
HAL Id: tel-03952834
https://theses.hal.science/tel-03952834

Submitted on 23 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Layout optimization based on multi-objective interactive
approach

Xiaoxiao Song

To cite this version:
Xiaoxiao Song. Layout optimization based on multi-objective interactive approach. Automatic. École
centrale de Nantes, 2022. English. �NNT : 2022ECDN0051�. �tel-03952834�

https://theses.hal.science/tel-03952834
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

L’ÉCOLE CENTRALE DE NANTES

ÉCOLE DOCTORALE NO 602
Sciences pour l’Ingénieur
Spécialité : Robotique-Mécanique

Par

Xiaoxiao SONG
Layout optimization based on multi-objective interactive approach

Thèse présentée et soutenue à Ecole Centrale de Nantes, le 22 Novembre 2022
Unité de recherche : UMR 6004, Laboratoire des Sciences du Numérique de Nantes (LS2N)

Rapporteurs avant soutenance :

Xavier FISCHER Professeur, ESTIA, Bidart
Bernard YANNOU Professeur des universités, CentraleSupélec Université Paris-Saclay

Composition du Jury :

Président : Eduardo SOUZA DE CURSI Professeur des universités, INSA Rouen Normandie
Examinateur : Yannick RAVAUT Expert intégration et modélisation mécanique, Thales SIX France, Cholet
Dir. de thèse : Fouad BENNIS Professeur des universités, École Centrale de Nantes
Co-dir. de thèse : Emilie POIRSON Professeure des universités, École Centrale de Nantes

ACKNOWLEDGEMENT

I would like to express my sincere gratitude and appreciation to my supervisor, Profes-
sor Fouad Bennis, for his guidance, encouragement, constructive critiques, and patience
throughout this research. He has been a great mentor and guide to me. This thesis would
not have been possible without him.

I would also like to sincerely thank my thesis co-supervisor Emilie Poirson. I am very
grateful for her valuable comments, insights, enthusiasm and the involvement throughout
these three years of doctoral studies.

This PhD work would not have been so concrete without industrial application cases.
These case studies, proposed by Yannick Ravaut, engineers from the company Thales SIX
France in Cholet, greatly helped me when it was necessary to materialize and validate the
different concepts developed in this thesis.

A big thank you to the colleagues that I was able to meet during this doctorate,
whether in my research activities within the REV team of the LS2N, in my teaching
activities at the Ecole Centrale de Nantes.

I would like to thank the members of the jury too. Your remarks, criticisms and advice
have been very useful to me for the outcome of this thesis.

Above all, I warmly thank my friends and my parents who encouraged me in these
years. A big thanks to my boyfriend, with whom I shed sweat, blood and tears in the
trenches of sciences, thanks for always being there.

听我说，谢谢你，因为有你，温暖了四季

3

ACRONYMES

SA Simulated Annealing
GA Genetic Algorithm
PSO Particle Swarm Optimization
KKT Karush-Kuhn-Tucker
MOGA Multi-objective genetic algorithm
MOSA Multi-objective simulated annealing
FPA Flower pollination algorithm
SPEA Strength Pareto evolutionary algorithm
MOPSO Multi-objective particle swarm optimization
MSSA Multi-objective salp swarm algorithm
NSGA II Non-dominated sorting genetic algorithm II
SOS Symbiotic organisms search
VEGA Vector evaluated genetic algorithm
MOEA/D Multi-objective evolutionary algorithm based on decomposition
NSGA III Non-dominated sorting genetic algorithm III
MOEA/DD Multi-objective evolutionary algorithm based on dominance and decomposition
IBEA Indicator-based evolutionary algorithm
SMS-EMOA s-metric selection evolutionary multi-objective optimization algorithm
DWU Dominance-weighted uniformity
GD Generational distance
GD-MOEA Generational distance-based multi-objective evolutionary algorithm
CDAS Controlling dominance area of solutions
SDR Strengthened dominance relation
SQA Simplified quadratic approximation
QAP Quadratic assignment problem
MIP Mixed integer programming
LP Linear programming
NLP Nonlinear programming
IP Integer programming

5

MINLP Mixed integer nonlinear programming
FLP Facility layout problem
DSO Dynamic space ordering
DFLP Dynamic facility layout problem
DEA Data envelopment analysis
PSA Pareto simulated annealing
BRKGA Biased random-key genetic algorithm
SCHN1 Schaffer function N1
SCHN2 Schaffer function N2
POL Poloni function
QUAD Quadratic function
FON Fonseca function
CT Computational time
SD Standard deviation
MOKP Multi-objective knapsack problem

6

NOTATIONS

x Variables
f Objectives
g Inequality constraints
h Equality constraints
P Current population
N Population size
P ′ New population
(LB,UB) Global boundaries
(lb, ub) Local boundaries
τ Interval parameter
A Archive
CD Crowing distance
M Archive size
t Temperature
R Rank of current population
R′ Rank of new population
tf Final temperature
t0 Initial temperature
∆ Diversity metric
ci Component i
si Solid component i
vij Virtual component j of si
n Number of component
ni Number of virtual component attached to si
(xi, yi) Coordinates of si
(wi, hi) Size of si
(xLi

, yBi
, xRi

, yTi
) Left, Bottom, Right, Top side location of si

(xij, yij) Coordinates of vij
(wij, hij) Size of vij

7

βs Solid components density
βv Virtual components density
βsv Components density
βc Components capacity
a Available space
(xa, ya) Coordinates of available space a
(wa, ha) Size of available space a
(xLa , yBa , xRa , yTa) Left, Bottom, Right, Top side location of a
mi Mass of si
(xci

, yci
) Gravity center of si

(Xgra, Ygra) Gravity center of all solid components
(X ′gra, Y ′gra) Geometry center of container
(W,H) Size of container
ωij Activity factor between ci and cj
dij Distance from center of si to sj
aik Overlap between si and sk
akj Overlap between sk and vij
aij Overlap between si and vkj
Aik Overlap between ci and ck
a Available Space of virtual components
a′ Available Space of solid components
c Component placement order
αxij

Relative position of x-coordinate between component ci and cj
αyij

Relative position of y-coordinate between component ci and cj
(wr, hr) Accessible space required by the user
p Component configuration sequence
I Infeasible violation
z Container area
l Number of sub-containers
r Assignments of components
β̂c Minimum occupied space

8

LIST OF FIGURES

1.1 Single-objective single variable minimization f1(x). 26
1.2 Multi-objective bi-dimensional variable (left) minimization (f1(x), f2(x))

(right). 27
1.3 Multi-objective bi-dimensional variable minimization (f1(x),−f2(x)). . . . 28
1.4 Gradient-based optimization of single-objective single variable. 28
1.5 SA and GA optimization principle. 29
1.6 Example of weighted sum approach (f1(x),−f2(x)). 32
1.7 Example of ε−constraint method min(−f2(x), s.t., f1(x) ≤ ε1). 33
1.8 Multi-objective minimization (f1(x),−f2(x)). 34
1.9 Multi-objective minimization (f1(x),−f2(x)). 36
1.10 Example of VEGA minimization (f1(x),−f2(x)). 37
1.11 Van layout design representation. 45
1.12 Multi-container problem representation. 46

2.1 Flowchart of scalar SA. 58
2.2 Crowding distance of individual i. 60
2.3 Criteria to select offspring. 61
2.4 Pareto front determined by (a) archive-based SA, (b) archive-free SA, (c)

NSGA II on SCHN1. 67
2.5 Pareto front determined by (a) archive-based SA, (b) archive-free SA, (c)

NSGA II on SCHN2. 67
2.6 Pareto front determined by (a) archive-based SA, (b) archive-free SA, (c)

NSGA II on POL. 68
2.7 Pareto front determined by (a) archive-based SA, (b) archive-free SA, (c)

NSGA II on QUAD. 68
2.8 Pareto front determined by (a) archive-based SA, (b) archive-free SA, (c)

NSGA II on FON. 68
2.9 Box plot (using GD) representing the comparison of the algorithms for

unconstrained functions: SCHN1 , SCHN2, POL, QUAD, FON. 70

9

LIST OF FIGURES

2.10 Box plot (using ∆) representing the comparison of the algorithms for un-
constrained functions: SCHN1 , SCHN2, POL, QUAD, FON. 71

2.11 Box plot (using CT) representing the comparison of the algorithms for
unconstrained functions: SCHN1 , SCHN2, POL, QUAD, FON. 72

2.12 Pareto set of QUAD in the contour plot. 73
2.13 Problem demonstration: (left) in design space, (right) in objective space. . 73
2.14 Convergence improvement illustration: (left) in design space, (right) in

objective space. red star: fake point; green star: current solution; blue
star: improved solution; red point: new solution 75

2.15 Pareto set of QUAD function with improved convergence. 75
2.16 20 items knapsack: (a) N = 10, (b) N = 100. 76
2.17 1000 items knapscak: (a) N = 10, (b) N = 100. 77

3.1 Problem formulation. 80
3.2 Component examples. 81
3.3 Component ci representation. 82
3.4 Component si side location representation. 82
3.5 Overlap between virtual components representation. 83
3.6 Non-overlap constraint representation. 84
3.7 Available space a representation. 84
3.8 Component packing. 86
3.9 Complete and partial space generation. 88
3.10 Space generation of s1. 89
3.11 Space generation of (s1, v11). 89
3.12 Example of component placement. 92
3.13 Graphical interface representation. 95
3.14 Interactive configuration. 95
3.15 New Project. 96
3.16 Edit parameter. 97
3.17 Defined constraint modes. 97
3.18 Optimization parameter. 98
3.19 Relative position. 101
3.20 Visualization tools. 102

4.1 Test examples. 106

10

LIST OF FIGURES

4.2 NSGA II obtained solutions of Test 1. 108
4.3 Archive-free SA obtained solutions of Test 1. 108
4.4 NSGA II obtained solutions of Test 2. 109
4.5 Archive-free SA obtained solutions of Test 2. 109
4.6 Placement examples ai and aj are coincide. 111
4.7 Placement examples ai and aj are not coincide. 111
4.8 Placement adjustment. 111
4.9 Two directional virtual components representation. 112
4.10 Placement of two dimensional virtual components. 112
4.11 Accessibility representation. 114
4.12 Connection path [ad, a2, a1]. 115
4.13 Layout problem of five components. 115
4.14 Accessibility analysis (a) Placement of components ci = (si, vij), i ∈ (1, 2, 3, 4),

(b) Space generation a of (s1, s2, s3, s4), (c) Placement of components
ci = (si, vij), i ∈ (1, 2, 3, 4, 5), (d) Space generation a of (s1, s2, s3, s4, s5),
(e) Connection tree a generated by (s1, s2, s3, s4), (f) Connection tree a

generated by (s1, s2, s3, s4, s5). 116
4.15 Pareto solutions obtained using different formulations in Test 1. 122
4.16 Pareto solutions obtained using different formulations in Test 2. 123
4.17 Partition form . 124

5.1 Overview of CAD model of single-container shelter [128]. 128
5.2 2D configuration model of single-container shelter. 129
5.3 Previous 2D configuration model [128]. 131
5.4 The compact configuration with βc = 0.55. 132
5.5 Optimal solutions configurations. 133
5.6 Display of solutions in objective space. 133
5.7 Display of selected designs. 134
5.8 Similarity analysis. 135
5.9 Display of cluster dendrogram. 136
5.10 Display of clustered solutions in objective space. 136
5.11 Big-sized shelter representation. 137
5.12 Big-sized shelter representation. 138
5.13 Compact configuration of big-sized shelter. 139
5.14 Display of rank 1 solution. 140

11

LIST OF FIGURES

5.15 Similarity analysis of big size component shelter. 140
5.16 Display of optimal designs. 141
5.17 Display of clustered solutions in objective space. 142
5.18 Multi-container shelter layout representation 143
5.19 2D configuration model of multi-container shelter. 143
5.20 Compact configuration of the shelter. 147
5.21 Display of rank 1 solution. 149
5.22 x-coordinate of the partition. 149
5.23 Similarity analysis of multi-container shelter. 150
5.24 Display of clustered solutions in objective space. 150
5.25 Display of optimal designs. 151

12

LIST OF TABLES

2.1 Comparative results (using GD) of proposed archive-based, archive-free
SA approaches with NSGA II obtained after twenty independent runs on
benchmark multi-objective functions: SCHN1, SCHN2, POL, QUAD, FON. 69

2.2 Comparative results (using ∆) of proposed archive-based, archive-free SA
approaches with NSGA II obtained after twenty independent runs on bench-
mark multi-objective functions: SCHN1, SCHN2, POL, QUAD, FON. . . . 70

2.3 Comparative results (using CT) of proposed archive-based, archive-free
SA approaches with NSGA II obtained after twenty independent runs on
benchmark multi-objective functions: SCHN1, SCHN2, POL, QUAD, FON. 71

2.4 Comparative results (using CT) of proposed archive-free SA approaches
with NSGA II obtained on benchmark multi-objective 0-1 knapsack: 10,
20, 30, 100, 1000 items. 77

4.1 Properties of layout examples. 106
4.2 Data in Test 1. 107
4.3 Data in Test 2. 107
4.4 Placement strategy comparison with fixed configuration sequence. 118
4.5 Placement strategy comparison with permuted configuration sequence. . . 118

5.1 Data of components in single-container shelter. 129
5.2 Activity factor of the single-container shelter. 130
5.3 Density of components. 131
5.4 Numerical results of solutions. 132
5.5 Data in shelter with big size components. 138
5.6 Density of components inside shelter. 139
5.7 Data of container in 2D model. 143
5.8 Data of components in storage zone. 144
5.9 Data of components in technical zone. 144
5.10 Data of components in operator zone. 144

13

LIST OF TABLES

5.11 Activity factor of the multi-container shelter. 145
5.12 Density of components in storage zone. 146
5.13 Density of components in technical zone. 147
5.14 Density of components in operator zone. 147

14

TABLE OF CONTENTS

I English version 19

Introduction 21

1 Literature review 25
1.1 Introduction . 25
1.2 Multi-objective optimization . 26

1.2.1 From single- to multi- objective problem 26
1.2.2 Resolution methods . 27
1.2.3 Archive analysis of multi-objective optimization 41

1.3 Handling convergence and diversity . 42
1.3.1 Convergence enhancement . 42
1.3.2 Diversity maintenance . 43

1.4 Layout problem definition and classification 44
1.4.1 Layout problem representation . 44
1.4.2 Layout problem formulation . 46

1.5 Layout optimization approaches . 49
1.5.1 Exact approaches . 49
1.5.2 Meta-heuristic approaches . 50
1.5.3 Construction and meta-heuristic hybrid approaches 52
1.5.4 Multi-container layout optimization 54

1.6 Conclusion . 55

2 Population-based simulated annealing for multi-objective problem 57
2.1 Introduction . 57
2.2 Multi-objective simulated annealing algorithm 57

2.2.1 Scalar simulated annealing algorithm 58
2.2.2 Archive-based simulated annealing 59
2.2.3 Archive-free simulated annealing . 62

2.3 Algorithm assessment . 64

15

TABLE OF CONTENTS

2.3.1 Continuous benchmarks and performance evaluations 64
2.3.2 Convergence resistance and improvement 72
2.3.3 Multi-objective 0-1 Knapsack problem 74

2.4 Conclusion . 78

3 Multi-objective layout problem model and interaction 79
3.1 Introduction . 79
3.2 Multi-objective layout problem model . 80

3.2.1 Component definition . 80
3.2.2 Geometrical and functional constraints 82
3.2.3 Multi-objective formulation . 85

3.3 Capacity index of layout problem . 86
3.3.1 Space generation . 88
3.3.2 Simulated annealing and constructive packing optimization 90
3.3.3 Capacity evaluation . 93

3.4 Interaction environment . 94
3.4.1 Interactivity with optimization problem 95
3.4.2 Similarity indicator for decision-making 98
3.4.3 Solution visualization tools . 101

3.5 Conclusion . 103

4 Multi-objective optimization of layout problem 105
4.1 Introduction . 105
4.2 Solving simple layout examples . 105
4.3 Constructive placement for layout generation 110

4.3.1 Placement strategy . 110
4.3.2 Accessibility analysis . 113
4.3.3 Constructive placement algorithm 117
4.3.4 Constructive placement strategy comparison 117

4.4 Optimization for layout problem . 119
4.4.1 Complexity analysis . 119
4.4.2 Layout optimization algorithm . 120
4.4.3 Comparisons of optimization results 121

4.5 Multi-container layout problem . 123
4.5.1 Boundary restrictions . 124

16

TABLE OF CONTENTS

4.5.2 Extension to multi-container layout optimization 125
4.6 Conclusion . 126

5 Industrial applications 127
5.1 Introduction . 127
5.2 Single-container shelter problem . 128

5.2.1 Problem description . 128
5.2.2 Problem formulation . 129
5.2.3 Capacity evaluation of the layout 130
5.2.4 Optimization results and similarity analysis 132

5.3 Single-container shelter with big size components 137
5.3.1 Problem representation and formulation 137
5.3.2 Capacity evaluation of the layout 139
5.3.3 Optimization results and similarity analysis 140

5.4 Multi-container shelter problem . 142
5.4.1 Representation of the shelter . 142
5.4.2 Problem formulation . 145
5.4.3 Capacity evaluation . 146
5.4.4 Boundary estimation of three zones 148
5.4.5 Optimization results and similarity analysis 148

5.5 Conclusion . 152

Conclusion and perspective 153

II French version 156

Introduction 157

1 État de l’art 159

2 Recuit simulé basé sur la population pour les problèmes multiobjectif 161

3 Modèle de problème d’agencement multiobjectif et interaction 163

4 Optimisation multiobjectif du problème d’agencement 165

17

TABLE OF CONTENTS

5 Applications industrielles 167

Conclusion et perspective 169

Bibliography 173

18

Part I

English version

19

INTRODUCTION

Problem statement

The layout problems are inherently multidisciplinary tasks. The applications can be
the space radiator design [1], the chip layout design [2], the vehicle layout design [3], the
architecture layout design [4], the manufacturing systems layout design [5] and so on.
Excellent layout design can effectively improve the system performance. The problems
are generally concerned with finding the optimal arrangements of components(i.e., equip-
ment, machines) inside the container(i.e., workshop, plant) to optimize the objectives and
respect geometrical and functional constraints. The most encountered components are
represented by rectangles with determined sizes [6] or determined area [7]. No component
overlap and no container protrusion are the common geometrical constraints, while ori-
entation or alignment is to define functional relationships between components [8]. The
functional constraints specify the requirements to ensure the system’s proper function-
ing. A majority of studies optimize, for example the mass distribution related to mobile
spacecraft layout [9], or the adjacency requirement [10] and the material handling cost
[11] in facility layouts.

Without optimization techniques, the layout problem of the industrial environment
cannot be solved successfully. However, the constraint satisfied region, the non-linear and
non-convex objective of layout formulation make the optimization complex in nature. The
constraints satisfied solutions can be obtained by penalizing the constraints violations in
the objective function or generated from the feasible designs domains [12]. The most
commonly encountered layout problems have multiple objectives that need to be opti-
mized. In fact, multi-objective problems can be solved by single-objective optimization or
multi-objective optimization techniques. The former case transforms multiple objectives
into an aggregation function using predefined weights, so there is a corresponding single
solution. In the latter approach, a multi-objective optimizer considers multiple objectives
simultaneously and aims to find a set of compromised solutions, known as the Pareto
front. Moreover, the optimization process can be used as decision support for the de-
signer. When faced with multiple choices under risk and uncertainty, the decision-maker

21

Introduction

may select the layout design to achieve the best compromise of system performance.

Thesis objectives

The thesis objectives are described below:

1. Understand the main difficulties confronted with layout optimization.

2. Design a generic layout model and interactive environment.

3. Develop an effective multi-objective layout optimization approach.

4. Extend the application to more complex layout problems.

Organization and contribution of the thesis

The following is a summary of our main contributions:

1. A population-based simulated annealing algorithm for multi-objective problem
without using an external archive is proposed. The dynamic selection preserves
the non-domination and distributed solutions in the population. It is a simple-
structured algorithm with the advantage of ease of implementation.

2. A new layout model addressing accessibility is presented. The novel layout model
consists of novel components definition where virtual spaces associated with solid
components represents the accessibility of component. Accessibility is an important
functional requirement in the field of layout design.

3. Two indicators are defined for layout optimization: capacity index measures the
optimization difficulty and provides a priori information on the layout optimization
feasibility; similarity indicator evaluates the similarity of obtained layout alterna-
tives and helps the expert select the final decision.

4. An efficient placement algorithm for the layout configuration construction is de-
veloped. The placement, not only guarantees non-overlap of components, but also
introduces the idea of connection path ensuring accessibility of components. It cir-
cumvents the difficulty arising from the designed constraints and generates more
alternatives than comparative optimizers.

5. A multi-objective layout optimizer that integrates accessibility analysis within
population-based simulated annealing method is proposed to conduct the opti-

22

Introduction

mization in the feasible alternatives that respect all constraints. It demonstrates
the effectiveness and portability of the proposed layout optimization algorithm.

The organization of the thesis is as follows:

Chapter 1 Provide a literature review of multi-objective optimization algorithms and
optimization of layout problems. It describes the fundamental concepts, the classical
optimization approaches and the archive effects, followed by details on strategies that try
to improve the convergence and diversity in multi-objective optimization. The following
sections introduce the layout problem, including the representation, the formulation, and
the optimization approaches.

Chapter 2 Study the population-based simulation annealing algorithm considering the
external archive for the multi-objective problem. We explained the general framework
and investigated the performances of archive-based and archive-free cases. The compari-
son is carried out on continuous and combinatorial benchmark instances with the known
multi-objective optimization method. In particular, the convergence resistance and im-
provement is further studied.

Chapter 3 Present a new layout model that takes into account component accessibility
and designed interaction tools for layout problems. First of all, the component definition,
design constraints and objectives are detailed. Then a capacity indicator is proposed
to evaluate the layout optimization difficulty. Finally, an interactive environment which
allows integrating mathematical optimization is presented, with a focus on similarity
analysis applied to obtained layout alternatives.

Chapter 4 Describe our contribution to multi-objective layout optimization that inte-
grates accessibility analysis within simulated annealing method. The accessibility analysis
is conducted by the constructive placement. The placement procedure and the placement
strategy comparisons are described in detail. After that, the ideas of multi-objective lay-
out optimization with the proposed multi-objective simulated annealing and placement is
presented whereas the optimization of multi-container layout is then detailed.

Chapter 5 Apply the proposed approach to several industrial layout problems and
discuss the optimization results. For each application, all the steps of the method are

23

Introduction

introduced: the problem description, the capacity analysis, the resolution of the problem,
as well as the similarity analysis for later interaction. A general conclusion can be deduced
on the optimization performance that efficient placement satisfying constraints will lead
to an effective optimizer and enable a truly interactive optimization process.

24

Chapter 1

LITERATURE REVIEW

1.1 Introduction

Mathematically speaking, optimization aims to find the solution, i.e. one or multiple
decision variables, by maximizing or minimizing the given function(s) while respecting a
number of constraints. Thus, two kinds of optimization problems are classified in the liter-
ature: single-objective and multi-objective optimization problems. In the past, determin-
istic optimization, for example, gradient-based, was the most commonly used technique.
Gradient-based methods start with an initial point and search near the solution space
based on the gradient information. It proves that gradient-based methods converge faster
compared to stochastic approaches but cannot easily solve non-convex cases. Stochastic
approaches are suitable for global search because they are able to explore and find promis-
ing solutions with reasonable computational time in the search region. These algorithms
demonstrate high performance for practical optimization applications in different areas
e.g. layout problems.

The Cutting & Packing (C & P) problem is common in the industry. A cutting
problem aims to maximize the number of placed components inside the container and a
packing problem refers to minimizing the number of used containers to place all com-
ponents. In a layout problem, the components representation, the objectives, and the
constraints may be different. For example, the components are geometrically connected
in a C & P problem whereas the components placement functional connected in a layout
problem. Layout problems refer to finding optimal arrangements of several components in
the container area. The main procedure of a layout problem usually starts with the prob-
lem representation, followed by problem formulation, then problem optimization. The
designer defines the problem description (data and requirements). The information will
be translated into problem formulation and output as a model solved by optimization
techniques. Various methods have been developed to solve layout problems, which can be
divided into two broad categories i.e. exact and meta-heuristic approaches. This chapter

25

Chapter 1 – Literature review

provides a comprehensive review of completed and under-explored research on the layout
problems and optimization.

1.2 Multi-objective optimization

1.2.1 From single- to multi- objective problem

In practical optimization applications, usually a single objective or multiple objectives
need to be optimized. In the single-objective problem, only one objective function is taken
into account (assuming minimization). It could be expressed as follows:


variable x = (x1, x2...xn)T

min f(x)
s.t. g(x) ≤ 0,h(x) = 0

(1.1)

where the objective f is a function of n-dimensional variable x, g(x),h(x) are inequality
and equality constraints. A global optimal solution achieves the minimum objective value,
as shown in Fig. 1.1.

Figure 1.1 – Single-objective single variable minimization f1(x).

The multi-objective problems involve more than one goals, which are usually conflict-

26

1.2. Multi-objective optimization

ing. The multi-objective problem is defined by:
variable x = (x1, x2...xn)T

min f(x) = f1(x), f2(x), ...fk(x)
s.t. g(x) ≤ 0,h(x) = 0

(1.2)

where f is the vector of k objective functions to minimize (or maximize). Single-objective
optimization aims to find the best solution that achieves the maximum or minimum
objective value. On the contrary, multi-objective optimization refers to finding multiple
compromised solutions rather than a single optimal solution, widely known as Pareto
front. Fig.1.2 illustrates a multi-objective problem of bi-dimensional variables and two
objective functions, where the feasible design space is projected onto the corresponding
objective space. Similarly, if one of the objectives aims to maximize, Fig. 1.3 presented
the possible shape of the corresponding Pareto front.

Figure 1.2 – Multi-objective bi-dimensional variable (left) minimization (f1(x), f2(x))
(right).

1.2.2 Resolution methods

In single-objective optimization, different optimization methods, including determin-
istic and stochastic, are available in the literature.

• Deterministic methods have no random behaviour and find the same solutions
under the same conditions, for example, gradient-based methods. They are reliable

27

Chapter 1 – Literature review

Figure 1.3 – Multi-objective bi-dimensional variable minimization (f1(x),−f2(x)).

but may converge to a local optimum (depending on the start point), as shown in
Fig. 1.4.

Figure 1.4 – Gradient-based optimization of single-objective single variable.

• Stochastic methods benefit from random behaviour and find different solutions,
even if they start from the same start point. The stochastic operators i.e. crossover
and mutation of genetic algorithms facilitate avoiding local optima. These meth-
ods include, among others, Simulated Annealing, Genetic Algorithm and Particle
Swarm Optimization:

Simulated Annealing: SA originates from the phenomenon of crystallization

28

1.2. Multi-objective optimization

and is the representative of individual-based approach [13]. It begins with
a random solution and generates the new neighborhood solution. Accept solu-
tions with decreasing cost, while accepting solutions with increasing cost with
probability defined by the cost and temperature, which enables uphill moves.
Fig. 1.5(a) illustrates the principle of SA optimization process.

(a) SA optimization (b) GA optimization

Figure 1.5 – SA and GA optimization principle.

Genetic Algorithm: GA is one popular population-based evolutionary method
[14]. Based on the concept of the best survival, it imitates the Darwinian
evolution mechanism to achieve sub-optimal solutions through crossover and
mutation operators. Fig. 1.5(b) illustrates the theory of GA optimization pro-
cess.

Particle Swarm Optimization: PSO is a swarm-based algorithm that simulates
the collective behaviour of birds in navigating and hunting [15]. It randomly
initializes multiple particles over the search space and dynamically adjusts par-
ticles motions based on itself and other particles to find the global best position
after a number of iterations.

Regardless of the differences between evolutionary and swarm-based techniques,
they both improve a set of solutions during optimization process. If an algorithm

29

Chapter 1 – Literature review

improves only single solution, it is called an individual-based algorithm. If a set of
solutions is improved, it is referred as a population-based algorithm. Individual-
based algorithms are advantageous due to the small number of function evaluations
and the simplicity of the overall optimization process. However, the probability
of local optima is very high. Population-based algorithms are capable of avoiding
local solutions and exchanging information about the search space.

The multi-objective problems could be resolved via single-objective optimization tech-
niques and multi-objective optimization techniques. Ideally, they aim to find multiple
solutions that are well-distributed and close to the theoretical Pareto front, namely di-
versity and convergence. To achieve these goals, various approaches have been developed
that could be classified into the followings groups:

• Based on scalarization

• Based on Pareto domination

• Based on decomposition

• Based on indicator

• Based on interaction

Based on scalarization

The scalarization transforms a multi-objective problem into an equivalent single-
objective problem. The weighted sum approach is one of the most intuitive ways to
perform the transformation. The formulation is given below:min ∑k

i=1 wifi(x)
s.t.

∑k
i=1 wi = 1

(1.3)

where wi is the weight assigned to each objective function fi, i = 1, 2, ..., k, which reflects
the designer’s preference. Varying the set of wi will generate different problem formulation,
that is, corresponding to different optimal solution. Considering the scale difference among
objective functions, it is necessary to use a non-dimensional transformation:

min ∑k
i=1 wif

′
i(x)

s.t.
∑k
i=1 wi = 1 f ′i(x) = fi(x)−fmin

i

fmax
i −fmin

i

(1.4)

30

1.2. Multi-objective optimization

where fmin
i and fmax

i are the minimum and maximum values of i-th objective function.
The normalization transforms the objective function into an interval between zero and
one. With enough weight combinations, it is possible to approximate the true Pareto
front with consistent weights modifications in each run. The equivalent single-objective
can be solved by any single-objective optimization algorithms. Some of the literature that
uses the weighted sum method is reviewed below.

Gradient method uses the negative gradient direction of the objective function as the
search direction, also known as the steepest descending method. Similarly for multi-
objective optimality, a necessary condition is defined using the objective gradients, widely
known as the Karush-Kuhn-Tucker (KKT) condition. A gradient-based method was de-
veloped to efficiently track the Pareto front in bi-objective problems [16]. There are two
steps: the first is named go-to-Pareto, which optimizes the weighted sum objective func-
tion to find one start point on the Pareto front; the second is called move-on-Pareto,
which moves a point on Pareto front to an infeasible solution reducing one objective while
maintaining the other objectives, and then minimizes the distance using the predicted
point that satisfy Karush–Kuhn–Tucker (KKT) condition as a good initial point to find
a new solution on Pareto front. In gradient-based optimization, there is high possibility
that stuck in a local optima because the gradient at any local optimal is zero.

A multi-objective genetic algorithm (MOGA) uses the weighted sum of objective func-
tion values to select individuals [17]. For each selection, the weights assignment to the
objective functions are random rather than constant. It is relatively simple and efficient,
but the performance is highly dependent on the weight distribution.

Similarly, a multi-objective simulated annealing (MOSA) was developed which trans-
forms the objectives into a scalar function [18]. The scalar function, defined by the
weighted sum objective function value, is minimized by the scalar SA optimizer.

The recently developed flower pollination algorithm (FPA) mimics the evolution of
flower pollination. It has been extended to solve multi-objective optimization problems
[19]. The proposed method is used to solve a set of multi-objective test functions, and the
weighted sum with random weights shows that the FPA with fast convergence is effective.

Nevertheless, a uniform distribution of weights rarely results in a good distribution of
solutions. For non-convex problems, continuously varying the weights may not necessarily
lead to a uniform distribution of points along Pareto front [20]. One multi-objective
problem is presented in Fig. 1.6. The set of compromised points forms the Pareto front
where the objective minimizes (f1(x),−f2(x)). And it may fail in finding the non-convex

31

Chapter 1 – Literature review

Figure 1.6 – Example of weighted sum approach (f1(x),−f2(x)).

Pareto front (in red) in the objective space.
ε- constraint method was presented as another single-objective optimization by con-

sidering the rest objective functions as constraints [21]. The general formulation is:
min fi(x)
s.t. fj(x) ≤ εj, j = 1, 2, ..., k, ∀j 6= i

(1.5)

where εj is a pre-defined parameter. It expresses the fact that the j-th objective func-
tion value should be smaller than εj during the optimization process. Fig. 1.7 shows a
two-dimensional representation of the ε-constraint method. The combination of selected
objective and constraints will give different optimal solutions. It can be used for both
convex and non-convex problems. The Pareto front can be obtained by systematic vari-
ation of εj. However, improper εj can result in a problem formulation with no feasible
solution.

Thus, an alternative approach divided the objectives into two groups: control group
contains only one selected function, performance group collects the rest [22]. The proposed
method is based on a priori information, i.e. which objective should be selected as a
control function. To apply the proposed method, the performance functions, is replaced
by the KKT necessary condition. The single-objective problem optimizes the control
function over the Pareto set, which results from the optimization problem consisting of
the performance functions group.

Many researchers implemented scalarization methods to solve multi-objective prob-

32

1.2. Multi-objective optimization

Figure 1.7 – Example of ε−constraint method min(−f2(x), s.t., f1(x) ≤ ε1).

lems. Since these approaches integrate a priori information on the objective function, the
obtained solutions are highly preference-dependent. An incorrect formula may lead to
an invalid search region. Multi-objective problems require multi-objective optimization
techniques, even though it is challenging to accurately obtain high-quality Pareto front.

Based on the Pareto domination

To overcome the difficulties arise from the scalarization methods, researches turned to
developing alternative approaches. One classic method is based on the Pareto domination,
where a set of solutions is moved to the Pareto front. Assuming that all objective functions
are minimizations, the domination can be expressed as: ∀i = 1, 2, ..., k, fi(x′) ≤ fi(x)

∃j = 1, 2, ..., k, fi(x′) < fj(x)
(1.6)

In fact, f(x′) dominates f(x) if f(x′) is no worse than f(x) for all objectives and
f(x′) is better than f(x) for at least one objective. For instance, a multi-objective
minimization considers two objectives (f1,−f2) in Fig. 1.8. It is assumed that there is
no prior information on objective importance. Point B dominates point C where point
B is better than point C in both objectives. And point A and B are non-dominated to
each other where point B is better than point A in f2 but is worse in f1. All these non-
dominated solutions are known as Pareto front. Pareto domination optimization methods
approach the entire Pareto front by evaluating the multiple objectives directly.

33

Chapter 1 – Literature review

Figure 1.8 – Multi-objective minimization (f1(x),−f2(x)).

Strength Pareto evolutionary algorithm (SPEA) stored the non-dominated solutions
externally [23]. A clustering method maintains the diversity and ensures that the number
does not exceed the archive size. The fitness assignment is determined by the number of
dominated solutions and ensures that the search direction is towards the non-dominated
regions.

Multi-objective particle swarm optimization (MOPSO) used the external repository
to keep non-dominated solutions [24]. The theoretical basis of this method is the same as
the PSO method, with the addition of repository and dominance concepts. In the swarm,
each particle has a corresponding position and velocity. Each particle changes its position
according to the velocity deduced from the best particle position and the leader of the
repository member.

Multi-objective salp swarm algorithm (MSSA) implemented a mathematical model
to update the position of leading and following salps [25]. A repository was designed
and applied to preserve non-dominated solutions obtained so far and the food source
was chosen from the non-dominated solutions with the least number of neighborhood
solutions.

A multi-objective simulated annealing (MOSA) was developed using domination inside
state difference probabilities [26]. The algorithm compares the domination between the
current solution and new solution, the new one is accepted if the new solution dominates
the current solution. This is similar to the acceptance mechanism of a smaller objective
function value in single-objective SA. A number of independent individuals are used to

34

1.2. Multi-objective optimization

search for Pareto front without exchanging of information between them.
One presented a multi-objective simulated annealing based on dominance amount [27].

During optimization process, an archive is applied to keep all solutions discovered as yet.
For any new solution, compare it to the archive members. If some members in the archive
are dominated by the new solution, replace them with the new solution. Thus, the size
of archive is varying while the population size of GA is constant. Besides, the energy
of a solution is measured using the amount of solutions that dominate itself. However,
if the archive has few members, the comparison to the archive becomes less useful. To
overcome the issue, an attainment surface is created by adding some temporary states to
the archive. An attainment surface is defined in the objective space containing the points
dominated by the elements of the archive members. The domination amount makes
the search gradually proceed to the region where the global optimal solutions exist, and
ensures that it is likely to jump out of local search.

Non-dominated sorting genetic algorithm-II(NSGA-II) was implemented based on fast
non-dominated sorting and elitist selection techniques in multi-objective optimization [28].
The fast non-dominated sorting strategy is designed to assess the domination of individual
in the population. Based on the individual’s dominance, the population is divided into
different subgroups where all individuals are ordered in accordance with the degree of
non-domination: the rank of the first non-dominated solution is equal to 1, then the rank
of all non-dominated solutions in the remaining solutions is equal to 2, the process is
repeated until all individuals are assigned to a rank, as shown in Fig. 1.9. It is effective to
assess the quality of each individual. In the population-based algorithm, the individuals in
population evolved with generations. Additionally, when it comes to selection within the
same ranked solutions, the NSGA-II computes the crowding distance on the relevant front
to measure the solution distribution. Solutions with higher crowding distances values are
preferred because they are in less visited areas.

Another nature inspired evolutionary algorithm, on the basis of the relationship be-
tween different organisms, lives and survives together, named symbiotic organisms search
(SOS) [29]. It is parameterless and requires initialization of population and number of
generation. It has three stages of mutualism, commensalism and parasitism. The recently
developed SOS has used fast non-dominated sorting to solve multi-objective problems [30].

Several cooperative co-evolutionary frameworks have also been involved. A two-archive
evolutionary algorithm C-TAEA adopts two collaborative archives at the same time in
the constrained multi-objective problem [31]: one, called the convergence-oriented archive

35

Chapter 1 – Literature review

Figure 1.9 – Multi-objective minimization (f1(x),−f2(x)).

(CA), mainly designed to push the population to the Pareto front using the fast non-
dominated sorting; the other, named the diversity-oriented archive (DA), primarily in-
clined to preserve the population diversity and explore the under-exploited area.

Multi-objective optimizations based on Pareto domination are domination-oriented
fitness assignments rather than objective-oriented fitness assignments. They have demon-
strated high performance on problems of two or three objectives. Nevertheless, if the
problems have more than three objectives to optimize, their performance degrades.

Based on decomposition

The multi-objective problem can be divided into multiple scalar optimization problems
and optimized collaboratively.

A vector evaluated genetic algorithm (VEGA), which decomposes the population
into disjoint sub-populations governed by each objective function, then mixes the sub-
population together, followed by traditional crossover and mutation operators [32]. It is
able to find the extreme solutions (in red) but fails to generate the all points in the Pareto
front, as shown in Fig.1.10.

Multi-objective evolutionary algorithm based on decomposition (MOEA/D) divides
the problem into several scalar sub-problems [33]. In each generation, it creates the new
solution based on several of its neighboring sub-problems and uses the best solutions found
so far for each sub-problem to form a new population. This is the main difference between

36

1.2. Multi-objective optimization

Figure 1.10 – Example of VEGA minimization (f1(x),−f2(x)).

MOEA/D and a pure scalarization approach. Among them, the most popular aggregation
methods are weighted sum (is not applicable for non-convex), Tchebycheff (works for any
shape but has poor distribution), and penalty-based boundary intersection approaches
(balances convergence and diversity, but relies on weight vectors). The neighborhood
relationship between the sub-problems is measured using the distance between the weight
vectors. And non-dominated solutions found so far are preserved in an external population
(EP).

A number of MOEA/D based approaches have been studied, for example, the NSGA-
III evaluates the solution distribution using uniformly allocated reference points [34].
Solutions are linked with the closest reference point, and solutions associated with the
less visited reference points are preferred. Considering the convergence and diversity, the
augmented penalty boundary intersection is applied on each non-dominated fronts during
the selection phase [35].

MOEA/D does not use the concept of Pareto dominance to select solutions, where
a solution quality is evaluated by the predefined scalarization function. NSGA-III relies
on the decomposition idea to preserve population diversity, where the convergence is
governed by Pareto dominance. What’s more, a multi-objective evolutionary algorithm
based on dominance and decomposition (MOEA/DD) was developed [36] to enhance the
performance of MOEA/D by combining dominance relationships and decompositions.

Multi-objective optimization based on decomposition approaches transform the multi-
objective problem into several single-objective problems. The single-objective problem is

37

Chapter 1 – Literature review

designed for a different part of the Pareto front. They are applicable for any scalariza-
tion methods because of the flexible algorithm framework. However, they need a priori
information on where the Pareto front is located in objective space.

Based on indicator

Unlike the conventional Pareto domination multi-objective optimization, performance
indicator-based algorithms are theoretically well-supported alternatives. They adopt the
performance indicator(s) to evaluate the convergence and diversity of solutions and di-
rectly assign fitness value to each individual.

Various indicators have been studied in previous researches. Hypervolume [37] is
a widely used performance indicator. It quantifies the convergence and distribution by
calculating the area/volume dominated by the provided set of solutions about the reference
point. Typically, the indicator assigns better (higher) values to approximations of the
Pareto front that dominate more objective vectors than to approximations that dominate
fewer objective vectors. Furthermore, it is shown that given a reference point and a limited
search space, finding the Pareto optimal set is equivalent to maximizing hypervolume
value.

A hypervolume indicator maximization method was developed by searching along
its gradient ascent direction relative to design variables [38]. The Pareto front is the
geometric location of the point where the gradients of the objective function are collinear
and opposite. To substitute zero sub-gradient of the dominated point, five methods were
designed to guide these candidates to the Pareto front and the points turn into non-
dominated. Thus, hypervolume maximization can approach the Pareto front and increase
the diversity of points.

A general indicator-based evolutionary algorithm (IBEA) is proposed that uses the
hypervolume indicator for individuals comparisons and corresponding fitness assignments
[39]. The fitness of a solution is designed using the sum of the indicator values relative to
pairwise comparisons with all other solutions in the population and should be maximized.
It is confirmed that fitness proposal conforms to the Pareto dominance relation.

A s-metric selection evolutionary multi-objective optimization algorithm (SMS-EMOA)
aims to cover the largest hypervolume with limited number of points [40]. The ranking is
performed using the non-dominated sorting strategy. In addition, the hypervolume is used
to select individuals in the population. Individuals who contribute the least hypervolume
to the worst-ranked front should be abandoned.

38

1.2. Multi-objective optimization

In addition to the hypervolume-based optimization, a dominance-weighted uniformity
(DWU) heuristic was designed, which considers the population distribution in the design
space and maintains the population convergence in the objective space [41]. The DWU
can be integrated into any multi-objective optimization approach as a selection criterion.

Generational distance (GD) is a classical convergence indicator [28]. For each point
of obtained solutions, GD quantifies distance between the point and the closest point
in the true Pareto front. Recently, the authors developed a generational distance-based
multi-objective evolutionary algorithm (GD-MOEA) [42]. In each generation, GD-MOEA
uses the non-dominated solution set as a reference set and computes the fitness of the
dominated individuals.

A novel multi-objective evolutionary algorithm used two-archive (TriMOEA-TA&R),
i.e. diversity archive and convergence archive [43]. Decision variable analysis leads the
search direction, and a niche-based clearing technique promotes diversity of the decision
space. At the same time, the diversity archive uses a clustering technique to ensure
diversity of the objective space. The convergence index is computed by summing the
objective values rather than Pareto domination, boosting the selection pressure towards
Pareto front. In the end, recombining solutions in the diversity and the convergence
archives to have a larger number of Pareto optimal set.

The indicator-based methods employ the performance indicator to optimize the ob-
tained solution for desired properties. It has been demonstrated promising results in
multi-objective optimization, especially with quite large numbers of functions.

Based on interaction

The methods described above are based on a priori preferences or a posteriori prefer-
ences. The former relies on the pre-defined parameters to convert the original problem
into single-objective problem. While the latter aims to approach the entire Pareto front.
Once the optimization finishes the optimization process, the expert could select the final
solution among the obtained solutions. Apart from that, an expert could modify problem
formulation and optimization criteria whenever needed for interactive optimization. Ul-
timately, the interaction aims to find more preferable optimal solutions using the expert
intelligence.

In order to identify promising areas, the Pareto navigator was designed to help the
decision maker to explore the Pareto front [44]. The interactive learning-oriented method
creates a polyhedral approximation of the Pareto front using a set of optimal solutions.

39

Chapter 1 – Literature review

Instead of computing the entire Pareto optimal solutions, it explores the Pareto front
interactively. Starting from the current Pareto optimal solution, the decision maker can
decide which objective is more important than the other in the design, augmenting that
objective at the expense of sacrificing currently less important objectives.

In some complex applications, it is challenging to seek the entire Pareto front with
good convergence and distribution during optimization without interaction. Instead of
specifying the preferences at the beginning of the problem description, the expert knowl-
edge helps the search procedure follow up their preferences. The interaction can take
place after a complete run or during the process.

An interactive optimization strategy based on GA combined with separation algo-
rithm was proposed to solve multi-objective problem [45]. It may be not easy to express
objectives explicitly using numerical values. So the interaction involves two steps: the
first is the interaction of the expert to select feasible solutions in the initial population of
GA; the second is that designer can interact in the environment and modify the obtained
solutions locally to improve their performances.

A multi-objective evolutionary optimization algorithm using interactive preference,
which applies three steps of ‘partitioning- updating-tracking’ to interactively express pref-
erences and consistently control interested area according to human cognition process [46].
The decision maker’s preference region is expressed and used to lessen the angle-defined
feasible objective space before the evolution of nadir point. Then, the preferences of
decision-maker are traced and updated dynamically based on satisfied alternatives in
the process of evolution. At last, individuals are selected and assessed according to the
preference regions in the population.

The hybrid approach developed in the study includes an interactive GA which com-
bines two different niche approaches to enable interactions between the expert and the
algorithm [47]. Incorporating niching methods into the approach preserves diversity and
avoids offering designers similar solutions. However, this approach requires designers to
directly intervene in the optimization algorithm, conducting the search direction to suit
their preferences. To avoid fatigue, the designer evaluates each of the representative
alternatives in the population.

Moreover, an interactive method was proposed for combining mathematical optimiza-
tion with expert in the architectural floorplan layout [48]. Interaction enables the designer
to dynamically change the optimization formulation by modifying, adding and removing
elements, objectives and constraints. The preference can be assessed by solutions com-

40

1.2. Multi-objective optimization

parisons. Pairwise comparisons of solutions can be applied to tell whether one solution
is better than another, or if they are irrelevant or incomparable. Another approach is
to cluster a set of solutions into groups where solutions in each cluster are irrelevant or
incomparable. Comparing solutions needs relatively less cognitive burden. However, the
burden on experts may increase with the number of solutions.

These interactive approaches are able to search for more preferable solutions with-
out necessarily expressing explicitly of the actual preference. Supposing that there are
multiple criteria to be optimized, the interactive techniques can greatly reduce the com-
putational efforts because it is not significantly affected by the Pareto set dimension.

1.2.3 Archive analysis of multi-objective optimization

Unlike the single-objective optimizer, the multi-objective optimization process should
move towards the true Pareto front by finding a set of compromised solutions. Thus, a
multi-objective optimizer could either preserve the ’good’ solutions in an archive, or evolve
the ’good’ solutions in the population. In summary, the reviewed multi-objective opti-
mization approaches could be classified into two categories: individual-based algorithms
(e.g. SA) with a single individual; population-based algorithms (e.g. swarm intelligence
(PSO, SSA); evolutionary algorithms (e.g. FPA, GA, SOS)) with multiple individuals in
a population. Population-based algorithms are exploration-oriented and can achieve bet-
ter diversification across the search space, and they are more suitable for multi-objective
applications.

It is worth noting that an external archive is usually employed to preserve elite can-
didates found during the multi-objective optimization process. For examples, the pareto
domination based, such as SPEA, MOPSO, MSSA, MOSA, MOEA/D, and many others,
are adopted with external archives. These researches have demonstrated that such elite
mechanism could guarantee the monotonically non-degenerate performance. It has also
been proved that create new solutions with the help of the external archive can improve
the diversity of population. Various archiving approaches have been developed to improve
the performance of a multi-objective algorithm but with some drawbacks. One main issue
is related to the time. To save an alternative into the external archive, it is necessary
to check the dominance quality relative to all the archived solutions. The processing
time will grow exponentially as the archive size increases, which leads to serious compu-
tational efficiency issue. To overcome the shortcoming, various strategies are proposed
that allow efficient searching for elite solutions of the entire archive, e.g., the dominated

41

Chapter 1 – Literature review

tree [49]. However, as the archive size increases, the time complexity of these methods
remains prohibitively high. Therefore, the archive-free algorithms such as SOS, NSGA-II,
etc, are commonly applied to address these issues. They find the final population as an
approximation of the Pareto front.

1.3 Handling convergence and diversity

The main goals of multi-objective optimization are to be as close as possible to the real
solution and as distributed as possible, that is, convergence and diversity. This section
summarizes the existing strategies in multi-objective optimization algorithms to improve
the convergence based on the dominance relation and to preserve the diversity of the
solution set.

1.3.1 Convergence enhancement

In multi-objective optimization, the number of non-dominated points is small in the
beginning, namely convergence stage. When non-dominated solutions accumulate and
continuously move on the true Pareto front, the diversity phase is invoked where the
solution selection becomes strongly dependent on the diversity measurement. In this
case, the approximate Pareto front is well distributed in objective space, but convergence
of Pareto front to the true Pareto front becomes progressively worse. A lot of research
has been done o improve the convergence by modifying the Pareto dominance relation
and developing new selection criteria.

— Fuzzy- based Pareto optimality quantifies the degree of domination [50]. The
number of objectives that one alternative is smaller or larger than the other is
often considered as the criterion for determining the dominance relationship.

— Controlling dominance area of solutions (CDAS) increases the selection pressure
by expanding the area of dominance [51]. CDAS has difficulties in approaching the
entire Pareto front, thus self-CDAS is proposed to adjust the expansion angle of
different solutions [52].

— Grid-dominance such as ε-dominance [53], is a relaxed form of the Pareto domi-
nance because it makes it easier for one individual to dominate another.

— θ-dominance [54], defines a set of weight vectors and leads the solutions along the
weight vectors to converge and preserve a uniform distribution.

42

1.3. Handling convergence and diversity

— Strengthened dominance relation (SDR) [55] is based on niching strategy. It keeps
the alternative with the best convergence measurement in each niche to balance
the convergence and diversity.

In addition, there are algorithms that combine the local and global optimizers, such as
MOEA/D-SQA [56]. To improve the convergence of the global optimizer MOEA/D, a
simplified quadratic approximation (SQA) is adopted as the local search operator.

1.3.2 Diversity maintenance

Diversity maintenance is invoked to promote the spread of solutions while approaching
to the points near the Pareto front. This can be done using clustering or distance criterion.

— Neighborhood cluster gathers similar solutions together, and only the solutions
within the same cluster have the competitive relationship [57]. The neighborhood
of a solution is defined by the set of points within a neighborhood distance centered
on that solution at a given neighborhood distance.

— Fitness sharing is a classic niching method for punishing the crowded solutions [58].
In fitness sharing approaches, the number of individuals in the same neighborhood
affects the fitness of individual. The more individuals in the neighborhood, the
smaller the fitness assignment, thereby degrading the number of individuals within
crowded niche.

— Crowding distance is a distance-based selection scheme [28]. In crowding methods,
one individual competes with its close neighbors. The solutions are firstly sorted
in each objective dimension. Then, for each dimension, measure the distance be-
tween the solution and the two closest neighbors, and assign the normalized sum
of the resulting value as its crowding distance value. At the same fitness level, the
individual in the sparse region is preferred.

— Reference point is a new diversity-maintaining operator, which constructs a hyper-
plane in each generation [34]. It is developed using the perpendicular distance from
the solution to several predefined reference lines. The multiple reference points are
applied to guide the population well-distributed among each other during the evo-
lution. The niche count of each reference point is relative to the number of its
associated individuals in the population .

Multi-objective optimization algorithms aim to find a good approximation of the opti-
mal compromise among the several objectives. A majority of studies only research on
the performance of solutions in the objective space. However, from the decision process

43

Chapter 1 – Literature review

perspective, a good distribution of solutions in the decision space has important implica-
tions. On the one hand, some multi-objective problems have different Pareto sets with
the same objective values, namely multimodel multi-objective problems. On the other
hand, points that are very close in the objective space may have large difference solutions
in the decision space. In practical applications, finding a set of well-distributed solutions
may be more important than finding a set of similar optimal solutions. Thus, it is neces-
sary to enhance the decision space convergence that is difficult to achieve in the existing
optimization algorithms.

1.4 Layout problem definition and classification

There are countless applications for optimization. Every problem has a potential to
be optimized. In recent years, research on layout problems studies has been intensified.
Current research falls into several application areas, including manufacturing systems
(assembly lines, fabrications) and service industries (hospitals, airports). The most com-
monly encountered layout problems are static, where the layout does not change over
time; while dynamic layout problem has to be optimized over multiple epochs [59].

1.4.1 Layout problem representation

Typically, the layout problem is related to the location of components (e.g., equip-
ments, machines, departments) in the container (e.g., workshop, plant). The layout prob-
lem representation could be classified according to the configurations. The layout could
be one-, two-, or three-dimensional problem.

1. The one-dimensional configuration leads to row layout problem. Row layout prob-
lem concerns with the arrangement of a given number of components (the assign-
ment of components to rows, and the locations of components within each row),
each of a given length of components next to each other along multiple rows, such
that the total weighted center-to-center distances is minimized [60].

2. The two-dimensional configuration involves in the planner space, for example, the
rectangular environment [11]. In this case, not only the position of each component
are optimized, but also the dimension of each component. The placement should
satisfy no component overlap and no container protrusion.

44

1.4. Layout problem definition and classification

3. The three-dimensional configuration is related to the placement on the x-y-z axis.
The architecture designs are usually represented by a set of cuboids, and the addi-
tional dimension makes the constraints evaluation more difficult. Thus, the three-
dimensional configuration is usually simplified as two-dimensional problem (height
restrictions) [61] or n-two-dimension problem (staked two-dimension) [62]. Indeed,
the three-dimensional configuration is rarely studied in scientific literature.

We present a wide range classification of layout problems according to the component
and container representations in the followings.

Components A component can be a machine tool, a work centre, a warehouse etc.
The components may have regular shapes (e.g., rectangle, circle) and irregular shapes
(polygons). To simplify the problem formulation, the components are usually represented
by equal-area rectangles with determined sizes [6] or unequal-area rectangles with unde-
termined dimensions [7]. An undetermined dimension component may be also represented
by its area, or its aspect ratio, named unequal-area component [63]. If the aspect ratio is
fixed, it corresponds to the fixed shape block. Component Properties include: component
number, dimension, mass and so on. One van design example is shown in Fig. 1.11, it
consists of a set of equipments such as desks, beds, cabinets and so on.

Figure 1.11 – Van layout design representation.

Containers Depending on the number of containers, layout problems can be divided
into single-container and multi-container groups. Most research has focused on placing
components on a single container. Nevertheless, the layout design with multiple containers

45

Chapter 1 – Literature review

has always been a hot and challenging point. Container loading problem gives rise to the
real-world problem in which components are to be placed on two or more containers, as
shown in Fig. 1.12(a). Multiple container problems have a variety of applications that can
be distinguished as: multi-row problems concern with assigning and placing components
in the design of application-specific integrated circuits [64]; multi-compartment problems
deal with components that are placed into the space but have to be separated from each
other in the engine layout design [65] and the naval ship design [66]; multi-floor problems
consist of horizontal and vertical component movement in the architectural design [67],
as shown in Fig. 1.12(b). In these cases, the container(compartment) size is specified.

(a) Packing (b) Ship design

Figure 1.12 – Multi-container problem representation.

Nevertheless, if the sizes can vary, then determining them is also part of the layout design,
i.e. the adaptive internal compartment design of container ship [68].

1.4.2 Layout problem formulation

The variables, the objective functions and the constraints form a complete problem.
The formulation could be handled through either mathematical programming models or
other heuristic methods.

1. Mathematical programming models include quadratic assignment problem (QAP),
mixed integer programmings (MIP), Linear programming (LP), nonlinear program-
ming (NLP), integer programming (IP), mixed integer nonlinear programming
(MINLP) etc.

2. Heuristic methods include flexible bay structure, slicing tree structure, sequence-
pair representation, location/shape pair representation, graph-pair representation

46

1.4. Layout problem definition and classification

and so on.

In the layout problem, the variables can be either discrete or continuous. In the discrete
formulation, the space is divided into identical grids. And the continuous allocation
problem can be handled through mathematical programming model, that is QAP [59]. In
QAP formulation the components are assigned to a location and at least one component
to a particular location [69]. The name was so given because the objective function is a
second degree function of the variables and the constraints are linear. And constructing
irregular shapes is possible here.

Discrete layouts are not suitable for representing the exact position of components in
the plant and cannot model specific constraints as the orientation of components. In such
case, a continuous representation is found to be more appropriate. Continuous formulation
takes the dimensions and orientation of components as variables such that only regular
shapes could be achieved. The component placement is evaluated continuously and can be
formulated as a MIP problem. A MIP model consists of the objective function of a mixture
of integer and non-integer decision variables that are constrained by a number of equalities
and inequalities. One of the first MIP formulations of the layout on the continuous plane
was presented [70]: in the proposed model, binary variables specify the relative location
of each component pair and ensure that they do not overlap. In addition to the QAP and
the MIP, there are other programming formulations for the layout problem. An IP model
is a mathematical optimization in which all of the variables are integers [71]. LP is a
technique for optimizing a linear objective function, which is subject to linear constraints
[72]. On the contrary, the problem is called an NLP if the objective function is non-linear
and/or the feasible region is determined by nonlinear constraints [73], and the similar idea
in MINLP [74].

In mathematical programming based methods, the dimensions and/or position of the
components are represented by variables. The mathematical programming methods can
easily incorporate specific description of the problem and perfectly reflect the real-life
situations. Layout problems are continuous in nature while using discrete formulation
can reduce the search complexity. A flexible bay structure is a continuous layout where
the components are located in parallel bays with flexible widths. This special case of
the layout problem occurs in manufacturing facilities [75]. The bay structure is similar
to the row structure in row facility layout problem (FLPs). Whereas in row FLPs, the
rows and components are of equal and fixed height, the width of each bay depends on
the total area of the components in that bay. The slicing tree structure organizes a lay-

47

Chapter 1 – Literature review

out into a tree structure which is an encoding representation. It consecutively divides
the space into horizontal and vertical directions. The encoding vector usually contains
the component sequence, the slicing sequence and the component orientation [76]. The
sequence-pair structure is used to represent the relative positions of departments in a
block layout [77], which determines the relative locations of the components in an or-
dered sequence of indices of components. It naturally eliminates inconsistent assignments
of binary decision variables used to represent relative components locations. Unlike the
sequence-pair representation, the location/shape representation specifies the binary deci-
sion variables and facilitates to integrate the unequal-area component shape and relative
position information [78]. A graph-pair representation encodes the relative locations of
components, one of the graphs represents the horizontal separation of the components,
and the other represents the vertical separation [79].

The formulation of problem uses either single-objective or multi-objective. Indeed,
a majority of studies work on single-objective problem, for example minimizes material
handling cost [80] or maximize adjacency requirement [10]. However, in reality, there
are multiple requirements, either quantitative or qualitative objectives, at the same time.
Generally, quantitative objectives aim to minimize the sum of material flow between facili-
ties based on the distance functions, activity costs, space utilization and mass distribution.
Qualitative objectives aim at placing facilities that utilize common materials, or utilities
adjacent to each another, while keeping facilities separate for safety, noise, or cleanliness
[81]. Thus, layout problems fall into the category of multi-objective problems. One ex-
ample can be found in minimizing the occupied room area and the material handling cost
[82]. A GA based approach was used to minimize departmental material handling cost
and also to maximize closeness rating in a multi-floor layout problem [83].

In most real-world applications, the main constraints are the geometrical constraints
between components. No component overlap and no container protrusion are the common
geometrical constraints, while orientation or alignment is to define functional relationships
between components [8]. The functional constraints specify the requirements to ensure
the system’s proper functioning [84]. The accessibility to components is one particular
layout functional constraint. The constraint exists in many real-world applications while
the mathematical expression is still under research. A functional part should be acces-
sible for maintenance in mechanical assemblies design. Keep enough whitespace in cell
design to ensure pins accessibility [85]. In facility layout design, space located around
the facility guarantees the facility is accessible from the entrance. The accessibility is

48

1.5. Layout optimization approaches

the required available space attached to the component and ensures that the component
functions properly [86]. Considering the accessibility requirement, the designer can insert
the expertise in problem descriptions or integrate the accessibility constraint in problem
formulations. Identical rooms are formed into one or two rows to ensure a corridor can
access the rooms in pods design [87]. The intersection constraint is applied to force the
room interaction and ensure access [67]. The intuition-inspired way limits innovation of
finding solutions. Therefore, one can characterize the accessibility as one objective in
layout optimization [86]. However, introducing the objective may increase the difficulty
and computational cost. As far as we know, the accessibility analysis in layout problems
has not been developed maturely yet.

1.5 Layout optimization approaches

The discontinuous constraint satisfied region, the non-linear and non-convex objective
of layout formulation make the optimization complex in nature. Finding optimal layouts
is beyond the reach of exact optimization techniques, except for small-sized cases [88,
89, 90]. When the problem scale is large, it is not applicable due to computation and
memory capability. Thus, meta-heuristic and construction algorithms have been proposed
to provide sub-optimal solutions [91, 92, 93, 94].

1.5.1 Exact approaches

The exact algorithm considers the entire solution space and guarantees the optimality
of the final layout solution. Exact methods can find optimal solutions for small-sized
layout problems. Dynamic programming is a method for solving an optimization problem
by solving smaller sub-problems recursively, but it has an exponential complexity. Branch-
and-bound algorithm is widely used for highly constrained problems.

An integer formulation with branch-and-bound approach was proposed for space plan-
ning [95, 96]. In the first step, the dynamic space ordering (DSO) algorithm is applied
to enumerate feasible topological solutions according to the degree of constraints, and
then in the second step, the global optimum of each topological solution is determined
by the branch-and-bound method. The more constrained the problem, the faster the
branch-and-bound method.

Radar search pattern optimization is to cover a set of grids with a minimum number

49

Chapter 1 – Literature review

of available covers. A branch-and-bound method was proposed for radar search patterns
[97]. The space of sub-collection of covers can be represented as a finite binary tree,
where each node represents the value choice of an integer variable. It is computationally
infeasible to explore the entire tree in reasonable time. However, by solving its linear
relaxation, the lower bound of the node sub-tree best solution can be estimated at each
node. Knowing their lower bound makes it possible to avoid exploring certain subsets.

A branch-and-bound algorithm is developed to minimize the material handling cost
in continuous facility layout problem [88]. The branch-and-bound algorithm implicitly
enumerates all facility layouts via a permutation tree and prunes inferior combinations of
sequence-pairs early in the search. The sequence-pair representation defines the relative
position in a complete layout. It dramatically reduces the search space before obtaining
the globally optimal layout.

The biggest limitation of exact approaches is that they cannot optimally solve large
layout problems due to the computational intractability of the problem. It is not appli-
cable for resolving layout problems with more than 20 facilities in reasonable time [98].

1.5.2 Meta-heuristic approaches

Since exact approaches are not suitable for large-scale problems, numerous researchers
have relied on meta-heuristic methods. Those methods are representatives of layout opti-
mization, searching through the huge search space based on objectives values rather than
higher order information, such as gradient and Hessian. Unlike exact approaches that can
find optimal results, meta-heuristic algorithms can provide good suboptimal solutions.
This kind of methods include, tabu search, PSO, SA and GA and so on. The followings
are dedicated to those algorithms designed for solving layout problems.

The previous study optimized dynamic facility layout problem (DFLP) with equal de-
partments by applying data envelopment analysis (DEA) with consideration of multiple
specific objectives which are cost, adjacency, and distance requested [99]. In the proposed
algorithm, the initial layout is first created by arranging departments into multiple peri-
ods, and then its neighborhood is generated by the pair-swap and reverse strategy. The
most ideal efficient layout is obtained by applying tabu search heuristic of diversification
strategy including “frequency-based memory,”“penalty function,” and “dynamic tabu list
size” to the DEA model.

A multi-objective PSO is applied to the layout of wireless sensor networks and to find
the sensor locations to optimize the coverage and lifetime [100]. The coordinates of the

50

1.5. Layout optimization approaches

sensor nodes are considered as design variables. It maintains an elite archive and uses
the archive members to dynamically guide the particle swarm to find more and better
non-dominated solutions.

Pareto simulated annealing (PSA) is designed for intelligent exploration instead of
evaluating all discrete search space of cabinet configurations [101]. It aims to determine
the optimal arrangements of cabinet components with consideration of the total wire
length and heat convection in the control cabinet. The probability of accepting a poor
solution is defined by the difference of the scalar objective function value and the temper-
ature. During the iterative search process, the non-dominated solutions are stored in an
archive, and the weights of objectives are varied to explore the entire set of non-dominated
solutions.

Meta-heuristic algorithms are widely used to solve layout problems. However, they
converge slowly to the Pareto front. Thus, a hybrid algorithm that integrates local search
is usually developed to improve performance.

A modified GA was applied to optimize the material handling cost of the layout,
where the position and rotation of components are encoded into the chromosome [102].
If the rotation of the block is considered, the problem is formulated as a mixed-integer
problem. However, the algorithm proposed a rotation operator that transformed the
mixed-integer case into a non-integer problem. This also reduced the number of variables
in the optimization problem by a third. Besides, the local optimal solution is further
improved using the gradient based local search techniques.

A hybrid GA and LP approach uses the relative location/shape encoding scheme to
optimize the material flow in unequal-area components on a continuous plane [78]. The
location/shape encoding scheme converts the MIP into LP, where GA determines the
relative position and LP optimizes the actual position and shape.

An adaptive variable neighborhood search and GA optimizes the material handling
cost and closeness rating score simultaneously [81]. A layout is created using the slicing
sequence in the chromosome. If the similarity exceeds the pre-defined threshold, the
genetic algorithm will use a local search of variable neighborhood search. The similarity
coefficient is defined by the difference between the two chromosomes.

An interactive GA was proposed to allow direct intervention between the algorithm
and the expert [47]. The layout is represented by flexible bay structure, with the bay
divisions and facility sequences encoded into the chromosome. The expert evaluate the
score of each solution in order to perform interaction by continuously including the expert

51

Chapter 1 – Literature review

preferences. In addition, a clustering method is introduced to group the similar solutions
and show the representative of each group to the expert. A niching method is adopted to
maintain the diversity of solutions at the same time.

1.5.3 Construction and meta-heuristic hybrid approaches

Current layout optimization techniques can be divided into two groups according to
the type of variables, either discrete or continuous. In continuous optimization, the dimen-
sions and orientation of components are variables, and the progress evolved by applying
different operators [102]. LPs are continuous in nature while using discrete formulation
can reduce the search complexity. A flexible bay structure [103] and a slicing tree [104]
divide the container into horizontal and vertical directions, and the components are re-
stricted to be located inside follow a specific logical order. Whereas the construction
algorithm can generate a complete layout that others cannot represent by sequentially
placing components [105, 106].

Construction procedures build a layout from scratch by successively selecting and
placing facilities until a completed layout is obtained. By automating the selection rules
for a set of component configurations, the designer’s intelligent thought process can be
used to define the construction algorithm at each stage. The simplicity of construction
algorithm is often associated with feasible solutions and can be used in parallel with
meta-heuristic algorithms.

Construction algorithm combines the component configuration to generate a complete
layout. In combinatorial problems, a general neighbor generation method is to perform
permutation operations or bit flip operations at random positions. The search space
for all possible combinations of components in a layout design problem is so large that
a brute force approach is impractical. Moreover, the discrete search space makes the
gradient or downhill methods inapplicable. Indeed, the construction algorithm applied
with meta-heuristic proved to be an efficient algorithm for layout optimization [107].
For instance, GA coupled with construction algorithm and SA algorithm hybrid with
construction algorithm.

Construction and GA optimization GA works with a set of solutions, that is popu-
lation, and improves the solutions through crossover and mutation operators and survival
selection. It proves that a large crossover rate may lead to premature convergence. Be-
sides, a small mutation rate may lead to genetic drift, while a large mutation rate may lead

52

1.5. Layout optimization approaches

to loss of good solutions unless elitist selection is used. The most important component
of GA is the solution representation of the problem, also known as individual or chromo-
some. These properties resulted in the development of multi-objective genetic algorithms
with different structures. A GA encodes the packing sequences and container loading
sequence in a chromosome, a placement algorithm determines the component placements
considering the compactness [108]. One hybrid approach minimizes the distances between
unequal-area components: a biased random-key genetic algorithm (BRKGA) determines
the facility sequence, facility aspect ratios and the coordinates of the first facility to be
placed, and a placement positions facilities inside one of the empty maximal space con-
sidering the objective function, finally, a linear programming model is applied for local
optimization [109]. A NSGAII algorithm encodes the placement sequence to optimize the
multi-objective two-row layout problem [110]. The layout construction procedure places
departments according to the order represented by each individual and starts with placing
departments in the lower row in the first floor, like packing a set of items into containers.
A local optimization algorithm based on SA is invoked if the similarity among individuals
extends the threshold.

Construction and SA optimization SA is an effective stochastic optimization tech-
nique known for its high performance in solving combinatorial problems and attracts our
attention because of the capability to solve large and complex layout problems. SA is a
single-objective optimization technique which is provably convergent, making it an inter-
esting technique for extension to multi-objective optimization. Considering the fact that
many single-objective combinatorial optimization problems are NP-hard, it is reasonable
to expect that the corresponding multi-objective versions are usually harder to solve.
SA was firstly came up to solve combinatorial problems and has also been widely used
in practical applications: traveling salesman problem [111], knapsack problem [112] and
railway crew scheduling [113]. Several layout optimization methods combined construc-
tion algorithm and SA can be found in recent layout problems studies. SA with swap and
displaced operators was developed to optimize the initial solution created by the place-
ment, which first divides a given area into four equally sized quadrants. Afterwards, all
facilities are placed radially [114]. A two-step heuristic algorithm using discrete modelling
was proposed, first, the feasible layout is constructed using the placement order of SA,
in each zone, the position of the facility is determined with the objective measurement
between this facility and the previously placed ones. Then, local optimization is followed

53

Chapter 1 – Literature review

to improve the solution in each zone [115]. SA has fewer parameters and the simpler
structure compared to GA optimizations.

The reviewed studies have greatly enriched the layout knowledge base and applications.
However, most research work is tested using pre-defined problems and remains theoretical.
And the optimization may generate many infeasible solutions, particularly in the dense
layout problem. Besides, the existing construction method is applied in parallel with meta-
heuristic optimization, where the component placement is determined by estimating the
objective iteratively. In other words, the objective function evaluation is based on the
accumulating process, assuming that the objective function values between component
are determined independently. However, the assumption is not true in reality.

1.5.4 Multi-container layout optimization

Depending on the number of containers, layout problems can be divided into two
groups. Most research on layout problems has focused on placing components on a single
container. Nevertheless, the multi-container layout design has always been a hot and
challenging point.

Multi-container layout can be formulated as a continuous space allocation problem.
One possible simplification is to transform empty spaces into grids and then solve the
quadratic assignment problem [4]. Considering the real-life scenario, a new multi-floor
departments arrangement problem was formulated as a MINLP model and solved by an
exact ε-constraint algorithm [82]. The same floor is divided into several blocks, one block
contains more than one department, each department consists of multiple fixed rooms
and the same room must be adjacent.

Indeed, the assignment of components to containers can be either flexible or fixed.
The former decides to assign components to container during the optimization process
[116]. Given the complexity of the problem, thus, some approaches decompose the main
problem solving into two steps: first distributing the components over the containers,
and then independently optimizing the layout of each container [117]. While the latter
predetermines to assign specific components to specific containers. If the components are
arranged in well-defined container, then the multiple container layout design is rendered
as the single container layout problem [62].

It is worth noting that the container size may be either determined or undetermined.
The layout optimization under bounded region (i.e. container) is more common in the
industrial engineering, for example, a naval ship compartment design with fixed inner

54

1.6. Conclusion

wall structure [118]. Considering the construction cost, thus leading to the design of more
compact plants. However, as the size and construction cost of layout designs increase with
more space, the trend toward undetermined space layout design becomes more important.
Space layout design has become a much more important consideration in efficiently allo-
cating all compartments within the limited region. One study has determined the optimal
rectangular shape of land area using the MIP model [119].

1.6 Conclusion

In this chapter, firstly, we described the formulation of single-objective and multi-
objective problems. We thus presented the main differences between the "optimal" solu-
tions in these two cases and reviewed the resolution methods. Deterministic and stochastic
methods in single-objective optimization can be extended to multi-objective optimization.
The scalarization-based, domination-based, decomposition-based, indicator-based as well
as interaction-based approaches have been distinguished. As discussed, a critical consen-
sus has been appeared that using the external archive along the optimization process can
improve the performance at the cost of computation efficiency. For multi-objective opti-
mization algorithms, one of the key features is the ability to find a good approximation to
the optimal trade-off among the multiple objectives. However, two issues are still open.
First of all, the solution selection becomes strongly dependent on the diversity measure-
ment such that convergence of Pareto front towards the true Pareto front is gradually
deteriorated. A second issue is related to the decision space. A majority of algorithms
focus only on the distribution of solutions in the objective space. Nevertheless, a good
representation of solutions in the decision space is also important from the point of view
of the decision-making process.

The second main part of this chapter is the layout problem. We provided a review
of the layout classification in terms of the representation and formulation. From the
literature review, it can be concluded that it is still open and active area for research.
This motivates the author to work in the layout optimization. For this purpose, the
previous researches in the filed have been analyzed taking into account the formulation
and resolution approaches. In the present literature, there are trends of the optimization
techniques with combining effort of construction and meta-heuristic method to solve the
layout problem. The concept of construction approach has gained a lot of attention from
researchers due to its feasibility. Furthermore, we closed this chapter by presenting one

55

Chapter 1 – Literature review

hotspot layout problem, namely multi-container layout problem. We noticed that the
research on flexible container size is a relatively under-discovered area.

56

Chapter 2

POPULATION-BASED SIMULATED

ANNEALING FOR MULTI-OBJECTIVE

PROBLEM

2.1 Introduction

Over the past decade, meta-heurisitc algorithms have been recognized to be very
successful in solving multi-objective optimization problems. Simulated annealing has an
advantage over the other meta-heuristic algorithms in terms of the ease of implementation
and gives reasonably good solutions for many practical problems. It starts from an initial
point and searches for new nearby points to find the global optimal solution. There
have been some attempts to extend SA to multi-objective optimization. In most early
attempts, a single objective function was constructed by combining the different objectives
into one objective function using a weighted sum method. The problem is how to choose
the weights in advance. There are also some alternatives used in this regard.

In order to develop an efficient optimizer with a simple structure, two multi-objective
simulated annealing algorithms are proposed: one is archive-based SA and the other is
archive-free SA. Both algorithms integrate the idea of Pareto domination. Compared
with the well-known NSGA II algorithm, the proposed approaches are validated using
various multi-objective problems. Furthermore, we analyze the convergence resistance
and improvement methodology.

2.2 Multi-objective simulated annealing algorithm

Unlike the single-objective optimizer, the multi-objective optimization process should
move towards the true Pareto front by finding a set of compromised solutions. Thus, a

57

Chapter 2 – Population-based simulated annealing for multi-objective problem

multi-objective SA could either preserve the ’good’ solutions in an archive, or evolve the
’good’ solutions in the population.

2.2.1 Scalar simulated annealing algorithm

SA is a stochastic neighborhood search approach for global optimization and has been
widely implemented in various combination problems. It originated from the concept in
physics explaining the annealing of a solid until finding the minimal energy. Similar to the
physical process, SA generates a new solution in the neighborhood at each iteration. It
allows to replace the current solution with a worse neighborhood solution. The probability
decreases along with the temperature, enabling hill-climbing. The flowchart of a typical
scalar SA algorithm is presented in Fig 2.1.

Figure 2.1 – Flowchart of scalar SA.

The main features of the SA method are:

58

2.2. Multi-objective simulated annealing algorithm

— Neighbor generation: new solution far away from the current solution allows coarse
search whereas the new solution nearby leads to fine search.

— Acceptance mechanism: the condition in which a solution is accepted. A worse
point is accepted probabilistically where the likelihood of accepting a solution worse
than the current solution is a function of the temperature of the search and how
much worse the solution is than the current solution, i.e, the metropolis acceptance
criterion: p(∆f) = (f(X ′) − f(X))/temperature, which allows the algorithm to
escape from local minima when the temperature is high.

— Annealing schedule: which is the function of temperature that controls the prob-
ability p(∆f) of accepting a cost-increasing interchange. The annealing schedule
can be a function of the iteration number or a constant decrease rate.

Compared to other meta-heuristic optimizations, SA is individual-based optimization with
global search ability and has simple structure with less parameters.

2.2.2 Archive-based simulated annealing

The proposed archive-based SA is based on Pareto domination criteria. The pop-
ulation P has N individuals Xi, i ∈ N with the corresponding objective values f i.
The framework of archive-based SA is presented in Algorithm 1. In each iteration,
the new population will be generated as P ′ = lb + rand ∗ (ub − lb) in line 5, where
lb = max(P − τ ∗ (Ub − Lb), Lb) and ub = min(P + τ ∗ (Ub − Lb), Ub). Lb, Ub are the
global boundaries and lb, ub are the local boundaries defined by the interval parameter
τ ∈ (0, 1). During the optimization process, the new population is compared with current
archive to form an overall non-dominated set of solutions, which updates the status of
archive A in line 7. If the size of the archive |A| exceeds the limited number M , crowding
distance strategy [28] will be used in line 9. Compared to most of the state-of-the-art di-
versity maintenance strategy, crowding distance is simple and efficient. The computation
of the crowding distance based on the normalized values of objectives, is given below:

CDi =
m∑
j=1

dij/∆fj (2.1)

where ∆fj is the interval of the j-th objective function. The sum of individual crowding
distance values for each objective gives the overall crowding distance value using the
nearest neighbors, as depicted in Fig. 2.2. The individuals with small value of CD will

59

Chapter 2 – Population-based simulated annealing for multi-objective problem

Algorithm 1 Archive-based Simulated annealing
Input: P = X1, X2, ..., XN

Output: A
1: A := A ∪ P
2: f = f 1,f 2, ...,fN =objective(P)
3: while stop condition not met do
4: while iteration in inner loop do
5: P ′=neighbor generation(P)
6: f ′ =objective(P ′)
7: A := update domination status(A ∪ P ′)
8: if |A| > M then
9: CD = crowding distance (A)
10: A = crowded solution removement(A, CD)
11: end if
12: while i < N do
13: Xi,f i=individual acceptance mechanism(Xi, X

′
i,f i,f

′
i)

14: end while
15: end while
16: decrease temperature t
17: end while

be removed until the archive size reaches the limited number in line 10.

Figure 2.2 – Crowding distance of individual i.

As explained before, the scalar SA explores the space through an individual, and
the final result of the individual-based optimizer strongly relies on the initial solution.
However, finding reasonable solutions in high-dimensional and multimodal problems may
take a long computational time. Therefore, archive-based SA adopts the second loop using

60

2.2. Multi-objective simulated annealing algorithm

the archive A as the initial population, which is similar to the social behavior. Overall,
archive-based SA is similar to the scalar SA, but differs significantly in the acceptance
mechanism and the additional annealing loop of the archive A. These two ideas are
described as follows:

Individual acceptance mechanism Accepting the worse solutions allows more exten-
sive search for the global optimal solution. The comparison is individual to individual.
For the i-th new individual X ′i with objective value f ′i, it has three possibilities compared
to the current i-th individual Xi with objective value f i, as shown in Fig.2.3.

Figure 2.3 – Criteria to select offspring.

— Case I: f i is dominated by f ′i, then the new solution is better than the current
solution. Update Xi with X ′i, f i with f ′i.

— Case II: f i dominates f ′i, the new solution is worse than the current solution. The
probability of accepting the worse solution is specified by an acceptance probability
p

p = e−(f ′
i−f i)/t (2.2)

where t is the current temperature. The probability decreases exponentially with
t. Therefore, at beginning inferior solutions are likely to be accepted but the
probability will decrease as the temperature decreases.

— Case III, IV : f ′i and f i are non-dominated to each other. It is not easy to
tell which one is better according to the domination criteria only. Therefore, we
compare the two cases considering the archive A:

61

Chapter 2 – Population-based simulated annealing for multi-objective problem

1. If f ′i is not dominated by any point in A, then we consider it as a better
solution. Update Xi with X ′i, f i with f ′i.

2. If f ′i is dominated by any existing point, then we compute the Euclidean dis-
tance d between f ′i and solutions in A. Taking the minimum distance as the
transition energy,

p = e−min(d)/t (2.3)

we accept the new solution when it closes to the optimal Pareto front.

Additional loop In the first loop, with population sizeN = 1, we evaluate an individual
at each iteration and keep all non-dominated solutions in the archive A. Since each
iteration of SA provides just one alternative, the algorithm attempts to find a set of
Pareto optimal solutions by using multiple iterations. To enlarge the number of the final
points along the Pareto front, a second annealing loop is followed. Take the current non-
dominated solutions as the initial population P = A, and apply a small perturbation to
the search region near the current non-dominated solutions.

2.2.3 Archive-free simulated annealing

Algorithm 2 Archive-free Simulated annealing
Input: P = X1, X2, ..., XN

Output: P
1: f = f 1,f 2, ...,fN =objective(P)
2: while stop condition not met do
3: while iteration in inner loop do
4: P ′=neighbor generation(P)
5: f ′ =objective(P ′)
6: (R,R′) = fast nondominated sort(f ∪ f ′)
7: (CD,CD′) = crowding distance(f ∪ f ′, R,R′)
8: P = dynamic selection(P, P ′, R,R′, CD,CD′)
9: end while
10: decrease temperature t
11: end while

Even the use of an external archive, purely for storage purposes, can bring substantial
benefits for multi-objective optimization, but it introduces additional computation efforts.
To overcome the potential drawbacks, a population-based archive-free simulated anneal-
ing Algorithm 2 is proposed. It incorporates the population’s ability to search different

62

2.2. Multi-objective simulated annealing algorithm

regions and collect information from different individuals. On the one hand, it performs
as scalar SA by accepting the worse solutions in the population; on the other hand, it
tries to preserve the better solutions in the population. It’s worth noting that the pro-
posed population-based SA is an archive-free optimizer, which reduces the computation
efforts by keeping the well-distributed non-dominated solutions in the population rather
than in the external archive. In order to enlarge the search space while accelerating the
convergence speed, dynamic selection based on fast non-domination sort and crowding
distance criteria is integrated into the optimization. The comparisons are made on the
combination of current and new populations. At the end of the operation, the first non-
dominated solutions are assigned a rank equals to 1, the second non-dominated solutions
are assigned a rank equals to 2, and so on. And we have the rank R = (R1, ..., RN) of
the current population and the rank R′ = (R′1, ..., R′N) of the new population in line 6;
the CD and the CD′ contain the crowding distance of the individual in each rank level
in line 7. Then dynamic selection is followed in line 8 to select the next population that
maintains the population convergence and distribution.

Algorithm 3 dynamic selection
Input: P, P ′, R,R′, CD,CD′
Output: P

1: Pnext = ∅
2: for j ← 1 to N do
3: (Ri, CDi, Xi) = individual i with minimum rank and maximum distance in P
4: xparam = [Ri,−CDi]
5: yparam = [R′j,−CD′j]
6: if yparam dominates xparam then
7: Pnext = Pnext ∪X ′j
8: else
9: δ = yparam − xparam

10: if rand < e−δ/t then
11: Pnext = Pnext ∪X ′j
12: else
13: Pnext = Pnext ∪Xi

14: P = P \ (Xi)
15: end if
16: end if
17: end for
18: P := Pnext

63

Chapter 2 – Population-based simulated annealing for multi-objective problem

dynamic selection It is inspired by the Metropolis–Hastings algorithm and applied
according to the rank R and R′ and the crowding distance CD and CD′. The pseudo-
code is given in Algorithm 3. First initialize the population Pnext to be empty in line
1. To select the individual, in general, the main idea is to compare the individual X ′j
in population P ′ with the best individual Xi of P with minimum rank and maximum
distance in line 3. The acceptance of X ′j occurs if X ′j is better than Xi in the rank and
the distance in line 6, or it is still a promising solution in line 10. Otherwise, fill the Pnext
with Xi in line 13 and remove Xi from P in line 14. dynamic selection continues until
there are N individuals in Pnext.

2.3 Algorithm assessment

The performance of our proposed methods are validated and compared with the well
known NSGA II algorithm on a number of continuous multi-objective problems, a set
of combinatorial multi-objective 0-1 knapsack problems. The main reasons for choosing
NSGA II for comparison are that it is based on the population evolution and outper-
forms than many popular algorithms. The test problems are chosen in such a way so
as to systematically investigate various aspects of an algorithm: convergence, precision,
effectiveness and so on. The algorithms were coded in Python and the experiments were
conducted on a computer with Intel Core i7 - 6770 3.4 gigahertz CPU and 31.2 gigabyte
memory running the Linux operating system.

2.3.1 Continuous benchmarks and performance evaluations

We use five widely used multi-objective benchmark functions to compare the proposed
algorithms with NSGA II. All of these instances are minimization of the objectives, and
the details about these test functions are outlined here.

— Test Function-1: Schaffer function N1 (SCHN1) comprises of two objectives with
one variable and convex in nature. Mathematically given by

Minimize =
 f1(x) = x2

f2(x) = (x− 2)2 (2.4)

where x ∈ [−10, 10]
— Test Function-2: Schaffer function N2 (SCHN2) consists of two objectives with one

64

2.3. Algorithm assessment

variable and discontinuous given by

Minimize


f1(x) =



−x if x ≤ 1
x− 2 if 1 < x ≤ 3
4− x if 3 < x ≤ 4
x− 4 if x > 4

f2(x) = (x− 5)2

(2.5)

where x ∈ [−5, 10]
— Test Function-3: Poloni function (POL) consists of two objectives with two vari-

ables. It is non-convex and disconnected.

Minimize =
 f1(x, y) =

[
1 + (A1 −B1(x, y))2 + (A2 −B2(x, y))2

]
f2(x, y) = (x+ 3)2 + (y + 1)2

where =



A1 = 0.5 sin(1)− 2 cos(1) + sin(2)− 1.5 cos(2)
A2 = 1.5 sin(1)− cos(1) + 2 sin(2)− 0.5 cos(2)
B1(x, y) = 0.5 sin(x)− 2 cos(x) + sin(y)− 1.5 cos(y)
B2(x, y) = 1.5 sin(x)− cos(x) + 2 sin(y)− 0.5 cos(y)

(2.6)

where −π ≤ x, y ≤ π

— Test Function-4: Quadratic function (QUAD) consists of two objectives with two
variables. It has sharp peak and low tail in nature.

Minimize =
 f1(x, y) = (2x− y + 15)2 + (−x+ 4y)2

f2(x, y) = (−2x− y + 15)2 + (−x− 2y)2 (2.7)

where −10 ≤ x ≤ 10 and −10 ≤ y ≤ 10
— Test Function-5: Fonseca function (FON) consists of two objectives with three

variables. It is non-convex in nature.

Minimize


f1(x) = 1− exp

(
−∑3

i=1

(
xi − 1√

3

)2
)

f2(x) = 1− exp
(
−∑3

i=1

(
xi + 1√

3

)2
) (2.8)

where xi ∈ [−4, 4] and 1 ≤ i ≤ 3

The operator parameters for NSGA II are set following the practice in [120]. For archive-
free SA and NSGA II, the population size N is taken as 100 and number of generations

65

Chapter 2 – Population-based simulated annealing for multi-objective problem

is taken as 250, while for archive-based SA, the maximum iterations is set to 15000
with N = 1 in the first annealing loop and the maximum iterations is set to 100 in the
second annealing loop, the archive sizeM is 100. Therefore, these comparative algorithms
maintain the same number of function evaluations. For archive-based SA algorithm, the
initial temperature t0 = 100 and the final temperature tf = 10−5, while for archive-free
SA algorithm, t0 = 1 and tf = 10−7. The initial temperature values were determined
following the idea of acceptance ratio [121]. The cooling rate is kept equal to 0.9 and the
neighbor interval τ is taken as 0.2. Each algorithm is run twenty times and quantitative
results are calculated using three metrics below.

1. Generational distance (GD): this performance measurement determines how far
is the distance deviation between the optimal solutions achieved by the proposed
algorithm and true Pareto front.

GD = 1
n

√√√√ n∑
i=1

d2
i (2.9)

where n is the number of non-dominated points, di measures distance between
each point and nearest point in Pareto front. Therefore lower the value of GD
reveals the goodness of a multi-objective algorithm. GD = 0 represents that all
the solutions generated are on the true Pareto front.

2. Diversity metric (∆): the diversity metric measures the uniformity in the distribu-
tion of non-dominated solutions.

∆ =
df + dl +∑n−1

i=1

∣∣∣di − d̄∣∣∣
df + dl + (n− 1)d̄

(2.10)

where df and dl measures how far that boundary solutions away from extreme
solutions. d̄ is the average value of the set of di. Smaller value of metric ∆ the
better diversity of non-dominated solutions set. ∆ = 0 represents the most widely
and uniformly distributed set of non-dominated solutions.

3. Computational time (CT): the run time of algorithms is evaluated which is a
performance measurement to show the computational efficiency of the algorithms.

The Pareto fronts obtained for the benchmark functions SCHN1, SCHN2, POL,
QUAD and FON using the proposed archive-based and archive-free multi-objective SA
and comparative algorithms NSGA II are shown in Fig. 2.4 - Fig. 2.8. It is observed

66

2.3. Algorithm assessment

that in SCHN1 the algorithms are accurately converge to the true Pareto front. The
SCHN2 and POL both functions are discontinuous in nature. The obtained solutions are
approximately on the true Pareto front but the diversity among the solutions are better
in archive-free SA over the comparative algorithms. It is observed that in QUAD the
NSGA II convergence and diversity to the true Pareto front is inferior than the other
algorithms. In case of FON all the algorithms Pareto fronts slightly deviate from the
true front. However the deviation is lower in case of archive-free SA compared to the rest
algorithms.

(a) (b) (c)

Figure 2.4 – Pareto front determined by (a) archive-based SA, (b) archive-free SA, (c)
NSGA II on SCHN1.

(a) (b) (c)

Figure 2.5 – Pareto front determined by (a) archive-based SA, (b) archive-free SA, (c)
NSGA II on SCHN2.

The parameters GD, ∆ and CT are obtained in the form of mean, standard deviation
(SD), best and worst values over twenty independent runs for the algorithms that are
summarized in Table 2.1, Table 2.2 and Table 2.3. In the tables the best results achieved
are high-lighted in bold letters. It is observed that, in most cases, the proposed archive-
free SA has smaller mean, best, worst GD and ∆ values, which indicates the convergence

67

Chapter 2 – Population-based simulated annealing for multi-objective problem

(a) (b) (c)

Figure 2.6 – Pareto front determined by (a) archive-based SA, (b) archive-free SA, (c)
NSGA II on POL.

(a) (b) (c)

Figure 2.7 – Pareto front determined by (a) archive-based SA, (b) archive-free SA, (c)
NSGA II on QUAD.

(a) (b) (c)

Figure 2.8 – Pareto front determined by (a) archive-based SA, (b) archive-free SA, (c)
NSGA II on FON.

of most of the solutions to the true Pareto front while maintaining proper diversity among
them. In comparison with archive-free SA and NSGA II, both have lower computational
time compared to archive-based SA, which indicates that the population-based feature is

68

2.3. Algorithm assessment

Table 2.1 – Comparative results (using GD) of proposed archive-based, archive-free SA
approaches with NSGA II obtained after twenty independent runs on benchmark multi-
objective functions: SCHN1, SCHN2, POL, QUAD, FON.

Algorithm SCHN1 SCHN2
Mean SD Best Worst Mean SD Best Worst

Archive-based 0.000830.000830.00083 0.000030.000030.00003 0.00075 0.00089 0.01281 0.00078 0.01175 0.01453
Archive-free 0.00084 0.00004 0.00077 0.00091 0.012610.012610.01261 0.00077 0.01040 0.01374
NSGA II 0.00113 0.00008 0.00104 0.00139 0.01319 0.000660.000660.00066 0.01170 0.01447

Algorithm POL QUAD
Mean SD Best Worst Mean SD Best Worst

Archive-based 0.03471 0.00742 0.02905 0.06582 1.19464 0.139650.139650.13965 0.98349 1.50127
Archive-free 0.029990.029990.02999 0.00217 0.02689 0.03694 1.008271.008271.00827 0.14573 0.76512 1.43539
NSGA II 0.03200 0.001880.001880.00188 0.02770 0.03564 1.23190 0.18997 0.97229 1.87043

Algorithm FON
Mean SD Best Worst

Archive-based 0.00453 0.000180.000180.00018 0.00422 0.00483
Archive-free 0.004450.004450.00445 0.00021 0.00386 0.00478
NSGA II 0.00488 0.00026 0.00437 0.00545

effective in accelerating the convergence and in maintaining the diversity. However, in all
the benchmark test cases the computational time of NSGA II is slightly lower followed by
archive-free SA, perhaps for the reason that coding scheme. The structure of archive-free
SA will be improved for efficient in future work.

The GD value numerically describes the convergence of the Pareto front. It is clear
from Table 2.1 that the average GD values obtained by archive-free SA are smaller than
archive-based SA except for SCHN1. Archive-free SA performs better than NSGA II in
terms of mean GD value for all the test problems, which indicates the dynamic selection
performs better in approximating the Pareto front on the convergence. In the case of
QUAD problem the GD values of all methods are much higher than other functions. The
convergence resistance arises our interest, and the convergence improvement analysis will
be presented in the next section.

The ∆ value measures the spread of the solutions in Pareto front. As described
in Table 2.2, archive-based SA has smaller ∆ values except for SCHN1 and SCHN2.
Generally speaking, archive-free SA has better performance than archive-based SA and

69

Chapter 2 – Population-based simulated annealing for multi-objective problem

Figure 2.9 – Box plot (using GD) representing the comparison of the algorithms for
unconstrained functions: SCHN1 , SCHN2, POL, QUAD, FON.

Table 2.2 – Comparative results (using ∆) of proposed archive-based, archive-free SA
approaches with NSGA II obtained after twenty independent runs on benchmark multi-
objective functions: SCHN1, SCHN2, POL, QUAD, FON.

Algorithm SCHN1 SCHN2
Mean SD Best Worst Mean SD Best Worst

Archive-based 0.39275 0.02380 0.34302 0.43290 1.01594 0.02449 0.97357 1.06629
Archive-free 0.359210.359210.35921 0.02322 0.31046 0.38939 0.983990.983990.98399 0.01534 0.95330 1.01561
NSGA II 0.36674 0.023010.023010.02301 0.32194 0.39779 0.99120 0.014880.014880.01488 0.96517 1.01685

Algorithm POL QUAD
Mean SD Best Worst Mean SD Best Worst

Archive-based 0.94013 0.01142 0.92311 0.97720 0.42375 0.02956 0.34808 0.47220
Archive-free 0.931820.931820.93182 0.00862 0.92182 0.95684 0.400760.400760.40076 0.026440.026440.02644 0.36692 0.47861
NSGA II 0.94111 0.007700.007700.00770 0.92574 0.95387 0.43908 0.03304 0.38060 0.48988

Algorithm FON
Mean SD Best Worst

Archive-based 0.30562 0.020970.020970.02097 0.26727 0.34802
Archive-free 0.273500.273500.27350 0.02243 0.21923 0.30240
NSGA II 0.33212 0.03465 0.27762 0.39397

70

2.3. Algorithm assessment

Figure 2.10 – Box plot (using ∆) representing the comparison of the algorithms for un-
constrained functions: SCHN1 , SCHN2, POL, QUAD, FON.

Table 2.3 – Comparative results (using CT) of proposed archive-based, archive-free SA
approaches with NSGA II obtained after twenty independent runs on benchmark multi-
objective functions: SCHN1, SCHN2, POL, QUAD, FON.

Algorithm SCHN1 SCHN2
Mean SD Best Worst Mean SD Best Worst

Archive-based 96.12842 0.74248 94.79008 98.14508 85.40642 0.75281 84.57827 88.05640
Archive-free 5.69665 0.05147 5.61246 5.84559 5.00207 0.016440.016440.01644 4.97520 5.05383
NSGA II 4.243164.243164.24316 0.034470.034470.03447 4.17738 4.31883 4.080614.080614.08061 0.01850 4.03077 4.11573

Algorithm POL QUAD
Mean SD Best Worst Mean SD Best Worst

Archive-based 53.28598 2.06484 49.79741 56.92427 83.56412 0.68213 82.18945 84.78586
Archive-free 4.26086 0.033850.033850.03385 4.21650 4.33138 4.32710 0.040340.040340.04034 4.27662 4.43632
NSGA II 4.186124.186124.18612 0.05853 4.11994 4.36026 4.147934.147934.14793 0.04049 4.10133 4.30211

Algorithm FON
Mean SD Best Worst

Archive-based 13.34312 1.15308 11.01524 15.40951
Archive-free 4.35912 0.06945 4.27545 4.57798
NSGA II 4.291314.291314.29131 0.033760.033760.03376 4.22335 4.35721

71

Chapter 2 – Population-based simulated annealing for multi-objective problem

Figure 2.11 – Box plot (using CT) representing the comparison of the algorithms for
unconstrained functions: SCHN1 , SCHN2, POL, QUAD, FON.

NSGA II in terms of the ∆, which indicates the solutions obtained by archive-free SA are
spaced more evenly.

The box plot for the above three performance metrics (GD, ∆ and CT) for twenty
independent runs of each algorithm signify the distribution of each algorithm, is shown in
Fig. 2.9, Fig. 2.10, Fig. 2.11. Note that the red lines represent the median, while the blue
rectangles indicate the average performance. The box plot is an effective visualization tool
to compare the performance of the proposed and comparative algorithms. It is observed
that the computational time taken by the algorithms (Archive-free SA, NSGA II) over
independent runs do not deviate much where are the performance metrics (GD and ∆
values) deviate. Observed lower median and average performance values in GD and ∆
justifies the superior performance of proposed archive-free SA. In the case of archive-based
SA, the redundant computation makes it high cost to solve the complex problems.

2.3.2 Convergence resistance and improvement

The convergence resistance appears when there are many non-dominated points close
to the Pareto front. Fig. 2.12 presents the Pareto set of the QUAD problem. It is observed
that the obtained solution of archive-free SA deviates from the true Pareto set. Indeed,
the convergence resistance exists in all the Pareto domination based algorithms. As the

72

2.3. Algorithm assessment

Figure 2.12 – Pareto set of QUAD in the contour plot.

optimization continues to approach the true Pareto front, the selection pressure increases
with the number of non-dominated solutions. The problem is illustrated in Fig. 2.13.

Figure 2.13 – Problem demonstration: (left) in design space, (right) in objective space.

73

Chapter 2 – Population-based simulated annealing for multi-objective problem

For instance, point A(′) and B(′) are non-dominated to each other. The corresponding
points in the design space are a(′) and b(′). To improve the convergence, it is possible
to replace the point B with the better point, i.e., the solution dominates solution B.
However, these solutions may situate in the narrow domination area, i.e. domination
area of point B. Thus, the new generated neighborhood solutions have large possibility
to be non-dominated to the current solution, such that the Pareto domination selection
becomes of no use to improve the optimization convergence. To resolve the problem, we
propose to use new selection criteria based on the distance measurement to improve the
convergence.

After the pre-defined maximum iterations, the optimization may find an approximate
Pareto front, i.e., the last population P in archive-free SA algorithm. Then use the
distance as the selection reference, and push the optimization to the infeasible region
P inf . The overall idea is:

1. Define a fake target by shifting P towards infeasible domination region, expressed
as P inf = P − σ. In the QUAD minimization function, σ > 0.

2. Generate the new solution X ′i around current solution Xi, substituting Xi with X ′i
that closest to the corresponding fake point in the objective space. For the gener-
ated solutions (red points), it should be not far from the current solution (green
star), as shown in Fig. 2.14. The objective aims to minimize the distance between
the infeasible solution (red star) and the new solution to help the optimization
jump out the current narrow domination area and find a better solution, i.e. the
blue star.

The new Pareto set of QUAD is presented in Fig. 2.15. Here, the optimization con-
tinues for an additional 100 iterations. It is proved that the obtained solutions are lying
on the true Pareto set. The distance criteria improves the convergence without damaging
the diversity. It does find better solutions but in the cost of function evaluations.

2.3.3 Multi-objective 0-1 Knapsack problem

The goal of a combinatorial optimization problem is to find the optimal ordering /
permutation of a set of discrete items. A standard example is known as the knapsack
problem that involves the profit maximization. The objective could have several dimen-
sions instead of one. As an example, suppose there are two objectives, maximizing the
profit while minimizing the number of items.

74

2.3. Algorithm assessment

Figure 2.14 – Convergence improvement illustration: (left) in design space, (right) in
objective space. red star: fake point; green star: current solution; blue star: improved
solution; red point: new solution

Figure 2.15 – Pareto set of QUAD function with improved convergence.

75

Chapter 2 – Population-based simulated annealing for multi-objective problem

Given a set of n items and one knapsack, the multi-objective 0–1 knapsack problem
(MOKP) can be stated as:

 Minimize f1(x) = ∑n
i=1 xi

Maximize f2(x) = ∑n
i=1 pixi

subject to∑n
i=1 wixi ≤ c

x = (x1, . . . , xn)T ∈ {0, 1}n

(2.11)

where pi is the profit of item i, wi is the weight of item i, and c is the capacity of knapsack.
xi = 1 means that item i is selected and put into the knapsack. The MOKP is a NP-hard
problem which theoretically cannot be solved to optimality in a reasonable time. SA is a
meta-heuristic which can compute approximate solutions to quite any NP-hard problem.
Other meta-heuristics, i.e., genetic algorithms, start from a random or “greedy” solution,
then improve it by changing some local parts of the solution in order to improve it. In
this section, we consider five combinatorial instances for comparing the performances of
archive-free SA and NSGA II, where the profit pi and weight wi are integers between 1
and 100, the capacity c is one tenth of the sum of weights.

(a) (b)

Figure 2.16 – 20 items knapsack: (a) N = 10, (b) N = 100.

To apply archive-free SA, the neighbor generation is defined as uniform random ad-
dition or removal of one item in the knapsack. Besides, we integrate the repair process
for the infeasible solutions, that is, randomly remove the first or the last item. This sec-
tion also experimentally investigates the effect of population size N = 10, 100. Table 2.4
summarizes the average computation time used by each algorithm for each instance with
different number of items. With the same number of the iterations, it is evident from

76

2.3. Algorithm assessment

(a) (b)

Figure 2.17 – 1000 items knapscak: (a) N = 10, (b) N = 100.

Table 2.4 – Comparative results (using CT) of proposed archive-free SA approaches with
NSGA II obtained on benchmark multi-objective 0-1 knapsack: 10, 20, 30, 100, 1000
items.

Algorithm 10 items 20 items 30 items 100 items 1000 items

N=10 Archive-free 0.541480.541480.54148 0.453140.453140.45314 0.425560.425560.42556 0.394770.394770.39477 0.413210.413210.41321
NSGA II 32.56178 5.18765 8.76503 20.68205 76.33751

N=100 Archive-free 9.922239.922239.92223 8.230188.230188.23018 6.816246.816246.81624 5.911395.911395.91139 6.755226.755226.75522
NSGA II 228.64363 40.89791 29.19269 35.23269 143.34170

Table 2.4 that archive-free SA needs less computational time than NSGA II does. On
average, archive-free SA requires about 9% of the computation time that NSGA II needs.
In other words, archive-free SA is ten times faster than NSGA II. Besides, it is proved
that SA algorithm has better exploration ability even with small population N = 10
in a rather large search space, as shown in Fig. 2.16 (a). And Fig. 2.17 (a) clearly indi-
cates that archive-free SA successfully find approximate solutions whereas NSGA II failed.
Furthermore, since NSGA II tries to improve the quality of the obtained solutions, it can
solve the low-dimensional problem as shown in Fig. 2.16 (b), but a tendency to cluster
appears as the number of items increases, as presented in Fig. 2.17 (b). It suggests that
archive-free SA is more robust and effective than NSGA II for the combinatorial problem
MOKP. Overall, we can claim that archive-free SA is computationally much cheaper and
can produce better approximations than NSGA II on these MOKP test instances.

77

Chapter 2 – Population-based simulated annealing for multi-objective problem

2.4 Conclusion

The ease of implementation makes SA as a popular method for solving large and prac-
tical problems. However, the individual-based feature limits the application, especially
in the multi-objective problems. In this chapter, we have proposed to extend scalar SA
algorithm to solve multi-objective optimization problems, named archive-based SA and
archive-free SA algorithms.

Archive-based SA is designed using the new acceptance mechanism, where the solu-
tions are divided into dominate, non-dominated, dominated states. It adopts the limited-
size archive to keep the non-dominated solutions and applies the second annealing loop
to the final archive. The use of archive brings the substantial benefits, but at the cost of
computation time.

Archive-free SA employs the dynamic selection based on the concept of non-dominated
sort and the mechanism of crowding distance calculation. The dynamic selection preserves
the non-domination and distributed solutions in the population. It is a simple algorithm
with the advantage of ease of implementation.

With the help of GD, ∆ and CT metrics, experiments demonstrate the performance
of the proposed algorithm. Five continuous benchmark functions have presented that
proposed archive-free SA with lower computation time outperforms archive-based SA
algorithm and NSGA II. Furthermore, an experimental study of convergence resistance
and improvement has also been carried out. In the comparison of combinational problems,
it has been shown that the SA-based method is superior in multi-objective 0–1 knapsack
problems. Overall, the results proved that archive-free SA can provide, most of the time,
very competitive results compared to others.

78

Chapter 3

MULTI-OBJECTIVE LAYOUT PROBLEM

MODEL AND INTERACTION

3.1 Introduction

As explained in Chapter 1, the model of the layout optimization problem is a multi-
objective formulation. The model aims to translate the designer’s requirements into vari-
ables, constraints and optimization objectives. In general, the layout problem is locating
rectangular components in the rectangular container. Based on the different functional
properties of the components, the novel component including the solid and virtual parts
are defined, and the accessibility to the components of a layout is explicitly expressed.
Then, a new capacity index is defined to measure the feasible complexity of a layout prob-
lem and provide a priori information on whether the problem can be solved. An innovative
approach is proposed to evaluate the capacity by finding the minimum occupied space of
components. It is worth noting that we integrate a novel space generation method that
rendering the problem as a combinatorial packing process.

Indeed, the multi-objective formulation of the studied layout optimization problem
leads to the generation of a set of solutions which achieve the best compromise between
all the optimization objectives. Therefore, it is necessary to provide the designer with
aiding methods and tools to help him to choose the solution that best suits his personal
expertise and judgment on the layout problem. The interactive environment, detailed in
this chapter, first of all, consists in the interactivity with the optimization problem. The
purpose of this interactivity is to modify the problem manually and locally by taking into
account the judgment and expertise of the designer. Also, an innovative indicator, allow-
ing to analyze the similarity between solutions generated by the optimization algorithm, is
notably defined. Finally, the last part of this chapter is dedicated to the decision-making
based on a multidimensional visualization of solutions and their performance comparisons.

To formulate the model, we define the following notations:

79

Chapter 3 – Multi-objective layout problem model and interaction

3.2 Multi-objective layout problem model

In most layout problems, the problem formulation comprises the various components,
the geometrical and functional constraints, the qualitative and quantitative objectives, as
described in Fig. 3.1.

Figure 3.1 – Problem formulation.

3.2.1 Component definition

The layout problem aims to find the optimal arrangement of components in the con-
tainer. If the components are solid, meaning that the overlap is forbidden. However, in
reality, there are virtual components without mass where the overlap among them is ac-
ceptable. For example, the space of the cabinet for door opening and closing in Fig. 3.2(a),
the space of the drawer to pull it out in Fig. 3.2(b), and the space of desk to allow the user
sit down as shown in Fig. 3.2(c) etc. Indeed, the cabinet, desk and drawer are modeled by
solid components because they cannot overlap. These virtual spaces placed around them,
are modedly by virtual components, can overlap each other, due to the non-simultaneous
use. Moreover, a collapsible object is designed to be folded flat when it is not being
used, such as a collapsible chair or desk in the office. The collapsible component is stored
easily and its foldable character saves more space. Besides, the foldable, expandable,
retractable, inflatable, and stackable components also allow multi-task. In this case, the
decomposition of the components of the layout into solid and virtual components makes it

80

3.2. Multi-objective layout problem model

possible to take into account the particular requirement expressed by the designer. Based
on the analysis above, the different components are summarized for the layout problem
formulation:

1. Virtual components could overlap virtual components and have no mass. These
virtual components are also the accessible spaces.

2. Solid components could not overlap with solid or virtual components and have
mass. A solid component may become temporary solid if it is collapsible and can
overlap virtual and solid components.

(a) Cabinet (b) Drawer (c) Desk

Figure 3.2 – Component examples.

The component definition makes it possible to model most layout problems, for instance,
the machine placement problem in the factory. The virtual components can model the free
space around the machine that are necessary for the correct operation or maintenance,
or represent the corridors used for the flow of goods between equipment. It is important
to make this classification of the components because it can describe all the problems of
layout in a generic and realistic way, whatever the requirements expressed by the designer.

Thus, the component ci = (si, vij), i = 1, ..., n, j = 1, ..., ni, can have the solid com-
ponent si (solid rectangle) and the virtual components vij (dashed rectangles), as shown
in Fig. 3.3. Each solid component si is represented by coordinates (xi, yi) and rectangle
size (wi, hi). There are ni accessibility spaces, namely virtual components vij, attached
to si. The virtual component vij is defined by coordinates (xij, yij) and dashed rectangle
size (wij, hij). The solid and virtual components can be denoted as si = (xi, yi, wi, hi)

81

Chapter 3 – Multi-objective layout problem model and interaction

and vij = (xij, yij, wij, hij), respectively. Rectangular components are relatively common
in the literature, and practical layout problems can be simplified to rectangles.

Figure 3.3 – Component ci representation.

To simplify the model, we also introduce the side location. The side location of
component si can be extracted from two extreme corners’ coordinates (xi, yi, xi+wi, yi+hi)
in Fig. 3.4 (a). Each component si has four sides as shown in Fig. 3.4 (b), defined as
(xLi

, yBi
, xRi

, yTi
):

1. Left side location xLi
= xi

2. Bottom side location yBi
= yi

3. Right side location xRi
= xi + wi

4. Top side location yTi
= yi + hi

(a) Corners’ coordinates (b) Side location coordinates

Figure 3.4 – Component si side location representation.

3.2.2 Geometrical and functional constraints

The geometrical constraints of the layout problem are non-overlap and non-protrusion
constraints. In reality, the rectangular shape of the component simplifies the constraints
formulation. Due to the accessibility property, overlap between virtual components is

82

3.2. Multi-objective layout problem model

allowed, whereas overlap between two solid components has to be minimized. Thus, the
mathematical intersection area between two components is defined as:

aik = max [0,min (xi + wi, xk + wk) −max (xi − wi, xk − wk)]
×max [0,min (yi + hi, yk + hk) −max (yi − hi, yk − hk)]

(3.1)

akj =
ni∑
j

max [0,min (xij + wij, xk + wk) −max (xij − wij, xk − wk)]

×max [0,min (yij + hij, yk + hk) −max (yij − hij, yk − hk)]
(3.2)

aij =
nk∑
j

max [0,min (xkj + wkj, xi + wi) −max (xkj − wkj, xi − wi)]

×max [0,min (ykj + hkj, yi + hi) −max (ykj − hkj, yi − hi)]
(3.3)

aik represents the intersection area between component si and component sk. akj rep-
resents the sum of intersection area between solid component sk and virtual component
vij, j = 1, ..., ni, similarly, aij is the sum of intersection area between solid component si
and virtual component vkj, j = 1, ..., nk. So the non-overlap constraint of component ci
and component ck is defined as follows:

Aik = aik + akj + aij ≤ 0 (3.4)

Given two components ci = (si, vi1, vi2, vi3, vi4, vi5) and ck = (sk, vk1), the overlap of virtual
space is possible, as shown in Fig. 3.5, One case of non-overlap constraint is presented in
Fig. 3.6, neither solid components overlap aik in Fig. 3.6 (a) nor solid-virtual components
overlap akj, aij in Fig. 3.6 (b) (c), is allowed.

(a) Components (sk, vk1) and
(si, vi1, vi2, vi3, vi4, vi5)

(b) Allowed overlap between
virtual spaces

Figure 3.5 – Overlap between virtual components representation.

The non-protrusion constraint expresses the fact that the component (i.e. si) should
stay inside one bounded rectangular space a, denoted as a = (xa, ya, wa, ha), defined by

83

Chapter 3 – Multi-objective layout problem model and interaction

(a) Overlap aik between solid
components si, sk

(b) Overlap akj between the
solid component sk and vir-
tual components vij

(c) Overlap aij between the
solid component si and vir-
tual components vkj

Figure 3.6 – Non-overlap constraint representation.

the bottom left coordinates and sizes, as shown in Fig. 3.7. The component side locations

Figure 3.7 – Available space a representation.

(xLi
, yBi

, xRi
, yTi

) and available space side locations (xLa , yBa , xRa , yTa) should satisfy:

max{xLa − xLi
, xRi

− xRa , yTi
− yTa , yBa − yBi

} ≤ 0 (3.5)

In some design problems, i.e. C & P problem, constraints are only geometrical. The
functional constraints, including the edge and alignment, specify the functional require-
ments of components and guarantee the correct function of components in the layout
problem. The basic idea is to translate these requirements into the generic mathematical
functions.

Some components like external windows and doors are not orientation-free and need
a specific direction to connect to the wall. The edge constraint is used to force the
component against the edge of the space because of a window or door. It is supposed that
the component si is inside a rectangular space a = (xa, ya, wa, ha), in order to force si
to the side of a, the component side locations (xLi

, yBi
, xRi

, yTi
) and available space side

locations (xLa , yBa , xRa , yTa) should satisfy:

min{(xLa − xLi
)2 , (yBi

− yBa)2 , (xRi
− xRa)2 , (yTi

− yTa)2} = 0 (3.6)

84

3.2. Multi-objective layout problem model

Also, if the alignment of one side of component si to a particular side of component sj is
important, one of the following constraints should be added:

xLi
= xLj

or xRj

xBi
= xBj

or xTj

xRi
= xRj

or xLj

xTi
= xTj

or xBj

(3.7)

Furthermore, certain functional constraints are difficult to translate into explicit math-
ematical functions: components are accessible from the container’s entry which can be
found in many layout problems, such as the layout of equipment in a room, the placement
of machines in a factory, and the assembly of mechanical parts. On the one hand, virtual
spaces associated with solid components represents the accessibility of component. On
the other hand, virtual spaces may be inaccessible if there is no path to access it. The
layout optimization algorithm in Chapter 4 proposes a method to address this special
requirement and integrate it into the optimization procedure as a constraint.

3.2.3 Multi-objective formulation

The layout problem is a multi-objective problem. The first objective f1 aims to balance
the mass distribution. It is calculated as the minimization of the Euclidean distance
between gravity center of all solid components and geometry center of the container:

f1 =
√(

Xgra −X ′
gra

)2
+
(
Ygra − Y ′

gra

)2
(3.8)

Xgra =
∑n
i=1 (xci

×mi)∑n
i=1 mi

, Ygra =
∑n
i=1 (yci

×mi)∑n
i=1 mi

(3.9)

where (xci
, yci

) are the gravity center and mi is the mass of si. Xgra and Ygra are the
gravity center of all solid components that can be obtained according to the sizes and
coordinates. (X ′

gra, Y
′
gra) represent the geometry center of the container.

Another objective f2 optimizes the relative position of components. In order to quan-
titatively describe the activity relationship between components, an activity factor is
designed according to expert judgement to define the relationship between components.
For instance, there is less circulation between energy network and ventilation, and the
activity factor may be zero to reduce the distance effects. In contrast, it is important to

85

Chapter 3 – Multi-objective layout problem model and interaction

limit interactions between the energy network and the electrical network, so the circula-
tion distance should be maximized and the activity coefficient between them can be taken
-1. The formulation can be expressed as:

f2 =
n−1∑
i=1

n∑
j=i+1

dij × ωij (3.10)

dij =
√(

xci
− xcj

)2
+
(
yci
− ycj

)2
(3.11)

where ωij represents activity factor and dij measures the Euclidean distance between
component ci and cj.

The multi-objective layout problem aims to find the arrangement (location and orien-
tation) of components c = {c1, c2, ..., cn}, optimize objectives f1, f2 and satisfy geometrical
and functional constraints, the formulation can be expressed as:

variable x = c

min f(x) = f1(x), f2(x)
s.t. g(x) : Eq.3.4, Eq.3.5, Eq.3.6, Eq.3.7

(3.12)

3.3 Capacity index of layout problem

For a layout problem, it is necessary to analyze the feasible complexity of the problem.
The feasible complexity analysis aims to estimate the space capacity, which is the most
desirable question in a layout problem. This section proposes a method to define the
compactness, namely capacity, of a layout problem and provides a priori information on
the difficulty of problem solving.

During the conceptual design phase of the layout, the area occupied by components
should be less than the container area. One example of three solid components packing
is shown in Fig. 3.8(a). The occupied area of the solid components can be defined by the

(a) Solid components packing (b) Solid and virtual components packing

Figure 3.8 – Component packing.

86

3.3. Capacity index of layout problem

sum of the area, and the density of solid components is expressed as:

βs =
∑n
i=1 (wi × hi)
W ×H

(3.13)

W,H are the size of the container space. If there are virtual components, then the density
of the virtual ones is:

βv =
∑n
i=1

∑ni
j=1 (wij × hij)
W ×H

(3.14)

And the sum of components density is:

βsv = βs + βv (3.15)

However, the overlap of virtual components is acceptable and the sum of the dimensions
of the components does not consider the virtual component property. Thus, the density
index will exaggerate the feasibility complexity and incorrectly indicates that the problem
can not be solved (i.e. βsv > 1). Therefore, it is necessary to define a reliable index that
shows the problem feasibility taking into account the solid and virtual components.

One previous work estimated the feasibility using the intersection matrix with no
geometry included [122]. To be more reliable, we define a capacity index βc measuring the
minimum occupied space of a given number of solid and virtual components. Indeed, the
objective is to find the index value that corresponds to the compact layout configuration,
if it is greater than 1, it indicates that the layout problem cannot be solved properly.

In order to find the minimum occupied space of components, we formulate the problem
as a packing process. On the one hand, the main idea of packing is to maximize space
utilization, in other words, to place all components as compact as possible. On the other
hand, the packing process can be treated as a combination problem that constructively
packs the components in a given sequence. Suppose we have 8 components, the number
of permutations equals 8! = 40320. Exploring all possibilities is quite time consuming. To
resolve the problem, we propose the simulated annealing method for constructive packing.
The SA optimizes the placement order; the construction places components that addresses
the geometrical constraints and determines the position of components that minimize the
occupied space. One example of three components packing is shown in Fig. 3.8(b). To
pack components, we need to generate a packing order and strategy.

87

Chapter 3 – Multi-objective layout problem model and interaction

3.3.1 Space generation

The evaluation of the non-overlap constraint must be optimized in order to reduce the
computational time. Thus, we propose a novel space generation algorithm and place the
components with respect to the constraints that ensuring the search for feasible solutions.
The space around the placed components will be divided into available spaces. The avail-
able rectangular space is defined by the coordinates of lower left corner, the dimensions
along the axes where a = (xa, ya, wa, ha). The complete space generation between the com-
ponent space and available space generates four candidate available spaces, named Left
aL = (xaL

, yaL
, waL

, haL
), Right aR = (xaR

, yaR
, waR

, haR
), Top aT = (xaT

, yaT
, waT

, haT
)

and Bottom aB = (xaB
, yaB

, waB
, haB

), as shown in Fig. 3.9(a). In contrast, if the com-
ponent space and available space partially intersect, some candidate available space may
not exist, for example in Fig. 3.9(b), the right side location xR1 of component s1 is not
included in the available space, so the aR does not exist.

(a) Complete included case (b) Partial intersected case

Figure 3.9 – Complete and partial space generation.

The space generation is inspired from [123]. The former algorithm was developed
for the cutting problem and the virtual components are not considered. To account for
non-overlap constraint of the component definition that involves the solid and virtual com-
ponents, we propose an effective non-overlap constraint evaluation method. As mentioned
before, the overlap of solid components is forbidden while the overlap of virtual compo-
nents is allowed. To place components in the feasible regions, a tracks the available space
generation of placed solid components while a′ records the available space generation of
placed solid and virtual components. And we have a = {a1, ..., am},a′ = {a′1, ..., a′k}. The
relationship between available spaces can be formulated as:

∀i ∈ [1, k],∃j ∈ [1,m], a′i v aj (3.16)

88

3.3. Capacity index of layout problem

m and k represent the number of spaces in a and a′. New virtual components will be
placed in a to benefit overlap between virtual components, while new solid components
will be placed in a′ to guarantee non-overlap of solid components. After a component is
placed, the space generation replaces the available space that intersects the component
space with candidate available spaces. In addition, before adding candidate available
spaces to the space list, it should remove the available space if it is included in any
candidate available space, and filter out the candidate available space if it is included in
any available space. The update aims to release storage space.

The space generation process of list a is described in Algorithm 4. The space genera-
tion checks the available space and component space that intersects in line 2. There are
four possible generated spaces in line 6. If any available space is included in the generated
spaces, remove the available space from the list in line 9. In contrast, set adir = ∅ if it
is totally included in one of the available spaces in line 11. The updating aims to release
computer memory storage space. And the same generation mechanism for a′, except that
the input is (a′, ci) and the output becomes a′.

(a) Space generation of a (b) Tree of a

Figure 3.10 – Space generation of s1.

(a) Space generation of a′ (b) Tree of a′

Figure 3.11 – Space generation of (s1, v11).

Fig. 3.10 illustrates one space generation of s1. At first, the available space in a and a′

is initialized to the container size, a0 = [0, 0,W,H]. Once the solid component s1 is placed,

89

Chapter 3 – Multi-objective layout problem model and interaction

Algorithm 4 Space generation
Input: current list a, component si
Output: a

1: for a in a do
2: if a intersects si then
3: for each side of si do
4: /* xLi

, xRi
, xTi

, xBi
*/

5: if the side is included in a then
6: Create corresponding space adir, dir in {L,R, T,B}
7: for a in a do
8: if a is included in adir then
9: Remove a from a
10: else if adir is included in a then
11: adir = ∅, go to line 14
12: end if
13: end for
14: if adir then
15: a ∪ adir
16: end if
17: end if
18: end for
19: end if
20: end for

a0 will be divided into new available spaces {a1, a2}. The space generation is shown using
a slicing tree representation in Fig. 3.10(b). Besides, the virtual component v11 placed in
a1 generates new available spaces {a3, a4, a5} in Fig. 3.11(b). The novel space generation
integrates the available space generation of the placed solid and virtual components.
Placing the new components in available spaces ensures the search for feasible solutions
that satisfy the geometrical constraints, that is, Eq. 3.4 and Eq. 3.5.

3.3.2 Simulated annealing and constructive packing optimiza-
tion

The idea of simulated annealing and constructive packing algorithm will be presented.
It is worth noting that the SA considers the capacity βc as the objective and placement
order c as the variable X; the constructive packing integrates the space generation and
constructs the compact configuration. The overall idea is described in Algorithm 5.

90

3.3. Capacity index of layout problem

Algorithm 5 Simulated annealing and constructive packing
Input: X, X∗=X
Output: X∗

1: βc(X) = Pack (X)
2: while stop condition not met do
3: while iteration in inner loop do
4: X ′=X(σ) /* Swap two elements of X */
5: βc(X ′) = Pack (X ′)
6: δβc = βc(X ′)-βc(X)
7: p(δ) = e−δβc/t

8: if δβc < 0 or p(δ) > rand then
9: X = X ′

10: βc(X)=βc(X ′)
11: if βc(X ′) < βc(X∗) then
12: X∗ = X ′

13: end if
14: end if
15: end while
16: Decrease temperature t and step σ
17: end while

Here, the SA optimizes the state X in which the components are placed into the
container, denoted as X = c and X = (c1, ..., cn). In each iteration of inner loop, a
new state X ′ will be generated by swapping elements. During the neighbor generation,
two components could be selected randomly based on step parameter σ. To control the
performance of the swap, we define σ relating to the temperature t:

σ = n ∗ exp(−1/t) (3.17)

The integer parameter σ ∈ [1, n], n is the number of components, determines the process
of neighbor generation. When the temperature is high, σ is large, any two components
can be swapped; when the temperature closes to the final temperature, only the last few
components could be selected. In other words, the placing order may widely change at
beginning but will converge to the optimal solution X∗ finally. The annealing process
determines how many temperature decreases are performed in the outer loop and the
iterations per temperature. New solutions will be generated and compared in the inner
loop. The temperature t is initialized and reduced with the cooling rate α in the outer
loop, t = t ∗ α. The optimization will stop if it reaches to the final temperature or it is

91

Chapter 3 – Multi-objective layout problem model and interaction

up to the number of iterations.
The constructive packing aims to construct the compact layout configuration by suc-

cessively selecting and placing new components following the placement order. During
the previous space generation, there will be multiple available spaces that can be used for
the new component. In order to place the components compactly, the following conditions
should be satisfied:

— Placement: The new solid component closes to these already placed solid compo-
nents according to the bottom left convention.

— Selection: The overlap between the new virtual components and placed virtual
components should be maximized.

To place a new component into the container, two criteria need to be measured: the size
of the available space and the overlap of virtual space. Due to the integration of the novel
space generation, the evaluation of geometrical constraints is more effective. Fig.3.12
illustrates an example of packing two components. The detailed steps of constructive

(a) Component placement in
(a4, a1)

(b) Component placement in
(a3, a1)

Figure 3.12 – Example of component placement.

packing are described as follows:

Step 1 : Initialize the available space in a and a′ to the container space.

Step 2 : Place the first component into the bottom left corner of the container by
convention and calculate the coordinates and size of the attached virtual component.
Update the lists a and a′ (i.e. placement of s1, v11 in Fig.3.11).

Step 3 : Place the new component sequentially according to the placing order. i.e.
place the second component s2 and virtual components v21. Enumerate all permutations
of elements in the lists a′ and a, for each pair of space (a′, a), a′ ∈ a′, a ∈ a, check four

92

3.3. Capacity index of layout problem

rotations of the component and filter some pairs that does not satisfy the size require-
ment such as (a5, ∗). The illustrative example in Fig.3.12(a) uses (a4, a1). Suppose the
component s2 is placed to space of a4 that closes to the component s1. Then check if the
coordinates (x2, y2) are inside the space a4 by computing the relation of the pair of space
(a4, a1) and the size of virtual component v21 through Eq.3.18. If the pair of space (a4, a1)
satisfies Eq.3.18, then we compute the placement that closes to s1 in the space (a4, a1) by
Eq.3.19 and deduce the relative coordinates of v21 with this configuration. xa4 ≤ xa1 +max(w21, xa4 − xa1) + w2 ≤ xa4 + wa4

max(0,min(ya4 + ha4 , ya1 + ha1)−max(ya4 , ya1)) ≥ h21
(3.18)

x2 = xa1 +max(w21, xa4 − xa1)
y2 = max(ya4 , ya1)

(3.19)

Another example with pair of space (a3, a1) is shown in Fig.3.12(b), the placement has a
90◦ rotation compared to Fig.3.12(a). Determining the placement is rather straightforward
by swapping the size of component c2 and following the same idea of Eq.3.18 and Eq.3.19.
In this way, the placement closes to the already placed components and satisfies non-
overlap constraints.

If there is feasible solution, record the temporary placement and orientation of compo-
nents. If there are more than one feasible candidates, select the placement that maximizes
the overlap area between virtual spaces, here, the placement in Fig.3.12(b) is prior.

Step 4 : Update the lists a and a′. Repeat placing new components until a complete
layout is finished. Otherwise, marked the placing order as infeasible.

3.3.3 Capacity evaluation

For the layout problem that consists of solid and virtual components, we define the
index of capacity as a function of the available space that evaluated by:

βc = 1−
∑

a′

W ×H
(3.20)

It is worth noting that the ∑a′ represents the available space without intersection. Be-
sides, when we place the components sequentially, it may generate some small spaces,
which are empty, but no components can be placed. Indeed, these small spaces should be

93

Chapter 3 – Multi-objective layout problem model and interaction

identified as infeasible spaces.
We can deduce the relationship between the density and capacity as:

βs ≤ βc ≤ βsv (3.21)

In the layout design, space capacity is essential to the designer. If the layout problem is
feasible, the capacity should be less than 1. The larger the value, the more difficult it is
to find feasible solutions. And the capacity is more precise than the density.

3.4 Interaction environment

The designer plays an important role in the multi-objective optimization process,
whether in the formulation of the optimization problem, the interaction with the algo-
rithm, or the final decision-making. Therefore, an optimization design environment shown
in Fig. 3.13, was created to allow the designer to interact with the layout problem dur-
ing the optimization process, for example, the designer can change the number of the
components inside the container. As the designer receives feedback of the optimization
progression, the designer can add new components and suppress extra components, or
select component that can be rotated or fixed in certain location. Overall, it allows the
designer to define/save/import the layout problem as a project, and view/explore/save
the optimization results. The graphical interface, is one of the tools present in the inter-
action layout optimization, developed within the framework of the Ph.D. The example
considered in Fig. 3.13 refers to the layout optimization problem detailed in Chapter 5.

The interactive environment is developed based on the PyQt5 package and is ac-
complished using an object-oriented representation. It allows the designer to interact
with physically relevant components during optimization. For a layout problem, it has
four relevant interactive interfaces named LayoutInteracface, NewProjectInterface,
EditInterface and OptimizationInterface respectively. The designer can interact with
the components through EditInterface to modify components’ parameters. And the
NewProjectInterface allows the designer to create a new Project through ComponentData
and ContainerData. Optimization contains different optimization algorithms and the de-
signer can define and modify optimization objectives and constraints inOptimizationFunction
and interact the optimization process through OptimizationInterface. Each time an op-
timization is performed, the program translates the object-oriented representation into a

94

3.4. Interaction environment

Figure 3.13 – Graphical interface representation.

set of mathematical design variables, objectives and constraints. The optimization results
is displayed in LayoutInteracface. The environment structure is presented in Fig. 3.14.

Figure 3.14 – Interactive configuration.

3.4.1 Interactivity with optimization problem

The interactive interface allows the designer to define a two-dimensional layout prob-
lem. The layout problem consists of the containers and rectangular components. For
the container, the size can be varying according to the user defined width and height, as
shown in Fig. 3.15.

95

Chapter 3 – Multi-objective layout problem model and interaction

Figure 3.15 – New Project.

For each component, it has the solid component with mass (rectangle in color) and
virtual component without mass (rectangle in dash line). Here the virtual component
represents the space of accessibility. An edit environment has also been implemented
in the graphical interface for viewing and editing the component in the layout problem.
It is possible to modify the parameters of selected components (in grey) such as the
name, mass, geometry and functional properties. Other functionalities are also offered in
this interactive interface. It is notably possible to visualize, if they exist, the accessibility
spaces of the components, to modify the virtual property of the components, to modify the
geometrical model according to pre-defined constraints, rotation and attachment modes.

Besides, in order to help the designer perform the local optimization, three geometrical
constraint modes are properly defined:

1. Cont_bd represents the container non-protrusion constraint where the component
can be anywhere inside the container, expressed in Eq. 3.4.

2. DxDy_bd defines the distance dx, dy that the component can be moved from the
current position, as shown in Fig. 3.17 (a).

3. Specific_bd stands for the rectangle space Lbx, Lby, Ubx, Uby ,in which the com-
ponent can be located, as shown in Fig. 3.17 (b).

As the designer receives feedback of the optimization progression, he may want to
change the definition of the geometrical constraints. If the optimization progresses into
an undesirable area of the design space, the designer can dynamically add new constraints
to prevent search in that area, i.e. DxDy_bd mode or Specific_bd mode. After seeing
the optimization progression, the designer may decide to remove certain constraints in

96

3.4. Interaction environment

Figure 3.16 – Edit parameter.

order to achieve a better solution. Also, some constraints can be relaxed by modifying a
numerical bound, such as a container mode constraint. Once the designer has seen some
feasible design alternatives, he may choose to relax certain numerical bounds in order to
achieve a better solution [124]. Overall, the interface allows to add, delete and modify
the layout problem formulation. Modification of the layout problem can be used to guide
search into an area of interest.

Furthermore, with the ability to modify problem formulation, the designer can also in-
tervene the optimization process. For instance, he can intervene the optimization process

(a) DxDy mode (b) Specific mode

Figure 3.17 – Defined constraint modes.

97

Chapter 3 – Multi-objective layout problem model and interaction

by using the optimization interface to edit the optimization parameters (see Fig. 3.18),
or force search into a new area of the space by manipulating the components.

Figure 3.18 – Optimization parameter.

Thus, the presented design tool can be seen as a sketchpad for interactive optimization.
As a typical procedure, the designer would

1. Define the layout optimization problem: Define the container and components, the
optimization objectives, and the special or default constraints.

2. Select the optimizer: The optimization algorithm will be applied to find one or a
set of layout solution(s).

3. Examine results: Check results visually and check performance values.

4. Iterate the optimization: Use information to refine the problem definition or guide
search into a new layout.

3.4.2 Similarity indicator for decision-making

In traditional multi-objective optimization, layout problems may have more than one
objectives to be optimized. Moreover, the results can be evaluated by the convergence
and diversity, that is, the comparison of the desired and obtained solutions. When the
optimization process continuously converges, the similarity among the solutions increases,

98

3.4. Interaction environment

and the diversity of the solutions decreases. Therefore, converging to Pareto-front while
keeping good diversity is essential. However, the layout problem is special:

— Subjective requirements are difficult to model mathematically, therefore, they are
typically ignored in optimization models. for example the components should be
accessible from the entry, which is not easy to be integrated into the problem
formulation.

— The multi-objective optimizer searches for trade-off solutions in both objectives.
The optimal solution is subjectively selected by the designer.

— The final decision-making evaluates not only the performance in the objective
space, but also the quality in the design space. However, there are fewer perfor-
mance indicators for diversity evaluation in the design space.

Consequently, layout optimization aims to search for diverse solutions with good objective
values. The designer can choose among solutions to achieve the best compromise between
optimization objectives. When the solutions, have been generated by the algorithm, the
designer needs to compare these solutions. Therefore, it is necessary to evaluate similari-
ties among feasible solutions before showing the representative solutions. Maintaining the
diversity of solutions is important to guarantee interaction after optimization. By display-
ing the obtained solutions, the designer can use his expertise to interact and explore the
design space by manipulating locally the configuration of some components, and find the
design that satisfies all the requirements. In other words, the designer plays a major role
in the selection of the ideal result of the application. For the optimized solutions, there
may be similarities within the design set. Therefore, we define a similarity indicator to
evaluate the similarity of the design, which helps the designer distinguish between layout
design. A similarity indicator represents how closely the current layout design resembles
the others. Two kinds of similarity definitions are described below.

Grid difference

Usually, similarity computation is the difference in layout designs. Layout i and layout
j are geometrically different if any component is moved a certain distance from the layout
configuration [125]. Nevertheless, evaluating the similarity globally is more generic than
individual component comparison. Thus, we divide the layout configuration into grids and
define a similarity indicator for each paired designs based on the element-wise difference.

To calculate the similarity indicator, first, permute all the layout designs that belongs
to Pareto optimal set. For each paired layout, calculate an element-wise difference using

99

Chapter 3 – Multi-objective layout problem model and interaction

the grid representation, for example, if the same grid is occupied by the same component,
then the grid is labeled as 1, otherwise it is marked as 0. Then, calculate the percentage
of the same elements among all elements. The value of indicator is in the range of 0 to 1.
The larger the indicator is, the more closely the layout designs are.

However, the grid difference can not differentiate the symmetrical configuration, and
it becomes time consuming as the number of grids increases. So we propose another
lightweight similarity indicator based on the relative position.

Relative position

In general, two layout designs are similar if they have similar configurations of certain
components. To simplify a layout design, the relative position scheme is introduced to
replace the original layout with a n-by-n matrix M in Eq. 3.22. Each binary element
is a pairwise comparison of components (ci, cj). The binary variable defines the relative
position of the components and ensures symmetrical configuration detection.

M =


00 01 · · · 10
10 00 · · · 01
...

11 · · · · · · 00

 (3.22)

In a pairwise comparison of components (ci, cj), there are four possible relative positions
I, II, III, IV of component cj with respect to the reference component ci, as shown in
Fig. 3.19(a), it is determined according to the location of centroid, expressed as:

αxij
= xci

− xcj
(3.23)

αyij
= yci

− ycj
(3.24)

If i = j, we use the container as the reference component. The comparison is determined
as follows:

1. I: αxij
≤ 0 and αyij

≤ 0, Mij = 00. c3 is in the region I of reference component c4

in Fig. 3.19(b), M34 = 00

2. II: αxij
> 0 and αyij

≤ 0, Mij = 10. c1 is in the region II of reference component
c4 in Fig. 3.19(b), M14 = 10

100

3.4. Interaction environment

(a) Definition (b) Representation

Figure 3.19 – Relative position.

3. III: αxij
> 0 and αyij

> 0,Mij = 11. c2 is in the region III of reference component
c4 in Fig. 3.19(b), M24 = 11

4. IV : αxij
≤ 0 and αyij

> 0, Mij = 01. c5 is in the region IV of reference component
c4 in Fig. 3.19(b), M54 = 01

To evaluate the similarity of the relative position schemes, calculate an element-wise
difference for each pair of the matrices M . The similarity value is expressed as the
percentage of all elements that are the same. The similarity is between 0 to 1. The larger
the value, the higher the similarity. For symmetrical configuration detection, convert
αxij

= 1−αxij
to check the bilateral symmetry, and αyij

= 1−αyij
to check the longitudinal

symmetry.
Similarity analysis aims to keep a good diversity of the layout designs and reduce the

designer selection workload. A similarity indicator defines how similar two layout designs
are. The designer could select the most favorable solution based on the visualization tool.

3.4.3 Solution visualization tools

When the algorithm generated a set of feasible solutions, the designer needs to compare
the solutions. Therefore, it is recommended to display the layout design information both
in objectives and model design spaces to help the designer select the ideal solution. The
visualization tools presented in the followings allow for multidimensional visualization of
the solution.

Scatter plot A scatter plot is mostly used for rendering solutions in the lower dimen-
sional space. A scatter plot consists of points in an orthogonal frame that represent the
objective values of the layout configurations. In particular, the value of the optimization

101

Chapter 3 – Multi-objective layout problem model and interaction

(a)

(b) (c)

Figure 3.20 – Visualization tools.

objective is associated with each point. The point then forms the Pareto front of the
optimization problem, and solutions can be compared according to their values. Fig. 3.20
(a) presents one scatter plot of solutions.

Matrix plot A matrix plot displays a two-dimensional matrix with rows of the matrix
represented in rows, columns represented in columns, and the first row is at the top (cor-
responding to the original matrix representation). The similarity indicators for pairwise
layout design formulate a similarity symmetric matrix, where the color in the grid depends
on the similarity value, as illustrated in Fig. 3.20 (b).

102

3.5. Conclusion

Dendrogram A dendrogram is a diagram that shows the hierarchical relationship be-
tween objects. It is most commonly created as an output from hierarchical clustering.
For the similarity matrix, we apply the hierarchy cluster algorithm [126] to build nested
clusters by merging similar solutions successively. At each iteration, a distance matrix
of clusters is maintained. When only one cluster remains, the algorithm stops, and this
cluster becomes the root. The main use of a dendrogram is to work out the best way
to allocate objects to clusters. The dendrogram in Fig. 3.20 (c) presents the hierarchical
clustering of five solutions shown on the scatter plot. Besides, solutions are allocated to
clusters by drawing a horizontal line (threshold) through the dendrogram. Solutions that
are below the line are in clusters. In the example, we have two clusters. One cluster
combines 0, 1 and 4, and a second cluster combining 2 and 3.

3.5 Conclusion

This chapter presents some innovative concepts allowing to model a layout optimiza-
tion problem in a generic way. In order to translate the requirements of the designer into
optimization variables, design constraints and objectives, first of all, the layout is formu-
lated by the new component of solid and virtual parts. This definition makes it possible to
create a model of the layout problem, which takes into account all the specificities of the
problem. Besides, the geometrical constraints such as non-overlap and non-protrusion; the
functional constraints including the orientation and accessibility are translated into ex-
plicit mathematical functions. Furthermore, the layout optimization problem, presented
in this work, is a multi-objective formulation.

Then, a new capacity index is proposed to evaluate the feasible complexity of the
layout problem. This index defines an alternative to the traditional calculation of the
compactness of a layout problem. Contrary to the commonly used density calculation of
compactness, this new index is based on the evaluation of the minimum occupied space
of the components which reflects the geometrical information of the layout problem. The
capacity evaluation is implemented by the simulated annealing and constructive packing
optimization. The space generation is notably developed for the efficient geometrical
constraint evaluation. This index makes it possible to demonstrate, in a reliable way, if
the problem can be solved or not.

The interactive environment allows integrating mathematical optimization with hu-
man decision-making during conceptual design of the layout problem. The designer in-

103

Chapter 3 – Multi-objective layout problem model and interaction

teracts with the problem optimization representation by adding, deleting and modifying
objectives, constraints and components. Also, the final decision-making uses the visual-
ization tools to compare the solutions by analyzing the objectives and similarities that
characterize quantitative information. In order to help the designer distinguish layout
designs, a similarity indicator is notably proposed, which quantitatively expresses how
similar the current layout design is to other layout designs. In summary, the main func-
tions of the interactive environment are the visualization, modification, exploration of the
geometric model of the solution.

104

Chapter 4

MULTI-OBJECTIVE OPTIMIZATION OF

LAYOUT PROBLEM

4.1 Introduction

This chapter is devoted to the layout optimization approach. The optimization aims
to find the optimal solutions of the layout problem formulated in Chapter 3. The layout
problem, taking into account the virtual components and the accessibility to components.
Two objectives, namely layout balance and activities, are considered. Integrating the
accessibility of components as functional constraints ensures components maintenance or
proper operation. However, addressing the functional constraints increase the complexity
of the layout optimization.

Therefore, an optimization algorithm based on constructive approach is proposed to
solve the layout problem. The algorithm is based on the combinatorial optimization:
archive-free SA algorithm, to determine the placement and configuration sequences; con-
structive placement algorithm, to place components sequentially. In this chapter, the con-
structive placement is first introduced to generate complete layout configurations. Then,
the use of SA optimization is justified by the complexity analysis of the combinatorial
layout problems. Finally, the optimization and the relevant model in multi-container case
are described.

4.2 Solving simple layout examples

In this section, two different layout examples are formulated in comparison developed
archive-free SA with NSGA II. The examples properties are summarized in Table 4.1, in-
cluding the component number, the density and capacity, the size of the components, and
the functional constraints. Both layout examples have the associated virtual components.

105

Chapter 4 – Multi-objective optimization of layout problem

The capacity values are deduced using the method in Chapter 3, and the corresponding
most compact layout configurations are shown in Fig. 4.1.

Table 4.1 – Properties of layout examples.
Test 1 Test 2

Number of components 18 11
Density of solid components 0.54 0.47
Density of virtual components 0.54 0.66
Density of solid and virtual components 1.08 1.13
Capacity 0.81 0.75
Equal size Yes No
Accessibility No Yes

(a) Test 1

(b) Test 2

Figure 4.1 – Test examples.

Test 1 – Equal-sized component in Fig. 4.1(a)

The problem is concerned with placing 18 equal-sized components into a container,
width is 4000 mm, and height is 2000 mm, respecting geometrical non-overlap and non-
protrusion constraints. The virtual component, symbolized by the dotted rectangle, has
the same size as the solid component. And the dimensions are given in Table 4.2.

106

4.2. Solving simple layout examples

Table 4.2 – Data in Test 1.
Item Dim/w (mm) Dim/h (mm) Mass/m (kg)
Container 4000 2000 -
1-18.Components 600 400 50

Test 2 – Unequal-sized component in Fig. 4.1(b)

The unequal-sized component is more common and realistic. The problem involves
accessibility requirements and geometrical constraints. It has two types of components:
components 5-7 with 2-equal size virtual components, and the rest components each
with 1-equal size virtual component. The entrance, fixed to the lower left corner of the
container, is modelled as the virtual component. The container size is the same as in Test
1. The detailed dimensions of components are given in Table 4.3.

Table 4.3 – Data in Test 2.
Item Dim/w (mm) Dim/h (mm) Mass/m (kg)
Container 4000 2000 -
1-2. Components 600 400 50
3. Component 600 400 200
4. Component 1200 400 100
5-7. Components 200 200 30
8-10. Components 1000 800 200
11. Entrance 1200 1200 -

Both layout examples are formulated as the multi-objective optimization problems
presented in Eq.3.12: optimize the balance and the activity under constraints. Here, we
assume that the activity among components 1, 2, 3, 9 must be restricted so such that
the distance must be maximized, thus their activity factors equal to -1 for minimization.
We apply archive-free SA and NSGA II to solve the continuous problem formulations,
population size N = 100 and the maximum iterations is taken as 1000. However, archive-
free SA and NSGA II cannot really search for feasible regions in a reasonable time due
to the limited space in the test examples with a capacity up to 0.81. Therefore, the
algorithm may generate many infeasible solutions in which the non-overlap constraint
cannot be satisfied.

In NSGA II algorithm, even if different operators are used to generate new individuals,
the non-overlap satisfied individuals are still very sparse. In the end, the optimization
is likely to converge into a small niche of the solution space. This phenomenon can

107

Chapter 4 – Multi-objective optimization of layout problem

(a) (b)

Figure 4.2 – NSGA II obtained solutions of Test 1.

(a) (b)

Figure 4.3 – Archive-free SA obtained solutions of Test 1.

be seen in Fig. 4.2 and Fig. 4.4, and the obtained solution is generated by the local
movement of components in one type of layout design. In archive-free SA algorithm, it
tries to explore the space by accepting the worse solutions, such that the process will not
converge prematurely. However, the difficulty in finding the feasible solutions remains
the same level. The obtained solutions are shown in Fig. 4.3 and Fig. 4.5. Moreover, the
layout example is more complex than the common practical problems. It is evident from
the results that finding feasible configurations using conventional optimization algorithm

108

4.2. Solving simple layout examples

(a) (b)

Figure 4.4 – NSGA II obtained solutions of Test 2.

(a) (b)

Figure 4.5 – Archive-free SA obtained solutions of Test 2.

is quite challenging.

Based on the above analysis, it proves that no method is superior than the other
method. Therefore, it is better to guide the search into the feasible space. In the following
sections, one alternative approach will be designed for efficient feasible solution generation
in the layout problems.

109

Chapter 4 – Multi-objective optimization of layout problem

4.3 Constructive placement for layout generation

Applying continuous optimization is challenging due to the constrained design space.
Observe that the most of solutions not respect the non-overlap constraints and conse-
quently are infeasible. Constructive placement algorithm is inspired from [123]. The
former algorithm was developed for the cutting problem and the virtual components are
not considered. To place components with respect to constraints, first of all, we inte-
grate the placement strategy of solid and virtual components to satisfy the geometrical
constraints; then we characterize component accessibility as a constraint during the con-
struction process.

4.3.1 Placement strategy

As presented in Chapter 3, the placement of component will generate two kinds of
available space, denoted as:

• a: available spaces used for virtual components;
• a′: available spaces used for solid components.

The placement strategy is proposed to place component in appropriate space with respect
to the constraints. The strategy concerns two aspects, namely component placement and
space selection.

Component placement

For a component ci, it has four rotation configurations. The placement is performed
only for available space in which the component fits. To place a component ci = (si, vij),
j = 1, according to the selection of the available space, i.e., ai ∈ a′ and aj ∈ a, there will
be two possibilities: ai and aj coincide or not.

1. If the selected space ai and aj coincide, then the component will be placed in the
corners of selected space with four rotations. It ensures that less margin space is
generated and the non-overlap constraint is satisfied automatically. The feasible
configurations are numbered from 1 to 16 as shown in Fig. 4.6, and we have the
configuration sequence pi = (1, 2, ..., 16).

2. Otherwise, the solid component will be placed in the corners of ai, and the con-
figurations in Fig. 4.6(b), (c) becomes the placements as shown in Fig. 4.7, where
certain configurations will be adjusted according to the selected space aj. One

110

4.3. Constructive placement for layout generation

example is given in Fig. 4.8, instead of placing c2 in the corner in Fig. 4.8(a), the
position is refined to avoid overlapping with c1 in Fig. 4.8(b).

(a) (b) (c) (d)

Figure 4.6 – Placement examples ai and aj are coincide.

(a) (b)

Figure 4.7 – Placement examples ai and aj are not coincide.

(a) (b)

Figure 4.8 – Placement adjustment.

If the component ci = (si, vij), j > 1, and vij is distributed in more than one di-
rection (x−axis, y−axis), then the placement will be proceeded iteratively, presented in
Algorithm 6. Assuming there is one component c1 = (s1, v11, v12, v13, v14) (see Fig. 4.9)
selected to be placed with p1 = 16.

1. If the selected space ai and aj coincide, then the component will be placed in the
corners of selected space.

2. Otherwise, the placement of solid and virtual components is similar to the one
directional case but is performed iteratively. One example is given in Fig. 4.10.
Firstly, place s1 to the bottom right corner in ai; then place the virtual components

111

Chapter 4 – Multi-objective optimization of layout problem

Algorithm 6 Component placement
for ai in a′ do

Place si in ai
for aj in a do

Place vij in 1st direction in aj
Adjust placement of si in ai
for ak in a do

Place vij in 2nd direction in ak
Adjust placement of si in ai and vij in 1st direction in aj

end
end

end

Figure 4.9 – Two directional virtual components representation.

v12 and v14 along x− axis in aj and adjust placement of s1 at the same time; finally,
place virtual components v11 and v13 along y− axis in ak and adjust placement of
s1, v12 and v14 to satisfy non-overlap constraints.

Figure 4.10 – Placement of two dimensional virtual components.

Space selection

To place a component, it should decide which available space will be used. The
component placement is decided by the spaces in a that used for virtual components and

112

4.3. Constructive placement for layout generation

a′ that used for solid components. The successive placement process can be treated as a
combination problem. Thus, an effective space selection rule is essential for a constructive
placement. Three selection strategies are proposed:

1. Selection strategy 1: Check all the combinations of spaces (ai, aj(k)), ai ∈ a′ and
aj(k) ∈ a.

2. Selection strategy 2: Select one combination of spaces (ai, aj(k)), ai ∈ a′, aj(k) ∈ a

satisfying Eq. 3.16, ai is the smallest sized space. The selection aims to successfully
finish the construction process with less computational effort, namely space-filling
placement.

3. Selection strategy 3: Select one combination of spaces (ai, aj(k)), ai ∈ a′, aj(k) ∈ a

satisfying Eq. 3.16, ai is the largest sized space.

The placement of component ci may have more than one feasible configurations sat-
isfying the geometrical and functional constraints. We need the criteria to select which
configuration is used for the space generation. For the high-capacity layout problem,
maximizing the space utilization to find feasible designs always has the highest priority.
However, we notice that maximizing the overlap of virtual spaces sometimes conflicts
with accessibility requirements. If the overlap maximization is too aggressive than other
objectives, then the final solutions will converge to part of the feasible region. To bal-
ance the feasibility and the diversity, we classify the configurations based on the container
boundary then select configuration according to the overlap maximization rule. A detailed
explanation can be found in the next section that describes the summarized constructive
placement algorithm.

4.3.2 Accessibility analysis

In the problem modelling, we introduce the virtual components connected to the solid
component to deal with local accessibility. Indeed, the virtual space may be inaccessible
from the entrance if there is no path to access it. The integration of virtual spaces is
necessary but is not sufficient for the component accessibility. The proposed layout model
is composed by a set of rectangular components. Therefore, the proposed method uses
rectangle with size (wr, hr) to represent the accessible space required by the user, shown
in Fig. 4.11, where rectangles represent the path taken by the user inside the layout, in
order to reach to the component from the entrance.

113

Chapter 4 – Multi-objective optimization of layout problem

Figure 4.11 – Accessibility representation.

In our work, we characterizes component accessibility as a constraint during the con-
struction process. Assume that k components have been placed in the container space,
and the generated available spaces are kept in a and a′. To place the k+1 component, the
accessibility analysis is applied as summarized in Algorithm 7. The accessibility analysis

Algorithm 7 Accessibility analysis
1: Initialize the door space ad.
2: Generate connection tree of available space list a = {a1, ..., ai, ..., aj, .., am}.
3: Find path for each placed virtual component vij.

builds the connection tree using spaces in a that is generated by solid components. The
root is ad and the nodes are the connected space ai, aj in a. The connection is measured
by intersection space:

max(0,min(xRai
, xRaj

)−max(xLai
, xLaj

)) ≥ wr (4.1)

max(0,min(yTai
, yTaj

)−max(yBai
, yBaj

)) ≥ hr (4.2)

where the rectangle size (wr, hr) represents the accessible space required by the user.
Assuming one component is accessible from the entrance, there is at least one path for
the human to reach the component. The path starts from the door space ad and ends
at the virtual space of the component vij. For the placed virtual component vij, find
the corresponding space av where it placed inside. Using the recursion idea, Algorithm
8 illustrates traversing the connection tree to find a path. If there is a path start=ad,
end=av, path=[ad, . . . , av], then the component is accessible; otherwise, the component’s
configuration is not acceptable. One example presented in Fig. 4.12, the placement of v11

occupies a1, and there is one path=[ad, a2, a1].
To understand how the construction works, consider a simple two-dimensional layout

problem. This problem consists in placing five components (five types of components)
and one flexible door in a container, while respecting the geometrical constraints and ac-

114

4.3. Constructive placement for layout generation

Algorithm 8 find path(start node = ad, stop node = av, path = [])
path = [path, startnode]
if start node=av then

return path
end
if start node not in connection tree then

return infeasible configuration
end
for node in connection tree do

if node not in path then
path = find path(start node, stop node, path)
if path exist then

return path
end

end
end

Figure 4.12 – Connection path [ad, a2, a1].

cessibility constraints. Fig. 4.13 illustrates the components and container of the example.
For the layout problem, a rectangle (wr, hr) represents the user working in the layout.

(a) Container (b) Components

Figure 4.13 – Layout problem of five components.

And the size can be set as the minimum space of the virtual components. When placing
a new component into the container, one connection tree is built based on the intersec-
tion relationship of available spaces in a. The connection is evaluated at each level of
the tree. Once the tree generation is finished, check if there is one path for accessibility

115

Chapter 4 – Multi-objective optimization of layout problem

(accessible from the door through available space; ignore the indirect connection between
components).

(a) (b) (c) (d)

(e) (f)

Figure 4.14 – Accessibility analysis (a) Placement of components ci = (si, vij), i ∈
(1, 2, 3, 4), (b) Space generation a of (s1, s2, s3, s4), (c) Placement of components ci =
(si, vij), i ∈ (1, 2, 3, 4, 5), (d) Space generation a of (s1, s2, s3, s4, s5), (e) Connection tree
a generated by (s1, s2, s3, s4), (f) Connection tree a generated by (s1, s2, s3, s4, s5).

Examples in Fig. 4.14 illustrate the accessibility analysis. The placements of (c1, c2, c3, c4)
in Fig. 4.14(a) generate available spaces a = {a1, a2, a3, a4, a5} in Fig. 4.14(b) in colors.
The connection tree in Fig. 4.14(e) is generated based on the Eq. 4.1 and Eq. 4.2, where
tree={ad : [a1], a1 : [a2, a3, a5], a2 : [a4], a4 : [], a3 : [], a5 : []}. And there exists at least one
connection path for the placed virtual components:

• v11: path=[ad, a1, a2]
• v21: path=[ad, a1, a2, a4]
• v31: path=[ad, a1]
• v41: path=[ad, a1, a3]

So the placed components are accessible and the current layout configuration is feasible.
If the placement continues and the component c5 is placed as shown in Fig. 4.14(c),
then the space generation updates as in Fig. 4.14(d) and the connection tree becomes
tree={ad : [a1, a6], a1 : [a2′ , a3, a5], a6 : [a5], a2′ : [], a3 : [], a5 : []} as shown in Fig. 4.14(f).
There is a connection path for solid components s3, s4 while s1, s2 can not be accessible
anymore. So the configuration does not satisfy the accessible requirement. The placement
of c5 will not be accepted as a feasible solution.

116

4.3. Constructive placement for layout generation

4.3.3 Constructive placement algorithm

The constructive placement process is summarized in Algorithm 9. In step 1, we
initialize the available space as the container size. Then place the component sequentially
to have the geometrically feasible configurations pig in step 2. The configuration selection
is determined by the boundary classification in step 3, accessibility verification in step 4
and overlap maximization in step 5. The process continues with new space generation
and next component placement in step 6.

Algorithm 9 Constructive placement
1: Initialize the available space as a0 in a and a′.
2: Place component ci successively following the placement sequence c. With the selected

available space (a′, a), a′ ∈ a′, a ∈ a according to the placement strategy, go through
the configuration sequence pi to find all the feasible configurations that satisfy the
geometric constraints, denoted as pig = (i1, i2, ..., ir), r ≤ 16.

3: Classify the configurations in pig. If the configuration is on the boundary, keep it in
the first level pib1 , otherwise, keep it in the list pib2 . And the feasible configurations
becomes pib = (j1, ..., jl︸ ︷︷ ︸

pib1

, jl+1, ..., jr︸ ︷︷ ︸
pib2

).

4: Check the accessibility requirement of the obtained configurations and filter
out the unsatisfied candidates. The final feasible configurations list is pia =
(k1, ..., kh︸ ︷︷ ︸

pia1

, kh+1, ..., kq︸ ︷︷ ︸
pia2

), q ≤ r ≤ 16.

5: If there are more than one feasible configuration in pia1 , sort the configuration list
by computing the available space area in descending order. The first with maximum
available space in pia1 will be selected as the prior choice; otherwise, select the first
configuration with maximum available space in pia2 .

6: Update a and a′ with space generation. Continue placing components to complete
the construction. Otherwise, the layout configuration is infeasible.

4.3.4 Constructive placement strategy comparison

Here, we use two layout examples that presented before to test the different place-
ment strategies in the constructive placement. Constructive placement is designed to
circumvent the difficulty arising from constraints. In each iteration, the placement order
is generated randomly. With a given number of iterations, the more feasible solutions it
finds, the better the performance.

117

Chapter 4 – Multi-objective optimization of layout problem

Table 4.4 – Placement strategy comparison with fixed configuration sequence.
Number of solutions Test 1 Test 2

Fix configuration sequence
Space selection strategy 1 1/100 2/100
Space selection strategy 2 1/100 37/100
Space selection strategy 3 1/100 5/100

Table 4.5 – Placement strategy comparison with permuted configuration sequence.
Number of solutions Test 1 Test 2

Permute configuration sequence
Space selection strategy 1 22/100 5/100
Space selection strategy 2 26/100 40/100
Space selection strategy 3 13/100 6/100

Placement strategy with fixed configuration sequence

The strategy comparison results are summarized in Table 4.4 where the number of
solutions is obtained with 100 iterations. Three strategies are compared with fixed config-
uration sequence. If we do not permute the configuration sequence, then the configuration
sequence is fixed as pi = {1, 2, ..., 16}. In Test 1, if there is no configuration permutation,
the constructive placement will find one feasible solution with poor diversity no matter
which strategy is used. In Test 2, both geometrical and functional constraints are consid-
ered. Because of the unequal-sized component, three strategies with fixed configuration
sequence can find more than one feasible solution. It is worth noting that it results from
the random placement sequence but not the configuration sequence. Strategy 2 starts
with the smallest size of the available space and fills the container space gradually. It
helps the placement to finish the constructive process, consequently, more solutions are
obtained compared to strategy 1 and 3.

Placement strategy with permuted configuration sequence

The strategy comparison results are summarized in Table 4.5 where the number of
solutions is obtained with 100 iterations. Three strategies are compared with random
configuration permutations.

In order to overcome the limitation of diversity, the configuration permutation is in-
cluded in the constructive process. And we can see that the number of solutions is
improved dozens of times in Test 1 compared to the case of fixed configuration sequence.
Besides, it turns out that the performance of strategy 1 will decrease if there is accessibil-
ity requirement, for example, 22 out of 100 are feasible in Test 1 but 5 out of 100 feasible

118

4.4. Optimization for layout problem

in Test 2. However, strategy 2 significantly outperforms the strategy 1 and 3 in feasible
solution generation.

After the comparison, we can conclude that
— The permutation of configuration sequence is necessary for diversity in the design

space, especially in the case of equal-sized component. In other words, under the
same condition, different configurations have the same possibility to be selected
during the construction process.

— Considering the search ability under constraints, strategy 2 is much better than
strategy 3. Strategy 2 conducts the placement effectively and achieves better results
compared to the other.

Based on the above analysis, space selection strategy 2 with configuration permutation
is effective in generating feasible solutions and proved to be the best placement strat-
egy for developing the multi-objective optimization algorithm. These contributions were
appeared in a peer-reviewed publication [127].

4.4 Optimization for layout problem

The constructive placement treats the layout generation as a discrete combinatorial
problem. The complexity is first analyzed before presenting the proposed optimization
algorithm.

4.4.1 Complexity analysis

With the placement sequences c and configuration sequences p, the placement al-
gorithm can constructively build a layout. Moreover, the proposed algorithm uses the
discrete formulation and the complexity is computed according to the combination pos-
sibilities N . The complexity N relates to the number of spaces in a,a′. For the se-
lected available space (a′i, aj), i ∈ [1, k], j ∈ [1,m], there are at most 16 feasible solutions
pia = (k1, ..., kq), q ≤ 16. If we check all combinations of available spaces in strategy 1,
the combination complexity for one component equals N = q ∗m∗k. In strategy 2 and 3,
check one selected available space, then the complexity becomes N = q. The complexity
of strategy 1 can be highly increased if the number of available spaces is quite large.
Furthermore, as the number of components increases, the computational time to explore
the sequence space using an exhaustive search approach increases exponentially. Hence,

119

Chapter 4 – Multi-objective optimization of layout problem

it is necessary to develop a meta-heuristic method to effectively search the feasible space.

4.4.2 Layout optimization algorithm

In Chapter 2, the experimental results prove that archive-free SA is computationally
cheaper and produce better approximations on MOKPs. Therefore, archive-free SA is used
to improve the placement and configuration sequences in Algorithm.10. Given a state Xi,
a layout with f i is generated using the constructive placement. And the neighbors are
generated by a swap operator: two components could be selected randomly based on step
parameter σ. The mechanism is the same in the configuration sequence.

Algorithm 10 Optimization framework
/* Block of constructive placement */
for Xi in P do

Given current state Xi = (c,p)
for ck in c do

Select available space by placement strategy
Place ck with pk ∈ p s.t. accessibility analysis
Select configuration by placement strategy
Space generation

end
Objective evaluations f i

end
/* Block of optimization */
while stop condition not met do

while iteration in inner loop do
P ′ = neighbor generation (P)
Constructive placement
(R,R′) = fast nondominated sort
(CD,CD′) = crwoding distance
P = dynamic selection

end
decrease temperature t

end

As we noticed that, the layout problem is a constrained problem. The constraints
involve the functional and geometric requirements. In the presence of constraints, each
solution generated by constructive algorithm can be either feasible or infeasible. Thus,
we introduce the infeasible violation I to measure the number of unplaced components
during the construction process, I ∈ [0, n]. There are at most two situations:

120

4.4. Optimization for layout problem

1. If the placement reaches to the end of the construction process, it means all the
components are feasible so the infeasible violation I = 0.

2. Otherwise, the construction will be interrupted earlier and the infeasible violation
I equals to the number of unplaced components among c.

Consequently, the fast nondominated sort is carried out using the following domination
comparison:

— both solutions are feasible. The denomination is measured according to the original
objective functions.

— Neither are feasible. The objective value becomes the infeasible violation. The
infeasible solution with smaller infeasible violation denominates the other.

— Only one of the two is a feasible solution. The infeasible solution is dominated by
the feasible solution.

The ranks of all feasible solutions are compared using the objective function values, while
the ranks of infeasible solutions are compared using infeasible violations. Feasible solu-
tions are assigned better ranks than infeasible solutions using the modified domination
comparison.

4.4.3 Comparisons of optimization results

Since the placement is sequential, the placement sequence c = {c1, ..., cn} is one dis-
crete variable in SA. Furthermore, in the placement strategy comparison, it turns out
that the configuration sequence p = {p1, ..., pn} will also affect the solution candidates.
Thus, we propose three formulations concerning the design variables and parameters in
the layout optimization:

1. Design variable Xi = (c), and parameter pi = {1, ..., 16};

2. Design variable Xi = (c), and parameter pi is permuted randomly;

3. Design variable Xi = (c,p).

In the first two cases, configuration sequence pi is treated as one parameter (fixed or per-
muted), while in the last case, pi is taken as one discrete variable. Here, the optimization
is performed under 100 iterations with population size N = 20. The objective of the lay-
out example is to find the optimal design which minimize its balance and maximize the
required functional distance. For each case, the optimization has been run twenty times
because of the stochastic behavior of the algorithm. A comparison among the results

121

Chapter 4 – Multi-objective optimization of layout problem

obtained using the different formulations was performed to verify their performance to
optimize layout, executing 2000 evaluations of objective functions for each of them.

In Fig. 4.15, it is shown the Pareto solutions obtained using optimization in Test 1.
It is possible to observe that the fixed configuration sequence has not presented a good

Figure 4.15 – Pareto solutions obtained using different formulations in Test 1.

performance. It has found only one extreme Pareto solution. Besides, the permuted
configuration sequence has found two solutions but are dominated by solutions found by
optimized configuration sequence. Optimizing configuration sequence found more Pareto
solutions than others. In other words, optimized configuration sequence solutions domi-
nated the most of the other ones.

In Test 2, the Pareto front obtained by different optimization formulations are shown
in Fig. 4.16. It can be noted that although fixed configuration sequence presents six
solutions, only one of them dominate the solutions found by the other algorithms in the
mass balance around 100 mm. While two of eight is considered as the non-dominated
solutions using permuted configuration sequence. In the balance region below 200 mm,
optimized configuration sequence presented the best performance, finding more trade-off
solutions than others algorithms where one solution slightly dominated by solutions found
by permuted configuration sequence.

Through different multi-objective layout optimizations, several configurations of layout
optimization designs were obtained, which found the Pareto solutions. From the results it

122

4.5. Multi-container layout problem

Figure 4.16 – Pareto solutions obtained using different formulations in Test 2.

can be said that optimizing configuration sequence had the best performance on finding
the Pareto front.

4.5 Multi-container layout problem

In this study, the multi-container layout problem aims to find the layout configuration
under flexible sub-container size. The objectives are to optimize the mass distribution and
the activity relationships among components while satisfying the functional and geometric
constraints. In the formula presented here, components and sub-container are represented
by rectangles following current industrial practices. Overall, the multi-container layout
problem model is stated as follows:
Given:

— n components with fixed dimensions and l sub-containers with flexible sizes;
— Fixed assignment of components to sub-containers r : {c1, ..., cn} → {1, ..., l};
— Total container dimensions W,H and the area z = W ×H

Determine:
— The sub-container size and the component placement, so as to find the Pareto front

of the multi-container layout problem.

123

Chapter 4 – Multi-objective optimization of layout problem

(a) "|" form (b) "-" form (c) "+" form

Figure 4.17 – Partition form

4.5.1 Boundary restrictions

For multi-container layout problem with fixed component assignment, the component
placement is restricted by size of the corresponding sub-container. Depending on the
sub-container size, the layout will be divided into different spaces. And, a complete lay-
out configuration can be generated according to the component placement. The various
partition forms are presented in Fig.4.17. In general, for a given layout area, the com-
bination of partition form can divide the layout into different rectangular sub-container
For example, if there are l − 1 "|" form partitions inside the layout, then the layout area
z will be divided into l sub-container with area zj = Wj × Hj, j ∈ l. Once the location
of partition is determined, components will be arranged in each sub-container. Given the
assignment of components r, ri = j if component ci, i ∈ n, is assigned to sub-container
j ∈ l. If partition size is ignored, the following conditions should be satisfied:

0 ≤ zj ≤ z (4.3)

l∑
j=1

zj = z (4.4)

To make sure components can be placed inside each sub-container, the occupied area
of components should be less than the sub-container area. Assume that for each sub-
container j, component ci placed inside is ri = j. Thus lower bounds of sub-container
area zj should satisfy non-protrusion constraints of components:

β̂cj
≤ zj (4.5)

where β̂cj
is the minimum occupied space of components inside sub-container j. Solving

124

4.5. Multi-container layout problem

Eq.4.4 subject to constraint Eq.4.5, the new boundary constraints of sub-container become

β̂cj
≤ zj ≤ αj + β̂cj

(4.6)

l∑
j=1

αj = z −
l∑

j=1
β̂cj

(4.7)

By doing so, we transform the constrained global optimization of zj in Eq.4.3 into local
search region in Eq.4.6.

4.5.2 Extension to multi-container layout optimization

In general, the optimization framework for multi-container case is the same as the
proposed algorithm for single-container case: archive-free SA optimizes multi-objective
considering the sub-container z = (z1, ..., zl), which are continuous variables, and the
placement-related sequences including placement sequences c = (c1, ..., cn) and configu-
ration sequences p = (p1, ..., pn), which are discrete variables. Once the sequences and
sub-container spaces are determined, the placement is used to construct the complete
layout.

In each iteration, a new population will be generated by neighbor generation. The
pseudo-code is described in Algorithm 11. Each individual, Xi = {z, c,p} is perturbed
to generate a new individual X ′i = {z′, c′,p′}.

Algorithm 11 neighbor generation
Input: P, τ, σ
Output:P ′

1: for i← 1 to N do
2: c′,p′ = swap(c,p, σ)
3: lb = max(z − τ ∗ (Ub− Lb), Lb)
4: ub = min(z + τ ∗ (Ub− Lb), Ub)
5: z′ = lb+ rand ∗ (ub− lb)
6: end for
7: return P ′ = (X ′1, ..., X ′N)

To generate a new state, the placement-related sequences in the same sub- container
are perturbed by a swap operator. Moreover, changing of the sub-container area is defined
by the neighborhood search. The area of sub-container is locally modified in its neighbor
region in line 5. The neighborhood size is defined by the lower and upper boundary

125

Chapter 4 – Multi-objective optimization of layout problem

Lb, Ub, where Lb = (β̂c1 , ..., β̂cl
), Ub = (α1 + β̂c1 , ..., αl + β̂cl

). The new boundary lb, ub
defines the minimum and maximum movement of the current value and τ ∈ (0, 1).

4.6 Conclusion

The more constraints, the more the design space is divided into separate zones. Also,
the larger the capacity index, the more difficult to find feasible configurations. Conse-
quently, the layout problem is then more complex. The effective non-overlap evaluations
must be implemented to reduce the computational time. The use of a stochastic algorithm
is necessary considering the great complexity of layout problems, especially industrial ap-
plications. However, the experimental results on layout examples have demonstrated the
feasible difficulty of the continuous optimizer.

This chapter has detailed the optimization for layout problems. It is based on the con-
structive placement and one stochastic algorithm, that is archive-free simulated annealing.
The constructive placement, used for layout generation, selects and places components
successively while respecting all constraints. Indeed, it solves the most difficult issue, fea-
sibility, in the layout generation. Furthermore, the stochastic optimization is introduced
to decrease the computational complexity in the search space. Moreover, the placement
is independent of the optimization and can be extended to any other layout problem,
i.e. multi-container case. The algorithm is implemented and tested in several applica-
tion cases introduced in next chapter, and their results are compared quantitatively and
qualitatively.

126

Chapter 5

INDUSTRIAL APPLICATIONS

5.1 Introduction

Layout problems are inherently multidisciplinary tasks and are usually solved as opti-
mization problems, expressed as finding the optimal arrangements of components inside
the container to optimize the objectives and respect constraints. The research on in-
dustrial layout optimization intensified in recent years. Industrial layouts have complex
environments and various design goals and constraints to ensure the layout is in a good
functional state.

The layout problem presented in this chapter relates to the industrial application pro-
posed by the French company Thales SIX France in Cholet. The application concerns the
layout of shelter design. A proper shelter layout can effectively improve the system perfor-
mance. Light and mobile shelter with on-board equipments, such as cabinets, desks and
other electrical boxes, provides complete protection for personnel and against battlefield
aggression. This technical shelter layout is often attached to the rear of a vehicle and is
dedicated to communications missions during military operations. Its versatility means a
variety of armed forces can use the shelter. The first two examples deal with the problem
of the shelter layout in a single container. The last case study is a multi-container shelter
layout. For each case study presented in this chapter, all the steps of the method are
described: the description, the capacity analysis, the resolution of the problem, as well as
the similarity analysis for later interaction. The experiments indicate that the proposed
optimization approach performs well in ensuring accessibility and efficiently finding high-
qualified solutions, where the constructive placement largely contributes to the search for
alternatives satisfying constraints.

127

Chapter 5 – Industrial applications

5.2 Single-container shelter problem

The chosen shelter layout is taken from [128]. This case study is a shelter with four
cabinets, two desks and two electrical boxes as illustrated in Fig. 5.1.

Figure 5.1 – Overview of CAD model of single-container shelter [128].

5.2.1 Problem description

In order to simplify the optimization formulation, there are two assumptions:

1. Components have the same height and no superposition.

2. Components are cuboids.

Consequently, the configuration of the problem is defined in two-dimension, shown in
Fig. 5.2.

We use the rectangle to represent each component. Considering the accessibility, a
virtual component (light color), the same size as the solid component, is attached to each
cabinet and desk. For example, the virtual space of cabinet allows interaction between
human and itself or insert some materials into the cabinet. These components should be
accessible from the fixed entrance.

The shelter has dimension W = 2150 mm,H = 2740 mm. The dimensions of the
equipment, as well as the mass of each equipment, are indicated in Table 5.1.

128

5.2. Single-container shelter problem

Figure 5.2 – 2D configuration model of single-container shelter.

Table 5.1 – Data of components in single-container shelter.
Item Dim/w (mm) Dim/h (mm) Mass/m (kg)
1.cabinet 800 600 400
2.cabinet 600 600 300
3.cabinet 600 600 300
4.cabinet 600 600 274
5.desk 350 465 10
6.desk 525 800 30
7.box 200 580 45
8.electrical box 250 430 35
9.entrance 800 600 -

5.2.2 Problem formulation

The purpose of the case study is to place properly the components in the feasible space
to achieve given objectives. The overall formulation of the problem including variables,
constraints and objectives.

The geometrical constraints of the shelter are non-overlap and non-protrusion con-
straints. Besides, there are also functional remarks of the shelter:

1. The cabinets are restricted in the allowed spaces, where non-overlap between cab-
inets and the hatched rectangle space below the air conditioner in Fig. 5.3;

2. The electrical box 8 has to be placed against the front wall near the door or the
wall behind, where no rotation is allowed;

129

Chapter 5 – Industrial applications

3. The desk 5 is a tablet that can be folded down and it is therefore assumed that it
can overlap all the virtual components present in the shelter.

These requirements are formulated as constraints that presented in Chapter 3, and will
be handled by the constructive placement. The distance between cabinet 1 (energy box),
cabinet 3, cabinet 4 and electrical box 8 should be maximized to limit interactions between
electrical and energy networks. For simplicity, we list the activity relationship of these
four components in Table 5.2. Two optimization objectives are therefore:

Table 5.2 – Activity factor of the single-container shelter.
Item 1.cabinet 3.cabinet 4.cabinet 8.energy box

1.cabinet 0 0 0 -1
3.cabinet 0 0 0 -1
4.cabinet 0 0 0 -1
8.energy box -1 -1 -1 0

— minimize objective 1: distance between the center of gravity of all the components
and the geometric center of the shelter, given by Eq.3.8 in Chapter 3.

— maximize objective 2: distance between cabinet 1 and the set made up of cabinets
3 and 4 and box 8, given by Eq.3.10 in Chapter 3.

The multi-objective layout optimization aims to find the arrangement (location and ori-
entation) p = {p1, p2, ..., pn}, n = 8 of components c = {c1, c2, ..., cn}, n = 8, optimize
objective 1 and objective 2 and satisfy geometrical (non-overlap and non-protrusion) and
functional constraints (accessibility, edge on the wall), given by Eq.3.12 in Chapter 3.

5.2.3 Capacity evaluation of the layout

The shelter layout has eight solid components, seven virtual components (six acces-
sibility spaces of the solid components that have the same dimensions to these related
solid components, one virtual entrance). The density of solid and virtual components
using the formula Eq.3.13, Eq.3.14 and Eq.3.15 in Chapter 3, are listed in Table 5.3.
In previous study [128], the author introduces one free space below the air-conditioner
(hatched rectangle, one free space at the shelter’s entry, one virtual corridor located in
the middle that connected to the door of the entry, which guarantees all solid components
should be accessible, as shown in Fig. 5.3. However, if the virtual components (6 spaces
of accessibility, 1 corridor, 1 door, 1 free space) are included and overlap between them
are ignored, then the sum of the density is increased to βsv = 1.05 > 0.85. Since we

130

5.2. Single-container shelter problem

Table 5.3 – Density of components.
Density Value
Density of solid components βs =0.40
Density of virtual components βv =0.45
Sum of density βsv =0.85

Figure 5.3 – Previous 2D configuration model [128].

employ the accessibility analysis, the corridor is of no use in our case. Besides, to place
the cabinets in the allowed spaces, the specific constraint modes could be used in layout
modelling as presented in Chapter 3, instead of using one virtual free space.

By applying the method presented in Chapter 3 with 1000 iterations, it takes 12
minutes to find the minimum occupied space of the case study where βc =0.55, which
shows a priori feasibility of the shelter optimization. The corresponding layout design is
shown in Fig.5.4. In [122], the author use intersection matrix to calculate the capacity
βc = 0.66. However, the value is based on estimation and no geometry included.

Besides, when we place the components sequentially, it may generate some small
spaces, which are empty, but no components can be placed. Indeed, these small spaces
should be identified as infeasible spaces. After obtaining the prior feasible information,
we apply optimization algorithm to find the set of feasible solutions of the shelter.

131

Chapter 5 – Industrial applications

Figure 5.4 – The compact configuration with βc = 0.55.

5.2.4 Optimization results and similarity analysis

An initial population has N = 200 random individuals. The initial temperature ts is
initialized as ts = 100. Set the cooling rate r = 0.9 and the total number of iterations L =
250 to perform the annealing process. The algorithm searches for solutions by considering
the geometrical and functional constraints and objectives of the problem formulation.
Fig. 5.5 shows the previous optimal solution and an optimal solution obtained from the
optimization. All layout designs satisfy the non-overlap, non-protrusion, accessibility and
the additional user defined constraints.

Table 5.4 – Numerical results of solutions.
Objective Initial solution Previous optimal solution Optimal solution
objective 1/mm(minimization) 254.1 83.3 15.8
objective 2/mm(maximization) 6048.8 6484.3 6971.7

For comparison, Table 5.4 presented the objective values of the initial solution, the
previous optimal solution in the literature, the optimal solution that realizes the best
compromise between optimization objectives. The numerical result illustrates that the
optimal solution can realize much better objective values compared to the initial one and
the previous one. Indeed, the initial configuration created by the engineers of Thales
was generated from geometrical aspects. And the configuration of the initial expert solu-
tion is described in Fig.5.2. The previous optimal solution based on interactive modular
optimization is presented in [125]. The experimental results prove that the proposed al-

132

5.2. Single-container shelter problem

(a) Previous optimal solution [125]. (b) Optimal solution.

Figure 5.5 – Optimal solutions configurations.

gorithm is effective in solving the layout problem under functional constraints. Besides,
it can be seen that there is a significant difference between the optimal layout solution
compared to the initial and the previous solution. It proves that the proposed layout can
conduct better exploration and exploitation ability. At the same time, it can find better
solutions in both objectives.

Figure 5.6 – Display of solutions in objective space.

133

Chapter 5 – Industrial applications

(a) solution 0. (b) solution 1.

(c) solution 2. (d) solution 3.

(e) solution 4.

Figure 5.7 – Display of selected designs.
134

5.2. Single-container shelter problem

(a) Similarity matrix. (b) Hierarchical cluster dendrogram.

Figure 5.8 – Similarity analysis.

The proposed optimization algorithm can generate high-qualified solutions that are
well-distributed in objective space. However, the diversity in design space is also impor-
tant. Therefore, we now analyze the similarities among the obtained feasible solutions.
To simplify the demonstration, we first apply non-dominated sorting to select solutions in
the rank range [1, 10] and the number of solutions is 135, as shown in Fig. 5.6. We can see
that the exploration region distributed in objective space is no longer a niche. Besides, the
proposed algorithm can generate more choices for designers. Then we randomly select five
solutions, numbered from 0 to 4, as shown in Fig. 5.6. The corresponding configurations
are given in Fig. 5.7 and each solution is a new variant compared to the other (at least
one different component configuration).

The similarity indicators for paired layout designs formulate a similarity symmetric
matrix, represented in Fig. 5.8(a). By comparison, design 0 and design 1 have higher
similarity value, while design 0 and design 4 have lower similarity value compared to
others. Considering the different variants, it is necessary to identify the difference and
cluster similar sets. Considering the undetermined number of clusters, the similarity
matrix is analyzed using hierarchy cluster algorithm. The algorithm uses a distance
matrix to merge similar solutions consecutively and builds nested clusters until there is
only one cluster left. The hierarchical similarity relationship of the selected designs is
presented in Fig. 5.8(b). It can detect the geometrical differences between configurations
and identify similar groups. For example, the similar design 0 and design 1 are assigned
into one group, whereas designs 3 with less similarity values are grouped with design 0 and

135

Chapter 5 – Industrial applications

design 1 into another cluster. Besides, by drawing a horizontal line (threshold) through
the dendrogram, all the connected descendent links below a cluster node are in the same
cluster if this node is below the cut threshold, that is, solution 0, solution 1 and solution 3
are in the same cluster. The visualization tool can provide information on the hierarchical
similarity of designs, helping users to quickly select the preferred solution.

Figure 5.9 – Display of cluster dendrogram.

Figure 5.10 – Display of clustered solutions in objective space.

136

5.3. Single-container shelter with big size components

After preliminary experiments, we now apply the similarity analysis to ranked solu-
tions, and clustering results are shown in Fig. 5.9. If we set the threshold to define the
clusters, we can have the different grouped solutions, as shown in Fig. 5.10, the same
grouped solutions have the same color. It is proved that, close points in objective space
can have different configurations in design space and vice versa. In the layout optimiza-
tion, configurations affect the system performance directly. The similarity analysis makes
the solution selection more reliable.

The experimentation proves that the proposed optimization is effective in generat-
ing alternatives and finding high-qualified solutions in a reasonable computational time.
Moreover, the similarity analysis demonstrates good diversity of the obtained layout set,
which can be applied as an interactive tool.

5.3 Single-container shelter with big size components

The shelter with big size components as shown in Fig. 5.11, introduces the size differ-
ence issue into layout instances.

Figure 5.11 – Big-sized shelter representation.

5.3.1 Problem representation and formulation

In order to simplify the optimization formulation, there are two assumptions:

1. Components have the same height and no superposition.

2. Components are cuboids.

137

Chapter 5 – Industrial applications

Figure 5.12 – Big-sized shelter representation.

The shelter is simplified as shown in Fig. 5.12. The container is rectangular with a width of
5945 mm and a height of 2286 mm. The big size component, namely amplifier component,
has three virtual components: two virtual components with a width of 2469 mm and a
height of 600 mm, one virtual component with a width of 800 mm and a height of 841
mm, and occupies almost half of the container space.

Each component is represented by a set of rectangles. The entrance, fixed to the upper
left corner of the container, is modelled as the virtual component. The other components,
each with a virtual component attached, have the same width as the solid component and
the height of 600 mm. The dimensions and the mass are given in Table 5.5.

Table 5.5 – Data in shelter with big size components.
Item Dim/w (mm) Dim/h (mm)

1.amplifier 2469 841
2.ventilation 860 1100
3.energy box 650 650
4.operation box 600 600
5.battery 2320 200
6.air conditioner 800 406
7.extinguisher 1330 283
8.circuit board 600 300
9.entrance 1060 1060

Except for geometrical constraints (non-overlap and non-protrusion), additional con-
straints include edge on the wall, alignment, and accessibility of components.

1. The air conditioner and extinguisher must place against one wall of the container

2. The alignment specifies that ventilation must attach to the right side of amplifier.

These requirements are formulated as constraints that presented in Chapter 3, and will
be handled by the constructive placement. The minimum functional distance between

138

5.3. Single-container shelter with big size components

amplifier and entrance has to be considered, thus the activity factor w19 taken as -1. Two
optimization objectives are:

— minimize objective 1: distance between the center of gravity of all the components
and the geometric center of the shelter, given by Eq.3.8 in Chapter 3.

— maximize objective 2: distance between amplifier and entrance, given by Eq.3.10
in Chapter 3.

The multi-objective layout optimization aims to find the arrangement (location and ori-
entation) p = {p1, p2, ..., pn}, n = 8 of components c = {c1, c2, ..., cn}, n = 8, optimize
objective 1 and objective 2, and satisfy geometrical (non-overlap and non-protrusion) and
functional constraints (alignment, accessibility, edge on the wall), given by Eq.3.12 in
Chapter 3.

5.3.2 Capacity evaluation of the layout

The shelter has eight solid components, and the density of solid components equals
to 0.38. There are also eleven virtual components and the density of virtual components
is up to 0.65. The density of solid and virtual components using the formula Eq.3.13,
Eq.3.14 and Eq.3.15 in Chapter 3, are listed in Table 5.6. And the sum of the density

Table 5.6 – Density of components inside shelter.
Density Value
Density of solid components βs =0.38
Density of virtual components βv =0.65
Sum of density βsv =1.03

βsv =1.03 which is bigger than 1. However, by applying the calculation method presented
in Chapter 3, we obtain a capacity index βc = 0.77, which shows a priori feasibility of the
optimization.

Figure 5.13 – Compact configuration of big-sized shelter.

139

Chapter 5 – Industrial applications

5.3.3 Optimization results and similarity analysis

An initial population has N = 200 random individuals. The initial temperature
ts is initialized as ts = 100. Set the cooling rate r = 0.9 and the total number of
iterations L = 250 to perform the annealing process. The algorithm searches for solutions
by considering the geometrical and functional constraints and objectives of the problem
formulation, nine layout designs are Pareto-optimal solutions, shown in Fig. 5.14.

Figure 5.14 – Display of rank 1 solution.

(a) Similarity matrix. (b) Hierarchical cluster dendrogram.

Figure 5.15 – Similarity analysis of big size component shelter.

The initial configuration proposed by the expert in Fig. 5.12, has maximum functional

140

5.3. Single-container shelter with big size components

distance around 3400 mm and maximum gravity deviation about 350 mm. Compared
with the initial solution, the obtained solutions of our optimization are non-dominated
solutions in the objective; however, we cannot formulate all the requirements from the
expert, so different non-dominated solutions are still good, and the expert finally chooses
one of them as their final decision, not their initial proposal.

To analyze the performance of the design space, first of all, the similarity indicator is
computed for the obtained layout configurations, and the similarity matrix is presented
in Fig. 5.15 (a). It can be seen that solution 0 and solution 1 have the highest similarity
value, whereas solution 3 and solution 5 have the lowest similarity. The hierarchical

(a) solution 3. (b) solution 8.

(c) solution 1.

Figure 5.16 – Display of optimal designs.

similarity, given in Fig 5.15 (b), is consistent with the similarity information. Here, we
assume there are three clusters, each representative is shown in Fig. 5.16, and the same
grouped solutions have the same color, as shown in Fig. 5.17. Each solution is a new
variant compared to the other. The designer could select the solution that achieves best

141

Chapter 5 – Industrial applications

Figure 5.17 – Display of clustered solutions in objective space.

compromised objective value based on the visualization tool.
The layout application has a fairly large component with multiple virtual spaces.

When the capacity of layout is large, the main objectives is to find the set of feasible
alternatives. The higher the capacity, the harder it is to find a feasible solution. The op-
timization results confirm that the proposed optimization can effectively generate feasible
solutions such that placement constraints are satisfied and tend to reduce computational
efforts.

5.4 Multi-container shelter problem

This case study is an extension of the shelter layout problem with three zones [129].
This section details the optimization process implemented for this multi-container layout
problem.

5.4.1 Representation of the shelter

The shelter studied here, as shown in Fig. 5.18, is a three-dimensional shelter with
three different spaces, named storage zone, technical zone and operator zone. In order
to simplify the optimization problem, there are two assumptions:

1. Components have the same height and no superposition.

2. Components are cuboids.

142

5.4. Multi-container shelter problem

Figure 5.18 – Multi-container shelter layout representation

Figure 5.19 – 2D configuration model of multi-container shelter.

Consequently, the configuration of the problem is defined in two-dimensional, as shown
in Fig. 5.19. And the evaluation of constraints is more easily realized. Moreover, each
component is represented by a rectangle. The data of the container is given in Table 5.7.
Dimensions described in Table 5.8, Table 5.9 and Table 5.10 match the configuration in
Fig. 5.19.

Table 5.7 – Data of container in 2D model.
Item Dim/W (mm) Dim/H (mm)
container 5930 2306
storage zone 703 2306
technical zone 3400 2306
operator zone 1717 2306

As suggested in Chapter 3, components can be separated into two categories: solid
and virtual components. A set of virtual components attached to components (light color)
represent accessibility spaces. The size of the virtual component, either equal to the size
of the attached solid component, or set to 600 mm, represents the size of the accessible

143

Chapter 5 – Industrial applications

Table 5.8 – Data of components in storage zone.
Item Dim/w (mm) Dim/h (mm) Mass/m (kg)
1.air-conditioning host 435 983 180
2.storage 700 1000 150

Table 5.9 – Data of components in technical zone.
Item Dim/w (mm) Dim/h (mm) Mass/m (kg)
3.cabinet 600 600 420
4.cabinet 600 600 420
5.cabinet 600 600 420
6.cabinet 600 600 274
7.desk 277 550 10
8.desk 550 277 34
9.desk 277 550 10
10.electrical box 400 203 48
11.air conditioner 795 353 70
12.energy box 600 800 500
13.ventilation 575 680 72
14.entrance 1000 5 120

Table 5.10 – Data of components in operator zone.
Item Dim/w (mm) Dim/h (mm) Mass/m (kg)
15.electrical box 300 600 54
16.air conditioner 353 795 54
17.desk 600 800 54
18.desk 600 800 54
19.console 600 580 420
20.entrance 1000 5 120

space.
• Component 1, component 2 and component 13 are solid components, indeed, these

boxes do not need to be accessible,
• Component 3, component 4 and component 5 and component 6, each has one 600

mm virtual space and one 344 mm virtual space,
• Component 11, component 12 and component 16, each has an identical size virtual

space,
• The rest components, each has a 600 mm virtual space.

The accessibility spaces of the cabinets are modelled to guarantee the free space in front

144

5.4. Multi-container shelter problem

of the cabinets allowing the loading of material into them. Office accessibility spaces
correspond to the spaces occupied by the operator in front of his workstation, Indeed, the
virtual space either guarantees interaction or correct usability.

5.4.2 Problem formulation

The overall formulation of the problem including variables, constraints and objectives.
The geometrical constraints of the shelter are non-overlap and non-protrusion constraints.
Except for the accessibility constraint, there are other functional constraints of the appli-
cation:

1. The cabinets are placed in an allowed space, the 70 mm virtual space is used to
avoid full attachment to the wall and is also dedicated the shock absorbers freedom.

2. The desk 8 is grouped with a cloison, the cloison is a window-like component that
has to be attached to the external wall of the shelter.

3. The desk 7 and desk 9 can be fully folded and can overlap with all virtual spaces.
However, the overlap of desks is forbidden considering the possibility of two people
working simultaneously. So they are temporary solid components.

4. The electrical boxes and the air conditioners have to be placed against the wall.

5. The ventilation maintains from the outside, therefore has to be on the back wall
and no rotation is allowed.

6. The doors are accessible from the exterior and the virtual space is used for a door
opening from outside.

These requirements are formulated as constraints that presented in Chapter 3, and will
be handled by the constructive placement. The distance between cabinet 3, cabinet 4,
cabinet 5 and energy box 12 should be maximized. For simplicity, we list the activity
relationship of these four components in Table 5.11. So the two objectives are defined as:

Table 5.11 – Activity factor of the multi-container shelter.
Item 3.cabinet 4.cabinet 5.cabinet 12.energy box
3.cabinet 0 0 0 -1
4.cabinet 0 0 0 -1
5.cabinet 0 0 0 -1
12.energy box -1 -1 -1 0

145

Chapter 5 – Industrial applications

minimizing layout balance (objective 1) and maximizing circulation distance (objective
2). Two optimization objectives are therefore:

— minimize objective 1: distance between the center of gravity of all the components
and the geometric center of the shelter, given by Eq.3.8 in Chapter 3.

— maximize objective 2: distance between box 12 and the set made up of cabinet 3,
cabinet 4 and cabinet 5, given by Eq.3.10 in Chapter 3.

Overall, the multi-container layout problem model is stated as follows:
Given:

— Twenty components c = {c1, ..., c20}with fixed dimensions and three sub-containers
with flexible sizes,

— Fixed assignment of components to sub-containers r : {{c1, c2}, {c3, ..., c14}, {c15, ..., c20}}
→ {1, 2, 3},

— Total container dimensions W = 5930, H = 2306 and the area z = W ×H.
Determine:
— The sub-container size zi, i ∈ [1, 2, 3] and the arrangement (location and orientation)
p = {p1, p2, ..., pn}, n = 20 of components c = {c1, c2, ..., cn}, n = 20, optimize objective 1
and objective 2 and satisfy geometrical (non-overlap and non-protrusion) and functional
constraints (accessibility, edge), given by Eq.3.12 in Chapter 3.

5.4.3 Capacity evaluation

The assignment of components to each zone is fixed, so we analyze the density and
capacity for each zone separately. The density of solid and virtual components in storage,
technical and operator zone using the formula Eq.3.13 and Eq.3.14 in Chapter 3, are listed
in Table 5.12, Table 5.13 and Table 5.14.

Table 5.12 – Density of components in storage zone.
Density Value
Density of solid components βs =0.69
Density of virtual components βv =0.0
Sum of density βsv =0.69

If the overlap between virtual components are ignored, then the sum of the density
of technical zone is βsv = 1.01 > 1, and the sum of the density of operator zone is
βsv = 1.08 > 1, which indicates that the problem can not be solved. However, by
applying the method presented in Chapter 3 with 1000 iterations, it found the minimum

146

5.4. Multi-container shelter problem

Table 5.13 – Density of components in technical zone.
Density Value
Density of solid components βs =0.36
Density of virtual components βv =0.65
Sum of density βsv =1.01

Table 5.14 – Density of components in operator zone.
Density Value
Density of solid components βs =0.44
Density of virtual components βv =0.64
Sum of density βsv =1.08

occupied space of the storage zone where βc1 = 0.7, the technical zone βc2 = 0.76, and
the operator zone βc3 = 0.79, which shows a priori feasibility of the shelter optimization.
The corresponding compact layout design is shown in Fig.5.20. Besides, when we place

Figure 5.20 – Compact configuration of the shelter.

the components sequentially, it may generate some small spaces, which are empty, but no
components can be placed. Indeed, these small spaces should be identified as infeasible
spaces Thus, the minimum occupied space is modified as the product of minimum occupied
length and width for each zone and the capacity is updated as: βc1 = 1, βc2 = 0.82,
βc3 = 0.90.

After obtaining the prior feasible information, we apply optimization algorithm to find
the set of feasible solutions of the shelter.

147

Chapter 5 – Industrial applications

5.4.4 Boundary estimation of three zones

The minimum width and height occupied space defines the minimum area β̂ci
of sub-

container i, i = [1, 2, 3], :

Storage zone : β̂c1 = 700× 2306 mm2

Technical zone : β̂c2 = 2795× 2306 mm2

Operator zone : β̂c3 = 1553× 2306 mm2

The partition in the "|" form will be divided the layout container vertically such that
the sub-container is mainly defined by the x−coordinate of each partition. The width
of compartment W = 5930 mm and the width of each partition 57 mm and = 53 mm.
Thus, the maximum movement for the partition will be

5930− 700− 2795− 1553− 57− 53 = 772 mm

So we have α = 772× 2306 mm2, the area is represented as the white regions in Fig.5.20.
And the search complexity interval is reduced by 1− 772/5920 = 86%.

5.4.5 Optimization results and similarity analysis

An initial population has N = 200 random individuals. The initial temperature ts is
initialized as ts = 100. Set the cooling rate r = 0.9 and the total number of iterations
L = 250 to perform the annealing process.

In the given number of iterations, 16 solutions of three-compartment layout under-
determined zone area considering the formulated objectives and the constraints, are
Pareto-optimal designs as shown in Fig. 5.21. And Fig. 5.22 plots the corresponding
x−coordinate of each multi-container shelter layout configuration. The similarity indi-
cators for paired layout designs formulate a similarity symmetric matrix, represented in
Fig. 5.23(a). The visualization tool provides information on the hierarchical similarity of
designs, shown in Fig. 5.23(b). Here, we assume there are five clusters, as shown in Fig.
5.24, the same grouped solutions have the same color. And each representative is shown
in Fig. 5.25.

The most of the components of the shelter in the storage and operator zone are con-
sistent with the initial proposed scheme shown in Fig.5.19 but with more diverse configu-
ration in technical zone, which is the most complex area in this shelter. For the different

148

5.4. Multi-container shelter problem

Figure 5.21 – Display of rank 1 solution.

Figure 5.22 – x-coordinate of the partition.

zone area, the developed algorithm can find various shelter configurations using placement-
related sequences. The solution initially created by the engineers of Thales is far from
the obtained optimal solutions and is dominated by them as well. On the one hand, it
turns out that the optimization algorithm can reach the similar determined sub-container
configuration compared with the initial solution, for example solution 0 in Fig. 5.25. And
it proves the feasibility of the proposed method. On the other hand, the optimized shelter
configurations have better values in the objectives and demonstrates the effectiveness of
the developed method. Due to the dense capacity of the shelter, it is difficult to satisfy

149

Chapter 5 – Industrial applications

(a) Similarity matrix. (b) Hierarchical cluster dendrogram.

Figure 5.23 – Similarity analysis of multi-container shelter.

Figure 5.24 – Display of clustered solutions in objective space.

the non-overlap constraints. Besides, even if the solution is geometrically feasible, certain
components may be inaccessible considering the limited available space. Consequently,
finding feasible solutions that achieve better objective function values becomes extremely
hard. However, the developed optimization algorithm resolves the difficulties arising from
the problem. The constructive algorithm effectively generates feasible solutions while the
SA algorithm optimizes the combination of shelter configurations.

150

5.4. Multi-container shelter problem

(a) solution 14. (b) solution 0.

(c) solution 9. (d) solution 12.

(e) solution 5.

Figure 5.25 – Display of optimal designs.

151

Chapter 5 – Industrial applications

5.5 Conclusion

This chapter has shown that the layout optimization approach, developed in this
manuscript, can be applied to various industrial layout applications. The method was
tested on a problem of arranging a shelter in single- and multi- container with very lim-
ited space. The conventional layout problem is concerned with finding the arrangements of
components inside the container to optimize objectives under geometrical constraints, i.e.,
no component overlap and no container protrusion, whereas the multi-objective optimiza-
tion for layout balance and component activity requirements with functional constraints
is developed. Integrating the accessibility of components as functional constraints en-
sures components maintenance or proper operation. However, addressing the functional
constraints increase the complexity of the layout optimization. The multi-objective sim-
ulated annealing is applied as a global optimizer and is in charge of efficiently exploring
the search space. The constructive placement is used to place components following the
sequences proposed by simulated annealing. The experiments indicate that the proposed
optimization approach performs well in ensuring accessibility and efficiently finding high-
qualified solutions, where the constructive placement largely contributes to the search for
alternatives satisfying constraints. The similarity visualization, which supports the inter-
action approach, provides a tool suitable for solving multi-objective layout optimization
problems.

152

CONCLUSION AND PERSPECTIVE

Conclusion

Layout is an important and an active research area. The thesis manuscript contributes
to a multi-objective optimizer based on constructive approach to solve the novel layout
problem model. The method is developed to address the difficulties of component ac-
cessibility in the multi-objective layout design and can be extended to layout problem
with multiple containers. Accessibility is one particular layout functional constraint that
expresses the maintainability, inspection as well as reachability to components. More-
over, interactive environment is designed. In particular, the capacity index and similarity
indicator is integrated into the interactive optimization process.

The layout problems are inherently multidisciplinary tasks and can be solved as op-
timization problems. To translate the designer requirements into optimization variables,
design constraints and objectives, first of all, the layout is formulated by the new compo-
nent of solid and virtual parts. The model, taking into account the virtual components
and the accessibility to components, requires an effective optimization algorithm for ad-
dressing the feasible difficulty. Without loss of generality, two objectives, namely layout
balance and activities, are considered. Then, a new capacity index is proposed to eval-
uate the feasible difficulty of the layout problem. This index defines an alternative to
the traditional calculation of the compactness of a layout problem. It makes it possible
to demonstrate, in a reliable way, if the problem can be solved or not. Furthermore,
the interactive environment allows integrating mathematical optimization with human
decision-making during conceptual design of the layout problem, with a focus on similar-
ity analysis applied to obtained layout alternatives and help the expert select the final
decision.

The layout model contains multiple objectives and can be solved by a multi-objective
optimizer which considers multiple objectives simultaneously and searches for a set of com-
promised solutions. Simulated annealing is a stochastic neighborhood search approach for
global optimization. The ease of implementation makes simulated annealing a popular
method for solving large and practical problems. However, the individual-based feature

153

limits the application, especially in the multi-objective problems. To overcome the issue,
archive-free SA employs the dynamic selection based on the concept of non-dominated sort
and the mechanism of crowding distance calculation for multi-objective optimization is
proposed. Continuous and combinational problems are tested, overall, the results proved
that archive-free SA can provide, most of the time, very competitive results compared to
others, which makes it interesting to solve complex layout problems. For comparison, we
have applied the proposed archive-free simulated annealing optimization approach to the
simple layout examples that formulated by the multi-objective layout model. The exper-
imental results has found the fewer layout alternatives and showed feasible difficulty in
the layout optimization. The optimizer may get stuck and fail to jump out of (in-)feasible
search region. Alternatively, the layout problem can be formulated as a combinatorial
problem. Simulated annealing demonstrated the robustness in combinatorial optimiza-
tion. Thus, a multi-objective optimization method integrates sequential placement with
simulated annealing is developed instead.

Component accessibility is one important design requirements in the industrial en-
gineering. The integration of virtual spaces is necessary but is not sufficient for the
component accessibility. Therefore, additional accessibility analysis is conducted by the
constructive placement. Different strategies have been proposed and investigated in order
to be generic and efficient, thus suited to a wide set of layout problems. The place-
ment, not only integrates space generation of solid and virtual components guaranteeing
non-overlap of components, but also introduces the idea of connection path ensuring acces-
sibility of components. The strategy comparisons confirm that the space-filling strategy
can effectively generate feasible solutions and reduce computational efforts. Layout so-
lution is constructed sequentially, which is a combination process. Simulated annealing
search technique explores combinations of component configurations and optimizes both
objectives simultaneously. Archive-free SA is in charge of exploring efficiently the search
space to propose promising alternatives. Most of researches on layout problems focus on
placing components on a single container. Nevertheless, the layout with multiple con-
tainers has always been a hot and challenging point. The method was then extended
to layout with multiple containers. The optimization complexity can be highly reduced
through the proposed boundary estimation which transforms the global search into local
search.

The layout optimization method was tested on the problem of arranging a shelter
in single- and multi- container with very limited space. The experimentation proves

154

that the proposed optimization is effective in ensuring accessibility and finding high-
qualified solutions compared to the existing algorithms, which enable a truly interactive
optimization process. Moreover, the similarity analysis demonstrates good diversity of
the obtained layout set, which can be applied as an interactive tool.

Perspective

This thesis contributed to the multi-objective layout optimization approach. Even
if the outcomes of the research were positive and allowed to effective and interactive
optimization, there are still a few aspects of research to be explored. These directions of
research are briefly described here:

— Introduce the interactions between the designer and the optimization algorithm. In
addition to using the similarity analysis to help the designer compare and select the
preferable solution,artificial intelligence can also be integrated to help the design
further improve the solution. For example, analyzing the evaluation of objectives
according to the expressed objective importance.

— Define different shapes of components. We assume all the components are rect-
angles in the layout model. The definition highly simplifies the constraints and
objectives formulation. To go further, the layout could have other shapes such as
circles, triangles and polygon etc.

— At present the approach has been applied the space generation of rectangular
shapes. Further research could adapt the available space generation to the free-
form component. The space generation is used to avoid overlapping component.
One can rely on computer-aided design to detect collisions and report the overlap
area; or use sets of circles replace the free-form shape, and then compute the overlap
between components with simple distance computations.

— The proposed approaches have been applied to two-dimensional layout problems
but it can be applied to other such as, the three-dimensional layout problem where
components have different heights. Adapt the placement strategy to account for
the effects of gravity and surface contact area is necessary.

155

Part II

French version

156

INTRODUCTION

L’optimisation d’agencement est multidisciplinaire. Les applications peuvent être
l’agencement de station spatial, l’agencement de véhicule, l’agencement d’architecture,
l’agencement de puce, l’agencement de système de fabrication etc. Un excellent agence-
ment peut améliorer efficacement les performances du système. Les problèmes portent
généralement sur la recherche des agencements optimaux des composants (i.e. équipements,
machines) à l’intérieur du conteneur (i.e. atelier, usine) pour optimiser les objectifs et
respecter les contraintes géométriques et fonctionnelles. Les composants les plus rencon-
trés sont représentés par des rectangles de tailles déterminées. Dans tous les problèmes
d’agencement, les contraintes de non-chevauchement entre composants et les contraintes
d’appartenance au conteneur sont présentes. L’orientation ou l’alignement doit définir les
relations fonctionnelles entre les composants. Les contraintes fonctionnelles assurent le
bon fonctionnement du système. Une majorité d’études optimise, par exemple, la distri-
bution de masse, ou l’exigence de contiguïté et le coût de manutention du matériel.

Sans techniques d’optimisation, le problème d’agencement ne peut être résolu avec
succès. Cependant, la région satisfaite par la contrainte, l’objectif non linéaire et non
convexe de la formulation de l’agencement rendent l’optimisation complexe par nature.
Les solutions satisfaites des contraintes peuvent être obtenues en pénalisant les violations
de contraintes dans la fonction objectif ou générées à partir de domaine réalisable. Les
problèmes d’agencement les plus couramment rencontrés ont de multiples objectifs qu’il
convient d’optimiser. En fait, les problèmes multiobjectif peuvent être résolus par des
techniques d’optimisation monoobjectif ou d’optimisation multiobjectif. Le premier cas
transforme plusieurs objectifs en une fonction d’agrégation utilisant des poids prédéfinis,
il existe donc une solution unique correspondante. Dans cette dernière approche, un
optimiseur multiobjectif considère plusieurs objectifs simultanément et vise à trouver des
solutions compromises, connu sous le nom de front de Pareto. De plus, le processus
d’optimisation peut être utilisé comme aide à la décision pour le concepteur. Lorsqu’il
est confronté à de multiples choix en fonction du risque et de l’incertitude, le décideur
peut sélectionner la conception de la configuration pour obtenir le meilleur compromis de
performances du système.

157

Ce manuscrit de thèse est donc structuré en plusieurs chapitres de la manière suivante.
Le Chapitre 1 réalise un état de l’art des recherches effectuées en optimisation multiobjec-
tif, notamment sur les les concepts fondamentaux, les approches classiques d’optimisation,
les effets d’archive et les stratégies qui tentent d’améliorer la convergence et la diver-
sité dans l’optimisation multiobjectif. Ce chapitre décrit également les problématiques
d’agencement d’espace (la représentation, la formulation et les approches d’optimisation).
Le Chapitre 2 est dédié aux méthode de recuit de simulation basé sur la population en
tenant compte de l’archive externe pour le problème multiobjectif. Nous avons expliqué
le cadre général et étudié les performances des cas basés sur des archives et sans archives.
La comparaison est effectuée sur des instances de référence continues et combinatoires
avec la méthode connue d’optimisation multiobjectif. En particulier, la résistance et
l’amélioration de la convergence sont étudiées plus en détail. Le Chapitre 3 présente le
nouveau modèle d’agencement qui prend en compte l’accessibilité des composants et des
outils d’interaction conçus. Tout d’abord, la définition du composant, les contraintes de
conception et les objectifs sont détaillés. Puis un indicateur de capacité est proposé pour
évaluer la difficulté d’optimisation du tracé. Enfin, un environnement interactif permet-
tant d’intégrer l’optimisation mathématique est présenté, avec un focus sur l’analyse de
similarité laissant au concepteur de faire des choix par rapport aux solutions générées
par l’algorithme d’optimisation. Le Chapitre 4 propose un ensemble de méthode permet-
tant de résoudre ces problèmes d’agencement en intégrant l’analyse de l’accessibilité dans
la méthode de recuit simulé. L’analyse de l’accessibilité est menée par la méthode du
placement constructif. La procédure de placement et les comparaisons de stratégies de
placement sont décrites en détail. Après cela, les approches orignales d’optimisation de
la disposition multiobjectif avec le recuit et le placement simulés multiobjectif sont pro-
posées. L’optimisation d’agencement multi-conteneurs est ensuite détaillée. Le Chapitre
5 présente des applications industrielles de la démarche d’optimisation proposée dans ce
manuscrit. Une conclusion générale peut être déduite sur les performances d’optimisation
selon laquelle un placement efficace satisfaisant les contraintes conduira à un optimiseur
qui permettra un processus d’optimisation véritablement interactif.

158

Chapter 1

ÉTAT DE L’ART

Du point de vue mathématique, l’optimisation consiste à identifier la solution, c’est-à-
dire une ou plusieurs variables de décision, en minimisant ou en maximisant une fonction
donnée ou un ensemble de fonctions tout en respectant un ensemble de contraintes. Ainsi,
deux types de problèmes d’optimisation sont distingués dans la littérature : les problèmes
d’optimisation monoobjectif et multiobjectif. Dans ce chapitre, dans un premier temps,
nous avons décrit la formulation de problèmes monoobjectif et multiobjectif. Nous avons
ainsi présenté les principales différences entre les solutions « optimales » dans ces deux cas
et passé en revue les méthodes de résolution. Dans le passé, les techniques d’optimisation
les plus couramment utilisées étaient déterministes, par exemple, la méthode basée sur le
gradient qui utilisait des informations sur le gradient pour rechercher l’espace de solution
près d’un point de départ initial. Par rapport aux approches stochastiques, les méthodes
basées sur le gradient convergent plus rapidement et peuvent obtenir des solutions pour le
problème convexe mais ne peuvent pas résoudre facilement les problèmes d’optimisation
non convexes. D’autres types de méthodes d’optimisation sont des approches stochas-
tiques. Ces méthodes conviennent à la recherche globale en raison de leur capacité à
explorer et à trouver des zones prometteuses dans l’espace de recherche à un temps de
calcul abordable.

Les méthodes déterministes et stochastiques dans l’optimisation monoobjectif peuvent
être étendues à l’optimisation multiobjectif. Les approches basées sur la scalarisation, la
domination, la décomposition, les indicateurs ainsi que les interactions ont été distin-
guées. Un consensus critique est apparu sur le fait que l’utilisation de l’archive externe
tout au long du processus d’optimisation peut améliorer les performances au détriment de
l’efficacité des calculs. Pour les algorithmes d’optimisation multiobjectif, l’une des carac-
téristiques clés est la capacité de trouver une bonne approximation du compromis optimal
parmi les objectifs multiples. Cependant, deux questions restent ouvertes. Tout d’abord,
la sélection de la solution devient fortement dépendante de la mesure de la diversité de
sorte que la convergence du front de Pareto vers le vrai front de Pareto est progressive-

159

ment détériorée. Un deuxième problème est lié à l’espace de décision. Une majorité
d’algorithmes se concentrent uniquement sur la distribution des solutions dans l’espace
objectif. Néanmoins, une bonne représentation des solutions dans l’espace décisionnel est
également importante du point de vue du processus décisionnel.

La deuxième grande partie de ce chapitre est le problème d’agencement. Le prob-
lème de coupe et d’emballage (C & P) est courant dans l’industrie. Un problème de
coupe vise à maximiser le nombre de composants placés à l’intérieur du conteneur et
un problème d’emballage se réfère à la minimisation du nombre de conteneurs utilisés
pour placer tous les composants. Dans un problème d’agencement, la représentation
des composants, les objectifs et les contraintes peuvent être différents. Par exemple, les
composants sont connectés géométriquement dans un problème C & P alors que le place-
ment des composants est connecté fonctionnellement dans un problème d’agencement.
Les problèmes d’agencement font référence à la recherche d’arrangements optimaux de
plusieurs composants dans la zone du conteneur. La procédure principale d’un problème
d’agencement commence généralement par la représentation du problème, suivie de la
formulation du problème, puis de l’optimisation du problème. Nous avons fourni une
classification d‘agencement en termes de représentation et de formulation. De l’examen
de la littérature, on peut conclure qu’il s’agit toujours d’un domaine de recherche ouvert
et actif. Cela motive l’auteur à travailler dans l’optimisation d’agencement. Donc, les
recherches précédentes dans le domaine ont été analysées en tenant compte des approches
de formulation et de résolution.

Le concepteur définit la description du problème, y compris les données et les ex-
igences spécifiées. Et l’information sera traduite en formulation de problème. Il pro-
duit le modèle résolu par des techniques d’optimisation. Diverses méthodes ont été util-
isées pour résoudre le problème d’agencement, à savoir l’approche exacte et l’approche
méta-heuristique. Dans la littérature actuelle, il existe des tendances des techniques
d’optimisation combinant l’effort de construction et la méthode méta-heuristique pour
résoudre le problème d’agencement. Le concept d’approche de construction a beaucoup
retenu l’attention des chercheurs en raison de sa faisabilité. De plus, nous avons clôturé
ce chapitre en présentant un problème d’agencement de important, à savoir le problème
d’agencement multi-conteneurs. Nous avons remarqué que la recherche sur la taille des
conteneurs flexibles est un domaine relativement peu couvert.

160

Chapter 2

RECUIT SIMULÉ BASÉ SUR LA

POPULATION POUR LES PROBLÈMES

MULTIOBJECTIF

Au cours de la dernière décennie, les algorithmes méta-heuristiques ont été reconnus
pour être très efficaces dans la résolution de problèmes d’optimisation multiobjectif. Le
recuit simulé a un avantage sur les autres algorithmes méta-heuristiques en termes de
facilité de mise en œuvre et donne des solutions raisonnablement bonnes pour de nombreux
problèmes pratiques. Il part d’un point initial et recherche de nouveaux points proches
pour trouver la solution optimale globale. Il y a eu quelques tentatives pour étendre
recuit simulé à l’optimisation multiobjectif. Dans la plupart des premières tentatives,
une seule fonction objective a été construite en combinant les différents objectifs en une
seule fonction objective à l’aide d’une méthode de somme pondérée. Le problème est de
savoir comment choisir les poids à l’avance. Il existe également des alternatives utilisées
à cet égard. Afin de développer un optimiseur efficace avec une structure simple, deux
algorithmes de recuit simulé multiobjectif sont proposés : l’un est recuit simulé basé sur
l’archive et l’autre est recuit simulé sans archive. Les deux algorithmes intègrent l’idée de
domination de Pareto.

Recuit simulé basée sur l’archive adopte l’archive de taille limitée pour conserver les
solutions non dominées. Il est conçue à l’aide du nouveau mécanisme d’acceptation, où les
solutions sont divisées en états dominés, non dominés et dominés. Si la solution actuelle
et la nouvelle solution ne sont pas dominées, il n’est pas facile de dire lequel est le meilleur
selon les seuls critères de domination. Par conséquent, nous comparons les deux cas en
considérant l’archive : si la nouvelle solution n’est dominée par aucun point de l’archive,
alors nous la considérons comme une meilleure solution; si la nouvelle solution est dominée
par un point existant, alors nous acceptons la nouvelle solution lorsqu’elle se rapproche
du front de Pareto optimal. Enfin, il applique la deuxième boucle de recuit à l’archive

161

finale à la région de recherche près des solutions non dominées actuelles pour agrandir le
nombre de points finaux le long du front de Pareto. L’utilisation de l’archive apporte des
avantages substantiels, mais au prix du temps de calcul.

Recuit simulé sans archive utilise la sélection dynamique basée sur le concept de tri non
dominé et le mécanisme de calcul de la distance d’encombrement. La sélection dynamique
préserve la non-domination et les solutions distribuées dans la population. C’est un
algorithme simple avec l’avantage de la facilité de mise en œuvre. Il intègre la capacité
de la population à rechercher différentes régions et à collecter des informations auprès
de différents individus, et conserve les solutions non dominées bien distribuées dans la
population plutôt que dans les archives externes. Afin d’élargir l’espace de recherche tout
en accélérant la vitesse de convergence, une sélection dynamique basée sur des critères de
tri rapide sans domination et de distance d’encombrement est intégrée à l’optimisation.
Un individu est représenté par un vecteur à deux éléments, le rang et la valeur de la
distance d’encombrement. La sélection dynamique compare le meilleur individu avec le
plus petit rang mais la plus grande distance d’encombrement dans la population actuelle
avec l’individu séquentiel dans la nouvelle population, et en sélectionne l’un des deux
jusqu’à ce qu’il y ait une population complète.

Les performances de nos méthodes proposées sont validées et comparées avec l’algorithme
génétique bien connu NSGA II sur un certain nombre de problèmes multiobjectif continus,
un ensemble de problèmes de sac à dos multiobjectif combinatoires 0-1. Les principales
raisons de choisir NSGA II pour la comparaison sont qu’il est basé sur l’évolution de la
population et qu’il surpasse de nombreux algorithmes populaires. Les problèmes de test
sont choisis de manière à étudier systématiquement différents aspects d’un algorithme :
convergence, précision, efficacité, etc.

De plus, nous analysons la résistance à la convergence et la méthodologie d’amélioration.
La résistance de convergence apparaît lorsqu’il existe de nombreux points non dominés
proches du front de Pareto. Pour améliorer la convergence, il est possible de remplacer
le point courant par le meilleur point basé sur la mesure de distance plutôt que sur la
domination. L’idée est de générer de nouvelles solutions proches des solutions actuelles et
de minimiser la distance entre les solutions pour aider l’optimisation à sortir de la zone
de domination étroite actuelle et à trouver une meilleure solution voisine. Le critère de
distance améliore la convergence sans nuire à la diversité. Il trouve de meilleures solutions
mais au prix des évaluations de fonctions.

162

Chapter 3

MODÈLE DE PROBLÈME D’AGENCEMENT

MULTIOBJECTIF ET INTERACTION

Comme expliqué au Chapitre 1, le modèle du problème d’optimisation d’agencement
est une formulation multiobjectif. Le modèle vise à traduire les exigences du concepteur en
variables, contraintes et objectifs d’optimisation. En général, le problème d’agencement
consiste à placer des composants rectangulaires dans le conteneur rectangulaire. Sur
la base des différentes propriétés fonctionnelles des composants, le nouveau composant
comprenant les parties solides et virtuelles est défini, et l’accessibilité aux composants
d’un agencement est explicitement exprimée. es composants virtuels peuvent chevaucher
des composants virtuels et n’avoir aucune masse. Ces composants virtuels sont aussi
les espaces accessibles. Les composants solides ne peuvent pas chevaucher des com-
posants solides ou virtuels et avoir une masse. La définition des composants permet
de modéliser la plupart des problèmes d’implantation, par exemple le problème de place-
ment des machines dans l’usine. Les composants virtuels peuvent modéliser l’espace
libre autour de la machine nécessaire au bon fonctionnement ou à la maintenance, ou
représenter les couloirs utilisés pour la circulation des marchandises entre les équipements.
Les contraintes géométriques telles que les contraintes de non-chevauchement entre com-
posants et les contraintes d’appartenance au conteneur; les contraintes fonctionnelles dont
l’orientation et l’accessibilité sont traduites en fonctions mathématiques explicites. Sans
perte de généralité, deux objectifs, à savoir l’équilibre de l’aménagement et les activités,
sont considérés.

Ensuite, un nouvel indice de capacité est défini pour mesurer la complexité réalis-
able d’un problème d’agencement et fournir des informations a priori sur la possibilité
de résoudre le problème. Une approche innovante est proposée pour évaluer la capacité
en trouvant l’espace minimum occupé des composants. Afin de trouver l’espace occupé
minimum des composants, nous formulons le problème comme un processus d’emballage.
D’une part, l’idée principale de l’emballage est de maximiser l’utilisation de l’espace, en

163

d’autres termes, de placer tous les composants aussi compacts que possible. D’autre part,
le processus d’emballage peut être traité comme un problème de combinaison qui emballe
de manière constructive les composants dans une séquence donnée. Afin de placer les
composants de manière compacte, les conditions suivantes doivent être satisfaites : le
nouveau composant solide se rapproche de ces composants solides déjà placés selon la
convention en bas à gauche; le chevauchement entre les nouveaux composants virtuels
et les composants virtuels placés doit être maximisé. La génération d’espace est notam-
ment développée pour l’évaluation efficace des non-chevauchement contraintes. Grâce à
l’intégration de la nouvelle génération d’espace, l’évaluation des contraintes géométriques
est plus efficace. L’évaluation de la capacité est mise en œuvre par le recuit simulé et
l’optimisation de l’emballage constructif. Cet indice permet de démontrer, de manière
fiable, si le problème peut être résolu ou non.

L’environnement interactif permet d’intégrer l’optimisation mathématique à la prise
de décision humaine lors de la conception conceptuelle du problème d’agencement. Le
concepteur interagit avec la représentation de l’optimisation du problème en ajoutant,
supprimant et modifiant des objectifs, des contraintes et des composants par interface
graphique, développée dans ce doctorat. Aussi, la prise de décision finale utilise les outils
de visualisation pour comparer les solutions en analysant les objectifs et les similarités qui
caractérisent les informations quantitatives. Afin d’aider le concepteur à distinguer les
schémas de configuration, un indicateur de similarité est notamment proposé, qui exprime
quantitativement la similarité du schéma de configuration actuel avec d’autres schémas
de configuration. Deux types de définitions de similarité sont proposées en fonction de la
différence de grille et de la position relative. La différence de grille définit un indicateur
de similarité basé sur la différence élément par élément qui ne peut pas différencier la
configuration symétrique et devient chronophage à mesure que le nombre de grilles aug-
mente. Alors que l’indicateur de similarité basé sur la position relative peut surmonter ces
problèmes. Un tracé matriciel affiche une matrice bidimensionnelle pour une conception
d’agencement par paires formulée par des indicateurs de similarité. Un dendrogramme est
un diagramme qui montre sla relation hiérarchique entre les similitudes d’agencement. Un
nuage de points présente des solutions dans l’espace objectif. Les outils de visualisation
sont développés pour la visualisation multidimensionnelle des solutions. En résumé, les
principales fonctions de l’environnement interactif sont la visualisation, la modification,
l’exploration du modèle géométrique de la solution.

164

Chapter 4

OPTIMISATION MULTIOBJECTIF DU

PROBLÈME D’AGENCEMENT

Ce chapitre est consacré à l’approche d’optimisation d’agencement. L’optimisation
vise à trouver les solutions optimales du problème d’agencement formulé au Chapitre 3.
Le problème d’agencement, en tenant compte des composants virtuels et de l’accessibilité
aux composants. Deux objectifs, à savoir l’équilibre de l’aménagement et les activités,
sont considérés. Intégrer l’accessibilité des composants comme contraintes fonctionnelles
assure la maintenance ou le bon fonctionnement des composants. Cependant, la prise
en compte des contraintes fonctionnelles augmente la complexité de l’optimisation de
l’agencement.

L’utilisation d’un algorithme stochastique est nécessaire compte tenu de la grande
complexité des problèmes d’implantation, en particulier des applications industrielles.
Cependant, les résultats expérimentaux utilisant recuit simulé sans archive sur des exem-
ples d’agencement ont démontré la difficulté réalisable de l’optimiseur continu. Observez
que la plupart des solutions ne respectent pas les contraintes de non-chevauchement et
sont par conséquent irréalisables. Par conséquent, un algorithme d’optimisation basé sur
une approche constructive est proposé pour résoudre le problème.

Le placement constructif est introduit pour générer des configurations d’agencement
complètes. La stratégie de placement est proposée pour placer le composant dans un
espace approprié par rapport aux contraintes. La stratégie concerne deux aspects, à
savoir le placement des composants et la sélection de l’espace. Pour un composant, il
a quatre configurations de rotation. Le composant sera placé dans les coins de l’espace
sélectionné avec quatre rotations. Le placement garantit que moins d’espace de marge
est généré et que la contrainte de non-chevauchement est satisfaite automatiquement.
De plus, nous caractérisons l’accessibilité des composants comme une contrainte lors du
processus de construction. Le placement, non seulement intègre la génération d’espace de
composants solides et virtuels garantissant le non-chevauchement des composants, mais

165

introduit également l’idée de chemin de connexion assurant l’accessibilité des composants.
Pour placer un composant, il convient de décider quel espace disponible sera utilisé.
Trois stratégies de sélection sont proposées : à savoir vérifier toutes les combinaisons ;
sélectionnez l’espace le plus petit ; sélectionnez l’espace le plus grand. Les comparaisons
de stratégies confirment que sélectionnez l’espace le plus petit, à savoir la stratégie de
remplissage d’espace peut générer efficacement des solutions réalisables et réduire les
efforts de calcul.

Le placement constructif traite la génération d’agencemet comme un problème com-
binatoire discret. Dans le Chapitre 2, les résultats expérimentaux prouvent que la re-
cuit simulé sans archive est moins couteux en termes de calcul et produit de meilleures
approximations sur l’optimisation combinatoire. Recuit simulé sans archive se charge
d’explorer efficacement l’espace de recherche pour proposer des alternatives prometteuses.
Le placement constructif est conçu pour contourner la difficulté découlant des contraintes.
L’algorithme est basé sur l’optimisation combinatoire : algorithme recuit simulé sans
archive, pour déterminer les séquences de placement et de configuration; algorithme de
placement constructif, pour placer les composants séquentiellement.

La méthode a ensuite été étendue à l’agencement avec plusieurs conteneurs. Le
modèle de problème de disposition multi-conteneurs est énoncé comme suit : étant
donné l’affectation fixe des composants aux sous-conteneurs, déterminez la taille du sous-
conteneur et le placement des composants, de manière à trouver le front de Pareto du prob-
lème de disposition multi-conteneurs. Pour un problème de disposition multi-conteneurs
avec affectation de composants fixes, le placement des composants est limité par la taille
du sous-conteneur correspondant. Pour s’assurer que les composants peuvent être placés à
l’intérieur de chaque sous-conteneur, la zone occupée des composants doit être inférieure à
la zone du sous-conteneur. Ainsi, nous appliquons la méthode du Chapitre 3 pour trouver
l’espace minimum occupé des composants pour chaque sous-conteneur. Estimant ainsi de
nouvelles limites inférieures et supérieures pour chaque partition de sous-conteneur. Et la
complexité de l’optimisation peut être fortement réduite grâce à l’estimation des limites
proposée qui transforme la recherche globale en recherche locale.

166

Chapter 5

APPLICATIONS INDUSTRIELLES

Ce chapitre est dédié aux applications industrielles de la démarche d’optimisation
d’agencement proposée dans ce manuscrit. Pour chaque cas d’étude présenté dans ce
chapitre, toutes les étapes de la méthode sont décrites: la description, la formulation,
l’analyse de capacité, la résolution du problème, ainsi que l’analyse de similarité pour une
interaction ultérieure. Les problèmes d’optimisation d’agencement du shelter présentés
dans ce chapitre portent sur des exemples industrielles proposé par l’entreprise français
Thales SIX France, implantée à Cholet. Un shelter est un abri technique mobile dans
lequel sont disposés des équipements, tels des armoires, des bureaux et autres boîtiers
électriques. Ce local technique est le plus souvent fixé à l’arrière d’un véhicule et est
dédié à des missions de communications lors d’opérations militaires.

Le premier problème d’optimisation d’agencement présentés dans ce chapitre portent
sur l’agencement d’un mono-conteneur shelter en deux dimensions. Comme le suggère le
Chapitre 3, les composants peuvent être séparés en deux catégories: composants solides
et composants virtuels. En appliquant la méthode de calcul exposée dans le Chapitre 3,
nous obtenant un indice de capacité égale à 0.55, ce qui montre à priori la feasiabilité du
problème d’optimisation d’agencement. Par ailleurs, si les composants de cet agencement
avaient tous été considérés comme des composants solides et si nous avions appliqué la
formulation traditionnelle de la densité, la compacité du problème serait égale à 0.85.
L’expérimentation prouve que l’optimisation proposée est efficace pour générer des alter-
natives et trouver des solutions hautement qualifiées dans un temps de calcul raisonnable.
De plus, l’analyse de similarité démontre une bonne diversité de l’ensemble d’agencement
obtenu, qui peut être appliqué comme un outil interactif.

Le second problème d’optimisation d’agencement proposé dans ce chapitre porte sur un
problème du shelter avec le composant de grande taille. Les composants sont en solides
et virtuels. Le composant de plus grande taille, à savoir le composant amplificateur,
comporte trois composants virtuels : deux composants virtuels d’une largeur de 2469 mm
et d’une hauteur de 600 mm, un composant virtuel d’une largeur de 800 mm et d’une

167

hauteur de 841 mm, et occupe près de la moitié de l’espace conteneur. En appliquant
la méthode de calcul exposée dans le Chapitre 3, nous obtenant un indice de capacité
égale à 0.77, démontrant à priori la difficulté du problème du shelter. Les résultats
de l’optimisation confirment que l’optimisation proposée peut générer efficacement des
solutions réalisables telles que les contraintes de placement sont satisfaites et tendent à
réduire les efforts de calcul.

Le troisième cas d’étude est une extension du duex premiers problèmes d’agencement
en trois conteneurs: zone de stockage nommée, zone technique et zone opérateur. Les
composants sont en solides et virtuels. L’affectation des composants à chaque zone est
fixe, nous analysons donc la densité et la capacité de chaque zone séparément. Si le
chevauchement entre les composants virtuels est ignoré, la somme de la densité de la
zone technique égale à 1.01 et la somme de la densité de la zone opérateur égale à 1.08,
d´emontrant à priori l’infaisabilité du problème du shelter. En appliquant la méthode de
calcul exposée dans le Chapitre 3, nous obtenant un indice de capacité égale à 0.76 et
0.79. Du fait de la capacité dense de l’abri, il est difficile de satisfaire les contraintes de
non-chevauchement. De plus, même si la solution est géométriquement faisable, certains
composants peuvent être inaccessibles compte tenu de l’espace limité disponible. Par
conséquent, trouver des solutions réalisables qui permettent d’obtenir de meilleures valeurs
de fonction objectif devient extrêmement difficile. Cependant, l’algorithme d’optimisation
développé résout les difficultés découlant du problème. L’algorithme constructif génère
efficacement des solutions réalisables tandis que l’algorithme SA sans archive optimise
la combinaison des configurations d’abris. De plus, l’analyse de similarité démontre une
bonne diversité de l’ensemble d’agencement obtenu, qui peut être appliqué comme un
outil interactif.

168

CONCLUSION ET PERSPECTIVE

Conclusion

L’agencement est un domaine de recherche important et actif dans les instituts de
recherche et l’industrie. Le manuscrit de thèse contribue à un optimiseur multiobjec-
tif basé sur une approche constructive pour résoudre le nouveau modèle de problème
d’agencement. La méthode est développée pour résoudre les difficultés d’accessibilité
des composants dans la conception d’agencement multiobjectif et peut être étendue au
problème d’agencement avec plusieurs conteneurs. L’accessibilité est une contrainte fonc-
tionnelle particulière d’agencement qui exprime la maintenabilité, l’inspection ainsi que
l’accessibilité aux composants. De plus, un environnement interactif est conçu. En par-
ticulier, l’indice de capacité et l’indicateur de similarité sont intégrés dans le processus
d’optimisation interactif.

Les problèmes d’agencement sont par nature des tâches multidisciplinaires et peuvent
être résolus comme des problèmes d’optimisation. Pour traduire les exigences du con-
cepteur en variables d’optimisation, contraintes de conception et objectifs, tout d’abord,
l’implantation est formulée par le nouveau composant de pièces solides et virtuelles. Le
modèle, prenant en compte les composants virtuels et l’accessibilité aux composants, né-
cessite un algorithme d’optimisation efficace pour aborder la difficulté réalisable. Sans
perte de généralité, deux objectifs, à savoir l’équilibre de l’aménagement et les activités,
sont considérés. Ensuite, un nouvel indice de capacité est proposé pour évaluer la diffi-
culté de faisabilité du problème d’agencement. Cet indice définit une alternative au calcul
traditionnel de la compacité d’un problème d’agencement. Il permet de démontrer, de
manière fiable, si le problème peut être résolu ou non. De plus, l’environnement interactif
permet d’intégrer l’optimisation mathématique à la prise de décision humaine lors de la
conception conceptuelle du problème d’agencement, en mettant l’accent sur l’analyse de
similarité appliquée aux alternatives d’agencement obtenues et aide l’expert à sélectionner
la décision finale.

Le modèle d’agencement contient plusieurs objectifs et peut être résolu par un op-
timiseur multiobjectif qui considère plusieurs objectifs simultanément et recherche un

169

ensemble de solutions compromises. Le recuit simulé est une approche de recherche de
voisinage stochastique pour l’optimisation globale. La facilité de mise en œuvre fait du re-
cuit simulé une méthode populaire pour résoudre des problèmes importants et pratiques.
Cependant, la fonctionnalité basée sur l’individu limite l’application, en particulier dans
les problèmes multiobjectif. Pour surmonter le problème, SA sans archive utilise la sélec-
tion dynamique basée sur le concept de tri non dominé et le mécanisme de calcul de la
distance d’encombrement pour l’optimisation multiobjectif est proposé. Des problèmes
continus et combinatoires sont testés, dans l’ensemble, les résultats ont prouvé que SA
sans archive peut fournir, la plupart du temps, des résultats très compétitifs par rapport
aux autres, ce qui la rend intéressante pour résoudre des problèmes d’agencement com-
plexes. À titre de comparaison, nous avons appliqué l’approche d’optimisation de recuit
simulé sans archive proposée aux exemples d’agencement simples formulés par le mod-
èle d’agencement à objectifs multiples. Les résultats expérimentaux ont trouvé le moins
d’alternatives d’agencement et ont montré des difficultés réalisables dans l’optimisation
d’agencement. L’optimiseur peut rester bloqué et ne pas sortir d’une zone de recherche
(in) faisable. Alternativement, le problème d’agencement peut être formulé comme un
problème combinatoire. Le recuit simulé a démontré la robustesse de l’optimisation com-
binatoire. Ainsi, une méthode d’optimisation multiobjectif intégrant le placement séquen-
tiel avec un recuit simulé est développée à la place.

L’accessibilité est une exigence importante dans l’industrielle. L’intégration d’espaces
virtuels est nécessaire mais pas suffisante pour l’accessibilité des composants. Par con-
séquent, une analyse d’accessibilité supplémentaire est effectuée par le placement con-
structif. Différentes stratégies ont été proposées et étudiées afin d’être génériques et
efficaces, donc adaptées à un large éventail de problèmes d’agencement. Le placement,
non seulement intègre la génération d’espace de composants solides et virtuels garantis-
sant le non-chevauchement des composants, mais introduit également l’idée de chemin de
connexion assurant l’accessibilité des composants. Les comparaisons de stratégies con-
firment que la stratégie de remplissage d’espace peut générer efficacement des solutions
réalisables et réduire les efforts de calcul. La solution d’agencement est construite séquen-
tiellement, ce qui est un processus de combinaison. La technique de recherche de recuit
simulé explore des combinaisons de configurations de composants et optimise les deux
objectifs simultanément. SA sans archive se charge d’explorer efficacement l’espace de
recherche pour proposer des alternatives prometteuses. La plupart des recherches sur les
problèmes d’agencement se concentrent sur le placement des composants sur un seul con-

170

teneur. Néanmoins, la disposition avec plusieurs conteneurs a toujours été un point chaud
et difficile. La méthode a ensuite été étendue à l’agencement avec plusieurs conteneurs.
La complexité de l’optimisation peut être fortement réduite grâce à l’estimation de limite
proposée qui transforme la recherche globale en recherche locale.

La méthode d’optimisation d’agencement a été testée sur le problème de l’aménagement
d’un abri en mono- et multi-conteneur avec un espace très limité. L’expérimentation
prouve que l’optimisation proposée est efficace pour assurer l’accessibilité et trouver des
solutions hautement qualifiées par rapport aux algorithmes existants, ce qui permet un
processus d’optimisation véritablement interactif. De plus, l’analyse de similarité démon-
tre une bonne diversité de l’ensemble d’agencement obtenu, qui peut être appliqué comme
un outil interactif.

Perspective

Cette thèse a contribué à l’approche d’optimisation multiobjectif de l’agencement.
Même si les résultats de la recherche ont été positifs et ont permis une optimisation
efficace et interactive, il reste encore quelques aspects de la recherche à explorer. Ces
directions de recherche sont brièvement décrites ici:

— Introduire les interactions entre le concepteur et l’algorithme d’optimisation. En
plus d’utiliser l’analyse de similarité pour aider le concepteur à comparer et sélec-
tionner la solution préférable, l’intelligence artificielle peut également être intégrée
pour aider la conception à améliorer encore la solution. Par exemple, analyser
l’évaluation des objectifs selon l’importance objective exprimée.

— Définir différentes formes de composants. Nous supposons que tous les com-
posants sont des rectangles dans le modèle de disposition. La définition simplifie
grandement la formulation des contraintes et des objectifs. Pour aller plus loin,
l’agencement pourrait avoir d’autres formes telles que des cercles, des triangles et
des polygones, etc.

— À l’heure actuelle, l’approche a été appliquée à la génération spatiale de formes rect-
angulaires. D’autres recherches pourraient adapter la génération d’espace disponible
à la composante de forme libre. La génération d’espace est utilisée pour éviter le
chevauchement des composants. On peut compter sur la conception assistée par
ordinateur pour détecter les collisions et signaler la zone de chevauchement ; ou
utilisez des ensembles de cercles pour remplacer la forme de forme libre, puis cal-

171

culez le chevauchement entre les composants avec de simples calculs de distance.
— Les approches proposées ont été appliquées à des problèmes d’agencement bidi-

mensionnel, mais elles peuvent être appliquées à d’autres problèmes, tels que le
problème d’agencement tridimensionnel où les composants ont des hauteurs dif-
férentes. Adapter la stratégie de placement pour tenir compte des effets de la
gravité et de la surface de contact est nécessaire.

172

BIBLIOGRAPHY

[1] Ana Cuco et al., « Multi-objective design optimization of a new space radiator »,
in: Optimization and Engineering 12 (Sept. 2011), pp. 393–406, doi: https://
doi.org/10.1007/s11081-011-9142-6.

[2] Xuelian Gao et al., « Layout Optimization Design of Power IoT Chips », in: 2019
IEEE 4th Advanced Information Technology, Electronic and Automation Control
Conference (IAEAC), 2019, pp. 1620–1624, doi: https://doi.org/10.1109/
IAEAC47372.2019.8998045.

[3] Giovani Fossati, Letícia Miguel, and Walter Paucar Casas, « Multi-objective op-
timization of the suspension system parameters of a full vehicle model », in: Op-
timization and Engineering 20 (Mar. 2019), doi: https://doi.org/10.1007/
s11081-018-9403-8.

[4] Machi Zawidzki and Jacek Szklarski, « Multi-objective optimization of the floor
plan of a single story family house considering position and orientation », in:
Advances in Engineering Software 141 (2020), p. 102766, issn: 0965-9978, doi:
https://doi.org/10.1016/j.advengsoft.2019.102766.

[5] Sadegh Niroomand et al., « Modified migrating birds optimization algorithm for
closed loop layout with exact distances in flexible manufacturing systems », in:
Expert Systems with Applications 42.19 (2015), pp. 6586–6597, issn: 0957-4174,
doi: https://doi.org/10.1016/j.eswa.2015.04.040.

[6] Chao Ou-Yang and Amalia Utamima, « Hybrid Estimation of Distribution Al-
gorithm for solving Single Row Facility Layout Problem », in: Computers and
Industrial Engineering 66 (Sept. 2013), pp. 95–103, doi: https://doi.org/10.
1016/j.cie.2013.05.018.

[7] Ashish Saraswat, Uday Venkatadri, and Ignacio Castillo, « A framework for multi-
objective facility layout design », in: Computers & Industrial Engineering 90 (2015),
pp. 167–176, issn: 0360-8352, doi: https://doi.org/10.1016/j.cie.2015.09.
006.

174

https://doi.org/https://doi.org/10.1007/s11081-011-9142-6
https://doi.org/https://doi.org/10.1007/s11081-011-9142-6
https://doi.org/https://doi.org/10.1109/IAEAC47372.2019.8998045
https://doi.org/https://doi.org/10.1109/IAEAC47372.2019.8998045
https://doi.org/https://doi.org/10.1007/s11081-018-9403-8
https://doi.org/https://doi.org/10.1007/s11081-018-9403-8
https://doi.org/https://doi.org/10.1016/j.advengsoft.2019.102766
https://doi.org/https://doi.org/10.1016/j.eswa.2015.04.040
https://doi.org/https://doi.org/10.1016/j.cie.2013.05.018
https://doi.org/https://doi.org/10.1016/j.cie.2013.05.018
https://doi.org/https://doi.org/10.1016/j.cie.2015.09.006
https://doi.org/https://doi.org/10.1016/j.cie.2015.09.006

[8] J. Cagan, K. Shimada, and S. Yin, « A survey of computational approaches to
three-dimensional layout problems », in: Computer-Aided Design 34.8 (2002), pp. 597–
611, issn: 0010-4485, doi: https://doi.org/10.1016/S0010-4485(01)00109-9.

[9] Ana Cuco, Fabiano Sousa, and Antônio Silva Neto, « A multi-objective methodol-
ogy for spacecraft equipment layouts », in: Optimization and Engineering 16 (Mar.
2014), doi: https://doi.org/10.1007/s11081-014-9252-z.

[10] Farhad Ghassemi Tari and Hossein Neghabi, « A new linear adjacency approach
for facility layout problem with unequal area departments », in: Journal of Man-
ufacturing Systems 37 (2015), pp. 93–103, issn: 0278-6125, doi: https://doi.
org/10.1016/j.jmsy.2015.09.003.

[11] Zhang Lin and Zhang Yingjie, « Solving the Facility Layout Problem with Genetic
Algorithm », in: 2019 IEEE 6th International Conference on Industrial Engineer-
ing and Applications (ICIEA), 2019, pp. 164–168, doi: 10 . 1109 / IEA . 2019 .
8715148.

[12] S. Szykman and J. Cagan, « Constrained Three-Dimensional Component Layout
Using Simulated Annealing », in: Journal of Mechanical Design 119.1 (Mar. 1997),
pp. 28–35, issn: 1050-0472, doi: https://doi.org/10.1115/1.2828785.

[13] Scott Kirkpatrick, C Daniel Gelatt, and Mario P Vecchi, « Optimization by simu-
lated annealing », in: science 220.4598 (1983), pp. 671–680.

[14] John Henry Holland et al., Adaptation in natural and artificial systems: an in-
troductory analysis with applications to biology, control, and artificial intelligence,
MIT press, 1992.

[15] R. Eberhart and J. Kennedy, « A new optimizer using particle swarm theory »,
in: MHS’95. Proceedings of the Sixth International Symposium on Micro Machine
and Human Science, 1995, pp. 39–43, doi: 10.1109/MHS.1995.494215.

[16] Ilias Vasilopoulos et al., « Gradient-based Pareto front approximation applied
to turbomachinery shape optimization », in: Engineering With Computers (Jan.
2021), doi: 10.1007/s00366-019-00832-y.

[17] T. Murata and H. Ishibuchi, « MOGA: multi-objective genetic algorithms », in:
Proceedings of 1995 IEEE International Conference on Evolutionary Computation,
vol. 1, 1995, pp. 289–, doi: 10.1109/ICEC.1995.489161.

175

https://doi.org/https://doi.org/10.1016/S0010-4485(01)00109-9
https://doi.org/https://doi.org/10.1007/s11081-014-9252-z
https://doi.org/https://doi.org/10.1016/j.jmsy.2015.09.003
https://doi.org/https://doi.org/10.1016/j.jmsy.2015.09.003
https://doi.org/10.1109/IEA.2019.8715148
https://doi.org/10.1109/IEA.2019.8715148
https://doi.org/https://doi.org/10.1115/1.2828785
https://doi.org/10.1109/MHS.1995.494215
https://doi.org/10.1007/s00366-019-00832-y
https://doi.org/10.1109/ICEC.1995.489161

[18] A. SUPPAPITNARM et al., « A SIMULATED ANNEALING ALGORITHM FOR
MULTIOBJECTIVE OPTIMIZATION », in: Engineering Optimization 33.1 (2000),
pp. 59–85, doi: 10.1080/03052150008940911.

[19] Xin-She Yang, Mehmet Karamanoglu, and Xingshi He, « Flower pollination algo-
rithm: A novel approach for multiobjective optimization », in: Engineering Opti-
mization 46.9 (2014), pp. 1222–1237.

[20] Kalyanmoy Deb et al., « Evolutionary algorithms for multi-criterion optimization
in engineering design », in: Evolutionary algorithms in engineering and computer
science 2 (1999), pp. 135–161.

[21] « On a Bicriterion Formulation of the Problems of Integrated System Identifica-
tion and System Optimization », in: IEEE Transactions on Systems, Man, and
Cybernetics SMC-1.3 (1971), pp. 296–297, doi: 10.1109/TSMC.1971.4308298.

[22] Oscar Brito Augusto, Fouad Bennis, and Stephane Caro, « A new method for deci-
sion making in multi-objective optimization problems », in: Pesquisa Operacional
32 (Aug. 2012), pp. 331–369.

[23] E. Zitzler and L. Thiele, « Multiobjective evolutionary algorithms: a comparative
case study and the strength Pareto approach », in: IEEE Transactions on Evolu-
tionary Computation 3.4 (1999), pp. 257–271, doi: 10.1109/4235.797969.

[24] Coello Coello C.A., Pulido G.T., and Lechuga M.S., « Handling multiple objec-
tives with particle swarm optimization », in: IEEE Transactions on Evolutionary
Computation 8.3 (2004), pp. 256–279, doi: 10.1109/TEVC.2004.826067.

[25] Seyedali Mirjalili et al., « Salp Swarm Algorithm: A bio-inspired optimizer for
engineering design problems », in: Advances in Engineering Software 114 (2017),
pp. 163–191, issn: 0965-9978, doi: https://doi.org/10.1016/j.advengsoft.
2017.07.002, url: https://www.sciencedirect.com/science/article/pii/
S0965997816307736.

[26] Dongkyung Nam and Cheol Hoon Park, « Multiobjective Simulated Annealing:
A Comparative Study to Evolutionary Algorithms », in: International Journal of
Fuzzy Systems 2 (Jan. 2000).

[27] Kevin I Smith, « A study of simulated annealing techniques for multi-objective
optimisation », in: (2006).

176

https://doi.org/10.1080/03052150008940911
https://doi.org/10.1109/TSMC.1971.4308298
https://doi.org/10.1109/4235.797969
https://doi.org/10.1109/TEVC.2004.826067
https://doi.org/https://doi.org/10.1016/j.advengsoft.2017.07.002
https://doi.org/https://doi.org/10.1016/j.advengsoft.2017.07.002
https://www.sciencedirect.com/science/article/pii/S0965997816307736
https://www.sciencedirect.com/science/article/pii/S0965997816307736

[28] Kalyanmoy Deb et al., « A fast and elitist multiobjective genetic algorithm: NSGA-
II », in: IEEE transactions on evolutionary computation 6.2 (2002), pp. 182–197.

[29] Min-Yuan Cheng and Doddy Prayogo, « Symbiotic Organisms Search: A new
metaheuristic optimization algorithm », in: Computers & Structures 139 (2014),
pp. 98–112, issn: 0045-7949, doi: https://doi.org/10.1016/j.compstruc.
2014.03.007, url: https://www.sciencedirect.com/science/article/pii/
S0045794914000881.

[30] Arnapurna Panda and Sabyasachi Pani, « A Symbiotic Organisms Search algo-
rithm with adaptive penalty function to solve multi-objective constrained opti-
mization problems », in: Applied Soft Computing 46 (2016), pp. 344–360, issn:
1568-4946, doi: https://doi.org/10.1016/j.asoc.2016.04.030, url: https:
//www.sciencedirect.com/science/article/pii/S1568494616301788.

[31] Ke Li et al., « Two-Archive Evolutionary Algorithm for Constrained Multiobjective
Optimization », in: IEEE Transactions on Evolutionary Computation 23.2 (2019),
pp. 303–315, doi: 10.1109/TEVC.2018.2855411.

[32] J. David Schaffer, « Multiple Objective Optimization with Vector Evaluated Ge-
netic Algorithms », in: Proceedings of the 1st International Conference on Genetic
Algorithms, USA: L. Erlbaum Associates Inc., 1985, pp. 93–100, isbn: 0805804269.

[33] Qingfu Zhang and Hui Li, « MOEA/D: A Multiobjective Evolutionary Algorithm
Based on Decomposition », in: IEEE Transactions on Evolutionary Computation
11.6 (2007), pp. 712–731, doi: 10.1109/TEVC.2007.892759.

[34] Kalyanmoy Deb and Himanshu Jain, « An Evolutionary Many-Objective Opti-
mization Algorithm Using Reference-Point-Based Nondominated Sorting Approach,
Part I: Solving Problems With Box Constraints », in: IEEE Transactions on Evo-
lutionary Computation 18.4 (2014), pp. 577–601, doi: 10 . 1109 / TEVC . 2013 .
2281535.

[35] Chunteng Bao, Lihong Xu, and Erik D. Goodman, « A new dominance-relation
metric balancing convergence and diversity in multi- and many-objective optimiza-
tion », in: Expert Systems with Applications 134 (2019), pp. 14–27, issn: 0957-
4174, doi: https://doi.org/10.1016/j.eswa.2019.05.032, url: https:
//www.sciencedirect.com/science/article/pii/S0957417419303616.

177

https://doi.org/https://doi.org/10.1016/j.compstruc.2014.03.007
https://doi.org/https://doi.org/10.1016/j.compstruc.2014.03.007
https://www.sciencedirect.com/science/article/pii/S0045794914000881
https://www.sciencedirect.com/science/article/pii/S0045794914000881
https://doi.org/https://doi.org/10.1016/j.asoc.2016.04.030
https://www.sciencedirect.com/science/article/pii/S1568494616301788
https://www.sciencedirect.com/science/article/pii/S1568494616301788
https://doi.org/10.1109/TEVC.2018.2855411
https://doi.org/10.1109/TEVC.2007.892759
https://doi.org/10.1109/TEVC.2013.2281535
https://doi.org/10.1109/TEVC.2013.2281535
https://doi.org/https://doi.org/10.1016/j.eswa.2019.05.032
https://www.sciencedirect.com/science/article/pii/S0957417419303616
https://www.sciencedirect.com/science/article/pii/S0957417419303616

[36] Ke Li et al., « An Evolutionary Many-Objective Optimization Algorithm Based on
Dominance and Decomposition », in: IEEE Transactions on Evolutionary Compu-
tation 19.5 (2015), pp. 694–716, doi: 10.1109/TEVC.2014.2373386.

[37] C.M. Fonseca, L. Paquete, and M. Lopez-Ibanez, « An Improved Dimension-Sweep
Algorithm for the Hypervolume Indicator », in: 2006 IEEE International Confer-
ence on Evolutionary Computation, 2006, pp. 1157–1163, doi: 10.1109/CEC.2006.
1688440.

[38] Hao Wang et al., « On Steering Dominated Points in Hypervolume Indicator Gra-
dient Ascent for Bi-Objective Optimization », in: NEO 2015: Results of the Nu-
merical and Evolutionary Optimization Workshop NEO 2015 held at September
23-25 2015 in Tijuana, Mexico, ed. by Oliver Schütze et al., Cham: Springer In-
ternational Publishing, 2017, pp. 175–203, doi: 10.1007/978-3-319-44003-3_8.

[39] Eckart Zitzler and Simon Künzli, « Indicator-Based Selection in Multiobjective
Search », in: Sept. 2004, pp. 832–842, isbn: 978-3-540-23092-2, doi: 10.1007/978-
3-540-30217-9_84.

[40] Nicola Hochstrate, Boris Naujoks, and Michael Emmerich, « SMS-EMOA: Multi-
objective selection based on dominated hypervolume », in: European Journal of
Operational Research 181 (Feb. 2007), pp. 1653–1669, doi: 10.1016/j.ejor.
2006.08.008.

[41] Gladston Moreira and Luís Paquete, « Guiding under uniformity measure in the
decision space », in: 2019 IEEE Latin American Conference on Computational
Intelligence (LA-CCI), 2019, pp. 1–6, doi: 10.1109/LA-CCI47412.2019.9037034.

[42] Adriana Menchaca-Méndez and Carlos A. Coello Coello, « GD-MOEA: A New
Multi-Objective Evolutionary Algorithm Based on the Generational Distance In-
dicator », in: EMO, 2015.

[43] Yiping Liu, Gary G. Yen, and Dunwei Gong, « A Multimodal Multiobjective
Evolutionary Algorithm Using Two-Archive and Recombination Strategies », in:
IEEE Transactions on Evolutionary Computation 23.4 (2019), pp. 660–674, doi:
10.1109/TEVC.2018.2879406.

[44] Petri Eskelinen et al., « Pareto navigator for interactive nonlinear multiobjective
optimization », in: OR Spectrum 32 (Oct. 2010), pp. 211–227, doi: 10.1007/
s00291-008-0151-6.

178

https://doi.org/10.1109/TEVC.2014.2373386
https://doi.org/10.1109/CEC.2006.1688440
https://doi.org/10.1109/CEC.2006.1688440
https://doi.org/10.1007/978-3-319-44003-3_8
https://doi.org/10.1007/978-3-540-30217-9_84
https://doi.org/10.1007/978-3-540-30217-9_84
https://doi.org/10.1016/j.ejor.2006.08.008
https://doi.org/10.1016/j.ejor.2006.08.008
https://doi.org/10.1109/LA-CCI47412.2019.9037034
https://doi.org/10.1109/TEVC.2018.2879406
https://doi.org/10.1007/s00291-008-0151-6
https://doi.org/10.1007/s00291-008-0151-6

[45] Julien Bénabès et al., « Interactive optimization strategies for layout problems »,
in: International Journal on Interactive Design and Manufacturing (IJIDeM) 4.3
(2010), pp. 181–190.

[46] Yi-Nan Guo et al., « Novel Interactive Preference-Based Multiobjective Evolu-
tionary Optimization for Bolt Supporting Networks », in: IEEE Transactions on
Evolutionary Computation 24.4 (2020), pp. 750–764, doi: 10.1109/TEVC.2019.
2951217.

[47] Laura García-Hernández et al., « A novel hybrid evolutionary approach for cap-
turing decision maker knowledge into the unequal area facility layout problem »,
in: Expert Systems with Applications 42.10 (2015), pp. 4697–4708.

[48] Jeremy Michalek and Panos Papalambros, « Interactive design optimization of
architectural layouts », in: Engineering Optimization 34 (Sept. 2002), pp. 485–
501.

[49] Fieldsend J.E., Everson R.M., and Singh S., « Using unconstrained elite archives
for multiobjective optimization », in: IEEE Transactions on Evolutionary Compu-
tation 7.3 (2003), pp. 305–323, doi: 10.1109/TEVC.2003.810733.

[50] Zhenan He, Gary G. Yen, and Jun Zhang, « Fuzzy-Based Pareto Optimality for
Many-Objective Evolutionary Algorithms », in: IEEE Transactions on Evolution-
ary Computation 18.2 (2014), pp. 269–285, doi: 10.1109/TEVC.2013.2258025.

[51] Hiroyuki Sato, Hernán E. Aguirre, and Kiyoshi Tanaka, « Controlling Dominance
Area of Solutions and Its Impact on the Performance of MOEAs », in: Evolutionary
Multi-Criterion Optimization, ed. by Shigeru Obayashi et al., Berlin, Heidelberg:
Springer Berlin Heidelberg, 2007, pp. 5–20.

[52] Hiroyuki Sato, Hernán E. Aguirre, and Kiyoshi Tanaka, « Self-Controlling Domi-
nance Area of Solutions in Evolutionary Many-Objective Optimization », in: Sim-
ulated Evolution and Learning, ed. by Kalyanmoy Deb et al., Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 455–465.

[53] Marco Laumanns et al., « Combining Convergence and Diversity in Evolutionary
Multiobjective Optimization », in: Evol. Comput. 10.3 (Sept. 2002), pp. 263–282,
issn: 1063-6560, doi: 10.1162/106365602760234108, url: https://doi.org/
10.1162/106365602760234108.

179

https://doi.org/10.1109/TEVC.2019.2951217
https://doi.org/10.1109/TEVC.2019.2951217
https://doi.org/10.1109/TEVC.2003.810733
https://doi.org/10.1109/TEVC.2013.2258025
https://doi.org/10.1162/106365602760234108
https://doi.org/10.1162/106365602760234108
https://doi.org/10.1162/106365602760234108

[54] Yuan Yuan et al., « A New Dominance Relation-Based Evolutionary Algorithm for
Many-Objective Optimization », in: IEEE Transactions on Evolutionary Compu-
tation 20.1 (2016), pp. 16–37, doi: 10.1109/TEVC.2015.2420112.

[55] Ye Tian et al., « A Strengthened Dominance Relation Considering Convergence and
Diversity for Evolutionary Many-Objective Optimization », in: IEEE Transactions
on Evolutionary Computation 23.2 (2019), pp. 331–345, doi: 10.1109/TEVC.2018.
2866854.

[56] Yan-Yan Tan et al., « MOEA/D-SQA: A multi-objective memetic algorithm based
on decomposition », in: Engineering Optimization - ENG OPTIMIZ 44 (Sept.
2012), pp. 1–21, doi: 10.1080/0305215X.2011.632008.

[57] Qiuzhen Lin et al., « Multimodal Multiobjective Evolutionary Optimization With
Dual Clustering in Decision and Objective Spaces », in: IEEE Transactions on
Evolutionary Computation 25.1 (2021), pp. 130–144, doi: 10.1109/TEVC.2020.
3008822.

[58] David E. Goldberg and Jon Richardson, « Genetic Algorithms with Sharing for
Multimodal Function Optimization », in: Proceedings of the Second International
Conference on Genetic Algorithms on Genetic Algorithms and Their Application,
Cambridge, Massachusetts, USA: L. Erlbaum Associates Inc., 1987, pp. 41–49,
isbn: 0805801588.

[59] Tjalling C Koopmans and Martin Beckmann, « Assignment problems and the loca-
tion of economic activities », in: Econometrica: journal of the Econometric Society
(1957), pp. 53–76.

[60] Gintaras Palubeckis, « Fast local search for single row facility layout », in: European
Journal of Operational Research 246.3 (2015), pp. 800–814.

[61] Xiaoxiao Song et al., « Efficient multi-objective simulated annealing algorithm for
interactive layout problems », in: International Journal on Interactive Design and
Manufacturing (IJIDeM) 15 (Oct. 2021), pp. 441–451, doi: https://doi.org/
10.1007/s12008-021-00773-1.

[62] Jing-fa Liu et al., « A new energy landscape paving heuristic for satellite module
layouts », in: Frontiers of Information Technology & Electronic Engineering 17
(Oct. 2016), pp. 1031–1043, doi: https://doi.org/10.1631/FITEE.1500302.

180

https://doi.org/10.1109/TEVC.2015.2420112
https://doi.org/10.1109/TEVC.2018.2866854
https://doi.org/10.1109/TEVC.2018.2866854
https://doi.org/10.1080/0305215X.2011.632008
https://doi.org/10.1109/TEVC.2020.3008822
https://doi.org/10.1109/TEVC.2020.3008822
https://doi.org/https://doi.org/10.1007/s12008-021-00773-1
https://doi.org/https://doi.org/10.1007/s12008-021-00773-1
https://doi.org/https://doi.org/10.1631/FITEE.1500302

[63] Leonardo Chwif, Marcos R Pereira Barretto, and Lucas Antonio Moscato, « A
solution to the facility layout problem using simulated annealing », in: Computers
in industry 36.1-2 (1998), pp. 125–132.

[64] Philipp Hungerländer and Miguel F. Anjos, « A semidefinite optimization-based
approach for global optimization of multi-row facility layout », in: European Jour-
nal of Operational Research 245.1 (2015), pp. 46–61, issn: 0377-2217, doi: https:
//doi.org/10.1016/j.ejor.2015.02.049.

[65] Fumiya Kudo, Tomohiro Yoshikawa, and Takeshi Furuhashi, « A study on analysis
of design variables in Pareto solutions for conceptual design optimization problem
of hybrid rocket engine », in: 2011 IEEE Congress of Evolutionary Computation
(CEC), 2011, pp. 2558–2562, doi: https : / / doi . org / 10 . 1109 / CEC . 2011 .
5949936.

[66] Lee K-Y, Han S-N, and Myung-Il Roh, « Optimal Compartment Layout Design for
a Naval Ship Using an Improved Genetic Algorithm », in: Marine Technology 39
(July 2002), pp. 159–169, doi: https://doi.org/10.5957/mt1.2002.39.3.159.

[67] Jeremy Michalek, R. Choudhary, and Panos Papalambros, « Architectural layout
design optimization », in: Engineering Optimization 34 (Sept. 2002), pp. 461–484,
doi: https://doi.org/10.1080/03052150214016.

[68] Hamidreza Jafaryeganeh, Manuel Ventura, and Carlos Guedes Soares, « Parametric
modelling for adaptive internal compartment design of container ships: Proceed-
ings of the 3rd International Conference on Maritime Technology and Engineering
(MARTECH 2016, Lisbon, Portugal, 4-6 July 2016) », in: June 2016, pp. 655–661,
isbn: 978-1-138-03000-8, doi: 10.1201/b21890-85.

[69] Dinesh Singh and Supriya Deshmukh, « Multi-objective facility layout problems
using BBO, NSBBO and NSGA-II metaheuristic algorithms », in: International
Journal of Industrial Engineering Computations 10 (Aug. 2018), doi: 10.5267/j.
ijiec.2018.6.006.

[70] Benoit Montreuil, « A modelling framework for integrating layout design and flow
network design », in: Material handling’90, Springer, 1991, pp. 95–115.

[71] Yann Briheche et al., « Optimization of Radar Search Patterns in Localized Clutter
and Terrain Masking under Direction-Specific Scan Update Rates Constraints »,

181

https://doi.org/https://doi.org/10.1016/j.ejor.2015.02.049
https://doi.org/https://doi.org/10.1016/j.ejor.2015.02.049
https://doi.org/https://doi.org/10.1109/CEC.2011.5949936
https://doi.org/https://doi.org/10.1109/CEC.2011.5949936
https://doi.org/https://doi.org/10.5957/mt1.2002.39.3.159
https://doi.org/https://doi.org/10.1080/03052150214016
https://doi.org/10.1201/b21890-85
https://doi.org/10.5267/j.ijiec.2018.6.006
https://doi.org/10.5267/j.ijiec.2018.6.006

in: IET Radar Sonar and Navigation (2018), doi: 10.1049/iet-rsn.2017.0244,
url: https://hal.archives-ouvertes.fr/hal-01705380.

[72] Zhao Xiaoning and Yang Weina, « Research on Layout Problem of Multi-layer
Logistics Facility Based on Simulated Annealing Algorithm », in: 2011 Fourth
International Conference on Intelligent Computation Technology and Automation,
vol. 1, 2011, pp. 892–894, doi: 10.1109/ICICTA.2011.224.

[73] « A nonlinear optimization approach for solving facility layout problems », in:
European Journal of Operational Research 57.2 (1992), Facility Layout, pp. 174–
189, issn: 0377-2217, doi: https://doi.org/10.1016/0377-2217(92)90041-7.

[74] Maghsud Solimanpur and Amir Jafari, « Optimal solution for the two-dimensional
facility layout problem using a branch-and-bound algorithm », in: Computers &
Industrial Engineering 55.3 (2008), pp. 606–619, issn: 0360-8352, doi: https:
//doi.org/10.1016/j.cie.2008.01.018, url: https://www.sciencedirect.
com/science/article/pii/S0360835208000387.

[75] RD Meller, « The multi-bay manufacturing facility layout problem », in: Interna-
tional Journal of Production Research 35.5 (1997), pp. 1229–1237.

[76] E. Shayan and A. Chittilappilly, « Genetic algorithm for facilities layout prob-
lems based on slicing tree structure », in: International Journal of Production
Research 42 (Oct. 2004), pp. 4055–4067, doi: https : / / doi . org / 10 . 1080 /
00207540410001716471.

[77] H. Murata et al., « VLSI module placement based on rectangle-packing by the
sequence-pair », in: IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 15.12 (1996), pp. 1518–1524, doi: 10.1109/43.552084.

[78] Sadan Kulturel-Konak and Abdullah Konak, « Linear Programming Based Genetic
Algorithm for the Unequal Area Facility Layout Problem », in: International Jour-
nal of Production Research 51 (July 2013), doi: 10.1080/00207543.2013.774481.

[79] Yavuz A. Bozer and Chi-Tai Wang, « A graph-pair representation and MIP-model-
based heuristic for the unequal-area facility layout problem », in: European Journal
of Operational Research 218.2 (2012), pp. 382–391, issn: 0377-2217, doi: https:
//doi.org/10.1016/j.ejor.2011.10.052, url: https://www.sciencedirect.
com/science/article/pii/S0377221711010058.

182

https://doi.org/10.1049/iet-rsn.2017.0244
https://hal.archives-ouvertes.fr/hal-01705380
https://doi.org/10.1109/ICICTA.2011.224
https://doi.org/https://doi.org/10.1016/0377-2217(92)90041-7
https://doi.org/https://doi.org/10.1016/j.cie.2008.01.018
https://doi.org/https://doi.org/10.1016/j.cie.2008.01.018
https://www.sciencedirect.com/science/article/pii/S0360835208000387
https://www.sciencedirect.com/science/article/pii/S0360835208000387
https://doi.org/https://doi.org/10.1080/00207540410001716471
https://doi.org/https://doi.org/10.1080/00207540410001716471
https://doi.org/10.1109/43.552084
https://doi.org/10.1080/00207543.2013.774481
https://doi.org/https://doi.org/10.1016/j.ejor.2011.10.052
https://doi.org/https://doi.org/10.1016/j.ejor.2011.10.052
https://www.sciencedirect.com/science/article/pii/S0377221711010058
https://www.sciencedirect.com/science/article/pii/S0377221711010058

[80] Amir Sadrzadeh, « A genetic algorithm with the heuristic procedure to solve the
multi-line layout problem », in: Computers & Industrial Engineering 62.4 (2012),
pp. 1055–1064, issn: 0360-8352, doi: https://doi.org/10.1016/j.cie.2011.
12.033.

[81] Kazi Shah Nawaz Ripon et al., « Adaptive variable neighborhood search for solving
multi-objective facility layout problems with unequal area facilities », in: Swarm
and Evolutionary Computation 8 (2013), pp. 1–12, issn: 2210-6502, doi: https:
//doi.org/10.1016/j.swevo.2012.07.003.

[82] Ada Che, Yipei Zhang, and Jianguang Feng, « Bi-objective optimization for multi-
floor facility layout problem with fixed inner configuration and room adjacency
constraints », in: Computers & Industrial Engineering 105 (2017), pp. 265–276,
issn: 0360-8352, doi: https://doi.org/10.1016/j.cie.2016.12.018.

[83] Kyu-Yeul Lee, Myung-Il Roh, and Hyuk-Su Jeong, « An improved genetic algo-
rithm for multi-floor facility layout problems having inner structure walls and pas-
sages », in: Computers & Operations Research 32.4 (2005), pp. 879–899.

[84] Julien Bénabès, Emilie Poirson, and Fouad Bennis, « Integrated and interactive
method for solving layout optimization problems », in: Expert Systems with Appli-
cations 40 (Nov. 2013), pp. 5796–5803, doi: https://doi.org/10.1016/j.eswa.
2013.03.045.

[85] Jaewoo Seo et al., « Pin Accessibility-Driven Cell Layout Redesign and Placement
Optimization », in: Proceedings of the 54th Annual Design Automation Conference,
June 2017, pp. 1–6, doi: https://doi.org/10.1145/3061639.3062302.

[86] Julien Bénabès et al., « Accessibility in Layout Optimization », in: 2nd Interna-
tional Conference On Engineering Optimization, Lisbonne, Portugal, Sept. 2010.

[87] Farouq Halawa, Sreenath Chalil Madathil, and Mohammad T. Khasawneh, « Multi-
objective unequal area pod-structured healthcare facility layout problem with day-
light requirements », in: Computers & Industrial Engineering 162 (2021), p. 107722,
issn: 0360-8352, doi: https://doi.org/10.1016/j.cie.2021.107722.

[88] Wei Xie and Nikolaos V. Sahinidis, « A branch-and-bound algorithm for the con-
tinuous facility layout problem », in: Computers & Chemical Engineering 32.4
(2008), pp. 1016–1028, issn: 0098-1354, doi: https://doi.org/10.1016/j.
compchemeng.2007.05.003.

183

https://doi.org/https://doi.org/10.1016/j.cie.2011.12.033
https://doi.org/https://doi.org/10.1016/j.cie.2011.12.033
https://doi.org/https://doi.org/10.1016/j.swevo.2012.07.003
https://doi.org/https://doi.org/10.1016/j.swevo.2012.07.003
https://doi.org/https://doi.org/10.1016/j.cie.2016.12.018
https://doi.org/https://doi.org/10.1016/j.eswa.2013.03.045
https://doi.org/https://doi.org/10.1016/j.eswa.2013.03.045
https://doi.org/https://doi.org/10.1145/3061639.3062302
https://doi.org/https://doi.org/10.1016/j.cie.2021.107722
https://doi.org/https://doi.org/10.1016/j.compchemeng.2007.05.003
https://doi.org/https://doi.org/10.1016/j.compchemeng.2007.05.003

[89] Jonathan Hathhorn, Esra Sisikoglu, and Mustafa Y. Sir, « A multi-objective mixed-
integer programming model for a multi-floor facility layout », in: International
Journal of Production Research 51.14 (2013), pp. 4223–4239, doi: https://doi.
org/10.1080/00207543.2012.753486.

[90] Abbas Ahmadi and Mohammad Jokar, « An Efficient Multiple-stage Mathemat-
ical Programming Method for Advanced Single and Multi-Floor Facility Layout
Problems », in: Applied Mathematical Modelling 40.9 (Jan. 2016), pp. 5605–5620,
doi: https://doi.org/10.1016/j.apm.2016.01.014.

[91] M. Mir and M.H. Imam, « A hybrid optimization approach for layout design
of unequal-area facilities », in: Computers & Industrial Engineering 39.1 (2001),
pp. 49–63, issn: 0360-8352, doi: https://doi.org/10.1016/S0360-8352(00)
00065-6.

[92] Abdelahad Chraibi et al., « A Particle Swarm Algorithm for Solving the Multi-
objective Operating Theater Layout Problem », in: IFAC-PapersOnLine 49.12
(June 2016), pp. 1169–1174, doi: https://doi.org/10.1016/j.ifacol.2016.
07.663.

[93] Besbes Mariem et al., « A methodology for solving facility layout problem consider-
ing barriers – genetic algorithm coupled with A* search », in: Journal of Intelligent
Manufacturing. 31 (Mar. 2019), pp. 615–640, doi: https://doi.org/10.1007/
s10845-019-01468-x.

[94] M. Méndez et al., « Proposal and Comparative Study of Evolutionary Algorithms
for Optimum Design of a Gear System », in: IEEE.Access. 8 (2020), pp. 3482–3497,
doi: https://doi.org/10.1109/ACCESS.2019.2962906.

[95] B. Medjdoub and B. Yannou, « Separating topology and geometry in space plan-
ning », in: Computer-Aided Design 32.1 (2000), pp. 39–61, issn: 0010-4485, doi:
https://doi.org/10.1016/S0010-4485(99)00084-6.

[96] B Medjdoub and B Yannou, « Dynamic space ordering at a topological level in
space planning », in: Artificial Intelligence in Engineering 15.1 (2001), pp. 47–60,
issn: 0954-1810, doi: https://doi.org/10.1016/S0954-1810(00)00027-3.

[97] Yann Briheche et al., « Branch-and-Bound Method for Just-in-Time Optimization
of Radar Search Patterns », in: Nature-Inspired Methods for Metaheuristics Opti-

184

https://doi.org/https://doi.org/10.1080/00207543.2012.753486
https://doi.org/https://doi.org/10.1080/00207543.2012.753486
https://doi.org/https://doi.org/10.1016/j.apm.2016.01.014
https://doi.org/https://doi.org/10.1016/S0360-8352(00)00065-6
https://doi.org/https://doi.org/10.1016/S0360-8352(00)00065-6
https://doi.org/https://doi.org/10.1016/j.ifacol.2016.07.663
https://doi.org/https://doi.org/10.1016/j.ifacol.2016.07.663
https://doi.org/https://doi.org/10.1007/s10845-019-01468-x
https://doi.org/https://doi.org/10.1007/s10845-019-01468-x
https://doi.org/https://doi.org/10.1109/ACCESS.2019.2962906
https://doi.org/https://doi.org/10.1016/S0010-4485(99)00084-6
https://doi.org/https://doi.org/10.1016/S0954-1810(00)00027-3

mization, Jan. 2020, pp. 465–488, doi: https://doi.org/10.1007/978-3-030-
26458-1_25.

[98] Surya Prakash Singh, « Solving facility layout problem: three-level tabu search
metaheuristic approach », in: International Journal of Recent Trends in Engineer-
ing 1.1 (2009), p. 73.

[99] N. Bozorgi, M. Abedzadeh, and M. Zeinali, « Tabu search heuristic for efficiency
of dynamic facility layout problem », in: The International Journal of Advanced
Manufacturing Technology 77 (Mar. 2014), pp. 689–703.

[100] Pyari Mohan Pradhan et al., « Energy Efficient Layout for a Wireless Sensor Net-
work using Multi-Objective Particle Swarm Optimization », in: 2009 IEEE Inter-
national Advance Computing Conference, 2009, pp. 65–70, doi: 10.1109/IADCC.
2009.4808982.

[101] Sabri Pllana, Suejb Memeti, and Joanna Kolodziej, « Customizing Pareto Sim-
ulated Annealing for Multi-Objective Optimization of Control Cabinet Layout »,
in: 2019 22nd International Conference on Control Systems and Computer Science
(CSCS), 2019, pp. 78–85, doi: 10.1109/CSCS.2019.00021.

[102] Ranjan Hasda, Rajib Bhattacharjya, and Fouad Bennis, « Modified genetic algo-
rithms for solving facility layout problems », in: International Journal on Inter-
active Design and Manufacturing (IJIDeM) 11 (2016), pp. 713–725, doi: https:
//doi.org/10.1007/s12008-016-0362-z.

[103] Mostafa Mazinani, Mostafa Abedzadeh, and Navid Mohebali, « Dynamic facility
layout problem based on flexible bay structure and solving by genetic algorithm »,
in: The International Journal of Advanced Manufacturing Technology 65 (Mar.
2012), pp. 929–943, doi: https://doi.org/10.1007/s00170-012-4229-6.

[104] Sumin Kang and Junjae Chae, « Harmony search for the layout design of an un-
equal area facility », in: Expert Systems with Applications 79 (2017), pp. 269–281,
issn: 0957-4174, doi: https://doi.org/10.1016/j.eswa.2017.02.047.

[105] Hasan Hosseini nasab et al., « Classification of facility layout problems: a review
study », in: The International Journal of Advanced Manufacturing Technology vol-
ume 94 (2018), pp. 957–977, doi: https://doi.org/10.1007/s00170-017-0895-
8.

185

https://doi.org/https://doi.org/10.1007/978-3-030-26458-1_25
https://doi.org/https://doi.org/10.1007/978-3-030-26458-1_25
https://doi.org/10.1109/IADCC.2009.4808982
https://doi.org/10.1109/IADCC.2009.4808982
https://doi.org/10.1109/CSCS.2019.00021
https://doi.org/https://doi.org/10.1007/s12008-016-0362-z
https://doi.org/https://doi.org/10.1007/s12008-016-0362-z
https://doi.org/https://doi.org/10.1007/s00170-012-4229-6
https://doi.org/https://doi.org/10.1016/j.eswa.2017.02.047
https://doi.org/https://doi.org/10.1007/s00170-017-0895-8
https://doi.org/https://doi.org/10.1007/s00170-017-0895-8

[106] Robin S. Liggett and William J. Mitchell, « Optimal space planning in prac-
tice », in: Computer-Aided Design 13.5 (1981), Special Issue Design optimiza-
tion, pp. 277–288, issn: 0010-4485, doi: https://doi.org/10.1016/0010-
4485(81)90317-1, url: https://www.sciencedirect.com/science/article/
pii/0010448581903171.

[107] Farouq Halawa, Sreenath Chalil Madathil, and Mohammad T. Khasawneh, « In-
tegrated framework of process mining and simulation–optimization for pod struc-
tured clinical layout design », in: Expert Systems with Applications 185 (2021),
p. 115696, issn: 0957-4174, doi: https://doi.org/10.1016/j.eswa.2021.
115696.

[108] Xueping Li, Zhaoxia Zhao, and Kaike Zhang, « A genetic algorithm for the three-
dimensional bin packing problem with heterogeneous bins », in: Industrial and
Systems Engineering Research Conference, May 2014, pp. 2039–2048.

[109] José Fernando Gonçalves and Mauricio GC Resende, « A biased random-key ge-
netic algorithm for the unequal area facility layout problem », in: European Journal
of Operational Research 246 (2015), pp. 86–107, doi: https://doi.org/10.1016/
j.ejor.2015.04.029.

[110] Jiazhen Huo, Jing Liu, and Hong Gao, « An NSGA-II Algorithm with Adaptive
Local Search for a New Double-Row Model Solution to a Multi-Floor Hospital
Facility Layout Problem », in: Applied Sciences 11.4 (2021), p. 1758, issn: 2076-
3417, doi: https://doi.org/10.3390/app11041758.

[111] Hüsamettin Bayram and Ramazan Şahin, « A new simulated annealing approach
for the traveling salesman problem », in:Mathematical and Computational Applica-
tions 18 (Dec. 2013), pp. 313–322, doi: https://doi.org/10.3390/mca18030313.

[112] Daniel Delahaye, Supatcha Chaimatanan, and Marcel Mongeau, « Simulated an-
nealing: From basics to applications », in: International Series in Operations Re-
search & Management Science (ISOR) 272 (2019), pp. 1–35, doi: https://doi.
org/10.1007/978-3-319-91086-4_1.

[113] Rosmalina Hanafi and Erhan Kozan, « A Hybrid Constructive Heuristic and Sim-
ulated Annealing for Railway Crew Scheduling », in: Computers & Industrial En-
gineering 70 (Apr. 2014), pp. 11–19, doi: https://doi.org/10.1016/j.cie.
2014.01.002.

186

https://doi.org/https://doi.org/10.1016/0010-4485(81)90317-1
https://doi.org/https://doi.org/10.1016/0010-4485(81)90317-1
https://www.sciencedirect.com/science/article/pii/0010448581903171
https://www.sciencedirect.com/science/article/pii/0010448581903171
https://doi.org/https://doi.org/10.1016/j.eswa.2021.115696
https://doi.org/https://doi.org/10.1016/j.eswa.2021.115696
https://doi.org/https://doi.org/10.1016/j.ejor.2015.04.029
https://doi.org/https://doi.org/10.1016/j.ejor.2015.04.029
https://doi.org/https://doi.org/10.3390/app11041758
https://doi.org/https://doi.org/10.3390/mca18030313
https://doi.org/https://doi.org/10.1007/978-3-319-91086-4_1
https://doi.org/https://doi.org/10.1007/978-3-319-91086-4_1
https://doi.org/https://doi.org/10.1016/j.cie.2014.01.002
https://doi.org/https://doi.org/10.1016/j.cie.2014.01.002

[114] Maral Zafar Allahyari and Ahmed Azab, « Mathematical modeling and multi-start
search simulated annealing for unequal-area facility layout problem », in: Expert
Systems with Applications 91 (2018), pp. 46–62, issn: 0957-4174, doi: https :
//doi.org/10.1016/j.eswa.2017.07.049.

[115] Yujie Xiao, Yoonho Seo, and Minseok Seo, « A two-step heuristic algorithm for
layout design of unequal-sized facilities with input/output points », in: Interna-
tional Journal of Production Research 51.14 (2013), pp. 4200–4222, doi: https:
//doi.org/10.1080/00207543.2012.752589.

[116] Abbas Ahmadi, Mir Saman Pishvaee, and Mohammad Reza Akbari Jokar, « A
survey on multi-floor facility layout problems », in: Computers & Industrial En-
gineering 107 (2017), pp. 158–170, issn: 0360-8352, doi: https://doi.org/10.
1016/j.cie.2017.03.015.

[117] S Bernardi and M F Anjos, « A two-stage mathematical-programming method for
the multi-floor facility layout problem », in: Journal of the Operational Research
Society 64.3 (2013), pp. 352–364, doi: 10.1057/jors.2012.49.

[118] Kyu-Yeul Lee, Myung-Il Roh, and Hyuk-Su Jeong, « An improved genetic algo-
rithm for multi-floor facility layout problems having inner structure walls and pas-
sages », in: Computers & Operations Research 32.4 (2005), pp. 879–899, issn:
0305-0548, doi: https://doi.org/10.1016/j.cor.2003.09.004.

[119] Dimitrios I Patsiatzis and Lazaros G Papageorgiou, « Optimal multi-floor process
plant layout », in: Computers & Chemical Engineering 26.4 (2002), pp. 575–583,
issn: 0098-1354, doi: https://doi.org/10.1016/S0098-1354(01)00781-5.

[120] J. Blank and K. Deb, « pymoo: Multi-Objective Optimization in Python », in:
IEEE Access 8 (2020), pp. 89497–89509.

[121] Walid Ben-Ameur, « Computing the Initial Temperature of Simulated Annealing »,
in: Computational Optimization and Applications 29 (Dec. 2004), pp. 369–385, doi:
10.1023/B:COAP.0000044187.23143.bd.

[122] Julien Bénabès et al., « Indicator of feasibility for layout problems », in: Pro-
ceedings of the ASME 2012 International Design Engineering Technical Confer-
ences and Computers and Information in Engineering Conference, Chicago, Illi-
nois, United States, 2012, pp. 727–734, doi: http://doi.org/10.1115/DETC2012-
70640.

187

https://doi.org/https://doi.org/10.1016/j.eswa.2017.07.049
https://doi.org/https://doi.org/10.1016/j.eswa.2017.07.049
https://doi.org/https://doi.org/10.1080/00207543.2012.752589
https://doi.org/https://doi.org/10.1080/00207543.2012.752589
https://doi.org/https://doi.org/10.1016/j.cie.2017.03.015
https://doi.org/https://doi.org/10.1016/j.cie.2017.03.015
https://doi.org/10.1057/jors.2012.49
https://doi.org/https://doi.org/10.1016/j.cor.2003.09.004
https://doi.org/https://doi.org/10.1016/S0098-1354(01)00781-5
https://doi.org/10.1023/B:COAP.0000044187.23143.bd
https://doi.org/http://doi.org/10.1115/DETC2012-70640
https://doi.org/http://doi.org/10.1115/DETC2012-70640

[123] KK Lai and Jimmy WM Chan, « Developing a simulated annealing algorithm for
the cutting stock problem », in: Computers & Industrial Engineering 32.1 (1997),
pp. 115–127, issn: 0360-8352, doi: https://doi.org/10.1016/S0360-8352(96)
00205-7.

[124] Xiaoxiao Song et al., « Interactive Design Optimization of Layout Problems »,
in: Advances in Production Management Systems. Artificial Intelligence for Sus-
tainable and Resilient Production Systems, Aug. 2021, pp. 387–395, doi: https:
//doi.org/10.1007/978-3-030-85914-5_41.

[125] Julien Bénabès et al., « Interactive modular optimization strategy for layout prob-
lems », in: Proceedings of the ASME 2011 International Design Engineering Tech-
nical Conferences and Computers and Information in Engineering Conference,
Washington, DC, United States, Aug. 2011, pp. 553–562, doi: http://doi.org/
10.1115/DETC2011-47925.

[126] Daniel Müllner, Modern hierarchical, agglomerative clustering algorithms, 2011,
arXiv: 1109.2378 [stat.ML].

[127] Xiaoxiao Song et al., « Multi-objective optimization of layout with functional con-
straints », in: Optimization and Engineering (July 2022), pp. 1–34, doi: https:
//doi.org/10.1007/s11081-022-09754-z.

[128] Julien Bénabès, Emilie Poirson, and Fouad Bennis, « Integrated and interactive
method for solving layout optimization problems », in: Expert Systems with Ap-
plications 40 (2013), pp. 5796–5803, issn: 0957-4174, doi: https://doi.org/10.
1016/j.eswa.2013.03.045.

[129] Xiaoxiao Song et al., « Multi-objective layout optimization of industrial environ-
ment », in: 2022 8th International Conference on Optimization and Applications
(ICOA), 2022, pp. 1–6, doi: 10.1109/ICOA55659.2022.9934713.

188

https://doi.org/https://doi.org/10.1016/S0360-8352(96)00205-7
https://doi.org/https://doi.org/10.1016/S0360-8352(96)00205-7
https://doi.org/https://doi.org/10.1007/978-3-030-85914-5_41
https://doi.org/https://doi.org/10.1007/978-3-030-85914-5_41
https://doi.org/http://doi.org/10.1115/DETC2011-47925
https://doi.org/http://doi.org/10.1115/DETC2011-47925
https://arxiv.org/abs/1109.2378
https://doi.org/https://doi.org/10.1007/s11081-022-09754-z
https://doi.org/https://doi.org/10.1007/s11081-022-09754-z
https://doi.org/https://doi.org/10.1016/j.eswa.2013.03.045
https://doi.org/https://doi.org/10.1016/j.eswa.2013.03.045
https://doi.org/10.1109/ICOA55659.2022.9934713

Titre : Optimisation interactive et multiobjectif d’agencement d’espace

Mot clés : Optimisation multiobjectif, Recuit simulé, Agencement d’espace, Indice de capacité,

Placement constructif, Intégration de l’accessibilité

Résumé : Dans tous les problèmes d’agence-
ment, les contraintes de non-chevauchement
entre composants et les contraintes d’ap-
partenance au conteneur sont présentes.
Un modèle d’agencement multiobjectif avec
contraintes fonctionnelles est développé. In-
tégrer l’accessibilité des composants comme
contraintes fonctionnelles assure la main-
tenance ou le fonctionnement des compo-
sants. Cependant, les contraintes fonction-
nelles augmentent la complexité d’optimisa-
tion d’agencement, notée indice de capacité.
Par conséquent, un nouvel algorithme d’opti-
misation multiobjectif est proposé en utilisant
le placement constructif et le recuit simulé

pour rechercher des solutions de compromis
entre les objectifs multiples. Ensuite, un indi-
cateur de similarité est défini pour évaluer les
similaires entre les solutions proposées par
l’algorithme. Les expériences indiquent que
l’approche d’optimistion proposée fonctionne
bien pour garantir l’accessibilité et trouver ef-
ficacement des solutions optimales dans les
problèmes industriels d’agencement d’espace
à un ou plusieurs conteneurs, où l’analyse de
similarité démontre une bonne diversité solu-
tions proposées par l’algorithme, qui peut être
appliqué en tant qu’outil interactif outil pour le
concepteur.

Title: Layout optimization based on multi-objective interactive approach

Keywords: Multi-objective optimization, Simulated annealing, Layout problem, Capacity index,

Constructive placement, Accessibility integration

Abstract: The conventional layout problem is
concerned with finding the arrangements of
components inside the container to optimize
objectives under geometrical constraints, i.e.,
no component overlap and no container pro-
trusion. A multi-objective layout model with
functional constraints is developed. Integrat-
ing the accessibility of components as func-
tional constraints ensures components main-
tenance or proper operation. However, the
functional constraints increase the layout op-
timization complexity, denoted as capacity in-
dex. Therefore, a novel multi-objective opti-
mization algorithm is proposed using the con-

structive placement and the simulated anneal-
ing to search for compromised solutions be-
tween the multiple objectives. Thereafter, a
similarity indicator is defined to evaluate how
similar optimized layout designs are. The ex-
periments indicate that the proposed optimiza-
tion approach performs well in ensuring ac-
cessibility and efficiently finding high-qualified
solutions in single- and multi- container lay-
out applications, where the similarity analysis
demonstrates good diversity of the obtained
layout set, which can be applied as an inter-
active tool.

	I English version
	Introduction
	Literature review
	Introduction
	Multi-objective optimization
	From single- to multi- objective problem
	Resolution methods
	Archive analysis of multi-objective optimization

	Handling convergence and diversity
	Convergence enhancement
	Diversity maintenance

	Layout problem definition and classification
	Layout problem representation
	Layout problem formulation

	Layout optimization approaches
	Exact approaches
	Meta-heuristic approaches
	Construction and meta-heuristic hybrid approaches
	Multi-container layout optimization

	Conclusion

	Population-based simulated annealing for multi-objective problem
	Introduction
	Multi-objective simulated annealing algorithm
	Scalar simulated annealing algorithm
	Archive-based simulated annealing
	Archive-free simulated annealing

	Algorithm assessment
	Continuous benchmarks and performance evaluations
	Convergence resistance and improvement
	Multi-objective 0-1 Knapsack problem

	Conclusion

	Multi-objective layout problem model and interaction
	Introduction
	Multi-objective layout problem model
	Component definition
	Geometrical and functional constraints
	Multi-objective formulation

	Capacity index of layout problem
	Space generation
	Simulated annealing and constructive packing optimization
	Capacity evaluation

	Interaction environment
	Interactivity with optimization problem
	Similarity indicator for decision-making
	Solution visualization tools

	Conclusion

	Multi-objective optimization of layout problem
	Introduction
	Solving simple layout examples
	Constructive placement for layout generation
	Placement strategy
	Accessibility analysis
	Constructive placement algorithm
	Constructive placement strategy comparison

	Optimization for layout problem
	Complexity analysis
	Layout optimization algorithm
	Comparisons of optimization results

	Multi-container layout problem
	Boundary restrictions
	Extension to multi-container layout optimization

	Conclusion

	Industrial applications
	Introduction
	Single-container shelter problem
	Problem description
	Problem formulation
	Capacity evaluation of the layout
	Optimization results and similarity analysis

	Single-container shelter with big size components
	Problem representation and formulation
	Capacity evaluation of the layout
	Optimization results and similarity analysis

	Multi-container shelter problem
	Representation of the shelter
	Problem formulation
	Capacity evaluation
	Boundary estimation of three zones
	Optimization results and similarity analysis

	Conclusion

	Conclusion and perspective

	II French version
	Introduction
	État de l'art
	Recuit simulé basé sur la population pour les problèmes multiobjectif
	Modèle de problème d'agencement multiobjectif et interaction
	Optimisation multiobjectif du problème d'agencement
	Applications industrielles
	Conclusion et perspective
	Bibliography

