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General Introduction

Regional anesthesia (RA) is performed to block the sensation of pain in a speci�c region
of the body by stopping the nerve impulses connection between that region and the central
nervous system. Nowadays, RA is a well-known procedure in many operating rooms and is
used to avoid performing general anesthesia. RA is performed by the anesthetist in order to
reduce pain scores, facilitates earlier hospital discharge, and improves postoperative mobility.
Traditionally, this technique was performed with needle blind guidance which increases the risk of
block failure, nerve trauma, and local anesthetic toxicity [1]. Hence, Ultrasound-guided regional
anesthesia (UGRA) becomes a powerful technique in surgical procedure and pain management [2].

UGRA o�ers a huge performance impact on the practice of regional anesthesia [3, 4].
However, when performing UGRA, experts face several challenges: �nding the nerve location
in the poor quality ultrasound (US) image; keeping the nerve visualization all the time; locating
di�erent organs in the image such as arteries and bones; �nding the best needle insertion point;
controlling the needle insertion by taking into account the interaction pivot point between the
needle and the skin of the patient; aligning the needle within the 2D US plane; �nding the
suitable needle trajectory to avoid sensitive anatomical or cardiovascular regions (arteries, bones,
etc). Hence, UGRA procedure requires a long learning process and years of experience [5,6].

Robotic systems are already used in medical settings and have shown their important impacts
in assisting the medical experts during their medical act [7]. Robotic-assisted UGRA could
provide great assistance by helping the experts with techniques and tools that improve the
procedure accuracy and safety such as avoiding nerve trauma or damage of healthy tissues.
Moreover, it could increase the anesthetist's experience by more teaching and learning to avoid
unintentional injuries [8]. The main objective of this thesis work is to provide anesthetists with
robotic and image processing tools to assist and facilitate their UGRA routine for patient health
bene�ts.

There are two critical issues in the robotic-assisted UGRA system: the visual quality of the
US image which su�ers from the presence of noises; and the robotic control and accuracy in
the needle insertion. To overcome these di�culties and to perform an accurate robotic-assisted
UGRA system, this thesis aims to develop a robotic-assisted UGRA system that focuses on these
two issues and proposes nerve detection and tracking methods and robotic needle insertion control.

Chapter 1 presents the UGRA procedure, di�culties, challenges, and limitations as performed

1



General Introduction

by anesthetists. As well as, analyzing the nerve structure and characteristics. Finally, the
proposed robotic-assisted UGRA system and the objectives of this thesis are explained.

In Chapter 2, the US image is analyzed by highlighting its noisy texture properties and
the importance of �nding robust and discriminative features in the image. In this chapter,
we propose a new robust feature Robust Adaptive Median Binary Pattern (RAMBP). RAMBP
handles images with highly noisy textures and increases the discriminative properties by capturing
microstructure and macrostructure texture information.

Nerve detection and tracking in the US images is proposed in Chapter 3. RAMBP descriptor
is used with well-known detectors and tracker. However, we believe Convolutional Neural
Networks (CNNs) models are e�ective too for the ultrasound image textures. Thus, to learn more
optimal features, we propose to merge RAMBP with CNN models to achieve better performance
for nerve detection and tracking. In Chapter 3, the texture descriptor, CNNs models, and
the merged model detectors and trackers are evaluated and analyzed in terms of accuracy,
consistency, time cost, and handling di�erent nerve situations.

In Chapter 4, the robotized needle insertion control approach is introduced. Here, the
needle insertion kinematics are explained. Followed by proposing two techniques based on these
kinematics, the robotized needle insertion using haptic force feedback, and the CoBotized needle
insertion using a CoBotic system. Finally, robotic experiments and results are presented.

As a conclusion, a �nal chapter is given which discusses and summarizes the main contribu-
tions of this thesis and proposes some perspective work.

In Chapter 5, a complete summary of the thesis is presented in French.
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Chapter 1
Context

Outline:

In this chapter, an introduction of this study is presented where we discuss the
ultrasound-guided regional anesthesia procedure, di�culties, challenges, and limita-
tions as performed by experts. As well as, analyzing existing robotic systems for med-
ical surgeries. Finally, the proposed robotic-assisted UGRA system and the objectives
of this thesis are explained.
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1.1. Ultrasound-Guided Regional Anesthesia (UGRA)

This thesis was achieved in the Laboratoire Pluridisciplinaire de Recherche en Ingénierie des
Systémes, Mécanique, Energétique (PRISME), a laboratory of the University of Orléans and the
INSA-CVL. The thesis was �nanced by the DANIEAL2 project 'Détection et Analyse des Nerfs
dans les Images Echographiques pour l'Anesthésie Locorégionale'. The University of Orléans,
the University of Tours, the Médipôle Garonne hospital (Toulouse) and Adechotech company
have developed a collaboration around the DANIEAL2 project with �nancial assistance from
the Center Val-de-Loire region1.

DANIEAL2 project aims to provide anesthetists with a Robotic-Assisted Medical system.
This system provides a collaborative expert-robot-environment platform to signi�cantly improve
the routine of Ultrasound-Guided Regional Anesthesia (UGRA). DANIEAL2 addresses the
study and development of an intrinsically safe robotic medical device, where the expert is still
in the control loop. The support platform will be designed to: facilitate the provision of high
quality and personalized medical care, improve the training process, reduce the risk of trauma,
and quick patient recovery.

The �eld of Computer-Assisted Medical Surgery combines the domains of medicine, com-
puter science, and robotics. The techniques in this area focus on the objectives of increasing
the doctor's performance by enhancing their abilities. This assistance aims to reduce patient
trauma and hospitalization time. UGRA operation has become a standard procedure in many
hospitals [9]. Each year in France, hundreds of thousands of UGRA operations are performed.
The motivation for this thesis is to develop an e�cient and robust robotic-system for assisting
the anesthetists in performing UGRA.

In this chapter, we justify both the motivation behind this thesis by introducing the UGRA
procedure in Section 1.1. The limitation and challenges of the UGRA procedure are discussed
in Section 1.2. Then, existing robotic systems for medical surgeries are explored in Section 1.3.
Followed by explaining the objectives of this work and discussing its contributions to the �eld
of anesthesia in Section 1.4.

1.1 Ultrasound-Guided Regional Anesthesia (UGRA)

The term "anesthesia" comes from Latin and means "without sensation". Anesthesia does not
mean direct treatment, it allows the surgeons to treat, diagnose, or cure an ailment which would
otherwise be painful or hinder patient's health and recovery time.

In the next section, we provide a thorough description of Regional anesthesia (RA) and
Ultrasound-Guided Regional Anesthesia (UGRA).

1.1.1 Regional anesthesia

It wasn't until the late 1800s when surgeons and dentists alike began to use cocaine as a
topical analgesic to perform surgical procedures painlessly on conscious patients. Prior to
this development, painful procedures would require the use of general anesthetic agents,
most often ether, developed in 1846 by a dentist by the name of W.T.G. Morton who �rst

1 Grant number grant 2016-00108375 4



Chapter 1. Context

publicly demonstrated its e�ectiveness by performing a tooth extraction of a patient under
its in�uence [10]. However, general anesthesia carries inherent risks to the patient and can
prove to be impractical, particularly in an outpatient setting. Notable advancements over the
following decades would include the addition of vasoconstrictor to local anesthetic solutions,
the concept of nerve blockade, the development of the modern syringe, and the introduction of
several synthetic analogs of cocaine, which would prove to be safer and more e�cacious as local
anesthetics [11].

Regional anesthesia (RA) is most often used when the procedure is con�ned to a speci�c
region of the body, involves a large area of the body where injection of large amounts of an
anesthetic might cause side e�ects that a�ect the entire body, and does not require general
anesthesia. RA has saved lives and it calls for a cooperative patient and much patience on
the side of the surgeon and anesthetist. For decades, active research in the operations �eld
focuses on the possibility to introduce new methods that reduce risks and post-operative
pain. RA has become an essential routine for pain management. It allows to remove the
sensation of a part of the human body on which will be able to perform minor surgical
procedures. The main reason of performing RA is to replace general anesthesia and provides an
e�ective technique which o�ers faster operation settings, a signi�cant reduction in the duration
of hospitalization, and most important injecting the patient with a less quantity of anesthetic [12].

Regional anesthesia can be applied to either the central or peripheral nervous systems [13,14].
The central nervous system consists of the brain and spinal cord. The brain transmits and
receives information to/from the human body via the spinal cord. The main function of the
peripheral nervous system, such as the median nerve, is to circulate information between several
organs and the central nervous system [14]. Figure 1.1 shows the peripheral nervous system
where each nerve is linked to speci�c functionality. For example, the median nerve is a branch
of the brachial plexus innervating various muscles in the anterior part of the forearm and part
of the hand.

RA procedure consists in locating the nerve in order to inject a local anesthetic into
its periphery. Traditionally, there are two methods for locating the nerve: one based on
neuro-stimulation and one based on imaging guidance [15].

Regional anesthesia based on the neuro-stimulation technique consists in locating the
nerve blocks by stimulating the sensitive �bers. This process is linked to the triggering of
nerve impulses in a nerve using an electrical impulse. Just as this electrical impulse makes
it possible to trigger a muscular reaction which corresponds to the territory of intervention.
Once the nerve is located, a needle connected to a stimulator and a syringe is used to inject
the anesthetic liquid [15, 16]. Neurostimulation is a very well-known technique in RA, this
technique has been used for several years, and has been considered as the reference technique for
RA [17, 18]. However, this technique requires precise knowledge of the anatomy of the human
body in order to deposit the anesthetic in the vicinity of the nervous block only to avoid the
intra-neural injection, source of the lesion, and disabling nerve sequelae. Another drawback is
that neurostimulation is an invasive method that has the disadvantage of blind nerve research,
the accuracy of which is linked to good anatomical knowledge. In addition, perfect knowledge
of the anatomy is sometimes insu�cient for locating precision, due to inter-patient morpho-
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1.1. Ultrasound-Guided Regional Anesthesia (UGRA)

Figure 1.1: Nervous system diagram (Credit: Persian Poet Gal; wikimedia.org).
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Chapter 1. Context

logical variations. For that RA requires high experience anesthetists to avoid many risks such
as block failure, local anesthetic toxicity, nerve trauma, and neurological and vascular injuries [1].

On the other hand, during the last twenty years, several imaging techniques have been used
to perform RA [19]. Magnetic Resonance (MR) imaging technique provides a clear image but
due to the magnetic �eld, non-magnetic needles had to be used which makes the operation
more expensive and long. Computed tomography (CT) and �uoroscopy techniques provide clear
images but due to the x-ray radiation, the operation may harm the patient. The ultrasound
(US) imaging is a low cost, radiation free, and real-time acquisitions technique which provides
an additional value to RA. The combined technique is called Ultrasound-Guided regional
anesthesia (UGRA).

Many studies have shown advantages of using US imaging for RA. The results of these
studies have shown in particular a reduction in neurological complications [20]. In [21], an
analysis of the RA procedure carried out by anesthetists in training for 44 months showed 6 cases
of complications in 9000 blocks based on neuro-stimulation alone, while for ultrasound-guided
RA did not give any complications. Today recommendations have been issued by the health
services of several countries such as the United States of America and the European Society
which recommend the use of the US image for the procedure of RA in order to improve the
success rate and reduce the number of complications [20].

1.1.2 The UGRA procedure

UGRA is becoming a powerful technique in surgical procedures and pain management. US
allows a good anatomical structure visualization, which improves the success of the RA
operation, and reduces the risk of the RA failure. Figure 1.2 shows the procedure of UGRA of
the median nerve at the proximal region of the arm.

Technological developments in the �eld of US imaging have enabled the use of this non-
invasive technique to locate the nerves, identify the needle, and follow the injection of the local
anesthetic in real-time. The biggest advantage of this technique is the possibility of having
visual feedback, allowing direct localization of the nerves and surrounding structures (i.e. blood
vessels, tendons, etc.). US device gives, on one hand, the possibility of choosing the trajectory
of the most appropriate needle in order to reduce the risk of vascular puncture and accidental
intra-neural injection. On the other hand, this technique brings visual comfort to observe the
di�usion of the local anesthetic throughout the RA procedure. Precise control is then possible
over the quality injected, thereby considerably reducing the risks of peripheral neuropathy,
nerve trauma, and toxicity [23].

In this section, the US device is explained, followed by detailing the UGRA procedure from
the expert's point of view.
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1.1. Ultrasound-Guided Regional Anesthesia (UGRA)

(a) Positioning the US probe and the needle

(b) Anatomical slice

(c) 2D US plane

Figure 1.2: UGRA of the median nerve [22].

1.1.2.1 The ultrasound device

The Ultrasound (US) device enables the practitioners to have an idea of the current pose
of the target region and the needle inside the patient's tissues and to better understand the
orientation of the US probe and where the needle should be steered to. The use of US guidance
in the practice of RA requires high-performance US equipment and a thorough understanding
of anatomical structures. Figure 1.3 shows an example of the practice of UGRA where RA
anesthetist needs to acquire both a solid foundation in the �eld of US and acquire the practical
skills necessary to visualize nerve structures [24].

The main function of the US device is to send ultrasonic waves and receive the re�ective
waves containing the tissues characteristics. These ultrasonic waves are produced by the
piezoelectric e�ect. The piezoelectric crystals that constitute the heart of a US probe act
both as signal generators and receivers. The probe is subjected to electrical charges, where
the piezoelectric crystals transform the electrical wave into mechanical vibration, in order to
generate an ultrasonic wave.

US waves considered a high-frequency sound waves generated in speci�c frequency ranges
and sent through tissues. How sound waves penetrate a tissue depends on the range of the
frequency produced. Lower frequencies penetrate deeper than high frequencies. The frequencies
for clinical imaging (1-50 MHz) are well above the upper limit of normal human hearing (15-20
kHz). Wave motion transports energy and momentum from one point in space to another
without transport of matter [25]. As the sound passes through tissues, it is absorbed, re�ected,
or allowed to pass through, depending on the echo density of the tissue [26]. Substances with
high water content (e.g., blood, cerebrospinal �uid) conduct sound very well and re�ect very
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Chapter 1. Context

Figure 1.3: The UGRA Practice. (credit: clinicalgate.com).

poorly and thus are termed echolucent. Because they re�ect very little of the wave, they appear
as dark areas. Substances with low water content or high in materials that are poor sound waves
conductors (e.g., air, bone) re�ect almost all the sound and appear very bright. Substances with
sound conduction properties between these extremes appear darker to lighter, depending on the
amount of wave energy they re�ect.

Each ultrasonic vibration is characterized by a speci�c frequency and wavelength. The speed
of propagation depends on the tissues crossed, for example, the speed of air propagation is
330m/s, that of bone 3000m/s and that of muscle 1600m/s [26, 27].

Viewing nerves by the US requires the use of high frequencies providing high-resolution
images. Most nerve block location applications require frequencies in the range of 10-14
MHz [23] which make it possible to exploit surface structures.

The process of building the US image starts by emitting ultrasonic waves by the probe
and then receives it. These received waves id transformed into an electrical signal under
the piezoelectric e�ect. The electronics of the US system are responsible for amplifying and
processing these signals in order to convert it into a digital signal. The transformation of the
digital signal into a US image is based on several stages; the received signal is sampled in order
to be stored in a matrix. At the end of this sampling, the content of the matrix includes coded
values of gray levels obtained according to the intensity of the return echo. The quanti�cation
operation is generally based on a scale of 256 gray levels. An interpolation from the values of
the closest echoes is carried out in the second step, �nally, a spatial smoothing is carried out in
order to remedy the interpolation e�ect.

The US image is a�ected by the intensity strength of the echo wave which provides a
clear idea of the explored tissues. If the re�ected wave is of strong intensity, we observe a
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1.1. Ultrasound-Guided Regional Anesthesia (UGRA)

phenomenon known as hyperechoic (obtaining of the strongly white region) like for example the
bone. Conversely, if the re�ected wave is of low amplitude, this time we observe a hypoechoic
e�ect (very dark region) as is the case for certain peripheral nerves. Another particular case,
which manifests itself when no wave is re�ected and therefore no echo is detected giving rise to
the phenomenon of an anechoic zone (totally black zone) such as arteries.

Despite the variation in the tissue intensities, the US image still considered as low-quality
image. This image is often a�ected by various artifacts (Speckle noise, hidden anatomical
structures due to shadows in the image, absorption, or attenuation of the wave when crossing
soft tissues). Despite those limitations, the US is the standard intra-operative imaging modality
for UGRA.

Several types of probes are used for the UGRA procedure, where linear transducers stand
as the most frequent transducer used in this procedure. Linear transducers have a high scan
line density which produces the resolution necessary for direct nerve imaging. Figure 1.4 shows
di�erent linear probes which are used in the UGRA procedure.

Figure 1.4: US transducers for regional anesthesia. The photograph includes (left to right) broad
linear, small footprint linear, curved, sector, and hockey-stick transducers [25].

A good visualization of the nerve and the needle are a guarantee of the smooth running
of an uncomplicated UGRA as shown in Figure 1.5. Unfortunately, the quality of the video
is sometimes marred by the limitations linked to the settings of the US system as well as to
the probe which generates a degradation of the images. Hence, It is important to optimize the
probe settings and also to know the possible artifacts to avoid any complications during the
procedure.

1.1.2.2 The medical UGRA procedure technique from the medical aspect

UGRA is a complex procedure involving advanced manipulative skills of the US probe, as well
as the needle insertion. The UGRA procedure can be de�ned by the following steps:
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Figure 1.5: US image of the median nerve.

� Searching for the nerve blocks guided by the US. This search should visualize all the
anatomical structures in the image and locate the target area (the target nerve). Once
the target nerve position is suitable, the position of the probe should remain relatively
unchanged for the remainder of the procedure.

� The needle insertion procedure. It starts by �nding the needle point of insertion (The
interaction pivot point between the needle and the skin of the patient and named the
insertion point or the trocar in medical term). The anesthetist starts maneuvering the
needle around the insertion point until reaching the target nerve while avoiding risky
regions such as arteries.

� Once the needle is located near the target nerve, the anesthetic is administered locally
under direct US visualization until the nerve structures are completely surrounded by the
anesthetic.

Here, these steps will be discussed in more detail.

1.1.2.2.a Nerve localization techniques
Localization of the nerve is a prerequisite for a successful RA procedure. The �rst step

in the search for nerve blocks guided by the US is to be able to visualize all the anatomical
structures to locate the target area (nerve). All the possible settings, namely the penetration
depth, the frequencies, and the position of the probe, must be optimized to locate the target.
As a general rule, it is possible to identify almost all peripheral nerves in the human body,
but this requires the practitioner to have long training and regular practice of the US probe
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1.1. Ultrasound-Guided Regional Anesthesia (UGRA)

operative gesture [28,29].

Peripheral nerves have a fascicular or �honeycomb� echotexture. This consists of a mixture
of a nerve �ber (hypoechoic) and connective tissue (hyperechoic) content within the nerve.
Nerves that are surrounded by the hypoechoic muscle are usually easier to visualize than nerves
that are surrounded by hyperechoic fat because the nerve borders are more abvious to identify.
Nerves can be round, oval, or triangular depending on the size of the nerve, the frequency, and
the angle of the wave [30,31]. Furthermore, the nerve shape can change along the nerve path or
with strong probe compression [32].

There are two di�erent techniques to hold the US probe, shot-axis and long-axis techniques
as shown in Figure 1.6. The long-axis views are useful for demonstrating longitudinal distri-
butions of local anesthetic along the nerve path in one image. The short-axis sliding (sliding
the transducer along the known nerve path with the nerve viewed in short axis) is a powerful
technique not only to identify small nerves with the US but also to assess the longitudinal
distribution of local anesthetic along the nerve. The short-axis technique makes it possible to
obtain a cross-sectional image in which the nerves appear in multiple oval hypoechoic zones
surrounded by hyperechoic tissue. Most of the nerve blocks are detected using the short axis
technique.

Despite the peculiarity of the nerve structure that allows it to be localized, its appearance
can be confused with the structures that surround it such as blood vessels, and tendons [33].
For example, the appearance of the median nerve and tendon may be similar during the RA
procedure as shown in Figure 1.7.

The di�culty of locating the nerve is not limited to the ambiguity between its appearance
and other structures. Indeed, by manipulating the probe to optimize the quality of the image,
the visualization of the nerve can disappear from the US image. There are two explanations
for this phenomenon. On one hand, the peripheral nerves are very mobile structures that can
change position. This phenomenon was well described by [34], they demonstrated the variable
location of the median nerve in relation to the axillary artery, due to a slight pressure applied
by the probes. On the other hand, the re�ection and refraction of ultrasonic waves a�ect the
nerve appearance. The only way to get an optimal view of the nerves in a US image is to have
the waves re�ected on a nerve. If the conditions for a high re�ection rate are not met, the region
of the nerve in the US image will either be degraded or completely disappeared.

Therefore, it is important for the practitioner to know how to orient the probe and to
determine on which anatomical area it should be placed on the patient. In fact, in order to
obtain optimal visualizations, the techniques for handling the probe are essential.

To optimize the US image, the mnemonic PART (pressure, alignment, rotation, tilting) has
been recommended as shown in Figure 1.8.

� Pressure is necessary to minimize the distance to the target and compress underlying
subcutaneous adipose tissues. It is a useful maneuver that has numerous e�ects. First, it
moves the active face toward deeper structures to make them appear more super�cial. It
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Figure 1.6: Median nerve viewed in short axis (A and B) and in long axis (C and D) [25].

Figure 1.7: Median nerve and tendon US image.
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also helps di�erentiate between di�erent structures by the relative compressibility veins
are easy to compress arteries are somewhat compressible and pulsatile and nerves are
fairly incompressible.

� Alignment (sliding) refers to placing the transducer in a position over the extremity (or
trunk) at which the underlying nerve is expected to be in the �eld of view.

� Rotation allows �ne-tuning of the view of the target structure. As well as, it is used to
switch between the short axis and long axis imaging.

� Tilting helps to bring the face of the probe into a perpendicular arrangement with the
underlying target to maximize the number of returning echoes and thus provide the best
image.

Figure 1.8: PART technique for probe handling(pressure, alignment, rotation, tilting).

In general, probe Alignment (sliding) is often the most regularly performed in order to
locate the insertion of the syringe and locate the nerves [33]. Probe tilting can also improve
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image quality by optimizing the US contrast between the nerve and surrounding tissue. Probe
rotation also proves to be e�ective for clearly visualizing the entire needle.

1.1.2.2.b The needle insertion
Once the target image is optimal, the position of the probe should remain relatively

unchanged for the remainder of the procedure. In UGRA, a rigid needle is used for insertion, as
there are two basic approaches for needle insertion under US guidance, out-of-plane and in-plane
techniques [4]. With the out-of-plane technique, the needle tip crosses the plane of imaging as
an echogenic dot. With the in-plane approach, the entire tip and shaft of the advancing nee-
dle are visible. Figure 1.9 shows a schematic drawing of the US out-of-plane and in-plane imaging.

Figure 1.9: Schematic drawing of the short-axis (SAX) and long-axis (LAX) out-of-plane (OOP)
imaging (top panels), and SAX and LAX in-plane (IP) imaging (bottom panels). The nerve
shape is presented in red while the needle in gray.

There are several advantages to the out-of-plane approach to regional block. The out-of-
plane approach uses a shorter needle path than in-plane approaches. One disadvantage of the
out-of-plane approach is the extent of the unimaged needle path (structures that may lie short
of or beyond the scan plane). If the needle tip crosses the scan plane without recognition, it
can be advanced beyond the scan plane into undesired tissue. On the other hand, there are
several advantages to use the in-plane approach. It provides the most direct visualization of
the needle tip and shaft, and the injection. The needle tip is visualized before advancing. One
disadvantage is the long needle path, which results in more tissue for the needle to cross. Partial
line-ups (visualization of the needle shaft without visualization of the needle tip in the scan
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plane) create a false sense of security and therefore compromise the safety of the technique.
External marks on the transducer can be used to guide needle placement for in-plane technique.

However, skill is probably more important than the approach alone. There will probably
never be a good study comparing the two approaches (out-of-plane versus in-plane) because
of strong institutional biases regarding how to perform regional blocks. However, the in-plane
approach is most suitable for super�cial nerve blocks like the brachial plexus or the femoral
block, because the needle insertion angle is relative to the probe, which improves visualization
and facilitates the identi�cation of the needle.

One of the interesting characteristics of the procedures in RA is that they only cover small
distances and must be performed slowly. However, there still some di�culties in controlling
the needle movement while insertion in RA. The insertion point acts as a pivoting point
causing the movements of the instrument to be reduced from 6 to 4 degrees of freedom (DOF),
translational motion along its axis, and rotational motions about an instantaneous point on
the tool as shown in Figure 1.10. It can be inferred easily that two DoFs of the system are
lost. Consequently, the anesthetist hand movements about the insertion point are mirrored and
scaled relative to the instrument tip. As a result, RA procedures have a long learning curve for
the anesthetists because of longer procedure times, more di�cult manipulation of instruments,
tortuous ergonomics, and patient's anatomical discrepancies [35,36].

Figure 1.10: Needle insertion movements.
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1.1.2.2.c Injection of local anesthetic based on US guidance
Once the needle is close to the nerve, the anesthetic is administered locally under direct

US visualization until the nerve structures are completely surrounded by the anesthetic. If
the anesthetic spreads in the wrong direction, the needle can be repositioned to ensure the
proper anesthetic spread [37]. One of the most signi�cant advantages of UGRA is the ability
to identify in real-time the spread of local anesthetic around the peripheral nerves [38]. The
possibility of seeing the distribution of the local anesthetic directly by the US minimizes the
doses to be administered for the nerve blocks, which is particularly useful in multiple sequence
procedures [39].

Local anesthetics work by penetrating tissue and blocking pain signals from being transmit-
ted along nerve endings, preventing the pain signal from reaching the brain. The nerve endings
have channels for the electrolyte sodium (Na channels) on them. When tissue is disturbed, the
channels open and sodium enters the cell, changing the electrical charge. This electrical change
becomes a pain sensation when interpreted by the brain. The local anesthetics are sodium
channel blockers. In other words, they prevent sodium from entering the nerve endings, thus,
preventing pain. The patient won't be able to feel any pain after having a local anesthetic,
although he/she may still feel numbness and some pressure or movement. It normally takes a
few minutes for the drug to take e�ect, and it wears o� after a few hours. A stronger and higher
dose will last longer.

When performing regional anesthesia, the practitioner must decide on the speci�c local
anesthetic agent(s) as well as the volume, concentration, and mass to be injected. This is based
on the desired outcomes of block onset, intensity, duration, and adverse e�ects [40]. As well as,
the type and dose of anesthetic will depend on many factors. These include the patients' age,
weight, any allergies, the part of the body to be operated on, and any current medical condition.

Figure 1.11: Lidocaine is a commonly used local anesthetic (Credit: JL Johnson; Flickr.com).

Various drugs are used to block the pain. The drug works by acting on certain nerve
pathways to prevent the nerves in the area of application from sending signals to the brain.
Cocaine was the �rst used anesthetic, but now it is rarely used. Lidocaine is now the most
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widely used local anesthetic, but di�erent drugs are used for di�erent purposes. For longer
procedures, bupivacaine is more suitable, but it can be more painful when �rst administered.
An anesthetist may, therefore, use lidocaine �rst, then inject with bupivacaine later, if numbness
is needed for a longer period.

1.2 Limitations of UGRA

In RA, the anesthetic is injected close to a nerve, a bundle of nerves, or the spinal cord. Skill and
experience are needed for the anesthesia specialist to inject the anesthetic at the proper location
because the site of injection of the anesthetic has a signi�cant impact on its e�ectiveness. RA
risks and complications happen when the needle's tip touches the nerve which may cause nerve
damage. RA also carries the risk of systemic toxicity if the anesthetic is absorbed through the
bloodstream into the body. Other complications include heart or lung problems, and infection,
swelling, or bruising (hematoma) at the injection site. For that RA requires high experience
anesthetists to avoid many risks such as block failure, local anesthetic toxicity, nerve trauma,
and neurological and vascular injuries [1].

On the other side, �gure 1.12 shows the main di�culties of practicing the UGRA procedure
where the anesthetist holds the US probe in one hand and the needle and the injector in the
other. The anesthetist searches for the nerve location using the US probe until �nding a suitable
probe location. While preserving the nerve visualizing all the time in the same plan, the expert
inserts the needle toward the nerve and starts maneuvering the needle's tip away from the
unwanted risky regions such as arteries and tendons. During the insertion, the anesthetist
maintains the needle tip visualization or movement in the image frame until reaching close to
the nerve. Therefore, the anesthetist must perform complex hand-eye coordination to keep both
the needle and the nerve visible in the 2D plane of the US image. Finally and while keeping the
visualization of the nerve and the needle tip, and holding the needle tip position close to the
nerve, the anesthetist injects the anesthetic to complete the procedure.

As discussed before and based on these di�culties, practitioners are required to undergo
extensive US manipulating and needle control training for UGRA. In [41], the study has shown
that learning takes a long time to master this technique. This is due to the di�culty of locating
the nerve and the needle in the US image [42]. Another study in [43] aims to characterize the
behavior of novices as they undertook the challenges of learning the UGRA technique. In this
study, there were a total of 398 errors committed out of 520 operations, with the 2 most common
errors consisting of the failure to visualize the needle before advancement and unintentional
probe movement.

In [43], �ve quality-compromising patterns of behavior were identi�ed: (1) failure to recognize
the maldistribution of local anesthesia, (2) failure to recognize an intramuscular location of the
needle tip before injection, (3) fatigue, (4) failure to correctly correlate the sidedness of the
patient with the sidedness of the US image, and (5) poor choice of needle-insertion site and
angle with respect to the probe preventing accurate needle visualization.

Overall, the UGRA procedure implies a high level of surgical skills and requires a long
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Figure 1.12: The main di�culties of practicing the UGRA procedure.

learning process. Therefore, Robotic-assisted systems for UGRA is considered a great solution
that can provide the anesthetists with better control in nerve detection and needle trajectory
which leads to assist the overall procedure in the success rate for patient safety.

1.3 Robotic systems for medical surgeries

In the past few decades, the surgical practice has been revolutionized by the introduction of
advanced instrumentation enabling a more �exible procedure such as the minimally invasive
surgery (MIS). Similar to RA, the main advantage of MIS is attributed to a reduction in
patient trauma, resulting in faster recovery and lower hospitalization costs. MIS o�ers greater
challenges to surgeons. Due to the inherent kinematic constraints at the incision points where
the motions of MIS instruments are restricted to four degrees of freedom. Despite the lack of
dexterity and perception, all surgeries are moving toward MIS to give more bene�ts to patients
at the expense of a more stressful environment to surgeons.

Several major problems can be identi�ed during the MIS practice: the need of an �insertion
point� for an instrument causes kinematic restrictions [44]; the use of screens to provides
visual feedback leads to a loss of depth due to the 2D visual feedback [45]; maintaining the
imaging system and instrument control as precisely as possible cause human tremors and/or
fatigue due to the duration of the operation [46]; installation during surgery sometimes leads to
poor ergonomics for surgeons due to the length of the instruments which leads to fatigue and
sometimes tremors [47].

Along with the �ne development of hands-on surgeries, surgical robots have been introduced
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to assist surgeons in performing various surgeries. For the past 20 years or so, robotic minimally
invasive surgery has emerged to improve operating conditions in the operating room by assisting
the surgeon with speci�c tasks.

In 1920, the term "robot" was �rst used by Czech writer Karel �apek in his science �ction
play �Rossum's Universal Robots�. It introduced machines with a human appearance as arti�cial
workers. In the 1980s, robots have become a reality in several �elds of application such as
industry, medical, etc. Robotic arms have been developed and used to replace or assist humans
in tasks that are di�cult, arduous, or risky for the operator. Signi�cant e�orts have been
made to move from traditional robotics that are based on the idea of replacing humans, to
collaborative robotics which are based on interaction with human.

Compared to the hands-on MIS surgeries, the robotically assisted surgery is a more precise
operation that minimizes any potential damages which may be incurred from the negligence of
the surgeon's hands. A rigorous de�nition of �surgical robot� that �the surgical robot would be
a powered computer-controlled manipulator with arti�cial sensing that can be reprogrammed to
move and position tools to carry out a range of surgical tasks� [48]. Brie�y speaking, the surgical
robot is a robotic manipulator that is used to assist surgeons to perform surgical operations.
Historically, the �rst surgical robot is introduced by Kwoh in 1985 which called PUMA 560 and
aimed to hold a �xture next to the patient's head to locate a biopsy tool for neurosurgery [49].
Since then, many surgeries began to attempt surgical robots as the assistive devices in operation
rooms.

The key di�culty of using medical robots is that the surgeon has to deal with several
constraints. These constraints are exclusively presented to which the MIS robot should adhere
to guard safety. In an MIS, the surgical instrument, usually held by a robotic wrist, is moved
with relatively large angular mobility about a single point or within a limited spatial volume.
This constraint is called �fulcrum e�ect� [50, 51]. In UGRA, for example, the instrument pivots
at the point at which they enter the patient's body. Such constraint enforces the surgical
tool being manipulated with four degrees-of-freedom (DOF), including three rotational DOFs
pivoted at a point and one translational DOF whose axis moves through this point. This design
consideration has inspired researchers to design robots to articulate a mechanism that can
mechanically decouple rotational and translational motions of tools at the insertion point. This
mechanism is called the �remote center-of-motion (RCM)� mechanism [52]. Thus, the RCM
mechanism plays a principal role in the kinematic design of MIS robots.

In the context of surgical robotics, and whatever approach is chosen (remote handling
or co-handling), many robotic systems focus on the response to the RCM problem to avoid
damaging the tissue around the insertion point and to reduce patient pain in the event of
RA [53�55]. Di�erent robots have been used for assisting the MIS practice, where the RCM
mechanically constrained, controlled by free-wrist robots, or command constrained.

For mechanically constrained robots, the RCM is de�ned and mechanically imposed by the
kinematic structure of the robot, such as [56�58]. For robots with a free wrist, it is possible to
design a robot with its last two (or three) joints such as the AESOP system [59]. In this case,
the RCM is tied to the trocar/insertion area.
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(a) AESOP

(b) Probot

(c) Zeus

(d) Da vinci

Figure 1.13: Example of robotic systems for medical surgeries.

Constrained by command robots allow a precise control of the surgical instrument. However,
in order to be able to apply these robots to minimally invasive surgery, it is necessary to
calculate a virtual rotation point that constrains the robot control. Robots constrained by
control were built by designing a system speci�c for MIS or use an existing robotic arm
for the same purpose. Some notable and well-known systems are proposed in the last few
decades such as Zeus [60] and da vinci [61]. These robots are the most widely accepted
and sold robotic systems that applied to the medical �eld. Thanks to the full master-slave
mechanism, the surgeon can operate remotely from a �master� console that is physically
separate from the patient. On the other side, robotic arms were designed with the primary
objective of imitating human gestures and achieving their performance, such as Franka
Emika [62], Kuka [63] or universal robot [64]. Many researches were developed using a
robotic arm for an MIS application. Thus following the rapid development in the past years, the
robotically assisted MIS has been widely accepted by worldwide surgeons and patients nowadays.

To the best of our knowledge, this study proposed the �rst complete robotic-assisted system
for the UGRA. In the next section, the robotic system is presented in detail.

1.4 The proposed robotic-assisted UGRA system

UGRA o�ers a huge performance impact on the practice of regional anesthesia [3,4]. For several
years, there has been a growing demand for this technique in France and in other European
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(a) KUKA

(b) P-Rob

(c) Franka

(d) Universal Robot

Figure 1.14: Commonly used robotic arms in research projects.

countries [65]. As discussed in the Section 1.2, there are several limitations the anesthetists
may face during the UGRA procedure. Despite the long training that the anesthetists take, the
procedure can take the bene�ts from robotics and image processing researches that may give
assistance for the anesthetists during the procedure.

Robotic assistance are already used in some medical settings and show their huge impacts [7].
Robotic-assisted UGRA is a solution that can provide the anesthetists with better control which
leads to reduce the UGRA limitations. A `CoBot' (from collaborative and robot) is a robot
intended to physically interact with the human in a shared workspace [66]. This integration
strategy leverages the `strength' and `endurance' of robots with the �exibility and decision
making of human participants. Therefore, the goal of this research is to provide the anesthetist's
act with a robotic system that is CoBotically manipulated to facilitates performing the UGRA
procedure. It must be emphasized that this system is designed to be a complementary working
tool for human operators. For the intented goal, the proposed system does not replace the
anesthetist but assists him/her to perform UGRA. Furthermore, this robotic system can provide
great assistance by helping the experts with techniques and tools that improve the procedure
accuracy and safety such as avoiding nerve trauma or damage to healthy tissues. Moreover, it
could increase the anesthetist's experience by more teaching and learning to avoid unintentional
injuries.

Forthat, the objective of this thesis is to propose a complete robotic system for the UGRA
procedure. This system is divided into two connected robotic systems, a US probe holder
robot (PHR) and a needle holder robot (NHR). As shown in Figure 1.15, the PHR aims to be
CoBotically manipulated by the anesthetist to place the US probe on the patient's skin. PHR
must perform the following consequential tasks: co-manipulation of the US probe; nerve visual
servoing; follow the orientation of the needle. The NHR must also be co-manipulated by the
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anesthetist while using his/her expertise gestures. It will assist him/her to position the needle on
the insertion pointon the patient's skin, and to keep a safe needle motion inside the patient's body.

Figure 1.15: The proposed robotic-assisted UGRA procedure.

In this thesis, we focused on some aspects (as highlighted in Figure 1.15) for which we propose
novel techniques and methods. For the other aspects, such as visual servoing, it will be a part of
our future work. Overall, the work conducted during this thesis leads to three main contributions:

� The �rst contribution is to propose a tool that consists of processing information (feature)
from a US image in order to automatically detect and track the nerve blocks. Hence, to
facilitate the detection and tracking process, the target object should be di�erentiable
from other objects using image features. Nevertheless, choosing and extracting relevant
features is a complex task due to the nerve texture appearance and the noisy nature
of this type of image. In Chapter 2, we address these criteria by introducing a novel
texture descriptor, Robust Adaptive Median Binary Pattern (RAMBP). This descriptor
is evaluated for high noisy textures because choosing the suitable robust feature is a cru-
cial step in detection and tracking applications. This contribution is presented in Chapter 2.

� The second contribution is to propose various techniques for nerve detection and tracking
in the US image. These techniques are based on: texture descriptors (RAMBP); CNNs
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models; and a new novel merged CNNs model (RAMBP with CNNs model). The results
of nerve detection and tracking will be used as an input for visual servoing. Hence,
this would facilitate the anesthetist's daily routine and allow him/her to focus on needle
insertion and the anesthetic delivery. This contribution is introduced in Chapter 3.

� The third contribution proposes a robotic-control system for needle insertion. The robotic
control strategy leverages the `strength' and `endurance' of robots with the �exibility and
decision making of the anesthetist to facilitates performing the UGRA procedure. This
system provides a safe and �exible solution for the robot and the medical sta� in a shared
workspace. Moreover, this system allows the experts to control the NHR for a better
accuracy of the needle insertion. This contribution is presented in Chapter 4.
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Chapter 2
Robust Features Extraction

Outline:

In this chapter, the ultrasound image is analyzed by highlighting the importance of
�nding robust and strong features in the image. These features will be used as the
basis for detection and tracking.
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2.1. Introduction

2.1 Introduction

Ultrasound (US) imaging has been used in the last few decades and has an excellent safety
record. It is based on non-ionizing radiation, so it does not have the same risks as other types of
imaging systems that use ionizing radiation. Although the US image is generally considered a
good clear image, it su�ers from di�erent noises and artifacts [67]. The US image is a�ected by
the intensity strength of the echo wave which provides a kind of structural information of the
explored tissues. If the re�ected wave is of strong intensity, we obtain a bright regions called a
hyperechoic regions. while, if the re�ected wave is of low amplitude, we obtain a dark regions
called a hypoechoic regions. The peripheral nerves, such as the median nerve, are considered
as hypoechoic regions (bee comb-like structure) that is surrounded by hyperechoic regions.
Furthermore, US images are acquired by US scatter echo signals which are correlated in the local
medium and came from body tissues, structures, tissue microstructures, etc. But some parts
of the scatters come from multiplicative noises caused by scatters of locally correlated areas
which wavelength is smaller than US beams wavelength these noises called speckles. Another
cause of speckle-noise is when using coherent source and non-coherent detector in the US [68�70].

There exist di�erent studies on �ltering the speckle noise [71]. Nevertheless, prior image
enhancements would remove important information in the US image, such as the speckle
information. This information is important for the anesthetists for locating the needle and
recognizing di�erent regions in the US image. Therefore, robust nerve detection and tracking
should be made directly on the original image without any prior image enhancements such as
removing the hypoechoic region or by �ltering the image. For that, accomplishing detection or
tracking tasks is very challenging in US images.

Detection and tracking problems in the image and signal analysis require to take into account
complex information embedded in the data. Images might contain many thousands of pixel
values that represent di�erent objects. Even though humans can deal with both physical objects
and abstract notions in day-to-day activities while making decisions in various situations, it is
not possible for the computer to handle them directly.

A feature should contain the information required to distinguish between classes, be
insensitive to irrelevant variability in the input [72]. As well as, the features should be limited
in number, to permit e�cient computation of discriminant functions and to limit the amount of
training data required. Image features, such as edges and interest points, provide rich informa-
tion on the image content. It corresponds to local regions in the image and it is fundamental in
many applications in image analysis, such as recognition, matching, reconstruction, etc [72]. A
feature descriptor is an algorithm that takes an image and outputs descriptors/feature vectors.
Feature descriptors encode interesting information into a series of numbers and act as a sort
of numerical ��ngerprint� that can be used to di�erentiate one feature from another. Feature
descriptors help to improve the e�ciency of many tasks such as detection and tracking. For
that, choosing a suitable feature is a crucial step in detection and tracking applications.

Texture feature is an important cue for detection in many US images applications [73] since
some tissues show speci�c noisy texture properties, such as certain nerves. In this chapter,
we propose a novel and robust texture descriptor "Robust Adaptive Median Binary Patterns"
(RAMBP). As the US image considered a noisy image with texture regions, we evaluate the
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proposed descriptor on well-known noisy textures for the problems of texture classi�cation.

The structure of this chapter is as follows. Section 2.2 introduces the state of the art for
texture descriptors. Followed by detailing the proposed RAMBP descriptor in Section 2.3. A
performance evaluation of the RAMBP descriptor is presented in Section 2.4. The chapter ends
with conclusions in Section 2.5.

2.2 State of the art

Texture classi�cation is one of the major problems in image analysis and a well-known research
topic for its signi�cant rule to understand the texture recognition process. Given training
samples, texture classi�cation categorizes an input image to one of a set of known textures.
Texture classi�cation has a crucial value in the �elds of computer vision and pattern recognition,
including medical imaging [74], document analysis [75], environment modeling [76], and object
recognition [77].

Texture classi�cation is divided into two major problems, feature extraction and classi�ca-
tion [78]. Most researches target the feature extraction problem, due to the fact that having
a strong texture features are more crucial and critical than having a strong classi�er. The
long-standing need for e�cient and e�ective data classi�cation indicates the important role
of powerful and appropriate features. For any durable texture classi�cation application, the
feature extraction problem depends on two important points, descriptor quality, and time
complexity [78, 79]. The high-quality descriptor must be distinctive for di�erent texture classes
and should reach the highest robustness for di�erent texture variations such as rotation, scale,
blur, and di�erent kinds of noise.

One of the texture classi�cation methods that gained huge attention has been extensively
studied is the Local Binary Patterns (LBP). LBP is a simple yet powerful operator to describe
local image patterns and shows robustness to illumination, rotation, and scale [80]. within a
speci�c local area, LBP encodes the comparisons of neighboring pixels. And due to its low
computational complexity, LBP has been used widely as a solution for many problems, such
as texture classi�cation [81], object detection [82], image matching [83], image retrieval [84],
biomedical image analysis [85], face recognition [86], etc. For general texture classi�cation
purposes, LBP derivatives have been introduced with surveys given in [79, 87�91]. These
derivatives fuse LBP with other visual cues to improve LBP robustness, discriminativeness and
applicability such as ILBP [92], CLBP [93], RLBP [94], DLBP [81], etc.

However, despite the increase in discriminativeness, LBP derivatives have their weaknesses
in terms of feature dimensionality and robustness to noise such as Gaussian noise, Gaussian blur,
and impulse noise. These weaknesses have led to introduce several studies that aimed to present
a noise-robust operator. For example, in [95], the authors proposed Median Binary Patterns
(MBP) to add more sensitivity to microstructure and impulse noise robustness. Nevertheless,
MBP does not handle other types of noise and showed low performance for the high levels of
impulse noise. In [96], the authors introduced Binary Rotation Invariant and Noise Tolerant
(BRINT). Although BRINT samples the points in a scaled circular neighborhood which made
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it more distinctive and robust to noise, it su�ers from limitations in terms of robustness under
high noisy textures. In [97], Schaefer et al. proposed Multi-Dimensional Local Binary Patterns
(MDLBP), which added more information from di�erent radii and concatenated it in one
histogram. This makes the histogram more e�ective and robust to noise, but, on the other side,
it increases features dimensionality which leads to high computational complexity. Furthermore,
this approach su�ers in robustness under high noise corruption. In [98], the authors introduced
Adaptive Median Binary Patterns (AMBP). AMBP used a self-adaptive analysis window size
depending on the local microstructure of the texture which made the descriptor more robust to
impulse noise. Despite the noise robustness of this approach, it has limitations for textures with
a very high level of noise.

To overcome the problem coming from high noisy texture, few studies had been introduced.
For instance, Scale Selective Local Binary Patterns (SSLBP) and Median Robust Extended
Local Binary Patterns (MRELBP). Guo et al. [99] proposed SSLBP which uses a Gaussian
�lter to produce a scale space of a texture image. For each image in the scale space, the
pre-learned dominant binary patterns histogram is built. Then the scale-invariant feature
for each pattern is found by taking the maximal frequency among di�erent scales. SSLBP
considered an e�ective descriptor for textures under Gaussian noise. Nevertheless, SSLBP
�ltering procedure failed under impulse noise. On the other hand, Liu et al. [100] performed
median �ltering and compared it with a sampling scheme to introduce MRELBP. MRELBP
adds more microstructure and macrostructure information, but it uses a simple median �lter
procedure which leads to failure under Gaussian noise and extremely high level of impulse noise.

On the other hand, deep learnings have shown outstanding performances in texture classi-
�cation where it learns features from the data of interest such as [101, 102]. In [103], Cimpoi
et al. used �lter banks and Convolutional Neural Networks (CNNs) for texture recognition
and segmentation. The descriptor built on a pre-trained VGG-VD (very deep) model which
improves the performance. This approach is an e�ective texture descriptor and produces more
robustness for variable images recognitions, but it has weaknesses to the median and high noisy
textures, and some shortcomings in term of time complexity.

Although the binary patterns family has huge success in the computer vision �eld, there
are several weaknesses with these methods. In [91, 104], the authors performed extensive
comparisons for the existing local binary features for texture classi�cation, where many of the
existing local binary approaches su�er from a serious limitation. These limitations can be
concluded in the descriptor ability to handle textures with a high level of noise and to handle
di�erent types of noise which remains unsatisfactory.

Based on these limitations, the obvious question being raised here is how to reach high noise
robustness without any prior knowledge of the noise type, without any prior learning process,
and for di�erent kinds of noise such as Gaussian noise, Gaussian blur, and impulse noise. In
other words, performing the descriptor in noise-free data then try to classify the noisy and
noise-free textures under di�erent geometric and illumination condition.

Gaussian noise, Gaussian blur, and impulse noise are considered as the most frequent and
challenging noises in image processing, computer vision, and pattern recognition �elds. For
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that, to improve and ensure the best performance of the image processes such as classi�cation,
these noises should be detected, reduced, or removed. Some descriptors incorporate �ltering
procedure to improve the performance, such as Gaussian and median �ltering. Many techniques
have been developed to suppress Gaussian noise, such as mean �lter, wavelet denoising [105],
and kernel regression [106]. Nevertheless, these �lters are suitable for Gaussian noise but not
for other noises such as impulse noise. On the other hand, various �lters have been proposed
to remove impulse noise, such as median �lter [107] and adapted median �lter [108]. Hence
median and adaptive median �lters consider all pixels as noisy corrupted pixels, the �lter will
fail under images with a high level of noise. To avoid this drawback, the switching techniques
were introduced such as Boundary Discriminative Noise Detection (BDND), which takes the
advantages of detecting which pixel is corrupted and which one is not [109�111]. In this context,
using pixel classi�cation from switching techniques with binary pattern methods can lead to
better texture analysis for di�erent types of noise.

In the following section, an e�cient and simple local binary descriptor (RAMBP) is
proposed. It takes the advantages of switching techniques and median adaptive scheme to
include more robustness in features for texture with a high level of noise. RAMBP captures both
microstructure and macrostructure texture information and provides a better representation
of the local structures. RAMBP e�ectiveness and robustness will be examined for high noisy
textures classi�cation.

2.3 Robust Adaptive Median Binary Patterns (RAMBP)

To provide an e�cient texture descriptor, it should be discriminative and robust to noise.
All state-of-the-art descriptors share one or more weaknesses of sensitivity for high noisy
textures. RAMBP uses noisy pixel classi�cation, an adaptive window for the threshold and
binary modules, and regional values instead of using pixel intensities. Here in this section, a
background on binary patterns is presented. Followed by explaining all RAMBP descriptor steps.

2.3.1 Background

RAMBP is derived from the binary patterns familly. To facilitate understanding the RAMBP
principle in the next section, this section provides a backgound on the binary patterns derivatives
that leads to RAMBP.

2.3.1.1 Local Binary Patterns

The Local Binary Patterns (LBP) [80] is one of the powerful operators for describing image
texture features. The simplest, yet very e�cient, LBP feature vector can be created by two
steps. First, compare P neighbors of a central pixel to get the corresponding P-bit binary code
with regard to the center pixel's gray value as a threshold. Second, the image LBP can be
de�ned as
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LBPP (xc, yc) =

P−1∑
p=0

s(ip, ic)2
p (2.1)

where ic is the central pixel value, ip is the pixel value of the p neighbor, and s(ip, ic) can be
expressed as

s(ip, ic) =

{
1 ip ≥ ic
0 ip < ic

(2.2)

Figure 2.1 shows a simple example of applying an LBP operator on a 3 × 3 neighborhood.
Where the output central pixel after applying LBP is 193.

Figure 2.1: LBP operator applied to a 3× 3 neighborhood.

2.3.1.2 Median Binary Patterns

Median Binary Patterns (MBP) demonstrates very good discrimination properties and used to
provide more sensitivity to microstructure and noise robustness [95]. MBP operates maps by
comparing P neighbors and the central pixel to get the corresponding P-bit binary code with
regard to their median gray value as a threshold. MBP operates the same as LBP, but it takes
the median value of the selected window as a threshold instead of the value of the central pixel.
The indicator of Eq. 2.2 replaced by

s(ip, ic) =

{
1 ip ≥Med

0 ip < Med
(2.3)

where Med is the median value of the 3× 3 neighborhood.

Figure 2.2 shows a simple example of applying an MBP operator on a 3 × 3 neighborhood.
Where the output central pixel after applying MBP is 225.

2.3.1.3 Adaptive Median Binary Patterns

Adaptive Median Binary Patterns (AMBP) is an adaptive approach that incorporates a �ltering
process to obtain a robust representation of the local context [112] and considers image local
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Figure 2.2: MBP operator applied to a 3× 3 neighborhood.

variations as additional information. AMBP uses a median adaptive �ltering procedure which
made it more robust to noise. AMBP descriptor combines both LBP and MBP depending on
the noise and the microstructure information.

AMBP procedure is described in Algorithm 1. It starts by taking 3 × 3 neighborhood
window, then computes the median, minimum, and maximum values. If the median value is
greater than the minimum value and smaller than the maximum value, then the threshold will
depend only on this window, else the window will expand by one pixel in all directions to be
5x5, and so on. After �nding the acceptable threshold window, if the central pixel is greater
than the minimum value and smaller than the maximum value, then the threshold will equal
the central pixel, else the threshold will equal the median value. After obtaining the threshold,
AMBP computes the binary value of the central pixel within the 3× 3 window.

Algorithm 1: AMBP algorithm
Input: For each pixel(I) and maximum window size wmax.
Output: AMBP value for the central pixel.

1 for w < wmax do
2 Extract w × w window around I.
3 Find the median Zmed, minimum Zmin and maximum Zmax values in the w × w

window.
4 if Zmin < Zmed < Zmax then
5 break;
6 else
7 w = w + 1
8 end
9 end

10 if Zmin < I < Zmax then
11 τ = I (LBP);
12 else
13 τ = Zmed (MBP);
14 end
15 AMBP(I) obtained by using τ as threshold in the neighborhood Ω.

Figure 2.3a shows an example of a hypothetical image. AMBP starts by taking the 3 × 3
window around the central pixel, as can be seen in Figure 2.3b. The pixel in are sorted in the
ascending order, the median value equal to 0, the minimum value equal to 0, and the maximum
value is equal to 255. as can be seen that the median value is not greater than the minimum
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value, which means that this window is not acceptable and needs to expand by one pixel in
all directions. Figure 2.3c shows the expanded window 5 × 5. AMBP computes the median
value of the new window, which equal to 72, the minimum and maximum values are 0 and 255
respectively. In this window, the median value is greater than the minimum value and smaller
than the maximum value, which means this window is accepted to �nd the threshold in it. To
compute the threshold, AMBP checks, in the 5× 5 window, if the central pixel value is greater
than the minimum value and smaller than the maximum value, the central pixel equal to 202
which is greater than the minimum value 0 and smaller than the maximum value 255. So,
the threshold of this window will be set as 202. The threshold of AMBP binary value is ap-
plied to the 3×3 window and the binary pattern is equal to 010000101 which equal 67 in decimal.

(a) 7× 7 (b) 3× 3 (c) 5× 5

Figure 2.3: hypothetical image.

2.3.2 RAMBP overview

Figure 2.4 shows the scheme of the proposed RAMBP descriptor, where it can be seen it's
divided into three stages, the classi�cation process of noisy pixels detection, threshold process,
and generating the binary pattern. Here, these stages are presented in details.

Figure 2.4: Illustration for the RAMBP descriptor.

2.3.2.1 Classi�cation process for noisy pixels detection

As this section aims to perform texture classi�cation without any prior noise knowledge, the
�rst step consists of classifying each pixel in the image as corrupted or uncorrupted pixels. for
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that, the detection step of BDND algorithm [109] has been adopted.

Pixel classi�cation starts by taking a 21× 21 window around the central pixel, then examine
the pixel whether it meets the condition as an uncorrupted pixel. If the pixel considered as
a corrupted pixel in the �rst stage, another examination will be invoked by imposing a 3 × 3
window around the central pixel to ensure the examination for more con�ned local statistics. A
pixel classi�ed as a corrupted pixel, if it fails in both examinations. Algorithm 2 provides a full
explanation about pixel classi�cation step.

Algorithm 2: Noisy pixels detection
Input: The original image I.
Output: The image of labeled pixels C.

1 for each pixel position x0 do
2 For the current pixel I(x0), impose a 21× 21 window.
3 Compute V0 by sorting the pixels in the window.
4 Find the median value(med) of V0.
5 From V0, obtain the di�erence vector DV . DV [i] = V0[i+ 1]− V0[i], where the index

i = 1 : length(V0)− 1
6 Compute the left cluster range vL, where vL = V0[il] (il is the index of

max(DV

{
0, imed

}
)).

7 Compute the right cluster range vR, where vR = V0[ir] (ir is the index of
max(DV

{
imed, end

}
)).

8 Initialize three clusters of V0,
{

0, vL
}
,
{
vL, vR

}
, and

{
vR, 255

}
.

9 if I(x0) ∈
{
vL, vR

}
then

10 x0 labeled as uncorrupted pixel.
11 else
12 Repeat 2− 8 steps with 3× 3 window around x0. If I(x0) /∈

{
vL, vR

}
, label x0 as

corrupted pixel. Otherwise, x0 labeled as uncorrupted pixel.
13 end
14 end

Figure 2.5 provides an example of 5×5 window instead of 21×21 to facilitate understanding
pixel classi�cation algorithm (Algorithm 2) using the following procedure,

� The �rst step after choosing the window is to sort all the pixels in the window to ob-
tain V0, in the given example (Figure 2.5) V0 = [0 0 0 0 0 0 39 47 50 62 72 81 165
179 202 205 224 245 255 255 255 255 255 255 255], and the median value (med) of V0 is
165.

� Then the di�erence vector is obtained DV = [0 0 0 0 0 39 8 3 12 10 9 84 14 23 3 19 21 10
0 0 0 0 0 0].

� Find vL, the correspondence pixel in V0 that gives the maximum intensity di�erences in
DV left interval. (left interval of DV is located between the 0 and med in V0). In this
example vL = 81.
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2.3. Robust Adaptive Median Binary Patterns (RAMBP)

Figure 2.5: Pixel classi�cation example of 5× 5 window using the procedure of Algorithm 2. In
the image C, corrupted pixels are represented as 0 and uncorrupted pixels as 1.

� In the same manner, �nd vR, the correspondence pixel in V0 that gives the maximum
intensity di�erences in DV right interval. (right interval of DV is located between the med
and 255 in V0). And in this example vR = 179.

� Then the three clusters are
{

0, 0, 0, 0, 0, 0, 39, 47, 50 , 62, 72, 81
}
,
{

165, 179
}
, and{

202, 205, 224, 245, 255, 255, 255, 255, 255, 255, 255, 255
}
. The central pixel I(x0) = 202

belongs to the third cluster which considered as corrupted pixel and the pixel needs to
re-examine on 3× 3 window .

� As can be seen in Figure 2.4, sorting the pixels in the 3× 3 window gives V0 = [0 0 0 165
202 224 245 255 255] with med = 202. DV = [0 0 165 37 22 10 0]. vL = 0 and vR = 165,
which provide three clusters

{
0, 0, 0

}
,
{

165
}
, and

{
202, 224, 245, 255, 255

}
. The central

pixel I(x0) = 202 still belongs to the corrupted pixels clusters, which concludes that is a
corrupted pixel and C(x0) = 0.

2.3.2.2 Threshold Process

Finding the threshold value for each pixel is a crucial point for generating the binary pattern.
Using a corrupted central pixel as a threshold value, as LBP, will a�ect the noise robustness of
the descriptor. As well as, using a small or large region to obtain the median as a threshold
value will a�ect the descriptor. This leads to biased median value, due to missing information
for the small region or including a large number of pixels for the large region. For obtaining
the threshold value, adaptive window and pixel classi�cation are used to reach the maximum
robustness.

Algorithm 3 represents the threshold process of the proposed descriptor, which starts by
checking if the current pixel is classi�ed as a corrupted or an uncorrupted pixel. If the current
pixel classi�ed as an uncorrupted pixel, the pixel threshold value is equal to the current pixel
value (same as LBP). Otherwise, a 3 × 3 window is imposed around the current pixel and the
number of the uncorrupted pixels is counted. If the number of the uncorrupted pixel is more
than the corrupted ones, the threshold value is equal to the median of the uncorrupted pixels
inside this window. Otherwise, the window will be enlarged by 1 pixel in all directions (5 × 5).
This process will be repeated until the maximum window size is reached, where the threshold
value is equal to the median value of all uncorrupted pixel inside that window.
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Algorithm 3: Generation of local thresholds
Input: The original image I, the image of labeled pixels C, maximum window size Wm.
Output: Pixels threshold values T , and pixels corresponding window size WS.

1 for each pixel position x0 do
2 if I(x0) is classi�ed as uncorrupted pixel in C then
3 T (x0) = I(x0)
4 WS(x0) = 1

5 else
6 Initialize w = 3
7 Impose a window W (w × w) around x0 (W ∈ I)
8 Intialize WS(x0) = Wm

9 while W < Wm do
10 Find Nun = # uncorrupted pixels in W
11 if Nun ≥ W 2

2 then
12 WS(x0) = W
13 Break
14 else
15 Update W (w × w), where w = w + 2
16 end
17 end
18 Find Iun (uncorrupted pixels in WS(x0))
19 T (x0) = med(Iun)

20 end
21 end
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2.3. Robust Adaptive Median Binary Patterns (RAMBP)

Figure 2.6 illustrates an example of obtaining the threshold value after classifying the pixels
using the following procedure,

Figure 2.6: Threshold process example to facilitate understanding Algorithm 3.

� The current central pixel is classi�ed as a corrupted pixel, which leads to impose a 3 × 3
window around it.

� The next step consists of checking whether the number of uncorrupted pixels is greater
than the number of corrupted one. In the given example, # uncorrupted pixel = 3 while
# corrupted pixel = 4, which followed by ignoring this window and enlarge it to be 5× 5
window.

� In 5 × 5 window, # uncorrupted pixel = 14 while # corrupted
pixel = 11. This window considered accepted window, and the threshold
value will be obtained by taking the median value of the uncorrupted pixels,
T = med

{
255, 47, 255, 50, 0, 0, 224, 62, 0, 255, 255, 72, 0, 179

}
and equal to 67.

2.3.2.3 Generate the binary pattern

To reach the highest performance in texture classi�cation, the descriptor should balance the
classi�cation goals such as robustness to noise, discriminativeness, and low computational cost.
LBP descriptor conveys local structures, but to achieve better performance, discriminative
properties should be used by considering the e�ect of image patches instead of taking a single
pixel. To provide more information to the descriptor, these patches do not intersect with central
pixel threshold window (Section 2.3.2.2). As well as, and each patch size will be found using an
adaptive way that depends on each patch pixels. Figure 2.7 and Algorithm 4 demonstrates the
binary pattern module of the proposed descriptor.

The binary pattern module (Algorithm 4) represents the procedure of forming the binary
pattern. The module starts by �nding the neighborhood patches with a maximum size around
its central pixel. For each patch, a 3× 3 window imposed around its central pixel. If the number
of uncorrupted pixels is more than the corrupted pixels, this window considered accepted
window and the value of the patch is the median of the uncorrupted pixels in that window.
Otherwise, the window is enlarged to be 5 × 5 window. The process continues until reaching
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Algorithm 4: Generation of binary patterns
Input: The original image I, the image of labeled pixels C, maximum window size Wm,

pixels threshold values T , and pixels corresponding window size WS.
Output: The binary pattern (RAMBP).

1 for each pixel position x0 do
2 The distance between the central pixel and each patch center (ni): R = Wm +

WS(x0)
3 for each patch Pi (i ∈ 0 : 7) do
4 Initialize w = 3
5 Impose a window W (w × w) around Pi center (ni) (W ∈ I)
6 Intialize patch window size WPi = Wm

7 while W < Wm do
8 Find Nun = # uncorrupted pixels in W
9 if Nun ≥ W 2

2 then
10 WPi = W
11 Break.
12 else
13 Update W (w × w), where w = w + 2
14 end
15 end
16 Find Iun (uncorrupted pixels in WPi)
17 β = med(Iun)

18 S(Pi) =

{
1, T (x0) ≥ β
0, T (x0) < β

19 end
20 The binary pattern(x0) =

∑7
i=0 S(Pi)2

i

21 end
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2.4. Performance evaluation of RAMBP

Figure 2.7: Binary module scheme (Algorithm 4). Where x0 is the current central pixel, WS(x0)
is x0 corresponding window size (Algorithm 4), and P are the neighborhood patches with each
central pixel (n).

the prede�ned maximum window size. After �nding each neighborhood patch value, the binary
pattern (8bits) is computed with a simple procedure between the patches values and the central
pixel threshold value, where each patch represented in the binary pattern by 0 or 1.

2.4 Performance evaluation of RAMBP

The experiments were carried out with a core 7 Duo 3.50 GHz processor with 32GB RAM under
Matlab. Nine texture datasets were conducted in these experiments, which considered from the
most commonly used texture datasets. Table 2.1 summarized the used texture datasets, number
of classes, number of images, images size, and each texture challenges.

To evaluate the robustness of the proposed approach, k-nearest neighbor (k-NN) had been
used. The k-NN classi�er recognized as one of the most popular and simplest methods, the k-NN
is used with χ2 distance de�ned as

χ2(x, y) =
1

2

∑
i

(xi − yi)2

xi + yi
(2.4)

where x and y are the features vectors of two di�erent textures. k-NN is adopted with k
value equal to 1 for most experiments, but this parameter has been varied to test its in�uence
on the performance consistency.
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Table 2.1: Summary of the used Datasets.

Texture datasets # of classes # of images Image size(pxls) Challenges

Outex_TC10 [113] 24 4320 128× 128 Rotation changes
Outex_TC11 [113] 24 960 128× 128 Inca illuminant, rotations (0◦)
Outex_TC12 [113] 24 4800 128× 128 Illumination variations,

rotation changes
Outex_TC23 [113] 68 2720 128× 128 Inca illuminant, rotations (0◦)
Curet [114] 61 5612 200× 200 Illumination variation, rotations

and pose changes, specularities,
shadowing

Brodatz [115] 111 999 215× 215 Large number of classes, lack
of intraclass variations

BrodatzRot [115] 111 999 128× 128 Rotation changes, large number
of classes, lack of intraclass
variations

KTH − TIPS2b [116] 11 4752 200× 200 Pose changes, illumination
changes, scale changes

ALOT [117] 250 25000 384× 256 Strong illumination changes,
rotation changes, large number
of classes

In order to study the e�ect of the adaptive window maximum size, RAMBP performance
has been tested on Outex_TC11 dataset with di�erent maximum window sizes. Figure 2.8
shows the classi�cation score in di�erent applied noises for di�erent maximum window size
values. As can be seen, the larger window size gives the higher score, but the time complexity
will grow exponentially. Therefore, a good trade-o� should be taken between the accuracy and
the time complexity. In the experiments, 5 × 5 max window size is adopted since it gives high
classi�cation score and makes the algorithm run faster. In comparison with traditional LBP, the
proposed method is slower but it has less computational complexity and dimensionality than
many LBP descriptors used to address the noisy textures.

In this section, we start by evaluation of the proposed method on high noisy textures,
including Salt-and-Pepper (impulse) noise, Gaussian noise, and Gaussian blur. Followed by
experiment results of the proposed method on noise-free textures. In this paper, some of
state-of-the-art descriptors results have been reported from [104].

2.4.1 Noisy texture classi�cation

Noise robustness is a crucial point for evaluating descriptors. In this experiment, in order to test
the noisy textures and evaluate the descriptor robustness in a more accurate way, the random
noise generation has been repeated 10 times over the dataset, and the classi�cation results had
been noted by taking the average of these 10 tests. Noise-free images have been used for the
training step while testing step performed on the noisy images. Choosing this scheme makes the
noisy texture classi�cation very di�cult since the descriptor does not use any noise information
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Figure 2.8: Illustration of the performance according to the maximum window size that the
adaptive window could reach.

and any prior learning process.

2.4.1.1 Salt-and-Pepper noise

Salt-and-Pepper (impulse) noise introduces high or low values randomly distributed over the
image. Salt-and-Pepper noise has been applied to Outex_TC11 and Outex_TC23 datasets
with di�erent noise densities ρ. High noisy textures are very challenging as it can be seen in
Figure 2.9 where textures are visually unrecognizable from 30% of noise.
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(g) Noise-free (h) ρ = 5% (i) ρ = 15% (j) ρ = 30% (k) ρ = 40% (l) ρ = 50%

Figure 2.9: Example of Outex_TC11 and Outex_TC23 textures with di�erent impulse noise
densities.

The results of the proposed algorithm are listed in Table 2.2. It can be observed that the
classi�cation accuracy is improved after using the proposed method. Compared to the di�erent
state-of-the-art techniques, RAMBP yields the best results and outperforms other techniques,
especially on high noisy textures.
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Table 2.2: Classi�cation scores (%) comparison between the proposed descriptor (RAMBP) and
state-of-the-art descriptors for Salt-and-Pepper noise.

Dataset Outex_TC11 Outex_TC23
Noise parameter Noise density ρ Noise density ρ

Method 5% 15% 30% 40% 50% 5% 15% 30% 40% 50%

LBP [80] 85.4 15.5 5.4 4.2 4.2 66.0 9.9 3.8 1.8 1.5
LBPriu2 [80] 31.7 4.2 4.2 4.4 4.2 11.8 1.5 1.5 1.5 1.5
LBPri [80] 47.1 10.0 4.2 4.2 4.2 26.5 4.7 2.2 1.5 1.5
ILBPrui2 [92] 27.3 4.2 4.2 4.2 4.2 10.7 2.1 1.5 1.5 1.5
CLBP [93] 17.3 8.3 4.2 4.2 4.2 7.6 2.9 1.5 1.6 1.5
MBPriu2 [95] 31.0 8.3 4.2 4.2 4.2 17.0 2.5 1.5 1.5 1.5
MBP [95] 95.8 38.6 20.5 16.6 16.1 76.8 18.6 6.0 4.9 4.2
RLBPriu2 [94] 39.2 4.2 4.2 4.2 4.2 18.5 1.5 1.5 1.5 1.5
EXLBP [118] 27.3 4.2 4.2 4.2 4.2 12.2 1.5 1.5 1.5 1.5
NTLBP [119] 74.4 22.1 4.8 5.0 6.3 40.5 4.7 3.8 2.6 2.7
MDLBPriu2 [97] 71.9 13.5 8.3 4.2 4.2 38.2 3.7 2.9 2.5 1.9
DLBP [81] 29.8 5.4 4.2 4.2 4.2 16.5 4.9 1.5 1.5 1.5
BRINT [96] 30.8 7.1 6.0 4.4 4.2 15.9 1.5 1.5 1.3 1.5
LBPD [120] 25.2 8.3 4.2 4.2 4.2 10.3 2.9 1.5 1.5 0.1
SSLBP [99] 29.0 9.6 4.2 4.2 4.2 24.5 2.8 1.5 1.5 1.5
AMBP [98] 100.0 95.4 20.7 13.8 10.7 100.0 85.0 4.8 1.8 1.5
MRELBP [100] 100.0 100.0 100.0 85.8 50.2 100.0 99.9 94.0 54.6 19.2
FV − V GGVD(SVM) [103] 21.0 12.1 6.0 6.5 4.2 10.3 5.2 2.3 1.5 1.8
RAMBP 100.0 100.0 100.0 99.1 98.5 100.0 100.0 100.0 99.8 90.2
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As can be seen from the results, using rotational uniform scheme decreases the performance
of the LBP based descriptors. Using LBP and MBP gave better results than LBPriu2 and
MBPriu2, respectively. It can also be noticed from Table 2.2 that, MRELBP o�ers the
second best performance but its accuracy drops drastically with high noise densities (e.g. 50%).
Also, AMBP gives good results and noise robustness under low-density impulse noise but not
for high noise.

Although RAMBP previously mentioned performance shows a high score where KNN
(k = 1) provides the best match among all images, it is important to study the matched
percentage of the same class images. This percentage can be computed using di�erent k values
in k-NN. In other words, an image is classi�ed by the majority votes and assigned to the most
common class. For example k = 1, KNN provides the nearest image, then the examined image
will be classi�ed as that image class. For k = 3, KNN provides the nearest three images and
the examined image will be classi�ed to class with the majority votes between the three images
classes. For that, RAMBP performance has been tested with di�erent k values in k-NN. We can
notice from Figure 2.10a the stability and robustness of RAMBP in di�erent Salt-and-Pepper
noise densities where it keeps good accuracy even with high noise density and large value of k.
Also shown in Figure 2.10b, the descriptor performance over k has a more decreasing rate which
is proportional to the noise density. This happens may be due to the number of classes (i.e. 68)
in Outex_TC23 dataset. Nevertheless, the accuracy stays good for di�erent k values.
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Figure 2.10: The performance of RAMBP for Salt-and-Pepper noise according to k values in
k-NN. Where k starts from 1 to 21 with a step of two to avoid tie problem, and ρ parameter
indicates Salt-and-Pepper density.

2.4.1.2 Gaussian noise

Gaussian noise is an additive noise a�ects digital images gray values. Gaussian noise has been
added to Outex_TC11 and Outex_TC23 datasets with standard deviation σ = 5. Figure 2.11
provides an example of the used datasets after adding Gaussian noise, where visually it is
di�cult to see the global e�ect and the di�erence between noise-free and noisy textures, but it
can be seen the local information and pixels intensity are a�ected.

Table 2.3 shows the classi�cation results of the proposed method as well as the state-of-the-
art descriptors, where RAMBP provides the best performance among other descriptors. SSLBP
descriptor gives the second best results, followed by MRELBP, AMBP, and deep learning
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Figure 2.11: Example of Outex_TC11 and Outex_TC23 textures with Gaussian noise standard
deviation σ = 5, where it shows the changes in pixels values.
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techniques. But SSLBP yielded poor accuracy under Salt-and-Pepper as indicated in Table 2.2.
As can be observed from Table 2.2 and Table 2.3, the proposed method achieved the best results
in both experiments and showed nice consistency in di�erent types of noise.

Table 2.3: Classi�cation scores (%) comparison between the proposed descriptor (RAMBP) and
state-of-the-art descriptors for Gaussian noise with standard deviation σ.

Dataset Outex_TC11 Outex_TC23

Method σ = 5 σ = 5

LBP [80] 35.0 09.8
LBPriu2 [80] 17.7 8.4
LBPri [80] 16.0 7.9
ILBPrui2 [92] 17.5 10.4
CLBP [93] 11.9 5.6
MBPriu2 [95] 12.1 5.2
MBP [95] 59.4 22.0
RLBPriu2 [94] 22.1 11.9
EXLBP [118] 19.2 10.3
NTLBP [119] 24.0 9.0
MDLBPriu2 [97] 12.5 6.1
DLBP [81] 14.8 8.2
BRINT [96] 61.9 27.4
LBPD [120] 24.6 14.8
SSLBP [99] 97.1 91.5
AMBP [98] 96.5 74.3
MRELBP [100] 91.5 79.2
FV − V GGVD(SVM) [103] 93.1 71.5
RAMBP 99.0 95.9

To illustrate the stability of RAMBP for Gaussian noise, di�erent k values in k-NN have
been tested as shown in Figure 2.12. We can notice, a small decrease of RAMBP accuracy with
increasing the value of k. Overall, RAMBP provides good stability and robustness even at large
values of k in k-NN.

2.4.1.3 Gaussian blur

Gaussian blur, known also as Gaussian smoothing, is another kind of e�ects happened to images,
which results in removing image detail. This type of noise also modify the local structure
which a�ects the local binary patterns. In these experiments, Gaussian blur has been applied
to Outex_TC11 and Outex_TC23 datasets with di�erent standard deviations σ. Figure 2.13
illustrates an example of the used datasets with Gaussian blur.

Table 2.4 depicts the classi�cation scores after applying Gaussian blur. The proposed
method shows the best score with SSLBP method. The latest method performs nicely here
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Figure 2.12: The performance of RAMBP for Gaussian noise with di�erent k values in k-NN.
Where k starts from 1 to 21 with a step of two to avoid tie problem, and σ parameter indicates
Gaussian noise standard deviation.
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Figure 2.13: Example of Outex_TC11 and Outex_TC23 textures with di�erent Gaussian blur
standard deviation.
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because it includes the blurring process in descriptor generation. However, it must be recalled
the poor performance of SSLBP in Salt-and-Pepper noise as evidenced in Table 2.2. MRELBP
and FV-CNN have good performance under low noisy textures, but the accuracy vastly decreases
under higher noise.

Table 2.4: Classi�cation scores (%) comparison between the proposed descriptor (RAMBP) and
state-of-the-art descriptors for Gaussian blur with standard deviation σ.

Dataset Outex_TC11 Outex_TC23

Method σ = 0.5 σ = 0.75 σ = 1 σ = 1.25 σ = 0.5 σ = 0.75 σ = 1 σ = 1.25

LBP [80] 99.1 71.8 53.8 39.8 99.9 55.0 37.8 29.0
LBPriu2 [80] 94.2 46.5 24.6 12.7 72.4 30.3 16.6 9.7
LBPri [80] 86.9 44.6 26.0 18.1 57.7 28.3 16.0 9.4
ILBPrui2 [92] 97.3 59.8 29.4 20.4 81.7 43.2 25.1 16.7
CLBP [93] 98.8 74.8 49.6 23.1 86.6 55.4 36.1 21.2
MBPriu2 [95] 85.4 29.0 18.5 11.9 58.7 22.5 13.5 10.6
MBP [95] 97.5 73.0 50.9 39.5 99.0 58.2 40.7 28.3
RLBPriu2 [94] 95.0 49.8 28.7 16.5 75.4 33.2 18.4 10.7
EXLBP [118] 94.0 47.7 28.3 17.1 73.3 32.0 17.8 10.5
NTLBP [119] 96.3 49.0 33.1 19.4 80.1 35.7 21.7 14.1
MDLBPriu2 [97] 100.0 60.2 36.9 23.8 95.7 35.1 20.6 12.2
DLBP [81] 90.4 61.5 21.9 13.1 67.7 31.3 16.5 8.7
BRINT [96] 100.0 97.1 80.4 44.6 100 97.5 59.1 39.1
LBPD [120] 99.4 85.8 65.2 45.4 87.7 56.0 40.2 30.6
SSLBP [99] 100.0 100.0 100.0 100.0 100.0 100.0 100.0 90.6
AMBP [98] 100.0 99.0 88.7 52.6 100.0 99.5 81.4 53.8
MRELBP [100] 100.0 100.0 93.8 75.4 99.9 97.9 85.8 61.8
FV − V GGVD(SVM) [103] 100.0 100.0 96.5 89.8 99.6 94.1 83.1 71.8
RAMBP 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.2

The accuracy of the proposed method can also be observed in Figure 2.14 after varying k
values in k-NN. In the same Figure 2.14, the classi�cation accuracy is high and gets a�ected
with a small decrease after increasing the standard deviation and the value of k. It can be seen
that RAMBP has high stability and robustness among di�erent k values. In general, RAMBP
achieved the best results compared to the di�erent state-of-the-art techniques as apparent in
Table 2.2, 2.3 and 2.4.

2.4.1.4 Mixed noises

Most state-of-the-art methods deal with a single kind of noise such as Gaussian noise or impulse
noise. For that reason, it is interesting to examine the ability of the RAMBP descriptor to
classify textures with a mixture of a Gaussian noise, Gaussian blur, and impulse noise. In these
experiments, Gaussian noise, Gaussian blur and impulse noise were applied to Outex_TC11
with di�erent standard deviations σ and di�erent noise densities ρ. After applying mixed-noise,
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Figure 2.14: The performance of RAMBP for Gaussian blur with di�erent k values in k-NN.
Where k starts from 1 to 21 with a step of two to avoid tie problem, and σ parameter indicates
Gaussian blur standard deviation.

Tab. 2.5 shows the classi�cation performances of the proposed method and some state-of-the-art
methods as a baseline, where it is shown that the proposed method achieved the best performance.
It can also be seen in Tab. 2.5 that the order in which each noise is applied has a certain impact
on the results: thus, applying Salt-and-Pepper noise followed by Gaussian blur gives a lower score
than the other way round. This is due to smoothing of the local high impulse noisy structure
which leads to spreading the noise. Overall, Tab. 2.5 shows promising results and opens a new
challenge of mixed noise texture classi�cation.

2.4.2 Noise-free texture classi�cation

Noise-free texture classi�cation is challenging due to datasets properties mentioned in Table 2.1.
In these experiments, seven texture datasets have been used. The training and testing schemes
are di�erent from one dataset to another. For TC10 and TC12 Outex datasets, testing and train-
ing samples are well-de�ned by [80]. For TC10 the training set has no rotation, and the testing
set is rotated by

{
5◦, 10◦, 15◦, 30◦, 45◦, 60◦, 75◦, 90◦

}
rotation angles. Also, TC23 the training

set has no rotation, while the testing set is rotated by
{

0◦, 5◦, 10◦, 15◦, 30◦, 45◦, 60◦, 75◦, 90◦
}

rotation angles.

BrodatzRot is generated to test rotation invariance by applying a random rotation angle
for each sample in Brodatz. For Curet, Brodatz, BrodatzRot, and ALOT datasets, each
class samples was divided equally (50% train/test) using a random selection of the samples.
100 random couple train/test sets were generated and the classi�cation results are averaged
over the 100 random partitionings. For KTH2b dataset which has four samples of 11 classes
each, training is performed on three samples and testing on the remaining one, the results are
obtained by performing the experiment four times.

The result of texture classi�cation is depicted in Table 2.6, where RAMBP provides the
best results in some datasets and high performance for the others. Also, FV-CNN, SSLBP and
MRELBP techniques show high and competitive performances. However, since RAMBP does
not use any learning process and provides high performance for di�erent kind of noises, RAMBP
stands out the best descriptor in noisy and noise-free texture classi�cation.
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Table 2.5: Classi�cation scores (%) comparison between the proposed descriptor (RAMBP) and
some state-of-the-art descriptors as a baseline for mixed noisy Outex_TC11 texture with a
standard deviation σ and a noise density ρ (Gaussian noise(GN), Gaussian blur(GB) and Salt-
and-Pepper(SP)).

Method GN −GB GB −GN GN − SP SP −GN GB − SP

Order GNσ = 5 GBσ = 1 GNσ = 5 SPρ = 30 GBσ = 1
GBσ = 1 GNσ = 5 SPρ = 30 GNσ = 5 SPρ = 30

LBP [80] 53.65 32.61 7.51 8.33 10.42
LBPriu2 [80] 19.69 16.15 4.16 4.16 4.16
MBP [95] 75.0 46.25 6.67 7.29 8.3
AMBP [98] 98.06 92.9 7.71 8.96 27.40
RAMBP 99.4 99.6 97.9 93.4 95.7

Method SP −GB ALL ALL ALL ALL

Order SPρ = 30 GNσ = 5 GBσ = 1 SPρ = 30 SPρ = 30
GBσ = 1 GBσ = 1 GNσ = 5 GNσ = 5 GBσ = 1

SPρ = 30 SPρ = 30 GBσ = 1 GNσ = 5

LBP [80] 1.16 6.36 5.21 1.78 4.16
LBPriu2 [80] 4.16 4.16 4.16 4.16 4.16
MBP [95] 6.98 4.16 4.16 6.77 6.77
AMBP [98] 4.16 21.88 13.96 4.16 4.16
RAMBP 56.7 93.3 91.5 49.3 52.1
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Table 2.6: Classi�cation scores (%) comparison between the proposed descriptor (RAMBP) and
state-of-the-art descriptors for noise-free texture classi�cation.

Method TC10 TC12 Curet Brodatz BrodatzRot KTH2b ALOT

#classes (24) (24) (61) (111) (111) (11) (250)

LBP [80] 99.36 90.55 92.77 88.67 76.48 60.33 86.58
LBPriu2 [80] 99.69 92.16 97.03 90.70 79.22 62.69 94.15
LBPri [80] 86.69 83.68 95.38 89.93 71.73 61.48 93.29
ILBPrui2 [92] 99.66 93.34 94.66 91.66 82.27 61.93 95.71
CLBP [93] 99.45 95.78 97.33 92.34 84.35 64.18 96.74
MBPriu2 [95] 95.29 86.69 92.09 87.25 74.57 61.49 88.23
MBP [95] 98.52 97.17 91.24 89.27 76.67 60.19 91.30
RLBPriu2 [94] 99.66 93.53 97.20 91.09 79.59 61.20 94.23
EXLBP [118] 99.64 93.55 96.85 90.19 80.08 62.39 95.20
NTLBP [119] 99.32 95.27 96.11 89.31 80.25 61.30 94.47
MDLBPriu2 [97] 99.22 95.64 96.92 93.40 82.31 66.52 95.81
DLBP [81] 99.46 91.97 94.38 88.73 75.04 61.72 NO
BRINT [96] 99.35 98.13 97.02 90.83 78.77 66.67 96.13
LBPD [120] 98.78 96.67 94.23 89.74 74.79 63.47 92.82
SSLBP [99] 99.82 99.36 98.79 89.94 80.03 65.57 96.68
AMBP [98] 99.68 98.12 95.64 90.67 79.86 62.73 95.82
MRELBP [100] 99.82 99.58 97.10 90.86 81.92 68.98 97.28
FV − V GGVD(SVM) [103] 80.00 82.30 99.00 98.70 92.10 88.20 99.50
RAMBP 99.90 99.70 98.50 94.05 86.98 68,86 97.59
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2.4.3 Computational complexity

Time complexity is considered a crucial point, especially for texture classi�cation. Important
aspects that a�ect the running time for any descriptor are feature extraction time and the feature
dimensionality. In the literature, it is generally the performance results of the descriptor that are
focused on, while time complexity has received less attention. Table 2.7 demonstrates the feature
extraction time and dimensionality of RAMBP for the Outex_TC11 database. In Table 2.7,
the average time is reported for each method. This average is calculated over 480 images of
size 128 × 128 without including the training time for some methods marked as (?). Di�erent
schemes are de�ned for parameters radius (r) and number of neighbor members (p), which a�ect
the feature dimensionality and feature extraction time. Feature dimensionality, which is the �nal
dimensionality of each method provided to the classi�er, has been noted. It can be observed from
Table 2.7 that FV − V GG is the most computationally expensive method for feature extraction
and has a very high feature dimensionality. RAMBP is slower than few state-of-the-art methods,
but due to its strength and robustness in di�erent kinds of noise and noise free classi�cation, as
well as its low dimensionality, it provides promising and competitive results, in addition to the
possibilibity of using GPUs and parallel programming which ensure a real-time process.

Table 2.7: Computational complexity comparison between the proposed descriptor (RAMBP)
and state-of-the-art descriptors. Di�erent schemes for parameters (r, p) are de�ned. Sch 1: (1, 8),
(2, 16), (r, 24) for 3 ≤ r ≤ 9; Sch 2: (r, 8) for 1 ≤ r ≤ 9; Sch 3 (1, 8) and (r, 24) for 2 ≤ r ≤ 9;
Sch 4: (1, 8), (2, 16) and (3, 24); Sch 5: (1, 8), (3, 8) and (5, 8); Sch 6: (r, 8), r = 2, 4, 6, 8; Sch
7: (3, 24), (9, 24). Methods labeled with (?) are those requiring extra computation time at the
feature extraction stage.

Method Scheme Feature extraction Feature
time (ms) dimensionality

LBPriu2 [80] Sch 1 87.2 210
LBPri [80] Sch 2 47.5 108
ILBPrui2 [92] Sch 1 90.8 420
CLBP [93] Sch 1 127.9 3552
MBPriu2 [95] Sch 1 215.6 420
RLBPriu2 [94] Sch 1 488.6 210
EXLBP [118] - 91.3 273
NTLBP [119] Sch 1 332.3 388
MDLBPriu2 [97] Sch 5 26.3 1000
DLBP [81] Sch 1 (?)565.3 14150
BRINT [96] Sch 3 248.8 1296
LBPD [120] - 54.2 289
SSLBP [99] Sch 7 (?)180.0 2400
AMBP [98] Sch 4 92.5 1536
MRELBP [100] Sch 6 416.6 800
FV − V GGVD(SVM) [121] - (?)2655.4 65536
RAMBP - 225.4 256
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2.5 Conclusion

It is well known that the visual properties of US images are degraded by many e�ects such as
artifacts, signal degradation, and speckle noise. These e�ects make detection and tracking very
challenging. For that, the use of powerful and noise-robust features is a crucial step for accurate
detection and tracking. In this chapter, we proposed a new e�cient and robust descriptor,
Robust Adaptive Median Binary patterns (RAMBP).

The RAMBP descriptor uses pixel classi�cation and adaptive analysis to ensure strong
discriminativeness and noise robustness. Since the US image shares textures properties, RAMBP
was tested against di�erent descriptors for noisy texture classi�cation. The proposed descriptor
was evaluated on noisy textures including Salt-and-Pepper, Gaussian noise, Gaussian blur,
and mixed noise. Experimental results indicated that RAMBP outperforms other existing
descriptors in handling high-noise texture classi�cation and performs as one of the best in
noise-free texture classi�cation. Moreover, RAMBP achieves a good running time and low
feature dimensionality.

RAMBP descriptor will be used and evaluated in the next chapter for the detection and
tracking in US images.
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Outline:

Accurate and consistent nerve detection and tracking is essential for safe and e�-
cient robotic-assisted UGRA system. In this chapter, di�erent nerve detection and
tracking techniques are evaluated in terms of accuracy, consistency, time complexity,
and handling di�erent nerve situations.
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3.1. Introduction

3.1 Introduction

The UGRA procedure requires anatomical knowledge and skills in the use of US imaging,
as well as a high degree of concentration by the anesthetist in locating the nerve [5, 6]. In
addition, it is not always easy to locate certain nerves in the practice of UGRA. In this work,
a robotic-assisted UGRA system is proposed where this chapter aims to develop tools to assist
the anesthetists with accurate nerve detection and tracking.

Although there has been extensive development of detection, and tracking algorithms for
US images [122�125], it is still an open problem, especially for RA. So far, very little attention
has been paid to the nerve detection and tracking. In the previous chapter, we proposed
Robust Adaptive Median Binary Patterns (RAMBP) which has the advantages of e�ectiveness
and robustness to textures with di�erent high noises. Using detectors or trackers based on
RAMBP would provide a good performance, since the nerve regions considered as a noisy
texture. However, we believe Convolutional Neural Networks (CNNs) models are e�ective
too for US image textures. Thus, to learn more optimal features, it is more interesting to
merge RAMBP with CNN models to achieve better performance for nerve detection and tracking.

In this chapter, we propose di�erent methods to detect and track the nerve in US images
in Section 3.2 and 3.3 respectively. These methods are based on texture descriptor (RAMBP),
CNNs models, and the proposed merged model (texture descriptor with CNNs). In Section 3.4,
experimental setups, results, and discussion are detailed. The chapter ends with the �nal
conclusions in Section 3.5.

3.2 Nerve detection

In the literature, several methods have been implemented to deal with the problem of object
detection. These works accomplished in various applications such as medical imaging [126],
surveillance [127], robotics [128], etc. There exist few researches aiming for nerve region
detection, where these studies based on using texture descriptors [71] or CNN [129] architectures
to di�erentiate the nerve region from other regions in the US images.

Texture is an important cue for detection in many US images applications since some
tissues show speci�c texture properties, such as certain nerves. The traditional approaches
use handcrafted texture features to classify textures in US images [130]. In [131], the authors
proposed a descriptor based on the combination of median binary pattern and Gabor �lter to
characterize and classify the median nerve tissues.

On the other hand, CNN [132] have received signi�cant attention in computer vision and
machine learning applications such as object detection [133], image classi�cation [134], and
image segmentation [135]. Motivated by these breakthroughs, several CNN based methods
have been developed in order to signi�cantly improve object detection performance in the
US medical images [136, 137]. However, very little attention has been paid to nerves in the
US images [125, 138, 139]. In [129], the authors used a convolutional neural network and
spatiotemporal consistency to segment e�ciently the nerve region.
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Despite the promising results obtained by the texture descriptors or the CNN based
detectors, still, the nerve detection topic requires further development and examination. In this
section, we propose new techniques for detecting the nerve in the US images. These techniques
are based on texture descriptor (RAMBP), CNNs models, and merged model (RAMBP with
CNNs models).

3.2.1 Nerve detection using RAMBP descriptor

In the current section, we present nerve detection using RAMBP descriptor using two techniques,
Support Vector Machine (SVM) [140] and 1D CNN [132]. Although 1D CNN considered a
CNNs model but, here in this section, we use RAMBP descriptor as input for the 1D CNN.
Figure 3.1 illustrates the entire processing chain of the two techniques.

Extracting the features is one of the essential steps in detecting the nerve in the US image.
This step consists of extracting signi�cant information from the nerve. The visual properties
(features) of nerve tissues in US images can vary from patient to patient. In addition, the
position of the probe can signi�cantly a�ect these properties. To deal with such a situation, the
SVM and 1D CNN models are trained on di�erent nerve appearances.

(a) SVM

(b) 1D-CNN

Figure 3.1: Schematic of nerve detection using RAMBP descriptor. (a) SVM classi�er. (b) 1D
CNN classi�er.

As shown in Figure 3.1a and for the SVM classi�er, �rst, feature extraction was performed
to represent the nerve texture where the RAMBP is presented in Chapter 2. Then, the 1D
RAMBP histogram is used with an SVM algorithm for the training and testing phase which
results in building an SVM model.

For 1D CNN and similar to SVM classi�er, RAMBP descriptor was performed to represent
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the texture of the nerve. The 1D CNN architecture is constructed to learn deep visual
features from RAMBP histogram. As shown in Figure 3.1b, the 1D architecture has four
1D convolutional layers, four 1D max-pooling layers, four batch normalization layers, a fully
connected layer, and the top layer of this architecture is the ReLU layer. The �rst convolution
layer has 32 convolution kernels of size 5 with the 'same' padding (the output feature map has
the same spatial dimensions as the input feature map). When this 1D vector is passed into the
�rst convolution layer, 32 various learned �lters produce di�erent responses considered as the
extracted features. This followed by normalizing the features by the �rst batch normalization
layer. After that, these features are passed to the �rst pooling layer with a size of 4. As shown
in Figure 3.1b, the reduced features from the �rst max-pooling layer are passed to the second
convolution layer. After that, the sequence of layers is repeated by taking the second, third,
and fourth convolution, batch normalization, and max-pooling layers, but the third and fourth
convolution layers have kernels of size 5 and produce 64 di�erent features. The outputted
features by the fourth max-pooling layer are �attened and inputted into the fully connected
layer. Finally, the features are passed through the last fully connected layer where the nerve
images will be recognized by the softmax classi�er in the top layer of this architecture.

As illustrated in Figure 3.1, several US images were used as a training set in order to
represent di�erent aspects of the nerve. To detect the nerve, the SVM and 1D CNN models
are used to compare the sliding windows in the input image (test) and the models. For
SVM, the classi�cation procedure generates a list of candidate region positions for each
nerve. From these positions, the �nal nerve position is assigned to the region where the
con�dence level is the highest as shown in Figure 3.1a. On the other side and for 1D
CNN, the classi�cation procedure output is the prediction score of each sliding window in the
image. From these scores, the �nal nerve position is assigned to the region with the highest score.

3.2.2 Nerve detection using CNNs model

In this section, the 2D CNN architecture is constructed to learn deep visual features from US
images. As observed in Figure 3.2, this architecture has four 2D convolutional layers, four
batch normalization layers, two 2D max-pooling layers, and a fully connected layer as shown
in Figure 3.2. The �rst convolution layer has 32 convolution kernels of size 3 × 3 with the
'same' padding. The output of the �rst convolution layer produces 32 various feature maps.
This followed by normalizing the features by the �rst batch normalization layer. Then, the
normalized features are inputted into the second convolution and batch normalization layers,
which have the same parameters as the �rst layers. The normalized learned features are reduced
by the �rst max pooling layer with a size of 2 × 2. After that, the sequence of layers is repeated
by taking the third and fourth convolution and batch normalization layers, followed by the
second max pooling layer with a size of 4 × 4. The third and fourth convolution layers have
the same parameters as the �rst two layers but with 64 various learned �lters that produce
64 di�erent feature maps. Then, the features produced by the second max-pooling layer are
�attened and passed into the fully connected layer. Finally, the features are passed through the
last fully connected layer where the nerve images will be recognized by the softmax classi�er in
the top layer of this architecture.

As illustrated in Figure 3.2, several US images were used as a training set in order to
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Figure 3.2: Schematic of the 2D CNN architecture.

represent di�erent aspects of the nerve. To detect the nerve, the 2D CNN models are used
to compare the sliding windows in the input image (test) and the models. The classi�cation
procedure output is the prediction score of each sliding window in the image. From these scores,
the �nal nerve position is assigned to the region with the highest score.

3.2.3 Nerve detection using the merged model

Despite the strong characteristics of texture descriptors or the CNN based detectors, still,
the nerve detection topic requires further development and examination. Thus, to learn
more optimal features, we propose to learn high-level features from di�erent dimensional data
using di�erent-dimensional CNNs. The merged deep CNN architecture has two branches,
a one-dimensional (1D) CNN branch (RAMBP 1D histograms) and a 2D CNN branch (2D
US images) as shown in Figure 3.3. These two architectures aim to learn deep features and
concatenate them to form the merged deep network.

Figure 3.3: Schematic of the merged 1D-2D CNN architecture.

As shown in Figure 3.4, the merged model is build from the 1D and 2D CNN model which
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are presented in Section 3.2.1 and 3.2.2, respectively. The merged model remove the second fully
connected layer from each model and replace it by a merge layer. After the deletion of the last
fully connected layer, the 1D CNN and 2D CNN are merged by a merged layer. The merged
layer can be expressed as

zl =
[
zl−11D zl−12D

]
(3.1)

where zl−11D and zl−12D are the learned features produced by the fully connected layers of the 1D
and 2D CNN branches, respectively.

When the concatenated features are passed through the last fully connected layer, nerve
region will be recognized by the softmax classi�er in the top layer of this architecture.

Figure 3.4: An illustration of the merged CNN model.

3.3 Nerve tracking

Tracking is one of the fundamental tasks in computer vision and image analysis, and it is
used in a wide range of applications such as video surveillance, medical imaging, robotics, etc.
Tracking is an easy task when the target objects are isolated and easily distinguishable from the
background, but it is a very challenging task when the image su�ers from illumination changes,
shape deformation, object disappearance, viewpoint variation, etc [141]. Tracking failure could
happen easily under the noise, illumination changes, occlusion, and deformation of the target.
Therefore, tracking the nerve in US imaging modality is a very challenging task.

Tracking in US images is a very challenging task due to the degradation of the visual
property of US images. Various methods have been proposed in the literature regarding tracking
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in US images. In [142], Li et al. improved active contour by incorporate intensity information
with edge gradient to track the tongue in US images. In [143], the author used Markov random
�eld for segmenting and tracking automatically the tongue contour. Nascimento et al. used
multiple model data association tracker with nonlinear �lters to track the left ventricle in the
US images [144]. In [145], the authors proposed a variant of active appearance modeling to
detect and track the tongue in US images. The technique proposed in [146]based on building an
observation distribution using deep neural networks, which have been used with the systole and
diastole motion patterns to track the left ventricle in the US images. In [147], a new technique
is proposed using a Kalman �lter with an elliptical model to track the center of vessels in US
images. Novotny et al. searched for long straight objects by using generalize Radon transform
and Graphics Processor Unit (GPU) for tracking medical instruments in three-dimensional
US images [148]. In [149], the authors used region-based tracking to track endocardium in
three-dimensional US images. As far as we know, there is no tracking study addresses nerve
regions in US images.

In this section, we propose di�erent techniques for tracking the nerve in the US images.
These techniques are based on texture descriptor (RAMBP), CNNs models, and the proposed
merged model (RAMBP and CNNs model).

3.3.1 Nerve tracking based on RAMBP descriptor

Feature tracking o�ers a wide range of application possibilities in computer vision and control
theories, such as medical robotics, surveillance, etc. A robust extraction and real-time tracking
of features is a big step to the success of other tasks (e.g. visual servoing). Among popular
feature tracking methods, there are three robust and e�cient tracking algorithms, particle �l-
ter [150], mean-shift [151] and Kanade-Lucas-Tomasi (KLT) [152]. Particle �lter and mean-shift
algorithms used to �nd the similarity between the current image and the target nerve, and it
is based on histogram representations. KLT used the frame to frame object tracking, which
consists of matching object feature points or descriptors between these images and calculate the
displacement vector.

LBP descriptor family have been used for tracking in many US images applications, it
presents many advantages such as discrimination e�ciency, illumination changes, and rotation
invariance, and low computation cost [80]. In [153], Ning et al. used LBP for describing
color-texture histogram with a mean-shift algorithm. In [154], the author improved the particle
�lter to handle illumination changes by using LBP as a color-texture histogram. Histograms of
Oriented Gradients (HOG) is also a powerful descriptor, Bilinski et al. performed multi-object
tracking under occlusion using HOG descriptors [155]. However, the previously mentioned
texture-based tracking methods have some notable limitations, mostly the sensitivity to noise.
To the best of our knowledge, there is no study that addresses the problem of noisy texture
tracking, particularly nerve tracking for RA application.

Since we deal with texture regions in US images it would be more interesting to use robust
descriptors. Several studies aim to increase the robustness of noisy textures classi�cation using
robust local binary pattern approach [95, 96, 112, 156, 157]. Figure 3.5 describes the tracking
process where the used deterministic tracking algorithms are combined with di�erent kinds of
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feature extraction methods. The process starts by taking the nerve previous location and input
it to the feature descriptor (RAMBP). This followed by applying the feature tracker. These
trackers compare the previous nerve location features with the features that had been taken
from the candidate nerve location.

Figure 3.5: The �owchart of the tracking process.

3.3.2 Nerve tracking based on CNNs models

It is more bene�cial to exploit recent trackers based on deep learning processes, since it has
shown excellent performance in many computer vision applications. Motivated by CNNs
breakthroughs, several deep-learning based trackers have been developed in order to signi�cantly
improve the tracking performance. These research works showed promising results for di�erent
tracking applications, such as [158�169].

In the literature, few methods introduced the tracking using deep-learning in US images.
In [146], the authors built a deep neural network observation distribution to track the left
ventricle endocardium in US images. In [170], The authors used deep neural networks to build a
new observation model in a particle �lter to track and segment the left ventricle in US images.

This section aims to track nerves in US images using deep-learning methods, and as such
these methods should be robust enough to track di�erent nerve situations. The visual tracker
starts by generating the target model in the �rst frame, then extracts features in the next
frame to �nd candidates' models, and �nds the best match between target and candidate
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models. Most existing deep trackers use CNN either to generate appearance models, to
match object model with its candidates, or to distinguish the object from the surrounding ar-
eas. Therefore, 13 deep-learning tracking methods are tested to track the nerve in the US images.

In this work, we conducted a comparative study of thirteen deep trackers for tracking the
nerve in the US images. These trackers are built by stacking di�erent CNN layers to track
the nerve in US images. The trackers are Continuous Convolution Operators Tracker (C-
COT) [158], E�cient convolution operators (ECO) [159], Convolutional Network based Tracker
(CNT) [160], Multi-Domain convolutional neural Networks (MDNet) [161], Structure-Aware
Network (SANet) [162], Fully-Convolutional Siamese Networks (SiameFC) [163], Correlation
Filter Network (CFNet) [164], Discriminant Correlation Filters Network (DCFNet) [165],
Multi-task Correlation Particle Filter (MCPF) [166], Hedged Deep Tracking (HDT) [167],
Hierarchical Convolutional Features Tracker (HCFT) [168], Deep-Learning Tracker (DLT) [141],
and Convolutional RESidual Tracker (CREST) [169]. Experimental detail is presented in
Section refexper.

3.3.3 Nerve tracking based on 1D-2D merged model

As Section 3.2.3 discussed the possibility of merging texture descriptors with CNNs model for
nerve detection, it is interesting, also, to use the merged model the tracking task. Herein, we
propose to use the merged 1D-2D CNNs model (Section 3.2.3) with three tracking techniques
to track the nerve in US images. The �rst technique is based on detection using the merged
CNNs model in the next frame search area bigger than the nerve previous location. The
second technique is based on particle �lter (PF) tracker [150] where the merged CNNs model
is responsible for providing the particle weights. The third technique combines the �rst two
trackers.

The �rst tracker (the merged 1D-2D CNNs based search tracker) starts by �nding the search
window (area). The search window is 4 times bigger than the previous nerve location where
this location represented by a window around the nerve in the previous frame. To track the
nerve, the merged CNNs output is used to compare the sliding windows in the search area. The
tracking procedure consists in the prediction score of each sliding window in the searching area.
From these scores, the �nal nerve position is assigned to the region with the highest score.

The merged CNNs based PF tracker starts by generating the particles where each particle
will produce a candidate window. This followed by applying the merged 1D-2D CNNs model to
each candidate window. The process will update the particles weight using the responses of the
merged CNNs model. Finally, the predicted nerve position is obtained using,

Pn =
n∑
i=0

wic (3.2)

where Pn is the predicted nerve location, n is the number of particles, wi is the weight of the ith

particle calculated from the merged CNNs model, and c is the particle location in the image.
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Updating the weights and particles is an important step in PF tracker which leads to avoid
the degeneracy problem. A re-sampling algorithm is applied [171] where the weights are set
to wi = 1/n. Di�erent resampling methods have been used to update the particles, such as
multinomial, residual, strati�ed, and systematic methods. After extensive experiments, we used
the residual method for updating the particles.

The merged CNNs based mix tracker is a combination of the previous two trackers. It starts
by using the merged CNNs based PF tracker as explained before. If the highest score (the
maximum similarity) of the particles' weight, retrieved from the merged CNNs model, is lower
than a certain threshold, the merged CNNs based search tracker will be triggered for one frame
to track the nerve more precisely.

For the three techniques, we adopt an incremental strategy for updating the merged CNN
model with the new nerve appearances. The incremental strategy only uses new samples in the
current frame to update the model. Hence, this updated model is able to adapt to the target
appearance variations while alleviating the drift problem.

3.4 Experiments, results and discussion

This experiment provides a performance comparison and evaluation of the proposed approaches.
Each method is analyzed in terms of accuracy, consistency, time cost, and handling di�erent
nerve situations. In this study, we conduct the experiment on the median nerve. As shown in
Figure 3.6, the median nerve is one of the major nerves in the arm, it starts from the brachial
plexus to innervate the intrinsic muscles of the hand. More precisely, the median nerve is located
at the proximal elbow, mid-forearm, and wrist. The median nerve presents a circular, oval or
elliptic shape [172].

Figure 3.6: US images of the median nerve in the elbow, proximal and distal, and wrist forearm.

Next section describes the used dataset and setup. Then, the detection and tracking
experiments are presented in next sections.
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3.4.1 Dataset

In UGRA, the anesthetist starts by using the US probe to scan a part of the body back and
forth in order to locate and track the nerve. This step is important to stabilize the probe in
a good position to visualize the nerve and insert the needle. Nerve detection and tracking in
US images require an in-depth study of the most e�ective detection and tracking techniques, as
well as it relies on the large dataset to include intra and inter-patient variations. These steps
are essential to assess the robustness of nerve detection and tracking methods in US images.
However, the location of the nerve for UGRA is a very delicate subject, due to the lack of data.
To our knowledge, no database of US images of the median nerves has been published. For this
reason, data collection is inevitable to assess the performance of nerve detection and tracking
methods.

For that, the dataset was acquired in real conditions at the Medipole Garonne hospital in
Toulouse (France), and it is ethically approved. US videos of the median nerve were obtained
from several volunteer patients under real conditions where the ground truth was provided by
two regional anesthesia experts. Experiments were conducted on sonographic videos of the
median nerve obtained from 20 anonymous adult patients (12 men and 8 women) using a US
machine with a 5-12 MHZ transducer frequency. The databases are in the form of a video for
each patient. Each video consists of 650-750 frames and a total number of 14,000 US images of
the median nerve were used. The used images in our experiments have a dimension of 600 ×
350 pixels. The experiments were carried out with a core 7 Duo 3.50GHz processor with 32GB
RAM under Matlab and Python.

Very few studies have tackled the problem of nerve detection and tracking in the US images.
Therefore, the results obtained by these methods were regularly presented to the anesthetists to
collect their feedback and validate our results. The ground truth validated by anesthetists was
compared with the results obtained by the computer. This comparison allows the measurement
of the performance of the proposed methods. Furthermore, with the aim of performing in
real-time, nerve detection and tracking performed directly on the original US image without
any prior image enhancements.

3.4.2 Nerve detection experiments

The objective of this experiment is to evaluate each technique of the proposed detection models
in order to study their role and impact on nerve detection. Figure 3.7 shows the scheme of the
testing process. For testing an image, a sliding window of size of 64× 64 is passed through the
image with 50% overlapping to search the nerve.

As can be seen from Figure 3.7, the SVM and the 1D CNN models take the 1D RAMBP
histogram as their input, the 2D CNN model takes the 2D window directly, while the merged
CNN model takes both the 2D window and its 1D RAMBP histogram. The 1D RAMBP
histogram is computed under Python and the implementations of the designed models are done
under Python with the public deep learning libraries TensorFlow and Keras [173].
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Figure 3.7: The scheme of the testing process.

In these experiments, 10 videos were selected randomly as a training dataset and the
remaining 10 videos as a testing dataset. For setting the training dataset positive class, each
labeled nerve is extracted with a bounding box around it. While for the negative class, a sliding
window of size of 64× 64 is passed randomly through the image except for the nerve regions.

For the training and testing process, the images are resized to 32 × 32 which will be sent
to the CNN and SVM models. For all models and after trying di�erent parameters, we choose
a batch size of 256 and the number of epochs is 500. For CNN models and to �nd the output
size of the �rst dense layer of 1D and 2D CNN, we choose 128 (dimensionality of the output
space) after trying di�erent values. As well as, the Adaptive Moment Estimation (Adam) [174]
is adopted for the CNN learning procedure.

Figure 3.7 demonstrates the testing process to detect the nerve in US images. It started by
exploring the testing images by passing a 50% overlapping sliding window which is the input for
the 2D CNN model. RAMBP histogram is also computed for each window which is the input for
the 1D CNN and SVM models. The output of the models provides all possible nerve locations,
where the location with the highest prediction value is set as the detected nerve location. We
consider the image as true positive if it overlapped with the exact nerve region (ground truth)
at least 50%, otherwise, it considered as a negative sample (other regions).

Accuracy is the most common performance measure, but the main drawback is that accuracy
hides some details that can help understanding better the detection model performance. For
that, Recall, Precision, and F1-score provide better performance understanding by taking both
false positives and false negatives into account. Precision is the correct proportion of positive
identi�cations, Recall is the correct proportion of actual positives, and F1-score is the weighted
average of precision and recall. Precision, Recall, and F1-score are expressed as,

Precision =
TP

TP + FP
(3.3)
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Recall =
TP

TP + FN
(3.4)

F1− score =
2× (Precision×Recall)
Precision+Recall

(3.5)

where TP, TN, FP, and FN are the number of samples for �True Positive�, �True Negative�,
�False Positive� and �False Negative�, respectively.

To show the e�ectiveness of the merged method, Table 3.1 depicts comparative results
between the three CNN architectures (1D CNN, 2D CNN, and the merged CNN). It can be seen
that the 1D CNN alone or the SVM model can detect nerve location with a precision of 82%
and 81%, respectively. The performance of 2D CNN is better than that of 1D CNN and the
SVM models with a precision of (85%). When compared with SVM and the two single-input
CNNs, the merged CNN reaches the highest precision (96%) and shows a certain advantage in
the overall performance. Furthermore, the merged CNN shows the importance of the RAMBP
histogram which provides more accurate and robust results. Figure 3.8 shows the results of the
merged CNN model for nerve detection.

Table 3.1: Comparison between di�erent models and the merged method. The results are ex-
pressed in percentage between [0 1].

Method precision recall F1-score

RAMBP 1D CNN 0.82 0.84 0.83

RAMBP SVM 0.81 0.82 0.82

2D CNN 0.85 0.87 0.86

The merged 1D-2D CNNs 0.96 0.95 0.96

In this work, we chose a simple architecture to demonstrate the e�ectiveness of the texture
features for nerve detection in the US image. Furthermore, to show the robustness of the
RAMBP descriptor with a more complex architecture, we have tested DenseNets [175] (2D -
121 layers) to detect the median nerve. After extensive experiments, as shown in Table 3.2, the
precision of this network to detect the nerve did not pass 84%. At the same time, we implement
a 1D architecture similar to the DenseNet but for 1D RAMBP input, it reaches a precision of
80%. Nevertheless, after doing a simple merge layer between the previous two networks, the
precision reached 94%. We believe that the 2D CNN architecture is not enough to detect the
nerve in US images due to its di�culties to capture textures information. Moreover, the use of
a powerful texture descriptor such as RAMBP the accuracy would vastly be improved.

To show the robustness of the RAMBP descriptor against di�erent texture descriptors,
they have been used in the merged model as an input to the 1D CNN branch. Table 3.3 lists
comparative results against di�erent base-line descriptors such as LBP. It can be observed that
the detection accuracy is improved after using the proposed model. Although AMBP precision
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Figure 3.8: Nerve detection using the merged CNN model (red rectangle for detection results
and green rectangle for the ground truth).

Table 3.2: Comparison between di�erent CNN models and the merged method. The results are
expressed in percentage between [0 1].

Method precision recall F1-score

RAMBP 1D DenseNet 0.80 0.80 0.79

2D DenseNet 0.84 0.83 0.84

The merged 1D-2D DenseNet 0.94 0.92 0.93

is as good as RAMBP, the recall and F1-score results show the higher performance and stability
of the RAMBP. Compared to the di�erent base-line techniques, RAMBP yields the best results
and outperforms other techniques.

The confusion matrix is a common way to evaluate the performance of a multiclass classi-
�cation model, which plots the actual class label against the predicted class label. Figure 3.9
shows the corresponding confusion matrix of the merged model where about 5% of the nerve
regions (label nerve) are wrongly classi�ed. Likewise, for other regions (label others), less
than 1% are wrongly assigned. From the confusion matrix, we found that the proposed system
provides promising results for detecting the nerves in the US images.

Time complexity is an important point, especially in UGRA applications. While the tested
models take a long time in the learning phase to build the models, it is fast in the detection
phase. This has an advantage for real-time applications since the learning phase can be
performed o�ine. Although the 1D CNN and the proposed merged model are considered slower
than the 2D CNN and the SVM models due to the extra step of extracting the 1D texture
descriptor from the sliding window, it is possible to make the detection faster by parallelizing
RAMBP using, for example, a graphics processor GPU.
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Table 3.3: A comparison between di�erent descriptors as an input for the 1D CNN branch in
the merged model. The results are expressed in percentage between [0 1].

Method precision recall F1-score

LBP [80] 0.93 0.90 0.92

MBP [95] 0.94 0.92 0.93

CLBP [93] 0.94 0.91 0.93

HOG [176] 0.93 0.84 0.88

AMBP [98] 0.96 0.91 0.93

RAMBP [156] 0.96 0.95 0.96

Figure 3.9: Confusion matrix for the merged model with RAMBP descriptor as an input for the
1D CNN branch.

3.4.3 Nerve tracking experiments

This section shows the feasibility of nerve tracking in US images using di�erent approaches.
These experiments provide a performance comparison and evaluation of the tracking approaches
for nerve tracking in US images. The accuracy is assessed by the bounding box overlap ratio
between the estimated nerve position and the ground truth. The overlap ratio is based on pixels
percentage in the intersection area.

The structure of this section is as followed, �rst, we show the texture descriptors evaluations.
Then, CNNs based trackers evaluations. Finally, we take the best methods in texture descriptors
and CNNs based trackers and compare it with the merged model trackers.

3.4.3.1 Nerve tracking using texture descriptors

The objective of this experiment is to evaluate the nerve tracking techniques using texture
descriptors. For setting up the trackers, we used for the particle �lter 50 particles. In the
mean-shift algorithm, we set the threshold to 0.0001. While the size of the descriptor in the
Kanade-Lucas-Tomasi (KLT) algorithm is set to 16× 16 pixels around the feature points.
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In this validation part, the particle �lter, mean-shift, and KLT algorithms are applied to US
images. Figure 3.10 shows the accuracy of texture descriptors based trackers. We can observe
that particle �lter with RAMBP descriptor (PF-RAMBP) achieved the best results, while
mean-shift and KLT algorithms had less stability and less performance accuracy. Also, it can
be seen that AMBP, MBP, LBP, and CLBP gave good results with particle �lter but with less
stability. Figure 3.11 shows the results of the particle �lter with RAMBP and the ground truth
of the nerve location.

Figure 3.10: Accuracy of nerve tracking with bar error.

(a) 10thframe (b) 200thframe (c) 400thframe (d) 600thframe

Figure 3.11: Nerve tracking using particle �lter with RAMBP descriptor (red rectangle for
particle tracking and green rectangle for the ground truth).

Table 3.4 shows the performance of the nine feature extraction methods. As can be seen,
using a particle �lter or mean-shift algorithm, RAMBP provides the best results. On the other
hand, HOG, and AMBP perform better while applying KLT. These results are obtained thanks
to RAMBP stability and discriminative properties. In general, the particle �lter is more robust
to noise, while the mean-shift and KLT do not perform well under the presence of noise.

The computational cost of particle �lter depends on the number of particles, while the
mean-shift on the threshold value, and for KLT on the number of features and for the size of
the descriptor. Therefore in our experiments, particle �lter and mean-shift algorithm require
less computation time.Table 3.5 shows the running time for each method, where it can be
seen that the particle �lter algorithm (best tracking method) provides good processing time
with Matlab, which can be optimized to be much faster using real-time platforms. In the
same table, it can be seen that RAMBP is slower than LBP, AMBP, MBP, and normal
histogram. LBP uses the central pixel as a threshold value, MBP uses the median of a �xed
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Table 3.4: Tracking scores (%) comparison between RAMBP, AMBP, MBP, LBP, CLBP, Gabor,
HOG, and normal histogram with the proposed tracking algorithms. The results are expressed
in percentage between [0 1].

Method Particle �lter Mean-shift KLT

RAMBP [156] 0.83 0.72 0.47
AMBP [98] 0.78 0.66 0.49
MBP [95] 0.71 0.52 0.47
LBP [80] 0.70 0.58 0.39
CLBP [93] 0.72 0.57 0.38
HOG [155] 0.67 0.53 0.57
Gabor [177] 0.51 0.43 0.53

Hist 0.55 0.50 0.43

window, AMBP uses extra procedure which consists of using an adaptive window to obtain the
threshold value, while RAMBP uses an extra process of classifying each pixel in the image,
as well as an adaptive window. For that, RAMBP is slower than LBP, MBP, and AMBP,
but at the same time it provides a good trade-o� between tracking accuracy and time complexity.

Table 3.5: Tracking Speed (Second Per Frame spf) between the proposed tracking methods.

Particle �lter Mean-shift KLT

RAMBP [156] 0.15 0.30 0.47
AMBP [98] 0.12 0.24 0.38
MBP [95] 0.11 0.15 0.40
LBP [80] 0.08 0.08 0.09
CLBP [93] 0.18 0.27 0.22
HOG [155] 0.17 0.32 0.42
Gabor [177] 0.20 0.45 0.52
Hist 0.05 0.03 0.05

The experiments faced some failures in a few frames where the nerve appearance is almost
the same as the surrounding areas, but these cases are rarely encountered in the tests. Besides,
the proposed method faces some challenges such as real-time process, one of the future works
consists of using optimization methods and GPU's to ensure and guarantee the reduction in
time complexity. Another challenge is how to reduce the e�ect of maximizing the error after
a high number of iteration, and one of the possible solutions is by using detection step after a
�xed number of frames to correct the initial location of the nerve. Figure 3.12 shows an example
of a few frames of failure after using RAMBP with a particle �lter, which happened due to
nerve disappearance. In the same �gure, it can be seen that the system succeeded to re-track
the nerve after a few frames of losing the target.

69



3.4. Experiments, results and discussion

(a) 470thframe (b) 490thframe (c) 510thframe (d) 530thframe

Figure 3.12: RAMBP Nerve tracking with particle �lter. The drastic change in nerve appearance
may lead to detection failure, but the system re-tracked then nerve successfully.

3.4.3.2 Nerve tracking using CNNs models

In this section, we evaluate CNNs based trackers for nerve tracking in the US image. The same
parameters provided by the original papers were used along with the source codes that have
been made available by the original authors. In this experiment, VGG-Net [178], very deep
convolutional networks (up to 19 layers) are adopted for feature extraction.

Figure 3.13 illustrates the tracking methods accuracy for the median nerve, where ECO,
C-COT, and SANet achieved the best results, while other methods su�er from less stability and
less performance accuracy. Also, it can be seen that CREST gave good results but with less sta-
bility. Figure 3.14 shows qualitative results of tracking the median nerve using the ECO method.

Figure 3.13: The performance of deep-learning trackers for the median nerve, where accuracy
and stability are shown.

10thframe 200thframe 400thframe 600thframe

Figure 3.14: Nerve tracking using ECO tracker (red rectangle for ECO method and a green
rectangle for the ground-truth).

Table 3.6 depicts tracking methods performance for median nerves. Using ECO provides the
best results, where these results are obtained due to transferring prior visual via pre-training
and capturing any appearance changes via online learning. C-COT adopts the same maneuver

70



Chapter 3. Nerve Detection & Tracking

as ECO, but ECO provides a better generalization of the target by avoiding over-�tting. Other
good trackers are SANet and MDNet which achieved a good score caused by using a particle
�lter framework in its design. As well as this, SANet incorporates an RNN scheme which leads
to an increase in the tracking accuracy.

Table 3.6: Tracking scores (%) comparison between the proposed tracking methods. The results
are expressed in percentage between [0 1].

C − COT [158] 0.90
ECO [159] 0.91
CNT [160] 0.77
MDNet [161] 0.88
SANet [162] 0.89
SiameFC [163] 0.80
CFNet [164] 0.81
DCFNet [165] 0.83
MCPF [166] 0.86
HDT [167] 0.83
HCFT [168] 0.82
DLT [141] 0.82
CREST [169] 0.87
PF −RAMBP 0.83

CNT tracker uses one convolutional layer, while others use deeper convolutional layers such
as ECO and HCFT. In this experiment, it was observed that using more deep layers results
in better performance and improves the tracking accuracy. Comparing between CNN-based
deep trackers and traditional texture based trackers such as Particle Filter (PF) with RAMBP
features [156], PF-RAMBP achieves good results and outperforms few deep-learning trackers.
Finally, it can be observed that the ECO tracker provides the best results among CNN-based
deep trackers for nerve tracking and gives the best stable results. Overall, the accuracy of CNN-
based deep trackers is competitive and provides good performance for tracking the median nerve.

Table 3.7 demonstrates the running time for each method where it shows that DCFNet
provides the best processing time. While ECO is slow, C-COT, SANet, and HDT are much
slower. Important aspects a�ect the running time for CNN-based deep tracking algorithms,
which are the number of layers and model update strategy. Some trackers use more deep layers
while others use fewer layers which makes the tracker run faster. The other important aspect
is the tracker model update strategy, where it can be noticed that updating the model after
each frame is time-consuming. For that, ECO updates its model every few frames which makes
the process run faster. Another strategy to update the model is using the Siamese network
to model prior information that accelerates the running process such as CFNet, DCFNet, and
SiameseFCs. While ECO is not the fastest method but, at the same time, it provides a good
trade-o� between tracking accuracy and time complexity.
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Table 3.7: Tracking Speed (spf) between the proposed tracking methods.

C − COT [158] 0.65
ECO [159] 0.13
CNT [160] 0.63
MDNet [161] 1.00
SANet [162] 1.63
SiameFC [163] 0.26
CFNet [164] 0.45
DCFNet [165] 0.04
MCPF [166] 0.60
HDT [167] 0.89
HCFT [168] 0.27
DLT [141] 0.33
CREST [169] 0.9
PF −RAMBP 0.15

The experiments faced some challenges when the nerve disappeared or appeared to be
almost as identical as the surrounding areas. The MCPF tracker uses a particle �lter principle
which gives it the ability to re-track the nerve in case of disappearance. Other trackers expand
their localization to re-track the nerve once it appears again such as ECO and DCFNet. On
the other hand, the CREST tracker failed to re-track the nerve rapidly after it appeared again.
Figure 3.15 shows an example of how MCPF succeeds in tracking the nerve even when the nerve
almost disappeared.

(a) 470thframe (b) 490thframe (c) 510thframe (d) 530thframe

Figure 3.15: Nerve tracking using MCPF tracker. Although the existence of nerve disappearance,
the tracker succeeded to predict the nerve location (red rectangle for MCPF tracker and a green
rectangle for the ground-truth).

3.4.3.3 Nerve tracking using merged features

The objective of this section is to evaluate the nerve trackers using the merged CNNs model in
order to study their role and impact. Three tracker were proposed based on the 1D-2D merged
CNNs model: the merged CNNs based search tracker; the merged CNNs based PF tracker; and
the merged CNNs based mix tracker. These techniques are evaluated against the best-performed
methods in texture based trackers (PF-RAMBP) and the CNNs based trackers (ECO tracker).

For the merged model, the images are resized to 32× 32 which will be inputted to the CNN
branch. After trying di�erent parameters, we choose a batch size of 256 and the number of
epochs is 500. To �nd the output size of the �rst dense layer, we choose 128 (dimensionality of
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the output space) after trying di�erent values. As well as, the Adaptive Moment Estimation
(Adam) is adopted for the CNN learning procedure.

For the merged CNNs based search tracker, a window which is 4 times bigger than the
previous nerve location is initialized, followed by a sliding window of size of 64 × 64 is passed
through the searched window with 50% overlapping to search the nerve. For the merged CNNs
based PF tracker, we set the number of particles to 30. While for the merged CNNs based mix
tracker, we set the threshold to 60% which means if the similarity between the previous nerve
location and PF candidates is less than 60%, the merged CNNs based search tracker will be
activated to track the nerve for one frame.

Figure 3.16 illustrates the tracking methods' accuracy for the median nerve, where the
merged CNNs based search tracker achieved the best results and stability. While PF-RAMBP
has good accuracy, the PF with the merged CNNs model has a better performance. As can
be observed, the merged CNNs based trackers outperform the CNN and texture descriptors
based trackers. Moreover, combining between the PF and the search trackers provides good
performance with high stability. Figure 3.17 shows qualitative results of tracking the median
nerve using the merged CNNs based search tracker.

Figure 3.16: The performance of nerve trackers for the median nerve, where accuracy and stability
are shown.

Table 3.8 depicts the tracking methods performance for median nerves. Using the merged
CNNs based search tracker provides the best results, due to the fact that this tracker work as
a detection method in the nerve surrounding region. the merged CNNs based mix tracker has
good results and outperforms the merged CNNs based PF tracker. Comparing between merged
CNNs-based trackers, CNN trackers, and traditional texture descriptor trackers, the merged
CNNs-based trackers achieve the best results.

As discussed in previous experiments, the time complexity is considered an important point
for a more successful UGRA. Table 3.9 depicts the running time for each method where it shows
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10thframe 200thframe 400thframe 600thframe

Figure 3.17: The merged CNNs based search tracker for median nerve tracking. (red rectangle
for the merged CNNs based search tracker and a green rectangle for the ground-truth)

Table 3.8: Tracking scores (%) comparison between the proposed tracking methods. The results
are expressed in percentage between [0 1].

The merged CNNs based search tracker 0.96
The merged CNNs based PF tracker 0.88
The merged CNNs based mix tracker 0.93
ECO (CNN-based tracker) [159] 0.91
PF-RAMBP (texture descriptor-based tracker) 0.83

that PF provides the best processing time. Important aspects a�ect the running time for the
tracking methods. For The merged CNNs based search tracker, it su�ers under time cost due to
the search process around the nerve previous location. For PF, the time cost is a�ected by the
number of particles. While the merged CNNs based mix tracker is not the fastest method but,
at the same time, it provides a good trade-o� between tracking accuracy and time complexity.

Table 3.9: Tracking Speed (spf) between the proposed tracking methods.

The merged CNNs based search tracker 0.25
The merged CNNs based PF tracker 0.10
The merged CNNs based mix tracker 0.19
ECO (CNN-based tracker) [159] 0.13
PF-RAMBP (texture descriptor-based tracker) 0.15

The challenge of nerve disappearance is crucial for successful nerve tracking. Since the nerve
region appears similar to the other surrounding regions, the succession or the failure to track the
nerve can distinguish a robust tracker from another. The PF principle has the ability to track
the nerve but it depends on the number of particles that a�ect the time cost. ECO method
expands the search area once the target nerve is disappeared. On the other hand, the merged
CNNs search mix tracker guarantees nerve tracking but at the cost of time. The merged CNNs
based mix tracker provides a good trade-o� since it has the fast PF principles and the accurate
search tracker. Fig. 3.18 shows an example of how the merged CNNs based mix tracker succeeds
in tracking the nerve even at nerve disappearance.
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(a) 470thframe (b) 490thframe (c) 510thframe (d) 530thframe

Figure 3.18: Nerve tracking using the merged CNNs based mix tracker. Even with the drastic
change in nerve appearance, this tracker succeeded to track the nerve (red rectangle for the
merged CNNs based mix tracker and a green rectangle for the ground-truth).

3.5 Conclusion

To conclude, nerve detection and tracking is an important step to stabilize the ultrasound
probe in a good position to visualize the nerve and insert the needle. Although there has been
extensive development of detection, and tracking algorithms for medical images, it is still an
open problem especially for ultrasound images in regional anesthesia. In this chapter, we have
examined and proposed techniques based on RAMBP and CNNs models for detection and
tracking in the ultrasound images. Furthermore, we presented a new merged CNN architecture
to learn high-level features from hand crafted 1D descriptor RAMBP and 2D low level visual
features.

In this chapter, �rst, we introduced the detection and tracking techniques in detail. This
followed by evaluating each technique and discussing its advantages and limitations. Extensive
experiments were held in terms of accuracy, consistency, time complexity, and handling di�erent
nerve situations.

It has been shown that nerve detection and tracking techniques that are base on the merged
model outperformed other techniques. Although the texture based and CNNs-based detectors
and trackers perform good in the ultrasound images, the results show that the merged model
obtained higher accuracy in the experiments. Furthermore, di�erent techniques were presented
for detecing and tracking the nerve in the ultrasound image. The obtained detection results
show that the merged features based detector outperforms other techniques and achieved best
performance with 96% precision. On the other hand and for the tracking techniques, we found
that the merged CNNs based trackers acheived the best results where we beleive that the mix
tracker (particle �lter and search technique) provides a good trade-o� between tracking accuracy
(93%) and time complexity.
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Outline:

In Ultrasound-Guided Regional Anesthesia, needle insertion imposes a very challeng-
ing task, where it is important to ensure that the needle moves within the constraints
of the insertion point and obstacle avoidance in order to prevent patient harm and
reach the targeted nerve. In this chapter, a robotized needle insertion control system
is introduced. This robotic system can provide great assistance to the experts with
techniques and tools that improve the procedure accuracy and safety such as avoiding
nerve trauma or damage healthy tissues.
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4.1. Tasks of robotic-assisted UGRA

4.1 Tasks of robotic-assisted UGRA

As discussed in Chapter 1, performing the UGRA routine requires a long learning process,
mainly due to the risk of nerve trauma while inserting the needle and due to the di�culty of
processing the poor quality US image [5, 6]. Therefore, the DANIEAL2 project aims to provide
anesthetists with a collaborative expert-robot-environment platform that signi�cantly improves
the UGRA practice; that is to study and develop an intrinsically safe robotic medical device,
where the expert is always in the control loop. This involves assisting the medical gesture
when inserting the needle towards the targeted nerve under ultrasound (US) imaging using the
collaboration of a robotic arm.

The proposed robotic system designed for the UGRA procedure is divided into two connected
robotic systems, a US Probe Holder Robot (PHR) and a Needle Holder Robot (NHR), as shown
in Figure 4.1.

Figure 4.1: The proposed robotic-assisted UGRA procedure.

The proposed robotic system is divided into 3 sequential phases where each one represents
an action of the UGRA act related to the NHR and the PHR. These phases shown in Figure 4.2
start with the preliminary CoBotic US probe positioning de�ned as ϕ0. In phase ϕ1: the nerve
is detected and visualized at all time by visual servoing approach applied to the US probe; then
the needle is positioned on the patient's skin at the so-called the insertion point and CoBotically
aligned within the US plane. Finally, in phase ϕ2: the nerve and the needle are visualized at all
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time in the same US plane by applying visual servoing; the needle is then CoBotically inserted
towards the targeted nerve through the insertion point. The anesthetist manually injects the
drug once the needle's tip is close to the nerve area. These phases are explained in details as
follows:

Figure 4.2: The proposed robotic-assisted UGRA procedure.

� Phase ϕ0 - PHR CoBotic US probe placement: this phase starts by setting up the patient,
followed by a CoBotically placement of the US probe by the anesthetist on the patient's
skin.

When the anesthetist has positioned the probe at the chosen location, then Phase ϕ1 is
triggered.

� Phase ϕ1 - this phase is composed of 2 simultaneous parts, one for the PHR and the
other for the NHR:

� PHR part: controls the PHR by visual servoing to unmanned maintain the desired
regions of interest (e.g. the nerve) in the 2D US image obtained during phase ϕ0.
Then, automatic nerve detection and tracking, and a visual servoing technique are
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performed to keep the targeted nerve within the 2D US plane even when physiological
movements occur.

� NHR part: when the needle is outside the patient's body (so called "Outside patient
control" process), the anesthetist's goal is to �nd a needle insertion point on the
patient's skin that could provide the best trajectory in order to reach the nerve.
But the expert faces two constraints: the insertion point must be in the US plane
(note that the needle cannot appear on the US image until it is inside the patient's
body); the needle pose is constrained by the need of being seen within the US plane.
Knowing the geometrical transformations of the PHR and NHR, we can o�er the
anesthetist a CoBotic control of the NHR that respect the two constraints with an
adapted force feedback over the 6-Dimensions. Finally, the NHR CoBotically ensures
needle visualization within the US plane.

Once the anesthetist inserts the needle in the well-chosen location (i.e. insertion
point) on the patient's body, phase ϕ2 is triggered.

� Phase ϕ2: this phase is composed of 3 simultaneous parts, one for the PHR, one for the
NHR, and one for the manual injection:

� PHR part: the aim is to unmanned keep the targeted nerve and the inserted nee-
dle within the 2D US image plane using US visual servoing approach. To complete
this action, we need to track the nerve in the US images and to retrieve the posi-
tion/orientation of the needle's tip using the geometrical transformations between the
two robots. Hence, when the anesthetist tilts the needle outside the US plane, the
PHR has to follow the needle's tip and keep it within the US plane.

� NHR part: when the needle is inserted in the patient's body (so called "Inside patient
control" process), the anesthetist's goal is to move the needle as close as possible to
the nerve with respect to Remote Center of Motion (RCM) constraints. The NHR
is CoBotically controlled to manipulate the needle by reducing the DoF around the
RCM point. In order for the anesthetist to avoid risky regions such as artery, vein, or
tendon, a topological image, based on the US image, is processed on-line to build a
2D model (mesh) that provides interaction among various tissues and the needle's tip
and shaft. This model allows the NHR to apply repulsive forces once the needle's is
near risky regions. Moreover, with the 2D model, we can propose to the anesthetist
safe trajectories to reach the nerve area.

� Manual injection part: This part is manually performed by the anesthetist with no
robotic assistance.

Once the anesthetic drug is injected around the nerve, the anesthetist pulls out the
needle; once the needle is outside the patient's body, the NHR and PHR assistance
process stop.

The folllowing scheme details the various tasks that compose the PHR and NHR control
phases.
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Phase ϕ0

PHR part

� A PHR CoBotic control for the probe
placement on the patient's body.

Phase ϕ1

PHR part NHR part

� B Nerve detection in one US image.

� C Nerve tracking in the streamed US
images.

� D Visual servoing to control the PHR to
keep the visualization of the nerve.

� E NHR CoBotic control for needle
placement in the US plane.

Phase ϕ2

PHR part NHR part

� B Nerve detection in one US image.

� C Nerve tracking in the streamed US
images.

� D′ Visual servoing to control the PHR
to keep the nerve AND the needle
visualization in the US image.

� F NHR CoBotic control for needle
insertion under RCM constraints.

� G Topological image from US image.

� H 2D model.

� I NHR CoBotic control for needle
insertion under RCM constraints with
risky regions avoidance.

Manual injection part

� K No robotic assistance needed.

For Phase ϕ0 task A , the anesthetist control the NHR CoBotically, this control does not
require any movement constraints. The output of this task is the US image and the US plane
which are inputted to Phase ϕ1, in more speci�c into tasks B and E , respectively.

Task B uses the US image to automatically detect the target nerve, as discussed in Chapter

3. Task C takes the output of task B (the detected nerve location) and starts tracking the

nerve in real-time streamed US images, as discussed in Chapter 3. The result of task C is

the tracked nerve in each US frame which is inputted into the task D . D aimed to keep
the nerve visualization at all time by taking the tracked nerved position and applying visual
servoing techniques.

At the same time, task E NHR CoBotic control for needle placement in the US plane is
performed. In this task, the anesthetist moves the NHR CoBotically toward the desired point
of insertion location. To guarantee the visualization of the needle within the US plane, the
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needle should be CoBotically aligned within the US plane. To do so, the PHR has to share its
workspace with the NHR. Hence, the positions of the US probe and plane will be referenced
to the NHR base frame. Therefore, forces are applied to the NHR to guarantee the proper
placement of the needle within the US plane.

At this stage, the targeted nerve is visualized within the US image, and the needle is
positioned on the patient's skin in a position that guarantees inserting the needle within the US
plane (visualized in the US image). Then, Phase ϕ2 will be triggered.

In phase ϕ2, task B and C are repeated, where the output nerve position is entered in

task D′ . Task D′ uses a visual servoing technique to keep visualization of the tracked nerve
and the needle within the US plane. To keep visualizing the needle in the US plane, the NHR
has to share its workspace with the PHR. Therefore, the position of the needle plane will be
referenced to the PHR base frame.

Simultaneously, task F NHR CoBotic control for needle insertion under RCM constraints is
performed. The anesthetist CoBotically controls the needle insertion while taking into account
the constraints of the insertion point. However, using task F alone is not su�cient as it lacks

the avoidance process of risky regions such as arteries or bones. Hence, tasks G and H

aim to locate all regions in a given US image. In task I , the NHR is CoBotically controlled
with the addition of applying small forces on the robot end-e�ector which are rendered to the
anesthetist's hand once the needle's tip is close to a risky region such as an artery, a bone, and
even the nerve.

While the PHR control keeps visualizing the target nerve and the inserted needle, and once
the needle's tip is close to the nerve, the anesthetist injects the anesthetic manually to complete
the UGRA procedure in task K .

As this thesis is a part of DANIEAL2 project, we do not focus on proposing new visual

servoing techniques (task D and D′ ), wherein this project proposes to use some existing
visual servoing methods for US medical applications. In this thesis, we focus on proposing new
methods and techniques for nerve detection and tracking (tasks B and C ) in Chapter 3, and

in this chapter, we focus on proposing methods for phase ϕ2 NHR part (tasks F , G , H ,

and I ) where the next section will introduce the proposed work.

4.2 The needle holder robot control in phase ϕ2 (NHR part)

In this section, we present methods for tasks F , G , H , I of part 2 NHR of phase ϕ2.
These tasks focus on controlling the needle inside the patient's body. This control aims to �x
the interaction point between the patient's skin and the needle where the needle movement will
be around that point. The interaction pivot point between the needle and the skin of the patient
is named the insertion point. This point restricts the medical instrument movements inside
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the patient's body. These movements may di�erent from one type of instruments to another.
For example, the trocar is a well known instrument hugly used during laparoscopic surgery.
Due to trocar's characteristics, movements around the insertion point are restricted into only
four degrees of freedom (DoF) motion: three rotational DoF and one translational DoF. For
UGRA procedure where a rigid symetric needle is used, movements around the insertion point
are restricted into only three DoF motion: two rotational DoF and one translational DoF.
Therefore in this work, the rotation on z-axis is blocked due to the symetrical aspect of the needle.

In UGRA, the insertion point constitutes an essential issue constraining the anesthetist
gesture when manipulating a needle inside the human body. However, manipulating the needle
imposes a very challenging task, where it is important to ensure that the needle should move
within the constraints of the insertion point in order to prevent harm to the patient. While
using a robotic-assisted procedure, the inserted needle movements are limited to a translation
along its axis and rotations around at the insertion point [179]. The manipulator motion is then
constrained with respect to that point on the end-e�ector known as Remote Center of Motion
(RCM) as shown in Figure 4.3 [52, 180].

Figure 4.3: UGRA motion around the insertion point (Pinsertion - RCM), where the tool frame
is the end-e�ector position and rotation. As a result, the needle can only move within 4-DoF:
Rx, Ry, and Rz are the rotations around x, y and z-axis respectively, and Tz is the translation
along the z-axis.

To respond to this need, this chapter proposes a control framework for robot-assisted UGRA
for physical human-robot collaboration using a 7-DoF robot manipulator (Franka Emika [62]).
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Herein, we discuss a geometric method for computing the intended robot's end-e�ector position
with respect to the RCM constraints, it is intended to assist the anesthetist to execute a
more sophisticated motion of the needle within the patient's body with high accuracy. This
accuracy is set as the distance error between the RCM point position and the �xed insertion
point position. After that, we provide two robot control strategies with respect to the RCM
constraints; haptic and CoBotic needle insertion controls. The basic action of these needle
insertion control strategies is to move the needle through the insertion point and to generate a
remote center of motion (RCM) remotely or CoBotically, while avoiding risky regions.

Task F is presented by proposing the needle insertion kinematics in Section 4.3 (RCM for
needle insertion) and introducing various control strategies in Section 4.4 (haptic force feedback
and CoBotic control). This followed by presenting the process CoBotic control under RCM
constraints with regions avoidance in Section 4.5 where tasks G , H , and I are proposed.
Experimental setup, results, and discussion in Section 4.6. Finally, conclusions are given in
Section 4.7.

4.3 Needle insertion kinematic

In theory, a high number of DoF serial robot provides a large operation workspace and dexterity.
However, keeping the end-e�ector working through an RCM point and limiting its motions is a
very challenging task which demands an accurate control strategy [181, 182]. In the literature,
various methods have been proposed to address RCM constraints such as Jacobian with con-
strained quadratic optimization [183], isotropy-based kinematic optimization [184], constrained
Jacobian with Lie algebra [185], gradient projection approach [186], dual quaternion-based
kinematic [187], etc. The previous researches discussed the modeling of trocar kinematics only or
combined with trajectory following. Very few control strategies reported in the literature are con-
cerned with the issue of RCM constraints and their geometry in the workspace. Mayer et al. [188]
proposed a trocar modeling with Euler angles representation for heart surgery. In [189], the
authors proposed using geometric constraints with stereo visual servoing for controlling the robot
position from point-to-point and extended Jacobian solution for manipulating serial end-e�ector.

The main contribution of this section is formulating a geometric control method in the
operational space to maintain RCM constraints while o�ering a more accurate end-e�ector
position. The method controls the motion of the rigid needle and it describes the end-e�ector
position with respect to the RCM constraints for a robotic UGRA control using a 7-DoF serial
robot. It provides a safe and �exible solution for the robot and the medical sta� in a shared
workspace where it explicitly models the rotational and translational motions at the RCM point.

In UGRA, the needle insertion process relies on only 3-DoF for its orientations (i.e., pan,
tilt, and spin rotations) corresponding to the roll, pitch, and yaw angles around the RCM
point; 1-DoF is needed for the axial translation corresponding to the depth of insertion as shown
in Figure 4.3. Hence, to simplify the control strategy for the robot and to help the kinematic
design, we choose to de�ne the movements of the needle with respect to these four displacements.
Various strategies exist to control the needle movements inside the patient, where the most
comfortable way would be the operational space using the Cartesian representation.
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Figure 4.4: A Spherical representation of end-e�ector position. Where α and β are the sphere
representation angles and R is the radius of the sphere.

The principal objective of this section is to propose an explicit and yet generic expression of
the intended tool frame position as shown in Figure 4.3. Hence, the robot command and move-
ments are controlled using the tool frame position. The tool frame control requires guaranteeing
the RCM constraints. Therefore, we choose to perform a tool frame motion along a sphere
centered at RCM point as shown in Figure 4.4. Thus, the tool frame is moved from a "start"
position on the sphere to a "�nal" position on the same sphere with 2D tangential constraints.
The start position of the tool frame is found using the direct kinematics model computed from
the robot built-in library. This position is composed of a 3D vector of translations and a 3 × 3
rotation matrix with respect to the base frame.

Let us de�ne the starting position of the end-e�ector as 3D translations
(PST = [PSTx PSTy PSTz]

T ) and 3 × 3 rotation matrix (PSR). To �nd the RCM posi-
tion (sphere center with a radius R as shown in Figure 4.4), �rst, we have to retrieve from the
rotation matrix the three rotation of the end-e�ector (Yaw ψ, Pitch θ, and Roll φ):

ψ = atan2(PSR32, PS33) (4.1)

θ = atan2(PS31,
√
P 2
SR32 + P 2

SR33) (4.2)

φ = atan2(PSR21, PSR11) (4.3)

85



4.3. Needle insertion kinematic

Using these rotations, the RCM position ([RCMx RCMy RCMz]
T ) is found by:

RCMx = PSTx + (cos(φ)sin(θ)cos(ψ) + sin(φ)sin(ψ))R (4.4)

RCMy = PSTy + (sin(φ)sin(θ)cos(ψ)− cos(φ)sin(ψ))R (4.5)

RCMz = PSTz − cos(θ)cos(ψ)R (4.6)

As shown in Figure 4.3 and Figure 4.4, the tool frame (end-e�ector) movements from one
position to another (such as start position to �nal position in Figure 4.4) depend on the applied
rotations on the end-e�ector (Rx and Ry). Hence for �nding the �nal position (translation), the
two spherical rotations are:

α =
π

2
−Rx (4.7)

β =
π

2
−Ry (4.8)

We now have to consider how to compute the desired �nal position. Thanks to the spherical
representation and having the RCM position with the two rotation angles, the �nal position
translation coordinates (PFT = [PFTx PFTy PFTz]

T ) are:

PFTx = RCMx + cos(α)R (4.9)

PFTy = RCMy + cos(β)R (4.10)

PFTz = RCMz + sin(α)sin(β)R (4.11)

To guarantee the RCM constraints, the tool frame position should always face the RCM
point (the tool frame zaxis should cross the RCM point); to comply with this requirement,
the �nal rotation should respect the RCM position. Thereby, the rotation matrix of the �nal
end-e�ector position (PFR) is represented by:

PFR = [Xaxis Yaxis Zaxis]3×3 (4.12)
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where Xaxis, Yaxis, and Zaxis are the axes that represent the �nal tool-frame orientation.

To �nd these axes, a 3D coordinate is initialized where one axis points toward the RCM
position, it will simplify the problem to use axis perpendicularity to �nd the others. Using this
property, these axes are found by:

Zaxis = normalize(PST −RCM) (4.13)

Xaxis = normalize((0, 1, 0)− Zaxis) (4.14)

Yaxis = Zaxis ×Xaxis (4.15)

where × is the cross product and each axis represented as a 3D vector in space.

All the introduced steps above allow to control the 2 rotation constraints (Rx and Ry). For
the 3rd rotation (rotation on the z-axis), the end-e�ector self-rotation around its axis is just
applying the Rz rotation directly on the end-e�ector rotation matrix.

To control the translation on the z-axis, the needle insertion is equivalent to the decrease of
the sphere radius. The position and rotation of the end-e�ector depend on the RCM position,
where the translation on its z-axis will produce the end-e�ector position changes but keeping the
RCM position with reference to the NHR base frame. The orientation of the end-e�ector will
remain the same but the new translation position of the end-e�ector after applying a translation
Tz on its z-axis will be:

PFTx = PSTx + Tz(RCMx − STx) (4.16)

PFTy = PSTy + Tz(RCMy − STy) (4.17)

PFTz = PSTz + Tz(RCMz − STz) (4.18)

And the radius (R) will be updated to:

R = R±
√

(PFTx − PSTx)2 + (PFTy − PSTy)2 + (PFTz − PSTz)2 (4.19)

where ± is + or − operator which depends on the sign of Tz (insertion or extraction of the needle).
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With the orientation and the position of the end-e�ector, and using the inverse kinematics
model provided by the robot built-in library, the positions of the robot joint angles can be de�ned.

The redundancy that can provided by our 7-DoF robot compared to the 4-DoF necessary for
the robotic-assisted UGRA is not an issue. On one hand, the alignment singularities are already
well managed by the built-in Franka library; on the other hand, we have chosen an initial
con�guration of the robot that allows us to stay in the same con�guration (as our workspace is
reduced to 20× 20× 20 cm3), and where the dexterity is maximum.

4.4 The control strategies

Robots were introduced in the operative room to provide important support in terms of
accuracy and comfort for the surgeons during their daily routine. Di�erent control strategies
were introduced in the literature to control the RCM point. In UGRA procedure, a small error
(up to 2-3 mm) at the RCM point is acceptable (transverse motion of the skin), but the needle
tip error cannot reach the same error also to avoid any damages or trauma.

Robotic solutions are based on teleoperation or CoBotic control of the needle motion under
RCM constraints. In general, these studies focus on reducing the errors at the RCM point and
the instrument tip. In [190], the authors proposed to use a free-wrist anthropomorphic robot
that guarantees the RCM constraints. Although the free-wrist control provides good control, it
su�ers from the fact that the control is only at the end-e�ector point using an open-loop strategy.
Hence, the RCM is not controlled directly but it responds to the force/torque applied on the
end-e�ector. This means that if there is an error at the RCM, an error will be also expected at
the needle tip. Hence, in this study, we control the end-e�ector point in a closed-loop strategy
while imposing RCM point. This results in knowing the exact poistion of the needle tip, which
means that if there is an error at the RCM point, it will not a�ect the needle tip position (no
error).

Here, we propose controlling the 7-DoF robot in a closed-loop using two control techniques:
a haptic teleoperation control in Section 4.4.1; a CoBotic control in Section 4.4.2. While the
haptic control is not a prede�ned task in the proposed robotic system, it is a preliminary task
that was done to validate various tasks in the NHR system, as well as, it would be an option
for improving the learning curve for junior anesthetist operators. Experiments of these control
strategies are introduced in Section 4.6.2.

4.4.1 Haptic needle insertion teleoperation control: integration of the haptic
force feedback and RCM constraints

Force feedback represents an important challenge for the community of medically robotic-
assisted manipulators. Using force-feedback control provides several advantages such as:
assisting the expert with structures identi�cation by providing tissue palpation; avoiding nerve
trauma or damage healthy tissue applied by large forces; reducing unintended injuries; identi-
fying any interactions between the needle and the surrounding organs outside the viewing area [8].
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Figure 4.5: Schematic of the teleoperated UGRA system using a haptic device.

Teleoperated robotic-assisted UGRA is a solution that can provide the anesthetists with
better control of the needle motion. This teleoperation approach allows the operator to control
the needle insertion procedure from the anesthetist's site. There are di�erent reported methods
in the literature representing teleoperated robotic systems, such as in the DaVinci surgical
system [191]. However, one of the teleoperated robotic-assisted system's major limitations is the
lack of haptic force feedback. The haptic rendering experienced by the anesthetists, which is
represented by the force feedback, provides crucial information for a more accurate and precise
needle control. Therefore, this section proposes a haptic force feedback control framework for
teleoperated robot-assisted UGRA for physical human-robot collaboration using 7 DoF robot
manipulator (Franka Emika).

Feeling the forces, from the needle mounted on the slave robot while in contact with the
environment, allows the anesthetist to get more information regarding the needle insertion
process and to perform the UGRA act in a safer way with higher accuracy [192, 193]. There
are di�erent commercial force feedback devices, such as [194,195], were used in various research
works concerning teleoperated systems; the haptic phantom device from Haption(c) was used in
the proposed platform.

To solve the force feedback issue during the needle insertion with RCM constraints, we
present in this section a novel approach to assist anesthetists with comfort and con�dence
throughout the procedure. This approach can be summarized as moving the needle through the
insertion point to generate a remote center of motion (RCM) and to provide force feedback to
the expert through the haptic force feedback device as shown in Figure 4.5. To the best of our
knowledge, there is no research that focuses on haptic force feedback for UGRA act under RCM
constraints.

89



4.4. The control strategies

The proposed closed-loop control strategy based on force feedback consists of two parts: the
haptic station (master station) and the robot station (slave station) as shown in Figure 4.5. The
master system consists of a haptic interface and includes: (a) computer; (b) Haptic Virtuose
device (Haption S.A. phantom) [196]; (c) haptic controller. The slave system consists of a needle
mounted on a 7-DoF robot and includes: (a) computer; (b) Franka robot [197]; (c) Franka
controller.

The master station is intended to provide the anesthetist a real sense of the force through
the force feedback haptic device, alongside sending the intended end-e�ector position to the
slave station. The slave station completes the control of the robot's position under RCM
constraints and sends the force data back to the master station. In more detail, the anesthetist
manipulates the haptic device (master station) as if it was the needle; the new position of the
end-e�ector is sent to the robot station (slave station). On the patient's site, the slave robot
applies the new position to the end-e�ector taking into account the RCM constraints and sends
the forces back to the master station (the haptic device). To do so, the master device sends to
the slave station the desired position which consists of the rotations (on x-axis and y-axis) and
the translation on the z-axis. On the other side, the slave station sends the estimated forces
back to the master station, which are the force on the x-axis, the force on the y-axis, and the
force on the z-axis. The desired position is achieved in the master station by applying the RCM
constraints explained in Section 4.3, and the returned forces are applied to the haptic device.
While the anesthetist holds the haptic device, an augmented reality US image (introduced in
Section 4.5) is provided based on US image segmentation. This image aimed to be used by the
expert to facilitate the needle maneuver during the UGRA act.

The 6-DoF Virtuose 3D Desktop is used which allows the movements on both translations and
rotations. However, the force feedback of the Virtuose 3D Desktop is only active on the �rst three
axes (translations). For this reason and to enable the use of the force feedback in the proposed
architecture, the phantom standard usage has been changed to use the �rst three axes as two ro-
tations (Rx and Ry) and one translation (Tz) (the rotation on z-axis has been blocked because it
is unnecessary in the proposed teleoperated system). Hence, the phantom base position has been

(a) The original haptic base position.
(b) The used haptic base position.

Figure 4.6: Description of the position and orientation of the haptic phantom.
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changed (Figure 4.6) to be more suitable for our architecture and a teleoperated needle insertion.

To retrieve the changes in the position of the �rst three axes and to apply the received
forces, the haptic built-in control library is used. The control is simple by retrieving the position
and set the required forces.

4.4.2 CoBotized needle insertion control under RCM constraints - task FO

Collaborative Robots 'CoBots' are intended for direct physical interaction with humans in a
shared workspace [198]. CoBots are distinct from teleoperators, in which a human operator
controls a robot remotely. CoBotic control provides the accuracy of the robot, as well as, the
�exibility and decision making of human participants. Therefore, the goal of this section is to
assist the anesthetist with a CoBotic system that facilitates performing the UGRA procedure.
It must be emphasized that CoBots are designed to be a complementary working tool for human
workers. For that, the proposed system does not replace the anesthetist but assists the expert
to perform UGRA act.

When the needle is inside the patient's body, the CoBotic system assists the anesthetist
to respect the needle kinematics. This assistance guarantees RCM control around the in-
sertion point. Furthermore, an augmented reality US image (introduced in Section 4.5) is
provided based on US image segmentation. To the best of our knowledge, there is no research
works that focus on CoBotic control for UGRA act and taking into account the RCM constraints.

In UGRA, the anesthetists apply forces on the needle handle which leads the robot
movements by enforced software-de�ned guided constraints (RCM). As shown in Figure 4.7, in
the proposed CoBot mechanism, the expert is the only operator who generates the movement.
Thanks to the Franka Controller, the applied forces are retrieved and the desired position can
be applied to the NHR end-e�ector. In order to create a more realistic operation process and
make the force control as transparent as possible, a closed-loop control strategy is used based
on the applied forces (Figure 4.7).

Franka Controller allows the robot to be controlled in joint or cartesian space and provides
the direct and inverse kinematics models. At the NHR end-e�ector, the force sensor computes
the external forces applied to each axis Fx, Fy, and Fz. To use the RCM constraints which have
been presented in Section 4.3, the simplest way to do so is by converting the applied forces into
two rotations and one translation. Fx and Fy are converted to the rotations Rx and Ry, while
Fz is converted to the translation Tz. Furthermore, the rotation on the z-axis (Rz) has been
blocked as it serves no purpose on the UGRA act.

Furthermore, to avoid nerve trauma or damage healthy tissue applied by large forces on
the end-e�ector, the forces should have a maximum limit. Based on expert's recommendations,
these limits consider as safety limits for the applied forces and sent to robot control to avoid
any unwanted displacements. As well as, to avoid any robotics discontinuity errors, the applied
rotations and translation should be reachable and do not exceed the prede�ned limits with
prede�ned maximum velocity and acceleration. Therefore, while working at 1 kHz, the planning
of smooth motion is essential.
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Figure 4.7: Schematic of the CoBotic UGRA system.

The considered smooth motion is an important key for controlling the robot, where the move-
ment changes gradually until reaching the maximum prede�ned velocity. Therefore, the position
should be controlled with respect to the velocities. Figure 4.8 shows the CoBotic control model.
The model starts by retrieving the forces which are computed by the Franka controller. These
forces (F = [Fx Fy Fz]

T ) are converted into velocities (V = [Vx Vy Vz]
T ) by taking into

account the maximum prede�ned velocity and acceleration (are examined in the experiments).
This followed by computing the desired rotations and translations (Rx, Ry, and Tz) which will
be fed to Section 4.3.

The Franka controller allows us to work at 1 kHz which is su�cient to have good haptic
feedback in the anesthetist's hand. Let's compute Rx after retrieving the applied Fx each 1
millisecond (ms) (1 kHz). First, the current velocity of the end-e�ector x-axis (Vx) is computed
by

Vx = abs(Fx) ∗ abs(Vmax/Accmax) (4.20)

Vx = min(Vx, Vmax) (4.21)

where Vmax and Accmax are the prede�ned maximum velocity and acceleration.

And the computed rotation Rx each 1 ms is given by

Rx = Rx ± (0.001 ∗ Vx) (4.22)

where 0.001 is the network running time of 1 kHz, and ± is + or − operator which depends on
the sign of Fx
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Figure 4.8: In the CoBotic control model, the robot retrieves the externally applied forces and
converts it into position movements. F is the computed forces by the built-in Franka controller
library, V is the velocity, R/T are the computed desired rotation (Rx and Ry) and translation
(Tz), PSR and PST are the previous end-e�ector position, and PFR and PFT are the new end-
e�ector position.

This process is done also for Fy and Fz to compute Ry and Tz, respectively. Followed by
computing the desired position using these rotations and translation parameters with RCM
constraints that have been introduced in Section 4.3.

4.5 Risky regions avoidance

Risky region avoidance is an important step for a more complete robotic UGRA system.
The objective is to gives the anesthetist freedom of movements while inserting the needle
with the advantage of feeling an extra repulsive force while the needle's tip gets close to
any risky region such as a nerve, an artery, a vein, or a tendon. Moreover, this procedure
should not restrict the anesthetist to one path toward the target nerve. The process of risky
regions avoidance starts by segmenting the US image to provide the anesthetist with an
on-lined processed topological (augmented reality) image. However, segmenting an image
frame is computationally expensive. Hence, a 2D mesh model is contructed from the topo-
logical image which will update the regions of interest location in the image. Then, small
repulsive forces will be applied to the user's hand once the needle's tip gets close to a risky region.

In Section 4.5.1, we introduce a neural network model for segmenting the US image to
produce the topological image. This is followed by presenting the 2D model in Section 4.5.2.
While the force control strategy to avoid risky regions is proposed in Section 4.5.3.
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Figure 4.9: An illustration of the SegNet architecture for US image segmentation.

4.5.1 The topological image - task GO

To date, research works have been developed to regions of interest in US images [131,138,199,200].
Nevertheless, no research focuses on segmenting all organs (regions) in the US image such as
nerves, arteries, dermis, tendons, and bones. Hence, segmentation in US images topic requires
further development and investigation.

Failure to locate the nerve and other regions could lead to nerve trauma or local anesthetic
toxicity. The aim of this section is to provide the anesthetists with a tool based on the US image
processing to handle this issue and improve the UGRA practice. Segmentation in US images is a
challenging task since noise and other artifacts corrupt the visual properties of this kind of tissue.

In the last several years, various Convolutional Neural Networks (CNNs) architectures have
been proposed in order to segment an image. Some of these architectures have been developed
to directly segment the whole image, such as SegNet [201]. Hence, to segment the US image, we
will use this tool. SegNet architecture is divided into Encoder network, Decoder network, and a
�nal pixel-wise classi�cation layer as shown in Figure 4.9. These networks are built by stacking
multiple di�erent layers where the essential layers are the convolutional layers and pooling layers.

The encoder network consists of 13 convolutional layers, 5 pooling layers, and 3 dropout
layers. Each encoder layer has a corresponding decoder layer and hence the decoder network
has 13 convolutional layers, 5 pooling layers, and 3 dropout layers. The �nal decoder output
is fed to a multi-class softmax classi�er to produce class probabilities for each pixel independently.

Each convolution or deconvolution layer has a set of various learned �lters that produce di�er-
ent responses considered as the extracted feature maps. Each of these maps is normalized using
Batch Normalization (BN) to enable end-to-end training. Then, the recti�ed linear unit acti-
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(a) The original US image. (b) The topological image. (c) The mesh image.

Figure 4.10: An example of the 2D mesh creation.

vation function (ReLU) is applied to remove any negative value that results from the convolution.

Pooling has been used in the encoder and decoder network as down-sampling and up-
sampling, respectively. Down-sampling divides each feature map into a set of non-overlapping
regions and takes the maximum value for each sub-region as a representation of that sub-region.
This leads to a reduction in the number of convolved features which make these features more
robust to changes in the position. Up-sampling uses the memorized max-pooling indices from
the corresponding encoder down-sampling and produces sparse feature maps.

The dropout layer is used as a regularizer in convolutional neural networks to prevent
over-�tting and co-adaption of features. The high dimensional feature representation at the
output of the �nal convolutional layer in the decoder is fed into to a trainable soft-max classi�er.
This soft-max classi�es each pixel independently. The output of the soft-max classi�er is an
N channel image of probabilities where N is the number of classes (regions). The predicted
segmentation corresponds to the class with maximum probability at each pixel.

4.5.2 2D model - task HO

In robotic control and as discussed before, all image regions should be segmented to be used in
risky regions avoidance. Nevertheless, applying segmentation techniques in each image frame
is computationally expensive. Studying the medium, and taking into account its dynamics, in
which the needle will move is a good alternative. Considering that the US probe is �xed, the
image will be �xed as well unless there is a tissue movement in the medium. This movement is
generated by various forces due to the needle insertion in deformable tissues which means that
certain points of this medium, in particular the nerve to be reached, will move under the e�ect
of the needle movements within the tissues. In this study, we propose to update the topological
image segmentation each 10 sec. Meanwhile and to reduce computation costs, meshes are
obtained and analyzed to facilitate the further computation.

The mesh is a geometric data structure for representing surface subdivisions using a set of
polygons. More simply, it is about a set of vertices, faces, and sides forming an object or a group
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of objects. These objects can be represented in 2D or 3D depending on the type of polygons
used. In 2D as in the US image, the type of polygons mainly used are triangles and quadrilaterals.

The mesh is used to simplify calculations in a continuous space by discretization which is
breaking it down into a set of �nite elements in which the calculations are less complex to
perform. The �nite element method [202] (FEM) is a method of numerical calculation and used
to perform calculations on an environment that is too complex for the direct calculations. FEM
discrete the image into a known number of elements that have a di�erent geometric shape. This
results in creating the mesh model.

To conclude, using the mesh with the elastic model will provide all-region locations in every
US frame until the new topological image is segmented. Figure 4.10 shows an example of
creating the 2D mesh image.

For updating the mesh model while inserting the needle, a model of behavior should be as-
sociated to calculate the movements to each element in the mesh [203�205]. For US images,
di�erent models exist using deformation properties to update the mesh where it based on de-
formable environment �uidity. Three kind of elements are used to build these models, a spring,
a dashpot, and a sliding frictional elements. The spring represents the elastic behavior (Hooke's
law) of the element. The dashpot is a mechanical device that consists of a damper which resists
motion via viscous friction. The damper represents the viscous behavior (Newton's viscous law)
of the element. While the sliding frictional element represents the plastic behavior (irreversible
deformation or hysteresis). Overall, the deformation models can be divided into three categories:

� The plastic model: is the most complete model(irreversible). This model takes into
account the elasticity, the rate of deformation of the tissues, and their plastic behaviors
during the application. This model consists of a spring, a dashpot, and a sliding frictional
elements to �nd elastic, viscous, and plastic behaviors (Figure 4.11).

Figure 4.11: An example of the plastic deformation model (the Bingham�Norton model).

In the case of our system, the topological image and the mesh will be renewed every 10-
15sec. Hence, taking into account this irreversible deformation model will then not be
useful. Hence, it is better to take a less complex model the viscoelastic model.

� The viscoelastic model: models take into account the elasticity of materials as well as
their rate of deformation. The basic operation is that the higher the speed of materials
deformation the greater the viscosity of that material and therefore the greater the stress
to be imposed on our materials for a given displacement. This model consists of a spring
and a dashpot elements to relate elastic and viscous behaviors (Figure 4.12).
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Figure 4.12: An example of the viscoelastic deformation model (the Kelvin�Voigt model).

For UGRA, the viscosity has no impact since the needle speed during the UGRA act is
slow compared to the viscosity of the linear body. The deformation speed of tissues under
the e�ect of the needle will not be signi�cant and can even be considered negligible by
comparing it with the term elasticity. For that, it is better to take a less complex model
which is the elastic model.

� The elastic model: has the advantage of being a non-di�erential and linear model. This
is the simplest model where it is composed of only one spring where the displacement of
the spring is proportional to the stress applied to it. This model consists of just a spring
to �nd the elastic behavior (Figure 4.13).

Figure 4.13: An example of the elastic deformation model (the Hooke model).

In UGRA, the tissues deformations will be represented having a purely elastic behavior
under the stresses imposed by the movement of the needle during the insertion.

4.5.3 Force control for risky region avoidance - task IO

For risky regions avoidance, after creating the topological image and the 2D model, the repulsive
forces should be analyzed. Overall, there are three di�erent forces that exist during the
robotic-assisted UGRA, two external forces and one applied internal force. The two external
forces are the forces applied by the anesthetist on the end-e�ector and the retrieved forces
from interacting the needle with the surrounding tissues. The internal force is a repulsive force
applied on the end e�ector to avoid risky regions while inserting the needle.

For successful risky regions avoidance process, the connection between the two robotic
systems the PHR and NHR in a shared workspace is essential. This connection will provide the
needle's tip location in the US plane. In other words, the PHR will provide the US image and
the NHR will compute the needle's tip location each ms. Hence, using the topological image
with the needle's tip location will give the distance between the needle's tip and each region in
the US image. These regions include the nerve due to the fact that the needle must inject the
drug around the nerve and not inside it. Therefore, the nerve is considered as a risky region
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but with di�erent applied repulsive forces. While moving under RCM constraints as discussed
in Section 4.3, the applied force for region avoidance is under the same constraints too.

Let us take the 2D topological image with the needle's tip location in it, all distances
between the needle's tip and image regions are calculated. For a more convenient procedure and
to avoid sudden forces, the forces should be inversely proportional to the distance between the
needle's tip and a region with prede�ned maximum forces. These prede�ned maximum forces
are set as safety thresholds to avoid reaching high forces that could be harmful to the patient.

Figure 4.14: CoBotic needle insertion under RCM with risky regions avoidance.

Figure 4.14 presents the CoBotic needle insertion settings under RCM constraints with
risky regions avoidance, where PHR provides the US image and NHR the needle's tip position.
Merging the needle's tip location with the topological image will provide a 2D US image
with all regions segmented in it. It should be noticed that two repulsive forces (one parallel
to the US x plane and one to the depth z) will be applied since the distance calculations are in 2D.

Figure 4.15 shows the CoBotic control model under RCM constraints with risky region
avoidance model. The model is similar to the CoBotic model in Figure 4.8 but with the addition
of the repulsive forces. By taking the Euclidean distance, the distance D is calculated between
each point in the needle's tip, the risky region, and the nerve. By taking these distances, small
repulsive forces F ′ will be applied to the end-e�ector once the needle's tip is getting close to
the risky region. Notice that these repulsive forces are in 2D (in x-axis and z-axis) due to the
retrieved 2D image. These forces will not force the anesthetists to a speci�c path toward the
nerve, but they will convey an alert once the needle's tip gets closer to a risky area.
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Figure 4.15: The CoBotic control model with risky regions avoidance. F is the computed forces
by the built-in Franka controller library, V is the velocity, R/T are the computed desired rotation
(Rx and Ry) and translation (Tz), PSR and PST are the previous end-e�ector position, PFR and
PFT are the new end-e�ector position, the PHR input is the 2D mesh retrieved from the PHR,
D are the distances between the nerve and all regions in x-axis and z-axis, and F ′ is the applied
forces on the end-e�ector which render to the anesthetist's hand.

4.6 Experimental setup, results and discussion

These experiments examine the e�ciency of the proposed needle insertion in the robotic-assisted
UGRA, and the performance evaluation of the proposed needle kinematics and control strategies.
In this section, the used robot and setup are presented. Then, the needle insertion experiments
are analyzed and discussed.

4.6.1 Setup and robots

The experiments were conducted using a 7-DoF Franka Emika Panda robotic arm [62]. Panda
is a �rst generation collaborative robot system designed speci�cally to assist humans. Unique
characteristics of the lightweight robot system designed to accomplish the most delicate
tasks accurately. Architected, designed, and developed by Franka Emika GmbH in Munich
and produced in Germany. The complete modularity, ultra-lightweight construction, highly
integrated mechatronic design, sensitive torque sensors in all joints, and human-like kinematics,
make the system unique. Based on the soft robotics control, inspired by human beings, Panda
is able to recognize and process even the slightest touch by using its arti�cial re�ex system to
accomplish most delicate tasks accurately and safely within ms.

Figure 4.16 shows the Franka Emika Panda robot and its kinematic parameters according
to the modi�ed Denavit Hartenberg convention. This robot is equipped with 7 revolute joints,
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each mounting a torque sensor, and it has a total weight of approximately 18 kg, having the
possibility to handle payloads up to 3 kg. It is possible to control the robot through the Franka
Control Interface (FCI).

Figure 4.16: Panda's kinematic chain (Franka Emika).

The Franka Control Interface (FCI) allows a fast and direct low-level bidirectional connection
to the robot. It provides the current status of the robot and enables its direct control with an
external workstation PC connected via Ethernet. By using libfranka, the open-source C++
interface, one can send real-time control values at 1 kHz.

libfranka is the C++ implementation of the client-side of the FCI. It handles the network
communication with Control and provides interfaces to easily: execute non-realtime commands
to control and con�gure Arm parameters; execute realtime commands to run at 1 kHz control
loops; read the robot state to get sensor data at 1 kHz; access the model library to compute the
desired kinematic and dynamic parameters.

Realtime commands are UDP based and require a 1 kHz connection to Control. There are
two types of realtime interfaces: Motion generators, which de�ne a robot motion in joint or
Cartesian space; Controllers, which de�ne the torques to be sent to the robot joints.

In this study and as discussed in Section 4.3, to control the needle movements inside the
patient's body, the most comfortable way would be to use the Cartesian space. Libfranka allows
the robot to be controlled in Cartesian space and provides the direct and inverse kinematics
models. This allows using the robot's built-in inverse kinematics instead of having to solve it.

The desired end-e�ector position is calculated where this position will be inputted to the
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Figure 4.17: The anesthesia needle.

built-in inverse kinematic model. However, if the commanded values sent by the user do not
comply with the interface requirements, an error will occur. This error indicates a discrepancy
between the current robot values and the desired values sent by the user, in other words, the
inverse kinematics solver of control yields to a joint con�guration out of the limits. To counter
this error, the desired values must take into account these limits to guarantee that the robot
can reach the desired position using the inverse kinematics solver. For Cartesian space control,
necessary conditions, such as the robot velocities, accelerations, or jerks, should be met to
assure the control within the con�guration limits.

Figure 4.18: 3D printed needle holder.

Franka-ROS connects the robot with the entire ROS ecosystem. It is a metapackage
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that integrates libfranka into ROS Control. Originally developed in 2007 by the Stanford
Arti�cial Intelligence Laboratory in support of the Stanford AI Robot project [206], ROS is
an open-source operating system [207] for robots. ROS is steadily gaining popularity among
robotics researchers as an open-source framework with a Linux platform for robot control.
It o�ers hardware abstraction, low-level device control, implementation of commonly-used
functionality, message-passing between processes, and package management. ROS uses the
concept of nodes, messages, topics, services, stacks, and packages [207].

The proposed architecture was implemented as ROS nodes where it publishes and subscribes
data with other nodes via ROS messages on the ROS topics. The communication between this
interface and the robot is made possible thanks to the Franka Control Interface (FCI), which
provides the current robot status and enables its direct control with an external workstation
PC connected via local Ethernet at a communication rate of 1 kHz. In our work, the robot was
assisted with a tool that we designed using a 3D printer to hold the needle (Figure 4.17) as
shown in Figure 4.18.

In this work, where the needle in the UGRA procedure moves slowly and precisely, the
position of the tool frame was controlled in the operational space with a maximum velocity of
0.03 m/s and acceleration of 2 m/s2. This maximum acceleration is necessary to keep the �uent
motion without inertial sensation at the anesthetist's hand.

For the haptic control, the connection between the interface and the phantom is achieved
by the phantom controller using local Ethernet at a communication rate of 13 kHz which makes
it very sensitive. To solve the sensitivity of the haptic device and to make the control between
a 13 kHz haptic phantom and a 1 kHz Franka robot, an average strategy was applied to the
haptic device. This strategy takes the average of the array of the 13 received position values in
each ms, and updates it by adding the new position value and neglecting the �rst one.

In order to allow communication between nodes in di�erent computers, the environment
variable ROS_MASTER_URI on every client PC must be set to the IP address of the PC
where the master node is launched, namely the master PC. Additionally, the ROS_IP and
ROS_PC_NAME environment variables must be set. In this experiment, the haptic station
was set as the master PC and the robot station as the slave PC.

4.6.2 Experimental results and discussion

The objective of this experiment is to evaluate the proposed techniques in order to study their
role and impact on needle control. Section 4.6.2.1 describes the experiments of the needle
insertion under RCM constraints, and the results of US image segmentation for risky regions
avoidance are presented in Section 4.6.2.2.

4.6.2.1 Needle insertion under RCM constraints

In this study, we used position accuracy as it is the major metric commonly used to evaluate
RCM methods in medical robotics. Basically, position accuracy is the Euclidean distance
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between a given insertion point and the RCM point are computed by the proposed method
each ms. The proposed method is validated with this metric and it is validated using 2
orthogonal laser beams that point out at the insertion point and at the sphere center in Rviz
visualization as shown in Figure 4.19.

(a) The real robot. (b) The Rviz display.

Figure 4.19: Robot setup with RCM representation as 2 laser beams on the real robot and at
the sphere center in Rviz visualization.

4.6.2.1.a RCM preliminary control test for needle insertion:
Figure 4.20 shows example when applying di�erent rotations and translations on the Franka

robot end-e�ector using a local control by joystick. Various rotations and translations were
performed in each case. The position accuracy of RCM constraints has been computed and
compared with the insertion point �xed position. These experiments have been repeated by
taking the Euclidean distance between the RCM position and the insertion point position, the
Euclidean maximum error is found less than 1 mm. The results suggest that with a given
con�guration control (the proposed RCM constraints control), the manipulator has a highly
accurate performance when it is operating with respect to RCM constraints.

4.6.2.1.b Teleoperated haptic force feedback control under RCM constraints:
In the previous section, we validated the accuracy of the proposed RCM control method.

Now, the teleoperated haptic force feedback control is added to it. To examine the RCM
constraints error using the haptic device, the Euclidean distance error between the RCM
position and the insertion point position is computed which is less than 1 mm. Next, the
teleoperated force feedback experiment was carried out; Figure 4.21 illustrates the desired force
(the insertion force applied on the needle at NHR), the actual force (feedback force rendered by
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(a) The robot starting
position.

(b) The robot position after applying only
rotations (Rx = 15◦ and Ry = −15◦) at time (t)

= 10 sec.

(c) The robot position after applying di�erent
rotations AND z-translations (Rx = −15◦,

Ry = −15◦, and Tz = 10cm) at time (t) = 20 sec.

Figure 4.20: RCM results, where real robot images on the left column
and the Rviz display on the right one.
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the haptic device to the anesthetist's hand), and the force error between the two forces. It can
be seen from Figure 4.21 that the error between the actual feedback force and the insertion force
approaches zero (<0.1 N). As a result, the proposed control method o�ers good transparency in
the force feedback using a haptic phantom.

(a) Force-x (b) Force-y

(c) Force-z

Figure 4.21: Force error characterization: force along the x-axis (a), force along the y-axis (b)
and force along the z-axis (c).

4.6.2.1.c CoBotic control under RCM constraints:
The CoBotic experiments were implemented by applying forces on the NHR end-e�ector

and computing the RCM constraints error. Figure 4.22 depicts Euclidean distance error
between the RCM position and the �xed insertion point position after applying di�erent
CoBotic control forces (on x, y, and z) for more than 60 sec. This error is computed by
taking the 3D Euclidean distance between the desired RCM position and the calculated new
position. It can be observed from Figure 4.22 that the error between the desired RCM position
and the �xed insertion point position is less than 1 mm. Therefore, the results show that
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Figure 4.22: The Euclidean distance error between the RCM position and the �xed insertion
point position using CoBotic control under RCM point constraints (hand force is applied by the
operator on the robot arm).

the proposed CoBotic control method has an acceptable result of performing the UGRA
procedure with accurate and precise control. Figure 4.23 shows an example of applying di�erent
rotations and translations on the Franka robot using the CoBotic control under RCM constraints.

4.6.2.2 Risky region avoidance : topological image

Risky region avoidance process gives the anesthetist the advantage of feeling an extra repulsive
force once the needle's tip gets close to any risky region such as a nerve, an artery, a vein, or
a tendon. This process starts by segmenting the US image to provide the anesthetist with an
on-lined processed topological (augmented reality) image. US image segmentation experiments
were carried out using PC with a Core 7 Duo 3.50GHz processor with 32GB RAM. Experiments
were conducted on sonographic videos of the median nerve obtained from 20 anonymous adult
patients (12 men and 8 women) using a US machine with a 5-12 MHZ transducer frequency. US
videos of the median nerve were obtained from several volunteer patients under real conditions
where the ground truth was provided by two regional anesthesia experts. The databases are in
the form of a video for each patient. Each video consists of 650-750 frames and a total number
of 14,000 US images of the median nerve were used. The used images in our experiments have
a dimension of 600 × 350 pixels.

The Segnet model is designed under Python with the public deep learning libraries Tensor-
Flow and Keras [173]. In these experiments, 10 videos were selected randomly as a training
dataset and the remaining 10 videos as a testing dataset. For setting the dataset, each image
was labeled manually and validated by the experts. During the training phase, the SegNet
network uses the images with of 360 × 480 pixels, with their labels. The number of iterations
was set to 200, 000 and the batch size is set to 3 which composed of 3 images selected randomly.

For testing an image, the testing phase returns the predicted labeled image. The output
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(a) The robot starting
position.

(b) The robot position after applying di�erent
rotations AND z-translations (Rx = −30◦,

Ry = −20◦, and Tz = 4cm) at time (t) = 15 sec.

(c) The robot position after applying only
rotations from the previous pose (Rx = 60◦ and

Ry = 45◦) at time (t) = 30 sec.

Figure 4.23: CoBotic control under RCM constraints results, where real
robot images on the left column and the Rviz display on the right one.
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image is compared with the ground truth to estimate the segmentation accuracy. Accuracy is
the most common performance measure, but the main drawback is that the accuracy hides some
details that can help understanding better the segmentation model performance. Hence, Recall,
Precision, and F1-score provide better performance understanding by taking both false positives
and false negatives into account. Therefore, we evaluated the segmentation process by Precision,
Recall, and F1-score values which are expressed by:

Precision =
TP

TP + FP
(4.23)

Recall =
TP

TP + FN
(4.24)

F1− score =
2× (Precision×Recall)
Precision+Recall

(4.25)

where TP, TN, FP, and FN are the number of samples for �True Positive�, �True Negative�,
�False Positive� and �False Negative�, respectively.

To show the e�ectiveness of the method, Table 4.1 depicts the segmentation average
results. If there is a match between the ground truth and the SegNet estimation, it is
considered as true positive, otherwise, it is a false positive. The results show the strength
of the model which has an average segmentation Precision and Recall (>80%) for all classes.
It can be observed from Table 4.1 that the adopted methodology can successfully segment
the US images, which is important to achieve a successful CoBotic UGRA with regions avoidance.

Table 4.1: A comparison results for SegNet segmentation average.

Class precision recall F1-score

Nerve 0.92 0.91 0.91

Artery 0.95 0.95 0.95

Tendon 0.94 0.87 0.90

Bone 0.95 0.85 0.89

Dermis 0.96 0.81 0.88

Time complexity is considered a crucial point, especially for US image segmentation in
UGRA. Important aspects that a�ect the running time for any descriptor are feature extraction
time and the feature dimensionality. In literature, it is generally the performance results
of the segmentation method that are focused on, while time complexity has received less
attention. In our experiments and to provide the topological image, the average reported
time is 4.8 seconds per image. This average is calculated over 7000 images of size 360 ×
480 without including the training time. The results show great performance and time
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since the topological image is updated each 6-8 seconds in the proposed robotic system. In
addition to the possibility of using GPUs and parallel programming which ensure a faster process.

Qualitative results are shown in Figure 4.24, where it can be seen that the nerve and the
other regions were successfully segmented compared to the expert's groundtruth. In the same
�gure, it can be observed the mesh is created for each image. Updating the 2D model and the
force control for risky region avoidance are presented completely in Section 4.5. Nevertheless,
these two tasks ( H and I ) are not included in our platform and will be a part of our future
work as two robotic stations are needed (NHR and PHR).
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Figure 4.24: Qualitative results of US image segmentation using the SegNet model from 4 videos
of 4 di�erent patients.

Nerves in pink. Arteries in red. Bones in yellow. Tendons in blue.
Dermis in green.

4.7 Conclusion

In this chapter, we addressed a challenging issue in robotic-assisted UGRA which is needle
insertion control. We have presented an experimental system with the Remote Center of Motion
(RCM) constraints. It enables full Cartesian control of the robot end-e�ector based on the
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needle insertion kinematics. The proposed method was developed using ROS and a 7-DoF
Franka Emika robot. To evaluate the accuracy of the system, a performance metric is used
based on the Euclidean distance between the RCM point and the �xed insertion point. The
proposed method is accurate to �nd the exact position and rotation of the end-e�ector with
an error of less than 1 mm while maintaining the needle insertion kinematics. Two control
strategies were presented while using the RCM Cartesian control: a teleoperated UGRA needle
insertion system with haptic force feedback; a CoBotic needle insertion system.

The teleoperated UGRA control enables needle insertion under RCM constraints with force
feedback applied to the haptic device (6-DoF Virtuose 3D Desktop). The proposed method is
accurate, as it �nds the exact position and rotation of the end-e�ector with an error of less than
1 mm (The Euclidean distance error between the RCM point and the �xed insertion point).
To evaluate the teleoperated force feedback system, the error between the desired force (the
insertion force applied on the needle at NHR) and the actual force (feedback force rendered
by the haptic device to the anesthetist's hand) is computed. The teleoperated force feedback
system found to be accurate and sensitive with an error approaching zero (<0.1 N) between the
desired and the actual forces.

On the other hand, the CoBotic UGRA control enables the needle movements control
by applying hand force by the operator user on the robot arm while respecting the RCM
constraints. To evaluate the accuracy of the system, the Euclidean distance error between the
RCM point and the �xed insertion point is computed which is less than 1 mm while maintaining
the needle insertion kinematics.

Finally, we discussed avoiding risky regions by applying small repulsive forces to the
end-e�ector once the needle's tip gets close to a risky region. A topological image has been
constructed by using a neural network segmentation technique (SegNet). In the experiments,
the results show that the used technique obtained high accuracy (>80%) for segmenting the US
image.
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Conclusion

Ultrasound-Guided Regional anesthesia (UGRA) has become a standard procedure in surgical
operations and pain management; it o�ers the advantages of nerve localization, and provides
regions of interest visualization. Despite a long training process and daily acts that the
anesthetists perform, the UGRA procedure can still bene�t from robotics and image processing
researches. The main objective of this thesis is to facilitate the daily routine of the anesthetists
by introducing the robotic-assisted system for UGRA. It must be emphasized that this system
is designed to be a complementary working tool for the medical operators to assist them while
performing the UGRA act. This robotic assistance is developed to improve the procedure
accuracy and safety such as avoiding nerve trauma or reducing healthy tissues damage.
Furthermore, it could increase the anesthetist's experience by more teaching and learning to
avoid unintentional injuries.

This thesis is a part of DANIEAL2 project and proposes a complete robotic system for the
UGRA procedure where we focused on 3 main issues: nerve detection, nerve tracking, and needle
insertion. Figure I recalls the proposed robotic system where achieved tasks within each phase
are highlighted in yellow. The major contributions are summarized as follows:

Figure I: The proposed robotic-assisted UGRA procedure.
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� We proposed a complete robotic system for the UGRA procedure in Chapter 1. This
robotic system can provide great assistance to the experts with techniques and tools that
improve the procedure accuracy and safety such as avoiding nerve trauma or damage to
healthy tissues. Moreover, it can be used as a learning tool for junior professionals.

� Nerve detection and tracking problems in the ultrasound (US) image require to take
into account complex information embedded in the image which are the features. Any
detection and tracking method depends mostly on choosing suitable image features. since
the US image has the noisy texture properties, we proposed a new Robust Adaptive
Median Binary Pattern (RAMBP) feature descriptor. RAMBP descriptor takes the
advantage of pixel classi�cation and the adaptive analysis to provide strong discrim-
inativeness and noise robustness properties. RAMBP has been evaluated on noisy
textures including di�erent kinds of noise. Experimental results indicated that RAMBP
outperforms other existing descriptors for handling high noisy textures classi�cation.
However, we believe Convolutional Neural Networks (CNNs) models are e�ective too
for the US image textures. Thus, to learn more optimal features, we propose to merge
RAMBP with CNN models to achieve better performance for nerve detection and tracking.

� Accurate and consistent nerve detection and tracking is essential for safe and e�cient
UGRA. In this thesis, the detection and tracking methods are based on RAMBP (texture
descriptor), CNNs models, or the merged model of RAMBP and CNNs model. Although
the texture descriptor or CNNs models based detectors and trackers perform good in US
images, the results show that the merged model obtained higher accuracy by 10%. It is
worth mentioning that the merged model combines the RAMBP and CNN architecture
together which takes advantage of the strength of each side and improves the overall
performance. Furthermore, di�erent techniques were presented for detecting and tracking
the nerve in the US image. For nerve detection, the obtained detection results show that
the merged model based detector outperforms other techniques and achieved the best
performance with 96% precision. For nerve tracking, we found that the merged model
based trackers achieved the best results where we believe that the mix tracker (particle
�lter and the search technique) provides a good trade-o� between tracking accuracy (with
93%) and time complexity (with 0.19 spf).

� Needle insertion is a very challenging task encountered by anesthetists in their daily
routine and especially when they have to. Maneuvering the needle around the interaction
pivot point between the needle and the skin of the patient is named the insertion
point. This point restricts the anesthetist to control the needle to only four degrees of
freedom (DoF) motion: three rotational DoF and one translational DoF. In robotic, this
restriction is called the �remote center-of-motion (RCM) constraints�. We have presented
an experimental system by enabling full Cartesian control of the Franka emika robot
end-e�ector under RCM constraints. Furthermore, we presented two di�erent control
strategies while using the proposed RCM control: a teleoperated UGRA needle insertion
system with haptic force feedback using a 6-DoF Virtuose haptic device; a CoBotic needle
insertion system by applying hand forced by the operator user on the Franka emika robot
arm. To evaluate the accuracy of respecting the RCM constraints, the Euclidean distance
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error between the RCM point and the �xed insertion point is compted. The proposed two
control strategies are accurate to �nd the exact position and rotation of the end-e�ector
with an error of less than 1 mm while maintaining the RCM constraints. To evaluate the
teleoperated force feedback system, the force error between the desired force (the insertion
force applied on the needle at NHR) and the actual force (feedback force rendered by
the haptic device to the anesthetist's hand) is computed. The proposed system found
to be accurate and sensitive with a force error approaching zero (<0.1 N). Furthermore
in this work, we discussed avoiding risky regions by applying small repulsive forces to
the end-e�ector once the needle's tip is close to a risky region. For that, a topological
image is constructed by using a neural network segmentation technique (SegNet). In the
experiments, the results show that the using technique obtained high precision 90% for
segmenting the US image.

Perspectives

Signi�cant number of ideas remain untapped and will need to be analyzed and studied in detail.
The future directions foreseen for a possible follow-up can be broken down into short term
perspectives and long term perspectives.

� Short term perspectives

1. We introduced the robotic-assisted UGRA system which is divided into several tasks
as discussed in Chapter 4. In this thesis, we presented some tasks while 5 tasks have
to be looked at:

(a) CoBotic control of the probe holder robot for probe placement on the patient's
body - task A .

(b) Visual servoing to control the probe holder robot for keeping the visualization of
the nerve - task D .

(c) CoBotic control of the needle holder robot for needle placement in the US plane
- task E .

(d) Visual servoing to control the probe holder robot to keep the visualization of the

nerve and the needle in the US image - D′ .

(e) Trajectories proposition of the needle to reach the nerve - task J .

2. We performed the detection and tracking tasks on real data videos. For future work,
the detection and tracking tasks could be done directly in realtime using US system.

3. For the proposed robotic needle insertion control, technical validation on anatomical
phantom could be performed which will be one step for evaluating the proposed
system toward clinical applications.
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4. The possibility of using parallelization on GPUs platform or FPGAs for increasing
the performance speed for the computer vision tasks.

� Long term perspectives

1. In this thesis, we focused on the median nerve for the detection and tracking tasks.
In future work, the detection and tracking techniques could be assessed on other
types of nerves in order to improve the performance. The use of a larger database
should signi�cantly improve the detection and tracking tasks.

2. Merging the computer vision methods (detection and tracking) with the robotic
methods (needle control and visual servoing) for evaluating the more complete system.

3. Although the robotic control of the needle holder robot to avoid risky regions
is introduced, the method should be tested on a two-robot system with shared
workspaces and frames. The communication between the probe and needle holder
robots is a crucial step for obtaining the needle and the image region position in the
2D plane.

It is not easy to predict what UGRA procedure will be like ten or twenty years from now,
but it is reasonable to believe that computer-assisted surgery alongside the robotic aids will keep
on improving and providing smarter, more accurate, and surly a safer assistance tools to the
anesthetists.
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Chapter 5
Résumé

Outline:

Dans ce chapitre, un résumé complet de la thèse est présenté en langue française.

5.1 Introduction

L'anesthésie régionale (AR) est pratiquée pour bloquer la sensation de douleur dans une région
spéci�que du corps en arrêtant la connexion des impulsions nerveuses entre cette région et le sys-
tème nerveux central [12]. De nos jours, l'AR est une procédure bien connue dans de nombreuses
salles d'opération et est utilisée pour éviter de pratiquer une anesthésie générale. L'AR est pra-
tiquée par l'anesthésiste a�n de réduire la douleur, de faciliter une sortie plus précoce de l'hôpital
et d'améliorer la mobilité postopératoire. Traditionnellement, cette technique était pratiquée en
aveugle, ce qui augmentait le risque de défaillance du bloc, de traumatisme nerveux et de toxi-
cité de l'anesthésie locale. Par conséquent, l'anesthésie régionale guidée par ultrasons (UGRA)
devient une technique puissante dans la procédure chirurgicale et la gestion de la douleur [23].

L'UGRA a un impact considérable sur la pratique de l'anesthésie régionale [20]. Toutefois,
lorsqu'ils pratiquent l'UGRA, les experts sont confrontés à plusieurs dé�s: trouver l'emplacement
du nerf dans l'image échographique de mauvaise qualité; conserver la visualisation du nerf en
permanence; localiser les di�érents organes dans l'image tels que les artères et les os; trouver
le meilleur point d'insertion de l'aiguille; contrôler l'insertion de l'aiguille en tenant compte
du point de pivot d'interaction entre l'aiguille et la peau du patient; aligner l'aiguille dans le
plan échographique 2D; trouver la trajectoire appropriée de l'aiguille pour éviter les régions
anatomiques ou cardiovasculaires sensibles (artères, os, etc.). Par conséquent, la procédure
UGRA nécessite un long processus d'apprentissage et des années d'expérience [35,36].

Les systèmes robotisés sont déjà utilisés dans le milieu médical et ont montré leur impact
important pour assister les experts médicaux lors de la réalisation de leur acte médical [7].
L'UGRA assistée par robot pourrait être d'une grande utilité en aidant les experts avec des
techniques et des outils qui améliorent la précision et la sécurité de la procédure, par exemple en
évitant les traumatismes nerveux ou l'endommagement des tissus sains. De plus, cette approche
permettrait d'améliorer la courbe d'apprentissage pour les anesthésistes juniors, en évaluant les
re-jeux des gestes réalisés (trajectoires, point d'insertion). L'objectif principal du travail de thèse
est de fournir aux anesthésistes des outils robotiques et de traitement d'images pour les aider et
faciliter leur routine UGRA pour le bien de la santé des patients.
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Le système UGRA assisté par robot présente deux aspects essentiels: la qualité visuelle de
l'image UltraSonore (US) qui sou�re de la présence de bruits; et le contrôle robotique et la
précision de l'insertion de l'aiguille. La thèse vise à développer un système UGRA robotisé qui
se concentre sur ces deux questions et propose des méthodes de détection et de suivi des nerfs
et le contrôle robotisé de l'insertion de l'aiguille.

Cette thèse a été réalisée au sein du Laboratoire Pluridisciplinaire de Recherche en Ingénierie
des Systèmes, Mécanique, Energétique (PRISME), un laboratoire de l'Université d'Orléans
et de l'INSA-CVL. Cette thèse a été �nancée par le projet DANIEAL2 'Détection et Anal-
yse des Nerfs dans les Images Echographiques pour l'Anesthésie Locorégionale'. L'Université
d'Orléans, l'Université de Tours, l'hôpital Médipôle Garonne (Toulouse) et la société Adechotech
ont développé une collaboration autour du projet DANIEAL2 avec l'aide �nancière de la région
Centre Val-de-Loire.

Le projet DANIEAL phase 2 est issu de l'APR 2016 de la région Centre-Val de Loire. Il
se situe dans la continuité du projet DANIEAL. Le contexte général du projet est celui du
développement de dispositifs médicaux robotisés pour l'amélioration de l'accès aux soins et de
l'assistance au geste médical. Le domaine applicatif visé est celui de l'anesthésie locorégionale
réalisée sous échographie. Ce projet vise à fournir aux anesthésistes une plateforme collabora-
tive expert-robot-environnement qui améliore de façon signi�cative la pratique de l'anesthésie
locorégionale.

L'objectif de DANIEAL2 est d'étudier et de développer un dispositif médical robotisé à
sécurité intrinsèque, où l'expert est toujours dans la boucle de contrôle. Il s'agit d'assister
le geste médical d'insertion d'aiguille vers le nerf sous imagerie US en utilisant la collaboration
d'un bras robotisé. Cette plate-forme d'assistance sera conçue pour faciliter la prestation de soins
médicaux de haute qualité et personnalisés ainsi que pour améliorer le processus de formation
des anesthésistes et réduire les risques de traumatismes liés à l'anesthésie locorégionale.

Le consortium est composé, des laboratoires PRISME qui a une expertise reconnue en robo-
tique médicale, en traitement d'images et en asservissement visuel, du Laboratoire LIFAT de
Tours pour son expertise en analyse d'image video, de la société ADECHOTECH qui développe
depuis plusieurs années des robots à �nalités médicales et de la clinique Médipôle à Toulouse qui
possède une notoriété nationale et internationale pour la pratique de l'anesthésie locorégionale
guidée sous échographie.

le projet DANIEAL2 vise à fournir aux anesthésistes une plateforme collaborative expert-
robot-environnement qui améliore considérablement la pratique de la pratique de l'anesthésie ré-
gionale guidée par ultrasons (Ultrasound-guided regional anesthesia UGRA); c'est-à-dire étudier
et développer un dispositif médical robotisé à sécurité intrinsèque, où l'expert est toujours dans
la boucle de contrôle. Il s'agit d'assister le geste médical lors de l'insertion de l'aiguille vers le
nerf ciblé sous échographie (Ultrasound - US) en utilisant la collaboration d'un bras robotique.

Le système robotique proposé conçu pour la procédure UGRA est divisé en deux systèmes
robotiques connectés, un robot porte-sonde (Probe Holder Robot (PHR)) et un robot porte-
aiguille (Needle Holder Robot (NHR)), comme illustré à la Figure ci-dessous.

� Partie PHR: contrôle le PHR par asservissement visuel pour maintenir sans surveillance
les régions d'intérêt souhaitées (par exemple le nerf) dans l'image ultrasonore 2D obtenue
par l'appareil à ultrasons . Ensuite, une détection et un suivi automatiques du nerf, ainsi
qu'une technique d'asservissement visuel sont e�ectués pour maintenir le nerf ciblé dans le
plan de l'échographie 2D même en cas de mouvements physiologiques. De plus, le contrôle
du PHR par asservissement visuel permet de maintenir le nerf ciblé et l'aiguille insérée dans
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Figure 5.1: La procédure d'UGRA assistée par robot proposée.
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le plan de l'image échographique 2D en utilisant une approche d'asservissement visuel par
ultrasons. Pour mener à bien cette action, nous devons suivre le nerf dans les images US et
récupérer la position/orientation de la pointe de l'aiguille en utilisant les transformations
géométriques entre les deux robots. Ainsi, lorsque l'anesthésiste incline l'aiguille en dehors
du plan ultrasonore, le PHR doit suivre la pointe de l'aiguille et la maintenir dans le plan
ultrasonore.

� Partie NHR: lorsque l'aiguille est hors du corps du patient (processus dit de "contrôle ex-
terne du patient"), l'objectif de l'anesthésiste est de trouver un point d'insertion de l'aiguille
sur la peau du patient qui pourrait fournir la meilleure trajectoire a�n d'atteindre le nerf.
Mais l'expert est confronté à deux contraintes : le point d'insertion doit se trouver dans le
plan des ultrasons (à noter que l'aiguille ne peut apparaître sur l'image US tant qu'elle n'est
pas à l'intérieur du corps du patient) ; la pose de l'aiguille est limitée par la nécessité d'être
vu dans le plan des ultrasons. Connaissant les transformations géométriques du PHR et du
NHR, nous pouvons o�rir à l'anesthésiste un contrôle CoBotique du NHR qui respecte les
deux contraintes avec un retour d'e�ort adapté sur les 6-Dimensions. En�n, le NHR CoBo-
tique assure la visualisation de l'aiguille dans le plan ultrasonore. Lorsque l'aiguille est
insérée dans le corps du patient (processus appelé "contrôle interne du patient"), l'objectif
de l'anesthésiste est de déplacer l'aiguille aussi près que possible du nerf en respectant les
contraintes du centre de mouvement à distance (Remote Center of Motion - RCM). Le
NHR est contrôlé CoBotiquement pour manipuler l'aiguille en réduisant le DDL autour du
point RCM. A�n que l'anesthésiste puisse éviter les régions à risque telles que l'artère, la
veine ou le tendon, une image topologique, basée sur l'image US, est traitée en ligne pour
construire un modèle 2D (maillage) qui permet une interaction entre les di�érents tissus
et la pointe et la tige de l'aiguille. Ce modèle permet au NHR d'appliquer des forces de
répulsion une fois que l'aiguille se trouve à proximité des régions à risque. De plus, avec le
modèle 2D, nous pouvons proposer à l'anesthésiste des trajectoires sûres pour atteindre la
zone nerveuse.

En conclusion, le système robotique est divisé en plusieurs tâches :

� Partie PHR :

� Détection des nerfs

� Suivi des nerfs

� Asservissement visuel pour maintenir la visualisation du nerf et de la pointe de
l'aiguille

� Partie NHR :

� Segmentation de l'image : image topologique

� Modèle 2D : création et mise à jour du maillage

� Contrôle cobotique sous contraintes RCM

� NHR Contrôle CoBotique pour l'insertion d'aiguilles sous contraintes RCM avec évite-
ment des régions à risque.

Dans cette thèse, nous nous sommes concentrés sur certains aspects (mis en évidence dans
la �gure 5.1) pour lesquels nous proposons de nouvelles techniques et méthodes. Pour les autres
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aspects, comme l'asservissement visuel, cela fera partie de nos travaux futurs. Globalement, les
travaux menés au cours de cette thèse conduisent à trois contributions principales :

� La première contribution consiste à proposer un outil qui consiste à traiter les informations
(caractéristiques) d'une image US a�n de détecter et de suivre automatiquement les blocs
nerveux. Ainsi, pour faciliter le processus de détection et de suivi, l'objet cible doit pouvoir
être di�érencié des autres objets à l'aide des caractéristiques de l'image. Néanmoins, le
choix et l'extraction de caractéristiques pertinentes est une tâche complexe en raison de
l'apparence de la texture nerveuse et de la nature bruyante de ce type d'image. Dans la
section 2, nous abordons ces critères en introduisant un nouveau descripteur de texture,
le Robust Adaptive Median Binary Pattern (RAMBP). Ce descripteur est évalué pour des
textures très bruyantes car le choix de la caractéristique robuste appropriée est une étape
cruciale dans les applications de détection et de suivi. Cette contribution est présentée
dans la section 2.

� La deuxième contribution consiste à proposer di�érentes techniques de détection et de
suivi des nerfs dans l'image US. Ces techniques sont basées sur : des descripteurs de
texture (RAMBP) ; des modèles CNNs ; et un nouveau modèle CNNs fusionné (RAMBP
avec modèle CNNs). Les résultats Les résultats de la détection et du suivi des nerfs
seront utilisés comme une entrée pour l'asservissement visuel. Ainsi, Cela faciliterait la
routine quotidienne de l'anesthésiste et lui permettrait de se concentrer sur l'insertion de
l'aiguille et l'administration de l'anesthésique. l'insertion de l'aiguille et l'administration
de l'anesthésique. Cette contribution est présentée dans la section 3.

� La troisième contribution propose un système de contrôle robotique pour l'insertion des
aiguilles. La stratégie de commande robotique utilise la "force" et de l'"endurance" des
robots, ainsi que de la �exibilité et de la prise de décision de l'anesthésiste, pour faciliter
la réalisation de la procédure UGRA. Ce système o�re une solution sûre et �exible pour
faciliter la réalisation de la procédure UGRA dans un espace partagé entre le personnel
médical et le ssytème robotisé. De plus, ce système permet aux experts de contrôler le NHR
pour une meilleure précision de l'insertion de l'aiguille. Cette contribution est présentée
dans la section 4.

Les sections suivantes présentent des résumés de chaque contribution. Dans la section 5.2,
RAMBP est présenté. Dans la section 5.3, les techniques de détection et de suivi proposées
sont proposées. La section 5.4 présente le contrôle robotique. Ce chapitre se termine par des
conclusions et perspectives �nales.

5.2 Extraction de la caractéristique robuste

Les problèmes de détection et de suivi dans l'analyse des images et des signaux nécessitent
la prise en compte d'informations complexes intégrées dans les données. Les images peuvent
contenir plusieurs milliers de valeurs de pixels qui représentent di�érents objets. Même si les
humains peuvent traiter à la fois des objets physiques et des notions abstraites dans leurs activités
quotidiennes tout en prenant des décisions dans diverses situations, il n'est pas possible pour
l'ordinateur de les traiter directement.

Une fonction doit contenir les informations nécessaires pour distinguer les classes, être insen-
sible à la variabilité non pertinente de l'entrée [72]. De plus, les fonctions doivent être limitées en
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nombre, a�n de permettre un calcul e�cace des fonctions discriminantes et de limiter la quantité
de données de formation requises. Les caractéristiques de l'image, telles que les bords et les
points d'intérêt, fournissent de riches informations sur le contenu de l'image. Elles correspon-
dent à des régions locales de l'image et sont fondamentales dans de nombreuses applications de
l'analyse d'images, telles que la reconnaissance, la correspondance, la reconstruction, etc [72].
Un descripteur de caractéristiques est un algorithme qui prend une image et produit des de-
scripteurs et des vecteurs de caractéristiques. Les descripteurs de caractéristiques encodent des
informations intéressantes en une série de nombres et agissent comme une sorte d'"empreinte"
numérique qui peut être utilisée pour di�érencier une caractéristique d'une autre. Les descrip-
teurs de caractéristiques contribuent à améliorer l'e�cacité de nombreuses tâches telles que la
détection et le suivi. Pour cela, le choix d'une caractéristique appropriée est une étape cruciale
dans les applications de détection et de suivi.

La texture est un indice important pour la détection dans de nombreuses applications
d'images US [73], car certains tissus présentent des propriétés de texture bruyante spéci�ques,
comme certains nerfs. Pour cette contribution, nous proposons un nouveau et robuste descripteur
de texture "Robust Adaptive Median Binary Patterns" (RAMBP). L'image échographique étant
considérée comme une image bruyante avec des régions de texture, nous évaluons le descripteur
proposé sur des textures bruyantes bien connues pour les problèmes de classi�cation des textures.

RAMBP utilise une classi�cation des pixels bruyants, une fenêtre adaptative pour le seuil et
les modules binaires, et des valeurs régionales au lieu d'utiliser les intensités des pixels. RAMBP
est divisé en trois étapes, le processus de classi�cation de la détection des pixels bruyants, le
processus de seuil et la génération du modèle binaire. Exemple de classi�cation des textures,
l'utilisation de RAMBP donne les meilleurs résultats et surpasse les autres méthodes de l'état
de l'art.

Le descripteur RAMBP tire parti de la classi�cation des pixels et de l'analyse adaptative pour
o�rir de fortes propriétés de discrimination et de résistance au bruit. Le descripteur proposé a
été évalué sur des textures bruyantes, notamment le sel et le poivre, le bruit gaussien, le �ou
gaussien et le bruit mixte. Les résultats expérimentaux ont indiqué que RAMBP surpasse les
autres descripteurs existants pour le traitement de la classi�cation des textures très bruyantes
et qu'il est l'un des meilleurs dans la classi�cation des textures sans bruit. Dans ce travail, la
recherche de textures bruyantes est présentée de la cohérence et de la stabilité de la politique de
RAMBP, et il montre la haute performance et la robustesse de RAMBP. Dans ce document, la
complexité de calcul avait été testé où le RAMBP o�re une bonne durée de fonctionnement et
un la dimensionnalité des caractéristiques.

Le descripteur RAMBP sera utilisé et évalué dans la prochaine contribution pour la détection
et le suivi dans les images US.

5.3 Détection et suivi des nerfs

La procédure UGRA nécessite des connaissances anatomiques et des compétences dans
l'utilisation de l'imagerie US, ainsi qu'un haut degré de concentration de la part de l'anesthésiste
pour localiser le nerf [5, 6]. En outre, il n'est pas toujours facile de localiser certains nerfs dans
la pratique de l'UGRA. Dans ce travail, un système UGRA assisté par robot est proposé. Ce
chapitre vise à développer des outils pour aider les anesthésistes à détecter et à suivre les nerfs
avec précision.

Bien que les algorithmes de détection et de suivi des images échographiques aient été large-
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ment développés [122�125], le problème reste ouvert, en particulier pour l'anesthésie régionale.
Jusqu'à présent, très peu d'attention a été accordée à la détection et au suivi des nerfs. Dans
le chapitre précédent, nous avons proposé des modèles binaires médians adaptatifs robustes
(RAMBP) qui présentent les avantages de l'e�cacité et de la robustesse aux textures avec dif-
férents bruits élevés. L'utilisation de détecteurs ou de trackers basés sur RAMBP o�rirait une
bonne performance, puisque les régions nerveuses sont considérées comme une texture bruyante.
Cependant, nous pensons que les modèles de réseaux neuronaux convolutionnels (CNN) sont
également e�caces pour les textures d'images US. Ainsi, pour apprendre des caractéristiques
plus optimales, il est plus intéressant de fusionner les modèles RAMBP et CNN a�n d'obtenir
de meilleures performances pour la détection et le suivi des nerfs.

Pour cette contribution, nous proposons di�érentes méthodes pour détecter et suivre le nerf
dans les images US. Ces méthodes sont basées sur le descripteur de texture (RAMBP), les modèles
CNN et Support Vector Machine (SVM) et le modèle fusionné proposé (descripteur de texture
avec CNN).

5.3.0.0.a Détection des nerfs basé sur le descripteur RAMBP
Nous présentons la détection des nerfs à l'aide du descripteur RAMBP en utilisant deux

techniques, la machine à vecteur de support (SVM) [140] et le CNN 1D [132]. Bien que le
CNN 1D soit considéré comme un modèle CNN, dans cette section, nous utilisons le descripteur
RAMBP comme entrée pour le CNN 1D. La �gure 5.2 illustre la chaîne de traitement complète
des deux techniques.

(a) SVM

(b) 1D-CNN

Figure 5.2: Schéma de la détection des nerfs à l'aide du descripteur RAMBP. (a) Classi�cateur
SVM. (b) Classi�cateur CNN 1D.

Comme l'illustre la Figure 5.2, plusieurs images US ont été utilisées comme ensemble
d'apprentissage a�n de représenter di�érents aspects du nerf. Pour détecter le nerf, les mod-
èles SVM et 1D CNN sont utilisés pour comparer les fenêtres coulissantes de l'image d'entrée
(test) et les modèles. Pour le SVM, la procédure de classi�cation génère une liste de positions
de régions candidates pour chaque nerf. A partir de ces positions, la position �nale du nerf est
assignée à la région où le niveau de con�ance est le plus élevé comme le montre la Figure 5.2a. De
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l'autre côté, pour le CNN 1D, la sortie de la procédure de classi�cation est le score de prédiction
de chaque fenêtre glissante dans l'image. À partir de ces scores, la position �nale du nerf est
attribuée à la région ayant le score le plus élevé.

5.3.0.0.b Détection des nerfs basé sur le modèle CNN

Nous présentons la détection des nerfs à l'aide du l'architecture CNN 2D est construite
pour apprendre des caractéristiques visuelles profondes à partir d'images US. Comme l'illustre
la Figure 5.3, plusieurs images US ont été utilisées comme ensemble d'apprentissage a�n de
représenter di�érents aspects du nerf. Pour détecter le nerf, les modèles CNN 2D sont utilisés
pour comparer les fenêtres coulissantes de l'image d'entrée (test) et les modèles. Le résultat de la
procédure de classi�cation est le score de prédiction de chaque fenêtre coulissante dans l'image.
À partir de ces scores, la position �nale du nerf est attribuée à la région ayant le score le plus
élevé.

Figure 5.3: Schéma de l'architecture CNN 2D.

5.3.0.0.c Détection des nerfs basé sur le modèle fusionné

Malgré les fortes caractéristiques des descripteurs de texture ou des détecteurs basés sur le
CNN, le sujet de la détection des nerfs nécessite un développement et un examen plus poussés.
Ainsi, pour apprendre caractéristiques optimales, nous proposons d'apprendre des caractéris-
tiques de haut niveau à partir de données de dimensions di�érentes en utilisant des CNN de
di�érentes dimensions. L'architecture CNN profonde fusionnée comporte deux branches, une
branche CNN unidimensionnelle (1D) (histogrammes RAMBP 1D) et une branche CNN 2D (im-
ages US 2D), comme le montre la �gure 5.4 images US), comme le montre la �gure 5.4. Ces
deux architectures ont pour but d'apprendre des caractéristiques profondes et de les concaténer
pour former le réseau profond fusionné.

5.3.0.0.d Suivi des nerfs basé sur le descripteur RAMBP

Comme nous traitons des régions de texture dans les images US, il serait plus intéressant
d'utiliser des descripteurs robustes. Plusieurs études visent à augmenter la robustesse de la clas-
si�cation des textures bruyantes en utilisant une approche robuste de motifs binaires locaux. La
�gure5.5 décrit le processus de suivi où les algorithmes de suivi déterministes utilisés sont com-
binés avec di�érents types de méthodes d'extraction de caractéristiques. Le processus commence
par la prise de la position précédente du nerf et son entrée dans le descripteur de caractéristiques
(RAMBP). Il est suivi par l'application du traqueur de caractéristiques. Ces trackers comparent
les caractéristiques de l'emplacement précédent du nerf avec les caractéristiques qui ont été prises
à partir de l'emplacement du nerf candidat.
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Figure 5.4: Schéma de l'architecture CNN 1D-2D fusionnée.

5.3.0.0.e Suivi des nerfs basé sur les modèles CNNs

Il est plus avantageux d'exploiter les trackers récents basés sur des processus d'apprentissage
profond, car ils ont montré d'excellentes performances dans de nombreuses applications de vi-
sion par ordinateur [158�169].. Motivés par les percées des CNN, plusieurs trackers basés sur
l'apprentissage profond ont été développés a�n d'améliorer de manière signi�cative les perfor-
mances de suivi. Ces travaux de recherche ont donné des résultats prometteurs pour di�érentes
applications de suivi.

Dans ce travail, nous avons mené une étude comparative de treize trackers profonds pour le
suivi du nerf dans les images US. Ces trackers sont construits en empilant di�érentes couches
CNN pour suivre le nerf dans les images US. Nous avons mené une enquête sur le suivi des
nerfs en utilisant di�érents trackers CNN tels que traqueur à opérateurs de convolution continus
(C-COT) [158], opérateurs de convolution e�caces (ECO) [159], etc.

5.3.0.0.f Suivi des nerfs basé sur le modèle fusionné 1D-2D

Comme la section 3.2.3 a discuté de la possibilité de fusionner les descripteurs de texture
avec le modèle CNNs pour la détection des nerfs, il est intéressant, également, d'utiliser le
modèle fusionné pour la tâche de suivi. Ici, nous proposons d'utiliser le modèle CNNs 1D-2D
fusionné (Section 3.2.3) avec trois techniques de suivi pour suivre le nerf dans les images US. La
première technique est basée sur la détection en utilisant le modèle CNNs fusionné dans la zone
de recherche de l'image suivante plus grande que l'emplacement précédent du nerf. La deuxième
technique est basée sur le suivi par �ltre de particules (PF) [150] où le modèle CNNs fusionné est
responsable de fournir les poids des particules. La troisième technique combine les deux premiers
trackers.

Comme le montre la �gure, le tracker mixte basé sur les CNN fusionnés est une combinaison
des deux trackers précédents. Il commence par utiliser le tracker PF basé sur les CNNs fusionnés
comme expliqué précédemment. Si le score le plus élevé (la similarité maximale) du poids des
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Figure 5.5: Le schéma du processus de suivi basé sur le descripteur RAMBP.

Figure 5.6: Le schéma du processus de suivi basé sur les modèles CNNs.
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particules, récupéré à partir du modèle CNN fusionné, est inférieur à un certain seuil, le tracker
de recherche basé sur les CNN fusionnés sera déclenché pendant une image pour suivre le nerf
plus précisément.

Pour les trois techniques, nous adoptons une stratégie incrémentale pour mettre à jour le
modèle CNN fusionné avec les nouvelles apparences du nerf. La stratégie incrémentale n'utilise
que les nouveaux échantillons de l'image actuelle pour mettre à jour le modèle. Ainsi, ce modèle
mis à jour est capable de s'adapter aux variations d'apparence de la cible tout en atténuant le
problème de dérive.

Figure 5.7: Le schéma du processus de suivi basé sur le modèle fusionné 1D-2D.

5.4 Contrôle robotique

L'exécution de la routine UGRA nécessite un long processus d'apprentissage, principale-
ment en raison du risque de traumatisme nerveux et de la mauvaise qualité des images
échographiques [5, 6]. C'est pourquoi le projet DANIEAL 2 vise à fournir aux anesthésistes une
plateforme collaborative expert-robot-environnement qui améliore considérablement la pratique
de l'UGRA. L'objectif de DANIEAL2 est d'étudier et de développer un dispositif médical robo-
tisé à sécurité intrinsèque, où l'expert est toujours dans la boucle de contrôle. Il s'agit d'assister
le geste médical d'insertion de l'aiguille vers le nerf sous imagerie US grâce à la collaboration
d'un bras robotique.

Cette contribution se concentre sur le contrôle de la position de l'aiguille à l'intérieur du corps
du patient. Ce contrôle vise à �xer le point d'interaction entre la peau du patient et l'aiguille à
l'endroit où le mouvement de l'aiguille se fera autour de ce point. Le point d'interaction entre
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l'aiguille et la peau du patient est appelé le point d'insertion. Dans les opérations chirurgicales, il
existe une énorme di�érence entre le terme de point d'insertion et celui de point de trocart dans le
domaine médical. Le point de trocart limite les mouvements à seulement quatre degrés de liberté
(DDL) : trois DDL rotationnels et un DDL translational. Alors que pour le point d'insertion, la
rotation sur l'axe z est bloquée en raison de l'aspect symétrique de l'aiguille. Pour cela, le point
d'insertion limite également l'anesthésiste à seulement quatre mouvements de liberté mais avec
blocage de la rotation sur l'axe z.

Figure 5.8: Mouvement UGRA autour du point d'insertion (Pinsertion - RCM), où le cadre
de l'outil est la position et la rotation de l'e�ecteur �nal. Par conséquent, l'aiguille ne peut se
déplacer que dans les limites de 4-DDL : Rx, Ry et Rz sont les rotations autour des axes x, y et
z respectivement, et Tz est la translation le long de l'axe z.

Dans l'UGRA, le point d'insertion constitue une question essentielle car l'anesthésiste doit
manipuler une aiguille à l'intérieur du corps humain. Cependant, la manipulation de l'aiguille
impose une tâche très di�cile, où il est important de s'assurer que l'aiguille se déplace dans les
limites du point d'insertion a�n d'éviter de blesser le patient. Lors d'une procédure assistée par
robot, les mouvements de l'aiguille insérée sont limités à une translation le long de son axe et
à des rotations autour du point d'insertion [179]. Le mouvement du manipulateur est ensuite
contraint par rapport à ce point sur l'e�ecteur �nal appelé centre de mouvement à distance
(RCM) [52,180], comme indiqué ci-dessous.

La section 5.4.1 propose la cinématique d'insertion de l'aiguille (RCM pour l'insertion de
l'aiguille) et présente diverses stratégies de contrôle (retour de force haptique et contrôle CoBo-
tique). Nous présentons ensuite le processus de commande CoBotique sous les contraintes RCM
avec évitement des régions dans la section 5.4.2.
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Figure 5.9: Une représentation sphérique de la position de l'e�ecteur. Où α et β sont les angles
de représentation de la sphère et R est le rayon de la sphère.

5.4.1 Commande CoBotique sous les contraintes RCM

La principale contribution de cette section est la formulation d'une méthode de contrôle
géométrique dans l'espace opérationnel pour maintenir les contraintes RCM tout en o�rant une
position plus précise de l'e�ecteur �nal. La méthode contrôle le mouvement de l'aiguille rigide
et décrit la position de l'e�ecteur �nal par rapport aux contraintes du RCM pour un contrôle
robotique de l'UGRA à l'aide d'un robot série de 7-DDL. Elle fournit une solution sûre et �ex-
ible pour le robot et le personnel médical dans un espace de travail partagé où elle modélise
explicitement les mouvements de rotation et de translation au point RCM.

Mouvement UGRA autour du point d'insertion (Pinsertion - RCM ), où le cadre de l'outil
est la position et la rotation de l'e�ecteur �nal. Par conséquent, l'aiguille ne peut se déplacer
que dans un rayon de 4 degrés : Rx, Ry et Rz sont les rotations autour des axes x, y et z
respectivement, et Tz est la translation le long de l'axe z.

Pour répondre à ce besoin, nous avons proposé un cadre de contrôle pour l'UGRA assistée par
robot pour la collaboration physique homme-robot à l'aide d'un robot manipulateur à 7 degrés de
liberté (Franka Emika). Nous avons proposé une méthode géométrique pour calculer la position
de l'e�ecteur �nal du robot prévu par rapport aux contraintes de la RCM, elle est destinée à aider
l'anesthésiste à exécuter un mouvement plus sophistiqué de l'aiguille dans le corps du patient
avec une grande précision. Cette précision est dé�nie comme l'erreur de distance entre la position
du point RCM et la position du point d'insertion �xe.

Nous avons fourni deux stratégies de contrôle du robot en ce qui concerne les contraintes RCM,
les contrôles haptiques et CoBotique d'insertion de l'aiguille. L'action de base de ces stratégies
de contrôle d'insertion d'aiguille consiste à déplacer l'aiguille à travers le point d'insertion et à
générer un centre de mouvement à distance (RCM) à distance ou CoBotique.

Deux stratégies de contrôle ont été présentées en utilisant le contrôle cartésien du RCM :
un système téléopéré d'insertion d'aiguille UGRA avec retour de force haptique ; un système
d'insertion d'aiguille CoBotique. La commande téléopérée UGRA permet l'insertion d'une aigu-
ille sous des contraintes RCM avec retour de force appliqué au dispositif haptique (6-DDL Vir-
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Figure 5.10: Schéma du système UGRA téléopéré utilisant un dispositif haptique.

tuose 3D Desktop). La méthode proposée est précise, car elle trouve la position et la rotation
exactes de l'e�ecteur �nal avec une erreur de moins de 1 mm (erreur de distance euclidienne
entre le point RCM et le point d'insertion �xe). Pour évaluer le système de retour de force
téléopéré, l'erreur entre les forces réelles appliquées sur l'aiguille et les forces rendues souhaitées
appliquées sur la main de l'expert est calculée. Le système de retour de force téléopéré s'est avéré
précis et sensible, avec une erreur proche de zéro entre les forces réelles et les forces souhaitées.
D'autre part, la commande CoBotique UGRA permet de contrôler les mouvements de l'aiguille
en appliquant une force manuelle par l'utilisateur sur le bras du robot tout en respectant le RCM
contraintes. Pour évaluer la précision du système, l'erreur de distance euclidienne entre les On
calcule le point RCM et le point d'insertion �xe qui est inférieur à 1 mm tout en maintenant la
cinématique d'insertion de l'aiguille.

5.4.2 Éviter les régions à risque

L'évitement des régions à risque est une étape importante pour un système robotique UGRA plus
complet. L'objectif est de donner à l'anesthésiste une liberté de mouvement lors de l'insertion de
l'aiguille avec l'avantage de ressentir une force répulsive supplémentaire pendant que la pointe
de l'aiguille se rapproche de toute région à risque comme un nerf, une artère, une veine ou
un tendon. En outre, cette procédure ne doit pas limiter l'anesthésiste à un seul trajet vers
le nerf cible. Le processus d'évitement des régions à risque commence par la segmentation de
l'image échographique pour fournir à l'anesthésiste une image topologique traitée en ligne (réalité
augmentée). Cependant, la segmentation d'une image est coûteuse en termes de calcul. Pour
cela, un modèle de maillage 2D est construit à partir de l'image topologique, ce qui permet de
mettre à jour la localisation des régions dans l'image. Ensuite, de petites forces de répulsion
seront appliquées à la main de l'utilisateur lorsque la pointe de l'aiguille s'approchera d'une
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Figure 5.11: Schéma du système CoBotique UGRA.

région à risque.

5.4.2.0.a L'image topologique

À ce jour, des travaux de recherche ont été développés sur les régions d'intérêt en matière
d'images échographiques [131, 138, 199, 200]. Néanmoins, aucune recherche ne se concentre sur
la segmentation de tous les organes (régions) dans l'image US tels que les nerfs, les artères,
les muscles, les tendons et les os. Par conséquent, le sujet de la segmentation dans les images
échographiques nécessite un développement et des recherches plus poussés. L'impossibilité de
localiser le nerf et d'autres régions pourrait entraîner un traumatisme nerveux ou une toxicité
anesthésique locale. L'objectif de cette section est de fournir aux anesthésistes un outil basé sur
le traitement des images échographiques pour traiter cette question et améliorer la pratique de
l'UGRA. La segmentation des images US est une tâche di�cile car le bruit et d'autres artefacts
corrompent les propriétés visuelles de ce type de tissu.

Au cours des dernières années, diverses architectures de réseaux neuronaux convolutifs (CNN)
ont été proposées pour segmenter une image. Certaines de ces architectures ont été dévelop-
pées pour segmenter directement l'image entière, comme le SegNet [201], et c'est donc cet outil
que nous utiliserons pour segmenter l'image US. L'architecture SegNet est divisée en un réseau
d'encodeurs, un réseau de décodeurs et une couche de classi�cation �nale au niveau du pixel,
comme indiqué ci-dessous. Ces réseaux sont construits en empilant plusieurs couches di�érentes,
les couches essentielles étant les couches convolutives et les couches de regroupement.

La sortie du classi�cateur soft-max est une image à N canaux de probabilités où N est le
nombre de classes (régions). La segmentation prédite correspond à la classe avec la probabilité
maximale à chaque pixel.

5.4.2.0.b Le modèle 2D

En contrôle robotique et comme nous l'avons déjà mentionné, toutes les régions de l'image
doivent être segmentées a�n d'être utilisées dans les régions à risque à éviter. Néanmoins,
l'application de techniques de segmentation dans chaque image est coûteuse sur le plan des
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(a) The original US image. (b) The topological image. (c) The mesh image.

Figure 5.12: Un exemple de création de maillage 2D.

calculs. L'étude du milieu, et la prise en compte de sa dynamique, dans lequel l'aiguille se dé-
placera, est une bonne alternative. Étant donné que la sonde à ultrasons est �xe, l'image le
sera également, à moins qu'il n'y ait un mouvement des tissus dans le milieu. Ce mouvement
est généré par diverses forces dues à l'insertion de l'aiguille dans des tissus déformables, ce qui
signi�e que certains points de ce milieu, en particulier le nerf à atteindre, se déplaceront sous
l'e�et des mouvements de l'aiguille dans les tissus. Dans cette étude, nous proposons de mettre à
jour la segmentation de l'image topologique toutes les 10 secondes. En attendant et pour réduire
les coûts de calcul, des maillages sont obtenus et analysés pour faciliter la suite du calcul.

Le maillage est utilisé pour simpli�er les calculs dans un espace continu par discrétisation
qui consiste à le décomposer en un ensemble d'éléments �nis dans lesquels les calculs sont moins
complexes à e�ectuer. La méthode des éléments �nis [202] (FEM) est une méthode de calcul
numérique et est utilisée pour e�ectuer des calculs dans un environnement trop complexe pour les
calculs directs. La méthode des éléments �nis discrète l'image en un nombre connu d'éléments
qui ont une forme géométrique di�érente. Cela permet de créer le modèle de maillage. Pour
conclure, l'utilisation du maillage avec le modèle élastique fournira des emplacements de toutes
les régions dans chaque trame US jusqu'à ce que la nouvelle image topologique soit segmentée.

Pour mettre à jour le modèle de maillage lors de l'insertion de l'aiguille, un modèle de com-
portement doit être associé pour calculer les mouvements de chaque élément du maillage. Pour
les images US, il existe di�érents modèles utilisant les propriétés de déformation pour mettre à
jour le maillage lorsqu'il est basé sur la �uidité de l'environnement déformable. Trois types de
matériaux sont utilisés pour construire ces modèles, un ressort, un point d'appui et des éléments
de frottement coulissants.

� L'élément de frottement glissant représente le comportement plastique (déformation ir-
réversible ou hystérésis). Cependant, dans le cas de notre système, l'image topologique et
le maillage seront renouvelés toutes les 10-15 sec. Par conséquent, la prise en compte de ce
modèle de déformation irréversible ne sera alors pas utile. Il est donc préférable de prendre
un modèle moins complexe, le modèle viscoélastique.

� Le dashpot est un dispositif mécanique qui consiste en un amortisseur qui résiste au mou-
vement par frottement visqueux. Pour l'UGRA, la viscosité n'a aucun impact puisque
la vitesse de l'aiguille pendant l'acte UGRA est lente par rapport à la viscosité du corps
linéaire. La vitesse de déformation des tissus sous l'e�et de l'aiguille ne sera pas signi-
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�cative et peut même être considérée comme négligeable en la comparant avec le terme
d'élasticité. Pour cela, il est préférable de prendre un modèle moins complexe qui est le
modèle élastique.

� Le ressort représente le comportement élastique (Hooke's law) du matériau. Dans l'UGRA,
les déformations des tissus seront représentées en ayant un comportement purement élas-
tique sous les contraintes imposées par le mouvement de l'aiguille lors de l'insertion.

5.4.2.0.c Contrôle des forces pour éviter les régions à risque
Pour l'évitement des régions à risque, après avoir créé l'image topologique et le modèle 2D,

il faut analyser les forces de répulsion. Globalement, trois forces di�érentes existent pendant
l'UGRA assisté par le robot, deux forces externes et une force interne appliquée. Les deux forces
externes sont les forces appliquées par l'anesthésiste sur l'e�ecteur �nal et les forces récupérées
lors de l'interaction de l'aiguille avec les tissus environnants. La force interne est une force de
répulsion appliquée sur l'e�ecteur �nal pour éviter les régions à risque lors de l'insertion de
l'aiguille.

Pour réussir le processus d'évitement des régions à risque, la connexion entre les deux systèmes
robotiques, le PHR et le NHR, dans un espace de travail partagé, est essentielle. Cette connexion
permettra de localiser la pointe de l'aiguille dans le plan US. En d'autres termes, le PHR fournira
l'image US et le NHR calcule l'emplacement de la pointe de l'aiguille toutes les millisecondes.
Ainsi, l'utilisation de l'image topologique avec l'emplacement de la pointe de l'aiguille donnera la
distance entre la pointe de l'aiguille et chaque région dans l'image US. Ces régions comprennent
le nerf, car l'aiguille doit injecter la drogue autour du nerf et non à l'intérieur de celui-ci. Le
nerf est donc considéré comme une région à risque, mais avec des forces de répulsion di�érentes.
Tout en se déplaçant sous les contraintes de la RCM comme présenté dans ma thèse de doctorat,
la force appliquée pour éviter la région est également soumise aux mêmes contraintes.

Figure 5.13: Insertion d'une aiguille CoBotique sous RCM avec évitement des régions à risque.

Prenons l'image topologique en 2D avec l'emplacement de la pointe de l'aiguille, toutes dis-

133



5.5. Conclusions et perspectives

tances confondues entre la pointe de l'aiguille et les régions de l'image sont calculées. Pour une
procédure plus pratique et pour éviter des forces soudaines, les forces doivent être inversement
proportionnelles à la distance entre le la pointe de l'aiguille et une zone avec des forces maximales
prédé�nies. Ces forces maximales prédé�nies sont �xées comme seuils de sécurité pour éviter
d'atteindre des forces extrêmement élevées.

5.5 Conclusions et perspectives

Cette thèse fait partie du projet DANIEAL2 et propose un système robotique complet pour la
procédure UGRA où nous nous sommes concentrés sur 3 points principaux : la détection des
nerfs, le suivi des nerfs et l'insertion de l'aiguille. Les principales contributions sont résumées
comme suit :

� Nous avons proposé un système robotique complet pour la procédure UGRA dans le
chapitre 1. Ce système robotisé peut apporter une aide précieuse aux experts grâce à
des techniques et des outils qui améliorent la précision et la sécurité de la procédure, no-
tamment en évitant les traumatismes nerveux ou les lésions des tissus sains. En outre, il
peut être utilisé comme outil d'apprentissage pour les jeunes professionnels.

� Les problèmes de détection et de suivi des nerfs dans les images échographiques (US) néces-
sitent de prendre en compte des informations complexes intégrées dans l'image, à savoir les
caractéristiques. Toute méthode de détection et de suivi dépend principalement du choix
de caractéristiques d'image appropriées. Comme l'image US présente des propriétés de tex-
ture bruyantes, nous avons proposé un nouveau descripteur de caractéristiques RAMBP
(Robust Adaptive Median Binary Pattern). Le descripteur RAMBP tire parti de la classi�-
cation des pixels et de l'analyse adaptative pour o�rir une forte capacité de discrimination
et des propriétés de résistance au bruit. RAMBP a été évalué sur des textures bruyantes
comprenant di�érents types de bruit. Les résultats expérimentaux indiquent que RAMBP
surpasse les autres descripteurs existants pour la classi�cation de textures très bruyantes.
Cependant, nous pensons que les modèles de réseaux neuronaux convolutionnels (CNN)
sont également e�caces pour les textures d'images US. Ainsi, pour apprendre des carac-
téristiques plus optimales, nous proposons de fusionner la RAMBP avec les modèles CNN
a�n d'obtenir de meilleures performances pour la détection et le suivi des nerfs.

� Une détection et un suivi précis et cohérents des nerfs sont essentiels pour une UGRA sûre et
e�cace. Dans cette thèse, les méthodes de détection et de suivi sont basées sur le RAMBP
(descripteur de texture), les modèles CNNs, ou le modèle fusionné du RAMBP et du modèle
CNNs. Bien que les détecteurs et suiveurs basés sur le descripteur de texture ou les modèles
CNNs donnent de bons résultats dans les images US, les résultats montrent que le modèle
fusionné a obtenu une précision supérieure de 10%. Il convient de mentionner que le modèle
fusionné combine les architectures RAMBP et CNN, ce qui permet de tirer parti de la force
de chaque côté et d'améliorer les performances globales. En outre, di�érentes techniques
ont été présentées pour détecter et suivre le nerf dans l'image US. Pour la détection des
nerfs, les résultats obtenus montrent que le détecteur basé sur le modèle fusionné surpasse
les autres techniques et obtient la meilleure performance avec une précision de 96%. Pour
le suivi des nerfs, nous avons constaté que les trackers basés sur le modèle fusionné ont
obtenu les meilleurs résultats. Nous pensons que le tracker mixte (�ltre de particules et
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technique de recherche) o�re un bon compromis entre la précision du suivi (avec 93%) et
la complexité temporelle (avec 0, 19 spf).

� L'insertion d'une aiguille est une tâche très di�cile que les anesthésistes rencontrent dans
leur routine quotidienne. La man÷uvre de l'aiguille autour du point de pivot d'interaction
entre l'aiguille et la peau du patient est appelé le point d'insertion. Ce point limite le
contrôle de l'aiguille par l'anesthésiste à seulement quatre degrés de liberté (DDL) : trois
DDL de rotation et un DDL de translation. En robotique, cette restriction est appelée
"contraintes du centre de mouvement distant (RCM)". Nous avons présenté un système
expérimental permettant le contrôle cartésien complet de l'e�ecteur du robot Franka emika
sous contraintes RCM. De plus, nous avons présenté deux stratégies de contrôle di�érentes
en utilisant le contrôle RCM proposé : un système d'insertion d'aiguille UGRA téléopéré
avec retour de force haptique utilisant un dispositif haptique Virtuose 6-DDL ; un système
d'insertion d'aiguille CoBotique en appliquant la main forcée par l'utilisateur opérateur
sur le bras du robot Franka emika. Pour évaluer la précision du respect des contraintes
RCM, l'erreur de distance euclidienne entre le point RCM et le point d'insertion �xe est
calculée. Les deux stratégies de contrôle proposées sont précises pour trouver la position et
la rotation exactes de l'e�ecteur �nal avec une erreur inférieure à 1 mm tout en respectant
les contraintes RCM. Pour évaluer le système de retour de force téléopéré, l'erreur de force
entre la force désirée (la force d'insertion appliquée sur l'aiguille au NHR) et la force réelle
(force de retour rendue par le dispositif haptique à la main de l'anesthésiste) est calculée.
Le système proposé s'est avéré précis et sensible avec une erreur de force proche de zéro
(< 0, 1 N). De plus, dans ce travail, nous avons discuté de l'évitement des régions à risque
en appliquant de petites forces répulsives à l'e�ecteur �nal lorsque la pointe de l'aiguille est
proche d'une région à risque. Pour cela, une image topologique est construite en utilisant
une technique de segmentation par réseau neuronal (SegNet). Dans les expériences, les
résultats montrent que la technique utilisée a obtenu une précision élevée de 90% pour la
segmentation de l'image US.

Un nombre important d'idées restent inexploitées et devront être analysées et étudiées en
détail. Les orientations futures prévues pour un éventuel suivi peuvent être décomposées en
perspectives à court terme et perspectives à long terme.

� Perspectives à court terme

1. Nous avons présenté le système UGRA assisté par robot, qui est divisé en plusieurs
tâches, comme indiqué au chapitre 4. Dans cette thèse, nous avons présenté certaines
tâches, tandis que 5 tâches doivent être examinées :

(a) Contrôle co-botique du robot porte-sonde pour le placement de la sonde sur le
corps du patient.

(b) Asservissement visuel pour contrôler le robot porte-sonde a�n de maintenir la
visualisation du nerf.

(c) Contrôle co-botique du robot porte-aiguille pour le placement de l'aiguille dans
le plan US.

(d) Asservissement visuel du robot porte-sonde pour conserver la visualisation du
nerf et de l'aiguille dans l'image US.
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(e) Proposition de trajectoires de l'aiguille pour atteindre le nerf.

2. Nous avons e�ectué les tâches de détection et de suivi sur des vidéos de données
réelles. Dans le cadre de travaux futurs, les tâches de détection et de suivi pourraient
être e�ectuées directement en temps réel à l'aide du système US.

3. Pour la commande d'insertion d'aiguille robotisée proposée, une validation technique
sur un fantôme anatomique pourrait être e�ectuée, ce qui serait une étape pour
évaluer le système proposé en vue d'applications cliniques.

4. La possibilité d'utiliser la parallélisation sur la plate-forme GPU ou FPGA pour
augmenter la vitesse de performance pour les tâches de vision par ordinateur.

� Perspectives à long terme

1. Dans cette thèse, nous nous sommes concentrés sur le nerf médian pour les tâches de
détection et de suivi. Dans des travaux futurs, les techniques de détection et de suivi
pourraient être évaluées sur d'autres types de nerfs a�n d'améliorer les performances.
L'utilisation d'une base de données plus importante devrait améliorer de manière
signi�cative les tâches de détection et de suivi.

2. Fusionner les méthodes de vision par ordinateur (détection et suivi) avec les méthodes
robotiques (contrôle de l'aiguille et asservissement visuel) pour évaluer un système plus
complet.

3. Bien que le contrôle robotique du robot porte-aiguille pour éviter les zones à risque
soit introduit, la méthode doit être testée sur un système à deux robots avec des
espaces de travail et des cadres partagés. La communication entre le robot sonde et
le robot porte-aiguille est une étape cruciale pour obtenir la position de l'aiguille et
de la zone d'image dans le plan 2D.
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Système d'assistance robotisé basé sur l'imagerie 
échographique pour l'anesthésie loco-régionale 

 
 

Résumé :  

L'anesthésie régionale guidée par ultrasons (UGRA) devient une technique puissante dans les procédures 

chirurgicales et la gestion de la douleur. Toutefois, la procédure UGRA nécessite un long processus 
d'apprentissage et des années d'expérience. Les aides robotisées sont déjà utilisées dans l'assistance 
médicale et montrent leur énorme impact. Ainsi, l'UGRA robotisée pourrait  être d'une grande aide en aidant  

les anesthésistes à utiliser des techniques et des outils qui améliorent la précision et la sécurité de la 
procédure, par exemple en évitant les traumatismes nerveux ou les dommages aux tissus sains. Le système 
UGRA robotisé présente deux défis majeurs : la qualité visuelle des images échographiques, qui souffre de 

bruit, et le contrôle robotique de l'insertion de l'aiguille. Par conséquent, cette thèse se concentre sur le 
développement de méthodes de détection et de suivi des nerfs dans les images échographiques et sur le 

contrôle robotique de l'insertion de l'aiguille. 

Dans cette thèse, l'image ultrasonore est analysée en soulignant l'importance de trouver des caractéristiques 
robustes et fortes dans l'image. Puisque le nerf partage certaines propriétés texturales bruyantes, nous 
proposons des modèles binaires médians adaptatifs robustes (RAMBP) qui ont les avantages de l'efficacité et 

de la robustesse aux textures avec différents bruits élevés. Ces caractéristiques sont ut ilisées comme base 
pour différentes techniques de détection et de suivi des nerfs et évaluées en termes de précision, de 
cohérence, de complexité temporelle et de traitement de différentes situations nerveuses. Cependant, nous 

pensons que les modèles de réseaux neuronaux convolutifs (CNN) sont également efficaces pour les textures 
d'images échographiques. Ainsi, pour apprendre des caractéristiques plus optimales, nous proposons de 
fusionner les modèles RAMBP et CNN afin d'obtenir de meilleures performances pour la détection et le suivi 

des nerfs. 

Pour le contrôle robotique de l'UGRA, l'objectif de cette contribution est de guider l'anesthésiste là où le centre 
de mouvement à distance (RCM) impose une tâche très difficile, où il est important de s'assurer que l'aiguille 

se déplace dans les contraintes du point d'insertion et de l'évitement des obstacles afin d'éviter de nuire au 
patient et d'atteindre le nerf ciblé. Pour répondre à ce besoin, deux stratégies de contrôle ont été présentées 
tout en utilisant le contrôle cartésien RCM : un système d'insertion d'aiguille UGRA téléopéré avec retour de 

force haptique ; un système d'insertion d'aiguille CoBotic. La commande UGRA téléopérée permet l'insertion 
de l'aiguille sous les contraintes du RCM avec un retour de force appliqué au dispositif haptique. D'autre part, 
le contrôle CoBotic UGRA permet de contrôler le mouvement de l'aiguille en appliquant la force de la main de 

l'utilisateur opérateur sur le bras du robot tout en respectant les contraintes RCM. Enfin, nous avons discuté 
de l'évitement des régions à risque en appliquant de petites forces répulsives à l'effecteur final lorsque la 
pointe de l'aiguille s'approche d'une région à risque. Une image topologique a été construite en utilisant une 

technique de segmentation par réseau neuronal et une force répulsive a été calculée en fonction de la distance 

entre la pointe de l'aiguille et la région à risque.  

Mots clés : Suivi de nerfs, suivi visuel, apprentissage profond, extraction de caractéristiques, suivi d'obje ts  

basé sur la multimodalité, vision par ordinateur, images échographiques, cinématique de l'insertion de 

l'aiguille, contraintes du centre de mouvement distant, télérobotique, robotique médicale, anesthésie régionale.  
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Summary :  

Ultrasound-guided regional anesthesia (UGRA) is becoming a powerful technique in surgical procedures and 
pain management. However, the UGRA procedure requires a long learning process and years of experience.  
Robotic aids are already used in medical assistance and show their enormous impact. For this, robotic UGRA 

could be of great help in helping anesthetists use techniques and tools that improve the accuracy and safety 
of the procedure, for example, by avoiding nerve trauma or damage to healthy tissue. The robot -assisted 
UGRA system presents two major challenges: the visual quality of ultrasound images, which suffers from 

noise, and the robotic control of needle insertion. Therefore, this thesis focuses on the development of methods 

for nerve detection and tracking in ultrasound images and robotic control of needle insertion.  

In this thesis, the ultrasound image is analyzed by highlighting the importance of finding robust and strong 

features in the image. Since the nerve shares some noisy textural properties, we propose Robust Adaptive 
Medial Binary Models (RAMBPs) that have the advantages of efficiency and robustness to textures with 
different high noises. These features are used as the basis for different nerve detection and tracking techniques 
and evaluated in terms of accuracy, consistency, time complexity, and handling different nerve situations. 

However, we believe that convolutional neural network (CNN) models are also effective for ultrasound image 
textures. Thus, to learn more optimal features, we propose to merge RAMBP and CNN models to achieve 

better performance for nerve detection and tracking. 

For robotic control of the UGRA, the goal of this contribution is to guide the anesthetist where the remote 
motion center (RCM) imposes a very difficult task, where it is important to ensure that the needle moves within 
the constraints of the insertion point and obstacle avoidance in order to prevent patient harm and reach the 

targeted nerve. To address this need, two control strategies were presented while using the RCM Cartesian 
control: a teleoperated UGRA needle insertion system with haptic force feedback; a CoBotic needle insertion 
system. The teleoperated UGRA control enables needle insertion under RCM constraints with force feedback 

applied to the haptic device. On the other hand, the CoBotic UGRA control enables the needle movement 
control by applying hand force by the operator user on the robot arm while respecting the RCM constraints. 
Finally, we discussed avoiding risky regions by applying small repulsive forces to the end-effector once the 

needle’s tip gets close to a risky region. A topological image has been constructed by using a neural network  
segmentation technique and a repulsive force has been computed with respect to the distance between the 

needle tip and the risky region.  

Keywords : Nerve tracking, Visual tracking, Deep-learning, Feature extraction, Multi-Modal based object 
tracking, Computer vision, Ultrasound images, Needle insertion kinematics, Remote center of motion 

constraints, Telerobotics,  Medical robotics, Regional anesthesia.  
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