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Chapter 1

Introduction

1.1 Brownian trajectories in an optical trap

When a micron-sized object is suspended in a fluid, it undergoes a perpetual erratic
motion. Such an object, a thousand times smaller than a millimetre, can seem minute
with respect to everyday life meter-scale, but still is ten thousand times larger than
an atom. Light enough to be sensitive to the molecular agitation of the fluid in which
it lies, it is large enough to be observed with a simple microscope. This very simple
fact of having a size in between our macroscopic world and the nanoscopic world of
atomic and molecular physics is the cornerstone of the interest in so-called Brownian
motion.

The measurement of its random trajectories can be made quantitative [1] and it
is through the probing of the stochastic position of microspheres suspended in water,
that Jean Perrin measured Avogadro’s number in 1909 (see Fig. 1.1 (left)). Similarly,
the angle fluctuations of a small suspended mirror where used in 1931 by Eugene
Kappler to measure the equilibrium probability distribution in a potential (Fig. 1.1
(middle)). An important development in the experimental investigation of Brownian
motion was provided by optical trapping (Fig. 1.1 (right)). This technique developed
in the eighties by Arthur Ashkin [2, 3] has provided a very large number of applications
in many fields of physics [4, 5]. Its coupling with Brownian motion is probably among
the most fruitful. It relies on possibility to use a focused laser beam to build a mechan-
ical potential in which a Brownian object is confined while still being influenced by
the surrounding medium, allowing very precise and controllable experiments. In the
following paragraphs, we review three examples from recent literature of application
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1.1. BROWNIAN TRAJECTORIES IN AN OPTICAL TRAP

of optically trapped Brownian motion as transducer mechanically displaying physical
phenomena of various nature.

Figure 1.1: (left) 1909: Jean Perrin notebook, ca. 1909 from [6].
This seminal experimental investigation of free diffusion, in agree-
ment with Einstein theory of Brownian motion [1, 7], led to the first
physical measurement of Avogadro’s, number, key step in the accep-
tance of atomic theory. (center) 1931: Eugene Kappler’s experiment
[8] on the motion of a small mirror suspended on a quartz wire under
thermal fluctuation. The shaded area corresponds to the reflected
light, imprinted on a sensitive paper. Its gradient is connected to the
fluctuations of angle of the mirror, direct visualization of its proba-
bility distribution. This experimental probing of Brownian diffusion
with a restoring force is central since it connects it to equilibrium sta-
tistical mechanics and to the equipartition of energy. (right) 2012:
on top is a photograph of a nanoparticle diffusing in a rarefied gas,
optically trapped by a focused laser beam in Lukas Novotny’s lab [9].
The low viscosity of the gas allow a ballistic motion to the nanopar-
ticle, as in Langevin’s equation [10]. On the bottom is a recorded
trajectory, where one can see both a deterministic oscillation and a
random fluctuation.

As a first example, optically trapped Brownian motion allowed to visualize the ef-
fect of non-conservative optical force fields. In an experimental work from the team of
Ernst-Ludwig Florin in 2009 [11] the trajectory of a Brownian object allows to build
a quantitative map of the optical forces inside a focused laser beam. The force field is

10



1.1. BROWNIAN TRAJECTORIES IN AN OPTICAL TRAP

measured with a spatial resolution of 10 nanometers and with a femtonewton precision
in force, demonstrating the high level of accuracy obtained with optical traps. Ten
years later, by performing similar experiments in a dilute gas [12], where the motion
becomes inertial, Yacine Amarouchène and Yann Louyer unveiled the mechanical ef-
fects of non-conservative forces, with toroidal currents both on position and velocity
of the trapped object.

Optically trapped Brownian motion also allows to visualize the mechanical effect of
complex environment, as found in biology. If we think of a human cell, the cytoplasm
forming most of its volume is far from a simple fluid as pure water, as from a dilute gas
as mentioned above. It is crowded by many object, such as actin, intermediate fila-
ments or microtubules that form its architecture, but also numerous floating molecules
of various sizes. An explicit description of such a fluid is a hard task, both because of
its intrinsic complexity and because of the difficulty to perform non-destructive study
giving biologically relevant results. However, many fundamental properties of the cy-
toplasm can be retrieved by looking at its effect on a micrometric object diffusing in it.

Figure 1.2: Schematic view of in-cell
rheology: a micrometric particle is in-
jected inside a living cell and optically
trapped from the outside. It allow
to probe the mechanical properties of
the cytoplasm and cytoskeleton, as ex-
plained in the main text.

The Brownian motion reveals here its cru-
cial mesoscopic nature: it does not show
the detailed dynamics of its environment,
but only a mechanically filtered simplified
version of it. It can therefore be an-
alyzed with reasonable cost, but still re-
veals much informations on its environ-
ment, as we will detail in the next para-
graph.

By injecting a micrometric sphere inside a liv-
ing cell and trapping it with an optical tweezer,
as schematized on Fig. 1.2, the group of Lene B.
Oddershede was able to access diffusive process
inside the complexe cytoplasmic fluid [13]. By
furthermore applying on the microsphere a time-
dependant perturbation, it becomes possible to
implement an in-cell rheometer, which provides
a measure of the viscoelastic properties of the
cytoskeleton. This technique unveils rheologi-
cal changes in the cytoplasm during the differ-
ent phases of mitosis [14] connected to dramatic
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1.2. OPTICALLY TRAPPED BROWNIAN MOTION FOR STATISTICAL
MECHANICS EXPERIMENTS

changes in the architecture of the cytoskeleton
during this dynamical process [15, 16]. The statistical nature of the diffusion of a tracer
inside an actin network was also extensively studied by the group of Yael Roichman
[17, 18] revealing non-trivial dynamics.

Another important development of optically trapped Brownian motion during the
last decade, is its coupling with optomechanical techniques [19] inherited from atomic
manipulation, as cavity cooling (implemented independently by the team of René
Reimann [20] and Markus Aspelmeyer [21]) and feedback and cavity cooling [22, 23],
as schematized in Fig. 1.3.

Figure 1.3: Cavity cooling of a
trapped nanoparticle (from [23]):
the tuning of the cavity will
preferentially allow well defined
modes for the photons scattered
by the nanoparticle from the
trapping beam. The slight de-
tuning is chosen so that only the
modes that takes out energy from
the mechanical degrees of free-
dom of the particle can propa-
gate. This coherent scattering
cools down the motion of the
nanoparticle.

With those methods, more recently it became
possible to reach the quantum ground state for
the motional degree of freedom [24], paving the
way to the exploration of quantum thermodynam-
ics. In a recent work by the team of Niko-
lai Kiesel [25] a trapped nanoparticle undergoes
a transition between two potentials in quantum
regime.

In the following paragraphs, we will focus on the
application of optically trapped Brownian motion to
statistical mechanics experiments. We will review im-
portant examples from the recent experimental and
theoretical literature, that contextualize the work of
this thesis.

1.2 Optically trapped Brownian

motion for statistical mechanics

experiments

At microscopic scales, thermal fluctuations cannot be
neglected, and every physical, chemical or biological
process takes place whithin these fluctuations. This
is the case of biological phenomena happening inside
every cell of our body, as gene transcription or ma-
terial transport, that are complex processes, involv-
ing mechanical and chemical agents. These different
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1.2. OPTICALLY TRAPPED BROWNIAN MOTION FOR STATISTICAL
MECHANICS EXPERIMENTS

functions take place in this microscopic fluctuating environment, which modifies their
relative efficiencies. For example, the group of Daisuke Mizuno studied in details the
fluctuating energetic rules governing the axonal transport of kinesin molecular motor
[26], finally demonstrating that the fluctuations of the environment are increasing the
velocity of the motor [27]. In a different field, nanoscopic electronic devices, because
of their small scales are also affected by fluctuations and similar rules apply on their
energetic exchanges. This aspect was extensively studied by Jukka Pekola on single
electron devices [28, 29, 30].

Brownian motion appears as a paradigmatic example of microscopic objects dom-
inated by fluctuations and it therefore shares many features with the aforementioned
examples. This applicability stems from the universal character of fluctuations at small
scales combined with the formal simplicity of Brownian trajectories. Yet to be able to
quantitatively answer questions relevant for the physics of small natural system, two
important points must be addressed. The first is the precision of the experiments: the
Brownian trajectories must be recorded with a sufficiently high resolution and a good
control on the parameters governing their dynamics. The second point is the flexibility
of the experimental platform to induce non-trivial effects. For example, one emulates
with a Brownian motion experiment the behaviour of a micrometric biological object
evolving inside the cytoplasm of a living cell by applying on the Brownian objects
forces that mimic those felt inside a living cell.

Those two aspects can be directly combined in optical trapping experiments. The
role of optically trapped Brownian motion in the study of statistical mechanics and
small scale thermodynamics stems on the one side from the universal character of
fluctuations, well captured by Brownian dynamics as well as the simple and intuitive
nature of Brownian motion, and on the other side, on the control, flexibility and reso-
lution of optical trapping platforms. With these elements, it is possible to use a simple
optically trapped microsphere to build genuine statistical mechanics experiments to
probe fundamental questions, as fluctuation-dissipation theorem [31], thermodynamic
laws and fluctuation theorems [32], accelerated and engineered thermalisation [33, 34],
Landauer bound [35, 36], information engines [37] to cite only some striking examples
taken from the recent literature.

The case of Kramers description of a thermal barrier crossing [38] is an example
of theoretical and experimental research based on the ability of Brownian motion to
simulate statistical mechanics. Indeed, many physical, chemical and biological pro-
cesses [39] are well described by a system lying in a metastable state with a non-zero
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MECHANICS EXPERIMENTS

probability of decaying into another energy minimum of lower energy. Among the best
known examples of reaction-rate theory are chemical kinetics [40] and protein folding
[41]. The striking power of Kramers theory is to unify these various phenomena un-
der a single model : a Brownian object diffusing across a potential barrier, either in
a metastable or a bistable potential. For a bistable potential, it predicts that, for a
barrier potential of the same order as thermal energy, the Brownian object jumps from
one well to another with an exponential distribution of residency times. The results of
Kramers theory can be applied to many other systems, as the aforementioned protein
folding [42], with successful quantitative description.

The exponential distribution of residency times of Brownian object has been exper-
imentally tested at the end of twentieth century [43] in an overdamped experiment, in
water at ambiant temperature. Another major result of Kramers theory is that for a
certain combination of barrier curvature and strength of the thermal force, a maximal
crossing rate can be achieved. This cannot be tested in an overdamped case, where
the high pressure prevents reaching the right regime. It is only in 2017 that it be-
came possible to test the so-called Kramers turnover in an optically trapped Brownian
motion experiment by the team of Lukas Novotny [44].

Figure 1.4: Adapted from [44]. (a) two high-intensity laser beams
are sent into a microscope objective, creating a genuine double well
optical potential. (b) Potential energy along a plan orthogonal to the
optical axis, the two minima are clearly visible. (c) a typical bistable
trajectory along the y axis.
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On Fig. 1.4 we reproduce the main results of [44]. Using two tightly focused
laser beam, a double-well potential is created in a high vacuum environment and the
diffusion of a nanoparticle inside this energy landscape is recorded. The resulting
trajectories (Fig. 1.4 c.) exhibit typical bistable dynamics with a hopping statistics
depending, as expected by the theory, on the curvature and height of the energy bar-
rier, the temperature and the pressure of the surrounding gas. By probing various
pressure, this experiment scanned Kramer’s turnover with a maximal hopping rate for
a pressure of ca. 1500 Pascals, in agreement with theory. This experimental work is
a example of the combination of the high-resolution and flexible character of modern
optical trapping experiments with the broad descriptive character of Brownian motion.

Developments such as cavity cooling for quantum-ground state manipulation or
high-vacuum Kramers turnover, inspired by quantum optomechanics are highly promis-
ing for future fundamental work. Yet they do not replace a continuous effort within
the -apparently simpler- framework of overdamped optically trapped Brownian mo-
tion at ambiant temperature. This parallel development with an increasingly refined
connection with the complexity of natural systems is still providing numerous new
results, often linked to soft-matter and biological systems.

A large body of work in this field is grounded on the notions of small scale thermo-
dynamics and out-of-equilibrium physics, where Brownian motion is useful for making
physical processes visible and intuitive. Indeed, by connecting the laws of thermody-
namics with Langevin equations, the field of stochastic energetics, initiated by Ken
Sekimoto [45, 46] is endowing mechanistic equations with a thermodynamics content.
Especially suited to describe small systems, this new field of research experienced an
important development during the last two decades [47, 32, 48], which we do not in-
tent to review here. It is the core of the understanding of the laws governing energy
exchanges in biological systems at microscale, as for example a bacterium propelling
itself by consuming chemical fuel [49].

Such systems are called active because of their ability to convert an energy available
in the environment, (glucides [49], ATP [50, 51]) into another thermodynamic form of
energy such as heat, or work necessary for directed motion [26]. The non-equilibrium
nature of active systems [52, 53, 54] raised many fundamental questions on the nature
of thermodynamic equilibrium [55], the ingredients necessary to be out-of-equilibrium
[56, 57], and the tools to characterize this departure [58, 59, 60, 31, 61]. Even though
the concept of active matter applies to many different fields and ranges across many
different scales, key features can be approached using microscopic Brownian systems
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[62, 63, 55, 64]. Brownian models are easily described theoretically and studied exper-
imentally, eventually replacing actual living samples, that are harder to manipulate.
A large body of theoretical work has been published on the characterization of the
nature of active matter, and its non equilibrium thermodynamics [65, 66]. Recently,
an appealing interpretation has been proposed, with the idea that most of the speci-
ficities of active matter can be encapsulated in the concept on non-reciprocal coupling.

Figure 1.5: From [67], for the simple case of a set of two coupled
stochastic equations : the terms a01 and a10 are the coupling coeffi-
cients injecting the solution of one equation into another, as for exam-
ple the state of the propulsion mechanism into the position dynamic
for a self-propelled object (AOUP on the right panel). A similar set
of equations can describe a sensing mechanism [68] (left panel). The
case where a01 = a10 describes two variables symmetrically coupled
but immersed in two independent baths, as the examples of coupled
vanes (middle panel). The intermediate cases, are generic feedback
systems.

The work of Sarah A. M. Loos and Klaus Kroy [67], as well as some earlier work
[66, 69] put forward the very broad consequences of asymmetrically coupled Brownian
dynamics. If we focus on the aforementioned example of a self-propelled micro-scale
bacterium, its position is well described by a random variable obeying a Langevin
equation driven by two independent noises [66]. A first uncorrelated noise (white
noise) simulates thermal fluctuations of the surrounding fluid. A second correlated
noise (colored noise) simulates the effects of the self-propulsion mechanism such as the
bacterium flagella. Such correlated noise is itself the solution of a second Langevin
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equation, driven by a “virtual" white noise. The system is thus well described by a set
of two stochastic equations, with one coupling term, injecting the random propulsion
variable into the stochastic position equation. This case is called active Ornstein-
Uhlenbeck particle (AOUP) and will be described in details in Chap. 4, as a limit case
of unidirectional coupling, as shown in Fig. 1.5 (right, panel) where the only coupling
term is referred to as a01.

We see that non-reciprocally coupled stochastic processes is an operative way of
solving apparently complicated problems: in the previous example, it allow to get rid
of the colored noise, by treating it explicitly as an independent variable, instead of
a random term. Yet this framework is richer than only simplifying the description
of self-propelled objects. As seen in Fig. 1.5, the same framework applies to many
different systems, from biophysics [70] to optomechanics [71], by simply changing the
coupling terms. It enables a two-dimensional description of the process, which can
be a subtle way of revealing the irreversibility of the system, with visible steady-state
currents that break the detailed balance condition.

1.3 Towards analogues

In the previous section, we introduced the idea that optically trapped Brownian mo-
tion is an excellent way to tackle statistical mechanics problems, lying in various fields
of physics, chemistry or biology. This can be brought one step further by implementing
genuine analogues.

The idea of analogy in physics has a history in itself, with celebrated examples, as
Maxwell’s analogies [72, 73] in his derivations of the laws of electrodynamics. As ana-
lyzed by Francesco Nappo [74], Maxwell’s analogies seem to possess a double nature.
On the one side, they have a pedagogical and interpretative power as they “serve to
clarify the equations proposed for an unfamiliar domain with a working interpretation
drawn from a more familiar science", but in the other side, they are “sources of de-
feasible yet relatively strong arguments from features of the more familiar domain to
features of the less".

Analogies are also used in experimental physics, in order to achieve quantitative
statements on systems that are hard to access directly [75, 76, 77]. As an illustrative
example, the group of Chunquan Sheng [78] used a microsphere, embedded in a poly-
mer waveguide to mimic the curved space-time in the vicinity of massive object.
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Figure 1.6: (a) Adapted from [78]: deflected
light beam around a microsphere in a poly-
mer waveguide is the analogue to gravitational
lensing. (b) Recent image from James Webb
telescope [79], displaying gravitational lensing
on a galaxy.

Their experimental setup allows to ex-
plore several regimes, from weak to
strong lensing effects. The results are
in agreements with simulations based
on the geodesic path of massless parti-
cle in curved space. We represent on
Fig. 1.6 the analogy presented in this
work as well as an example of bended
light beam. This illustrative example
shows how table-top experiments can
serve to study hard-to-access physical
systems.

Formal analogies will be the core of
Chap. 4 and Chap. 5, to study two
very different physical systems: living ac-
tive matter in the first case and quan-
tum open systems in the second. We will
rely on the flexibility of optically trapped
Brownian motion to build analogue ex-
periments and extract quantitative mea-
surements.

The possibility to use optically trapped Brownian motion to simulate statistical me-
chanics or build analogues as presented throughout this introduction relies on strict
assumptions regarding the reliability of the experimental setup, as well as fundamen-
tal properties, such as the ergodic nature of the stochastic process. The experimental
verifications of those properties will be the scope of Chap. 2 and Chap. 3.
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1.4 Content of the thesis

In this thesis, we use a versatile optical trapping setup to probe the properties of
various stochastic processes. Our control on the parameters, combined with the for-
mal simplicity of Brownian dynamics allowed us to probe fundamental aspects such
as diffusivity and ergodicity of a Langevin process. By adding well controlled external
driving, we then designed two analogue experiments where optically trapped Brow-
nian motion is applied to two a priori disconnected fields, namely active matter and
open quantum systems. In the following, we briefly overview the content of the thesis,
chapter by chapter.

Chapter 2 is dedicated to the main experimental, numerical and analytical meth-
ods to study Brownian motion in an optical trap. We introduce the experimental and
numerically methods used to study such optically trapped microparticle and follow
its time-dependant position. The Langevin process is connected to the deterministic
Fokker-Planck equation. For a harmonic confinement, Fokker-Planck equation simpli-
fies to an ordinary differential equation for the motional variance. It is explored with
statistical ensemble, built by cutting and re-assembling a long time-series of recorded
positions. This method is used for looking at the response of the trapped microsphere
to a quench in the optical potential: by applying the same quench sequentially we built
an ensemble of sub-trajectories on which deterministic quantities, such as the position
probability distribution and its moments are derived. The Power Spectral Density
(PSD) of positions is used to calibrate our optical setup and recover the trajectory
of the microsphere from the recorded signal. The Mean-Square-Displacement is used
to study the normality of the diffusion, by probing the short-time linear increase of
squared displacements, as predicted by Einstein theory of Brownian motion. Finally,
we introduce the framework of stochastic thermodynamics, connecting Langevin equa-
tion with the first law of thermodynamics.

In Chapter 3, we focus on two subtle and complementary observables of stochastic
processes at play. First, we implement an operative test to demonstrate the ergodic
nature of the stochastic process in our optical trap. This ergodic criterion is applied to
a Brownian trajectory in our optical trap, proving its ergodicity, before being applied
to an experimental stochastic resetting process [80], known theoretically to be non-
ergodic [81]. This counter-example clarifies the meaning of the ergodic criterion, and
also unveils an original method to correct long-time drift of very small amplitudes. In
a second time, the long-time stability of the experimental setup is demonstrated using
an Allan-variance based test.
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Equipped with such tests, Chapter 4 explores an active matter analogue built with
an external optical force. We introduce the experimental methods needed to build an
auxiliary bath with a stochastic radiation pressure before focusing on the case of expo-
nentially correlated noise, which is known to be a minimal model to emulate effects of
active matter. The trajectories of the microsphere under such a noise are shown to be
superdiffusive and to break the equipartition theorem, unveiling the non-equilibrium
steady state (NESS) nature of the process. We take advantage of the color-dependent
response of the microsphere dynamics to design color-based protocols where the cor-
relation time of the noise is used as a time-dependent parameter to drive the system
through a NESS-to-NESS transition. The ergodic nature of the trajectories is verified
before applying a STEP-like changes of color and observe the dynamical responses
through the time-evolution of the motional variance. The non-equilibrium nature of
the trajectories is explored. A rheological experiment demonstrates the violation of
the fluctuation-dissipation theorem and a stochastic thermodynamics analysis gives a
quantification of the heat released in the fluid bath by the particle under colored noise.
Finally, an information thermodynamics interpretation of the process is proposed and
discussed.

Chapter 5 deals with a classical stochastic analogue of an open quantum sys-
tem, modeled through the so-called quantum drift-diffusion equation. This model
is applied to the special case of harmonic confinement, where the exact results of a
Wigner kinetic model are recovered at first order in Planck’s constant, providing a
validation of the drift-diffusion model. After noting the formal similarity between the
quantum drift-diffusion model and a Fokker-Planck equation, we derive the associated
stochastic equation, which has the peculiar property of depending on the probability
density itself through the quantum Bohm potential (McKean-Vlasov process). The
McKean-Vlasov process is first explored a numerically, by reconstructing the quantum
potential through an ensemble of classical processes. Through the example of diffusion
in a Duffing double-well potential, we discuss the impact of the quantum potential on
the statistics of the residency times. The mean residency time is significantly shorter
in the quantum case, which is reminiscent of the tunnel effect in standard quantum
mechanics. Finally, we implement experimentally this stochastic process and study
non-equilibrium potential protocols through the relaxation of the motional variance,
from an initial equilibrium state to a different final equilibrium state.

Chapter 6 gives a general conclusion to this thesis, putting the main results in
perspective with current challenges and ongoing projects.
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Chapter 2

Brownian motion in an optical trap

2.1 Introduction

This chapter introduces the main experimental and numerical techniques as well as
the theoretical observables used to explore Brownian motion in an optical tweezer.
The development of optical tweezer over the last decades [2, 3, 82] gave access to the
dynamics of single micron-sized objects. It allowed to study the nature of the optical
field [83], to measure small forces [84, 85, 86] e.g. Casimir force [87], or, by studying the
mechanical trajectories themselves, to probe the Brownian dynamics of micro-objects
[88, 89, 90, 91]. The latter point, by providing individual stochastic trajectories in a de-
fined energy landscape and bath, was used to investigate experimentally the interplay
between the diffusive dynamics and its environment. For example, the application of
optical tweezer to biological matter unveiled anomalous diffusive properties due to the
complex active environment [92, 93, 94]. Various observable can be constructed with
the stochastic trajectories to access their properties. For example, the spectral analysis
of the trajectories though the power spectral density unveil different diffusive regimes,
and can be used to calibrate an optical trap [95]. In the time-domain, the mean-
squared displacement of the position in the trap is used for example to discriminate
normal Brownian diffusion from anomalous diffusion [96, 97, 98]. As a last landmark,
optically trapped Brownian objects allowed experimental tests in the recent develop-
ment of stochastic thermodynamics [32, 99] and Brownian engines [100, ?, 101] where
thermodynamic quantities such as work, heat and entropy are derived and probed at
the level of single stochastic trajectories.

Here we start by presenting the optical trapping experimental setup used through-
out the thesis as well as the associated measurement, calibration and analysis tech-
niques. The experimental platform is complemented by numerical simulations of
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stochastic trajectories. As a model for the Brownian motion at play, we discuss the
Ornstein-Uhlenbeck process, with specific constrains put on the nature of the thermal
noise, that we carefully assess. Standard quantities like correlation, spectral density
and mean-squared displacement are implemented and studied and the same quantities
will be used again in the Chap. 4 and Chap. 5 to understand the nature of more com-
plex diffusion processes. In the final section, we explain how the recorded stochastic
trajectories can be studied from a stochastic thermodynamics point of view.

2.2 Langevin dynamics in an optical trap

2.2.1 Optical setup

Our experiment consists in trapping a single Brownian object in the harmonic potential
created at the waist of a focused laser beam. A schematic view of the setup is given
in Fig. 2.1.

A linearly polarized Gaussian beam (OBIS Coherent, CW 785 nm, 110mW) is
focused by a water immersion objective (Nikon Plan Apochromat 60⇥, Numerical
Aperture 1.20) into the sample that consists of a cell made of a glass slide and a cov-
erslip, separated by a 120 µm thick and 13 mm wide adhesive spacer (Grace Bio-Labs
SecureSeal). The cell is filled with a colloidal dispersion of polystyrene microspheres
(in this chapter: ThermoFisher FluoSpheres polystyrene microspheres, 1 µm diameter
±2%, in Chap 4: Duke Scientific Corp. 3 µm diameter) diluted in deionised water.
We start with a solution of concentration of 1010 beads/mL that we dilute with a ratio
1:105 (N.B. this leads to about a thousand beads in the whole volume of the sample,
leading to approximately one bead per 0.5 mm

2 if we consider a quasi 2D cell ; this
allows easily to work with a single bead). The cell is then taped to a metal holder
mounted in our optical setup. The instantaneous position of the trapped single bead is
recorded using an additional low-intensity counter-propagating laser beam (Thorlabs
HL6323MG CW 639 nm, 30 mW, but here used at low power ⇡ 1mW), focused on the
bead using a second objective (Nikon Plan-fluo Extra Large Working Distance 60⇥,
Numerical Aperture 0.7). Within the small trapping volume defined by our setup,
the intensity of the light scattered by the microsphere scales linearly with its displace-
ment xt along the optical axis. This scattered intensity signal is collected through the
trapping objective and sent to a P.I.N. photodiode (Thorlabs, model Det10A2). The
output signal goes through the data acquisition chain schematised on Fig. 2.2.

Another way to record the instantaneous position of the microsphere is to collect
the part of the trapping 785 nm beam that is back-scattered by the microsphere.
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Figure 2.1: Simplified optical setup: the 785 nm trapping laser beam,
drawn in red, is optically isolated with a Faraday isolator, expanded
with a telescope to overfill the input lens of the microscope objective
Obj.1 (Nikon Plan-Apo VC, 60⇥1.20 Water Immersion) thus focused
on the sample. A second low-power 639 nm laser beam is used as a
passive probe to measure the position of the bead. The beam is sent
to the sample via a low-NA objective Obj.2 (Nikon Plan-fluo ELWD
6⇥0.70) and the light scattered by the sphere is collected by Obj.1 and
sent to a photodiode (Thorlabs Det10a). A third low-power 594 nm

laser beam is used to image the sphere, focused at the back focal
plane of Obj. 2 to go through the sample as a plane wave. The light
is collected by Obj. 1 and send to a CCD camera using a dichroic
filter (DF).

It is collected by Obj.1 and transmitted though the PBS, it can then be sent to a
photodiode (photodiode on the right of Fig. 2.1). However, as detailed later, the
trapping beam is often modulated in intensity during experiments, in order to act on
the microsphere, therefore, this detection method rely on some signal separation, that
can be unpractical. Yet an important result of this alternative detection, is precisely
to verify that the probing 639 nm beam is not modifying the dynamics of the bead.
To do so, we verify with a recording from the back-scattered light, that a trajectories
measured with or without the 639 nm laser beam have the same properties.

The photodiode output in Volt is sent to a low noise amplifier (Stanford Research,
SR560); it is filtered through a 0.3 Hz high-pass filter at 6 dB/oct in order to remove
the DC component of the output signal and through a 100 kHz low-pas filter at 6
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Figure 2.2: Schematic representation of the data acquisition chain,
from scattered light intensity to voltage digitalised traces recorded on
a computer.

dB/oct to prevent aliasing. It is finally acquired by an analog-to-digital card (Na-
tional Instrument, PCI-6251) and stored as a time-series of voltage in a computer.
The scattering intensity is linear with the position of the bead i the vicinity of the
trapping laser waist. Since we work with small light intensity, the output voltage of
the photodiode is also linear with the input light intensity. It is again linearly scaled
by the amplifier, to yield an overall linear relation between the voltage values stored
in the computer and the position of the bead v(t) = axt + b. It will later be explained
how to experimentally calibrate this linearity to obtain positions in meter.

In our experiment, it is crucial to trap only one bead at a time. To achieve this,
we rely on (i) a low concentration of beads in the solution as detailed above and (ii) a
direct imaging of the vicinity of the trap (approximately 100 µm) with a transmission
microscopy system; a low power 594 nm laser beam is extended using a telescope and
focused in the back-focal-plane of the low numerical aperture objective. It enters the
fluidic cell as a plane wave and the light scattered by the suspended fluid is recorded
by the trapping objective, then separated from the other beams using a dichroic filter
and sent to a CCD camera. This allows us to have an instantaneous image of the
colloidal dispersion, helpful for searching a sphere to trap and for ensuring that only
one object is actually trapped. A second important point is ensured by the thickness
(120 µm)of the cell: the trapping region must be localised far enough from the walls
to keep fluid parameters constant. The choice of the trapping wavelength (785 nm)
also avoids heating locally the fluid, since it corresponds to the visible transparency
window of water.

The optical force created by the focused 785 nm laser beam is responsible for the
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trapping of the microsphere. Several frameworks have been used to describe optical
trapping forces, depending on the size of the particle with respect to the wavelength.
As explained in Appendix 8.1, the Rayleigh regime [102] provides a good framework
to physically interpret the experiment. It is a dipolar approximation of the particle,
suited for objects very small with respect to the wavelength of the trapping beam. As
shown in [103], it can operatively be extended for the gradient force (trapping) term,
up to particle of radius of the same order as the trapping beam waist. Within this
framework and for small enough displacements r around the waist of the trapping
beam, the gradient force is linear F trap(r) = �r. This linear conservative force can
be written as the gradient of a potential

V (r) =
1

2
r2

, (2.1)

where the stiffness  is proportional to the optical power of the trapping laser. The
OBIS laser used here can be driven via an input voltage that we generate with a
function generator (Agilent 33220A, 20MHz). This allows to control the stiffness of
the optical trap. Using this technique, we can dynamically change the potential by
modifying the optical power and record the instantaneous trajectory experiencing this
change of energy landscape. We will refer to this process as a protocol of stiffness, that
can be set to follow various time-dependant profiles (t).

2.2.2 Brownian dynamics and Ornstein-Uhlenbeck process

The microsphere is diffusing in three dimensions within in the optical potential. We
however probe only its motion along the optical axis (along the 639 nm and 785 nm

laser beams on Fig. 2.1) that we denote x. We will therefore only work in one dimen-
sion of interest x for all the work presented in this thesis.

The microsphere in the optical trap is subjected to different forces. As discussed
above, the optical force that stems from the 785 nm laser beam derives from a harmonic
potential that writes, in one dimension

V (x) =
1

2
x

2
, (2.2)

fully characterised by its stiffness , leading to a restoring force Ftrap = �dV (x)
dx

= �xt

Since the microsphere is immersed in water, it will also experience two forces from
the fluid.
(1) at room temperature, the water molecules forming the surrounding bath are ther-
mally agitated and, by bouncing on the microsphere, produce a noisy force. The fluid
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correlations in water at ambiant temperature are in the terahertz range [104], hence
when the dynamics is measured at lower frequencies, this thermal noise appears as
uncorrelated. It can be model as force of random amplitude whose values ⇠t at a time
t and ⇠s at a time s are �-correlated: h⇠t⇠si = �(t�s) where h.i means the average over
many realisations of the noise. Since the Fourier transform of the Dirac �-function is a
constant, this uncorrelated noise possesses a flat spectrum, which is called white noise.
The amplitude of the noisy thermal force induced on the microsphere by the fluid is
given by the diffusion coefficient D.
(2) the microsphere pushed by the random thermal force in the fluid will then expe-
rience a drag force that will be opposite to its velocity as Fviscous = ��ẋt where ẋt

is the derivative of the position and � is the viscous drag of the tracer in the fluid,
computed with the Stokes formula � = 6⇡⌘R where ⌘ is the viscosity of the fluid and
R is the radius of the sphere.

The fluctuation induced by the agitation of the water molecules and the drag op-
posing to the velocity stems from the interaction with the same fluid bath and their
properties are connected. This is clearly expressed by the Einstein relation, special
case of the fluctuation-dissipation theorem relating the amplitude of the thermal force,
imprinted in the diffusion coefficient, to the viscous drag through D = kBT/�, where
kBT is the thermal energy, Bolzmann’s constant multiplied by fluid temperature. The
thermal force writes Fth =

p
2kBT�⇠t =

p
2D�⇠t. The overall equation of motion is

obtained with Newton’s law for a sphere of mass m

mẍt = ��ẋ� xt +

p
2kBT�⇠t. (2.3)

Equilibrium canonical statistical mechanics teaches us that this system eventually
reaches thermal equilibrium with the bath, where the energy provided by the thermal
fluctuations are dissipated by the viscous forces. The positions and velocities then
follows the Maxwell-Boltzmann distribution. The canonical distribution for the two
quadratic degrees of freedom ẋ and x connected to kinetic energy mẋ

2
t
/2 and potential

energy x
2
t
/2 thus writes as:

⇢(xt, ẋt) =
1

Z e
��(mẋ

2
t /2+x

2
t /2) (2.4)

where � = 1/kBT is the inverse thermal energy and Z =
R
dx
R
dẋe

��(mẋ
2
t /2+x

2
t /2) is

the partition function. The two marginal distributions along position and velocities
are simply partial integrals of this bivariate distribution. For example, the partial
integration on velocities P (x) =

R
⇢(xt, ẋt)dẋt leads to the position probability density

Peq(x) =
1

Zx

e
��x

2
/2
, (2.5)
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where the normalisation constant is Zx =

p
2⇡kBT/. This distribution is a Gaussian

with zero mean and variance �
2
x
= kBT/.

The thermalisation time ⌧th needed for the velocities to reach thermal equilibrium
distribution is given by the ratio between the mass and the viscous drag ⌧th = m/�.
For a polystyrene microsphere of diameter of 1 µm, the mass is 5.5 ⇥ 10

�16
kg the

Stokes drag is � = 8.9837 ⇥ 10
�9

kg/s this time is of the order of 10
�7

s. On the
other hand, the time needed for the position to reach thermal equilibrium distribu-
tion is given by the ratio between the viscous drag � and the stiffness , for typical
experimental parameters,  ⇠ 10

�6
N/s

2, this time is of the order of the millisecond
⌧relax = �/ ⇠ 10

�3
s. We note here the clear separation of time scales between ve-

locity and position relaxation, both also well separated from the bath correlation time
⇠ 10

�12
s (therahertz range discussed above).

This separation of time scales define different regimes: first, both thermalisation
time ⌧th and relaxation time ⌧relax needs to be large with respect to the correlation time
of the fluid to ensure the validity of the coarse-grained equation Eq. (2.3). Furthermore
if the experimental bandwidth does not includes the fast degree of freedom ⌧th, the
velocities will always appear at equilibrium, one thus cannot probe their relaxation.
This regime, known as overdamped limit is a consequence of the clear separation of ⌧th
and ⌧relax due to the small mass and large viscosity of the fluid, hence low Reynolds
number. In this case, the inertial term in Eq. (2.3) is much smaller than the other
terms and can be disregarded. The dynamics of the microsphere in the optical trap
is then defined by the following overdamped dynamic, corresponding to an Ornstein-
Uhlenbeck stochastic process

�ẋt = �xt +

p
2kBT�⇠t, (2.6)

which can be written under a more convenient form by using the diffusion coefficient
D = kBT/� and introducing the inverse relaxation time (typical pulsation) !0 = /�

and the Wiener increment dWt = ⇠tdt

dxt = �!0xt +

p
2DdWt. (2.7)

The stochastic process xt describing the instantaneous position of the microsphere
in the trap is the solution of the stochastic differential equation Eq. (2.6) or (2.7).
It can be conveniently computed via Laplace transform as detailed in Appendix 8.2.
This transformation has the advantage of making explicit the initial conditions of the
dynamic. This leads to the solution

xt = x0e
�!0t +

p
2D

Z
t

0

e
�!0(t�s)

⇠sds, (2.8)
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where x0 is the initial position at time t = 0. The integral over time shows the corre-
lation or memory kernel of the position xt with respect to a position in the past xs,
characterized by the relaxation time !

�1
0 = ⌧relax in the exponential.

Figure 2.3: Stochastic trajectory xt obeying to Eq. (2.7) recorded for
10 minutes at a rate of 215 Hz, shown here over 30 ms. This trajectory
is recorded with a trap of stiffness  = 2.9614 ± 0.0673 pN/µm, at
room temperature, T ⇡ 295 K. The 1 µm bead experiences a drag
coefficient � = 6⇡⌘R kg/s where ⌘ ⇡ 0.95 · 10�3

Pa s, hence � =

8.9837⇥ 10
�9 kg/s. Probability distribution (blue bars) of the whole

ten minutes trajectory, along with the theoretical distribution Eq.
(2.5) (red line). The data presented on this figure will be used in
this chapter and the following. The same 10 minutes-long trajectory
will serve to illustrate the stationary tools developed in the following
sections and for the studies of the next chapter, that are used in [105].

On Fig. 2.3 we represent a trajectory recorded with our optical setup within the
experimental conditions detailed in Sec. 2.2.1. In this experimental example, a 1 µm
polystyrene microsphere is trapped using an optical power of 40 mW leading to a stiff-
ness  of 2.96 pN/µm. On the right panel, we display the corresponding probability
distribution, a histogram of the ten minutes-long trajectory along with the Gaussian
Peq(x) computed with experimental parameters. On the figure, we see the good agree-
ment between the histogram and the theoretical Gaussian density. We emphasize that
it is the same 10 minutes-long trajectory presented Fig. 2.3 that will be used in this
chapter and the following as well as in [105].
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Further, more subtle features can be derived that characterise further the properties
of the trajectory, as we will detail is Sec. 2.5. Before doing that, we introduce two
important concepts in the following sections. First we will describe how to numerically
simulate such Brownian trajectoires. These simulations will be useful both to test and
verify experimental results, but their derivation also gives deep insight on the nature
of the stochastic process associated with Eq. (2.7). Then, we will focus on the non-
equilibrium dynamics at play when looking at the transient response of Brownian
trajectories. This will lead us to introduce the notion of ensemble of trajectories.

2.3 Numerical simulations of Langevin dynamics

The time evolution of our process is described by a stochastic differential equation.
Let us first summarize how ordinary differential equations are generally numerically
simulated by approximating the time derivative by a finite difference, and using this
difference to evaluate the solution at a time-step i as a function of its value at step
i� 1. The approximation of the process gets closer to the exact solution as the size of
the time-step diminish. Formally, the discretisation procedure is a consequence of a
Taylor expansion of the trajectory for small time increments. By taking into account
more terms in the expansion, the derivatives can be approximated with increasing
precision while keeping the same time-step. For the ordinary differential equation

dxt

dt
= a(x, t), (2.9)

the Taylor expansion until second order in time-increment �t writes

xt+�t = xt +�t
dxt

dt
+�t

2d
2
xt

dt2
+O(�t

3
). (2.10)

A numerical approximation Yi of the solution xt can therefore be obtained by truncat-
ing the Taylor expansion at a given order. For example, the first-order approximation
of Eq. (2.9) writes

Yi+1 = Yi + a(Yi)�t (2.11)

know as Euler scheme for a given initial condition. The next order will involve the
derivative a

0
(Yi), leading to a better approximation of the exact process xt.

For a stochastic differential equation as

dxt

dt
= a(x, t) + b(xt)⇠t, (2.12)

that can be more conveniently we written

dxt = a(xt)dt+ b(xt)dWt, (2.13)
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with a drift term a(xt) and a diffusion term b(xt), the main issue is to evaluate the
random Wiener increment dWt. More formally, the question is how to generalise the
aforementioned procedure of discretisation to the stochastic case. A large body of lit-
erature is available on the derivation of algorithm for stochastic differential equations
[106, 107, 108, 109], here, we mostly underline what differ from an ordinary differential
equation.

Similarly to the ordinary case a first order approximation of Eq. (2.13) can be
written as

Yi+1 = Yi + a(xi)�t+ b(xi)�Wi, (2.14)

where the Wiener increment �W =
R

t+�t

t
dW can be simulated by �W = ⇠

p
�t ⌘

N (0, 1)
p
�t. It is known as Euler-Maruyama scheme.

An important difference between the ordinary and stochastic cases, is that the
scaling �W /

p
�t implies that the ”order" of approximation of a given truncation

of Taylor expansion is less clear for a stochastic process. Therefore, the question of
the convergence of an approximated solution to the exact result must be addressed
with quantitative tools. Two criteria are used. The strong convergence criteria [107]
evaluates the average absolute difference of the YN and xtf

at final time tf = N�t. If
there are constant C and n such that

E(|xtf
� YN |)  C�t

n (2.15)

the algorithm is said to converge in the strong sense with order n [107]. However, when
the quantities of interest are mostly average, variances or other low order moments,
such criteria is not necessary. We can instead rely on the criterion of weak convergence
[108], i.e. convergence of the means. We say that an algorithm has a weak order of
convergence n is there exist a constant C such that for all function f(Xt)

|E (f(xt))� E (f(Yi)) |  C�t
n
. (2.16)

In our case we will test the weak convergence of the algorithm on the variance and use
f(xt) = x

2
t
. To evaluate the weak order of convergence of our codes, we therefore run

the algorithm for a set of parameters and for different discretization precision �t and
compare the resulting sample variance to its theoretical value. Since we wish to build
algorithm the simulates the dynamics of our experimental setup where a(x, t) = �xt

and b(x, t) =
p
2D, the equilibrium variance is given by kBT/. Hence the error is

evaluated as eweak = |1�E(Y 2
i
)/(kBT/)|, and the order of convergence is the scaling

of eweak with �t.
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2.3. NUMERICAL SIMULATIONS OF LANGEVIN DYNAMICS

Furthermore, in this case, all first derivatives of b(xt) and second derivatives of a(xt)

are zero, which drastically simplifies the Taylor expansion of the differential equation.
As detailed in Appendix 8.4, the next order approximation of Eq. (2.13) writes

Yi+1 = Yi + ai�t+ bi

p
�t⌘

+ bia
0
i

1

2

✓
⌘ +

1p
3
✓

◆
�t

3/2
+ aia

0
i
�t

2
(2.17)

where ⌘ and ✓ are two uncorrelated random numbers N (0, 1).

Figure 2.4: Weak convergence test of both Euler-Maruyama and
second order algorithms. We plot the errors evaluated as the nor-
malized difference between the measured variance and the theo-
retical result derived from equipartition kBT/. Namely eweak =

|1 � E(Y 2
i
)/(kBT/)| for different values of the time increment �t.

We observe that the slopes of �t
1.1748 and �t

1.9965 are close to the
expected ones of �t

1 and �t
2 respectively.

The weak order of convergence of Euler-Maruyama algorithm is known [107] to be
n = 1 while second order approximation is supposed to converge with order n = 2.
On Fig. 2.4 we show the result of the weak convergence criterium for both first or-
der approximation Eq (2.14) and second order approximation Eq. (2.17). We see a
convergence of order n = 1.1748 for the former, close to the expected value of 1 and
n = 1.997 for the latter close to the expected value of 2.

This result means that the error we get on the variance evaluated on a trajectory
simulated with the second order code Eq. (2.17) vanishes faster for the same discretiza-
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tion �t. This can allow to reach high precision while keeping reasonable computation
cost, since a fine discretization demands more time-steps to probe the same dynamics.
In most cases, this first-order scheme is good enough to provide reliable numerical
results, it will be used in Chap. 4 and 5. In the following however, and in Chap. 3
we study stationary properties of trajectories on long times and with fine precision.
The aim is to evaluate the long-time properties of the trap, such as stability as well
as the short-time transition from free-like to trapped diffusion. In this case, precision
is needed and an algorithm with higher efficiency is useful.

2.4 From random trajectories to deterministic en-

semble distributions

To study out-of-equilibrium dynamics with deterministic (averaged) quantities we will
rely on building statistical ensemble of stochastic trajectories xt. As seen Fig. 2.3,
associated probability densities converge to known distributions, characterised by the
physical parameters of the process, in our case, the stiffness  and the diffusion co-
efficient D. More generally, a given distribution P (xt, t) is time-dependent and its
deterministic dynamics obeys the Fokker-Planck equation associated [110] with the
process Eq. (2.7):

@P (x, t)

@t
= � @

@x

✓
xt

�
P (x, t)

◆
+D

@
2

@x2
P (x, t). (2.18)

If the physical parameters  and D are constant, the system eventually reaches the
time-independant equilibrium solution Eq. (2.5). But when the system is out-of-
equilibrium and is undergoing a transient or forced evolution, the time dependence of
P (x, t) appears. The simplest case to discuss here is the response to a sudden change
of one parameter in the process Eq. (2.7) as the potential energy in which the process
evolves. By abruptly changing , one modifies the potential, going from an initial Vi,
for which the bead is at equilibrium to a final potential Vf with different parameters.
The initial density of position Pi(x) ⇠ e

� �Vi is not the equilibrium solution of the
new potential and the process xt will undergo a transient evolution to a new state,
with equilibrium density Pf (x) ⇠ e

��Vf . In our case, the optical potential is locally
harmonic, and as detailed Sec. 2.2.1, its stiffness  can be controlled by varying the
intensity of the trapping laser.

If many useful information can be extracted from single stochastic trajectories
[111, 112, 47, 32, 48], the mechanical relaxation of the system from an initial to a
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final equilibrium state is best understood though distributions and moments. There-
fore, it is crucial to build large ensembles, over which we can measure for example the
time-dependent ensemble-variance, that contains all information on the dynamics of
the relaxation of the microsphere under a change of .

As detailed in Sec. 2.2.1, our experiments allow us to record the successive posi-
tions of the trapped bead, forming one single trajectory xt. Ensembles are built by
relying on the ergodic hypothesis, which will be carefully discussed in the next chapter.
Ergodicity allows us to gather subparts of the trajectory xt as independent individual
shorter trajectories x

i

t
and regrouped to build an ensemble {xi

t
}, from this collection.

To study the response of our system to a parameter change , such as an abrupt
STEP-like change of stiffness , we apply the desired protocol sequentially, at a low-
enough repetition rate, in order for the system to reach equilibrium between each event.
With a typical relaxation time of a millisecond, the period of repetition is usually a
few tens of milliseconds. We record synchronously both the trajectory experiencing
the sequence of protocol and the imposed stiffness evolution (t), through the voltage
sent to the trapping laser. The simultaneous knowledge of xt and (t) allows, around
each change of , to draw a sub-trajectory, long enough to include equilibrium before
and after the protocol.

Fig. 2.5, shows the method used to build the ensemble for such a STEP-like change
of stiffness. We only show a small excerpt of the five minutes long time-series of posi-
tion recorded, experiencing in total ⇡ 10

4 changes of potential energy. The resulting
ensemble {xi

t
} corresponds to all the synchroniszed sub-trajectories associated STEP-

like changes of stiffness  going from 9.6 to 13.6 pN/µm On this ensemble {xi

t
}, we

can compute a time-dependent instantaneous density P ({xi

t
}, t), as a histogram of the

position (defining a grid of bins and counting the individual positions measured in
each bin). This histogram is normalized and converges to the probability distribution
P (x, t) solution of Eq. (2.18) for a large ensemble of trajectories.

On Fig. 2.6 (a), we show a contour plot of the time-dependant probability distribu-
tion P (x, t) computed as an histogram on the ensemble. At each time, the distribution
follows a Gaussian profile as in Fig. 2.3 and the width of the Gaussian goes from an
initial variance for negative time to a final variance for long times. In between, around
0 to a few ms, it undergoes a quench. Since the distribution is Gaussian with zero
mean, it is well described by its time-dependant variance �

2
x
(t), it obeys a determin-

istic equation that can be derived by injecting a zero-mean Gaussian Ansatz in the
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Figure 2.5: Schematic view of the method implemented to build an
ensemble. A long time-series of position experiencing some sort of
protocol at a low repetition rate (here STEP-like change of the po-
tential energy every circa. 30ms shown on the top graph) is cut is
sub-trajectories centred around one protocol. The ensemble is the
reunion of the synchronised sub-trajecotries.

Fokker-Planck Eq. (2.18) leading to

d�
2
x
(t)

dt
= �2

�
�
2
x
(t) + 2D, (2.19)

a simple first order ordinary differential equation. When the initial condition is dif-
ferent from the stationary result kBT/, it undergos an exponential evolution on a
time-scale 2�/ from initial condition to the equilibrium variance.

For a STEP-like change of stiffness with initial equilibrium �
2
x
(t < 0) = kBT/i,
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Figure 2.6: (a) Contour plot of the time dependent probability dis-
tribution of ⇡ 10

4 trajectories experiencing a step-like change of stiff-
ness. At time 0, the stiffness is increased from 9.6 to 13.6 pN/µm
and the density is quenched, with a smaller final variance. (b) Time-
dependent variance of the ensemble of trajectories experiencing a step-
like change of stiffness. The colored patch corresponds to 99.7% con-
fidence interval, with error computed as the sum of the systematic
errors performed on the radius of the bead and temperature of the
fluid, as well as the statistical error on the estimator of the variance,
evaluated with a �

2 test at 3�. The black dotted line corresponds
to the analytical solution of Eq. (2.19) evaluated experimental pa-
rameters (t) and D. The data presented here belong to the series of
measurement presented in details Chap. 3 and in [113]. The calibra-
tion method and errors evaluations is more detailed in Chap. 5.

the solution of Eq. (2.19) writes

�
2
x
(t) =

✓
kBT

i

� kBT

f

◆
e
�f t/2� +

kBT

f

. (2.20)

On Fig. 2.6 (b), we represent the variance of the aforementioned distribution around
the quench. We can clearly observe the decrease of variance when the stiffness is in-
creased, this transient evolution is well fitted by the analytical Eq. (2.20). The method
to calibrate the data and obtain an agreement between the experimental result and
the analytical solution is detailed Chap. 5 when the data presented here are explored
in more details.

In this section, we detailed how non-equilibrium transient evolutions can be probed
using an ensemble of trajectories constructed from a sub-sampled a single long tra-
jectory. In this case, the time-dependant Gaussian distribution is characterised by
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its variance that obeys an ordinary differential equation. Here we focused on time-
dependent case. In stationary state also, statistical tools are available to characterise
the nature and the physical properties of the trajectory. By Fourier transforming
the Brownian trajectory, one can compute the corresponding power spectral density
and describe the nature of the thermal noise driving the dynamics. Using composed
averages, one can also derive the autocorrelation function of the position and the mean-
square-displacement that characterise the diffusivity of the tracer. Those quantities
can be measured on an ensemble, or as time-averaged quantities taken on a single long
stationary trajectory. In the next section, we will detail how to derive their analytical
expressions and how to evaluate them on a trajectory to get useful information on its
properties.

2.5 Stationary spectra, correlation functions and mean-

square-displacements

While in the stationary state, the distribution of position and its variance are con-
stant, other observables are available to characterise the nature of the process. In this
section, we show that the power spectral density, autocorrelation function and mean-
square-displacement of the position of the microsphere inside the trap constitute such
observables and how they can be evaluated using experimental data, numerical simu-
lations and analytical results.

2.5.1 Spectral representation and calibration

An essential feature of Brownian systems is given by their power spectral density
(PSD). PSDs are largely used [114, 95] to characterise the nature of a noisy dynamical
system or to calibrate optical tweezers. The PSD of our process is obtained by Fourier
transforming Eq. (2.6)

� i!x[!] = �!0x[!] +

p
2D⇠[!] (2.21)

where x[!] is the Fourier transform of xt. Isolating x[!] gives

x[!] =
1

!0 � i!

p
2D⇠[!] ⌘ �[!]Fth[!] (2.22)

where we introduced the mechanical susceptibility �[!] of the system (the diffusing
microsphere) to the thermal force Fth[!]

�[!] = 1/(� i�!) (2.23)
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which will be used in Chap. 4 to probe fluctuation-dissipation relation via rheology
measures. The one-sided PSD Sx[!] is obtained as the squared norm of x[!]

Sx[!] = |x[!]x⇤
[!]| = 2D

!
2
0 + !2

(2.24)

this Lorentzian profile is often evaluated as a function of frequency 2⇡f = !, leading
to Sx[f ] = D/(⇡

2
(f

2
c
+ f

2
)) where fc = /2⇡� is known as the roll-off frequency. It

separate a low-frequency regime where the spectrum is flat -reflecting the long-time
stationary state where the bead has explored all the potential landscape- from a high-
frequency 1/f

2 regime reflecting the free-like short-time diffusivity of the bead.

Figure 2.7: Experimental power spectrum density (PSD) evaluated
for a trajectory x(t) measured from 0.03 Hz to 100 kHz, displaying
a large signal-to-noise ratio, spanning over 4 decades. We also note
the transition (vertical black continuous line), at the roll-off frequency
(53.6511 Hz) between the high frequency, almost-free, regime and the
low frequency trapped regime. The thermal noise plateau 2kBT�/

(horizontal black dashed line) agrees well with the low frequency limit
of the PSD, as expected. From the Lorentzian fit performed on the
PSD, we can extract the stiffness  = 2.9614 ± 0.0673 pN/µm. The
experiments are performed at room temperature, with T ⇡ 295 K.

On Fig. 2.7 we show the spectrum from the same 10 minutes-long trajectory shown
Fig. 2.3 and studied throughout this chapter and the following. We superimpose a
fit performed with the analytical Lorentzian Eq. (2.24). With a vertical black line we
indicate the roll-off frequency fc and with an horizontal black dashed line we underline
the amplitude of the low-frequency plateau kBT�/⇡

2

2.
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A PSD can be used to calibrate our optical setup. As detailed in Sec. 2.2.1,
the physical signal recorded is a voltage, amplified and filtered at the output of the
photodiode. This voltage is proportional to the instantaneous position of the bead
in the trap and the main calibration procedure is the extraction of the calibration
factor � in meters per volts relating the measured voltage Vmeas.(t) to the position
as Vmeas.(t) = �xt. This can be done if we assume known some physical quantities
such as the radius of bead and the temperature and dynamical viscosity of the fluid,
allowing to fix the diffusion coefficient D = kBT/�. The calibration procedure then
consists in computing the PSD of the measured voltage and fit it with a Lorentzian
of the form Dv/(⇡

2
(f

2
c
+ f

2
)). The extracted diffusion coefficient Dv is expressed in

V
2
/Hz. The ratio between the latter and the a priori physical diffusion coefficient

gives the calibration factor
� =

p
D/Dv. (2.25)

A second calibration step is the calibration of the optical trapping potential, connecting
the controllable parameters such as the optical power (or the voltage sent to the diode)
and the stiffness of the harmonic potential experienced by the bead.

Figure 2.8: (a) Measured PSD and their respective fits for 7 values of
voltage spanning the dynamical range of the laser diode input, from
0.5 to 5 V. (b) Parameters extracted from the Lorentzian fit. On
the top pannel, the position calibration factor � as a function of the
voltage remains as expected almost constant, with a mean value of
2.804 ⇥ 10

�6
V/m. On the lower pannel, the stiffness  expressed

in pico Newton per micron, linearly increases, as expected, with the
imposed voltage with a slope of 6.44 pN/µmV.

On Fig. 2.8 (a) we plot the measured PSD as evaluated from the voltage output
measured at the photodiodes (and the Lorentzian fits) for 7 different trapping laser
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optical intensities, expressed here as the voltage sent to the diode (i.e. as what the
experimentalist controls). We stress with grey patches low and high-frequency regions
that are discarded for the fitting procedure, considering that the very low-frequency
points can suffer from some drifts (yet this will be carefully addressed in the next
chapter) and that the high-frequency region is dominated by detection electronic noise
above 10 kHz. The fit performed with the model Dv/(⇡

2
(f

2
c
+f

2
)) allows to extract the

value of Dv and fc for each optical power. On Fig. 2.8 (b) we show those parameter
as a function of the imposed voltage. We observe that � =

p
D/Dv is nearly constant

and  scaling, as expected, linearly with the voltage, with proportionality constant
6.44 pN/µmV.

Other methods are of course available for calibration. Indeed, the calibration
method proposed here which yields a volt-to-meter calibration is done by comparing a
measured quantity (the amplitude of the PSD) to a theoretical prediction derived us-
ing physical parameters of the system. This method can be applied to other quantities
than the PSD, arguably, simpler to compute and to compare to theory. This is the case
for example of the sample variance hx2

t
i, which is known by the equipartition theorem

to be equal to kBT/. The ratio between the measure variance hVmeas.(t)
2i and the

equipartition result also gives a calibration factor. By the same token, inverting the
relation gives an estimation of the stiffness  for each measurement.

However, this method is less reliable in general, mostly for the estimation of .
Indeed, the measured voltage is necessarily suffering from some artefacts such as con-
tribution stemming from the high-frequency electrical noise, due to the acquisition
and amplification chain. It is not a physical signal, and will have little influence on
the physical conclusions drawn from the experiments (mostly, it does not influence the
dynamics). It however can degrade a calibration done through equipartition. Indeed,
this additional noise will artificially increase the variance, therefore decrease the value
of the extracted stiffness . In contrast, the stiffness extracted from the PSD does not
suffer from artefacts or ambiguity since it is a frequency measurement, and is inde-
pendent from the amplitudes of the measured signals (the high-frequency saturation
of the measured PSD does not influence the result of the fit on Fig. 2.7).

Fig. 2.9 displays the linearity between stiffness and applied voltage obtained with
the two methods and where a net difference of slope is observed (4.26 pN/µmV for
equipartition, 6.44 pN/µmV for PSD fit). The Lorentizan fitting method should there-
fore be chosen for the estimation of the stiffness. Although, as we will see in Chap.
5, more alternatives are possible. In this chapter, we propose a method based on the
dynamical measurement. We apply to a the system a STEP-like change in stiffness
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Figure 2.9: Comparaison between the calibration of stiffness per-
formed with the Lorentzian fit of the PSD and with the equipartition
theorem method.

(t) as discussed above in Sec. 2.4. The variance therefore evolves as an exponential,
whose characteristic time is uniquely defining the final stiffness of the STEP. By fitting
the relaxation of the measure variance in volt �

2
v
(t) we can extract a (time-domain)

measurement of the stiffness. This alternative will also provide satisfying results.

2.5.2 Covariance and MSD, diffusivity and normality

To compute statistical observables such as mean-square-displacements (MSD) or au-
tocorrelations, our method is to directly use the analytical solution Eq. (2.8) of the
stochastic differential equation Eq. (2.6). We note however that the correlation func-
tion can also be obtained from the PSD via the Wiener-Khintchine theorem and that
MSD can be derived from correlation if one knows the variance.

As discussed above, the solution Eq. (2.8), for the harmonically trapped Brownian
motion possesses a short exponential memory, due to the presence of the potential.
This also appears in the PSD, where the characteristic roll-off frequency fc shows that,
in contrast with the free Brownian motion, the process at play here has a characteristic
time-scale. An apposite tool for studying the way the process depends on its past state
is the autocorrelation function, given as the average on many realisations of the product
of the process itself, evaluated at two different times Cxx(t, s) = hxtxsi. This quantity
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can be computed directly from Eq. (2.8) as:

Cxx(t, s) = hxtxsi

= hx2
0ie�!0(t+s)

+ 2D

Z
t

0

Z
s

0

e
�!0(t+s�t1�t2)h⇠t1⇠t2idt1dt2

= e
�!0(t+s)

 
hx2

0i+ 2D

Z min(t,s)

0

e
2!0t1dt1

!

= e
�!0(t+s)

✓
hx2

0i �
D

!0
e
2!0min(t,s)

◆
,

(2.26)

where min(t, s) is the minimum between t and s. We can simplify this expression using
the fact that |t � s| = t + s � 2min(t, s) to express the correlation as a function of
|t� s|

Cxx(t, s) =
D

!0
e
�!0|t+s|

+ e
�!0(t+s)

✓
hx2

0i �
D

!0

◆
. (2.27)

Furthermore, when the system is in thermal equilibrium, it obeys the equipartition
relation, stating that every quadratic degree of freedom equals kBT/2. In our case, the
only quadratic degree of freedom is the potential energy x

2
t
/2 so that the variance at

thermal equilibrium writes as

hx2
t
ieq. = kBT/. (2.28)

If we consider the process initially at thermal equilibrium, namely hx2
0i = kBT/ =

D/!0, the correlation function simplifies to a function of the lag |t � s| only. In this
stationary case where Cxx(t, s) = Cxx(|t � s|), it is more convenient to express the
correlation function as a function of a lag � as

Cxx(�) ⌘ hx�x0i =
D

!0
e
�!0�. (2.29)

The correlation function of the 10 minutes-long trajectory showed Fig. 2.3 mea-
sured in the optical trap is displayed Fig. 2.10. We superimpose the analytical result
of Eq. (2.29) where a good agreement is seen, with a clear exponential decay to 0

with a time constant ⌧relax = /�. We also show a numerical simulation performed
with a second order algorithm, as detailed in Sec. 2.3 (red line). In the inset we show
the covariance of the displacement hdxtdxsi which is computed in the Appendix 8.3.
The displacement autocorrelation is an other, yet equivalent, way to characterize the
stochastic process Eq. (2.6), by its increment.

From the covariance expression Eq. (2.29) and the equilibrium variance (2.28) one
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MEAN-SQUARE-DISPLACEMENTS

Figure 2.10: Time average covariances of positions (main graph), ex-
perimental data are plotted (blue open circles) together with the sim-
ulation results performed with a second-order algorithm (orange con-
tinuous line) and the analytical prediction of Eq. (2.29) (black dashed
line). In the inset, we represent the autocorrelation function evalu-
ated on displacements hdxtdxsi along with an analytical result derived
in Appendix 8.3.

can compute the mean-square-displacement h�x2
(�)i ⌘ h(xt+� � xt)

2i

h�x2
(�)i = hx(t+�)

2i � 2hx(t+�)x(t)i+ hx(t)2i

=
D

!0
� 2

D

!0
e
��/�

+
D

!0
,

(2.30)

giving

h�x2
(�)i = 2

D

!0

�
1� e

��/�
�
. (2.31)

On Fig. 2.11 we show the MSD of the same trajectory along with the analyti-
cal result of Eq. (2.31) and the numerical simulation results. We observe the ⇠ �

increase at short times and the exponential saturation to a constant value of twice
the equilibrium variance for long times. The first regime corresponds to the free-like
diffusion obeying the well known diffusion equation, where the variance increase as
2D�, where D is given by Einstein’s relation. The latter regime is determined by the
influence of the harmonic trap, confining the motion of the microsphere and preventing
the free-diffusion growth of the variance. The two regimes again are separated by the
relaxation time ⌧relax.
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Figure 2.11: Comparison between the measured mean square dis-
placements (MSD) (blue open circles) and the analytical expression
given in Eq. (2.31) obtained in the stationary regime (black dashed
line). The comparison with simulation results is also displayed (or-
ange continuous line). The very good agreement with both theory
and simulations shows that the measured process can be considered
as stationary. We note the same relaxation time of 3 · 10�3

s for all
data, revealing the crossover between the free (Wiener) and trapped
(Ornstein-Uhlenbeck) diffusion regimes.

The MSD is an other observable characterizing the diffusivity of the process. Indeed,
its short-time increase serves as a measure of the (a)normality of diffusion [96, 115],
which reveals the (non)-Brownian nature of the dynamics. If the effect of the conserva-
tive force �xt deriving from potential is easily analysed via the long-time contribution
on the shape of the stationary distribution, the effect of diffusive forces that can dif-
fer from

p
2D⇠t is less simple to diagnose. MSD measure of how the tracer explores

available space at short time and is useful to analyse the influence of non-trivial noises
that do not modify the energy landscape but the nature of the diffusion within it. In
our case, the linear scaling lim

�!0
h�x2

(�)i ⇠ �
1 is confirming the Brownian nature of

the diffusion. It is related to the uncorrelated nature of the thermal noise. We will see
in Chap. 4 that this is no longer the case when the microsphere experiences a noise ⌘t

that is correlated h⌘t⌘si 6= �t�s.

The observables presented in this section are mostly stationary observables in the
sense that they explore the properties of a trajectory diffusing in a stationary state,
where the probability density has relaxed to a constant distribution. All three quan-
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tities, spectrum, autocorrelation and mean-square-displacement are giving similar but
complementary information about the trajectory, since they are related to each other
by simple transformations. Each observable is connected more accurately to specific
effects, or are more useful for precise tasks than others. For example, the PSD is a
quantity that is used for the calibration of the cut-off frequency and of the acquisition
chain with a reasonable computational cost: using a fast Fourier transform on a small
set of data already gives precise results [95]. On its side, the MSD can be used very
conveniently to diagnose the nature of the diffusion process at play putting aside the
influence of the external potentials applied. By observing the short-time limit of the
MSD, one can measure the (a)normality of the diffusion.

2.6 Stochastic thermodynamics

The field of stochastic thermodynamics [46, 32, 48, 47] aims at adapting the concepts
of macroscopic thermodynamics to mesoscopic systems, where fluctuations are impor-
tant. Its applications range from molecular motors of a few tens of nanometers up to
micron sized systems, such as our colloidal particle. The method of stochastic ther-
modynamics have been used in many different contexts, to derive thermodynamical
observables relevant for small systems [54], as biological objects [26], micromechanical
oscillators [116], RC circuits [117], small non-equilibrium [118, 31] and active systems
[119]. Its application to optically trapped colloidal systems enabled the possibility to
build microsized thermodynamic engines [100, ?, 101], that exchange work and heat
with an optical potential and a temperature-controlled thermal bath.

The first key step of stochastic thermodynamics is to endow Langevin equation with
an energetic interpretation as done by Ken Sekimoto [46, 45]. A parallel development
was the derivation of fluctuation theorems and energetic equalities [120, 121, 122, 123],
with the remarkable possibility to extract quantitative features, such as the free energy
by more accessible observables, like the work derived from a single trajectory [124].
The development of a trajectory-dependent entropic description [112, 47] add an even
more refined understanding of the reversibility of stochastic trajectories Finally, the
connexion to information theory [125, 126, 127] led to a better understanding in the
physical nature of information, with experimental verifications of the finite cost of
erasing information, so called Landauer limit [36, 35].

In Chap. 4 we will characterise the energetics of a specific type of protocol. To do
so, we will rely on the Sekimoto’s framework, starting from Langevin equation in a
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harmonic potential of stiffness  and in the overdamped limit

�ẋt = �xt + Fth(t) (2.32)

where Fth(t) =
p
2kBT�⇠t is the thermal random force with ⇠ a white noise. Grouping

the terms related to the interaction of the microsphere with the bath and multiplying
by an increment dx, it is possible to draw an energy balance

(�ẋt � Fth(t)) dx = �xtdx (2.33)

where the left-hand side, seen as the energy exchanged between the sphere and the
bath under dissipative forms, is interpreted as minus the heat. The right-hand-side is
�@xV dx where the potential is V = x

2
t
/2. Since the stiffness of the potential can be

controlled, it should be considered as a variable just as xt leading to write the total
differential of the potential as:

dV =
@V (, x)

@x
dx+

@V (, x)

@
d (2.34)

a form interpreted by Sekimoto as the total change of internal energy under a variation
of stiffness d and with a displacement dx. Adding the remaining term on both side
of Eq. (2.33) gives

(�ẋt � Fth(t)) dx� x
2
t
d = �dV. (2.35)

The variation of potential energy with respect to the external action of the parameter
 is interpreted as work. Identifying the change of heat �q, of internal energy du and
of work �w is Eq. (2.35) gives an formulation of the energy balance that corresponds
to the first law of thermodynamics

du = �w + �q. (2.36)

The thermodynamic quantities derived here are stochastic, since they depend on the
random variable xt. Their distributions obeys fluctuation theorems [124, 111, 116, 47]
and their average values can be derived by the methods presented above, leading to
deterministic measure of the mean energy exchanged in the system. For example,
one can compute the average work and heat exchanged during a STEP-like change
of stiffness as described above [128]. The quantities derived here will be mostly used
Chap. 4 to evaluate the thermodynamic nature and cost of a specific external process
applied on the trapped microsphere.
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2.7 Conclusion

In this chapter, we detailed our experimental optical trapping platform, that allows
measuring Brownian trajectories in a controllable harmonic potential. After reviewing
the experimental and numerical techniques to obtain Brownian trajectories, we intro-
duced the methods to build statistical ensembles of independent trajectories, necessary
to extract deterministic observables and study the response of the system to any ex-
ternal action. The main observables associated with a stationary dynamics, spectra,
correlation functions and mean-square-displacements are derived and experimentally
studied. Finally, we introduced the tools of stochastic thermodynamics that will be
used is Chap. 4.

Our methods developed to build ensembles rely on the possibility of manipulating
single long trajectories and turning them into ensembles of independent equivalent
trajectories. This implies two key hypotheses. First, the experiment is stable in time:
to study e.g. STEP-like change of stiffness by changing periodically  at a rate of ten
times the relaxation time, five minutes-long experimental trajectories are necessary to
get good statistics of ca. 10

4 events. This implies that the experiment must remain
stable over hundreds of seconds, ensuring that the same parameters  and D and the
same calibration factor � are fixed through time. Then the trajectory must be ergodic.
This second hypothesis corresponds to the possibility to transform a trajectory into
ensemble of sub-trajectories. These assumptions of stability and ergodicity and their
verifications will form the core of Chap. 3.
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Chapter 3

Noise properties of an optically
trapped Brownian object, ergodicity,
stability

In this chapter, standard quantities that are routinely used to study the properties
of noise are complemented by more subtle measures of the noise properties. The first
is an ergodic parameter [97, 129] that allows us to prove the validity of the ergodic
hypothesis for our trajectories, paving the way to the construction of ensembles. The
second is the Allan variance [114, 130] that evaluates the stability of the whole exper-
iment with respect to drift over long integration times.

Both observables are derived analytically in the case of the Ornstein-Uhlenbeck
process and applied on experimental trajectories in the optical trap, over a large
frequency bandwidth. This allows to probe again the transition between different
regimes, already unveiled in the previous chapter on PSD, correlation and MSD, sep-
arating a high-frequency free-like diffusion regime from a low-frequency saturation in
the trapped regime. We observe a smooth crossover between the two regimes that are
unified with both Allan variance-based test and the ergodic analysis.

Both observables are important to access for assessing the properties of a given
optical trap. Indeed, as presented in the previous chapter, the study of the response
of a Brownian object to an external action, goes with the building of a statistical
ensemble out of a single time-series of positions. This ensemble is necessary to obtain
well defined deterministic quantities out of the stochastic process at play. It relies on
strong assumption regarding the ergodic nature of the process, but also its stability.
The need for long-time stability of the optical trap is also very clear in the context
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of metrology and weak forces measurements. In metrological measurements, a high
resolution in force detection is achieved by integrating a high sensitivity over an inte-
gration time as long as possible. This is naturally relying on the long-time stability of
the experiment.

In this chapter we explicitly show how ergodicity and stability assumptions can be
tested for an overdamped harmonically trapped Brownian particle, paving the way
to reliable experiments involving large integration times, with well-controlled ergodic
properties. The tools proposed here are general and can be applied to more complex
systems, as it will be the case in Chap. 4 where the bath is not anymore a thermal white
noise. It can also be exploited to reveal the non-ergodic nature of specific systems, as
discussed in the case of stochastic resetting in Sec. 3.1.5, or in the case of complex
environments and glassy systems.

3.1 Ergodicity

As introduced in the previous chapter, the response of the system to a perturbation
(e.g. a change of stiffness ), is studied using deterministic averaged quantities (such
as the mean and variance of position) or the time-dependant probability density. To
do so, we need to build a statistical ensemble of independent trajectories out of a single
long time-series of positions.

Figure 3.1: Schematic representation of the method to build an en-
semble of sub-trajectories out of a long time-series of position. In this
example, we show a 2.5 ms-long trajectory, cut into an ensemble of
10 individual 0.25 ms-long subtrajectories.
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On Fig. 3.1 we schematize this procedure where a long trajectory is cut into an
ensemble of shorter sub-trajectories. In this section, we wish to asses the validity
of this procedure, namely, the ergodic nature of the ensemble. The question can be
summarised as: is one sub-trajectory a good representative of the whole ensemble? For
this to be true, the process first of all needs to be stationary. Ergodicity then states
that time averages of a single trajectories must converge to instantaneous ensemble
averages in the limit of infinite time and infinite ensemble. Remarkably, this general
definition can be adapted to finite samples and thus made quantitative for experimental
results, as first discussed by Metzler et. al [97, 129]. In the following sections we sill
further develop the framework of ergodicity testing and apply it to the trajectories
actually recorded in our optical trap.

3.1.1 Time and ensemble averaging for mean square displace-
ment

Ergodicity is evaluated on averaged quantities. Since the first moment for centred
process trivially vanishes (in our case any averaged position is hxti = 0) the second
moment is a suited observable to study averaging process. Furthermore, for a station-
ary process, the simple sample variance hx2

t
i is a constant and cannot be used to asses

the dependancy of ergodicity on the length of time sample and the size of the time
steps. Therefore, we will turn to the mean-square displacement. This quantity is the
first non-trivial moment of stationary Brownian displacement.

The mean square displacement (MSD) of a Brownian trajectory can be evaluated as
an ensemble average performed on many realisations of the same process, as introduced
in the previous chapter. Such an ensemble-averaged mean-square-displacement EA-
MSD writes explicitly as:

EA-MSD ⌘ h�2
x
(�)i = h(xt+� � xt)

2i ⌘ 1

N

NX

i=0

�
x
i

t+� � x
i

t

�2 (3.1)

where we call xi

t
the i-th trajectory taken from the ensemble composed by these N

independent sub-trajectories and where t is an arbitrary (yet in stationary state) initial
time. On the other hand, on a single trajectory x

i

t
, one can compute a time-averaged

mean-square-displacement TA-MSD by integrating on the initial time t where the
trajectory is evaluated

TA-MSD ⌘ �2
x
(�) ⌘ 1

T ��

Z T ��

0

�
x
i

t+� � x
i

t

�2
dt (3.2)

where T is the total time of the measured i-th subtrajectory. If different such sub-
trajectories in the ensemble are not equivalent to each other, then the TA-MSD of one
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sub-trajectory may be significantly different from another This is the case for example
if the sub-trajectories are produced with different tracers, whose properties, as size,
may vary. Then TA-MSD will also be different from EA-MSD since the latter averages
the dispersion of parameters over the ensemble. Nevertheless, even when the ensemble
is drawn from a single long trajectory, where this tracer dispersion does not exist, both
quantities can differ. Indeed, if a drift happens on an experimental parameter, such
as temperature or on a mechanical object, then the long recorded trajectory is not
stationary anymore, and the sub-trajectories obtained at different absolute times will
differ. In that case again TA-MSD is not equal to EA-MSD.

These examples illustrate cases where the system under study in not ergodic, in
the sense that one sub-trajectory of a statistical ensemble is not representative of the
whole ensemble. For a stationary process, ergodicity of a given observable such as
MSD, corresponds to the equality taken in the infinite time limit T ! 1, between
the time average and the ensemble average of the quantity. In that case, every sub-
trajectory’s TA-MSD is equal to every other and to the EA-MSD. Although simple,
this definition is however hardly operative in real experiments that only yield finite
ensembles of finite-time trajectories. When T is finite, each TA-MSD is computed
on a finite amount of data, and as such therefore remains a random quantity whose
dispersion needs to be characterised.

Figure 3.2: (a) One T ⇡ 2.5 s long can be cut into an ensemble of 10
short trajectories of Ti ⇡ 0.25 s. The process is represented here with
10 shades from blue to green. (b) On each short sub-trajectory, TA-
MSD can be evaluated. The 10 resulting TA-MSD are represented
with the same colouring, and the dispersion due to finite sample size
is visible, mostly for long time-lag �.
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As an illustration, on Fig. 3.2 (a) we plot one 2.5 seconds long trajectory and show
how it can be cut into a finite ensemble of shorter trajectories. For each sub-trajectory
x
i

t
we can compute the TA-MSD, that is represented on Fig. 3.2 (b) with the same

color coding as in Fig. 3.2 (a). We see that the individual TA-MSD slightly differ
from one another. At this stage, this can be due either to a drift on the system or
to the finite size of the sampled trajectories. If the latter is unavoidable and does
not represent a physical issue, the former would be the sign of non-stationarity, which
would forbid the building of a statistical ensemble from one single long trajectory. A
more precise study of the ensemble of TA-MSD is necessary to decipher between these
two very different phenomena.

On an ensemble, one can do both averaging operation sequentially and average
the TA-MSD on the ensemble, obtaining the time-ensemble averaged mean-square-
displacement TEA-MSD

TEA-MSD ⌘ h�2
x
(�)i ⌘ 1

N

NX

i=0


1

T ��

Z T ��

0

�
x
i

t+� � x
i

t

�2
dt

�
. (3.3)

This corresponds on Fig. 3.2 (b) to the averaging at every time-lag � of the different
TA-MSD. Naturally, ergodicity demands the TEA-MSD to be equal to the EA-MSD.
This represent a first approach to demonstrate the ergodic nature of the trajectories.
However, this equality is only a necessary condition for ergodicity [97, 129], since TEA-
MSD can hide a large dispersion of individual TA-MSD resulting of the non-equivalence
of the sub-trajectories. Instead, a necessary and sufficient condition for ergodicity is
the vanishing of the TA-MSD dispersion when integration time is large. This allows
to define an observable of ergodicity on finite sample, where the comparaison of the
TA-MSD dispersion with an analytical prediction assesses the ergodic nature of the
ensemble. In the two following sections, we will study both the necessary condition on
TEA-MSD and the necessary and sufficient condition of the dispersion of TA-MSD.

3.1.2 Necessary condition for ergodicity on finite sample

Using a ten minutes long trajectory (i.e. 1.97⇥ 10
7 successive position measurements

acquired at a frequency of 215 = 32768 Hz) we build a statistical ensemble of N = 1200

trajectories of 0.5 second each. Therefore each trajectory is long with respect to the
millisecond relaxation time of the bead in the trap. On this large ensemble, the
can compute 1200 individual TA-MSD as well as the instantaneous EA-MSD. Both
quantities can be compared with the analytical result for mean-square displacement
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of the Ornstein-Uhlenbeck process

h�2
x
(�)i = 2D

!0

�
1� e

�!0�
�

(3.4)

where we recall the relaxation time !
�1
0 = �/ = 2.1 ms in the trap of stiffness

 = 2.96 pN/µm and D = kBT/� the diffusion coefficient in the thermal bath.

Figure 3.3: (a) From blue to green is an ensemble of N = 1200

individual TA-MSD, the red line is the ensemble average of the latter:
the TEA-MSD. The blue line is the instantaneous EA-MSD, the black
dotted line is the analytical MSD given by Eq. (3.4). (b) Necessary
condition for ergodicity, on which the ratio between TEA-MSD and
EA-MSD is one for all time. The short time-deviation is due to the
difference seen on the left plot between TEA and EA-MSD where the
values measured are very small time-laps � and subjected to tracking
errors, as discussed in the main text.

On Fig. 3.3 (a) we represent the ensemble of TA-MSD as well as the associated
TEA-MSD. The resulting function is compared with the instantaneous EA-MSD as
well as analytical result Eq. 3.4. We can observe a neat equality of both TEA-MSD
and EA-MSD for a large bandwidth of circa. 4 order of magnitudes of time-lag. How-
ever, for short time-lag, we observe a discrepancy, with an overestimated TEA-MSD.
This can arise from tracking errors, as studied in [131] as well as in our own previous
work [105]. Such errors are detailed in appendix 8.7. Tiny errors are mostly visible
on short time-lag since the values of displacement measured at these time-scales are
small. Typically the shortest measured displacement for a time-lag inverse of our ac-
quisition frequency facq is

p
h�2

x
(� = 1/facq)i ⇡ 7.43 nm. This small displacement

corresponds to a voltage measured on the photodiode (obtain by inverting the ac-
quisition chain modelization detailed Chap 1., namely by dividing the displacement
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p
h�2

x
(� = 1/facq)i by the calibration factor and the gain of the low-noise amplifier) of

�V ⇡ 2.04 µV. Since we use a 50 ⌦ resistor in parallel at the output of the photodiode,
it corresponds to a current �I = �V/50 ⇡ 40.7 nA. This value is below the typical
100 nA dark current of a Thorlabs Det100A. This order of magnitude suggest that
the values of displacement measured at those short time-lag are very likely subjected
to errors as tracking errors [131] and that the discrepancy between TEA-MSD and
EA-MSD at these values cannot be interpreted as a physical break of ergodicity. Since
EA-MSD is computed on all the ensemble of 1200 sub-trajectories while each TA-MSD
is computed on a single sub-trajectory, we can suppose that the latter is more likely
to be affected by errors. This could explain why the EA-MSD is very neatly following
the expected trend at very short-time while the TA-MSD are deviating.

The superimposition of TEA-MSD with EA-MSD clearer by forming their ratio,
represented on Fig. 3.3 (b). This ratio is one for all time-lag, with a small deviation
for very short � that corresponds to the short time-lag difference between EA and
TA-MSD discussed above.

More precisely, we define ⇡ as this ratio between TA-MSD and EA-MSD At the level
of a single i-th trajectory, the ratio ⇡i is a random quantity but the ensemble-averaged
value h⇡i is deterministic

h⇡i =
⌧

�2
x
(�)

h�2
x
(�)i

�
=

h�2
x
(�)i

h�2
x
(�)i ⌘ TEA-MSD

EA-MSD
. (3.5)

If TEA-MSD converges to EA-MSD, one expects h⇡i = 1, as shown on Fig. 3.3 (b).
Note that this value provides a necessary condition for ergodicity: if it where not the
case, the consequence would imply that one cannot use a single trajectory to assess
the properties of the ensemble, regardless of the length of the integrated time. But we
stress, following [129] that this cannot be a sufficient condition for ergodicity, since the
TEA-MSD can hide individual pathological trajectories, whose contributions though
the ensemble averaging are minute while individually showing strong deviation from
the expected behaviour. In the next section we focus on the dispersion of TA-MSD at
a single trajectory level, hence of ⇡i, to build a necessary and sufficient condition for
ergodicity [97, 129, 132, 105].

3.1.3 Sufficient condition for ergodicity on finite samples

As we discussed above, ergodicity of an ensemble of sub-trajectories demands the con-
vergence of the ensemble of TA-MSD to the EA-MSD. A first quantification of this
convergence was discussed in the previous section by the averaged ratio h⇡i between
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TEA-MSD and EA-MSD, that should be equal to 1. We underlined that h⇡i = 1 is not
a sufficient condition for ergodicity. A more refined quantification of the convergence
of TA-MSD to the EA-MSD, is the vanishing of the dispersion of individual TA-MSD
on a single trajectory level. It implies that not only the probability distribution of the
individual ratios ⇡i is centred around 1, but also that it tends to a Dirac distribution
for long times, or as T /�! 1.

A sufficient condition for ergodicity is therefore that the dispersion of this ratio
goes to zero in the limit T /� ! 1. In this section we focus on the dispersion of
individual TA-MSD by studying the probability distribution of �(⇡) for the ensemble
of N = 1200 individual TA-MSD. Furthermore, experimental result for the ergodic
parameter are compared with numerical simulations performed with a weak-order 2

algorithm as detailed Chap 2. This comparaison gives an additional way of decipher-
ing the limitations due to the finite sample sizes and experimental errors.

On Fig. 3.4 we represent �(⇡) for different time-lags �. Yellow lines corresponds to
long � and blue lines to short �. We can see that the distribution sharply converges
to a peaked density around 1 as � decreases. As shown in inset, the kurtosis of �(⇡)
stays close to 3, the condition for a normal distribution. The distribution can therefore
be characterised with its variance h⇡2i�h⇡i2. The quantity ✏(�) = h⇡2

(�)i�h⇡(�)i2

is the ergodicity breaking parameter introduced in [97, 129]. The vanishing of ✏(�)

for large T /� serves as a necessary and sufficient condition for ergodicity. Indeed,
it fully characterizes the convergence of the ensemble of individual TA-MSD to its
mean value, the TEA-MSD. Comparing the evolution of ✏(�) as a function of finite
T /� with an analytical expression will allow to verify that the ensemble of TA-MSD
is ergodic on this finite sample.

One very appealing aspect of the quantity ✏(�) is that it can be analytically com-
puted for an Ornstein-Uhlenbeck process. In its expression

✏(�) ⌘ h⇡2i =

⌧⇣
�2
x
(�)

⌘2 �
�
⌧
�2
x
(�)

�2

h�2
x
(�)i2

, (3.6)

the first term is the ensemble average of the square of TA-MSD over the square of
TEA-MSD

h
⇣
�2
x
(�)

⌘2
i = 1

(T ��)

Z T ��

0

dt1

Z T ��

0

dt2h(xt1+� � xt1)
2
(xt2+� � xt2)

2i (3.7)

thats using Wick’s theorem for a normal distribution as detailed in Appendix and the
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Figure 3.4: Probability distribution of TA-MSD. Each line from yel-
low (� = 250 ms) to blue (� = 0.031 ms) is the histogram of the
ratio ⇡ between TA-MSD and TEA-MSD. Each line on this plot cor-
responds to a histogram of the TA-MSD along a vertical cut in Fig.
3.3 for different values of �. As expected, this distribution collapses
to a Dirac distribution for small �, hence in the long T /� limit. On
the colorbar, the scale is � in milliseconds. In the inset, we plot the
evolution of the kurtosis of the distribution of ⇡ as a function of the
lag-time �. We observe that is stays close to the normal value of 3,
validating the Gaussian nature of �(⇡) for every time. the distribu-
tion can therefore be fully characterised by its second moment, the
variance of ⇡

stationary correlation function hxt+�xti = D!
�1
0 e
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(3.8)

As detailed in Appendix 8.5, we call I this variance of TA-MSD. By furthermore
recalling that the TEA-MSD given by h�2

x
(�)i = 2D!

�1
0 (1� e

�!0�), we can write the
ergodic parameter as

✏(�) = I
D

4!0(1� e�!0�)
(3.9)

that can be explicitly calculated as done in Appendix 8.5.
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Figure 3.5: The normalized variance ✏(�) playing the role of an er-
godic parameter is displayed for the Ornstein-Uhlenbeck process at
play in our optical trap. Experimental results (blue open circles) for
✏(�) are compared to the theory (black dashed line) within a 99.7%

confidence interval. We also show the results of a numerical simulation
using O(3/2) algorithm (red continuous line). The slight deviation at
short times between the experiment and the theory comes from two
intertwined sources. (1) from the position tracking errors as discussed
in appendix 8.7 and (2) to long-time drift as discussed below. In Sec.
3.1.5 we will show how the long-time drift can be quantified to correct
this deviation.

On Fig. 3.5 we show the evolution of ✏(�), variance of the distribution �(⇡) as
a function of the time-lag �. We superimpose to the experimental results (blue cir-
cles) the analytical expression of Eq. (3.9) (black dashed line) as well as the result of
numerical simulations (red line). The variance goes to 0 for small � as expected for
an ergodic ensemble. This, together with the good agreement between experimental
and analytical result over the whole bandwidth accessible to the experiment proves
the ergodic character of the ensemble built from the sub-trajectories. We can use this
ensemble of 1200 trajectories as an ergodic statistical ensemble of sub-trajectories and
exploit is as such.

One can observe a smooth crossover between the long time-lag trapped regime and
the short time-lag free-like diffusion, we probed in detail in [132] the linear increase
of ✏ with �. The transition between both regimes is governed by the relaxation time
of the trap !

�1
0 . Since ✏(�) is a variance, the quality of its estimator on a finite-size
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ensemble is quantified using a �
2-test. On Fig. 3.5, the error (shaded region) are the

sum of systematic errors and this test up to a 3� level of confidence.

The small deviation at short time-lag stems from two effects. The first, discussed
in Sec. 3.1.2 is associated with the magnitudes of the displacement (measured here
at ⇡ 7.43 nm) that are so small that they can be dominated by small effects such as
tracking errors (see 8.7). The second effect is more subtle. When computing ✏(�) we
do measure the variance of the ensemble of TA-MSD. This ensemble being drawn out
of a long time-series of position, the different TA-MSD correspond to different instants
of time throughout all the 10 minutes of the experiment. A drift occurring during that
10 minute-long experiment, will necessarily induce an overestimation of the variance
✏(�).

Figure 3.6: Cross-cut of the ensemble of TA-MSD for the shortest
time-lag � = 1/facq unveiling a long time drift of the order of a
nanometer between average displacements measured 10 minutes ap-
part. The color coding corresponds to the time-ordered 1200 individ-
uals TA-MSD.

On Fig. 3.6 we represent the ensemble of TA-MSD for the shortest time-lag
� = 1/facq = 0.031 ms (inverse of the acquisition frequency facq). It corresponds
to a vertical cut of Fig. 3.3 (a) at the shortest �. As in the latter, the color coding
corresponds to the 1200 individual and chronologically ordered TA-MSD. Therefore,
the first blue circle corresponds to �2

x
(� = 1/facq) averaged over 0.5 s evaluated at

the beginning of the experiment and the last green circle corresponds to the same
quantity evaluated 599 s later. We can observe that the first half of the values are
centred around a constant carrier as expected, whereas the second half is linearly de-
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creasing. This clearly reveals a long-time drift of the experiment, where the measured
value of the short-time displacement is evolving in time. This naturally leads to an
overestimation of the variance of the TA-MSD at this time-lag �, as seen of the plot
of the ergodic parameter ✏(�).

However, the value of this drift remains of the order of 1.31 nm of average dis-
placement only. It therefore only affects the observables for very small magnitudes,
and hence very short time-lag, as seen Fig. 3.5. This drift is visible only on very
short time-lag and stems from differences of very long absolute times (above 2/3 of
the total time as seen on Fig. 3.6), and will therefore not be captured by an Allan
variance-based test of stability that, by definition, is a test performed at maximum on
1/2 of the total time as discussed in the next section.

The subtle comparaison of short time-lag displacement at very distant absolute
experimental times appears as a precise tool to quantify drifts. This is necessary when
deciphering between a physical ergodicity breaking from a spurious deviation, due to
a drift in the experimental setup. In Sec. 3.1.5, we will quantify this drift in order to
asses the ergodic nature of one trajectory, in contrast with the non-ergodic nature of
another.

3.1.4 Study of the ergodic parameter

In this section we study more extensively the ergodic parameter ✏ both as a function
of the lag-time � and as a function of the total time T , an important parameter, since
it determines TA-MSD. The data plot of Fig. 3.5 are the result of one specific choice
of the total time of the trajectories T = 0.5 s, this choice leading to an ensemble of
size N = 1200. We can however verify that other choices are possible and that the
ergodic nature of the trajectory is robust with respect to this choice.

On Fig. 3.7 (a) we represent the experimental and analytical ergodic parameter
✏(�) as a function of the time-lag � for different choice of the total time T rang-
ing from 0.2 s to 5 s. We can observe a good agreement for all cases. Two aspects
are modified when we increase the total integration time: first obviously the longer
time-lag accessible for the observable increases but by the same token, the size of the
ensemble decreases (from N = 3000 to N = 120), leading to a poorer definition of the
variance with more fluctuations and a larger error for short time-lag. This does not
however prevent the trajectory to follow the respective analytical trends and therefore
to keep an ergodic character upon all the studied transformation (from a trajectory of
length L to an ensemble of a N sub-trajectories of length L/N). This shows that one
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Figure 3.7: (a) Experimental ergodic parameter ✏(�) for different
choices of the trajectories arrangements. Respectively we have, 3000
trajectories of 0.2s (blue), 1200 of 0.5s (red), 600 of 1s, 300 of 2s and
120 of 5s. (b) Experimental ergodic parameter ✏(T ) as a function of
the total time T for different values of the lag �

long trajectory can serve to build various ensembles of different size and length, while
keeping an ergodic nature.

The ergodic parameter ✏ can be represented as we just shown against the time-lag
� for a fixed total time T , but it can also be represented as a function of the time T
for a fixed time-lag � as it is done in [129]. In that case it takes a simple ✏(T ) ⇠ 1/T 2

dependancy as discussed in [129, 105]. Again, the choice of the fixed lag-time � is
arbitrary. On Fig. 3.7 (b) we represent the ergodic parameter as a function of the
total time for various choices of � ranging from � = 0.09 ms to � = 0.37 ms. We
see a good agreement between the experimental data and the analytical result for
every choice of � and for all T . Again this equivalent representation of the ergodic
parameter ✏ demonstrates the ergodic nature of the trajectory and show its robustness
with respect to the choice of the transformation applied. This representation however
misses to display the interesting crossover between free-like diffusion on small time to
trapped-diffusion on long time as it is the case in the lag-time representation.

3.1.5 Example of ergodicity-breaking trajectories

In this section, we discuss an example of non-ergodic trajectories, characterized with
the different observables introduced above. The trajectories under study are subjected
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to a process of Stochastic Resetting (SR) [133, 80, 134, 135]. The principle of resetting
it to let a Brownian object diffuse for a given time ⌧ before reinitialising its position
to a reference point in space x0. If the reinitializing times form a stochastic sequence,
i.e. if the resetting happens at random instants, then the trajectory is said to undergo
a process of SR.

In a work still under preparation, we implemented an approximation of SR by
swiching our optical potential from a very shallow trap to a very stiff trap at ran-
dom times. The trap is kept shallow,  = min = 2.9 ± 0.15 pN/µm for a random
time ⌧ and the particle diffuses in the potential. It is then abruptly increased to
 = max = 83.1 ± 2.1 pN/µm and the particle exponentially relaxes to a very small
region of space �x =

p
kBT/ = 7.04 nm, mimicking a resetting event. The times

⌧ are drawn out of an exponential law P (⌧) / e
��⌧ where � = 20�/max = 6.1 ms

is the resting rate. The time-series of positions xt is recorded over 5 minutes and
therefore subjected to a large amount of resetting events. To get closer to an ideal
SR process, we remove the points from the time series xt when the trapping laser
in increased to max. Those points corresponds to transient relaxation sequence and
waiting times that we discarded to mimic an instantaneous resetting. The resulting
trajectory is out of thermal equilibrium [136] and is theoretically known to break er-
godicity [137, 138, 81]. Our tools allow us to demonstrate this experimentally.

In our experiment, we record a 300 second-long time-series xt at an acquisition
frequency of 215 = 32768 Hz. After removing the waiting times, we obtain a trajectory
of ca. 239 seconds. This long trajectory can be cut and reassembled into a statistical
ensemble of circa. 800 trajectories of 0.3 s as described above and illustrated Fig.
3.1; each individual trajectory contains many resetting events. We can compute the
TA-MSD for each trajectory, the associated TEA-MSD and the standard EA-MSD.

On Fig. 3.8 (a), we show individual TA-MSD for the statistical ensemble of trajec-
tories as well as the associated TEA-MSD and EA-MSD. Remarkably, TEA-MSD and
EA-MSD still coincide, therefore the necessary condition for ergodicity h ⇡(�)i = 1 is
still satisfied. However, one can note that the dispersion of individual TA-MSD does
not collapse to 0 for short time-lag as it was the case for standard Brownian motion
in the previous sections (compare to Fig. 3.3). As a consequence, the necessary and
sufficient condition for ergodicity on the variance h ⇡(�)i will not be satisfied. This
is visible Fig. 3.8 (b) where the ergodic parameter ✏(�) is plotted as a function of �
for both a normal trajectory diffusing in a potential (blue squares) and a trajectory
experiencing SR (orange squares). The strong deviation of the SR process ergodic
estimator from a decay to 0 for short time-lag � is the signature of the non-ergodic
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Figure 3.8: (a) Individual TA-MSD (blue to green) for each of the ca.
800 trajectories experiencing stochastic resetting, associated TEA-
MSD (black line) and EA-MSD (red line) evaluated for the ensemble
(b) We show there the necessary ergodic condition h⇡(�)i = 1 ex-
pected for both a standard trajectory in the optical trap with  = min

(blue circles) and also for a trajectory experiencing stochastic reset-
ting in the same potential (orange circles). Together with this, we
show the sufficient condition ✏(�) as a function of the time-lag �
for both a standard trajectory in the optical trap (blue squares) and
a trajectory experiencing stochastic resetting (orange squares). For
the latter we see that the standard Brownian motion follows the ex-
pected behaviour on a large time-lag region, whereas the SR process
strongly deviates, as a consequence of the non-vanishing dispersion of
TA-MSD for large T /�. We note that the parameter ✏(�) deviates
from the analytical curve also for the normal trajectory when looking
at short time-lag �. We will show below, that this deviation is due
to drift in the experiment, while the strong deviation visible for the
SR process is a physically meaningful ergodicity-breaking.

nature of the trajectory under SR.

On Fig. 3.9 (a) we show the value of TA-MSD at � = 0.061 ms from blue to green
for each chronologically ordered sub-trajectory as a function of the absolute time of
the experiment. It corresponds to a vertical cut in a TA-MSD plot such as displayed
Fig. 3.3 (a). We can observe, superimposed to the expected dispersion a systematic
evolution, that reveals a drift in the experimental setup. We fit the behaviour with
a guess function f(t), combination of negative constant slope and a slow sinusoidal
oscillation. The fit gives the black continuous line on Fig. 3.9 (a) and is used to correct
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Figure 3.9: (a) Short time-lag TA-MSD �2
xi
(� = 0.061[ms])) for each

individual chronologically ordered sub-trajectories as a function of the
absolute time in seconds. We clearly observe a systematic trend, that
is well captured by the combination of linear decrease and a ⇡ 80 s si-
nusoidal evolution. The magnitude of the drift is of the order of 1.4 nm
of mean displacement. (b) Associated ergodic parameter computed
on a trajectory corrected by the fit of the 1.4 nm mean displacement
drift on the 300 s. We show ✏ both for a normal Brownian motion in
a potential of stiffness min (blue circles) and for a SR process in the
same potential (orange triangles). This method neatly corrects the
deviation observed for the normal trajectory (the uncorrected ✏(�)

for the normal trajectory is also displayed in grey), clearly reveals the
difference between the ergodicity-breaking of the SR process and the
error-induced deviation seen in the normal trajectory, that keeps its
ergodic character.

as a function of time the calibration factor � used to convert the measured voltages
into meter. We apply this (very small 1.4 nm mean displacement) correction to our
experimental trajectory by replacing � by � ⇤

p
f(t) both for the normal trajectory

and the SR process. Due to the small value of the correction, the resulting corrected
trajectories are similar to the uncorrected ones on most observable (variance, proba-
bility distribution, MSD). Remarkably, when we compute again the ergodic parameter
✏(�), the short-time deviation of ✏ for the normal trajectory is neatly corrected, and
falls back on the expected trend even for short time-lag �. The ergodic parameter for
the SR process is almost unaffected by this correction, since its very strong deviation
keeps it at a larger magnitude, un-sensitive to the drift. This ergodic test, comple-
mented by this drift correction allow us to very neatly demonstrate the non-ergodic

62



3.2. ALLAN VARIANCE AND STABILITY

nature of an SR process, while a normal trajectory in the same (but constant) optical
trap is ergodic.

The example described in this subsection underlines the importance of both h ⇡(�)i
and h ⇡(�)

2i approaches to ergodicity, enabling to unveil ergodicity breaking mecha-
nism, as seen here with the example of an experimental SR process.

In the previous sections, we explored how to derive and apply an ergodicity esti-
mator that yields both necessary and sufficient conditions for ergodicity. It can be
analytically computed and experimentally measured and the excellent matching on all
spectral ranges between theory and experiment and irrespective of the choice of the
transformation (length of each sub-trajectory i.e. size of the ensemble drawn out of
a single trajectory) applied to build the ensemble allow to clearly assess the ergodic
nature of the trajectories recorded in our setup. It also allows to discriminate ergodic
stochastic processes from non-ergodic trajectories such as demonstrated with the ex-
ample of stochastic resetting. This test is central to our work, since it grounds the
validity of our method chosen for building ensembles.

This being emphasized, a final aspect to be discussed, that still constrains the valid-
ity of the building of statistical ensembles, is the long-time stability of the experiment.
Indeed stability is the necessary condition for stationarity of the process, which itself
constrains the ergodic nature. Indeed, in the general case, ergodicity means that any
trajectory of an ensemble is equivalent to all other (any observable will be the same
for every trajectory if they are long enough). It is only in the stationary case that it
takes the operative definition of convergence of time and ensemble averages, that we
used to assess it experimentally. In the next section, we therefore asses the stability
of our experimental setup on long times with an Allan-variance [139, 140] based test.

3.2 Allan variance and stability

In this section we present a stability test based on the Allan variance [139] that can be
directly used at the level of our experimental trajectories and long integration times.
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3.2.1 Temporal versus spectral property: Allan variance and
power spectral density

In the previous chapter, observables like the autocorrelation function, power spectral
density (PSD) and mean-square-displacement (MSD), led us to characterize the na-
ture of the stochastic process at play. Namely, we verified its Brownian nature and the
normal character of the diffusion within the short-time limit of the MSD. This is also
encapsulated in the Lorentzian profile of the PSD which integral reveals the thermal
nature of the noise through the fluctuation dissipation theorem. These properties are
consequence of the dynamical equation driving the position xt including the nature of
the driving noise that stems from the thermal bath. With these observables, we verify
the uncorrelated (i.e. white) nature of the thermal noise in our optical trap. However,
the spectral analysis of the PSD as well as the relative time-lag analysis of MSD and
autocorrelation are exposed to low frequency drifts [132, 114, 130] that can modify
noise or trapping properties.

Therefore, another important characteristic that must be checked is the stability in
time of the experiment. In order to draw physical conclusions from measurements that
have been integrated (recorded) over long times, it is critical to demonstrate and verify
that the white and thermal nature of the noise remains constant throughout this time,
as well as the properties of the trapping potential. In this section we analyse the time-
stability of the measured trajectories through an Allan-variance based test [139, 140],
in continuation of previous work done in our group [86]. The strong difference of
this approach with respect to a spectral analysis (over frequencies) or a displacement
measurement (over time-lag) is that it is defined in the absolute time-domain and is
able to reveal low frequency drifts within a stochastic signal. This allow us to verify
unambiguously the stationary and thermally limited properties of the noise at play as
well as the stability of the trapping potential properties in an experiment.

The Allan variance �
2
(⌧) is defined as

�
2
(⌧) = h(y

k+n
� y

k
)
2i (3.10)

where the variable y
k

at time tk = kdt is the time average of the displacement �xt =

xt+dt � xt on an interval of length ⌧ = ndt

y
k
=

1

⌧

Z
k+⌧

k

�xtdt. (3.11)

Here the displacement fluctuations �xt can be understood as analogous to the fre-
quency fluctuation in the classical use of Allan variance on the stability of atomic
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clocks [140]. The position of the Brownian object at a time t can thus be understood
as the phase fluctuation of a clock. It is given by

xt =

Z
t

0

�xsds (3.12)

and allows to rewrite the Allan variance as

�
2
(⌧) =

1

2⌧ 2
h(x(k+2)⌧ � 2x(k+1)⌧ + xk⌧ )

2i. (3.13)

This quantity can therefore be expressed as a combination of correlation functions at
different times. Conveniently, it can be connected to the noise PSD S(f) through the
following relation [140]:

�
2
(⌧) =

4

⇡⌧ 2

Z +1

�1
Sx(f) sin

4
(⇡f⌧)df (3.14)

and can therefore be explicitly evaluated analytically for the Ornstein-Uhlenbeck PSD
Sx(f)

�
2
(⌧) =

kBT

⌧ 2

�
4
⇥
1� e

�⌧/�
⇤
�
⇥
1� e

�2⌧/�
⇤�

, (3.15)

as detailed in Appendix 8.6 and in [114, 141].

3.2.2 Probing Allan variance on experimental data

We use the same 10 minutes-long experimental trajectory studied in the previous
section and in Chap. 2 to apply the Allan variance based test.

On Fig. 3.10 we plot the Allan deviation (square root of the Allan variance) mea-
sured on the experimental trajectory. We superimpose the experimental data with the
result of numerical simulations as well as the analytical result Eq. 3.15. From its def-
inition, the Allan deviation can be evaluated at most on half the total acquired time,
here 300 seconds. We can observe on the figure the very good agreement between the
experimental data and both numerical and analytical results, showing the high level
of stability over more than 6 decades in time, up to 300 seconds. This is emphasised
on Fig. 3.10 where we show the long time limit of Allan deviation with the analytical
result. We observe the fluctuations due to the smaller statistics of the averaging pro-
cess for such long times, but still with a very close agreement of the experiments with
the expected trend.

These data also reveal how the Ornstein-Uhlenbeck and the short-time limit of
Wiener processes are characterized by different Allan variance signatures. Indeed,
we identify on Fig. 3.10 two different asymptotic regimes. The short time regime
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Figure 3.10: (a) Allan standard deviation evaluated for the long tra-
jectory experimentally recorded (blue open circles). We plot the simu-
lated Allan standard deviation (orange continuous line) superimposed
to the analytical result (black dashed line). We highlight the slopes
in both free (purple continuous line) and trapped regimes (green con-
tinuous line). We observe that the whole time range from ⇠ 10

�4
s

up to 300 s is perfectly captured by the theoretical expression built
with experimental parameters –�, T,, – with a very high level of
agreement. (b) Zoom made on the long-time limit of Allan standard
deviation, showing thermally limited behaviour of the noise with no
drift over all probing times.

(!�1
0 ⌧ �/) falls on the �free ⇠ ⌧

�1/2 slope, which is known to corresponds to the
thermal white noise limit of free Brownian motion [114, 132]. Interestingly, in the
long time limit (!�1

0 � �/) of the Ornstein-Uhlenbeck process where the trapping
action dominates the motional dynamics, the Allan variance shows a different slope
with �trap ⇠ ⌧

�1. This change of signatures between the two regimes, accounting for
the presence of the harmonic force field in the long time limit, is continuous and well
captured by a single analytical expression Eq. 3.15. We observe a very good match
between the experiments and theory in the transition between asymptotic regimes.

The stability shown in this section using the Allan variance-based test is key to
access long experiments in well controlled condition. Such an access is central when
using optical trap for weak forces measurement and more generally each time large
statistics are needed.
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3.3 Conclusion

The combination of an ergodic analysis with mean-square-displacements and a sta-
bility analysis with Allan variance, leads to characterize the nature of the noise and
optical potential in our experimental setup and this through a wide spectral range.
These tests are highly operative since they serve as rigorous ground for the methods
involved in exploiting our platform to study the properties of controlled trajectories
and for the other perspectives detailed in Chap 4 and 5. In addition, the application
of these observables reveals the specific features of both the ergodic parameter and the
Allan variance between the short-time free-like diffusion and the long-time trapped
regime. The methodology proposed in our work is also relevant to many experiments
involving Brownian systems coupled to non-thermal noise, and more complex environ-
ments [62] as discussed in Chap 4.

The tools presented in this chapter are more than mandatory verifications that as-
sess the validity of our experimental method since they also reveal fundamental prop-
erties of the stochastic processes. In Sec. 3.1.5, the application of an ergodicity test to
stochastic resetting process unveiled a non-ergodicity induced by a simple stochastic
modulation of the potential. The demonstrated non-ergodicity is connected to other
fundamental properties of the process. It is, for example, a necessary condition for
memory processing [125], key aspect in information thermodynamics of microscopic
stochastic systems. Experimentally probe the non-ergodic nature of a process can
open new possibilities of applications, showing the vast range of consequences of the
tests studied in this chapter. This is an example of how ergodicity is saying more than
the possibility to build ensembles. Similarly, our Allan-variance based test is indeed
providing a verification of the stability of the experimental setup over long time, but,
by its slope, it also provides informations on the nature of the stochastic process at
play.
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Chapter 4

Bath engineering, active matter and
information harnessing

4.1 Introduction

In the previous chapter, we explored how a noise and the statistical properties of a
Brownian trajectory in an optical trap can be characterised. A strong emphasis was
put on the Brownian, stable and ergodic nature of the trajectories but also on the
verification of the Gaussian and white nature of the random force

p
2kBT�⇠t driving

the process. This force stems from the thermal bath in which the bead is immersed
and, even though we have a flexible control on the optical conservative forces �rV

acting on the bead, the thermal forces are imposed by the environment. Yet many
physical systems evolves in bath of different nature, or simply thermal baths with time
varying parameters, e.g. temperature. For example biological systems at the micron
scale experience a noisy environment, but the complexity of the surrounding medium
[142] induces correlations in the noise, departing from a white nature.

The large field of active matter [143] deals with systems able to convert a source of
energy into directed motion. These system typically exhibit non-Brownian diffusion
[49, 63, 55] that is effectively well modelled by correlated noise bath [66, 144]. Active
matter is intrinsically out-of-equilibrium, but quantifying and describing it with the
tools of statistical mechanics has been challenged by an important theoretical work
[145, 56, 119, 146, 61, 147, 148, 65, 58, 60, 149, 150]. Experimental studies with bio-
logical active matter [151, 98, 57, 152] are limited by the complexity of manipulating
real living systems, restraining the range and flexibility of the experiments. Along
this line, having an artificial way to engineer the properties of the bath for simple
white noise [153, 154] or more complex noises [155, 156, 157, 27] is very valuable since
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it does lead to test and explore the out-of-equilibrium nature of active matter with
more flexibility and control. Such tuneable baths can allow one to act on the diffusive
properties of the trajectories through ways that remain inaccessible by using solely
conservative forces.

The aim of this chapter is to propose an optical method to couple to an opti-
cal trap an additional artificial bath whose properties can be dynamically chosen by
the experimentalist. Using a secondary laser beam whose intensity is driven by an
accousto-optic-modulator, we can act on the trapped microsphere through radiation
pressure force. We use this force to exert on the sphere an external stochastic force
Fext that plays the role of an additional bath. The time-series building this stochastic
force is generated numerically and therefore of arbitrary nature. We will mainly focus
on the case of exponentially correlated noise, where the values of the force Fext at two
time instant t and s obeys hFext(t)Fext(s)i ⇠ e

�!c|t�s|. We use this example of colored
noise [158, 159, 66] as a minimal model to tackle the questions mentioned above on
the non-Brownian and out-of-equilibrium properties of active matter.

In Sec. 4.2 we describe how to experimentally implement the external bath and
control its properties as amplitude or correlations of the noisy forces. Following this op-
tomechanical perspective, Sec. 4.3 focuses on the nature of the trajectories followed by
the microsphere and how strongly it depends on the properties of the bath. The stud-
ied case of exponentially correlated Gaussian noise exhibits superdiffusion and breaks
equipartition of energy, forbidding the definition of an effective temperature. Since the
motional variance of the trapped micro-sphere depends on the color of the noise im-
posed, the latter can thus become a parameter used to make the system transient from
on state to another. We therefore study color-driven protocols in Sec. 4.4. Finally,
Sec. 4.5 focuses on the thermodynamic description of the out-of-equilibrium process
and emphasizes the strong connexion with biological active matter. The fluctuation-
dissipation theorem is studied via rheological measurement and the thermodynamic
observables of the trajectories are computed. The heat released during a color pro-
tocol is shown to be generated by the informative content of the bath, revealing a
robust connexion between energy and information. To further reveal the distance to
equilibrium, an alternative representation of a colored-noise driven trajectory is given,
considering the noise variable as an additional dimension and building a two dimen-
sional pseudo phase-space. This description studied in Sec. 4.3.3 unveils the broken
detailed-balance and net current associated with such colored noise, bringing to light
the non-equilibrium nature of the process.
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4.2 A secondary artificial bath

In this section, we experimentally show how the radiation pressure can be used for
inducing an artificial bath with tuneable color, intensity and distribution.

4.2.1 Radiation pressure as an additional stochastic optome-
chanical force

Radiation pressure can act on the bead as a bath when it is injected as a stochas-
tic time-dependant external force. Our experimental setup, shown on Fig.4.1 (the
setup, appart from the radiation pressure is the same as detailed in Chap 2), is com-
posed of a single 3µm dielectric bead harmonically trapped with a focused laser beam
(785 nm, 110 mW). The bead is immersed in water at room temperature and un-
dergoes Brownian motion due to the thermal fluctuations ⇠. The fluid, as carefully
explored in Chap. 3 is a thermal white noise, with no time correlation h⇠t⇠si = �(t�s).

An additional radiation pressure force is applied using a second 800 nm high-power
laser Spectra Physics Ti:Sa (model 3900s CW) tuneable laser, with a maximal output
power of 5 W. The beam passes through an accousto-optic-modulator (AOM, Gooch
and Housego 3200s). The first order diffracted beam, spatially selected, has its inten-
sity depending on the acoustic wave in the cristal and therefore on the voltage sent
to the AOM. This beam is sent to a telescope where the second lens can be precisely
positioned in three dimensions. Since the role of the laser is to add an independent
force, without trapping effects despite optical powers that can be comparable to the
power of the trapping laser, the key point is to minimise the amplitude gradient in
the vicinity of the bead. This can be achieved by focusing the laser in the back focal
plane of the objective such that broad plane wave is transmitted through the objective.
This leads to levels of transmission implying that measurable forces need high powers.
Instead of this approach, we choose to send the laser as a thin light beam, that will
concentrate the power on the bead. To avoid trapping, we use a lower NA objective
and strongly underfill its entrance with the thin beam, to minimise focusing effect as
much as possible. The role of the telescope is therefore to reduce the diameter of the
beam, but also, with the precise x-y-z positioning of the second lens, to carefully tune
the divergency of the beam. This control of the divergency allow us to position the
focus of the laser inside the cell, and to make it coincide with the one of the probing
639nm laser. We will see in the following sections that the radiation pressure does not
modify the trapping potential, by verifying for example that the corner frequency of
the motional power spectral density of the trapped bead does not change when the
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additional radiation pressure is injected inside the trap.

Figure 4.1: Schematics of the optical setup: the 785 nm trapping
laser, drawn in red is optically isolated with a Faraday isolator, ex-
panded with a telescope to overfill the input lens of the microscope
objective Obj.1 (Nikon Plan-Apo VC, 60 ⇥ 1.20 Water Immersion)
focusing the trapping beam on the bead. The radiation pressure in
applied using the 800 nm beam, drawn in purple. It is focused into
an AOM and then sent to a telescope to reduce its diameter and con-
trol its divergency, with a precise positioning of the output lens. The
beam is sent in the trapped bead via a low-NA objective Obj.2 (Nikon
Plan-fluo ELWD 60⇥ 0.70). A third low-power 639 nm laser is used
as a passive probe to measure the instantaneous position of the bead:
the light scattered by the bead is collected by Obj.1 and sent to a
photodiode (Thorlabs Det10a).

The voltage of the AOM is controlled with a python code via a digital to analogue
card (NI PXIe 6361). The signal generation procedure is detailed in the next section.
Using this technique, any waveform that can be produced numerically can be send as
an external force on the bead.

4.2.2 Noise modulation and active diffusion coefficient.

To play the role of a bath, the waveforms that we are interested in here are stochas-
tic signals. Such signals stems from a noise ⌘t generated numerically with chosen
properties. The signal is then processed following the sequence described in Fig. 4.2.
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Figure 4.2: Schematic representation of the signal and data acqui-
sition processing implemented in our experiments. The noise ⌘t is
digitally generated, scaled to a voltage V (t) that can be sent to the
acouto-optic modulator (AOM), producing a diffracted beam whose
intensity varies linearly with this input voltage. The laser beam
diffracted through the AOM exerts a radiation pressure on the op-
tically trapped sphere, whose position is recorded. A beam splitter
sends 10% of the laser beam into a photodiode for monitoring and
evaluateing the noise ⌘t as it enters the trap.

Its amplitude is scaled between 0 and 1V to fit with the input of the radiofrequency
driver that drives the AOM. The AOM is calibrated by interpolating its response to
a linear increase over its whole dynamical range with a polynomial function, which is
then inverted and applied to the initial signal ⌘t to obtain a linear relation between the
desired signal and the light intensity. The output beam is separated using a 90 : 10

beam splitter to probe and record its time trace I(t) with the 10% arm. The 90%

arm is sent into the optical trap as detailed in the previous section. This results in an
external radiation pressure force that we denote Fext = F0 + �F (t) centred around a
mean value hFexti = F0 and with a fluctuating time dependant part �F (t). This noise
will then enter into the Langevin equation as an external random force field

�ẋ = �xt + �

p
2D⇠t + Fext(t) (4.1)

with  the stiffness of the optical potential, D = kBT/� the diffusion coefficient in the
thermal bath, where kB is Boltzmann’s constant, T the fluid bath temperature and
� Stokes drag coefficient. The effect of the DC component of the external force F0 is
simply to shift the equilibrium position of the bead in the trap as described on Fig.
4.3.
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Figure 4.3: Effect of the external radiation pressure: the average
position of the bead is shifted away from the center of the trap by
F0/. The bead fluctuates around this new equilibrium position under
the influence of both the thermal bath

p
2kBT�⇠t and the fluctuating

part of the radiation pressure �F (t).

The magnitude of the force is kept small enough to maintain the bead in the linear
response area of both the trapping and probing lasers. Therefore, the contribution of
F0 vanishes trivially when looking at the centered process xt�hxti = xt�F0/, which
is always what happens in our experiments, due to the low-frequency filter.

Since we aim at treating the fluctuating part of the radiation pressure as a bath, we
will write it in a more convenient form as Fext(t) = �

p
2Da⌘t, i.e. on the same footing

as the thermal force Fth(t) = �
p
2D⇠t where D is in m

2
/s and ⇠ (the time derivative of

a Wiener process) is in
p
Hz. This leads us to introduce an active diffusion coefficient

Da having the same dimension as D, associated with the noise ⌘t. This choice for
Da gives to the noise a dimension [⌘t] =

p
Hz, just like the thermal noise term ⇠t.

The word active is used to distinguish the "natural" diffusion due to the fluid thermal
bath, and the additional "artificial" diffusion associated with the auxiliary bath. It
will become clear when we will the study active matter with such an external noise.

4.2.3 The white noise case for the second bath

The noise that we generate is characterised by three parameters, (i) its amplitude �⌘(t)

(ii) its probability distribution P (⌘, t) and (iii) its time correlation h⌘t⌘si. We obtain a
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flexible system by keeping independent the amplitude and the correlation of the noise.
The amplitude can be fixed by scaling to an arbitrary value the signal sent to the RF
driver (as detailed on Fig. 4.2), but also by adjusting the power of the laser beam en-
tering the AOM. The correlation depends on the mathematical generation of the noise.

A first instructive case is white noise. Such ��correlated noise h⌘t⌘si = �(t�s) pos-
sesses a flat spectrum, where all frequencies are represented with an equal magnitude.
It can easily be generated numerically with build-in random number generator that
produces a series of independent random values between 0 and 1. The distribution
of the noise can be chosen arbitrarily, since its consist in a series of independent and
identically distributed random variable. By the virtue of the central limit theorem, it
will induce a Gaussian distribution for the bead. Of course, this will be different when
the noise is correlated. It should be noted that since the noise is generated with a finite
generation frequency fgen, its spectrum is flat over a finite bandwidth and its white
character is valid only within this bandwidth. We use the python build-in random
number generator provided by the library Numpy. To choose the generation frequency,
we compromise between two contradictory needs. First, one needs to choose fgen as
high as possible to achieve the best possible white noise On the other hand, a very
high fgen means that a significant part of the optical power will be used in very high
frequencies, where the bead does not respond, leading to an effective decrease of the
amplitude of the noise on the useful bandwidth. By looking at the response of the
bead, for example on its Lorentzian power spectral density, one sees that the response
decreases rapidly after a few kHz. Around 10kHz the signal starts to be dominated
by the electronic noise. We therefore choose to use fgen = 20kHz to obtain a correct
white character of the noise over the selected bandwidth while minimising the power
loss at high frequencies.

The effect of such a well-behaved white noise should not be distinguishable from
the effect of the thermal bath and should therefore simply lead to an increase of the
variance of the bead response, without changing any other parameter. More precisely,
the natural thermal noise

p
2D⇠t and the additional noise

p
2Da⌘t can be recast in

one single noise
p

2(D +Da)✓t where h✓t✓si = �(t� s) is a white noise. The increase
of variance can be described as an increase in kinetic temperature, defined through
equipartition as Tkin = hx2i/kB. Hence an additional white noise can be used to
control the temperature of the bead. The additional force, with its average and fluc-
tuating components is bringing the microsphere in a non-equilibrium state, displacing
its position from the bottom of the potential well and increasing the width of its prob-
ability distribution by a constant feed in energy. However, in this simple white noise
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case, the two noises combine in an effective temperature and the system can still be
described with the tools of equilibrium states [153].

In the next section, we will turn to a colored noise, where the temporal correla-
tion can take arbitrary values. While in this case the tools of equilibrium statistical
mechanics cannot be used anymore, the constrains that we detailed for white noise
related to the generation frequency still hold to obtain the desired correlation on the
used bandwidth.

4.3 Exponentially correlated Gaussian noises

In this section, we focus on exponentially correlated Gaussian noises [160, 56, 142].
Such noises are characterised by an exponentially decaying correlation function and
can serve as a minimal model for memory or persistence effects, in strong connection
with biological matter [151, 98, 66, 60]. Using radiation pressure to engineer an ad-
ditional bath, we study the statistical mechanics properties of trajectories driven by
exponentially correlated noise. We derive and measure useful observables and analyse
their deviations from standard Brownian motion at thermal equilibrium.

4.3.1 Colored noise as a solution of a numerical Ornstein-Uhlenbeck
process

Exponentially correlated noise has the same mathematical structure as a standard
Brownian motion in an optical trap, where the correlation time !

�1
c

is connected to
a virtual "stiffness" and "viscosity". This colored noise [159, 158] can therefore be
generated as the solution ⌘t of the Ornstein-Uhlenbeck process

d⌘t = �!c⌘tdt+
p
2↵!cdWt, (4.2)

where !c is the inverse correlation time of the noise,
p
↵ is its amplitude (the variance

of such a process is h⌘2
t
i = ↵) and dWt is a Wiener process. We will refer to it as

Ornstein-Uhlenbeck noise, or OU-Noise for now on.
An important asset of our work is the flexibility of our scheme for controlling the

color and the amplitude of the noise, which demands to keep !c and ↵ independent.
This is different from the choice made in [98] for instance, where ↵ scales as the square
root of the inverse correlation time of the noise. The latter choice necessarily induces
an interplay between both correlation times and amplitudes that we precisely want to
avoid for reasons that will be clear below. In our experiments, this noise is obtained by
simulating numerically Eq. 4.2 in python with time-step dt = 1/fgen = 50µs, scaling
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and sending it to the AOM, as previously detailed. This numerically generated noise is
thereby encoded into a radiation-pressure force sent to the bead. The incoming beam
intensity acting on the bead depends both on the gain of the AOM-diffracted beam
and on the choice of the radiation-pressure laser intensity. Furthermore, the actual
amplitude of the force experienced by the bead depends not only on this radiation-
pressure laser intensity but also on the optomechanical coupling between this laser
beam and the trapped sphere It will be taken into account in Fext via the active dif-
fusion coefficient Da. Choosing ↵ = 1 as the simplest option simply means that the
optomechanical coupling is entirely "incorporated" in Da. However, we keep the ↵

term for clarity, as a purely dimensional constant.

As OU-noise has the same structure as a trapped Brownian motion it is defined
by the same Gaussian distribution P (⌘) = e

�⌘
2
/2↵

/
p
2⇡↵ and exponential correlation

function h⌘t⌘si = ↵e
�!c|t�s|.

It is also characterised by the same Lorentzian spectral profile that we can derive
by Fourier transforming Eq. (4.2)

� i!⌘[!] = �!c⌘[!] +
p
↵!c⇠[!] (4.3)

taking the squared norm leads to the active noise power spectral density (PSD)

S⌘(!) ⌘ ⌘[!]⌘
⇤
[!] =

↵!c

!2
c
+ !2

. (4.4)

with a corner frequency of fc = 2⇡!c separating a low-frequency flat (white) part from
a high-frequency 1/!

2 part.

Fig. 4.4 displays we show the spectrum of the resulting fluctuations of the laser
intensity before it enters the microscope objective, both for a white noise and an OU-
noise. We can observe the flat spectrum of the white noise over the desired bandwidth,
as well as the Lorentzian profile of the colored noise.

Colored noise can be considered as almost white for large (but finite) !c. Indeed,
the low frequency part of the colored noise being flat one can retrieve an almost white
noise by increasing !c. As we shall see later on the bead response, the effect of a
colored noise with !c of the order of 10 kHz can hardly be distinguished from the
one of a white noise. However, our choice of keeping !c and ↵ independent forbids to
take formally the limit of !c ! 1 as a usable white noise limit. Indeed, keeping a
constant variance ↵, means that the integral of the spectral density does not changes
when the cutoff pulsation increases. As a consequence the amplitude of spectrum on
finite bandwidth decreases as one increases !c and in the limit, an infinite !c leads to
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Figure 4.4: Power spectral density of the noise ⌘t sent to the bead.
The blue curve corresponds to a white noise, with fgen = 20 kHz,
its spectrum is flat throughout the whole studied bandwidth as ex-
pected, with a slight decrease at frequencies ⇠ 10 kHz as the signal
approaches the generation limit. The red curve is an exponentially
correlated Gaussian noise with a corner frequency ⇠ 10

2
Hz along

with a Lorentzian fit / 2⇡fc/(f
2
c
+ f

2
).

a zero amplitude. Therefore it is crucial to keep in mind the limits imposed on the
finite bandwidth when taking limits.

4.3.2 Non-Brownian trajectories xt

The noise generated numerically is injected onto the bead as previously described.
The sphere subjected to this additional noise obeys to the stochastic process

dxt = �!0xt +

p
2D⇠t +

p
2Da⌘t (4.5)

where !0 = /� is the inverse relaxation time of the sphere in the trap. We have
h⇠t⇠si = �(t � s) and h⌘t⌘si = ↵e

�!c|t�s|. In the following experiments, we use an
average optical power for the 800 nm pushing laser ranging from 10

1 to 10
2
mW and

correlation times !
�1
c

ranging from 0.1 to 100 ms. The fluid is considered to be at
room temperature, varying between 296�298 K for the different experiments, but vary-
ing less than a degree during a given experiment. We use polystyrene microspheres,
with a radius of 3 µm (Duke Scientific Corp. 3 µm) leading to a drag coefficient
� = 2.699 ⇥ 10

�8
kg/s. The trapping stiffnesses  range from a few to a few tens of

pN/µm, leading to relaxation times !
�1
0 of the order of the ms. This means that the

noise correlation !
�1
c

can be both smaller or larger than the sphere relaxation time
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!
�1
0 , allowing us to probe various regimes of correlation. The trajectory of the bead

is recorded at an acquisition frequency of 2
15

= 32768 Hz following the procedures
presented in Chap. 2.

We want to asses the nature of these trajectories. To do so, we analyse, as in Chap.
2, the diffusivity, correlation and spectral properties of the trajectories. Measuring
the power spectral density, autocorrelation function and Mean-Square-Displacement
(MSD) of the trajectories under a colored noise and under a white noise of the same
amplitude, leads to discriminate the effects of the color only. Indeed, we expect the
trajectories subjected to a white noise to behave "normally", namely, with only a
change in amplitude of the different observables but no change of nature (e.g. time or
frequency dependance and scaling). In other words, these trajectories can be described
with the tools of Chap. 2 with a higher effective temperature (or effective diffusion
coefficient Deff ). To contrast, the data driven by a colored noise of same amplitude
yields different features for all the aforementioned observables, this discrepancy being
solely due to the correlation of the noise.

We present here the theoretical results for PSD, autocorrelation and MSD evaluated
with a colored noise, and the corresponding experimental data. The solution xt of Eq.
4.5 can be obtained using Laplace transform (see details in Appendix 8.8).

x(t) = x0e
�!0t +

Z
t

0

⇣p
2D⇠t0 +

p
2Da⌘t0

⌘
e
�!0(t�t

0)
dt

0
. (4.6)

The additional noise ⌘t enters the equation similarly to the thermal noise, but with
a non-� correlation. It induces an additional memory kernel in the integral of the
right-hand-side of Eq.( 4.6). By Fourier transforming Eq. 4.5 as detailed in Appendix
8.9 and using the Lorentzian spectrum of ⌘, the PSD of the bead position writes

Sx(!) ⌘ x[!]x
⇤
[!] =

1

!
2
0 + !2

✓
2D +

2Da↵!c

!2
c
+ !2

◆
(4.7)

that clearly departs from a simple white noise-driven Lorentzian profile. We show on
Fig. 4.5 the measured PSD for both a white noise and colored noise driven trajectory,
with T = 296 K, !�1

0 = 1.2 ms. The correlation time of the colored noise ⌘t set to
!
�1
c

= 1 ms.

Both experimental data are fitted with the according theoretical result. We use
a standard Lorentzian for the white noise driven trajectories (see Chap 2 Eq. 2.24),
leading to an effective diffusion coefficient Deff = 0.29 µm2

/s (while the thermal
diffusion coefficient at room temperature is D = 0.16 µm2

/s). The colored noise driven
spectrum is fitted with Eq. 4.7 keeping D = 0.16 µm2

/s, leading to Da = 1.44 µm2
/s.
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Figure 4.5: Motional PSD Sx[!] plotted as a function of the frequency
for the white noise driven process (blue) and the colored noise driven
process (red) along with the associated theoretical PSD (black dashed
curves).

We clearly observe the non-Lorentzian profile of the latter spectrum, with a slope
higher than 1/f

2 after the corner frequency.
The autocorrelation function of the position Cxx(�) ⌘ hxt+�xti can be computed

from the spectrum via the Wiener-Khintchine theorem, as detailed in appendix 8.9,
leading to

Cxx(�) =
D

!0
e
�!0� +

Da↵!c

!0(!
2
c
� !

2
0)

✓
e
�!0� � !0

!c

e
�!c�

◆
(4.8)

Finally the MSD can be computed from the autocorrelation and the variance as
h�x2

(�)i = h(xt+� � xt)
2i = 2hx2

t
i � 2Cxx(�) in the stationary regime, leading to

h�x2
(�)i = 2D

!0

�
1� e

�!0�
�
+

2Da↵!c

!0(!
2
c
� !

2
0)

✓
1� e

�!0� � !0

!c

(1� e
�!c�)

◆
. (4.9)

Both quantities are evaluated experimentally in the same condition as the PSD, for
white noise and colored noise driven trajectories, and are fitted with the theoretical
corresponding expressions. We show on Fig. 4.6 (a) the normalised autocorrelations
with a good agreement with the fits, where again diffusion coefficients are the only
fitting parameters. We note the longer lasting correlations of the colored noise driven
trajectories, that also depart from a simple exponential decay while still decaying to
zero correlation for long times

On Fig. 4.6 (b) we show the MSD in both cases, where again good agreement with
the fits can be observed. The short-time limit of MSD can be used to asses the diffusive
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Figure 4.6: (a) Autocorrelation function Cxx(�) = hx(t + �)x(t)i
plotted as a function of the lag � for the white (blue curve) and
colored (red curve) noise driven processes both with physical param-
eters T = 296 K and !

�1
0 = 1.2 ms and normalised to the zero-delay

� = 0 correlation function Cxx(0). The theoretical expressions de-
rived in appendix 8.9 are displayed as dashed black curves for both
cases. (b) Mean square displacement measured experimentally for a
white noise added to the existing thermal fluctuations inside the fluid
(blue line), showing a short-time diffusive limit, and a correlated noise
with ⌧c = 1 ms (red line), yielding a short-time superdiffusive limit;
the superimposed dashed lines are the MSD expected from theory,
with a Ornstein-Uhlenbeck MSD evaluated for the white noise case
and the modified MSD in the correlated-noise case. The shaded re-
gions accounts for the uncertainties associated with the fitting error
in determining !0 and the systematic error in the sphere radius de-
termination.

nature of the process. Indeed for small enough time-lag �, the bead does not respond
to the trapping potential and explores the available space inside the trap according to
the free diffusive motion h�x2

(�)i ⇠ �
�, with � = 1 for normal diffusion and � 6= 1

for anomalous diffusion [96, 115]. We can observe on Fig. 4.6 that the white noise
driven trajectories are undergoing normal diffusion, by fitting the short-time limit,
obtaining an MSD ⇠ �

0.94. On the other hand, the colored noise driven trajectories
clearly shows a superdiffusive short-time limit, with ⇠ �

1.5. The superdiffusivity of
a Brownian object subject to an exponentially correlated noise was observed with
a colloid suspended in a fluid saturated in E. coli bacteria [98]. However, in this
biological example, the experimental contrains limited the flexibility and control to
study the influence of the correlation time of the noise !

�1
c

on superdiffusion and the
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deviation to equilibrium-like behaviour are small. To contrast, in the section 4.3.4 we
extensively observe the importance of the value of !�1

c
with respect to the relaxation

time !
�1
0 .

4.3.3 Alternative representation of the trajectories

In the previous section, we explored the non-Brownian nature of the trajectories xt,
subjected to correlated noise. An alternative approach [66] is to consider the colored
noise ⌘t as a genuine variable, on the same footing as the position xt. Eq. 4.5 and 4.2
are a couple of differential equation, and the vector (xt, ⌘t) describes the evolution of
this coupled system. The advantage of this method is to recover a couple of white-
noise baths, driving the evolution of the two variables, that becomes Markovian again.
The idea of increasing the number of dimension to recover Markovian dynamics was
already suggested by Uhlenbeck in [161].

Figure 4.7: Schematic view of the system considered : x and ⌘ are now
considered as two variables, immersed in two different �-correlated
baths. Furthermore, the two systems are coupled in an asymmetrical
way since x depends on ⌘ but the reverse is not true.

On Fig. 4.7 we schematize this alternative representation of the problem: xt and
⌘t are two random processes, driven by two independent white noise baths ⇠t and ✓t

respectively. Both equations are coupled in a unidirectional way by the term
p
2Da⌘t

in the equation for xt. As shown in [67] non-reciprocal systems are inherently out-of-
equilibrium, with breaking of detailed-balance condition, fluctuation-dissipation rela-
tion and non-vanishing steady-state currents. Because of the unidirectional coupling,
studying the system in the (xt, ⌘t) space vividly reveals the non-equilibrium nature of
the process, by showing net currents and detailed-balance violation. As shown in [69],
the probability density for (xt, ⌘t) in steady-state takes is Gaussian both in x and ⌘
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projections, but with a cross term correlating the two variables, giving an elliptical
shape to the probability densities in 2D-space. The ellipticity is proportional to 1/!c

and grows with increasing correlation in the noise; it disappears for white noise.

Figure 4.8: (a) Experimental (x, ⌘) parameter space stationary dis-
tributions for the colored-noise driven trajectory with different corre-
lation time, from almost white (blue line) to strongly colored (yellow
line). (b) moving-average smoothened trajectory {xt, ⌘t} in the (x, ⌘)

parameter space (with time on the vertical axis) for a colored-noise
driven process (!�1

c
= 1ms) showing a net rotation, unveiling the

broken detailed-balance condition.

On Fig. 4.8 (a) we represent two steady-state distributions for almost white noise
(!�1

c
= 0.5 ms) and strongly colored noise (!�1

c
= 10 ms). We can make several

observations: (i) as we choose h⌘2i = ↵, we ensure a constant input noise variance,
this is visible by the constant width of the distributions on the noise axis; (ii) the
marginal variance along the position axis in increasing with !

�1
c

, as a consequence
of the increasing mechanical coupling, as studied in more details in Section 4.3.4 and
4.4.2 (iii) the ellipticity of the distributions is increasing with correlation time !

�1
c

.

Furthermore, as studied in [66, 67, 69], the unidirectional coupling between xt and
⌘t induces a non-vanishing probability current in the two dimensional space. This
current, necessarily rotational, since it does not exist in the one-dimensional x-space,
is visible by plotting a smoothed trajectory in (xt, ⌘t)-space, as shown Fig. 4.8 (b).
This is revealing the broken detailed balance [69] in this space: the jump-probability
connecting two arbitrary points (xt, ⌘t) and (x

0
t
, ⌘

0
t
) is not equal to its time-reversed

twin P (x, ⌘ | x0
, ⌘

0
) 6= P (x

0
, ⌘

0 | x, ⌘) if there is a net current.
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However, this signature of non-equilibrium is not a direct consequence of the col-
ored nature of the process ⌘t, it is only due to the asymmetrical coupling between both
equation. In the case where ⌘t is a white noise, the same currents exist and the re-
sulting trajectories xt are out-of-equilibrium. The main difference between white and
colored noise is therefore not the equilibrium nature of the joint-process: we know that
even a white noise drive is still maintaining the system in a NESS, but this one can,
in the x-space, be described with the tools of equilibrium states (with and effective
temperature) which is impossible for colored noise.

This alternative description allows to get insight on the mathematical process and
how the coupling between stochastic processes induces non-equilibrium properties.
However in most experimental cases the stochastic process ⌘t is not accessible, as for
example when it stems from the many collisions of a passive tracer with surrounding
bacterias [98]. In that case, one cannot build a bi-dimensional space, and the "physical"
process remains solely xt, driven by a colored noise. In the next sections, we therefore
go back to this framework, where the non-equilibrium nature of the process will appear
through other observables.

4.3.4 Exploring the effect of correlation time: from almost
white to strongly colored noises

Our flexibility regarding the color of the noise allows us to explore the effect of the
correlation time from 0.1 to 50 ms one the trajectories of the trapped bead. We
monitor the corresponding modification on the bead dynamics using the MSD of the
trajectories.

On Fig. 4.9 (a), we show the power spectral densities of different noises, from white
to strongly colored noises. The blue curve in Fig. 4.9 (a) corresponds to a white
noise generated over the desired bandwidth where we see its flat spectrum covering
all the response region of the bead, up to the 20 kHz limit of the generation sampling
frequency. The other curves are the different colored noises, with correlation times
spanning from 0.1 ms (orange line) to 50 ms (deep red line).

On Fig. 4.9 (b), we show the mean squared displacement (MSD) associated with
each noise. The black dashed line shows the DC case with Fext = F0 where no noise is
added. The blue curve corresponds to the white noise drive (blue spectrum of Fig. 4.9
(a)). It is similar to the thermal MSD black dashed line, but with a higher amplitude,
as a consequence of the increase in effective temperature. The orange curve gives the
first colored noise case, with correlation time !

1

c
= 0.1 ms (orange spectrum of Fig.
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Figure 4.9: (a) Power spectral density associated with different noises
⌘t (for each colored curves, the corresponding correlation time is in-
dicated within brackets in the legend). These spectra are measured
directly from the laser intensity signal that is sent on the trapped bead
as a radiation pressure. (b) Mean squared displacement of the sphere
for each of the noises presented in panel (a). The DC case corresponds
to the absence of additional noise, with Fext = F0. We observe that
the white noise case and the first colored noise case (correlation time
0.1ms) are almost identical. Superimposing the fit performed with
the analytical expression for the mean squared displacement enables
one to extract the active diffusion coefficients Da for each case.

4.9 (a)). We can note that this response is similar to the response to white noise : this
colored noise is almost white considering that its correlation time falls off the bead’s
response bandwidth. Hence, longer correlation time !

1

c
> 0.1 ms are needed to make a

clear difference between the white and colored cases (as seen for the next colored noise
with correlation time 0.5 ms). The other curves are the MSD corresponding to the
different noises of Fig. 4.9 (a). We can note that for strongly colored noise, the MSD
takes a complex shape, where two time-scales characterising the problem starts to be
visible. See on the purple line for !�1

c
= 50 ms for instance, we can see two inflections

around 1 ms and ⇡ 50 ms, corresponding respectively to the bead’s relaxation time
!
�1
0 = 1.2 ms and the correlation time !

�1
c

of the noise.

The flexibility on choosing correlation times while preserving a good agreement
between experimental data and theory allows us to study various regimes, departing
from normal Brownian motion. This possible discrepancy with standard Brownian
motion is connected to the out-of-equilibrium nature of the process, and it increases
as the distance from equilibrium increases [56]. We will see later when looking at the
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connexion to active matter, that this control of distance to equilibrium allows us from
witness when and how the laws governing equilibrium states break.

Figure 4.10: The active diffusion coefficient Da is fluctuating around
a constant value when the correlation time of the bath !

�1
c

changes
from ⌧c = 0.1 ms to ⌧c = 0.8 ms, with relaxation time inside the
optical trap fixed at !

�1
0 = �/ ⇡ 1.2 ms.

The active diffusion coefficient is taking into account the optomechanical coupling
of the radiation pressure onto the bead. It thus depends on the intensity and focali-
sation of the beam as well as on the optical response of the microsphere. In our case,
this (complicated) dependency is circumvent by extracting Da from the fit of the ex-
perimental MSD with the analytical expression Eq. (4.9) where all other parameters
are known. In the case when the intensity of the force applied (amplitude of ⌘t sent
to the AOM and intensity of the laser beam passing through it) is constant, the coef-
ficient Da is a constant under changes of correlation time, as seen on Fig. 4.10. The
fluctuations of Da around the mean value comes from experimental errors, since it is
the only fitting parameter.

4.3.5 Breaking of equipartition and absence of effective tem-
perature

As we see on Fig. 4.9, when the noise gets more colored, i.e. the correlation time
increases and the overall amplitude of the MSD increases. When the correlation time
increases, the microsphere explores a larger volume. This is reminiscent of an increase
of temperature, as in the case of an additional white noise discussed in Sec. 4.2.3.
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In the colored noise case, seen on the MSD, this increase is not a simple change in
amplitude, but goes with a modification of the scaling of MSD with respect to the
lag-time (superdiffusion). This prevents one to describe the system with a unique
constant effective temperature [31]. As a way to highlight this strong difference with
a simple temperature change, we show that the law of equipartition of energy fails to
describe the bead response.

Equipartition states that every quadratic degree of freedom contributes on average
to kBT/2 to the energy of the system. In our case, the only quadratic term is the
potential x2

/2 hence equipartition imposes hx2i = kBT . Introducing the diffusion
coefficient D = kBT/� and the inverse relaxation time !0 = �/, we can write equipar-
tition as hx2i = D/!0, linearly relating the variance with the diffusion coefficient. Of
course, when a second noise is added, this relation cannot hold, since the variance
increases with a fixed fluid temperature. However, for a white noise, the microsphere
is driven by two uncorrelated white noises and a generalised equipartition relation can
be obtained as hx2i = Deff/!0, where we introduce an effective diffusion coefficient
Deff = kBTeff/� connected to an effective temperature. This is what we do for the
white noise driven trajectories in Sec. 4.2.3. When the noise is colored, the stationary
variance ceases to be defined by a linear relation with a single diffusion coefficient, but
rather obeys to

hx2i = D

!0
+

Da↵

!0(!c + !0)
(4.10)

where ↵ is a dimensional constant in m
�1. When !c � !0 (but finite), the noise is

almost white i.e. we can again recover a generalised equipartition relation [98] where
an effective temperature can be defined to describe the system. However, our ability
to control the color of the noise to arbitrary values allows us to explore strongly cor-
related noise, where this approximation fails. In this case, the relation between the
motional variance and the total diffusion coefficient D + Da is Eq. 4.10, where the
explicit dependency on !c prevents one to define an effective temperature. On Fig.
4.11, we plot the variance against the total diffusion coefficient along with a naive
equipartition result that assumes linearity and the actual relation 4.10. We observe a
very clear departure from an effective equipartition, but a good agreement with the
theoretical expression.

One consequence of equipartition breaking is thus the absence of an effective tem-
perature. To be more precise, it is the impossibility to describe the system over all
time-scales using a single temperature. If one can use the long-time stationary vari-
ance to define an effective temperature [151], the short-time superdiffusive character
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Figure 4.11: The relation between the motional variance hx2
t
i and the

D+Da diffusivity is measured on a 99.7% confidence level (blue dots
and 3-� bars) for different correlation times ranging from !

�1
0 = 0.1

ms to !
�1
0 = 100 ms, and with a relaxation time inside the optical

trap fixed to !
�1
0 = �/ ⇡ 1.2 ms. A naive equipartition result

(straight blue line) that would assimilate the correlated noise to a
white noise of same amplitude clearly departs from the experimental
results, except for very short correlation times. The correct estimation
of the variance for the correlated noise drawn in red is given by Eq.
4.10 with Da value extracted from the correlated noise MSD. It fits
well the experimental data.

is however not captured by this description. In fact, this impossibility is a first strong
observable of the out-of-equilibrium nature of the process, connected to the violation
of fluctuation-dissipation theorem (FDT) that will be discussed in section 4.5.3. The
latter, consequence of Onsager regression principle, connects the response function of
the system to an external perturbation to the spontaneous correlation function [162]
through kBT . Out-of-equilibrium, both response function and correlation have gener-
ally different dynamics cannot be connected by a constant kBT factor. In that case
[31], a quasi-FDT can allow to define an effective temperature via a non-constant
kBTeff [!] here expressed as a frequency dependence as in [163] to contrast with a
constant Teff that would allow an equilibrium-like description.
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4.4 Noise color for protocols

In the previous section we observed that the motional variance of the microsphere
can be modified by changing the color of the noise. We studied in details that this a
change, not only of the amplitude of all observables (such as MSD, PSD, autocorre-
lation) but of their nature, like the superdiffusive character of MSD. These changes
in nature are summarised in the break of equipartition relation that shows no more a
linear relation between variance and one given unique temperature. The monotonic
increase of variance with the correlation time of the bath could however still be used in
a similar way to a change in temperature or volume for controlling the system. Color
of the bath is an experimental parameter on which time-dependant functions can be
imposed, modifying through time the environment of the bead and the volume of the
space it explores. As such, it provides a direct path to so-called ’bath engineering"
techniques [153, 154].

In this section, we propose to use correlation time as a parameter to perform pro-
tocols on the trapped bead without modifying at all the trap features themselves. We
monitor in real time the dynamical response of the bead to this change of bath. The
simplest protocol that one can design is a sudden change in color at a given time
instant, instantaneously modifying the bath properties. This is reminiscent of more
standard thermodynamical protocols, like volume changes, that are performed in opti-
cal traps by a change in stiffness [33, 128], change in kinetic temperature, for example
via noisy electrical forces [153, 154], or a combination of both [101, 99].

In our case the protocol has a different nature for two reasons. First, it does not
only change the amplitude of observables (such as MSD, PSD, autocorrelation) but
modifies the nature of the diffusion of the bead. Then, it does not demand any change
in the amplitude of the forces applied. Changes in trap stiffness, in striking contrast
need a change in the laser power sent in the trap, and temperature changes are assisted
trough changes in the amplitude of an external noisy force. In our case, we propose
to change the color of the noise while keeping its amplitude (variance) constant. A
constant external noise variance means a constant constant overall energetic cost since
the same laser power is needed to produce the force. In this sense, both first and
second points give the nature of the process : we modify the spectral properties of the
bath, tuning it more or less to the mechanical response of the bead, leading to a change
in diffusivity. As a consequence, one obtain a change in amplitude at constant input
energy. We will observe in the last section of this chapter, through a thermodynamic
study of the process, that this apparent paradox resolves when interpreting such a
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colored-based protocol as a relation between information and heat, where the former
us converted into the latter.

In this section we will study the effect of a change in color on the motional vari-
ance. The latter being an average quantity, we need an ensemble of Brownian object
experiencing the same protocol to build the average response. In order to build this
ensemble out of a single trajectory, we will rely on the ergodic hypothesis that states
the equivalence between time and ensemble averaging processes. Ou method consists
in sending the same protocol sequentially on the bead, at a low enough repetition rate
so that stationarity is reached between each event. The resulting long time-series of
event is then reshaped into an ensemble of synchronised trajectories experiencing the
same protocol. In order to validate our method, we must first assess that the ergodic
nature of the trajectories is not broken by the non-Markovian nature of the additional
noise.

4.4.1 Ergodic nature of the obtained trajectories

An ensemble of processes is said to be ergodic when each individual trajectory can
represent the whole ensemble. This means first that individual trajectories explores
the whole phase-space available to the ensemble, it also implies that any time-averaged
quantity computed on this trajectory is the same as computed for any other trajectory.
If furthermore the process is stationary, meaning that any ensemble-averaged quantity
or distribution is constant in time, then ergodicity simply is the equality of time and
ensemble averages in the limit of long time T ! 1 and infinite ensemble. As detailed
in Chap. 3 and [105], appropriate tools exist that can assess the ergodic nature of
trajectories {xt} on finite samples and finite times. The important point for our work
is that once one has assessed the ergodic nature of a stationary process, an ensemble
can be used to study non-stationary dynamical events.

In this section, we aim at verifying that the additional white or colored noise does
not modifies the ergodic nature of a long stationary process. To do so, we rely on
an estimator [96] corresponding to the ensemble variance of the ratio between time
averaged mean squared displacement (TA-MSD) and ensemble averaged mean square
displacement (EA-MSD). This ratio ✏(�) (see Eq. 3.6 from chap 3) should becomes
Dirac-like for long-time (or short time lag � in the MSD). Therefore, as discussed Sec.
3.1.3 a necessary and sufficient condition for ergodicity is the vanishing of the variance
of ✏, corresponding to the vanishing of the dispersion of individual TA-MSD [164, 105].

The result, plotted in Fig. 4.12 (a) with fixed T = 0.5 s and varying �, decays
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Figure 4.12: (a) The ergodic parameter (i.e. the normalised variance
✏(�) presented Sec. 3.1.3) is shown as a function of the time lag �
for both the white noise driven process (blue circles) and the colored
noise driven process (red triangles) along with the analytical predic-
tion for the white noise case (black dashed line). The red and blue
hazes measure the 95% confidence intervals. (b) The same ergodic
parameter ✏(T ) plotted as a function of the total time T for both the
white-noise driven process (blue circles) and the colored-noise driven
process (red triangles) along with the analytical prediction for the
white noise case (black dashed line).

to zero for short time-lag as expected. With fixed � = 0.183 ms, varying T , the
expected decrease towards 0 in the long time limit, with a 1/T trend, is also clearly
seen in Fig. 4.12 (b). These two results validate our ergodic assumption for the time-
series of position xt, and therefore our treatment when it comes to building trajectory
ensembles.

4.4.2 Looking at a color STEP protocol through variance

We study the response of the system to a dynamical change in the inverse correlation
time !c(t) of the bath. The simplest protocol one can design is a sudden change of
inverse correlation time from an initial !i

c
to a final value !

f

c
. We will refer to this

protocol as a STEP protocol. We expect the system (the bead) to start in a steady
state characterised by a trap stiffness , a thermal bath temperature T and immersed
in a secondary correlated bath characterised by a diffusivity Da and inverse correlation
time !

i

c
. When only the correlation time is modified, the system will reach another

steady state, characterised by the same parameters and the new correlation !
f

c
. As

we saw in Sec. 4.3.4 this new state will have a different probability distribution,
still Gaussian but with different widths. It will also have different diffusivity and it
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will be at a different distance of equilibrium as detailed through the thermodynamic
description given in Sec. 4.5.5.

Figure 4.13: (left) Temporal noise series ⌘t modulated between two
correlation times (two colors) following a 20 Hz square modulation
function (top) and the resulting trajectory xt (bottom). (right) Each
long trajectory is reshaped as an ensemble. In the upper panel, the
{⌘i

t
} ensemble clearly displays at t = 0 the instantaneous change in

correlation with constant amplitude. In the lower panel, the ensem-
ble of trajectories {xi

t
} of the bead shows the progressive change in

the motional variance that results from the step-like change of the
correlation times of the secondary, correlated bath.

To study the response to the STEP-protocol, we need an ensemble of independent
trajectories all experiencing the same parameter changes. With one single bead in the
optical trap, the ensemble is drawn out of a long time series, for which the ergodic
hypothesis is crucial and was carefully checked as discussed in Sec. 4.4.1. We produce
two long noise sequences ⌘t, one with !

i

c
and the other with !

f

c
. Both sequences are

then interspersed synchronously with a !
i

c
/!

f

c
square modulation. This way we obtain

a periodic STEP between two stationary noises with two different correlations at a low
enough repetition rate (a few tens of Hertz). The detailed procedure is described in
Fig. 4.13 (a). This modulated sequence of noise ⌘t is sent to the bead via the radiation
pressure laser. The corresponding trajectory xt of the bead relaxes to one steady-state
between each change on !c. The long trajectory is cut and reshaped into an ensemble
of trajectories {xi

t
} that, each, experience a step-like change in correlation time. We

will see in Sec. 4.4.3 that other methods for producing protocols are possible and each
impacting differently the response of the system.
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Figure 4.14: STEP protocol using the noise correlation time as a
control parameter. (top panel) 25 digital realisations of the noise
variable ⌘t, undergoing a change in the correlation time at t = 0,
from ⌧c = 0.8ms before the STEP to ⌧c = 40ms after. (bottom panel)
Corresponding experimental ensemble variance hx2

t
i of the position of

the bead from the trajectory associated with each noise realisation;
the shaded area represents the 99.7% confidence interval.

In Fig. 4.14 (b), we show the results of a STEP protocol where the correlation
time is suddenly changed from !

�1
c

= 0.8 ms to !
�1
c

= 40 ms, while !
�1
0 = 2.1 ms.

A squence of realisations of the noise variable ⌘t is displayed in Fig. 4.14 (a): the
change in correlation time at t = 0 is clearly visible. In Fig. 4.14 (b), we represent
the variance of the position of the bead evaluated on the trajectory associated with
the noise realisation, which undergoes a threefold increase when the correlation time is
changed. The small dip right after the STEP is due to the way we build the protocol
by interspersing two uncorrelated noise time-series as detailed in the following section
and in Appendix 8.11

The above STEP protocol has the same effect (increase in the variance hx2
t
i) as a

protocol where the noise remains white, but its amplitude (temperature encapsulated
in D+Da) increases [99, 101]. The important difference is that, in our case, we do not
change the amplitude of the noise, but only act on its spectrum by modifying the cor-
relation time. In this sense, the protocol can seem costless from the experimentalist’s
point of view, as no additional power is provided to the laser source at the transition
time. As a comparison, we estimated the equivalent power needed to induce the same
increase in variance as in Fig. 4.14 (b) through a change in the noise amplitude, i.e.,
by changing the diffusivity Da. The result is that one would need a laser intensity of
70 mW, whereas we used only 36 mW in our color-based protocol.
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4.4.3 How to change color ? Experimental details.

As we have pointed out in the previous section, our method to build the protocol
is not unique. We recall that we generate two uncorrelated time-series of noise ⌘t

with different correlation times and reshape the two sequences into one single long
periodic change between two noises. One obvious consequence of this choice is that all
correlations in the noise are lost after the protocol: if the change happens at time t = t0

then we have h⌘(t0 � ✏)⌘(t0 + ✏)i = 0 for any short delay ✏. Consequently, the bead
experiences at each STEP a "new" noise which explores its available parameter space
from an initial condition, without memory from its past values. The bead therefore
uses a finite time to "measure" the whole amplitude of the noise ⌘(t0 + ✏) and for this
time the corresponding trajectory will decrease in amplitude. This can be captured
by numerical simulations as well as an analytical expression of the variance. To build
this theoretical result, detailed in Appendix 8.11, we solve the differential equation for
x with a noise build in two parts ✓(t� t0)

p
2D1⌘1 + ✓(t0 � t)

p
2D2⌘2, where ✓(t� t0)

is Heavside’s distribution centred in t0 and D1, D2 are the active diffusion coefficient
for respectively ⌘1 and ⌘2. In our case we are able to change the correlation time
constant, while keeping the amplitude constant, we therefore choose D1 = D2 ⌘ Da.
The solution computed in Appendix 8.11 exhibits a local decrease after the STEP just
like shows the experimental data. This can be understood from the full expression of
hx2

t
i where we see just after t0 the simultaneous exponential decrease of xt associated

with ⌘1 and the exponential increase of xt associated with ⌘2. This combination results
in a local minimum in the variance evolution.

We test the obtained analytical result on numerical simulations done with a first or-
der algorithm for the position stochastic differential equation Eq.4.5. We simulate 10

4

independent trajectories with the following parameters : a stiffness  = 6⇥10
�6

kg/s
2,

a viscous drag of � = 8 ⇥ 10
�9

kg/s, leading to a thermal diffusion coefficient D =

0.52⇥ 10
�12

m
2
/s with a strong active diffusion coefficient Da = 5⇥ 10

�8
m

2
/s, . The

protocol goes from !
�1
c,initial

= 1 ms to !
�1
c,final

= 40 ms. We simulate a total time of
0.1 s with a sampling rate of 2

14
Hz We then compute the instantaneous ensemble

variance of all these trajectories and plot the result along with the analytical result of
Fig. 4.15 (a). The very good agreement can be seen.

An alternative way of producing the STEP would have been to simulate one single
time-series of noise ⌘t where the correlation time !

�1
c
(t) is changed dynamically in the

simulation. Since the variance of the process is conserved by the independence of ↵.
There is no relaxation observed in the properties of ⌘t. This method preserves the
correlations of the noise around t0 and thereby no decrease in the motional variance
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Figure 4.15: (a) Comparison between the analytical result for the
time-evolution of the variance under a color STEP protocol and the
numerical simulations performed with the first method: appending
two independent noise time-series, hence loosing correlations at t = 0.
The blue circles are the ensemble variance of 104 independent trajec-
tories and the black dotted line is the analytical result, combination of
Eq. 8.98 and Eq. 8.97. (b) Numerical variance hx2

t
i that experiences

a color STEP done by changing dynamically !c(t) this time, and in
contrast with (a), without loosing the correlations around the STEP,
as described in the main text as a second alternative method, along
with a simple exponential fit.

of xt will be observed. A simulation done in such conditions is shown on Fig. 4.15
(b) where we observe indeed the monotonic behaviour of the time-evolution of hx2

t
i,

in contrast with the result plotted in Fig. 4.15 (a).

The existence of the dip after a STEP can be obtained in situations simpler than a
color protocol. Indeed, it is a consequence solely of the abrupt change from one noise
to another, uncorrelated with the initial one. The two noises can have the same color
but differ, for example in amplitude (i.e. "temperature"). In this case, just like what
is studied in [165] we can do a "temperature quench" by decreasing Da in a STEP like
way. The result is a local overcooling as shown in that publication. Again, we under-
stand this decrease to be a consequence of the method used to perform the protocol.
Even if the color of the noise is not modified in this example, all correlations are lost
during the protocol since it is the combination of two independent noises. Therefore,
the bead experiences a combination of exponentials just as in the color steps, but this
time, both parametrised by the same !c.
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Figure 4.16: (a) Noise realisations ⌘t and trajectories xt when the pro-
tocol is done by appending two noises of same color, but entering the
dynamics of x multiplied by Da(t) that is a decreasing STEP (black
dotted line). bottom : response xt along with standard deviation (b)
Response variance of trajectories hx2

t
i that shows a decrease after the

STEP.

In this section we studied the response of the system in terms of motional variance
hx2

t
i of the trapped microsphere to a STEP change of correlation time of the secondary

bath. Another important aspect lies in the evaluation of the distance of the system
to equilibrium. Indeed, as already mentioned, the colored noise drives the system
in non-equilibrium steady-states (NESS), and the STEP protocol is an example of
dynamical NESS-to-NESS transient. The out-of-equilibrium properties of the trajec-
tories are modified in the process and the two NESS will be characterised by different
distances to equilibrium. In the following section we focus on the characterisation of
non-equilibrium through different observables, such as fluctuation-dissipation theorem
or heat and entropy. We also propose a connexion with active matter-like systems.

4.5 Out-of-equilibrium with colored noise: probing

active-matter-like physics.

In this section, we will look at the out-of-equilibrium nature of colored-noise driven
trajectories and how our system can be used, in this colored noise environment as a
minimal model to study the properties of active matter.
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4.5.1 Active matter in biological systems

Active matter is a state of systems able to convert an energy provided by the surround-
ing (or an internal source) into forces and motion, leading for example to propulsion
or self-organisation [145, 149, 56, 58, 61, 119]. The most striking example of active
systems are found in biology. Living systems being intrinsically thermodynamically
open and operating far from equilibrium [59] are characterised by a constant flow of
energy and information.

This is clear at macroscopic scales, where collective organisation of living systems
such as schools of fish or flocks of birds are described by the tools of active matter [166].
At this scale, a large part of these peculiar aspects are due to collective effects and can
be modelled by the statistical behaviour of large ensembles of self-propelled objects
[167] which do not obey to the laws of equilibrium thermodynamics. Macroscopic
structures with directional motion are clearly breaking the time-reversal symmetry
and it fundamentally stems from their non-equilibrium nature, due to energy con-
sumption and dissipation. At mesoscopic scales in living systems, the cytoskeleton
network of filaments and motors collective behaviour maintains the cell architecture
and enables motility [52, 53, 144, 15, 16]. The capacity of cells to perform motion
and apply forces enables the formation of large structures by physical stresses, as is
happening during embryonic morphogenesis [168]. Again these process are happening
out-of-equilibrium. Just as embryonic structuration shows an irreversible evolution
with energy consumption and dissipation, cells are displaying non-thermal active mo-
tion breaking the fluctuation-dissipation theorem.

It is at microscopic scales that exotic effects are more vividly showing the impor-
tance of energy and information circulation. For instance, molecular motors such
as kinesin walking on microtubules are converting chemical energy (by hydrolysis of
adenosin triphosphate) into mechanical forces [51, 50]. At this scale, directional mo-
tion is not necessarily happening, as in the case of the active fluctuations of a cell
membrane [59]. Here, irreversibility [65] and detailed-balance violations [66] -that are
obvious at larger scales- are hidden. Understanding how and where detailed balance is
broken can be more subtle. One way to unveil non-equilibrium is to notice that these
microscopic active system are always the consequence of the non-reciprocal coupling on
several variables [67, 69]. One can think for example of the position of a self-propelled
bacteria and the state of its propulsion mechanism: the first is determined by the
second, whereas the latter can be totally independent of the former. The behaviour of
the self-propelled object can be suitably described by the position-propulsion couple
of variables and more generally, the parameter space opened by the different variables
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-as we did in Sec. 4.3.3- unveils the breakdown of time-reversal symmetry [66].

However, other observables explicitly shows the non-equilibrium nature of the sys-
tems. A consequence of non-thermal activity is for example to break the equipartition
of energy, preventing the use of simple effective temperature [98] to describe the sys-
tem. This was carefully studied in Sec. 4.3.5. Another measure of departure from
equilibrium is the violation of fluctuation-dissipation theorem, stating that equilibrium
fluctuations are related to mechanical response [59]. This aspect can be tackled by
performing microrheology experiments to probe experimentally both the mechanical
susceptibility and the fluctuation correlations of the system. Distance from equilibrium
can also be evaluated via energy dissipation [58, 56]. At these roughly micron-scales,
where thermal fluctuation plays a central role, quantities are random variables and all
information and energy exchange happens in a fluctuating environment. The frame-
work of stochastic energetics [46, 45, 54, 119] emerges as a suited tool to investigate the
energy dissipation of unique microscopic active systems by assessing heat and entropy
productions [112, 47].

In this chapter, we use our colored-noise driven trajectory as a genuine implemen-
tation of self-propelled object. The latter serves as simple model that exhibits most
of the non-equilibrium properties shared by the examples above. We use our optome-
chanical analogue to investigate the rules connecting non-equilibrium with energy and
information exchange in active matter.

4.5.2 The minimal model of an active Ornstein-Uhlenbeck par-
ticle

These examples of active matter are sharing many common features and simple models
can be derived to access a large part of the key aspects described. The model of Active
Ornstein-Uhlenbeck Particle (AOUP) has emerged as a minimal but rich model for self
propelled object [60, 150]. It describes for example a bacteria or sperm cell evolving
in a fluid influenced by both the thermal fluctuations and an additional force due
to the active flagella or other propulsion mechanism [49]. This propulsion induced
an exponential persistence in the motion of the object, which is not diffusing as a
passive Brownian object anymore. But interestingly, a passive colloid can exhibit the
same properties if it is immersed in an active bath such as a fluid saturated with
bacterias [151, 98, 142], whose collective effective action on the colloid turns out to
be an exponentially correlated force. This stems from the exponential persistance of
each bacteria building the active bath. Such a system has been extensively studied
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numerically [60, 160, 65, 150] and used as a model for biological experiments. Recently,
it has also been used as a model to build experimental mechanical analogues of living
systems [155, 156, 157, 27], our experiments are precisely in this framework. In our
case, the external radiation pressure force induces this activity, and can be interpreted
either as a self-propulsion mechanism or as an active bath. This analogy between our
optomechanical system and active matter is sketched on Fig.4.17.

Figure 4.17: A schematic view of the experimental realisation of the
active Brownian particle. An optically trapped bead is connected to
two baths : a thermal bath by the surrounding fluid and an athermal
active bath, by the external force.

The active system is modelled with the same Langevin equation Eq. 4.5 that
we presented above, where added to thermal fluctuation, a secondary colored bath is
driving the many different features (superdiffusion, breaking of equipartition, NESS-to-
NESS transitions) that we described in previous sections. We recall here the differential
equation driving the dynamics of the bead

dxt = �!0xt +

p
2D⇠t +

p
2Da⌘t (4.11)

where !0 = /� is the inverse relaxation of the object in the potential, the thermal
noise obeys to h⇠t⇠si = �(t� s) and the colored noise to h⌘t⌘si = ↵e

�!c|t�s|. In the fol-
lowing, we will focus on aspects more directly connecting this model to active matter
and unveiling the implication of its non-equilibrium nature. This will underline the
properties of different observable of non-equilibrium but also resole the aforementioned
paradox, by an information analysis, again emphasising the dependance of active mat-
ter on information flows.
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4.5.3 FDT breaking and microrheology

We probe the non-equilibrium nature of the active fluctuations and the validity of
the Fluctuation Dissipation Theorem (FDT) by comparing the dynamical responses
of our bead to Active MicroRheological (AMR) and Passive MicroRheological (PMR)
excitations, respectively [59, 148]. AMR corresponds to the response of the system to
an external excitation, typically, a sinusoidal force at a given frequency, while PMR
corresponds to the recording of the spontaneous fluctuation of the system, with no
external drive. When a small perturbation a(t) is applied on the bead, its average
position is modified. The amplitude of this motion is given at first order by

hxti =
Z

t

�1
R(t� s)a(s)ds (4.12)

where R(t) is called the mechanical response function or susceptibility of the system.
At thermal equilibrium, under detailed balance conditions (equality of the probability
of transition between two microstates and its time-reversed transition), FDT [169]
connects the response function to the equilibrium correlations of fluctuations according
to

@Cxx(t)

@t
= kBTR(t), (4.13)

where Cxx(t) = hx(t)x(0)i is the motional autocorrelation function. This important
equation enables to probe the response function of a system via its spontaneous fluctu-
ations. Furthermore, when both response function and autorrelation function can be
measured, it is used to verify if a system is -or not- at thermal equilibrium. For exam-
ple, in an active biological system, the fluctuations are not only due to the mechanical
response of the object to thermal fluctuations, but also to internal energy-consuming
mechanisms. In this case Eq. 4.13 is not verified, proving the non-equilibrium nature
of the system [59].

In experiments, the mechanical susceptibility of often probed by measuring the
amplitude of the response to a small sinusoidal force. In that case FDT is more
conveniently expressed in the frequency domain, which can be obtained by Fourier
transforming Eq. 4.13. It can also be obtain directly from the Langevin equation. To
do so, we will start from Eq. 4.5 and combine both thermal and active noises into
a single term, that represents the fluctuating excitation. Then the bead is driven by
a single noise of unit variance �t. To recover FDT, we will assume a white noise ⌘t,
therefore equilibrium. According to Eq. 4.5 the overall noise takes in our case the
form �t = ⇠t +

p
Da/D⌘t, defining an effective temperature Teff = T (1 +

p
Da/D)

for a white noise driving. In such a case, the Fourier transform of the corresponding
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Langevin equation writes as:

� i!�x[!] = �x[!] +

p
2kBT��[!], (4.14)

where  is the stiffness of the potential, � the Stokes friction drag. The equation can
be written in terms of a mechanical susceptibility �[!] as

x[!] = �[!]

p
2kBT��[!] (4.15)

where �[!] can be decomposed into real and imaginary parts as:

�[!] =
!0

�(!
2
0 + !2)

+ i
!

�(!
2
0 + !2)

⌘ �
0
[!] + i�

00
[!]. (4.16)

Fluctuation dissipation is recovered by comparing the imaginary part �
00
[!] with the

power spectral density of a thermal, white noise driven Brownian motion Sx[!] =

2kBTeff/�(!
2
0 + !

2
). This leads to the expression of the FDT in the Fourier space:

�
00
[!] =

!

2kBTeff

Sx[!] (4.17)

where the spectrum Sx[!] is the Fourier transform of autororrelation function Cxx(t)

(Wiener-Khinchine theorem) and �[!] is the Fourier transform of the mechanical re-
sponse. Of course, for a colored noise, the PSD will differ from the PSD of white-noise
driven process, according to Eq. 4.7.

If now one adds a small sinusoidal perturbation on the bead by means of an external
force (which corresponds to radiation pressure in our experiments), the FDT can be
tested experimentally by measuring the response function. Under the sinusoidal ac
drive of the AMR mode at pulsation !ac, the PSD takes the following form [86]

S
ac

x
[!] =

1

!
2
0 + !2

✓
2Deff +

F
2
ac

2�2
�(! � !ac)

◆
(4.18)

where Deff = kBTeff/� for a white noise driven trajectory and Fac is the Fourier force
component of the drive, while the unperturbed PSD of the PMR mode writes

Sx[!] =
2Deff

!
2
0 + !2

. (4.19)

By computing the ratio Sx[!]/S
ac

x
[!ac] at the pulsation !ac for a bead on which

a white noise radiation pressure is exerted (hence maintaining it close to thermal
equilibrium but at an effective temperature Teff higher than room temperature), we
can extract the value of Fac by taking the mean value of all realisations. This value
can then be used to calibrate the response function �

00
[!] and compare it with the

steady-state fluctuation PSD Sx[!].
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Figure 4.18: (a) Active micro-rheological (AMR) experiment where
the sinusoidal forcing of the system is monitored in the time domain.
The recorded trajectories of the bead inside the trap are superimposed
to the sinusoidal traces of the force for two different modulation fre-
quencies. (b) Power spectral densities displayed together for different
modulation frequencies of the external force drive. The Fourier com-
ponents of each harmonic forcing at different !ac from 10 Hz to 6 kHz

are clearly seen as peaks in the PSD.

On Fig. 4.18 (a), we show the external drive in the time-domain and the motional
response of the bead inside the trap for two different modulation frequencies. By
repeating the procedure for frequencies ranging from 10 Hz to 6 kHz, the response of the
bead is characterized over all the useful bandwidth (see Fig. 4.18 (b)). On Fig. 4.19,
the values of !Sx[!]/2kBTeff and �

00
[!] are plotted together for the probed frequencies,

for both the white noise and colored noise driven processes. We clearly observe that
in both cases, the response functions associated with the mechanical susceptibilities
fall back on the same trend. This can be understood since the susceptibility �

00
[!]

depends only on the mechanical properties of the system under study. Here, the bead
immersed in the fluid bath (� solely corresponds to the viscosity of the surrounding
water), the additional bath is not inducing any mechanical response, since the sphere
does not dissipate in it. Therefore, the mechanical response is not modified by an
additional colored noise. This trend is exaclty the one associated with the white noise
driven PSD as expected from Eq. (4.17). In contrast, the spectral density of the
colored noise driven process significantly departs from the FDT in Eq. (4.17), and
more particularly for the low frequencies of the active fluctuation spectrum. This
is in agreement with other observations made recently on active systems [59], where
the active mechanical processes mostly appear at low frequency, while the FDT is
recovered for the thermally dominated high-frequency part.
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Figure 4.19: We compare the measured values of �00
[!] for white (open

circles) and correlated (open squares) noise for different modulation
frequencies !ac and small sinusoidal perturbations with the stationary
correlation spectra plotted as !Sx[!]/2kBTeff for white (blue curve)
and correlated (orange curve) noises. One immediately remarks the
breaking of the FDT for the colored-noise driven process. This can be
understood since the susceptibility �

00
[!] depends on the mechanical

properties of the bead, that are not modified by the addition of a
second noise.

We note here that a simple observation of the breaking of the FDT can already be
seen in our model described by Eq. (4.5), where the fluctuating forces associated with
the added noises ⇠t and ⌘t now possess an intrinsic correlation time due to the correlated
nature of ⌘t, while the friction kernel � is taken as instantaneous �(t, t0) = ��(t, t

0
).

This choice has been shown to be valid in the experimental case [152], where the
fluctuations of the active bath are not compensated through dissipation with the same
rate. In the limit of vanishing correlation times, the FDT is recovered as the noise is
white (�-correlated) and its only effect is an effective change in temperature, as was
already observed using a different experimental technique [153, 154].

4.5.4 Recovering a frequency-dependent effective temperature

The breaking of the equipartition relation for a colored-noise driven trajectory, demon-
strated in Sec. 4.3.5, prevents the definition of a simple constant effective temperature
Teff to characterize the system. Furthermore, in the previous section, we showed in
Fig. 4.19 that imposing a constant Teff breaks the fluctuation-dissipation theorem
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(FDT).

Notwithstanding, the writing of FDT in Fourier space Eq. (4.17) suggest a possi-
ble definition of a richer effective temperature [59]. By releasing the constraint of a
constant effective temperature, one invert the FDT to define

Teff [!] =
!Sx[!]

2kB�
00[!]

(4.20)

where the effective temperature is now a function of pulsation, or equivalently, of
frequency. Furthermore, we can rewrite this expression, by replacing the mechanical
susceptibility �

00
[!] by its expression via FDT in a case where it holds. Here, we can

use FDT on an equilibrium trajectory with no additional noise (standard Ornstein-
Uhlenbeck equilibrium process at room temperature1 in a trap) as an evaluation of
the susceptibility �

00
[!] = !S

eq

x
[!]/2kBTroom. Then, the effective temperature can be

expressed as

Teff [!] = Troom

Sx[!]

S
eq

x [!]
, (4.21)

ratio between the power spectral density in the out-of-equilibrium studied case Sx[!]

and an equilibrium case S
eq

x
[!] with same trap stiffness  = 23.8 pN/µm.

Of Fig. 4.20 (left axis) we represent the effective temperature, expressed as a func-
tion of frequencies for two cases. For a white noise-driven process (blue circles), we
recover a nearly constant value, centred around the effective temperature of 1182 K

extracted from equipartition theorem (black dashed line). We believe that the slight
decrease at high frequency is due to the electronic noise in the PSD, as in Fig. 2.7
in Chap. 2. This result confirms that white noise-driven Brownian motion can be
described with the tools of equilibrium statistical physics. This constant effective
temperature is of course connected to the recovering of FDT using the simple noise
scaling used in the previous section for a white noise-driven trajectory.

For a colored noise-driven process (red circles) in contrast, the effective temperature
strongly depends on frequency, reaching very high values (around 30.000 K) at low fre-
quency. This again is a striking proof that this process cannot trivially be rationalized
with the tools of equilibrium statistical mechanics. Remarkably, for high frequencies,
the effective temperature decreases to room temperature, below the effective tempera-
ture of the equivalent white-noise driven trajectory. This comes from the fact that at
such frequencies, the colored-noise has a smaller amplitude than the white noise (see
the injected PSD Fig. 4.4). The decreasing amplitude of the colored-noise above a

1In this subsection, we explicitly write room temperature Troom to avoid confusion.
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Figure 4.20: (left axis) Frequency dependent effective temperature
Teff (f) for a white noise driven process (blue circles), and for a col-
ored noise (of same amplitude, with correlation time !

�1
c

= 3 ms)
driven process (red circles). We superimposed the temperature ex-
tracted from equipartition theorem for the white noise Tequipart =

hx2iwhite/kB (black dashed line) as well as the room temperature
Troom = 298 K (black dotted line). (right axis)Following [59], visual
representation of the spectral repartition of the injected effective en-
ergy. We see that for a colored-noise driven trajectory, the energy is
mostly injected at low frequency, with values up to 100 kBTroom.

few hundred Hz cannot augment the microsphere’s motion, that falls back at its room
temperature agitation level.

On the same Fig. 4.20 (right axis), we show the spectral repartition of the injected
energy in units of kBTroom. This is a simple rescaling of Teff (f) by Troom but it provides
insightful information. We can observe that for the white noise driven case, the energy
is evenly injected over all bandwidth, the horizontal dashed line now corresponding
to the average energy hx2iwhite = 3.99 kBT . On the other hand, for the colored-
noise driven case, energy is injected mostly at low frequencies and for high frequencies
it actually injects less energy than in the white noise case. Again this is consistant
with the spectral profile of the injected power Fig. 4.4. Yet it will have non-intuitive
consequences, studied in the next section, that can be anticipated with the question:
which of those two cases will induce, for the microsphere, the largest energy dissipation
rate in the fluid? On one side, a naive equipartition applied on the colored-noise driven
trajectory (which we know to be invalid) would give a temperature larger than the
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white noise equivalent by a factor 12, consequence of the large mechanical response
of the microsphere at low frequencies. On the other side, integrating the effective
energy in the spectral domain gives an energy injection rate larger in the white noise
case (0.197 fW) than in the colored-noise case (0.175 fW) which are relatively close to
typical biological rates [59]. The relation between injected and dissipated energy will
be explored in the next section with the tools of stochastic thermodynamics.

4.5.5 Stochastic thermodynamics of AOUP and heat release
through a STEP protocol

The trajectories of the microsphere driven by the colored noise are out-of-equilibrium,
as observed in various ways in the sections above. The breaking of fluctuation-
dissipation theorem implies energy exchanges with the medium to maintain the system
in a steady-state. A suited way to probe the deviation from equilibrium is the measure
of energetic quantities, such as the heat dissipated in the medium. The application
of stochastic thermodynamics to active matter has already been studied theoretically
[147, 148, 119, 146, 65] and experimentally in some cases [57]. In this section, we
describe in detail how the stochastic heat can be efficiently used to describe and char-
acterize the processes at play in our active matter analogues.

We first note that, in our experiments, our system is brought to a Non-Equilibrium
Steady-State (NESS) where the stationary stochastic laser drive maintains – through
the action of radiation pressure – the system out of its equilibrium state at a given
temperature and stiffness . Following the standard methods of stochastic energetics
[46, 45] and Eq. 4.5, we write, for our process

⇣
�ẋt � �

p
2D⇠tdt

⌘
dx = �

⇣
xt � �

p
2Da⌘t

⌘
dx. (4.22)

The left-hand side is interpreted as the heat exchanged between the microsphere and
the thermal bath �q = �

⇣
�ẋ�

p
2D⇠tdt

⌘
dx. The internal energy is defined by

the potential energy dU = �xtdx. The remaining term �
p
2Da⌘tdx is the energy

exchanged with the active bath. Interpreted as a heat term [65], it can be evaluated
from the right-hand side of Eq. (4.22) as

�q(t) =
1

2

dx

2

dt
dt� �

p
2Da⌘tẋtdt, (4.23)

which can be integrated to give the stochastic heat evaluation

q(t) =
1

2

Z
t

0


dx

2
s

ds
ds� �

Z
t

0

p
2Da⌘sẋsds. (4.24)
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The ensemble average heat can be expressed in terms of variance and cross-correlations

Q(t) ⌘ hq(t)i = 1

2

Z
t

0


dhx2

s
i

ds
ds� �

Z
t

0

p
2Dah⌘sẋsids

⌘ QEX(t) +QHK(t).

(4.25)

The first term QEX is zero in a steady-state, i.e. when the motional variance of po-
sition is constant dhx2

si
dt

= 0. We identify it with the excess (EX) heat well known in
stochastic thermodynamics [47]. The second term QHK is non-zero even in steady
state, as it will be detailed later. We identify it as the housekeeping (HK) heat [47].
We will address both quantities independently because they are relevant in different
context.

The excess heat is easily applied to non-stationary transient states: when the mi-
crosphere undergoes a change of motional variance because of an external action. As
detailed in Sec. 4.4.2, we can use the color of the noise, i.e. its correlation time !

�1
c

to
drive such a transient, that connects an initial NESS defined by !

�1
c,initial to a final NESS

defined by !
�1
c,final. Under such change of correlation time, we observed above that the

variance evolves from an initial to a final stationary value. The excess heat associated
with this transient can be computed as QEX(t) =

R
t

0
1
2

dhx2
si

ds
ds and is plotted on Fig.

4.21 for a STEP-like change in correlation time from !
�1
c,initial = 0.8 ms to !

�1
c,final = 40.

Figure 4.21: Released heat measured in units of kBT through the
transient both for an increasing correlation time (blue circles) from
!
�1
c,initial = 0.8 ms to !

�1
c,final = 40 and equivalently for the corresponding

decreasing correlation time (red triangles).
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We observe the exponential evolution of the excess heat, following the behaviour
of the motional variance described in Sec. 4.4.2. It is remarkable to stress that the
quantity of heat ⇡ 10kBT exchanged is the same for both cases. The total amount of
excess heat exchanged during such STEP protocol can be evaluated as

�QEX =

Z
tf

ti

1

2

dhx2

s
i

ds
ds =

1

2

�
hx2

s
if � hx2

s
ii
�

(4.26)

where ti is chosen before the change in correlation time !
�1
c

and tf is chosen after a
time long enough so the system has reached steady-state again. hx2

s
ii is the stationary

variance in the initial steady-state and hx2
s
if in the final steady-state.

In contrast, the houskeeping heat QHK is non-zero even in the steady-state. We will
therefore study its behaviour in the case where the system has reached a stationary
regime with constant probability distribution and explore how housekeeping heat can
characterize this steady-state. The explicit calculation of the correlation term h⌘sẋsi is
done in Appendix 8.10, and leads, after a short time exponential transient to a linear
evolution

QHK(t) = 2�Da↵

✓
!0

!0 + !c

� 1

◆
t (4.27)

where the system is stationary. Housekeeping heat for a stationary system is therefore
well described in terms of heat production rate

Q̇HK = 2�Da↵

✓
!0

!0 + !c

� 1

◆
(4.28)

On Fig. 4.22 we represent the housekeeping heat production rate in kBT per mil-
lisecond for various correlation times !

�1
c

. Remarkably the absolute heat production
rate is decreasing when the correlation time increases, which can seem counter-intuitive
when one recalls that the motional variance of the microsphere is increasing. One could
expect that a larger variance would imply a larger dissipation, imprinted in the house-
keeping heat production rate (which is the total heat production rate in a stationary
state, since there is no excess heat). This behaviour can however be understood by
looking more carefully on the changes occuring when the correlation time is modified.

A very small correlation time (a close-to-white noise limit) has very sharp time-
evolution (large increments d⌘t) as seen Fig. 4.14 (top before t = 0). In contrast, a
large correlation time (a very colored noise) has a smooth time-evolution as seen Fig.
4.14 (top after t = 0). It is not surprising that the smoother colored noise is inducing
a smaller dissipation rate: it induces less “collisions" with the microsphere per unit of
time. This smooth colored noise is however better coupled to the mechanical response
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Figure 4.22: Housekeeping heat production rate Q̇HK in units of
kBT/ms for various correlation times, ranging from !

�1
c

= 0.1 ms
to !

�1
c

= 0.8 ms. Experimental data are shown as blue circles and
a fit (to correct an offset with experimental points, described in the
main text) with analytical expression Eq. (4.28) is shown as a red
line. The error bars correspond to the sum of the dispersion of Da

and the uncertainty remaining on the radius of the microsphere.

of the bead and induces a larger response variance. This could explain qualitatively
why the heat production rate decreases when the correlation time increases. On Fig.
4.22 we show the experimental values along with a fit realized with the analytical
expression of the heat production rate Eq. (4.28). The fit is a linear transformation
necessary to correct for an offset between the experimental points and the raw expres-
sion given by Eq. (4.28). This offset is probably coming from the need to evaluate
experimentally h⌘sẋsi which is, because of ẋt, not a well behaved quantity. It remains
however clear, as the main point, that the increase of the heat production rate with
the correlation time of the noise is captured by both the experimental and analytical
results.

Another interpretation of this results is to connect it with the frequency-dependent
energy injection, shown Fig. 4.20 (right axis). The colored-noise energy injection is
far from uniform, and shows smaller values than a white noise at high frequencies: a
colored noise-driven trajectory receives less energy at short-time, leading to a smaller
dissipation rate.

The heat production rate, however is not the same quantity as the heat itself. To
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Figure 4.23: Integrated housekeeping heat production rate in units
of kBT for various correlation times, ranging from !

�1
c

= 0.1 ms to
!
�1
c

= 0.8 ms. The integration time corresponds to �⌧ = !
�1
0 +2!

�1
c

,
empirical time needed for the MSD to reach stationarity, hence for
the microsphere to have explored all available space in the potential.
Experimental data are shown as blue circles as well as a fit with the
analytical expression Eq. (4.28), shown as a red line.

obtain the heat discarded by the microsphere in the fluid bath, one needs to integrate
the heat production rate over a given time. As seen on the evolution of the MSD as
a function of the time-lag for various correlation times (Fig. 4.9 (b)) the MSD takes
longer to reach stationarity when the correlation time is larger i.e. the microsphere
takes longer to explore the available space. With this in mind, a reasonable measure
of the heat dissipated by the microsphere in a given correlated bath, is the heat pro-
duction rate, integrated over the time needed to explore the available space, in this
case �⌧ = !

�1
0 + 2!

�1
c

. On Fig. 4.23 we show the heat production rate multiplied by
the respective time intervals (!

�1
0 + 2!

�1
c
) for the same cases as in Fig. 4.22. We see

that in this case, we recover an increasing dissipated heat when the correlation time
increases and the microsphere explores a larger space.

The exchange of heat between the Brownian object and the fluid bath (white noise
bath) implies [65] an exchange of entropy S = �Q/T that follows the same decompo-
sition into a linear housekeeping term and an exponential release during the transient.
This quantity is the entropy dissipated in the form of heat by the motion of the col-
loidal particle in the passive fluid.
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Note that an alternative expression for the heat can be found in the context of
active matter and active Ornstein-Uhlenbeck processes. These different approaches
lead all to similar results, since Sekimoto’s definition of heat as

�q = �
⇣
�ẋ� �

p
2D⇠tdt

⌘
dx (4.29)

is uniquely defined [46, 155]. The differences stem from the way to evaluate this
quantity. In the description of non-reciprocal systems [67], the steady-state heat is
computed as a sum of correlation between variables and velocities. In our case of
unidirectional coupling, this simplifies to a term ⇠ h⌘tẋti which is the term we also
obtain. Another definition is based on the deviation from the fluctuation dissipation
relation, the Harada-Sasa relation [118] used in [155, 148], which, similarly to our
calculations, gives a constant rate of heat production in the steady state.

4.5.6 Energy-information connection: the spectral entropy

The color protocols performed in Sec. 4.4.2 and their energetics characterisation done
in Sec. 4.5.5 rise a paradox since the protocols induce a release of heat in the medium,
which stems from work injected by the active force onto the microsphere, while the
driving force is kept at constant amplitude. The driving thus appears costless, where
cost is meant as an experimental quantity : no additional laser or electrical power
is needed to make the system transient to a state with higher dissipation. From a
thermodynamic point-of-view, there is a clear amount of energy exchanged through
the protocol: the active forces produce an energetic input characterized in Sec. 4.5.5
as �

p
2Da⌘tẋtdt. This input will induce a mechanical response from the bead and

therefore will dissipate heat inside the medium. What appears surprising is that the
value of these two energetic terms can be varied without changing force amplitudes,
but only force correlations.

This paradox can be resolved by different ways. A first simple explanation stems
from a purely mechanical point of view: since the microsphere has a non-flat spectral
mechanical response, it is clear that the same force amplitude will induce different
response amplitudes depending on the overlap between the spectral profile of the mo-
tion and the spectral profile of the force. Another path to resolve this paradox comes
when looking at correlations for what they are: part of the information content of the
bath. Indeed, with respect to a white noise, built of independent random numbers, a
correlated noise in containing a non-zero quantity of information. This solution draws
a direct connexion between information and thermodynamics. We propose to quan-
tify the informational content of the active bath and relate it to the thermodynamic
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quantities exchanged during a STEP protocol.

The information content of the injected noise is measured by the spectral entropy
Hs [170], which is precisely the Shannon entropy measured in the frequency domain.
To evaluate this quantity and its relation to heat, we perform a series of measurements
varying the correlation time of the noise !

�1
c

while keeping the other parameters con-
stant, and we test the robustness of the result for different sets of parameters (stiffness
and noise intensity). For each experiment, an equivalent white noise experiment is
also performed, that allows us to extract an effective temperature evaluated through
equipartition: Teff = hx2iwhite/kB. We then compare �QEX/kBTeff to �Hs. The
evaluation of Hs is done on the normalised power spectral density of the noise itself.
In Fig. 4.24 (a), we represent the normalised power spectral densities (PSD) for white
and colored noises generated at 20 kHz, along with the spectral boundaries used to
get rid of the nonphysical part of the signal (high frequency noise of the electronics).

Figure 4.24: (a) Measured spectra of the white noise (blue line) and
colored noise (orange line). The vertical black lines are the limits
imposed on the calculation of the spectral entropy at 0.1 Hz and
10

4
Hz. (b) Measured excess heat between two NESS (in units of

kBTeff ) plotted as a function of the calculated spectral entropy, for
three values of the noise amplitude, each characterized by an effective
temperature Teff . The dashed line has a slope equal to unity.

On this noise PSD, the spectral entropy is then evaluated as:

Hs = �
NX

i=1

P (!i) lnP (!i), (4.30)

where P (!i) = S⌘[!i]/
P

i
S⌘[!i], and S⌘[!i] = 2|⌘[!i]|2 denotes the PSD value of the

signal ⌘[!] at frequency !i. We compare this quantity to QEX which can be deduced
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by the difference in variance between a reference and the state under study. On Fig.
4.24 (b) we plot QEX/kBTeff as a function of Hs. Remarkably, the plot shows that
both quantities coincide over all the probed region, leading to a relation falling on the
dashed line of slope 1.

We wish to test the relation between Hs and QEX in various conditions of stiff-
ness and noise amplitude. Here we present the data from three different experiments.
The first one is set with  = 33.2 pN/µm and a pushing laser maximal power of
150 mW, leading to a white noise effective temperature of 764.4 K. The second ex-
periment is performed with  = 14.8 pN/µm, pushing laser power 19 mW, leading to
Teff = 531.8 K. The third experiment is done with  = 21.4 pN/µm, pushing laser
power 40 mW, leading to Teff = 943.6 K. The strong influence of both the stiffness
and noise intensity on the effective temperature is clear. This influence however does
not break the central relation shown in the main text between QEX and Hs. We stress
here that this relation is displayed without any fitting or adjusting parameters.

From this result, it is clear that injecting more information in the system implies a
larger amount of heat dissipated during the NESS-to-NESS transient. Over the probed
region, the relation is even a one-to-one relation and all the injected information is
turned into heat with a meaningful dimensional factor kBTeff . However, this correla-
tion of �QEX and �Hs is not a causality relation. The expression of both quantities
can be explicitly derived in the case studied here of exponentially correlated noise.
The difference of excess heat is given by the difference of variance multiplied by /2,
leading to

�QEX =
Da

!0

!1 � !2

(!0 + !1)(!0 + !2)
(4.31)

where we used the notation !1 = !c,initial and !2 = !c,final. On the other hand, the
spectral entropy can be computed analytically. We define a normalized pulsation
⌦ = !/!c, and write the normalized spectrum as

P (⌦) =
S⌘[⌦]R
S⌘[⌦]d⌦

=
2

!c

1

1 + ⌦2
. (4.32)

Therefore, the continuous spectral entropy writes:

Hs = �!c

Z
P (⌦)log(P (⌦))d⌦

= 2

Z
log(1 + ⌦2

)

1 + ⌦2
d⌦+ log(!c/2)

Z
2

1 + ⌦2
d⌦

= 4⇡log(2) + log(!c/2)

(4.33)
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where we recognised for the first integral the entropy of a Cauchy distribution ([171,
172]) and for the second integral the unit variance of the normalized process. It leads
to a simple expression

Hs = log(!c) + C (4.34)

where C = (4⇡ � 1)log(2). Therefore the difference of spectral entropy between two
correlated bath writes as:

�Hs = �log(!2/!1). (4.35)

From this derivation, it is clear that both quantities are not formally equal, one
having a logarithmic profile, while the other is a ratio of polynomials. On Fig. 4.25 we
plot the experimental result for excess heat and spectral entropy along with the ana-
lytical result. The excess heat explicitly depends on Da (as seen on Eq. (4.31)) which
itself depends on the amplitude of the noise sent (each noise amplitude characterized
by an effective temperature Teff will give another Da, but the exact relation between
Da and Teff is not known in our model). Therefore, the excess heat is not unique, but
the different effective temperature Teff give a family of curves, represented here as a
shaded red area. The spectral entropy, in contrast is uniquely defined for all effective
temperatures (black solid line).

We can observe that, despite their very different mathematical natures, both func-
tions are very close over a wide frequency bandwidth, making them experimentally
indistinguishable within our resolution. They depart from each other for high frequen-
cies (as seen on the inset, that scans a larger bandwidth), that are out of range of the
spectral mechanical response of the microsphere: as seen Sec. 4.3.4, a noise with a
correlation time of 0.1 ms (hence !c = 10 kHz) cannot be distinguished from a white
noise. Finally, our experimental data spans over most of the accessible bandwidth,
and the deviations appear for frequencies that are hard to access and have therefore
less physical relevance in the context of microscopic mechanical systems. Tthe sim-
plicity of the correlation between heat and information is experimentally true within
our resolution and over our experimental bandwidth.

Although very close, normalized heat and spectral entropy differ, hence no causality
can be deduced from information to heat. What is however formally true for all
correlation times, is that both quantities vary monotonically in the same direction.
Injecting more information in the system will always induce more heat dissipated
during the NESS-to-NESS transition, even if both quantities are indirectly connected.
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Figure 4.25: Experimental change in excess heat �QEX/kBTeff (tri-
angles) and spectral entropy �Hs (circles) as a function of the final
correlation pulsation !2 with constant !1 ⇡ 1666 Hz (vertical black
thin line in the inset). We superimpose the analytical results for the
spectral entropy Eq. (4.35) (black line). We also show the excess
heat difference Eq. (4.31). Since each noise amplitude (characterizd
by Teff ) induces another value of Da, which itself gives a different
curve for �QEX , we represent the family of curves as a shaded area
for the different values of Da. In the inset, we plot the same analytical
result but on a very large bandwidth of final pulsations.

4.6 Conclusion

In this chapter, we used radiation pressure to build a secondary artificial bath and
tune its properties. We observed how the nature of this artificial bath strongly in-
fluences the properties of the trajectory of the immersed microsphere. With the case
of exponentially correlated Gaussian noise, we observed a non-Brownian behaviour
with superdiffusion at short time, the breaking of the law of equipartition of energy
and of the fluctuation-dissipation theorem. The color of the noise was then used as
a parameter to perform NESS-to-NESS transitions and the thermodynamics of the
transformation was studied in the framework of stochastic energetics. This led us
unveiling a remarkable connexion between the entropic content of the bath and the
energy dissipated by the bead diffusing through this transition. Adding a bath with
controllable properties extend the possibilities to use Brownian object as an analogue
for exploring the properties of complex systems such as active matter with a strong
flexibility. In the next chapter, we will explore another analogy, by playing on the de-
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terministic trapping potential. Doing so, we will emulate Bohm’s quantum potential
and build an analogue of an open quantum system.
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Chapter 5

Classical stochastic analogue of a
quantum process

In this chapter we devise a classical stochastic analogue of a quantum process. Analo-
gies in physics constitute a powerful tool for the understanding of complex phenomena.
Since James Clark Maxwell ideas that an analogy is a two-folded reasoning, mirror
symmetric of a pun, as “Now, as in a pun two truths lie hid under one expression, so
in an analogy one truth is discovered under two expressions" [73] analogies have been
extensively used to reformulate scientific questions within a different framework. Not
only they enable us to apply our knowledge and intuition of a specific domain to a
different field, but also offer the possibility to transfer experimental results from one
branch of physics to another. For instance, table-top experiments have been used to
get insight into complex – and experimentally unreachable – domains such as quantum
gravity and black holes, using acoustic [75] or optic [173] analogs. Of particular interest
here are classical analogs of quantum systems [76], based on optic [77] or hydrodynamic
[174, 175] experiments. These analogs rely on the Madelung representation of the wave
function and the corresponding “hydrodynamic" evolution equations for its amplitude
and phase, as in the de Broglie-Bohm version of quantum mechanics [176, 177, 178].

When a quantum particle is immersed in a thermal bath, and taking the limit of
vanishing mass, the hydrodynamic model can be cast in the form of a quantum drift-
diffusion (QDD) equation [179, 180], which is often used to describe charge transport
in semiconductor devices. Here, the QDD equation will be the starting point of our
quantum-classical analogy. Indeed, the QDD model has the form of a classical Fokker-
Planck equation with the addition of an extra quantum Bohm potential Q = � ~2

2m
�
p
np
n

,
which depends on the position probability distribution n(x, t) of the particles and car-
ries the information about quantum correlations. As is well know, any Fokker-Planck
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equation is equivalent to a stochastic process described by a Langevin equation.

Our goal here is to use such underlying classical stochastic process to emulate the
evolution of a quantum system. For the present case, the situation is somewhat more
complicated, because the Bohm potential depends on the position probability distri-
bution, making the process nonlinear, as the random variable depends on its own
probability density. These types of stochastic processes are known as McKean-Vlasov
processes [181] and have been extensively studied in the past [182].

Here, we devise a classical analog of this process by reconstructing the probability
distribution by statistical means. Our strategy is based on the possibility of simultane-
ously manipulating many classical objects, whose ensemble distribution n(x, t) is used
as an input to construct the Bohm potential, thus recovering the results of the QDD
model. This can be achieved numerically by simulating N stochastic trajectories, but,
most importantly, can also be realized experimentally, by means of multiple optical
trapping of micron-sized Brownian particles [183], as illustrated schematically in Fig.
5.1. Experimentally, up to a few thousand traps can be realized in practice [184, 185].

Figure 5.1: Schematic view of a possible implementation of the quantum-
classical analogs in a multiple optical trapping system. Each identical trap
contains a single Brownian particle and the trapping potential, shared
among all traps, is controllable. All the particle positions are recorded
and the information is collected at each time-step to build the quantum
Bohm potential. The latter is then added to the optical trapping potential,
thereby acting on all trajectories. This information transfer is represented
by the black arrows pointing to one chosen trap.

In the first two sections, we introduce the framework of quantum hydrodynamics
and the QDD model. We compare it to an exact kinetic result for the case of a harmonic
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potential and then develop our analogue model, through the associated stochastic
process. In the two next sections, we focus on three configurations that nicely capture
some typical quantum effects: (i) a quantum increase of the position autocorrelation
time, (ii) an analog of the quantum tunnelling effect, and (iii) a departure from the
classical dynamics for out-of-equilibrium states. These effects will be investigated with
both numerical simulations – (i) and (ii) – and optical experiments (iii).

5.1 Quantum hydrodynamic

5.1.1 Madelung transformation: a set of fluid equations for a
quantum state

In this section we describe how the Madelung transormation [176, 186] allows one to
build a set of fluid equations for a quantum state reminiscent of classical hydrody-
namics. The Schrodinger equation of an isolated time dependent wavefunction  (x, t)
writes

i~@ (x, t)
@t

=
�~2
2m

@
2
 (x, t)

@x2
+ Vext(x) (x, t), (5.1)

where ~ is Planck’s constant, m the mass of the quantum object and Vext(x) an external
potential. The wavefunction  (x, t) can be written in a polar form

 (x, t) =

p
n(x, t)e

i�(x,t)/~ (5.2)

where n(x, t) is the probability density and �(x, t) the phase. Injecting this structure
into Schrodinger equation and separating the real and imaginary parts gives a system
of two equation :

8
>><

>>:

@n(x, t)

@t
= �@j

@x

�@�(x, t)

@t
=

1

2m

✓
@�(x, t)

@x

◆2

+ Vext(x)�
~2
2m

�

p
n(x, t)p
n(x, t)

.

(5.3)

where the current j(x, t) = n(x, t)u(x, t) depends on the mean velocity u(x, t) =

r�(x, t)/m. The first equality is a conservation equation for the probability density
n(x, t). The second relates the time evolution of the phase to three energetic contribu-
tions. First, with the definition of the mean velocity, we see that the term 1

2m

⇣
@�(x,t)

@x

⌘2

is the kinetic energy of the particle. The second term Vext(x) is the external potential
and the third term a "quantum" potential

Q(x, t) =
�~2
2m

�

p
n(x, t)p
n(x, t)

, (5.4)
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5.1. QUANTUM HYDRODYNAMIC

due to the curvature of the wavefunctions amplitude. This quantum potential Q(x),
also called Bohm potential because of its use in de-Broglie-Bohm formalism of quantum
mechanics encapsulates the non-local effects of quantum nature of the wavefunction,
with an explicit dependency on the density n(x, t). Finally, by taking the gradient of
the second equation on �(x, t) and recalling the mean velocity u(x, t), we obtain a set
of equations that resemble the classical conservation and Euler equations for a fluid:

8
><

>:

@n(x, t)

@t
= �@n(x, t)u(x, t)

@x

@u(x, t)

@t
+ u

@u(x, t)

@x
= � 1

m
r (Vext(x) +Q(x, t)) .

(5.5)

The Madelung transformation shows, on the simple example of an isolated quantum
state  (x, t), how its dynamics can be described with a hydrodynamic model on the
probability density n(x, t). It introduces the quantum potential Q(x, t) that contains
all information about the quantum nature of the system, it is the only difference with
a classical set of hydrodynamic equation. In the next section, we turn to the case
of an open quantum system, strongly coupled to a classical thermal environment. In
this context as well, a hydrodynamical model can be derived and the same quantum
potential will appear.

5.1.2 Open quantum system, moment expansion of the Wigner-
Boltzmann equation

To describe the dynamics of a quantum particle interacting with a classical thermal
environment, we cannot use Madelung formalism anymore. A quantum particle inter-
acting with a thermal environment is not described by a pure state  (x, t) but by a
statistical mixture, framed as a density matrix

⇢(x, x
0
, t) =

NX

↵=1

w↵ 
⇤
↵
(x, t) ↵(x

0
, t) (5.6)

where w↵ is the probability of state  ↵. In order to build a phase-space tool similar to
the classical phase-space distribution describing the evolution of a probability density,
we use the Wigner transform of the density matrix

f(x, p, t) =
1

2⇡~

Z
d�e

ip�/~
⇢(x+, x�, t) (5.7)

where f(x, p, t) is Wigner’s quasi-distribution and x± ⌘ x±�/2. The dynamics of the
Wigner function is described by the Wigner equation

@f

@t
+

p

m

@f

@x
=

i

2⇡~2

Z
e

i(p�p0)�
~ [Vext (x+)� Vext (x�)] f(r, p

0
, t)d� dp

0 (5.8)
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that relates the hydrodynamic derivative @f

@t
+

p

m

@f

@x
to the potential energy. We further-

more introduce a general collision operator ⇥(f), similarly to the Boltzmann equation
approach to represent the effects of the classical environment. Then the dynamics of
a quantum particle interacting with a classical thermal environment can be described,
in a first approximation, by a Wigner-Boltzmann equation [187]

@f

@t
+

p

m

@f

@x
� i

2⇡~2

Z
e

i(p�p0)�
~ [Vext (x+)� Vext (x�)] f(r, p

0
, t)d� dp

0
= ⇥(f). (5.9)

The collision operator will be taken, in this first approximation, as ⇥(f) = �(f�f0)/⌧

where f0 is the thermal equilibrium distribution and ⌧ a characteristic relaxation time
that will be defined later.

An hydrodynamic framework similar to the Madelung equations can be retrieved
by taking moments of Wigner equation [188, 189, 187]. The moments of order k of the
Wigner distribution, defined as mk =

R
f(x, p, t)p

k
dp are connected to physical fluid

quantities. For example, the zero-th order moment is the density

n(x, t) =

Z
f(x, p, t)dp, (5.10)

the first order moment is the current

j(x, t) =
1

m

Z
pf(x, p, t)dp, (5.11)

connected to the mean velocity u(x, t) = j(x, t)/n(x, t).

The dynamics governing the moments can be derived by taking integrals of Wigner’s
equation (5.9). The zero-th order moment gives

@n

@t
+

@(nu)

@x
= 0, (5.12)

which is a continuity equation, denoting the conservation of mass. The dynamics of
the mean velocity u(x, t) appearing in this equation will be given by the next order
moment of Wigner equation, starting an infinite hierarchy of coupled partial differential
equations. The first order moment of Wigner equation Eq. (5.9) yields

@(nu)

@t
+

@(nu
2
)

@x
= � 1

m

@P

@x
� n

m

@Vext

@x
� nu

⌧
(5.13)

where
P =

1

m

Z
f(x, p, t)(p�mhui)2dp (5.14)

the pressure, second order momentum moment of Wigner distribution, with only the
statistical fluctuations of momentum p�mhui.
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As shown in [190], the pressure can be decomposed into P = PC+PQ with a classical
part PC and a quantum part PQ by reintroducing the polar form used in Madelung
derivation of Sec. 5.1.1 for each wavefunction  ↵. Then the classical pressure takes the
form of a velocity dispersion as in a classical gas and can, as for a Maxwell-Boltzmann
equilibrium at temperature T be written as

PC = nkBT, (5.15)

where kB is Boltzmann’s constant. The quantum part PQ, proportional to ~ has
no classical counterpart. It can be expressed as a combination of gradients of the
density n(x, t) and identifies with the quantum potential introduced in the Madelung
formalism

@xPQ = n@xQ, (5.16)

see [190].

Using these expressions, one arrives at a set of two quantum hydrodynamic equa-
tions for the density n(x, t) and the mean velocity u(x, t):

@n

@t
+

@(nu)

@x
= 0, (5.17)

m


@(nu)

@t
+

@(nu
2
)

@x

�
= �n

✓
@Vext

@x
+

@Q

@x

◆
� mnu

⌧
� kBT

@n

@x
, (5.18)

Quantum effects are contained in the Bohm potential Q[n(x, t)], whereas the effects of
the environment contained in the temperature-dependant term and the damping term
(the last two terms in the RHS of Eq. (5.18) ).

5.1.3 QDD as large friction or small mass limit of QHD

In this subsection, we take a viscous limit of the quantum fluid equations Eq. (5.17)
and (5.18). It is natural to choose for ⌧ the classical thermalization time of velocities:
⌧ = m/�, where � is the drag coefficient of the object in the fluid that makes up the
thermal bath. Finally, taking the limit ⌧ ! 0 and m ! 0 , while m/⌧ = � remains
finite, enables us to drop the inertial terms [left-hand side of Eq. (5.18)] an isolate
n(x, t) as

n(x, t) =
u

�


kBT

@n

@x
+ n

@

@x
(Vext +Q)

�
. (5.19)

Injecting the expression for nu into the continuity equation ((5.17)), leads to a single
quantum drift-diffusion (QDD) equation for the density [180]:

@n

@t
=

1

�

@

@x

✓
n
@

@x
(Vext +Q)

◆
+

kBT

�

@
2
n

@x2
. (5.20)
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This is a first-order equation for the time-evolution of the density n is given by a
drift term ⇠ @x[n⇥ force] and a diffusion term ⇠ @

2
x
n. It has the structure of a classical

Fokker-Planck equation for Brownian motion, and differs from it only by the presence
of the Bohm potential Q. This is an important difference, however, as the Bohm
potential is itself a functional of the probability density n(x, t) and its derivatives.
This analogy with a classical diffusion equation will be exploited later in Sec. 5.2.

5.1.4 Harmonic oscillator

When the external potential Vext is quadratic in position x, simple analytical solutions
can be derived. As the classical thermal equilibrium distribution in a quadratic po-
tential is a Gaussian, we inject here a Gaussian Ansatz for the QDD model described
above for the case of harmonic confinement. Remarkably, this Ansatz is an exact so-
lution and the distribution stays Gaussian for all times. In this case, the QDD model,
which is an equation on probability distributions, simplifies to a simple first order
differential equation for its variance. We furthermore verify that in that special case,
we recover in the stationary regime and at first order in ~ the same result as the mo-
mentum integral of the corresponding Wigner function. The latter is an exact result
for a harmonic oscillator in a thermal bath, and the agreement with the stationary
regime of QDD strongly validates the latter model.

We consider a harmonic external potential Vext =
1
2x

2 with stiffness , and a
Gaussian probability distribution

n(x, t) =
1p

2⇡S(t)
e
�x

2
/2S(t) (5.21)

where S(t) is the time dependent variance. Within the Gaussian assumption the Bohm
potential can be analytically derived

Q(x, t) =
�~2
2m

�

p
n(x, t)p
n(x, t)

=
�~2
2m

✓
�1

2S(t)
+

x
2

4S2(t)

◆ (5.22)

where we notice the quadratic form in position x. The Bohm force will therefore be
linear in x, similar to the external force. If we inject the Gaussian Ansatz and the
harmonic assumption in the QDD model and solve for S(t), we obtain

1

2

dS(t)

dt
�n = �2

�
S(t)�n+

~2
2m�S(t)

�n+
2kBT

�
�n (5.23)
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with � ⌘
h
x
2

S2 � 1
S

i
and n that can be simplified leading to the variance ordinary

differential equation (ODE):

dS(t)

dt
= �2

�
S(t) +

~2
2m�S(t)

+
2kBT

�
. (5.24)

This result shows that any Gaussian initial distribution injected in the QDD model will
remain Gaussian at any time, as shown in the general QHD case in [191]. Therefore,
the QDD model within these assumptions can be fully described by the simple first
order differential equation of its variance (for a zero mean). Eq. (5.24) is non-linear
and the term ~2/2m�S(t) that encapsulates the quantum effects adds a non-trivial
dependence on the variance, and therefore on time.

The equilibrium variance is the stationary dS(t)/dt = 0 solution of this differential
equation

S
eq

QDD
=

kBT

2
+

1

2

s✓
kBT



◆2

+
~2
m

. (5.25)

The classical limit where ~ vanishes is the standard variance of a Brownian motion
in an harmonic potential i.e. kBT/. Here the quantum nature of the object adds a
correction that increases the value of equilibrium variance.

Next, we wish to verify the validity of the model used here. The result obtained for
the variance is the consequence of a strong friction limit of the quantum hydrodynamic
model. However, an exact result can be obtained for this special case of the harmonic
oscillator. The Wigner function of a harmonic oscillator in contact with a thermal
bath is derived in [192]. One starts from the unnormalized density operator in the
canonical ensemble ⌦̂ = e

��Ĥ , where � = 1/kBT and Ĥ =
1
2m p̂

2
+

m!
2
ho

2 x̂
2 is the

Hamiltonian of the system. ⌦̂ obeys to the Bloch equation for the density operator
in the canonical ensemble. It can be translated it into an equation for phase-space
function ⌦(x, p). Applying it to the special case of harmonic oscillator, one can solve
for ⌦(x, p) obtaining

⌦(x, p) = sech
✓

~!ho

2kBT

◆
e
� 2

~!ho
tanh

⇣ ~!ho
2kBT

⌘
H(x,p) (5.26)

where !ho is the characteristic frequency (hence m!
2
ho

= , the stiffness). Finally,
normalising the resulting expression gives the Wigner function of a harmonic oscillator
at temperature T
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1

⇡~tanh
✓

~!ho
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◆
e
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2kBT
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This distribution is Gaussian both in position and momentum variables. It has the
form of the classical canonical distribution 1

Z e
�H/kBTeff with an effective temperature

Teff > T depending on ~. The effective temperature accounts for the quantum broad-
ening of the distribution, similarly to the increase of variance in the QDD result.

By integrating over the momentum p we obtain the density n(x, t) :

n(x, t) =

Z
Pw(x, p)dp =

s
m!ho

⇡~ tanh
✓

~!ho

2kBT

◆
e

�m!ho
~ tanh

⇣ ~!ho
2kBT

⌘
x
2

. (5.28)

In the case where quantum effects, related to the quanta of energy ~!ho are very small
with respect to thermal energy kBT , we can consider ~!ho

kBT
⌧ 1 and Taylor expand the

result for the distribution. More precisely, we expand both hyperbolic tangent terms,
using tanh(✏) ⇡ ✏� ✏

3

3 , and we obtain
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which is a Gaussian distribution in position x as the solution of the QDD model. We
can note that if we had only kept the first order tanh(✏) ⇡ ✏, we would have recovered
the classical result. To the next order and with  = m!

2
ho

, the variance becomes:
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This result corresponds up to a factor 1/3 to the first order term in the stationary
solution of the variance obtained from QDD model:
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We observe a factor 1/3 in the first-order quantum correction between the hydro-
dynamic model (QDD) and the exact kinetic model (Wigner function). To understand
this discrepancy we discuss again the closure relation used in Sec. 5.1.2 on the pres-
sure P to break the infinite hierarchy of moment equations. We saw that the pressure
can be separated in two components, a classical pressure and a quantum pressure.
For both we assumed a simple closure relation, for the classical pressure we wrote
PC = nkBT and for the quantum part, we identified its gradient @xP = n@xQ with
the gradient the quantum potential Q. As discussed in [190] (Sec. 3.1), these closure
relations are not universal, but rather part of a family of relations, governed by two
parameters (�, ⇣) as

PC = neqkBT

✓
n

neq

◆�

(5.32)
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and
@PQ

@x
= ⇣n

@Q

@x
. (5.33)

The values of � and ⇣ are not always equal to unity but rather depend on the specific
system under study. As shown in [190], two extreme cases (high-frequency plasmons
and low-frequency phonons) can be investigated to derive values for � and ⇣. In the
case of low-frequency acoustic waves (which is relevant here), phonons propagates in
the lattice with a phase velocity small in comparaison with the electronic thermal
velocity. The dispersion relations derived from the exact kinetic model and the fluid
equations coincide if � = 1 (because we work at constant temperature T ) and ⇣ = 1/3

as in our case. The fact that our "viscous" fluid limit coincides with the phononic
picture more than with the plasmonic case is not surprising.

The comparaison of the equilibrium variance derived from the QDD model with the
kinetic result derived from Wigner equation, together with the proposed explanation
for the 1/3 difference validates the accuracy of QDD to describe the properties of a
quantum object evolving in a classical environment.

By anticipating the numerical and experimental implementations of this model later
in this chapter, we stress that this 1/3 factor will be absorbed into an adimensional
parameter, governing the strength of quantum effects.

5.2 Fokker-Planck equation and classical analogue

5.2.1 Drift and diffusion equation: analogous to Fokker-Planck

The quantum drift diffusion (QDD) model Eq. (5.20) derived above and studied for
the special case of a harmonic oscillator has the structure of a Fokker-Planck equation
describing the evolution of the probability density of a Brownian object in a poten-
tial, under the random action of thermal forces. Such Fokker-Planck equation was
discussed in the classical regime in Chap. 2. In this section we use this formal analogy
between the quantum model and a classical equation to devise an operative analogue.

We recall the one-dimensional Fokker-Planck equation for a probability density
n(x, t) [110]:

@n(x, t)

@t
= � @

@x
[A(x, t)n(x, t)] +

1

2

@
2

@x2
[B(x, t)n(x, t)] (5.34)

with a general drift coefficient A(x, t) and a general diffusion B(x, t). For a classical
harmonic oscillator, A is the gradient of the external potential Vext divided by the
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viscosity � and B(x, t) ⌘ 2D = 2kBT/�, is a constant. We therefore obtain:

@n(x, t)

@t
= � @

@x


(t)

�
x n(x, t)

�
+D

@
2

@x2
[n(x, t)] (5.35)

that is Eq. 2.18.

The QDD model Eq. (5.20) takes this form (5.34) as well, if A(x, t) = 1
�

@

@x
(Vext(x)+

Q[n]) while keeping B(x, t) = 2D. We know that the specificity of the quantum po-
tential is that it explicitly depends on the probability density n(x, t). Therefore, we
emphasise this dependence by writing it explicitly as a functional Q[n]. This de-
pendence of course induces a strong difference between the classical Fokker-Planck
equation and the QDD model: the drift coefficient A explicitly depends on the density
for the QDD whereas it was a simple function of position x in the classical case.

Despite this important difference, writing the QDD under this form (5.34) suggest
that it can be emulated by classical means if one can mimic the quantum potential
Q[n]. This will be made more clear in the next section where we discuss the stochastic
process underlying the QDD model.

5.2.2 Associated McKean-Vlasov stochastic process

From classical statistical mechanics, we know that the Fokker-Planck equation governs
the evolution of the probability distribution of a diffusive object. The latter can
equivalently be described at a microscopic level by a Langevin equation, governing
its stochastic trajectory. By the same token, we propose here to study the stochastic
process that is associated with the Fokker-Planck point-of-view of QDD model. The
Langevin equation associated with the general Fokker-Planck equation Eq. (5.34)
characterised by the drift A(x, t) and the diffusion B is

dxt = A(x, t)dt+

p
BdWt, (5.36)

where dWt is the Wiener increment, white noise, with zero mean: hdWti = 0 and
no memory: hdWtdWsi = �(t � s)dt. This stochastic differential equation describes
the dynamics of the position xt as a fonction of time, its solution can be computed
via Laplace transform, as it was done in the first chapter Chap. 2. The probability
distribution of the random variable xt obeys to the associated Fokker-Planck equation.
Hence an experimental or numerical realisation of the stochastic process Eq. (5.36)
allows to obtain the result of the Fokker-Planck equation Eq. (5.34).
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Here, we propose to use the stochastic process associated with the QDD model to
emulate the dynamic of the quantum density n(x, t). The stochastic process associated
with the QDD model Eq. (5.20) can be written as

dxt = �1

�

@

@x
(Vext(x, t) +Q[n]) dt+

s
2kBT

�
dWt, (5.37)

where again, we emphasise the functional dependency of the quantum potential on
the probability density as Q[n] = � ~2

2m
�
p
np
n

. For a quantum particle evolving in the
potential Vext, the quantum potential in an intrinsic effect, arising, as we have seen in
Sec. 5.1.2 from the quantum component of the pressure. Yet we see here that it takes
the simple form of an additional force in a Langevin equation.

A large number of trajectories xt obeying Eq. (5.37) are needed to probe the evo-
lution of the density n(x, t), yet the evaluation of the quantum potential rely on the
instantaneous knowledge of n(x, t) itself. Therefore, in order to emulate Eq. (5.37)
the key issue is to be able to inject instantaneously the probability distribution n(x, t)

into the random process. This can be achieved if one can generate (numerically or
experimentally) an ensemble of N simultaneous trajectories in order to reconstruct
n(x, t), at each time-step. Then, the quantum potential is derived from the measured
density and injected as a force for the next time-step. This method is detailed on Fig.
5.2. The ensemble of trajectories can be initiated with an arbitrary distribution and
will converge towards the solution n(x, t) of the QDD model. Experimentally, this
may be implemented using a multiple optical trapping system (see Fig. 5.1) where the
ensemble of particles are used to probe the distribution. Stochastic equations of this
type, where the microscopic random variable depends on its own probability distribu-
tion are called McKean-Vlasov processes.

5.2.3 Non-dimensional equations

Deriving a non-dimensional writing of both the QDD model and the associated McKean-
Vlasov process underlines two points. Firsts it shows that all physical constants can
be neatly described by a single parameter ✏ that simplifies numerical and experimental
implementation. Second, this parameter has a clear physical meaning, which clarifies
the relation between quantum and classical effects.

In order to derive a non-dimensional description of the dynamical equations for
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Figure 5.2: Method used to implement a McKean-Vlasov process us-
ing a statistical ensemble. First N random variable are drawn in an
initial probability distribution, e.g. the solution of a simple Langevin
equation without the quantum potential. Then at each time-step, the
probability distribution of positions n(x, t) is measured as a histogram
on the ensemble. From this evaluation of the density, the quantum
potential Q[n] is derived and applied on all the particles for the next
time-step t+�t. For any arbitrary initial condition, the system will
relax towards the quantum solution of the QDD model. The parame-
ters driving the dynamic of the system are the external potential and
the properties of the thermal environment encapsulated in the diffu-
sion coefficient. If they are varying in time, the ensemble of particles
will undergo a transient evolution out of equilibrium, from which we
can probe the time evolution of the non-stationary density.

n(x, t) and for xt, we start with the QDD

@n

@t
=

kBT

�
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�
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and make the following change of variables, focusing on a quadratic external po-
tential Vext =

1
2(t)x

2 for simplicity:
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Here, i corresponds to the initial stiffness, ⌧relax = �/i is the corresponding
relaxation time and � ⌘

q
kBT

i
the classical width of the harmonic oscillator at

thermal equilibrium fixed by equipartition. This change of variables leads to
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+r [n̃(t)x̃] , (5.40)

where

✏ ⌘

s
~2i

2m(kBT )
2

(5.41)

is a dimensionless parameter that can be described as half the ratio between the de
Broglie thermal length �dB =

p
2⇡~2/mkBT and the classical width of the harmonic

oscillator at thermal equilibrium � as

✏ =
�dB

2�k

. (5.42)

Another possible interpretation can be given as the ratio between the quantum deco-
herence time and the thermal relaxation time ⌧relax = �/. Following [193], the loss of
quantum coherence is governed by a typical time scale ⌧D = ⌧relax

⇣
~2

2mkBT�x2

⌘
where

�x is a typical length scale of motion. In our case, we propose �x = � =

p
kBT/.

This gives
✏
2
=

⌧D

⌧relax
, (5.43)

hence the ratio between the decoherence time and the relaxation time.

Finally, the non-dimensional stochastic McKean-Vlasov process becomes

dx̃t = �rṼextdt̃+ ✏
2r
✓
�
p
np
n

◆
dt̃+

p
2dW̃t. (5.44)

Here again, ✏ measures the importance of quantum effects with respect to thermal
fluctuations. This non-dimensional process will be studied numerically in the next
section. Note that for simplicity, the tildes x̃ and t̃ denoting non-dimensionality will
be dropped in the numerical work.

One can ask how this model relates to the experimental framework of this PhD
thesis described in the previous chapters. In an experimental scheme like our optical
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trapping setup, it is possible to study the evolution of a Brownian object obeying the
Langevin equation (Ornstein-Uhlenbeck process in this case of harmonic confinement).
The typical size of the microsphere trapped is the micron. For such an object at room
temperature, the magnitude of the quantum effects due to its a priori quantum nature
are minute and ✏ is typically of the order of 10�17. In this case, the quantum potential
can be neglected and we retrieve of course the classical Ornstein-Uhlenbeck process
study in details Chap. 2.

However, the form of the non-dimensional writing of QDD, with all parameters
contain in ✏, suggests that an arbitrary rescaling of the process is possible, keeping all
the specificities of the quantum dynamic of QDD, while working at room temperature.
This is the nature of the analogue proposed here: in our classical analog, ✏ is no longer
related to Planck’s constant, but can be adjusted at will, within the practical limits of
the experimental or numerical realization. The classical case, i.e. standard Brownian
motion, corresponds to ✏ = 0, while when ✏ ⇡ 1 “quantum" effects play a significant
role.

5.3 Numerical simulation in arbitrary potentials

5.3.1 Numerical method for a McKean-Vlasov process

Our numerical approach is based on the Euler-Maruyama stochastic algorithm [106,
194] already detailed in Chap. 2. It consists in a discretisation of the stochastic
differential equation up to O(�t

1/2
) in time increment. For the stochastic equation

Eq. (5.44) where all variables are non-dimensional, it takes the form

yi+1 = yi �rVext(yi)�t+ ✏
2r
 
�

p
n(yi)p
n(yi)

!
�t+

p
2�t⇠i, (5.45)

where yi is the numerical approximation of xt (non-dimensional) and ⇠i is a normally
distributed random variable. Our numerical approach is the following: as for a classical
stochastic algorithm, we compute one time-step for N Brownian particles simultane-
ously and then we evaluate the forces for the next time-step.

As detailed above, the specificity of this McKean-Vlasov process arises from the
evaluation of the quantum force, which demands an evaluation of the density n(yi).
The density can be probed as a histogram on the ensemble of particles. However, the
quantum force contains a third order derivative of the density and some care needs
to be taken on the shape of the measured probability density to avoid divergence of
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the algorithms. We use a particle in cell method to evaluate n: to each particle of
the ensemble, we associate a Gaussian kernel, their sum being a reasonably smooth
evaluation of the density. From the evaluation of n(yi) we are able to compute the

quantum force r
✓

�
p

n(yi)p
n(yi)

◆
, used to compute the next time-step.

One important parameter here is the width of the Gaussian kernel used to represent
each particle of the ensemble. The kernel can range from zero where the each Gaussian
goes to a Dirac distribution and the full width of the histogram, that leads simply to
a Gaussian fit of the distribution. Therefore, a too large kernel is not capturing the
specific shape of the distribution if it differs from a Gaussian. Yet, for finite ensem-
ble, a too small kernel will lead to a noisy evaluation of the density, that will become
unpractical because of the three derivatives and the division by n occurring in the
quantum force. This can result in a divergence of the algorithm.

Of course, a localized kernel can still be used if the number of particles is very
large, in which case the distribution will remain smooth. The question only arises
when small statistics are used. In the numerical results shown here, we wish to stay
close to the existing experimental platform that contains at most a few thousands of
trapped objects. In our case, we use 3000 trajectories and we therefore compromise
between a kernel of size close to zero (sum of Dirac delta functions) and of size equal
to the whole width of the distribution (Gaussian approximation, exactly true only for
harmonic external potential, as detailed later).

On Fig. 5.3 we show an example of instantaneous probability distribution of posi-
tions in a non-harmonic external potential, computed with 3000 independent positions.
We superimpose the result of a density estimation via a sum of Gaussians for various
kernels, varying from 0.1 (blue line) that follows the irregularities of the measured
histogram to the full width of the distribution (yellow line), a Gaussian approximation
of the distribution. In the following, we use the conventional arbitrary units where the
size of the kernel is 0 for a sum of Dirac peaks and 1 (arbitrary units) when it spans
the full width of the distribution. For the numerical study of next subsection, we use
a value between 0.6 and 0.8: large enough to smooth out irregularities arising from
the small statistics, but small enough to account for the difference of the distribution
with respect to a Gaussian.
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Figure 5.3: Probability density for 3000 trajectories. Measured his-
togram (blue bars) and its estimation by a sum of Gaussian kernels
of width varying in arbitrary units from 0.1 (blue line) to 1 (yellow
line: this value of 1 a.u. corresponds to the Gaussian approximation
of the distribution)

5.3.2 Anharmonic potential and autocorrelation

In this subsection and in the following, we focus on two cases, studied using numerical
simulations. In both cases, we use a quartic external potential Vext = ↵x

2
+�x

4. In this
subsection we consider ↵ > 0 which makes Vext an anharmonic single-well potential.
We focus on the features of the equilibrium distribution and stationary observables,
such as the autocorrelation function of positions hxtxsi. Non-equilibrium transients
will be analyzed later using an experimental protocol. We simulate the adimensional
process with 3000 trajectories on 300 time-steps of duration �t = 0.1. The potential
is parameterized as Vext = 0.6x

2
+ 0.2x

4. We simulate three different cases:

• a classical Langevin process in the quartic potential, with ✏ = 0 (referred to as
"Classical Quartic" in the following)

• a quantum McKean-Vlasov process Eq. (5.44) in a quartic potential, with ✏ = 4

(referred to as "McK-V Quartic")

• a classical Ornstein-Uhlenbeck process in a harmonic potential Vext = x
2
/2 (re-

ferred to as "Ornstein-Uhlenbeck")

These three cases are important to highlight to highlight, by contrast, different ef-
fects. Our aim is both to underline the specificity of the quantum effects, but also the
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specificity of anharmonicity. The first and second are compared to show the modifica-
tions induced only by the quantum effects. The third classical harmonic case, is used
in contrast, to underline the effect of anharmonicity of the potential in the two first.

We take as initial condition for both the classical quartic and McKean-Vlasov quar-
tic processes the stationary distribution of a classical quartic process (Eq. (5.44) with
✏ = 0), then turn on quantum effects for the McKean-Vlasov process (✏ = 4) and let
both systems evolve. As expected, the classical process will stay stationary while the
quantum McKean-Vlasov will evolve towards a new equilibrium. At each time-step,
a smooth distribution n(x, t) is constructed from the N trajectories by softening the
particle positions x(t) with a Gaussian kernel as discussed above.

Figure 5.4: (Left) Evolution of 15 simulated trajectories, initially dis-
tributed according to the classical stationary state in the quartic potential
Vext = ↵x2 + �x4, where ↵ = 0.6 and � = 0.2, computed with a total
N = 3000 trajectories with ✏ = 4, for 300 time-steps with dt = 0.1; (Right)
Histograms of the initial (classical, ✏ = 0, blue circles) and final (quantum,
✏ = 4, red triangles) equilibrium distributions, together with their density
estimation with a sum of Gaussian (continuous line) and respective Bohm
force (dotted line).

In Fig. 5.4 we represent some simulated trajectories for the quantum McKean-
Vlasov process on the left as well as their ensemble probability distributions at the
initial time (blue) and final time (red). After a certain relaxation time, the system
stabilizes around a quantum equilibrium distribution, which differs significantly from
the initial classical Boltzmann equilibrium. This departure from the classical result
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is due to the action of the Bohm force, which works against the external confinement
and extends the width of the distribution. We superimpose the quantum force derived
from the respective densities (dotted line), which takes a cubic profile.

As explained above, an important point in the performed simulations is the choice
of the kernel of the Gaussian used to approximate the density. It needs to stay small
enough to allow each distribution to keep its specificities. Here we go in more details on
this point to show that the resulting distribution significantly differ from a Gaussian.

Figure 5.5: (a) Numerical distribution as well as its approximation by a
sum of Gaussian kernels of width 0.8 (arbitrary units). We observe that this
approximation flattens the top of the distribution. (b) Total probability
distribution of the trajectories on 300 time-steps for the three cases. The
classical quartic position distribution (blue circles) and McKean-Vlasov
quartic distribution (red triangles) are fitted with a Maxwell-Boltzmann
distribution with quartic energy and the Ornstein-Uhlenbeck distribution
(yellow squares) is superimposed with the expected Gaussian shape. In the
inset we show the time-averaged ensemble-kurtosis (4th moment) of all three
cases with the same color code. The kurtosis of the Gaussian distribution of
the Ornstein-Uhlenbeck process is 3 as expected for a normal distribution.
The kurtosis of both quartic processes differs significantly, the error bars
correspond to one sigma of dispersion of the ensemble-kurtosis on the 300

time-steps.

On Fig. 5.5 (a) we show a typical probability distribution evaluated on the ensem-
ble of trajectories with its approximation as a sum of Gaussian of width equal to 0.8

(a.u.). Although this choice of kernel is not an approximation as crude as a Gaussian
fit, it still visibly departs from the measured distribution. A kernel of width 0.6� 0.8

is however the smallest kernel that can be used with such a small statistics: indeed,
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with a smaller width, the third derivative of the distribution contained in the quantum
force would be too noisy causing the algorithm to diverge.

To evaluate the effect of anharmonicity of both quantum and classical processes in
the quartic potential, we evaluate the kurtosis of the respective distributions. Kur-
tosis of a centered random variable, is its fourth moment normalized by the squared
variance K ⌘ E[x4

]/�
4. Since for a normal distribution E[x4

] = 3�
4, the kurtosis is

K = 3. A statistically significant deviation from this value is therefore a measure of
non-Gaussianity.

We show on Fig. 5.5 (b) that the probability distribution of the McKean-Vlasov
process (red triangles) is keeping its non-Gaussian nature (in contrast with the yellow
squares Gaussian distribution) as measured with the kurtosis K < 3 and also signifi-
cantly differ from its classical counterpart (blue circles). K < 3 distributions, referred
to as platykurtic are typically displaying less outliers than a normal distribution, as
one can see on the shape of both blue and orange distributions, that show smaller tails
than the Gaussian yellow distribution.

More precisely, the probability distribution function (PDF) of both classical pro-
cesses are expected to converge to the Maxwell-Bolzmann statistics n(x, t) = 1

Z e
�Vext/kBT .

Harmonic confinement Vext leads to a Gaussian PDF / e
�x

2
/2�2 while quartic confine-

ment Vext leads to a non-Gaussian shape / e
�(↵x2+�x

4)/kBT . On Fig. 5.5 (b) we show
the three distributions. We superimpose to both classical distributions the expected
Botzmann PDF. We note the good agreement for the classical PDF, while the distri-
bution of the quantum McKean-Vlasov process significantly differs from both classical
counterpart and Gaussian distribution. The latter is fitted with a general Boltzmann
distribution in a quartic potential / e

�(↵0
x
2+�

0
x
4)/kBT with different parameter ↵

0 and
�
0 as fitting parameter. It shows that the total potential, sum of Vext and Q keeps a

quartic shape, with different coefficient.

In Fig. 5.6, we show the normalized autocorrelation at equilibrium: hx(t+�)x(t)i/hx2
(t)i,

where the averaging is done over all the trajectories, as a function of the lag-time �.
The initial time is set at an instant t, when the distribution has already relaxed to
its quantum equilibrium. We note that the addition of the quantum Bohm potential
induces longer-lasting correlations compared to the classical case. A straightforward
interpretation is that the McKean-Vlasov trajectories are correlated with one another
through the action of the Bohm force.

The result of this subsection validates our method on the example of a quartic
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Figure 5.6: Semi-logarithmic plot of the normalized ensemble-averaged
correlations hx(t + �)x(t)i/hx2(t)i as a function of the lag time �, for
trajectories x(t) undergoing a quantum McKean-Vlasov (orange triangles)
or classical (blue circles) stochastic process. In both case we superimpose
an exponential fit (black dashed and dotted lines respectively).

potential. We are able to emulate the McKean-Vlasov process, while keeping a rea-
sonable statistics and can unveil some specific effect, here visible on the equilibrium
correlation function.

5.3.3 Bistable Duffing potential

We now turn to the case ↵ < 0, for which the confining potential is a bistable double
well parametrized as Vext = �x

2
+0.1x

4. Using the same numerical method, we simu-
late again N = 3000 trajectories for both the classical (✏ = 0) and the McKean-Vlasov
(✏ = 2) stochastic processes. On Fig. 5.7 (left) we represent individual trajectories
in the potential for 2000 time-steps of duration �t = 0.1. We can see that in the
classical case (blue trajectory), the particles linger in one of the wells for a relatively
long residency time ⌧R, before occasionally jumping to the second well due to thermal
fluctuations. In contrast, in the McKean-Vlasov case (red line) these jumps occur
much more frequently. As a consequence, the probability distribution of the McKean-
Vlasov process is less sharply peaked on the two minima (Fig. 5.7, right panel). The
classical distribution is well fitted by a Boltzmann law / e

+↵x
2��x

4 with the chosen
↵ = 1 and � = 0.1. The quantum McKean-Vlasov distribution is also fitted with a
Boltzmann distribution, / e

+↵
0
x
2��

0
x
4 where ↵

0 and �
0 are fitting parameters, showing

that the total potential takes the same analytical form as the external potential, but
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with modified coefficients.

Figure 5.7: (left) Classical (✏ = 0, blue line) and McKean-Vlasov (✏ = 2,
red line) trajectories in a double-well potential (↵ = �1, � = 0.1, grey line)
along with (right) their respective probability distributions for N = 3000

trajectories simulated for 2000 time-steps with dt = 0.1

The main difference between classical and quantum processes is therefore well cap-
tured by the difference in residency time in each minima of the potential. Here we
study in more details the jump statistics. On Fig. 5.8 (a) we represent a part of
trajectory xt for both classical (blue) and quantum (red) processes. We wish to study
the statistics of the time ⌧R that the position xt spends in one well (e.g. xt > 0).
We superimpose on the trajectories xt a rolling average smoothing (smoothing on 20

time-steps). This smoothing allows to avoid counting very short events that are not
bringing the particle to the other minima. We then scan the trajectory and detect all
crossing events (that are rezpresented on Fig. 5.8 (a) as circles on the x = 0 line). The
residency times are then defined on the times between each crossing event. With this
method, we collect ⇠ 10

4 residency times ⌧R and build their probability distributions.

The jump events from one minima to the other are correctly described by Poisson
statistics [195, 196] and the probability distribution of the residency times obeys an
exponential decay law [197] P (⌧R) = �e

��⌧R , where � ⌘ 1/h⌧Ri. The results shown in
Fig. 5.7 (b) are in good agreement with this exponential law, both for the classical and
for the McKean-Vlasov processes, albeit with different values of �, the effect of the
Bohm potential being to decrease the mean residency time. The enhanced mobility
between the two wells is clearly seen in the probability distribution of the particle po-
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5.3. NUMERICAL SIMULATION IN ARBITRARY POTENTIALS

Figure 5.8: (Left) Classical (✏ = 0, blue) and McKean-Vlasov (✏ = 2,
orange) trajectories (thin lines) and a rolling averaged smoothing (thick
line) in a double-well potential (↵ = �1, � = 0.1). We emphasize the
crossing events detected with thick circles on the x = 0 line. (Right)
Probability distribution of the residency times ⌧R for the classical (blue
circles) and quantum (orange triangles) cases. The straight lines represent
the corresponding Poisson distributions, with h⌧Ri = 42.9 for the classical
and h⌧Ri = 8.4 for the McKean-Vlasov case.

sitions (Fig. 5.7 (right)), which signals a decrease of the effective potential barrier due
to the quantum Bohm potential. This result can be interpreted as a manifestation of
quantum tunnelling, which increases the frequency of barrier-crossing events beyond
the classical thermally-induced probability.

The effective decreasing of the potential barrier is shown on Fig. 5.9 where we
display the external potential (blue line), the time-averaged ensemble-measured quan-
tum potential (red line), as well as the total potential (yellow dashed line), sum of the
external and the quantum potentials. The total potential is what the particles actu-
ally experience along their trajectories. We clearly see on the figure that the addition
of the quantum potential decreases the height of the potential barrier separating the
two minima. This was already visible on the flattening of the probability distribution
function on Fig. 5.7 (right). We also show the profile of the force (external, quantum
and total with the same color code). This again underlines the softening induced by
the quantum nature of the McKean-Vlasov process.
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5.4. EXPERIMENTAL REALISATION IN A HARMONIC POTENTIAL

Figure 5.9: (a) External potential applied Vext = �x2+0.1x4 (blue line),
ensemble-measured quantum potential Q = �✏2�

p
np
n

(red line, scaled for
visibility) averaged on all time-steps and total potential Vext + Q (yellow
dashed line). (b) Associated external force Fext = �rVext (blue line),
FBohm = �rQ (red line, scaled for visibility) and total Fext+FBohm (yellow
dashed line).

5.4 Experimental realisation in a harmonic potential

In this section we implement McKean-Vlasov process experimentally in our single
Brownian object optical trap. Since we have only one microsphere in one trap, we
cannot use the method proposed above to probe the distribution on an ensemble.
Instead we use a simple analytical result for harmonic potential to circumvent the
need of an ensemble. This approach will be used to study the effect of the Bohm
potential in an out-of-equilibrium configuration.

5.4.1 Quantum effect in a single potential

Our experimental setup, shown in Fig. 5.10 and presented in detail in Chap. 2 is
composed of a single 1 µm dielectric bead optically trapped by a 785 nm Gaussian
laser beam. The optical potential created by the gradient forces at the waist of the
beam is harmonic, Vext = x

2
/2 with a stiffness  proportional to the intensity of the

laser beam that can thus be controlled precisely. The bead is immersed in water at
ambient temperature and undergoes Brownian motion due to the thermal fluctuations.
The overall motion is consistent with an Ornstein-Uhlenbeck process and is therefore
suited to implement our model.

We have seen in Sec. 5.1.4 that in the case of harmonic potential, the quantum
potential can be analytically derived and takes a harmonic shape as the external
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5.4. EXPERIMENTAL REALISATION IN A HARMONIC POTENTIAL

Figure 5.10: Schematic representation of the experimental setup: a
785 nm Gaussian laser beam is tightly focused on the 1 µm polystyrene
bead with a 1.2 N.A. microscope objective Obj. 1. A second low-
power 639 nm is sent through a 0.7 N.A. objective Obj.2. The scat-
tered 639 nm light by the microsphere is collected by Obj.1 and sent
to a photodiode. The intensity fluctuations are linear with the posi-
tion xt and is calibrated to measure the trajectories. More details are
given Chap. 2

potential, leading to a force �@xQ[n(x, t)] =
~2

4m�

xt
S2(t) . In this case, both the Bohm

force and the external force �xt have the same functional form, linear in the stochastic
variable xt. Furtherfmore, a Gaussian probability distribution

n(x, t) =
1p

2⇡S(t)
e
�x

2
/2S(t)

, (5.46)

where S(t) is the time-dependent variance of the distribution, is an exact solution of
the McKean-Vlasov process (5.37), provided the variance obeys the following equation:

dS(t)

dt
= �2

�
S(t) +

~2
2m�S(t)

+
2kBT

�
. (5.47)

This equation can be written as

dS(t)

dt
= �2

�


(t)� ~2

2m�S2(t)

�
S(t) +

2kBT

�
. (5.48)

where the term between bracket is a single modified stiffness

̄(t) ⌘ (t)� ~2
4m�S2(t)

. (5.49)

Hence, the quantum McKean-Vlasov process can be expressed as an ordinary (Ornstein-
Uhlenbeck) stochastic process:

dxt =
�̄(t)

�
xtdt+

s
2kBT

�
dWt. (5.50)
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5.4. EXPERIMENTAL REALISATION IN A HARMONIC POTENTIAL

Despite this apparent mathematical simplicity, all the physical richness of the ana-
log model is preserved, with the modified stiffness ̄(t) still depending on the ensemble
variance S(t) as a consequence of the quantum nature of the problem. Moreover, in
this harmonic case, as already discussed Sec. 5.2.3 the dimensionless parameter gov-
erning quantum effects takes the form: ✏

2 ⌘ ~2
2m (kBT )2 = �

2
dB/2�

2

, i.e. half the ratio

between the de Broglie thermal wavelength and the classical width of the harmonic
oscillator at thermal equilibrium.

The specificity of the harmonic confinement is that the variance need not be mea-
sured out of a collection of trajectories taking place simultaneously in N identical
traps, as in Fig. 5.1. Instead, S(t) can be computed from Eq. (5.47) and then used
to construct the Bohm potential or force, thus avoiding the necessity of using many
optical traps in the experiment. This approach of computing analytically the variance
however relies on a very neat calibration of the optical setup. The motional variance of
the microsphere depends on the stiffness  of the optical potential, needs to be known
with high precision before doing the experiment.

5.4.2 An alternative calibration method

In our experimental implementation, the optical potential created by the focused laser
beam is locally harmonic. The stiffness of the harmonic potential (t) is proportional
to the laser power P (t) and can be controlled by the experimentalist. Our experi-
mental method and calibration are based on the theoretical results obtained in the
harmonic and Gaussian case, mainly the relation between the stiffness (t) and the
variance S(t) given by the classical variance ODE Eq. (2.19). It makes it possible to
realise the McKean-Vlasov process using one single trajectory and to use this system
to probe out-of-equilibrium states, with a given protocol (t). The method is the
following: first a protocol (t) is defined, a value of the parameter ✏ is chosen and is
transferred to an arbitrary Planck constant ~2

arb
=

2m(kBT ✏)2

i
. Then the variance ODE

is solved for this protocol and the modified stiffness ̄(t) = (t) � ~2
arb

/4mS
2
(t) is

injected as a laser intensity protocol. The different steps of the procedure, including
the calibration, are summarized Fig. 5.11.

This procedure relies on a precise calibration of the system: in order to use the
variance differential equation Eq. (5.47), we need to know with the best possible pre-
cision the stiffness (t) at play in the trap. In this section, we detail our method.

In order to predict the stiffness of the trap, we first calibrate the linear relation
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5.4. EXPERIMENTAL REALISATION IN A HARMONIC POTENTIAL

Figure 5.11: Schematic sequence of the different steps of our exper-
imental calibration procedure. P is the trapping laser power,  the
stiffness of the harmonic potential, ̄ is the modified stiffness that
includes quantum effects through ̄(t) = (t) � ~2

arb
/4mS(t)

2. ̄cl is
the step-like protocol connecting the same initial and final stiffnesses,
V (t) is the voltage signal of the photodiode recording the beads po-
sition along the optical axis x(t), meas is the stiffness obtained by
the relaxation calibration and S[meas] is the solution of the variance
ODE for (t) = meas(t).

between the trapping laser power P (t) and (t). We use the power spectral density
(PSD) method [95]. As detailed Chap. 2, the Ornstein-Uhlenbeck process describing
the Brownian motion in the trap

dxt = �(/�)xtdt+

p
2kBT/�dWt,

can be spectrally analysed with the position PSD:

Sx(f) =
D

⇡2(f 2
c
+ f 2)

. (5.51)

where the roll-off frequency fc = /2⇡� separates the high frequency regime Sx(f) ⇠
D/⇡

2
f
2 of free Brownian motion from the low frequency trapping regime Sx(f) ⇠

D/⇡
2
f
2
c
= 4kBT�/. By recording a trajectory with a certain laser power, one can

obtain the stiffness  from the roll-off fc, by a Lorentzian fit of the spectrum. On
Fig. 5.12 (left) we represent the PSD and fit for different trapping strengths, which
yields the linear relation between  and the laser power. It is then possible to send a
designed protocol of stiffness (t) by inverting the relation.
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5.4. EXPERIMENTAL REALISATION IN A HARMONIC POTENTIAL

Figure 5.12: (top left) power spectral densities of the measured pho-
todiode voltages for different trapping stiffnesses with Lorentzian fit,
(top right) exponential decay fit of the "up" step from i to f

(f > i), allowing us to obtain a measure of f , (bottom) expo-
nential decay fit of the "down" step from f to i, allowing us to
obtain a measure of i.

In order to build an ensemble of synchronised trajectories experiencing a defined
protocol, we rely on the ergodic hypothesis. From one long trajectory experiencing a
series of protocols, we build an ensemble of Nexp ⇡ 2 · 104 trajectories. We start by
defining a step-like protocol where (t) goes abruptly from i to f and send it as
P (t) to the trapping laser. From the obtained ensemble of trajectories experiencing
a transient relaxation, we extract the photodiode signal variance hV 2

(t)i that follows
an exponential decay (solution of the classical Fokker-Planck equation). This decay
⇠ e

�f t/� is fully characterising the final stiffness. With an exponential fit of both the
"up" and "down" stiffness steps, we recover a measurement of the stiffness performed
in the time-domain. This allows us to measure, during the experiments the actual
stiffness that can depart slightly from the expected value, due to small drifts or fitting
errors of the Lorentzian [95]. Since we pair each McKean-Vlasov process experiment
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5.4. EXPERIMENTAL REALISATION IN A HARMONIC POTENTIAL

with an equivalent classical step, we can perform this dynamical calibration for each
experiment.

After the first step-like protocol experiment, we define a value of ✏ and perform
both the quantum and the classical analog experiments. The dynamical calibration
gives the values of i and f , that yield an ✏ that can slightly differ from the predicted
value. These values correspond to the parameters needed to compute the analytical
results.

Furthermore, the variance S(t) and the stiffness (t) are unambiguously connected
by the variance differential equation dS(t)

dt
= �2 ¯(t)

�
S(t)+

2kBT

�
. Hence, once we know the

stiffness, we can compute S(t) and can then calibrate our measured voltage variance
hV 2

(t)i to S(t). We fit the transformation by a linear relationship S(t) = ↵hV 2
(t)i+�

which implies that the position transforms according to xt =
p
↵V (t) +

p
�N (0, 1)

where the first term represents the linear response of the photodiode and the second
the sum of all experimental noises (which we approximate as a resulting white noise).
This method allows a precise calibration of the variance, as seen in Fig. 5.13, which
is our only observable here. This method however gives the position itself only up to
the noise therm, which is still several order of magnitudes smaller than the ↵ term.

5.4.3 Experimental results

Here, we use the above approach to study out-of-equilibrium evolutions with a time-
dependent stiffness (t). The simplest possible out-of-equilibrium process is the tran-
sient occurring when the stiffness (t) is suddenly changed from an initial value i to a
final value f (step-like protocol). The system is at thermal equilibrium at the initial
and final times. The transient evolution of the variance can be computed using Eq.
(5.47), allowing us to construct the modified stiffness ̄(t), which evolves from ̄i to ̄f

in a non-trivial way due to the influence of S(t). One can argue that, since different
values of ✏ lead to different values of ̄ for the initial and final equilibria, the classical
(✏ = 0) and quantum (here, ✏ = 1, 1.4 and 1.8) transients are difficult to compare, as
they do not begin and end with the same values of the stiffness. With this in mind,
we also implemented an equivalent classical protocol ̄cl(t) that goes from ̄i to ̄f

in a step-like way, i.e. without the dynamical influence of the Bohm force. These
two protocols, represented in the inset of Fig. 5.13, connect the same initial and final
equilibria, and are thus well-suited to compare the classical and quantum dynamics
out-of-equilibrium.
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5.4. EXPERIMENTAL REALISATION IN A HARMONIC POTENTIAL

Finally, in order to obtain ensemble averages out of our single trajectory, we rely
on the ergodic hypothesis and use a time-series of trajectories instead of a statistical
ensemble. We send the same (t) protocol at a low enough repetition rate so that
equilibrium is reached between two consecutive events, and then reconstruct a syn-
chronized ensemble from this time series. The result is an ensemble of over N = 2⇥10

4

trajectories experiencing a given protocol, either ̄(t) in the quantum case or ̄cl(t) in
the classical case.

The main observable of interest here is the time evolution of the ensemble variance,
represented in Fig. 5.13 for both the quantum and classical cases. Our measurements
clearly reveal the influence of the Bohm force on S(t). Strikingly, the addition of an
effective quantum force accelerates its relaxation, and this for all selected values of ✏.
Looking at ̄(t) in the McKean-Vlasov process (Fig. 5.13, (d) inset), the acceleration
appears as the result of a strong and sudden reduction of the optical trapping volume
under the influence of the quantum Bohm force field. On each curve, we also represent
the result of numerical simulations, where the evaluation of the Bohm term is not
performed through the solution of Eq. (5.47), but by actually computing the ensemble
variance of N = 2⇥10

4 distinct trajectories at each time-step. The agreement of both
the experimental and numerical results with the analytical solution of Eq. (5.47) is
quite remarkable.

The error on the experimental variance essentially comes from three main sources.
One is the error on the experimental parameters such as the temperature or the radius
of the trapped bead, through the viscous drag coefficient �. It is dominated by the
2.8% uncertainties on the beads radius R that result in a similar error on � = 6⇡⌘R

where ⌘ is the water viscosity. Other sources of errors (temperature) are also taken
into account but their final influence is not significant. The temperature, in particular,
is controlled with a precision better than 1 K. The error on the radius is simply taken
into account by carrying the whole analysis with the two "worst-case" values of radius,
yielding an error �param ⇡ 3% between the two extreme results. The second source
of errors is the statistical reliability of an estimator of the variance on an ensemble of
finite size. It is obtained following the �

2 test on N�1 degrees of freedom, where N is
the size of the ensemble. We carry the test with 3� = 99.7% confidence interval giving
��2 . The third source is the error arising from the fitting procedure in the calibration
of the decay to obtain the stiffness and to calibrate the variance from V to m

2 giving
�fit. The obtained variance is then defined up to:

Sexp = hx2
(t)i± (��2(t) + �param(t) + �fit(t)) . (5.52)
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Figure 5.13: Experimental results: we show the evolution of the vari-
ance of the ensemble of over 2 ⇥ 10

4 trajectories during an out-of-
equilibrium process, between two harmonic confinements of different
stiffnesses. The corresponding values of the ✏ parameter governing the
strength of the Bohm force are ✏ = 0 (a); ✏ = 1.0558 (b); ✏ = 1.4089

(c); and ✏ = 1.801 (d). For all cases, we show the result of McKean-
Vlasov dynamics (orange triangles) as well as a classical equivalent
Ornstein-Uhlenbeck dynamic (blue circles) experiencing a transition
between the same initial and final distributions. The colored patches
corresponds to a 99.7% confidence interval, taking into account both
experimental and statistical errors. On each curve, we superimpose
the result of a numerical simulation performed by measuring at each
time-step the ensemble variance of N = 2⇥10

4 simultaneous trajecto-
ries and reinjecting it in the next time-step (respectively red and blue
thin solid lines). We also show the result of the variance differential
equation (respectively red and blue thick dashed lines). The inset in
figure (d) shows the evolution of the stiffness ̄(t) (orange line) as well
as the equivalent classical step ̄cl(t) (blue dashed line).
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These different sources of error give the colored patch shown on each experimental
plot.

5.5 Conclusion

In this chapter, we highlighted an analogy between an open quantum system immersed
in a thermal bath and a classical nonlinear stochastic process (McKean-Vlasov pro-
cess). This correspondence opened up the possibility to build a classical analog of the
quantum model, by evolving many stochastic trajectories in parallel and using their
distribution to reconstruct the quantum Bohm potential. With a numerical study, we
explored this analogy for an anharmonic potential, unveiling effects like longer-lasting
correlations and the tunnelling through a potential barrier. We explored the special
case of harmonic external potential and Gaussian process, which corresponds to our
experimental optical trap. In this case, Bohm’s potential takes a simple form that can
be integrated in our optical potential. Our ability to control the stiffness through time
allowed to probe out-of-equilibrium dynamic.

The present work is a first step in the experimental implementation of classical
analogs of quantum systems using optically trapped Brownian particles. Of course,
the QDD equation used here is a highly specific model, whose validity is constrained
by several conditions. But the approach outlined in this work should pave the way to
the classical realization of fully quantum evolutions, described in their most general
case by the time-dependent Schrödinger equation.
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Chapter 6

Conclusion

Brownian motion in an optical trap is a paradigmatic implementation of a well con-
trolled stochastic process. The capacity to tune the potential energy and additional
external forces that act on the trapped object makes it a versatile platform to explore
the properties of microscopic systems subjected to fluctuations, ranging from micro-
electronics [117, 198] to biological process at small scales [54]. In this thesis we studied
the Brownian motion of a polystyrene micrometric sphere diffusing in water at ambiant
temperature and confined in an optical trap. We explored fundamental properties of
the trajectory of the microsphere, such as the nature of the diffusion, or the ergodic
character of the stochastic process. Taking advantage of the flexibility of our optical
trapping experiment and the universality of fluctuations at small scales, we designed
and implemented two analogues, that extended the range of applicability of optically
trapped Brownian motion. In a first analogue work, with a flexible external radiation
pressure force, we built a secondary artificial bath, mimicking the behaviour of a large
class of biological processes at the microscopic scale. The second analogue is based
on the formal similarity between the dynamical evolution of the position probability
density of a Brownian object and fluid models of quantum mechanics. By controlling
the potential energy in which the microsphere diffuses, we built a classical stochastic
analogue of a quantum process.

Those two developments extend the range of application of optical traps, taking
advantage both of the simplicity and generality of the process at play, as well as the
experimental control on the parameters. It also allows to draw conclusions in domains
a priori disconnected from optical trapping, as when we unveiled a connection between
the informative content of an environment and the thermodynamics of an objet im-
mersed in it. Such a result can have implications in the understanding of biological
intracellular processes, such as the action of micro-motors. In the following, we review
the main results discussed in this thesis.
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Brownian motion in an optical trap
The scope of the first chapter was to introduce the experimental methods used to
optically trap a microparticle and record its time-dependent position. The electronic
signal processing and associated data analysis where also detailed. We introduced the
numerical method used to run simulations of Brownian trajectories, similar to the one
observed experimentally and care was taken on convergence tests of such stochastic
simulations. The connection between the stochastic Langevin process and the associ-
ated deterministic Fokker-Planck equation was made explicit. In our case of harmonic
confinement, a Gaussian distribution is an exact solution and Fokker-Planck equation
simplifies to an ordinary differential equation for the motional variance. The time-
dependent variance analysis of the process goes with the notion of statistical ensemble,
built by cutting and reassembling a long time-series of positions. It was illustrated
with the response of the trapped microsphere to a quench in optical potential: by ap-
plying the same quench sequentially we built an ensemble of sub-trajectories on which
deterministic quantities, such as the position probability distribution and its moments
where derived. The main observables of Brownian motion: Power Spectral Density
(PSD) position autocorrelation function and Mean-Square-Displacement (MSD) where
derived analytically in our case of Ornstein-Uhlenbeck process and probed on exper-
imental trajectories. The PSD is used to calibrate our optical setup and recover the
trajectory of the microsphere from the recorded signal. The MSD was also exploited
to assess the normality of the diffusion, by probing the short-time linear increase of
squared displacements.

Noise properties of an optically trapped Brownian object, ergodicity, sta-
bility
Ergodic and stationary processes are an important sub-class among stochastic pro-
cesses. Their nature allows easy manipulation that makes them central in many ex-
perimental applications. Ergodicity allows the construction of large ensembles of sub-
trajectories out of single long time-series of positions, as it is routinely done to study
statistical observables such as motional variance. The ergodic or non-ergodic nature
of a trajectory is also deeply connected to other fundamental properties, such as the
possibility to process memory effects, paving the way to information thermodynam-
ics. The long-time stability of a stochastic process is again an important experimental
parameter to allow high-resolution measurement, needed in particular in the context
of weak force sensing.

In this chapter we experimentally demonstrated the ergodic nature of standard
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Brownian motion in our optical trap, detailing the application of an operative criteria
of ergodicity. By applying the same criteria on a more complex process, known as
stochastic resetting, we unveiled its non-ergodic nature, that was theoretically pre-
dicted. Since non-ergodicity is a necessary condition for memory processing [125],
experimentally probing the non-ergodic nature of a process is a key aspect in its po-
tential applications in information thermodynamics. With an Allan-variance based
test, we also carefully checked the long-time stability of the noise properties. Those
two tests of course justificatify the methodology used throughout the thesis, using
long time-series of positions to build ensembles and study averaged quantities. But
they also reveal fundamental properties of the trajectories, as the difference, visible
on all observables, between short-time free-like diffusion regime and long-time trapped
regime. These regimes induce different characteristic trends for the ergodic criteria
and the Allan variance.

Theoretical and numerical work on stochastic resetting are numerous [134], but
most of them rely on an idealized resetting: the diffusing particle is instantaneously
sent to a reference position x0, with no energetic cost. Yet an experimental realization
of stochastic resetting is very different: each resetting event is a physical process that
moves the particle to x0. They are only two experimental platform exploring such
issues [199, 200] and they rely on two different experimental methods to implement
resetting. Understanding the connection between the specific physical process through
which resetting is implemented and associated ergodic, informational or energetic fea-
tures is an open challenge.

Bath engineering, active matter and information harnessing
By using a secondary laser beam, passing through an acousto-optic modulator piloted
numerically, we were able to send a time dependent external radiation pressure force
on the trapped microsphere. This non-conservative external driving is an additional
contribution in the Langevin equation governing the motion of the Brownian object.
If the force is chosen to be a stochastic process, then its effect on the microsphere
will look alike an additional bath. Since the properties of the external stochastic drive
are chosen with a large flexibility, various baths can be engineered. In this work, we
focused on the case of exponentially correlated noise, as it is theoretically and numer-
ically used as a minimal model for active matter. A system is said to be active if it is
able to convert an energy from its environment -a fuel- into a thermodynamic energy,
as work, through directed motion, or heat, dissipated in the surrounding. Many differ-
ent examples of active matter have been studied, some of them being reviewed in the
introduction of the chapter. These systems span from microscopic biological processes
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[52] to large ensemble of living systems, as flocks of birds [166]. Despite this diversity,
the key aspects of active matter can be studied with minimal models as self-propelled
micro-swimmers (e.g. bacteria), displaying paradigmatic effects, mostly due to their
intrinsically out-of-equilibrium thermodynamics [49, 63, 58, 56]. In this chapter, we
explored how adding an exponentially correlated stochastic force in the dynamics of
the trapped microsphere makes it an operative analogue of a self-propelled object, or
equivalently, of a passive object immersed in an active bath, such as water crowded
with self-propelled bacteria.

Our experimental implementation of the active matter analogue allowed us to show
superdiffusion in the mean-square-displacement of the microsphere, typical of a self-
propelled system and in sharp contrast with the diffusive nature of Brownian motion
in a standard fluid bath. The out-of-equilibrium nature of the trajectories, even in
stationary states (genuine non-equilibrium steady-states -NESS) was probed using
different observables, and the breaking of some central laws of equilibrium statistical
mechanics. We demonstrated the violation of the law of equipartition of energy, with
a stationary motional variance that depends explicitly on the correlation time of the
bath, indicating the impossibility to describe the system with a simple constant tem-
perature, as in equilibrium thermodynamics. We further explored the non-equilibrium
state via the breaking of the fluctuation-dissipation theorem, with rheological mea-
surements of the response of the microsphere in the trap.

By noting that the amplitude of the motional variance of the microsphere depends
on the correlation time (i.e. the color) of the noise, we used it as a time-dependent
parameter to perform protocols connecting one NESS to another. Such color-driven
NESS-to-NESS transitions appears as a novel way to interact with the Brownian ob-
ject, changing the correlation time of the bath allows to change the steady-state of the
process. An important difference with other methods (such as potential engineering as
in the last chapter of the thesis) is the absence of experimental cost (as laser power):
the energy input needed is constant when only the color of the noise is modified. This
apparent paradox was studied within the framework of stochastic thermodynamics,
where we derived the first law of our process and unveiled non-trivial behaviour for
the heat production rate as a function of the bath correlations. The paradox is re-
solved with an information thermodynamics perspective, where the heat produced by
the sphere during the transient with no energy input was shown to be coinciding with
the input of spectral information in the bath. This intriguing connection was explored
at the end of the chapter.
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The analogue of active matter proposed in this chapter had a very general char-
acter. The bath properties can be tuned by the experimentalist with a remarkable
flexibility, and eventually combined with potential engineering, paving the way to full
thermodynamics engine in non-trivial environments. The intrinsic difficulty to work
with genuine biological matter makes these kinds of analogue systems very appealing
to answer understand active systems.

Combining our ability to engineer non-trivial baths as done in Chap. 4 and po-
tential control as done in Chap. 5 opens many perspectives. Indeed, as explained in
Sec. 4.2.3, by changing the amplitude of the noise, we effectively change the kinetic
temperature. In addition, a change of potential stiffness is effectively changing the
volume available to the diffusing microsphere. Combining temperature and volume
control gives ways to set up Brownian thermodynamics engines [100, ?, 101]. The in-
clusion of non-trivial baths in Brownian engines [201] is raising many questions, such
as the relation between the efficiency of an engine and the properties of the surround-
ing non-thermal bath. These issues are highly relevant in the context of biological
micro-motors. The analogue proposed in this thesis could allow to explore this field
of active engines with a good level of control on all dynamic and thermal parameters.

Classical stochastic analogues of a quantum process
The hydrodynamical formulation of quantum dynamics has been a rich source of origi-
nal ideas to build classical analogues, such as in Yves Couder’s famous walking-droplets
experiments [174, 175]. Within this context, we proposed an analogue of another kind,
where the probabilistic nature of the Brownian trajectories is used to build statisti-
cally a quantum densities in a specific limit of the quantum fluid model. This quantum
fluid equation, known as quantum drift diffusion model has the same form as a Fokker-
Planck equation where the quantum nature of the object is contained in an additional
potential, the Bohm potential. We derived the associated stochastic process which
is a Langevin equation with two conservative forces: one deriving from the external
potential as in the classical case, and one deriving from the quantum Bohm potential.
The specificity of this stochastic process stems from the fact that Bohm’s potential
depends on the position probability distribution. Such stochastic differential equation
where the random variable’s dynamics depends on its own probability distribution is
known as McKean-Vlasov processes.

In this last chapter, we implemented both numerically and experimentally a McKean-
Vlasov process with Bohm’s quantum potential and studied its properties on three
illustrative cases.
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We first studied numerically the behaviour of such trajectories in an anharmonic
single-well quartic potential. An ensemble of trajectories obeying to the quantum pro-
cess was launched in this potential, with a classical probability distribution as initial
condition. At each time-step, the dependency of Bohm’s potential on the probability
density was computed with an ensemble-estimation of the position distribution. After
some relaxation time, the probability density of position is converging to the solution
of the quantum drift diffusion model. The autocorrelation function of the trajectories
is showing a longer correlation time with the quantum potential than in the classi-
cal case and these longer-lasting correlations were interpreted as stemming from the
non-local interaction encapsulated in Bohm’s potential. In a second study, we focused
on trajectories evolving in a bistable Duffing potential. In this energy landscape, the
particles were diffusing in one of both wells for some time, before crossing the po-
tential barrier under thermal activation and fall in the second well. The statistics of
residency times are following an exponential distribution both for classical Langevin
trajectories and quantum McKean-Vlasov trajectories. The average residency time is
however significantly smaller in the case of quantum trajectories. Such improvement
of the ability of barrier-crossing was interpreted as a first approximation of tunnelling
and was described by an effective lowering of the potential barrier.

Finally, we focused on the special case of harmonic potential, where a Gaussian
Ansatz was shown to be an exact solution of the McKean-Vlasov process and where
Bohm’s potential can be explicitly computed. The analytical simplicity of this case
allowed us to derive a unique modified potential that took into account the quantum
effects without relying on an explicit evaluation of the density at each time-step. This
allowed an experimental implementation in which we realized potential protocols, to
study the out-of-equilibrium relaxation of the quantum process from one equilibrium
state to another. We observed that Bohm potential induces a sharp and short quench
of the potential, inducing a faster thermalization for a quantum object than for an
equivalent classical Langevin trajectory.

The analogue proposed here is emulating a specific limit of a quantum process but
we are currently exploring how one could set up a more general Schrödinger’s equation
analogue. This generalization is based on Nelson’s formalism of quantum mechanics as
a stochastic process [202] which draws an analytical connection between Schrödinger
equation and standard Brownian motion. In this framework, the temperature-driven
fluctuations are playing the role of quantum uncertainties. Experimental implementa-
tion of Nelson’s mechanics is a natural extension of the analogue studied in this thesis.
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From there, one could test how relaxation engineering techniques, well controlled in
Brownian dynamics, could be applied to quantum state-to-state transitions, offering a
new handle in the context of shortcut to adiabaticity [203].
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Chapter 7

Résumé de la thèse

7.1 Introduction

Les fluctuations jouent un rôle important dans de nombreux processus naturels, à dif-
férentes échelles, qui peuvent être illustrés par de nombreux exemples. À l’intérieur des
cellules de notre corps, un ensemble de filaments constitue un réseau qui en soutient la
structure. Sur certains d’entre eux -les microtubules- se déplacent de microscopiques
bipèdes : les kinésines. Ces moteurs moléculaires qui transportent du materiel bi-
ologique à travers la cellule. Si la kinésine ressemble à une funambule marchant sur
un fil, il existe une différence fondamentale. Un.e funambule n’est pas déstabilisé
par les chocs avec les molécules qui constituent l’air environnant alors que le monde à
l’échelle d’une kinésine est agité, par ces collisions moléculaires, de forces aussi grandes
que celles qui lui servent à se déplacer. À cette échelle, un fluide n’est pas lisse comme
l’air que l’on sent autour de nous, mais agité de larges fluctuations et les mouvements
de la kinésine sont déterminées par ces fluctuations [50, 27]. Il ne s’agit pas une petite
perturbation sur le chemin rectiligne de la protéine, mais d’un environnement détermi-
nant sa structure et sa stratégie de déplacement. La compréhension de la nature de ces
fluctuation et de leur effet sur un moteur moléculaire est nécessaire pour appréhender
la nature des processus biophysique ayant lieu dans les cellules.

L’importance des fluctuations dans la dynamique de la kinésine vient de la prox-
imité d’échelle entre la protéine et les molécules qui l’entourent. Plus précisément, de
la proximité entre l’énergie que la kinésine peut mettre en jeu dans son mouvement
et l’énergie de l’agitation du fluide environnant à une température donnée. Si nous y
sommes insensibles, c’est parce que nous sommes trop grands et lourds.

Néanmoins, il existe de nombreux autres exemples de fluctuations et de leur effet,
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à de plus grandes échelles. On peut penser aux turbulences d’un fluide déplacé, que
l’on sent lorsqu’on tend la main par la fenêtre d’une voiture à grande vitesse [204], ou
encore au caractère aléatoire de la météo [205]. Ces phénomènes sont de nature très
variées, et résultent de cause diverse -turbulences, chaos du climat- très différentes de
l’agitation moléculaire à l’origine des fluctuations de la kinésine. Leur point commun
est leur caractère stochastique : la position de la kinésine à un instant donné, tout
comme la position de la main tendue par la fenêtre ou la température dans un lieu
donné, gardent une part aléatoire.

Dans l’étude des processus stochastiques en physique un exemple historique con-
tient, malgré sa simplicité, toute la richesse phénoménologique des processus aléatoires.
Il s’agit du mouvement erratique d’un objet micrométrique inerte, suspendu dans un
fluide à température ambiante. Un tel objet, grand d’un millième de millimètre est pe-
tit par rapport aux échelles de la vie quotidienne, mais reste dix milles fois plus grand
qu’un atome. Comme la kinésine, il est assez léger pour être sensible à l’agitation
moléculaire du fluide, mais assez grand pour être observé avec un simple microscope.
La trajectoire suivie par cet objet est appelé mouvement Brownian, en référence au bi-
ologiste Robert Brown, qui en a fait une étude systématique au début du dix-neuvième
siècle. Le lien entre son mouvement et la nature moléculaire du liquide environnant à
été rendue quantitative par Albert Einstein en 1905 [1] et a permis la première mesure
du nombre d’Avogadro, par Jean Perrin en 1909 [6], donnant un argument décisif pour
l’acceptation de la nature atomique du monde.

Le mouvement brownien est un modèle minimal pour comprendre les effets de
l’agitation thermique. En ce sens, il a servi de base mécanique pour comprendre de
nombreux phénomènes de physique statistique ou de thermodynamique jusqu’alors
connus empiriquement. Un premier exemple est la démonstration du principe de ré-
ciprocité par Lars Onsager en 1931 [206, 207], qui relie la réponse d’un objet brownien
à une petite perturbation extérieur à ses fluctuations dues à l’agitation thermique.
Formulé en ses termes historiques de thermodynamique hors-d’équilibre, ce principe
relie le flux des variables extensives (par exemple un flux de chaleur) qui caractérisent
un système, aux affinités thermodynamiques correspondantes (un gradient de tem-
pérature). Ce principe à permis de comprendre que deux effets thermoélectriques bien
connus, d’un côté l’effet Peltier (un flux de chaleur dû à une différence de potential
électrique) et de l’autre l’effet Seebeck (un courant électrique dû à une différence de
température) étaient deux manifestations réciproques du même lien flux-affinité. Ici les
équations mécaniques simples de la diffusion à l’échelle microscopique (le mouvement
brownien) ont donné une explication précise à ces effets macroscopiques empiriques.
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La formulation du principe de réciprocité en terme de réponse à une perturbation
et de fluctuations spontanées est une forme théorème de fluctuation-dissipation qui à
ensuite été développé par Callen et Welton en 1951 [162] puis Kubo dans les années
soixante [169].

Un autre effet thermodynamique connu empiriquement depuis la fin du dix-neuvième
siècle est la loi d’Arrhenius, qui relie la vitesse d’une réaction chimique la température
ambiante par une loi exponentielle. La description par Henrik A. Kramers de la diffu-
sion d’un objet Brownien dans un état métastable [38], minimum local d’un potentiel
à donné une description mécanique plus fine du phénomène. Dans ces deux exemples,
le mouvement brownien permet de donner une description plus satisfaisante mais aussi
plus unificatrice de divers phénomènes de près ou de loin liés à la température. Le
mouvement brownien étant le rôle de la physique statistique qui explique les lois em-
piriques de la thermodynamique aux cas hors-d’équilibre.

Les développements expérimentaux du vingtième siècle ont amené un regain d’intérêt
pour le mouvement Brownien. Avec les lasers apparaît la capacité de manipuler des
objects microscopiques avec des forces du même ordre de grandeurs que celles en jeu
dans leur mouvement naturel et ainsi, d’interagir avec ces objets. Les pièges -ou pinces-
optiques qui permettent ces manipulations ont été développés dans les années quatre-
vingt par Arthur Ashkin [2] et leur application au mouvement brownien a été décisive.
Les études historiques du mouvement Brownien étaient uniquement de observations, il
est désormais possible de sonder la réponse d’une trajectoire brownienne à des forces
choisies de façon précise et contrôlable.

Parmi les test expérimentaux majeurs permis par le mouvement brownien en piège
optique, on peut citer deux exemples. Le premier est la mesure expérimentale de de
la théorie de Kramers, mentionnée plus haut. En 1999, en combinant deux faisceaux
lasers, l’équipe de Brage Golding [43] a réalisé un piège optique bistable où deux min-
ima sont séparés par une barrière de potentiel. Une bille microscopique placée dans
ce champ optique est piégée dans l’un des minima. L’agitation du fluide environnant
lui fournit une énergie suffisante pour sauter d’un minimum à l’autre. En étudiant
la trajectoire d’une microparticule, ils mesurent la relation exponentielle entre le taux
d’activation (taux de saut d’un puit à l’autre) et la température du fluide environnant.
En 2017, l’équipe de Lukas Novotny [44] généralisent ce résultat en réalisant une ex-
périence similaire dans le vide au lieu d’un liquide comme dans le cas précédent. Ils
accèdent ainsi à un régime permettant de tester l’hypothèse de Kramers selon laquelle,
pour une certaine combinaision de hauteur de la barrière de potentiel et d’amplitude
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de la force thermique, un taux d’activation maximal peut être atteint. Cet exemple
montre comment, au cours des dernières dizaines d’années, le contrôle croissant sur
la dynamique brownienne dans un piège optique permet de tester expérimentalement
des théories majeures du vingtième siècle.

Un second exemple important obtenu dans le cadre du mouvement brownien en
piège optique est l’accélération de la relaxation d’un système vers son état d’équilibre,
par l’ingénierie du potentiel. Lorsqu’un paramètre définissant l’état d’équilibre d’un
système statistique ou thermodynamique (température, pression, volume etc.) est
modifié, le système évolue spontanément vers un nouvel état d’équilibre, défini par
la nouvelle valeur du paramètre. Cette évolution prend un temps qui est défini par
des caractéristiques intrinsèques au couple système-environnement (masse de l’objet,
viscosité de l’environnement etc.). Ce temps de relaxation d’un état d’équilibre à un
autre est a priori une limite fondamentale. En 2016, l’équipe de Sergio Ciliberto [33]
a proposé une méthode pour outrepasser cette limite. Ce travail se concentre sur
la relaxation d’un objet brownien dans un piège optique lorsque la raideur du piège
(analogue à l’inverse d’un volume) est modifiée. Plutôt que de modifier brutalement
la raideur d’une valeur initiale à une valeur finale et laisser le système hors-d’équilibre
relaxer spontanément, ils dérivent un protocol plus subtil qui accompagne la relaxation
de la distribution des positions de l’objet brownien. Ainsi, ils obtiennent des temps
de relaxation jusqu’à cent fois plus courts que le temps naturel. Un tel résultat peut
s’appliquer dans deux nombreux contextes et à différentes échelles, mais la simplicité
du formalisme du mouvement brownien a permis sa dérivation tandis que le contrôle
expérimental des pièges optique a permis sa réalisation.

Les deux exemples cités étudient la dynamique d’un objet brownien dans un bain
thermique à l’équilibre, à une température définie. Un tel bain, qui résulte des nom-
breuses collisions avec les molécules du liquide ou du gaz environnant n’a pas de cor-
rélation temporelle, il agit à toutes les fréquences et est appelé un bruit blanc (dans le
blanc, toutes les couleurs -fréquences- sont représentées également). Néanmoins, le cas
de la kinésine mentionnée plus haut souligne l’importance des fluctuations en biologie,
hors le bain qu’expérience un moteur moléculaire micrométrique n’est pas un simple
fluide. Le cytoplasme dans lequel évolue la kinésine est saturé de nombreux agents,
filaments, protéines, molécules de tailles diverses. Un tel bain n’est pas bien décrit par
un bruit blanc et la diffusion d’un objet dans ce milieu n’est pas brownienne au sens
d’Einstein. La compréhension de la dynamique d’objets biologiques ou immergé dans
un materiel biologique appartient au domaine de la matière active. Une première ap-
proche consiste en l’étude de la rhéologie et la diffusion de particules sondes, injectées
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par exemple dans le cytoplasme d’une cellule. Une autre approche est la réalisation
d’analogues, qui reproduisent, par des moyens électroniques ou optiques, certaines car-
actéristiques d’un environnement biologique. Ces deux approches reposent à nouveau
sur la capacité du mouvement brownien à capturer la physique de nombreux systèmes
où les fluctuations sont importantes.

Cette thèse s’inscrit dans ce contexte varié de l’étude de la dynamique brownienne
d’un objet micrométrique optiquement piégé, sous l’influence d’un bain thermique
ainsi que de forces bien contrôlées. Dans ce travail, débuté en octobre 2019 nous
étudions les propriété statistiques et thermodynamiques hors-d’équilibre d’un objet
unique. Plus généralement, ces recherches s’inscrivent dans une collaboration entre
une équipe théorique (QDyno, Institut de Physique et Chimie des Matériaux de Stras-
bourg), sous la direction de Giovanni Manfredi et Paul-Antoine Hervieux, et une équipe
expérimentale (LiMaCS, Centre Européen de Sciences Quantiques) sous la direction
de Cyriaque Genet. Le dialogue constant entre un aspect expérimental sur une plate-
forme de piégeage optique et un travail théorique (à la fois analytique et numérique)
nous a permis de développer plusieurs projets originaux qui permettent d’observer la
dynamique brownienne sous des aspects appartenants à des domaines variées, de la
matière active biologique aux objets quantiques. Cette thèse est constituée de trois
projet trans-disciplinaires, focalisés sur des thématiques différentes, mais liés par le
même cadre de physique statistique hors-d’équilibre mésoscopique.

7.2 Résultats et discussion

Le manuscrit débute par une introduction générale qui inscrit ce travail dans le con-
texte de la recherche contemporaine sur les sujets abordés, suivie de quatre chapitres
qui détaillent le travail réalisé.

7.2.1 Mouvement Brownien dans un piège optique

La dynamique stochastique d’une microparticule soumises aux forces thermiques est
décrite par l’équation de Langevin. Sa distribution de probabilité de position quant
à elle, obéit à l’équation déterministe de Fokker-Planck. Le premier chapitre de ce
manuscrit décrit les méthodes qui permettent l’étude exhaustive du mouvement brown-
ien d’une sphère de polystyrène micrométrique suspendue dans de l’eau à température
ambiante. Cette microsphère est suffisamment légère pour que les collisions avec les
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molécules d’eau qui l’entourent la mettent en mouvement et cette agitation aléatoire
(ce bruit) est un mouvement brownien. Lorsque de plus, on focalise une faisceau laser
à profile transverse gaussien sur la sphère, le fort gradient d’intensité lumineuse au-
tour du point focal permet de créer un potentiel localement harmonique qui piège
mécaniquement la sphère, limitant l’étendue de son mouvement brownien. La dy-
namique de la sphère sous l’effet combiné du bruit thermique et du piège optique est
correctement décrite par une équation de Langevin sur-amortie

ẋt = �!0xt +

p
2D⇠t (7.1)

où !0 est l’inverse du temps de relaxation de la bille dans le potentiel et D le coefficient
de diffusion, ratio entre l’énergie thermique kBT et le coefficient de friction � de la
bille dans le fluide. Le terme ⇠t est un bruit blanc qui émule l’action du fluide. C’est
une variable aléatoire sans corrélation temporelle : h⇠t⇠si = �(t � s) où h.i dénote la
moyenne sur de nombreuses réalisations du bruit.

Figure 7.1: (gauche) Trajectoire xt d’une microparticule dans le piège op-
tique expérimental. La trajectoire obéit à l’équation de Langevin suramor-
tie. (centre) distribution des position à l’équilibre dans un piège, en bleue
l’histogramme mesuré sur une trajectoire brownienne et en rouge la distri-
bution gaussienne théorique d’un état d’équilibre thermique dans ce poten-
tiel. (droite) densité de probabilité évoluant au cours du temps lorsque le
système subit une modification de la raideur du potentiel optique. La den-
sité, gaussienne en tout temps, obéit à l’équation déterministe de Fokker-
Planck.

L’objet du premier chapitre est d’introduire les outils nécessaires pour étudier les
propriétés des trajectoires xt de la microsphère dans le piège optique. Une trajectoire
unique mesurée dans notre piège, telle que montrée Fig. 7.1 (gauche) est une réali-
sation de l’équation de Langevin. La distribution de probabilité de position, montrée
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dans Fig. 7.1 (centre) est déterministe, c’est la solution stationnaire de l’équation
de Fokker-Planck. Il s’agit d’une gaussienne dont la variance est proportionnelle à la
température du fluide. Dans ce chapitre, nous expliquons la méthode de piégeage, de
mesure de la position de la sphère en temps réel, ainsi que la calibration de l’expérience
[95]. L’exemple d’une modification abrupte de la raideur du piège, implémentée expéri-
mentalement en modifiant l’intensité du faisceau laser permet d’étudier la dynamique
hors-d’équilibre du système. Dans ce contexte est introduite la notion d’ensemble
statistique qui permet d’étudier les propriétés statistiques du système au cours du
temps. Sur la figure 7.1 (droite) est représentée la distribution de probabilité de posi-
tion évoluant au cours du temps lorsque la raideur est modifiée. La distribution obéit
à l’équation de Fokker-Planck.

De plus ce premier chapitre introduit les observables stationnaires majeures du
mouvement brownien. Son étude spectrale, qui permet la calibration du dispositif ex-
périmental, est liée à la fonction de corrélation par le théorème de Wiener-Khinchine.
Le déplacement carré moyen de la microsphère dans le piège est utile pour carac-
tériser la nature de la diffusion, c’est une mesure locale dans le temps, de la manière
dont l’objet brownien explore l’espace disponible à son mouvement. Ces quantités
sont dérivées analytiquement et appliquées à des trajectoires mesurées expérimentale-
ment. Nous introduisons dans ce chapitre les méthodes numériques nécessaires pour
simuler des trajectoires dans des conditions similaires à une expérience physique, ces
simulations constituent un outil qui alimente et vérifie les résultats expérimentaux.
Pour finir, une section plus théorique introduit le formalisme de la thermodynamique
stochastique, tel qu’il à été proposé dans les années 1990 par Ken Sekimoto [46], ces no-
tions seront utilisées plus loin dans le manuscrit pour caracteriser la thermodynamique
d’un système actif.

Ce chapitre introduit des outils, mais permet également de placer nos méthodes et
notre expérience dans le paysage scientifique contemporain du mouvement brownien
en piège optique. Les chapitres suivants décrivent les développements plus originaux
que nous proposons.

7.2.2 Propriétés du bruit pour un objet Brownien en piège
optique, ergodicité, stabilité

L’utilisation des trajectoires browniennes pour l’étude de problèmes de physique statis-
tique, de thermodynamique ou pour construire des simulateurs analogiques comme
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nous le ferons dans les chapitres suivants repose sur plusieurs hypothèses. Il est
nécessaire de construire de grands ensembles statistiques pour étudier, par exemple
la réponse moyenne du système à une perturbation ou sa relaxation d’un état à un
autre. Dans notre cas, notre dispositif expérimental n’est constitué que d’un objet
brownien unique. Un ensemble statistique peut être obtenu en appliquant la même
perturbation de façon cyclique et en enregistrant la longue trajectoire répondant à
cette série de perturbation avant de la réarranger en un ensemble de sous-trajectoires
indépendantes.

Cette réorganisation de la trajectoire repose sur l’hypothèse que chacune des sous-
trajectoires est équivalente à toutes les autres, signifiant aussi que, dans le cas sta-
tionnaire, une observable calculée comme une moyenne temporelle sur cette sous-
trajectoire est égale à la même observable calculée comme une moyenne d’ensemble
sur toutes les trajectoires à un instant donné. Cette hypothèse est appelée ergodicité
de l’ensemble et doit être vérifiée avant d’utiliser les trajectoires expérimentales dans
ce contexte. De plus, que ce soit pour réaliser un grand ensemble statistique pour
étudier des états non-stationnaires ou simplement pour étudier un état stationnaire
avec une grande précision, de très longues trajectoires sont nécessaires, typiquement
plusieurs minutes. Cela repose à nouveau sur une hypothèse, qui est la stabilité de
l’ensemble du dispositif expérimental.

Le deuxième chapitre présente un ensemble cohérent d’observables qui permettent
de tester l’ergodicité et la stabilité dans le contexte des expériences de piège optique,
travail publié en 2021 [105]. La méthode utilisée pour construire un ensemble à par-
tir d’une trajectoires unique est présentée Fig. 7.2. Comme nous l’avons souligné,
l’ergodicité d’un ensemble de trajectoire signifie qu’une observable stationnaire calculée
sur cette trajectoire donnera le même résultat que si elle est calculée sur une autre
trajectoire, ou sur l’ensemble. Nous proposons l’implémentation d’un test d’ergodicité,
qui est dérivé de la définition formelle de l’ergodicité mais qui peut être appliqué ex-
périmentalement. Ce test [97] est basée sur l’étude précise de la dépendance temporelle
des moments du ratio de déplacements carrés moyens calculés sur l’ensemble et sur
le temps. Le paramètre ergodique obtenu est montré Fig. 7.2 et valide l’hypothèse
ergodique par l’accord entre son expression analytique et ses mesures expérimentale
et numérique.

De plus nous adaptons un test basé sur la variance d’Allan, initialement utilisé
pour vérifier la stabilité temporelle des horloges atomiques [140] pour s’assurer de la
stabilité de notre plateforme expérimentale. L’ensemble de ce travail constitue une
étude expérimentale, théorique et numérique de propriétés statistiques subtiles des
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Figure 7.2: (gauche) Explication schématisée de la méthode pour con-
struire un ensemble statistique à partir d’une longue trajectoire unique.
(droite) Paramètre ergodique. Construit à partir de déplacements carrés
moyens, ce paramètre est un moyen d’évaluer l’ergodicité d’un ensemble fini
sur des temps fini. Pour un ensemble de sous-trajectoires de durée T , la
décroissance du paramètre ✏(�) dans la limite T /� ! 1 valide l’hypothèse
ergodique de l’ensemble construit. Le résultat expérimental est représenté
en bleu, comparé à un résultat numérique en rouge et analytique en noir.

trajectoires browniennes mais sert également de justification méthodologique pour la
suite de notre travail.

7.2.3 Ingénierie de bain, matière active et information

Comme nous l’avons introduit au début de ce résumé, les fluctuations jouent un rôle im-
portant dans les systèmes biologiques à l’échelle micrométrique comme dans l’exemple
proposée de la kinésine. Le mouvement brownien en piège optique, par son caractère
flexible est bien contrôlé, est un candidat intéressant pour étudier ces systèmes. Néan-
moins, les trajectoires browniennes telles qu’elles sont présentées dans les chapitres
précédents différent des systèmes biologiques sur plusieurs points. La matière vivante
transforme constamment de l’énergie, d’uns source généralement chimique (glucides ou
ATP) en quantités thermodynamiques comme le travail et la chaleur. Cette consom-
mation contante d’énergie les maintient hors de l’équilibre thermodynamique avec le
bain thermique environnant [143, 58]. À l’échelle microscopique, les fluctuations sont
importante et les techniques de conversion d’énergie doivent prendre en compte un
environnement fortement stochastique. La combinaison du non-équilibre thermody-
namique et de la présence des fluctuations permet une grande richesse de phénomènes
physiques, comme par exemple la rectification des fluctuations lors du transport axonal
de la kinésine [27] ou la dynamique complexe d’une bactérie propulsée par ses flagelles
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dans l’agitation thermique d’un fluide [63]. De ce point de vue thermodynamique, les
systèmes vivants appartiennent à la classe plus large de la matière active, qui contient
également des systèmes non-biologiques, comme des assemblées d’objets mécaniques
autopropulsés. Le cas de l’autopropulsion, biologique ou mécanique, est un example
paradigmatique de la matière active, où une énergie disponible est utilisée pour mod-
ifier la dynamique d’un objet. L’utilisation du mouvement brownien en piège optique
pour implémenter un simulateur analogique d’un système autopropulsé permet alors
d’étudier les propriétés thermodynamique d’un modèle paradigmatique de la matière
active, sans pour autant manipuler de véritables systèmes biologiques.

Ainsi, le troisième chapitre décrit l’utilisation de notre système expérimental pour
sonder les lois régissant une grande classe de systèmes biologiques a l’échelle mi-
croscopique, travail soumis à la publication et disponible sur ArXiv [208]. Dans ce
chapitre nous proposons d’utiliser une force optique pour émuler l’effet d’un système
d’autopropulsion stochastique sur la microsphère optiquement piégée. Cette dernière
possède alors les même caractéristiques dynamique et thermodynamique d’une bac-
térie dans un fluide, ou de manière équivalente d’une colloïde inerte plongé dans un
bain saturé de bactéries [98].

Figure 7.3: Schéma de l’analogie optomécanique-matière active proposée
: la force optique est un bruit coloré (signal stochastique avec une fonc-
tion d’autocorrelation exponentielle) joue le même rôle sur la microsphère
qu’un bain actif hors-d’équilibre tel qu’un fluide saturé de bactéries. La
microsphère est alors connectée à deux bains : un bain thermique à tem-
pérature ambiante, par l’interaction avec le fluide environnant et un bain
non-thermique par la force externe. Elle n’est plus à l’équilibre thermody-
namique et sa trajectoires montre des effets typiques de l’autopropulsion,
comme la superdiffusion à temps courts.
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La force externe est appliquée à l’aide de la pression de radiation (voir schéma
Fig. 7.3) exercée par un laser additionnel piloté par un modulateur accousto-optique,
lui-même controlé par ordinateur. Cet important développement expérimental permet
d’appliquer une force mécanique sur la microsphère, avec une dépendance temporelle
arbitraire. Ici nous appliquons à la sphère une force stochastique, un bruit ⌘t qui,
contrairement au bruit thermique dû au fluide, n’est pas blanc mais coloré par une
mémoire exponentielle h⌘t⌘si = ↵e

�!c|t�s|, où !c est l’inverse du temps de corrélation
de ce bruit. En effet, il à été montré sur des systèmes biophysiques [98] qu’une telle
force décrit correctement la dynamique du modèle de bain actif utilisé ici, une mi-
crosphère dans un fluide saturé de bactéries.

Cette force appliquée à la sphère permet non-seulement de retrouver les résultats
connus pour la matière biologique mais aussi d’étendre significativement les régimes
sondés jusqu’ici par des expériences de biophysique. Le caractère hors-d’équilibre des
trajectoires se manifeste par la difficulté à définir une température dans le système,
ce qui a pour conséquence la brisure du théorème d’équipartition de l’énergie qui relie
simplement la variance de position de la particule brownienne à la température du
fluide. De façon plus subtile, la notion de température apparaît à nouveau lors d’un
test expérimental du théorème de fluctuation-dissipation, qui, dans sa forme simple
est également brisé par les trajectoires hors-d’équilibre observées. Ce théorème peut
être rétablit si l’on s’en sert pour définir une température effective. Celle-ci est alors
une fonction de la fréquence à laquelle le système est observé, ce qui complique son
sens physique. De façon intéressante, une température dépendant de la fréquence est
également une mesure la répartition spectrale de l’énergie injectée, sous la forme de
l’énergie thermique kBTeff [f ], qui donne une compréhension intuitive de la relation en-
tre la couleur du bruit et la réponse du système. Le fait de réaliser un analogue au lieu
de travailler avec du matériel biologique permet d’éviter de nombreuses contraintes et
de ce fait de simplifier l’étude de certains régimes loin de l’équilibre thermodynamique.

La thermodynamique des trajectoires est étudiées avec le formalisme introduit dans
le premier chapitre et met en valeur des quantités de chaleur dissipée dans le fluide
du même ordre que celles en jeux dans des système biologiques micrométriques. Un
résultat important de ce travail à été la découverte d’une relation expérimentale simple
et robuste entre une quantité thermodynamique -l’énergie rejetée par la microsphère
sous forme de chaleur dans le fluide- et une quantité informative -l’entropie spectrale
qui mesure la quantité d’information contenue dans le bain actif que constitue la pres-
sion de radiation. Cette relation est exposée Fig. 7.4 pour différentes intensités de
bruit coloré. Sa mise en perspective avec les phénomène informatif dans les systèmes
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Figure 7.4: Mesure de l’égalité expérimentale entre la chaleur rejetée dans
le bain normalisée par la température effective et l’information spectrale
contenue dans le bain actif, suggérant une conversion information-énergie
opérée par le système mécanique.

biologique est assurément une question fertile.

7.2.4 Analogue classique stochastique d’un processus quantique

La dynamique d’un objet quantique est connue pour être différente des objets clas-
siques qui constituent notre quotidien. De nombreux effets quantiques apparaissent à
l’échelle nanométrique -effet tunnel, superposition, diffraction d’un objet massif etc.-
et n’ont pas d’équivalent classiques, ce qui les rends souvent plus difficile à appréhen-
der. Ces effets fondamentaux de la matière sont, de plus, parfois difficiles à mettre
en oeuvre expérimentalement, car ils apparaissent à très petite échelle, à très basse
température, ou parce qu’ils sont facilement dominés par d’autre effets. Cette double
barrière : éloignement avec les objets classiques et difficulté à manipuler rend intéres-
sante la réalisation d’analogues. Si un objet classique bien contrôlé peut reproduire
certaines caractéristiques d’un système quantique, il peut être utiliser pour explorer
les caractéristiques de ce dernier tout en restant dans le monde classique, doublement
accessible.

Dans ce contexte, une expérience importante a été la réalisation en 2005 par Yves
Couder [174, 175] d’un analogue hydrodynamique d’une dynamique quantique, à l’aide
de gouttes d’huile millimétriques. Les gouttes sont maintenues en suspension au dessus
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d’une surface liquide par une oscillation rapide de cette dernière, empêchant la coales-
cence. L’interaction entre la goutte et le liquide oscillant crée une onde qui va entraîner
la goutte sur une trajectoire erratique sur la surface. Ce phénomène peut être décrit
avec d’autres mots : une particule, possédant une masse et une position bien définie,
crée une onde qui guide sa trajectoire. Cette formulation est en adéquation avec la
théorie de l’onde-pilote, formulée par Louis de Broglie au début du vingtième siècle
pour une particule quantique et reprise par David Bohm dans les années cinquante
[177]. À partir de cette analogie, l’équipe de Yves Couder à pu montrer plusieurs effets
typiquement quantiques avec ce dispositif expérimental simple, tel que la diffraction
par d’une goutte unique par une fente.

Dans ce contexte, le dernier chapitre de la thèse présente un travail publié en 2021
[?] et met en avant une seconde approche analogique pour appliquer notre dispositif
expérimental hors de son cadre actuel. Dans ce travail nous nous servons d’une famille
d’équation stochastiques appelés processus de McKean-Vlasov [181] pour émuler la
dynamique d’un objet quantique dans un bain thermique. Un processus de McKean-
Vlasov est une équation différentielle stochastique pour une variable aléatoire comme
la position xt où apparait explicitement la distribution de probabilité de cette variable.
Cette dépendance non-triviale permet de construire des forces non-locales où la po-
sition instantanée d’un objet brownien dépend de la position d’un ensemble d’autres
objets similaire, quelque soit leur distance. Un cas particulier de force non-locale est
celle qui dérive du potentiel quantique Q[n(x, t)] = � ~2

2m

�
p

n(x,t)p
n(x,t)

où ~ est la constante

de Planck, m la masse de la particule et n(x, t) la distribution de probabilité de la
position xt. Ce potentiel, bien connu en hydrodynamique quantique est, comme nous
le montrons dans ce chapitre, la première correction à ajouter à une équation classique
pour prendre en compte des effets quantiques dans la dynamique de la distribution
n(x, t) [180]. En ajoutant la force FQ = rQ à l’équation gouvernant le mouvement
de la microsphère dans le piège Eq. (7.1), nous obtenons un processus stochastique
dont la distribution de probabilité obéit à une dynamique quantique - mais où ~ est
arbitraire. Nous appliquons ce formalisme à différents potentiels, d’abord numérique-
ment, puis expérimentalement dans cas d’un potentiel parabolique.

La réalisation de notre analogue nécessite de mesurer en temps réel la distribution
n(x, t). Pour cela nous proposons dans un cas général d’utiliser un ensemble de N
pièges optiques -voir schéma Fig. 7.5- sur lesquels il est possible de mesurer instan-
tanément la distribution, calculer le potentiel quantique Q[n] et l’injecter au pas de
temps suivant.
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Figure 7.5: Représentation schématique de la réalisation expérimentale
possible dans le cas général : un ensemble de pièges optiques agissent en
parallèle. Dans chacun se trouve un objet brownien indépendant, à chaque
instant du temps, l’ensemble est utilisé pour mesurer la distribution de
probabilité instantanée. De cette dernière est calculé le potentiel de Bohm
et la force qui en dérive qui est appliquée à l’ensemble des puits pour
l’instant suivant. Chacune des trajectoires obéit alors à une dynamique
de McKean-Valsov et la densité de l’ensemble, au modèle de drift-diffusion
quantique.

Cette méthode est implémentée numériquement pour observer la dynamique d’un
objet quantique dans un double puit de potentiel (potentiel de Duffing) à deux paramètres
positifs a et b : V (x) = �ax

2
+ bx

4. Sur la Fig. 7.6 (gauche) nous représentons deux
trajectoires stochastiques dans le piège bistable. En bleu est représentée une trajec-
toire classique, qui réside dans un minimum pendant un temps aléatoire ⌧ avant de
sauter par activation thermique dans l’autre minimum. En rouge est représenté une
trajectoire obéissant au processus de McKean-Vlasov, qui prend en compte la cor-
rection quantique. On observe un plus grand nombre de passage de la barrière de
potential, ce qui amène à une distribution moins piquée sur les deux minima. Ce
changement est visible dans la modification de la statistique des temps de résidence
Fig. 7.6 (droite) où l’on observe la distribution exponentielle dans les deux cas, mais
avec un temps moyen h⌧i plus faible dans le cas du processus de McKean-Vlasov. Nous
interprétons cette modification comme la première approximation de l’effet tunnel :
un abaissement effectif de la barrière de potentiel dû à la nature quantique de l’objet.
Un deuxième exemple étudié numériquement est le cas d’un potentiel mono-stable,
avec une non-linéarité quartique V (x) = ax

2
+ bx

4. Dans ce cas, les propriétés station-
naires de la trajectoires sont étudiées : sa distribution de probabilité converge vers la
solution du modèle de drift-diffusion quantique et sa fonction d’autocorrelation décroit
plus lentement que l’équivalent classique.
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Figure 7.6: (gauche) Trajectoire brownienne classique (ligne bleu) et
McKean-Vlasov quantique (ligne rouge) dans un double-puit V . Le poten-
tiel quantique Q a pour effet d’abaisser la barrière de potentiel séparant les
deux minima, comme on peut le voir par les deux distribution de probabil-
ité. (droite) Mesure expérimentale de la distribution exponentiel des temps
de résidence de la particule dans un puit. Le temps moyen est plus court
pour la trajectoire quantique, signature au premier ordre de l’effet tunnel.

Ce processus a également pu être implémenté expérimentalement en se basant sur
la simplicité analytique du potentiel harmonique. Dans ce cas, le potentiel quantique
peut être explicitement dérivé et ses effets incorporés dans une variation temporelle de
la raideur du piège optique. Cette réalisation a permis d’étudier la dynamique hors-
d’équilibre d’un objet quantique en contact avec un bain thermique, dans système
expérimental purement classique.

Le travail présenté dans ce chapitre propose un analogue original d’un processus
quantique, il est dérivé à partir du formalisme hydrodynamique et implémenté dans
différents cas numériques et expérimentaux. La nature probabiliste à la fois de la mé-
canique quantique et de processus stochastique peut amener à des généralisations de
cette analogie, tel que le formalisme de Nelson [202] de la mécanique quantique.

7.3 Conclusion

Dans cette thèse nous avons utilisé une approche à la fois expérimentale et théorique
pour développer autour d’un même système physique un ensemble d’applications orig-
inales qui étendent le champ d’étude accessible au mouvement brownien en piège
optique. Un premier travail formel sur le propriétés statistiques des trajectoires nous
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a permis de développer et d’implémenter expérimentalement un ensemble de test val-
idant à la fois l’ergodicité et la stabilité des trajectoires. Si ces tests sont des vérifi-
cations nécessaires pour l’application de nos méthodes expérimentales par la suite, il
s’agit également d’un accès expérimental à des propriétés fondamentales des processus
stochastiques en jeux. La distinction des processus stochastiques ergodiques et non-
ergodiques implique de nombreuses conséquences, à titre d’exemple, la non-ergodicité
est le point de départ de la manipulation d’information. En effet, l’utilisation d’un
système stochastique comme une mémoire demande avant tout que différents sous-
ensembles de l’espace de configuration du système soient distinguables. Cela ne peut-
être le cas d’un processus ergodique, où chaque trajectoires explore la totalité de
l’espace accessible, sans pouvoir être discriminée. La non-ergodicité, au moins locale
dans le temps ou l’espace est donc une propriété importante, que nous explorons dans
ce chapitre avec un exemple expérimental.

Dans les deux chapitres suivants, nous proposons deux développement connectant
notre système optomécanique classique respectivement aux systèmes biologiques mi-
croscopique et aux objets quantiques. Ces deux applications proposent de nouveaux
chemins aux expériences optomécaniques mais apportent également des résultats in-
édits dans les deux domaines concernés. Ces travaux suggèrent de nombreuses per-
spectives. Tout d’abord, la réalisation d’un bain additionnel, aux propriétés contrôlées,
apporte de nombreuses possibilités. Dans ce travail, nous avons exploré en détail le
cas d’un bruit gaussien exponentiellement corrélé pour sa capacité à simuler l’effet
d’un bain actif constitué d’objet autopropulsés, mais la méthode développée est plus
générale : d’autres bruits peuvent êtres explorés, avec des distributions et des fonc-
tions de correlations différentes. Un autre exemple paradigmatique de matière ac-
tive vivante, les fluides dits encombrés, comme le cytoplasme, sont saturés non pas
d’objets autopropulsés mais de filaments de diverses natures, et représentent des bains
différents [94, 52]. Ils sont connus pour induire des trajectoires sous-diffusives qui
pourraient également être explorées avec les méthodes proposées ici. D’autres familles
de bruits naturels sont souvent étudiés numériquement, les bruits de Levy par exem-
ples et pourraient également être appliqués expérimentalement ici. On peut également
se demander, en lien avec le dernier chapitre et les analogues quantiques, quel serait
l’effet d’un bruit doté d’un spectre quantique (statistique des photons) tel qu’ils ap-
paraissent en optomécanique métrologique (détecteurs d’onde gravitationnelles).

D’un autre point de vue, l’ingénierie de bain par pression de radiation pourrait être
transposées également sur des expériences de biophysiques manipulant de la matière
biologique. Il a été montré récemment que le déplacement d’une kinsine sur un brin
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de microtubule in vitro est accélérée en présence de bruit artificiel [27] ; de plus cette
dernière possède une réponse mécanique non-triviale en fonction de la fréquence. Est-
ce que l’application sur une kinésine en mouvement, d’un bruit imitant les caractéris-
tiques du milieu intracellulaire maximise son efficacité ? Un tel résultat serait en
accord avec un point de vue évolutionniste : ce moteur moléculaire doit être optimisé
à son environnement naturel.

Pour finir, la manipulation du bain proposée ici peut être combinée avec le savoir-
faire mieux connu de manipulation du potentiel. D’un côté, cela permettrait d’explorer
l’effet d’un bain actif hors-d’équilibre sur les propriétés thermodynamiques de trans-
formations connues : la compression ou décompression du volume accessible à l’objet
brownien. La manipulation de la température effective (simple dans le cas d’un bruit
blanc, plus complexe sinon) adjointe à la modification du volume amène au concept
de moteur cyclique, pour lesquels la généralisation à des bains actifs est questionnées
de nos jours [201]. D’un autre côté, comme nous l’avons exploré dans ce chapitre, la
couleur du bruit appliqué est elle-même un paramètre qui permet des transformations
thermodynamiques. Ce paramètre peut servir pour construire des cycles, avec des
propriétés fondamentalement différentes d’un changement de température.

On voit ainsi les nombreuses perspectives suggérées par ce travail, tant en lien avec
les concepts hérités de la biophysique, qu’avec des questions plus fondamentalement
thermodynamiques.

Le dernier chapitre, qui présente un analogue classique stochastique d’un pro-
cessus quantique peut suggérer, lui aussi, plusieurs développements. Premièrement,
l’implémentation du processus de McKean-Vlasov dans un dispositif expérimental pos-
sédant un ensemble de pièges optiques simultanés permettrait de réaliser expérimen-
talement le processus de McKean-Vlasov dans des potentiels arbitraires. Comme le
montre l’exemple du potentiel de duffing, des profils plus complexes mettent en valeur
des effets non-triviaux, comme ici l’effet tunnel, la généralisation expérimental du po-
tentiel permettrait d’injecter ces nouveaux phénomènes dans le cadre de mouvement
brownien classique. Il faut souligner que, si la force de Bohm dans le cas du potentiel
harmonique induit uniquement une modification de la raideur, et donc ne modifie pas
fondamentalement la dynamique dans le cas stationnaire, ce n’est pas le cas en général,
ou le potentiel de Bohm prends une forme complexe, dépendant de la densité au cours
du temps.

Si le cas étudié ici correspond à un processus quantique particulier, le modèle de
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drift-diffusion quantique, qui n’est valide que dans une certaine limite visqueuse, il est
intéressant de chercher à généraliser l’analogie brownienne de la mécanique quantique
à des modèles plus généraux. La théorie de Nelson de la mécanique quantique est une
généralisation possible. Dans ce formalisme, Edward Nelson démontre en 1966 [202]
que l’équation de Schrödinger peut être exactement dérivée à partir d’un processus de
Ornstein-Uhlenbeck, c’est-à-dire une équation de Langevin dans la limite suramortie.
Pour cela, le coefficient de diffusion est fixé à ~/2m, le terme de drift est une fonction
de l’amplitude et de la phase de la fonction d’onde. Un tel formalisme est effective-
ment directement réalisable avec un système classique, au prix bien sûr d’un facteur
d’échelle sur les paramètres. L’application de ce formalisme dans un piège optique
permettrait de simuler des effets quantiques généraux à l’aide d’un dispositif expéri-
mental classique. Ainsi, l’analogie proposée dans ce chapitre et illustrée sur certains
exemples choisis peut être étendue à d’autres potentiels, ou à d’autres formalisme,
gardant comme pivot l’analogie entre l’aléatoire statistique et quantique.

174



Chapter 8

Appendix

8.1 Optical trapping force

Here we give a brief summary of optical forces in the Rayleigh (dipolar) regime. Strictly
speaking, the dipolar approximation is valid only for an object with a radius very small
with respect to the wavelength of the trapping beam. This is not our case, since our
micron-sized spheres have radius of the same order that the 0.785 micron wavelength of
the trapping laser beam. Yet, as shown in [102], the dipolar approximation still gives
satisfactory results with respect to gradient forces for objects with size of the same
order than the beam waist radius. With this in mind, the Rayleigh approximation can
be a suited model to describe physically the process at play in the optical trap, while
keeping in mind that it is not an exact quantitative description, in contrast with a Mie
calculation.

In the dipolar approximation [209], the fields can be considered as homogeneous on
the scale of the particle. The dipolar moment writes p = p0e

�i!t is related to the field
E0 by p0 = n

2
↵
2
E0 where n is the refractive index and ↵ the polarisability.

For monochromatic fields, with E = Re {E0e
�i!t}, H = Re {H0e

�i!t} and P =

Re {p}, we can write Lorentz force

F = (P ·r) E + µ0Ṗ ⇥H. (8.1)

If we furthermore introduce the quantity f0 = (E0 ·r)E0
⇤� iµ0!E0⇥H

⇤
0 = ⇢r⇢�

i⇢
2r� in the case of linear polarisation E0 = ⇢e

i�y, we can write the time-averaged
Lorentz force

hFitime =
n
2

2
Re {↵f0} . (8.2)
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This expression can be decomposed into

hFitime =
n
2

2
Re {↵}Re {f0}�

n
2

2
Im {↵} Im {f0} (8.3)

where the first term is reactive, and can be expressed with intensity gradient r⇢ while
the second is dissipative and can be expressed as phase gradient r�, leading to

hFitime =
n
2

2
Re {↵} ⇢r⇢+

n
2

2
Im {↵} ⇢2r�. (8.4)

The first term is the gradient conservative force, responsible for trapping. The
second term is the non-conservative radiation pressure force.

8.2 Stationary solution by Laplace transform

We recall some useful Laplace transformations

L[x(t)] = x[s]

L[ẋ(t)] = sx[s]� x̃0

L[a] = a/s

(8.5)

Eq. (4.5) can then be written in the s Laplace-domain

x[s] =
1

(s+ !0)

⇣
x0 +

p
2D⇠[s])

⌘
. (8.6)

We now recall useful inverse Laplace transformations

L�1
[
1

s
] = 1

L�1
[

1

s+ !0
] = e

�!0t

L�1
[

1

s(s+ !0)
] =

1

!0

�
1� e

�!0t
�

L�1
[

1

s+ !0
⇤ f [s]] =

Z
t

0

e
�!0(t�t

0)
f(t

0
)dt

0

(8.7)

the last transformation being a consequence of convolution theorem. We can now
transform back into the time-domain

x(t) = x0e
�!0t +

p
2D

Z
t

0

⇠t0e
�!0(t�t

0)
dt

0 (8.8)

Obtaining the solution of the Ornstein-Uhlenbeck process.
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8.3. CALCULATION OF THE COVARIANCE OF THE DISPLACEMENT
DXT

8.3 Calculation of the covariance of the displacement

dxt

We will compute the autocorrelation function (or covariance, since the process has
zero mean) of displacements dXt defined by the Ornstein-Uhlenbeck process dXt =

�aXtdt+ bdWt (adopting simple notations /� ⌘ a and
p
2kBT/� ⌘ b) as:

hdXtdXsi = h(�aXtdt+ bdWt) (�aXsds+ bdWs)i
= a

2hXtXsidt2| {z }
(1)

� abhXtdtdWsi| {z }
(2)

� abhXsdsdWti| {z }
(3)

+ b
2hdWtdWsi| {z }

(4)

.

(8.9)

Using the solution of the Ornstein-Uhlenbeck process

Xt = X0e
�at

+ be
�at

Z
t

0

e
at

0
dWt0 , (8.10)

and assuming that all time increments are equal (8t, s : dt = ds), we can compute the
different terms in (8.9) one by one:

(1) =
ab

2

2
e
�a|t�s|

dt
2 (8.11)

since at equilibrium hX2
0 i = kBT/ = b

2
/2a (see below Eq. (??)).

(2) = �abhXtdtdWsi

= �abhX0dWsie�at
dt� ab

2
dt

Z
t

0

e
a(t1�s)hdWt1dWsi

= �ab�(s� 0)dt
2
e
�at � ab

2
dt

Z
t

0

e
a(t1�s)

�(t1 � s)ds

If we consider non-zero times, we can ignore the first term. For the second, we have
two cases :

(2) =

8
<

:
�ab

2
dt

2
e
�a(t�s) if t � s

0 if t < s

(8.12)

Similarly:

(3) =

8
<

:
0 if t > s

�ab
2
dt

2
e
�a(s�t) if t  s

(8.13)

We can therefore combine them into (2) + (3) = �ab
2
dt

2
e
�a(max(t,s)�min(t,s)) giving:

(2) + (3) = �ab
2
e
�a|t�s|

dt
2 (8.14)

177



8.3. CALCULATION OF THE COVARIANCE OF THE DISPLACEMENT
DXT

For the forth term, we have simply:

(4) = b
2
�(t� s)dt (8.15)

that vanishes if t 6= s. These 4 terms added together lead to the simple expression of
the autocorrelation of displacements:

hdXtdXsi = �ab
2

2
e
�a|t�s|

dt
2
+ b

2
�(t� s)dt. (8.16)

Putting back physical dimensions with ab
2
dt

2
=

2kBT

�2 dt
2 and �

2
dt =

2kBT

�
dt (both in

[m
2
]), we get

hdXtdXsi = �2kBT

�2
e
�|t�s|/�

dt
2
+ 2D�(t� s)dt. (8.17)

Since hdWtdWsi = dWtdWs for a Wiener process [110], we can identify the ensemble
average hdXtdXsi with a time averaged covariance dXtdXs that is experimentally
measured -see Eq.(??) in the main text- and displayed in Fig. ?? in the main text and
in Fig. 8.1 here.

Figure 8.1: Covariance of displacements for the Ornstein-Uhlenbeck
process. We plot the experimental result (blue open circles), calcu-
lated with dt = 3.0518 · 10�5

s along with simulation result (orange
continuous line) and analytical solution (8.17) (black continuous line).
We plot (black dashed and continuous lines) the analytical result for
two different values of the time-step dt in order to highlight the fact
that the deviation from zero of the Ornstein-Uhlenbeck displacements
is strongly dependent on the value of dt, converging rapidly to zero
with increasing acquisition frequency.
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8.4. STOCHASTIC ALGORITHMS

Fig. 8.1 reveals a good agreement between the experimental results, the simula-
tions and the theoretical result (8.17). The covariance converges towards zero (which
is the covariance of the Wiener increment) for decreasing dt. However, the non-
differentiability of the stochastic process prevent us from taking the limit of vanishingly
small dt and from observing the convergence of the short-time Ornstein-Uhlenbeck
process towards a Wiener process.

8.4 Stochastic algorithms

This appendix complement Sec. 2.3. It gives details on the derivation of first and
second-order discretization scheme for an Ornstein-Uhlenbeck process as well as Python
code extract that implement these algorithms.

The generic method to build a stochastic truncation is based on the Itô’s lemma
that is simply an extension of the chain rule to take into account the second term
b(xt)dWt Then the Itô-Taylor expansion, generalises to stochastic differential equations
the standard Taylor expansion procedures [107]. We define two operators L0

= at
@

@x
+

1
2b

2
t

@
2

@x2 and L1
= bt

@

@x
and apply Itô lemma to a function f of the stochastic process

leading to

f(xt) = f(x0) +

Z
t

0

L0
f(xs)ds+

Z
t

0

L1
f(xs)dWs. (8.18)

We can apply this to xt itself before iteratively applying it to the quantities a(xt) and
b(xt) inside the integrals. Doing so, we obtain successive approximations of the process
f(xt) up to a specified order.

Now in the case of numerical simulations of trajectories xt, the function of interest
is xt itself. The algorithm that we want to obtain is an approximation of the change
is xt over a small time interval �t.

Hence for the process xt on a time interval �t, an approximation can be given by:

xt+�t = Xt + a(xt)

Z
t+�t

t

ds+ b(xt)

Z
t+�t

t

dWs +R (8.19)

where R is the reminder, containing higher order terms. This first order truncation of
the expansion gives rise to the Euler-Maruyama scheme for Yi found in the main text
of the manuscript

Yi+1 = Yi + a(xt)�t+ b(xt)�Wi, (8.20)

where �t =
R

t+�t

t
ds and the Wiener increment �W =

R
t+�t

t
dW can be simulated by

�W = ⇠
p
�t ⌘ N (0, 1)

p
�t. Here, the normally distributed random number can be
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8.4. STOCHASTIC ALGORITHMS

produced by various means, often using built-in functions for random number gener-
ation. In our case, the function used is based on the Box-Muller algorithm.

As in the case of ordinary differential equation the difference between the approx-
imation Yi and the process xt decreases with �t. However, for a given time-step, the
error of the algorithm depends on the order at which it has been truncated. Higher
order algorithms are therefore more efficient, since they does not demands as small
time increments to give good results. As detailed in the main text of the manuscript,
we focus here on the weak convergence criteria for variance. To perform the conver-
gence test, we run the algorithm several time with the same pre-generated time series
of random numbers. We run one simulation with a very small �t and use it as a
reference trajectory, it represents xt; then by performing numerical simulations with
increasing �t, we observe how the error increases.

The Euler-Maruyama algorithm is known to converge with weak order n = 1.
We show in Fig. 2.4 the results of the weak convergence test, giving an exponent
nmeas. = 1.1748.

By iterating the same procedure up to higher orders, we obtain algorithms with
better precision for a given time increment �t. A second order algorithm can be built
by keeping the following terms. This gives the following scheme (derived in [107],
where we use the notation ai = a[Yi] and bi = b[Yi]):

Yi+1 = Yi + ai�t+ bi�Wi +
1

2
bib

0
i

�
�W

2
i
��t

�

a
0
i
bi�Z +

1

2

✓
aia

0
i
+

1

2
b
2
i
a
(2)
i

◆
�t

2

+

✓
aib

0
i
+

1

2
b
2
i
b
(2)
i

◆
(�W�t��Z)

+
1

2
bi

⇣
bib

(2)
i

+ (b
0
i
)
2
⌘✓

1

3
�W

2 ��t

◆
.

(8.21)

where �Z =
R
t+�t

t

hR
S

t
dW

i
dS. To simplify this expression, we can now use the fact

that the physical process Eq. (2.6) which will be simulated is defined by a[xt] = xt/�

and b[xt] =
p
2D which brings all first derivatives of b[xt] and second derivatives of

a[x]t to zero. With this simplification, we obtain:

Yi+1 = Yi + ai�t+ bi�Wi + bia
0
i
�Zi + aia

0
i
�t

2
. (8.22)

As �Wi is simulated with a random number ⌘, it is shown in [107] that �Z can be
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simulated using two independent random numbers ⌘ and ✓, and accordingly:

Yi+1 = Yi + ai�t+ bi
p
�t⌘

+ bia
0
i

1

2

✓
⌘ +

1p
3
✓

◆
�t3/2 + aia

0
i�t2

(8.23)

This is the weak-O(2) scheme that we have implemented in a Python code to sim-
ulate the Brownian trajectories used in this chapter and the following. This efficient
algorithm reduces numerical errors while keeping a reasonable computing cost.

Below, we display minimal examples of Python implementation of the stochastic
algorithm derived above. In the next box is a function that implement a first order
Euler-Maruyama code. In input are the number of time-step of the trajectory nt,
the size of the time-step dt and an array of random number of zero mean and unit
variance, to feed the Wiener increment. The output is a stochastic trajectory.

1 def overdamped1(nt , dt , rand): # Order one overdamped dynamics

algorithm

2 position = np.zeros(nt) # Position array

3 S0 = kb * T / kappa # initial variance by equipartition

4 r0 = np.sqrt(S0) * rand [0] # initial random position

5 position [0] = r0 # store in array

6 for i in range(1,nt): # time -loop

7 noise = rand[i] # random number

8 gradU = kappa * r0 # linear force

9 a = - gradU/gamma\

10 + (1/np.sqrt(dt)) * np.sqrt (2*kb*T/gamma)*noise # force/gamma

11 r_new = r0 + a * dt # x(t+\ Delta t)

12 position[i] = r_new # store in array

13 r0 = r_new # update initial position

14 return position # output

In the next box is a function that implement a second-order code as Eq. (8.23) In
input are the number of time-step of the trajectory nt, the size of the time-step dt and
two arrays of random number of zero mean and unit variance, to feed dW and dZ.
The output is a stochastic trajectory.

1 def overdamped2(nt , dt , rand1 , rand2): # Order two overdamped

dynamics algorithm

2 position = np.zeros(nt) # Position array

3 S0 = kb * T / kappa # initial variance by equipartition

4 r0 = np.sqrt(S0) * rand1 [0] # initial random position

5 position [0] = r0 # store in array

6 for i in range(1,nt): # time -loop

7 noise1 = rand1[i] # first random number

8 noise2 = rand2[i] # second random number
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9 dW = np.sqrt(dt) * noise1 # Wiener increment

10 dZ = dt **(3/2) * (noise1 + noise2/np.sqrt (3))/2 # second -

order increment

11 r_new = r0 - kappa/gamma * r0 * dt\

12 + np.sqrt (2*D) * dW - np.sqrt (2*D) * kappa/gamma * dZ\

13 + 0.5 * kappa **2/ gamma **2 * r0 * dt**2 # x(t+\Delta t)

14 position[i] = r_new # store in array

15 r0 = r_new # update initial position

16 return position # output x(t)

Below an example of simple code to generate NTraj trajectories of NTime time-steps
with a step �t = 10

�4
s

1 import numpy as np

2 from numpy.random import RandomState

3

4 kb = 1.3806e-23 # Boltzmann ’s constant in J/K

5 T = 298 # temperature in K

6 gamma = 8.7e-9 # viscous drag in kg/s^2

7 kappa = 2.9e-6 # stiffness in N/m

8

9 NTime = int(1e6) # number of time -steps

10 Ntraj = 500 # number of trajectories in the ensemble to simulate

11 dt = 1e-4 # time -step

12

13 TrajectoryOrder1 = np.zeros ([NTime , NTraj])

14 for j in trange(Ntraj): # loop over the trajectories

15 random_num0 = np.random.standard_normal(Nt) # generate random

numbers

16 TrajectoryOrder1[Ntime , j] = overdamped1(Nt, dt, random_num0)

# compute trajectory

17

18 random_num1 = np.random.standard_normal(Nt) # generate random

numbers

19 random_num2 = np.random.standard_normal(Nt) # generate random

numbers

20 TrajectoryOrder1[Ntime , j] = overdamped1(Nt, dt, random_num1)

# compute trajectory

21 TrajectoryOrder2[Ntime , j] = overdamped2(Nt, dt, random_num1 ,

random_num2) # compute trajectory
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8.5 Analytical expression of the ergodic parameter

Under the condition of stationarity, the position correlation function depends only on
the time lag � with:

Cx(�) = hx(�+ t)x(t)i = 2kBT


e
�

��. (8.24)

We remind the definition of the ergodic parameter ✏(�) [97]:

✏(�) =

�
2
⇣
�x

2
i
(�)

⌘

D
�x

2
i
(�))

E2 , (8.25)

where �
2
⇣
�x

2
i
(�)

⌘
stands for the variance of a single trajectory time average MSD

�x
2
i
(�) =

1

T ��

Z T ��

0

[xi(t
0
+�)� xi(t

0
)]
2
dt

0
, (8.26)

and
D
�x

2
i
(�))

E
stands for the mean of time average MSD taken over the available

ensemble {i} of trajectories

D
�x

2
i
(�)

E
=

1

T ��

Z T ��

0

D
[xi(t

0
+�)� xi(t

0
)]
2
E
dt

0
. (8.27)

Under the ergodic hypothesis, the time ensemble average MSD is:
D
�x

2
i
(�)

E
=

2kBT



⇣
1� e

�
��
⌘
, (8.28)

and the variance is defined as:

�
2
⇣
�x

2
i
(�)

⌘
=

D
�x

2
i
(�)

2
E
�
D
�x

2
i
(�)

E2
. (8.29)

The first term can be written as
D
�x2

i
(�)

2E
=

1

(T ��)2

Z T ��

0
dt1

Z T ��

0
dt2

⌦
(x(t1 +�)� x(t1))

2(x(t2 +�)� x(t2))
2
↵ (8.30)

for which the Wick’s relation yields 4 terms:

hx(t1)x(t2)x(t3)x(t4)i = hx(t1)x(t2)i hx(t3)x(t4)i
+ hx(t1)x(t3)i hx(t2)x(t4)i
+ hx(t1)x(t4)i hx(t2)x(t3)i .

(8.31)
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The integrand in Eq. (8.30) then becomes:

⌦
(x(t1 +�)� x(t1))

2
(x(t2 +�)� x(t2))

2
↵

= [
⌦
(x(t1 +�)� x(t1))

2
↵ ⌦

(x(t2 +�)� x(t2))
2
↵

+ 2 h(x(t1 +�)� x(t1))(x(t2 +�)� x(t2))i2].

(8.32)

With the first term in the LHS of Eq. (8.32) identified as the square of the time-
ensemble average MSD

D
�x

2
i
(�)

E2
, the variance of time average MSD can finally be

written as:

�2(�x2
i
(�)) =
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(T ��)2
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(8.33)

using Eq.(8.24).

Figure 8.2: Integration surface for Eq. (8.34) on which the two sectors
[t2 > t1] and [t2 < t1] are distinguished. This defines the appropriate
change of variables (t1, t2) $ (t1, t

0
), with the line t2 = t1+ t

0 crossing
the t2 = 0 axis at �t

0 and the t2 = T �� axis at T ��� t
0.

The integral is calculated through a standard change of variables t1 = t1, t
0
= t2� t1

described in Fig. 8.2 and possible since the integrand only depends on the |t1 � t2|
difference. One can formally write:

�2(�x2
i
(�)) =

2k2
B
T 2

(T ��)22

Z T ��

0
dt1

Z T ��

0
dt2 · ↵2(t0), (8.34)
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with t
0 varying from negative to positive values in the (t1, t2) plane. For the t

0
> 0

sector: Z T ��

0
dt0
Z T ���t

0

0
dt1 · ↵2(t0) =

Z T ��

0
dt0(T ��� t0) · ↵2(t0), (8.35)

and for the t
0
< 0 sector:
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�t0
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dt0(T ��+ t0) · ↵2(t0). (8.36)

By combining the two 2 sectors, on gets:
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leading to express the ergodic parameter ✏ as:
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In order to simplify the notations, we define K =
kBT


and write the time ensemble

average MSD as
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splitted in three terms depending on the sign of the absolute value
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(8.39)
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Each term is calculated as:
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whose analytical expression is drawn as the theory curve in Fig. 3.5 in the main text.

8.6 Analytical expression of the Allan variance

For the Ornstein-Uhlenbeck process, we have the following power spectral density
(PSD) –with ! = 2⇡f :

S(!) =
2D

!2 + !
2
0

, (8.40)

where D = kBT/� is the diffusion coefficient and !0 = /� corresponds to the trap
roll-off frequency. The Allan variance �

2
(⌧) is linked to the PSD through a sin
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transformation, as we discussed previously in [132]:
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giving three complex integrals to compute with a simple pole in ! = ±i!0
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that corresponds to Eq. 3.15 in the main text. Two limits are important to draw:
(i) the short-time limit ⌧ ⌧ �/ where we get �

2
(⌧) ⇡ 2D/⌧ corresponding to free

Brownian motion [132, 114]
(ii) the long-time limit ⌧ � �/ where we get a different behavior �2

(⌧) ⇡ 3kBT/⌧
2.

8.7 Tracking error analysis

8.7.1 Tracking error on position

In all our experiments, the trajectories are recorded by a photodiode and the positions
are interpreted from the photodiode signal. The error on the localization of the par-
ticle are originated in our experiments from multiple noise sources dominated by the
laser fluctuation and the diode electronic noise. A white noise can be a good starting
approximation to estimate and describe the localization error. Therefore, each mea-
sured position xi(tk) for a trajectory i at time tk can be related to the real position
x
0
i
(tk) as [132, 88]:

xi(tk) = x
0
i
(tk) + µi(tk), (8.44)

where µi(tk) is a random uncorrelated tracking error with hµi(tk)i = 0 and hµi(tk)µj(tl)i =
�ij�kl�

2
0.
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8.7.2 Tracking error on time ensemble average MSD

We now propagate the position tracking error described by Eq.(8.44) into the measured
MSD. We write:

D
(xi(t+�)� xi(t))

2
E

=

D
(x

0
i
(t+�) + µi(t+�)� x

0
i
(t)� µi(t+�))2

E

=

D
[(x

0
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(t+�)� x

0
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(t)) + (µi(t+�)� µi(t))]

2
E

=

D
(x

0
i
(t+�)� x

0
i
(t))2

E
+

D
(µi(t+�)� µi(t))

2
E

=

D
(x

0
i
(t+�)� x

0
i
(t))2

E
+ 2�

2
0,

(8.45)

showing how the measured MSD can be related to the theoretical one as:
⌦
�x

2
(�)
↵
exp

=
⌦
�x

2
(�)
↵
th
+ 2�

2
0. (8.46)

Since �
2
0 > 0, the MSD is always overdetermined experimentally, in agreement with

our observations -in the log-log representation of Fig. 3.3 (a), this error can mainly be
seen at short time lags.

8.7.3 Tracking error on Allan variance

From the definition of Allan variance, we can also relate the experimental Allan vari-
ance that includes the tracking errors to the theoretical Allan variance with

�2
exp(�) =

1

2�2

D�
x((n+ 2)�)� 2x((n+ 1)�) + x(�)

�2E

=
1

2�2

⌦�
x0((n+ 2)�)� 2x0((n+ 1)�) + x0(�)

+ µ1 � 2µ2 + µ3
�2E

= �2
th(�) +

1

2�2

D�
µ1 � 2µ2 + µ3

�2E

= �2
th(�) +

3�2
0

�2
.

(8.47)

The difference 3�
2
0/�

2 between experimental and theoretical Allan variances is always
positive and decays with �2, again a feature perfectly consistent with our observations
–see Fig. 3.5 in the main text.

8.7.4 Tracking error on the ergodic estimator

In order to account for the error on the ergodic estimator ✏(�), we first consider
Eq.(8.46) for the MSD error analysis. For the single trajectory time averaged MSD,
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Figure 8.3: Raw experimental and corrected data (top) for the MSD,
(middle) for the Allan variance and (bottom) for the ergodic estima-
tor. We see the correction mostly for short time-lags. The correction
works well for the MSD and Allan variance, but a deviation remains on
the ergodic estimator. This difference could actually point to a slight
deviation of the localization noise from the white Gaussian noise we
have assumed in our modeling of the localization error.

one has

�x
2
i
(�)exp = �x

2
i
(�)th + µi (8.48)

where µi is a random constant with hµii2 = 2�
2
0. The experimental ergodic estimator

can thus be written as:

✏(�)exp =

⌧⇣
�x2

i
(�)exp

⌘2�

D
�x2

i
(�)

E2
exp

� 1 =
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�x2

i
(�)th + µi

⌘2�

D
�x2

i
(�)

E2
exp

� 1. (8.49)

We define the ratio

�(�) =

D
�x

2
i
(�)

E

thD
�x

2
i
(�)

E

exp

(8.50)
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as the ratio between the theoretical and experimental MSD variance value. With this
ratio, the experimental ergodic estimator ✏(�) can be written as:

✏(�)exp = �2(�)✏(�)th

+ �2(�)

0

B@
2
D
µi�x2i (�)th

E
+
⌦
µ2
i

↵

D
�x2

i
(�)

E2
th

+ 1

1

CA� 1.
(8.51)

Assuming that the error µi is uncorrelated with the single trajectory time ensemble
MSD, h✏i ¯�xi(�)thi = h✏iih ¯�xi(�)thi. Taking this into account additionally leads to
hµ2

i
i = hµii2 + �

2
(µi) = 2�

2
0 + �

2
(µi) and therefore to:

✏(�)exp = �
2
(�)

2

64✏(�)th +
�
2
(µi)D

�x
2
i
(�)

E2
th

3

75 . (8.52)

The ratio
�(�) =

1

1 +
�

2
0

kBT (1�e��/�)

(8.53)

can be estimated once the value of the localization error �
2
0 is known. As for the

variance of µ, Eq. (8.48) gives:

�
2
(µi) = �

2
(�x

2
i
(�)exp)� �

2
(�x

2
i
(�)th). (8.54)

Since �
2
(�x

2
i
(�)th) goes to zero when � ! 0, one is left, at small � with �

2
(✏) ⇠

�
2
(�x

2
i
(�)exp). Taking the experimental variance measured on the time average MSD

for the smallest time lag � is therefore a good estimation for �
2
(µ). This analysis

leads us to approaching the real value of the tracking error on the estimator ✏(�) and
this way explaining the difference between the experimental data and the theoretical
curve in Fig. 3.5 and 8.3 (c).

8.8 Stationary solution by Laplace transform

We recall some useful Laplace transformations

L[x(t)] = x̃[s]

L[ẋ(t)] = sx̃[s]� x̃0

L[a] = a/s

(8.55)

Eq. 4.5 can then be written in the s Laplace-domain

x̃[s] =
1

(s+ !0)

✓
x̃0 +

F0

�s
+

p
2D⇠̃[s] +

p
2DA⌘̃[s])

◆
. (8.56)
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We now recall useful inverse Laplace transformations

L�1
[
1

s
] = 1

L�1
[

1

s+ !0
] = e
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Z
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0
)dt

0

(8.57)

the last transformation being a consequence of convolution theorem. We can now
transform back into the time-domain

x(t) = x0e
�!0t +

F0



�
1� e

�!0t
�
+

Z
t

0

⇣p
2D⇠t0 +

p
2DA⌘t0

⌘
e
�!0(t�t

0)
dt

0
. (8.58)

We can note here that the average position is hx(t)i =
F0

(1� e

�!0t) hence the
effect of the DC component of the radiation pressure can be trivially discarded by
looking at the centred process x(t)� hxi.

8.9 PSD autocorrelation and MSD of a bead under

colored noise

Our system, consisting of an optically trapped bead thermally diffusing within active
fluctuations, is described by a couple of stochastic differential equations that determine
the evolution of the position of the bead within the trap according to:

ẋt = �!0xt +

p
2D⇠t +

p
2Da⌘t (8.59)

where the active noise ⌘t, solution of the Ornstein-Uhlenbeck process

d⌘t = �!c⌘tdt+
p
2↵!cdWt, (8.60)

is an exponentially correlated Gaussian variable.
We can derive the noise power spectrum density by Fourier transforming Eq. (8.60)

� i!⌘[!] = �!c⌘[!] +
p
↵!c⇠[!] (8.61)

where !c is the correlation pulsation. Taking the squared norm leads to the active
noise power spectral density (PSD)

⌘[!]⌘
⇤
[!] = |⌘[!]|2 = ↵!c

!2
c
+ !2

. (8.62)
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On Fig. 4.4, we plot the PSD directly measured from the laser output signal used
to induce the noisy radiation pressure, both in the case of a white noise and colored
noise. As expected, the spectrum of the white noise is flat on all the studied band-
width, whereas the spectrum of the colored noise is following a Lorentzian profile, well
captured by a fit following Eq. (8.62). The PSD of the motion xt is evaluated from
Eq. (8.59) as:

x[!]x
⇤
[!] =

1

!
2
0 + !2

(2D⇠[!]⇠
⇤
[!] + 2Da⌘[!]⌘

⇤
[!]) , (8.63)

noting that the implicit averaging performed in this square cancels the two cross-
product of the uncorrelated noises ⌘[!]⇠⇤[!] and the complex conjugate. In Eq. (8.63),
!0 = /� is the inverse of the characteristic relaxation time of the system, and ⌘[!]⌘

⇤
[!]

is given by Eq. (8.62) and ⇠[!]⇠
⇤
[!] = 1. Hence

x[!]x
⇤
[!] = |x[!]|2 = 1

!
2
0 + !2

✓
2D +

2Da↵!c

!2
c
+ !2

◆
(8.64)

On Fig. 2.7 (b), we plot the measured spectra of xt both for a white and colored
external drive, with the analytical result of Eq. (8.64) using the value of Da obtained
from the fit of the MSD for the colored noise (see Fig. 4.9 above) and using the
Da ! 0 limit for the white noise case. A very good agreement between the theory and
the experimental data is clearly seen, confirming that our model captures well the real
diffusive dynamics of the trapped bead.

We can also compute the correlation function of the colored noise driven process
from the Wiener-Khintchine theorem as:

Cxx(�) =
1
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(8.65)

where both integrals can be computed via contour integration. For the first one,
f [!] =

D

⇡

e
�i!�

!
2
0+!2 has one simple pole in the upper-half complex plane in i!0, leading to

compute one residue Z +1

�1
f [!]d! = 2i⇡Res{f [!], i!0}
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!!!0
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(8.66)
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Similarly, the second integral with g[!] =
Da↵!ce
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it through partial fraction decomposition in g[!] =
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(8.67)

These evaluations are combined to provide the expression for the correlation function
of the diffusion process:

Cxx(�) =
D

!0
e
�!0� +

Da↵!c
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2
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2
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✓
e
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(8.68)

On Fig. 2.10 we represent the normalised correlation function Cxx for both white
and colored noise drives where we superimpose the analytical result, using the value of
Da obtained, as indicated above, from the fit of the MSD for the colored noise. Here
too, we use the Da ! 0 limit for the white noise. Again, the good agreement between
the exponential decays and the analytical models is observed.

The MSD of a colloid diffusing in a thermal environment obeys an Ornstein-
Uhlenbeck process and is thus characterised by the white noise MSD:

h�x2
(�)i ⌘ h(x(t+�)� x(t))

2i = 2D

!0

�
1� e

�!0�
�

(8.69)

where D is the diffusion coefficient in the thermal bath, expressed in m
2
/s, and !0 =

/� is the inverse of the characteristic relaxation time of the bead in the trap.
In contrast, the MSD of an active particle obeys Eq. (4.5) and can be computed

as h�x2
(�)i = 2hx2

t
i � 2Cxx(�) where the variance is the stationary variance of the

process and hx2
t
i is taken as the limit lim

t!1
[hx2

t
i] = D

!0
+

Da↵!c
!0(!c+!0)

). This leads us to
calculate directly:
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that constitutes the result used in the main text.
The long-time limit can be easily derived as:

lim
�!1

[h�x2
(�)i] = 2D

!0
+

2Da↵

!0(!c + !0)
. (8.71)

8.10 Derivation of the heat expression

The ensemble average heat, is expressed in terms of variance and cross-correlations
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s
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(8.72)

The first term is connected to the evolution of the variance. It vanishes in the steady-
state and only accounts for the heat released during a transient evolution of the distri-
bution. Here we will focus on the case of a steady-state, where QEX is zero, to derive
the housekeeping heat. QHK can be computed analytically by injecting the differential
equation Eq. (4.5) for ẋt : hẋt⌘ti = �!0hxt⌘ti+

p
2Da↵. First, the hxt⌘ti term can be

computed
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(8.73)

leading for the steady-state QHK , to
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(8.74)

This gives, after an exponential decorrelation at short times (just after the noise is
turned on, a short-time regime that is never probed in our experiments), a linear heat
expenditure with negative (since !0 > 0) slope 2�Da↵

⇣
!0

!0+!c
� 1

⌘
that account for

the heat needed to maintain the system in its NESS.
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Therefore, if we discard the decorrelation after the noise is turned on, we obtain
the following expression for the cumulative housekeeping heat:

QHK(t) = 2�Da↵

✓
!0

!0 + !c

� 1

◆
t (8.75)

8.11 Color protocol: differential equation and solu-

tion by Laplace transform

We subject the process to a color protocol which is a sudden change (STEP) in correla-
tion time. We model this by applying two different noises with two Heaviside functions
to model the STEP. We consider that at time t = 0

� the system is at thermal equi-
librium with no additional noise ; at time t = 0

+ a first colored noise ⌘1 is turned on
; at time t = t0 ⌘1 is turned off and ⌘2 is turned on. The differential equation for the
centred process (x� hxi) writes

ẋ = �!0x+ ✓(t0 � t)

p
2D1⌘1(t) + ✓(t� t0)

p
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(8.76)

we define
f(t) = ✓(t� t0)

⇣p
2D2⌘2(t)�

p
2D1⌘1(t)

⌘
(8.77)

with Laplace transform L[f(t)] = F [s]. The differential equation transforms to

x̃[s] =
1

!0 + s

n
x(0) + F [s] +

p
2D1⌘̃1[s] +

p
2D⇠̃[s]

o
(8.78)

we compute the inverse Laplace transform of the different terms by convolution. We
explicite the calculation

L�1
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F [s]

�
=

Z
t

0

e
�!0(t�⌧)

⇣p
2D2⌘2(⌧)�

p
2D1⌘1(⌧)

⌘
✓(⌧ � t0)d⌧

=

Z
t

t0

e
�!0(t�⌧)

⇣p
2D2⌘2(⌧)�

p
2D1⌘1(⌧)

⌘
d⌧

(8.79)
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�
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e
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p
2D1⌘1(⌧)d⌧ (8.80)

by combining the two integrals on ⌘1 these two terms give together

p
2D2

Z
t

t0

e
�!0(t�⌧)

⌘2(⌧)d⌧ +

p
2D1

Z
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e
�!0(t�⌧)

⌘1(⌧)d⌧ (8.81)

therefore, the solution for the position, experiencing a STEP-like change of correlation
time writes
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(8.82)
the result obtained make sense : the first noise ⌘1 stops at t0 so the integral stops
either at t if t < t0 or at t0 otherwise. The second noise ⌘2 starts at t0 so does its
integral. The thermal noise is always present, hence the integral goes from 0 to t. Note
that even if the integral of the first noise stops at t0, we will see on variance that it
still has an influence on the process for a certain time.

Calculation of the variance:

We compute the variance
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J1 can be easily computed using h⇠(t1)⇠(t2)i = �(t1 � t2)
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To compute J2 we use the correlation h⌘1(t1)⌘1(t2)i = ↵e
�!1|t1�t2| = ↵e

�!1(t1+t2�2min(t1,t2)).
We also define m ⌘ min(t0, t) the upper bound of the integral.
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we split the inside integral in two, depending of min(t1, t2)
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(8.86)
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and we obtain, after some calculations the result
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that still depends on m. We finally compute J3 using h⌘2(t1)⌘2(t2)i = ↵e
�!2|t1�t2|, same

amplitude ↵ than for J2 because we study protocols with constant noise variance.

J3 = 2D2↵e
�2!0t

Z
t

t0

dt1

Z
t

t0

dt2e
!0(t1+t2)�!2(t1+t2�2min(t1,t2))

= 2D2↵e
�2!0t

Z
t

t0

dt1

Z
t1

t0

dt2e
!0(t1+t2)�!2(t1�t2) +

Z
t

t1

dt2e
!0(t1+t2)�!2(t2�t2)

�

= 2D2↵e
�2!0t

Z
t

t0

dt1


e
t1(!0�!2)

!0 + !2

�
e
t1(!0+!2) � e

t0(!0+!2)
�
+

e
t1(!0+!2)

!0 � !2

�
e
t(!0�!2) � e

t1(!0�!2)
��

(8.88)
which gives, after some calculations
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We will now study two cases : before and after the STEP. Before the STEP t < t0,
hence m = t and we can rewrite J2 as
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we furthermore note that in this case J3 = 0 (its integration domain is null), and we
can write the variance
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and we note the limit
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where D/!0 = kBT/ is equipartition, and the second term is the correction due to
the colored noise. hence we can rewrite simply the variance as
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which is a relaxation from an initial thermal equilibrium towards a final non-equilibrium
steady-state.

197



8.12. TWO DIMENSIONAL PROCESS

After the STEP, t > t0 hence m = t0 and we can rewrite
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what we wan to study, is the variance at a finite time after the STEP, while the time of
the STEP itself, t0 is far from 0, hence the system is in steady-state before the change
of correlation. With this in mind, we define � = t� t0 and write
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we finally take the limit of t0 � 1
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hence all terms ⇠ e
�t0 vanishes. We obtain
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that gives for the variance after the STEP
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while we recall the variance before the STEP when t0 is very large
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We can note on Eq. 8.97 that the influence of the first noise ⌘1 decreases exponen-
tially with the characteristic time 1/!0 while the second noise appears with a more
complicated exponential relaxation. The overall variance evolution is non-monotonic.

8.12 Two dimensional process

The (x, ⌘) joint-process obeys to

ẋ = �!0x+

p
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p
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c
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(8.99)
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where ✓t is a hidden white noise variable, hence the system behaves like an asymmetri-
cally coupled pair of systems x and ⌘ immersed in two different �-correlated baths. See
Fig. 4.7 for a schematic view. This couple of equation, reminiscent of the the unified
colored-noise approach [158, 159] is said markovian [66, 210] because both process are
driven by Markovian (white) noises. The system of Eq. 8.99 can be written more
concisely as a vectorial process [67, 69] of XXX = (xt, ⌘t), obeys to the following matrix
equation

dX

dt
= �AX+NNN (8.100)

where the coupling matrix

A =
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(8.101)

and hNi(t)Nj(s)i) = 2Dij�(t � s) where the Dij are the elements of a diffusion
matrix

D =

 
D 0

0 ↵!c
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(8.102)

The system is linear in X and the can reach steady-state because trace and determi-
nant of A are positive. Such stationary state is characterised by a bivariate Gaussian
distribution (see [69] for details)

PS(X) = Ne
�X�

�1X/2 (8.103)

where N is a normalisation coefficient and the matrix � obeys to

D =
A� + �AT

2
(8.104)

and as show in [69] we obtain a steady-state distribution

PS(X) ⇠ e
�Ax

2�B⌘
2�Cx⌘ (8.105)

where A, B and C can be explicitly compute. The C term, leading to an elliptic
distribution is ⇠ 1/!c and therefore grows with increasing correlation time of the
noise. In the white noise limit !c � !0 we get
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We can compute the marginal distribution for position x in this limit as
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where we find again as variance of position Deff/!0 in agreement with the result on
hx2i.

Taking the "strong" limit of !c ! 1 gives the bivariate distribution of two uncou-
pled processes P ⇠ exp(�!0x

2
/D � ⌘

2
/↵) where effective temperature converges to

room temperature.

Steady-state distribution of the bivariate process:

The system is linear in X and the can reach steady-state because trace and determi-
nant of A are positive. Such stationary state is characterised by a bivariate Gaussian
distribution (see [69] for details)

PS(X) = Ne
�X�

�1X/2 (8.108)

where N is a normalisation coefficient and the matrix � obeys to
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In our case we obtain
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and therefore for the distribution

PS(xt, ⌘t) = Nexp

✓
1

2�


�C!cx

2 � 2DAC!c +D(!0 + !c)

!0(!0 + !C)
⌘
2
+

�2
p
2DaC!c

!0 + !c

x⌘

�◆

(8.111)
with � = 1/(�11�22 � �12�21). We can explicit
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We can note mostly that the third term in the exponential, leading to an elliptic
distribution is ⇠ 1/!c and therefore grows with increasing correlation time of the
noise.
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Résumé 
Cette thèse explore les propriétés de différents processus stochastiques dans un 
piège optique. La manipulation des trajectoires browniennes issues d’un piège optique 
expérimental repose sur des hypothèses fortes quant à l’ergodicité et la stabilité du 
processus, qui sont ici démontrées expérimentalement. En ajoutant une force de 
pression de radiation aléatoire, pilotée numériquement, le système est connecté à un 
bain auxiliaire qui permet d’implémenter un analogue de matière active. Nous 
explorons les trajectoires non-browniennes qui en résultent ainsi que leur propriétés 
thermodynamiques hors-d’équilibre. Enfin, nous utilisons la formulation 
hydrodynamique de la mécanique quantique pour dériver un analogue classique 
stochastique d’un système quantique ouvert. Ce dernier est implémenté 
numériquement et expérimentalement, nous permettant de retrouver l’évolution de la 
densité d’un objet quantique en contact avec un bain thermique. Cet analogue permet 
d’accéder à des effets quantiques, tel que l’effet tunnel, à l’aide d’un système 
classique. 

Mots-clés : piège optique, ergodicité, ingénierie de bain, matière active, analogues, 
hydrodynamique quantique. 

Résumé en anglais 
 This thesis explores the properties of different stochastic processes within an optical 
trapping setup. The manipulation of Brownian trajectories in experimental optical traps 
relies on strong hypotheses regarding ergodicity and stability of the process, which are 
here experimentally demonstrated. By adding a numerically generated random 
radiation pressure force, the system is connected to an auxiliary engineered bath 
which allows to implement an analogue of active matter. We explore the resulting non-
Brownian trajectories and non-equilibrium thermodynamic features. Finally, we use the 
hydrodynamic model of quantum mechanics, to derive a classical stochastic analogue 
of an open quantum system. Implementing it numerically and experimentally, we 
recover the evolution of the density of a quantum object in a thermal bath. This 
analogue allows to access quantum effects, such as tunnelling, through a classical 
system. 

Keywords: Optical trapping, ergodicity, bath engineering, active matter, analogues, 
quantum hydrodynamics.

Rémi GOERLICH 
Optical control of Brownian 

diffusion: from bath engineering  
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