
HAL Id: tel-03952711
https://theses.hal.science/tel-03952711

Submitted on 23 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Numerical linear algebra and data analysis in large
dimensions using tensor format

Martina Iannacito

To cite this version:
Martina Iannacito. Numerical linear algebra and data analysis in large dimensions using tensor format.
Numerical Analysis [cs.NA]. Université de Bordeaux, 2022. English. �NNT : 2022BORD0377�. �tel-
03952711�

https://theses.hal.science/tel-03952711
https://hal.archives-ouvertes.fr


THÈSE PRÉSENTÉE

POUR OBTENIR LE GRADE DE

DOCTEUR
DE L’UNIVERSITÉ DE BORDEAUX

ÉCOLE DOCTORALE DE MATHÉMATIQUES ET

D’INFORMATIQUE

MATHÉMATIQUES APPLIQUÉES ET CALCUL SCIENTIFIQUE

Par Martina Iannacito

Numerical linear algebra and data analysis
in large dimensions using tensor format

Sous la direction de : Olivier Coulaud et Luc Giraud

Soutenue le 9 décembre 2022
Membres du jury :

K. Meerbergen Professeur Katholieke Universiteit
Leuven

Président du jury
Rapporteur

D. Kressner Professeur École polytechnique
fédérale de Lausanne Rapporteur

A. Franc Directeur de Recherche Inrae, Inria centre at the
University of Bordeaux Examinateur

A. Nouy Professeur des universités Université de Nantes Examinateur

V. Simoncini Professeure Alma Mater Studiorum
Università di Bologna Examinatrice

N. Vannieuwenhoven Professeur assistant Katholieke Universiteit
Leuven Examinateur

O. Coulaud Directeur de Recherche Inria centre at the
University of Bordeaux Directeur de thèse

L. Giraud Directeur de Recherche Inria centre at the
University of Bordeaux Co-directeur





Algèbre linéaire numérique et analyse de données en grande dimensions utilisant le format
tenseur

Résumé : L’objectif de ce travail est d’établir quelles propriétés théoriques des techniques d’algèbre linéaire
classique développées dans deux contextes différents, à savoir l’algèbre linéaire numérique et l’analyse de
données, sont préservées et lesquelles sont perdues, lorsqu’elles sont étendues aux tenseurs de rang faible. En
outre, ce manuscrit vise à mettre en évidence les avantages et les inconvénients d’une approche tensorielle
par rapport à son homologue matricielle classique dans les deux domaines considérés, avec une attention
particulière aux aspects computationnels.

Dans la partie d’algèbre linéaire numérique, nous étudions expérimentalement les effets des erreurs d’ar-
rondi sur un solveur itératif et plusieurs méthodes d’orthogonalisation, lorsqu’ils sont étendus aux tenseurs
par le formalisme du Train Tensoriel (TT). Dans tous les algorithmes considérés, nous introduisons des étapes
d’arrondi supplémentaires, avec l’algorithme de compression TT-rounding, pour faire face aux contraintes
de mémoire, toujours cruciales lorsqu’on traite des tenseurs. Nos tests suggèrent que pour ces algorithmes,
les limites classiques dues à la propagation des erreurs d’arrondi restent valables, en remplaçant la précision
de l’arithmétique par celle de l’algorithme TT-rounding.
Le solveur itératif considéré est le Generalised Minimal RESidual (GMRES). Nous comparons notre version
de TT-GMRES avec une réalisation précédente, en montrant numériquement sa grande robustesse. De plus,
nous abordons le problème de la résolution simultanée par TT-GMRES de nombreux systèmes linéaires au
format TT et établissons des bornes qui garantissent la qualité numérique de la solution individuelle extraite.
Les schémas classiques d’orthogonalisation généralisés aux tenseurs sont CGS, CGS2, MGS, MGS2, House-
holder et Gram. Pour compléter leur étude, nous étudions comment ils affectent les performances du solveur
de problèmes aux valeurs propres basé sur des itérations de sous-espaces étendu aux tenseurs avec le format
TT.

Dans la partie analyse de données, nous étudions deux techniques d’analyse de données, l’une destinée
aux données de variables catégorielles et l’autre aux données climatiques, généralisées aux tenseurs par le
biais du format Tucker, en soulignant les avantages et les inconvénients de ce choix par rapport à l’approche
matricielle correspondante.
L’Analyse des Correspondances (AC) est un outil bien connu pour visualiser et interpréter des tableaux ca-
tégoriels à deux variables. Nous étudions géométriquement la généralisation de l’AC aux tableaux multivoies
par la technique de décomposition tensorielle de Tucker, contribuant ainsi à la compréhension de l’Analyse
des Correspondances MultiVoies (ACMV). Les résultats théoriques sont complétés par des exemples de
ACMV appliqués à des ensembles de données. En particulier, nous réalisons l’ACMV sur le jeu de données
écologique original mis à notre disposition dans le cadre du projet Malabar.
Pour les données climatiques, nous considérons l’analyse de la Fonction Orthogonale Empirique (EOF). En
particulier, nous montrons comment récupérer le résultat final de l’EOF en s’appuyant sur le format com-
pressé de Tucker. Cette approche peut être avantageuse sur le plan du calcul si les données sont disponibles
directement au format Tucker. Pour être complet, nous étudions numériquement l’effet de l’approximation
des données par le modèle de Tucker sur le résultat EOF final.

Mots-clés : calcul tensoriel, compression de rang faible, algèbre linéaire numérique, analyse de données.

Numerical linear algebra and data analysis in large dimensions using tensor format

Abstract: This work aims to establish which theoretical properties of classical linear algebra techniques
developed in two different contexts, that are numerical linear algebra and data analysis, are saved and
which are lost, once they are extended to tensors through tensor compression algorithms. Moreover, this
manuscript aims to highlight the benefits and the flaws of a tensor approach compared to its classical matrix
counterpart in the two considered frameworks paying particular attention to the computational aspects.



In the numerical linear algebra part, we study experimentally the rounding error effects for an iterative
solver and several orthogonalization kernels, when they are extended to the tensor framework through the
Tensor Train (TT) formalism. In all the considered algorithms, we introduce additional rounding steps,
through the TT-rounding algorithm to face memory constraints, always crucial when dealing with tensors.
Our experiments suggest that for these algorithms the classical bounds based on rounding error analysis
hold, replacing the unit round-off of the finite precision arithmetic with the precision of the TT-rounding
algorithm.
The considered iterative solver is Generalised Minimal RESidual (GMRES). We compare our version of TT-
GMRES with the previous realization, showing numerically its major robustness. Moreover, we address the
problem of solving simultaneously through TT-GMRES many linear systems in TT-format and establishing
bounds that guarantee the numerical quality of the individual extracted solutions.
The classical orthogonalization schemes generalized to tensors are CGS, CGS2, MGS, MGS2, Householder,
and Gram. To complete their study, we study how they affect the performance of the subspace iteration
eigensolver extended to tensors through the TT-format.

In the data analysis part, we investigate two data analysis techniques, one meant for categorical variables
data and one for climate data, generalized to tensors through the Tucker format, highlighting the benefits
and the flaws of this choice compared to the corresponding matrix approach.
A well-known tool for visualizing and interpreting categorical two-variable tables is Correspondence Analysis
(CA). We study geometrically the generalization of CA to multiway tables through the Tucker tensor decom-
position technique, contributing to the understanding of the MultiWay Correspondance Analysis (MWCA).
The theoretical results are complemented by examples of MWCA applied to real-life datasets. In particular,
we perform the MWCA on the original ecology dataset made available in the Malabar project.
For climate data, we consider the Empirical Orthogonal Function (EOF) analysis. In particular, we show
how to retrieve the final EOF outcome relying on the Tucker compressed format. This approach may be
computationally beneficial if the data are made available directly in Tucker format. For completeness, we
study numerically the effect of the data approximation through the Tucker model on the final EOF outcome.

Keywords: tensor calculus, low rank compression, numerical linear algebra, data analysis.

Équipe-projet CONCACE
Centre Inria de l’université de Bordeaux, 334005 Talence, France.



Acknowledgements

As is often the case, this section happens to be the last and maybe the most engaging
to be written. So I hope you, reader, will be patient and merciful.

Preparing this Ph.D. thesis has been an incredible adventure with its expected and
unpredictable challenges. Thanks to the extraordinary people I had the chance to meet
during this journey, I grew up from a professional and personal viewpoint, discovering
skills and resources I did not think I had. This is why I will take as much space as I need
to thank them all.

Firstly, I am deeply grateful to my advisors Olivier Coulaud and Luc Giraud. Since
the very first moment, Olivier, you helped me navigate research and French bureaucracy,
providing all the support I needed. Your office door was open every time I had questions
or doubts, and you always addressed them with patience and kindness, which I deeply
admire. Scientific exchanges have often fuelled my curiosity, prompting me to look at the
topics from other angles, while our personal talks have always brought me back to a good
mood. Not only, I learned a lot about tensors and good coding practices, but also how
to be a better co-worker. For this reason, I have to praise the support of Luc too. I did
not have the chance to spend much time in real life with you, Luc, but during our weekly
video meetings, you taught me a lot, introducing me to the finite precision arithmetic and
GMRES method. Your question about writing the Householder transformation algorithm
in tensor format gave me food for thought, my favorite research aspect. As if that was
not enough, your diplomacy in handling working relations and your consideration for the
well-being of everyone have been of inspiration to me. Thank you both for supervising
my work, and helping my development throughout the good and the bad times. Your
encouragement made me overcome difficult moments, and your feedback significantly
raised the quality of my thesis.

I would also like to express my gratitude to the member of my Ph.D. jury. I want to
thank especially Daniel Kressner and Karl Meerbergen, who kindly accepted to review this
manuscript, offering valuable insights and pointing out other possible unsolved, but related
questions. My next thought goes to Nick Vannieuwenhoven, who not only took his time to
carefully read the thesis highlighting some weaknesses but also invited me to participate
in the minisymposium he co-organized for the SIAM Conference on Mathematics of Data
Science. Attending this conference has been an amazing experience, during which I met
many brilliant researchers and learned a lot from them. I want to express my gratitude
to Anthony Nouy and Valeria Simoncini, for the interesting talks they gave and for the
constructive criticisms they provided during the thesis defence. Finally, I would like to



thank Alain Franc for letting me work on the Malabar data and for sharing his expertise
with me.

I can’t help expressing my gratitude to the previously HiePACS, currently Concace
and Topal team members. My first thought goes to Alena Shilova, Esragul Korkmaz, and
Yanfei Xiang. Thank you, Alena, for your inspiring strength and passion, especially when
you initiated me to babyfoot. Thank you, Esra, for your imaginative crazy talks and your
endless availability whenever I needed help or support. Thank you Yanfei, for your deep
kindness and your spontaneous cheerfulness, which frequently remarked me of the beauty
of life. I will never forget our chats, our jokes, and our girl babyfoot games. Then, I want to
express my appreciation for Marek Felsoci’s good mood and pragmatism, Mathieu Verité’s
understanding and availability, and Romain Peressoni’s humour and diplomacy. Thank
you, Marek, for your incredible translations and for helping me move boxes. Thank you,
Mathieu, for your understating and for reminding me that going through Ph.D. difficulties
is normal. Last but not least, thank you, Romain, for all the fun you created, the help in
writing diplomatic emails, the babyfoot suggestions you gave me, and for having been an
extremely helpful secretary, in spite of the salary I offered you. I am grateful to those who
left the team for new adventures, such as Gilles Marait and Nick Schenkels, and to those
who just joined it, such as Jean-François David and Xunyi Zhao. Thank you, Gilles, for
your patience in answering all my informatics doubts and for the open-hearted help you
provided me, especially in preparing the pot1. Thank you, Nick, even if we spent little
time together because of covid, your work played a key role in my thesis. Thank you,
Jean-François for your tenderness and shyness, which reminded me of my first months in
France. Thank you, Xunyi, for your contagious energy and positiveness, your adventures
made me even more curious about life. I must not forget to express my gratitude to
Emmanuel Agullo. You helped me dive deeply into the finite precision arithmetic and
progressing in my research path, but most importantly, you made me a better babyfoot
player (even if some scandalmongers would say a better cheater, assuming it is even
possible). Moreover, I want to express my gratitude to Mathieu Faverge, who let me
teach his numerical algorithm class at Enseirb, and instructed me together with Amina
Guermouche on the possibilities to proceed in my career. Lastly, I am deeply grateful to
all the remaining members of the teams, as Abdou Guermouche, Alycia Lisito, Aurélien
Esnard, Florent Pruvost, Guillaume Sylvand, Lionel Eyraud-Dubois, Olivier Beaumont,
Pierre Estérie, Pierre Ramet, Yulia Gusak, who were always available for a talk or advice.

All this experience would not have been possible without all the casual meetings that
led me here. So, I will take some more lines to express the gratitude I felt and did not
mention in the past. Firstly I want to thank Alessandra Bernardi, my master advisor, who
introduced me to tensors and igniting in me the spark for this surprising and vast topic,
as only the best teachers know how to do. Then, I have to thank Claudia De Lazzari,
who has been like a big sister to me during my master’s and Ph.D. time, providing me
feedback, support, and understanding. From my past years, I can’t help from thanking
Dario Reggiani, Fabio Ricchieri, Giovanni Calza, Giovanni Zazzali (who never shows up,

1After defence reception



unfortunately), Giulia Vighi, Marco Langella, Maria Laura Rossi, Rocco Mora, Sara
Martani and Stefano Ardizzoni. You all together made the three years at the University
of Parma unforgettable. Gathering every year during Christmas or summer times feels
like getting back to the old, but gold times. My deep gratitude goes to all the friends
I made during my high-school time in Cremona, namely Alexei Farina, Anna Ginestri,
Carla Faroni, Carolina Carrera, Lara Fusar Poli, Irene Forzoni, Marco Luvié, Maria Politi,
Mattia Pollenghi, Nicole Chiozzi, Valentina Gualazzi, Valentina Negro, Valeria Lodigiani.
I am well aware I am not spending enough time with you, but I am proud to say that even if
the quantiy of time has reduced, the quality has not changed over the years. A thought of
recognition for the people who helped me settle in Bordeaux goes to Masataka Sawayama,
Cristina Vaghi, Michele Giuliano Carlino, Luca Cirrottola, and Silvia Pagliarini. Talking
from time to time with them, in my mother tongue for some, has been of great help to my
mood. I am grateful to my future advisor Lieven De Lathauwer, who helped me enlarge
my knowledge during the postdoc interview and who I am sure will help me deepen my
research. I am looking forward to joining the Stadius team in Belgium.

Even if I can already hear Olivier, Esra, and Yanfei murmuring about the excessive
length of this section2, there are still people I need to thank. To begin with, I am
deeply thankful to my parents, Amelia and Alfonso, who since the very first moment
have lovely fed me and my curiosity, inspiring me to do my best. I am aware sometimes
it is difficult to be with me, but I love you so much for all you ever gave and still give
me. Then, I have to thank Daniela, my younger sister, who went through hot and cold
with me, but who never forgot to show me her love. I am deeply grateful to my family
members, my cousins Benedetto and Valentino, aunts Antonella, Lucia, and Tiziana, uncle
Gianfranco, grandmother Gina, and to Aldo, Danilo, Francesco, Giovanni, and Rosa, who
unfortunately can not share this moment with us, but who certainly would be proudly
joyful. My real last thought goes to you, Rocco, who spent so many happy years close to
me, always knowing how to wring a smile from me, even in my worst moments. Thank
you. And thank you passing reader, who has come this far and still has much to read.

2It really happened!





Contents

Acknowledgements

Contents

Résumé étendu I

Extended summary VI

List of Symbols XIII

1 Notation and preliminary results 1
1.1 Introduction and notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Tensor basic operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Tensor reshaping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Tensor calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Tensor decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.1 Tucker decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.1.1 Computational aspects . . . . . . . . . . . . . . . . . . . . 11
1.3.1.2 Memory requirement . . . . . . . . . . . . . . . . . . . . . 14

1.3.2 Tensor Train decomposition . . . . . . . . . . . . . . . . . . . . . . 14
1.3.2.1 Memory requirement . . . . . . . . . . . . . . . . . . . . . 17
1.3.2.2 Tensor-Train compression . . . . . . . . . . . . . . . . . . 18

1.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

I Numerical linear algebra 23
I.I Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
I.II Finite precision arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
I.III Rounding error analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
I.IV Tensor formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2 A robust GMRES in TT-format 31
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2 GMRES in matrix computation framework . . . . . . . . . . . . . . . . . . 33



2.2.1 Background on GMRES . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.2 Numerical experiments with component-wise perturbations . . . . . 37

2.2.2.1 Variable accuracy approach . . . . . . . . . . . . . . . . . 37
2.2.2.2 δ-component-wise data storage . . . . . . . . . . . . . . . 38
2.2.2.3 Solution techniques using SZ compressed format . . . . . . 39

2.2.3 Numerical experiments with norm-wise perturbations . . . . . . . . 40
2.2.3.1 δ-norm-wise data storage . . . . . . . . . . . . . . . . . . 43
2.2.3.2 Solution techniques using SZ compressed format . . . . . . 43

2.3 Tensor Train GMRES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.3.1 Preconditioned GMRES in Tensor Train format . . . . . . . . . . . 47
2.3.2 Solution of parametric problems in Tensor Train format . . . . . . . 47

2.3.2.1 Parameter dependent linear operators . . . . . . . . . . . 49
2.3.2.2 Parameter dependent right-hand sides . . . . . . . . . . . 55

2.3.3 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.3.3.1 Main features and robustness properties . . . . . . . . . . 60
2.3.3.2 Solution of parameter-dependent linear operators . . . . . 68
2.3.3.3 Solution of parameter dependent right-hand sides . . . . . 73

2.4 Conclusive remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3 Orthogonalization schemes in TT-format 85
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.2 Orthogonalization schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.2.1 Classical and Modified Gram-Schmidt . . . . . . . . . . . . . . . . 87
3.2.1.1 Classical schemes without reorthogonalization . . . . . . . 87
3.2.1.2 Classical schemes with reorthogonalization . . . . . . . . . 88

3.2.2 Gram approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.2.3 Householder reflections . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.2.4 Stability comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.2.5 Numerical tensor experiments . . . . . . . . . . . . . . . . . . . . . 98

3.2.5.1 Numerical loss of orthogonality . . . . . . . . . . . . . . . 99
3.2.5.2 Memory usage estimation . . . . . . . . . . . . . . . . . . 103

3.2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
3.3 Eigensolvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3.3.1 Subspace iteration method . . . . . . . . . . . . . . . . . . . . . . . 110
3.3.2 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 112

3.3.2.1 TT-Eigenpairs convergence . . . . . . . . . . . . . . . . . 112
3.3.2.2 Memory requirement . . . . . . . . . . . . . . . . . . . . . 122

3.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

II Data analysis 127
II.I Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
II.II Statistics preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131



II.IIIPrincipal Component Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 132
II.IVTensor formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4 A geometric framework for multiway correspondence analysis 135
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
4.2 Correspondence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.2.1 Matrix case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
4.2.2 Tensor case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.2.2.1 Principal components in the canonical Euclidean space . . 139
4.2.2.2 Extension to a generic Euclidean space for d-order tensors 142
4.2.2.3 Geometric view for the MultiWay Correspondence Analysis145
4.2.2.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

4.3 Application: the Malabar dataset . . . . . . . . . . . . . . . . . . . . . . . 152
4.3.1 Data description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
4.3.2 Average comparison and data preprocessing . . . . . . . . . . . . . 153
4.3.3 MultiWay Correspondence Analysis . . . . . . . . . . . . . . . . . . 154

4.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5 Tensor techniques and climate data 159
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
5.2 Empirical Orthogonal Function Analysis . . . . . . . . . . . . . . . . . . . 160

5.2.1 Data description and pretreatments . . . . . . . . . . . . . . . . . . 160
5.2.2 EOFs and PCs computation . . . . . . . . . . . . . . . . . . . . . . 161
5.2.3 Covariance and correlation for EOFs . . . . . . . . . . . . . . . . . 163

5.3 EOF Analysis with Tucker model . . . . . . . . . . . . . . . . . . . . . . . 164
5.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

5.4.1 EOF analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
5.4.2 Baseline Tucker model . . . . . . . . . . . . . . . . . . . . . . . . . 168
5.4.3 Tucker model and EOF analysis . . . . . . . . . . . . . . . . . . . . 169

5.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Conclusion and prospective 175
Numerical linear algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176





Résumé étendu

Tôt ou tard, presque toutes les disciplines, des mathématiques pures à l’ingénierie,
de la physique aux sciences naturelles, de l’économie aux sciences sociales, se tournent
vers l’algèbre linéaire et ses résultats numériques pour énoncer mathématiquement leurs
problèmes et pour espérer les résoudre. Les améliorations technologiques récentes, rapides
et en croissance continue, ouvrent de nouvelles questions mathématiques et informatiques,
ce qui rend nécessaire le développement de l’algèbre linéaire et de ses branches appliquées.
En particulier, la popularité croissante des données volumineuses et des problèmes de
haute dimension stimule les progrès de l’algèbre multilinéaire et de ses aspects numériques.

Les principaux objets d’étude de l’algèbre multilinéaire sont les tenseurs et les fonctions
multilinéaires. Les tenseurs en tant qu’outils mathématiques sont apparus dès le XIXème
et le XXème siècle dans les études de géométrie de Riemann, Christoffel, Ricci-Curbastro
et Levi-Civita et dans les travaux de physique de Voigt et Hamilton [42]. Cependant, la
première étude mathématique sur leur nature est apparue plus tard en 1927 par Hitch-
cock [42, 72]. A partir de ce moment, de nombreux travaux issus de domaines très différents
ont contribué à la théorie des tenseurs, en proposant des algorithmes de factorisation des
tenseurs, par exemple, le Tucker, le FACteur PARAllel (PARAFAC) la DECOMposition
CANonique (CANDECOM), les techniques Matrix-Product State (MPS) étudiées respec-
tivement par Cattel [27], Tucker [137], Harshman [65], Carroll et Chang [25], White [2].
Ces résultats ont été redécouverts et développés pour aboutir aux techniques de factori-
sation et d’approximation tensorielles les plus populaires actuellement, à savoir la décom-
position polyadique canonique (CP) [72], la décomposition de Tucker [137] calculée avec
l’algorithme HOSVD (High Order Singular Value Decomposition), (récemment renommé
Multilinear Singular Value Decomposition [36]), la décomposition de Tucker hiérarchique
(H-Tucker) [53] et la décomposition TT (Tensor Train) [108]. Nous renvoyons le lecteur
à [84] pour plus de détails sur ces techniques. Ces méthodes et les algorithmes qui leur
sont associés, avec leurs avantages et leurs inconvénients, ont des domaines d’application
spécifiques, ce qui pousse à approfondir leurs propriétés mathématiques et à trouver de
nouvelles possibilités d’application.

En s’appuyant sur les différentes méthodes de décomposition tensorielle, l’objectif de
ce travail est d’établir quelles propriétés théoriques des techniques classiques d’algèbre
linéaire développées dans deux contextes différents, à savoir l’algèbre linéaire numérique
et l’analyse de données, sont conservées et lesquelles sont perdues, une fois qu’elles sont
étendues aux tenseurs. Une attention particulière est consacrée aux aspects computation-
nels. En outre, ce manuscrit vise à mettre en évidence les avantages et les inconvénients

I



II algèbre linéaire numérique

d’une approche tensorielle par rapport à son homologue matricielle classique dans les deux
cadres considérés.

Algèbre linéaire numérique
La façon dont un algorithme propage les erreurs d’arrondi est un sujet clé en algèbre

linéaire numérique. Classiquement, l’étude est effectuée avec le modèle IEEE de l’arith-
métique à virgule flottante, c’est-à-dire en affirmant que la représentation informatique
de x ∈ R est x̂ = x + δ avec |δ| ≤ u, où u est le unité d’arrondi et il limite la précision
de la représentation de x. De même, le calcul arithmétique en précision finie induit des
perturbations relatives similaires dans tous les calculs élémentaires.

L’objectif de la Partie I est d’étudier numériquement les effets de l’erreur d’arrondi
pour un solveur itératif et six schémas d’orthogonalisation classiques lorsqu’ils sont éten-
dus au cadre tensoriel par le formalisme TT. Dans tous les algorithmes considérés, nous
introduisons des étapes d’arrondi supplémentaires, par le biais de l’algorithme d’arrondi
TT [108] pour faire face aux contraintes de mémoire, toujours cruciales lorsqu’on traite
des tenseurs. Nos expériences suggèrent que pour ces algorithmes, les limites classiques
dues à la propagation des erreurs d’arrondi sont valables, en remplaçant l’arrondi unitaire
u de l’arithmétique de précision finie par la précision δ de l’algorithme d’arrondi TT.

Generalized Minimal RESidual
La Generalized Minimal RESidual (GMRES) est une méthode itérative robuste per-

mettant de résoudre des systèmes linéaires. Le GMRES repose sur la technique du sous-
espace de Krylov pour l’approximation de la solution. La solution approchée est calculée
en minimisant la norme du résidu du système linéaire sur l’espace de Krylov associé, dont
la dimension augmente de manière itérative. Le problème de minimisation est simplifié
par la construction d’une base orthogonale de l’espace de Krylov à travers le MGS et
le schéma de Householder, ce qui conduit à l’implémentation du MGS-GMRES et du
Householder-GMRES présentés respectivement dans [124] et [142]. Un critère d’arrêt si-
gnificatif et fréquemment utilisé est basé sur l’erreur à rebours associée à la matrice et
au côté droit du système linéaire. Ce choix est motivé par la stabilité à rebours des deux
variantes de GMRES dans l’arithmétique classique en virgule flottante, prouvée respecti-
vement dans [112] et [40]. Cette propriété de stabilité à rebours garantit que la solution
calculée par GMRES peut être interprétée comme la solution du même système linéaire
avec des perturbations de norme relative sur la matrice et le côté droit qui sont limitées
par l’arrondi unitaire de la précision de travail.

Contribution
La première contribution à l’étude du solveur GMRES, présentée au début du Cha-

pitre 2, provient d’un travail conjoint avec quelques scientifiques de l’équipe Inria de
Concace (anciennement HiePACS), à savoir E. Agullo, O. Coulaud, L. Giraud, G. Marait



résumé étendu III

et N. Schenkels. Le but de notre travail est d’étudier numériquement la stabilité arrière
de GMRES lorsque la précision de la représentation des données et celle des calculs sont
différentes. En effet, dans certaines situations, une partie des données doit être compres-
sée avec une précision différente (généralement inférieure) de celle du calcul en raison de
contraintes de mémoire de stockage. La procédure de compression introduit des pertur-
bations, qui sont numériquement décrites par une erreur de représentation limitée par la
précision de la compression. Ainsi, nous avons deux erreurs de représentation, l’une due
à la compression et l’autre liée à l’arithmétique à précision finie. Si la compression per-
turbe les données par composant, l’analyse théorique de stabilité arrière de GMRES [40,
113] s’applique toujours. Cependant, il existe des cas où les erreurs de compression af-
fectent les données de manière normalisée, de sorte que les hypothèses mathématiques
de l’analyse [40, 113] ne s’appliquent pas facilement. Nos exemples numériques suggèrent
que même avec des perturbations de compression normales, les deux variantes stables
en arrière de GMRES restent stables en arrière, c’est-à-dire que l’erreur arrière normale
atteignable est du même ordre que le maximum entre la compression et la précision de
calcul. Tous les résultats de ce travail sont également présentés dans [3].

La deuxième partie du Chapitre 2 présente la deuxième contribution liée à la GMRES :
l’étude numérique d’un algorithme GMRES robuste adapté au cas tensoriel avec le forma-
lisme TT, brièvement appelé TT-GMRES. Ce solveur itératif est destiné à résoudre des
systèmes linéaires, dont l’opérateur agit parmi des espaces tensoriels d’ordre d. Pour sim-
plifier, nous appellerons ces systèmes linéaires des systèmes linéaires tensoriels d’ordre d.
Nous présentons l’algorithme TT-GMRES avec l’erreur à rebours comme critère d’arrêt et
quelques exemples numériques, qui soutiennent sa stabilité à rebours, obtenus à partir de
la discrétisation par des grilles cartésiennes de certaines EDP classiques. En effet, GMRES
dans le format TT représente une étude de cas des perturbations normales, décrites dans
la première partie du Chapitre 2 et dans [3]. Pour être complet, notre algorithme TT-
GMRES est comparé à une précédente adaptation de GMRES au cadre tensoriel présentée
dans [39]. Nous montrons que la réalisation proposée dans [39] n’est pas stable en arrière
et ne garantit pas la précision de la solution calculée. De plus, nous nous concentrons sur
la résolution avec TT-GMRES des systèmes linéaires tensoriels dont les opérateurs ou
les côtés droits dépendent d’un paramètre. Sous une certaine hypothèse mathématique,
lorsque l’opérateur ou le côté droit dépend d’un paramètre, la solution de p systèmes
linéaires tensoriels d’ordre d peut être calculée en résolvant un unique système linéaire
tensoriel d’ordre (d + 1) avec une taille p le long du (d + 1)-ième mode. Nous prouvons
théoriquement que dans ce cadre, il existe des bornes d’erreur arrière reliant la solution du
système tensoriel unique d’ordre d à sa solution correspondante extraite de la solution du
système linéaire tensoriel d’ordre (d + 1). La qualité de ces bornes est également étudiée
numériquement sur divers exemples. Pour être aussi complet que possible, nous étudions
numériquement la qualité du préconditionneur. Ces résultats sont rassemblés dans [31].



IV algèbre linéaire numérique

Schémas d’orthogonalisation

Nous considérons six algorithmes pour calculer une base orthonormale de l’espace cou-
vert par un ensemble de vecteurs linéairement indépendants : Gram-Schmidt Classique
(CGS) et sa version avec réorthogonalisation (CGS2), Gram-Schmidt Modifié (MGS) et
sa mise en oeuvre avec réorthogonalisation (MGS2), la transformation de Householder
et l’algorithme de Gram. L’estimation de la perte d’orthogonalité de la base calculée est
importante pour évaluer la qualité d’un schéma d’orthogonalisation. La perte d’orthogo-
nalité pour Householder est prouvée dans [143] comme étant O(u) ; la même limite est
valable pour MGS2 et CGS2 comme montré dans[51, 129] sous l’hypothèse que κ(A)u < 1
et κ2(A)u < 1 respectivement, où κ(A) est le nombre de condition de l’ensemble des vec-
teurs d’entrée à orthogonaliser. Dans [15], l’auteur indique que si κ(A)u < 1, alors la perte
d’orthogonalité du MGS est O(κ(A)u), tandis que celle du CGS est O(κ2(A)u). Enfin,
dans [131], il est prouvé que O(κ2(A)u) limite également la perte d’orthogonalité de la
technique d’orthogonalisation de Gram.

Contribution

Dans le Chapitre 3, nous étudions d’un point de vue numérique la perte d’orthogo-
nalité de ces six algorithmes d’orthogonalisation classiques et populaires, correctement
adaptés pour fonctionner dans le format tensoriel. Plus précisément, nous reformulons
les algorithmes de Gram, CGS et MGS, avec et sans réorthogonalisation, en remplaçant
l’arithmétique vectorielle classique par l’arithmétique TT. Alors que ces méthodes lisent
directement les tenseurs, l’algorithme de transformation de Householder nécessite un plan
minutieux et bien pensé, que nous décrivons, puisque les entrées des tenseurs en format
compressé ne sont pas directement accessibles. De plus, dans les six schémas d’orthogo-
nalisation, nous introduisons une ou plusieurs étapes d’arrondi à une précision donnée,
basée sur l’arrondi TT [108]. Les étapes d’arrondi jouent un rôle crucial : d’une part, elles
maintiennent l’exigence de mémoire à un niveau abordable, d’autre part, leur précision
prend le rôle de l’arrondi unitaire de l’analyse classique de stabilité à rebours. En effet,
nos expériences numériques suggèrent que les limites théoriques prouvées pour les sché-
mas d’orthogonalisation classiques dans le contexte IEEE s’appliquent toujours dans le
cadre TT, où la précision de l’arrondi remplace l’arrondi unitaire. Ces résultats, également
disponibles dans [32], n’ont jamais été rapportés auparavant, à notre connaissance.

L’analyse des besoins en mémoire et l’application de ces noyaux dans un eigensol-
veur classique, adapté correctement au cadre tensoriel, complètent l’étude numérique des
schémas d’orthogonalisation au format TT. Nous considérons la méthode d’itération sub-
spatiale [9] pour travailler avec des tenseurs dans le format TT, et nous étudions les
performances des différents algorithmes d’orthogonalisation. Enfin, nous comparons la
qualité et les propriétés des paires propres en fonction des différents noyaux d’orthogona-
lisation pour un cas test académique, à savoir l’opérateur Laplacien exprimé au format
TT [81].



résumé étendu V

Analyse des données
L’analyse des données est la discipline de la science des données qui explore les mé-

thodes d’extraction, d’interprétation et de visualisation des caractéristiques importantes
des données. Plusieurs techniques développées en analyse de données reposent sur des
outils d’algèbre linéaire, par exemple, l’Analyse en Composantes Principales (ACP) et
toutes ses variantes adaptées aux différents contextes, qui sont basées sur la SVD. Depuis
l’arrivée d’ensembles de données de grande taille provenant d’entreprises technologiques
publiques et privées, les modèles tensoriels ont gagné en popularité, offrant de nouvelles
directions de recherche dans différents domaines.

La Partie II a pour but d’étudier certaines techniques d’analyse de données pour les
tenseurs exprimés au format Tucker, en soulignant les avantages et les défauts de ce choix
par rapport à l’approche matricielle correspondante.

Analyse des correspondances
L’Analyse des Correspondances (AC) est l’outil couramment utilisé pour analyser et

interpréter les tableaux de contingence, c’est-à-dire les ensembles de données dont les
entrées sont des comptes ou des fréquences de deux catégories de deux variables diffé-
rentes [57]. L’AC est basée sur l’ACP et, par conséquent, elle est à la fois une technique
d’analyse et de visualisation, fournissant simultanément un point de vue algébrique, géo-
métrique et statistique sur les données [12, 14, 57, 58].

Lorsque plus de deux variables catégorielles sont présentes dans les ensembles de don-
nées, généralement appelés tableaux à voies multiples, la technique la plus utilisée pour
l’analyse est l’Analyse des Correspondances Multiples (ACM). L’ACM procède en asso-
ciant un tableau d’indicateurs ou de Burt, qui est mathématiquement une matrice de
zéros et de uns, au tableau multivoie [58]. En raison de ce choix, toutes les interactions
entre plus de deux variables sont perdues et ne peuvent être récupérées [10]. Cependant,
il existe un outil alternatif appelé Analyse des Correspondances MultiVoies (ACMV) [11],
basé sur la CP [72] et sur le modèle de Tucker [137]. Les formulations algébriques et sta-
tistiques de l’ACMV ont été présentées, au moins pour trois variables, dès les années 90,
voir par exemple [44, 87], mais ses potentialités ne sont pas pleinement explorées, comme
l’indiquent [11, 88].

Contribution
Dans le Chapitre 4, nous étudions l’ACMV principalement du point de vue de la

géométrie et de la visualisation, afin de combler le vide existant pour cette technique
généralisée aux tenseurs [11, 88]. Nos contributions théoriques et pratiques à ACMV pro-
viennent d’un travail conjoint avec O. Coulaud et A. Franc, chercheur Inrae dans l’équipe
BioGeCo Inrae, également membre de l’équipe du projet Pléiade Inria. Cette collaboration
vise à étudier le rôle et les avantages de l’utilisation de la théorie tensorielle pour l’étude
des tableaux de contingence multivoie écologiques. Tout d’abord, nous contribuons à la



VI analyse des données

description des propriétés géométriques du ACMV. Après avoir développé sa structure
algébrique basée sur le modèle de Tucker pour un nombre générique de variables, nous
nous concentrons sur la visualisation de l’ACMV et sur les interprétations géométriques
qui en sont déduites. Pour mettre en évidence les avantages et les inconvénients d’une
approche tensorielle dans la pratique, deux cas d’étude montrent la différence entre la
visualisation et l’interprétation de l’ACM et de l’AC.

La table de contingence multivoie fournie par le projet Malabar (IFREMER, CNRS,
INRAE, Labex COTE) [6] nous permet de tester nos résultats théoriques sur un cas
d’étude réel en écologie. Notre contribution pratique est l’analyse de ce jeu de données
Malabar. Nous appliquons les résultats de l’ACMV développés précédemment pour inter-
préter géométriquement les relations entre les variables de données. Pour être complet,
nous comparons les résultats de l’ACMV avec ceux de l’AC, en transformant convenable-
ment les données.

Analyse des fonctions orthogonales empiriques
En climatologie, une méthode populaire pour l’étude et la visualisation de données

dépendant de variables spatiales et temporelles est l’analyse des Fonctions Orthogonales
Empiriques (EOF), basée sur l’ACP. La technique EOF est considérée à la fois comme une
réduction dimensionnelle et comme une technique d’extraction de motifs [64], conduisant à
la visualisation indépendante de l’information spatiale et temporelle portée par les données
analysées. A notre connaissance, aucune description de la méthode EOF dans le cadre
tensoriel n’a été présentée jusqu’à présent, même si des études de données climatiques
basées sur des modèles tensoriels sont disponibles, par exemple [149].

Contribution
Au cours de la collaboration avec O. Coulaud et L. Terray, chercheur au sein de l’équipe

Climat, Environnement, Couplage et Incertitudes (CECI), une équipe de recherche com-
mune entre le Cerfacs et le CNRS, nous avons étudié les avantages et les inconvénients
de l’introduction de la théorie tensorielle dans la méthode EOF. Dans le Chapitre 5, nous
concluons que du point de vue du coût de calcul, une approche tensorielle n’est pas bé-
néfique en général. Cependant, nous montrons que le coût de calcul de la technique EOF
peut être réduit, sous la forte hypothèse que les données climatiques sont disponibles ou
approximées en format Tucker. En effet, nous récupérons théoriquement les résultats EOF
à partir des données compressées exprimées au format Tucker. Pour compléter l’étude,
nous approximons un jeu de données par la technique HOSVD et étudions les erreurs
entre les résultats EOF générés par les techniques classiques et tensorielles.



Extended summary

Sooner or later, almost every discipline, from pure mathematics to engineering, from
physics to natural science, from economics to social science, turns to linear algebra and
its numerical results for mathematically stating their problems and for hopefully solving
them. The recent fast and continuously growing technological improvements open new
mathematical and computational questions, making necessary further development in lin-
ear algebra and its applied branch. In particular, the increased popularity of big data and
high dimensional problems is driving the progress of multilinear algebra and its numerical
aspects.

Multilinear algebra main objects of investigation are tensors and multilinear functions.
Tensors as mathematical tools appeared already between the XIX and the XX century
in the geometry studies of Riemann, Christoffel, Ricci-Curbastro, and Levi-Civita and
in the physics works of Voigt and Hamilton [42]. However, the first mathematical study
on their nature appeared later in 1927 by Hitchcock [42, 72]. From that moment, many
works from very different domains contributed to the tensor theory, proposing tensor fac-
torization algorithms, for example, the Tucker, the PARAllel FACtor (PARAFAC) the
CANonical DECOMposition (CANDECOM), Matrix-Product State (MPS) techniques in-
vestigated by Cattel [27], Tucker [137], Harshman [65], Carroll and Chang [25], White [2]
respectively. Those results were rediscovered and developed further leading to the cur-
rently most popular tensor factorization and approximation techniques, which are the
Canonical Polyadic decomposition (CP) [72], the Tucker decomposition [137] computed
with High Order Singular Value Decomposition (HOSVD) algorithm, (recently renamed
as Multilinear Singular Value Decomposition [36]), the Hierarchical Tucker decomposi-
tion (H-Tucker) [53] and the Tensor Train (TT) decomposition [108]. We refer the reader
to [84] for further details about these techniques. These methods and their related al-
gorithms, with advantages and drawbacks, have specific areas of applications, which in
turn push for further investigation of their mathematical properties and new application
possibilities.

Relying on the different tensor decomposition methods, the purpose of this work is to
establish which theoretical properties of classical linear algebra techniques developed in
two different contexts, that are numerical linear algebra and data analysis, are saved and
which are lost, once they are extended to tensors. Particular attention is dedicated to
the computational aspects. Moreover, this manuscript aims to highlight the benefits and
the flaws of a tensor approach compared to its classical matrix counterpart in the two
considered frameworks.

VII



VIII numerical linear algebra

Numerical linear algebra
How an algorithm propagates rounding errors is a key topic in numerical linear algebra.

Classically, the investigation is performed with floating point arithmetic IEEE model, i.e.,
stating that the computer representation of x ∈ R is x̂ = x+δ with |δ| ≤ u, where u is the
unit round-off and it bounds the accuracy of the representation of x. Likewise, the finite
precision arithmetic calculation induces similar relative perturbations in all elementary
computations.

The purpose of Part I is to study numerically the rounding error effects for an iter-
ative solver and six classical orthogonalization schemes when they are extended to the
tensor framework through the TT-formalism. In all the considered algorithms we intro-
duce additional rounding steps, through the TT-rounding algorithm [108] to face memory
constraints, always crucial when dealing with tensors. Our experiments suggest that for
those algorithms classical bounds due to rounding error propagation hold, replacing the
unit round-off u of the finite precision arithmetic by the precision δ of the TT-rounding
algorithm.

Generalized Minimal RESidual
The Generalized Minimal RESidual is a robust iterative method to solve linear sys-

tems. GMRES relies on the Krylov subspace technique for approximating the solution.
The approximated solution is computed by minimizing the norm of the linear system
residual on the associated Krylov space, whose dimension increases iteratively. The
minimization problem is simplified by constructing an orthogonal basis of the Krylov
space through the MGS and the Householder scheme, leading to the MGS-GMRES and
Householder-GMRES implementation presented in [124] and [142] respectively. A mean-
ingful and frequently used stopping criterion is based on the backward error associated
with the matrix and the right-hand side of the linear system. This choice is motivated
by the backward stability of both GMRES variants in the classical floating point arith-
metic proved in [112] and [40] respectively. This backward stability property ensures that
the solution computed by GMRES can be interpreted as the solution of the same linear
system with relative norm perturbations on the matrix and the right-hand side that are
bounded by the unit round-off of the working precision.

Contribution
The first contribution to the study of the GMRES solver, presented at the beginning

of Chapter 2, comes from a joint work with few scientists of the Concace (previously
HiePACS) Inria team, namely E. Agullo, O. Coulaud, L. Giraud, G. Marait and N.
Schenkels. The purpose of our work is to study numerically the backward stability of
GMRES when the accuracy of the data representation and the computations are different.
Indeed, in some situations, part of the data needs to be compressed with an accuracy
different (usually lower) than the computational one due to storing memory constraints.



extended summary IX

The compression procedure introduces perturbations, which are numerically described
by a representation error bounded by the compression accuracy. Thus, we have two
representation errors, one due to the compression and one linked to the finite precision
arithmetic. If the compression perturbs the data componentwise, the theoretical backward
stability analysis of GMRES [40, 113] still applies. However, there are cases when the
compression errors affect the data normwise so that the mathematical assumptions of the
analysis [40, 113] do not readily apply. Our numerical examples suggest that even with
normwise compression perturbations, the two backward stable variants of GMRES remain
backward stable, that is the attainable normwise backward error is of the same order as
the maximum between the compression and the computational accuracy. All the results
of this work are also presented in [3].

The second part of Chapter 2 presents the second contribution related to GMRES:
the numerical study of a robust GMRES algorithm adapted to the tensor case with the
TT-formalism, shortly called TT-GMRES. This iterative solver is meant for solving linear
systems, whose operator acts among tensor spaces of order d. We will refer for simplicity
to those linear systems as tensor linear systems of order d. We present the TT-GMRES
algorithm with the backward error as a stopping criterion and some numerical examples,
that support its backward stability, obtained from the discretization through Cartesian
grids of some classical PDEs. Indeed, GMRES in TT-format represents a case study of
normwise perturbations, described in the first part of Chapter 2 and in [3]. For complete-
ness, our TT-GMRES algorithm is compared with a previous adaptation of GMRES to
the tensor framework presented in [39]. We show that the realization proposed in [39]
is not backward stable and does not guarantee the accuracy of the computed solution.
Moreover, we focus on solving with TT-GMRES tensor linear systems whose operators
or right-hand sides depend on a parameter. Under some mathematical hypothesis, when
the operator or the right-hand side is parameter dependent, the solution of p tensor linear
systems of order d can be computed by solving a unique tensor linear system of order
(d+ 1) with size p along the (d+ 1)-th mode. We prove theoretically that in this frame-
work there exist backward error bounds linking the solution of the single tensor system
of order d with its corresponding one extracted from the solution of the tensor linear sys-
tem of order (d + 1). The quality of those bounds is also studied numerically on various
examples. To be as comprehensive as possible, we numerically investigate the quality of
the preconditioner. These results are collected in [31].

Orthogonalization schemes
We consider six algorithms to compute an orthonormal basis of the space spanned

by a set of linearly independent vectors: Classical Gram-Schmidt (CGS) and its version
with re-orthogonalization (CGS2), Modified Gram-Schmidt (MGS) and its implementa-
tion with re-orthogonalization (MGS2), Householder transformation and the Gram algo-
rithm. Estimating the loss of orthogonality of the computed basis is important to evaluate
the quality of an orthogonalization scheme. The loss of orthogonality for Householder is
proved in [143] to be O(u); the same bound holds for MGS2 and CGS2 as showed in [51,



X data analysis

129] under the hypothesis that κ(A)u < 1 and κ2(A)u < 1 respectively, where κ(A) is the
condition number of the input set of vectors to orthogonalize. In [15], the author states
that if κ(A)u < 1, than the loss of orthogonality of MGS is O(κ(A)u), while the CGS
one is O(κ2(A)u). Finally, in [131], it is proved that O(κ2(A)u) bounds also the loss of
orthogonality of the Gram orthogonalization technique.

Contribution

In Chapter 3, we study from a numerical point of view the loss of orthogonality of
these six classical and popular orthogonalization algorithms, properly adapted to work in
the tensor format. More precisely, we reformulate the Gram, CGS and MGS algorithm,
with and without re-orthogonalization, replacing the classical vector arithmetic by the
TT-arithmetic. While those methods directly read for tensors, the Householder transfor-
mation algorithm requires a careful and well-thought-out outline, that we describe, since
entries of compressed-format tensors are not directly accessible. Moreover, in all the six
orthogonalization schemes, we introduce one or more rounding steps at a given accuracy,
based on the TT-rounding [108]. The rounding steps play a crucial role: on one side, they
keep the memory requirement affordable, on the other, their accuracy takes over the role
of the unit round-off of the classical backward stability analysis. Indeed, our numerical
experiments suggest that the theoretical bounds proved for the classical orthogonalization
schemes in the IEEE context still apply in the TT-framework, where the rounding accu-
racy replaces the unit round-off. Those results, available also in [32], were never reported
before, to the best of our knowledge.

The analysis of the memory requirement and the application of these kernels into a
classical eigensolver, adapted properly to the tensor framework, complete the numerical
study of the orthogonalization schemes in TT-format. We consider the subspace iteration
method [9] to work with tensors in TT-format, and investigate the performance of the
different orthogonalization algorithms. Finally, we compare the quality and the properties
of the eigenpairs depending on the different orthogonalization kernels for an academic test
case, i.e., the Laplacian operator expressed in TT-format [81].

Data analysis
Data analysis is the data science discipline that explores methods to extract, interpret

and visualize important features of the data. Several techniques developed in data analysis
rely on linear algebra tools, for example, Principal Component Analysis (PCA) and all
its variations tuned to the different contexts, which are based on SVD. Since the advent
of large-size datasets coming from public and private tech companies, tensor models have
gained popularity providing new research directions in different fields.

The Part II aim is to investigate some data analysis techniques for tensors expressed
in Tucker format, highlighting the benefits and the flaws of this choice compared to the
corresponding matrix approach.



extended summary XI

Correspondence analysis
Correspondence Analysis (CA) is the commonly used tool for analysing and inter-

preting contingency tables, i.e., datasets whose entries are counts or frequencies of two
categories of two different variables [57]. CA is based on PCA and consequently, it is
both an analysis and a visualization technique, providing simultaneously an algebraic, a
geometric and a statistical point of view on the data [12, 14, 57, 58].

When more than two categorical variables are present in the datasets, usually referred
to as multiway tables, the most used technique for the analysis is Multiple Correspon-
dence Analysis (MCA). MCA proceeds by associating an indicator or Burt table, which
mathematically is a matrix of zeros and ones, to the multiway table [58]. Because of
this choice, all the interactions among more than two variables are lost and can not be
retrieved [10]. However, there exists an alternative tool called MultiWay Correspondence
Analysis (MWCA) [11], based on the CP [72] ad on the Tucker [137] model. The MWCA
algebraic and statistical formulations were presented, at least for three variables, already
in the 90s, see for example [44, 87], but its potentialities are not fully explored, as stated
in [11, 88].

Contribution

In Chapter 4, we study MWCA mainly on the geometric and visualization side, to
fulfil the existing gap for this technique generalized to tensors [11, 88]. Our theoretical
and practical contributions to MWCA derive from joint work with O. Coulaud and A.
Franc, Inrae research scientist in the BioGeCo Inrae team, also a member of the Pleiade
Inria project team. This collaboration aims to investigate the role and the benefits of
using the tensor theory for studying ecological multiway contingency tables. Firstly, we
contribute to the description of the geometrical properties of MWCA. After developing
its algebraic structure based on the Tucker model for a generic number of variables, we
focus on MWCA visualization and on the geometrical interpretations that are inferred.
To highlight the benefit and the flaws of a tensor approach in practice, two study cases
show the difference between the MWCA and the CA visualization and interpretation.

The multiway contingency table provided by the Malabar project (IFREMER, CNRS,
INRAE, Labex COTE) [6] allows us to test our theoretical results on a real ecology study
case. Our practical contribution is the analysis of this Malabar dataset. We apply the
previously developed MWCA results to geometrically interpret the relations among the
data variables. For completeness, we compare the MWCA results with the CA ones,
transforming conveniently the data.

Empirical Orthogonal Function analysis
In climatology, a popular method for the study and the visualization of data depending

on space and time variables is Empirical Orthogonal Functions (EOF), based on PCA. The
EOF technique is regarded both as a dimensional reduction and as a pattern extraction
technique [64], leading to the independent visualization of the space and of the time



XII data analysis

information carried by the analyzed data. To the best of our knowledge, no description
of the EOF method in the tensor framework has been presented so far, even if studies of
climate data based on tensor models are available, for example [149].

Contribution

During the collaboration with O. Coulaud and L. Terray, a research scientist in Cli-
mate, Environment, Coupling, and Uncertainties (CECI), a joint research team between
Cerfacs and CNRS, we investigate the advantages and the drawbacks of introducing the
tensor theory in the EOF method. In Chapter 5, we conclude that from the compu-
tational cost point of view a tensor approach is not beneficial in general. However, we
show that the computational cost of the EOF technique can be reduced, under the strong
assumption that the climate data are made available or approximated in Tucker format.
Indeed, we theoretically retrieve the EOF results from the compressed data expressed in
Tucker format. To complete the study, we approximate a dataset through the HOSVD
technique and study the errors between the EOF results generated through classical and
tensor techniques.



List of Symbols

Objects

ak k-th Tensor Train core of a
Ak(ik) ik-th slice along mode 2 of k-th Tensor Train core ak
V∗ dual of a linear subspace
F generic algebraic field
In identity matrix of size n
V linear subspace
A(i) matricization of tensor a along mode i
A matrix
A linear space endowed with a metric
N integer number set
A linear or multilinear operator
O(m× n) set of orthogonal matrices of m rows and n columns
Q rational number field
R real number field
R+ real positive number set
A set
a[ik,k] ik-th slice along mode k
a multidimensional array as element of a tensor space
A multidimensional array representing a multilinear operator
a vector

Operations

•HL HR
contraction of modes in HL and HR for left and right tensor respectively

〈· , ·〉 inner product
⊗K Kronecker product
‖·‖2 L2-norm
‖·‖ Frobenious norm
⊗ tensor product
×k matrix-tensor product along mode k

XIII





Chapter 1

Notation and preliminary results

1.1 Introduction and notation
A tensor is a mathematical object carrying multiple meanings; we present briefly the

main three: tensors as multidimensional arrays, as elements of a tensor space, and as
representations of multilinear operators. From a very practical viewpoint, often used in
computer science, a tensor is simply a multidimensional array. Exactly as a vector of Rn is
identified with the one-dimensional array which stores its n real coordinates with respect
to the canonical basis, a tensor of Rn1×···×nd can be seen as an array of d dimensions
storing all its entries.

Definition 1.1.1. The object a ∈ Rn1×···×nd is a tensor, the integer d defines its order,
the integer nk its k-th mode size.

A visual representation of tensors as multidimensional arrays of order d ∈ {1, 2, 3} is
given in Figure 1.1.

Henceforth tensors are denoted by lowercase bold letters, matrices by uppercase letters,
and vectors by lowercase ones. The expression a(i1, . . . , id) stands for the (i1, . . . , id)-th
entry of a ∈ Rn1×···×nd . The analogous expression is used for matrix and vector compo-
nents. To further clarify the chosen notation, we present an example.
Example 1.1.1. The multidimensional array a in Figure 1.1C is a tensor of order 3 with

1
4
7




(A) vector or
order-1 tensor

1 8 4
9 2 2
7 1 6




(B) matrix or
order-2 tensor

1 8 4
9 2 2
7 1 6


5 3 1

2 4 9
6 8 7




(C) order-3 tensor

Figure 1.1 – Tensors as multidimensional tensors of order d ∈ {1, 2, 3}.

1



2 1.1. INTRODUCTION AND NOTATION

mode sizes (3, 3, 2). Its (1, 1, 1)-th element is a(1, 1, 1) = 5, while its (3, 1, 2)-th element
is a(3, 1, 2) = 7.

From a more theoretical point of view typical of some disciplines, as multilinear algebra
for example, tensors of order d are elements belonging to the tensor product, denoted by
⊗, of d linear subspaces Vk defined over the field F for k ∈ {1, . . . , d}. Let {v(k)

1 , . . . , v(k)
rk
}

be a basis of Vk the linear subspace of Rnk of dimension rk, then V1⊗· · ·⊗Vk is a linear
space generated by the elements

v
(1)
i1 ⊗ · · · ⊗ v

(d)
id

for every ik ∈ {1, . . . , rk} and k ∈ {1, . . . , d}. Consequently every tensor a ∈ V1⊗· · ·⊗Vk

can be written as a linear combination of the basis elements, by the definition of linear
space, i.e.,

a =
r1,...,rd∑
i1,...,id=1

λi1,...,idv
(1)
i1 ⊗ · · · ⊗ v

(d)
id
.

The linear space V1 ⊗ · · · ⊗ Vk is the tensor product space, in which we highlight a
special set of elements.

Definition 1.1.2. The tensor v ∈ V1 ⊗ · · · ⊗ Vd is an elementary tensor if it can be
expressed as

v = v1 ⊗ · · · ⊗ vd

with vk ∈ Vk for every k ∈ {1, . . . , d}.

The (i1, . . . , id)-th element of the elementary tensor v is equal to the product of the
ik component of vk ∈ Vk for all k ∈ {1, . . . , d}, that is v(i1, . . . , id) = v1(i1) · · · vd(id). It
is convenient to present an example, which will clarify this last statement.
Example 1.1.2. LetVk be a subspace of dimension 1 generated by vk ∈ Rnk for k ∈ {1, 2, 3}
with

v1 =
[
1
2

]
, v2 =

9
1
1

 and v3 =

2
8
0

 .
Then the tensor product space V1 ⊗V2 ⊗V3 is generated by the order 3 tensor

v = v1 ⊗ v2 ⊗ v3,

that is all the elements of V1 ⊗V2 ⊗V3 can be expressed as (λv) with λ ∈ R.
Tensors as multidimensional arrays and as elements of the tensor product space are

linked. Indeed, a vector of a linear space is uniquely identified by its coordinates once the
linear space basis is fixed, similarly, a tensor as an element of the tensor product space is
uniquely identified by a multidimensional array once a basis of the tensor product is set.
We illustrate this link using the previous example.



CHAPTER 1. NOTATION AND PRELIMINARY RESULTS 3

Example 1.1.3. Considering the vectors vh defined in Example 1.1.2, we express their
tensor product in the canonical basis of the tensor space. Each vector vh can be expressed
as a linear combination of the canonical basis vectors {e(h)

ih
} of Vh for h ∈ {1, 2, 3} where

the coefficients are its entries, i.e.,

v1 =
2∑
i=1

v1(i)e(1)
i = e

(1)
1 + 2e(1)

2

v2 =
3∑
j=1

v2(j)e(2)
j = 9e(2)

1 + e
(2)
2 + e

(2)
3

v3 =
3∑

k=1
v3(k)e(3)

k = 2e(3)
1 + 8e(3)

2

where e(1)
1 = [1, 0]>, e(1)

1 = [0, 1]>, e(2)
1 = e

(3)
1 = [1, 0, 0]>, e(2)

2 = e
(3)
2 = [0, 1, 0]> and

e
(2)
3 = e

(3)
3 = [0, 0, 1]>. As consequence, the tensor v gets

v = v1 ⊗ v2 ⊗ v3 =
( 2∑
i=1

v1(i)e(1)
i

)
⊗
( 3∑
j=1

v2(j)e(2)
j

)
⊗
( 3∑
k=1

v3(k)e(3)
k

)

and thanks to the multilinearity of the tensor product, this last equation becomes

v =
( 2∑
i=1

v1(i)e(1)
i

)
⊗
( 3∑
j=1

v2(j)e(2)
j

)
⊗
( 3∑
k=1

v3(k)e(3)
k

)

=
2∑
i=1

3∑
j=1

3∑
k=1

(
v1(i)v2(j)v3(k)

)
e

(1)
i ⊗ e

(2)
j ⊗ e

(3)
k

=
2∑
i=1

3∑
j=1

3∑
k=1

v′(i, j, k)e(1)
i ⊗ e

(2)
j ⊗ e

(3)
k

where v′ is a 3-dimensional array of modes (2, 3, 3), whose (i1, i2, i3)-th entry is the product
of the ih-th entry of vh for h ∈ {1, 2, 3}, that is v′(i1, i2, i3) = v1(i1)v2(i2)v3(i3). In this
example, once the canonical basis is fixed for R2 and R3, the (1, 1, 1) element of v is
1× 2× 9 = 18.

Henceforth a d-dimensional array will represent the coordinates of a Rn1 ⊗ · · · ⊗ Rnd

tensor with respect to its canonical basis {e(1)
i1 ⊗ · · · ⊗ e

(d)
id
} where {e(k)

ik
} is the canonical

basis of Rnk for every k ∈ {1, . . . , d}. This perspective will not be addressed further in
this work; we refer the reader to [92] for more details.

Another classical interpretation arises in the context of multilinear algebra where a
tensor is regarded as a multilinear operator among the tensor product of linear spaces,
in analogy with the matrix case. Indeed a matrix A ∈ Rn1×n2 is both a real value array
of order 2, it is an element of the linear space Rn1×n2 and it describes the action of a
linear operator from Rn2 to Rn1 , once a basis of Rn1 and Rn2 has been fixed. In this
manuscript, we decide to denote by uppercase bold calligraphic letters the multilinear



4 1.2. TENSOR BASIC OPERATIONS

operator A : Rn1 ⊗ · · · ⊗ Rnd → Rm1 ⊗ · · · ⊗ Rmd , while the corresponding letter in
uppercase bold, in this case A ∈ <(n1×m1)×···×(nd×md), stands for the multidimensional
array representing the multilinear operator A once the canonical basis of Rn1 ⊗ · · · ⊗Rnd

and Rm1⊗· · ·⊗Rmd are fixed. From now on, a tensor representing a multilinear operator
among a tensor product of spaces will be referred to as tensor operator. Remark that
the tensor operator A is a tensor of order 2d according to our definition, which acts on
tensors of order d. This choice is aligned with the canonical linear algebra case, where
a matrix is an array of dimension 2 representing the action of a linear operator over a
vector expressed as an array of dimension 1.

1.2 Tensor basic operations
This section presents the basic tensor calculus operations used in the entire manuscript

and the most common object manipulations. In the first part, we establish an order for
performing tensor manipulations. The second part presents the operations among tensors,
regarded as multidimensional arrays, by analogy with the corresponding ones defined for
matrices or vectors. Remark that tensor operations and manipulations can be performed
even when the tensor is expressed in a compact form. We will provide further details
on how to perform certain operations or manipulations in compressed format, once the
decompositions are presented.

1.2.1 Tensor reshaping
Many algorithms benefit or rely on manipulations of the multidimensional array repre-

senting tensors. In the classical matrix context, it is common to select from a given matrix
A ∈ Rn1×n2 a column cj ∈ Rn1 or a row ri ∈ Rn2 , that is ri = A(i, :) and cj = A(:, j),
where the symbol ‘:’ stands for taking all the entries along the row or column mode, using
the python or MATLAB notation. This operation of extracting from a 2-dimensional
array a 1-dimensional array is generalized to the tensors by slices and fibres.
Definition 1.2.1. Let a ∈ Rn1×···×nd be a d order tensor, then a[ik,k] is a (d − 1) order
tensor representing the ik-th slice along mode k whose generic element writes

a[ik,k](i1, . . . , ik−1, ik+1, . . . , id) = a(i1, . . . , ik−1, ik, ik+1, . . . , id)

for every ij ∈ {1, . . . , nj} and j ∈ {1, . . . , d}. This concept is easily generalized to multiple
mode slices. In particular the (i1, . . . , ik−1, ik+1, . . . , id) slice along modes (1, . . . , k−1, k+
1, . . . , d) is called mode k fibre. If the order is d = 3, then the (j, k) slice along modes
(2, 3) is said column fibre, while the (i, k) slice along modes (1, 3) is the row fibre and the
(i, j) slice along modes (1, 2) is the tube fibre.

Since multimode slices will not appear in this document, we do not introduce a specific
notation, but we propose an example to present practically the idea of fibres and slices
for order 3 tensors. The following example stresses that fibres can be seen as an analogue
of matrix rows and columns



CHAPTER 1. NOTATION AND PRELIMINARY RESULTS 5

Example 1.2.1. Consider the tensor a ∈ R3×3×2 depicted in Figure 1.1C. The first and
second slices with respect to mode 3 are the (3× 3) matrices

a[1,3] =

5 3 1
2 4 9
6 8 7

 and a[2,3] =

1 8 4
9 2 2
7 1 6

 .
The (1, 1) column fibre corresponds to the vector [5, 2, 6]>, which is also the first column
of the slice a[1,3], the (1, 1) row fibre corresponds to the vector [5, 3, 1]>, i.e., the first row
of a[1,3], and the (1, 1) tube fibre to the vector [5, 1]>.

Another common practice in the tensor framework is reorganizing the tensors into
vectors or matrices. To do so, the fibres along a specific mode are arranged into a vector,
defining the vectorization of a tensor, or as columns of a matrix, constructing the tensor
matricization or unfolding. For both the vectorization and the matricization, we follow
the order proposed in [84].

Definition 1.2.2. Let N k = {1, . . . , nk} be a subset of N for every k ∈ {1, . . . , d}, define
the function φ : N 1 × · · · ×N d → N such that

φ(i1, . . . , id) = 1 +
d∑
`=1

(i` − 1)m` with m` =
`−1∏
h=1

nh

The image of the function φ is equal to the set N = {1, . . . , n} where n is equal to the
mode size product, that is n = ∏d

h=1 nh. Henceforth the expression i1, . . . , id denotes the
image of (i1, . . . , id) through φ, i.e., i1, . . . , id = φ(i1, . . . , id).
Let a ∈ Rn1×···×nd be an order-d, its vectorization vec(a) ∈ Rn with n is such that

vec(a)(j) = a(i1, . . . , id) with j = φ(i1, . . . , id).

The vectorization is also used to reshape a tensor into a matrix, applying it to tensor
slices.

Definition 1.2.3. Let a ∈ Rn1×···×nd be a d order tensor and let n 6=k = (n1 · · ·nd)/nk,
then the (nk, n6=k) matrix A(k) denotes the mode k matricization or k unfolding whose
(i, j) element writes

A(k)(i, j) = a(j1, . . . , jk−1, i, jk+1, . . . , jd)

for every i ∈ {1, . . . , nk} and j = j1, . . . , jk−1, jk+1, . . . , jd. This definition is extended to
multimode matricization, using the index linear combination for computing the row and
column index consistently.

From now on, we denote the matricization of a tensor along a certain mode by the
same letter in uppercase with the mode index between round brackets as superscript, as
proposed in [36]. Notice that, generally speaking, the fibres arrangement order is not
significant as long as it is consistent throughout the entire work. We use the previous
examples to illustrate concretely the tensor vectorization and matricization.



6 1.2. TENSOR BASIC OPERATIONS

Example 1.2.2. Consider the tensor a ∈ R3×3×2 depicted in Figure 1.1C. The vectorization
of a stacks vertically all the row fibres fixing (i2, i3) for increasing values of i2 and i3 in
the given order. The vectorization of a writes with the row fibres as

vec(a) =


r(1,1)
r(2,1)
...

r(3,2)


where r(i2,i3) ∈ R3 represents the (i2, i3) row fibre, that is r(i2,i3) = a(:, i2, i3) for i2 ∈ {1, 2, 3}
and i3 ∈ {1, 2}. The result of the vectorization is

vec(a)> = [5, 2, 6, 3, 4, 8, 1, 9, 7, 1, 9, 7, 8, 2, 1, 4, 2, 6].

The matricization of a with respect to mode 1 is A(1) ∈ R3×6, obtained stacking one next
to the other all the row fibres, i.e.,

A(1) = [r(1,1), r(2,1), · · · , r(3,2)]

with r(i2,i3) ∈ R3 represents the (i2, i3) row fibre. The final result of the matricization
with respect to mode 1 is

A(1) =

5 3 1 1 8 4
2 4 9 9 2 2
6 8 7 7 1 6

 .
The tensor matricization is connected with the Kronecker product, another relevant

operation in the tensor framework.

Definition 1.2.4. The Kronecker product between matrices A ∈ Rn1×n2 and B ∈ Rm1×m2

is A⊗K B a (n1m1)× (n2m2) matrix such that

A⊗K B =


A(1, 1)B · · · A(1, n2)B

... . . . ...
A(n1, 1)B · · · A(n1, n2)B

 .
With an abuse of notation, the Kronecker product of two vectors a ∈ Rn and b ∈ Rm

is the vector a⊗K b ∈ Rnm defined as

a⊗K b =


a(1)b
...

a(n)b

 .
By construction the k-th element of a⊗K b is equal to a(i)b(j) with k = j+m(i−1) = ij.
From this last remark, it follows this tiny but useful lemma.



CHAPTER 1. NOTATION AND PRELIMINARY RESULTS 7

Lemma 1.2.3. Given an elementary tensor a ∈ Rn1×···×nd, expressed as

a = v1 ⊗ · · · ⊗ vd

with v` ∈ Rn`, then its matricization with respect to mode ` writes

A(`) = v` ⊗
(
vd ⊗K · · · ⊗K v`+1 ⊗K v`−1 ⊗K · · · ⊗K v1

)
for every ` ∈ {1, . . . , d}

Proof. Since this is a classical result in the tensor theory, we prove it just for the mode
1 matricization under the hypothesis d = 3. By construction the (i1, i2i3)-th element of
A(1) is

A(1)(i1, i2i3) = v1(i1)v2(i2)v3(i3).

By construction v2(i2)v3(i3) is the (i2i3)-th element of v3 ⊗K v2, i.e.,

A(1)(i1, i2i3) = v1(i1)
(
v3 ⊗K v2

)
(i3i2).

and thanks to the definition of the tensor product, it follows

A(1)(i1, i2i3) = v1(i1)
(
v3 ⊗K v2

)
(i3i2) =

(
v1 ⊗ (v3 ⊗K v2)

)
(i1, i3i2),

that is the thesis.

Another property of the Kronecker product we use in the following sections is called
mixed-product property. Let Ai ∈ Rni×mi , Bi ∈ Rmi×pi for i ∈ {1, 2}, then the Kronecker
product of (A1B1) and (A2B2) is expressed as the matrix product of the Kronecker product
of Ai with Bi, that is

(A1B1)⊗K (A2B2) = (A1 ⊗K A2)(B1 ⊗K B2). (1.1)

1.2.2 Tensor calculus
As previously mentioned, tensors in this document are thought of as multidimensional

arrays, belonging to the space Rn1×···×nd , which is a linear space. Consequently, the tensor
sum and the product with real scalars are linearly defined component-wise.

The first operations presented involves tensors and matrices. Let Mk ∈ Rm×nk and
a ∈ Rn1×···×nk×···×nd be a matrix and a tensor respectively, then the matrix-tensor product
between Mk and a along the mode k is denoted by (Mk ×k a) ∈ Rn1×···×m×···×nd , whose
(i1, . . . , jk, . . . , id)-th element is

(
Mk ×k a

)
(i1, . . . , jk, . . . , id) =

nk∑
ik=1

Mk(jk, ik)a(i1, . . . , ik, . . . , id).



8 1.2. TENSOR BASIC OPERATIONS

Given d matrices Mk ∈ Rmk×nk , then (M1, . . . ,Md)a denotes the product of the tuple of
matrices (M1, . . . ,Md) and the tensor a, whose general element writes(

(M1, . . . ,Md)a
)
(j1, . . . , jd) =

(
M1 ×1 . . .Md ×d a

)
(j1, . . . , jd))

=
n1,...,nd∑
i1,...,id=1

M1(j1, i1) . . .Md(jd, id)a(i1, . . . , ik, . . . , id)

for jk ∈ {1, . . . , nk} and k ∈ {1, . . . , d}. Remark that this operation is order-independent.
The matricization of a tensor expressed as a matrix-tensor product satisfies the following
lemma, which will be widely used in Chapter 4.

Lemma 1.2.4. [83, Proposition 3.7] Let a ∈ Rn1×···×nd be a tensor and let Mk ∈ Rmk×nk

be a matrix for every k ∈ {1, . . . , d}, then the matricization of b = (M1, . . . ,Md)a with
respect to mode ` is

B(`) = M`A
(`)(Md ⊗K · · · ⊗K M`+1 ⊗K M`−1 ⊗K · · · ⊗K M1)>

for every ` ∈ {1, . . . , d}.

In the tensor context, the tensor contraction generalizes the matrix-vector product.
Let A ∈ R(n1×m1)×···×(nd×md) and b ∈ Rm1×···×md be a tensor operator and a tensor, the
tensor contraction of A and b is (A • b) ∈ Rn1×···×nd defined as

(A • b)(i1, . . . id) =
m1,...,md∑
j1,...,jd=1

A(i1, j1, . . . , id, jd)b(j1, . . . , jd).

The tensor contraction is defined for any tensor since any tensor can be regarded as a
tensor operator. Therefore given two tensors a ∈ Rn1×···×p×···×nd1 and b ∈ Rm1×···×p×···×md2

with just the h-th and k-th mode having the same size, then (a •h k b) is their tensor
contraction with respect to mode h and k respectively. If tensor c ∈ Rn1×···×nd1×m1×···×md2

is the order-(d1 + d2 − 2) tensor from the contraction (a •h k b), then its
(i1, . . . , ih−1, ih+1, . . . , id1 , j1 . . . , jh−1, jh+1, . . . , jd2)-th element is c such that

c = (a •h k b)(i1, . . . , ih−1, ih+1, . . . , id1 , j1 . . . , jk−1, jk+1, . . . , jd2)

=
p∑
`=1

a(i1, . . . , `, . . . , id1)b(j1, . . . , `, . . . , jd2).
(1.2)

The contraction between tensors can be extended to more modes, replacing in Equa-
tion (1.2) the single index h and k by sets of indices. To shorten the notation, we omit
the bullet symbol and the mode indices, when the modes to contract are clear from the
context, for example given a ∈ Rn1×p×m1 and b ∈ Rp×n2×m2 , then the contraction a • b
is among the second mode of a with the first one of b, since they are the only modes
having the same dimension. The tensor contraction enables us to compute mulitilinear
endomorphism powers, exactly as in the matrix framework the matrix-vector product is



CHAPTER 1. NOTATION AND PRELIMINARY RESULTS 9

used to compute the matrix powers representing the composition of the associated linear
endomorphism. Let A : Rn1×···×nd → Rn1×···×nd be a multilinear endomorphism and let
the tensor A ∈ R(n1×n1)×···×(nd×nd) be its representation with respect to the canonical basis
of Rn1×···×nd . Then B ∈ R(n1×n1)×···×(nd×nd) is the tensor representing with respect to the
canonical basis A2, the composition of A with itself, whose element B(i1, j1, . . . , id, jd)
writes

B(i1, j1, . . . , id, jd) =
(
A •HL HR

A
)
(i1, j1, . . . , id, jd)

=
n1,...,nd∑
k1,...,kd=1

A(i1, k1, . . . , id, kd)A(k1, j1, . . . , kd, jd)

with HL = {2, 4, . . . , 2d} and HR = {1, 3, . . . , 2d − 1}. From this, we recursively obtain
the tensor associated with Ah for h ∈ N. Remark that the contraction enables us to
express also the matrix-tensor product since matrices are in fact order-2 tensors. Given
Mk ∈ Rm×nk and a ∈ Rn1×···×nk×···×nd , then (Mk ×k a) the matrix-tensor product along
mode k is expressed as a contraction of Mk and a as

(Mk ×k a) = Mk •2 k a

by its definition.
As already stated in Section 1.1, the tensor space Rn1×···×nd is a linear space and it

is usually endowed by an inner product, which extends the inner product defined for the
simple linear space Rn. Let a,b ∈ Rn1×···×nd be two order-d tensors, then 〈a, b〉 ∈ R is
their inner product defined as

〈a, b〉 =
n1,...,nd∑
i1,...,id=1

a(i1, . . . , id)b(i1, . . . , id).

Remark that by construction the inner product is also expressed as the tensor contraction
over all modes, that is as 〈a, b〉 = a •b. As in the classical linear algebra framework, the
tensor inner product on Rn1×···×nd induces a norm on the same space defined as

‖a‖ =
√
〈a, a〉

for every a ∈ Rn1×···×nd . By construction, this norm extends the idea of the vector L2-
norm and of the Frobenius matrix to tensors.

Since tensors represent also multilinear operators, it is worthwhile defining the 2-
norm induced by the vector L2-norm. Let A ∈ R(n1×m1)×···×(nd×md) be an order-2d tensor
representing a multilinear operator A from Rm1×···×md to Rn1×···×nd with respect to the
canonical basis, then ‖A‖2 is the 2-norm of A defined as

‖A‖2 = max
{
‖Ax‖
‖x‖

: x ∈ Rm1×···×md \ {0}
}
.



10 1.3. TENSOR DECOMPOSITION

1.3 Tensor decomposition
As pointed out in Section 1.1, after fixing a basis of Rn1 ⊗ · · · ⊗ Rnd , we can identify

an element of the tensor linear space with the multidimensional array representing it. Let
{e(1)

i1 ⊗ · · · ⊗ e
(d)
id
} be the canonical basis of Rn1 ⊗ · · · ⊗ Rnd , with an abuse of notation

every tensor a ∈ Rn1 ⊗ · · · ⊗ Rnd is expressed as

a =
n1,...,nd∑
i1,...,id=1

a(i1, . . . , id)e(1)
i1 ⊗ · · · ⊗ e

(d)
id

(1.3)

where a ∈ Rn1×···×nd is the multidimensional array storing its entries. The expression of
tensors given in Equation (1.3) is usually referred to as dense or canonical format. This
representation is affected by the so-called ‘curse of dimensionality’. Indeed if storing one
entry of an array costs one unit of memory, then storing a requests O(nd) units of memory
with n = max{n1, . . . , nd}, which scales exponentially with the order of the tensor. To
face this significant practical limit, throughout the years, different compression techniques
have been proposed. Each method can be regarded firstly as an exact way of decomposing
a tensor and secondly as a procedure to obtain an approximation of it, which satisfies a
certain criterion.

In the following sections, we describe two main decomposition and approximation
techniques, the Tucker and the Tensor-Train one. For both methods, we present the
theoretical and computational aspects. It is convenient to denote by O(n × m) the set
of matrices of size (n,m) with orthogonal columns, briefly referred by orthogonal matrix
set.

1.3.1 Tucker decomposition
As clearly reconstructed in [84], the history of the Tucker decomposition dates back

to 1963 when Tucker proposed it in [135], even if it was already in Hitchcock paper of
1927 [72]. It was further improved and more detailed described in [97, 136, 137]. It
has been renamed many times over the years, as Three-mode factor analysis, Three-mode
factor PCA, n-mode PCA, n-mode SVD, see [36, 80, 90, 137, 141].

Definition 1.3.1. Let a ∈ Rn1×···×nd be a d order tensor, its Tucker decomposition writes

a =
r1∑
i1=1

. . .
rd∑
id=1

c(i1, . . . , id)u(1)
i1 ⊗ · · · ⊗ u

(d)
id

where the multidimensional array c is the core tensor, {u(`)
i1 , . . . , u

(`)
r`
} is an orthonormal

basis of a Rn` subspace of size r`, which is equal the rank of A(`), the matricization along
mode ` of a for every ` ∈ {1, . . . , d}. We refer to the tuple (r1, . . . , rd) as the multilinear
rank of a, as stated in [36]. Compactly, the orthogonal Tucker decomposition is expressed
as

a = (U1, . . . , Ud)c



CHAPTER 1. NOTATION AND PRELIMINARY RESULTS 11

where the orthogonal matrix U` ∈ O(n` × r`) has u(`)
i`

as `-th column. The matrix U` is
called `-th factor matrix for every ` ∈ {1, . . . , d}.

The idea of the Tucker decomposition is expressing a tensor a of multilinear rank
(r1, . . . , rd) in an orthonormal basis {u(1)

i1 ⊗ · · · ⊗ u
(d)
id
} for ik ∈ {1, . . . , rk} and k ∈

{1, . . . , d}. Consequently, if we denote by Uk the subspace of dimension rk of Rnk spanned
by {u(k)

1 , . . . , u(k)
rk
}, then tensor a belongs to U1 ⊗ · · · ⊗ Ud.

Starting from this Tucker decomposition, we formulate an approximation problem as
follows. Given a tensor a ∈ Rn1×···×nd , its best Tucker approximation with prescribed
multilinear rank (r1, . . . , rd) is the tensor a∗ such that ‖a − a∗‖ is minimal, i.e.,

a∗ = argmin
rank(B(k))≤rk

k=1,...,d

‖a − b‖

where B(k) is the k-th mode matricization of b ∈ Rn1×···×nd . If tensor b has multilinear
rank (r1, . . . , rd), then it is an element of the tensor space U1 ⊗ · · · ⊗ Ud where Uk is a
subspace of Rnk of size rk for every k ∈ {1, . . . , d}. Thus, given a tensor of order d,
the problem of finding the best approximation at a prescribed multilinear rank becomes a
problem of searching d subspaces of prescribed dimensions, which minimize the projection
error. Therefore the best Tucker approximation problem is a natural extension of the
approximation problem characterising the Principal Component Analysis (PCA), because
the unknowns are the spaces Uk for every k ∈ {1, . . . , d} under constraints of dimensions.

1.3.1.1 Computational aspects

While PCA approximation problem has an optimal solution, guaranteed by the Eckart–Young
theorem [41] and provided by the Singular Value Decomposition(SVD), the Tucker ap-
proximation problem has not a known closed formula for the solution. In this section,
we describe the most popular algorithms for computing the Tucker decomposition and
approximation

Nowadays the most common algorithm for computing the Tucker decomposition is the
High Order Singular Value Decomposition (HOSVD), proposed in [36] and displayed in
Algorithm 1. Given an input tensor a, of which the Tucker decomposition is requested,
iteratively HOSVD matricizes it along mode i and computes its left singular vectors
arranged in matrix Ui ∈ O(ni × ri) where ri = rank(A(i)), for i ∈ {1, . . . , d}, as in
Algorithm 1 line 3. Thanks to the orthonormality of Ui, that is U>i Ui = Iri , from the
definition of Tucker decomposition, it follows that the core tensor is actually given by
c = (U>1 , . . . , U>d )a, as computed in Algorithm 1 line 5. The factor matrices are the left
singular matrices Uk for every k ∈ {1, . . . , d}.

To address the Tucker approximation problem, the authors of [36] proposed the Trun-
cated HOSVD (T-HOSVD) method, given in Algorithm 2, a slightly different version of
HOSVD. T-HOSVD takes the multilinear rank (r1, . . . , rd) as input parameter together
with the tensor a to approximate. In the truncated version of HOSVD, the full SVD is
replaced by a Truncated SVD (T-SVD). Namely, at line 3 of Algorithm 2, we compute



12 1.3. TENSOR DECOMPOSITION

Algorithm 1 (U1, . . . , Ud), c = HOSVD(a)
1: input: a ∈ Rn1×···×nd

2: for i = 1, . . . , d do
3: Ui,Σi, Vi = SVD

(
A(i)

)
. SVD of each matricization

4: end for
5: c = (U>1 , . . . , U>d )a . compute the core tensor
6: return: (U1, . . . , Ud), c

just the first ri left singular vectors of A(i), instead of the full decomposition returned in
line 3 of Algorithm 1. All the remaining steps of Algorithm 1 and 2 are exactly equal.
The approximation provided by T-HOSVD is not the optimal one. In fact, if we denote
by â the approximation provided by T-HOSVD of a at multilinear rank (r1, . . . , rd), then
the approximation error is bounded by

‖a − â‖2 ≤
d∑
i=1

∥∥∥Σ̃i

∥∥∥2
where Σ̃i(j, j) =

0 j ≤ ri

Σi(j, j) j > ri

where Σi is the diagonal singular values matrix of A(i) for every i ∈ {1, . . . , d}.

Algorithm 2 (Û1, . . . , Ûd), ĉ = T-HOSVD(a, r)
1: input: a ∈ Rn1×···×nd , r ∈ Nd

2: for i = 1, . . . , d do
3: Ûi, Σ̂i, V̂i = T-SVD

(
A(i), r(i)

)
. truncated SVD of each matricization

4: end for
5: ĉ = (Û>1 , . . . , Û>d )a . compute the core tensor
6: return: (Û1, . . . , Ûd), ĉ

We want to mention, without entering in details, the Sequentially Truncated HOSVD
(ST-HOSVD), proposed in [140] to compute the Tucker approximation given a multilinear
rank. Differently from T-HOSVD, ST-HOSVD initializes the tensor core by the input one.
Then it iteratively updates the tensor core ĉ multiplying it by the transposed truncated
left singular vector matrix Û>i along mode i, that is, ĉ is updated by Û>i ×i ĉ. This choice
reduces iteratively the size of the matrix decomposed by the truncated SVD, decreasing
the computational costs. However not always the approximation error of ST-HOSVD is
lower than the T-HOSVD. Moreover, the ST-HOSVD approximation error depends on
the matricization order, while the T-HOSVD one is independent. We refer the reader
to [140] for a complete ST-HOSVD analysis and comparison with other approximation
techniques.

The last method for computing the Tucker approximation is called High Order Or-
thogonal Iterations (HOOI), proposed in [37]. The HOOI is an Alternating Least Squares
(ALS) bases algorithm, which outcompeted the other ALS algorithms proposed in [90]



CHAPTER 1. NOTATION AND PRELIMINARY RESULTS 13

Algorithm 3 (Û1, . . . , Ûd), ĉ = HOOI(a, r, δ)
1: input: a ∈ Rn1×···×nd , r ∈ Nd, δ ∈ R+
2: (Û1, . . . , Ûd), c = HOSVD(a) . initialize the core tensor and the factors by the HOSVD
3: while error > δ do
4: for i = 1, . . . , d do
. compute the core tensor without the i-th factor

5: c = (Û>1 , . . . , Û>i−1, Ini , Û>i+1, . . . , Û
>
d )a

. compute the truncated SVD of the core tensor without i-th factor
6: Ûi, Σ̂i, V̂i = T-SVD

(
C(i), r(i)

)
7: error = ‖a − â‖

‖a‖ where â = (Û1, . . . , Ûd)c . check the relative error

8: end for
9: end while

10: ĉ = (Û>1 , . . . , Û>d )a
11: return: (Û1, . . . , Ûd), ĉ

and in [80]. The ALS part aims to minimize the projection error along each tensor mode.
Indeed, as previously highlighted, finding the best Tucker approximation of a at multilin-
ear rank (r1, . . . , rd) can be reformulated as finding the subspaces Uk of Rnk of dimension
rk whose tensor product minimizes the projection error, that is

∥∥∥a − (Û1, . . . , Ûd)ĉ
∥∥∥ where

Ûk ∈ O(nk × rk) columns form an orthogonal basis of Uk. Elaborating the square of the
projection error, we get that

∥∥∥a − (Û1, . . . , Ûd)ĉ
∥∥∥2

=‖a‖2 −
∥∥∥(Û>1 , . . . , Û>d )a

∥∥∥2
,

we refer the reader to [37, 84] for a complete sequence of computations. Since the norm of
a is fixed, to reduce the projection error we have to maximize the term

∥∥∥(Û>1 , . . . , Û>d )a
∥∥∥.

In particular, for each mode i the HOOI algorithm solves the maximization problem

Ûi = argmax
Vi∈O(ni×ri)

∥∥∥(Û>1 , . . . , Û>i−1, V
>
i , Û

>
i+1, . . . , Û

>
d )a

∥∥∥ .
Thanks to Corollary 1.2.4, this last equation cab also be written as

Ûi = argmax
Vi∈O(ni×ri)

∥∥∥V >i A(i)(Ûd ⊗K · · · ⊗K Ûi+1 ⊗K Ûi−1 ⊗K · · · ⊗K Û1)
∥∥∥ . (1.4)

and it is solved by the first ri left singular vectors from the SVD of A(i) for every
i ∈ {1, . . . , d}. The local maximization problem stated in Equation (1.4) is repeatedly
updated and solved for every mode i, until the projection error

∥∥∥a − (Û1, . . . , Ûd)ĉ
∥∥∥ gets

smaller than the given tolerance threshold δ ∈ R+. For simplicity in Algorithm 3, we
sketch the HOOI version proposed in [84].



14 1.3. TENSOR DECOMPOSITION

1.3.1.2 Memory requirement

At the beginning of Section 1.3, we pointed out that storing an order-d tensor in
dense format requests O(nd) of memory units where n is the maximal mode dimension.
If the same tensor is expressed in the Tucker format by a tuple of d matrices and by
a core tensor of order d, then the storing cost is O(dnr + rd) units of memory where r
is the maximal multilinear rank component. Indeed storing the entire core tensor needs
O(rd) units of memory, while storing one of the d factor matrix costs O(nr) units of
memory. Remark that the Tucker approximation does not really overcome the curse of
dimensionality, since the storing costs of the core tensor still grow exponentially with the
order of the tensor. Therefore other compression techniques have been presented as the
Hierarchical Tucker [54] or the more promising Tensor-Train [111], presented in details in
the following section.

1.3.2 Tensor Train decomposition
The Tensor-Train (TT) decomposition is a representation that overcomes the curse

of dimensionality, since the memory requirement to store a tensor in TT-format grows
linearly with the order d. It was introduced in [110], almost at the same time of the
Hierarchical Tucker decomposition [54], as a mathematical formulation of the matrix
product states [2, 48] concept used in quantum physics. The TT-decomposition was
described in detail in [111]. The key idea of Tensor Train is expressing a tensor of order d
as the contraction of d tensors of order 3, which leads to a significant saving in memory,
as illustrated after.

Definition 1.3.2. Let a ∈ Rn1×···×nd be an order-d tensor, its Tensor-Train decomposition
writes

a = a1a2 · · · ad,
where ak ∈ Rrk−1×nk×rk is called k-th TT-core for k ∈ {1, . . . , d}, with r0 = rd = 1. The
value rk is the k-th TT-rank.

Notice that a1 ∈ Rr0×n1×r1 and ad ∈ Rrd−1×nd×rd reduce essentially to matrices, but for
the notation consistency we represent them as tensor. Henceforth the k-th TT-core of a
tensor is denoted by the same bold letter underlined with a subscript k. If a is expressed
in TT-format, then its (i1, . . . , id)-th element writes

a(i1, . . . , id) =
r0,...,rd∑
j0,...,jd=1

a1(j0, i1, j1)a2(j1, i2, j2) . . . ad−1(jd−2, id−1, jd−1)ad(jd−1, id, jd).

Remark that the index j0 and jd play no role since they are always equal to 1; they are
added for completeness. Given an index ik ∈ {1, . . . , nk}, we denote the ik-th matrix slice
of ak with respect to mode 2 by Ak(ik), i.e., Ak(ik) = a[ik,2]

k . Then each element of tensor
a expressed in TT-format is given by the product of d matrices, i.e.,

a(i1, . . . , id) = A1(i1) · · ·Ad(id)



CHAPTER 1. NOTATION AND PRELIMINARY RESULTS 15

withAk(ik) ∈ Rrk−1×rk for every ik ∈ {1, . . . , nk} and k ∈ {2, . . . , d−1}, whileA1(i1) ∈ R1×r1

and Ad(id) ∈ Rrd−1×1. Remark that A1(i1) and Ad(id) are vectors, but as before to have
a homogeneous notation they can be written as matrices with a single row or column.

The arithmetic operations among tensors in TT-format are performed in a particu-
lar way, benefiting from the chosen formalism. Indeed, given two tensors in TT-format
a,b ∈ Rn1×···×nd , let ak ∈ Rrk−1×nk×rk and bk ∈ Rsk−1×nk×sk be their k-th TT-core respec-
tively, the k-th TT-core of c = (a + b) is ck ∈ R(rk−1+sk−1)×nk×(rk+sk) defined block-wise
as

Ck(ik) =
[
Ak(ik) 0

0 Bk(ik)

]
(1.5)

where 0 denotes the matrix filled with zeros of the appropriate size, for every ik ∈ {1, . . . , nk}
and k ∈ {2, . . . , d − 1}. The first and last TT-core of c = (a + b) are c1 ∈ R1×n1×(r1+s1)

and cd ∈ R(rd−1+sd−1)×nd×1, that can be written as

C1(i1) =
[
A1(i1) B1(i1)

]
and Cd(id) =

[
Ad(id)
Bd(id)

]
with i1 ∈ {1, . . . , n1} and id ∈ {1, . . . , nd}. Finally, we verify that by construction the
(i1, . . . , id)-th element of c is equal to the sum of the corresponding element of (a and b),
that is

c(i1, . . . , id) =
[
A1(i1) B1(i1)

] [A2(i2) 0

0 B2(i2)

]
· · · · · ·

[
Ad(id)
Bd(id)

]
= A1(i1) · · ·Ad(id) +B1(i1) · · ·Bd(id)
= a(i1, . . . , id) + b(i1, . . . , id)
=
(
a + b

)
(i1, . . . , id).

Similarly let λ ∈ R be a scalar and a ∈ Rn1×···×nd be a tensor in TT-format, then the
tensor (λa) has the k-th TT-core equal to the corresponding one of a for k ∈ {2, . . . , d},
while the 1-st TT-core is equal to the first TT-core of a multiplied by λ. Thus, the
(i1, . . . , id)-th element of (λa) gets(

λa
)
(i1, . . . , id) =

(
λA1(i1)

)
A2(i2) · · ·Ad(id)

= λ
(
A1(i1) · · ·Ad(id)

)
= λa(i1, . . . , id).

We report now the formulas provided in [108] for other operations, that not necessary
correspond to the optimal algorithmic implementation. Also, the computation of the
inner product benefits from the TT-formalism. Given a,b ∈ Rn1×···×nd two tensors of
order d in TT-format, their inner product writes

〈a, b〉 =
n1,...,nd∑
i1,...,id=1

a(i1, . . . , id)b(i1, . . . , id)

=
n1,...,nd∑
i1,...,id=1

(
A1(i1) · · ·Ad(id)

)(
B1(i1) · · ·Bd(id)

)
.



16 1.3. TENSOR DECOMPOSITION

If the product of the TT-cores of a and b of this last equation is regarded as a degenerated
case of Kronecker product among matrices of size (1, 1), that are scalars, then we get

〈a, b〉 =
n1,...,nd∑
i1,...,id=1

(
A1(i1) · · ·Ad(id)

)(
B1(i1) · · ·Bd(id)

)

=
n1,...,nd∑
i1,...,id=1

(
A1(i1) · · ·Ad(id)

)
⊗K

(
B1(i1) · · ·Bd(id)

)
.

Applying the mixed-product property of the Kronecker product, stated in Equation (1.1)
in the last equation, it becomes

〈a, b〉 =
n1,...,nd∑
i1,...,id=1

(
A1(i1) · · ·Ad(id)

)
⊗K

(
B1(i1) · · ·Bd(id)

)

=
n1,...,nd∑
i1,...,id=1

(
A1(i1)⊗K B1(i1)

)
· · ·

(
Ad(id)⊗K Bd(id)

).

To compute the scalar product of two tensors in TT-format we compute the Kronecker
product of their TT-cores, multiply them and sum over all the indexes of each mode.

The TT-formalism enables us to express compactly also tensor operators between
tensor spaces.

Definition 1.3.3. Let A ∈ R(n1×m1)×···×(nd×md) be a tensor operator, its Tensor-Train
decomposition writes

A = A1 · · ·Ad,

where Ak ∈ Rrk−1×nk×mk×rk , is its k-th TT-core, with r0 = rd = 1. Henceforth we call TT-
matrix a tensor in TT-format representing a tensor operator; while we refer by TT-vector
to a tensor regarded as an element of a linear tensor space.

The (i1, j1, . . . , id, jd)-th element of A a TT-matrix writes

A(i1, j1, . . . , id, jd) =
r0,...,rd∑

h0,...,hd=1
A1(h0, i1, j1, h1) · · ·Ad(hd−1, id, jd, hd).

Let Ak(ik, jk) ∈ Rrk−1×rk be the (ik, jk)-th slice with respect to mode (2, 3) of Ak for
every ik,∈ {1, . . . , nk}, jk ∈ {1, . . . ,mk} and k ∈ {1, . . . , d}. Then the last equation is
equivalently expressed as

A(i1, j1, . . . , id, jd) = A1(i1, j1) · · · Ad(id, jd).

As remarked in Section 1.2, the inner product is the contraction over all the indexes
of every mode of two tensors. Thus, as the inner product can be computed smartly if the
tensors are expressed in TT-format, also the contraction among a TT-matrix and a TT-
vector, that is the action of a multilinear operator over a tensor in the domain, benefits



CHAPTER 1. NOTATION AND PRELIMINARY RESULTS 17

from the TT-format. Let A ∈ R(n1×m1)×···×(nd×md) be a TT-matrix and b ∈ Rm1×···×md be
a TT-vector, the (i1, . . . , id)-th element of their contraction writes

(
Ab

)
(i1, . . . , id) =

m1,...,md∑
j1,...,jd=1

A(i1, j1, . . . , id, jd)b(j1, . . . , jd)

=
m1,··· ,md∑
j1,...,jd=1

(
A1(i1, j1) · · ·Ad(id, jd)

)(
B1(j1) · · ·Bd(jd)

)
.

As in the case of the inner product, if this last product is regarded as a degenerate
Kronecker product, then the mixed-product property stated in (1.1) applies and leads to

(
Ab

)
(i1, . . . , id) =

m1,...,md∑
j1,...,jd=1

(
A1(i1, j1) · · ·Ad(id, jd)

)(
B1(j1) · · ·Bd(jd)

)

=
m1,...,md∑
j1,...,jd=1

(
A1(i1, j1) · · ·Ad(id, jd)

)
⊗K

(
B1(j1) · · ·Bd(jd)

)

=
m1,...,md∑
j1,...,jd=1

(
A1(i1, j1)⊗K B1(j1)

)
· · ·

(
Ad(id, jd)⊗K Bd(jd)

)

=
( m1∑
j1=1

A1(i1, j1)⊗K B1(j1)
)
· · ·

( md∑
jd=1

Ad(id, jd)⊗K Bd(jd)
)
.

Said differently, the k-th TT-core of c = (Ab) ∈ Rn1×···×nd is ck ∈ R(rk−1sk−1)×nk×(rksk)

such that for every ik ∈ {1, . . . , nk}

Ck(ik) =
mk∑
jk=1

Ak(ik, jk)⊗K Bk(jk) (1.6)

for every k ∈ {1, . . . , d}.

1.3.2.1 Memory requirement

The purpose of the TT-format declared by their authors in [110, 111] is getting rid of
the curse of dimensionality, which affects other decomposition, for example, the Tucker
one as underlined in Section 1.3.1.2. Given a tensor a ∈ Rn1×···×nd , the storage cost
in TT-format is O(dnr2), since we need to store d TT-cores requesting O(r2n) units of
memory, under the assumptions that n and r as the maximum of the mode size and of the
TT-ranks respectively. Similarly storing a tensor operator requests O(dmnr2) memory
units, where n and m are the maxima of the mode size of the domain and the image
tensor space, while r is the maximum of the TT-ranks. In this case the memory footprint
growths linearly with the tensor order, but to keep this formalism advantageous the value
r has to stay bounded and small. Since the TT-rank determines the benefit in storing a
tensor in TT-format, usually knowing the maximal TT-rank is sufficient to get an idea of
the benefit. However, to be more accurate, we introduce the compression ratio measure.



18 1.3. TENSOR DECOMPOSITION

Let a ∈ Rn1×···×nd be a tensor in TT-format, then the compression ratio is the ratio among
the storage cost of a in TT-format over the dense format storage cost, i.e.,∑d

i=1 ri−1niri∏d
j=1 nj

(1.7)

where ri is the i-th TT-rank of a.
A first drawback of the TT-format appears with the addition of two TT-tensors.

Indeed given two TT-tensors a and b with k-th TT-rank rk and sk respectively, then the
k-th TT-rank of (a + b) is equal to rk + sk, as shown in Equation (1.5). Consequently,
when two tensors in TT-format are summed, the TT-ranks of their sum grow as the sum
of the TT-ranks. In particular if (2a) is computed as (a + a), then its TT-ranks are
the double of the TT-ranks of the tensor obtained multiplying a by 2. Similarly when a
TT-matrix A is contracted with a TT-vector b, then their TT-ranks are multiplied. If
rk and sk are the k-th TT-rank of A and b, then the k-th TT-rank of (Ab) is (rksk), as
highlighted in Equation (1.6). In the following section dedicated to computation aspects,
we discuss a solution to address this issue.

1.3.2.2 Tensor-Train compression

The TT-rank growth is a crucial point in the implementation of algorithms using TT-
tensors. It may lead to memory deficiencies and prevent the calculation to complete. To
address this issue, a rounding algorithm to reduce the TT-rank was introduced in [111],
together with the algorithm that converts a dense format tensor into TT-format. We
present firstly this latter one, sketched in Algorithm 4. To convert a dense tensor a in
TT-format we prescribe a representation accuracy threshold δ ∈ R+ which bounds the
relative error, i.e.,

‖a − ã‖
‖a‖

≤ δ

where ã is the representation of a in TT-format. To ensure the relative error accuracy,
we define δ′ scaling δ by the norm of the input tensor and the problem order, as

δ′ = δ
||a||√
d− 1

As first step, the input tensor a is matricized along the first mode, then A(1) of size
(n1, n2 · · ·nd) is decomposed with the truncated SVD at accuracy δ′. The left orthogonal
matrix Û1 is reshaped into the first TT-core to have size (1, n1, r1) where r1 is the number
of columns of Û1, see line 7 of Algorithm 4. We define matrix C2 ∈ Rr1×(n2···nd) as the
product of a diagonal matrix with the selected singular values times the associated right
orthogonal matrix. Finally C2 is reshaped to have size (r1n2, n3 · · ·nd). Then iteratively
matrix Ci is decomposed with the truncated SVD, its left orthogonal matrix Ûi is reshaped
to become the i-th TT-core; the product of the singular value diagonal matrix Σ̂i and
the right orthogonal matrix V̂ >i defines the new matrix Ci+1, which is reshaped to have
(rini+1) rows and (ni+2 · · ·nd) columns.



CHAPTER 1. NOTATION AND PRELIMINARY RESULTS 19

Algorithm 4 a1, . . . , ad = TT(a, δ)
1: input: a ∈ Rn1×···×nd in dense format, δ ∈ R+
2: δ′ = δ√

d−1‖a‖ . scale the accuracy δ
3: r0 = 1 and p = (n2 · · ·nd)
4: C1 = matricize

(
a, mode = 1

)
. initialize the first TT-core

5: for i = 1, . . . , d− 1 do
6: Ûi, Σ̂i, V̂i = T-SVD(Ci, δ′) . compute the truncated SVD
. define the i-th TT-core

7: ai = reshape(Ûi, [ri−1, ni, ri]) where ri is the number of columns of Ûi
8: C = Σ̂iV̂

>
i

9: p = p/ni+1
. move the singular values and the right orthogonal basis on the right, to compute the next
TT-core

10: Ci+1 = reshape
(
C, [rini+1, p]

)
11: end for
12: ad = C . define the last TT-core
13: return: a1, . . . ,ad

As mentioned in Section 1.3.2.1, many basic operations among tensors in TT-format
induce growth in the TT-ranks, reducing the storing benefit of this formalism. To address
this flaw, the TT-rounding algorithm in [111] it was introduced a , which takes in input
a tensor a in TT-format and an accuracy threshold δ ∈ R+ and returns â a tensor in
TT-format such that

‖a − â‖
‖a‖

≤ δ.

As in Algorithm 4, the first step is scaling the rounding accuracy by the square root of
the order minus one and multiplying it by the norm of the input tensor. Then, from the
last to the second, each TT-core is matricized along mode 1, transposed and factorized
through the QR algorithm, see Algorithm 5, line 4. The row orthogonal factor Q>i is
reshaped to define the i-th TT-core ai, while the R factor is used to update the (i− 1)-th
TT-core ai−1, see line 7 of Algorithm 5. Indeed, from the QR-factorization theory, the
columns of Qi span the same space, that is, carry the same information, as the columns
of ai matricized along mode 1 and transposed. Once completed this loop, usually referred
to as the right-to-left orthogonalization loop, we proceed with the compression of the
TT-cores. From the first to the second-last, each TT-core is matricized along mode 3,
transposed to have (ri−1ni) rows and decomposed with the truncated SVD given accuracy
δ′, as depicted in line 11 and 12 of Algorithm 5. Finally the left orthogonal matrix Ûi
from the truncated SVD is reshaped to define the new truncated i-th TT-core, while the
singular value diagonal matrix times the right orthogonal one (Σ̂iV̂

>
i ) are used to update

the successive (i+ 1)-th TT-core, see lines 13 and 14 of Algorithm 5. As stated in [111],
given an input tensor a ∈ Rn1×···×nd , the computational cost, in terms of floating point
operations, of the TT-rounding method, described in Algorithm 5 is O(dnr3), where n



20 1.4. CONCLUDING REMARKS

and r are the maximal mode size and TT-rank respectively. Indeed, the cost of each of the
d QR-factorization and each truncated SVD is estimated as O(nr3) float point operations,
since both are performed over a matrix of size (nr, r) (or its transposed).

To estimate the benefit of applying the TT-rounding over an input TT-vector, we
introduce the compression gain measure. Let a ∈ Rn1×···×nd be a TT-vector with i-th
TT-rank equal to ri, if â is its approximation obtained from the TT-rounding at accuracy
δ ∈ R+ with si the i-th TT-rank, then the compression gain of the TT-rounding is equal
to the ratio of the compression ratio, i.e.,

q =
∑d
i=1 ri−1niri∑d
j=1 sj−1njsj

. (1.8)

To better understand the meaning of the compression gain, we consider the following
example. Let a ∈ Rn1×···×nd be a TT-vector and â its approximation at accuracy δ from
the TT-rounding, then if the compression gain is equal to q ∈ Q, it means that after the
compression, storing â needs 1/q of the memory we would need to store a.

1.4 Concluding remarks
The purpose of this chapter was to give an overview presenting tensors, their main

operations, and the decomposition techniques, on which the following chapters will rely.
Tensors carry multiple meanings, which together with the sometimes tangled notation,
may easily confuse the reader.

In particular Section 1.1 of this chapter aims to clarify three different natures of
tensors, i.e., tensors as multidimensional arrays, as an abstract element of tensor product
of linear spaces, as multilinear operator among linear spaces. We emphasized that also
in the classical linear algebra framework matrices are regarded from these three different
viewpoints, depending on the purpose.

Section 1.2 presents tensor slices and fibres, introducing a specific notation, which
we will simplify in other chapters of this manuscript. The tensor matricization with its
performing order, and its connection with the Kronecker product are described as well.
In this same section, tensor operations, from the most common, such as the tensor sum or
the product of tensor and scalars, to more peculiar ones, such as the tensor product or the
tensor contraction, are presented in detail. We underline as much as possible that many
tensor operations, such as the matrix-times-tensor one or the inner product, are actually
contractions, to which we assign a name because of their importance in the tensor theory.

The second part illustrates two tensor decomposition techniques, used in the chapters
that follow. We describe firstly the Tucker model and the Tucker approximation problem,
relating it with the classical matrix best rank r approximation problem. In Section 1.3.1,
we address the computational key aspects related to the Tucker approximation problem.
The best-known algorithms, i.e., HOSVD, T-HOSVD, and HOOI are entirely illustrated
and analysed. Moreover, we present the benefit of approximating a tensor by the Tucker



CHAPTER 1. NOTATION AND PRELIMINARY RESULTS 21

Algorithm 5 â1, . . . , âd = TT-rounding
(
(a1, . . . , ad), δ

)
1: input: ai ∈ Rri−1×ni×ri for every i ∈ {1, . . . , d}, δ ∈ R+
2: δ′ = δ√

d−1‖a‖ . scale the rounding accuracy δ
3: for i = d, . . . , 2 do
4: Ai = matricize(ai, mode = 1) . matricize each core
. compute the QR-factorization of the transposed matricization

5: Qi, R = QR(A>i )
. set the i-th core equal to its orthogonal factor Q

6: ai = reshape(Q>i , [ri−1, ni, ri])
. move the upper triangular factor R to the previous core

7: ai−1 = ai−1 ×3 R
>

8: end for
9: s0 = 1

10: for i = 1, . . . , d− 1 do
11: Ai = matricize(ai, mode = 3) . matricize the i-th core

. compute the truncated SVD of the transposed matricization
12: Ûi, Σ̂i, V̂i = T-SVD(A>i , δ′)

. define the approximated i-th TT-core
13: âi = reshape(Ûi, [si−1, ni, si]) with si equal to the number of columns of Ûi

. move the singular values and the right orthogonal basis to the next TT-core
14: ai+1 = ai+1 ×1 (Σ̂iV̂

>
i )

15: end for
16: âd = ad . define the last TT-core
17: return: â1, . . . , âd



22 1.4. CONCLUDING REMARKS

model from the memory storage requirement viewpoint. The following Section 1.3.2 fo-
cuses on the Tensor-Train model. After stating its definition, we describe how to benefit
from the TT-formalism, when performing some basic tensor operations. It is highlighted
that this formalism is suitable also for representing tensors as multilinear operators, be-
coming consequently one of the most popular tensor decomposition techniques in the
numerical linear algebra community. As for the Tucker case, the computational aspects,
i.e., the fundamental algorithms for representing in TT-format and approximating in TT-
format a tensor, are analysed. Moreover, the memory benefits and flaws in storing a
tensor in TT-format are presented to complete the Tensor Train section.



Part I

Numerical linear algebra

23





I.I Introduction
As stated in 1947 in [106], numerical linear algebra studies, among other topics, the

errors that appear when linear algebra operations are computationally performed. Gener-
ally speaking, numbers are represented with round-off errors inside computers. To those
representation errors, computational ones are added when arithmetic operations are per-
formed. Potentially the computational result of a sequence of linear algebra operations,
for example, the computed solution of a linear system, could be extremely far from the
theoretically expected one. Therefore, mathematicians and computer scientists studied
and still do how rounding errors propagate when a numerical linear algebra algorithm
is used, developing the so-called numerical stability analysis. A very common approach
to studying the error propagation in numerical linear algebra is the backward stability
analysis, popularized by Wilkinson during the 1960s in [143, 144]. We say that the com-
putational solution of a problem is backward stable if it is the exact solution of the same
problem with a perturbation. The algorithm producing this computed result is conse-
quently said backward stable. In floating point arithmetic, the perturbation is usually
expressed in terms of unit round-off with which a representation and a computation ac-
curacy are usually associated; we present a brief overview of the floating point system in
the following sections.

I.I.I Solving linear system: the Generalized Minimal RESidual
The backward stability analysis has been carried out over algorithms often meant to

solve linear systems. Indeed, among the many research topics addressed in numerical lin-
ear algebra, solving linear systems of equations has always been a key one. The techniques
for computing a solution of the linear systems are usually classified into two groups: direct
and iterative methods. The former computes the solution of the given linear system in a
finite number of steps, while the latter ones iteratively converge toward the exact solution
from an initial guess. Among the direct solvers, it is worthwhile mentioning back substitu-
tions, Gauss elimination, LU factorization, QR factorization, and Cholesky factorization.
Examples of classical iterative methods are the conjugate gradient, the biconjugate gra-
dient, the MINimal RESidual (MINRES) [112] and the Generalised Minimal RESidual
(GMRES)[124].

The GMRES solver was presented in 1986 by Saad and Schultz as a generalization
of the 1975 solver MINRES. They are both based on the Krylov subspace technique,
previously described by Krylov in 1931 [91]. The key idea of GMRES is approximating
the solution of the input linear system by minimizing the residual norm in the considered
Krylov space, whose dimension increases iteratively. To achieve this purpose, GMRES
relies on the Arnoldi relation, firstly presented in 1951 [4], which simplifies the mini-
mization problem through a projection. Moreover, an orthogonalization kernel is usually
employed in this solver to construct a basis of the Krylov subspace; the most common
choices are Modified Gram-Schmidt (MGS), from 1986 original work [124] and House-
holder from 1988 variant [142], because of the numerical quality of their basis. As a



26 I.II. FINITE PRECISION ARITHMETIC

stopping criterion for GMRES, the choice suggested in the literature [40, 59, 113] is the
backward error based on the linear system matrix and right-hand side associated with
the iterative solution. When the backward error is lower than a prescribed threshold, the
iterations stop, implying that the current iterative solution can be considered as the exact
solution of a perturbed problem, where the relative norm of the perturbation is lower than
a prescribed threshold. The backward stability of both MGS and Householder GMRES
implementations was theoretically proved in [113] and [40] respectively, showing that the
attainable normwise backward error of GMRES is of the same order as the unit round-off.

I.I.II Orthogonalization schemes
It is quite common for numerical linear algebra algorithms to require the orthogonal-

ization of a set of vectors, which have different computational properties. In a theoretical
context, an orthogonal basis is generated from a set of linear independent vectors through
the Gram-Schmidt process, proposed by Schmidt in 1907 in [127], who credited also
Gram’s previous work of 1883 [52]. The link between the two techniques was highlighted
in 1935 by Wong [147], but it is worthwhile mentioning that similar procedures appeared
in previous works of Gauss, Legendre, Laplace, and Cauchy [96]. As remarked in [96],
from an algorithmic point of view the methods proposed by Gram and Schmidt differ,
even though in a theoretical framework they lead to the same results. Their tiny differ-
ence went unnoticed for many years, as mentioned in [143]. Nowadays, we know that
the Modified Gram-Schmidt (MGS), closer to the algorithm proposed in [52], is more
stable than the Classical Gram-Schmidt (CGS), which is similar to the method described
in [127], comparing the results of [51] and [15].

Essentially, we can affirm that the closer the orthogonal basis is to the expected theo-
retical one, the more reliable the orthogonalization kernel will be inside a more articulated
algorithm. The loss of orthogonality is the preferred tool to estimate how much the com-
puted orthogonal basis differs from the expected theoretical one. Therefore over the years,
mathematicians and computer scientists proposed new orthogonalization schemes, trying
to reduce the loss of orthogonality of MGS, improving its quality as an orthogonaliza-
tion kernel. In 1958, Householder transformation made its first appearance in [76] and it
became a new alternative and reliable tool for orthogonalizing vector sets. The loss of or-
thogonality of the Householder orthogonalization algorithm, proved in [145], outcompetes
the CGS and MGS one, even if this kernel is computationally more expensive than the
other two. In more recent years, other orthogonalization methods have been proposed as
the Gram-Schmidt algorithm with re-orthogonalization loops, which firstly appeared in
1966 and was further studied [1, 33, 116], or the Gram algorithm proposed in 2002 [131].

I.II Finite precision arithmetic
In this section, we present the fundamental concepts around finite precision arithmetic,

that will play a key role in Chapter 2 and 3.



part I. numerical linear algebra 27

Because of their finiteness, computers store a finite set of numbers from the infinite
real set, approximating them with a finite number of digits. The floating-point system is
a representation model for describing the storing possibilities of computers.

Definition I.II.i. Given the natural numbers β, t ∈ N, the floating point number system
is a set F ⊂ R whose generic element x ∈ F writes

x = ±m× βe−t (I.ii)

where the significand m ∈ N0 is such that 0 ≤ m ≤ βt − 1 and e ∈ Z is the exponent
lower and upper bounded by emin ∈ Z and emax ∈ Z, i.e., emin ≤ e ≤ emax. The value β
is called the base and t the precision of the floating point system F.
The range of the non-zero floating point numbers in F is

R(F ) = {y ∈ F
∣∣∣βemin−1 ≤ |y| ≤ βemax(1− β−t)}.

We briefly present as an example of a floating point system the: IEEE standard
arithmetic, which appeared as IEEE standard 754 in 1985 [77]. It is one of the most
popular floating point systems [68] and the one used for all the numerical experiments
presented in the following chapters.
Example I.II.i. The IEEE standard arithmetic floating point system includes two formats.
The single precision format has basis β = 2, precision t = 24 and lower exponential bound
emin = −125 while the maximum is emax = 128. The double precision format has the
same basis, but precision t = 53, emin = −1021 and emax = 1024.The

Once a floating point system F is considered, we can introduce the rounding function.

Definition I.II.ii. Given the basis β and precision t of the floating point system F, let
G ⊂ R be the set of all real numbers x expressed as y = m × βe−t for every e ∈ Z and
m ∈ N0. The rounding function fl : R → G associates each x ∈ R with the closest
element in G, i.e.,

fl(x) = arg min
y∈G
|y − x|.

Notice that F ⊂ G by definition. Thus, if |fl(x)| ≥ max{|y| with y ∈ F}, then the
rounding overflows, while if 0 < |fl(x)| ≤ min{|y| with y ∈ F− {0}}, then the rounding
underflows. Another key concept in finite precision arithmetic is the unit round-off.

Definition I.II.iii. Let β ∈ N and t ∈ N be the floating point system F basis and precision
respectively, then the unit round-off u ∈ R+ is

u = 1
2β

1−t.

In the IEEE standard arithmetic floating point system, the single precision unit round-
off is u = 10−8, while for the double precision format it is u = 10−16.
The unit round-off and the rounding are strictly connected, as shown in the following
classical theorem.



28 I.III. ROUNDING ERROR ANALYSIS

Theorem I.II.ii. [68, Theorem 2.2] Let F be a floating point system, if x ∈ R lies in
R(F ) the range of F, then there exists δ ∈ R such that

fl(x) = x(1 + δ) with |δ| ≤ u.

This theorem states that the rounding of x in the considered floating point system is
equal to the mathematical value of x times a factor very close to 1.

I.III Rounding error analysis
The representation of real numbers through a floating point system introduces neces-

sarily some errors, called rounding errors. These rounding errors may propagate or they
may cancel out [68] through a sequence of operations, that is an algorithm. Thus, in
numerical linear algebra, the rounding error analysis is a fundamental step to evaluate
the quality of the considered algorithms.

Once the floating point system F is chosen, the rounding error analysis is performed
under the standard model assumption that if x, y ∈ F then there exists δ ∈ R such that

fl(x op y) = (x op y)(1 + δ) with |δ| ≤ u

with u the unit round-off of F and op being a basic arithmetic operation among sum,
difference, multiplication, or division. Sometimes among the basic operations satisfying
the previous equation we include also the square root one. This hypothesis states that
the computed value of (x op y) is equal to the value of theoretical operation (x op y) times
a factor that is extremely close to 1. This standard model assumption holds in particular
for the IEEE standard arithmetic system.

The rounding error analysis aims to establish bounds that express the effects of round-
ing errors on the outcome of an operation sequence. There exist different approaches for
studying rounding errors. For example, let g : R → R be function such that y = g(x),
when the function g is implemented on the machine, we get ŷ = g(x) for every x ∈ R. A
first possibility is investigating how close y and its computed value ŷ are, bounding the
relative forward error written as

ef (ŷ) = |y − ŷ|
|y|

.

Another possibility is seeking how many and how large are the values ∆x such that
ŷ = g(x+ ∆x), bounding the backward error expressed as

eb(x̂) = |x− x̂|
|x|

= |∆x|
|x|

with ŷ = g(x̂) = g(x+ ∆x).

Thus, investigating the quality of the backward error means studying how large the per-
turbation ∆x of the value of x can be, that is how close x and x̂ = x + ∆x can be, to



part I. numerical linear algebra 29

lead to the same final value of ŷ. The two main benefits of this backward error analy-
sis approach are the follows. First, the rounding error is interpreted as a perturbation
of the input data, so the solution we get is the best up to the quality of the available
data [68]. Second, the forward error can be addressed separately through the perturba-
tion theory [68]. Consequently, the backward error analysis purpose is to establish when
an algorithm is backward stable in the considered floating point system.

Definition I.III.i. The method to compute y = g(x) is backward stable in the considered
floating point system F if denoted by ŷ the computed value of y, for every x ∈ R we have

ŷ = g(x+ ∆x) with |∆x|
|x|
≤ cu

with c ∈ R+ small and u the unit round-off for F.

Frequently, in the backward error analysis of algorithms working with matrices, the
matrix condition number, defined next, has a central role.

Definition I.III.ii. Let A ∈ Rn×n be a matrix, the condition number κ2(A) ∈ R+ with
respect to the L2 norm is

κ2(A) = ||A||2||A−1||2 = σ1

σr

where σ1 and σr are the maximum and minimum non-zero singular values of A respec-
tively, with r = rank(A).

We refer the reader to [68] for a complete presentation of the floating point system
and the backward stability analysis of many numerical linear algebra algorithms.

I.IV Tensor formalism
In Chapters 2 and 3, tensors and multilinear operator are represented through the

TT-format [108], described in Section 1.3.2, to describe numerical linear algebra algo-
rithms.





Chapter 2

A robust GMRES in TT-format

2.1 Introduction
In many domains of sciences and engineering, the problems to be solved can naturally

be modelled mathematically as linear systems of equations, i.e., as

Ax = b

where A ∈ Rn×n represents a linear endomorphism of Rn, b ∈ Rn is the right-hand
side and x ∈ Rn is the searched solution. Two main approaches have emerged in the
search for techniques to solve linear systems: direct and iterative methods. Direct solvers
compute the solution in a finite number of steps, usually transforming equivalently the
matrix A, as LU or QR-factorization methods, while iterative solvers approximate it-
eratively the solution starting from an initial guess, as conjugate gradient or minimal
residual method. The Generalized Minimal RESidual (GMRES) method is an iterative
solver based on the Krylov subspace technique [91], which approximates iteratively the
solution minimizing the linear system residual in the associated Krylov space. Two main
variants of GMRES exist: the original one [124] that constructs an orthogonal basis of
the Krylov space through the Modified Gram-Schmidt kernel (MGS-GMRES) and an al-
ternative one [144] relying on Householder transformations, namely Householder-GMRES
(H-GMRES). In [40, 113], the authors prove the norm-wise backward stability of both
these algorithms under the classical IEEE model assumption, i.e., with the unit rounding
error of floating point operations and the data storage both bounded by the same unit
round-off u, which depends on the selected working arithmetic. This chapter aims at
investigating the backward stability of GMRES when the leading part of the rounding
error is related to the selected data representation. The use of low-rank tensor approxima-
tion, employed to tackle the ‘curse of dimensionality’ when solving tensor linear systems,
represents a practical study case.

When storing all the data in classical IEEE floating point format is not affordable,
part of the data has to be compressed, introducing relative perturbations on them that
will later on be involved in further computations. If the data compression introduces

31



32 2.1. INTRODUCTION

relative component-wise perturbations, the existing backward stability analyses for MGS-
GMRES [40] and H-GMRES [113] still apply. However, if only the norm-wise relative
perturbations of the data storage can be controlled, technical details of the theoretical
backward stability results do not readily apply. In the first half of this chapter, we
investigate numerically the backward stability of both GMRES variants in a synthetic
context, imposing perturbations that target a certain accuracy component-wise or norm-
wise, and in a practical framework, using an agnostic lossy compressor. The key idea of
our study is to compress vectors all at once, into which particular scalars are therefore
not constrained by any memory alignment. In particular, they do not need to stick with
an available (hardware) precision such as fp32 or fp16. Scalars do not live in “two or more
precisions chosen from a small number of available precisions” [68] but on a continuum
of possible accuracy. We call such as scheme variable accuracy data storage, or, for short,
variable accuracy [3].

Different attempts [8, 39, 86] have been made over the years to extend iterative solvers
to the tensor framework to compute the solution of high order tensor linear systems, that
is i.e., as

Ax = b
where A represents multilinear endomorphism on Rn1×···×nd , b ∈ Rn1×···×nd is the right-
hand side and x ∈ Rn1×···×nd is the searched solution. For sake of simplicity, henceforth
these linear systems will be referred to as order d tensor linear systems, where d is the
order of the tensor space where they are defined. They all rely on compression tech-
niques, as HOSVD [36], Hierarchical Tucker [54] or TT [108], meant to tackle the ‘curse
of dimensionality’, i.e., the exponential growth of the variables number in function of the
order of the linear system. Since these compression techniques introduce perturbations
of a prescribed accuracy to avoid memory deficiencies, their application inside iterative
solvers fits in the variable accuracy scheme. The second half of this chapter studies nu-
merically the backward stability of GMRES extended to the tensor framework with the
TT-formalism (TT-GMRES), comparing our results with another GMRES realization in
TT-format presented in [39]. Moreover, we highlight how the tensor structure enables us
to solve simultaneously many tensor linear systems of order d depending on a parameter
by simply reformulating the problem in a space of order (d+ 1).

The remainder of this Chapter is structured as follows. Section 2.2 collects the results
related to the variable accuracy of GMRES in the matrix framework. After summarizing
in Section 2.2.1 the backward stability theoretical results for GMRES, we present the
experiments with component-wise and norm-wise perturbations, both from a synthetic
compression and an agnostic lossy compressor, in Section 2.2.2 and 2.2.3 respectively.
The variable accuracy study of GMRES extended to the tensor framework is found in
Section 2.3. The TT-GMRES algorithm is described in Section 2.3.1, while Section 2.3.2
collects all the theoretical results related to the simultaneous solution of many parameter
dependent tensor linear systems. We report about our numerical experiments with TT-
GMRES in Section 2.3.3. In particular, in Section 2.3.3.1 we compare our TT-GMRES
version with the one proposed in [39] from the backward stability viewpoint, proving
that our method is more robust. The experiments with parameter dependent multilinear



CHAPTER 2. A ROBUST GMRES IN TT-FORMAT 33

operator or right-hand side are analysed in Section 2.3.3.2, illustrating the tightness of
the bounds constructed in Section 2.3.2.

2.2 GMRES in matrix computation framework
In this section we present our variable accuracy approach applied to classical linear

systems. After recalling briefly the theoretical backward stability results for GMRES,
we describe the variable accuracy approach. Finally, we report about the numerical
experiments we perform introducing component-wise and norm-wise perturbation, coming
either from a synthetic compression or from an agnostic lossy compressor.

2.2.1 Background on GMRES
Starting from the zero initial guess, GMRES [124] constructs a series of approximations

xk in Krylov subspaces of increasing dimension k so that the residual norm of the sequence
of iterates is decreasing over these nested spaces. More specifically:

xk = argmin
x∈Kk(A,b)

‖b− Ax‖ ,

with
Kk(A, b) = span{b, Ab, . . . , Ak−1b}

the k-dimensional Krylov subspace spanned by A and b. In practice, an orthogonal matrix
Vk = [v1, . . . , vk] ∈ Rn×k and an upper Hessenberg matrix H̄k ∈ R(k+1)×k are iteratively
constructed using the Arnoldi procedure such that span{Vk} = Kk(A, b) and

AVk = Vk+1H̄k, with V T
k+1Vk+1 = Ik+1.

This is often referred to as the Arnoldi relation. Consequently, xk = Vkyk with

yk = argmin
y∈Rk

∥∥∥βe1 − H̄ky
∥∥∥ ,

where β = ‖b‖ and e1 = (1, 0, . . . , 0)T ∈ Rk+1 so that in exact arithmetic the following
equality holds between the least square residual and the true residual

‖r̃k‖ = ‖βe1 − H̄ky‖ = ‖b− Axk‖. (2.1)

In finite precision calculation, this equality no longer holds. Another matrix equality can
be formed based on the Arnoldi relation that reads

(v1, AVk) = Vk+1Rk+1, (2.2)

where Rk+1 is a (k + 1)× (k + 1) upper triangular matrix that writes

Rk+1 =
(
e1, H̄k

)
.



34 2.2. GMRES IN MATRIX COMPUTATION FRAMEWORK

Equation (2.2) shows that the Arnoldi algorithm actually computes a QR factorization of
(v1, AVk). Such a factorization could also be computed using Householder transformations,
this is the core idea of the H-GMRES variant proposed by Walker [142] and depicted
in Algorithm 7. The original GMRES by Saad and Schultz [124] is based on a more
classic Arnoldi algorithm that uses Modified Gram-Schmidt procedure to orthogonalize
the Krylov basis, often referred to as MGS-GMRES and depicted in algorithm 6. We
refer to [124, 125] for a more detailed presentation.

Algorithm 6 x, hasConverged = MGS-GMRES(A, b, m, ε)
1: input: A, x0, b, ε.
2: r0 = b, β = ‖r0‖ and v1 = r0/β
3: for k = 1, . . . do
4: wk = avk
5: for i = 1, . . . , k do
6: H̄(i, k) = 〈vi , w〉
7: wk = wk − H̄(i, k)vi
8: end for
9: H̄(k + 1, k) = ‖wk‖
10: vk+1 =

(
1/H̄(k + 1, k)

)
wk

11: yk = argmin
y∈Rk

∥∥∥βe1 − H̄ky
∥∥∥ with H̄k = H(: k + 1, : k)

12: xk = x0 + vkyk
13: if ηA,b(xk) < ε then
14: hasConverged = True
15: break
16: end if
17: end for
18: return: x = xk, hasConverged

Because the orthonormal basis Vk has to be stored, a restart parameter defining the
maximal dimension of the search Krylov space is used to control the memory footprint of
the solver in both the implementations. If the maximum dimension of the search space
is reached without converging, the algorithm is restarted using the final iterate as the
initial guess for a new cycle of GMRES. Furthermore, it is often needed to consider a
preconditioner to speed-up the convergence. Using right-preconditioned GMRES consists
of considering a non singular matrixM , the so-called preconditioner that approximates the
inverse of A in some sense. In that case, GMRES is applied to the preconditioned system
AMt = b. Once the solution t has been computed the solution of the original system is
recovered as x = Mt. The right-preconditioned GMRES is sketched in Algorithm 8 for a
restart parameter m and a convergence threshold ε .

The backward error analysis, popularized by J.H. Wilkinson who contributed signifi-
cantly to its development [143, 144], gives powerful stopping criteria for iterative solvers,
as GMRES, based indeed on the backward error [40, 59, 113]. In particular, Rigal and



CHAPTER 2. A ROBUST GMRES IN TT-FORMAT 35

Algorithm 7 x, hasConverged = H-GMRES(A, b, m, ε)
1: input: A, x0, b, ε.
2: r0 = b, β = ‖r0‖
3: compute u1 to define the Householder reflector P1 = I − 2u1u

T
1 such that P1r0 = βe1

4: for k = 1, . . . ,m do
5: vk = ∏1

j=k Pjek
6: w = ∏k

j=1 PjAvk
7: compute uk+1 to define the Householder reflector Pk+1 = I − 2uk+1u

T
k+1 s.t.

Pk+1w(k + 1 : n) = ‖w(k + 1 : n)‖ ek+1(k + 1 : n) and pk+1w(1 : k) = w(1 : k)
8: H̄(:, k) = (Pk+1w)(1 : k + 1)
9: yk = argmin

y∈Rk

∥∥∥βe1 − H̄ky
∥∥∥ with H̄k = H(: k + 1, : k)

. compute the current iterate
10: z = 0
11: for j = k, . . . , 1 do
12: z = Pj(yk(j)ej + z)
13: end for
14: xk = x0 + z
15: if ηA,b(xk) < ε then
16: hasConverged = True
17: break
18: end if
19: end for
20: return: x = xk, hasConverged

Algorithm 8 x, hasConverged = Right-GMRES(A, M , b, x0, m, ε)
1: input: A, M , b, m, ε.
2: hasConverged = False
3: x = x0
4: while not(hasConverged) do
5: r = b− Ax . Iterative refinement step with at most m GMRES iterations on AM
6: tk, hasConverged = GMRES(AM , r, m, ε)
7: x = x+Mtk . Update the unpreconditionned with the computed correction
8: end while
9: return: x, hasConverged



36 2.2. GMRES IN MATRIX COMPUTATION FRAMEWORK

Gache [121] showed that the approximate solution xk at iteration k can be interpreted as
the exact solution of a perturbed linear system where the relative norms of the pertur-
bations can be easily computed. We denote ηA,b(xk) this norm-wise backward error for
linear systems

ηA,b(xk) = min
∆A,∆b

{τ > 0 :‖∆A‖ ≤ τ‖A‖ , ‖∆b‖ ≤ τ‖b‖

and (A+ ∆A)xk = b+ ∆b}

= ‖Axk − b‖
‖A‖‖xk‖+‖b‖ . (2.3)

In some circumstances, a simpler backward error criterion based on perturbations only in
the right-hand side can also be considered, that leads to the second possible choice

ηb(xk) = min
∆b
{τ > 0 :‖∆b‖ ≤ τ‖b‖ and Axk = b+ ∆b}

= ‖Axk − b‖
‖b‖

. (2.4)

Based on the basic IEEE model fl(a op b) = (a op b)(1 + ε), with op ∈ {+,−,×,÷},
|ε| < u and u the unit round-off of the working precision, many theoretical results exist
in the literature. In particular, it is known [145, p. 152-161] that the Householder QR
factorization of a set of n-dimensional vectors S = {s1, . . . , sm} generates an orthonormal
basis Q̃ with orthonormality quality

Q̃T Q̃ = I + E with ‖E‖2 ≈ u, (2.5)

while MGS produces [15] a Q̃ factor such that

Q̃T Q̃ = I + E with ‖E‖2 ≈ κ(S)u, (2.6)

where κ(S) is the 2-norm condition number of the matrix S whose i-th column is si ∈ S.
Thanks to the backward stability of Householder QR given by (2.5) for computing the

Householder vectors, the backward stability of H-GMRES was established in [40, Theorem
4.1 and Corollary 4.2] assuming that the matrix A is not close to singularity.
Remark 2.2.1. Under technical assumptions [40, Corollary 4.2], it is shown that the norm-
wise backward error at the last iterate xn of H-GMRES is such that ηA,b(xn) = O(u),
where u is the unit round-off error of the working precision.

In MGS-GMRES, it is known that the Arnoldi basis progressively departs from or-
thogonality as indicated by (2.6). However, the following result has been shown in [114]

ηA,b(xk) · ‖I − Ṽ T
k Ṽk‖F = O(u), (2.7)

where the columns of Ṽk ∈ Rn×k, computed by MGS-Arnoldi, form a basis for the Krylov
space Kk(A, b). This result implies that it is impossible to have a significant loss of
orthogonality as long as the norm-wise relative backward error is very small. Later, the
backward stability of MGS-GMRES was proved in [113], that reads:



CHAPTER 2. A ROBUST GMRES IN TT-FORMAT 37

Theorem 2.2.2 ([113]). Assuming that A is not close to singularity, that is,

σmin(A)� n2||A||u,

where u is the unit round-off error of the working precision; let k ∈ N be the first integer
such that

κ(Ṽk+1) > 4
3 , (2.8)

then xk satisfies
ηA,b(xk) = O(u).

We refer to [113] for the details of the tedious and technical proof and to [104, p. 227]
for a short exposure. We also note that for technical reason, the proof is established
using the Frobenius norm of A to define ηA,b so that the norm-wise perturbations on A
are measured in Frobenius norm and not in Euclidean norm. In practice, the backward
stability is observed using the 2-norm and we only consider it in the sequel.

2.2.2 Numerical experiments with component-wise perturba-
tions

For the numerical experiments of this and the following section, the norm of the linear
operator is estimated using a randomized SVD [103, 122]. In addition, for all numerical
experiments right preconditioned GMRES is considered to enable a fast convergence, so
that GMRES does effectively solve

AMz = b

where M is a preconditioner operator. For calculation performed in regular matrix case,
we consider a preconditioner based on an ILU(t) [123] factorization. In the preconditioned
context, the backward error ηAM,b(zk) is the one that GMRES can drive down to O(u).

2.2.2.1 Variable accuracy approach

We are interested in the numerical behaviour of GMRES where the processed data
may be numerically altered for two reasons. The first possible source is the employed
finite precision arithmetic discussed above. We still denote u the associated unit round-off
error. In this work, we further assume that the data may be compressed leading to another
possible source of inaccuracy due to the corresponding compressed data representation.
More precisely, we denote δ-storage(·) the function that enables to store a given data in
a format, referred to as δ-component-wise data format, that induces an unit round-off δ;
that is:

δ-storage(a) = a(1 + ξ) with |ξ| ≤ δ.

When a basic calculation is performed and the result stored in a δ-representation we have

flδ(a op b) = δ-storage(fl(a op b)) = (a op b)(1 + ε)(1 + ξ),



38 2.2. GMRES IN MATRIX COMPUTATION FRAMEWORK

with |ε| ≤ u and |ξ| ≤ δ. Neglecting the second order term εξ, we obtain

flδ(a op b) = (a op b)(1 + ε+ ξ),

with |ε+ ξ| ≤ u+ δ, so that all the theoretical results, presented in the previous section,
that were established with the same unit round-off u for the basic operations and the
data representation still hold, but with unit round-off u+ δ. In can be noted that in the
particular case u � δ, it further reduces to flδ(a op b) = (a op b)(1 + ξ), with |ξ| ≤ δ
and those same results then hold with unit round-off δ. For a matter of readability, we
will make this particular assumption (results hold with unit round-off δ) in rest of this
section, but they can be more generally interpreted without this assumption, in which
case a u+ δ shall be considered instead.

2.2.2.2 δ-component-wise data storage

We numerically investigate the behaviour of the MGS-GMRES and H-GMRES where
the storage function δ-storage(·) is used to have a δ-representation of all the vectors of size
n. Regular IEEE calculation is used and data associated with small dimension matrices
and vectors are stored in regular IEEE format. That are all the data involved in the least
squares problem solution.

In Figure 2.1, we plot the convergence history of the norm-wise backward error for
both MGS-GMRES and H-GMRES for various values of δ for a test matrix from the
Florida test collection [35]. The dashed vertical blue line indicates the iteration where
κ(Ṽk) > 4

3 for MGS-GMRES. It can be seen that the backward stability property does
still hold for δ round-off unit due to data representation. Although this is not predicted
by any theoretical argument, the convergence of the two GMRES variants is identical
up to the proximity of δ. On this example, the convergence of MGS-GMRES and H-
GMRES perfectly overlap. Furthermore the relation given by (2.7) between the loss of
orthogonality and the backward error for MGS-GMRES, represented by the dashed green
curve, does also hold for δ unit round-off. To illustrate that both data representation and
finite precision calculation play a role in the attainable accuracy, we present numerical
experiments in Figure 2.2 where the calculation are performed either in fp32 (left plots) or
fp64 (right plots). On the first row, where the component-wise perturbation is δ = 10−4,
which is much larger than u32 and u64, the various GMRES implementations do exhibit
the same convergence and identical attainable accuracy, i.e., O(δ). On the second row, the
fp32 implementation has an attainable accuracy that is O(u32) because the δ component-
wise perturbation is hidden by the fp32 format. The fp64 calculation reveals the attainable
accuracy already observed in Figure 2.1, that is O(δ), since δ � u64. It can be seen that
the loss of orthogonality of the MGS-Arnoldi basis (which is characterized by a condition
number that deviates from one and becomes larger than 4/3 after the iteration marked
by the vertical dashed blue line) is also affected by δ-representation of the basis vectors.
More results on other test examples are depicted in [3, Appendix A].



CHAPTER 2. A ROBUST GMRES IN TT-FORMAT 39

0 5 10 15 20 25 30

10 7

10 5

10 3

10 1

AM
,b

 = 1e-06
MGS-GMRES
H-GMRES

AM, b I VTV F

0 5 10 15 20 25 30

10 8

10 6

10 4

10 2

100

AM
,b

 = 1e-08
MGS-GMRES
H-GMRES

AM, b I VTV F

0 5 10 15 20 25 30

10 11

10 9

10 7

10 5

10 3

10 1

101

AM
,b

 = 1e-10
MGS-GMRES
H-GMRES

AM, b I VTV F

0 5 10 15 20 25 30

10 14

10 11

10 8

10 5

10 2

101

AM
,b

 = 1e-14
MGS-GMRES
H-GMRES

AM, b I VTV F

Figure 2.1 – Convergence history of ηAM,b for gre-115 with ILU(10−1) using δ-data
component-wise representation. The horizontal dashed black line indicates δ. The vertical
dash blue line represents the first iteration where κ(Vk) > 4/3 in MGS-GMRES.

2.2.2.3 Solution techniques using SZ compressed format

In this section we present a first practical application of the GMRES algorithm in
variable accuracy. We consider an implementation where the Arnoldi basis in MGS-
GMRES or the reflector vectors in H-GMRES are compressed to alleviate their memory
footprint. More precisely, in MGS-GMRES we compress wk in line 10 before normalizing
it to define vk+1. In H-GMRES, we compress the vectors uk that defines the Householder
reflectors Pk in lines 3 and 7 of Algorithm 7. For those experiments, we used the SZ [38]
lossy compressor, an agnostic compressor that does not attempt to exploit underlying
numerical properties of the vectors but operates on their binary representation. For the
experiments in this section, we use the capability of SZ to ensure a prescribed component-
wise relative error between the original data z ∈ Rn and the decompressed data z̃ ∈ Rn,
that is,

max
i=1,...,n

|z(i)− z̃(i)|
|z(i)| ≤ δ,

with z(i) the ith component of z.
Similarly to the previous section, we display the convergence histories of MGS-GMRES

and H-GMRES in Figure 2.3, for a few values of the compression control parameter



40 2.2. GMRES IN MATRIX COMPUTATION FRAMEWORK

0 5 10 15 20 25 30 35 40 45

10 5

10 4

10 3

10 2

10 1

100

AM
,b

 = 0.0001
MGS-GMRES
H-GMRES

AM, b I VTV F

0 5 10 15 20 25 30 35 40 45

10 5

10 4

10 3

10 2

10 1

100

AM
,b

 = 0.0001
MGS-GMRES
H-GMRES

AM, b I VTV F

0 5 10 15 20 25 30 35 40 45

10 10

10 8

10 6

10 4

10 2

100

AM
,b

 = 1e-10
MGS-GMRES
H-GMRES

AM, b I VTV F

0 5 10 15 20 25 30 35 40 45

10 11

10 9

10 7

10 5

10 3

10 1

101

AM
,b

 = 1e-10
MGS-GMRES
H-GMRES

AM, b I VTV F

Figure 2.2 – Convergence history of ηAM,b for gre-343 with ILU(2 · 10−1) using δ-data
component-wise representation with fp32 calculation (left) and fp64 calculation (right).
The horizontal dashed black line indicates δ. The vertical dash blue line represents the
first iteration where κ(Vk) > 4/3 in MGS-GMRES.

δ. Although the δ component-wise perturbations only occur when storing the Arnoldi
basis or reflector vectors, the general trend of the convergence histories of ηAM,b remains
qualitatively the same. The attainable accuracy is slightly, but not significantly, better.
The memory saving enabled by SZ is reported in Table 2.1. A general expected rule of
thumb is: “the larger δ, the larger the memory gain”. For some matrices, e.g., gre_343,
more than 20% of memory saving is observed for a 10−14 accuracy. It illustrates the
possible significant benefit of these GMRES implementations based on a compressor like
SZ for the solution of large problems.

2.2.3 Numerical experiments with norm-wise perturbations
In many contexts, having a control on the relative component-wise error on the vec-

tors is not feasible and only a norm-wise monitoring is possible. Although the existing
backward stability analyses of both considered GMRES variants do not readily apply, be-
cause some of the technical arguments of the proof are no longer valid, we show through
numerical experiments that the property still holds in practice. In Section 2.2.3.1, we
report on experiments where the results of all calculations performed on length n vec-



CHAPTER 2. A ROBUST GMRES IN TT-FORMAT 41

0 5 10 15 20 25 30

10 8

10 6

10 4

10 2

100

AM
,b

 = 1e-06
MGS-GMRES
H-GMRES

AM, b I VTV F

0 5 10 15 20 25 30

10 11

10 9

10 7

10 5

10 3

10 1

101

AM
,b

 = 1e-08
MGS-GMRES
H-GMRES

AM, b I VTV F

0 5 10 15 20 25 30

10 13

10 11

10 9

10 7

10 5

10 3

10 1

101

AM
,b

 = 1e-10
MGS-GMRES
H-GMRES

AM, b I VTV F

0 5 10 15 20 25 30

10 15

10 12

10 9

10 6

10 3

100

AM
,b

 = 1e-14
MGS-GMRES
H-GMRES

AM, b I VTV F

Figure 2.3 – Convergence history of ηAM,b for gre-115 with ILU(10−1) using SZ-component-
wise storage for the Arnoldi basis and Householder reflectors. The horizontal dashed black
line indicates δ. The vertical dash blue line represents the first iteration where κ(Vk) > 4/3
in MGS-GMRES.



42 2.2. GMRES IN MATRIX COMPUTATION FRAMEWORK

δ
10−4 10−6 10−8 10−10 10−12 10−14

gre_115 with ILU(10−1)
MGS 9.0 25.1 25.7 16.3 6.6 3.9

Householder 39.6 30.2 30.4 22.2 15.4 12.4
gre_185 with ILU(10−1)

MGS 3.9 32.8 25.6 16.2 5.4 0.0
Householder 22.3 38.3 31.4 23.4 14.2 6.9

gre_343 with ILU(10−1)
MGS 22.3 50.8 46.7 38.5 30.1 21.9

Householder 24.7 52.2 47.7 39.9 31.7 24.1
arc130 with ILU(8 · 10−4)

MGS 15.3 15.2 12.8 17.5 14.3 6.9
Householder 38.4 5.8 25.5 21.5 18.2 9.4

e05r0000 with ILU(10−2)
MGS 0.1 36.2 29.5 20.2 9.4 0.2

Householder 6.7 37.0 29.7 20.8 10.4 2.6
e05r0400 with ILU(10−2)

MGS 1.1 36.0 27.8 18.7 7.9 0.0
Householder 5.4 37.6 29.4 20.8 10.6 3.4

cavity03 with ILU(10−2)
MGS 2.4 39.7 31.2 22.0 10.9 0.6

Householder 14.1 40.5 32.3 23.0 12.4 4.2
pde225 with ILU(3 · 10−1)

MGS 1.6 34.3 28.3 19.1 8.2 0.1
Householder 9.6 37.9 31.8 23.3 13.4 5.4

Table 2.1 – Percentage of memory saving using SZ-component-wise representation.



CHAPTER 2. A ROBUST GMRES IN TT-FORMAT 43

tor is artificially perturbed by a relative norm-wise perturbation. Next we consider two
practical computational contexts where such norm-wise perturbations are encountered in
some steps of the algorithms.

2.2.3.1 δ-norm-wise data storage

In this section we consider the situation where all the length n vectors involved in
the algorithms are stored in a norm-wise δ-representation. That is, any vector z ∈ Rn is
replaced by z̄ so that

‖z − z̄‖
‖z‖

≤ δ. (2.9)

We display the convergence history of the norm-wise backward error for both con-
sidered GMRES variants, as well as the product of the backward error times the loss of
orthogonality for MGS-GMRES, in Figure 2.4. It can be seen that the trends are very
similar to those that can be observed in Figures 2.1. The same observations can be made:
both the attainable backward error accuracy and the product ηAM,b‖I − V TV ‖F reach
values close to δ.

2.2.3.2 Solution techniques using SZ compressed format

We report the convergence histories of MGS-GMRES and H-GMRES for a few values
of the norm-wise compression control parameter δ in Figure 2.5. These results are the
norm-wise counterparts of those displayed in Figure 2.3 for component-wise compression.
It can be observed that the general trends are similar and that the attainable value of
ηAM,b always becomes close to δ. Because ensuring norm-wise relative error is easier for
the SZ-compressor than ensuring component-wise relative error, the memory saving gains
reported in Table 2.2 are larger than those in Table 2.1.



44 2.2. GMRES IN MATRIX COMPUTATION FRAMEWORK

0 5 10 15 20 25 30

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

AM
,b

 = 1e-06
MGS-GMRES
H-GMRES

AM, b I VTV F

0 5 10 15 20 25 30

10 9

10 7

10 5

10 3

10 1

AM
,b

 = 1e-08
MGS-GMRES
H-GMRES

AM, b I VTV F

0 5 10 15 20 25 30

10 10

10 8

10 6

10 4

10 2

100

AM
,b

 = 1e-10
MGS-GMRES
H-GMRES

AM, b I VTV F

0 5 10 15 20 25 30

10 14

10 11

10 8

10 5

10 2

101

AM
,b

 = 1e-14
MGS-GMRES
H-GMRES

AM, b I VTV F

Figure 2.4 – Convergence history of ηAM,b for gre-115 with ILU(10−1) using δ-data norm-
wise representation. The horizontal dashed black line indicates δ. The vertical dash blue
line represents the first iteration where κ(Vk) > 4/3 in MGS-GMRES.



CHAPTER 2. A ROBUST GMRES IN TT-FORMAT 45

δ
10−4 10−6 10−8 10−10 10−12 10−14

gre_115 with ILU(10−1)
MGS 5.7 8.8 32.9 31.3 23.6 14.3

Householder 50.4 43.3 43.5 35.9 29.0 21.9
gre_185 with ILU(10−1)

MGS 7.2 25.6 37.9 27.7 18.6 7.5
Householder 38.4 45.6 46.6 37.6 29.7 20.6

gre_343 with ILU(10−1)
MGS 22.3 42.0 51.8 46.9 40.3 30.5

Householder 24.5 51.4 58.3 49.5 44.0 35.5
arc130 with ILU(8 · 10−4)

MGS 74.6 63.8 51.3 40.4 23.7 21.3
Householder 75.3 70.3 60.9 34.1 14.9 11.5

e05r0000 with ILU(10−2)
MGS 5.6 8.4 40.7 32.3 21.2 11.3

Householder 4.4 40.1 44.7 34.9 24.5 15.7
e05r0400 with ILU(10−2)

MGS 0.1 16.1 39.5 29.4 18.5 9.1
Householder 19.7 42.2 45.5 35.5 25.1 16.5

cavity03
MGS 0.7 25.6 40.7 29.9 19.1 9.8

Householder 12.5 45.9 47.0 36.9 26.6 18.0
pde225 with ILU(3 · 10−1)

MGS 10.8 32.1 37.7 29.4 19.2 8.0
Householder 19.8 43.8 46.5 37.3 29.0 19.2

Table 2.2 – Percentage of memory saving using SZ-norm-wise representation.



46 2.2. GMRES IN MATRIX COMPUTATION FRAMEWORK

0 5 10 15 20 25 30

10 16

10 13

10 10

10 7

10 4

10 1

AM
,b

 = 1e-06
MGS-GMRES
H-GMRES

AM, b I VTV F

0 5 10 15 20 25 30

10 10

10 8

10 6

10 4

10 2

100

AM
,b

 = 1e-08
MGS-GMRES
H-GMRES

AM, b I VTV F

0 5 10 15 20 25 30

10 11

10 9

10 7

10 5

10 3

10 1

101

AM
,b

 = 1e-10
MGS-GMRES
H-GMRES

AM, b I VTV F

0 5 10 15 20 25 30

10 14

10 11

10 8

10 5

10 2

101

AM
,b

 = 1e-14
MGS-GMRES
H-GMRES

AM, b I VTV F

Figure 2.5 – Convergence history of ηAM,b for e05r0000 with ILU(10−2) using SZ-norm-wise
representation of the Arnoldi basis and Householder reflectors. The horizontal dashed
black line indicates δ. The vertical dash blue line represents the first iteration where
κ(Vk) > 4/3 in MGS-GMRES.



CHAPTER 2. A ROBUST GMRES IN TT-FORMAT 47

2.3 Tensor Train GMRES
The second half of this chapter focuses on generalizing GMRES to tensor linear systems

through the TT-formalism, see Section 1.3.2. To prevent memory issues, we introduce in
the classical GMRES outline compression steps through the TT-rounding algorithm [108].
Under this choice, our TT-GMRES represents a perfect study case for our variable accu-
racy approach of GMRES with norm-wise perturbation.

After describing our TT-GMRES algorithm, we study how to solve simultaneously
many tensor linear systems when the operator or the right-hand side depend on a pa-
rameter. In particular, we present some theoretical bounds that guarantee the numerical
quality of the solution for a single parameter tensor linear system when it is extracted
from the simultaneous solution. Finally, experiments highlighting the robustness of TT-
GMRES and the tightness of these bounds are analysed.

2.3.1 Preconditioned GMRES in Tensor Train format
Assume A ∈ R(n1×n1)×···×(nd×nd) to be a tensor operator and b ∈ Rn1×···×nd a tensor,

then the general tensor linear system is

Ax = b (2.10)

with x ∈ Rn1×···×nd . Notice that by setting d = 1 we have the standard linear system from
classical matrix computation. A possible way for solving (2.10) is using a tensor-extended
version of GMRES. Since all the operations appearing in this iterative solver are feasible
with the TT-formalism, we assume that all the objects are expressed in TT-format. The
main drawback of this approach is the repetition of sums and contractions in the different
loops, which leads to TT-rank growth and possible memory over-consumption. Therefore
introducing compression steps in TT-GMRES is essential but particular attention should
be paid to the choice of the rounding parameter to ensure that the prescribed GMRES
tolerance ε can be reached. Our TT-GMRES algorithm is fully presented in Algorithm 9.

In Algorithm 9 and 10 there is an additional input parameter δ, i.e., the rounding accu-
racy. The TT-rounding algorithm at accuracy δ is applied to the result of the contraction
between A and the last Krylov basis vector computed in Line 4, to the new Krylov basis
vector after orthogonalization in Line 9 and to the updated iterative solution, Line 13.
The purpose is to balance the rank growth due to the tensor contraction or sum, that
occurred in the immediately previous step, with the rounding. As it will be observed
in the numerical experiments of Section 2.3.3, the rounding accuracy δ has to be chosen
lower or equal than the GMRES target accuracy ε.

2.3.2 Solution of parametric problems in Tensor Train format
In this section, we investigate the situation where either the tensor representation of

the linear operator or the right-hand side has a mode related to a parameter that is dis-
cretized. In the case of the parametric linear operator, we are interested in the numerical



48 2.3. TENSOR TRAIN GMRES

Algorithm 9 x, hasConverged = TT-GMRES(A, b, m, ε, δ)
1: input: A, b, m, ε, δ.
2: r0 = b, β = ‖r0‖ and v1 = (1/β)r0
3: for k = 1, . . . , maxit do
4: w = TT-round(Avk, δ) . MGS variant
5: for i = 1, . . . , k do
6: H̄(i, k) = 〈vi ,w〉
7: w = w− H̄i,kvi
8: end for
9: w = TT-round(w, δ)

10: H̄(k + 1, k) = ‖w‖
11: vk+1 = (1/H̄(k + 1, k))w
12: yk = argminy∈Rk

∥∥∥βe1 − H̄ky
∥∥∥ with H̄k = H(: k + 1, : k)

13: xk = TT-rounding
(∑k+1

j=1 yk(j)vj, δ
)

14: if ηA,b(xk) < ε then
15: hasConverged = True
16: break
17: end if
18: end for
19: return: x = xk, hasConverged

Algorithm 10 x, hasConverged = Right-GMRES(A, M, b, x0, m, ε, δ)
1: input: A, M, b, m, ε, δ.
2: hasConverged = False
3: x = x0
4: while not(hasConverged) do
. Iterative refinement step with at most m GMRES iterations on AM

5: r = TT-round(b−Ax, δ)
6: tk, hasConverged = GMRES(AM, r, m, ε, δ)
. Update the unpreconditionned with the computed correction

7: x = TT-round(x + Mtk, δ)
8: end while
9: return: x, hasConverged



CHAPTER 2. A ROBUST GMRES IN TT-FORMAT 49

quality of the computed solutions when we solve for all the parameters at once compared
to the solution computed when the parametric systems are treated independently. In
the case of the right-hand sides depending on a parameter, we investigate the links be-
tween the search space of TT-GMRES enabling the solution of all the right-hand sides
at once and the spaces built by the GMRES solver on each right-hand side considered
independently.

2.3.2.1 Parameter dependent linear operators

This subsection focuses on a specific type of parametric tensor operators expressed
as Aα = B0 + αB1 with α ∈ R and B0,B1 two tensor operators of R(n1×n1)×···×(nd×nd).
Assuming that α takes p different real values in the interval [a, b], we define p linear
systems of the form

A`y` = b` (2.11)
where A` = B0 + α`B1, b` ∈ Rn1×···×nd , α` ∈ [a, b] for every ` ∈ {1, . . . , p}. At this level,
it is possible to choose between classically solving each system independently or solving
them simultaneously in a higher order space defining the so-called “all-in-one” system.
This latter system writes

Ax = b (2.12)
where A ∈ R(p×p)×(n1×n1)×···×(nd×nd) such that

A(h, `, i1, j1, . . . , id, jd) =

A`(i1, j1, . . . , id, jd) if h = `,

0 if h 6= `,
(2.13)

and the right-hand side is b ∈ Rp×n1×···×nd defined as

b(`, i1, . . . , id) = b`(i1, . . . , id) (2.14)

for ik, jk ∈ {1, . . . , nk}, k ∈ {1, . . . , d} and `, h ∈ {1, . . . , p}. The tensor operator A writes
in a compact format as

A = Ip ⊗B0 + diag(α1, . . . , αp)⊗B1.

The (`, `)-th slice of A with respect to modes (1, 2) is denoted

A[`] = B0 + α`B1 = A` (2.15)

and similarly the `-th slice of b with respect to the first mode is b[`] = b` by construction.
So that Equation (2.11) also writes

A[`]x[`] = b[`]

with x[`] = y`. It shows that once the “all-in-one” system, Equation (2.12), has been
solved, the solution related to a specific parameter can be extracted as a slice of the
“all-in-one” solution, obtaining an extracted individual solution. In other words, given the



50 2.3. TENSOR TRAIN GMRES

k-th iterate xk of the “all-in-one” system, the extracted individual solution for the `-th
problem is x[`]

k , i.e., the `-th slice with respect to the first mode defined as

x[`]
k = xk(`, i1, . . . , id).

In the following propositions, we investigate the relation between the backward error of
the “all-in-one” system solution and the extracted individual one. The equalities given
for the “all-in-one” system are clearly true if the tensor and the tensor operators are given
in full format, but they hold also in TT-format.

In TT-format
As stated in Section 1.2, given a tensor a ∈ Rn1×···×nd in TT-format with TT-cores

ak ∈ Rrk−1×nk×rk , we denote by a[k,ik] the ik-th slice with respect to mode k, which in
TT-format is expressed as

a[k,ik] = a1 · · · ak−1Ak(ik)ak+1 · · · ad

with Ak(ik) ∈ Rrk−1×rk . Since henceforth we will take slices only with respect to the first
mode, instead of writing a[1,i1] for the i1-th slice on the first mode we will simply write
a[i1]. Similarly A[`] denotes the (`, `)-th slice of A ∈ R(p×p)×(n1×n1)×···×(nd×nd) with respect
to the first two modes.

We start constructing the “all-in-one” system tensor linear operator. Let C,G ∈ R(n1×n1)×···×(nd×nd)

be two TT-matrices with k-th TT-core ck ∈ Rrk×nk×nk×rk+1 and g
k
∈ Rqk×nk×nk×qk+1 for

k ∈ {1, . . . , d} with q1 = r1 = rd+1 = qd+1 = 1, whose TT-expression is

C = c1 · · · cd and G = g1 · · ·gd. (2.16)

Given a diagonal matrix D = diag(α1, . . . , αp), we define A ∈ R(p×p)×(n1×n1)×···×(nd×nd) as

A = Ip ⊗C +D ⊗G. (2.17)
Then the expression of ak ∈ R(rk+qk)×nk×nk×(rk+1+qk+1) the k-th TT-core of A is

Ak(ik, jk) =
[
Ck(ik, jk) 0

0 Gk(ik, jk)

]
and Ad(id, jd) =

[
Cd(id, jd)
Gd(id, jd)

]
(2.18)

for every ik, jk ∈ {1, . . . , nk} and k ∈ {1, . . . , d}. The first TT-core a0 ∈ R1×p×p×2 writes

A0(`,m) = δ`,ma` with a>` =
[
1 α`

]
(2.19)

with δ`,m the Kronecker delta, for `,m ∈ {1, . . . , p}. The final TT-expression of A is

A = a0a1 · · · ad.

Remark now that A(`,m) the (`,m)-th slice with respect to mode 1 of A is

A[`,m] = A0(`,m)a1 · · · ad = δ`,ma`a1 · · · ad.



CHAPTER 2. A ROBUST GMRES IN TT-FORMAT 51

If ` 6= m, then A[`,m] = 0. On the other side, if ` and m are equal, then

A[`,`] = I(`, `)a` a1 · · · ad = c1 · · · cd + α` g1 · · ·gd = C + α` G.

We illustrate now the construction of the “all-in-one” system right-hand side from the
p individual right-hand sides. Let b` ∈ Rn1×···×nd be a TT-vector for every ` ∈ {1, . . . , p}
with TT-cores b`,k ∈ Rs`,k×nk×s`,k+1 for every k ∈ {1, . . . , d} with s1 = sd+1 = 1, i.e.,

b` = b`,1 · · ·b`,d (2.20)
and its (i1, . . . , id) element writes

b`(i1, . . . , id) = B`,1(i1) · · ·B`,d(id)

with B`,k(ik) ∈ Rs`,k×s`,k+1 , B`,1(i1) ∈ R1×s`,2 and B`,d(id) ∈ Rs`,d×1. For simplicity we
impose sk = s`,k for every ` ∈ {1, . . . , p} and k ∈ {1, . . . , d}.
Remark 2.3.1. This assumption on the TT-rank of b` is not binding. Indeed setting
sk = maxh∈{1,...,p} sh,k, then each core tensor bh,k of mode sizes (sh,k, nh, sh,k+1) can be
extended with zeros to (sk, nh, sk+1)

We want to construct a tensor b ∈ Rp×n1×···×nd such that its `-th slice with respect
to the first mode of b is b`, i.e., b[`] = b`. As consequence, the k-th TT-core of b is
bk ∈ Rpsk×nk×psk+1 such that

Bk(ik) =


B1,k(ik)

. . .
Bp,k(ik)

 ∈ Rpsk×psk+1

for k ∈ {1, . . . , d− 1}, while bd ∈ Rpsd−1×nd×1 and b0 ∈ R1×p×ps1 are

Bd(id) =


B1,d(id)

...
Bp,d(id)

 ∈ Rpsd×1 and B0(`) =
[
0 · · · 1 · · · 0

]
∈ R1×ps1

with the `-th component of B0(`) being the only non-zero element. The TT-expression
of b is

b = b0b1 · · ·bd. (2.21)
By construction, we have that the `-th slice of b with respect to mode 1 is

b[`] = B0(`)b1 · · ·bd
= b`,1 · · ·b`,d
= b`.

Let consider A and b as defined in Equation (2.17) and (2.21), given x ∈ Rp×n1×···×nd

and define the new vector
r = Ax− b.



52 2.3. TENSOR TRAIN GMRES

We want to prove that r[`] the `-th slice with respect to the first mode of r is equal to the
difference of the `-th slices, i.e.,

r[`] = A[`,`]x[`] − b` = (C + α`G)x[`] − b` (2.22)

since the (`, `)-th slice of A is C + α`G for every ` ∈ {1, . . . , p}. Remark that the `-th
slice of b is b` by construction. As consequence, the Equation (2.22) is true if we show
that the `-th slice of the contraction between A and x is equal to the contraction of their
`-th slices, i.e.,

(Ax)[`] = A[`,`]x[`].

Lemma 2.3.2. Given A, C, G as in Equations (2.16) and (2.17), let x ∈ Rp×n1×···×nd

be a (d + 1)-order tensor. Then the `-th slice of y = Ax is equal to the product of their
`-th slices, i.e.

(Ax)[`] = A[`,`]x[`] = (C + α`G)x[`].

Define w = (C + α`G)x[`], then y[`] the `-th slice of y with respect to mode 1 is equal to
w, i.e.,

y[`] = w.

Proof. Let y = Ax, then by definition the (i1, . . . , id) element of the `-th slice with respect
to the first mode is

y[`](i1, . . . , id) =
(
Ax[`]

)
(i1, . . . , id) =

=
p,n1,...,nd∑
h,j1,...,jd=1

A(`, h, i1, j1, . . . , id, jd)x(h, j1, . . . , jd).

By construction A(`, h, i1, j1, . . . , id, jd) is nonzero, only if ` and h are equal, leading to

y[`](i1, . . . , id) =
n1,...,nd∑
j1,...,jd=1

A(`, `, i1, j1, . . . , id, jd)x(`, j1, . . . , jd)

=
n1,...,nd∑
j1,...,jd=1

(
A[`]

)
(i1, j1, . . . , id, jd)

(
x[`]

)
(j1, . . . , jd).

by the definition of first mode slides. As already observed the (`, `)-th slice of A with
respect to the first mode is equal to C + α`G. Thus, the previous equation becomes

y[`](i1, . . . , id) =
n1,...,nd∑
j1,...,jd=1

(C + α`G)(i1, j1, . . . , id, jd)
(
x[`]

)
(j1, . . . , jd),

i.e., the thesis.

By the result of Lemma 2.3.2, we get that the `-th slice of Ax writes

(Ax)[`] = Cx[`].



CHAPTER 2. A ROBUST GMRES IN TT-FORMAT 53

Therefore the `-th slice of r is
r[`] = Cx[`] − b[`].

As a conclusive result of this construction, we want to show that

||r||2 =
p∑
`=1
||r[`]||2.

Lemma 2.3.3. Given s ∈ Rn0×n1×···×nd and its i0-th slice with respect to the first mode
s(i0) then

||s||2 =
n0∑
i0=1
||s[i0]||2.

Proof. By definition, the squared Frobenious norm of s is

‖s‖2 =
n0,n1,...,nd∑
i0,i1,...,id=1

s2(i0, i1, . . . , id) =
n0∑
i0=1

( n1,...,nd∑
i1,...,id=1

s2(i0, i1, . . . , id)
)
.

By the definition of slice, the last equation can be written as

‖s‖2 =
n0∑
i0=1

( n1,...,nd∑
i1,...,id=1

s2(i0, i1, . . . , id)
)

=
n0∑
i0=1

( n1,...,nd∑
i1,...,id=1

(
s[i0]

)2
(i1, . . . , id)

)
,

but by the definition of squared Frobenious norm of s[i0], we obtain

‖s‖2 =
n0∑
i0=1

( n1,...,nd∑
i1,...,id=1

(
s[i0]

)2
(i1, . . . , id)

)
=

n0∑
i0=1
||s[i0]||2,

i.e., the thesis.

By the result of Lemma 2.3.3, we have

||r||2 =
p∑
`=1
||r[`]||2.

Theoretical bounds

Once the “all-in-one” system has been completely described in its construction in TT-
format, we present some bounds that enable us to tune the convergence threshold when
solving for multiple parameters while guaranteeing a prescribed quality for the individual
extracted solutions. In particular, the bound given by Equation (2.23) in Proposition 2.3.4
shows that if a certain accuracy ε is expected for the extracted individual solution in terms
of the backward error in (2.4), a more stringent convergence threshold should be used for
the “all-in-one” system solution that should be set to ε/√p.



54 2.3. TENSOR TRAIN GMRES

Proposition 2.3.4. Let the “all-in-one” operator A ∈ R(p×p)×(n1×n1)×...(nd×nd) and right-
hand side b ∈ Rp×n1×···×nd be as in Equations (2.13) and (2.14) respectively, we consider
the “all-in-one” system

Ax = b.
Let A` ∈ R(n1×n1)×···×(nd×nd) be the tensor operator as in Equation (2.15) and let b` ∈ Rn1×···×nd

be a tensor such that ||b`|| = 1, that defines the individual linear systems

A`y` = b`
with A` = A[`] and b` = b[`] for every ` ∈ {1, . . . , p}. Let xk denote the k-th “all-in-one”
iterate, we have

ηb(xk)
√
p ≥ ηb`(x

[`]
k ) (2.23)

for ` ∈ {1, . . . , p}.
Proof. For the sake of simplicity we use ηb and ηb` squared throughout the proof and
discard the subscript of the k-th “all-in-one” iterate. The quantity η2

b`(x
[`]) explicitly gets

η2
b`(x

[`]) =

∥∥∥A`x[`] − b`
∥∥∥2

‖b`‖2

while η2
b(x) is

η2
b(x) = ‖Ax− b‖2

‖b‖2 . (2.24)

Thanks to the diagonal structure of A and the Frobenius norm definition, Equation (2.24)
writes

η2
b(x) =

∑n
`=1

∥∥∥∥(Ax− b
)[`]
∥∥∥∥2

∑p
j=1‖b[j]‖2 =

∑n
`=1

∥∥∥A`x[`] − b2
`

∥∥∥∑p
j=1‖bj‖

2 =
∑p
`=1 η

2
b`(x

[`])
p

(2.25)

since ||b||2 = ∑n
j=1 ||bj||2 = p. From the square root of both sides of this last equation,

the result follows.

For the backward error based on perturbation of both the linear operator and the
right-hand side defined by (2.3), a similar result can be derived. While informative this
result has a lower practical interest as the term ρ`(xk) in (2.26) depends on the solution; so
defining the convergence threshold for the ‘all-in-one’ solution to guarantee the individual
backward error requires some a priori information on the solution norms.
Proposition 2.3.5. With the same hypothesis and notation as for Proposition 2.3.4 for
ηA,b(xk) and ηA`,b`(x

[`]
k ) associated linear systems Ax = b and A`y` = b` respectively,

for every ` ∈ {1, . . . , p}, we have

ηA,b(xk) ρ`(xk) ≥ ηA`,b`(x
[`]
k ) where ρ`(xk) =

‖A‖2‖xk‖+√p∥∥∥A`x[`]
k

∥∥∥+ 1
(2.26)

with xk the k-th “all-in-one” iterate and x[`]
k its `-th slice with respect to mode 1.



CHAPTER 2. A ROBUST GMRES IN TT-FORMAT 55

Proof. For the sake of simplicity, as previously, the subscript of the k-th “all-in-one”
iterate is dropped. The quantity ηA,b(x) explicitly writes

ηA,b(x) = ‖Ax− b‖
‖A‖2‖x‖+‖b‖ .

If the previous equation is multiplied equivalently by ηb(x), it gets

ηA,b(x) = ‖Ax− b‖
‖A‖2‖x‖+‖b‖

ηb(x)
ηb(x) = ‖b‖

‖A‖2‖x‖+‖b‖ηb(x) =
√
p

‖A‖2‖x‖+√pηb(x) (2.27)

by the definition of ηb(x) and ‖b‖ = √p. Similarly ηA`,b`(x[`]) is expressed in function of
ηb`(x[`]) as

ηA`,b`(x[`]) = ‖b`‖
‖A`‖2‖x[`]‖+‖b`‖

ηb`(x[`]) = 1
‖A`‖2‖x[`]‖+ 1ηb`(x[`]) (2.28)

since ‖b`‖ = 1. Multiplying each side of Equation (2.27) by (‖A‖2‖x‖+√p), it follows(
‖A‖2‖x‖+√p

)
ηA,b = ηb

√
p.

Thanks to the result of Proposition 2.3.4, we have(
‖A‖2‖x‖+√p

)
ηA,b(x) = ηb(x)√p ≥ ηb`(x[`]) =

(
‖A`‖2

∥∥∥x[`]
∥∥∥+ 1

)
ηA`,b`(x[`]) (2.29)

from Equation (2.28). Dividing both sides of Equation (2.29) by‖A`‖2

∥∥∥x[`]
∥∥∥+1, it becomes

‖A‖2‖x‖+√p
‖A`x[`]‖+ 1 ηA,b(x) ≥ ηA`,b`(x[`]) (2.30)

since ‖A`‖2

∥∥∥x[`]
∥∥∥ ≥∥∥∥A`x[`]

∥∥∥ by the definition of the L2 norm.

2.3.2.2 Parameter dependent right-hand sides

We consider a particular case of this “all-in-one” approach. We intend to solve p tensor
linear systems with the same multilinear operator and different right-hand sides. Given
a linear tensor operator A0 ∈ R(n1×n1)×···×(nd×nd), we define the `-th tensor linear system
as

A0y` = b` (2.31)
with b` ∈ Rn1×···×nd for every ` ∈ {1, . . . , p}. To solve simultaneously all the right-
hand sides expressed in Equation (2.31), we repeat the construction introduced in Sub-
section 2.3.2, except that A0 is repeated on the ‘diagonal’ of tensor linear operator
A defined in Equation (2.13). Thanks to the tensor properties, the tensor operator
A ∈ R(p×p)×(n1×n1)×···×(nd×nd) writes

A = Ip ⊗A0



56 2.3. TENSOR TRAIN GMRES

so that A[`] = A0 for every ` ∈ {1, . . . , p}. The right-hand side b is defined similarly to
the previous section, that is b[`] = b`. If the initial guess is x0 ∈ Rp×n1×···×nd equal to the
null tensor, then at the k-th iteration TT-GMRES minimizes with respect to x the norm
of the residual Ax− b on the space

Kk(A,b) = span
{
b,Ab,A2b, . . . ,Ak−1b

}
,

i.e., we seek a tensor xk ∈ Kk(A,b) such that

xk = argmin
x∈Kk(A,b)

‖Ax− b‖ .

Due to the diagonal structure of A, the Frobenius norm of rk = Axk − b is naturally
written as follows

||rk||2 =
p∑
`=1
||b` −A0x[`]

k ||2

with x[`]
k being the `-th slice with respect to the first mode of xk, as in the previous

sections. Thanks to the diagonal structure of A, we have that the `-th slice of the Krylov
basis vector Ahb with respect to the first mode is Ah

0b`. Consequently the `-th slices
of the basis vectors of Kk(A,b) span the Krylov space Kk(A0,b`). It means that the
individual solutions defined by the slices x[`]

k of the iterate from the “all-in-one” TT-
GMRES scheme lie in the same space as the y`,k generated by TT-GMRES applied to the
individual systems A0y` = b` with y`,0 = 0. While the two iterates belong to the same
space, they are different since the former, x[`]

k , is built by minimizing the residual norm of
Ax−b over Kk(A,b) and the latter, y`,k, by minimizing the residual norm of A0y` = b`
over Kk(A0,b`). If we neglect the effect of the rounding, one can expect that∥∥∥b` −A0x[`]

k

∥∥∥ ≥‖b` −A0y`,k‖ .

Remark 2.3.6. We notice that a block TT-GMRES method could also be defined for the
solution of such multiple right-hand side problems. In that situation, each individual
residual norm would be minimized over the same space spanned by the sum of the in-
dividual Krylov space. This would be somehow the dual approach to the one described
above, where we minimize the sum of the residual norms on each individual Krylov space.

Regarding the numerical quality of the extracted solution compared to the individually
computed solution, the bound stated in Proposition 2.3.4 is still true. As in the previous
section an informative, but with lower practical interest, bound similar Proposition 2.3.5
can be derived.

Proposition 2.3.7. Under the hypothesis of Proposition 2.3.5, if A = Ip ⊗ A0, then
for ηA,v(xk) and ηA`,b`(x

[`]
k ) associated with the linear systems Ax = b and A0y` = b`

respectively, for every ` ∈ {1, . . . , p} the following inequality holds

ηA,b(xk)ψ`(xk) ≥ ηA`,b`(x
[`]
k ) where ψ`(xk) =

‖xk‖+√p/‖A0‖2∥∥∥x[`]
k

∥∥∥+ 1/‖A0‖2

. (2.32)



CHAPTER 2. A ROBUST GMRES IN TT-FORMAT 57

Proof. The result follows from the thesis of Proposition 2.3.5, since ‖A‖2 =‖A0‖2

Corollary 2.3.8. Given a sequence of iterative solutions {xk}k∈N and a value ν, if there
exists a k∗` ∈ N such that | ||A`x[`]

k || − 1| ≤ ν for every k ≥ k∗` , then

ηA,b(xk) ρ∗(xk) ≥ ηA`,b`(x
[`]
k ) where ρ∗(xk) =

‖A‖2‖xk‖+√p
2− ν (2.33)

for every ` ∈ {1, . . . , p} and for every k ∈ N such that k ≥ k∗∗ where k∗∗ = max k∗` .

Corollary 2.3.9. Under the hypothesis of Corollary 2.3.8, if there exists a k† ∈ N such
that

∥∥∥x[`]
k

∥∥∥ ≤‖A−1‖2
√
p for every k ≥ k†, then

ηA,v(xk) ρ† ≥ ηA`,v`(x
[`]
k ) where ρ† =

√
p

2− ν (1 + κ2(A)) (2.34)

with κ2(A) = ||A||2||A−1||2 for every ` ∈ {1, . . . , p} and for every k ∈ N such that k ≥ k‡

where k‡ = max{k∗∗, k†} with k∗∗ given in Corollary 2.3.8.

2.3.3 Numerical experiments
In this section, we investigate the numerical behaviour of the TT-GMRES solver for

linear problems with increasing order as it naturally arises in some partial differential
equation (PDE) studies. We start by illustrating how the TT-operators of our numeri-
cal examples are directly constructed in TT-format, thanks to their peculiarity. For all
the examples, we illustrate numerical concerns related to the algorithm convergence and
computational costs, with a focus on memory growth and memory saving.

The linear operators of the main problems, addressed in the following sections, are
Laplace-like operators. The Laplace-like tensor operator A ∈ R(n1×m1)···×(nd×md) is the
sum of operators written as

A =M1 ⊗R2 ⊗R3 ⊗ · · · ⊗Rd−2 ⊗Rd−1 ⊗Rd

+ L1 ⊗M2 ⊗R3 ⊗ · · · ⊗Rd−2 ⊗Rd−1 ⊗Rd

+ · · ·+ L1 ⊗ L2 ⊗ L3 ⊗ · · · ⊗ Ld−2 ⊗Md−1 ⊗Rd

+ L1 ⊗ L2 ⊗ L3 ⊗ · · · ⊗ Ld−2 ⊗ Ld−1 ⊗Md

(2.35)

with Lk,Mk, Rk ∈ Rnk×mk for every k ∈ {1, . . . , d}. As relevant property, these linear
operators are expressed in TT-format with TT-rank 2, i.e.,

A =
[
L1 M1

]
⊗
[
L2 M2
0 R2

]
⊗ · · · ⊗

[
Ld−1 Md−1

0 Rd−1

]
⊗
[
Md

Rd

]
(2.36)

as proved in [81, Lemma 5.1]. Remarking that the general expression of the discrete
d-order Laplacian on a uniform grid of n points in each direction is

∆d = ∆1 ⊗ In ⊗ · · · ⊗ In + · · ·+ In ⊗ In ⊗ · · · ⊗∆1



58 2.3. TENSOR TRAIN GMRES

where In is the identity matrix of size n and ∆1 ∈ Rn×n is the discrete matrix Laplacian
using the central-point finite difference scheme with discretization step h = 1

n+1 , i.e.,

∆1 = 1
h2



−2 1 0 . . . 0
1 −2 1 . . . 0
... . . . . . . . . . ...
0 . . . 1 −2 1
0 0 . . . 1 −2

 .

Then the TT-expression of ∆d is

∆d =
[
In ∆1

]
⊗
[
In ∆1
0 In

]
⊗ · · · ⊗

[
In ∆1
0 In

]
⊗
[
∆1
In

]
. (2.37)

To solve linear systems efficiently, we consider an approximation of the inverse of the
discrete Laplacian operator, M, as a preconditioner [61, 62]. This operator writes

M =
q∑

k=−q
ck exp(−tk∆1)⊗ · · · ⊗ exp(−tk∆1) (2.38)

where ck = ξtk, tk = exp(kξ) and ξ = π
q
. Thanks to the previously stated property of

the sum of TT-vectors, we conclude that the TT-ranks of M will be at most 2q + 1. In
Section 2.3.3 we consider the linear system Ax = b and to speed up its convergence we
apply the preconditioner TT-matrix M, effectively solving AMt = b. The preconditioner
TT-matrix M is always computed by q addends equal to a quarter of the grid step size.
To keep the TT-rank of the preconditioner small, we choose to round it to 10−2. The
choice of the number of addends and the rounding compression is further discussed in
Section 2.3.3.1.

To evaluate the converge of the TT-GMRES at the k-th iteration, we display in Sec-
tion 2.3.3 the stopping criterion ηAM,b, that is

ηAM,b(tk) = ‖AMtk − b‖
‖AM‖2‖tk‖+‖b‖ (2.39)

with tk the preconditioned approximated solution at the k-th iteration. We compute
exactly the norm of residual, of the right-hand side, and the iterative preconditioned
approximated solution. The L2-norm of the preconditioner operator AM is instead com-
puted by the following sampling approximation. Let W be a set of normalized TT-vectors
generated randomly from a normal distribution, then‖AM‖2 is approximated by the max-
imum of the norm of the image of the elements of W through AM, i.e.,

‖AM‖2 ≈ max
w∈W

‖AMw‖ .

Similarly, the L2-norm of A is also approximated by max
{
‖Aw‖ s.t.w ∈ W

}
. Because

we are interested in the magnitude of these norms, we keep this norm estimation process
simple and only compute 10 random TT-vectors of W.



CHAPTER 2. A ROBUST GMRES IN TT-FORMAT 59

In order to investigate the main numerical features of the GMRES implementation
described in the previous section we consider two classical PDEs, i.e., the Poisson and
convection-diffusion equations.

The Poisson problem writes −∆u = f in Ω = [0, 1]3,
u = 0 in ∂Ω,

(2.40)

where f : R3 → R is such that the analytical solution of this Poisson problem is
u : [0, 1]3 → R defined as u(x, y, z) = (1 − x2)(1 − y2)(1 − z2). Let set a grid of n
points per mode over Ω, the discretization of the Laplacian over the Cartesian grid is
the linear operator −∆d defined in Equation (2.37) with d = 3. Let b ∈ Rn×n×n be the
discrete right-hand side in TT-format such that b(i1, i2, i3) = f(xi1 , yi2 , zi3).

The convection-diffusion problem, identical to the one considered in [39], writes
−∆u+ 2y(1− x2)∂u

∂x
− 2x(1− y2)∂u

∂y
= 0 in Ω = [−1, 1]3 ,

u{y=1} = 1 and u∂Ω\{y=1} = 0 .
(2.41)

Setting a grid of n points per mode over [−1, 1]3, the Laplacian is discretized as in Equa-
tion (2.37) with d = 3. Let ∇x be discretization of the first derivative of u with respect
to mode 1 defined as ∇x = ∇1⊗ In⊗ In, similarly ∇y is the discrete first derivative with
respect to mode 2 written as ∇y = In ⊗ ∇1 ⊗ In, where ∇1 is the order-2 central finite
difference matrix, i.e.,

∇1 = 1
2h



0 1 0 . . . 0
−1 0 1 . . . 0
... . . . . . . . . . ...
0 . . . −1 0 1
0 0 . . . −1 0

 .

Let v : [−1, 1]3 → R2 be a function such that v(x, y, z) =
(

2y(1 − x2),−2x(1 − y2)
)
,

the two components of v are discretized over the Cartesian grid set on [−1, 1]3 defining
two tensors V1,V2 ∈ R(n×n)×(n×n)×(n×n) such that V1 = diag(1− x2)⊗ diag(2y)⊗ In and
V2 = diag(−2x)⊗ diag(1− y2)⊗ In. Then the discrete diffusion term D writes

D = V1 •∇x + V2 •∇y

= diag(1− x2)∇1 ⊗ diag(2y)⊗ In + diag(−2x)⊗ diag(1− y2)∇1 ⊗ In .
(2.42)

The final operator passed to the TT-GMRES algorithm is A = −∆3 + D, the right-hand
side is the TT-vector b ∈ Rn×n×n and the initial guess is the zero TT-vector x0. To
ensure a fast convergence, similarly to [39], we consider a right preconditioner M from
Equation (2.38) for this test example.



60 2.3. TENSOR TRAIN GMRES

2.3.3.1 Main features and robustness properties

In this section, we first illustrate in Section 2.3.3.1 the major differences between our
GMRES implementation and the one proposed in [39] that mostly highlights the robust-
ness of our variant. We motivate the need for effective preconditioners in Section 2.3.3.1
and illustrate the performance and the main features of preconditioned GMRES in Sec-
tion 2.3.3.1. All the experiments were performed using python 3.6.9 and with the tensor
toolbox ttpy 1.2.0 [109].

Comparison with previous tensor GMRES algorithm
In this section we describe the TT-GMRES introduced in [39], which we refer to as
relaxed TT-GMRES, that attempts to use advanced features enabled by the inexact
GMRES theory [16, 50, 128, 139]. In particular, these inexact GMRES theoretical results
show that some perturbations can be introduced in the linear operator when enlarging
the Krylov space so that the magnitude of these perturbations can grow essentially as
the inverse of the true residual norm of the current iterate. In that context, the accuracy
of computation of the linear operator can be relaxed, which motivated the use of this
terminology in [16, 50]. The inexact GMRES theory assumes exact arithmetic so that
Equation (2.1) holds. In practice, this equality becomes invalid as soon as some loss of
orthogonality appears in the Arnoldi basis so that

‖r̃k‖ = ‖βe1 − H̄ky‖ 6= ‖rk‖ = ‖b− Axk‖; (2.43)

that is, the norms of the least squares residual and the true residual differ.
In a TT-computational context, these inexact Krylov results motivated the heuristic

presented in [39], which consists in transferring the perturbation policy from the matrix
to the output of the matrix-vector product. More precisely, the variable perturbation
magnitude is implemented by varying the rounding threshold δ applied to the tensor re-
sulting from the matrix-vector product along the iterations. Furthermore, the magnitude
of the rounding δ is computed using the least squares residual norm rather than the true
residual norm for practical computational reasons. A possible consequence of this choice
is that δ is somehow artificially increased.

Although the rounding is performed exactly at the same step in the two algorithms,
there are two differences between our TT-GMRES and the relaxed TT-GMRES [39]. The
first difference is related to the rounding threshold policy that is variable (or relaxed to use
the terminology of the pioneering paper on inexact GMRES [16]) and constant in our case.
We simply define the value of δ essentially to the value of the target accuracy in terms
of backward error (2.3) ((2.39) when a preconditioner is used). The second difference is
related to the stopping criterion that is defined in terms of backward error (2.3) in our
case ((2.39) when a preconditioner is used) while it is based on a scaled least squares
residual defined by Equation (2.44) in [39]:

η̃b(xk) = ‖r̃k‖
‖b‖

. (2.44)



CHAPTER 2. A ROBUST GMRES IN TT-FORMAT 61

Because in practice the true residual differs from the least squares residual, this latter is
monotonically decreasing towards zero, such a stopping criterion can lead to an earlier
stop.

We choose this stopping criterion based on backward error because it is the one for
which, in the matrix framework, GMRES is backward stable in finite precision [113].
Through intensive numerical experiments [3], we observed that our TT-GMRES inherits
the same backward stability property. Indeed if δ is the rounding accuracy and xk the
GMRES solution at iteration k, then ηA,b(xk) is O(δ) as δ is the dominating part of the
rounding error occurring during the numerical calculation. Consequently assuming δ ≤ ε,
our GMRES variant is able to ensure a ε-backward stable solution. This property is well

0 20 40 60 80 100
iteration

10 7

10 5

10 3

10 1

AM
,b

 = 1e-3
 = 1e-5
 = 1e-8

Figure 2.6 – Convergence history of TT-GMRES on a 3-d convection-diffusion problem,
n = 64, for three different rounding accuracies δ.

illustrated in Figure 2.6 in the case of preconditioned GMRES. The 3d convection-diffusion
problem with 63 discretization points is solved using 3 different rounding accuracies,
i.e., δ ∈ {10−3, 10−5, 10−8}, and a maximum of 100 iterations. For each value of δ, the
backward error ηAM,b(tk) decreases and stagnates around δ.

The second significant difference between the two GMRES variants is the choice of
the rounding threshold along the iterations that is constant for us and varies as the in-
verse ‖r̃k‖ in [39]. This variation of the rounding is illustrated in Figure 2.7. We solve
with the two different algorithms the same convection-diffusion problem with 63 dis-
cretization points in each spatial dimension. We select three different rounding accuracies
δ ∈ {10−3, 10−5, 10−8} and perform 100 iterations of full GMRES (i.e., no restart). In
Figure 2.7F we see the extreme growth of the rounding threshold, when it is scaled by the
norm of r̃k, the least-squares residual norm that becomes smaller and smaller. When the
rounding accuracy becomes significantly large, the TT-ranks in relaxed TT-GMRES are
cut to 1, losing almost all the information carried in the tensor. Figure 2.7A shows the
scaled residual used as stopping criterion in [39]. We observe that if δ is not relaxed along



62 2.3. TENSOR TRAIN GMRES

0 20 40 60 80 100
iteration

10 16

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100

b

= 1e 3 relaxed
= 1e 3
= 1e 5 relaxed
= 1e 5
= 1e 8 relaxed
= 1e 8

(A) Convergence history with
η̃b with least squares residual

0 20 40 60 80 100
iteration

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100

b

= 1e 3 relaxed
= 1e 3
= 1e 5 relaxed
= 1e 5
= 1e 8 relaxed
= 1e 8

(B) Convergence history with
ηb with true residual

0 20 40 60 80 100
iteration

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100

A
M

,b

= 1e 3 relaxed
= 1e 3
= 1e 5 relaxed
= 1e 5
= 1e 8 relaxed
= 1e 8

(C) Convergence history ηAM,b
with true residual

0 20 40 60 80 100
iteration

0

10

20

30

40

50

60

m
ax

im
al

 T
T 

ra
nk

= 1e 3 relaxed
= 1e 3
= 1e 5 relaxed
= 1e 5
= 1e 8 relaxed
= 1e 8

(D) Max TT-rank of the last
Krylov vector

0 20 40 60 80 100
iteration

0

3

6

9

12

15

18

m
ax

im
al

 T
T 

ra
nk

= 1e 3 relaxed
= 1e 3
= 1e 5 relaxed
= 1e 5
= 1e 8 relaxed
= 1e 8

(E) Max TT-rank of the iterative
solution

0 20 40 60 80 100
iteration

10 7

10 5

10 3

10 1

101

103

105

de
lta

= 1e 3 relaxed
= 1e 5 relaxed
= 1e 8 relaxed

(F) History of the relaxed δ val-
ues

Figure 2.7 – TT-GMRES and relaxed TT-GMRES for the solution of 3-d convection-
diffusion problem with n = 63.

the iterations, the value of η̃b decreases extremely quickly, reaching 10−10 for δ = 10−3

and at least 10−14 for the other rounding accuracies. On the other hand, if the rounding
accuracy is relaxed during the iterations, we see that in all the cases η̃b reaches at least
10−6. However, the comparison of Figure 2.7A and Figure 2.7B illustrates the numerical
difference of the least squares residual norm and the true residual norms given by Equa-
tion (2.43). This comparison reveals that η̃b(xk) with the relaxed δ converges, but ηb(xk),
that is also a backward error as defined in (2.4), does not. It means that the solutions
computed using the relaxed δ are meaningless in terms of backward error accuracy. Simi-
lar conclusions can be drawn from Figure 2.7C that presents the history of ηAM,b for the
two algorithms. When the rounding accuracy is kept constant, we recover a backward



CHAPTER 2. A ROBUST GMRES IN TT-FORMAT 63

stable behaviour similar to the one proved for finite precision calculation in classical linear
system solution in matrix format. Indeed ηAM,b always reaches and stagnates around the
selected constant value of δ. On the contrary, when δ is relaxed at each iteration, the
quantity ηAM,b stagnates quickly slightly above 10−3, whatever the starting value of δ.
From these two figures, we conclude that relaxing the rounding accuracy and using η̃b
as a stopping criterion, together or independently, do not provide any insight into the
quality of the computed solution.

Obviously, the choice of relaxing the rounding accuracy has a powerful effect on the
rank of the last Krylov basis vector and the solution, as illustrated by Figure 2.7D
and 2.7E. Indeed in the case of the last Krylov basis vector, its TT-rank oscillates around
1 for all the iterations, after the 15-th one approximately. Similarly, the solution TT-rank
stays equal to 1, after increasing at the very first steps. Unfortunately, the computed
solutions are numerically meaningless. In the following, we consider calculation with con-
vergence threshold and rounding accuracy equal to 10−5, that is, δ = ε = 10−5, with a
maximum of 500 iterations and restart m = 25.

Poisson problem
We consider the restarted TT-GMRES for the solution of the 3-d Poisson problem with
n ∈ {63, 127, 255}. Figure 2.8A shows that the algorithm is able to converge to the pre-
scribed tolerance ε = 10−5 with the number of iterations that increases with the number
of discretization points. This high number of steps to solve a quite simple PDE motivates
the need for a preconditioner. Indeed in general the larger the number of TT-GMRES
iterations, the larger the TT-rank growth for the Krylov basis vectors; consequently, the
higher the computational cost per iteration. For that example, it can be seen in Fig-
ure 2.8B that the rank of the current iterate grows significantly during the first iterations
(first 100 iterations for n = 63 and the first 200 steps for n ∈ {127, 255}) before decreasing
in a non monotonic way. We infer that this particular behavior is related to the separable
nature of the analytical solution, which is

u(x, y, z) =
[
diag(1− x2)

]
⊗
[
diag(1− y2)

]
⊗
[
diag(1− z2)

]
with rank 1 and as consequence its TT-rank is also bounded by 1. After some iterations
TT-GMRES seems to capture the main structure of the solution, being able to almost
halve the TT-ranks, as it is visible in Figure2.8B. Another quantity monitored during the
iterations is the growth of the last Krylov vector TT-ranks. In Figure 2.8C the maximum
TT-rank of the last Krylov vector presents a steep increase during the first phase, followed
by a slightly decreasing phase. The behavior of the maximum TT-rank establishes the
trend in the compression ratio of the last vector and the entire basis. Indeed the curves
of Figures 2.8D and 2.8E are the same of Figure 2.8C scaled by a constant, equal to n3

for the first and kn3 for the second where k is equal to the current iteration in the restart.
Lastly, in Figure 2.8C mainly during the second phase, there are many consecutive drops
in the maximum TT-ranks which appear with a specific frequency. They are due to the
restart after every other 25-th iteration. In fact, at restart the new Krylov vector is equal
to the normalized rounded residual, whose basic starting TT-ranks is the one of x, equal



64 2.3. TENSOR TRAIN GMRES

0 100 200 300 400
iteration

10 5

10 4

10 3

10 2

10 1

100

A
M

,b

n = 63
n = 127
n = 255

(A) Convergence history

0 100 200 300 400
iteration

0

5

10

15

20

m
ax

im
al

 T
T 

ra
nk

n = 63
n = 127
n = 255

(B) Maximal TT-rank of the iter-
ative solution

0 100 200 300 400
iteration

0

20

40

60

80

100

120

140

160

m
ax

im
al

 T
T 

ra
nk

n = 63
n = 127
n = 255

(C) Maximal TT-rank of the last
Krylov vector

0 100 200 300 400
iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ra
tio

n = 63
n = 127
n = 255

(D) Compression ratio for the last
Krylov vector

0 100 200 300 400
iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ra
tio

n = 63
n = 127
n = 255

(E) Compression ratio for the en-
tire Krylov basis

Figure 2.8 – 3-d Poisson problem using δ = ε = 10−5.

to 21 at maximum. Lastly notice that in the worst case storing the last Krylov vector and
the entire Krylov basis request approximately 80% for n = 63 of the memory that would
be used for storing entirely them. Furthermore, this ratio decreases when the number
of points per mode increases (i.e., n ∈ {63, 127, 255}), which is an appealing feature of
the TT-format that allows the solution of larger problems for a given memory budget
compared to the situation where the full tensors would have to be stored.

Preconditioner parameter study
In this section, the preconditioner firstly introduced in (2.38) is further investigated.
In particular, we focus on the effect on the convergence of the number of addends
and on the compression accuracy chosen to compute it. As in Equation (2.38), let
M ∈ R(n×n)×···×(n×n) be the d-order TT-matrix that approximates the inverse of the



CHAPTER 2. A ROBUST GMRES IN TT-FORMAT 65

discrete Laplacian ∆d, cf. [61, 62], defined as

M =
q∑

k=−q
ck exp(−tk∆1)⊗ · · · ⊗ exp(−tk∆1)

where ck = ηtk, tk = exp(kη) and η = π/q. As already mentioned, since M is a sum
of tensors, its TT-rank is greater or equal than 2q + 1. The magnitude of TT-ranks of
M conditions the TT-ranks of the Krylov basis vectors and the final solution. Therefore
it is convenient to keep M TT-rank significantly small, either by reducing the number
of addends, i.e., choosing a low value for q, or by compressing M with an accuracy τ .
With the help of a Poisson problem, we illustrate the trade-off between the number of
addends and compression accuracy which leads to the optimal convergence. We consider
the Poisson problem, written as−∆u = 1 in Ω = [0, 1]3

u = 0 in ∂Ω

so that the effect of the preconditioner is as evident as possible. Let −∆3 be the dis-
cretization of the Laplacian operator over a grid of n = 63 points per mode. Similarly
let b ∈ Rn×n×n be a tensor with all the entries equal to 1. Then, setting A = −∆3,
TT-GMRES solves the tensor linear system Ax = b, preconditioning it on the right as

AMq,τt = b

for q ∈ {2, 8, 16, 32, 64} and τ ∈ {10−2, 10−8}. The parameters of TT-GMRES are toler-
ance ε = 10−16, rounding accuracy δ = 10−5, dimension of the Krylov space m = 25 and
a maximum of 2 restart. We set TT-GMRES tolerance equal to the machine precision so
that the algorithm performs all the 50 iterations. In Table 2.3, we report the maximal
TT-rank of Mq,τ and the‖AMq,τ‖2 rounded at the third digits for all the combinations of
q and τ . Remark that fixed a value for q the L2 norm of the preconditioned linear system
is the same up to the third digits for both the values of τ . This seems to suggest that the
number of addends plays a key role in determining the quality of the preconditioner, while
the rounding accuracy τ affects more significantly the TT-rank, removing kind of unnec-
essary information. Indeed for τ = 10−2 and q ≥ 8, the maximal value of the TT-rank is
always 5, but depending on an increasing number of addends, the L2 norm gets closer to
1. Similarly for τ = 10−8 and q ≥ 32, the maximal TT-rank is 15 and the rounded L2
norm is equal to 1.

τ = 10−2 τ = 10−8

q 2 8 16 32 64 2 8 16 32 64

Max TT-rank of Mq,τ 2 5 5 5 5 2 7 13 15 15
L2 norm of AMq,τ 0.012 0.276 0.949 1.00 1.00 0.012 0.276 0.949 1.00 1.00

Table 2.3 – Preconditioner properties for grid step n = 63.



66 2.3. TENSOR TRAIN GMRES

Looking at the convergence history in Figures 2.9A and 2.9B, a value of q ≥ 16
is already sufficient to reach in a very low number of iterations the bound 10−5, due
to the TT-GMRES rounding value δ. Figure 2.9B shows clearly that by keeping more
information in the preconditioner, TT-GMRES may reach very low levels. However in
Figure 2.9D we observe the side effect of more information. The TT-rank of the last
Krylov vector increases significantly for a very accurate preconditioner. More precisely,
comparing Figures 2.9C and 2.9D, the TT-rank of the last Krylov vector doubles if the
preconditioner is more accurately rounded. Notice also that in Figure 2.9C, the TT-rank
for q ∈ {16, 32, 64} is almost the same. For the solution viewpoint, the rounding accuracy
chosen for the preconditioner has not a big impact on its TT-rank. Indeed, as plotted
in Figure 2.9E and 2.9F, for both the values of τ and for all q ≥ 8, the TT-rank of the
solution is equal to 5, while only for q = 2 it increases, meaning that only 5 addends are
not sufficient to speed up the discrete Laplacian convergence.

0 10 20 30 40 50
iteration

10 8

10 6

10 4

10 2

100

AM
,b

q = 2
q = 8
q = 16
q = 32
q = 64

(A) Convergence history for τ = 10−2 and
rounding δ = 10−5

0 10 20 30 40 50
iteration

10 8

10 6

10 4

10 2

100

AM
,b

q = 2
q = 8
q = 16
q = 32
q = 64

(B) Convergence history for τ = 10−8 and
rounding δ = 10−5

Figure 2.9 – 3-d Poisson problem, comparing preconditioners.

Convection-diffusion
We test three different grid sizes, i.e., n ∈ {63, 127, 255}, with preconditioner M from
Equation (2.38) with q ∈ {16, 32}. Indeed without it, even with the smallest size, TT-
GMRES does not converge to the prescribed tolerance ε = 10−5 in a reasonable number of
iterations. However using the preconditioner defined in Equation (2.38), an approximated
solution is found in 5 or less iterations, as displayed in Figure 2.10A. The preconditioner in
this case has an extremely strong effect, from which the TT-rank growth and the memory
consumption benefit. In Figure 2.10B the maximum TT-rank exceeds in the worst case
the value of 35, but to fully interpret this information the compression ratio must be taken
into consideration. Figure 2.10C shows that in the worst case to store the last Krylov



CHAPTER 2. A ROBUST GMRES IN TT-FORMAT 67

0 10 20 30 40 50
iteration

0

10

20

30

40

50

60

m
ax

im
al 

TT
 ra

nk

q = 2
q = 8
q = 16
q = 32
q = 64

(C) Maximal TT-rank of the last Krylov vector
for τ = 10−2

0 10 20 30 40 50
iteration

0

10

20

30

40

50

60

m
ax

im
al 

TT
 ra

nk

q = 2
q = 8
q = 16
q = 32
q = 64

(D) Maximal TT-rank of the last Krylov vector
for τ = 10−8

Figure 2.9 – 3-d Poisson problem, comparing preconditioners.

0 10 20 30 40
iteration

1

2

3

4

5

6

7

8

m
ax

im
al 

TT
 ra

nk

q = 2
q = 8
q = 16
q = 32
q = 64

(E) Maximal TT-rank of the iterative solution
for τ = 10−2

0 10 20 30 40
iteration

1

2

3

4

5

6

7

8

m
ax

im
al 

TT
 ra

nk

q = 2
q = 8
q = 16
q = 32
q = 64

(F) Maximal TT-rank of the iterative solution
for τ = 10−8

Figure 2.9 – 3-d Poisson problem, comparing preconditioners.

vector in TT-format we use approximately 12% of the memory we would need to store
the full tensor. Similarly, in Figure 2.10D, we see that storing in TT-format the entire
Krylov basis request in the worst case only 7% of the memory that would be used to store
the full tensors basis. Although not reported in this document, a more stringent accuracy
would require a smaller rounding threshold and consequently a larger memory to store
the TT-vectors.



68 2.3. TENSOR TRAIN GMRES

1 2 3 4 5
iteration

10 5

10 4

10 3

10 2

10 1

100

A
M

,b

n = 63
n = 127
n = 255

(A) Convergence history

1 2 3 4 5
iteration

0

5

10

15

20

25

30

35

m
ax

im
al

 T
T 

ra
nk

n = 63
n = 127
n = 255

(B) Maximal TT-rank of the last Krylov vector

1 2 3 4 5
iteration

0.00

0.02

0.04

0.06

0.08

0.10

0.12

ra
tio

n = 63
n = 127
n = 255

(C) Compression ratio for the last Kyrolv vec-
tor

1 2 3 4 5
iteration

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

ra
tio

n = 63
n = 127
n = 255

(D) Compression ratio for the entire Krylov ba-
sis

Figure 2.10 – 3-d Convection-diffusion using δ = ε = 10−5.

2.3.3.2 Solution of parameter-dependent linear operators

This section focuses on 4-d PDEs, namely parametric convection-diffusion and sta-
tionary heat equations. The domain of both problems is obtained as a Cartesian product
of a 3-d space domain and a further parameter space. The common idea for these PDEs
is solving for all discrete parameter values simultaneously, getting an “all-in-one” solu-



CHAPTER 2. A ROBUST GMRES IN TT-FORMAT 69

tion. The structure of the operators enables us to check numerically the quality of the
theoretical bounds stated in Section2.3.2.

Parametric convection-diffusion
The parametric convection-diffusion problem is a variation of Problem (2.41), defined as

−α∆u+ 2y(1− x2)∂u
∂x
− 2x(1− y2)∂u

∂y
= 0 in Ω = [−1, 1]3 ,

u{y=1} = 1 and u∂Ω\{y=1} = 0 .
(2.45)

As in Section 2.3.3.1 let define a grid of n points along each direction of Ω, then the
final discrete operator of this PDE is Aα = α∆3 + D with α ∈ [1, 10] and D defined in
Equation (2.42). Similarly, the right-hand side cα ∈ Rn×n×n depends on the parameter
α ∈ [1, 10] because of the boundary conditions. To solve for multiple discrete values of
α, getting an “all-in-one” problem and solution, we tensorize ∆3 and D by a diagonal
matrices, adding a fourth dimension. The tensor operator for the simultaneous solution
is A ∈ R(p×p)×(n×n)×(n×n)×(n×n) defined as

A = A⊗∆d + Ip ⊗D ,

where A = diag(α1, . . . αp) with αi ∈ [1, 10] logarithmically distributed for i ∈ {1, . . . , p}.
The right-hand side of the “all-in-one” problem is b ∈ Rp×n×n×n such that

b[`] = 1
‖cα`‖

cα` for ` ∈ {1, . . . , p}

using the slice notation introduced in Section 2.3.2. By construction ‖b‖ = √p, i.e., the
discrete “all-in-one” problem fits into the hypothesis of Proposition 2.3.5 and 2.3.7. Re-
mark that the “all-in-one” linear operator is directly constructed as a TT-matrix from the
TT-matrix of the single linear system, while the “all-in-one” right-hand side is constructed
as a full tensor and then converted into a TT-vector.

TT-GMRES is used for solving the “all-in-one” linear system for n ∈ {63, 127, 255} and
p = 20, with the order-d preconditioner M defined in Equation (2.38) with q ∈ {16, 32}
tensorized with the identity

M = Ip ⊗M. (2.46)

Figure 2.11A shows that the algorithm converges in less than 20 iterations for the first
two values of n and in less than 25 for n = 255; that is, no restart is needed. For
the computational side, Figure 2.11B displays the maximal TT-rank of the last Krylov
vector, which in the worst case is lower than 100. This result translates in terms of
memory by a need of slightly more than 4% of the memory that would be required to
store the full Krylov vector in the worst case, as highlighted by Figure 2.11C. Looking
at the cost of storing the entire Krylov basis in Figure 2.11D, we see that TT-format
requires around 2% of the memory necessary to store the entire Krylov basis in full tensor
format. We now investigate the tightness of the bound given in Proposition 2.3.5 and



70 2.3. TENSOR TRAIN GMRES

2.3.7. Figure 2.13 shows the quality of the bound for ηb` for ` ∈ {1, . . . , p}. For all the
values of n, the ηb1 curve dominates the other during the first half of the iterations. In
the optimal case, the difference between ηb` and ηb is lower than one order of magnitude.
To plot the ηAM,b bound from Proposition 2.3.5, we define a vector υ` ∈ Rw whose k-th
component corresponds to the value of the coefficient ρ` from Equation (2.26) evaluated
for the solution at the k-th iteration, i.e.,

υ`(k) = ρ`(tk) for every k ∈ {1, . . . , w}

with w equal to the iteration number to reach the convergence. Let `m and `M the
parameter index for which the norm of υ` is minimal and maximal respectively, i.e.,

`m = argmin
`∈{1,...,p}

‖υ`‖ and `M = argmax
`∈{1,...,p}

‖υ`‖ (2.47)

which in our specific case are equal to 1 and 14 respectively. In Figure 2.13 we display
in ηAM,b(tk) scaled by ρ` (see Equation (2.26) from Proposition 2.3.5) and by ρ∗ (see
Equation (2.33) from Corollary 2.3.8) versus ηA`M,b`(t

[`]
k ) for ` ∈ {5, 20} and for all the

values of n.
The three scaled curves overlap from the third iterations for all the grid sizes, mean-

ing that the approximation of the scaling coefficient given by ρ∗ is extremely valid in
this example. We see that the orange curve corresponding to ηA5M,b5

and the blue one
for ηA20M,b20

intersect frequently, with a difference of one order at most. Moreover the
difference between ηA5M,b5

and ηAM,b scaled by ρ5 is lower than one order of magnitude
in the optimal case, while in the worst case it is not larger than two orders. Therefore
we conclude that for this PDE the bound of the “all-in-one” for the individual solution is
quite tight. Notice that to estimate ρ∗ no extra computation is required, while the norm
of A`Mt[`]

k has to be computed to get the value of ρ`(tk).

Heat equation with parametrized diffusion coefficient
We consider the heat equation with parametrized diffusion coefficient studied in [86] and
defined as {

−∇ · (σθ(x, y, z)∇u(x, y, z)) = 1 in Ω = [−1, 1]3 ,
u = 0 in ∂Ω.

(2.48)

where the coefficient σθ is a piece-wise constant function such that

σθ(x, y, z) =
{

1 + θ in [−0.5, 0.5]3,
1 elsewhere,

with θ ∈ [0, 10]. The function σθ, rewritten as σθ(x, y, z) = 1 + θ1Ξ(x, y, z) where 1Ξ is
the indicator function of Ξ, provides a linear dependency on θ for the PDE. If Ξx is the
projection of set Ξ over the x-axis and similarly for Ξy and Ξz, then

σθ(x, y, z) = 1 + θ1Ξx(x)1Ξy(y)1Ξz(z).



CHAPTER 2. A ROBUST GMRES IN TT-FORMAT 71

0 5 10 15 20
iteration

10 5

10 4

10 3

10 2

10 1

100

A
M

,b

n = 63
n = 127
n = 255

(A) Convergence history

0 5 10 15 20
iteration

0

20

40

60

80

100

m
ax

im
al

 T
T 

ra
nk

n = 63
n = 127
n = 255

(B) Maximal TT-rank of the last Krylov vector

0 5 10 15 20
iteration

0.00

0.01

0.02

0.03

0.04

ra
tio

n = 63
n = 127
n = 255

(C) Compression ratio for the last Kyrolv vec-
tor

0 5 10 15 20
iteration

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

ra
tio

n = 63
n = 127
n = 255

(D) Compression ratio for the entire Krylov ba-
sis

Figure 2.11 – 4-d Parametric convection-diffusion using δ = ε = 10−5.

The problem stated in Equation (2.48) writes equivalently

−∆u(x, y, z)− θ∇ ·
(
1Ξx(x)1Ξy(y)1Ξz(z)∇u(x, y, z)

)
= 1 in Ω = [−1, 1]3 ,

u = 0 in ∂Ω.
(2.49)



72 2.3. TENSOR TRAIN GMRES

0 5 10 15
iteration

10 4

10 3

10 2

10 1

100

b

all-in-1 times  20
1 = 1.0
4 = 1.4384
12 = 3.7927
20 = 10.0

(A) Convergence history in ηb
for n = 63

0 5 10 15
iteration

10 4

10 3

10 2

10 1

100

b

all-in-1 times  20
1 = 1.0
4 = 1.4384
12 = 3.7927
20 = 10.0

(B) Convergence history in ηb
for n = 127

0 5 10 15 20
iteration

10 4

10 3

10 2

10 1

100

b

all-in-1 times  20
1 = 1.0
4 = 1.4384
12 = 3.7927
20 = 10.0

(C) Convergence history in ηb
for n = 255

Figure 2.12 – 4-d Parametric convection-diffusion ηb bound using δ = ε = 10−5.

0 5 10 15
iteration

10 5

10 4

10 3

10 2

10 1

100

A
M

,b

all-in-1 scaled by  20
all-in-1 scaled by  5

all-in-1 scaled by  *

 20 = 10.0
 5 = 1.6238

(A) Convergence history in
ηAM,b for n = 63

0 5 10 15
iteration

10 5

10 4

10 3

10 2

10 1

100

A
M

,b

all-in-1 scaled by  20
all-in-1 scaled by  5

all-in-1 scaled by  *

 20 = 10.0
 5 = 1.6238

(B) Convergence history in
ηAM,b for n = 127

0 5 10 15 20
iteration

10 5

10 4

10 3

10 2

10 1

100

A
M

,b

all-in-1 scaled by  20
all-in-1 scaled by  5

all-in-1 scaled by  *

 20 = 10.0
 5 = 1.6238

(C) Convergence history in
ηAM,b for n = 255

Figure 2.13 – 4-d Parametric convection-diffusion ηAM,b bound using δ = ε = 10−5.

After setting a grid on n points along each direction on Ω, the first term B0 of the operator
in (2.49) is discretized by the 3-d Laplacian ∆3. For the second term B1, notice that the
indicator function 1Ξ is trivially not differentiable on Ξ boundaries. So it is approximated
on the grid points, paying attention to not set them on ∂Ξ. The final expression of B1 is

B1 = Dx∆1 ⊗Dy ⊗Dz +Dx ⊗Dy∆1 ⊗Dz +Dx ⊗Dy ⊗Dz∆1

where ∆1 is the 1-d discrete Laplacian, Dx = diag(1Ξxi ) ∈ Rn×n and similarly for Dy

and Dx. Remark that B1 is a Laplacian-like operator, which is expressed in TT-format
according to Equation (2.35) and (2.36). The final discrete TT-operator of Problem (2.48)
is

Aθ = B0 + θB1.

The right-hand side is c ∈ Rn×n×n such that c(i1, i2, i3) = 1 for ik ∈ {1, . . . , n} for
k ∈ {1, 2, 3}. To study the quality of the bounds expressed in Proposition 2.3.4 and 2.3.5,



CHAPTER 2. A ROBUST GMRES IN TT-FORMAT 73

the tensor c is normalized, i.e., it is scaled by 1/n3. Since we want to solve for p values
of θ in [0, 10] simultaneously, i.e., we want to solve p-times the discrete Problem (2.48)
for different values of θ, we tensorize B0 and B1 by a diagonal matrices, adding a fourth
dimension. The tensor discrete operator A ∈ R(p×p)×(n×n)×(n×n)×(n×n) of the “all-in-one”
problem writes

A = Ip ⊗B0 + Θ⊗B1

where Θ = diag(θ1, . . . , θp) for θi ∈ [0, 10] uniformly distributed for i ∈ {1, . . . , p}. The
right-hand side of the “all-in-one” problem is

b = Ip ⊗ c.

Remark that since‖c‖ = 1 by construction, then‖b‖ = √p. We perform experiments with
full TT-GMRES (i.e., no restart) for n ∈ {63, 127} and p = 20, with the preconditioner
defined in Equation (2.46) with q ∈ {16, 32}. Figure 2.14A shows that TT-GMRES
converges to the prescribed tolerance in approximately 20 iterations. From the point of
view of the memory consumption, in Figure 2.14B we see that for n = 63 the maximum
TT-rank is lower than 200, while for n = 127 it is lower than 250. In terms of memory
saving, Figure 2.14C shows that in the worst case we are using only 10% and less than
5% of the memory necessary to store one full tensor of the Krylov basis and the entire
full basis respectively.

In Figure 2.15 we have the relation of ηb and ηb` for ` ∈ {1, . . . , p}. All the curves
present the same shape, with the one associated with θ1 = 0 being the most peculiar
one. We see that in the optimal case the distance between the “all-in-one” curve and the
individual ones is lower than one order of magnitude, while in the worst case, realized by
θ1 = 0, the difference is approximately of two orders. A similar argument holds for ηAM,b
bound. As in Section 2.3.3.2, we compute `m and `M , as defined in Equation (2.47), which
are equal to `m = 20 and `M = 1 respectively. In Figure 2.16 we see that the two curves
ηA`M,b` have a starting and ending overlapping part, while in the internal part they differ
by less than one order of magnitude. The three scaled curves for ηAM,b overlap from the
third iteration. As in the previously studied case, ρ∗ from Corollary 2.3.8 provides a good
approximation of the scaling coefficient. In the optimal case, the distance is of one order
of magnitude approximately, while in the worst one a little more than one order.

2.3.3.3 Solution of parameter dependent right-hand sides

This section aims to investigate the numerical properties of some examples in the con-
text of the multiple right-hand side solution, following the tensorized approach described
in Section 2.3.2.

Poisson problem
In this section, we solve simultaneously multiple Poisson problems stated in Equa-

tion (2.40) with modified right-hand sides. Let −∆3 be the discretization of the Laplacian
over a Cartesian grid of n points per mode for the domain Ω = [0, 1]3. Let b ∈ Rn×n×n



74 2.3. TENSOR TRAIN GMRES

0 5 10 15 20
iteration

10 5

10 4

10 3

10 2

10 1

100

A
M

,b

n = 63
n = 127

(A) Convergence history

0 5 10 15 20
iteration

0

50

100

150

200

m
ax

im
al

 T
T 

ra
nk

n = 63
n = 127

(B) Maximal TT-rank of the last Krylov vector

0 5 10 15 20
iteration

0.00

0.02

0.04

0.06

0.08

0.10

ra
tio

n = 63
n = 127

(C) Compression ration for the last Kyrolv vec-
tor

0 5 10 15 20
iteration

0.00

0.01

0.02

0.03

0.04

ra
tio

n = 63
n = 127

(D) Compression ratio for the entire Krylov ba-
sis

Figure 2.14 – 4-d Heterogeneous convection-diffusion using δ = ε = 10−5.

be the right-hand side discretization defined in Section 2.3.3.1. We define the individual
linear system as

−∆3y` = b + e[`]

where e[`] ∈ Rn×n×n is the `-th slice with respect to the first mode of e ∈ Rp×n×n×n a
realization of the normal distribution N (0, 1). Since the aim is solving simultaneously
the p problems, as in Section 2.3.2, we define the “all-in-one” tensor linear operator



CHAPTER 2. A ROBUST GMRES IN TT-FORMAT 75

0 5 10 15
iteration

10 3

10 2

10 1

100

b

all-in-1 times  20
1 = 0.0
4 = 1.5789
12 = 5.7895
20 = 10.0

(A) Convergence history in ηb for n = 63

0 5 10 15 20
iteration

10 2

10 1

100

b

all-in-1 times  20
1 = 0.0
4 = 1.5789
12 = 5.7895
20 = 10.0

(B) Convergence history in ηb for n = 127

Figure 2.15 – 4-d Heterogeneous convection-diffusion ηb bound using δ = ε = 10−5.

0 5 10 15 20
iteration

10 5

10 4

10 3

10 2

10 1

100

A
M

,b

all-in-1 scaled by  20
all-in-1 scaled by  1

all-in-1 scaled by  *

 20 = 10.0
 1 = 0.0

(A) Convergence history in ηAM,b for n = 63

0 5 10 15 20
iteration

10 5

10 4

10 3

10 2

10 1

100

A
M

,b

all-in-1 scaled by  20
all-in-1 scaled by  1

all-in-1 scaled by  *

 20 = 10.0
 1 = 0.0

(B) Convergence history in ηAM,b for n = 127

Figure 2.16 – 4-d Heterogeneous convection-diffusion ηAM,b bound using δ = ε = 10−5.

A ∈ R(p×p)×(n×n)×(n×n)×(n×n)

A = Ip ⊗ (−∆3)

while the “all-in-one” right-hand side is c ∈ Rp×n×n×n such that

c = Ip ⊗ b + e.



76 2.3. TENSOR TRAIN GMRES

We consider the solution of the problem with n ∈ {63, 127, 255} and p = 20. To speed up
the convergence we introduce the preconditioner defined in (2.46) with q ∈ {16, 32}. No-
tice that theoretically, the TT-rank of c may become extremely large, leading to memory
over-consumption and higher computational costs. To face this drawback, we impose a
small TT-rank to e[`], so that the TT-rank of c ends up being 11 at maximum. To study
the bounds stated in Section 2.3.2, we need to comply with the hypothesis so that we
scale each individual right-hand side by its norm, so that ‖c‖ = √p.

As we can see in Figure 2.17A, TT-GMRES converges in 5 iterations for n = 63, in 7
for n = 127 and in 9 for n = 255. Figure 2.17B shows that the TT-rank of the last Krylov
vector becomes quickly large, with maximum values ranging from 200 to 300. However
looking at Figures 2.17C and 2.17D, the compression ratio for a single basis vector and
for the entire basis remains extremely small, from 0.05 to 0.2 for the first one and from
0.02 and 0.14 for the entire basis, meaning that the TT approach is still effective from
the memory point of view. As in the parametric operator case, we study the bounds
expressed in Propositions 2.3.4 and 2.3.7. In Figure 2.18, we see that the bound for ηb
is always quite tight, around 1 order of magnitude approximately. To use the result of
Proposition 2.3.7, we set w equal to the number of iterations to converge and for every
` ∈ {1, . . . , p}, we define the vector γ` ∈ Rw such that

γ`(i) = ψ`(tk) for every k ∈ {1, . . . , w}.

We define `m and `M as the indexes which realize the minimum and the maximum of γ`
norm, i.e.,

`m = argmin
`∈{1,...,p}

‖γ`‖ and `M = argmax
`∈{1,...,p}

‖γ`‖ . (2.50)

In this specific case for each grid point step, the value of `m and `M is reported in
Figure 2.19. The same Figure shows that the bound in this specific case is quite good,
with approximately less than 1 order of magnitude of difference, in the optimal and
the worst case. Moreover, the three scaled “all-in-one” curves overlap from the second
iteration, suggesting again that ρ∗ from Corollary 2.3.8 is a good approximation of the
scaling factors.

Convection-diffusion problem
As previously, this section aims to illustrate the solution of multiple convection-diffusion
problem (2.41), with different right-hand sides. Let A0 be the discretization of (2.41)
operator over a Cartesian grid of n points per mode for the domain Ω = [0, 1]3. Let
b ∈ Rn×n×n be the right-hand side discretization defined in Section 2.3.3.1. We define the
individual linear system as

A0y` = b + e`
where e` ∈ Rn×n×n is a realization of the normal distributionN (0, 1) for every ` ∈ {1, . . . , p}.
Since the aim is solving simultaneously the p problems, as in Section 2.3.2, we define the
“all-in-one” tensor linear operator A ∈ R(p×p)×(n×n)×(n×n)×(n×n)

A = Ip ⊗ (−∆3)



CHAPTER 2. A ROBUST GMRES IN TT-FORMAT 77

1 2 3 4 5 6 7 8 9
iteration

10 5

10 4

10 3

10 2

10 1

100

A
M

,b

n = 63
n = 127
n = 255

(A) Convergence history

1 2 3 4 5 6 7 8 9
iteration

0

50

100

150

200

250

300

m
ax

im
al

 T
T 

ra
nk

n = 63
n = 127
n = 255

(B) Maximal TT-rank of the last Krylov vector

1 2 3 4 5 6 7 8 9
iteration

0.00

0.05

0.10

0.15

0.20

ra
tio

n = 63
n = 127
n = 255

(C) Compression ration for the last Kyrolv vec-
tor

1 2 3 4 5 6 7 8 9
iteration

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

ra
tio

n = 63
n = 127
n = 255

(D) Compression ratio for the entire Krylov ba-
sis

Figure 2.17 – 4-d multiple right-hand side Poisson problem using δ = ε = 10−5.

while the “all-in-one” right-hand side is c ∈ Rp×n×n×n such that

c(`, i1, i2, i3) = b(i1, i2, i3) + e`(i1, i2, i3).

for every ik ∈ {1, . . . , nk}, ` ∈ {1, . . . , p} for k ∈ {1, . . . , 3}. The problem is solved for
n ∈ {63, 127} and p = 20. As in all the previous cases of study, we use the preconditioner
stated in (2.46) with q ∈ {16, 32} and we impose a small TT-rank to e` so that the



78 2.3. TENSOR TRAIN GMRES

0 1 2 3 4
iteration

10 3

10 2

10 1

100

b

all-in-1 times  20
extracted  = 1
extracted  = 5
extracted  = 10
extracted  = 15
extracted  = 20

(A) Convergence history in ηb
for n = 63

0 1 2 3 4 5 6
iteration

10 2

10 1

100

b

all-in-1 times  20
extracted  = 1
extracted  = 5
extracted  = 10
extracted  = 15
extracted  = 20

(B) Convergence history in ηb
for n = 127

0 1 2 3 4 5 6 7 8
iteration

10 2

10 1

100

b

all-in-1 times  20
extracted  = 1
extracted  = 5
extracted  = 10
extracted  = 15
extracted  = 20

(C) Convergence history in ηb
for n = 127

Figure 2.18 – 4-d Poisson problem ηb bound using δ = ε = 10−5.

0 1 2 3 4
iteration

10 5

10 4

10 3

10 2

10 1

100

A
M

,b

all-in-1 scaled by  1
all-in-1 scaled by  11

all-in-1 scaled by  *

extracted  = 1
extracted  = 11

(A) Convergence history in
ηAM,b for n = 63

0 1 2 3 4 5 6
iteration

10 5

10 4

10 3

10 2

10 1

100

A
M

,b

all-in-1 scaled by  18
all-in-1 scaled by  4

all-in-1 scaled by  *

extracted  = 18
extracted  = 4

(B) Convergence history in
ηAM,b for n = 127

0 1 2 3 4 5 6 7 8
iteration

10 5

10 4

10 3

10 2

10 1

100

A
M

,b

all-in-1 scaled by  3
all-in-1 scaled by  1

all-in-1 scaled by  *

extracted  = 3
extracted  = 1

(C) Convergence history in
ηAM,b for n = 127

Figure 2.19 – 4-d multiple right-hand side Poisson problem ηAM,b bound using δ = ε =
10−5.

TT-rank of c ends up being 11 at maximum.
Figure 2.20A illustrates the convergence history in 5 iterations for both the grid sizes.

If we compare Figure 2.20A with 2.10A, we observe that the curves are very similar.
Generally speaking, the number of iterations for GMRES to converge, neglecting the
effect of the rounding, is equal to the number of eigenvectors that span the subspace
where the right-hand side lives. This implies that if all the right-hand sides belong to
the same linear subspace, the number of iterations necessary to converge is the same,
implying that under this hypothesis solving for 1 or p right-hand sides requires the same
number of iterations. This point is further discussed in Section 2.3.3.3. From the point
of view of the memory consumption, the comparison of Figure 2.10B and 2.20B shows
that the solution for 20 right-hand sides leads to TT-rank significantly larger, from 25
to 30 in the single right-hand side solution versus more than 200 for the 20 right-hand



CHAPTER 2. A ROBUST GMRES IN TT-FORMAT 79

side “all-in-one” system. However, if we had solved 20 systems independently, summing
all the TT-ranks, we could have reached a maximum of 500 up to 700. This becomes
more interesting if we compare the compression ratios for the last Krylov vector, looking
at Figure 2.10C and 2.20C. We have a ratio from 0.02 up to 0.12 for a single right-hand
side solution versus 0.1 up to 0.17 for the simultaneous one, which shows that these
ratios are extremely closed, considering that in the second case we are solving in a higher
dimension. A similar argument holds for the ratio of compression of the entire Krylov
basis. In Figure 2.20D, the ratio is between 0.06 and 0.12, while in Figure 2.10D it is
between 0.01 and 0.07.

In Figure 2.21, we present the bound for ηb stated in Proposition 2.3.4. We see that
it is quite tight during the first iterations and gets looser at the end, setting at more than
1 order of difference. As in the previous subsection, we compute `m and `M according to
Equation (2.50), deciding which curves are plotted in Figure 2.22. The resulting bound,
displayed in Figure 2.22, is quite tight, being of slightly less than 1 order of magnitude
approximately, with the three scaled curves overlapping from the second iteration.

Multiple right-hand sides: a focus on eigenvectors
In this appendix, we study further the convergence of a multiple right-hand side problem.
Indeed comparing the convergence history of the convection-diffusion problem, see Sub-
section 2.3.3.1 and of the multiple right-hand side convection-diffusion problem discussed
in 2.3.3.3, notice that the number of iterations necessary to converge is equal, 5 in both
cases. This appendix explains the causes of the phenomenon.

As we already explained, given a (tensor) linear system Ax = b and the null tensor
as initial guess, at the k-th iteration GMRES minimizes with respect to x the norm of
the residual Ax− b on the Krylov space of dimension k defined as

Kk(A,b) = span
{
b,Ab, . . . ,Ak−1b

}
where Ah is obtained from h contractions over the indexes (1, 3, . . . , 2d − 1, 2d + 1) of
tensor operator A. If b is equal to ei an eigenvector of the tensor operator A, then the
Krylov space writes

Kk(A,b) = span
{
b,Ab, . . . ,Ak−1b

}
= span

{
ei, λiei, . . . , λk−1

i ei
}

= span
{
ei}

where λi is the i-th eigenvalue of A. The Krylov space dimension is equal to 1, i.e., the
number of eigenvectors ei necessary to express the right-hand side. Theoretically, the
number of iterations necessary to converge, i.e., the dimension of the Krylov space where
the exact solution lives, is by linearity equal to the number of eigenvectors necessary
to express the right-hand side as their linear combination. In the problems presented
in 2.3.3.3, we add a random generated tensor to the chosen right-hand side. Comparing the
results for a single right-hand side and multiple ones in the convection-diffusion problem,



80 2.3. TENSOR TRAIN GMRES

1 2 3 4 5
iteration

10 5

10 4

10 3

10 2

10 1

100

A
M

,b

n = 63
n = 127

(A) Convergence history

1 2 3 4 5
iteration

0

50

100

150

200

m
ax

im
al

 T
T 

ra
nk

n = 63
n = 127

(B) Maximal TT-rank of the last Krylov vector

1 2 3 4 5
iteration

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

ra
tio

n = 63
n = 127

(C) Compression ration for the last Kyrolv vec-
tor

1 2 3 4 5
iteration

0.00

0.02

0.04

0.06

0.08

0.10

0.12

ra
tio

n = 63
n = 127

(D) Compression ratio for the entire Krylov ba-
sis

Figure 2.20 – 4-d multiple right-hand sides convection-diffusion problem using δ = ε =
10−5.

we may conclude that the introduced error has not increased the number of eigenvectors,
for the tolerance chosen.

Let now consider a more peculiar problem with two right-hand sides, living in sub-
spaces generated by different eigenvectors. More in detail, one right-hand side belongs to
the subspace generated by a single eigenvector, while the other to the subspace generated



CHAPTER 2. A ROBUST GMRES IN TT-FORMAT 81

0 1 2 3 4
iteration

10 4

10 3

10 2

10 1

100

b

all-in-1 times  20
extracted = 1
extracted = 5
extracted = 10
extracted = 15
extracted = 20

(A) Convergence history in ηb for n = 63

0 1 2 3 4
iteration

10 4

10 3

10 2

10 1

100

b

all-in-1 times  20
extracted = 1
extracted = 5
extracted = 10
extracted = 15
extracted = 20

(B) Convergence history in ηb for n = 127

Figure 2.21 – 4-d convection-diffusion problem ηb bound using δ = ε = 10−5.

0 1 2 3 4
iteration

10 5

10 4

10 3

10 2

10 1

100

A
M

,b

all-in-1 scaled by  3
all-in-1 scaled by  15

all-in-1 scaled by  *

extracted = 3
extracted = 15

(A) Convergence history in ηAM,b for n = 63

0 1 2 3 4
iteration

10 5

10 4

10 3

10 2

10 1

100

A
M

,b

all-in-1 scaled by  4
all-in-1 scaled by  18

all-in-1 scaled by  *

extracted = 4
extracted = 18

(B) Convergence history in ηAM,b for n = 127

Figure 2.22 – 4-d multiple right-hand side convection-diffusion problem ηAM,b bound using
δ = ε = 10−5.

by other j different eigenvectors. Thanks to our previous argument, theoretically the two
systems converge independently with a different number of iterations, one for the first
and j for the second. When we solve the two systems together, we expect the “all-in-on”
system to converge as the slowest one, i.e., as the slowest converging one. Let e1, . . . , ej+1



82 2.3. TENSOR TRAIN GMRES

be the first (j + 1) different eigenvectors of the 3-dimensional discrete Laplacian −∆3.
We consider the two following linear systems

−∆3y1 = e1 (2.51)

−∆3y2 =
j+1∑
`=2

e`. (2.52)

As described in Section 2.3.2, we define the “all-in-one” linear system with the ‘diagonal’
tensor operator A and the “all-in-one” right-hand side b. TT-GMRES is used to solve
this “all-in-one” system for j = 10, for a grid step size equal to n ∈ {63, 127, 255}, without
preconditioner, with tolerance ε and rounding accuracy δ equal to 10−5, no restart and
a maximum of 50 iterations. Figure 2.23A shows the convergence history of the problem
with the three different grid sizes. Since there is no preconditioner the convergence is
kind of slow if compared with Figure 2.17A. At the same time, the TT-ranks grow not
too quickly, because both there is not a randomly generated error and there are just
two right-hand sides. The residual curve associated with Equation 2.51 in blue is almost

0 10 20 30 40 50
iteration

10 4

10 3

10 2

10 1

100

A
M

,b

n = 63
n = 127
n = 255

(A) Convergence history

0 10 20 30 40 50
iteration

5

10

15

20

25

30

35

m
ax

im
al

 T
T 

ra
nk

n = 63
n = 127
n = 255

(B) Maximal TT-rank of the last Krylov vector

Figure 2.23 – 4-d multiple right-hand side problem with eigenvector.

flattened for all the grid sizes, suggesting that GMRES almost immediately minimized it
completely. On the other side the orange curve of problem (2.52) residual decreases slowly,
meaning that minimizing its norm requires more steps. Lastly in all the plots, the “all-in-
one” residual curve follows exactly the eigenvector sum problem residual, confirming that
the general convergence of the “all-in-one” system is decided by the slowest converging
system, that is our intuition, confirmed in for all the grid sizes in Figure 2.24. As last
remark, the “all-in-one” doesn’t converge in 10 iterations because of the rounding effect,
which slows down the convergence.



CHAPTER 2. A ROBUST GMRES IN TT-FORMAT 83

0 10 20 30 40 50
iteration

0.0

0.5

1.0

1.5

2.0

2.5

3.0

re
sid

ua
l n

or
m

all-in-1
single eigvector
sum of eigenvectors

(A) Residual norm for n = 63

0 10 20 30 40 50
iteration

0.5

1.0

1.5

2.0

2.5

3.0

re
sid

ua
l n

or
m

all-in-1
single eigvector
sum of eigenvectors

(B) Residual norm for n = 127

0 10 20 30 40 50
iteration

1.0

1.5

2.0

2.5

3.0

re
sid

ua
l n

or
m

all-in-1
single eigvector
sum of eigenvectors

(C) Residual norm for n = 255

Figure 2.24 – 4-d multiple right-hand side problem, residual comparison.

2.4 Conclusive remarks

The focus of this chapter is set on the backward stability of the iterative solver GMRES
when the data are perturbed. We study numerically the GMRES backward stability in
the framework, referred to as variable accuracy, where the storage and the computational
accuracy are decoupled. This choice reflects and models the need of compressing data due
to memory constraints, leading to perturbations in their representation. In particular, the
storage perturbations are either synthetic in the matrix case or due to practical imple-
mentation choices, for example when an agnostic lossy compressor or the TT-formalism
are applied in the matrix and tensor context respectively. Our experiments show that the
backward stability of GMRES is maintained in the variable accuracy approach, whether
they are component-wise, consistently with the theoretical results of [40, 113] either they
are norm-wise. Our realization of GMRES in TT-format is further compared numerically
with the previous relaxed version of TT-GMRES, presented in [39], concluding that our
is significantly more robust than the older one. Moreover, we develop some theoretical
backward stable bounds for the simultaneous solution of many order d tensor linear sys-
tems through a unique order (d+ 1) tensor linear systems. The tightness of these bounds
is numerically analysed too.

This chapter is formed by two main sections: the first, i.e., Section 2.2 dedicated
to the matrix results, and the second, that is Section 2.3, to the tensor ones. After
recalling the main linear algebra theorems related to the backward stability of GMRES
in Section 2.2.1, we describe our variable accuracy approach in Section 2.2.2.1. We report
about the numerical stability of GMRES when the perturbations due to compression
simulations or to an agnostic lossy compressor are component-wise in Section 2.2.2 and
in Section 2.2.3 when they are norm-wise.

The second half of this chapter, namely Section 2.3, aims to investigate the GMRES
solver extended to the tensor framework through the TT-formalism, which is a particular
case of the norm-wise perturbation in the variable accuracy approach. The TT-GMRES



84 2.4. CONCLUSIVE REMARKS

algorithm structure is presented in Section 2.3.1. In Section 2.3.2, we focus on the solu-
tion of many tensor linear systems of order d whose operator or right-hand side depends
on a parameter. After stating the assumptions, we illustrate how to mode many tensor
linear systems of order d into a unique tensor linear system of order (d + 1). Moreover,
we theoretically prove some bounds linking the solution of a single tensor linear system of
order d with the corresponding slice extracted from the solution of the order (d+ 1) ten-
sor linear system, presenting the construction with dense format tensors and TT-format
ones, in Section 2.3.2.1. These bounds are meant to guarantee a certain numerical quality
when solving many tensor linear systems at one. All the numerical experiments are col-
lected in Section 2.3.3. In particular, in Section 2.3.3.1, the numerical robustness of our
TT-GMRES algorithm is shown in comparison with the relaxed implementation of GM-
RES in TT-format, proposed in [39]. Further experiments and outcomes related to the
backward stability of our TT-GMRES solver are reported in Section 2.3.3.1 and 2.3.3.1.
Except for the results in Section 2.3.3.1, all the others are obtained with the help of a
tensor right preconditioner for the multilinear operator. The chosen preconditioner de-
pends on several parameters, whose effects are numerically analysed in Section 2.3.3.1.
The outcomes related to parameter-dependent multilinear operators are collected in Sec-
tion 2.3.3.2, while the numerical outputs of parameter-dependent right-hand sides are
found in Section 2.3.3.3.



Chapter 3

Orthogonalization schemes in
TT-format

3.1 Introduction
Many numerical methods require to generate from any set of m independent vectors

of Rn an orthogonal basis of the subspace of Rn spanned by these vectors. Different or-
thogonalization algorithms have been proposed during the years to accomplish this task.
From another viewpoint, they allow also the computation of the matrix QR factoriza-
tion. Indeed, if the input m vectors of Rn are organized into a matrix A ∈ Rn×m, then
some orthogonalization schemes are able to factorize A into the product of an orthogonal
matrix Q ∈ Rn×m and an upper triangular one R ∈ Rm×m. Among the most impor-
tant numerical algorithms, we consider the Classical Gram-Schmidt (CGS) [52, 127], the
Modified Gram-Schmidt (MGS) [52, 127], their versions with re-orthogonalization, named
CGS2 and MGS2 [1, 33, 116], the Gram approach [131] and the Householder transfor-
mation [76]. CGS and MGS are algorithms realizing the Gram-Schmidt method whose
fundamental idea is sequentially removing from an input vector its projection along the
previously computed orthonormal vectors and normalizing it after. The CGS2 and MGS2
procedures are meant to enhance the CGS and MGS qualities orthogonalizing once more
in the same way the basis computed with CGS and the MGS respectively. The Gram
method computes the orthogonal basis taking advantage of the Cholesky factorization of
the Gram matrix, defined by the scalar product of input vector, while the Householder
transformation relies on orthogonal reflections constructed from the input vector set and
used to reflect the canonical basis.

A key point for these orthogonalization algorithms is their numerical stability in finite
precision calculation, estimated by the loss of orthogonality that expresses how much
the computational rounding errors affect the computed basis orthogonality. This aspect
has been deeply studied throughout the years, leading to many interesting theoretical
results, relating the loss of orthogonality to the linearly dependency of the input vectors.
The authors of [15, 51] establish some theoretical bounds for CGS and MGS loss of
orthogonality, showing that the basis produced by MGS is better in terms of orthogonality

85



86 3.2. ORTHOGONALIZATION SCHEMES

than the CGS one. The bounds proved in [51] for CGS2 and MGS2, confirms that this re-
orthogonalization effectively improves the orthogonality of the computed basis. Bounds
for the loss of orthogonality of the Householder transformation of the Gram method are
proved in [143] and [131] respectively.

All the cited algorithms naturally translate in the tensor world, i.e., starting from a set
of m tensors of Rn1×···×nd , they produce an orthogonal basis for the relative subspace of
dimension m of Rn1×···×nd . Clearly, these orthogonalization schemes can work with dense
tensors, see Equation (1.3), but as already stated, the storage and operation cost for full
format tensor grow exponentially with the tensor order. Thus, it is convenient to work
with compressed tensor format.

As inevitably happens with TT-algorithms, the sequence of operations defining the
orthogonalization kernels in TT-format, described in Section 1.3.2, leads to a growth in
the TT-ranks, making necessary some rounding steps that may affect the orthogonality
quality of the basis. The objective of this chapter is to investigate both the orthogo-
nality of the computed TT-vector basis and to relate the results with the theoretical
results of classical numerical matrix computation. To complete the analysis, we study
also a possible application of these kernels: the subspace iteration eigensolver [126], an
eigensolver requiring orthogonalization schemes. In particular, we extend it to the tensor
framework with the TT-formalism, defining the the SUBSPace ITeration in TT-format
(TT-SUBSPIT), and we test it with the six orthogonalization kernels in TT-format, pre-
viously studied. Thus, the TT-SUBSPIT numerical performances, i.e., the quality of the
eigenvalues, are investigated in relation with the orthogonalization kernels plugged into.

The remainder of this chapter is organized as follows. Section 3.2 begins with the de-
scription of the six orthogonalization schemes extended to the tensor context through the
TT-formalism. We address also the complexity in terms of TT-rounding operations, rep-
resenting the computationally most expensive operation. In Section 3.2.4 we recall briefly
the classical numerical linear algebra theoretical bounds related the loss of orthogonality of
these schemes. The theoretical results are linked with the numerical experiments, collected
in Section 3.2.5, of the same orthogonalization schemes extended with the TT-format.
The similarities between the classical orthgonalization kernels and their TT-versions are
summarized in Section 3.2.6. The second Section 3.3 presents the TT-SUBSPIT algo-
rithm, the TT-version of the subspace iteration eigensolver, as a case of study for these
orthogonalization techniques. In Section 3.3.1 we describe the TT-SUBSPIT algorithm
and in Section 3.3.2 we present the output of the numerical examples. In particular, we
analyse the quality of the eigenvalue approximations, of the convergence and the memory
requirements depending on the selected orthogonalization kernel.

3.2 Orthogonalization schemes
In the following sections, we describe the classical orthogonalization kernels, we pro-

pose their extensions to TT-vectors and we discuss their numerical stability comparing it
with the theoretical results of classical matrix computation.



CHAPTER 3. ORTHOGONALIZATION SCHEMES IN TT-FORMAT 87

3.2.1 Classical and Modified Gram-Schmidt

In theoretical linear algebra the Gram-Schmidt process [52, 127] is a tool to produce
an orthonormal basis from a given set of vectors. Let A = {a1, . . . , am} be a set of m
linearly independent vectors of Rn, then the key idea of the Gram-Schmidt process is to
incrementally build an orthonormal basis of the space spanned by the elements of A. At
the i-th step, the i-th element ai is made orthogonal to the previously computed (i − 1)
orthonormal vectors {q1, . . . , qi−1}, subtracting from ai its projection along qj, given by
the scalar product of ai and qj for j ∈ {1, . . . , i− 1}. After normalization the new vector
is qi, the i-th vector of the final orthonormal basis. This mechanism is easily transported
in the tensor framework. Consequently instead of stating the theory of Gram-Schmidt
procedure with the tensor notation, we illustrate the two different realizations of this
theoretical tool only in the TT-format. We carefully underline the differences with the
classical matrix implementations.

3.2.1.1 Classical schemes without reorthogonalization

The direct implementation of the Gram-Schmidt process is known as Classical Gram-
Schmidt (CGS) and its TT-version is sketched in Algorithm 11. Iteratively TT-CGS
initializes pi to ai for every i ∈ {1, . . . ,m}, see line 3. Then in the core loop, the
algorithm subtracts from pi the projection of ai along the (i − 1) previously computed
tensors qj of the new orthogonal basis, as described in lines 5 and 6. As last step, pi is
normalized and added in the new orthonormal basis Q = {q1, . . . ,qi}. The projections of
ai along qj for j ∈ {1, . . . , i−1} define the i-th column of R, which is consequently upper
triangular by construction. The i-th diagonal entry of R is the norm of pi computed
in line 9. These steps appear in both the tensor and in the matrix version of the CGS
algorithm. However when dealing with compressed format tensors, we must ensure that
different algorithm steps do not reduce significantly the compression quality. Since we
are dealing with low-rank TT-vectors, we have to ensure that the TT-ranks stay small.
Indeed assuming that pk and qj have maximum TT-rank r for every j ∈ {1, . . . , k − 1},
then after (k − 1) subtractions, i.e., after (k − 1) repetitions of line 6, the TT-rank of
p will be bounded by kr. To limit the TT-rank growth, we introduce in line 8 the
compression of pi through the TT-rounding algorithm with accuracy δ, which is the most
computationally expensive operation in orthogonalization algorithms. Consequently the
TT-CGS complexity depends on the number of TT-rounding calls and their complexity,
which is known to be O(dnr3) where d is the order of the TT-vector rounded, n and r
are the maximum of the mode size and of the TT-rank respectively. However in TT-CGS
and in the other orthogonalization methods studied, the TT-rank is not always known,
since we are prescribing a rounding accuracy δ. Therefore here and after, we estimate
the complexity of the orthogonalization algorithm in terms of the number of TT-rounding
operations. The complexity of TT-CGS is equal to m TT-rounding operations.



88 3.2. ORTHOGONALIZATION SCHEMES

Algorithm 11 Q , R = TT-CGS(A, δ)
1: input: A = {a1, . . . , am}, δ ∈ R+
2: for i = 1, . . . ,m do
3: p = ai
4: for j = 1, . . . , i− 1 do
. compute the projection of ai along qj

5: R(i, j) = 〈ai, qj〉
. remove the projection of ai along qj

6: p = p−R(i, j)qj
7: end for
8: p = TT-round(p, δ)
9: R(i, i) = ||p||

10: qi = 1/R(i, i) p . normalize p
11: end for
12: return: Q = {q1, . . . ,qm}, R

Algorithm 12 Q , R = TT-MGS(A, δ)
1: input: A = {a1, . . . , am}, δ ∈ R+
2: for i = 1, . . . ,m do
3: p = ai
4: for j = 1, . . . , i− 1 do
. compute the projection of p along qj

5: R(i, j) = 〈p, qj〉
. remove the projection of p along qj

6: p = p−R(i, j)qj
7: end for
8: p = TT-round(p, δ)
9: R(i, i) = ||p||

10: qi = 1/R(i, i) p . normalize p
11: end for
12: return: Q = {q1, . . . ,qm}, R

In the classical matrix framework Classical Gram-Schmidt is known for suffering from
loss of orthogonality in the computed basis, as discussed later on, cf. [15]. The Mod-
ified Gram-Schmidt (MGS) algorithm introduces in the Classical Gram-Schmidt a tiny
algorithmic change, which is sufficient to guarantee a generally better numerical orthog-
onality. Indeed, in TT-MGS we remove the projection along qj of pi and not of ai for
every j ∈ {1, . . . , i − 1}, as we see comparing line 5 of Algorithm 11 and 12 respec-
tively. This modification reduces the error propagation, improving the general stability
of the algorithm both in the classical matrix and in the tensor case, as we discuss in
Section 3.2.4. For the remaining steps, the two algorithms are exactly identical. Under
the same assumptions stated previously to estimate the complexity, we conclude that
TT-MGS computational complexity in TT-format is equal to TT-CGS one, given by m
TT-rounding calls.

3.2.1.2 Classical schemes with reorthogonalization

CGS and MGS are know to have stability issues, described in details in Section 3.2.4,
i.e., the close the input vectors are to linear dependency, the more the algorithms prop-
agate the rounding errors, spoiling the final orthogonality of the new basis. As reported
in [51], over the years, different articles, as for example [1, 33, 73], addressed this flaw
introducing re-orthogonalization steps, that is, orthogonalizing repeatedly through the
same approach the basis produced by the algorithm itself. In [51], the authors showed
theoretically that one re-orthogonalization step is sufficient to improve significantly the
orthogonality of the new basis generated by CGS and MGS. We present briefly the idea
of CGS and MGS with re-orthogonalization, called CGS2 and MGS2, in the tensor case,
highlighting those steps performed only in the TT-version.

In CGS2, sketched in Algorithm 13, as in CGS, the input TT-vector ai is orthogonal-
ized with respect to the (i−1) previously computed orthogonal TT-vector {q1, . . . ,qi−1},



CHAPTER 3. ORTHOGONALIZATION SCHEMES IN TT-FORMAT 89

subtracting from ai its projection along qj. The projection of ai along qj defines the
(j, i) element of the first matrix R1. With these first (i − 1) iterations, given in line 6
of Algorithm 13, we define the TT-vector p1, which is then rounded in the TT-GCS2,
see Algorithm 13 line 10. Up to this point, TT-CGS2 acts exactly as TT-CGS. How-
ever in TT-CGS2, after the rounding, the TT-vector p1 is orthogonalized again against
{q1, . . . ,qi−1}, defining p2. The projections along qj of p1 determine the (j, i) component
of the second matrix R2. Once p2 is completely defined, it is rounded and normalized,
defining the i-th orthogonal TT-vector qi, as stated in line 12 and 13 of Algorithm 13.
The norm of p2 at the i-th iteration defines the (i, i)-th diagonal component of R2. The R
factor from the QR decomposition computed by CGS2 is obtained summing R1 and R2.
The difference of MGS2 from CGS2 appears in line 7 of Algorithm 14 and 13 respectively.
During the first orthogonalization loop, that is for k = 1 in line 4 of both methods, in the
classical Gram-Schmidt version ai is projected along qj defining p1, while in the modified
Gram-Schmidt one p1 is projected along qj updating itself. In the second orthogonaliza-
tion loop, i.e., when k = 2 in line 4 of both algorithms, in TT-CGS2 it is removed from p1
its projection along qj defining p2, while in the TT-MGS2 version, it is p2 the TT-vector
projected along qj and updated. All the remaining steps, including the TT-rounding and
the construction of R1, R2 and their sum R, are identical between TT-CGS2 and TT-
MGS2. Remark that the rounding steps are performed only in the TT-version of MGS2
and CGS2.

Algorithm 13 Q , R = TT-CGS2(A, δ)
1: input: A = {a1, . . . , am}, δ ∈ R+
2: for i = 1, . . . ,m do
3: p0 = ai
. repeat twice the orthogonalization loop

4: for k = 1, 2 do
5: pk = pk−1
6: for j = 1, . . . , i− 1 do

. compute the projection of pk−1 along qj
7: Rk(i, j) = 〈pk−1, qj〉

. subtract the projection of pk−1 along qj
8: pk = pk −Rk(i, j)qj
9: end for

10: pk = TT-round(pk, δ)
11: end for
12: R2(i, i) = ||p2||
13: qi = 1/R2(i, i)p2 . normalize p2
14: end for

. compute the R factor from the repeated
orthogonalization loop

15: R = R1 +R2
16: return: Q = {q1, . . . ,qm}, R

Algorithm 14 Q , R = TT-MGS2(A, δ)
1: input: A = {a1, . . . , am}, δ ∈ R+
2: for i = 1, . . . ,m do
3: p0 = ai
. repeat twice the orthogonalization loop

4: for k = 1, 2 do
5: pk = pk−1
6: for j = 1, . . . , i− 1 do

. compute the projection of pk along qj
7: Rk(i, j) = 〈pk, qj〉

. subtract the projection of pk along qj
8: pk = pk −Rk(i, j)qj
9: end for
10: pk = TT-round(pk, δ)
11: end for
12: R2(i, i) = ||p2||
13: qi = 1/R2(i, i)p2 . normalize p2
14: end for

. compute the R factor from the repeated
orthogonalization loop

15: R = R1 +R2
16: return: Q = {q1, . . . ,qm}, R

On the basis of the previously used hypothesis, the computational complexity of TT-
CGS2 and TT-MGS2 is estimated as 2m TT-rounding operations, since during the m



90 3.2. ORTHOGONALIZATION SCHEMES

iterations we have two temporary TT-vectors p1 and p2 rounded.

3.2.2 Gram approach
In [131], the authors propose an algorithm, that we refer to as Gram’s algorithm, to

generate orthogonal basis starting from a set m linearly independent vectors of Rn with
m � n. This scheme is based on the Gram matrix, which under the hypothesis m � n
is significantly small. The key idea is decomposing the small Gram matrix through its
Cholesky factorization and benefiting from it to generate the orthogonal basis. We briefly
describe the main ideas of this orthogonalization scheme in the classical matrix framework
and we describe in details the implementation of the Gram algorithm in the TT-format.
Indeed the tensor realization of this procedure is extremely close to the matrix one, so
that describing the tensor case and its differences with the classical matrix one is sufficient
to ensure a good comprehension.

Given a set of vectors A = {a1, . . . , am} with ai ∈ Rn, the Gram matrix G ∈ Rm×m is
defined by the their scalar product as G(i, j) = 〈ai, aj〉 for every i, j ∈ {1, . . . ,m}. Equiv-
alently, let ai be i-th column of the matrix A ∈ Rn×m, then in the matrix computation
the Gram matrix is

G = A>A. (3.1)

If the elements of A are linearly independent, then G is symmetric positive definite.
As consequence, its Cholesky factorization exists and is expressed as G = LL> with
L ∈ Rm×m a lower triangular matrix. Let now denote the transpose of L by R, then the
Gram matrix is

G = R>R. (3.2)

Comparing Equation (3.1) and (3.2), we conclude that R is the R factor from the QR
decomposition of A, i.e., it expresses the same information of A in a different basis, up
to the action of an invertible matrix. The matrix Q from the QR decomposition of A
is written as Q = AR−1 where R = L>. The columns of Q form an orthogonal basis
Q = {q1, . . . , qm}, whose j-th element strictly speaking is a linear combination of the first
j elements of A, i.e.,

qj =
j∑

k=1
R−1(k, j)ak.

Remark 3.2.1. Notice that by construction the condition number of G is the square of
the one of A. Consequently if the condition number of A associated with the set of
input vectors A is larger than the inverse of the squared root of the working precision of
the considered arithmetic, e.g., u64 ≈ 10−16 for 64-bit calculation, the associated Gram
matrix G is numerically singular and its Cholesky decomposition is no longer defined.
This constitutes the main practical drawback of this method.

This procedure produces an orthonormal basis starting from a set of linear independent
vectors, which is naturally extended to TT-vectors. As described in Algorithm 15, given
a set of TT-vectors A = {a1, . . . , am} with ai ∈ Rn1×···×nd , we construct the Gram matrix



CHAPTER 3. ORTHOGONALIZATION SCHEMES IN TT-FORMAT 91

G ∈ Rm×m through the tensor scalar product and we compute its Cholesky factorization
getting the lower triangular matrix L ∈ Rm×m. As in the matrix case, R ∈ Rm×m the
transpose of L expresses the same information as the TT-vectors of A, but with respect to a
different basis. Following the matrix approach, we retrieve this basis, i.e., the orthonormal
set Q whose element qi ∈ Rn1×···×nd is defined as

qi =
i∑

k=1
R−1(k, i)ak.

Remark 3.2.2. In the matrix framework, the orthogonal vector qj are obtained from the
elements of A by back-substitutions involving the R factor. However this approach cannot
be easily translated into the tensor framework, where the inverse of R has to be explicitly
computed.

As for the other orthogonalization techniques, in the tensor case, we prevent memory
issues, monitoring the TT-ranks. Indeed, assuming that all the TT-vectors of A have
TT-ranks bounded by r, then the i-th TT-vector constructed in line 12 has maximum
TT-rank bounded by ir. Since this value grows linearly with m, in line 14 we introduce
a rounding step at prescribed accuracy δ. As in Sections 3.2.1 and 3.2.2, notice that the

Algorithm 15 Q , R = TT-Gram(A, δ)
1: input: A = {a1, . . . , am}, δ ∈ R+
2: for i = 1, . . . ,m do
3: for j = 1, . . . , i do
. construct the Gram matrix through the inner product of the input TT-vectors

4: G(i, j) = G(j, i) = 〈ai, aj〉
5: end for
6: end for
7: L = cholesky(G) . compute the Cholesky factorization
8: R = L> and R−1 = invert(R) . define the R factor of the QR-factorization
9: for i = 1, . . . ,m do

10: p = R−1(i, 1)a1
11: for j = 2, . . . , i do

. construct the i-th new basis TT-vector as a linear combination of the (i− 1) input TT-vectors
12: p = p +R−1(i, j)aj
13: end for
14: qi = TT-round(p, δ) . round the TT-vector before adding it to the basis
15: end for
16: return: Q = {q1, . . . ,qm}, R

complexity of the TT-Gram algorithm is given by m TT-rounding operations. However,
in this particular case, we can even estimate the cost of each single rounding step and
consequently of the entire algorithm. Indeed, the maximum TT-rank of the rounded TT-
vector qi is bounded by i r, under the assumption that the maximum TT-rank and the
maximum mode size of ai are bounded by r ∈ N and n ∈ N respectively. Consequently,



92 3.2. ORTHOGONALIZATION SCHEMES

the computational cost, that is the number of floating point operations, of each round-
ing operation, the most expensive step in the entire algorithm, is known and is equal
O(dni3r3); summing up over i ∈ {1, . . . ,m}, we conclude that the TT-Gram algorithm
cost is O(dnm4r) floating point operations.

3.2.3 Householder reflections

In the classical matrix framework, the Householder transformations are widely applied
to generate orthogonal base, thanks to their remarkable stability properties, illustrated
in the following sections. We briefly present the theoretical construction of a Householder
transformation, underlining how to generate an orthogonal basis. The second half of this
section describes in detail how we extend the Householder transformation to the tensor
context, with a specific attention to the implementation of the Householder orthogonal-
ization scheme in TT-format.

Given a vector x ∈ Rn, the Householder reflector moves x along a chosen direction,
which usually is an element of the canonical basis or a linear combination of them. We
illustrate the construction of the Householder reflector in the general case. Let x ∈ Rn

be the vector we want to reflect along the normalized vector y ∈ Rn, the Householder
reflection or transformation is a linear operator H : Rn → Rn such that

H(x) =‖x‖ y with ‖y‖ = 1.

The Householder reflector is represented with respect to the canonical basis of Rn by the
matrix H ∈ Rn×n such that H = In − 2u ⊗ u where u ∈ Rn is the Householder vector
defined as

u = x− z
‖x− z‖

with z =‖x‖ y. (3.3)

The matrix H representing the Householder reflection is unitary and entirely defined by
the Householder vector u. Moreover the action of an Householder reflector is computed
by one scalar product with the Householder vector u and one algebraic vector summation.
Indeed given a vector z ∈ Rn and an Householder reflector H = In− 2u⊗ u, the image of
w through H is

Hw = w − 2〈w, u〉u. (3.4)

In particular, if u is defined as in Equation (3.3), then we explicitly verify thatHx =‖x‖ y.
Firstly remark that

‖x− z‖2 = 〈x−‖x‖ y, x−‖x‖ y〉
=‖x‖2 − 2‖x‖ 〈x, y〉+‖x‖2‖y‖2

= 2
(
‖x‖2 −‖x‖ 〈x, y〉

)



CHAPTER 3. ORTHOGONALIZATION SCHEMES IN TT-FORMAT 93

since ‖y‖ = 1 by hypothesis. Thanks to this result and Equation (3.4), we get

Hx = x− 2〈x, u〉u

= x− 2
2
(
‖x‖2 −‖x‖ 〈x, y〉

)〈x, x−‖x‖ y〉(x−‖x‖ y)

= x− 1(
‖x‖2 −‖x‖ 〈x, y〉

)(‖x‖2 −‖x‖ 〈x, y〉
)
(x−‖x‖ y)

=‖x‖ y.

The Householder transformations are generally used to compute the QR factorization
of a matrix, but they find application also in situations where a set of vectors has to be
converted into an orthogonal basis. We examine briefly the two possibilities. Given a
matrix A ∈ Rn×m, we construct m Householder reflections such that the k-th one moves
the k-th column of A along a linear combination of the first k canonical basis vectors.
Said differently, the k-th Householder transformation sets to zero the last (n−k) entries of
the k-th column of A. Consequently, after m Householder reflections the matrix A ends
up being upper triangular. We illustrate more in detail how the algorithm iteratively
proceeds. Let a1 ∈ Rn be the first column of A, the first step consists of reflecting it along
the first canonical basis vector e1, i.e., in constructing the Householder reflector H1 such
that H1a1 =‖a1‖ e1. Consequently the first Householder vector u1 ∈ Rn is

u1 = a1 ±‖a1‖ e1

and normalized. For stability reasons, cf. [134], the sign of the norm of a1 is determined
by the sign of the first component of a1, that is a plus if a1(1) > 0, a minus otherwise.
The first Householder reflector H1 is applied to all the columns of A, that is ãj = H1aj
for j ∈ {1, . . . ,m}. Henceforth we denote by ãj the j-th column of A updated by all the
previously defined (j − 1) Householder transformations for j ∈ {2, . . . ,m}. Notice that
the first Householder transformation moves the first column of A along a multiple of the
first canonical basis vector e1, i.e., it sets the last (n − 1) entries of the first column of
A to zero. Then we proceed reflecting the second column of A, updated by H1 along
a linear combination of the first two canonical basis vectors e1 and e2. Let u2 ∈ Rn be
the Householder vector defining the second Householder reflector H2, which updates a
second time ãj the j-th column of A for j ∈ {2, . . . ,m}. Thus, at this point ã2 only has
its first two components nonzero. The k-th Householder reflection Hk moves ãk ∈ Rn

the k-th column of A, updated by the first (k− 1) Householder reflections, along a linear
combination of the first k elements of the canonical basis of Rn, i.e., Hkãk = ∑k

`=1 α`e`

with
√∑k

`=1 α
2
` = ||ãk||. Before normalization, the k-th Householder vector is uk ∈ Rn

such that

uk = ãk −
k∑
`=1

β`e` (3.5)



94 3.2. ORTHOGONALIZATION SCHEMES

where for every ` ∈ {1, . . . , k − 1} we have

β` = ãk(`) and βk = ±

√√√√||ãk||2 − k−1∑
`=1

β2
` .

Again for stability reasons, cf. [134], βk is positive if ãk(k) is positive, negative other-
wise. Then uk is normalized.
Remark 3.2.3. By construction the first (k − 1) entries of uk are zeros, the last (n − k)
ones are equal to the corresponding ones of ak. The k-th component of uk is given by the
difference of the k-th component of ak and the quantity βk, that is uk(k) = ãk(k) − βk.
Said differently, only the last (n − k + 1) entries of ãk have a determinant role. Thanks
to this property, in the matrix context, the Householder QR factorization has a reduced
and simplified construction. The k-th Householder vector is ûk ∈ Rn−k+1 defined from
the norm of ãk with the first (k − 1) entries being zeros, i.e.,

ûk = γke1 where γk =
√√√√ n∑
j=k

(
ãk(j)

)2

with e1 ∈ Rn−k+1 for every k ∈ {1, . . . ,m}. The k-th Householder transformation Hk ∈
R(n−k+1)×(n−k+1) is defined from ûk and is applied only on the last (n−k+1) components
of ãj for j ∈ {k, . . . ,m} and k ∈ {1, . . . ,m}. This reduced approach is not reproducible
in the tensor framework, where the object is expressed in compressed format. Therefore
we present it even in the matrix case in the most general way, that is not the one adopted
to make an implementation in matrix computation.

Once the k-th Householder transformation has been applied to ãj for j ∈ {k, . . . ,m},
the vector ãk has its last (n− k) component equal to zero. The application of m House-
holder reflections to A leads to the upper triangular matrix R, i.e., the R factor of the
QR decomposition. To compute the Q factor, we multiply the m Householder reflection
matrices. For the majority of the applications, forming the Householder vectors and know-
ing the Householder transformations implicitly, as given in Equation (3.4), is sufficient.
However, if we want to produce an orthogonal basis out of a generic set of m vectors
A = {a1, . . . , am} with ak ∈ Rn, a further step has to be considered. As for comput-
ing the QR factorization, Hk the k-th Householder transformation is defined by the k-th
Householder vector uk, given in Equation (3.5), for every k ∈ {1, . . . ,m}. To generate
the set of orthonormal vectors Q = {q1, . . . , qm}, we apply Hk the first k Householder
transformations to the k-th canonical basis vector ek in reverse order, i.e.,

qk = H1 · · ·Hkek.

As in the previous sections, we extend with some modifications this approach to the
tensor case. Let A be a set of m TT-vectors ai ∈ Rn1×···×nd for every i ∈ {1, . . . ,m}. To
construct the Householder transformations, we first define a canonical basis for a tensor
subspace of dimension m of Rn1×···×nd . In order to do so, fixed N i = {1, . . . , ni} for every



CHAPTER 3. ORTHOGONALIZATION SCHEMES IN TT-FORMAT 95

i ∈ {1, . . . , d} and n = ∏d
j=1 nj, let define the function ψ : N 1 × · · · ×N d → {1, . . . , n}

such that
ψ(i1, . . . , id) = i1 +

d∑
α=2

(iα − 1)mα with mα =
α−1∏
β=1

nβ.

Since ψ is invertible, we denote its inverse by φ : {1, . . . , n} → N 1 × · · · × N d such
that φ(i) = (i1, . . . , id). As consequence, ψ(φ(i)) = i and φ(ψ(i1, . . . , id)) = (i1, . . . , id) for
i ∈ {1, . . . , n} and ik ∈ {1, . . . , nk} with k ∈ {1, . . . , d}. The basis we fix for the subspace
of dimension m of Rn1×···×nd is E = {e1, . . . , em} with

ei = ei1 ⊗ · · · ⊗ eid with (i1, . . . , id) = φ(i), (3.6)

where eik is the ik-th canonical basis vector of Rnk for k ∈ {1, . . . , d}. Henceforth we use
index i to denote the i-th element of the canonical basis, implying i = ψ(i1, . . . , id).

As stated in Remark 3.2.3, the first (k−1) components of uk are zeros, the last (n−k)
components are equal to corresponding ones of ãk, while the k-th one is given by the
difference of the k-th component of ãk and the quantity βk, defined in Equation (3.5). We
want to transport this structure in the tensor case. However if the element of A are in
TT-format, it is not possible to directly access to the tensor components and we need to
recover them, either by multiplying the TT-cores with the correct index or by computing
the scalar product with the element of E. Let ãk be the result of (k − 1) Householder
reflections applied to ak, the k-th Householder TT-vector is uk ∈ Rn1×···×nd defined as

uk = ãk −
k∑
j=1

R(j, k)ej

whereR(j, k) = 〈ãk, ej〉 for every j ∈ {1, . . . , k} andR(k, k) = ±
√
||ã(k)k||2 −

∑k−1
`=1 R(`, k)2

as described in lines 8 and 10 of Algorithm 16 respectively. The k-th component of rk
takes a positive sign if 〈ãk, ek〉 > 0, otherwise it takes a negative sign, extending in the
tensor framework the stability preserving idea given in [134]. The j-th component of rk
corresponds to the (j, k) component of the R factor. As previously pointed out, we have
to ensure that the TT-rank of uk remains small for every k ∈ {1, . . . ,m}. Assuming
that the maximum TT-rank of ãk is bounded by ra, then after removing the first (k − 1)
components of ãk, i.e., after line 8, the TT-rank of uk is bounded by (ra + k − 1). We
introduce at this step the first TT-rounding call on the Householder TT-vector uk, whose
TT-rank is decreased depending on the accuracy value δ. Then the k-th component of
rk is subtracted, determining a further growth in the TT-rank of uk. Since uk plays a
key role in the Householder transformation and consequently its TT-rank has a strong
impact on the entire process, we decide to perform a further TT-rounding step over uk
at accuracy δ.

After describing the construction of an Householder TT-vector, which is summarized
in Algorithm 16, the focus is on the process that generates an approximately orthonormal
TT-vector set from a generic TT-vector set A = {a1, . . . , am}, as depicted in Algorithm 18.
To reflect the k-th TT-vector of A along a linear combination of the first k elements of



96 3.2. ORTHOGONALIZATION SCHEMES

Algorithm 16 u, r = TTH-vec(a,E, δ)
1: input: a ∈ Rn1×···×nd , E = {e1, . . . , ei}, δ ∈ R+
2: s = 0
3: w = a
4: for j = 1, . . . , i− 1 do
. compute the component of a along the j-th canonical basis TT-vector

5: r(j) = 〈a, ej〉
6: s = s+

(
r(j)

)2
. set to zero the component of a along the j-th canonical basis TT-vector ej

7: w = w− r(j)ej
8: end for
9: w = TT-round(w, δ)
. subtract from the norm of a the contribution of the components set to zero

10: r(i) = sign(〈a, ei〉)
√
||a||2 − s

11: w = w− r(i)ei
12: w = TT-round(w, δ)
13: u = (1/||z||)w
14: return: u, r

E, we generate with Algorithm 16 the k-th Householder TT-vector uk, which defines
implicitly the Householder transformation Hk. We store the first k components of rk in
the k-th column of the upper triangular matrix R ∈ Rm×m. Then Hk is implicitly applied
using uk to form ãj for every j ∈ {k, . . . ,m}, as expressed in line 7 of Algorithm 18,
following the same approach as in matrix case, i.e.,

Hk(ãj) = ãj − 2〈ãj, uk〉uk.

Algorithm 17 applies a given Householder reflection to a specific input vector. Remark

Algorithm 17 b = apply-H-vec(a,u)
1: input: a,u ∈ Rn1×···×nd

2: b = a − 2〈a, u〉u . apply the Householder reflection defined by u to a
3: return: b

that (k − 1) transformations are performed on ak, computing ãk, before generating the
k-th reflector, leading the maximum TT-rank of ak to be potentially much larger than
its initial value. Therefore to keep the TT-rank of ãk reasonably small, we perform a
TT-rounding before generating the associated Householder TT-vector, see line 10.

The final part of the TT-Householder transformation algorithm 18 generates the new
set Q of orthonormal TT-vectors. Let qi be the i-th element of Q obtained applying the
first i Householder reflections in reverse order to ei from the canonical basis E, see line 16
of Algorithm 18. To keep the maximum TT-rank of qi limited and to avoid running out
of memory, each qi is rounded at accuracy δ, as stated in line 18 of Algorithm 18.



CHAPTER 3. ORTHOGONALIZATION SCHEMES IN TT-FORMAT 97

Algorithm 18 Q , R = TT-Householder(A, δ)
1: input: A = {a1, . . . , am}, δ ∈ R+
2: let E = {e1, . . . , em} be the canonical basis of a subspace of dimension m of Rn1×···×nd

3: w = a1
4: for i = 1, . . . ,m do
. construct the i-th Householder TT-vector

5: ui, R(: i, i) = TTH-vec(w,Fi, δ) with Fi = {e1, . . . , ei}
6: for j = i, . . . ,m do
7: aj = apply-H-vec(aj ,ui) . update the j-th element of A
8: end for
9: if i < m then
. round the TT-vector that will define the successive Householder reflection

10: w = TT-round(ai+1, δ)
11: end if
12: end for
13: for i = 1, . . . ,m do . compute the new orthogonal basis
14: qi = ei
15: for j = i, . . . , 1 do
16: qi = apply-H-vec(qi,uj) for . reflect the i-th element of E
17: end for
18: qi = TT-round(qi, δ)
19: end for
20: return: Q = {q1, . . . ,qm}, R

From the complexity viewpoint, the TT-Householder algorithm costs 4m TT-rounding
operations: two for each Householder TT-vector, one for each TT-vector ãk after the
(k − 1)-th reflection and one for each qk orthogonal TT-vector. Consequently, the TT-
Householder algorithm is more expensive than all the other orthogonalization methods,
that is 4 times more expensive than CGS and MGS, twice more than CGS2 and MGS2.

3.2.4 Stability comparison
A central issue for the orthogonalization algorithms is the loss of orthogonality, i.e.,

how much the rounding errors propagate and affect the orthogonality of the computed
basis. The loss of orthogonality of an orthogonalization scheme applied to the set Am =
{a1, . . . , am} is defined by the L2-norm of the difference among the identity matrix of size
m and the Gram matrix defined from the m vectors generated by the orthogonalisation
algorithm. We state more formally the definition. Let Qm = {qm, . . . , qm} be a set of
m vectors, obtained from an orthogonalisation scheme applied to the m vectors of the
input set Am. Let qi ∈ Qm be the i-th column of the matrix Qm ∈ Rn×m for every
i ∈ {1, . . . ,m}, then the Gram matrix associated with the set Qm is Q>mQm. Remark that
the (i, j) element of Q>mQm is the scalar product of qi and qj, that is Q>mQm(i, j) = 〈qi, qj〉
for every i, j ∈ {1, . . . ,m}. Then, the loss of orthogonality of the considered algorithm



98 3.2. ORTHOGONALIZATION SCHEMES

for a basis of size m is equal to

||Im −Q>mQm||2. (3.7)

In the classical matrix framework, an orthogonalization scheme is said numerically stable
if the loss of orthogonality of the basis it computes is of the order of the unit round-
off u of the working arithmetic. The following theoretical results holding true for the
six orthogonalization schemes in classical linear algebra constitute a base line for the
comparison with the numerical results obtained in the tensor framework, discussed in
Section 3.2.5.

In [51, Theorem 1] the authors prove that given Am = {a1, . . . , am} a set of m vectors,
the loss of orthogonality for a basis obtained by CGS is bounded by a positive constant
times the unit round-off u, Definition I.II.iii, times the squared condition number of the
matrix Am ∈ Rn×m whose j-th column is aj ∈ Rn for j ∈ {1, . . . ,m}, i.e.,

||Im −Q>mQm||2 ∼ O
(
uκ2(Am)

)
(3.8)

as long as κ2(Am)u � 1. In [15], an upper bound for the loss of orthogonality of MGS
is provided . Indeed the loss of orthogonality for a basis of m vectors produced by MGS
from {a1, . . . , am} is upper bounded by a constant times the unit round-off u times the
condition number of Am as previously defined from Am elements, i.e.,

||Im −Q>mQm||2 ∼ O
(
uκ(Am)

)
(3.9)

as long as κ(Am)u � 1. The authors of [131, Theorem 4.1] who proposed the Gram
orthogonalization scheme, estimated also an upper bound for the loss of orthogonality of
their orthogonalization technique. More precisely, the loss of orthogonality of a basis of m
vectors produced by the Gram scheme from {a1, . . . , am} satisfies the same upper bound
as CGS, given in (3.8). Lastly the Householder orthogonalization algorithm is known
for being the most stable one. Indeed the loss of orthogonality of a basis of m vectors
produced by Householder transformations from {a1, . . . , am} is bounded by a constant
times the round-off unit, i.e.,

||Im −Q>mQm||2 ∼ O
(
u
)

(3.10)

as proved in [145]. When a further orthogonalization step is introduced in the classical and
modified Gram-Schmidt, defining CGS2 and MGS2, their loss of orthogonality improves
considerably, reaching Householder quality. Indeed, as proved in [51, 129], the loss of
orthogonality of CGS2 and MGS2 satisfies the bound given in Equation (3.10), under the
hypothesis κ2(Am)u� 1 for CGS2, while it holds for MGS2 if κ(Am)u� 1. A summary
of all the loss of orthogonality bounds is presented in Table 3.1.

3.2.5 Numerical tensor experiments
In Sections 3.2.1 - 3.2.3, we describe four orthogonalization methods which produce

an orthonormal basis of TT-vectors, given a set of TT-vectors and a rounding accuracy



CHAPTER 3. ORTHOGONALIZATION SCHEMES IN TT-FORMAT 99

δ. This section analyses two sets of results obtained from the orthogonalization schemes,
highlighting similarities and differences with the known theoretical results in matrix com-
putation. In all the experiments, the input set of TT-vectors Am = {a1, . . . , am} is gener-
ated with a Krylov process. Let x1 ∈ Rn1×···×nd be the TT-vector of ones, iteratively we
compute xj+1 = −∆daj where ∆d is the TT-matrix representing the discretization of the
Laplacian operator of order d with Dirichlet boundary conditions, Equation (2.37), and aj
is the normalized output of the TT-rounding algorithm applied to xj . Consequently, aj
the j-th element of Am has TT-rank 1 for every j ∈ {1, . . . ,m}. This TT-rank constraint
facilitates the analysis of the memory requirement. By construction, the elements of A
are generated as a sequence of m normalized (and rounded) Krylov TT-vectors, so that
when we vectorize and arrange only the first k as columns of the matrix Ak, its condition
number κ(Ak) grows for k ∈ {1, . . . ,m}. Henceforth Ak denotes the subset of Am defined
by its first k TT-vectors. The two experiments differ in the dimension of the problem, 3
for the first one and 6 for the second one, but they have the same mode size n = 15. We
provide further details in the following sections.

3.2.5.1 Numerical loss of orthogonality

In this section, we examine the numerical results from two set of experiments from the
viewpoint of the loss of orthogonality. The purpose is highlighting the similarities with
the classical matrix orthogonalization methods. In particular, we investigate the loss of
orthogonality

∥∥∥Ik −Q>kQk

∥∥∥
2
, where the (i, j) element of Q>kQk is computed by the scalar

product of the i-th and j-th TT-vector of the orthogonal basis, i.e.,(
Q>kQk

)
(i, j) = 〈qi,qj〉

for qi,qj ∈ Q for i, j ∈ {1, . . . , k} for k ∈ {1, . . . ,m}, where Q is the set of TT-vectors
produced by the considered orthogonalization kernel.

For the first experiment, we set the order d = 3, the size mode ni = 15 for i ∈ {1, 2, 3}
and the input number of TT-vectors m = 20. The results of this first group of ex-
periments for the six different schemes and three different rounding accuracy values
δ ∈ {10−3, 10−5, 10−8} are reported in Figure 3.1. The choice of a low dimensional prob-
lem enables us to convert in dense format and vectorize each TT-vector aj, storing it as
the j-th column of Am ∈ Rn3×m. As consequence, we can estimate the condition number
of Ak ∈ Rn3×k, i.e., the submatrix of Am formed by its first k columns. In all the plots
of Figure 3.1, together with the loss of orthogonality with continuous coloured curves,
we display the constant rounding accuracy δ with a dashed black line, with coloured
continuous lines the condition number κ(Ak) and its squared value scaled by u ≈ 10−16,
as long as they are smaller than 1. We scale the condition number curves for the ease
of comparison with the slope of the loss of orthogonality of TT-MGS and TT-CGS. All
the curves are in function of the basis size k. Indeed, as previously stated, since the
TT-vectors are generated as a sequence of normalized Krylov TT-vectors, for increas-
ing values of k, the elements of Ak get more linearly dependent, leading the associated
condition number κ(Ak) to increase. For the interpretation ease, we present in the first



100 3.2. ORTHOGONALIZATION SCHEMES

1 4 7 10 13 16 19
basis size

10 14

10 11

10 8

10 5

10 2

101

||
k

Q
k

Q
k||

2

= 1e-03
TT-Householder
TT-MGS
TT-CGS
TT-Gram
1e-16 (Ak)
1e-16 2(Ak)

(A) δ = 10−3

1 4 7 10 13 16 19
basis size

10 14

10 11

10 8

10 5

10 2

101

||
k

Q
k

Q
k||

2

= 1e-05
TT-Householder
TT-MGS
TT-CGS
TT-Gram
1e-16 (Ak)
1e-16 2(Ak)

(B) δ = 10−5

1 4 7 10 13 16 19
basis size

10 14

10 11

10 8

10 5

10 2

101

||
k

Q
k

Q
k||

2

= 1e-08
TT-Householder
TT-MGS
TT-CGS
TT-Gram
1e-16 (Ak)
1e-16 2(Ak)

(C) δ = 10−8

Loss of orthogonality with classical algorithms

1 4 7 10 13 16 19
basis size

10 14

10 11

10 8

10 5

10 2

101

||
k

Q
k

Q
k||

2

= 1e-03
TT-Householder
TT-MGS
TT-MGS2
TT-CGS
TT-CGS2

(D) δ = 10−3

1 4 7 10 13 16 19
basis size

10 14

10 11

10 8

10 5

10 2

101

||
k

Q
k

Q
k||

2

= 1e-05
TT-Householder
TT-MGS
TT-MGS2
TT-CGS
TT-CGS2

(E) δ = 10−5

1 4 7 10 13 16 19
basis size

10 14

10 11

10 8

10 5

10 2

101

||
k

Q
k

Q
k||

2

= 1e-08
TT-Householder
TT-MGS
TT-MGS2
TT-CGS
TT-CGS2

(F) δ = 10−8

Loss of orthogonality with reorthogonalization comparison

Figure 3.1 – LOO and condition number for m = 20 TT-vectors of order d = 3 and
mode size n = 15. The curves get dashed and partially transparent when they get greater
than 1.

line three plots, that are Figure 3.1A, 3.1B and 3.1C, with the loss of orthogonality of
standard methods in tensor format, i.e., TT-Householder, TT-MGS, TT-CGS, TT-Gram;
on the second line, Figure 3.1D, 3.1E and 3.1F display the loss of orthogonality of the
methods with re-orthogonalization, that are TT-MGS2 and TT-CGS2, compared with the
result of TT-Householder, TT-MGS and TT-CGS. In all the six plots of Figure 3.1, we
observe similar behaviours. The TT-Householder loss of orthogonality in green stagnates
around the rounding accuracy δ; this phenomenon is extremely clear in Figure 3.1A. This
is consistent with the matrix theoretical expectation, stated in Equation (3.10), where
the unit round-off u is replaced by the TT-rounding accuracy δ. The TT-MGS loss of
orthogonality in red grows with the same slope of the condition number κ(Ak) in dashed
green, matching the matrix upper bound stated in (3.9). Finally both the TT-CGS
and and TT-Gram loss of orthogonality curves cross the rounding accuracy dashed line
faster than TT-MGS, following the behaviour of the squared condition number κ2(Ak),



CHAPTER 3. ORTHOGONALIZATION SCHEMES IN TT-FORMAT 101

as long as κ2(Ak) < 102. Indeed TT-CGS and TT-Gram loss of orthogonality curves
stagnates below 102 for k > 10 approximately, while κ2(Ak) continues to grow. Looking
at the second line plots, Figure 3.1D, 3.1E and 3.1F show that introducing a second re-
orthogonalization loop improves considerably the loss of orthogonality. Indeed as long as
k < 15 the loss of orthogonality of TT-CGS2 is close to the machine precision, around
10−14 for δ ∈ {10−3, 10−5}, increasing after; for δ = 10−8 it remains around 10−14. Conse-
quently as long as the element of Ak are not too much collinear, TT-CGS2 outcompetes
TT-CGS, TT-MGS and TT-Householder, but not TT-MGS2. For the rounding accu-
racy δ ∈ {10−5, 10−8}, the loss of orthogonalization of TT-MGS2 stagnates around 10−14,
while for δ = 10−3 the loss of orthogonality jumps from 10−14 to 10−11, where it seems
to stagnates, when k > 16. Overall TT-MGS2 outperforms all the other algorithms.
These results found for TT-CGS2 and TT-MGS2 are consistent with the matrix theory
presented in Section 3.2.4. Moreover, we may hypothesise that the jumps arrive when
the condition number κ(Ak), or its square, times the rounding accuracy is not any more
sufficiently smaller than 1.

To further validate our results and to study the applicability to large-scale prob-
lems, we consider a second experimental framework. Set the problem order to d = 6
with size mode ni = 15 for i ∈ {1, . . . , 6}, we generate m = 35 TT-vectors, defining
the set A = {a1, . . . , a35}. For the rounding accuracy values δ ∈ {10−3, 10−5, 10−8}, we
compute the loss of orthogonality for the four orthogonalization schemes, presented in
Section 3.2.1 - 3.2.3. The loss of orthogonality of these experiments is displayed in Fig-
ure 3.2. Because of the problem order d = 6 and size n = 15, in this case we do not add
the curve of the condition number of the Ak ∈ Rn6×k, whose k-th column would be the
TT-vector ak ∈ Am uncompressed and vectorized. To compensate the absence of the con-
dition number curve, we display the square of the TT-MGS loss of orthogonality values
with a dashed line, that should exhibit the same slop as the CGS loss of orthogonality
(and consequently of the squared condition number κ(Ak)), if the matrix theory extends
to the TT-framework. As in the previous case, the first line plots display standard or-
thogonalization algorithms in TT-format, while on the second line we display results from
methods with re-orthogonalization. Figures 3.2A, 3.2B and 3.2C clearly show that the
TT-Householder orthogonalization algorithm produces a basis whose loss of orthogonality
stagnates around the rounding accuracy δ for every value in {10−3, 10−5, 10−8} after the
basis size gets greater than approximately 10. This seems to support further our intuition
that even in the tensor framework the bound expressed in Equation (3.10) is still holding
true, with the unit round-off u replaced by the TT-rounding accuracy δ. In Figure 3.2A
and 3.2B, when the basis size is smaller than about 15, the TT-MGS loss of orthogonality
is smaller than the Householder one, but when the basis includes more then 15 TT-vectors,
the relation reverses. For more accurate computation, that is for δ = 10−8, already when
the basis size is around 5, the Householder loss of orthogonality outcompetes the TT-MGS
one. Notice that for all the rounding accuracy values, the TT-MGS loss of orthogonality
firstly grows linearly and stagnates after a while at different level, at 10−2 for δ = 10−3,
at 1 for δ ∈ {10−5, 10−8}. The stagnation of the TT-CGS and TT-Gram loss of orthog-
onality curves arrives almost immediately, when the basis size is greater than 10 for all



102 3.2. ORTHOGONALIZATION SCHEMES

0 5 10 15 20 25 30 35
basis size

10 14

10 11

10 8

10 5

10 2

101

||
k

Q
k

Q
k||

2

= 1e-03
TT-Householder
TT-MGS
TT-CGS
TT-Gram
TT-MGS squared

(A) δ = 10−3

0 5 10 15 20 25 30 35
basis size

10 14

10 11

10 8

10 5

10 2

101

||
k

Q
k

Q
k||

2

= 1e-05
TT-Householder
TT-MGS
TT-CGS
TT-Gram
TT-MGS squared

(B) δ = 10−5

0 5 10 15 20 25 30 35
basis size

10 14

10 11

10 8

10 5

10 2

101

||
k

Q
k

Q
k||

2

= 1e-08
TT-Householder
TT-MGS
TT-CGS
TT-Gram
TT-MGS squared

(C) δ = 10−8

Loss of orthogonality with classical algorithms

0 5 10 15 20 25 30 35
basis size

10 13

10 10

10 7

10 4

10 1

102

||
k

Q
k

Q
k||

2

= 1e-03
TT-Householder
TT-MGS
TT-MGS2
TT-CGS
TT-CGS2

(D) δ = 10−3

0 5 10 15 20 25 30 35
basis size

10 13

10 10

10 7

10 4

10 1

102

||
k

Q
k

Q
k||

2

= 1e-05
TT-Householder
TT-MGS
TT-MGS2
TT-CGS
TT-CGS2

(E) δ = 10−5

0 5 10 15 20 25 30 35
basis size

10 13

10 10

10 7

10 4

10 1

102

||
k

Q
k

Q
k||

2

= 1e-08
TT-Householder
TT-MGS
TT-MGS2
TT-CGS
TT-CGS2

(F) δ = 10−8

Loss of orthogonality with reorthogonalization comparison

Figure 3.2 – LOO for m = 35 TT-vectors of order d = 6 and mode size n = 15. The
curves get dashed and partially transparent when they get greater than 1.

the rounding accuracy values, i.e., in all the plots of Figure 3.2. This is probably due to
the very bad condition number of the basis, so that the assumptions of the matrix theory
are not longer valid, that is, condition number times rounding smaller than 1. Moreover
mainly Figures 3.2B and 3.2C show that the TT-CGS and TT-Gram loss of orthogonality
follow the square of the TT-MGS loss of orthogonality, supporting the idea that even in
the TT-format, TT-MGS loss of orthogonality grows as the condition number, while TT-
Gram and TT-CGS loss of orthogonality as the squared condition number. Figures 3.2D,
3.2E and 3.2F display the loss of orthogonality of TT-MGS2 and TT-CGS2, compared
with the previously analysed results of TT-Householder, TT-MGS and TT-CGS. For all
the considered rounding accuracies, TT-MGS2 outperforms all the other methods, with a
loss of orthogonality which stagnates around 10−5 for δ = 10−3, around 10−10 for δ = 10−5

and around 10−13 for δ = 10−8. In all the three Figures 3.2D- 3.2F, the TT-MGS2 curve
presents a jump larger for greater values of δ, for 15 ≤ k ≤ 20 with δ ∈ {10−3, 10−5} and



CHAPTER 3. ORTHOGONALIZATION SCHEMES IN TT-FORMAT 103

for k ∼ 10 with δ = 10−8. Also TT-CGS2 outcompetes the TT-Householder, TT-CGS
and TT-MGS, following the behaviour of TT-MGS2, always for δ ∈ {10−5, 10−8} and as
long as the TT-vectors are not too much collinear, i.e., for k < 20 when δ = 10−3. These
results support the conclusion stated for the d = 3 experiments, that the bounds for the
loss of orthogonality of TT-CGS2 and TT-MGS2 proved in the classical matrix framework
still apply, probably under revised hypothesis.

3.2.5.2 Memory usage estimation

This section aims to study the effect on the TT-rank and consequently on the memory
requirement of the orthogonalization process from the numerical results. We investigate
the growth of the TT-ranks, of the compression ratio, defined in Equation (1.7), and
the compression gain curve, stated in Equation (1.8). We examine the TT-rank, the
compression ratio and the compression gain of the new basis produced by the orthogo-
nalization algorithms in the second set of experiments with d = 6, ni = 15, m = 35 and
δ ∈ {10−3, 10−5, 10−8}, since this problem can already be considered a large scale one.

In the Householder algorithm 18 there are three sets of TT-vectors on which the
TT-rounding is applied: the Householder TT-vector uk, the TT-vector ak to which we
apply k Householder transformations and the orthogonal TT-vector qk obtained from the
canonical basis TT-vectors with i successive Householder transformations. It is worthwhile
studying the evolution of the maximum TT-rank, of the compression ratio and gain for
each of these three TT-vector groups. In Figure 3.3 we display the maximum TT-rank,
the compression ratio and the compression gain of uk, ak after the k-th reflection and
qk for every k ∈ {1, . . . , 35} for all the values of the rounding accuracy δ. As expected,
the maximum TT-rank and the compression ratio of uk, ak and qk grow for increasing
basis sizes, because the number of terms in their computation grows with k. Remark that
the maximum TT-rank of qk becomes larger than one of uk for a basis size greater than
10. This property is significant since in the majority of the practical vector computations
only the Householder TT-vectors uk are stored and the orthogonal basis TT-vector qk is
usually not explicitly formed.
In Figures 3.3A, 3.3B and 3.3C we observe that the maximum TT-rank of ak after the
k-th Householder reflection is extremely low, mainly if it is compared with those of qk and
uk. Moreover, the rise of 1 of the maximum TT-rank of ak arrives every time the index
k is equal to a multiple of the mode size n = 15, as we can see in Figure 3.3A and 3.3B.
This behaviour is present also for δ = 10−8 for Figure 3.3C, but it is less regular. We
tried to investigate further this phenomenon from a theoretical viewpoint, but we did not
arrive to a clear and convincing explanation.
The compression ratio has closely the same shape as maximum TT-rank, but it enables us
to observe the memory growth in percentage. Figures 3.3D, 3.3E and 3.3F present for all
the values of the rounding accuracy δ a compression ratio smaller than 1, implying that
for all these experiments the TT-format is still relevant to reduce the memory footprint.
Moreover the compression ratio of ak stagnates around 10−5 for all the three values of
δ. Figures 3.3D and 3.3E show that the compression ratio of qk stagnates around 10−1,



104 3.2. ORTHOGONALIZATION SCHEMES

while the one of uk around 10−2. In Figure 3.3F, it is not clear if the compression ratio of
qk and uk stagnate around 1 and 10−1 respectively. All the Figures 3.3G, 3.3I and 3.3H,
the gain curves of uk, qk and ak present approximately the same behaviour. In particular
the gain of compressing the k-th Householder TT-vector uk and the input TT-vector ak
after the k-th reflection is almost constant through the iterations and minimal, but both
the TT-vectors are compressed several times during the previous iterations. On the other
side, the compression gain for storing the Householder basis TT-vector qk is significantly
larger. For all the rounding accuracies, the compression gain curve of qk increases during
the first 10 iterations, decreases slightly after and seems to grow again during the last 10
iterations. Remark that for the compression gain curve of the Householder basis vector
the highest value is around 110 if δ = 10−5. This means that after the compression, it is
actually requested slightly less than 1% of the memory used to store the same tensor in
TT-format before the compression.



CHAPTER 3. ORTHOGONALIZATION SCHEMES IN TT-FORMAT 105

0 5 10 15 20 25 30 35
basis size

100

101

102

103

m
ax

 o
f T

T-
ra

nk

Householder TT-vector uk

Basis TT-vector qk

Reflected TT-vector ak

(A) δ = 10−3

0 5 10 15 20 25 30 35
basis size

100

101

102

103

m
ax

 o
f T

T-
ra

nk

Householder TT-vector uk

Basis TT-vector qk

Reflected TT-vector ak

(B) δ = 10−5

0 5 10 15 20 25 30 35
basis size

100

101

102

103

m
ax

 o
f T

T-
ra

nk

Householder TT-vector uk

Basis TT-vector qk

Reflected TT-vector ak

(C) δ = 10−8

Maximal TT-rank for the TT-vectors in Householder algorithm

0 5 10 15 20 25 30 35
basis size

10 5

10 4

10 3

10 2

10 1

100

co
m

pr
es

sio
n 

ra
tio

Householder TT-vector uk

Basis TT-vector qk

Reflected TT-vector ak

(D) δ = 10−3

0 5 10 15 20 25 30 35
basis size

10 5

10 4

10 3

10 2

10 1

100

co
m

pr
es

sio
n 

ra
tio

Householder TT-vector uk

Basis TT-vector qk

Reflected TT-vector ak

(E) δ = 10−5

0 5 10 15 20 25 30 35
basis size

10 5

10 4

10 3

10 2

10 1

100

co
m

pr
es

sio
n 

ra
tio

Householder TT-vector uk

Basis TT-vector qk

Reflected TT-vector ak

(F) δ = 10−8

Compression ratio for the TT-vectors in Householder algorithm

0 5 10 15 20 25 30 35
basis size

0

20

40

60

80

100

120

co
m

pr
es

sio
n 

ga
in

Householder TT-vector uk

Basis TT-vector qk

Reflected TT-vector ak

(G) δ = 10−3

0 5 10 15 20 25 30 35
basis size

0

20

40

60

80

100

120

co
m

pr
es

sio
n 

ga
in

Householder TT-vector uk

Basis TT-vector qk

Reflected TT-vector ak

(H) δ = 10−5

0 5 10 15 20 25 30 35
basis size

0

20

40

60

80

100

120

co
m

pr
es

sio
n 

ga
in

Householder TT-vector uk

Basis TT-vector qk

Reflected TT-vector ak

(I) δ = 10−8

Compression gain for the TT-vectors in Householder algorithm

Figure 3.3 – Householder memory requirement for m = 35 TT-vectors of order d = 6 and
mode size n = 15.



106 3.2. ORTHOGONALIZATION SCHEMES

After describing the memory need of the TT-Householder algorithm, we compare the
four orthogonalization schemes from the memory requirement viewpoint. Indeed, to fairly
compare the orthogonalization schemes, we have to consider the memory consumptions
together with the loss of orthogonality, studied in Section 3.2.5.1. In Figure 3.4 we display,
for different accuracies δ, the maximum TT-rank, the compression ratio and the gain
for the orthogonal TT-vectors qk generated by the orthogonalization schemes plus the
Householder TT-vector uk ones, since, as already mentioned, in many applications qk are
not computed. Remark that for every rounding accuracy δ, in the corresponding figure the
curves get dashed and partially transparent when the corresponding loss of orthogonality
become larger than 10−1. In all Figures 3.4A, 3.4B and 3.4C we see that the maximum TT-
rank of the orthogonal TT-vectors computed by TT-CGS and TT-Gram schemes stagnates
around 10, but we do not have a clear theoretical justification for this phenomenon. The
maximal TT-rank of qk from TT-Gram algorithm is theoretically bounded by k times the
maximal TT-rank of aj for j ∈ {1, . . . , k}. When aj are generated, they are rounded by
maximal TT-rank equal to 1, then the maximal TT-rank of qk is bounded by k in our
experimental framework. On the other side, the maximal TT-rank of qk from TT-CGS
is bounded by 1 + k(k − 1)/2 knowing that the maximal TT-rank of ai is bounded by 1
for i ∈ {1, . . . ,m} in our experiments. From the viewpoint of the maximal TT-rank, TT-
Gram outcompetes TT-MGS and TT-Householder for basis size greater than 10, while
TT-CGS establishes a lower bound in terms of maximal TT-rank. However the loss of
orthogonality of TT-CGS and TT-Gram gets greater than 10−1 around k = 10. On the
other side, the TT-MGS maximal TT-rank curve gets dashed around k = 20, while the
Householder one never, that is the loss of orthogonality arrives much after for TT-MGS or
even does not arrive for TT-Householder. In Figure 3.4A, the maximal TT-rank of qk from
TT-MGS overcomes the maximal TT-rank of the Householder TT-vector uk and of the
Householder orthogonal TT-vector qk when the basis size k reaches 20 and 25 respectively.
A similar relation among the maximal TT-rank for Householder and for MGS generated
orthogonal TT-vectors appears in Figure 3.4B, but the turning point is set at a different
basis size, that is 25 and 30 for the Householder TT-vector uk and qk respectively. For the
last rounding accuracy value δ = 10−8, whose related results are displayed in Figure 3.4C,
the maximal TT-rank of the MGS orthogonal TT-vector reaches the Householder qk when
the basis size gets larger than 15, overcoming the maximal TT-rank of the Householder
uk approximately at the same basis size.



CHAPTER 3. ORTHOGONALIZATION SCHEMES IN TT-FORMAT 107

0 5 10 15 20 25 30 35
basis size

100

101

102

103

m
ax

 T
T-

ra
nk

TT-Householder - uk
TT-Householder - qk

TT-MGS
TT-MGS2
TT-CGS
TT-CGS2
TT-Gram

(A) δ = 10−3

0 5 10 15 20 25 30 35
basis size

100

101

102

103

m
ax

 T
T-

ra
nk

TT-Householder - uk
TT-Householder - qk

TT-MGS
TT-MGS2
TT-CGS
TT-CGS2
TT-Gram

(B) δ = 10−5

0 5 10 15 20 25 30 35
basis size

100

101

102

103

m
ax

 T
T-

ra
nk

TT-Householder - uk
TT-Householder - qk

TT-MGS
TT-MGS2
TT-CGS
TT-CGS2
TT-Gram

(C) δ = 10−8

Maximal TT-rank for the orthogonal basis

0 5 10 15 20 25 30 35
basis size

10 5

10 4

10 3

10 2

10 1

100

co
m

pr
es

sio
n 

ra
tio

TT-Householder - uk
TT-Householder - qk

TT-MGS
TT-MGS2
TT-CGS
TT-CGS2
TT-Gram

(D) δ = 10−3

0 5 10 15 20 25 30 35
basis size

10 5

10 4

10 3

10 2

10 1

100

co
m

pr
es

sio
n 

ra
tio

TT-Householder - uk
TT-Householder - qk

TT-MGS
TT-MGS2
TT-CGS
TT-CGS2
TT-Gram

(E) δ = 10−5

0 5 10 15 20 25 30 35
basis size

10 5

10 4

10 3

10 2

10 1

100

co
m

pr
es

sio
n 

ra
tio

TT-Householder - uk
TT-Householder - qk

TT-MGS
TT-MGS2
TT-CGS
TT-CGS2
TT-Gram

(F) δ = 10−8

Compression ratio for the orthogonal basis

0 5 10 15 20 25 30 35
basis size

100

101

102

103

co
m

pr
es

sio
n 

ga
in

TT-Householder - uk
TT-Householder - qk

TT-MGS
TT-MGS2
TT-CGS
TT-CGS2
TT-Gram

(G) δ = 10−3

0 5 10 15 20 25 30 35
basis size

100

101

102

103

co
m

pr
es

sio
n 

ga
in

TT-Householder - uk
TT-Householder - qk

TT-MGS
TT-MGS2
TT-CGS
TT-CGS2
TT-Gram

(H) δ = 10−5

0 5 10 15 20 25 30 35
basis size

100

101

102

103

co
m

pr
es

sio
n 

ga
in

TT-Householder - uk
TT-Householder - qk

TT-MGS
TT-MGS2
TT-CGS
TT-CGS2
TT-Gram

(I) δ = 10−8

Compression gain for the orthogonal basis

Figure 3.4 – Comparison of the orthogonal basis memory requirement for m = 35 TT-
vectors of order d = 6 and mode size n = 15. The curves get dashed and partially
transparent when their corresponding loss of orthogonality gets greater then the prescribed
rounding accuracy δ.



108 3.2. ORTHOGONALIZATION SCHEMES

As in analysis of TT-Householder algorithm memory requirement, we investigate also
the compression ratio for the TT-vectors forming the orthogonal basis produced by the
four orthogonalization methods. The compression ratio curves of Figures 3.4D, 3.4E
and 3.4F have the same slopes of their corresponding maximal TT-rank curves, but they
display clearly the memory needs. The orthogonal TT-vectors from TT-CGS and TT-
Gram schemes demand approximately 1% of the total memory necessary to store the full
format tensors, as illustrated in Figure 3.4D, 3.4E and 3.4F. The same figures highlight
that when the basis size gets greater than 10 and the TT-vectors start to be more collinear,
the curves gets dashed and these scheme resulting basis are very poor in terms of orthog-
onality. From both Figures 3.4D and 3.4E, we infer that storing the basis TT-vector
generated by TT-Householder scheme request approximately 20% of the memory that we
would need to store those tensors in full format. Similarly only 10% of the entire memory
requested for full format storage is necessary to store the Householder TT-vector uk. Fi-
nally, for δ = 10−8 storing cost for the Householder basis TT-vector qk reaches the same
amount of memory demanded for storing them in full format, as depicted in Figure 3.4F.
However from the same figure, we notice that storing the Householder TT-vectors even
for δ = 10−8 needs approximately 30% of the memory necessary to store the same tensor
in full format. This property makes the TT-Householder algorithm extremely interesting,
since usually it is sufficient to store the Householder TT-vectors. TT-Householder algo-
rithm gets even more convenient when we compare its compression ratio curves with the
TT-MGS, TT-MGS2 and TT-CGS2 ones. Indeed, for all the rounding accuracy values,
the compression ratio curve of TT-MGS and TT-MGS2 always reaches 1, see Figures 3.4D,
3.4E and 3.4F, implying that the memory requested by the TT-vectors from these schemes
reaches the same amount of memory we would use to store in full format the orthogo-
nal basis tensors. This same consideration holds true for the compression ratio of the
orthogonal basis produced by TT-CGS2, for δ ∈ {10−5, 10−8}, while for δ = 10−3, the
TT-vectors from TT-CGS2 consume just 20% of the memory we would need to store the
same tensors in dense format. The compression gain curves in Figures 3.4G, 3.4H and 3.4I
present approximately the same behaviour for the different rounding accuracy values δ.
The compression gain of TT-Gram has a pick at the very beginning, then it stagnates
around 10 starting from k = 10, meaning at the compressing the j-th basis TT-vector
reduce of 10 times the memory requirement for j ≥ k. The gain curves of TT-MGS, TT-
MGS2 and TT-CGS2 have approximately the same shape, they increase up to k = 15, for
the successive 5 iterations the gain curves drop down and around k = 22, they rise again.
Also the TT-Householder basis gain curve has a similar patter, it first grows, reaching
a pick, then it decreases and during the last iterations it rises again. The Householder
TT-vector gain curve, as previously observed, has a tiny growth at the beginning, then
it drops down and stagnates at a very low value from k > 10. Finally the TT-CGS gain
curve increases for increasing dimension k of the basis, so when the last basis TT-vector
is rounded, it leads to use 0.001 of the memory used to store the TT-vector before round-
ing it. However as highlighted by the dash style, the TT-CGS and TT-Gram basis have
almost entirely lost the orthogonality already at k = 10.



CHAPTER 3. ORTHOGONALIZATION SCHEMES IN TT-FORMAT 109

3.2.6 Summary
From the viewpoint of the memory footprint, thanks to its stability property and

the possibility of storing only the TT-vectors ui, the TT-Householder orthogonalization
scheme appears to be the best in many cases, together with TT-CGS2 and TT-MGS2.
Figures 3.4D, 3.4E and 3.4F display that when the input TT-vectors are not too much
collinear, k < 15, TT-MGS2 and TT-CGS2 have a compression ratio approximately
equal to TT-Householder. For a basis size between 15 and 25 (or 20 for δ = 10−8)
TT-Householder is more expensive than TT-MGS, TT-MGS2 and TT-CGS2 in memory
terms. Finally when the input TT-vectors get more and more linearly dependent, the
memory need of TT-MGS2 and TT-CGS2 basis is greater or equal than both the TT-
Householder basis and Householder TT-vector. However from the viewpoint of the loss
of orthogonality, TT-MGS2 performs better than TT-Householder for every rounding
accuracy, while TT-CGS2 for δ ∈ {10−5, 10−8}. Finally from the computational cost side,
TT-CGS2 and TT-MGS2 are cheaper than TT-Householder, that is 2m TT-rounding
versus 4m.

Similarly to the matrix case, the choice of the orthogonalization scheme among TT-
Householder, TT-CGS2 and TT-MGS2 depends strongly on the purpose and on the avail-
able computing resources. Indeed TT-Householder requires less memory, but it is compu-
tationally more expensive and its orthogonality stagnates around the rounding accuracy.
On the other side, TT-MGS2 produces a basis of better orthogonality quality, as long
as the input TT-vectors are not too collinear, and it is computationally cheaper than
TT-Householder, but it is more expensive from the viewpoint of the memory consump-
tion. The same considerations hold also for TT-CGS2, under the same hypothesis. The
computational costs in tensor and matrix case are summarized in Table 3.1.

Matrix TT-vectors

Algorithm Computational
cost in fp operations

∥∥∥Ik −Q>kQk

∥∥∥ Computational
cost in TT-rounding

∥∥∥Ik −Q>kQk

∥∥∥
Gram O(2nm2) O(uκ2(Ak)) m O(δκ2(Ak))
CGS O(2nm2) O(uκ2(Ak)) m O(δκ2(Ak))
MGS O(2nm2) O(uκ(Ak)) m O(δκ2(Ak))
CGS2 O(4nm2) O(u) 2m O(δ)
MGS2 O(4nm2) O(u) 2m O(δ)
Householder O(2nm2 − 2m3/3) O(u) 4m O(δ)

Table 3.1 – Computational costs in floating point operations and in TT-rounding op-
erations, and bounds for the loss of orthogonality, theoretical with respect to the unit
round-off u and conjectured ones with respect to the rounding accuracy δ, for an input
set of m vectors and TT-vectors respectively.



110 3.3. EIGENSOLVERS

3.3 Eigensolvers
The orthogonalization schemes presented in Section 3.2 are usually kernels of more

elaborated algorithms. The purpose of this section is to illustrate an eigensolver as study
case where they are applied and where their properties affect the final result. In Sec-
tion 3.3.1 we describe the chosen eigensolver algorithm, that is the subspace iteration
method, while Section 3.3.2 collects the numerical results.

3.3.1 Subspace iteration method
The subspace iteration method is an iterative eigensolver, that can be regarded as a

block generalization of the power iteration method. This eigensolver is considered one
of the simplest and most reliable, cf. [133, Chapter 6] or [126, Chapter 5], even though
it is usually slow and should be accelerated with preconditioning techniques in practical
computations. This section aims to describe the subspace iteration method extended to
the tensor framework to solve tensor eigenproblems, i.e., finding eigenpairs (λ,v) of a
tensor multilinear operator A ∈ R(n1×n1)×···×(nd×nd) such that

Av = λv

with λ ∈ R and v ∈ Rn1×···×nd .
We briefly illustrate the subspace iteration method extended to tensor eigenprob-

lems through the TT-formalism, henceforth referred to as TT-SUBSPace ITeration (TT-
SUBSPIT), depicted in Algorithm 19. The TT-SUBSPIT is meant to compute nev TT-
eigenvectors associated with the largest nev eigenvalues of a given TT-matrix. Together
with the TT-matrix whose TT-eigenpairs are searched, it takes as input parameters A a
set of m ≥ nev TT-vectors, a rounding accuracy δ ∈ R+, a convergence threshold ε ∈ R+,
a maximum number of iterations max_it and an integer p ∈ N, that defines the power
of the TT-operator to use. As first step, TT-SUBSPIT orthogonalizes the m input TT-
vectors of A by an orthogonalization kernel, using the prescribed rounding accuracy δ and
returning the orthogonal set Q, see line 5 of Algorithm 19. During the first iteration, we
compute the j-th elements of U as the product of the TT-operator at power p and the j-th
orthogonal TT-vector of Q, that is uj = Apqj. To avoid memory deficiencies, we round
at accuracy δ and then normalize each element of U in line 14 and 15 of Algorithm 19.
Then, the TT-vecotrs of U are orthogonalized with the previously used orthogonalization
kernel at accuracy δ, see line 17, defining Q. Remark that at the very first iteration, the
set V is empty and the set U as cardinality n = m. Then, we project the TT-operator
A into the new orthogonal basis formed by the last n elements of Q, defining matrix
G ∈ Rn×n with n = m since no TT-eigenpair has converged yet. In line 23 of Algo-
rithm 19, the eigenvalue decomposition of matrix G is computed, sorting the eigenvalues,
and the correspondent eigenvector, in decreasing order. The n eigenvalues of G are by
construction an approximation of the largest n eigenvalues of A. The eigenvectors of G
are used to approximate of the first n TT-eigenvectors of A. Indeed, the TT-vector wj

is obtained as a linear combination of the last n elements of Q, choosing as coefficients



CHAPTER 3. ORTHOGONALIZATION SCHEMES IN TT-FORMAT 111

Algorithm 19 V ,L = TT-SUBSPIT(A, Z, p, δ, ε max_it)
1: input: A ∈ R(n1×n1)×···×(nd×nd), Z = {z1, . . . , zm} with zh ∈ Rn1×···×nd

2: input: p ∈ N, δ, ε ∈ R+
3: V = ∅; L = ∅
4: c = 0; n = m; i = 0; iter = 0
5: Q, · = orth_scheme(Z, δ)
6: while iter < max_it and c < m do
7: n = m− c . update the number of TT-eigenpairs to compute
. iter counts the number of contractions performed, while i the number of subspace itera-
tions

8: iter = iter + n(p+ 1), i = i+ 1
9: for j = 1, . . . , n do

10: x = Aqj+c
11: for k = 1, . . . , p do
12: x = Ax . compute Apx
13: end for
14: y = TT-round(x, δ)
15: uj = (1/‖y‖)y with uj ∈U
16: end for

. orthogonalize the set formed by the locked TT-eigenvector and the TT-vector just updated
17: Q , · = orth_scheme(V ∪U, δ)
18: for j = 1, . . . , n do
19: for k = j, . . . , n do
20: G(j, k) = G(k, j) = 〈Aqj+c,qk+c〉
21: end for
22: end for

. compute the eigenvalue decomposition of the matrix G with λh ∈ R sorted with decreasing
value and E ∈ Rn×n inheriting the same ordering

23: {λ1, . . . , λn}, E = eig(G)
24: for j = 1, . . . , n do
25: z = E(1, j)q1+c
26: for k = 2, . . . , n do
27: z = z + E(k, j)qk+c . construct the j-th TT-eigenvector
28: end for
29: wj = TT-round(z, δ) with wj ∈W
30: end for
31: for j = 1, . . . , n do
32: r = (1/λj)‖Awj − λjwj‖ . compute the scaled residual
33: if r < ε then
34: vc+1 = wj belongs to V and λj to L . lock the TT-eigenpair that converged
35: c = c+ 1 . update the number of TT-eigenpairs that converged
36: else
37: qj+c = wj . otherwise update the set Q
38: end if
39: end for
40: end while
41: return: V = {v1, . . . ,vc}, L = {λ1, . . . , λc}



112 3.3. EIGENSOLVERS

the entries of the eigenvectors of G, see line 27 of Algorithm 19. Before adding wj to
the set W, we apply the TT-rounding algorithm at accuracy δ to prevent memory defi-
ciencies, line 29 of Algorithm 19. Finally for every TT-vector of W we compute their
residual, that is ‖Awj − λjwj‖, scaled by |λj|, where λj is the j-th eigenvalue of G for
every j ∈ {1, . . . , n}, see line 32. If the scaled residual is smaller than the convergence
threshold ε, then the TT-vector wj and its eigenvalue λj are locked, becoming the 1st
converged TT-eigenvector and eigenvalue. Thus, by locking, we include wj in the set V
and λj in L, and we increase the counter of the number of converged eigenpairs c by one
unit, lines 34 and 35 of Algorithm 19. Otherwise, the wj is used to update the (j + c)-th
element of Q, see line 37 of Algorithm 19. During the following iterations, thanks to the
locking strategy, we apply the TT-operator A at power p only to the last n = m − c
elements of Q, so that the set U will have cardinality n. However, to ensure the orthogo-
nality at line see line 17 of Algorithm 19 we apply the orthogonalizations scheme on the
set of TT-vectors, whose first c elements are the TT-eigenvectors locked in V and the last
n = m− c are those that have not converged yet in U, see line 17.

3.3.2 Numerical Experiments
In this section, we investigate the numerical results obtained with the TT-SUBSPIT

with the six different orthogonalization schemes in TT-format, described in Section 3.2.
Two sets of experiments are considered: in the first, we compute the TT-eigenpairs of
the discrete Laplacian operator ∆3 of order d = 3 with mode size [19, 24, 31], in the
second, we examine the TT-eigenpairs for the discrete order d = 3 Laplacian with all
mode sizes equal to 24. This operator is chosen since there exists an analytical expression
for their eigenpairs. To compute an approximation of the first m = 7 TT-eigenpairs, we
use the same value for the rounding accuracy δ and the convergence one ε in {10−3, 10−5}
for both the experiment sets. As for the experiments of Section 3.2.5, the input set
Z = {z1, . . . , zm} of TT-vectors are generated with a Krylov process, that is z1 is a TT-
vector of ones and the (h + 1)-th one is obtained from the TT-rounding at TT-rank 1
of ∆dzh for h ∈ {1, . . . ,m − 1}. As mentioned in [126, 133], in the classical matrix case
the higher the power value, the faster the convergence, but, at the same time, the more
the vectors to orthogonalize get linearly dependent. Thus, to simplify the investigation of
these preliminary results and highlight as much as possible the orthogonalization kernel
effect, we set p = 1.

3.3.2.1 TT-Eigenpairs convergence

This section aims to study the convergence of the TT-SUBSPIT algorithm combined
with the different orthogonalization schemes, described in Section 3.2. In particular we
want to highlight the effect of the orthogonality stability on the quality of the computed
TT-eigenpairs.

In Tables 3.2 and 3.3 we report them = 7 computed eigenvalues λ̃ sorted with decreas-
ing value, the closest theoretical eigenvalue λ∗, the relative distance between the two, the



CHAPTER 3. ORTHOGONALIZATION SCHEMES IN TT-FORMAT 113

convergence order, i.e., in which order the eigenvalues converged and the spectrum order,
that is which position λ∗ occupies in the spectrum. Notice that the 7 largest theoretical
eigenvalues of the discrete Laplacian ∆3 with mode sizes [19, 24, 31] are

[8166.432, 8137.127, 8137.018, 8136.942, 8107.712, 8107.637, 8107.528],

that is there the largest one, followed by two clusters of three eigenvalues. Comparing
the different orthogonalization kernel results in Table 3.2, we see that the Gram method
leads to the worst approximations, missing the largest eigenvalue and getting close to
just one out of 7 eigenvalues in the selected region. On the other hand, Householder algo-
rithm provides the best output approximating six eigenvalues out of seven in the expected
spectrum region; the other kernels find just two out of seven. Basically, TT-SUBSPIT
with Householder approaches the largest one, three from the first cluster and two from
the second one. With the other kernels, excluded Gram’s one, TT-SUBSPIT leads to
an estimate of the largest one and one from the first cluster, while the other estimated
eigenvalues are closer to theoretical eigenvalues localized much far in the spectrum. From
the convergence order view point, it is worthwhile remarking that MGS, MGS2, CGS and
CGS2 computes the approximation in the exact same order. For all the seven approxi-
mated eigenvalues and the six orthgonalization kernels, the relative distance is lower than
the rounding and convergence accuracy δ = ε = 10−3, with the largest error realised by
Householder for the largest eigenvalue. Setting the rounding accuracy and the convergence
one to 10−5 changes slightly these observations. As previously, Householder outcompetes
the other kernels providing an estimate of five eigenvalues in the chosen spectrum region,
while all the other kernels return just four. However, TT-SUBSPIT Householder with
accuracy 10−5 approximates one eigenvalue in the right region less than with accuracy
10−3, suggesting that the accuracy and the inter-cluster distance may play a role in the
computing capabilities of the TT-SUBSPIT algorithm. Notice that for δ = 10−5 the ap-
proximation of the eigenvalues outside the right spectrum region are closer to the first
theoretical seven than in the δ = 10−3 case. Moreover, the relative distance between the
approximated eigenvalues and the theoretical closest ones is significantly lower than the
prescribed rounding and converging accuracy 10−5.



114 3.3. EIGENSOLVERS

Householder MGS MGS2 CGS CGS2 GRAM

1

λ̃ 8165.137 8166.140 8166.151 8166.156 8166.138 8136.768
λ∗ 8166.432 8166.432 8166.432 8166.432 8166.432 8136.942
|λ∗−λ̃|
|λ∗| 1.586e− 04 3.586e− 05 3.447e− 05 3.390e− 05 3.607e− 05 2.145e− 05

convergence
order

3 7 7 7 7 2

spectrum
order

1 1 1 1 1 4

2

λ̃ 8136.560 8136.758 8136.758 8136.758 8136.758 8058.973
λ∗ 8136.942 8136.942 8136.942 8136.942 8136.942 8059.020
|λ∗−λ̃|
|λ∗| 4.697e− 05 2.260e− 05 2.260e− 05 2.260e− 05 2.260e− 05 5.817e− 06

convergence
order

1 1 1 1 1 3

spectrum
order

4 4 4 4 4 15

3

λ̃ 8136.450 8058.985 8058.985 8058.985 8058.985 8058.601
λ∗ 8136.942 8059.020 8059.020 8059.020 8059.020 8058.693
|λ∗−λ̃|
|λ∗| 6.051e− 05 4.330e− 06 4.331e− 06 4.330e− 06 4.331e− 06 1.145e− 05

convergence
order

5 3 3 3 3 1

spectrum
order

4 15 15 15 15 17

4

λ̃ 8135.066 8058.559 8058.559 8058.559 8058.559 8021.230
λ∗ 8136.942 8058.693 8058.693 8058.693 8058.693 8021.672
|λ∗−λ̃|
|λ∗| 2.305e− 04 1.673e− 05 1.673e− 05 1.673e− 05 1.673e− 05 5.520e− 05

convergence
order

6 2 2 2 2 4

spectrum
order

4 17 17 17 17 22

5

λ̃ 8107.330 8021.229 8021.229 8021.229 8021.229 7980.728
λ∗ 8107.528 8021.672 8021.672 8021.672 8021.672 7980.880
|λ∗−λ̃|
|λ∗| 2.440e− 05 5.527e− 05 5.527e− 05 5.527e− 05 5.527e− 05 1.894e− 05

convergence
order

7 4 4 4 4 5

spectrum
order

7 22 22 22 22 35

6

λ̃ 8106.774 7980.676 7980.676 7980.676 7980.676 7943.274
λ∗ 8107.528 7980.880 7980.880 7980.880 7980.880 7943.348
|λ∗−λ̃|
|λ∗| 9.300e− 05 2.546e− 05 2.546e− 05 2.546e− 05 2.546e− 05 9.334e− 06

convergence
order

2 5 5 5 5 6

spectrum
order

7 35 35 35 35 42

7

λ̃ 8058.094 7943.245 7943.245 7943.245 7943.245 7942.854
λ∗ 8058.693 7943.348 7943.348 7943.348 7943.348 7943.054
|λ∗−λ̃|
|λ∗| 7.444e− 05 1.289e− 05 1.289e− 05 1.289e− 05 1.289e− 05 2.513e− 05

convergence
order

4 6 6 6 6 7

spectrum
order

17 42 42 42 42 43

Table 3.2 – m = 7 eigenvalues for the Laplacian of order d = 3 and mode size n =
[19, 24, 31] with δ = 10−3.



CHAPTER 3. ORTHOGONALIZATION SCHEMES IN TT-FORMAT 115

Householder MGS MGS2 CGS CGS2 GRAM

1

λ̃ 8166.432 8166.432 8166.432 8166.432 8166.432 8166.432
λ∗ 8166.432 8166.432 8166.432 8166.432 8166.432 8166.432
|λ∗−λ̃|
|λ∗| 6.885e− 09 5.228e− 09 3.884e− 09 3.795e− 09 3.625e− 09 3.481e− 09

convergence
order

4 5 5 5 5 5

spectrum
order

1 1 1 1 1 1

2

λ̃ 8137.127 8137.018 8137.018 8137.018 8137.126 8137.018
λ∗ 8137.127 8137.018 8137.018 8137.018 8137.127 8137.018
|λ∗−λ̃|
|λ∗| 2.561e− 08 3.193e− 09 3.193e− 09 3.193e− 09 1.051e− 07 3.204e− 09

convergence
order

6 1 1 1 7 1

spectrum
order

2 3 3 3 2 3

3

λ̃ 8137.018 8107.710 8107.712 8107.709 8137.018 8107.712
λ∗ 8137.018 8107.712 8107.712 8107.712 8137.018 8107.712
|λ∗−λ̃|
|λ∗| 3.353e− 09 3.018e− 07 2.743e− 08 4.553e− 07 3.193e− 09 1.366e− 08

convergence
order

1 6 6 6 1 6

spectrum
order

3 5 5 5 3 5

4

λ̃ 8136.942 8107.530 8107.528 8107.531 8107.712 8107.528
λ∗ 8136.942 8107.528 8107.528 8107.528 8107.712 8107.528
|λ∗−λ̃|
|λ∗| 2.456e− 08 2.913e− 07 7.965e− 09 4.368e− 07 5.620e− 09 2.044e− 09

convergence
order

7 7 7 7 6 7

spectrum
order

4 7 7 7 5 7

5

λ̃ 8107.557 8059.672 8059.672 8059.672 8059.672 8059.672
λ∗ 8107.528 8059.672 8059.672 8059.672 8059.672 8059.672
|λ∗−λ̃|
|λ∗| 3.534e− 06 5.534e− 09 5.534e− 09 5.534e− 09 5.534e− 09 5.398e− 09

convergence
order

5 3 3 3 3 3

spectrum
order

7 12 12 12 12 12

6

λ̃ 8059.672 8058.693 8058.693 8058.693 8058.693 8058.693
λ∗ 8059.672 8058.693 8058.693 8058.693 8058.693 8058.693
|λ∗−λ̃|
|λ∗| 5.895e− 09 5.260e− 09 5.260e− 09 5.260e− 09 5.260e− 09 5.285e− 09

convergence
order

3 2 2 2 2 2

spectrum
order

12 17 17 17 17 17

7

λ̃ 8058.693 8021.672 8021.672 8021.672 8021.672 8021.672
λ∗ 8058.693 8021.672 8021.672 8021.672 8021.672 8021.672
|λ∗−λ̃|
|λ∗| 5.376e− 09 6.350e− 09 6.350e− 09 6.350e− 09 6.350e− 09 6.381e− 09

convergence
order

2 4 4 4 4 4

spectrum
order

17 22 22 22 22 22

Table 3.3 – m = 7 eigenvalues for the Laplacian of order d = 3 and mode size n =
[19, 24, 31] with δ = 10−5.



116 3.3. EIGENSOLVERS

The information about the estimation of the discrete Laplacian of order 3 and mode
sizes [24, 24, 24] eigenvalue are depicted in Table 3.4 and 3.5 for accuracy 10−3 and 10−5

respectively. The analytical value of the 7 largest eigenvalues of this operator are

[7470.430, 7441.016, 7441.016, 7441.016, 7411.601, 7411.601, 7411.601 ].

Thus, similarly to the previous experimental case, there is the largest eigenvalue, fol-
lowed by two eigenvalues with multiplicity 3, that is two degenerate clusters of size 3.
Table 3.4 highlights that, as in the previous experimental framework, TT-SUBSPIT with
Householder manages to approximate six eigenvalues in the right spectrum region, while
all the other kernels lead to eigenvalues located outside the selected region. The relative
distance between the approximation and the theoretical eigenvalue is always lower than
the rounding accuracy 10−3, with Householder realising the largest relative error. As
in the previous case, MGS and CGS with and without re-orthogonalization return the
eigenpair approximations in the same order. When the rounding and converging accuracy
δ and ε are set equal to 10−5, the situation changes. Indeed, as reported in Table 3.5,
Householder leads to four estimations in the right spectrum region, while all the other
kernels to three. As in the other experiment set-up, when the accuracy value decreases, all
the kernels performances improve, except for Householder, which remains in any case the
most effective. Moreover, in this case all the kernels except Householder present the same
convergence order. As previously, the relative distance between the numerical eigenvalue
and the theoretical one is much lower than the rounding accuracy 10−5.



CHAPTER 3. ORTHOGONALIZATION SCHEMES IN TT-FORMAT 117

Householder MGS MGS2 CGS CGS2 GRAM

1

λ̃ 7469.291 7382.018 7382.018 7382.018 7382.018 7382.010
λ∗ 7470.430 7382.187 7382.187 7382.187 7382.187 7382.187
|λ∗−λ̃|
|λ∗| 1.525e− 04 2.283e− 05 2.283e− 05 2.283e− 05 2.283e− 05 2.400e− 05

convergence
order

6 1 1 1 1 1

spectrum
order

1 11 11 11 11 11

2

λ̃ 7440.841 7266.610 7266.610 7266.610 7266.610 7266.611
λ∗ 7441.016 7266.841 7266.841 7266.841 7266.841 7266.841
|λ∗−λ̃|
|λ∗| 2.349e− 05 3.179e− 05 3.179e− 05 3.179e− 05 3.179e− 05 3.164e− 05

convergence
order

3 2 2 2 2 3

spectrum
order

3 36 36 36 36 36

3

λ̃ 7440.597 7266.598 7266.598 7266.598 7266.598 7266.603
λ∗ 7441.016 7266.841 7266.841 7266.841 7266.841 7266.841
|λ∗−λ̃|
|λ∗| 5.629e− 05 3.342e− 05 3.342e− 05 3.342e− 05 3.342e− 05 3.275e− 05

convergence
order

5 3 3 3 3 2

spectrum
order

3 36 36 36 36 36

4

λ̃ 7439.689 7266.503 7266.503 7266.503 7266.503 7266.566
λ∗ 7441.016 7266.841 7266.841 7266.841 7266.841 7266.841
|λ∗−λ̃|
|λ∗| 1.783e− 04 4.655e− 05 4.655e− 05 4.655e− 05 4.655e− 05 3.795e− 05

convergence
order

7 4 4 4 4 4

spectrum
order

3 36 36 36 36 36

5

λ̃ 7411.681 7151.317 7151.317 7151.317 7151.317 7151.279
λ∗ 7411.601 7151.496 7151.496 7151.496 7151.496 7151.496
|λ∗−λ̃|
|λ∗| 1.070e− 05 2.496e− 05 2.496e− 05 2.496e− 05 2.496e− 05 3.025e− 05

convergence
order

4 6 6 6 6 7

spectrum
order

5 76 76 76 76 76

6

λ̃ 7410.233 7151.150 7151.149 7151.150 7151.150 7151.103
λ∗ 7411.601 7151.496 7151.496 7151.496 7151.496 7151.496
|λ∗−λ̃|
|λ∗| 1.820e− 04 4.837e− 05 4.845e− 05 4.832e− 05 4.838e− 05 5.485e− 05

convergence
order

2 7 7 7 7 5

spectrum
order

5 76 76 76 76 76

7

λ̃ 7379.785 7151.073 7151.073 7151.073 7151.073 7150.870
λ∗ 7382.187 7151.496 7151.496 7151.496 7151.496 7151.496
|λ∗−λ̃|
|λ∗| 3.234e− 04 5.907e− 05 5.907e− 05 5.907e− 05 5.907e− 05 8.749e− 05

convergence
order

1 5 5 5 5 6

spectrum
order

11 76 76 76 76 76

Table 3.4 – m = 7 eigenvalues for the Laplacian of order d = 3 and mode size n =
[24, 24, 24] with δ = 10−3.



118 3.3. EIGENSOLVERS

Householder MGS MGS2 CGS CGS2 GRAM

1

λ̃ 7470.430 7411.601 7411.601 7411.601 7411.601 7411.601
λ∗ 7470.430 7411.601 7411.601 7411.601 7411.601 7411.601
|λ∗−λ̃|
|λ∗| 2.501e− 08 2.628e− 09 2.753e− 09 2.586e− 09 2.862e− 09 2.682e− 09

convergence
order

7 7 7 7 7 6

spectrum
order

1 5 5 5 5 5

2

λ̃ 7441.016 7411.601 7411.601 7411.601 7411.601 7411.601
λ∗ 7441.016 7411.601 7411.601 7411.601 7411.601 7411.601
|λ∗−λ̃|
|λ∗| 7.972e− 09 2.861e− 09 3.139e− 09 2.708e− 09 2.957e− 09 2.840e− 09

convergence
order

6 6 6 6 6 7

spectrum
order

3 5 5 5 5 5

3

λ̃ 7411.601 7411.601 7411.601 7411.601 7411.601 7411.601
λ∗ 7411.601 7411.601 7411.601 7411.601 7411.601 7411.601
|λ∗−λ̃|
|λ∗| 8.870e− 09 8.889e− 09 8.520e− 09 8.886e− 09 8.787e− 09 8.175e− 09

convergence
order

4 5 5 5 5 5

spectrum
order

5 5 5 5 5 5

4

λ̃ 7411.601 7382.187 7382.187 7382.187 7382.187 7382.187
λ∗ 7411.601 7382.187 7382.187 7382.187 7382.187 7382.187
|λ∗−λ̃|
|λ∗| 9.363e− 09 2.048e− 09 2.048e− 09 2.048e− 09 2.048e− 09 1.998e− 09

convergence
order

5 1 1 1 1 1

spectrum
order

5 11 11 11 11 11

5

λ̃ 7382.187 7266.841 7266.841 7266.841 7266.841 7266.841
λ∗ 7382.187 7266.841 7266.841 7266.841 7266.841 7266.841
|λ∗−λ̃|
|λ∗| 1.896e− 09 3.170e− 09 3.170e− 09 3.170e− 09 3.170e− 09 3.141e− 09

convergence
order

1 2 2 2 2 2

spectrum
order

11 36 36 36 36 36

6

λ̃ 7266.841 7266.841 7266.841 7266.841 7266.841 7266.841
λ∗ 7266.841 7266.841 7266.841 7266.841 7266.841 7266.841
|λ∗−λ̃|
|λ∗| 1.877e− 09 3.759e− 09 3.759e− 09 3.759e− 09 3.759e− 09 3.801e− 09

convergence
order

2 3 3 3 3 3

spectrum
order

36 36 36 36 36 36

7

λ̃ 7266.841 7266.841 7266.841 7266.841 7266.841 7266.841
λ∗ 7266.841 7266.841 7266.841 7266.841 7266.841 7266.841
|λ∗−λ̃|
|λ∗| 4.857e− 09 6.020e− 09 6.020e− 09 6.018e− 09 6.018e− 09 6.011e− 09

convergence
order

3 4 4 4 4 4

spectrum
order

36 36 36 36 36 36

Table 3.5 – m = 7 eigenvalues for the Laplacian of order d = 3 and mode size n =
[24, 24, 24] with δ = 10−5.



CHAPTER 3. ORTHOGONALIZATION SCHEMES IN TT-FORMAT 119

To complete the investigation of the convergence quality depending on the chosen
orthogonalization kernel, we study the minimum and the maximum value of the stop-
ping criterion, that is the scaled residual; for simplicity we will refer to this by the term
scaled residual envelope. More precisely, we study the scaled residual envelope in func-
tion of the number of orthogonalizations, counted by the i variable in Algorithm 19,
and of the number of TT-rounding call performed, estimated by the iter variable in
Algorithm 19. The number of orthogonalizations counts the number of loops, while the
number of TT-rounding estimates the algorithm complexity. In Figures 3.5A and 3.5B,
we display the scaled residual envelope in function of the number of orthogonalizations
and of TT-rounding for the discrete order 3 Laplacian of mode sizes [19, 24, 31]. From
the orthogonalization counter point of view, Householder seems to be the optimal one,
together with Gram for δ = 10−3, as seen in Figure 3.5A, while for δ = 10−5, CGS2 is
the slowest one and Householder the second slowest one, see Figure 3.5B. From the num-
ber of TT-rounding instead, Householder is always the slowest, as shown in Figure 3.5C
and 3.5D, i.e., it is the one with the highest complexity in terms of TT-rounding, the
most expensive operation. However, it is important to remark that Householder for both
the accuracy values leads to the best results in terms of robustness to compute the m
largest eigenvalues. Remark that for δ = 10−5 all the envelopes display many more peaks
and valleys compared to the envelopes for δ = 10−3. Notice that also in the classical
linear algebra scheme the convergence monotony of the subspace iteration method is not
theoretically guaranteed.

The scaled residual envelope from the discrete Laplacian of mode sizes [24, 24, 24]
experiments are displayed in Figure 3.6. In this case the Householder kernel is the one
requiring more orthogonalizations and more TT-rounding steps to converge, but for both
the accuracy values it leads to the best results in terms of robustness to compute the
m largest eigenvalues. We highlight that as in the previous case, for δ = 10−5 all the
envelopes present peaks and valleys, while for δ = 10−3 all the envelopes except the
Householder one are monotonously decreasing.



120 3.3. EIGENSOLVERS

0 100 200 300 400 500
orthgonalizations

10 5

10 4

10 3

10 2

10 1

sc
al

ed
 re

sid
ua

l

Householder
MGS
MGS2
CGS
CGS2
GRAM

= 1e 03

(A) δ = 10−3

0 500 1000 1500 2000 2500 3000
orthgonalizations

10 5

10 4

10 3

10 2

10 1

sc
al

ed
 re

sid
ua

l

Householder
MGS
MGS2
CGS
CGS2
GRAM

= 1e 05

(B) δ = 10−5

Residual envelope in function of the number of orthogonalization

0 500 1000 1500 2000 2500 3000
TT-rounding

10 5

10 4

10 3

10 2

10 1

sc
al

ed
 re

sid
ua

l

Householder
MGS
MGS2
CGS
CGS2
GRAM

= 1e 03

(C) δ = 10−3

0 2000 4000 6000 8000 10000 12000
TT-rounding

10 5

10 4

10 3

10 2

10 1

sc
al

ed
 re

sid
ua

l

Householder
MGS
MGS2
CGS
CGS2
GRAM

= 1e 05

(D) δ = 10−5

Residual envelope in function of the number of TT-rounding

Figure 3.5 – Residual envelope for m = 7 TT-eigenpairs of order d = 3 and mode size
n = [19, 24, 31].



CHAPTER 3. ORTHOGONALIZATION SCHEMES IN TT-FORMAT 121

0 50 100 150 200 250 300 350
orthgonalizations

10 5

10 4

10 3

10 2

10 1

sc
al

ed
 re

sid
ua

l

Householder
MGS
MGS2
CGS
CGS2
GRAM

= 1e 03

(A) δ = 10−3

0 200 400 600 800 1000 1200 1400
orthgonalizations

10 5

10 4

10 3

10 2

10 1

sc
al

ed
 re

sid
ua

l

Householder
MGS
MGS2
CGS
CGS2
GRAM

= 1e 05

(B) δ = 10−5

Residual envelope in function of the number of orthogonalization

0 500 1000 1500 2000 2500 3000
TT-rounding

10 5

10 4

10 3

10 2

10 1

sc
al

ed
 re

sid
ua

l

Householder
MGS
MGS2
CGS
CGS2
GRAM

= 1e 03

(C) δ = 10−3

0 1000 2000 3000 4000 5000 6000
TT-rounding

10 5

10 4

10 3

10 2

10 1

sc
al

ed
 re

sid
ua

l

Householder
MGS
MGS2
CGS
CGS2
GRAM

= 1e 05

(D) δ = 10−5

Residual envelope in function of the number of TT-rounding

Figure 3.6 – Residual envelope for m = 7 TT-eigenpairs of order d = 3 and mode size
n = [24, 24, 24].



122 3.3. EIGENSOLVERS

3.3.2.2 Memory requirement

This section is devoted to the analysis of the TT-eigenvector memory requirement
through the study of the maximal TT-rank and the maximal compression ratio. In par-
ticular we display the maximum, among all the m = 7 computed TT-eigenvectors, the
maximum TT-rank and compression ratio. Notice that, as in the previous section, we
display both the maximal TT-rank and the compression ratio in function of the number
of orthogonalization and of TT-rounding steps.

The memory requirement for the approximation of the TT-eigenvectors of the discrete
order d = 3 Laplacian of mode sizes [19, 24, 31] are shown in Figure 3.7. For δ = 10−3,
all the orthogonalization kernels lead to some initial oscillations, higher for Householder,
and then to a maximum TT-rank stagnating at 3. For δ = 10−5, the maximum TT-rank
of the TT-eigenvectors approximated through TT-SUBSPIT with Householder or CGS2
stagnates at 3, while when the other orthogonalization kernels are used, the maximum
TT-rank sets to 4. As comparison term, remark that the theoretical eigenvectors in TT-
format have TT-rank equal to 1.
From Figures 3.7E, 3.7F the compression ratio of TT-eigenvector approximations presents
some peaks, which hit 16% of the memory needed to store the dense format tensor for
Householder and 10% for the other schemes, and finally it stagnates around 2% − 3%.
Similarly, in Figures 3.7G and 3.7H, the compression ratio has some peaks reaching, for
all kernels, 16% of the memory requested to store the same tensors in dense format and
it sets between 2% and 3% at convergence, when the rounding accuracy is 10−5. In this
case, the maximal TT-rank and the compression ratio curves in function of the number
of TT-roundings or orthogonalizations do not present significantly different behaviours.

The memory requirement of TT-eigenvector approximations for the discrete order 3
Laplacian with all mode size equal to 24 are displayed in Figure 3.8. For the round-
ing and the converging accuracy equal to 10−3, the maximal TT-rank hits 10 when the
Householder kernel is used and 8 when the other orthogonalization schemes are applied,
stagnating in any case at 3 at convergence, as displayed in Figure 3.8A and 3.8B. For
δ = 10−5, the maximal TT-rank associated with every orthogonalization schemes hits
10 during a first phase and sets to 2 for Householder and to 3 for the other kernels, see
Figure 3.8C and 3.8D. From the compression ratio side, Figures 3.8E and 3.8F highlight
that the compression ratio of the TT-eigenvectors approximated with the Householder
kernel reaches higher peaks, as 0.2, that reads as 20% of the dense format memory re-
quirement, than the other schemes, which do not overcome 0.13. However, at convergence
the Householder compression ratio stagnates around 0.02 slightly below the other scheme
curves. Similarly for δ = 10−5, all the compression ratio curves reach 0.2 during a first
phase and they decrease to less than 0.02 for the Householder one and to 0.02 for the
other schemes, as displayed in Figures 3.8G and 3.8H.



CHAPTER 3. ORTHOGONALIZATION SCHEMES IN TT-FORMAT 123

0 100 200 300 400 500
orthgonalizations

2

4

6

8

10

m
ax

 T
T-

ra
nk

Householder
MGS
MGS2
CGS
CGS2
GRAM

(A) δ = 10−3

0 500 1000 1500 2000 2500 3000
TT-rounding

2

4

6

8

10

m
ax

 T
T-

ra
nk

Householder
MGS
MGS2
CGS
CGS2
GRAM

(B) δ = 10−3

0 500 1000 1500 2000 2500 3000
orthgonalizations

2

4

6

8

10

m
ax

 T
T-

ra
nk

Householder
MGS
MGS2
CGS
CGS2
GRAM

(C) δ = 10−5

0 2000 4000 6000 8000 10000 12000
TT-rounding

2

4

6

8

10

m
ax

 T
T-

ra
nk

Householder
MGS
MGS2
CGS
CGS2
GRAM

(D) δ = 10−5

Maximal TT-rank in function of the number of orthogonalization or TT-rounding

0 100 200 300 400 500
orthgonalizations

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

co
m

pr
es

sio
n 

ra
tio

Householder
MGS
MGS2
CGS
CGS2
GRAM

(E) δ = 10−3

0 500 1000 1500 2000 2500 3000
TT-rounding

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

co
m

pr
es

sio
n 

ra
tio

Householder
MGS
MGS2
CGS
CGS2
GRAM

(F) δ = 10−3

0 500 1000 1500 2000 2500 3000
orthgonalizations

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

co
m

pr
es

sio
n 

ra
tio

Householder
MGS
MGS2
CGS
CGS2
GRAM

(G) δ = 10−5

0 2000 4000 6000 8000 10000 12000
TT-rounding

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16
co

m
pr

es
sio

n 
ra

tio
Householder
MGS
MGS2
CGS
CGS2
GRAM

(H) δ = 10−5

Compression ratio in function of the number of orthogonalization or TT-rounding

Figure 3.7 – Memory requirement for TT-eigenvector for m = 7 TT-eigenpairs of order
d = 3 and mode size n = [19, 24, 31].



124 3.3. EIGENSOLVERS

0 50 100 150 200 250 300 350
orthgonalizations

2

4

6

8

10

m
ax

 T
T-

ra
nk

Householder
MGS
MGS2
CGS
CGS2
GRAM

(A) δ = 10−3

0 500 1000 1500 2000 2500 3000
TT-rounding

2

4

6

8

10

m
ax

 T
T-

ra
nk

Householder
MGS
MGS2
CGS
CGS2
GRAM

(B) δ = 10−3

0 200 400 600 800 1000 1200 1400
orthgonalizations

2

4

6

8

10

m
ax

 T
T-

ra
nk

Householder
MGS
MGS2
CGS
CGS2
GRAM

(C) δ = 10−5

0 1000 2000 3000 4000 5000 6000
TT-rounding

2

4

6

8

10

m
ax

 T
T-

ra
nk

Householder
MGS
MGS2
CGS
CGS2
GRAM

(D) δ = 10−5

Maximal TT-rank in function of the number of orthogonalization or TT-rounding

0 50 100 150 200 250 300 350
orthgonalizations

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

co
m

pr
es

sio
n 

ra
tio

Householder
MGS
MGS2
CGS
CGS2
GRAM

(E) δ = 10−3

0 500 1000 1500 2000 2500 3000
TT-rounding

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

co
m

pr
es

sio
n 

ra
tio

Householder
MGS
MGS2
CGS
CGS2
GRAM

(F) δ = 10−3

0 200 400 600 800 1000 1200 1400
orthgonalizations

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

co
m

pr
es

sio
n 

ra
tio

Householder
MGS
MGS2
CGS
CGS2
GRAM

(G) δ = 10−5

0 1000 2000 3000 4000 5000 6000
TT-rounding

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200
co

m
pr

es
sio

n 
ra

tio
Householder
MGS
MGS2
CGS
CGS2
GRAM

(H) δ = 10−5

Compression ratio in function of the number of orthogonalization or TT-rounding

Figure 3.8 – Memory requirement for TT-eigenvector for m = 7 TT-eigenpairs of order
d = 3 and mode size n = [24, 24, 24].



CHAPTER 3. ORTHOGONALIZATION SCHEMES IN TT-FORMAT 125

3.4 Concluding remarks

This chapter aims to study the orthogonalization algorithms implemented with the
TT-formalism with a particular focus on the TT-rounding effects. We firstly describe our
extension to the tensor framework of six classical orthogonalization schemes through the
TT-formalism. Then, we study the quality in terms of orthogonality of the computed basis
and we relate our numerical results with the classical linear algebra theoretical ones. For
completeness, we present an application of the considered kernels: an iterative eigensolver
in TT-format. After describing the chosen eigensolver algorithm and highlighting its
tensor specificities, we analyse its behaviour. Through a study case, we investigate how the
chosen orthogonalization methods affect the quality of the computed eigenvalues and TT-
eigenvectors. In all the numerical experiments, particular attention is paid to the memory
requirements, which are known to be a major constraint when tensors are involved.

In the first part, corresponding to Sections 3.2, six orthogonalization kernels are de-
scribed. Firstly we present the Classical Gram-Schmidt (CGS) and its Modified version
(MGS) extended to the tensor framework with the TT-formalism. To be as comprehen-
sive as possible, the CGS and MGS algorithms with re-orthogonalization are addressed as
well. After detailing the structure in TT-format of the Gram algorithm, the Householder
transformation is introduced. This last scheme requires a more accurate generalization in
TT-format, which is completely given in Section 3.2.3. To face the memory requirements,
we include in all the orthogonalization schemes further rounding steps, that play a crucial
role in maintaining the computations affordable and in determining the quality of the
computed orthogonal basis. The theoretical classical linear algebra bounds for the loss
of orthogonality of these six orthogonalization kernels are presented in Section 3.2.4 and
compared with the numerical experiments reported in Section 3.2.5. We generate with
a Krylov process an input set of TT-vectors, which become more and more collinear by
construction, and we orthogonalize them through the considered methods. The two sets
of experiments of different orders suggest that the theoretical classical bounds can be gen-
eralized to the tensor context with the TT-formalism replacing the IEEE unit round-off
with the TT-rounding accuracy. We include an analysis of the memory requirement for
the basis computation estimated through the maximal TT-rank and the compression ratio
of TT-vectors forming the orthogonal basis. Moreover, the complexity of the algorithms is
evaluated in terms of TT-rounding operations, which represent the major computational
cost.

The second part, coinciding with Section 3.3, presents a possible application of these
kernels, that is inside the SUBSPace ITeration eigensolver formulated in TT-format (TT-
SUBSPIT). Section 3.3.1 includes the description of the TT-SUBSPIT algorithm, while
the numerical results are found in Section 3.3.2. As for the orthogonalization schemes, also
for TT -SUBSPIT some TT-rounding steps are required to prevent memory deficiencies.
For the numerical experiments, we consider a classical study case in tensor format, i.e.,
the discrete order 3 Laplacian with different mode sizes. We compare the computed eigen-
values at different rounding accuracies with their analytical values, remarking that the
Householder kernel seems to outcompete the other ones approximating more eigenvalues



126 3.4. CONCLUDING REMARKS

in the right spectrum region. For the sake of completeness, we analyse the convergence
through the stopping criterion, that is the scaled residual, and the memory requirement
through the maximal TT-rank and the compression ratio. Those preliminary results are
a starting point for the investigation of the TT-SUBSPIT algorithm for solving tensor
eigenproblems.



Part II

Data analysis

127





II.I Introduction
Data science, and every aspect related to this discipline, have been on the crest of a

wave since 2010 [17] when media and business popularized it, see [34, 100, 102, 117]. Even
if it has impacted economic, social and scientific levels [17], data science as a field of study
has not yet a clear and universally accepted definition. The problem of stating what are
the topics of interest in data science was firstly addressed in 1962 by Tukey [138], who
started the discussion inside the scientific community long before this discipline gained
its notoriety. Notice that in 1962 Tuckey was using the term ‘data analysis’ and the
expression ‘data science’ arrived later, in 1985 at the Chinese Academy of Sciences in
Beijing during a talk by Jeff Wu [17], who proposed it as a substitute for ‘statistics’.
A more wide and more comprehensive definition was proposed in 1998 by Hayashi [67],
who highlighted data science’s multidisciplinary nature and the three main investigation
topics, i.e., how to design, collect, and analyse data. Nowadays, a popular definition [17,
130] highlights the presence of methods and principles, coming from both theoretical
areas, such as statistics or computer science, and applicative ones, such as economics,
psychology, and biology.

A central topic in data science is analysing the data, extrapolating and visualizing
the significant information. The increasing number of large-size datasets, for example,
those coming from CERN experiments or Hubble Space Telescope images, from private
technology companies such as Google, Amazon, and Facebook, or private sensors or de-
vices, has acted as propulsion for developing new data analysis techniques able to handle
huge data. Therefore, in recent years researchers from different fields started modelling
and investigating their datasets, relying on tensor theory and algorithms. In the following
chapters, we address two data analysis techniques, namely Correspondence Analysis (CA)
and climate data analysis popular method referred to by Empirical Orthogonal Function
(EOF).

II.I.I Correspondence Analysis background
In 1904 Pearson referred with the expression ‘contingency tables’ to datasets whose

values are frequencies or counts of a combination of two categories belonging respectively
to two different categorical variables, for example, the hair colour or the social class [118].
The standard technique for analysing contingency tables and visualizing their information
is Correspondence Analysis (CA), whose mathematical roots appeared during the 1930s
in Richardson’s and Kuder’s [120], Horst’s [74] and Hartley’s [71] (whose former family
name was Hirschfeld) works. During the 1940s, the notable statisticians, Fisher [43] and
Guttman [60] separately derived the same technique in different contexts, that is biomet-
rics and psychometrics. The ideas of Guttman were further developed by Hayashi [66]
between the 1940s and the 1950s, while in the same period Williams [146] worked on
Fisher’s proposal. All those contributions, sharing the same background procedure, are
meant for returning a numerical result rather than a visual one [57]. Only with the advent
of Benzécri’s research during the 1960s, the first geometrical interpretations and outputs



130 II.I. INTRODUCTION

arrived together with the French expression ‘analyse des correspondances’ [12, 14]. Hill’s
publication of 1974 [70] diffused Benzécri’s and his collaborators’ results, previously lim-
ited to the French audience, suggesting the name correspondence analysis directly from
the French translation. His later publication of 1982 [69] defines CA with its geometric
aspects.

In many domains, for example, social or biological sciences, frequently count data
come from more than two categorical variables; these datasets are usually called multiway
contingency tables. A common technique for studying multiway contingency tables is Mul-
tiple Correspondance Analysis (MCA). The principle of MCA is associating the multiway
table with an indicator or Burt table [20], which is mathematically speaking, a matrix of
only 0 and 1. The roots of these techniques can be found already in Guttman’s paper
of 1941 [60]. The expression ‘multiple correspondence analysis’ was presented by Burt in
1950, but the complete formulation of MCA as analysing and visualizing methods was
proposed during the 1970s by Benzécri and Lebart [14, 93, 95]. Starting from the 1970s,
several researchers developed MCA; the works of Kroonenberg, Kiers, Marcotorchino,
Clausen, Beh, D’Ambra, and Lombardo contributed to the MCA investigation in the last
thirty years, and an exhaustive description is presented in [10]. As pointed out in [10],
MCA still relies on matrix representations of multiway tables, and consequently, it dis-
cards without the possibility of retrieving the information about the interactions among
more than two variables. Thus, at the end of the 1990s [10, 88], tensors were introduced
to mathematically represent multiway tables, developing the MultiWay Correspondence
Analysis (MWCA) technique, even if some previous attempts were already made between
the 1970s and the 1980s [88]. Lombardo’s [98], Carlier’s, and Kroonenberg’s [21, 22, 87,
88, 89] results are based on the CP [72] and the Tucker [137] decomposition.

II.I.II Climate data analysis history
The weather and climate have always fascinated and intrigued humankind. Even if

the collection of weather information started already during the XIX century, the scien-
tific investigation of climate patterns through mathematical techniques made significant
progress only from the 1920s [63]. After the preliminary results of Walker and Ångström
obtained between the 1920s and the 1930s, Obukhov and Bagrov introduced linear algebra
tools in the study of climate data between 1940 and 1950 [63]. The invention of Empiri-
cal Orthogonal Function (EOF), today’s popular climate data analysis technique [64], is
attributed to Lorenz [99], who first proposed the expression, even if other scientists as
Obukhov [107] and Fukuoka [45] already described a similar analysis procedure. Since
the second half of the XX century, the EOF method has continuously developed with
many theoretical and practical contributions; we refer the reader to [63, 64] and to the
references therein for an exhaustive list of EOF-related works.

The EOF method is meant for the investigation and the independent visualization of
data that depends on time and space, which are the usual variable of climate data. In
particular, it works on dimensional reduction and pattern extraction [64]. Since climate
datasets are usually of huge dimensions, it would be natural to generalize the EOF method



part II. data analysis 131

through tensor compression techniques. We are not aware of any previous contribution
that describes EOF in the tensor framework, even if in literature are present some studies
of climate data through tensor techniques, as for example [149].

II.II Statistics preliminaries
In this section, we introduce some basic statistical concepts, that we will use in the

following chapters
The first key concept is the average or mean of an array, whether it represents a vector,

a matrix, or a tensor.

Definition II.II.i. Let x ∈ Rn be a vector, whose i-th component represent the i-th
observation of a random variable, the (sample) average or mean of x is µx ∈ R defined as

µx = 1
n

n∑
i=1

x(i).

The definition of average is generalized mode-wise to matrices and tensors. Given a
tensor x ∈ Rn1×···×nd , its (sample) average or mean with respect to mode k is an order
(d− 1) tensor xk ∈ Rn1×···×nk−1×nk+1×···×nd such that

xk(i1, . . . , ik−1, ik+1, . . . , id) = 1
nk

nk∑
ik=1

x(i1, . . . , ik, . . . , id).

for every ih ∈ {1, . . . , nh} with h ∈ {1, . . . , k − 1, k + 1, . . . , d} and k ∈ {1, . . . , d}. If
d = 2, the considered data structure is a matrix with x1 ∈ Rn2 and x2 ∈ Rn1 its column
and row average respectively.

The variance is a mathematical object closely related to the average. As previously,
we present the definition of variance for a vector and then we generalize it to tensors.

Definition II.II.ii. Let x ∈ Rn be a vector, whose i-th component represent the i-th
observation of a random variable, the (sample) unbiased variance of x is sx ∈ R defined
as

sx = 1
n− 1

n∑
i=1

(x(i)− µx)2 = 1
n
〈x− µx1n, x− µx1n〉 = 1

n
‖x− µx1n‖2

where 1n ∈ Rn is a vector of ones. The standard deviation is σx = √sx.

The (sample) unbiased variance with respect to mode k of an order d tensor x ∈ Rn1×···×nd

is an order (d− 1) tensor sk ∈ Rn1×···×nk−1×nk+1×···×nd such that

sk(i1, . . . , ik−1, ik+1, . . . , id) = 1
nk − 1

nk∑
ik=1

(
x(i1, . . . , ik, . . . , id)− xk(i1, . . . , ik−1, ik+1 . . . , id)

)2

= 1
nk − 1

nk∑
ik=1

((
x− 1nk ⊗ xk

)
(i1, . . . , ik, . . . , id)

)2



132 II.III. PRINCIPAL COMPONENT ANALYSIS

where 1nk ∈ Rnk is a vector of ones, for every ih ∈ {1, . . . , nh} with h ∈ {1, . . . , k− 1, k+
1, . . . , d} and k ∈ {1, . . . , d}. The standard deviation with respect to mode k of x is the
order (d− 1) tensor defined as the square root of the mode k variance, that is σk = √sk.
Another statistical definition, that we will use later on, is the covariance.

Definition II.II.iii. Given two vectors x, y ∈ Rn whose components are the observations
of two different random variables respectively, then cx,y ∈ R is the covariance of x and y
computed as

cx,y = 〈x− µx1n, y − µy1n〉.

More generally if X ∈ Rn1×n2 is a matrix whose i-th column xi ∈ Rn is the realization
of a random variable for every i ∈ {1, . . . , p}, then its covariance matrix is QX ∈ Rn2×n2

such that

QX(j, k) =
n1∑
i=1

(
X(i, j)− x1(j)

)(
X(i, k)− x1(k)

)
=
(
X − 1n1 ⊗ x1

)>(
X − 1n1 ⊗ x1

)
where 1n1 ∈ Rn1 is a vector of ones. The (j, k)-th element of QX is actually equal to
the covariance of the j-th and k-th column of X, if j 6= k, while QX(j, j) is the (scaled)
variance of the j-th column of X.

II.III Principal Component Analysis

A common technique to explore data is Principal Components Analysis (PCA) [5, 28,
46, 75, 78, 79, 82, 105, 119]. The analysis procedures we investigate in the following
chapters, i.e., CA in Chapter 4 and the EOF analysis in Chapter 5, rely on PCA. This
method has three different natures, which are statistical, geometrical, and algebraical,
that CA and EOF analysis inherit. We briefly present those three facets, under the same
assumptions. Let X ∈ Rn×p be a matrix whose i-th column xi ∈ Rn is the realization of
a random variable for every i ∈ {1, . . . , p}. In addition, we assume that every column of
X has zero mean, i.e., x1(j) = 0 for every j ∈ {1, . . . , p}.

II.III.I Statistical viewpoint

The statistical purpose of PCA is to find a linear combination of the random variables
that maximize their covariance. Mathematically, this problem seeks the first principal
component y ∈ Rn such that y = Xv∗ where v∗ ∈ Rp is the said to be the loading and it



part II. data analysis 133

is obtained as

v∗ = arg max
||v||=1

(sXv)

= 1
p

arg max
||v||=1

〈Xv,Xv〉

= 1
p

arg max
||v||=1

(v>X>Xv)

= 1
p

arg max
||v||=1

(v>QXv)

with the covariance matrix QX = X>X thanks to the assumption that the column av-
erage of X is zero. Since the matrix QX is by construction symmetric, then it can be
decomposed into the orthogonal basis formed by its eigenvectors, that is QX = W>ΛW
with Λ = diag(λ1, . . . , λp) where wi and λi are the i-th eigenvector and eigenvalue re-
spectively. We assume that the eigenvalues, and consequently the eigenvectors, are sorted
with decreasing absolute values. Thus, the PCA problem is

v∗ = 1
p

arg max
||v||=1

(v>W>ΛWv)

= 1
p

arg max
Wv=z
||v||=1

(z>Λz)

The solution to this maximization problem is z∗ = e1 the first canonical basis vector and
v∗ equal to w1 the first eigenvector, associated with the largest eigenvalue. Consequently,
the first principal component is y1 = Xv∗ = Xw1. If we want to determine r principal
components, we impose that the r loadings have norm 1 and are mutually orthogonal,
getting that the i-th loading is the i-th eigenvector of the covariance matrix QX and the
i-th principal component is yi = Xwi for every i ∈ {1, . . . , r}. We refer the reader to [101,
Theorem 2.1] for further details about the statistical viewpoint of PCA.

II.III.II Geometrical viewpoint
In this case, it is more convenient to assume that the observations are arranged column-

wise, i.e., assuming that Y ∈ Rp×n with n the number of observations and p the number
of random variables considered. Remark that Y = X> used in the previous section.

The geometrical facet of PCA regards the j-th column of Y as the coordinate array of
the j-th observation in a space of dimension p. Thus, the aim of PCA from the geomet-
rical viewpoint is finding a subspace of Rp of dimension r which minimizes the projection
error, i.e., the PCA is geometrically speaking a dimensionality reduction method. Math-
ematically the problem is determining S∗ ⊆ Rp with dim(S∗) = r which minimizes the
projection error of all the columns of Y , that is

S∗ = arg min
S⊆Rp

n∑
i=1
‖yi − πS(yi)‖2



134 II.IV. TENSOR FORMALISM

where πS : Rp 7→ S is the projection map. Each subspace is determined by a basis,
thus the projection map can be expressed using the selected basis. If the columns of
U ∈ O(p× r) form an orthonormal basis of S, that is S = span(U), then the projection
by πS of z ∈ Rp is expressed as πSz = UU>z. Thanks to this result, the geometric PCA
problem becomes determining the orthonormal basis U∗ ∈ O(p× r) which minimizes the
projection error, i.e.,

U∗ = arg min
U>U=Ir

n∑
i=1

∥∥∥yi − UU>yi∥∥∥2
.

This is a classical least squares problem in linear algebra, whose solution is given by
U ∈ O(p× r) the left orthogonal matrix of the SVD of Y = UΣV > truncated at the r-th
column, which is also called loading matrix. The matrix U>Y , which is equal to ΣV > by
construction, is referred as the principal components or coordinates of Y . The columns
of U define the axis of the low dimensional space where we display the data, while the
columns of ΣV > represent the data coordinates in the new low dimensional subspace.
Notice that the statistical and the geometrical results are coherent. Indeed, in the sta-
tistical loading matrix is W the eigenvector matrix of QX , which is equal to the right
orthogonal matrix of the SVD of X, that is X = Y > = V ΣU> by construction, i.e., the
loading matrix found with the geometrical approach, cf. [101, Theorem 2.3].

II.III.III Algebraic viewpoint
In the algebraic context, given Y ∈ Rn×p, PCA seeks a matrix Z∗ ∈ Rn×p of rank r

which minimizes the approximation error, that is

Z∗ = arg min
rank(Z)=r

‖Y − Z‖

with r < rank(Y ). Under this formulation, the best solution is guaranteed by the Eckart-
Young theorem [41] through the SVD of Y . This algebraic approach is exactly equivalent
to the previous two, leading indeed to the same solution, cf [101, Theorem 2.6]. This type
of approach is often of interest in face recognition problems.

II.IV Tensor formalism
The generalization of PCA to tensor has been for many years a discussion topic,

leading to different results, summarized in [87, 89], relying either on the Tucker model
or on the Canonical Polyadic one. The study performed and reported in the following
chapters are based on the Tucker model and its HOSDV realization, even if it is known
that the HOSVD approximation at a prescribed accuracy or prescribed multilinear does
not guarantee the optimality of the approximation as SVD does.



Chapter 4

A geometric framework for multiway
correspondence analysis

4.1 Introduction
Correspondence Analysis (CA) [13, 47, 49, 55, 56, 57, 70] is a well suited tool for the

study of categorical data, which usually are stored in contingency tables1. In particular,
this analysis technique makes possible the simultaneous visualization and interpretation
of categories of two variables in a low dimension space. CA is the Principal Component
Analysis (PCA), see Section II.III, of a contingency table with a specific metric and
consequently it inherits the PCA three possible natures. Indeed, the PCA of a matrix has
an algebraic, a geometric and a statistical guise simultaneously. A two variables table is
algebraically represented by a matrix and from the algebraic viewpoint PCA looks for the
best approximation of this matrix at a prescribed rank. As explained in [41], PCA relies on
SVD for determining the best matrix approximation at a prescribed rank. Geometrically
speaking, a two variable table is associated with two point clouds, i.e., the sets of row
and the column vectors of the original matrix. These vectors are the coordinates of the
different variables in the full dimensional space. Therefore, geometrically speaking, PCA
looks for a subspace of low dimension which minimizes the projection error of the two
original point clouds, as described in [119]. Then, in a statistical context, the table entries
represent observations of two variables and the statistical purpose of PCA is maximizing
the variance, identifying a small amount of linear independent variable combinations.
As PCA, also CA looks for the best approximation at a given rank or equivalently for
the optimal subspace of low dimension, but taking into account a specific weight metric
equivalent to the classical one. Particularly, a barycentric relation links the two point
clouds when projected in the low dimension subspace found by CA [94]. This link justifies
the simultaneous interpretation and visualization of the two point clouds.

When there are more than two variables in the contingency table, i.e., the data are

1In Statistics a contingency table is a table whose (i, j) entry is the frequency of the combination of
the i-th category of the first variable with the j-th category of the second variable.

135



136 4.2. CORRESPONDENCE ANALYSIS

organized in a multiway table, it is convenient to move from matrix analysis techniques
to tensor ones. As well underlined in [148], it is still possible to investigate multiway data
through matrix methods, matricizing the data, but the matricization introduces necessarly
a variable coupling, making some variable interactions harder to identify. On the other
side, analysis procedures based on tensor decomposition algorithms have the advantage
of considering each variable independently and clearly show all the variable links. For
example in the Tucker model, presented in Section 1.3.1, the strength of the variable
correlation is expressed by the core tensor coefficients. Classically, PCA is extended to
tensor data by the Tucker model and its realization through HOSVD, see Algorithm 1.
The algebraic extension of CA to MultiWay Correspondence Analysis (MWCA) follows
naturally and it has been studied in [29, 44, 87, 89]. However the further investigation
of the geometric nature of tensor MWCA was missing in the literature. The focus of
this chapter is investigating the geometric viewpoint in CA in the tensor framework.
Indeed we propose to fulfil this gap by proving the algebraic relation and the geometric
interpretation of the point clouds associated with each mode of a multiway contingency
table.

The remainder of this chapter is organized as follows. The first section presents the
classical CA theory and then the MWCA with a focus on the geometric viewpoint, which
is our theoretical contribution to the MWCA literature. In conclusion to this part, we
compare the CA and the MWCA on two test examples, previously studied in [58]. The
second section is centred on the analysis of the Malabar multiway contingency table [6].
We apply the MWCA technique, which is known as the most suitable investigation tool
for frequency data, using the theoretical results to interpret the dataset.

4.2 Correspondence Analysis

After recalling briefly the CA theory, we describe the construction of point clouds from
multiway data, one per mode, and we link them together. More precisely, we show that
each point cloud is associated with each mode of a tensor in MWCA in the same way that
a point cloud is associated with either rows or columns of a matrix in CA. This theoretical
work justifies the possibility of visualizing and interpreting simultaneously point clouds
constructed in MWCA from multiway data. To prove the existence of a barycentric link
between point clouds attached to each tensor mode and generalizing the correspondence
between rows and columns for contingency tables, we pass through three steps. Firstly
we express the link in a classical Euclidean space, after we generalize to any Euclidean
space and finally we construct the MWCA metric, stating the barycentric relation.

4.2.1 Matrix case

This section describes briefly the main steps of CA and its main result, i.e., the
barycentric relation linking row and columns point clouds, see [94].



CHAPTER 4. A GEOMETRIC FRAMEWORK FOR MULTIWAY
CORRESPONDENCE ANALYSIS 137

Let F ∈ Rn1×n2
+ be a contingency table, whose entry F (i, j) represents the relative2

frequency of the i-th category for the first variable and the j-th category for the second
one. As already stated, geometrically speaking, the matrix F is associated with two point
clouds, i.e., two sets R = {r1, . . . , rn1} and C = {c1, . . . , cn2} where ri ∈ Rn2 is the i-th
row of F and similarly cj ∈ Rn1 is the j-th column of F . The vectors ri and cj represent
the components of the i-th category of the first variable in the space Rn2 and the j-th
category of the second variable in the space Rn1 respectively. Henceforth we denote row
and column marginals, norms and spaces by R and C respectively, and not by 1 and 2,
to avoid any confusion with the classical meaning of norm-1 and norm-2, used in the
previous chapters.

In the CA framework, we assume that the row space Rn2 and the column one Rn1 are
endowed with two norms defined from the row and column marginals. Let fR ∈ Rn1

+ be
the row marginal vector, whose i-th entry is

fR(i) =
n2∑
j=1

ri(j) =
n2∑
j=1

F (i, j).

Similarly the column marginal is fC ∈ Rn2
+ defined as

fC(j) =
n1∑
i=1

cj(i) =
n1∑
i=1

F (i, j).

Then the row norm || · ||R : Rn2 → R+ and the column norm || · ||C : Rn2 → R+ are defined
as

||x||R = ||D−1
R x|| and ||y||C = ||D−1

C y||

where DR = diag(
√
fR) and DC = diag(

√
fC). The matrices D−1

R and D−1
C induce two

isometries on the row space (Rn2 , || · ||R) and the column one (Rn1 , || · ||C), since they are
both SPD matrices. Indeed, the functions

νR : (Rn2 , || · ||R)→ (Rn2 , || · ||) and νC : (Rn1 , || · ||C)→ (Rn1 , || · ||)

such that νR(x) = D−1
R x and νC(y) = D−1

C y are isometries, as they preserve the norm,
that is ||νR(x)|| = ||D−1

R x|| = ||x||R and similarly for νC. The pair of matrices (D−1
R , D−1

C )
enables us to endow a metric on the matrix space Rn1×n2 . Let || · ||M : Rn1×n2 → R+ be
a metric such that ||X||M = ||D−1

R XD−1
C ||. We denote by SM the matrix space Rn1×n2

endowed with the metric norm ||·||M , while by S the same matrix space with the standard
Euclidean norm. The bijection ν : SM → S defined as ν(X) = D−1

R XD−1
C is an isometry

among SM and S, since it preserve the norm, that is ||ν(X)|| = ||X||M . Remark that the
action of ν can be seen as the combined action of νC and νC on the row and columns of
an element of SM respectively.

The geometrical aim of CA is finding a low dimension space Rs with s� min{n1, n2}
which minimizes the projection error of the two point clouds R and C, so that they can be

2any contingency tables with absolute frequencies can be transformed into a relative frequency one



138 4.2. CORRESPONDENCE ANALYSIS

simultaneously visualized and interpreted easily. From the algebraic viewpoint this means
finding the best approximation of a given contingency table at a prescribed rank in SM ,
thus it is not possible to directly apply the SVD to F ∈ SM . To retrieve the best low rank
approximation, we transport F ∈ SM through the isometry ν into the Euclidean space
S, where we can apply SVD. So given the contingency table F belonging to the space
SM , let X ∈ S be its image through the isometry ν, i.e., X = ν(F ), then we consider the
reduced SVD of X

X = UΣV >

with U ∈ O(n1 × r), V ∈ O(n2 × r) and Σ = diag(σ1, . . . , σr) with r = rank(X). The
principal component for the row point clouds are given by the columns of YR = UΣ
in a subspace of dimension r of Rn2 endowed with the canonical Euclidean norm, while
the column principal coordinates are YC = V Σ in a subspace of dimension r of Rn1 still
with the canonical Euclidean norm. More precisely from a geometric viewpoint the (i, h)
element of YR represents the coordinate of the i-th category of the row variable along the
h-th principal axis. Similarly YR(j, h) is the coordinate of the j-th category of the column
variable along the h-th principal axis for h ∈ {1, . . . , r}. As consequence the projections of
the row and the column point clouds live in the subspaces of the same dimension r. They
are usually simultaneously displayed and interpreted, because a barycentric relation links
these principal components in the Euclidean space selected by CA. More specifically, let
the WR = DRYR be the scaled principal components of the row variable in the subspace
of dimension r of (Rn2 , || · ||R) and similarly WC = DCYC represents the columns principal
components in the subspace of dimension r of (Rn1 , || · ||C), then it holds

ZR = D−2
R FZCΣ−1 and ZC = D−2

C F>ZRΣ−1

where the scaled principal components are Zi ∈ Rni×r with Zi = D−2
i Wi for i ∈ {R,C}.

These relations state that the row scaled principal components in (Rn2 , || · ||R) are actually
the scaled barycentre of the column scaled principal components in (Rn1 , || · ||C) and vice-
versa. Indeed component-wise, the previous relation writes

ZR(i, h) = 1
σh

n2∑
j=1

F (i, j)
fR(i) ZC(j, h) and ZC(j, h) = 1

σh

n1∑
i=1

F (i, j)
fC(j) ZR(i, h), (4.1)

which is a barycentric relation scaled by the h-th singular value, since the sum of weights
of the principal components sum is equal to 1, i.e.,

n2∑
j=1

F (i, j)
f1(i) =

n1∑
i=1

F (i, j)
f2(j) = 1

by the marginal definition. CA relies on this relation for justifying the simultaneous
visualization and interpretation of the two contingency table variables. We refer to [94]
for further details on the barycentric relation linking the principal components in the CA
framework.



CHAPTER 4. A GEOMETRIC FRAMEWORK FOR MULTIWAY
CORRESPONDENCE ANALYSIS 139

4.2.2 Tensor case
Starting from the extension of principal component analysis to tensors with HOSVD,

cf. Algorithm 1, we associate a point cloud with each mode, and show the existence
of an algebraic link between them. The aim of this section is providing a geometrical
interpretation of the point cloud relations algebraically proved in the tensor framework.
For sake of simplicity, we first prove a link between the point clouds in the standard
Euclidean 3-order tensor space, and then we generalize to d-order tensors. This structure
choice is kept throughout this theoretical section. At the end of each section we present
the geometric interpretation of the stated results. We naturally attach a point cloud to
each matricization of 3-order tensor, see Definition 1.2.3. Then we search the optimal
projection of each point cloud defined from the mode matricization in low dimension
space. Finally, we show how their coordinates are linked and we extend this result to
general Euclidean spaces of d-order tensors.

Let x ∈ Rn1×···×nd be a tensor of order d and let (Uµ)µ ∈ O(nµ× rµ) be the Tucker de-
composition basis obtained from the HOSVD algorithm at multi-linear rank r = (r1, . . . , rd).
The tensor x is expressed as

x =
r1,...,rd∑
i1,...,id=1

c(i1, . . . , id)u1
i1 ⊗ · · · ⊗ u

d
id

(4.2)

with c ∈ Rn1×···×nd being the HOSVD core tensor and uµiµ ∈ Rnµ the iµ-th column of
Uµ. The condition for Equation (4.2) to be a decomposition is rµ = rank(X(µ)) for
µ ∈ {1, . . . , d}, otherwise we have an approximation of the given tensor. To keep the
notation plain, we denote by x both the approximation and the decomposition of the
given tensor, when its nature is clear enough from the context. Let Σµ be the diagonal
singular value matrix of the matricization of x with respect to mode µ. For simplicity, the
iµ-th diagonal element of Σµ is denoted by σ(µ)

iµ for every iµ ∈ {1, . . . , rµ} and for every
µ ∈ {1, . . . , d}. The principal component of mode µ is Yµ ∈ Rnµ×rµ defined as Yµ = UµΣµ

for each µ ∈ {1, . . . , d}.

4.2.2.1 Principal components in the canonical Euclidean space

For sake of simplicity and clarity, we assume d equal to 3. The following proposition
states a relation linking the three sets of principal components.

Proposition 4.2.1. Let x be a tensor of Rn1×n2×n3 and let c be its HOSVD core at
multi-linear rank r. Let Yµ be the principal components of mode µ. If rµ = rank(X(µ)) for
µ ∈ {1, 2, 3}, then

Y1 = X(1)(Y3 ⊗K Y2)(B(1))>,
Y2 = X(2)(Y3 ⊗K Y1)(B(2))>,
Y3 = X(3)(Y2 ⊗K Y1)(B(3))>,

with b = (Σ−1
1 ,Σ−1

2 ,Σ−1
3 )c.



140 4.2. CORRESPONDENCE ANALYSIS

Proof. We start the proof for the first mode principal components. Let x be decomposed
in the HOSVD basis as in Equation (4.2), i.e.,

x =
r1,r2,r3∑
i,j,k=1

c(i, j, k)u1
i ⊗ u2

j ⊗ u3
k.

As previously stated in Corollary 1.2.4 the matricization of x with respect to mode 1
in the Tucker basis is expressed with the Kronecker product, defined in 1.2.4, as

X(1) =
r1∑
i=1

u1
i ⊗

( r2,r3∑
j,k=1

c(i, j, k)u3
k ⊗K u

2
j

)
. (4.3)

The PCA of X(1) is
X(1) = Y1V

>
1 =

r1∑
i=1

σ
(1)
i u1

i ⊗ v1
i (4.4)

with v1
i the i-th column of V1 ∈ O(n2n3 × r1) and σ(1)

i u1
i the i-th column of Y1 ∈ Rn1×r1 .

By comparing Equations (4.3) and (4.4) for a fixed index i, we get

σ
(1)
i u1

i ⊗ v1
i = u1

i ⊗
( r2,r3∑
j,k=1

c(i, j, k)u3
k ⊗K u

2
j

)
.

Since Σ1 is invertible by the hypothesis r1 ≤ rank(A(1)), we identify v1
i with a linear

combination of the Kronecker product of u2
j and u3

k scaled by σ(1)
i as

v1
i = 1

σ
(1)
i

r2,r3∑
j,k=1

c(i, j, k)u3
k ⊗K u

2
j . (4.5)

Notice that the j-th and k-th column of Y2 = U2Σ2 and Y3 = U3Σ3 are σ(2)
j u2

j and σ(3)
k u3

k

respectively. So introducing in Equation (4.5) the singular values σ(2)
j and σ(3)

k , we express
the i-th column of V1 as a linear combination of the Kronecker product of the j-th and
k-th column of Y2 and Y3, i.e.,

v1
i = 1

σ
(1)
i

r2,r3∑
j,k=1

c(i, j, k)
σ

(2)
j σ

(3)
k

σ
(2)
j σ

(3)
k

u3
k ⊗K u

2
j

=
r2,r3∑
j,k=1

c(i, j, k)
σ

(1)
i σ

(2)
j σ

(3)
k

y3
k ⊗K y

2
j

=
r2,r3∑
j,k=1

b(i, j, k) y3
k ⊗K y

2
j

(4.6)

with b = (Σ−1
1 ,Σ−1

2 ,Σ−1
3 )c, y2

j and y3
k the j-th and k-th column of Y2 and Y3 respectively.

Remark that Y3 ⊗K Y2 is a matrix of n2n3 rows and r2r3 columns whose `-th column is
y3
k ⊗K y2

j with ` = jk for every j ∈ {1, . . . , r2}, k ∈ {1, . . . , r3} and ` ∈ {1, . . . , r2r3},



CHAPTER 4. A GEOMETRIC FRAMEWORK FOR MULTIWAY
CORRESPONDENCE ANALYSIS 141

see Definition 1.2.3. The tensor b matricized with respect to mode 1 is a matrix of
r1 rows and r2r3 columns, whose (i, jk)-th element is b(i, j, k) for all j ∈ {1, . . . , r2},
k ∈ {1, . . . , r3}. So the sum in the right-hand side of Equation (4.6) can be expressed as
the matrix-product between Y3⊗K Y2 and tensor b matricized with respect to mode 1 as

V1 = (Y3 ⊗K Y2)(B(1))>. (4.7)

Multiplying Equation (4.4) on the right by V1 yields Y1 = X(1)V1. Therefore multiplying
Equation (4.7) by the matricization of x with respect to mode 1, the principal component
Y1 is expressed as linear combination of the Kronecker product of principal components
Y2 and Y3, i.e.,

Y1 = X(1)V1 = X(1)(Y3 ⊗K Y2)(B(1))>.
The left and right hand side of this last equation proved right the proposition thesis. The
other relations follow straightforwardly from this one, permuting the indices coherently.

From an algebraic view this first proposition shows that the principal components of
each mode can be expressed as a linear combination of the principal components of the two
other modes. However as pointed out in the preliminary section, principal components
can be seen from different viewpoints.

From a geometric viewpoint a point cloud Xµ is attached to the matricization with
respect to mode µ of tensor x for µ ∈ {1, 2, 3}. Indeed the iµ-th row of X(µ) represents
the coordinates of the iµ-th element of mode µ point cloud living in the space Rn6=µ where
n 6=µ = n1n2n3

nµ
. Given a multi-linear rank r, we reformulate the problem of the Tucker

approximation as a problem of dimension reduction. Indeed, we look for the subspace
of Rn6=µ of dimension rµ which minimizes in norm the projection of point cloud Xµ on
it. This problem is solved with the HOSVD algorithm, which provides three orthogonal
basis (U1, U2, U3) of the corresponding subspaces. Therefore the iµ-th row of Yµ = UµΣµ

represents the coordinates of the iµ-th element of Xµ projected into the subspace of Rn6=µ

of dimension riµ for µ ∈ {1, 2, 3}. The Proposition 4.2.1 result is interpreted geometrically
as each point cloud living in the linear subspace built from the Kronecker product of the
other two. Proposition 4.2.1 is generalized to the d-case as follows.
Proposition 4.2.2. Let x be a tensor of Rn1×···×nd and let c be its HOSVD core at multi-
linear rank r. Let Yµ be the principal components of mode µ. If rµ ≤ rank(A(µ)) for
µ ∈ {1, . . . , d}, then

Yµ = X(µ)(Yd ⊗K · · · ⊗K Yµ+1 ⊗K Yµ−1 ⊗K · · · ⊗K Y1)(B(µ))>

with b = (Σ−1
1 , . . . ,Σ−1

d )c for every µ ∈ {1, . . . , d}.
Proof. The proof is very similar to that of Proposition 4.2.1, so we give only the main
steps. Let start by the first mode principal components. The 1-mode matricization of x
is expressed in the Tucker basis with the Kronecker product, see Corollary 1.2.4, as

X(1) =
r1∑
i1=1

u1
i1 ⊗

( r2,...,rd∑
i2,...,id=1

c(i1, . . . , id)udid ⊗K · · · ⊗K u
2
i2

)
. (4.8)



142 4.2. CORRESPONDENCE ANALYSIS

The PCA of X(1) leads to

X(1) = Y1V
>

1 =
r1∑
i1=1

σ
(1)
i1 u

1
i1 ⊗ v

1
i1 (4.9)

with v1
i1 the i1-th unitary column of V1 ∈ O(n 6=1×r1) where n6=1 = ∏d

µ=2 nµ and σ(1)
i1 u

1
i1 the

i1-th column of Y1 ∈ Rn1×r1 . Comparing Equations (4.8) and (4.9) for a fixed index i1, we
identify v1

i1 with a linear combination of the Kronecker product of uµiµ for µ ∈ {2, . . . , d}
scaled by σ(1)

i1 as

v1
i1 = 1

σ
(1)
i1

r2,...,rd∑
i2,...,id=1

c(i1, . . . , id)udid ⊗K · · · ⊗K u
2
i2 . (4.10)

Introducing in Equation (4.10) the singular values σ(µ)
iµ , we express the i1-th column of

V1 as a linear combination of the Kronecker product of the iµ-th column of Yµ for every
iµ ∈ {2, . . . , d} as

v1
i1 =

r2,...,rd∑
i2,...,id=1

c(i1, . . . , id)
σ

(1)
i1 σ

(2)
i2 . . . σ

(d)
id

σ
(2)
i2 . . . σ

(d)
id
udid ⊗K · · · ⊗K u

2
i2

=
r2,...,rd∑
i2,...,id=1

b(i1, . . . , id) ydid ⊗K · · · ⊗K y
2
i2

(4.11)

with b = (Σ−1
1 , . . . ,Σ−1

d )c and yµiµ the iµ-th column of Yµ for µ ∈ {2, . . . , d}. Thanks to
the correspondence between Kronecker product and matricization, the right-hand-side of
Equation (4.11) is expressed as the matrix-product between Yd ⊗K · · · ⊗K Y2 and tensor
b matricized with respect to mode 1 and transposed as

V1 = (Yd ⊗K · · · ⊗K Y2)(B(1))>. (4.12)

Multiplying Equation (4.9) on the right by V1 yields Y1 = X(1)V1 and replacing V1 by its
expression of Equation (4.12), it finally follows

Y1 = X(1)V1 = X(1)(Yd ⊗K · · · ⊗K Y2)(B(1))>.

This last equation proves the thesis. The other relations follow straightforwardly from
this one, permuting the indices coherently.

4.2.2.2 Extension to a generic Euclidean space for d-order tensors

As discussed in Section 1.3.1, the minimization problem faced with the HOSVD algo-
rithm is expressed by the Frobenious norm, induced by an inner product. The standard
inner product is defined by the identity matrix. However, whatever SPD matrix induces
an inner product and the associated metric norm on a vector space, which is therefore
isomorphic to the standard Euclidean space. We emphasize in this section the role of



CHAPTER 4. A GEOMETRIC FRAMEWORK FOR MULTIWAY
CORRESPONDENCE ANALYSIS 143

the metric on the relationships between point clouds, using this isomorphic relationship
between Euclidean spaces with different inner products [44].

Let S be the Euclidean tensor space Rn1×···×nd endowed with the standard inner prod-
uct. Given d SPD matricesMµ of size nµ, then the space SM is the tensor space Rn1×···×nd

endowed with the metric norm defined by ||x||M = ||(M1, . . . ,Md)x||. As in the matrix
case discussed in Section 4.2.1, we move the f belonging to SM into S, thanks to the
isometry defined by ν : SM → S, such that x = ν(f) = (M1, . . . ,Md)f . Remark that ν
acts independently on each mode by construction.

Let now x ∈ S be the HOSVD approximation of ν(f) at multi-linear rank r and let
(Uµ)µ ∈ O(nµ × rµ) be the associated basis. Σµ is the singular value matrix of the µ-
matricization X(µ) and define Yµ = UµΣµ the principal components of mode µ for tensor
x for each µ ∈ {1, . . . , d}. The principal components of f in the tensor space SM are the
given by Wµ ∈ Rnµ×rµ such that

Wµ = M−1
µ Yµ. (4.13)

In the following proposition, we link the sets of principal components in the Euclidean
space SM . As previously, for the sake of clarity the result is first proved for d = 3 and
afterwards generalized to whatever order d.

Proposition 4.2.3. Let f be a tensor in SM and let x be its image through the isometry
ν in the standard tensor space S. Let c be the HOSVD core tensor of x at multi-linear
rank r such that rµ ≤ rank(X(µ)) for µ ∈ {1, 2, 3}. Then for Wµ the principal component
of mode µ of f in the metric tensor space SM it holds

W1 = F (1)(M2
3W3 ⊗K M

2
2W2)(B(1))>,

W2 = F (2)(M2
3W3 ⊗K M

2
1W1)(B(2))>,

W3 = F (3)(M2
2W2 ⊗K M

2
1W1)(B(3))>,

with b = (Σ−1
1 ,Σ−1

2 ,Σ−1
3 )c.

Proof. This result comes straightforwardly from Proposition 4.2.1 proof by introducing
the metrics matrices. For completeness, we illustrate the proof focusing on the link for
the principal components of the first mode. Let (Uµ)µ=1,2,3 be the HOSVD basis of x at
multi-linear rank r with Uµ ∈ O(nµ × rµ). Let Yµ = UµΣµ be the principal components
of mode µ for tensor x, where Σµ is the singular values matrix of X(µ). Proposition 4.2.1
yields

Y1 = X(1)(Y3 ⊗K Y2)(B(1))> (4.14)
with b = (Σ−1

1 ,Σ−1
2 ,Σ−1

3 )c. Notice that x = ν(f) = (M1,M2,M3)f . So thanks to the
thesis of Corollary 1.2.4, we express X(1) in function of F (1) as

X(1) = M1F
(1)(M>

3 ⊗K M
>
2 )

and replacing it into (4.14), it gets

Y1 = M1F
(1)(M3 ⊗K M2)(Y3 ⊗K Y2)(B(1))> (4.15)



144 4.2. CORRESPONDENCE ANALYSIS

where the transposition symbol is discarded on Mµ since they are SPD matrices. Re-
marking that Yµ = MµWµ from the Wµ definition in Equation (4.13), substituting it in
the Equation (4.15) we obtain

M1W1 = M1F
(1)(M3 ⊗K M2)(M3W3 ⊗K M2W2)(B(1))>. (4.16)

SinceM1 is invertible, from the previous equation it follows the thesis. The other relations
follow straightforwardly from this proof, permuting the indices coherently.

This result is easily generalized to d-order tensors as follows.

Proposition 4.2.4. Let f be a tensor in SM and let x be its image through the isometry ν
in the standard tensor space S. Let c be the HOSVD core tensor of x at multi-linear rank
r such that rµ ≤ rank(X(µ)) for for µ ∈ {1, . . . , d}. Then for Wµ the principal component
of mode µ of f in the metric tensor space SM it holds

Wµ = F (1)(M2
dWd ⊗K · · · ⊗K M

2
µ+1Wµ+1 ⊗K M

2
µ−1Wµ−1 ⊗K · · · ⊗K M

2
1W1)(B(µ))>

with b = (Σ−1
1 , . . . ,Σ−1

d )c for every µ ∈ {1, . . . , d}.

Proof. The proof is a direct a generalization of Proposition 4.2.3 proof. Let Yµ ∈ Rnµ×rµ

be the principal components of x, then from Proposition 4.2.2, it writes

Yµ = X(µ)(Yd ⊗K · · · ⊗K Yµ+1 ⊗K Yµ−1 ⊗K · · · ⊗K Y1)(B(µ))> (4.17)

with b = (Σ−1
1 , . . . ,Σ−1

d )c. Since x is the image of f through the isometry ν, that is
x = ν(f) = (M1, . . . ,Md)f , the mode µ matricization of X is expressed in function of the
SPD matrices Mµ as

X(µ) = MµF
(µ)(M>

d ⊗K · · · ⊗K M
>
µ+1 ⊗K M

>
µ−1 · · ·M>

1 ). (4.18)

Replacing X(µ) in Equation (4.17) by this last equation, it follows that

Yµ = MµF
(µ)(M>

d Yd ⊗K · · · ⊗K M
>
µ+1Yµ+1 ⊗K M

>
µ−1Yµ−1 ⊗K · · · ⊗K M

>
1 Y1)(B(µ))>

thanks to the distributive property of the Kronecker product. Remarking that Mµ are
SPD matrices, i.e., they coincide with their transpose, the previous equation gets

Yµ = MµF
(µ)(MdYd ⊗K · · · ⊗K Mµ+1Yµ+1 ⊗K Mµ−1Yµ−1 ⊗K · · · ⊗K M1Y1)(B(µ))>

and because of the relation between classical principal components and metric ones, that
is Yµ = MµWµ, we have

MµWµ = MµF
(µ)(M2

dWd ⊗K · · · ⊗K M
2
µ+1Wµ+1 ⊗K M

2
µ−1Wµ−1 ⊗K · · · ⊗K M

2
1W1)(B(µ))>.

Since Mµ is invertible, from this last equation the thesis follows.



CHAPTER 4. A GEOMETRIC FRAMEWORK FOR MULTIWAY
CORRESPONDENCE ANALYSIS 145

4.2.2.3 Geometric view for the MultiWay Correspondence Analysis

In this conclusive section, we transport the previous results in the MultiWay Corre-
spondence Analysis context. We firstly clarify the metric of the Euclidean space where
we set our problem. Then we make explicit the point cloud relation in this particular
framework. As final outcome, we are able to prove the correspondence between the point
clouds attached to each mode.

In accordance with the correspondence analysis framework, we consider a d-way con-
tingency table t ∈ Nn1×···×nd . The first step for performing CA is scaling t by the sum of
all its components setting a new relative frequency tensor f ∈ Rn1×···×nd

+

f = 1∑n1,...,nd
i1,...,id=1 t(i1, . . . , id)

t.

We first clarify the tensor space we will work with. Let fµ be the marginal of mode µ, i.e.,
the vector whose components are the sums of the slices of mode µ for all µ ∈ {1, . . . , d}.
For example the i1-th element of f1 is

f1(i1) =
n2,...,nd∑
i2,...,id=1

f(i1, . . . , id) for all i1 ∈ {1, . . . , n1}.

There is no loss of generality in assuming that fµ(iµ) > 0 for every µ ∈ {1, . . . , d}.
Indeed the iµ-th component of fµ is equal to zero if and only if all the entries of the
iµ slice of f with respect to mode µ are zeros, i.e., f(i1, . . . , iµ, . . . , id) = 0 for every
ik ∈ {1, . . . , nk} and k ∈ {1, . . . , µ − 1, µ + 1, . . . , d}. If there exists a mode µ and an
index iµ such that its marginal component is zero, that is fµ(iµ) = 0, then the iµ category
of the µ variable has zero frequency, or differently said, this variable case never arrives.
Consequently it does not impact the global analysis and it is discarded.

Define Dµ = diag(
√
fµ) ∈ Rnµ×nµ for each µ ∈ {1, . . . , d} and assume that f belongs

to Rn1×···×nd endowed by the metric induced by the matrices (D−1
1 , . . . , D−1

d ), since D−1
µ

is SPD for every µ ∈ {1, . . . , d}. We denote by SM this Euclidean space and by S the
tensor space Rn1×···×nd endowed with the standard inner product. Under this assumption,
let ν be the isometry between the spaces SM and S and let x = ν(f) = (D−1

1 , . . . , D−1
d )f .

The general element of tensor x is written as

x(i1, . . . , id) = f(i1, . . . , id)√
f1(i1) . . . fd(id)

.

Performing the HOSVD over tensor x at multi-linear rank r leads to a new orthogonal
basis (Uµ)µ=1,...,d, a core tensor c and principal components Yµ = UµΣµ for every µ ∈
{1, . . . , d} in the standard tensor space. Focusing on the principal componentsWµ = DµYµ
of tensor f in SM , Proposition 4.2.4 entails

Wµ = F (1)(M2
dWd ⊗K · · · ⊗K M

2
µ+1Wµ+1 ⊗K M

2
µ−1Wµ−1 ⊗K · · · ⊗K M

2
1W1)(B(µ))>



146 4.2. CORRESPONDENCE ANALYSIS

where B(µ) is the matricization of b = (Σ−1
1 , . . . ,Σ−1

d )c and Mµ = D−1
µ for µ ∈ {1, . . . , d}.

Let Zµ = D−2
µ Wµ be the principal components scaled by the marginal inverse for µ ∈

{1, . . . , d} in tensor space SM . Henceforth, we denote by zµiµ the iµ-th row of Zµ. Now we
prove that each component of vector zµiµ can be expressed as a scaling factor times the
barycenter of the linear combinations of the other scaled principal component rows. We
assume d equal to 3 to facilitate the comprehension of the following proof.

Proposition 4.2.5. Let f be a tensor in the tensor space SM endowed with the norm
induced by the inner product matrices Dµ = diag(

√
fµ) with fµ the µ mode marginal of f

for µ ∈ {1, 2, 3}. Let Zµ ∈ Rnµ×rµ be the scaled principal components for tensor f of mode
µ in SM . If rµ = rank(F (µ)) for every µ ∈ {1, 2, 3}, then

z1
i (`) = 1

σ
(1)
`

n2,n3∑
j,k=1

r2,r3∑
m,p=1

f(i, j, k)
f1(i) z3

k(p)z2
j (m)b1(`,m, p),

z2
j (m) = 1

σ
(2)
m

n1,n3∑
i,k=1

r1,r3∑
`,p=1

f(i, j, k)
f2(j) z3

k(p)z1
i (`)b2(`,m, p),

z3
k(p) = 1

σ
(3)
p

n1,n2∑
i,j=1

r1,r2∑
`,m=1

f(i, j, k)
f3(k) z1

i (`)z2
j (m)b3(`,m, p),

where bµ = Σµ ×µ b from Proposition 4.2.3.

Proof. We describe the proof for the i-th row of Z1 with i ∈ {1, . . . , n1}. From Proposition
4.2.3, under the CA metric choice, it follows that the principal components of f in the
tensor space SM satisfy the relation

W1 = F (1)(D−2
3 W3 ⊗K D

−2
2 W2)(B(1))> = F (1)(Z3 ⊗K Z2)(B(1))>.

Multiplying on the left this last equation by D−2
1 , we obtain

Z1 = D−2
1 W1 = D−2

1 F (1)(Z3 ⊗K Z2)(B(1))>

and since B(1) = Σ−1
1 B

(1)
1 , it gets

Z1 = D−2
1 F (1)(Z3 ⊗K Z2)(Σ−1

1 B
(1)
1 )>. (4.19)

Making explicit the `-th component of z1
i , the i-th row of Z1, from Equation (4.19), we

have

z1
i (`) = Z1(i, `) =

n2n3∑
jk=1

r2,r3∑
m,p=1

(
D−2

1 F (1)
)
(i, jk)

(
Z3 ⊗K Z2

)
(jk,mp)

(
Σ−1

1 B
(1)
1

)
(`,mp)

=
n2,n3∑
j,k=1

r2,r3∑
m,p=1

f(i, j, k)
f1(i) Z3(k, p)Z2(j,m)b1(`,m, p)

σ
(1)
`

= 1
σ

(1)
`

n2,n3∑
j,k=1

r2,r3∑
m,p=1

f(i, j, k)
f1(i) z3

k(p)z2
j (m)b1(`,m, p)



CHAPTER 4. A GEOMETRIC FRAMEWORK FOR MULTIWAY
CORRESPONDENCE ANALYSIS 147

by the definition of z2
j and z3

k for every i ∈ {1, . . . , n1}, j ∈ {1, . . . , n2}, k ∈ {1, . . . , n3}
and ` ∈ {1, . . . , r1}. This final equation can be read as a mutual barycenter relation scaled
by the inverse of the corresponding singular value. Indeed there is a list of weight terms
which sum to 1, i.e.,

n2,n3∑
j,k=1

f(i, j, k)
f1(i) = f1(i)

f1(i) = 1

times a linear combination expressed through b1 of z2
j and z3

k. Moving back to the
geometric perspective, the Proposition 4.2.5 states that the scaled coordinates of a point
cloud correspond to the barycenter of the other two point cloud scaled coordinates.

The two remaining barycentric relations follow from this proof, permuting coherently
the indices.

Correspondence in CA refers to the correspondence of point cloud coordinates through
the scaled barycentric relation. We proved that this well known relation in matrix frame-
work is holding also in the tensor one, through HOSVD. Therefore we propose to refer to
it as MultiWay Correspondence Analysis from HOSVD.

This final result is extended and verified straightforwardly for d-order tensors.

Proposition 4.2.6. Let f be a tensor in the tensor space SM endowed with the norm
induced by the inner product matrices Dµ = diag(

√
fµ) with fµ the µ mode marginal of f

for every µ ∈ {1, . . . , d}. Let Zµ ∈ Rnµ×rµ be the scaled principal components for tensor f
of mode µ in SM . If rµ = rank(F (µ)) for µ ∈ {1, . . . , d}, then

zµiµ(`µ) = 1
σ

(µ)
`µ

d∑
η=1
η 6=µ

nη∑
iη=1

rη∑
`η=1

f(i1, . . . , id)
fµ(iµ) zdid(`d) · · · z

µ+1
iµ+1(`µ+1)zµ−1

iµ−1(`µ−1) · · · z1
i1(`1)bµ(`1, . . . , `d)

where bµ = Σµ ×µ b from Proposition 4.2.4.

Proof. From Proposition 4.2.4, under the CA metric choice, the principal components of
the first mode of f in SM are expressed as

W1 = F (1)(Zd ⊗K · · · ⊗K Z2)(B(1))>.

If the previous equation is multiplied by equation by D−2
1 and it has B(1) replaced by the

equivalent Σ−1
1 B

(1)
1 , it gets

Z1 = D−2
1 F (1)(Zd ⊗K · · · ⊗K Z2)(Σ−1

1 B
(1)
1 )>. (4.20)

Making explicit the `1-th component of z1
i1 , the i1-th row of Z1, from Equation (4.20), it

follows the thesis, i.e.,

z1
i1(`1) = 1

σ
(1)
`1

n2,...,nd∑
i2,...,id=1

r2,...,rd∑
`2,...,`d=1

f(i1, . . . , id)
f1(i1) zdid(`d) · · · z

2
i2(`2)b1(`1, . . . , `d).

The proof for the other modes follows directly from this one permuting coherently the
indices.



148 4.2. CORRESPONDENCE ANALYSIS

4.2.2.4 Examples

To validate our theoretical results and to highlight the benefit of a tensor approach,
MWCA is compared with the classical CA, applied to the same data reorganized as a ma-
trix. Since the SPD matrices defining the isometry of CA and MWCA are different, there
exist a discrepancy between CA and MWCA. We rely on Figure 4.1 and the elements
therein to compare the two approaches. Let f ∈ Rn1×···×nd

+ store the data relative fre-
quencies as a tensor, then their matrix representation is given by F (k) the k-matricization
mode of f , once mode k has been selected. The MWCA is performed on f , while CA
is performed on F (k). Let X(k) be the k-matricization of νT (f) where νT is the MWCA
isometry, as depicted in Figure 4.1B, similarly Xk is the outcome of CA isometry νM
applied to F (k), as in Figure 4.1A.

F (k) Xk

ÛΣV̂ > UΣV >

νM

PCA

ν−1
M

CA

(A) Scheme for CA of k-th ma-
tricization

f x

(Û1, . . . , Ûd)C (U1, . . . , Ud)C

νT

HOSVD

ν−1
T

MWCA

(B) Scheme for MWCA

Figure 4.1 – Correspondence analysis: matrix versus tensor.

Since the two approaches are different, the SPD matrices defining the isometries νT
and νM transporting f and F (k) differ and so do X(k) and Xk. To estimate this discrepancy
between the two decomposed objects we define the relative error e(X(k), Xk) as

e(X(k), Xk) = ||X
(k) −Xk||
||X(k)||

. (4.21)

If the value of e(X(k), Xk) is small, we expect the two approach to lead to similar inter-
pretations. Conversely, if the error value is significantly large, the outcome may suggest
a different interpretation for the variable category interactions.

The SVD and HOSVD, over which CA and MWCA relay respectively, provide an
orthogonal basis for the matrix or the decomposed tensor, which is unique up to an
orthogonal rotation. As proposed in [18] and [19], we orient these new basis selecting as
leading direction the one where the majority of the data points out. To perform CA and
MWCA we used python 3.6.9 and the library TensorLy 0.6.0, see [85].

The following example is based on [24]. We select this dataset, which is already
analysed with CA in [24], to show that the multiway method results are coherent with
CA ones.



CHAPTER 4. A GEOMETRIC FRAMEWORK FOR MULTIWAY
CORRESPONDENCE ANALYSIS 149

Males Females

Age
group

Very
good Good Regular Bad Very

bad
Very
good Good Regular Bad Very

bad

16-24 145 402 84 5 3 98 387 83 13 3
25-34 112 414 74 13 2 108 395 90 22 4
35-44 80 331 82 24 4 67 327 99 17 4
45-54 54 231 102 22 6 36 238 134 28 10
55-64 30 219 119 53 12 23 195 187 53 18
65-74 18 125 110 35 4 26 142 174 63 16
+75 9 67 65 25 8 11 69 92 41 9

Table 4.1 – Data from the Spanish National Health Survey of 1997, see [24].

Example 4.2.7. In [58] data are reported from a survey over 6731 people of both genders,
from 16 to over 75 years old, who were asked to evaluate their health status. Then the
answers were organized in a 3-way table with dimensions n1 = 2, n2 = 7 and n3 = 5, as
in Table 4.1. On mode 1 we have the two genders: male, ‘M’, and female, ‘F’ and on
the second mode there are 7 age groups. On the last mode we set 5 health grades, from
‘Very Good’ to ‘Very bad’. The (1, 1, 1) entry of the multiway table is the number of men
between 16 and 24 years old who judge ‘Very good’ their health status. Let f ∈ Rn1×n2×n3

+
represent the data relative frequencies in tensor format for MWCA. CA is realized over
A3 the matricization of f with respect to mode 3, i.e., ‘health grade’, where on the row
we set the health categories and on the columns all the possible combinations of ages
and gender. In Figure 4.2A we recover the correspondence analysis of [58], while in 4.2B
we display multiway correspondence analysis with the first two columns of Yµ = UµΣµ,
defined in Section 4.2.2.3 for µ ∈ {1, 2, 3}.

0.0 0.2 0.4 0.6 0.8
Principal component 1

0.2

0.1

0.0

0.1

0.2

Pr
in

cip
al

 c
om

po
ne

nt
 2

16-24M25-34M

35-44M

45-54M

55-64M65-74M
+75M

16-24F
25-34F

35-44F

45-54F

55-64F
65-74F

+75F

Very good Good

Regular
Bad

Very Bad

mode 1, gender per age
mode 2, health

(A) Mode 1 correspondence analysis.

0.0 0.2 0.4 0.6 0.8
Principal component 1

0.2

0.1

0.0

0.1

0.2

Pr
in

cip
al

 c
om

po
ne

nt
 2

M

F

16-24
25-34

35-44

45-54

55-64
65-74

+75

Very good Good

Regular
Bad

Very Bad

mode 1, gender
mode 2, age
mode 3, health

(B) Multiway correspondence analysis.

Figure 4.2 – CA versus MWCA for data of [24].

As in [58], both plots in Figure 4.2 display a gradient for the age categories: they
distribute from the youngest in the bottom to the oldest near the top. The 5 health
categories are at the extremes of this gradient, the better health levels at the bottom, worst



150 4.2. CORRESPONDENCE ANALYSIS

ones at the top. From this we infer that the health evaluation decreases for increasing
ages. This phenomenon is highlighted by both the techniques, even if it is clearer in
Figure 4.2B, thanks to the possibility of analysing the variables separately. Taking into
account the gender in Figure 4.2B, let us remark that the male dot is close to the ‘Good’
one. Thanks to the barycentric relation, we know that the closer the points the more
correlated they are. So men appear to provide optimistic evaluations of their health
status. Women dot stands aside from the other, slightly closer to worst health status,
suggesting that female health judging is balanced between the age classes, with a minor
inclination toward pessimistic evaluation. In Figure 4.2A for increasing ages, male and
female dots tend to increase their distances, suggesting that when men and women age,
they tend respectively to be more optimistic and pessimistic in evaluating their health
status. MWCA plot seems to point out that men are more optimistic than how much
pessimistic women are. In contrast from Figure 4.2B we cannot conclude easily which
age category presents the biggest difference in health evaluation for the two genders,
information that can be inferred from 4.2A. Lastly comparing the health point cloud in
Figures 4.2A and 4.2B, we observe that their principal coordinates are almost the same
and we explain it in terms of relative error. Indeed for this data-set the relative error
defined in Equation (4.21) is

e(X(3), X3) = ||X
(3) −X3||
||X(3)||

≈ 0.035

is quite small.
To further investigate the tensor approach in comparison with the matrix one, we

analyse the dataset available on [23]. In [58], these data are fully studied and described
in their interaction through a matrix approach.
Example 4.2.8. In [58] a case study is given by the data coming from the Internation Social
Survey Programme of 1994. The authors focus on the survey question if a woman with
a schoolchild should work full-time, part-time or stay at home. The participants were
also given the possibility of expressing a doubtful position. In total 33590 people of both
genders took part in the survey, from 24 countries, among which East and West Germany,
Great Britain and Northern Ireland were considered respectively separated. The results
relative to the working conditions of a schoolchild mother were organized in a 3-way
contingency table [23]. On mode 1 we set the n1 = 24 countries (‘AUS’ for Australia,
‘DW ’ for West Germany, ‘DE’ for East Germany, ‘GB’ for Great Britain, ‘NIRL’ for
Northern Ireland, ‘USA’ for United States of America, ‘A’ for Austria, ‘H ’ for Hungary,
‘I ’ for Italy, ‘IRL’ for Ireland, ‘NL’ for Netherlands, ‘N ’ for Norway, ‘S’ for Sweden,
‘CZ ’ for Czechoslovakia, ‘SLO’ for Slovenia, ‘PL’ for Poland, ‘BG’ for Bulgaria, ‘Rus’
for Russia, ‘NZ ’ for New Zealand, ‘CA’ for Canada, ‘RP’ for Philippines, ‘IL’ for Israel,
‘J ’ for Japan and ‘E’ for Spain). On the second mode, there are the four possible answers
to the specific question about the working condition, i.e., full time working denoted by
‘W’, part-time working by ‘w’, stay at home by ‘H’ and unsure by question mark, that is
n2 = 4. The last mode has size n3 = 2 for the two genders: male, ‘M’, and female, ‘F’. As



CHAPTER 4. A GEOMETRIC FRAMEWORK FOR MULTIWAY
CORRESPONDENCE ANALYSIS 151

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Principal component 1

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

Pr
in

cip
al

 c
om

po
ne

nt
 2

W

w

H

?

men
women
working condition
RP
PL
DW
H
RUS
J
E
BG
IRL
SLO
A
I
CZ
NIRL
AUS
N
CA
IL
USA
GB
NZ
NL
DE
S

(A) Mode 2 correspondence analysis.

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Principal component 1

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

Pr
in

cip
al

 c
om

po
ne

nt
 2

AUS

DW

DE

GB

NIRL

USA

A

H

I

IRL

NL
N

S

CZ
SLO

PL

BG

RUS

NZ

CA

RP

IL

J
E

W
w

H

?

M

F

mode 1, country
mode 2, working condition
mode 3, gender

(B) Multiway correspondence analysis.

Figure 4.3 – CA versus MWCA for data of [24].

consequence, the (1, 1, 1)-th entry of the multiway table is the number of Australian men
who judge that a woman with a schoolchild should work full-time. As in the previous
example, we assume that f ∈ Rn1×n2×n3

+ represents the data relative frequencies in tensor
format for MWCA, while we perform CA over F (2) the matricization of f with respect
to the working condition mode, i.e., the second one. Differently said, the columns of
F (2) corresponds to men and women from different country, while the row to the four
possible survey answers. The result of CA is displayed in Figure 4.3A, matching the
outcome of the correspondence analysis performed in [58]. Figure 4.2B shows multiway
correspondence analysis with the first two columns of Yµ = UµΣµ, defined in Section 4.2.2.3
for µ ∈ {1, 2, 3}.

Comparing Figure 4.3A and 4.3B, it is clearly evident that the four survey answers
about the working conditions have the same layout. The staying at home ‘H’ direction is
almost orthogonal to the working one, outlined by part-time ‘w’ and full-time ‘W’ work.
On the intersection among these two directions there is the question mark for the unsure
answer. This strong similarity may be explained by the relative error among mode 2 MCA
and MWCA. Indeed for this data-set the relative error defined in Equation (4.21) is

e(X(2), X2) = ||X
(2) −X2||
||X(2)||

≈ 0.04

which is quite small. This working condition pattern is similar, but not identical to the one
found in [58]. Indeed in [58], staying at home and working, in both the full and part time
possibilities, form orthogonal direction, but in [58] the unsure reply dot is in the middle
between ‘w’ and ‘W’. We may believe that this difference is due to the pretreatment
(particular scaling and centring) considered in [58] and not in our analysis. From the



152 4.3. APPLICATION: THE MALABAR DATASET

viewpoint of the countries, in both the Figure 4.2 plots a bottom-up gradient emerges for
the countries. On the bottom, with cold colours for Figure 4.3A, we find liberal nations
as Sweden, West Germany, Netherlands, New Zealand or Great Britain, while on the top
there are more conservative states as Philippines, Poland or West Germany, according
to the social structure of 1994. This gradient appears clearly in the analysis of [58]. As
in Example 4.2.7, the separation among of country and gender in Figure 4.3B eases the
perception and interpretation of the liberal to conservative bottom-up gradient. Moreover
in Figure 4.3A, it is not as immediately clear as in Figure 4.3B the global influence of the
gender in answering to the considered survey question. Indeed in the MWCA output, the
women dot is clearly aligned along the working line, while men dot is set in the midway
between the staying at home and working direction. As previously stated, the barycentric
relation implies that the nearer the dots the more correlated they are likely to be. As
consequence, since the women dot is closer to the part-time ‘w’ dot, we may infer that on a
global scale women in 1994 believed on average that a schoolchild mother should also have
a job, with a preference for a part-time one. On the other side, the midway position of
the men dot may suggest that male opinions uniformly distribute among the two extrema
possible answers, working or staying at home. This potential conclusion, stated in [58], is
not as conveniently achieved from MCA output in Figure 4.3A. On the other side, if the
analysis is focused on the gender effect per country, i.e., how much different are on average
men and women answers to the survey, the results are visible only in Figure 4.3A. For
example, checking the pink square and star in Figure 4.3A, we may conclude on average
Philippines people reply similarly to the survey neglecting the gender. On the contrary,
Russian men, displayed by the light orange square, seem to favour on average the stay at
home answer, if they are compared with the Russian women, i.e., the light orange star in
Figure 4.3A.

Exactly as in Example 4.2.7, the choice of the matrix or tensor approach for the
multiway table analysis strongly depends on the interpretation aims. If the final purpose
is highlighting specific differences among variable category combinations, then the matrix
approach should be privileged. However if more global variable category interactions
are searched, then the tensor approach is probably the most convenient, thanks to the
complete separation of variable categories and the consequent displaying clarity.

4.3 Application: the Malabar dataset
This second main section is devoted to the original analysis of the Malabar dataset [6]

a contingency multiway table. We briefly describe the data trying to get hints of a
possible behaviour. Since the classical tensor data analysis literature [87] suggests
to perform MCA or MWCA on categorical variables data, this dataset represents the
ideal opportunity for applying the theory developed in Section 4.2. To highlight the
advantages of the tensor approach, we interpret the dataset through MWCA and MCA,
constructing and analysing the point clouds as in sections 4.3.3 and 4.2.1, as it was done
for Example 4.2.7.



CHAPTER 4. A GEOMETRIC FRAMEWORK FOR MULTIWAY
CORRESPONDENCE ANALYSIS 153

4.3.1 Data description
The data-set provided by the Malabar project (IFREMER, CNRS, INRAE, Labex

COTE) [6] is a multiway contingency table of order 4. In this metabarcoding project, 32
water samples have been collected in Arcachon Bay at four locations (Bouee13, Comprian,
Jacquets, Teychan), during four seasons, and at two positions in water column (pelagic and
benthic). DNA has been extracted, and Operational Taxonomic Units (OTUs) have been
built. OTU are expected to correspond to species and, without entering too much into
details here, the question which motivates Malabar project is to understand or quantify
the role of locations, seasons and water column positions in the diversity of protists. To
address this question, a four way contingency table t has been built, where t(i, j, k, `) is
the number of sequences collected at location j, in season ` and position k which belong
to OTU i. The size of the contingency tensor is n1 = 3539, n2 = 4 n3 = 2 and n4 = 4.
Henceforth we assume to work with the relative frequency data, i.e., with f = (1/t)t
where t = ∑n1,n2,n3,n4

i,j,k,`=1 t(i, j, k, `).

4.3.2 Average comparison and data preprocessing
Before proceeding with the analysis of the dataset with tensor techniques, we inves-

tigate and eventually preprocess them. Since the focus of the data exploration is on the
OTUs, we compute the average number of OTU sequences per location and per season,
summing over the first OTU mode and third water column one. The average matrix is
Ξ ∈ Rn2×n4 such that

Ξ(j, `) = 1
n1n3

n1,n3∑
i,k=1

f(i, j, k, `)

for every j ∈ {1, . . . , n2} and k ∈ {1, . . . , n4}.

winter spring summer autumn
0.7

0.8

0.9

1.0

1.1

1e 5
Bouee13
Comprian
Jacquets
Teychan

(A) Seasonal variation of the OTU average per lo-
cation.

winter spring summer autumn

0.25

0.50

0.75

1.00

1.25

1.50

1.75

1e 5
pelagic
benthic
Bouee13
Comprian
Jacquets
Teychan

(B) Seasonal variation of the OTU average per lo-
cation and water column position.

Figure 4.4 – Seasonal variation of the OTU average.

Figure 4.4A shows the variation of the number of OTU sequences in function of the



154 4.3. APPLICATION: THE MALABAR DATASET

season for the four different locations. We observe that Jacquets and Teychan present the
same average behaviour, with a significant increase in the average number of OTU between
summer and autumn and a huge decrease from autumn to winter. In Comprian the
average number of OTU grows between spring and summer and similarly to the previous
two locations, it decreases significantly from autumn to winter. Finally, in Bouee13 the
average number of OTU shows much lighter average variation, in a way similar to Jacquets
and Teychan.

Since the water column position variable has only two categories, ‘pelagic’, i.e., close
to the ocean surface, and ‘benthic’, i.e., close to the seabed, we study the average number
of OTU in function of location, water column position and season, defining, ξ ∈ Rn2×n3×n4

as
ξ(j, k, `) = 1

n1

n1∑
i=1

f(i, j, k, `).

The variation of the average number of OTU in function of the season is displayed in
Figure 4.4B for each location and for both the water column positions. Remarkably,
the averages for the ‘pelagic’ and ‘benthic’ position are clearly clustered and present
slightly opposite tendencies. Indeed for all the locations, in the ‘benthic’ position the
average number of OTUs seems to stay almost constant throughout the year, with a
perceptible increase only for Bouee13 from spring to summer and a minor decrease for
all the locations from summer to autumn. On the ‘pelagic’ side, the average number of
OTU decreases significantly from spring to summer and increases from summer to winter
for all the location except Bouee13. This last location presents even in the ‘pelagic’ case
lower fluctuations in the average number of OTU during the season cycle. Before drawing
a conclusion, it is worthwhile computing the the standard deviation of the OTU defined
as λ ∈ Rn2×n3×n4 such that

λ(j, k, `) =

√√√√ 1
n1

n1∑
i=1

(
f(i, j, k, `)− ξ(j, k, `)

)2
.

The mean ΞP = ξP (:, 1, :) and the standard deviation ΛP = λP (:, 1, :) for the pelagic
category are of order 10−5 and 10−4 respectively. On the other side, the orders of the
benthic mean, ΞB = ξ(:, 2, :), and of the benthic standard deviation, ΛB = λB(:, 2, :), are
respectively 10−6 and 10−5. Since the standard deviation is of one order greater than the
mean for both the pelagic and benthic subdataset, an independent study of the pelagic
and benthic subtensor of order 3 is not motivated.

4.3.3 MultiWay Correspondence Analysis
The Malabar dataset is a multiway contingency table and thus according to the litera-

ture [87] the most suitable interpretation technique is MultiWay Correspondence Analysis
or Multiple Correspondence Analysis, as previously mention in Section 4.3. On the basis
of the result of Section 4.2, we perform MWCA on the Malabar dataset, constructing the
point clouds associated with each mode of the multiway table and visualizing the first



CHAPTER 4. A GEOMETRIC FRAMEWORK FOR MULTIWAY
CORRESPONDENCE ANALYSIS 155

two columns of each mode principal components together in Figure 4.5 to obtain a more
reliable interpretation. As for Examples 4.2.7 and 4.2.8, we perform also the canonical
CA on the matricization with respect to mode 1 of the Malabar dataset, to emphasize
which aspects each of the techniques best grasps.

In Figure 4.5A the result of CA performed over A1, the matricization of frequency
tensor data f with respect to mode 1, where the rows represent the different OTUs and
the columns the locations, water column positions and seasons combined. Next to it,
Figure 4.5B displays the result of MWCA over the tensor data. In the CA case OTU
point cloud spreads over two orthogonal directions, led by the two positions in the water
column. Similarly in MWCA plot the water column point cloud seem to organize and
to affect the position and clustering of the others. Because of mode combination in
Figure 4.5A, it is not evident which position in the water column affects which location or
season. However thanks to the barycentric relation and the multiway approach, we can
infer some relations among seasons, locations and water column positions from Figure
4.5B, where they are independently displayed. Indeed pelagic point appears to affect the
OTU present during spring and winter time. Similarly benthic position probably drives
the distribution of OTU in autumn and summer. A similar argument can be repeated for
location point cloud. Indeed the barycentric relation suggests that the benthic position
leads the distribution of OTU in Comprian, Jacquets and Teychan, while the pelagic dot
influences Bouee13 dot. The barycentric relation enables us to interpret the interaction
among season and location point clouds. In Figure 4.5B winter and spring seem to be
more correlated with Bouee13 and similarly summer and autumn are probably more
correlated with the remaining three locations. Analysing the OTU and the season point
clouds, we observe that winter and spring pull out one orthogonal direction over which
part of the OTU points spread. Similarly summer pulls out the other OTU orthogonal
direction. The autumn point appears to be neutral with respect to the OTU point cloud
distribution. Similarly if we study the OTU and location point cloud interaction, one
orthogonal direction is driven by Bouee13, one by Comprian and Jaquets, while Teychan
seems to have a small effect on the OTU point distribution.

In Figures 4.5C and 4.5D, we filter the OTU by size, keeping just those with first
principal components greater than 0.2 and the second greater than 0.12. Figure 4.5C
confirms the idea of water-column position driving the OTU point cloud distribution.
However in Figure 4.5B most of the OTU points are close to the origin. Indeed in this
left plot we filtered 8 OTU which are probably more correlated with benthic or pelagic
condition. Comparing the two filtered figures, we see that only 3 of the 8 selected OTU
are common between them, i.e., OTU ‘22’, ‘24’ and ‘29’. These common OTU share the
same correlations between the two methods. Indeed in both case, ‘22’ is more related
to benthic position, while ‘24’ and ‘29’ with pelagic one. Moreover most of the OTU in
Figure 4.5D are concentrated around the origin. We may infer that the action of the water
column point cloud is softened by the other modes, here independent, leading to a more
balanced distribution of OTU. In conclusion notice that in MWCA the different point
clouds are more spread than in the CA case, enabling a deeper analysis of the variables



156 4.3. APPLICATION: THE MALABAR DATASET

0.0 0.1 0.2 0.3 0.4 0.5
Principal component 1

0.3

0.2

0.1

0.0

0.1

0.2

0.3

Pr
in

cip
al

 c
om

po
ne

nt
 2

p
p

p p

b

b

b

b

p
p p

p

b
b

b b

p
p p

p

b

b

bb

p
p pp

b

b

b

b

OTU
Bouee13
Comprian
Jacquets
Teychan
pelagic
benthic
autumn
summer
winter
spring

(A) Correspondence Analysis of mode 1.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Principal component 1

0.5

0.0

0.5

1.0

1.5

Pr
in

cip
al

 c
om

po
ne

nt
 2

Bouee13

autumn

pelagic

Comprian

summer

benthic

Jacquets

winter

Teychan

spring

mode 1, OTU
mode 2, location
mode 3, water column position
mode 4, season

(B) Multiway Correspondence Analysis.

0.0 0.1 0.2 0.3 0.4 0.5
Principal component 1

0.3

0.2

0.1

0.0

0.1

0.2

0.3

Pr
in

cip
al

 c
om

po
ne

nt
 2

4

8
21

22

24

29

47
66

p
p

p p

b

b

b
b

p
p p

p

b

b
b

b

p
p

p
p

b

b

bb

p
p p

p

b
b

b

b

OTU
Bouee13
Comprian
Jacquets
Teychan
pelagic
benthic
autumn
summer
winter
spring

(C) CA with filtered OTU.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Principal component 1

0.5

0.0

0.5

1.0

1.5

Pr
in

cip
al

 c
om

po
ne

nt
 2

12

22

24

29
138

218
463

1255

Bouee13

autumn

pelagic

Comprian

summer

benthic

Jacquets

winter

Teychan

spring

mode 1, OTU
mode 2, location
mode 3, water column position
mode 4, season

(D) MWCA with filtered OTU.

Figure 4.5 – CA vs MWCA biplot of Arcachon Bay data-set.



CHAPTER 4. A GEOMETRIC FRAMEWORK FOR MULTIWAY
CORRESPONDENCE ANALYSIS 157

interactions. It could be linked to the significant relative error from Equation (4.21)

e(X(1), X1) = ||X
(1) −X1||
||X(1)||

≈ 0.14,

which may also explain why CA and MWCA figures present a flipped y-axis, even though
the SVD and HOSVD basis have been oriented according to the same criterion. Indeed
the mode combinations including benthic have positive y-components in Figure 4.5A,
while benthic point has negative y-component in Figure 4.5B. However since it affects in
the same way all the point clouds, the two methods lead to a coherent interpretation.

4.4 Concluding remarks
We devoted this chapter to the study of multiway contingency tables through ten-

sor techniques. The focus is set on the MultiWay Correspondance Analysis (MWCA),
that associates multiway contingency tables with point clouds. After describing the point
clouds construction process, we proved the algebraic relations linking them and we pro-
posed a geometric interpretation. To highlight the benefits and the potential drawbacks of
a tensor approach compared to a classical matrix one, we presented two examples. Then
we applied this technique together with other classical ones for analysing and interpreting
an original multiway contingency table.

The first part, i.e., Sections 4.2.1 and 4.2.2, collects the theoretical content of the entire
chapter. We started describing the classical theory of Correspondence Analysis (CA) in
the usual matrix context. We showed how points clouds are attached to a contingency
table and how the geometrical spaces, where these point clouds live, are defined in CA.
As conclusive point, we stated in Equation (4.1) the known barycentric relation linking
point cloud associated with rows and columns of a contingency table. Next we moved
to the tensor framework. We recalled the classical way to associate a point clouds with
each mode of a multiway contingency table and to construct their principal components.
Our contribution was investigating the link of point cloud principal components. First
we proved the existence of this relation in the real order-d tensor space endowed with the
classical Euclidean metric. Then we extended this relation to the same space endowed with
a whatever metric, induced by a set of d SPD matrices. Once set these preliminary results,
we derived the barycentric relation in the MWCA case, introducing the MWCA metric.
We have taken care to supplement each algebraic result with its geometric interpretation.
In conclusion to Section 4.2 we presented two examples, both from [58], with the aim of
confirming the consistency of MWCA with CA and of highlighting the main advantages
of a tensor technique over a matrix one.

The second part focuses entirely on the original analysis of the Malabar dataset [6],
a 4-way contingency table. We introduced initially the dataset, remarking that each of
its element represents the number of DNA sequences extracted from a sample of water
collected in a specific location inside the Arcachon Bay during a certain season and at
a certain level in the water column. We proceeded with a preliminary data analysis,



158 4.4. CONCLUDING REMARKS

investigating the variation over the season of the average number of microorganism DNA
sequences per location, observing that each location seems to have a preferred seasonal
pattern. Next we studied the seasonal average change in the number of microorganisms
per location and per position in the water column, noticing that a clear distinction exists
among seabed and surface microorganism numbers, for all the considered locations. This
step already suggested that the position in the water column could play a key role in the
analysis. The conclusive part of this second section is dedicated to the analysis of Malabar
dataset with the MWCA. Especially we compare the MWCA interpretation with the mode
one MCA of the tensor data. We remark here that MWCA simplifies significantly the
data interpretation, justifying it as the preferred tool for this type of dataset.



Chapter 5

Tensor techniques and climate data

5.1 Introduction
Climate data are measurements of complex phenomena involving a huge number of

interactions of many different variables [63, 64], among which two crucial ones are time
and space. The Empirical Orthogonal Function (EOF) analysis is a widely used tool
originally meant to separate and visualize time and space-related information from a
climate dataset. In practice, the EOF analysis is a variation of the Principal Components
Analysis, see II.III, suitably tuned for climate data. Thus, as PCA, the EOF analysis
is also used as an exploratory technique to investigate the pattern captured in the data
and as a dimensional reduction method. The EOF analysis is applied also to forecast, to
compare models and observations [63].

The classical EOF analysis aims to capture the maximum variance of the data, rep-
resented by a matrix, expressing it as the product of two matrices, an orthogonal one,
whose columns are said Empirical Orthogonal Functions (EOF) and an un-correlated one,
whose columns are referred to as Principal Components (PC). The EOF matrix collects
the space information, while the PC matrix the time one. The basic version of the EOF
analysis has been improved and modified over the years, for example relaxing the con-
straint of the orthogonality; we refer the reader to [63, 64] for variations of the EOF
analysis and other climate data exploration methods.

Climate data can also be mathematically modelled by tensors, as presented in [149]
for example. Thus, also the two variants of the EOF analysis can be readily formulated
in the tensor framework, but without a significant benefit from the computational view-
point. However, if the climate data are high dimensional and made available in Tucker
format 1.3.1, the tensor approach becomes more interesting. Under this strong assump-
tion, we investigate how to retrieve the EOF analysis results from Tucker format data
and when it could be beneficial. The results we present constitute a preliminary study of
the EOF analysis.

The remainder of this chapter is organized as follows. Section 5.2 presents two variants
of the classical EOF analysis: one based on the covariance matrix and one on the correla-
tion matrix, both computed from matrix climate data. We underline the computational

159



160 5.2. EMPIRICAL ORTHOGONAL FUNCTION ANALYSIS

possible simplifications for both these two mathematical procedures. In Section 5.3, we
represent the climate data through the Tucker model and we show how to perform the
EOF analysis benefiting from this compressed format. This tensor approach for EOF
analysis is applied and compared with the classical matrix one in Section 5.4. More in
detail, we briefly study the first EOF and PC obtained from the classical matrix analysis
of a real climate dataset, namely HadCRUT4_RecAI_tas_mon_188001-201512.nc. This
dataset is approximated also at different accuracies in Tucker format. Following the ap-
proach described in Section 5.3, we compute the EOF and the PC matrices, studying the
relative error in function of the different accuracies. For completeness, we display and
investigate also the first column of the Tucker decomposition of the dataset, relating it to
the classical EOF results.

5.2 Empirical Orthogonal Function Analysis
This section introduces the classical EOF analysis. As already mentioned, the EOF

analysis aims to separate the information carried in the data due to the time variables from
those linked to the space variables. After describing in Section 5.2.1 the data structure and
the pretreatments applied, we present two mathematical processes considered to compute
the PC and the EOF matrices. For completeness, the computational aspects of the EOF
analysis are briefly described.

To highlight the nature of the different mathematical objects, we add a subscript c to
denote the centred data, a subscript s for the scaled data, and a subscript sc for the scaled
and centred data to the bold Latin letter indicating the tensor storing the data. As it is
conventional, when an array stores a sample average, the letter denoting it is overlined.

5.2.1 Data description and pretreatments
In this section, we present the general structure of data we will analyse henceforth.

Let S ⊂ R3 denote the Earth surface in this chapter. The function f : R+ × S → R
associates with each time value and each point of the Earth’s surface the temperature
or the pressure measured in that time-space point. In the climatology framework, the
function f is usually referred to as space-time field. As the next step, the field is discretized
into a three-dimensional array. To achieve this aim, we define a grid of size p1 × p2 (i.e.,
p = p1p2 points), over the Earth surface denoting the discrete latitude variable by θj for
j ∈ {1, . . . , p1} and the discrete longitude by φk for k ∈ {1, . . . , p2}. Let ti be the discrete-
time variable for i ∈ {1, . . . , n}, then {(ti, θj, φk)}(n,p1,p2)

(i,j,k)=(1,1,1) is the time-space grid used
to discretize the function f . Indeed, the discretization of f over the time-space chosen
grid is the tensor f ∈ Rn×p1×p2 of order 3 such that

f(i, j, k) = f(ti, θj, φk) (5.1)

for all i ∈ {1, . . . , n}, j ∈ {1, . . . , p1} and k ∈ {1, . . . , p2}.



CHAPTER 5. TENSOR TECHNIQUES AND CLIMATE DATA 161

Henceforth, we assume data to be purged by the seasonal (or external) cyclic patterns.
Let X ∈ Rn×p with p = p1p2 denote the tensor f matricized with respect to mode one,
i.e., X = F(1). This choice couples together the two space variables. Before proceeding
with the classical EOFs analysis, the data are preprocessed, removing from X the average
in time. The time average x ∈ Rp is

x(h) = 1
n

n∑
i=1

X(i, h) for every h ∈ {1, . . . , p}.

We compute Xc ∈ Rn×p centring each column of X by its average, i.e.,

Xc = X − 1n ⊗ x (5.2)

where 1n denotes the vector of ones in Rn. In details each element of Xc is of the form
Xc(i, h) = X(i, h) − x(h) for every i ∈ {1, . . . , n} and h ∈ {1, . . . , p}. In climatology
matrix Xc is called the anomaly field.

5.2.2 EOFs and PCs computation
This section describes how to compute the Empirical Orthogonal Functions (EOFs)

and the Principal Components (PCs) to perform the EOFs analysis [63, 64].
As previously mentioned, the purpose of the EOFs analysis is decomposing the anomaly

field, dividing the time and the space contributions, i.e., expressing the factorization of
Xc as

Xc(ti, sk) =
∑
k=1

vk(sj)ck(ti)

for every discrete time ti and coupled space sj point. The EOFs analysis states the problem
as finding a linear combination of coupled grid points that maximizes the variance, see
Definition II.II.ii. This linear combination will prove how to split time and space discrete
variables. Mathematically, we seek for a vector a∗ ∈ Rp such that Xca

∗ has the maximal
variance, i.e.

a∗ = argmax
||a||=1

Var(Xca) = argmax
||a||=1

1
n− 1 ||Xca||2 (5.3)

since Xc columns have zero mean, see Equation (5.2). Let Yc ∈ Rn×p be a matrix defined
as

Yc = 1√
n− 1

Xc, (5.4)

then the maximum of (5.3) is actually a solution of the Karush–Kuhn–Tucker equation

(Y >c Yc)a− λa = 0 with ||a|| = 1

which is solved by the eigenvalue decomposition of (Y >c Yc), i.e.,

(Y >c Yc) = AΛA>



162 5.2. EMPIRICAL ORTHOGONAL FUNCTION ANALYSIS

with A ∈ O(p× p) and Λ = diag(λ1, . . . , λp). The eigenvalues are positive since (Y >c Yc) is
symmetric semipostive definite, see Equation (5.2), and for convenience we assume them
to be sorted in decreasing order. The `-th eigenvalue λ` ∈ Rp of (Y >c Yc) is a measure of the
variance expressed by a` the `-th eigenvector, i.e., the `-th column of A. In climatology the
eigenvectors a` are called Empirical Orthogonal Functions, or EOFs. Once the EOFs are
computed, the anomaly field Xc is projected in the subspace spanned by the eigenvectors,
defining the so-called Principal Component (PC) matrix C ∈ Rn×p as C = XcA. Thanks
to this construction and the orthogonality of A, multiplying the equation defining the PC
matrix on both sides by AT leads to a decomposition of the anomaly filed Xc, that is

Xc = CAT . (5.5)

The components of the anomaly field Xc are expressed as a linear combination of the
EOF matrix column a` and of the PC matrix column c`, i.e.,

Xc(i, h) =
p∑
`=1

c`(i)a`(h).

In climatology, EOFs and PCs are expressed as a function of the discrete space variable
and of the time variable respectively. So, let sh be the discrete coupled space variables
running over the space grid for h ∈ {1, . . . p} and let express the EOFs as a`(h) = a`(sh).
Similarly PCs can be written as a function of the discrete-time variable, that is the i-th
component of c` is denoted c`(ti) for every i ∈ {1, . . . , n}. If now we reintroduce the
discrete-time and coupled space variables, we obtain an expression of Xc where these two
discrete variables are separated in EOFs and PCs, i.e.,

Xc(ti, sh) = Xc(i, h) =
p∑
`=1

c`(ti)a`(sh).

Remark 5.2.1. During the interpretation step, the `-th EOF a` ∈ Rp is reshaped into a
matrix of size (p1 × p2) with p = p1p2, that is the space grid size, and visualized over a
Earth surface map.

To perform the EOF analysis, literature [64] numerical advice is to compute the SVD
of Xc instead of the eigenvalue decomposition of (X>c Xc). The reduced SVD of Xc is

Xc = UΣV >

with U ∈ O(n × p), V ∈ O(p × p) and Σ = diag(σ1, . . . , σp). Then the eigenvalues of
(X>c Xc) are the squared singular values of Xc, i.e., λ` = σ2

` . By construction, the EOFs
are equal to the eigenvectors of (X>c Xc), which correspond to the columns of V , the right
orthogonal matrix from the SVD of Xc. Comparing Equation (5.5) and the SVD of Xc,
the PC matrix writes C = 1√

n−1UΣ. In particular, the `-th PC is

c` = σ`√
n− 1

u`

with u` the `-th column of the left orthogonal matrix U . The scaling factor
√
n− 1 is due

to the definition of covariance matrix from Yc, see Equation (5.4).



CHAPTER 5. TENSOR TECHNIQUES AND CLIMATE DATA 163

5.2.3 Covariance and correlation for EOFs
In climatology literature, see [7, 63], it is common to perform the EOFs analysis, not on

the covariance matrix, defined in Equation (5.4), but on the correlation matrix, obtained
by scaling the data by a symmetric matrix. Indeed, as suggested in [7, 63], this choice com-
pensates for the non-uniform distribution of the grid point over the Earth’s surface. So,
we scale the input tensor data f by the diagonal matrix D = diag(

√
cos θ1, . . . ,

√
cos θp1)

along the latitude mode, that is the second one, defining the scaled tensor fs ∈ Rn×p1×p2

as
fs = D ×2 f .

The procedure to obtain the EOFs and the PCs requests now some tiny changes. Let
Xs ∈ Rn×p denotes the matricization with respect to mode 1 of fs, then, as previously,
the matrix data is centred in time defining Xsc ∈ Rn×p as

Xsc = Xs − 1n ⊗ xs with xs(h) = 1
n

n∑
i=1

Xs(i, h)

for every h ∈ {1, . . . , p}. Then instead of computing the eigenvalue decomposition of the
correlation matrix (X>scXsc), we directly compute the SVD of Xsc as

Xsc = UΣV > (5.6)

where U ∈ O(n× p), V ∈ O(p× p) and Σ = diag(σ1, . . . , σp). In this particular context,
the PC matrix is commonly chosen as C = (

√
n− 1)U , i.e., with a different scaling. Since

the EOFs are affected by the latitude scaling, as well explained in [7], the EOF matrix
A ∈ Rp×p is then constructed projecting the anomaly field not scaled Xc into the space
spanned by the PCs, that is

A = 1
n

(X>c C). (5.7)

Remark 5.2.2. As stated in Remark 5.2.1, for the ease of the interpretation a` the `-th
column of the EOF matrix A is usually reshaped into a matrix of shape (p1×p2). However
in the correlation EOF analysis, instead of computing the EOF matrix, we can compute
a tensor whose `-th slice with respect to the first mode is the `-th EOF already in matrix
format. To do it, we firstly define fc ∈ Rn×p1×p2 , i.e., we centre in time the input tensor
data

fc = f − 1n ⊗ F where F (j, k) = 1
n

n∑
i=1

f(i, j, k).

By construction F (1)
c = Xc since vec(F ) = x. Thus, the EOF tensor a ∈ Rp×p1×p2 is

defined as
a = 1

n
(C> ×1 fc) (5.8)

and by construction the matricization with respect to the first mode of a is equal to the
EOF matrix A, that is A(1) = A.



164 5.3. EOF ANALYSIS WITH TUCKER MODEL

It is common to centre in time the PC matrix, i.e., defining Cc = (
√
n− 1)Uc with

Uc = U − 1n ⊗ u with u(h) = 1
n

n∑
i=1

U(i, h)

and using it to define the EOF matrix, that is Ac = 1√
n
(X>c Cc). In all the following

sections, we assume to compute the EOFs and PCs following this approach frequently
referred to as correlation EOFs analysis, centring in time both the EOF and the PC
matrix.

5.3 EOF Analysis with Tucker model
In this section assuming that the input data are given in the Tucker compressed format,

we derive the EOFs and PCs relying on this formalism. For ease of reading, the core tensor
is denoted by the same letter of the decomposed (or approximated) tensor with a prime
as superscript.

Let the tensor f ∈ Rn×p1×p2 defined in Equation (5.1) be expressed in the Tucker
compressed format, see Definition 1.3.1, that is

f = (U,W,Z)f ′

where U ∈ O(n × r1), W ∈ O(p1 × r2) and Z ∈ O(p2 × r3), while f ′ ∈ Rr1×r2×r3 is the
core tensor. Equivalently this last equation can be written as

f =
r1,r2,r3∑
α,β,γ=1

f ′(α, β, γ)uα ⊗ wβ ⊗ zγ

where uα, wβ and zγ are the α-th, β-th and γ-th column of U , W and Z respectively.
We follow the approach described in Section 5.2.3 to compute the EOFs and PCs.

Firstly we scale the input data by the diagonal matrix D = diag(
√

cos θ1, . . . ,
√

cos θp1)
along the latitude mode, defining fs ∈ Rn×p1×p2

fs = D ×2 f = (U,DW,Z)f ′

=
r1,r2,r3∑
α,β,γ=1

f ′(α, β, γ)uα ⊗Dwβ ⊗ zγ

=
r1,r2,r3∑
α,β,γ=1

f ′(α, β, γ)uα ⊗ vβ ⊗ zγ

where vβ = Dwβ by construction for every β ∈ {1, . . . , r2}.

Remark 5.3.1. The matrix V ∈ Rp1×r2 defined as V = DW is not orthogonal any more.



CHAPTER 5. TENSOR TECHNIQUES AND CLIMATE DATA 165

The next step is centring the scaled data in time. Still keeping the data in Tucker
format, we compute the average in time F s ∈ Rp1×p2 as

F s(j, k) = 1
n

n∑
i=1

fs(i, j, k)

= 1
n

n∑
i=1

r1,r2,r3∑
α,β,γ=1

f ′(α, β, γ)uα(i) vβ(j) zγ(k).

In a more compact format, the average in time writes

F s =
r2,r3∑
β,γ=1

F ′s(β, γ)vβ ⊗ zγ with F ′s(β, γ) = 1
n

n,r1∑
i,α=1

f ′(α, β, γ)uα(i).

The scaled data centred in time are expressed by fsc ∈ Rn×p1×p2 , given by

fsc = fs −
r1∑
α=1

uα ⊗ F s

=
r1,r2,r3∑
α,β,γ=1

(
f ′(α, β, γ)− F ′s(β, γ)

)
uα ⊗ vβ ⊗ zγ

=
r1,r2,r3∑
α,β,γ=1

f ′sc(α, β, γ)uα ⊗ vβ ⊗ zγ

where f ′sc(α, β, γ) =
(
f ′(α, β, γ)− F ′s(β, γ)

)
for every α ∈ {1, . . . , r1}, β ∈ {1, . . . , r2} and

γ ∈ {1, . . . , r3}.
Denoted by Xsc ∈ Rn×p the matricization of fsc with respect to mode 1, then Xsc gets

Xsc = F (1)
sc =

r1∑
α=1

uα ⊗
( r2,r3∑
β,γ=1

f ′sc(α, β, γ) zγ ⊗K vβ
)
, (5.9)

thanks to Lemma 1.2.3. Thanks to Lemma 1.2.4, this previous equation writes

Xsc = UΥ(Z ⊗K V )> (5.10)

where Υ ∈ Rr1×r2r3 is the matricization with respect to mode 1 of the core tensor f ′sc,
while U ∈ O(n×r1), V ∈ Rp1×r2 and Z ∈ O(p2×r3) have the α-th, β-th and γ-th column
equal to uα, vβ and zγ respectively. In Section 5.2.3, the PCs are computed through the
SVD of Xsc, but it is not correct to identify directly Equation (5.6) and (5.10). Indeed,
the right factor of Equation (5.10) is not orthogonal because of the linear transformation
applied over the second mode, see Remark 5.3.1. Consequently the orthogonal matrix
U in Equation (5.10) is not the left orthogonal factor from the SVD of Xsc, i.e., it is
different from the matrix U in Equation (5.6) by construction. However, we can still



166 5.3. EOF ANALYSIS WITH TUCKER MODEL

benefit from the Tucker format, applying some further algebraic transformations. We
proceed computing the QR-factorization of (Z⊗KV ), getting Q ∈ O(p×r) and the upper
triangular matrix R ∈ Rr×r with p = p1p2 and r = r2r3. Introducing the QR-factors into
Equation (5.10), it writes

Xsc = UΥ(QR)> = U(ΥR>)Q>. (5.11)

Let now compute the SVD of the (r1 × r) matrix (ΥR>), as (ΥR>) = ÛΣ̂V̂ > with
Û ∈ O(r1 × q) V̂ ∈ O(q × r) and Σ̂ a (q × q) diagonal matrix with q equal to the rank
of (ΥR>). If the matrix product (ΥR>) is replaced by its SVD in Equation (5.11), it
becomes

Xsc = U(ΥR>
)
Q> = (UÛ)Σ̂(QV̂ )>.

Thanks to this last equation, we can compute the PC matrix from (UÛ), which is
equal up to a rotation, to the orthogonal matrix U of Equation (5.6). Thus, let the
centred in time PC matrix be Cc = (

√
n− 1)Uc where

Uc = (UÛ)− 1n ⊗ u with u(h) = 1
n

n∑
i=1

(UÛ)(i, h). (5.12)

As described in Section 5.2.3, the EOF matrix is computed from the product of the
PC matrix and Xc, the matricization with respect to mode 1 of f centred in time. As
explained in Remark 5.2.2, instead of computing the EOF matrix, we can construct the
EOF tensor from the input data centred on time and the PC matrix. We start computing
F ∈ Rp1×p2 the average in time of the input data as

F (j, k) = 1
n

n∑
i=1

f(i, j, k)

= 1
n

n∑
i=1

r1,r2,r3∑
α,β,γ=1

f ′(α, β, γ)uα(i)wβ(j) zγ(k),

which more compactly is expressed as

F =
r2,r3∑
β,γ=1

F ′(β, γ)wβ ⊗ zγ with F ′(β, γ) = 1
n

n,r1∑
i,α=1

f ′(α, β, γ)uα(i).

Then the tensor data centred in time fc ∈ Rn×p1×p2 is such that

fc = f −
r1∑
α=1

uα ⊗ F

=
r1,r2,r3∑
α,β,γ=1

(
f ′(α, β, γ)− F ′(β, γ)

)
uα ⊗ wβ ⊗ zγ

=
r1,r2,r3∑
α,β,γ=1

f ′c(α, β, γ)uα ⊗ wβ ⊗ zγ



CHAPTER 5. TENSOR TECHNIQUES AND CLIMATE DATA 167

where f ′c(α, β, γ) =
(
f ′(α, β, γ) − F ′(β, γ)

)
for every α ∈ {1, . . . , r1}, β ∈ {1, . . . , r2} and

γ ∈ {1, . . . , r3}. Finally the tensor EOF ac ∈ Rr1×p1×p2 writes

ac = 1
n

(C>c ×1 fc)

=
√
n− 1
n

(U>c ×1 fc)

=
√
n− 1
n

r1,r2,r3∑
α,β,γ=1

f ′c(α, β, γ)qα ⊗ wβ ⊗ zγ,

(5.13)

where qα ∈ Rr1 is equal to U>c uα for every α ∈ {1, . . . , r1}.
From the computational point of view, assuming the data to be already in Tucker

format, this approach requests two main operation: the QR-factorization of a (p × r)
matrix and the SVD of a (r1 × r) matrix with r = r2r3 and p = p1p2. On the other side,
the classical matrix approach performs only one SVD over a (n1×p) matrix. Consequently,
if the multilinear rank components are considerably small, the tensor technique may be
of interest.

5.4 Numerical results
The purpose of this section is to investigate through the Tucker model a tempera-

ture time series. The dataset HadCRUT4_RecAI_tas_mon_188001-201512.nc, provided
by L. Terray, research scientist in Climate, Environment, Coupling, and Uncertainties
(CECI), a joint research team between Cerfacs and CNRS, contains a month temperature
value in Kelvin for each point of the Earth’s surface grid and 136 years. We mathemati-
cally represent the data as a tensor f ∈ Rn×p1×p2 where n = 1632 is the number of time
points, that is 12 months for 136 years, p1 = 36 the number of latitude discrete points
and p2 = 72 of longitude ones.

We first present the first EOF and PC, which are by construction the most significant
ones, obtained from the matrix correlation EOF analysis, see Section 5.2.3. Then a tensor
approach is considered. To set a baseline, we study the Tucker basis of fc the data after
centring in time. In the conclusive section, we approximate fc through the Tucker model
prescribing an accuracy and we study the errors in computing the PC and EOF.

5.4.1 EOF analysis
To perform the correlation EOF analysis, as described in 5.2.3, we rely on the python3

library eofs applied to F (1) the matricization with respect to the first mode of the tensor
f storing the raw temperature time series. By construction, the first PC displayed in
Figure 5.1A and the first EOF in Figure 5.1B are the most significant ones. The first
PC in Figure 5.1A shows a time trend over the years for the temperature. Neglecting the
many oscillations, we observe that the curve general behaviour is growing up to 1950, has a



168 5.4. NUMERICAL RESULTS

drop-down point between the 60s and the 80s, and a final steep growth from the 90s. This
general pattern reflects the atmospheric concentration of carbon dioxide, cf. [132]. The
EOF plot 5.1B highlights the north hemisphere and the south pole as the ones with the
higher covariance values. This result suggests that the temperature rise is more significant
in some areas, the northern hemisphere, and the Antarctic pole, while other areas, such
as the oceans, are lower affected. Those results are very classical in climatology, see for
example [30].

18
80

19
00

19
20

19
40

19
60

19
80

20
00

20
20

Year

4

2

0

2

4

No
rm

al
ize

d 
Un

its

(A) First PC.
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

covariance

(B) First EOF.

Figure 5.1 – PC and EOF obtained from the correlation EOF analysis.

5.4.2 Baseline Tucker model

As a first step in the analysis of the temperature time series data through tensor
methods, we decompose it by the HOSVD algorithm and study the properties of the
Tucker basis so computed.

Remark 5.4.1. During the computational phase, we observe that the relative error among
the raw data f and its HOSVD decomposition is of the order 10−7, which is significantly
larger than the machine precision of the working arithmetic. However, if we centre the
data in time, defining fc, then the relative error among fc and its HOSVD decomposition
drops down to 10−15, as expected. A clear explanation for this phenomenon is not present,
but it may be linked to the high-rank nature of the time series. We choose to perform all
the analysis on the Tucker decomposition by the HOSVD algorithm applied to fc.

The data centred in time by fc writes in Tucker format 1.3.1 as

fc = (U,W,Z)f ′c

with U ∈ O(n× r1) the time basis, W ∈ O(p1 × r2) the latitude one and Z ∈ O(p2 × r3)
the longitude one, while f ′c ∈ Rr1×r2×r3 is the core tensor.



CHAPTER 5. TENSOR TECHNIQUES AND CLIMATE DATA 169

18
80

19
00

19
20

19
40

19
60

19
80

20
00

20
20

Time

0.05

0.00

0.05

Co
m

po
ne

nt
s

(A) 1st column of the time basis.

-87.5 -62.5 -37.5 -12.5 12.5 37.5 62.5 87.5
Latitude

0.0

0.1

0.2

0.3

0.4

0.5

Co
m

po
ne

nt
s

(B) 1st column of the latitude basis.

2.5 52.5 102.5 152.5 202.5 252.5 302.5 352.5
Longitude

0.05

0.10

0.15

0.20

Co
m

po
ne

nt
s

(C) 1st column of the longitude basis.

Figure 5.2 – Tucker basis of fc.

In Figure 5.2, we display the first column of the time, latitude and longitude basis.
The profile of the first column of the time basis in Figure 5.2A presents a shape similar
to the one of the 1st PC displayed in Figure 5.1A, even if on a different scale. The first
column of the latitude basis in Figure 5.2B presents two peaks, a tiny one between the
90◦ and 60◦ south parallel and a major one between the 50◦ and 90◦ north parallel. The
90◦ and 60◦ south parallel isolate the South pole area, while the 50◦ and 90◦ the north
hemisphere. On the other side, the longitude basis first column in Figure 5.2C has the
main crest between the Greenwich meridian and the 150th one east, a minor one between
the 90th meridian and the 150th one west. The area underlying the main crest goes from
the east of Europe and Africa to the east of Asia and Australia, while the area included
between the 90th and the 150th meridian west covers North and South America. Crossing
the information coming from the latitude and longitude plots, the areas carrying the most
significant information are the northern hemisphere and the Antarctic pole, as the first
EOF shows in 5.1B.

5.4.3 Tucker model and EOF analysis
In this section, we investigate the error in constructing the PC and EOF from a Tucker

approximation of fc the data centred in time given an approximation accuracy.
Given fc the data centred in time and the accuracy δ, we compute its Tucker approx-

imation such that
‖fc − (U,W,Z)f ′c‖

‖fc‖
≤ δ,

with f ′c ∈ Rr1×r2×r3 the core tensor, U ∈ O(n× r1), W ∈ O(p1 × r2) and Z ∈ O(p2 × r3).
Notice that the multilinear rank (r1, r2, r3) depends on the prescribed accuracy. The



170 5.4. NUMERICAL RESULTS

accuracy values we consider belong to {0.5, 0.1, 10−2, 10−3, 10−8}. To obtain the PC and
the EOF from the Tucker approximation, we follow the approach described in Section 5.3.
The (n × r1) PC matrix centred in time is defined in Equation (5.12) from the QR of
(Z ⊗K DV ) with D the scaling diagonal matrix and the SVD of (ΥR>) with Υ the
matricization of the core tensor f ′c with respect to mode 1. To highlight that in this case
an approximation of the data at accuracy δ is used instead of the decomposition, we denote
the PC matrix centred in time by Cδc; a similar notation is used for the EOF tensor. The
EOF tensor aδc ∈ Rr1×p1×p2 is computed from the PC matrix and the approximation at
accuracy δ of fc.

The PC and EOF so computed are compared with those obtained from the classical
matrix analysis. In particular we estimate the relative error for each PC as eδ ∈ Rr1

defined as

eδ(h) = ‖Cc(:, h)− Cδc(:, h)‖
‖Cc(:, h)‖

while for the EOF tensor the relative error is gδ ∈ Rr1 such that

gδ(h) = ‖ac(h, :, :)− aδc(h, :, :)‖
‖ac(h, :, :)‖

for every h ∈ {1, . . . , r1}. Before the analysis of the PC and EOF relative errors, we
focus on the multilinear rank of the approximation for a given accuracy δ, reported in
Table 5.1. Notice indeed that already for δ = 10−2, the second and third mode are
full rank, since r2 = p1 and r3 = p2. For δ = 10−3, even the first mode is almost full
rank, with r1 = n − 1, while for δ = 10−8 we obtain the data decomposition in Tucker
format. From the point of view of the relative approximation error, when δ = 0.5, we
are collecting approximately 60% of the total information, for δ = 0.1 we keep 90% of it.
Remark that for δ ∈ {10−2, 10−3, 10−8} the relative error is at least one order less than δ.
Those peculiarities seem to be related to the high-rank nature of the time series data. For
completeness, we include the compression ratio defined as the number of memory units
needed to store the tensor in Tucker format over the memory units requested for storing
the tensor in full format, i.e., ∑d

h=1 nhrh +∏
h=1 rh∏d

j=1 nj

where rh and nh are the h-th component of the multilinear rank and the mode size re-
spectively. Checking the third row of Table 5.1, we conclude that a beneficial compression
arrives only when δ is equal to 0.5 with a request of only 9% of the memory used to store
the entire tensor. For all the other accuracy values, the memory request to store the
tensor in the Tucker format is more than the amount necessary to store the data in full
format.



CHAPTER 5. TENSOR TECHNIQUES AND CLIMATE DATA 171

δ 0.5 0.1 10−2 10−3 10−8

ml-rank (201, 16, 17) (1130, 34, 67) (1604, 36, 72) (1631, 36, 72) (1632, 36, 72)
approximation

error 0.376 0.094 0.005 10−7 10−15

compression
ratio 0.091 1.046 1.603 1.630 1.631

Table 5.1 – Multilinear rank depending on the prescribed accuracy.

In Figure 5.3 we display the PC and EOF relative error eδ and gδ on the left and right
column respectively for every δ ∈ {0.5, 0.1, 10−2, 10−3, 10−8}. In all the plots of Figure 5.3,
the relative error eδ and gδ have increasing component values, which implies that the first
and most important PC and EOF are better approximated than the last ones. As we
could expect, the more precise the approximations, i.e., the lower the values of δ, the
smaller the PC and EOF relative errors are in general. As long as δ < 10−2, the PC
relative error components are smaller than the EOF ones, as shown in Figures 5.3A, 5.3B,
5.3C and 5.3D. Moreover the h-th component of both eδ and gδ reaches and stagnates
around 1, the relative error maximum, for h > 100 if δ = 0.5 and for h > 400 if δ = 0.1.
When δ = 10−2, the first 200 components of gδ appear, in Figures 5.3E and 5.3F, smaller
than the correspondent ones of eδ, that is the first EOF are better approximated than the
first PC. Moreover δ = 10−2 is the only case where the components of eδ and gδ appear to
be always increasing. The Figures 5.3G and 5.3I, 5.3H and 5.3J look similar, as we could
expect since the two multilinear rank differ of one unit only on the first component. In
these last two cases, we see that for h ≥ 400, the components of the PC and EOF relative
error stagnate around 10−6.

5.5 Concluding remarks
The focus of this chapter is on the investigation of climate datasets through tensor

methods. In particular, the Tucker format is introduced in the EOF analysis, studying
the benefit and the flaws of this choice. We show theoretically that the EOF and PC
matrix can be computed from the Tucker factors and core tensor taking advantage of the
compressed format, under the strong assumption that climate data are made available in
Tucker format. To complete our study, we approximate a temperature time series through
the HOSVD algorithm prescribing the accuracy and we study the effects of compression
in the computation of the PC and EOF matrix.

The first part, which includes Sections 5.2 and Section 5.3, collects the theoretical re-
sults. In Section 5.2, after describing the mathematical data modelling and the considered
pretreatments, we present the EOF analysis. The purpose of this technique is to separate
the space and time information of the data into the PC and the EOF matrix respec-
tively. For completeness, Section 5.2 includes the EOF analysis based on the correlation
and the covariance matrix associated with the data. The computational aspects of this



172 5.5. CONCLUDING REMARKS

0 25 50 75 100 125 150 175 200
Components

10 1

100

Re
lta

iv
e 

er
ro

r

(A) PC, δ = 0.5.

0 25 50 75 100 125 150 175 200
Components

100

Re
lta

iv
e 

er
ro

r

(B) EOF, δ = 0.5.

0 200 400 600 800 1000
Components

10 3

10 2

10 1

100

Re
lta

iv
e 

er
ro

r

(C) PC, δ = 0.1.

0 200 400 600 800 1000
Components

10 1

100

Re
lta

iv
e 

er
ro

r

(D) EOF, δ = 0.1.

0 200 400 600 800 1000 1200 1400 1600
Components

10 4

10 3

10 2

10 1

100

Re
lta

iv
e 

er
ro

r

(E) PC, δ = 10−2.

0 200 400 600 800 1000 1200 1400 1600
Components

10 6

10 4

10 2

100

Re
lta

iv
e 

er
ro

r

(F) EOF, δ = 10−2.

0 200 400 600 800 1000 1200 1400 1600
Components

10 8

10 7

10 6

10 5

Re
lta

iv
e 

er
ro

r

(G) PC, δ = 10−3.

0 200 400 600 800 1000 1200 1400 1600
Components

10 9

10 8

10 7

10 6

10 5

Re
lta

iv
e 

er
ro

r

(H) EOF, δ = 10−3.

0 200 400 600 800 1000 1200 1400 1600
Components

10 8

10 7

10 6

10 5

Re
lta

iv
e 

er
ro

r

(I) PC, δ = 10−8.

0 200 400 600 800 1000 1200 1400 1600
Components

10 9

10 8

10 7

10 6

10 5

Re
lta

iv
e 

er
ro

r

(J) EOF, δ = 10−8.

Figure 5.3 – Relative error for PC and EOF from Tucker approximation given an accuracy
threshold δ.



CHAPTER 5. TENSOR TECHNIQUES AND CLIMATE DATA 173

technique are briefly introduced in Section 5.2. Section 5.3 focuses on the construction of
the EOF and PC matrix from data mathematically expressed in Tucker format. Under
this assumption, we show that the correlation EOF analysis can be performed keeping
the data in compressed Tucker format, using the Tucker factors and core. Thus, if the
multilinear rank of the considered data is low, the tensor approach appears beneficial from
the computational viewpoint.

Section 5.4 constitutes the second part of the chapter. It is devoted to the numerical
experiments performed on a single dataset through python3 and the eof library. As the
first step, we plot the first PC and EOF computed by the eof library; they are used as
comparison terms for the other experiments. Then, we decompose the dataset by the
HOSVD algorithm and analyse the components of the first column of each orthogonal
basis. We illustrate the similarities among the first column of the time orthogonal basis
and the first PC and the relations among the first latitude and longitude orthogonal basis
column and the first EOF. In the last Section 5.4.3, the data are approximated by the
HOSVD at a prescribed accuracy δ, then the core tensor and the orthogonal basis are used
to compute an approximation of the PC and EOF matrix. As a final step, we compare
the approximations of the EOF and PC matrices with those computed by the eof library.
We display and investigate the relative errors for each PC and EOF depending on the
approximation accuracy δ. Our study shows that the first and more important EOF and
PC are better approximated than the last ones.





Conclusions and prospectives

The current fast technological development brings new mathematical and computa-
tional challenges while opening new research directions. A clear example of this is repre-
sented by linear algebra, which in the years has turned into multilinear algebra. Indeed,
different scientific and social disciplines, that used to rely on linear algebra techniques,
present nowadays problems that are naturally addressed in multilinear algebra, moving
from matrix approaches to tensor ones.

The purpose of this work is to investigate the properties of some classical linear algebra
methods, coming from numerical linear algebra and data analysis, once they are extended
to the tensor framework through the classical tensor decomposition algorithms, recalled
in Chapter 1. In the following sections, we summarize the main results and contributions,
provided by our work, together with the main open questions and research directions that
it has opened.

Numerical linear algebra
The topic of Part I is numerical linear algebra methods generalized to tensors though

the Tensor-Train format [108], presented in Section 1.3.2.
More in detail, Chapter 2 focuses on the Generalised Minimal RESidual (GMRES)

iterative solver from the backward stability viewpoint. Firstly we describe the variable
accuracy approach, which consists in decoupling the computational and storage accura-
cies. This choice describes mathematically those situations where memory constraints
make working with the classical IEEE floating point format not affordable. Once the rep-
resentation hypotheses are fixed, we study experimentally the norm-wise backward error
of GMRES, introducing storage perturbations firstly controlled component-wise and sec-
ondly norm-wise. The TT realization of GMRES in TT-format (TT-GMRES) represents
a study case for the variable accuracy approach. So, we report on the backward error of
TT-GMRES for solving several classical tensor linear systems. In particular, we address
theoretically and numerically the problem of solving many tensor linear systems at once
increasing the order of the space.

In Chapter 3, we describe and investigate experimentally six orthogonalization schemes,
namely Classical Gram-Schmidt (CGS), Modified Gram-Schmidt (MGS) [52, 127], their
version with re-orthogonalization (CGS2, MGS2) [51], the Gram procedure from [131] and
the Householder transformation [76], implemented with the TT-format. Their TT-version

175



176 numerical linear algebra

includes additional compression steps to prevent memory issues. Firstly, we report on their
behavior in terms of loss of orthogonality of the computed basis. Then we plug them into
the TT-version of the SUBSPace ITeration eigensolver (TT-SUBSPIT), analysing their
effect in terms of eigenvalue computation.

Concluding remarks

The variable accuracy approach allows us to show experimentally in Chapter 2 that the
backward stability of GMRES theoretically proved in [40, 113], still holds when the com-
putational and the storage accuracies are distinguished. This means that the attainable
accuracy of the backward error of GMRES appears of the order of the maximum between
the computational and the storage accuracy, even when the assumptions of the theoretical
proofs of [40, 113] are violated. This attainable accuracy property is observed numeri-
cally also for TT-GMRES. Our experiments lead us to conclude that our TT-GMRES
algorithm is more robust than its previous relaxed version proposed in [39]. Finally, the
theoretical bounds, which we formulate when many tensor linear systems are solved at
once increasing the space order, appear from our numerical experiments sharp enough to
guarantee some practical applicability.

The first contribution of Chapter 3 is the realization of the Householder orthogonal-
ization kernel in TT-format, which has never been presented previously to the best of our
knowledge. Additionally, the numerical experiments of Chapter 3 suggest that the loss of
orthogonality in each orthogonalization scheme satisfies the same bounds [15, 51, 129, 131,
145] theoretically proved in the matrix case, where the unit round-off of the current work-
ing arithmetic is replaced by the compression accuracy. Lastly, the experimental results
from the TT-SUBSPIT algorithm appear to recommend the TT-Householder transforma-
tion as the most robust one for every computation.

Perspectives

A central key point to address in the future is the theoretical validation of the back-
ward stability of GMRES in the variable accuracy approach. Indeed, when the storage
perturbations are controlled only norm-wise the backward stability theorems of [40, 113]
do not apply anymore, since the underlying floating point representation is not holding
anymore. However, the analysis presented in [113] is based on the worst-case. So, other
possible proving techniques could be considered, such as those presented in [26, 114].
Similarly, the loss of orthogonality bounds for the six kernels should be studied theoreti-
cally. Moreover, studying the quality of the TT-eigenvectors as much as the relationship
between the cluster distance and the rounding accuracy would complete the analysis of
the TT-SUBSPIT algorithm. Finally, to link the two chapters, we could try to implement
the flexibility described in [115] with the basis re-orthogonalization, to keep the memory
advantages of the relaxed TT-GMRES from [39] without losing the attainable accuracy
of our version.



conclusions and prospectives 177

Data Analysis
The data analysis techniques investigated in Part II are meant for contingency tables

and climate data. Their extension to the tensor format relies on the Tucker model [135],
described in Section 1.3.1.

The central subject of Chapter 4 is Correspondence Analysis (CA) from the geometric
point of view. This technique is a variation of Principal Component Analysis (PCA) meant
for investigating and visualizing frequency tables, referred to as contingency tables. The
purpose of CA is to find the subspace that minimizes the projection error of the cloud
points, whose coordinates are the row and the column entries of the contingency table. The
projection of the two point clouds can be visualized and interpreted together, thanks to
the barycentric relation that links them. The results of Chapter 4 integrate the MultiWay
Correspondence Analysis (MWCA) theory, which generalizes the CA through the Tucker
format. To stress the benefits and the flaws of a tensor approach two examples of MWCA
in comparison with the matrix CA over literature data [57, 87] are presented. In the
second half of Chapter 4, we apply the MWCA to investigate the Malabar dataset [6]
relying on the barycentric relation. As for the other examples, the MWCA results are
compared with the CA ones.

The Empirical Orthogonal Function (EOF) analysis is the subject studied in Chap-
ter 5. This technique is a variation of the PCA tuned for climate data. The EOF analysis
aims to separate time and space information, analysing them independently. After study-
ing how to perform the EOF analysis when the data are available in Tucker format,
we investigate numerically the effect of the Tucker compression on the EOF outcome,
comparing them with the classical EOF analysis results.

Concluding remarks
In Chapter 4, we show through the Tucker model that the CA barycentric link holds

theoretically also when tensors data are considered, i.e., in the MWCA. We stress mainly
how to interpret geometrically this relation and how to use it in the visualization and
interpretation of a multiway contingency table. So, we fulfil the gap in the MWCA,
which has not been studied geometrically as far as we are aware. Moreover, we perform
the analysis of an original dataset. In Chapter 5, we describe theoretically how to perform
the EOF analysis starting from data expressed in Tucker format, without decompressing.
In addition, our numerical studies suggest that the Tucker compression affects less the
most important components of the final EOF outcome.

Perspectives
Both the CA and the EOF analysis could be regarded as visualization techniques

relying on PCA. Nowadays, it is common to replace PCA with the Tucker model, which
preserves some of the PCA properties. However, the optimality of the projection error
is not among these. So a possible alternative research direction is represented by the



178 data analysis

use of Canonical Polyadic decomposition [72] (CP) instead of the Tucker one. For the
contingency table, for example, we could study if a similar barycentric relation may be
inferred using the CP decomposition, or combining it with the Tucker model, to benefit
also with the usual low dimension of the core tensor. On the other side, for the EOF
analysis, the orthogonality of the factors does not represent a crucial constraint. However,
climate data are known for being high-rank data, so tensor decomposition techniques
beneficial when the low-rank property is present may not be a suitable tool. A much more
general and open question is the search for new visualization techniques relying on tensor
formats, but it may request knowledge and to be co-designed with other disciplines.



Bibliography

[1] N. N. Abdelmalek. “Round off error analysis for Gram-Schmidt method and solu-
tion of linear least squares problems”. In: BIT Numerical Mathematics 11.4 (Dec.
1971), pp. 345–367. doi: 10.1007/BF01939404.

[2] I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki. “Rigorous results on valence-
bond ground states in antiferromagnets”. In: Phys. Rev. Lett. 59 (7 Aug. 1987),
pp. 799–802. doi: 10.1103/PhysRevLett.59.799.

[3] E. Agullo, O. Coulaud, L. Giraud, M. Iannacito, G. Marait, and N. Schenkels.
The backward stable variants of GMRES in variable accuracy. Research Report
RR-9483. Inria, Sept. 2022, pp. 1–77.

[4] W. E. Arnoldi. “The principle of minimized iterations in the solution of the matrix
eigenvalue problem”. In: Quarterly of Applied Mathematics 9 (1951), pp. 17–29.

[5] W. R. Atchley and E. H. Bryant. Multivariate Statistical Methods: Among-Groups
Covariation. Benchmark Papers in Systematic and Evolutionary Biology. Elsevier
Science & Technology Books, 1975.

[6] I. Auby, C. Meteigner, M. Rumebe, E. Chancerel, F. Salin, C. Aluome, F. Bar-
raquand, L. Carassou, Y. Del Amo, V. Meleder, A. Petit, C. Picoche, j.-M. Frigerio,
and A. Franc. Malabar project: samples versus otus contingency tables. Version V1.
2022. doi: 10.57745/9QOSDY.

[7] M. P. Baldwin, D. B. Stephenson, and I. T. Jolliffe. “Spatial Weighting and Iter-
ative Projection Methods for EOFs”. In: Journal of Climate 22.2 (2009), pp. 234–
243. doi: 10.2307/26259635.

[8] J. Ballani and L. Grasedyck. “A projection method to solve linear systems in tensor
format”. In: Numerical Linear Algebra with Applications 20.1 (2013), pp. 27–43.
doi: 10.1002/nla.1818.

[9] F. L. Bauer. “Das Verfahren der Treppeniteration und verwandte Verfahren zur
Lösung algebraischer Eigenwertprobleme”. In: Zeitschrift für angewandte Mathe-
matik und Physik ZAMP 8.3 (May 1957), pp. 214–235.

[10] E. J. Beh and R. Lombardo. Correspondence Analysis. Ed. by E. J. Beh and R.
Lombardo. Wiley Series in Probability and Statistics. Wiley & Sons, Oct. 2014,
pp. 1–560. doi: 10.1002/9781118762875.

179

https://doi.org/10.1007/BF01939404
https://doi.org/10.1103/PhysRevLett.59.799
https://doi.org/10.57745/9QOSDY
https://doi.org/10.2307/26259635
https://doi.org/10.1002/nla.1818
https://doi.org/10.1002/9781118762875


180 BIBLIOGRAPHY

[11] E. J. Beh and R. Lombardo. “Multiple and multiway correspondence analysis”. In:
WIREs Computational Statistics 11.5 (2019), e1464. doi: 10.1002/wics.1464.

[12] J.-P. Benzécri. “Statistical analysis as a tool to make patterns emerge from data”.
In: Methodologies of Pattern Recognition. Ed. by S. Watanabe. Academic Press,
1969, pp. 35–74. doi: 10.1016/B978-1-4832-3093-1.50009-2.

[13] J.-P. Benzécri and L. Bellier. L’analyse des données: Benzécri, J.-P. et al. L’analyse
des correspondances. L’analyse des données: leçons sur l’analyse factorielle et la re-
connaissance des formes, et travaux du Laboratoire de statistique de l’Université
de Paris VI. Dunod, 1973.

[14] J.-P. Benzécri. “Sur l’analyse des tableaux binaires associés à une correspondance
multiple”. In: Cahiers de l’analyse des données 2.1 (1977), pp. 55–71.

[15] Å. Björck. “Solving linear least squares problems by Gram-Schmidt orthogonaliza-
tion”. In: BIT Numerical Mathematics 7.1 (Mar. 1967), pp. 1–21. doi: 10.1007/
BF01934122.

[16] A. Bouras and V. Frayssé. “Inexact matrix-vector products in Krylov methods for
solving linear systems: a relaxation strategy”. In: SIAM Journal on Matrix Analysis
and Applications 26.3 (2005), pp. 660–678. doi: 10.1137/S0895479801384743.

[17] M. Braschler, T. Stadelmann, and K. Stockinger. Applied Data Science: Lessons
Learned for the Data-Driven Business. Cham: Springer International Publishing,
2019, pp. 17–29. doi: 10.1007/978-3-030-11821-1_2.

[18] R. Bro, E. Acar, and T. G. Kolda. “Resolving the sign ambiguity in the singular
value decomposition”. In: Journal of Chemometrics 22.2 (2008), pp. 135–140. doi:
10.1002/cem.1122.

[19] R. Bro, R. Leardi, and L. G. Johnsen. “Solving the sign indeterminacy for multiway
models”. In: Journal of Chemometrics 27.3-4 (2013), pp. 70–75. doi: 10.1002/
cem.2493.

[20] C. Burt. “The factorial analysis of qualitative data”. In: British Journal of Sta-
tistical Psychology 3.3 (1950), pp. 166–185. doi: 10.1111/j.2044-8317.1950.
tb00296.x.

[21] A. Carlier and P. M. Kroonenberg. “Decompositions and biplots in three-way
correspondence analysis”. In: Psychometrika 61.2 (June 1996), pp. 355–373. doi:
10.1007/BF02294344.

[22] A. Carlier and P. M. Kroonenberg. “Chapter 19 - The Case of the French Cantons:
An Application of Three-Way Correspondence Analysis”. In: Visualization of Cat-
egorical Data. Ed. by J. Blasius and M. J. Greenacre. San Diego, USA: Academic
Press, 1998, pp. 253–275. doi: 10.1016/B978-012299045-8/50021-8.

[23] CARME-N. Opinions about working women. http://www.carme-n.org/?sec=
data2. [Data-set 9]. 2007.

https://doi.org/10.1002/wics.1464
https://doi.org/10.1016/B978-1-4832-3093-1.50009-2
https://doi.org/10.1007/BF01934122
https://doi.org/10.1007/BF01934122
https://doi.org/10.1137/S0895479801384743
https://doi.org/10.1007/978-3-030-11821-1_2
https://doi.org/10.1002/cem.1122
https://doi.org/10.1002/cem.2493
https://doi.org/10.1002/cem.2493
https://doi.org/10.1111/j.2044-8317.1950.tb00296.x
https://doi.org/10.1111/j.2044-8317.1950.tb00296.x
https://doi.org/10.1007/BF02294344
https://doi.org/10.1016/B978-012299045-8/50021-8
http://www.carme-n.org/?sec=data2
http://www.carme-n.org/?sec=data2


BIBLIOGRAPHY 181

[24] CARME-N. Spanish National Health Survey. http://www.carme-n.org/?sec=
data2. [Data-set 3]. 2007.

[25] J. D. Carroll and J.-J. Chang. “Analysis of individual differences in multidimen-
sional scaling via an n-way generalization of “Eckart-Young” decomposition”. In:
Psychometrika 35.3 (Sept. 1970), pp. 283–319. doi: 10.1007/BF02310791.

[26] E. Carson and N. J. Higham. “A New Analysis of Iterative Refinement and Its
Application to Accurate Solution of Ill-Conditioned Sparse Linear Systems”. In:
SIAM Journal on Scientific Computing 39.6 (2017), A2834–A2856. doi: 10.1137/
17M1122918.

[27] R. B. Cattell. ““Parallel proportional profiles” and other principles for determining
the choice of factors by rotation”. In: Psychometrika 9 (1944), pp. 267–283.

[28] J. Chambers. Computational Methods for Data Analysis. Wiley Series in Probabil-
ity and Mathematical Statistics. Wiley & Sons, 1977.

[29] R. Coppi and S. Bolasco, eds. Multiway Data Analysis. North-Holland Publishing
Co., 1989.

[30] Core Writing Team, R. Pachauri, and A. Reisinger. Climate Change 2007: Synthe-
sis Report. Contribution of Working Groups I, II and III to the Fourth Assessment.
Tech. rep. Geneva, Switzerland: Intergovernmental Panel on Climate Change, 2007,
p. 104.

[31] O. Coulaud, L. Giraud, and M. Iannacito. A note on GMRES in TT-format. Re-
search Report RR-9384. Inria Bordeaux Sud-Ouest, 2022.

[32] O. Coulaud, L. Giraud, and M. Iannacito. On some orthogonalization schemes in
TT-format. Research Report RR-9491. Inria Bordeaux Sud-Ouest, 2022.

[33] J. W. Daniel, W. B. Gragg, L. Kaufman, and G. W. Stewart. “Reorthogonalization
and Stable Algorithms for Updating the Gram-Schmidt QR Factorization”. In:
Mathematics of Computation 30.136 (1976), pp. 772–795.

[34] T. H. Davenport and D. Patil. Data scientist: The sexiest job of the 21st century.
http://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-
century/ar/1. 2012.

[35] T. A. Davis and Y. Hu. “The university of Florida sparse matrix collection”. In:
ACM Transactions on Mathematical Software 38.1 (Nov. 2011), pp. 1–25. doi:
10.1145/2049662.2049663.

[36] L. De Lathauwer, B. De Moor, and J. Vandewalle. “A Multilinear Singular Value
Decomposition”. In: SIAM Journal on Matrix Analysis and Applications 21.4 (2000),
pp. 1253–1278. doi: 10.1137/S0895479896305696.

[37] L. De Lathauwer, B. De Moor, and J. Vandewalle. “On the Best Rank-1 and
Rank-(R1, R2, . . . , RN) approximation of high order tensors”. In: SIAM Journal
on Matrix Analysis and Applications 21.4 (2000), pp. 1324–1342. doi: 10.1137/
S0895479898346995.

http://www.carme-n.org/?sec=data2
http://www.carme-n.org/?sec=data2
https://doi.org/10.1007/BF02310791
https://doi.org/10.1137/17M1122918
https://doi.org/10.1137/17M1122918
http://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century/ar/1
http://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century/ar/1
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1137/S0895479896305696
https://doi.org/10.1137/S0895479898346995
https://doi.org/10.1137/S0895479898346995


182 BIBLIOGRAPHY

[38] S. Di and F. Cappello. “Fast error-bounded lossy HPC data compression with
SZ”. In: 2016 IEEE international parallel and distributed processing symposium
(IPDPS). IEEE. 2016, pp. 730–739.

[39] S. V. Dolgov. “TT-GMRES: solution to a linear system in the structured tensor
format”. In: Russian Journal of Numerical Analysis and Mathematical Modelling
28.2 (2013), pp. 149–172. doi: 10.1515/rnam-2013-0009.

[40] J. Drkosova, A. Greenbaum, M. Rozloznik, and Z. Strakoš. “Numerical stability of
GMRES”. In: BIT Numerical Mathematics 35.February 1994 (1995), pp. 309–330.

[41] C. Eckart and G. Young. “The approximation of one matrix by another of lower
rank”. In: Psychometrika 1.3 (Sept. 1936), pp. 211–218. doi: 10.1007/BF02288367.

[42] G. Favier. “Historical Elements of Matrices and Tensors”. In: From Algebraic Struc-
tures to Tensors. Ed. by G. Favier. Wiley & Sons, 2019. Chap. 1, pp. 1–7. doi:
10.1002/9781119681137.ch1.

[43] R. A. Fisher. “The precision of discriminant functions”. In: Annals of Human
Genetics 10 (1940), pp. 422–429.

[44] A. Franc. “Etude Algébrique des multitableaux: apports de l’algèbre tensorielle”.
PhD thesis. University of Montpellier, 1992.

[45] A Fukuoka. “The central meteorological observatory, a study on 10-day forecast
(a synthetic report)”. In: Geophysical Magazine 22.3 (1951), pp. 177–208.

[46] K. R. Gabriel. “The biplot graphic display of matrices with application to principal
component analysis”. In: Biometrika 58.3 (Dec. 1971), pp. 453–467. doi: 10.1093/
biomet/58.3.453.

[47] H. G. Gauch. Multivariate Analysis in Community Ecology. Cambridge Studies in
Ecology. Cambridge University Press, 1982. doi: 10.1017/CBO9780511623332.

[48] P. Gelß. “The Tensor-Train Format and Its Applications”. PhD thesis. 2017. doi:
10.17169/refubium-7566.

[49] A. Gifi. Nonlinear Multivariate Analysis. Wiley Series in Probability and Statistics.
Wiley & Sons, 1990.

[50] L. Giraud, S. Gratton, and J. Langou. “Convergence in Backward Error of Relaxed
GMRES”. In: SIAM Journal Scientific Computing 29.2 (2007), pp. 710–728. doi:
10.1137/040608416.

[51] L. Giraud, J. Langou, M. Rozložník, and J. v. d. Eshof. “Rounding error analysis
of the classical Gram-Schmidt orthogonalization process”. In: Numerische Mathe-
matik 101.1 (July 2005), pp. 87–100. doi: 10.1007/s00211-005-0615-4.

[52] J. P. Gram. “Ueber die Entwickelung reeller Functionen in Reihen mittelst der
Methode der kleinsten Quadrate”. In: Journal für die reine und angewandte Math-
ematik (Crelles Journal) 1883.94 (1883), pp. 41 –73.

https://doi.org/10.1515/rnam-2013-0009
https://doi.org/10.1007/BF02288367
https://doi.org/10.1002/9781119681137.ch1
https://doi.org/10.1093/biomet/58.3.453
https://doi.org/10.1093/biomet/58.3.453
https://doi.org/10.1017/CBO9780511623332
https://doi.org/10.17169/refubium-7566
https://doi.org/10.1137/040608416
https://doi.org/10.1007/s00211-005-0615-4


BIBLIOGRAPHY 183

[53] L. Grasedyck. “Hierarchical Singular Value Decomposition of Tensors”. In: SIAM
Journal on Matrix Analysis and Applications 31.4 (2010), pp. 2029–2054. doi:
10.1137/090764189.

[54] L. Grasedyck. “Hierarchical Singular Value Decomposition of Tensors”. In: SIAM
Journal on Matrix Analysis and Applications 31.4 (2010), pp. 2029–2054. doi:
10.1137/090764189.

[55] M. J. Greenacre and L. Degos. “Correspondence Analysis of HLA Gene Frequency
Data from 124 Population Samples”. In: American journal of human genetics 29
(Feb. 1977), pp. 60–75.

[56] M. J. Greenacre. “Some objective methods of graphical display of a data matrix”.
In: UNISA, Pretoria (1978).

[57] M. J. Greenacre. Theory and Applications of Correspondence Analysis. Academic
Press, 1984.

[58] M. Greenacre. Correspondence Analysis in Practice. Data-sets are available at.
Academic Press, 1993.

[59] A. Greenbaum. Iterative methods for solving linear systems. Philadelphia, PA,
USA: Society for Industrial and Applied Mathematics, 1997.

[60] L. Guttman. “The Quantification of a class of attributes: A theory and method of
scale construction”. In: Social Science Research Council, 1941, pp. 319–348.

[61] W. Hackbusch and B. N. Khoromskij. “Low-rank Kronecker-product Approxima-
tion to Multi-dimensional Nonlocal Operators. Part I. Separable Approximation
of Multi-variate Functions”. In: Computing 76.3 (Jan. 2006), pp. 177–202. doi:
10.1007/s00607-005-0144-0.

[62] W. Hackbusch and B. N. Khoromskij. “Low-rank Kronecker-product Approxima-
tion to Multi-dimensional Nonlocal Operators. Part II. HKT Representation of
Certain Operators”. In: Computing 76.3 (Jan. 2006), pp. 203–225. doi: 10.1007/
s00607-005-0145-z.

[63] A. Hannachi. Patterns Identification and Data Mining in Weather and Climate.
Springer Atmospheric Sciences. Springer International Publishing, 2021.

[64] A. Hannachi, I. T. Jolliffe, and D. B. Stephenson. “Empirical orthogonal functions
and related techniques in atmospheric science: A review”. In: International Journal
of Climatology 27.9 (2007), pp. 1119–1152. doi: 10.1002/joc.1499.

[65] R. A. Harshman. “Foundations of the PARAFAC procedure: Models and conditions
for an "explanatory" multi-model factor analysis”. In: vol. 16. UCLA Working
Papers in Phonetics. University Microfilms, Ann Arbor, Michigan, 1970, pp. 1–84.

[66] C. Hayashi. “On the quantification of qualitative data from the mathematico-
statistical point of view”. In: Annals of the Institute of Statistical Mathematics 2
(1950), pp. 35–47.

https://doi.org/10.1137/090764189
https://doi.org/10.1137/090764189
https://doi.org/10.1007/s00607-005-0144-0
https://doi.org/10.1007/s00607-005-0145-z
https://doi.org/10.1007/s00607-005-0145-z
https://doi.org/10.1002/joc.1499


184 BIBLIOGRAPHY

[67] C. Hayashi. “What is Data Science ? Fundamental Concepts and a Heuristic Ex-
ample”. In: Data Science, Classification, and Related Methods. Ed. by C. Hayashi,
K. Yajima, H.-H. Bock, N. Ohsumi, Y. Tanaka, and Y. Baba. Tokyo: Springer
Japan, 1998, pp. 40–51.

[68] N. Higham. Accuracy and Stability of Numerical Algorithms: Second Edition. Other
Titles in Applied Mathematics. Society for Industrial and Applied Mathematics,
2002.

[69] M. O. Hill. “Correspondence analysis”. In: Encyclopedia of Statistical Sciences.
Ed. by N. L. J. Samuel Kotz. New York, NY: Wiley & Sons, 1982, pp. 204–210.

[70] M. O. Hill. “Correspondence Analysis: A Neglected Multivariate Method”. In:
Journal of the Royal Statistical Society: Series C (Applied Statistics) 23.3 (1974),
pp. 340–354. doi: https://doi.org/10.2307/2347127.

[71] H. O. Hirschfeld. “A Connection between Correlation and Contingency”. In: Math-
ematical Proceedings of the Cambridge Philosophical Society 31 (1935), pp. 520 –
524.

[72] F. L. Hitchcock. “The Expression of a Tensor or a Polyadic as a Sum of Products”.
In: Journal of Mathematics and Physics 6.1-4 (1927), pp. 164–189. doi: 10.1002/
sapm192761164.

[73] W. Hoffmann. “Iterative algorithms for Gram-Schmidt orthogonalization”. In: Com-
puting 41.4 (Dec. 1989), pp. 335–348. doi: 10.1007/BF02241222.

[74] P. Horst. “Measuring Complex Attitudes”. In: Journal of Social Psychology 6
(1935), pp. 369–374.

[75] H. Hotelling. “Analysis of a complex of statistical variables into principal com-
ponents.” In: Journal of Educational Psychology 24.6 (1933), pp. 417–441. doi:
10.1037/h0071325.

[76] A. S. Householder. “Unitary Triangularization of a Nonsymmetric Matrix”. In: J.
ACM 5.4 (Oct. 1958), 339–342. doi: 10.1145/320941.320947.

[77] “IEEE Standard for Binary Floating-Point Arithmetic”. In: ANSI/IEEE Std 754-
1985 (1985), pp. 1–20. doi: 10.1109/IEEESTD.1985.82928.

[78] I. T. Jolliffe. Principal Component Analysis. Second. Springer Series in Statistics.
Springer-Verlag New York, 2002.

[79] I. T. Jolliffe and J. Cadima. “Principal component analysis: a review and recent
developments”. In: Philosophical Transactions of the Royal Society A: Mathemat-
ical, Physical and Engineering Sciences 374.2065 (2016), p. 20150202. doi: 10.
1098/rsta.2015.0202.

[80] A. Kapteyn, H. Neudecker, and T. Wansbeek. “An approach to n−mode com-
ponents analysis”. In: Psychometrika 51.2 (1986), pp. 269–275. doi: 10.1007/
BF02293984.

https://doi.org/https://doi.org/10.2307/2347127
https://doi.org/10.1002/sapm192761164
https://doi.org/10.1002/sapm192761164
https://doi.org/10.1007/BF02241222
https://doi.org/10.1037/h0071325
https://doi.org/10.1145/320941.320947
https://doi.org/10.1109/IEEESTD.1985.82928
https://doi.org/10.1098/rsta.2015.0202
https://doi.org/10.1098/rsta.2015.0202
https://doi.org/10.1007/BF02293984
https://doi.org/10.1007/BF02293984


BIBLIOGRAPHY 185

[81] V. A. Kazeev and B. N. Khoromskij. “Low-Rank Explicit QTT Representation of
the Laplace Operator and Its Inverse”. In: SIAM Journal on Matrix Analysis and
Applications 33.3 (2012), pp. 742–758. doi: 10.1137/100820479.

[82] M. G. Kendall. Multivariate analysis. English. Griffin London, 1975, p. 210.
[83] T. G. Kolda. Multilinear Operators for Higher-order Decompositions. Tech. rep.

SAND2006-2081. Sandia National Laboratories, Apr. 2006. doi: 10.2172/923081.
[84] T. G. Kolda and B. W. Bader. “Tensor Decompositions and Applications”. In:

SIAM Review 51.3 (Aug. 2009), pp. 455–500. doi: 10.1137/07070111x.
[85] J. Kossaifi, Y. Panagakis, A. Anandkumar, and M. Pantic. “TensorLy: Tensor

Learning in Python”. In: Journal of Machine Learning Research 20.26 (2019),
pp. 1–6.

[86] D. Kressner and C. Tobler. “Low-Rank Tensor Krylov Subspace Methods for
Parametrized Linear Systems”. In: SIAM Journal on Matrix Analysis and Ap-
plications 32.4 (2011), pp. 1288–1316. doi: 10.1137/100799010.

[87] P. M. Kroonenberg. Applied Multiway Data Analysis. Wiley & Sons, 2008.
[88] P. M. Kroonenberg. “History of multiway component analysis and three-way cor-

respondence analysis”. In: Visualization and Verbalization of Data. Ed. by G. M.
Blasius J. CRC Press, 2014. Chap. 6, pp. 77–94.

[89] P. M. Kroonenberg. Three-mode principal component analysis: Theory and appli-
cations. DSWO Press, Leiden, 1983.

[90] P. M. Kroonenberg and J. de Leeuw. “Principal Component Analysis of three
modes data by means of Alternating Least Square algorithms”. In: Psychometrika
45.1 (1980), pp. 69–97. doi: 10.1007/BF02293599.

[91] A. Krylov. “On the Numerical Solution of Equation by Which are Determined in
Technical Problems the Frequencies of Small Vibrations of Material Systems”. In:
Izvestiia Akademii nauk SSSR 7.4 (1931), 491–539.

[92] J. Landsberg. Tensors: Geometry and Applications: Geometry and Applications.
Graduate studies in mathematics. American Mathematical Society, 2011.

[93] L. Lebart. Validité des résultats en analyse des données. Tech. rep. SOU1975-2140.
Paris, FR: CREDOC-DGRST, Nov. 1975.

[94] L. Lebart, A. Morineau, and J. Fénelon. Traitement des données statistiques: méth-
odes et programmes. Dunod, 1982.

[95] L. Lebart, A. Morineau, and N. Tabard. Techniques de la Description Statistique:
méthodes et logiciels pour l’analyse des grands tableaux. Paris, FR: Dunod, 1977.

[96] S. J. Leon, Å. Björck, andW. Gander. “Gram-Schmidt orthogonalization: 100 years
and more”. In: Numerical Linear Algebra with Applications 20.3 (2013), pp. 492–
532. doi: 10.1002/nla.1839.

https://doi.org/10.1137/100820479
https://doi.org/10.2172/923081
https://doi.org/10.1137/07070111x
https://doi.org/10.1137/100799010
https://doi.org/10.1007/BF02293599
https://doi.org/10.1002/nla.1839


186 BIBLIOGRAPHY

[97] J. Levin. “Three-Mode Factor Analysis”. PhD thesis. University of Illinois, Urbana,
1963.

[98] R. Lombardo, A. Carlier, and L. D’Ambra. “Nonsymmetric correspondence anal-
ysis for three-way contingency tables”. In: Methodologica 4 (1996), pp. 59–80.

[99] E. N. Lorenz. Empirical Orthogonal Functions and Statistical Weather Prediction.
Tech. rep. 1. Statistical Forecasting Project. Department of Meteorology, MIT,
1956, p. 52.

[100] M. Loukides. What is data science? https://www.oreilly.com/ideas/what-
is-data-science. 2010.

[101] Y. Ma, S. Sastry, and R. Vidal. Generalized Principal Component Analysis. Inter-
disciplinary Applied Mathematics. Springer New York, 2015.

[102] J. Manyika. Hal Varian on how the Web challenges managers. McKinsey Quar-
terly, https : / / www . mckinsey . com / industries / technology - media - and -
telecommunications/our-insights/hal-varian-on-how-the-web-challenges-
managers. 2009.

[103] Martinsson, P. Gunnar, V. Rokhlin, and M. Tygert. “A randomized algorithm for
the decomposition of matrices”. In: Applied and Computational Harmonic Analysis
30.1 (2011), pp. 47–68. doi: 10.1016/j.acha.2010.02.003.

[104] G. Meurant and J. D. Tebbens. Krylov Methods for Nonsymmetric Linear Systems.
Springer International Publishing, 2020. doi: 10.1007/978-3-030-55251-0.

[105] D. Morrison. Multivariate Statistical Methods. Annals of the New York Academy
of Sciences. New York: McGraw-Hill, 1976.

[106] J. von Neumann and H. H. Goldstine. “Numerical inverting of matrices of high
order”. In: Bulletin of the American Mathematical Society 53.11 (1947), pp. 1021
–1099. doi: bams/1183511222.

[107] A. M. Obukhov. “Statistically homogeneous fields on a sphere”. In: Usp. Mat. Nauk
2.2 (1947), pp. 196–198.

[108] I. V. Oseledets. “Tensor-Train Decomposition”. In: SIAM Journal on Scientific
Computing 33.5 (2011), pp. 2295–2317. doi: 10.1137/090752286.

[109] I. V. Oseledets. ttpy. Version 1.2.0. https://github.com/oseledets/ttpy. 2015.
[110] I. V. Oseledets and E. E. Tyrtyshnikov. “Breaking the Curse of Dimensionality, Or

How to Use SVD in Many Dimensions”. In: SIAM Journal on Scientific Computing
31.5 (2009), pp. 3744–3759. doi: 10.1137/090748330.

[111] I. V. Oseledets. “DMRG Approach to Fast Linear Algebra in the TT-Format”.
In: Computational Methods in Applied Mathematics 11.3 (2011), pp. 382–393. doi:
10.2478/cmam-2011-0021.

[112] C. C. Paige and M. A. Saunders. “Solution of Sparse Indefinite Systems of Linear
Equations”. In: SIAM Journal on Numerical Analysis 12.4 (1975), pp. 617–629.
doi: 10.1137/0712047.

https://www.oreilly.com/ideas/what-is-data-science
https://www.oreilly.com/ideas/what-is-data-science
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/hal-varian-on-how-the-web-challenges-managers
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/hal-varian-on-how-the-web-challenges-managers
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/hal-varian-on-how-the-web-challenges-managers
https://doi.org/10.1016/j.acha.2010.02.003
https://doi.org/10.1007/978-3-030-55251-0
https://doi.org/bams/1183511222
https://doi.org/10.1137/090752286
https://doi.org/10.1137/090748330
https://doi.org/10.2478/cmam-2011-0021
https://doi.org/10.1137/0712047


BIBLIOGRAPHY 187

[113] C. C. Paige, M. Rozloznik, and Z. Strakoš. “Modified Gram–Schmidt (MGS), least
squares, and backward stability of MGS-GMRES”. In: SIAM Journal on Matrix
Analysis and Applications 28.1 (2006), pp. 264–284. doi: 10.1137/050630416.

[114] C. C. Paige and Z. Strakoš. “Residual and Backward Error Bounds in Minimum
Residual Krylov Subspace Methods”. In: SIAM Journal on Scientific Computing
23.6 (Jan. 2002), pp. 1898–1923. doi: 10.1137/s1064827500381239.

[115] D. Palitta and P. Kürschner. “On the convergence of Krylov methods with low-
rank truncations”. In: Numerical Algorithms 88.3 (2021), pp. 1383–1417. doi: 10.
1007/s11075-021-01080-2.

[116] B. Parlett. The Symmetric Eigenvalue Problem. Classics in Applied Mathematics.
Society for Industrial and Applied Mathematics, 1980.

[117] D. Patil. Building data science teams. http://radar.oreilly.com/2011/09/
building-data-science-teams.html. Available March 23, 2018. 2011.

[118] K. Pearson. On the Theory of Contingency and Its Relation to Association and
Normal Correlation. London, UK: Dulau and Co., 1904.

[119] K. Pearson. “LIII. On lines and planes of closest fit to systems of points in space”.
In: The London, Edinburgh, and Dublin Philosophical Magazine and Journal of
Science 2.11 (1901), pp. 559–572. doi: 10.1080/14786440109462720.

[120] M. W. Richardson and G. F. Kuder. “Making a rating scale that measures.” In:
The Personnel journal 12 (1933), pp. 36–40.

[121] J. L. Rigal and J. Gaches. “On the Compatibility of a Given Solution With the
Data of a Linear System”. In: Journal of the ACM 14.3 (June 1967), pp. 543–548.
doi: 10.1145/321406.321416.

[122] V. Rokhlin, A. Szlam, and M. Tygert. “A Randomized Algorithm for Principal
Component Analysis”. In: SIAM Journal on Matrix Analysis and Applications 31.3
(Jan. 2010), pp. 1100–1124. issn: 0895-4798. doi: 10.1137/080736417.

[123] Y. Saad. “ILUT: A dual threshold incomplete ILU factorization”. In: Numeri-
cal Linear Algebra with Applications 1 (1994), pp. 387–402. doi: 10.1002/nla.
1680010405.

[124] Y. Saad and M. H. Schultz. “GMRES: A Generalized Minimal Residual Algorithm
for Solving Nonsymmetric Linear Systems”. In: SIAM Journal on Scientific and
Statistical Computing 7.3 (1986), pp. 856–869. doi: 10.1137/0907058.

[125] Y. Saad. Iterative Methods for Sparse Linear Systems. Second. Society for Indus-
trial and Applied Mathematics, 2003. doi: 10.1137/1.9780898718003.

[126] Y. Saad. Numerical Methods for Large Eigenvalue Problems. Society for Industrial
and Applied Mathematics, 2011. doi: 10.1137/1.9781611970739.

[127] E. Schmidt. “Zur Theorie der linearen und nichtlinearen Integralgleichungen”. In:
Mathematische Annalen 63.4 (Dec. 1907), pp. 433–476. doi: 10.1007/BF01449770.

https://doi.org/10.1137/050630416
https://doi.org/10.1137/s1064827500381239
https://doi.org/10.1007/s11075-021-01080-2
https://doi.org/10.1007/s11075-021-01080-2
http://radar.oreilly.com/2011/09/building-data-science-teams.html
http://radar.oreilly.com/2011/09/building-data-science-teams.html
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1145/321406.321416
https://doi.org/10.1137/080736417
https://doi.org/10.1002/nla.1680010405
https://doi.org/10.1002/nla.1680010405
https://doi.org/10.1137/0907058
https://doi.org/10.1137/1.9780898718003
https://doi.org/10.1137/1.9781611970739
https://doi.org/10.1007/BF01449770


188 BIBLIOGRAPHY

[128] V. Simoncini and D. B. Szyld. “Theory of Inexact Krylov Subspace Methods and
Applications to Scientific Computing”. In: SIAM Journal on Scientific Computing
25.2 (2003), pp. 454–477. doi: 10.1137/S1064827502406415.

[129] A. Smoktunowicz, J. L. Barlow, and J. Langou. “A note on the error analysis of
classical Gram–Schmidt”. In: Numerische Mathematik 105.2 (Dec. 2006), pp. 299–
313. doi: 10.1007/s00211-006-0042-1.

[130] T. Stadelmann, K. Stockinger, M. Braschler, M. Cieliebak, G. Baudinot, O. Dürr,
and A. Ruckstuhl. “Applied data science in Europe : challenges for academia in
keeping up with a highly demanded topic”. In: 9th European Computer Science
Summit. 2013.

[131] A. Stathopoulos and K. Wu. “A Block Orthogonalization Procedure with Constant
Synchronization Requirements”. In: SIAM Journal on Scientific Computing 23.6
(2002), pp. 2165–2182. doi: 10.1137/S1064827500370883.

[132] R. N. Stavins. “The Problem of the Commons: Still Unsettled after 100 Years”.
In: American Economic Review 101.1 (Feb. 2011), pp. 81–108. doi: 10.1257/aer.
101.1.81.

[133] G. W. Stewart. Matrix Algorithms. Society for Industrial and Applied Mathemat-
ics, 2001. doi: 10.1137/1.9780898718058.

[134] L. N. Trefethen and D. Bau. Numerical Linear Algebra. SIAM, 1997.
[135] L. R. Tucker. “Implications of factor analysis of three way matrices for measure-

ments of change”. In: Problems in measuring change. Ed. by C. Harris. Madison:
University of Wisconsin Press, 1963, pp. 122–137.

[136] L. R. Tucker. “The extension of factor analysis to three-dimensional matrices”. In:
Contributions to mathematical psychology. Ed. by H. Gulliksen and N. Frederiksen.
New York: Holt, Rinehart and Winston, 1964, pp. 110–127.

[137] L. R. Tucker. “Some mathematical notes on three-modes factor analysis”. In: Psy-
chometrika 31.3 (1966), pp. 279–311. doi: 10.1007/BF02289464.

[138] J. W. Tukey. “The Future of Data Analysis”. In: The Annals of Mathematical
Statistics 33.1 (1962), pp. 1 –67. doi: 10.1214/aoms/1177704711.

[139] J. van den Eshof and G. L. G. Sleijpen. “Inexact Krylov subspace methods for linear
systems”. In: SIAM Journal on Matrix Analysis and Applications 26.1 (2004),
pp. 125–153. doi: 10.1137/S0895479802403459.

[140] N. Vannieuwenhoven, R. Vandebril, and K. Meerbergen. “A New Truncation Strat-
egy for the Higher-Order Singular Value Decomposition”. In: SIAM Journal on
Scientific Computing 34.2 (2012), A1027–A1052. doi: 10.1137/110836067.

[141] M. A. O. Vasilescu and D. Terzopoulos. “Multilinear Analysis of Image Ensembles:
TensorFaces”. In: Computer Vision — ECCV 2002. Ed. by A. Heyden, G. Sparr,
M. Nielsen, and P. Johansen. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002,
pp. 447–460.

https://doi.org/10.1137/S1064827502406415
https://doi.org/10.1007/s00211-006-0042-1
https://doi.org/10.1137/S1064827500370883
https://doi.org/10.1257/aer.101.1.81
https://doi.org/10.1257/aer.101.1.81
https://doi.org/10.1137/1.9780898718058
https://doi.org/10.1007/BF02289464
https://doi.org/10.1214/aoms/1177704711
https://doi.org/10.1137/S0895479802403459
https://doi.org/10.1137/110836067


BIBLIOGRAPHY 189

[142] H. F. Walker. “Implementation of the GMRES method using Householder trans-
formations”. In: SIAM Journal on Scientific Computing 9.1 (1988), pp. 152–163.
doi: 10.1137/0909010.

[143] J. H. Wilkinson. “Modern Error Analysis”. In: SIAM Review 13.4 (Oct. 1971),
pp. 548–568. doi: 10.1137/1013095.

[144] J. H. Wilkinson. Rounding Errors in Algebraic Processes. Vol. 32. Notes on Ap-
plied Science. Also published by Prentice-Hall, Englewood Cliffs, NJ, USA, 1964,
translated into Polish as Bledy Zaokragleń w Procesach Algebraicznych by PWW,
Warsaw, Poland, 1967 and translated into German as Rundungsfehler by Springer-
Verlag, Berlin, Germany, 1969. Reprinted by Dover Publications, New York, 1994.
London, UK: HMSO, 1963, pp. vi + 161.

[145] J. H. Wilkinson. The algebraic eigenvalue problem. en. Numerical Mathematics and
Scientific Computation. Oxford, England: Clarendon Press, 1965.

[146] E. J. Williams. “Use of scores for the analysis of association in contingency table”.
In: Biometrika 39 (1952), pp. 274–289.

[147] Y. K. Wong. “An Application of Orthogonalization Process to the Theory of Least
Squares”. In: The Annals of Mathematical Statistics 6.2 (1935), pp. 53 –75. doi:
10.1214/aoms/1177732609.

[148] A. Zare, A. Ozdemir, M. A. Iwen, and S. Aviyente. “Extension of PCA to Higher
Order Data Structures: An Introduction to Tensors, Tensor Decompositions, and
Tensor PCA”. In: Proceedings of the IEEE 106.8 (2018), pp. 1341–1358. doi: 10.
1109/JPROC.2018.2848209.

[149] Q. Zhang, M. W. Berry, B. T. Lamb, and T. Samuel. “A Parallel Nonnegative Ten-
sor Factorization Algorithm for Mining Global Climate Data”. In: Computational
Science – ICCS 2009. Ed. by G. Allen, J. Nabrzyski, E. Seidel, G. D. van Albada,
J. Dongarra, and P. M. A. Sloot. Berlin, Heidelberg: Springer Berlin Heidelberg,
2009, pp. 405–415. doi: 10.1007/978-3-642-01973-9_45.

https://doi.org/10.1137/0909010
https://doi.org/10.1137/1013095
https://doi.org/10.1214/aoms/1177732609
https://doi.org/10.1109/JPROC.2018.2848209
https://doi.org/10.1109/JPROC.2018.2848209
https://doi.org/10.1007/978-3-642-01973-9_45



	Acknowledgements
	Contents
	Résumé étendu
	Extended summary
	List of Symbols
	Notation and preliminary results
	Introduction and notation
	Tensor basic operations
	Tensor reshaping
	Tensor calculus

	Tensor decomposition
	Tucker decomposition
	Computational aspects
	Memory requirement

	Tensor Train decomposition
	Memory requirement
	Tensor-Train compression


	Concluding remarks

	I Numerical linear algebra
	Introduction
	Solving linear system: the Generalized Minimal RESidual
	Orthogonalization schemes

	Finite precision arithmetic
	Rounding error analysis
	Tensor formalism
	A robust GMRES in TT-format
	Introduction
	GMRES in matrix computation framework
	Background on GMRES
	Numerical experiments with component-wise perturbations
	Variable accuracy approach
	-component-wise data storage
	Solution techniques using SZ compressed format

	Numerical experiments with norm-wise perturbations
	-norm-wise data storage
	Solution techniques using SZ compressed format


	Tensor Train GMRES
	Preconditioned GMRES in Tensor Train format
	Solution of parametric problems in Tensor Train format
	Parameter dependent linear operators
	Parameter dependent right-hand sides

	Numerical experiments
	Main features and robustness properties
	Solution of parameter-dependent linear operators
	Solution of parameter dependent right-hand sides


	Conclusive remarks

	Orthogonalization schemes in TT-format
	Introduction
	Orthogonalization schemes
	Classical and Modified Gram-Schmidt
	Classical schemes without reorthogonalization
	Classical schemes with reorthogonalization

	Gram approach
	Householder reflections
	Stability comparison
	Numerical tensor experiments
	Numerical loss of orthogonality
	Memory usage estimation

	Summary

	Eigensolvers
	Subspace iteration method
	Numerical Experiments
	TT-Eigenpairs convergence
	Memory requirement


	Concluding remarks


	II Data analysis
	Introduction
	Correspondence Analysis background
	Climate data analysis history

	Statistics preliminaries
	Principal Component Analysis
	Statistical viewpoint
	Geometrical viewpoint
	Algebraic viewpoint

	Tensor formalism
	A geometric framework for multiway correspondence analysis
	Introduction
	Correspondence Analysis
	Matrix case
	Tensor case
	Principal components in the canonical Euclidean space
	Extension to a generic Euclidean space for d-order tensors
	Geometric view for the MultiWay Correspondence Analysis
	Examples


	Application: the Malabar dataset
	Data description
	Average comparison and data preprocessing
	MultiWay Correspondence Analysis

	Concluding remarks

	Tensor techniques and climate data
	Introduction
	Empirical Orthogonal Function Analysis
	Data description and pretreatments
	EOFs and PCs computation
	Covariance and correlation for EOFs

	EOF Analysis with Tucker model
	Numerical results
	EOF analysis
	Baseline Tucker model
	Tucker model and EOF analysis

	Concluding remarks


	Conclusion and prospective
	Numerical linear algebra
	Data Analysis


