ𝑐(𝑢ℎ|𝐾 , 𝜙) = − ∫𝐾
ℱ𝑐(𝑢ℎ|𝐾 )

d𝜙
d𝑥

d𝑥

+ ∑
𝑒∈𝜕𝑖𝐾

ℱ ∗
𝑐 (𝑢±

ℎ|𝑒)[[𝜙]] + ℱ𝑐(𝑢𝑏) 𝜙+ , (2.30)

with ℱ𝑐(𝑢) = 1
2 𝑢2. The structure follows the arrangement presented by Al-

hawwary and Wang (2018). The approximation of the numerical convective
flux ℱ ∗

𝑐 on the internal faces is fully defined by the local Lax-Friedrichs flux,
similarly to Eqs. (2.28–2.29).

2.2.6 Discretization of viscous terms

Navier-Stokes equations For the discrete variational form of the viscous terms,
we employ the Bassi-Rebay-2 scheme (BR2) presented by Bassi and Rebay
(2000), in which the authors consider the gradient of the state vector ∇𝒖 = 𝝈
as an auxiliary variable. This new variable is then accommodated in a discrete
variational formulation, which in turn introduces several new terms. These
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new terms are bundled up under the so called global lifting operator 𝑳ℎ such
that

𝝈ℎ = ∇𝒖ℎ + 𝑳ℎ. (2.31)

At this point, the resulting scheme is known as the Bassi-Rebay-1 scheme
(BR1) (Bassi and Rebay, 1997). This scheme is not compact as the computa-
tion of 𝑳ℎ|𝐾 at the interior faces of the current element 𝐾 extends the sten-
cil farther than just its neighbours (Bassi et al., 2005). Conversely, the BR2
scheme replaces 𝑳ℎ|𝐾 by the so called local lifting operator 𝒍𝑒

ℎ, which satis-
fies:

∫
𝐾+∪𝐾−

𝜙 𝒍𝑒
ℎ d𝑉 = − ∫

𝑒

[[𝜙]][[𝒖ℎ|𝐾± ]] d𝑆 , 𝑒 ∈ 𝜕𝑖𝐾 . (2.32)

The use of the local lifting operator makes the BR2 scheme compact, as only
the interface integrals at 𝑒 ∈ 𝜕𝑖𝐾 need to be evaluated. An analogous equation
consistent with the boundary conditions can be obtained for the boundary
faces 𝜕𝑏𝐾. The global lifting operator 𝑳ℎ|𝐾 can be then reconstructed as the
sum of the local lifting operators, that is

𝑳ℎ|𝐾 = ∑
𝑒∈𝜕𝑖𝐾

𝒍𝑒
ℎ . (2.33)

The discrete variational form of the viscous terms in Eq. (2.26) therefore
reads

ℒ𝑣(𝒖ℎ|𝐾 , 𝜙) = ∫𝐾
𝓕𝑣(𝒖ℎ|𝐾 , 𝝈ℎ|𝐾 ) ⋅ ∇𝜙 d𝑉

− ∫𝜕𝑖𝐾
𝓕∗

𝑣(𝒖±
ℎ|𝜕𝑖𝐾

, 𝝈±
ℎ|𝜕𝑖𝐾

; 𝒏) [[𝜙]] d𝑆

− ∫𝜕𝑏𝐾
[𝓕𝑣 (𝒖𝑏, 𝝈𝑏) ⋅ 𝒏] 𝜙+d𝑆 . (2.34)

From applying Eq. (2.31) we have

𝝈ℎ|𝐾 = ∇𝒖ℎ|𝐾 + 𝑳ℎ|𝐾 , (2.35)
𝝈±

ℎ|𝜕𝑖𝐾
= ∇𝒖±

ℎ|𝜕𝑖𝐾
+ 𝜂BR2𝒍𝑒

ℎ; 𝑒 ∈ 𝜕𝑖𝐾, (2.36)

𝝈𝑏 = ∇𝒖𝑏 + 𝜂BR2𝒍𝑓
ℎ ; 𝑓 ∈ 𝜕𝑏𝐾, (2.37)

The boundary values 𝒖𝑏, ∇𝒖𝑏 are consistent with the boundary conditions im-
posed on ℰ𝑏, and 𝜂BR2 is a user-defined parameter necessary for the stabiliza-
tion of the method. Lastly, the numerical flux function 𝓕∗

𝑣 in Eq. (2.34) is
given by

𝓕∗
𝑣(𝒖±

ℎ|𝜕𝑖𝐾
, 𝝈±

ℎ|𝜕𝑖𝐾
; 𝒏) = {{𝓕𝑐(𝒖ℎ|𝐾± , 𝝈ℎ|𝐾± )}} ⋅ 𝒏 (2.38)
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Burgers equation The discrete variational projection of the viscous terms in
Eq. (2.26) yields

ℒ𝑣(𝑢ℎ|𝐾 , 𝜙) = ∫𝐾
ℱ𝑣(

d
d𝑥 𝑢ℎ|𝐾 )

d𝜙
d𝑥

d𝑥

− ∑
𝑒∈𝜕𝑖𝐾

Θ𝑣(𝑢±
ℎ|𝑒, d

d𝑥 𝑢±
ℎ|𝑒)[[𝜙]] − Θ𝑣(𝑢𝑏, d

d𝑥 𝑢𝑏) 𝜙+

− ∑
𝑒∈𝜕𝑖𝐾

ℎ𝑣(𝑢±
ℎ|𝑒)[[

d𝜙
d𝑥 ]] − ℎ𝑣(𝑢𝑏) d𝜙+

d𝑥
, (2.39)

with ℱ𝑣 = 𝜈 𝜕𝑢
𝜕𝑥 . The numerical viscous fluxes ℎ𝑣 and Θ𝑣 are approximated

by the symmetric interior penalty method (SIP) described by Arnold et al.
(2002). They read

ℎ𝑣(𝑢±
ℎ|𝑒) = 1

2 [[𝑢ℎ|𝐾± ]] , (2.40)

Θ𝑣(𝑢±
ℎ|𝑒, d

d𝑥 𝑢±
ℎ|𝑒) = {{ℱ𝑣(

d
d𝑥 𝑢ℎ|𝐾± )}} − 𝛼SIP[[𝑢ℎ|𝐾± ]] . (2.41)

The penalty parameter, 𝛼SIP, depends on the size of the element and the poly-
nomial degree 𝑝 (Alhawwary and Wang, 2018).

2.2.7 Time integration

Navier-Stokes equations Once every term has been defined, Eq. (2.26) results
in a non-linear system of ordinary differential equations. By using Eq. (2.17),
this system of equations can be written as

𝑴ℓ𝓇
𝐾

𝜕𝑼 ℓ
𝐾

𝜕𝑡 + 𝑹(𝑼 ℓ
𝐾 ) = 0, ℓ, 𝓇 = 1, ..., 𝑁𝑝 , (2.42)

where the degrees of freedom, 𝑼 ℓ
𝐾 (𝑡), are the unknowns to be determined; 𝑹

is the local residual vector, which includes the convective and viscous terms
ℒ𝑐 and ℒ𝑣; and 𝑴𝐾 is the diagonal mass matrix of element 𝐾, defined as

𝑴ℓ𝓇
𝐾 = ∫𝐾

𝜙ℓ𝜙𝓇 d𝑉 . (2.43)

By considering the contribution of all elements 𝐾 ∈ Ωℎ, Eq. (2.42) becomes

𝑴 𝜕𝑼
𝜕𝑡 + 𝑹(𝑼) = 0 , (2.44)

where 𝑴 , 𝑼 and 𝑹 denote the block diagonal mass matrix, the global vector
of degrees of freedom, and the residual vector, respectively. The system in Eq.
(2.44) can be linearized byNewton’s method and its solution advanced in time
by means of the implicit Euler scheme, which can be written as

𝑴
Δ𝑡 (𝑼 𝑛+1 − 𝑼 𝑛) + 𝑹(𝑼 𝑛) + 𝜕𝑹(𝑼 𝑛)

𝜕𝑼 (𝑼 𝑛+1 − 𝑼 𝑛) = 0 (2.45)

As mentioned earlier, we focus on steady problems. Therefore, we start the
temporal discretization scheme in Eq. (2.45) from the initial condition 𝒖ℎ(𝒙, 0)
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and advance the solution in time until the steady-state solution is reached.

Every temporal step in Eq. (2.45) requires the solution of a linear system of
equations. If we describe the system as 𝑨𝒙 + 𝒃 = 0, the term 𝑨 represents
a 𝑁𝐾 × 𝑁𝐾 block sparse matrix, with 𝑁𝐾 denoting the total number of ele-
ments. In turn, each block can be regarded as a (𝑁eq𝑁𝑝) × (𝑁eq𝑁𝑝) matrix,
with 𝑁eq being the number of fields of the state vector 𝒖 and 𝑁𝑝 the number
of degrees of freedom per element 𝐾. Finally, the linear system 𝑨𝒙 + 𝒃 = 0
is solved by means of the GMRES iterative method with an incomplete LU
preconditioning (Bassi et al., 2005; Renac et al., 2015).

In general, simulations are started with a low CFL (CFL ≈ 1) and then it is
progressively increased up to CFL ≈ 1×103 or even CFL ≈ 1×106, depending
on the configuration, polynomial degree and mesh analysed. The choice of
uniform or local step size depends on the overall convergence behavior. The
time evolution is stopped once the time residual of the conservative variables
is dropped below 1 × 10−10.

Burgers equation Unlike the Navier-Stokes equations, in which an implicit
scheme has been used to evolve the solution in time, for the Burgers equation
we use an explicit scheme instead. In particular, the solution in Eq. (2.44) is
advanced in time by means of the explicit strong stability preserving (SSP)
3rd-order 4-stage Runge-Kutta method. We refer the reader to the work of
Carpenter and Kennedy (1994) for further details on this scheme.

The time restriction in the explicit scheme is controlled by insuring that for
the entire simulation the imposed time step dt is always smaller than the the
internal time step dtCFL calculated for every element. In turn, the internal
time step is selected as the minimum value of the convective and viscous
contributions.The time evolution is stopped once the time residual is dropped
below 1 × 10−12.

2.2.8 Quadrature rules

Volume integrals Regarding the computation of the volume integrals in Eq.
(2.26) we employ Gaussian quadrature. In particular, the coordinates of the
physical element 𝐾 are mapped to their counterparts in the reference element

̂𝐾 and the integrals are evaluated numerically by Gauss-Legendre quadrature
with 𝑄 = 𝑝 + 1 quadrature points along the 𝜉 and 𝜂 directions (see Figure 2.1).
For a smooth integrand 𝑓(𝒙), we have

∫𝐾
𝑓(𝒙) d𝒙 = ∫ ̂𝐾

𝑓(𝜩𝐾 (𝝃))𝒥𝐾 (𝝃) d𝝃

=
𝑄

∑
𝑖,𝑗=1

𝜔𝑖𝜔𝑗𝑓(𝜩𝐾 (𝜉𝑖, 𝜂𝑗))𝒥𝐾 (𝜉𝑖, 𝜂𝑗) , (2.46)

where 𝜉𝑖, 𝜂𝑗 are the quadrature points at which the integrand 𝑓(𝝃) is evalu-
ated, 𝜔𝑖, 𝜔𝑗 are the weights, and 𝒥𝐾 is the determinant of the Jacobian of the
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transformation, defined as

𝒥𝐾 =
|
|
|
||

𝜕𝑥
𝜕𝜉

𝜕𝑥
𝜕𝜂

𝜕𝑦
𝜕𝜉

𝜕𝑦
𝜕𝜂

|
|
|
||

= 𝜕𝑥
𝜕𝜉

𝜕𝑦
𝜕𝜂 − 𝜕𝑥

𝜕𝜂
𝜕𝑦
𝜕𝜉 . (2.47)

The points of the Gauss-Legendre quadrature are interior to the interval
−1 < 𝜉𝑖, 𝜂𝑗 < 1 for 𝑖, 𝑗 = 1, ..., 𝑄 (Karniadakis and Sherwin, 2005). By us-
ing Eq. (2.46) we can integrate exactly a polynomial of degree lower than or
equal to 2𝑄 − 1.

Surface integrals The surface integrals in Eq. (2.26) can be evaluated as a
series of integrals over the different faces of the element. For example, by
choosing 𝑒 ∈ 𝜕𝑖𝐾+ from Figure 2.3, we have the following line integral

∫𝑒
𝑓(𝒙) d𝑆 = ∫

1

−1
𝑓(𝜩𝐾 (1, 𝜂))𝒥𝑒(1, 𝜂) d𝜂

=
𝑄

∑
𝑗=1

𝜔𝑗𝑓(𝜩𝐾 (1, 𝜂𝑗))𝒥𝑒(1, 𝜂𝑗) , (2.48)

where d𝑆 is the differential length, and 𝒥𝑒 is the evaluation of the surface
Jacobian. We can relate the differential change in physical coordinates 𝒙 in
terms of the differential change in reference coordinates 𝝃 using the chain
rule (Karniadakis and Sherwin, 2005):

d𝑥 = 𝜕𝑥
𝜕𝜉 d𝜉 + 𝜕𝑥

𝜕𝜂 d𝜂 , (2.49)

d𝑦 = 𝜕𝑦
𝜕𝜉 d𝜉 + 𝜕𝑦

𝜕𝜂d𝜂 . (2.50)

It is worth noting that the selected face 𝑒 is fully characterized in reference
space by the coordinate 𝜂 (see Figure 2.1), as the other coordinate remains a
constant of value 𝜉 = 1. Therefore, by considering Eqs. (2.49 and 2.50), the
differential length d𝑆 can be expressed as

d𝑆 = √(d𝑥)2 + (d𝑦)2

= √(
𝜕𝑥
𝜕𝜂 )

2
+ (

𝜕𝑦
𝜕𝜂 )

2
d𝜂

= 𝒥𝑒(1, 𝜂) d𝜂 , (2.51)

involved in the transformation given in Eq. (2.48).





Chapter3
MULTIRESOLUTION ANALYSIS
FUNDAMENTALS

In this chapter we introduce the foundations of multiresolution analysis based
on multiwaveles as a mathematical tool which deconstructs any given signal
and allows us to better interpret its component parts.

Section 3.1 provides a brief historical context to multiresolution analysis. In
particular, Sections 3.1.1 and 3.1.2 highlight the contributions from clas-
sical Fourier and Windowed Fourier transform. The limitations of these ap-
proaches are outlined in Section 3.1.3.

As an alternative to overcome these limitations, Section 3.2 presents the ba-
sics of wavelet theory. The more numerically efficient orthonormal wavelets
are introduced in Section 3.2.1, together with the concept of multiresolu-
tion analysis. Section 3.3 concludes the chapter by describing the one- and
two-dimensional multiwavelets and their properties. Multiwavelets become
especially relevant in the context of discontinuous Galerkin schemes, as we
will demonstrate in Chapter 4.

3.1 CLASSICAL SIGNAL ANALYSIS

The history of wavelets is closely linked to the history of Fourier analysis
(Hubbard, 1998). Thus it seems natural to start by giving a brief introduction
to Fourier’s contribution. In its essence, Fourier analysis states that certain
signals or functions can be represented as a sum of sines and cosines. This
process is called Fourier series for periodic functions, and Fourier transform
when dealing with nonperiodic functions. Next we will describe the latter.

3.1.1 Fourier transform

The Fourier transform disassembles a function into the frequencies that con-
stitute it. We are interested in functions that vary with space, therefore we
transform a function 𝑓(𝑥) ∈ 𝐿2 into a new function 𝑓(𝜆) ∈ 𝐿2 that depends
on the wave number 𝜆, which is inversely proportional to 𝑥. That is

ℱ {𝑓(𝑥)} = 𝑓(𝜆) = 1
√2𝜋 ∫

∞

−∞
𝑓(𝑥) e−𝑖𝑥𝜆 d𝑥 , (3.1)
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𝑓(𝑥) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

cos(2𝜋𝑥), −1 < 𝑥 ≤ − 1
2

cos(2𝜋2𝑥), − 1
2 < 𝑥 ≤ 0

cos(2𝜋4𝑥), 0 < 𝑥 < 1
2

cos(2𝜋8𝑥), 1
2 < 𝑥 ≤ 1
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Figure 3.1: Examples of classical signal
analysis.

with 𝑖 = √−1. An example will help us understand howEq. (3.1) works.Given
the sample signal from Figure 3.1a, the Fourier transform is able to distinctly
extract its spatial frequencies, as illustrated by Figure 3.1b.

From the Fourier transform we can reconstruct the original function, mean-
ing that no information is lost during the transformation.However, the Fourier
transform hides information about space, in the same manner that the orig-
inal function is not explicit about the wave number. Moreover, the Fourier
analysis is poorly adapted to brief or sudden changes in 𝑓(𝑥) (e.g. high fre-
quency bursts). These confined changes would lose its locality and become
spread throughout the entire transform (Hubbard, 1998). This phenomenon
can be certainly observed in Figure 3.1b, where spurious oscillations between
wave numbers are due to the discontinuity of the signal 𝑓(𝑥).

3.1.2 Windowed Fourier transform

The shortcomings of the Fourier analysis led to the development of the win-
dowed Fourier transform, in which space and wave number can be studied
simultaneously within certain constraints (Gabor, 1946). The idea is to win-
dow the function 𝑓(𝑥) so that the space interval remains fixed in size, and
then applying the Fourier transform defined in Eq. (3.1). By defining the reg-
ularly spaced intervals 𝑥 = 𝑗𝑥0 and 𝜆 = 𝑚𝜆0, with 𝑗, 𝑚 ∈ ℤ and 𝑥0, 𝜆0 > 0, we
have the discrete windowed Fourier transform:

ℱ win
(𝑚,𝑗){𝑓(𝑥)} = ∫

∞

−∞
𝑓(𝑠) 𝑔(𝑠 − 𝑗𝑥0) 𝑒−𝑖𝑚𝜆0𝑠 d𝑠 . (3.2)

with 𝑖 = √−1. Adjusting 𝑗 amounts to shifting the window by increments of
𝑥0 and its multiples along the signal. The window function 𝑔 is normally well
located in both space and wave number, thus providing a description of 𝑓 in
the time-frequency plane (Daubechies, 1992).

Examples of the windowed Fourier transform applied to the sample signal
in Figure 3.1a are illustrated in Figures 3.1c and 3.1d. In these examples the
window function 𝑔 is composed by a summation of cosines given by Black-
man and Tukey (1958). Figure 3.1c represents a short window, so that higher
wave numbers peaks are clearly located, in detriment of lower wave number
components. On the other hand, Figure 3.1d employs a large window result-
ing on a full representation of the spatial frequencies of the signal. However,
spatial localization is lost, with no clear distinction where the peaks occur.

The windowed Fourier transform has two major shortcomings. Firstly, dif-
ferent resolutions require different window sizes to be properly localized. In
this regard, the fixed resolution of the windowed Fourier analysis imposes
a severe compromise. Secondly, the relation between spatial resolution and
wave number resolution is guided by the Heisenberg uncertainty principle
(Keinert, 2003), which we will briefly discuss next.
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Figure 3.2: Different representations of the idealized space-wave number plane (Farge, 1992).

3.1.3 Heisenberg uncertainty principle

The Heisenberg principle states that a signal cannot be defined simultane-
ously in space and in wave number (Hubbard, 1998). For a function 𝑓(𝑥) ∈ 𝐿2

with ‖𝑓(𝑥)‖𝐿2 = 1 (where 𝑓 is a normalized signal), we define the mean and
the standard deviation of 𝑥 as

𝜇 = ∫
∞

−∞
𝑥|𝑓(𝑥)|d𝑥, 𝜎 = (∫

∞

−∞
(𝑥 − 𝜇)2|𝑓 (𝑥)|2d𝑥)

1
2

, (3.3)

and the corresponding 𝜇, 𝜎 of 𝜆 in the Fourier space (by application of Eq. (3.1)).
The uncertainty principle states that

𝜎 ⋅ 𝜎 ≥ 1
2 . (3.4)

Therefore, the more 𝑓 is focused in a short spatial window (better 𝑥-localizat-
ion), the smaller 𝜎 will be. In turn, the range of spatial frequencies of 𝑓 will
be more spread out, resulting in a larger 𝜎 (worse 𝜆-localization).

This compromise can be illustrated with the so-called space-wave number
plane (Farge, 1992; Hubbard, 1998), in which space is measured horizon-
tally and wave number vertically, as shown by Figure 3.2. This plane is then
tiled with rectangles of size 𝜎 by 𝜎 known as Heisenberg boxes.

Equation 3.4 requires each box to have a minimum area of 1/2, but depend-
ing on the analysis used, they will have different forms and placements. In
physical space the boxes become tall, narrow bands spanning multiple wave
numbers (Figure 3.2a); whereas in Fourier space the boxes are short, wide
bands over a long spatial distance (Figure 3.2b).

With windowed Fourier analysis, the shape of the Heisenberg boxes is pro-
vided by the size of the window function 𝑔. A narrow window gives more
precision about space at the cost of worse wave number resolution, as shown
in Figure 3.2c. Conversely, Figure 3.2d displays a wide window, which in-
creases wave number resolution at the expense of being vague about space.
In both cases, they build a rectangular grid of fixed cell shape, providing the
same spatial and wave number resolution everywhere.
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However, the windowed Fourier analysis imposes some compromises. By fix-
ating the window size we either miss the large scales (short window), or the
small scales (wide window). This brings us to an alternative approach called
wavelet analysis. They will allow us to study a signal at different scales by
stretching or compressing the size of the window, as shown in Figure 3.2e.

3.2 WAVELET ANALYSIS

Thewavelet transform also decomposes a given signal simultaneously by space
and by scale (related to wave number) (Hubbard, 1998). Similarly to Eq. (3.2)
we have

𝒲(𝑚,𝑗){𝑓(𝑥)} = 𝑎𝑚/2
0 ∫

∞

−∞
𝑓(𝑥) 𝜓(𝑚,𝑗)(𝑥) d𝑥 , (3.5)

where 𝜓(𝑚,𝑗)(𝑥) is used to create a family of wavelets 𝜓(𝑎𝑚
0 𝑥−𝑗𝑏0) with 𝑗, 𝑚 ∈ ℕ

and 𝑎0 > 1, 𝑏0 > 0 fixed. By definition (Daubechies, 1992), 𝜓(𝑚,𝑗)(𝑥) satisfies

∫
∞

−∞
𝜓(𝑚,𝑗)(𝑥) d𝑥 = 0 . (3.6)

The dilation parameter 𝑚 controls the deformation of the wavelet (the shape
of the wavelet does not change). Higher values of 𝑚 produce a compressed 𝜓
to better capture brief, high wave number components. On the other hand,
lower 𝑚 values result in a stretched 𝜓 , more adequate to record long-lived,
low wave number components. Lastly, the translation parameter 𝑗 shifts the
spatial localization of the wavelet. The effects of dilation and translations are
distinctly displayed in Figure 3.3. This structure paves the way to multires-
olution analysis (MRA) (Mallat, 1989; Harten, 1996). By this analysis, the
function is studied at a coarse scale to obtain a global picture and at ever
increasing resolutions to capture gradually finer details.

Without further constraints the inverse of the transformation in Eq. (3.5),
that is 𝒲 −1

(𝑚,𝑗), leads to a redundant recovery of the original signal (Daubechies,
1992). In this case an orthogonal transformation may be desired. It provides
an accurate reconstruction of the original signal while avoiding redundancy
(Hubbard, 1998). Moreover, orthogonality ensures that the energy of the sig-
nal is preserved in the transformation.

3.2.1 Orthonormal wavelets and multiresolution

By setting 𝑎0 = 2 (dyadic dilation) and 𝑏0 = 1, the 𝜓(𝑚,𝑗) in Eq. (3.5) becomes

𝜓(𝑚,𝑗)(𝑥) = 2𝑚/2𝜓(2𝑚𝑥 − 𝑗) , 𝑗, 𝑚 ∈ ℕ , (3.7)

Additionally, we set 𝜓(𝑚,𝑗) to constitute an orthonormal basis in 𝐿2(ℝ), leading
to the definition of the wavelet subspace 𝑊𝑚 = {𝜓(𝑚,𝑗)}𝑗,𝑚∈ℕ. This means that
any 𝐿2-function 𝑓 can be represented by a linear combination of the 𝜓(𝑚,𝑗)
(Daubechies, 1992).
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Figure 3.3: Example of an orthonormal
family of wavelets. Different values of
the dilation parameter 𝑚 and the result-
ing subspaces 𝑊𝑚 and 𝑉𝑚. The number
of functions increases by a factor of 2𝑚,
with the translation parameter 𝑗 con-
trolling their placement along 𝑥.

Next we introduce a cascade of subspaces {𝑉𝑚}𝑚∈ℕ representing the successive
resolution levels. A given level would contain all the information of coarser
resolutions. That is

𝑉𝑚 ⊂ 𝑉𝑚+1, ∀𝑚 ∈ ℕ . (3.8)

Multiresolution analysis is achieved by further requiring that all the subspaces
𝑉𝑚 in Eq. (3.8) are scaled variations of the initial space 𝑉0. That is

𝑓(𝑥) ∈ 𝑉0 ⟺ 𝑓(2𝑚𝑥) ∈ 𝑉𝑚, 𝑚 ∈ ℕ , (3.9)

which assigns the name scaling subspace to 𝑉𝑚. The next attribute that the
MRA demands is the invariance of 𝑉𝑚 under integer translations, which
means

𝑓(2𝑚𝑥) ∈ 𝑉𝑚 ⟺ 𝑓(2𝑚𝑥 − 𝑗) ∈ 𝑉𝑚, 𝑚, 𝑗 ∈ ℕ . (3.10)

Finally, we close the multiresolution requirements with the properties

⋂
𝑚∈ℕ

𝑉𝑚 = {0}, ⋃
𝑚∈ℕ

𝑉𝑚 = 𝐿2(ℝ) . (3.11)

The latter property ensures that any function can be approximated with arbi-
trary precision. Namely

lim
𝑚→∞

𝑃𝑚𝑓(𝑥) = 𝑓(𝑥) , ∀𝑓(𝑥) ∈ 𝐿2(ℝ) , (3.12)

where 𝑃𝑚 is the orthogonal projection operator onto 𝑉𝑚. To compute this
orthogonal projection there exists a unique function named scaling function

𝜙(𝑚,𝑗)(𝑥) = 2𝑚/2𝜙(2𝑚𝑥 − 𝑗) , 𝑗, 𝑚 ∈ ℕ , (3.13)

which is an orthonormal basis of the scaling subspace 𝑉𝑚. Consequently:

𝑃𝑚𝑓 = ∑
𝑗∈ℕ

⟨𝑓, 𝜙(𝑚,𝑗)⟩𝜙(𝑚,𝑗)

= ∑
𝑗∈ℕ

𝑠(𝑚,𝑗)𝜙(𝑚,𝑗) , (3.14)
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with 𝑠(𝑚,𝑗) representing the so-called scaling function coefficients, and ⟨ ⟩ refer-
ring to the inner product in 𝐿2, such that

𝑠(𝑚,𝑗) = ⟨𝑓, 𝜙(𝑚,𝑗)⟩ = ∫ 𝑓 𝜙(𝑚,𝑗) d𝑥 . (3.15)

The relation between Eq. (3.7) and Eq. (3.13) is given by the fact that 𝑊𝑚 is
the orthogonal complement of 𝑉𝑚 in 𝑉𝑚+1 (Daubechies, 1992). Namely

𝑉𝑚+1 = 𝑉𝑚 ⊕ 𝑊𝑚; 𝑊𝑚 ⟂ 𝑉𝑚 , (3.16)

which implies that the difference between the two levels of resolution 𝑚 + 1
and 𝑚 is given by

𝑄𝑚𝑓 = 𝑃𝑚+1𝑓 − 𝑃𝑚𝑓

= ∑
𝑗∈ℕ

⟨𝑓, 𝜓(𝑚,𝑗)⟩𝜓(𝑚,𝑗)

= ∑
𝑗∈ℕ

𝑑(𝑚,𝑗)𝜓(𝑚,𝑗) , (3.17)

where 𝑄𝑚 is the orthogonal projection operator onto 𝑊𝑚, and 𝑑(𝑚,𝑗) are the
commonly named orthogonal wavelet coefficients. By successive application of
Eq. (3.16), a hierarchy of wavelet subspaces can be derived:

𝑉𝑚 = 𝑉0 ⊕ 𝑊0 ⊕ 𝑊1 ⊕ ... ⊕ 𝑊𝑚−1 . (3.18)

By considering Eq. (3.14) and Eq. (3.17), Eq. (3.18) becomes

𝑃𝑚𝑓 = 𝑃0𝑓 +
𝑚−1

∑
𝑖=0

𝑄𝑖𝑓

= 𝑠(0,0)𝜙(0,0) +
𝑚−1

∑
𝑖=0

∑
𝑗∈ℕ

𝑑(𝑖,𝑗)𝜓(𝑖,𝑗) , (3.19)

which is commonly known as themultiscale decomposition of the signal 𝑓 (Mal-
lat, 1989). In summary, multiresolution analysis requires the conditions from
Eq. (3.8) to Eq. (3.11) to be met. Then, the signal can be represented by a series
of approximations which differ from each other by a factor of two, as shown
by Eq. (3.14). These successive estimations approximate the signal with higher
and higher precision, approaching the original. This hierarchy is rendered
by Eq. (3.19). The difference of information from one resolution to the next
is encoded by the wavelet coefficients, as described in Eq. (3.17) (Hubbard,
1998).

The hierarchical nature of the development in Eq. (3.19) can be observed in
Figure 3.4, where a multiresolution analysis has been performed by using the
Haar basis (Haar, 1910). The Haar basis is the simplest wavelet generating
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Figure 3.4: Example of wavelet analysis.

an orthonormal family of wavelets. It is built from

𝜓(𝑥) =
⎧⎪
⎨
⎪⎩

−1, −1 < 𝑥 < 0
1, 0 ≤ 𝑥 < 1
0, elsewhere

, and 𝜙(𝑥) =
{

1, −1 < 𝑥 < 1
0, elsewhere

(3.20)

The pair of Haar functions 𝜙, 𝜓 are illustrated in Figure 3.3a and Figure 3.3b,
respectively.

The Haar basis is compactly supported and discontinuous, which makes them
a very good fit to the discontinuous Galerkin framework presented in Chap-
ter 2. However, they are not very efficient at approximating signals with
higher-order terms (high frequency) due to their low-order nature. To rem-
edy this, the work of Daubechies (1992) developed higher-order orthogonal
wavelets with compact support. However, they are computed as the limit of
an iterative process. Consequently, the commonly named Daubechies wavelets
can not be created from analytical formulas.

The target is to find higher order wavelets with compact support that are an-
alytically defined, so that they can be easily connected to the discontinuous
Galerkin method presented in Chapter 2. These conditions can be fulfilled
by using multiple scaling functions and wavelets, the so-called multi-scaling
functions and multiwavelets, respectively (Alpert, 1993; Plonka and Strela,
1998).

3.3 MULTIWAVELETS

As described in the previous section, multiresolution analysis allows us to de-
compose a given signal into a hierarchy of approximations of that signal at
different levels of resolution. The changes between successive resolutions are
captured by the wavelets. Multiwavelets (MWs) constitute a generalization
of this approach, by allowing several wavelet functions to be used simulta-
neously. For this purpose, we will be employing the so-called Alpert multi-
wavelet (Alpert, 1993; Alpert et al., 2002), which is a compactly supported,
orthonormal, piecewise polynomial multiwavelet. For a detailed introduction
to the theory behind multiwavelets, we refer to the work of Strela (1996). Ad-
ditionally, concerning the construction of other types of multiwavelets, the
interested reader can refer to Donovan et al. (1996) and Keinert (2003).

3.3.1 One-dimensional multiwavelets

Firstly, the concepts will be described in a one-dimensional framework. We
will then move to higher spatial dimensions. Therefore, we define the multi-
scaling functions and multiwavelets of multiplicity 𝑟 as

𝜙ℓ
(𝑚,𝑗) and 𝜓ℓ

(𝑚,𝑗) , ℓ = 1, … , 𝑟. (3.21)
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where 𝑟 = 𝑝 + 1 in the current 1-D context, with 𝑝 being the polynomial
degree. Similarly to Section 3.2, the resolution level will be denoted by 𝑚,
with the finest resolution given by 𝑚 = ℳ. How much detail is captured by
a particular resolution level depends on how many subdivisions or elements,
𝑁𝐾 , this level owns. Each element 𝐾(𝑚,𝑗) in a given level 𝑚 is identified by the
index 𝑗. Knowing that the relation between level and number of subdivisions
is dyadic (i.e. given a power of two, 𝑁𝐾 = 2𝑚) and that we work in 𝐿2([−1, 1]),
then the support of the elements is determined by

𝐾(𝑚,𝑗) = [−1 + 2−𝑚+1𝑗, −1 + 2−𝑚+1(𝑗 + 1)] , (3.22)

with 𝑚 = 0, ..., ℳ and 𝑗 = 0, ..., 𝑁𝐾 − 1. In the same way than Section 3.2, the
functions described in Eq. (3.21) become the orthonormal basis of the two
subspaces 𝑉 𝑝

𝑚 , 𝑊 𝑝
𝑚 associated with each 𝐾(𝑚,𝑗). Namely

𝑉 𝑝
𝑚 = span{𝜙ℓ

(𝑚,𝑗)}, 𝑊 𝑝
𝑚 = span{𝜓ℓ

(𝑚,𝑗)}, ℓ = 1, ..., 𝑟 . (3.23)

Moreover, the conditions Eq. (3.8) to Eq. (3.11) that enable multiresolution
analysis in the case of wavelets also apply for the more general case of multi-
wavelets with multiplicity 𝑟. For a more detailed description of the MRA
in the context of multiwavelets, the interested reader may refer to Strela
(1996).

Similarly, the orthogonal projection operators defined inEq. (3.14) andEq. (3.17)
become, respectively:

𝑃 𝑝
𝑚𝑓 =

𝑁𝐾 −1

∑
𝑗=0

𝑟

∑
ℓ=1

𝑠ℓ
(𝑚,𝑗)𝜙

ℓ
(𝑚,𝑗) , (3.24)

𝑄𝑝
𝑚𝑓 =

𝑁𝐾 −1

∑
𝑗=0

𝑟

∑
ℓ=1

𝑑ℓ
(𝑚,𝑗)𝜓

ℓ
(𝑚,𝑗) , 𝑚 = 0, ..., ℳ , (3.25)

with 𝑁𝐾 = 2𝑚 and 𝑟 = 𝑝 + 1. These new definitions allow us to generalize the
multiscale decomposition given by Eq. (3.19) to the new MRA framework
with multiplicity 𝑟. Namely

𝑃 𝑝
ℳ𝑓 =

𝑟

∑
ℓ=1

𝑠ℓ
(0,0)𝜙

ℓ
(0,0) +

ℳ−1

∑
𝑖=0

𝑁𝐾 −1

∑
𝑗=0

𝑟

∑
ℓ=1

𝑑ℓ
(𝑖,𝑗)𝜓

ℓ
(𝑖,𝑗) , (3.26)

where we have chosen 𝑚 = ℳ as the highest resolution level to approximate
the signal 𝑓 . The multi-scaling function coefficients at 𝑚 = 0, 𝑠ℓ

(0,0), represent
the lowest resolution approximation; while a cascade of multiwavelet coeffi-
cients, 𝑑ℓ

(𝑖,𝑗), carry the information across resolutions up to ℳ − 1.

We move now on to how to build the basis 𝜙ℓ
(𝑚,𝑗) and 𝜓ℓ

(𝑚,𝑗). We start from
the coarsest level 𝑚 = 0 and build up from there. In this case the subspace
of multi-scaling functions results in 𝑉 𝑝

0 , and its basis are given in the work of
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Figure 3.5: 1-D Alpert’s multi-scaling
functions and multiwavelets.

Alpert et al. (2002). Namely:

𝜙ℓ
(0,0)(𝜉) = 𝜙ℓ(𝜉) =

⎧⎪
⎨
⎪⎩

√
2(ℓ−1)+1

2 𝑃 ℓ(𝜉), 𝜉 ∈ [−1, 1]
0, otherwise

(3.27)

where 𝑃 ℓ(𝜉) indicates the Legendre polynomial of degree ℓ−1. Multi-scaling
functions in Eq. (3.27) with degree 𝑝 = 1, 2 are plotted in Fig. 3.5a. On the
other hand, multiwavelets undergo a more complex building process. The al-
gorithm starts with a piecewise monomial of degree ℓ − 1 defined in [−1, 1].
A Gram-Schmidt orthonormalisation is followed by an operation to increase
the number of vanishing moments of the resulting function. This is enforced
by ensuring orthogonality with respect to a higher degree monomial. The
complete algorithm can be found in the study of Alpert (1993). The multi-
wavelets that span the subspace 𝑊 𝑝

0 are thus formed by these orthonormal
functions 𝑓 (ℓ,𝑝)(𝑥) as follows:

𝜓ℓ
(0,0)(𝜉) = 𝜓ℓ(𝜉) =

⎧
⎪
⎨
⎪
⎩

(−1)(ℓ−1)+𝑝+1𝑓 (ℓ,𝑝)(−𝜉), 𝜉 ∈ [−1, 0]
𝑓 (ℓ,𝑝)(𝜉), 𝜉 ∈ [0, 1]
0, otherwise

(3.28)

Multiwavelets in Eq. (3.28) with 𝑝 = 1, 2 are plotted in Fig. 3.5b and Fig. 3.5c,
respectively. At this point, the basis of 𝑉 𝑝

0 , 𝑊 𝑝
0 have been defined. To describe

the successive subspaces when 𝑚 > 0 we require the mapping 𝜉 ↦ 2(𝑥−𝑥𝑐 )
ℎ𝐾

,
with 𝑥 ∈ 𝐾(𝑚,𝑗). Additionally, 𝑥𝑐 and ℎ𝐾 represent the center and the size of
element 𝐾(𝑚,𝑗), respectively. The basis 𝜙ℓ

(𝑚,𝑗), 𝜓ℓ
(𝑚,𝑗) ∈ 𝑉 𝑝

𝑚 , 𝑊 𝑝
𝑚 are generated by

dilation and translation of 𝜙ℓ
(0,0), 𝜓ℓ

(0,0) ∈ 𝑉 𝑝
0 , 𝑊 𝑝

0 , namely,

𝜙ℓ
(𝑚,𝑗)(𝑥) = √

2
ℎ𝐾

𝜙ℓ
(

2(𝑥−𝑥𝑐 )
ℎ𝐾 ) , ℓ = 1, ..., 𝑟; 𝑗 = 0, ..., 𝑁𝐾 − 1, (3.29)

𝜓ℓ
(𝑚,𝑗)(𝑥) = √

2
ℎ𝐾

𝜓ℓ
(

2(𝑥−𝑥𝑐 )
ℎ𝐾 ) , 𝑚 = 0, ..., ℳ. (3.30)

Both multi-scaling functions and multiwavelets support extends to the cur-
rent element defined by 𝐾(𝑚,𝑗). That is supp(𝜙ℓ

(𝑚,𝑗)) = supp(𝜓ℓ
(𝑚,𝑗)) = 𝐾(𝑚,𝑗).

Moreover, they are 𝐿2-normalised, i.e. ‖𝜙ℓ
(𝑚,𝑗)‖𝐿2 = ‖𝜓ℓ

(𝑚,𝑗)‖𝐿2 = 1, and share
the following orthonormality relations (Hovhannisyan et al., 2014):

⟨𝜙ℓ
(𝑚,𝑗), 𝜙ℓ′

(𝑚,𝑗′)⟩𝐾(𝑚,𝑗)
= 𝛿ℓ,ℓ′ 𝛿𝑗,𝑗′ , (3.31a)

⟨𝜙ℓ
(𝑚,𝑗), 𝜓ℓ′

(𝑚,𝑗′)⟩𝐾(𝑚,𝑗)
= 0, (3.31b)

⟨𝜓ℓ
(𝑚,𝑗), 𝜓ℓ′

(𝑚′,𝑗′)⟩𝐾(𝑚,𝑗)
= 𝛿ℓ,ℓ′ 𝛿𝑗,𝑗′ 𝛿𝑚,𝑚′ , (3.31c)

with ⟨ ⟩ representing the inner product. Additionally, inherited by Alpert’s
algorithm, multiwavelets have 𝑀 = ℓ + 𝑟 − 1 vanishing moments, which
means that the multiwavelets are orthogonal to polynomials of degree 𝑀 − 1.
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Namely,

⟨𝑃 , 𝜓ℓ
(𝑚,𝑗)⟩𝐾(𝑚,𝑗)

= 0, ∀𝑃 ∈ 𝒫 𝑀 (𝐾(𝑚,𝑗)), ℓ = 1, ..., 𝑟 . (3.32)

with 𝑟 = 𝑝 + 1. This concept will be further explored in Chapter 5.

3.3.2 Two-dimensional multiwavelets

We construct orthonormal multiwavelet bases for 𝐿2([−1, 1]2) by considering
the tensor product of two one-dimensional multiresolution analyses, simi-
larly to the generalization presented in Mallat (1989) and Daubechies (1992).
Therefore, we define the initial subspace 𝑽 𝑝

0 as

𝑽 𝑝
0 = 𝑉 𝑝

0 ⊗ 𝑉 𝑝
0 = span{𝐹 (𝑥, 𝑦) = 𝑓(𝑥)𝑔(𝑦) | 𝑓 , 𝑔 ∈ 𝑉 𝑝

0 } , (3.33)

and build the multiresolution cascade in 𝐿2([−1, 1]2)

𝑽 𝑝
𝑚 ⊂ 𝑽 𝑝

𝑚+1, ∀𝑚 ∈ ℕ , (3.34)

which satisfies

⋂
𝑚∈ℕ

𝑽 𝑝
𝑚 = {0} , (3.35a)

⋃
𝑚∈ℕ

𝑽 𝑝
𝑚 = 𝐿2([−1, 1]2) , (3.35b)

𝐹 (𝑥, 𝑦) ∈ 𝑽 𝑝
0 ⟺ 𝐹 (2𝑚𝑥, 2𝑚𝑦) ∈ 𝑽 𝑝

𝑚 , (3.35c)
𝐹 (2𝑚𝑥, 2𝑚𝑦) ∈ 𝑽 𝑝

𝑚 ⟺ 𝐹 (2𝑚𝑥 − 𝑗𝑥, 2𝑚𝑦 − 𝑗𝑦) ∈ 𝑽 𝑝
𝑚 , (3.35d)

with 𝑚, 𝑗𝑥, 𝑗𝑦 ∈ ℕ. The orthonormal basis of the subspace 𝑽 𝑝
𝑚 is given by

𝜱ℓ
(𝑚,𝑗)(𝒙) = 𝜙ℓ𝑥

(𝑚,𝑗𝑥)(𝑥) 𝜙ℓ𝑦
(𝑚,𝑗𝑦)(𝑦) , (3.36)

where 𝜙ℓ
(𝑚,𝑗) can be calculated byEq. (3.29) along each of the 𝑥- and 𝑦-directions.

Then the involved indices can be summarised by

ℓ𝑥, ℓ𝑦 = 1, ..., 𝑟; ℓ = 𝑟(ℓ𝑥 − 1) + ℓ𝑦,
𝑗𝑥, 𝑗𝑦 = 0, ..., 𝑁𝐾 − 1; 𝑗 = 𝑁𝐾 𝑗𝑥 + 𝑗𝑦,

(3.37)

withmultiplicity 𝑟 = 𝑝+1. It is worth noting that in the 2-D case the domain is
discretised into an equal number of 𝑁𝐾 = 2𝑚 elements along each direction,
resulting in a total of 𝑁2

𝐾 elements per level 𝑚. Similarly to the 1-D case,
we define the subspace 𝑾 𝑝

𝑚 to be the orthogonal complement of 𝑽 𝑝
𝑚 in 𝑽 𝑝

𝑚+1.
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𝜙1(𝑥) 𝜙1(𝑦)

𝑥 𝑦

𝑧

𝜙0(𝑥) 𝜙1(𝑦)

𝑥 𝑦

𝑧

𝜙1(𝑥) 𝜙0(𝑦)

𝑥 𝑦

𝑧

𝜙0(𝑥) 𝜙0(𝑦)

𝑥 𝑦

𝑧

(a) Multi-scaling func-
tions.

𝜓1(𝑥) 𝜙1(𝑦)

𝑥 𝑦

𝑧

𝜓0(𝑥) 𝜙1(𝑦)

𝑥 𝑦
𝑧

𝜓1(𝑥) 𝜙0(𝑦)

𝑥 𝑦

𝑧

𝜓0(𝑥) 𝜙0(𝑦)

𝑥 𝑦

𝑧

(b) Horizontal MWs.

𝜙1(𝑥) 𝜓1(𝑦)

𝑥 𝑦

𝑧

𝜙0(𝑥) 𝜓1(𝑦)

𝑥 𝑦

𝑧

𝜙1(𝑥) 𝜓0(𝑦)

𝑥 𝑦

𝑧
𝜙0(𝑥) 𝜓0(𝑦)

𝑥 𝑦

𝑧

(c) Vertical MWs.

𝜓1(𝑥) 𝜓1(𝑦)

𝑥 𝑦

𝑧

𝜓0(𝑥) 𝜓1(𝑦)

𝑥 𝑦

𝑧

𝜓1(𝑥) 𝜓0(𝑦)

𝑥 𝑦

𝑧

𝜓0(𝑥) 𝜓0(𝑦)

𝑥 𝑦

𝑧

(d) Diagonal MWs.

Figure 3.6: 2-D Multi-scaling functions and multiwavelets with multiplicity 𝑟 = 2. We use the nomenclature 𝜙ℓ = 𝜙ℓ
(0,0) and 𝜓ℓ = 𝜓ℓ

(0,0).

Namely,

𝑽 𝑝
𝑚+1 = 𝑉 𝑝

𝑚+1 ⊗ 𝑉 𝑝
𝑚+1

= (𝑉 𝑝
𝑚 ⊕ 𝑊 𝑝

𝑚 ) ⊗ (𝑉 𝑝
𝑚 ⊕ 𝑊 𝑝

𝑚 )
= (𝑉 𝑝

𝑚 ⊗ 𝑉 𝑝
𝑚 ) ⊕ [(𝑊 𝑝

𝑚 ⊗ 𝑉 𝑝
𝑚 ) ⊕ (𝑉 𝑝

𝑚 ⊗ 𝑊 𝑝
𝑚 ) ⊕ (𝑊 𝑝

𝑚 ⊗ 𝑊 𝑝
𝑚 )]

= 𝑽 𝑝
𝑚 ⊕ 𝑾 𝑝,𝛼

𝑚 ⊕ 𝑾 𝑝,𝛽
𝑚 ⊕ 𝑾 𝑝,𝛾

𝑚

= 𝑽 𝑝
𝑚 ⊕ 𝑾 𝑝

𝑚 (3.38)

We observe that the detail space 𝑾 𝑝
𝑚 is made up of three contributions, de-

noted by the superscripts 𝛼, 𝛽 and 𝛾. This terminology follows the notation
proposed by Vuik (2017). Their respective orthonormal bases are given by

𝜳 ℓ,𝛼
(𝑚,𝑗)(𝒙) = 𝜓ℓ𝑥

(𝑚,𝑗𝑥)(𝑥) 𝜙ℓ𝑦
(𝑚,𝑗𝑦)(𝑦) , (3.39a)

𝜳 ℓ,𝛽
(𝑚,𝑗)(𝒙) = 𝜙ℓ𝑥

(𝑚,𝑗𝑥)(𝑥) 𝜓ℓ𝑦
(𝑚,𝑗𝑦)(𝑦) , (3.39b)

𝜳 ℓ,𝛾
(𝑚,𝑗)(𝒙) = 𝜓ℓ𝑥

(𝑚,𝑗𝑥)(𝑥) 𝜓ℓ𝑦
(𝑚,𝑗𝑦)(𝑦) , (3.39c)

where 𝜙ℓ
(𝑚,𝑗), 𝜓ℓ

(𝑚,𝑗) can be calculated by Eq. (3.29) and Eq. (3.30), in that order.
The superscripts 𝛼, 𝛽 and 𝛾 denote the 𝑥-, 𝑦-, and 𝑥𝑦-directions, respectively.
Therefore, they will lean toward details in those directions. Figure 3.6 shows
the basis for the different contributions with 𝑝 = 1. Further details can be
found in the work of Vuik and Ryan (2014). We can now build the gener-
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alization to 2-D of the orthogonal projection operator onto 𝑽 𝑝
𝑚 , Eq. (3.24).

Namely

𝑷 𝑝
𝑚𝐹 =

𝑁2
𝐾 −1

∑
𝑗=0

𝑟2

∑
ℓ=1

𝒔ℓ
(𝑚,𝑗)𝜱

ℓ
(𝑚,𝑗) , 𝑚 = 0, ..., ℳ , (3.40)

and the orthogonal projection operator onto the detail subspaces 𝑾 𝑝,𝛼
𝑚 , 𝑾 𝑝,𝛽

𝑚 ,
and 𝑾 𝑝,𝛾

𝑚 . That is

𝑸𝑝,𝜆
𝑚 𝐹 =

𝑁2
𝐾 −1

∑
𝑗=0

𝑟2

∑
ℓ=1

𝒅ℓ,𝜆
(𝑚,𝑗)𝜳

ℓ,𝜆
(𝑚,𝑗) , 𝜆 = 𝛼, 𝛽 or 𝛾 . (3.41)

Finally, the multiscale decomposition of a function 𝐹 can be expressed as

𝑷 𝑝
ℳ𝐹 = 𝑷 𝑝

0 𝐹 +
ℳ−1

∑
𝑖=0

(𝑸𝑝,𝛼
𝑖 𝐹 + 𝑸𝑝,𝛽

𝑖 𝐹 + 𝑸𝑝,𝛾
𝑖 𝐹 ) , (3.42)

with 𝑚 = ℳ defined as the finest approximation to 𝐹 .
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Chapter4
UNITING DGM AND
MULTIWAVELETS

We have spent previous chapters outlining the theoretical framework of this
research. In this manner, we have presented both the physical models and
their numerical discretization bymeans of the discontinuousGalerkinmethod
(DGM). We have also introduced the multiresolution analysis (MRA) based
on multiwavelets as a tool to better interpret a given signal.

The objective of this chapter is to unify the MRA scheme and the DGM
formulation. We first review previous attempts in the literature to establish
this union and then suggest an alternative approach.

Section 4.1 describes the classical approach of globally combining the MRA
and the DGM (see e.g. Gerhard et al. (2015b)). Sections 4.1.1 and 4.1.2
present the union in one- and two-dimensional configurations, respectively.

Section 4.2 offers an overview of how the union of MRA and DGM sets
the stage to mesh adaptation. The literature approach is examined in Sec-
tion 4.2.1, and an outline of the new alternative is unveiled in Section 4.2.2.

The new approach requires a prior post-processing step, which is introduced
in Section 4.3. Different one-dimensional post-processing methods are dis-
cussed in Sections 4.3.1 to 4.3.3. The extension to two-dimensions is pre-
sented in Section 4.3.4. Finally, the new approach come into being in Sec-
tion 4.4. Both one- and two-dimensional configurations are explored in Sec-
tions 4.4.1 and 4.4.2, in that order. Lastly, the main conclusions of this
chapter are outlined in Section 4.5.

4.1 MULTIRESOLUTION IN THE CONTEXT OF DGM

4.1.1 One-dimensional configuration

When describing the discontinuous Galerkin method (DGM) in Chapter 2,
we characterized its discretized solution, given by Eq. (2.17), as a local poly-
nomial expansion of degree 𝑝. We also determined that the basis employed in
this polynomial expansion are built upon Legendre polynomials, as described
by Eq. (2.19). If we now draw a parallel to Chapter 3, and in particular to the
multiwavelet formulation from Section 3.3, we observe that the same basis
is employed when expressing a signal in the (MRA) framework, Eq. (3.24).
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Certainly, the signal is approximated by a summation of multi-scaling func-
tions, which in turn are given by Eq. (3.27), as a scaled version of Legendre
polynomials. Based on these observations, a direct relation can be established
between the two approaches. Initially, we will establish the relation in 1-D
and then move to its generalization to higher dimensions.

We consider a dyadic mesh Ωℎ composed of 𝑁𝐾 = 2ℳ elements and domain
Ω = [−1, 1], so that the multiwavelet formulation from Section 3.3 holds.
Each element 𝐾 is then defined by Eq. (3.22) with 𝑚 = ℳ. That is

𝐾 = 𝐾(ℳ,𝑗) = [−1 + 2−ℳ+1𝑗, −1 + 2−ℳ+1(𝑗 + 1)] , (4.1)

with 𝑗 = 0, ..., 𝑁𝐾 − 1. Here, we have combined the nomenclature of DGM
and MRA. We remind the reader that the parameter ℳ refers to the high-
est resolution level in the MRA of a signal, and the index 𝑗 identifies each
element of that level. Therefore, we have associated the concept of mesh in
DGM with the notion of highest resolution level in MRA. We now define
a DG solution 𝑢ℎ(𝑥, 𝑡) in Ωℎ as an approximation to a conservative variable
𝑢(𝑥, 𝑡) defined in Ω. By application of Eq. (2.17) we have:

𝑢ℎ(𝑥, 𝑡) = ∑
𝐾

𝑁𝑝

∑
ℓ=1

𝑈 ℓ
𝐾 (𝑡) 𝜙ℓ(Ξ−1

𝐾 (𝑥))

=
𝑁𝐾 −1

∑
𝑗=0

𝑁𝑝

∑
ℓ=1

𝑈 ℓ
(ℳ,𝑗)(𝑡) 𝜙ℓ

(
2(𝑥−𝑥𝑐 )

ℎ𝐾 ) , ∀𝑥 ∈ 𝐾(ℳ,𝑗), 𝐾(ℳ,𝑗) ∈ Ωℎ. (4.2)

with ℎ𝐾 = 2−ℳ+1; and 𝑥𝑐 being the size and the center of element 𝐾(ℳ,𝑗),
respectively. Additionally, by using the multiresolution framework presented
in Chapter 3, we can express the conservative variable 𝑢 in terms of a single-
scale decomposition (Vuik and Ryan, 2014; Gerhard et al., 2015b). Certainly,
we can approximate 𝑢 up to the level 𝑚 = ℳ by a multi-scaling function
expansion as described in Eq. (3.24). Namely,

𝑃 𝑝
ℳ𝑢(𝑥, 𝑡) =

𝑁𝐾 −1

∑
𝑗=0

𝑟

∑
ℓ=1

𝑠ℓ
(ℳ,𝑗)(𝑡) 𝜙ℓ

(ℳ,𝑗)(𝑥)

= √
2

ℎ𝐾

𝑁𝐾 −1

∑
𝑗=0

𝑟

∑
ℓ=1

𝑠ℓ
(ℳ,𝑗)(𝑡) 𝜙ℓ

(
2(𝑥−𝑥𝑐 )

ℎ𝐾 ) . (4.3)

where 𝜙ℓ
(ℳ,𝑗) is given by Eq. (3.29), and 𝑟 is the multiplicity of the multiresolu-

tion approach. We observe that the single-scale decomposition differs from
the DG representation only by a scaling term. Hence, by comparing Eq. (4.2)
to Eq. (4.3) and assuming 𝑟 = 𝑁𝑝, the relation between the DG coefficients
and the single-scale coefficients is given by

𝑠ℓ
(ℳ,𝑗)(𝑡) = 2−ℳ/2𝑈 ℓ

(ℳ,𝑗)(𝑡). (4.4)

The result above enables us to represent the DG solution in the form of a
single-scale decomposition. This is possible due to the fact that the DG ba-
sis and the multi-scaling functions both use Legendre polynomials, only set
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apart by a scaling term. Moreover, as discussed in Chapter 3, the single-scale
decomposition in Eq. (4.3) can be hierarchically divided into a cascade of
multiwavelet subspaces plus a baseline multi-scaling function subspace cor-
responding to the lowest resolution level. Consequently, by putting together
Eq. (4.2) with Eq. (4.4), we obtain the multiscale decomposition of the ap-
proximate solution 𝑢ℎ. Namely:

𝑢ℎ =
𝑟

∑
ℓ=1

⎛
⎜
⎜
⎝
𝑠ℓ

(0,0) 𝜙ℓ
(0,0) +

ℳ−1

∑
𝑖=0

𝑁𝐾 −1

∑
𝑗=0

𝑑ℓ
(𝑖,𝑗) 𝜓ℓ

(𝑖,𝑗)
⎞
⎟
⎟
⎠

, with 𝑟 = 𝑁𝑝 , (4.5)

where
𝑠ℓ

(𝑚,𝑗) = ⟨𝑢ℎ, 𝜙ℓ
(𝑚,𝑗)⟩𝐾(𝑚,𝑗)

, 𝑑ℓ
(𝑚,𝑗) = ⟨𝑢ℎ, 𝜓ℓ

(𝑚,𝑗)⟩𝐾(𝑚,𝑗)
, (4.6)

are the multi-scaling function and multiwavelet coefficients, respectively. We
have already described them in Eq. (3.14) and Eq. (3.17) from Chapter 3.
However, it is worth mentioning that we do not need to calculate the in-
ner product ⟨ ⟩ to compute every coefficient of the hierarchy. Instead, these
coefficients can be computed efficiently using the so-called quadrature mir-
ror filter (QMF) coefficients, which in turn are borrowed from filter theory
(Smith and Barnwell, 1986). The QMF coefficients associated with Alpert’s
multiwavelets are described in detail in the work of Geronimo et al. (2017).
In this regard, we define the lowpass QMF coefficient matrices 𝐻 (0)

ℓ𝑘 and 𝐻 (1)
ℓ𝑘

as follows

𝐻 (0)
ℓ𝑘 = ⟨𝜙ℓ

(𝑚−1,𝑗), 𝜙𝑘
(𝑚,2𝑗)⟩𝐾(𝑚−1,𝑗)

, 𝐻 (1)
ℓ𝑘 = ⟨𝜙ℓ

(𝑚−1,𝑗), 𝜙𝑘
(𝑚,2𝑗+1)⟩𝐾(𝑚−1,𝑗)

. (4.7)

with ℓ, 𝑘 = 1, ..., 𝑟. Similarly, the highpass QMF coefficient matrices 𝐺(0)
ℓ𝑘 and

𝐺(1)
ℓ𝑘 take the form

𝐺(0)
ℓ𝑘 = ⟨𝜓ℓ

(𝑚−1,𝑗), 𝜙𝑘
(𝑚,2𝑗)⟩𝐾(𝑚−1,𝑗)

, 𝐺(1)
ℓ𝑘 = ⟨𝜓ℓ

(𝑚−1,𝑗), 𝜙𝑘
(𝑚,2𝑗+1)⟩𝐾(𝑚−1,𝑗)

. (4.8)

Despite the presence of the pair (𝑚, 𝑗), the QMF coefficients do not depend
on the resolution level 𝑚 or element 𝑗 (Vuik, 2017). Knowing that

𝐾(𝑚−1,𝑗) = 𝐾(𝑚,2𝑗) ∪ 𝐾(𝑚,2𝑗+1) , (4.9)

the coefficients measure 𝜙, 𝜓 at element 𝐾(𝑚−1,𝑗) in terms of 𝜙 at 𝐾(𝑚,2𝑗) and
𝐾(𝑚,2𝑗+1). Due to the nature of the dilation and translation properties, Eq. (3.9)
and Eq. (3.10), this measurement remains constant independently of 𝑚 and 𝑗.
Therefore, the QMF coefficients only depend on the multiplicity 𝑟 used. Tab-
ulated values for the QMF coefficients up to 𝑟 = 10 can be found in (Geron-
imo et al., 2017). With this in mind, the multi-scaling functions and multi-
wavelets between two consecutive levels can be expressed as

𝜙ℓ
(𝑚−1,𝑗) =

𝑟

∑
𝑘=1

(𝐻 (0)
ℓ𝑘 𝜙𝑘

(𝑚,2𝑗) + 𝐻 (1)
ℓ𝑘 𝜙𝑘

(𝑚,2𝑗+1)) , 𝑚 = 1, ..., ℳ; (4.10a)

𝜓ℓ
(𝑚−1,𝑗) =

𝑟

∑
𝑘=1

(𝐺(0)
ℓ𝑘𝜙𝑘

(𝑚,2𝑗) + 𝐺(1)
ℓ𝑘𝜙𝑘

(𝑚,2𝑗+1)) , 𝑗 = 0, ..., 2(𝑚−1) − 1 . (4.10b)
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Figure 4.1: 1-D four-level
multiscale representation by
multiwavelets of second order DG
solution 𝑢ℎ. We use the nomencla-
ture 𝒮(𝑚,𝑗) = ∑ℓ 𝑠ℓ

(𝑚,𝑗)𝜙
ℓ
(𝑚,𝑗) (single-

scale) and 𝒟(𝑚,𝑗) = ∑ℓ 𝑑ℓ
(𝑚,𝑗)𝜓

ℓ
(𝑚,𝑗)

(multiscale). The highest resolution
level is ℳ = 3 and 𝑢ℎ = ∑𝑗 𝒮(ℳ,𝑗).

Level 3
(𝑉 𝑝

3 = 𝑉 𝑝
2 ⊕ 𝑊 𝑝

2 )

Level 2
(𝑉 𝑝

2 = 𝑉 𝑝
1 ⊕ 𝑊 𝑝

1 , 𝑊 𝑝
2 )

Level 1
(𝑉 𝑝

1 = 𝑉 𝑝
0 ⊕ 𝑊 𝑝

0 , 𝑊 𝑝
1 )

Level 0
(𝑉 𝑝

0 , 𝑊 𝑝
0 )

𝒮(3,0) 𝒮(3,7)

𝒮(2,0)

𝒮(2,3) 𝒟(2,0)
𝒟(2,3)

𝒮(1,0)
𝒮(1,1) 𝒟(1,0)

𝒟(1,1)

𝒮(0,0) 𝒟(0,0)

𝐾(3,0) ⋯ 𝐾(3,7)

𝐾(2,0) ⋯ 𝐾(2,3)

𝐾(1,0) 𝐾(1,1)

𝐾(0,0)

with ℓ = 1, ..., 𝑟. Similarly, by application of Eq. (4.6) plus the linearity of
the inner product, the multi-scaling function and multiwavelet coefficients
between two consecutive levels are given by:

𝑠ℓ
(𝑚−1,𝑗) =

𝑟

∑
𝑘=1

(𝐻 (0)
ℓ𝑘 𝑠𝑘

(𝑚,2𝑗) + 𝐻 (1)
ℓ𝑘 𝑠𝑘

(𝑚,2𝑗+1)) , (4.11a)

𝑑ℓ
(𝑚−1,𝑗) =

𝑟

∑
𝑘=1

(𝐺(0)
ℓ𝑘𝑠𝑘

(𝑚,2𝑗) + 𝐺(1)
ℓ𝑘𝑠𝑘

(𝑚,2𝑗+1)) . (4.11b)

Coarser scales of the solution can be obtained by the successive application
of Eq. (4.11a). Furthermore, the multiwavelet coefficients between scales are
given by Eq. (4.11b). Figure 4.1 shows the multiscale representation for a sec-
ond order DG solution. Effectively, the multiscale decomposition divides the
single-scale coefficients 𝑠ℓ

(ℳ,𝑗) into a smaller group of coefficients 𝑠ℓ
(0,0) and

(ℳ − 1) blocks of multiwavelet or detail coefficients 𝑑ℓ
(𝑚,𝑗). The former is a

coarse approximation of the original solution and the latter carries the infor-
mation between scales. This multiscale information represent the individual
characteristics of the solution in a hierarchy of ascending resolution.

4.1.2 Two-dimensional configuration

In the 2-D context, the relation between the DG coefficients and the single-
scale coefficients is equivalent to Eq. (4.4), and is now given by

𝒔ℓ
(ℳ,𝑗) = 2−ℳ𝑼 ℓ

(ℳ,𝑗). (4.12)

The multiscale decomposition of the DG solution presented in Eq. (4.5) can
be generalized to

𝒖ℎ =
𝑟2

∑
ℓ=1

⎛
⎜
⎜
⎝
𝒔ℓ

(0,0) 𝜱ℓ
(0,0) +

ℳ−1

∑
𝑖=0

𝑁2
𝐾 −1

∑
𝑗=0

[𝒅ℓ,𝛼
(𝑖,𝑗) 𝜳 ℓ,𝛼

(𝑖,𝑗) + 𝒅ℓ,𝛽
(𝑖,𝑗) 𝜳 ℓ,𝛽

(𝑖,𝑗) + 𝒅ℓ,𝛾
(𝑖,𝑗) 𝜳 ℓ,𝛾

(𝑖,𝑗)]
⎞
⎟
⎟
⎠

, (4.13)

where the three multiwavelet contributions 𝛼, 𝛽 and 𝛾 were previously ex-
plained in Eq. (3.39). Figure 4.2 features the multiscale representation of a
2-D second order DG solution. The coefficients can be explicitly computed
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⎜
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⎜
⎜
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1 }
⎞
⎟
⎟
⎠

Level 0

(𝑽 𝑝
0 , {𝑾 𝑝,𝜆
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𝑷 𝑝
2 𝒖ℎ

𝑷 𝑝
1 𝒖ℎ

𝑷 𝑝
0 𝒖ℎ

𝑸𝑝,𝛽
1 𝒖ℎ

𝑸𝑝,𝛾
1 𝒖ℎ

𝑸𝑝,𝛼
1 𝒖ℎ𝑸𝑝,𝛽

0 𝒖ℎ

𝑸𝑝,𝛾
0 𝒖ℎ

𝑸𝑝,𝛼
0 𝒖ℎ

𝐾(𝑚,𝑗)

Figure 4.2: 2-D three-level multiscale
representation by multiwavelets of sec-
ond order DG solution 𝒖ℎ. The terms
𝑷 𝑝

𝑚𝒖ℎ and 𝑸𝑝,𝜆
𝑚 𝒖ℎ refer to the orthogo-

nal projection onto 𝑽 𝑝
𝑚 and 𝑾 𝑝,𝜆

𝑚 , as de-
fined by Eq. (3.40) and Eq. (3.41), re-
spectively. The highest resolution level
is ℳ = 2. At that level we have 𝒖ℎ =
𝑷 𝑝

ℳ𝒖ℎ.

as follows:

𝒔ℓ
(𝑚,𝑗) = ⟨𝒖ℎ, 𝜱ℓ

(𝑚,𝑗)⟩𝐾(𝑚,𝑗)
, 𝒅ℓ,𝛼

(𝑚,𝑗) = ⟨𝒖ℎ, 𝜳 ℓ,𝛼
(𝑚,𝑗)⟩𝐾(𝑚,𝑗)

, (4.14a)

𝒅ℓ,𝛽
(𝑚,𝑗) = ⟨𝒖ℎ, 𝜳 ℓ,𝛽

(𝑚,𝑗)⟩𝐾(𝑚,𝑗)
, 𝒅ℓ,𝛾

(𝑚,𝑗) = ⟨𝒖ℎ, 𝜳 ℓ,𝛾
(𝑚,𝑗)⟩𝐾(𝑚,𝑗)

. (4.14b)

Similarly to the 1-D study, we apply the QMF coefficients presented in the
work of Geronimo et al. (2017), and earlier described in Eq. (4.7) to Eq. (4.8).
In this case, the relation between elements of two consecutive levels given by
Eq. (4.9) becomes

𝐾(𝑚−1,𝑗) =
1

⋃̄𝑗𝑥, ̄𝑗𝑦=0
𝐾(𝑚,2𝑗+ ̄𝑗) , ̄𝑗 = 2 ̄𝑗𝑥 + ̄𝑗𝑦 , 𝑗 = 𝑁′

𝐾 𝑗𝑥 + 𝑗𝑦 , (4.15)

where 𝑗𝑥, 𝑗𝑦 = 0, ..., 𝑁′
𝐾 − 1 with 𝑁′

𝐾 = 2(𝑚−1). Figure 4.3 shows how the
elements of two successive levels are related. Consequently, the lower-lever
single-scale coefficients and the multiwavelet coefficients for each component

𝐾(𝑚,2𝑗)

𝐾(𝑚,2𝑗+1)

𝐾(𝑚,2𝑗+2)

𝐾(𝑚,2𝑗+3)

𝐾(𝑚−1,𝑗)

Level 𝑚

Level 𝑚 − 1
𝑗𝑥 𝑗 𝑦

̄𝑗𝑥

̄𝑗 𝑦

Figure 4.3: Relation between the ele-
ments of two consecutive multiresolu-
tion levels. Four elements at level 𝑚 con-
tribute to one element at level 𝑚 − 1.
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𝛼, 𝛽 and 𝛾 can be calculated efficiently as follows:

𝒔ℓ
(𝑚−1,𝑗) =

1

∑̄𝑗𝑥, ̄𝑗𝑦=0

𝑟

∑
𝑘𝑥,𝑘𝑦=1

[𝐻 ( ̄𝑗𝑥)
ℓ𝑥,𝑘𝑥

𝐻 ( ̄𝑗𝑦)
ℓ𝑦,𝑘𝑦

𝒔𝑘
(𝑚,2𝑗+ ̄𝑗)] , 𝑚 = 1, ..., ℳ; (4.16a)

𝒅ℓ,𝛼
(𝑚−1,𝑗) =

1

∑̄𝑗𝑥, ̄𝑗𝑦=0

𝑟

∑
𝑘𝑥,𝑘𝑦=1

[𝐺( ̄𝑗𝑥)
ℓ𝑥,𝑘𝑥

𝐻 ( ̄𝑗𝑦)
ℓ𝑦,𝑘𝑦

𝒔𝑘
(𝑚,2𝑗+ ̄𝑗)] , 𝑘 = 𝑟(𝑘𝑥 − 1) + 𝑘𝑦, (4.16b)

𝒅ℓ,𝛽
(𝑚−1,𝑗) =

1

∑̄𝑗𝑥, ̄𝑗𝑦=0

𝑟

∑
𝑘𝑥,𝑘𝑦=1

[𝐻 ( ̄𝑗𝑥)
ℓ𝑥,𝑘𝑥

𝐺( ̄𝑗𝑦)
ℓ𝑦,𝑘𝑦

𝒔𝑘
(𝑚,2𝑗+ ̄𝑗)] , (4.16c)

𝒅ℓ,𝛾
(𝑚−1,𝑗) =

1

∑̄𝑗𝑥, ̄𝑗𝑦=0

𝑟

∑
𝑘𝑥,𝑘𝑦=1

[𝐺( ̄𝑗𝑥)
ℓ𝑥,𝑘𝑥

𝐺( ̄𝑗𝑦)
ℓ𝑦,𝑘𝑦

𝒔𝑘
(𝑚,2𝑗+ ̄𝑗)] , (4.16d)

The index ̄𝑗 is inherited from Eq. (4.15) and accounts for the fact that one
coefficient at level 𝑚 − 1 results from the contribution of four coefficients at
level 𝑚.

4.2 PROSPECTS OF MULTIRESOLUTION AND DGM

4.2.1 Global coupling and mesh adaptation

Hovhannisyan et al. (2014) have presented one of the first studies onmultireso-
lution-based grid adaptation formulated on multiwavelets. In that work and
in the research that followed by Gerhard et al. (2015a,b) and Gerhard and
Müller (2016), the numerical solution is simply represented as data on some
coarse level plus multiwavelet coefficients which embody the individual fea-
tures of the solution (see Section 4.1). Thresholding of these detail coeffi-
cients then drives the adaptation process, i.e. each multiwavelet coefficient is
related to an element in the MRA cascade and nullifying a coefficient is thus
analogous to removing its associated element. Therefore, the more cancelled
details, the smaller the number of DOFs in the adapted grid.

In the work presented by Vuik and Ryan (2014, 2016) and Vuik (2017),
the same concept of MRA cascading is studied to develop a multiwavelet
troubled-cell indicator to identify elements in the vicinity of a shock. How-
ever, unlike the work of Hovhannisyan et al. (2014), in which the entirety of
the MRA levels are considered, here the authors base their indicator on the
multiwavelet contribution from a single level (specifically, the level ℳ − 1,
which is the second to finest) of the MRA decomposition.

When applying the MRA-based grid adaptation, the relation between the
elements in the physical domain and the intervals in the multiwavelet decom-
position is bijective, which means that we have a one-to-one correspondence,
as described by Eq. (4.1). This fact makes the adaptive procedure reliant on
the nature of the multiwavelets. To be able to use the dilation and translation
properties of the multiwavelets, as presented by Eq. (3.29) and Eq. (3.30),
a sequence of nested dyadic grids is thus required. Certainly, the work of
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Level ℳ ≡ Ωref
ℎ

Level ℳ − 1

Level ℳ − 2

Level ℳ − 3

Level ℳ − 1

Level ℳ

𝑢refℎ

𝑢ℎ

𝑢ℎ|𝐾

𝜅0 𝜅1

𝐾 ∈ Ωℎ

(a) Global multiresolution, rep-
resentative of (Hovhannisyan et
al., 2014). It requires 𝑢refℎ to
be the initial solution calculated
on a MRA approximation of
the reference grid, Ωref

ℎ . Multi-
scale decomposition spans the
entire domain.

Level ℳ ≡ Ωref
ℎ

Level ℳ − 1

Level ℳ − 2

Level ℳ − 3

Level ℳ − 1

Level ℳ

𝑢refℎ

𝑢ℎ

𝑢ℎ|𝐾

𝜅0 𝜅1

𝐾 ∈ Ωℎ

(b) Local multiresolution. The
initial solution 𝑢ℎ|𝐾 is enriched
locally to 𝑢ℎ|𝐾 . Then it is sub-
jected to a two-level multiscale
decomposition.

Figure 4.4: Different approaches to cou-
ple multiresolution analysis and discon-
tinuous Galerkin methods.

Hovhannisyan et al. (2014) in the 1-D context, and the later extension to
2-D by Gerhard and Müller (2016), only employ grids which satisfy this con-
dition. Moreover, their starting grid (MRA approximation of the reference
grid) must have enough resolution as to capture the relevant features of the
solution. This is equivalent to starting from an accurate reference solution,
which may not always be available.

On the other hand, in non-Cartesian grids, dilation and translation are no
longer available and multiwavelets must be calculated separately for each
level and interval of the decomposition. This represents an important con-
straint which increases the cost of the computation. To minimize this limi-
tation, Gerhard (2017) developed the wavelet-free approach, which extends
the MRA to non-uniform grid hierarchies. Additionally, due to the duality
physical-domain/multiwavelet-domain decomposition, further difficulties as
regards parallelisation may arise.

4.2.2 Local coupling: a new path to adaptation

As an alternative to the concept of MRA-based grid adaptation, in this work
we aim at developing an adaptation algorithm that starts from a coarse solu-
tion and proceed with the refinement where required, with no initial reference
grid involved. Traditionally, to deal with this problem, a posteriori error esti-
mators have been used to drive the adaptation, which are computed from the
discrete solution and try to measure the error of the adaptive solution. Exam-
ples of these indicators can be found in the work ofMavriplis (1994),Mitchell
and McClain (2014), Bey and Oden (1996), and Adjerid et al. (2002). They
will be explored in detail later in Chapter 5.

Here we propose a method which locally confines the MRA decomposition
to the element. More specifically, an independent multiwavelet decomposi-
tion is performed locally for every element of the physical domain. We call
our approach local multiresolution. This is a departure from the MRA-based
grid adaptation approach, which is characterized by a global multiresolution
covering the entire domain. In contrast with this global approach, local mul-
tiresolution may be extended to non-structured stretched Cartesian grids, in
which elements of equal refinement level do not necessarily have the same
size, which allows for anisotropic refinement. Additionally, dealing with each
element independently simplifies its use for local hp-adaptation in the context
of DGMs. Finally, the excellent parallel properties of DGMs can be perfectly
exploited thanks to the local character of the error estimator.

Figure 4.4 outlines the two approaches described above. The global MRA,
Figure 4.4a, produces multiple levels of information thanks to the highly
detailed approximate solution 𝑢ref

ℎ at level ℳ. On the other hand, the local
MRA, Figure 4.4b, does not require such a solution. Instead, our target is to
sufficiently resemble its behavior by providing extra information (enriching).
To achieve this, we manufacture a more accurate approximation for each el-
ement 𝐾 separately. Then a subsequent MRA is applied locally, producing
a two-level multiscale representation within the element. In particular, we
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are interested in the multiwavelet part of the multiscale representation. In-
deed, multiwavelet coefficients can be interpreted as messengers of individ-
ual features of the approximation (Hovhannisyan et al., 2014). Thanks to this
property multiwavelets represent an excellent candidate to measure the dis-
cretization error, which can be used later to drive hp-adaptation.

In the following sections we describe in detail each of the aforementioned
steps, starting with the procedure to manufacture a new local enriched ap-
proximation from the existing DG solution.

4.3 LOCAL RECONSTRUCTION OF DG SOLUTION

We intend to reach an analogue to the highly detailed approximate solution
𝑢ref

ℎ from which Hovhannisyan et al. (2014) and Gerhard and Müller (2016)
start their global MRA, as illustrated in Figure 4.4a, but at a lower cost. The
idea being that we can use that analogue later as a launchpad to start our local
MRA, as represented in Figure 4.4b.

To build the analogue we turn to the work of Dolejší and Solin (2016). In
their research, the authors assemble a high-order reconstruction of a DG
solution. They then measure the new reconstruction against the original solu-
tion to guide an hp-adaptation process. By observing that the discretization
error, 𝑒ℎ = 𝑢 − 𝑢ℎ, and its approximation by the higher-order reconstruction,
ℰℎ = ̃𝑢ℎ − 𝑢ℎ, have similar element-wise distribution, 𝑒ℎ ≈ ℰℎ, they verify nu-
merically that the reconstruction approximates better the exact solution than
the original. Inspired by this idea, we build a more accurate local approxi-
mation 𝑢ℎ|𝐾 by considering the contribution of the current element 𝐾 and
its neighbours. This procedure will be presented first in the 1-D setup. The
extension to higher dimensions will be described later.

We define the support of 𝑢ℎ|𝐾 according to the two-level multiscale represen-
tation of element 𝐾, as shown in Figure 4.4b. In this context, we have

supp (𝑢ℎ|𝐾 ) =
𝑁art−1

⋃
𝑖=0

𝜅𝑖 , with 𝑁art = 2, (4.17)

where the artificial sub-elements 𝜅𝑖 would originate from the twofold isotropic
subdivision of element 𝐾. The new approximation 𝑢ℎ|𝐾 is then described by
𝑁art piecewise polynomial functions. Namely:

𝑢ℎ|𝐾 = ∑
𝑖

𝑢ℎ,𝑖 , 𝑢ℎ,𝑖 ∈ 𝒫 𝑝(𝜅𝑖), 𝑖 = 0, … , 𝑁art − 1. (4.18)

Note that the term artificial is employed to indicate 𝜅𝑖. This is to emphasize
the fact that no actual mesh subdivision actually occurs at this stage. In fact,
our implementation associates 𝑢ℎ|𝐾 with the element 𝐾. However we believe
that the definition of 𝜅𝑖 may help the reader to better understand the proce-
dure.
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(b) Least-square function
approximation 𝒰ℎ,𝑖 from the
block 𝒜𝑖.
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polynomial function 𝑢ℎ,𝑖.

Figure 4.5: Chronological steps of the
𝜅-reconstruction procedure for an ele-
ment 𝐾.

In order to assemble 𝑢ℎ|𝐾 we propose three different approaches depending
on how data from neighboring elements are accounted for:

1. 𝜅-reconstruction: 𝑢ℎ|𝐾 is built from the immediate neighbors of the sub-
elements 𝜅𝑖.

2. 𝐾-reconstruction: 𝑢ℎ|𝐾 is constructed from the immediate neighbors of
the element 𝐾.

3. Γ-reconstruction: 𝑢ℎ|𝐾 is set up from the solution jumps at the faces of
the sub-elements 𝜅𝑖.

Figure 4.5 to 4.7 illustrate the three methods. The following sections 4.3.1
to 4.3.3 will describe the different procedures in detail.

4.3.1 𝜅-reconstruction

The construction of 𝑢ℎ|𝐾 is performed by a least-square function approximation
from the block 𝒜𝑖, defined as follows:

𝒜𝑖 = 𝜅(𝐾+𝑖−1)
1−𝑖 ∪ 𝜅(𝐾)

𝑖 ∪ 𝜅(𝐾+𝑖)
1−𝑖 , 𝑖 = 0, … , 𝑁art − 1, (4.19)

where 𝑁art = 2 and the superscript indicates from which 𝐾 ∈ Ωℎ the artificial
sub-element 𝜅 originates. Then we define the polynomial function 𝒰ℎ,𝑖 ∈
𝒫 𝑝(𝒜𝑖) by

𝒰ℎ,𝑖(𝑥, 𝑡) =
𝑁𝑝

∑
ℓ=1

𝑋ℓ
𝒜𝑖

(𝑡) 𝜙ℓ(Ξ−1
𝒜𝑖

(𝑥)) , ∀𝑥 ∈ 𝒜𝑖 , 𝑁𝑝 = 𝑝 + 1 , (4.20)

where 𝑋ℓ
𝒜𝑖

are the unknown coefficients, and Ξ𝒜𝑖 is the bijective transforma-
tion which relates the coordinates of the reference element to their counter-
parts in the physical block 𝒜𝑖. The unknown coefficients are calculated by
minimising the error in the least-square sense with respect to the original
approximation 𝑢ℎ. Namely:

𝑋ℓ
𝒜𝑖

= argmin ‖𝑢ℎ|𝜅𝑖 − 𝒰ℎ,𝑖‖
2

𝐿2(𝒜𝑖)
. (4.21)

Solving the optimization problem in Eq. (4.37), we obtain the linear algebraic
system

𝐴𝑘,ℓ 𝑋ℓ
𝒜𝑖

= 𝑏𝑘, (4.22)

where:

𝐴𝑘,ℓ = ∑
𝜅∈𝒜𝑖

⟨𝜙𝑘, 𝜙ℓ
⟩𝜅

, 𝑏𝑘 = ∑
𝜅∈𝒜𝑖

⟨𝜙𝑘, 𝑢ℎ⟩𝜅
, 𝑘, ℓ = 1, … , 𝑁𝑝 . (4.23)

Now the polynomial function 𝒰ℎ,𝑖 is fully characterized within the block 𝒜𝑖.
Lastly, we restrict 𝒰ℎ,𝑖 just to sub-element 𝜅(𝐾)

𝑖 and arrive to the piecewise
polynomial function 𝑢ℎ,𝑖. Namely:

𝑢ℎ,𝑖 = 𝒰ℎ,𝑖|𝜅(𝐾)
𝑖

, 𝑖 = 0, … , 𝑁art − 1. (4.24)
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(a) Original solution 𝑢ℎ.
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(b) High-order approximation
𝒰ℎ from the block 𝒜𝐾 .
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(c) Restriction of 𝒰ℎ,𝑖 to 𝐾.
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𝒰ℎ ∈ 𝒫 𝑝+1(𝒜𝐾) 𝑤ℎ ∈ 𝒫 𝑝+1(𝐾) 𝒫 𝑝 spline in-
terpolation
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(d) Projecting 𝑤ℎ on 𝜅𝑖.

𝐾

𝑢ℎ ∈ 𝒱 𝑝
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(e) Reconstructed piecewise
polynomial function 𝑢ℎ,𝑖.

Figure 4.6: Sequential steps of the
𝐾-reconstruction method for an ele-
ment 𝐾.

The complete reconstruction procedure is featured in Figure 4.5.

4.3.2 𝐾-reconstruction

The first steps in the assembly of 𝑢ℎ|𝐾 follow the same instructions described
by Dolejší and Solin (2016). That is, we build a high-order polynomial recon-
struction by a least-square function approximation from a block 𝒜𝐾 defined as
follows:

𝒜𝐾 = 𝐾 ∪ {𝐾′ ∈ Ωℎ | 𝐾′ share at least a face with 𝐾}. (4.25)

We then establish the higher-order polynomial 𝒰ℎ ∈ 𝒫 𝑝+1(𝒜𝐾 ) by

𝒰ℎ(𝑥, 𝑡) =
𝑁′

𝑝

∑
ℓ=1

𝑋ℓ
𝒜𝐾

(𝑡) 𝜙ℓ(Ξ−1
𝒜𝐾

(𝑥)) , ∀𝑥 ∈ 𝒜𝐾 , 𝑁′
𝑝 = 𝑝 + 2 . (4.26)

Their unknown coefficients 𝑋ℓ
𝒜𝐾

are determined by solving the optimization
problem presented in Eq. (4.37) and the following linear system on the new
block 𝒜𝐾 . It is worth mentioning that the optimization problem is solved by
using the 𝐿2-norm, whereas Dolejší and Solin (2016) employ the 𝐻1-norm.
We have tested both norms and found very little difference in the final recon-
struction. This justifies the use of the simpler and less costly 𝐿2-norm in our
work. Next we define the higher-order piecewise polynomial 𝑤ℎ ∈ 𝒫 𝑝+1(𝐾)
as the restriction of 𝒰ℎ on 𝐾. Namely:

𝑤ℎ = 𝒰ℎ|𝐾 . (4.27)

Once the higher-order approximation 𝑤ℎ is restricted to 𝐾, we move to set
up 𝑢ℎ|𝐾 by using the information provided by this new approximation. If we
recall the definition of 𝑢ℎ|𝐾 , that is, Eq. (4.18):

𝑢ℎ|𝐾 = ∑
𝑖

𝑢ℎ,𝑖 = ∑
𝑖

𝑁𝑝

∑
ℓ=1

𝑈 ℓ
𝜅𝑖 𝜙ℓ(Ξ−1

𝜅𝑖 (𝑥)), ∀𝑥 ∈ 𝜅𝑖, 𝑖 = 0, … , 𝑁art − 1. (4.28)

In order to build 𝑢ℎ|𝐾 we use a 𝑝-degree spline interpolation on the artificial sub-
elements 𝜅𝑖. Therefore, we have 𝑁art𝑁𝑝 unknown coefficients 𝑈 ℓ

𝜅𝑖 to evaluate.
The same numbers of conditions are required to evaluate the unknowns. We
meet the conditions by projecting 𝑤ℎ on a set of 𝑁𝑝 Gauss-Lobatto integration
points for each 𝜅𝑖. Thus reaching 𝑁art𝑁𝑝 conditions for the same number of
unknowns. This results in a linear system that solves for 𝑈 ℓ

𝜅𝑖 .

Figure 4.6 shows the complete reconstruction procedure by illustrating graph-
ically each of its steps.
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(a) Original solution 𝑢ℎ.
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(b) Least-square function
approximation 𝒰ℎ,𝑖 from
the block 𝒵𝑖. Solution jump
between 𝐾 and neighbors is
rendered by filled circles.
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(c) Reconstructed piecewise
polynomial function 𝑢ℎ,𝑖.

Figure 4.7: Chronological steps of the
Γ-reconstruction procedure for an ele-
ment 𝐾.

4.3.3 Γ-reconstruction

In the final method, 𝑢ℎ|𝐾 is built from a simpler least-square function approxi-
mation from the block 𝒵𝑖. The block is defined as

𝒵𝑖 = 𝜅(𝐾)
𝑖 ∪ Γ𝑖, where Γ𝑖 = {𝜕𝜅(𝐾−1+2𝑖)

1−𝑖 ∩ 𝜕𝜅(𝐾)
𝑖 } , (4.29)

with 𝑖 = 0, … , 𝑁art − 1. Equation (4.29) is simply 𝜅𝑖 plus the shared face of
the nearest neighboring element, denoted by Γ𝑖. This means that this method
integrates the solution jump between element 𝐾 and their neighbors 𝐾−1 and
𝐾+1 into 𝑢ℎ|𝐾 . Similarly to the two earlier methods, we define the polynomial
function 𝒰ℎ,𝑖 ∈ 𝒫 𝑝(𝒵𝑖) by

𝒰ℎ,𝑖(𝑥, 𝑡) =
𝑁𝑝

∑
ℓ=1

𝑋ℓ
𝒵𝑖

(𝑡) 𝜙ℓ(Ξ−1
𝒵𝑖

(𝑥)), ∀𝑥 ∈ 𝒵𝑖, 𝑁𝑝 = 𝑝 + 1, (4.30)

where the coefficients 𝑋ℓ
𝒵𝑖

are calculated by solving Eq. (4.37) on the new
block 𝒵𝑖. The resulting linear system can be expressed as

𝐴𝑘,ℓ 𝑋ℓ
𝒵𝑖

= 𝑏𝑘, (4.31)

where

𝐴𝑘,ℓ = [𝜙𝑘𝜙ℓ]Γ𝑖
+ ⟨𝜙𝑘, 𝜙ℓ

⟩𝜅𝑖
, 𝑏𝑘 = [𝜙𝑘𝑢ℎ]Γ𝑖

+ ⟨𝜙𝑘, 𝑢ℎ⟩𝜅𝑖
, (4.32)

with 𝑘, ℓ = 1, … , 𝑁𝑝 and the operator [·]Γ𝑖
referring to the values at the shared

face Γ𝑖. Finally, we define 𝑢ℎ,𝑖 by restricting 𝒰ℎ,𝑖 just to the sub-element 𝜅(𝐾)
𝑖 ,

in the same way as Eq. (4.24).

A detailed diagram of the reconstruction procedure is displayed in Figure 4.7.

4.3.4 Two-dimensional reconstruction

In the case of a 2-D reconstruction we define the support of the new enriched
approximation 𝒖ℎ|𝐾 as follows:

supp (𝒖ℎ|𝐾 ) =
𝑁art−1

⋃
𝑖=0

𝜅𝑖, with 𝑁art = 4, (4.33)

where 𝜅𝑖 represent the artificial sub-elements from the 2-D isotropic subdivi-
sion of element 𝐾. The term artificial retains the same meaning as described
in the 1-D reconstruction. Similarly, 𝒖ℎ|𝐾 is composed of 𝑁art piecewise poly-
nomial functions. That is:

𝒖ℎ|𝐾 = ∑
𝑖

𝒖ℎ,𝑖, with 𝒖ℎ,𝑖 ∈ 𝒫 𝑝(𝜅𝑖), 𝑖 = 0, … , 𝑁art − 1. (4.34)

Of the three reconstructions approaches proposed in the previous 1-D set-
ting, only the 𝜅−reconstruction method (see Section 4.3.1) will extended to
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DG solution, 𝒖ℎ

𝐾

Neighbours of 𝐾

(a) Original solution 𝒖ℎ.

𝜅2

𝜅0

𝜅1

𝜅3

𝐾

𝒜0

𝒜1

𝒜2

𝒜3

(b) 2-D isotropic subdivision of el-
ement 𝐾 resulting in artificial sub-
elements 𝜅𝑖. Each of 𝜅𝑖 and its imme-
diate neighbors build the block 𝒜𝑖.

𝒖ℎ,2

𝒖ℎ,0

𝒖ℎ,1

𝒖ℎ,3

𝐾

(c) A least-square approximation is
applied to every block 𝒜𝑖 to obtain
𝓤ℎ,𝑖. The enriched solution 𝒖ℎ,𝑖 re-
sults from restricting 𝓤ℎ,𝑖 to 𝜅𝑖.

Figure 4.8: Chronological steps (left to right) of the 2-D reconstruction procedure for an element 𝐾.

the 2-D context. If we recall this method, the new approximation 𝒖ℎ|𝐾 is set
up by considering the immediate neighbors of sub-elements 𝜅𝑖. This is per-
formed by a least-square function approximation applied to the block 𝒜𝑖, which
is characterized by

𝒜𝑖 = ⋃
𝑒 ∈ 𝜕𝜅𝑖

{𝜅+ ∪ 𝜅−}
𝑒, 𝑖 = 0, … , 𝑁art − 1, (4.35)

where 𝑒 ∈ 𝜕𝜅𝑖 represent the individual faces of 𝜅𝑖. The next step is to define
the polynomial function 𝓤ℎ,𝑖 ∈ 𝒫 𝑝(𝒜𝑖) by

𝓤ℎ,𝑖(𝒙, 𝑡) =
𝑁𝑝

∑
ℓ=1

𝑿ℓ
𝒜𝑖

(𝑡) 𝜙ℓ(𝜩−1
𝒜𝑖

(𝒙)), ∀𝒙 ∈ 𝒜𝑖, 𝑁𝑝 = (𝑝 + 1)2, (4.36)

where 𝑿ℓ
𝒜𝑖

are the coefficients to be calculated. Similarly to 1-D, the idea is
to find which value of the coefficients minimize the difference between the
original 𝒖ℎ and the new approximation 𝓤ℎ,𝑖. That is:

𝑿ℓ
𝒜𝑖

= argmin ‖𝒖ℎ|𝜅𝑖 − 𝓤ℎ,𝑖‖
2

𝐿2(𝒜𝑖)
, (4.37)

which leads to the linear system

𝑨𝑘,ℓ 𝑿ℓ
𝒜𝑖

= 𝒃𝑘, 𝑨𝑘,ℓ = ∑
𝜅∈𝒜𝑖

⟨𝜙𝑘, 𝜙ℓ
⟩𝜅

, 𝒃𝑘 = ∑
𝜅∈𝒜𝑖

⟨𝜙𝑘, 𝒖ℎ⟩𝜅
, (4.38)
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with 𝑘, ℓ = 1, … , 𝑁𝑝 . By solving the above system for 𝑿ℓ
𝒜𝑖

we have completely
defined 𝓤ℎ,𝑖 within the block 𝒜𝑖. Finally, 𝒖ℎ,𝑖 is evaluated by restricting 𝓤ℎ,𝑖
just to sub-element 𝜅𝑖. Namely:

𝒖ℎ,𝑖 = 𝓤ℎ,𝑖|𝜅𝑖
, 𝑖 = 0, … , 𝑁art − 1. (4.39)

A detailed description of the reconstruction approach is shown in Figure 4.8.

4.4 LOCAL MULTIRESOLUTION OF NEW RECONSTRUCTION

4.4.1 One-dimensional multiwavelet decomposition

The reconstruction methods presented in Section 4.3 allow us to assemble a
new, more accurate approximation 𝑢ℎ|𝐾 to the exact solution than the origi-
nal approximation 𝑢ℎ|𝐾 . This new approximation becomes the starting point
of the local multiresolution method, as previously shown in Figure 4.4b. By
means of the local MRA we are able to perform an independent two-level
multiscale decomposition of 𝑢ℎ|𝐾 for every element 𝐾 ∈ Ωℎ.

To proceed with the local MRA we remind the reader the procedure to con-
nect the DGM and multiwavelets, as expressed by Eq. (4.4) and Eq. (4.12) in
the one- and two-dimensional context, respectively. Although the 1-D con-
text has been illustrated in detail in Figure 4.1, this previous development is as-
sociated with the global multiresolution approach proposed byHovhannisyan
et al. (2014) and Gerhard and Müller (2016), as the entire domain of the so-
lution undergoes one unique multiscale decomposition. This approach can be
visualized in Figure 4.4a. To adapt the development to our new element-wise
MRA we must consider every 𝐾 ∈ Ωℎ as harboring one independent multi-
scale decomposition of 𝑢ℎ|𝐾 . Consequently, for the 1-D local MRA we have
the element-wise coupling expressed as

𝑠ℓ
(ℳ,𝑗) = 2−ℳ/2 𝑈 ℓ

(ℳ,𝑗), ℓ = 1, ..., 𝑟; 𝑗 = 0, ..., 2ℳ−1, (4.40)

where 𝑈 ℓ
(ℳ,𝑗) are the coefficients of 𝑢ℎ|𝐾 as calculated by one of the three re-

construction methods discussed in Section 4.3, and ℳ represents the highest
level of resolution within element 𝐾. Additionally, we consider that 𝑟 = 𝑁𝑝,
with 𝑁𝑝 = 𝑝 + 1. By nature of the two-level multiscale decomposition of 𝑢ℎ|𝐾 ,
ℳ = 1 and we can further simplify Eq. (4.40) to

𝑠ℓ
(1,𝑗) = 1

√2
𝑈 ℓ

(1,𝑗), 𝑗 = 0, 1; (4.41)

where the indices 𝑖 = 𝑗 = 0, 1 coincide with the numbering of the artificial
sub-elements 𝜅𝑖 defined in Eq. (4.17). Therefore, we can establish a relation
between the multiwavelet nomenclature of Eq. (4.41) and the reconstruction
terminology of Eq. (4.17) and Eq. (4.18). Namely:

𝑠ℓ
𝜅𝑖 = 1

√2
𝑈 ℓ

𝜅𝑖 , 𝑖 = 0, … , 𝑁art − 1; (4.42)
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with 𝑁art = 2 in the current 1-D setting. We have linked the coefficients
of the new enriched approximation, 𝑈 ℓ

𝜅𝑖 , to the single-scale coefficients, 𝑠ℓ
𝜅𝑖 .

The remaining lower-level single-scale and multiwavelet coefficients can be
obtained by applying the QMF coefficients (Geronimo et al., 2017) (see
Eq. (4.11)). They are rewritten as follows

𝑠ℓ
𝐾 =

𝑟

∑
𝑘=1

𝑁art−1

∑
𝑖=0

𝐻 (𝑖)
ℓ𝑘𝑠𝑘

𝜅𝑖 , ℓ = 1, ..., 𝑟; (4.43a)

𝑑ℓ
𝐾 =

𝑟

∑
𝑘=1

𝑁art−1

∑
𝑖=0

𝐺(𝑖)
ℓ𝑘𝑠𝑘

𝜅𝑖 . (4.43b)

We observe that the multiscale representation naturally connects the coeffi-
cients of the artificial sub-elements 𝜅𝑖 to the coefficients of element 𝐾. Finally,
the multiscale representation of 𝑢ℎ|𝐾 can now be expressed by Eq. (4.5) as a
combination of single-scale functions and multiwavelets:

𝑢ℎ|𝐾 = 𝒮 𝐾 + 𝒟 𝐾 =
𝑟

∑
ℓ=1

(𝑠ℓ
𝐾 𝜙ℓ + 𝑑ℓ

𝐾 𝜓ℓ
) , 𝐾 ∈ Ωℎ, (4.44)

with 𝑟 = 𝑁𝑝. We are particularly interested in how the multiscale information
is carried by the multiwavelet contribution, 𝒟 𝐾 . This contribution carries the
individual features of the new approximation 𝑢ℎ|𝐾 and, by extension, it be-
comes an instrument to measure the behavior of the original DG solution
𝑢ℎ|𝐾 . In this manner, in regions where the solution is regular 𝒟 𝐾 would re-
port minor or negligible values, whereas regions that harbour discontinuities
would translate into 𝒟 𝐾 reaching significant values. Certainly, the works of
Shelton (2008) and Hovhannisyan et al. (2014) have capitalized on the mul-
tiwavelet contribution along a hierarchy of multiple levels to perform grid
adaptation.

4.4.2 Two-dimensional multiwavelet decomposition

In the 2-D setting, Eq. (4.42) becomes

𝒔ℓ
𝜅𝑖 = 1

2 𝑼 ℓ
𝜅𝑖 , ℓ = 1, ..., 𝑟2; 𝑖 = 0, … , 𝑁art − 1; (4.45)

where 𝑟 = 𝑁𝑝 = (𝑝+1) and 𝑁art = 4. As a reminder, the artificial sub-elements
𝜅𝑖 originate from element 𝐾 (see Figure 4.8), and they have been previously de-
fined in Eq. (4.33). The QMF coefficients (Geronimo et al., 2017) described
in Eq. (4.43) can be applied to calculate the single-scale coefficients andmulti-
wavelet coefficients along the x-,y- and xy-directions (Vuik and Ryan, 2014).
They read:

𝒔ℓ
𝐾 =

1

∑
𝑖𝑥,𝑖𝑦=0

𝑟

∑
𝑘𝑥,𝑘𝑦=1

[𝐻 (𝑖𝑥)
ℓ𝑥,𝑘𝑥

𝐻 (𝑖𝑦)
ℓ𝑦,𝑘𝑦

𝒔𝑘
𝜅𝑖 ] , 𝑘 = 𝑟(𝑘𝑥 − 1) + 𝑘𝑦, (4.46a)

𝒅ℓ,𝛼
𝐾 =

1

∑
𝑖𝑥,𝑖𝑦=0

𝑟

∑
𝑘𝑥,𝑘𝑦=1

[𝐺(𝑖𝑥)
ℓ𝑥,𝑘𝑥

𝐻 (𝑖𝑦)
ℓ𝑦,𝑘𝑦

𝒔𝑘
𝜅𝑖 ] , ℓ = 𝑟(ℓ𝑥 − 1) + ℓ𝑦, (4.46b)
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𝒅ℓ,𝛽
𝐾 =

1

∑
𝑖𝑥,𝑖𝑦=0

𝑟

∑
𝑘𝑥,𝑘𝑦=1

[𝐻 (𝑖𝑥)
ℓ𝑥,𝑘𝑥

𝐺(𝑖𝑦)
ℓ𝑦,𝑘𝑦

𝒔𝑘
𝜅𝑖 ] , 𝑖 = 2𝑖𝑥 + 𝑖𝑦, (4.46c)

𝒅ℓ,𝛾
𝐾 =

1

∑
𝑖𝑥,𝑖𝑦=0

𝑟

∑
𝑘𝑥,𝑘𝑦=1

[𝐺(𝑖𝑥)
ℓ𝑥,𝑘𝑥

𝐺(𝑖𝑦)
ℓ𝑦,𝑘𝑦

𝒔𝑘
𝜅𝑖 ] . (4.46d)

The link between the coefficients of element 𝐾 and the coefficients of sub-
elements 𝜅𝑖 has now been established. Lastly, the multiscale representation
of 𝒖ℎ|𝐾 resembles Eq. (4.44) and can be expressed as:

𝒖ℎ|𝐾 = 𝓢𝐾 + 𝓓𝛼
𝐾 + 𝓓𝛽

𝐾 + 𝓓𝛾
𝐾

=
𝑟2

∑
ℓ=1

(𝒔ℓ
𝐾 𝜱ℓ + 𝒅ℓ,𝛼

𝐾 𝜳 ℓ,𝛼 + 𝒅ℓ,𝛽
𝐾 𝜳 ℓ,𝛽 + 𝒅ℓ,𝛾

𝐾 𝜳 ℓ,𝛾
) . (4.47)

4.5 CONCLUDING COMMENTARY

In this chapter we have presented a local multiresolution analysis as a new
methodology to connect the multiwavelet expansion to the DG formulation.
Unlike the global multiresolution analysis developed by Hovhannisyan et al.
(2014), in which the MRA decomposition involves the full computational
domain, we have designed a method that locally restricts the MRA decom-
position to the element.

In order to perform the new methodology, the local DG solution has been
subjected to different reconstruction procedures. They have ranged from con-
sidering the contribution of the immediate neighbors to the evaluation of the
solution jumps at the element interfaces. A complete analysis of their perfor-
mance will be presented in Chapter 6.

By applying the multiwavelet expansion to the new reconstruction we were
able to extract the individual features of the reconstructed solution and, by
association, it has provided us with an instrument to monitor the behavior of
the original DG solution, as we will demonstrate in Chapter 5.





Chapter5
HP-ADAPTATION BASED ON
LOCAL MULTIRESOLUTION

The goal of this chapter is to build an hp-adaptation algorithm based on the
local multiresolution analysis of theDG solution developed in Chapter 4. In a
first step, we present an exhaustive literature review of the different challenges
in the road to adaptation and then how we address them in our algorithm.

Section 5.1 offers a complete study of the most relevant literature on error
estimation techniques (Section 5.1.1) and resolution adaptation. The lat-
ter comprises Sections 5.1.2 and 5.1.3, which deal with the different ap-
proaches to adaptation and the hp-adaptive strategies, respectively.

Section 5.2 describes the hp-adaptive scheme employed in this work. The
different components/steps of the algorithm are presented in the subsequent
sections. In this manner, Section 5.2.1 illustrates the error estimator, while
Sections 5.2.2 to 5.2.3 explains in detail the construction of the regular-
ity indicator. Section 5.2.4 outlines the element marking and hp-decision
criteria. Additionally, the mesh enrichment methodology is reported in Sec-
tion 5.2.5. Lastly, an overview of the hp-algorithm is summarized in Sec-
tion 5.2.6.

Section 5.3 discusses the parallel implementation followed in this work when
performing both uniform and adaptive simulations. Finally, the main devel-
opments of this chapter are reviewed in Section 5.4.

5.1 ON ERROR ESTIMATION AND RESOLUTION ADAPTATION

In Chapter 2 we presented the process of discretizing of the compressible
Navier-Stokes equations by means of the discontinuous Galerkin method
(DGM). This set of non-linear partial differential equations is characterized
by a wide range of temporal and spatial scales that can make its numerical
resolution a difficult endeavor. Particularly, the range of spatial scales require
appropriate spatial resolution to attain good numerical accuracy.

At this point one may ask: what is the accuracy of the numerical solution? An-
swer to that question is essential in the design of reliable adaptive schemes
(Ainsworth and Oden, 1997). To this end, we must firstly devise some means
to judge the distribution of error in a numerical solution. Generally, this er-
ror will be assessed by an error estimator, also known as refinement indicator.
The combination of the error estimator plus an adaptive approach will allow
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us to systematically reduce error and minimize computational cost by either
changing the mesh, the order of the polynomial approximation, or both si-
multaneously. In this latter case that mesh and polynomial order are revised
at the same time (hp-adaptation), we require a companion to the error estima-
tor to select one of the two. The error estimator only tells you which elements
should be refined, but it does not indicate which change (mesh or approxi-
mation order) is the optimal choice. A method for making that judgement is
commonly called an hp-adaptive strategy (Mitchell and McClain, 2014).

5.1.1 Error estimation techniques

There are numerous methodologies available to obtain estimates of the accu-
racy of the computed numerical solution. Generally, these methods can be
classified as a priori methods and a posteriori methods.

A priori methods allow us to obtain a coarse estimation of the error without
computing the numerical solution. They are often insufficient since they only
provide reliable information in the asymptotic range (Roy, 2010) and require
strict regularity conditions of the solution (Verfürth, 1994). Examples of a
priori error estimates in the DGM framework can be found in Johnson and
Pitkäranta (1986) and Romkes et al. (2003).

A posteriori methods, on the other hand, provide an error estimate based on
the computed numerical solution. That is, the computed solution itself is used
to assess the accuracy relative to the exact solution (Ainsworth and Oden,
1997; Roy, 2010). The construction of a posteriori error estimates goes back
to the solution of ordinary differential equations and the use of predictor-
corrector schemes to produce error estimates for time-step control (Oden et
al., 1989). The pioneering work of Babuvška and Rheinboldt (1978a) pop-
ularized a posteriori methods in the finite-element community, where they
have seen prolific developments (e.g., themonograph of Ainsworth andOden
(1997)). Regarding the DGM, a posteriori methods have been developed for
elliptic (Rivière and Wheeler, 2003; Houston et al., 2007), hyperbolic (Ad-
jerid et al., 2002; Adjerid and Massey, 2002), and convection–diffusion prob-
lems (Ern and Proft, 2005; Baccouch, 2014). Additionally, several a posteriori
DG error estimates have been constructed for the Euler equations (Hart-
mann and Houston, 2002) and the Navier-Stokes equations (Barth, 2007;
Fidkowski and Luo, 2011). a posteriori methodologies can be also catego-
rized according to their refinement indicator. Generally the classification cri-
teria somewhat vary depending on the literature (cf. Oden et al. (1989), Ger-
hard (2017), Naddei (2019), and Rueda-Ramírez (2019) for different desig-
nations), but we can broadly draw three main paradigms:

(a) Feature-based indicators stem from the study of certain physical features
of the flow, which must be fully resolved to adequately represent the
flow field. They are also called sensor-based indicators (Gerhard, 2017),
as they are normally sensitive to changes in a broad array of flow quan-
tities (e.g., density, pressure, vorticity), or in derived field quantities
such as gradients and Hessian matrices. Examples range from vortex
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detection (Kasmai et al., 2011), to shock wave detection (Kanamori
and Suzuki, 2011), monitoring of boundary layer separation and reat-
tachment (Kenwright et al., 1999), and detection of multiple flow phe-
nomena simultaneously (Kallinderis et al., 2017). These indicators are
economical and easy to implement, but do usually not give any control
over the error and require an experienced user to perform satisfactorily.

(b) Adjoint-based indicators or goal-oriented indicators are normally used to
estimate the error of specific target quantities, such as aerodynamic
force coefficients (e.g., the drag or lift coefficients), by solving an ad-
joint problem (Kast, 2017). The adjoint then indicates how initial nu-
merical errors from the discretization translate into errors in the final
target value (Kompenhans et al., 2016b). Moreover, the adjoint also
registers where in the domain this error originates from, providing a
spatial distribution of the total target error. Therefore, they provide an
accurate prediction of the production and propagation of numerical
errors (Woopen et al., 2014). These indicators were originally devel-
oped in the context of finite-element methods (Becker and Rannacher,
1996, 2001) and later extended to DGMs (Hartmann and Houston,
2002), where their use has experienced a steady growth in both lami-
nar (Hartmann and Houston, 2006) and turbulent flows (Hartmann
et al., 2011). These indicators require high memory storage and a high
computational cost to solve the adjoint problem.

(c) Local error-based indicators attempt to measure the local numerical er-
ror for every element of the domain. They emerge as a midpoint be-
tween the feature-based and adjoint-based indicators, as they provide
a reasonably accurate prediction of the numerical error while remain-
ing computationally affordable. There exists a vast literature dedicated
to those indicators. We will build upon the nomenclature proposed by
Naddei et al. (2018) and divide them into three main groups:

(i) DE-based indicators measure the discretization error, which is the
difference between the exact solution, 𝑢, and the approximate
solution, 𝑢ℎ. Examples of these indicators include the use of a
higher-order solution through local reconstruction patches (Dole-
jší and Solin, 2016) or based on the superconvergence phenomenon
(Biswas et al., 1994), the extrapolation of the available Legendre
expansion coefficients (Mavriplis, 1989, 1994), the quantification
of interface jumps between elements (Krivodonova and Flaherty,
2003), and the evaluation of the higher-order modes of the nu-
merical solution (Persson and Peraire, 2006; Kuru et al., 2016;
Naddei et al., 2018).

(ii) TE-based indicators estimate the truncation error, whichmeasures
the missing expansion terms between the infinite sum of the ex-
act solution, 𝑢, and the truncated version of the same sum, Πℎ𝑢
(Mavriplis, 1989). The term Πℎ𝑢 refers to the projection of 𝑢 onto
𝒱 𝑝

ℎ , Eq. (2.14). We remark that Πℎ𝑢 is the best polynomial approx-
imation to 𝑢 and thus, not necessarily equal to 𝑢ℎ. Estimates of the
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truncation error in the literature include an interpolation method
based on the polynomial order (Gao and Wang, 2011) and the
use of interpolation in the context of multiple grids (Shih and
Williams, 2009). A popular approach, which also relies on the
use of a hierarchy of grids, is the 𝜏-estimation method (Brandt
and Livne, 2011). Since its extension to DGMs (Rubio et al.,
2015), it has experienced a prolific development (Kompenhans
et al., 2016a; Rueda-Ramírez et al., 2019a,b).

(iii) RE-based indicators use the residual error in the approximate so-
lution 𝑢ℎ to estimate the local error, where the residual error is
a function measuring how much is left over when 𝑢ℎ is fed to
the governing PDE for the individual DG element (Jasak and
Gosman, 2003). They have been originally developed within the
finite-element community under the name element-residualmethod
(Ainsworth and Oden, 1992), and successfully extended later to
DGMs (Bey and Oden, 1996; Hartmann and Houston, 2002;
Dolejší et al., 2015).

Even thoughwe have presented the above three groups separately, there
exists a relation among the discretization, truncation, and residual er-
rors (Rueda-Ramírez, 2019). This relation is established by the discrete
error transport equation (Roy, 2010), in which the residual and trunca-
tion error are featured as source terms (Naddei, 2019), thus controlling
the behavior of the discretization error across the domain. By moni-
toring the error transport equation, we observe how the discretization
error can be either locally generated or transported from elsewhere in
the domain (Hay and Visonneau, 2006). For further information, we
refer the reader to the studies of Hay and Visonneau (2007) and Yan
and Ollivier-Gooch (2018), where the error transport equation is ap-
plied to turbulent and unsteady flows, respectively.

In addition to the a priori and a posteriori classification presented above, it is
also worth mentioning the so-called perturbation methods, as defined by Ger-
hard et al. (2021). The idea behind this methodology is to improve the ef-
ficiency of a given reference scheme on a uniform reference grid by oper-
ating only on a smaller adapted subgrid, while maintaining the accuracy of
the discretization on the full uniform grid (Gerhard, 2017). The concept of
multiresolution-based adaptation (Calle et al., 2005; Domingues et al., 2009;
Müller, 2009; Hovhannisyan et al., 2014), which was introduced in Chap-
ter 4, is a class of perturbation methods. This approach is designed around
grid adaptation and does not rely on error estimation. Instead it uses an indi-
cator based on thresholding of local details to drive adaptation.

In the current study, we focus our attention on a merge between local error-
based indicators and perturbation methods. Particularly, we will present a
novel indicator, themultiwavelet error estimator, which combines the concepts
of DE-based indicators and multiresolution-based adaptation. To complete
the analysis, two local error-based indicators from the literature will also be
described: the small-scale energy density (Kuru et al., 2016; Naddei et al., 2018)
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and the spectral decay indicators (Persson and Peraire, 2006; Naddei et al.,
2018). These indicators will be introduced in Section 5.2.1.

We will make use of the next section to present the different adaptation ap-
proaches commonly followed to adjust the spatial resolution in the framework
of DGMs.

5.1.2 Approaches to resolution adaptation

Having estimated the error in the numerical solution, we need to decide how
to adjust the spatial resolution of the elements involved in order to obtain
a better discretization for the problem at hand (i.e., using the least number
of degrees of freedom for a given target accuracy). We can consider three
different approaches to adapt the spatial resolution (Löhner, 1995):

1. Mesh repositioning (r-adaptation). The idea is to optimally deform the
computational grid and relocate the grid nodes so that the nodal den-
sity is increased in the areas of interest (see e.g., Zahr and Persson
(2018) and Ben Ameur et al. (2022)). This approach maintains the
mesh topology, thus preserving an even computational load when used
in parallel computations (Marcon et al., 2020). However, any increase
in resolution might bring about a decrease in mesh quality (e.g. exces-
sive element distortion), as we are constrained by the initial number of
nodes and grid connectivity.

2. Remeshing (m-adaptation). In this approach the computational grid is
entirely rebuilt in order to generate a more suitable discretization (see
e.g.,Mavriplis (1990) andAlauzet et al. (2006)). Remeshing has the ad-
vantage of not being constrained by the existence of the original mesh,
in that a completely new mesh is independently generated. However,
this approach introduces extra computational costs due to the construc-
tion of a new mesh and the need to project the solution onto the new
mesh (Remacle et al., 2005; Alauzet and Loseille, 2016). Moreover,
the latter step may also introduce additional errors associated with the
projection operation.

3. Mesh enrichment (h/p-adaptation). The key here is to locally add (re-
finement) or locally remove (coarsening) degrees of freedom to/from
a computational grid in order to return a more efficient discretization
of the domain. This approach allows us either to split/agglomerate el-
ements into new ones (h-adaptation) (Kamkar et al., 2011; Mozaffari
et al., 2022), or to increase/reduce the local order of the approximation
(p-adaptation) (Ekelschot et al., 2017; Tugnoli et al., 2017). Addition-
ally, both h- and p- can be performed isotropically (along all space
directions; see e.g., Gerhard et al. (2015b) and Naddei et al. (2018)),
or anisotropically (along a particular direction; see e.g., Wackers et al.
(2012) and Rueda-Ramírez et al. (2019a)). One of the drawbacks of
mesh enrichment lies in the non-conforming nature of the resulting
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discretization, being composed of non-conforming elements or non-
conforming polynomial approximations, which needs to be considered
in the implementation (Hesthaven and Warburton, 2008). Further to
this, the application of h-adaptation is prone to develop complex data
structures, while p-adaptation is somewhat limited by the topology of
the starting grid. Despite these challenges, the possibility of choosing
between either h- or p- results in a versatile and efficient approach, as
we will discuss next.

DiscontinuousGalerkinmethods are especially well-suited to h/p-adaptation,
as they allow us to locally adjust mesh size (h) and approximation order (p).
In this manner, by varying h while keeping p fixed, the numerical error is
expected to decay algebraically. This choice is most suitable near discontinu-
ous phenomena, such as shocks or singularities. Alternatively, in the case of
a sufficiently smooth solution, maintaining h constant and changing p usu-
ally leads to the error converging exponentially (Karniadakis and Sherwin,
2005). Moreover, DGMs are able to handle the resulting non-conforming
meshes with hanging nodes and/or different polynomial orders efficiently, as
elements only communicate through fluxes computed using the information
of the immediate neighbours (Rivière, 2008).

Identifying the benefits of both types of convergence, Szabo (1986) proposed
a new method in the framework of FEMs that combined h- and p-adaptation
simultaneously. Later, the work of Babuvška and Guo (1992) developed some
important theoretical results that paved the way toward generating an opti-
mal distribution of h and p. Since then there has been a blooming in the
development of hp-adaptive strategies driving high-order methods, including
FEMs (Ainsworth and Senior, 1998;Demkowicz et al., 2002) andDGMs (Bey
and Oden, 1996; Chalmers et al., 2019). In the next section we will present
some of the most common strategies that have been historically employed to
determine the hp-distribution, and how that context has shaped our contri-
bution toward a novel hp-decision criteria.

5.1.3 hp-adaptive strategies

Up to this point we have characterized the estimation of the error by using a
refinement indicator (Section 5.1.1), and described different options to res-
olution adaptation (Section 5.1.2). We have concluded that, of the different
approaches, h/p-adaptation is especially well suited to DGMs. The combi-
nation of h and p holds particular relevance. Unlike the pure h-version or
p-version of adaptation, we can judiciously modify both h and p according to
the local regularity of the analytical solution (Rachowicz et al., 1989; Hous-
ton and Süli, 2005; Wihler, 2011). In this manner, p-adaptation would be
used in regions with smooth solution behavior to deliver high accuracy, and h-
adaptation would be employed in areas of low regularity to avoid unbounded
oscillations that may result in a loss of stability (Wang and Mavriplis, 2009).
However, since the solution is usually unknown analytically, the local regu-
larity of the solution cannot be exactly computed. In order to estimate the
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local smoothness of the analytical solution a regularity or smoothness indica-
tor is usually employed instead. This indicator is paired with an hp-decision
criterion to constitute a particular hp-adaptive strategy. Various hp-adaptive
strategies have been developed in the literature (for a review, see e.g., Houston
and Süli (2005), Eibner and Melenk (2007), Mitchell and McClain (2014),
and Ringue (2019)). By building upon the existing classification proposed
by Houston and Süli (2005), we have the following categories:

(A) Use of a priori knowledge. This strategy uses any a priori information
about the geometrical or physical singularities occurring throughout
the domain. An element is h-adapted if it contains possible irregulari-
ties, and p-adapted otherwise. This simple strategy has been employed
in Valenciano and Owens (2000) and Ainsworth and Senior (1999).

(B) Use of p-estimates. This strategy estimates the convergence rate in p by
building approximations of different order. There exist various versions
of this strategy. The smaller p-estimates variant (Süli et al., 2000) is built
on 𝑝 − 2 and 𝑝 − 1 approximations, whereas the larger p-estimates alter-
native (Ainsworth and Senior, 1998) is based upon 𝑝 + 1, 𝑝 + 2, and
𝑝 + 3 spaces. Finally, the so-called type-parameter (Babuvška and Gui,
1986) approach can be also classified as a variant of p-estimates, as it
relies on error estimates from 𝑝 and 𝑝 − 1 spaces.

(C) Use of h- and p-estimates. The idea behind this strategy is to apply either
h- and p-adaptation, estimate the error (using one of the techniques ex-
plained in Section 5.1.1), and then choose which of the two leads to
the largest decrease of the error with respect to the number of degrees
of freedom. Multiple variants of this strategy can be found in the lit-
erature. The commonly known mesh optimization strategy (Rachowicz
et al., 1989; Demkowicz et al., 2002) solves the problem on a glob-
ally hp-refined mesh. Related, but simpler, approaches were developed
in Solin et al. (2003) and Schmidt and Siebert (2000). Another studies
examine the use of h- and p-coarsening (Dolejší et al., 2016), or the
use of a higher-order reconstruction (Dolejší and Solin, 2016). Lastly,
the so-called Texas 3-step strategy (Bey and Oden, 1996), departs from
the previous studies by using a more empirical approach. In this case,
the h- and p-refinement are performed in a series of consecutive steps
bounded by user-defined error tolerances.

(D) Use of smoothness assumption. This strategy relies on the prediction of
what the error should be if the local solution is smooth and the opti-
mal convergence rate (exponential convergence) has been achieved. It
compares the current estimated error against a prediction on the previ-
ous mesh. If the hypothesis of smoothness is reasonable, p-enrichment
is performed; otherwise h-refinement will be executed. This strategy
was originally devised by Melenk and Wohlmuth (2001) and later ap-
plied to various studies, such as Heuveline and Rannacher (2003) and
Eibner and Melenk (2007).

(E) Use of local Sobolev regularity. This strategy is based on the estimation
of the local Sobolev regularity index associated with the analytical so-
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lution. There exist several ways to perform the approximation. The ear-
liest method was proposed by Ainsworth and Senior (1998) and relies
on evaluating the Sobolev regularity index from a local refinement indi-
cator based on different polynomial degrees. In a later approach, Hous-
ton et al. (2003) and Houston and Süli (2005) approximated the index
according to the decay rate of the Legendre series expansion. More
recently, Wihler (2011) and Fankhauser et al. (2014) made use of con-
tinuous Sobolev embeddings to perform the estimation.

(F) Use of decay of Legendre expansion coefficients. This strategy was born
from the influential works of Mavriplis (1989, 1994) in adaptive spec-
tralmethods.There, the high-order numerical solution is first expanded
to orthogonal polynomials. A second step involves extrapolation of the
expansion coefficients to insure an accurate representation of the spec-
trum of the solution. Then the main idea is to verify whether the re-
sulting spectrum decays sufficiently fast. If that is the case, an exponen-
tial convergence in p can be assumed and p-enrichment is advised. In
the presence of discontinuities, the decay rate is hindered and becomes
slower, in which case h-refinement is performed. Since then, this strat-
egy has been widely applied in spectral methods (Feng and Mavriplis,
2002), FEMs (Eibner and Melenk, 2007), and DGMs (Wang and
Mavriplis, 2009; Leicht and Hartmann, 2011; Chalmers et al., 2019;
Basile et al., 2022).

On a side note, it is worthmentioning some recently developed alternatives to
the aforementioned hp-adaptation strategies. Instead of relying on smooth-
ness evaluation, these alternative strategies are based on optimal refinement
decisions (Balan et al., 2016) and normally paired with goal-oriented indica-
tors (Section 5.1.1). The idea is to assume the existence of optimal distri-
butions of degrees of freedom on the computational domain and construct
an optimization-based framework for hp-adaptation accordingly. Examples
range from the use of a selection process based on a merit function to lo-
cally minimize the error and the number of degrees of freedom (Ceze and
Fidkowski, 2012), to the targeting of a globally optimal metric and polyno-
mial degree fields which minimize the global error on an output quantity of
interest (Ringue and Nadarajah, 2018).

If we return to the previous classification, we have drawn inspiration from the
hp-strategy developed by Mavriplis (1989, 1994) to introduce a new smooth-
ness indicator. We call it the multiwavelet regularity indicator. It builds upon
the concepts behind the multiwavelet error estimator previously highlighted
in Section 5.2.1, and it has been designed to be working as its companion,
although it can also be used independently. Similarly to the smoothness in-
dicator that Mavriplis developed as part of her hp-strategy, our indicator also
measures the rate of decay of a given spectrum, this being the spectrum of the
multiwavelet coefficients. Both indicators require an extra post-processing
step to improve the estimation. Mavriplis’s approach performs extrapolation
to estimate the missing coefficients. On the other hand, our method is based
on the work of Dolejší and Solin (2016) to build a more accurate solution by
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considering the contributions from the neighbors (see Chapter 4). This new
enriched solution is well-suited to the multiwavelet expansion, which in turn
provides an estimation of the full signal spectrum. Our proposed strategy is
clearly explained in the next sections.

5.2 NOVEL HP-ADAPTIVE SCHEME

In Section 5.1 we have presented the multiple challenges that any adaptive
scheme in the framework of DGMs may face and how they have been his-
torically investigated in the literature. We have also briefly hinted the ways
in which the present work contributes to the topic.

In this section we will provide a thorough account of the design of our hp-
adaptive algorithm. We first introduce the notation of hp-mesh, Ωℎ,𝓅, which
is simply the assignation of a local polynomial degree 𝑝𝐾 to each 𝐾 ∈ Ωℎ. In
other words:

Ωℎ,𝓅 = {Ωℎ, 𝓅}, with 𝓅 = {𝑝𝐾 , 𝐾 ∈ Ωℎ} . (5.1)

With this notation, the approximation space 𝒱 𝓅
ℎ that contains the corre-

spondingDG solution 𝒖ℎ,𝓅 ∈ 𝒱 𝓅
ℎ is an updated version of Eq. (2.14). Namely:

𝒱 𝓅
ℎ = {Φℎ ∈ 𝐿2(Ωℎ) ∶ Φℎ|𝐾 ∈ 𝒫 𝑝𝐾 (𝜩−1

𝐾 (𝐾)), ∀𝐾 ∈ Ωℎ,𝓅}, (5.2)

where 𝒫 𝑝𝐾 (𝜩−1
𝐾 (𝐾)) denotes the space of all polynomials of degree at most

𝑝𝐾 defined on K.

The objective is to determine a distinct sequence of hp-meshes, Ω(𝑖)
ℎ,𝓅 with

𝑖 = 1, 2, …, such that the associated sequence of DG solutions 𝒖(𝑖)
ℎ,𝓅 converges

at a high, desirably exponential, rate to the exact solution 𝒖. Mesh refinement
of Ωℎ will be solely guided by the multiwavelet error estimator, which will be
described in detail in Section 5.2.1. Simultaneous adaptation of Ωℎ as well as
the degree distribution 𝓅 of the hp-mesh Ωℎ,𝓅 necessitates the combination
of the error estimator and the multiwavelet regularity indicator, which pro-
vides supplementary smoothness information to decide whether to perform
mesh or degree adaptation. We give a prelude on how to link this informa-
tion to a multiwavelet expansion in Section 5.2.2. The multiwavelet regu-
larity indicator and the subsequent hp-decision criteria will be presented in
Section 5.2.3 and Section 5.2.4, respectively. Section 5.2.5 describes how
the spatial adaptation is implemented. Finally, an overview of the complete
hp-algorithm is featured in Section 5.2.6.

5.2.1 The multiwavelet error estimator

In Chapter 4 we have described several post-enrichment methods applied to
the original DG solution 𝑢ℎ|𝐾 . These reconstruction methods have allowed
us to assemble a new approximation 𝑢ℎ|𝐾 . Subsequent to this step, we have
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performed a local MRA decomposition of 𝑢ℎ|𝐾 by means of a multiwavelet
expansion.

In this sectionwe resume from the localMRA representation given byEq. (4.44).
The next step is to evaluate its multiwavelet contribution, 𝒟 𝐾 , to achieve
an estimation of the discretization error on element 𝐾. As highlighted in
Section 5.1.1, the resulting local indicator constitutes a hybrid approach be-
tween DE-based indicators and multiresolution-based adaptation.

The main idea is to calculate the 𝐿2-norm of 𝒟 𝐾 , which can be read as an
evaluation of the energy associated with the individual fluctuations of 𝑢ℎ|𝐾 .
Consequently, in the 1-D context the underlying structure of the local esti-
mator can be expressed as:

𝜂𝐾 = ‖𝒟 𝐾 ‖𝐿2(𝐾) = ‖
𝑟

∑
ℓ=1

𝑑ℓ
𝐾 𝜓ℓ

‖𝐿2(𝐾)
= [

𝑟

∑
ℓ=1

(𝑑ℓ
𝐾 )

2
]

1/2
, 𝐾 ∈ Ωℎ,𝓅, (5.3)

withmultiplicity 𝑟 = 𝑝+1.Moreover, we have used ⟨𝜓ℓ, 𝜓ℓ′ ⟩𝐾= 𝛿ℓ,ℓ′ from the
orthonormality relations in Eq. (3.31) to simplify the final expression. We pro-
pose three alternatives to the multiwavelet estimator derived from Eq. (5.3).
The difference between them lies in the reconstruction method employed to
reach 𝑢ℎ and their terminology reflects this fact (see sections 4.3.1 to 4.3.3).
Consequently, we rewrite Eq. (5.3) to account for the post-enrichment pro-
cedure. In other words:

𝜂𝐾 becomes either
⎧⎪
⎪
⎨
⎪
⎪⎩

𝜂𝜅-MW
𝐾 , if Eqs. (4.19) to (4.24)

𝜂𝐾-MW
𝐾 , if Eqs. (4.25) to (4.28)

𝜂Γ-MW
𝐾 , if Eqs. (4.29) to (4.32)

, (5.4)

which are labelled as the 𝜅-, 𝐾, and Γ-multiwavelet estimator; respectively.

Two-dimensional estimator Similarly to the 1-D setting, we will evaluate
the multiwavelet contribution resulting from applying a local MRA to the
new approximation 𝒖ℎ|𝐾 in order to assess the discretization error on element
𝐾. However, in the 2-D context only one error estimator will be developed.
This estimator will be based on the 𝜅-reconstruction procedure presented in
Section 4.3.4. We will further justify this choice in Chapter 6.

Hence, the 𝜅-multiwavelet estimator is defined by evaluating the 𝑥-,𝑦- and
𝑥𝑦- components of the multiwavelet contribution given by Eq. (4.47) in the
𝐿2-norm. Namely:

𝜂𝜅-MW
𝐾 = ‖𝓓𝛼

𝐾 + 𝓓𝛽
𝐾 + 𝓓𝛾

𝐾 ‖𝐿2(𝐾)

= ‖
𝑟2

∑
ℓ=1

(𝒅ℓ,𝛼
𝐾 𝜳 ℓ,𝛼 + 𝒅ℓ,𝛽

𝐾 𝜳 ℓ,𝛽 + 𝒅ℓ,𝛾
𝐾 𝜳 ℓ,𝛾

)‖𝐿2(𝐾)
, 𝐾 ∈ Ωℎ,𝓅 . (5.5)

In general, if we extend the orthonormality relations in Eq. (3.31) to the cur-
rent 2-D setting and consider the extra directions given by the superscripts 𝛼,
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𝛽, and 𝛾 we have the following new orthonormality relations between com-
ponents:

⟨𝜳 ℓ,𝛼 , 𝜳 𝑘,𝛼
⟩𝐾

= 𝛿ℓ,𝑘, ⟨𝜳 ℓ,𝛼 , 𝜳 𝑘,𝛽
⟩𝐾

= 0, ⟨𝜳 ℓ,𝛼 , 𝜳 𝑘,𝛾
⟩𝐾

= 0, (5.6a)

⟨𝜳 ℓ,𝛽 , 𝜳 𝑘,𝛼
⟩𝐾

= 0, ⟨𝜳 ℓ,𝛽 , 𝜳 𝑘,𝛽
⟩𝐾

= 𝛿ℓ,𝑘, ⟨𝜳 ℓ,𝛽 , 𝜳 𝑘,𝛾
⟩𝐾

= 0, (5.6b)

⟨𝜳 ℓ,𝛾 , 𝜳 𝑘,𝛼
⟩𝐾

= 0, ⟨𝜳 ℓ,𝛾 , 𝜳 𝑘,𝛽
⟩𝐾

= 0, ⟨𝜳 ℓ,𝛾 , 𝜳 𝑘,𝛾
⟩𝐾

= 𝛿ℓ,𝑘. (5.6c)

where ℓ, 𝑘 = 1, ..., 𝑟. Consequently, Eq. (5.5) can be simplified to

𝜂𝜅-MW
𝐾 = [

𝑟2

∑
ℓ=1

(𝒅ℓ,𝛼
𝐾 )

2 +
𝑟2

∑
ℓ=1

(𝒅ℓ,𝛽
𝐾 )

2 +
𝑟2

∑
ℓ=1

(𝒅ℓ,𝛾
𝐾 )

2
]

1/2
, 𝐾 ∈ Ωℎ,𝓅. (5.7)

Error estimators from the literature We also include two estimators exten-
sively tested in Naddei et al. (2018, 2019) and Taube et al. (2010) so that we
can compare them against our MW-based estimators.

We consider the small-scale energy density (SSED) estimator (Kuru et al.,
2016; Naddei et al., 2018) and the spectral decay (SD) estimator (Taube et al.,
2010). The SSED estimator measures the energy associated with the highest-
order modes. It is expressed as:

𝜂SSED
𝐾 =

‖ ∑𝑁𝑝
ℓ=1 𝑼 ℓ

𝐾 𝜙ℓ − ∑𝑁𝑝−1
ℓ=1 𝑼 ℓ

𝐾 𝜙ℓ
‖𝐿2(𝐾)

|𝐾|1/2 , 𝐾 ∈ Ωℎ,𝓅 , (5.8)

where the normalization is made using the volume of the element, |𝐾|. The
SD is similar to the SSED estimator, but instead normalised by the total
energy within the element. That is:

𝜂SD
𝐾 =

‖ ∑𝑁𝑝
ℓ=1 𝑼 ℓ

𝐾 𝜙ℓ − ∑𝑁𝑝−1
ℓ=1 𝑼 ℓ

𝐾 𝜙ℓ
‖𝐿2(𝐾)

‖ ∑𝑁𝑝
ℓ=1 𝑼 ℓ

𝐾 𝜙ℓ‖𝐿2(𝐾)

, 𝐾 ∈ Ωℎ,𝓅 . (5.9)

5.2.2 On multiwavelets and smoothness estimation

If we recall from Chapter 3, the multiwavelet coefficients resulting from ap-
plying the multiscale decomposition to a function 𝑓 are defined as

𝑑ℓ
(𝑚,𝑗) = ⟨𝑓, 𝜓ℓ

(𝑚,𝑗)⟩𝐾(𝑚,𝑗)
, 𝑚 = 0, ..., ℳ − 1, 𝑗 = 0, ..., 2𝑚 − 1, (5.10)

where the index 𝑚 denotes the resolution level and the value ℳ conveys
the finest resolution level. Additionally, we also characterized Alpert’s multi-
wavelets (Alpert, 1993; Alpert et al., 2002) as having 𝑀 vanishing moments.
Namely,

𝑀 = ℓ + 𝑟 − 1, ℓ = 1, ..., 𝑟 , (5.11)
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with multiplicity 𝑟 = 𝑝 + 1. Consequently, by choosing 𝑓 = 𝑃 with 𝑃 ∈
𝒫 𝑀−1(𝐾(𝑚,𝑗)), we have (see Eq. (3.32)):

𝑑ℓ
(𝑚,𝑗) = ⟨𝑃 , 𝜓ℓ

(𝑚,𝑗)⟩𝐾(𝑚,𝑗)
= 0, (5.12)

To put it in another way, Alpert’s multiwavelets are orthogonal to polynomials
of degree 𝑀 − 1 and their associated multi-scaling functions 𝜙ℓ

(𝑚,𝑗) would be
able to reproduce these same polynomials exactly. For example, the related
multi-scaling function of Alpert’s multiwavelet with multiplicity 𝑟 = 1 (Haar
wavelet, Figure 3.3b) has 𝑀 = 1 and only reproduces constant functions. If
we increase the multiplicity to 𝑟 = 2, we have two multiwavelets (Fig. 3.5b)
with 𝑀 = 2 and 𝑀 = 3. Their associated multi-scaling functions are able to
reproduce up to linear and quadratic functions, respectively.

If we continue increasing the multiplicity, a pattern emerges. The more van-
ishing moments, the better the multi-scaling functions model smooth func-
tions and the smaller the multiwavelet coefficients will be for every successive
resolution level 𝑚. In other words, the information of the function will be con-
centrated in a small number of coefficients (Hubbard, 1998).

Certainly, this idea is linked to the so-called cancellation property (Dahmen,
2001; Vuik, 2020), which describes the behavior of the multiwavelet coef-
ficients as we increase the resolution level 𝑚 and the number of vanishing
moments 𝑀 . For a sufficiently smooth function 𝑓|𝐾𝑚,𝑗 ∈ 𝐶𝑀 (𝐾𝑚,𝑗), we have

𝑑ℓ
𝑚,𝑗 ≤ 2(−𝑚+1)(𝑀+1/2) 1

𝑀!‖𝑓 (𝑀)‖𝐿∞(𝐾(𝑚,𝑗))
. (5.13)

The cancellation property sets an upper bound to the rate of decay but it does
not tell us which is its value. Moreover, 𝑓 may not always be given analytically
(e.g., DG solution), thus making it difficult to evaluate Eq. (5.13).

Even though Eq. (5.13) provides limited information about the rate of decay
of the multiwavelet coefficients, it does offer some insight on how, for a fixed
level 𝑚 = ℳ, the higher the number of vanishing moments 𝑀 , the faster the
decay becomes. Then it may seem intuitive to arrange the details 𝑑ℓ

𝑚,𝑗 from
lower to higher 𝑀 and analyze their behavior.

In a first approach, we will start by selecting two analytical functions, 𝑓(𝑥) and
𝑔(𝑥). The signal 𝑓 represents a non-polynomial smooth function, whereas 𝑔
defines a strong discontinuity. The functions are shown in Figure 5.1a and Fig-
ure 5.1b, respectively. Then, for each function, we perform a two-level multi-
scale decomposition with ℳ = 1, as described by Eq. (3.26). We have selected
the functions so that 𝑓, 𝑔 ∉ 𝒫 𝑀 (𝐾). Therefore, for either 𝑓 or 𝑔, Eq. (5.10)
now guarantees

𝑑ℓ = ⟨⋅ , 𝜓ℓ
⟩𝐾

≠ 0 ℓ = 1, ..., 𝑟 , (5.14)
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(c) MW coefficients versus the number of vanishing
moments under different multiplicities on a log-linear
scale. Linear regression shows the rate of decay 𝜍 for
every family of coefficients with multiplicity 𝑟. Solid
lines refer to 𝑓 , dashed lines to 𝑔.

Figure 5.1: 1-D multiwavelet-based
spectrum of a smooth function 𝑓(𝑥)
and discontinuous function 𝑔(𝑥).
Only the coefficients 𝑑ℓ = 𝑑ℓ

0,0 are
considered.

Table 5.1: Regression parameters of
the 1-D multiwavelet-based spectrum
from Figure 5.1.

𝜍 𝑐 Pearson, ℛ

𝑓(𝑥), 𝑟 = 3 0.839 42. −0.998
−, 𝑟 = 4 0.861 95. −0.962
−, 𝑟 = 5 0.883 233. −0.988

𝑔(𝑥), 𝑟 = 3 0.033 0.1 −0.166
−, 𝑟 = 4 0.199 0.6 −0.892
−, 𝑟 = 5 0.164 0.4 −0.601

where for simplicity 𝑑ℓ = 𝑑ℓ
0,0, 𝜓ℓ = 𝜓ℓ

0,0, and 𝐾 = 𝐾(0,0). Figure 5.1c displays
the resulting coefficients for different multiplicities 𝑟 on a log-linear scale.The
number of vanishing moments associated with every coefficient, as described
by Eq. (5.11), are arranged along the 𝑥-axis. We observe how the decline of
the coefficients is similar to an exponential decay of the form:

|𝑑ℓ| ∼ 𝑐10−𝜍𝑀 (5.15)

which corresponds to a straight line in a log-linear plot, as shown in Fig-
ure 5.1c. Similarly to the work of Mavriplis (1989), we employ linear regres-
sion to fit the log |𝑑ℓ| to the straight line ℎ(𝑀) = −𝜍𝑀+log 𝑐. Table 5.1 collects
the values of the decay parameter 𝜍 for both 𝑓 and 𝑔 and different multiplicities
𝑟. It also measures the quality of the fit with the Pearson coefficient, denoted
by ℛ. We notice that the discontinuity in 𝑔 translates to large coefficients
with slow decay (𝜍 < 0.2). Conversely, the smoother signal 𝑓 reports smaller
coefficients with a rapid decay (𝜍 > 0.8). Except for low values of 𝑟, the de-
cay parameter does not seem to be greatly affected by changes in multiplicity.
Finally, the quality of the fit deteriorates when facing discontinuities, which
seems to suggest that the rate of decline ceases to be of exponential nature.

Two-dimensional case In two-dimensions the analysis becomes more elabo-
rated. The vanishing moments are mixed due to the tensor product and we
end up with horizontal, 𝛼; vertical, 𝛽; and diagonal, 𝛾, multiwavelet coeffi-
cients. Therefore, by considering Eq. (4.14) and Eq. (3.39) with ℳ = 1, we
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Table 5.2: Distribution of lowest mode
𝑎𝑖𝑗 resulting from applying Eq. (5.16) to
Eq. (5.17). Multiplicities 𝑟 = 2 and 𝑟 = 3
are tested along the upper and lower
row, respectively. Depending on the
lowest mode and the location 𝛼, 𝛽, 𝛾, we
reach a different quantity of the equiv-
alent number of vanishing moments,
𝑀eq (circled), associated with each co-
efficient 𝒅ℓ. Coefficients that share 𝑀eq
are clustered together (dotted line).

(a) Horizontal, 𝒅ℓ,𝛼

2 𝑎21 𝑎31
1 𝑎20 𝑎30

ℓ𝑥
ℓ𝑦 1 2

2 3

3 𝑎32 𝑎42 𝑎52
2 𝑎31 𝑎41 𝑎51
1 𝑎30 𝑎40 𝑎50

ℓ𝑥
ℓ𝑦 1 2 3

3 4 5

(b) Vertical, 𝒅ℓ,𝛽

𝑎03 𝑎13
𝑎02 𝑎12 2

3

𝑎05 𝑎15 𝑎25
𝑎04 𝑎14 𝑎24
𝑎03 𝑎13 𝑎23 3

4
5

(c) Diagonal, 𝒅ℓ,𝛾

𝑎23 𝑎33
𝑎22 𝑎32

4 5
6

𝑎35 𝑎45 𝑎55
𝑎34 𝑎44 𝑎54
𝑎33 𝑎43 𝑎53

6 7 8
9
10

have

𝒅ℓ,𝛼 = ⟨𝐹 , 𝜳 ℓ,𝛼
⟩𝐾

, with 𝜳 ℓ,𝛼 = 𝜓ℓ𝑥 𝜙ℓ𝑦 , (5.16a)

𝒅ℓ,𝛽 = ⟨𝐹 , 𝜳 ℓ,𝛽
⟩𝐾

, with 𝜳 ℓ,𝛽 = 𝜙ℓ𝑥 𝜓ℓ𝑦 , (5.16b)

𝒅ℓ,𝛾 = ⟨𝐹 , 𝜳 ℓ,𝛾
⟩𝐾

, with 𝜳 ℓ,𝛾 = 𝜓ℓ𝑥 𝜓ℓ𝑦 , (5.16c)

where ℓ = 𝑟(ℓ𝑥 − 1) + ℓ𝑦 with ℓ𝑥, ℓ𝑦 = 1, … , 𝑟. Additionally, to improve
readability we have simplified the nomenclature to 𝐹 = 𝐹 (𝑥, 𝑦), 𝒅ℓ = 𝒅ℓ

0,0,
𝜳 ℓ = 𝜳 ℓ

0,0, and 𝐾 = 𝐾(0,0). The idea is to find out the equivalent vanishing
moments 𝑀eq associated with the horizontal, vertical and diagonal details by
comparing the evolution of these details for a generic polynomial function
𝐹 = 𝑃 with 𝑃 ∈ 𝒫 𝑟+1(𝐾). Namely,

𝐹 (𝑥, 𝑦) =
𝑟+1

∑
𝑖,𝑗=0

𝑎𝑖𝑗𝑥𝑖𝑦𝑗 . (5.17)

The results for multiplicities 𝑟 = 2 and 𝑟 = 3 are reported in Table 5.2. The
extension to higher multiplicities is straightforward. By observing the low-
est non-vanishing mode 𝑎𝑖𝑗 , we conclude that the horizontal and vertical co-
efficients follow the same Eq. (5.11) defined in 1-D. Certainly, their tensor
product in Eq. (5.16) only involves a single multiwavelet, either along the
𝑥- or 𝑦-direction, with the remaining direction not adding any extra vanish-
ing moments. On the other hand, the diagonal coefficient features a tensor
product of two multiwavelets. This means that their vanishing moments are
happening along the 𝑥- and 𝑦-direction simultaneously. Therefore, we define
the number of equivalent vanishing moments as

𝑀eq(ℓ) =
⎧
⎪
⎨
⎪
⎩

ℓ𝑥 + 𝑟 − 1 if 𝒅ℓ,𝛼

ℓ𝑦 + 𝑟 − 1 if 𝒅ℓ,𝛽

2(𝑟 − 1) + ℓ𝑥 + ℓ𝑦 if 𝒅ℓ,𝛾

(5.18)

Once 𝑀eq has been defined, we proceed to order the coefficients 𝒅ℓ from
lower to higher 𝑀eq and monitor their behavior. The motivation here is to
express the coefficients into a single decaying spectrum, in a similar manner
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Figure 5.2: 2-D multiwavelet-based
spectrum of a smooth function 𝐹 (𝑥, 𝑦)
and discontinuous function 𝐺(𝑥, 𝑦).
Only the coefficients 𝒅ℓ = 𝒅ℓ

0,0 are
considered.

Table 5.4: Regression parameters of
the 2-D multiwavelet-based spectrum
from Figure 5.2. We fit log 𝜀(𝒩 ) to the
straight line ℎ(𝒩 ) = −𝜍𝒩 + log 𝑐.

𝜍 𝑐 Pearson, ℛ

𝐹 (𝑥), 𝑟 = 3 0.746 185. −0.965
−, 𝑟 = 4 0.850 3478. −0.968
−, 𝑟 = 5 0.938 71663. −0.970

𝐺(𝑥), 𝑟 = 3 0.195 2. −0.785
−, 𝑟 = 4 0.196 4. −0.989
−, 𝑟 = 5 0.186 5. −0.836

to the one-dimensional case. To that end, we define the following energy
spectrum

𝜀(𝒩 ) = ‖𝒅ℓ,𝛼 + 𝒅ℓ′,𝛽 + 𝒅ℓ″,𝛾
‖𝐿2

, ∀ℓ, ℓ′, ℓ″ | 𝑀eq( ⋅ ) = 𝒩 , (5.19)

where 𝒩 = 𝑟, … , 3𝑟 − 1 limits the possible values of 𝑀eq. We test Eq. (5.19)
by evaluating two different functions, denoted by 𝐹 (𝑥, 𝑦) and 𝐺(𝑥, 𝑦). They
are illustrated in Figure 5.2a and Figure 5.2b, respectively. The behavior of the
spectrum under different multiplicities 𝑟 is shown in Figure 5.2c. Additionally,
the log-linear plot features a regression line for every 𝑟-family to measure the
rate of decay of 𝜀(𝒩 ). The regression parameters are collected in Table 5.4.
Analogously to the 1-D case, we observe a fast exponential decay and high
quality of the fit when the signal is regular (𝜍 > 0.7, ℛ > 0.9), and a slower
decline when facing discontinuities (𝜍 ≈ 0.2). These behaviors remain more
consistent with varying multiplicities compared to the 1-D case. This can
be explained by the higher amount of data points, which helps to phase out
outliers.

5.2.3 The multiwavelet regularity indicator

Up to this point we have proved how a clever arrangement of themultiwavelet
coefficients allows us to estimate the regularity of a signal by measuring its
rate of decay. However, the analysis has been only performed on analytical
functions. In the next paragraphs we will described the extension to the DG
framework. In particular, we will put under the microscope the new enriched
solution 𝑢ℎ|𝐾 outlined in Chapter 4 and come up with a novel estimate of the
local smoothness based on a multiwavelet expansion.

Firstly, we will focus our attention on the 1-D setting. With this in mind,
we recall the reader the local multiresolution procedure applied to 𝑢ℎ|𝐾 , as de-
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Figure 5.3: Influence of the decay param-
eter 𝜍𝐾 on the enriched solution 𝑢ℎ|𝐾
for varying multiplicities 𝑟. By delimit-
ing 𝑢ℎ,0 we solve Eq. (5.23) and enable
𝑢ℎ,1 to readjust according to the value
of 𝜍𝐾 . By increasing 𝜍𝐾 we gradually
enlarge the interface jump between 𝑢ℎ,0
and 𝑢ℎ,1.
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(b) Multiplicity 𝑟 = 3. Initialization
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𝑘=1 = 0, 𝒶3 = −1/2.
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(c) Multiplicity 𝑟 = 4. Initialization
{𝒶𝑘}𝑘=1,3 = 0, 𝒶2 = 7/2, 𝒶4 = −1/4.
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(d) Multiplicity 𝑟 = 5. Initialization
{𝒶𝑘}3

𝑘=1 = 0, 𝒶4 = 6/5, 𝒶5 = −3/10.

scribed by Eq. (4.42) and Eq. (4.43), from which the multiwavelet coefficients
within an element 𝐾 can be written as follows

𝑑ℓ
𝐾 = 1

√2

𝑟

∑
𝑘=1

𝑁art−1

∑
𝑖=0

𝐺(𝑖)
ℓ𝑘𝑈 𝑘

𝜅𝑖 , ℓ = 1, ..., 𝑟 , 𝑁art = 2 , (5.20)

where 𝐺(𝑖)
ℓ𝑘 are the highpass QMF coefficient matrices (Geronimo et al., 2017)

given by Eq. (4.8), 𝑈 𝑘
𝜅𝑖 are the coefficients of 𝑢ℎ,𝑖, and 𝜅𝑖 refer to the finer

echelon of the two-level multiwavelet expansion within 𝐾.

Drawing insight from the behavior of the spectrum |𝑑ℓ| associated with ana-
lytical functions (see Figure 5.1c), we expect to register a strong link between
the regularity of 𝑢ℎ|𝐾 and the rate of decay of its multiwavelet spectrum, given
by Eq. (5.20). To evaluate this hypothesis, we examine several values of the
decay parameter 𝜍𝐾 associated with the multiwavelet expansion of 𝑢ℎ|𝐾 and
monitor the subsequent changes in 𝑑ℓ

𝐾 . Naturally, any modification in the
details will reshape the original 𝑢ℎ|𝐾 and its regularity. We start by describing
its left, 𝑢ℎ,0, and right side, 𝑢ℎ,1, with the generic coefficients

𝒶𝑘 = 𝑈 𝑘
𝜅0 , 𝒷 𝑘 = 𝑈 𝑘

𝜅1 , (5.21)
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which transform Eq. (5.20) into

𝑑ℓ
𝐾 = 1

√2

𝑟

∑
𝑘=1

(𝐺(0)
ℓ𝑘𝒶𝑘 + 𝐺(1)

ℓ𝑘𝒷 𝑘
) . (5.22)

By assuming that the spectrum |𝑑ℓ
𝐾 | decays exponentially, we can replace it

in Eq. (5.15). Therefore, we have:

10−𝜍𝐾(ℓ+𝑟−1) = 1
√2 |

𝑟

∑
𝑘=1

(𝐺(0)
ℓ𝑘𝒶𝑘 + 𝐺(1)

ℓ𝑘𝒷 𝑘
)| , ℓ = 1, … , 𝑟 , (5.23)

where we have injected expression (5.11) into the exponent. Additionally, with-
out loss of generality we set that 𝑐 = 1. Finally, to move from similarity in
the original equation to equality we have assumed sufficiently high quality
of fit. By choosing a multiplicity 𝑟 and setting a value for the parameter 𝜍𝐾 ,
Eq. (5.23) becomes an undetermined linear system with 𝑟 equations and 2𝑟
unknowns (coefficients 𝒶ℓ and 𝒷 ℓ). To be able to solve the system we initial-
ize 𝒶ℓ, which causes 𝑢ℎ,0 to be fixed and makes 𝑢ℎ,1 dependent on the input
value of 𝜍𝐾 .

Figure 5.3 illustrates the resolution of Eq. (5.23) for different multiplicities
and values of 𝜍𝐾 . For the lowest multiplicity value 𝑟 = 2, Figure 5.3a, shows a
progressive increase in the interface jump between 𝑢ℎ,0 and 𝑢ℎ,1 when the rate
of decay is reduced (𝜍𝐾 → 0). Qualitatively speaking, the wider this gap grows,
the larger the discontinuity and the less smooth 𝑢ℎ|𝐾 becomes. This result
is in agreement with the low values of 𝜍𝐾 recorded for analytical functions
when facing discontinuities. The same behavior can be observed for higher
multiplicities (Figures 5.3b to 5.3d).

Two-dimensional case In the 2-D context we can describe a generic enriched
solution 𝒖ℎ|𝐾 by its four contributions {𝒖ℎ,𝑖}

3
𝑖=0 with coefficients

𝒶𝑘 = 𝑼 𝑘
𝜅0 , 𝒷 𝑘 = 𝑼 𝑘

𝜅1 , (5.24a)
𝒸𝑘 = 𝑼 𝑘

𝜅2 , 𝒹 𝑘 = 𝑼 𝑘
𝜅3 . (5.24b)

By replacing Eq. (5.24) into Eq. (4.45) and Eq. (4.46), we have

𝒅ℓ,𝛼
𝐾 = 1

2

𝑟

∑
𝑘𝑥,𝑘𝑦=1

[𝐺(0)
ℓ𝑥,𝑘𝑥

𝐻 (0)
ℓ𝑦,𝑘𝑦

𝒶𝑘 + 𝐺(0)
ℓ𝑥,𝑘𝑥

𝐻 (1)
ℓ𝑦,𝑘𝑦

𝒷 𝑘

+ 𝐺(1)
ℓ𝑥,𝑘𝑥

𝐻 (0)
ℓ𝑦,𝑘𝑦

𝒸𝑘 + 𝐺(1)
ℓ𝑥,𝑘𝑥

𝐻 (1)
ℓ𝑦,𝑘𝑦

𝒹 𝑘
], (5.25a)

𝒅ℓ,𝛽
𝐾 = 1

2

𝑟

∑
𝑘𝑥,𝑘𝑦=1

[𝐻 (0)
ℓ𝑥,𝑘𝑥

𝐺(0)
ℓ𝑦,𝑘𝑦

𝒶𝑘 + 𝐻 (0)
ℓ𝑥,𝑘𝑥

𝐺(1)
ℓ𝑦,𝑘𝑦

𝒷 𝑘

+ 𝐻 (1)
ℓ𝑥,𝑘𝑥

𝐺(0)
ℓ𝑦,𝑘𝑦

𝒸𝑘 + 𝐻 (1)
ℓ𝑥,𝑘𝑥

𝐺(1)
ℓ𝑦,𝑘𝑦

𝒹 𝑘
], (5.25b)

𝒅ℓ,𝛾
𝐾 = 1

2

𝑟

∑
𝑘𝑥,𝑘𝑦=1

[𝐺(0)
ℓ𝑥,𝑘𝑥

𝐺(0)
ℓ𝑦,𝑘𝑦

𝒶𝑘 + 𝐺(0)
ℓ𝑥,𝑘𝑥

𝐺(1)
ℓ𝑦,𝑘𝑦

𝒷 𝑘
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Figure 5.4: Effect of the decay param-
eter 𝜍𝐾 on the enriched solution 𝒖ℎ|𝐾
with multiplicity 𝑟 = 2. We have
initialized the system resulting from
Eq. (5.26) and Eq. (5.27) by 𝒶1 = 0,
𝒶2 = 4, 𝒶3 = −4, and 𝒶4 = −7/4.
Consequently, 𝒖ℎ,0 is fixed and the re-
maining contributions change
according to the parameter 𝜍𝐾 .

+ 𝐺(1)
ℓ𝑥,𝑘𝑥

𝐺(0)
ℓ𝑦,𝑘𝑦

𝒸𝑘 + 𝐺(1)
ℓ𝑥,𝑘𝑥

𝐺(1)
ℓ𝑦,𝑘𝑦

𝒹 𝑘
]. (5.25c)

where 𝑘 = 𝑟(𝑘𝑥 −1)+𝑘𝑦 and ℓ = 𝑟(ℓ𝑥 −1)+ℓ𝑦, with ℓ𝑥, ℓ𝑦 = 1, … , 𝑟. Instead of
following the single decaying spectrum from Eq. (5.19), we will exceptionally
analyze the horizontal, |𝒅ℓ,𝛼

𝐾 |; vertical, |𝒅ℓ,𝛽
𝐾 |; and diagonal spectrum, |𝒅ℓ,𝛾

𝐾 |,
separately so that we can provide additional equations to properly solve the
ensuing linear system. Therefore, we expect an exponential rate of decay of
the form:

|𝒅ℓ
𝐾 | ∼ 𝑐10−𝜍𝐾 𝑀eq . (5.26)

By considering the expression of the number of equivalent vanishing mo-
ments 𝑀eq, given by Eq. (5.18), and assuming 𝑐 = 1 and a high quality of fit
(see Table 5.4), Eq. (5.26) becomes

|𝒅ℓ,𝛼
𝐾 | = 10−𝜍𝐾(ℓ𝑥+𝑟−1) , (5.27a)

|𝒅ℓ,𝛽
𝐾 | = 10−𝜍𝐾(ℓ𝑦+𝑟−1) , (5.27b)

|𝒅ℓ,𝛾
𝐾 | = 10−𝜍𝐾(2(𝑟−1)+ℓ𝑥+ℓ𝑦) . (5.27c)

In the same manner as in the 1-D case, by quantifying the multiplicity 𝑟 and
the decay parameter 𝜍𝐾 , the set of equations Eq. (5.27a) to Eq. (5.27c) turn
into an undetermined system with 3𝑟2 equations and 4𝑟2 unknowns (coeffi-
cients 𝒶𝑘, 𝒷 𝑘, 𝒸𝑘, and 𝒹 𝑘). Initialization of 𝒶𝑘 enables us to solve the system
by fixing the contribution 𝒖ℎ,0 and making the remaining enriched solution
unknowns {𝒖ℎ,𝑖}

3
𝑖=1, dependent on the decay parameter 𝜍𝐾 . In the next para-

graphs we evaluate multiple values of 𝜍𝐾 under different multiplicities 𝑟 and
examine how they influence the final shape of 𝑢ℎ|𝐾 .

Figure 5.4 outlines the solution to the system for 𝑟 = 2. Similarly to the behav-
ior observed in 1-D, rapid decay rates (𝜍𝐾 ≈ 1) report smaller interface jumps
between contributions 𝒖ℎ,𝑖, which in turn imply a more regular final 𝒖ℎ|𝐾 .
When the rate of decay is progressively slowed down (𝜍𝐾 → 0), the gap be-
tween interfaces widens and substantial discontinuities start to emerge, caus-
ing 𝒖ℎ|𝐾 to lose regularity. Figure 5.5 illustrates the analysis for 𝑟 = 3, which
reports comparable results.

From the study of analytical functions in Section 5.2.2 to the previous dis-
cussion on the DG solution, we have proved the existence of a consistent
connection between signal regularity and the decline of the spectrum of the
multiwavelet coefficients. If we focus our attention exclusively on the DG
framework, this result seems to suggest that the decay parameter 𝜍𝐾 repre-
sents a reliable estimate of the local regularity of 𝒖ℎ|𝐾 and, by extension, of
the original solution 𝒖ℎ|𝐾 .

In light of this result, we can assign the decay parameter 𝜍𝐾 to the role of lo-
cal regularity indicator. Consequently, by putting together each multiwavelet
component 𝒅ℓ,𝛼

𝐾 , 𝒅ℓ,𝛽
𝐾 , and 𝒅ℓ,𝛾

𝐾 into a single decaying spectrum similarly to
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Figure 5.5: Influence of decay parame-
ter 𝜍𝐾 on the enriched solution 𝒖ℎ|𝐾 for
𝑟 = 3 and initialization {𝒶𝑘}6

𝑘=1 = 0,
{𝒶𝑘}8

𝑘=7 = 3/4, and 𝒶9 = 0.

Eq. (5.19), and performing a least-squares fit, we finally have:

log ‖𝒅ℓ,𝛼
𝐾 + 𝒅ℓ′,𝛽

𝐾 + 𝒅ℓ″,𝛾
𝐾 ‖𝐿2

∼ log 𝑐 − 𝜍𝐾 𝑀eq , (5.28)

where ℓ, ℓ′, ℓ″ = 1, … , 𝑟 are such that 𝑀eq( ⋅ ) = 𝒩 , with 𝒩 = 𝑟, … , 3𝑟 − 1. The
number of equivalent vanishing moments 𝑀eq is given by Eq. (5.18).

5.2.4 Element marking and hp-decision criteria

Element marking criterion Once we have determined the local error esti-
mates 𝜂𝐾 for every 𝐾 ∈ Ωℎ,𝓅 (see Section 5.2.1), we now will use this in-
formation to select (mark) which elements require higher spatial resolution.
Note that the error estimates could be used to identify elements which require
lower spatial resolution as well. However, neither element agglomeration nor
local polynomial reduction will be considered in this study.

There are numerous marking criteria developed in the literature. Based on
the analysis presented in Naddei (2019) we have opted for the two following
procedures:

(a) Local threshold criterion. It is themost intuitive andwidely used criterion
(see e.g. Oden et al. (1989) or Rueda-Ramírez et al. (2019a)). The idea
is to flag an element 𝐾 if the local value of the error indicator 𝜂𝐾 is above
a user-defined tolerance, 𝜂tol. Therefore, we define the set of marked
elements, Ωmark, as follows:

Ωmark = {𝐾 ∈ Ωℎ,𝓅 | 𝜂𝐾 > 𝜂tol}. (5.29)

(b) Maximummarking criterion. Initially proposed by Babuvška and Rhein-
boldt (1978b), it has seen widespread adoption (see e.g. Dörfler and
Heuveline (2007)). In this case, 𝐾 is flagged if 𝜂𝐾 is above a specified
percentage of its maximum. Namely:

Ωmark = {𝐾 ∈ Ωℎ,𝓅 | 𝜂𝐾 > 𝜃 max
𝐾∈Ωℎ,𝓅

𝜂𝐾 }, (5.30)

where the user-defined parameter 𝜃 ∈ [0, 1] is called marking fraction.
The lower this parameter, the higher the number of total marked ele-
ments.

hp-decision criterion The twomarking criteria presented in the previous para-
graphs inform us on which elements should be spatially adapted. However,
they do not tell us whether to adapt the size, or the polynomial order of the
flagged elements to obtain an optimal solution. We base this judgement on
the rate of decay of the multiwavelet spectrum. From the observations col-
lected in sections 5.2.2 to 5.2.3, rapid decline of the spectrum suggests
high regularity in the solution, which means that p-adaptation is indicated.
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Otherwise, h-adaptation is required. Application of this hp-decision criterion
leads to the following two element subsets:

Ωmark, h = {𝐾 ∈ Ωmark | ̂𝜍𝐾 < 𝜍tol}, (5.31a)
Ωmark, p = {𝐾 ∈ Ωmark | ̂𝜍𝐾 ≥ 𝜍tol}, (5.31b)

where Ωmark, h and Ωmark, p represent the subset of the elements flagged for
h- and p-adaptation, respectively; and ̂𝜍𝐾 is the normalized version of the
multiwavelet regularity indicator defined as

̂𝜍𝐾 = 1
𝜍max − 𝜍min

𝜍𝐾 − 𝜍min
𝜍max − 𝜍min

, (5.32)

with 𝜍𝐾 given by Eq. (5.28), and the values 𝜍min and 𝜍max provided by

𝜍min = min
𝐾∈Ωℎ,𝓅

𝜍𝐾 , 𝜍max = max
𝐾∈Ωℎ,𝓅

𝜍𝐾 . (5.33)

The normalization outlined in Eq. (5.32) ensures that ̂𝜍𝐾 ∈ [0, 1] for all 𝐾 ∈
Ωℎ,𝓅, independently of the problem under study. Additionally, the user-defined
parameter 𝜍tol ∈ [0, 1] revealed in Eq. (5.31) allows us to establish an hp-
threshold to control the advantage of one adaptation type over the other.
In other words, we can increase the overall proportion of Ωmark, h or Ωmark, p
with respect to the larger set Ωmark by increasing or reducing 𝜍tol, respectively.
Namely:

Ωmark =
⎧
⎪
⎨
⎪
⎩

Ωmark, h if 𝜍tol = 1
Ωmark, h ∪ Ωmark, p if 0 < 𝜍tol < 1
Ωmark, p if 𝜍tol = 0

(5.34)

Finally we also have

Ωmark, h ∩ Ωmark, p = ∅ , (5.35)

which means that any element 𝐾 ∈ Ωmark cannot be designated for both h-
and p-adaptation simultaneously.

Supplementarymarking Right after themarking and hp-decision criteria have
been applied andwe have obtained Ωmark, h and Ωmark, p, additional restrictions
might be enforced. In regard to h-adaptation, we limit the separation in re-
finement levels between neighbouring elements to at most one by marking
additional elements if necessary, which we denote by the subset Ω2∶1. This
condition is frequently called the two-to-one rule (Demkowicz et al., 1989)
and safeguards that neighbouring elements are not of exceedingly different
size. Therefore:

Ω2∶1 ⊂ Ωmark, h . (5.36)

Equivalently, regarding p-adaptation we limit the change of the local polyno-
mial degree between two neighboring elements to be no larger than one. As a
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result of this limitation, additional elements might be flagged for polynomial
increase to fulfill this condition. If we symbolize them by the subset ΩΔ𝑝=1
we have:

ΩΔ𝑝=1 ⊂ Ωmark, p . (5.37)

5.2.5 hp-mesh enrichment methodology

After selecting one of themarking criteria proposed in Section 5.2.4 together
with the hp-decision criterion described in the same section, we proceed to
the construction of the new hp-mesh resulting from the application of the
aforementioned guidelines. The hp-mesh Ωℎ,𝓅 is made up by the pair of sets
Ωℎ and 𝓅 (see Eq. (5.1)), each of which require separate handling.

To adapt the mesh Ωℎ we follow the so-called local mesh refinement method-
ology (Bank and Sherman, 1999), which restrict the adaptation to individ-
ual marked elements. This is in contrast to semi-local approaches such as
AMR (Berger and Oliger, 1984), in which elements of one or more regions
of the mesh are refined as a group.

In particular, the element-refinement methodology pursued in this study is
based on the work by Kuru et al. (2016) and Naddei (2019), where they
have implemented an (isotropic) local mesh refinement approach on non-
conforming curvilinear hexahedral and quadrilateral meshes. Their idea is to
divide each of the marked elements into 2𝑑 new elements, where 𝑑 is the
dimension of the problem.

In our case, we consider simpler non-conforming Cartesian meshes in 2-D.
Consequently, elements become rectangles that, if marked for refinement,
may produce four new geometrically similar rectangles. To visualize this con-
cept let Ω(0)

ℎ be the given initial mesh and Ω(1)
ℎ be the resulting mesh after one

refinement step. We denote any 𝐾 (0) ∈ Ω(0)
mark, h a parent element. Its associ-

ated child elements are denoted by the set {𝐾 (1)
𝑗 }3

𝑗=0 ∈ Ω(1)
ℎ . Then, thanks to

the refinement operator 𝓠 ∶ {𝐾 (0)} → {𝐾 (1)
0 , ..., 𝐾 (1)

3 } we can explicitly define
the link between parent and children in physical space. The operator 𝓠 can
be further expressed in the reference space as follows:

𝓠 = 𝜩𝐾 𝓠̂ 𝜩−1
𝐾 (5.38)

where 𝓠̂ ∶ { ̂𝐾} → { ̂𝐾0, ..., ̂𝐾3} denotes the operator that divides the reference
element into four identical children, and 𝜩𝐾 is the bijective transformation
from reference to physical space. Because we work with rectangles, the trans-
formation is simply a scaling of the reference space by the constant Jacobian
of the transformation. Figure 5.6 describes the procedure in detail.

The second contribution of the hp-mesh Ωℎ,𝓅 is given by the degree distribu-
tion 𝓅, which is just the allocation of a local polynomial degree 𝑝𝐾 to each
𝐾 ∈ Ωℎ. To adapt the vector 𝓅 we adjust the local polynomial degree 𝑝𝐾
individually. Particularly, our approach is based on the isotropic p-adaptive
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Figure 5.6: Isotropic h-refinement in the
context of reference and physical ele-
ment.
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methodology described by Naddei et al. (2018). In the study the authors in-
crease the local order of the approximation by one when the element is flagged
for p-enrichment. If we consider 𝓅(0) as the initial p-vector, the p-distribution
after adaptation is given by

𝓅(1) = {𝑝𝐾 , 𝐾 (0) ∉ Ω(0)
mark, p} ∪ {𝑝𝐾 + 1, 𝐾 (0) ∈ Ω(0)

mark, p} (5.39)

5.2.6 The hp-adaptive algorithm

A flow chart describing our hp-adaptive algorithm for steady problems is
shown in Figure 5.7. The first step of the algorithm consists in providing an
initial hp-mesh Ω(0)

ℎ,𝓅 and solving for the corresponding DG approximate so-
lution 𝒖(0)

ℎ,𝓅. Namely, the non-linear system of ordinary differential equations
given by Eq. (2.26) is first linearized by Newton’s method and then the result-
ing linear system is solved by the GMRES iterative method combined with
an incomplete LU preconditioning. In case that an explicit scheme to evolve
the solution in time is used instead, we use the SSP Runge-Kutta method pre-
sented in Section 2.2.7. The time evolution is stopped once the time residual
is dropped below 1 × 10−10 (implicit) or 1 × 10−12 (explicit). It is worth men-
tioning that the lowest discretizations errors reported in the numerical results
(see next Chapters 6 and 7) are in the range 1×10−7 to 1×10−8. Therefore, we
make sure that the time residual does not dominate the discretization error.

Once the numerical solution 𝒖(0)
ℎ,𝓅 is converged, its element-wise contribution

𝒖(0)
ℎ,𝓅|𝐾 is subjected to a series of post-processing operations. Firstly, we build

a more accurate approximate solution 𝒖(0)
ℎ,𝓅|𝐾 by employing any of the recon-

struction methods described in Section 4.3. Secondly, we perform a local
multiscale decomposition of 𝒖(0)

ℎ,𝓅|𝐾 to extract its multiwavelet contribution
𝒟 (0)

𝐾 , as explained in Section 4.4. Lastly, we construct the error estimator 𝜂(0)
𝐾

and regularity indicator 𝜍(0)
𝐾 based on the spectrum 𝒟 (0)

𝐾 of the multiwavelet
coefficients, as presented in sections 5.2.1 and 5.2.3, respectively. On the
one hand, 𝜂(0)

𝐾 offers an insight into the quality of the solution and thus it
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Figure 5.7: Flow chart of the proposed
hp-adaptive algorithm.

determines if the spatial resolution must be upgraded. If that is the case, we
proceed to flag the elements that demand higher resolution, Ω(0)

mark, accord-
ing to the marking strategies identified in Section 5.2.4. On the other hand,
𝜍(0)

𝐾 and the hp-decision criterion work together to estimate the smoothness
of the solution and assign either h- or p-adaptation to the elements in Ω(0)

mark
accordingly. We then proceed to adapt the elements belonging to Ω(0)

mark, h
and Ω(0)

mark, p by following the methodology presented in Section 5.2.5 to ar-
rive to the adapted hp-mesh Ω(1)

ℎ,𝓅. The discrete problem for the new mesh is
solved again and the entire procedure is repeated until certain error criteria
are fulfilled.

Generally, two extra steps are applied right after obtaining Ω(1)
ℎ,𝓅. The first step

is the so-called reinitialization operation. It means that the 𝐿2-projection of
the previous solution 𝒖(0)

ℎ,𝓅 is used as the initial condition on the newly gener-
ated Ω(1)

ℎ,𝓅. The second step is load balancing in the context of parallel computa-
tions.This operation leads to a uniform distribution of the computational load
by efficiently partitioning Ω(1)

ℎ,𝓅 taking into account the new number of degrees
of freedom and the element-wise distribution of polynomial degrees.
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5.3 PARALLEL IMPLEMENTATION

It is widely accepted that the compact stencil and discontinuous behavior of
the DG spatial operators make the implementation of DGMs over multi-
processor distributed-memory architectures to scale remarkably well, as the
number of processors increases (see e.g., Biswas et al. (1994)).

In the present work, parallelization is implemented by using message passing
interface (MPI). In particular, the computational domain is divided into a
number of partitions and each partition is allocated to an available MPI pro-
cess. This operation is generally labelled as mesh partitioning. Since the flux
evaluations in the DGM involve only the current element and its immediate
neighbors, mesh partitioning guarantees that the greater part of the flux com-
putations within an individual MPI process demand no inter-process com-
munication. To enable communication between two distinct MPI processes
a buffer of values is constructed along their shared boundary and the rele-
vant information is delivered by carrying out a single MPI message exchange.
The main goal of mesh partitioning is to distribute the workload among the
available processors (load balancing), while minimizing the communication
between MPI processors. In doing so, the operation of the multi-processor
environment is optimized.

Load balancing becomes an important question for hp-meshes due to the
number of degrees of freedom (and hence the computational load) varying
from element to element. In this case, well-balanced mesh partitioning must
include some element-wise measure of the computational load.

In the context of h/p-adaptations, Naddei (2019) has performed a detailed
comparison of different methodologies to estimate the computational load
and their effect on improving the resulting domain decomposition. Naddei
evaluates the mesh partitioning quality by measuring the MPI imbalance un-
der various circumstances. If the effect of the local polynomial degree is ig-
nored, high MPI imbalances are obtained. Conversely, factoring in compu-
tational load estimates based on operation counts per element (proportional
to the local 𝑝) seem to reduce the imbalance but the results are not consistent.
The most balanced results are achieved when the estimates are based on direct
measurements of computational times.

For that reason, to drive the mesh partitioning in the present work we have
chosen the later approach. Most importantly, Naddei (2019) claims that it
does not require to be performed every time a new simulation is launched.
Once the calibration has been completed for a given set of discretization,
physical model, and hardware, these parameters can be recycled for any future
simulation sharing similar characteristics.

5.4 CONCLUDING COMMENTARY

In this chapter we have developed an hp-adaptive scheme built on the local
multiresolution analysis of the DG solution. We have made significant devel-
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opments in computing the estimation of the error, in choosing the adaptive
approach, and in deciding on the appropriate hp-adaptive strategy.

The estimation of the error has been assigned to the multiwavelet error esti-
mator, which combines the concepts of discretization-based indicators and
multiresolution-based adaptation by evaluating the 𝐿2-norm of the local mul-
tiwavelet contribution.

In order to adjust the spatial resolution, we have selected local mesh enrich-
ment by hp-adaptation as the adaptive approach, which is especially well-
suited to discontinuous Galerkin methods. In particular, we have chosen
isotropic mesh and polynomial order refinement.

Lastly, we have built a suitable hp-adaptive strategy by pairing the multi-
wavelet regularity indicator, which measures the rate of decay of the spec-
trum of the multiwavelet coefficients, with an hp-decision criterion based on
the findings of a consistent connection between solution smoothness and the
decline of the multiwavelet spectrum.





Part III

NUMERICAL RESULTS





Chapter6
H-ADAPTIVE SIMULATIONS

In this chapter, the multiwavelet error estimators developed in Section 5.2.1
are assessed and compared against relevant estimators from the literature.
Our objective is to evaluate their overall performance in the context of h-
adaptive simulations. For each error estimator we analyze the convergence his-
tory of the adaptive algorithm, the memory savings achieved, and the regions
of the mesh selected for adaptation. It is well known that, local h-refinement
produces optimal adaptation of the spatial resolution in the vicinity of irregu-
lar features, such as physical and geometrical singularities.Therefore, we focus
our attention into two configurations that would potentially benefit from h-
adaptation: the one-dimensional viscous Burgers equation in the presence of
a shock, and the two-dimensional laminar flow over a backward-facing step.
This step acts as a geometrical singularity which has a strong influence on the
downstream flow.

It is worth mentioning that in this chapter we are exclusively focused on h-
adaptation. Therefore, the regularity indicator, which has been presented in
Section 5.2.3 as a companion of the error estimator, is not used here. We
thus configure the hp-criterion from Section 5.2.4 to solely allow for mesh
refinement.

This chapter is organized as follows. We begin the chapter by studying the
1-D viscous Burgers equation in Section 6.1. We describe the computa-
tional details employed in the simulations in Section 6.1.1. The effect of
the different estimators on the h-adaptive results are analyzed by means of
the discretization error and the effectivity index, which are the subjects of
Sections 6.1.3 and 6.1.5, respectively. The 1-D configuration is followed
by Section 6.2, in which we present the 2-D laminar flow over a backward-
facing step. The problem configuration is described in Section 6.2.1. In Sec-
tion 6.2.2 we compare our reference solution with results from the litera-
ture to establish a solid baseline for h-refinement. Adaptation is introduced
in Section 6.2.3, followed by the review of the h-adapted meshes in Sec-
tion 6.2.4, and the analysis of the error in Section 6.2.5. We also discuss
the memory and cpu-time gains by activating adaptation in Section 6.2.6
and 6.2.7, respectively. Additionally, Section 6.2.8 presents the evolution of
separation/reattachment lengths. Finally, we close the chapter by examining
the performance of the family of multiwavelet estimators in Section 6.2.9.
and by outlining the main conclusions of the chapter in Section 6.3.
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6.1 VISCOUS BURGERS EQUATION

6.1.1 Computational parameters

Based on the the one-dimensional viscous Burgers equation, which has been
described in detail in Section 2.1.2, we perform a series of steady simulations
on the computational domain Ωℎ = [−1, 1]. We cover two configurations with
different initial conditions (ICs) and boundary conditions (BCs).

(a) Firstly, a stationary front (IC-shock) which simulates the presence of a
sharp gradient in the middle of the domain. For this configuration we
have

𝑢(𝑥, 0) = − tanh(𝑥/2𝜈) with 𝜈 = 0.02 and 𝑢(∓1, 𝑡) = ±1 . (6.1)

These conditions are analogous to the solution of the Riemann problem
for large enough 𝑡 > 0.

(b) The second configuration is determined by a sinusoidal function and it
is representative of a smooth solution (IC-smooth). Thus we define

𝑢(𝑥, 0) = sin(2𝜋𝑥) with 𝑢(∓1, 𝑡) = 0 . (6.2)

A source term is added to ensure the convergence to a forced steady so-
lution. In addition, the corresponding steady solution is smooth with-
out sharp gradients. Namely:

𝑆(𝑥) = (2𝜋) sin(2𝜋𝑥) cos(2𝜋𝑥) + 𝜈(2𝜋)2 sin(2𝜋𝑥). (6.3)

To evolve the solution in time from either of the initial conditions up to the
steady-state, the explicit scheme presented in Section 2.2.7 is employed. We
then apply recursively the hp-adaptive algorithm explained in Section 5.2.6
and Figure 5.7 until we achieve the desired adapted solution. As we have
mentioned in the beginning of the chapter, by calibrating the hp-criterion
to uniquely allow for mesh refinement the algorithm becomes an h-adaptive
procedure.

The aforementioned algorithm determines if refinement is required based on
the value provided by an error estimator in conjunction with the local thresh-
old marking strategy described by Eq. (5.29) in Section 5.2.4. We consider
the three variations of the multiwavelet error estimator developed in Sec-
tion 5.2.1 and presented in Eq. (5.4). We remind the reader of the termi-
nology of these estimators:

1. 𝜅-multiwavelet estimator, denoted by 𝜂𝜅-MW
𝐾 .

2. 𝐾-multiwavelet estimator, symbolized by 𝜂𝐾-MW
𝐾 .

3. Γ-multiwavelet estimator, given by 𝜂Γ-MW
𝐾 .

and the additional two estimators from the literature:

4. Small-scale energy density estimator, 𝜂SSED
𝐾 (Kuru et al., 2016).
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5. Spectral decay estimator, 𝜂SD
𝐾 (Taube et al., 2010).

6.1.2 Definition of errors

We now define several quantities that will be used to better understand the
numerical results that will be presented in the following sections. Let 𝑢 be the
exact solution to the viscous Burgers equation and 𝑢ℎ ∈ 𝒱 𝑝

ℎ its approximate
DG solution. We define the discretization error as follows:

‖𝑒ℎ‖𝐿2(Ω) = ‖𝑢 − 𝑢ℎ‖𝐿2(Ω). (6.4)

Additionally, we measure the difference between the approximate DG solu-
tion 𝑢ℎ and the reconstruction 𝑢ℎ ∈ 𝒱 𝑝

ℎ built in Chapter 4 by:

‖ℰℎ‖𝐿2(Ω) = ‖𝑢ℎ − 𝑢ℎ‖𝐿2(Ω) with 𝑢ℎ = ∑
𝐾

𝑢ℎ|𝐾 , ∀𝐾 ∈ Ωℎ, (6.5)

which follows the nomenclature in Dolejší and Solin (2016). The authors
set Eq. (6.5) as their estimation of the discretization error. We call this mea-
sure the Dolejší estimation. In our case, the value of 𝑢ℎ|𝐾 is given by the re-
construction methods described in Sections 4.3.1 to 4.3.3. Therefore, we
have three versions of the Dolejší estimation, corresponding to the three
post-enrichment methods studied. They are denoted by ℰ𝜅

ℎ , ℰ𝐾
ℎ , and ℰΓ

ℎ . The
Dolejší estimation becomes another entry to the comparison between the
multiwavelet-based estimators and the SSED and SD estimators.

It is also interesting to measure the quality of the error estimation. To this
end, we define the effectivity index as the ratio between the error given by the
indicator and the discretization error. It reads

𝜄eff = 𝜂
𝑒ℎ

, (6.6)

where 𝜂 = (∑𝐾∈Ωℎ
𝜂2

𝐾 )
1/2

. An index close to unity means that the estimator
accurately mimics the evolution of the discretization error. For each compu-
tation of the h-adaptive algorithm, we evaluate the error estimator over the
full domain, 𝜂; the discretization error, 𝑒ℎ; and the Dolejší estimation, ℰℎ, as
well as the effectivity index for the selected cases.

6.1.3 Error analysis of the h-adaptive results

An analysis of the effect of the estimators in the adaptation of the viscous
Burgers equation under IC-shock is plotted in Figure 6.1 for different degrees
𝑝 of the numerical solution. Figures 6.1a to 6.1c show the variation of the
discretization error 𝑒ℎ in the conservative variable 𝑢 versus the number of de-
grees of freedom (#DOFs) when uniform h-refinement is performed as well
as for the locally h-adapted solution under the different error estimators. The
#DOFs is calculated by evaluating the number of degrees of freedom in each
element (𝑝 + 1)𝑑 (with 𝑑 the dimension of the problem) multiplied by the
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Figure 6.1: Viscous Burgers equation. Discretization error in 𝐿2-norm under uniform and h-adaptive refinement for selected
orders of the numerical solution. Adaptation is guided by various estimators. The multiwavelet family of estimators, Eq. (5.3),
is denoted by , the estimators from the literature, Eqs. (5.8) and (5.9), are symbolized by , and the Dolejší
estimation, Eq. (6.5), is showcased by . For all estimators, the adaptive process is performed up to the 7th adaptation
step.

total number of elements in the computational domain. For every analyzed
degree, the error associated with the uniform h-refinement follows the the-
oretical slope determined by the order of the method, as illustrated by the
dashed lines.

As regards the adaptive procedure, all the estimators lead to a large decrease
in the #DOFs for a given level of accuracy. The SSED and SD estimators
show a marginally faster reduction of the #DOFs during the initial refine-
ment steps. However, the multiwavelet-based estimators display a slightly
better performance in the last refinement steps, especially at lower degrees of
the approximation. They achieve savings in #DOFs of about 85 % in 𝑝 = 1,
see Figure 6.1a, whereas the SSED and SD estimators show a reduction of
around 81 % for the same degree. The savings are scaled down to 77 % for the
MW-based estimators and 75 % for the SSED and SD estimators when the
degree is increased to 𝑝 = 3, as can be seen in Figure 6.1c. This shows that
the higher the degree, the closer is the behavior of the MW-based estima-
tors to the SSED and SD estimators. Indeed, the difference in the savings of
#DOFs goes from 4 % to 2 % when jumping from 𝑝 = 1 to 𝑝 = 3. Overall, the
evolution of the MW-based estimators closely resembles the behavior of the
estimators from the literature while showing slightly larger savings at lower
degrees. This low-order outcome is expected, as the SSED and SD estima-
tors are known to underperform at low orders of the approximation (Naddei,
2019). These results yield a validation of our proposed estimators.

Finally, in the same figures we observe that the different Dolejší estimations
behave similarly to their homologous MW-based error estimators. This fur-
ther validates the idea of using reconstruction techniques as an important tool
in mesh adaptation. At this point, the question of why using a multiwavelet
expansion which is computationally more expensive than a direct comparison
between the originalDG solution and a post-enriched solutionmay arise.The
answer resides in the fact that themultiwavelet expansion yieldsmore detailed
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Figure 6.2: Viscous Burgers equation.
Different levels of refinement achieved
by every error estimator at the last it-
eration step for selected solution or-
ders. The dashed line corresponds to an
uniform mesh with discretization error
‖𝑒ℎ|𝐾 ‖ < 𝜂tol for all 𝐾 ∈ Ωℎ where
𝜂tol = 1 × 10−6. The adaptive process is
then performed for each estimator until
we achieve 𝜂𝐾 < 𝜂tol in every element of
the domain.

information about the solution and its local regularity. This is especially true
in higher dimensions, where the details are directly given component-wisely.
We will address these concerns in Chapter 7, where this extra information
is used to drive hp-adaptivity. Moreover, studies of the effectivity index (not
presented in this work) show a behavior closer to unity when employing the
multiwavelet decomposition. Hence, these reasons motivate the use of a mul-
tiwavelet expansion to compute the error estimators.

6.1.4 Analysis of the h-adapted meshes

We now focus our attention on the final h-adapted mesh resulting from the
activation of the three different local multiwavelet-based estimators proposed
in this research. We have just seen that the SSED estimator shows a slightly
better agreement with our estimators compared to the SD. Thus from now
on we will only use the SSED estimator for comparison purposes.

The distributions of the refinement levels along the computational domain
for each estimator are plotted in Figures 6.2a, 6.2b, and 6.2c for 𝑝 = 1, 𝑝 = 2,
and 𝑝 = 3, respectively. It can be observed that, predictably, the area sur-
rounding the discontinuity is subjected to a higher level of refinement. This
is true for all estimators. When we increase the degree of the solution, the
number of refinement levels decreases. This behavior is expected because we
are increasing the spatial resolution by modifying the local polynomial degree
and thus fewer elements are required to achieve a prescribed level of accuracy.
The dashed line represents the required refinement level of an uniform mesh
to reach the user defined tolerance 𝜂tol = 1 × 10−6.

The activation of the 𝐾-multiwavelet and 𝜅-multiwavelet estimators leads
to an almost identical pattern of refinement centered around the discontinu-
ity, regardless of the degree. The Γ-multiwavelet estimator seems to perform
marginally better by generating a narrower refined region surrounding the
discontinuity. In the case of the SSED estimator, the wider refined region
translates into a higher amount of #DOFs compared the MW-based estima-
tors. Again, this is due to the better performance of themultiwavelet family in
the last refinement steps. Certainly, they never surpass the dashed line. This
behavior is ideal because this means that their highest refinement level re-
mains below the level of the uniform mesh imposed by the tolerance 𝜂tol. For
the SSED estimator the behavior is different, it exceeds the threshold leading
to an over-refined mesh. Particularly severe is the behavior for 𝑝 = 1, surpass-
ing six levels above 𝜂tol. The over-refinement is mitigated by using 𝑝 = 3, in
which the difference is reduced to one level. This behavior is closely related
to the effectivity index, as will be discussed in the next paragraph.

6.1.5 Effectivity index of the h-adaptive results

Solution with shock The evolution of the discretization error for the 𝑝 = 3
adapted and uniform grid solutions for the initial condition IC-shock is illus-
trated in Figure 6.3. In this figure the error on the adapted mesh is compared
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(c) 𝜅-multiwavelet estimator.
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Figure 6.3:Viscous Burgers equation for
IC-shock and 𝑝 = 3. Error estimator per-
formance under h-adaptation. We com-
pare the discretization error (solid line)
versus the estimation reported by the in-
dicator (dashed line).

to the value given by the estimator. If these values show a similar evolution
along the refinement process, then the effectivity index associated with the
estimator, 𝜄eff (see Eq. (6.6)), is close to unity. That is 𝜂 ≃ 𝑒ℎ. It is under-
stood that values of the effectivity index close to unity are desirable for a pos-
teriori indicators (see e.g. error estimation for elliptic problems in Babuvška
and Rheinboldt (1980)). However, when dealing with hyperbolic or parabolic
problems such as the viscous Burgers equation, you may come up with possi-
bly less precise estimates and obtain effectivity indices higher than unity (see
e.g. Johnson (1990)).

Figure 6.3a presents the estimated error computed by the Γ-multiwavelet in-
dicator versus the #DOFs corresponding to each iteration of the adaptation
process. The estimator reports an effectivity index between 0.4 < 𝜄eff < 0.7
during the first iterations. Then progressively drops to 𝜄eff = 0.3 in the last
steps of refinement. The same behavior is observed in Figure 6.3b for the
𝐾-multiwavelet indicator. However, the first refinement steps report a poor
effectivity index for this estimator, which may explain the error overshoot
on the adapted mesh. After the first iterations, the effectivity index gradu-
ally improves until achieving values close to unity in the last refinement steps.
Moving to the 𝜅-multiwavelet indicator, Figure 6.3c, we observe a more uni-
form behavior. Except during the first steps of refinement, the effectivity in-
dex remains mostly constant at 𝜄eff = 2. The estimation mimics the behavior
of the discretization error, while remaining slightly higher. Lastly, the SSED
indicator displayed in Figure 6.3d reports an erratic behavior, with a precise
estimate during the first refinement steps and effectivity ratios progressively
deteriorating to 𝜄eff > 10. This behavior may justify the over-refinement ob-
served in Figure 6.2.

Smooth solution Before drawing any conclusion, it is worth studying the be-
havior of the estimators for a more regular solution. A further analysis of the
effectivity index for the initial conditions IC-smooth and 𝑝 = 3 is performed in
Figure 6.4. This example shows virtually no difference between the use of the
uniform and the adapted mesh. This is a consequence of the regularity of the
solution. In this situation, performing adaptation is not justified because the
final adapted grid is nearly indistinguishable from the uniform mesh. How-
ever, a few interesting conclusions can be extracted from this analysis.

Firstly, the Γ-multiwavelet indicator, displayed in Figure 6.4a, behaves inade-
quately when the solution is smooth. In this case, the effectivity index steadily
drops to 𝜄eff < 0.1 in the last steps of refinement. It seems that the influence of
the jump of the conservative quantity at the interface between elements is not
well captured by the reconstruction. Thus the disparity between estimation
and discretization error. Secondly, the 𝐾-multiwavelet indicator, illustrated
in Figure 6.4b, follows the discretization error particularly well, with 𝜄eff = 1
during the last steps of refinement. However, a slight overshoot of the esti-
mator appears in the first stage of the refinement. This has been likely caused
by under-refining during the early steps. If we pay attention to the previous
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(b) 𝐾-multiwavelet estimator.
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(c) 𝜅-multiwavelet estimator.
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Figure 6.4: Viscous Burgers equation
for IC-smooth and 𝑝 = 3. We mea-
sure the discretization error (solid line)
against the estimation reported by the
indicator (dashed line) to evaluate the
performance of the said indicator.

results reported in Figure 6.3b, we can resolve that the 𝐾-multiwavelet indi-
cator is prone to this sort of behavior. The same overshoot can be observed
for the SSED indicator, Figure 6.4d, though happening at later refinement
stage. This estimator continues to report high values of the effectivity index,
𝜄eff > 10, similarly to what we observed when IC-shock was studied. Finally,
the 𝜅-multiwavelet indicator, Figure 6.4c, maintains its characteristic regular
behavior with a nearly constant 𝜄eff = 2 and a satisfactory tracking perfor-
mance.

From the analysis of Figures 6.3 and 6.4 we thus conclude that themultiwavelet-
based indicators constitute a consistent approach for tracking the discretiza-
tion error of the DG approximation. They perform substantially better than
the SSED indicator provided by the literature, which shows an excessively
high value of the effectivity index. In particular, the 𝜅-multiwavelet indicator
features a regular behavior while maintaining an acceptable effectivity index
so that it can be reliably used to control the adaptation process. Based on
this analysis, the 𝜅-multiwavelet indicator has been selected to drive the h-
adaptive algorithm in the following study of the two-dimensional backward-
facing step flow.

6.2 LAMINAR BACKWARD-FACING STEP

In this section a series of numerical simulations of a two-dimensional steady
laminar flow over a backward-facing step is performed to assess the validity of
the multiwavelet error estimator (see Section 5.2.1) in the context of mesh
adaptation.

6.2.1 Computational parameters I: h-uniform simulations

The geometry of the computational domain is shown in Figure 6.5a. Follow-
ing the work of Barton (1997), an extra inlet channel has been considered to
reduce the influence of the step in the upstream flow region. Similarly, Er-
turk (2008) has concluded that its length must be at least five times the height
of the step to be effective. Thus we have sized our inlet channel accordingly.
With regard to the outlet or exit boundary, it must be located at a distance
sufficiently far away from the step so that the flow becomes fully developed.
Similar studies by Keskar and Lyn (1999) and Gartling (1990) have found
that placing the exit boundary at 60 step heights downstream from the step
is sufficient to recover a fully developed flow. Therefore, we have sized our
expanded channel in accordance. The height of the inlet channel is equal to
the dimension of the step, and the channel height in the expanded region
(downstream of the step), 𝐻 , is twice the height of the step, ℎ. Therefore, the
expansion ratio of the backward-facing step results in 𝐻/ℎ = 2. The Reynolds
number of the problem is Re = 800 and defined as Re = 𝑈𝐻

𝜈 , where 𝑈 is
the inlet mean velocity, i.e. two thirds of the maximum inlet velocity. Lastly,
to insure the incompressibility of the problem the Mach number is set to
Ma = 0.1.
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(a) Computational domain and boundary conditions.

Mesh C Mesh E Mesh G

(b) Illustration of uniform
grids employed.

Mesh #Elts #DOFs #Elts−𝑦 #DOFs−𝑦
𝑝 = 1 𝑝 = 2 𝑝 = 3 𝑝 = 1 𝑝 = 2 𝑝 = 3

A 536 8576 4 16
B 1206 10 854 6 18
C 2144 8576 34 304 8 16 32
D 4554 40 986 12 36
E 8096 32 384 129 536 16 32 64
F 18 000 162 000 24 72
G 32 000 128 000 512 000 32 64 128
H 72 000 648 000 48 144
I 128 000 512 000 2 048 000 64 128 256
J 288 000 2 592 000 96 288
K 512 000 2 048 000 4 608 000 128 256 384

(c) Number of elements (#Elts) and degrees of freedom (#DOFs) for every uniform grid in
the study, both in total and along the 𝑦-direction (#Elts−𝑦 and #DOFs−𝑦) of the expanded
channel. Color grouping refers to an approximate equivalence in the #DOFs between different
orders in the computations.

Figure 6.5: Laminar backward-facing step. Description of the computational domain, boundary conditions, and grids employed.

Regarding the boundary conditions, we impose at the inlet boundary a fully
developed plane Poiseuille flow so that the velocity profile at the entrance
of the domain is parabolic. At the exit boundary, a non-reflecting boundary
condition is imposed such that the velocity profile of the numerical solution
at the exit boundary matches the analytical parabolic profile of a Poiseuille
flow. Finally, wall boundary conditions are imposed on the upper and bottom
walls of the channel, as well as on the surface of the step. The details regarding
the considered configuration are reported in Figure 6.5a.

Tomesh the domain we have considered 11 different Cartesian uniform grids,
depending on the order of the numerical solution at hand. Table 6.5c de-
scribes the configurations in detail. The grids are named A to K, and ordered
by increasing resolution. A sample of the meshes C, E and G is displayed
in Figure 6.5b. The grids A, B and C (gray shaded cells) correspond to the
three initial computational grids from which the adapted grids will be built.
They represent the coarsest starting meshes for 𝑝 = 1, 𝑝 = 2, and 𝑝 = 3, re-
spectively. The grid K with 𝑝 = 2 (boxed cell) corresponds to the reference
solution of the present study. Figure 6.6 showcases the behavior of the latter
solution downstream of the step. The presence of the geometrical singularity
generates two main recirculation regions along the upper and bottom wall,
and an additional recirculation bubble at the corner beneath the step.

Those grids that retain an equivalent number of degrees of freedom (#DOFs)
for different orders in the computations are labelled with the same color
nomenclature. That means that their numerical solution should be compa-
rable between computations based on different polynomial orders. Table 6.5c
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Figure 6.7: Laminar backward-facing
step. Profiles for different physical
quantities at three different streamwise
locations along the expanded channel.
The profiles have been extracted from
our reference numerical solution (mesh
K with 𝑝 = 2) and compared with the
literature at the same locations.

also reports how this equivalence in #DOFs ismaintained along the 𝑦-direction
of the expanded channel.The uniform grids obviously display the same #DOFs
per unit distance in both 𝑥- and 𝑦-direction. Finally, for the coarser meshes
(grids A to E), the region immediately after the inlet has been locally refined
so that we are able to properly capture the parabolic inflow from the initial
steps of the adaptation process and therefore impose an appropriate inlet pro-
file.

Regarding the aforementioned coarser meshes, the study by Yee et al. (1997)
shows that when a low resolution grid is employed in the backward-facing
step flow at Re = 800, a spurious oscillating numerical solution is obtained
and the steady-state cannot be reached. The work of Erturk (2008), in which
an interval of Re = [100, 3000] is investigated by solving the flow using a
second order finite-difference method, employs a very fine mesh so that con-
vergence to the steady-state can be achieved. For the low resolution meshes
employed in this work, and the polynomial orders considered in the DGM,
the convergence problems reported by Yee et al. (1997) were not encountered,
even for solutions with low polynomial degrees such as 𝑝 = 1.

6.2.2 Validation of reference solution

To evaluate the quality of our numerical solution, we have selected three
streamwise locations along the expanded channel, as reported in Figure 6.5a.
They cover the lower and upper recirculation bubbles (𝑥 = 6ℎ and 𝑥 = 14ℎ),
and an overview of the developed flow far away downstream (𝑥 = 30ℎ). The
idea is to extract the profiles of the relevant physical quantities along the ver-
tical direction of the main channel. We will consider the profiles of the hori-
zontal and vertical components of the velocity, given by 𝑢 and 𝑣. The profile
vorticity, defined as 𝜔 = 𝜕𝑣/𝜕𝑥 − 𝜕𝑢/𝜕𝑦, is also included in the analysis. These
profiles are examined and compared to the results from the study of Erturk
(2008) at the same streamwise locations. In that study, the author uses a grid
of 101 uniform elements along the vertical direction of the expanded channel
and their scheme is second order accurate. Thus we count 202 DOFs along
the 𝑦-direction. In comparison, we have described our reference solution as a
third order numerical solution with 384 DOFs along the same direction (see
Table 6.5c).

The results comparing the solution obtained by Erturk (2008) versus our refer-
ence solution are shown in Figure 6.7. We observe that our computed profiles
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agree well with those of the literature for every physical quantity analyzed.
There are small discrepancies in the maximum values of the 𝑥- and 𝑦- veloc-
ities. We believe this is due to the fact that in our simulations the maximum
𝑥-velocity of the parabolic profile is slightly higher right at the fall of the step
than at the upstream inlet. However, Erturk shows that for Re = 800, these
two profiles must be nearly identical. We think that by using a compressible
solver (to solve for an incompressible flow) makes it much harder to adjust
the inflow/ouflow boundary conditions to attenuate the small increase in the
horizontal velocity at the step. We consider that this slight deviation does
not substantially affect the outcome of the h-adaptation analysis, which is
the main focus of our study.

6.2.3 Computational parameters II: h-adaptive simulations

After validating the numerical results on uniform grids, we now investigate
how to reduce the grid size locally, and thus the computational load, for a
given level of accuracy. The idea is to start from a coarse mesh, such as the
mesh A, B or C reported in Table 6.5c, and to detect the regions in which the
approximate DG solution is underresolved and a finer local mesh resolution
might be required. To that end, the algorithm described in Section 5.2.6 is
applied repeatedly until the desired adapted solution is reached. We remind
the reader that by adjusting the hp-criterion to exclusively allow for mesh
refinement, the algorithm becomes an h-adaptive procedure. To select those
elements that require h-refinement we use an error estimator (Section 5.2.1)
in conjunction with an appropriate marking strategy (Section 5.2.4).

Next, we will enumerate the error estimators employed for this configuration,
and later we will stress the importance of a suitable marking strategy associ-
ated with the estimation. We focus our computations on the 𝜅-multiwavelet
indicator as defined by Eq. (5.7). We recall that this choice of the error estima-
tor was justified by the encouraging results reported from the computations
of the 1-D viscous Burgers equation in Section 6.1, where it proved to have
the best overall behavior. The 𝜅-multiwavelet indicator may be evaluated for
every conservative variable 𝒖 = (𝜌, 𝜌𝒗, 𝜌𝐸) or any other derived quantity. For
the study of the backward-facing step we have selected the horizontal and
vertical components of the momentum density vector (𝜌𝒗), the pressure (𝑝),
and the vorticity (𝜔). They constitute relevant quantities representative of the
behavior of the overall solution. Therefore we come up with three different
variations of the multiwavelet-based indicator that will be used in the com-
putations, namely:

1. 𝜅-multiwavelet on density momentum indicator (MW-𝜌𝒗), 𝜂MW-𝜌𝒗
𝐾 .

2. 𝜅-multiwavelet on pressure indicator (MW-𝑝), given by 𝜂MW-𝑝
𝐾 .

3. 𝜅-multiwavelet on vorticity indicator (MW-𝜔), symbolized by 𝜂MW-𝜔
𝐾 .

It is worth mentioning that from now on we will drop the “𝜅-” terminology
when symbolizing the new estimators to simplify the nomenclature. How-
ever, we remind the reader that when denoting MW-based indicators in this
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section, we exclusively refer to the 𝜅-multiwavelet indicator applied to se-
lected conservative and derived quantities.

Similarly to the one-dimensional configuration in Section 6.1, the estimators
proposed above will be compared to the following two estimators from the
literature:

4. Small-scale energy density estimator, 𝜂SSED
𝐾 (Kuru et al., 2016).

5. Spectral decay estimator, 𝜂SD
𝐾 (Taube et al., 2010).

Regarding themarking strategy, we had initially used the local threshold strat-
egy defined by Eq. (5.29), analogously to Section 6.1. However, this strategy
proved to be inadequate when comparing estimators of different nature in
the context of the more complex backward-facing step. The reason is that
we are dealing with differences of several orders of magnitude between the
estimators, especially when comparing the SSED and SD indicators to the
multiwavelet-based indicators. Therefore it was not possible to find a user-
defined tolerance that fitted them all satisfactorily and kept the comparison
meaningful. In a more general framework, it might be more convenient to
opt for the maximum marking strategy as defined by Eq. (5.30), in which the
refining threshold is defined as a percentage of the highest value of the estima-
tor. This allows us to set a given fraction of elements to be marked regardless
of the absolute value of the estimator.

6.2.4 Interpretation of the h-adapted meshes

Figure 6.8 shows the final adapted grids driven by the multiwavelet-based
indicators (MW-𝜌𝒗, MW-𝑝, and MW-𝜔) and the two indicators from the
literature (SD and SSED). The leftmost column corresponds to the simula-
tion 𝑝 = 1 and its associated initial uniform grid is Mesh C. The column in
the middle corresponds to 𝑝 = 2 and the starting grid is Mesh B. Finally, the
rightmost column corresponds to the simulation starting from Mesh A and
a polynomial degree equal to 𝑝 = 3.

The adapted grids associated with the lowest degree 𝑝 = 1 exhibit the highest
number of refined elements. Clearly, the SSED indicator in Figure 6.8e pro-
duces the finest grid. This is due to the fact that it tends to over-refine along
the entire channel. However, it only manages to partially capture the geo-
metrical jump. This tendency to over-refining is explained by the low-order
approximation used in this simulation. It does not have enough modes to cap-
ture the high-frequency content of the solution and thus the indicator, which
measures the energy of the highest modes, does not properly work (Naddei
et al., 2018).

On the other hand, the SD indicator used in Figure 6.8d is refining aggres-
sively at the walls and along the recirculation bubbles (locations 𝑥 = 6ℎ and
𝑥 = 14ℎ). This behavior is not surprising and is a consequence of the nor-
malization by the total energy of the flow, which approaches zero near walls,
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Figure 6.8: Laminar backward-facing-step. Final h-refined grids at four selected regions along the expanded channel.
Figures are organized by error estimator and computational degree, from 𝑝 = 1 (left column), 𝑝 = 2 (middle column),
and 𝑝 = 3 (right column).
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making the values of the estimator meaningless in these wall regions. Addi-
tionally, the SD indicator detects regions that simultaneously report low val-
ues of high-frequency content and of the total energy, such as recirculation
regions (Naddei, 2019).

By contrast, the refinement produced by the multiwavelet-based estimators
is more consistent with the physics, with similar patterns of h-refinement
for all indicators. Indeed, the MW-𝜌𝒗 and MW-𝜔 indicators, reported in
Figures 6.8a and 6.8c, respectively, follow the dynamics of the flow and refine
the stream accordingly, with the latter showing a slightly lower number of
adapted elements overall. The region around the geometrical jump together
with the separated shear layer yields the highest level of refinement. The top
and bottom recirculation regions caused by the separation of the flow at the
step corner are also adapted to a lesser extent, which can be explained by
the regularity of the solution in that region. The MW-𝑝 indicator given in
Figure 6.8b displays a higher tendency to refine the region around the step
and the separated shear layer. Moreover, it emphasizes adaptation where the
flow changes direction to fill the expanded channel (between 𝑥 = 6ℎ and
𝑥 = 14ℎ), as the pressure changes abruptly in this region.

We now draw our attention to the final adapted grid associated with 𝑝 = 3.We
observe that a much lower level of h-refinement is displayed by the adapted
grid. This is expected as the grid cell now holds a larger amount of infor-
mation (corresponding to more DOFs). Yet, regions with geometrical singu-
larities will stand out. Surely, the MW-𝜌𝒗 and MW-𝜔 indicators shown in
Figure 6.8a and Figure 6.8c, respectively, focus the adaptation efforts on the
separated shear layer and in the vicinity of the step. Indeed, a strong velocity
gradient appears due to the presence of the geometrical jump. In contrast, the
lower and upper recirculation regions along the expanded channel undergo
little refinement. Similar conclusions can be obtained for the MW-𝑝 indica-
tor in Figure 6.8b. The main difference lies in the further refinement along the
inlet channel. The higher count of DOFs allows the SSED indicator in Fig-
ure 6.8e to amend the deficiencies reported for the low-order approximation,
obtaining a similar pattern of h-refinement as compared to the multiwavelet-
based indicators. Though still gaining a larger number of elements in general.
Figure (6.8d) shows that the SD indicator also benefits from a larger number
of DOFs per element. It does fully correct the behavior on the walls but still
continues to over-refine in the lower recirculation region.

Lastly, regarding the final adapted grid obtained for the quadratic approxi-
mation 𝑝 = 2, the outcome for all estimators appears to be in between those
obtained for 𝑝 = 1 and 𝑝 = 3. Indeed, Figures 6.8a to 6.8c show how the
multiwavelet-based estimators moderately follow the changing stream right
after the channel expansion. This behavior is less pronounced for the MW-𝑝
indicator in Figure 6.8b, which tends to refine more elements in the inlet re-
gion. As for the adaptive 𝑝 = 1 simulation, the multiwavelet estimators lead
to the highest level of refinement in the shear layer and in the region in the
proximity of the corner, while the more regular recirculation regions display
a considerable lower refinement level, closer to the grids obtained for 𝑝 = 3.
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(b) ℎ-refined grids, 𝑝 = 1.
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(c) ℎ-refined grids, 𝑝 = 2.
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(d) ℎ-refined grids, 𝑝 = 3.

Figure 6.9: Laminar backward-facing-
step. 𝐿2-norm of the momentum den-
sity error under uniform and adaptive
h-refinement for varying values of 𝑝.

With respect to the SSED and SD indicators, the increase in the number of
DOFs somewhat lessens the deficiencies observed in 𝑝 = 1. Figure 6.8e shows
a more targeted adaptation with the SSED indicator, though still heavily re-
fining along the inlet and immediately after. The SD indicator in Figure 6.8d

significantly reduces refinement closer to walls while excessively adapting the
recirculation regions akin to 𝑝 = 1.

6.2.5 Error analysis of the h-adaptive results

In order to measure the accuracy of the h-refined solutions resulting from
the different error estimators, we will analyze the convergence history of the
error in the 𝐿2-norm of the momentum density versus the number of DOFs.
Later we will study the locations of flow detachment/reattachment along the
expanded channel versus the #DOFs. The reference solution employed to
obtain these error quantities is based on the uniform mesh K described in
Table 6.5c and 𝑝 = 2.

Figure 6.9 shows the convergence history of the error in the 𝐿2-norm of
the momentum density under uniform and adaptive h-refinement for differ-
ent orders of the DGM. The evolution of the error on the uniform grids
is recorded in Figure 6.9a. We start the adaptation from relatively coarse
grids and we want to make sure that we eventually achieve the asymptotic re-
gion. Indeed, the plotted data confirm that the asymptotic convergence rate
is reached for sufficiently fine grids. The delayed convergence behavior ob-
served in the higher-order solutions can be explained due to the influence of
the singularity at the step.

Figures 6.9b to 6.9d describe the behavior of the error in the h-adaptive so-
lutions driven by the five error estimators. We make the observation that the
maximum local refinement level is limited to reaching the same element size
as its uniform counterpart. Four uniformly refined simulations are reported,
including the starting grid.Therefore, four refinement steps are performed for
each indicator. As we previously explained while describing the adapted grids
in Figure 6.8, the SD and SSED indicators perform poorly for low-orders of
the solution. This is due to their dependency on the higher-order modes of
the numerical approximation, which are not well captured for low-orders. By
contrast, themultiwavelet-based estimators do not show this dependence and
their behavior is more consistent for every order of the adapted solution.

This is evident in Figure 6.9b for 𝑝 = 1, where the error lines of the SD
and SSED indicators lie above the uniformly refined line, meaning that no
benefit is gained by activating adaptation with these estimators. In the case
of the SD indicator, the extremely slow decay of the error is explained by its
tendency to incorrectly refine on walls and recirculations regions, which are
not the main source of error in the backward-facing step configuration. The
SSED indicator actually manages to reach the same level of accuracy than the
multiwavelet-based indicators but at the expense of a much larger amount of
degrees of freedom, a clear sign of over-refinement. On the other hand, the
family of multiwavelet-based estimators leads to a moderate reduction (30 %
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to 48 %) in the total number of DOFs as compared to uniform refinement,
with the MW-𝑝 indicator reporting the highest savings.

When the polynomial degree is increased to 𝑝 = 2, as illustrated in Figure 6.9c,
the multiwavelet-based indicators lead to a reduction of one order of magni-
tude in the error with respect to 𝑝 = 1 while keeping an equivalent total
number of degrees of freedom. When they are measured against uniform re-
finement with the same total error we obtain a decrease of the total number
of DOFs of approximately 80 %. By contrast, the SSED indicator achieves
a similar level of accuracy yet reporting a significantly lower performance of
about 66 %. Its tendency to over-refine is improved but not fully corrected.
In a similar manner, the SD indicator seems to slightly improve its behav-
ior compared to 𝑝 = 1 but it still retains a slower convergence rate than the
uniformly refined simulations and it continues to lag behind the other esti-
mators.

Finally the highest order of the h-adapted solution with 𝑝 = 3 is reported in
Figure 6.9d. Every error estimator leads to a substantial reduction of the re-
quired number of degrees of freedom to attain a given level of accuracy. Again,
the error is further decreased compared to lower degrees for a similar number
of DOFs. The multiwavelet-based indicators achieve the best performance,
with savings of approximately 90 % compared to uniform refinement. The dif-
ferences are small, but the MW-𝜌𝒗 indicator reports a small lead. The family
of multiwavelet-based indicators become more accurate when we increase the
number of DOFs because more information can be efficiently stored by the
multiwavelet coefficients. In the same way, a higher-order solution also bene-
fits the SSED and SD indicators. The former achieves a reduction in the total
number of DOFs of about 84 %, while the latter shows a slightly slower con-
vergence rate only reaching in accuracy the third uniformly refined simulation
with savings of around 82 %.

6.2.6 Memory savings

Table 6.1 offers a summary of the savings in the number of degrees of freedom
when the h-adaptive algorithm is activated. The multiwavelet-based indica-
tors display a more consistent and reliable behavior with savings increasing
from 30 % for 𝑝 = 1 to over 80 % for 𝑝 = 2 to almost 90 % for the highest
order. By contrast, the SSED and SD indicators underperform the multi-
wavelet family of indicators for the lower-order simulations, and only man-
age to achieve savings of about 80 % for 𝑝 = 3. Finally, similar percentages

Error #DOFs change (%) Memory change (%)
estimator 𝑝 = 1 𝑝 = 2 𝑝 = 3 𝑝 = 1 𝑝 = 2 𝑝 = 3
MW-𝜌v 30 83 90 33 82 89
MW-𝑝 48 84 88 52 81 87
MW-𝜔 31 83 89 35 82 89
SD −491 −120 82 −481 −114 79
SSED −198 66 84 −220 64 82

Table 6.1: Laminar backward-facing-
step. #DOFs and memory compari-
son with varying values of 𝑝 for final
h-adapted grids. Percentages are mea-
sured with respect to uniform grids
that report similar solution accuracy.
Positive percentages represent savings,
while negative values mean higher
#DOFs/memory consumption.
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Table 6.2: Laminar backward-facing-
step. Memory change with varying val-
ues of 𝑝 for final h-adapted grids. Per-
centages are evaluated with respect to
an equivalent uniform grid with fixed
𝑝 = 1. Positive percentages speak
for higher memory consumption, while
negative values describe a lower mem-
ory utilization.

Error h-refined (%) Uniform refinement (%)
estimator 𝑝 = 1 𝑝 = 2 𝑝 = 3 𝑝 = 1 𝑝 = 2 𝑝 = 3
MW-𝜌v −33 −56 −53 — 145 320
MW-𝑝 −52 −44 −52 — 204 280
MW-𝜔 −35 −40 −42 — 238 371
SSED 220 23 −43 — 244 221

in memory savings show how the number of DOFs and memory are closely
linked. Certainly, the differences between these two quantities are not higher
than 10 %, even when the order is increased. This happens despite the fact
that implicit time integration with higher-order DG methods imposes larger
memory requirements (Renac et al., 2015).

Memory behavior is further studied in Table 6.2. Only those error estimators
which reach a similar level of accuracy are analyzed. We have set the memory
consumption of the uniformly refined simulation with 𝑝 = 1 as reference to
measure the effect of increasing the order in memory growth. We observe
a constant decrease in memory of approximately 30 % to 50 % for the multi-
wavelet family of estimators, almost independent of the order. Conversely,
the uniformly refined simulations report an increase of about three to four
times in memory requirements following the increment in order to achieve
the same prescribed level of accuracy than its h-adapted counterpart. We re-
mark that the irregular results of the SSED indicator are due to its poorly
performance for low-order simulations.

6.2.7 Computational times

Figure 6.10 outlines the behavior of the error versus the computational cost
for the different h-adaptive simulations. Interestingly, the rate of convergence
in CPU-time for the h-adaptive simulations with 𝑝 = 1 is slower in the last it-
erations than the uniformly refined simulations, as illustrated by Figure 6.10a.
We expect this result for the SD and SSED indicators, as they report signif-
icantly higher number of degrees of freedom than the uniform simulations
for a similar accuracy (see Table 6.1). However, the multiwavelet estimators
do show moderate number of DOFs reductions which do not translate into
computational savings. This may occur because for a similar number of DOFs
adapted meshes with hanging nodes may take longer to reach convergence
than uniform ones.

On the other hand, higher order simulations report clear computational gains
when adaptation is activated. This is the case of Figure 6.10b with 𝑝 = 2,
where most of the estimators except the SD outperform uniform refinement.
This trend continues for 𝑝 = 3, with Figure 6.10c reporting substantial cost
improvements for every indicator. Remarkably, the multiwavelet indicators
provide the best performance among all the proposed error estimators.

Table 6.3 collects the CPU-time and speedup values of the h-adaptive sim-
ulations applied to the final adapted grids. These quantities are relative to
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Figure 6.10: Laminar backward-facing-step. 𝐿2-norm of the error in momentum density vs the computational time under uniform and
adaptive h-refinement for various values of 𝑝.

Indicator CPU-time (%) Speedup

Uniform 100.00 1.00
MW-𝜌v 264.26 0.38
MW-𝑝 223.30 0.45
MW-𝜔 352.23 0.28
SD 3713.44 0.03
SSED 1250.00 0.08

(a) 𝑝 = 1.

Indicator CPU-time (%) Speedup

Uniform 100.00 1.00
MW-𝜌v 4.22 23.68
MW-𝑝 3.91 25.59
MW-𝜔 4.41 22.65
SD 100.00 1.00
SSED 21.06 4.75

(b) 𝑝 = 2.

Indicator CPU-time (%) Speedup

Uniform 100.00 1.00
MW-𝜌v 5.23 19.10
MW-𝑝 8.24 12.14
MW-𝜔 5.56 18.00
SD 32.90 3.05
SSED 11.03 9.07

(c) 𝑝 = 3.

Table 6.3: Laminar backward-facing-
step. Simulation time speedups be-
tween uniform and adapted grids for
the final adaptation step in Figure 6.10.
The results are presented for the differ-
ent values of 𝑝.

the final uniformly refined mesh. As reported in Figure 6.10, we observe a
strong variation depending on the order of the adapted solution and the error
estimator employed. In this manner, adaptation with 𝑝 = 1 underperforms
compared to uniform refinement, whereas higher orders achieve significant
speedups for selected estimators. The SD indicator offers the lowest perfor-
mance, with no gain in 𝑝 = 2 and a speedup of three times in 𝑝 = 3. Con-
versely, the multiwavelet indicators are the most efficient, delivering more
than 20 times faster solutions in 𝑝 = 2 and between 12 and 19 times in 𝑝 = 3.
Lastly, the SSED indicator lands in between, by providing a speedup of five
times in 𝑝 = 2 and of nine in 𝑝 = 3. Sensor estimation, element marking and
refining times have not been included in the previous analysis. However, they
never constitute more than 5 % of the total computational time.

6.2.8 Measure of separation/reattachment lengths under h-adaptation

We complete the study of the adapted solutions by analyzing the normalized
lengths of flow separation/reattachment. Unlike the previous analysis of the
error, these quantities can be found in literature and thus it will allow us to
compare and validate our results.

Table 6.4 collects some of the most relevant studies and how their values
compare to the reference solution used in the present work. Their domains
are slightly different with the main divergence being the length of the ex-
panded channel and the absence/presence of the inlet channel. As reported
by Barton (1997), the presence of an inlet results in the reduction of the lower
reattachment length, denoted by 𝑥1, the upper separation length, 𝑥2, and to
a lesser extent, the upper reattachment length, 𝑥3, with respect to the use of
no entrance at all. Only the study of Erturk (2008) provides results on the
separation length at the step, 𝑥0. Our reference solution agrees very well with
the values 𝑥0 and 𝑥1 provided by Erturk. The lengths 𝑥2 and 𝑥3, defining the
upper recirculation region, show a small deviation from the study. However,
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Table 6.4: Laminar backward-facing
step. Normalized separation and reat-
tachment locations found in the litera-
ture and how they compare to the refer-
ence solution of the present study.

𝑥0 𝑥1 𝑥2 𝑥3 Domain

Gartling (1990) — 12.20 9.70 20.96 60ℎ, no entrance
Barton (1997) — 12.03 9.64 20.96 32ℎ, no entrance

— 11.51 9.14 20.66 32ℎ + inlet channel (10ℎ)
Cruchaga (1998) — 12.00 9.60 20.20 60ℎ, no entrance

— 12.00 9.40 19.40 60ℎ + inlet channel (ℎ)
Erturk (2008) 0.15 11.83 9.47 20.55 300ℎ + inlet channel (20ℎ)
Present study 0.15 11.81 9.31 20.83 60ℎ + inlet channel (5ℎ)

the former is still within the values provided by Cruchaga (1998) and Barton
(1997), and the latter, being the furthest from the step, is the least influenced
by the absence/presence of the inlet channel and thus it is reasonable that it
may be found to be in between the estimates given by Barton.

Figures 6.11 and 6.12 show the convergence history of the normalized sepa-
ration/reattachment lengths for every error estimator and different orders of
the numerical solution. The evolution of the separation length at the step,
denoted by 𝑥0, shines a new light on indicator behavior not reported in the
previous analysis of Figure 6.9. Certainly, the SD indicator shows the fastest
convergence and highest accuracy of the error estimators examined. More-
over, it is the only indicator that reaches the target reference length when
𝑝 > 1 while achieving a large reduction on the number of degrees of freedom
(above 90 %) compared to uniform refinement. This unexpected result can be
explained by two confluent factors. These are, the weak influence on this re-
gion of the stream itself and the strong tendency of the SD indicator to refine
in the low-energy regions. The first factor ameliorates the poor performance
of the indicator overall, and the second factor allows for over-refinement in
the recirculation regions, which is beneficial to accurately secure the separa-
tion/reattachment locations. By contrast, the rest of the indicators do not
focus as much on regions of low energy and thus struggle to reach the target
length.

The convergence history of the remaining locations 𝑥1, 𝑥2, and 𝑥3 shows pat-
terns already observed during the previous analysis of the error in Figure 6.9.
For the lowest degree 𝑝 = 1, the SD indicator reports the largest divergence
on achieving the reference target length. This happens despite its tendency
to heavily refine in recirculation regions and on walls, which should help con-
verge to the target length. This contradicting result can be attributed to an
insufficient resolution along the upstream flow which, in turn, has a negative
impact on accurately capturing the locations further from the step. Therefore,
adequate resolution adaptation along the upstream flow is key. On the other
hand, the SSED indicator displays a mixed record on reaching the reference
target length, together with a slower convergence rate compared to uniform
refinement. Finally, the multiwavelet-based indicators show analogous rates
of convergence between them when analyzing 𝑥1, 𝑥2, and 𝑥3 for 𝑝 = 1 sim-
ulations. Apart from 𝑥3, for which only the MW-𝜌𝒗 indicator achieves the
target, every multiwavelet-based estimator reaches the reference value with
savings in the range of 45 % to 60 %.

When the order is increased to 𝑝 = 2, every indicator substantially improves
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Figure 6.11: Laminar backward-facing step. Normalized locations of flow detachment/reattachment of the lower recirculation
bubble under uniform and adaptive h-refinement with varying values of 𝑝.

their convergence rate. The SSED indicator attains a reduction of about 83 %
in the number of DOFs and the multiwavelet-based indicators obtain a fur-
ther decrease to be within the interval of 93 % to 95 %. The SD indicator re-
mains as the only error estimator which does not achieve the target length.

Finally, for the highest order 𝑝 = 3 all refinement indicators reach the pre-
scribed reference length while achieving a significant reduction in the num-
ber of DOFs. They all perform similarly with savings in the range of 93 %
to 96 %. The only exception is the upper reattachment length, 𝑥3, for which
the MW-𝜔 and the SSED indicators do not converge to the target. It is also
worth mentioning that in this case the SD indicator performs better than in
the previous Figure 6.9, due to the nature of the separation/reattachemt loca-
tion quantity, which benefits from indicators that lean toward refinement on
the recirculation regions.

6.2.9 Input influence on multiwavelet estimator performance

To finalize this chapter, we examine the different estimators within the multi-
wavelet family (i.e. theMWestimators based on different flow quantities). So
far, when comparing them to the SSED and SD indicators we have treated
them mainly as a group. Now we analyze their performance with respect to
each other. To this end, we evaluate the error in the 𝐿2-norm of the differ-
ent physical quantities that characterise each of the multiwavelet indicators
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Figure 6.12: Laminar backward-facing step. Normalized locations of flow detachment/reattachment of the upper recirculation
bubble under uniform and adaptive h-refinement with varying values of 𝑝.

along vertical profiles at the selected locations 𝑥 = 0, 6ℎ, 14ℎ, 30ℎ shown in
Figure 6.5a.

We remind the reader that the indicators involve density momentum, pres-
sure and vorticity, and thus the error is based on these as well. As reported in
Figure 6.9, the final adapted grids associated with each indicator of the mul-
tiwavelet family have reached an similar global level of accuracy. This result
ensures that we can have a fair comparison when evaluating the effect of the
different flow quantities on the behavior of the estimator.

Figure 6.13 shows the comparison between the multiwavelet-based indicators.
Figures 6.13a to 6.13c represent every profile location along the 𝑥-axis and its
associated error along the 𝑦-axis. For each figure there are three line styles cov-
ering 𝑝 = 1 to 𝑝 = 3. Color preference is given to those indicators that typify
the same physical quantity than the current error. For example, Figure 6.13a

illustrates the error in momentum density, and thus the red line represents
the h-adapted mesh associated with the momentum density indicator, MW-
𝜌𝒗. The remaining black lines represent the h-adapted mesh driven by the
pressure indicator, MW-𝑝, and vorticity indicator, MW-𝜔, in no preferen-
tial order. In general, we observe that 𝑝 = 1 reports a more even distribution
of error along the channel. When we increase the approximation order the
error is concentrated in the region around the step while decreasing at the
other locations, a clear sign that the downstream convection of the error is
ameliorated. Interestingly, the best results in these locations 𝑥 > 0 with 𝑝 > 1



6.3 CONCLUDING COMMENTARY 101

Error 𝑝 = 1 𝑝 = 2 𝑝 = 3
estimator ‖(𝜌v)ℎ − (𝜌v)ref‖𝐿2

MW-𝜌v 1.52 × 10−3 2.97 × 10−4 3.51 × 10−5

MW-𝑝 1.61 × 10−3 2.59 × 10−4 4.56 × 10−5

MW-𝜔 2.24 × 10−3 1.68 × 10−4 5.19 × 10−5

‖𝑝ℎ − 𝑝ref‖𝐿2

MW-𝜌v 7.36 × 10−4 1.93 × 10−4 1.26 × 10−4

MW-𝑝 7.71 × 10−4 2.80 × 10−4 1.26 × 10−4

MW-𝜔 2.07 × 10−3 1.47 × 10−4 1.27 × 10−4

‖𝜔ℎ − 𝜔ref‖𝐿2

MW-𝜌v 1.31 × 10−1 8.30 × 10−2 5.33 × 10−2

MW-𝑝 2.13 × 10−1 5.73 × 10−2 5.08 × 10−2

MW-𝜔 1.65 × 10−1 3.35 × 10−2 5.43 × 10−2

Table 6.5: Laminar backward-facing
step. L2-norm of the total error result-
ing from the combination of the pro-
files analyzed in Figure 6.13. Best result
given by cell in grey.
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Figure 6.13: Laminar backward-facing
step. Performance comparison with
varying 𝑝 among multiwavelet-based er-
ror estimators at selected profiles along
the expanded channel.

are generally obtained by the indicator that shares physical variable with the
error, e.g. error in pressure is better captured by the MW-𝑝 indicator. This
is somehow expected, as an indicator based on a particular physical variable
would usually monitor better its associated error.

Table 6.5 measures the error of these profiles combined. We observe that for
low-order and evenly distribution of the error, the MW-𝜌𝒗 indicator offers
the best performance overall, reporting the most accurate results in momen-
tum density, pressure, and vorticity. When the order is increased, the step
region gains more influence and the indicator that reports lower error there
will perform best. In our case it is the MW-𝜔 indicator for 𝑝 = 2 and the
MW-𝜌𝒗 and MW-𝑝 indicators for 𝑝 = 3. Therefore, we believe that near a
singularity there is no clear indicator that outperform the others. All of them
perform similarly, with slight variations depending on the order of the simu-
lation.

6.3 CONCLUDING COMMENTARY

In this chapter we have analyzed multiple variations of the error estimator
based on the local multiresolution analysis of the DG solution to guide h-
adaptive simulations. Specifically, we have studied flow configurations de-
fined by the presence of physical and geometrical discontinuities, whichwould
considerably profit from pure mesh adaptation.

Adaptive simulations of the one-dimensional viscous Burgers equation driven
by the multiwavelet methodology have shown compelling results. The multi-
wavelet error estimator has been tested undermultiple reconstruction paradigms
and they all have reported significant reductions in the number of degrees of
freedom when adaptation is activated. A comparison of their performance
against the modal error estimators SSED (Kuru et al., 2016) and SD (Taube
et al., 2010) has shown that our proposed estimators report effectivity in-
dices closer to unity, which means that they are able to better monitor the
evolution of the discretization error of the numerical solution. Particularly,
the 𝜅-multiwavelet estimator has reported the best performance within the
multiwavelet family.
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Encouraged by the promising results of the one-dimensional simulations, we
have extended the 𝜅-multiwavelet estimator to higher dimensions. In this re-
gard, we have studied a steady laminar backward-facing step flow at Re = 800
and Ma = 0.1. This more demanding configuration certainly has demon-
strated the viability of the estimator to achieve a substantial computational
gain with respect to uniformly refined grids. Particularly, we have applied
the estimator to different physical quantities and recorded their resulting h-
adaptive simulations separately. For a prescribed level of accuracy, depending
on the order of the simulation, the different variations of the multiwavelet es-
timator have achieved a peak reduction in the numbers of degrees of freedom
of 48 %, 84 %, 90 % for DG 𝑝 = 1, 𝑝 = 2, and 𝑝 = 3 simulations, respectively.
The convergence study of the separation/reattachment lengths has led to sim-
ilar savings and has further justified the use of h-adaptation to reduce the
computational load.

With regards to physical quantities put under the umbrella of the multi-
wavelet expansion, we have discovered that, when the underlying solution
is smooth and for a prescribed level of accuracy, building the 𝜅-multiwavelet
estimator on a given physical quantity (e.g. momentum density) has led to
refined grids that better predict the given physical quantity. However, in the
presence of a singularity, we have found that the causality seemed to be weak-
ened and the choice of the physical quantity as input for the estimator did
not have a significant effect on the final solution.

A thorough comparison of the family of 𝜅-multiwavelet estimators against
the literature estimators SSED and SDhas found the largest differences in be-
havior for the low-order simulations. These differences have been highlighted
in the analysis of the h-adapted grids. In low-orders, the SSED estimator
has reported the largest refined grid, whereas the SD estimator has refined
aggressively at the walls and along the recirculation regions. By contrast, the
multiwavelet-based estimators have displayed a more consistent adaptation,
focusing the adaptation efforts on the separated shear layer and on the vicinity
of the singularity. With the exception of the SD, all estimators have reported
similar patterns of h-refinement as the order was increased. In this case, the
multiwavelet-based estimators have become more accurate when increasing
the number of DOFs per element thanks to the higher quantity of details cap-
tured during the multiwavelet decomposition. In a similar manner, the SSED
and SD estimators have also benefited from a larger number of DOFs, which
allowed for a better representation of the higher modes. But in spite of that,
they have not achieved the performance levels of the multiwavelet-based es-
timators.

With respect to the computational times for the different h-adaptive simula-
tions, we have observed underperforming results for the lowest order 𝑝 = 1 in
all the estimators. We have attributed this behavior to the fact that adapted
grids with hanging nodes may have taken longer to reach convergence than
uniform meshes with a similar number of DOFs. In contrast, higher order
h-adaptive simulations have reported conclusive computational gains. In this
manner, the SD estimator has delivered the lowest performance with a peak
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speedup of three times in 𝑝 = 3. The SSED estimator has reported a better
performance, with a maximum speedup of nine times for the same degree. Fi-
nally, the multiwavelet-based estimators have offered the best performance,
with a maximum speedup of 20 times in 𝑝 = 2 and delivering between 12 and
19 times faster solutions in 𝑝 = 3.





Chapter7
HP-ADAPTIVE SIMULATIONS

The study performed in Chapter 6 has paved the way to validate the multi-
wavelet indicator as a capable error estimator for h-adaptive simulations. In
particular, the 𝜅-multiwavelet indicator applied on the density momentum re-
ported the best performance. This estimator is thus selected for the research
presented in this chapter.

Building on these results, we now shift our attention to the analysis of hp-
adaptive simulations. In contrast to the pure h-version of the adaptive simu-
lations studied in the previous chapter and driven exclusively by error estima-
tors, we can come up with a more suitable distribution of h and p based on
the multiwavelet hp-strategy developed in Chapter 5. This strategy brings to
the table the multiwavelet regularity indicator and the hp-decision criterion
developed in Sections 5.2.3 and 5.2.4, respectively.

The objective of the present chapter is to evaluate the performance of our mul-
tiwavelet hp-strategy in guiding hp-adaptation in relevant steady simulations
by using the algorithm showcased in Section 5.2.6. We judge the perfor-
mance of our strategy by conducting two studies. Firstly, we carry out a para-
metric analysis of the hp-threshold to determine the optimal hp-distribution.
In a second step, the hp-adaptive results derived from this distribution are
compared to equivalent purely h/p-adaptive results to determine which is the
best approach. Both global and local quantities are assessed in this manner.
In each step we analyze the convergence history of different quantities and
the regions of the hp-mesh subjected for adaptation. As one would expect,
p-adaptation would be employed in regions characterized by regular solution
behavior to provide high accuracy, and h-adaptation would be most appropri-
ate in the proximity of discontinuous phenomena, such as shocks or singular-
ities.

The described methodology is applied to two configurations, which form the
main structure of the chapter: the 2-D laminar flow over a backward-facing
step (Section 7.1) already studied in Chapter 6, and the 2-D laminar flow
past a square cylinder (Section 7.2). In the first configuration we present a
brief extension to hp of the results obtained in Chapter 6. The new hp-meshes
are analyzed in Section 7.1.1, while the analysis of the hp-results is presented
globally in Section 7.1.2 and locally in Section 7.1.3. We introduce the
computational details of the second configuration in Section 7.2.1, followed
by an analysis of the error across uniformly refined meshes in Section 7.2.2.
Section 7.2.3 outlines the h/p-results for different global quantities. The hp-
results of these same quantities are described in Sections 7.2.4 to 7.2.6. We
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perform a comparison of the h/p- and hp-results in both global and local
quantities in Sections 7.2.7 and Sections 7.2.8, in that order. Finally, the
main conclusions of the chapter are summarized in Section 7.3.

7.1 LAMINAR BACKWARD-FACING STEP

In this section we extend the h-adaptive approach of the laminar backward-
facing step conducted in Section 6.2 of Chapter 6 to both local polynomial
and mesh adaptation guided by the multiwavelet regularity indicator devel-
oped in Section 5.2.3 of Chapter 5.

Consequently, we employ oncemore the computational domain showcased in
Figure 6.5a with Re = 800 and Ma = 0.1, and boundary conditions described
in Section 6.2.1. Similarly to the h-refinement study, we use the numerical
results obtained with grid K and 𝑝 = 2 from Table 6.5c as the reference solu-
tion. We remind the reader that this solution has been previously validated
in Section 6.2.2.

We use the grid C from Table 6.5c as initial computational grid Ω(0)
ℎ com-

bined with the constant 𝑝-distribution 𝓅 = 1. From this pair a sequence of
hp-meshes Ω(𝑖)

ℎ,𝓅 is generated. We bound the local polynomial degree to the
interval 𝑝𝐾 ∈ [𝑝min, 𝑝max] with 𝑝min = 1 and 𝑝max = 5 being the minimum
and maximum polynomial degrees permitted, respectively. We perform a se-
quence of simulations driven by a combination of the multiwavelet-based
estimator and regularity indicator under the umbrella of the hp-algorithm.
These computations are organised in three groups as follows:

(i) The first group collects uniform and adaptive mesh refinement of Ωℎ,𝓅
under constant 𝓅. We simply refer to them as h-simulations.

(ii) The second group consists of uniform and adaptive polynomial adapta-
tion of Ωℎ,𝓅 with 𝓅 ∈ [1, 5] and constant mesh Ω(0)

ℎ . We denote them
as p-simulations.

(iii) The last group comprises hp-adaptation of Ωℎ,𝓅, with both 𝓅 and Ωℎ
subjected to change. We refer to them as hp-simulations. The hp-thres-
hold 𝜍tol employed in these computations is given by the interval (0.25 <
𝜍tol < 0.35).

7.1.1 Comparison of the h-, p-, and hp-adapted meshes

Figure 7.1 outlines the final h-, p-, and hp-adaptedmeshes.They correspond to
the three groups of computations (i) to (iii) previously described. On the one
hand, Figure 7.1b showcases the final h-adapted mesh under constant polyno-
mial degree, as obtained in the previous Chapter 6. On the other hand, Fig-
ure 7.1c illustrates the the final p-adapted mesh under constant mesh topology.
Finally, Figures 7.1d to 7.1g show the different iterations of the actual hp-mesh
up to reaching the the final step.
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Figure 7.1: Backward-facing step. Adapted hp-meshes resulting from multiple adaptation approaches at four regions along the expanded
channel. The starting mesh and 𝑝-distribution are given by grid C from Table 6.5c and 𝓅 = 1, respectively.

The refined mesh in Figure 7.1b has already been discussed in Chapter 6. We
concluded that the adaptation successfully captured the geometrical jump and
the separated shear layer by applying the highest level of refinement. Likewise,
the top and bottom recirculation regions displayed lower levels of refinement
due to the regularity of the solution in these regions.

The p-adapted mesh in Figure 7.1c can be understood as a map of the local
polynomial degree. By looking at this mapwe observe that the initial 𝑝 = 1 sits
quite below the given level of accuracy, thus the minimal degree in the final
mesh is increased to 𝑝 = 3. The highest value of the local polynomial occurs in
the proximity of the corner and, to a lesser extent, along the shear layer. The
inlet channel and the regions where the flow changes direction to adjust to the
channel expansion are also subjected to moderate local degrees. The lowest
values are reported in the recirculation regions. Overall, the distribution map
behaves similarly to the h-refinement pattern discussed earlier.

In the single h- or p-adapted meshes described so far we can not clearly distin-
guish the nature of the error that drives adaptation. For example, the strong
velocity gradient caused by the step justifies adaptation in that region. How-
ever, the previous analyzes are not conclusive as to whether h or p is the ideal
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Figure 7.2: Backward-facing step. 𝐿2-
norm of the error inmomentum density
under various adaptation approaches.

choice. To address this issue, Figures 7.1d to 7.1g display the combination of
h-refinement and p-enrichment for different iterations of the adaptive proce-
dure. We observe how the area surrounding the geometric singularity is sub-
jected to mesh refinement. This is a result of the regularity indicator detecting
this region as non-regular. To a lesser extent, the zone in the vicinity 𝑥 = 14ℎ
is also marked as non-regular. This is due to the flow stream lightly reaching
the lower wall while adjusting to the expanded channel. Interestingly, as the
density of the mesh increases, these zones become progressively more regular
and the algorithm ends up switching to p-enrichment. Conversely, the inlet
channel, recirculation bubbles, and the main stream of the flow are all flagged
as smooth regions, and therefore put through p-enrichment.

7.1.2 Global analysis of the h-, p-, and hp-adaptive results

In order to measure the performance of the hp-simulations with respect to the
single h- and p-computations, Figure 7.2 showcases the convergence history
of the error in the 𝐿2-norm of the momentum density versus the number
of degrees of freedom. In Chapter 6, we demonstrated that the asymptotic
region is reached for sufficiently fine grids, as is also the case here.

Figure 7.2a illustrates the convergence history associatedwith the h-simulations,
both uniform and adaptive.These results are those presented inChapter 6 and
used for comparison purposes. We remind the reader that we found a mod-
erate reduction of around 40 % in the total number of DOFs as compared to
uniform refinement for a given level of accuracy.

The convergence history of the uniform and adaptive p-simulations is shown
in Figure 7.2b. The convergence rate is considerably faster than the reported
for h-simulations, especially during the first and the last iterations of the adap-
tive procedure. This suggests that the singular effect of the step on the overall
smoothness of the flow may be less severe than anticipated. Observe also that
between the errors reported by uniform and adaptive p-simulations nearly
overlap for the first iteration of the algorithm. This is due to the even dis-
tribution of the error over the course of the first iteration. In this case, the
increase of the polynomial degree must be extended to the entire computa-
tional domain, as reported in Section 7.1.1. In the last steps of the adaptation
and for a similar level of accuracy, we achieve a reduction in the number of
DOFs of approximately 50 % with respect to p-uniform.

Moving on to hp-simulations, Figure 7.2c pictures their convergence history.
In this case, we report only three iterations for the uniform results, as the
computations become quickly very expensive. The savings between uniform
and adaptive hp-simulations are the largest of all the adaptation approaches,
with a decrease of the total number of DOFs of roughly 92 %.

Finally, we collect the results from the h-, p-, and hp-adaptive simulations
in Figure 7.2d. The p- and hp-adaptive computations behave comparably and
report significantly better performance with respect to the h-adaptive compu-
tations, with savings of approximately 80 % compared to the latter. Despite
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(b) Local 𝑦-velocity evalu-
ation at the step.
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Figure 7.3: Backward-facing step. Comparison of the h-, p- and hp-simulations at the final adaptation step. We study various 𝑦-
velocity profiles downstream of the step and measure the error with respect to the reference solution.

behaving similarly, a close examination of p and hp reveal substantial differ-
ences. Firstly, the hp-adaptive results display a more consistent convergence
rate, which means that the hp-approach is more efficient in addressing the
error distribution. And secondly, the hp-approach provides a slightly higher
level of accuracy for a similar number of DOFs.

7.1.3 Local flow field analysis of the h-, p-, and hp-adaptive results

The present section outlines a detailed comparison of multiple 𝑦-velocity pro-
files along the expanded channel downstream of the step. The idea is to
examine the effects of each of the adaptation approaches addressed in Sec-
tion 7.1.2 at a local level. Specifically, we pay particular attention to the
local behavior of the p- and hp-adaptive computations, which have displayed
close resemblance when studied globally.

Figure 7.3 depicts the difference between computed adaptive 𝑦-velocity and
reference 𝑦-velocity at the final adaptation step. We notice how the overall er-
ror associated each adaptive simulation, recorded by the horizontal axis, is at
least one order of magnitude smaller at the locations downstream of the step.
In Figure 7.3b the step acts as a geometrical singularity thus it is reasonable
for the largest values of the error to be concentrated in that region. Interest-
ingly, the regions where the flow changes direction to adjust to the channel
expansion (𝑦 > 1

2 in Figure 7.3c and 𝑦 < 1
2 in Figure 7.3d) report moderate
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concentrations of the error. This is coherent with the modest refining in the
same area performed in Section 7.1.1. As expected, the lowest values of the
error are reported in the recirculation regions and at the developed parabolic
flow of Figure 7.3e.

With respect to each adaptive simulation individually, the h-approach un-
derperforms the p- and hp-simulations at the locations downstream of the
step. If we define the average error of a given profile as Δ𝑣avg = 1

Δ𝑦 ∫ Δ𝑣 d𝑦
and particularize it for the profile of the h-approach, we report almost four
times higher average errors in Figure 7.3c, two times in Figure 7.3d, and nine
times in Figure 7.3e when compared to either the p- or hp-approach. These
regions are characterized by a smoother flow and thus benefit from the in-
crease in solution order provided by either the p- or hp-approach. Regard-
ing these two, they seem to behave similarly from Figures 7.3c to 7.3e, with
hp-adaptation slightly outperforming p-enrichment. The most significant re-
sults can be found in the region near the step, as showcased by Figure 7.3b.
Here, the p-simulation features the highest error peak caused by the oscil-
lations introduced by the higher-order solution around the singularity. By
contrast, the h-simulation maintains a low polynomial order and reports a
better performance, reducing around 26 % the average error with respect to
the p-approach. The hp-approach further improves the percentage to 38 %. It
achieves a high-order solution where the flow is smooth yet it averts the oscil-
lations of the p-enrichment next to singularities by employing h-enrichment
and low orders.

7.2 LAMINAR SQUARE CYLINDER

Throughout this section a sequence of numerical simulations of a two-dimen-
sional steady laminar flow past a square cylinder is performed to evaluate the
performance of the pair formed by the multiwavelet error estimator and the
multiwavelet regularity indicator in the context of hp-adaptation.

7.2.1 Computational parameters

The study of the flow past bluff bodies has been historically an active field
of research within the CFD community. The majority of the studies are cen-
tered on the circular cylinder (see e.g., Strykowski and Sreenivasan (1990),
Williamson (1996), and Gautier et al. (2013)), with the square counterpart
receiving substantially less attention (see e.g., Franke et al. (1990)). The flow
around a square cylinder behaves comparably to the flow around a circular
cylinder; the major deviation being that the location of the separation is an-
chored at the sharp corners of the cylinder.

It is well understood that the square cylinder configuration can can lead to dif-
ferent flow regimes depending on the value of the Reynolds number (Breuer
et al., 2000), based on the edge length 𝐷 and constant inflow velocity 𝑢0. At
Re < 1 the flow is dominated by viscous forces and no separation occurs. For
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Figure 7.4: Square cylinder. Description of the computational domain, boundary conditions, and initial grid employed.

higher Re, the flow detaches first at the trailing corners of the cylinder and
two symmetric recirculation regions develop in the rear of the body (see Fig-
ure 7.5a). The scale of these regions grow proportionally with Re. When a
critical Reynolds number Recrit is surpassed, the characteristic von Karman
vortex street can be observed along the wake.

There exists no clear consensus in the literature on a fixed value of Recrit. In
this work, the choice of Re has been based on the conservative estimation of
Recrit = 54 provided by Kelkar and Patankar (1992). In particular, by choosing
Re = 40 we guarantee that the flow around the square cylinder is steady.

The body is placed in the center of a squared computational domain (see Fig-
ure 7.4a). In order to reduce the influence of the inflow and outflow boundary
conditions, we follow the recommendations fromPosdziech andGrundmann
(2007) and Naddei (2019) and set the distance 𝐻 from the center to the outer
boundary 𝐻 = 1000𝐷. The inflow boundary condition is made of a constant
flow 𝑢0 from left to right of the computational domain. We impose non-slip
boundary conditions at the walls of the body and non-reflecting boundary
conditions on the outer boundary.

Figure 7.4b illustrates the initial mesh Ω(0)
ℎ . We use a Cartesian non-uniform

structured mesh with 2592 elements. Starting from the outer boundary, the
elements progressively decrease in size such that they are highly clustered in
the vicinity of the cylinder (geometrical series).

7.2.2 Reference solution and mesh convergence

To achieve a sufficiently fine mesh from which to compute an adequate ref-
erence solution, we perform multiple mesh refinement iterations Ω(𝑖)

ℎ of the
initial grid Ω(0)

ℎ . The first grids are generated by uniform global refinement.
In order to limit the computational cost, we restrict the uniform refinement
to the vicinity of the body, creating successive rectangular patches with ever
increasing spatial resolution. Figure 7.5b depicts this process by analyzing the
global 𝐿2-norm of the error in the momentum density of the 𝑝 = 2 solution
obtained for each of the globally refined meshes. As can be seen in this graph,
the last refined meshes achieve the asymptotic convergence rate. We obtain
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Figure 7.5: Square cylinder. Overview of
the configuration’s relevant phenomena
and roadmap to reference solution by
analyzing successive uniformly refined
meshes.
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a final reference mesh composed of 980 853 elements, which engenders a ref-
erence solution involving 8 827 677 DOFs.

Table 7.1 presents some relevant integral flow parameters such as recircula-
tion length and dimensionless force coefficients (drag). They are collected
from some of the most relevant literature and put side by side to our refer-
ence solution. They are organised from lower to higher blockage ratio, which
is defined as the ratio between the cylinder side length and the domain exten-
sion, 𝐵 = 𝐷/𝐻 . This ratio helps to understand the influence of the boundary
on the solution. The study of Posdziech and Grundmann (2007) concluded
that if the blockage ratio is decreased to 𝐵 ≤ 0.001, the solution can be con-
sidered as being grid independent. Indeed, the deviation of the drag value
between our asymptotic solution and Basile et al. (2021) is below 0.02 % for
𝐵 = 0.001. An equally low deviation of 0.2 % is observed in the recirculation
length. With increasing blockage ratios the disparity is accentuated, which
means that the solution is more influenced by errors introduced by blockage.
From Meliga et al. (2014) to Franke et al. (1990), the deviation in the drag
coefficient increases from 2 % to 20 %, respectively.

7.2.3 Overview of the h- and p-adaptive results

We employ the initial computational grid Ω(0)
ℎ described in Section 7.2.1

with the constant 𝑝-distribution 𝓅 = 2 to perform a series of h/p-pure adaptive
computations. From the initial Ω(0)

ℎ,𝓅 we build a series of hp-meshes for which

Table 7.1: Integral flow quantities found
in the literature and how they com-
pare to the reference solution from the
present study.

𝐶𝐷 𝐶𝐷 press 𝐶𝐷 visc 𝐿𝑏/𝐷 𝐵

Franke et al. (1990) 1.98 1.69 0.029 — 0.166
Dhiman et al. (2006) 1.7670 — — 2.8220 0.1
Sen et al. (2011) 1.6680 — — 2.8552 0.02
Meliga et al. (2014) 1.67 — — 2.83 0.02
Basile et al. (2021) 1.643049 1.417378 0.225671 2.8318 0.001
Present study 1.642730 1.414128 0.228602 2.83596 0.001
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Figure 7.6: Square cylinder. Zooming in
the vicinity of the hp-mesh for pure h-
or p-approaches. The initial mesh and
𝑝-distribution are given by Figure 7.4b

and 𝓅 = 2, respectively.

𝓅(𝑖) or Ω(𝑖)
ℎ remains fixed, depending on whether we perform strictly h- or p-

simulations. In the latter, we limit the local polynomial degree to the interval
𝑝𝐾 ∈ [2, 9].

h/p-adapted meshes Figure 7.6 outlines the h- and p-adapted meshes result-
ing from the adaptive procedure. If we pay attention first to the h-refined
mesh in Figure 7.6a, we observe that the vicinity of the cylinder is subjected
to various levels of refinement, becoming more pronounced in the region ap-
proaching the solid body. In particular, we highlight the intense local refine-
ment at the leading corners of the cylinder and, to a lesser extent, at the trail-
ing edge, where the separation of the laminar boundary layers occurs. This
is expected, as these sharp corners generate a sudden velocity gradient in the
flow. We can also clearly notice the refinement pattern along the shear layers
extending downstream. In the near-wake, the two symmetrical recirculation
regions display considerably lower refinement levels, which can be justified
by the smoothness of the solution in that region. Finally, the far-wake area
stretching to the exit boundary (not shown here) reveals unusually high lev-
els of refinement. This behavior was also reported by Naddei et al. (2018).
The authors suggested high-aspect ratio and poor mesh quality as the cause.
We also believe that, despite the large distance between the cylinder and the
exit, the wake may be not fully dissipated. This fact contradicts the imposed
boundary conditions, causing a spurious behavior at the outflow.

Figure 7.6b illustrates the map of the local polynomial degree. Most of the
observations drawn from the h-refined mesh are applicable to p-adaptation.
The areas subjected to p-enrichment are centered around the square cylin-
der and along the wake in the rear of the body. The highest values of the
p-distribution are reported in the vicinity of the square and follow the shear
layer downstream. Finally, we observe a larger spread of the p-distribution
than the equivalent mesh refinement. This is due to p-enrichment being con-
strained by the topology of the initial mesh, which is notmodified.The limita-
tion enforced in the jump of the polynomial degree between two neighboring
elements causes multiple extra elements to be marked for p-enrichment. This
prompts successive iterations of the p-distribution to occupy a larger area, as
the number of elements in the grid is not increased.
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(b) Pressure factor on drag, 𝐶𝐷 press.

105 106 107

0.25
0.24

0.22
0.21

0.2286𝐶 𝐷
vi
sc

h-unif
h-adapt

105 106 10710−3

10−2

#DOFs

|𝐶 𝐷
vi
sc

−
𝐶

re
f

𝐷
vi
sc

|

(c) Viscous factor on drag, 𝐶𝐷 visc.

Figure 7.7: Square cylinder. Convergence history of drag coefficients (𝐶𝐷, 𝐶𝐷 press, 𝐶𝐷 visc) in h-adaptive vs h-uniform simulations.
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Figure 7.8: Square cylinder. Conver-
gence history of recirculation length 𝐿𝑏
in h-adaptive vs h-uniform simulations.

Integral flow quantities The h- and p-computations are analyzed by compar-
ing the integral flow parameters such as recirculation lengths and drag coeffi-
cients. We also study the the contributions of the viscous and pressure forces
to the total drag.

Figure 7.7 shows the convergence history of the drag coefficient and its com-
ponents using uniform and adaptive h-refinement with respect to the refer-
ence solution discussed in Section 7.2.2 for which the benchmark quantities
are given in Table 7.1. We can observe that for a target value of the error in
the drag coefficient of Δ𝐶𝐷 = 1 × 10−4, we achieve a reduction of 90 % in
the number of DOFs with respect to the uniform refinement, as illustrated
by Figure 7.7a. We report a fast rate of decay during the first adaptive itera-
tions. Then the procedure reports a slow down around the third iteration. We
believe this is caused by the presence of the geometrical singularities at the
corners of the cylinder. The converge rate is recovered after a short plateau
and continues to decrease, albeit at a lower pace. The behavior of the uniform
solution is equivalent, yet using a much larger number of DOFs. A similar
pattern of convergence history is reported in Figures 7.7b and 7.7c for the two
components of the drag. We notice an overestimation of the viscous compo-
nent of the drag and an underestimation of the pressure component. While
the drag achieves the target value of Δ𝐶𝐷 = 1 × 10−4, its two components
reach a higher error of Δ𝐶𝐷 press = Δ𝐶𝐷 visc = 6 × 10−3. This behavior comes
from the cancellation of the errors due to the combination of the pressure
and viscous coefficients.

Figure 7.8 summarizes the computed values for the recirculation length using
uniform and adaptive h-refinement with respect to the benchmark value from
the reference solution. Similarly to the drag coefficient, we reach a level of er-
ror on the recirculation length lower than that corresponding to the uniformly
refined meshes.

Figure 7.9 illustrates the convergence history of the drag coefficient and its
components using uniform and adaptive p-enrichment with regards to the
reference drag. For a target value of the error in the drag coefficient of Δ𝐶𝐷 =
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(a) Drag coefficient, 𝐶𝐷.
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(b) Pressure factor on drag, 𝐶𝐷 press.
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(c) Viscous factor on drag, 𝐶𝐷 visc.

Figure 7.9: Square cylinder. Convergence history of drag coefficients (𝐶𝐷, 𝐶𝐷 press, 𝐶𝐷 visc) in p-adaptive vs p-uniform simulations.
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Figure 7.10: Square cylinder. Conver-
gence history of recirculation length 𝐿𝑏
in p-adaptive vs p-uniform simulations.

7 × 10−4, the reduction in the number of DOFs in connection with the uni-
form refinement is of about 64 %, as showcased in Figure 7.9a. After a very
fast decline in the convergence, the drag coefficient seems to become almost
constant for the remaining adaptive iterations. This seem to suggest that p-
enrichment alone is not able to overcome the effect of the singularity in the
solution. A similar pattern is observed for the pressure and viscous component
of the drag, Figures 7.9b and 7.9c, respectively. Interestingly, the convergence
pace is much slower in those cases. Again, the separate components cancel
each other, producing a much lower total value of the drag.

Figure 7.10 displays the computed quantities for the recirculation length using
uniform and adaptive p-enrichment together with the reference value (hori-
zontal dashed line). Equivalently to the drag analysis, the gains are modest
with respect to uniform p-enrichment. We report a fast decay followed by a
stabilization of the measured length.

7.2.4 Parametric hp-adaptive results I: review of hp-meshes

Similarly to the Section 7.2.3, we start from the initial computational grid
Ω(0)

ℎ and the initial 𝑝-distribution 𝓅 = 2 and perform a series of hp-adaptive
simulations. From the initial Ω(0)

ℎ,𝓅 we generate a sequence of hp-meshes Ω(𝑖)
ℎ,𝓅.

Unlike Section 7.2.3, the successive p-distributions 𝓅(𝑖) and refined meshes
Ω(𝑖)

ℎ would be adapted simultaneously. The choice between modifying one or
the other is guided by the multiwavelet regularity indicator under different
ranges of the hp-threshold parameter 𝜍tol. Again, the local polynomial degree
is constrained to 𝑝𝐾 ∈ [2, 9].

Figure 7.11 displays the resulting hp-meshes for different iterations of the adap-
tive procedure under 0.4 ≤ 𝜍tol < 0.5. This configuration of the regularity indi-
cator gives a strong preference to h-refinement over p-enrichment. At the first
iteration mesh refinement is performed around the body and along the rear
wake up to the exit, as illustrated in Figure 7.11a. The pattern of h-refinement
near the body remains for the next iterations, including the trailing edges and
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the two symmetrical vortexes. On the other hand, p-enrichment is activated
at later iterations in the region immediately upstream of the body and along
the downstream wake. A zoomed detail of the square cylinder allows us to see
that the highest levels of refinement are achieved at the frontal and rear cor-
ners, as showcased by Figure 7.11f. The highest p-value of this configuration
is 𝑝 = 6, which can be found along the near-wake.

Figure 7.12 illustrates the hp-meshes under 0.3 ≤ 𝜍tol < 0.4. This setting repre-
sents a more moderate preference toward mesh refinement. We still report
adaptation of the mesh in the vicinity of the body, but it is progressively
replaced by the adaptation of the local polynomial in subsequent iterations,
especially along the wake extending towards the boundary. The corners, im-
mediate shear-layer, and recirculation bubbles still require h-refinement. By
looking at the magnified square cylinder in Figure 7.12f, we reveal the highest
density of the grid around the upstream corners, whereas the narrow near-
wake and a small region at the front of the cylinder report a polynomial degree
of 𝑝 = 6, the highest value of the p-distribution in this configuration.

Figure 7.13 showcases a shift towards p-adaptation, with a hp-threshold pa-
rameter within the interval 0.2 ≤ 𝜍tol < 0.3. In this case only the areas close
to the front and rear of the body are selected for mesh refinement. Early
on, p-enrichment spreads to the upstream and downstream of the cylinder,
forming a clear p-distribution tail extending to the exit. The zoomed window
in Figure 7.13f offers a view on the highly h-refined frontal corners, while
the frontward area and the wide region starting at the near-wake collects the
maximum polynomial degree of 𝑝 = 7.

Figure 7.14 is using 0.1 ≤ 𝜍tol < 0.2 and describes an acute trend towards
p-adaptation, whereas the zones that report mesh refinement are minimal.
In fact, early iterations of the adaptive procedure are fully governed by p-
enrichment, with the exception of the small regions around the forward cor-
ners of the cylinder. Later iterations only accentuate this trend. Indeed, a re-
markable focus on refining the mesh is shown in Figure 7.14f, where a zoom
of the cylinder is depicted. Every other element selected for adaptation is
subjected to an increase in the polynomial degree. The maximum polynomial
degree in this configuration is 𝑝 = 7.

7.2.5 Parametric hp-adaptive results II: drag coefficient

In this section we provide a detailed comparison of the possible ramifications
of the multiwavelet regularity indicator regarding its hp-sensitivity. The idea
is to compare different hp outcomes based on a parametric analysis of the hp-
threshold 𝜍tol. To measure the effect of the parameter 𝜍tol into the hp-adaptive
process we analyze the behavior of the drag coefficient.

Figure 7.15 portrays the convergence history of the drag coefficient and its
components using hp-adaptation versus uniform h-refinement with respect
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(a) 1st adaptation step. (b) 2nd adaptation step. (c) 3rd adaptation step.

(d) 4th adaptation step. (e) 5th adaptation step. (f ) 5th adaptation step (detail).

degree, 𝑝𝐾
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Figure 7.11: Square cylinder. Successive iterations of the hp-meshes under hp-adaptation with a strong leaning
towards h-refinement. That is, we use the h++ tolerance (0.4 ≤ 𝜍tol < 0.5).

(a) 1st adaptation step. (b) 2nd adaptation step. (c) 3rd adaptation step.

(d) 4th adaptation step. (e) 5th adaptation step. (f ) 5th adaptation step (detail).

degree, 𝑝𝐾
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Figure 7.12:Square cylinder. Successive iterations of the hp-meshes under hp-adaptationwith amoderate tendency
towards h-refinement. Which is to say, we follow the h+ tolerance (0.3 ≤ 𝜍tol < 0.4).
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(a) 1st adaptation step. (b) 2nd adaptation step. (c) 3rd adaptation step.

(d) 4th adaptation step. (e) 5th adaptation step. (f ) 5th adaptation step (detail).
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Figure 7.13: Square cylinder. Successive iterations of the hp-meshes under hp-adaptation with a moderate affinity
towards p-refinement. Which implies that we implement the p+ tolerance (0.2 ≤ 𝜍tol < 0.3).

(a) 1st adaptation step. (b) 2nd adaptation step. (c) 3rd adaptation step.

(d) 4th adaptation step. (e) 5th adaptation step. (f ) 5th adaptation step (detail).
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Figure 7.14: Square cylinder. Successive iterations of the hp-meshes under hp-adaptation with a strong predispo-
sition towards p-refinement. Meaning that we apply the p++ tolerance (0.1 ≤ 𝜍tol < 0.2).
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(a) Drag coefficient, 𝐶𝐷.
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(b) Pressure factor on drag, 𝐶𝐷 press.

105 106 107

0.25

0.24

0.22

0.21

0.2286𝐶 𝐷
vi
sc

h-unif
hp-h++
hp-h+
hp-p+
hp-p++

105 106 10710−3

10−2

#DOFs

|𝐶 𝐷
vi
sc

−
𝐶

re
f

𝐷
vi
sc

|

(c) Viscous factor on drag, 𝐶𝐷 visc.

Figure 7.15: Square cylinder. Convergence history of drag coefficients (𝐶𝐷, 𝐶𝐷 press, 𝐶𝐷 visc) in hp-adaptive vs h-uniform simulations.
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Figure 7.16: Square cylinder. Conver-
gence history of recirculation length
𝐿𝑏 in hp-adaptive vs h-uniform simula-
tions.

to the value given by the reference solution. The different values of the hp-
threshold 𝜍tol are represented by the different colored graphs. The nomencla-
ture is the following:

(i) h++ tolerance, defined by the span 0.4 ≤ 𝜍tol < 0.5.
(ii) h+ tolerance, denoted by 0.3 ≤ 𝜍tol < 0.4
(iii) p+ tolerance, identified by 0.2 ≤ 𝜍tol < 0.3
(iv) p++ tolerance, represented by 0.1 ≤ 𝜍tol < 0.2

Given a target error of Δ𝐶𝐷 = 1 × 10−4 in the drag coefficient, the number of
DOFs with respect to the uniform refinement is significantly reduced. This
is true for all of the prescribed tolerances, as illustrated by Figure 7.15a. We
report savings ranging from 95 % for h++ to 98 % for p++. In a similar manner,
they display a rapid downward progression, then a deceleration, and finally
they feature a restored decay, yet at a slower pace. The pressure and viscous
contributions to the drag, Figures 7.15b and 7.15c, display a similar behavior.
However, we observe again a compensation of errors (due to the components
of the drag remaining similarly underestimated and/or overpredicted) being
transferred to the total drag, causing the latter to reach lower values of the
error compared to its components.

The dissimilarities among the prescribed tolerances are worth investigating.
The results from 𝐶𝐷 press and 𝐶𝐷 visc seem to suggest for this configuration
a slight benefit of choosing tolerances leaning towards p-enrichment, with
the tolerance p++, which seems to be the most efficient, achieving higher
accuracy for the same number of adaptation steps. However, for the total drag
the outcome is less clear, with the tolerances leaning towards h-refinement
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(a) Drag coefficient, 𝐶𝐷.
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(b) Pressure factor on drag, 𝐶𝐷 press.
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(c) Viscous factor on drag, 𝐶𝐷 visc.

Figure 7.17: Square cylinder. Comparison of the convergence history among h-, p- and hp-adaptive simulations for the drag coefficient 𝐶𝐷
and its contributions 𝐶𝐷 press and 𝐶𝐷 visc.
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Figure 7.18: Square cylinder. Compari-
son of the convergence history among
h-, p- and hp-adaptive simulations for
the recirculation length 𝐿𝑏.

reporting narrowly higher accuracy. In particular, the moderate tolerance h+
outperforms all others. As discussed before, these differences between total
drag and its components are likely caused by a compensation of errors. In the
next section we further investigate the behavior of the hp-adaptive algorithm
by looking into the recirculation bubble length.

7.2.6 Parametric hp-adaptive results III: recirculation region

Figure 7.16 shows the computed values of the recirculation length using hp-
adaptation and uniform h-refinement and compares them to those obtained
from the reference solution. As for the 𝐶𝐷, we observe similar convergence
histories for all the prescribed tolerances. However, the tolerances weighted
towards p-enrichment require a larger number of adaptation steps to arrive
at the same accuracy reported by either h+ or h++. Specifically, the moderate
tolerance h+ seems to be the most efficient.

7.2.7 Global analysis for h-, p-, and hp-adaptive results

In this section we collect the best results from the different adaptive strategies
for the integral flow quantities obtained from hp-adaptation (Sections 7.2.5
and 7.2.6) and compare their performance against their pure h and p coun-
terparts obtained in Section 7.2.3.

The adaptive results for the drag coefficient and its pressure and viscous con-
tributions are outlined in Figure 7.17. During the analysis of the total drag,
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Figure 7.17a, we observe that p-adaptation yields a fast error convergence dur-
ing the first iterations but quickly reaches a plateau at Δ𝐶𝐷 = 7 × 10−4, well
above the value of Δ𝐶𝐷 = 8 × 10−5 reached by either h or hp. This is expected
given the coarse initial grid and the presence of the strong geometrical singu-
larity at the corners of the cylinder. We suspect that not being able to adjust
the topology of the initial mesh clearly becomes a limitation. Conversely, h-
adaptation produces a slower convergence rate. This decay ends on a similar
plateau but, unlike p-enrichment, it does not fully stagnates and it restores the
error convergence to a moderate pace by upholding fine grid sizes and low or-
der approximations around the corners of the cylinder. Clearly, hp-adaptation
provides the optimal approach. On the one hand it provides the rapid error
convergence characteristic of p-enrichment during the first steps of the adap-
tive procedure. On the other hand, it does inherit from h-refinement the
possibility to overcome the effect of the geometrical singularity by locally
adapting the mesh and thus producing a proper error convergence. These fac-
tors allow hp-adaptation to reach the target level of accuracy Δ𝐶𝐷 = 8 × 10−5

while achieving a reduction of 62 % in the total #DOFs with respect to h-
adaptation. These behaviors are similarly reported for 𝐶𝐷 press and 𝐶𝐷 visc in
Figures 7.17b and 7.17c, respectively; even when we take into account the error
compensation between these quantities.

Finally, Figure 7.18 showcases the adaptive results for the recirculation length.
Analogously to the drag analysis, the use of pure p-adaptation achieves early
fast error convergence but ends up stagnating the progression, while the pure
h-simulation improves the error convergence at the expense of using a larger
#DOFs. The hp-adaptive approach appears thus as the ideal choice by attain-
ing rapid convergence while substantially reducing the #DOFs.

7.2.8 Local flow field analysis for h-, p-, and hp-adaptive results

The current section presents a detailed comparison of relevant velocity and
pressure profiles at several locations in the flow field. In particular, we are
interested in analyzing the effects of each of the adaptation approaches dis-
cussed so far (h, p, and hp) at a local level.

Profiles in the streamwise direction First, we focus on the horizontal profiles
following the direction of the flow, as illustrated in the top row of Figure 7.19.
The first of these profiles spans from the frontal corner to the rear corner, and
extends along the trailing edge. Figure 7.19a collects the values of the differ-
ence between the computed and the reference pressure for every adaptive it-
eration. If we define the average error of a given profile as Δ𝑝avg = 1

Δ𝑥 ∫ Δ𝑝 d𝑥,
the error profiles obtained for the p-enrichment strategy display a reduction
of the average error between successive iterations of 24 %, with the initial steps
reporting a maximum of 45 % and the later stages providing a negative reduc-
tion of −6 %. The final profile seems to be crowded with little fluctuations
generated by the high-order approximations being unable to capture the sin-
gularities. This may explain the slow error convergence and stagnation of the
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wall, along frontal and rear corners.
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the near-wake region, 0 ≤ 𝑥 ≤ 5𝐷.

Figure 7.19: Square cylinder. Comparison of the h-, p- and hp-simulations at every adaptation step. We study various physical variables at
selected profiles in the vicinity of the body and evaluate the error in relation to the reference solution.

global quantities observed in Sections 7.2.5 and 7.2.6. By contrast, h- and
hp-adaptation feature a mean decrease of the error between successive adap-
tation steps of 47 %. Interestingly, from the fourth iteration of the adaptive
algorithm the two sharp corners become the main source of the error. The
average error decline is however slowed down to a minimum of 6 %. By con-
centrating the mesh refinement on the singularities we progressively recover
the percentage to the maximum of 81 % at the final adaptation step. The dif-
ferences between the final h and hp profiles are minimal. Revealingly, these
profiles achieve a reduction of the average error with respect to the final p
profile of approximately 95 %.

Figure 7.19b outlines a second horizontal profile along the symmetry axis of
the vortexes and follows the near-wake region behind the body. Here, we
study the difference between computed adaptive and reference horizontal ve-
locity for every iteration of the adaptive procedure. The evolution of the p-
enrichment reports a rapid decline of its the error profile during the initial
steps followed by a sudden stagnation. By contrast, the h- and hp-results dis-
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(a) Local pressure evaluation at 0.4𝐷 away from the upstream wall.
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(b) Local pressure evaluation at 0.1𝐷 away from the upstream wall.
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(c) Local pressure evaluation on the upstream wall.

Figure 7.20: Square cylinder. Compari-
son of the h-, p- and hp-simulations at
the final adaptation step. We analyze
multiple pressure profiles upstream of
the body and measure the error with re-
spect to the reference solution.

play a more monotonic decline of the average error of approximately 30 %,
with the average error measured as Δ𝑢avg = 1

Δ𝑥 ∫ Δ𝑢 d𝑥. This seems to suggest
that not capturing properly the singularities in the vicinity of the body affects
the downstream flow. Again, there exists minimal variations between the fi-
nal h and hp profiles. Similarly to the pressure analysis in Figure 7.19a, they
accomplish a decrease of the average error with respect to the final p profile
of about 88 %.

Profiles in the cross-stream direction Finally, we assess the pressure profiles
perpendicular to the direction of the flow. Figure 7.20 illustrates the balance
between computed adaptive pressure and reference pressure at the final adap-
tation step. We analyze three different locations upstream of the cylinder,
which are ordered from farthest to closest to the body in Figures 7.20a to
7.20c. We can observe how the overall error of each adaptive approach, given
by the horizontal axis, becomes larger as we approach the body. This is ex-
pected, as the singularities are the main source of the error in this configura-
tion. Regarding each of the adaptive approaches individually and defining the
average error as Δ𝑝avg = 1

Δ𝑦 ∫ Δ𝑝 d𝑦, we notice how hp-adaptation is again the
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most efficient of the group. With this in mind, it reports extensive savings in
the average error between 93 % and 97 % when its profile is compared to the
profile of the p-approach, and between 6 % and 22 % when compared to the
h-approach. In this analysis the p-approach reports fluctuations in the error
and wider error areas around the singularities due to the ill-fitting behavior
of the high-order approximations at those points. The hp-approach manages
to be higher-order where the solution is regular yet avoiding the oscillations
reported by p-enrichment.

7.3 CONCLUDING COMMENTARY

In this chapter we have evaluated the performance of our multiwavelet hp-
adaptive scheme applied to two steady configurations at Ma = 0.1 and dif-
ferent Reynolds numbers: the 2-D laminar flow over a backward-facing step
at Re = 800 and the 2-D laminar flow past a square cylinder at Re = 40.
These two configurations are characterized by the presence of singularities
that severely impact the behavior of the flow overall. Therefore, they are es-
pecially relevant configurations to be subjected to an adaptive scheme.

With regards to the backward-facing step, we have compared the global con-
vergence history of h-, p-, and hp-adaptive simulations with respect to sim-
ulations based on uniformly refined grids, polynomials, or both; respectively.
Every adaptive approach has outperformed its uniform counterpart, with re-
ductions in the numbers of degrees of freedom of between 40 % and 92 %.
Among the adaptive approaches, both the p- and hp- approaches have re-
ported similar behavior and they have been substantially more efficient than
the pure h-approach, achieving savings of about 80 % when they were set side
by side to the latter. We have further studied the local behavior of the solu-
tion and found that either the p- or hp- approach has again outperformed
the h-approach in regions of high regularity of the solution, such as the the
expanded channel downstream of the step. However, in regions close to the
step (singularity), the p-approach introduced spurious oscillations which have
worsened the quality of the approximation. By contrast, here the previously
insufficient h-approach has outmatched the p-enrichment with a lower aver-
age error of about 26 %. But the best local performance has been reported by
the hp-approach, further improving the savings to 38 %.

On the square cylinder configuration we have conducted a more exhaustive
study of the hp-simulations by performing two different exercises. In the first
place, we have investigated the optimal hp-distribution by executing a para-
metric evaluation of plausible tolerances for the hp-threshold. We have ap-
pointed four ranges of tolerances. On the one hand, the first two tolerances
display an intense affinity towards mesh refinement (h++) or polynomial en-
richment (p++), whereas the remaining two tolerances show a more moderate
preference to each approach, being named h+ and p+, respectively. We have
studied the convergence history of both the drag coefficient and the recircu-
lation length to assess their performance. In this regard, we have observed
savings in the number of DOFs of between 95 % and 98 % with respect to
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uniform mesh refinement. In particular, the moderate predisposition h+ has
shown the best performance, achieving a higher accuracy for the same num-
ber of adaptation steps.

In the second place, the hp-adaptive results due to the tolerance h+ have been
compared to equivalent h- and p-adaptive computations to determine which
was the best adaptive approach. Both a series of global and local quantities
have been analyzed in this context. In the global setting, pure h-adaptation
has achieved a reduction of 90 % in the number of DOFs with respect to
the uniform mesh refinement, while p-adaptation has reported more mod-
est savings of 64 % compared to uniform polynomial refinement. However,
the p-approach did not reach the target level of accuracy and showed signs
of stagnation. By contrast, the hp-approach under tolerance h+ did achieve
the target level of accuracy while attaining a extensive reduction of 96 % in
the number of DOFs with respect to uniform mesh refinement. If hp-h+ is
compared directly to pure h-adaptation, we have reported savings of 62 %.

In the local setting we have evaluated multiple pressure and velocity profiles
around the cylinder and along the near wake, respectively. We have found
minimal variations between the profiles associated with the h-approach and
hp-approach under tolerance h+. On the other hand, the profiles related to
p-enrichment were deteriorated by oscillations introduced by high-order ap-
proximations near the corners of the body (singularities). Due to this reason,
either the h or hp-h+ profiles have routinely outperformed the p-profiles, with
savings in the average error of about 90 % with respect to the latter.





Chapter8
CONCLUSIONS AND FUTURE
WORK

8.1 CONCLUSIONS

The main objective of this work was to develop computationally efficient hp-
adaptive discontinuous Galerkin methods to numerically solve the Navier-
Stokes equations under various steady-flow configurations.

In order to achieve this goal, we have brought together the flexibility of a
posteriori driven adaptation and the accuracy of multiresolution-based adap-
tation. This pairing has allowed us to overcome the limitations of traditional
multiresolution-based adaptationmethods and to advance an alternativemulti-
wavelet-basedmethodology in the context of a posteriori local error estimation
and mesh adaptation. Most interestingly, we have superseded the restriction
of traditional MRA-based approaches to mesh adaptation by providing the
new multiwavelet-based methodology with both grid size (h-) and polyno-
mial degree (p-) adaptation capabilities.

In the first part of this research, we have investigated howmultiwavelets could
become active agents on driving adaptive discontinuous Galerkin schemes.
We have concluded that, in order for the multiwavelets to be able to extract
meaningful information locally, the high-order solution must be put through
a post-processing treatment to enrich its polynomial constituents. With that
in mind, we have successfully developed and tested multiple reconstruction
paradigms involving the current element and its immediate neighbors. This
new reconstructed solution can then be broken apart into a hierarchy of low-
resolution data and subsequently finer details. Based on this methodology,
we have demonstrated how to make use of the multiwavelet properties while
being local to the element, thereby maintaining the compacity of the DG
method.

We have first employed the local multiwavelet-based methodology to mea-
sure the discretization error of the numerical solution in the context of h-
adaptive simulations. In order to investigate the capabilities and limitations
of the method, we have selected flow configurations characterized by physical
and geometrical singularities, which would significantly benefit from mesh
refinement. Adaptive computations of the one-dimensional viscous Burg-
ers equation have proved the efficiency of the multiwavelet-based method-
ology against relevant estimators provided in the literature (in particular the
SD (Taube et al., 2010) and SSED (Kuru et al., 2016) estimators). From these



128 8 conclusions and future work

results, we have heralded the 𝜅-multiwavelet estimator, based on the recon-
struction paradigm with the most element-neighbor interactions, as the best
performing from the multiwavelet family.

Supported by the encouraging results, we have applied the estimator to the
two-dimensional steady h-adaptive computations of the laminar backward-
facing step flow at Re = 800 and Ma = 0.1. This more challenging configura-
tion has demonstrated that, for a prescribed level of accuracy in the density
momentum variable, the 𝜅-multiwavelet estimator applied to various physical
quantities achieves a reduction between 48 % and 90 % of the number of de-
grees of freedom compared to uniformly refined simulations, with the larger
percentages obtained by higher-order computations. The convergence study
of the separation/reattachment lengths has led to similar savings. Overall, we
have identified the 𝜅-multiwavelet estimator applied on the density momen-
tum displaying a performance slightly above all others.

We have observed how the size of the mesh and the order of the approxima-
tion have also become key drivers of the magnitude of the simulation times.
Computational times need to be interpreted with caution because they are
hard to measure consistently and are subjected to many variables not always
fully understood. However, the data presented have demonstrated that, by
activating a multiwavelet-guided adaptation in simulations of higher order,
we have achieved substantial speedup times. Particularly, in the best case sce-
nario, the family of the 𝜅-multiwavelet estimators have enabled more than 20
times faster solutions when compared to the uniformly refined solution.

We have noticed that the 𝜅-multiwavelet estimator did not suffer from a series
of deficiencies reported by the SSED and SD estimators when operating in
low-order adaptive simulations and displays amore consistent behavior across
different orders. Most notably, we have observed that the 𝜅-multiwavelet esti-
mator becomes more accurate when the local order is increased thanks to the
higher quantity of details captured during the multiwavelet decomposition.
Admittedly, this behavior is not unique to the multiwavelet-based estimator,
as the SSED and SD estimators are also known to benefit from the increase
in 𝑝. However, they still did not surpass the overall performance of the 𝜅-
multiwavelet estimator.

The second line of investigation addressed the analysis and development of a
new hp-adaptive strategy. The idea was to provide enhanced sub-optimal ac-
curacy through mesh refinement in non-smooth regions, and simultaneously
increase local polynomial order in smooth areas to reach exponential-like ac-
curacy. We have performed a thorough study of the behavior of the multi-
wavelet coefficients on various analytical functions and on the post-reconstruc-
ted DG solution and we have established the existence of a consistent asso-
ciation between function regularity and the rate of decay of the spectrum of
the multiwavelet coefficients. From here we have constructed a multiwavelet
regularity indicator based on this spectrum to drive hp-adaptive simulations
of the 2-D laminar backward-facing step and the steady laminar flow past a
square cylinder at Re = 40 and Ma = 0.1.
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For the backward-facing step configuration we have performed a sequence
of h-, p-, and hp-adaptive computations. The convergence behavior of each
of the adaptive approaches was compared with its equivalent uniform adap-
tation. Every adaptive approach has outperformed its uniform counterpart,
with reductions in the numbers of degrees of freedom of between 40 % and
92 %. When it comes to the individual adaptive approaches, both the p- and
hp-adaptive computations behaved equivalently and reported significantly bet-
ter performance in regards to the pure h-adaptive computations, with savings
of approximately 80 % compared to the latter. A further analysis of the lo-
cal behavior of the solution has found that the pure p-approach introduced
spurious fluctuations in the regions close to the step, due to the presence
of strong gradients. This phenomena has caused the p-approach to fall be-
hind in hp-approach in the local analysis. In this regard, we have quantified
a lower average error of about 38 % when the latter is compared to the for-
mer approach. From the implications of the global and local results we have
determined hp-adaptation as the most efficient adaptive approach.

We have then performed a more detailed analysis of the hp-computations for
the laminar square cylinder configuration. In a first step, we have investigated
the optimal hp-distribution by designing a parametric study of reasonable
tolerances for the hp-threshold. By adjusting the tolerance we could have
controlled the sensitivity towards polynomial enrichment ormesh refinement.
In this manner, we have selected four intervals of tolerances. From an intense
affinity towards mesh refinement (h++) or polynomial enrichment (p++) to a
moremoderate leaning to each approach, symbolized by h+ or p+, respectively.
To evaluate their performance for this configuration, we have analyzed the
convergence history of both the drag coefficient and the recirculation length.
Within this context, we have recorded a reduction in the number of degrees of
freedom of between 95 % and 98 % with respect to uniform mesh refinement.
In particular, the moderate tolerance h+ has reported the best performance,
attaining a higher accuracy for the same number of adaptation steps.

We have also compared the hp-adaptive results ascribed to the tolerance h+
to equivalent h- and p-adaptive simulations to identify the best adaptive ap-
proach. In this regard, the pure p-simulations were heavily influenced by the
strong gradients in the vicinity of the sharp-edged body. This fact caused the
error convergence to decay fast in the early stages of the algorithm and to pro-
gressively reach stagnation far from the target level of accuracy. Conversely,
the pure h-simulations displayed a slower error convergence but their progres-
sion steadily reached the target value. Definitely, the hp-adaptation strategy
under h+ provided an optimal approach. It inherited the early rapid conver-
gence of the p-approach while adjusting to the strong gradients by locally
adapting the mesh and thus retaining a proper error convergence. These fac-
tors have allowed the hp-h+ to reach the target level of accuracy while attain-
ing a substantial reduction of 62 % in the total number of degrees of freedom
with respect to the pure h-approach.

The analysis of the local flow quantities by evaluating successive pressure pro-
files upstream of the cylinder revealed the presence of oscillations when p-
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enrichment is activated. Similarly to the analysis of the backward-facing step,
this was caused by the ill-fitting behavior of the high-order solution in the
vicinity of the sharp corners. Conversely, the hp-approach under tolerance h+
successfully managed to become higher-order where the solution was smooth
yet avoiding the fluctuations reported by the pure p-enrichment. Due to this
reason, the hp-h+ profiles have substantially outperformed the p-profiles, with
savings in the average error of about 90 % with respect to the latter. In sum-
mary, the hp-approach under h+ has proved best equipped to localize the re-
gions requiring increased resolution, thus minimizing the use of the available
computational resources.

8.2 PERSPECTIVES

Multiple lines of research regarding the novel hp-adaptive scheme and the
local multiwavelet-based methodology have remained unexplored. In this
section, general guidelines for future research are outlined and briefly dis-
cussed.

Support of more general grids The current adaptive scheme has been devel-
oped in the context of non-structured stretched Cartesian grids, where the
construction of the multiwavelets is performed only once for a reference cell
and then mapped to the local elements by an affine mapping. By contrast, in
non-Cartesian grids no affine mapping is available and multiwavelets must
be calculated element-wise, which substantially increases the cost of the com-
putations. A possible solution would be the use of the wavelet-free approach,
developed by Gerhard, 2017. This approach avoids the use of the highpass
QMF coefficients associated with the multiwavelets (Geronimo et al., 2017).
Instead, the detail coefficients are calculated by exclusively using the low-
pass QMF coefficients, which are associated with the multi-scaling functions.
This alternative methodology would make the application of the MRA on
non-Cartesian grids (such as grids with curved elements) significantly more
efficient to compute.

Extension to three dimensions An extension to three dimensions would be
straightforward.TheAlpert algorithm to generatemultiwavelets (Alpert, 1993)
is readily extended to 3-D by tensor products. In this case, the multiwavelet
space would be made up of seven contributions (three along the 𝑥, 𝑦, 𝑧-axes
and four along their respective diagonals). Similarly to 2-D case, the local
multiwavelet error estimator, defined in Eq. (5.7), would be directly evaluated,
by just adding the new contributions. By contrast, the local multiwavelet reg-
ularity indicator, given by Eq. (5.28), would require a more thorough study of
the multiwavelet spectrum for the new contributions. Nevertheless, we could
expect that spectrum will behave similarly to the results from Table 5.18.
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Extension to anisotropic hp-adaptation The analysis of the multiwavelet con-
tribution along the 𝑥-, 𝑦- and 𝑥𝑦- directions opens the door to the develop-
ment of an anisotropic adaptation algorithm in both h and p. In that context,
the local multiwavelet error estimator could be easily reevaluated by measur-
ing the contribution for the 𝑥- and 𝑦-direction separately. Similarly, the local
multiwavelet regularity indicator would be built up as a summation of the
different directional contributions (see Table 5.18), thus the analysis of the
component-wise regularity would be straightforward. In addition, regarding
p-anisotropy, further changes in the solver would be required to accommodate
different polynomial degrees within the element.

Integration of hp-coarsening capabilities into the adaptive algorithm In this
case, the local multiwavelet error estimator would need to identify a neigh-
borhood of elements that share a similar magnitude of the error below an
imposed threshold. Once detected, this group of elements could be either
agglomerated (h-coarsening), or have their polynomial degree lowered (p-
decreasing), depending on the average value of the local multiwavelet regular-
ity indicator. The latter would be straightforward to put into practice, whereas
the former would require a tree-like structure to keep track of the changes in
the grid and would be more challenging to implement.

Application to unsteady flows The present adaptive scheme could be gener-
alised for static hp-adaptation of unsteady periodic flows, similarly to the
procedure described in Naddei et al. (2018). In this manner, we would acti-
vate the hp-adaptive algorithm once the periodic state of the flow is achieved.
Then, the local multiwavelet error estimator and regularity indicator could be
computed as the maximum of the instantaneous values over a defined time in-
terval. The frequency of these instantaneous values may be adjusted to avoid
their computation at every discrete time step.

Application to RANS simulations The current implementation could be ex-
tended to high-Reynolds turbulent flows. In a first approach, we would ex-
tend the solution adaptation capability to fully developed, statistically steady
flows that are well described by the RANS methodology. In particular, the
local multiwavelet analysis of the eddy viscosity from the Spalart-Allmaras
model (Allmaras et al., 2012) would hold special relevance. In this way, the
estimation of its error and regularity would guide the hp-adaptation. The im-
plementation would require a post-processed (enriched) version of the eddy
viscosity so that the multiwavelet expansion could be applied.
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Résumé : L’objectif principal de cette thèse est
de développer une méthode hp-adaptative effi-
cace en termes de coût et précision pour les
schémas Galerkin discontinus appliqués aux équa-
tions de Navier-Stokes, en combinant flexibilité de
l’adaptation a posteriori et précision de l’adapta-
tion multi-résolution. Les performances de l’algo-
rithme d’adaptation hp sont illustrées sur plusieurs
cas d’écoulements stationnaires en une et deux di-
mensions.

La première direction de recherche emploie
une nouvelle méthodologie basée sur les multi-
ondelettes pour estimer l’erreur de discrétisation de
la solution numérique dans le contexte de simula-
tions avec adaptation h. Les résultats démontrent
clairement la viabilité de cette méthode pour at-

teindre un gain de calcul significatif par rapport à
un raffinement de maillage uniforme.

La deuxième voie de recherche aborde l’ana-
lyse et le développement d’une nouvelle straté-
gie d’adaptation hp basée sur la décroissance du
spectre des multi-ondelettes comme critère adapta-
tion hp. Cette stratégie permet de discriminer avec
succès les régions caractérisées par une grande
régularité de celles contenant des phénomènes
discontinus. De manière remarquable, l’algorithme
d’adaptation hp est capable d’atteindre une haute
précision caractéristique des solutions numériques
d’ordre élevé tout en évitant les oscillations indési-
rables en adoptant des approximations d’ordre ré-
duit à proximité des singularités.

Title: Multiwavelet-based hp-adaptation for discontinuous Galerkin methods
Keywords: Fluid Mechanics, Navier-Stokes, Numerical methods, Adaptive methods, Wavelets

Abstract: The main objective of the present thesis is
to devise, construct and validate computationally ef-
ficient hp-adaptive discontinuous Galerkin schemes
of the Navier-Stokes equations by bringing together
the flexibility of a posteriori error driven adaptation
and the accuracy of multiresolution-based adapta-
tion. The performance of the hp-algorithm is illus-
trated by several steady flows in one and two dimen-
sions.

The first research direction employs a new
multiwavelet-based methodology to estimate the
discretization error of the numerical solution in the
context of h-adaptive simulations. The results cer-
tainly demonstrate the viability of h-refinement to

reach a significant computational gain with respect
to uniformly refined grids.

The second line of investigation addresses the
analysis and development of a new hp-adaptive
strategy based on the decay of the multiwavelet
spectrum to drive hp-adaptive simulations. The
strategy successfully discriminates between regions
characterized by high regularity and discontinuous
phenomena and their vicinity. Remarkably, the de-
veloped hp-adaptation algorithm is able to achieve
the high accuracy characteristic of high-order nu-
merical solutions while avoiding unwanted oscilla-
tions by adopting low-order approximations in the
proximity of singularities.
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