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General Introduction

Regional anesthesia (RA) is performed to block the sensation of pain in a specic region of the body by stopping the nerve impulses connection between that region and the central nervous system. Nowadays, RA is a well-known procedure in many operating rooms and is used to avoid performing general anesthesia. RA is performed by the anesthetist in order to reduce pain scores, facilitates earlier hospital discharge, and improves postoperative mobility. Traditionally, this technique was performed with needle blind guidance which increases the risk of block failure, nerve trauma, and local anesthetic toxicity [START_REF] Ban | Ultrasound imaging for regional anesthesia in infants, children, and adolescentsa review of current literature and its application in the practice of extremity and trunk blocks[END_REF]. Hence, Ultrasound-guided regional anesthesia (UGRA) becomes a powerful technique in surgical procedure and pain management [2].

UGRA oers a huge performance impact on the practice of regional anesthesia [3,4]. However, when performing UGRA, experts face several challenges: nding the nerve location in the poor quality ultrasound (US) image; keeping the nerve visualization all the time; locating dierent organs in the image such as arteries and bones; nding the best needle insertion point; controlling the needle insertion by taking into account the interaction pivot point between the needle and the skin of the patient; aligning the needle within the 2D US plane; nding the suitable needle trajectory to avoid sensitive anatomical or cardiovascular regions (arteries, bones, etc). Hence, UGRA procedure requires a long learning process and years of experience [5,[START_REF] Glenn E Woodworth | Ecacy of computer-based video and simulation in ultrasound-guided regional anesthesia training[END_REF].

Robotic systems are already used in medical settings and have shown their important impacts in assisting the medical experts during their medical act [START_REF] Anthony R Lanfranco | Robotic surgery: a current perspective[END_REF]. Robotic-assisted UGRA could provide great assistance by helping the experts with techniques and tools that improve the procedure accuracy and safety such as avoiding nerve trauma or damage of healthy tissues. Moreover, it could increase the anesthetist's experience by more teaching and learning to avoid unintentional injuries [START_REF] Ortmaier | Robot assisted force feedback surgery[END_REF]. The main objective of this thesis work is to provide anesthetists with robotic and image processing tools to assist and facilitate their UGRA routine for patient health benets.

There are two critical issues in the robotic-assisted UGRA system: the visual quality of the US image which suers from the presence of noises; and the robotic control and accuracy in the needle insertion. To overcome these diculties and to perform an accurate robotic-assisted UGRA system, this thesis aims to develop a robotic-assisted UGRA system that focuses on these two issues and proposes nerve detection and tracking methods and robotic needle insertion control.

Chapter 1 presents the UGRA procedure, diculties, challenges, and limitations as performed by anesthetists. As well as, analyzing the nerve structure and characteristics. Finally, the proposed robotic-assisted UGRA system and the objectives of this thesis are explained.

In Chapter 2, the US image is analyzed by highlighting its noisy texture properties and the importance of nding robust and discriminative features in the image. In this chapter, we propose a new robust feature Robust Adaptive Median Binary Pattern (RAMBP). RAMBP handles images with highly noisy textures and increases the discriminative properties by capturing microstructure and macrostructure texture information.

Nerve detection and tracking in the US images is proposed in Chapter 3. RAMBP descriptor is used with well-known detectors and tracker. However, we believe Convolutional Neural Networks (CNNs) models are eective too for the ultrasound image textures. Thus, to learn more optimal features, we propose to merge RAMBP with CNN models to achieve better performance for nerve detection and tracking. In Chapter 3, the texture descriptor, CNNs models, and the merged model detectors and trackers are evaluated and analyzed in terms of accuracy, consistency, time cost, and handling dierent nerve situations.

In Chapter 4, the robotized needle insertion control approach is introduced. Here, the needle insertion kinematics are explained. Followed by proposing two techniques based on these kinematics, the robotized needle insertion using haptic force feedback, and the CoBotized needle insertion using a CoBotic system. Finally, robotic experiments and results are presented.

As a conclusion, a nal chapter is given which discusses and summarizes the main contributions of this thesis and proposes some perspective work.

In Chapter 5, a complete summary of the thesis is presented in French.

trauma and hospitalization time. UGRA operation has become a standard procedure in many hospitals [START_REF] Lois | Does regional anesthesia improve long-term patient outcome? Techniques in Regional Anesthesia and[END_REF]. Each year in France, hundreds of thousands of UGRA operations are performed.

The motivation for this thesis is to develop an ecient and robust robotic-system for assisting the anesthetists in performing UGRA.

In this chapter, we justify both the motivation behind this thesis by introducing the UGRA procedure in Section 1.1. The limitation and challenges of the UGRA procedure are discussed in Section 1.2. Then, existing robotic systems for medical surgeries are explored in Section 1.3.

Followed by explaining the objectives of this work and discussing its contributions to the eld of anesthesia in Section 1.4.

1.1 Ultrasound-Guided Regional Anesthesia (UGRA)

The term "anesthesia" comes from Latin and means "without sensation". Anesthesia does not mean direct treatment, it allows the surgeons to treat, diagnose, or cure an ailment which would otherwise be painful or hinder patient's health and recovery time.

In the next section, we provide a thorough description of Regional anesthesia (RA) and Ultrasound-Guided Regional Anesthesia (UGRA).

Regional anesthesia

It wasn't until the late 1800s when surgeons and dentists alike began to use cocaine as a topical analgesic to perform surgical procedures painlessly on conscious patients.

Prior to this development, painful procedures would require the use of general anesthetic agents, most often ether, developed in 1846 by a dentist by the name of W.T.G. Morton who rst publicly demonstrated its eectiveness by performing a tooth extraction of a patient under its inuence [START_REF] Calatayud | History of the development and evolution of local anesthesia since the coca leaf[END_REF]. However, general anesthesia carries inherent risks to the patient and can prove to be impractical, particularly in an outpatient setting. Notable advancements over the following decades would include the addition of vasoconstrictor to local anesthetic solutions, the concept of nerve blockade, the development of the modern syringe, and the introduction of several synthetic analogs of cocaine, which would prove to be safer and more ecacious as local anesthetics [START_REF] Nathan | A brief history of local anesthesia[END_REF].

Regional anesthesia (RA) is most often used when the procedure is conned to a specic region of the body, involves a large area of the body where injection of large amounts of an anesthetic might cause side eects that aect the entire body, and does not require general anesthesia. RA has saved lives and it calls for a cooperative patient and much patience on the side of the surgeon and anesthetist. For decades, active research in the operations eld focuses on the possibility to introduce new methods that reduce risks and post-operative pain. RA has become an essential routine for pain management. It allows to remove the sensation of a part of the human body on which will be able to perform minor surgical procedures. The main reason of performing RA is to replace general anesthesia and provides an eective technique which oers faster operation settings, a signicant reduction in the duration of hospitalization, and most important injecting the patient with a less quantity of anesthetic [START_REF] Jit | Anaesthesia for laparoscopic surgery: General vs regional anaesthesia[END_REF].

Regional anesthesia can be applied to either the central or peripheral nervous systems [START_REF] Busoni | Central or peripheral blocks? Techniques in Regional Anesthesia and[END_REF][START_REF] Jürgen | The human nervous system[END_REF].

The central nervous system consists of the brain and spinal cord. The brain transmits and receives information to/from the human body via the spinal cord. The main function of the peripheral nervous system, such as the median nerve, is to circulate information between several organs and the central nervous system [START_REF] Jürgen | The human nervous system[END_REF]. Figure 1.1 shows the peripheral nervous system where each nerve is linked to specic functionality. For example, the median nerve is a branch of the brachial plexus innervating various muscles in the anterior part of the forearm and part of the hand.

RA procedure consists in locating the nerve in order to inject a local anesthetic into its periphery.

Traditionally, there are two methods for locating the nerve: one based on neuro-stimulation and one based on imaging guidance [START_REF] Hernando Sáez | Development of complications in ultrasound-guided regional anesthesia vs neurostimulation[END_REF].

Regional anesthesia based on the neuro-stimulation technique consists in locating the nerve blocks by stimulating the sensitive bers. This process is linked to the triggering of nerve impulses in a nerve using an electrical impulse. Just as this electrical impulse makes it possible to trigger a muscular reaction which corresponds to the territory of intervention.

Once the nerve is located, a needle connected to a stimulator and a syringe is used to inject the anesthetic liquid [START_REF] Hernando Sáez | Development of complications in ultrasound-guided regional anesthesia vs neurostimulation[END_REF][START_REF] Sanjay | Ultrasound-guided interscalene needle placement produces successful anesthesia regardless of motor stimulation above or below 0.5 ma[END_REF]. Neurostimulation is a very well-known technique in RA, this technique has been used for several years, and has been considered as the reference technique for RA [START_REF] Ban | Atlas of ultrasound-and nerve stimulation-guided regional anesthesia[END_REF][START_REF] Stephen M Klein | Peripheral nerve stimulation in regional anesthesia[END_REF]. However, this technique requires precise knowledge of the anatomy of the human body in order to deposit the anesthetic in the vicinity of the nervous block only to avoid the intra-neural injection, source of the lesion, and disabling nerve sequelae. Another drawback is that neurostimulation is an invasive method that has the disadvantage of blind nerve research, the accuracy of which is linked to good anatomical knowledge. In addition, perfect knowledge of the anatomy is sometimes insucient for locating precision, due to inter-patient morpho-1.1. Ultrasound-Guided Regional Anesthesia (UGRA) logical variations. For that RA requires high experience anesthetists to avoid many risks such as block failure, local anesthetic toxicity, nerve trauma, and neurological and vascular injuries [START_REF] Ban | Ultrasound imaging for regional anesthesia in infants, children, and adolescentsa review of current literature and its application in the practice of extremity and trunk blocks[END_REF].

On the other hand, during the last twenty years, several imaging techniques have been used

to perform RA [START_REF] Bonnet | Principles & practice of regional anaesthesia[END_REF]. Magnetic Resonance (MR) imaging technique provides a clear image but due to the magnetic eld, non-magnetic needles had to be used which makes the operation more expensive and long. Computed tomography (CT) and uoroscopy techniques provide clear images but due to the x-ray radiation, the operation may harm the patient. The ultrasound (US) imaging is a low cost, radiation free, and real-time acquisitions technique which provides an additional value to RA. The combined technique is called Ultrasound-Guided regional anesthesia (UGRA).

Many studies have shown advantages of using US imaging for RA. The results of these studies have shown in particular a reduction in neurological complications [START_REF] Sites | The american society of regional anesthesia and pain medicine and the european society of regional anaesthesia and pain therapy joint committee recommendations for education and training in ultrasound-guided regional anesthesia[END_REF]. In [START_REF] Steven L Orebaugh | Adverse outcomes associated with nerve stimulatorguided and ultrasound-guided peripheral nerve blocks by supervised trainees: update of a single-site database[END_REF], an analysis of the RA procedure carried out by anesthetists in training for 44 months showed 6 cases of complications in 9000 blocks based on neuro-stimulation alone, while for ultrasound-guided RA did not give any complications. Today recommendations have been issued by the health services of several countries such as the United States of America and the European Society which recommend the use of the US image for the procedure of RA in order to improve the success rate and reduce the number of complications [START_REF] Sites | The american society of regional anesthesia and pain medicine and the european society of regional anaesthesia and pain therapy joint committee recommendations for education and training in ultrasound-guided regional anesthesia[END_REF]. 1.1.2 The UGRA procedure UGRA is becoming a powerful technique in surgical procedures and pain management. US allows a good anatomical structure visualization, which improves the success of the RA operation, and reduces the risk of the RA failure. Figure 1.2 shows the procedure of UGRA of the median nerve at the proximal region of the arm.

Technological developments in the eld of US imaging have enabled the use of this noninvasive technique to locate the nerves, identify the needle, and follow the injection of the local anesthetic in real-time. The biggest advantage of this technique is the possibility of having visual feedback, allowing direct localization of the nerves and surrounding structures (i.e. blood vessels, tendons, etc.). US device gives, on one hand, the possibility of choosing the trajectory of the most appropriate needle in order to reduce the risk of vascular puncture and accidental intra-neural injection. On the other hand, this technique brings visual comfort to observe the diusion of the local anesthetic throughout the RA procedure. Precise control is then possible over the quality injected, thereby considerably reducing the risks of peripheral neuropathy, nerve trauma, and toxicity [START_REF] Chan | Guide pratique des blocs nerveux échoguidés[END_REF].

In this section, the US device is explained, followed by detailing the UGRA procedure from the expert's point of view.

1.1. Ultrasound-Guided Regional Anesthesia (UGRA) 

The ultrasound device

The Ultrasound (US) device enables the practitioners to have an idea of the current pose of the target region and the needle inside the patient's tissues and to better understand the orientation of the US probe and where the needle should be steered to. The use of US guidance in the practice of RA requires high-performance US equipment and a thorough understanding of anatomical structures. Figure 1.3 shows an example of the practice of UGRA where RA anesthetist needs to acquire both a solid foundation in the eld of US and acquire the practical skills necessary to visualize nerve structures [START_REF] Pollard | Ultrasound guidance for vascular access and regional anesthesia[END_REF].

The main function of the US device is to send ultrasonic waves and receive the reective waves containing the tissues characteristics. These ultrasonic waves are produced by the piezoelectric eect. The piezoelectric crystals that constitute the heart of a US probe act both as signal generators and receivers. The probe is subjected to electrical charges, where the piezoelectric crystals transform the electrical wave into mechanical vibration, in order to generate an ultrasonic wave.

US waves considered a high-frequency sound waves generated in specic frequency ranges and sent through tissues. How sound waves penetrate a tissue depends on the range of the frequency produced. Lower frequencies penetrate deeper than high frequencies. The frequencies for clinical imaging (1-50 MHz) are well above the upper limit of normal human hearing [START_REF] Hernando Sáez | Development of complications in ultrasound-guided regional anesthesia vs neurostimulation[END_REF][START_REF] Sanjay | Ultrasound-guided interscalene needle placement produces successful anesthesia regardless of motor stimulation above or below 0.5 ma[END_REF][START_REF] Ban | Atlas of ultrasound-and nerve stimulation-guided regional anesthesia[END_REF][START_REF] Stephen M Klein | Peripheral nerve stimulation in regional anesthesia[END_REF][START_REF] Bonnet | Principles & practice of regional anaesthesia[END_REF][START_REF] Sites | The american society of regional anesthesia and pain medicine and the european society of regional anaesthesia and pain therapy joint committee recommendations for education and training in ultrasound-guided regional anesthesia[END_REF]. Wave motion transports energy and momentum from one point in space to another without transport of matter [START_REF] Andrew | Atlas of Ultrasound-Guided Regional Anesthesia E-Book: Expert Consult-Online[END_REF]. As the sound passes through tissues, it is absorbed, reected, or allowed to pass through, depending on the echo density of the tissue [START_REF] Samer N Narouze | Atlas of ultrasound-guided procedures in interventional pain management[END_REF]. Substances with high water content (e.g., blood, cerebrospinal uid) conduct sound very well and reect very poorly and thus are termed echolucent. Because they reect very little of the wave, they appear as dark areas. Substances with low water content or high in materials that are poor sound waves conductors (e.g., air, bone) reect almost all the sound and appear very bright. Substances with sound conduction properties between these extremes appear darker to lighter, depending on the amount of wave energy they reect.

Each ultrasonic vibration is characterized by a specic frequency and wavelength. The speed of propagation depends on the tissues crossed, for example, the speed of air propagation is 330m/s, that of bone 3000m/s and that of muscle 1600m/s [START_REF] Samer N Narouze | Atlas of ultrasound-guided procedures in interventional pain management[END_REF][START_REF] Shanthanna | Review of essential understanding of ultrasound physics and equipment operation[END_REF].

Viewing nerves by the US requires the use of high frequencies providing high-resolution images.

Most nerve block location applications require frequencies in the range of 10-14

MHz [START_REF] Chan | Guide pratique des blocs nerveux échoguidés[END_REF] which make it possible to exploit surface structures.

The process of building the US image starts by emitting ultrasonic waves by the probe and then receives it. These received waves id transformed into an electrical signal under the piezoelectric eect. The electronics of the US system are responsible for amplifying and processing these signals in order to convert it into a digital signal. The transformation of the digital signal into a US image is based on several stages; the received signal is sampled in order to be stored in a matrix. At the end of this sampling, the content of the matrix includes coded values of gray levels obtained according to the intensity of the return echo. The quantication operation is generally based on a scale of 256 gray levels. An interpolation from the values of the closest echoes is carried out in the second step, nally, a spatial smoothing is carried out in order to remedy the interpolation eect.

The US image is aected by the intensity strength of the echo wave which provides a clear idea of the explored tissues. If the reected wave is of strong intensity, we observe a 1.1. Ultrasound-Guided Regional Anesthesia (UGRA) phenomenon known as hyperechoic (obtaining of the strongly white region) like for example the bone. Conversely, if the reected wave is of low amplitude, this time we observe a hypoechoic eect (very dark region) as is the case for certain peripheral nerves. Another particular case, which manifests itself when no wave is reected and therefore no echo is detected giving rise to the phenomenon of an anechoic zone (totally black zone) such as arteries.

Despite the variation in the tissue intensities, the US image still considered as low-quality image. This image is often aected by various artifacts (Speckle noise, hidden anatomical structures due to shadows in the image, absorption, or attenuation of the wave when crossing soft tissues). Despite those limitations, the US is the standard intra-operative imaging modality for UGRA.

Several types of probes are used for the UGRA procedure, where linear transducers stand as the most frequent transducer used in this procedure. Linear transducers have a high scan line density which produces the resolution necessary for direct nerve imaging. Figure 1.4 shows dierent linear probes which are used in the UGRA procedure.

Figure 1.4: US transducers for regional anesthesia. The photograph includes (left to right) broad linear, small footprint linear, curved, sector, and hockey-stick transducers [START_REF] Andrew | Atlas of Ultrasound-Guided Regional Anesthesia E-Book: Expert Consult-Online[END_REF].

A good visualization of the nerve and the needle are a guarantee of the smooth running of an uncomplicated UGRA as shown in Figure 1.5. Unfortunately, the quality of the video is sometimes marred by the limitations linked to the settings of the US system as well as to the probe which generates a degradation of the images. Hence, It is important to optimize the probe settings and also to know the possible artifacts to avoid any complications during the procedure.

1.1.2.2

The medical UGRA procedure technique from the medical aspect UGRA is a complex procedure involving advanced manipulative skills of the US probe, as well as the needle insertion. The UGRA procedure can be dened by the following steps: Once the needle is located near the target nerve, the anesthetic is administered locally under direct US visualization until the nerve structures are completely surrounded by the anesthetic.

Here, these steps will be discussed in more detail.

1.1.2.2.a Nerve localization techniques

Localization of the nerve is a prerequisite for a successful RA procedure. The rst step in the search for nerve blocks guided by the US is to be able to visualize all the anatomical structures to locate the target area (nerve). All the possible settings, namely the penetration depth, the frequencies, and the position of the probe, must be optimized to locate the target.

As a general rule, it is possible to identify almost all peripheral nerves in the human body, but this requires the practitioner to have long training and regular practice of the US probe 1.1. Ultrasound-Guided Regional Anesthesia (UGRA)

operative gesture [START_REF] Tornero | Training on regional anesthesiafrom neurostimulation to ultrasound[END_REF][START_REF] Gebhard | Dual guidance: a multimodal approach to nerve location[END_REF].

Peripheral nerves have a fascicular or honeycomb echotexture. This consists of a mixture of a nerve ber (hypoechoic) and connective tissue (hyperechoic) content within the nerve.

Nerves that are surrounded by the hypoechoic muscle are usually easier to visualize than nerves that are surrounded by hyperechoic fat because the nerve borders are more abvious to identify.

Nerves can be round, oval, or triangular depending on the size of the nerve, the frequency, and the angle of the wave [START_REF] Diogo Brüggemann Da Conceição | Ultrasound images of the brachial plexus in the axillary region[END_REF][START_REF] Steinfeldt | Nerve localization for peripheral regional anesthesia[END_REF]. Furthermore, the nerve shape can change along the nerve path or with strong probe compression [START_REF] Giovagnorio | Sonography of the cervical vagus nerve: normal appearance and abnormal ndings[END_REF].

There are two dierent techniques to hold the US probe, shot-axis and long-axis techniques as shown in Figure 1 Despite the peculiarity of the nerve structure that allows it to be localized, its appearance can be confused with the structures that surround it such as blood vessels, and tendons [START_REF] Sites | Artifacts and pitfall errors associated with ultrasound-guided regional anesthesia: Part ii: a pictorial approach to understanding and avoidance[END_REF].

For example, the appearance of the median nerve and tendon may be similar during the RA procedure as shown in Figure 1.7.

The diculty of locating the nerve is not limited to the ambiguity between its appearance and other structures. Indeed, by manipulating the probe to optimize the quality of the image, the visualization of the nerve can disappear from the US image. There are two explanations for this phenomenon. On one hand, the peripheral nerves are very mobile structures that can change position. This phenomenon was well described by [START_REF] Retzl | Ultrasonographic ndings of the axillary part of the brachial plexus[END_REF], they demonstrated the variable location of the median nerve in relation to the axillary artery, due to a slight pressure applied by the probes. On the other hand, the reection and refraction of ultrasonic waves aect the nerve appearance. The only way to get an optimal view of the nerves in a US image is to have the waves reected on a nerve. If the conditions for a high reection rate are not met, the region of the nerve in the US image will either be degraded or completely disappeared.

Therefore, it is important for the practitioner to know how to orient the probe and to determine on which anatomical area it should be placed on the patient. In fact, in order to obtain optimal visualizations, the techniques for handling the probe are essential.

To optimize the US image, the mnemonic PART (pressure, alignment, rotation, tilting) has been recommended as shown in Figure 1.8.

Pressure is necessary to minimize the distance to the target and compress underlying subcutaneous adipose tissues. It is a useful maneuver that has numerous eects. First, it moves the active face toward deeper structures to make them appear more supercial. It 1.1. Ultrasound-Guided Regional Anesthesia (UGRA) also helps dierentiate between dierent structures by the relative compressibility veins are easy to compress arteries are somewhat compressible and pulsatile and nerves are fairly incompressible.

Alignment (sliding) refers to placing the transducer in a position over the extremity (or trunk) at which the underlying nerve is expected to be in the eld of view.

Rotation allows ne-tuning of the view of the target structure. As well as, it is used to switch between the short axis and long axis imaging.

Tilting helps to bring the face of the probe into a perpendicular arrangement with the underlying target to maximize the number of returning echoes and thus provide the best image. In general, probe Alignment (sliding) is often the most regularly performed in order to locate the insertion of the syringe and locate the nerves [START_REF] Sites | Artifacts and pitfall errors associated with ultrasound-guided regional anesthesia: Part ii: a pictorial approach to understanding and avoidance[END_REF]. Probe tilting can also improve image quality by optimizing the US contrast between the nerve and surrounding tissue. Probe rotation also proves to be eective for clearly visualizing the entire needle.

1.1.2.2.b The needle insertion

Once the target image is optimal, the position of the probe should remain relatively unchanged for the remainder of the procedure. In UGRA, a rigid needle is used for insertion, as there are two basic approaches for needle insertion under US guidance, out-of-plane and in-plane techniques [4]. With the out-of-plane technique, the needle tip crosses the plane of imaging as an echogenic dot. With the in-plane approach, the entire tip and shaft of the advancing needle are visible. Figure 1.9 shows a schematic drawing of the US out-of-plane and in-plane imaging. There are several advantages to the out-of-plane approach to regional block. The out-ofplane approach uses a shorter needle path than in-plane approaches. One disadvantage of the out-of-plane approach is the extent of the unimaged needle path (structures that may lie short of or beyond the scan plane). If the needle tip crosses the scan plane without recognition, it can be advanced beyond the scan plane into undesired tissue. On the other hand, there are several advantages to use the in-plane approach. It provides the most direct visualization of the needle tip and shaft, and the injection. The needle tip is visualized before advancing. One disadvantage is the long needle path, which results in more tissue for the needle to cross. Partial line-ups (visualization of the needle shaft without visualization of the needle tip in the scan 1.1. Ultrasound-Guided Regional Anesthesia (UGRA) plane) create a false sense of security and therefore compromise the safety of the technique.

External marks on the transducer can be used to guide needle placement for in-plane technique.

However, skill is probably more important than the approach alone. There will probably never be a good study comparing the two approaches (out-of-plane versus in-plane) because of strong institutional biases regarding how to perform regional blocks. However, the in-plane approach is most suitable for supercial nerve blocks like the brachial plexus or the femoral block, because the needle insertion angle is relative to the probe, which improves visualization and facilitates the identication of the needle.

One of the interesting characteristics of the procedures in RA is that they only cover small distances and must be performed slowly. However, there still some diculties in controlling the needle movement while insertion in RA. The insertion point acts as a pivoting point causing the movements of the instrument to be reduced from 6 to 4 degrees of freedom (DOF), translational motion along its axis, and rotational motions about an instantaneous point on the tool as shown in Figure 1.10. It can be inferred easily that two DoFs of the system are lost. Consequently, the anesthetist hand movements about the insertion point are mirrored and scaled relative to the instrument tip. As a result, RA procedures have a long learning curve for the anesthetists because of longer procedure times, more dicult manipulation of instruments, tortuous ergonomics, and patient's anatomical discrepancies [START_REF] Emanuel | Simple tools for surgeons: Design and evaluation of mechanical alternatives for robotic instruments for minimally invasive surgery[END_REF][START_REF] Aghakhani | Task control with remote center of motion constraint for minimally invasive robotic surgery[END_REF]. 

.2.c Injection of local anesthetic based on US guidance

Once the needle is close to the nerve, the anesthetic is administered locally under direct US visualization until the nerve structures are completely surrounded by the anesthetic. If the anesthetic spreads in the wrong direction, the needle can be repositioned to ensure the proper anesthetic spread [START_REF] Perlas | Brachial plexus examination and localization using ultrasound and electrical stimulationa volunteer study[END_REF]. One of the most signicant advantages of UGRA is the ability to identify in real-time the spread of local anesthetic around the peripheral nerves [START_REF] Kumar | Practical aspects of ultrasound-guided regional anaesthesia[END_REF]. The possibility of seeing the distribution of the local anesthetic directly by the US minimizes the doses to be administered for the nerve blocks, which is particularly useful in multiple sequence procedures [START_REF] Marhofer | Combined sciatic nerve-3 in 1 block in high risk patient[END_REF].

Local anesthetics work by penetrating tissue and blocking pain signals from being transmitted along nerve endings, preventing the pain signal from reaching the brain. The nerve endings have channels for the electrolyte sodium (Na channels) on them. When tissue is disturbed, the channels open and sodium enters the cell, changing the electrical charge. This electrical change becomes a pain sensation when interpreted by the brain. The local anesthetics are sodium channel blockers. In other words, they prevent sodium from entering the nerve endings, thus, preventing pain. The patient won't be able to feel any pain after having a local anesthetic, although he/she may still feel numbness and some pressure or movement. It normally takes a few minutes for the drug to take eect, and it wears o after a few hours. A stronger and higher dose will last longer. When performing regional anesthesia, the practitioner must decide on the specic local anesthetic agent(s) as well as the volume, concentration, and mass to be injected. This is based on the desired outcomes of block onset, intensity, duration, and adverse eects [START_REF] Hillenn | Practical use of local anesthetics in regional anesthesia[END_REF]. As well as, the type and dose of anesthetic will depend on many factors. These include the patients' age, weight, any allergies, the part of the body to be operated on, and any current medical condition. Cocaine was the rst used anesthetic, but now it is rarely used. Lidocaine is now the most 1.2. Limitations of UGRA widely used local anesthetic, but dierent drugs are used for dierent purposes. For longer procedures, bupivacaine is more suitable, but it can be more painful when rst administered.

An anesthetist may, therefore, use lidocaine rst, then inject with bupivacaine later, if numbness is needed for a longer period.

Limitations of UGRA

In RA, the anesthetic is injected close to a nerve, a bundle of nerves, or the spinal cord. Skill and experience are needed for the anesthesia specialist to inject the anesthetic at the proper location because the site of injection of the anesthetic has a signicant impact on its eectiveness. RA risks and complications happen when the needle's tip touches the nerve which may cause nerve damage. RA also carries the risk of systemic toxicity if the anesthetic is absorbed through the bloodstream into the body. Other complications include heart or lung problems, and infection, swelling, or bruising (hematoma) at the injection site. For that RA requires high experience anesthetists to avoid many risks such as block failure, local anesthetic toxicity, nerve trauma, and neurological and vascular injuries [START_REF] Ban | Ultrasound imaging for regional anesthesia in infants, children, and adolescentsa review of current literature and its application in the practice of extremity and trunk blocks[END_REF].

On the other side, gure 1.12 shows the main diculties of practicing the UGRA procedure where the anesthetist holds the US probe in one hand and the needle and the injector in the other. The anesthetist searches for the nerve location using the US probe until nding a suitable probe location. While preserving the nerve visualizing all the time in the same plan, the expert inserts the needle toward the nerve and starts maneuvering the needle's tip away from the unwanted risky regions such as arteries and tendons. During the insertion, the anesthetist maintains the needle tip visualization or movement in the image frame until reaching close to the nerve. Therefore, the anesthetist must perform complex hand-eye coordination to keep both the needle and the nerve visible in the 2D plane of the US image. Finally and while keeping the visualization of the nerve and the needle tip, and holding the needle tip position close to the nerve, the anesthetist injects the anesthetic to complete the procedure.

As discussed before and based on these diculties, practitioners are required to undergo extensive US manipulating and needle control training for UGRA. In [START_REF] Ronald | The use of compact ultrasound in anesthesia: friend or foe[END_REF], the study has shown that learning takes a long time to master this technique. This is due to the diculty of locating the nerve and the needle in the US image [START_REF] Denny | Editorial i: Location, location, location! ultrasound imaging in regional anaesthesia[END_REF]. Another study in [START_REF] Sites | Characterizing novice behavior associated with learning ultrasoundguided peripheral regional anesthesia[END_REF] aims to characterize the behavior of novices as they undertook the challenges of learning the UGRA technique. In this study, there were a total of 398 errors committed out of 520 operations, with the 2 most common errors consisting of the failure to visualize the needle before advancement and unintentional probe movement.

In [START_REF] Sites | Characterizing novice behavior associated with learning ultrasoundguided peripheral regional anesthesia[END_REF], ve quality-compromising patterns of behavior were identied: Overall, the UGRA procedure implies a high level of surgical skills and requires a long Figure 1.12: The main diculties of practicing the UGRA procedure.

learning process. Therefore, Robotic-assisted systems for UGRA is considered a great solution that can provide the anesthetists with better control in nerve detection and needle trajectory which leads to assist the overall procedure in the success rate for patient safety.

Robotic systems for medical surgeries

In the past few decades, the surgical practice has been revolutionized by the introduction of advanced instrumentation enabling a more exible procedure such as the minimally invasive surgery (MIS). Similar to RA, the main advantage of MIS is attributed to a reduction in patient trauma, resulting in faster recovery and lower hospitalization costs. MIS oers greater challenges to surgeons. Due to the inherent kinematic constraints at the incision points where the motions of MIS instruments are restricted to four degrees of freedom. Despite the lack of dexterity and perception, all surgeries are moving toward MIS to give more benets to patients at the expense of a more stressful environment to surgeons.

Several major problems can be identied during the MIS practice: the need of an insertion point for an instrument causes kinematic restrictions [START_REF] Kunde | Spatial compatibility eects with tool use[END_REF]; the use of screens to provides visual feedback leads to a loss of depth due to the 2D visual feedback [START_REF] Graham Holden | Perceptual-motor coordination in an endoscopic surgery simulation[END_REF]; maintaining the imaging system and instrument control as precisely as possible cause human tremors and/or fatigue due to the duration of the operation [START_REF] Avellino | Impacts of telemanipulation in robotic assisted surgery[END_REF]; installation during surgery sometimes leads to poor ergonomics for surgeons due to the length of the instruments which leads to fatigue and sometimes tremors [START_REF] Ortmaier | Motion compensation in minimally invasive robotic surgery[END_REF].

Along with the ne development of hands-on surgeries, surgical robots have been introduced

1.3. Robotic systems for medical surgeries to assist surgeons in performing various surgeries. For the past 20 years or so, robotic minimally invasive surgery has emerged to improve operating conditions in the operating room by assisting the surgeon with specic tasks.

In 1920, the term "robot" was rst used by Czech writer Karel apek in his science ction play Rossum's Universal Robots. It introduced machines with a human appearance as articial workers. In the 1980s, robots have become a reality in several elds of application such as industry, medical, etc. Robotic arms have been developed and used to replace or assist humans in tasks that are dicult, arduous, or risky for the operator. Signicant eorts have been made to move from traditional robotics that are based on the idea of replacing humans, to collaborative robotics which are based on interaction with human.

Compared to the hands-on MIS surgeries, the robotically assisted surgery is a more precise operation that minimizes any potential damages which may be incurred from the negligence of the surgeon's hands. A rigorous denition of surgical robot that the surgical robot would be a powered computer-controlled manipulator with articial sensing that can be reprogrammed to move and position tools to carry out a range of surgical tasks [START_REF] Davies | A review of robotics in surgery[END_REF]. Briey speaking, the surgical robot is a robotic manipulator that is used to assist surgeons to perform surgical operations.

Historically, the rst surgical robot is introduced by Kwoh in 1985 which called PUMA 560 and aimed to hold a xture next to the patient's head to locate a biopsy tool for neurosurgery [START_REF] Yik San Kwoh | A robot with improved absolute positioning accuracy for ct guided stereotactic brain surgery[END_REF].

Since then, many surgeries began to attempt surgical robots as the assistive devices in operation rooms.

The key diculty of using medical robots is that the surgeon has to deal with several constraints. These constraints are exclusively presented to which the MIS robot should adhere to guard safety. In an MIS, the surgical instrument, usually held by a robotic wrist, is moved with relatively large angular mobility about a single point or within a limited spatial volume.

This constraint is called fulcrum eect [START_REF] Nisky | Perception of stiness in laparoscopythe fulcrum eect[END_REF][START_REF] Sutter | Limitations of distal eect anticipation when using tools[END_REF]. In UGRA, for example, the instrument pivots at the point at which they enter the patient's body. Such constraint enforces the surgical tool being manipulated with four degrees-of-freedom (DOF), including three rotational DOFs pivoted at a point and one translational DOF whose axis moves through this point. This design consideration has inspired researchers to design robots to articulate a mechanism that can mechanically decouple rotational and translational motions of tools at the insertion point. This mechanism is called the remote center-of-motion (RCM) mechanism [START_REF] Taylor | gmedical robotics in computerintegrated surgery[END_REF]. Thus, the RCM mechanism plays a principal role in the kinematic design of MIS robots.

In the context of surgical robotics, and whatever approach is chosen (remote handling or co-handling), many robotic systems focus on the response to the RCM problem to avoid damaging the tissue around the insertion point and to reduce patient pain in the event of RA [5355]. Dierent robots have been used for assisting the MIS practice, where the RCM mechanically constrained, controlled by free-wrist robots, or command constrained.

For mechanically constrained robots, the RCM is dened and mechanically imposed by the kinematic structure of the robot, such as [5658]. For robots with a free wrist, it is possible to design a robot with its last two (or three) joints such as the AESOP system [START_REF] Sackier | Robotically assisted laparoscopic surgery[END_REF]. In this case, the RCM is tied to the trocar/insertion area. Constrained by command robots allow a precise control of the surgical instrument. However, in order to be able to apply these robots to minimally invasive surgery, it is necessary to calculate a virtual rotation point that constrains the robot control. Robots constrained by control were built by designing a system specic for MIS or use an existing robotic arm for the same purpose. Some notable and well-known systems are proposed in the last few decades such as Zeus [START_REF] Ghodoussi | Robotic surgery-the transatlantic case[END_REF] and da vinci [START_REF] Gary | The intuitive/sup tm/telesurgery system: overview and application[END_REF]. These robots are the most widely accepted and sold robotic systems that applied to the medical eld. Thanks to the full master-slave mechanism, the surgeon can operate remotely from a master console that is physically separate from the patient. On the other side, robotic arms were designed with the primary objective of imitating human gestures and achieving their performance, such as Franka Emika [START_REF] Haddadin | Franka emika panda[END_REF], Kuka [START_REF] Bischo | The kuka-dlr lightweight robot arm-a new reference platform for robotics research and manufacturing[END_REF] or universal robot [START_REF]Universal Robots[END_REF]. Many researches were developed using a robotic arm for an MIS application. Thus following the rapid development in the past years, the robotically assisted MIS has been widely accepted by worldwide surgeons and patients nowadays.

To the best of our knowledge, this study proposed the rst complete robotic-assisted system for the UGRA. In the next section, the robotic system is presented in detail.

1.4 The proposed robotic-assisted UGRA system UGRA oers a huge performance impact on the practice of regional anesthesia [3,4]. For several years, there has been a growing demand for this technique in France and in other European countries [START_REF] Kessler | Peripheral regional anaesthesia and outcome: lessons learned from the last 10 years[END_REF]. As discussed in the Section 1.2, there are several limitations the anesthetists may face during the UGRA procedure. Despite the long training that the anesthetists take, the procedure can take the benets from robotics and image processing researches that may give assistance for the anesthetists during the procedure.

Robotic assistance are already used in some medical settings and show their huge impacts [START_REF] Anthony R Lanfranco | Robotic surgery: a current perspective[END_REF].

Robotic-assisted UGRA is a solution that can provide the anesthetists with better control which leads to reduce the UGRA limitations. A `CoBot' (from collaborative and robot) is a robot intended to physically interact with the human in a shared workspace [START_REF] Djuric | A framework for collaborative robot (cobot) integration in advanced manufacturing systems[END_REF]. This integration strategy leverages the `strength' and `endurance' of robots with the exibility and decision making of human participants. Therefore, the goal of this research is to provide the anesthetist's act with a robotic system that is CoBotically manipulated to facilitates performing the UGRA procedure. It must be emphasized that this system is designed to be a complementary working tool for human operators. For the intented goal, the proposed system does not replace the anesthetist but assists him/her to perform UGRA. Furthermore, this robotic system can provide great assistance by helping the experts with techniques and tools that improve the procedure accuracy and safety such as avoiding nerve trauma or damage to healthy tissues. Moreover, it could increase the anesthetist's experience by more teaching and learning to avoid unintentional injuries.

Forthat, the objective of this thesis is to propose a complete robotic system for the UGRA procedure. This system is divided into two connected robotic systems, a US probe holder robot (PHR) and a needle holder robot (NHR). As shown in Figure 1.15, the PHR aims to be CoBotically manipulated by the anesthetist to place the US probe on the patient's skin. PHR must perform the following consequential tasks: co-manipulation of the US probe; nerve visual servoing; follow the orientation of the needle. The NHR must also be co-manipulated by the anesthetist while using his/her expertise gestures. It will assist him/her to position the needle on the insertion pointon the patient's skin, and to keep a safe needle motion inside the patient's body. In this thesis, we focused on some aspects (as highlighted in Figure 1.15) for which we propose novel techniques and methods. For the other aspects, such as visual servoing, it will be a part of our future work. Overall, the work conducted during this thesis leads to three main contributions:

The rst contribution is to propose a tool that consists of processing information (feature) from a US image in order to automatically detect and track the nerve blocks. Hence, to facilitate the detection and tracking process, the target object should be dierentiable from other objects using image features. Nevertheless, choosing and extracting relevant features is a complex task due to the nerve texture appearance and the noisy nature of this type of image. In Chapter The third contribution proposes a robotic-control system for needle insertion. The robotic control strategy leverages the `strength' and `endurance' of robots with the exibility and decision making of the anesthetist to facilitates performing the UGRA procedure. This system provides a safe and exible solution for the robot and the medical sta in a shared workspace. Moreover, this system allows the experts to control the NHR for a better accuracy of the needle insertion. This contribution is presented in Chapter 4.

Chapter 2

Robust Features Extraction

Outline:

In this chapter, the ultrasound image is analyzed by highlighting the importance of nding robust and strong features in the image. These features will be used as the basis for detection and tracking. There exist dierent studies on ltering the speckle noise [START_REF] Hadjerci | Computer-aided detection system for nerve identication using ultrasound images: A comparative study[END_REF]. Nevertheless, prior image enhancements would remove important information in the US image, such as the speckle information. This information is important for the anesthetists for locating the needle and recognizing dierent regions in the US image. Therefore, robust nerve detection and tracking should be made directly on the original image without any prior image enhancements such as removing the hypoechoic region or by ltering the image. For that, accomplishing detection or tracking tasks is very challenging in US images.

Detection and tracking problems in the image and signal analysis require to take into account complex information embedded in the data. Images might contain many thousands of pixel values that represent dierent objects. Even though humans can deal with both physical objects and abstract notions in day-to-day activities while making decisions in various situations, it is not possible for the computer to handle them directly.

A feature should contain the information required to distinguish between classes, be insensitive to irrelevant variability in the input [START_REF] Nixon | Feature extraction and image processing for computer vision[END_REF]. As well as, the features should be limited in number, to permit ecient computation of discriminant functions and to limit the amount of training data required. Image features, such as edges and interest points, provide rich information on the image content. It corresponds to local regions in the image and it is fundamental in many applications in image analysis, such as recognition, matching, reconstruction, etc [START_REF] Nixon | Feature extraction and image processing for computer vision[END_REF]. A feature descriptor is an algorithm that takes an image and outputs descriptors/feature vectors.

Feature descriptors encode interesting information into a series of numbers and act as a sort of numerical ngerprint that can be used to dierentiate one feature from another. Feature descriptors help to improve the eciency of many tasks such as detection and tracking. For that, choosing a suitable feature is a crucial step in detection and tracking applications.

Texture feature is an important cue for detection in many US images applications [START_REF] Tuceryan | Texture analysis[END_REF] 

State of the art

Texture classication is one of the major problems in image analysis and a well-known research topic for its signicant rule to understand the texture recognition process.

Given training samples, texture classication categorizes an input image to one of a set of known textures.

Texture classication has a crucial value in the elds of computer vision and pattern recognition, including medical imaging [START_REF] Ji | Texture analysis for classication of cervix lesions[END_REF], document analysis [START_REF] Anil | Page segmentation using texture analysis[END_REF], environment modeling [START_REF] Heikkila | A texture-based method for modeling the background and detecting moving objects[END_REF], and object recognition [START_REF] Petrou | Image processing: dealing with texture[END_REF].

Texture classication is divided into two major problems, feature extraction and classication [START_REF] Pietikäinen | Computer vision using local binary patterns[END_REF]. Most researches target the feature extraction problem, due to the fact that having a strong texture features are more crucial and critical than having a strong classier. The long-standing need for ecient and eective data classication indicates the important role of powerful and appropriate features. For any durable texture classication application, the feature extraction problem depends on two important points, descriptor quality, and time complexity [START_REF] Pietikäinen | Computer vision using local binary patterns[END_REF][START_REF] Kandaswamy | Comparison of texture analysis schemes under nonideal conditions[END_REF]. The high-quality descriptor must be distinctive for dierent texture classes and should reach the highest robustness for dierent texture variations such as rotation, scale, blur, and dierent kinds of noise.

One of the texture classication methods that gained huge attention has been extensively studied is the Local Binary Patterns (LBP). LBP is a simple yet powerful operator to describe local image patterns and shows robustness to illumination, rotation, and scale [START_REF] Ojala | Multiresolution gray-scale and rotation invariant texture classication with local binary patterns[END_REF]. within a specic local area, LBP encodes the comparisons of neighboring pixels. And due to its low computational complexity, LBP has been used widely as a solution for many problems, such as texture classication [START_REF] Liao | Dominant local binary patterns for texture classication[END_REF], object detection [START_REF] Satpathy | LBP-based edge-texture features for object recognition[END_REF], image matching [START_REF] Heikkilä | Description of interest regions with local binary patterns[END_REF], image retrieval [START_REF] Niraj | A comprehensive benchmark of local binary pattern algorithms for texture retrieval[END_REF], biomedical image analysis [START_REF] Nanni | Local binary patterns variants as texture descriptors for medical image analysis[END_REF], face recognition [START_REF] Timo Ahonen | Face recognition with local binary patterns[END_REF], etc. For general texture classication purposes, LBP derivatives have been introduced with surveys given in [START_REF] Kandaswamy | Comparison of texture analysis schemes under nonideal conditions[END_REF]8791]. These derivatives fuse LBP with other visual cues to improve LBP robustness, discriminativeness and applicability such as ILBP [START_REF] Jin | Face detection using improved LBP under bayesian framework[END_REF], CLBP [START_REF] Guo | A completed modeling of local binary pattern operator for texture classication[END_REF], RLBP [START_REF] Chen | RLBP: Robust local binary pattern[END_REF], DLBP [START_REF] Liao | Dominant local binary patterns for texture classication[END_REF], etc.

However, despite the increase in discriminativeness, LBP derivatives have their weaknesses in terms of feature dimensionality and robustness to noise such as Gaussian noise, Gaussian blur, and impulse noise. These weaknesses have led to introduce several studies that aimed to present a noise-robust operator. For example, in [START_REF] Haane | Median binary pattern for textures classication[END_REF], the authors proposed Median Binary Patterns (MBP) to add more sensitivity to microstructure and impulse noise robustness. Nevertheless, MBP does not handle other types of noise and showed low performance for the high levels of impulse noise. In [START_REF] Liu | BRINT: binary rotation invariant and noise tolerant texture classication[END_REF], the authors introduced Binary Rotation Invariant and Noise Tolerant (BRINT). Although BRINT samples the points in a scaled circular neighborhood which made Although the binary patterns family has huge success in the computer vision eld, there are several weaknesses with these methods.

In [START_REF] Liu | A survey of recent advances in texture representation[END_REF][START_REF] Liu | Local binary features for texture classication: Taxonomy and experimental study[END_REF], the authors performed extensive comparisons for the existing local binary features for texture classication, where many of the existing local binary approaches suer from a serious limitation. These limitations can be concluded in the descriptor ability to handle textures with a high level of noise and to handle dierent types of noise which remains unsatisfactory.

Based on these limitations, the obvious question being raised here is how to reach high noise robustness without any prior knowledge of the noise type, without any prior learning process, and for dierent kinds of noise such as Gaussian noise, Gaussian blur, and impulse noise. In other words, performing the descriptor in noise-free data then try to classify the noisy and noise-free textures under dierent geometric and illumination condition.

Gaussian noise, Gaussian blur, and impulse noise are considered as the most frequent and challenging noises in image processing, computer vision, and pattern recognition elds. For that, to improve and ensure the best performance of the image processes such as classication, these noises should be detected, reduced, or removed. Some descriptors incorporate ltering procedure to improve the performance, such as Gaussian and median ltering. Many techniques have been developed to suppress Gaussian noise, such as mean lter, wavelet denoising [START_REF] Mário At Figueiredo | Majorization minimization algorithms for wavelet-based image restoration[END_REF],

and kernel regression [START_REF] Takeda | Kernel regression for image processing and reconstruction[END_REF]. Nevertheless, these lters are suitable for Gaussian noise but not for other noises such as impulse noise. On the other hand, various lters have been proposed

to remove impulse noise, such as median lter [START_REF] Buades | A review of image denoising algorithms, with a new one[END_REF] and adapted median lter [START_REF] Hwang | Adaptive median lters: new algorithms and results[END_REF]. Hence median and adaptive median lters consider all pixels as noisy corrupted pixels, the lter will fail under images with a high level of noise. To avoid this drawback, the switching techniques were introduced such as Boundary Discriminative Noise Detection (BDND), which takes the advantages of detecting which pixel is corrupted and which one is not [109111]. In this context, using pixel classication from switching techniques with binary pattern methods can lead to better texture analysis for dierent types of noise.

In the following section, an ecient and simple local binary descriptor (RAMBP) is proposed. It takes the advantages of switching techniques and median adaptive scheme to include more robustness in features for texture with a high level of noise. RAMBP captures both microstructure and macrostructure texture information and provides a better representation of the local structures. RAMBP eectiveness and robustness will be examined for high noisy textures classication.

Robust Adaptive Median Binary Patterns (RAMBP)

To provide an ecient texture descriptor, it should be discriminative and robust to noise.

All state-of-the-art descriptors share one or more weaknesses of sensitivity for high noisy textures. RAMBP uses noisy pixel classication, an adaptive window for the threshold and binary modules, and regional values instead of using pixel intensities. Here in this section, a background on binary patterns is presented. Followed by explaining all RAMBP descriptor steps.

Background

RAMBP is derived from the binary patterns familly. To facilitate understanding the RAMBP principle in the next section, this section provides a backgound on the binary patterns derivatives that leads to RAMBP.

Local Binary Patterns

The Local Binary Patterns (LBP) [START_REF] Ojala | Multiresolution gray-scale and rotation invariant texture classication with local binary patterns[END_REF] is one of the powerful operators for describing image texture features. The simplest, yet very ecient, LBP feature vector can be created by two steps. First, compare P neighbors of a central pixel to get the corresponding P-bit binary code with regard to the center pixel's gray value as a threshold. Second, the image LBP can be dened as

LBP P (x c , y c ) = P -1 p=0 s(i p , i c )2 p (2.1)
where i c is the central pixel value, i p is the pixel value of the p neighbor, and s(i p , i c ) can be expressed as

s(i p , i c ) = 1 i p ≥ i c 0 i p < i c (2.2)
Figure 2.1 shows a simple example of applying an LBP operator on a 3 × 3 neighborhood. Where the output central pixel after applying LBP is 193. 

Median Binary Patterns

Median Binary Patterns (MBP) demonstrates very good discrimination properties and used to provide more sensitivity to microstructure and noise robustness [START_REF] Haane | Median binary pattern for textures classication[END_REF]. MBP operates maps by comparing P neighbors and the central pixel to get the corresponding P-bit binary code with regard to their median gray value as a threshold. MBP operates the same as LBP, but it takes the median value of the selected window as a threshold instead of the value of the central pixel.

The indicator of Eq. 2.2 replaced by

s(i p , i c ) = 1 i p ≥ M ed 0 i p < M ed (2.3)
where M ed is the median value of the 3 × 3 neighborhood.

Figure 2.2 shows a simple example of applying an MBP operator on a 3 × 3 neighborhood. Where the output central pixel after applying MBP is 225.

Adaptive Median Binary Patterns

Adaptive Median Binary Patterns (AMBP) is an adaptive approach that incorporates a ltering process to obtain a robust representation of the local context [START_REF] Haane | Adaptive median binary patterns for texture classication[END_REF] and considers image local AMBP procedure is described in Algorithm 1. It starts by taking 3 × 3 neighborhood window, then computes the median, minimum, and maximum values. If the median value is greater than the minimum value and smaller than the maximum value, then the threshold will depend only on this window, else the window will expand by one pixel in all directions to be 5x5, and so on. After nding the acceptable threshold window, if the central pixel is greater than the minimum value and smaller than the maximum value, then the threshold will equal the central pixel, else the threshold will equal the median value. After obtaining the threshold, AMBP computes the binary value of the central pixel within the 3 × 3 window. window around the central pixel, as can be seen in Figure 2.3b. The pixel in are sorted in the ascending order, the median value equal to 0, the minimum value equal to 0, and the maximum value is equal to 255. as can be seen that the median value is not greater than the minimum 2.3. Robust Adaptive Median Binary Patterns (RAMBP) value, which means that this window is not acceptable and needs to expand by one pixel in all directions. Figure 2.3c shows the expanded window 5 × 5. AMBP computes the median value of the new window, which equal to 72, the minimum and maximum values are 0 and 255 respectively. In this window, the median value is greater than the minimum value and smaller than the maximum value, which means this window is accepted to nd the threshold in it. To compute the threshold, AMBP checks, in the 5 × 5 window, if the central pixel value is greater than the minimum value and smaller than the maximum value, the central pixel equal to 202 which is greater than the minimum value 0 and smaller than the maximum value 255. So, the threshold of this window will be set as 202. The threshold of AMBP binary value is applied to the 3×3 window and the binary pattern is equal to 010000101 which equal 67 in decimal.

(a 

) 7 × 7 (b) 3 × 3 (c) 5 × 5

RAMBP overview

Classication process for noisy pixels detection

As this section aims to perform texture classication without any prior noise knowledge, the rst step consists of classifying each pixel in the image as corrupted or uncorrupted pixels. for that, the detection step of BDND algorithm [START_REF] Ng | A switching median lter with boundary discriminative noise detection for extremely corrupted images[END_REF] has been adopted. Compute V 0 by sorting the pixels in the window.

4

Find the median value(med) of V 0 .

5

From V 0 , obtain the dierence vector D

V . D V [i] = V 0 [i + 1] -V 0 [i], where the index i = 1 : length(V 0 ) -1 6 Compute the left cluster range v L , where v L = V 0 [i l ] (i l is the index of max(D V 0, i med )). 7 Compute the right cluster range v R , where v R = V 0 [i r ] (i r is the index of max(D V i med , end )). 8 Initialize three clusters of V 0 , 0, v L , v L , v R , and v R , 255 . 9 if I(x 0 ) ∈ v L , v R then 10
x 0 labeled as uncorrupted pixel. Find v L , the correspondence pixel in V 0 that gives the maximum intensity dierences in D V left interval. (left interval of D V is located between the 0 and med in V 0 ). In this example v L = 81. In the same manner, nd v R , the correspondence pixel in V 0 that gives the maximum intensity dierences in D V right interval. (right interval of D V is located between the med and 255 in V 0 ). And in this example v R = 179.

Then the three clusters are 0, 0, 0, 0, 0, 0, 39, 47, 50 , 62, 72, 81 

Threshold Process

Finding the threshold value for each pixel is a crucial point for generating the binary pattern.

Using a corrupted central pixel as a threshold value, as LBP, will aect the noise robustness of the descriptor. As well as, using a small or large region to obtain the median as a threshold value will aect the descriptor. This leads to biased median value, due to missing information for the small region or including a large number of pixels for the large region. For obtaining the threshold value, adaptive window and pixel classication are used to reach the maximum robustness.

Algorithm 3 represents the threshold process of the proposed descriptor, which starts by checking if the current pixel is classied as a corrupted or an uncorrupted pixel. If the current pixel classied as an uncorrupted pixel, the pixel threshold value is equal to the current pixel value (same as LBP). Otherwise, a 3 × 3 window is imposed around the current pixel and the number of the uncorrupted pixels is counted. If the number of the uncorrupted pixel is more than the corrupted ones, the threshold value is equal to the median of the uncorrupted pixels inside this window. Otherwise, the window will be enlarged by 1 pixel in all directions (5 × 5). This process will be repeated until the maximum window size is reached, where the threshold value is equal to the median value of all uncorrupted pixel inside that window.

Algorithm 3: Generation of local thresholds

Input: The original image I, the image of labeled pixels C, maximum window size W m . Output: Pixels threshold values T , and pixels corresponding window size W S.

for each pixel position The next step consists of checking whether the number of uncorrupted pixels is greater than the number of corrupted one. In the given example, # uncorrupted pixel = 3 while # corrupted pixel = 4, which followed by ignoring this window and enlarge it to be 5 × 5 window.

x 0 do if I(x 0 ) is classied as uncorrupted pixel in C then T (x 0 ) = I(x 0 ) W S(x 0 ) = 1 else Initialize w = 3 Impose a window W (w × w) around x 0 (W ∈ I) Intialize W S(x 0 ) = W m while W < W m do 10 Find N un = # uncorrupted pixels in W 11 if N un ≥ W 2 2 then 12 W S(x 0 ) = W
In 5 × 5 window, # uncorrupted pixel = 14 while # corrupted pixel = 11.

This window considered accepted window, and the threshold value will be obtained by taking the median value of the uncorrupted pixels, T = med 255, 47, 255, 50, 0, 0, 224, 62, 0, 255, 255, 72, 0, 179 and equal to 67.

Generate the binary pattern

To reach the highest performance in texture classication, the descriptor should balance the classication goals such as robustness to noise, discriminativeness, and low computational cost.

LBP descriptor conveys local structures, but to achieve better performance, discriminative properties should be used by considering the eect of image patches instead of taking a single pixel. To provide more information to the descriptor, these patches do not intersect with central pixel threshold window (Section 2.3.2.2). As well as, and each patch size will be found using an adaptive way that depends on each patch pixels. The binary pattern module (Algorithm 4) represents the procedure of forming the binary pattern. The module starts by nding the neighborhood patches with a maximum size around its central pixel. For each patch, a 3 × 3 window imposed around its central pixel. If the number of uncorrupted pixels is more than the corrupted pixels, this window considered accepted window and the value of the patch is the median of the uncorrupted pixels in that window.

Otherwise, the window is enlarged to be 5 × 5 window. The process continues until reaching Output: The binary pattern (RAMBP).

for each pixel position x 0 do

The distance between the central pixel and each patch center

(n i ): R = W m + W S(x 0 )
for each patch

P i (i ∈ 0 : 7) do Initialize w = 3 Impose a window W (w × w) around P i center (n i ) (W ∈ I) Intialize patch window size W P i = W m while W < W m do 8 Find N un = # uncorrupted pixels in W 9 if N un ≥ W 2 2 then 10 W P i = W 11 Break.
12 else 13 Update W (w × w), where w = w + 2 14 end end Find I un (uncorrupted pixels in W P i ) the predened maximum window size. After nding each neighborhood patch value, the binary pattern (8bits) is computed with a simple procedure between the patches values and the central pixel threshold value, where each patch represented in the binary pattern by 0 or 1.

β = med(I un ) S(P i ) = 1, T (x 0 ) ≥ β 0, T (x 0 ) < β end T he binary pattern(x 0 ) = 7 i=0 S(P i )2 i end

Performance evaluation of RAMBP

The experiments were carried out with a core 7 Duo 3.50 GHz processor with 32GB RAM under Matlab. Nine texture datasets were conducted in these experiments, which considered from the most commonly used texture datasets. Table 2.1 summarized the used texture datasets, number of classes, number of images, images size, and each texture challenges.

To evaluate the robustness of the proposed approach, k-nearest neighbor (k-NN) had been used. The k-NN classier recognized as one of the most popular and simplest methods, the k-NN is used with χ 2 distance dened as

χ 2 (x, y) = 1 2 i (x i -y i ) 2 x i + y i (2.4)
where x and y are the features vectors of two dierent textures. k-NN is adopted with k value equal to 1 for most experiments, but this parameter has been varied to test its inuence on the performance consistency. Outex_T C10 [START_REF] Ojala | Outex-new framework for empirical evaluation of texture analysis algorithms[END_REF] 24 4320

128 × 128

Rotation changes

Outex_T C11 [START_REF] Ojala | Outex-new framework for empirical evaluation of texture analysis algorithms[END_REF] 24 960

128 × 128

Inca illuminant, rotations (0

• )
Outex_T C12 [START_REF] Ojala | Outex-new framework for empirical evaluation of texture analysis algorithms[END_REF] 24 4800

128 × 128

Illumination variations, rotation changes

Outex_T C23 [START_REF] Ojala | Outex-new framework for empirical evaluation of texture analysis algorithms[END_REF] 68 2720

× 128

Inca illuminant, rotations (0

• )
Curet [START_REF] Varma | A statistical approach to texture classication from single images[END_REF] 61 5612

200 × 200 In order to study the eect of the adaptive window maximum size, RAMBP performance has been tested on Outex_T C11 dataset with dierent maximum window sizes. Figure 2.8

shows the classication score in dierent applied noises for dierent maximum window size values. As can be seen, the larger window size gives the higher score, but the time complexity will grow exponentially. Therefore, a good trade-o should be taken between the accuracy and the time complexity. In the experiments, 5 × 5 max window size is adopted since it gives high classication score and makes the algorithm run faster. In comparison with traditional LBP, the proposed method is slower but it has less computational complexity and dimensionality than many LBP descriptors used to address the noisy textures.

In this section, we start by evaluation of the proposed method on high noisy textures, including Salt-and-Pepper (impulse) noise, Gaussian noise, and Gaussian blur. Followed by experiment results of the proposed method on noise-free textures.

In this paper, some of state-of-the-art descriptors results have been reported from [START_REF] Liu | Local binary features for texture classication: Taxonomy and experimental study[END_REF].

Noisy texture classication

Noise robustness is a crucial point for evaluating descriptors. In this experiment, in order to test the noisy textures and evaluate the descriptor robustness in a more accurate way, the random noise generation has been repeated 10 times over the dataset, and the classication results had been noted by taking the average of these 10 tests. Noise-free images have been used for the training step while testing step performed on the noisy images. Choosing this scheme makes the noisy texture classication very dicult since the descriptor does not use any noise information and any prior learning process.

Salt-and-Pepper noise

Salt-and-Pepper (impulse) noise introduces high or low values randomly distributed over the image. Salt-and-Pepper noise has been applied to Outex_T C11 and Outex_T C23 datasets with dierent noise densities ρ. High noisy textures are very challenging as it can be seen in Figure 2.9 where textures are visually unrecognizable from 30% of noise.

Outex_T C11

(a) Noise-free The results of the proposed algorithm are listed in Table 2.2. It can be observed that the classication accuracy is improved after using the proposed method. Compared to the dierent state-of-the-art techniques, RAMBP yields the best results and outperforms other techniques, especially on high noisy textures. As can be seen from the results, using rotational uniform scheme decreases the performance of the LBP based descriptors. Using LBP and M BP gave better results than LBP riu2 and M BP riu2, respectively. It can also be noticed from Table 2.2 that, M RELBP oers the second best performance but its accuracy drops drastically with high noise densities (e.g. 50%). Also, AM BP gives good results and noise robustness under low-density impulse noise but not for high noise.

(b) ρ = 5% (c) ρ = 15% (d) ρ = 30% (e) ρ = 40% (f) ρ = 50% Outex_T C23 (g) Noise-free (h) ρ = 5% (i) ρ = 15% (j) ρ = 30% (k) ρ = 40% (l) ρ = 50%
F V -V GGV D(SV M ) [103]
Although RAMBP previously mentioned performance shows a high score where KNN (k = 1) provides the best match among all images, it is important to study the matched percentage of the same class images. This percentage can be computed using dierent k values in k-NN. In other words, an image is classied by the majority votes and assigned to the most common class. For example k = 1, KNN provides the nearest image, then the examined image will be classied as that image class. For k = 3, KNN provides the nearest three images and the examined image will be classied to class with the majority votes between the three images classes. For that, RAMBP performance has been tested with dierent k values in k-NN. We can notice from Figure 2.10a the stability and robustness of RAMBP in dierent Salt-and-Pepper noise densities where it keeps good accuracy even with high noise density and large value of k. Also shown in Figure 2.10b, the descriptor performance over k has a more decreasing rate which is proportional to the noise density. This happens may be due to the number of classes (i.e. 68)

in Outex_T C23 dataset. Nevertheless, the accuracy stays good for dierent k values. 

Gaussian noise

Gaussian noise is an additive noise aects digital images gray values. Gaussian noise has been added to Outex_T C11 and Outex_T C23 datasets with standard deviation σ = 5. techniques. But SSLBP yielded poor accuracy under Salt-and-Pepper as indicated in Table 2.2.

As can be observed from Table 2.2 and Table 2.3, the proposed method achieved the best results

in both experiments and showed nice consistency in dierent types of noise. 

F V -V GGV D(SV M ) [103]
93.1 71.5

RAM BP

99.0 95.9

To illustrate the stability of RAMBP for Gaussian noise, dierent k values in k-NN have been tested as shown in Figure 2.12. We can notice, a small decrease of RAMBP accuracy with increasing the value of k. Overall, RAMBP provides good stability and robustness even at large values of k in k-NN.

Gaussian blur

Gaussian blur, known also as Gaussian smoothing, is another kind of eects happened to images, which results in removing image detail. This type of noise also modify the local structure which aects the local binary patterns. In these experiments, Gaussian blur has been applied

to Outex_T C11 and Outex_T C23 datasets with dierent standard deviations σ. Outex_T C23

(f) Noise-free because it includes the blurring process in descriptor generation. However, it must be recalled the poor performance of SSLBP in Salt-and-Pepper noise as evidenced in Table 2.2. MRELBP and FV-CNN have good performance under low noisy textures, but the accuracy vastly decreases under higher noise. The accuracy of the proposed method can also be observed in Figure 2.14 after varying k values in k-NN. In the same Figure 2.14, the classication accuracy is high and gets aected with a small decrease after increasing the standard deviation and the value of k. It can be seen that RAMBP has high stability and robustness among dierent k values. In general, RAMBP achieved the best results compared to the dierent state-of-the-art techniques as apparent in Table 2.2, 2.3 and 2.4.

(g) σ = 0.5 (h) σ = 0.75 (i) σ = 1 (j) σ = 1.25

Mixed noises

Most state-of-the-art methods deal with a single kind of noise such as Gaussian noise or impulse noise. For that reason, it is interesting to examine the ability of the RAMBP descriptor to classify textures with a mixture of a Gaussian noise, Gaussian blur, and impulse noise. In these experiments, Gaussian noise, Gaussian blur and impulse noise were applied to Outex_T C11 with dierent standard deviations σ and dierent noise densities ρ. After applying mixed-noise, Tab. 2.5 shows the classication performances of the proposed method and some state-of-the-art methods as a baseline, where it is shown that the proposed method achieved the best performance.

It can also be seen in Tab. 2.5 that the order in which each noise is applied has a certain impact on the results: thus, applying Salt-and-Pepper noise followed by Gaussian blur gives a lower score than the other way round. This is due to smoothing of the local high impulse noisy structure which leads to spreading the noise. Overall, Tab. 2.5 shows promising results and opens a new challenge of mixed noise texture classication.

Noise-free texture classication

Noise-free texture classication is challenging due to datasets properties mentioned in Table 2.1.

In these experiments, seven texture datasets have been used. The training and testing schemes are dierent from one dataset to another. For T C10 and T C12 Outex datasets, testing and training samples are well-dened by [START_REF] Ojala | Multiresolution gray-scale and rotation invariant texture classication with local binary patterns[END_REF]. For T C10 the training set has no rotation, and the testing set is rotated by 5 • , 10 The result of texture classication is depicted in Table 2. [START_REF] Glenn E Woodworth | Ecacy of computer-based video and simulation in ultrasound-guided regional anesthesia training[END_REF], where RAMBP provides the best results in some datasets and high performance for the others. Also, FV-CNN, SSLBP and MRELBP techniques show high and competitive performances. However, since RAMBP does not use any learning process and provides high performance for dierent kind of noises, RAMBP stands out the best descriptor in noisy and noise-free texture classication. Table 2.5: Classication scores (%) comparison between the proposed descriptor (RAMBP) and some state-of-the-art descriptors as a baseline for mixed noisy Outex_T C11 texture with a standard deviation σ and a noise density ρ (Gaussian noise(GN), Gaussian blur(GB) and Saltand-Pepper(SP)). 

Method GN -GB GB -GN GN -SP SP -GN GB -SP Order GN σ = 5 GB σ = 1 GN σ = 5 SP ρ = 30 GB σ = 1 GB σ = 1 GN σ = 5 SP ρ = 30 GN σ = 5 SP ρ = 30
GN σ = 5 GB σ = 1 SP ρ = 30 SP ρ = 30 GB σ = 1 GB σ = 1 GN σ = 5 GN σ = 5 GB σ = 1 SP ρ = 30 SP ρ = 30 GB σ = 1 GN σ = 5 LBP [

Introduction

The UGRA procedure requires anatomical knowledge and skills in the use of US imaging, as well as a high degree of concentration by the anesthetist in locating the nerve [5,[START_REF] Glenn E Woodworth | Ecacy of computer-based video and simulation in ultrasound-guided regional anesthesia training[END_REF]. In addition, it is not always easy to locate certain nerves in the practice of UGRA. In this work, a robotic-assisted UGRA system is proposed where this chapter aims to develop tools to assist the anesthetists with accurate nerve detection and tracking.

Although 

Nerve detection

In the literature, several methods have been implemented to deal with the problem of object detection. These works accomplished in various applications such as medical imaging [START_REF] Azhari | Tumor detection in medical imaging: a survey[END_REF],

surveillance [START_REF] Kinjal | A survey on moving object detection and tracking in video surveillance system[END_REF], robotics [START_REF] Loncomilla | Object recognition using local invariant features for robotic applications: A survey[END_REF], etc. There exist few researches aiming for nerve region detection, where these studies based on using texture descriptors [START_REF] Hadjerci | Computer-aided detection system for nerve identication using ultrasound images: A comparative study[END_REF] or CNN [START_REF] Haane | Deep learning with spatiotemporal consistency for nerve segmentation in ultrasound images[END_REF] architectures to dierentiate the nerve region from other regions in the US images.

Texture is an important cue for detection in many US images applications since some tissues show specic texture properties, such as certain nerves. The traditional approaches use handcrafted texture features to classify textures in US images [START_REF] Hadjerci | Assistive system based on nerve detection and needle navigation in ultrasound images for regional anesthesia[END_REF]. In [START_REF] Hadjerci | Nerve detection in ultrasound images using median gabor binary pattern[END_REF], the authors proposed a descriptor based on the combination of median binary pattern and Gabor lter to characterize and classify the median nerve tissues.

On the other hand, CNN [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF] have received signicant attention in computer vision and machine learning applications such as object detection [START_REF] Girshick | Rich feature hierarchies for accurate object detection and semantic segmentation[END_REF], image classication [START_REF] Krizhevsky | Imagenet classication with deep convolutional neural networks[END_REF], and image segmentation [START_REF] Long | Fully convolutional networks for semantic segmentation[END_REF]. Motivated by these breakthroughs, several CNN based methods have been developed in order to signicantly improve object detection performance in the US medical images [START_REF] Litjens | A survey on deep learning in medical image analysis[END_REF][START_REF] Huang | Machine learning in ultrasound computeraided diagnostic systems: a survey[END_REF]. However, very little attention has been paid to nerves in the US images [START_REF] Alkhatib | Adaptive median binary patterns for fully automatic nerves tracking in ultrasound images[END_REF][START_REF] Hadjerci | On-line learning dynamic models for nerve detection in ultrasound videos[END_REF][START_REF] Alkhatib | Deep visual nerve tracking in ultrasound images[END_REF].

In [START_REF] Haane | Deep learning with spatiotemporal consistency for nerve segmentation in ultrasound images[END_REF], the authors used a convolutional neural network and spatiotemporal consistency to segment eciently the nerve region.

Despite the promising results obtained by the texture descriptors or the CNN based detectors, still, the nerve detection topic requires further development and examination. In this section, we propose new techniques for detecting the nerve in the US images. These techniques are based on texture descriptor (RAMBP), CNNs models, and merged model (RAMBP with CNNs models).

Nerve detection using RAMBP descriptor

In the current section, we present nerve detection using RAMBP descriptor using two techniques, Support Vector Machine (SVM) [START_REF] Vapnik | The nature of statistical learning theory[END_REF] and 1D CNN [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF]. Although 1D CNN considered a CNNs model but, here in this section, we use RAMBP descriptor as input for the 1D CNN. From these positions, the nal nerve position is assigned to the region where the condence level is the highest as shown in Figure 3.1a. On the other side and for 1D CNN, the classication procedure output is the prediction score of each sliding window in the image. From these scores, the nal nerve position is assigned to the region with the highest score.

Nerve detection using CNNs model

In this section, the 2D CNN architecture is constructed to learn deep visual features from US images. As observed in Figure 3.2, this architecture has four 2D convolutional layers, four batch normalization layers, two 2D max-pooling layers, and a fully connected layer as shown in Figure 3.2. The rst convolution layer has 32 convolution kernels of size 3 × 3 with the 'same' padding. The output of the rst convolution layer produces 32 various feature maps.

This followed by normalizing the features by the rst batch normalization layer. Then, the normalized features are inputted into the second convolution and batch normalization layers, which have the same parameters as the rst layers. The normalized learned features are reduced by the rst max pooling layer with a size of 2 × 2. After that, the sequence of layers is repeated by taking the third and fourth convolution and batch normalization layers, followed by the second max pooling layer with a size of 4 × 4. The third and fourth convolution layers have the same parameters as the rst two layers but with 64 various learned lters that produce 64 dierent feature maps. Then, the features produced by the second max-pooling layer are attened and passed into the fully connected layer. Finally, the features are passed through the last fully connected layer where the nerve images will be recognized by the softmax classier in the top layer of this architecture.

As illustrated in Figure 3.2, several US images were used as a training set in order to 

z l = z l-1 1D z l-1 2D (3.1)
where z l-1 1D and z l-1

2D are the learned features produced by the fully connected layers of the 1D and 2D CNN branches, respectively.

When the concatenated features are passed through the last fully connected layer, nerve region will be recognized by the softmax classier in the top layer of this architecture. 

Nerve tracking

Tracking is one of the fundamental tasks in computer vision and image analysis, and it is used in a wide range of applications such as video surveillance, medical imaging, robotics, etc.

Tracking is an easy task when the target objects are isolated and easily distinguishable from the background, but it is a very challenging task when the image suers from illumination changes, shape deformation, object disappearance, viewpoint variation, etc [START_REF] Wang | Learning a deep compact image representation for visual tracking[END_REF]. Tracking failure could happen easily under the noise, illumination changes, occlusion, and deformation of the target.

Therefore, tracking the nerve in US imaging modality is a very challenging task.

Tracking in US images is a very challenging task due to the degradation of the visual property of US images. Various methods have been proposed in the literature regarding tracking in US images. In [START_REF] Li | Automatic contour tracking in ultrasound images[END_REF], Li et al. improved active contour by incorporate intensity information with edge gradient to track the tongue in US images. In [START_REF] Tang | Tongue contour tracking in dynamic ultrasound via higher-order mrfs and ecient fusion moves[END_REF], the author used Markov random eld for segmenting and tracking automatically the tongue contour. Nascimento et al. used multiple model data association tracker with nonlinear lters to track the left ventricle in the US images [START_REF] Jacinto | Robust shape tracking with multiple models in ultrasound images[END_REF]. In [START_REF] Roussos | Tongue tracking in ultrasound images with active appearance models[END_REF], the authors proposed a variant of active appearance modeling to detect and track the tongue in US images. The technique proposed in [START_REF] Carneiro | Combining multiple dynamic models and deep learning architectures for tracking the left ventricle endocardium in ultrasound data[END_REF]based on building an observation distribution using deep neural networks, which have been used with the systole and diastole motion patterns to track the left ventricle in the US images. In [START_REF] Guerrero | Real-time vessel segmentation and tracking for ultrasound imaging applications[END_REF], a new technique is proposed using a Kalman lter with an elliptical model to track the center of vessels in US images. Novotny et al. searched for long straight objects by using generalize Radon transform and Graphics Processor Unit (GPU) for tracking medical instruments in three-dimensional US images [START_REF] Paul M Novotny | Gpu based real-time instrument tracking with three-dimensional ultrasound[END_REF]. In [START_REF] Duan | Region-based endocardium tracking on real-time three-dimensional ultrasound[END_REF], the authors used region-based tracking to track endocardium in three-dimensional US images. As far as we know, there is no tracking study addresses nerve regions in US images.

In this section, we propose dierent techniques for tracking the nerve in the US images.

These techniques are based on texture descriptor (RAMBP), CNNs models, and the proposed merged model (RAMBP and CNNs model).

Nerve tracking based on RAMBP descriptor

Feature tracking oers a wide range of application possibilities in computer vision and control theories, such as medical robotics, surveillance, etc. A robust extraction and real-time tracking of features is a big step to the success of other tasks (e.g. visual servoing). Among popular feature tracking methods, there are three robust and ecient tracking algorithms, particle lter [START_REF] Deutscher | Articulated body motion capture by annealed particle ltering[END_REF], mean-shift [START_REF] Comaniciu | Kernel-based object tracking[END_REF] and Kanade-Lucas-Tomasi (KLT) [START_REF] Tomasi | Detection and tracking of point features[END_REF]. Particle lter and mean-shift algorithms used to nd the similarity between the current image and the target nerve, and it is based on histogram representations. KLT used the frame to frame object tracking, which consists of matching object feature points or descriptors between these images and calculate the displacement vector.

LBP descriptor family have been used for tracking in many US images applications, it presents many advantages such as discrimination eciency, illumination changes, and rotation invariance, and low computation cost [START_REF] Ojala | Multiresolution gray-scale and rotation invariant texture classication with local binary patterns[END_REF]. In [START_REF] Ning | Robust object tracking using joint color-texture histogram[END_REF], Ning et al. used LBP for describing color-texture histogram with a mean-shift algorithm. In [START_REF] Ding | Object tracking algorithm based on particle lter with color and texture feature[END_REF], the author improved the particle lter to handle illumination changes by using LBP as a color-texture histogram. Histograms of Oriented Gradients (HOG) is also a powerful descriptor, Bilinski et al. performed multi-object tracking under occlusion using HOG descriptors [START_REF] Bilinski | Multiple object tracking with occlusions using hog descriptors and multi resolution images[END_REF]. However, the previously mentioned texture-based tracking methods have some notable limitations, mostly the sensitivity to noise.

To the best of our knowledge, there is no study that addresses the problem of noisy texture tracking, particularly nerve tracking for RA application.

Since we deal with texture regions in US images it would be more interesting to use robust descriptors. Several studies aim to increase the robustness of noisy textures classication using robust local binary pattern approach [START_REF] Haane | Median binary pattern for textures classication[END_REF][START_REF] Liu | BRINT: binary rotation invariant and noise tolerant texture classication[END_REF][START_REF] Haane | Adaptive median binary patterns for texture classication[END_REF][START_REF] Alkhatib | Robust adaptive median binary pattern for noisy texture classication and retrieval[END_REF][START_REF] Haane | Rotationally invariant hashing of median binary patterns for texture classication[END_REF]. Figure 3.5 describes the tracking process where the used deterministic tracking algorithms are combined with dierent kinds of feature extraction methods. The process starts by taking the nerve previous location and input it to the feature descriptor (RAMBP). This followed by applying the feature tracker. These trackers compare the previous nerve location features with the features that had been taken from the candidate nerve location. In the literature, few methods introduced the tracking using deep-learning in US images.

In [START_REF] Carneiro | Combining multiple dynamic models and deep learning architectures for tracking the left ventricle endocardium in ultrasound data[END_REF], the authors built a deep neural network observation distribution to track the left ventricle endocardium in US images. In [START_REF] Nascimento | Tracking and segmentation of the endocardium of the left ventricle in a 2d ultrasound using deep learning architectures and monte carlo sampling[END_REF], The authors used deep neural networks to build a new observation model in a particle lter to track and segment the left ventricle in US images.

This section aims to track nerves in US images using deep-learning methods, and as such these methods should be robust enough to track dierent nerve situations. The visual tracker starts by generating the target model in the rst frame, then extracts features in the next frame to nd candidates' models, and nds the best match between target and candidate models.

Most existing deep trackers use CNN either to generate appearance models, to match object model with its candidates, or to distinguish the object from the surrounding areas. Therefore, 13 deep-learning tracking methods are tested to track the nerve in the US images.

In this work, we conducted a comparative study of thirteen deep trackers for tracking the nerve in the US images. These trackers are built by stacking dierent CNN layers to track the nerve in US images.

The trackers are Continuous Convolution Operators Tracker (C-COT) [START_REF] Danelljan | Beyond correlation lters: Learning continuous convolution operators for visual tracking[END_REF], Ecient convolution operators (ECO) [START_REF] Danelljan | Eco: Ecient convolution operators for tracking[END_REF], Convolutional Network based Tracker (CNT) [START_REF] Zhang | Robust visual tracking via convolutional networks without training[END_REF], Multi-Domain convolutional neural Networks (MDNet) [START_REF] Nam | Learning multi-domain convolutional neural networks for visual tracking[END_REF], Structure-Aware Network (SANet) [START_REF] Fan | Sanet: Structure-aware network for visual tracking[END_REF], Fully-Convolutional Siamese Networks (SiameFC) [START_REF] Bertinetto | Fully-convolutional siamese networks for object tracking[END_REF], Correlation

Filter Network (CFNet) [START_REF] Valmadre | End-to-end representation learning for correlation lter based tracking[END_REF], Discriminant Correlation Filters Network (DCFNet) [START_REF] Wang | Dcfnet: Discriminant correlation lters network for visual tracking[END_REF],

Multi-task Correlation Particle Filter (MCPF) [START_REF] Zhang | Multi-task correlation particle lter for robust object tracking[END_REF], Hedged Deep Tracking (HDT) [START_REF] Qi | Hedged deep tracking[END_REF],

Hierarchical Convolutional Features Tracker (HCFT) [START_REF] Ma | Hierarchical convolutional features for visual tracking[END_REF], Deep-Learning Tracker (DLT) [START_REF] Wang | Learning a deep compact image representation for visual tracking[END_REF],

and Convolutional RESidual Tracker (CREST) [START_REF] Song | Crest: Convolutional residual learning for visual tracking[END_REF].

Experimental detail is presented in Section refexper. From these scores, the nal nerve position is assigned to the region with the highest score.

The merged CNNs based PF tracker starts by generating the particles where each particle will produce a candidate window. This followed by applying the merged 1D-2D CNNs model to each candidate window. The process will update the particles weight using the responses of the merged CNNs model. Finally, the predicted nerve position is obtained using,

P n = n i=0 w i c (3.2)
where P n is the predicted nerve location, n is the number of particles, w i is the weight of the i th particle calculated from the merged CNNs model, and c is the particle location in the image.

Updating the weights and particles is an important step in PF tracker which leads to avoid the degeneracy problem. A re-sampling algorithm is applied [START_REF] Sanjeev | A tutorial on particle lters for online nonlinear/non-gaussian bayesian tracking[END_REF] where the weights are set to w i = 1/n. Dierent resampling methods have been used to update the particles, such as multinomial, residual, stratied, and systematic methods. After extensive experiments, we used the residual method for updating the particles.

The merged CNNs based mix tracker is a combination of the previous two trackers. It starts by using the merged CNNs based PF tracker as explained before. If the highest score (the maximum similarity) of the particles' weight, retrieved from the merged CNNs model, is lower than a certain threshold, the merged CNNs based search tracker will be triggered for one frame to track the nerve more precisely.

For the three techniques, we adopt an incremental strategy for updating the merged CNN model with the new nerve appearances. The incremental strategy only uses new samples in the current frame to update the model. Hence, this updated model is able to adapt to the target appearance variations while alleviating the drift problem.

Experiments, results and discussion

This experiment provides a performance comparison and evaluation of the proposed approaches.

Each method is analyzed in terms of accuracy, consistency, time cost, and handling dierent nerve situations. In this study, we conduct the experiment on the median nerve. As shown in Figure 3.6, the median nerve is one of the major nerves in the arm, it starts from the brachial plexus to innervate the intrinsic muscles of the hand. More precisely, the median nerve is located at the proximal elbow, mid-forearm, and wrist. The median nerve presents a circular, oval or elliptic shape [START_REF] Heinemeyer | Ultrasound of radial, ulnar, median, and sciatic nerves in healthy subjects and patients with hereditary motor and sensory neuropathies[END_REF]. 

Dataset

In UGRA, the anesthetist starts by using the US probe to scan a part of the body back and forth in order to locate and track the nerve. This step is important to stabilize the probe in a good position to visualize the nerve and insert the needle. Nerve detection and tracking in US images require an in-depth study of the most eective detection and tracking techniques, as well as it relies on the large dataset to include intra and inter-patient variations. These steps are essential to assess the robustness of nerve detection and tracking methods in US images.

However, the location of the nerve for UGRA is a very delicate subject, due to the lack of data.

To our knowledge, no database of US images of the median nerves has been published. For this reason, data collection is inevitable to assess the performance of nerve detection and tracking methods.

For that, the dataset was acquired in real conditions at the Medipole Garonne hospital in Toulouse (France), and it is ethically approved. US videos of the median nerve were obtained from several volunteer patients under real conditions where the ground truth was provided by two regional anesthesia experts. Experiments were conducted on sonographic videos of the median nerve obtained from 20 anonymous adult patients (12 men and 8 women) using a US machine with a 5-12 MHZ transducer frequency. The databases are in the form of a video for each patient. Each video consists of 650-750 frames and a total number of 14,000 US images of the median nerve were used. The used images in our experiments have a dimension of 600 × 350 pixels. The experiments were carried out with a core 7 Duo 3.50GHz processor with 32GB

RAM under Matlab and Python.

Very few studies have tackled the problem of nerve detection and tracking in the US images.

Therefore, the results obtained by these methods were regularly presented to the anesthetists to collect their feedback and validate our results. The ground truth validated by anesthetists was compared with the results obtained by the computer. This comparison allows the measurement of the performance of the proposed methods. Furthermore, with the aim of performing in real-time, nerve detection and tracking performed directly on the original US image without any prior image enhancements.

Nerve detection experiments

The objective of this experiment is to evaluate each technique of the proposed detection models in order to study their role and impact on nerve detection. Figure 3.7 shows the scheme of the testing process. For testing an image, a sliding window of size of 64 × 64 is passed through the image with 50% overlapping to search the nerve.

As can be seen from In these experiments, 10 videos were selected randomly as a training dataset and the remaining 10 videos as a testing dataset. For setting the training dataset positive class, each labeled nerve is extracted with a bounding box around it. While for the negative class, a sliding window of size of 64 × 64 is passed randomly through the image except for the nerve regions.

For the training and testing process, the images are resized to 32 × 32 which will be sent to the CNN and SVM models. For all models and after trying dierent parameters, we choose a batch size of 256 and the number of epochs is 500. For CNN models and to nd the output size of the rst dense layer of 1D and 2D CNN, we choose 128 (dimensionality of the output space) after trying dierent values. As well as, the Adaptive Moment Estimation (Adam) [START_REF] Diederik | Adam: A method for stochastic optimization[END_REF] is adopted for the CNN learning procedure. where the location with the highest prediction value is set as the detected nerve location. We consider the image as true positive if it overlapped with the exact nerve region (ground truth) at least 50%, otherwise, it considered as a negative sample (other regions).

Accuracy is the most common performance measure, but the main drawback is that accuracy hides some details that can help understanding better the detection model performance. For that, Recall, Precision, and F1-score provide better performance understanding by taking both false positives and false negatives into account. Precision is the correct proportion of positive identications, Recall is the correct proportion of actual positives, and F1-score is the weighted average of precision and recall. Precision, Recall, and F1-score are expressed as,

P recision =

T P T P + F P To show the eectiveness of the merged method, Table 3.1 depicts comparative results between the three CNN architectures (1D CNN, 2D CNN, and the merged CNN). It can be seen that the 1D CNN alone or the SVM model can detect nerve location with a precision of 82% and 81%, respectively. The performance of 2D CNN is better than that of 1D CNN and the SVM models with a precision of (85%). When compared with SVM and the two single-input CNNs, the merged CNN reaches the highest precision (96%) and shows a certain advantage in the overall performance. Furthermore, the merged CNN shows the importance of the RAMBP histogram which provides more accurate and robust results. In this work, we chose a simple architecture to demonstrate the eectiveness of the texture features for nerve detection in the US image. Furthermore, to show the robustness of the RAMBP descriptor with a more complex architecture, we have tested DenseNets [START_REF] Huang | Densely connected convolutional networks[END_REF] (2D -121 layers) to detect the median nerve. After extensive experiments, as shown in Table 3.2, the precision of this network to detect the nerve did not pass 84%. At the same time, we implement a 1D architecture similar to the DenseNet but for 1D RAMBP input, it reaches a precision of 80%. Nevertheless, after doing a simple merge layer between the previous two networks, the precision reached 94%. We believe that the 2D CNN architecture is not enough to detect the nerve in US images due to its diculties to capture textures information. Moreover, the use of a powerful texture descriptor such as RAMBP the accuracy would vastly be improved.

To show the robustness of the RAMBP descriptor against dierent texture descriptors, they have been used in the merged model as an input to the 1D CNN branch. The confusion matrix is a common way to evaluate the performance of a multiclass classication model, which plots the actual class label against the predicted class label. Figure 3.9

shows the corresponding confusion matrix of the merged model where about 5% of the nerve regions (label nerve) are wrongly classied. Likewise, for other regions (label others), less than 1% are wrongly assigned. From the confusion matrix, we found that the proposed system provides promising results for detecting the nerves in the US images.

Time complexity is an important point, especially in UGRA applications. While the tested models take a long time in the learning phase to build the models, it is fast in the detection phase.

This has an advantage for real-time applications since the learning phase can be performed oine. Although the 1D CNN and the proposed merged model are considered slower than the 2D CNN and the SVM models due to the extra step of extracting the 1D texture descriptor from the sliding window, it is possible to make the detection faster by parallelizing RAMBP using, for example, a graphics processor GPU. 

Nerve tracking experiments

This section shows the feasibility of nerve tracking in US images using dierent approaches.

These experiments provide a performance comparison and evaluation of the tracking approaches for nerve tracking in US images. The accuracy is assessed by the bounding box overlap ratio between the estimated nerve position and the ground truth. The overlap ratio is based on pixels percentage in the intersection area.

The structure of this section is as followed, rst, we show the texture descriptors evaluations.

Then, CNNs based trackers evaluations. Finally, we take the best methods in texture descriptors and CNNs based trackers and compare it with the merged model trackers.

Nerve tracking using texture descriptors

The objective of this experiment is to evaluate the nerve tracking techniques using texture descriptors. For setting up the trackers, we used for the particle lter 50 particles. In the mean-shift algorithm, we set the threshold to 0.0001. While the size of the descriptor in the Kanade-Lucas-Tomasi (KLT) algorithm is set to 16 × 16 pixels around the feature points.

In this validation part, the particle lter, mean-shift, and KLT algorithms are applied to US images. Figure 3.10 shows the accuracy of texture descriptors based trackers. We can observe that particle lter with RAMBP descriptor (PF-RAMBP) achieved the best results, while mean-shift and KLT algorithms had less stability and less performance accuracy. Also, it can be seen that AMBP, MBP, LBP, and CLBP gave good results with particle lter but with less stability. Figure 3.11 shows the results of the particle lter with RAMBP and the ground truth of the nerve location. Table 3.4 shows the performance of the nine feature extraction methods. As can be seen, using a particle lter or mean-shift algorithm, RAMBP provides the best results. On the other hand, HOG, and AMBP perform better while applying KLT. These results are obtained thanks to RAMBP stability and discriminative properties. In general, the particle lter is more robust to noise, while the mean-shift and KLT do not perform well under the presence of noise.

The computational cost of particle lter depends on the number of particles, while the mean-shift on the threshold value, and for KLT on the number of features and for the size of the descriptor. Therefore in our experiments, particle lter and mean-shift algorithm require less computation time.Table 3.5 shows the running time for each method, where it can be seen that the particle lter algorithm (best tracking method) provides good processing time with Matlab, which can be optimized to be much faster using real-time platforms. In the same table, it can be seen that RAMBP is slower than LBP, AMBP, MBP, and normal histogram. LBP uses the central pixel as a threshold value, MBP uses the median of a xed The experiments faced some failures in a few frames where the nerve appearance is almost the same as the surrounding areas, but these cases are rarely encountered in the tests. Besides, the proposed method faces some challenges such as real-time process, one of the future works consists of using optimization methods and GPU's to ensure and guarantee the reduction in time complexity. Another challenge is how to reduce the eect of maximizing the error after a high number of iteration, and one of the possible solutions is by using detection step after a xed number of frames to correct the initial location of the nerve. Figure 3.12 shows an example of a few frames of failure after using RAMBP with a particle lter, which happened due to nerve disappearance. In the same gure, it can be seen that the system succeeded to re-track the nerve after a few frames of losing the target. 

Nerve tracking using CNNs models

In this section, we evaluate CNNs based trackers for nerve tracking in the US image. The same parameters provided by the original papers were used along with the source codes that have been made available by the original authors. In this experiment, VGG-Net [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF], very deep convolutional networks (up to 19 layers) are adopted for feature extraction. The experiments faced some challenges when the nerve disappeared or appeared to be almost as identical as the surrounding areas. The MCPF tracker uses a particle lter principle which gives it the ability to re-track the nerve in case of disappearance. Other trackers expand their localization to re-track the nerve once it appears again such as ECO and DCFNet. On the other hand, the CREST tracker failed to re-track the nerve rapidly after it appeared again. 

Nerve tracking using merged features

The objective of this section is to evaluate the nerve trackers using the merged CNNs model in order to study their role and impact. Three tracker were proposed based on the 1D-2D merged For the merged model, the images are resized to 32 × 32 which will be inputted to the CNN branch. After trying dierent parameters, we choose a batch size of 256 and the number of epochs is 500. To nd the output size of the rst dense layer, we choose 128 (dimensionality of the output space) after trying dierent values. As well as, the Adaptive Moment Estimation (Adam) is adopted for the CNN learning procedure.

For the merged CNNs based search tracker, a window which is 4 times bigger than the previous nerve location is initialized, followed by a sliding window of size of 64 × 64 is passed through the searched window with 50% overlapping to search the nerve. For the merged CNNs based PF tracker, we set the number of particles to 30. While for the merged CNNs based mix tracker, we set the threshold to 60% which means if the similarity between the previous nerve location and PF candidates is less than 60%, the merged CNNs based search tracker will be activated to track the nerve for one frame. As discussed in previous experiments, the time complexity is considered an important point for a more successful UGRA. Table 3.9 depicts the running time for each method where it shows 10 th f rame 200 th f rame 400 th f rame 600 th f rame 

Conclusion

To conclude, nerve detection and tracking is an important step to stabilize the ultrasound probe in a good position to visualize the nerve and insert the needle. Although there has been extensive development of detection, and tracking algorithms for medical images, it is still an open problem especially for ultrasound images in regional anesthesia. In this chapter, we have Chapter 4

Robotic Control

Outline:

In Ultrasound-Guided Regional Anesthesia, needle insertion imposes a very challenging task, where it is important to ensure that the needle moves within the constraints of the insertion point and obstacle avoidance in order to prevent patient harm and reach the targeted nerve. In this chapter, a robotized needle insertion control system is introduced. This robotic system can provide great assistance to the experts with techniques and tools that improve the procedure accuracy and safety such as avoiding nerve trauma or damage healthy tissues. 

Tasks of robotic-assisted UGRA

As discussed in Chapter 1, performing the UGRA routine requires a long learning process, mainly due to the risk of nerve trauma while inserting the needle and due to the diculty of processing the poor quality US image [5,[START_REF] Glenn E Woodworth | Ecacy of computer-based video and simulation in ultrasound-guided regional anesthesia training[END_REF]. Therefore, the DANIEAL2 project aims to provide anesthetists with a collaborative expert-robot-environment platform that signicantly improves the UGRA practice; that is to study and develop an intrinsically safe robotic medical device, where the expert is always in the control loop. This involves assisting the medical gesture when inserting the needle towards the targeted nerve under ultrasound (US) imaging using the collaboration of a robotic arm. When the anesthetist has positioned the probe at the chosen location, then Phase ϕ 1 is triggered.

Phase ϕ 1 -this phase is composed of 2 simultaneous parts, one for the PHR and the other for the NHR:

PHR part: controls the PHR by visual servoing to unmanned maintain the desired regions of interest (e.g. the nerve) in the 2D US image obtained during phase ϕ 0 .

Then, automatic nerve detection and tracking, and a visual servoing technique are performed to keep the targeted nerve within the 2D US plane even when physiological movements occur.

NHR part: when the needle is outside the patient's body (so called "Outside patient control" process), the anesthetist's goal is to nd a needle insertion point on the patient's skin that could provide the best trajectory in order to reach the nerve.

But the expert faces two constraints: the insertion point must be in the US plane (note that the needle cannot appear on the US image until it is inside the patient's body); the needle pose is constrained by the need of being seen within the US plane.

Knowing the geometrical transformations of the PHR and NHR, we can oer the anesthetist a CoBotic control of the NHR that respect the two constraints with an adapted force feedback over the 6-Dimensions. Finally, the NHR CoBotically ensures needle visualization within the US plane.

Once the anesthetist inserts the needle in the well-chosen location (i.e. insertion point) on the patient's body, phase ϕ 2 is triggered.

Phase ϕ 2 : this phase is composed of 3 simultaneous parts, one for the PHR, one for the NHR, and one for the manual injection:

PHR part: the aim is to unmanned keep the targeted nerve and the inserted needle within the 2D US image plane using US visual servoing approach. To complete this action, we need to track the nerve in the US images and to retrieve the position/orientation of the needle's tip using the geometrical transformations between the two robots. Hence, when the anesthetist tilts the needle outside the US plane, the PHR has to follow the needle's tip and keep it within the US plane.

NHR part: when the needle is inserted in the patient's body (so called "Inside patient control" process), the anesthetist's goal is to move the needle as close as possible to the nerve with respect to Remote Center of Motion (RCM) constraints. The NHR is CoBotically controlled to manipulate the needle by reducing the DoF around the RCM point. In order for the anesthetist to avoid risky regions such as artery, vein, or tendon, a topological image, based on the US image, is processed on-line to build a 2D model (mesh) that provides interaction among various tissues and the needle's tip and shaft. This model allows the NHR to apply repulsive forces once the needle's is near risky regions. Moreover, with the 2D model, we can propose to the anesthetist safe trajectories to reach the nerve area.

Manual injection part: This part is manually performed by the anesthetist with no robotic assistance.

Once the anesthetic drug is injected around the nerve, the anesthetist pulls out the needle; once the needle is outside the patient's body, the NHR and PHR assistance process stop.

The folllowing scheme details the various tasks that compose the PHR and NHR control phases. needle should be CoBotically aligned within the US plane. To do so, the PHR has to share its workspace with the NHR. Hence, the positions of the US probe and plane will be referenced to the NHR base frame. Therefore, forces are applied to the NHR to guarantee the proper placement of the needle within the US plane.

At this stage, the targeted nerve is visualized within the US image, and the needle is positioned on the patient's skin in a position that guarantees inserting the needle within the US plane (visualized in the US image). Then, Phase ϕ 2 will be triggered.

In phase ϕ 2 , task B and C are repeated, where the output nerve position is entered in task D . Task D uses a visual servoing technique to keep visualization of the tracked nerve and the needle within the US plane. To keep visualizing the needle in the US plane, the NHR has to share its workspace with the PHR. Therefore, the position of the needle plane will be referenced to the PHR base frame.

Simultaneously, task F NHR CoBotic control for needle insertion under RCM constraints is performed. The anesthetist CoBotically controls the needle insertion while taking into account the constraints of the insertion point. However, using task F alone is not sucient as it lacks the avoidance process of risky regions such as arteries or bones. Hence, tasks G and H aim to locate all regions in a given US image. In task I , the NHR is CoBotically controlled with the addition of applying small forces on the robot end-eector which are rendered to the anesthetist's hand once the needle's tip is close to a risky region such as an artery, a bone, and even the nerve.

While the PHR control keeps visualizing the target nerve and the inserted needle, and once the needle's tip is close to the nerve, the anesthetist injects the anesthetic manually to complete the UGRA procedure in task K .

As this thesis is a part of DANIEAL2 project, we do not focus on proposing new visual servoing techniques (task D and D ), wherein this project proposes to use some existing visual servoing methods for US medical applications. In this thesis, we focus on proposing new methods and techniques for nerve detection and tracking (tasks B and C ) in Chapter 3, and in this chapter, we focus on proposing methods for phase ϕ 2 NHR part (tasks F , G , H , and I ) where the next section will introduce the proposed work.

4.2

The needle holder robot control in phase ϕ 2 (NHR part)

In this section, we present methods for tasks F , G , H , I of part 2 NHR of phase ϕ 2 .

These tasks focus on controlling the needle inside the patient's body. This control aims to x the interaction point between the patient's skin and the needle where the needle movement will be around that point. The interaction pivot point between the needle and the skin of the patient is named the insertion point. This point restricts the medical instrument movements inside the patient's body. These movements may dierent from one type of instruments to another.

For example, the trocar is a well known instrument hugly used during laparoscopic surgery.

Due to trocar's characteristics, movements around the insertion point are restricted into only four degrees of freedom (DoF) motion: three rotational DoF and one translational DoF. For UGRA procedure where a rigid symetric needle is used, movements around the insertion point are restricted into only three DoF motion: two rotational DoF and one translational DoF.

Therefore in this work, the rotation on z-axis is blocked due to the symetrical aspect of the needle.

In UGRA, the insertion point constitutes an essential issue constraining the anesthetist gesture when manipulating a needle inside the human body. However, manipulating the needle imposes a very challenging task, where it is important to ensure that the needle should move within the constraints of the insertion point in order to prevent harm to the patient. While using a robotic-assisted procedure, the inserted needle movements are limited to a translation along its axis and rotations around at the insertion point [START_REF] Chad R Johnson | A computer model of electrical stimulation of peripheral nerves in regional anesthesia[END_REF]. The manipulator motion is then constrained with respect to that point on the end-eector known as Remote Center of Motion (RCM) as shown in Figure 4.3 [START_REF] Taylor | gmedical robotics in computerintegrated surgery[END_REF]180]. To respond to this need, this chapter proposes a control framework for robot-assisted UGRA for physical human-robot collaboration using a 7-DoF robot manipulator (Franka Emika [START_REF] Haddadin | Franka emika panda[END_REF]). position on the sphere to a "nal" position on the same sphere with 2D tangential constraints.

The start position of the tool frame is found using the direct kinematics model computed from the robot built-in library. This position is composed of a 3D vector of translations and a 3 × 3 rotation matrix with respect to the base frame.

Let us dene the starting position of the end-eector as 3D translations (P ST = [P ST x P ST y P ST z ] T ) and 3 × 3 rotation matrix (P SR ). To nd the RCM position (sphere center with a radius R as shown in Figure 4.4), rst, we have to retrieve from the rotation matrix the three rotation of the end-eector (Yaw ψ, Pitch θ, and Roll φ):

ψ = atan2(P SR32 , P S33 ) (4.1) θ = atan2(P S31 , P 2 SR32 + P 2 SR33 ) (4.2)
φ = atan2(P SR21 , P SR11 )

(4.3)
Using these rotations, the RCM position ([RC M x RCM y RCM z ] T ) is found by: RCM x = P ST x + (cos(φ)sin(θ)cos(ψ) + sin(φ)sin(ψ))R 

α = π 2 -R x (4.7) β = π 2 -R y (4.8)
We now have to consider how to compute the desired nal position. Thanks to the spherical representation and having the RCM position with the two rotation angles, the nal position translation coordinates (P F T = [P F T x P F T y P F T z ] T ) are:

P F T x = RCM x + cos(α)R (4.9) P F T y = RCM y + cos(β)R (4.10) P F T z = RCM z + sin(α)sin(β)R (4.11)
To guarantee the RCM constraints, the tool frame position should always face the RCM point (the tool frame z axis should cross the RCM point); to comply with this requirement, the nal rotation should respect the RCM position. Thereby, the rotation matrix of the nal end-eector position (P F R ) is represented by:

P F R = [X axis Y axis Z axis ] 3×3 (4.12)
where X axis , Y axis , and Z axis are the axes that represent the nal tool-frame orientation.

To nd these axes, a 3D coordinate is initialized where one axis points toward the RCM position, it will simplify the problem to use axis perpendicularity to nd the others. Using this property, these axes are found by: Z axis = normalize(P ST -RCM ) (4.13)

X axis = normalize((0, 1, 0) -Z axis ) (4.14) Y axis = Z axis × X axis (4.15)
where × is the cross product and each axis represented as a 3D vector in space.

All the introduced steps above allow to control the 2 rotation constraints (R x and R y ). For the 3rd rotation (rotation on the z-axis), the end-eector self-rotation around its axis is just applying the R z rotation directly on the end-eector rotation matrix.

To control the translation on the z-axis, the needle insertion is equivalent to the decrease of the sphere radius. The position and rotation of the end-eector depend on the RCM position, where the translation on its z-axis will produce the end-eector position changes but keeping the RCM position with reference to the NHR base frame. The orientation of the end-eector will remain the same but the new translation position of the end-eector after applying a translation T z on its z-axis will be:

P F T x = P ST x + T z (RCM x -S T x ) (4.16) P F T y = P ST y + T z (RCM y -S T y ) (4.17) P F T z = P ST z + T z (RCM z -S T z ) (4.18)
And the radius (R) will be updated to: R = R ± (P F T x -P ST x ) 2 + (P F T y -P ST y ) 2 + (P F T z -P ST z ) 2 (4. [START_REF] Bonnet | Principles & practice of regional anaesthesia[END_REF] where ± is + oroperator which depends on the sign of T z (insertion or extraction of the needle).

With the orientation and the position of the end-eector, and using the inverse kinematics model provided by the robot built-in library, the positions of the robot joint angles can be dened.

The redundancy that can provided by our 7-DoF robot compared to the 4-DoF necessary for the robotic-assisted UGRA is not an issue. On one hand, the alignment singularities are already well managed by the built-in Franka library; on the other hand, we have chosen an initial conguration of the robot that allows us to stay in the same conguration (as our workspace is reduced to 20 × 20 × 20 cm 3 ), and where the dexterity is maximum.

The control strategies

Robots were introduced in the operative room to provide important support in terms of accuracy and comfort for the surgeons during their daily routine. Dierent control strategies were introduced in the literature to control the RCM point. In UGRA procedure, a small error (up to 2-3 mm) at the RCM point is acceptable (transverse motion of the skin), but the needle tip error cannot reach the same error also to avoid any damages or trauma.

Robotic solutions are based on teleoperation or CoBotic control of the needle motion under RCM constraints. In general, these studies focus on reducing the errors at the RCM point and the instrument tip. In [START_REF] Chalard | Robustesse à la variabilité du comportement mécanique du point d'insertion en chirurgie mini-invasive robotisée[END_REF], the authors proposed to use a free-wrist anthropomorphic robot that guarantees the RCM constraints. Although the free-wrist control provides good control, it suers from the fact that the control is only at the end-eector point using an open-loop strategy.

Hence, the RCM is not controlled directly but it responds to the force/torque applied on the end-eector. This means that if there is an error at the RCM, an error will be also expected at the needle tip. Hence, in this study, we control the end-eector point in a closed-loop strategy while imposing RCM point. This results in knowing the exact poistion of the needle tip, which means that if there is an error at the RCM point, it will not aect the needle tip position (no error).

Here, we propose controlling the 7-DoF robot in a closed-loop using two control techniques: a haptic teleoperation control in Section 4.4.1; a CoBotic control in Section 4.4.2. While the haptic control is not a predened task in the proposed robotic system, it is a preliminary task that was done to validate various tasks in the NHR system, as well as, it would be an option for improving the learning curve for junior anesthetist operators. Experiments of these control strategies are introduced in Section 4.6.2.

Haptic needle insertion teleoperation control: integration of the haptic force feedback and RCM constraints

Force feedback represents an important challenge for the community of medically roboticassisted manipulators.

Using force-feedback control provides several advantages such as:

assisting the expert with structures identication by providing tissue palpation; avoiding nerve trauma or damage healthy tissue applied by large forces; reducing unintended injuries; identifying any interactions between the needle and the surrounding organs outside the viewing area [START_REF] Ortmaier | Robot assisted force feedback surgery[END_REF]. Teleoperated robotic-assisted UGRA is a solution that can provide the anesthetists with better control of the needle motion. This teleoperation approach allows the operator to control the needle insertion procedure from the anesthetist's site. There are dierent reported methods in the literature representing teleoperated robotic systems, such as in the DaVinci surgical system [START_REF] Shimachi | Adapter for contact force sensing of the da vinci® robot[END_REF]. However, one of the teleoperated robotic-assisted system's major limitations is the lack of haptic force feedback. The haptic rendering experienced by the anesthetists, which is represented by the force feedback, provides crucial information for a more accurate and precise needle control. Therefore, this section proposes a haptic force feedback control framework for teleoperated robot-assisted UGRA for physical human-robot collaboration using 7 DoF robot manipulator (Franka Emika).

Feeling the forces, from the needle mounted on the slave robot while in contact with the environment, allows the anesthetist to get more information regarding the needle insertion process and to perform the UGRA act in a safer way with higher accuracy [START_REF] Leal | 30 years of robotic surgery[END_REF][START_REF] Xiong | Shared control of a medical robot with haptic guidance[END_REF]. There are dierent commercial force feedback devices, such as [START_REF] Kokes | Towards a teleoperated needle driver robot with haptic feedback for rfa of breast tumors under continuous mri[END_REF][START_REF] Wang | Remote-controlled vascular interventional surgery robot[END_REF], were used in various research works concerning teleoperated systems; the haptic phantom device from Haption(c) was used in the proposed platform.

To solve the force feedback issue during the needle insertion with RCM constraints, we present in this section a novel approach to assist anesthetists with comfort and condence throughout the procedure. This approach can be summarized as moving the needle through the insertion point to generate a remote center of motion (RCM) and to provide force feedback to the expert through the haptic force feedback device as shown in Figure 4.5. To the best of our knowledge, there is no research that focuses on haptic force feedback for UGRA act under RCM constraints.

The proposed closed-loop control strategy based on force feedback consists of two parts: the haptic station (master station) and the robot station (slave station) as shown in The master station is intended to provide the anesthetist a real sense of the force through the force feedback haptic device, alongside sending the intended end-eector position to the slave station.

The slave station completes the control of the robot's position under RCM constraints and sends the force data back to the master station. In more detail, the anesthetist manipulates the haptic device (master station) as if it was the needle; the new position of the end-eector is sent to the robot station (slave station). On the patient's site, the slave robot applies the new position to the end-eector taking into account the RCM constraints and sends the forces back to the master station (the haptic device). To do so, the master device sends to the slave station the desired position which consists of the rotations (on x-axis and y-axis) and the translation on the z-axis. On the other side, the slave station sends the estimated forces back to the master station, which are the force on the x-axis, the force on the y-axis, and the force on the z-axis. The desired position is achieved in the master station by applying the RCM constraints explained in Section 4.3, and the returned forces are applied to the haptic device.

While the anesthetist holds the haptic device, an augmented reality US image (introduced in Section 4.5) is provided based on US image segmentation. This image aimed to be used by the expert to facilitate the needle maneuver during the UGRA act.

The 6-DoF Virtuose 3D Desktop is used which allows the movements on both translations and rotations. However, the force feedback of the Virtuose 3D Desktop is only active on the rst three axes (translations). For this reason and to enable the use of the force feedback in the proposed architecture, the phantom standard usage has been changed to use the rst three axes as two rotations (R x and R y ) and one translation (T z ) (the rotation on z-axis has been blocked because it is unnecessary in the proposed teleoperated system). Hence, the phantom base position has been changed (Figure 4.6) to be more suitable for our architecture and a teleoperated needle insertion.

To retrieve the changes in the position of the rst three axes and to apply the received forces, the haptic built-in control library is used. The control is simple by retrieving the position and set the required forces. shared workspace [START_REF] Peshkin | [END_REF]. CoBots are distinct from teleoperators, in which a human operator controls a robot remotely. CoBotic control provides the accuracy of the robot, as well as, the exibility and decision making of human participants. Therefore, the goal of this section is to assist the anesthetist with a CoBotic system that facilitates performing the UGRA procedure.

It must be emphasized that CoBots are designed to be a complementary working tool for human workers. For that, the proposed system does not replace the anesthetist but assists the expert to perform UGRA act.

When the needle is inside the patient's body, the CoBotic system assists the anesthetist to respect the needle kinematics. This assistance guarantees RCM control around the insertion point. Furthermore, an augmented reality US image (introduced in Section 4.5) is provided based on US image segmentation. To the best of our knowledge, there is no research works that focus on CoBotic control for UGRA act and taking into account the RCM constraints.

In UGRA, the anesthetists apply forces on the needle handle which leads the robot movements by enforced software-dened guided constraints (RCM). As shown in Figure 4.7, in the proposed CoBot mechanism, the expert is the only operator who generates the movement.

Thanks to the Franka Controller, the applied forces are retrieved and the desired position can be applied to the NHR end-eector. In order to create a more realistic operation process and make the force control as transparent as possible, a closed-loop control strategy is used based on the applied forces (Figure 4.7).

Franka Controller allows the robot to be controlled in joint or cartesian space and provides the direct and inverse kinematics models. At the NHR end-eector, the force sensor computes the external forces applied to each axis F x , F y , and F z . To use the RCM constraints which have been presented in Section 4.3, the simplest way to do so is by converting the applied forces into two rotations and one translation. F x and F y are converted to the rotations R x and R y , while F z is converted to the translation T z . Furthermore, the rotation on the z-axis (R z ) has been blocked as it serves no purpose on the UGRA act.

Furthermore, to avoid nerve trauma or damage healthy tissue applied by large forces on the end-eector, the forces should have a maximum limit. Based on expert's recommendations, these limits consider as safety limits for the applied forces and sent to robot control to avoid any unwanted displacements. As well as, to avoid any robotics discontinuity errors, the applied rotations and translation should be reachable and do not exceed the predened limits with predened maximum velocity and acceleration. Therefore, while working at 1 kHz, the planning of smooth motion is essential. The considered smooth motion is an important key for controlling the robot, where the movement changes gradually until reaching the maximum predened velocity. Therefore, the position should be controlled with respect to the velocities. The model starts by retrieving the forces which are computed by the Franka controller. These

forces (F = [F x F y F z ] T ) are converted into velocities (V = [V x V y V z ] T
) by taking into account the maximum predened velocity and acceleration (are examined in the experiments).

This followed by computing the desired rotations and translations (R x , R y , and T z ) which will be fed to Section 4.3.

The Franka controller allows us to work at 1 kHz which is sucient to have good haptic feedback in the anesthetist's hand. Let's compute R x after retrieving the applied F x each 1 millisecond (ms) (1 kHz). First, the current velocity of the end-eector x-axis (V x ) is computed by

V x = abs(F x ) * abs(V max /Acc max ) (4.20) V x = min(V x , V max ) (4.21) 
where V max and Acc max are the predened maximum velocity and acceleration.

And the computed rotation R x each 1 ms is given by

R x = R x ± (0.001 * V x ) (4.22) 
where 0.001 is the network running time of 1 kHz, and ± is + oroperator which depends on the sign of F x This process is done also for F y and F z to compute R y and T z , respectively. Followed by computing the desired position using these rotations and translation parameters with RCM constraints that have been introduced in Section 4.3.

Risky regions avoidance

Risky region avoidance is an important step for a more complete robotic UGRA system.

The objective is to gives the anesthetist freedom of movements while inserting the needle with the advantage of feeling an extra repulsive force while the needle's tip gets close to any risky region such as a nerve, an artery, a vein, or a tendon. Moreover, this procedure should not restrict the anesthetist to one path toward the target nerve. The process of risky regions avoidance starts by segmenting the US image to provide the anesthetist with an on-lined processed topological (augmented reality) image. However, segmenting an image frame is computationally expensive. Hence, a 2D mesh model is contructed from the topological image which will update the regions of interest location in the image. Then, small repulsive forces will be applied to the user's hand once the needle's tip gets close to a risky region.

In Section 4.5.1, we introduce a neural network model for segmenting the US image to produce the topological image. This is followed by presenting the 2D model in Section 4.5.2.

While the force control strategy to avoid risky regions is proposed in Section 4.5.3. To date, research works have been developed to regions of interest in US images [START_REF] Hadjerci | Nerve detection in ultrasound images using median gabor binary pattern[END_REF][START_REF] Hadjerci | On-line learning dynamic models for nerve detection in ultrasound videos[END_REF][START_REF] Haane | Phase-based probabilistic active contour for nerve detection in ultrasound images for regional anesthesia[END_REF][START_REF] Smistad | Vessel detection in ultrasound images using deep convolutional neural networks[END_REF].

Nevertheless, no research focuses on segmenting all organs (regions) in the US image such as nerves, arteries, dermis, tendons, and bones. Hence, segmentation in US images topic requires further development and investigation.

Failure to locate the nerve and other regions could lead to nerve trauma or local anesthetic toxicity. The aim of this section is to provide the anesthetists with a tool based on the US image processing to handle this issue and improve the UGRA practice. Segmentation in US images is a challenging task since noise and other artifacts corrupt the visual properties of this kind of tissue.

In the last several years, various Convolutional Neural Networks (CNNs) architectures have been proposed in order to segment an image. Some of these architectures have been developed

to directly segment the whole image, such as SegNet [START_REF] Badrinarayanan | Segnet: A deep convolutional encoder-decoder architecture for image segmentation[END_REF]. Hence, to segment the US image, we will use this tool. SegNet architecture is divided into Encoder network, Decoder network, and a nal pixel-wise classication layer as shown in Figure 4.9. These networks are built by stacking multiple dierent layers where the essential layers are the convolutional layers and pooling layers.

The encoder network consists of 13 convolutional layers, 5 pooling layers, and 3 dropout layers. Each encoder layer has a corresponding decoder layer and hence the decoder network has 13 convolutional layers, 5 pooling layers, and 3 dropout layers. The nal decoder output is fed to a multi-class softmax classier to produce class probabilities for each pixel independently.

Each convolution or deconvolution layer has a set of various learned lters that produce dierent responses considered as the extracted feature maps. Each of these maps is normalized using Batch Normalization (BN) to enable end-to-end training. Then, the rectied linear unit acti- vation function (ReLU) is applied to remove any negative value that results from the convolution.

Pooling has been used in the encoder and decoder network as down-sampling and upsampling, respectively. Down-sampling divides each feature map into a set of non-overlapping regions and takes the maximum value for each sub-region as a representation of that sub-region.

This leads to a reduction in the number of convolved features which make these features more robust to changes in the position. Up-sampling uses the memorized max-pooling indices from the corresponding encoder down-sampling and produces sparse feature maps.

The dropout layer is used as a regularizer in convolutional neural networks to prevent over-tting and co-adaption of features. The high dimensional feature representation at the output of the nal convolutional layer in the decoder is fed into to a trainable soft-max classier.

This soft-max classies each pixel independently. The output of the soft-max classier is an N channel image of probabilities where N is the number of classes (regions). The predicted segmentation corresponds to the class with maximum probability at each pixel.

2D model -task H O

In robotic control and as discussed before, all image regions should be segmented to be used in risky regions avoidance. Nevertheless, applying segmentation techniques in each image frame is computationally expensive. Studying the medium, and taking into account its dynamics, in which the needle will move is a good alternative. Considering that the US probe is xed, the image will be xed as well unless there is a tissue movement in the medium. This movement is generated by various forces due to the needle insertion in deformable tissues which means that certain points of this medium, in particular the nerve to be reached, will move under the eect of the needle movements within the tissues. In this study, we propose to update the topological image segmentation each 10 sec. Meanwhile and to reduce computation costs, meshes are obtained and analyzed to facilitate the further computation.

The mesh is a geometric data structure for representing surface subdivisions using a set of polygons. More simply, it is about a set of vertices, faces, and sides forming an object or a group of objects. These objects can be represented in 2D or 3D depending on the type of polygons used. In 2D as in the US image, the type of polygons mainly used are triangles and quadrilaterals.

The mesh is used to simplify calculations in a continuous space by discretization which is breaking it down into a set of nite elements in which the calculations are less complex to perform. The nite element method [START_REF] Larry | Applied nite element analysis[END_REF] (FEM) is a method of numerical calculation and used to perform calculations on an environment that is too complex for the direct calculations. FEM discrete the image into a known number of elements that have a dierent geometric shape. This results in creating the mesh model.

To conclude, using the mesh with the elastic model will provide all-region locations in every US frame until the new topological image is segmented. In the case of our system, the topological image and the mesh will be renewed every 10-15sec. Hence, taking into account this irreversible deformation model will then not be useful. Hence, it is better to take a less complex model the viscoelastic model.

The viscoelastic model: models take into account the elasticity of materials as well as their rate of deformation. The basic operation is that the higher the speed of materials deformation the greater the viscosity of that material and therefore the greater the stress to be imposed on our materials for a given displacement. This model consists of a spring and a dashpot elements to relate elastic and viscous behaviors (Figure 4.12). For UGRA, the viscosity has no impact since the needle speed during the UGRA act is slow compared to the viscosity of the linear body. The deformation speed of tissues under the eect of the needle will not be signicant and can even be considered negligible by comparing it with the term elasticity. For that, it is better to take a less complex model which is the elastic model. In UGRA, the tissues deformations will be represented having a purely elastic behavior under the stresses imposed by the movement of the needle during the insertion.

Force control for risky region avoidance -task I O

For risky regions avoidance, after creating the topological image and the 2D model, the repulsive forces should be analyzed. Overall, there are three dierent forces that exist during the robotic-assisted UGRA, two external forces and one applied internal force. The two external forces are the forces applied by the anesthetist on the end-eector and the retrieved forces from interacting the needle with the surrounding tissues. The internal force is a repulsive force applied on the end eector to avoid risky regions while inserting the needle.

For successful risky regions avoidance process, the connection between the two robotic systems the PHR and NHR in a shared workspace is essential. This connection will provide the needle's tip location in the US plane. In other words, the PHR will provide the US image and the NHR will compute the needle's tip location each ms. Hence, using the topological image with the needle's tip location will give the distance between the needle's tip and each region in the US image. These regions include the nerve due to the fact that the needle must inject the drug around the nerve and not inside it. Therefore, the nerve is considered as a risky region but with dierent applied repulsive forces. While moving under RCM constraints as discussed in Section 4.3, the applied force for region avoidance is under the same constraints too.

Let us take the 2D topological image with the needle's tip location in it, all distances between the needle's tip and image regions are calculated. For a more convenient procedure and to avoid sudden forces, the forces should be inversely proportional to the distance between the needle's tip and a region with predened maximum forces. These predened maximum forces are set as safety thresholds to avoid reaching high forces that could be harmful to the patient. Merging the needle's tip location with the topological image will provide a 2D US image with all regions segmented in it. It should be noticed that two repulsive forces (one parallel to the US x plane and one to the depth z) will be applied since the distance calculations are in 2D. repulsive forces F will be applied to the end-eector once the needle's tip is getting close to the risky region. Notice that these repulsive forces are in 2D (in x-axis and z-axis) due to the retrieved 2D image. These forces will not force the anesthetists to a specic path toward the nerve, but they will convey an alert once the needle's tip gets closer to a risky area. by the built-in Franka controller library, V is the velocity, R/T are the computed desired rotation (R x and R y ) and translation (T z ), P SR and P ST are the previous end-eector position, P F R and P F T are the new end-eector position, the PHR input is the 2D mesh retrieved from the PHR, D are the distances between the nerve and all regions in x-axis and z-axis, and F is the applied forces on the end-eector which render to the anesthetist's hand.

Experimental setup, results and discussion

These experiments examine the eciency of the proposed needle insertion in the robotic-assisted UGRA, and the performance evaluation of the proposed needle kinematics and control strategies.

In this section, the used robot and setup are presented. Then, the needle insertion experiments are analyzed and discussed.

Setup and robots

The experiments were conducted using a 7-DoF Franka Emika Panda robotic arm [START_REF] Haddadin | Franka emika panda[END_REF]. Panda is a rst generation collaborative robot system designed specically to assist humans. Unique characteristics of the lightweight robot system designed to accomplish the most delicate tasks accurately. Architected, designed, and developed by Franka Emika GmbH in Munich and produced in Germany. The complete modularity, ultra-lightweight construction, highly integrated mechatronic design, sensitive torque sensors in all joints, and human-like kinematics, make the system unique. Based on the soft robotics control, inspired by human beings, Panda is able to recognize and process even the slightest touch by using its articial reex system to accomplish most delicate tasks accurately and safely within ms. In this study and as discussed in Section 4.3, to control the needle movements inside the patient's body, the most comfortable way would be to use the Cartesian space. Libfranka allows the robot to be controlled in Cartesian space and provides the direct and inverse kinematics models. This allows using the robot's built-in inverse kinematics instead of having to solve it.

The desired end-eector position is calculated where this position will be inputted to the built-in inverse kinematic model. However, if the commanded values sent by the user do not comply with the interface requirements, an error will occur. This error indicates a discrepancy between the current robot values and the desired values sent by the user, in other words, the inverse kinematics solver of control yields to a joint conguration out of the limits. To counter this error, the desired values must take into account these limits to guarantee that the robot can reach the desired position using the inverse kinematics solver. For Cartesian space control, necessary conditions, such as the robot velocities, accelerations, or jerks, should be met to assure the control within the conguration limits. an open-source operating system [START_REF] Quigley | Ros: an open-source robot operating system[END_REF] for robots. ROS is steadily gaining popularity among robotics researchers as an open-source framework with a Linux platform for robot control.

It oers hardware abstraction, low-level device control, implementation of commonly-used functionality, message-passing between processes, and package management. ROS uses the concept of nodes, messages, topics, services, stacks, and packages [START_REF] Quigley | Ros: an open-source robot operating system[END_REF].

The proposed architecture was implemented as ROS nodes where it publishes and subscribes data with other nodes via ROS messages on the ROS topics. The communication between this interface and the robot is made possible thanks to the Franka Control Interface (FCI), which provides the current robot status and enables its direct control with an external workstation PC connected via local Ethernet at a communication rate of 1 kHz. In our work, the robot was assisted with a tool that we designed using a 3D printer to hold the needle (Figure 4.17) as

shown in Figure 4.18.

In this work, where the needle in the UGRA procedure moves slowly and precisely, the position of the tool frame was controlled in the operational space with a maximum velocity of 0.03 m/s and acceleration of 2 m/s 2 . This maximum acceleration is necessary to keep the uent motion without inertial sensation at the anesthetist's hand.

For the haptic control, the connection between the interface and the phantom is achieved by the phantom controller using local Ethernet at a communication rate of 13 kHz which makes it very sensitive. To solve the sensitivity of the haptic device and to make the control between a 13 kHz haptic phantom and a 1 kHz Franka robot, an average strategy was applied to the haptic device. This strategy takes the average of the array of the 13 received position values in each ms, and updates it by adding the new position value and neglecting the rst one.

In order to allow communication between nodes in dierent computers, the environment variable ROS_M AST ER_U RI on every client PC must be set to the IP address of the PC where the master node is launched, namely the master PC. Additionally, the ROS_IP and ROS_P C_N AM E environment variables must be set. In this experiment, the haptic station was set as the master PC and the robot station as the slave PC.

Experimental results and discussion

The objective of this experiment is to evaluate the proposed techniques in order to study their role and impact on needle control. Section 4.6.2.1 describes the experiments of the needle insertion under RCM constraints, and the results of US image segmentation for risky regions avoidance are presented in Section 4.6.2.2.

Needle insertion under RCM constraints

In this study, we used position accuracy as it is the major metric commonly used to evaluate RCM methods in medical robotics. Basically, position accuracy is the Euclidean distance between a given insertion point and the RCM point are computed by the proposed method each ms.

The proposed method is validated with this metric and it is validated using 2 orthogonal laser beams that point out at the insertion point and at the sphere center in Rviz visualization as shown in The CoBotic experiments were implemented by applying forces on the NHR end-eector and computing the RCM constraints error. image is compared with the ground truth to estimate the segmentation accuracy. Accuracy is the most common performance measure, but the main drawback is that the accuracy hides some details that can help understanding better the segmentation model performance. Hence, Recall, Precision, and F1-score provide better performance understanding by taking both false positives and false negatives into account. Therefore, we evaluated the segmentation process by Precision, Recall, and F1-score values which are expressed by: P recision = T P T P + F P To show the eectiveness of the method, Table 4.1 depicts the segmentation average results.

If there is a match between the ground truth and the SegNet estimation, it is considered as true positive, otherwise, it is a false positive. The results show the strength of the model which has an average segmentation Precision and Recall (>80%) for all classes.

It can be observed from Table 4.1 that the adopted methodology can successfully segment the US images, which is important to achieve a successful CoBotic UGRA with regions avoidance. The results show great performance and time since the topological image is updated each 6-8 seconds in the proposed robotic system. In addition to the possibility of using GPUs and parallel programming which ensure a faster process.

Qualitative results are shown in Figure 4.24, where it can be seen that the nerve and the other regions were successfully segmented compared to the expert's groundtruth. In the same gure, it can be observed the mesh is created for each image. Updating the 2D model and the force control for risky region avoidance are presented completely in Section 4.5. Nevertheless, these two tasks ( H and I ) are not included in our platform and will be a part of our future work as two robotic stations are needed (NHR and PHR). Dermis in green.

Conclusion

In this chapter, we addressed a challenging issue in robotic-assisted UGRA which is needle insertion control. We have presented an experimental system with the Remote Center of Motion (RCM) constraints. It enables full Cartesian control of the robot end-eector based on the needle insertion kinematics. The proposed method was developed using ROS and a 7-DoF Franka Emika robot. To evaluate the accuracy of the system, a performance metric is used based on the Euclidean distance between the RCM point and the xed insertion point. The proposed method is accurate to nd the exact position and rotation of the end-eector with an error of less than 1 mm while maintaining the needle insertion kinematics. Two control strategies were presented while using the RCM Cartesian control: a teleoperated UGRA needle insertion system with haptic force feedback; a CoBotic needle insertion system.

The teleoperated UGRA control enables needle insertion under RCM constraints with force feedback applied to the haptic device (6-DoF Virtuose 3D Desktop). The proposed method is accurate, as it nds the exact position and rotation of the end-eector with an error of less than 1 mm (The Euclidean distance error between the RCM point and the xed insertion point).

To evaluate the teleoperated force feedback system, the error between the desired force (the insertion force applied on the needle at NHR) and the actual force (feedback force rendered by the haptic device to the anesthetist's hand) is computed. The teleoperated force feedback system found to be accurate and sensitive with an error approaching zero (<0.1 N) between the desired and the actual forces.

On the other hand, the CoBotic UGRA control enables the needle movements control by applying hand force by the operator user on the robot arm while respecting the RCM constraints. To evaluate the accuracy of the system, the Euclidean distance error between the RCM point and the xed insertion point is computed which is less than 1 mm while maintaining the needle insertion kinematics.

Finally, we discussed avoiding risky regions by applying small repulsive forces to the end-eector once the needle's tip gets close to a risky region. A topological image has been constructed by using a neural network segmentation technique (SegNet). In the experiments, the results show that the used technique obtained high accuracy (>80%) for segmenting the US image.

Conclusion and perspectives Conclusion

Ultrasound-Guided Regional anesthesia (UGRA) has become a standard procedure in surgical operations and pain management; it oers the advantages of nerve localization, and provides regions of interest visualization. Despite a long training process and daily acts that the anesthetists perform, the UGRA procedure can still benet from robotics and image processing researches. The main objective of this thesis is to facilitate the daily routine of the anesthetists by introducing the robotic-assisted system for UGRA. It must be emphasized that this system is designed to be a complementary working tool for the medical operators to assist them while performing the UGRA act. This robotic assistance is developed to improve the procedure accuracy and safety such as avoiding nerve trauma or reducing healthy tissues damage.

Furthermore, it could increase the anesthetist's experience by more teaching and learning to avoid unintentional injuries.

This thesis is a part of DANIEAL2 project and proposes a complete robotic system for the UGRA procedure where we focused on 3 main issues: nerve detection, nerve tracking, and needle insertion. We proposed a complete robotic system for the UGRA procedure in Chapter 1. This robotic system can provide great assistance to the experts with techniques and tools that improve the procedure accuracy and safety such as avoiding nerve trauma or damage to healthy tissues. Moreover, it can be used as a learning tool for junior professionals.

Nerve detection and tracking problems in the ultrasound (US) image require to take into account complex information embedded in the image which are the features. Needle insertion is a very challenging task encountered by anesthetists in their daily routine and especially when they have to. Maneuvering the needle around the interaction pivot point between the needle and the skin of the patient is named the insertion point. This point restricts the anesthetist to control the needle to only four degrees of freedom (DoF) motion: three rotational DoF and one translational DoF. In robotic, this restriction is called the remote center-of-motion (RCM) constraints. We have presented an experimental system by enabling full Cartesian control of the Franka emika robot end-eector under RCM constraints. Furthermore, we presented two dierent control strategies while using the proposed RCM control: a teleoperated UGRA needle insertion system with haptic force feedback using a 6-DoF Virtuose haptic device; a CoBotic needle insertion system by applying hand forced by the operator user on the Franka emika robot arm. To evaluate the accuracy of respecting the RCM constraints, the Euclidean distance error between the RCM point and the xed insertion point is compted. The proposed two control strategies are accurate to nd the exact position and rotation of the end-eector with an error of less than 1 mm while maintaining the RCM constraints. To evaluate the teleoperated force feedback system, the force error between the desired force (the insertion force applied on the needle at NHR) and the actual force (feedback force rendered by the haptic device to the anesthetist's hand) is computed. The proposed system found to be accurate and sensitive with a force error approaching zero (<0.1 N). Furthermore in this work, we discussed avoiding risky regions by applying small repulsive forces to the end-eector once the needle's tip is close to a risky region. For that, a topological image is constructed by using a neural network segmentation technique (SegNet). In the experiments, the results show that the using technique obtained high precision 90% for segmenting the US image.

Perspectives

Signicant number of ideas remain untapped and will need to be analyzed and studied in detail.

The future directions foreseen for a possible follow-up can be broken down into short term perspectives and long term perspectives.

Short term perspectives 1. We introduced the robotic-assisted UGRA system which is divided into several tasks as discussed in Chapter 4. In this thesis, we presented some tasks while 5 tasks have to be looked at: (e) Trajectories proposition of the needle to reach the nerve -task J .

2. We performed the detection and tracking tasks on real data videos. For future work, the detection and tracking tasks could be done directly in realtime using US system.

3. For the proposed robotic needle insertion control, technical validation on anatomical phantom could be performed which will be one step for evaluating the proposed system toward clinical applications.

4. The possibility of using parallelization on GPUs platform or FPGAs for increasing the performance speed for the computer vision tasks.

Long term perspectives 1. In this thesis, we focused on the median nerve for the detection and tracking tasks.

In future work, the detection and tracking techniques could be assessed on other types of nerves in order to improve the performance. The use of a larger database should signicantly improve the detection and tracking tasks.

2. Merging the computer vision methods (detection and tracking) with the robotic methods (needle control and visual servoing) for evaluating the more complete system.

3. Although the robotic control of the needle holder robot to avoid risky regions is introduced, the method should be tested on a two-robot system with shared workspaces and frames. The communication between the probe and needle holder robots is a crucial step for obtaining the needle and the image region position in the 2D plane.

It is not easy to predict what UGRA procedure will be like ten or twenty years from now, but it is reasonable to believe that computer-assisted surgery alongside the robotic aids will keep on improving and providing smarter, more accurate, and surly a safer assistance tools to the anesthetists. Dans ce chapitre, un résumé complet de la thèse est présenté en langue française. devient une technique puissante dans la procédure chirurgicale et la gestion de la douleur [START_REF] Chan | Guide pratique des blocs nerveux échoguidés[END_REF].

List of publications

L'UGRA a un impact considérable sur la pratique de l'anesthésie régionale [START_REF] Sites | The american society of regional anesthesia and pain medicine and the european society of regional anaesthesia and pain therapy joint committee recommendations for education and training in ultrasound-guided regional anesthesia[END_REF]. Tout en se déplaçant sous les contraintes de la RCM comme présenté dans ma thèse de doctorat, la force appliquée pour éviter la région est également soumise aux mêmes contraintes. 
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 11 Figure 1.1: Nervous system diagram (Credit: Persian Poet Gal; wikimedia.org).

Figure 1 . 2 :

 12 Figure 1.2: UGRA of the median nerve [22].
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 13 Figure 1.3: The UGRA Practice. (credit: clinicalgate.com).

Figure 1 . 5 :

 15 Figure 1.5: US image of the median nerve.

. 6 .

 6 The long-axis views are useful for demonstrating longitudinal distributions of local anesthetic along the nerve path in one image. The short-axis sliding (sliding the transducer along the known nerve path with the nerve viewed in short axis) is a powerful technique not only to identify small nerves with the US but also to assess the longitudinal distribution of local anesthetic along the nerve. The short-axis technique makes it possible to obtain a cross-sectional image in which the nerves appear in multiple oval hypoechoic zones surrounded by hyperechoic tissue. Most of the nerve blocks are detected using the short axis technique.
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 16 Figure 1.6: Median nerve viewed in short axis (A and B) and in long axis (C and D) [25].
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 17 Figure 1.7: Median nerve and tendon US image.

Figure 1 . 8 :

 18 Figure 1.8: PART technique for probe handling(pressure, alignment, rotation, tilting).

Figure 1 . 9 :

 19 Figure 1.9: Schematic drawing of the short-axis (SAX) and long-axis (LAX) out-of-plane (OOP) imaging (top panels), and SAX and LAX in-plane (IP) imaging (bottom panels). The nerve shape is presented in red while the needle in gray.
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 110 Figure 1.10: Needle insertion movements.
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 111 Figure 1.11: Lidocaine is a commonly used local anesthetic (Credit: JL Johnson; Flickr.com).
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 1 failure to recognize the maldistribution of local anesthesia, (2) failure to recognize an intramuscular location of the needle tip before injection, (3) fatigue, (4) failure to correctly correlate the sidedness of the patient with the sidedness of the US image, and (5) poor choice of needle-insertion site and angle with respect to the probe preventing accurate needle visualization.
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 113 Figure 1.13: Example of robotic systems for medical surgeries.
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 4114 Figure 1.14: Commonly used robotic arms in research projects.
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 115 Figure 1.15: The proposed robotic-assisted UGRA procedure.
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 21 Figure 2.1: LBP operator applied to a 3 × 3 neighborhood.
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 22 Figure 2.2: MBP operator applied to a 3 × 3 neighborhood.

Algorithm 1 :

 1 AMBP algorithm Input: For each pixel(I) and maximum window size w max . Output: AMBP value for the central pixel. 1 for w < w max do 2 Extract w × w window around I.

3 Find

 3 the median Z med , minimum Z min and maximum Z max values in the w × w window.4 if Z min < Z med < Z max then I) obtained by using τ as threshold in the neighborhood Ω.

Figure 2 .

 2 Figure 2.3a shows an example of a hypothetical image. AMBP starts by taking the 3 × 3

Figure 2 . 3 :

 23 Figure 2.3: hypothetical image.

Figure 2 .

 2 Figure 2.4 shows the scheme of the proposed RAMBP descriptor, where it can be seen it's divided into three stages, the classication process of noisy pixels detection, threshold process, and generating the binary pattern. Here, these stages are presented in details.

Figure 2 . 4 :

 24 Figure 2.4: Illustration for the RAMBP descriptor.

Pixel classication starts by taking a 21 ×Algorithm 2 :

 212 21 window around the central pixel, then examine the pixel whether it meets the condition as an uncorrupted pixel. If the pixel considered as a corrupted pixel in the rst stage, another examination will be invoked by imposing a 3 × 3 window around the central pixel to ensure the examination for more conned local statistics. A pixel classied as a corrupted pixel, if it fails in both examinations. Algorithm 2 provides a full explanation about pixel classication step. Noisy pixels detection Input: The original image I. Output: The image of labeled pixels C. 1 for each pixel position x 0 do 2 For the current pixel I(x 0 ), impose a 21 × 21 window.

3

 3 

11 else 12 Repeat 2 - 8 Figure 2 .

 1112282 Figure 2.5 provides an example of 5 × 5 window instead of 21 × 21 to facilitate understanding pixel classication algorithm (Algorithm 2) using the following procedure,

Figure 2 . 5 :

 25 Figure 2.5: Pixel classication example of 5 × 5 window using the procedure of Algorithm 2. In the image C, corrupted pixels are represented as 0 and uncorrupted pixels as 1.

  , 165, 179 , and 202, 205, 224, 245, 255, 255, 255, 255, 255, 255, 255, 255 . The central pixel I(x 0 ) = 202 belongs to the third cluster which considered as corrupted pixel and the pixel needs to re-examine on 3 × 3 window . As can be seen in Figure 2.4, sorting the pixels in the 3 × 3 window gives V 0 = [0 0 0 165 202 224 245 255 255] with med = 202. D V = [0 0 165 37 22 10 0]. v L = 0 and v R = 165, which provide three clusters 0, 0, 0 , 165 , and 202, 224, 245, 255, 255 . The central pixel I(x 0 ) = 202 still belongs to the corrupted pixels clusters, which concludes that is a corrupted pixel and C(x 0 ) = 0.

  w × w), where w = w + 2 16 end end Find I un (uncorrupted pixels in W S(x 0 )) T (x 0 ) = med(I un ) end end
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 226 Figure 2.6 illustrates an example of obtaining the threshold value after classifying the pixels using the following procedure,

Figure 2 . 7 and

 27 Algorithm 4 demonstrates the binary pattern module of the proposed descriptor.

Algorithm 4 :

 4 Generation of binary patternsInput: The original image I, the image of labeled pixels C, maximum window size W m , pixels threshold values T , and pixels corresponding window size W S.

Figure 2 . 7 :

 27 Figure 2.7: Binary module scheme (Algorithm 4). Where x 0 is the current central pixel, W S(x 0 ) is x 0 corresponding window size (Algorithm 4), and P are the neighborhood patches with each central pixel (n).

Figure 2 . 8 :

 28 Figure 2.8: Illustration of the performance according to the maximum window size that the adaptive window could reach.

Figure 2 . 9 :

 29 Figure 2.9: Example of Outex_T C11 and Outex_T C23 textures with dierent impulse noise densities.

Figure 2 . 10 :

 210 Figure 2.10: The performance of RAMBP for Salt-and-Pepper noise according to k values in k-NN. Where k starts from 1 to 21 with a step of two to avoid tie problem, and ρ parameter indicates Salt-and-Pepper density.

Figure 2 . 11 provides

 211 an example of the used datasets after adding Gaussian noise, where visually it is dicult to see the global eect and the dierence between noise-free and noisy textures, but it can be seen the local information and pixels intensity are aected.

  Noise-free (d) σ = 5

Figure 2 . 11 :

 211 Figure 2.11: Example of Outex_T C11 and Outex_T C23 textures with Gaussian noise standard deviation σ = 5, where it shows the changes in pixels values.

Figure 2 . 13 illustrates

 213 an example of the used datasets with Gaussian blur.

Figure 2 . 12 :

 212 Figure 2.12: The performance of RAMBP for Gaussian noise with dierent k values in k-NN. Where k starts from 1 to 21 with a step of two to avoid tie problem, and σ parameter indicates Gaussian noise standard deviation.

Figure 2 . 13 :

 213 Figure 2.13: Example of Outex_T C11 and Outex_T C23 textures with dierent Gaussian blur standard deviation.

Table 2 . 4 :

 24 Classication scores (%) comparison between the proposed descriptor (RAMBP) and state-of-the-art descriptors for Gaussian blur with standard deviation σ. Dataset Outex_T C11 Outex_T C23 Method σ = 0.5 σ = 0.75 σ = 1 σ = 1.25 σ = 0.5 σ = 0.75 σ = 1 σ = 1.25

Figure 2 . 14 :

 214 Figure 2.14: The performance of RAMBP for Gaussian blur with dierent k values in k-NN. Where k starts from 1 to 21 with a step of two to avoid tie problem, and σ parameter indicates Gaussian blur standard deviation.

  100 random couple train/test sets were generated and the classication results are averaged over the 100 random partitionings. For KT H2b dataset which has four samples of 11 classes each, training is performed on three samples and testing on the remaining one, the results are obtained by performing the experiment four times.

Figure 3 .

 3 Figure 3.1 illustrates the entire processing chain of the two techniques.

Figure 3 . 1 :

 31 Figure 3.1: Schematic of nerve detection using RAMBP descriptor. (a) SVM classier. (b) 1D CNN classier.

Figure 3 . 2 :

 32 Figure 3.2: Schematic of the 2D CNN architecture.

Figure 3 . 3 :

 33 Figure 3.3: Schematic of the merged 1D-2D CNN architecture.

Figure 3 . 4 :

 34 Figure 3.4: An illustration of the merged CNN model.

Figure 3 . 5 :

 35 Figure 3.5: The owchart of the tracking process.

3. 3 . 3

 33 Nerve tracking based on 1D-2D merged model As Section 3.2.3 discussed the possibility of merging texture descriptors with CNNs model for nerve detection, it is interesting, also, to use the merged model the tracking task. Herein, we propose to use the merged 1D-2D CNNs model (Section 3.2.3) with three tracking techniques to track the nerve in US images. The rst technique is based on detection using the merged CNNs model in the next frame search area bigger than the nerve previous location.The second technique is based on particle lter (PF) tracker[START_REF] Deutscher | Articulated body motion capture by annealed particle ltering[END_REF] where the merged CNNs model is responsible for providing the particle weights. The third technique combines the rst two trackers.The rst tracker (the merged 1D-2D CNNs based search tracker) starts by nding the search window (area). The search window is 4 times bigger than the previous nerve location where this location represented by a window around the nerve in the previous frame. To track the nerve, the merged CNNs output is used to compare the sliding windows in the search area. The tracking procedure consists in the prediction score of each sliding window in the searching area.

Figure 3 . 6 :

 36 Figure 3.6: US images of the median nerve in the elbow, proximal and distal, and wrist forearm.

Figure 3 . 7 ,

 37 the SVM and the 1D CNN models take the 1D RAMBP histogram as their input, the 2D CNN model takes the 2D window directly, while the merged CNN model takes both the 2D window and its 1D RAMBP histogram. The 1D RAMBP histogram is computed under Python and the implementations of the designed models are done under Python with the public deep learning libraries TensorFlow and Keras[START_REF] Keras | Deep learning library for theano and tensorow[END_REF].

Figure 3 . 7 :

 37 Figure 3.7: The scheme of the testing process.

Figure 3 .

 3 Figure 3.7 demonstrates the testing process to detect the nerve in US images. It started by exploring the testing images by passing a 50% overlapping sliding window which is the input for the 2D CNN model. RAMBP histogram is also computed for each window which is the input for the 1D CNN and SVM models. The output of the models provides all possible nerve locations,

F 1

 1 -score = 2 × (P recision × Recall) P recision + Recall (3.5) where TP, TN, FP, and FN are the number of samples for True Positive, True Negative, False Positive and False Negative, respectively.

Figure 3 .

 3 [START_REF] Ortmaier | Robot assisted force feedback surgery[END_REF] shows the results of the merged CNN model for nerve detection.

Figure 3 . 8 :

 38 Figure 3.8: Nerve detection using the merged CNN model (red rectangle for detection results and green rectangle for the ground truth).

Figure 3 . 9 :

 39 Figure 3.9: Confusion matrix for the merged model with RAMBP descriptor as an input for the 1D CNN branch.

Figure 3 . 10 :

 310 Figure 3.10: Accuracy of nerve tracking with bar error.

Figure 3 . 11 :

 311 Figure 3.11: Nerve tracking using particle lter with RAMBP descriptor (red rectangle for particle tracking and green rectangle for the ground truth).

  (a) 470 th f rame (b) 490 th f rame (c) 510 th f rame (d) 530 th f rame

Figure 3 . 12 :

 312 Figure 3.12: RAMBP Nerve tracking with particle lter. The drastic change in nerve appearance may lead to detection failure, but the system re-tracked then nerve successfully.

Figure 3 .

 3 Figure 3.13 illustrates the tracking methods accuracy for the median nerve, where ECO,C-COT, and SANet achieved the best results, while other methods suer from less stability and less performance accuracy. Also, it can be seen that CREST gave good results but with less stability. Figure3.14 shows qualitative results of tracking the median nerve using the ECO method.

Figure 3 . 13 :

 313 Figure 3.13: The performance of deep-learning trackers for the median nerve, where accuracy and stability are shown.

Figure 3 . 14 :

 314 Figure 3.14: Nerve tracking using ECO tracker (red rectangle for ECO method and a green rectangle for the ground-truth).

Figure 3 .

 3 Figure 3.15 shows an example of how MCPF succeeds in tracking the nerve even when the nerve almost disappeared.

Figure 3 . 15 :

 315 Figure 3.15: Nerve tracking using MCPF tracker. Although the existence of nerve disappearance, the tracker succeeded to predict the nerve location (red rectangle for MCPF tracker and a green rectangle for the ground-truth).

  CNNs model: the merged CNNs based search tracker; the merged CNNs based PF tracker; and the merged CNNs based mix tracker. These techniques are evaluated against the best-performed methods in texture based trackers (PF-RAMBP) and the CNNs based trackers (ECO tracker).

Figure 3 .

 3 Figure 3.16 illustrates the tracking methods' accuracy for the median nerve, where the merged CNNs based search tracker achieved the best results and stability. While PF-RAMBP has good accuracy, the PF with the merged CNNs model has a better performance. As can be observed, the merged CNNs based trackers outperform the CNN and texture descriptors based trackers. Moreover, combining between the PF and the search trackers provides good performance with high stability. Figure 3.17 shows qualitative results of tracking the median nerve using the merged CNNs based search tracker.

Figure 3 . 16 :

 316 Figure 3.16: The performance of nerve trackers for the median nerve, where accuracy and stability are shown.

Figure 3 . 17 :

 317 Figure 3.17: The merged CNNs based search tracker for median nerve tracking. (red rectangle for the merged CNNs based search tracker and a green rectangle for the ground-truth)

  (a) 470 th f rame (b) 490 th f rame (c) 510 th f rame (d) 530 th f rame

Figure 3 . 18 :

 318 Figure 3.18: Nerve tracking using the merged CNNs based mix tracker. Even with the drastic change in nerve appearance, this tracker succeeded to track the nerve (red rectangle for the merged CNNs based mix tracker and a green rectangle for the ground-truth).

  examined and proposed techniques based on RAMBP and CNNs models for detection and tracking in the ultrasound images. Furthermore, we presented a new merged CNN architecture to learn high-level features from hand crafted 1D descriptor RAMBP and 2D low level visual features. In this chapter, rst, we introduced the detection and tracking techniques in detail. This followed by evaluating each technique and discussing its advantages and limitations. Extensive experiments were held in terms of accuracy, consistency, time complexity, and handling dierent nerve situations. It has been shown that nerve detection and tracking techniques that are base on the merged model outperformed other techniques. Although the texture based and CNNs-based detectors and trackers perform good in the ultrasound images, the results show that the merged model obtained higher accuracy in the experiments. Furthermore, dierent techniques were presented for detecing and tracking the nerve in the ultrasound image. The obtained detection resultsshow that the merged features based detector outperforms other techniques and achieved best performance with 96% precision. On the other hand and for the tracking techniques, we found that the merged CNNs based trackers acheived the best results where we beleive that the mix tracker (particle lter and search technique) provides a good trade-o between tracking accuracy (93%) and time complexity.
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  The proposed robotic system designed for the UGRA procedure is divided into two connected robotic systems, a US Probe Holder Robot (PHR) and a Needle Holder Robot (NHR), as shown in Figure4.1.

Figure 4 . 1 :Figure 4 . 2 :

 4142 Figure 4.1: The proposed robotic-assisted UGRA procedure.

Phase ϕ 0 D

 0 PHR part A PHR CoBotic control for the probe placement on the patient's body. Phase ϕ 1 PHR part NHR part B Nerve detection in one US image. C Nerve tracking in the streamed US images. D Visual servoing to control the PHR to keep the visualization of the nerve. E NHR CoBotic control for needle placement in the US plane. Phase ϕ 2 PHR part NHR part B Nerve detection in one US image. C Nerve tracking in the streamed US images. Visual servoing to control the PHR to keep the nerve AND the needle visualization in the US image. F NHR CoBotic control for needle insertion under RCM constraints. G Topological image from US image. H 2D model. I NHR CoBotic control for needle insertion under RCM constraints with risky regions avoidance. Manual injection part K No robotic assistance needed. For Phase ϕ 0 task A , the anesthetist control the NHR CoBotically, this control does not require any movement constraints. The output of this task is the US image and the US plane which are inputted to Phase ϕ 1 , in more specic into tasks B and E , respectively. Task B uses the US image to automatically detect the target nerve, as discussed in Chapter 3. Task C takes the output of task B (the detected nerve location) and starts tracking the nerve in real-time streamed US images, as discussed in Chapter 3. The result of task C is the tracked nerve in each US frame which is inputted into the task D . D aimed to keep the nerve visualization at all time by taking the tracked nerved position and applying visual servoing techniques. At the same time, task E NHR CoBotic control for needle placement in the US plane is performed. In this task, the anesthetist moves the NHR CoBotically toward the desired point of insertion location. To guarantee the visualization of the needle within the US plane, the 4.2. The needle holder robot control in phase ϕ 2 (NHR part)

Figure 4 . 3 :

 43 Figure 4.3: UGRA motion around the insertion point (Pinsertion -RCM ), where the tool frame is the end-eector position and rotation. As a result, the needle can only move within 4-DoF: R x , R y , and R z are the rotations around x, y and z-axis respectively, and T z is the translation along the z-axis.

Figure 4 . 4 :

 44 Figure 4.4: A Spherical representation of end-eector position. Where α and β are the sphere representation angles and R is the radius of the sphere.

(4. 4 )( 4 . 5 )( 4 . 6 )

 44546 RCM y = P ST y + (sin(φ)sin(θ)cos(ψ) -cos(φ)sin(ψ))R RCM z = P ST z -cos(θ)cos(ψ)R As shown in Figure 4.3 and Figure 4.4, the tool frame (end-eector) movements from one position to another (such as start position to nal position in Figure 4.4) depend on the applied rotations on the end-eector (R x and R y ). Hence for nding the nal position (translation), the two spherical rotations are:

Figure 4 . 5 :

 45 Figure 4.5: Schematic of the teleoperated UGRA system using a haptic device.

Figure 4 . 5 .

 45 The master system consists of a haptic interface and includes: (a) computer; (b) Haptic Virtuose device (Haption S.A. phantom) [196]; (c) haptic controller. The slave system consists of a needle mounted on a 7-DoF robot and includes: (a) computer; (b) Franka robot [197]; (c) Franka controller.

  (a) The original haptic base position. (b) The used haptic base position.

Figure 4 . 6 :

 46 Figure 4.6: Description of the position and orientation of the haptic phantom.
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 42 CoBotized needle insertion control under RCM constraints -task F O Collaborative Robots 'CoBots' are intended for direct physical interaction with humans in a

Figure 4 . 7 :

 47 Figure 4.7: Schematic of the CoBotic UGRA system.

Figure 4 .

 4 [START_REF] Ortmaier | Robot assisted force feedback surgery[END_REF] shows the CoBotic control model.

Figure 4 . 8 :

 48 Figure 4.8: In the CoBotic control model, the robot retrieves the externally applied forces and converts it into position movements. F is the computed forces by the built-in Franka controller library, V is the velocity, R/T are the computed desired rotation (R x and R y ) and translation (T z ), P SR and P ST are the previous end-eector position, and P F R and P F T are the new endeector position.

Figure 4 . 9 :

 49 Figure 4.9: An illustration of the SegNet architecture for US image segmentation.

  (a) The original US image. (b) The topological image. (c) The mesh image.

Figure 4 . 10 :

 410 Figure 4.10: An example of the 2D mesh creation.

Figure 4 .

 4 [START_REF] Calatayud | History of the development and evolution of local anesthesia since the coca leaf[END_REF] shows an example of creating the 2D mesh image.For updating the mesh model while inserting the needle, a model of behavior should be associated to calculate the movements to each element in the mesh[203205]. For US images, dierent models exist using deformation properties to update the mesh where it based on deformable environment uidity. Three kind of elements are used to build these models, a spring, a dashpot, and a sliding frictional elements. The spring represents the elastic behavior (Hooke's law) of the element. The dashpot is a mechanical device that consists of a damper which resists motion via viscous friction. The damper represents the viscous behavior (Newton's viscous law) of the element. While the sliding frictional element represents the plastic behavior (irreversible deformation or hysteresis). Overall, the deformation models can be divided into three categories:The plastic model: is the most complete model(irreversible). This model takes into account the elasticity, the rate of deformation of the tissues, and their plastic behaviors during the application. This model consists of a spring, a dashpot, and a sliding frictional elements to nd elastic, viscous, and plastic behaviors (Figure4.11).

Figure 4 . 11 :

 411 Figure 4.11: An example of the plastic deformation model (the BinghamNorton model).

Figure 4 . 12 :

 412 Figure 4.12: An example of the viscoelastic deformation model (the KelvinVoigt model).

  The elastic model: has the advantage of being a non-dierential and linear model. This is the simplest model where it is composed of only one spring where the displacement of the spring is proportional to the stress applied to it. This model consists of just a spring to nd the elastic behavior (Figure4.13).

Figure 4 . 13 :

 413 Figure 4.13: An example of the elastic deformation model (the Hooke model).

Figure 4 . 14 :

 414 Figure 4.14: CoBotic needle insertion under RCM with risky regions avoidance.

Figure 4 .

 4 Figure 4.14 presents the CoBotic needle insertion settings under RCM constraints with risky regions avoidance, where PHR provides the US image and NHR the needle's tip position.

Figure 4 .

 4 Figure 4.15 shows the CoBotic control model under RCM constraints with risky region avoidance model. The model is similar to the CoBotic model in Figure 4.8 but with the addition of the repulsive forces. By taking the Euclidean distance, the distance D is calculated between each point in the needle's tip, the risky region, and the nerve. By taking these distances, small

Figure 4 . 15 :

 415 Figure 4.15: The CoBotic control model with risky regions avoidance. F is the computed forces

Figure 4 .

 4 Figure 4.[START_REF] Sanjay | Ultrasound-guided interscalene needle placement produces successful anesthesia regardless of motor stimulation above or below 0.5 ma[END_REF] shows the Franka Emika Panda robot and its kinematic parameters according to the modied Denavit Hartenberg convention. This robot is equipped with 7 revolute joints,

Figure 4 . 16 :

 416 Figure 4.16: Panda's kinematic chain (Franka Emika).

Figure 4 . 17 :

 417 Figure 4.17: The anesthesia needle.

Figure 4 . 18 :

 418 Figure 4.18: 3D printed needle holder.

  Figure 4.19. (a) The real robot. (b) The Rviz display.

Figure 4 . 19 :

 419 Figure 4.19: Robot setup with RCM representation as 2 laser beams on the real robot and at the sphere center in Rviz visualization.

Figure 4 .

 4 Figure 4.20 shows example when applying dierent rotations and translations on the Franka robot end-eector using a local control by joystick. Various rotations and translations were performed in each case. The position accuracy of RCM constraints has been computed and compared with the insertion point xed position. These experiments have been repeated by taking the Euclidean distance between the RCM position and the insertion point position, theEuclidean maximum error is found less than 1 mm. The results suggest that with a given conguration control (the proposed RCM constraints control), the manipulator has a highly accurate performance when it is operating with respect to RCM constraints.

Figure 4 .Figure 4 . 21 :

 4421 Figure 4.20: RCM results, where real robot images on the left column and the Rviz display on the right one.

Figure 4 .

 4 22 depicts Euclidean distance error between the RCM position and the xed insertion point position after applying dierent CoBotic control forces (on x, y, and z) for more than 60 sec. This error is computed by taking the 3D Euclidean distance between the desired RCM position and the calculated new position. It can be observed from Figure 4.22 that the error between the desired RCM position and the xed insertion point position is less than 1 mm. Therefore, the results show that

Figure 4 . 22 :

 422 Figure 4.22: The Euclidean distance error between the RCM position and the xed insertion point position using CoBotic control under RCM point constraints (hand force is applied by the operator on the robot arm).

Figure 4 .

 4 [START_REF] Chan | Guide pratique des blocs nerveux échoguidés[END_REF] shows an example of applying dierent rotations and translations on the Franka robot using the CoBotic control under RCM constraints.4.6.2.2 Risky region avoidance : topological imageRisky region avoidance process gives the anesthetist the advantage of feeling an extra repulsive force once the needle's tip gets close to any risky region such as a nerve, an artery, a vein, or a tendon. This process starts by segmenting the US image to provide the anesthetist with an on-lined processed topological (augmented reality) image. US image segmentation experiments were carried out using PC with a Core 7 Duo 3.50GHz processor with 32GB RAM. Experiments were conducted on sonographic videos of the median nerve obtained from 20 anonymous adult patients (12 men and 8 women) using a US machine with a 5-12 MHZ transducer frequency. US videos of the median nerve were obtained from several volunteer patients under real conditions where the ground truth was provided by two regional anesthesia experts. The databases are in the form of a video for each patient. Each video consists of 650-750 frames and a total number of 14,000 US images of the median nerve were used. The used images in our experiments have a dimension of 600 × 350 pixels.The Segnet model is designed under Python with the public deep learning libraries Tensor-Flow and Keras[START_REF] Keras | Deep learning library for theano and tensorow[END_REF]. In these experiments, 10 videos were selected randomly as a training dataset and the remaining 10 videos as a testing dataset. For setting the dataset, each image was labeled manually and validated by the experts. During the training phase, the SegNet network uses the images with of 360 × 480 pixels, with their labels. The number of iterations was set to 200, 000 and the batch size is set to 3 which composed of 3 images selected randomly.For testing an image, the testing phase returns the predicted labeled image. The output (a) The robot starting position. (b) The robot position after applying dierent rotations AND z-translations (R x = -30 • , R y = -20 • , and T z = 4cm) at time (t) = 15 sec. (c) The robot position after applying only rotations from the previous pose (R x = 60 • and R y = 45 • ) at time (t) = 30 sec.

Figure 4 . 23 :

 423 Figure 4.23: CoBotic control under RCM constraints results, where real robot images on the left column and the Rviz display on the right one.

F 1

 1 -score = 2 × (P recision × Recall) P recision + Recall

(4. 25 )

 25 where TP, TN, FP, and FN are the number of samples for True Positive, True Negative, False Positive and False Negative, respectively.

Figure 4 . 24 :

 424 Figure 4.24: Qualitative results of US image segmentation using the SegNet model from 4 videos of 4 dierent patients.Nerves in pink.Arteries in red. Bones in yellow. Tendons in blue.

  Figure I: The proposed robotic-assisted UGRA procedure.

( a )

 a CoBotic control of the probe holder robot for probe placement on the patient's body -task A . (b) Visual servoing to control the probe holder robot for keeping the visualization of the nerve -task D . (c) CoBotic control of the needle holder robot for needle placement in the US plane -task E . (d) Visual servoing to control the probe holder robot to keep the visualization of the nerve and the needle in the US image -D .

5. 1

 1 IntroductionL'anesthésie régionale (AR) est pratiquée pour bloquer la sensation de douleur dans une région spécique du corps en arrêtant la connexion des impulsions nerveuses entre cette région et le système nerveux central[START_REF] Jit | Anaesthesia for laparoscopic surgery: General vs regional anaesthesia[END_REF]. De nos jours, l'AR est une procédure bien connue dans de nombreuses salles d'opération et est utilisée pour éviter de pratiquer une anesthésie générale. L'AR est pratiquée par l'anesthésiste an de réduire la douleur, de faciliter une sortie plus précoce de l'hôpital et d'améliorer la mobilité postopératoire. Traditionnellement, cette technique était pratiquée en aveugle, ce qui augmentait le risque de défaillance du bloc, de traumatisme nerveux et de toxicité de l'anesthésie locale. Par conséquent, l'anesthésie régionale guidée par ultrasons (UGRA)

5. 3

 3 .0.0.a Détection des nerfs basé sur le descripteur RAMBP Nous présentons la détection des nerfs à l'aide du descripteur RAMBP en utilisant deux techniques, la machine à vecteur de support (SVM) [140] et le CNN 1D [132]. Bien que le CNN 1D soit considéré comme un modèle CNN, dans cette section, nous utilisons le descripteur RAMBP comme entrée pour le CNN 1D. La gure 5.2 illustre la chaîne de traitement complète des deux techniques.

Figure 5 . 2 :

 52 Figure 5.2: Schéma de la détection des nerfs à l'aide du descripteur RAMBP. (a) Classicateur SVM. (b) Classicateur CNN 1D.

Figure 5 . 3 :

 53 Figure 5.3: Schéma de l'architecture CNN 2D.

Figure 5 . 4 :

 54 Figure 5.4: Schéma de l'architecture CNN 1D-2D fusionnée.

Figure 5 . 5 :

 55 Figure 5.5: Le schéma du processus de suivi basé sur le descripteur RAMBP.

Figure 5 . 6 :

 56 Figure 5.6: Le schéma du processus de suivi basé sur les modèles CNNs.

Figure 5 . 7 :

 57 Figure 5.7: Le schéma du processus de suivi basé sur le modèle fusionné 1D-2D.

Figure 5 . 8 :

 58 Figure 5.8: Mouvement UGRA autour du point d'insertion (Pinsertion -RCM ), où le cadre de l'outil est la position et la rotation de l'eecteur nal. Par conséquent, l'aiguille ne peut se déplacer que dans les limites de 4-DDL : R x , R y et R z sont les rotations autour des axes x, y et z respectivement, et T z est la translation le long de l'axe z.
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 59510 Figure 5.9: Une représentation sphérique de la position de l'eecteur. Où α et β sont les angles de représentation de la sphère et R est le rayon de la sphère.

Figure 5 . 11 :

 511 Figure 5.11: Schéma du système CoBotique UGRA.

Figure 5 . 12 :

 512 Figure 5.12: Un exemple de création de maillage 2D.

Figure 5 . 13 :Perspectives à court terme 1 .

 5131 Figure 5.13: Insertion d'une aiguille CoBotique sous RCM avec évitement des régions à risque.

  

  

  

  

  

Table 2 . 1 :

 21 Summary of the used Datasets. Texture datasets # of classes # of images Image size(pxls) Challenges

Table 2 .

 2 2: Classication scores (%) comparison between the proposed descriptor (RAMBP) and state-of-the-art descriptors for Salt-and-Pepper noise.

	Dataset		Outex_T C11				Outex_T C23		
	Noise parameter		Noise density ρ			Noise density ρ	
	Method	5%	15%	30%	40% 50%	5%	15%	30%	40% 50%
	LBP [80]	85.4	15.5	5.4	4.2	4.2	66.0	9.9	3.8	1.8	1.5
	LBP riu2 [80]	31.7	4.2	4.2	4.4	4.2	11.8	1.5	1.5	1.5	1.5
	LBP ri [80]	47.1	10.0	4.2	4.2	4.2	26.5	4.7	2.2	1.5	1.5
	ILBP rui2 [92]	27.3	4.2	4.2	4.2	4.2	10.7	2.1	1.5	1.5	1.5
	CLBP [93]	17.3	8.3	4.2	4.2	4.2	7.6	2.9	1.5	1.6	1.5
	M BP riu2 [95]	31.0	8.3	4.2	4.2	4.2	17.0	2.5	1.5	1.5	1.5
	M BP [95]	95.8	38.6	20.5	16.6	16.1	76.8	18.6	6.0	4.9	4.2
	RLBP riu2 [94]	39.2	4.2	4.2	4.2	4.2	18.5	1.5	1.5	1.5	1.5
	EXLBP [118]	27.3	4.2	4.2	4.2	4.2	12.2	1.5	1.5	1.5	1.5
	N T LBP [119]	74.4	22.1	4.8	5.0	6.3	40.5	4.7	3.8	2.6	2.7
	M DLBP riu2 [97]	71.9	13.5	8.3	4.2	4.2	38.2	3.7	2.9	2.5	1.9
	DLBP [81]	29.8	5.4	4.2	4.2	4.2	16.5	4.9	1.5	1.5	1.5
	BRIN T [96]	30.8	7.1	6.0	4.4	4.2	15.9	1.5	1.5	1.3	1.5
	LBP D [120]	25.2	8.3	4.2	4.2	4.2	10.3	2.9	1.5	1.5	0.1
	SSLBP [99]	29.0	9.6	4.2	4.2	4.2	24.5	2.8	1.5	1.5	1.5
	AM BP [98]	100.0	95.4	20.7	13.8	10.7	100.0	85.0	4.8	1.8	1.5
	M RELBP [100]	100.0	100.0	100.0	85.8	50.2	100.0	99.9	94.0	54.6	19.2

Table 2 .

 2 

3 

shows the classication results of the proposed method as well as the state-of-theart descriptors, where RAMBP provides the best performance among other descriptors. SSLBP descriptor gives the second best results, followed by MRELBP, AMBP, and deep learning

Table 2 .

 2 

	Dataset	Outex_T C11 Outex_T C23
	Method	σ = 5	σ = 5
	LBP [80]	35.0	09.8
	LBP riu2 [80]	17.7	8.4
	LBP ri [80]	16.0	7.9
	ILBP rui2 [92]	17.5	10.4
	CLBP [93]	11.9	5.6
	M BP riu2 [95]	12.1	5.2
	M BP [95]	59.4	22.0
	RLBP riu2 [94]	22.1	11.9
	EXLBP [118]	19.2	10.3
	N T LBP [119]	24.0	9.0
	M DLBP riu2 [97]	12.5	6.1
	DLBP [81]	14.8	8.2
	BRIN T [96]	61.9	27.4
	LBP D [120]	24.6	14.8
	SSLBP [99]	97.1	91.5
	AM BP [98]	96.5	74.3
	M RELBP [100]	91.5	79.2

3: Classication scores (%) comparison between the proposed descriptor (RAMBP) and state-of-the-art descriptors for Gaussian noise with standard deviation σ.

Table 2 .

 2 

4 depicts the classication scores after applying Gaussian blur. The proposed method shows the best score with SSLBP method. The latest method performs nicely here

  BrodatzRot is generated to test rotation invariance by applying a random rotation angle for each sample in Brodatz. For Curet, Brodatz, BrodatzRot, and ALOT datasets, each class samples was divided equally (50% train/test) using a random selection of the samples.

• , 15 • , 30 • , 45 • , 60 • , 75 • , 90 • rotation angles. Also, T C23 the training set has no rotation, while the testing set is rotated by 0 • , 5 • , 10 • , 15 • , 30 • , 45 • , 60 • , 75 • , 90 • rotation angles.

  Time complexity is considered a crucial point, especially for texture classication. Important aspects that aect the running time for any descriptor are feature extraction time and the feature dimensionality. In the literature, it is generally the performance results of the descriptor that are focused on, while time complexity has received less attention. Table2.7 demonstrates the feature extraction time and dimensionality of RAMBP for the Outex_T C11 database. In Table 2.7, the average time is reported for each method. This average is calculated over 480 images of size 128 × 128 without including the training time for some methods marked as ( ). Dierent schemes are dened for parameters radius (r) and number of neighbor members (p), which aect the feature dimensionality and feature extraction time. Feature dimensionality, which is the nal dimensionality of each method provided to the classier, has been noted. It can be observed from Table 2.7 that F V -V GG is the most computationally expensive method for feature extraction Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4.2 Nerve detection experiments . . . . . . . . . . . . . . . . . . . . . . . . 3.4.3 Nerve tracking experiments . . . . . . . . . . . . . . . . . . . . . . . . . 3.4.3.1 Nerve tracking using texture descriptors . . . . . . . . . . . . . 3.4.3.2 Nerve tracking using CNNs models . . . . . . . . . . . . . . .

	2.4.3 Computational complexity 2.5 Conclusion					
	It is well known that the visual properties of US images are degraded by many eects such as
	artifacts, signal degradation, and speckle noise. These eects make detection and tracking very
	challenging. For that, the use of powerful and noise-robust features is a crucial step for accurate
	detection and tracking. In this chapter, we proposed a new ecient and robust descriptor,
	Robust Adaptive Median Binary patterns (RAMBP).				
	The RAMBP descriptor uses pixel classication and adaptive analysis to ensure strong
	Table 2.6: Classication scores (%) comparison between the proposed descriptor (RAMBP) and discriminativeness and noise robustness. Since the US image shares textures properties, RAMBP was tested against dierent descriptors for noisy texture classication. The proposed descriptor was evaluated on noisy textures including Salt-and-Pepper, Gaussian noise, Gaussian blur, Nerve Detection & Tracking
	state-of-the-art descriptors for noise-free texture classication. and mixed noise. Experimental results indicated that RAMBP outperforms other existing
	Method	T C10 T C12 Curet Brodatz BrodatzRot KT H2b ALOT
	#classes	(24)	(24)	(61)	(111)	(111)	(11)	(250)
	LBP [80]	99.36	90.55	92.77	88.67	76.48	60.33	86.58
	LBP riu2 [80]	99.69	92.16	97.03	90.70	79.22	62.69	94.15
	LBP ri [80]	86.69	83.68	95.38	89.93	71.73	61.48	93.29
	ILBP rui2 [92]	99.66	93.34	94.66	91.66	82.27	61.93	95.71
	CLBP [93]	99.45	95.78	97.33	92.34	84.35	64.18	96.74
	M BP riu2 [95]	95.29	86.69	92.09	87.25	74.57	61.49	88.23
	M BP [95]	98.52	97.17	91.24	89.27	76.67	60.19	91.30
	RLBP riu2 [94]	99.66	93.53	97.20	91.09	79.59	61.20	94.23
	EXLBP [118]	99.64	93.55	96.85	90.19	80.08	62.39	95.20
	N T LBP [119] Method	99.32 Scheme 95.27 Feature extraction 96.11 89.31	80.25 Feature	61.30	94.47
	M DLBP riu2 [97]	99.22	95.64	96.92 time (ms) 93.40	82.31 dimensionality	66.52	95.81
	80] LBP riu2 [80] M BP [95] AM BP [98] RAM BP DLBP [81] BRIN T [96] LBP riu2 [80] LBP D [120] LBP ri [80] SSLBP [99] ILBP rui2 [92] AM BP [98] CLBP [93] M RELBP [100] M BP riu2 [95] F V -V GGV D(SV M ) [103] 80.00 82.30 99.00 98.70 1.16 6.36 5.21 4.16 4.16 4.16 6.98 4.16 4.16 4.16 21.88 13.96 56.7 93.3 91.5 99.46 91.97 94.38 88.73 99.35 98.13 97.02 90.83 Sch 1 87.2 98.78 96.67 94.23 89.74 Sch 2 47.5 99.82 99.36 98.79 89.94 Sch 1 90.8 99.68 98.12 95.64 90.67 Sch 1 127.9 99.82 99.58 97.10 90.86 Sch 1 215.6 RLBP riu2 [94] Sch 1 488.6 RAM BP 99.90 99.70 98.50 94.05 EXLBP [118] -91.3 N T LBP [119] Sch 1 332.3	1.78 4.16 6.77 4.16 49.3 75.04 78.77 210 74.79 108 80.03 420 79.86 3552 81.92 420 92.10 210 86.98 273 388	4.16 4.16 6.77 4.16 52.1 61.72 66.67 63.47 65.57 62.73 68.98 88.20 99.50 NO 96.13 92.82 96.68 95.82 97.28 68,86 97.59
	M DLBP riu2 [97]	Sch 5	26.3		1000		
	DLBP [81]	Sch 1	( )565.3		14150		
	BRIN T [96]	Sch 3	248.8		1296		
	LBP D [120]		-	54.2		289		
	SSLBP [99]	Sch 7	( )180.0		2400		
	AM BP [98]	Sch 4	92.5		1536		
	M RELBP [100]	Sch 6	416.6		800		
	F V -V GGV D(SV M ) [121]	-	( )2655.4	65536		
	RAM BP		-	225.4		256		

and has a very high feature dimensionality. RAMBP is slower than few state-of-the-art methods, but due to its strength and robustness in dierent kinds of noise and noise free classication, as well as its low dimensionality, it provides promising and competitive results, in addition to the possibilibity of using GPUs and parallel programming which ensure a real-time process. Table 2.7: Computational complexity comparison between the proposed descriptor (RAMBP) and state-of-the-art descriptors. Dierent schemes for parameters (r, p) are dened. Sch 1: (1, 8), (2, 16), (r, 24) for 3 ≤ r ≤ 9;

Sch 2: (r, 8) for 1 ≤ r ≤ 9; Sch 3 (1, 8) and (r, 24) for 2 ≤ r ≤ 9; Sch 4: (1, 8), (2, 16) and (3, 24); Sch 5: (1, 8), (3, 8) and (5, 8); Sch 6: (r, 8), r = 2, 4, 6, 8; Sch 7: (3, 24), (9, 24). Methods labeled with ( ) are those requiring extra computation time at the feature extraction stage. descriptors in handling high-noise texture classication and performs as one of the best in noise-free texture classication. Moreover, RAMBP achieves a good running time and low feature dimensionality. RAMBP descriptor will be used and evaluated in the next chapter for the detection and tracking in US images. Chapter 3 Outline:

Accurate and consistent nerve detection and tracking is essential for safe and ecient robotic-assisted UGRA system. In this chapter, dierent nerve detection and tracking techniques are evaluated in terms of accuracy, consistency, time complexity, and handling dierent nerve situations. Contents 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Nerve detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.1 Nerve detection using RAMBP descriptor . . . . . . . . . . . . . . . . . 3.2.2 Nerve detection using CNNs model . . . . . . . . . . . . . . . . . . . . . 3.2.3 Nerve detection using the merged model . . . . . . . . . . . . . . . . . . 3.3 Nerve tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.1 Nerve tracking based on RAMBP descriptor . . . . . . . . . . . . . . . . 3.3.2 Nerve tracking based on CNNs models . . . . . . . . . . . . . . . . . . . 3.3.3 Nerve tracking based on 1D-2D merged model . . . . . . . . . . . . . .

3.4 Experiments, results and discussion . . . . . . . . . . . . . . . . . . .

3.4.1 3.4.3.3 Nerve tracking using merged features . . . . . . . . . . . . . . 3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  there has been extensive development of detection, and tracking algorithms for US images [122125], it is still an open problem, especially for RA. So far, very little attention has been paid to the nerve detection and tracking. In the previous chapter, we proposed Robust Adaptive Median Binary Patterns (RAMBP) which has the advantages of eectiveness and robustness to textures with dierent high noises. Using detectors or trackers based on

RAMBP would provide a good performance, since the nerve regions considered as a noisy texture.

However, we believe Convolutional Neural Networks (CNNs) models are eective too for US image textures. Thus, to learn more optimal features, it is more interesting to merge RAMBP with CNN models to achieve better performance for nerve detection and tracking.

In this chapter, we propose dierent methods to detect and track the nerve in US images in Section 3.2 and 3.3 respectively. These methods are based on texture descriptor (RAMBP), CNNs models, and the proposed merged model (texture descriptor with CNNs). In Section 3.4, experimental setups, results, and discussion are detailed. The chapter ends with the nal conclusions in Section 3.5.

Table 3 .

 3 

	Method	precision	recall	F1-score
	RAMBP 1D CNN	0.82	0.84	0.83
	RAMBP SVM	0.81	0.82	0.82
	2D CNN	0.85	0.87	0.86
	The merged 1D-2D CNNs	0.96	0.95	0.96

1: Comparison between dierent models and the merged method. The results are expressed in percentage between [0 1].

Table 3

 3 

.3 lists comparative results against dierent base-line descriptors such as LBP. It can be observed that the detection accuracy is improved after using the proposed model. Although AMBP precision

Table 3 . 2

 32 

	Method	precision	recall	F1-score
	RAMBP 1D DenseNet	0.80	0.80	0.79
	2D DenseNet	0.84	0.83	0.84
	The merged 1D-2D DenseNet	0.94	0.92	0.93

: Comparison between dierent CNN models and the merged method. The results are expressed in percentage between [0 1]. is as good as RAMBP, the recall and F1-score results show the higher performance and stability of the RAMBP. Compared to the dierent base-line techniques, RAMBP yields the best results and outperforms other techniques.

Table 3 .

 3 3: A comparison between dierent descriptors as an input for the 1D CNN branch in the merged model. The results are expressed in percentage between [0 1].

	Method	precision	recall	F1-score
	LBP [80]	0.93	0.90	0.92
	MBP [95]	0.94	0.92	0.93
	CLBP [93]	0.94	0.91	0.93
	HOG [176]	0.93	0.84	0.88
	AMBP [98]	0.96	0.91	0.93
	RAMBP [156]	0.96	0.95	0.96

Table 3 .

 3 4: Tracking scores (%) comparison between RAMBP, AMBP, MBP, LBP, CLBP, Gabor, HOG, and normal histogram with the proposed tracking algorithms. The results are expressed in percentage between [0 1].

	Method	Particle lter	Mean-shift	KLT
	RAM BP [156]	0.83	0.72	0.47
	AM BP [98]	0.78	0.66	0.49
	M BP [95]	0.71	0.52	0.47
	LBP [80]	0.70	0.58	0.39
	CLBP [93]	0.72	0.57	0.38
	HOG [155]	0.67	0.53	0.57
	Gabor [177]	0.51	0.43	0.53
	Hist	0.55	0.50	0.43
		Particle lter	Mean-shift	KLT
	RAM BP [156]	0.15	0.30	0.47
	AM BP [98]	0.12	0.24	0.38
	M BP [95]	0.11	0.15	0.40
	LBP [80]	0.08	0.08	0.09
	CLBP [93]	0.18	0.27	0.22
	HOG [155]	0.17	0.32	0.42
	Gabor [177]	0.20	0.45	0.52
	Hist	0.05	0.03	0.05

window, AMBP uses extra procedure which consists of using an adaptive window to obtain the threshold value, while RAMBP uses an extra process of classifying each pixel in the image, as well as an adaptive window. For that, RAMBP is slower than LBP, MBP, and AMBP, but at the same time it provides a good trade-o between tracking accuracy and time complexity. Table

3

.5: Tracking Speed (Second Per Frame spf ) between the proposed tracking methods.

Table 3 .

 3 but ECO provides a better generalization of the target by avoiding over-tting. Other good trackers are SANet and MDNet which achieved a good score caused by using a particle lter framework in its design. As well as this, SANet incorporates an RNN scheme which leads to an increase in the tracking accuracy.

	Table 3.6: Tracking scores (%) comparison between the proposed tracking methods. The results
	are expressed in percentage between [0 1].	
	C -COT [158]	0.90
	ECO [159]	0.91
	CN T [160]	0.77
	M DN et [161]	0.88
	SAN et [162]	0.89
	SiameF C [163] 0.80
	CF N et [164]	0.81
	DCF N et [165]	0.83
	M CP F [166]	0.86
	HDT [167]	0.83
	HCF T [168]	0.82
	DLT [141]	0.82
	CREST [169]	0.87

6 depicts tracking methods performance for median nerves. Using ECO provides the best results, where these results are obtained due to transferring prior visual via pre-training and capturing any appearance changes via online learning. C-COT adopts the same maneuver as ECO, P F -RAM BP 0.83 CNT tracker uses one convolutional layer, while others use deeper convolutional layers such as ECO and HCFT. In this experiment, it was observed that using more deep layers results in better performance and improves the tracking accuracy. Comparing between CNN-based deep trackers and traditional texture based trackers such as Particle Filter (PF) with RAMBP features [156], PF-RAMBP achieves good results and outperforms few deep-learning trackers.

Finally, it can be observed that the ECO tracker provides the best results among CNN-based deep trackers for nerve tracking and gives the best stable results. Overall, the accuracy of CNNbased deep trackers is competitive and provides good performance for tracking the median nerve.

Table 3 .

 3 7 demonstrates the running time for each method where it shows that DCFNet provides the best processing time. While ECO is slow, C-COT, SANet, and HDT are much slower. Important aspects aect the running time for CNN-based deep tracking algorithms, which are the number of layers and model update strategy. Some trackers use more deep layers

	while others use fewer layers which makes the tracker run faster. The other important aspect
	is the tracker model update strategy, where it can be noticed that updating the model after
	each frame is time-consuming. For that, ECO updates its model every few frames which makes
	the process run faster. Another strategy to update the model is using the Siamese network
	to model prior information that accelerates the running process such as CFNet, DCFNet, and

SiameseFCs. While ECO is not the fastest method but, at the same time, it provides a good trade-o between tracking accuracy and time complexity.

Table 3 .

 3 7: Tracking Speed (spf ) between the proposed tracking methods.

	C -COT [158] 0.65
	ECO [159]	0.13
	CN T [160]	0.63
	M DN et [161]	1.00
	SAN et [162]	1.63
	SiameF C [163] 0.26
	CF N et [164]	0.45
	DCF N et [165]	0.04
	M CP F [166]	0.60
	HDT [167]	0.89
	HCF T [168]	0.27
	DLT [141]	0.33
	CREST [169]	0.9

P F -RAM BP 0.15

Table 4 .

 4 1: A comparison results for SegNet segmentation average.

		Class	precision	recall	F1-score
		Nerve	0.92	0.91	0.91
		Artery	0.95	0.95	0.95
		Tendon	0.94	0.87	0.90
		Bone	0.95	0.85	0.89
		Dermis	0.96	0.81	0.88
	Time complexity is considered a crucial point, especially for US image segmentation in
	UGRA. Important aspects that aect the running time for any descriptor are feature extraction
	time and the feature dimensionality.	In literature, it is generally the performance results
	of the segmentation method that are focused on, while time complexity has received less
	attention.	In our experiments and to provide the topological image, the average reported
	time is 4.8 seconds per image. This average is calculated over 7000 images of size 360 ×
	480 without including the training time.	

  However, we believe Convolutional Neural Networks (CNNs) models are eective too for the US image textures. Thus, to learn more optimal features, we propose to merge RAMBP with CNN models to achieve better performance for nerve detection and tracking.Accurate and consistent nerve detection and tracking is essential for safe and ecient UGRA. In this thesis, the detection and tracking methods are based on RAMBP (texture descriptor), CNNs models, or the merged model of RAMBP and CNNs model. Although the texture descriptor or CNNs models based detectors and trackers perform good in US images, the results show that the merged model obtained higher accuracy by 10%. It is worth mentioning that the merged model combines the RAMBP and CNN architecture together which takes advantage of the strength of each side and improves the overall performance. Furthermore, dierent techniques were presented for detecting and tracking the nerve in the US image. For nerve detection, the obtained detection results show that the merged model based detector outperforms other techniques and achieved the best performance with 96% precision. For nerve tracking, we found that the merged model based trackers achieved the best results where we believe that the mix tracker (particle lter and the search technique) provides a good trade-o between tracking accuracy (with 93%) and time complexity (with 0.19 spf ).

			Any
	detection and tracking method depends mostly on choosing suitable image features. since
	the US image has the noisy texture properties, we proposed a new Robust Adaptive
	Median Binary Pattern (RAMBP) feature descriptor.	RAMBP descriptor takes the
	advantage of pixel classication and the adaptive analysis to provide strong discrim-
	inativeness and noise robustness properties.	RAMBP has been evaluated on noisy
	textures including dierent kinds of noise. Experimental results indicated that RAMBP
	outperforms other existing descriptors for handling high noisy textures classication.

  Le système UGRA assisté par robot présente deux aspects essentiels: la qualité visuelle de l'image UltraSonore (US) qui soure de la présence de bruits; et le contrôle robotique et la précision de l'insertion de l'aiguille. La thèse vise à développer un système UGRA robotisé qui se concentre sur ces deux questions et propose des méthodes de détection et de suivi des nerfs et le contrôle robotisé de l'insertion de l'aiguille.Le projet DANIEAL phase 2 est issu de l'APR 2016 de la région Centre-Val de Loire. Il se situe dans la continuité du projet DANIEAL. Le contexte général du projet est celui du développement de dispositifs médicaux robotisés pour l'amélioration de l'accès aux soins et de l'assistance au geste médical. Le domaine applicatif visé est celui de l'anesthésie locorégionale réalisée sous échographie. Ce projet vise à fournir aux anesthésistes une plateforme collaborative expert-robot-environnement qui améliore de façon signicative la pratique de l'anesthésie locorégionale. plan de l'image échographique 2D en utilisant une approche d'asservissement visuel par ultrasons. Pour mener à bien cette action, nous devons suivre le nerf dans les images US et récupérer la position/orientation de la pointe de l'aiguille en utilisant les transformations géométriques entre les deux robots. Ainsi, lorsque l'anesthésiste incline l'aiguille en dehors du plan ultrasonore, le PHR doit suivre la pointe de l'aiguille et la maintenir dans le plan ultrasonore.Partie NHR: lorsque l'aiguille est hors du corps du patient (processus dit de "contrôle externe du patient"), l'objectif de l'anesthésiste est de trouver un point d'insertion de l'aiguille sur la peau du patient qui pourrait fournir la meilleure trajectoire an d'atteindre le nerf.Mais l'expert est confronté à deux contraintes : le point d'insertion doit se trouver dans le plan des ultrasons (à noter que l'aiguille ne peut apparaître sur l'image US tant qu'elle n'est pas à l'intérieur du corps du patient) ; la pose de l'aiguille est limitée par la nécessité d'être vu dans le plan des ultrasons. Connaissant les transformations géométriques du PHR et du NHR, nous pouvons orir à l'anesthésiste un contrôle CoBotique du NHR qui respecte les deux contraintes avec un retour d'eort adapté sur les 6-Dimensions. Enn, le NHR CoBo-Pour les autres aspects, comme l'asservissement visuel, cela fera partie de nos travaux futurs. Globalement, les travaux menés au cours de cette thèse conduisent à trois contributions principales : De plus, les fonctions doivent être limitées en nombre, an de permettre un calcul ecace des fonctions discriminantes et de limiter la quantité de données de formation requises. Les caractéristiques de l'image, telles que les bords et les points d'intérêt, fournissent de riches informations sur le contenu de l'image. Elles correspondent à des régions locales de l'image et sont fondamentales dans de nombreuses applications de l'analyse d'images, telles que la reconnaissance, la correspondance, la reconstruction, etc[START_REF] Nixon | Feature extraction and image processing for computer vision[END_REF].Un descripteur de caractéristiques est un algorithme qui prend une image et produit des descripteurs et des vecteurs de caractéristiques. Les descripteurs de caractéristiques encodent des informations intéressantes en une série de nombres et agissent comme une sorte d'"empreinte" numérique qui peut être utilisée pour diérencier une caractéristique d'une autre. Les descripteurs de caractéristiques contribuent à améliorer l'ecacité de nombreuses tâches telles que la détection et le suivi. Pour cela, le choix d'une caractéristique appropriée est une étape cruciale dans les applications de détection et de suivi.La texture est un indice important pour la détection dans de nombreuses applications d'images US[START_REF] Tuceryan | Texture analysis[END_REF], car certains tissus présentent des propriétés de texture bruyante spéciques, comme certains nerfs. Pour cette contribution, nous proposons un nouveau et robuste descripteur de texture "Robust Adaptive Median Binary Patterns" (RAMBP). L'image échographique étant considérée comme une image bruyante avec des régions de texture, nous évaluons le descripteur proposé sur des textures bruyantes bien connues pour les problèmes de classication des textures.Bien que les algorithmes de détection et de suivi des images échographiques aient été large-ment développés [122125], le problème reste ouvert, en particulier pour l'anesthésie régionale. Jusqu'à présent, très peu d'attention a été accordée à la détection et au suivi des nerfs. Dans le chapitre précédent, nous avons proposé des modèles binaires médians adaptatifs robustes (RAMBP) qui présentent les avantages de l'ecacité et de la robustesse aux textures avec différents bruits élevés. L'utilisation de détecteurs ou de trackers basés sur RAMBP orirait une bonne performance, puisque les régions nerveuses sont considérées comme une texture bruyante.

	La première contribution consiste à proposer un outil qui consiste à traiter les informations
	(caractéristiques) d'une image US an de détecter et de suivre automatiquement les blocs
	Cette thèse a été réalisée au sein du Laboratoire Pluridisciplinaire de Recherche en Ingénierie nerveux. Ainsi, pour faciliter le processus de détection et de suivi, l'objet cible doit pouvoir
	des Systèmes, Mécanique, Energétique (PRISME), un laboratoire de l'Université d'Orléans être diérencié des autres objets à l'aide des caractéristiques de l'image. Néanmoins, le Cependant, nous pensons que les modèles de réseaux neuronaux convolutionnels (CNN) sont
	et de l'INSA-CVL. Cette thèse a été nancée par le projet DANIEAL2 'Détection et Anal-choix et l'extraction de caractéristiques pertinentes est une tâche complexe en raison de également ecaces pour les textures d'images US. Ainsi, pour apprendre des caractéristiques
	yse des Nerfs dans les Images Echographiques pour l'Anesthésie Locorégionale'. L'Université l'apparence de la texture nerveuse et de la nature bruyante de ce type d'image. Dans la plus optimales, il est plus intéressant de fusionner les modèles RAMBP et CNN an d'obtenir
	d'Orléans, l'Université de Tours, l'hôpital Médipôle Garonne (Toulouse) et la société Adechotech section 2, nous abordons ces critères en introduisant un nouveau descripteur de texture, de meilleures performances pour la détection et le suivi des nerfs.
	ont développé une collaboration autour du projet DANIEAL2 avec l'aide nancière de la région le Robust Adaptive Median Binary Pattern (RAMBP). Ce descripteur est évalué pour des Pour cette contribution, nous proposons diérentes méthodes pour détecter et suivre le nerf
	Centre Val-de-Loire. textures très bruyantes car le choix de la caractéristique robuste appropriée est une étape dans les images US. Ces méthodes sont basées sur le descripteur de texture (RAMBP), les modèles
	cruciale dans les applications de détection et de suivi. Cette contribution est présentée CNN et Support Vector Machine (SVM) et le modèle fusionné proposé (descripteur de texture
	dans la section 2. avec CNN).	
	En conclusion, le système robotique est divisé en plusieurs tâches :	Toutefois,
	lorsqu'ils pratiquent l'UGRA, les experts sont confrontés à plusieurs dés: trouver l'emplacement Partie PHR :
	du nerf dans l'image échographique de mauvaise qualité; conserver la visualisation du nerf en le projet DANIEAL2 vise à fournir aux anesthésistes une plateforme collaborative expert-
	permanence; localiser les diérents organes dans l'image tels que les artères et les os; trouver robot-environnement qui améliore considérablement la pratique de la pratique de l'anesthésie ré-Détection des nerfs Les sections suivantes présentent des résumés de chaque contribution. Dans la section 5.2,
	le meilleur point d'insertion de l'aiguille; contrôler l'insertion de l'aiguille en tenant compte gionale guidée par ultrasons (Ultrasound-guided regional anesthesia UGRA); c'est-à-dire étudier Suivi des nerfs RAMBP est présenté. Dans la section 5.3, les techniques de détection et de suivi proposées
	du point de pivot d'interaction entre l'aiguille et la peau du patient; aligner l'aiguille dans le plan échographique 2D; trouver la trajectoire appropriée de l'aiguille pour éviter les régions sont proposées. La section 5.4 présente le contrôle robotique. Ce chapitre se termine par des et développer un dispositif médical robotisé à sécurité intrinsèque, où l'expert est toujours dans Asservissement visuel pour maintenir la visualisation du nerf et de la pointe de Le descripteur RAMBP sera utilisé et évalué dans la prochaine contribution pour la détection conclusions et perspectives nales. la boucle de contrôle. Il s'agit d'assister le geste médical lors de l'insertion de l'aiguille vers le l'aiguille et le suivi dans les images US.
	anatomiques ou cardiovasculaires sensibles (artères, os, etc.). Par conséquent, la procédure nerf ciblé sous échographie (Ultrasound -US) en utilisant la collaboration d'un bras robotique.
	UGRA nécessite un long processus d'apprentissage et des années d'expérience [35, 36]. Les systèmes robotisés sont déjà utilisés dans le milieu médical et ont montré leur impact important pour assister les experts médicaux lors de la réalisation de leur acte médical [7]. Le système robotique proposé conçu pour la procédure UGRA est divisé en deux systèmes robotiques connectés, un robot porte-sonde (Probe Holder Robot (PHR)) et un robot porte-aiguille (Needle Holder Robot (NHR)), comme illustré à la Figure ci-dessous. Partie NHR : Les problèmes de détection et de suivi dans l'analyse des images et des signaux nécessitent Segmentation de l'image : image topologique 5.2 Extraction de la caractéristique robuste 5.3 Détection et suivi des nerfs
	L'UGRA assistée par robot pourrait être d'une grande utilité en aidant les experts avec des Modèle 2D : création et mise à jour du maillage la prise en compte d'informations complexes intégrées dans les données. Les images peuvent La procédure UGRA nécessite des connaissances anatomiques et des compétences dans
	techniques et des outils qui améliorent la précision et la sécurité de la procédure, par exemple en Partie PHR: contrôle le PHR par asservissement visuel pour maintenir sans surveillance Contrôle cobotique sous contraintes RCM contenir plusieurs milliers de valeurs de pixels qui représentent diérents objets. Même si les l'utilisation de l'imagerie US, ainsi qu'un haut degré de concentration de la part de l'anesthésiste
	évitant les traumatismes nerveux ou l'endommagement des tissus sains. De plus, cette approche les régions d'intérêt souhaitées (par exemple le nerf ) dans l'image ultrasonore 2D obtenue NHR Contrôle CoBotique pour l'insertion d'aiguilles sous contraintes RCM avec évite-humains peuvent traiter à la fois des objets physiques et des notions abstraites dans leurs activités pour localiser le nerf [5, 6]. En outre, il n'est pas toujours facile de localiser certains nerfs dans
	permettrait d'améliorer la courbe d'apprentissage pour les anesthésistes juniors, en évaluant les par l'appareil à ultrasons . Ensuite, une détection et un suivi automatiques du nerf, ainsi ment des régions à risque. quotidiennes tout en prenant des décisions dans diverses situations, il n'est pas possible pour la pratique de l'UGRA. Dans ce travail, un système UGRA assisté par robot est proposé. Ce
	l'ordinateur de les traiter directement. chapitre vise à développer des outils pour aider les anesthésistes à détecter et à suivre les nerfs
	avec précision.	

re-jeux des gestes réalisés (trajectoires, point d'insertion). L'objectif principal du travail de thèse est de fournir aux anesthésistes des outils robotiques et de traitement d'images pour les aider et faciliter leur routine UGRA pour le bien de la santé des patients. L'objectif de DANIEAL2 est d'étudier et de développer un dispositif médical robotisé à sécurité intrinsèque, où l'expert est toujours dans la boucle de contrôle. Il s'agit d'assister le geste médical d'insertion d'aiguille vers le nerf sous imagerie US en utilisant la collaboration d'un bras robotisé. Cette plate-forme d'assistance sera conçue pour faciliter la prestation de soins médicaux de haute qualité et personnalisés ainsi que pour améliorer le processus de formation des anesthésistes et réduire les risques de traumatismes liés à l'anesthésie locorégionale. Le consortium est composé, des laboratoires PRISME qui a une expertise reconnue en robotique médicale, en traitement d'images et en asservissement visuel, du Laboratoire LIFAT de Tours pour son expertise en analyse d'image video, de la société ADECHOTECH qui développe depuis plusieurs années des robots à nalités médicales et de la clinique Médipôle à Toulouse qui possède une notoriété nationale et internationale pour la pratique de l'anesthésie locorégionale guidée sous échographie. qu'une technique d'asservissement visuel sont eectués pour maintenir le nerf ciblé dans le plan de l'échographie 2D même en cas de mouvements physiologiques. De plus, le contrôle du PHR par asservissement visuel permet de maintenir le nerf ciblé et l'aiguille insérée dans

Figure 5.1: La procédure d'UGRA assistée par robot proposée. le tique assure la visualisation de l'aiguille dans le plan ultrasonore. Lorsque l'aiguille est insérée dans le corps du patient (processus appelé "contrôle interne du patient"), l'objectif de l'anesthésiste est de déplacer l'aiguille aussi près que possible du nerf en respectant les contraintes du centre de mouvement à distance (Remote Center of Motion -RCM). Le NHR est contrôlé CoBotiquement pour manipuler l'aiguille en réduisant le DDL autour du point RCM. An que l'anesthésiste puisse éviter les régions à risque telles que l'artère, la veine ou le tendon, une image topologique, basée sur l'image US, est traitée en ligne pour construire un modèle 2D (maillage) qui permet une interaction entre les diérents tissus et la pointe et la tige de l'aiguille. Ce modèle permet au NHR d'appliquer des forces de répulsion une fois que l'aiguille se trouve à proximité des régions à risque. De plus, avec le modèle 2D, nous pouvons proposer à l'anesthésiste des trajectoires sûres pour atteindre la zone nerveuse. Dans cette thèse, nous nous sommes concentrés sur certains aspects (mis en évidence dans la gure 5.1) pour lesquels nous proposons de nouvelles techniques et méthodes. La deuxième contribution consiste à proposer diérentes techniques de détection et de suivi des nerfs dans l'image US. Ces techniques sont basées sur : des descripteurs de texture (RAMBP) ; des modèles CNNs ; et un nouveau modèle CNNs fusionné (RAMBP avec modèle CNNs). Les résultats Les résultats de la détection et du suivi des nerfs seront utilisés comme une entrée pour l'asservissement visuel. Ainsi, Cela faciliterait la routine quotidienne de l'anesthésiste et lui permettrait de se concentrer sur l'insertion de l'aiguille et l'administration de l'anesthésique. l'insertion de l'aiguille et l'administration de l'anesthésique. Cette contribution est présentée dans la section 3.

La troisième contribution propose un système de contrôle robotique pour l'insertion des aiguilles. La stratégie de commande robotique utilise la "force" et de l'"endurance" des robots, ainsi que de la exibilité et de la prise de décision de l'anesthésiste, pour faciliter la réalisation de la procédure UGRA. Ce système ore une solution sûre et exible pour faciliter la réalisation de la procédure UGRA dans un espace partagé entre le personnel médical et le ssytème robotisé. De plus, ce système permet aux experts de contrôler le NHR pour une meilleure précision de l'insertion de l'aiguille. Cette contribution est présentée dans la section 4.

Une fonction doit contenir les informations nécessaires pour distinguer les classes, être insensible à la variabilité non pertinente de l'entrée

[START_REF] Nixon | Feature extraction and image processing for computer vision[END_REF]

. RAMBP utilise une classication des pixels bruyants, une fenêtre adaptative pour le seuil et les modules binaires, et des valeurs régionales au lieu d'utiliser les intensités des pixels. RAMBP est divisé en trois étapes, le processus de classication de la détection des pixels bruyants, le processus de seuil et la génération du modèle binaire. Exemple de classication des textures, l'utilisation de RAMBP donne les meilleurs résultats et surpasse les autres méthodes de l'état de l'art. Le descripteur RAMBP tire parti de la classication des pixels et de l'analyse adaptative pour orir de fortes propriétés de discrimination et de résistance au bruit. Le descripteur proposé a été évalué sur des textures bruyantes, notamment le sel et le poivre, le bruit gaussien, le ou gaussien et le bruit mixte. Les résultats expérimentaux ont indiqué que RAMBP surpasse les autres descripteurs existants pour le traitement de la classication des textures très bruyantes et qu'il est l'un des meilleurs dans la classication des textures sans bruit. Dans ce travail, la recherche de textures bruyantes est présentée de la cohérence et de la stabilité de la politique de RAMBP, et il montre la haute performance et la robustesse de RAMBP. Dans ce document, la complexité de calcul avait été testé où le RAMBP ore une bonne durée de fonctionnement et un la dimensionnalité des caractéristiques.
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Assisted Medical system.

Herein, we discuss a geometric method for computing the intended robot's end-eector position with respect to the RCM constraints, it is intended to assist the anesthetist to execute a more sophisticated motion of the needle within the patient's body with high accuracy. This accuracy is set as the distance error between the RCM point position and the xed insertion point position. After that, we provide two robot control strategies with respect to the RCM constraints; haptic and CoBotic needle insertion controls. The basic action of these needle insertion control strategies is to move the needle through the insertion point and to generate a remote center of motion (RCM) remotely or CoBotically, while avoiding risky regions.

Task F is presented by proposing the needle insertion kinematics in Section 4.3 (RCM for needle insertion) and introducing various control strategies in Section 4.4 (haptic force feedback and CoBotic control). This followed by presenting the process CoBotic control under RCM constraints with regions avoidance in Section 4.5 where tasks G , H , and I are proposed.

Experimental setup, results, and discussion in Section 4.6. Finally, conclusions are given in Section 4.7.

Needle insertion kinematic

In theory, a high number of DoF serial robot provides a large operation workspace and dexterity.

However, keeping the end-eector working through an RCM point and limiting its motions is a very challenging task which demands an accurate control strategy [START_REF] Schneider | A six-degree-of-freedom passive arm with dynamic constraints (padyc) for cardiac surgery application: Preliminary experiments[END_REF][START_REF] Dombre | Marge project: design, modeling and control of assistive devices for minimally invasive surgery[END_REF]. In the literature, various methods have been proposed to address RCM constraints such as Jacobian with constrained quadratic optimization [START_REF] Funda | Constrained cartesian motion control for teleoperated surgical robots[END_REF], isotropy-based kinematic optimization [START_REF] Co | Optimal remote center-of-motion location for robotics-assisted minimally-invasive surgery[END_REF], constrained Jacobian with Lie algebra [START_REF] Cong | Analysis of a moving remote center of motion for robotics-assisted minimally invasive surgery[END_REF], gradient projection approach [START_REF] Hamidreza Azimian | On constrained manipulation in robotics-assisted minimally invasive surgery[END_REF], dual quaternion-based kinematic [START_REF] Murilo M Marinho | A programmable remote center-of-motion controller for minimally invasive surgery using the dual quaternion framework[END_REF], etc. The previous researches discussed the modeling of trocar kinematics only or combined with trajectory following. Very few control strategies reported in the literature are concerned with the issue of RCM constraints and their geometry in the workspace. Mayer et al. [START_REF] Mayer | Kinematics and modelling of a system for robotic surgery[END_REF] proposed a trocar modeling with Euler angles representation for heart surgery. In [START_REF] Dahroug | 3d path following with remote center of motion constraints[END_REF], the authors proposed using geometric constraints with stereo visual servoing for controlling the robot position from point-to-point and extended Jacobian solution for manipulating serial end-eector.

The main contribution of this section is formulating a geometric control method in the operational space to maintain RCM constraints while oering a more accurate end-eector position. The method controls the motion of the rigid needle and it describes the end-eector position with respect to the RCM constraints for a robotic UGRA control using a 7-DoF serial robot. It provides a safe and exible solution for the robot and the medical sta in a shared workspace where it explicitly models the rotational and translational motions at the RCM point.

In UGRA, the needle insertion process relies on only 3-DoF for its orientations (i.e., pan, tilt, and spin rotations) corresponding to the roll, pitch, and yaw angles around the RCM point; 1-DoF is needed for the axial translation corresponding to the depth of insertion as shown in Figure 4.3. Hence, to simplify the control strategy for the robot and to help the kinematic design, we choose to dene the movements of the needle with respect to these four displacements.

Various strategies exist to control the needle movements inside the patient, where the most comfortable way would be the operational space using the Cartesian representation.

Mohammad ALKHATIB Système d'assistance robotisé basé sur l'imagerie échographique pour l'anesthésie loco-régionale

Résumé :

L'anesthésie régionale guidée par ultrasons (UGRA) devient une technique puissante dans les procédures chirurgicales et la gestion de la douleur. Toutefois, la procédure UGRA nécessite un long processus d'apprentissage et des années d'expérience. Les aides robotisées sont déjà utilisées dans l'assistance médicale et montrent leur énorme impact. Ainsi, l'UGRA robotisée pourrait être d'une grande aide en aidant les anesthésistes à utiliser des techniques et des outils qui améliorent la précision et la sécurité de la procédure, par exemple en évitant les traumatismes nerveux ou les dommages aux tissus sains. Le système UGRA robotisé présente deux défis majeurs : la qualité visuelle des images échographiques, qui souffre de bruit, et le contrôle robotique de l'insertion de l'aiguille. Par conséquent, cette thèse se concentre sur le développement de méthodes de détection et de suivi des nerfs dans les images échographiques et sur le contrôle robotique de l'insertion de l'aiguille.

Dans cette thèse, l'image ultrasonore est analysée en soulignant l'importance de trouver des caractéristiques robustes et fortes dans l'image. Puisque le nerf partage certaines propriétés texturales bruyantes, nous proposons des modèles binaires médians adaptatifs robustes (RAMBP) qui ont les avantages de l'efficacité et de la robustesse aux textures avec différents bruits élevés. Ces caractéristiques sont ut ilisées comme base pour différentes techniques de détection et de suivi des nerfs et évaluées en termes de précision, de cohérence, de complexité temporelle et de traitement de différentes situations nerveuses. Cependant, nous pensons que les modèles de réseaux neuronaux convolutifs (CNN) sont également efficaces pour les textures d'images échographiques. Ainsi, pour apprendre des caractéristiques plus optimales, nous proposons de fusionner les modèles RAMBP et CNN afin d'obtenir de meilleures performances pour la détection et le suivi des nerfs.

Pour le contrôle robotique de l'UGRA, l'objectif de cette contribution est de guider l'anesthésiste là où le centre de mouvement à distance (RCM) impose une tâche très difficile, où il est important de s'assurer que l'aiguille se déplace dans les contraintes du point d'insertion et de l'évitement des obstacles afin d'éviter de nuire au patient et d'atteindre le nerf ciblé. Pour répondre à ce besoin, deux stratégies de contrôle ont été présentées tout en utilisant le contrôle cartésien RCM : un système d'insertion d'aiguille UGRA téléopéré avec retour de force haptique ; un système d'insertion d'aiguille CoBotic. La commande UGRA téléopérée permet l'insertion de l'aiguille sous les contraintes du RCM avec un retour de force appliqué au dispositif haptique. D'autre part, le contrôle CoBotic UGRA permet de contrôler le mouvement de l'aiguille en appliquant la force de la main de l'utilisateur opérateur sur le bras du robot tout en respectant les contraintes RCM. Enfin, nous avons discuté de l'évitement des régions à risque en appliquant de petites forces répulsives à l'effecteur final lorsque la pointe de l'aiguille s'approche d'une région à risque. Une image topologique a été construite en utilisant une technique de segmentation par réseau neuronal et une force répulsive a été calculée en fonction de la distance entre la pointe de l'aiguille et la région à risque.

Mots clés : Suivi de nerfs, suivi visuel, apprentissage profond, extraction de caractéristiques, suivi d'obje ts basé sur la multimodalité, vision par ordinateur, images échographiques, cinématique de l'insertion de l'aiguille, contraintes du centre de mouvement distant, télérobotique, robotique médicale, anesthésie régionale.

Mohammad ALKHATIB

Robotic assistance system based on ultrasound images analysis for regional anesthesia Summary :

Ultrasound-guided regional anesthesia (UGRA) is becoming a powerful technique in surgical procedures and pain management. However, the UGRA procedure requires a long learning process and years of experience. Robotic aids are already used in medical assistance and show their enormous impact. For this, robotic UGRA could be of great help in helping anesthetists use techniques and tools that improve the accuracy and safety of the procedure, for example, by avoiding nerve trauma or damage to healthy tissue. The robot -assisted UGRA system presents two major challenges: the visual quality of ultrasound images, which suffers from noise, and the robotic control of needle insertion. Therefore, this thesis focuses on the development of methods for nerve detection and tracking in ultrasound images and robotic control of needle insertion.

In this thesis, the ultrasound image is analyzed by highlighting the importance of finding robust and strong features in the image. Since the nerve shares some noisy textural properties, we propose Robust Adaptive Medial Binary Models (RAMBPs) that have the advantages of efficiency and robustness to textures with different high noises. These features are used as the basis for different nerve detection and tracking techniques and evaluated in terms of accuracy, consistency, time complexity, and handling different nerve situations. However, we believe that convolutional neural network (CNN) models are also effective for ultrasound image textures. Thus, to learn more optimal features, we propose to merge RAMBP and CNN models to achieve better performance for nerve detection and tracking.

For robotic control of the UGRA, the goal of this contribution is to guide the anesthetist where the remote motion center (RCM) imposes a very difficult task, where it is important to ensure that the needle moves within the constraints of the insertion point and obstacle avoidance in order to prevent patient harm and reach the targeted nerve. To address this need, two control strategies were presented while using the RCM Cartesian control: a teleoperated UGRA needle insertion system with haptic force feedback; a CoBotic needle insertion system. The teleoperated UGRA control enables needle insertion under RCM constraints with force feedback applied to the haptic device. On the other hand, the CoBotic UGRA control enables the needle movement control by applying hand force by the operator user on the robot arm while respecting the RCM constraints. Finally, we discussed avoiding risky regions by applying small repulsive forces to the end-effector once the needle's tip gets close to a risky region. A topological image has been constructed by using a neural network segmentation technique and a repulsive force has been computed with respect to the distance between the needle tip and the risky region.