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Résumé

Contribution à l’étude des modèles graphiques et statistique en
grande dimension appliquée à la modélisation du cancer du sein

triple négatif

Eunice Okome Obiang, Ph.D.
Université d’Angers en collaboration avec l’Institut de Cancérologie de l’Ouest, 2022

Cette thèse s’articule autour de deux axes. Le premier constitue une contribution à l’étude des modèles
graphiques gaussiens partiels (PGGM) dans le cadre de l’apprentissage en grande dimension. Plus préci-
sément, nous nous intéressons à la modélisation à sorties multiples, où nous souhaitons estimer d’une part
la matrice ∆ des liens directs entre les prédicteurs et les réponses, et d’autre part la matrice de précision
conditionnelle des réponses Ωy. Nous débutons avec une approche fréquentiste par maximum de vraisem-
blance pénalisée, où nous proposons un PGGM muni de deux formes de pénalisation : une pénalisation
ℓ1 induisant de la sparsité sur ∆ et Ωy, et une pénalisation structurante reflétant un a priori gaussien
généralisé sur les liens directs. Nous montrons que, lorsqu’il est convenablement régularisé, ce modèle est
agrémenté d’une garantie théorique prenant la forme d’une borne supérieure sur l’erreur d’estimation.
Enfin, nous clôturons cette première réflexion par des études empiriques mettant en avant le caractère
structurant de cette procédure d’estimation, et sa pertinence sur un jeu de données réelles. Nous poursui-
vons par l’étude de la contrepartie bayésienne, jusqu’alors inexplorée dans la littérature. En suivant une
stratégie spike and slab, nous offrons plusieurs structures hiérarchiques imposant soit une configuration
saturée, sparse, group-sparse ou encore sparse-group-sparse de la matrice ∆. Nous obtenons une garantie
théorique pour les configurations sparse et group-sparse, et illustrons les résultats compétitifs de ces mo-
dèles sur une étude de simulation et un jeu de données réels, menés avec des échantillonneurs de Gibbs.
Le deuxième axe de la thèse est, quant à lui, entièrement dévolu à la sélection de variables pronostiques
en analyse de suvie multi-omique. Nous y proposons un algorithme de sélection de variables descendante
offrant un consensus entre différentes méthodes de régularisation, notamment celles présentées dans le
premier axe. L’efficacité de cette approche est enfin étudiée sur des données relatives au cancer du sein
triple négatif, en prenant le soin de répondre aux contraintes identifiées par les oncologues. Tous nos
codes sont rendus disponibles à la communauté.
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Abstract

Contribution to the study of graphical models and
high-dimensional statistics applied to the modeling of

Triple-Negative Breast Cancer

Eunice Okome Obiang, Ph.D.
Université d’Angers in collaboration with the Institut de Cancérologie de l’Ouest, 2022

This thesis is articulated around two axes. The first one is a contribution to the study of partial
Gaussian graphical models (PGGM) in high-dimensional learning. Precisely, we are interested in the
multiple-output modeling, where we aim at estimating, on the one hand the matrix ∆ of direct links
between predictors and responses, and on the other hand the conditional precision matrix Ωy of responses.
We start with a frequentist approach by penalized maximum likelihood, where we propose a PGGM with
two forms of penalization: a ℓ1 penalty inducing sparsity on ∆ and Ωy, and a structural penalty reflecting
a generalized Gaussian prior on the direct links. We show that, when properly regularized, this model
comes with a theoretical guarantee taking the form of an upper bound on the estimation error. Finally,
we close this first reflection with empirical studies highlighting the structuring property of this estimation
procedure, and its relevance on a real dataset. We continue with the study of the Bayesian counterpart,
previously unexplored in the literature. Following a spike and slab strategy, we offer several hierarchical
structures imposing either a saturated, sparse, group-sparse or sparse-group-sparse configuration of the
matrix ∆. We obtain a theoretical guarantee for the sparse and group-sparse configurations, and illustrate
the competitive results of these models on a simulation study and a real dataset, conducted with Gibbs
samplers. The second part of the thesis is entirely devoted to the selection of prognostic variables in
multi-omics survival analysis. We propose a stepwise variable selection algorithm offering a consensus
between different regularization methods, including those presented in the first axis. The efficiency of
this approach is finally studied on a dataset relating to triple negative breast cancer, while taking care
to meet the constraints identified by oncologists. All our codes are made available to the community.
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INTRODUCTION (FRANÇAIS)

Le cancer du sein est la forme de cancer la plus répandue et la plus meurtrière chez les femmes
[FCS`21]. Depuis les années 1990, de nombreux travaux de recherche ont permis l’amélioration des

techniques de dépistage et le développement de thérapies plus efficaces. La mortalité du cancer du sein a
ainsi été endiguée, jusqu’à diminuer progressivement, mais le taux d’incidence poursuit son augmentation
globale. C’est ainsi qu’en 2018, nous comptions en France métropolitaine, quatrième pays le plus touché
par cette pathologie, 58 500 nouveaux cas et 12 146 décès [dC, Int]. La lutte contre le cancer du sein
demeure donc un enjeu majeur de santé publique.
Il existe plusieurs types de cancers du sein définis par des facteurs histopronostiques qui influent sur le
choix du traitement et le pronostic de la maladie [dCdl]. Le cancer du sein triple négatif (TNBC) est une
forme tumorale particulièrement éprouvante en oncologie. Il s’agit d’une des formes les plus agressives
du cancer du sein, que l’on retrouve dans environ 15% des cas, dont majoritairement des femmes non
ménopausées. Elle se caractérise par un développement et une propagation rapide de la tumeur, ainsi
qu’un risque de rechute des plus élevés donnant souvent lieu à des métastases. Ses particularités font du
TNBC un type de cancer difficile à pronostiquer [Soc].

Afin d’améliorer la planification de la prévention et la conception de nouveaux traitements individua-
lisés, une meilleure compréhension des mécanismes pathologiques de l’apparition et de la progression du
TNBC est nécessaire. A cet effet, de nombreuses études sont effectuées afin de déterminer les facteurs
biologiques ayant une réelle influence sur le pronostic du TNBC [QXH`16, TCJL`10, DTP`07]. Les pro-
grès scientifiques et technologiques des deux dernières décennies, en termes de collecte et de traitement
de données, ont grandement impacté les méthodes de recherche des facteurs pronostiques. Les différentes
unités de recherche ne se limitent plus aux données issues de leurs services respectifs, mais disposent
désormais d’un large panel de données biologiques, de types, de formats et de sources divers, offrant de
nouvelles perspectives de recherches cliniques. Cette dynamique a entraîné le développement d’études
multi-omiques, où les praticiens exploitent plusieurs types de données moléculaires de haute dimension
(telles que les données génomiques pour l’ADN, les transcriptomiques pour l’ARN, les protéomiques pour
les protéines, etc.), dans le but de comprendre la biologie sous-jacente de maladies complexes comme le
cancer. En revanche, si les applications sont en expansion, la recherche statistique sur l’intégration des
données multi-omiques au sein d’algorithmes de Machine Learning peut encore gagner en maturité. Pour
y voir plus clair, tournons-nous vers les défis liés à ce type de données.

D’abord rappelons que les données mutli-omiques s’inscrivent dans le cadre de la grande dimension,
où le nombre d’individus est largement inférieur au nombre de variables explicatives. En particulier,
les données exploitées proviennent généralement d’enquêtes de cohortes comportant quelques centaines
d’individus, sur lesquels les informations collectées constituent des centaines de milliers de variables, selon
les matrices omiques considérées. Ainsi, outre la nécessité de construire des modèles prédictifs offrant une
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précision à la hauteur des enjeux sanitaires, il est essentiel de considérer également le caractère pratique
de ces modèles. Un modèle construit sur la base de milliers de variables, mobilisant de nombreuses
procédures de collecte, aura une utilité pratique limitée face à un modèle de plus petite taille. La recherche
de la parcimonie, et donc la sélection de variable constitue le premier enjeu de ces études cliniques. La
littérature statistique renferme un large éventail de méthodes de sélection de variables pour l’analyse en
grande dimension. La plus connue, et très saluée par la littérature est la méthode Lasso de Tibshirani
[Tib96]. Considérons un problème de régression linéaire, où nous souhaitons exprimer une variable Y P

R à partir d’un vecteur de p variables explicatives X P Rp, par la forme Y “ βtX ` ϵ où β est le
vecteur des coefficients de régression et ϵ est un bruit. En s’appuyant sur un échantillon de n observation
indépendantes pYi, Xiqi“1,..,n, la méthode Lasso résout le problème de régression pénalisé par la norme
ℓ1 suivant

β̂ “ arg min
βPRp

´

n
ÿ

i“1
pYi ´ βtXiq

2 ` λ
p
ÿ

j“1
|βj |

¯

, (1)

où λ est un paramètre de pénalisation. Ce problème est équivalent à la minimisation de l’erreur qua-
dratique sous une contrainte de la forme |β|1 ď s, où s est un paramètre de régularisation. Ainsi défini,
la méthode Lasso a des vertus à la fois de shrinkage et de parcimonie, et plus précisément l’estimateur
obtenu a un support S “ tj; β̂j ‰ 0u vérifiant cardpSq ď n. Toutefois, si le Lasso offre de bonnes per-
formances lorsque la taille du support du modèle oracle est effectivement inférieur à n, cette méthode
ne répond pas intégralement aux contraintes liées aux données mutli-omiques. D’abord, la procédure de
sélection de variables s’avère trop restrictive en raison de la taille relativement faible des échantillons
issus des enquêtes de cohortes. De plus, lorsqu’il est appliqué à des groupes de variables fortement cor-
rélées, le lasso aura tendance à sélectionner arbitrairement une seule variable du groupe, ignorant les
actions conjointes des prédicteurs que l’on peut par exemple retrouver au sein des réseaux de régulation
de gènes, ou encore au sein d’associations de traits phénotypiques présents dans les mesures omiques
[FGFBGM22, Wai09, ZY06]. Cette limite nous mène au deuxième enjeu des études cliniques, la prise en
compte de la structure de corrélation des prédicteurs dans les procédures de sélection de variables.

Cette problématique a été traitée par de nombreux auteurs, et sous différents formats des plus remar-
quables. Considérons à présent que les prédicteurs sont ordonnés en m groupes, tel que X “ pX1, ..., Xmq P

Rp. Yuan et Lin ont étudié la méthode Group Lasso effectuant la sélection de variables à l’échelle des
groupes, en remplaçant la pénalisation ℓ1 du Lasso par une pénalisation ℓ1-ℓ2 sur le vecteur de coefficients
associé à chaque groupe [YL06]. Cette approche fut initiée dans le cadre de la régression linéaire par la
minimisation de l’erreur quadratique, et a été par la suite étendue aux fonctions de pertes générales
dans l’article de Kim et al. [KKK06]. Précisons toutefois que l’approche de sélection par groupes a été
initialement pensée pour intégrer des variables catégorielles à la régularisation ℓ1. Ainsi, si ces méthodes
sont efficaces pour le traitement de petits groupes de variables, elles offriraient un résultat peu sparse sur
un groupement omique. Le recours à celles-ci doit justifier une segmentation préalable des variables au
sein des groupes omiques, pouvant être réalisée selon une connaissance a priori des interactions entre les
prédicteurs, ou encore par le biais d’un clustering [MSH07]. Afin de pallier l’excès de générosité du Group
Lasso, Simon et al. [SFHT13] ont proposé la méthode Sparse-Group Lasso qui effectue la sélection de
variables sur deux niveaux ; d’abord à l’échelle des groupes par la pénalisation ℓ1-ℓ2, puis à l’échelle des
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variables au sein des groupes non nuls par la pénalisation ℓ1. La littérature sur ce sujet est très fournie.
Citons simplement les travaux de Li et al. [LNZ15], la régression linéaire avec spike and slab de Xu et
Gosh [XG15] ainsi que la généralisation vectorielle de Liquet et al. [LMPS17].

La modélisation à sorties multiples constitue précisément le troisième enjeu que nous souhaitons
soulever. Supposons maintenant que nous ayons affaire à une régression linéaire multivariée de la forme

Y “ BtX ` E, (2)

où Y P Rq est le vecteur des réponses, X P Rq le vecteur des variables explicatives (éventuellement
structurées en groupes), B P Rpˆq la matrice des coefficients de régression et E P Rp un terme de
bruit gaussien multivarié. Le modèle graphique gaussien partiel (PGGM), développé par Sohn et Kim
[SK12] ou Yuan et Zhang [YZ14], apparaît comme un outil puissant pour mettre en évidence les relations
entre prédicteurs et réponses par le biais de corrélations partielles (appelées désormais ‘liens directs’, par
opposition aux ‘liens indirects’ résultant de corrélations). En effet, supposons que le couple pY, Xq P Rq`p

admet également une distribution gaussienne multivariée de moyenne nulle, de covariance Σ et de matrice
de précision Ω “ Σ´1. La décomposition en blocs donnée par

Ω “

˜

Ωy ∆
∆t Ωx

¸

(3)

avec Ωy P S q
``, ∆ P Rqˆp et Ωx P S p

`` conduit à Yk | Xk „ Nqp´Ω´1
y ∆ Xk, Ω´1

y q. Cette remarque est
cruciale car on peut voir que la régression à sorties multiples Yk “ B t Xk ` Ek avec un bruit gaussien
Ek „ Nqp0, Rq peut être reparamétrée avec

B “ ´∆t Ω´1
y et R “ Ω´1

y . (4)

Ainsi, tandis que ∆ ne contient que les liens directs entre les prédicteurs et les réponses, l’estimation
de B est impactée par la structure de corrélation des sorties. Afin d’assurer une sélection de variables
pertinentes, Yuan et Zhang [YZ14] proposent d’approcher B à travers une estimation distincte de ∆ et
Ω´1

y par maximum de vraisemblance pénalisée induisant de la sparsité au sein des matrices ∆ et Ω´1
y .

Cette approche fut ensuite reprise par Chiquet et al. [CMHR17]. Les auteurs proposent une variante dans
laquelle aucune hypothèse de sparsité n’est portée sur Ωy, et centrent leur schéma de régularisation sur
les liens directs ∆. En particulier, celui-ci prend la forme de deux pénalisations, une pénalisation ℓ1 d’une
part, et une pénalisation structurante d’autre part induite par une connaissance a priori de la structure
de corrélation des prédicteurs.

Avec ce panorama en tête, cette thèse s’est articulée autour de deux axes. Le premier axe, théorique,
apporte des contributions à la théorie des modèles graphiques gaussiens partiels. Notre première étude
reprend les travaux de Yuan et Zhang [YZ14] et ceux de Chiquet et al. [CMHR17]. En particulier nous
proposons une méthode d’estimation et de sélection de variables, où nous appliquons une pénalisation de
type ℓ1 sur ∆ et Ωy afin d’introduire de la sparsité, et une pénalisation structurante sur ∆ reflétant un
a priori gaussien généralisé sur les liens directs. Nous apportons une garantie théorique à notre méthode,
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et la mettons en application sur des données synthétiques et un ensemble de données réelles sont menées.
Inspirés par les travaux de Xu et Gosh [XG15], et Liquet et al. [LMPS17] traitant l’estimation bayésienne
de B, notre deuxième étude explore diverses approches bayésiennes au sein des modèles graphiques
gaussiens partiels. En suivant la stratégie spike and slab de ces auteurs, nous proposons différents modèles
hiérarchiques permettant de traiter des régressions linéaires à sorties uni ou multidimensionnelles, en
petite ou grande dimension, selon une configuration saturée, sparse, group sparse ou encore sparse-group-
sparse de la matrice ∆. Nous fournissons également une garantie théorique sur nos estimations sparse
et group-sparse, et montrons l’efficacité de nos modèles d’abord à travers des différents scénarios de
données simulées et puis par l’étude d’un jeu de données réel. Les résultats obtenus sont très compétitifs,
notamment en termes de récupération de support.

Le deuxième axe de la thèse a un objectif plus appliqué à l’analyse de survie, mais s’intègre égale-
ment dans la problématique de sélection de variables. Nous nous situons dans le cadre d’une analyse
multi-omique où nous souhaitons exprimer la survie de patientes à partir d’un échantillon d’observations
contenant de la censure. Les méthodes de sélection de variables en analyse de survie ont été majoritaire-
ment été étudiée dans le cadre des modèles de Cox, traitant différents enjeux liés à l’analyse multi-omique.
Nous pensons notamment à la méthode priority-Lasso de Klau et al. [KJH`18] qui tient compte d’une
connaissance a priori de l’usabilité des groupes de variables en pratique, ou encore l’IPF-Lasso de Boules-
teix et al. [BDBJF17] qui attribue différents facteurs de pénalisation aux groupes afin de contrebalancer
le déséquilibre induit par les différences de tailles des groupes. Néanmoins, si le modèle de Cox est de
loin le plus répandu dans ces études [Cox75], les modèles de Cure mériteraient une attention particulière,
puisqu’ils sont spécifiquement conçus pour traiter les problématique cliniques où l’on peut vraissembla-
bement considérer qu’une partie de la population censurée est tout simplement immunisée et n’observera
pas l’évènement [Boa49]. Cependant, la littérature compte peu d’études de sélection de variable reprenant
cette approche.
Nous proposons un algorithme de sélection de variables descendante nommée Stepwise Variable Selection
for Survival Analysis (SVSSA) dans ce manuscrit. L’idée est d’assurer la fiabilité de la sélection d’une
part en la segmentant en quatre étapes et d’autre part en effectuant un consensus entre des méthodes
de régularisation bien établies dans la littérature. En particulier, nous supposons qu’une variable définie
comme pertinente par différents modèles de sélections, reposant sur des critères et des approches variés,
est vraisemblablement significative. Nous testons cette procédure sur un jeu de données portant sur le
cancer du sein triple négatif, en comparant les performances des modèles établis dans la littérature à
celles des modèles de Cox et de Cure construits à partir des variables sélectionnées par SVSSA). Les
résultats sont très compétitifs, mais la méthode gagnerait en optimisation du temps de calcul.

Organisation du manuscrit

Ce manuscrit s’articule principalement autour de deux axes. Le premier axe, théorique, est composé des
trois premiers chapitres dédiés aux modèles graphiques gaussiens. Le deuxième axe, appliqué, se compose
quant à lui des deux derniers chapitres, et traite de la sélection de variables en analyse de survie en grande
dimension. Plus précisément :

(1) Le chapitre 1 offre une introduction succincte à la théorie des graphes, et en particulier aux modèles
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graphiques gaussiens. Nous commençons par définir les concepts élémentaires de la théorie des
graphes, et mettons en lumière la relation entre la structure d’indépendances conditionnelles des
variables et la matrice de précision du modèle graphique. Nous poursuivons par une présentation
des modèles graphiques gaussiens et leurs avantages dans la récupération des liens directs entre
prédicteurs et les réponses par rapport aux modèles de régression linéaire standards. Ensuite, nous
présentons le modèle graphique gaussien partiel pénalisé introduit par Sohn et Kim [SK12] et Yuan
et Zhang [YZ14], ainsi que ses avantages en termes de précision et de temps de calcul. Enfin, nous
discutons de la littérature bayésienne des modèles graphiques gaussiens en grande dimension.

(2) Le chapitre 2 présente les résultats obtenus dans le premier article de cette thèse, ayant fait l’objet
d’une publication dans le journal ESAIM: Probability and Statistics [OOJP21]. Il est consacré à
l’estimation d’un modèle graphique gaussien partiel avec une pénalisation structurelle sur les liens
directs. Après une présentation de la littérature qui aborde cette problématique, nous formalisons
l’écriture de notre pénalisation gaussienne généralisée et exposons la nouvelle fonction objectif de
notre PGGM. Nous poursuivons sur les garanties théoriques de notre estimateur, et détaillons la
preuve du théorème principal. Enfin, nous testons les performances de notre méthode d’abord par
des études empiriques sur des données synthétiques, puis en traitant un jeu de données réel, avant
de conclure sur les perspectives d’évolution.

(3) Le chapitre 3 présente les résultats obtenus dans le deuxième article de cette thèse, ayant fait l’objet
d’une publication dans le journal Bayesian Analysis [OOJP22]. Après une présentation des travaux
qui nous ont précédés dans la littérature, nous formalisons l’écriture de nous modèles hiérarchiques.
Nous poursuivons sur les garanties théoriques associées aux configuration sparse et group-sparse.
Puis nous testons nos méthodes sur des échantillonneurs de Gibbs et un jeu de données réel, avant
de conclure.

(4) Le chapitre 4 fait office d’introduction à l’analyse de survie. Nous commençons par définir le cadre
et les problématiques spécifiques aux modèles de survie, et poursuivons sur les principales méthodes
d’estimation de tels modèles dans le cadre non paramétrique, semi-paramétrique et paramétrique.
Nous abordons ensuite la question de la sélection de variables en survie, au travers des méthodes
d’estimation pénalisées, et concluons sur les modèles de Cure et leurs spécificités pour la modélisa-
tion d’évènements cliniques.

(5) Le chapitre 5 présente les derniers résultats de cette thèse, à savoir une méthode de sélection de
variables descendante adaptée aux études multi-omiques. La première partie du chapitre s’attelle à
détailler le fonctionnement de notre algorithme, en apportant notamment une description succincte
des différentes méthodes qui le composent. La deuxième partie est une mise en pratique sur des
données réelles portant sur le cancer du sein triple négatif, dans laquelle nous comparons les résultats
de notre approche avec des méthodes de régularisation bien établies, selon la pertinence de la
sélection, les performances prédictives, et le temps de calcul.

XXXI





INTRODUCTION

Breast cancer is the most common and deadliest form of cancer in women [FCS`21]. Since the
1990s, numerous research studies have led to improved screening techniques and the development of

more effective therapies. Mortality from breast cancer has been contained and is gradually decreasing, but
the overall incidence rate continues to rise. France ranks fourth worldwide by incidence of breast cancer.
In 2018, 58 500 new cases and 12 146 deaths were recorded in Metropolitan France alone [dC, Int]. The
fight against breast cancer therefore remains a major public health issue.
There are several types of breast cancer defined by histopronostic factors that influence the choice of
treatment and the prognosis of the disease [dCdl]. Triple-negative breast cancer (TNBC) is a particularly
challenging tumor form in oncology. It is one of the most aggressive forms of breast cancer, occurring in
approximately 15% of cases, mostly in premenopausal women. It is characterized by a rapid development
and spread of the tumor, as well as a high risk of relapse, often resulting in metastasis. Its particularities
make TNBC a type of cancer difficult to prognose [Soc].

In order to improve prevention planning and the design of new individualized treatments, a better
understanding of pathological mechanisms of TNBC onset and progression is needed. To this end, nume-
rous studies are being performed to determine the biological factors that actually influence the TNBC
prognosis [QXH`16, TCJL`10, DTP`07]. Scientific and technological advances over the last two decades,
in terms of data collection and processing, have greatly impacted the methods of research of prognostic
factors. The various research units are no longer limited to data from their respective departments, they
now have a large panel of biological data, of various types, formats and sources, offering new perspectives
for clinical research. This dynamic has led to the development of multi-omics studies, where practitioners
exploit several types of high-dimensional molecular data (such as genomic data for DNA, transcriptomic
data for RNA, proteomic data for proteins, etc.), in order to understand the underlying biology of com-
plex diseases such as cancer. On the other hand, even though its applications are expanding, statistical
research on the integration of multi-omics data within machine learning algorithms is still far from being
a mature field. To get a clearer picture, let us turn to the challenges related to this type of data.

First of all, let us recall that mutli-omics data are part of the high-dimensional framework, where
the number of individuals is much lower than the number of explanatory variables. In particular, the
data used generally comes from cohort surveys comprising a few hundred individuals, on which the
information collected constitutes hundreds of thousands of variables, depending on the omic matrices
considered. Thus, in addition to the need to build predictive models offering an accuracy commensurate
with the health issues at stake, it is essential to also consider the practicality of these models. A model
built with thousands of variables, mobilizing many collection procedures, will have limited practical utility
compared to a smaller model. The search for sparsity, and therefore the selection of variables, constitutes
the first challenge of these clinical studies. The statistical literature contains a wide range of variable
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selection methods for high-dimensional analysis. The best known, and highly acclaimed in the literature,
is the Lasso method of Tibshirani [Tib96]. Consider a linear regression problem, where we wish to express
a variable Y P R from a vector of p explanatory variables X P Rp, by the form Y “ βtX `ϵ where β is the
vector of regression coefficients and ϵ is a random noise. Based on a sample of n independent observations
pYi, Xiqi“1,..,n, the Lasso method solves the following ℓ1 penalized regression problem

β̂ “ arg min
βPRp

´

n
ÿ

i“1
pYi ´ βtXiq

2 ` λ
p
ÿ

j“1
|βj |

¯

, (1)

where λ is a penalty parameter. This problem is equivalent to minimizing the sum of squared errors
under a constraint of the form |β|1 ď s, where s is a regularization parameter. Thus defined, the Lasso
method has both shrinkage and sparsity virtues, and more precisely the estimator obtained has a support
S “ tj; β̂j ‰ 0u verifying cardpSq ď n. However, while Lasso performs well when the support size of the
oracle model is indeed less than n, this method does not fully meet the constraints related to mutli-omic
data. First, the variable selection procedure turns out to be too restrictive due to the relatively small size
of the samples from cohort surveys. Moreover, when applied to groups of highly correlated variables, the
Lasso will tend to arbitrarily select a single variable from the group, ignoring the joint actions of predictors
that can be found, for example, in gene regulation networks, or in associations of phenotypic traits present
in omic measures [FGFBGM22, Wai09, ZY06]. This limitation leads us to the second challenge of clinical
studies, taking into account the correlation structure of the predictors in variable selection procedures.

This problem has been treated by many authors, and in various remarkable formats. Suppose we have
omic predictors which are arranged into m groups, such that X “ pX1, ..., Xmq P Rp. Yuan and Lin
studied the Group Lasso method, which performs group-wide variable selection, replacing the Lasso ℓ1

penalty by a ℓ1-ℓ2 penalty on the vector of coefficients associated with each group [YL06]. This approach
was initiated in the context of linear regression by minimizing the sum of squared errors, and was later
extended to general loss functions in the paper by Kim et al. [KKK06]. Note however that the group
selection approach was initially designed to integrate categorical variables into the ℓ1-regularization. Thus,
although these methods are efficient at dealing with small groups of variables, they would not offer a result
sparse enough on an omic grouping. The use of these methods must justify a preliminary segmentation
of the variables within the omic groups, which can be carried out according to prior knowledge of the
interactions between predictors, or even by means of a clustering [MSH07]. In order to compensate the
excessive generosity of the Group Lasso, Simon et al. [SFHT13] proposed the method Sparse-Group Lasso
which performs variable selection on two levels ; first at the group level with the ℓ1-ℓ2 penalty, then at the
variable level within the non-zero groups with the ℓ1 penalty. The literature on this subject is extensive.
In particular we note the works of Li et al. [LNZ15], the linear regression with spike and slab of Xu and
Gosh [XG15] as well as the vector generalization of Liquet et al. [LMPS17].

The third challenge we want to raise is the need for multi-output modeling. Suppose now that we deal
with a multivariate linear regression of the form

Y “ BtX ` E, (2)
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where Y P Rq is the vector of responses, X P Rq the vector of predictors (possibly structured in groups),
B P Rpˆq the matrix of regression coefficients and E P Rp a multivariate Gaussian noise term. The partial
Gaussian graphical model (PGGM), developped e.g. by Sohn and Kim [SK12] or Yuan and Zhang [YZ14],
appears as a powerful tool to exhibit relationships between predictors and responses that exist through
partial correlations (called from now on ‘direct links’, as opposed to ‘indirect links’ resulting from corre-
lations). Indeed, assume that the couple pY, Xq P Rq`p also admits a multivariate gaussian distribution
with zero mean, covariance Σ and precision matrix Ω “ Sigma´1. Then, the block decomposition given
by

Ω “

˜

Ωy ∆
∆t Ωx

¸

(3)

with Ωy P S q
``, ∆ P Rqˆp and Ωx P S p

`` leads to Yi | Xi „ Nqp´Ω´1
y ∆ Xi, Ω´1

y q. This is a crucial
remark because one can see that the multiple-output regression Yi “ B t Xi ` E¨i with Gaussian noise
Ek „ Nqp0, Rq may be reparametrized with

B “ ´∆t Ω´1
y and R “ Ω´1

y . (4)

Thus, while ∆ only contains the direct links between the predictors and the responses, the estimation
of B is impacted by the correlation structure of the outputs. In order to ensure a selection of relevant
variables, Yuan and Zhang [YZ14] propose to approximate B through distinct estimations of ∆ and
Ω´1

y by penalized maximum likelihood inducing sparsity within the matrices ∆ and Ω´1
y . This approach

was then taken up by Chiquet et al. [CMHR17]. The authors propose a variant in which no sparsity
assumption is made on Ωy, and focus their regularization scheme on the direct links ∆. In particular,
the latter takes the form of two penalties, a ℓ1 penalty on the one hand, and a structured penalty on the
other hand induced by a prior knowledge of the correlation structure of the predictors.

With this panorama in mind, this thesis is articulated around two axes. The first axis, theoretical,
brings contributions to the theory of partial Gaussian graphical models. Our first study takes up the work
of Yuan and Zhang [YZ14] and that of Chiquet et al. [CMHR17]. In particular, we propose a method
of estimation and variable selection, where we apply ℓ1-type penalty on ∆ and Ωy to introduce sparsity,
as well as structural penalty on ∆ reflecting a generalized Gaussian prior on the direct links. We bring
theoretical guarantees to our method, and test it on synthetic and real datasets.
Inspired by the work of Xu and Gosh [XG15], and Liquet et al. [LMPS17] dealing with Bayesian estimation
of B, our second study explores various Bayesian approaches within partial Gaussian graphical models.
Following the spike and slab strategy of these authors, we propose different hierarchical models allowing
to process linear regressions with uni or multidimensional outputs, in small or high dimension, according
to a saturated, sparse, group-sparse or even sparse-group-sparse configuration of the matrix ∆. We also
provide a theoretical guarantee on our sparse and group-sparse settings, and show the efficiency of our
models first through different simulated data scenarios and then by studying a real dataset. The results
obtained are very competitive, especially in terms of support recovery.

The second axis of the thesis is related to survival analysis, but is also linked to the problem of
variable selection. We are in the context of a multi-omics analysis where we want to express patient
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survival times from a sample containing censored observations. Variable selection methods in survival
analysis have been mainly studied in the context of Cox models, dealing with different issues related to
multi-omics analysis. We think in particular of the priority-Lasso method of Klau et al. [KJH`18] which
takes into account a usability criterion. In addition to seeking sparsity, it also prioritize selecting variables
that are more routinely or more easily assessed. We should also mention the IPF-Lasso de Boulesteix et
al. [BDBJF17] which assigns different penalization factors to groups in order to handle the imbalance
induced by the differences in group sizes. Even though the Cox model is by far the most widespread in
these studies [Cox75], the Cure models deserve special attention, since they are specifically designed to
deal with clinical studies where one can assume that part of the censored population is simply immune
and will not observe the event [Boa49]. However, there are few variable selection studies in the literature
that take this approach.
We propose a stepwise variable selection algorithm named Stepwise Variable Selection for Survival Analy-
sis (SVSSA) in this manuscript. The idea is to ensure the reliability of the selection firstly by segmenting
it into four stages et also by making a consensus between regularization methods well established in
the literature. In particular, we assume that a variable defined as relevant by different selection models,
based on various criteria and approaches, is likely to be significant. We test this procedure on a Triple
Negative Breast Cancer dataset, comparing the performances of the models established in the literature
with those of the Cox and Cure models built from the variables selected by SVSSA. The results are very
competitive, but the computation time must be improved.

Outline

This manuscript is mainly articulated around two axes. The first axis, theoretical, is composed of the
first three chapters dedicated to Gaussian graphical models. The second axis, applied, is composed of the
last two chapters, and deals with variable selection in high-dimensional survival analysis. More precisely:

(1) Chapter 1 provides a brief introduction to graph theory, and in particular to Gaussian graphical
models. We start by defining the basic concepts of graph theory, and highlight the relationship
between the structure of conditional independences of the variables and the precision matrix of the
graphical model. We continue with a presentation of Gaussian graphical models and their advantages
in recovering direct links between predictors and responses compared to standard linear regression
models. Next, we present the penalized partial Gaussian graphical model introduced by Sohn and
Kim [SK12] and Yuan and Zhang [YZ14], and its advantages in terms of accuracy and computational
time. Finally, we discuss the Bayesian literature on high-dimensional Gaussian graphical models.

(2) Chapter 2 presents the results obtained in the first article of this thesis, published in the journal
ESAIM: Probability and Statistics [OOJP21]. It is devoted to the estimation of a PGGM with a
structural penalty on the direct links. After a presentation of the literature that addresses this pro-
blem, we formalize the form of our generalized Gaussian penalization and expose the new objective
function of our PGGM. We continue on the theoretical guarantees of our estimator, and detail the
proof of the main theorem. Finally, we test the performance of our method first by empirical studies
on synthetic data, then by processing a real dataset, before concluding on possible improvements.
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(3) Chapter 3 presents the results obtained in the second article of this thesis, published in the journal
Bayesian Analysis [OOJP22]. After a presentation of the works that preceded us in the literature,
we formalize our hierarchical models. We continue on the theoretical guarantees associated with
sparse and group-sparse configurations. Then test our methods on Gibbs samplers and a real dataset,
before concluding.

(4) Chapter 4 serves as an introduction to survival analysis. We begin by defining the framework and
the specific problems of survival models, and continue on the main methods for estimating such
models in the non-parametric, semi-parametric and parametric frameworks. We then address the
issue of variable selection in survival analysis, through penalized estimation methods, and conclude
with a discussion of Cure models and their specificities for modeling clinical events.

(5) Chapter 5 presents the last results of this thesis, namely a stepwise variable selection method suitable
for multi-omics studies. The first part of the chapter focuses on detailing the architecture of our
algorithm, in particular by providing a brief description of the different methods that compose it.
The second part is an application on real data on triple negative breast cancer, in which we compare
the results of our approach with well-established regularization methods, according to the relevance
of the selection, the predictive performances, and the computation time.
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Chapter 1

INTRODUCTION TO GAUSSIAN

GRAPHICAL MODELS

This introductory chapter deals with Gaussian graphical models (GGM). It describes the general
framework in which the methods presented in Chapters 2 and 3 are embedded. Throughout these

introductory developments, we will rely mainly on the books by Lauritzen [Lau96], Whittaker [Whi09]
and Maathuis et al. [MDLW18], to which we refer the reader for a further introduction to graph theory.
We will however borrow some additional references, these will be presented in due time.

1.1 Elementary concepts

In this section, we briefly recall the basic notions needed to understand graph theory, and in particular
Gaussian graphical models.

1.1.1 Conditional independence

Consider the random vector X “ pX1, ..., Xpq with probability density fX ą 0, and set Γ “ t1, ..., pu. For
any set A Ă Γ, we denote XA the random vector defined by pXiqiPA and fXA

its probability density.

Definition 1.1.1 (Independence). Let A, B be two subsets of Γ, and XA, XB the associated random
vectors. XA and XB are independent if and only if

fpXA,XBqpxA, xBq “ fXA
pxAqfXB

pxBq, @ xA, xB . (1)

This is denoted by XA KK XB .

Definition 1.1.2 (Conditional independence). Let A, B, C be three subsets of Γ, and XA, XB , XC the
associated Gaussian vectors. XA and XB are conditionally independent on XC if and only if

fpXA,XBq|XC
pxA, xB ; xCq “ fXA|XC

pxA; xCqfXB |XC
pxB ; xCq

ðñ fXA|XB ,XC
pxA; xB , xCq “ fXA|XC

pxA; xCq, @ xA, xB , xC .
(2)

This is denoted by XA KK XB |XC .

The conditional independence describes the fact that as soon as we know XC , the knowledge of XB will
not bring any additional information about XA. We will see later that this notion is fundamental in graph
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theory.

1.1.2 Partial correlation

Definition 1.1.3 (Correlation). Let Xa and Xb be two random variables with strictly positive variances.
The linear correlation coefficient between Xa and Xb is given by

ρpXa, Xbq “
CovpXa, Xbq

pVarpXaqVarpXbqq
1
2

. (3)

Definition 1.1.4 (Partial correlation). Let Xa, Xb and Xc be three random variables with strictly
positive variances. The (linear) correlation coefficient between Xa and Xb conditional on Xc is given by

ρpXa, Xb|Xcq “
CovpXa, Xb|Xcq

pVarpXa|XcqVarpXb|Xcqq
1
2

. (4)

The correlation coefficient expresses the degree of linear relationship between two variables, while the
partial correlation coefficient measures the relationship between the two variables conditionally on others.
Correlation and independence are closely related. Independence between two variables implies a zero
correlation between them, but the converse is only true in certain special cases, in particular the Gaussian
case.

Consider now the Gaussian random vector X “ pX1, ..., Xpq with zero mean and covariance Σ P Sp
``,

and set Σ´1 “ Ω and Γ “ t1, ..., pu. The density of X is given by

fXpxq “
1

p2πq
p
2
a

detpΣq
exp

ˆ

´
xx, Ωxy

2

˙

, @ x P Rp. (5)

For any set A Ă Γ, we denote XA the Gaussian vector defined by pXiqiPA, and for more clarity we will
denote B the complementary subset of A in Γ, XB being the associated Gaussian vector (i.e. B “ ΓzA

and XB “ pXiqiPΓzA ). X, Σ and Ω thus satisfy the following decompositions into blocks

X “

˜

XA

XB

¸

, Σ “

˜

ΣA ΣAB

Σ t
AB ΣB

¸

et Ω “

˜

ΩA ΩAB

Ω t
AB ΩB

¸

(6)

Proposition 1.1.5 (Marginal and conditional density). Let X, XA, XB, Σ and Ω be defined and de-
composable as above,

(a) the marginal distribution of XA is N p0, ΣAq ;

(b) the conditional probability distribution of XA given XB “ xB is N p´ Ω ´1
A ΩABxB , Ω´1

A q.

Proof. We only focus here on the proof of (b), that of (a) being well known. Using the Schur complement
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of the decomposition (6), we can rewrite the matrix Ω as

Ω “

˜

pΣA ´ ΣABΣ ´1
B Σ t

ABq´1 ´pΣA ´ ΣABΣ ´1
B Σ t

ABq´1ΣABΣ ´1
B

´Σ ´1
B Σ t

ABpΣA ´ ΣABΣ ´1
B Σ t

ABq´1 Σ ´1
B ` Σ ´1

B Σ t
ABpΣA ´ ΣABΣ ´1

B Σ t
ABq´1ΣABΣ ´1

B

¸

“

˜

ΩA ´ΩA M

´M t ΩA Σ ´1
B ` M t ΩA M

¸

,

with M “ ´ Ω ´1
A ΩAB “ ΣABΣ ´1

B . For xB fixed, the conditional density of XA giving XB “ xB thus
satisfies

fXA|XB
pxA; xBq “

fXpxA, xBq

fXB
pxBq

9 exp
ˆ

´
1
2
`

pxA, xBqt Ω pxA, xBq ´ x t
B Σ ´1

B xB

˘

˙

9 exp
ˆ

´
1
2
`

x t
A ΩA xA ` x t

B Ω t
AB xA ` x t

A ΩAB xB ` x t
B ΩB xB ´ x t

B Σ ´1
B xB

˘

˙

9 exp
ˆ

´
1
2
`

x t
A ΩA xA ´ 2 x t

A ΩAM xB ` x t
B pΣ ´1

B ` M t ΩA Mq xB ´ x t
B Σ´1

B xB

˘

˙

9 exp
ˆ

´
1
2
`

pxA ´ M xBq t ΩA pxA ´ M xBq ` x t
B Σ´1

B xB ´ x t
B Σ´1

B xB

˘

˙

9 exp
ˆ

´
1
2x pxA ´ M xBq, ΩA pxA ´ M xBq y

˙

.

We obtain the form of the desired density.

Since the independence between Gaussian variables can be shown by the nullity of the correlation coeffi-
cients, and therefore of the covariances, we can deduce from proposition 1.1.5 the following corollary.

Corollary 1.1.6. Let X, Γ, Σ and Ω defined as above, @ i, j P Γ,

(a) Xi KK Xj ðñ Σij “ 0 ;

(b) Xi KK Xj |XΓzti,ju ðñ Ωij “ 0.

Proof. (b) Let pose A “ ti, ju. The conditional covariances can be read on Ω ´1
A , or Let A “ ti, ju.

Conditional covariances read on Ω ´1
A , where

Ω ´1
A “

1
detpΩAq

˜

Ωjj ´Ωij

´Ωji Ωii

¸

.

Thus, CovpXi, Xj |XΓzti,juq “ 0 ðñ pΩ ´1
A q12 “ 0 ðñ Ωij “ 0.

1.1.3 Graph - notations and terminology

Definition 1.1.7 (Graph). A graph G is a pair G “ pΓ, Eq, where Γ is a finite set of elements called
vertices or nodes, and E is a set of edges composed of pairs of elements taken from Γ.
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A graph G is therefore a set of nodes connected by edges. However, there are several types of graphs
defined by the characteristics of their vertices and/or their edges. In this chapter, we will limit ourselves
to so-called simple graphs, which are characterized by the absence of loops and multiple edges. In other
words, these are graphs that have no more than one edge between a pair of vertices and in which the
edges start and end on different vertices. To go further, we refer the interested reader to the beautiful
introductions to graph theory offered by the books of [W`01] and [GYA18].

Definitions 1.1.8 (Undirected edge and graph). Let G “ pΓ, Eq be a graph,

(i) An edge pi, jq of G is said to be undirected if pi, jq P E and pj, iq P E. It is then denoted by i, Ø j.

(ii) G is said to be undirected (UG) when all its edges are undirected.

Definitions 1.1.9 (Directed Edge and graph). Let G “ pΓ, Eq be a graph,

(i) An edge pi, jq of G is said to be directed if pi, jq P E et pj, iq R E. It is then denoted by i Ñ j.

(ii) G is said to be directed (DG) when all its edges are directed.

Depending on whether it is directed or undirected, a graph is associated with a specific vocabulary.
In an undirected graph, for any edge i Ø j in E, we will say that i and j are respective neighbors, and
we will denote ne Gpiq “ tj P Γ : pi, jq P Eu the set of neighbors of i in G. In the case of a directed graph,
for any edge i Ñ j in E, we will say that i is the parent of j (resp. j is the descendant of i), and we
will denote paGpjq “ ti P Γ : pi, jq P Eu the set of parents of j in G (resp. deGpiq “ tj P Γ : pi, jq P Eu).
However, it is possible to harmonize this information whatever the graph using the adjacency matrix
defined by

A “ pAijqi,jPΓ , Aij “

$

&

%

1 if pi, jq P E

0 otherwise.
(7)

This one offers a simple representation of a graph that we will know oriented or not depending on whether
its adjacency matrix is symmetric. The Figure 1.1 represents a directed graph and its undirected version
with their adjacency matrices.

We will see later in the chapter that depending on the phenomenon being studied, it can be more
convenient to manipulate undirected graphs than directed ones. It is therefore appropriate to introduce
now on the the graph moralization criterion which enables to find the equivalent undirected form of an
acyclic directed graph.

Proposition 1.1.10 (Directed acyclic graph). A directed graph G is said to be acyclic (DAG) only if G
has a topological order. In other words, if it does not have a sequence of edges forming a loop in G.

Definition 1.1.11 (Moral graph). The moral graph associated to an acyclic directed graph G “ pΓ, Eq

is the undirected graph Gm “ pΓ, Emq, such that the set of edges Em is constructed as follow

@i, j P Γ, i Ø j ðñ i Ñ j ou j Ñ i ou tDk P Γ : i Ñ k et j Ñ ku. (8)
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1 2 3 4 5 6 7 8

1 0 1 1 0 0 1 0 0
2 1 0 1 0 0 0 0 0
3 1 1 0 1 0 0 0 0
4 0 0 1 0 1 0 0 0
5 0 0 0 1 0 1 1 0
6 1 0 0 0 1 0 1 0
7 0 0 0 0 1 1 0 0
8 0 0 0 0 0 0 0 0

1 2 3 4 5 6 7 8

1 0 0 1 0 0 0 0 0
2 1 0 1 0 0 0 0 0
3 0 0 0 0 0 0 0 0
4 0 0 1 0 1 0 0 0
5 0 0 0 0 0 1 1 0
6 1 0 0 0 0 0 1 0
7 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0

Figure 1.1 : Examples of undirected (top) and directed (bottom) graphs with their adjacency matrices.
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Figure 1.2 : Example of a directed graph with its associated moral graph.

1.2 Gaussian graphical models

In this section we will discuss the theoretical aspect of Gaussian graphical models. Let’s take again our
p-dimensional Gaussian random vector X, with zero mean, covariance Σ P Sp

``, and precision matrix
Ω “ Σ´1, and consider a graph G “ pΓ, Eq with Γ “ t1, ..., pu. A Gaussian graphical model of X

with respect to G is a probabilistic model, in which the graph G expresses the conditional dependence
structure between the random variables of X. In particular, if G is undirected, it will contain the structure
of correlations of the variables of X, whereas if it is directed it will contain the causal relations. We will
see in this section that the definition of a graphical model relies on the respect of the pairwise Markov
property, and we will study its interpretation in the framework of oriented and non-oriented graphs.

1.2.1 Markov properties for undirected graphs

Markov properties distinguish conditional independence structures represented by a graph, by exploiting
the factorization 2 for different sets C on which the conditioning is based.

Definition 1.2.1. Let be a random vector X and an undirected graph G. The vector X satisfies the
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pairwise Markov property if for any pair of nodes i, j in Γ,

i Ü j ðñ Xi KK Xj |XΓzti,ju. (9)

Definition 1.2.2. Let be a random vector X and an undirected graph G. The vector X satisfies the local
Markov property if for any nodes i in Γ,

Xi KK XΓzneGpiqYtiu|XneGpiq. (10)

Definition 1.2.3. Let be a random vector X and an undirected graph G. The vector X satisfies the
global Markov property if for any subset of disjoint nodes tA, B, Cu in G, such that in G, A is separated
from B given C (i.e. any path in G from a node in A to a node in B contains a node in C),

XA KK XB |XC . (11)

One can easily see that the global Markov property implies the local property which implies the pairwise
property, and in well-defined cases, when the density of X is strictly positive, the reciprocal implications
are also verified (see observation 1.7.1 of [MDLW18]). Thus, a Gaussian vector satisfying one of the
Markov properties, satisfies them all.

1.2.2 Markov properties for directed acyclic graphs

Since the Markov properties arise from the factorization of the joint distribution over a set of conditional
distributions, the presence of cycles in directed graphs setting poses a problem in this writing. Indeed,
if we consider the loop 1 Ñ 2 Ñ 3 Ñ 1, there is no coherent way to factorize the distribution of
the vector of variables indexed by these nodes, since no node is guaranteed to d-separate its parents
from its descendants. Therefore, we will restrict ourselves in this section to directed acyclic graphs. The
factorization 2 is then slightly modified in the context of DAGs, in particular for any node i in Γ, the
random variable Xi is associated to a conditional distribution with respect to the variables corresponding
to the parents of i in the DAG. The joint distribution now verifies

fpX1, ..., Xnq “
ź

iPΓ
fXi|Xpapiq

. (12)

Definition 1.2.4. Let be a random vector X and a directed acyclic graph G. The vector X satisfies the
pairwise Markov property if for any pair of nodes i, j in Γ,

i Û j ðñ Xi KK Xj |XΓzdeGpiqYti,ju. (13)

Definition 1.2.5. Let be a random vector X and a directed acyclic graph G. The vector X satisfies the
local Markov property if for any node i in Γ,

Xi KK XΓzdeGpiqYtiu|XpaGpiq. (14)

12



1.3. Maximum likelihood estimation

Definition 1.2.6. Let be a random vector X and a directed acyclic graph G. The vector X satisfies the
global Markov property if for any subset of disjoint nodes tA, B, Cu in G, such that in G, A is d-separated
from B given C (i.e. in the moral graph Gm associated with G, A is separated from B given C),

XA KK XB |XC . (15)

The Markov properties associated with DAGs offer a more complex interpretation than those asso-
ciated with UGs. In order to unify the two cases, we will exploit Theorem 3.5.2 of [Whi09] which states
that a DAG satisfies the same Markov properties as its associated moral graph. Moreover, as we do not
study the causal structures contained in DAGs, we will only be interested in the correlation structures
contained in the associated moral graphs. Thus, in the rest of the manuscript we will focus on the case
of undirected graphs.

1.2.3 Gaussian graphical models

Now that we have stated the properties of Markov, we can present the definition of a Gaussian graphical
model.

Definition 1.2.7 (Gaussian graphical models). Let be a Gaussian random vector X and an undirected
graph G. The distribution of X is a Gaussian graphical model with respect to G if it satisfies the pairwise
Markov property.

It follows from this definition that the minimal graph G˚ for which X satisfies the Markov properties
describes the sparsity pattern of the precision matrix of X. In particular,

Aij “ Aji “ 0 ðñ Ωij “ Ωji “ 0, (16)

where A is the adjacency matrix of G˚. Thus, the estimation of the graph G˚, and thus of the conditional
independence structure of X, requires the estimation of the precision matrix Ω. There is a large variety
of methods for estimating Ω, in this introduction we will discuss the maximum likelihood estimation and
the Bayesian estimation.

1.3 Maximum likelihood estimation

Consider a sample of n independent observations random vectors according to our multivariate p-
dimensional Gaussian distribution. Let us denote Xi P Rp the values taken by individual i on the p

random variables of X, and X “ pX t
i q1ďiďn the matrix of observed data, of dimension n ˆ p. The

13



Chapter 1 – Introduction to Gaussian graphical models

likelihood of associated to the data is given by

LnpΩq “

n
ź

i“1
fXpXiq

“

n
ź

i“1

1
p2πq

p
2
a

detpΣq
exp

ˆ

´
xXi, Ω Xiy

2

˙

“

„

detpΩq

p2πqp

ȷ
n
2

exp
ˆ

´
xxXt X, Ωyy

2

˙

,

(17)

with xx¨, ¨yy refers to the Frobenius scalar product (i.e. xxA, Byy “ trpAt Bq). We define S P Rpˆp, the
empirical covariance matrix of the sample under the assumption of centered data, by

S “
1
n

n
ÿ

i“1
Xi X t

i . (18)

We can rewrite the likelihood with this quantity, which gives

LnpΩq “

„

detpΩq

p2πqp

ȷ
n
2

exp
ˆ

´
n

2 xxS, Ωyy

˙

. (19)

The estimator of Ω is obtained by maximizing LnpΩq. In order to simplify the problem in an additive
form, we will instead use the equivalent optimization problem which consists in minimizing the negative
log-likelihood. By deleting from (19) the terms not depending on Ω, up to a coefficient we obtain

ℓℓnpΩq “ ´ ln detpΩq ` xxS, Ωyy. (20)

Thus, the optimization problem boils down to

Ω̂or “ arg min
ΩPΘor

ℓℓnpΩq. (21)

Moreover, let us note that in the Gaussian graphical model setting associated with a graph G “ pΓ, Eq,

Θor “ tΩ P Sp
`` | Ωij “ 0, @ i ‰ j with pi, jq R Eu.

Theorem 1.3.1. In a saturated Gaussian graphical model (i.e. all the nodes of the graph are connected
two by two), the maximum likelihood estimator exists only if n ě p. In this case it is given by

Ω̂ “ S´1. (22)

Proof. Convexity of (20): Proposition 9.2.1 of [MDLW18] states that the function ln detpY q ´ xxS, Y yy

is concave on Sp
`` (see the associated proof). This implies that the negative log-likelihood is convex on

Sp
``. Since the set Θor, representing the set of possible precision matrices of the model, is a convex cone

in Sp
``, then the problem (21) is convex on Θor.

14
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Estimator:

B

δΩ ℓℓnpΩq “ 0

ðñ ´
δ

δΩ ln detpΩq `
δ

δΩ xxS, Ωyy “ 0

ðñ ´ Σ ` S “ 0

ðñ S “ Σ.

Condition on the sample: S´1 can only be a solution of the optimization problem if it is in Sp
``, yet

S is singular when n ă p.

Theorem 1.3.1 raises two problems. First, the maximum likelihood estimator does not exist in high-
dimensional setting, but also the latter is not sparse in the classical case. This method of estimation does
not meet the needs generally encountered in practice, in particular the treatment of data with a number
of predictors largely superior to the number of observations, and for which we are looking for a sparse
solution.

1.4 Penalized Gaussian graphical models

The respect of the criterion of parsimony is a major concern when creating a high dimensional model. We
are looking for a relevant solution involving a minimum of parameters. Many studies dealing with this
issue have been done in the context of Gaussian graphical models. The idea is to select a sparse undirected
graph, which results in the estimation of a sparse precision matrix, its zeros expressing conditional
independences between the variables. We can cite for example the traditional approach, greedy stepwise
forward-backward selection, which consists in the iterative selection and/or deletion of the neighbors of
each node using multiple tests (e.g. [Dem72, Wer76, Edw00]). Another approach is to represent each
variable as a linear combination of the other variables of X, and then to perform a penalized regression
(a Lasso-type for example) in order to recover the set of neighbors of each node of the graph (e.g.
[MB06, CLL11]).
In this section, we will focus on the penalized maximum likelihood approach. The idea is to take the
optimization problem (21) to which we add a penalty on the precision matrix. This means finding Ω P S p

``

which minimizes the convex objective function

ℓℓnpΩq “ ´ ln detpΩq ` xxS, Ωyy ` λ penpΩq. (23)

The function penpΩq is the penalty function applied to the precision matrix. When one wishes to induce
sparsity within it, |Ω|1 the sum of the absolute value of each element of Ω, or |Ω|

´
1 this sum deprived of the

diagonal elements, are well-known as natural choices. However, note that if some authors use the penalty
|Ω|1, the estimation algorithms they present are built so as not to penalize the diagonal elements. The
parameter λ enables to give more or less weight to the penalty function, thus varying the degree of sparsity
and shrinkage within the precision matrix. When λ “ 0 we obtain the maximum likelihood estimator.
The practitioner can choose the value of this parameter in order to obtain an estimator Ω̂ P S p

``, but also
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Chapter 1 – Introduction to Gaussian graphical models

according to the desired degree of sparsity, or the one considered optimal according to a model selection
criterion (e.g. AIC, BIC, cross-validation error).
The idea of using the ℓ1 regularization as a penalty function is clearly inspired by Tibshirani’s Lasso
tibshirani96, in order to take advantage of the sparsity and shrinkage qualities related to this estimator.
Efficient algorithms exist to find solutions to the optimization problem (23). Let us cite some of them.

The block coordinate descent of Banerjee et al. [BEGD08]. In their paper, Banerjee et al.
consider the penalty |Ω|1, and treat the problem (23) via its dual form below, which estimates the
covariance matrix instead of its inverse.

Σ̂ “ arg max
W

tln detpW q : |W ´ S|8 ď λu, (24)

with W “ S `U , and U a symmetric matrix. They present a block descent algorithm for the problem (24)
which consists in a recursive update of the maximum likelihood estimator. At each iteration, they consider
the matrix W pj´1q, which is the estimator updated in the previous step, and the empirical covariance
matrix S which verify the following decompositions:

W pj´1q “

˜

Wzj W ´
j

pW ´
j qt Wjj

¸

and S “

˜

Szj S´
j

pS´
j qt Sjj

¸

where Azj corresponds to the matrix A deprived of the row and the column j, and A´
j corresponds to

the column j of A deprived of the diagonal element Ajj . In order to update W pjq, they then estimate
W ´

j by solving the following quadratic problem:

W ´
j “ arg min

y
tyt pW

pj´1q

zj q´1 y : }y ´ S´
j }8 ď λu. (25)

This estimation method echoes that of Meinhausen and Bühlmann [MB06], however the authors guarantee
here the uniqueness of the solution obtained at each regression, and the estimator is updated iteratively
until convergence. This algorithm offers a computational complexity OpKp4q where K denotes the number
of iterations before convergence.

Nesterov’s first order method by Banerjee et al. [BEGD08]. In the same paper, Banerjee et
al. also presented an estimation algorithm based on the Nesterov’s first order method. The goal is not
really to provide another algorithm, but to go through Nesterov’s smooth minimization method in order
to obtain a more rigorous and accurate complexity estimation than the block descent one. First, the
problem (23) had to be reformulated as a non-smooth optimization problem adapted to the Nesterov
method. For this purpose, the authors have shown that when we impose a bound on the eigenvalues of
Ω, the problem (23) can be expressed by

min
ΩPQ1

´ ln detpΩq ` xxS, Ωyy ` max
uPQ2

xΩ, uy2 , (26)
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1.5. Partial Gaussian graphical model

avec Q1 “ tΩ : aI ĺ Ω ĺ bIu, and Q2 “ tu : }u}8 ď λu. We will note f the function to minimize in (26).
Once the reference format of the Nesterov problem is obtained, the first order method is articulated in
two steps. First, a smooth approximation of the objective function f is constructed by adding a convex
penalty on u ; then the first order optimization algorithm, presented in [Yur83], is applied to this new
function. This algorithm offers a complexity Opp4.5{ϵq where ϵ ą 0 denotes the desired accuracy on the
optimization problem (23).

Block coordinate descent by Friedman et al. [FHT08]. In their paper, Friedman et al. consider
the |Ω|

´
1 penalty and present a blockwise coordinate descent algorithm that relies on the same principle

as that of Banerjee et al., but with some variants that make it computationally favorable. In particular,
they exploit a point raised by the first authors, namely that solving the problem (25) is equivalent to
solving the dual problem

W ´
j “ min

x
|Q x ´ b|22 ` λ|x|1, (27)

with Q the square root of Wzj and b “ 1
2 Q´1 S´

j . The estimation algorithm becomes mainly a recursive
Lasso, where at each step the diagonal element is omitted from the regression problem to prevent it from
being penalized. The computational complexity of this algorithm is Opp3q under a dense model (i.e. the
covariance matrix is full), and is less in the sparse case. To complete this non-exhaustive list we can also
mention the neighborhood selection of Meinshausen and Bühlmann [MB06], which consists in searching
for the neighbors of each variable by performing a Lasso regression expressing the latter as a function
of the other variables ; or the smooth minimization approach of Lu [Lu09], also based on Nesterov’s first
order method, but offering a more attractive complexity than the algorithm of the authors of [BEGD08].
In addition to the properties of these algorithms reported in each article, we can find the theoretical
guarantees associated with this type of penalization in the paper of Ravikumar et al. [RWRY11].

1.5 Partial Gaussian graphical model

In this section we will present the partial Gaussian graphical model (PGGM), introduced by Sohn and Kim
[SK12], and Yuan and Zhang [YZ14] . We will first formulate the motivation of this model by highlighting
the link between linear regression and GGM, then we will discuss its theoretical and inferential aspects.

1.5.1 Link with linear regression

We are now in the linear regression setting where we want to express multiple responses Y P Rq from a
set of predictors X P Rp. More precisely we are looking for the matrix of regression coefficients B P Rpˆq

such that
Y “ B t X ` E, (28)

with E „ Nqp0, Rq a Gaussian noise. Let Z “ pY, Xq „ Nq`pp0, Σq be the Gaussian vector associated
to the joint distribution of Y and X. The distribution of Z is a Gaussian graphical model for which
the associated graph is determined according to the conditional independence structure provided by the
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Chapter 1 – Introduction to Gaussian graphical models

precision matrix Ω “ Σ´1. We observe once again the following block decompositions

Z “

˜

Y

X

¸

, Ω “

˜

Ωy ∆
∆ t Ωx

¸

and Σ “

˜

Σy Σyx

Σ t
yx Σx

¸

where Ωy P S q
``, ∆ P Rqˆp and Ωx P S p

``, and where the same goes for Σx, Σyx and Σx. Moreover by
Schur, the precision matrix Ω satisfies, by blockwise inversion,

Ω´1
y “ Σy ´ Σyx Σ´1

x Σ t
yx and ∆ “ ´pΣy ´ Σyx Σ´1

x Σ t
yxq´1 Σyx Σ´1

x . (29)

If for an individual i we observe the values Xi on the p predictors of X, the proposition 1.1.5 notifies
that the conditional distribution of Yi given Xi satisfies

Yi | Xi „ N p´Ω´1
y ∆ Xi, Ω´1

y q. (30)

By associating the conditional distribution (30) with the linear writing (28), we obtain

B “ ´∆ t Ω´1
y , R “ Ω´1

y . (31)

The reparametrization (31) gives a new light on the multiple-output regression. Whereas B contains
direct and indirect links between the predictors and the responses (due e.g. to strong correlations among
the variables), ∆ only contains direct links, as it is shown by the graphical models theory. In other words,
the direct links are closely related to the concept of partial correlations between X and Y . For example,
the direct link between predictor k and response ℓ may be evaluated through the partial correlation
CorrpYℓ, Xk | Y‰ ℓ, X‰ kq contained, apart from a multiplicative coefficient, in the ℓ-th row and k-th column
of ∆ (see section 1.1.2), with the particularly interesting consequence that the support of ∆ is sufficient
to identify direct relationships between X and Y . Thus, when Y is multidimensional, it makes more sense
to study the conditional independence between predictors and responses through ∆, B being influenced
by the indirect links that propagate through Ωy.
In this vein, Sohn and Kim [SK12] and Yuan and Zhang [YZ14] proposed a partial estimation of the
Gaussian graphical model (PGGM). The objective reduces to the estimation of the direct links ∆ together
and the conditional precision matrix of the responses Ωy, possibly penalized. This approach has a huge
advantage over GGMs from an inferential point of view. Since we are not interested in partial correlations
between the predictors, we do not need to impose any assumption on the structure of X, notably its
degree of sparsity. Moreover, since the size of X is, in general, much larger than that of Y (e.g. omics
data processing, imaging, NLP), the estimation of the full precision matrix Ω is highly impacted by the
estimation of Ωx. Therefore, the bias induced in the estimation of Ωx, due in particular to the difficulties
related to the high dimensional analysis, will affect the estimates of ∆ and Ωy. Finally, it is obvious
that the computational complexity, which we have not discussed so far since it is closely related to the
estimation algorithms, will be strongly reduced with a partial estimation.
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1.5. Partial Gaussian graphical model

1.5.2 Penalized partial likelihood

Let’s consider again our n observations. This time for each individual we observe the pair pYi, Xiq of
values taken on the predictors and the responses. The empirical covariance S satisfies the following block
decomposition

S “

˜

Sy Syx

S t
yx Sx

¸

with Sy “
1
n

n
ÿ

i“1
Yi Y t

i , Syx “
1
n

n
ÿ

i“1
Yi Xt

i and Sx “
1
n

n
ÿ

i“1
Xi Xt

i .

In the following Proposition, L denotes the negative of the logarithm of the likelihood function cor-
responding to the GGM.

Proposition 1.5.1 (Proposition 1 of [YZ14]). Under the transformation Ω̃x “ Ωx ´ ∆ t Ω´1
y ∆ we have,

LpΩy, ∆, Ωxq “ L̃pΩy, ∆, Ω̃xq “ LpapΩy, ∆q ` HpΩ̃xq, (32)

where HpΩ̃xq “ ´ ln detpΩ̃xq ` xxSx, Ω̃xyy and

LpapΩy, ∆q “ ´ ln detpΩyq ` xxSy, Ωyyy ` 2xxSyx, ∆yy ` xxSx, ∆ t Ω´1
y ∆yy (33)

Moreover, LpapΩy, ∆q is convex.

Proof. Refer to the proof of the proposition provided in Appendix A.1 of [YZ14].

The proposition 1.5.1 enables to decompose the optimization problem (21) into two distinct problems by
the reformulation (32). Since L̃ is jointly convex, Ω̂ is obtained on the one hand by finding the estimators
of Ωy and ∆ by minimizing the partial likelihood Lpa, and on the other hand by finding the estimator
of Ω̃x, from which we will be able to deduce the estimator of Ωx, by minimizing the function H. After
having taken care to reintegrate the penalty functions, we obtain the new convex objective function of
the PGGM,

LpapΩy, ∆q “ ´ ln detpΩyq ` xxSy, Ωyyy ` 2 xxSyx, ∆yy

` xxSx, ∆ t Ω´1
y ∆yy ` λ penpΩyq ` µ penp∆q

(34)

defined over pΩy, ∆q P Θ “ S q
`` ˆ Rqˆp for some usual penalty functions. It is worth noting that penp∆q

often plays a crucial role in modern statistics dealing with high-dimensional predictors, and the natural
choice is |∆|1 to get sparsity. However, since the number of responses is usually small, we can choose
λ “ 0 and impose no sparsity structure within Ωy. In the seminal papers [SK12] and [YZ14], the authors
consider |Ωy|1 and |Ωy|

´
1 for penpΩyq, respectively. Consider θ “ pΩy, ∆q P Θ the matrix of dimension

pqˆpq`pqq of the model parameters. The estimator pθ of θ is obtained by solving the following optimization
problem

pθ “ ppΩy, p∆q “ arg min
θPΘ

LpapΩy, ∆q. (35)

Yuan and Zhang propose in [YZ14] an algorithm for estimating the problem (35) with complexity
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Opp3`p2q`pq mintn, quq. It is competitive against its counterparts in the GGM setting, the best having a
complexity Oppp`qq3q (see section 1.4). This algorithm adopts a block coordinate descent approach, that
exploits the joint convexity property of (35) by alternating between solving the following two subproblems

Ωpt`1q
y “ arg min

ΩyPS q
``

LpapΩy, ∆ptqq et ∆pt`1q “ arg min
∆ P Rqˆp

LpapΩpt`1q
y , ∆q. (36)

Yuan and Zhang have also provided in [YZ14] theoretical guarantees on the penalized PGGM esti-
mator, which takes the form of an upper bound on the estimation error. More precisely, they show that
when n is large and p " n, with high probability, the estimation error is given by

}pθ ´ θ ˚}F À

c

|S| ln p

n
, (37)

where θ ˚ are the true parameters of the model, and |S| is the cardinal of the support of θ ˚. We will
re-demonstrate this result in Chapter 2 when we will provide the model with an additional structural
regularization.

Moreover, while Bayesian GGM has been extensively studied in the literature (see e.g. Maathuis et
al., 2018, Chap. 10), the Bayesian counterpart of PGGM, in contrast, to the best of our knowledge, the
Bayesian counterpart of PGGM has not yet been developed. This approach will be the subject of our
Chapter 3.
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Chapter 2

A PARTIAL GRAPHICAL MODEL WITH A

STRUCTURAL PRIOR ON THE DIRECT

LINKS

In the tree of high-dimensional regression problems, many of them embed a correlation struc-
ture within the predictors. This is notably the case in genomics with gene regulatory networks that

provide information about interactions between genes and their joint actions within cells ; similarly, in
signal theory predictors often represent a continuous phenomenon so that consecutive variates act to-
gether, this can be observed for example with adjacent pixels in an image. Well-known methods in the
literature, such as the Group Lasso of Yuan and Lin [YL06], the blockwise sparse regression of Kim et
al. [KKK06], or the sparse-group Lasso of Simon et al. [SFHT13], integrate in their estimation process
a structuring in groups of variables supposedly correlated. One of the main limitations of these methods
is their lack of flexibility in group construction. Indeed, each variable is assigned to one group, assuming
that it has no significant correlation with variables in other groups. To get around this assumption, which
in practice is not always verified (e.g. image processing, genetic data, etc.), studies have been carried out
to extend this problem by allowing overlapping groups. To that extent we can cite the CAP penalties
of Zhao et al. [ZRY09], the Graph Lasso and Group Lasso with overlap of Jacob et al. [JOV09], the
Structured-Lasso and Intersected Structured-Lasso of Jenatton et al. [JAB11], or the Tree-Guided Group
Lasso by Kim and Xing [KX12]. Although some of these methods borrow elements from graph theory
to define complex groupings of predictors, the interactions between the responses remain unexplored. In
this vein, graphical models naturally appear as a way to explore, and more precisely Gaussian graphi-
cal models with a structural penalty. This is precisely the subject of the article [CMHR17] by Chiquet
et al.. Inspired by the structural penalizations proposed by Slawski [SZCT10] and Li and Li [LL10] in
their structured versions of the Elastic Net estimator, and exploiting the partial reparametrization of
the Gaussian graphical models of Sohn and Kim [SK12] and Yuan and Zhang [YZ14], they propose the
Spring method, which consists of a PGGM with an additional structural penalty on direct links.

In this chapter we present the results of a collaboration with Frédéric Proïa and Pascal Jézéquel, which
has been published in ESAIM Probability and Statistics in 2021 [OOJP21]1. Our work is articulated on
two axes. The first axis consists in the development of an estimation procedure for a penalized PGGM,
named GenGm, which is based on a combination of the approaches of Yuan and Zhang [YZ14] and
Chiquet et al . [CMHR17]. We bring two types of penalty to our optimization problem: a standard ℓ1

1. The codes and the dataset are available at https://github.com/EuniceOkome/StructPGGM
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Chapter 2 – A partial graphical model with a structural prior on the direct links

penalty on ∆ and Ωy to induce sparsity within the partial correlations, and possibly within the responses
precision matrix ; and a structural penalty reflecting a generalized Gaussian prior on the direct links,
which guides the sparsity pattern from a prior knowledge of the interactions between predictors. The
second axis aims at providing a theoretical guarantee for our method, taking the form of an upper bound
on the estimation error arising with high probability, provided that the model is suitably regularized.

This chapter is organized in four parts. In Section 2.1 we start with a reminder of the mathematical
formalization of PGGM proposed by [YZ14]. In Section 2.2, we introduce the model, consisting in putting
a generalized Gaussian prior on the direct links before the procedure of estimation of Ωy and ∆, and we
detail the new objective function. Then, in Section 2.3 we provide error bounds for our estimates and
prove our results in Section 2.4. Section 2.5 is devoted to empirical considerations. We explain how we
deal with the minimization of the new objective and we test the method on simulations first, and next on
a real dataset (a Canadian average annual weather cycle, see e.g. [RS06]). Finally, we close the chapter
with a short conclusion in the section 2.6.

2.1 Introduction

Let us consider, now and in all the study, the sample of n independent observations pYi, Xiq, and the
empirical covariances denoted by

Sy “
1
n

n
ÿ

i“1
Yi Y t

i , Syx “
1
n

n
ÿ

i“1
Yi Xt

i et Sx “
1
n

n
ÿ

i“1
Xi Xt

i . (1)

We are in the PGGM setting discussed in Section 1.5. Without going into the details already covered,
let’s take up the objective function (34), where we consider the penalties

penpΩyq “ |Ωy|
´
1 and penp∆q “ |∆|1 (2)

which correspond to the PGGM (Gm) of [YZ14]. The Spring (Spr) of [CMHR17] can also be seen as a
PGGM but with no penalty on Ωy (replaced with an additional structuring one on ∆, we will come back
to this point thereafter), so for (Spr) we may consider λ “ 0. The generalized procedure (GenGm) at the
heart of the study relies on a combination between these two approaches. We will see in due time that
we keep both the penalties of (Gm) and the structuring one of (Spr) on ∆.

2.2 A generalized Gaussian prior on the direct links

As explained in the introduction, our method integrates a structural regularization on the direct links ∆
through a generalized Gaussian prior. This section will be devoted to the presentation of this prior and
the functioning of the associated structural regularization.

Remark 2.2.1. Let us specify that although we use the term prior here, we do not follow a Bayesian
approach, the estimation step not being based on the search for an posterior distribution. We will carry
out a more detailed study of this approach in Chapter 3.
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2.2.1 Generalized Gaussian distribution

Recall that the density of a multivariate Gaussian distribution N p0, V q, with zero mean2 and covariance
V P S d

``, is given by

@ z P Rd, fV pzq “
1

p2πq
d
2
a

detpV q
exp

ˆ

´
xz, V ´1zy

2

˙

.

The generalization of this law involves two new parameters. A scale parameter m P s0, 8r, and a shape
parameter β P s0, 8r. However, in our study we will only consider the cases where m “ 1. According to the
definition given in formulas (1)-(2) of [PBTB13], the density of a d-dimensional multivariate generalized
Gaussian distribution GN p0, 1, V, βq takes the form of

@ z P Rd, fV, βpzq “
β Γp d

2 q

π
d
2 Γp d

2β q 2
d

2β

a

detpV q
exp

ˆ

´
xz, V ´1zyβ

2

˙

where Γ is the Euler Gamma function.
We clearly recognize the Gaussian N p0, V q setting for β “ 1. Moreover, for β “ 1{2, it can be seen
as a multivariate Laplace distribution whereas it is known to converge to some uniform distribution as
β Ñ `8. The marginal shapes (d “ 1 and V “ 1) of the distribution are represented on Figure 2.1,
depending on whether β ă 1, β “ 1 or β ą 1.

Figure 2.1 : Marginal shape of the generalized Gaussian distribution (d “ 1 and V “ 1) for some β ă 1
(dotted red), β “ 1 (black) and some β ą 1 (dotted blue). The noteworthy cases β “ 1{2 (Laplace),
β “ 1 (Gaussian) and β “ `8 (uniform) are highlighted.

2. We consider here the centered case because the data are assumed to be normalized.
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Chapter 2 – A partial graphical model with a structural prior on the direct links

2.2.2 Formulation of the penalty

Our approach consists in integrating information on the structure of the interactions between the predic-
tors within the optimization problem. To this end, although we are not in the Bayesian framework, we
borrow a convention from this inference in order to formalize our structural penalization. In particular,
the usual Bayesian approach for multiple-output Gaussian regression having B as matrix of coefficients
and R as noise variance consists in a conjugate prior vecpBq „ N pb, RbL´1q for some information matrix
L P S p

`` and a centering value b (see e.g. Section 2.8.5 of [RAM12]). In the PGGM reformulation, we
have R “ Ω´1

y and B “ ´∆ t Ω´1
y as explained in Section 1.5, and of course we shall choose b “ 0 to

meet our purposes. Thus, if we pose L P S p
`` the structural information matrix

vecp∆ tq “ ´pΩy b Ipq vecpBq „ N p0, Ωy b L´1q

is a natural prior for the direct links (this is in particular the choice of the authors of [CMHR17]). Indeed,

vecpBq “ vecp´∆ t Ω´1
y q

“ ´pΩ´1
y b Ipq vecp∆ tq,

from which we get,

vecp∆ tq “ ´pΩ´1
y b Ipq´1 vecpBq

“ ´pΩy b Ipq vecpBq

„ N p´pΩy b Ipq b, pΩy b Ipq pR b L´1qpΩy b Ipqtq

„ N p´pΩy b Ipq b, Ωy R Ωy b Ip L´1 Ipq.

Following the same logic, let us choose Ωy b L´1 for scatter parameter and suppose that

vecp∆ tq „ GN p0, 1, Ωy b L´1, βq. (3)

In this way, we can play on the intensity of the constraint we want to bring on ∆, from a non-informative
prior (β “ 8) to quasi-boundedness (β Ñ 0) through Laplace (β “ 1{2) and Gaussian distributions
(β “ 1). This prior entails an additional smooth term acting as a structural penalization in the objective
(34) that becomes

LpapΩy, ∆q “ ´ ln detpΩyq ` xxSy, Ωyyy ` 2 xxSyx, ∆yy

` xxSx, ∆ t Ω´1
y ∆yy ` η xxL, ∆ t Ω´1

y ∆yyβ ` λ |Ωy|
´
1 ` µ |∆|1, (4)

with three regularization parameters pλ, µ, ηq. The smooth penalization lends weight to the prior on ∆
and thereby plays on the extent of shrinkage and structuring through β, whereas |∆|1 and |Ωy|

´
1 are

designed to induce sparsity. One can note that this is closely related to the log-likelihood of a hierarchical
model of the form
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2.2. A generalized Gaussian prior on the direct links

#

Yi | Xi, ∆ „ N p´Ω´1
y ∆ Xi, Ω´1

y q

vecp∆ tq „ GN p0, 1, Ωy b L´1, βq

where the emphasis is on ∆ in the prior and Ωy remains a fixed parameter. We can indeed see that

fpYi, ∆|Xi, Ωyq “ fpYi|Xi, Ωy, ∆q fp∆|Ωyq.

We know that Yi | Xi, Ωy, ∆ „ N p´Ω´1
y ∆ Xi, Ω´1

y q. Thus,

fpYi|Xi, Ωy, ∆q “
1

p2πq
p
2 detpΩ´1

y q
1
2

exp
ˆ

´
x pYi ` Ω´1

y ∆Xiq, ΩypYi ` Ω´1
y ∆Xiq y

2

˙

9 detpΩyq
1
2 exp

ˆ

´
x pYi ` Ω´1

y ∆Xiq, ΩypYi ` Ω´1
y ∆Xiq y

2

˙

.

We also know that vecp∆ tq „ GN p0, 1, Ωy b L´1, βq. Thus,

fp∆|Ωyq 9
1

detpΩy b L´1q
1
2

exp
ˆ

´
x vecp∆ tq, pΩ´1

y b Lq vecp∆ tq yβ

2

˙

9 detpΩyq´
p
2 detpLq

q
2 exp

ˆ

´

`

vecp∆ tqt vecpL ∆ t Ω´1
y q

˘β

2

˙

9 detpΩyq´
p
2 exp

ˆ

´
xx L, ∆ t Ω´1

y ∆ yyβ

2

˙

.

We recognize the structural term that appears in our penalty. Moreover,

fpYi, ∆|Xi, Ωyq 9 detpΩyq
1
2 exp

ˆ

´
x pYi ` Ω´1

y ∆Xiq, ΩypYi ` Ω´1
y ∆Xiq y ` xx L, ∆ t Ω´1

y ∆ yyβ

2

˙

,

from which we get

LnpΩy, ∆q “

n
ź

i“1
fpYi, ∆|Xi, Ωyq

9 detpΩyq
n
2 exp

ˆ

´

řn
i“1x pYi ` Ω´1

y ∆Xiq, ΩypYi ` Ω´1
y ∆Xiq y

2

˙

ˆ exp
ˆ

´
n xx L, ∆ t Ω´1

y ∆ yyβ

2

˙

9 detpΩyq
n
2 exp

ˆ

´
xx pY ` Ω´1

y ∆Xq, Ωy pY ` Ω´1
y ∆Xq yy

2

˙

ˆ exp
ˆ

´
n xx L, ∆ t Ω´1

y ∆ yyβ

2

˙

,

and so
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Chapter 2 – A partial graphical model with a structural prior on the direct links

ℓℓnpΩy, ∆q “ cst `
n

2 ln detpΩyq ´
1
2 xx pY ` Ω´1

y ∆Xq, Ωy pY ` Ω´1
y ∆Xq yy

´
n

2 xxL, ∆ t Ω´1
y ∆yy β

“ cst `
n

2 ln detpΩyq ´
1
2 xxY Y t, Ωyyy ´

1
2 xxΩ´1

y Ωy Y X t, ∆yy ´
1
2 xxX Y t Ωy Ω´1

y , ∆ tyy

´
1
2 xxX X t, ∆ t Ω´1

y ∆yy ´
n

2 xxL, ∆ t Ω´1
y ∆yy β

“ cste `
n

2 ln detpΩyq ´
n

2 xxSy, Ωyyy ´ n xxSyx, ∆yy ´
n

2 xxSx, ∆ t Ω´1
y ∆yy

´
n

2 xxL, ∆ t Ω´1
y ∆yy β

The objective function is obtained by considering the negative log-likelihood on which we add the para-
meters and the penalty functions. The objective function being defined, we can now study the existence
of a global minimum on its domain.

Proposition 2.2.2. Assume that β ě 1. Then, LpapΩy, ∆q defined in (4) is jointly convex with respect
to pΩy, ∆q.

Proof. See Section 2.4.2.

Thus, for β ě 1 the estimator of our model corresponds to the global minimum defined by

pθ “ arg min
Θ

Lλ,µ,ηpθq. (5)

2.3 Theoretical guarantees

In this section provide some theoretical guarantees for the estimation of pθ defined in (5). These are valid
for any β ě 1 and β “ 0, and under the respect of the assumptions (H2.1) and (H2.2) which we will be
discussed later in the chapter. However, we shall not theoretically deviate too much from the Gaussianity
in the prior (i.e. β “ 1 ` ϵ for a small ϵ ě 0), even if we will allow ourselves some exceptions in the
practical works. We will also come back to this point in due course.

Now and throughout the rest of the chapter, denote by θ “ pΩy, ∆q P Θ “ S q
`` ˆRqˆp the pqˆpq`pqq-

matrix of parameters of the model, with true value θ ˚ “ pΩ˚
y , ∆˚q. As it is usually done in studies implying

sparsity, we will also consider S of cardinality |S|, the true active set of θ ˚ defined as S “ tpi, jq, θ ˚
i,j ‰ 0u,

and its complement S̄. Theorem 2.3.1 gives an upper bound on the estimation error. To facilitate reading,
we centralized the precise definition of the numerous constants involved and that of the assumptions to
be verified in Section 2.4.3.

Theorem 2.3.1. Fix dλ ą cλ ą 1, dµ ą cµ ą 1, eλ ą 0 and eµ ą 0, and assume that the regularization
parameters satisfy pλ, µ, ηq P Λ “ rcλ ha, dλ has ˆ rcµ hb, dµ hbs ˆ r0, ηs, where

η “

min
!

pcλ´1q λ
cλ ℓa

,
pcµ´1q µ

cµ ℓb
, eλ ha

ℓa
,

eµ hb

ℓb

)

β s β´1
L
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2.3. Theoretical guarantees

for some non-random constants sL, ℓa and ℓb defined in (10) and (11), and the random constants ha and
hb given above. Then, under (H2.1), there exists absolute constants b1 ą 0 and b2 ą 0 such that, for any
0 ă b3 ă 1 and as soon as n ą n0, with probability no less that 1 ´ e´b2n ´ b3, the estimator (5) satisfies

}pθ ´ θ ˚}F ď
16 m˚ cλ,µ

a

|S|

γr,η,β,p

c

lnp10pp ` qq2q ´ lnpb3q

n

where γr,η,β,p, cλ,µ and m˚ are technical constants defined in (15), (16) and (17), respectively, and where
the minimal number of observations is given by

n0 “ max
#

plnp10pp ` qq2q ´ lnpb3qq c2
λ,µ |S| p16 m˚q2

r˚ 2 γ2
r,η,β,p

,

b1 pq ` rsαs lnpp ` qqq, lnp10pp ` qq2q ´ lnpb3q

+

(6)

with sα defined in (13) and r˚ in (14).

Proof. See Section 2.4.3.

Among all these constants, we can note that sL, ℓa, ℓb, ha and hb are useful to properly describe and
restrict Λ, the domain of validity of pλ, µ, ηq for the theorem to hold. Once Λ is fixed, the other constants
take part in the upper bound of the estimation error. However, as it stands, the theorem is very difficult
to interpret. The next two remarks seem essential to have an overview of the orders of magnitude involved
for the number of observations, for p and q, for the estimation error and for the regularization parameters.

Remark 2.3.1 (Validity band). Of course the degree of sparsity |S| is crucial in the estimation error,
but it also plays an indirect role in the probability associated with the theorem and in the numerous
constants. In virtue of Lemma 2.4.13, we can hope that λ and µ have a wide validity band, by playing on
cλ, cµ, dλ and dµ. In turn, η also has a non-negligible area of validity, provided of course that ℓa, ℓb and
sL, all depending on combinations between ∆˚, Ω˚ ´1

y and L, are small enough. Accordingly, it would
be to our advantage if L was both sparse and not chosen with too large elements. As it always appears
together with η, we may as well take a normalized version of L (e.g. |L|8 ď 1).

Remark 2.3.2 (Order of magnitude). Even if the result holds for any β ě 1, the terms 9p β´1 appearing
in some upper bounds of the proof clearly argue in favor of a moderate choice β P r1, 1 ` ϵs for a small
ϵ ą 0, depending on p. In other words, we cannot deviate too much from the Gaussianity in the prior
on the direct links. For example in a very high-dimensional setting pp „ 107q, choosing ϵ “ 0.1 leads to
p β´1 « 5 whereas we may try larger values of ϵ for the more common high-dimensional settings p „ 103

or p „ 104. By contrast, we can see that n0 must (at least) grow like q for the theorem to hold, so high-
dimensional responses are excluded. However in multiple-output regressions, even when p is extremely
large, q generally remains small. According to all these considerations, we may roughly say that, in a
high-dimensional setting with respect to p,

}pθ ´ θ ˚}F À

c

|S| ln p

n
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Chapter 2 – A partial graphical model with a structural prior on the direct links

with a large probability, under a suitable regularization of the model. We recognize the usual terms
appearing in the error bounds of regressions with high-dimensional covariates, like the ℓ2 error of the
Lasso (see e.g. Chap. 11 of [HTW15]). This is the same bound as in [YZ14], but our additional structural
penalty restricts Λ.

2.4 Technical proofs

This proof section is organized in three parts. First, we introduce some useful linear algebra lemmas that
will be repeatedly used subsequently, well-known for most of them. We then prove the joint convexity of
the objective function (4), and finish with the proof of our main result.

2.4.1 Linear algebra

Lemma 2.4.1. Let A P S d
` and U P Rdˆℓ. Then, U tAU P S ℓ

`.

Proof. Since A is symmetric with non-negative eigenvalues, there is an orthogonal matrix P such that
A “ PDP t with D “ diagpsppAqq P S d

`. Thus, for all v P Rℓ, it follows that

xv, U tA U vy “ v t U tPDP t U v “ }D1{2 P t U v}2 ě 0.

Lemma 2.4.2. Let A P S d
`` and B P S d

`. Then for all i P t1, ..., du, λipABq ě 0.

Proof. The equality AB “ A1{2 pA1{2 B A1{2q A´1{2 shows that AB and A1{2 B A1{2 are similar, so they
must share the same eigenvalues. From Lemma 2.4.1, λipA

1{2 B A1{2q ě 0 .

Lemma 2.4.3. Let A P S d
` and B P S d

`. Then,

λminpAq trpBq ď trpABq ď λmaxpAq trpBq.

Proof. Since A ´ λminpAqId P S d
` and B P S d

`,

trppA ´ λminpAqIdq Bq “ trpB1{2 pA ´ λminpAqIdq B1{2q ě 0

from Lemma 2.4.1, thus trpABq ě λminpAq trpBq. The other inequality is obtained through λmaxpAqId ´

A P S d
`.

Lemma 2.4.4. Let A P S d
`` and B P S d

`. Then,

λminpAq λminpBq ď λminpABq and λmaxpABq ď λmaxpAq λmaxpBq.

Proof. On the one hand,

λmaxpABq ď }AB}2 ď }A}2 }B}2 “ λmaxpAq λmaxpBq,
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2.4. Technical proofs

since A and B are symmetric and since, from Lemma 2.4.2 and by hypothesis, all eigenvalues appearing
in the relation are non-negative. Suppose now that B is invertible so that both A´1 and B´1 belong to
S d

``. Then,

λmaxppABq´1q ď λmaxpA´1q λmaxpB´1q ðñ λminpABq ě λminpAq λminpBq.

However, if B is not invertible, the relation trivially holds since we still have λminpABq ě 0 from Lemma
2.4.2.

Lemma 2.4.5. Let A P S d
` and U P Rdˆℓ. Then,

λminpAq }U}2
F ď trpU tAUq ď λmaxpAq }U}2

F .

Proof. Denote by ui the i-th column of U , and let P be the orthogonal matrix such that A “ PDP t

with D “ diagpsppAqq P S d
`. The i-th diagonal element of U tAU satisfies u t

i A ui “ u t
i PDP t ui ě

λminpAq }ui}
2 ě 0. Thus,

trpU tAUq “

ℓ
ÿ

i“1
u t

i A ui ě λminpAq

ℓ
ÿ

i“1
}ui}

2 “ λminpAq }U}2
F .

The upper bound stems from 0 ď u t
i A ui ď λmaxpAq }ui}

2.

Lemma 2.4.6. Let A and B be symmetric matrices of same dimensions. Then,

λminpAq ` λminpBq ď λminpA ` Bq and λmaxpA ` Bq ď λmaxpAq ` λmaxpBq.

Proof. These are just two special cases of Weyl inequalities. We refer the reader to Theorem. 4.3.1 of
[HJ12], for example.

2.4.2 Convexity of the objective function

We know from Prop. 1 of [YZ14] and the convexity of the elementwise ℓ1 norm that LpapΩy, ∆q ´

η xxL, ∆ t Ω´1
y ∆yyβ is itself convex, but it remains to show that this is still the case with the additional

smooth penalty.

Proof of Proposition 2.2.2

We want to show that xxL, ∆ t Ω´1
y ∆yyβ satisfies the convexity inequality. Recall that Θ “ S q

`` ˆ Rqˆp

and consider the mapping Φ : Θ Ñ S p
` defined as

@ pA, Bq P Θ, ΦpA, Bq “ B tA´1B.

We can already note from Lemma 2.4.1 that trpΦpA, Bqq ě 0. Moreover, for all 0 ď h ď 1 and all
Zi “ pAi, Biq P Θ, i “ 1, 2, we are interested in the matrix MhpZ1, Z2q satisfying the following blockwise
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decomposition

MhpZ1, Z2q “ h

˜

A1 B1

B t
1 B t

1 A´1
1 B1

¸

` p1 ´ hq

˜

A2 B2

B t
2 B t

2 A´1
2 B2

¸

. (7)

The Schur complement ShpZ1, Z2q of block hA1 ` p1 ´ hqA2 in MhpZ1, Z2q is defined by

ShpZ1, Z2q “ h pB t
1 A ´1

1 B1q ` p1 ´ hq pB t
2 A ´1

2 B2q

´ ph B t
1 ` p1 ´ hq B t

2 q ph A1 ` p1 ´ hq A2q ´1 ph B1 ` p1 ´ hq B2q,

“ h ΦpZ1q ` p1 ´ hq ΦpZ2q ´ ΦphZ1 ` p1 ´ hqZ2q. (8)

Moreover, the decomposition
˜

A1{2 A´1{2 B

0 0

¸t ˜

A1{2 A´1{2 B

0 0

¸

“

˜

A B

B t B t A´1B

¸

directly shows that MhpZ1, Z2q in (7) is symmetric and positive semi-definite. It is well-known (see e.g.
Appendix A.5.5 of [BBV04]) that in that case, the Schur complement (8) must also be positive semi-
definite. The trace of ShpZ1, Z2q is therefore positive. For i “ 1, 2 we pose Zi “ pΩi,yy, Ωi,yxL1{2q,
Ph “ h ∆1 ` p1 ´ hq ∆2, Qh “ h Ω1,yy ` p1 ´ hq Ω2,yy and β ě 1, we obtain

xxL, P t
h Q´1

h Phyyβ “ ptrpΦphZ1 ` p1 ´ hqZ2qqqβ

ď ph trpΦpZ1qq ` p1 ´ hq trpΦpZ2qqqβ

“ ph xxL, ∆ t
1 Ω´1

1,yy ∆1yy ` p1 ´ hq xxL, ∆ t
2 Ω´1

2,yy ∆2yyqβ

ď h xxL, ∆ t
1 Ω´1

1,yy ∆1yyβ ` p1 ´ hq xxL, ∆ t
2 Ω´1

2,yy ∆2yyβ

This convexity inequality concludes the proof.

2.4.3 Theoretical guarantees

Before stating the proof of the theorem, we first present the assumptions related to the covariances ; and
then we define the constants appearing in its statement, and which will be used throughout its proof.

Assumptions

Our results depend on some basic assumptions related to the true covariances of the Gaussian observations
and the empirical covariances.

Σ˚
x P S p

``, Ω˚
y P S q

``, B ‰ 0 (that is, ∆˚ ‰ 0) and ∆˚ L ∆˚ t P S q
``. (H2.1)

(H2.1) is a natural hypothesis in our framework, in particular we suppose that there is at least a link
between X and Y .

Remark 2.4.7 (Null model). Even if it is of less interest, our study does not exclude the case where
∆˚ “ 0. Indeed, we might as well consider that ∆˚ “ 0 and get the same results, but some constants
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should be refined. On the other hand, Σ˚
x P S p

`` and Ω˚
y P S q

`` are crucial.

@ u ‰ 0 tel que |u|0 ď rsαs,
1
2 u t Σ˚

x u ď u t Sx u ď
3
2 u t Σ˚

x u. (H2.2)

De plus, λmaxp∆˚ Sx ∆˚ tq ď
7
5 λmaxp∆˚ Σ˚

x ∆˚ tq.

(H2.2) is to be assumed with the smallest integer greater than sα in (13). This is a random hypothesis,
which will be controlled with a probability, related to the proximity between the empirical covariance and
the true covariance of the predictors, since we recall that S has no reason to be an excellent approximation
of Σ˚ when p " n. This is also assumed by the authors of [YZ14], it is a kind of restricted isometry
propertie (RIP), well-known in high-dimensional studies. In particular, we will see through Lemma 2.4.13
that it is satisfied with high probability provided that n is large enough.

Some constants

First we define the random constants. Under (H2.1), the random matrices

An “ pSy ´ Σ˚
y q ´ Ω˚ ´1

y ∆˚ pSx ´ Σ˚
xq ∆˚ t Ω˚ ´1

y with ha “ |An|8 (C2.1)

and
Bn “ 2 ppSyx ´ Σ˚

yxq ` Ω˚ ´1
y ∆˚ pSx ´ Σ˚

xqq with hb “ |Bn|8 (C2.2)

are going to play a fundamental role, especially ha and hb.

Let now define the non-random constants, starting with those related to L and the true values of the
model. The bounds

ωL “
λminp∆˚ L ∆˚ tq

4 λmaxpΩ˚
y q

, ωL “
4 λmaxp∆˚ L ∆˚ tq

λminpΩ˚
y q

, ωS “
4 λmaxp∆˚ Σ˚

x ∆˚ tq

λminpΩ˚
y q

. (9)

are useful to control the eigenvalues of some recurrent expressions (Lemmas 2.4.8 and 2.4.9), uniformly in
a neighborhood of θ ˚ “ pΩ˚

y , ∆˚q. The true value of the term at the heart of the structural regularization
is

sL “ xxL, ∆˚ t Ω˚ ´1
y ∆˚yy. (10)

It plays a role in the proof of Lemma 2.4.10 and, as a consequence, in the definition of the area of validity
Λ. This important lemma also requires to define

ℓa “ |Ω˚ ´1
y ∆˚ L ∆˚ t Ω˚ ´1

y |8 and ℓb “ 2 |Ω˚ ´1
y ∆˚ L|8 (11)

and, in the context of the theorem,

α “

max
!

pcλ`1qλ
cλ

` ηβ s β´1
L ℓa,

pcµ`1qµ
cµ

` ηβ s β´1
L ℓb

)

min
!

pcλ´1qλ
cλ

´ ηβ s β´1
L ℓa,

pcµ´1qµ
cµ

´ ηβ s β´1
L ℓb

) . (12)
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From α and the cardinality of the true active set |S|, let

sα “ |S|

„

1 `
12 α2 λmaxpΣ˚

xq

λminpΣ˚
xq

ȷ

(13)

which serves as an upper bound in the random hypothesis (H2.2). Similarly, let

r˚ “ mintr˚
1 , r˚

2 , r˚
3 , r˚

4 u (14)

where

r˚
1 “

λminpΩ˚
y q

2 , r˚
2 “

?
10´

?
7?

5

a

λmaxp∆˚ Σ˚
x ∆˚ tq

3
?

3
2

?
2

a

λmaxpΣ˚
xq

, r˚
3 “

λminp∆˚ L ∆˚ tq

4 }L ∆˚ t}2

and
r˚

4 “
p
?

2 ´ 1q
a

λmaxp∆˚ L ∆˚ tq
a

λmaxpLq
.

Together with α given above, r˚ is necessary to build the so-called neighborhood Nr,αpθ ˚q defined in (22),
which plays a fundamental role in all our reasonings. It is important to note that, under the configuration
of the theorem and hypothesis (H2.1), α ą 0 and r˚ ą 0. Then, Lemma 2.4.11 highlights a new constant,
characterizing a strong local convexity of the smooth part of the objective in the neighborhood Nr,αpθ ˚q,

γr,η,β,p “ min
"

a1

8 λ2
maxpΩ˚

y q
,

a2 λminpLq

4 λmaxpΩ˚
y q

`
a3 λminpΣ˚

xq

40 λmaxpΩ˚
y q

*

(15)

where, as it is detailed in the proof of the lemma in question,

a1 “ 1 ´ ϵS ωS ´ ηβ p β´1 ω β
L ϵL, a2 “

2 ϵS

2 ` ϵS
and a3 “ ηβ pp ωLqβ´1 2 ϵL

2 ` ϵL

for some well-chosen ϵS ą 0 and ϵL ą 0. Here again, we make sure that γr,η,β,p ą 0. In the same way, in
the context of the theorem,

cλ,µ “ max
"

pcλ ` 1q dλ

cλ
` eλ,

pcµ ` 1q dµ

cµ
` eµ

*

(16)

is needed through Lemma 2.4.12. Finally, independently of the structure matrix L,

m˚ “ |diagpΣ˚
xq|8 ` |diagpΩ˚ ´1

y ∆˚ Σ˚
x ∆˚ t Ω˚ ´1

y q|8 (17)

is going to play a significative role in the upper bound of the theorem.

Proof of Theorem 2.3.1

Let Rnpθq be the the smooth part of the objective (4),

Rnpθq “ ´ ln detpΩyq ` xxSy, Ωyyy ` 2 xxSyx, ∆yy

` xxSx, ∆ t Ω´1
y ∆yy ` η xxL, ∆ t Ω´1

y ∆yyβ . (18)
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For any θ P Θ and t P R, by a Taylor expansion,

Rnpθ ˚ ` t pθ ´ θ ˚qq “ Rnpθ ˚q ` t xx∇Rnpθ ˚q, θ ´ θ ˚yy ` etpθ, θ ˚q (19)

for some second-order error term etpθ, θ ˚q. Consider the reparametrization

ϕptq “ Rnpθ ˚ ` t pθ ´ θ ˚qq (20)

so that ϕ1p0q “ xx∇Rnpθ ˚q, θ ´ θ ˚yy. Let δθy “ Ωy ´ Ω˚
y and δθyx “ ∆ ´ ∆˚, let also δθ “ θ ´ θ ˚ in a

compact form. The estimation error is denoted

δϑ “ pθ ´ θ ˚ “ ppΩy ´ Ω˚
y , p∆ ´ ∆˚q “ pδϑy, δϑyxq. (21)

Before we start the actual proof, some additional lemmas are needed. They constitute a local study in a
sort of r˚-neighborhood of θ ˚ that we define as

Nr,αpθ ˚q “
␣

θ P Θ, }δθ}F ď r˚ and |rδθsS̄ |1 ď α|rδθsS |1
(

. (22)

Our strategy can be summarized as follows:

Ñ (Lemma 2.4.10) Show that there exists a configuration for the regularization parameters pλ, µ, ηq

so that the estimation error satisfies |rδϑsS̄ |1 ď α|rδϑsS |1 for some α ą 0.

Ñ (Lemma 2.4.11) Find some r˚ ą 0 and γr,η,β,p ą 0 such that e1pθ, θ ˚q ą γr,η,β,p}δθ}2
F as soon as

θ P Nr,αpθ ˚q.

Ñ (Lemma 2.4.12) Exploit this result to show that the estimation error must also satisfy }δϑ}F ď r˚

provided that maxtha, hbu is small enough.

Ñ (Lemma 2.4.13) Conclude that the theorem holds with high probability, provided that n is large
enough.

Thereafter, Nr,αpθ ˚q will always refer to α in (12) and r˚ in (14). The next two lemmas give some
bounds for expressions that will appear repeatedly.

Lemma 2.4.8. Under (H2.1) and (H2.2), for all θ P Nr,αpθ ˚q, we have the bound

λmaxpΩ´1
y ∆ Sx ∆ tq ď ωS

where ωS is given in (9). In addition,

trpδθyx Sx δθ t
yxq ě

λminpΣ˚
xq

10 }δθyx}2
F .

Proof. Similar reasonings may be found in the proofs of Lemmas 1-2 of [YZ14]. We simply reworked the
constants to make them stick to our study.
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Lemma 2.4.9. Under (H2.1), for all θ P Nr,αpθ ˚q, we have the bounds

λminpΩ´1
y ∆ L ∆ tq ě ωL and λmaxpΩ´1

y ∆ L ∆ tq ď ωL

where ωL and ωL are given in (9). As a corollary,

p ωL ď xxL, ∆ t Ω´1
y ∆yy ď p ωL.

Proof. Let θ “ θ ˚ ` δθ P Nr,αpθ ˚q, we have ∆ L ∆ t “ p∆˚ ` δθyxq L p∆˚ t ` δθ t
yxq. Since L P S p

`` from
Lemma 2.4.1, δθyx L δθ t

yx P S q
`, and in particular λminpδθyx L δθ t

yxq ě 0. From Lemma 2.4.6,

2 λminp∆ L ∆ tq ě 2
`

λminp∆˚ L ∆˚ tq ` λminpδθyx L ∆˚ t ` ∆˚ L δθ t
yxq

˘

` 2 λminpδθyx L δθ t
yxq

ě 2
`

λminp∆˚ L ∆˚ tq ` λminpδθyx L ∆˚ t ` ∆˚ L δθ t
yxq

˘

ě 2
`

λminp∆˚ L ∆˚ tq ´ }δθyx L ∆˚ t ` ∆˚ L δθ t
yx}2

˘

ě 2
`

λminp∆˚ L ∆˚ tq ´ }δθyx L ∆˚ t}2 ´ }∆˚ L δθ t
yx}2

˘

ě 2
`

λminp∆˚ L ∆˚ tq ´ 2 }δθyx}2 }L ∆˚ t}2
˘

ě 2
`

λminp∆˚ L ∆˚ tq ´ 2 }δθyx}F }L ∆˚ t}2
˘

ě λminp∆˚ L ∆˚ tq

as soon as }δθyx}F ď r˚ since we know that 4 }L ∆˚ t}2 r˚ ď λminp∆˚ L ∆˚ tq. We therefore deduce that
∆ L ∆ t P S q

``. From Lemma 2.4.4, we get

λminpΩ´1
y ∆ L ∆ tq ě

λminp∆ L ∆ tq

λmaxpΩyq
ě

λminp∆˚ L ∆˚ tq

4 λmaxpΩ˚
y q

where the inequality in the denominator comes from λmaxpΩyq ď λmaxpΩ˚
y q`λmaxpδθyq, via Lemma 2.4.6,

and the fact that λmaxpδθyq ď }δθy}F ď r˚ ď λmaxpΩ˚
y q. For the upper bound, a similar logic gives, with

Lemmas 2.4.6 and 2.4.5,

a

λmaxp∆ L ∆ tq “ }p∆˚ ` δθyxq L 1{2}2

ď }∆˚ L 1{2}2 ` }δθyx L 1{2}2

ď
a

λmaxp∆˚ L ∆˚ tq `

b

trpδθyx L δθ t
yxq

ď
a

λmaxp∆˚ L ∆˚ tq ` }δθyx}F

a

λmaxpLq

ď
a

2 λmaxp∆˚ L ∆˚ tq

since }δθyx}F ď r˚ and r˚
a

λmaxpLq ď p
?

2 ´ 1q
a

λmaxp∆˚ L ∆˚ tq. It follows from Lemma 2.4.4 that

λmaxpΩ´1
y ∆ L ∆ tq ď

λmaxp∆ L ∆ tq

λminpΩyq
ď

4 λmaxp∆˚ L ∆˚ tq

λminpΩ˚
y q

where the inequality in the denominator comes from λminpΩyq ě λminpΩ˚
y q ` λminpδθyq, via Lemma 2.4.6,

and the fact that 2 λminpδθyq ě ´2 }δθy}F ě ´2 r˚ ě ´λminpΩ˚
y q. The corollary that concludes the lemma
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is now immediate.

Lemma 2.4.10. Assume that λ, µ and η are chosen according to the configuration of the theorem. Then,
under (H2.1), the estimation error satisfies

|rδϑsS̄ |1 ď α |rδϑsS |1

where α ą 0 is given in (12).

Proof. Taking t “ 1 in the Taylor expansion (19) with θ “ pθ and considering the definition of ϕ in (20),
by convexity,

Rnppθq ´ Rnpθ ˚q ě ϕ1p0q “ xx∇Rnpθ ˚q, θ ´ θ ˚yy.

The first derivative of ϕ will be explicitely computed in (26). For t “ 0, we find

∇Rnpθ ˚q “ ´ pΩ˚ ´1
y , 0q,pq ` pSy, 0q,pq ` 2 p0q,q, Syxq ` p´Ω˚ ´1

y ∆˚ Sx ∆˚ t Ω˚ ´1
y , 2 Ω˚ ´1

y ∆˚ Sxq

` η β xxL, ∆˚ t Ω˚ ´1
y ∆˚yy β´1 p´Ω˚ ´1

y ∆˚ L ∆˚ t Ω˚ ´1
y , 2 Ω˚ ´1

y ∆˚ Lq,

ϕ1p0q “ ´ xxΩ˚ ´1
y , δϑyyy ` xxSy, δϑyyy ` 2 xxSyx, δϑyxyy

´ xxΩ˚ ´1
y ∆˚ Sx ∆˚ t Ω˚ ´1

y , δϑyyy ` 2 xxΩ˚ ´1
y ∆˚ Sx, δϑyxyy

` ηβ xxL, ∆˚ t Ω˚ ´1
y ∆˚yy β´1 “ ´ xxΩ˚ ´1

y ∆˚ L ∆˚ t Ω˚ ´1
y , δϑyyy ` 2 xxΩ˚ ´1

y ∆˚ L, δϑyxyy
‰

.

Moreover, note that by using the blockwise relations (29), we can show that the random matrices An

(with norm max ha) and Bn (with norm max hb) defined in (C2.1) and (C2.2) verify

An “ Sy ´ Ω˚ ´1
y ∆˚ Sx ∆˚ t Ω˚ ´1

y ´ Σ˚
y ` Ω˚ ´1

y Ω˚
y Σ˚

yx Σ˚ ´1
x Σ˚

x Σ˚ ´1
x Σ˚ t

yx Ω˚
y Ω˚ ´1

y

“ ´ Ω˚ ´1
y ` Sy ´ Ω˚ ´1

y ∆˚ Sx ∆˚ t Ω˚ ´1
y

and

Bn “ 2 Syx ` 2 Ω˚ ´1
y ∆˚ Sx ´ 2 Σ˚

yx ` 2 Ω˚ ´1
y Ω˚

y Σ˚
yx Σ˚ ´1

x Σ˚
x

“ 2 Syx ` 2 Ω˚ ´1
y ∆˚ Sx.

By posing CA “ ´Ω˚ ´1
y ∆˚ L ∆˚ t Ω˚ ´1

y and CB “ 2 Ω˚ ´1
y ∆˚ L, and considering sL given in (11), we

obtain a compact form of ϕ1p0q

ϕ1p0q “ xxAn ` ηβ s β´1
L CA, δϑyyy ` xxBn ` ηβ s β´1

L CB , δϑyxyy.

Whence it follows from the well-known relation |trpM1M2q| ď |M1|8 |M2|1, where M1 and M2 are com-
patible matrices, that

ϕ1p0q ě ´ ha |δϑy|1 ´ ηβ s β´1
L ℓa |δϑy|1 ´ hb |δϑyx|1 ´ ηβ s β´1

L ℓb |δϑyx|1

ě ´
λ

cλ
|δϑy|1 ´ ηβ s β´1

L ℓa |δϑy|1 ´
µ

cµ
|δϑyx|1 ´ ηβ s β´1

L ℓb |δϑyx|1,

35



Chapter 2 – A partial graphical model with a structural prior on the direct links

making use of the constants (11), λ ě cλ ha and µ ě cµ hb. For the sake of clarity, let

∆npθ, θ ˚q “ Rnpθq ` λ |Ωy|
´
1 ` µ |∆|1 ´ Rnpθ ˚q ´ λ |Ω˚

y |
´
1 ´ µ |∆˚|1.

For all θ P Θ,

|Ωy|
´
1 ´ |Ω˚

y |
´
1 “ |rΩ˚

y ` δθysS |
´
1 ` |rδθysS̄ |

´
1 ´ |rΩ˚

y sS |
´
1

ě
ˇ

ˇ|rΩ˚
y sS |

´
1 ´ |rδθysS |

´
1
ˇ

ˇ ` |rδθysS̄ |
´
1 ´ |rΩ˚

y sS |
´
1

ě |rδθysS̄ |1 ´ |rδθysS |1

from the triangle inequality and the fact that, as Ω˚
y is positive definite, the diagonal must belong to S,

i.e. pj, jq P S for all 1 ď j ď q so that any square matrix M of size q is such that rM sS̄ has diagonal
elements all equal to zero. A similar bound obviously holds for |∆|1 ´ |∆˚|1. Now, using the previous
information, we can show that

∆nppθ, θ ˚q ě ´

´ λ

cλ
` ηβ s β´1

L ℓa

¯

|δϑy|1 ´

´ µ

cµ
` ηβ s β´1

L ℓb

¯

|δϑyx|1

` λ
`

|rδθysS̄ |1 ´ |rδθysS |1
˘

` µ
`

|rδθyxsS̄ |1 ´ |rδθyxsS |1
˘

,

“

´

´
λ

cλ
´ ηβ s β´1

L ℓa ` λ
¯

|rδθysS̄ |1 `

´ µ

cµ
` ηβ s β´1

L ℓb ` µ
¯

|rδθyxsS̄ |1

`

´

´
λ

cλ
´ ηβ s β´1

L ℓa ´ λ
¯

|rδθysS |1 `

´ µ

cµ
` ηβ s β´1

L ℓb ´ µ
¯

|rδθyxsS |1.

Let’s pose
c “ min

"

pcλ ´ 1qλ

cλ
´ ηβ s β´1

L ℓa,
pcµ ´ 1qµ

cµ
´ ηβ s β´1

L ℓb

*

and
c “ max

"

pcλ ` 1qλ

cλ
` ηβ s β´1

L ℓa,
pcµ ` 1qµ

cµ
` ηβ s β´1

L ℓb

*

.

We obtain
∆nppθ, θ ˚q ě c

`

|rδϑysS̄ |1 ` |rδϑyxsS̄ |1
˘

´ c
`

|rδϑysS |1 ` |rδϑyxsS |1
˘

. (23)

Thus, provided that c ą 0, which is stated in the configuration of the theorem, it only remains to note
that, necessarily,

∆nppθ, θ ˚q ď 0

since pθ is the global minimizer of θ ÞÑ Rnpθq ` λ |Ωy|
´
1 ` µ |∆|1. The identification of α given in (12)

easily follows.

Lemma 2.4.11. Under (H2.1) and (H2.2), the second-order error term of (19) satisfies, for t “ 1 and
all θ P Nr,αpθ ˚q,

e1pθ, θ ˚q ą γr,η,β,p }δθ}2
F

where γr,η,β,p ą 0 is given in (15).

Proof. From the definition of ϕ in (20) and the fact that ϕ1p0q “ xx∇Rnpθ ˚q, θ ´θ ˚yy, by Taylor-Lagrange
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there exists h P s0, 1r satisfying
e1pθ, θ ˚q “

1
2 ϕ2phq. (24)

To simplify the calculations, let
uL “ xxL, ∆ t Ω´1

y ∆yy. (25)

We are going to study the behavior of RnpΩy, ∆q in the directions Ωy “ Ω˚
y ` t δθy and ∆ “ ∆˚ ` t δθyx

through ϕptq, where we recall that δθy “ Ωy ´ Ω˚
y and δθyx “ ∆ ´ ∆˚. One can see that ϕptq moves from

RnpΩy, ∆q to RnpΩ˚
y , ∆˚q as t decreases from 1 to 0. The first derivative is

ϕ1ptq “
B RnpΩy, ∆q

Bt

“ ´ xxΩ´1
y , δθyyy ` xxSy, δθyyy ` 2 xxSyx, δθyxyy

` 2 xxSx, ∆ t Ω´1
y δθyxyy ´ xxSx, ∆ t Ω´1

y δθy Ω´1
y ∆yy

` ηβ u β´1
L

“

2 xxL, ∆ t Ω´1
y δθyxyy ´ xxL, ∆ t Ω´1

y δθy Ω´1
y ∆yy

‰

. (26)

The second derivative is tedious to write but straightforward to establish,

ϕ2ptq “ xxΩ´1
y , δθy Ω´1

y δθyyy ` 2
“

xxSx, δθ t
yx Ω´1

y δθyxyy ´ 2 xxSx, ∆ t Ω´1
y δθy Ω´1

y δθyxyy

` xxSx, ∆ t Ω´1
y δθy Ω´1

y δθy Ω´1
y ∆yy

‰

` 2 ηβ u β´1
L

“

xxL, δθ t
yx Ω´1

y δθyxyy ´ 2 xxL, ∆ t Ω´1
y δθy Ω´1

y δθyxyy

` xxL, ∆ t Ω´1
y δθy Ω´1

y δθy Ω´1
y ∆yy

‰

` ηβpβ ´ 1q u β´2
L

“

2 xxL, ∆ t Ω´1
y δθyxyy ´ xxL, ∆ t Ω´1

y δθy Ω´1
y ∆yy

‰2
. (27)

First, from the combination of Lemmas 2.4.1 and 2.4.9, we clearly have uL ě 0. We also note that
0 ď } 2

c M1 ´ cM2}2
F “ 4

c2 }M1}2
F ´ 4 xxM1, M2yy ` c2 }M2}2

F for any c ‰ 0 and any matrices M1 and M2 of
same dimensions. It follows, after some reorganizations, that for any c ‰ 0 and d ‰ 0,

ϕ2ptq ě xxΩ´1
y , δθy Ω´1

y δθyyy ` 2
“

xxSx, δθ t
yx Ω´1

y δθyxyy ` xxSx, ∆ t Ω´1
y δθy Ω´1

y δθy Ω´1
y ∆yy

‰

´ 4 xxS 1{2
x δθ t

yx Ω ´1{2
y , S 1{2

x ∆ t Ω´1
y δθy Ω ´1{2

y yy

` 2 ηβ u β´1
L

“

xxL, δθ t
yx Ω´1

y δθyxyy ` xxL, ∆ t Ω´1
y δθy Ω´1

y δθy Ω´1
y ∆yy

‰

´ 4 xxL 1{2 δθ t
yx Ω ´1{2

y , L 1{2 ∆ t Ω´1
y δθy Ω ´1{2

y yy

ě xxΩ´1
y , δθy Ω´1

y δθyyy ` c1 xxΩ´1
y , δθyx Sx δθ t

yxyy ` c2 xxSx, ∆ t Ω´1
y δθy Ω´1

y δθy Ω´1
y ∆yy

` ηβ u β´1
L

“

d1 xxΩ´1
y , δθyx L δθ t

yxyy ` d2 xxL, ∆ t Ω´1
y δθy Ω´1

y δθy Ω´1
y ∆yy

‰

,

where c1 “ 2 ´ 4
c2 , c2 “ 2 ´ c2, d1 “ 2 ´ 4

d2 and d2 “ 2 ´ d2. Here we exploited the previous inequality
twice, uL ě 0 and β ě 1. Moreover, note that from the Lemma 2.4.1 δθy Ω´1

y δθy P S q
`, and exploiting
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also the Lemma 2.4.2 we have that Ω´1
y δθy Ω´1

y δθy P S q
`. From Lemmas 2.4.3, and 2.4.9, we obtain

xxL, ∆ t Ω´1
y δθy Ω´1

y δθy Ω´1
y ∆yy “ xxΩ´1

y , ∆ L ∆ t Ω´1
y δθy Ω´1

y δθyyy

ď λmaxpΩ´1
y ∆ L ∆ tq xxΩ´1

y , δθy Ω´1
y δθyyy

ď ωL xxΩ´1
y , δθy Ω´1

y δθyyy,

where ωL is defined in (9). Replacing L by Sx and ωL by ωS , a similar bound obviously holds using
Lemma 2.4.8. Suppose that c and d are chosen so that c1 ą 0, d1 ą 0, c2 ă 0 and d2 ă 0. Then, from
Lemma 2.4.9 we have,

ϕ2ptq ě xxΩ´1
y , δθy Ω´1

y δθyyy
“

1 ´ |c2| ωS ´ ηβ u β´1
L |d2| ωL

‰

` c1 xxΩ´1
y , δθyx Sx δθ t

yxyy ` ηβ u β´1
L d1 xxΩ´1

y , δθyx L δθ t
yxyy

ě xxΩ´1
y , δθy Ω´1

y δθyyy
“

1 ´ |c2| ωS ´ ηβ pp ωLqβ´1|d2| ωL

‰

` c1 xxΩ´1
y , δθyx Sx δθ t

yxyy ` ηβ pp ωLqβ´1d1 xxΩ´1
y , δθyx L δθ t

yxyy.

Now choose ϵS ą 0 and ϵL ą 0 small enough so that ϵS ωS ` ηβ p β´1 ω β
L ϵL ă 1 and fix c “

?
2 ` ϵS and

d “
?

2 ` ϵL. We finally obtain

ϕ2ptq ě a1 xxΩ´1
y , δθy Ω´1

y δθyyy ` a2 xxΩ´1
y , δθyx Sx δθ t

yxyy ` a3 xxΩ´1
y , δθyx L δθ t

yxyy (28)

where these positive constants are respectively given by

a1 “ 1 ´ ϵS ωS ´ ηβ p β´1 ω β
L ϵL, a2 “

2 ϵS

2 ` ϵS
and a3 “ ηβ pp ωLqβ´1 2 ϵL

2 ` ϵL
.

The combination of Lemmas 2.4.1, 2.4.3 and 2.4.5 gives, uniformly in t P r0, 1s,

xxΩ´1
y , δθy Ω´1

y δθyyy ě λminpΩ´1
y q trpδθy Ω´1

y δθyq ě
}δθy}2

F

4 λ2
maxpΩ˚

y q

where the inequality in the denominator comes from λmaxpΩyq ď 2 λmaxpΩ˚
y q already established in the

proof of Lemma 2.4.9. Similarly,

xxΩ´1
y , δθyx L δθ t

yxyy ě λminpΩ´1
y q trpδθyx L δθ t

yxq ě
λminpLq }δθyx}2

F

2 λmaxpΩ˚
y q

.

Lemma 2.4.8 directly enables to bound the last term,

xxΩ´1
y , δθy Sx δθyyy ě λminpΩ´1

y q trpδθyx Sx δθ t
yxq ě

λminpΣ˚
xq }δθyx}2

F

20 λmaxpΩ˚
y q

.
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In conclusion, combining (24), (28) and the upper bounds above,

e1pθ, θ ˚q ě
a1 }δθy}2

F

8 λ2
maxpΩ˚

y q
`

a2 λminpLq }δθyx}2
F

4 λmaxpΩ˚
y q

`
a3 λminpΣ˚

xq }δθyx}2
F

40 λmaxpΩ˚
y q

ě min
"

a1

8 λ2
maxpΩ˚

y q
,

a2 λminpLq

4 λmaxpΩ˚
y q

`
a3 λminpΣ˚

xq

40 λmaxpΩ˚
y q

*

}δθ}2
F

and we clearly identify γr,η,β,p ą 0.

Lemma 2.4.12. Assume that λ, µ and η are chosen according to the configuration of the theorem.
Suppose also that ha in (C2.1) and hb in (C2.2) satisfy

maxtha, hbu ă
r˚ γr,η,β,p

cλ,µ

a

|S|

where r˚ is given in (14), γr,η,β,p in (15) and cλ,µ in (16). Then, under (H2.1) and (H2.2), the estimation
error satisfies }δϑ}F ď r˚.

Proof. By convexity of the objective and optimality of pθ, each move from θ ˚ in the direction t δϑ for
t P r0, 1s must lead to a decrease of the objective, i.e.

Rnpθ ˚ ` t δϑq ` λ |Ω˚
y ` t δϑy|

´
1 ` µ |∆˚ ` t δϑyx|1 ´ Rnpθ ˚q ´ λ |Ω˚

y |
´
1 ´ µ |∆˚|1 ď 0.

Taking the notation of (23), this can be rewritten as ∆npθ ˚ ` t δϑ, θ ˚q ď 0. If }δϑ}F ď r˚ then choose
t “ 1, otherwise calibrate 0 ă t ă 1 such that }t δϑ}F “ r˚. Then, from Lemma 2.4.10, it clearly
follows that θ ˚ ` t δϑ P Nr,αpθ ˚q. Hence, the reasoning preceding (23) still holds. Taking up the said
reasoning, and exploiting the fact thatRnpθ ˚ ` t δϑq ´ Rnpθ ˚q “ t ϕ1p0q ` etpθ, θ ˚q, we can see that by
Taylor-Lagrange, there exists h P s0, 1r such that

∆npθ ˚ ` t δϑ, θ ˚q “ t ϕ1p0q ` λ |Ω˚
y ` t δϑy|

´
1 ` µ |∆˚ ` t δϑyx|1 ´ λ |Ω˚

y |
´
1 ´ µ |∆˚|1 ` etpθ, θ ˚q

ě c
`

|rt δϑysS̄ |1 ` |rt δϑyxsS̄ |1
˘

´ c
`

|rt δϑysS |1 ` |rt δϑyxsS |1
˘

`
t2

2 ϕ2phq.

From Lemma 2.4.11, we obtain

0 ě c
`

|rt δϑysS̄ |1 ` |rt δϑyxsS̄ |1
˘

´ c
`

|rt δϑysS |1 ` |rt δϑyxsS |1
˘

` γr,η,β,p }t δϑ}2
F

ě ´c |rt δϑsS |1 ` γr,η,β,p }t δϑ}2
F .

where we used c ą 0. Note that the configuration of the penalization parameters, which is stated in the
theorem, implies the following relations

pcλ ` 1qdλ ha

cλ
ě

pcλ ` 1qλ

cλ
,

pcµ ` 1qdµ hb

cµ
ě

pcµ ` 1qµ

cµ
, eλ ha ě η β s β

L ℓa and eµ hb ě η β s β
L ℓb.
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From Cauchy-Schwarz inequality |r¨sS |21 ď |S| }r¨sS}2
F , we finally obtain

0 ě ´cλ,µ maxtha, hbu
a

|S| }t δϑ}F ` γr,η,β,p }t δϑ}2
F

where constant cλ,µ is given in (16). Note that in the proof of Lemma 2.4.10, it was sufficient to see that
Rnpθq ´ Rnpθ ˚q ě ϕ1p0q whereas here, we must consider Rnpθq ´ Rnpθ ˚q “ ϕ1p0q ` e1pθ, θ ˚q to meet our
purposes. That explains the presence of γr,η,β,p }t δϑ}2

F in the inequality. We deduce that the error must
satisfy

}t δϑ}F ď
cλ,µ

a

|S| maxtha, hbu

γr,η,β,p
.

As a corollary, it holds that }δϑ}F ą r˚ ñ cλ,µ

a

|S| maxtha, hbu ě r˚ γr,η,β,p or, conversely written,
cλ,µ

a

|S| maxtha, hbu ă r˚ γr,η,β,p ñ }δϑ}F ď r˚.

Lemma 2.4.13. Assume that λ, µ and η are chosen according to the configuration of the theorem. Then,
under (H2.1), there exists absolute constants b1 ą 0 and b2 ą 0 such that, for any b3 P s0, 1r and as soon
as

n ě max
␣

b1 pq ` rsαs lnpp ` qqq, lnp10pp ` qq2q ´ lnpb3q
(

,

with probability no less that 1 ´ e´b2n ´ b3 both the random hypothesis (H2.2) is satisfied and the upper
bound

maxtha, hbu ď 16 m˚

c

lnp10pp ` qq2q ´ lnpb3q

n

holds, where ha and hb are given in (C2.1) and (C2.2), sα is defined in (13) and m˚ in (17). Hence, one
can find a minimal number of observations n0 such that the theorem holds with high probability as soon
as n ą n0.

Proof. All the ingredients of the proof are established in [YZ14]. The authors start by recalling that there
exists absolute constants b1 ą 0 and b2 ą 0 such that hypothesis (H2.2) is satisfied with probability no
less than 1 ´ e´b2n as soon as n ě b1 pq ` rsαs lnpp ` qqq. We also refer the reader to Lem. 5.1 and Thm.
5.2 of [BDDW08], or to Lem. 7.4 of [Gir14] for the random bounds of the restricted isometry constants.
Afterwards, they prove (see Prop. 4) that, as soon as n ě lnp10pp ` qq2q ´ lnpb3q for some b3 ą 0, with
probability 1 ´ b3,

maxtha, hbu ď 16 m˚

c

lnp10pp ` qq2q ´ lnpb3q

n
.

To find the minimal number of observations, we just need to make sure that the above bound is itself
smaller than the one of Lemma 2.4.12. It is then not hard to see that we may retain the minimal size n0

given in (6).
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2.5 Simulations and real dataset

Our estimation algorithm consists of a coordinate descent procedure. We exploit the fact that the mini-
mization problem (5) is jointly convex, and alternate between the computation of

pΩy “ arg min
S q

``

ℓλ,µ,ηpΩy, p∆q and p∆ “ arg min
Rqˆp

ℓλ,µ,ηppΩy, ∆q.

Each step is done by an Orthant-Wise Limited-Memory Quasi-Newton (OWL-QN) algorithm (see e.g.
[AG07]). The first subproblem is performed through half-vectorization (vech) to ensure symmetry and we
set the objective to `8 on S̄ q

`` to ensure positive definiteness of the solution. The coordinate descent is
stopped when

}pΩ ptq
y ´ pΩ pt´1q

y }2 ď ϵ maxp1, }pΩ pt´1q
y }2q and }p∆ ptq ´ p∆ pt´1q}2 ď ϵ maxp1, }p∆ pt´1q}2q

following two consecutive iterations t´1 and t, where ϵ ą 0 is a small threshold depending on the desired
precision.

We are now going to try our method on synthetic data first, and then on a real dataset. We will pay
attention to the role played by β, in particular we will see that it can be useful as well as counterproductive,
depending on the situations.

2.5.1 Simulations

For each scenario, we first generate i.i.d. standard Gaussian vectors Xi P Rp, then Yi P Rq is simulated
according to the setting and we estimate Ωy and ∆. From the relations detailed in Section 2.1, we recall
that Yi “ B t Xi ` Ei with Ei „ N p0, Rq is an equivalent formulation, provided that B “ ´∆ t Ω´1

y and
R “ Ω´1

y . In a compact form, we may also write

Y “ XB ` E or vecpY q “ pIq b Xq vecpBq ` vecpEq

where the i-th row of Y is Y t
i and the i-th row of X is X t

i . Thus, we can estimate B using the Lasso
(Las) and the Group-Lasso (GLas) in the vectorized form, to provide a basis for comparison between
our method and the usual penalized methods. The Lasso penalty is obviously }vecpBq}1 to promote
coordinate sparsity while, for the Group-Lasso, we use the penalty }B1}2 ` . . . ` }Bp}2 where Bi is the
i-th row of B, to promote row sparsity and exclude altogether some predictors from the model. We also
implement some variants of our generalized graphical model (GenGm):

´ the case where Ωy “ R´1 is known and does not need to be estimated is the Oracle (Or) ,

´ the case where η “ 0 so that β has no influence is the classic PGGM (Gm),

´ the case where λ “ 0 and β “ 1 is called the Spring (Spr) by the authors of [CMHR17].

We will focus on structured scenarios. With no structure in ∆, there is no reason why our method
should outperform the usual PGGM. In a completely random setting, we have observed that all PGGM
procedures perform identically. In fact, a slight gain can be obtained compared to Spr and Gm simply
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due to the flexibility induced by the additional parameter (Spr and Gm are particular cases of GenGm).
However, that clearly cannot counterbalance the extended computational times, and GenGm should not
be used for such situations. The calibration of the regularization parameters is made using a cross-
validation on a training set of size nt “ 150 and the accuracy is evaluated thanks to the mean squared
prediction error (MSPE) on a validation set of size nv “ 1000,

MSPE “

›

›Y ` X p∆ t
pΩ ´1

y

›

›

2
F

q nv
. (29)

Due to the large amount of treatments, the grids for cross-validation are not very sharp here but they
will be carefully refined for the real datasets of the next section. The covariance between the outputs is
R “ pr |i´j|q1 ď i, j ď q for r “ 1

2 and we work with p “ 100. Each scenario is repeated N “ 500 times and
GenGm is evaluated with numerous values of β, from 0.25 to 2 with a step of 0.25. The results of the
following scenarios are summarized on Figures 2.2, 2.3 and 2.4 below, respectively.

Ñ Scenario 1 (q “ 1). We draw ωi “ ˘ 1
2 for i “ 1, . . . , 10 and we fill 10 randomly selected sections of

size 3 in ∆ with ωi. The remaining part of ∆ is 0.

Ñ Scenario 2 (q “ 2). We draw ω “ ˘ 1
2 and one randomly selected row of ∆ is filled with ω while the

other is identically 0.

Ñ Scenario 3 (q “ 3). We draw ωi “ ˘ 1
2 and we fill a randomly selected section of size 30 on the i-th

row of ∆ with ωi, for i “ 1, 2, 3. The remaining part of ∆ is 0.

The row structure is promoted by a normalized first finite difference operator

L “
1
2

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 ´1 0 . . . 0

´1 2 . . . . . . ...

0 . . . . . . . . . 0
... . . . . . . 2 ´1
0 . . . 0 ´1 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

(30)

which, through ∆ L ∆ t, tends to penalize the difference between two consecutive values on a same row
(as does Fused-Lasso with ℓ1 penalty). Yet, the Fused-Lasso is not a suitable alternative to GLas and
Las in this precise context because B “ ´∆ t Ω´1

y is not supposed to have a row structure even if ∆ has
one. For this choice of L, one can note that, in the particular case where R “ diagpσ 2

1 , . . . , σ 2
q q,

xxL, ∆ t Ω´1
y ∆yyβ “

˜

q
ÿ

i“1
σ 2

i

p
ÿ

j“2
pωi,j ´ ωi,j´1q2

¸β

ě

q
ÿ

i“1
σ 2β

i

p
ÿ

j“2
|ωi,j ´ ωi,j´1| 2β

where ωi,j is the pi, jq-th element of ∆, so we may fairly expect that β ě 1 is going to strengthen the
smoothness of the estimation and to enforce all the more the structuring.

Remark 2.5.1 (Validity of the hypotheses). We could as well add a small diagonal element in the matrix
L defined above, positive semi-definite but not invertible. The resulting effect would be a negligible ridge-
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like penalization on the elements of ∆. This is not required for the estimation procedure but useful
for Theorem 2.3.1 to hold (see e.g. (H2.1)). Likewise, it seemed interesting to test some settings with
β ă 1 even if the theory developped in the chapter does not give any guarantee for them, as a basis for
comparison.

Figure 2.2 : Mean squared prediction error for N “ 500 repetitions of the weakly structured Scenario
1.

Figure 2.3 : Mean squared prediction error for N “ 500 repetitions of the strongly structured Scenario
2.
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Figure 2.4 : Mean squared prediction error for N “ 500 repetitions of the strongly structured Scenario
3.

First of all, one can observe that Las and GLas are left behind in all our simulations. This is not
surprising since the covariance between the outputs cannot be recovered with the standard Lasso, at
least for q ě 2. Generally, GLas remains more robust compared to Las, probably due to the high level
of sparsity in ∆ approximately passed to B (provided that the covariances in R are small enough), and
exploited by the grouping effect. In the weakly structured setting (Scenario 1), we also observe that, as
expected, all PGGM procedures perform almost identically, with obviously an advantage for Or (although
small, illustrating the accuracy of the estimation). In the strongly structured settings (Scenarios 2 and
3), Gm gives results below the expected level, because it is not designed to promote such layouts. On
the contrary, thanks to this choice of L showing here great efficiency, GenGm and Spr are doing pretty
well. Note that, in this context, GenGm with β “ 1 is almost the same as Spr since, q being small,
λ does not play a crucial role. However, some empirical facts draw our attention: the prediction error
decreases with β to some extent, but the most interesting fact seems to be the simultaneous decrease
of its variance. It is likely that the increasing pressure exerted by β on the estimation procedure leads
to a higher homogeneity in the numerical results, despite the repetitions of random experiments under
random settings. In other words, the structuring seems to be strengthened and we also observe that the
convergence of the algorithm is faster, which logically follows from the latter remarks (especially clear
when we compare β “ 0.25 and β “ 2). On the other hand, for the opposite reason, we notice that
the predictions are hardly better than Gm (even worse in some cases), both on average and in terms of
variability, for β ă 1, and these simulations tend to undermine such values of the hyperparameter. On
the whole, GenGm with β ą 1 might be a sound approach for practitioners who place a high priority
on structuring the estimations, even if Remark 2.5.2 below should probably temper this statement. To
conclude, let us consider the strongly structured scenarios with L “ Ip (without structuring) in the Oracle
setting with β “ 2, and let us compare the results with those of Figures 2.3 and 2.4, obtained with the
correct version of L given in (30). The results are displayed on Figure 2.5 where we can see that the
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benefit of structuring is manifest. Unsurprisingly, the results without structuring are close to those of Gm
since L “ Ip only strengthens the shrinkage effect with ridge-like additional penalties.

Figure 2.5 : Mean squared prediction error for N “ 500 repetitions of the strongly structured Scenario
2 (left) and Scenario 3 (right) for Or, Gm and the unstructured Or (L “ Ip), with β “ 2.

Remark 2.5.2 (Computational time). To estimate pΩy, ∆q in the model Spr, the authors of [CMHR17]
use a very judicious and efficient method relying, in each step of the coordinate descent procedure, on a
direct computation of the estimation of Ωy together with an Elastic-Net estimation of ∆. This is possible
for λ “ 0 and β “ 1, but unfortunately cannot be implemented in the general setting. As a result,
computational times remain an issue that should be paid attention to.

Remark 2.5.3 (Oracle-type errors). The mean value of the estimation errors }p∆´∆}2
F leads to the same

kind of observations for the models being compared in the simulations. But the minimal prediction error
does not always coincide with an optimal support recovery due to the shrinkage effect on the estimation
of ∆, when the coefficients or the covariates are not very contrasting. The so-called F -score is given by

F “
2 pr re

pr ` re
where pr “

TP
TP ` FP and re “

TP
TP ` FN

are the precision and the recall, respectively, and where T/F and P/N stand for true/false and posi-
tive/negative. In the strongly structured scenarios, F is generally located between 0.60 and 0.65, and a
deeper analysis shows that a proportion of more than 0.99 of true non-zero values are recovered (that
is, the part of the true active set S related to ∆). If the models are not calibrated to reach the best
prediction error but the best F -score, F regularly exceeds 0.90, at least for the structured procedures.

Nevertheless, Scenarios 2 and 3 are very strongly structured, more than one would expect from an
unknown underlying generating process, and the real dataset of the next section is going to highlight the
fact that the improvement may be hardly noticeable with respect to β. But we will see that β can still
be useful for variable selection.
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2.5.2 A real dataset

The dataset available as CanadianWeather in the R package fda contains daily temperature and preci-
pitation at 35 different locations in Canada, averaged over annual reports starting in 1960 and ending in
1994 (see e.g. [RS06]). We intend to look at the direct links between the minimal and maximal rainfall (on
the log10 scale) and the temperature pattern in the 35 weather stations, so as to identify the times of the
year that have a strong effect on rainfall (positive as well as negative). In this context, n “ 35, q “ 2 and
p “ 365. Figure 2.6 shows temperature and log-precipitation measured over a year in Montreal, chosen
as an example, together with the empirical distribution of the minimal and maximal log-precipitation for
the 35 weather stations. We can note that, since the data are averaged over numerous years, outliers are
unlikely even for the extremes (min and max).

Figure 2.6 : Temperature and log-precipitation measured over a year in Montreal (left). Empirical
distribution of the minimal and maximal log-precipitation for the 35 weather stations (right).

Some authors (see e.g. [Sla12]) have already highlighted the pertinence of using the matrix L defined
in (30) in this dataset, because the predictors are ordered temporally so that the selection of isolated
days instead of relevant sequences of days seems an unreliable procedure for statistical interpretation. To
assess the models, we repeat N “ 100 times the following experiment:

1. we randomly select nt “ 25 observations which constitute the training set on which we first perform
a 2-fold cross-validation for parameter calibration, followed by the model estimation ;

2. the remaining nv “ 10 observations then constitute the validation set, and are used to compute the
MSPE (29) related to the prediction of the minimum (minp) and maximum (maxp) precipitation.

We can see on Figure 2.7 that all structured PGGM perform almost identically, with the phenomenon
described in the previous section still visible but to a lesser extent. We can even notice that structuring
is hardly beneficial for this dataset, from a purely numerical point of view. This conclusion can also be
found in [Sla12], where the author compares the structured Elastic-Net with unstructured alternatives
to predict the 0.25-, 0.50- and 0.75-quantiles of the log-precipitation, through independent regressions.
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But we will see that, in terms of variable selection and statistical interpretation, L and β still have a
substancial role to play.

Figure 2.7 : Mean squared prediction error for N “ 100 repetitions of the experiment. GenGm for
β P t0.5, 1, 1.5, 2u is compared with Spr, Gm, Las and GLas.

The point is that we have observed that the best prediction error does not usually coincide with a
sparse solution (see Remark 2.5.3 above) when the coefficients or the covariates are not very contrasting.
In particular, this was the case of our simulation study with ˘ 1

2 coefficients and N p0, 1q covariates. So,
just as they look at the Lasso’s regularization paths, practitioners may choose the desired degree of
sparsity, depending on p{n, by playing with the hyperparameters. Here, on the basis of the MSPE, most
of the time we must retain µ ! 10´2 and only a few direct links are set to zero. To look for sequences
of days directly related to minp and maxp, we decided to constraint µ ě 10´2 and focus on variable
selection. The active set of ∆ is evaluated on the basis of nt “ 25 randomly chosen observations. The
experiment is repeated N “ 100 times, and the locations having a frequency of occurrence that exceeds
0.5 are retained (or, equivalently, those whose estimates have a non-zero median). This can be seen as a
measure of variable importance. The results are given on Figures 2.8 and 2.9 below for minp and maxp,
respectively, with a fixed set of regularization parameters and increasing values of β. The objective is to
show the influence of the latter, all other things being equal. The colored areas highlight the days having
a frequency of occurrence, represented by gray crosses, that exceeds 0.5 in the N “ 100 repetitions of
the experiment. Note that, since we retain λ “ 0 in these experiments, GenGm for β “ 1 coincides with
Spr. We can see that the increasing pressure exerted by β on the estimation procedure tends to refine the
selection by giving priority to the most important variables and by dropping the others much more easily,
at the cost of prediction results: we are undoubtedly in a selection process. The sequence of inclusions

pSβ2 Ă pSβ1 for β1 ă β2

that we observe for the estimated active sets is clearly a guarantee of quality for the selected variables.
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Figure 2.8 : Variable selection for minp by GenGm with pλ, µ, ηq “ p0, 0.05, 1q and, from top to bottom,
β P t0.5, 1, 1.5, 2u.

Figure 2.9 : Variable selection for maxp by GenGm with pλ, µ, ηq “ p0, 0.05, 1q and, from top to bottom,
β P t0.5, 1, 1.5, 2u.

The median values of the estimated direct links between the temperature of the days and the pair
pminp, maxpq are represented on Figure 2.10 together with the estimated regression coefficients, for β “ 2.
We recall that the relation B “ ´∆ t Ω´1

y simply lead to

pB “ ´p∆ t
pΩ ´1

y .

We detect sequences of influent days in November, December, January and February, especially related
to minp, positively at the end of the year and negatively at the beggining. This is broadly consistent with
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the analysis of [Sla12] – even if the responses are not extremes but quantiles in it – with however two
differences: the regression coefficients associated with maxp are much lower compared to minp whereas
it is not that clear in the reference, and an activity is also detected between July and August. The main
explanation, at least for the first of them, probably lies in the use of graphical models that take into
account the correlation between responses. Indeed, as can be seen on Figure 2.11 which gives an overview
of the estimation of R obtained from the repeated experiments, a non-zero correlation is detected between
the responses (« 0.32). The influence of November and December on all quantiles and that of January
and February on the 0.75-quantile in [Sla12] might actually be an artificial effect of the correlation with
the 0.25-quantile. This is what our study suggests by highlighting minp compared to maxp: the ‘real’
effect appears to be on minp whereas maxp seems to react only through a phenomenon of correlation
with minp. From this point of view, the interest of graphical models instead of independent regressions
is particularly obvious.

Figure 2.10 : Estimated direct links (top) and regression coefficients (bottom) for the pair pminp, maxpq

by GenGm with pλ, µ, ηq “ p0, 0.05, 1q and β “ 2, after the N “ 100 experiments. Dotted lines divide the
panel into months.

Let us also mention that, interestingly enough, we notice that the role of η tends to depreciate for the
large values of β. For example, for the same regularization parameters pλ, µq “ p0, 0.05q and β “ 2, the
difference between the estimated active sets for η “ 0.1 and η “ 1 is almost negligible (depending on the
experiments, between 1 and 3 days are concerned, on average). Based on these studies and observations, we
might conclude that β is insignificant when we are interested in the best prediction error on a validation set
(even counterproductive with respect to computational times, e.g. compared to Spr), whereas it seems to
have a substancial role to play when focusing on selection, by accelerating the discrimination of variables.
In the first case, η has to be carefully adjusted while in the second case, β will quickly help to reach the
desired sparsity.

Remark 2.5.4 (Structure matrix). For the simulations and the real dataset, we have used the popular
first finite difference operator given in (30). Other examples can be found in the literature, like the
promotion of a genetic distance for genomic selection in Brassica napus [CMHR17] or the bidimensional

49



Chapter 2 – A partial graphical model with a structural prior on the direct links

Figure 2.11 : Estimated correlation between minp and maxp by GenGm with pλ, µ, ηq “ p0, 0.05, 1q and
β “ 2, after the N “ 100 experiments. The off-diagonal entry is approximately 0.32.

discretization of the Laplacian to work on handwritten digit recognition [Sla12]. More generally, L can
be used in a classic Bayesian prior supposed to promote some covariance structure on the direct links,
with no ‘physical’ structuring in mind (like temporal, spatial or genetic proximity).

2.6 Conclusion

In conclusion, our work is a generalization of [YZ14], using the same technical tools to establish an upper
bound on the estimation error when a prior on the direct links generates an additional structural penalty
in the objective, provided that the model is suitably regularized. Our work is also an improvement of
[CMHR17] since, while being inspired by the methodology of the authors, we generalize the prior and
give some theoretical guarantees. The empirical study shows that the hyperparametrization in the prior,
although more expensive in adjusting the parameters, is likely to refine the selection results but clearly,
this does not appear as a crucial improvement compared to the two previous points. Let us conclude
the chapter by highlighting two weaknesses that might be trails for future studies. On the one hand, the
Laplace distribution is often used as a prior in the Bayesian Lasso (see e.g. Sec. 6.1 of [HTW15]). However,
our reasonings do not allow β “ 1{2, which may correspond to a multivariate Laplace distribution on
the direct links. Combined with the first finite difference operator L, the choice β “ 1{2 could generate a
Fused-Lasso-type penalty. In this regard, it would be challenging and interesting to obtain some theoretical
guarantees for β ě 1{2 and not only for β ě 1, even if our probably too brief simulation study does not
encourage the choice of β ă 1. On the other hand, λ “ 0 is a natural choice when q is small (this is in
particular the configuration of [CMHR17]), not to mention that it is computionally faster. But, the proof
of our theorem needs λ ą cλ ha ą 0 to hold. We think that a reasoning enabling to deal with λ “ 0 should
also be beneficial to the study. More generally, it would be instructive to consider a very high-dimensional
setting (p " n and not only p „ 102 although always larger than n, as in our experiments). Such studies
should follow with omic data.
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Chapter 3

A BAYESIAN APPROACH FOR PARTIAL

GAUSSIAN GRAPHICAL MODELS WITH

SPARSITY

Gaussian graphical model is a widely studied topic both in the frequentist framework (as discussed
above), and in the Bayesian one. For this second type of inference, we refer the reader for example

to Chapter 10 of Maathuis et al. [MDLW18] where various Wishart-type priors are considered for Ω, see
also Li et al. [LMC19] or Gan et al. [GYNL19] for spike-and-slab approaches and all references within.
However, to the best of our knowledge, the Bayesian approach for partial Gaussian graphical models is a
new research topic.

In this chapter we present the results of a collaboration with Frédéric Proïa and Pascal Jézéquel, which
has been published in Bayesian Analysis in 2022 [OOJP22]1. We explore various Bayesian approaches to
estimate PGGM, and propose hierarchical structures enable to deal with single-output as well as multiple-
output linear regressions, in small or high dimension, enforcing either no sparsity, sparsity, group sparsity
or even sparse-group sparsity for a bi-level selection through partial correlations (direct links) between
predictors and responses. Our work is inspired by the ideas of Xu and Ghosh [XG15] for the single-output
setting (q “ 1), and by the ones of Liquet et al. [LMPS17] for the multiple-output setting (q ą 1). Taking
advantage of the relations (1), we consider that a Gaussian prior for B must remain Gaussian for ∆ (with
a correctly updated variance), and that an inverse Wishart prior for R merely becomes a Wishart one for
Ωy. Yet, despite these seemingly small changes in the design of the priors, we will see that the resulting
distributions are completely different. The hierarchical models that we are going to study all come from
this working base, but let us point out that a wide variety of refinements exist in the recent literature
for Bayesian sparsity, like the grouped ‘horseshoe’ of Xu et al. [XSM`16], the ‘aggressive’ multivariate
Dirichlet-Laplace prior of Wei et al. [WRHG20], the theoretical results for group selection consistency
of Yang and Narisetty [YN20] or even the extension of the Bayesian spike-and-slab group selection to
generalized additive models of Bai et al. [BMA`20], all related to the regression setting but that might
also be investigated for PGGMs. To enforce various types of sparsity in ∆ for high-dimensional problems,
we decided to make use of spike-and-slab priors, with a spike probability guided by a conjugate Beta
distribution.

This chapter is organized as follows. Sections 3.2, 3.3 and 3.4 are dedicated to the study of our
hierarchical models enforcing either no sparsity, sparsity, group sparsity or sparse-group sparsity in the

1. The codes and the dataset are available at https://github.com/EuniceOkome/BayesPGGM
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direct links, respectively, according to the terminology of Section 2.1 of Giraud [Gir14]. In particular, we
will see that our bi-level selection clearly diverges from the strategy of Liquet et al. [LMPS17]. We also
adapt the reasoning of Yang and Narisetty [YN20] to establish group selection consistency under some
technical assumptions and an appropriate amount of sparsity. Section 3.5 is devoted to the conditional
posterior distributions of the parameters in order to implement Gibbs samplers that are tested in Section
3.6. This empirical section is focused on a simulation study first, to evaluate and compare the efficiency of
the models, then a real dataset is treated, and a short conclusion ends the paper. But, firstly, let us give
some examples of what exactly we mean by ‘sparse’, ‘group-sparse’ and ‘sparse-group-sparse’ settings,
and let us summarize the definitions that we have chosen to retain for the well-known distributions as
well as for the less usual ones, in order to avoid any misinterpretation of our results and proofs.

Example 3.0.1. To explain a set of phenotypic traits, suppose that we investigate a large collection
of genetic markers spread over twenty chromosomes. For coordinate sparsity (‘sparse’ setting), only a
few markers are active. For group sparsity (‘group-sparse’ setting), the markers are clustered into groups
(formed by chromosomes) and only a few of them are active. For sparse-group sparsity (‘sparse-group-
sparse’ setting), only a few chromosomes are active and they are sparse, the result is a bi-level selection
(chromosomes and markers). This will be the context of our example on real data (Section 3.6.2).

3.1 Introduction

Suppose now that we observe q-dimensional matrix of responses Y P Rnˆq where the k-th row is Y t
i ,

and the p-dimensional matrix of predictors X P Rnˆp where the k-th row is X t
i . We are dealing with a

multivariate linear regression of the form

Y “ XB ` E

where B P Rpˆq contains the regression coefficients and E P Rnˆq is a matrix-variate Gaussian noise. We
are in the PGGM setting discussed in Section 1.5. In short, assuming that the couple pYi, Xiq P Rq`p is
jointly normally distributed with zero mean, covariance Σ and precision Ω, we can see that the blockwise
decomposition given by

Ω “

˜

Ωy ∆
∆t Ωx

¸

with Ωy P S q
``, ∆ P Rqˆp and Ωx P S p

`` leads to Yi | Xi „ Nqp´Ω´1
y ∆ Xi, Ω´1

y q. This is a crucial
remark because one can see that the multiple-output regression Yi “ B t Xi ` Ei with Gaussian noise
Ei „ Nqp0, Rq may be reparametrized with

B “ ´∆t Ω´1
y and R “ Ω´1

y . (1)

Before going deeper into the subject, let us summarize the definitions that we have chosen to retain
for the well-known distributions as well as for the less usual ones, in order to avoid any misinterpretation
of our results and proofs.
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Definition 3.1.1 (Gaussian). The density of X P Rd1ˆd2 following the matrix normal distribution
MNd1ˆd2 pM, Σ1, Σ2q is given by

ppXq “
1

p2πq
d1 d2

2 |Σ1|
d2
2 |Σ2|

d1
2

exp
ˆ

´
1
2 tr

`

Σ´1
2 pX ´ Mqt Σ´1

1 pX ´ Mq
˘

˙

where M P Rd1ˆd2 , Σ1 P S d1
`` and Σ2 P S d2

``. When d2 “ 1, this is a multivariate normal distribution
Ndpµ, Σq with d “ d1, µ “ M and Σ “ Σ´1

2 Σ1, having density

ppXq “
1

p2πq
d
2 |Σ|

1
2

exp
ˆ

´
1
2 pX ´ µqt Σ´1pX ´ µq

˙

where µ P Rd and Σ P S d
``.

Definition 3.1.2 (Generalized Inverse Gaussian). The density of X P S d
`` following the matrix genera-

lized inverse Gaussian distribution MGIGdpν, A, Bq is given by

ppXq “
|X|ν´

d`1
2

ˇ

ˇ

A
2
ˇ

ˇ

ν
Bν

`

A
2 , B

2
˘ exp

ˆ

´
1
2 tr

`

A X´1 ` B X
˘

˙

1tX P S d
``

u

where ν P R, A P S d
``, B P S d

`` and Bν is a Bessel-type function of order ν. When d “ 1, this is a
generalized inverse Gaussian distribution GIGpν, a, bq with a “ A and b “ B, having density

ppXq “
Xν´1

`

a
2
˘ν

Bν

`

a
2 , b

2
˘ e´ a

2X ´ b X
2 1tX ą 0u

where ν P R, a ą 0 and b ą 0.

Definition 3.1.3 (Wishart/Gamma/Exponential). The density of X P S d
`` following the matrix Wishart

distribution Wdpu, V q is given by

ppXq “
|X|

u´d´1
2

2 d u
2 Γd

`

u
2
˘

|V |
u
2

exp
ˆ

´
1
2 tr

`

V ´1X
˘

˙

1tX P S d
``

u

where u ą d ´ 1, V P S d
`` and Γd is the multivariate Gamma function of order d. When d “ 1, this is a

Gamma distribution Γpa, bq with a “ u
2 and 1

b “ 2 V , having density

ppXq “
b a Xa´1

Γpaq
e´b X

1tX ą 0u

where a ą 0 and b ą 0. The exponential distribution Epℓq is then defined as the Γp1, ℓq distribution, for
ℓ ą 0.

Definition 3.1.4 (Beta). The density of X P r0, 1s following the Beta distribution βpa, bq is given by

ppXq “
Xa´1 p1 ´ Xq b´1

βpa, bq
1t0 ď X ď 1u
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where a ą 0, b ą 0 and β is the Beta function.

In all the paper, data and parameters are gathered in Θ “ tY, X, ∆, Ωy, ν, λ, πu and, to standardize,
for any e P Θ, we note Θe “ Θzteu.

3.2 The sparse setting

In this section, λi P R is the i-th component of λ P Rp, ∆i P Rq is the i-th column of ∆ and Xi P Rn

stand for the i-th column of X (1 ď i ď p). Let us consider the hierarchical Bayesian model, where the
columns of ∆ are assumed to be independent, given by

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

Y | X, ∆, Ωy „ MNnˆqp´X ∆t Ω´1
y , In, Ω´1

y q

∆i | Ωy, λi, π
KK
„ p1 ´ πq Nqp0, λi Ωyq ` π δ0

λi
KK
„ Γpα, ℓiq

Ωy „ Wqpu, V q

π „ βpa, bq

(2)

for i P J1, pK, with hyperparameters α “ 1
2 pq ` 1q, ℓi ą 0, u ą q ´ 1, V P S q

``, a ą 0 and b ą 0. A general
ungrouped sparsity is promoted in the columns of ∆ through the spike-and-slab prior. In this mixture
model, π is the prior spike probability and λ is an adaptative shrinkage factor acting at the predictor
scale (λi is associated with the direct links between predictor i and all the responses). When ℓi “ ℓ for
all i, we will rather speak of global shrinkage. The degree of sparsity will be characterized by the number
N0 of zero columns of ∆, that is

N0 “ Cardpi, ∆i “ 0q “

p
ÿ

i“1
1t∆i “ 0u. (3)

To implement a Gibbs sampler from the full posterior distribution stemming from (2), we may use the
conditional distributions given in the proposition below.

Proposition 3.2.1. In the hierarchical model (2), the conditional posterior distributions are as follows.

´ The parameter ∆ satisfies, for i P J1, pK,

∆i | Θ∆i
„ p1 ´ piq Nqp´si Hi, si Ωyq ` pi δ0

where
Hi “ Ωy Y t Xi `

ÿ

j ‰ i

xXi, Xjy ∆j , si “
λi

1 ` λi }Xi}
2

and
pi “

π

π ` p1 ´ πq p1 ` λi }Xi}
2q´

q
2 exp

´

si H t
i

Ω´1
y Hi

2

¯ .
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´ The parameter Ωy satisfies

Ωy | ΘΩy „ MGIGq

ˆ

n ´ p ` N0 ` u

2 , ∆ pXt X ` D´1
λ q ∆t, Y t Y ` V ´1

˙

where Dλ “ diagpλ1, . . . , λpq.

´ The parameter λ satisfies, for i P J1, pK,

λi | Θλi
„ 1t∆i ‰ 0u GIG

ˆ

1
2 , ∆t

i Ω´1
y ∆i, 2 ℓi

˙

` 1t∆i “ 0u Γpα, ℓiq.

´ The parameter π satisfies
π | Θπ „ β

`

N0 ` a, p ´ N0 ` b
˘

.

Proof. See Section 3.5.1.

Remark 3.2.2. The Bayesian Lasso, as introduced e.g. in Section 6.1 of [HTW15] or in [PC08], assumes
a prior Laplace distribution for the regression coefficients conditional on the noise variance. In our case,
∆i | Ωy, π is still a multivariate spike-and-slab (after integrating over λi), with a slab following a so-
called multivariate K-distribution (see [EKL06]), which is a generalization of the multivariate Laplace
distribution. See e.g. Section 2.1 of [LMPS17]. From this point of view, our study is in line with the
usual Bayesian regression schemes. Perhaps even more interesting, going on with the idea of the authors,
suppose that, for all 1 ď i ď p, ∆i “ bi ∆˚

i where ∆˚
i follows the multivariate K-distribution described

above and bi | π „ Bp1´πq is independent of ∆˚
i . Now, the sparsity in ∆ is not induced by a spike-and-slab

strategy anymore but, equivalently, by multiplying the slab part by an independent Bernoulli variable
being 0 with probability π. Then, it is possible to show that the negative log-likelihood of this alternative
hierarchical model is given, up to an additive constant that does not depend on ∆, by

1
2

›

›

›
pY ` X ∆t Ω´1

y q Ω
1
2
y

›

›

›

2

F
`

p
ÿ

i“1
ci

›

›

›
Ω´ 1

2
y ∆˚

i

›

›

›

F
` ln

ˆ

1 ´ π

π

˙ p
ÿ

i“1
bi

where ci ą 0. We first recognize an ℓ2-type penalty but also an ℓ0-type penalty on ∆ (provided that
π ă 1

2 ) since summing the bi amounts to counting the number of non-zero columns in ∆. Consequently,
there is a close connection between our hierarchical Bayesian model and the regressions penalized by ℓ2

and ℓ0 norms, problems that are known to be very hard to solve due to combinatorial optimization.

The particular case q “ 1 is a very useful corollary of the proposition. Here, the direct links form
a row vector such that ∆t P Rp with components ∆i P R (1 ď i ď p), and the precision matrix of the
responses reduces to ωy ą 0. According to the parametrization of the distributions (see Section 3.1), the
corresponding prior distribution of ωy is Γp u

2 , 1
2 v q for u, v ą 0 and the one of λi is Epℓiq for ℓi ą 0. The

other priors are unchanged.

Corollary 3.2.3. In the hierarchical model (2) with q “ 1, the conditional posterior distributions are as
follows.
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´ The parameter ∆ satisfies, for i P J1, pK,

∆i | Θ∆i
„ p1 ´ piq N p´si hi, si ωyq ` pi δ0

where
hi “ ωy xXi, Y y `

ÿ

j ‰ i

xXi, Xjy ∆j , si “
λi

1 ` λi }Xi}
2

and
pi “

π

π ` p1 ´ πq p1 ` λi }Xi}
2q´ 1

2 exp
´

si h2
i

2 ωy

¯ .

´ The parameter ωy satisfies

ωy | Θωy
„ GIG

ˆ

n ´ p ` N0 ` u

2 , ∆ pXt X ` D´1
λ q ∆t, }Y } 2 `

1
v

˙

where Dλ “ diagpλ1, . . . , λpq.

´ The parameter λ satisfies, for i P J1, pK,

λi | Θλi
„ 1t∆i ‰ 0u GIG

ˆ

1
2 ,

∆ 2
i

ωy
, 2 ℓi

˙

` 1t∆i “ 0u Epℓiq.

´ The parameter π satisfies
π | Θπ „ β

`

N0 ` a, p ´ N0 ` b
˘

.

Proof. This is a consequence of Proposition 3.2.1.

Note that we can also easily derive the Bayesian counterpart of the standard PGGM adapted to the
small-dimensional case, with no sparsity, by taking π “ 0.

Corollary 3.2.4. In the hierarchical model (2) with π “ 0, the conditional posterior distributions are as
follows.

´ The parameter ∆ satisfies, for i P J1, pK,

∆i | Θ∆i
„ Nqp´si Hi, si Ωyq

where
Hi “ Ωy Y t Xi `

ÿ

j ‰ i

xXi, Xjy ∆j and si “
λi

1 ` λi }Xi}
2 .

´ The parameter Ωy satisfies

Ωy | ΘΩy
„ MGIGq

ˆ

n ´ p ` u

2 , ∆ pXt X ` D´1
λ q ∆t, Y t Y ` V ´1

˙

where Dλ “ diagpλ1, . . . , λpq.
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´ The parameter λ satisfies, for i P J1, pK,

λi | Θλi
„ GIG

ˆ

1
2 , ∆t

i Ω´1
y ∆i, 2 ℓi

˙

.

Proof. This is a consequence of Proposition 3.2.1.

In the simulation study of Section 3.6.1, Scen. 0, 1 and 2 are dedicated to the sparse setting. The next
section discusses the group sparsity in ∆.

3.3 The group-sparse setting

The predictors are now ordered in m groups of sizes κ1 ` . . . ` κm “ p. For the g-th group (1 ď g ď m),
λg P R is the g-th component of λ P Rm, the covariate submatrix is Xg P Rnˆκg and the corresponding
slice of ∆ is ∆g P Rqˆκg . Let us consider the hierarchical Bayesian model, where the columns of ∆ are
assumed to be independent both within and between the groups, given by

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

Y | X, ∆, Ωy „ MNnˆqp´X ∆t Ω´1
y , In, Ω´1

y q

∆g | Ωy, λg, π
KK
„ p1 ´ πq MNqˆκg

p0, λg Ωy, Iκg
q ` π δ0

λg
KK
„ Γpαg, ℓgq

Ωy „ Wqpu, V q

π „ βpa, bq

(4)

for g P J1, mK, with hyperparameters αg “ 1
2 pq κg ` 1q, ℓg ą 0, u ą q ´ 1, V P S q

``, a ą 0 and b ą 0.
A general group sparsity is promoted in the columns of ∆ through the spike-and-slab prior at the group
level. In this mixture model, π is the prior spike probability and λ is an adaptative shrinkage factor acting
at the group scale (λg is associated with the direct links between the predictors of group g and all the
responses). Likewise, when ℓg “ ℓ for all g, we will rather speak of global shrinkage. Now, the degree of
sparsity will be characterized by N0 given in (3), but also by the number G0 of zero groups of ∆, that is

G0 “ Cardpg, ∆g “ 0q “

m
ÿ

g“1
1t∆g “ 0u. (5)

To implement a Gibbs sampler from the full posterior distribution stemming from (4), we may use the
conditional distributions given in the proposition below.

Proposition 3.3.1. In the hierarchical model (4), the conditional posterior distributions are as follows.

´ The parameter ∆ satisfies, for g P J1, mK,

∆g | Θ∆g
„ p1 ´ pgq MNqˆκg

p´Hg Sg, Ωy, Sgq ` pg δ0

where
Hg “ ΩyY t Xg `

ÿ

j ‰ g

∆j X t
j Xg, Sg “ λg

`

Iκg ` λg X t
g Xg

˘´1

57



Chapter 3 – A bayesian approach for partial gaussian graphical models with sparsity

and
pg “

π

π ` p1 ´ πq |Iκg ` λg X t
g Xg|´

q
2 exp

´

trpH t
g Ω´1

y Hg Sgq

2

¯
.

´ The parameter Ωy satisfies

Ωy | ΘΩy
„ MGIGq

ˆ

n ´ p ` N0 ` u

2 , ∆ pXt X ` D´1
λ q ∆t, Y t Y ` V ´1

˙

where Dλ “ diagpλ1, . . . , λ1, . . . , λm, . . . , λmq with each λg duplicated κg times.

´ The parameter λ satisfies, for g P J1, mK,

λg | Θλg
„ 1t∆g ‰ 0u GIG

ˆ

1
2 , trp∆t

g Ω´1
y ∆gq, 2 ℓg

˙

` 1t∆g “ 0u Γpαg, ℓgq.

´ The parameter π satisfies
π | Θπ „ β

`

G0 ` a, m ´ G0 ` b
˘

.

Proof. See Section 3.5.2.

Note that Remark 3.2.2 still applies to this configuration, after some adjustments (the ℓ0-like penalty
is on the number of non-zero groups). Here again, the particular case q “ 1 is a very useful corollary. The
direct links form a row vector such that ∆t P Rp with groups ∆t

g P Rκg (1 ď g ď m), the precision matrix
of the responses reduces to ωy ą 0. According to the parametrization of the distributions (see Section
3.1), the corresponding prior distribution of ωy is Γp u

2 , 1
2 v q for u, v ą 0, like in the ungrouped setting.

The other priors are unchanged.

Corollary 3.3.2. In the hierarchical model (4) with q “ 1, the conditional posterior distributions are as
follows.

´ The parameter ∆ satisfies, for g P J1, mK,

∆t
g | Θ∆g

„ p1 ´ pgq Nκg
p´Sg Hg, ωy Sgq ` pg δ0

where
Hg “ ωy X t

g Y `
ÿ

j ‰ g

X t
g Xj ∆t

j , Sg “ λg

`

Iκg
` λg X t

g Xg

˘´1

and
pg “

π

π ` p1 ´ πq |Iκg
` λg X t

g Xg|´
1
2 exp

´

H t
g Sg Hg

2 ωy

¯ .

´ The parameter ωy satisfies

ωy | Θωy
„ GIG

ˆ

n ´ p ` N0 ` u

2 , ∆ pXt X ` D´1
λ q ∆t, }Y } 2 `

1
v

˙

where Dλ “ diagpλ1, . . . , λ1, . . . , λm, . . . , λmq with each λg duplicated κg times.
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´ The parameter λ satisfies, for g P J1, mK,

λg | Θλg
„ 1t∆g ‰ 0u GIG

ˆ

1
2 ,

}∆g} 2

ωy
, 2 ℓg

˙

` 1t∆g “ 0u Γpαg, ℓgq.

´ The parameter π satisfies
π | Θπ „ β

`

G0 ` a, m ´ G0 ` b
˘

.

Proof. This is a consequence of Proposition 3.3.1.

In the simulation study of Section 3.6.1, Scen. 3 and 4 are dedicated to the group-sparse setting.
To conclude this section, a theoretical guarantee is provided (given Ωy and with λ “ λn and π “ πn

depending on n). It is possible to obtain a model selection consistency property for this approach when
both the number of observations n and the number of groups m “ mn tend to infinity, by adapting the
reasoning of [YN20] dedicated to the linear regression (with q “ 1). Indeed, when Ωy is known, ∆ reduces
to a linear transformation of B. Thus, it is not surprising that a similar result follows under the same kind
of hypotheses. In the sequel, we denote by Xpkq P Rnˆ|k| the design matrix of rank rk corresponding to
the submodel indexed by the binary vector k P t0, 1um having |k| non-zero values (kg “ 1 means that the
g-th group is included in the model), and by Πpkq P Rnˆn the projection matrix onto the column-space
of Xpkq. Similarly, ∆ restricted to k is ∆pkq P Rqˆ|k|. The true model is called t and t˘g are submodels of
t that contain only the g-th group or that are deprived of it, respectively. Let

δ1 “ inf
1 ď g ď |t|

›

›pIn ´ Πpt´gqq Xpt`gq ∆t
pt`gq Ω´ 1

2
y

›

›

2
F

and, for some K ą 0,
δK

2 “ inf
k P Ei

›

›pIn ´ Πpkqq Xptq ∆t
ptq Ω´ 1

2
y

›

›

2
F

with Ei “ tk such that t Ć k and rk ď Krtu. Let also,

µK
n, min “ inf

k P FK

µ`

ˆ

Xt
pkq

Xpkq

n

˙

and µ̄n “ inf
k P F

µ˚

ˆ

Xt
pkq

pIn ´ Πpk X tqq Xpkq

n

˙

with FK “ tk such that t Ă k and rk ď pK ` 1q rtu and F “ tk such that |kzt| ą 0u, and where, for a
square matrix A, µ`pAq is the minimum non-zero eigenvalue of A and µ˚pAq is the geometric mean of
the non-zero eigenvalues of A. The hypotheses are those of [YN20] that we have to slightly adapt. By
fn — gn we mean that there is a constant c ‰ 0 such that fn{gn Ñ c as n tends to infinity.

(H.1) There exists a rate such that mn “ evn with vn Ñ `8 and vn “ opnq.

(H.2) The prior slab probability satisfies 1 ´ πn — 1{mn.

(H.3) The shrinkage factors satisfy nλ7
n — m2`η

n µ̄´η
n and µK

n, min nλ7
n Ñ `8 for some η ą 0, where

λ7
n “ maxi λn, i.

(H.4) There exists ϵ1 ą 0 such that δ1 ą p1 ` ϵ1q rt rp4 ` ηq ln mn ´ η ln µ̄ns.

59



Chapter 3 – A bayesian approach for partial gaussian graphical models with sparsity

(H.5) There exists ϵ2 ą 0 such that δK
2 ą p1 ` ϵ2q rt rp4 ` ηq ln mn ´ η ln µ̄ns for some K ą maxp8{η `

1, η{pη ´ 1qq.

We refer the reader to p. 917 of [YN20] where the authors give very clarifying comments on the interpre-
tation to be given to these technical assumptions. In particular, while (H.1), (H.2) and (H.3) control the
behavior of mn, πn and λn as n tends to infinity, (H.4) and (H.5) are related to sensitivity and specificity
and are therefore in connection with the true model t.

Proposition 3.3.3. Suppose that (H.1)–(H.5) are satisfied. Then, as n tends to infinity,

PpT | Y, X, Ωyq
P

ÝÑ 1

where T “ tt is selectedu and t is the true model.

Proof. The result is obtained by following the same lines as the proof of Theorem 2.1 of [YN20]. One
just has to clarify a few points to solve the issues arising from q ě 1 and from the adaptative shrinkage,
which is done in Section 3.5.4.

Remark 3.3.4. Obviously, Proposition 3.3.3 also holds for the sparse setting (with m “ p) and in that
case, it is instructive to draw the parallel with Theorem 1 of [RSZZ15] even if the estimation procedure
is very different. The authors show that, to obtain a

?
n-consistent estimation of the precision matrix Ω

in a GGM, Ω must contain at most —
?

n{ ln p non-zero columns. In the Gibbs sampler (see Proposition
3.2.1), the slab probability 1 ´ π is generated according to a distribution that satisfies

Er1 ´ π | Θπs “
p ´ N0 ` b

p ` a ` b
and Vp1 ´ π | Θπq “

pN0 ` aqpp ´ N0 ` bq

pp ` a ` bq2 pp ` a ` b ` 1q
.

Thus, if the model selects —
?

n{ ln p predictors, it follows that the posterior expectation of 1 ´ π is
—

?
n{pp ln pq “ 1{p when p “ e

?
n. In that case, the posterior variance of 1´π is — 1{p2. To sum up, in a

model with —
?

n{ ln p predictors selected, the posterior distribution of 1 ´ π is very concentrated around
1{p which conforms to (H.1) and (H.2). This is not directly comparable due to the different procedures,
but it seems interesting to observe that the same orders of magnitude are involved to reach theoretical
guarantees for the estimation of ∆.

In the next section, an approach is suggested to deal with sparse-group sparsity in ∆, for a bi-level
selection.

3.4 The sparse-group-sparse setting

To produce a sparse model both at the variable level (for variable selection) and at the group level (for
group selection), it seems natural to carry on with our strategy by introducing another spike-and-slab
effect into the first one. The predictors are still ordered in m groups of sizes κ1 ` . . . ` κm “ p. For the
g-th group (1 ď g ď m), λg P R is the g-th component of λ P Rm and, for the i-th predictor of this group
(1 ď i ď κg), νgi P R is the i-th component of νg P Rκg . The i-th column of the covariate submatrix
Xg is Xgi P Rn and the corresponding slice of ∆g is ∆gi P Rq while ∆gzi P Rqˆpκg´1q is ∆g deprived
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3.4. The sparse-group-sparse setting

of ∆gi. Here our approach diverges from [XG15] and [LMPS17]. The bi-level selection of the authors is
made through spike-and-slab effects both at the group scale and on the individual variances, considered
as truncated Gaussians, generating zero groups and (almost surely) zero coefficients within the groups.
Let us suggest instead the Bayesian hierarchical model given by

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

Y | X, ∆, Ωy „ MNnˆqp´X ∆t Ω´1
y , In, Ω´1

y q

∆g | νg, λg, π
KK
„ p1 ´ π1q

“

p1 ´ π2q Nqp0, λg νgi Ωyq ` π2 δ0
‰b κg

` π1 δ0

νgi
KK
„ Γpα, ℓgiq

λg
KK
„ Γpαg, γgq

Ωy „ Wqpu, V q

πj
KK
„ βpaj , bjq

(6)

for g P J1, mK, i P J1, κgK and j P J1, 2K, with hyperparameters α “ 1
2 pq ` 1q, αg “ 1

2 pq κg ` 1q, ℓgi ą 0,
γg ą 0, u ą q ´1, V P S q

``, aj ą 0, and bj ą 0. In this mixture model, π1 is the prior spike probability on
the groups whereas π2 is the prior spike probability within the non-zero groups, for a bi-level selection. In
terms of cumulative shrinkage effects, λ is an adaptative shrinkage factor acting at the group scale and
ν is an adaptative shrinkage factor acting at the predictor scale (λg is associated with the direct links
between the predictors of group g and all the responses whereas νgi is associated with the direct links
between predictor i of group g and all the responses). In this way, (6) opens up many perspectives for
dealing with bi-level shrinkage. We can set γg “ γ for all g, for a global shrinkage at the group scale. At
the predictor scale, when ℓgi “ ℓg for all i, this is a global shrinkage in the g-th group but we might even
consider a full global shrinkage ℓgi “ ℓ. However, an identifiability issue may result from the product
λg νgi between group and within-group effects. Even if the posterior distributions depend on different
levels of data that shall resolve it, one can for example fix λg “ 1 (for adaptative) or νgi “ 1 (for global)
and let the shrinkage entirely rely on the other parameter. Although it achieves the same objectives as
those of [XG15] and [LMPS17], this hierarchy seems more consistent with our previous sections (take
π2 “ 0 and νgi “ 1 to remove the within-group effect and recover the group-sparse setting of Section
3.3, take π1 “ 0 and λg “ 1 to remove the group effect and recover the sparse setting of Section 3.2). In
this context, the degree of sparsity is still characterized by N0 given in (3) for the predictor scale, by G0

given in (5) for the group scale, but also, for the within-group scale, by the number N0g of zero columns
in each particular group g, that is, for all 1 ď g ď m,

N0g “ Cardpi, ∆gi “ 0q “

κg
ÿ

i“1
1t∆gi “ 0u. (7)

We also need to define the number J0 of zero columns in the non-zero groups, that is

J0 “ Cardpi, ∆gi “ 0 and ∆g ‰ 0q “

m
ÿ

g“1
N0g 1t∆g ‰ 0u. (8)

To implement a Gibbs sampler from the full posterior distribution stemming from (6), we may use the
conditional distributions given in the proposition below.
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Proposition 3.4.1. In the hierarchical model (6), the conditional posterior distributions are as follows.

´ The parameter ∆gi satisfies, for g P J1, mK and i P J1, κgK,

∆gi | Θ∆gi
„ p1 ´ pgiq Nqp´sgi Hgi, sgi Ωyq ` pgi δ0

where
Hgi “ Ωy Y t Xgi `

ÿ

h,j ‰ g,i

xXgi, Xhjy ∆hj , sgi “
νgi λg

1 ` νgi λg }Xgi}
2

and
pgi “

ρgi

ρgi ` p1 ´ π1q p1 ´ π2q p1 ` νgi λg }Xgi}
2q´

q
2 exp

´

sgi H t
gi

Ω´1
y Hgi

2

¯

in which ρgi “ p1 ´ π1q π2 1t∆gzi ‰ 0u ` π1 1t∆gzi “ 0u.

´ The parameter Ωy satisfies

Ωy | ΘΩy
„ MGIGq

ˆ

n ´ p ` N0 ` u

2 , ∆ pXt X ` D´1
λν q ∆t, Y t Y ` V ´1

˙

where Dλν “ diagpν11 λ1, . . . , ν1κ1 λ1, . . . , νm1 λm, . . . , νmκm λmq.

´ The parameter ν satisfies, for g P J1, mK and i P J1, κgK,

νgi | Θνgi
„ 1t∆gi ‰ 0u GIG

˜

1
2 ,

∆t
gi Ω´1

y ∆gi

λg
, 2 ℓgi

¸

` 1t∆gi “ 0u Γpα, ℓgiq.

´ The parameter λ satisfies, for g P J1, mK,

λg | Θλg
„ 1t∆g ‰ 0u GIG

ˆ

qN0g ` 1
2 , trpD´1

νg
∆t

g Ω´1
y ∆gq, 2 γg

˙

` 1t∆g “ 0u Γpαg, γgq

where Dνg “ diagpνg1, . . . , νgκg q.

´ The parameter π satisfies, for j P J1, 2K,

πj | Θπj
„ β

`

Aj ` aj , Bj ` bj

˘

.

where A1 “ G0, B1 “ m ´ G0, A2 “ J0 and B2 “ p ´ N0.

Proof. See Section 3.5.3.

It only remains to give the explicit results for the particular case q “ 1. The direct links form a row
vector such that ∆t P Rp with groups ∆t

g P Rκg (1 ď g ď m) containing predictors ∆gi P R (1 ď i ď κg),
and the precision matrix of the responses reduces to ωy ą 0. According to the parametrization of the
distributions (see Section 3.1), the corresponding prior distribution of ωy is Γp u

2 , 1
2 v q for u, v ą 0, like in

the other settings, and the one of νgi is Epℓgiq for ℓgi ą 0. The other priors are unchanged.
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3.4. The sparse-group-sparse setting

Corollary 3.4.2. In the hierarchical model (6) with q “ 1, the conditional posterior distributions are as
follows.

´ The parameter ∆gi satisfies, for g P J1, mK and i P J1, κgK,

∆gi | Θ∆gi
„ p1 ´ pgiq N p´sgi hgi, sgi ωyq ` pgi δ0

where
hgi “ ωy xXgi, Y y `

ÿ

h,j ‰ g,i

xXgi, Xhjy ∆hj , sgi “
νgi λg

1 ` νgi λg }Xgi}
2

and
pgi “

ρgi

ρgi ` p1 ´ π1q p1 ´ π2q p1 ` νgi λg }Xgi}
2q´ 1

2 exp
´

sgi h2
gi

2 ωy

¯

in which ρgi “ p1 ´ π1q π2 1t∆gzi ‰ 0u ` π1 1t∆gzi “ 0u.

´ The parameter ωy satisfies

ωy | Θωy
„ GIG

ˆ

n ´ p ` N0 ` u

2 , ∆ pXt X ` D´1
λν q ∆t, Y t Y `

1
v

˙

where Dλν “ diagpν11 λ1, . . . , ν1κ1 λ1, . . . , νm1 λm, . . . , νmκm
λmq.

´ The parameter ν satisfies, for g P J1, mK and i P J1, κgK,

νgi | Θνgi „ 1t∆gi ‰ 0u GIG

˜

1
2 ,

∆2
gi

λg ωy
, 2 ℓgi

¸

` 1t∆gi “ 0u Epℓgiq.

´ The parameter λ satisfies, for g P J1, mK,

λg | Θλg
„ 1t∆g ‰ 0u GIG

˜

N0g ` 1
2 ,

∆g D´1
νg

∆t
g

ωy
, 2 γg

¸

` 1t∆g “ 0u Γpαg, γgq

where Dνg
“ diagpνg1, . . . , νgκg

q.

´ The parameter π satisfies, for j P J1, 2K,

πj | Θπj „ β
`

Aj ` aj , Bj ` bj

˘

.

where A1 “ G0, B1 “ m ´ G0, A2 “ J0 and B2 “ p ´ N0.

Proof. This is a consequence of Proposition 3.4.1.

In the simulation study of Section 3.6.1, Scen. 5 and 6 are dedicated to the sparse-group-sparse setting.
Now, let us prove our assertions by a few computational steps.
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3.5 Conditional posterior distributions

This section is devoted to the proofs of our assertions for the different settings.

3.5.1 The sparse setting: proof of Proposition 3.2.1

First of all, the full posterior distribution of the parameters conditional on X and Y satisfies

pp∆, Ωy, λ, π | Y, Xq 9 ppY | X, ∆, Ωyq pp∆ | Ωy, λ, πq ppλq ppΩyq ppπq

9 |Ωy|
n
2 exp

ˆ

´
1
2

›

›

›
pY ` X ∆t Ω´1

y q Ω
1
2
y

›

›

›

2

F

˙

ˆ

p
ź

i“1

«

1 ´ π
a

λ q
i |Ωy|

exp
˜

´
∆t

i Ω´1
y ∆i

2 λi

¸

1t∆i ‰ 0u

` π 1t∆i “ 0u

ff

λ
1
2 pq`1q´1
i e´ℓi λi

ˆ |Ωy|
u´q´1

2 exp
ˆ

´
trpV ´1 Ωyq

2

˙

π a´1 p1 ´ πq b´1. (9)

On the one hand, exploiting the cyclic property of the trace, a tedious calculation shows that, for all
1 ď i ď p,

›

›

›
pY ` X ∆t Ω´1

y q Ω
1
2
y

›

›

›

2

F
“ trpY t Y Ωyq ` 2 trpXt Y ∆q ` trpXt X ∆t Ω´1

y ∆q

“ }Xi}
2 ∆t

i Ω´1
y ∆i ` 2

ÿ

j ‰ i

xXi, Xjy ∆t
j Ω´1

y ∆i ` 2 X t
i Y ∆i ` T‰ i (10)

where the term T‰ i does not depend on ∆i. Thus,

pp∆i | Θ∆i
q 9 exp

˜

´
1
2 }Xi}

2 ∆t
i Ω´1

y ∆i ´
ÿ

j ‰ i

xXi, Xjy ∆t
j Ω´1

y ∆i ´ X t
i Y ∆i

¸

ˆ

«

1 ´ π
a

λ q
i |Ωy|

exp
˜

´
∆t

i Ω´1
y ∆i

2 λi

¸

1t∆i ‰ 0u ` π 1t∆i “ 0u

ff

“ exp
ˆ

´
1
2 p∆i ` si Hiq

t psi Ωyq´1 p∆i ` si Hiq

˙

ˆ exp
˜

si H t
i Ω´1

y Hi

2

¸

1 ´ π
a

λ q
i |Ωy|

1t∆i ‰ 0u ` π 1t∆i “ 0u (11)

for all 1 ď i ď p, where

Hi “ Ωy Y t Xi `
ÿ

j ‰ i

xXi, Xjy ∆j and si “
λi

1 ` λi }Xi}
2 .
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This is still a multivariate Gaussian spike-and-slab distribution such that, by renormalizing, the spike has
probability

pi “ Pp∆i “ 0 | Θ∆i
q “

π

π ` p1 ´ πq p1 ` λi }Xi}
2q´

q
2 exp

´

si H t
i

Ω´1
y Hi

2

¯ .

On the other hand, coming back to (10), we can also write

›

›

›
pY ` X ∆t Ω´1

y q Ω
1
2
y

›

›

›

2

F
“ trpY t Y Ωyq ` trp∆ Xt X ∆t Ω´1

y q ` T‰ y

where T‰ y does not depend on Ωy. That leads, via (9), to

ppΩy | ΘΩy
q 9 |Ωy|

n´p`N0`u´q´1
2 exp

˜

´
1
2 trppY t Y ` V ´1q Ωyq

´
1
2

˜

trp∆ Xt X ∆t Ω´1
y q `

ÿ

∆i ‰ 0

∆t
i Ω´1

y ∆i

λi

¸¸

“ |Ωy|
n´p`N0`u´q´1

2 exp
ˆ

´
1
2 tr

`

pY t Y ` V ´1q Ωy ` ∆ pXt X ` D´1
λ q ∆t Ω´1

y

˘

˙

(12)

where N0 is given in (3) and Dλ “ diagpλ1, . . . , λpq. Finally, it is easy to see that, for all 1 ď i ď p,

ppλi | Θλi
q 9

1
?

λi

exp
˜

´
∆t

i Ω´1
y ∆i

2 λi
´ ℓi λi

¸

1t∆i ‰ 0u ` λ
1
2 pq`1q´1
i e´ℓi λi 1t∆i “ 0u (13)

whereas
ppπ | Θπq 9 πN0`a´1 p1 ´ πqp´N0`b´1. (14)

We recognize in (11), (12), (13) and (14) the announced conditional posterior distributions, which
concludes the proof.

3.5.2 The group-sparse setting: proof of Proposition 3.3.1

The full posterior distribution of the parameters conditional on X and Y satisfies

pp∆, Ωy, λ, π | Y, Xq 9 ppY | X, ∆, Ωyq pp∆ | Ωy, λ, πq ppλq ppΩyq ppπq

9 |Ωy|
n
2 exp

ˆ

´
1
2

›

›

›
pY ` X ∆t Ω´1

y q Ω
1
2
y

›

›

›

2

F

˙

ˆ

m
ź

g“1

«

1 ´ π
b

λ
q κg
g |Ωy|κg

exp
˜

´
trp∆t

g Ω´1
y ∆gq

2 λg

¸

1t∆g ‰ 0u

` π 1t∆g “ 0u

ff

λ
1
2 pq κg`1q´1
g e´ℓg λg

ˆ |Ωy|
u´q´1

2 exp
ˆ

´
trpV ´1 Ωyq

2

˙

π a´1 p1 ´ πq b´1. (15)
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Like in the previous proof, a first important step is to note that, for all 1 ď g ď m,

›

›

›
pY ` X ∆t Ω´1

y q Ω
1
2
y

›

›

›

2

F
“

›

›

›

›

›

Y Ω
1
2
y `

m
ÿ

j“1
Xj ∆t

j Ω´ 1
2

y

›

›

›

›

›

2

F

“ }Xg ∆t
g Ω´ 1

2
y }2

F ` 2
ÿ

j ‰ g

trp∆j X t
j Xg ∆t

g Ω´1
y q ` 2 trpX t

g Y ∆gq ` T‰ g (16)

where the term T‰ g does not depend on ∆g. Thus, after a tedious calculation exploiting the cyclic
property of the trace, one can obtain the factorization

pp∆g | Θ∆g
q 9 exp

˜

´
1
2 }Xg ∆t

g Ω´ 1
2

y }2
F ´

ÿ

j ‰ g

trp∆j X t
j Xg ∆t

g Ω´1
y q ´ trpX t

g Y ∆gq

¸

ˆ

»

–

1 ´ π
b

λ
q κg
g |Ωy|κg

exp
˜

´
trp∆t

g Ω´1
y ∆gq

2 λg

¸

1t∆g ‰ 0u ` π 1t∆g “ 0u

fi

fl

“ exp
ˆ

´
1
2 tr

`

S´1
g p∆g ` Hg Sgqt Ω´1

y p∆g ` Hg Sgq
˘

˙

ˆ exp
˜

trpH t
g Ω´1

y Hg Sgq

2

¸

1 ´ π
b

λ
q κg
g |Ωy|κg

1t∆g ‰ 0u ` π 1t∆g “ 0u (17)

for all 1 ď g ď m, where

Hg “ Ωy Y t Xg `
ÿ

j ‰ g

∆j X t
j Xg and Sg “ λg

`

Iκg ` λg X t
g Xg

˘´1
.

We recognize the announced Gaussian spike-and-slab distribution, and the probability of the spike is
given, after renormalization, by

pg “ Pp∆g “ 0 | Θ∆g
q “

π

π ` p1 ´ πq |Iκg
` λg X t

g Xg|´
q
2 exp

´

trpH t
g Ω´1

y Hg Sgq

2

¯
.

Following the same lines as the ones used to establish (12), we obtain from (15) the conditional distribution

ppΩy | ΘΩy
q 9 |Ωy|

n´p`N0`u´q´1
2 exp

˜

´
1
2 trppY t Y ` V ´1q Ωyq

´
1
2

˜

trp∆ Xt X ∆t Ω´1
y q `

ÿ

∆g ‰ 0

trp∆t
g Ω´1

y ∆gq

λg

¸̧

“ |Ωy|
n´p`N0`u´q´1

2 exp
ˆ

´
1
2 tr

`

pY t Y ` V ´1q Ωy ` ∆ pXt X ` D´1
λ q ∆t Ω´1

y

˘

˙

(18)

where Dλ “ diagpλ1, . . . , λ1, . . . , λm, . . . , λmq with each λg duplicated κg times, and since we can note

66



3.5. Conditional posterior distributions

that, due to the continuous nature of ∆ |t∆ ‰ 0u,

m
ÿ

g“1
κg1t∆g ‰ 0u “ p ´ N0

for N0 given in (3). Next, we obtain in a simpler way that, for all 1 ď g ď m,

ppλg | Θλg
q 9

1
a

λg

exp
˜

´
trp∆t

g Ω´1
y ∆gq

2 λg
´ ℓg λg

¸

1t∆g ‰ 0u ` λ
1
2 pq κg`1q´1
g e´ℓg λg 1t∆g “ 0u. (19)

Finally,
ppπ | Θπq 9 πG0`a´1 p1 ´ πqm´G0`b´1 (20)

where G0 is defined in (5). We can check that the conditional distributions (17), (18), (19) and (20)
correspond to the ones announced in the proposition, which concludes the proof.

3.5.3 The sparse-group-sparse setting: proof of Proposition 3.4.1

The full posterior distribution of the parameters conditional on X and Y satisfies

pp∆, Ωy, ν, λ, π | Y, Xq 9 ppY | X, ∆, Ωyq pp∆ | Ωy, ν, λ, πq ppνq ppλq ppΩyq ppπq

9 |Ωy|
n
2 exp

ˆ

´
1
2

›

›

›
pY ` X ∆t Ω´1

y q Ω
1
2
y

›

›

›

2

F

˙

ˆ

m
ź

g“1

«

`

p1 ´ π1q Pg 1t∆g ‰ 0u ` π1 1t∆g “ 0u

˘

ˆ λ
1
2 pq κg`1q´1
g e´γg λg

κg
ź

i“1
ν

1
2 pq`1q´1
gi e´ℓgi νgi

ff

ˆ |Ωy|
u´q´1

2 exp
ˆ

´
trpV ´1 Ωyq

2

˙ 2
ź

j“1
π

aj ´1
j p1 ´ πjq bj ´1 (21)

where, for 1 ď g ď m,

Pg “

κg
ź

i“1

«

1 ´ π2
a

pνgi λgq q |Ωy|
exp

˜

´
∆t

gi Ω´1
y ∆gi

2 νgi λg

¸

1t∆gi ‰ 0u ` π2 1t∆gi “ 0u

ff

.
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Using the same decompositions as (10) or (16), the full posterior distribution given above leads to

pp∆gi | Θ∆gi
q 9 exp

˜

´
1
2 }Xgi}

2 ∆t
gi Ω´1

y ∆gi ´
ÿ

h,j ‰ g,i

xXgi, Xhjy ∆t
hj Ω´1

y ∆gi ´ X t
gi Y ∆gi

¸

ˆ

«

p1 ´ π1q

«

1 ´ π2
a

pνgi λgq q |Ωy|
exp

˜

´
∆t

gi Ω´1
y ∆gi

2 νgi λg

¸

1t∆gi ‰ 0u

` π2 1t∆gi “ 0u

ff

1t∆g ‰ 0u ` π1 1t∆g “ 0u

ff

“ exp
ˆ

´
1
2 p∆gi ` sgi Hgiq

t psgi Ωyq´1 p∆gi ` sgi Hgiq

˙

ˆ exp
˜

sgi H t
gi Ω´1

y Hgi

2

¸

p1 ´ π1q p1 ´ π2q
a

pνgi λgq q |Ωy|
1t∆gi ‰ 0u

`
`

p1 ´ π1q π2 1t∆gzi ‰ 0u ` π1 1t∆gzi “ 0u

˘

1t∆gi “ 0u (22)

for 1 ď g ď m and 1 ď i ď κg, where ∆gzi is ∆g deprived of ∆gi,

Hgi “ Ωy Y t Xgi `
ÿ

h,j ‰ g,i

xXgi, Xhjy ∆hj and sgi “
νgi λg

1 ` νgi λg }Xgi}
2 .

Here, we used the binary equalities stemming from t∆gi ‰ 0u X t∆g ‰ 0u “ t∆gi ‰ 0u, t∆gi “

0u X t∆g ‰ 0u “ t∆gi “ 0u X t∆gzi ‰ 0u and t∆gi “ 0u X t∆g “ 0u “ t∆gi “ 0u X t∆gzi “ 0u, which
turn out to be very useful to separate ∆gi and Θ∆gi

. This is characteristic of a multivariate Gaussian
spike-and-slab distribution. By renormalizing, one can see that the spike has probability

pgi “ Pp∆gi “ 0 | Θ∆gi
q “

ρgi

ρgi ` p1 ´ π1q p1 ´ π2q p1 ` νgi λg }Xgi}
2q´

q
2 exp

´

sgi H t
gi

Ω´1
y Hgi

2

¯

with
ρgi “ p1 ´ π1q π2 1t∆gzi ‰ 0u ` π1 1t∆gzi “ 0u.

Next, following (21) and the reasoning used to establish (12), we may also write

ppΩy | ΘΩy
q 9 |Ωy|

n´p`N0`u´q´1
2 exp

˜

´
1
2 trppY t Y ` V ´1q Ωyq

´
1
2

˜

trp∆ Xt X ∆t Ω´1
y q `

ÿ

∆gi ‰ 0

∆t
gi Ω´1

y ∆gi

νgi λg

¸̧

“ |Ωy|
n´p`N0`u´q´1

2 exp
ˆ

´
1
2 tr

`

pY t Y ` V ´1q Ωy ` ∆ pXt X ` D´1
λν q ∆t Ω´1

y

˘

˙

(23)
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where N0 is given in (3) and Dλν “ diagpν11λ1, . . . , ν1κ1λ1, . . . , νm1λm, . . . , νmκmλmq. The shrinkage
parameters ν and λ are easier to handle. For 1 ď g ď m and 1 ď i ď κg,

ppνgi | Θνgi
q 9

1
?

νgi
exp

˜

´
∆t

gi Ω´1
y ∆gi

2 νgi λg
´ ℓgi νgi

¸

1t∆gi ‰ 0u

` ν
1
2 pq`1q´1
gi e´ℓgi νgi 1t∆gi “ 0u (24)

whereas

ppλg | Θλg q 9 λ
qN0g ´1

2
g exp

˜

´
trpD´1

νg
∆t

g Ω´1
y ∆gq

2 λg
´ γg λg

¸

1t∆g ‰ 0u

` λ
1
2 pq κg`1q´1
g e´γg λg 1t∆g “ 0u (25)

where N0g is defined in (7) and Dνg “ diagpνg1, . . . , νgκg q. Finally,

ppπ1 | Θπ1 q 9 πG0`a1´1
1 p1 ´ π1qm´G0`b1´1 (26)

and
ppπ2 | Θπ2 q 9 πJ0`a2´1

2 p1 ´ π2qp´N0`b2´1 (27)

where G0 and J0 are given in (5) and (8), respectively. For the latter result, we used the fact that the
number of non-zero columns in the non-zero groups must coincide with the number of non-zero columns
of ∆, that is p ´ N0. Like in the previous proofs, we recognize the announced conditional distributions in
(22), (23), (24), (25), (26) and (27). That concludes these tedious calculations.

3.5.4 Proof of Proposition 3.3.3

The result is obtained by following the steps of the proof of Theorem 2.1 in [YN20] but, beforehand, we
need to clarify a few points to extend the reasoning of the authors from q “ 1 to q ě 1 and take into
account the adaptative shrinkage. For any model k, let K “ tk is selectedu so that K “ T when the true
model t is considered. First, recall that λ and π are fixed and rewrite (15) like

P∆pK | Y, X, Ωyq 9 exp
ˆ

´
1
2

›

›

›
pY ` Xpkq ∆t

pkq Ω´1
y q Ω

1
2
y

›

›

›

2

F

˙

ˆ
p1 ´ πq|k|

π|k|
a

|Λk|q |Ωy|kr
exp

˜

´
trp∆t

pkq
Ω´1

y ∆pkq D´1
k q

2

¸

9
p1 ´ πq|k|

π|k|
a

|Λk|q |Ωy|kr
exp

˜

trpr∆pkq Fk
r∆t

pkq
Ω´1

y q

2

¸

ˆ exp
ˆ

´
1
2 tr

´

p∆pkq ´ r∆pkqq Fk p∆pkq ´ r∆pkqqt Ω´1
y

¯

˙

(28)
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where Fk “ D´1
k ` Xt

pkq
Xpkq, Dk “ diagppλℓ, . . . , λℓqℓ P kq with each λℓ duplicated κℓ times, kr “

}pκℓqℓ P k}1, Λk “ diagppλκℓ

ℓ qℓ P kq and

r∆pkq “ ´Ωy Y t Xpkq F ´1
k .

Then, integrating over ∆pkq, it follows (see Def. 3.1.1 with Σ1 “ Ωy and Σ2 “ F ´1
k ) that

PpK | Y, X, Ωyq “

ˆ
Rqˆκk

P∆pK | Y, X, Ωy, λ, πq d∆pkq

9
p1 ´ πq|k|

π|k|
a

|Λk|q |Fk|q
exp

˜

trpr∆pkq Fk
r∆t

pkq
Ω´1

y q

2

¸

9

ˆ

1 ´ π

π

˙|k|

|Λk|´
q
2 |Fk|´

q
2 exp

ˆ

´
1
2 tr

`

Y ˚ t pIn ´ Xpkq F ´1
k Xt

pkqq Y ˚
˘

˙

“

ˆ

1 ´ π

π

˙|k|

|Λk|´
q
2 |Fk|´

q
2 exp

ˆ

´
1
2

´

RSSkpr∆˚
pkq

q `
›

›
r∆˚

pkq
D

´ 1
2

k

›

›

2
F

¯

˙

where Y ˚ “ Y Ω
1
2
y , r∆˚

pkq
“ Ω´ 1

2
y

r∆pkq and RSSk : H P Rqˆκk ÞÑ }Y ˚ ´ Xpkq H t}2
F is the residual sum of

squares function in the renormalized linear model indexed by k, that is

Y ˚ “ ´Xpkq ∆t
pkq Ω´ 1

2
y ` E˚

with E˚ “ E Ω
1
2
y „ MNnˆqp0, In, Iqq. Thus, the so-called posterior ratio between any false model k and

t is given by

PRpk, tq “
PpK | Y, X, Ωyq

PpT | Y, X, Ωyq
“

Qk

Qt

ˆ

1 ´ π

π

˙|k|´|t|

e´ 1
2 p rRk´ rRtq

with Qk “ |Λk|´
q
2 |Fk|´

q
2 and rRk “ RSSkpr∆˚

pkq
q ` }r∆˚

pkq
D

´ 1
2

k }2
F , using the notation of [YN20]. In

particular, due to the generalized ridge penalty,

r∆˚
pkq

“ arg min
H

´

RSSkpHq `
›

›HD
´ 1

2
k

›

›

2
F

¯

(29)

so that for nested models k1 and k2 (with k1 Ď k2), we must have rRk2 ď rRk1 . Let also Rk “ }pIn ´

Πpkqq Y ˚}2
F “ }pIq b pIn ´ Πpkqqq vecpY ˚q}2

2. Cochran’s theorem entails the chi-squared distributions
Rt „ χ2pq pn ´ rtqq and Rt ´ Rk „ χ2pq prk ´ rtqq for any ‘bigger’ model k Ą t and q ě 1. Combining
all these preliminary considerations, the strategy of [YN20] now applies and leads, under our revised
hypotheses, to

1 ´ PpT | Y, X, Ωyq

PpT | Y, X, Ωyq
“

ÿ

k ‰ t

PRpk, tq
P

ÝÑ 0.
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3.6 Empirical results

In this section, let us call (s), (gs) and (sgs) the related settings, and let us denote by (ad) the adaptative
shrinkage and by (gl) the global shrinkage. First of all, these models contain many hyperparameters
that have to be carefully tuned. Our experiments showed that, unsurprinsingly, the results are strongly
impacted by the prior amount of shrinkage on ∆, driven by ℓ and even by γ for (sgs). Apart from the
usual cross-validation procedures, we could stay in line with our Bayesian approach and suggest conjugate
Gamma hyperpriors. This is very easy to implement, but the hyperparameters are now replaced by other
hyperparameters and the same questions arise. Instead, like in [XG15] and [LMPS17], we follow the idea
of [PC08] and we use a Monte-Carlo EM algorithm. By way of example, from the full posterior probability
(9) and since λi „ Γpα, ℓiq for all i, it is not hard to see that, with (s),

ln pp∆, Ωy, λ, π | Y, Xq “

p
ÿ

i“1
pα ln ℓi ´ ℓi λiq ` T‰ ℓ

where the term T‰ ℓ does not depend on ℓ. Thus, the k-th iteration of the EM algorithm should lead to

ℓ
pkq

i “

1
2 pq ` 1q

Epk´1qrλi | Y, Xs
and ℓ pkq “

p
2 pq ` 1q

řp
i“1 Epk´1qrλi | Y, Xs

for the adaptative shrinkage and the global shrinkage (λi “ λ), respectively. The intractable conditional
expectations are then estimated with the help of the Gibbs samples. For (gs), the results are mainly the
same as above (replace q `1 by qκg `1 in the first case, ppq `1q by qp`m in the second case and consider
1 ď g ď m instead of 1 ď i ď p), and similar results also follow with (sgs). Recall that our definitions
of the adaptative and global shrinkages are given in the corresponding sections, in the description of
the hierarchical models. The tuning of u and V (or v) is actually trickier. Because ErΩys “ uV , we set
V “ 1

u Iq and u is conveniently chosen to be the smallest integer such that Ωy is (almost surely) invertible,
that is u “ q (see e.g. [BVF98]). This is particularly adapted when the dataset is standardized. Finally,
a and b reflect the degree of sparsity to introduce in the direct links. We can set a " b to promote sparse
settings, which is potentially interesting when p " n, but a “ b “ 1 is a standard non-informative choice
and a ă b may also be useful for variable selection (see e.g. the real dataset of Section 3.6.2). They can
be chosen from a cross-validation step (for prediction purposes) or to enforce some degree of sparsity (for
selection purposes), just like a practitioner manages the tuning parameter of the Lasso. The posterior
median is used to estimate ∆ and get sparsity whereas the posterior mean is used to estimate Ωy. Indeed,
we don’t want to impose any sparsity on Ωy (q is small), so we decided to retain this standard choice.
But the concern is much greater for ∆ because some coordinates must be exactly zero. This is the reason
why the posterior median seemed a more appropriate choice (in particular, it suffices for the sampler to
generate zeros more than half the time for the empirical posterior median to be zero). Due to the huge
amount of calculations in the simulations, the estimations are made on the basis of 3000 iterations of the
sampler in which the first 2000 are burn-ins. This is revised upwards for the real data (10000 iterations
with 5000 burn-ins).

Remark 3.6.1. To the best of our knowledge, there is no simple way to sample from the MGIGd

distribution as soon as d ą 1. The recent method described in Section 3.3.2 of [FKS20], relying on the
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Matsumoto-Yor property (see Theorem 3.1 of [MW06]) to get a MGIGd sample from the very standard
GIG and Wd distributions, is unfortunately inapplicable in our context. Indeed, for example in the sparse
setting, that would require finding z P Rq such that Y t Y ` V ´1 “ b zzt for some b ą 0, which is
clearly impossible since Y t Y ` V ´1 has full rank. In [FB16], the authors show that MGIGdpν, A, Bq is
a unimodal distribution of which mode M P S d

`` is the unique solution of the algebraic Riccati equation
pd ` 1 ´ 2 νq M ` MBM “ A, and a standard importance sampling approach follows for the mean of the
distribution. Our fallback solution is to solve this Riccati equation at each step and to replace all MGIGd

random variables by the (unique) mode of the consecutive distributions. To assess the credibility of this
ad hoc sampling, the ‘oracle’ models in which Ωy and the shrinkage parameters are known are added to
the simulations. We will see that, despite an unavoidable loss, the results remain pretty consistent. In
particular, the support recovery does not appear to be impacted.

3.6.1 A simulation study

In this empirical section, the matrix of order d ě 1 given by

Cd “
`

ρ|i´j|
˘

1 ď i,j ď d

will be used as a typical covariance structure, for some 0 ď ρ ă 1. Thus, the precision matrices will be
chosen as a multiple of C ´1

d to keep the same guideline in our simulations. The responses

Yi “ B t Xi ` Ei

are generated through relations (1) where, for all 1 ď k ď n, Ei „ N p0, Rq. Because our models assume
prior independence (or group-independence) in the columns of ∆, it seems necessary to look at the
influence of correlation among the predictors. So the standard choice Xk „ N p0, Ipq is first considered,
but in some cases we will also test Xk „ N p0, Cpq for ρ “ 0.5 and ρ “ 0.9 to introduce a significant
correlation between close predictors (see Figure 3.1). For each experiment, the support recovery of ∆ is
evaluated thanks to the so-called F -score given by

F “
2 pr re

pr ` re
where pr “

TP
TP ` FP and re “

TP
TP ` FN

are the precision and the recall, respectively, and where T/F and P/N stand for true/false and posi-
tive/negative. To assess prediction skills, ne randomly chosen observations are used for estimation (for
different ne) and the remaining nv “ n ´ ne “ 100 independent observations serve to compute the
mean squared prediction error (MSPE). The results are compared to the ones obtained via the penalized
maximum of likelihood (PML) approach of [YZ14] thanks to the correctly adapted implementations of
[CMHR17] and [OOJP21], with a cross-validated tuning parameter. In addition, we compute the sparse
precision matrix estimations given by the graphical Lasso (GLasso) of [FHT08], and by the CLIME algo-
rithm of [CLL11], using the R packages glasso and fastclime, respectively. Note that we always keep
a small value for q, so ∆ is penalized but not Ωy when possible (PML and GLasso). Finally, the recent
approach of [RSZZ15], called ANT and based on the individual estimations of the partial correlations, is
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also implemented. Unlike PML, GLasso and CLIME, sparsity is not the result of penalizations for ANT
but, instead, a threshold is deduced from the asymptotic normality of the estimates to decide which are
significant and which can be set to zero. Let us add some preliminary comments about the methods
compared in these simulations, all related to high-dimensional precision matrix estimation.

´ There is a important advantage in favor of our Bayesian approaches, PML and ANT because they do
not need the estimation of Ωx P S p

``. Indeed, extracting the estimation of ∆ P Rqˆp and Ωy P S q
``

from that of the full precision matrix Ω P S q`p
`` may generate a drastic bias when p " q, and that

explains in particular why GLasso and CLIME give pretty bad results in what follows.

´ In its standard version, ANT is not designed to produce column-sparsity or group-sparsity in ∆. So,
by considering multiple testing at the column or even group level, we allow groups of coefficients to
be zeroed simultaneously. We have observed that this modified ANT method (called ANT* in the
simulations) loses a bit in prediction quality but is greatly improved for support recovery.

´ Unfortunately, this is not appropriate for PML, GLasso and CLIME. It is therefore not surprising that
they are largely outperformed by our Bayesian models and ANT* for (gs) and (sgs). Using group-
penalties, which to the best of our knowledge still does not exist, should improve the results of these
methods to some extent.

The seven scenarios below, from Scen. 0 to Scen. 6, as heterogeneous as possible, represent the diversity
of the situations (high-dimensionality, kind of sparsity, dimension of the responses, coefficients hard to
detect, etc.). We repeat each one N “ 100 or N “ 50 times, depending on the computation times
involved, and the numerical results for ne “ 400 and uncorrelated predictors are summarized in Table
3.1. In addition, the evolution of MSPE is represented on Figure 3.1 for Scen. 1, 3 and 5, when ne grows
from 100 to 500, both for uncorrelated and correlated predictors. The three configurations (s), (gs) and
(sgs) are tested on the grouped scenarios (from Scen. 3 to Scen. 6) with the adaptative shrinkage.

´ Scenario 0 (small dimension, no sparsity). Let q “ 1, p “ 5 and set ωy “ 1. We fill ∆ with N p0, 2 ωyq

coefficients.

´ Scenario 1 (sparse direct links, univariate responses). Let q “ 1, p “ 50 and set ωy “ 1. We randomly
choose 10 locations of ∆ filled with N p0, ωyq coefficients while the others are zero.

´ Scenario 2 (sparse direct links, multivariate responses). Let q “ 2, p “ 80 and set Ωy “ 2 C ´1
2 with

ρ “ 0.5. We randomly choose 10 columns of ∆ filled with N2p0, Ωyq coefficients while the others are
zero.

´ Scenario 3 (group-sparse direct links, univariate responses). Let q “ 1, p “ 320 and set ωy “ 1. We
consider m “ 5 groups of size 100, 10, 100, 10 and 100. The two groups of size 10 are filled with
N p0, 0.5 ωyq and N p0, ωyq coefficients, respectively, while the other groups are zero.

´ Scenario 4 (group-sparse direct links, multivariate responses). Let q “ 3, p “ 500 and set Ωy “ 3 C ´1
3

with ρ “ 0.5. We divide the columns of ∆ into m “ 25 groups of size 20. We randomly choose 3 groups
filled with N3p0, 0.5 Ωyq, N3p0, Ωyq and N3p0, 1.5 Ωyq coefficients, respectively, while the other groups
are zero.
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´ Scenario 5 (sparse-group-sparse direct links, univariate responses). Let q “ 1, p “ 150 and set ωy “ 1.
We consider m “ 3 groups of size 50. Only the second group is non-zero, into which we randomly fill
10 locations with N p0, ωyq coefficients.

´ Scenario 6 (sparse-group-sparse direct links, multivariate responses). Let q “ 5, p “ 1000 and set
Ωy “ 5 C ´1

5 with ρ “ 0.5. We divide the columns of ∆ into m “ 20 groups of size 50, and a randomly
chosen one is half filled with N5p0, Ωyq coefficients. The others columns of ∆ are zero.

Mod. Shr.
Scenario 0

MSPE F pr re

(s-or) - 1.01 (0.11) 1.00 1.00 1.00
(s) (ad) 1.03 (0.13) 1.00 1.00 1.00
(s) (gl) 1.03 (0.13) 1.00 1.00 1.00

PML - 1.01 (0.16) 1.00 1.00 1.00
GLasso - 1.00 (0.15) 1.00 1.00 1.00
CLIME - 1.00 (0.15) 1.00 1.00 1.00
ANT* - 1.04 (0.13) 1.00 1.00 1.00

Hyperparam. π “ 0

Mod. Shr.
Scenario 1

MSPE F pr re

Scenario 2
MSPE F pr re

(s-or) - 1.02 (0.13) 0.95 1.00 0.90 0.52 (0.09) 0.95 1.00 0.90
(s) (ad) 1.04 (0.13) 0.95 1.00 0.90 0.54 (0.09) 0.95 1.00 0.90
(s) (gl) 1.03 (0.13) 0.95 1.00 0.90 0.55 (0.08) 0.95 1.00 0.90

PML - 1.08 (0.15) 0.82 0.69 1.00 0.77 (0.15) 0.86 1.00 0.75
GLasso - 2.37 (0.96) 0.78 0.77 0.80 1.74 (0.49) 0.72 0.91 0.60
CLIME - 2.52 (0.98) 0.79 0.78 0.80 1.11 (0.35) 0.73 0.76 0.70
ANT* - 1.25 (0.22) 0.87 0.85 0.90 1.04 (0.44) 0.90 0.89 0.91

Hyperparam. p25, 1q p80, 1q

Now, let us try to summarize our observations. In terms of support recovery, the Bayesian spike-
and-slab framework and the modified ANT* method give results incomparably better than the sparsity-
inducing penalized approaches (PML, GLasso and CLIME). As suggested in Remark 3.3 of [OOJP21],
this may be a consequence of the fact that the cross-validation steps calibrate the models to reach the
best prediction error, sometimes at the cost of support recovery by picking a small penalty level. The
superiority of ANT over GLasso and CLIME is recognized and discussed in [RSZZ15], but this also
highlights the ability of our Bayesian models to reach good results both in prediction and in support
recovery. It can also be seen that (s) gives weaker results than (sgs) in the grouped scenarios, probably
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Mod. Shr.
Scenario 3

MSPE F pr re

Scenario 4
MSPE F pr re

(gs-or) - 1.03 (0.27) 1.00 1.00 1.00 0.40 (0.14) 1.00 1.00 1.00
(gs) (ad) 1.04 (0.27) 1.00 1.00 1.00 0.45 (0.16) 1.00 1.00 1.00
(gs) (gl) 1.04 (0.34) 1.00 1.00 1.00 0.46 (0.17) 1.00 1.00 1.00
(s) (ad) 1.16 (0.27) 0.92 1.00 0.85 0.52 (0.18) 0.98 1.00 0.96

(sgs) (ad) 1.07 (0.25) 0.92 1.00 0.86 0.48 (0.17) 0.99 1.00 0.98
PML - 1.80 (0.36) 0.89 1.00 0.80 3.18 (0.53) 0.75 0.94 0.62

GLasso - 4.23 (1.61) 0.58 0.50 0.70 9.46 (1.38) 0.46 0.66 0.35
CLIME - 2.98 (1.22) 0.68 0.90 0.55 8.32 (1.51) 0.48 0.45 0.52
ANT* - 1.52 (0.95) 1.00 1.00 1.00 6.53 (1.22) 1.00 1.00 1.00

Hyperparam. p100, 1q - p5, 1q - p5, 1, 25, 1q p100, 1q - p25, 1q - p50, 1, 50, 1q

Mod. Shr.
Scenario 5

MSPE F pr re

Scenario 6
MSPE F pr re

(sgs-or) - 1.00 (0.15) 0.96 1.00 0.92 0.21 (0.13) 1.00 1.00 1.00
(sgs) (ad) 1.04 (0.16) 0.95 1.00 0.91 0.24 (0.32) 1.00 1.00 1.00
(sgs) (gl) 1.03 (0.16) 0.91 1.00 0.84 0.24 (0.33) 1.00 1.00 1.00
(s) (ad) 1.08 (0.14) 0.93 1.00 0.87 0.29 (0.26) 0.98 1.00 0.96
(gs) (ad) 1.24 (0.19) 0.33 0.20 1.00 0.31 (0.30) 0.67 0.50 1.00
PML - 1.92 (0.60) 0.89 1.00 0.80 0.50 (0.17) 0.83 0.95 0.74

GLasso - 3.48 (1.30) 0.78 0.86 0.71 3.83 (0.77) 0.50 0.97 0.34
CLIME - 1.88 (0.92) 0.79 1.00 0.65 2.98 (0.51) 0.51 1.00 0.34
ANT* - 1.26 (0.98) 0.88 0.86 0.90 2.10 (0.72) 1.00 1.00 1.00

Hyperparam. p50, 1q – p3, 1q – p3, 1, 50, 1q p100, 1q – p20, 1q – p20, 1, 50, 1q

Table 3.1 : Medians of the mean squared prediction errors (with standard deviations), F -scores, preci-
sions and recalls after N “ 100 repetitions of Scen. 0 to Scen. 6 (N “ 50 for Scen. 4 and Scen. 6), with
ne “ 400 and uncorrelated predictors. The suffix -or is used to denote ‘oracle’ settings. The hyperpara-
meters chosen for the prior spike probability are indicated in the last row of each table, from left to right:
pa, bq for (s) and (gs), pa1, b1, a2, b2q for (sgs).

due to the fact that it does not take into account the group structure, but still better than the penalized
methods. However, the computational times involved (see remarks below) make (s) less relevant than (sgs)
in these situations, even if the results are not drastically different. Unsurprisingly, (gs) is not suitable
in the sparse-group-sparse settings in terms of support recovery. Our experiments show that it is able
to identify influential groups without being mistaken but, even though the resulting estimates are small
where they should be zero, it is not designed to be used for bi-level selection. Figure 3.1 shows that
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Figure 3.1 : Medians of the mean squared prediction errors obtained after N “ 100 repetitions of Scen.
1 (top), Scen. 3 (middle) and Scen. 5 (bottom) with ˘1 standard deviation and ne growing from 100
to 500. The black curves correspond to uncorrelated predictors (ρ “ 0) while the blue and red curves
correspond to correlated predictors (ρ “ 0.5 and ρ “ 0.9, respectively).

the results are pretty stable from ne “ 200 observations in the learning set: for ne ă 200 the MSPEs
are rather chaotic before stabilizing. The same figure also highlights that the presence of correlation in

76



3.6. Empirical results

the predictors do not seem to have a significant effect on the estimation procedure, except for small
size samples and high correlation where the degradation is noticeable. Overall, the real strength of the
Bayesian spike-and-slab approach is clearly the support recovery of the direct links between predictors
and responses but it seems that one can hardly expect to deal with very high-dimensional studies as
long as we do not impose a group structure or a huge degree of sparsity. The highly competitive MSPEs
obtained confirm the relevance of Bayesian PGGMs not only for variable selection but also for prediction
purposes in the context of high-dimensional regressions.

3.6.2 Identification of a sparse set of predictors in a real dataset

Let us now study the Hopx dataset, fully described in [PBL`10]. It contains p “ 770 genetic markers spread
over m “ 20 chromosomes from n “ 29 inbred rats. It also contains the corresponding measured gene
expression levels of q “ 4 tissues (adrenal gland, fat, heart and kidney). The goal is to identify a sparse set
of predictors that jointly explain the outcomes, with the natural group structure formed by chromosomes
(see Table 3.2). This dataset has already been analyzed in [LBC`16], using a Bayesian regression without
group structure, and later in [LMPS17] including group and sparse-group structures. So the PGGM is
supposed to bring new perspectives about relationships in terms of partial correlations. A particularity
of this dataset is that the responses are very correlated, so we should expect an estimation of Ω´1

y with
significant non-diagonal elements and a clear advantage in using PGGMs. Indeed, a predictor considered
to be influencing all the outcomes could be the result of a direct relation to one tissue propagated to
the others by an artificial correlation effect. As can be seen on Figure 3.2, the predictors are also highly
correlated with their neighbors (for the sake of readability, we only represent the correlogram of predictors
located on chromosomes 8, 9 and 10).

Chr. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Nb. 74 67 63 60 39 45 52 43 31 51 21 26 33 22 15 27 18 30 34 19

Table 3.2 : Number of markers on each chromosome, which correspond to the sizes κg of each group for
1 ď g ď 20 when running (gs) and (sgs).
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Figure 3.2 : Correlogram of responses (left) and correlogram of predictors located on chromosomes 8, 9
and 10 (right). The colormap associates red with negative correlations and blue with positive correlations.

The small sample size relative to the number of covariates (29{770) weakens the study. To strengthen
our conclusions, we decided to run N “ 100 experiments based on 25 randomly chosen observations and
to aggregate the results. We first investigate the selection of predictors at the chromosomes scale, i.e. we
run (gs) according to the previous protocol with an adaptative shrinkage and we choose pa, bq “ p1, 20q

in the prior probability π. The empirical distribution of the posterior probability of inclusion for each
chromosome is represented on the left of Figure 3.3. The selection procedure focuses on chromosomes 14,
15 and 17 (and not just on chromosomes 2 and 3 as in [LMPS17]) but the estimation process gives an
overwhelming advantage to chromosome 14, far ahead of its neighbors. This is undoubtedly the influence of
D14Mit3, a marker located on chromosome 14 and known to have a very significant effect on this dataset.
The main conclusion to be drawn at this stage is that chromosome 14 has a positive effect on Fat and a
negative effect on Heart, as can also be seen on the right of Figure 3.3. Therefore, it is likely that the overall
positive influence of D14Mit3 identified by previous authors is due to the combination of a direct positive
link with Fat, a direct negative link with Heart and a correlation effect from the outcomes. This hypothesis
is given additional credibility by the numerical results: from (gs), the corresponding column of ∆ is
approximately p0.00, 0.04, ´0.09, 0.00q which, through relations (1), leads to p0.15, 0.25, 0.34, 0.21q as
estimated regression coefficients. This roughly corresponds to the values indicated in Table 2 of [LMPS17],
at least for the main effect on Heart. Thus for chromosome 14, the numerical results coincide but the
interpretations are clearly different. Of course, similar reasonings can be carried out for the less influent
chromosomes.
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Figure 3.3 : Empirical distribution of the posterior probability of inclusion estimated by (gs) for each
chromosome (left). Aggregated (gs) estimation of ∆ on chromosome 14 with D14Mit3 hilighted (right).

It is perhaps more interesting to look for a bi-level selection in order to identify a sparse set of markers
and not only chromosomes. In this regard, (sgs) is launched using the same statistical protocol, adaptative
shrinkage and hardly informative hypermarameters a1 “ 3, b1 “ 1, a2 “ 1 and b2 “ 1 which happen
to be sufficient to generate a huge degree of sparsity. While many chromosomes are excluded from the
model given by (gs), with (sgs) we see some contributions localized in certain chromosomes having little
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influence when taken as a whole. At the markers scale, the randomness of the sampler and the high level
of correlation between close predictors probably explain the presence of artifacts which sometimes make
it difficult to distinguish the real contributions from the background noise. We therefore use the N “ 100
experiments to build 95% confidence intervals and keep only significant estimates. By way of example,
Figure 3.4 displays the results obtained on chromosomes 7, 8 and 14. The main markers standing out are
summarized in Table 3.3 together with the kind of direct influences detected. Markers already highlighted
in [LBC`16] or [LMPS17] are also indicated. One can see that most of our conclusions coincide, but new
markers are suggested (especially on chromosome 8) and others have disappeared. Overall, the more
stringent statistical protocol that we used led to the retention of fewer predictors with more guarantee.
An important consequence of this study is the new interpretations in terms of direct influences allowed by
PGGMs. Especially as the residual correlations, hidden in the estimation of R “ Ω´1

y and closely related
to the correlations between the responses, are very high (greater than 0.7), as we suspected from Figure
3.2.

Figure 3.4 : Aggregated (sgs) estimation of ∆ on chromosomes 7, 8 and 14, from left to right. The
hilighted markers are D7Cebr205s3, D7Mit6, D7Rat19, Myc and D7Rat17 for chromosome 7, D8Mgh4,
D8Rat135 and Rbp2 for chromosome 8 and D14Rat8 and D14Mit3 for chromosome 14.
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Chromosomes Markers Main direct influences

3 D3Mit16* Adrenal+ Heart–

7

D7Cebr205s3* Fat+ Heart–
D7Mit6* Fat–
D7Rat19* Heart–

Myc* Adrenal+
D7Rat17 Adrenal+ Heart–

8
D8Mgh4 Adrenal– Heart–

D8Rat135 Fat+ Heart–
Rbp2 Fat–

10
D10Rat33* Adrenal+
D10Mit3* Adrenal+
D10Rat31* Fat–

11 D11Rat47 Fat–

14 D14Rat8* Fat+ Heart–
D14Mit3* Fat+ Heart–

15 D15Cebr7s13 Kidney–
D15Rat21* Adrenal+ Kidney–

17 Prl Adrenal– Kidney–

20 D20Rat55 Kidney–

Table 3.3 : Main relations detected by (sgs). X* means that marker X has already been suggested by
previous authors in this dataset. Y– (Y+) means that response Y is negatively (positively) influenced by
X.

3.6.3 Discussion and Conclusion

To conclude, we would like to draw the attention of the reader to some weaknesses of the study, still
under investigation. On the one hand, as soon as p is large (say, p ě 500), the Bayesian studies should be
conducted with a group structure or by promoting very sparse settings because due to the outline of the
sampler, looping over each column of ∆ may quickly become intractable. A group structure limits the
number of loops (only m ! p per sampler iteration), although each loop may require the generation of
large Gaussian vectors (up to pq ˆ κgq-dimensional), so compromises are needed. Subdividing the dataset
is natural when it is intrinsically equipped with a group structure (e.g. that of the previous section), we
could suggest otherwise a clustering of the set of predictors to gather similar entries and control the size
of the groups. At this stage, our procedures cannot compete with the Lasso-type algorithms (GLasso,
CLIME or even ANT) in terms of computational times. This is an issue on which future studies should
focus (ongoing works are devoted to translating the samplers into more efficient environments), enhan-
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ced MCMC methods may also be useful or novel computational strategies like the ‘shotgun’ stochastic
algorithm of [YN20]. On the other hand, the procedures are obviously very sensitive to the initialization
of the sampler, especially when p " n. For example, the term |Iκg ` λg X t

g Xg| is likely to explode when
κg is large and λg ą 1, that is why λg has to be carefully controlled via an accurate initial choice of ℓg.
Our heuristic approach is to initialize ℓg such that Erλgs ă 1 to control the behavior of |Iκg ` λg X t

g Xg|

during the first iterations. This works pretty well in practice, but needs to be done on a case-by-case basis,
which could be improved. From a theoretical point of view, we should obviously enhance the estimation
procedure by sampling from the MGIGq distribution for q ą 1, and not using the mode. Our fallback
solution gives satisfactory but not completely rigorous results. In addition, it could be interesting to
generalize the support recovery guarantee of Proposition 3.3.3 to (sgs), which is certainly possible at the
cost of a few additional developments. Overall, our study shows that for the moderate values of p (up to
103 or 104), the Bayesian approach of the partial Gaussian graphical models is a very serious alternative
to the frequentist penalized estimations, for prediction but also and especially for support recovery.
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Chapter 4

INTRODUCTION TO SURVIVAL ANALYSIS

Survival analysis is a branch of Data Science that studies the time elapsed until the occurrence of a
binary event, over a fixed observation period. Due to the convenience of this method to address an

issue present in various research areas, it is used in several disciplines. In economics the event of interest
could be the bursting of a speculative bubble, in industry the occurrence of a machine breakdown, and
in sociology the obtaining of the first post-graduation job. Although for this same type of analysis the
names differ according to the field (failure time analysis, reliability analysis, duration modeling, etc.), the
questions treated and the statistical tools used are similar.
In the medical field, survival analysis exploits data from cohort surveys or clinical trials in order to extract
information likely to help in designing effective therapeutic follow-up of patients. For example, it will be
possible to study the impact of a treatment on the remission time of individuals, to extract the variables
that may play an important role in the diagnosis, or to classify individuals according to their level of risk
of recurrence [Chr87][ZCa16].

In this chapter, we provide an introduction to survival analysis in the context of modeling Triple
Negative Breast Cancer (TNBC). The notions presented here will serve as a support for understanding
Chapter 5, which deals with the issue of feature selection in survival analysis. We will rely mainly on the
books by Kleinbaum and Klein [KK10], Lee and Wang [LW14], and Quigley [O’Q08], as well as various
articles that we will present in due course.

4.1 Background and terminology

We are in a medical context where the data processed come from cohort surveys. A cohort survey can be
divided into two phases. A first phase, known as the inclusion phase, during which patients who will serve
as the basis of the study are recruited ; and a second phase, known as the follow-up phase, consisting of
the therapeutic follow-up of patients and the collection of survey data until the event of interest occurs
or the project ends. This type of survey produces very atypical data, in terms of survival time. First
of all, the follow-up start date differs from patient to patient since it depends on the beginning of their
exposure to risk (e.g., date of screening, start or end of treatment, etc.). In addition, since the disease
progresses differently in each individual, the follow-up end date will also be specific to the patient. As
shown in Figure 4.1, we can therefore observe three different situations.

1. The patient experienced the event during the project. This is the case for patients 3 and 5, their
survival times are then observed.
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2. The patient did not experience the event until the study ends. This is the case for patients 1 and
4, their survival times are not observed.

3. The patient’s follow-up was interrupted during the study without them experiencing the event.
This is the case of patient 2, they represent individuals who leave the project for personal reasons
(e.g. moving, voluntary discontinuation of treatment, death not related to the disease), they are
considered lost to follow-up and their survival times are not observed.

TimeStart of
inclusion

End of
inclusion

End of
study

5

4

3

2

1

Figure 4.1 : Illustration of survival data in a study-time scale. Observed survival times are indicated by
solid diamonds, and the others are censored observations.

In this chapter, we present tools that can exploit these heterogeneous data to derive information that may
help in therapeutic decision-making. Before going any further, let us review and define the vocabulary
specific to cohort studies that we will be using in this introduction.

´ Event or death: the terms death and event are synonymous in survival analysis and simply refer
to the phenomenon of interest.

´ Start of inclusion: refers to the beginning of the study project ; the date from which the patients
are recruited.

´ End of inclusion: refers to the date on which recruitment of new patients ends. The individuals
who joined the project during the inclusion period constitute the final cohort sample.

´ End of study: refers to the closing date of the trial, and therefore the end of patient follow-up.
Any event occurring after this date will not be observed.

´ Entry date: corresponds to the follow-up start date of an individual, in other words their T0. This
date must correspond to the beginning of the individual’s exposure, it is important to determine
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the event with which it is associated in order to have a good interpretation of the study results.
In the case of breast cancer, this may be the date of cancer screening, a medical examination, the
start of treatment or a surgical operation.

´ Date of event: corresponds to the date on which the event occurred.

´ Date of last follow-up: corresponds to the date of the last news of an individual lost to follow-up,
i.e. who left the clinical trial before the event occurs.

´ Survival time: corresponds to the time elapsed between the entry date of an individual and their
date of event.

4.2 Survival model

The main idea of survival analysis is to determine the impact of individual characteristics on survival time.
In the context of breast cancer, this would allow us to determine, for example, which patient profiles have
a high probability of remission, and conversely which patient profiles will be more exposed to recurrence
or death, and why. We might think of a standard linear regression problem defined as follows

Ti “ βtXi ` ϵi,

where Ti corresponds to the survival time of individual i, Xi P Rp the values by individual i on the p

predictor variables, β P Rp the vector of regression coefficients, and ϵi a noise term. However, we have seen
previously that cohort survey data may include individuals who did not experience the event during their
follow-up. Since their survival time is not observed, this creates a problem of missing informative data
on the variable T . In this case, the use of standard linear regression is therefore excluded. An intuitive
idea to get around this problem would be to create the regression model using only the individuals whose
survival time is reported. This idea cannot be retained because it would introduce a significant bias in
the study results. First, it means working under the assumption that the event will be observed for all
individuals in the population, but it also implies a loss of information about the omitted individuals.
Indeed, although the latter did not observe the event during the survey, we know that they survived at
least up to some observed time. This is important information that survival analysis models can exploit
by introducing the notion of censoring.

4.2.1 Censoring

Censoring occurs when we have some information on the survival of an individual, but the date of death
is not explicitly known. The idea is to observe not only the realizations of the survival time variable T ,
but also the quadruplet pY, C, T, δq, where for each individual i, we will denote Yi their observed survival
time (follow-up time), Ci their censoring time, Ti their real survival time, and δi their event status.
The definition of the variables Y and C depends on the type of censoring used. We present the three
most widespread, their formulation is conditioned by the information previously available on individuals’
survival time.
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Left censoring

Left censoring applies when the patient’s actual survival time is less than their observed survival time.
This phenomenon occurs in particular when the start date of exposure is not observable, and in studies
where patients may observe the event outside the observation period. An example that illustrates this
first case is a screening test. The patient contracts the disease before the test results are available.

i

Context
study subjects: patients with initially non-metastatic cancer,
event (e): occurrence of first metastasis.

C: metastases
detection

e ?

i: patient who experienced the event before the test for metastases.

Figure 4.2 : Example of left censoring.

The variables Y and δ are then defined as follows:

Y “ maxpT, Cq ; δ “ 1tT ěCu.

Right censoring

Right censoring applies when the patient did not observe the event during their follow-up period. We
then know that their actual survival time is greater than their observed survival time. This form of
censoring is very common in analyses with cohort survey data, because even when the protocol provides
for continuous monitoring, this is limited in time and some individuals leave the project before the event
occurs. There are three subtypes of right censoring, in this report we will only discuss type 3 which is
very common in clinical research.

i

j

Context
study subjects: breast cancer patients,
event (e): remission.

C: end of patient
follow-up

i: patient who did not experience the event until the end of the study,
j: patient lost to follow-up before knowing the event.

Figure 4.3 : Example of right censoring.
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The variables Y and δ are then defined as follows:

Y “ minpT, Cq ; δ “ 1tT ěCu.

Interval censoring

Interval censoring applies when the date of the event falls between two known dates. Like left censoring,
it is found in studies where the monitoring is discontinuous ; patients can then observe the event between
two observation periods. Interval censoring can be seen as a generalization of left and right censoring. It

i

Context
study subjects: patients with initially non-metastatic cancer,
event (e): occurrence of first metastasis.

metastases
detection

e ?

i: patient who experienced the event between test 2 and 3.

no metastasis

Figure 4.4 : Example of interval censoring.

also occurs in many clinical studies, but is ignored for convenience, assuming that the date of observation
coincides with the date of the event [Ra18]. Otherwise Y is defined as follows:

Y “

#

sCl; Crs if δ “ 1,

sCl; 8r if δ “ 0.

4.2.2 Survival time distribution

In survival analysis, estimating the probability distribution of the variable T is a crucial point. This
one is characterized and can be defined by different functions (i.e survival function, density function,
cumulative distribution function...), but we will see later on that the survival and hazard functions are
the most manipulated in practice. From now on, we will assume that T is a continuous non-negative
variable, and denote fptq its density function and F ptq its cumulative distribution function.

The survival function

The survival function Sptq models the probability of an individual to survive beyond a fixed time t. In
other words, it returns the probability that the patient has not yet observed the event by this instant t.
The survival function is defined by

Sptq “ PpT ą tq, for t ą 0. (1)
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Sptq is in theory a continuous and decreasing function decreasing from 1 to 0 when t goes from 0 to `8.
However, in practice its estimate is discretized according to the training data, resulting in a step function.
Figure 4.5 illustrates graphical representations of a function Sptq and the empirical survival function Ŝptq,
commonly called survival curves.

Sptq

8

Ŝptq

11

end of
study

Figure 4.5 : Example of survival curves: (left) the theoretical curve - (right) the estimated curve.

The hazard function

The hazard function hptq, also known as instantaneous risk rate, returns an indication of the probability
of experiencing the event within a short time interval after t, given that the patient has survived up until
t. In this sense, it makes it possible to determine the periods during which individuals are most exposed
to the instantaneous risk of death, hence its name. The hazard function is defined as follows:

hptq “ lim
hÑ0

Ppt ă T ď t ` h|T ą tq

h
“

fptq

Sptq
“ ´ lnpSptqq1, for t ą 0. (2)

Like with the survival curves, it is recommended to illustrate individuals’ hazard functions graphically, to
get a better interpretation of their instantaneous risk evolution over time. Figure 4.6 illustrates examples
of hazard curves. We will see later that the pattern of these curves can give us some indications on the
model distribution family, and thus conversely, it will be possible to make assumptions on the model law
from prior information about the evolution of the risk over time.

The cumulative hazard function

The cumulative hazard function represents, by definition, the quantity of risk accumulated over a given
period of time. It is written as

Hptq “

ˆ t

0
hpuqdu “ ´ lnpSptqq, for t ą 0. (3)
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hptq hptq hptq

8 8 8

Figure 4.6 : Example of hazard curves.

We will now present some basic estimation methods, which are essential for this introductory chapter.
For this purpose, let us consider now and in all the chapter, the sample of n independent observations
pY, δ, Xq, where for each patient i we have the triplet pYi, δi, Xiq. Yi P R` is the observed survival time (i.e.
real or censoring time), δi P t0, 1u is the event status, and Xi P Rp stands for the individual characteristics
on the p predictor variables.

4.3 Non-parametric estimation - the Kaplan-Meier estimator

The Kaplan-Meier model, also called product limit estimator, provides a non-parametric estimate of the
survival function Sptq . It is based on the fact that a patient will have a survival time greater than a fixed
time t, if they were always at risk before t and did not experience the event at t. Thus, considering two
times ti and ti´1 such that ti ą ti´1 and ti´1 ě 0, we can see that

PpT ą tiq “ PpT ą ti, T ą ti´1q

“ PpT ą ti|T ą ti´1qPpT ą ti´1q.

Suppose we have a set of distinct ordered times of death ptiq, such that for i “ 1, ..., n, ti´1 ă ti and
t0 “ 0, by induction we have

PpT ą tkq “

k
ź

i“1
PpT ą ti|T ą ti´1q, with k P J1, nK. (4)

The Kaplan-Meier approach estimates the conditional probability of surviving at time Yi by the proportion
of patients still at risk at Yi and who did not experience the event at that time. Let ni be the number of
individuals at risk at time Yi (i.e. the number of patients present in the study at Yi), and ei the number
of events at Yi, we have

P̂KM pT ą Yi|T ą Yi´1q “ 1 ´
ei

ni
.
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Thus, under the assumption of distinct times Yi, the Kaplan-Meier estimator is given by

ŜKM ptq “
ź

i:Yiět

ˆ

1 ´
δi

ni

˙

“
ź

i:Yiět

ˆ

n ´ i

n ´ i ` 1

˙δi

. (5)

Under the assumption of independence between survival and censoring times, it is possible to show that
ŜKM ptq is a consistent maximum likelihood estimator with negligible bias [KM58].

The Kaplan-Meier estimator does not incorporate individual characteristics in its estimation proce-
dure, which limits its scope of application. In practice, this method is used more for descriptive statistics
purposes than for fitting a predictive model. In particular, Kaplan-Meier curves can be used to obtain
a general idea of the evolution of the survival probability, or to compare survival among independent
groups distinguished by a specific characteristic (e.g. the treatment received).

4.4 Semi-parametric estimation - Cox model

Semi-parametric estimation aims to build a reliable model for which a minimum of assumptions are
made. In survival analysis and especially in medical field, the Cox proportional hazard model [Cox75] is
by far the most widely used. Its popularity stems from its robustness which allows it to approximate the
results of a properly constructed parametric model. We will see, however, that this flexibility requires
compromises.

4.4.1 Proportional hazard models

Proportional hazard models express a multiplicative effect of predictors on the hazard function. The latter
is defined as the product of a baseline hazard function that depends only on time, and a positive function
which represents the impact of individual characteristics. It is given by

hpt|Xq “ h0ptq Rpβ, Xq, @ t ą 0, (6)

where β is the risk parameter to be estimated. Note that it is important to ensure the positivity of the
function Rpβ, Xq over the range of possible values for β and X, in order to maintain the interpretability
of the hazard function discussed in section 4.4.3. The hazard function thus defined presents a strong
assumption that should be evaluated, namely the effect of explanatory variables does not vary over time.
Thus, for any pair of individuals i and j, who take the values Xi and Xj on the predictors, the ratio
of their hazard functions is constant over time. Equivalently, we may say that the risk associated with
individual i is proportional to the risk associated with individual j, and the proportionality constant does
not depend on time.

HR ij “
hpt|Xiq

hpt|Xjq
“

Rpβ, Xiq

Rpβ, Xjq
ðñ hpt|Xiq “

Rpβ, Xiq

Rpβ, Xjq
hpt|Xjq, @ t ą 0, @ i, j.

These models take their name from this property. Furthermore, the hazard ratio is a measure of the
predictor effects. It has a similar interpretation to the odds ratio in logistic regression. Let be a patient
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i, a reference patient j, and their estimated hazard ratio yHR ij ,

´ if yHR ij “ 1, there were no significant differences between the two patients,

´ si yHR ij ą 1, the risk for patient i is greater than for patient j,

´ si yHR ij ă 1, the risk for patient i is lower than for patient j.

Similarly, it enables to compare the risk between different groups of patients.

4.4.2 The Cox proportional hazards model

The Cox model is defined as follows

hpt|Xq “ h0ptq exppβtXq, @ t ą 0. (7)

Here the relative risk function Rpβ, Xq is written as the exponential of a linear expression between
predictors and regression coefficients, and the baseline hazard function describes the risk for individuals
with X0 “ 0 P Rp, who can serve as a reference. The hazard ratio for two individuals i and j is given by

hpt|Xiq

hpt|Xjq
“ exppβtpXi ´ Xjqq, @t ą 0. (8)

Although it assumes a parametric form for the relative risk, the Cox model imposes no assumptions on
the baseline, and focus on inference that allowed h0ptq to remain arbitrary. Therefore, its estimation is
based on a semi-parametric procedure.

4.4.3 The partial likelihood

The likelihood function for right-censored data is built from two types of contribution. Suppose an
individual i is observed for a time Yi. If the individual i observed the event, i.e Yi “ ti and δi “ 1,
their contribution to the likelihood is the density at Yi, given by fpYi|Xi, βq “ hpYi|Xi, βqSpYi|Xi, βq.
However, if the individual i is censored, i.e Yi “ Ci and δi “ 0, all we know is that they have survived
beyond the observed time ; their contribution is then the probability of this event, which is SpYi|Xi, βq.
Thus, the likelihood associated with a survival model is given by

Lpβq “

n
ź

i“1
fpYi|Xi, βqδiSpYi|Xi, βq1´δi “

n
ź

i“1
hpYi|Xi, βqδiSpYi|Xi, βq, (9)

since fpYi|Xi, βq “ hpYi|Xi, βqSpYi|Xi, βq (see (2)). To apply the standard maximum likelihood method,
and estimate the regression coefficients β in the context of proportional hazard models, we would need
prior knowledge on the baseline hazard function. To overcome this restriction, Cox proposed a partial
likelihood, based on the conditional probabilities of death, which eliminates the term h0. The idea is to
recover the order of event occurrences rather than their distribution. Thus the partial likelihood will be
the product on the observed data, that the individual i knows the event at time Yi, among the individuals
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still at risk at Yi, and given that there was an event at Yi. Which give

Lppβq “

n
ź

i“1

˜

exppβXiq
ř

jPRpYiq exppβXjq

¸δi

“
ź

i:δi“1

exppβXiq
ř

jPRpYiq exppβXjq
, (10)

where RpYiq “ tj : Yj ě Yiu is the set of individuals still at risk at time Yi. The partial likelihood only
partially considers censored individuals. In this sense, it cannot be considered as a genuine likelihood, ho-
wever it behaves as such and has good computational capacities [KK10]. The estimation of the coefficients
β̂ is generally obtained by maximizing the partial log-likelihood using a gradient descent algorithm.

4.5 Parametric estimation - some usual distributions

The Cox model semi-parametic estimation allows to recover the effects of predictor variables, without
having to estimate the baseline function. Nevertheless, this flexibility comes with an inability for the
method to recover the model survival distribution. Parametric models approximate the complete survival
distribution while incorporating the effects of predictor variables in the fitted model. To do this, these
methods rely on the strong assumption that the survival function follows a known distribution, the aim
being to estimate the parameters of this distribution. Here we will present some well-known distribution
families and formalize their estimation in the framework of proportional hazards models.

4.5.1 Some distribution families

The first step in the estimation procedure is based on the choice of the model distribution family. When
the practitioner has no prior idea of the distribution of the data, the law of the model can be presumed
from the form of one of the five functions which define the distribution of T , i.e. S, f , F , h and H. For
example, it will be possible to choose a distribution family, according to the form of the survival function
estimated by a non-parametric method, or even according to the assumptions made about the behavior
of the risk over time. The Table 4.1 represents the density, survival and hazard functions of the most
widespread distribution families in the literature, and the Figure 4.7 illustrates the hazard and survival
curves associated with them according to the values taken by their parameters.

Distribution Density fptq Survival Sptq Hazard hptq Parameters

Exponential λe´λt e´λt λ rate: λ ą 0

Weibull kλ ptλq
k´1 e´ptλq

k e´ptλq
k

kλ ptλq
k´1 shape: k ą 0 ; scale: λ´1 ą 0

Gamma θα

Γpαq
tα´1e´θt 1 ´

γpα,θtq

Γpαq

fptq

Sptq
shape: α ą 0 ; rate: θ ą 0

Log-logistic pθ{αqpt{αq
θ´1

p1`pt{αqθq2
1

1`pt{αqθ

pθ{αqpt{αq
θ´1

1`pt{αqθ shape: θ ą 0 ; scale: α ą 0

Table 4.1 : Characteristic functions of the survival time for the usual distribution families.
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Figure 4.7 : Representation of the hazard and survival functions of the usual distribution families
according to shape, rate and scale parameters.

We can see that an exponential-type model is characterized by a constant risk over time and a clear
decrease in the survival function. These assumptions may hold for example when studying the lifetime of
some kinds of electronic components, but are generally unrealistic in biomedical field. A Weibull model is,
on the other hand, characterized by a monotonic failure rate and is therefore suitable for many problems.

In the absence of explanatory variables, parametric models can be estimated by maximum likelihood.
Following the same reasoning as in Section 4.4.3, this likelihood is given by

Lnpθq “

n
ź

i“1
fpYiq

δi SpYiq
1´δi , (11)

where θ is the parameters characterising the distribution of T . The estimation θ̂ of the parameters θ is
usually obtained using iterative optimisation procedures such as the Newton-Raphson algorithm.

4.5.2 Proportional hazard models

In order to incorporate individual characteristics into the estimation procedure, a natural approach is
to express the parameters of the desired distribution in terms of the covariates. There is three popular
methods to modelling survival data with covariates: the Proportional Hazard (PH) model, Accelerated
Failure Time (AFT) model and the Proportional Odds (PO) model. For the sake of brevity, we will only
present the parametric PH model. We direct the interested reader to the books by Kleinbaum and Klein
[KK10], and Lee and Wang [LW14], which present the other two approaches.
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The parametric version of PH models is obtained by assuming a parametric form on the baseline
hazard h0ptq of the hazard function (7). Among the distribution families presented in Table 4.1, only the
exponential and Weibull distributions can accommodate the proportional hazard assumption. Suppose
that T follows a Weibull distribution of parameters pλ, kq. When building a PH model, an immediate
assumption for the baseline hazard would be

h0ptq “ λk pλtq
k´1

. (12)

Multiplying this term by the relative risk related to individual characteristics, we obtain the hazard
function of the PH model

hptq “ λk pλtq
k´1 exppβXq. (13)

By setting λ‹ “ λ expp
βX
k q, one can show that we obtain again a Weibull distribution with parameters

pλ‹, kq. Thus, the Weibull family is closed under the proportional hazard assumption. Obviously, this
reasoning holds for the exponential family, since it is a special case of Weibull where k “ 1. The estimation
of the parameters of these models is obtained by maximizing the likelihood using iterative optimisation
procedures such as the Newton-Raphson method.

4.6 Estimation of penalized models

Although the Cox model is highly appreciated in the literature, it is not the best suited to high-dimensional
problems, where the sample size is much smaller than the number of explanatory variables, and for which
there is a non-negligible amount of censored observations. To avoid falling into overfitting, researchers
have introduced penalized models. For most of the methods encountered in the literature, the principle
is basically the same as the penalized methods presented earlier in this manuscript. Starting from the
initial optimization problem, we incorporate a penalty term to the objective function, inducing sparsity
and shrinkage in the coefficient vector. The survival Lasso of Tibshirani [Tib97] is again the best known
method. It consists in penalizing the partial log likelihood of the Cox model with an ℓ1-norm penalty.
The new optimisation problem is given by

β̂ “ arg min
β

`

´ ℓℓppβq ` λ |β|1
˘

. (14)

Most of the penalized estimation methods in survival analysis are based on the Cox model, and differ in
the form of penalization proposed. The literature includes a wide variety of them adapting to different
constraints of high dimensional survival analysis. In Chapter 5, we will present some of them.

4.7 Proportional hazards Cure model

The standard survival analysis is based on the strong assumption that all individuals will eventually
observe the event of interest if the follow-up time is long enough. However, depending on the problem
studied, it is likely that a part of the population is no longer at risk and will never experience the
event. In the context of breast cancer, for example, taking an effective treatment can spare some patients
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from the recurrence event. These phenomena are modeled using Cure models, which assume that a
fraction of the censored observations are in fact "cured" to the event. In other words, we will assume
that lim

tÑ`8
Sptq ą 0, which is characterized by a survival curve that reaches a plateau due to the absence

of new events when there is only the cured population left to follow. Thus, a survival curve, estimated
by a nonparametric method, that shows a long and stable plateau with a strong censoring at the tail
(as in Figure 4.8), can be considered as an empirical evidence of cured individuals in the population.
Many parametric, non-parametric and semi-parametric methods of Cure models have been proposed in
the literature [Gol84, PD00, Far82]. We focus here on the Proportional Hazards Cure model.

Ŝptq

8

Figure 4.8 : Example of an estimated survival curve adapted to cure models.

4.7.1 Model formulation

An intuitive way to formulate a Cure model is to use a mixture modeling approach, where the study
population is assumed to be a mixture of cured and exposed individuals. Let L be the dummy variable
that indicates whether an individual will eventually experience the event (L “ 1) or not (L “ 0), and
define πpXq “ PpL “ 1 | Xq the fraction uncured of the population having characteristics X. Under the
mixture modeling approach, the survival function now satisfies

S (c)pt | Xq “ p1 ´ πpXqq ` πpXq Spt | L “ 1, Xq, (15)

where Spt | L “ 1, Xq denotes the survival function for the exposed group. Thus, to study the predictor
effects on the cure rate and survival distribution, we only need to model the distribution of L and the
conditional distribution T |L “ 1. In this vein Farewell proposed a parametric approach [Far82]. For the
incidence part, they applied a logistic form to the distribution of L, i.e.

πpXq “ PpL “ 1 | X, bq “
exppbtXq

1 ` exppbtXq
, (16)
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where b P Rp is the vector of coefficients for this part. Then for the latency, they assumed the survival
time for the exposed fraction to have a Weibull distribution. Kuk and Chen subsequently proposed a
generalization of the Farewell model, which consists in estimating the conditionnal distribution T |L “ 1
using a Cox model [KC92]. The associated conditional hazard and survival functions are given by

hpt | L “ 1, Xq “ h0pt | L “ 1q exppβXq, (17)

Spt | L “ 1, Xq “ S0pt | L “ 1q exppβXq, (18)

where S0pt | L “ 1q “ PpT ą t | L “ 1, X “ 0q is the baseline conditional survival function and β P Rp the
vector of coefficients for the latency part.

4.7.2 Maximum likelihood estimation

Building a PH mixture Cure model relies on the estimation of the parameters b and β, which is usually
done by likelihood maximization. Suppose an individual i is observed for a time Yi. If the individual
i observed the event, i.e Yi “ ti and δi “ 1, we know they are not in the cured fraction and therefore
Li “ 1. Their contribution to the likelihood is given by πpXiq fpYi | Li “ 1, Xiq. However, if the individual
i is censored, i.e Yi “ Ci and δi “ 0, we cannot tell if they are exposed and will experience the event
at some future time after their follow-up, or if they are cured. Their contribution is the expression of
the cure survival function at Yi, which is πpXiq ` p1 ´ πpXiqq SpYi | Li “ 1, Xiq. Thus, the observed full
likelihood is given by

Lpb, βq “

n
ź

i“1

”

πpXiq fpYi | Li “ 1, Xi, βq

ıδi
”

πpXiq ` p1 ´ πpXiqq SpYi | Li “ 1, Xi, βq

ı1´δi

,

“

n
ź

i“1

”

πpXiq hpYi | Li “ 1, Xi, βq SpYi | Li “ 1, Xi, βq

ıδi
”

πpXiq ` p1 ´ πpXiqq SpYi | Li “ 1, Xi, βq

ı1´δi

.

(19)

When the cured fraction satisfies 1 ´ πpXiq “ 0 for all combinations of characteristics Xi, we recover the
Cox model and the coefficients β can be estimated by maximizing the associated partial log-likelihood.
However, in the presence of a cured fraction, we cannot isolate the conditional survival function as
performed in the Cox likelihood. In any case, it is not recommended to remove S0pt | Li “ 1q from the
optimization problem, at the risk of losing information about b [ST00]. Many estimation methods have
been proposed to address this problem [ST00, PD00, KC92, Lu08]. We can cite as an example the non-
parametric estimation approach of Peng and Dear [PD00] and Sy and Taylor [ST00]. The idea is to
express the complete likelihood with the latent variable L. Since Li is unobserved when δi “ 0, there
are two possibilities. Either the subject is in the cured fraction and contribution to the likelihood is the
probability to be cured, either they are exposed and their contribution is given by the conditional survival
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function. Thus, the complete and unobserved likelihood is given by

Lpb, βq “

n
ź

i“1

”

πpXiq hpYi|Li “ 1, Xi, βqSpYi|Li “ 1, Xi, βq

ıδiLi

ˆ

n
ź

i“1

”

πpXiq SpYi|Li “ 1, Xi, βq

ıp1´δiqLi

ˆ

n
ź

i“1

”

1 ´ πpXiq

ıp1´δiqp1´Liq

, (20)

“

n
ź

i“1
πpXiq

Li p1 ´ πpXiqq
p1´Liq

ˆ

n
ź

i“1

”

hpYi|Li “ 1, Xi, βqSpYi|Li “ 1, Xi, βq

ıδiLi
”

SpYi|Li “ 1, Xi, βq

ıp1´δiqLi

. (21)

The complete-data full likelihood is expressed as the product of two elements, each including one of the
two parameters of the mixture model. The estimation procedure is performed with an EM algorithm,
first by computing the expected complete-data likelihood with respect to L, then by maximazing the
likelihood obtained.
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Chapter 5

STEPWISE VARIABLE SELECTION FOR

SURVIVAL ANALYSIS

Multi-omics analysis involves very high-dimensional data, where the number of individuals is consi-
derably smaller than the number of explanatory variables. In particular, depending on the omics

measures considered, the number of predictors can reach an order of magnitude of 105, whereas cohort
surveys generally contain only a few hundred individuals. This second point can be explained by the
various constraints related to the recruitment of individuals within the surveys, but also by the cost
and time constraints required for the collection of information, which are proportional to the number of
omics approaches considered and to the quantity of individuals selected. In this sense, variable selection
is a central issue in clinical research. On the one hand, for statistical purposes, to overcome the curse of
dimensionality ; and on the other hand, for practical purposes, to build transportable models, that could
be applicable in a hospital environment. The literature gathers numerous methods of variable selection
to address this issue. Without claiming to be exhaustive, we can cite to that extent the survival Lasso of
Tibshirani [Tib97], the priority-Lasso of Klau et al. [KJH`18] which integrates a priori information on
the relevance of the different omics measures, or the boosting approaches of Buehlmann [Bue06], Tutz
and Binder [TB06]. However, due to the very high-dimensionality of the processed data, methods based
mainly on the minimization of the fitting error will not always lead to the selection of the real model
support. Indeed, the higher the number of predictors, the higher is the probability to find a random
combination of variables minimizing the fitting error. Moreover, each of the existing methods deals with
different approaches, and lead to different selections, sometimes leaving the practitioner undecided.

In this chapter, we propose a stepwise variable selection algorithm (SVSSA), suitable for multi-omics
analysis. The idea is to take advantage of the performances of variable selection methods praised by the
literature, by offering a consensus between the different approaches. As can be seen in Figure 5.1, our
procedure is decomposed into five steps. Step 0 is optional and consists in removing outliers form the
dataset. Steps 1 to 3, focus on reducing the size of the omics matrices, to bring them back to an order
of magnitude close to that of the clinical data. It is only in step 4 that clinical data enters the selection
process.
Algorithm 1 and Figure 5.1 provide an overview of the selection procedure. Each step of the process
involves scoring based on four methods. Step 0 of outliers detection assigns an atypicality score to each
individual in the dataset. For this preliminary step, only clinical information is taken into account to
calculate the scores. Step 1 performs a large marginal selection within the omics matrices. The idea is to
reduce, in the first instance, the size of the matrices to a reasonable level, to facilitate the execution of
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Figure 5.1 : Flowchart of the variable selection process using the SVSSA algorithm.

the following steps. In step 2, we exploit the correlation structures within the omics matrices by selecting
groups of correlated variables. First, we build the different groups1 with a clustering method, then we
perform again a scoring at the group level. Step 3, in some way, consists in selecting the most relevant
variables in each group, but indirectly. To do this, we perform a scoring at the variable level, then select
the variables being at the same time the most relevant, but also the least correlated between them.
Thus, we are seeking for a significant selection, while limiting information redundancy. Finally, in step
4 we make the final selection of at most P ‹ variables. This step combines a scoring procedure with a
forward-backward selection procedure. The main idea of this whole process is to gradually reduce the
size of the data, ensuring that at each step a consensus is reached on the choice of the selected variables.
Once the selection by SVSSA is done, the practitioner can perform predictions by building the model of
their choice with the selected variables.
The following sections present the different steps of SVSSA. We will not go into the details of how the
different methods used work, but we refer the interested reader to the Appendix A, where we provide a
concise presentation of the tools, scoring procedures and algorithms used in SVSSA, and for more details

1. or rather subgroups since the omics matrices themselves are considered as the main groups
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5.1. Preliminary step: Removing outliers

please refer to the seminal articles. Moreover, note that this procedure does not aim to build a model but
to select variables. Therefore, in some borrowed selection algorithms, we set aside the search for optimal
penalization parameters, and set default parameters inducing sparsity. These default parameters can be
modified by the practitioner. We make available the R codes of the SVSSA algorithm on Github2.

Algorithm 1 SVSSA
Input: Dataset Data “ pY, δ, Xq, group index GId “ pId1, ..., Idmq where Id1 are the indexes of the

clinical variables if included, ultimate number of variables to select P ‹,
Optional: indicate whether the step0 should be launched Step0 “ true, all optional inputs of Algo-
rithms 3 to 6.

Output: Final dataset Datafinal, variables selected Selected_vars.
if Step0 “ true then

Step0: run Algorithm 2 to remove outliers
end if
Step1: run Algorithm 3 to perform a marginal selection on the omics matrices
Step2: run Algorithm 4 to first build subgroups of variables, then perform group selection on the omics
matrices
Step3: run Algorithm 5 to perform a variable selection on the omics matrices
Step4: run Algorithm 6 for the final selection on clinical data and the remaining omics variables

Now and for the rest of the chapter, consider that we have a sample of n independent observations
pYi, δi, Xiq, where for an individual i, Yi corresponds to the observed survival time, δi to the censoring
indicator, and Xi to the p-dimensional vector of the values taken on the predictors. Moreover, since the
predictors are ordered in m groups of sizes κ1 ` ...`κm “ p, Xi admits the decomposition pX

¯ 1 i, ..., X
¯ m iq.

The observed data are in X P Rnˆp where the i-th row is X t
i , δ P Rn and Y P Rn, and we note

pXpdq, Ypdqq the subsample containing only the individuals who observed the event. Note in particular
that in all estimation phases where the target variable is only the survival time Y , the estimation is based
on the subsample pXpdq, Ypdqq.

5.1 Preliminary step: Removing outliers

Outlier detection is an important step prior to building any learning model. In survival analysis, it enables
the detection of extreme individuals with a survival time that is too long or too short given their individual
characteristics, and who may therefore degrade the model estimation. This preliminary step is optional,
but highly recommended. It can be done manually by the practitioner or automatically when launching
SVSSA. The procedure we present is based on the paper of Carrasquinha et al. [CVV18]. The authors
proposed an anomaly scoring algorithm that performs a consensus between ten outlier detection methods
on each individual of the dataset. We use their tools here, but we limit our procedure to four methods for
computation time matter. The tools used here can be grouped into two approaches. First, the residual
approach which represents one of the fundamental procedures in outlier detection. It is generally described

2. https://github.com/EuniceOkome/SVSSA
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as the study of differences between the observed values of a variable of interest and the values predicted
by a given regression model ; outliers are then represented by significant differences. As it stands, this
definition is not perfectly applicable to survival models because it does not take censoring into account. We
use three procedures that have been able to adapt to this constraint, thus improving the interpretability
of the residual approach in the context of our study. The second approach is the predictive performance
approach. The simple and intuitive idea is to penalize individuals who reveal a negative impact on the
model predictive performances. This step relays only on the clinical data ; Algorithm 2 illustrates its flow.
The methods used to measure the outlierness are the martingale residuals of Therneau et al. [TGF90],
the deviance residuals of Therneau et al. [TGF90], the censored quantile regression residuals of Eo et al.
[EHC14], and the Dual Bootstraps Hypothesis Testing of Pinto et al. [PCV15a]. The scoring procedure
is based on the Rank Product test as suggested by [CVV18].

Algorithm 2 Removing outliers
Input: Dataset Data “ pY, δ, Xq, group index GId “ pId1, ..., Idmq where Id1 are the indexes of the

clinical variables if included,
Optional: rate of individuals to be removed r “ 0.01.

Output: New dataset Datas1.
Dataused “ clinical data
Compute the martingale residuals of the Cox model
Compute the deviance residuals of the Cox model
Compute the residuals of the censored quantile regression
Compute the Dual Bootstraps Hypothesis Testing
Perform the scoring using the Rank Product test
Remove the rn most atypical individuals from the dataset

5.2 Step 1: Marginal selection

The marginal selection step consists in an aggregation of four correlation analysis methods. We exploit
the idea that a variable marginally correlated with the target variables is likely to have a significant
impact on the final model. To compare the degrees of marginal correlations, we assign a significance score
to each variable according to its level of association with the variables Y , δ, and the pair pY, δq. The
Algorithm 3 illustrates the flow of this selection step.
As discussed in the introduction section, this step does not include clinical predictors. The methods
used to measure the significance of the correlation are the Spearman correlation test [Spe04], the Wil-
coxon–Mann–Whitney test [Wil45, MW47], the Uno’s concordance index (c-index) [UCP`11] and the
integrated Brier score (iBrier) [GSSS99]. The scoring procedure is again based on the Rank Product test.
Moreover, in order to exploit the multi-omics aspect of the data in the following steps, we want to ensure
that each group has a nonzero size after the current selection step. To do so, we perform the scoring
procedure within each omic group g and select the min

“

pg, 0.1 min
gPt2,...,mu

ppgq ` P ‹
‰

most significant va-
riables. This default setting aim to reduce all omics matrices to the same size, but the practitioner can
assign different selection rates to each matrix.
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Algorithm 3 Marginal selection
Input: Dataset Data “ pY, δ, Xq, group index GId “ pId1, ..., Idmq where Id1 are the indexes of the

clinical variables if included, ultimate number of variables to select P ‹,
Optional: number of variables to be select in each omic group P

p1q
g “ min

“

pg, 0.1 min
gPt2,...,mu

ppgq`P ‹
‰

.

Output: New dataset Datas2, variables selected Selected_vars.
for g “ 2, m do

for j P Idg do
Compute the Spearman correlation test between Ypdq and Xpdq

¨j , and take the p-value
Compute the W-M-W test between δ and X¨j , and take the p-value
Measure the c-index of the Cox model based only on the variable j
Measure the iBrier score of the Cox model based only on the variable j

end for
Perform the scoring using the Rank Product test
Select the P

p1q
g most significant variables of this omic matrix

end for

5.3 Step 2: Selection of correlated groups

We have previously discussed the existence of correlation structures within omics data. In particular,
within each grouping by omic type, we can observe more or less strong correlations between predictors.
Co-regulated gene modules and gene regulatory networks included in RNA-sequencing data are a good
illustration of this point. In this step, we want to exploit the fact that some variables have a joint
expression on the model, and offer better results when their correlation structure is taking into account.
To do so, we perform a selection by groups of correlated variables, segmented in two phases. First we build
the groups using hierarchical clustering, then we aggregate four selection methods per group in order to
assign a significant score to each of them. As in step 1, this procedure does not include the clinical data,
and the selection models will be fit on the variables Y , δ and the pair pY, δq. For a better understanding,
let’s break down the Algorithm 4 which summarizes the flow of this selection step.
Recall that the input dataset results from step 1. The clustering procedure is applied to each distinct omic
group, and the number of clusters considered is proportional to the size of the initial group. This arbitrary
parameterization is set to ceilingppg{50q, where pg is the number of variables in the group g. The idea is
to create clusters of reasonable sizes to allow the estimation algorithms to run smoothly. Furthermore,
note that the initial clustering may lead to the isolation of some variables. In this case, the algorithm
will progressively reduce the number of clusters until we obtain subgroups of two predictors minimum.
For the sake of clarity, we now call groups the omic groups and subgroups the clusters resulting from the
hierarchical clustering. In the estimation phase, the algorithm applies four group selection methods on
three subgroups of variables. Each subset of subgroups is constructed randomly, so that any subgroup is
included in a single subset. In order to test different combinations of subgroups and obtain relevant results,
we iterate this estimation phase five times. Once the estimations are completed, each subgroup is assigned
a significant score. The most significant are then selected so as to keep approximately minp 0.1p ` P ‹, p q

variables. The method used in the estimation procedure are our Bayesian PGGM (see Chapter 3), the
logistic group Lasso of Meier et al. [MVDGB08], the IPF-Lasso of Boulesteix et al. [BDBJF17], and the
Block Forest of Hornung and Wright [HW19]. Finally, the global scoring consists simply in counting the
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Algorithm 4 Correlated variable groups selection
Input: Dataset Datas2 “ pY, δ, Xq, group index GId “ pId1, ..., Idmq where Id1 are the indexes of the

clinical predictors if included, ultimate number of variables to selected P ‹,
Optional: number of iterations for the estimation procedure nIt “ 5, number of subgroups in each
model ngr “ 3, model parameters, rate of subgroups to be selected P p2q “ minp 0.1p ` P ‹, p q.

Output: New dataset Datas3, variables selected Selected_vars
for g “ 2, ..., m do

pg = number of variables in the group g
subGIdg “ pIdg1, ..., Idgmq subgoup index obtained by hierarchical clustering on g

end for
subGid “

Ť

g“2,...,m subGidg

for it “ 1, nIt do
Create random subsets of ngr subgroups in subGId, s.t. each subgroup is included in one subset
for each subset do

Compute a bayesian PGGM model and give `1 to the score of subgroups selected
Compute a group Lasso model and give `1 to the score of subgroups selected
Compute an ipf-Lasso model and give `1 to the score of subgroups selected
Compute a Block Forest model give `1 to the score of subgroups verifying wsgj ą 0.75

end for
end for
Select the P p2q of the subgroups with the highest score

number of times that a given subgroup has been selected by the different methods.

5.4 Step 3: Selection of decorrelated variables

The main goal of step 2 was not only the selection of correlated groups, but also a selection of relevant
variables based on random patterns favorable to their expression, i.e. combined with variables that should
highlight their importance through joint actions. With the resulting data as support, we now want to
recover variables that are both significant and as uncorrelated as possible, in order to limit information
redundancy. To do so, we follow a reasoning similar to De Jay et al. in their mRMRe method [DJPCO`13],
but adapting it to our consensual context. For a better understanding, let’s break down the Algorithm 5
which summarizes the flow of this third selection step.
First, let’s denote ppoq the number of non-clinical predictors in Datas3, and let nvar “ ppoq{10 and
nrep “ ppoq be the default parameters. This step is divided into two phases, an estimation phase and a
selection phase. In the first one, the algorithm begins by constructing subsets of Datas3 each containing
nvar of randomly drawn non-clinical predictors, so that any variable is included in a single subset. Then,
the estimation phase goes on to apply four variable selection methods on these samples. In order to
test different combinations of variables and obtain a relevant selection, this phase is iterated nrep times.
The method used in the estimation procedure are our Structural PGGM (see Chapter 2), the logistic
Lasso [Lok99, SK03], the Gradient boosting with component-wise for Cox model [Bue06, DB16], and the
Spike-and-Slab Lasso Cox of Tang et al. [TSZY17]. As in the previous step, the results of this estimation
phase provide a significance score for each variable, expressed as the number of times it was selected by
the different methods. However, we will not only select the variables with the highest scores, but those
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Algorithm 5 Uncorrelated variables selection
Input: Dataset Datas3 “ pY, δ, Xq, group index GId “ pId1, ..., Idmq where Id1 are the indexes of the

clinical predictors if included, list of remaining subgroups from step 2 subGroups, ultimate number of
variables to select P ‹,
Optional: number of variables in each model nvar “ ppoq{10 where ppoq is the number of remaining
non-clinical predictors, number of iterations nrep “ 10 nvar, rate of variables to be selected τ “ 0.5,
model parameters

Output: New dataset Datas4, variables selected Selected_vars
for it “ 1, nrep do

Create random subsets of Datas2 containing 10% of non-clinical variables, s.t. each variable is inclu-
ded in one subset
for each subset do

Compute a structural PGGM and give `1 to the score of variables selected
Compute a logistic Lasso and give `1 to the score of variables selected
Compute a bmlasso and give `1 to the score of variables selected
Compute a glmboost and give `1 to the score of variables selected

end for
end for
nsel “ ceilingpτ ppoqq

Selected_vars “ the variable j with the highest score
while number of predictor selected ă nsel do

score
ppq

j “ scorej penalized by the correlation with the selected predictors
Add to Selected_vars the variable j with the highest penalized score

end while

that also have a low level of correlation with the other selected variables.

5.5 Step 4: Final selection

Throughout the previous steps, we refined the non-clinical dataset to keep only the most relevant variables.
We can now integrate the clinical data into the selection process, without concern about being unfairly
underestimated due to their small size. This last step focuses on the estimation of survival models, and is
composed of three phases ; an estimation phase, a first selection phase by scoring, and a second selection
phase with forward-backward approach. The Algorithm 6 summarizes its flow.
Adding clinical data forces us to reflect on an additional problem of clinical analysis ; in particular,
according to practitioners, we often observe a poison effect of certain omics variables on clinical variables.
In other words, the presence of certain variables in a model can negatively impact the evaluation of
some clinical variables. To limit this inconvenience, we segment this last estimation phase in three parts.
First, we build the models using each individual group separately, then by pairs of groups, and finally we
consider the interaction of all groups together. In this way, we can assess the relevance of the variables in
different contexts. The method used in the estimation procedure are the sparge-group Lasso of Simon et
al. [SFHT13], the priority-Lasso of Klau et al. [KJH`18], the random survival Forest of Ishwaran et al.
[IKBL08] and the Likelihood-based boosting for Cox model [TB06, BASB09, DB16]. The first phase of
selection consists simply in selecting the P ‹ variables with the highest score. The second selection phase
aims to find the best performing combination of variables, among the most significant ones. To this end,
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Algorithm 6 Final variables selection
Input: Dataset Datas4 “ pY, δ, Xq, group index GIds2 “ pId1, ..., Idmq where Id1 are the indexes of the

clinical predictors if included, ultimate number of variables to be selected P ‹,
Optional: model parameters.

Output: New dataset Data_final, variables selected Selected_vars.
for each group, each pair of groups and all groups together do

Compute a sparse-group Lasso and give `1 to the score of variables selected
Compute a priority-Lasso favoring clinical data and give `1 to the score of variables selected
Compute a survival Forest and give `1 to the score of variables selected
Compute a Coxboost and give `1 to the score of variables selected

end for
Select the P ‹ variables with the highest score
Select the best combination of variables using a forward-backward approach that minimize the iBrier
score on the learning dataset

we perform a forward-backward selection procedure in order to minimize the cross-validation iBrier score.

5.6 Summary

We end this presentation of the SVSSA method with the Table 5.1 that provides a summary of the
methods and algorithms used.

5.7 Application on real data

In this section, we explore the problem that motivated this thesis, the selection of relevant features for the
diagnosis of TNBC. As presented in the Introduction, TNBC is a particularly challenging tumor form in
oncology. Because of the difficulties encountered by oncologists when evaluating the diagnosis, there is a
significant relapse rate in patients and a rapid progression of the disease to a nearly incurable metastatic
stage. The SVSSA method seeks to overcome these limitations by providing a reasonable amount of
significant prognostic factors, thus impacting the therapeutic follow-up of patients. In order to evaluate
its relevance in this context, we will compare its predictive performances with those of other variable
selection methods, on a real dataset.

5.7.1 Presentation of the dataset

Our study is based on data from the multi-omics TNBC cohort at Fudan University Shanghai Cancer
Center (FUSCC), available on the National Omics Data Encyclopedia (NODE) platform3. This cohort
included 465 TNBC patients, for whom we have one to three matrices of omic data. In order to perform
a multi-omics analysis, we restricted our study to patients displaying the three omic measures. This
left us with 233 patients and 253 411 explanatory variables distributed in four matrices: clinical, RNA
sequencing (RNAseq), mutation and copy-number alteration (CNA). We are clearly in a high dimensional
framework and more precisely in multi-omics data analysis. Figure 5.2 shows the distribution of the omics

3. NODE: https://www.biosino.org/node/project/detail/OEP000155
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matrices in the dataset. We can see that the size of the clinical data is derisory compared to that of the
other measures (0.02 % of the dataset), while by contrast the CNA matrix is predominant (85.87 % of
the dataset). This distribution illustrates the need for late selection within the clinical data so that their
under-representation does not lead to an underestimation of their prognostic relevance.

Figure 5.2 : Distribution of omics matrices in the dataset.

Before performing the analysis, pre-processing of the dataset is necessary due to the specificities
of clinical data. Firstly, in cohort data, there is generally a lot of missing data, particularly because the
individuals recruited do not wish to carry out all the planned tests. Furthermore, the variables considered
in the clinical matrices are presented in different formats. In order for the methods selected in this analysis
to work properly, it is necessary to remove the missing information from the dataset and to convert the
variables that are not already in numerical format.

The treatment of missing data must be done with caution so as not to lose too much clinical infor-
mation. In our dataset, we have 15 variables and 233 observations with at least one missing information.
Since no observation in the sample is complete, it is necessary to study the a priori relevance of each
variable, in order to find a balance in the removal of both variables and individuals, and thus maintain a
suitable amount of information. We therefore first removed 18 irrelevant variables, some of which contai-
ned missing data. Table 5.2 lists these variables and the reasons for their removal. We also removed patient
FUSCCTNBC389 because she had zero follow-up time, and therefore represents an outlier. At this stage
of the study, the clinical matrix has 232 observations and 32 variables, for which we have 122 observations
and 11 variables with at least one missing value. The boxplots on the left side of Figure 5.3 show the
distribution of missing data within these incomplete variables and observations. Since the median of the
variable was 25, we decided to remove the variables with at least 25 missing data so as not to further
reduce the sample size. After that, only three observations had missing data, we removed them from the
dataset as well. To summarize, in addition to the variables in Table 5.2 and patient FUSCCTNBC389, we
removed the variables SNF_Subtype, Mutation_Subtype, BRCA1.2.MUT.20160718, sTILs, iTILs, Grade
and the patients FUSCCTNBC134, FUSCCTNBC170, FUSCCTNBC245.
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Figure 5.3 : Distribution of missing data restricted to variables and observations with at least one
missing data after the first removal (left), and distribution of different variable formats in the clinical
matrix after all missing data has been removed (right).

After removing the missing data, the clinical matrix is now composed of 229 observations and 26
variables of different formats. The bar chart on the right of Figure 5.3 shows the distribution of these
formats within the matrix. For the proper functioning of the algorithms we transform the categorical
variables into vectors of quantitative variables, using the One-Hot encoding method [Bro22]. After the
conversion, the clinical matrix has 65 variables, including 2 variables of interest (observed survival time
and survival status) and 63 explanatory variables.

5.7.2 Presentation of the algorithms

In this study, we will compare the performance of our selection algorithm with nine methods that have
been proven to be effective in the literature. However, since the SVSSA method has mainly a selection
objective and not a prediction one. We will focus on the performance in terms of variable selection, in
order to compare our approach to other methods. To do so, we use each method to perform a selection of
variables assumed to be significant, and then we apply a Cox model with the selected variables to perform
predictions. The choice of methods considered is mainly based on the benchmark study by Herrmann
et al. [HPH`21] on survival predictions in multi-omics analysis. One can also notice that most of these
comparative methods play a role in the SVSSA approach. This will allow to juxtapose the respective
performances of these methods with their joint performances. Table 5.3 provides an overview of the
methods considered. Five approaches are covered, distributing the methods as follows:

´ the penalized regression approach: survival Lasso [Tib97], IPF-Lasso [BDBJF17], priority-
Lasso [KJH`18], GRridge [VDWLV`16], sparse-group Lasso [SFHT13],

´ the boosting approach: gradient boosting [Bue06, DB16], Likelihood-based boosting [TB06,
BASB09, DB16],
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5.7. Application on real data

´ the nonlinear approach by decision trees: survival random Forest [IKBL08],

´ the bayesian approach: spike-and-slab Lasso Cox [TSZY17],

´ the aggregation approach: Stepwise Variable Selection for Survival Analysis.

Learner Method Package::function Tuning

lasso survival Lasso glmnet::cv.glmnet 10-fold CV
ipfLasso* IPF-Lasso ipflasso::cvr.ipflasso 10-fold CV
priorLasso* priority-Lasso priortiylasso::prioritylasso 10-fold CV
SGL* sparse-group Lasso SGL::SGL sparsity
gboost gradient boosting mboost::glmboost sparsity
cboost likelihood-based boosting CoxBoost::cv.CoxBoost sparsity
ranger survival random Forest randomForestSRC::rfsrc OOB
bmlasso spike-and-slab Lasso Cox BhGLM::bmlasso sparsity
clinicalCox Cox model survival::coxph No
SVSSA* SVSSA SVSSA and survival::coxph sparsity

Table 5.3 : Summary of the methods used in the comparative study, the symbol * indicates the methods
incorporating the group structure in their estimation procedure.

Each of these methods performs selection either at the variables level. The tuning of the parameters
is carried out according to the desired degree of sparsity, when this option is proposed, otherwise it is
done by cross-validation. As previously discussed, a limited number of variables is strongly recommended
to ensure the transportability of the models obtained in a clinical setting. Therefore, we have set the
maximum number of variables to be selected at 100. Finally, we include in the comparative study a Cox
model built with only clinical data. This will serve as a baseline model to evaluate the contribution of
omics data in the context of our study.

5.7.3 Variable selection with the SVSSA method

In this section, we present the results obtained by SVSSA on the whole dataset. As mentioned above, the
maximum number of predictors to be reached is 100. The input parameters are the default parameters
unless otherwise specified.

Preliminary step: Removing outliers

We start with the preliminary step of outlier detection. During this step, the algorithm designated 10
individuals as outliers. Figure 5.4 illustrates, on the one hand the intersections between the different
methods used for sets of 20 most atypical individuals according to each measure ; and on the other hand
the proportion, for each method, of individuals designated by SVSSA present in its list of the 20 most
atypical. First notice on the left graph that only one individual is considered as outlier by the four
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methods, and five other individuals are considered as outliers by three of them. These first 6 individuals
were considered as significantly atypical by SVSSA. Moreover, the bar chart shows that SVSSA aligned
mainly with the martingale residuals approach since all the detected individuals were also considered
as the most atypical by this method. The DBHT method on the other hand showed less impact on this
example. This last point can also be explained by the fact that it is the only approach based on predictive
performance, and therefore it offers less common results with the other methods.

Figure 5.4 : Step 0: intersections between the four methods used for sets of 20 most atypical individuals
according to each measure (left), proportion of outliers designated by SVSSA in each list of 20 most
atypical individuals (right).

Step 1: Marginal selection

After removing the outliers from the dataset, we proceed to the variable selection. For the first step of
marginal selection, we set the selection rates to 10% for the RNAseq and mutation matrices, and 1% for the
CNA matrix. By applying a stricter selection on the CNA matrix, we return to comparable scales for the
three matrices, and guard against the bias that would have been caused by the overrepresentation of the
CNA matrix in the models. Thus, by SVSSA, we selected 2 421 RNAseq variables, 1 354 mutation variables
and 2276 CNA variables ; for a total of 6 112 explanatory variables (including clinical ones). Figure 5.5
summarizes the results obtained in this step. The graph on the left illustrates the intersections between
the methods for the same selection rate. We can notice that 155 variables were selected unanimously by
the four methods, and 1 169 variables were selected by three of them. The bar chart on the right shows
that the methods based on the c-index, the Brier score, and the Wilcoxon test had the most impact for
this selection step. Indeed, the measure of correlation with survival time resulted in more isolated choices
- 4898 variables were selected by this method alone - which were not considered as relevant by SVSSA.

Step 2: Selection of correlated groups

The dataset now consists of a reasonable amount of explanatory variables (6 112). Figure 5.6 represents a
portion of the correlation plots of the different omics matrices. They clearly show the existence of group
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Figure 5.5 : Step 1: intersections of the sets of variables selected by each of the four methods (left),
proportion of variables selected by SVSSA in the sets of variables selected by each individual method
(right).

structure between variables, in particular within the RNAseq data, emphasizing the interest of this group
selection step. For the first step of marginal selection, we set the selection rates to 30%. The clustering
procedure resulted in the construction of 107 groups of variables: 33 RNAseq groups, 28 mutation groups,
and 46 CNA groups. During the selection phase, 38 groups were considered relevant by SVSSA. This lead
to a selection of 1 889 omics variables, and a total of 1 950 explanatory variables (including clinical ones).
Figure 5.7 summarizes the results obtained in this step. We notice that only 2 groups were selected by
the four methods, while 24 were selected by three of them. Finally, the bar chart shows that the Block
Forest, Bayesian PGGM and group Lasso methods had an equivalent impact for this selection step, while
the IPF-Lasso is slightly behind.

Step 3: Selection of decorrelated variables

Now we want to select a set of relevant variables that are as decorrelated as possible to minimize in-
formation redundancy. For this step we set the selection rate at 10%, that lead to a selection of 189
variables, for a total of 250 explanatory variables (including clinical ones). Figure 5.8 summarizes the
results obtained in this step. The bmlasso method did not select any of the candidate variables, so it is
excluded from the intersection plot, and naturally it is associated with a null proportion on the bar chart.
Among the selected variables, 9 have been detected by the three remaining methods, and we also notice
that most of the variables considered significant by SVSSA come from the gradient boosting selection.

Step 4: Final selection

For this last step, we include clinical data in the selection procedure, as the size of the omics matrices is
reasonable enough not to worry about underestimating the clinical information. The maximum number
of variables to select was set at 100. This setting lead to a selection of 19 explanatory variables. Figure 5.9
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(a) RNAseq (b) Mutation

(c) CNA

Figure 5.6 : Correlation plot of the first 100 variables for each comedy matrix

Figure 5.7 : Step 2: intersections of the sets of groups selected by each of the four methods (left),
proportion of groups selected by SVSSA in the sets of groups selected by each individual method (right).
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Figure 5.8 : Step 3: intersections of the sets of variables selected by each of three methods (left), bmlasso
did not select any of the candidate variables ; proportion of groups selected by SVSSA in the sets of groups
selected by each individual method (right).

summarizes the results obtained in this step. We can see that the selections obtained by the four methods
are very homogeneous. Moreover although after the first selection phase, the four methods agreed on 83
variables, only 19 of them were kept after the forward-backward selection. Figure 5.10 shows the evolution

Figure 5.9 : Step 4: intersections of the sets of variables selected by each of the four methods (left) ;
proportion of variables selected by SVSSA in the sets of groups selected by each individual method (right).

of the matrix sizes after each selection step. The mutation matrix was completely removed in step 2. This
observation is in agreement with the medical literature.
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Figure 5.10 : Evolution of the size of the matrices after each selection step.

5.7.4 Performance comparison

As mentioned above, we want to compare the performance of SVSSA in terms of variable selection with
nine other methods. Each of them is used only in the selection phase, the prediction phase being carried
out by a Cox model. For all the comparative methods considered, we used the dataset resulting from the
removal of outliers ; the initial dataset led to many model fitting failures. Three measures are considered:
the Uno’s concordance index and the AUC score for the discrimination power, and the iBrier score for the
predictive power ; each of them was evaluated using the package survAUC. Finally, two types of accuracy
are presented ; the training accuracy and the validation accuracy.

The training accuracy is evaluated through a 10-fold stratified cross-validation on the same dataset
used for the selection procedure. For all the methods considered, we first perform a variable selection
phase using the whole dataset, then we perform the cross-validation on Cox models built with the selected
variables. Table 5.4 shows that SVSSA offers good performances in terms of discrimination power, due
to its high c-index and AUC score. Similarly, if we look at the standard deviation values for these
measures, we see that the results of SVSSA are quite homogeneous on the different cross-validation folds.
Nevertheless, although SVSSA also has a very good predictive power, the priority-Lasso outperforms
it on this criterion with a very low iBrier, associated with a low standard deviation as well. It is rare
that a method offers the best performances over all criteria [HPH`21], hence the interest in measuring
different ones to get an overview of its capabilities. This can be seen, for example, with the lasso and the
bmlasso which minimize the iBrier quite well, but do not offer interesting results on the c-index and the
AUC. Since SVSSA performs well on all three measures, this first analysis argues for a consistency of our
procedure. However, it is necessary to verify this premature observation on a validation set independent
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of the training set. The evaluation of the validation accuracy is a standard training-validation procedure.

Learner
c-index

Mean sd
iBrier

Mean sd
AUC score
Mean sd

selected

lasso 0.797 0.204 0.091 0.034 0.814 0.212 5
ipfLasso 0.848 0.120 0.125 0.095 0.869 0.115 13
priorLasso 0.913 0.058 0.083 0.037 0.932 0.042 21
SGL 0.709 0.229 0.131 0.070 0.734 0.188 5
gboost 0.929 0.051 0.134 0.200 0.936 0.051 18
cboost 0.773 0.233 0.137 0.099 0.802 0.262 70
ranger 0.594 0.251 0.245 0.213 0.551 0.239 100
bmlasso 0.766 0.208 0.090 0.039 0.822 0.196 15
clinicalCox 0.683 0.238 0.202 0.196 0.727 0.187 -
SVSSA 0.938 0.066 0.095 0.103 0.943 0.058 19

Table 5.4 : Mean and standard deviation of performance measures obtained by 10-fold cross-validation
on the training set.

The dataset is divided into two independent subsets, the training set represents 80% of the initial dataset,
and the test set 20%. For each method, the selection phase is performed on the training set, and the Cox
models are also built on this set restricted to the selected variables. The predictions are then applied on
the validation set. The results obtained are reported in Table 5.5. While the ipf-Lasso, the priority-Lasso
and SVSSA offer results close to those reported in Table 5.4, this is not the case for most methods.
This observation argues for the existence of an overfitting bias when evaluating the training accuracy
of these methods. Moreover, the observations previously made on SVSSA and the Lasso priority are
again observed here. The performances of the two methods are quite close, and SVSSA outperforms the
priority-Lasso on two of the three measures. Finally, we see that SVSSA offers consistent results on this
dataset.

Computation time

Another important criterion for this comparative analysis is the computation time. SVSSA offers good
performance in terms of variable selection, but this procedure is based on a superposition of several
models, which makes it by construction slower than the comparative methods. We can see in Table
5.6 that SVSSA requires about 9 hours of additional compilation time to the priority-Lasso which also
offers very good results. Note, however, that the computation time associated with SVSSA varies greatly
depending on the settings of the optional parameters. A parameter that can be modified easily without
really damaging the results is the number of iterations of step 2 (see nIt in Algorithm 4). By lowering
it to 1 instead of 5 we can save a few hours of computation in step 2. Table 5.7 show the results of the
two configurations in terms of training accuracy and computation time. The shorter configuration had
better results, both compared to the initial SVSSA and to the priority-Lasso, but the computation time
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Learner c-index iBrier AUC score

lasso 0.576 0.094 0.655
ipfLasso 0.818 0.075 0.865
priorLasso 0.971 0.046 0.975
SGL 0.681 0.087 0.760
gboost 0.406 0.109 0.270
cboost 0.763 0.074 0.761
ranger 0.469 0.101 0.514
bmlasso 0.337 0.154 0.301
clinicalCox 0.885 0.051 0.914
SVSSA 0.986 0.050 0.994

Table 5.5 : Mean of performance measures obtained on the validation set.

is still significant. However, we must consider that this approach is intended for the analysis of clinical
data which take several years to collect, and only require a variable selection phase to be exploited in a
hospital environment. The contribution in performance and the serenity offered by a consensus selection
compared to the depreciation in terms of compilation time is at the practitioner’s discretion.

lasso ipfLasso priorLasso SGL gboost cboost ranger bmlasso SVSSA

0.038 1.224 2.448 0.086 0.005 0.143 0.699 0.006 11.579

Table 5.6 : Compilation time in hours when selecting variables on the whole dataset.

Learner
c-index

Mean sd
iBrier

Mean sd
AUC score
Mean sd

selected Time

SVSSA with nIt “ 5 0.938 0.066 0.095 0.103 0.943 0.058 19 11.579
SVSSA with nIt “ 1 0.973 0.059 0.046 0.041 0.976 0.051 28 8.774

Table 5.7 : Mean and standard deviation of performance measures obtained by 10-fold cross-validation
on the training set for two configurations of SVSSA.

5.7.5 Cure models

Due to their convenience, we performed the performance analysis on Cox models. However, after a variable
selection, the practitioner must build a predictive model with the estimation method that suits best their
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problem. In the context of our study, where the event of interest includes relapse, disease progression and
death, the hypothesis of the existence of a cured fraction in the population studied is obvious. Figure
5.11 also illustrates this point, although the follow-up time for some patients is too short to draw reliable
conclusions. Cure models appear to be an obvious choice. We will not go into a deep analysis of TNBC

Figure 5.11 : Kaplan-Meier curve estimated with the whole dataset.

breast cancer by Cure models here, however, we offer in Figure 5.12 an overview of analyses that would
be interesting to do next. In particular, it will be possible to compare the survival curves of individuals
according to one or more variables, and so define the characteristics of the cured individuals, notably in
terms of treatment received. As an example, we can see in Figure 5.12 that patients who have undergone
a mastectomy will have a much higher probability of survival than patients who have not gone through
this surgical intervention, all other things being equal.

5.8 Conclusion and perspectives

The SVSSA selection procedure aims at automating the different steps of variable selection in survival
analysis. Based on a consensus between recognized methods, it is statistically consistent and offers good
predictive performances, however its computation time limits its application for daily use. This short-
coming is obviously a prospect for improvement. One perspective would be to implement it in Python,
but we would also have to think about other estimation methods available in this language. Moreover,
the methods used are mostly built on the basis of a Cox model, alternatives based on Cure models could
be considered to fit the context of clinical studies. Finally, we would like to specify that while our per-
formance study was based on the dataset resulting from the second selection phase of step 4, we highly
recommend to retrieve the list of the P ‹ most significant variables for an in-depth study of their relevance
with TNBC specialists. These studies (selection with SVSSA and in-depth study of the selected variables)
should also be performed on other omics datasets to evaluate the consistency of our algorithm.
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Figure 5.12 : (a) Survival curves of an individual who underwent a mastectomy (dashed line) and an
individual who did not through this surgery (solid line) ; (b) Survival curves of an individual belonging
to the iC4 subtype (dashed line) and an individual belonging to another subtype (solid line) ; (c) and (d)
survival curves of different individuals for multivariate models.



Annexe A

APPENDIX: MORE DETAILS ABOUT THE

METHODS USED IN SVSSA

A.1 Preliminary step: Removing outliers

A.1.1 Residual analysis

For the next three methods, consider a Cox model characterized by a cumulative hazard function

Hpt|Xq “

ˆ t

0
h0puq exppβXqdu “ H0ptq exppβXq,

where β is the regression coefficients and H0 is the cumulative baseline hazard function.

Martingale residuals[TGF90]. Introduced by Therneau et al., the martingale residual of an indivi-
dual i is given by

r̂Mi “ δi ´ Ĥ0pYiq exppβ̂Xiq. (1)

The residual r̂Mi can be interpreted as the difference between the number of deaths observed over r0, Yis

by the individual i and the number expected given the model. Thus, a censored individual who, from
the model’s point of view, would have accumulated a significant risk over this period will be assigned a
lower residual than if he had observed the event. In this sense, martingale residuals reveal individuals
with different survival patterns from those with the same individual characteristics. However, taking its
values in s ´ 8, 1s, this specification has a marked skewness issue, therefore causing difficulty in anylizing
its impact.

Deviance residuals [TGF90]. Deviance residuals have also been introduced by Therneau et al. in
order to handle the skewness present in the martingale residuals distribution. More precisely, they propose
a transformation of this measure in order to get as close as possible to a Gaussian distribution. To do
so, the authors start from the definition of deviance in the general framework of linear regression models
given by

D “ 2
”

ℓℓpβpsqq ´ ℓℓpβ̂q

ı

,

where βpsq refers to the saturated model, which is a free model where each individual has its own vector
of coefficients β̂¨i ; there are therefore no random error term. After an adaptation to survival models, and
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in particular to Cox model, the authors define the deviance residual of an individual i by

r̂Di “ signpr̂Miq

b

´2
`

r̂Mi ` δi lnpδi ´ r̂Miq
˘

, (2)

where r̂Mi corresponds to the martingale residual of this individual. We thus obtain a measure more
centered around 0 with the same sign as the martingale residual. The residual r̂Di can be interpreted as
the difference in log-likelihood between an overfitted model and the retained model. We can deduce that
individuals with extreme values on the residuals had a particular influence during the estimation of the
fitted model ; they are potential outliers.

Censored quantile regression residuals [EHC14]. Eo et al. introduced the censored quantile re-
gression residuals, adapting the Nardi and Schemper algorithm originally based on the Cox model to
quantile regression for censored data. Consider FT ptq “ PpT ď tq the distribution function of the survival
time ; the τth quantile of T is defined as the inverse function

QT pτ | Xq “ inf
␣

t : FT pt | Xq ě τ
(

“ βpτq X, (3)

where βpτq is the vector of regression coefficients at the quantile τ Ps0, 1r. The authors define the deviance
residual of an individual i by

r̂Qi “ Yi ´ Qp0.5 | Xiq. (4)

A.1.2 Predictive performance analysis

In survival analysis, the Concordance Index (C-index) is one of the most commonly used metrics to
measure model performance. It quantifies the rank correlation between observed survival times and the
risk levels defined by the fitted model. There are several algorithms for estimating the C-index, we will
only present the most widespread one, that of Harrell et al. [HCP`82]. Specifically, the authors assess
the model’s ability to provide a reliable ranking of the survival times, by estimating the fraction of pairs
of individuals correctly ordered out of all available comparable pairs. Let ηi denote the risk score that
the individual i is assigned by the model. In the presence of censoring, we distinguish four cases:

´ i and j have experienced the event: the pair pi, jq is correctly ranked if ηi ă ηj and Yi ą Yj ,

´ i and j are censored: no information on the quality of the ranking can be provided,

´ i is censored and j has experienced the event so that Yi ą Yj : the pair pi, jq is correctly ranked if
ηi ă ηj ,

´ i is censored and j has experienced the event so that Yi ă Yj : no information on the quality of the
ranking can be provided.

The concordance index is then defined by

Cindex “

ř

i‰j 1ηiăηj 1YiąYj δj
ř

i‰j 1YiąYj δj
. (5)
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It can be interpreted as the probability that an individual with a short survival time is considered by the
model to be more at risk than an individual who has lived longer. We use this metric to determine the
impact of each individual on the model predictive performances.

Dual Bootstraps Hypothesis Testing (DBHT) [PCV15a] Pinto et al. first introduced the Boots-
traps Hypothesis Testing (BHT) method which assigns an anomaly score to each individual of the dataset,
depending on whether they increase or decrease the model C-index [PCV15b]. Let Czi be the C-index
associated with the model built without the individual i, and Cfull the one obtained with the complete
dataset, the algorithm tests H0 : Czi ď Cfull on the basis of bootstrap samples from the dataset deprive of
i. An outlier will therefore be characterized by a low p-value. However, the authors identified a limitation
within this method. In particular, when the amount of available data is low, the bootstrap samples do
not have enough information to lead to a relevant model, which could negatively impact the individuals’
anomaly score. To overcome this constraint, the authors proposed the DBHT method which performs the
comparison test on the basis of samples of the same size. Concretely for each individual i, the algorithm
generates a set Bpoison of bootstrap samples of the dataset that includes i in each bootstrap sample, and
a set Bantidote that, conversely, is deprived of i. Next, the algorithm tests H0 : ErCantidotes ą ErCpoisons

from the concordance histograms of the two sets. An outlier is again characterized by a low p-value.

A.1.3 Scoring

We follow the scoring procedure described by Carrasquinha et al. [CVV18], and based on the Rank
Product test. In order to overcome the variability of the results offered by the various outlier detection
methods, the authors propose to perform a consensus which takes the form of a scoring. For this, they
perform the following rank product on each individual,

RPi “

k
ź

j“1
rankpZijq, (6)

where k corresponds to the number of selected methods and Zij to the measure of outlyingness of
individual i by method j. Note however that before applying the rank function, we harmonize the measures
so that a low value of Zij corresponds to a high level of outlyingness for the method j. Thus, individuals
with low ranks, and by continuity a low RPi, would a priori be more outlier. The algorithm then performs
a significance test of this ranking based on H0 : the ranking is random. The anomaly score is then
represented by this test’s p-value, the lower it will be, the more the individual will be considered as an
outlier. In other words, if an individual is systematically defined as an outlier by the selected methods,
it is likely that this classification is correct.
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A.2 Step 1: Marginal selection

A.2.1 Correlation with survival time

To avoid any bias induced by censoring, the correlation analysis with survival time is only based on
individuals who observed the event, i.e. pXpdq, Ypdqq.

Spearman correlation [Spe04] The Spearman rank correlation coefficient is a nonparametric mea-
surement of dependence based on the rank statistic. Let Xj be a quantitative predictor and T the actual
survival time variable, for which we have the sample pXpdq

j , Ypdqq. The Spearman correlation coefficient
between Xpdq

j and Ypdq is given by

ρj “
S
`

rankpXpdq

j q , rankpYpdqq
˘

b

S
`

rankpXpdq

j q
˘

S
`

rankpYpdqq
˘

, (7)

where Sp.q and Sp. , .q correspond respectively to the empirical variance and covariance functions. RSj

indicates the degree of monotonic dependence between the two variables ; the closer it is to 1 in absolute
value, the higher the dependence. However, we are not interested in the correlation coefficient itself but
in its significance. We then proceed with a bilateral test verifying H0 : RSj “ 0. A low p-value indicates
the existence of a potential monotonic dependence between Xj and T . This measure constitutes our
significance score for this method.

A.2.2 Correlation with survival status

Here we analyze the correlation with survival status δ from the sample pδ, Xq.

Wilcoxon–Mann–Whitney test [Wil45, MW47] The W-M-W test is a nonparametric statistical
hypothesis test based on the rank statistic. It verifies the existence of significant differences between two
groups of individuals on the basis of a quantitative variable. Consider a quantitative predictor Xj for
which we have independent and identically distributed observations, distributed within two samples Xpdq

j

and Xpcq

j . Let Fd and Fc be the distribution functions corresponding to the two samples. The bilateral
W-M-W test verifies H0 : Fdptq “ Fcptq @t. A low p-value implies a significant difference between the two
groups, and therefore the existence of a potential dependence between Xj and δ. This measure constitutes
our significance score for this method.

A.2.3 Correlation with the survival pair

The last method of this step studies the correlation between each variable and the pair pY, δq. To this end,
we use two measures of model performance, the Uno’s concordance index (c-index) and the integrated
Brier score (iBrier) ; while the c-index only assesses the model discrimination power, the iBrier evaluates
also its accuracy. By using these two measures, we want to exploit the idea that a significant variable will
result in a well-performing model.
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Uno’s concordance index [UCP`11]. Uno et al. shown that the Harrell index presented in A.1.2
is biased when the number of censored data is high, and proposed an adaptation that overcomes this
shortcoming. To assess the relationship between a variable j and the survival pair, we compute the c-index
of the simple cox model (Xj is the only predictor) by 10-fold cross-validation. This measure constitutes
our significance score for this method.

Integrated Brier score [GSSS99]. The Brier score was initially proposed for uncensored data. In this
setting, it represents the mean squared deviation between the observed survival status and the survival
probability estimated by the model. Graf et al. have later adapted it to survival problems with right
censoring by weighting the squared deviations by the inverse probability of censoring. Let Gptq “ PpC ą tq

be the survival function of the censoring times, i.e the probability of not being censored until t. The Brier
score at a given time t is defined by

BSptq “
1
n

ÿ

i“1,...,n

$

’

’

’

’

’

&

’

’

’

’

’

%

`

0´Ŝpt|Xiq

˘2

Ĝptiq
if ti ď t, δi “ 1

`

1´Ŝpt|Xiq

˘2

Ĝptq
if ti ą t

0 if ti “ t, δi “ 0,

(8)

with Ĝptq the Kaplan-Meier estimator of the censoring distribution. The integrated form provides an
overall measure and is given by

IBS “
1
tn

ˆ tn

0
BSptq dt. (9)

A.2.4 Scoring

The global scoring is based on the Rank Product test procedure described in Section A.1.3. After har-
monizing the scores, so that a low score refers to a high significance of the variable, the scoring function
returns the p-value of associated with its ranking. For each omic group g, we select the P

p1q
g variables

with the lowest p-values.

A.3 Step 2: Selection of correlated groups

A.3.1 Hierarchical clustering

We aim to group together the correlated variables within the estimation procedures, while limiting the
size of the clusters to spare the borrowed alrogithms. We chose to perform a hierarchical clustering based
on the proximity distance provided by unsupervised Random Forest.

Unsupervised Random Forest [BC03] Breiman and Cutler proposed an unsupervised version of the
well-known Random Forest algorithm. The approach consists in returning to the standard classification
case by creating a synthetic target variable. Let DO be the initial unlabeled dataset, the algorithm
constitutes a synthetic dataset DS , of the same size as DO, by random sampling from the product of
empirical marginal distributions of the predictors. The target variable is then created by assigning class 1
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to the original data, and class 2 to the synthetic data. Thus, class 2 follows a distribution of independent
random variables and does not have the correlation structure of the original data. A Random Forest
classification model is then constructed based on the new data sample. The algorithm aims to obtain
the finest possible predictor, i.e. the one that best separates the noise from the real data. Therefore, the
trees must fit the correlation structure present in the original data, based on the dependent variables.
In this sense, a model with a low classification error rate illustrates the presence of correlation within
the observations ; the most correlated of them should end up in the same leaf nodes. The unsupervised
Random Forest then provides a proximity matrix P which offers an estimate of the distance between
individuals according to the proportion of times they are found in same leaves. Several studies have
shown the interest of P and its advantages for clustering [CS06, SSB`05, AHT`03, KWB18].

In our algorithm, we use this method to obtain the proximity matrix Pg of the predictors of each
initial group g. We then consider the transpose of the dataset restricted to the predictors of g, so that
these represent the individuals to be classified in unsupervised trees.

Ward hierarchical clustering [WJ63] Hierarchical ascending clustering (HAC) is an iterative grou-
ping method based on a dissimilarity measure. We will use Ward’s HAC which is the most widespread.
The algorithm is initialized with as many clusters as there are individuals, and merges at each step the
two closest clusters in order to minimize the intra cluster variance, which is defined using a distance
matrix between individuals. Let Pg be the proximity matrix of the predictors of group g. Let P̄g “ 1 ´ Pg

be the distance matrix of the said predictors (which are our individuals here). The CAH optimization
problem is given by

arg min
A, B PCactual

1
nAYB

ÿ

x, y PAYB

P̄gpx, yq ´
1

nA

ÿ

x, y PA

P̄gpx, yq ´
1

nB

ÿ

x, y PB

P̄gpx, yq, (10)

where Cactual is the set of current clusters, nX the number of elements in cluster X, and P̄gpx, yq the
distance between x and y. The algorithm stops when there is only one cluster left. Once the maximal
tree is obtained, we split it in order to recover the desired partition in mg clusters.

A.3.2 Estimation with survival time

As before, the estimation with the survival time will be based on the sample pYpdq, Xpdqq to avoid the bias
induced by censoring. We use here our Bayesian approach of the PGGM under the group-sparse setting.

Bayesian PGGM (see Chapter 3) For each set of four predictor subgroups, we apply the Bayesian
PGGM algorithm with a default parameterization inducing sparsity, which is: a “ 100, b “ 1, type =
group-sparse, and shrinkage = adaptive. We have chosen not to launch a parameter refinement process
in order not to increase the computation time. However, we leave to the practitioner the possibility to
fill in the parameters that suit him. The resulting model returns the list of subgroups selected from the
four candidates. The latter then gain a point of significance.
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A.3.3 Estimation with survival status

We continue with a classification-type variable selection method based on the sample pδ, Xq. The method
borrowed here is the standard logistic group Lasso.

Logistic Group Lasso[MVDGB08] The group Lasso of Yuan and Lin is an extension of the Lasso
that performs variable selection at the group level in linear regression models. Meier et al. proposed an
adaptation of this method for logistic regression. Let X “ pX t

1 , ..., X t
mq t P Rp the vector of predictors

divided into m groups, let pg be the size of Xg the vector of group g. The logistic model is defined by

Ppδ “ 1|X “ Xiq “
1

1 ` exp
`

´ β0 ´
řm

g“1 βt
g Xgi

˘ , (11)

where β “ pβ0, β t
1 , ..., β t

mq t P Rp`1 is the vector of regression coefficients. The group Lasso estimation of
β is based on the following optimization problem

β̂λ “ arg min
β

´ℓℓpβq ` λ
m
ÿ

g“1
sppgq|βg|2, (12)

where ℓpβq is the log-likelihood of the logistic model. Regarding to the penalty function, sppgq is a weight
function which allows to rescale the penalty with respect to the size of the group. The default parameter
is sppgq “

?
pg, but this function can be modulated, for example it can be set to 0 for a group that

we do not want to penalize. In our context, we consider four subgroups on which we apply the logistic
group Lasso algorithm with a default parameterization inducing sparsity, i.e. λ “ 10´2. Here again, we
do not run a cross-validation procedure to adjust the parameter in order not to increase the computation
time. The practitioner can of course change the default parameter. Just like for the Bayesian PGGM, the
created model returns the list of the selected subgroups, those ones get a significance point.

A.3.4 Estimation with the survival pair

For this substep, we will use two methods specific to survival analysis that incorporate group structures.
The support sample is pY, δ, Xq.

IPF-Lasso [BDBJF17] The IPF-Lasso method has been proposed by Boulesteix et al. as an impro-
vement of Lasso in the context of multi-omics survival analysis. The authors explain that the use of
several types of high-dimensional data requires the implementation of more adaptive selection methods.
Depending on the case, clinical data, which is both very small in size and very significant for prognosis,
should not be penalized in the same way as very large omics data such as copy numbers. Therefore, their
method allows to assign different penalty factors to groups of variables. The optimization problem follows
that of the Cox Lasso, incorporating the group structure and different penalty terms

β̂ “ arg min ´ℓℓppβq `

m
ÿ

g“1
λg |βg|1, (13)
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where ℓℓppβq is the partial likelihood of the Cox model. This method adapts perfectly to linear and
logistic regressions, by modifying the likelihood term. The resulting model is a selection at variable level
but conditional on the group of membership. In our context of four subgroups, we build the model
using the cross-validation algorithm proposed by the authors. Once the model is obtained, we consider a
subgroup as significant if none of its variables has been penalized.

Block Forest [HW19] The Block Forest method proposed by Hornung and Wright is a variant from
the well-known Random Forest by Breiman [Bre01]. Inspired by the multi-omics data problem, this
method considers variables group structure at the level of the split point selection. Recall that a random
forest model is a set of decision trees built from bootstrap samples of the training data. Each decision
tree is a series of binary tests that aim to divide the individuals according to a criterion of homogeneity
in regard to the output. The point of interest here is the construction of these binary tests, or more
precisely the split point selection procedure. In the Random Forest algorithm, this is done by a random
selection of nvar predictors on which the algorithm selects the division that optimizes the considered
split criterion. Hornung and Wright pointed out that treating each variable uniformly, when in a group
structuring, and especially in the multi-omics framework, large groups will be overrepresented in the
model regardless of their relevance as predictors. To overcome this shortcoming, the authors propose
a weight-based splitting procedure. First, in order to give each group the possibility to be represented
within the split point selection, the algorithm draws each group with a probability of 1

2 , i.e. all groups are
selected with a probability

` 1
2
˘m, and the draw is rerun if no group is selected. Then, for each admitted

group g of size pm, the algorithm randomly selects ?
pg predictors to be candidates for the split, so

nvar “
ř

g admitted
?

pg. Finally, the split criterion is weighted by the weights wg associated to each
group in order to privilege variables coming from groups supposed to be more influential. The weights
pw1, ..., wmq are defined by the algorithm through an optimization process. The optimal weights associated
with a model provide an indication of the relative importance of the different groups for prediction.
This method adapts to all variants of the Random Forest, including Ishwaran’s random survival Forest
et al. [IKBL08] that we are interested in here. Since we wish to achieve a group selection, once our model
is built from the four predictor subgroups, we consider a subgroup significant if its optimized weight is
greater than a threshold set at 0.75 by default, but configurable by the practitioner.

A.3.5 Scoring

The global scoring consists simply in counting the number of times that a given subgroup has been
selected by the different methods. We then select the 10% most significant ones. Since they have different
sizes, this is not equivalent to the 10% most significant variables.
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A.4 Step 3: Selection of decorrelated variables

A.5 Estimation with survival time

As before, the estimation with the survival time will be based on the sample pYpdq, Xpdqq to avoid the
bias induced by censoring. We use here our structuring approach of the PGGM.

Structural PGGM (see Chapter 2) For each subset of data, we apply the GenGm algorithm with
a default parameterization inducing sparsity, which is: λ “ 0.001, µ “ 0.05, η “ 0.001, and β “ 1.25. The
matrix L “ C´1 associated with the structuring penalty is constructed from the subgroups obtained by
clustering in step 2. For each pair of inputs pi, jq we have

Cij “

$

’

&

’

%

1 if i “ j,
1

10 if i and j are in the same subgroup,

0 otherwise.
(14)

The resulting model returns the list of inputs selected from the nvar candidates, these gain a point of
significance.

A.5.1 Estimation with survival status

In the continuity of the group Lasso of step 2, we now borrow the well-known Lasso method on the sample
pδ, Xq.

Logistic Lasso [Lok99, SK03] The Lasso method offers a sparse estimation of regression models,
through a penalty ℓ1 on the vector of coefficients. In the logistic framework, it is based on the following
optimization problem

β̂λ “ arg min
β

´ℓℓpβq ` λ
ppoq

ÿ

j“1
|βj |, (15)

where ℓℓpβq is the log-likelihood of the logistic model, and λ to the regularization parameter. In our
procedure, we set this parameter by default to 10´2. At each iteration the model obtained returns the
list of selected inputs, these gain one point of significance.

A.5.2 Estimation with the survival pair

For this substep, we will use two methods designed for variable selection, a boosting and a bayesian
approaches. The support sample is pY, δ, Xq.

Gradient boosting with component-wise for Cox model [Bue06, DB16] Boosting methods
are based on an iterative estimation of model parameters, in order to gradually reduce its loss function.
More precisely, they aim to build a robust model from a set of weak models. There are several variants
categorized according to the weak model estimation procedures and the final model construction rules. We
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are interested here in the gradient-based method within Cox model framework. In this context, we seek to
estimate the regression coefficients β by minimizing the negative partial log-likelihood which constitutes
our loss function. The algorithm is initialized with β “ 0p,1, then for each iteration, it computes the
negative gradient vector of the loss function with respect to ηpX, βq “ Xt β. For each individual i, it is
given by

Ui “
B

BηpX¨i, βq
ℓℓppβqq

ˇ

ˇ

ˇ

ˇ

ηpX,βq“ηpX,β̂q

“ δi ´
ÿ

lPRpyiq

exppX t
¨l β̂q

ř

kPRpylq exppX t
¨k β̂q

. (16)

In order to maximize the partial likelihood (i.e. minimize the loss function) in the direction most correlated
with the gradient, the algorithm estimates a linear model fitting the gradient U to each input Xj , that is

b̂j “ arg min
βj

1
n

|U ´ Xj¨ βj |22. (17)

The weak model associated with the current iteration is then denoted by the coefficient b̂j‹ for which
j‹ “ arg minj

1
n |U ´ Xj¨ b̂j |22. Finally, the algorithm updates the estimator β̂j‹ “ β̂j‹ ` ν b̂j‹ where ν

controls the learning rate. This phase of estimating weak models is iterated Itmax times. This number
can be used as a regularization parameter to perform variable selection. In our procedure, we use the
default parameters defined in R which are: ν “ 0.1 and Itmax “ 100.

Spike-and-Slab Lasso Cox [TSZY17] Proposed by Tang et al., the Spike-and-Slab Lasso Cox is a
Bayesian variables selection method offering an adaptive shrinkage on Cox model regression coefficients.
This hierarchical model is based on a spike-and-slab double-exponential prior (i.e a Laplace distribution),
and is defined as follows

$

’

&

’

%

βj |πj , s0, s1 „ p1 ´ πjq Lpβj |0, s0q ` πj Lpβj |0, s1q

πj |θ „ Bpθq

θ „ Up0, 1q

(18)

where πj is the prior spike probability, and s0 and s1 are predefined scale parameters such as 0 ă s0 ă s1.
s0 is the spike scale parameter chosen small to induce strong shrinkage on βj , and s1 is the slab scale
parameter chosen large to instead induce weak or no shrinkage on the coefficient. The sparse model is
then estimated by searching for the posterior modes of the parameters, in particular by maximizing the
log joint posterior density which verifies

ln ppβ, π, θ | Y, δ, Xq 9 ℓℓppβq ´

p
ÿ

j“1

1
Sj

|βj | `

p
ÿ

j“1
p1 ´ πjq lnp1 ´ θq ` πj lnpθq, (19)

where ℓℓppβq is the Cox model partial log-likelihood, Sj “ p1 ´ πjqs0 ` πjs1, and the term
řp

j“1
1

Sj
|βj |

can be likened to a Lasso-type penalty. In our procedure we set by default s0 “ 0.2 and s1 “ 0.5.
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A.5.3 Scoring

The scoring procedure for this step is based on the minimum redundancy maximum relevance approach
of De Jay et al. [DJPCO`13]. It consists in an iterative update of candidate variable importance scores
according to their degree of association with the previously selected ones. Let’s start by assigning each
variable j a basic score of significance, which corresponds to the number of times it was designated
significant during the estimation phase. Let us denote this score R

p0q

j and let S be the set of selected
variables. The algorithm initializes S with the variable having the highest base score, then updates the
individual scores by penalizing them by the degree of correlation with the selected variables. During the
following iterations, S is completed by adding the variable maximizing the new score ; in other words,
the one that verifies

j‹ “ arg max
jRS

R
p0q

j ´
1

cardpSq

ÿ

lPS

ρSpXj¨, X¨lq, (20)

where ρSpXj¨, X¨lq denotes the Spearman coefficient between inputs j and l. The algorithm stops when
the size of S reaches the desired number of selected feautures.

A.6 Step 4: Final selection

A.6.1 Estimation with the survival pair

For this estimation phase, we use four variable selection methods, a group structure approach, an approach
favoring clinical variables, a nonlinear approach by decision trees, and a boosting approach. The support
sample is pY, δ, Xq.

Sparse-Group Lasso [SFHT13] This method proposed by Simon et al. is an extension of the Lasso
which performs a variable selection both on group and within group level. It is based on the combination
of two forms of penalties ; a ℓ2-norm penalty to induce groupwise sparsity (like the Group-Lasso), and a
ℓ1-norm penalty to induce intra-group sparsity within non-zero groups (like a Lasso per group). In the
Cox model framework, the estimation is based on the following optimization problem

β̂λ “ arg min
β

´ℓℓpβq ` p1 ´ αq λ
m
ÿ

g“1

?
pg |βg|2 ` α λ |β|1. (21)

In our procedure we tune the penalty parameter λ by an 10-fold cross-validation, and set by default
α “ 0.95 to encourage grouping as recommended by the authors.

priority-Lasso [KJH`18] Klau et al. emphasize the interest for practitioners in having high-dimensional
estimation methods that incorporate variable group structure and exploit a prior knowledge on their
practical usability. Thus, in the context of omics data, for approximately the same degree of precision,
practitioners will choose a model built from variables already included in routine diagnostics such as
clinical data, than variables with a high acquisition cost. To handle these two points, the authors pro-
posed the priority-Lasso method. This is a hierarchical regression method that takes group structures
into account, which are ordered according to a prior knowledge of their priority. The idea is to update
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the estimator an iterative way by building, at each step, a predictor explaining the current estimator
residuals with the next priority group. Thus, groups with low priority variables will only enter the model
if they explain a variability of the outcome that is not explainable by groups with higher priority. Let us
place ourselves in the Cox model framework, and let π “ pπ1, ..., πmq be the permutation of the groups
according to their order of priority (i.e. π1 is the group with the highest priority). The first step of the
estimation procedure consists in extracting the information available in the highest priority group. To do
this, the algorithm builds a Lasso predictor on the output with variables from π1, by solving

β̂pπ1q “ arg min
βpπ1q

´ℓℓppβpπ1q|Y, δ, Xpπ1qq ` λpπ1q |βpπ1q|1, (22)

where ℓℓppβpπ1q|Y, δ, Xpπ1qq corresponds to the log-likelihood of the Cox model restricted to variables
from π1. Let hpπ1q be the predictor associated with β̂pπ1q and rpπ1q its observed residuals. The following
steps seek to gradually explain the remaining information on the output variability using increasingly
lower priority groups. At each step g is then constructed a Lasso predictor on the current estimator
residuals according to the next priority group, by solving

β̂pπgq “ arg min
βpπg q

´ℓℓppβpπgq|rpπg´1q, Xpπgqq ` λpπgq |βpπgq|1. (23)

The new estimator hpπgq is associated with the coefficient vector pβ̂pπ1q, ..., β̂pπgqq. The final estimator
is obtained when the m groups have been considered. Thus constructed, a non-priority group will only
be integrated into the model if it offers non-redundant information with the previous groups. However,
the authors raised a shortcoming about this procedure. Since the residuals are computed on the data
that were used to train the predictors, the model accuracy may be overestimated. To overcome this, they
propose to estimate each predictor by cross-validation. We follow this recommendation in our procedure
and also determine the penalty parameters λpπgq by cross-validation.

Random Survival Forest [IKBL08] In the paragraph on the Block Forest method, we have slightly
discussed the construction of random survival Forest. This method, proposed by Ishwaran et al., is an
adaptation of Breiman’s Random Forest [Bre01] to survival data. Like the reference method, it is based
on the construction of B survival trees using bootstrap samples from the original data. Each tree is a set
of binary tests dividing the population into nodes more and more homogeneous, until they reach terminal
nodes. At each node split, the algorithm randomly draws nvar candidate variables, then selects among
them the split that maximizes survival difference between daughter nodes. The growth of a tree stops
when it reaches a terminal node containing a homogeneous population, or a minimum of d0 ą 0 deaths.
A survival Forest aims to estimate an ensemble cumulative hazard function from each individual tree
predictions. More specifically, each terminal node h is associated with the following cumulative hazard
function

Ĥhptq “
ÿ

Yphq

¨i
ăt

δ
phq

i

RpYphq

¨i q
, (24)
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where pYphq, δphqq is the sample of observations in h and RpYphq

¨i q the number of individuals, within h,
still at risk at time Yphq

¨i . Thus, to each individual i P h is associated Ĥpt|X¨iq “ Ĥhptq. The ensemble
cumulative hazard function of an individual i is then defined by

ĤRSF pt|X¨iq “
1
B

B
ÿ

b“1
Ĥbpt|X¨iq. (25)

In our procedure, we use the default parameters nvar, B and d0 provided in the R algorithm, and for
variable selection purposes, we retrieve the variable importance matrix from the model. The P ‹ most
significant variables are considered significant for this substep.

Likelihood-based boosting for Cox model [TB06, BASB09, DB16] Tutz and Binder proposed
a boosting method suitable for any generalized linear model. The estimation procedure is based on a e
componentwise approach, where at each step one coefficient of the estimator is updated by a weak model.
In the Cox model framework, the loss function to be minimized is defined by the ℓ2-norm penalized
negative partial log-likelihood, in which the results of the previous boosting steps are incorporated as an
offset. Thus at step k, the weak model of a variable j results from the following loss function

ℓℓpenpβj |β̂q “ ´

n
ÿ

i“1
δi

«

η̂i ` Xt
¨i βj ´ ln

´

ÿ

lPRpyiq

exp
␣

η̂l ` Xt
¨l βj

(

¯

ȷ

`
λ

2 β2
j , (26)

where β̂ is the estimator updated at step k ´ 1, and η̂ “ Xtβ̂ the offset term from this step. The
algorithm is initialized with β̂ “ 0p,1 and η̂ “ 0n,1. Then, for each iteration, it first computes b̂j the
first-order approximation around 0 of (26) for each variable j. This is given by

b̂j “
B

Bβj
ℓℓpenp0|β̂q

´

B 2

Bβ2
j

ℓℓpenp0|β̂q

¯´1
. (27)

The weak model associated with the current iteration is then designated by the coefficient b̂j‹ for which
j‹ “ arg minj ℓℓpenpβj |β̂q. Finally, the algorithm updates the estimator β̂j‹ “ β̂j‹ ` b̂j‹ . This phase of
estimating weak models is iterated Itmax times. This number is used as a regularization parameter to
perform variable selection. In our procedure, we use the default parameter Itmax “ 2P ‹.

A.6.2 Selection

As previously mentioned, the selection phase of this final step is divided into two parts. The first part is
based on a scoring which consists in counting the number of times each variable has been selected during
the estimation phase. The P ‹ variables with the highest score are selected. The second phase of selection
consists in searching for the best performing combination, among the most significant variables. First, we
perform a bottom-up selection procedure ; at each step we add a variable to the model if it reduces the
iBrier. Then we perform a top-down selection on the obtained model ; at each step we remove a variable
from the model if this removal reduces the iBrier. The iBrier scores are obtained by cross-validation on
the training data. Moreover, even if at the end of the procedure we obtain a combination of performing
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variables, we nevertheless recommend that practitioners also study the list of P ‹ variables selected by
scoring.
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Annexe B

APPENDIX: VARIABLES SELECTED BY

SVSSA

B.1 100 most significant variables

Matrices Variables

Clinical LN_positive, Surgery_BCS, iCluster_Subtype_iC4, Surgery_Mastectomy,
Chemotherapy_FAUX, Size_cm, Ascat_Ploidy, Chemotherapy_V RAI,
CNA_Subtype_Chr13q34_amp, Chemotherapy_other_regimen_V RAI,
iCluster_Subtype_iC1, iCluster_Subtype_iC9, Ki67, N_2,
Chemotherapy_other_regimen_FAUX, mRNA_Subtype_IM ,
iCluster_Subtype_iC7

RNAseq RSL24D1P6, ATP7B.x, KCNS2.x, RP11.93K22.12, RP11.82L18.2, NCAM2.x,
RP11.697N18.2, RP11.641D5.1, PLA2G16.x, NOX4.x, INHA, AC009996.1, CNPY 3,
ZNF625, BHLHE22.x, RSL24D1, RP11.384C4.7, AL117352.1, RP13.204A15.3,
RP11.38L15.2, HIST1H3G, PPP1R15B, NIPAL2, CTD.2085F10.1, UNC50.x,
HSPB11.x

CNA S.tag298342, S.tag020770, S.tag280437, S.tag195468, S.tag280382, S.tag292697,
S.tag227455, S.tag041737, S.tag306109, S.tag000842, S.tag264435, S.tag026817,
S.tag250687, S.tag223243, S.tag286210, S.tag141796, S.tag282804, S.tag069019,
S.tag103995, S.tag091076, S.tag123168, S.tag080746, S.tag277180, S.tag014996,
S.tag029426, S.tag191575, S.tag030768, S.tag317958, S.tag131246, S.tag161315,
S.tag030729, S.tag049559, S.tag016873, S.tag267337, S.tag213248, S.tag236926,
S.tag083564, S.tag209362, S.tag011299, S.tag104795, S.tag032493, S.tag011156,
S.tag214732, S.tag199561, S.tag196229, S.tag121446, S.tag231311, S.tag013472,
S.tag207164, S.tag225078, S.tag144768, S.tag101438, S.tag230101, S.tag083900,
S.tag097908, S.tag167905, S.tag106361
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B.2 Variables selected after the forward-backward procedure

Matrices Variables

Clinical LN_positive, iCluster_Subtype_iC4, Surgery_Mastectomy

RNAseq RSL24D1P6, RP11.82L18.2, RP11.641D5.1, INHA, ZNF625, NIPAL2

CNA S.tag298342, S.tag020770, S.tag280437, S.tag195468, S.tag227455, S.tag041737,
S.tag026817, S.tag080746 S.tag030768, S.tag317958
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Titre : Contribution à l’étude des modèles graphiques et statistique en grande dimension appliquée à la modélisation
du cancer du sein triple négatif.

Mot clés : régression linéaire en grande dimension, modèle graphique partiel, corrélation partielle, pénalisation
structurante, sparsité, approche bayésienne, spike-and-slab, échantillonneur de Gibbs, sélection de variables.

Résumé : Cette thèse s’articule autour de deux axes.
Le premier constitue une contribution à l’étude des mo-
dèles graphiques gaussiens partiels (PGGM) dans le
cadre de l’apprentissage en grande dimension. Plus pré-
cisément, nous nous intéressons à la modélisation à sor-
ties multiples, où nous souhaitons estimer d’une part la
matrice ∆ des liens directs entre les prédicteurs et les
réponses, et d’autre part la matrice de précision condi-
tionnelle des réponses Ωy. Nous débutons avec une ap-
proche fréquentiste par maximum de vraisemblance pé-
nalisée, où nous proposons un PGGM muni de deux
formes de pénalisation : une pénalisation ℓ1 induisant de
la sparsité sur ∆ et Ωy, et une pénalisation structurante
reflétant un a priori gaussien généralisé sur les liens di-
rects. Nous montrons que, lorsqu’il est convenablement
régularisé, ce modèle est agrémenté d’une garantie théo-
rique prenant la forme d’une borne supérieure sur l’er-
reur d’estimation. Enfin, nous clôturons cette première
réflexion par des études empiriques mettant en avant
le caractère structurant de cette procédure d’estima-
tion, et sa pertinence sur un jeu de données réelles.

Nous poursuivons par l’étude de la contrepartie bayé-
sienne, jusqu’alors inexplorée dans la littérature. En sui-
vant une stratégie spike and slab, nous offrons plusieurs
structures hiérarchiques imposant soit une configuration
saturée, sparse, group-sparse ou encore sparse-group-
sparse de la matrice ∆. Nous obtenons une garantie
théorique pour les configurations sparse et group-sparse,
et illustrons les résultats compétitifs de ces modèles sur
une étude de simulation et un jeu de données réels, me-
nés avec des échantillonneurs de Gibbs. Le deuxième
axe de la thèse est, quant à lui, entièrement dévolu
à la sélection de variables pronostiques en analyse de
suvie multi-omique. Nous y proposons un algorithme
de sélection de variables descendante offrant un consen-
sus entre différentes méthodes de régularisation, notam-
ment celles présentées dans le premier axe. L’efficacité
de cette approche est enfin étudiée sur des données re-
latives au cancer du sein triple négatif, en prenant le
soin de répondre aux contraintes identifiées par les on-
cologues. Tous nos codes sont rendus disponibles à la
communauté.

Title: Contribution to the study of graphical models and high-dimensional statistics applied to the modeling of
Triple-Negative Breast Cancer.

Keywords: high-dimensional linear regression, partial graphical model, partial correlation, structural penaliza-
tion, sparsity, Bayesian approach, spike-and-slab, Gibbs sampler, variable selection.

Abstract: This thesis is articulated around two
axes. The first one is a contribution to the study of
partial Gaussian graphical models (PGGM) in high-
dimensional learning. Precisely, we are interested in
the multiple-output modeling, where we aim at estimat-
ing, on the one hand the matrix ∆ of direct links be-
tween predictors and responses, and on the other hand
the conditional precision matrix Ωy of responses. We
start with a frequentist approach by penalized maxi-
mum likelihood, where we propose a PGGM with two
forms of penalization: a ℓ1 penalty inducing sparsity on
∆ and Ωy, and a structural penalty reflecting a general-
ized Gaussian prior on the direct links. We show that,
when properly regularized, this model comes with a the-
oretical guarantee taking the form of an upper bound
on the estimation error. Finally, we close this first re-
flection with empirical studies highlighting the struc-
turing property of this estimation procedure, and its
relevance on a real dataset. We continue with the study

of the Bayesian counterpart, previously unexplored in
the literature. Following a spike and slab strategy, we
offer several hierarchical structures imposing either a
saturated, sparse, group-sparse or sparse-group-sparse
configuration of the matrix ∆. We obtain a theoreti-
cal guarantee for the sparse and group-sparse configu-
rations, and illustrate the competitive results of these
models on a simulation study and a real dataset, con-
ducted with Gibbs samplers. The second part of the
thesis is entirely devoted to the selection of prognos-
tic variables in multi-omics survival analysis. We pro-
pose a stepwise variable selection algorithm offering a
consensus between different regularization methods, in-
cluding those presented in the first axis. The efficiency
of this approach is finally studied on a dataset relat-
ing to triple-negative breast cancer, while taking care
to meet the constraints identified by oncologists. All
our codes are made available to the community.
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