Alexander Gerling

Prof Ould Djaffar

Prof. Abdeslam

Prof Holger Ulf Ziekow

Schreier

Prof Mr Alaa Saleh

Mr Mrs Bauer

Hans-Peter Schwickert

Mr Martin Gutmann

Mrs Irene

Konstantin Hempel

Adrian Haaga

In this thesis, an Automated Machine Learning (AutoML) tool for manufacturing is presented. It helps to identify errors early in the production process. This is particularly interesting for quality engineers to aid them in their daily work. The purpose is to work towards an end-to-end solution for the quality engineer. This gives the quality engineer the possibility to use Machine Learning (ML) techniques in an uncomplicated way.

Further, the tool is capable of providing relevant statistics and visualizations to find the origin of a product error. To do so, the requirements and actors for such a tool were identified. These were integrated into the current as-is process for error analysis. Further, the tasks of the actors have shifted to create a tool, that can be used by non-experts in the field of ML. Considering these aspects, the to-be process has emerged, which will be presented later in this work. Derived from the requirements, an algorithm comparison was held to evaluate the performance of the AutoML tool. In addition, feature selection methods were evaluated to reduce the high dimension of manufacturing data. Within the algorithm comparison and the feature selection methods, a self-created cost-based metric named Expected Benefit Rate (EBR) was used to adapt various costs in the production line and for different products. To help to identify the origin of an error origin, various visualizations methods were evaluated. These visualizations were adjusted to the needs of a quality engineer for the error analysis. This user role is also held in account to define the domain knowledge for a product, which will be used by the AutoML tool. Based on this information, further product specific features will be derived. To verify the use of an AutoML tool for manufacturing, five real-world cases could be identified and were described in detail. Within these cases, the combination of an easy-to-use AutoML tool and domain knowledge of an expert led to improvement and respectively identification of an error from the data.

Thèse

Présentée pour l'obtention du grade de Docteur de l'Université de Haute-Alsace Chapter 1: Introduction

XVII

List of Tables

Machine Learning (ML) has become increasingly important, in the area of manufacturing in recent years, to predict errors [START_REF] Hirsch | Data-driven fault diagnosis in end-of-line testing of complex products[END_REF][START_REF] Caggiano | Machine learning-based image processing for on-line defect recognition in additive manufacturing[END_REF][START_REF] Li | Prediction of surface roughness in extrusion-based additive manufacturing with machine learning[END_REF]). An approach to use ML to optimize makespan in job shop scheduling problems can be found in [START_REF] Dao | Parallel bat algorithm for optimizing makespan in job shop scheduling problems[END_REF]. Deep learning methods for example are used to predict product quality with data from parallel [START_REF] Liu | An adversarial bidirectional serial-parallel LSTM-based QTD framework for product quality prediction[END_REF] or dynamic non-linear processes [START_REF] Yuan | Deep learning for quality prediction of nonlinear dynamic processes with variable attention-based long short-term memory network[END_REF][START_REF] Wang | A kernel least squares based approach for nonlinear quality-related fault detection[END_REF]. Also, there are data-driven approaches for complex production systems [START_REF] Ren | A datadriven approach of product quality prediction for complex production systems[END_REF]. With further development of artificial intelligence, research for data-driven quality prediction methods are expanding in various fields [START_REF] Liu | Real-time quality monitoring and diagnosis for manufacturing process profiles based on deep belief networks[END_REF][START_REF] Tangjitsitcharoen | Prediction of surface roughness in ball-end milling process by utilizing dynamic cutting force ratio[END_REF][START_REF] Kirchen | Data-driven model development for quality prediction in forming technology[END_REF].

Especially, in manufacturing, quality engineers and data scientists analyse production errors using quality data. A review of problems and challenges of data science approaches for quality control in manufacturing is given in [START_REF] Wilhelm | Data Science Approaches to Quality Control in Manufacturing: A Review of Problems, Challenges and Architecture[END_REF]). The paper explains manufacturing domain-specific challenges such as concept drift, diverse error types and cost-sensitive modelling. However, as ML techniques get more popular and tools mature, the applications become practicable even for non-experts. Specifically, Automated Machine Learning (AutoML) promises to make the application of ML more feasible and reduces the required level of expertise from users. Various AutoML solutions emerged over the past few years [START_REF] Feurer | Auto-sklearn: efficient and robust automated machine learning[END_REF][START_REF] Kotthoff | Auto-WEKA: Automatic model selection and hyperparameter optimization in WEKA[END_REF][START_REF] Golovin | Google vizier: A service for black-box optimization[END_REF][START_REF] Candel | Deep learning with H2O[END_REF]). These tools cover many steps of the data science pipeline, such as feature engineering or hyperparameter tuning of an algorithm.

However, the heuristics of AutoML tools are generic and independent of a given domain. Hence, they may not be best tailored to find the solution in a particular usecase, such as manufacturing quality management. Especially, if it comes to specific domain problems, like unbalanced class distribution, state-of-the-art metrics can mislead the user to a wrongly chosen algorithm or parameter setting. However, through specific adjustments and compliance with some requirements to such a tool, AutoML provides a great benefit for the error analysis. Therefore, it is useful to test different metrics for a specific use case like in [START_REF] Zhou | Face recognition based on LDA and improved pairwise-constrained multiple metric learning method[END_REF]. The performance of an algorithm is directly related to expenses and savings in the production process. Highly advanced production lines often result in only few, but costly, errors. This is reflected in the data with just a few error occurrences, which result in a major challenge to the domain. A ML tool can support data scientists and quality engineers e.g., by creating prediction models and identifying relevant features in datasets from test stations. Further, so-called Explainable ML strives to bring understandable results to a broader group of users e.g., the abovementioned quality engineers. A quality engineer has in-depth knowledge of a product, but based on the product data, only limited ways to understand the reasons behind an error. A product often passes multiple tests in the production process. Every test station must check defined properties of each product to verify the quality. In case a product fails a check, it will be categorized as corrupt. To identify the root cause for the corruption, a quality engineer must check the data of the specific product and the product group using various techniques or software. Identifying an error can be difficult and time consuming, especially with a large number of product features. Most solutions are not adapted to the requirements of a quality engineer and can provide only basic approaches for a solution or an explanation. A quality engineer can use ML to predict errors in the production and to understand the reason for an error. However, not all ML models provide a simple "glimpse behind the scenes". If more complex models are used to get better predictions, the explainability of the ML model is negatively affected.

Recently developed explainability techniques for ML promises better alternatives [START_REF] Lundberg | A unified approach to interpreting model predictions[END_REF][START_REF] Ribeiro | Explainable machine learning for scientific insights and discoveries[END_REF]).

Context of the Thesis

The production domain has many specific characteristics which may limit the use of ML approaches, especially for novice users. Within this thesis, the use of an AutoML tool in the manufacturing domain was investigated and the advantages will be shown in the following chapters. Also, different aspects for result optimization were evaluated.

Considering the number of highly optimized products with just a few errors, it is crucial to not generalize a standardized use of ML. Further, based on the complex structure of a production line, the use of ML is often not possible due to the combination of various information from different test stations. The used AutoML tool is powered by domain knowledge from a quality engineer, who represents the expert for specific products.

Therefore, various ML techniques are performed automatically, having been enriched by product knowledge. This includes the combination of various features from test stations, creating derived features and data cleaning. The results of the AutoML tool in the form of visualizations are presented to a quality engineer in an understandable way and are adjusted to the need of this user role. The aim is to find out whether the AutoML tool with the underlying domain knowledge can be used to identify and point out errors in production. Within this thesis, domain specific requirements, improvements towards the specific domain and first results will be presented.

Aims and Objectives

Within this thesis, the aim is to answer multiple questions and show the use of an AutoML tool for manufacturing. Following questions will be answered:

AutoML Tool Requirements and Integration

• What are the requirements for an AutoML tool based on the needs of a quality engineer?

• How can the identified requirements be integrated into the as-is process to find errors in the production line?

AutoML Experiment Evaluation

• Can a selection of algorithms based on the elaborated requirements be used to identify errors in the production line and be monetarily beneficial?

• Is a cost-based metric which is adjustable to the production line beneficial compared to state-of-the-art metrics?

• Is the use of hyperparameter tuning beneficial for highly optimized production lines?

• What is a suitable method to reduce the high dimensional manufacturing data?

• How much can the high dimensional manufacturing data be reduced and is the reduction to only a few product features monetarily useful?

• How can domain knowledge be used for automation?

Providing Results

• What are suitable visualizations for quality engineers to use?

• Can real-world results be achieved with the AutoML tool?

Thesis Contributions

In this thesis contributions are shown, which should improve the previous methods in this domain. These include the following contributions:

• (C1) Elaboration of requirements for an AutoML tool and integrating it into a tobe process.

• (C2) Explanation of the production line and consideration of the special requirements for the AutoML tool.

• (C3) Evaluation of algorithms and demonstrating the benefit of decision treebased algorithms.

• (C4) Using a cost-based metric for manufacturing which is adjustable for different products and production steps.

• (C5) Evaluation of filter methods to reduce the high dimensionality for manufacturing data.

• (C6) Evaluation of adjusted visualizations for manufacturing.

• (C7) Demonstrating the use of an AutoML tool based on real-world cases.

Focus & Delimitation

In this thesis, obligatory requirements for an AutoML tool will be elaborated and different experiments for an optimized error detection will be performed. Furthermore, user-friendly visualizations to defect the origin of a corrupt product will be evaluated.

Followed by real-world results, which could be achieved by such a tool. In particular, requirements of a quality engineer will be considered to design the AutoML tool.

Primarily, ML techniques that are automated are used to indicate a possible origin of a product defect. The automation of the ML techniques and usability for non-experts in the field of ML play a major role in this work.

Topics in the field of data manipulation like the adjustment of data set to balance the number of flawless and corrupted product parts are not dealt with in this work. Further, the detection of concept drift, which reflect a change in the tested data over the time, is also not considered. Moreover, the cost to implement an AutoML tool or changing cost for different products respectively product stages within the error prediction are not considered. These topics would extend this thesis thematically too far apart and blur the core issues.

Thesis Structure

In this section, the different chapters will be described to get a brief overview of this document. The chapters of this thesis are organized as follows:

Chapter 2 (Definitions and Methodology) defines and described the Terminology of the important words. Further, the used research methods will be named and explained.

Chapter 3 (Manufacturing Domain Description) the manufacturing domain and the use case is presented. Also, the domain specific challenges are described.

Chapter 4 (Fundamental Knowledge & Literature Review for different Aspects of this Thesis) basic knowledge for the thesis and related work for the various parts of the work are listed in this chapter. The used metrics for the experiments to evaluate the performance are provided.

Chapter 5 (Elaborated AutoML Requirements & Proposed To-be Process) in cooperation with an industrial partner, the requirements for the AutoML tool were elaborated and a to-be process was developed. The actors for the to-be process with the associated tasks are described and a comparison between the as-is and the to-be process were held.

Chapter 6 (AutoML Algorithms Comparison) multiple algorithms based on elaborated requirements were compared with each other. Further, an automation algorithm selection with hyperparameter tuning was used to evaluate the performance of these.

Chapter 7 (Feature Selection for Manufacturing Data) three different features reducing methods for feature selection were evaluated in combination with a state-of-the-art and a cost-based metric. These methods were used in three different approaches to further optimize the selection of features.

Chapter 8 (Evaluation of Visualizations for the Error Analysis) an evaluation of various visualization methods for quality engineers is presented. To do so, an interview with two user groups was conducted. For better comprehension, the methodology and used data will be described.

Chapter 9 (Real-World Results from Manufacturing) presents achieved results with real world data from manufacturing. Within each case, the important features to detect the origin of the specific error is presented.

Chapter 10 (Thesis Summary) summarizes the document and shows the contribution of this thesis. To complete this, further research topics are listed, which can help to improve this topic further in future.

Chapter 2: Definitions and Methodology

Within this chapter, the most relevant terms will be defined. The definition of the term will be explained in more detail to the context of this paper. Further, the methodology used will also be explained. The used research methods will be named, and their usage explained.

Definitions

It is important to have a clear definition of a term and to define its usage in context.

Therefore, this section is dedicated to the definitions of the important terms.

Definition of Machine Learning

ML is a core element of this work; therefore, it is important to define what is meant by this term. Tom Mitchell, one of the pioneers in the field of ML defines the term with: "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at task T, as measured by P, improves with experience E." [START_REF] Mitchell | Machine learning[END_REF]. This definition fits in the context of this thesis. In this context, E represents the quality data from various test stations of a product, and the T represents the task to find the origin of an error. Further, P represents the performance of the trained model which can be calculated by different metrics.

Another suitable definition is provided by Selig: "Machine learning is an application of AI that enables systems to learn and improve from experience without being explicitly programmed. Machine learning focuses on developing computer programs that can access data and use it to learn for themselves." [START_REF] Selig | What Is Machine Learning? A Definition[END_REF]. The needed data represent the quality data from the different test systems. By using the quality data, the ML model will be trained to predict the outcome of a product check.

Definition of Automated Machine Learning

A crucial improvement in this paper is to automate ML techniques to get the best possible result or to derive new features using automation. Also, the necessary preconditions to using the quality data like data cleaning and preparation, will be done automatically. A broad definition for AutoML is:

Automated ML is the approach and underlying technology of applying certain automation techniques to accelerate the model's development life cycle. Automated ML enables citizen data scientists and domain experts to train ML models, and helps them build optimal solutions to ML problems. It provides a higher level of abstraction for finding out what the best model is, or an ensemble of models suitable for a specific problem. It assists data scientists by automating the mundane and repetitive tasks of feature engineering, including architecture search and hyperparameter optimization. [START_REF] Masood | Automated Machine Learning. Hyperparameter optimization, neural architecture search, and algorithm selection with cloud platforms[END_REF] Within this context, automation is used to aid non-experts in the field of ML. Therefore, a user with no prior knowledge of ML is offered the possibility of analyzing quality data and identifying possible causes of errors in an automated manner. Further, AutoML techniques will be used for the optimization of the results. This includes the optimization of the quality data dimensionality or to find the best model parameters.

Definition of Quality Management

To maintain a high level of product quality, a company benefits from good quality management. This ensures that flawless products will be produced, and further product improvements achieved. Rose defines quality management with: "Quality management ensures that an organization, product, or service is consistent. It has four main components: quality planning, quality assurance, quality control and quality improvement." [START_REF] Rose | Project quality management: Why, what and how. fort lauderdale[END_REF]. In context of this thesis, quality control and quality improvement are the pillars to support. The quality of a product must be constantly controlled. This is done via the test stations in the manufacturing. If a product error occurs, a manual in-depth analysis must be done. To improve the product, firstly, the origin of an error must be found or the feature for the improvement must be identified.

Afterwards, the associated product features must be adjusted and checked multiple times. Both tasks result in manual and time intense checks and are done over the lifecycle of a product. The main role of the quality engineer is quality management. The role of a quality engineer will be later defined. This involves the performance of all major tasks within quality management.

Definition of Production Line

The manufacturing of a product often takes place in the production line. There, the product is assembled and often tested directly. A definition of the production line is: "A production line is a manufacturing configuration that features a series of processing steps. At each step, an operation is performed that moves items closer to becoming a finished product." [START_REF] Spacey | Production Line vs Assembly Line[END_REF]. A product can also be created by adding parts or components together in an assembly line. An assembly line is a specific type of production line. In this context, a quality check of a product is done in every test station within the production line.

Automated Machine Learning in Quality Management

There is a broad scope for ML applications in quality management. Within the context of this thesis, the main target is to predict the quality test outcome of a product at the following test station with previously measured quality data. Further, the prediction and all necessary steps to make the quality data usable are done automatically. This can support the work of the quality engineer, who previously had no use of ML in the manufacturing domain. Often, a data scientist is needed to implement ML techniques or to support the tasks of a quality engineer. However, the solutions are tied to single products or not re-usable for other production lines. Therefore, AutoML brings the needed benefits to aid a quality engineer in his tasks and enables autonomy from a data scientist.

Methodology

This section shows the methodology used for this thesis. The usage of the research methods is explained in more detail.

Conclusion to this Chapter

In this chapter, the important terms and the methodology used for this thesis have been explained. The purpose of this chapter is, to provide a clear scope for the applied terms used during the whole thesis. In addition, an explanation of the methodology used is provided in detail.

Chapter 3: Manufacturing Domain Description

The manufacturing of a product can vary depending on the product type or the affiliation to a product family. A product consists of various product parts and is added peace by peace. This procedure is done in a production line by a varying number of test stations. Therefore, the production line will be explained in this chapter and further information regarding data preparation is given. For example, the production line can be structured quite differently, depending on the product, which must be taken into account when merging data. Furthermore, the specific domain challenges will be discussed which further demonstrate the complexity of this topic. Finally, a light is shed on the use case for the manufacturing domain. Here specific criteria are mentioned, which has to be considered for this particular use-case. Parts of the content of this chapter belongs to the paper [START_REF] Gerling | Comparison of algorithms for error prediction in manufacturing with automl and a cost-based metric[END_REF]).

Production Line Structure

The goal of a manufacturing company is to produce as many flawless products as possible. These products are often assembled in a production line and get tested at test stations Ta to Ta+1. There is a particular order between tests stations, where Ta < Tb if Ta precedes Tb in the production process. With the data from test stations Ta, the aim is to predict the errors which were detected in test stations Tb with Ta < Tb.

In Figure 2, an example of a production line with four test stations is illustrated. Along the production process some parts turn out to be corrupted (illustrated as a corrupted product in Figure 2). These corrupted product parts can be repaired in a separate process and returned to the production process. Corrupted product parts that cannot be repaired are not useable for production anymore. Data combinations of separate test stations In the upcoming experiments, the outcome of a product test at the following test station will be predicted. For example, the quality data of a product will be combined from test station Ta, Tb and Tc to predict the outcome of at test station Td. With this procedure a viable benefit is created compared to simple test procedure by pointing out a possible corrupt product.

Manufacturing Challenges

Within this section, challenges for manufacturing domains are described. Based on the variation of the production lines and products, different challenges may occur. To get an overview over these, the most important will be explained.

The problems a ML tool must tackle are:

• Heterogeneous Products: Products from a company may vary even if they belong to a related product family and are identical in construction. The area of application of a product determines, for example, whether a heat test or a cold test is necessary for the product. Furthermore, there are products that must fulfill predefined safety aspects. Therefore, the installed parts of a product could vary greatly [START_REF] Wilhelm | Data Science Approaches to Quality Control in Manufacturing: A Review of Problems, Challenges and Architecture[END_REF]).

• Varying Error Types: A product often has different errors that need to be corrected. These are recurring or rare errors. Furthermore, new defects can arise if, for example, the product specifications have changed, or the production has changed [START_REF] Wilhelm | Data Science Approaches to Quality Control in Manufacturing: A Review of Problems, Challenges and Architecture[END_REF]).

• Imbalanced Data Distributions: In production, errors must be avoided and eliminated. This condition can also be found in data. There are proportionally many flawless products, but only a few percentages of errors. Most likely the percentages are below 2%. This condition occurs especially in highly optimized production lines [START_REF] Wilhelm | Data Science Approaches to Quality Control in Manufacturing: A Review of Problems, Challenges and Architecture[END_REF]).

• Non-linear Production Processes and Recurring Tests: Depending on the product, the production line and the assembling of the products can be very different. A production line which runs in a straight line is therefore rather rare.

For example, several parts can be built into a product at one station and are then represented by a new product number in the following test station. This is a relevant point when the data has to be merged. Also, a product can be tested multiple times in a single test station or recurring in the future [START_REF] Wilhelm | Data Science Approaches to Quality Control in Manufacturing: A Review of Problems, Challenges and Architecture[END_REF]).

• Concept Drift: It is in the nature of a production line to adapt to new product specifications in the future. Furthermore, the structure of the production line or product testing may change over time. Changes must also be made to eliminate product defects. This leads to the fact that the values of a test feature will change depending on the adjustment [START_REF] Wilhelm | Data Science Approaches to Quality Control in Manufacturing: A Review of Problems, Challenges and Architecture[END_REF]).

• Cost-Sensitive Modeling: The cost of a product varies greatly according to the progression of a product and the actual product. Therefore, these different costs must be taken into account in order to generate a monetary benefit for the company. Thus, a performance metric has to be chosen that can reflect different costs [START_REF] Wilhelm | Data Science Approaches to Quality Control in Manufacturing: A Review of Problems, Challenges and Architecture[END_REF]).

• Not Comprehensible Results and Trust Issues: It is hard to trust a ML algorithm if the calculation of results has not been understood. Especially Deep ML algorithms like neural networks are meant by this. Furthermore, companies are under obligation to prove measured results and explain them. Therefore, it must be ensured that comprehensible algorithms are used [START_REF] Wilhelm | Data Science Approaches to Quality Control in Manufacturing: A Review of Problems, Challenges and Architecture[END_REF]).

• Analyzing Results to Find the Root Causes: A ML model with a monetary beneficial performance, can be used for the analysis. However, most of the techniques to analyze the origin of an error are not understandable for nonexperts. Therefore, visualizations and statistics must be adjusted for this need and should be usable by non-experts [START_REF] Wilhelm | Data Science Approaches to Quality Control in Manufacturing: A Review of Problems, Challenges and Architecture[END_REF]).

• Optimizing and Algorithm Selection: Many aspects of ML like feature selection techniques are not easy to implement for a layman. Adjusting the various parameters or selecting a suitable algorithm is further not a trivial task even for experts. To improve the error analysis, complex decisions about selection strategies and adjusting of parameters should be optimized without interference of an actor [START_REF] Wilhelm | Data Science Approaches to Quality Control in Manufacturing: A Review of Problems, Challenges and Architecture[END_REF]).

• Individual Solutions for Various Products: A fault analysis is often only possible on a product-specific basis. Individual solutions must be set up for different products or production lines. Therefore, a re-usability is not given. The situation is aggravated by the fact that the defect analysis is carried out by different people with often trivial aids [START_REF] Wilhelm | Data Science Approaches to Quality Control in Manufacturing: A Review of Problems, Challenges and Architecture[END_REF].

Further challenges for manufacturing domain can be found in [START_REF] Wilhelm | Data Science Approaches to Quality Control in Manufacturing: A Review of Problems, Challenges and Architecture[END_REF].

Production Line Data & Preconditions

Pre-processing the data is required in order to remove unnecessary test features like product feature with only one value. By preference, only numerical features are left after pre-processing to train the ML model, because not all algorithms can for example handle text for model training. For the experiments, a pre-processing step to the quality data was applied to make the datasets usable for the ML training. To train a ML model with data, a ML algorithm must be chosen. At this stage, the next challenge arises because a production quality engineer wants to understand why an algorithm has made a specific decision. Therefore, the tool should be capable of explaining the results. The reason is to increase trust in the ML tool as well as interpretability. The second requirement concerns the metrics to evaluate the results. A metric must be adjustable to a specific use-case to provide a cost benefit to the user. Further, it should be possible to simply recognize a usable model for the prediction. When a ML tool is applied, this does not automatically lead to a reduction of the costs. A metric that fulfils this requirement is presented in the next chapter.

With the mentioned preconditions, a result identified as a production error can be analyzed. A crucial point to use ML in the manufacturing is the benefit of prediction explainability and visualizations. Therefore, the visualizations where rules can be derived to correct or interpret the error message based on a single feature or of combined features e.g., histogram or heatmap will be created. Without any advanced tools, a quality engineer only has simple analytic tools e.g., mathematical tools with classical statistical functions. However, these are not sufficient for the understanding of complex causes of an error and are limited in their ability to analyze them, especially regarding the number of features in the data.

AutoML as Aid for Quality Engineers in Production Line

The primary task of a quality engineer should be the error analysis. Current ML techniques are not suitable for non-experts. Also, ML techniques are hardly usable for manufacturing domains without proper preparation of data. This normally requires involving a data scientist to adjust the process for a single product. Hence, a quality engineer is dependent on the assistance of a data scientist.

To create a tool that is suitable for this specific domain and is reusable for various products, an AutoML tool must be developed. The requirements for such a tool must be analyzed together with different actors to cover all aspects. Additionally, the tasks must be centralized to the role of the quality engineer. As a result, the quality engineer can independently pursue its central tasks. Therefore, a quality engineer will take over the transfer of the product specific knowledge and the further error analysis.

To do so, a quality engineer may save the product knowledge in a pre-defined way and check the results later. Tasks like the reduction of the high dimensions of data should be further automated. Moreover, a quality engineer should get the most important features automated for the error analysis, together with useful statistics. Especially, the evaluation of the results is not trivial for non-experts in the field of ML. Thus, the results and statistics must be adjusted in an understandable and comprehensible way for a quality engineer.

There are also specific requirements for the AutoML tool within manufacturing domains. For example, the results are not usable if the quality engineer cannot interpret or explain the results. This aspect is aimed at deep ML techniques because they are more like a black box where a result is generated but it is not comprehensible how it was calculated. This is important because some products may be used in an area where results have to be explainable for multiple years. Also, it should be immediately recognizable if a trained ML model has a monetary benefit.

The cost of a product varies based on the progression of the manufacturing process. To tackle this challenge, an adjustable cost-based metric is used for the following experiments. This cost-based metric is especially useful to detect a monetary beneficial ML model for a product. Based on the result, a quality engineer can immediately see which ML model could find a correlation to the product error.

Conclusion to this Chapter

This chapter described the manufacturing domain and how a production line may be set up. Also, the testing of individual products with the possibility of recurring tests is described. This is especially important regarding the merging of data from multiple test stations. The specific use case for this domain is described. Here the necessity for a ML tool is highlighted and described. Followed by the challenges a ML tool has to tackle in this domain.

Chapter 4: Fundamental Knowledge & Literature Review for different Aspects of this Thesis

In this chapter, the fundamental knowledge for this document regarding the used metrics for the experiments and the main algorithm type which was used are described.

The used metrics are particularly important because they show whether a financial benefit can be achieved with a model. Further, the importance of domain knowledge for the automation will be explained. In addition, the automation of the tool will be explained in more detail. The related work for the different parts of this thesis is mentioned in separate parts for a clearer overview. Parts of the content of this chapter belong to the paper [START_REF] Gerling | Comparison of algorithms for error prediction in manufacturing with automl and a cost-based metric[END_REF]).

Used Metrics for Experiments

In this section, the metrics used for the experiments will be explained. Symbol α (alpha) represents the cost saving factor or ratio of how much a correctly identified error in relation to an incorrectly identified error will save and is therefore a placeholder for the real costs of a product or product part. Moreover, the user of this metric can adjust the α parameter with the ratio of the cost saving factor.

The fifth metric is similar to the fourth metric, a calculation to predict the cost savings for all predictions. Expected Benefit Rate (EBR):

EBR = TP * α -FP TP + FP + TN + FN Equation 3: Expected Benefit Rate
The EBRP and ERB are cost-based metrics, which are based on the cost formula of [START_REF] Domingos | Metacost: A general method for making classifiers costsensitive[END_REF]. Within both metrics, the counter represents the absolute savings or the expected benefit. The total costs can be obtain by TP*C(0,0) + FP*C(0,1) + FN*C(1,0) + TN*C(1,1). Here the individual parts represent C(0,0) = α, C(0,1) = -1, C(1,0) = 0, C(1,1) = 0, which leads us to the counter TP * α -FP. The denominator is used to normalize the savings by dividing the counter by all instances for the EBR metric and only the positive predictions for the EBRP metric. For the as-is situation without a ML tool, there is no chance to use the potential to save costs in the production. To express a positive result, the terms of cost savings or benefit are applied. Costs are negative cost savings or a negative benefit. By using a ML tool, a corrupt product could be detected, which reduces the costs for the company. This would change a FN to a TP. To explain it more simply, the AutoML tool would correctly predict a corrupted part that would otherwise proceed further in the production line. A FP produce costs but usually less in comparison to a TP, which is expressed with α. However, dependent on the production process, these costs may be less than the savings of a TP, which is expressed with α as well. An important aspect is that a TP still produces costs, but these costs cannot be influenced.

Another point is that the EBRP and EBR metric are intuitive with respect to the usability of the model. Values above zero indicate that a reduction of costs could be realized with those metrics. This is a crucial benefit in comparison to other metrics. Moreover, no extended tests have to be executed to show a benefit from a model in comparison to a baseline.

For the experiments in chapter 6, the best and worst possible results are calculated to compare different metrics at the same time. The best case is calculated by P * α and the worst case is represented by -N. These results are shown later in Table 2. The value P represents the number of corrupted parts (TP + FN) and the value N the number of flawless product parts (TN + FP) in the quality data. These values are corresponding to the used dataset. To calculate the Metric Quality Index (MQI) the following formula is used:

MQI = TP * α -FP P * α Equation 4: Metric Quality Index
The MQI represents a normalized value to compare the results of optimizations. With the MQI metric, the results of different metrics can be compared in a single visualization or table. The best possible result for this column is 1.0 and a result above 0.0 will save costs. It can be assumed, that a correctly predicted corrupted product part (TP) is worth 10 times more than a flawless product that must be tested in a separate test station against costs (FP) (i.e., the savings enabled by a true positive are assumed to be 10 times higher than the cost resulting from a false positive). The variable α is set to 10 but this value must be adjusted for every product. The value 10 is a common recommendation for the cost matrices in other documents [START_REF] Krętowski | Evolutionary induction of cost-sensitive decision trees[END_REF][START_REF] Du | Cost-sensitive decision trees with prepruning[END_REF][START_REF] Zhang | Cost-Time sensitive decision tree with missing values[END_REF][START_REF] Domingos | Metacost: A general method for making classifiers costsensitive[END_REF].

A crucial factor for a manufacturing case is the cost saving for correctly predicted fault devices. Even if the quality of a ML model is not high, it could save money by these criteria. A focus should be set on hyperparameter that assign the weights to classes ('class_weight' and 'scale_pos_weight' in the used libraries), as they are very important for the experiments. Because unbalanced data got used to train the ML model, it simplifies the handling of the data. Therefore, the issue has not to be tackled explicitly when preparing data.

Decision Tree Algorithm

In this section, the basics of a decision tree will be briefly explained. Decision tree learning is one of the most used methods for classification and regression. Discretevalued functions are approximated which are robust to noisy data and further, capable of learning disjunctive expressions. To improve human readability, the learned decision trees can be re-represented as sets of if-then rules.

A decision tree is easy to understand, interpretable and can be used for visual presentations. The feature selection happens automatically, which means, that unimportant features will not influence the result. Also, numerical, and categorical features can be used for training. This is fast to grasp because decision trees require little data preprocessing. Therefore, this type of algorithm can be used for fast inferences.

The disadvantages are that decision trees may tend to overfitting. Small changes can further affect the structure of the tree and final prediction. This is reflected in a kind of inflexibility of decision trees. Further, it is not trivial to find the global optimal decision tree [START_REF] Sosnovshchenko | Machine Learning with Swift: Artificial Intelligence for IOS[END_REF].

To classify an instance, a decision tree is sorting the instance down the tree from the root to some leaf node. While sorting an instance down, a node of the tree represents a specific test of some attribute of the instance. Also, each of the branches descending from that node corresponds to one of the possible values for this attribute.

First, decide which attribute should be tested at the root of the decision tree. To do so, each instance attribute is evaluated using a statistical test. With this, it can be determined With this calculation the order of the attributes for the decision tree will be defined [START_REF] Mitchell | Machine learning[END_REF]).

To improve the performance of a decision tree, the ensemble learning technique can be used. For this, ensemble decision trees are utilized, and the final model is a particular combination of the previously developed weak decision tree models. For this, Random

Forest, Boosting and Bagging may be used. Gradient boosting is another ensemble learning algorithm based on boosting. For the upcoming experiments, the various decision tree-based algorithm will be used.

Domain Knowledge

To perform an error cause analysis of a product, product-specific knowledge is required.

This also applies to an AutoML tool. Therefore, the product-specific knowledge must be stored in an accessible form for the tool. Only by saving and retrieving the product knowledge can the automation of the AutoML tools be accomplished. The saving and retrieving must be done for all products and is one task of a quality engineer work.

Moreover, further possibilities for error analysis can be utilized by doing this. As an example, it could be checked in the product family whether similar problems have occurred in the past and how they were solved. Moreover, new features like the order of the test stations can be derived for the analysis. Therefore, the combination of product knowledge and automated ML techniques will greatly improve the error cause analysis for the quality engineer.

Automation of the ML tool

The automated parts of the AutoML tool are defined by the Cross-Industry Standard Process for Data Mining (CRISP-DM) [START_REF] Chapman | CRISP-DM 1.0: Step-by-step data mining guide[END_REF]. CRISP-DM has six phases, and four of them are automated within this tool. An extended notion of AutoML is used which comprises the subsequent phases.

(1) Data Understanding: Here, the provided domain knowledge is modeled by the quality engineer for later use. Therefore, the predefined key attributes for the AutoML tool are set based on the product information.

(2) Data Preparation: In this phase, data will be prepared with the help of predefined domain knowledge, so that the data could be used by the ML model. Within this phase, missing or not usable values are automatically removed. Also, the product data gets enriched with derived features, by using the information from the domain knowledge.

Sometimes an error is related to other product errors, and it is beneficial to analyze them as a group. Therefore, the AutoML tool has the possibility to group error messages and analyze them as one product error. This is especially useful if a product has detected several similar faults in a test station.

(3) Modeling: the feature selection and hyperparameter tuning part is automated to train the final ML model. (4) Evaluation: In this phase, selected and adjusted visualizations and statistics for the user are provided, which is done automatically. Therefore, the automation of the analysis pipeline will be improved.

Literature Review

In this section, a literature review over all the aspects of this thesis is given. The literature et al. 1998). TPOT uses similar algorithms for supervised classification in this work. The difference here is that the focus is set to tree-based algorithms and no logistic regression algorithms were used. A major difference to TPOT is that no generate code will be provided for further use.

In [START_REF] Candel | Deep learning with H2O[END_REF] an open-source ML tool named H20 gets described. Their objective is it to optimize ML for Big Data [START_REF] Kochura | Performance analysis of open source machine learning frameworks for various parameters in single-threaded and multi-threaded modes[END_REF]. Because the H2O tool is fast and scalable, it is well suited for deep learning with specific algorithms. Additionally, this tool provides boosting and bagging ensembles and further supports algorithms to use.

The H2O tool uses in-memory compression to handle a huge amount of data. A wide variety of program languages are supported. The H2O tool can be used as a standalone solution or together in a cluster solution. The developers of this tool collaborate with industrial partners and other research institutions. This tool has already been deployed in different domains and can be used by a wide variety of users with the Flow web-based GUI. The proposed AutoML tool solution differs here because a specific production domain solution with adjusted functionality is provided. A key point to mention is the adjusted metric for the production and the strong support for the tasks of the quality engineer.

([START_REF] Krauß | Automated machine learning for predictive quality in production[END_REF] shows possibilities and limits of applying AutoML in production.

Further, it includes an evaluation of available tools. Moreover, a comparison of AutoML and a manual implementation from data scientists in a predictive quality use case was held. At the moment, AutoML still requires programming knowledge and was outperformed by the implementation of data scientists. One specific point was the preparation of needed data. Without predefined domain knowledge, an AutoML tool cannot merge data correctly. Additionally, the integration of data or the extraction from a database is problematic. A solution to this could be in form of an expert tool. Another point was the deployment of the results or models for the end-user. In conclusion, it can be said that AutoML tools provide the chance to increase the efficiency in a ML project.

This could be done by automating the necessary procedure within Data Integration, Data Preparation, Modelling and Deployment. The expertise of a data scientist and domain knowledge should be included to obtain satisfying results. Nevertheless, the latest developments provide indicators for future improvements towards the automation of specific steps within the ML pipeline.

Several approaches to automate ML have appeared in recent years. [START_REF] Maher | Smartml: A meta learning-based framework for automated selection and hyperparameter tuning for machine learning algorithms[END_REF]) describe a meta learning-based framework for automated selection and hyperparameter tuning for ML algorithms (SmartML). SmartML has a meta learning feature that emulates the role of a domain expert in the field of ML. They use a meta learning mechanism to select an algorithm to reduce parameter-tuning search space. The SmartML provides a model interpretability package to explain their results. Within this work, the data will be pre-processed with the provided background information of a product. This could be done with the aid of a quality engineer or a ML expert.

Furthermore, only decision tree-based algorithms were used, to provide humanly recognizable and acceptable decisions. This allows the gaining of confidence in the given results. Only fast, and simple algorithms were used for the experiments. A critical difference is that SmartML is not specialized in manufacturing data. Crucial points, like highly unbalanced data or the selection of a specific metric are not supported. This is where the proposed AutoML tool differs from existing solutions and provides a specialized solution for manufacturing data.

In [START_REF] Golovin | Google vizier: A service for black-box optimization[END_REF]) the black-box optimization tool Google Vizier is described. This tool has become the de facto parameter tuning engine for Google and is used as an internal service for performing black-box optimization. This tool supports various algorithms and uses them for training. The results are saved in a database for the purpose of transfer learning. Vizier uses also RandomSearchCV [START_REF] Bergstra | Random search for hyper-parameter optimization[END_REF] and GridSearchCV [START_REF] Worcester | A Comparison of Grid Search and Randomized Search Using Scikit Learn[END_REF] to optimize the hyperparameter for algorithms. In [START_REF] Golovin | Google vizier: A service for black-box optimization[END_REF]) the authors do not present in detail which algorithms could be used to train a ML model and it seems to be a general solution to optimize algorithms.

AUTO WEKA [START_REF] Thornton | Auto-weka: Automated selection and hyper-parameter optimization of classification algorithms[END_REF]) is an open-source automation framework for algorithm selection and hyperparameter optimization based on Bayesian optimization using sequential model-based algorithm configuration (SMAC) and Tree-structured Parzen Estimator (TPE) [START_REF] Kotthoff | Auto-WEKA: Automatic model selection and hyperparameter optimization in WEKA[END_REF]. The target user group of AUTO WEKA are not only experts, but also novice users in the field of ML.

Literature for Requirements for ML in Manufacturing

One of the earliest papers [START_REF] Monostori | Machine learning approaches to manufacturing[END_REF] provides us with a broad overview of ML techniques. Learning approaches get rated based on manufacturing requirements and a list of application domains get provided. Furthermore, applications in manufacturing are grouped by these application domains and the ML approaches for these are described. ([START_REF] Wu | A comparative study on machine learning algorithms for smart manufacturing: tool wear prediction using random forests[END_REF] show the results of a ML algorithm comparison in a smart manufacturing environment and gives a detailed experimental setup. In this paper, a lack of information about the necessary requirements to implement a ML tool can be found and it describes only one experiment. [START_REF] Stanisavljevic | A Review of Related Work on Machine Learning in Semiconductor Manufacturing and Assembly Lines[END_REF] gives us a broad overview of some published papers on ML in manufacturing. Further, use cases like [START_REF] Wu | Car assembly line fault diagnosis based on triangular fuzzy support vector classifier machine and particle swarm optimization[END_REF] for ML especially for automated assembly lines are mentioned. The most interesting part of this paper is that the author describes requirements, which have to be fulfilled in order to be applicable in manufacturing. The authors refer to [START_REF] Pham | Machine-learning techniques and their applications in manufacturing[END_REF] and describe the following:

1) Handling different types of data (numerical, textual, images etc.). 2) Dealing with noise and outliers in data. 3) Real-time processing. 4) Dealing with huge datasets and/or high dimensional datasets.

Advantages, challenges and applications of ML for use in manufacturing can be found in [START_REF] Wuest | Machine learning in manufacturing: advantages, challenges, and applications[END_REF]. It also gives an overview of the key challenges in the field of manufacturing. Here, a detailed list of manufacturing requirements is provided, based on the use of ML methods. To be more precise, the abilities of a ML algorithm are described and not the requirements to implement a ML tool.

Literature for Reference Process Model

A specific use-case for ML can be addressed for the area of semiconductor manufacturing. [START_REF] Susto | Automatic control and machine learning for semiconductor manufacturing: Review and challenges[END_REF] show four detailed main challenges, which are partly described and originally from [START_REF] Susto | A virtual metrology system based on least angle regression and statistical clustering[END_REF]. The mentioned challenges can be successfully solved, by using the recommended reference process model or by using the Product Testing Meta Model (PTMD) like shown in Figure 4 in Chapter 5. For example, [START_REF] Susto | Automatic control and machine learning for semiconductor manufacturing: Review and challenges[END_REF] address high dimensionality data.

The plan-do-check-act (PDCA) cycle is a continuous improvement process and contains four phases: Plan, Do, Check and Act [START_REF] Johnson | The benefits fo PDCA[END_REF]. The four phases can lead to new opportunities and potentials, which can be tested, implemented, controlled, and discovered. This process is a potential way to improve the quality of a product and is well suited for quality managers. The to-be process (illustrated in Figure 6) accompany the product only within its life cycle [START_REF] Levitt | Exploit the product life cycle: Graduate School of Business Administration[END_REF]. The plan phase is not provided in this approach, nor does it separate the requirements in phases. Furthermore, the general requirements that must be considered for an implementation are described.

This could be a parallel to the do phase. Additionally, the process gets extended with the help of ML and a specific actor.

An overview of the life cycle of a data mining project is illustrated by the CRISP-DM.

The CRISP-DM visualized the phases of a project with specific tasks. Further it shows the connection between these tasks [START_REF] Chapman | CRISP-DM 1.0: Step-by-step data mining guide[END_REF]. The six phases of a CRISP-DM are: Business Understanding, Data Understanding, Data Preparation, Modelling, Evaluation, Deployment. The listed requirements from section 4 include all the phases of the CRISP-DM and are phase-overlapping tasks towards an implementation. In particular, the phases of Business Understanding and Data Understanding are used.

Further, a generic implementation is provided. A battery production design to use multi-output ML models was provided in [START_REF] Turetskyy | Battery production design using multi-output machine learning models[END_REF]. Lithium-ion battery (LiB) cell manufacturing has high production costs and a great impact on the environment. This is due to the expensive materials, the high process fluctuations with high scrap rates. Also, the energy demand for this is especially high. Moreover, it is difficult to plan, control and execute the production in this area because of the lack of profound knowledge of LiB cell production processes and their influence on the quality. The multi-output approach is based on data-driven models, which predict the final product properties. This was done by the intermediate product features. A concept was utilized in a case study within the pilot line of the Battery LabFactory Braunschweig. For the case study, 155 lithium-ion battery cells were used to build an artificial neural network model. The final product properties from intermediate product features were later predicted by the trained model. Within the provided concept, they showed how the approach could be deployed within the framework of a cyber-physical production system. This is targeting for continuous improvement of the underlying data-driven model and further, the decision support in production.

A real-time quality monitoring and diagnosis scheme for manufacturing process profiles based on a deep belief network (DBN) was developed in [START_REF] Liu | Real-time quality monitoring and diagnosis for manufacturing process profiles based on deep belief networks[END_REF]. This is based on the ability of DBN to extract the essential features from the input data. This is essentially needed because the manufacturing process has a large number of real-time quality data, which is collected through various sensors. Further, most of the data is high-dimensional, nonlinear, and high-correlated. Therefore, it is difficult to model the process profile, which limits the function of a typical statistical process control technique.

The collected profile from a manufacturing process is used and mapped it into quality spectra. In this paper, a novel DBN recognition model for quality spectra was established for the offline learning phase. This can be used to monitor and diagnose the process profiles in the online phase. To test how effective the DBN recognition model for manufacturing process profiles was, a simulation experiment and a real injection in a case study. Their developed approach fulfills the most important conditions of a scalable, reconfigurable, adaptable, and re-deployable solution. Scalability and acceptance, however, have not been measured and generalization and security still have to be proven.

4.5.5 Literature for Feature Selection [START_REF] Zhang | Production process optimization using feature selection methods[END_REF]) introduced a case study to optimize the process of production by using feature selection methods. To do so, the authors used feature selection methods based on acceptance testing strategies. As a result, they show a reduction of 81% for inspection time while keeping the same accuracy with current industrial strategies to distinguish a non-qualified from a qualified product. An industrial strategy is e.g., acceptance sampling which is commonly used as a statistical quality control method.

The objective of the case study was to reduce the total testing time and optimize the production capability while securing the accuracy of quality inspection for industrial products. Therefore, the reduction is not meant to find an error cause. What is not considered in this reduction is that tests could be removed which would lead to the origin of a product error. The subject of feature selection is a popular field in different applications or domains [START_REF] Ali | Machine learning and feature selection for drug response prediction in precision oncology applications[END_REF][START_REF] Liu | Multi-class sentiment classification: The experimental comparisons of feature selection and machine learning algorithms[END_REF]). One of the important reasons to use feature selection is the reduction of high dimensional data. Another reason is to select only important features to explain a certain behaviour or correlation. In the domain of manufacturing feature selection is also an important aid [START_REF] Liu | Real-time quality monitoring and diagnosis for manufacturing process profiles based on deep belief networks[END_REF][START_REF] Feng | Using cost-sensitive learning and feature selection algorithms to improve the performance of imbalanced classification[END_REF].

Wrapper methods for feature selection evaluate a subset of all features using a specific ML algorithm. These have a pre-defined search strategy to check for the best possible result from the feature subsets [START_REF] Wah | Feature Selection Methods: Case of Filter and Wrapper Approaches for Maximising Classification Accuracy[END_REF]. Wrapper methods have a high computation time, especially for datasets with many features because it must search for the best subset of features. The advantage of the proposed approach compared to wrapper methods, is the use of filter methods to pre-sort the most important features.

Therefore, the learning algorithm in the background can always be replaced by another algorithm. Furthermore, also a time advantage is given if, for example, only the n most important features should be taken. In addition, the ordered feature list can be used for further analyses. The approach goes through several subsets of the features, but these are already sorted by the feature importance. and AUC were chosen as performance metrics. This work is similar in terms of the highly unbalanced data and the approach to assigning costs to the different prediction classes.

State-of-the-art approaches for using ML techniques on the SECOM dataset were investigated in [START_REF] Moldovan | Machine learning for sensor-based manufacturing processes[END_REF]). This dataset contains data from a semi-conductor manufacturing process and therefore represents an unbalanced real-world dataset.

Based on this dataset, three different feature selection methods were used. Further, the performance of three sample classification algorithms was compared. To measure the performance of the classifier, the F-measure, Recall, False-Positive-Rate, Precision, and Accuracy metrics were used. This paper only focuses on the SECOM dataset and therefore, provides only one process to achieve the best results specifically for this dataset.

Literature for cost-based Metric

One of the first and best-known papers regarding MetaCost and cost-sensitive classifier is presented in [START_REF] Domingos | Metacost: A general method for making classifiers costsensitive[END_REF]. With this approach, the classifier will be adjusted for the different costs of errors. This procedure is well suited for imbalanced datasets to All possible costs were considered in this approach and got represented by a normalized value. Here the NEC formula can be used as a basis for the special use case. In this work, the True Positives and False Positives are relevant because this shows the difference to the as-is situation for companies without ML in their production. Further, a place holder alpha is used for the real costs, which can be adjusted by the cost value of a product.

Literature for Explainable ML

A framework for interactive and explainable ML was proposed in [START_REF] Spinner | explAIner: A Visual Analytics Framework for Interactive and Explainable Machine Learning[END_REF]).

This framework targets three major points. First, to enable users to understand ML models. Second, to diagnose model limitations using different explainable AI methods.

Third, to refine and optimize the models. The framework combines an iterative Explainable Artificial Intelligence (XAI) pipeline with eight global monitoring and steering mechanisms. Also, it includes a model comparison, provenance tracking, quality monitoring and trust building. Further, they show a visual analytics system for interactive and explainable ML named explAIner. To do so, they used the TensorBoard environment to instantiate all phases of the suggested pipeline within. Moreover, a userstudy with nine participants with varying expertise levels were carried out. The objective was to analysis the perception of their workflow and to collect suggestions to fill the gap between the system and framework. The conclusion was that their tightly integrated system leads to an informed ML process while disclosing opportunities for further extensions.

Several model-agnostic explanations are used for the prediction of developing hypertension based on cardiorespiratory fitness data in [START_REF] Elshawi | On the interpretability of machine learning-based model for predicting hypertension[END_REF] Local interpretability techniques have the advantage of providing explanations for instances, which in this case are patients. Therefore, the explanations required depend on the use case. It was concluded that in this specific use case, the clinical staff will always be remaining as the last instance to accept or to reject the given explanation.

In (Roscher et al. 2020) explainable ML was reviewed with a view towards applications in natural sciences. Explainability, interpretability and transparency were identified as the three core elements in this area. A survey of scientific papers that uses ML together with domain knowledge was provided. The possibility of influencing model design choices and an approach of interpreting ML outputs by domain knowledge and subsequent consistency checks were discussed. Different stages of explainability were separated with descriptions of these characteristics. The article provided a literature review of Explainable ML.

In [START_REF] Bhatt | Explainable machine learning in deployment[END_REF]

Conclusion to this Chapter

The used metrics for the upcoming experiments in chapter 6 and 7 have been described

and the cost-based metric EBR was explained. In particular, the importance of a costbased metric was highlighted to create a financial benefit for the company. Further, the decision tree algorithm was explained and why this algorithm type is especially useful for the presented use case. Another important point to consider is domain knowledge for automation. In addition, it is possible to create derived information for the ML analysis. Regarding the automation of the ML tool, it was explained which parts of the ML pipeline are automated compared to the CRISP-DM were explained. Moreover, an expanded literature review over the various parts of this document was given.

Chapter 5: Elaborated AutoML Requirements & Proposed To-be Process

This chapter describes the current as-is situation to analyze an error in the production process. Therefore, a proposed solution for how to implement an AutoML tool into a tobe process is described. Further, the different actors are described with the associated future tasks for the to-be process. The content of this chapter belongs to the paper [START_REF] Gerling | A Reference Process Model for Machine Learning Aided Production Quality Management[END_REF].

Current As-Is Process for Error Analysis in the Production Process

In this section, the current as-is process for error analysis in the production process will be explained.

In Figure 3, the standard procedure is explained, how a quality engineer investigates a defect or cause of an error. As can be seen in Figure 3, the error investigation can be done high level or can be further split into little steps to specify the detailed diagnosis. In this procedure, the quality engineer is the main actor and is supported by the production test system. First, the quality engineer must get data of the specific product from a data source and verify that the data is in fact about the correct product (T1). In the next step, the data must be rated for quality and its characteristics. To gain more knowledge about the product, the production team can be consulted for individual questions (T2). One point that should not be ignored is the production environment. The test results can be influenced, for example by the temperature of the production facility. Another point could be the time of day, which correlates indirectly to interesting features (e.g., the sunshine angle in the production environment) (T3). As an optional step, a quality engineer can use related product information. If the product belongs to a product family, there is a chance to find related problems or even better, the error solutions (O1).

Therefore, the insight of the potential error solution should be also considered in T4.

Next, the quality engineer must identify the error cause. Mathematical tools with classical statistical functions are used in this step to find general relationships or Figure 3: As-Is process for error analysis correlations (T4). Optionally, the test specifications for the specific error group can be adjusted to improve the search for the cause of error (O2). The test system checks a product with the adjusted settings to verify their correctness (O3). In the last step, part design or production processes are improved. In this regard the quality engineer cooperates with industrial engineers and design engineers (these classical business processes beyond ML and QM are not included in Figure 3) (T5).

Elaborated General Requirements of the ML Tool

This section sheds light on general requirements for the ML tool and explains the connection to the environment.

In PTMD contains information about products, production lines, testing, error types etc.

Moreover, human actors interact with the systems as data scientists and as quality engineers. The data scientist is responsible for controlling the ML tool. The quality • To improve production the application predicts possible product errors as soon as possible. This is one of the basic objectives. It is based on the observation of quality management that further processing creates only unneeded costs [START_REF] Colledani | Design and management of manufacturing systems for production quality[END_REF]. Also, the results should be evaluated and documented for future comparisons.

• A ML model should be understandable for the quality engineer. Without any explanations about the decision, it is problematic to trust this advice. The ML model should at least give some hints as to how it made its decisions. Specifically, the application must assist the identification of features and feature conditions that are related to the investigated errors. It should visualize relationships between feature value distribution and errors. This requirement is strongly requested in interviews with quality engineers. New approaches concerning interpretable ML point out solutions and the general demand in data science [START_REF] Molnar | Interpretable machine learning: Lulu. com[END_REF]).

• The ML tool must work with a variety of product lines and products. Every test system provides an unknown amount of data and data types. Moreover, to create an individual solution for every production step or test station would be greatly time consuming and inefficient. Additionally, the management and maintenance of a large number of individual solutions is not advisable. Therefore, the concept of AutoML [START_REF] Yao | Taking human out of learning applications: A survey on automated machine learning[END_REF]) is needed. But performance needs to be improved by guiding knowledge represented in the PTMD.

• Production quality is in general very good. A ML tool in this context must deal with low error rates and unbalanced biased class values as a consequence [START_REF] Krawczyk | Learning from imbalanced data: open challenges and future directions[END_REF].

• Another problem is the ML knowledge gap for a quality engineer. Typically, a quality engineer has barely any knowledge to configure or even to tune a ML tool. This makes the quality engineer dependent on the help of a data scientist. This is another reason why AutoML is important.

• Concept drift has to be considered [START_REF] Lu | Learning under concept drift: A review[END_REF]. It can happen that product features and production processes change over time. In this case the ML tool should be able to monitor and to point out that the data has changed. The quality engineer should be informed, and the ML model must be re-trained.

• Cost sensitivity is a problem for a justifiably use of ML. Product parts are often expensive, because of this some correctly predicted errors already make it worthwhile to use a ML model. Taking out false positive parts is expensive, too.

Therefore, a quality engineer must define a profitable threshold, which represents the minimum rate to be achieved. This is also supported by literature, e.g. [START_REF] Thai-Nghe | Cost-sensitive learning methods for imbalanced data[END_REF]).

• Quality data needs to be selected and prepared before the ML training and evaluation. To create a model that works over several production steps, the number of steps must first be determined. Afterwards, measurements from the chosen production steps must be joined together and a ML model must be trained. The required join logic needs representation in the PTMD.

The ML tool requires the PTMD, illustrated in a simplified presentation in Figure 5. The structure of the PTMD is divided into four parts. Each of these four parts represent a separate information section. The idea behind this model is to document important information about a product, and to access it later. Also, it can be seen as a documentation structure for this information. Moreover, the PTMD is needed to manage the ML tool. With the PTMD, for example the data to be selected and prepared for ML training can be defined. Consequently, this model helps to replace individual script solutions for products. The ML tool can access the PTMD and get the required information to create datasets etc. In the Product section, the specific product, and relationships to other members of the product family (product variants) is mentioned.

Information about the product type and product features must be stored in this section.

Product features could be measurements from a specific test station or individual entries like function description of the product. Also, gained knowledge from human experts is stored in this section. The Product section is linked to the Test Specification and Production Line section. In the Production Line section, the sequence of the test stations in the production is described. This sequence is important to analyze and identify the product errors. Moreover, based on the test stations a reference to the required features can be given. In the test system section, all test stations are mentioned for a product, which in turn are directly linked to the Test Specification and Production Line section.

In the Test Specification section, the features and specific feature boundaries are stored, which represent the max and min value. This section is linked to the Product and test system section. A quality engineer should be assigned to maintain the PTMD. Based on the background knowledge, a quality engineer can control the stored information and check it for correctness. The PTMD is well suited for an AutoML tool as a knowledge base. The AutoML tool would access the PTMD to get necessary information about the procedure to be run.

Actors for the Error Analysis

In this section, the actors will be named and their extended tasks in comparison to the as-is process will be explained in Figure 3. These actors will be later used for the to-be process (Figure 6).

QUALITY ENGINEER:

The quality engineer monitors a wide variety of products in the production manufacturing process. Therefore, a quality engineer controls a product as part of its product life cycle, analyses product measurements and documents the production process. To fulfill these tasks, a quality engineer must create the PTMD, which is filled with background knowledge about a specific product. He is also responsible for test specifications. With the prepared data in the PTMD, the quality engineer is ready to create a basic ML model. The ML model should help the quality engineer to identify error sources, within the context of e.g., product type, selected malfunctions, desired duration, or test station. A quality engineer can select an error type or a group of error types and analyze them separately or together. As a result, the quality engineer should be able to identify the most important features (i.e., highest impact on the test result). This ranked feature list can later be used for more precise investigations.

It is advisable, to analyze the most highly ranked features. Moreover, suitable plots can be generated to investigate the malfunction causes. 2D scatter plots can be used to Additionally, a 3D plot can be used to show the correlations between two features. A quality engineer can identify correlations among the measurements and drop the irrelevant product features. The gained knowledge should be used to define new check rules to enhance the quality of the resulted product as well as to reduce the rate of malfunctions. A further task of the quality engineer is to point out anomalies in measurements. This task can be automatically performed by the ML tool, and this leads to further investigation, such as the reasons for the wrong behavior and checks the correlation of those measurements and the trend of the malfunctions. A quality engineer can also define new product specific metrics to display error deviations and provide a better understanding of them. Error classes could be chosen by the quality engineer to restrict the error space. Over time, the pre-trained ML model might perform worse than at the beginning of the creation of the ML model. This could be due to a concept drift.

Because of this, the quality engineer must be informed about the performance of a ML model. The ML tool should be able to report which parts or ML models are influenced by a concept drift and in which production stage the malfunction has started to appear.

The quality engineer must then check if a new ML model is needed for the production.

Ideally, the test tool should be able to proactively warn the quality engineer of occurring and/or rising malfunctions in the measurements.

DATA SCIENTIST:

The tasks of a data scientist are primarily controlling tasks.

Therefore, the data scientist is responsible for supervising the trained ML models. To do so, the created ML models should be frequently controlled and checked, if the prediction quality of the ML model is still acceptable. To support these tasks, there are e.g., two different possibilities. A good performance visualization to check is the ROC curve [START_REF] Metz | Basic principles of ROC analysis[END_REF]. Based on the ROC curve and a predefined threshold, it can immediately be recognized whether the use of the ML model is worthwhile. Another good comparable metric for this task is the MCC [START_REF] Boughorbel | Optimal classifier for imbalanced data using Matthews Correlation Coefficient metric[END_REF]. The MCC measures the prediction quality of a ML model prediction. A data scientist can recognize any changes in the data by checking frequently the MCC measure.

TEST SYSTEM: In Addition to the described task of Figure 3, the test system gets an extended task. A trained ML model will be used to support the test system. Moreover, the prediction from the ML model should add to the decision whether a product has passed the test station.

Proposed To-Be Process

For this section, the tasks which are illustrated in Figure 6 and assigned to the previous mentioned actors will be described.

The illustrated to-be process runs throughout the complete life cycle of a product [START_REF] Levitt | Exploit the product life cycle: Graduate School of Business Administration[END_REF]. As long as the product is not at the end of its life cycle, the to-be process will be repeatedly executed. The quality engineer starts the to-be process (Figure 6) with the creation of a PTMD for a specific product (T1). Based on the background knowledge for a specific product, a quality engineer can bring all the important information together. The ML tool will later access the PTMD and pull the necessary data. After the creation of the PTMD, the quality engineer will train a basic ML model for specific errors of a product (T2). In the next step, the data scientist supervises the previously trained ML model. Therefore, control tasks will be carried out. To do so, the data scientist controls visualizations and metrics (T3). Later, the quality engineer can start searching for errors with the previously created ML model (T4). It should be checked whether the results found are plausible. Additionally, the quality engineer will review the hints given by the ML tool (T5). For this, the created visualizations can be used, and production workers can be interviewed, to get more information. The next step for the quality engineer would be to investigate the errors found using ML support (T6). The objective is to investigate the relationships between the error message and the selected features.

Afterwards, the quality engineer must identify the error based on the previous evaluation (T7). After this step, there are two alternative ways to proceed. The first alternative would be to use the collected information from the previous steps and correct the found error in the product (A11). To do so, he should contact the production team and discuss the changes to be implemented. To improve a product further, the quality Figure 6: Proposed to-be process for error analysis engineer should go back to step T2 and train a basic ML model. This step should be done to improve the quality of a product. The second alternative would be to start the preparations for the use of the ML model in the production process (A21). To do this, the quality engineer must adapt the configuration to the system. The test system will use the prepared ML model in the production and constantly document the results in the database (A22). A recurring task is to check if any concept drifts in the data were found (A23). This can be achieved by using a monitoring system and should be done by a quality engineer. If a concept drift is detected, the quality engineer will initiate an adjusted training for a basic ML model for specific errors (T2).

Contrasting As-Is with To-Be Process

As part of a validation of ML tool requirements and to-be process, a comparison with the as-is process as a typical quality management process and with CRISP-DM as a standard data science process can be carried out. With the new process, several important points can be generally improved. One of the major improvements is that a quality engineer will be strongly supported by the ML tool in his work. In addition, a quality engineer is no longer dependent on the help of a data scientist. The PTMD distinguishes the to-be process from the standard CRISP-DM, since it is assisting AutoML. The data scientist is still needed, but has only to supervise the tool by controlling operating figures like ROC curves and confusion matrices [START_REF] Hearty | Advanced Machine Learning with Python[END_REF].

Moreover, heuristic individual mathematical tools will be obsolete. Also, even without data science knowledge a quality engineer can reuse the ML tool and benefit from the visualization output. These visualizations can be used to investigate production errors.

The to-be process extends the tasks of the quality engineer and the test system in contrast to the as-is process (Figure 3). The quality engineer uses the ML tool to investigate features and generate plots. Also, the ML tool can be used to dive deeply into the data and get an overview about the structure. The creation and maintenance of the PTMD is added to the tasks of a quality engineer. For the to-be process the test systems will be extended by using a ML model to test the product or parts of it. After implementing the to-be process, the following points will be improved:

• Use of the PTMD, which stores background knowledge about products. T1 references this task. The AutoML tool uses the meta data.

• Supporting decisions with multiple feature visualizations from a ML tool. In task T4 the quality engineer can use selected histograms and 2D -3D scatter plots to support his investigations.

• Supporting error identifications with explainable ML decisions. With the T6 and T7 tasks, the quality engineer will be supported in his investigations.

• Regular checks of occurring concept drifts in data. This is referenced by T9 which checks the occurring data in regular intervals.

• Supporting tasks of a quality engineer with help of ML. This point has significantly improved in comparison to the as-is process. With the tasks T4, T5, T6, T9 the quality engineer, with a variety of support activities will be helped.

Conclusion to this Chapter

The necessary requirements to successfully use a ML aided tool into an industrial based production environment has been presented. The PTMD was developed in order to store the information about a product. This can be used for many purposes and summarizes background knowledge about a specific product in one model. Further, the as-is process was presented to clarify the procedure of malfunction detection in the production environment for a quality engineer. Moreover, a general description about the actors and their tasks has been given. Additionally, the to-be process is illustrated and the extended tasks with the associated actor for the implementation of a ML aided tool is described.

At the end, the to-be process is validated by contrasting it to the as-is process.

Chapter 6: AutoML Algorithms Comparison

In this chapter, the algorithms for the AutoML tool will be compared. Most of the algorithms are based on the previously described requirements. The workflow for the AutoML tool will be explained and the datasets, hyperparameter of the algorithms and the experiment setup is described in more detail. For the experiments, different metrics including the cost-based metrics were used. Through this chapter, the following research questions (RQ) will be answered:

• (RQ1) How good are the results of established ML algorithms based on real production data?

• (RQ2) How suitable are existing metrics for real production data?

• (RQ3) How effective is hyperparameter tuning for improving cost-benefit?

The content of this chapter belongs to the paper [START_REF] Gerling | Comparison of algorithms for error prediction in manufacturing with automl and a cost-based metric[END_REF]).

Application of AutoML

In this section, the workflow of the AutoML tool will be described. Followed by an explanation of the datasets and their class distribution. Afterwards the used setup for the experiments and the associated hyperparameters are described.

Workflow for the AutoML Tool

In Figure 7, the workflow in the AutoML tool is illustrated. The first step is to merge the data from various test stations. From the domain knowledge, the order of test stations can be derived and how to merge the data properly. As second step, the data is read and cleaned e.g., from missing values. The next step is to prepare the data by removing unnecessary features e.g., features with the same value and to check data format. This is followed by creating new derived features. This should be carried out with the help of domain knowledge to derive product-specific features. For example, product features which represent electronic components can be grouped. This should lead to a better performance. However, an empirical evaluation of the benefits of domain knowledge is out of scope of this work and is deferred to future paper. The domain knowledge can be stored in a PTMD as described in [START_REF] Gerling | A Reference Process Model for Machine Learning Aided Production Quality Management[END_REF]). In the following step, the data in a predefined percentage is split into a train and test set. The following step is the training and optimization of the ML model by using hyperparameter tuning. In the last step, the results get evaluated and the created visualizations have to be checked.

Dataset and Class Distribution for Algorithm Comparison

Within this section the used datasets and the class distribution will be explained. Because the data represent real-world data it shows the relation between flawless and corrupted products. 20, the used hyperparameters with the value range for the associated algorithms are shown. All test runs were performed with the maximum amount of CPU threads via the adjustment of the n_jobs, thread_count or thread parameter depending on the algorithm. Only the Decision Tree algorithm could not be adjusted, because there is no such parameter.

Parameter Optimization for Algorithm Comparison

RandomSearchCV and HyperOpt were used as search approaches for these experiments. RandomSearchCV is a state-of-the-art approach for hyperparameter optimization. To optimize the parameter of a model, RandomSearchCV uses a random set of parameters from the given parameter range. HyperOpt utilizes the Bayesian optimization method and is created for large-scale optimization for models with several parameters. The Bayesian optimization method should find better model settings than the random search method in less iterations, by rating the hyperparameter that appear more promising from past results. For these experiments, the TPE estimator for HyperOpt was used, which is one of three implemented algorithms.

General Algorithm Comparison for the AutoML Tool

For this section, the results are visualized based on the implementation of twelve algorithms in Figure 8 and Figure 9. The objective of this comparison is to get an overview of how well the classifiers perform with hardly any adjustments. Those results are used as a baseline for the metric comparison. To get comparable results from the different algorithms, the parameters for k-nearest neighbors (KNN) hyperparameter 'n_neighbors'  1, Support Vector Machine (SVM) hyperparameter 'kernel'  linear had to be adjusted. The comparison of Figure 8 and Figure 9 answer the question (RQ1) how accuratly the results of established ML algorithms are based on real production data. Table 3 and Table 4 summarize the results from Figure 8 and Figure 9. In these two figures, the results which can be achieved with different algorithms are shown and an overview of their performance is provided. As indicated in the introduction, the results have shown that there is not a single optimal algorithm. Therefore, it is necessary to compare different algorithms with each other for every dataset. An abnormality in the results can be seen using the MCC and ROC AUC metric. The result from the ROC AUC metric with the Catboost classifier in Line X implies a good result with the value of 0.814. This would lead us to the assumption that this specific model could be used to predict product errors. Considering the outcome of the MCC metric, this result is misleading. The value of the MCC metric (-0.001) seems like a random outcome. A model that has an MCC value below 0 should not be used. This effect results from the strong unbalanced classes in the dataset. ROC AUC and PRC AUC are particularly affected by this effect.

Therefore, it is necessary to find an adjusted metric for the described use case. The Naive Bayes and the Complement Naive Bayes algorithms produce strong negative outliers within the MQI Metric. Further, the SVM algorithm performs poorly over all datasets with most of the metrics. Nevertheless, a benefit to use ML in this use case can be seen with the results from the MQI metric. Therefore, ML could already be used to predict production errors. Another aspect that can be observed is that the decision tree-based algorithms are often closer in terms of results and provide reasonable results. For new data, a simple decision tree algorithm should be used to get a first impression of the possible results and error cause(s).

Algorithm and Metric Comparison

In this section, insights into results from a test with RandomSearchCV is shown. Further, the average optimization time for RandomSearchCV and HyperOpt by all executed runs is displayed. Moreover, the used hyperparameters of a run execution will be considered to compare them. Afterwards, a comparison of all optimized results is visualized.

The optimization will be held with RandomSearchCV and HyperOpt for maximal EBR, EBRP, MCC, ROC AUC and PRC AUC. For each approach, all metrics, MQI and computation time will be checked. Line B 0.425 0.938 0.472 0:01:42 0.488 CBC 0.499 0.953 0.508 0:01:39 0.520 RFC 0.518 0.945 0.513 0:01:37 0.444 XGBC 0.405 0.960 0.523 0:01:37 0.196 RFC 0.518 0.945 0.513 0:01:42 0.444 XGBC Line C 0.334 0.966 0.237 0:10:08 0.338 RFC 0.334 0.966 0.237 0:10:30 0.338 RFC 0.208 0.963 0.155 0:09:34 -0.780 RFC 0.194 0.948 0.348 0:09:30 -0.755 DTC 0.334 0.966 0.237 0:09:53 0. Line Y 0.289 0.907 0.199 0:07:11 0.253 RFC 0.222 0.841 0.129 0:07:12 0.115 CBC 0.150 0.894 0.128 0:07:06 -0.755 RFC 0.150 0.845 0.210 0:06:48 -1.109 DTC 0.289 0.907 0.199 0:07:17 0.253 RFC Line Z 0.000 0.917 0.044 0:14:04 0.000 RFC 0.011 0.862 0.012 0:12:54 -0.027 CBC 0.083 0.906 0.023 0:13:06 -7.085 RFC 0.067 0.848 0.199 0:13:54 -10.148 DTC 0.099 0.911 0.052 0:14:21 -2.888 RFC UCI SECOM 0.000 0.538 0.087 0:05:07 0.000 XGBC 0.076 0.613 0.080 0:05:18 0.034 RFC 0.025 0.581 0.057 0:05:09 -0.320 RFC 0.0 0.542 0.088 0:05:29 0.000 LGBM C 0.025 0.581 0.057 0:05:05 -0.320 RFC

In all experiments, the models that were obtained through optimizing for EBR and performed well compared to results with other metrics. That is, the EBR metrics yields scores that are either better or similar to the scores of the best alternatives. The provided metrics EBR and EBRP leads to most of the best MQI results. The results also illustrate the effect of negative monetary effects that could result from using the wrong metric for optimization. In Line X a MCC value of 0.198 (MCC metric) is shown. However, more important are the increasing costs in this specific case, leading to a MQI of -0.354. To compare, the EBR metric shows a MCC value of 0.118 but reduces the costs by a MQI of 0.025. Even more crucial is the comparison in Line Z. With the EBR metric a neutral result can be obtained. On the contrary the MCC metric would increase costs dramatically by a MQI of -2.888. This example shows the necessity of the EBR and EBRP metrics.

Moreover, it can be seen how suitable existing metrics for real production data are (RQ2) and a much better metric for the specific use case is presented. The next point is the needed time to improve the algorithm with hyperparameter tuning.

Table 6 shows the average time for a program execution with the associated dataset.

RandomSearchCV is the fastest competitor in this comparison, but the needed time for an execution with HyperOpt is still acceptable regarding the cost savings that result from the optimization. The maximum amount of time for an execution is an average of 50 minutes as shown in Table 5. This is due to the high number of features in dataset X.

Nevertheless, the measured times are close to each other.

The visualized results in Table 7 also hold further information with regards to reusability of hyperparameters. Next, a closer look at the results of Line B, Line C, Line X and UCI Further information can be derived based on the characteristic of the datasets Line Z and Line X. Line Z has the most unbalanced dataset, and this is reflected in the results.

Nevertheless, an EBR Result which is slightly better than 0 could be achieved. Line X has the highest number of features and for this dataset, an EBR result above 0 could be achieved. This proves that real world data from manufacturing with a high number of features can achieve usable results.

In 12 out of 18 experiments based on the cost-oriented metrics (EBR & EBRP)

RandomSearchCV shows a better mean MQI value of all datasets compared to HyperOpt, whereas it is the other way round for 6 out of 18 experiments. In Figure 7,

RandomSearchCV indicates a slight advantage, leading to a preferable use for manufacturing data.

In all three illustrations, a vertical line is used to show where a new dataset has begun and to highlight the EBR Metric. For these visualizations, the y-axes had to be adjusted to the maximal reachable result 1.0 and the threshold 0.0. Some metrics performed below the threshold of 0.0. For the sake of simplicity, results below -0.1 will be not illustrated in the visualization. The first point to mention is that the EBR metric outperforms the other metrics in the majority of tested cases. For example, the results of the MCC metric of the dataset Line Z are even outside the chosen range of the figure. An interesting point is that the PRC metric performed worse than expected even though this metric should be favorable for imbalanced datasets.

As a quick reminder, the EBR metric stands out because monetarily beneficial models can be identified directly by the result. In addition, the cost of a product can be assigned and are individually adjustable. Furthermore, it could be demonstrated that better results could be achieved by utilizing the EBR metric for the optimization. In Table 8, the cost savings from the optimized results in Figure 10 and Figure 11 with the worst, best and mean results from Figure 9 with the MQI metric are compared. The worst, best and mean results based on the MQI metric of all run executions shown in Figure 10 and Figure 11 were taken for this. In Table 8, some interesting information about the results can be found. First, the best results outperform the algorithm results from Figure 9. Secondly, a worse result could be achieved through optimization, due to overfitting of the model. However, nearly all results are still in a positive range or at least have a neutral EBR value, except Line A. Further, all these results are from algorithms, which are not easy for a user to interpret. The EBR metric is therefore proposed to utilize production data with low error rates as it creates a useful contribution to save costs in the production process. In this comparison, both optimization approaches perform similarly well.

Conclusion to this Chapter

In summary, this chapter makes four core contributions. First, a comparison of state-ofthe-art algorithms for production data was conducted and showed that decision treebased algorithms are well suited, based on the achieved results. Especially the advantage of the explainability and interpretability of Decision Tree algorithm could be utilized to search for the root cause of an error. Second, an adjusted metric (EBR) is provided that fits to the needs of a production environment. The economic benefits of a model can be quantified trough the value of the EBR metric. With this point, a clear advantage over state-of-the-art metrics can be shown. Therefore, the aforementioned requirements for the cost-based metric from chapter 5 could be fulfilled. Third, a comparison of the RandomSearchCV and HyperOpt approach for hyperparameter tuning in this context was held.

As fourth contribution, the mentioned research questions have also been answered throughout this chapter. (RQ1) The results from the established ML algorithms are acceptable and can already provide a benefit. (RQ2) The existing metrics can mislead a user and increase the costs dramatically for a product. (RQ3) By using hyperparameter tuning, a substantially better result could be produced.

The mentioned algorithm XGBoost and the cost-based metric EBR will be used for the upcoming experiments in chapter 7.

some information of the original data can be lost, for example the true distribution function. For the experiments, the kendalltau function from the scipy.stats package was implemented [START_REF] Virtanen | SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python[END_REF].

The permutation feature importance [START_REF] Altmann | Permutation importance: a corrected feature importance measure[END_REF]) is another method to select features from a dataset. The permutation feature importance for a classifier measures the impact of a feature on the performance of a model (e.g., the Accuracy). In this procedure, the performance is measured with and without permuted values of the feature. The difference between the performance with and without permuted values, is computed for each model and averaged to get the feature importance see [START_REF] Casalicchio | Visualizing the feature importance for black box models[END_REF]. A clear advantage of this is that it can handle different metrics. This leaves a free space to use self-created metrics. A disadvantage of permutation feature importance is the higher computational cost, compared to ANOVA or Kendall's Rank. To calculate the permutation feature importance, an independent algorithm has first to be executed.

Design of Selection Algorithm

This section is dedicated to the explanation of the code implementation. The implementation is summarized as condensed pseudocode in Listing 1.

Listing 1: Pseudocode for feature selection experiments

1. Fselect(F, m, ≥r, p, T, V) 2. S ← F, opt ← -∞ 3.
Sort(F, ≥r) 4.

For i = 1 to |F| 5.

C ← {fk ∈ F | k ≤ i} 6. score ← m(C,p,T,V) 7.
If score > opt and lp < α 8. opt ← score 9.

S ← C

Return (S)

The pseudocode describes the core approach for all experiments. Subsequently the pseudo code and the variations for the different experiments will be discussed. Line 1 defines the parameters for the feature selection. In this representation, F is a set of features and m(C,p,T,V) is a metric that evaluates a prediction mechanism p that is trained over data T and evaluated on validation data V. The symbol ≥r is an ordering relation over features according to some measure of importance, with (f1, f2) ∈ ≥r if f1 is more important than f2.

At the start, a list S with F (all features) is defined, in case no better results was found and a variable opt as negative infinity is defined in Line 2. A for-loop to iterate over the number of features |F| is defined in Line 4. This is to implement a version of a sequential feature selection filter method. In Line 5, a current subset of features C within the forloop is selected, with the features fk from the passed-on ordering relation over the features ≥r. For every iteration, the next feature from F ordered by ≥r is added to C. In Line 6, the score is calculated based on the passed metric m(C,p,T,V) to be optimized.

Note, that m wraps the training process for the predictor p and is an important design choice. One may make compromises concerning the implementation in order to reduce computation time, e.g., implement m with or without hyperparameter optimization.

The calculation of score is followed by a check if the calculated score is greater than the opt variable and that lp is smaller than α. The lp variable represents the p-value from the one-sided dependent T-test [START_REF] Virtanen | SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python[END_REF] and α is set to 0.05. The p-value is calculated for the baseline model, which represent the model with all features trained and the current model within an iteration of the for-loop, to make sure that the current model is significantly better than the original model. If this condition is met, opt with the score value is updated in Line 8 and set C as S in Line 9. At the end, the feature list S is returned in Line 10.

Feature Selection Experiments

Several experiments are executed based on the approach that was introduced in the previous section. These experiments differ (1) in the way hyperparameter tuning is integrated and (2) in the implementations for the ordering relation ≥r. Hyperparameter tuning was integrated in three different ways. The basic experimental approach (A) does not include any hyperparameter tuning. The predictor with default parameters is trained and used on data projected on the selected features. Experimental approach (B) adds hyperparameter tuning as a subsequent step to the experimental approach (A). After returning S at the end of Listing 1, the original dataset was reduced to the selected features and a new model was optimized with the parameters from Table 9. For optimization via hyperparameter tuning, all possible combinations of parameters were checked from Table 9, i.e., a grid search strategy was implemented. With this new optimized model, the final results were created. The third experimental approach (C) integrates hyperparameter tuning into the basic experiment (A) by optimizing the parameters of every single model during the training of mechanism m in line 5. At the end of the function, the best result as well as the selected features were returned.

All three alternative methods were considered, to create the order by ≥r. As a first case (a), features are ordered according to measurements based on ANOVA. An alternative sorting (b) is provided by Kendall's rank coefficient. As a third method (c) permutation feature importance was chosen. This procedure requires an additional ML model in advance to calculate the importance of each feature. Based on this, the ordered feature list using a certain metric was created, which was EBR or MCC, depending on the optimization.

The experiments were executed with all possible settings of hyperparameter tuning.

These include three variations with respect to the feature order by ≥r, yielding a number of 18 sets of experiments in total (Optimizing according to EBR and MCC). To optimize the model, the training set for training and test set to evaluate the model was used.

Further, a final 10-fold cross validation with a T-test on the optimization metric was performed based on the best model. Therefore, it can be ensured that the final model is not worse than the baseline model based on the training set. If so, the baseline model would be used instead of the optimized model.

Experiment Setup for Feature Selection

For the experiments, a machine with Windows 10 64Bit was used. The test system has an Intel(R) Xeon(R) W-2133(12x 3.60 GHz) processor and 32 GB RAM. The Anaconda Distribution with Numpy Version: 1.18.1, Pandas Version: 1.0.1, Scikit-learn Version: 0.22.1 and Python 3.7.6 was used. All shown experiments were executed on the CPU.

For the experiments, the well-known XGBoost algorithm with the version 0.90 was utilized. XGBoost is a state-of-the-art algorithm to predict product quality [START_REF] Zhou | Identification of Critical-to-quality Characteristics Based on Improved XGBoost[END_REF]. Furthermore, the comprehensibility of the results is an important criterion for quality engineers, which is most likely to be fulfilled by decision trees [START_REF] Gerling | A Reference Process Model for Machine Learning Aided Production Quality Management[END_REF]. All optimizations for the experimental approaches B and C have been calculated using the parameter search space from Table 9.

Data Preparation for Feature Selection

A sequential split was used, to prepare the datasets for classification. The data is ordered by time. The split for the training set was first set to 67% of the total amount of errors in the data. Therefore, there will always be 33% of the total amount of errors in the test set to validate the quality of the ML model.

Datasets for Feature Selection

For the experiments, 25 highly unbalanced datasets from six different production lines were used. Within these production lines, the measurements were taken from various sequential test stations and addressed various error messages. Table 10 shows the ratio between flawless and corrupted product parts. Class 0 represents a flawless and Class 1 represents a corrupted product part. The imbalance of the two classes is shown in column IR. Dataset K has the highest IR value with 0.02982 and dataset P the lowest with 0.001228. This fact stresses the importance of considering imbalance in the domain of manufacturing, in particular for highly optimized production lines. For the experiments, numerical and categorical data were used.

Numerical values are measurements from one or several combined test stations. A further point is the number of features in the datasets. Especially interesting are the datasets D, H, I, N, R, S, W because of the high number of features (90+). The effect of feature reduction should be seen clearly on these.

Evaluation of Feature Selection Results

In this section, the results from the executed experiments are presented. All three presented feature ranking methods for each optimization approach are used. The objective was to find out, which combination of ranking and optimization approach is the most suitable regarding the prediction quality and execution time. To evaluate the results with one key figure the EBR metric was used. Even if the optimization is according to MCC, the EBR value was calculated to compare the values. The variable α was set to 10 in the experiments. According to the project partner, this is a reasonable assumption for α in many cases. However, the specific values may vary greatly throughout the production lines and error types. Yet, a fixed number was kept to make the results on different experiments comparable. For the analysis, the EBR value was first compared and followed, by the number of necessary features. In Table 11, the baseline results of the test without any optimization, filter methods or the use of the Fselect function are shown. These results are the baseline to compare later results and were created with the standard settings of the XGBoost algorithm. For the baseline results, the imbalance of the classes was not considered. There are several aspects to point out in Table 11. First, some datasets have a high number of features. The next point is the EBR value. If an EBR value is 0, this does not mean that the model did not find a relation in the data, but the predicted error probabilities are too low for making an economically reasonable error prediction (i.e., the cost for false positives would outweigh the savings through true positives and hence TP = 0, FP = 0). These results do not provide a meaningful prediction, but they give a possible hint to the quality engineer regarding the error causes. Another point is the negative EBR value. In this case, the model estimated the confidence in error prediction too high, resulting in higher cost through false positive predictions than savings through true positive results. Table 12 shows the results of the experimental approach A. To highlight the best results (best EBR, using the number of features as tie-breaker) for a dataset in Table 12 and following tables, these lines are colored with a green background color. If there is no green background color in a line, there are only identical results and therefore no winner.

G 1 0 30 0 1 0 30 0 1 0 0 H 1 0 1 0 1 0 1 0 1 0 1 0 I 1 0 89 0,
For this experiment, the standard parameters for the algorithms are used and the unbalanced dataset was not considered. Compared to Table 11 the result could be improved in 16 out of 75 experiments based on the EBR optimization. However, in contrast to this there are eight deteriorations when compared to the baseline. One of the possible reasons for the deterioration of results is a concept drift in the data. During the training, a model was found that performed better on the training set but performed worse afterwards based on the test set. This is because the production processes are subject to constant change. With these results, it can be seen that the safety mechanism based on the T-test is working. That is, a significant deterioration could be avoided through failed optimization while gaining benefits when the optimization works. An improvement can already be noticed in experiment approach A compared to the baseline results. The dataset X could be reduced to 3 out of 17 features with ANOVA. Dataset D could be reduced from 133 to 1 feature using Kendall's rank. For dataset I, the number of features could be reduced from 103 to 1 using Permutation Feature Importance. Table 4, shows that the ANOVA selection method was the best for experiment approach A. In Table 13, the results of experimental approach B are shown. For Dataset X (ANOVA), parameter optimization improved the result from 0.002599687 to 0.01062813 for the same number of features. However, some results are already optimized by a reduction to the most important features e.g., dataset D with Kendall's rank or dataset I with permutation feature importance. In this experiment approach, 21 out of 75 better and nine worse results based on the EBR optimization compared to Table 12 could be provided.

Therefore, a benefit to adjust the parameter of the algorithm to provide better results with this experiment approach are displayed. With experiment approach B, 11 out of 75 results were improved and six out of 75 got worse results based on the EBR optimization compared to experiment approach A. For experiment approach B the Kendall's rank proved to be the best method for the feature selection if the results from the EBR and MCC optimization are considered. In Table 14, the results from experiment approach C are visualized. Within this table, most changes in the number of features and the difference between the optimization metric could be seen. First, 16 out of 25 best results based on the EBR and MCC optimization with the Kendall's rank selection method in this experiment approach are provided. Also, in 21 out of 75 cases the number of features could be reduced, and the result improved by optimizing with the EBR metric. In contrast, only in two cases the results could reduce the number of features and be improved by optimizing with the MCC metric. Here, the benefit to use the cost-based metric can clearly be seen. Compared to experiment approach B, 20 results were improved, and 15 cases got worse based on the EBR result. As mentioned before, the deterioration of the results may be due to a concept drift in the data. With the experimental approach A and the benefit of the EBR metric, a significant advantage towards the baseline can be demonstrated. Nevertheless, the experimental approach C could be used to obtain the best possible result. All experiments and results are summarized in a brief overview in Table 16. This table shows that an optimization according to MCC achieves better results than the baseline, but often also worsens especially in experiment approach C, Kendall's rank and permutation feature importance. Therefore, an optimization according to the EBR metric is recommend.

Conclusion to this Chapter

In this chapter, three filter methods and an adapted cost-based metric EBR were used, to reduce features in real manufacturing datasets. Regarding the research questions from the introduction, benefits in a real-world use case were demonstrated, which answers RQ4. A benefit by using different filter methods and optimizing the XGBoost algorithm with the EBR metric was shown. However, the different filter methods overall yield similar results. Most of the best results were obtained with experimental approach C.

Experimental approach B is favorable with respect to computation time. These findings provide insights on RQ5. Overall, most of the best results for the experimental approaches were achieved by using the permutation feature importance selection method based on Table 8. Moreover, it was shown that more features of the dataset can be reduced when using the EBR metric compared to the MCC metric. This answers the question RQ6. The answer for question RQ7 depends on the experimental approach. The time difference between experimental approaches A and B is tolerable for better results.

The training duration of a model is especially important to consider as soon as many models must be trained in parallel for different products. Especially, because there are only limited computing resources. However, the Kendall's rank selection method could be used in combination with experimental approach B as fastest method regarding the best possible results. To summarize the contributions from this chapter, following can be stated:

First, the benefits of feature reduction in the use case with highly unbalanced real-world data was shown. Second, using the EBR metric reduces the number of features in comparison to the MCC in the experiments. Third, the experimental approach B

indicates the best improvement compared to the baseline regarding the computation time.

With the possibility to reduce the dataset to the most important features, the analysis can be proceeded. Further, the important features will be illustrated and evaluated which will be done in the following chapter.

Chapter 8: Evaluation of Visualizations for the Error Analysis Within this chapter various visualizations for the error analysis are introduced. These visualizations should help the quality engineer to analyze and identify the origin of an error more easily. An interview with two user groups was held to identify suitable visualizations for this task. The quality engineer was the main target group, and the other group were students, representing the role of a data scientist. For the interview pre-defined questions were asked and the results will be discussed later in the chapter.

During the interview, two visualizations stood out in particular because they most closely match the needs of a quality engineer. The content of this chapter belongs to the paper (Gerling et al. 2021a).

Methodology for the Interviews

To investigate how explainable visualizations for the product quality engineer could be used, multiple interviews were conducted with four quality engineers. Furthermore, a group of students and some additional test subjects were interviewed, with a total of 10 participants. Two participants are current employees at a university and are simultaneously Ph.D.-students in the field of ML. Two participants recently graduated from university, who had studied in the field of computer science with a ML background. The remaining six participants are university students of business informatics. This group of participants had no knowledge about manufacturing quality control, but most of the subjects had background knowledge of ML. Therefore, this group can represent the opinion of a data scientist. For this student group, the tasks of a quality engineer were explained. The interviews were carried out in Q1 2021. The interviews had a predefined procedure in which the participants were shown the explanations of the visualizations by pre-recorded videos. The explanation for all participants and the visualizations shown can be found in section 8.3. The procedure of the interviews was identical and the order of the pre-recorded videos the same. To do so, semi-structured interviews with the participants were held. On average, an interview took about one and a half hours. As an introduction the data was described, and the suggested benefit of the visualizations provided were explained. At the end, the responses were evaluated and the answers from each individual group were aggregated.

A summary of all answers will be provided later in this chapter.

Used Data to Create the Visualizations

To create the visualizations, artificially generated data was used, which imitates realworld production data. Therefore, the ground truth was well known, and the data could be adjusted to the experimental design. The features and value ranges of the dataset are:

• Feature 1, value range -> 0,1 -100

• Feature 2, value range -> 10 -74

• Feature 3, value range -> 0 -99

• Feature 4, value range -> 30 -49

• Feature 5, value range -> 7 -19,9

Five features in the dataset with 1000 instances were used. 97 out of 1000 instances represent a corrupted product in the data. Most of the errors occur when Feature 1 is in the value range 90+. Feature 5 also relates to a small number of errors in the value range

Explanation of used Plots

In this section, the chosen visualizations for the interview will be described. Most of the visualizations are state-of-the-art visualizations but not evaluated for this particular use case. Further, some visualizations were adjusted for the use case. For the sake of readability, a zoom function with a red border for Figure 8, 9 and 15 was used. The visualization in Figure 13 is an ANCHOR Plot [START_REF] Ribeiro | Explainable machine learning for scientific insights and discoveries[END_REF]). This plot is created by the ML model for all correctly predicted product defects. The top center shows, the class to which this instance is predicted. Class 1, which is colored orange, represents a correctly predicted product defect. The objective is to find out which rules help to predict the product defect correctly. In the upper right corner of the visualization is a rule that all elements must match to correctly predict class 1. Furthermore, it shows the percentage of how sure the model is to predict this instance to a certain class if all conditions of the rule apply. In the lower part, two examples are shown based on rules when the ML model decides to predict an instance to class 1 and when it does not. The rule list shown in Figure 14 is based on the previous ANCHOR visualizations. Here, all elements of a rule that were decisive for a correct error prediction are summarized and listed by means of a counter. The higher a subrule is in the list, the more important it could be for error detection. Column B shows a subrule and column C indicates how often this subrule was part of a correctly detected product defect. Column D visualized the percentage of how often a subrule applied correctly for a detected product error.

Column E shows the percentage of the total instances affected by this subrule. Column F is the absolute number of instances which lie within the applicable range of the rule.

In column G the number of instances from column F are represented which have a product defect. Column H visualized the percentage of product defects that are within the range of values. The importance of each feature is shown in Figure 15, also known as Feature Importance Plot (Abu-rmileh 2019). In this plot, the total gain metric as feature importance was used.

The larger the bar for each feature, the more important that feature is in predicting a product defect. While the names of the different features are listed along the y-axis, the

x-axis shows the score of a feature based on a predetermined metric. The features shown are ordered in descending order of importance from top to bottom. High SHAP values have an influence on the determination of class 1 (FAIL).

Overlapping instances are distributed in the direction of the y-axis. Hence, the position on the y-axis is randomly distributed upwards or downwards. This creates an impression of the distribution of the SHAP values per feature. The z-axis represents the strength of the partial dependence on a product failure (FAIL).

Here it can be seen that the range with high error values has a large partial dependence. Here it is easy to see that from the value range 89 the predictions for a product defect increase slightly and from value range 94 strongly. This shows that product defects occur more frequently in these value ranges. The individual lines in the diagram show the relationship between the Feature 1 and the prediction. This visualization shows the behavior of the used data. In Feature 1 and Feature 5 the product defects can be found in the marginal area.

Content of Interview Questionnaire

Here, the questionnaire and the used questions based on the above introduced visualizations are described. This gives a brief overview of the conducted interviews and the opinion of all participants. The interview had three parts with questions. In the first part, the participant's experiences with ML and their requirements were asked. The second part served to evaluate each visualization. In the last part, the participants were asked for the opinion of the visualizations and the usability of them. To not force an answer, participants were allowed to skip answers.

At the start of the questionnaire, every participant was asked two general questions: (G2) A visualization should be intuitively interpretable/understandable. Furthermore, it should be self-explanatory to prevent misunderstandings in the results. Also, it should show when and if there is a product error in the data. If an error is found, the origin in addition to the reason for the error should be shown. The rules learned from the model should apply to the error with the highest possible accuracy. In this context, the rules of the model must be shown so that, for example, they would be auditable or legally compliant. Therefore, the desire for transparency was mentioned, which the selected model must present. Ideally, a visualization should be interactive in order to quickly select or analyze other features.

Understanding of Visualizations

Figure 16 shows which visualizations were understandable for the participants (Q2.1) and from which visualizations information could be used (Q2.2). The maximum obtainable value on the y-axis is 14 with votes from G1 and G2.

SHAP Summary Plot Contra:

(G1) •Needs an explanation and is not intuitive •The complexity is not beneficial

•Would be too complex for a layman.

Evaluation of Provided Visualizations

In this section, the evaluation of the visualizations from the participants is summarized (Q3.1 -Q3.5). Each participant named the three best visualizations (Q3.1). These are shown in Table 17:

(G1) + 3 (G2) Lime Plot 0 (G1) + 3 (G2) Feature Importance Plot 1 (G1) + 2 (G2) SHAP Single Instance 1 (G1) + 2 (G2)
The Surrogate Decision Tree Model and the Scatter Plot are the most favored visualizations. This is because a Surrogate Decision Tree Model is easy to understand.

The Scatter Plot is also easy to understand and shows the time aspect. In third place was the Partial Dependencies Interaction Plot. This plot shows the distribution of errors based on two features. The fourth favored plot was the LIME Plot. The LIME Plot visualizes the important information about a classification of a product instance.

Therefore, it is clear and quickly understandable. The fifth place is shared by two visualizations.

In Table 18, each participant also named three visualizations that were not purposeful (Q3.2). This result shows that the least liked plot was the SHAP Summary Plot, followed by the Partial Dependencies Plot. The SHAP Summary plot was mentioned here because the (Q3.5 [only for G1]) How the visualizations influence your work: It could make the work easier and simplify complex issues. Additionally, it would be easier to work with different teams. Visualization could be shown to other colleagues and interesting aspects could be pointed out. Therefore, it would reduce the workload. Information can be found that was previously unknown. These would increase the production or efficiency.

Result Discussion

From the answers of all participants, it can be concluded, that simplicity and easy interpretability is the most important requirement for visualization in the target application. This will reduce the probability of faulty conclusions. This answer applies to both participant groups. A simple visualization could be used to show the cause of the error to non-experts, colleagues, or higher management. Therefore, it is important that the visualizations are easy to understand and quickly comprehended. Furthermore, participants could not interpret or understand the actual SHAP value. The Partial Dependencies Plot was problematic because the participants had no connection to the term "partial dependence" and how this could be used. Moreover, a static 3D visualization could hide important value areas. However, G1 felt this visualization was and, most importantly, the time aspect of the feature is provided. Therefore, the time range in which the error has occurred can be observed.

Surrogate Decision Tree Model & ICE Plot:

The Surrogate Decision Tree Model provides individual rules in the leaf nodes. These could be used for a further analysis.

Each rule of the leaf node could be taken and checked with the ICE Plot. This could be used to check how a model predicted the feature in various value ranges.

SHAP Summary Plot & SHAP Single Instance Plot:

For the overview, the SHAP Summary Plot will be used. Within this plot, a focus can be set on the outliers or the data clusters. The needed instances from the SHAP Summary Plot will be selected. With the SHAP single instance, the single instances from the dataset can be analyzed to get an insight into how strongly the individual features played a role in classification.

Rule Base & Histogram:

The Rule Base will be used as an overview for the possible error causes. Each rule could be used for a single investigation. Based on the rule and the feature it contains, the histogram can be used for a detailed view.

Feature Importance Plot & Partial Dependencies Interaction Plot: For an overview, the Feature Importance Plot can be used. With the most important feature, the best correlation of the feature by looking at the Partial Dependencies Interaction Plot can be checked. At the same time, the distribution of the errors could be evaluated.

Feature Importance Plot & Histogram, followed by a Scatter Plot: The Feature Importance Plot will be used as an overview. The histogram will be used as a detailed view on a specific feature. Followed by the Scatter Plot to identify the time range of the error occurrence and whether it occurred in the near past.

Conclusion to this Chapter

In this chapter, a contribution was made to the understanding of how well different In this chapter, five specific cases of four different products from the production will be illustrated and further, the advantage of using an AutoML tool will be shown. To perform this, the algorithms and techniques described in chapter 6, 7 and 8 are used. The reason for the error in the production will be explained and the visualizations leading to them will be shown. To secure critical information of the partner company, only the important features are visualized which are anonymized with different values and names. The content of this chapter belongs to the paper (Gerling et al. 2022a).

Real-World Result Case 1

In the first case, the general error probability in four consecutive production steps will be analyzed. The production setup for this product is already highly optimized, so no quick results could be found by the quality engineers anymore. Also, most of the features that could possibly correlate to any common error had already been investigated. In this situation, quality engineers approached us with the need to further reduce the generally low error probability. This is why focus on a specific error would not help in this case.

A good result for error prediction could be achieved but -at first glance -no clear correlation between the errors with any specific feature could be identified. However, a naive approach of analyzing the first decision tree of the XGBoost model, a user with domain knowledge background was able to identify a specific feature. In Figure 29, the first decision tree of the model is shown and at the lower-left corner the identified feature. This visualization is automatically created by the AutoML tool and shows the rules that are used by the ML Model. Moreover, a decision tree shows multiple chains of rules that can be utilized for independent error analysis. In this case, the feature identified by a quality engineer was generated during data preprocessing and was not part of the initial dataset. This shows why good feature engineering can significantly improve the results and create insights that are hard to achieve by a human. After a discussion with the quality engineer, it was found that the product parts are treated with glue at the first station. This means, that it was possibly to identify the error root cause: Therefore, the production team are now evaluating a rule to let the product rest longer between the stations. The results of this evaluation are still pending. In this specific case, the time difference was not the origin of the error but provided a direct hint. By identifying this feature, a quality engineer was able to perform more in-depth and targeted analysis.

Real-World Result Case 2

In the second case, the specific error message "Measurement Accuracy Distance Value too high" was analyzed. This error cause could be found through analyzing the feature importance. Based on the feature importance, the "Material number" was the most important feature. In Figure 31, it can be seen that all errors correspond to the value range from 15 to 18 of the material number. As the material number corresponds to a certain type of subproduct, further analysis could be specified with this. It turned out that the subproduct types with the material number 15 -18 have different specifications regarding range and accuracy. strengthen the analysis of the product error and lead us to a specific feature respectively product part. It is suggested that, as a first step, all product parts that are unique to the material numbers 15+ and that may influence the accuracy of the measurements are to be investigated further.

Real-World Result Case 3

In the third case, another product error was analyzed, in which the model was not optimized for one specific error but for a general error prediction. The data was retrieved from a chain of test stations from a production line. The following visualizations belong to a specific test station. In this case, the most important feature was the modulation feature. Modulation is the process of adding information to an electrical or optical carrier signal. The modulation can change the signal's frequency (frequency modulation, FM)

or its amplitude (amplitude modulation, AM). In Figure 33, the increasing error rate in the higher value range can be seen in this feature. Figure 35: Error frequency depending on amplitude for case 3

Based on Figure 34 and Figure 35 it became clear that a solution correcting the root cause will not be achieved quickly. In the meantime, one could implement a control function within the testing equipment to detect error-prone combinations of the mentioned features. Modules with high amplitudes and / or modulation could be sorted out in the production line as early as possible. Even if the error does not disappear completely in this case, the situation will improve as the tool is optimizing the model towards an economic optimum and not 0% error rate.

Real-World Result Case 4

For the fourth case, the specific product error "Cosine trace too high" was analyzed. In this case, features from one test station were taken to predict errors at the subsequent test station in the production line. The most important feature here is "vector square carriage top". First, the histogram of this feature should be checked in Figure 36. In Figure 38, it can be seen that Feature_1 and Feature_2 both tend to an error when the measured value is high with a SHAP value over 3. Also, feature Feature_3, Feature_5, and Feature_12 tend to an error when the measured value is low. Feature_5 represents a time difference between two test stations, which was derived with the help of domain knowledge. As can be seen in the SHAP Summary Plot, the product has a higher tendency to fail when the value is low. For the explanation, at test station A a heat test was performed on a product. After that, the product was cooled down in the subsequent test station B. If the internal components of the product are still too hot, this product will not pass the following check at test station B. In a further investigation, it could be seen that the product should approximately cool down about 8 minutes, or else the ratio to fail the test station check at test station B will be much higher.

Figure 39: SHAP dependence plot of Feature_3

In Figure 39, the SHAP Dependence Plot of Feature_3 from the previous visualization is displayed. The strongest interaction could be found between Feature_3 and Feature_2.

In this visualization, it can be seen in-depth, how the values of this feature are distributed in three distinguishable regions. One region spanning from values of -4.5 to approx. cases were shown in which the root cause of the errors were identified. Of the five cases, one could be worked out independently by a quality engineer. Through the combination of the easy-to-use tool, the useful visualizations and the domain knowledge, deeper insights into the root cause could be taken. Therefore, a real benefit of the AutoML tool can be demonstrated.

Summary and Outlook

Within this section a brief summary of the contributions was given. A deeper look into the manufacturing domain was taken along with the specific challenges to this domain.

The requirements for an AutoML tool were elaborated and as a result, a to-be process was proposed based on the as-is process. Further, the benefits of decision tree-based algorithms could be demonstrated within the shown experiments. Also, an adjustable cost-based metric was used, which can be utilized for different products and production steps. With the help of the cost-based metric, beneficial ML models can be identified fast for further analysis. For the reduction of the high dimensionality data, three different filter methods were evaluated. Further, three optimization approaches are shown and analyzed. Within these experiments, the optimal approach for the reduction of features in terms of execution time was identified. To further support the error cause analysis, 15 adjusted visualizations for manufacturing were evaluated within multiple interviews.

One of the most important points, however, is to demonstrate the benefits of an AutoML tool by means of real error analysis. Also, several independent research questions were answered within the chapters.

In the future, the AutoML tool will be used and further improved by the partner company SICK AG. They have already started using the AutoML tool for the error cause analysis. Some of the results shown were generated by the employees of SICK AG who are not ML-experts. A clear advantage is the adjustable AutoML tool for different products which help to use it more easily for the error analysis. Through the continuing cooperation, future successes will be communicated to us.

Future Work:

Within this section, further improvements for the future will be discussed. Therefore, these improvements should stimulate further research in this area and improve the AutoML tool.

out a long-term study to test the usefulness of visualization in everyday production may be needed.

Appendix

 Chapter ...and Outlook .. 130 10.2 Future Work: ... 130 10.2.1 Concept Drift .. 131 10.2.2 Product Knowledge ... 131 10.2.3 Performance Scale Out .. 131 10.2.4 Improved Error Cause Analysis .. 131

Figure 1 :

 1 Figure 1: Used research methods ...

Figure 2 :

 2 Figure 2: Product in production line ...

Figure 3 :

 3 Figure 3: As-Is process for error analysis..

Figure 4 :

 4 Figure 4: Use case environment ...

Figure 5 :

 5 Figure 5: Product Testing Meta Data...

Figure 6 :

 6 Figure 6: Proposed to-be process for error analysis ..

Figure 7 :

 7 Figure 7: Simplified workflow for the AutoML tool ...

Figure 8 :

 8 Figure 8: Algorithm comparison part 1 (visualization) ..

Figure 9 :

 9 Figure 9: Algorithm comparison part 2 (visualization) ..

Figure 10 :

 10 Figure 10: Comparison of used metrics part 1 ...

Figure 11 :

 11 Figure 11: Comparison of used metrics part 2 ...

Figure 12 :

 12 Figure 12:Cost-based metric optimization comparison ..

Figure 13 :

 13 Figure 13: ANCHOR plot [prediction for a single instance] ..

Figure 14 :

 14 Figure 14: Rule base [prediction for all instances] ...

Figure 15 :

 15 Figure 15: Feature importance plot [prediction for all features]

Figure 16 :

 16 Figure 16: SHAP summary plot [prediction for all instances] ...

Figure 17 :

 17 Figure 17: SHAP dependence plot [prediction for two features]

Figure 18 :

 18 Figure 18: SHAP single instance plot [prediction for a single instance]

Figure 19 :

 19 Figure 19: Partial dependency plot [prediction for two features]

Figure 20 :

 20 Figure 20: Individual conditional expectation plot [prediction for a single feature]

Figure 21 :

 21 Figure 21: Partial dependencies interaction plot [prediction for two features]

Figure 22 :

 22 Figure 22: Partial dependencies prediction distribution plot [prediction for a single feature] ...

Figure 23 :

 23 Figure 23: LIME plot [prediction for a single instance] ..

Figure 24 :

 24 Figure 24: Heatmap [prediction for two features] ...

Figure 25 :

 25 Figure 25: Surrogate decision tree model [prediction for all instances]

Figure 26 :

 26 Figure 26: Scatter plot [prediction for a single feature] ..

Figure 27 :

 27 Figure 27: Histogram [prediction for a single feature] ...

Figure 28 :

 28 Figure 28: Visualizations voting overview ...

Figure 29 :

 29 Figure 29: Decision tree for case 1 ..

Figure 30 :Figure 31 :

 3031 Figure 30: Time difference stage B -stage A ..

Figure 32 :

 32 Figure 32: Measurement accuracy maximum distance value 1

Figure 33 :

 33 Figure 33: Error frequency depending on modulation for case 3

Figure 34 :

 34 Figure 34: Modulation SHAP dependence plot for case 3 ...

Figure 35 :

 35 Figure 35: Error frequency depending on amplitude for case 3

Figure 36 :

 36 Figure 36: Modulation of vector square carriage top ..

Figure 37 :

 37 Figure 37: Modulation of vector square carriage top scatter plot

Figure 38 :

 38 Figure 38: SHAP summary plot for case 5 ..

Figure 39 :

 39 Figure 39: SHAP dependence plot of Feature_3 ..

Figure 1 :

 1 Figure 1: Used research methods

Figure 2 :

 2 Figure 2: Product in production line

 how well an instance attribute alone classifies the training examples. Afterwards, the best attribute will be selected and used as the root node. The next step is the creation of descendant of the root for each possible value of this attribute. In addition, training examples are sorted to the appropriate descendant node. The described process will be repeated by using the training examples. These examples are associated with each descendant node to select the best attribute. To measure the worth of an attribute, information gain will be used. With this measurement, it can be decided, how well a given attribute separates the training examples according to their target classification. For this, first, the entropy must be calculated which characterizes the (im)purity of an arbitrary collection of examples. Given a collection S, containing positive and negative examples of some target concept, the entropy of S relative to a boolean classification is: 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑆𝑆) = -p + log2 p + -p -log2 p - Equation 5: Entropy where p+, is the proportion of positive examples and p-, is the proportion of negative examples. Based on the (im)purity of an arbitrary collection, the information gain of an attribute can be calculated. The information gain represents the expected reduction in entropy caused by partitioning the examples according to an attribute.The information gain is calculated by: represent a set of all possible values for attribute A. Further, Sv represent a subset of S for which attribute A has value v.

 is divided in the associated part. The topics of the different parts belongs to AutoML, Requirements for ML in Manufacturing, Reference Process Model, Feature Selection, Imbalanced Classification, cost-based Metric and Explainable ML. 4.5.1 Literature for AutoML (Olson and Moore 2016) explains an open-source genetic programming based AutoML tool named TPOT. This tool automatically optimizes a series of ML models and feature pre-processors. The objective is to optimize classification accuracy on a supervised classification task. For a given problem domain (Olson et al. 2016) TPOT designs and optimizes the necessary ML pipeline without any human involvement. To do so, TPOT uses a version of genetic programming -an evolutionary computation technique. With genetic programming, it is possible to automatically create computer programs (Banzhaf

(

 [START_REF] Wang | Deep learning for smart manufacturing: Methods and applications[END_REF]) describe methods and applications for smart manufacturing. They mention deep learning methods and shows, where deep learning can be used. It sheds a light on the area of diagnostic analytics for fault assessment or predictive analytics for defect prognosis; in both areas ML methods and use cases are mentioned. At the end, it starts a discussion and gives an outlook of model selection, generic model, model visualization and data. In this paper, no requirements are described to implement a ML tool for production.

4. 5 . 4

 54 Literature for Quality Prediction/AssessmentIn[START_REF] Sankhye | Machine learning methods for quality prediction in production[END_REF] the objective was to design ML based classification methods for quality compliance. Afterwards, a validation of the models via case study of a multimodel appliance production line was shown. In this case study, the proposed model for classification could achieve a Cohen's Kappa[START_REF] Cohen | A coefficient of agreement for nominal scales[END_REF]) of 0.91 and an accuracy of 0.99 for the compliance quality of unit batches. The main objective is the implementation of a predictive model for compliance quality, which could be enabled with the proposed method. Another aspect of this paper was to emphasize the importance of dataset knowledge and feature construction within the training of the classification models. In this work two algorithms, namely RandomForest and XGBoost, were used but the second algorithm achieved better results. Further the Cohen's Kappa metric was used to tackle the imbalanced dataset problem. In this work, a classical ML approach without AutoML is used. The disadvantage here is that only two algorithms are used for classification. What is more important, however, is the selection of the metric. In[START_REF] Delgado | Why Cohen's Kappa should be avoided as performance measure in classification[END_REF], the author compared the MCC[START_REF] Matthews | Comparison of the predicted and observed secondary structure of T4 phage lysozyme[END_REF]) and Cohen's Kappa and concluded that Cohen's Kappa should be avoided as a performance measure for classification.In (Zonnenshain and Kenett 2020) they discuss the challenges for quality engineering in the future. Moreover, they consider the future directions for quality and reliability engineering. This is done in the context of how opportunities from Industry 4.0 could be used. The paper shows how important data has become for quality engineering and the evolution of quality models. Moreover, they describe quality as a data driven discipline.A comprehensive literature review is provided in[START_REF] Dogan | Machine learning and data mining in manufacturing[END_REF], for an overview of how ML techniques can be utilized to comprehend manufacturing mechanisms with smart actions. The objective of this review was to provide an understanding of the main approaches and which algorithms were used to improve manufacturing processes in the last years. Previous ML studies are grouped with the latest research in manufacturing into four main subjects: monitoring, quality, failure, and scheduling. Further, existing solutions to various aspects of algorithms, tasks, performance metrics, and learning types are provided by Dogan and Birant. Also, an overview from different perspectives about the current literature is provided. The advantages of utilizing ML techniques are provided and how to tackle challenges for manufacturing. Additionally, further research directions in this area were provided.

 molding process example were used to analyze the performance. As result, the proposed DBN model could outperform alternative methods.[START_REF] Soto | An online machine learning framework for early detection of product failures in an Industry 4.0 context[END_REF]) provide a ML and orchestration framework for fault detection in manufacturing. In the context of surface mount devices, they propose a system for real-time ML application. A key component of their work is the introduction of a discrete-event simulation that allows failure detection approaches to be evaluated without disrupting ongoing production operations. The authors evaluate both random forests and gradient boosting as alternatives for ML algorithms. To avoid concept drift, ML models are retrained at regular intervals. Both approaches show convincing results

(

 Liu et al. 2017a) investigates the problem of feature selection methods. They address the problem that standard feature selection methods do not consider the imbalance of classes. During the selection process, the majority class is considered to a greater extent, which may lead to incorrectly selected features. To handle the problem, the F-measure metric was used for optimization, as it performs better on unbalanced data than accuracy does. For the investigation of the cost-sensitive classification, they generated and assigned various costs for the different classes based on a rigorous theory guidance. As a result, the number of features could be reduced by optimizing the F-measure metric. This work is similar in terms of unbalanced data.(Liu et al. 2017a) aim to reduce features in a cost-optimized way. Unlike the discussed work, a cost-based metric to optimize the results of real-world data is used and further filter selection methods for the experiments. (Huang et al. 2019) investigate the correlation and significance among labels for multilabel data. To handle this problem, they introduce label significance into cost-sensitive feature selection. Furthermore, they suggest a feature selection algorithm, which utilizes test-cost based on label significance. Three distributions (namely Uniform, Normal and Pareto distribution) with positive region generate a test-cost matrix, which are combined with the suggest algorithm. Moreover, by analysing the feature cost integrated in the positive region, they define a feature significance metric. As a result, they could validate the efficiency of the algorithm with the influence of an additional parameter on various test costs in their experiments and analysis of the suggested method on four real datasets.

 4.5.6 Literature for Imbalanced Classification[START_REF] Kim | Imbalanced classification of manufacturing quality conditions using cost-sensitive decision tree ensembles[END_REF] investigates the case of imbalanced classification of manufacturing quality conditions by using several cost-sensitive decision tree ensembles. A real-life diecasting data set was used to compare the various classifiers. In this paper, the authors had to deal with strong unbalanced data, which demonstrates the need to allocate costs to different classes. To do so, three cost-sensitive ensembles based on a decision tree algorithm were selected, namely AdaC1, AdaC2 and AdaC3 wich had to compete with 19 different algorithms. The AdaC2 algorithm could provide the best results. To compare the algorithms the Accuracy, Balanced Accuracy, Precision, Recall, F-Measure, G-Mean

 assign a cost value to different classes. With this approach a large cost reduction compared to cost-blind classifiers can be achieved. The cost matrix for a two-class classification is set to C(0,0) = C(1,1) = 0; C(0,1) = 1000; C(1,0) = 1000r, where r was set alternately to 2, 5, and 10. In this case C(0,1) and C(1,0) are only relevant because of the ratio r. Number 0 represent the minority class and 1 shows the majority class. Within this, the focus is set on the TP and FP respectively C(0,0) and C(0,1) and use a factor alpha to adjust the real cost savings (see the equation for Expected Benefit Rate Positives Only (EBRP) in the previous section). In (Loyola-González et al. 2019) a proposal of an algorithm for discovering cost-sensitive patterns in class imbalance problems was given. Further, this pattern is used for classification with a pattern-based classifier. This proposal can obtain cost-sensitive patterns, which leads to lower misclassification costs in comparison to patterns mined by well-known state-of-the-art pattern miners. In the approach of (Loyola-González et al. 2019), the cost matrices are adjusted to C(0,0) = C(1,1) = 0, which means that the resulting costs of TN and TP are 0. The costs of FP are set consecutively to C(0,1) = 2, 5, 10, 20 and further propose to use the imbalance ratio of training database as a cost. The costs of FN is set to C(1,0) = 1. To control the results from the classifier, they use a normalized expected cost (NEC) (normalized misclassification cost (Drummond and Holte 2004)), here given in the original full form: 𝑇𝑇𝐸𝐸𝑁𝑁 = 𝑇𝑇𝑇𝑇 * 𝑁𝑁(0, 0) + 𝐹𝐹𝑇𝑇 * 𝑁𝑁(0, 1) + 𝐹𝐹𝑇𝑇 * 𝑁𝑁(1, 0) + 𝑇𝑇𝑇𝑇 * 𝑁𝑁(1, 1) 𝐷𝐷𝐸𝐸 * 𝑁𝑁(0, 0) + 𝐷𝐷𝐸𝐸 * 𝑁𝑁(0, 1) + 𝐷𝐷𝐸𝐸 * 𝑁𝑁(1, 0) + 𝐷𝐷𝐸𝐸 * 𝑁𝑁(1,1) Equation 7: Normalized Expected Cost Dp and Dn are the numbers of instances from the minority (Dp) and majority class (Dn).

 Figure 4, all systems and use cases are shown in one summarized illustration. The oval circle represents all use cases within the rectangle, which represent the system. The lines indicate the persons or software involved in the use cases. The test systems forward their test results to the PQM and the PQM to the ML tool. The meta data about product testing (PTMD) is a repository that directs the work of the ML tool.

Figure 5 :

 5 Figure 5: Product Testing Meta Data

 illustrate a value distribution of a feature along production time. This plot shows correct and faulty product tests in the data and the value range in which the errors occurred. A histogram is a further type of visualization to illustrate the error distribution. In a histogram, the feature values get grouped by a defined group size in the complete value range. With this illustration, the number of errors occurring in a value range can be shown. The absolute and relative number of errors should be used for the illustration.

Figure 7 :

 7 Figure 7: Simplified workflow for the AutoML tool

Figure 8 :Figure 9 :

 89 Figure 8: Algorithm comparison part 1 (visualization)

Figure 10 :

 10 Figure 10: Comparison of used metrics part 1

Figure 12 :

 12 Figure 12:Cost-based metric optimization comparison

 18+. Features 2, 3 and 4 are not responsible for any errors. For example, Feature 1 could represent the voltage value of an electrical component or the measured laser power in an optical sensor. This dataset has three purposes, (a) it should demonstrate correlations between features or a clear cause for a corrupt product. (b) it should be usable for experts and non-domain experts. (c) it should help to understand the visualizations and their purpose.

Figure 13 :

 13 Figure 13: ANCHOR plot [prediction for a single instance]

Figure 14 :

 14 Figure 14: Rule base [prediction for all instances]

Figure 15 :

 15 Figure 15: Feature importance plot [prediction for all features]

Figure 16 :

 16 Figure 16: SHAP summary plot [prediction for all instances]

Figure 17 :

 17 Figure 17: SHAP dependence plot [prediction for two features]

Figure 18 :

 18 Figure 18: SHAP single instance plot [prediction for a single instance]

Figure 19 :

 19 Figure 19: Partial dependency plot [prediction for two features]

Figure 20 :

 20 Figure 20: Individual conditional expectation plot [prediction for a single feature]

Figure 21 :

 21 Figure 21: Partial dependencies interaction plot [prediction for two features]

Figure 22 :

 22 Figure 22: Partial dependencies prediction distribution plot [prediction for a single feature]

Figure 23 :

 23 Figure 23: LIME plot [prediction for a single instance]

Figure 24 :

 24 Figure 24: Heatmap [prediction for two features]

Figure 25 :

 25 Figure 25: Surrogate decision tree model [prediction for all instances]

Figure 26 :

 26 Figure 26: Scatter plot [prediction for a single feature]

Figure 27 :

 27 Figure 27: Histogram [prediction for a single feature]

Figure 28 :Feature

 28 Figure 28: Visualizations voting overview

(

 G2) •Difficult to understand without an explanation •The measured values would still have to be read •Not clear whether the instances shown were an anomaly •Not clear how the information could be utilized. SHAP Single Feature Dependence Plot Pro: (G1) •Whether a dependency is present is quickly recognized by the colors •Correlation between two features can be shown. (G2) •Two features can be shown at once and the correlation between them •Clusters can be recognized, and the dependency of the feature is shown •Colored representation helps for interpretation. Partial Dependencies Plot Contra: (G1) •(1A) Not every value area can be seen. (G2) •Not immediately understandable and for some participants too much information •The exact values to form boundaries are also missing •The color representation cannot be assigned to an exact value •A stronger color differentiation would be helpful •For many features, various plots had to be created. Individual Conditional Expectation Plot Pro: (G1) •Simple overview in which value range something happens •Shown where the biggest influencing factors for pass or fail lies. (G2) •Exact value ranges in which a product tends to have an error •Legend shows the different value ranges, and the average value can be used as a guide •Information is clearly visible, and the most important information can be determined at one glance •The distribution of the instances over the value ranges is shown. Individual Conditional Expectation Plot Contra: (G1) •(1A) Only the borders must be shown. (G2) •Overloaded and overlays individual predictions with other lines shown •Difficult to filter or track individual predictions •The y-axis should be adjusted from 0 to 1 and is not self-explanatory. Partial Dependencies Interaction Plot Pro: (G1) •Very detailed with a lot of information and shows where the priority is •Simple and quick to grasp. (G2) •It can be clearly located where the product defects are and how strongly they are distributed •Colored representation is helpful •The value range in which the prediction tends towards an error is shown •The number of instances in each value range are shown in the form of bubble size •It shows, how strongly the two features interact and how important they are •Easy to read and suitable for an overview.

 The error cause with the highest probability should be clearly indicated. Also, the decisions made by the model should be as comprehensible as possible. The participants also expressed the wish to use interactive visualizations. These were not used in this interview but show another possibility towards XAI. The most favored plots were the Surrogate Decision Tree Model and the Scatter Plot because they are easy to understand and use. The Scatter Plot was especially important for group G1. This Plot provides the benefit of an overview of the measured values with the associated test results. The measured values are shown over time and potential changes in the production. The Surrogate Decision Tree Model is more preferred by group G2 because it reflects the decision over several features in a comprehensible way. Here, both decisions are reflected in the characteristics of the two groups. The Scatter Plot shows the demand for the development of a product feature, which can be assigned to the tasks of a product manager. The Surrogate Decision Tree Model shows how a model made a decision and therefore, reflect the tasks of data scientists. Nevertheless, the worst visualizations must also be discussed. Most difficult to understand were the SHAP Summary Plot for both groups and Partial Dependencies Plot for G2. The color of the instances of the SHAP Summary plot was especially unclear.

Explainable

 ML methods and visualizations work for error analysis in the production domain. The insights are based on interviews with students as well as practitioners from production quality management. Synthetic data with predefined feature value ranges for errors has been created. Based on the synthetic data, 15 different visualizations were produced. The requirements and wishes for visualization to identify corrupted products based on the provided data have been discussed. The results from the interviews were Chapter 9: Real-World Results from Manufacturing

Figure 29 :

 29 Figure 29: Decision tree for case 1

Figure 30 :

 30 Figure 30: Time difference stage B -stage A

Figure 31 :

 31 Figure 31: Error frequency depending on material numbers for case 2

Figure 32 :

 32 Figure 32: Measurement accuracy maximum distance value 1

Figure 33 :

 33 Figure 33: Error frequency depending on modulation for case 3

Figure 34 :

 34 Figure 34: Modulation SHAP dependence plot for case 3

Figure 36 :

 36 Figure 36: Modulation of vector square carriage top

Figure 37 :

 37 Figure 37: Modulation of vector square carriage top scatter plot

9. 5

 5 Real-World Result Case 5 In this case, the advantage to use model agnostic techniques within the AutoML tool should be highlighted. These techniques help to comprehend the model decisions and provide an additional way to analyze the error cause further. The advantage of automatically providing customized visualizations for the user can be shown. For this purpose, two visualizations are shown that demonstrate the learned decision of the trained ML model. For the sake of demonstration, the feature names and values were obfuscated.

Figure 38 :

 38 Figure 38: SHAP summary plot for case 5

 -1.8 and another one in range of approx. -1.8 to approx. 5.0. It should be investigated what the cause for this behavior is especially in the last region of values in the range from -4.0 to -4.5 where high SHAP values are given.

 General Questions for the User Groups .. 100 8.4.2 Understanding of Visualizations ... 101 8.4.3 Evaluation of Provided Visualizations ... 110 8.5 Result Discussion ... 112 8.6 Conclusion to this Chapter ... 114 Real-World Result Case 1 .. 117 9.2 Real-World Result Case 2 .. 119

	8.4.1			
	MATHÉMATIQUES, SCIENCES DE L'INFORMATION ET DE L'INGÉNIEUR
		Discipline: Électronique, Électrotechnique et Automatique
			par	
			Alexander Gerling	
	Towards an Implementation
		of an AutoML Tool for
		Manufacturing:
	Requirements, Improvements and first
			Results	
		Sous la Direction de: MCF HDR Djaffar OULD-ABDESLAM
		et au sein de Institute for Smart Systems (ISS)
		à Furtwangen University sous la co-direction de
			Professeur Andreas Hess	
	Soutenue publiquement le 08 Juillet 2022 devant le jury composé de:
	M1	Professeur: Gregory ZACHAREWICZ	(Rapporteur)
	M2	Professeur: Angelo STEFFENEL	(Rapporteur)
	M3	Professeur: Lhassane IDOUMGHAR	(Examinateur)
	M4	Professeur: Mickaël HILAIRET	(Examinateur)
	M5	Professeur: Barbara KOCH	(Examinateur)
	M6	MCF HDR:	Marie-Eléonore KESSACI	(Examinateur)
	M7	Professeur: Andreas HESS	(co-Directrice de thèse)
	M8	MCF HDR:	Djaffar OULD-ABDESLAM	(Directeur de thèse)

Chapter 9: Real-World Results from Manufacturing ..117 9.1 9.3 Real-World Result Case 3 .. 120 9.4 Real-World Result Case 4 .. 123 9.5 Real-World Result Case 5 .. 124

Table 1 :

 1 Datasets for algorithm comparison...

Table 2 :

 2 Best-and worst-case classification results ...

Table 3 :

 3 Algorithm comparison part 1 (text form) ..

Table 4 :

 4 Algorithm comparison part 2 (text form) ..

Table 5 :

 5 RandomSearchCV with initial seed results ...

Table 6 :

 6 Comparison of the average optimization time of all run executions

Table 7 :

 7 Used hyperparameters for Random Forest classifier ...

Table 8 :

 8 Overall optimization comparison ...

Table 9 :

 9 XGBoost optimization parameter ...

Table 10 :

 10 Datasets for feature selection experiments ..

Table 11 :

 11 Baseline results for feature selection (model trained with all features) Equation 1: Matthews Correlation Coefficient .. Equation 2: Expected Benefit Rate Positives Only .. Equation 3: Expected Benefit Rate ... Equation 4: Metric Quality Index... Equation 5: Entropy ... Equation 6: Information Gain ... Equation 7: Normalized Expected Cost ... Listing 1: Pseudocode for feature selection experiments ... 66

	XXIII

Table 12: Experimental approach A .. Table 13: Experimental approach B ... Table 14: Experimental approach C .

.. Table 15: Feature selection execution time comparison ... Table 16: Feature selection result overview ... Table 17: Best voted visualizations .. Table 18: Worst voted visualizations... Table 19: Hyperparameter explanation .. Table 20: Algorithms & hyperparameter .. XIX List of Equations XXI List of Listings

 . The background of this work is that medical staff struggles to understand and trust the given ML results, because of the lack of intuition and explanation of ML predictions. For this research, Partial Dependence Plot, Feature Interaction, Individual Conditional Expectation, Feature Importance and Global Surrogate Models were used as global interpretability techniques. Additionally, Shapley Value and Local Surrogate Models are used as local interpretability techniques. As a result, global interpretability techniques, which help to understand general decisions over the entire population were provided.

 organizations which use Explainable ML were investigated. Around twenty data scientists and thirty other individuals were interviewed. It was discovered that most of the Explainable ML methods are used for debugging. Other findings were that feature importance was the explainability technique used most and that Shapley values were the type of feature importance explanation for data features most frequently utilized. The interviewed persons said that sanity checks during the development process are the main point to use Explainable ML. A limitation for Explainable ML is the[START_REF] Arrieta | Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI[END_REF] gives an overview of literature and contributions in the field of XAI.Previous attempts to define explainability in the field of ML are summarized. A novel definition of explainable ML was provided. This definition covers prior conceptual approaches targeting the audience for which explainability is pursued. Also, a series of challenges faced by XAI are mentioned e.g., intersections of explainability and data fusion. The proposed ideas lead to a concept of Responsible Artificial Intelligence, which represents a methodology for the large-scale implementation of AI methods in organizations with model explainability, accountability, and fairness. The objective is to inspire future research in this field by encouraging newcomers, experts, and professionals from different areas to use the benefits of AI in their work fields, without prejudice against the lack of interpretability.

lack of domain knowledge. Without a deep understanding of data, a user cannot check the accuracy of the results.

(

Table 1 :

 1 Datasets for algorithm comparison Line B, Line C, Line X, Line Y and Line Z are especially interesting. These datasets represent a classification of station Ta to station Tb in a production chain from SICK AG (SICK AG Homepage 2021). Line X is particularly interesting here because it shows a data chain over several test stations with 1071 features. Further, it shows how Hyperparameter for Algorithm Comparison In the appendix Table19, all hyperparameters with the explanation are summarized that were used for the different decision tree-based algorithms. Not all classifiers use the same parameters and hence, an accumulated table with the used hyperparameters in Table 20 is shown. In the appendix Table

	Dataset	Class 0 Class 1 Instances Features IR (Class 1 / Class 0)
	Glass1	138	76	214	9	0.550725
	Yeast-0-2-5-6	905	99	1004	8	0.109392
	Line A	57499	530	58029	63	0.009218
	Line B	7127	73	7200	16	0.010243
	Line C	88928	553	89481	22	0.006219
	Line X	19692	102	19794	1071	0.00518
	Line Y	89204	687	89891	16	0.007701
	Line Z	190183	400	190583	19	0.002103
	UCI SECOM	1463	104	1567	592	0.071087
	Table 1 shows the used datasets and the class distribution. Glass1 and Yeast-0-2-5-6
	(Alcalá-Fdez et al. 2011) are unbalanced open-source binary datasets and they were used
	to check the quality of a classifier with an unbalanced dataset. UCI SECOM (Frank 2010)
	is a real-world dataset and is more relevant than Glass1 or Yeast-0-2-5-6 because it

contains data from a semi-conductor manufacturing process. The features from the UCI SECOM dataset are e.g., signals or variables collected from sensors and process measurement points in the manufacturing process

[START_REF] Frank | UCI Machine Learning Repository[END_REF]

. For this experiment dataset Line A,

Table 2 :

 2 Best-and worst-case classification results

	Dataset	Best Case Classification Result	Worst Case Classification Result
	Glass1	260	-41
	Yeast-0-2-5-6	340	-218
	Line A	1760	-54328
	Line B	250	-1977
	Line C	1830	-31764
	Line X	350	-9792
	Line Y	2880	-52086
	Line Z	1330	-90533
	UCI SECOM	350	-706

Table

2

shows the best and worst achievable classification results regarding the used dataset for the test set (calculation explained in section 4.1 [MQI calculation]).

Table 4 :

 4 Algorithm comparison part 2 (text form)

	Quadratic Discriminant	Analysis	SVM	Lightgbm	AdaBoost

MQI; Formula = ((TP* α) -FP) / best case result [α = 10] ; (MQI in table)

Table 5 .

 5 The name of the algorithm for the best result is abbreviated as follows in the Name column: RFC = Random Forest Classifier, CBC = Cat Boost Classifier, DTC = Decision Tree Classifier, XGBC = XGBoost Classifier, LGBMC = LGBM Classifier. The computation time for a program execution is illustrated in the column 'ComTime with format h:mm:ss.

Table 5 represents the results of the AutoML tool with RandomSearchCV approach and an initial seed. The same seed was used for all results in

Table 5 :

 5 RandomSearchCV with initial seed results

	Dataset	RandomSearchCV (Expected Benefit Rate)	RandomSearchCV (Expected Benefit Rate Pos.)		RandomSearchCV (ROC AUC)	RandomSearchCV (PRC AUC)		RandomSearchCV (MCC)
	/Algorit hm & Metric	MCC	ROC_AUC	PRC_AUC	ComTime	MQI	Algorithmn	MCC	ROC_AUC	PRC_AUC	ComTime	MQI	Algorithmn	MCC	ROC_AUC	PRC_AUC	ComTime	MQI	Algorithmn	MCC	ROC_AUC	PRC_AUC	ComTime	MQI	Algorithmn	MCC	ROC_AUC	PRC_AUC	ComTime	MQI	Algorithmn
	Glass1	0.390 0.880 0.823 0:00:21 0.892 RFC 0.652 0.890 0.855 0:00:21 0.750 XGBC 0.652 0.890 0.855 0:00:22 0.750 XGBC 0.576 0.889 0.863 0:00:20 0.773	LGBM C	0.652 0.890 0.855 0:00:21 0.750 XGBC
	Yeast-0-2-5-6	0.495 0.851 0.630 0:00:24 0.561 CBC 0.539 0.795 0.592 0:00:22 0.502 XGBC 0.495 0.851 0.630 0:00:22 0.561 CBC 0.623 0.832 0.663 0:00:23 0.544	RFC 0.623 0.832 0.663 0:00:22 0.544 RFC
	Line A	0.185 0.812 0.046 0:02:23 0.062	LGBM C	0.129 0.788 0.040 0:02:09 0.030 CBC 0.125 0.814 0.038 0:02:16 -0.024 XGBC 0.039 0.751 0.247 0:02:08 -7.995 DTC 0.185 0.812 0.046 0:02:15 0.062	LGBM C

Table 6 :

 6 Comparison of the average optimization time of all run executions

	Dataset	HyperOpt RandomSearchCV
	Glass1	0:00:47	0:00:31
	Yeast-0-2-5-6	0:00:50	0:00:32
	Line A	0:04:40	0:04:29
	Line B	0:02:42	0:02:37
	Line C	0:12:44	0:11:20
	Line X	0:48:32	0:49:56
	Line Y	0:09:20	0:08:57
	Line Z	0:20:27	0:16:36
	UCI SECOM	0:16:28	0:21:15

Table 8 :

 8 Overall optimization comparison

	Dataset / Metric	Worst Results from Figure 4 (MQI)	Best Results from Figure 4 (MQI)	Median Result from Figure 4 (MQI)	Worst Result from Hyperparameter Tuning based on HyperOpt (Figure 5)	Best Result from Hyperparameter Tuning based on HyperOpt (Figure 5)	Median Result from Hyperparameter Tuning based on HyperOpt (Figure 5)	Worst Result from Hyperparameter Tuning based on RandomSearchCV (Figure 6)	Best Result from Hyperparameter Tuning based on RandomSearchCV (Figure 6)	Median Result from Hyperparameter Tuning based on RandomSearchCV (Figure 6)
		MQI	MQI	MQI	MQI	MQI	MQI	MQI	MQI	MQI
	Glass1	0.000	0.819	0.662	0.823	0.911	0.884	0.842	0.896	0.89
	Yeast-0-2-5-6	0.059	0.568	0.412	0.55	0.632	0.597	0.576	0.644	0.594
	Line A	-13.996	-0.004	-0.134	-0.063	0.062	-0.011	-0.1	0.049	-0.026
	Line B	-6.772	0.360	0.238	0.428	0.533	0.494	0.456	0.552	0.488
	Line C	-0.946	0.280	0.026	0.254	0.346	0.312	0.265	0.353	0.3235
	Line X	-16.311	0.066	-0.003	0	0.148	0.0265	0	0.105	0.025
	Line Y	-21.647	0.080	0.043	0.216	0.257	0.2455	0.178	0.266	0.2365
	Line Z	-6.056	0.000	-0.045	0	0.006	0	0	0.012	0
	UCI SECOM	-0.137	0.014	-0.023	0	0.048	0.027	0	0.105	0.0055

Table 9 :

 9 XGBoost optimization parameter

		Hyperparameter
	n_estimators	50, 100, 150
	max_depth	3, 6, 9
	learning_rate	0.1, 0.3
	class_weight	({0:1, 1:1}, ({0:1, 1:10}), ({0:1, 1:int(M)}),
		(M = (sum(negative instances) / sum(positive instances))

Table 10 :

 10 Datasets for feature selection experiments

	Dataset	Class 0	Class 1	Instances	Features	IR (Class 1 / Class 0)
	A	57499	530	58029	64	0,009218
	B	7127	73	7200	17	0,010243
	C	88928	553	89481	23	0,006219
	D	67065	1885	68950	133	0,028107
	E	55204	1570	56776	29	0,028440
	F	42894	1187	44081	33	0,027673
	G	59321	245	59566	30	0,004130
	H	43373	182	43555	90	0,004196
	I	58345	799	59144	103	0,013694
	J	55473	139	55612	64	0,002506
	K	58585	1747	60332	19	0,029820
	L	194318	614	194932	22	0,003160
	M	6867	33	6900	34	0,004806
	N	86664	388	87052	99	0,004477
	O	6939	129	7068	38	0,018591
	P	189809	233	190042	53	0,001228
	Q	87292	388	87680	34	0,004445
	R	43356	199	43555	90	0,004590
	S	6854	33	6887	96	0,004815
	T	11228	123	11351	22	0,010955
	U	11349	48	11397	54	0,004229
	V	13029	212	13241	30	0,016271
	W	10604	117	10721	102	0,011034
	X	89204	687	89891	17	0,007701
	Y	190183	400	190583	20	0,002103

Table 11 :

 11 Baseline results for feature selection (model trained with all features)

	Dataset	Features	EBR Value	Dataset	Features	EBR Value
	A	64	0,00042199	N	99	-0,000073042462
	B	17	0,03246753	O	38	-0,003707627
	C	23	0,00050081	P	53	0
	D	133	0,21394069	Q	34	-0,000193916
	E	29	0,00270392	R	90	0,074146982
	F	33	0,00084728	S	96	0
	G	30	0	T	22	0
	H	90	-0,00040975	U	54	0
	I	103	0,00157487	V	30	0,001569859
	J	64	0	W	102	0,002081165
	K	19	0	X	17	0,001777727
	L	22	0	Y	20	0
	M	34	-0,00021906			

Table 12 :

 12 Experimental approach A

				ANOVA			Kendall's rank Coefficient			Permutation Feature Importance	
	Dataset Name	Optimized according to EBR Optimized according to MCC	Optimized according to EBR	Optimized according to MCC	Optimized according to EBR	Optimized according to MCC
		Features	EBR Value	Features	EBR Value	Features	EBR Value	Features	EBR Value	Features	EBR Value	Features	EBR Value
	A	64	0,000421987	64	0,000421987	64	0,000421987	64	0,000421987	64	0,000421987		0,000421987
	B	17	0,032467532	17	0,032467532	17	0,032467532	17	0,032467532	17	0,032467533		0,032467533
	C	23	0,000500814	17	0,00109553	23	0,000500814	23	0,000500814	23	0,000500814		0,000500814
	D	2	0,213996855	2	0,213996855	1	0,213996855	1	0,213996855	133	0,213940688	133	0,213940688
	E	2	0,000600871	2	0,000600871	7	0,000600871	7	0,000600871	2	0,00135196	3	0,00135196
	F	33	0,000847278	33	0,000847278	33	0,000847278	33	0,000847278	33	0,000847278	4	0,00021182

Table 13 :

 13 Experimental approach B

	ANOVA	Kendall's
	Dataset	
	Name	

rank coefficient Permutation Feature Importance Optimized according to EBR Optimized according to MCC Optimized according to EBR Optimized according to MCC Optimized according to EBR Optimized according to MCC

		Features	EBR Value	Features	EBR Value	Features	EBR Value	Features	EBR Value	Features	EBR Value	Features	EBR Value
	A	64	-0,014659475	64	-0,000990753	64	-0,014659475	64	-0,000990753	64	-0,014659475	64	-0,000990753
	B	17	0,032467532	17	0,032467532	17	0,032467532	17	0,032467532	17	0,032467533	17	0,032467533
	C	23	0,000500814	17	0,019531739	23	0,000500814	23	0,019531739	23	0,000500814	23	0,019531739
	D	2	0,213996855	2	0,213996855	1	0,213996855	1	0,213996855	133	0,213940688	133	0,213940688
	E	2	0,029968454	2	0,000600871	7	0,031320415	7	0,004206099	2	0,000225327	3	0,00135196
	F	33	0,000847278	33	0,008825814	33	0,000847278	33	0,008825814	33	0,000847278	4	0,018428299
	G	1	0	30	0	1	0	30	0	1	0	30	0
	H	1	0	1	-0,233302602	1	0	1	0	1	0	1	-0,233302602
	I	1	0	89	0,000595897	1	0	103	0,00157487	1	0,001532306	1	-0,632459351
	J	64	0	64	-0,3219757	64	0	64	-0,3219757	64	0	64	-0,3219757
	K	1	0	1	-0,21820103	1	0	1	-0,356447849	1	0	1	-0,119182847
	L	22	0	22	0	22	0	22	0	22	0	22	0
	M	34	-0,000219058	34	-0,000219058	34	-0,000219058	34	-0,000219058	34	-0,000219058	34	-0,000219058
	N	1	-0,001436502	2	-0,651952668	1	0	1	-0,965450915	99	-0,151806584	99	-0,151806584
	O	38	-0,003707627	38	-0,003707627	38	-0,003707627	38	-0,003707627	38	-0,003707627	38	-0,003707627
	P	53	0	53	0	53	0	53	0	53	0	53	0
	Q	1	0	2	-0,965604169	1	0	1	-0,163955884	34	-0,000193916	34	-0,05189674
	R	4	0,125	9	0,074146982	4	0,125	1	0,163385827	5	0,130249344	5	0,077755906
	S	96	0	31	0	74	0	25	0	16	0	18	0
	T	22	0	5	0	22	0	22	0	22	0	16	0
	U	54	0	54	0	54	0	54	0	54	0	54	0
	V	30	0,001569859	30	0,006279435	30	0,001569859	2	-0,001098901	30	0,001569859	30	0,006279435
	W	102	0,012747138	102	0,004162331	102	0,012747138	102	0,004162331	102	0,012747138	6	0,002341311
	X	3	0,01062813	2	0,010226708	3	0,01062813	2	0,010226708	1	0,009137134	1	0,009997324
	Y	20	0	20	-0,066429903	20	0	20	-0,066429903	20	0	20	-0,066429903

Table 14 :

 14 Experimental approach C

			ANOVA			Kendall's rank coefficient			Permutation Feature Importance
	Dataset Name	Optimized according to EBR	Optimized according to MCC	Optimized according to EBR	Optimized according to MCC	Optimized according to EBR Optimized according to MCC
		Features	EBR Value	Features	EBR Value	Features	EBR Value	Features	EBR Value	Features	EBR Value	Features	EBR Value
	A	30	-0,124339498	64	0,000421987	44	-0,095901218	47	-0,056032585	19	-0,005082196	29	0,002843828
	B	2	0,037962038	17	0,032467532	3	0,061938062	17	0,032467532	2	0,058941059	14	0,044955045
	C	5	0,019093527	23	0,000500814	5	0,019093527	5	0,019250031	1	0,013334168	1	0,0134593715
	D	2	0,213996855	133	0,213940687	2	0,213996855	2	0,213996855	133	0,213940688	133	0,213940688
	E	3	0,027264534	29	0,002703921	7	0,031320415	7	0,002103049	5	0,031921286	6	0,003530119
	F	25	0,003177293	33	0,000847278	30	0,005154275	30	0,005154275	14	0,014333122	12	0,014756761
	G	1	0	30	0	1	0	16	-0,045876679	1	0	2	-0,069512535
	H	1	0	90	-0,000409752	1	0	3	-0,214146691	1	0	29	-0,020692481
	I	1	0	103	0,00157487	23	0,001234358	23	0,002085639	1	0,001532306	1	-0,632459351
	J	64	0	64	0	64	0	24	-0,102042613	64	0	3	-0,387920409
	K	1	0	19	0	1	0	6	-0,226214062	1	0	1	-0,119182847
	L	22	0	22	0	22	0	22	0	22	0	2	-0,367024358
	M	34	-0,000219058	34	-0,000219058	34	-0,000219058	34	-0,000219058	34	-0,000219058	2	-0,120920044
	N	1	-0,001436502	99	-0,000073042462	1	0	1	-0,965450915	61	-0,239652318	10	-0,350311648
	O	4	-0,094632768	38	-0,003707627	1	-0,01059322	20	-0,000706215	9	-0,002295198	8	-0,000176554
	P	53	0	53	0	53	0	53	0	53	0	53	0
	Q	2	-0,128663192	34	-0,000193916	1	0	1	-0,163955884	34	-0,000193916	34	-0,05189674
	R	2	0,107611549	90	0,074146982	2	0,107611549	4	0,125	2	0,107611549	9	0,144685039
	S	40	0,002192982	96	0	29	0	6	-0,000877193	14	0	14	0
	T	5	0	22	0	22	0	5	0	22	0	1	-0,235951417
	U	54	0	54	0	54	0	10	0,000895255	54	0	12	-0,002088929
	V	2	-0,00266876	30	0,001569859	3	-0,000784929	2	-0,000941915	1	0,003296703	30	0,006279435
	W	29	0,010665973	102	0,002081165	8	0,014308012	6	0,008584807	6	0,020031218	15	0,00364204
	X	3	0,01062813	17	0,001777727	3	0,01062813	3	0,01062813	1	0,009137134	1	0,009997324
	Y	20	0	20	0	20	0	7	-0,044448366	20	0	6	-0,075010754

Table 15 :

 15 Feature selection execution time comparisonIn Table15, the computation time needed for each experimental approach for different datasets are compared. For each shown experimental approach the best results (regarding time measurements) were colored in green, orange, and blue to highlight the best experiment approach for each dataset. For the experimental approach A the permutation feature importance selection method achieved the best results in 11 out of 25 cases. Experimental approach B Kendall's rank selection method achieved the best time results in 13 out of 25 cases. Experimental approach C, the ANOVA selection method achieved the best time results in 15 out of 25 datasets.When comparing experimental approach A and C in terms of the EBR result and required time, it can be pointed out that the use of hyperparameter tuning does show a significant enhancing effect in most of the experiments. However, the calculation time for 19 datasets was demanding in terms of time (over one hour), especially in dataset D.

			Experimental Approach A		Experimental Approach B		Experimental Approach C
	Dataset	ANOVA	Kendall's rank	Permutation	ANOVA	Kendall's rank	Permutation	ANOVA	Kendall's rank	Permutation
	Name	Execution	coefficient	Feature Importance	Execution	coefficient	Feature Importance	Execution	coefficient	Feature Importance
		Time	Execution Time	Execution Time	Time	Execution Time	Execution Time	Time	Execution Time	Execution Time
	A	0:00:48	0:00:48	0:00:47	0:02:54	0:02:54	0:02:55	1:25:45	1:33:30	1:26:19
	B	0:00:09	0:00:09	0:00:07	0:00:51	0:00:51	0:00:49	0:09:33	0:10:44	0:09:36
	C	0:01:17	0:01:16	0:01:16	0:09:36	0:09:18	0:09:16	2:01:46	2:13:55	2:01:46
	D	0:21:54	0:22:51	0:25:27	0:23:27	0:23:37	1:03:34	41:04:49	47:06:54	47:58:57
	E	0:01:16	0:01:21	0:01:11	0:02:51	0:04:24	0:02:36	2:24:09	2:40:13	2:14:30
	F	0:01:12	0:01:11	0:01:05	0:07:19	0:07:09	0:06:59	2:10:01	2:24:19	1:59:42
	G	0:01:04	0:01:00	0:01:04	0:02:10	0:02:03	0:02:11	2:01:41	2:05:21	2:01:08
	H	0:04:36	0:04:35	0:04:45	0:05:24	0:05:04	0:05:40	8:35:13	9:13:34	8:53:49
	I	0:17:07	0:15:38	0:15:30	0:18:19	0:16:36	0:16:38	32:33:45	33:00:00	29:47:19
	J	0:05:26	0:05:21	0:05:25	0:20:25	0:20:25	0:20:24	9:20:57	9:54:35	9:17:51
	K	0:00:37	0:00:38	0:00:39	0:01:25	0:01:14	0:01:49	1:02:49	1:08:30	1:11:56
	L	0:03:05	0:03:05	0:02:58	0:25:21	0:25:18	0:25:08	5:04:10	5:33:01	4:50:34
	M	0:00:08	0:00:09	0:00:09	0:00:41	0:00:42	0:00:42	0:14:31	0:16:18	0:14:33
	N	0:10:26	0:10:19	0:10:55	0:11:45	0:11:04	0:31:19	17:56:08	19:27:29	18:37:31
	O	0:00:08	0:00:09	0:00:08	0:00:43	0:00:43	0:00:43	0:17:39	0:19:18	0:17:51
	P	0:12:02	0:12:03	0:12:07	0:53:41	0:53:13	0:53:56	21:01:48	22:33:36	21:19:08
	Q	0:01:40	0:01:39	0:01:51	0:03:03	0:02:26	0:10:06	2:51:35	3:04:39	3:00:01
	R	0:07:39	0:07:35	0:07:19	0:09:11	0:09:03	0:09:11	10:48:54	11:48:45	10:27:05
	S	0:00:45	0:00:44	0:00:47	0:01:46	0:01:38	0:01:13	1:04:45	1:11:51	1:06:39
	T	0:00:09	0:00:09	0:00:10	0:01:13	0:01:13	0:01:13	0:16:26	0:18:17	0:16:57
	U	0:00:43	0:00:44	0:00:44	0:02:32	0:02:34	0:02:34	1:06:24	1:12:42	1:07:40
	V	0:00:19	0:00:19	0:00:20	0:01:55	0:01:55	0:01:55	0:35:19	0:38:05	0:35:08
	W	0:02:07	0:02:03	0:02:05	0:05:20	0:05:16	0:05:21	3:28:33	3:41:16	3:27:00
	X	0:00:31	0:00:32	0:00:31	0:02:13	0:02:13	0:01:41	0:55:23	1:00:46	0:55:43
	Y	0:02:06	0:02:07	0:02:06	0:18:11	0:19:31	0:18:11	3:18:35	3:34:56	3:16:28

Table 16 :

 16 Feature selection result overview

				Number	Number of				
		Number	Number	of tests	tests	Number of	Number of	Number of	Number of
		of tests	of tests	where	where	tests where	tests where	tests where	tests where
		where	where	BEST	BEST	optimizing	optimizing	optimizing	optimizing
		BEST	BEST	results is	results is	with EBR is	with MCC	with EBR is	with MCC
		results	results is	with EBR	with MCC	BETTER	is BETTER	WORSE	is WORSE
		is with	with	and	and	than	than	than	than
		EBR	MCC	Features	Features	baseline	baseline	baseline	baseline
				reduced	reduced				
	Approach A, ANOVA	3	2	2	1	5	4	3	4
	Approach A, Kendall	2	2	0	1	2	3	3	2
	Approach A, Permutation	1	1	0	1	5	3	2	3
	Approach B, ANOVA	10	5	3	1	7	4	3	9
	Approach B, Kendall	9	5	0	1	5	7	1	7
	Approach B, Permutation	8	6	0	1	5	6	4	9
	Approach C, ANOVA	10	6	9	0	9	0	6	0
	Approach C, Kendall	12	6	1	1	8	9	4	11
	Approach C, Permutation	15	7	4	2	10	10	3	12

 be intuitively, operable, and configurable. Further, it should be possible to narrow down the error search space. The results of the products test should be shown in real time. If anomalies occur in the data, they should be pointed out. No major data processing should be necessary. Monitoring of the measured data would be desirable to recognize possible concept drifts in the measured values.

Q1.1) Have you had experience with ML? Q1.2) What requirements would you have for ML to support you in your work?

Table 17 :

 17 Best voted visualizations

	Name of visualization	Voting Counts
	Surrogate Decision Tree Model	1 (G1) + 5 (G2)
	Scatter Plot	3 (G1) + 3 (G2)
	Partial Dependencies Interaction Plot	1

Table 18 :

 18 Worst voted visualizations

	Name of visualization	Voting Counts
	SHAP Summary Plot	3 (G1) + 3 (G2)
	Partial Dependencies Plot	1 (G1) + 3 (G2)
	Partial Dependencies Prediction Distribution Plot	1 (G1) + 2 (G2)
	Heatmap	0 (G1) + 2 (G2)
	ICE Plot	0 (G1) + 2 (G2)

Acknowledgements

"Don't Be Afraid to Fail" -Arnold Schwarzenegger

The work involved in this thesis was funded by the BMBF 1 as part of the PREFERML 2 project at Furtwangen University. 1) BMBF: Federal ministry of education and research (In german: BundesMinisterium für Bildung und Forschung) Fehlervermeidung in der Produktion durch Maschinelles Lernen)

Secom from the EBRP Metric in Table 5 should be taken. These datasets created the best results using the Random Forest Classifier. The question rises if the same classifier has used the same hyperparameters to produce the result. Table 7 shows the used hyperparameters for the mentioned datasets: The used hyperparameters shown in Table 7 indicate that it is necessary to optimize the hyperparameters individually for each ML model, as the experiments do not show a set of parameters that is optimal across different cases. A comparison of different winner parameter settings for other datasets could be researched in the future.

In Figure 10 will be visualized as baseline with an orange boxplot as a sixth result.

Chapter 7: Feature Selection for Manufacturing Data

In this chapter, different methods and approaches for feature selection will be evaluated.

The selection of features will help to reduce the error cause space and support targeted analysis. Three different forms of state-of-the-art filter methods on real manufacturing data will be tested. The content of this chapter belongs to the paper [START_REF] Gerling | Evaluation of Filter Methods for Feature Selection by Using Real Manufacturing Data[END_REF].

The following research questions will be answered in this chapter:

• (RQ4) Can state of the art filter methods provide a benefit in the given use case?

• (RQ5) Which is the best filter method in this use case?

• (RQ6) Can further feature reductions be achieved by using alternatives to standard metrics?

• (RQ7) How long does the optimization of the model take and is there a fastest filter method?

Used Feature Selection Methods

This section is dedicated to describing the fundamental concepts behind selection methods and metrics.

ANalysis Of VAriance (ANOVA) is a statistical state of the art approach to select features in datasets. ANOVA tests the statistical significance of mean differences among different groups of scores [START_REF] Tabachnick | Experimental designs using ANOVA: Thomson/Brooks/Cole[END_REF]. The SelectKBest [START_REF] Pedregosa | Scikit-learn: Machine Learning in Python[END_REF] from scikit-learn as tool to implement ANOVA filter method for the experiments was chosen. The underlying feature scores are assigned by ANOVA F-Value [START_REF] Pedregosa | Scikit-learn: Machine Learning in Python[END_REF], a metric which calculates linear dependencies between two variables. The advantage of ANOVA is that if there is little to nonstatistical significance, these features are considered late in the ranking and can often be excluded. A disadvantage of ANOVA is that it considers only one independent feature in relation to the predicted outcome.

Kendall's rank coefficient or also called Kendall's tau (τ) is a measure for the correlation between an observation of at least two ordinally scaled features x and y. The rank correlation shows the correlation between these variables, in which no hypothesis about the statistical distribution of the variables is made [START_REF] Siebertz | Statistische versuchsplanung[END_REF]). An advantage of Kendall's tau is the robustness against outliers. The disadvantage of this method is that

After that, their opinion on each visualization was asked. The first two questions should be answered with yes or no. Further, pro and contra arguments for each visualization were asked.

Q2 The summary of the given answers is divided in three parts. First, an overview of the general questions is given, followed by the discussion about the visualizations. As last part, the evaluation of the visualizations is reported. The answers for the quality engineers (G1) and the student sample (G2) are listed separately. Overall, four quality engineers and 10 students were interviewed.

8.4.1 General Questions for the User Groups (Q1.1) The experience of the participants is:

(G1) Two participants had no experience and two were involved in a project in which ML was used. features would be helpful for the first look at the visualization. Distinctions with colors would be desirable to be able to distinguish different parts of the visualization (feature/predictions). The temporal aspect was positively received. Furthermore, a 3D

view of e.g., the top three features could be helpful. An interactive visualization could also be helpful here, in which features, time periods and products could be selected directly. Furthermore, counter factual explanations were mentioned, which show the difference between flawless and corrupted instances. Plot. The visualizations mentioned here are similar to the response of G1. This also applies to their advantages. The negative arguments of G2 address like G1 the particulars of the presentations. In addition, for the LIME Plot and Histogram, it was noted that only one instance or feature can be seen. This indicates a preference for a global overview.

Further, possible combinations of visualizations should be discussed that can be used to identify the origin of an error. Based on the results of the interview and the personal assessment, the following eight combinations are suggested. These combinations were not confirmed by the interviews.

Feature Importance Plot & Histogram:

To get a brief overview of all features in the dataset, first the Feature Importance Plot is used to find the most relevant features. Based on relevant features, further investigations will be done with the histogram. The histogram provides details of a feature in order to analyze it further.

SHAP Summary Plot & ICE Plot:

The SHAP Summary Plot can be used to provide a first impression of the results. Here it can be seen if there are outliers or cluster formations in the results. With this information, the most promising features can be analyzed with the ICE Plot. The ICE Plot shows the value ranges of a selected feature and the ranges in which the probability of error increases.

Feature Importance Plot & Scatter Plot:

The Feature Importance Plot can be used once again to get an overview of the features. Afterwards, the most important features are selected and will be analyzed with a Scatter Plot. Hence, the value ranges can be seen summarized and then discussed, to show the best and worst visualizations. One of the favored visualizations was the Surrogate Decision Tree Model, because it reflects the requirements for a plot that is easily understandable and interpretable. The Scatter Plot is also useful as an easy-to-understand visualization and ties with the Surrogate Decision Tree Model for the first place. A further contribution shows eight possible combinations of visualizations to be used. These should help, to analyze the data more precisely and identify the error cause. Also, the participants desire to use interactive visualizations could be identified. Therefore, future investigation should address this aspect. How useful the presented visualizations are in practice have to be further tested.

In the next chapter, the visualizations listed will help to find the origin of an error. In the process, these visualizations will be tested on real production defects in order to test their usefulness.

Conclusion to this Chapter

With the described cases, the benefit of using the AutoML tool could be demonstrated.

First, the tasks of a quality engineer can be supported with meaningful visualizations and further information about the error root cause analysis. This speeds up the time between the error's first occurrence and the implementation of a solution.

Visualization technics could be provided with the help of ML as in the fifth case. Another advantage is, that a quality engineer can use the tool without any knowledge in the field of ML while at the same time the data scientist does not need specific domain knowledge because this can be easily formalized and provided in a single file by the quality engineer. By automating the data merging, processing, and enhancement, precious time of the quality engineer could be saved, and helpful information is provided to the analysis like the time differences between test stations. The user is provided with the most important features for the analysis, which often leads to the origin of an error.

Furthermore, the visualized feature can point to hidden causes of errors like in Case 1.

Therefore, it is important to include as much relevant data for analysis as possible. Often, even trivial reasons such as the temperature in the production hall or the time of production can bring decisive advantages to the analysis.

Chapter 10: Thesis Summary

In this chapter, the thesis will be summarized, and the benefits of an AutoML tool will be highlighted. First, the production line and the specific challenges that an AutoML tool must face were described. These challenges go from the setup of the production line to the quality data itself. Therefore, the requirements for an AutoML tool were first elaborated with different actors from the partner company. This led to the development of a to-be process to help the quality engineer in his work to find the root cause of a product defect. Furthermore, the AutoML tool was developed in such a way that a quality engineer can work without further assistance from a ML-expert. To test a monetary benefit while meeting the requirements, decision tree-based algorithms were evaluated for manufacturing data. Within these experiments, it became clear that decision tree-based algorithms are good to use in the manufacturing domain. To optimize the error analysis and to identify monetarily beneficial models, a cost-based metric was used for the algorithms to evaluate the performance. This allows the identification of useful ML models and utilization for error analysis. To further improve the defect analysis, the use of hyperparameter tuning was evaluated. Especially due to the nature of the data and the extreme differences between flawless and corrupted product parts, the advantage was not clear in the beginning. Due to other influences for data quality such as concept drifts, hyperparameter tuning could possibly lead to deteriorations. However, it could be shown that it is worthwhile to use hyperparameter tuning. Another important point was the reduction of necessary features of a test station for the error analysis. It could be shown that a product error can also be recognized often by only using a few features from the test station, and it is more advantageous to obtain only these for the error analysis. Even if no monetary improvement is possible by the model performance, a quality engineer can concentrate on the essential features and reduce the features to be checked. To find suitable visualizations for the quality engineer, 15 adjusted visualizations for manufacturing were tested in an interview with two user groups. As a result, two well-suited visualizations were identified. These have the advantage of finding product defects more quickly due to the simplicity of the visualization. Furthermore, the results can be easily analyzed. Another advantage is, that these two visualizations can be presented to other people and used to analyze the product error together. To demonstrate the usefulness on an AutoML tool, five real use

Concept Drift

To improve the AutoML tool, an increased utilization of concept drift detection should be done in the future. Currently, a concept drift in the data can be detected. However, methods and techniques should be improved to detect a concept drift faster. For example, a constant online monitoring of the data must be done. By detecting a concept drift, another process should be automatically started to retrain a new ML model and check the Model performance. Also, the quality engineer should be informed about retraining.

Product Knowledge

To use cross-product knowledge, a possibility to store the product information may be introduced for the AutoML tool. A solution for this may be an ontology. This ontology can store all relevant information about a specific product and create a connection to the product family or other products. Within this ontology error root causes can be stored among various products. Therefore, product error solutions which are related to a specific product or product family can be involved for the analysis. This solution will

help to analyze a product error faster and connect all product information.

Performance Scale Out

In order to use the AutoML tool for many products, Big Data technology should be used to parallelize the training process. This would lead to more products being trained at the same time and the waiting time could be drastically reduced. This is especially important for companies having many different products to be checked. Therefore, Big Data technologies like a Spark Cluster can be used for this purpose. This will lead to a bigger acceptance for the AutoML tool and create simultaneous improvement for the error cause analysis. Surveys should be conducted in which different Big Data solutions are evaluated. Thus, a direct use could be demonstrated.

Improved Error Cause Analysis

From the conducted interviews with the two user groups, it emerged, that there is a desire for a tool to provide real time visualization for error cause analysis. This is not easy to implement at present, as a lot of computation resources must be made available for this. However, the topic should be taken up to further improve the error cause analysis. This will also lead to a broader acceptance for such a tool. Therefore, carrying [100,300,500,800,1000] max_depth : [3,5,7,9] min_child_weight : , 0.15, 0.20, 0.25, 0.3, 0.35, 0.4] num_leaves : [8, 12, 16, 31] colsample_bytree : [0.3, 0.4, 0.5 , 0.7, 1.0] max_depth : [3, 5, 7, 9, -1] reg_alpha : [0, 0.005, 0.01, 0.05] reg_lambda : [0, 0.005, 0.01, 0.05] min_child_weight : [0.001, 1, 2, 3] class_weight : [dict({0:1, 1:1}, dict({0:1, 1:5}), dict({0:1, 1:10}),dict({0:1, 1:20}), dict({0:1, 1:int(M)}), dict({0:1, 1:int(M)*2}), dict({0:1, 1:int(M)*0.5})] (M = (sum(negative instances) / sum(positive instances)))

Appendix

Decision Tree max_depth : [None,3,5,7,9] max_features : ['auto'] min_samples_split : [2,5,7,9] min_samples_leaf : [1,2,5,7] class_weight : [dict({0:1, 1:1}, dict({0:1, 1:5}), dict({0:1, 1:10}), dict({0:1, 1:20}), dict({0:1, 1:int(M)}), dict({0:1, 1:int(M)*2}), dict({0:1, 1:int(M)*0.5})] (M = (sum(negative instances) / sum(positive instances)))