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Titre
Étude des systèmes de contrôle sous contraintes nonholonomes quadratiques.
Planification de trajectoires, introduction à la méthode de continuation régu-
larisée.

Mots-Clés: Système non-linéaire de contrôle, Contraintes non holonomes quadra-
tiques, Équivalence par bouclage, Formes normales, Algèbre de Lie des symétries
infinitésimales, Planification de trajectoires, Méthode de continuation, Régularisa-
tion de Tikhonov

Résumé

Dans cette thèse, nous nous intéressons à la théorie et aux applications du contrôle
géométrique.

Le contrôle géométrique remonte aux travaux de Hermann et Brockett dans les
années soixante, a pris son essor dans les années soixante-dix grâce à Hermes, Jurd-
jevič, Sussmann et a continué dans les années quatre-vingt avec Agrachev, Bonnard,
Isidori, Jakubczyk, Nijmeijer, Respondek, Sontag, van der Schaft, et bien d’autres.
Cette recherche s’est poursuivie et a établi la théorie du contrôle géométrique comme
un domaine de recherche fructueux à la croisée du contrôle non-linéaire, de la géo-
métrie et des équations différentielles. Elle a donné lieu à des monographies par
Nijmeijer et van der Schaft [Nv90], Isidori [Isi95], Jurjevič [Jur96], Bullo et Lewis
[BL05], Agrachev et Sachkov [AS13], Bloch [Blo15]. La première partie du manus-
crit traite de la géométrie différentielle et de la description de certaines orbites des
systèmes de contrôles sous l’action des transformations par bouclage. La seconde
partie se concentre sur les applications et nous développons un algorithme pour le
problème de planification de trajectoire.

La première partie de cette thèse est dédiée au problème d’équivalence des sous-
variétés du fibré tangent. Nous considérons X une variété lisse de dimension n, équi-
pée de coordonnées locales x ; une sous-variété S du fibré tangent TX est donnée
par une équation de la forme S(x ẋ) = 0 et décrit une équation différentielle impli-
cite (sous-déterminée) du premier ordre. Nous disons que deux telles sous-variétés
sont équivalentes si elles sont équivalentes par une transformation ponctuelle (un
difféomorphisme) à multiplication par une fonction scalaire non-nulle près. Nous
sommes particulièrement intéressés par une caractérisation et une classification des
sous-variétés quadratique, c’est-à-dire les sous-variétés données par l’ensemble de
niveau zéro d’une équation de la forme

Sq(x, ẋ) = ẋtg(x)ẋ+ 2ω(x)ẋ+ h(x).

Les sous-variétés quadratiques décrivent dans chaque espace tangent une quadrique
(au sens de la géométrie affine classique). Nous montrons que le problème d’équi-
valence des sous-variétés peut être étudié sous le prisme de la transformation par
bouclage des systèmes de contrôles. Précisément, à une sous-variété S ⊂ TX nous
attachons deux systèmes de contrôles qui jouent le rôle d’une représentation pa-
ramétrique de S. Le premier est non-linéaire par rapport aux contrôles, et le se-
cond est affine ; nous les appelons, respectivement, première et seconde prolongation
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de S. Nous montrons que l’équivalence de deux sous-variétés peut être interprétée
comme l’équivalence (par le bouclage) de leurs premières et secondes prolongations
respectives. Par conséquent, en utilisant la machinerie de la théorie du contrôle
géométrique, nous construisons une théorie des systèmes de contrôle quadratiques,
c’est-à-dire des systèmes de contrôles décrivant une équation différentielle implicite
quadratique.

Quand la variété sous-jacente X est de dimension 2, i.e. c’est une surface, nous
donnons une caractérisation des sous-variétés coniques, qui inclue les formes ré-
gulières que sont les sous-variétés elliptiques, hyperboliques, et paraboliques, mais
aussi un passage lisse d’un type vers un autre. Nous identifions une classe de sys-
tème de contrôle affine (sur une variété de dimension 3, avec un contrôle scalaire)
qui décrivent la paramétrisation d’une sous-variété conique. Nous proposons une
caractérisation de cette classe de système de contrôle affine, qui par l’équivalence de
nos problèmes produit une caractérisation des sous-variétés coniques. Les conditions
que nous établissons impliquent des fonctions de structure bien définies et attachées
à n’importe quel système de contrôle affine. En analysant nos conditions, nos don-
nons une forme normale des sous-variétés coniques. Ensuite, nous nous intéressons
au problème de classification des sous-variétés coniques régulières : elliptiques, hy-
perboliques, et paraboliques. Nous étudions ce problème à l’aide de la classification
(par le bouclage) de leurs premières prolongations données, respectivement, par

ΞE : ẋ = A(x) cos(w) +B(x) sin(w) + C(x),

ΞH : ẋ = A(x) cosh(w) +B(x) sinh(w) + C(x),

ΞP : ẋ = A(x)w2 +B(x)w + C(x),

et que nous interprétons comme des systèmes de contrôle non-linéaire (w joue le
rôle d’un contrôle scalaire). Par définition A et B sont des vecteurs indépendants,
donc ils forment un repère mobile du fibré tangent. Premièrement, nous donnons
des conditions, dans le cas elliptiques et hyperboliques, qui garantissent que (A,B)
peut être transformer en un repère commutatif et nous prouvons que cela peut
toujours être fait dans le cas parabolique. Deuxièmement, dans tout les cas, nous
caractérisons les formes où le champ C est constant.

Dans le cas d’une vérité lisse X de dimension n ≥ 3 nous donnons une caracté-
risation des sous-variétés quadratiques paraboloïdes SQ, c’est-à-dire celles qui sont
données par l’ensemble de niveau zéro d’une application de la forme

SQ(x, ẋ) = ż − ẏtQ(x)ẏ − b(x)ẏ − c(x),

où x = (z, y), avec y = (y1, . . . , yn−1). Cette classe de sous-variétés généralise la
classe des sous-variétés paraboliques étudiée dans le cas n = 2. Notre construction
est basée sur l’étude géométrique et algébrique d’objets attachées à la première
et seconde prolongation de SQ, qui sont respectivement des systèmes de contrôle
non-linéaire et affine de la forme

Ξp,q : ẋ = A(x)wtIp,qw +B(x)w + C(x),

Σp,q : ẋ = A(x)wtIp,qw +B(x)w + C(x), ẇ = u,

où Ip,q =
(

Idp 0
0 −Idq

)
, et (A,B1, . . . , Bm, C) sont des champs de vecteurs lisses. Notre

caractérisation est explicite, au sens ou elle peut être testé sur n’importe quel sys-
tème de contrôle affine au moyen de relations algébriques et différentielles entre des
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fonctions de structure bien définies attachées au système. A chaque fois que cela est
possible, nous donnons une interprétation de nos conditions, soit en donnant leur
contre-partie géométrique ou en construisant des formes normales. Ensuite, nous
traitons le problème de classification des sous-variétés paraboloïdes SQ en propo-
sant une classification de leur première prolongation Ξpq,. Nous explorons les formes
normales suivantes

Ξ′
p,q : ẋ = wtIp,qw

∂

∂z
+

m∑
i=1

wi
∂

∂yi
+ C(x),

Ξ′
p,q : ẋ = wtIp,qw

∂

∂z
+

m∑
i=1

wi
∂

∂yi
+ c0(x)

∂

∂z
,

Ξ′
p,q : ẋ = wtIp,qw

∂

∂z
+

m∑
i=1

wi
∂

∂yi
+ c0

∂

∂z
, c0 ∈ R.

La première forme correspond à l’existence d’une repère commutatif A,B1, . . . , Bm

(ce qui correspond à la normalisation Q = Ip,q pour SQ). Dans la seconde forme,
nous caractérisons la sous-classe où le champ C est colinéaire avec A (ce qui est
intéressant car cela correspond à SQ, avec Q = Ip,q et, additionnellement, b = 0), et
finalement nous donnons des conditions pour que C soit constant (ce qui correspond
à Q = Ip,q, b = 0, et c ∈ R pour SQ). Ce dernier cas conduit à une forme canonique
avec c0 = ±1 ou c0 = 0. Notre classification des systèmes de contrôle paraboloïde
donne de manière équivalente une classification des sous-variétés paraboloïdes.

Nous proposons également une approche pour caractériser directement la classe
des sous-variétés paraboloïdes SQ sans paramètres, nous les appelons des formes-
nulles et elles sont données par l’ensemble de niveau zéro de l’application S0

Q =
ż− ẏtIp,qẏ. Cette caractérisation est basée sur l’étude des symétries de leur seconde
prolongation donnée par

Σ0
p,q :


ż = wtIp,qw
ẏ = w
ẇ = u

.

Nous montrons que l’algèbre de Lie des symétries infinitésimales de Σ0
p,q décrit cette

classe de système de contrôle affine.

Dans la deuxième partie du manuscrit, nous étudions le problème de planification
de trajectoire, c’est-à-dire le problème de la conception et de l’étude d’algorithmes
qui calculent des contrôles réalisant une certaine trajectoire cible. Nous considérons
un système de contrôle affine de la forme

Σ : ẋ(t) = f(x(t)) +
m∑
i=1

ui(t)gi(x(t)), x ∈ Rn, et ui ∈ L2([0, T ],R).

Nous supposons que l’état initial x(0) = x0 est fixé. Une notion importante de la
théorie du contrôle est l’application entrée-sortie, qui à un contrôle u(t) associe le
point terminal xu(T ) en temps T > 0 de la trajectoire associée

E : L2([0, T ],Rm) −→ Rn

u 7−→ xu(T ).
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L’étude de cette application et particulièrement de ces singularités (c’est à dire des
points u où la différentielle dE(u) n’est pas surjective) est le sujet de beaucoup de
travaux ; par exemple Lee et Markus [LM67], Bonnard et Chyba [BC03]. Du point
de vue des applications, il y a deux questions très naturelles. La première concerne
la description de l’ensemble des points atteignables depuis x0 en temps T et en
utilisant des contrôles prescrits. Et, deuxièmement, étant donnée un point cible x⋆,
atteignable depuis x0 en temps T , nous cherchons un contrôle (non-nécessairement
unique) u⋆ réalisant E(u⋆) = x⋆. Ce problème est appelée le problème de planification
des trajectoires dans la littérature et nous lui dédions la seconde partie de la thèse.

Nous proposons une régularisation de la méthode de continuation introduite par
Chitour et Sussmann [CS98 ; Chi06] au début du siècle. L’idée de la méthode est
de commencer avec un contrôle arbitraire u0 qui, en général, donne un état final x0
différent de x⋆. Puis, nous construisons un chemin π dans Rn qui relie ce premier
essai x0 avec le point cible x⋆. Le cœur de la procédure est la construction d’un
relèvement de π dans L2([0, T ],Rm). A savoir, nous cherchons un chemin Π(s) de
contrôles satisfaisant Π(0) = u0 et pour tout s ∈ [0, 1] nous avons E(Π(s)) = π(s).
Si cette procédure peut être menée jusque s = 1 alors Π(1) est une solution du
problème de planification de trajectoire. La résolution de cette méthode est faite en
différenciant par rapport à s la dernière relation, ce qui donne l’équation différentielle

dE(Π(s))Π′(s) = π′(s), Π(0) = u0,

appelée l’équation de relèvement de chemin (ERC). Si dE(Π(s)) est surjective pour
tout s, alors elle possède un inverse à droite, par exemple le pseudo-inverse de
Moore-Penrose, ainsi l’ERC a une solution locale. Sous cette hypothèse, nous devons
montrer que l’ERC possède une solution globale sur [0, 1]. Par conséquent, les deux
difficultés de la méthode de continuation sont : premièrement, nous devons garantir
que π(s) évite l’ensemble singulier de E (sinon, à un tel point, l’ERC est n’est pas
bien posée), et deuxièmement, il faut que l’ERC ait une solution globale sur [0, 1].
Actuellement, la description générale des singularités de E est toujours un problème
ouvert, et le second point requière l’analyse d’une équation différentielle hautement
non-linéaire posée sur un espace de dimension infinie. Donc, il y a une condition
globale et une locale pour assurer la faisabilité de la méthode de continuation et la
convergence de l’algorithme.

L’idée présentée dans la thèse est d’introduire une régularisation dans la méthode
de continuation, celle-ci est inspirée par la régularisation de Tikhonov dans la théorie
du pseudo-inverse de Moore-Penrose. Nous proposons une déformation paramétrée
de l’inverse à droite de dEΠ(s)), ce qui donne l’équation

Π′
λ(s) = dE (Πλ(s))

∗ (dE (Πλ(s)) dE (Πλ(s))
∗ + λ Id)

−1
π′(s), Πλ(0) = u0,

appelée l’équation de relèvement de chemin régularisée (ERC-R). Nous montrons que
notre méthode résout les deux problèmes de la méthode de continuation classique.
En effet, la régularisation assure que l’ERC-R est bien posée pour tout s ∈ [0, 1] et
qu’elle admet une solution globale. Dans la thèse nous montrons que la condition
pour que la solution Πλ de l’ERC-R converge (λ → 0) vers une solution de l’ERC,
est que le chemin π(s) satisfait π′(s) ∈ im dE(Π(s)), pour tout s. Finalement, nous
illustrons le potentiel de la notre méthode à travers plusieurs exemples numériques.
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Title
Study of control systems under quadratic nonholonomic constraints. Motion
planning, introduction to the regularised continuation method.
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Abstract

In this thesis, we are interested in theoretical and applied geometric control theory.
Geometric control theory dates back to the work of Hermann and Brockett in the

sixties, took off in the seventies due to Hermes, Jurdjevič, Sussmann and followed
in the eighties by Agrachev, Bonnard, Isidori, Jakubczyk, Nijmeijer, Respondek,
Sontag, van der Schaft, and many others. That research has been continuing and has
established geometric control theory as a fruitful research domain at the crossover of
nonlinear control, geometry, and differential equations and has led to monographs
by Nijmeijer and van der Schaft [Nv90], Isidori [Isi95], Jurjevič [Jur96], Bullo and
Lewis [BL05], Agrachev and Sachkov [AS13], Bloch [Blo15].

The first part of the manuscript deals with differential geometry and the de-
scription of some orbits of control systems under the action of the group of feedback
transformations. The second part is focused on applications and we develop an al-
gorithm for the motion planning problem.

The first part of this thesis is dedicated to the problem of equivalence of subman-
ifolds of a tangent bundle. Consider a smooth n-dimensional manifold X , equipped
with local coordinates x; a submanifold S of the tangent bundle TX is given by
an equation of the form S(x, ẋ) = 0 and describes an implicit (underdetermined)
first order differential equation. We call two such submanifolds equivalent if they
are equivalent via a point transformation up to multiplication by a nonvanishing
function. We are especially interested in characterising and classifying quadric sub-
manifolds given by the zero level-set of an equation of the form

Sq(x, ẋ) = ẋtg(x)ẋ+ 2ω(x)ẋ+ h(x).

Quadric submanifolds describe in each tangent space a quadric (in the sense of
classical affine geometry). We show that the problem of equivalence of submanifolds
can be studied under the prism of feedback transformations of control systems.
Precisely, to a submanifold S ⊂ TX we attach two control systems that plays the
role of a parametric representation of S. The first one is control-nonlinear and the
second is control-affine; we call them a first and a second prolongation of S. We
show that the equivalence (under point transformations, and multiplication by a
nonvanishing function) of two submanifolds can be interpreted as the equivalence
(via feedback transformations) of their corresponding first and second prolongations.
Therefore, using the machinery of geometric control theory, we construct a theory
of quadric control systems, that is of control systems describing a quadric implicit
first order ordinary differential equation.
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When the base manifold X is 2-dimensional, i.e. it is a surface, we give a
characterisation of conic submanifolds, that includes the regular forms of ellipses,
hyperbolas, and parabolas, but also a smooth passage from one type to another.
We identify a class of control-affine systems (on a 3-dimensional manifold and with
scalar control) that describes the parametrisation of conic submanifolds. We propose
a characterisation of that class of control-affine system, which by equivalence of our
problems provides a characterisation of conic submanifolds. The conditions that we
state involve well-defined structure functions attached to any control-affine system.
By analysing our conditions, we give a normal form of conic submanifolds. Next,
we are interested in the problem of classifying regular conic submanifolds: elliptic,
hyperbolic, and parabolic. We study this problem with the help of the classification
(via feedback transformations) of their first prolongation given, respectively, by

ΞE : ẋ = A(x) cos(w) +B(x) sin(w) + C(x),

ΞH : ẋ = A(x) cosh(w) +B(x) sinh(w) + C(x),

ΞP : ẋ = A(x)w2 +B(x)w + C(x),

and interpreted as control-nonlinear systems (w plays the role of the scalar control).
By definition, A and B are linearly independent vector fields, so they form a moving
frame of the tangent bundle. We first give conditions, in the elliptic and hyperbolic
case, that guarantee that (A,B) can be transformed into a commutative frame and
we prove that this can always be done in the parabolic case. Then, in all cases, we
characterise the forms where the vector field C is constant.

In the case of a smooth manifold X of dimension n ≥ 3, we give a characterisation
of paraboloid submanifolds SQ, i.e. those that are given by a map of the form

SQ(x, ẋ) = ż − ẏtQ(x)ẏ − b(x)ẏ − c(x),

where x = (z, y), with y = (y1, . . . , yn−1). That class of submanifolds generalises
the class of parabolic submanifolds studied in the case n = 2. Our construction is
based on the study of geometric and algebraic objects attached to first and second
prolongations of SQ, which are, respectively, control-nonlinear and control-affine
systems of the form

Ξp,q : ẋ = A(x)wtIp,qw +B(x)w + C(x),

Σp,q : ẋ = A(x)wtIp,qw +B(x)w + C(x), ẇ = u,

where Ip,q =
(

Idp 0
0 −Idq

)
, and (A,B1, . . . , Bm, C) are smooth vector fields. Our char-

acterisation is explicit, i.e. it can be tested explicitly on any control-affine system by
means of algebraic and differential relations between well-defined structure functions
attached to the system. Every time when it is possible we give an interpretation
of our conditions either by giving their geometric counterpart or by constructing
normal forms. Next, we deal with the problem of classifying paraboloid submani-
folds SQ by proposing a classification of their first prolongation Ξp,q. We explore the
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following normal forms,

Ξ′
p,q : ẋ = wtIp,qw

∂

∂z
+

m∑
i=1

wi
∂

∂yi
+ C(x),

Ξ′
p,q : ẋ = wtIp,qw

∂

∂z
+

m∑
i=1

wi
∂

∂yi
+ c0(x)

∂

∂z
,

Ξ′
p,q : ẋ = wtIp,qw

∂

∂z
+

m∑
i=1

wi
∂

∂yi
+ c0

∂

∂z
, c0 ∈ R.

The first form corresponds to the existence of a commutative frame A,B1, . . . , Bm

(which corresponds to the normalisation Q = Ip,q in SQ). In the second normal
form, we characterise the form where the vector field C is collinear with A (which is
interesting because it corresponds to SQ with Q = Ip,q and, additionally, b = 0), and
finally we give conditions for C being constant (corresponding to Q = Ip,q, b = 0,
and c ∈ R for SQ). The latter case leads to a canonical form with c0 = ±1 or
c0 = 0. Our classification of paraboloid system gives, equivalently, a classification
of paraboloid submanifolds.

We also propose an approach to directly characterise paraboloid submanifolds
SQ with no parameters, called null-forms and given by S0

Q = ż − ẏtIp,qẏ. That
characterisation is based on studying symmetries of their second prolongation given
by

Σ0
p,q :


ż = wtIp,qw
ẏ = w
ẇ = u

.

We show that the Lie algebra of infinitesimal symmetries of Σ0
p,q describes that class

of control-affine systems.

In the second part of the manuscript we study the motion planning problem,
that is, the problem of designing and studying algorithms that compute controls
realising a certain target trajectory. We consider a control-affine system of the form

Σ : ẋ(t) = f(x(t)) +
m∑
i=1

ui(t)gi(x(t)), x ∈ Rn, and ui ∈ L2([0, T ],R).

We assume that a state x(0) = x0 is fixed. An important notion of control theory is
the endpoint mapping, which to a control u(t) associates the terminal point xu(T )
in time T > 0 of the associated trajectory:

E : L2([0, T ],Rm) −→ Rn

u 7−→ xu(T ).

The study of that map and, particularly, of its singularities (i.e. the points u, where
the differential dE(u) is not surjective) is the subject of many works, e.g. Lee and
Markus [LM67], Bonnard and Chyba [BC03]. From the point of view of applications,
there are two very natural questions. The first one consists in describing the set of
reachable points from x0 in time T using prescribed controls. And, second, given a
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target point x⋆ ∈ Rn, reachable from x0 in time T , we look for a (non necessarily
unique) control u⋆ realising E(u⋆) = x⋆. This problem is called the motion planning
problem in the literature and we dedicate the second part of the thesis to it.

We propose a regularisation of the continuation method introduced by Chitour
and Sussmann [CS98; Chi06] at the beginning of the century. The idea of the
method is to start with an arbitrary control u0 which, in general, gives a final state
x0 different from x⋆. Then, we construct a path π in Rn joining the first guess x0 to
the target point x⋆, that is π(0) = x0 and π(1) = x⋆. The core of the procedure is
the construction of a lift of π in L2([0, T ],Rm). Namely, we look for a path Π(s) of
controls satisfying Π(0) = u0 and for all s ∈ [0, 1] we have E(Π(s)) = π(s). If that
procedure can be carried out to s = 1 then Π(1) is a solution of the motion planning
problem. The resolution of this method is done by differentiating with respect to s
the last relation, which yield the differential equation

dE(Π(s))Π′(s) = π′(s), Π(0) = u0,

called the path lifting equation (PLE). If dE(Π(s)) is surjective for all s, then it
possesses a right inverse, for instance the Moore-Penrose pseudo-inverse, and thus
the PLE has a local solution. Under that assumption, we need to show that the PLE
possesses a global solution on [0, 1]. Therefore, the two difficulties of the continuation
method are: first, one needs that π(s) avoids the singular set of E (otherwise, at
such a point, the PLE is not well-posed), and secondly, one needs to guarantee that
the PLE admits a global solution on [0, 1]. Nowadays, the description of the singular
set of E is still an open problem in its generality, and the second point requires the
analysis of a highly nonlinear differential equation posed on an infinite-dimensional
space. Therefore, there is a global and a local condition to ensure the feasibility of
the continuation method and the convergence of the algorithm.

The idea presented in this thesis is to introduce a regularisation, inspired by the
Tikhonov regularisation in the theory of the Moore-Penrose pseudo-inverse, in the
continuation method. We propose a parameter deformation of the right inverse of
dEΠ(s)), which yields equation

Π′
λ(s) = dE (Πλ(s))

∗ (dE (Πλ(s)) dE (Πλ(s))
∗ + λ Id)

−1
π′(s), Πλ(0) = u0,

called the regularised path lifting equation (R-PLE). We show that our method fixes
both issues of the classical continuation method. Indeed, the regularisation ensures
that the R-PLE is well-posed for every s ∈ [0, 1] and that it admits a global solution.
In the thesis, we show that the condition for a solution Πλ of the R-PLE to converge
(λ→ 0) towards a solution of the PLE is that π(s) satisfies π′(s) ∈ im dE(Π(s)), for
all s. Finally, we illustrate the potential of our method through several numerical
examples.
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Chapter 1

Introduction

The first part of this manuscript is devoted to the problem of equivalence of subman-
ifolds of the tangent bundle of a smooth manifold. We are particularly interested in
a characterisation and a classification of submanifolds that describe quadric hyper-
surfaces in the fibers of the tangent bundle. Our analysis relies on attaching to each
submanifold two control systems (one fully nonlinear with respect to the controls,
and the other control-affine) and then on studying the orbits of those systems under
the action of feedback transformations. We will show that the problem of equiva-
lence of submanifolds can equivalently be considered as a problem of equivalence of
control systems. Therefore, using the machinery of geometric control we will develop
a theory of quadric submanifolds and of their control systems counterparts.

This introduction is organised as follows. In section 1, we define the different
mathematical tools that we use. Then, in section 2, we introduce the problem of
equivalence of submanifolds of a tangent bundle and develop a passage from the
problem of characterising submanifolds to the problem of characterising control sys-
tems. Finally, in section 3, we outline the organisation of this part of the manuscript
and we summarise the main contributions of it.

1 Preliminaries

In this section, we give the main definitions and notations used in this first part of the
manuscript. Throughout this part, the word smooth will always mean C∞-smooth.

1.1 Differential geometry

In this subsection, we introduce some mathematical tools from differential geometry
that will be useful for the description of control systems. The reader used to dif-
ferential geometry may skip this subsection. Allover the manuscript, manifolds are
«smooth, finite-dimensional, Hausdorff, second countable, and paracompact»; see
[Lee13; Car92] for a detailed introduction. All objects (vector fields, tensor fields,
functions) are also smooth. We will consider (if not stated otherwise) embedded
submanifolds. For a manifold X we will denote by TX and T ∗X the tangent and
cotangent bundle, respectively. The space of all smooth vector fields (smooth sec-
tions of TX ) will be denoted V ∞(X ) and the one of all smooth differential p-forms
by Λp(X ), except for smooth functions (0-forms) whose space is denoted C∞(X ).
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Vector fields and tensors calculus. For a diffeomorphism ϕ : X → X̃ , a vector
field f ∈ V ∞(X ), and a differential p-form ω ∈ Λp(X̃ ), we denote by ϕ∗f ∈ V ∞(X̃ )
the push-forward of f , and by ϕ∗ω ∈ Λp(X ) the pull-back of ω. The (local) flow of
a vector field f ∈ V ∞(X ) is denoted by γft (for any t such that it is defined). For
a differential 1-form ω and a vector field f we denote by ⟨ω, f⟩ ∈ R their duality
bracket. The Lie derivative of a differential p-form ω along a vector field f will be
denoted by Lf (ω). In particular, for a function λ ∈ C∞(X ) and its differential dλ
(an exact 1-form) we have

Lf (λ) = ⟨dλ, f⟩ and Lf (dλ) = dLf (λ) .

For any smooth functions α, λ, and µ, the Lie derivative possesses the following
properties: Lαf (λ) = αLf (λ), and Lf (λµ) = Lf (λ)µ + λLf (µ). Iterative Lie
derivatives are defined by Lkf (λ) = Lf

(
Lk−1
f (λ)

)
, for any k ≥ 2. For any two

vector fields f, g ∈ V ∞(X ), we define their Lie bracket as a new vector field, denoted
[f, g] ∈ V ∞(X ), such that for any smooth function λ we have

L[f,g] (λ) = Lf (Lg (λ))− Lg (Lf (λ)) .

The Lie bracket possesses the following properties: it is bilinear over R, it is skew-
commutative, i.e. [f, g] = − [g, f ], and it satisfies the Jacobi identity:

[f, [g, h]] + [g, [h, f ]] + [h, [f, g]] = 0, ∀ f, g, h ∈ V ∞(X ).

Observe that with this bracket the space V ∞(X ) is thus a Lie algebra. Moreover,
for any smooth function α, and any vector fields f , g, and h, we have

[f, αg + h] = α [f, g] + Lf (α) g + [f, h] .

Two vector fields f and g satisfying [f, g] = 0 are said to be commuting; since under
diffeomorphisms ϕ : X → X̃ the Lie bracket is transformed by [ϕ∗f, ϕ∗g] = ϕ∗ [f, g],
the commutativity property does not depend on coordinates. The celebrated Flow-
box theorem (also called the «Straightening-out Theorem» or the «Local Linearisa-
tion Lemma») asserts that on a given n-dimensional manifold X there exists a local
coordinate system (x1, . . . , xn) such that f = ∂

∂x1
in a neighbourhood of a point

where f ̸= 0. This can simultaneously be done for a family of (locally) independent
vector fields (f1, . . . , fm) if and only if they are mutually commuting. The iterated
Lie bracket is denoted by adkfg =

[
f, adk−1

f g
]

for k ≥ 1 with the convention ad0
fg = g;

see [Isi95, chapter 1] for a detailed introduction and a proof of those properties.

Remark (Definitions in local coordinates). Let x = (x1, . . . , xn) be a local coordi-
nate system on X (a smooth n-dimensional manifold). We denote by

(
∂
∂x1
, . . . , ∂

∂xn

)
the natural frame of TX and thus any vector field f ∈ V ∞(X ) admits a local
representation of the form

f(x) =
n∑
i=1

f i(x)
∂

∂xi
,

for some smooth functions f i(x). For a (local) diffeomorphism ϕ : X → X̃ , we set
x̃ = ϕ(x) a local coordinate system on X̃ . Consider two vector fields f, g ∈ V ∞(X )
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and a function λ ∈ C∞(X ), then the previous definitions can be expressed in local
coordinates by

(ϕ∗f)(x̃) =
∂ϕ

∂x
(ϕ−1(x̃)) f(ϕ−1(x̃)),

Lf (λ) (x) =
n∑
i=1

∂λ

∂xi
(x)f i(x),

and [f, g] (x) =
∂g

∂x
(x)f(x)− ∂f

∂x
(x)g(x).

◆

Distributions. A distribution D is map that assigns to each point x ∈ X a linear
subspace D(x) of the tangent space TxX . We say that D is of constant rank m if
dimD(x) = m for all x ∈ X , which is always the case if D is a subbundle. In this part
of the manuscript all distributions are assumed to be of constant rank. Thus, locally,
D is spanned by m independent vector fields g1, . . . , gm, which will be denoted by
D = span {g1, . . . , gm}. In some occasions it will be useful to consider dual objects,
called codistributions, that are defined in the following way. The codistribution
ann (D) of a smooth distribution D is a map that assigns to each x ∈ X the linear
subspace of T ∗

xX given by the set of covectors that annihilate all vectors in D(x):

ann (D) (x) = {ϖ ∈ T ∗
xX , ∀ v ∈ D(x), ⟨ϖ, v⟩ = 0} .

If D is of constant rank m, then it is possible to find locally n−m smooth differential
1-forms ωm+1, . . . , ωn such that ann (D) = span {ωm+1, . . . , ωn} ⊂ T ∗X .

We say that a distribution D is involutive if it is closed under the Lie bracket, i.e.
for any two vector fields g, g′ ∈ D we have [g, g′] ∈ D. If, locally, we can find n−m
smooth functions λm+1, . . . , λn such that ann (D) = span {dλm+1, . . . , dλn}, then we
say that D is integrable. The following result relates integrability and involutivity.

Theorem 1.1 (Frobenius). Consider X a smooth n-dimensional manifold and let
D ⊂ TX be a smooth distribution of constant rank m ≤ n. The following statements
are equivalent:

(i) D is integrable;

(ii) D is involutive;

(iii) Locally, there exists a coordinate system (x1, . . . , xm, xm+1, . . . , xn) of X in
which D takes the form

D = span

{
∂

∂x1
, . . . ,

∂

∂xm

}
;

(iv) Locally, there exists n−m functions xm+1, . . . , xn such that

ann (D) = span {dxm+1, . . . , dxn} .

See [Lun92] for a proof. A distribution that can be expressed as in statement
(iii) is said to be rectifiable; in appendix A, we generalise the previous theorem
by showing when several integrable distributions can simultaneously be rectified.
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Statement (iii) of Theorem 1.1 can be interpreted as follows. Given a distribution
D = span {g1, . . . , gm}, with gi ∈ V ∞(X ), we consider an action of diffeomorphisms
ϕ : X → X and of matrix-valued functions β =

(
βij
)

: X → GLm(R) on the
m-tuples of generators g = (g1, . . . , gm) by

gj 7−→ g̃j := ϕ∗

(
m∑
i=1

giβ
i
j

)

or, using the vector notation g̃ = ϕ∗(gβ), where g̃ = (g̃1, . . . , g̃m). Observe that
rectifying D means applying a pair (ϕ, β) such that g̃j = ∂

∂x̃j
, for 1 ≤ j ≤ m, where

x̃ = ϕ(x). Since [g̃i, g̃j] = 0, it follows that an involutive distribution always possesses
a set of generators that are mutually commuting (those are given by ḡj =

∑m
i=1 giβ

i
j).

For a vector field f ∈ V ∞(X ) and a distribution D we define a new distribution
[f,D] = span {[f, g] , ∀ g ∈ D} defined by all Lie brackets between f and g ∈ D.
If D is spanned by m ≥ 1 independent vector fields gi and f ̸= 0, then we have
[f,D] = span {[f, gi] , 1 ≤ i ≤ m}. For two distributions D1 and D2, we define
their Lie bracket by [D1,D2] = span {[f, g] , f ∈ D1, g ∈ D2} and their sum by
(D1 + D2)(x) = D1(x) + D2(x) (the sum in the right hand side is the usual sum of
vector spaces). Given a distribution D we construct its associated Lie flag as

D0 := D, and, iteratively, Di+1 = Di + [D0,Di] , for any i ≥ 0.

Obviously we have Di ⊂ Di+1 for all i ≥ 0. If all distributions Di, for i ≥ 0, are of
constant rank, then we define the grow vector of D as

g.v. (D) = (d0, d1, . . . , di∗ , di∗+1) ,

where di = rkDi and i∗ is the smallest integer such that di∗ = di∗+1. In particular,
notice that Di∗ is involutive and of constant rank. We call Di∗ the involutive closure
of D (it is unique) and denote it by D̄.

Given a distribution D we construct an involutive subdistribution (but, in gen-
eral, it is not of constant rank) called the characteristic distribution and defined
by

C(D) = {g ∈ D, [g,D] ⊂ D} .

Systems of first order PDEs. Consider a system of m first order linear partial
differential equations:

Lgi (λ) = bi, 1 ≤ i ≤ m,(1.1)

for an unknown function λ : X → R, where gi ∈ V ∞(X ), and bi ∈ C∞(X ). Suppose
that the distribution D = span {g1, . . . , gm} is involutive and of constant rank m (i.e.
the fields gi’s are independent). Then, define structure functions νkij by

[gi, gj] =
m∑
k=1

νkij gk, ∀ 1 ≤ i, j ≤ m.

The celebrated Frobenius theorem gives necessary and sufficient conditions for the
(local) existence of a smooth solution λ of the system (1.1).
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Theorem 1.2 (Frobenius). Let D = span {g1, . . . , gm} be an involutive distribution
of rank m. System (1.1) possesses a local solution λ if and only if the following
integrability conditions are satisfied:

Lgi (bj)− Lgj (bi) =
m∑
k=1

νkij bk, ∀ 1 ≤ i < j ≤ m.(1.2)

If b1 = . . . = bm = 0, then the integrability conditions (1.2) are always satisfied, thus
the homogeneous system Lgi (λ) = 0, for 1 ≤ i ≤ m, admits solutions λ(x) which
have a direct interpretation. Namely, Sc = {λ(x) = c, c ∈ R} are m-dimensional
integral leaves of the involutive distribution D, that is, TxSc = D(x), hence proving
that involutivity is equivalent to integrability.

Brief historical note. We shortly outline the story of the development of the
theory of linear partial differential equations. The story begin by the study of linear
partial differential equations (i.e. systems of the form (1.1) with m = 1) in two
variables only (motivated by celestial mechanics, we believe). The idea of integrating
first order partial differential equations is due to Euler in 1734 [Eul40]. Subsequent
development were then made by Lagrange, Charpit, and Monge creating what we
now call the method of characteristics [Lag67]. In 1815, Pfaff generalises Charpit’s
method to linear partial differential equations with any number of variables, his
method was simplified by Cauchy in 1819 [Cau82] and by Jacobi in 1834 [Jac81]
a century after Euler. Jacobi seems to be the first interested in systems of linear
partial differential equations. The above theorem, attributed to Frobenius, appears
to have been first proven (necessary conditions) in the homogeneous case (i.e. for
bi = 0) by Clebsch (see [Cle66] original work, and [Haw05] for an English version) and
by Deahna for sufficient conditions [Dea40]. Frobenius is responsible for applying
this theorem to differential forms and Pfaffian equations [Fro77], and thus definitely
attached his name with it. The inhomogeneous case is not well developed in the
literature because its proof roughly amounts to a reduction to a homogeneous case;
in [Sal99] a proof is given in the case when the fields are mutually commuting (i.e.
[gi, gj] = 0 for all 1 ≤ i, j ≤ m). To our surprise, we have not found any modern text
containing a proof of this theorem. See [Sam01], [Sal31, chapter 1], and references
therein for a detailed historical introduction.

Pseudo-Riemannian geometry. A pseudo-Riemannian metric on a smooth n-
dimensional manifold X is a map that smoothly associates to each point x ∈ X
a non-degenerate symmetric bilinear form gx(·, ·) on the tangent space TxX (see
[Oli02] for a detailed introduction). Like in the classical Riemannian geometry, it is
possible to define the Levi-Civita connection ∇ and the curvature (0, 4)-tensor

Riem (g) (X1, X2, X3, X4) = g (R(X1, X2)X3, X4) ,

where R(X1, X2)X3 = ∇X1∇X2X3 − ∇X2∇X1X3 − ∇[X1,X2]X3, for any pseudo-
Riemannian metric (see e.g. [Bes08]). A metric is called flat if its curvature tensor
Riem (g) vanishes identically. Any pseudo-Riemannian g induces two mutually in-
verse isomorphisms

♯ : T ∗X → TX , and ♭ : TX → T ∗X ,
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defined by g(ω♯, X) = ω(X) and X♭(Y ) = g(X, Y ). Given two symmetric (0, 2)-
tensors g and h, we define their Kulkarni-Nomizu product g⃝∧ h, which is a (0, 4)-
tensor, by

g⃝∧ h(X1, X2, X3, X4) = g(X1, X3)h(X2, X4) + g(X2, X4)h(X1, X3)

− g(X1, X4)h(X2, X3)− g(X2, X3)h(X1, X4),

for any X1, X2, X3, and X4 in TX . We call two metrics g and g′ to be conformally
equivalent if there exists a smooth function λ ̸= 0 such that g′ = λ2 g. A metric
g is called conformally flat if it is conformally equivalent to a flat metric (in the
above sense). In the case dimX = 2, all metrics are conformally flat, for n ≥ 3
necessary and sufficient conditions for conformal flatness are given by the vanishing
of the Cotton tensor (if n = 3) and by the vanishing of the Weyl tensor if n ≥ 4.
Those tensors are defined as follows. First, we define the Ricci tensor, the scalar
curvature, and the Schouten tensor, respectively, by

Ric (g) (X2, X3) = Tr (X1 7→ R(X1, X2)X3) , s(g) = TrgRic (g) ,

and P (g) =
1

n− 2

(
Ric (g)− s(g)

2(n− 1)
g
)
,

where Trg is the trace operator with respect to the metric, i.e. in local coordinates,
with the components of the Ricci tensor denoted Ricij, we have s(g) =

∑
i,j gijRicij.

Second, the Cotton and Weyl tensors are given, respectively, by

C(g)ijk = ∇k(Ricij)−∇j(Ricik) +
1

4

(
∇j(s)gik −∇k(s)gij

)
,

Weyl(g) = Riem (g)− P (g)⃝∧ g.

For any smooth function f , we define its gradient grad (f) ∈ TX by (df)♯, i.e. for all
X ∈ TX , we have g(grad (f) , X) = LX (f), and its hessian Hess (f) ∈ T ∗X ⊗ T ∗X
by

Hess (f) (X1, X2) = g(∇X1grad (f) , X2) = LX1 (LX2 (f))− df(∇X1X2).

If g and g′ are two pseudo-Riemannian metrics related by g′ = e2ϕg, then their
curvature tensors Riem (g′) and Riem (g) are related by

Riem (g′) = e2ϕ
(
Riem (g)− g⃝∧

(
Hess (ϕ)− dϕ⊗ dϕ+

1

2
∥grad (ϕ) ∥2g

))
,(1.3)

where ∥X∥2 = g(X,X).

1.2 Bilinear algebra

One of our major construction will be a smooth version of some well-known classical
bilinear algebra results, thus we review them here (see [Per98; Bou89] for a deeper
introduction). Let E be an R-vector space. We call a bilinear form on E a map
f : E × E → R satisfying: both fx : y 7→ f(x, y) and fy : x 7→ f(x, y) are
linear with respect to their argument. If E is n-dimensional equipped with a basis
e1, . . . , en, then the form f is determined by n2 numbers aij = f(ei, ej). Indeed,
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if A ∈ Mat(n,R) denotes the matrix of the aij’s and if we set x =
∑n

i=1 xiei and
y =

∑n
j=1 yjej, then we have

f(x, y) =
n∑

i,j=1

aij xiyj.

If we adopt the convention to interpret x and y as column vectors whose components
are xi and yj, respectively, we have the matrix notation

f(x, y) = xtAy.

The matrix A is called the matrix of f relatively to the basis e1, . . . , en. We say that f
is nondegenerate if detA ̸= 0. Observe that if we change the basis with P ∈ GLn(R)
then the new matrix of f is A′ = P tAP , thus detA′ = δ2 detA with δ = detP ,
δ ̸= 0. We call f a symmetric bilinear form if ∀x, y ∈ E f(x, y) = f(y, x). To any
symmetric bilinear form we attach a map F : E → R defined by F (x) = f(x, x)
and call it the quadratic form associated to f . Conversely, f is the polar form of F .
We can pass from F to f by the following formula

f(x, y) =
1

2
[F (x+ y)− F (x)− F (y)] .(1.4)

Hence, in what follows, we shall replace f by F (or the other way around) and thus
confuse their properties. A non-zero element x ∈ E is called isotropic if F (x) = 0.
We say that a linear subspace V ⊂ E is totally isotropic if F

V
= 0. We call the

index of F (and thus of f) the integer ν giving the maximal dimension of its totally
isotropic subspaces. If ν = 0, then F and f are called anisotropic.

Orthogonal group. Assume that f is a nondegenerate symmetric bilinear form,
we call an isometry of E with respect to f any automorphism u ∈ GL(E) satisfying

∀x, y ∈ E, f(u(x), u(y)) = f(x, y).

Isometries define a subgroup of GL(E) called orthogonal group and denoted by
O(f). If f is represented by matrix A and u by matrix U , then u is an isometry
if and only if U tAU = A. Obviously, we have detu2 = 1, therefore detu = ±1.
This leads to the following definition: the subgroup of O(f) formed by isometries
with determinant equal to 1 is normal and called the special orthogonal group. It is
denoted SO(f). We have the following characterisation of isometries.

Proposition 1.1. An element u ∈ GL(E) is an isometry if and only if it preserves
the quadratic form F attached to f , i.e.

∀x ∈ E, F (u(x)) = F (x).

The proof is straightforward due to relation (1.4).

Similitudes. Consider a nondegenerate symmetric bilinear form f and let u ∈
GL(E) and λ ∈ R∗. We say that u is a similitude (relatively to f) with ratio of
similarity (or multiplier) λ if we have

∀x, y ∈ E, f(u(x), u(y)) = λ f(x, y).

9



Observe that if the ratio is λ = 1, then u is actually an isometry. The group of
similitudes is denoted by GO(f). The ratio of similarity λ is well determined by u
and the application that assigns to u its ratio is a group homomorphism with values
in R∗. Hence we have the short exact sequence

1 O(f) GO(f) R∗λ

but, in general, λ is not onto. Among similtudes there are isometries and homo-
theties. Indeed, a homothety with multiplicator λ is a similitude with ratio λ2.
Nevertheless, in general, the isometries and homotheties do not generate the whole
group of similitudes. If A is the matrix of f and U the one of u, then the map u
is a similitude with ratio λ if and only if we have U tAU = λA. We also have the
following geometrical characterisation of similitudes.

Proposition 1.2. Consider u ∈ GL(E). Then u is a similitude if and only if u
preserves orthogonality relations, i.e.

u ∈ GO(f)⇐⇒ (∀x, y ∈ E, f(x, y) = 0⇒ f(u(x), u(y)) = 0) .

If the index ν of f is greater or equal than 1, then we also have that u is a similitude
if and only if u preserves isotropic elements of E, i.e.

u ∈ GO(f)⇐⇒ (∀x ∈ E, F (x) = 0⇒ F (u(x)) = 0) .

Classification and signature. Two symmetric bilinear forms, f and f ′, on E
are called equivalent if there exists p ∈ GL(E) such that we have

∀x, y ∈ E, f ′(x, y) = f(p(x), p(y)).

If the matrices of f and f ′ in a basis of E are A and A′, respectively, then it is
equivalent to say that there exists an invertible matrix P such that A′ = P tAP .
Necessary conditions for the equivalence of f and f ′ are rkA = rkA′, ν(f) = ν(f ′),
and detA′ = detA up to the multiplication by a positive real.

Theorem 1.3 (Sylvester’s law of inertia). There are n + 1 equivalence classes of
nondegenerate symmetric bilinear forms f on E. In a suitable basis, f has for matrix

A =



1
. . .

1
−1

. . .
−1


,

with the plus sign present p-times and the minus sign (n−p)-times. In other words,
if x = (x1, . . . , xn)

t in that basis, then we have

F (x) =

p∑
i=1

(xi)
2 −

n∑
i=p+1

(xi)
2.

See [Per98, chapter 5] or any text book on algebra for a proof. The pair (p, n − p)
is called the signature of F .
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1.3 Lie algebra

When dealing with infinitesimal symmetries of control systems (see definition in the
next subsection), we will use a certain number of facts about Lie algebras that we
recall here; the reader will find much more details on this topic in [FH13; Kna13;
Hal15].

Definition 1.4 (Lie algebra). A n-dimensional real Lie algebra is a n-dimensional
real vector space L, equipped with a map [·, ·] from L × L into L satisfying the
following properties:

a) [·, ·] is R-bilinear,

b) [·, ·] is skew-symmetric, i.e. ∀X, Y ∈ L, [X, Y ] = − [Y,X],

c) [·, ·] satisfies the Jacobi identity, i.e.

∀X, Y, Z ∈ L, [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0.

Consider a n-dimensional Lie algebra L = vectR {v1, . . . , vn}, we define its com-
mutativity table (relative to this particular basis) by

[vi, vj] =
n∑
k=1

Ck
ij vk, Ck

ij ∈ R.

The reals Ck
ij are called structure constants. A map φ : L1 → L2 between two

Lie algebras (of the same dimension) is a Lie algebra isomorphism if and only if it
is a linear isomorphism (justifying that L1 and L2 must have the same dimension)
satisfying

∀X, Y ∈ L1, φ
(
[X, Y ]L1

)
= [φ(X), φ(Y )]L2

.

In particular, a Lie algebra isomorphism need not preserve the structure constants.
Nevertheless we have:

Proposition 1.3. Let L1 and L2 be two n-dimensional Lie algebras. If they both
have a basis with respect to which the structure constants coincide, then L1 and L2

are isomorphic.

See [Bow05, Proposition 1] for a proof. A subset l of a Lie algebra is a subalgebra
if for all l1, l2 ∈ l we have [l1, l2] ∈ l, if additionnaly [l1, l2] = 0 then l is called an
abelian subalgebra. A subset I of a Lie algebra L is an ideal if for any w ∈ I and
all v ∈ L we have [w, v] ∈ I (so, in particular, I is a subalgebra). Given an ideal I
of a Lie algebra L one constructs the quotient algebra L/I as the usual quotient of
vector spaces together with the Lie bracket defined by [X + I, Y + I] = [X, Y ] + I.

1.4 Control Systems

In this subsection, we define control systems, that is, dynamical systems with ad-
ditional parameters called controls. We will be interested in fully nonlinear and in
control-affine systems. The former class is of the form

Ξ : ẋ = F (x,w), x ∈ X , and w ∈ W ⊂ Rm,
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where x is the state of the system (X is a smooth n-dimensional manifold called the
state space), w = (w1, . . . , wm)

t is the control taking values in W , an open subset
of Rm, F : X ×W → X is a smooth map, and the dot designs the derivative with
respect to an independent variable, generally denoted t and representing time. A
control-nonlinear system is, therefore, a system of nonlinear differential equations
describing the temporal evolution of the state of a dynamical system under the action
of a finite number of independent variables (controls) that can be freely chosen in
order to achieve certain objectives. The second class of control-affine system is
defined by

Σ : ξ̇ = f(ξ) +
m∑
i=1

gi(ξ)ui = f(ξ) + g(ξ)u,

where g = (g1, . . . , gm) and u = (u1, . . . , um)
t. The state ξ belongs to a smooth

manifold M, in our work M will be different from X , and the control u takes
values in Rm. A control-affine system is given by a (m + 1)-tuple of vector fields
(f, g1, . . . , gm) and will be denoted by the pair Σ = (f, g). To any control-affine
system Σ = (f, g) we will attach the following distributions

D0 = span {g1, . . . , gm} ,
D1 = D0 + [f,D0] = span {g1, . . . , gm, adfg1, . . . , . . . , adfgm} .

(1.5)

Feedback equivalence. Two control-nonlinear systems Ξ and Ξ̃, resp. control-
affine systems Σ = (f, g) and Σ̃ = (f̃ , g̃), are called state-equivalent if they are
related by a diffeomorphism of the state space, that is, ∃ϕ : X → X̃ such that

ϕ∗F (·, w) = F̃ (·, w), ∀w ∈ W in the nonlinear case,

ϕ∗(f) = f̃ and ϕ∗(gi) = g̃i, ∀ 1 ≤ i ≤ m in the control-affine case.

Consequently, their trajectories (corresponding to the same controls) will be related
by that diffeomorphism. When considering state-equivalence the controls remain un-
changed. Feedback equivalence enlarges the previous transformations by permitting
transformation of controls as well.

Two control-nonlinear systems Ξ : ẋ = F (x,w) and Ξ̃ : ˙̃x = F̃ (x̃, w̃) are called
feedback equivalent if there exists a diffeomorphism Φ : X ×W → X̃ × W̃ of the
form

(x̃, w̃) = Φ(x,w) = (ϕ(x), ψ(x,w)),

which transforms the first system into the second, i.e.

Dϕ(x)F (x,w) = F̃ (ϕ(x), ψ(x,w)).

Notice that the diffeomorphism Φ is triangular: indeed, the map ϕ depends on x
only and plays the role of a coordinates change in the state space X , and the map ψ,
called feedback, changes the parametrisation by control w in a way that depends on
the state x. The trajectories of both systems coincide, however, they are differently
parametrised with respect to controls. If the diffeomorphism Φ is defined in a
neighbourhood of (x0, w0) only, and Φ(x0, w0) = (x̃0, w̃0), then we say that the two
systems are locally feedback equivalent at (x0, w0) and (x̃0, w̃0), respectively. If Φ is
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defined locally around x0 and globally with respect to w, i.e. it maps X0 ×W into
X̃0 × W̃ , then we say that Ξ and Ξ̃ are locally feedback equivalent at x0 and x̃0,
respectively.

For control-affine systems of the form Σ : ξ̇ = f(ξ) + g(ξ)u, in order to preserve
the affine shape of the system, feedback transformations are restricted to those of
the form

ũ = ψ(ξ, u) = α(ξ) + β(ξ)u,

where α = (α1, . . . , αm)
t and β = (βij) are smooth functions depending on the

state and satisfy β(·) ∈ GLm(R). Then the feedback equivalence of Σ = (f, g) and
Σ̃ = (f̃ , g̃) means that

ϕ∗ (f) = f̃ + g̃α and ϕ∗ (g) = g̃β.

In that case, we denote the feedback transformation by the triple (ϕ, α, β) and if
ϕ = Id, then this action is called a pure feedback transformation and is denoted
(α, β). To any control-affine system Σ we can attached the affine distribution

A = f + span {g1, . . . , gm} ,

and feedback equivalence of two control-affine systems Σ = (f, g) and Σ̃ = (f̃ , g̃)
simply means equivalence of the corresponding affine distribution, ϕ∗A = Ã. A point
ξ0 is an equilibrium of a control-affine system Σ if 0 ∈ A(ξ0). For any equilibrium
point ξ0 there exists a control u0 ∈ Rm such that f(ξ0) + g(ξ0)u0 = 0; moreover, u0
is unique if dimD0(ξ0) = m. It is a straightforward calculation to see that if the
distribution D0 is involutive, then both D0 and D1 (defined in (1.5)) are invariant
under the action of feedback transformations (ϕ, α, β).

Infinitesimal symmetries. We say that a diffeomorphism ϕ : M → M is a
symmetry of a control-affine system Σ = (f, g) if it preserves the field of affine
m-planes A (equivalently, the affine distribution A), that is,

ϕ∗A = A.

We say that a vector field v on M is an infinitesimal symmetry of Σ if the (local)
flow γvt of v is a local symmetry, for any t for which it exists, that is, (γvt )∗A =
A. Consider the system Σ = (f, g) and recall that D0 = span {g1, . . . , gm} is the
distribution spanned by the vector fields gi. We have the following characterisation
of infinitesimal symmetries (see [RT04; GM85] for a more detailed introduction),
whose proof is straightforward.

Proposition 1.4. A vector field v is an infinitesimal symmetry of the system Σ =
(f, g) if and only if [v, gi] = 0 mod D0, for 1 ≤ i ≤ m, and [v, f ] = 0 mod D0.

By the Jacobi identity, it is easy to see that if v1 and v2 are infinitesimal symmetries,
then so is [v1, v2], hence the set of all infinitesimal symmetries forms a Lie algebra
(not necessarily of finite dimension). Notice that the Lie algebra of infinitesimal
symmetries is attached to the affine distributionA and not to different (m+1)-tuples
(f, g1, . . . , gm) defining A that are related to each other via feedback transformations
(ϕ, α, β).
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Prolongations. Any control-nonlinear system Ξ : ẋ = F (x,w) can be prolonged
to a control-affine system Ξp by augmenting the state space with the controls w =
(w1, . . . , wm)

t and introducing new controls ui = ẇi, for i = 1, . . . ,m, which gives,

Ξp :

{
ẋ = F (x,w)
ẇ = u

, u ∈ Rm.

It appears that the idea of prolonging a control-nonlinear system was introduced by
van der Schaft in [van82, Definition 3.4] (prolongations are called extended systems
in his work) and then used to study controllability and observability of nonlinear
systems in [van84]. Observe that Ξp has as its state space M = X ×W , a smooth
manifold of dimension np = n+m, and is given by vector fields f = F (x,w) ∂

∂x
and

gi =
∂
∂wi

for i = 1, . . . ,m. In particular, for that system, the distribution D0 =
span {g1, . . . , gm} is involutive and of constant rank m. Conversely, any control-
affine system of the form Ξp can be reduced to a control-nonlinear system simply
by removing the w-components and then treating w as a control. The following
result characterises control-affine systems Σ that are feedback equivalent to the
prolongation Ξp of a control-nonlinear systems Ξ; in other words, it shows when a
control-affine system Σ can be reduced to a nonlinear system Ξ whose state space
is smaller (by paying the price of nonlinearity).

Proposition 1.5. A control-affine system Σ = (f, g), defined on a np-dimensional
manifold with 1 ≤ m < np controls, is feedback equivalent to the prolongation Ξp of
a control-nonlinear system Ξ, defined on a (np −m)-dimensional manifold with m
controls, if and only if the distribution D0 of Σ is involutive and of constant rank
m.

Flavour of the proof: Necessity is obvious by the above considerations and the
fact that involutivity of D0 is preserved by feedback transformations. Conversely,
using Frobenius theorem (see Theorem 1.1), we restrict the action of the control
along the last m components of the coordinates and then we remove them.

2 Description of the problems

In this section, we introduce the problem that we consider in this first part of the
thesis. We first begin by stating the problem in its generality, then we explain how
we will deal with it by introducing an equivalent formulation.

Let X be a smooth connected manifold of dimension n ≥ 2, equipped with local
coordinates x. In the tangent bundle TX , equipped coordinates (x, ẋ), we consider
a smooth (2n− 1)-dimensional submanifold S (a hypersurface) given by

S = {(x, ẋ) ∈ TX , S(x, ẋ) = 0} ,

where S : TX → R is a smooth scalar function satisfying rk ∂S
∂ẋ

= 1 for all (x, ẋ) ∈ S.
Observe that the submanifold S defines an implicit ordinary differential equation
given by S(x, ẋ) = 0, see [Olv95, Chapter 6] for a similar construction in the space of
k-jets. From this point of view, a smooth solution of the given differential equation
is a smooth curve I ∋ t 7→ x(t) ∈ X such that S(x(t), ẋ(t)) = 0 holds for any t ∈ I.
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This is equivalent to the statement that the graph of (x(t), ẋ(t)) ∈ TX must lie
entirely within the submanifold determined by the differential equation, i.e.

{(x(t), ẋ(t)), t ∈ I} ⊂ S.

We now explain what it means for two submanifold of TX to be equivalent.

Definition 1.5 (Equivalence of submanifolds). Two submanifolds S ⊂ TX and
S̃ ⊂ T X̃ are equivalent if there exists a diffeomorphism ϕ : X → X̃ and a smooth
nonvanishing function δ : TX → R such that

S̃(ϕ(x), Dϕ(x)ẋ) = δ(x, ẋ)S(x, ẋ),(1.6)

where Dϕ is the derivative (tangent map) of ϕ.

This definition implies that for all (x, ẋ) ∈ S we have (x̃, ˙̃x) = (ϕ(x), Dϕ(x)ẋ) ∈ S̃,
hence the diffeomorphism point transformation (ϕ,Dϕ) maps the graph of S−1(0)
into that of S̃−1(0). Equivalence of submanifolds S and S̃ means simply that implicit
underdetermined ordinary differential equations S(x, ẋ) = 0 and S̃(x̃, ˙̃x) = 0 are
equivalent; a similar definition can be found in [Bog14, Definition 2].

Example. Since rk ∂S
∂ẋ

= 1, we locally have a splitting of the coordinates x = (z, y),
with dim(z) = 1, such that ∂S

∂ż
(x0, ẋ0) ̸= 0. By Malgrange preparation theo-

rem (actually, the implicit function theorem) [Mal62], we can write S(x, ẋ) =
δ(x, ẋ) (ż − s(x, ẏ)), where δ(x0, ẋ0) ̸= 0. Hence, the submanifold S is locally equiv-
alent to the one given by ż − s(x, ẏ) = 0. ●

It is natural to ask how to characterise and classify submanifolds S of cer-
tain particular classes, for instance the class of linear submanifolds Slin given by
Slin(x, ẋ) = ω(x)ẋ = 0 or the more general class of affine submanifolds Saff given
by Saff (x, ẋ) = ω(x)ẋ+h(x) = 0, where ω is a differential one-form on X (satisfying
ω(x0) ̸= 0) and h is a smooth function on X . The name linear, resp. affine, comes
from the fact that Slin, resp. Saff , is linear, resp. affine, with respect to the veloci-
ties ẋ, in other words, in each fiber TxX , the submanifold Slin, resp. Saff is a linear,
resp. an affine, subspace. Those questions have been widely studied under the prism
of Pfaffian equations (linear and affine) and go back to Pfaff, Darboux, and Cartan
[Pfa15; Dar82; Car31]. Although the problem of classification of Pfaffian equations
is still open in its full generality, many important results have been obtained for
various classes of linear Pfaffian equations (contact and quasi-contact case, Mar-
tinet case, singularities, [Zhi92; Zhi95; Mar70; JZ01; Elk12]) and of affine Pfaffian
equations(dimension two [JR90], three [RZ95; Res98], and arbitrary [ZR98; Elk12]).
The problems addressed in this first part of the manuscript are the natural exten-
sion, of the above introductory questions of characterising affine Saff and linear Slin
submanifolds, to a larger class of submanifolds of the tangent bundle. Namely, our
purpose is to give a characterisation and a classification of submanifolds S ⊂ TX
such that in each fiber TxX , the hypersurface Sx describes a quadric, i.e. in a well
chosen coordinate system, Sx is given by the zero-level set of a quadratic map with
respect to the velocities.

Problem 1. Consider a smooth n-dimensional manifold X . Give a characterisation
of the equivalence (in the sense of Definition 1.5) of a submanifold S ⊂ TX with a
quadric Sq given by the zero-level set of the map

Sq(x, ẋ) = ẋtg(x)ẋ+ 2ω(x)ẋ+ h(x).(1.7)
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The map Sq can be represented by the triple (g, ω, h), where g is a smooth symmetric
(0, 2)-tensor (possibly degenerated), ω is a smooth differential one-form, and h is a
smooth function. Clearly, two quadrics Sq of TX and S̃q of T X̃ , given by (g, ω, h)
and (g̃, ω̃, h̃), respectively, are equivalent if and only if there exists a diffeomorphism
x̃ = ϕ(x) and a non-vanishing function δ = δ(x) on X such that δg = ϕ∗g̃, δω = ϕ∗ω̃,
and δh = ϕ∗h̃. In particular, observe that the tensors g and g̃, which are possibly
degenerated (pseudo-)Riemanian metrics, are conformally equivalent. Compare with
[Tar11, definition 2].

We now give a brief description of the class of quadric submanifolds. It is well-
known in affine geometry that quadratic equations can be classified by the rank and

signature (up to order) of the matrix Mq(x) =

(
g(x) ω(x)t

ω(x) h(x)

)
and that of g(x); see

e.g. [Tar11, Corollary 8.14]. We will use the following two determinants

∆1(x) = det(Mq(x)) and ∆2(x) = det(g(x)).

Of course, ∆1 and ∆2 depend on the choice of coordinates but the ideals generated
by them (and thus their zero-level set) are invariantly related to the submanifold Sq.
Therefore, the rank and the signature of Mq(x) and that of g(x) do not depend on
the coordinates and, moreover, are constant in a neighbouhood of x0 if ∆1(x0) ̸= 0
and ∆2(x0) ̸= 0. Under the multiplication by a non-vanishing function δ(x), the
rank of Mq(x) of that of g(x) are clearly preserved, and their signature (up to order)
is also preserved. In this work we will characterise non-degenerate quadrics, that is,
non-empty and satisfying ∆1 ̸= 0. The non-degeneracy assumption ∆1 ̸= 0 implies
that rk g(x) ≥ n− 1.

Remark (Conic sections). The simplest example of quadrics are those given in a
space of dimension n = 2, they are called conics. There are three non-degenerated
conics: the ellipse, the hyperbola (both corresponding to ∆2 ̸= 0), and the parabola
corresponding to ∆2 = 0. Those are studied in Chapter 2 of the manuscript. ◆

Remark (Non-degenerate real quadric surfaces). In dimension n = 3, there are only
five non-degenerated quadrics; namely ellipsoid, hyperboloid of one or two sheets
(corresponding to ∆2 ̸= 0), and elliptic or hyperbolic paraboloid (corresponding to
∆2 = 0). The latter two cases are studied in Chapter 4 of the manuscript. ◆

While the first part of the manuscript is entirely dedicated to the study of quadric
submanifold, only in the lowest dimension (n = 2) we are able to give a complete
theory, that is to treat all conics as one general result. In higher dimensions, we will
focus on the following case: we assume that rk g = n − 1 in a neighbourhood (i.e.
the degenerate case for a non-degenerate quadric). That assumption corresponds
for n = 2 to the class of parabolas, and for n = 3 to the class of elliptic and
hyperbolic paraboloids. Observe that the non-degeneracy condition ∆1 ̸= 0 implies
that ⟨ω,A⟩ ≠ 0 for any non-zero vector field A ∈ ker g. Therefore, in a suitable
coordinate system, Sq takes the form

SQ(x, ẋ) = ż − ẏtQ(x)ẏ − b(x)ẏ − c(x),(1.8)

where x = (z, y), with y = (y1, . . . , yn−1), such that ker g = span
{
∂
∂z

}
, Q(x) is

a symmetric non-degenerate (0, 2)-tensor with constant signature (p, q), b(x) is a
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smooth one-form, and c(x) is a smooth function. The submanifolds given by an equa-
tion of the form SQ(x, ẋ) = 0 are called (p, q)-paraboloids, or shortly paraboloids,
by analogy with the parabolic case when n = 2 and the terminology when n = 3;
they will be denoted by the 4-tuple

(
∂
∂z
, Q, b, c

)
.

After giving a characterisation of quadric submanifolds (all conics when n = 2
and paraboloids when m ≥ 3) we will be interested in the classification problem,
expressed as:

Problem 2. Describe and characterise some orbits of the quadric submanifolds
given by (1.7) under the notion of equivalence described by Definition 1.5.

Taxonomy of paraboloid submanifolds. When n ≥ 3, we will exclusively be
interested in classifying paraboloid submanifolds SQ =

(
∂
∂z
, Q, b, c

)
, defined by (1.8).

It seems natural to seek conditions to normalise the symmetric (0, 2)-tensor Q first,
then conditions to normalise the differential one-form b, and finally conditions to
normalise the function c.

The two chosen normalisations for Q are the following. First, we will characterise
the submanifolds where Q is diagonal, i.e. we give conditions for the smooth diag-
onalisation, thus our result can be interpreted as a smooth version of the spectral
theorem. Second, we will characterise the equivalence of Q to the constant symmet-
ric matrix Ip,q =

(
Idp 0
0 −Idq

)
, where (p, q) is the signature of Q, that result is similar

to Sylvester’s law of inertia. Of course, it is well-known from bilinear algebra that
those normalisations can be done everywhere pointwise, however we will show that
doing it smoothly require additional conditions (similarly to the conditions for the
flatness of a metric tensor). Next, we present a normal form with b being normalised
to 0. And finally we will normalise the function c to a real constant; the form with
c = 0 will be special and called a null-form paraboloid submanifold. The follow-
ing table summarise the chosen nomenclature used to denote different families of
paraboloid submanifolds.

Name Form

paraboloid submanifold SQ = {ż = ẏtQ(x)ẏ + b(x)ẏ + c(x)}

diagonal paraboloid submanifold SdQ = {ż = ẏtD(x)ẏ + b(x)ẏ + c(x)}

weakly flat paraboloid submanifold S ′
Q = {ż = ẏtIp,qẏ + b(x)ẏ + c(x)}

strongly flat paraboloid submanifold S ′′
Q = {ż = ẏtIp,qẏ + c(x)}

constant-form paraboloid submanifold S ′′′
Q = {ż = ẏtIp,qẏ + c}

null-form paraboloid submanifold S0
Q = {ż = ẏtIp,qẏ}

Table 1: Nomenclature of paraboloid submanifolds.

The denomination of weakly and strongly flat paraboloid submanifolds will be-
come clear when the conditions of their characterisation will be given.

Equivalent reformulation. Our analysis of problem 1 and problem 2 will be
based on attaching to a submanifold S = {S(x, ẋ) = 0} ⊂ TX two control systems.
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First, a nonlinear one given by

ΞS : ẋ = F (x,w), x ∈ X , w ∈ W ⊂ Rn−1,

where ẋ − F (x,w) = 0 is a regular parametric representation of S, that is, for all
w = (w1, . . . , wn−1) ∈ W (interpreted as controls) we have S(x, F (x,w)) = 0 and
rk ∂F

∂w
(x,w) = n − 1. Second, a control-affine one ΣS given by the prolongation ΞpS

of ΞS :

ΣS :

{
ẋ = F (x,w)
ẇ = u

, (x,w) ∈M = X ×W , u ∈ Rn−1.

They are called, respectively, a first and second prolongation of S. Notice that, since
we are interested in corank one submanifold of TX , the number m of controls and
the dimension n of the state space are related as follows. When considering a first
prolongation we have m = n − 1, and when considering a second prolongation we
have m = 1

2
(n− 1). Observe that, since S relates the positions x with the velocities

ẋ, it describes a nonholomic constraint. We say that a smooth curve x(t) ∈ X
satisfies the nonholonomic constraint given by S if we have (x(t), ẋ(t)) ∈ S. Clearly,
x(t) satisfies the nonholonomic constraint described by S (equivalently, satisfies the
differential equation S(x(t), ẋ(t)) = 0) if and only if x(t) is a trajectory of ΞS for a
certain smooth control w(t) or, equivalently, (x(t), w(t)) is a trajectory of ΣS for a
smooth control u(t).

An observation that links studying submanifolds S ⊂ TX and their prolonga-
tions ΞS and ΣS is that equivalence of submanifolds corresponds to the equivalence
of control systems ΞS and ΣS via feedback transformations, as assured by the fol-
lowing result.

Proposition 1.6 (Equivalence of equivalence relations). Consider submanifolds S
of TX and S̃ of T X̃ . The following statements are locally equivalent:

(i) The submanifolds S and S̃ are equivalent via ϕ(x) and δ(x, ẋ).
(ii) Their regular parametrisations (first prolongations) ΞS and Ξ̃S̃ are feedback

equivalent via ϕ(x) and ψ(x,w).
(iii) Their second prolongations ΣS and Σ̃S̃ are feedback equivalent via φ(x,w) =

(ϕ(x), ψ(x,w)) and (α, β).

That is, the following diagram is commutative:

S ΞS ΣS

S̃ Ξ̃S̃ Σ̃S̃

(ϕ,δ)

parametrisation

(ϕ,ψ)

prolongation

(φ,α,β)

parametrisation prolongation

Our proof will use the following lemma, which relates the regularity of S to the one
of its first prolongation.

Lemma 1.1. Let X be a smooth n-dimensional manifold equipped with coordinates
x = (z, y), with y = (y1, . . . , yn−1). Consider a submanifold S = {S(x, ẋ) = 0} of

TX together with any of its regular parametrisation ΞS :

{
ż = F1(x,w)
ẏ = F2(x,w)

. Then,
∂S
∂ż
̸= 0 if and only if rk ∂F2

∂w
= n− 1.
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Proof. Consider the submanifold S = {S(x, ẋ) = 0} of the tangent bundle TX to-

gether with any of its regular parametrisation ΞS :

{
ż = F1(x,w)
ẏ = F2(x,w)

. In particular,

for all w we have S(x, F1(x,w), F2(x,w)) = 0, which implies, by differentiating with
respect to w, that it holds

∂S

∂ż

∂F1

∂w
+
∂S

∂ẏ

∂F2

∂w
= 0.(1.9)

Assume that ∂S
∂ż
̸= 0. If rk ∂F2

∂w
< n− 1, then there exists v such that ∂F2

∂w
v = 0, but

by the last relation we conclude that ∂F1

∂w
v = 0, a contradiction with the regularity

of ΞS (i.e. with the assumption rk

(
∂F1
∂w
∂F2
∂w

)
= n− 1).

Conversely, assume that rk ∂F2

∂w
= n − 1. If ∂S

∂ż
= 0, then by equation (1.9) we

conclude that ∂S
∂ẏ

= 0 a contradiction with the regularity of S (namely, ∂S
∂ẋ
̸= 0). ■

Proof of Proposition 1.6. (i)⇒(ii). Assume that two submanifolds S and S̃ given,
respectively, by the equations S(x, ẋ) = 0 and S̃(x̃, ˙̃x) = 0 are equivalent via a diffeo-
morphism x̃ = ϕ(x) and a nonvanishing function δ(x, ẋ), that is S̃(ϕ(x), Dϕ(x)ẋ) =
δ(x, ẋ)S(x, ẋ). Consider ΞS : ẋ = F (x,w) and Ξ̃S̃ : ˙̃x = F̃ (x̃, w̃), two regular
parametrisations of those submanifolds. Then, using 0 = S(x, ẋ) = S(x, F (x,w)),
we obtain

S̃(ϕ(x), Dϕ(x)F (x,w)) = δ(x, F (x,w))S(x, F (x,w)) = 0, ∀w ∈ W ,

implying S̃(x̃, F̂ (x̃, w)) = 0, where F̂ (x̃, w) = Dϕ(ϕ−1(x̃))F (ϕ−1(x̃), w). Therefore,
˙̃x = F̃ (x̃, w̃) and ˙̃x = F̂ (x̃, w) are two regular parametrisations of the same subman-
ifold S̃. We will prove that F̃ (x̃, w̃) and F̂ (x̃, w) are related by an invertible (pure)
feedback transformation of the form w̃ = ψ(x,w).

Without loss of generality assume that we have x̃ = (z̃, ỹ) where ∂S̃
∂ ˙̃z
̸= 0. Ap-

plying Lemma 1.1 to the submanifold S̃ = {S̃(x̃, ˙̃x) = 0} and to its two regular
parametrisation

Ξ̃S̃ :

{
˙̃z = F̃1(x̃, w̃)
˙̃y = F̃2(x̃, w̃)

and Ξ̂S̃ :

{
˙̃z = F̂1(x̃, w)
˙̃y = F̂2(x̃, w)

yields rk ∂F̃2

∂w̃
(x̃0, w̃0) = rk ∂F̂2

∂w
(x̃0, w0) = n − 1. Therefore, we deduce that w̃ =

F̃−1
2 (x̃, ˙̃y) = F̃−1

2 (x̃, F̂2(x̃, w)). By the implicit function theorem, we get that S̃
is equivalent to ˙̃z − s̃(x̃, ˙̃y) = 0, implying that F̃1(x̃, F̃

−1
2 (x̃, F̂2(x̃, w))) = F̂1(x̃, w).

Thus, Ξ̃S̃ and Ξ̂S̃ are pure feedback equivalent via w̃ = ψ(x,w) with ψ(x,w) =

F̃−1
2 (ϕ(x), F̂2(ϕ(x), w)) and the systems ΞS and Ξ̃S̃ are feedback equivalent since Ξ̂S̃

is the image of ΞS under the diffeomorphism x̃ = ϕ(x).
(ii)⇒(i). Assume that the regular parametrisations ΞS : ẋ = F (x,w) and Ξ̃S̃ :

˙̃x = F̃ (x̃, w̃) of S and S̃, respectively, are feedback equivalent via x̃ = ϕ(x) and w̃ =
ψ(x,w). Denote Φ = ϕ−1, and apply the diffeomorphism x = Φ(x̃) to Ξ̃S̃ to obtain
a new vector field (parametrised by w̃) F̄ (x, w̃) = DΦ(ϕ(x))F̃ (ϕ(x), w̃) related with
F (x,w) by the pure feedback transformation w̃ = ψ(x,w). In coordinates x = (z, y),
with y = (y1, . . . , yn−1), we set F = (F1, F2)

t and F̄ = (F̄1, F̄2)
t. There is no loss of

generality to assume that rk ∂F2

∂w
(x0, w0) = rk ∂F̄2

∂w̃
(x0, w̃0) = n− 1.
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Now, we apply to S̃ the same diffeomorphism x = Φ(x̃) and denote S̄(x, ẋ) =
S̃(ϕ(x), Dϕ(x)ẋ). By Lemma 1.1, we conclude that ∂S

∂ż
̸= 0 and that ∂S̄

∂ż
̸= 0.

Hence, using the implicit function theorem we get S(x, ẋ) = δ(x, ẋ)(ż − s(x, ẏ))
and S̄(x, ẋ) = δ̄(x, ẋ)(ż − s̄(x, ẏ)), with δ ̸= 0 and δ̄ ̸= 0. By assumption we have,
S(x, F (x,w)) = 0 and S̄(x, F̄ (x, w̃)) = 0 implying that s(x, ẏ) = s̄(x, ẏ) (recall that
F1(x, ψ(x, w̃)) = F̄1(x, w̃) for all w). Hence, we deduce that

S(x, ẋ) = δ(x, ẋ)(ż − s(x, ẏ)) = δ(x, ẋ)(ż − s̄(x, ẏ)) = δ

δ̄
S̃(ϕ(x), Dϕ(x)ẋ)

establishing the equivalence between S and S̃.
(ii)⇒(iii). If ΞS and Ξ̃S̃ are feedback equivalent , then

Dϕ(x)F (x,w) = F̃ (ϕ(x), ψ(x,w)).

Thus the diffeomorphism φ(x,w) = (ϕ(x), ψ(x,w)), of the augmented state space
(x,w), together with the feedback

ũ =
∂ψ

∂x
F (x,w) +

∂ψ

∂w
u

transform ΣS into Σ̃S̃ .
(iii)⇒(ii). Assume that ΣS into Σ̃S̃ are feedback equivalent via (x̃, w̃) = φ(x,w)

and ũ = α(x,w)+β(x,w)u. Since φ∗ map the distribution span
{

∂
∂w

}
into span

{
∂
∂w̃

}
,

it follows that φ has the triangular form (ϕ(x), ψ(x,w)). Therefore, feedback equiv-
alence of the systems ΞS and Ξ̃S̃ is established via the diffeomorphism x̃ = ϕ(x) and
the feedback w̃ = ψ(x,w). ■

Remark. If a parametrisation ΞS does not satisfy the regularity condition rk ∂F
∂w

=
n−1, then the equivalence (i)⇔(ii) fails to hold. To see that, consider the subman-
ifold S ⊂ TR2 given by the equation ż − ẏ2 = 0. The following parametrisations
(the first one corresponds to a first prolongation, i.e. is regular, and the second is
not a first prolongation) of S

ΞS :

{
ż = w2

ẏ = w
and Ξ̃S :

{
ż = w̃4

ẏ = w̃2

are not feedback equivalent around w0 = 0 and w̃0 = 0, and the reason is that Ξ̃S
fails to satisfy ∂F̃

∂w̃
(w̃0) ̸= 0 at w̃0 = 0. ◆

Remark. Notice that the same proof as that of (ii)⇔(iii) shows that any two non-
linear systems Ξ and Ξ̃ (which need not be regular parametrisations of submanifolds)
are feedback equivalent if and only if their prolongations Ξp and Ξ̃p are control-affine
feedback equivalent (see [Jak90]). ◆

Since affine and linear submanifolds, i.e. linear and affine Pfaffian equations,
are the most studied ones, their characterisation is known, and, to illustrate our
methodology we will give it below with the help of feedback equivalence of first and
second prolongations. Observe that since S is given by a scalar equation in the
tangent bundle of a n-dimensional manifold X , then its first prolongation ΞS has
its state space X of dimension n and possesses m = n − 1 controls and its second
prolongation ΣS has its state space of dimension n + m = 2n − 1 = 2m + 1 and
possesses the same number m = n− 1 of controls. Recall the distributions D0 and
D1 defined by (1.5) for any control-affine system Σ = (f, g).
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Proposition 1.7 (Characterisation of affine and linear Pfaffian equations). Con-
sider a smooth submanifold S ⊂ TX . Then, the following statements are locally
equivalent:

(i) S is equivalent to Saff ;
(ii) Its first prolongation ΞS is feedback equivalent to Ξaff : ˙̃x = f̃(x̃)+

∑m
i=1 g̃i(x̃)w̃i,

where (g̃1, . . . , g̃m) are linearly independent;

(iii) Its second prolongation ΣS is feedback equivalent to

Σaff := Ξpaff :

(
˙̃x
˙̃w

)
=

(
f̃(x̃) + g̃(x̃)w̃

0

)
+

(
0

Idm

)
ũ;

(iv) The distributions D0 and D1 of the second prolongation ΣS satisfy [D0,D1] ⊂
D0;

Moreover, the following statements are locally equivalent:

(i)’ S is equivalent to Slin;
(ii)’ Its first prolongation ΞS is feedback equivalent to Ξlin : ˙̃x = g̃(x̃)w̃, where

(g̃1, . . . , g̃m) are linearly independent;

(iii)’ Its second prolongation ΣS is feedback equivalent to

Σlin := Ξplin :

(
˙̃x
˙̃w

)
=

(
g̃(x̃)w̃

0

)
+

(
0

Idm

)
ũ;

(iv)’ The distributions D0 and D1 of the second prolongation ΣS satisfy [D0,D1] ⊂

D0 and, additionally, the drift vector field f(x,w) =
(
F (x,w)

0

)
of ΣS satisfies

f(x, 0) ∈ D1;

Notice that if (ii), (iii), or (iv) (resp. (ii)’ , (iii)’ , or (iv)’ ) holds for one prolon-
gation (first or second) then it holds for all and it is enough to check the conditions
of (iv) (resp. (iv)’ ) for just one prolongation.

Proof. The equivalences (i)⇔(ii)⇔(iii) are a direct corollary of Proposition 1.6,
since a first prolongation (regular parametrisation) of Saff is given by a control
system of the form Ξaff , where the vector fields f̃ and g̃i can be choosen as follows.
Assume that Saff is given by an equation of the form ω(x)ẋ+h(x) = 0, where ω is a
nonvanishing differential one-form and h is a smooth function, then choose g̃i’s such
that span {ω} = ann (span {g̃1, . . . , g̃m}) and choose any vector field f̃ satisfying
⟨ω, f̃⟩ = −h. We now prove the equivalence (iii)⇔(iv). Necessity of the conditions
of (iv) is clear from the following explicit form of the distributions D0 and D1 of
Σaff :

D0 = span

{
∂

∂w̃1

, . . . ,
∂

∂w̃m

}
, D1 = D0 + span

{(
g̃1
0

)
, . . . ,

(
g̃m
0

)}
.

Recall that, since D0 is involutive, both D0 and D1 are invariant under feedback
transformations. Conversely, assume that the distributions

D0 = span

{
∂

∂w1

, . . . ,
∂

∂wm

}
, and D1 = D0 + span

{(
∂F
∂w1

0

)
, . . . ,

(
∂F
∂wm

0

)}
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of ΣS satisfy [D0,D1] ⊂ D0. Therefore, we deduce the condition ∂2F
∂wi∂wj

= 0 for all
1 ≤ i, j ≤ m, meaning that F (x,w) = f(x) +

∑m
i=1 gi(x)wi.

The equivalences (i)’⇔(ii)’⇔(iii)’ are again a straightforward corollary of Propo-
sition 1.6. By a similar reasoning as above we show that a first prolongation of Slin is
given by a control system of the form Ξlin. We now prove (iii)’⇔(iv)’ . Necessity of
the first two conditions is clear since control-linear systems constitute a subclass of

control-affine systems. For Σlin we have f̃(x̃, w̃) =
(
g̃(x̃)w̃

0

)
, which clearly satisfies

f̃(x̃, 0) ∈ D1, and it is an immediate computation to show that this condition is
feedback invariant. Conversely, assume that ΣS satisfies the conditions of (iv)’ . We
immediately conclude that ΣS is feedback equivalent to Σaff . The remaining con-
dition implies that the vector field f̃(x̃) can be expressed as a linear combinations
of the fields g̃i(x̃). Hence, we get(

f̃(x̃) + g̃(x̃)w̃
0

)
=

(
g̃(x̃)(α̃(x̃) + w̃)

0

)
,

where the α̃i’s are smooth functions satisfying f̃ =
∑m

i=1 α̃i g̃i. Introducing a new
coordinate w = w̃ + α and using a suitable feedback transformation we get ẇ = u.
Finally, we conclude that (in those coordinates) Σaff takes the form Σlin. ■

Remark (Feedback equivalence of control-nonlinear system to control-affine ones).
Observe that the equivalence of statements (ii) and (iv) gives a geometric character-
isation of control-nonlinear systems Ξ that are feedback equivalent to a control-affine
system Σ (without any prolongation of the state space). ◆

The above proposition gives a characterisation of affine and linear submanifolds,
but this is only a beginning of the story. Further investigations are needed to give a
classification of those submanifolds, which can also be done under the prism of the
classification of their prolongations and has led to a rich literature that we briefly
mentioned in the beginning of this section. One may think that second prolon-
gations are needed for classification purposes, but in the case of affine and linear
submanifolds their first prolongation is already control-affine (or even control-linear).
Therefore it is clearly unnecessary to prolong twice those submanifolds. Moreover,
in our methodology we will also consider first prolongations (while they are nonlin-
ear with respect to the control) for the classification problem.

To summarise our methodology, we propose to solve problem 1 and problem 2 via
the following equivalent formulations expressed for first and second prolongations of
submanifolds.

Problem 1’. Give a characterisation of the feedback equivalence of a control-affine
system Σ, with state space a (2m + 1)-dimensional manifold M and m controls,
with second prolongations of quadric submanifolds Sq.

Problem 2’. Describe some orbits of first prolongation ΞSq of quadric submanifolds
under the action of feedback transformations.
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3 Contributions and part organisation

In this part of the thesis, we propose a solution of problem 1’ and of problem 2’,
which in turns gives a solution of problems 1 and 2. Our solution covers all non-
degenerated quadric submanifolds Sq when the dimension is n = 2, and covers all
paraboloid submanifolds SQ when the dimension is n ≥ 3. In the following, we
detail for each chapter the problems solved and the results obtained. The results of
Chapter 2 have been submitted to the Journal of Dynamical and Control Systems
[SR21], they also have been presented on several occasions.

Chapter 2: Conic nonholonomic constraints on surfaces and control systems.
We develop a complete theory of conic submanifolds (ellipses, hyperbolas, and
parabolas) of the tangent bundle of a 2-dimensional manifold X . We give a charac-
terisation of conic submanifolds by a studying the equivalence of second prolongation
to a novel type of control-affine systems called quadratic systems. Our characterisa-
tion is explicit, that is, it can be tested on any control-affine systems. The conditions
that we develop also provide a normal form of conic submanifold which is interest-
ing as it describes a smooth passage from ellipses to hyperbolas through parabolas.
Then, the problem of classification of conic submanifolds is considered, we study
the problem for each different type of conic separately (elliptic, hyperbolic, and
parabolic). Our classification includes several normal and canonical forms.

Chapter 3: Introduction to the equivalence problem of control systems
with paraboloid nonholonomic constraints. This chapter is an introduction
to the next two, we develop some general tools that are useful for our characterisation
and classification of paraboloid submanifolds of any dimension. In particular, we
introduce a new class of control-affine systems, called (p, q)-paraboloid system, which
are second prolongation of paraboloid submanifolds, and we construct a sort of
Hessian map attached to any control-affine system that characterises the signature
of the underlying paraboloid submanifold.

Chapter 4: Control systems with paraboloid quadric nonholonomic constraints
and Chapter 5: Control systems with paraboloid nonholonomic con-
straints in any dimension. Those two chapters are dedicated to the study of the
problem of characterising and classifying paraboloid submanifolds. First we do it in
dimension n = 3 (i.e. we have two controls only) and then we generalise our results
to the case of arbitrary dimension. In the first case, we study separately elliptic and
hyperbolic paraboloid submanifolds, while in the second we embed in one general
result our characterisation of paraboloid submanifold. Our characterisation is ex-
pressed by relations between the vector fields of control-affine systems and is based
on the novel notions of weak and strong quadratic frames attached to control-affine
systems. Our classification results are given for first prolongation of paraboloid sub-
manifold, we give our conditions via relations between structure functions, defined
by a moving frame of the tangent bundle, and via geometric invariants. The case of
dimension n = 3 is therefore a corollary of our result for the arbitrary dimension,
but that chapter serves as an introduction for our methodology, and we are also give
some interpretations that are not obvious in higher dimensions.
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Chapter 6: Characterisation of paraboloid systems by their Lie algebra of
infinitesimal symmetries. In this chapter, we use the concept of the Lie algebra
of infinitesimal symmetries attached to any control-affine system to characterise a
subclass of (p, q)-paraboloid systems. We show that the Lie algebra of infinites-
imal symmetries of a second prolongation of a null-form paraboloid submanifold
characterises that class of control-affine systems. That methodology gives a direct
characterisation of null-forms paraboloid submanifolds among all submanifolds; con-
trary to our classification results, presented in the previous chapters, that take place
inside the class of paraboloid submanifolds.
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Chapter 2

Conic nonholonomic constraints on
surfaces and control systems

This chapter is based on our paper [SR21] submitted to the Journal of Dynamical
and Control System. The only notable exceptions are that most of the introduc-
tion is now contained in Chapter 1 and that the section dedicated to the study of
infinitesimal symmetries of quadratic systems has been moved to Chapter 6.

1 Introduction

In this chapter, we will deal with problems 1 and 2 in the case of dimension n = 2.
First, we quickly recall the main definitions needed for our study, details are given in
Chapter 1. Let X be a smooth connected manifold of dimension n = 2 (a surface),
equipped with local coordinates x = (z, y); we choose the order (z, y) to be consistent
with some normal forms existing in the literature. In the tangent bundle TX of X ,
we consider a smooth 3-dimensional submanifold S given by

S = {(x, ẋ) ∈ TX , S(x, ẋ) = 0} ,

where S : TX → R is a smooth function satisfying rk ∂S
∂ẋ

= 1 for all (x, ẋ) ∈ S.
Two submanifolds S ⊂ TX and S̃ ⊂ T X̃ given by S(x, ẋ) = 0 and S̃(x̃, ˙̃x) = 0,
respectively, are said to be equivalent if there exists a diffeomorphism ϕ : X → X̃
and a smooth nonvanishing function δ : TX → R such that

S̃(ϕ(x), Dϕ(x)ẋ) = δ(x, ẋ)S(x, ẋ),

where Dϕ is the derivative (tangent map) of ϕ.

Example. The submanifolds S and S̃ given by S(x, ẋ) = ż −
(
−1 +

√
1 + ẏ

)2
= 0,

around (x0, ẋ0) = (0, 0), and S̃(x̃, ˙̃x) = ˙̃z −
(

˙̃y
2

)2
= 0, around (x̃0, ˙̃x0) = (0, 0),

respectively, are equivalent via

(z̃, ỹ) = ϕ(x) = (z, y − z), and δ(x, ẋ) = −1

4

(
ż − ẏ − 2− 2

√
1 + ẏ

)
.

●
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Example. Since on a 2-dimensional manifold all metrics are locally conformally flat
then the submanifold given by S(x, ẋ) = a(x)ż2 + 2b(x)żẏ + c(x)ẏ2 − 1 = 0 (where
ac−b2 ̸= 0) is locally equivalent to that given by S̃(x̃, ˙̃x) =

(
˙̃z2 ± ˙̃y2

)
−r(x̃)2 = 0. ●

The first purpose of this work is to provide a characterisation of submanifolds S
that, at each x ∈ X , form a conic in TxX . Namely, in a suitable coordinate system
x = (z, y), S is given by the zero level-set of

Sq(x, ẋ) = ẋtg(x)ẋ+ 2ω(x)ẋ+ h(x).

The map Sq is represented by the triple Sq = (g, ω, h), where g is a smooth symmetric
(0, 2)-tensor (possibly degenerated), ω is a smooth differential one-form and h is a
smooth function. It is well-known in affine geometry that quadratic equations can

be classified by the signature of the matrix Mq(x) =

(
g(x) ω(x)t

ω(x) h(x)

)
and by that of

g(x). We will use the following two determinants

∆1(x) = det(Mq(x)) and ∆2(x) = det(g(x)).

Of course, ∆1 and ∆2 depend on the choice of coordinates but the ideals generated
by them (and thus their zero level set) are invariantly related to the submanifold
Sq. In this work, we characterise non-degenerate conics, that is, non-empty and
satisfying ∆1 ̸= 0 (observe that degenerate conics are in fact linear subspaces of
TxX ). Excluding empty Sq is needed when considering elliptic submanifold (see the
proof of the lemma below) and it implies that Mq is indefinite. The non-degeneracy
assumption ∆1 ̸= 0 implies that, locally around x0, rk g(x) ≥ 1. If ∆2(x0) ̸= 0 or
if ∆2 ≡ 0 in a neighbourhood of x0, then we can describe three particular types of
conics given by the classification lemma below. Notice, however, that this lemma
does not describe conics for which we pass smoothly from one type to another (see
remark below the proof of Theorem 2.3 for that case).

Lemma 2.1 (Classification of non-degenerate conics). Consider a non-empty conic
Sq and assume ∆1 ̸= 0. Then locally around x0 we have

(i) If ∆2(x0) > 0, then Sq is equivalent to SE = {(ż − c0)2 + (ẏ − c1)2 = r2},
(ii) If ∆2(x0) < 0, then Sq is equivalent to SH = {(ż − c0)2 − (ẏ − c1)2 = r2},
(iii) If ∆2 ≡ 0, then Sq is equivalent to SP = {aẏ2 − ż + bẏ + c = 0},

where r, c0, c1, a, b, and c are smooth functions satisfying r(·) ̸= 0 and a(·) ̸= 0.

We call SE, resp. SH , resp. SP , an elliptic, resp. a hyperbolic, resp. a parabolic,
submanifold and we will use the notation SQ to design the set {SE,SH ,SP} of
those three particular forms. Observe that for the parabolic form SP , the non-
degeneracy assumption ∆1 ̸= 0 implies the existence of a nonvanishing differential
one-form ω = −dz + b dy, whereas in the elliptic and hyperbolic cases this one-
form, given by ω = −(c0dz ± c1dy), can vanish at some points. Those three classes
of submanifolds are related to the signature of the metric g; indeed if sgn (g) is
constant in a neighbourhood of x0, then SE, resp. SH , resp. SP , corresponds to
sgn (g) = (+,+), resp. sgn (g) = (+,−), resp. sgn (g) = (+, 0) (notice that we can
always assume that there is at least one positive eigenvalue, otherwise we take the
equivalent submanifold given by S̃ = −S).
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Proof. Consider a submanifold Sq given in local coordinates by

Sq(x, ẋ) = ẋt
(

g11 g12
g12 g22

)
ẋ+ 2 (ω1, ω2) ẋ+ h,

where all functions gij, ωi, and h depend smoothly on x ∈ X .

(i)-(ii) We deal with ∆2(x0) ̸= 0, that is, the elliptic and hyperbolic cases together. In
those cases, g is a non-degenerate symmetric (0, 2)-tensor, therefore it can be
interpreted as a pseudo-Riemanian metric. Since on 2-dimensional manifolds
all metrics are conformally flat, we introduce coordinates x̃ = ϕ(x) = (z, y)
such that in those coordinates, Sq can be written (we drop the tildes for more
readability),

Sq = R2(x)(ż2 ± ẏ2) + 2ω(x)ẋ+ h(x)

or, equivalently (since R(·) ̸= 0), as

Sq = R2
(
ż +

ω1

R2

)2
±R2

(
ẏ ± ω2

R2

)2
+ h−R2

(ω1

R2

)2
∓R2

(ω2

R2

)2
.

Notice that for this form we have ∆1 = ±R2 (hR2 − (ω1)
2 ∓ (ω2)

2) which, by
assumption, does not vanish. Denote c0 = − ω1

R2 , c1 = ∓ ω2

R2 , and divide by
h̃ = −h+R2

(
ω1

R2

)2 ±R2
(
ω2

R2

)2 (observe that h̃ ̸= 0 as h̃ = 1
R2∆1) to obtain

Sq =
R4

−∆1

[
(ż − c0)2 ± (ẏ − c1)2

]
− 1.(2.1)

In the elliptic case, if ∆1 > 0 then the conic is empty which is excluded by
assumption, therefore we set r−2 = R4

−∆1
to obtain SE. In the hyperbolic case,

if ∆1 > 0, then we permute the variables (z, y) and, thus, we can always obtain
a conic defined by Sq in the form (2.1) with ∆1 < 0. Then, set r−2 = R4

−∆1
to

obtain SH .

(iii) Assume ∆2 ≡ 0. Since ∆1 ̸= 0, we have rk g(x) = 1 in a neighbourhood, which
implies that g11(x0)g22(x0) ̸= 0 and thus, without loss of generality, we can
assume that g22(x0) ̸= 0. Then, by rk g(x) = 1, we have g11 =

(g12)2

g22
, and the

distribution ker g = span
{

g22(x)
∂
∂z
− g12(x)

∂
∂y

}
is locally of constant rank.

Then we introduce coordinates (z̃, ỹ), satisfying span {dỹ} = ann (ker g), in
which we have

S̃q = ã(x̃) ˙̃y2 + 2ω̃(x̃) ˙̃x+ h̃(x̃),

whose determinant ∆1 = −ã(ω̃1)
2 ̸= 0 implies that ω̃1 ̸= 0. Dividing S̃q by

−2ω̃1 we obtain the desired form SP with a = ã
−2ω̃1

, b = ω̃2

−ω̃1
, and c = h̃

−2ω̃1
.

■

The second goal of this work is to provide a classification of elliptic, hyperbolic,
and parabolic submanifolds. We will give several normalisations and, in particular,
we will characterise and propose canonical forms of submanifolds Sq with constant
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coefficients (called strongly flat in this chapter). Our analysis is based on attaching
to a submanifold S = {S(x, ẋ) = 0} ⊂ TX two control systems. First,

ΞS : ẋ = F (x,w), x ∈ X , w ∈ W ⊂ R,

where ẋ− F (x,w) = 0 is a parametric representation of S, and second,

ΣS :

{
ẋ = F (x,w)
ẇ = u

, (x,w) ∈ X × R, u ∈ R,

called, respectively, a first and second prolongation of S. An observation that links
studying submanifolds S ⊂ TX and their prolongations ΞS and ΣS is that equiva-
lence of submanifolds corresponds to the equivalence of control systems ΞS and ΣS
via feedback transformations, general for ΞS , and control-affine for ΣS , as assured
by Proposition 1.6 of Chapter 1.

Example. There is a well known example of a nonlinear system subject to an elliptic
constraint SE, namely Dubin’s car [Dub57]. The state of the system is (z, y, w) where
(z, y) is the centre of mass of the vehicle, and w is the orientation of the vehicle (with
respect to the z-axis). Assume that the vehicle has constant velocity and that we
control the angular velocity of the orientation. Thus, the dynamics of Dubin’s car
reads 

ż = r cos(w)
ẏ = r sin(w)
ẇ = u

, r ∈ R∗,

which clearly is a second prolongation of the elliptic submanifold ż2 + ẏ2 = r2. ●

Related works. A classification of quadratic control systems was initiated by
Bonnard in [Bon91]. His work differs from our as he considered homogeneous sys-
tems of degree 2 with respect to all state variables. Hence, his class of quadratic
control systems is a subclass of our parabolic systems (where we require that only
one variable enters quadratically) but he considers the general dimension n while our
results concern 3-dimensional systems only. In [KK92], Krener and Kang studied
the problem of equivalence, via feedback, to polynomial systems of degree 2 modulo
higher order terms. This work was continued in [Kan96] and [TR02] for any degree
but all those results are given for formal classification only. Agrachev [Agr98; AG97],
see also Agrachev and Sachkov [AS13], has developed a detailed theory of curvature
for control-nonlinear systems (compare [JK13] for another approach) and, in par-
ticular, described 3-dimensional control-affine systems with zero curvature, see also
[Ser09]. It turns out that his models show up in our classification as representatives
of null-forms elliptic and hyperbolic systems. Examples of control systems subject
to conic nonholonomic constraints appear in various domains of physics and engi-
neering applications. Above we presented Dubin’s car [Dub57], which is a simple
model of a vehicle, whose evolution is given by a second prolongation of an elliptic
submanifold. In [Mon98] an hyperbolic counterpart of Dubin’s car have been intro-
duced. We also mention [ZTC15], where the planar tilting manoeuvre problem is
considered under small angle assumption, the studied control system is elliptic with
respect to the states.
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Organisation of the chapter. In section 2, we will define a general second pro-
longation of a conic submanifold called a quadratic system (see Definition 2.1 and
Proposition 2.1) and, in Theorem 2.2, we will fully characterise those systems by
means of a checkable relation between well-defined structure functions attached to
any control-affine system. The conditions obtained in that theorem allow to give a
normal form for all quadratisable control systems, see Theorem 2.3, which in turn
leads to a normal form for all conic submanifolds Sq. We will also show how our
characterisation and the normal form apply to the class of elliptic, hyperbolic, and
parabolic control-affine systems, which gives us a deeper insight into our conditions
and in our normal form (see Corollary 2.1 and Corollary 2.2). Finally, in section 3,
we will be interested in the classification of elliptic, hyperbolic, and parabolic sub-
manifolds. To every first prolongation of those submanifolds ΞE, ΞH , or ΞP , we
attach a frame of the tangent bundle (see the paragraph before Proposition 2.2)
and we give conditions for that frame to be commutative: it turns out that in the
elliptic and hyperbolic cases this requires that a certain pseudo-Riemanian met-
ric is flat (see Proposition 2.4), whereas in the parabolic case this problem can be
solved without any extra assumptions (see Proposition 2.6). Then we show how
we can additionally normalise the systems while preserving the commutativity of
that frame. Our classification includes several normal and canonical forms, given by
Proposition 2.5 for elliptic and hyperbolic systems and by Theorem 2.4 for parabolic
systems. Moreover, that classification and those normal and canonical forms, of non-
linear quadratic systems, give a corresponding classification and normal/canonical
forms of conic submanifolds, see Corollary 2.3 for elliptic and hyperbolic submani-
folds SE and SH , and Corollary 2.5 for parabolic submanifolds SP . Finally, in the
case of parabolic systems, we explore the concept of curvature of a control systems
defined by Agrachev in [Agr98; AG97] and we characterise and classify all parabolic
systems with constant curvature (see Proposition 2.7).

2 Quadratisable control-affine systems

In this section, we address the equivalence problem of a control-affine system Σ
to a quadratic control-affine system Σq (see definition below), which corresponds
to second prolongation of conic submanifolds. On a 3-dimensional manifold M,
equipped with local coordinates ξ, we consider the control-affine system

Σ : ξ̇ = f(ξ) + g(ξ)u,

with a scalar control u ∈ R and smooth vector fields f and g. For this system, we
denote G = span {g}, the distribution spanned by g, and we will use the following
notations: given two vector fields g and f onM, by [g, f ] we denote the Lie bracket
of g and f , in coordinates we have [g, f ] = ∂f

∂ξ
g− ∂g

∂ξ
f , and adkgf =

[
g, adk−1

g f
]

stands
for the iterated Lie bracket, with ad0

gf = f , and ϕ∗ denotes the tangent map of a
diffeomorphism ϕ.

Definition 2.1 (Quadratisable systems). We say that Σ is quadratisable if it is
feedback equivalent to

Σq :

{
ẋ = fq(x,w)
ẇ = u

,

29



around (x0, w0), where fq satisfies
(
∂2fq
∂w2 ∧ ∂fq

∂w

)
(x0, w0) ̸= 0 and

∂3fq
∂w3

= τ(x)
∂fq
∂w

,(2.2)

with τ a smooth function of the indicated variable.

Set x = (z, y) and denote fq = f 1 ∂
∂z

+ f 2 ∂
∂y

; it is shown in Appendix 2.A that any
smooth fq, satisfying (2.2), can be written, locally around (x0, w0), as

fq(x,w) =
+∞∑
k=0

A(x)
(w − w0)

2k+2

(2k + 2)!
τ(x)k +B(x)

(w − w0)
2k+1

(2k + 1)!
τ(x)k + C(x),(2.3)

where A, B, and C can be seen as smooth vector fields on X ∼=M/G for which we
have A ∧ B ̸= 0. The following proposition shows that Σq is a second prolongation
of a conic submanifold, thus justifies to call Σq a quadratic system, and describes
three normal forms of fq given for τ ≡ 0, and τ ̸= 0.

Proposition 2.1. Locally around ξ0 ∈M we have the followings

(i) Σq is a second prolongation of a conic submanifold Sq.
(ii) If τ ≡ 0 in a neighbourhood, resp. τ(ξ0) < 0, resp. τ(ξ0) > 0, then Σq is

locally feedback equivalent to ΣP , resp. ΣE, resp. ΣH , given by, respectively,

fP = A(x)w2 +B(x)w+C(x), fE = A(x) cos(w̃) +B(x) sin(w̃) +C(x),

fH = A(x) cosh(w̃) +B(x) sinh(w̃) + C(x).

(iii) ΣP , resp. ΣE, resp. ΣH , is a second prolongation of a conic submanifold SQ
satisfying ∆2 ≡ 0, resp. ∆2 > 0, resp. ∆2 < 0.

The conic submanifold SQ of statement (iii) is, by Lemma 2.1, equivalent to SP
(if ∆2 ≡ 0), resp. SE (if ∆2 > 0), resp. SH (if ∆2 < 0). So it is natural to
call ΣP a parabolic system, ΣE an elliptic system, and ΣH a hyperbolic system.
We will denote by Q the set {P,E,H}, and, consequently, fQ = {fP , fE, fH} and
ΣQ = {ΣP ,ΣE,ΣH}.

Proof.

(i) Consider fq given by (2.3), for simplicity we consider w0 = 0. By Corollary A.1
of Appendix A, we choose coordinates (z, y) = ϕ(x) that rectify simultaneously
the distributions spanned by A and B so we may assume that A = a ∂

∂z
and B =

b ∂
∂y

, where a and b are smooth functions of x = (z, y) satisfying a(x0)b(x0) ̸= 0.
Using Cauchy products we compute(
ż − c0
a

)2

=

(
+∞∑
k=0

w2k+2

(2k + 2)!
τ k

)2

=
+∞∑
k=0

(8 · 4k − 2)w2k+4 τ k

(2k + 4)!
,

(
ẏ − c1
b

)2

=

(
+∞∑
k=0

w2k+1

(2k + 1)!
τ k

)2

=
+∞∑
k=0

2 · 4kw2k+2 τ k

(2k + 2)!
,

= w2 +
+∞∑
k=1

2 · 4kw2k+2 τ k

(2k + 2)!
= w2 +

+∞∑
k=0

2 · 4k+1w2k+4 τ k+1

(2k + 4)!
,

= w2 + τ

+∞∑
k=0

8 · 4kw2k+4 τ k

(2k + 4)!
= w2 + τ

(
ż − c0
a

)2

+ τ

+∞∑
k=0

2w2k+4 τ k

(2k + 4)!
.
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Consequently, we obtain(
ẏ − c1
b

)2

− τ
(
ż − c0
a

)2

= w2 +
+∞∑
k=0

2w2k+4 τ k+1

(2k + 4)!
=

+∞∑
k=−1

2w2k+4 τ k+1

(2k + 4)!
,

=
+∞∑
k=0

2w2k+2 τ k

(2k + 2)!
= 2

(
ż − c0
a

)
.

Hence, the Σq is a second prolongation of the submanifold Sq given by
(
ẏ−c1
b

)2−
τ
(
ż−c0
a

)2 − 2
(
ż−c0
a

)
= 0 and for which we have ∆1 = − 1

a2b2
and ∆2 = − τ

a2b2
.

(ii) If τ ≡ 0, then ∂3fq
∂w3 ≡ 0 implies that fq = fP = Aw2 + Bw + C. If τ < 0,

then ∂3fq
∂w3 = τ ∂fq

∂w
implies that fq = A cos(

√
−τw) + B sin(

√
−τw) + C which,

via the pure feedback w̃ =
√
−τw, gives fq = fE. Finally, if τ > 0, then

∂3fq
∂w3 = τ ∂fq

∂w
implies that fq = A cosh(

√
τw)+B sinh(

√
τw)+C which, via the

pure feedback w̃ =
√
τw, gives fq = fH .

(iii) To prove that ΣQ is a second prolongation of a conic submanifold SQ satisfying
∆2 ≡ 0, or ∆2 > 0, or ∆2 > 0, consider the distributions A = span {A} and
B = span {B}; under the assumption A∧B ̸= 0, there exists coordinates (z̃, ỹ)
such that span {dỹ} = ann (A) and span {dz̃} = ann (B) (see Corollary A.1
of Appendix A). In those coordinates, we have A = a ∂

∂z̃
and B = b ∂

∂ỹ
with

ab ̸= 0. Denote C = c0
∂
∂z̃

+ c1
∂
∂ỹ

. Thus we have,

ΣP : using the equation for ˙̃y we obtain w =
˙̃y−c1
b

, which inserted into the

equation for ˙̃z, gives ˙̃z − a
(

˙̃y−c1
b

)2
+ c0 = 0 for which we clearly have

∆2 ≡ 0.

ΣE: we easily see that cos(w̃) = ˙̃z−c0
a

and sin(w̃) =
˙̃y−c1
b

so we obtain the conic

submanifold
(

˙̃z−c0
a

)2
+
(

˙̃y−c1
b

)2
= 1, which satisfies ∆2 =

1
a2b2

> 0.

ΣH : similarly to the elliptic case, we have cosh(w̃) =
˙̃z−c0
a

and sinh(w̃) =
˙̃y−c1
b

,

and thus
(

˙̃z−c0
a

)2
−
(

˙̃y−c1
b

)2
= 1, for which we have ∆2 =

−1
a2b2

< 0.

■

Notice that τ plays for Σq a similar role as the one that ∆2 plays for Sq and,
indeed, we see in the proof of the first statement that in a suitable coordinate system
we have ∆2 = −τ .

The remaining part of this section is organised as follows. First, we will state our
main theorem giving necessary and sufficient conditions characterising quadratisable
systems Σq. Second, by carefully studying the conditions of that theorem, we will
give a normal form of the quadratisable systems.

2.1 Characterisation of quadratisable control-affine systems

We now focus on the equivalence of a general control-affine system Σ : ξ̇ = f(ξ) +
g(ξ)u with quadratic control-affine systems Σq. The theorem below gives checkable
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necessary and sufficient conditions in terms of relations between the vector fields
f and g of Σ for the existence of a smooth feedback (α, β) and a diffeomorphism
ξ̃ = ϕ(ξ) that locally transform Σ into a quadratic system Σq. Equivalence to
particular cases of Σq, namely ΣE, ΣH , and ΣP , is provided by Corollary 2.1 below.

Theorem 2.2 (Feedback quadratisation). Let Σ be a control-affine system on a
3-dimensional smooth manifold with a scalar control. Σ is, locally around ξ0 ∈ M,
feedback equivalent to a quadratic system Σq if and only if

(C1) g ∧ adgf ∧ ad2
gf (ξ0) ̸= 0,

(C2) The structure functions ρ and τ in the decomposition ad3
gf = ρad2

gf + τadgf
mod G satisfy, locally around ξ0,

Lg (χ)−
2

3
ρχ = 0,(2.4)

where χ = 3Lg (ρ)− 2ρ2 − 9τ .

Condition (C1) is a regularity condition, it ensures that the vector fields g, adgf,
and ad2

gf are locally linearly independent and thus that they form a local frame,
hence the structure functions (ρ, τ) of (C2) are well defined. The main idea behind
this theorem is to observe that if for Σ we have ad3

gf = τ(x) adgf , i.e. the third Lie
derivative of f along g is proportional to the first Lie derivative of f along g, then
with the help of a diffeomorphism we can obtain the form Σq, see the sufficiency
part of the proof for details. Thus condition (C2) shows how that relation changes
when we allow for feedback transformations (α, β).

Proof. Necessity. Consider a control-affine system Σ given by two smooth vector
fields f and g and recall that G is the distribution G = span {g}. Let (ϕ, α, β) form
a feedback such that Σ is (locally) equivalent to a quadratic system Σq. We suppose
that Σq = (f̃q, g̃) is given in local coordinates ξ̃ = (z̃, ỹ, w̃), we set G̃ the distribution
spanned by g̃, and we denote (ρ̃, τ̃) its structure functions. By definition of feedback
equivalence the following relations between (f, g) and (f̃q, g̃) hold: f̃q = ϕ∗ (f + αg)
and g̃ = ϕ∗ (gβ).
The system Σq is quadratic, so by Definition 2.1, we have ∂2f̃q

∂w̃2 ∧ ∂f̃q
∂w̃

(x̃0, w̃0) ̸= 0,
which implies that (C1) holds for (f̃q, g̃), and we also have ∂3f̃q

∂w̃3 = τ̃ ∂f̃q
∂w̃

, thus the
structure functions of Σq are ρ̃ = 0 and τ̃ = τ̃(z̃, ỹ). Therefore, for Σq we have
χ̃ = −9τ̃(z̃, ỹ) implying Lg̃ (χ̃) = ∂χ̃

∂w̃
= 0. Hence Σq satisfies (C1) and (C2) and

we will now prove that those conditions are invariant under diffeomorphisms ϕ and
feedback transformations (α, β).
Clearly, (C1) is invariant under diffeomorphisms (as [ϕ∗g, ϕ∗f ] = ϕ∗ [g, f ]) and under
feedback (α, β) since β ̸= 0. We have checked that (C2) holds for Σq = (f̃q, g̃)
and, clearly, (C2) is invariant under diffeomorphisms since they conjugate structure
functions. Moreover (C2) is invariant under the transformation f̃q 7→ f̃q + αg̃, since
the expression of ad3

g̃f̃q is considered modulo the distribution G̃. Finally, under the
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action of β the brackets, with g̃ = gβ, are transformed by,

adg̃f = βadgf mod G̃,
ad2

g̃f = β2ad2
gf + β (Lg (β)) adgf mod G̃,

ad3
g̃f = (β3ρ+ 3β2Lg (β))ad

2
gf + (β3τ + βLg (βLg (β)))adgf mod G̃,

= (ρβ + 3Lg (β))ad
2
g̃f

+
(
τβ2 + Lg (βLg (β))− ρβLg (β)− 3 (Lg (β))

2) adg̃f mod G̃.

This implies that the structure functions ρ̃ and τ̃ of Σq defined by ad3
g̃f = ρ̃ad2

g̃f +

τ̃adg̃f mod G̃ are given in terms of the feedback transformation β and the structure
functions ρ and τ of Σ by

ρ̃ = ρβ + 3Lg (β) , τ̃ = τβ2 + Lg (βLg (β))− ρβLg (β)− 3 (Lg (β))
2 .(2.5)

Since for Σq the structure function ρ̃ vanishes, ρ̃ = 0, we have the relation Lg (β) =
−βρ

3
and thus χ̃ = −9τ̃ , which is equal to

χ̃ = −9
(
τβ2 + Lg (βLg (β))

)
= −9

(
τβ2 + Lg

(
−β2ρ

3

))
,

= −9
(
τβ2 − 1

3

(
ρLg

(
β2
)
+ β2Lg (ρ)

))
= −9β2

(
τ − 1

3
Lg (ρ) +

2

9
ρ2
)

= β2χ.

And finally, using that Lg̃ (χ̃) = 0, we deduce that

Lg̃ (χ̃) = βLg
(
β2χ

)
= β3Lg (χ) + 2β2χLg (β) = β3Lg (χ)−

2

3
β3χρ = 0,

showing the necessity of relation (2.4) and concludes the necessity part of the proof.

Sufficiency. There are two steps in the sufficiency part. The first one consists in
building a vector field g such that ad3

gf = τ adgf mod G with Lg (τ) = 0. Then we
will construct a diffeomorphism ϕ that brings Σ into the form Σq.
Consider the system Σ : ξ̇ = f + gu, for which we assume g ∧ adgf ∧ ad2

gf (ξ0) ̸= 0
and suppose that relation (2.4) holds for its structure functions ρ and τ . Choose a
function β ̸= 0 satisfying Lg (β) =

−βρ
3

(to guarantee that β ̸= 0, we actually may
solve the equation Lg (ln(β)) = −ρ

3
). Define the system Σ̃ : ξ̇ = f̃ + g̃ũ, where

g̃ = gβ and f̃ = f , then by (2.5) the structure function ρ̃ of Σ̃ vanishes. Therefore,
we have χ̃ = −9τ̃ and thus by relation (2.4) we obtain that Lg̃ (τ̃) = 0.

Since g̃ ̸= 0, we apply a diffeomorphism (z, y, w) = ϕ(ξ) such that ϕ∗g̃ = g = ∂
∂w

and denote f = ϕ∗f̃ , and τ = τ̃ ◦ ϕ−1. Therefore, the decomposition ad3
gf = τadgf

mod G implies that f = f 1 ∂
∂z

+ f 2 ∂
∂y

+ f 3 ∂
∂w

satisfies

∂3f i

∂w3
= τ(z, y)

∂f i

∂w
,

for i = 1, 2. Applying the feedback u = f 3(z, y, w) + ũ we obtain the form Σq. ■
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The following corollary shows that we can test on the structure functions of Σ if
the equivalent quadratic system Σq will be of parabolic, elliptic, or hyperbolic type.

Corollary 2.1. Under conditions (C1) and (C2) of the previous theorem we have

(i) Σ is locally feedback equivalent to ΣP if and only if χ ≡ 0 in a neighbourhood
of ξ0,

(ii) Σ is locally feedback equivalent to ΣE if and only if χ(ξ0) > 0,

(iii) Σ is locally feedback equivalent to ΣH if and only if χ(ξ0) < 0,

Notice that Σ is locally feedback equivalent to ΣP if and only if it satisfies (C1)
and χ ≡ 0, condition (C2) being satisfied automatically.

Proof. From the necessity part of the proof of Theorem 2.2 we know that for Σq

we have χ̃ = −9τ̃ and we saw that under pure feedback transformations (α, β) we
have χ̃ = β2χ, thus the sign of χ is invariant as well as the locus where it vanishes.
Moreover, ΣQ is parabolic if τ̃ ≡ 0, equivalently χ̃ ≡ 0, ΣQ is equivalent to ΣE if
τ̃ > 0, equivalently χ̃ < 0, and Σ is equivalent to ΣH if τ̃ > 0, equivalently χ̃ < 0.
Hence the necessity of the stated conditions is established.

Conversely, in the sufficiency part of the proof of Theorem 2.2 we obtained
structure functions (ρ̃, τ̃) = (0, τ̃(z, y)) by feedback transformations. Since χ̃ =
β2χ we have −9τ̃ = β2χ, thus sgn (τ̃) = −sgn (χ) and the conclusion follows by
Proposition 2.1. ■

2.2 Normal form of quadratisable control-affine system

In this subsection, we apply the conditions of Theorem 2.2 to a general control-affine
system, which under the regularity assumption g∧adgf(ξ0) ̸= 0 can be written (after
applying a suitable feedback transformation) as

Σh :


ż = h(z, y, w)
ẏ = w
ẇ = u

,

with h a smooth function. By applying Theorem 2.2 we are able to give a normal
form of all smooth functions h(z, y, w) that describe quadratisable systems, that
is, systems feedback equivalent to Σq. In what follows, we assume to work locally
around 0 ∈ R3 and all derivatives are taken with respect to w and denoted by prime,
double prime, etc. Whenever we apply ln(a), we assume that a > 0 (if not, take the
absolute value).

Theorem 2.3 (Normal form of quadratisable control-affine systems). The following
statements are equivalent.

(i) Σh is locally feedback equivalent to a quadratic system Σq;

(ii) The function h satisfies h′′(0) ̸= 0 and, in a neighbourhood, it holds

9h′′′′′ (h′′)
2 − 45h′′′′h′′′h′′ + 40 (h′′′)

3
= 0;(2.6)
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(iii) The second derivative of h is of the following form

h′′(x,w) = a(dw2 + ew + 1)−3/2,(2.7)

where a = a(x), d = d(x), and e = e(x) are smooth functions satisfying
a(0) ̸= 0;

(iv) The function h is given by

h(x,w) = 2a

(
w2

(
√
dw2 + ew + 1 + 1)2 − dw2

)
+ bw + c(2.8)

where a, b, c, d, e are any smooth function of x such that a(0) ̸= 0.

Proof. (i)⇔(ii). It is a straightforward application of the conditions of Theorem 2.2
with the structure functions of Σh given by ρ = h′′′

h′′
and τ = 0. Then condition (C2)

reads

χ′ − 2

3
ρχ = 3ρ′′ − 6ρρ′ +

4

3
ρ3 = 0,(2.9)

which can be expended into (2.6).
To prove (ii)⇔(iii), we will solve (2.9) for ρ and then integrate ρ = (ln(h′′))′ to
obtain the form (2.7). By a change of variable, it is easy to obtain that the solutions
of (2.9) are of the following form (see Section 2.B.1 for the proof)

ρ(x,w) = −3

2

2d(x)w + e(x)

d(x)w2 + e(x)w + 1
.(2.10)

This form can be integrated into h′′(x,w) = a(x) (d(x)w2 + e(x)w + 1)
−3/2 with a,

d, and e any smooth functions such that a(0) ̸= 0.
(iii)⇔(iv). To show (2.8), we integrate twice the second derivative of h given by
(2.7). We set p = p(x,w) = d(x)w2 + e(x)w + 1 and ∆ = ∆(x) = e(x)2 − 4d(x).
First, we obtain (see Section 2.B.2 for details)

h′(x,w) =
2aw

(√
p+ 1

)
√
p(ew + 2 + 2

√
p)

+ b,

with b an arbitrary smooth function of x. Integrate once more to get h,

h(x,w) =
2a

∆
√
p
(ew
√
p− 2p) +

4a

∆
+ bw + c =

2a

∆
(ew + 2− 2

√
p) + bw + c,

=
2aw2

ew + 2 + 2
√
p
+ bw + c =

2aw2

(
√
p+ 1)2 − dw2

+ bw + c.

(iv)⇔(i). Given Σh with h defined by (2.8) we construct a feedback transformation
that brings the system into Σq. First, using Corollary A.1 of Appendix A, we
introduce coordinates (z̃, ỹ) = ϕ(z, y) such that ϕ∗

∂
∂z

= ã ∂
∂z̃

and ϕ∗

(
b ∂
∂z

+ ∂
∂y

)
= b̃ ∂

∂ỹ

and, second, we set w̃2 = w2

ew+2+2
√
p

or, equivalently, w = w̃
(
ew̃ ± 2

√
dw̃2 + 1

)
.

Those transformations bring Σ into the system
˙̃z = 2ãw̃2 + c̃
˙̃y = ẽw̃2 ± 2w̃

√
d̃w̃2 + 1

˙̃w = u

.(2.11)
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The structure functions of the above system are given by ρ̃ = −3w̃d̃
d̃w̃2+1

and τ̃ = 3d̃
d̃w̃2+1

,

then apply the feedback β(x̃, w̃) =
√
d̃w̃2 + 1 (it is a solution of the equation ∂β

∂w̃
=

−ρβ
3

) to obtain a new vector field ḡ = β ∂
∂w̃

and structure functions are given by
ρ̄ = 0 and τ̄ = 4d̃(x). To complete the form, it remains to find a new w̄ = ψ(x̃, w̃)
satisfying ψ∗β

∂
∂w̃

= ∂
∂w̄

. In general ψ is given in terms of the following integral

w̄ = ψ(x̃, w̃) =

∫ w̃

0

1√
1 + d̃w̃2

dw̃.

■

Remark. This theorem provides a normal form of submanifolds S = {ż = s(x, ẏ)}
that are equivalent to a conic submanifold Sq, namely, they are represented by
s(x, ẏ) = h(x, ẏ) with h as in (2.8). Moreover, system (2.11) leads to a normal form
for all conic submanifold Sq (even for those that smoothly pass through ∆2(x) = 0)
and thus completes Lemma 2.1. Indeed, for (2.11) we have (tildes have been removed
for more readability) Sq = (e(ż− c)− 2aẏ)2− 8a(ż− c)( d

2a
(ż− c) + 1), for which we

can compute ∆1 = −64a4 ̸= 0 and ∆2 = −16a2d. Hence, if d(0) = 0 and d(x) ̸= 0
elsewhere, then Sq goes smoothly from an elliptic to a hyperbolic submanifold by
passing (at x = 0) by a parabolic one. ◆

In the last item of the above proof, we saw that the function d plays an import
role for the shape of the transformation, in the following corollary we show that this
function is the key of the normal form of quadratisable control systems.

Corollary 2.2. Assume that Σh is given by h of the form (2.8). Then Σ is feedback
equivalent to ΣP , resp. ΣE, resp. ΣH if and only if d ≡ 0, resp. d < 0, resp. d > 0.
Moreover, the normalising feedback transformation is given by

w̄ =
w

1 +
√
ew + 1

for ΣP , resp. sin2(
√
−dw̄) = −dw2

ew + 2 + 2
√
p

for ΣE,

resp. sinh2(
√
dw̄) =

dw2

ew + 2 + 2
√
p

for ΣH ,

where p = p(x,w) = d(x)w2 + e(x)w + 1.

Proof. First we show that Σh is feedback equivalent to ΣP , resp. ΣE, resp. ΣH , if
and only if d ≡ 0, resp. d < 0, and resp. d > 0. From Corollary 2.1 we know that
we have to compute the sign of χ, which is given by χ = −9d

p
for Σh (this can easily

be deduced from the expression of ρ given by (2.10)). Since p(0) = 1 > 0 we locally
have sgn (χ) = −sgn (d) and thus the conclusion follows.
We now show how to transform Σh into ΣP , resp. ΣE, resp. ΣH . From the last part
of the proof of the previous theorem we know that a suitable parametrisation w̄ is
given by the following two steps

w̃2 =
w2

ew + 2 + 2
√
p
, and w̄ =

∫ w̃

0

1√
1 + dw̃2

dw̃.

Assume d ≡ 0, then the procedure reduces to the first step only and thus w̄2 =

w̃2 = w2

ew+2+2
√
ew+1

=
(

w
1+

√
ew+1

)2
and thus we choose w̃ = w

1+
√
ew+1

. Assume d < 0,
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then the second step of the procedure leads to w̄ = 1√
−d arcsin(

√
−dw̃). Hence

a reparametrisation is given by sin2(
√
−dw̄) = −dw2

ew+2+2
√
p
. Assume d > 0, then

from the second step of the procedure we have w̄ = 1√
d
arcsinh(

√
dw̃). Hence a

reparametrisation is given by sinh2(
√
dw̄) = dw2

ew+2+2
√
p
. ■

Remark (Interpretation of parametrising functions). In the normal form (2.8), there
are 5 parametrising functions∗. However, only d = d(x) and e = e(x) play a signifi-
cant role in the shape of the submanifold Sq. Indeed, a is a scaling of the subman-
ifold, c is the value of h at w = 0, and by an appropriate choice of coordinates we
can always assume that b ≡ 0. From the above corollary, the role of d is clear: its
sign around x = 0 determines the nature of the submanifold, that is, whether the
submanifold is elliptic, hyperbolic, or parabolic.

The role of the function e is, however, more subtle. Clearly, h is well defined
whenever p > 0 and, for a given d, the function e determines the region in which
p > 0 (in particular, whether h is defined globally with respect to w or not). If
d ≡ 0, then p > 0 holds everywhere (i.e. h is defined globally) if and only if e ≡ 0
that is, h is explicitly given by h = 2aw2+ bw+ c. If d < 0, then we have p > 0 only
between its roots and the parametrisation is never global. Finally, if d > 0 then the
parametrisation is global if and only if ∆ < 0 (where ∆ is the discriminant of p),
that is |e| < 2

√
d.

◆

3 Classification of quadratic systems

From Theorem 2.2 we know how to characterise control-affine systems equivalent to
the quadratic form Σq and, in particular, we know how to characterise the subclasses
ΣE, ΣH , and ΣP (see Corollary 2.1). We are now interested in classifying, under
feedback action, the systems inside those three subclasses. To this end, we consider
the quadratic nonlinear system

ΞQ : ẋ = fQ(x,w),

where x ∈ X is the state, w ∈ R plays the role of a control that enters in a nonlinear
way, and fQ is given by either

fE = A(x) cos(w) +B(x) sin(w) + C(x), or
fH = A(x) cosh(w) +B(x) sinh(w) + C(x), or
fP = A(x)w2 +B(x)w + C(x).

In each of the three cases, A, B, and C are smooth vector fields on X satisfying
(A∧B)(x0) ̸= 0. A quadratic nonlinear system ΞQ is then represented by the triple
(A,B,C) of three smooth vector fields satisfying A∧B ̸= 0. We call the pair (A,B)
a Q-frame, and if, additionally, [A,B] = 0, then we call (A,B) a commutative Q-
frame.
The following proposition gives the class of admissible reparametrisations (i.e. pure
feedback transformations that preserve quadratic systems ΞQ) for each quadratic
class and shows how those transformations act on the triple (A,B,C).

∗On https://www.geogebra.org/m/tyb4ygpb the reader can play with those parameters (the
functions a, b, c, d, and e become real numbers when fixing x ∈ X ).
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Proposition 2.2 (Reparametrisation of quadratic nonlinear systems).

(i) Two elliptic systems ΞE and Ξ̃E are feedback equivalent if and only if there ex-
ists a diffeomorphism x̃ = ϕ(x) and an invertible reparametrisation (nonlinear
feedback) w = ψ(x, w̃), of the form ψ = ±w̃ + α(x), and satisfying

(2.12) Ã = ϕ∗ (A cosα +B sinα) , B̃ = ±ϕ∗ (−A sinα +B cosα) ,

C̃ = ϕ∗ (C) .

(ii) Two hyperbolic systems ΞH and Ξ̃H are feedback equivalent if and only if there
exists a diffeomorphism x̃ = ϕ(x) and an invertible reparametrisation (nonlin-
ear feedback) w = ψ(x, w̃), of the form ψ = ±w̃ + α(x), and satisfying

(2.13) Ã = ϕ∗ (A coshα +B sinhα) , B̃ = ±ϕ∗ (A sinhα +B coshα) ,

C̃ = ϕ∗ (C) .

(iii) Two parabolic systems ΞP and Ξ̃P are feedback equivalent if and only if there
exists a diffeomorphism x̃ = ϕ(x) and an invertible reparametrisation (nonlin-
ear feedback) w = ψ(x, w̃), of the form ψ = α(x) + β(x)w̃ and β(·) ̸= 0, and
satisfying

Ã = ϕ∗
(
Aβ2

)
, B̃ = ϕ∗ (2Aαβ +Bβ) , C̃ = ϕ∗

(
C + Aα2 +Bα

)
.(2.14)

Proof. We show the necessity of each statement as the converse implications are
immediate. In all three cases, it is clear that diffeomorphisms of X map quadratic
systems into quadratic systems; Hence, we only show that pure feedback transfor-
mations w = ψ(x, w̃) are of the stated form.

(i) Assume that ΞE and Ξ̃E are equivalent via a reparametrisation w = ψ(x, w̃).
Then, we have the following relation fE(x, ψ(x, w̃)) = f̃E(x, w̃), which we
differentiate three times with respect to w̃ and using ∂3f̃E

∂w̃3 = −∂f̃E
∂w̃

, we conclude
the relation ∂3fE

∂w̃3 = −∂fE
∂w̃

, which translates into

A
(
−ψ′′′ sin(ψ) + (ψ′)3 sin(ψ)− 3ψ′ψ′′ cos(ψ)

)
+B

(
ψ′′′ cos(ψ)− (ψ′)3 cos(ψ)− 3ψ′ψ′′ sin(ψ)

)
= Aψ′ sin(ψ)−Bψ′ cos(ψ),

where the derivatives are taken with respect to w̃. Since the functions cos
and sin are independent, we obtain ψ′′ = 0 and (ψ′)2 = 1. Thus ψ(x, w̃) =
±w̃+ α(x). Applying this reparametrisation (together with a diffeomorphism
ϕ) to ΞE, we obtain the relations of (2.12).

(ii) The first part of the reasoning is exactly the same, using fH and the fact
∂3fH
∂w̃3 = ∂fH

∂w̃
. Applying the reparametrisation w = ψ(x, w̃) = ±w̃+α (together

with a diffeomorphism ϕ) to ΞH , we obtain the relations of (2.13).

(iii) We repeat again the same reasoning to fP with the property ∂3

∂w̃3fP = 0.
However, this time we obtain the conditions ψ′′′ = 0 and ψψ′′′ +3ψ′ψ′′ = 0 on
the reparametrisation ψ, which implies ψ′′ = 0, that is ψ(x, w̃) = β(x)w̃+α(x),
with β satisfying β(·) ̸= 0. Applying this reparametrisation (together with a
diffeomorphism ϕ) to ΞP , yields the relations of (2.14).
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Remark. Initially, ΞQ was considered locally around a point (x0, w0), however, by
the last proposition, the transformations w = ψ(x, w̃) are global with respect to w,
so we will consider the systems ΞQ locally in x and globally with respect to w. All
results below are stated assuming this structure. ◆

We will develop relations involving structure functions uniquely attached to any
fixed triple (A,B,C) and thus change accordingly with diffeomorphisms x̃ = ϕ(x).
So we will act on (A,B,C) by (α, β) only (β is ±1 in the elliptic and hyperbolic
cases) and we will denote by (Ã, B̃, C̃) the result of that action (given by (2.12), or
(2.13) or (2.14), with ϕ = id), called a reparametrisation.
Observe that the reparametrisations of ΞP depend on two smooth functions while
those of ΞE and ΞH depend on one smooth function only. Therefore we expect
the classification of parabolic systems to be less rich (less parametrising functions)
than the classification of elliptic and hyperbolic systems. For the elliptic (resp.
hyperbolic) case, in order to avoid unnecessary computations, we assume that E-
frames, resp. H-frames, (A,B) and (Ã, B̃) of two equivalent systems have the same
orientation (we will come back to this simplification in Proposition 2.5). Thus
we restrict reparametrisations (2.12), resp. (2.13), to those with β = 1. In the
following subsections we will first classify together elliptic and hyperbolic systems
as the procedures are similar, and then we will classify parabolic systems.

3.1 Classification of elliptic and hyperbolic systems

In this subsection, we start classifying elliptic and hyperbolic systems under the
action of reparametrisations. Firstly, we will give a prenormal form for both types
of systems showing that they actually depend on three smooth functions. Secondly,
we will further develop their classification, in particular we will give conditions
for the existence of commutative frames and a complete characterisation of forms
without functional parameters.

Notations. In order to simplify notations, in the following formulae the upper
sign corresponds to the elliptic case and the lower sign to the hyperbolic case, e.g.
we will use the symbol ± to design similar objects attached to the elliptic (+ case)
and to the hyperbolic (− case) systems and in the case of a ∓ symbol we have − for
elliptic systems and + for hyperbolic ones. We denote ΞEH elliptic and hyperbolic
systems, and an EH-frame stands for an E-frame or an H-frame. Denoting by
R̄EH(α) the (trigonometric or hyperbolic) rotation matrix given by

R̄E(α) =

(
cos(α) − sin(α)
sin(α) cos(α)

)
, and R̄H(α) =

(
cosh(α) − sinh(α)
− sinh(α) cosh(α)

)
,

respectively, we see, from (2.12) and (2.13), that EH-frames are transformed by
(Ã, B̃) = (A,B)R̄EH(±α) under reparametrisations. Introduce structure functions
(µ0, µ1) and (γ0, γ1) uniquely defined by [A,B] = µ0A + µ1B and C = γ0A + γ1B,
respectively. We denote γ = (γ0, γ1), and γ= (γ1,∓γ0), and set ΓEH = (γ0)

2 ±
(γ1)

2. We begin by a technical lemma showing how structure functions behave
under reparametrisations.
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Lemma 2.2 (Transformation of structure functions). Consider an elliptic/hyper-
bolic system ΞEH with structure functions (µ0, µ1, γ0, γ1). Then under the reparametri-
sation w = w̃ + α(x) we have,

(µ̃0, µ̃1) = (µ0 ∓ LA (α) , µ1 − LB (α)) R̄EH(α), and γ̃ = γ R̄EH(α).(2.15)

Proof. Details of the computations can be found in Appendix 2.C. ■

Moreover, it is a straightforward calculation using (2.15) to see that ΓEH is invariant
under reparametrisations.

Proposition 2.3 (Prenormal form of elliptic and hyperbolic systems).

(i) Any elliptic system ΞE, resp. hyperbolic system ΞH , always admits under a
feedback transformation the following prenormal form,

ΞpnE : ẋ = r(x)

(
cos(w)
sin(w)

)
+

(
c0(x)
c1(x)

)
, resp. ΞpnH : ẋ = r(x)

(
cosh(w)
sinh(w)

)
+

(
c0(x)
c1(x)

)
,

with r > 0.

(ii) Two prenormal forms ΞpnE and Ξ̃pnE , resp. ΞpnH and Ξ̃pnH , are feedback equivalent
if and only if there exists a diffeomorphism x̃ = ϕ(x) = (ϕ1(x), ϕ2(x)) satisfying

∂ϕ1

∂z
=
∂ϕ2

∂y
,
∂ϕ1

∂y
= ∓∂ϕ2

∂z
,

(
∂ϕ1

∂z

)2

±
(
∂ϕ1

∂y

)2

=

(
r̃

r

)2

, and ϕ∗C = C̃.

(2.16)

Notice that the prenormal forms ΞpnE and ΞpnH are parametrisations of the elliptic
and hyperbolic submanifolds SE and SH given in Lemma 2.1, and thus, the first
statement of the above proposition is equivalent to the statements (i) and (ii) of
that lemma.

Proof.

(i) For the system ΞEH = (A,B,C), define a (pseudo-)Riemannian metric g±
on X by declaring g±(A,A) = 1, g±(B,B) = ±1, and g±(A,B) = 0. It
is known that any non-degenerate metric on a manifold of dimension two is
conformally flat (see [Ber58, pp 15-35] or [Spi99b, Addendum 1 of chapter 9] for
the elliptic case and [Sch08, theorem 7.2] for the hyperbolic case). Therefore,
there exists a diffeomorphism (z̃, ỹ) = x̃ = ϕ(x) such that g± = ϕ∗g̃±, where
g̃± = ϱ(x̃) (dz̃2 ± dỹ2), ϱ > 0. The vector fields Ã = ϕ∗A and B̃ = ϕ∗B

satisfy g̃±(Ã, Ã) = 1, g̃±(B̃, B̃) = ±1, and g̃±(Ã, B̃) = 0 which implies that
(Ã, B̃) is a (pseudo-)orthonormal frame. Finally, using feedback α we can
smoothly rotate (Ã, B̃) into

(
r ∂
∂z̃
, r ∂

∂ỹ

)
with r = 1√

ϱ
, which gives the desired

form Ξ̃EH = (Ã, B̃, C̃), with C̃ = ϕ∗C.

(ii) By relations (2.12) and (2.13), the reparametrisations do not act on C and thus
the relation C̃ = ϕ∗C is necessary for the equivalence of prenormal forms. Con-
sider two elliptic prenormal forms ΞpnE and Ξ̃pnE , resp. two hyperbolic prenormal
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forms ΞpnH and Ξ̃pnH , related by a feedback w = w̃+ α and a diffeomorphism ϕ.
Thus, by adapting relation (2.12), resp. (2.13), we obtain

∂ϕ1

∂z
=
r̃

r
cos(α) =

∂ϕ2

∂y
,

∂ϕ1

∂y
=
r̃

r
sin(α) = −∂ϕ2

∂z
,

resp.
∂ϕ1

∂z
=
r̃

r
cosh(α) =

∂ϕ2

∂y
,

∂ϕ1

∂y
= − r̃

r
sinh(α) =

∂ϕ2

∂z
,

from which we deduce condition (2.16). Conversely, applying the diffeomor-
phism ϕ given by (2.16), together with the feedback w = w̃+ α, with α being
a solution of

cos(α) =
r

r̃

∂ϕ1

∂z
, sin(α) = −r

r̃

∂ϕ1

∂y
,

resp. cosh(α) =
r

r̃

∂ϕ1

∂z
, sinh(α) = −r

r̃

∂ϕ1

∂y
,

we transform ΞpnE into Ξ̃pnE , resp. ΞpnH into Ξ̃pnH .

■

Remark. In the above proof we used the metric g± on X defined by

g±(A,A) = 1, g±(B,B) = ±1, g±(A,B) = 0.(2.17)

This object will play a special role in the interpretation of the conditions describing
the existence of a commutative EH-frame. ◆

The above proposition shows that elliptic and hyperbolic systems are parametrised
by three smooth functions (and not by 6 defining the triple (A,B,C)) of two vari-
ables. Moreover, relation (2.16) shows that the group of diffeomorphisms, conjugat-
ing the EH-frames of two given prenormal forms is parametrised by any function
ϕ1 of two variables satisfying the third equation of (2.16) (ϕ2 being given in terms
of ϕ1 via the first and second equations) The following proposition gives equivalent
algebraic and geometric conditions for the existence of a commutative EH-frame.

Proposition 2.4 (Existence of a commutative EH-frame). Consider an elliptic/
hyperbolic system ΞEH = (A,B,C) with structure functions (µ0, µ1) of the EH-frame
(A,B). The following statements are equivalent

(i) There exists a commutative EH-frame.

(ii) The structure functions (µ0, µ1) attached to the EH-frame (A,B) satisfy

−(µ0)
2 ∓ (µ1)

2 ± LA (µ1)− LB (µ0) = 0.(2.18)

(iii) The Gaussian curvature κ± of the metric g± vanishes.

Notice that statement (i) describes the following normal forms,

Ξ′
E :

{
ż = cos(w) + c0(x)
ẏ = sin(w) + c1(x)

, and Ξ′
H :

{
ż = cosh(w) + c0(x)
ẏ = sinh(w) + c1(x)

,

whose structure functions are µ0 = µ1 = 0, γ0 = c0, and γ1 = c1. We call Ξ′
E a flat

elliptic system and Ξ′
H a flat hyperbolic system.
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Proof. The equivalence between (ii) and (iii) is immediate since (2.18) is the Gaus-
sian curvature κ± of g± (details of the computations are in Appendix 2.D). We show
that (i) is equivalent to (ii). If the EH-frame (A,B) is equivalent via w = w̃+α(x) to
a commutative EH-frame (Ã, B̃), then by (2.15) we immediately have LA (α) = ±µ0

and LB (α) = µ1; the integrability condition of this system of first order partial dif-
ferential equations gives (2.18). Conversely, construct α as a solution of the system
LA (α) = ±µ0 and LB (α) = µ1, whose solvability is guaranteed by the integrability
condition given by (2.18). Then by (2.15) we get that the resulting EH-frame (Ã, B̃)
is commutative. ■

Notice that when proving Proposition 2.4 we have shown that the Gaussian
curvature κ± of the metric g± is given by the left hand side of (2.18). Moreover
relation (2.15) implies that κ± is invariant under reparametrisations w = w̃+α and
is therefore an equivariant of the feedback transformations of the system ΞEH.

Remark. Since we have κ± = ϕ∗κ̃± under feedback transformations, an interesting
generalisation of the above proposition is a description of elliptic/hyperbolic systems
having a constant Gaussian curvature κ±. A simple analysis can be performed using
the prenormal forms ΞpnEH and is presented in the sequel. Consider a prenormal
form ΞpnEH for which we have the EH-frame (A,B) =

(
r ∂
∂z
, r ∂

∂y

)
and the associated

structure functions µ0 = − ∂r
∂y

and µ1 =
∂r
∂z

. The Gaussian curvature κ± of the metric
g± = 1

r2
(dz2 ± dy2) is given by

±∆±(ln(r)) = κ±,(2.19)

where ∆± = r2
(
∂2

∂z2
± ∂2

∂y2

)
is the Laplace-Beltrami operator associated to that

metric. If κ± is constant, then (2.19) is called the Liouville equation and, in the
elliptic and hyperbolic cases, it admits solutions described as follows. In the elliptic
case, introduce the new variables (x, x̄) = (z + iy, z − iy) and for the new unknown
function λ = 1

r2
we obtain the equation ∂2

∂x∂x̄
ln(λ) = −2κ+λ. Following [Hen93]

and [PP17], solutions of that equation are λ =
r′1(x)r1

′(x̄)

(1+κ+r1(x)r1(x))
2 , where r1(x) is any

holomorphic function satisfying r′1(x0) ̸= 0. These solutions yield all prenormal
forms ΞpnE with constant curvature κ+ to be given by r(x) = rE(z, y), where

rE(z, y)
2 =

(1 + κ+r1(z + iy)r1(z − iy))2

r′1(z + iy)r1
′(z − iy)

.

In the hyperbolic case, introduce coordinates (z̃, ỹ) = (z + y, z − y) and the new
unknown function λ = 1

r2
so that (2.19) becomes now ∂2

∂z̃∂ỹ
ln(λ) = 2κ−λ. Adapting

[Lio53, formula (3)], we obtain the general solution λ =
r′1(z̃)r

′
2(ỹ)

(1−κ−r1(z̃)r2(ỹ))2
, where r1

and r2 are any smooth functions satisfying r′1(z̃0)r′2(ỹ0) > 0. These solutions give
r(x) = rH(z, y) for all prenormal forms ΞpnH with constant curvature κ−, where

rH(z, y)
2 =

(1− κ−r1(z + y)r2(z − y))2

r′1(z + y)r′2(z − y)
.

◆
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In the following proposition, we give first a classification of flat elliptic/hyperbolic
systems, second we characterise those without functional parameters, and third we
provide a canonical form for the latter class. Recall that γ= (γ1,∓γ0) and that
for flat elliptic/hyperbolic systems Ξ′

EH we have (γ0, γ1) = (c0, c1) so all statements
of the proposition below are actually expressed in terms of structure functions.
From now on, we will consider the full group of feedback transformations consisting
of x̃ = ϕ(x) and w = ±w̃ + α(x). The additional transformation w = −w̃ + α
implies (Ã, B̃) = (A,B) ¯̄REH(±α) and the corresponding structure functions change
(compare (2.15)) by

(µ̃0, µ̃1) = −(µ0 ∓ LA (α) , µ1 − LB (α)) ¯̄REH(α) and γ̃ = γ ¯̄REH(α),(2.15’)

where ¯̄RE(α) =

(
cos(α) sin(α)
sin(α) − cos(α)

)
and ¯̄RH(α) =

(
cosh(α) sinh(α)
− sinh(α) − cosh(α)

)
.

Proposition 2.5 (Classification of flat elliptic/hyperbolic systems).

(i) Two flat elliptic systems Ξ′
E and Ξ̃′

E, resp. two flat hyperbolic systems Ξ′
H and

Ξ̃′
H , are locally equivalent around x0 = 0 ∈ R2 if and only if there exists a

constant α ∈ R satisfying

REH(±α)−1C(x) = C̃
(
REH(±α)−1x

)
,(2.20)

where REH stands for either R̄EH or ¯̄REH.

(ii) An elliptic/hyperbolic system ΞEH is locally equivalent to Ξ′
EH with (c0, c1) ∈ R2

if and only if one of the equivalent conditions of Proposition 2.4 holds and,
additionally,

LA (γ) + γµ0 = 0, LB (γ)± γµ1 = 0.(2.21)

(iii) A flat elliptic system Ξ′
E with (c0, c1) ∈ R2 is always feedback equivalent, locally

around x0 = 0 ∈ R2, to the canonical form

ΞΓE
E :

{
ż = cos(w) +

√
ΓE

ẏ = sin(w)
,

where ΓE = (c0)
2 + (c1)

2 is an invariant.

(iv) A flat hyperbolic system Ξ′
H with (c0, c1) ∈ R2 is always feedback equivalent,

locally around x0 = 0 ∈ R2, to one of the following canonical form

ΞΓH ,ε
H :

{
ż = cosh(w) + ε

√
ΓH

ẏ = sinh(w)
, or Ξ−ΓH

H :

{
ż = cosh(w)
ẏ = sinh(w) +

√
−ΓH

,

or Ξ0,ε
H :

{
ż = cosh(w) + ε
ẏ = sinh(w) + 1

, or Ξ0,0
H :

{
ż = cosh(w)
ẏ = sinh(w)

,

where ΓH = (c0)
2−(c1)2 and satisfies ΓH > 0 for the first form, ΓH < 0 for the

second form, and ΓH = 0 for the third and fourth ones, where ε = sgn (c0) =
±1. Moreover (ΓH , ε) is a complete invariant.

43



Remark. In statement (iv), notice that there are two orbits of the local action of
feedback transformations group for ΓH > 0, corresponding to sgn (c0) = ε = ±1,
one orbit for ΓH < 0, and three orbits for ΓH = 0 corresponding, respectively, to
sgn (c0) = ε = ±1 or (c0, c1) = (0, 0). The invariant ε = ±1 corresponds to the
parametrisation of one of two branches of the hyperbola (ż −

√
ΓH)

2 − ẏ2 = 1. ◆

Proof.

(i) Consider, locally around 0 ∈ R2, two equivalent flat elliptic/hyperbolic sys-
tems Ξ′

EH and Ξ̃′
EH given by structure functions (µ0, µ1, γ0, γ1) = (0, 0, c0, c1)

and (µ̃0, µ̃1, γ̃0, γ̃1) = (0, 0, c̃0, c̃1), respectively. Since they both have a com-
mutative EH-frame, by (2.15) (and (2.15’)) they differ by a reparametrisa-
tion w = ±w̃ + α satisfying LA (α) = LB (α) = 0 and thus α ∈ R. Ap-
plying this reparametrisation together with a diffeomorphism ϕ satisfying
ϕ∗ = REH(±α)−1, that is x̃ = ϕ(x) = REH(±α)−1x, transforms Ξ′

EH into
Ξ̃′

EH if and only if (
c̃0(x̃)
c̃1(x̃)

)
= REH(±α)−1

(
c0(x)
c1(x)

)
.

(ii) Assume that ΞEH, given by structure functions (µ0, µ1, γ0, γ1), is equivalent
via x̃ = ϕ(x) and w = w̃+ α to Ξ′

EH with structure functions (µ̃0, µ̃1, γ̃0, γ̃1) =
(0, 0, c0, c1), where (c0, c1) ∈ R2. Necessity of one (and thus any) of the con-
ditions of Proposition 2.4 is clear, and by (2.15) and (2.15’) we have first,
LA (α) = ±µ0 and LB (α) = µ1 and second, γREH(α) = γ̃ = (c0, c1). By
differentiating this last relation along A and B we obtain

LA (γ)REH(α) + γLA (REH(α)) =

LA (γ)REH(α) + γ

(
±LA (α)

(
0 ∓1
1 0

)
REH(α)

)
= LA (γ) + γµ0 = 0,

and

LB (γ) REH(α) + γLB (REH(α)) =

LB (γ)REH(α) + γ

(
±LB (α)

(
0 ∓1
1 0

)
REH(α)

)
= LB (γ)± γµ1 = 0,

thus proving that condition (2.21) is necessary. Conversely, assume that (2.18)
and (2.21) hold for ΞEH. By Proposition 2.4, ΞEH is equivalent to Ξ′

EH with
a commutative EH-frame, and applying (2.21) to the latter we get LA (γ) =
LB (γ) = 0 and, therefore, we have (c0, c1) ∈ R2.

(iii) Consider a flat elliptic system Ξ′
E with (c0, c1) ∈ R2, then relation (2.20) reads(

c̃0
c̃1

)
=

(
cos(α) sin(α)
∓ sin(α) ± cos(α)

)(
c0
c1

)
.(2.20’)

Take α as a solution of − sin(α)c0 + cos(α)c1 = 0, then we have c̃1 = 0 and
c̃0 = ±

√
ΓE, with ΓE = (c0)

2 + (c1)
2. If necessary, apply α = π to send

(c̃0, c̃1) = (−
√
ΓE, 0) into (

√
ΓE, 0). The proof that ΞΓE

E is equivalent to Ξ̃ΓE
E

if and only if ΓE = Γ̃E is immediate from (2.20’).
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(iv) Consider a flat hyperbolic system Ξ′
H with (c0, c1) ∈ R2 and denote ΓH =

(c0)
2 − (c1)

2, then relation (2.20) reads(
c̃0
c̃1

)
=

(
cosh(α) − sinh(α)
∓ sinh(α) ± cosh(α)

)(
c0
c1

)
.(2.20”)

We consider four cases. First, assume that ΓH > 0, that is c0 ̸= 0 and
−1 < c1

c0
< 1, and take α as a solution of tanh(α) = c1

c0
. Applying the

reparametrisation w = w̃ + α yields c̃1 = 0 and c̃0 = sgn (c0)
√
ΓH , namely,

canonical form ΞΓH ,ε
H . Second, assume that ΓH < 0, that is c1 ̸= 0 and

−1 < c0
c1
< 1, and take α as a solution of tanh(α) = c0

c1
, which leads to c̃0 = 0

and c̃1 = sgn (c1)
√
−ΓH . If sgn (c1) = −1, then by applying (2.20”) with α = 0

and the bottom sign, we can always normalise sgn (c1) yielding canonical form
Ξ−ΓH
H . Third, assume that ΓH = 0 and c0 = 0 thus c1 = 0 and therefore we

immediately have the canonical form Ξ0,0
H . Fourth, and finally, assume that

ΓH = 0 and c0 ̸= 0, thus c1 = εc0 with ε = ±1. If necessary, apply (2.20”)
with α = 0 and the bottom sign to obtain c1 > 0. Take α = ε ln c1 and apply
(2.20”) with the upper sign to obtain c̃1 = 1 and c̃0 = ε. To show that (ΓH , ε)
is a complete invariant is trivial by applying (2.20”) to the canonical forms
ΞΓH ,ε
H , Ξ−ΓH

H , Ξ0,ε
H , and Ξ0,0

H .

■

The following corollary gives the corresponding normal and canonical forms for
elliptic and hyperbolic submanifolds. To this end, consider a conic submanifold
Sq given by the triple (g, ω, h), where g is a (pseudo-)Riemanian metric, ω is a
differential one form, and h is a function, and assume that Sq satisfies ∆1 ̸= 0 and
∆2 ̸= 0 (see the paragraph before Lemma 2.1 for the definition of ∆1 and ∆2). The
triple Sq is given up to the conformal equivalence (δg, δω, δh), with δ(x) ̸= 0. We
show how to construct (in a canonical way) a normalised triple on which we can test
the conditions of the corollary below. To this aim, define the vector field v = ω♯,
where ♯ is the canonical musical isomorphism associated to the metric g (see e.g.
[Lee13, p. 192-193], for a definition). We claim that the function ϱ := g(v, v) − h
satisfies ϱ(x) ̸= 0. Indeed, for g = (gij) and ω = (ω1, ω2) we have

∆1 = ∆2h+ 2g12ω1ω2 − g11(ω2)
2 − g22(ω1)

2 = ∆2h−∆2g(v, v) ̸= 0.

Finally, the normalised triple is given by SEH = (gEH, ωEH, hEH) =
(

1
ϱ
g, 1

ϱ
ω, 1

ϱ
h
)

and
is characterised by the normalising condition gEH(v, v)− hEH ≡ 1. Notice that v is
not affected by the conformal transformations.

In the following, we denote ΓEH := gEH(v, v) (see a justification below Corol-
lary 2.3), we call Sq a flat submanifold if the metric gEH is flat, and we call Sq a
strongly flat submanifold if in well chosen coordinates the polynomial Sq, of degree
2 with respect to ẋ, has constant coefficients (so, in particular, gEH is flat).

Corollary 2.3 (Normal and canonical forms of elliptic/hyperbolic submanifolds).
For an elliptic/hyperbolic submanifold given in terms of the normalised triple SEH =
(gEH, ωEH, hEH), the following statements hold:

(i) Sq is flat if and only if the Gaussian curvature of gEH vanishes.
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(ii) Sq is strongly flat if and only if the Gaussian curvature of gEH vanishes and,
additionally,

LAωEH = LBωEH = 0,(2.22)

where L denotes the Lie derivative of differential forms, and (A,B) is any
(pseudo-)orthonormal frame associated to gEH, i.e. gEH(A,A) = 1, gEH(B,B) =
±1, and gEH(A,B) = 0.

(iii) An elliptic strongly flat submanifold Sq always admits the following canonical
form

SΓE
E = {(ż −

√
ΓE)

2 + ẏ2 = 1} =
(
dz2 + dy2,−

√
ΓEdz,ΓE − 1

)
(iv) A hyperbolic strongly flat submanifold Sq always admits one of the following

canonical forms

SΓH
H =

{
(ż −

√
ΓH)

2 − (ẏ)2 = 1
}

=
(
dz2 − dy2,−

√
ΓHdz,ΓH − 1

)
,

S−ΓH
H =

{
(ż)2 − (ẏ −

√
−ΓH)2 = 1

}
=
(
dz2 − dy2,

√
−ΓHdy,−ΓH − 1

)
,

S0,0
H = {(ż)2 − (ẏ)2 = 1} = (dz2 − dy2, 0,−1) ,
S0,1
H = {(ż − 1)2 − (ẏ − 1)2 = 1} = (dz2 − dy2,−dz + dy,−1) ,

Notice that flat submanifolds correspond to flat elliptic/hyperbolic systems Ξ′
EH

and that strongly flat submanifolds correspond to the forms of Proposition 2.5.
When SEH is strongly flat, then the invariant ΓEH has the same value as in state-
ments (iii) and (iv) of Proposition 2.5, which justifies the same notation. Precisely,
the canonical form SΓE

E describes, in each fiber TxX , a circle of constant radius
1 translated along the ∂

∂z
-direction, and each canonical form SΓE

E corresponds to
the canonical form ΞΓE

E . Observe also that the canonical forms SH correspond to
the canonical form of ΞH , namely, SΓH

H corresponds to ΞΓH ,ε
H , S−ΓH

H corresponds to
Ξ−ΓH ,
H , S0,0

H corresponds to Ξ0,0
H , and S0,1

H corresponds to Ξ0,ε
H . In the canonical forms

of SH , the invariant ε does not show up (in the case ΓH > 0 or ΓH = 0 and c0 ̸= 0)
because the same equation of SH describes both branches of the hyperbola.

Proof.

(i) It is a classical result in (pseudo-)Riemannian geometry, see e.g. [Spi99a,
Theorem 13, p. 193] or [Lee06, Theorem 7.3] for the elliptic case and [KN63,
Theorem 9.1] for the hyperbolic one.

(ii) If Sq is strongly flat, then by definition in some coordinate system we have
g = (gij) and ω = (ω1, ω2), with gij ∈ R and ωi ∈ R. Thus in those co-
ordinates a (pseudo-)orthonormal frame (A,B) has also constant coefficients.
Therefore, in that coordinate system, g is flat and condition (2.22) holds but
those two conditions do not depend on the choice of coordinates and thus
hold in any coordinate system. Conversely we show that Sq, satisfying gEH

is flat and (2.22), is strongly flat. The metric gEH is flat, therefore in a well-
chosen coordinate system, we have gEH = dz2 ± dy2. Condition (2.22) implies
that ω = ω1dz + ω2dy with ωi ∈ R. Finally, by the definition of v, we im-
mediately conclude that v has also constant coefficients and therefore, since
hEH = gEH(v, v)− 1, we have hEH ∈ R.
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(iii) In a suitable coordinate system (z, y), a strongly flat elliptic submanifold can
be written S ′

E = {(ż−c0)2+(ẏ−c1)2 = 1} with (c0, c1) ∈ R2 for which we have
ΓE = (c0)

2 + (c1)
2. If ΓE = 0, then (c0, c1) = (0, 0) and we have the desired

form SΓE=0
E . If (c0, c1) ̸= (0, 0), then introduce coordinates (z, y) = ϕ(z̃, ỹ)

whose tangent map is ϕ∗ =

(
c0√
ΓE
− c1√

ΓE
c1√
ΓE

c0√
ΓE

)
and we have

(
c0√
ΓE

˙̃z − c1√
ΓE

˙̃y − c0
)2

+

(
c1√
ΓE

˙̃z +
c0√
ΓE

˙̃y − c1
)2

= 1,

( ˙̃z)2 + ( ˙̃y)2 + ΓE − 2
(c0)

2 ˙̃z√
ΓE
− 2

(c1)
2 ˙̃z√

ΓE
+ 2

(c0)(c1) ˙̃y√
ΓE

− 2
(c0)(c1) ˙̃y√

ΓE
= 1,

( ˙̃z)2 + ( ˙̃y)2 + ΓE − 2
√

ΓE ˙̃z = 1, implying ( ˙̃z −
√

ΓE)
2 + ( ˙̃y)2 = 1.

(iv) In a suitable coordinate system (z, y), a strongly flat hyperbolic submanifold
can be written as S ′

H = {(ż − c0)
2 − (ẏ − c1)

2 = 1} with (c0, c1) ∈ R2 and
for which we have ΓH = (c0)

2 − (c1)
2. If ΓH > 0, introduce coordinates

(z, y) = ϕ(z̃, ỹ) whose tangent map is ϕ∗ =

(
c0√
ΓH

c1√
ΓH

c1√
ΓH

c0√
ΓH

)
, and we have

(
c0√
ΓH

˙̃z +
c1√
ΓH

˙̃y − c0
)2

−
(

c1√
ΓH

˙̃z +
c0√
ΓH

˙̃y − c1
)2

= 1,

( ˙̃z)2 − ( ˙̃y)2 − 2
√

ΓH ˙̃z + ΓH = 1, implying ( ˙̃z −
√

ΓH)
2 − ( ˙̃y)2 = 1.

If ΓH < 0, introduce coordinates (z, y) = ϕ(z̃, ỹ) whose tangent map is ϕ∗ =(
c1√
−ΓH

c0√
−ΓH

c0√
−ΓH

c1√
−ΓH

)
, and we have

(
c1√
−ΓH

˙̃z +
c0√
−ΓH

˙̃y − c0
)2

−
(

c0√
−ΓH

˙̃z +
c1√
−ΓH

˙̃y − c1
)2

= 1,

( ˙̃z)2 − ( ˙̃y)2 + 2
√
−ΓH ˙̃y + ΓH = 1, implying ( ˙̃z)2 − ( ˙̃y −

√
ΓH)

2 = 1.

Finally, if ΓH = 0, we distinguish two cases. If c0 = 0, then c1 = 0 and
there is nothing to do to obtain S0,0

H , otherwise, denote ε = ±1 such that
c0 = εc1, and take the diffeomorphism (z, y) = ϕ(z̃, ỹ) whose tangent map is

ϕ∗ =
1
2c1

(
ε(1 + (c1)

2) −ε(1 + (c1)
2)

(−1 + (c1)
2) 1 + (c1)

2

)
and we have

(
ε(1 + (c1)

2)

2c1
˙̃z +

ε(−1 + (c1)
2)

2c1
˙̃y − εc1

)2

−
(
−1 + (c1)

2

2c1
˙̃z +

1 + (c1)
2

2c1
˙̃y − c1

)2

= 1,

( ˙̃z)2 − ( ˙̃y)2 − 2z̃ + 2 ˙̃y = 1, implying ( ˙̃z − 1)2 − ( ˙̃y − 1)2 = 1.

■

To summarise the results of this subsection, we started from a general ellip-
tic/hyperbolic system ΞEH, which depends on three smooth functions, then with the
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Gaussian curvature, associated to the EH-frame (A,B), being zero we reduced the
systems to the flat elliptic/hyperbolic systems Ξ′

EH depending on two smooth func-
tions only. And finally, we gave conditions characterising the flat systems without
functional parameters. In the elliptic case, equivalent systems correspond to the
circles ΓE = (c0)

2 + (c1)
2 = const., and their canonical forms are parametrised by

a closed half-line of real constants. On the other hand, in the hyperbolic case the
structure is richer because equivalent systems correspond to connected branches of
the hyperbolas ΓH = (c0)

2 − (c1)
2 = const.; two connected components for ΓH > 0,

one for ΓH < 0, and three for ΓH = 0. Thus canonical forms of hyperbolic systems
are parametrised by a real line of constants (the value of ΓH) and by a discrete
invariant ε = ±1 (if ΓH > 0 or ΓH = 0 and c0 ̸= 0). We also obtained a similar
characterisation of flat and strongly flat elliptic/hyperbolic submanifolds; the de-
rived classification of those strongly flat submanifolds is similar to the one of their
parametrisations. The only notable difference shows up in some cases of hyper-
bolic submanifolds, where we can have two non-equivalent parametrisations of the
two branches of an hyperbola whereas for the hyperbolic submanifold there is no
distinction between the branches.

3.2 Classification of parabolic systems

We now turn to the classification of parabolic systems which is expected to be dif-
ferent from that of elliptic and hyperbolic systems because the allowed reparametri-
sations depend on 2 smooth functions (α, β), see Proposition 2.2. As in the el-
liptic/hyperbolic case, we introduce the structure functions (µ0, µ1, γ0, γ1) uniquely
defined for any P -frame (A,B) by [A,B] = µ0A+ µ1B, and C = γ0A+ γ1B. By a
direct computation, we see that under reparametrisations those structure functions
are transformed by

γ̃0 = 1
β2 (γ0 − 2αγ1 − α2) , γ̃1 =

1
β
(γ1 + α) ,(2.23)

µ̃0 = βµ0 − 2αLA (β) + 2βLA (α)− 2LB (β)− 2α (LA (β) + βµ1) ,
µ̃1 = β2µ1 + βLA (β) .

(2.24)

There are two main questions that we will answer. First, when does a commutative
P -frame (Ã, B̃) exist (i.e. µ̃0 = µ̃1 = 0)? Second, provided that a P -frame (A,B)
has been normalised, how can we additionally simplify C? Contrary to the elliptic
and hyperbolic cases the answer to the first question is always positive without any
additional assumption, as assured by the next result.

Proposition 2.6 (Existence of a commutative P-frame).

(i) For any P -frame (A,B) there exists a reparametrisation (α, β) such that (Ã, B̃)
is a commutative P -frame.

(ii) If (A,B) is a commutative P -frame, then (Ã, B̃) is also a commutative P -
frame if and only if the reparametrisation (α, β) satisfies

LA (β) = 0 and
1

β
LB (β) = LA (α) .(2.25)

Proof.
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(i) Consider a P -frame (A,B) whose structure functions are (µ0, µ1). Apply a
reparametrisation (α, β), β ̸= 0, given by a solution of the following equations

LA (β) = −βµ1, and LA (α) + αµ1 =
1

2β
(2LB (β)− βµ0) .

Notice that to ensure β ̸= 0, we may actually solve LA (ln β) = −µ1. Then,
formula (2.24) implies that the structure functions of the new P -frame (Ã, B̃)
satisfy µ̃0 = µ̃1 = 0. Therefore, (Ã, B̃) is a commutative P -frame.

(ii) Using relation (2.24) with µi = µ̃i = 0 (for i = 0, 1), we see that all reparametri-
sations (α, β) have to satisfy relation (2.25). Conversely, if (A,B) is a commu-
tative P -frame (µ0 = µ1 = 0) and (α, β) is any solution of (2.25) (with β ̸= 0),
then by (2.24) we see that µ̃0 = µ̃1 = 0.

■

Moreover, statement (i) of the above proposition gives the following prenormal forms
for parabolic systems ΞP .

Corollary 2.4 (Prenormal forms of ΞP ). A parabolic system ΞP is always feedback
equivalent to the following prenormal forms:

Ξ′
P :

{
ż = w2 + c0(x)
ẏ = w + c1(x)

, Ξ′′
P :

{
ż = w2 + b(x)w + Γ(x)
ẏ = w

,

whose structure functions are (µ′
0, µ

′
1, γ

′
0, γ

′
1) = (0, 0, c0, c1), and (µ′′

0, µ
′′
1, γ

′′
0 , γ

′′
1 ) =(

∂b
∂z
, 0,Γ, 0

)
, respectively.

Remark. Since any parabolic system can be brought into Ξ′
P (and into Ξ′′

P ), it fol-
lows that all parabolic systems are parametrised by (roughly) two functions of two
variables (c0 and c1, or, equivalently, b and Γ). This is in contrast with elliptic/hy-
perbolic systems ΞEH parametrised by three functions of two variables (compare
Proposition 2.3). ◆

Proof. Apply to ΞP a reparametrisation (α, β) transforming its P -frame into a com-
mutative P -frame (Ã, B̃) and introduce coordinates (z, y) such that Ã = ∂

∂z
and

B̃ = ∂
∂y

. In this system of coordinates, ΞP takes the form Ξ′
P . Then apply to Ξ′

P

the reparametrisation w̃ = w + c1(x) to obtain the form Ξ′′
P with b = −2c1 and

Γ = c0 + (c1)
2. The computation of structure functions is straightforward. ■

Notice that the normal forms Ξ′
P and Ξ′′

P are related by the reparametrisation
w̃ = w + c1(x). The function Γ will be of special importance in the remaining part
of this section, and in any P -frame (A,B) we define it by setting Γ = γ0 + (γ1)

2.
Clearly, diffeomorphisms act on Γ by conjugation and reparametrisations (α, β) act
by β2Γ̃ = Γ (as it can be computed from formula (2.23)).

The remaining part of this section shows how to additionally normalise Ξ′
P and

Ξ′′
P while preserving the commutativity of the P -frame (A,B). Although there

always exists a commutative quadratic frame (A,B), its explicit construction can
be complicated, as it requires to solve a set of first order PDEs. For this reason, we
will state our results for a general P -frame (A,B).
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Theorem 2.4 (Normalisation of parabolic systems). Let ΞP = (A,B,C) be a
parabolic control system with structure functions (µ0, µ1, γ0, γ1) defined by [A,B] =
µ0A+ µ1B and C = γ0A+ γ1B. Then the following statements hold.

(i) ΞP is locally feedback equivalent to Ξ′
P with c1 ≡ 0 if and only if

L2
A (γ1) + γ1

(
LA (µ1)− (µ1)

2
)
=
µ0µ1

2
+

1

2
LA (µ0) + LB (µ1) .(2.26)

(ii) ΞP is locally feedback equivalent to Ξ′
P with (c0, c1) ∈ R2, satisfying c0+(c1)

2 ∈
R∗, if and only if Γ ̸= 0 and it holds

LA (Γ) + 2µ1Γ = 0, and LB (Γ) + 2ΓLA (γ1) = Γµ0 − 2Γγ1µ1.(2.27)

Moreover, in this case we can always normalise c0 = ±1 and c1 = 0.

(iii) ΞP is locally feedback equivalent to Ξ′
P with c0 ≡ c1 ≡ 0 if and only if (2.26)

holds and, additionally, Γ ≡ 0.

Notice that statements (i), (ii), and (iii) of the above theorem characterise, respec-
tively, the following normal forms

Ξ′′′
P :

{
ż = w2 + c0(x)
ẏ = w

, Ξ±
P :

{
ż = w2 ± 1
ẏ = w

, and Ξ0
P :

{
ż = w2

ẏ = w
.

Equivalent statements can be made to obtain special structures of the second prenor-
mal form Ξ′′

P , e.g. the normal form Ξ′′′
P corresponds to Ξ′′

P with b ≡ 0 and thus
describes the intersection of the prenormal forms Ξ′

P and Ξ′′
P . The forms Ξ±

P and
Ξ0
P are then special cases of Ξ′′′

P where c0 is constant. The difference between the
normal form Ξ±

P and Ξ0
P lies in the existence or not of an equilibrium point: the

control w = 0 defines an equilibrium of Ξ0
P while there are no equilibria for Ξ±

P .

Proof.

(i) Sufficiency. Consider a parabolic system ΞP = (A,B,C) and assume that
relation (2.26) holds. Using Proposition 2.6, apply (α, β) such that (Ã, B̃) is
a commutative P -frame. For this new P -frame, condition (2.26) now reads
L2
Ã
(γ̃1) = 0. Introduce the new reparametrisation α = −γ̃1 and β defined

by LÃ (β) = 0 and LB̃ (β) = βLÃ (α). The equations, rewritten for ln(β),
admit solutions since the integrability condition, L2

Ã
(α) = 0 is fulfilled. The

constructed reparametrisation (α, β) satisfies (2.25) and thus preserves the
commutativity of (Ã, B̃). By applying (α, β) to (Ã, B̃, C̃), we obtain (Â, B̂, Ĉ)

satisfying
[
Â, B̂

]
= 0 and γ̂1 = γ̃1+α

β
= 0, by relation (2.23). By adopting

coordinates (z, y) such that (Â, B̂) =
(
∂
∂z
, ∂
∂y

)
we obtain the system Ξ′

P with
c1 = γ̂1 = 0.

(i) Necessity. Assume that ΞP = (A,B,C) is feedback equivalent to Ξ̃P of the
form Ξ′

P with c1 ≡ 0, via ϕ and (α, β). Then for Ξ̃P we have µ̃0 = µ̃1 = γ̃1 = 0.
First, by (2.23) we obtain α = −γ1 and by (2.24) we obtain the following
relations { 1

β
LA (β) = −µ1

1
β
LB (β) = 1

2
(µ0 − 2γ1µ1 − 2LA (γ1))

.
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Therefore, by computing the integrability condition of the latter system, we
have

LA (LB (ln β))− LB (LA (ln β)) = L[A,B] (ln β) = µ0LA (ln β) + µ1LB (ln β) ,

which implies that

1

2
LA (µ0)− γ1LA (µ1)− L2

A (γ1) − µ1LA (γ1) + LB (µ1) =

− 1

2
µ0µ1 − γ1(µ1)

2 − µ1LA (γ1) .

Hence, we conclude relation (2.26).
(ii) Sufficiency. Consider a parabolic system ΞP = (A,B,C) and assume that

Γ = γ0 + (γ1)
2 ̸= 0 and that equation (2.27) holds. Using Proposition 2.6

apply a reparametrisation (α, β) such that (Ã, B̃) is a commutative P -frame,
and thus, for this new P -frame, condition (2.27) now reads

LÃ

(
Γ̃
)
= 0 and LB̃

(
Γ̃
)
+ 2Γ̃LÃ (γ̃1) = 0.

Derivating the second relation along Ã and using the commutativity of the
Lie derivatives LÃ () and LB̃ (), i.e. LÃ (LB̃ (·)) = LB̃ (LÃ (·)), together with
Γ̃ ̸= 0 (recall that β2Γ̃ = Γ), one can see that L2

Ã
(γ̃1) = 0. Introduce a

new reparametrisation (α, β) defined by α = −γ̃1, LÃ (β) = 0 and LB̃ (β) =
βLÃ (α). The equations, rewritten for ln(β), admit solutions since the integra-
bility condition, L2

Ã
(α) = 0, is fulfilled. The so constructed reparametrisation

satisfies (2.25) and gives a commutative P -frame (Â, B̂), for which we obtain
µ̂0 = µ̂1 = γ̂1 = 0. Therefore, we have Γ̂ = γ̂0 and condition (2.27) now reads
LÂ

(
Γ̂
)
= LB̂

(
Γ̂
)
= 0, implying that Γ̂ is constant (we still have Γ̂ ̸= 0). In-

troduce coordinates (ẑ, ŷ) such that Â = ∂
∂ẑ

and B̂ = ∂
∂ŷ

, in which the system
takes the form {

˙̂z = ŵ2 + c0
˙̂y = ŵ

,

with c0 ∈ R∗. Finally, defining new coordinates (z, y) and reparametrising by,
respectively, z = ẑ

|c0| , y = ŷ√
|c0|

, and w = ŵ√
|c0|

, yields the normal form Ξ±
P .

(ii) Necessity. Assume that ΞP , whose structure functions are (µ0, µ1, γ0, γ1) and
Γ = γ0 + γ21 , is feedback equivalent, via ϕ and (α, β), to Ξ̃P of the form Ξ′

P

with (c0, c1) ∈ R2 satisfying c0 + c21 ̸= 0. For Ξ̃P we have µ̃0 = µ̃1 = 0 and
γ̃0 = c0, γ̃1 = c1, hence Γ̃ = c0 + c21 ̸= 0 implying Γ ̸= 0 since β2Γ̃ = Γ. By
(2.24) we obtain the following relations{ 1

β
LA (β) = −µ1

1
β
LB (β) = 1

2
(µ0 − 2γ1µ1 − 2LA (γ1))

,

and differentiating Γ = β2Γ̃ along A we deduce

LA (Γ) = LA

(
β2Γ̃

)
= 2Γ̃βLA (β) = −2Γ̃β2µ1 = −2µ1Γ,

giving the first relation of (2.27). A similar computation, by taking the deriva-
tive of Γ = β2Γ̃ along B, implies the second relation of (2.27).
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(iii) The proof of that statement is a special case of the proof of statement (i) with
the additional condition Γ ≡ 0.

(iii) Sufficiency. Using the proof of the sufficiency of statement (i), we bring the
system ΞP into Ξ′′′

P . For this form we have Γ = c0(x), hence c0(x) ≡ 0 by
assumption and we obtain the normal form Ξ0

P .
(iii) Necessity. Assume that ΞP , whose structure functions are (µ0, µ1, γ0, γ1) and

Γ = γ0 + γ21 , is feedback equivalent, via ϕ and (α, β), to Ξ̃P of the form Ξ0
P

(which is, actually, Ξ′
P with c0 ≡ c1 ≡ 0). For that system we have µ̃0 = µ̃1 = 0

and Γ̃ ≡ 0 and since Γ is transformed under (α, β) by β2Γ̃ = Γ, we see the
necessity of Γ ≡ 0. The necessity of (2.26) is deduced from the necessity part
of statement (i).

■

Observe that statement (ii) does not explicitly require condition (2.26), while
the normal form Ξ±

P satisfies c1 ≡ 0 and hence that condition has to be hidden in
(2.27). Indeed, this can be observed by differentiating Γ along [A,B] and using the
constraint (2.27), which after a short computation gives condition (2.26).

Remark (Interpretation of the conditions). We now give a tangible interpretation of
our conditions. To this end, consider the system Ξ′

P for which we have µ0 = µ1 = 0,
γ0 = c0(x), γ1 = c1(x) and thus Γ(x) = c0(x) + (c1(x))

2. First, condition (2.26)
implies ∂2c1

∂z2
= 0, that is, c1(x) is affine with respect to z, namely, c1 = c01(y)z+c

1
1(y),

and thus, Γ(x) is given by c0(x)+ (c01(y)z+ c11(y))
2. This means that if a system Ξ′

P

is feedback equivalent to Ξ′′′
P , then it is parametrised by 3 smooth functions, two of

them being functions of y only, and it has the following form{
ż = w2 + Γ(x)− (c01(y)z + c11(y))

2

ẏ = w + c01(y)z + c11(y)
.

By additionally applying the first equation of (2.27), we obtain ∂c0
∂z

+ 2c01(y)
2z +

2c01(y)c
1
1(y) = 0 and thus c0(x) is a polynomial of degree 2 in z, related to c1(x)

by c0(x) = −(c1(x))2 + c2(y), for an arbitrary smooth function c2(y). We now
have Γ = Γ(y) = c2(y) and we use the second equation of (2.27). We thus obtain
Γ(y) = G exp

(
−2
∫
c11(y) dy

)
, with G ∈ R. To summarise, any system Ξ′

P satisfying
(2.26) and (2.27) is parametrised by two arbitrary smooth functions of y and a
constant G ∈ R and is expressed by the form{

ż = w2 + Γ(y)− (c01(y)z + c11(y))
2

ẏ = w + c01(y)z + c11(y)
,

where Γ(y) = G exp
(
−2
∫
c11(y) dy

)
. Finally, Ξ′

P (satisfying (2.26) and (2.27)) is
feedback equivalent to Ξ0

P if and only if G = 0, and is feedback equivalent to Ξ+
P ,

respectively to Ξ−
P , if G > 0, resp. G < 0. The distinction between the three normal

forms comes from the sign of Γ, which is thus a discrete invariant (and that sign is
dictated by the value of the constant G) ◆

Adapting the notation of Lemma 2.1, recall that a parabolic submanifold SP is
given by an equation of the form ż = a(x)ẏ2 + b(x)ẏ+ c(x), with a ̸= 0, and is then
represented by the triple of functions (a, b, c). A parametrisation of SP is given by
a system ΞSP

= (A,B,C) with A = a ∂
∂z

, B = b ∂
∂z

+ ∂
∂y

, and C = c ∂
∂z

. The following
corollary gives normal forms of SP and describes the underlying geometry.
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Corollary 2.5 (Normalisations of parabolic submanifolds). Consider a parabolic
submanifold SP = (a, b, c) and define the following vector fields A = a ∂

∂z
, B =

b ∂
∂z

+ ∂
∂y

, and C = c ∂
∂z

. Then the following statements hold.

(i) SP is equivalent to S ′′′
P = (1, 0, c(x)), if and only if [A, [A,B]] = 0 or, equiva-

lently,

∂

∂z

[
1

a

(
a
∂b

∂z
− b∂a

∂z
− ∂a

∂y

)]
= 0.(2.28)

(ii) SP is equivalent to S±
P = (1, 0,±1), if and only if C(·) ̸= 0, [A,C] = 0 and

[B,C] = 0 or, equivalently,

c ̸= 0,
∂

∂z

( c
a

)
= 0, c

∂b

∂z
− b∂c

∂z
− ∂c

∂y
= 0.(2.29)

(iii) SP is equivalent to S0
P = (1, 0, 0), if and only if [A, [A,B]] = 0 and C = 0 or,

equivalently, c ≡ 0 and (2.28) holds.

Proof. Each statement is a special case of the previous theorem with the following
structure functions µ0 = 1

a

(
a ∂b
∂z
− b∂a

∂z
− ∂a

∂y

)
, γ0 = c

a
, µ1 = γ1 = 0, and Γ = c

a
. It

is then straightforward to deduce condition (2.28) from (2.26), and condition (2.29)
from (2.27). Then from the explicit form of the vector fields A = a ∂

∂z
, B = b ∂

∂z
+ ∂

∂y
,

and C = c ∂
∂z

it is easy to deduce that (2.28) and (2.29) are equivalent to the
corresponding commutativity conditions. ■

Constant curvature parabolic systems For elliptic and hyperbolic systems, we
saw that the curvature (it was the Gaussian curvature of a well-defined metric there)
plays a crucial role in the existence of a commutative frame. In the parabolic case,
the existence of a commutative frame is guaranteed, thus we want to understand
what it means for parabolic systems to have a vanishing curvature. Since parabolic
systems correspond to degenerated metric tensor, we need some generalisation of
the Riemannian curvature. It turns out that the notion of curvature defined by
Agrachev in [Agr98] coincides (when C ≡ 0) with the Gaussian curvature g± for the
elliptic and hyperbolic systems, as defined in (2.17). Thus it seems natural to use
the curvature notion [Agr98] as curvature of parabolic systems.

In what follows, we compute the curvature† of the prenormal system Ξ′
P by

studying its prolongation Σ′
P given by vector fields

f =

w2 + c0(x)
w + c1(x)

0

 and g =

0
0
1

 .

We follow [AS13, Chapter 23] to compute the curvature κ of Σ′
P which is, by con-

struction, the curvature of Ξ′
P (see the conclusion of [AS13, Chapter 23]). The first

†The computations have been done by hand and verified by the symbolic computing environ-
ment Maple.
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step is to compute, using the Hamiltonian, the singular control of Σ′
P , uniquely given

by

us = −2∂c1
∂z

w2 +

(
∂c0
∂z
− ∂c1
∂y

)
w +

1

2

∂c0
∂y

.

We apply to Σ′
P the feedback transformation f 7→ f s = f + usg and after this

transformation the singular control is zero or, equivalently, we have

[f s, [f s, g]] = −k1g − k2 [f s, g] ,

for some smooth functions k1 and k2. Finally, the curvature is given by the formula

κ = k1 −
1

4
(k2)

2 − 1

2
Lfs (k2)

and leads to the following results. Notice that, contrary to the elliptic/hyperbolic
case where the curvature, defined for classification purposes, was a true (0, 2)-tensor
on a surface, the notion of curvature of control systems used in this paragraph
depends explicitly on the control w (in a polynomial way, see statement (i) below).
Clearly, the curvature κ transforms under a diffeomorphism x̃ = ϕ(x) by κ = ϕ∗κ̃,
therefore systems with constant curvature are of special importance and, below, we
give a complete classification of parabolic systems with constant curvature.

Proposition 2.7 (Characterisation of flat parabolic systems).

(i) For any parabolic system Ξ′
P its curvature κ is a polynomial of degree 3 in w.

(ii) If the curvature κ is constant, then Ξ′
P is feedback equivalent to

ΞκP :

{
ż = w2 + Ez −

(
1
4
E2 + κ

)
y2 + Fy +G

ẏ = w
, around x0 = 0 ∈ R2,

and with (E,F,G) ∈ R3.

(iii) Two systems ΞκP and Ξ̃κ̃P of constant curvature, around x0 = 0 ∈ R2, given by
(κ,E, F,G) and (κ̃, Ẽ, F̃ , G̃), respectively, are feedback equivalent if and only
if

κ = κ̃, E = Ẽ, and (F̃ , G̃) = (K F,K2G), K ∈ R∗.(2.30)

(iv) If κ ∈ R and E ∈ R are fixed, then ΞκP is feedback equivalent around 0 ∈ R2

to one of the following canonical forms:

(a) (F̃ , G̃) = (0, 0) if and only if (F,G) = (0, 0),
(b) (F̃ , G̃) = (0, 1) if and only if F = 0 and G > 0,
(c) (F̃ , G̃) = (0,−1) if and only if F = 0 and G < 0,
(d) (F̃ , G̃) = (1, g), with g ∈ R, if and only if F ̸= 0

Proof.

(i) A direct computation using f s gives the expression of κ:

κ =
∂2c1
∂z2

w3 − 3

(
1

2

(
∂2c0
∂z2

)
+

(
∂c1
∂z

)2
)
w2 + aw + b,

where a and b are functions of x = (z, y).
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(ii) If the curvature κ is constant, then the coefficients multiplying wk, for k =
1, 2, 3, vanishes and the coefficient in front of w0 is constant. First, the co-
efficient in front of w3 gives ∂2c1

∂z2
≡ 0, thus by Theorem 2.4 statement (i)

the system Ξ′
P is feedback equivalent to Ξ′′′

P (that is, Ξ′
P with c1 ≡ 0). The

structure functions of Ξ′′′
P are (0, 0, c0, 0) so the expression of its curvature is

κ = −3

2

∂2c0
∂z2

w2 − 3

2

∂2c0
∂z∂y

w − 1

4

(
∂c0
∂z

)2

− 1

2

∂2c0
∂y2

+
c0
2

∂2c0
∂z2

.

Second, we get ∂c0
∂z2
≡ 0, thus c0 = c10(y)z + c20(y). Third, by ∂2c0

∂z∂y
≡ 0, we

obtain c10 = E ∈ R. And finally using −1
4

(
∂c0
∂z

)2− 1
2
∂2c0
∂y2

= κ ∈ R, equivalently,
2(c20)

′′(y) = −4κ− E2, we obtain

c0(z, y) = Ez −
(
κ+

1

4
E2

)
y2 + Fy +G,

with (E,F,G) ∈ R3.
(iii) We apply to ΞκP a reparametrisation w = βw̃ + α that preserves both the

commutativity of the P -frame
(
∂
∂z
, ∂
∂y

)
and γ1 = 0. Therefore, α ≡ 0 and

β ∈ R∗ (by Proposition 2.6); next, we introduce coordinates (z̃, ỹ) =
(
z
β2 ,

y
β

)
in which we get

Ξ̃κP :

{
˙̃z = w̃2 + Ez̃ −

(
κ+ 1

4
E2
)
ỹ2 + F

β
ỹ + G

β2

ẏ = w̃
.

Now, by identification, we easily deduce relation (2.30) with K = 1
β
.

(iv) Using condition (2.30) we immediately conclude that (F̃ , G̃) = (0, 0) if and
only if (F,G) = (0, 0). If F = 0 and G ̸= 0 then we have F̃ = 0 and choosing
K = 1√

|G|
we get G̃ = sgn (G) = ±1. If F ̸= 0 then choosing K = 1

F
implies

that F̃ = 1 and G̃ = G
F
= g ∈ R.

■

Notice that in the tuple (κ,E, F,G), we can always normalise F to 1 or 0. In the
former case, for each fixed E and κ, we have a real line of systems parametrised by
g ∈ R. In the latter case, for each fixed E and κ, we have only three systems given by
a discrete invariant, namely, the sign of G. In particular, observe that the class flat
parabolic systems (i.e. those with zero curvature) contains the normal forms Ξ±

P and
Ξ0
P given as Ξκ=0

P with (E,F,G) = (0, 0,±1) and (E,F,G) = (0, 0, 0), respectively.
From the last statement of the above proposition, notice that those normal forms,
Ξ±
P and Ξ0

P are the only canonical forms which do not depend on the point (z, y).
Therefore, other systems with zero-curvature still depend on (z, y) and thus are not
trivialisable (as called in [Ser09], when this problem has been investigated).

4 Conclusions and Perspectives

In this chapter, we studied control-nonlinear systems (evolving on a 2-dimensional
manifold and with scalar control) under conic nonholonomic constraints. Those sys-
tems are treated as parametrisations of submanifolds of the tangent bundle, and
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thus all our results can equivalently be given for conic submanifolds of the tangent
bundle under a certain type of equivalence. First, by studying the prolongation of
those nonlinear systems, we gave a complete characterisation of conic submanifolds
and we provided normal forms for systems satisfying that characterisation. Finally,
working within the class of control-nonlinear systems subject to conic nonholonomic
constraint, we exhibited several normal forms, in particular we highlighted a con-
nection between the Gaussian curvature of a well-defined metric and the existence
of a commutative frame for elliptic and hyperbolic systems. Normal forms include
systems without functional parameters.

In future works we will extend our results to higher dimensional quadratic con-
straints, as well as we will study systems on 3-dimensional manifolds subject to a
parabolic-elliptic or parabolic-hyperbolic constraint. Another interesting problem
is to characterise nonlinear systems subject to any algebraic nonholonomic con-
straint. For instance, in order to generalise our results for parabolic systems, one
can study polynomial systems, that is, systems subject to the nonholonomic con-
straint ż −

∑d
i=0 ai(x)ẏ

i = 0.
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2.A Resolution of equation (2.2)

Consider a smooth function f = f(x,w) satisfying

∂3f

∂w
= τ(x)

∂f

∂w
.

We give an explicit form of the local solutions (around w0 ∈ R) of that equation.
First, we find an expression for ∂f

∂w
that will be then integrated to obtain the desired

form of f . To this end, consider the following system of linear first order pdes:(
∂f1
∂w
∂f2
∂w

)
=

(
0 1

τ(x) 0

)(
f1
f2

)
given for the functions f1 = ∂f

∂w
and f2 = ∂2f

∂w2 . Solutions of this system are expressed

by the exponential of the matrix
(

0 w
τ(x)w 0

)
given by the formula

exp

(
0 w

τ(x)w 0

)
=

+∞∑
k=0

w2k+1τ(x)k

(2k + 1)!

(
0 1

τ(x) 0

)
+

+∞∑
k=0

w2kτ(x)k

(2k)!

(
1 0
0 1

)
obtained by expressing the power series of the exponential and by regrouping the
terms of odd and even degree. Denote b(x) = f1(x,w0) and a(x) = f2(x,w0) the
initial conditions, thus we obtain

∂f

∂w
= f1(x,w) = a(x)

+∞∑
k=0

(w − w0)
2k+1

(2k + 1)!
τ(x)k + b(x)

+∞∑
k=0

(w − w0)
2k

(2k)!
τ(x)k.

Integration of this expression yields

f(x,w) = a(x)
+∞∑
k=0

(w − w0)
2k+2

(2k + 2)!
τ(x)k + b(x)

+∞∑
k=0

(w − w0)
2k+1

(2k + 1)!
τ(x)k + c(x).

2.B Detailed computation for the proof of Theo-
rem 2.3

We detail the computation made in the proof of Theorem 2.3.

2.B.1 Resolution of equation (2.9)

We show how to, locally around 0 ∈ R3, solve the equation ρ′′ − 2ρρ′ + 4
9
ρ3 = 0,

where ρ = ρ(x,w) and the derivatives are taken with respect to w. Take the new
unknown function R(x,w) = exp

(
−2

3

∫
ρ(x, t) dt

)
which satisfies R(x, 0) ̸= 0 and

R′ = −2

3
ρR, R′′ = −2

3
R

(
ρ′ − 2

3
ρ2
)
, R′′′ = −2

3
R

(
ρ′′ − 2ρρ′ +

4

9
ρ3
)

= 0.

Thus, R(x,w) = a(x)w2 + b(x)w + c(x) yielding ρ = −3
2
R′

R
= −3

2
2aw+b

aw2+bw+c
. Since

R(x, 0) ̸= 0, we have c ̸= 0, thus taking d(x) = a
c

and e(x) = b
c

we obtain

ρ(x,w) = −3

2

2d(x)w + e(x)

d(x)w2 + e(x)w + 1
.
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2.B.2 Smooth form of h′

We integrate h′′(x,w) = a(x)(d(x)w2+ e(x)w+1)−3/2 with respect to w to obtain a
smooth expression of h′(x,w) around 0 ∈ R3. Recall that we denote p = p(x,w) =
d(x)w2 + e(x)w + 1 and ∆ = ∆(x) = e(x)2 − 4d(x). We have

h′(x,w) = a(x)

∫
1

p(x,w)3/2
dw =

−2a(2dw + e)

∆
√
p

+ b̄(x).

Since h′(x, 0) = b(x) is smooth, we have −2ae
∆

+ b̄ = b(x), where b(x) is a smooth
function around 0. We can then derive a smooth closed form expression of h′(x,w):

h′(x,w) =
−2a(2dw + e)

∆
√
p

+
2ae

∆
+ b =

−2a
∆
√
p
(2dw + e− e√p) + b,

=
−2a

∆
√
p(ew + 2 + 2

√
p)

(2dw + e− e√p) (ew + 2 + 2
√
p) + b,

=
−2a

∆
√
p(ew + 2 + 2

√
p)

(
2dew2 + 4dw + 4dw

√
p+ e2w + 2e

+2e
√
p− e2w√p− 2e

√
p− 2ep

)
+ b,

=
−2a

∆
√
p(ew + 2 + 2

√
p)

(
w
√
p(4d− e2) + 4dw + 2dew2 + 2e

+e2w − 2edw2 − 2e2w − 2e
)
+ b,

=
−2a

∆
√
p(ew + 2 + 2

√
p)

(
w
√
p(4d− e2) + w(4d− e2)

)
+ b,

=
2aw

√
p(ew + 2 + 2

√
p)

(
√
p+ 1) + b.

2.C Detailed computation for the proof of Lemma 2.2

Denoting cE(x) = cos(x), cH(w) = cosh(w), sE(w) = sin(w), and sH(w) = sinh(w)
and starting from system

ΞEH : ẋ = (A,B)

(
cEH(w)
sEH(w)

)
+ (A,B)

(
γ0
γ1

)
,

we apply a reparametrisation w = w̃ + α(x):

ẋ = (A,B)REH(±α)
(
cEH(w̃)
sEH(w̃)

)
+ (A,B)

(
γ0
γ1

)
,

= (Ã, B̃)

(
cEH(w̃)
sEH(w̃)

)
+ (Ã, B̃)REH(±α)−1

(
γ0
γ1

)
.

This yields
(
γ̃0, γ̃1

)
=
(
γ0, γ1

)
REH(±α)−T , and by definition of REH(α) we have,

RE(α)
−T = RE(−α)t = RE(α), and RH(−α)−T = RH(−α)−1 = RH(α).

Next, computing separately in the elliptic and hyperbolic cases, we obtain[
Ã, B̃

]
= (µ0 ∓ LA (α))A+ (µ1 − LB (α))B,

(A,B)RE(±α)
(
µ̃0

µ̃1

)
= (A,B)

(
µ0 ∓ LA (α)
µ1 − LB (α)

)
.
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Thus (
µ̃0, µ̃1

)
=
(
µ0 ∓ LA (α) , µ1 − LB (α)

)
RE(±α)−T

and the relation (2.15) follows.

2.D Gaussian curvature for a metric given by a mov-
ing frame

Consider a 2-dimensional manifold X and two smooth vector fields A, and B satis-
fying A ∧B ̸= 0. Construct the (pseudo)-Riemanian metric g± defined by

g±(A,A) = 1, g±(B,B) = ±1, and g±(A,B) = 0.

We will give a formula for the Gaussian curvature of g± in terms of the structure
functions (µ0, µ1) uniquely defined by [A,B] = µ0A+µ1B. We will use the following
formula for the covariant derivative

∇Ei
Ej =

1

2

∑
k

(
g±([Ei, Ej] , Ek)− g±([Ei, Ek] , Ej)− g±([Ej, Ek] , Ei)

)
Ek

for Ei ∈ {A,B}, and the following formula for the Gaussian curvature of a 2-
dimensional manifold,

κ± =
g±
(
(∇B∇A −∇A∇B +∇[A,B])A,B

)
det(g±)

.

Computing, we have

∇AA = −µ0B, ∇AB = µ0A, ∇BA = ∓µ1B, ∇BB = ±µ1A.

Then we can deduce

∇B∇AA = −LB (µ0)B ∓ µ0µ1A, ∇A∇BA = ∓LA (µ1)B ∓ µ0µ1A,

∇[A,B]A = µ0∇AA+ µ1∇BA = −(µ0)
2B ∓ (µ1)

2B.

Thus

κ± = ±g±
((
−LB (µ0)± LA (µ1)− (µ0)

2 ∓ (µ1)
2
)
B,B

)
,

= −LB (µ0)± LA (µ1)− (µ0)
2 ∓ (µ1)

2.
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Chapter 3

Introduction to the equivalence
problem of control systems with
paraboloid nonholonomic constraints

In this chapter, we introduce the notations and the mathematical tools that we need
for our characterisation and classification of paraboloid submanifolds in any dimen-
sion. The following Chapter 4 is dedicated to the study of the three dimensional
case and Chapter 5 deals with the case of arbitrary dimension.

First, we recall some general facts on the problems that we are interested in.
In the tangent bundle TX , of a smooth n-dimensional manifold X (with n ≥ 2
and equipped with local coordinates x), we consider a smooth (2n− 1)-dimensional
submanifold (a hypersurface)

S = {(x, ẋ) ∈ TX , S(x, ẋ) = 0},

where S : TX → R satisfies rk ∂S
∂ẋ
(x, ẋ) = 1 for all (x, ẋ) ∈ S. Our purpose

is to find necessary and sufficient conditions ensuring that S describes a quadric
surface, i.e., we want to characterise the equivalence (under diffeomorphisms of X
and multiplication by a nonvanishing function of TX ) of S to

Sq =
{
(x, ẋ) ∈ TX , ẋtg(x)ẋ+ 2ω(x)ẋ+ h(x) = 0

}
,

where g(x) is smooth symmetric matrix (representing a symmetric (0, 2)-tensor),
ω(x) is a smooth covector (representing a differential one-form), and h(x) is a smooth
scalar function. As in the previous chapter, we are interested in non-degenerate
quadrics, that is non-empty sets Sq satisfying ∆1 = det

(
g ωt

ω h

)
̸= 0. The latter

assumption implying that rk g(x) ≥ n− 1 everywhere.

Remark (Quadrics in dimension n = 2 and n = 3). When dimX = 2, then the
quadrics are called conics, among which we find ellipses, hyperbolas, and parabolas
(those were studied in the previous chapter). When dimX = 3, there are 5 of non-
degenerate conics, namely: the ellipsoid, the one and two sheeted hyperboloids, the
elliptic paraboloid and the hyperbolic paraboloid. The last two classes correspond
to quadric surface for which g is degenerate, i.e. it locally satisfies rk g(x) = 2, they
are studied in Chapter 4. ◆
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In the next two chapters, we will exclusively study quadrics satisfying rk g(x) =
n−1 in a neighbourhood. Therefore, the results of the following chapters generalise
the results obtained in Chapter 2 for parabolic submanifolds (in particular, see
statement (i) of Corollary 2.1 for a characterisation result and see Section 3.2 for
classification results). The quadric surfaces Sq with rk g = n−1 are called paraboloid
surfaces by analogy with the terminology in dimension n = 3 (see remark above).
In a suitable coordinate system x = (z, y), chosen such that ker g = span

{
∂
∂z

}
, they

are given by

SQ = {(x, ẋ) ∈ TX , ż = ẏtQ(x)ẏ + 2b(x)ẏ + c(x)},

where Q(x) is a smooth (n − 1) by (n − 1) symmetric matrix of full rank, b(x) =
(b1(x), . . . , bn−1(x)) is smooth covector, and c(x) is a smooth scalar function. We
denote (p, q)(x) ∈ N2 the signature of Q(x) where p(x) (resp. q(x)) is the number
of positive (resp. negative) eigenvalues at x and we have p(x) + q(x) = n − 1
everywhere. By the diffeomorphism z̃ = −z we can always transform (p, q) into
(q, p) thus we will use the convention p ≥ q. As we assumed that Q(x) has full rank,
it follows that the signature (p, q) is constant in a neighbourhood. Moreover, by a
straightforward calculation, we deduce that if two paraboloid surfaces SQ and SQ̃
are equivalent then (p, q) = (p̃, q̃). Therefore, that signature (p, q) is a first invariant
of our equivalence problem.

Definition 3.1 ((p, q)-parabolisable submanifold). We say that a submanifold S is
(p, q)-parabolisable if it is equivalent (in the sense of Definition 1.5 of Chapter 1) to
SQ, with sgn (Q) = (p, q).

Recall that to any submanifold S we attach two parametrisations: ΞS (first
prolongation) and ΣS (second prolongation) given by

ΞS : ẋ = F (x,w) w ∈ W ⊂ Rm, and ΣS :

{
ẋ = F (x,w)
ẇ = u

u ∈ Rm,

where m = n − 1, and F (x,w) is a smooth map satisfying rk ∂F
∂w

(x,w) = m and
S(x, F (x,w)) = 0 for all w. Those prolongations are seen as control-nonlinear
systems and control-affine systems, respectively. From Proposition 1.6 of Chapter 1,
we know that the equivalence of submanifolds under the action of diffeomorphisms
and nonvanishing functions is equivalent to the equivalence of the corresponding
first and second prolongation under feedback transformations. Thus, the problem
of characterising submanifolds SQ will be replaced by that of characterising their
second prolongations defined by

ΣSQ
:


ż = wtQ(x)w + b(x)w + c(x)
ẏ = w
ẇ = u

.

The state (z, y, w) belongs to a smooth (2m+1)-dimensional manifoldM, and u =
(u1, . . . , um) is the control. The following definition defines a class of control-affine
systems that turns out to be equivalent to the class given by ΣSQ

, see Lemma 3.1
below. The element of this new class are more useful in practical computations.
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Definition 3.2 ((p, q)-parabolisable systems). We say that a control-affine system
Σ on a (2m+1)-dimensional manifoldM and with m controls, is (p, q)-parabolisable
if it is feedback equivalent to

Σp,q :

{
ẋ = A(x)wtIp,qw +B(x)w + C(x)
ẇ = u

, (x,w) ∈M, u ∈ Rm,

where Ip,q =
(

Idp 0
0 −Idq

)
, A, B = (B1, . . . , Bm), and C are smooth vector fields

on M/∼, where the equivalence relation is defined by the integrable distribution
span

{
∂
∂w1

, . . . , ∂
∂wm

}
, satisfying A ∧B1 ∧ . . . ∧Bm ̸= 0.

The following lemma shows that the two classes of systems of the form ΣSQ
and

Σp,q coincide up to feedback transformations.

Lemma 3.1. A system Σp,q is locally feedback equivalent to ΣSQ
and, conversely,

a system ΣSQ
is locally feedback equivalent to Σp,q. Moreover, in the equivalences

above, sgn (Q) = (p, q).

Proof. Consider a control-affine system of the form Σp,q and apply a local diffeo-
morphism (z, y) = (z, y1, . . . , ym) = ϕ(x) such that ϕ∗A = ∂

∂z
. In that coordinate

system we have

Σp,q :


ż = wtIp,qw + b(x)w + c(x)
ẏ = B̄(x)w + C̄(x)
ẇ = u

,

with (using again the symbols A, B, and C) A = ∂
∂z

, (B1, . . . , Bm) =
(
b1 ... bm
B̄1 ... B̄m

)
,

and C = ( cC̄ ). By assumption, we have A ∧ B1 ∧ . . . ∧ Bm ̸= 0 implying that
det B̄ ̸= 0. Therefore, we introduce new coordinates w̃ = B̄w + C̄ which yields
ẏ = w̃ and

ż = w̃tQ̃(x)w̃ + b̃(x)w̃ + c̃(x),

where Q̃ = B̄−tIp,qB̄
−1, b̃ = −2C̄tQ̃ + bB̄−1, and c̃ = C̄tQ̃C̄ − bB̄−1C̄ + c. Thus,

we effectively obtain a second prolongation ΣSQ̃
of a paraboloid surface SQ̃. Clearly,

the relation between Q̃ and Ip,q imply that sgn
(
Q̃
)
= sgn (Ip,q) = (p, q).

Conversely, consider a control-affine system of the form ΣSQ
. Taking a new

coordinate w̄ given by w = Dw̄, with D a constant diagonal matrix, we transform
Q into Q̄(x) = DtQ(x)D. Hence by choosing D suitably we can ensure that the
eigenvalues of Q̄ are simple in a neighbourhood of x0 (actually it is sufficient to
obtain Q̄(x0) with simple eigenvalues). Notice that Q̄ has the same signature (p, q)
as Q, thus Q̄ posses p positive and q negative eigenvalues around x0. Using a smooth
version of Sylvester’s law of inertia (given by the theorem in [Fre82]) we conclude that
there (locally) exists P (x) such that P (x)tQ̄(x)P (x) = Ip,q. In the new coordinate
system given by w̄ = P (x)w̃, the system ΣSQ

takes the form Σp,q (after applying

a suitable feedback along the w̃-components) with A = ∂
∂z

, B =
(
b(x)DP (x)
DP (x)

)
, and

C = ( c0 ). ■

This lemma justifies the following terminology. We call Σp,q a (p, q)-paraboloid
system, shortly a (p, q)-system. And, we will replace the problem of characterising
paraboloid submanifolds SQ by that of paraboloid systems Σp,q.
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Preliminary results. In this paragraph, we introduce tools that will serve for the
characterisation of (p, q)-systems. To this end, we consider a control-affine system
Σ = (f, g) with state ξ ∈M, a (2m+1)-dimensional manifold, and with m controls
u = (u1, . . . , um), defined by

Σ : ξ̇ = f(ξ) +
m∑
i=1

gi(ξ)ui, (u1, . . . , um) ∈ Rm.

Any such system Σ is given by m + 1 smooth vector fields: the drift f , and the
m-tuple (g1, . . . , gm). We define two distributions attached to the system Σ

D0 = span {g1, . . . , gm} and D1 = span {g1, . . . , gm, adfg1, . . . , adfgm} .

We say that them-tuple g := (g1, . . . , gm) is a frame ofD0. Throughout the following
chapters, we will assume that Σ satisfies

(A1) The distribution D0 is involutive and has constant rank m,

(A2) The distribution D1 has constant rank 2m.

If D0 is involutive, then the distributions D0 and D1 are invariant under feedback
transformations of the form u = α(ξ) + β(ξ)ũ. Assumptions (A1) and (A2) are
justified by the fact that they are satisfied by any second prolongation ΣS of a
submanifold S. Under assumption (A2), the codistribution ann (D1) is of constant
rank one and we define the map

Ω : ann
(
D1
)
×D0 ×D0 −→ R
(ω, gi, gj) 7−→ Ω(ω, gi, gj) = ω ([gi, adfgj]) ,

which will be of special importance in our work. We denote by Ωω the matrix
representation of the application Ω(ω, ·, ·) for a fixed ω ̸= 0 evaluated on a fixed
frame g of D0. We emphasize the fact that Ωω plays the role of an invariant hessian
matrix of f with respect to the directions of the fields gi for i = 1, . . . ,m. Indeed,
when Σ = (f, g) is the straightforward second prolongation of the submanifold
S = {ż = s(x, ẏ)}, that is we have f = s(x,w) ∂

∂z
+
∑m

i=1wi
∂
∂yi

, and gi =
∂
∂wi

, this
matrix Ωω is, up to scaling by a non-vanishing function, the hessian of the function
s(x,w) with respect to w = (w1, . . . , wm).

Lemma 3.2 (Properties of the application Ωω). Assume that(A1) and (A2) hold
and fix a one-form ω such that span {ω} = ann (D1). The following statements hold:

(i) Ωω is a smooth symmetric (0, 2)-tensor on D0;

(ii) For any ω̃ satisfying span {ω̃} = ann (D1), we have Ωω̃ = λΩω, where ω̃ = λω;

(iii) Feedback transformations f 7→ f̃ = f + gα and g 7→ g̃ = gβ transform Ωω into

Ω̃ω = βtΩωβ,(3.1)

where Ω̃ω is the matrix of the application Ω(ω, ·, ·) evaluated on the new frame
g̃ of D0, i.e. Ω̃ω(g̃i, g̃j) = (βtΩωβ)(gi, gj);

(iv) For any (p, q)-paraboloid system Σp,q we have sgn (Ωω) = (p, q) up to order.
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Proof.

(i) The computation is straightforward and is given here for completeness. For
any two fields gi and gj of D0 we have

Ω(ω, gj, gi) = ω ([gj, adfgi]) = ω ([gi, adfgj]− [f, [gi, gj]]) = Ω(ω, gi, gj),

where we used the Jacobi identity and the involutivity of D0. Moreover,

Ω(ω, gi + gk, gj) = ω ([gi + gk, adfgj]) = Ω(ω, gi, gj) + Ω(ω, gk, gj),

Ω(ω, λgi, gj) = ω ([λgi, adfgj]) = λΩ(ω, gi, gj),

for any λ ∈ C∞(M).

(ii) Under assumption (A2), the distribution D1 is of corank one and therefore,
for any ω and ω̃ such that span {ω} = ann (D1) = span {ω̃}, we have ω = λ ω̃
with λ(·) ̸= 0 and the conclusion follows immediately.

(iii) By assumption (A1), it is clear that Ω is invariant under the transformation
f 7→ f + gα. Let g = (g1, . . . , gm) be a frame of D0 and denote Ωi,j =
Ω(ω, gi, gj) for i, j = 1, . . . ,m, recall that Ωω is a symmetric matrix. Consider
the transformation g̃ = gβ for β ∈ C∞(M, GLm(R)). For i = 1, . . . ,m, we
have g̃i =

∑m
k=1 gkβ

k
i giving

Ω̃i,j =
∑
k,l

ω ([g̃i, adf g̃j]) =
∑
k,l

ω
([
gkβ

k
i , adf (glβ

l
j)
])

=
∑
k,l

ω
(
βki [gk, adfgl] β

l
j

)
=
∑
k,l

βki Ωk,lβ
l
j,

which exactly translates into Ω̃ω = βtΩωβ.

(iv) For a (p, q)-paraboloid system Σp,q = (f, g), we have f = A(x)wtIp,qw +
B(x)w + C(x) and gi =

∂
∂wi

; hence, adfgi = −2AIiiwi − Bi (no summation

convention). Thus, we have the distributions D0 = span
{

∂
∂w1

, . . . , ∂
∂wm

}
and

D1 = D0+span {2AI iiwi +Bi, i = 1, . . . ,m}. So by a straightforward compu-
tation we have, modulo D0,

[gi, adfgi] = −2AIii and [gi, adfgj] = 0 for i ̸= j.

Thus, for ω ∈ ann (D1) we have Ωω = −2ω(A)Ip,q, where ω(A) := ω(A+0· ∂
∂w

).
Since A ∧ B1 ∧ . . . ∧ Bm ̸= 0 we deduce that A /∈ D1, i.e. ω(A) ̸= 0, and the
conclusion follows. If sgn (Ωω) = (p, q), then sgn (Ω−ω) = (q, p), which justifies
the statement about the order.

■

The symmetric bilinear form Ωω plays a crucial role in our work. By statement
(iv) of the previous lemma the (p, q)-paraboloid systems Σp,q have Ωω of constant
signature (p, q). By statement (iii), we conclude that the signature is invariant
under feedback transformations, thus it is necessary to add, on general control-affine
systems Σ, the assumption
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(A3) sgn (Ωω) = (p, q) is constant and satisfies p+ q = m.

Notice that under the change ω 7→ λω we might swap the signature (p, q) of Ωω to
(q, p) (if λ < 0 and p ̸= q), therefore we add the restriction p ≥ q to our definition
of the signature of Ωω. For local results, observe that it is enough to calculate the
signature at ξ0 to ensure the validity of (A3) in a neighbourhood.

The following result is fundamental in our work; it is analogous to Sylvester’s
law of inertia [Syl52] adapted to our control-affine systems context. It can also be
seen as a by-product of Morse lemma [Mor34] with parameters (see [Hör07, p. 502]
for a proof).

Proposition 3.1. Assume that assumptions (A1), (A2), and (A3) hold. Then,
there locally exists a feedback β ∈ C∞(M, GLm(R)) such that Ωω is transformed
into,

Ω̃ω = Ip,q =
(
Idp 0
0 −Idq

)
.(3.2)

Proof. We denote Ω0 = Ωω|ξ0 . By Sylvester’s law of inertia [Syl52], there exists a
matrix β0 ∈ GLm(R) such that

βt0Ω0β0 =

(
Idp 0
0 −Idq

)
.

In order to prevent the eigenvalues to collapse in a neighbourhood we additionally

apply β1 =

(
1
2

...
m

)
. Now we take any smooth extension β(ξ) such that β(ξ0) =

β0β1. Let ḡ = gβ and set Ω̄ω = (ω ([ḡi, adf ḡj])), i.e. Ωω evaluated on the frame ḡ.
For this frame we have

Ω̄ω

∣∣
ξ0
=

(
Idp 0
0 −Idq

)
1

4
. . .

m2

 .

Hence for a neighbourhood of ξ0, the map Ω̄ω has distinct eigenvalues and thus
can be smoothly diagonalised by an orthogonal transformation (recall that Ω̄ω is
symmetric), see [Iva89]. In this frame, we have Ω̃ω given byλ1(ξ) 0

0
. . .

λm(ξ)


and since all our transformation preserved the signature (p, q) of Ωω, we may assume
λi(ξ) > 0 for i = 1, . . . , p and λi(ξ) < 0 for i = p + 1, . . . ,m. Applying the final
feedback g̃i = 1√

λi
gi for i = 1, . . . , p and g̃i =

1√
−λi

gi for i = p + 1, . . . ,m gives the
desired form. ■

Notice that the construction of Ω̃ω of the form (3.2) is purely algebraic, hence
in what follows there will be no loss of generality in assuming that the vector fields
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(g1, . . . , gm) of a control-affine system Σ (satisfying (A1), (A2), and (A3)) give Ω̃ω

of the form (3.2). For a control-affine system Σ, having the signature of Ωω equal to
(p, q) is, of course, a necessary condition for its equivalence to Σp,q. This condition,
however, is not sufficient as we will show in the next chapters.

For our results, we will need to characterise feedback transformations g̃ = gβ
that preserve the form (3.2) of Proposition 3.1. We will deduce that β(·) ∈ GO(p, q),
the conformal group, i.e. β satisfies βtIp,qβ = λIp,q for some λ(·) ̸= 0 called the
associated multiplier. The following lemmata will be useful for our characterisation
and classification results.

Lemma 3.3. If β ∈ C∞ (M, GO(p, q)) with associated multiplier λ, then for any
vector field v ∈ V ∞(M) we have

Lv (β) β
−1 − 1

2λ
Lv (λ) Idm ∈ Lie (O(p, q)) .(3.3)

Proof. If β(·) ∈ GO(p, q), then by definition we have βtIp,qβ = λIp,q. By differenti-
ating along v the last relation we obtain

Lv (β)
t Ip,qβ + βtIp,qLv (β) = Lv (λ) Ip,q,

(Lv (β) β
−1)

t Ip,q + Ip,q (Lv (β) β−1) = Lv (λ) β
−tIp,qβ−1,

(Lv (β) β
−1)

t Ip,q + Ip,q (Lv (β) β−1) = 1
λ
Lv (λ) Ip,q,(

Lv (β) β
−1 − 1

2λ
Lv (λ) Idm

)t Ip,q +Ip,q
(
Lv (β) β

−1 − 1
2λ
Lv (λ) Idm

)
= 0.

The last equation characterises the elements of Lie (O(p, q)). ■

For the following two lemmata, we will work on a smooth n-dimensional manifoldM
equipped with local coordinates ξ. The lemma below gives necessary and sufficient
conditions for a nonhomogeneous system of quasilinear PDEs to possess smooth
local solution.

Lemma 3.4. Let G = span {g1, . . . , gm} ⊂ TM be an involutive distribution of
constant rank m. Consider the following system of m quasilinear PDEs

Lgi (z
r) = Br

i , 1 ≤ i ≤ m, 1 ≤ r ≤ N,(3.4)

where Br
i = Br

i (ξ, z) depend on the unknowns zr. For any smooth manifold X such
that Tξ0X ⊕ G(ξ0) = Tξ0M and any smooth function ϕ : X → RN , system (3.4)
admits a unique local, around ξ0, smooth solution z(ξ) such that z

X
= ϕ if and only

if for all 1 ≤ i < j ≤ m it holds

Lgi
(
Br
j

)
− Lgj (B

r
i ) +

N∑
s=1

Bs
i

∂Br
j

∂zs
−Bs

j

∂Br
i

∂zs
=

m∑
k=1

νki,jB
r
k, 1 ≤ r ≤ N,(3.5)

where the functions νki,j are defined by [gi, gj] =
∑m

k=1 ν
k
i,jgk.

In the case, where gi = ∂
∂ξi

, for 1 ≤ i ≤ m, integrability conditions (3.5) take the
form of those of [Fla63, Section 7.4].
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Proof. We will show that system (3.4) can be transformed to a classical system of
homogeneous linear PDEs to which the classical Frobenius theorem can be applied.
Let gki denote the components of the vector fields gi in coordinates ξ = (ξ1, . . . , ξn),
that is gi =

∑n
k=1 g

k
i
∂
∂ξk

. In the extended space (ξ, z), we look for solutions in the
implicit form ψ(ξ, z) = 0 ∈ RN , with rk ∂ψ

∂z
= N . We differentiate the equation

ψ(ξ, z(ξ)) = 0 along the fields gi:

n∑
k=1

gki
∂

∂ξk
(ψ) =

n∑
k=1

gki
∂ψ

∂ξk
+ gki

∑
s

∂ψ

∂zs
∂zs

∂ξk
= 0

=
n∑
k=1

gki
∂ψ

∂ξk
+
∑
s

∂ψ

∂zs
Bs
i = 0

= LGi
(ψ) = 0,

where Gi = gi+
∑

sB
s
i
∂
∂zs

. Thus, we get a homogeneous system of PDEs for ψ which,
by the Frobenius theorem, possesses solutions, for any fixed ϕ : X → RN , if and
only if the distribution G = span {G1, . . . ,Gm} is involutive (equivelently, possesses
integral manifolds of maximal dimension m). Hence, we compute (using summation
over s)

[Gi,Gj] =
[
gi +Bs

i

∂

∂zs
, gj +Bs

j

∂

∂zs

]
= [gi, gj] + Lgi

(
Bs
j

) ∂

∂zs
− Lgj (B

s
i )

∂

∂zs
+

[
Bs
i

∂

∂zs
, Bs

j

∂

∂zs

]
=

m∑
k=1

νki,jgk +
(
Lgi
(
Bs
j

)
− Lgj (B

s
i )
) ∂

∂zs
+

[
Bs
i

∂

∂zs
, Bs

j

∂

∂zs

]
and thus G is involutive if and only if (using again summation over s)

(
Lgi
(
Bs
j

)
− Lgj (B

s
i )
) ∂

∂zs
+

[
Bs
i

∂

∂zs
, Bs

j

∂

∂zs

]
=

m∑
k=1

νki,jB
s
k

∂

∂zs
,

equivalently, for all i, j, r it holds

Lgi
(
Br
j

)
− Lgj (B

r
i ) +

∑
s

Bs
i

∂Br
j

∂zs
−Bs

j

∂Br
i

∂zs
=

m∑
k=1

νki,jB
r
k.

■

The next lemma relates the pseudo-orthogonal group and its Lie algebra through
solutions of a system of nonhomogeneous linear partial differential equations.

Lemma 3.5. Let G = span {g1, . . . , gm} ⊂ TM be an involutive distribution of
constant rank m, let X be a smooth submanifold such that Tξ0X ⊕ G(ξ0) = Tξ0M.
Suppose that β ∈ C∞(M, GLm(R)) satisfy

Lgi (β) = −µiβ, ∀ 1 ≤ i ≤ m,(3.6)

with µi(·) ∈ Lie(O(p, q)), and β
X
= β0 ∈ C∞(X , O(p, q)). Then, locally around ξ0,

we have β ∈ C∞(M, O(p, q)).
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Proof. First, observe that the complementarity between G and TX implies that the
solution of (3.6) is unique (see the above lemma). Second, notice that

Lgi (β) β
−1 + βLgi

(
β−1
)
= 0⇒ Lgi

(
β−1
)
= −β−1Lgi (β) β

−1,

and third, the relation µtiIp,q + Ip,qµi = 0 yields Ip,qµti = −µiIp,q. Next, we set
Θ = Ip,qβ−tIp,q, which satisfies

Lgi (Θ) = Ip,qLgi
(
β−1
)t Ip,q = −Ip,qβ−tLgi (β)

t β−tIp,q
= Ip,qµtiβ

−tIp,q = −µiIp,qβ−tIp,q = −µiΘ.

Moreover, observe that Θ
X
= Ip,qβ−t

0 Ip,q = β0. Therefore, β and Θ satisfy the same
system of equations with the same initial condition implying β = Θ. So, we deduce
βIp,qβt = Ip,q, i.e. β(·) ∈ O(p, q). ■

By a direct calculation, we give as a corollary of Lemma 3.4 the integrability condi-
tions for system (3.6).

Corollary 3.1. Under the previous assumptions denote zr = zr1,r2 = βr1r2 and Br
i =

Br1,r2
i = − (µiβ)

r1
r2

, where µi is a smooth m × m-matrix, and 1 ≤ r ≤ N = m2.
Then, system (3.6) admits smooth solution if and only if

Lgi (µj)− Lgj (µi) + µiµj − µjµi =
m∑
k=1

νki,jµk.(3.7)

Observe that the integrability condition (3.7) can be recovered by computing

L[gi,gj ] (β) = Lgi
(
Lgj (β)

)
− Lgj (Lgi (β)) ,

which, indeed, gives (3.7) because the right hand side −µiβ of (3.6) is linear with
respect to the unknown β.
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Chapter 4

Control systems with paraboloid
quadric nonholonomic constraints

In this chapter, we extend some of the results of Chapter 2 to the case of a smooth
manifold X of dimension dimX = 3. The results of this chapter will be generalised
to an arbitrary dimension in the next chapter and we present them in the present
chapter in a detailed way for two reasons. First, they will serve as an introduction
to the general concepts developed in the preceding chapter and the reader could
familiarise with them. And, second, the low dimension of the problems allows us
to obtain more precise specifications about the structure of the considered problems.

In the tangent bundle TX of a 3-dimensional manifold X we consider a smooth
submanifold

S = {(x, ẋ) ∈ TX , S(x, ẋ) = 0}

satisfying rk ∂S
∂ẋ
(x, ẋ) = 1 for all (x, ẋ) ∈ S. We equip X with local coordinates

x = (z, y), with dim(z) = 1 and dim(y) = 2. Our first purpose is to characterise the
equivalence (in the sense of Definition 1.5 of Chapter 1) of S to a (p, q)-parabolic
submanifold given by

SQ =
{
ż = ẏtQ(x)ẏ + 2b(x)ẏ + c(x)

}
,

where Q(x) is a smooth 2 by 2 symmetric matrix of full rank with signature (p, q),
b(x) = (b1(x), b2(x)) is a smooth covector, and c(x) is a smooth function. The matrix
Q(x) can be seen as a degenerate metric g on X such that ker g = span

{
∂
∂z

}
. We

represent the submanifold SQ by the 4-tuple
(
∂
∂z
, Q, b, c

)
. Throughout the chapter,

we assume that the signature of Q is constant in a neighbourhood(it is a conse-
quence of Q being full-rank). Clearly the sign of the determinant of Q identifies its
signature. Up to the transformation z̃ = −z, there are only two classes of (p, q)-
parabolic submanifolds. First, we conseider sgn (Q) = (2, 0) and call SQ a p-elliptic
submanifold, and, second, we have sgn (Q) = (1, 1) and we call SQ a p-hyperbolic
submanifold. In our nomenclature, the «p-» stands for paraboloid in accordance
with the terminology of quadrics in affine geometry. We will denote SpE, resp. SpH ,
a p-elliptic, resp. a p-hyperbolic, submanifold; figure 4.1 shows the graph of a SpE
and of a SpH in a fiber Tx0X .
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(a) Elliptic paraboloid (b) Hyperbolic paraboloid

Figure 4.1: Illustration of the two classes paraboloid submanifolds in Tx0X

Recall that to any submanifold S we can attach two parametrisations: ΞS (first
prolongation) and ΣS (second prolongation) given by

ΞS : ẋ = F (x,w), and ΣS :

{
ẋ = F (x,w)
ẇ = u

,

where F (x,w) is a smooth map satisfying S(x, F (x,w)) for all w. Those prolonga-
tions are seen as control-nonlinear systems and control-affine systems, respectively.
From Proposition 1.6 of Chapter 1, we know that the equivalence of submanifolds
under diffeomorphism and multiplication by a nonvanishing function is equivalent to
the equivalence of the corresponding first and second prolongation under feedback
transformations. Thus, the problem of characterising submanifolds SQ is dealt with
under the characterisation of their second prolongation defined by

ΣSQ
:


ż = wtQ(x)w + b(x)w + c(x)
ẏ = w
ẇ = u

and we will denote ΣSpE
, resp. ΣSpH

, a second prolongation of SpE, resp. SpH . Since
dimX = 3 and rk ∂S

∂ẋ
(x, ẋ) = 1 this second prolongation lives of a 5-dimensional

manifoldM∼= X ×R2 and is parametrised by 2 controls u = (u1, u2). The following
definition gives an alternative description of second prolongations of p-ellitpic and
p-hyperbolic submanifolds.

Definition 4.1 ((p, q)-parabolisable systems). We say that a control-affine system
Σ on a 5-dimensional manifoldM and with 2 controls, is (p, q)-parabolisable if it is
feedback equivalent to Σp,q

Q given by

Σp,q :

{
ẋ = A(x) ((w1)

2 ± (w2)
2) +B(x)w + C(x)

ẇ = u
(x,w) ∈M, u ∈ R2,

where «+» in ± corresponds to (p, q) = (2, 0) and «−» to (p, q) = (1, 1), A, B =
(B1, B2), and C are smooth vector fields onM/∼, where the equivalence relation is
defined by the integrable distribution span

{
∂
∂w1

, ∂
∂w2

}
, satisfying A ∧B1 ∧B2 ̸= 0.
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Lemma 3.1 of Chapter 3 shows that Σ2,0, resp. Σ1,1, is feedback equivalent to
ΣSpE

, resp. ΣSpH
. This justifies the following terminology: we denote Σ2,0 by ΣpE

and call it a p-elliptic system and we denote Σ1,1 by ΣpH and call it a p-hyperbolic
system. and we will replace the problem of characterising SQ by that of ΣpE and of
ΣpH .

In the previous chapter, we introduce some general conditions that are necessary
for the equivalence of an arbitrary control-affine system Σ to ΣpE or ΣpH . We briefly
recall them here. Consider a control affine system Σ = (f, g) with state space M
a 5-dimensional manifold and with 2 controls. We attached to Σ the following two
distributions

D0 = span {g1, g2} , and D1 = span {g1, g2, adfg1, adfg2} .

The first two necessary assumptions for the equivalence of Σ to ΣpE or ΣpH are

(A1) The distribution D0 is involutive and has constant rank 2,

(A2) The distribution D1 has constant rank 4.

Under those assumptions, we construct a bilinear map Ωω : D0 × D0 → R and we
assume

(A3) sgn (Ωω) = (p, q) is constant and satisfies p+ q = 2.

Proposition 3.1 of Chapter 3 shows that we can always choose (with algebraic trans-
formations only) a suitable frame of D0 such that Ωω takes locally the form ( 1 0

0 ±1 ).
In the following sections, we will fully characterise the systems ΣpE and ΣpH

via algebraic and differential relations of structure functions attached to control-
affine systems. After this, we will treat the problem of classification of p-elliptic and
p-hyperbolic systems and provide several normal and canonical forms.

1 Study of p-Elliptic systems

In this section, we fully characterise p-elliptic systems represented by the normal
form

ΣpE :

{
ẋ = A(x) (w2

1 + w2
2) +B1(x)w1 +B2(x)w2 + C(x)

ẇ = u
,

where A, B1, B2, and C are smooth vector fields on the 3-dimensional manifold
M/D0. Recall from the previous section that systems ΣpE are second prolongations
of p-elliptic submanifolds SpE and that a characterisation of ΣpE induces a charac-
terisation of SpE. In this section, whenever we make a reference to assumption (A3)
we always mean

(A3)pE sgn (Ωω) = (2, 0).

In the following subsections, we will, first, give a complete characterisation of
p-elliptic systems in terms of checkable algebraic and differential relations of struc-
ture functions attached to control-affine systems and, second, working within the
class of p-elliptic systems we will give a classification, under the action of feedback
transformations, of p-elliptic systems.
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1.1 Characterisation of p-elliptic systems

Consider a control-affine system Σ : ξ̇ = f(ξ)+g1(ξ)u1+g2(ξ)u2, with state ξ ∈M,
a smooth 5-dimensional manifold. For the system Σ = (f, g) we define the following
distributions

D0 = span {g1, g2} , and D1 = span {g1, g2, adfg1, adfg2} .

Recall that assumptions (A1) and (A2) imply that D0 is involutive and of constant
rank 2 and that D1 is of constant rank 4. Moreover, (A3)pE implies that D1 is not
involutive, otherwise, Ωω would identically vanish.

Definition 4.2 (Weak orthonormal frame). We say that the pair (g1, g2) is a weak
orthonormal frame of D0 = span {g1, g2}, shortly WOF, if

[g1, adfg1]− [g2, adfg2] = 0 mod D1, and [g1, adfg2] = [g2, adfg1] = 0 mod D1.

The terminology orthonormal is justified by the fact that if (g1, g2) is a WOF,
then for any ω the matrix Ωω, with respect to (g1, g2), is the matrix of a homothety,
that is given by Ωω = λ·Id, where λ > 0 (since sgn (Ωω) = (2, 0)) is a smooth function
that depends on ω. Therefore, if (g1, g2) is a WOF, then the fields (g1, g2) have the
same «length», i.e. Ωω(g1, g1) = Ωω(g2, g2), and are «orthogonal» Ωω(g1, g2) = 0.
Assume that (g1, g2) is a WOF, then we can uniquely define structure functions µk
and µki,j, for i, j, k ∈ {1, 2}, by

[g1, adfg1]− [g2, adfg2] = µ1adfg1 + µ2adfg2 mod D0,
[gi, adfgj] = µ1

i,jadfg1 + µ2
i,jadfg2 mod D0, i ̸= j.

The structure functions µki,j can be related to the structure function (ν1, ν2), defined
by

[g1, g2] = ν1g1 + ν2g2,

by the Jacobi identity applied to [g1, adfg2], namely,

ν1 = µ1
1,2 − µ1

2,1, and ν2 = µ2
1,2 − µ2

2,1.(4.1)

Proposition 4.1 (Existence and properties of weak orthonormal frames).

(i) Under assumptions (A1), (A2), and (A3)pE there exists a weak orthonormal
frame.

(ii) If (g1, g2) is a WOF, then (g̃1, g̃2) = (g1, g2)β is also a WOF if and only if β
is of the form

β(λ, θ) = λ

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
,(4.2)

up to a permutation of the fields (g1, g2), and where λ = λ(ξ) > 0 and θ = θ(ξ)
are smooth functions.
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(iii) Under the feedback (g1, g2) = (g̃1, g̃2)β(λ, θ), with β of the form (4.2), the
structure functions µk and µki,j of (g1, g2) and the structure functions µ̃k and
µ̃ki,j of (g̃1, g̃2) are related by

(4.3)

 µ1 µ2

µ1
1,2 µ2

1,2

µ1
2,1 µ2

2,1

 =

 1
λ
Lg1 (λ) + Lg2 (θ) Lg1 (θ)− 1

λ
Lg2 (λ)

−Lg1 (θ) 1
λ
Lg1 (λ)

1
λ
Lg2 (λ) Lg2 (θ)


+

 cos(2θ) sin(2θ) sin(2θ)
−1

2
sin(2θ) cos(θ)2 − sin(θ)2

−1
2
sin(2θ) − sin(θ)2 cos(θ)2

 µ̃1 µ̃2

µ̃1
1,2 µ̃2

1,2

µ̃1
2,1 µ̃2

2,1

 β(λ, θ).

Proof.

(i) Consider a control-affine system Σ given by vector fields f and g = (g1, g2) and
suppose that assumptions (A1), (A2), and (A3)pE hold. By Proposition 3.1,
there exists a feedback β such that for the new frame g̃ = gβ we have Ω̃ω =
( 1 0
0 1 ). Clearly g̃ is a weak orthonormal frame.

(ii) Assume that (g1, g2) and (g̃1, g̃2) = (g1, g2)β are two weak orthonormal frames,
for them we have Ωω = η Id and Ω̃ω = η̃ Id, respectively, with η > 0 and η̃ > 0.
Using relation (3.1) we see that β must satisfy

η̃ Id = η βtIdβ = ηβtβ.

Hence, β is a similitude, that is β ∈ C∞(M, GO(2,R)). Since every element
of the group of similitude is the direct product of an homothety and of an
isometry we, finally, have

either β1 = λ

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
or β2 = λ

(
cos(θ) sin(θ)
sin(θ) − cos(θ)

)
,

where λ = ±
√

η̃
η
. In both cases we have βi(λ, θ + π) = βi(−λ, θ) thus we can

consider λ > 0 only. Finally we see that β2(λ, θ) =
(
0 1
1 0

)
β1
(
λ, π

2
− θ
)
, that

is β2 is of the same type as β1 up to a permutation of the fields (g1, g2). Thus
it will be convenient to restrict the transformations to feedback β of the form
β1 only.

(iii) The computation is detailed in Appendix 4.A.

■

We denote by C+(2) the group of admissible feedback transformations C∞(M,R∗+)×
C∞(M, SO(2,R)) acting on the set of weak orthonormal frames. Every β ∈ C+(2)
is denoted by β(λ, θ) to emphasis the two types of transformations available, and
observe that we have β−1 = β

(
1
λ
,−θ

)
. Under basic assumptions (A1), (A2), and

(A3)pE there always exists a weak orthonormal frame and we are now going to rein-
force this notion which will turn out to be the key of the characterisation of p-elliptic
systems.
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Definition 4.3 (Strong orthonormal frame). We say that a pair (g1, g2) is a strong
orthonormal frame of D0 = span {g1, g2}, shortly SOF, if

[g1, adfg1]− [g2, adfg2] = 0 mod D0, and [g1, adfg2] = [g2, adfg1] = 0 mod D0.

Clearly, this definition implies a more rigid structure than a weak orthonormal
frame as it requires the orthonormality properties to hold modulo a distribution of
rank two. In other words, a strong orthonormal frame is a weak orthonormal frame
with structure functions satisfying µk = µki,j = 0.

Proposition 4.2 (Properties of the strong orthonormal frames).

(i) Any p-elliptic system ΣpE possesses a strong orthonormal frame,

(ii) If (g̃1, g̃2) is a strong orthonormal frame, then (g1, g2) = (g̃1, g̃2)β(λ, θ) is a
weak orthonormal frame whose structure functions µki,j and µk satisfy µ1 µ2

µ1
1,2 µ2

1,2

µ1
2,1 µ2

2,1

 =

 1
λ
Lg1 (λ) + Lg2 (θ) Lg1 (θ)− 1

λ
Lg2 (λ)

−Lg1 (θ) 1
λ
Lg1 (λ)

1
λ
Lg2 (λ) Lg2 (θ)

 .(4.4)

(iii) If (g1, g2) is a strong orthonormal frame, then g1 and g2 are commuting vector
fields,

(iv) If (g1, g2) is a strong orthonormal frame then (g̃1, g̃2) = (g1, g2)β is also a
strong orthonormal frame if and only if β ∈ C+(2) and β(λ, θ), additionally,
satisfies

Lg̃1 (λ) = Lg̃2 (λ) = Lg̃1 (θ) = Lg̃2 (θ) = 0.(4.5)

Proof.

(i) Recall that ΣpE is given by the vector fields (g1, g2) =
(

∂
∂w1

, ∂
∂w2

)
and f =

A(x)(w2
1 + w2

2) + B(x)w + C(x) mod D0. Then it is a straightforward com-
putation to show that (g1, g2) is a strong orthonormal frame for ΣpE:

[g1, adfg1]− [g2, adfg2] = 2A(x)− 2A(x) = 0, and [g1, adfg2] = [g2, adfg1] = 0.

(ii) Assume that (g̃1, g̃2) is a strong orthonormal frame and let (g1, g2) = (g̃1, g̃2)β(λ, θ),
then the result follows from the application of relation (4.3) with µ̃ki,j = µ̃k = 0.

(iii) Recall that the structure functions (ν1, ν2) are defined by [g1, g2] = ν1g1+ν
2g2.

Assume that (g1, g2) is a strong orthonormal frame, then by (4.1) we have
ν1 = ν2 = 0, thus [g1, g2] = 0.

(iv) Assume (g1, g2) and (g̃1, g̃2) are strong orthonormal frames. In particular they
are both weak orthonormal frames, therefore they must differ by a feedback
β ∈ C+(2) and by relation (4.4) with µ̃ki,j = µ̃k = 0 we see that the functions
λ and θ of the feedback necessary satisfy relation (4.5).

■
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We have now set everything for a characterisation, in terms of algebraic and dif-
ferential relations between the structure functions, of p-elliptic systems. Statement
(i) of the above proposition asserts that ΣpE possess a strong orthonormal frame
thus the existence of a SOF is a necessary condition for the equivalence of Σ to ΣpE.
Therefore, the structure functions µki,j and µk of a weak orthonormal frame (g1, g2)
which is equivalent via β(λ, θ) to a SOF have to satisfy some necessary relations.
From (4.4) we first have

µ2
1,2 + µ2

2,1 = µ1 and µ1
1,2 + µ1

2,1 = −µ2.(4.6)

Moreover those structure function are related to the feedback transformation β(λ, θ)
by the following systems of first order partial differential equations.{

Lg1 (θ) = −µ1
1,2

Lg2 (θ) = µ2
2,1

,

{
1
λ
Lg1 (λ) = µ2

1,2
1
λ
Lg2 (λ) = µ1

2,1

.(4.7)

In particular, the structure functions have to fulfil the following integrability condi-
tions of the systems (4.7):

Lg1
(
µ2
2,1

)
+ Lg2

(
µ1
1,2

)
= −ν1µ1

1,2 + ν2µ2
2,1,

Lg1
(
µ1
2,1

)
− Lg2

(
µ2
1,2

)
= ν1µ2

1,2 + ν2µ1
2,1,

(4.8)

respectively, for θ and lnλ (recall that λ > 0 in our feedback transformations), where
ν1 and ν2 are defined by [g1, g2] = ν1g1 + ν2g2. Observe that relations (4.6) and
(4.8) are algebraic and differential and thus can explicitly be tested on any given
weak orthonormal frame.

The following theorem shows, first that those conditions are also sufficient for
the existence of a SOF and, second, that the existence of a SOF fully characterises
p-elliptic systems ΣpE.

Theorem 4.4 (Characterisation of p-elliptic systems). Consider a control-affine
system Σ satisfying assumptions (A1), (A2), and (A3)pE. Then, the following state-
ments are locally equivalent,

(pE1) Σ is feedback equivalent to ΣpE;

(pE2) For any weak orthonormal frame (g1, g2) of Σ, the structure functions µki,j and
µk satisfy (4.6) and, moreover, the systems given by (4.7) have solutions;

(pE3) For any weak orthonormal frame (g1, g2) of Σ, the structure functions µki,j and
µk satisfy (4.6) and (4.8);

(pE4) There exists a strong orthonormal frame of Σ;

Proof. We will show (pE1)⇒(pE2)⇒(pE3)⇒(pE4)⇒(pE1).
(pE1) =⇒ (pE2) =⇒ (pE3). This is the analysis performed above the theorem.
(pE3) =⇒ (pE4). Assume that (g1, g2) is a weak orthonormal frame with struc-

ture functions µki,j and µk satisfying (4.6) and (4.8). Given a solution (λ, θ) of (4.7),
construct the feedback

β

(
1

λ
,−θ

)
=

1

λ

(
cos θ sin θ
− sin θ cos θ

)
,
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notice that we can always have λ > 0 by solving the second system of (4.7) in
terms of ln(λ). Then, the computation in Appendix 4.B shows that the new fields
(g̃1, g̃2) = (g1, g2)β

(
1
λ
,−θ

)
form a strong orthonormal frame.

(pE4) =⇒ (pE1). Let (g1, g2) be a strong orthonormal frame, recall that by
statement (iii) of Proposition 4.2 this frame satisfies [g1, g2] = 0. We introduce
coordinates (x,w) = ϕ(ξ) such that ϕ⋆gi = ∂

∂wi
, for i = 1, 2. After applying a

suitable feedback f 7→ f + α1g1 + α2g2 the system Σ takes the form
ẋ = f(x,w)
ẇ1 = u1
ẇ2 = u2

,

for which (g1, g2) =
(

∂
∂w1

, ∂
∂w2

)
is a strong orthonormal frame. By definition of a

strong orthonormal frame, we have the following conditions on f(x,w):

∂2f
∂w1∂w2

= 0 and
∂2f
∂w2

1

− ∂2f
∂w2

2

= 0.

Solutions of those equations admit the following closed form,

f = A(x)(w2
1 + w2

2) +B1(x)w1 +B2(x)w2 + C(x)

where the A, B1, B2, and C are smooth vector fields on M/D0. For this form
we have D1 = span {2Aw1 +B1, 2Aw2 +B2} mod D0 which, by assumption (A2),
is of constant rank 4, and since we have preserved the signature of Ωω in all our
operations we conclude that A /∈ D1 and thus we have A ∧B1 ∧B2 ̸= 0. ■

The above characterisation of p-elliptic systems requires two conditions. Condi-
tion (4.8) is differential and asserts that there exists a feedback (λ, θ) that transforms
a WOF into a new frame (g1, g2) that is orthogonal with respect to D0. Then, con-
dition (4.8) ensures that this frame is, actually, also orthonormal.

Existence of a strong orthonormal frame of D0 is a characterisation of p-elliptic
systems. Statement (iv) of Proposition 4.2 imply that two such frame differ by a
feedback β(λ, θ) that is constant on the leaves of the distribution D0 (giving another
justification for statement (i) of Proposition 4.3 below). In the following subsection,
we will work in the class of p-elliptic system and give a classification including normal
and canonical forms of those systems.

1.2 Classification of p-elliptic systems

We now investigate the problem of classification of p-elliptic submanifolds SpE ⊂
TX . This problem is replaced by the equivalent problem of classification of their
first prolongations defined by

ΞpE : ẋ = A(x)(w2
1 + w2

2) +B1(x)w1 +B2(x)w2 + C(x),

where w = (w1, w2)
t plays the role of a control that enters in a nonlinear way,

and A, B1, B2, and C are smooth vector fields on X . We are interested in sys-
tems satisfying A ∧ B1 ∧ B2 ̸= 0. A p-elliptic system ΞpE is represented by the
4-tuple (A,B1, B2, C) of vector fields. We will describe several orbits of the action
of feedback transformations given by x̃ = ϕ(x) and w = ψ(x, w̃). First, we have the
following characterisation of admissible feedback transformations.
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Proposition 4.3 (Equivalence of p-elliptic systems).

(i) If two p-elliptic systems ΞpE = (A,B1, B2, C) and Ξ̃pE = (Ã, B̃1, B̃2, C) are
feedback equivalent via a diffeomorphism x̃ = ϕ(x) and an invertible feed-
back transformation w = ψ(x, w̃), then ψ = α(x) + β(λ, θ)w̃ where α(x) =
(α1(x), α2(x))

t and β(λ, θ) is a smooth matrix of the form

β(λ, θ) = λ

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
,

where λ = λ(x) and θ = θ(x) are smooth functions satisfying λ > 0. Moreover,

Ã = ϕ∗ (λ
2A) ,

B̃1 = ϕ∗ (2λ (α1 cos(θ) + α2 sin(θ))A+ λ cos(θ)B1 + λ sin(θ)B2) ,

B̃2 = ϕ∗ (2λ (−α1 sin(θ) + α2 cos(θ))A− λ sin(θ)B1 + λ cos(θ)B2) ,

C̃ = ϕ∗ (C + ((α1)
2 + (α2)

2)A+ α1B1 + α2B2) .

(4.9)

(ii) Conversely, if a diffeomorphism x̃ = ϕ(x) and a 4-tuple of functions (α1, α2, λ, θ)
on X , with λ > 0, satisfy (4.9), then the feedback transformation x̃ = ϕ(x)
and ψ(x, w̃) = α(x) + β(λ, θ)w̃ brings ΞpE into Ξ̃pE.

Remark (Locality of the results). When we introduced the definition of p-elliptic
systems ΞpE, we assumed that this form holds locally around an arbitrary point
(x0, w0). We see, in statement (i) of the above proposition, that the pure feedback
transformations w = ψ(x, w̃) that conjugate p-elliptic systems are global with re-
spect to w. Therefore, in all results below, we will consider the form ΞpE locally
around x0 and globally in w. ◆

Proof.

(i) Clearly diffeomorphisms of X map p-elliptic systems into p-elliptic systems
and we have to show that the pure feedback transformations w = ψ(x, w̃) that
conjugate p-elliptic systems are of the form w = α(x) + β(λ, θ)w̃). To this
end, we apply (w1, w2) = (ψ1(x, w̃), ψ2(x, w̃)) to ΞpE, which yields

ẋ = A(ψ2
1 + ψ2

2) +B1ψ1 +B2ψ2 + C.(4.10)

Since the vector fields A = A(x) and Bi = Bi(x) are linearly independent, we
conclude that in order to preserve the p-elliptic structure of the system, the
functions ψ2

1 + ψ2
2, ψ1, and ψ2 have to satisfy the following conditions:

(a) ∂3ψi

∂w̃3
j
= ∂2ψi

∂w̃1∂w̃2
= 0, for i, j = 1, 2, i.e. ψi has to be a polynomial of degree

at most 2 in w̃ and without mixed term w̃1w̃2,

(b) ∂3(ψ2
1+ψ

2
2)

∂w̃3
j

=
∂2(ψ2

1+ψ
2
2)

∂w̃1∂w̃2
= 0, for j = 1, 2, i.e. the same as above for the

function ψ2
1 + ψ2

2,

(c) ∂2(ψ2
1+ψ

2
2)

∂w̃2
1

=
∂2(ψ2

1+ψ
2
2)

∂w̃2
2

, i.e. we keep the same coefficient before the quadratic
expression,
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Solutions of those conditions are given by ψ = α+βw̃ with α = (α1(x), α2(x))
t

and β of the form

either β =

(
β1 −β2
β2 β1

)
, or β =

(
β1 β2
β2 −β1

)
.

Observe that the latter form of β is the same as the former up to permutation
of the role of w1 and w2, thus we shall restrict feedback transformations to
the former form of β only. Since feedback transformations are invertible, we
have det(β) = (β1)

2 + (β2)
2 ̸= 0. Thus, we set λ = (β1)

2 + (β2)
2 and θ as a

solution of cos(θ) = β1
λ

and sin(θ) = β2
λ

to obtain the required form of feed-
back transformations. Secondly, establishing relation (4.9) is a straightforward
computation from (4.10) using ψ = α+β(λ, θ)w̃ and identifying quadratic and
affine terms.

(ii) Conversely, for ϕ and (α1, α2, λ, θ) satisfying (4.9), we clearly establish feed-
back equivalence of ΞpE and Ξ̃pE via x̃ = ϕ(x) and w = α + β(λ, θ)w̃.

■

We will develop relations involving structure functions attached uniquely to the
tuple (A,B1, B2, C) only and thus independent of the action of diffeomorphisms of X .
So we will act on ΞpE = (A,B1, B2, C) by (α, λ, θ) and we will denote (Ã, B̃1, B̃2, C̃)
the result of that action (given by (4.9) with ϕ = Id) and call it a reparametrisation.
For a p-elliptic system ΞpE, we call the triple (A,B1, B2) a p-elliptic frame (pE-
frame, shortly) and we introduce the structure functions µki and νk for i = 1, 2 and
k = 0, 1, 2 defined by the following brackets expressions

[A,Bi] = µ0
iA+ µ1

iB1 + µ2
iB2, [B1, B2] = ν0A+ ν1B1 + ν2B2.

Definition 4.5 (Types of p-elliptic frames). For pE-frames (A,B1, B2), we define
the following subclasses

(a) pseudo-commutative pE-frames if [A,Bi] = 0 mod span {A}, that is µ1
i =

µ2
i = 0 for i = 1, 2;

(b) almost-commutative pE-frames if [A,Bi] = [B1, B2] = 0 mod span {A}, that
is µ1

i = µ2
i = ν1 = ν2 = 0 for i = 1, 2;

(c) commutative pE-frames if [A,Bi] = [B1, B2] = 0, that is µki = νk = 0 for
i = 1, 2 and k = 0, 1, 2.

Clearly each class is a subclass of the next one and observe that by (4.9) the
distribution span {A} is uniquely attached to a p-elliptic system, thus pseudo and
almost-commutative pE-frames are well-defined. Moreover, reparametrisations act
on C by adding a linear combination of (A,B1, B2), it suggests to introduce the
following decomposition

C = γ0A+ γ1B1 + γ2B2,

with structure functions γk, for k = 0, 1, 2. The following technical lemma shows
how the three sets of structure functions µki , νk, and γk are transformed under
reparametrisations (α, λ, θ). Recall that λ > 0 and it will be convenient to denote
Λ := ln(λ).
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Lemma 4.1 (Structure functions transformations). Let ΞpE = (A,B1, B2, C) and
Ξ̃pE = (Ã, B̃1, B̃2, C̃) be two feedback equivalent p-elliptic systems with structure
functions µki , νk, γk, and µ̃ki , ν̃k, γ̃k, respectively. Then, we have the following
formulae

µ̃0
1 = −2LB̃1

(Λ) + λ cos(θ) (µ0
1 − 2α1µ

1
1 − 2α2µ

2
1 + 2LA (α1))

+λ sin(θ) (µ0
2 − 2α1µ

1
2 − 2α2µ

2
2 + 2LA (α2)) ,

µ̃0
2 = −2LB̃2

(Λ)− λ sin(θ) (µ0
1 − 2α1µ

1
1 − 2α2µ

2
1 + 2LA (α1))

+λ cos(θ) (µ0
2 − 2α1µ

1
2 − 2α2µ

2
2 + 2LA (α2)) ,

µ̃1
1 = λ2

(
LA (Λ) + cos2(θ)µ1

1 + sin2(θ)µ2
2 + cos(θ) sin(θ)(µ2

1 + µ1
2)
)
,

µ̃2
2 = λ2

(
LA (Λ) + cos2(θ)µ2

2 + sin2(θ)µ1
1 − cos(θ) sin(θ)(µ2

1 + µ1
2)
)
,

µ̃2
1 = λ2

(
LA (θ) + cos2(θ)µ2

1 − sin2(θ)µ1
2 − cos(θ) sin(θ)(µ1

1 − µ2
2)
)
,

µ̃1
2 = λ2

(
−LA (θ) + cos2(θ)µ1

2 − sin2(θ)µ2
1 − cos(θ) sin(θ)(µ1

1 − µ2
2)
)
,

(4.11)

ν̃0 = ν0 − 2α1ν
1 − 2α2ν

2 + 2α1µ
0
2 − 2α2µ

0
1 + 4α1α2(µ

1
1 − µ2

2)
+4(α2)

2µ2
1 − 4(α1)

2µ1
2 + 4 (α1LA (α2)− α2LA (α1))

+2LB1 (α2)− 2LB2 (α1) ,
ν̃1 = λ cos(θ) (ν1 − 2α2µ

1
1 + 2α1µ

1
2 − 2α2LA (Λ)− 2α1LA (θ)

−LB1 (θ)− LB2 (Λ))
+λ sin(θ) (ν2 − 2α2µ

2
1 + 2α1µ

2
2 + 2α1LA (Λ)− 2α2LA (θ)

−LB2 (θ) + LB1 (Λ)) ,
ν̃2 = −λ sin(θ) (ν1 − 2α2µ

1
1 + 2α1µ

1
2 − 2α2LA (Λ)− 2α1LA (θ)

−LB1 (θ)− LB2 (Λ))
+λ cos(θ) (ν2 − 2α2µ

2
1 + 2α1µ

2
2 + 2α1LA (Λ)− 2α2LA (θ)

−LB2 (θ) + LB1 (Λ)) ,

(4.12)

γ̃0 = 1
λ2

(γ0 − (α1)
2 − (α2)

2 − 2α1γ1 − 2α2γ
2) ,

γ̃1 = 1
λ
(cos(θ) (γ1 + α1) + sin(θ) (γ2 + α2)) ,

γ̃2 = 1
λ
(− sin(θ) (γ1 + α1) + cos(θ) (γ2 + α2)) .

(4.13)

Moreover, the following relations between the structure functions always hold:

LA (ν
0)− LB1 (µ

0
2) + LB2 (µ

0
1) = ν0(µ1

1 + µ2
2)− ν1µ0

1 − ν2µ0
2,

LA (ν
1)− LB1 (µ

1
2) + LB2 (µ

1
1) = ν1µ2

2 − ν2µ1
2 − µ0

2µ
1
1 + µ0

1µ
1
2,

LA (ν
2)− LB1 (µ

2
2) + LB2 (µ

2
1) = −ν1µ2

1 + ν2µ1
1 − µ0

2µ
2
1 + µ0

1µ
2
2.

(4.14)

Proof. The computations are quite long and tedious so we leave them for Ap-
pendix 4.C. ■

In the following proposition we are going to characterise pE-systems of the form

ΞdpE : ẋ =

1
0
0

 ((w1)
2 + (w2)

2) +

 0
q1
0

w1 +

 0
0
r2

w2 + C,

where q1 = q1(x) and r2 = r2(x). This pre-normal form is interesting as it de-
scribes a first prolongation of p-elliptic submanifolds SpE for which the matrix Q is
diagonalised (see Corollary 4.2 for details).

Proposition 4.4 (Characterisation of ΞdpE). For a p-elliptic system ΞpE = (A,B1, B2, C)
the following statements are equivalent:

(i) ΞpE is locally feedback equivalent to ΞdpE;
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(ii) There exists a reparametrisation (α, λ, θ) such that[
Ã, B̃1

]
= 0 mod span

{
Ã, B̃1

}
, and

[
Ã, B̃2

]
= 0 mod span

{
Ã, B̃2

}
;

(iii) The structure functions µki of the pE-frame (A,B1, B2) satisfy

LA

(
µ2
1 + µ1

2

µ1
1 − µ2

2

)
=
(
µ1
2 − µ2

1

) [
1 +

(
µ2
1 + µ1

2

µ1
1 − µ2

2

)2
]
.(4.15)

Remark. If in relation (4.15) we have µ1
1 − µ2

2 = 0 but µ2
1 + µ1

2 ̸= 0 then we can
simply use the condition

LA

(
µ1
1 − µ2

2

µ2
1 + µ1

2

)
= −

(
µ1
2 − µ2

1

) [
1 +

(
µ1
1 − µ2

2

µ2
1 + µ1

2

)2
]
.(4.15’)

If we have µ1
1 − µ2

2 = 0 and also µ2
1 + µ1

2 = 0, then we fall into the case of the
Theorem 4.6 which characterises a special form of ΞdpE. ◆

Proof. The proof of the implication (i)⇒(ii) is immediate by a straightforward cal-
culation on the pE-frame (Ã, B̃1, B̃2) attached to ΞdpE.

(ii)⇒(iii). Assume that (A,B1, B2) is equivalent to (Ã, B̃1, B̃2) via a reparametri-
sation (α, λ, θ). Then, using relation (4.11) with µ̃2

1 = µ̃1
2 = 0 we obtain{

LA (θ) + cos2(θ)µ2
1 − sin2(θ)µ1

2 − cos(θ) sin(θ)(µ1
1 − µ2

2) = 0
−LA (θ) + cos2(θ)µ1

2 − sin2(θ)µ2
1 − cos(θ) sin(θ)(µ1

1 − µ2
2) = 0

,

which yields cos(2θ)(µ2
1 + µ1

2) − sin(2θ)(µ1
1 − µ2

2) = 0 and 2LA (θ) + µ2
1 − µ1

2 = 0.
Hence,

tan(2θ) =
µ2
1 + µ1

2

µ1
1 − µ2

2

, and 2LA (θ) = µ1
2 − µ2

1

and, finally, by differentiating the first relations along A we obtain relation (4.15).
(iii)⇒(ii). Choose θ satisfying tan(2θ) =

µ21+µ
1
2

µ11−µ22
, i.e. sin(2θ)(µ1

1−µ2
2)−cos(2θ)(µ2

1+

µ1
2) = 0, and differentiating this relation along A and using condition (4.15), we ob-

tain that LA (θ) = 1
2
(µ1

2 − µ2
1). Applying the reparametrisation α = 0, λ = 1,

and θ as above, we obtain, using (4.11), that the new pE-frame (Ã, B̃1, B̃2) satisfies
µ̃2
1 = µ̃1

2 = 0.
(ii)⇒(i). Assume that the pE-frame (Ã, B̃1, B̃2) of ΞpE satisfies

[
Ã, B̃1

]
= 0

mod span
{
Ã, B̃1

}
and

[
Ã, B̃2

]
= 0 mod span

{
Ã, B̃2

}
. Introduce coordinates

(z, ỹ1, ỹ2) = ϕ(x) such that ϕ∗Ã = ∂
∂z

,

B1 = ϕ∗B̃1 =

q0q1
q2

 , and B2 = ϕ∗B̃2 =

r0r1
r2

 .

By assumption, we have ρ [A,B1] = B1 mod span {A} and ϱ [A,B2] = B2 mod span {A},
with ρ = ρ(x) and ϱ = ϱ(x). Thus we have qi = ρ∂qi

∂z
and ri = ϱ∂ri

∂z
, for i = 1, 2,
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yielding qi = Qi(ỹ) exp(D(x)) and ri = Ri(ỹ) exp(G(x)). Since A ∧ B1 ∧ B2 ̸=
0 we deduce that the distributions Q = span

{
Q1(ỹ)

∂
∂ỹ1

+Q2(ỹ)
∂
∂ỹ2

}
and R =

span
{
R1(ỹ)

∂
∂ỹ1

+R2(ỹ)
∂
∂ỹ2

}
, living on the ỹ-space, can simultaneously be recti-

fied, i.e. there exist coordinates (y1, y2) such that span {dy1} = ann (R) and
span {dy2} = ann (Q) (see Corollary A.1 of Appendix A). With respect to this
new coordinate system, ΞpE takes the form

ẋ =

1
0
0

 ((w1)
2 + (w2)

2) +

q0q1
0

w1 +

r00
r2

w2 + C,

and applying the transformation (w̃1, w̃2) =
(
w1 +

q0
2
, w2 +

r0
2

)
, we obtain ΞdpE. ■

We now, state our main classifications results. We start with a characterisation,
via relations between the structure functions, of the following normal form

Ξ′
pE : ẋ =

1
0
0

 ((w1)
2 + (w2)

2) +

0
1
0

w1 +

0
0
1

w2 + C,

which clearly corresponds to the existence of a commutative pE-frame.

Theorem 4.6 (Existence of a commutative pE-frame). Consider a p-elliptic system
ΞpE with pE-frame (A,B1, B2) and with structure functions µki , for i = 1, 2 and
k = 0, 1, 2. Then, the following statements are equivalents:

(i) ΞpE is feedback equivalent to Ξ′
pE;

(ii) There exists a feedback reparametrisation (α, λ, θ) such that (Ã, B̃1, B̃2) is a
commutative pE-frame;

(iii) There exists a feedback reparametrisation (α, λ, θ) such that (Ã, B̃1, B̃2) is an
almost-commutative pE-frame;

(iv) There exists a feedback reparametrisation (α, λ, θ) such that (Ã, B̃1, B̃2) is a
pseudo-commutative pE-frame;

(v) The structure functions µki satisfy

µ1
1 − µ2

2 = 0, and µ2
1 + µ1

2 = 0.(4.16)

Observe that a general pE-frame defines nine structure function µki , νk and that
the existence of a commutative pE-frame require that only two of them are de-
termined by others (relation (4.16) above). That is, we have to normalise seven
structure functions using four feedback functions, namely λ, θ, α1, and α2, and
respecting the three Jacobi relations (4.14).

Proof. We will show (i)⇒ (v)⇒ (iv)⇒ (iii)⇒ (ii)⇒ (i).
The implication (i) ⇒ (v) is an immediate consequence of (4.11) with µ̃1

1 = µ̃2
2 =

µ̃2
1 = µ̃1

2 = 0.
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Conversely, for (v)⇒ (iv), consider a pE-frame (A,B1, B2) with structure func-
tions µki and νk satisfying (4.16). Take any smooth solution (Λ, θ) of the following
independent first order partial differential equations,

LA (θ) = −µ2
1, and LA (Λ) = −µ1

1,

and apply the reparametrisation α = 0 and (λ, θ). Using relation (4.11) we obtain
that the new frame (Ã, B̃1, B̃2) satisfies µ̃ji = 0 for i, j = 1, 2, hence it is pseudo-
commutative.

(iv) ⇒ (iii). Assume that (Ã, B̃1, B̃2) is a pseudo-commutative frame. Observe
that due to the last two relations of (4.14) we have LÃ (ν̃

i) = 0, for i = 1, 2. We
claim that there exist smooth solutions of the following systems

LÃ (Λ) = 0, LÃ (θ) = 0,

{
LB̃1

(θ) + LB̃2
(Λ) = ν̃1

LB̃2
(θ)− LB̃1

(Λ) = ν̃2
.

The latter system can be seen as non-homogeneous Cauchy-Riemann equations in
the space of leaves of the distribution span

{
Ã
}

. Thanks to Jack Lee [Lee20], we
have the interpretation that this system translates the fact that some metric is
conformally flat (in the sense that the metric is conform to the euclidean metric).
The latter problem can always be solved in two dimension, which means that we
can bring the system into the classical (that is, with commuting B̃1 and B̃2) non-
homogeneous Cauchy-Riemann equations, for which smooth solutions always exist
(see e.g. [Kra17, theorem 10.1.2]). Applying the reparametrisation (λ, θ) given by
any smooth solutions gives a new pE-frame (Ā, B̄1, B̄2) satisfying µ̄ji = ν̄j = 0, for
i, j = 1, 2; thus that frame is almost-commutative.

(iii) ⇒ (ii). Assume that (Ā, B̄1, B̄2) is an almost-commutative pE-frame. Ap-
plying the reparametrisation (α, 1, 0), where (α1, α2) is any smooth solution of the
system of equations

2LA (α1) = −µ̄0
1, and 2LA (α2) = −µ̄0

2,

we obtain a new pE-frame (Â, B̂1, B̂2) with µ̂ki = ν̂j = 0, for i, j = 1, 2 and k = 0, 1, 2.
Finally, observe that the first relation of (4.14) implies LÂ (ν̂

0) = 0. Now take any
solution α1 of the system (whose integrability condition is indeed, LÂ (ν̂

0) = 0){
LÂ (α1) = 0

2LB̂2
(α1) = ν̂0,

and apply the reparametrisation (α1, 0, λ = 1, θ = 0) to obtain a pE-frame (A,B1, B2)
which is commutative.

(ii) ⇒ (i). Consider a p-elliptic system ΞpE such that its pE-frame (A,B1, B2)
is commutative. Apply a diffeomorphism (z, y1, y2) = ϕ(x) satisfying ϕ∗A = ∂

∂z
,

ϕ∗B1 =
∂
∂y 1

, and ϕ∗B2 =
∂
∂y2

. In those coordinates ΞpE takes the form Ξ′
pE. ■

Remark (Summary of the construction of a commutative pE-frame). Under rela-
tion (4.16), the proof (v) ⇒ (ii) of the above theorem consists in, successively,
constructing a feedback (α, λ, θ) solution of the following systems of first order par-
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tial differential equations
LA (Λ) = −µ1

1

LA (θ) = −µ2
1

LB1 (θ) + LB2 (Λ) = ν1

LB2 (θ)− LB1 (Λ) = ν2

2LA (α2) = 2LB2 (Λ)− µ0
2 + 2α1µ

2
1{

LA (α1) = 2LB1 (Λ)− µ0
1 + 2α2µ

2
1

2LB2 (α1) = ν0 − 2α1ν
1 − 2α2ν

2 + 2LB1 (α2)− 4α2LB1 (Λ) + 4α1LB2 (Λ)
.

Most of the time, integrability conditions are guaranteed by the Jacobi identity
(4.14). However, for the system for λ and θ, the difficulty of showing the existence
of solutions lies in the fact that the equations for Λ and θ cannot be separated. The
interpretation of that system as the conformal equivalence of some metric allows
to show that smooth solutions exist. That interpretation will nicely generalise in
higher dimension. ◆

Remark (On the explicit construction of a commutative pE-frame). In the proof
of the previous theorem observe that we first use (λ, θ) to pass from a pE-frame
to an almost commutative pE-frame, that step requires to solve first order partial
differential equations and thus, there is no guarantee that we can explicitly con-
struct λ and θ. However the passage from an almost-commutative pE-frame to a
commutative pE-frame can be made explicit (in coordinates in which A is rectified
and, simultaneously, B1 and B2 are rectified modulo span {A}) as follows. Consider
a p-elliptic system ΞpE with an almost-commutative frame. Thus, in a suitable
coordinate system we have

ẋ =

1
0
0

 ((w1)
2 + (w2)

2) +

b1(x)1
0

w1 +

b2(x)0
1

w2 + C(x).

Using the reparametrisation (w1, w2) =
(
w̃1 − b1

2
, w̃2 − b2

2

)
we obtain the form Ξ′

pE

in the same coordinates. ◆

In the remaining part of this subsection, we will fully characterise the following
normal forms of p-elliptic systems (special subclasses of Ξ′

pE):

Ξ′′
pE : ẋ =

1
0
0

 ((w1)
2 + (w2)

2) +

0
1
0

w1 +

0
0
1

w2 +

c0(x)0
0

 ,

Ξ′′′
pE : ẋ =

1
0
0

 ((w1)
2 + (w2)

2) +

0
1
0

w1 +

0
0
1

w2 +

c00
0

 , c0 ∈ R.

Recall that p-elliptic systems ΞpE are parametrisation of p-elliptic submanifolds SpE
given by the 4-tuple

(
∂
∂z
, Q, b, c

)
, with Q a symmetric 2 by 2 matrix of constant

signature (2, 0), b is a covector, and c is a smooth function. Observe that systems
Ξ′
pE correspond to a parametrisation of p-elliptic submanifold for which the matrix

Q is normalised to Id2. The normal form Ξ′′
pE is interesting because it represents a

parametrisation of the following p-elliptic submanifold

S ′′
pE = {ż = ẏ21 + ẏ22 + c0(x)},
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that is, a p-elliptic submanifold with normalised matrix Q and, additionally, nor-
malised one-form b. The second form Ξ′′′

pE characterises the submanifold without
functional parameters, namely, those that do not depend on the point x ∈ X (corre-
sponding control-systems are called trivialisable in [Ser09]). Moreover, we will show
that the latter case can always be brought into a canonical form with c0 = 0 or
c0 = ±1.

Our conditions will be expressed for ΞpE in terms of relations between structure
functions and, therefore, are checkable on any p-elliptic system. However, those con-
ditions are complicated to interpret and it will be convenient to give, as a corollary,
the same conditions for the system Ξ′

pE, that is, for a commutative pE-frame. For
any p-elliptic system ΞpE, We define the function Γ = γ0 + (γ1)2 + (γ2)2, which is
conjugated by diffeomorphisms and is transformed by λ2Γ̃ = Γ under reparametri-
sations (α, λ, θ), as it can be computed from (4.13).

Theorem 4.7 (Classification results of p-elliptic systems). Consider a p-elliptic
system ΞpE = (A,B1, B2, C) with structure function (µki , ν

k, γk). Then we have

(i) ΞpE is equivalent to Ξ′
pE if and only if

µ1
1 − µ2

2 = 0, and µ2
1 + µ1

2 = 0.(4.16)

(ii) ΞpE is equivalent to Ξ′′
pE if and only if (4.16) hold and, additionally, we have

(4.17) − 4
(
γ1LA

(
γ2
)
− γ2LA

(
γ1
))

+ 2LB1

(
γ2
)
− 2LB2

(
γ1
)
=

ν0 + 2γ1
(
ν1 − µ0

2

)
+ 2γ2

(
ν2 + µ0

1

)
+ 4

(
(γ1)2 + (γ2)2

)
µ2
1,

L2
A (γ

1) = LA
(
1
2
µ0
1 + γ2µ2

1

)
+ LB1 (µ

1
1) +

1
2
µ0
1µ

1
1

−µ1
1 (−LA (γ1) + γ2µ2

1)− µ2
1

(
−LA (γ2) + 1

2
µ0
2 + γ1µ1

2

)
,

L2
A (γ

2) = LA
(
1
2
µ0
2 + γ1µ1

2

)
+ LB2 (µ

1
1) +

1
2
µ0
2µ

1
1

−µ1
2

(
−LA (γ1) + 1

2
µ0
1 + γ2µ2

1

)
− µ2

2 (−LA (γ2) + γ1µ1
2) ,

(4.18)

LB2 (LA (γ
1))− LB1 (LA (γ

2)) = −ν0µ1
1

−LB1

(
1
2
µ0
2 + γ1µ1

2

)
+ ν1

(
−LA (γ1) + 1

2
µ0
1 + γ2µ2

1

)
+LB2

(
1
2
µ0
1 + γ2µ2

1

)
+ ν2

(
−LA (γ2) + 1

2
µ0
2 + γ1µ1

2

)
,

LB1 (LA (γ
1)) + LB2 (LA (γ

2)) = ν0µ0
1

+LB1

(
ν2 + 1

2
µ0
1 + γ2µ2

1

)
− ν1

(
ν1 + LA (γ

2)− 1
2
µ0
2 − γ1µ1

2

)
−LB2

(
ν1 − 1

2
µ0
2 − γ1µ1

2

)
− ν2

(
ν2 − LA (γ

1) + 1
2
µ0
1 + γ2µ2

1

)
.

(4.19)

(iii) ΞpE is equivalent to Ξ′′′
pE if and only if (4.16), (4.17), (4.18), (4.19) hold and,

additionally, we have

LA (Γ) + 2Γµ1
1 = 0,

LB1 (Γ) + 2ΓLA (γ
1)− Γ (µ0

1 − 2γ1µ1
1 + 2γ2µ2

1) = 0,
LB2 (Γ) + 2ΓLA (γ

2)− Γ (µ0
2 + 2γ1µ1

2 − 2γ2µ2
2) = 0.

(4.20)

Remark (Idea of the theorem). The idea behind statement (ii) of the above theorem
is the following. For Ξ′′

pE, with structure functions (µ̃ki , ν̃k, γ̃k), we have µ̃ki = ν̃k = 0
(i.e. a commutative pE-frame exits) and γ̃1 = γ̃2 = 0. Relation (4.13) imposes that
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we have α1 = −γ1 and α2 = −γ2, thus α is fixed and the group of reparametri-
sation now depends arbitrarily on (λ, θ) only. Conditions (4.16), (4.17),(4.18), and
(4.19), describe then the existence of a reparametrisation (λ, θ), α being fixed by
the above constraint, such that a commutative pE-frame exists. The construction
of this reparametrisation is given by solutions of two systems of three first order
partial differential equations (see the proof below) and thus some integrability con-
ditions are required. Those conditions are given by (4.18) and (4.19), notice that
only 2 integrability conditions are required for each system (instead of the three
that are expected) because one is always fulfilled by the last two relations of (4.14).
And, condition (4.17) ensures that for the constructed pE-frame (Ã, B̃1, B̃2) we have
ν̃0 = 0.

The idea behind statement (iii) is globally the same, the additional condition
(4.20) ensures that the resulting function c0 of Ξ′′

pH is constant. Indeed for the
system Ξ′′

pH we have Γ = c0 and relation (4.20) implies that ∂c0
∂z

= ∂c0
∂y1

= ∂c0
∂y2

= 0,
i.e. c0 is constant. ◆

Proof.

(i) It is Theorem 4.6.

(ii) Assume that ΞpE with structure functions (µki , νk, γk) is equivalent to Ξ′′
pE with

structure functions µ̃ki = ν̃k = 0, γ̃1 = γ̃2 = 0, and γ̃0 = c0(x). The necessity of
(4.16) is immediate from Theorem 4.6. Using relation (4.13) with γ̃1 = γ̃2 = 0
we obtain that α1 = −γ1 and α2 = −γ2. Moreover, from (4.11) and (4.12),
with µ̃ki = ν̃k = 0, we deduce, first (with ν̃0 = 0) the necessity of (4.17), and
second the following systems of first order partial differential equations for
Λ = ln(λ) and θ:

LA (Λ) = −µ1
1

LB1 (Λ) = −LA (γ1) + 1
2
µ0
1 + γ2µ2

1

LB2 (Λ) = −LA (γ2) + 1
2
µ0
2 + γ1µ1

2

,

and


LA (θ) = −µ2

1

LB1 (θ) = ν1 + LA (γ
1)− 1

2
µ0
1 − γ2µ2

1

LB2 (θ) = ν2 − LA (γ
2) + 1

2
µ0
2 + γ1µ1

2

.

Those two systems imply 6 integrability conditions which are necessary, but
two are always provided by the last two equations of (4.14) and the four others
are given by (4.18) and (4.19).
Conversely, assume that the structure functions µki satisfy (4.16), (4.17), (4.18),
and (4.19). Then, there exists solutions λ and θ of the above systems (since
(4.18), (4.19), together with (4.14), form their integrability conditions), and
applying the reparametrisation ( w1

w2 ) =
(

−γ1
−γ2

)
+ β(λ, θ)w̃ yields the system

Ξ′′
pE.

(iii) Assume ΞpE, with structure functions (µki , ν
k, γk), is equivalent to Ξ′′′

pE, with
structure functions µ̃ki = ν̃k = 0, γ̃1 = γ̃2 = 0, and γ̃0 = c0 ∈ R. The necessity
of (4.16), (4.17), (4.18), and (4.19) is clear from the previous item of the proof
and we show that (4.20) is necessary as well. For Ξ′′′

pE we have Γ̃ = c0 ∈ R, and
under reparametrisations (α, λ, θ) we get Γ̃ = Γ

λ2
, where Γ = γ0+(γ1)2+(γ2)2.

Differentiating the last equation along Ã, B̃1, and B̃2 leads to relation (4.20).
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Conversely, assume that ΞpE satisfies (4.16), (4.17), (4.18), (4.19), and (4.20).
Then, by statement (ii), ΞpE can be brought into form Ξ′′

pE for which we have

(A,B1, B2) =
(
∂
∂z
, ∂
∂y 1

, ∂
∂y 2

)
and Γ = c0(x), thus (4.20) implies ∂c0

∂z
= ∂c0

∂y1
=

∂c0
∂y2

= 0 and finally c0 ∈ R, i.e. we actually have the normal form Ξ′′′
pE.

■

As announced, we give the conditions of the previous theorem for a commutative
pE-frame in order to provide interpretations of them.

Corollary 4.1 (Classification of Ξ′
pE). Consider a p-elliptic system Ξ′

pE = (A,B1, B2, C)
with structure functions (µki , ν

k, γk) = (0, 0, γk).

(i) Ξ′
pE is equivalent to Ξ′′

pE if and only if it satsifies

2γ1LA
(
γ2
)
− 2γ2LA

(
γ1
)
− LB1

(
γ2
)
+ LB2

(
γ1
)
= 0,(4.17’)

L2
A

(
γ1
)
= L2

A

(
γ2
)
= 0,(4.18’)

LA
(
LB2

(
γ1
)
− LB1

(
γ2
))

= LA
(
LB1

(
γ1
)
+ LB2

(
γ2
))

= 0.(4.19’)

(ii) Ξ′
pE is equivalent to Ξ′′′

pE if and only if (4.17’), (4.19’), and (4.19’) hold and,
additionally, we have

LA (Γ) = LB1 (Γ) + 2ΓLA
(
γ1
)
= LB2 (Γ) + 2ΓLA

(
γ2
)
= 0.(4.20’)

Remark (Interpretation of the conditions). Consider the system Ξ′
pE with commu-

tative pE-frame (A,B1, B2) and with structure functions µki = νk = 0 and γk. Con-
ditions (4.17’), (4.18’), and (4.19’) express the fact that there exists a reparametri-
sation (α, λ, θ) that, both, preserves the commutativity of the pE-frame and ensures
that we obtain γ̃1 = γ̃2 = 0.

In the rectified frame (A,B1, B2) =
(
∂
∂z
, ∂
∂y1
, ∂
∂y2

)
, the meaning of (4.18’) and

(4.19’) is clear, they imply that

γ1 = γ11(y)z + γ12(y)
γ2 = γ21(y)z + γ22(y)

, with
∂γ11
∂y1

= −∂γ
2
1

∂y2
and

∂γ11
∂y2

=
∂γ21
∂y1

.(4.21)

That is, the function γz(y) := ∂
∂z

(γ1 + iγ2) = γ11+iγ21 is holomorphic with respect to
the complex structure y = y1 + iy2. On the other hand, interpretation of condition
(4.17’), which gives an additional relation between the functions γij, is not so clear
yet. To summarise, the systems Ξ′

pE that are equivalent to Ξ′′
pE are parametrised

by one arbitrary smooth function of 3 variables, namely γ0(x), and two smooth
functions γ1 and γ2 of the form (4.21) and satisfying (4.17’).

Assume now that Ξ′
pE additionally satisfies (4.20’). The first condition implies

that Γ = Γ(y), and rewriting the last two equations as ∂ ln(Γ)
∂y

= −γ̄z and ∂ ln(Γ)
∂ȳ

= −γz
(replacing Γ by −Γ, if necessary), we deduce that ln(Γ) is harmonic, i.e. ∆ ln(Γ) = 0,
and thus is real analytic. Finally, the smooth solutions Γ of (4.20’) are given by

Γ(y) = G exp (φ(y)) , G ∈ R,

where φ(y) is a real analytic function satisfying ∂φ
∂y1

= −γ11 and ∂φ
∂y2

= −γ21 . Therefore,
the systems ΞpE that are equivalent to Ξ′′′

pE are parametrised by a real constant and
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two smooth functions γ1 and γ2 of the form (4.21) and satisfying (4.17’). If that
constant is G = 0, then Ξ′

pE is equivalent to Ξ0
pE; otherwise, if G > 0, resp. G < 0,

then Ξ′
pE is equivalent to Ξ+

pE, resp. Ξ−
pE, see proposition below. ◆

The following proposition gives a canonical from of systems Ξ′′′
pE depending on

whether c0 ̸= 0 or c0 = 0.

Proposition 4.5 (Canonical form of Ξ′′′
pE). Consider a pE-system ΞpE with structure

functions (µki , ν
k, γk) satisfying (4.16), (4.17), (4.18), (4.19), and (4.20). Then, it

always admits one of the following canonical forms

Ξ±
pE : ẋ =

1
0
0

 ((w1)
2 + (w2)

2) +

0
1
0

w1 +

0
1
0

w2 +

±10
0

 , or

Ξ0
pE : ẋ =

1
0
0

 ((w1)
2 + (w2)

2) +

0
1
0

w1 +

0
1
0

w2 +

0
0
0

 .

Moreover, ΞpE is equivalent to Ξ+
pE (resp. Ξ−

pE) if and only if Γ > 0 (resp. Γ < 0)
and to Ξ0

pE if and only if Γ ≡ 0.

Proof. If ΞpE satisfies (4.16), (4.17), (4.18), (4.19), and (4.20), then it is equivalent
to Ξ′′′

pE. If c0 = 0 then we have the canonical form Ξ0
pE, otherwise use the following

transformation (w1, w2) = (
√
|c0|w̃1,

√
|c0|w̃2) and (z̃, ỹ1, ỹ2) =

(
z

|c0| ,
y1√
|c0|
, y2√

|c0|

)
to obtain Ξ±

pE.
Since we always have Γ̃ = Γ

λ2
, clearly ΞpE (satisfying (4.16), (4.17), (4.18), (4.19),

and (4.20)) is equivalent to Ξ0
pE if and only if Γ ≡ 0 and is equivalent to Ξ+

pE or Ξ−
pE

if and only if Γ > 0 or Γ < 0, respectively. ■

We finish this subsection by explaining how to get normal and canonical forms
of p-elliptic submanifolds SpE. Recall that those submanifolds are given by an
equation of the form ż = ẏtQ(x)ẏ + b1(x)ẏ1 + b2(x)ẏ2 + c(x), with Q = ( q1 q2q2 q3 )
satisfying ∆2 = det(Q) = q1q3 − (q2)

2 > 0. Hence a direct parametrisation of SpE,
in terms of a control system, is given by

ΞSpE
:


ż = q1(w

2
1) + 2q2w1w2 + q3(w2)

2 + b1w1 + b2w2 + c
ẏ1 = w1

ẏ2 = w2

,

where we can always assume that q1 > 0. Observe that the above system ΞSpE
is

not of the previously used form ΞpE. Indeed, ΞSpE
contains a mixed term w1w2 and,

moreover, the functions q1 and q3 may be different, so the vector field A cannot be
identified. The following reparametrisation(

w̃1

w̃2

)
=

(√
q1

q2√
q1

0
√

∆2

q1

)(
w1

w2

)
transforms ΞSpE

into a system ΞS
pE, of the form ΞpE, for which A = ∂

∂z
, the vector

fields Bi depend on the functions qi and bi, and C = c(x) ∂
∂z

. The conditions of the
previous results can be tested on ΞS

pE and the obtained normal forms give normal
forms of SpE. More precisely, we have
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Corollary 4.2 (Normal and canonical forms of p-elliptic submanifolds). Consider
a p-elliptic submanifold SpE = {ż = ẏtQ(x)ẏ + b1(x)ẏ1 + b2(x)ẏ2 + c(x)} together
with its parametrisation ΞS

pE. The following statements hold:

(i) If ΞS
pE is equivalent to ΞdpE, then SpE is equivalent to

SdpE = {λ1(x)(ẏ1)2 + λ2(x)(ẏ2)
2 + b1(x)ẏ1 + b2(x)ẏ2 + c(x)},

where λi > 0.
(ii) If ΞS

pE is equivalent to Ξ′
pE, then SpE is equivalent to

S ′
pE = {(ẏ1)2 + (ẏ2)

2 + b1(x)ẏ1 + b2(x)ẏ2 + c(x)}.

(iii) If ΞS
pE is equivalent to Ξ′′

pE, then SpE is equivalent to

S ′′
pE = {(ẏ1)2 + (ẏ2)

2 + c(x)}.

(iv) If ΞS
pE is equivalent to Ξ′′′

pE, then SpE is equivalent to S ′′′
pE = {(ẏ1)2+(ẏ2)

2+ c},
with c ∈ R and, moreover, c can always be normalised to either c = 0 or
c = ±1.

Remark. All four statements (i) to (iv) are, actually, «if and only if» statements
but we presented them as implications that show how equivalence of control systems
allows to solve the original problem of equivalence of pE-submanifolds. ◆

Example. If q2 ≡ 0, then the conditions of the first above statements can readily
be enunciated. In that case, the system ΞS

pE is given by the following vector fields:

A =
∂

∂z
, B1 =

b1/√q11/
√
q1

0

 , B2 =

b2/√q30
1/
√
q3

 , and C = c
∂

∂z
.

Structure functions µji , νk, γk attached to this frame are given by:

µ0
1 =

1
√
q1

∂b1
∂z

, µ1
1 = −

1

2q1

∂q1
∂z

, µ2
1 = 0,

µ0
2 =

1
√
q3

∂b2
∂z

, µ1
2 = 0, µ2

1 = −
1

2q3

∂q3
∂z

,

ν0 =, ν1, ν2

γ0 = c, γ1 = γ2 = 0.

Hence, SpE is equivalent to S ′
pE if and only if, − 1

2q1

∂q1
∂z

= − 1
2q3

∂q3
∂z

, equivalently,
∂
∂z

(
q1
q3

)
= 0. ●

The normal form SdpE describes the diagonalisation of the matrix Q and for the
normal form S ′

pE, the matrix Q is fully normalised. Then with S ′′
pE, we additionally

normalised b = (b1, b2) and finally with S ′′′
pE we describe p-elliptic submanifolds with

no functional parameters, i.e. which do not depend on the point x ∈ X .

In this subsection we studied the classification problem of nonlinear p-elliptic
systems under the action of the group of feedback. Our classification includes several
normal forms and canonical forms. The conditions that we proposed are checkable
in terms of algebraic and differential relations between structure functions attached
to the p-elliptic structure of the system.
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2 Study of p-Hyperbolic systems

We now turn to the study of the equivalence to a p-hyperbolic system represented
by the normal form

Σ1,1 :

{
ẋ = A(x)(w2

1 − w2
2) +B(x)w + C(x)

ẇ = u
,

where A, B = (B1, B2), and C are smooth vector fields on a 3-dimensional manifold
X =M/D0. However, it will be more convenient to work with the following feedback
equivalent form, obtained by the change of coordinates w̃1 =

1
2
(w1 + w2) and w̃2 =

1
2
(w1 − w2), which is also denoted ΣpH (where we deleted the tildes),

ΣpH :

{
ẋ = A(x)w1w2 +B(x)w + C(x)
ẇ = u

.

The p-hyperbolic case is, in some sense, easier to analyse than the p-elliptic case,
because due to the last ΣpH-form the system is affine separately with respect to both
w1 and w2 (and not quadratic as in the p-elliptic case). In this section whenever we
refer to assumption (A3), we always mean

(A3)pH sgn (Ωω) = (1, 1).

In the following subsections we will, first, give a complete characterisation of p-
hyperbolic systems in terms of checkable algebraic and differential relations between
structure functions attached to control-affine systems and, second, working within
the class of p-hyperbolic systems we will give normal and canonical forms of p-
hyperbolic systems.

2.1 Characterisation of p-hyperbolic systems

In this subsection, we will, first, introduce general objects used in the statements of
the results and, second, we will fully characterise p-hyperbolic systems ΣpH , when
possible, we will give a geometric interpretation of our conditions. Those geometric
interpretations permit to characterise of a more specific class of p-hyperbolic sys-
tems (see Theorem 4.11).

Consider a control-affine system Σ : ξ̇ = f + g1u1 + g2u2 on a 5-dimensional
manifoldM and for which we define the following distributions

D0 = span {g1, g2} , and D1 = span {g1, g2, adfg1, adfg2} .

Recall that assumptions (A1) and (A2) imply that D0 is involutive and of constant
rank 2, and that D1 is of constant rank 4, moreover, (A3)pH implies that D1 is not
involutive.

Definition 4.8 (Weak isotropic frame). We say that a pair (g1, g2) is a weak isotropic
frame of D0 = span {g1, g2}, shortly WIF, if

[g1, adfg1] = [g2, adfg2] = 0 mod D1, and [g1, adfg2]− [g2, adfg1] = 0 mod D1.
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Notice that due to the Jacobi identity, the second condition is always satisfied
but we included it here for consistence with the previous section and the results
of the following chapter. Given a weak isotropic frame, we introduce the structure
functions µji,i and µj for i, j = 1, 2

[gi, adfgi] = µ1
i,iadfg1 + µ2

i,iadfg2 mod D0,
[g1, adfg2]− [g2, adfg1] = µ1adfg1 + µ2adfg2 mod D0.

(4.22)

The structure functions µj coincide with the structure functions (ν1, ν2), defined by
[g1, g2] = ν1g1 + ν2g2; indeed, by the Jacobi identity, we have µj = νj.

Proposition 4.6 (Existence and properties of weak isotropic frames).

(i) Under assumptions (A1), (A2), and (A3)pH, there exists a weak isotropic
frame.

(ii) If (g̃1, g̃2) is a WIF then (g1, g2) = (g̃1, g̃2)β is also a WIF if and only if either
β =

(
β1 0
0 β2

)
or β =

(
0 β1
β2 0

)
, where βi are smooth functions on M satisfying

βi(·) ̸= 0.

(iii) Under the feedback (g1, g2) = (β1g̃1, β2g̃2), the structure functions µji,i and µj

of a weak isotropic frame (g1, g2) and µ̃ji,i and µ̃j of (g̃1, g̃2) are related by

µ1
1,1 = (β1)µ̃

1
1,1 + Lg̃1 (β1) , µ2

1,1 = (β1)2

β2
µ̃2
1,1,

µ1
2,2 = (β2)2

β1
µ̃1
2,2, µ2

2,2 = (β2)µ̃
2
2,2 + Lg̃2 (β2) ,

µ1 = β2µ̃
1 − β2

β1
Lg̃2 (β1) , µ2 = β1µ̃

2 + β1
β2
Lg̃1 (β2) ,

(4.23)

and the transformation f 7→ f + gα does not change them.

Remark (Restriction of the feedback action). In all formulae below, we suppose
that the feedback β is diagonal (i.e. of the first type of statement (ii) of the above
proposition), clearly the anti-diagonal β requires permuting the fields g1 and g2
which does not change the presented results. ◆

Proof.

(i) Consider a control-affine system Σ given by vector fields f and g = (g1, g2).
By Proposition 3.1, there exists a feedback β1, such that for the new frame
ḡ = gβ1 we have Ω̄ω = ( 1 0

0 −1 ). Compose this feedback with β2 =
(
1 µ
1 −µ

)
,

where µ is an arbitrary non-vanishing function, to obtain Ω̃ω =
(

0 2µ
2µ 0

)
for the

frame g̃ = gβ1β2. Clearly g̃ is a weak isotropic frame.

(ii) Assume that (g1, g2) and (g̃1, g̃2) are two weak isotropic frames related by g̃ =
gβ. By relation (3.1) we have Ω̃ω = βtΩωβ with Ω̃ω =

(
0 µ̃
µ̃ 0

)
and Ωω =

(
0 µ
µ 0

)
.

By a direct computation, we obtain that β takes the required forms.

(iii) See calculations in Appendix 4.D.

■

Statements (i) and (ii) of the above proposition show that in the p-hyperbolic
case, under (A1), (A2), and (A3)pH, we can attach to Σ two well-defined mutually
transversal subdistributions of rank 1 of D0. Moreover, given any WIF (g1, g2), those
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distributions are defined as G1 = span {g1} and G2 = span {g2} and do not depend
on the choice of that WIF.

Under basic assumptions (A1), (A2), and (A3)pH there always exists a weak
isotropic frame and we are now going to reinforce this notion which will turn out to
be the key of the characterisation of p-hyperbolic systems.

Definition 4.9 (Strong isotropic frame). We say that a pair (g1, g2) is a strong
isotropic frame of D0 = span {g1, g2}, shortly SIF, if

[g1, adfg1] = [g2, adfg2] = 0 mod D0, and [g1, adfg2]− [g1, adfg2] = 0 mod D0.

In other words, a strong isotropic frame is a weak isotropic frame with all structure
functions satisfying µji,i = 0 and µj = 0.

Proposition 4.7 (Properties of strong isotropic frames).

(i) Any p-hyperbolic system ΣpH possesses a strong isotropic frame,

(ii) If (g̃1, g̃2) is a strong isotropic frame, then (g1, g2) = (β1g̃1, β2g̃2) is a weak
isotropic frame whose structure functions µji,i and µj satisfy

µ2
1,1 = µ1

2,2 = 0, and

µ1
1,1 = Lg̃1 (β1) , µ

2
2,2 = Lg̃2 (β2) , µ

1 = −β2
β1

Lg̃2 (β1) , µ
2 =

β1
β2

Lg̃1 (β2) .

(iii) If (g̃1, g̃2) is a strong isotropic frame, then g̃1 and g̃2 are commuting vector
fields.

Proof.

(i) Recall that ΣpH is given by the vector fields (g1, g2) =
(

∂
∂w1

, ∂
∂w2

)
and f =

A(x)w1w2 + B(x)w + C(x) mod D0. Then, clearly, (g1, g2) form a strong
isotropic frame of ΣpH .

(ii) Assume that (g̃1, g̃2) is a strong isotropic frame so it is a WIF satisfying µ̃ji,i =
µ̃j = 0. Then, (g1, g2) = (β1g̃1, β2g̃2) is also a WIF and applying formula
(4.23) we obtain the required relations for the structure function µji,i and µj

of (g1, g2).

(iii) Assume that (g̃1, g̃2) is a strong isotropic frame, i.e. µ̃ji,i = µ̃j = 0. Express
[g̃1, g̃2] = ν̃1g̃1 + ν̃2g̃2, then by the Jacobi identity applied to [f, [g̃1, g̃2]], we
obtain ν̃j = µ̃j = 0 for j = 1, 2.

■

From statement (ii) of the above proposition, we see that if Σ is feedback equiv-
alent to ΣpH (and thus possesses a SIF due to statement (i)), then the structure
functions of any its WIF have to satisfy

µ2
1,1 = 0, and µ1

2,2 = 0.(4.24)
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Moreover, observe that a feedback β (in fact the logarithm of β1 and β2) assuring
the passage from a WIF (g1, g2) into a SIF (g̃1, g̃2) satisfies two systems of two first
order partial differential equations:{

Lg1 (ln(β1)) = µ1
1,1

Lg2 (ln(β1)) = −µ1 and
{

Lg1 (ln(β2)) = µ2

Lg2 (ln(β2)) = µ2
2,2

.(4.25)

Integrability conditions for those systems give relations between the structure func-
tions that are necessary for the existence of a SIF (recall that µj = νj and that
[g1, g2] = ν1g1 + ν2g2):

Lg1 (µ
1) + Lg2

(
µ1
1,1

)
= −ν1µ1

1,1 + ν2µ1, and
Lg1
(
µ2
2,2

)
− Lg2 (µ

2) = ν1µ2 + ν2µ2
2,2.

(4.26)

Observe that relations (4.24) and (4.26) are algebraic and differential, respectively,
and thus can be explicitly tested on any given weak isotropic frame.

The following theorem shows, first, that those conditions are also sufficient for
the existence of a SIF and, second, that the existence of a SIF fully characterises
p-hyperbolic systems ΣpH .

Theorem 4.10 (Characterisation of p-hyperbolic systems). Consider a control-
affine system Σ satisfying assumptions(A1), (A2), and (A3)pH. Then the following
statements are equivalent.

(pH1) Σ is feedback equivalent to ΣpH ;

(pH2) For any weak isotropic frame (g1, g2) of Σ, the structure functions µki,i and µk
satisfy (4.24) and, moreover, the systems given by (4.25) have solutions;

(pH3) For any weak isotropic frame (g1, g2) of Σ, the structure functions µki,i and µk
satisfy (4.24) and (4.26);

(pH4) There exists a strong isotropic frame of Σ;

As in the p-elliptic case, we see that the existence of a strong frame is the crucial
condition in the characterisation of p-hyperbolic system.

Remark (Geometry of p-hyperbolic systems). The geometry of the existence of a
strong isotropic frame is the following. For any weak isotropic frame the following
distributions

D0 = span {g1, g2} , E1 = span {g1, adfg1} , and E2 = span {g2, adfg2}

are involutive, E1 and E2 modulo D0. For each one of them, using a feedback
β = (β1, β2), we can construct generators that commute (E1 and E2 modulo D0).
The existence of a strong isotropic frame implies that this construction can be done
for all three distributions simultaneously, i.e. there exists a feedback β = (β1, β2)
such that [g̃1, g̃2] = [g̃1, adf g̃1] = [g̃2, adf g̃2] = 0. ◆

Proof. We will show (pH1)⇒(pH2)⇒(pH3)⇒(pH4)⇒(pH1).
(pH1)⇒(pH2)⇒(pH3). It is the analysis performed above the theorem.
(pH3)⇒(pH4). Consider a control-affine system Σ given by vector fields f and
(g1, g2) and assume that (g1, g2) is a weak isotropic frame whose structure functions
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µji,i and µj satisfy (4.24) and (4.26). Condition (4.26) describe the integrability con-
ditions of the systems (4.25), thus smooth solutions β1 and β2 exists and observe that
necessarily such solutions satisfy βi(·) ̸= 0. Let β1 and β2 be any smooth solutions of
systems (4.25) and apply the feedback f̃ = f and (g̃1, g̃2) =

(
1
β1
g1,

1
β2
g2

)
. We claim

that the pair (g̃1, g̃2) is a strong isotropic frame (see calculations in Appendix 4.E).
(pH4)⇒(pH1). Assume that the pair (g1, g2) is a SIF of Σ, recall from statement
(iii) of Proposition 4.7 that such pair satisfies [g1, g2] = 0. Therefore, introduce
coordinates (x,w) = (z, y1, y2, w1, w2) = ϕ(ξ) such that ϕ∗g1 =

∂
∂w1

and ϕ∗g2 =
∂
∂w2

.
After applying a suitable feedback, f 7→ f + α1g1 + α2g2, the system Σ takes the
form 

ẋ = f(x,w)
ẇ1 = u1
ẇ2 = u2

,

for which (g1, g2) =
(

∂
∂w1

, ∂
∂w2

)
is a strong isotropic frame. By definition of strong

isotropic frames, we have the following conditions on f

∂2f
∂w2

1

=
∂2f
∂w2

2

= 0.

Solutions of those equations admit the following closed form,

f(x,w) = A(x)w1w2 +B1(x)w1 +B2(x)w2 + C(x),

where A, B1, B2, and C are smooth vector fields onM/D0. For that form we have
D1 = span {Aw2 +B1, Aw1 +B2} mod D0 which, by assumption (A2), is of con-
stant rank 4 and since we have preserved the signature of Ωω in all our computations
we conclude that A /∈ D1 and thus we have A ∧B1 ∧B2 ̸= 0. ■

The characterisation of p-hyperbolic systems require two conditions. The first
one (4.24) is purely algebraic and is related to the p-hyperbolic structure of ΣpH ;
the second one (4.26) is differential and asserts that there exists a feedback β that
transforms a WIF into a SIF. In the following two remarks we are going to give an
interpretation of those two conditions.

Remark (Geometric interpretation of relation (4.24)). We already observed that
any WIF identifies two subdistributions G1 = span {g1} and G2 = span {g2} of rank
1 of D0. To them we add two subdistributions of D1:

A1 = D0 + [f,G1] , and A2 = D0 + [f,G2] .(4.27)

Notice that, by assumption (A2), those distributions are of constant rank 3 and they
are not involutive (otherwise Ωω would be 0), and they are invariant under feedback
transformations f 7→ f + gα and (g̃1, g̃2) = (β1g1, β2g2). Then, condition (4.24) is
equivalent to

G1 = C(A1), and G2 = C(A2),(4.28)

where C(Ai) denotes the characteristic distribution of Ai. Indeed, clearly, (4.28)
implies (4.24). Conversely, condition (4.24) implies that Gi ⊂ C(Ai), for i = 1, 2 and
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we show now that the characteristic distribution of A1 is of rank 1. Assume that
the vector field v = γ1g2 + γ2adfg1 ∈ A1, where γi are smooth functions, is also
characteristic, i.e. v ∈ C(A1). Then, we have[

γ1g2 + γ2adfg1, adfg1
]
= γ1 [g2, adfg1] mod A1

but by (A3)pH we have [g2, adfg1] /∈ D1 and thus we must have γ1 = 0. Similarly,
[γ2adfg1, g2] ∈ A1 implies that γ2 = 0. Therefore if v ∈ C(A1), then v = 0; hence
the characteristic distribution of A1 has rank 1 and is equal to G1. An analogous
reasoning applied to A2 shows that C(A2) is of rank 1, and thus equal to G2. ◆

Remark (Interpretation of relation (4.26)). For any WIF we consider the systems
of first order partial differential equations given by (4.25). We can always solve two
(out of four) equations Lg2 (ln(β1)) = −µ1 and Lg1 (ln(β2)) = µ2. Taking β1 and β2

as smooth solutions of those two equations yields a new frame (g̃1, g̃2) =
(

1
β1
g1,

1
β2
g2

)
which is commutative but not necessarily a SIF. In that frame relation (4.26) reads
Lg̃2
(
µ̃1
1,1

)
= Lg̃1

(
µ̃2
2,2

)
= 0. Therefore, if a commutative WIF is equivalent to a SIF,

then 4 structure functions are normalised, namely µ1 = µ2 = µ2
1,1 = µ1

2,2 = 0, and
the last two µ1

1,1 and µ2
2,2 depend on one of the w variables only. ◆

The distributions Ai defined by (4.27) carry some informations about the vector
fields A, B1, and B2 of the resulting p-hyperbolic system. In the following we will
give a geometric characterisation of the following normal form

Σ′
pH :


ż = w1w2 + c0(x)
ẏi = wi + ci(x)
ẇi = ui

.

This characterisation will be further investigated in the following subsection.

Theorem 4.11 (Geometric characterisation of Σ′
pH). Under assumptions (A1),

(A2), and (A3)pH, the system Σ is feedback equivalent to Σ′
pH if and only if, for

i = 1, 2,

(i) The distributions Gi satisfy Gi = C(Ai),
(ii) The distributions Ai have the growth vector (3, 4, 4).

Remark (Interpretation of the conditions). Observe that for a general p-hyperbolic
system ΣpH the distributions Ai read

A1 = span {Aw2 +B1}+D0 and A2 = span {Aw1 +B2}+D0.

Moreover, we have then Ai + [Ai,Ai] is of constant rank 4, since A ∧ B1 ∧ B2 ̸= 0,
and Ai+ [Ai,Ai] = Ai+ span {A} = span {A,Bi}+D0. For that system, condition
(i) is always fulfilled, and condition (ii) additionally requires that Ai + [Ai,Ai] is
involutive, that is,

[A,Bi] = 0 mod D0 + span {A,Bi} .

In other words, the distributions Ai are not involutive but in a minimal way, that
is, only one Lie bracket sticks out of Ai and if we add it to Ai we get Āi (the
involutive closure of Ai), involutive of rank 4. In the following subsection, see in
particular statement (v) of Proposition 4.9, we will give another interpretation of
that condition. ◆
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Proof. Clearly, the distributions Gi and Ai do not depend on feedback transfor-
mations f 7→ f + gα and (g1, g2) = (β1g̃1, β2g̃2). Moreover, Σ′

pH satisfies (i)

and (ii). Indeed, for Σ′
pH , we have A1 = span

{
∂
∂w1

, ∂
∂w2

, w2
∂
∂z

+ ∂
∂y1

}
and A2 =

span
{

∂
∂w1

, ∂
∂w2

, w1
∂
∂z

+ ∂
∂y2

}
leading to Ai + [Ai,Ai] = Ai + span

{
∂
∂z

}
, for i = 1, 2,

which are of constant rank 4 and involutive. This concludes the necessity part of
the proof.

Conversely, assume that Σ satisfies (i) and (ii). Denote by Āi the involutive
closure of Ai, which by assumption is of constant corank one. By the Frobenius
theorem, the annihilator of Ā1 (resp. Ā2) is given the differential dỹ2 (resp. dỹ1)
of a real function ỹ2 (resp. ỹ1). Introduce coordinates x̃ = (z̃, ỹ1, ỹ2) such that
dx̃ ∈ ann (D0), dỹ1 ∈ ann

(
Ā2

)
, and dỹ2 ∈ ann

(
Ā1

)
. Complete x̃ with w̃ = (w̃1, w̃2)

to a coordinate system (x̃, w̃) such that dw̃1 ∈ ann (G2) and dw̃2 ∈ ann (G1). In
those coordinates, the system Σ takes the form,

˙̃z = f0(x̃, w̃)
˙̃y1 = f1(x̃, w̃)
˙̃y2 = f2(x̃, w̃)
˙̃w1 = c1(x̃, w̃)u1
˙̃w2 = c2(x̃, w̃)u2

,

with f = f0
∂
∂z̃

+ f1
∂
∂ỹ1

+ f2
∂
∂ỹ2

, g1 = c1
∂
∂w̃1

, and g2 = c2
∂
∂w̃2

. Since ⟨dỹ1, adfg2⟩ =
⟨dỹ2, adfg1⟩ = 0, we have f1 = f1(x̃, w̃1) and f2 = f2(x̃, w̃2). Moreover, assumption
(A2) implies that ∂f1

∂w̃1
̸= 0 and ∂f2

∂w̃2
̸= 0. Thus, introducing new coordinates w̄i =

fi(x̃, w̃i) (observe that this transformation does not affect the distributions Gi and
thus the distributions Ai either) yields

A1 = span

{
∂

∂w̄1

,
∂

∂w̄2

,
∂

∂ỹ1
+
∂f0
∂w̄1

∂

∂z̃

}
and A2 = span

{
∂

∂w̄1

,
∂

∂w̄2

,
∂

∂ỹ2
+
∂f0
∂w̄2

∂

∂z̃

}
.

Since g1 (resp. g2) is a characteristic vector field for A1 (resp. A2) we have
[g1, adfg1] ∈ A1 and [g2, adfg2] ∈ A2 implying that ∂2f0

∂w̄2
1

= ∂2f0
∂w̄2

2
= 0. Therefore

we have f0 = a(x̃)w̄1w̄2 + b̃1(x̃)w̄1 + b̃2(x̃)w̄2 + c̃(x̃), notice that a(x̃0) ̸= 0 otherwise
we would have dim(Āi(x̃0)) = 3. Introduce a new coordinate system x = (z, y1, y2) =
(ψ(x̃), ỹ1, ỹ2) such that ż = w̄1w̄2+ b̄1(x)w̄1+ b̄2(x)w̄2+ c̄(x), for some new functions
b̄1, b̄2, and c̄, then introducing the following change (w1, w2) = (w̄1 + b̄2, w̄2 + b̄1)
produces, after applying a suitable feedback along the last two components, the
normal form Σ′

pH . ■

In this subsection, we fully characterised the feedback equivalence of a control-
affine system Σ to a p-hyperbolic system ΣpH and thus we solved the problem of
characterisation of p-hyperbolic submanifolds SpH (of TX ). Our characterisation
involves the construction of weak and strong isotropic frames of D0 and the existence
of a strong isotropic frame is the key of that characterisation. The conditions we
developed are necessary and sufficient and are checkable in terms of algebraic and
differential relations between structure functions attached to the system Σ. Finally,
we identified a geometry of a subclasses of p-hyperbolic systems and we used that
geometry to characterise the p-hyperbolic system Σ′

pH .
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In the following subsection, we will work inside the class of p-hyperbolic systems
and we will show multiple classification results, involving the construction of several
normal and canonical forms.

2.2 Classification of p-hyperbolic systems

We now investigate the problem of classification of p-hyperbolic submanifolds SpH
of TX . This problem is dealt with under the classification of its first prolongations
defined by

ΞpH : ẋ = A(x)w1w2 +B(x)w + C(x),

where A, B = (B1, B2), and C are smooth vector fields on X . Moreover, we assume
that A ∧ B1,∧B2 ̸= 0 in a neighbourhood of x0. The first prolongation ΞpH is
treated as a control-nonlinear system with state x ∈ X and controls w = (w1, w2)
and is represented by the 4-tuple of vector fields (A,B1, B2, C). We will describe
several orbits of ΞpH under the action of feedback transformations x̃ = ϕ(x) and w =
ψ(x, w̃). First of all we have the following characterisation of admissible feedback
transformations.

Proposition 4.8 (Equivalence of p-hyperbolic systems).

(i) If two p-hyperbolic systems ΞpH = (A,B1, B2, C) and Ξ̃pH = (Ã, B̃1, B̃2, C̃) are
feedback equivalent via a diffeomorphism x̃ = ϕ(x) and an invertible feedback
transformation (w1, w2) = (ψ1(x, w̃), ψ2(x, w̃)), then w1 = ψ1(x, w̃) = α1(x) +
β1(x)w̃1 and w2 = ψ2(x, w̃) = α2(x) + β2(x)w̃2, where βi ̸= 0. Moreover,

Ã = ϕ∗(β1β2A), B̃1 = ϕ∗(α2β1A+ β1B1),

B̃2 = ϕ∗(α1β2A+ β2B2), C̃ = ϕ∗(C + α1α2A+ α1B1 + α2B2).
(4.29)

(ii) Conversely, if a diffeomorphism x̃ = ϕ(x) and a 4-tuple of functions (α1, α2, β1, β2),
with βi(·) ̸= 0, satisfy (4.29), then the feedback transformation x̃ = ϕ(x) and
ψ(x, w̃) = (α1 + β1w̃1, α2 + β2w̃2) brings ΞpH into Ξ̃pH .

Remark (Locality of the results). When we introduced the definition of p-hyperbolic
systems ΞpH we assumed that this form holds around an arbitrary point (x0, w0). We
see that the pure feedback transformation w = ψ(x, w̃) that conjugate p-hyperbolic
systems is global with respect to w. Therefore, in all results below, we will consider
the form ΞpH locally around x0 and globally in w. ◆

Proof.

(i) Clearly, diffeomorphisms of X map p-hyperbolic systems into p-hyperbolic
systems and we have to show that only feedback transformations w = ψ(x, w̃)
of the form (α1(x)+β1(x)w̃1, α2(x)+β2(x)w̃2) conjugate p-hyperbolic systems.
Applying (w1, w2) = (ψ1(x, w̃), ψ2(x, w̃)) to ΞpH yields,

ẋ = Aψ1ψ2 +B2ψ1 +B2ψ2 + C.(4.30)
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Since A = A(x) and Bi = Bi(x) are linearly independent, we see that, in order
to preserve the p-hyperbolic structure of the system, the functions ψ1, ψ2, and
ψ1ψ2 have to be of degree at most 1 in w̃i. Hence,

∂2ψi
∂w̃2

j

=
∂2ψ1ψ2

∂w̃2
j

= 0, for i = 1, 2 and j = 1, 2.

Up to a permutation of w̃1 and w̃2, solutions to those equations are given
by, ψ1(x, w̃) = α1(x) + β1(x)w̃1 and ψ2(x, w̃) = α2(x) + β2(x)w̃2. Since the
feedback is invertible with respect to w̃ we also have β1β2 ̸= 0. Secondly,
establishing relation (4.29) is a straighforward computation from (4.30) using
ψ = (α1 + β1w̃1, α2 + β2w̃2) and identifying second order and affine terms.

(ii) Conversely, for ϕ and (α1, α2, β2, β2) satisfying (4.29), we clearly establish
feedback equivalence of ΞpH and Ξ̃pH via x̃ = ϕ(x) and w = ψ(x, w̃) =
(α1 + β1w̃1, α2 + β2w̃2).

■

We will develop relations involving structure functions attached to the 4-tuple
(A,B1, B2, C) only and thus independent from diffeomorphisms of X . So we will act
on (A,B1, B2, C) by (α, β) = (α1, α2, β1, β2) and we will denote by (Ã, B̃1, B̃2, C̃)
the result of that action (given by (4.29) with ϕ = Id), called a reparametrisation.
For a p-hyperbolic system ΞpH , we call the triple (A,B1, B2) a p-hyperbolic frame (a
pH-frame shortly) and we introduce the structure functions µki , and νk for i = 1, 2
and k = 0, 1, 2 defined by

[A,Bi] = µ0
iA+ µ1

iB1 + µ2
iB2, and [B1, B2] = ν0A+ ν1B1 + ν2B2.

Notice that we keep using symbols µki and νk to denote structure functions but they
have nothing in common with structure functions of the previous section.

Definition 4.12 (Types of p-hyperbolic frames). Consider a pH-frame (A,B1, B2),
we define the following subclasses:

(a) pseudo-commutative pH-frame if [A,Bi] = 0 mod span {A}, that is µ1
i = µ2

i =
0 for i = 1, 2;

(b) almost-commutative pH-frame if [A,Bi] = [B1, B2] = 0 mod span {A}, that
is µ1

i = µ2
i = ν1 = ν2 = 0 for i = 1, 2;

(c) commutative pH-frame if [A,Bi] = [B1, B2] = 0, that is µki = νk = 0 for
i = 1, 2 and k = 0, 1, 2;

Clearly, each class is nested in the next one and observe from (4.29) that the dis-
tribution span {A} is uniquely attached to a p-hyperbolic system and thus pseudo-
and almost-commutative pH-frames are well-defined. Moreover, since reparametri-
sations act on C by adding a linear combinations of A and Bi, it suggests to introduce
the decomposition

C = γ0A+ γ1B1 + γ2B2.

The following technical lemma shows how the three sets of structure functions µki ,
νk and γk are transformed under reparametrisations (α, β).
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Lemma 4.2 (Structure functions transformations). Let ΞpH = (A,B1, B2, C) and
Ξ̃pH = (Ã, B̃1, B̃2, C̃) be two feedback equivalent p-hyperbolic systems with structure
functions µki , νk, γi, and µ̃ki , ν̃k, γ̃k, respectively. Then we have,

µ̃0
1 = β1 [µ

0
1 − α1µ

1
1 − α2µ

2
1 + LA (α2)− α1LA (ln(β1))

−α2LA (ln(β2)− LB1 (ln(β1β2))] ,
µ̃0
2 = β2 [µ

0
2 − α1µ

1
2 − α2µ

2
2 + LA (α1)− α1LA (ln(β1))

−α2LA (ln(β2))− LB2 (ln(β1β2))] ,
µ̃1
1 = (β1β2µ

1
1 + β2LA (β1)) , µ̃2

2 = (β1β2µ
2
2 + β1LA (β2)) ,

µ̃2
1 = (β1)

2µ2
1, µ̃1

2 = (β2)
2µ1

2,

(4.31)

ν̃0 = [ν0 − α2ν
1 − α1ν

2 − α1µ
0
1 + α2µ

0
2 + (α1)

2µ2
1 − (α2)

2µ1
2]

+ [α1α2(µ
1
1 − µ2

2) + α2LA (α1)− α1LA (α2) + LB1 (α1)− LB2 (α2)] ,
ν̃1 = β2 [ν

1 + α2µ
1
2 − α1µ

1
1 − α1LA (ln(β1))− LB2 (ln(β1))] ,

ν̃2 = β1 [ν
2 + α2µ

2
2 − α1µ

2
1 + α2LA (ln(β2)) + LB1 (ln(β2))] ,

(4.32)

γ̃0 = 1
β1β2

(γ0 − α2γ
1 − α1γ

2 − α1α2) , γi = 1
βi
(γi + αi) i = 1, 2.(4.33)

Moreover, the following relations between the structure functions always hold:

LA (ν
0)− LB1 (µ

0
2) + LB2 (µ

0
1) = ν0(µ1

1 + µ2
2)− ν1µ0

1 − ν2µ0
2,

LA (ν
1)− LB1 (µ

1
2) + LB2 (µ

1
1) = ν1µ2

2 − ν2µ1
2 − µ0

2µ
1
1 + µ0

1µ
1
2,

LA (ν
2)− LB1 (µ

2
2) + LB2 (µ

2
1) = −ν1µ2

1 + ν2µ1
1 − µ0

2µ
2
1 + µ0

1µ
2
2.

(4.34)

Proof. The computations are quite long and tedious so we leave them for Ap-
pendix 4.F. ■

In the following proposition we will characterise, via relations between the struc-
ture functions, the following normal form:

Ξ′
pH : ẋ =

1
0
0

w1w2 +

0
1
0

w1 +

0
0
1

w2 + C(x),

which corresponds to the existence of a commutative pH-frame.

Proposition 4.9 (Existence of a commutative pH-frame). Consider a p-hyperbolic
system ΞpH with pH-frame (A,B1, B2) and with structure functions µki for i = 1, 2
and k = 0, 1, 2. Then the following statements are equivalent:

(i) ΞpH is feedback equivalent to Ξ′
pH ,

(ii) There exists a feedback reparametrisation (α, β) such that (Ã, B̃1, B̃2) is a com-
mutative pH-frame.

(iii) There exists a feedback reparametrisation (α, β) such that (Ã, B̃1, B̃2) is an
almost-commutative pH-frame.

(iv) There exists a feedback reparametrisation (α, β) such that (Ã, B̃1, B̃2) is a
pseudo-commutative pH-frame.

(v) The structure functions µki satisfy

µ2
1 = µ1

2 = 0.(4.35)
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A general pH-frame defines nine structure functions and it is striking that the
normalisation of only two of them is sufficient for the normalisation of all. But it
is somehow expected (that we have only two conditions) because we act on this set
of nine structure functions with four arbitrary functions (α, β) and we always have
three relations guaranteed by the Jacobi identity (4.34).

Moreover, observe that condition (4.35) implies

[A,B1] = 0 mod span {A,B1} , and [A,B2] = 0 mod span {A,B2} ,

and notice, by (4.29), that the distributions span {A,Bi} are invariant under reparametri-
sations. Compare this observation with the remark below Theorem 4.11 of the
previous subsection.

Proof. We will show (i)⇒(v)⇒(iv)⇒(iii)⇒(ii)⇒(i).
For (i)⇒(v). The system Ξ′

pH satisfies µ̃2
1 = µ̃1

2 = 0 and by relation (4.31) we
conclude that for ΞpH we necessarily have µ2

1 = µ1
2 = 0.

Conversely, for (v)⇒(iv), assume µ2
1 = µ1

2 = 0 then from (4.31) we immediately
have µ̃2

1 = µ̃1
2 = 0 for any reparametrisation (w1, w2) = (α1 + β1w̃1, α2 + β2w̃2).

We apply the reparametrisation given by α = 0 and by any non trivial solutions of
the equations LA (βi) = −βiµii, for i = 1, 2 (no Einstein summation convention); to
ensure that βi(·) ̸= 0 we may actually solve LA (ln(βi)) = −µii. Applying formula
(4.31) to the transformed pH-frame (Ã, B̃1, B̃2) we obtain µ̃ij = 0 for i, j = 1, 2
and thus we have produced a pseudo-commutative pH-frame. Notice that a pseudo-
commutative pH-frame is preserved by any reparametrisation satisfying LÃ (βi) = 0.

(iv)⇒(iii). Assume that (Ã, B̃1, B̃2) is a pseudo-commutative frame with struc-
ture functions (µ̃ki , ν̃k). We claim that there exists smooth solutions of the following
systems: {

LÃ (ln β1) = 0
LB̃2

(ln β1) = ν̃1
and

{
LÃ (ln β2) = 0
LB̃1

(ln β2) = −ν̃2 .

Indeed, on one hand the integrability conditions for the above systems read LÃ (ν̃
1) =

0 and LÃ (ν̃
2) = 0, respectively; on the other hand, the last two relations of (4.34),

with µ̃ji = 0, imply that we have LÃ (ν̃
i) = 0. Therefore, integrability conditions are

always fulfilled and thus smooth solutions of the above systems exist. Taking any
solutions ln(βi), we obtain a valid feedback transformation (w̃1, w̃2) = (β1w̄1, β2w̄2)
which, applied to (Ã, B̃1, B̃2), construct a new pH-frame (Ā, B̄1, B̄2) satisfying ν̄i = 0
and µ̄ji = 0, for i, j = 1, 2. Hence, (Ā, B̄1, B̄2) is an almost-commutative pH-frame.

(iii)⇒(ii). Let (Ā, B̄1, B̄2) be an almost-commutative pH-frame, that is, µ̄ji =
ν̄j = 0 for i, j = 1, 2. Take any solutions αi of the equations LĀ (α1) = −µ̄0

2 and
LĀ (α2) = −µ̄0

1 and apply the reparametrisation (w̄1, w̄2) = (w̃1+α1, w̃2+α2). Thus
we obtain a new pH-frame (Ã, B̃1, B̃2) satisfying

[
Ã, B̃i

]
= 0, for i = 1, 2. Finally,

take α2 as a solution of the system{
LÃ (α2) = 0
LB̃2

(α2) = ν̃0
,

whose integrability condition LÃ (ν̃
0) = 0 is guaranteed by the first equation of

(4.34). Applying (w̃1, w̃2) = (w1, w2 + α2), we obtain a new pH-frame satisfying
µki = νk = 0, for i = 1, 2 and k = 0, 1, 2, that is a commutative pH-frame.
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(ii)⇒(i). Consider a p-hyperbolic system ΞpH such that (A,B1, B2) is a commu-
tative pH-frame, apply a diffeomorphism x̃ = ϕ(x) such that ϕ∗A = ∂

∂z
, ϕ∗B1 =

∂
∂y1

,
and ϕ∗B2 =

∂
∂y2

. In those coordinates, ΞpH takes the form Ξ′
pH . ■

Remark (Summary of the construction of a commutative pH-frame). Under relation
(4.35), the proof (v)⇒(ii) of the above theorem consists in, successively, constructing
a feedback (α, β) given by solutions of the following systems of equations{

LA (ln(β1)) = −µ1
1

LB2 (ln(β1)) = ν1
,

{
LA (ln(β2)) = −µ2

2

LB1 (ln(β2)) = −ν2 ,

LA (α1) = LB2 (ln(β2)− µ0
2 − α1µ

1
1 + ν1, and,{

LA (α2) = LB1 (ln(β1)− µ0
1 − α2µ

2
2 − ν2

LB2 (α2) = α2LB2 (ln(β2))− α1LB1 (ln(β1)) + LB1 (α1) + ν0

obtained from equations (4.31) and (4.32) with µ̃ki = ν̃k = 0, for i = 1, 2 and
k = 0, 1, 2. The existence of solutions β of the first two systems requires two
integrability conditions which are always granted by the last two equations of (4.34).
Then, a solution α1 of the middle equation always exists and, finally, a solution α2

is guaranteed by the integrability condition given by the first relation of (4.34). ◆

In the remaining part of this section we will fully characterise the following two
normal forms of p-hyperbolic systems:

Ξ′′
pH : ẋ =

1
0
0

w1w2 +

0
1
0

w1 +

0
0
1

w2 +

c0(x)0
0


Ξ′′′
pH : ẋ =

1
0
0

w1w2 +

0
1
0

w1 +

0
0
1

w2 +

c00
0

 , c0 ∈ R.

Recall that p-hyperbolic systems ΞpH are parametrisation of p-hyperbolic subman-
ifolds SpH given by the triple ( ∂

∂z
, Q, b, c), with Q a symmetric matrix of constant

signature (1, 1) acting on leaves of the distribution span
{
∂
∂z

}
, b a differential one-

form in ann
(
∂
∂z

)
, and c is a smooth function. The first form Ξ′′

pH is interesting
because it represents a parametrisation of the following parabolic-hyperboloid sub-
manifold

S ′′
pH = {ż = ẏ1ẏ2 + c0(x)} ,

that is, a submanifold with normalised matrix Q and normalised one-form b. The
form Ξ′′′

pH characterises the submanifolds without functional parameters, namely,
those that do not depend on the point x ∈ X . Moreover, in the latter case we will
see that this normal form can be brought into a canonical form with either c0 = 0
or c0 = 1, see Proposition 4.10.

Our conditions will be expressed for ΞpH in terms of structure functions, and
therefore are checkable on any p-hyperbolic system ΞpH . However, those conditions
will be quite complicated to analyse, hence it will be convenient to give, as a corol-
lary, the same conditions for the system Ξ′

pH , that is in a commutative pH-frame.
We define the function

Γ = γ0 + γ1γ2
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that by diffeomorphisms ϕ of X is transformed by Γ̃◦ϕ = Γ and under reparametri-
sations (α, β) by β1β2Γ̃ = Γ, as it can be computed from (4.33).

Theorem 4.13 (Classification results of p-hyperbolic systems). Consider a p-hyperbolic
system ΞpH = (A,B1, B2, C) with structure functions (µki , ν

k, γk). We have

(i) ΞpH is equivalent to Ξ′
pH if and only if

µ2
1 = µ1

2 = 0.(4.35)

(ii) ΞpH is equivalent to Ξ′′
pH if and only if (4.35) holds and, additionally, we have

(4.36) γ1LA
(
γ2
)
− γ2LA

(
γ1
)
+ LB1

(
γ1
)
− LB2

(
γ2
)
=

ν0 + γ1
(
µ0
1 − γ2µ2

2 + ν2
)
+ γ2

(
−µ0

2 + γ1µ1
1 + ν1

)
,

L2
A (γ

1) = LA (µ
0
2 − γ1µ1

1 − ν1) + LB2 (µ
2
2)

+µ2
2 (γ

1µ1
1 + ν1 + LA (γ

1)) ,
L2
A (γ

2) = LA (µ
0
1 − γ2µ2

2 + ν2) + LB1 (µ
1
1)

−µ1
1 (−γ2µ2

2 + ν2 − LA (γ
2)) ,

(4.37)

LB1 (LA (γ
1)) = LB2 (ν

2) + LB1 (µ
0
2 − γ1µ1

1 − ν1) + µ2
2ν

0

+2ν1ν2 − ν2 (µ0
2 − γ1µ1

1 − LA (γ
1)) ,

LB2 (LA (γ
2)) = −LB1 (ν

1) + LB2 (µ
0
1 − γ2µ2

2 + ν2)− µ1
1ν

0

+2ν1ν2 + ν1 (µ0
1 − γ2µ2

2 − LA (γ
2)) .

(4.38)

(iii) ΞpH is equivalent to Ξ′′′
pH if and only if (4.35), (4.36), (4.37), (4.38) hold and,

additionally, we have

LA (Γ) + Γ(µ1
1 + µ2

2) = 0,
LB1 (Γ) + ΓLA (γ

2)− Γ (µ0
1 − γ2µ2

2) = 0,
LB2 (Γ) + ΓLA (γ

1)− Γ (µ0
2 − γ1µ1

1) = 0.
(4.39)

Remark (Idea of the theorem). The idea behind statement (ii) of the above propo-
sition is the following. For Ξ′′

pH , with structure functions (µ̃ki , ν̃
k, γ̃k), we have

µ̃ki = ν̃k = 0 (i.e. a commutative pH-frame exists) and γ̃1 = γ̃2 = 0. Relation
(4.33) imposes that we have α1 = −γ1 and α2 = −γ2, thus α is fixed and the group
of reprametrisations now depends on an arbitrary β only. Conditions (4.35), (4.36),
(4.37), and (4.38) describe then the existence of a reparametrisation β (we do not
change α1 and α2) such that a commutative pH-frame exists. The construction of
this reparametrisation is given by solutions of two systems of first order partial dif-
ferential equations (see the proof below) and thus some integrability conditions are
required. Those integrability conditions are given by (4.37) and (4.38); notice that
only 2 integrability conditions are required by each systems (instead of the expected
3) because one is always fulfilled by one of the last two relations of (4.34). And
condition (4.36) ensures that for the new frame (Ã, B̃1, B̃2) we have ν̃0 = 0.
The idea behind statement (iii) is mostly the same, the additional condition (4.39)
ensures that the resulting function c0 of Ξ′′

pH is constant. Indeed for system Ξ′′
pH ,

we have Γ = c0 and relation (4.39) implies that ∂c0
∂z

= ∂c0
∂y1

= ∂c0
∂y2

= 0, i.e. c0 is
constant. ◆
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Proof.

(i) It is Proposition 4.9.

(ii) Assume that ΞpH , with structure functions (µki , ν
k, γk), is equivalent to Ξ′′

pH ,
with structure functions µ̃ki = ν̃k = 0, γ̃1 = γ̃2 = 0, and γ̃0 = c0. The
necessity of (4.35) is immediate by Proposition 4.9. Using relation (4.33) with
γ̃1 = γ̃2 = 0 we obtain that α1 = −γ1 and α2 = −γ2. Moreover, from (4.31)
and (4.32) with µ̃ki = ν̃k = 0 we deduce, first (with ν̃0 = 0) the necessity
of (4.36) and, second, the following systems of first order partial differential
equations for ln(βi):

LA (ln(β1)) = −µ1
1

LB1 (ln(β1)) = −LA (γ2) + µ0
1 − γ2µ2

2 + ν2

LB2 (ln(β1)) = ν1
,

and


LA (ln(β2)) = −µ2

2

LB1 (ln(β2)) = −ν2
LB2 (ln(β2)) = −LA (γ1) + µ0

2 − γ1µ1
1 − ν1

.

Those two systems imply 6 integrability conditions which are necessary, but
two of them are always given by the last two equations of (4.34) and the other
four are given by (4.37) and (4.38).

Conversely, assume that (4.35), (4.36), (4.37), and (4.38) hold. Then there ex-
ists solutions ln(βi) of the above systems, and applying to ΞpH the reparametri-
sation (w1, w2) = (β1w̃1 − γ1, β2w̃2 − γ2) yields the system Ξ′′

pH .

(iii) Assume that ΞpH , with structure functions (µki , ν
k, γk), is equivalent to Ξ′′′

pH ,
with structure functions µ̃ki = ν̃k = 0, γ̃1 = γ̃2 = 0, and γ̃0 = c0 ∈ R. The
necessity of (4.35), (4.36), (4.37), (4.38) is clear from the previous item of
the proof and we show that (4.39) is necessary. For Ξ′′′

pH , we have Γ̃ = c0 ∈
R, and under a reparametrisation we have Γ̃ = Γ

β1β2
, where Γ = γ0 + γ1γ2.

Differentiating the last equation along Ã, B̃1, and B̃2, yields relation (4.39).

Conversely, assume that ΞpH satisfy (4.35), (4.36), (4.37), (4.38), and (4.39).
Then by statement (ii), the system ΞpH can be brought into form Ξ′′

pH for

which we have (A,B1, B2) =
(
∂
∂z
, ∂
∂y1
, ∂
∂y2

)
and Γ = c0(x), thus (4.39) reads

∂c0
∂z

= ∂c0
∂y1

= ∂c0
∂y2

= 0 and finally c0 ∈ R, i.e. we, actually, have the normal form
Ξ′′′
pH .

■

As announced we represent the conditions of the previous theorem in a commu-
tative pH-frame in order to give an interpretation of them.

Corollary 4.3 (Classification of Ξ′
pH). Consider a p-hyperbolic system Ξ′

pH = (A,B1, B2, C)
with structure functions (µki , ν

k, γk) = (0, 0, γk).

(i) Ξ′
pH is equivalent to Ξ′′

pH if and only if it holds

γ1LA
(
γ2
)
− γ2LA

(
γ1
)
+ LB1

(
γ1
)
− LB2

(
γ2
)
= 0,(4.36’)

L2
A

(
γ1
)
= L2

A

(
γ2
)
= 0,(4.37’)

LB1

(
LA
(
γ1
))

= LB2

(
LA
(
γ2
))

= 0.(4.38’)
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(ii) Ξ′
pH is equivalent to Ξ′′′

pH if and only if (4.36’), (4.37’), (4.38’) hold, and,
additionally, we have

LA (Γ) = LB1 (Γ) + ΓLA
(
γ2
)
= LB2 (Γ) + ΓLA

(
γ1
)
= 0.(4.39’)

Remark (Interpretation of the conditions). Consider the system Ξ′
pH with a commu-

tative pH-frame (A,B1, B2) and with structure functions µki = νk = 0 and γk. Con-
ditions (4.36’), (4.37’), and (4.38’) translate the fact that there exists a reparametri-
sation (α, β) that, both, preserves the commutativity of the pH-frame and ensures
that we obtain γ̃1 = γ̃2 = 0. In the rectified frame (A,B1, B2) =

(
∂
∂z
, ∂
∂y1
, ∂
∂y2

)
, the

meaning of conditions (4.37’) and (4.38’) is clear: they imply that we have

γ1 = γ11(y2)z + γ12(y), and γ2 = γ21(y1)z + γ22(y).(4.40)

Then, condition (4.36’) gives a relation between the functions γij whose interpretation
is not so clear yet. Therefore, the systems Ξ′

pH that are equivalent to Ξ′′
pH are

parametrised by one arbitrary smooth function of 3 variables, namely γ0(x), and
two smooth functions γ1 and γ2 of the form (4.40) and satisfying (4.36’).

Assume that Ξ′
pH additionally satisfies (4.39’). Clearly, the smooth solutions Γ

of (4.39’) are given by

Γ(y) = G exp

(∫
−γ11 dy2

)
exp

(∫
−γ21 dy1

)
, G ∈ R.

Therefore the systems Ξ′
pH that are equivalent to Ξ′′′

pH are parametrised by a real
constant and two smooth functions γ1 and γ2 of the form (4.40) and satisfying
(4.36’). If that constant satisfies G = 0 then Ξ′

pH is equivalent to Ξ0
pH otherwise if

G ̸= 0 then Ξ′
pH is equivalent to Ξ1

pH , see proposition below. ◆

The following proposition gives a canonical form of systems Ξ′′′
pH depending on

whether c0 = 0 or c0 ̸= 0.

Proposition 4.10 (Canonical form of Ξ′′′
PH). Consider a p-hyperbolic system ΞpH

with structure functions (µki , ν
k, γk) satisfying (4.35), (4.36), (4.37), (4.38), and

(4.39). Then, it always admits one of the following canonical form

Ξ0
pH : ẋ =

1
0
0

w1w2 +

0
1
0

w1 +

0
0
1

w2 +

0
0
0

 , or

Ξ1
pH : ẋ =

1
0
0

w1w2 +

0
1
0

w1 +

0
0
1

w2 +

1
0
0

 .

Moreover, ΞpH is equivalent to the former if and only if Γ ≡ 0, and to the latter if
and only if Γ ̸= 0.

Notice that if ΞpH is feedback equivalent to Ξ0
pH and thus Γ ≡ 0, then condition

(4.39) is automatically satisfied.
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Proof. If ΞpH satisfies (4.35), (4.36), (4.37), (4.38), and (4.39), then it is equivalent
to Ξ′′′

pH . If c0 = 0, then we have the canonical form Ξ0
pH , otherwise use the following

transformation (w1, w2) = (c0w̃1, w̃2) and (z̃, ỹ1, ỹ2) =
(
z
c0
, y1
c0
, y2

)
to obtain Ξ1

pH .

Since we always have Γ̃ = Γ
β1β2

, clearly ΞpH (satisfying (4.35), (4.36), (4.37),
(4.38), and (4.39)) is equivalent to Ξ0

pH if and only if Γ ≡ 0 and is equivalent to Ξ1
pH

if and only if Γ ̸= 0. ■

We finish this subsection by explaining how to get normal and canonical forms
of p-hyperbolic submanifolds SpH . Recall that those submanifolds are given by
the equation ż = ẏtQ(x)ẏ + b1(x)ẏ1 + b2ẏ2 + c(x), with Q = ( q1 q2q2 q3 ) satisfying
∆2 := det(Q) = q1q3 − (q2)

2 < 0. Hence a direct parametrisation of SpH is given by

ΞSpH
:


ż = q1(w1)

2 + 2q2w1w2 + q3(w2)
2 + b1w1 + b2w2 + c

ẏ1 = w1

ẏ2 = w2

,

where all functions q1, q2, q3, b1, b2, and c depend on x. Moreover, observe that we
have either q2 +

√
−∆2 ̸= 0 or q2 −

√
−∆2 ̸= 0, thus one of the reparametrisation(

w̃1

w̃2

)
=

( q1
q2±

√
−∆2

1

q2 ±
√
−∆2 q3

)(
w1

w2

)
transforms ΞSpH

into a system ΞS
pH (which is of the form ΞpH and the upper script S

indicates that it is a parametrisation of the submanifold SpH) satisfying A = ∂
∂z

with
the fields Bi depending on the functions qi and bi, and C = c(x) ∂

∂z
. The conditions

of the previous results can be tested on ΞS
pH and the normal forms obtained above

give normal forms of SpH . Precisely, we have

Corollary 4.4 (Normal and canonical forms of p-hyperbolic submanifolds). Con-
sider a p-hyperbolic submanifolds SpH = {ż = ẏtQ(x)ẏ + b1(x)ẏ1 + b2(x)ẏ2 + c(x)},
together with its parametrisation ΞS

pH . The following statements hold:

(i) If ΞS
pH is equivalent to Ξ′

pH , then SpH is equivalent to S ′
pH = {ż = ẏ1ẏ2 +

b1(x)ẏ1 + b2(x)ẏ2 + c(x)}.
(ii) If ΞS

pH is equivalent to Ξ′′
pH , then SpH is equivalent to S ′′

pH = {ż = ẏ1ẏ2+c(x)}.
(iii) If ΞS

pH is equivalent to Ξ′′′
pH , then SpH is equivalent to S ′′′

pH = {ż = ẏ1ẏ2 + c},
with c ∈ R; moreover, c can always be normalised to either c = 0 or c = 1.

The normal form S ′
pH describes a normalisation of the matrix Q(x), then the

normal form S ′′
pH describes, additionally, a normalisation of the functions b1 and b2,

and finally, the normal form S ′′′
pH describes the p-hyperbolic submanifolds with no

functional parameters, i.e. those that do not depend on the point x ∈ X .

In this subsection, we studied the classification problem of nonlinear p-hyperbolic
systems under the group of feedback action. Our classification includes several
normal and canonical forms. The conditions that we introduced are checkable in
terms of algebraic and differential relations of structure functions attached to vector
fields of p-hyperbolic systems.
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3 Conclusion and Perspectives

In this chapter, we extended to the dimension n = dim(X ) = 3 the results of the
previous chapter. We studied the equivalence of submanifolds of the tangent bundle
TX of X to quadric submanifolds, we particularly studied the case of paraboloid
elliptic and paraboloid hyperbolic systems. We provided a complete characterisa-
tion of those submanifold via the study of the feedback equivalence of control-affine
system (on a 5-dimensional manifold with two controls) to control-affine systems
parametrising the paraboloid submanifolds. Then by working within the class of
parametrisation of paraboloid submanifolds (seen as control-nonlinear systems on
X with two controls), we studied the problem of equivalence of paraboloid subman-
ifolds.

In the next chapter, we will extend all results of this chapter to the case of an
arbitrary dimension n = dim(X ). These generalisations will give a new insight and
new interpretations of the results of this chapter.

The work done for this chapter left some very interesting problems that we plan
to address later. First, it remains to give a characterisation and a classification of
the three remaining non-degenerated quadrics of TX , namely the ellipsoid and the
one- or two-sheeted hyperboloid. A parametrisation as a control-nonlinear system
of those submanifolds is given, respectively, by

ẋ = A(x) cos(w1) +B1(x) sin(w1) cos(w2) +B2(x) sin(w1) sin(w2) + C(x), or
ẋ = A(x) cosh(w1) +B1(x) sinh(w1) cos(w2) +B2(x) sinh(w1) sin(w2) + C(x).

It will be very interesting to characterise each class separately but also to characterise
the 5 quadrics together (as we did in the previous chapter for the case n = 2) and
so we should be able to see if we can smoothly pass from one type to another.

Further in the future, we would like to study a characterisation of several parametrised
surfaces, for instance one could be interested in a parametrisation of a general surface
of revolution, or of a ruled surface etc, those parametrisation can be e.g.

ẋ = A(x)g(w1) +B1(x)f(w1) cos(w2) +B2(x)f(w1) sin(w2) + C(x),

ẋ = F1(x,w1) + w2F2(x,w1).

The latter case is of special importance for studying the problem of dynamic feedback
linearisation (see [Rou98]).
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4.A Transformation of the structure functions at-
tached to WOF

We show the following formula (4.3):

 µ1 µ2

µ1
1,2 µ2

1,2

µ1
2,1 µ2

2,1

 =

 1
λ
Lg1 (λ) + Lg2 (θ) Lg1 (θ)− 1

λ
Lg2 (λ)

−Lg1 (θ) 1
λ
Lg1 (λ)

1
λ
Lg2 (λ) Lg2 (θ)


+

 cos(2θ) sin(2θ) sin(2θ)
−1

2
sin(2θ) cos(θ)2 − sin(θ)2

−1
2
sin(2θ) − sin(θ)2 cos(θ)2

 µ̃1 µ̃2

µ̃1
1,2 µ̃2

1,2

µ̃1
2,1 µ̃2

2,1

 β(λ, θ).

Let (g̃1, g̃2) be a WOF with its structure functions (µ̃k) and (µ̃ki,j) and take (g1, g2) =
(g̃1, g̃2)β(λ, θ). Thus, we have

adfg1 = λ (cos(θ)adf g̃1 + sin(θ)adf g̃2) mod D0,

adfg2 = λ (− sin(θ)adf g̃1 + cos(θ)adf g̃2) mod D0.

First, we have (every equality is considered modulo D0)

[g1, adfg1]− [g2, adfg2] = [λ (g̃1 cos(θ) + g̃2 sin(θ)) , λ (cos(θ)adf g̃1 + sin(θ)adf g̃2)]

− [λ (−g̃1 sin(θ) + g̃2 cos(θ)) , λ (− sin(θ)adf g̃1 + cos(θ)adf g̃2)] ,

= λ2 [g̃1 cos(θ) + g̃2 sin(θ), cos(θ)adf g̃1 + sin(θ)adf g̃2] +
1

λ
Lg1 (λ) adfg1

− λ2 [−g̃1 sin(θ) + g̃2 cos(θ),− sin(θ)adf g̃1 + cos(θ)adf g̃2]−
1

λ
Lg2 (λ) adfg2,

= λLg1 (cos(θ)) adf g̃1 + λLg1 (sin(θ)) adf g̃2 +
1

λ
Lg1 (λ) adfg1

− λLg2 (− sin(θ)) adf g̃1 − λLg2 (cos(θ)) adf g̃2 −
1

λ
Lg2 (λ) adfg2

+ λ2
(
cos(θ)2 [g̃1, adf g̃1] + cos(θ) sin(θ) [g̃1, adf g̃2]

)
+ λ2

(
sin(θ) cos(θ) [g̃2, adf g̃1] + sin(θ)2 [g̃2, adf g̃2]

)
− λ2

(
sin(θ)2 [g̃1, adf g̃1]− cos(θ) sin(θ) [g̃1, adf g̃2]

)
− λ2

(
− cos(θ) sin(θ) [g̃2, adf g̃1] + cos(θ)2 [g̃2, adf g̃2]

)
,

= λLg1 (θ) (− sin(θ)adf g̃1 + cos(θ)adf g̃2) +
1

λ
Lg1 (λ) adfg1

− λLg2 (θ) (− cos(θ)adf g̃1 − sin(θ)adf g̃2)−
1

λ
Lg2 (λ) adfg2

+ λ2
(
cos(θ)2 − sin(θ)2

)
([g̃1, adf g̃1]− [g̃2, adf g̃2])

+ 2λ2 cos(θ) sin(θ) ([g̃1, adf g̃2] + [g̃2, adf g̃1]) ,

=

(
1

λ
Lg1 (λ) + Lg2 (θ)

)
adfg1 +

(
Lg1 (θ)−

1

λ
Lg2 (λ)

)
adfg2

+ λ2
[
cos(2θ)µ̃1 + sin(2θ)(µ̃1

1,2 + µ̃1
2,1)
]
adf g̃1

+ λ2
[
cos(2θ)µ̃2 + sin(2θ)(µ̃2

1,2 + µ̃2
2,1)
]
adf g̃2.
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Second, we have

[g1, adfg2] = [λ (g̃1 cos(θ) + g̃2 sin(θ)) , λ (− sin(θ)adf g̃1 + cos(θ)adf g̃2)] ,

= λ2 [g̃1 cos(θ) + g̃2 sin(θ),−adf g̃1 sin(θ) + adf g̃2 cos(θ)] +
1

λ
Lg1 (λ) adfg2,

= −λLg1 (sin(θ)) adf g̃1 + λLg1 (cos(θ)) adf g̃2 +
1

λ
Lg1 (λ) adfg2

+ λ2
(
− cos(θ) sin(θ) [g̃1, adf g̃1] + cos(θ)2 [g̃1, adf g̃2]

)
+ λ2

(
− sin(θ)2 [g̃2, adf g̃1] + cos(θ) sin(θ) [g̃2, adf g̃2]

)
,

= λLg1 (θ) (− cos(θ)adf g̃1 − sin(θ)adf g̃2) +
1

λ
Lg1 (λ) adfg2

+ λ2 (− cos(θ) sin(θ) ([g̃1, adf g̃1]− [g̃2, adf g̃2]))

+ λ2 cos(θ)2 [g̃1, adf g̃2]− λ2 sin(θ)2 [g̃2, adf g̃1] ,

= −Lg1 (θ) adfg1 +
1

λ
Lg1 (λ) adfg2

+ λ2
[
−1

2
sin(2θ)µ̃1 + cos(θ)2µ̃1

1,2 − sin(θ)2µ̃1
2,1

]
adf g̃1

+ λ2
[
−1

2
sin(2θ)µ̃2 + cos(θ)2µ̃2

1,2 − sin(θ)2µ̃2
2,1

]
adf g̃2.

And finally,

[g2, adfg1] = [λ (−g̃1 sin(θ) + g̃2 cos(θ)) , λ (cos(θ)adf g̃1 + sin(θ)adf g̃2)] ,

= λ2 [−g̃1 sin(θ) + g̃2 cos(θ), cos(θ)adf g̃1 + sin(θ)adf g̃2] +
1

λ
Lg2 (λ) adfg1,

= λLg2 (cos(θ)) adf g̃1 + λLg2 (sin(θ)) adf g̃2 +
1

λ
Lg2 (λ) adfg1

+ λ2
(
− cos(θ) sin(θ) [g̃1, adf g̃1]− sin(θ)2 [g̃1, adf g̃2]

)
+ λ2

(
cos(θ)2 [g̃2, adf g̃1] + cos(θ) sin(θ) [g̃2, adf g̃2]

)
,

= λLg2 (θ) (− sin(θ)adf g̃1 + cos(θ)adf g̃2) +
1

λ
Lg2 (λ) adfg1

− λ2 cos(θ) sin(θ) ([g̃1, adf g̃1]− [g̃2, adf g̃2])

− λ2 sin(θ)2 [g̃1, adf g̃2] + λ2 cos(θ)2 [g̃2, adf g̃1] ,

=
1

λ
Lg2 (λ) adfg1 + Lg2 (θ) adfg2

+ λ2
[
−1

2
sin(2θ)µ̃1 − sin(θ)2µ̃1

1,2 + cos(θ)2µ̃1
2,1

]
adf g̃1

+ λ2
[
−1

2
sin(2θ)µ̃2 − sin(θ)2µ̃2

1,2 + cos(θ)2µ̃2
2,1

]
adf g̃2.

Collecting the results of those three computations and using(
adf g̃1
adf g̃2

)
=

1

λ

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)(
adfg1
adfg2

)
we obtain the required equality.
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4.B Detailed computations for the proof of Theo-
rem 4.4

We detail the computations in the proof (pE3) =⇒ (pE4) of Theorem 4.4. Assume
that (g1, g2) is a weak orthonormal frame with structure functions µki,j and µk satis-
fying (4.6) and (4.8). We show that (g̃1, g̃2) = (g1, g2)β

(
1
λ
,−θ

)
, where λ and θ are

smooth solutions of the systems (4.7), is a strong orthonormal frame. To see that,
we apply formula (4.3) on the transformation (g̃1, g̃2)β (λ, θ) = (g1, g2): µ1 µ2

µ1
1,2 µ2

1,2

µ1
2,1 µ2

2,1

 =

 1
λ
Lg1 (λ) + Lg2 (θ) Lg1 (θ)− 1

λ
Lg2 (λ)

−Lg1 (θ) 1
λ
Lg1 (λ)

1
λ
Lg2 (λ) Lg2 (θ)


+

 cos(2θ) sin(2θ) sin(2θ)
−1

2
sin(2θ) cos(θ)2 − sin(θ)2

−1
2
sin(2θ) − sin(θ)2 cos(θ)2

 µ̃1 µ̃2

µ̃1
1,2 µ̃2

1,2

µ̃1
2,1 µ̃2

2,1

 β(λ, θ).

Using 1
λ
Lg1 (λ) = µ2

1,2,
1
λ
Lg2 (λ) = µ1

2,1, Lg1 (θ) = −µ1
1,2, and Lg2 (θ) = µ2

2,1, we obtain

 µ1 µ2

µ1
1,2 µ2

1,2

µ1
2,1 µ2

2,1

 =


µ1︷ ︸︸ ︷

µ2
1,2 + µ2

2,1

µ2︷ ︸︸ ︷
−µ1

1,2 − µ1
2,1

µ1
1,2 µ2

1,2

µ1
2,1 µ2

2,1


+

 cos(2θ) sin(2θ) sin(2θ)
−1

2
sin(2θ) cos(θ)2 − sin(θ)2

−1
2
sin(2θ) − sin(θ)2 cos(θ)2

 µ̃1 µ̃2

µ̃1
1,2 µ̃2

1,2

µ̃1
2,1 µ̃2

2,1

 β

(
1

λ
,−θ

)
.

Thus, we conclude cos(2θ) sin(2θ) sin(2θ)
−1

2
sin(2θ) cos(θ)2 − sin(θ)2

−1
2
sin(2θ) − sin(θ)2 cos(θ)2

 µ̃1 µ̃2

µ̃1
1,2 µ̃2

1,2

µ̃1
2,1 µ̃2

2,1

 β

(
1

λ
,−θ

)
= 0,

implying µ̃ki,j = µ̃k = 0.

4.C Detailed computations for Lemma 4.1

In that appendix we show how the structure function µki , νk, and γk of a p-elliptic
systems ΞpE = (A,B1, B2, C) are related with the structure functions µ̃ki , ν̃k, γ̃k of an
equivalent p-elliptic system Ξ̃pE = (Ã, B̃1, B̃2, C̃). Recall that under reparametrisa-
tions w = α+β(λ, θ)w̃ we have the following relation between the p-elliptic systems
ΞpE and Ξ̃pE:  Ã

B̃1

B̃2

 =

 λ2 0 0
2λ(α1 cos(θ) + α2 sin(θ)) λ cos(θ) λ sin(θ)
2λ(−α1 sin(θ) + α2 cos(θ)) −λ sin(θ) λ cos(θ)

A
B1

B2

 ,

equivalently

A
B1

B2

 =

 1
λ2

0 0
−2α1

λ2
cos θ
λ
− sin θ

λ

−2α2

λ2
sin θ
λ

cos θ
λ

 Ã

B̃1

B̃2

 .
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Computations have been made by hand and verified with the symbolic computer
environment Maple. We begin by showing relation (4.11) for the structure functions
µki .

µ̃0
1Ã+ µ̃1

1B̃1 + µ̃2
1B̃2 =

[
Ã, B̃1

]
=
[
λ2A, 2λ(α1 cos(θ) + α2 sin(θ))A+ λ cos(θ)B1 + λ sin(θ)B2

]
,

= −LB̃1

(
λ2
)
A+ λ3 cos(θ) [A,B1] + λ3 sin(θ) [A,B2] + λ2LA (λ cos(θ))B1

+ λ2LA (λ sin(θ))B2 + 2λ2LA (λ(α1 cos(θ) + α2 sin(θ)))A,

=
[
−LB̃1

(
λ2
)
+ 2λ2LA (λ(α1 cos(θ) + α2 sin(θ))) + λ3 cos(θ)µ0

1 + λ3 sin(θ)µ0
2

]
A

+
[
λ2LA (λ cos(θ)) + λ3 cos(θ)µ1

1 + λ3 sin(θ)µ1
2

]
B1

+
[
λ2LA (λ sin(θ)) + λ3 cos(θ)µ2

1 + λ3 sin(θ)µ2
2

]
B2,

which implies

µ̃0
1 =

1

λ2
[
−LB̃1

(
λ2
)
+ 2λ2LA (λ(α1 cos(θ) + α2 sin(θ))) + λ3 cos(θ)µ0

1 + λ3 sin(θ)µ0
2

]
− 2

α1

λ2
[
λ2LA (λ cos(θ)) + λ3 cos(θ)µ1

1 + λ3 sin(θ)µ1
2

]
− 2

α2

λ2
[
λ2LA (λ sin(θ)) + λ3 cos(θ)µ2

1 + λ3 sin(θ)µ2
2

]
,

= −2LB̃1
(Λ) + 2LA (λ) (α1 cos(θ) + α2 sin(θ)) + 2λLA (α1 cos(θ) + α2 sin(θ))

+ λ cos(θ)µ0
1 + λ sin(θ)µ0

2

− 2α1λ
[
LA (Λ) cos(θ)− sin(θ)LA (θ) + cos(θ)µ1

1 + sin(θ)µ1
2

]
− 2α2λ

[
LA (Λ) sin(θ) + cos(θ)LA (θ) + cos(θ)µ2

1 + sin(θ)µ2
2

]
,

= −2LB̃1
(Λ) + λ cos(θ)

(
µ0
1 − 2α1µ

1
1 − 2α2µ

2
1 + 2LA (α1)

)
+ λ sin(θ)

(
µ0
2 + 2α1µ

1
2 − 2α2µ

2
2 + 2LA (α2)

)
,

and

µ̃1
1 =

cos(θ)

λ

[
λ2LA (λ cos(θ)) + λ3 cos(θ)µ1

1 + λ3 sin(θ)µ1
2

]
+

sin(θ)

λ

[
λ2LA (λ sin(θ)) + λ3 cos(θ)µ2

1 + λ3 sin(θ)µ2
2

]
,

= λ2 cos(θ)
[
LA (Λ) cos(θ)− sin(θ)LA (θ) + cos(θ)µ1

1 + sin(θ)µ1
2

]
+ λ2 sin(θ)

[
LA (Λ) sin(θ) + cos(θ)LA (θ) + cos(θ)µ2

1 + sin(θ)µ2
2

]
,

= λ2
[
LA (Λ) + cos(θ2µ1

1 + sin(θ)2µ2
2 + cos(θ) sin(θ)(µ1

2 + µ2
1)
]
,

and

µ̃2
1 = −

sin(θ)

λ

[
λ2LA (λ cos(θ)) + λ3 cos(θ)µ1

1 + λ3 sin(θ)µ1
2

]
+

cos(θ)

λ

[
λ2LA (λ sin(θ)) + λ3 cos(θ)µ2

1 + λ3 sin(θ)µ2
2

]
,

= −λ2 sin(θ)
[
LA (Λ) cos(θ)− sin(θ)LA (θ) + cos(θ)µ1

1 + sin(θ)µ1
2

]
+ λ2 cos(θ)

[
LA (Λ) sin(θ) + cos(θ)LA (θ) + cos(θ)µ2

1 + sin(θ)µ2
2

]
,

= λ2
[
LA (θ) + cos(θ)2µ2

1 − sin(θ)2µ1
2 − cos(θ) sin(θ)(µ1

1 − µ2
2)
]
.
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The same type of calculations is done for
[
Ã, B̃2

]
. Next we show relation (4.12) for

the structure functions νk.

ν̃01Ã+ ν̃11B̃1 + ν̃21B̃2 =
[
B̃1, B̃2

]
,

= [2λ(α1 cos(θ) + α2 sin(θ))A+ λ cos(θ)B1 + λ sin(θ)B2

2λ(−α1 sin(θ) + α2 cos(θ))A− λ sin(θ)B1 + λ cos(θ)B2] ,

which yields

[
B̃1, B̃2

]
= −2λ2α2 [A,B1] + 2λ2α1 [A,B2] + λ2 [B1, B2]

+ 2λ
[
2(α1 cos(θ) + α2 sin(θ))LA (λ(−α1 sin(θ) + α2 cos(θ)))

− 2(−α1 sin(θ) + α2 cos(θ))LA (λ(α1 cos(θ) + α2 sin(θ)))

+ sin(θ)LB1 (λ(α1 cos(θ) + α2 sin(θ)))

− cos(θ)LB2 (λ(α1 cos(θ) + α2 sin(θ)))

+ cos(θ)LB1 (λ(−α1 sin(θ) + α2 cos(θ)))

+ sin(θ)LB2 (λ(−α1 sin(θ) + α2 cos(θ)))
]
A

+ λ
[
− 2(α1 cos(θ) + α2 sin(θ))LA (λ sin(θ))

− 2(−α1 sin(θ) + α2 cos(θ))LA (λ cos(θ))− cos(θ)LB1 (λ sin(θ))

+ sin(θ)LB1 (λ cos(θ))− cos(θ)LB2 (λ cos(θ))− sin(θ)LB2 (λ sin(θ))
]
B1

+ λ
[
2(α1 cos(θ) + α2 sin(θ))LA (λ cos(θ))

− 2(−α1 sin(θ) + α2 cos(θ))LA (λ sin(θ)) + cos(θ)LB1 (λ cos(θ))

+ sin(θ)LB1 (λ sin(θ)) + sin(θ)LB2 (λ cos(θ))− cos(θ)LB2 (λ sin(θ))
]
B2.

Hence, we deduce first

ν̃0 = −2α2µ
0
1 + 2α1µ

0
2 + ν0

+
2

λ

[
2(α1 cos(θ) + α2 sin(θ))LA (λ(−α1 sin(θ) + α2 cos(θ)))

− 2(−α1 sin(θ) + α2 cos(θ))LA (λ(α1 cos(θ) + α2 sin(θ)))

+ sin(θ)LB1 (λ(α1 cos(θ) + α2 sin(θ)))− cos(θ)LB2 (λ(α1 cos(θ) + α2 sin(θ)))

+ cos(θ)LB1 (λ(−α1 sin(θ) + α2 cos(θ))) + sin(θ)LB2 (λ(−α1 sin(θ) + α2 cos(θ)))
]

− 2
α1

λ

[
− 2λ2α2µ

1
1 + 2λ2α1µ

1
2 + λ2ν1 − 2(α1 cos(θ) + α2 sin(θ))LA (λ sin(θ))

− 2(−α1 sin(θ) + α2 cos(θ))LA (λ cos(θ))− cos(θ)LB1 (λ sin(θ))

+ sin(θ)LB1 (λ cos(θ))− cos(θ)LB2 (λ cos(θ))− sin(θ)LB2 (λ sin(θ))
]

− 2
α2

λ

[
− 2λ2α2µ

2
1 + 2λ2α1µ

2
2 + λ2ν2 + 2(α1 cos(θ) + α2 sin(θ))LA (λ cos(θ))

− 2(−α1 sin(θ) + α2 cos(θ))LA (λ sin(θ)) + cos(θ)LB1 (λ cos(θ))

+ sin(θ)LB1 (λ sin(θ)) + sin(θ)LB2 (λ cos(θ))− cos(θ)LB2 (λ sin(θ))
]
,
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implying

ν̃0 = ν0 − 2α1ν
1 − 2α2ν

2 − 2α2µ
0
1 + 2α1µ

0
2

+ 4α1LA (α2)− 4α2LA (α1)− 4((α1)
2 + (α2)

2)LA (θ)

+ 2α2LB1 (Λ)− 2α1LB2 (Λ) + 2LB1 (α2)− 2LB2 (α1)− 2α1LB1 (θ)− 2α2LB2 (θ)

+ 4α1α2LA (Λ) + 4(α1)
2LA (θ) + 2α1LB1 (θ) + 2α1LB2 (Λ)

− 4α1α2LA (Λ) + 4(α2)
2LA (θ) + 2α2LB2 (θ)− 2α2LB1 (Λ) ,

= ν0 − 2α1ν
1 − 2α2ν

2 − 2α2µ
0
1 + 2α1µ

0
2 + 4α1α2(µ

1
1 − µ2

2) + 4(α2)
2µ2

1 − 4(α1)
2µ1

2

+ 4α1LA (α2)− 4α2LA (α1) + 2LB1 (α2)− 2LB2 (α1) .

Second

ν̃1 = cos(θ)
[
− 2λα2µ

1
1 + 2λα1µ

1
2 + λν1 − 2(α1 cos(θ) + α2 sin(θ))LA (λ sin(θ))

− 2(−α1 sin(θ) + α2 cos(θ))LA (λ cos(θ))− cos(θ)LB1 (λ sin(θ))

+ sin(θ)LB1 (λ cos(θ))− cos(θ)LB1 (λ cos(θ))− sin(θ)LB2 (λ sin(θ))
]

+ sin(θ)
[
− 2λα2µ

2
1 + 2λα1µ

2
2 + λν2 + 2(α1 cos(θ) + α2 sin(θ))LA (λ cos(θ))

− 2(−α1 sin(θ) + α2 cos(θ))LA (λ sin(θ)) + cos(θ)LB1 (λ cos(θ))

+ sin(θ)LB1 (λ sin(θ)) + sin(θ)Lb2 (λ cos(θ))− cos(θ)LB2 (λ sin(θ))
]
,

= λ cos(θ)
[
ν1 − 2α2µ

1
1 + 2α1µ

1
2 − 2α2LA (Λ)− 2α1LA (θ)− LB1 (θ)− LB2 (θ)

]
+ λ sin(θ)

[
ν2 − 2α2µ

2
1 + 2α1µ

2
2 + 2α1LA (Λ)− 2α2LA (θ) + LB1 (Λ)− LB2 (θ)

]
.

And, third

ν̃2 = − sin(θ)
[
− 2λα2µ

1
1 + 2λα1µ

1
2 + λν1 − 2(α1 cos(θ) + α2 sin(θ))LA (λ sin(θ))

− 2(−α1 sin(θ) + α2 cos(θ))LA (λ cos(θ))− cos(θ)LB1 (λ sin(θ))

+ sin(θ)LB1 (λ cos(θ))− cos(θ)LB1 (λ cos(θ))− sin(θ)LB2 (λ sin(θ))
]

+ cos(θ)
[
− 2λα2µ

2
1 + 2λα1µ

2
2 + λν2 + 2(α1 cos(θ) + α2 sin(θ))LA (λ cos(θ))

− 2(−α1 sin(θ) + α2 cos(θ))LA (λ sin(θ)) + cos(θ)LB1 (λ cos(θ))

+ sin(θ)LB1 (λ sin(θ)) + sin(θ)Lb2 (λ cos(θ))− cos(θ)LB2 (λ sin(θ))
]
,

= −λ sin(θ)
[
ν1 − 2α2µ

1
1 + 2α1µ

1
2 − 2α2LA (Λ)− 2α1LA (θ)− LB1 (θ)− LB2 (θ)

]
+ λ cos(θ)

[
ν2 − 2α2µ

2
1 + 2α1µ

2
2 + 2α1LA (Λ)− 2α2LA (θ) + LB1 (Λ)− LB2 (θ)

]
.

We now compute the transformation of the structure functions γk:

γ̃0Ã+ γ̃1B̃1 + γ̃2B̃2 = C̃ = C +
(
(α1)

2 + (α2)
2
)
A+ α1B1 + α2B2,

=
(
γ0 + (α1)

2 + (α2)
2
)
A+

(
γ1 + α1

)
B1 +

(
γ2 + α2

)
B2,

=
1

λ2
(
γ0 + (α1)

2 + (α2)
2 − 2α1(γ

1 + α1)− 2α2(γ
2 + α2)

)
Ã

+
1

λ

(
cos(θ)(γ1 + α1)− sin(θ)(γ2 + α2)

)
B̃1

+
1

λ

(
sin(θ)(γ1 + α1) + cos(θ)(γ2 + α2)

)
B̃2

=
1

λ2
(
γ0 − (α1)

2 − (α2)
2 − 2α1γ

1 − 2α2γ
2
)
Ã

+
1

λ

(
cos(θ)(γ1 + α1)− sin(θ)(γ2 + α2)

)
B̃1

+
1

λ

(
sin(θ)(γ1 + α1) + cos(θ)(γ2 + α2)

)
B̃2.
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And finally relation (4.14) follows from the following application of the Jacobi iden-
tity

[A, [B1, B2]] = [B1, [A,B2]]− [B2, [A,B1]] ,[
A, ν0A+ ν1B1 + ν2B2

]
=
[
B1, µ

0
2A+ µ1

2B1 + µ2
2B2

]
−
[
B2, µ

0
1A+ µ1

1B1 + µ2
1B2

]
,(

LA
(
ν0
)
+ ν1µ0

1ν
2µ0

2

)
A+

(
LA
(
ν1
)
+ ν1µ1

1ν
2µ1

2

)
B1 +

(
LA
(
ν2
)
+ ν1µ2

1ν
2µ2

2

)
B2 =(

ν0(µ1
1 + µ2

2) + LB1

(
µ0
2

)
− LB2

(
µ0
1

))
A

+
(
ν1(µ1

1 + µ2
2) + µ0

1µ
1
2 − µ0

2µ
1
1 + LB1

(
µ1
2

)
− LB2

(
µ1
1

))
B1

+
(
ν2(µ1

1 + µ2
2) + µ0

1µ
2
2 − µ0

2µ
2
1 + LB1

(
µ2
2

)
− LB2

(
µ2
1

))
B2.

4.D Transformation of the structure functions at-
tached to a WIF

Let (g̃1, g̃2) be a weak p-hyperbolic frame with structure functions µ̃ji,i and µ̃j. Then
the structure functions µji,i and µj of (g1, g2) = (β1g̃1, β2g̃2) are given by the following
formulae (each equation is considered modulo D0). First,

µ1
1,1adfg1 + µ2

1,1adfg2 = [g1, adfg1] = (β1)
2 [g̃1, adf g̃1] + β1Lg̃1 (β1) adf g̃1,

=
(
(β1)

2µ̃1
1,1 + β1Lg̃1 (β1)

)
adf g̃1 + (β1)

2µ̃2
1,1adf g̃2,

=
(
(β1)µ̃

1
1,1 + Lg̃1 (β1)

)
adfg1 +

(β1)
2

β2
µ̃2
1,1adfg2.

Second,

µ1
2,2adfg1 + µ2

2,2adfg2 = [g2, adfg2] = (β2)
2 [g̃2, adf g̃2] + β2Lg̃2 (β2) adf g̃2,

= (β2)
2µ̃1

2,2adf g̃1 +
(
(β2)

2µ̃2
2,2 + β2Lg̃2 (β2)

)
adf g̃2,

=
(β2)

2

β1
µ̃1
2,2adfg1 +

(
β2µ̃

2
2,2 + Lg̃2 (β2)

)
adfg2.

And, third

µ1adfg1 + µ2adfg2 = [g1, adfg2]− [g2, adfg1] = β1β2 ([g̃1, adf g̃2]− [g̃2, adf g̃1])

+ β1Lg̃1 (β2) adf g̃2 − β2Lg̃2 (β1) adf g̃1,
=
(
β1β2µ̃

1 − β2Lg̃2 (β1)
)
adf g̃1 +

(
β1β2µ̃

2 + β1Lg̃1 (β2)
)
adf g̃2,

=

(
β2µ̃

1 − β2
β1

Lg̃2 (β1)

)
adfg1 +

(
β1µ̃

2 +
β1
β2

Lg̃1 (β2)

)
adfg2.
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4.E Detailed computations for the proof of Theo-
rem 4.10

We detail the calculations of the proof (pH3)⇒(pH4) of Theorem 4.10. Let β1 and
β2 be solutions of{

Lg1 (ln(β1)) = µ1
1,1

Lg2 (ln(β1)) = −µ1 and
{

Lg1 (ln(β2)) = µ2

Lg2 (ln(β2)) = µ2
2,2

,

notice that necessarily such solutions satisfy βi(·) ̸= 0. Apply the feedback f̃ = f

and (g̃1, g̃2) =
(

1
β1
g1,

1
β2
g2

)
, we claim that the pair (g̃1, g̃2) is a strong p-hyperbolic

frame. Indeed, modulo D0 we have,[
g̃1, adf̃ g̃1

]
=

1

(β1)2
[g1, adfg1] +

1

β1
Lg1

(
1

β1

)
adfg1

=
1

(β1)2
µ1
1,1adfg1 −

1

(β1)3
Lg1 (β1) adfg1 = 0,

[
g̃2, adf̃ g̃2

]
=

1

(β2)2
[g2, adfg2] +

1

β2
Lg2

(
1

β2

)
adfg2

=
1

(β2)2
µ2
2,2adfg2 −

1

(β2)3
Lg2 (β2) adfg2 = 0,[

g̃1, adf̃ g̃2
]
−
[
g̃2, adf̃ g̃1

]
=

1

β1β2
([g1, adfg2]− [g2, adfg1])

− 1

β2
Lg2

(
1

β 1

)
adfg1 +

1

β1
Lg1

(
1

β 2

)
adfg2

=
1

β1β2
µ1adfg1 +

1

β1β2
µ2adfg2

− 1

β1(β2)2
Lg2 (β1) adfg1 +

1

(β1)2β2
Lg1 (β2) adfg2 = 0.

4.F Detailed computations for Lemma 4.2

In that appendix, we show how the structure functions µki , ν, and γk of a weak p-
hyperbolic frame are transformed under reparametrisations of the form (w1, w2) =
(α1 + β1w̃1, α2 + β2w̃2. Recall from relation (4.29) that under a reparametrisation,
two pH-frame (A,B1, B2) and (Ã, B̃1, B̃2) are related by:

A =
1

β1β2
Ã, B1 = −

α2

β1β2
Ã+

1

β1
B̃1, and B2 = −

α1

β1β2
Ã+

1

β2
B̃2.

We begin by showing relation (4.31) for µki .

µ̃0
1Ã+ µ̃1

1B̃1 + µ̃2
1B̃2 =

[
Ã, B̃1

]
= [β1β2A,α2β1A+ β1B1] ,

= (β1β2LA (α2β1)− α2β1LA (β1β2)− β1LB1 (β1β2))A

+ (β1)
2β2 [A,B1] + β1β2LA (β1)B1,

=
(
(β1)

2β2µ
0
1 + β1β2LA (α2β1)− α2β1LA (β1β2)− β1LB1 (β1β2)

)
A

+
(
(β1)

2β2µ
1
1 + β1β2LA (β1)

)
B1 + (β1)

2β2µ
2
1B2.
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And for the bracket of Ã and B̃2 we have:

µ̃0
2Ã+ µ̃1

2B̃1 + µ̃2
2B̃2 =

[
Ã, B̃2

]
= [β1β2A,α1β2A+ β2B2] ,

= (β1β2LA (α1β2)− α1β2LA (β1β2)− β2LB2 (β1β2))A

+ β1(β2)
2 [A,B2] + β1β2LA (β2)B2,

=
(
β1(β2)

2µ0
2 + β1β2LA (α1β2)− α1β2LA (β1β2)− β2LB2 (β1β2)

)
A

+ β1(β2)
2µ1

2B1 +
(
β1(β2)

2µ2
2 + β1β2LA (β2)

)
B2.

Thus we obtain:

µ̃1
1 = β1β2µ

1
1 + β2LA (β1) , µ̃2

1 = (β1)
2µ2

1,

µ̃0
1 =

1

β1β2

(
(β1)

2β2µ
0
1 + β1β2LA (α2β1)− α2β1LA (β1β2)− β1LB1 (β1β2)

)
− α2

β1β2

(
(β1)

2β2µ
1
1 + β1β2LA (β1)

)
− α1

β1β2
(β1)

2β2µ
2
1,

= β1
(
µ0
1 − α1µ

1
1 − α2µ

2
1 − α1LA (ln(β1))− α2LA (ln(β2))− LB1 (ln(β1β2)) + LA (α2)

)
,

and,

µ̃1
2 = (β2)

2µ1
2, µ̃2

2 = β1β2µ
2
2 + β1LA (β2) ,

µ̃0
2 =

1

β1β2

(
β1(β2)

2µ0
2 + β1β2LA (α1β2)− α1β2LA (β1β2)− β2LB2 (β1β2)

)
− α2

β1β2
β1(β2)

2µ1
2 −

α1

β1β2

(
β1(β2)

2µ2
2 + β1β2LA (β2)

)
,

= β2
(
µ0
2 − α1µ

1
2 − α2µ

2
2 − α2LA (ln(β2))− α1LA (ln(β1))− LB2 (ln(β1β2)) + LA (α1)

)
.

Then we show the relation (4.32) for the structure functions νki .

ν̃0Ã+ ν̃1B̃1 + ν̃2B̃2 =
[
B̃1, B̃2

]
= [α2β1A+ β1B1, α1β2A+ β2B2] ,

= β1β2α2 [A,B2] + β1β2α1 [B1, A] + β1β2 [B1, B2]

+ (β1α2LA (β2α1)− β2α1LA (β1α2)− β2LB2 (β1α2) + β1LB1 (β2α1))A

+ (−β2α1LA (β1)− β2LB2 (β1))B1 + (β1α2LA (β2) + β1LB1 (β2))B2,

=
(
β1β2α2µ

0
2 − β1β2α1µ

0
1 + β1β2ν

0 + β1α2LA (β2α1)

−β2α1LA (β1α2)− β2LB2 (β1α2) + β1LB1 (β2α1))A

+
(
β1β2α2µ

1
2 − β1β2α1µ

1
1 + β1β2ν

1 − β2α1LA (β1)− β2LB2 (β1)
)
B1

+
(
β1β2α2µ

2
2 − β1β2α1µ

2
1 + β1β2ν

2 + β1α2LA (β2) + β1LB1 (β2)
)
B2.
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Thus,

ν̃1 =
1

β1

(
β1β2α2µ

1
2 − β1β2α1µ

1
1 + β1β2ν

1 − β2α1LA (β1)− β2LB2 (β1)
)
,

= β2
(
α2µ

1
2 − α1µ

1
1 + ν1 − α1LA (ln(β1))− LB2 (ln(β1))

)
,

ν̃2 =
1

β2

(
β1β2α2µ

2
2 − β1β2α1µ

2
1 + β1β2ν

2 + β1α2LA (β2) + β1LB1 (β2)
)
,

= β1
(
α2µ

2
2 − α1µ

2
1 + ν2 + α2LA (ln(β2)) + LB1 (ln(β2))

)
,

ν̃0 =
1

β1β2

(
β1β2α2µ

0
2 − β1β2α1µ

0
1 + β1β2ν

0 + β1α2LA (β2α1)

−β2α1LA (β1α2)− β2LB2 (β1α2) + β1LB1 (β2α1))

− α2

β1β2

(
β1β2α2µ

1
2 − β1β2α1µ

1
1 + β1β2ν

1 − β2α1LA (β1)− β2LB2 (β1)
)

− α1

β1β2

(
β1β2α2µ

2
2 − β1β2α1µ

2
1 + β1β2ν

2 + β1α2LA (β2) + β1LB1 (β2)
)
,

= ν0 − α2ν
1 − α1ν

2 + (α1)
2µ2

1 − (α2)
2µ1

2 + α1α2(µ
1
1 − µ2

2)

+ α2µ
0
2 − α1µ

0
1 + α2LA (α1)− α1LA (α2) + LB1 (α1)− LB2 (α2) .

We now compute the transformation of the structure functions γk.

γ̃0Ã+ γ̃1B̃1 + γ̃2B̃2 = C̃ = C + α1α2A+ α1B1 + α2B2,

=
(
γ0 + α1α2

)
A+

(
γ1 + α1

)
B1 +

(
γ2 + α2

)
B2,

=
1

β1β2

(
γ0 + α1α2 − α2

(
γ1 + α1

)
− α1

(
γ2 + α2

))
Ã

+
1

β1

(
γ1 + α1

)
B̃1 +

1

β2

(
γ2 + α2

)
B̃2,

=
1

β1β2

(
γ0 − α2γ

1 − α1γ
2 − α1α2

)
Ã+

1

β1

(
γ1 + α1

)
B̃1 +

1

β2

(
γ2 + α2

)
B̃2.

And finally relation (4.34) follows from the same application of the Jacobi identity
as for p-elliptic systems (see relation (4.14), and Appendix 4.C).
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Chapter 5

Control systems with paraboloid
nonholonomic constraints in any
dimension

This chapter is dedicated to generalising to any dimension the results of Chapter 4;
recall that some general constructions and considerations are in Chapter 3. Our
purpose is to propose a characterisation and a classification of (p, q)-paraboloid
hypersurfaces SQ of the tangent bundle TX of a smooth n-dimensional manifold X ,
with n ≥ 3. In a suitable coordinate system x = (z, y), with y = (y1, . . . , yn−1), they
are given by

SQ = {(x, ẋ) ∈ TX , ż = ẏtQ(x)ẏ + b(x)ẏ + c(x)},

where Q is a smooth symmetric (n− 1)× (n− 1)-matrix of full rank with constant
signature (p, q), b = (b1, . . . , bn−1) is a smooth covector, and c is a smooth scalar
function. The problem of their characterisation is replaced by that of characterising
their second prolongation ΣSQ

among the class of control-affine systems Σ = (f, g)
with state spaceM, a manifold of dimension 2n− 1, and m = n− 1 controls. Thus,
throughout this chapter we suppose m ≥ 2.

Lemma 3.1 of Chapter 3 shows that the class of second prolongations of (p, q)-
paraboloid submanifolds given by control-affine systems of the form ΣSQ

is the same
as the one given by the so-called (p, q)-paraboloid systems, shortly (p, q)-systems, of
the form

Σp,q :

{
ẋ = A(x)wtIp,qw +

∑m
i=1Bi(x)wi + C(x)

ẇ = u
, (x,w) ∈M and u ∈ Rm,

where the constant matrix Ip,q is defined by Ip,q =
(

Idp 0
0 −Idq

)
and its elements

are denoted by Iij, in particular we have Iij = 0 if i ̸= j. Therefore, in order
to propose a characterisation of (p, q)-paraboloid submanifolds, we will study the
feedback equivalence of control-affine systems Σ = (f, g) of the form

Σ : ξ̇ = f(ξ) +
m∑
i=1

uigi(ξ),

with state ξ ∈M, a (2m+1)-dimensional manifold, and controls u = (u1, . . . , um) ∈
Rm with a (p, q)-paraboloid system Σp,q. Recall that we attach to Σ = (f, g) the
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following two distributions

D0 = span {g1, . . . gm} and D1 = span {g1, . . . , gm, adfg1, . . . , adfgm} .

Moreover, we recall the following general assumptions that are necessary for our
characterisation (see Chapter 3 and, in particular, Lemma 3.2 and Proposition 3.1
for the definition and some properties of the application Ωω):

(A0) The number of controls is m ≥ 2,

(A1) The distribution D0 is involutive and has constant rank m,

(A2) The distribution D1 has constant rank 2m,

(A3) sgn (Ωω) = (p, q) is constant and satisfies p+ q = m.

We add assumption (A0) to emphasize that our approach applies to the case m ≥ 2
only. We explain after Theorem 5.3 why the case m = 1 has to be treated (and were
treated) separately.

Our second purpose is to propose a classification of (p, q)-paraboloid submani-
folds SQ. This is done via a classification of the orbits under feedback transforma-
tions of their first prolongations, expressed as

Ξp,q : ẋ = A(x)wtIp,qw +
m∑
i=1

Bi(x)wi + C(x), x ∈ X and w ∈ Rm.

Recall that the chosen nomenclature for the normal and canonical forms is given in
Table 1 of Chapter 1.

This chapter is organised as follows. In the next section, we will fully char-
acterise the class of (p, q)-paraboloid systems Σp,q. Our conditions are necessary
and sufficient, and can explicitly be computed via structure functions attached to
control-affine systems Σ (see Theorem 5.3). Afterwards, we will treat the problem
of classifying (p, q)-paraboloid submanifolds via the the study of some orbits under
feedback transformations of (p, q)-systems Ξp,q (see Theorem 5.6). Our classification
is expressed with several normal and canonical forms of (p, q)-paraboloid systems,
that yields analogous normal and canonical forms for (p, q)-paraboloid submanifolds
(see Corollary 5.2).

1 Characterisation of (p, q)-paraboloid systems

In this section, we will characterise the class of (p, q)-paraboloid systems represented
by control-affine systems of the following form

Σp,q :

{
ẋ = A(x)wtIp,qw +

∑m
i=1Bi(x)wi + C(x)

ẇ = u
,

where (x,w) ∈M is the state and u = (u1, . . . , um)
t ∈ Rm is the control. Moreover,

A, B1, . . . , Bm, and C are smooth vector fields satisfying A ∧ B1 ∧ . . . ∧ Bm ̸= 0
on the (m + 1)-dimensional quotient manifold M/D0, which locally is well defined
because D0 = span

{
∂
∂w1

, . . . , ∂
∂wm

}
is involutive and of constant rank m. Our char-

acterisation given in Theorem 5.3 can explicitly be tested on any control system
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Σ = (f, g), of proper dimensions, by means of algebraic and differential relations
between well-defined structure functions.

Consider a control-affine system Σ = (f, g) with state spaceM, a smooth (2m+
1)-dimensional manifold, and with m controls.
Definition 5.1 (Weak quadratic frame). We say that the m-tuple g = (g1, . . . , gm)
of a control-affine system Σ = (f, g) is a weak quadratic frame of the distribution
D0 = span {g1, . . . , gm}, shortly a WQF, if there exists a smooth vector field Z /∈ D1

such that

[gi, adfgj] = Iij Z mod D1.

In particular, our definition implies that [gi, adfgj] ∈ D1 for all i ̸= j. Although
the vector field Z is not unique, it is unique modulo D1 and therefore we will
denote a weak quadratic frame by the pair (g, Z). Recall the map Ωω defined in
Chapter 3. For a weak quadratic frame, we have Ωω = ηIp,q for some smooth
function η ̸= 0 (depending on the choice of ω); actually, by assumption (A3), if
p ̸= q then η > 0. Assume that (g, Z) is a WQF, then we can define structure
functions µki,j, for i, j, k = 1, . . . ,m, by

[gi, adfgj] = Iij Z +
m∑
k=1

µki,j adfgk mod D0.

It will be useful to denote by µi the matrix whose elements are µki,j. We will also
use the structure functions νki,j uniquely defined by

[gi, gj] =
m∑
k=1

νki,j gk.

By a direct application of the Jacobi identity to [gi, adfgj], we immediately obtain
the following relation between the structure functions:

µki,j − νki,j − µkj,i = 0.(5.1)

By a straightforward calculation, we deduce that the fact of being a WQF and the
associated structure functions µki,j do not depend on feedback transformations of the
form f 7→ f +

∑m
k=1 αkgk.

Remark (On the uniqueness of Z). As we already mentioned, for a weak quadratic
frame (g, Z), the vector field Z is not unique; we can change it (modulo D0) by Z 7→
Z̃ = Z +

∑m
k=1 υ

k adfgk, for some smooth functions υk. Under that transformation,
the structure functions µki,j associated with the WQF (g, Z) are mapped into the
structure functions µ̃ki,j of (g, Z̃) given by µ̃ki,j = µki,j − Iijυ

k, implying that

µ̃ki,j = µki,j if i ̸= j, and µ̃ki,i = µki,i − Iiiυ
k otherwise.

With our matrix notation, µi = (µki,j), that relation can be summarise as:

µ̃i =


µ1
i,1

. . . ∗
µii,i

∗ . . .
µmi,m

− Iii


0 υ1

. . . ... 0
υi

0
... . . .
υm 0

 .

◆
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The following proposition shows that a weak quadratic frame always exists (under
the general assumptions (A1), (A2), and (A3)), characterises the feedback transfor-
mations that preserve a WQF, and describes how the structure functions of two
equivalent WQF are related. Recall that β(·) ∈ GO(p, q), the conformal group, i.e.
βtIp,qβ = λIp,q, where the function λ is called the associated multiplier.

Proposition 5.1 (Existence and properties of weak quadratic frames).

(i) Under assumptions (A1), (A2), and (A3) there exists a weak quadratic frame
(g, Z).

(ii) If (g, Z) is a weak quadratic frame, then (g̃, Z̃), with g̃ = gβ, is also a weak
quadratic frame if and only if β ∈ C∞(M, GO(p, q)), i.e. βtIp,qβ = λIp,q for
some smooth associated multiplier λ(·) ̸= 0.

(iii) Consider two weak quadratic frames (g, Z) and (g̃, Z̃), with structure func-
tions µki,j and µ̃ki,j, respectively. Assume that they are related by the feed-
back g̃ = gβ, with β(·) ∈ GO(p, q) and associated multiplier λ. Then, Z̃ =
λ
(
Z +

∑m
k=1 υ

kadfgk
)

mod D0, for some smooth functions υk, and the struc-
ture functions are related by

λIijυ
k + βks µ̃

s
i,j = βsi µ

k
s,rβ

r
j + βsiLgs

(
βkj
)
.(5.2)

The Einstein summation convention is used over indices r and s.
(iv) Under assumptions (A1), (A2), and (A3), an m-tuple g = (g1, . . . , gm) is a

weak quadratic frame of D0 if and only if

[gi, adfgi] Iii − [gj, adfgj] I
j
j = 0 mod D1 for all i, j = 1, . . . ,m,

[gi, adfgj] = 0 mod D1 if i ̸= j.
(5.3)

In relation (5.2), the functions υk correspond to the different choices of the vector
field Z. Notice that statement (iv) of the above proposition gives an equivalent
definition of WQF which does not depend on the choice of a vector field Z; compare
that expression with the definitions of weak orthonormal and isotropic frames (see
Definitions 4.2 and 4.8 in Chapter 4). Characterisation (5.3) gives a computational
way to check if a given frame g of D0 is, actually, a weak quadratic one. A drawback
of that characterisation is that it is harder to identify the structure functions µki,j in
a systematic manner.

Proof.

(i) Suppose that assumptions (A1), (A2), and (A3) hold, for a fixed ω. It follows
from Proposition 3.1 of Chapter 3 that there exists a frame g̃ = gβ of D0 such
that Ω̃ω = Ip,q. Thus, the pair (g̃, Z) is a weak quadratic frame for any vector
field Z satisfying ω(Z) = 1.

(ii) Let (g, Z) and (g̃, Z̃), with g̃ = gβ, be two weak quadratic frames. By a direct
calculation, modulo D1, we obtain that

IijZ̃ = [g̃i, adf g̃j] =
[
gsβ

s
i , adfgr β

r
j

]
= βsi I

s
rβ

r
jZ,

where summation over the indices r and s is used. Clearly, modulo the distri-
bution D1, we have Z̃ = λZ for some smooth function λ satisfying λ(·) ̸= 0.
Therefore, for all i, j we obtain λIij = βsi I

s
rβ

r
j ; that is λIp,q = βtIp,qβ. The

converse is immediate.

122



(iii) Let (g, Z) and (g̃, Z̃) be two weak quadratic frames related by g̃ = gβ, with
β ∈ GO(p, q) and associated multiplier λ. Then, by a direct computation
modulo the distribution D0, the structure functions µki,j of (g, Z) and µ̃ki,j of
(g̃, Z̃) are related by

[g̃i, adf g̃j] =
[
gsβ

s
i , adf

(
grβ

r
j

)]
= βsi [gs, adfgr] β

r
j + βsiLgs

(
βrj
)
adfgr,

IijZ̃ + adfgk β
k
s µ̃

s
i,j = βsi I

r
sβ

r
jZ +

(
βsi µ

k
s,rβ

r
j + βsiLgs

(
βkj
))

adfgk.

Applying any differential one-form ω such that ann (D1) = span {ω} to the
last equation, we get Iijω(Z̃) = λIijω(Z), where λ is defined by the relation
βtIp,qβ = λIp,q. Hence, ω(Z̃ − λZ) = 0, that is Z̃ − λZ = 0 mod D1. There-
fore, there exists smooth functions υk such that Z̃ = λ

(
Z +

∑m
k=1 υ

kadfgk
)

mod D0. Implying that λIijυk + βks µ̃
s
i,j = βsi µ

k
s,rβ

r
j + βsiLgs

(
βkj
)
.

(iv) If (g, Z) is a weak quadratic frame, then clearly,

[gi, adfgj] = 0 mod D1 for i ̸= j,

and [gi, adfgi] Iii − [gj, adfgj] I
j
j = IiiZI

i
i − IjjZI

j
j = 0 mod D1,

recall that (Iii)
2 = 1 for all 1 ≤ i ≤ m. Conversely, assume that an m-tuple

g = (g1, . . . , gm) satisfies (5.3). Obviously, for i ̸= j we have [gi, adfgj] = IijZ
mod D1 (for some non-zero vector field Z). Next, observe that assumption
(A3) implies that [gi, adfgi] /∈ D1 for all 1 ≤ i ≤ m. Recall that I11 = 1, so we
set Z = [g1, adfg1] and thus we deduce that [gi, adfgi] = IiiZ mod D1.

■

We now reinforce the notion of weak quadratic frames which will turn out to be
the key of our characterisation of (p, q)-paraboloid systems.

Definition 5.2 (Strong quadratic frame). We say that the m-tuple g = (g1, . . . , gm)
of a control-affine system Σ = (f, g) is a strong quadratic frame of the distribution
D0 = span {g1, . . . , gm}, shortly a SQF, if there exists a smooth vector field Z /∈ D1

such that

[gi, adfgj] = IijZ mod D0.

Clearly, strong quadratic frames form a subclass of weak quadratic frames whose
structure functions are given by µki,j = 0, for all 1 ≤ i, j, k ≤ m. For a SQF, the
vector field Z is uniquely determined modulo D0, indeed, transformations of the
form Z 7→ Z̃ = Z +

∑m
k=1 υ

kadfgk do not preserve the property of being a strong
quadratic frame. The following proposition details some properties of SQFs.

Proposition 5.2 (Properties of strong quadratic frames).

(i) Any (p, q)-paraboloid system Σp,q possesses a strong quadratic frame;

(ii) If (g̃, Z̃) is a strong quadratic frame, then (g, Z) defined by g̃ = gβ, with β ∈
C∞(M, GO(p, q)), is a weak quadratic frame with Z̃ = λ

(
Z +

∑m
k=1 υ

kadfgk
)

mod D0 and whose structure functions µki,j satisfy

λIijυ
k = βsi µ

k
s,rβ

r
j + βsiLgs

(
βkj
)
.(5.4)
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(iii) If (g, Z) is a strong quadratic frame, then for all 1 ≤ i, j ≤ m we have [gi, gj] =
0.

(iv) Under assumptions (A1), (A2), and (A3), the m-tuple g = (g1, . . . , gm) is a
strong quadratic frame of D0 if and only if

[gi, adfgi] Iii − [gj, adfgj] I
j
j = 0 mod D0 for all i, j = 1, . . . ,m,

and [gi, adfgj] = 0 mod D0 if i ̸= j.
(5.5)

Statement (iv) of the above proposition gives an alternative definition of a strong
quadratic frame which does not depend on the choice of Z (compare with the def-
initions of strong orthonormal and isotropic frames; see Definitions 4.3 and 4.9 of
Chapter 4). That alternative definition will be useful in the proof of Theorem 5.3.

Proof.

(i) In coordinates (x,w), recall that any (p, q)-system Σp,q = (f, g) is given by the
vector fields gi = ∂

∂wi
, for 1 ≤ i ≤ m, and f = A(x)wtIp,qw + B(x)w + C(x)

mod D0. It is a straightforward computation to show that (g, Z), with Z =
−2A ∂

∂x
, is a strong quadratic frame. Indeed, on one hand, since A∧B1∧ . . .∧

Bm ̸= 0 we have A ∂
∂x

/∈ D1 = D0 + span
{
(2AIiiwi +Bi)

∂
∂x
, 1 ≤ i ≤ m

}
, and,

in the other hand, we have [gi, adfgj] = −2AIij ∂∂x mod D0.

(ii) Assume that (g̃, Z̃) is a strong quadratic frame and let g = g̃β−1, with
β ∈ C∞(M, GO(p, q)), then clearly (g, Z) is a weak quadratic frame by Propo-
sition 5.1 (ii), and formula (5.4) immediately derives from the application of
relation (5.2) with µ̃ki,j = 0.

(iii) Recall that the structure functions νki,j are defined through [gi, gj] =
∑m

k=1 ν
k
i,jgk.

Suppose that g is a strong quadratic frame, then using relation (5.1) we obtain

νki,j = µki,j − µkj,i = 0,

implying [gi, gj] = 0.

(iv) If (g, Z) is a strong quadratic frame then, we clearly have

[gi, adfgj] = 0 mod D0 for i ̸= j,

and [gi, adfgi] Iii − [gj, adfgj] I
j
j = IiiZI

i
i − IjjZI

j
j = 0 mod D0.

Conversely, if an m-tuple g = (g1, . . . , gm) satisfies (5.5), then obviously for i ̸=
j we have [gi, adfgj] = IijZ (for some non-zero vector field Z). Next, observe
that assumption (A3) implies that [gi, adfgi] /∈ D1, for all 1 ≤ i ≤ m. Recall
that I11 = 1, so we set Z = [g1, adfg1] and we deduce that [gi, adfgi] = IiiZ
mod D0, for all 1 ≤ i ≤ m.

■

We have now set everything for the characterisation of (p, q)-paraboloid sys-
tems, in terms of algebraic and differential relations between the structure functions
µki,j. Statement (i) of the above proposition asserts that any Σp,q possesses a strong
quadratic frame thus the existence of a SQF is a necessary condition for the equiv-
alence of a control-affine system Σ with Σp,q. In the following paragraph, we will
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exploit relation (5.4) to derive necessary conditions on the structure functions µki,j
of a WQF that is equivalent to a SQF. Next we will show that those conditions are
also sufficient.

Consider a WQF (g, Z) and assume that it is equivalent to a SQF, implying that
there exists a feedback β ∈ C∞(M, GO(p, q)), with associated multiplier λ, and
smooth functions υk such that relation (5.4) hold. First, using the relation λIij =
βsi I

s
rβ

r
j , we rewrite equation (5.4) as

βsi
(
µks,r − Isrυ

k
)
βrj + βsiLgs

(
βkj
)
= 0.(5.4’)

From that relation, we deduce that
(
µks,r − Isrυ

k
)
βrj + Lgs

(
βkj
)
= 0, for all 1 ≤

s, k, j ≤ m. We denote by µ̃s, for all 1 ≤ s ≤ m, the matrix whose elements
are µ̃ks,r = µks,r − Isrυ

k. Observe that µ̃ks,r are the structure function of the WQF
(g, Z̃), with Z̃ = Z +

∑m
k=1 υ

kadfgk. Using that matrix notation, we conclude that
µ̃sβ + Lgs (β) = 0, for all s = 1, . . . ,m. Thus, by Lemma 3.3 of Chapter 3, we
conclude that

∀ s = 1, . . . ,m, µ̃s +
1

2λ
Lgs (λ) Idm ∈ Lie (O(p, q)) .(5.6)

Since each element of Lie (O(p, q)) has its diagonal identically equal to zero, we
deduce that if µ̃s fulfils the above inclusion, then the following two conditions hold
for all 1 ≤ s ≤ m:

∀ i, j = 1, . . . ,m, µ̃is,i = µ̃js,j,(5.7a)
µ̃△
s := µ̃s − diag (µ̃s) ∈ Lie (O(p, q)) .(5.7b)

When condition (5.7a) is fulfilled, we denote σ̃s := (µ̃s)
1
1 and thus we have µ̃△

s :=
µ̃s − σ̃sIdm. The matrices of structure functions µ̃s are related with the feedback
transformations β ∈ C∞(M, GO(p, q)) by the following systems of linear first order
partial differential equations for the unknowns λ and β

∀ i = 1, . . . ,m
1

2λ
Lgi (λ) = −σ̃i and Lgi (β) = −µ̃iβ.(5.8)

The integrability conditions of those system are given by, recall the structure func-
tions νki,j defined by [gi, gj] =

∑m
k=1 ν

k
i,jgk,

Lgi (σ̃j)− Lgj (σ̃i) =
m∑
k=1

σ̃k ν
k
i,j,(5.9a)

and Lgi (µ̃j)− Lgj (µ̃i) + µ̃iµ̃j − µ̃jµ̃i =
m∑
k=1

µ̃k ν
k
i,j,

implying Lgi
(
µ̃△
j

)
− Lgj (µ̃

△
i ) + µ̃△

i µ̃
△
j − µ̃

△
j µ̃

△
i =

m∑
k=1

µ̃△
k ν

k
i,j.(5.9b)

Conditions (5.7a), (5.7b), (5.9a), and (5.9b) are the core of our characterisation of
strong quadratic frames. Those conditions, however, are not expressed directly in
terms of the structure functions µki,j of a given WQF, but on a modified version of
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them; actually, for a WQF for which the vector field Z has been suitably chosen. In
the following, we explain how different choices of Z twist condition (5.7a) and, as a
consequence, it will provide us a way of constructing that «good» Z.

Recall that the matrices of structure functions µs and of µ̃s (corresponding to two
WQFs (g, Z) and (g, Z̃), respectively) are related by µ̃is,i = µis,i−Isiυ

i and thus their
diagonal diag (µs) and diag (µ̃s) differ at most in one location. Hence, we deduce
that if µ̃s satisfy (5.7a), then, for all indices 1 ≤ s ≤ m, it holds

(5.7a’) ∀ 1 ≤ i, j ̸= s ≤ m, (µs)
i
i = (µs)

j
j,

and ∃ υs ∈ C∞(M), ∀ i ̸= s (µs)
s
s − (µs)

i
i = Issυ

s.

Clearly, if the first part of that condition is satisfied, then the existence of the
function υk is automatic, as we describe it below; we include that second part so
that the function υk explicitly appear in it. If that condition holds, then it provides
a way to identify the functions υk. Indeed, in that case, we have (µs)

s
s− (µs)

i
i = Issυ

s

for all 1 ≤ i ̸= s ≤ m. Therefore, if (g, Z) is a WQF satisfying (5.7a’), then we
can uniquely identify smooth function υk, using which we can transform the field Z
into Z̃ = Z +

∑m
k=1 υ

kadfgk and get structure function µ̃ki,j for which conditions (as
(5.7b) and its consequences) can be tested.

The following theorem shows, first that conditions (5.7a), (5.7b), (5.9a), and
(5.9b) are also sufficient for the existence of a SQF and, second, that the existence
of a SQF fully characterises (p, q)-paraboloid systems.

Theorem 5.3 (Characterisation of (p, q)-paraboloid systems). Consider a control-
affine system Σ = (f, g) satisfying assumptions (A1), (A2), and (A3). Then, the
following statements are locally equivalent,

(S1) Σ is feedback equivalent to Σp,q;

(S2) For any weak quadratic frame (g, Z), the structure functions µki,j satisfy (5.7a’)
and, additionally, the modified structure functions µ̃ki,j of

(
g, Z +

∑m
k=1 υ

kadfgk
)

satisfy (5.7b), and the systems of linear partial differential equations given by
(5.8) have solutions (λ, β) fulfilling βtIp,qβ = λIp,q;

(S3) For any weak quadratic frame (g, Z), the structure functions µki,j satisfy (5.7a’)
and, additionaly, the modified structure functions µ̃ki,j of

(
g, Z +

∑m
k=1 υ

kadfgk
)

satisfy (5.7b), (5.9a), and (5.9b);

(S4) There exists a strong quadratic frame of Σ;

As announced, the equivalence of (S1) and (S4) shows that the existence of
a strong quadratic frame is the key of the characterisation of the class of (p, q)-
paraboloid systems. In order to test if a given control-affine system Σ = (f, g) is
feedback equivalent to Σp,q we proceed as follow:

1) We test that assumptions (A1), (A2), and (A3) hold;

2) Using Proposition 3.1 of Chapter 3 we explicitly construct a weak quadratic
frame (g, Z), to which we attach structure functions µki,j;

3) We test condition (5.7a’), due to which we uniquely identify the functions υk;

4) We change Z by Z 7→ Z̃ = Z +
∑m

k=1 υ
kadfgk and calculate the modified

structure functions µ̃ki,j of the weak quadratic frame (g, Z̃);
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5) Finally, we test that (5.9a) and (5.9b) hold.

Proof. We will show (S1)⇒(S2)⇒(S3)⇒(S4)⇒(S1).
(S1)⇒(S2)⇒(S3). It is the analysis performed before the statement of the theorem.
(S3)⇒(S4). Assume that (g, Z) is a weak quadratic frame with structure functions
µki,j satisfying (5.7a’), and that the structure functions µ̃ki,j of the modified WQF(
g, Z̃ = Z +

∑m
k=1 υ

kadfgk

)
satisfy conditions (5.7b), (5.9a), and (5.9b). The last

two conditions imply that there exists smooth solutions (λ, β△) of the following two
systems (see Corollary 3.1 of Chapter 3 for a proof of the existence of β△)

1

2λ
Lgi (λ) = −σ̃i and Lgi (β

△) = −µ̃△
i β

△.

Without loss of generality, we can suppose that λ > 0 (because, if λ is a solution of
the first system, so is −λ). Moreover, since µ△

i ∈ Lie (O(p, q)), due to Lemma 3.5 of
Chapter 3 we have β△ ∈ O(p, q). Therefore, we construct the feedback β =

√
λβ△,

which indeed belongs to C∞(M, GO(p, q)), and by a direct application of relation
(5.2) we deduce that the structure functions ˜̃µki,j of the weak quadratic frame (˜̃g =

gβ, Z̃) satisfy

βks ˜̃µ
s
i,j = βsi (µ̃sβ + Lgs (β))

k
j = βsi

(
µ̃s
√
λβ△ + Lgs

(√
λβ△

))k
j
,

= βsi

(
µ̃△
s

√
λβ△ + σ̃s

√
λβ△ +

1

2
√
λ
Lgs (λ) β

△ +
√
λLgs (β

△)

)k
j

,

= βsi

(√
λ
[
µ̃△
s β

△ + Lgs (β)
△]+√λβ△

[
σ̃s +

1

2λ
Lgs (λ)

]
β△

)k
j

= 0.

Therefore, (˜̃g, Z̃) is actually a strong quadratic frame.
(S4)⇒(S1). Let g = (g1, . . . , gm) be a strong quadratic frame, and recall that by
statement (iii) of Proposition 5.2 the elements of this frame satisfy [gi, gj] = 0 for all
1 ≤ i, j ≤ m. Therefore, we introduce coordinates (x,w) = ϕ(ξ) such that ϕ∗gi =
∂
∂wi

, for i = 1, . . . ,m, and after applying a suitable feedback f 7→ f +
∑m

i=1 giα
i the

system Σ takes the form

Σ :

{
ẋ = f(x,w)
ẇ = u

,

for which g =
(

∂
∂w1

, . . . , ∂
∂wm

)
is a strong quadratic frame. Using the characterisation

of a strong quadratic frame given by relation (5.5), we have the following conditions
on f(x,w)

∂2f
∂w2

i

Iii −
∂2f
∂w2

j

Ijj = 0 and
∂2f

∂wi∂wj
= 0,(5.10)

for all 1 ≤ i ̸= j ≤ m. The latter condition yields f(x,w) =
∑m

i=1 fi(x,wi) which
inserted in the former one implies ∂3fi

∂w3
i
= 0 for all i = 1, . . . ,m. Therefore, fi(x,wi) =

Ai(x)w
2
i + Bi(x)wi + Ci(x) and using again the first relation of (5.10) we deduce

AiIii − AjI
j
j = 0 for all 1 ≤ i, j ≤ m, implying that f(x,w) = A(x)

∑m
i=1w

2
i I

i
i +
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Bi(x)wi + Ci(x). Finally, the drift vector field f = f ∂
∂x

of Σ has the following form
(modulo the w-components):

f(x,w) = A(x)wtIp,qw +B(x)w + C(x),

where B = (B1, . . . , Bm), and C =
∑m

i=1Ci. For Σ in this form we have D1 = D0 +
span

{
(2AwiIii +Bi)

∂
∂x
, i = 1, . . . ,m

}
which, by assumption (A2), is of constant

rank 2m, and since we have preserved the signature of Ωω in all our operations, we
obtain that A ∂

∂x
/∈ D1 and thus we conclude A∧B1 ∧ . . .∧Bm ̸= 0. Hence, we have

completed transforming of Σ into a (p, q)-paraboloid system Σp,q. ■

Our characterisation of (p, q)-paraboloid systems requires two kinds of conditions.
The first kind, given by the two conditions (5.7a) and (5.7b), is purely algebraic
and is related to the (p, q)-paraboloid structure of Σp,q. The second kind, given by
conditions (5.9a) and (5.9b), is differential and asserts that there exists a feedback
β(·) ∈ GO(p, q) that transforms a WQF into a SQF. Our definition of a SQF (which
is the key of our characterisation of(p, q)-systems) is of second order with respect
to w but, as we observe in the proof, it implies a third order condition on the drift
vector field of Σ (see below equation (5.10)).

Remark (Comparison with the cases m = 1 and m = 2). The proof of the impli-
cation (S4)⇒(S1) uses the alternative definition (5.5) of a strong quadratic frame.
This definition requires at least two controls (i.e. two vector fields gi) to be non-
trivial. We therefore understand why the case m = 1 has to be treated separately
and why for that case we need to compute third order Lie brackets (see Theorem 2.2
of Chapter 2), while for the cases m ≥ 2 we only need second order brackets.
Compare the above theorem with Theorems 4.4 and 4.10 of Chapter 4, which are
clearly special cases of the general result formulated in Theorem 5.3 (p-elliptic sys-
tem being Σ2,0 and p-hyperbolic systems being Σ1,1). The only small difference is
in the definitions of WQF and SQF, called weak/strong orthonormal or isotropic
frames in Chapter 4, where we directly used our alternative definition (given by
relation (5.5)) and we did not introduce the definition with the vector field Z. The
approach of Chapter 4 leads to a different definition of the structure functions µ,
but all in all the conditions that we obtained are of similar nature. ◆

In this section, we introduced the notion of weak and strong quadratic frame
attached to a control-affine system Σ, satisfying assumptions (A1), (A2), and (A3).
We showed that the existence of a strong quadratic frame can explicitly be checked
by means of algebraic and differential relations between structure functions. Our
main result shows that the existence of a strong quadratic frame is a complete
characterisation of (p, q)-paraboloid systems Σp,q. In the following section, we will
analyse the class of (p, q)-paraboloid systems and study the classification problem.

2 Classification of (p, q)-paraboloid systems

We now investigate the problem of classifying the class of (p, q)-paraboloid subman-
ifolds SQ of TX . This problem is dealt with under the classification of their first
prolongations (regular parametrisations) defined by

Ξp,q : ẋ = A(x)wtIp,qw +
m∑
i=1

Bi(x)wi + C(x),
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where the state x belongs to X , a smooth manifold of dimension m + 1, w =
(w1, . . . , wm)

t ∈ Rm is the control that enters in a quadratic way, and Ip,q =(
Idp 0
0 −Idq

)
(without loss of generality, we assume that p ≥ q). Moreover, A, B =

(B1, . . . , Bm), and C are smooth vector fields satisfying A ∧ B1 ∧ . . . ∧ Bm ̸= 0 in
a neighbourhood of x0. A (p, q)-paraboloid control-nonlinear system Ξp,q, shortly a
(p, q)-system, is represented by the (m+2)-tuple of vector fields (A,B1, . . . , Bm, C) =
(A,B,C). We will describe several orbits of Ξp,q under the action of feedback trans-
formations x̃ = ϕ(x) and w = ψ(x, w̃). Clearly, if two systems Ξp,q and Ξ̃p̃,q̃ are feed-
back equivalent, then (p, q) = (p̃, q̃) (under our convention that p ≥ q and p̃ ≥ q̃),
so we assume that (p, q) is fixed. First of all, we have the following characterisation
of feedback transformations that transfer a (p, q)-system into another.

Proposition 5.3 (Equivalence of (p, q)-paraboloid control-nonlinear systems).

(i) If two (p, q)-systems Ξp,q = (A,B,C) and Ξ̃p,q = (Ã, B̃, C̃) are feedback equiv-
alent via a diffeomorphism x̃ = ϕ(x) and an invertible feedback transforma-
tion w = ψ(x, w̃), then ψ(x, w̃) = α(x) + β(x)w̃ where α ∈ C∞(X ,Rm) and
β ∈ C∞(X , GO(p, q)), i.e. βtIp,qβ = λ Ip,q with λ a smooth function satisfying
λ(·) ̸= 0. Moreover, we have

(5.11) Ã = ϕ∗(λA), B̃ = ϕ∗(2Aα
tIp,qβ +Bβ),

and C̃ = ϕ∗(C + AαtIp,qα +Bα).

(ii) Conversely, if a diffeomorphism x̃ = ϕ(x) and smooth functions α : X → Rm

and β : X → GO(p, q) satisfy (5.11), then the feedback transformation x̃ =
ϕ(x) together with ψ(x, w̃) = α(x) + β(x)w̃ transforms Ξp,q into Ξ̃p,q.

The implicit summations in formula (5.11) for B̃ and C̃ should be interpreted as
follows (where we take ϕ = Id to simplify the notations):

B̃k = 2A
m∑
i=1

αiIiiβ
i
k +

m∑
i=1

Biβ
i
k and C̃ = C + A

m∑
i=1

Iii(α
i)2 +

m∑
i=1

Biα
i.

Remark (Local character of the results). When we introduced the definition of
(p, q)-paraboloid nonlinear systems Ξp,q, we assumed that this form holds locally
around an arbitrary point(x0, w0). We see, in statement (i) of the above proposition
that the pure feedback transformation w = ψ(x, w̃) that conjugate (p, q)-paraboloid
systems is global with respect to the control w. Therefore, in all results below, we
will consider the form Ξp,q locally around x0 and globally in w. ◆

Proof.

(i) Clearly diffeomorphisms of X map (p, q)-systems into (p, q)-systems and we
have to show that only pure feedback transformations w = ψ(x, w̃) of the
form w = α(x) + β(x)w̃ conjugate (p, q)-systems. To this end, applying
(w1, . . . , wm) = (ψ1(x, w̃), . . . , ψm(x, w̃)) to Ξp,q yields

ẋ = AψtIp,qψ +Bψ + C.(5.12)
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To ensure the quadratic structure of Ξ̃p,q, we must have

∂3

∂w̃i∂w̃j∂w̃k

(
AψtIp,qψ +Bψ

)
= 0, for all i, j, k.

Since the vector fields A = A(x) and Bi = Bi(x), for i = 1, . . . ,m, are
linearly independent for every x, we first conclude that ∂3 ψ

∂w̃i∂w̃j∂w̃k
= 0, i.e.

ψ is a polynomial of degree at most 2 in w̃. Secondly, by equating the indices
i = j = k, we deduce that ∂ψt

∂wi
Ip,q ∂

2ψ
∂w2

i
= 0 implying that ψ is, actually, affine

with respect to w̃, i.e. ψ(x, w̃) = β(x)w̃ + α(x) with β ∈ C∞(X , GL(m)) and
α ∈ C∞(X ,Rm). Finally, with (5.12) we obtain that β satisfies βtIp,qβ = λ Ip,q
in order to get Aw̃tβtIp,qβw̃ = Ãw̃tIp,qw̃. In order to obtain formula (5.11) we
apply (5.12) with ψ = βw̃ + α satisfying βtIp,qβ = λ Ip,q.

(ii) Conversely, for ϕ and (α, β) satisfying (5.11), we clearly establish feedback
equivalence of Ξp,q and Ξ̃p,q via x̃ = ϕ(x) and w = βw̃ + α.

■

Remark (Nature of the feedback transformations). Pure feedback transformations
acting on (p, q)-systems are of the form w = βw̃ + α, with β(x) ∈ GO(p, q) and
α(x) ∈ Rm. In particular, β can be a homothety β = η Idm, for some smooth function
η ̸= 0, or an indefinite isometry β ∈ O(p, q), but in general β is not a composition of
those two operations. Homotheties act on Ξp,q = (A,B,C) by scaling: (Ã, B̃, C̃) =
(η2A, ηB,C), and indefinite isometries act by indefinite rotations on the fields B:
(Ã, B̃, C̃) = (A,Bβ,C). The action of α leaves the field A invariant and changes
the directions of B and C by (Ã, B̃, C̃) = (A,B+2AαtIp,q, C +AαtIp,qα+Bα). ◆

Feedback transformations ψ(x, w̃) = β(x)w̃ + α(x) are denoted by the couple
(α, β). We will develop relations involving structure functions uniquely attached to
the (m+2)-tuple (A,B,C) only, and thus independent from diffeomorphisms of X .
So we will act on Ξp,q = (A,B,C) by (α, β) and we will denote (Ã, B̃, C̃) the result
of that action (given by (5.11) with ϕ = Id) and call it a reparametrisation. For a
(p, q)-system Ξp,q we call the (m + 1)-tuple (A,B) a (p, q)-frame and we introduce
the structure functions µ0

j , µij, ν0k,j, and νik,j for i, j, k = 1, . . . ,m defined by the
following brackets

[A,Bj] = Aµ0
j +

m∑
i=1

Biµ
i
j, and [Bk, Bj] = Aν0k,j +

m∑
i=1

Biν
i
k,j.

Notice that symbols similar to those of the previous section are used although they
have nothing to do with each other. Moreover, we define the structure functions
γ0 and γi, for i = 1, . . . ,m, given by the decomposition of the field C in the frame
(A,B):

C = γ0A+
m∑
i=1

Biγ
i.

By a simple calculation, we see that we defined m(m+1)2

2
+ (m+ 1) unique structure

functions (which are related by the Jacobi identity). To shorten our formulae, we
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exploit the matrix-vector product with the following notations µ0 := (µ0
1, . . . , µ

0
m),

µ := (µij), ν0k := (ν0k,1, . . . , ν
0
k,m), νk := (νik,j), and γ = (γ1, . . . , γm)t. Thus, the above

definitions can be rewritten as

[A,B] = Aµ0 +Bµ, [Bk, B] = Aν0k +Bνk, and C = Aγ0 +Bγ.

We now introduce different types of (p, q)-frames. We denote the distribution A :=
span {A}, which from the first relation of (5.11) is seen to be invariant under feedback
transformations, i.e. the distribution A is uniquely attached to a (p, q)-system.

Definition 5.4 (Types of (p, q)-frames). We say that a (p, q)-frame (A,B), with
structure functions {µ0, µ, ν0k , νk}, is

(a) pseudo-commutative if [A,B] = 0 mod A, that is µ = 0.

(b) almost-commutative if [A,B] = [Bk, B] = 0 mod A, that is µ = 0 and,
additionally, νk = 0 for k = 1, . . . ,m.

(c) commutative if [A,B] = [Bk, B] = 0, that is µ = νk = 0 and, additionally,
µ0 = ν0k = 0 for k = 1, . . . ,m.

Clearly, pseudo-commutative frames form a subclass of almost-commutative frames,
which themselves form a subclass of commutative frames. Actually, we will prove
in Theorem 5.5 that pseudo-commutative and almost-commutative frames form the
same class. The following technical lemma shows how the six sets of structure func-
tions µ0

j , µij, ν0k,j, νik,j, γ0, and γi are transformed under reparametrisations (α, β).
Relation (5.14) for ν̃k is given for completeness only and will not be used in what
follows.

Lemma 5.1 (Structure functions transformations). Let Ξp,q = (A,B,C) and Ξ̃p,q =
(Ã, B̃, C̃) be two (p, q)-paraboloid nonlinear systems with structure functions µ0

j , µij,
ν0k,j, νik,j, γ0, γi and µ̃0

j , µ̃ij, ν̃0k,j, ν̃ik,j, γ̃0, γ̃i, respectively. Suppose that they are
feedback equivalent via (α, β), with βtIp,qβ = λIp,q, then we have

λµ̃0 + 2αtIp,qβµ̃ = λµ0β − LB (λ) β + 2λLA (α
tIp,qβ)− 2αtIp,qβLA (λ) ,

βµ̃ = λµβ + λLA (β) ,
(5.13)

λν̃0k,j + 2αtIp,qβν̃k,j = 2αtIp,qβk [µ0β + 2LA (α
tIp,qβ)]j

−2αtIp,qβj [µ0β + 2LA (α
tIp,qβ)]k

+2LB (αtIp,qβj) βk
−2LB (αtIp,qβk) βj
+
∑m

s,r=1 β
s
kν

0
s,rβ

r
j ,

(βν̃k)
i
j = 2αtIp,q

(
βk [µβ + LA (β)]

i
j − [µβ + LA (β)]

i
k βj

)
+LB

(
βij
)
βk − LB (βik) βj +

∑m
s,r=1 β

s
kν

i
s,rβ

r
j ,

(5.14)

γ̃0 = 1
λ
(γ0 − αtIp,qα− 2αtIp,qγ) and γ̃ = β−1 (γ + α) .(5.15)

Moreover, the following relations between the structure functions always hold (we
use implicit summation over the index l). For all 1 ≤ k < j ≤ m and all 1 ≤ i ≤ m:

LA
(
ν0k,j
)
− LBk

(
µ0
j

)
+ LBj

(µ0
k) = −µ0

l ν
l
k,j + ν0k,lµ

l
j + µlkν

0
l,j,

LA
(
νik,j
)
− LBk

(
µij
)
+ LBj

(µik) = −µilνlk,j + νik,lµ
l
j + µlkν

i
l,j + µikµ

0
j + µijµ

0
k,

(5.16a)
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furthermore, for all 1 ≤ i < k < j ≤ m and all 1 ≤ s ≤ m,

LBi

(
ν0k,j
)
+ LBk

(
ν0j,i
)
+ LBj

(
ν0i,k
)

= µ0
i ν

0
k,j + µ0

kν
0
j,i + µ0

jν
0
i,k

−ν0i,lνlk,j − ν0k,lνlj,i − ν0j,lνli,k,
LBi

(
νsk,j
)
+ LBk

(
νsj,i
)
+ LBj

(
νsi,k
)

= µsiν
0
k,j + µskν

0
j,i + µsjν

0
i,k

−νsi,lνlk,j − νsk,lνlj,i − νsj,lνli,k.

(5.16b)

Formulae (5.16a) and (5.16b) can be rewritten using our matrix notations as follows.
For all indices 1 ≤ k ≤ m it holds

LA (ν
0
k)− LBk

(µ0) + LB (µ0
k) = −µ0νk + ν0kµ+

∑m
l=1 µ

l
kν

0
l ,

LA (νk)− LBk
(µ) + LB (µk) = νkµ− µνk + µkµ

0 + µµ0
k +

∑m
l=1 µ

l
kνl,

(5.16a’)

and, for all 1 ≤ k < j ≤ m it holds

LB
(
ν0kj
)
+ LBk

(
ν0j
)
− LBj

(ν0k) = µ0ν0kj + µ0
kν

0
j − µ0

jν
0
k + ν0j νk − ν0kνj

+
∑m

l=1 ν
0
l ν

l
kj,

LB (νkj) + LBk
(νj)− LBj

(νk) = µν0kj + µkν
0
j − µjν0k + νkνj − νjνk

+
∑m

l=1 νlν
l
kj.

(5.16b’)

Formulae (5.13), (5.14), (5.15), and (5.16a) are generalisation of those obtained
in the case m = 2 (compare Lemmas 4.1 and 4.2 of Chapter 4). However, the
relations of (5.16b) are new because they come from the Jacobi identity between
three different vector fields Bi.

Proof. Let Ξp,q = (A,B,C) and Ξ̃p,q = (Ã, B̃, C̃) be two (p, q)-systems with struc-
ture functions µ0

j , µij, ν0k,j, νik,j, γ0, γi and µ̃0
j , µ̃ij, ν̃0k,j, ν̃ik,j, γ̃0, γ̃i, respectively,

feedback equivalent via (α, β). Recall from (5.11), the following relations that we
will systematically use: Ã = λA and B̃ = 2AαtIp,qβ +Bβ.
We begin by showing how the structure functions µ0 and µ are transformed:

Ãµ̃0 + B̃µ̃ =
[
Ã, B̃

]
=
[
λA,Bβ + 2AαtIp,qβ

]
,

A
(
λµ̃0 + 2αtIp,qβµ̃

)
+Bβµ̃ = λ [A,B] β + λBLA (β)− ALB (λ) β

+ λALA
(
2αtIp,qβ

)
− 2AαtIp,qβLA (λ) ,

= A
(
λµ0β − LB (λ) β + λLA

(
2αtIp,qβ

)
− 2αtIp,qβLA (λ)

)
+B (λµβ + λLA (β)) .

Identifying the terms in front of A and B implies formula (5.13). We continue our
calculations by showing how the structure functions ν0k,j and νik,j are transformed:[

B̃k, B̃j

]
= Ãν̃0k,j + B̃ν̃k,j = A

(
λν̃0k,j + 2αtIp,qβν̃k,j

)
+

m∑
i=1

Biβ
iν̃k,j,

=
[
2AαtIp,qβk +Bβk, 2Aα

tIp,qβj +Bβj
]
,

= 2αtIp,qβk [A,B] βj + 2αtIp,qβj [B,A] βk +
m∑

s,r=1

[
Bsβ

s
k, Brβ

r
j

]
+ 4αtIp,qβkALA

(
αtIp,qβj

)
− 4αtIp,qβjALA

(
αtIp,qβk

)
+ 2ALB

(
αtIp,qβj

)
βk − 2ALB

(
αtIp,qβk

)
βj

+ 2αtIp,qβkBLA (βj)− 2αtIp,qβjBLA (βk) ,
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implying

= A

(
2αtIp,qβkµ0βj − 2αtIp,qβjµ0βk +

m∑
s,r=1

βskβ
r
j ν

0
s,r

+ 4αtIp,qβkLA
(
αtIp,qβj

)
− 4αtIp,qβjLA

(
αtIp,qβk

)
+ 2LB

(
αtIp,qβj

)
βk − 2LB

(
αtIp,qβk

)
βj

)

+
m∑
i=1

Bi

(
2αtIp,qβkµiβj − 2αtIp,qβjµiβk +

m∑
s,r=1

βskβ
r
j ν

i
s,r

+ 2αtIp,qβkLA
(
βij
)
− 2αtIp,qβjLA

(
βik
)

+
m∑
s=1

βskLBs

(
βij
)
−

m∑
r=1

βrjLBr

(
βik
))

,

implying formula (5.14). We conclude our calculations with the transformation of
the structure functions γ0 and γi:

Ãγ̃0 + B̃γ̃ = C̃ = C + AαtIp,qα +Bα = Aγ0 +Bγ + AαtIp,qα +Bα,

A
(
λγ̃0 + 2αtIp,qβγ̃

)
+Bβγ̃ = A

(
γ0 + αtIp,qα

)
+B (α + γ) ,

from which we deduce first γ̃ = β−1(γ+α), and then γ̃0 = 1
λ
(γ0 − αtIp,qα− 2γtIp,qα).

To show (5.16a), we apply the Jacobi identity to [A, [Bk, B]] and identify the terms
in front of A and B, as follows:

[A, [Bk, B]]− [Bk, [A,B]] + [B, [A,Bk]] = 0,[
A,Aν0k +Bνk

]
−
[
Bk, Aµ

0 +Bµ
]
+
[
B,Aµ0

k +Bµk
]
= 0,

LA
(
ν0k
)
A+ [A,B] νk +BLA (νk) + [A,Bk]µ

0 − ALBk

(
µ0
)
− [Bk, B]µ

−BLBk
(µ)− [A,B]µ0

k + ALB
(
µ0
k

)
+

m∑
l=1

[
B,Blµ

l
k

]
= 0.

Hence, we obtain

A(LA
(
ν0k
)
+ µ0νk +���µ0

kµ
0 − LBk

(
µ0
)
− ν0kµ−���µ0µ0

k + LB
(
µ0
k

)
−

m∑
l=1

ν0l µ
l
k)

+B(µνk + LA (νk) + µkµ
0 − νkµ− LBk

(µ)− µµ0
k + LB (µk)−

m∑
l=1

νlµ
l
k) = 0,

implying the two equations of (5.16a’) which can be expended in the formulae of
(5.16a). Finally, to show (5.16b) we use the Jacobi identity on [Bi, [Bk, B]] and
identify the term in front of A and Bs (for all 1 ≤ s ≤ m). ■

We now begin to give our classification of control-nonlinear (p, q)-systems. Our
conditions will be expressed by relations between the structure functions (except for
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the next result, where only geometric conditions are given). The following proposi-
tion gives a geometric characterisation of the following normal form

Ξdp,q : ẋ = wtIp,qw
∂

∂z
+

m∑
i=1

qi(x)wi
∂

∂yi
+ C(x),

which is equivalent (via the transformation w̃i = qi(x)wi + ci(x)) to a first pro-
longation of (p, q)-paraboloid submanifold SQ with the matrix Q(x) being locally
diagonalised.

Proposition 5.4. Consider a (p, q)-system Ξp,q = (A,B,C), then the following
statements are equivalent.

(i) Ξp,q is feedback equivalent to Ξdp,q,

(ii) There exists a reparametrisation (α, β) of (A,B) such that

(5.17)
[
Ã, B̃j

]
= 0 mod span

{
Ã, B̃j

}
and

[
B̃k, B̃j

]
= 0 mod span

{
Ã, B̃k, B̃j

}
.

Compare the above proposition with Proposition 4.4 of Chapter 4 and observe that
when m = 2, then the second condition of (5.17) is automatically fulfilled. Contrary
to the case of m = 2, we did not succeed in finding a condition on the structure
functions ensuring the existence of a feedback transformation (α, β) achieving (5.17).

Remark. The geometric meaning of condition (5.17) is as follows. We define the
projection π onto the space of leaves of the foliation generated by A, by attaching
to x ∈ X the leaf of the integral foliation of A passing through x, and its tangent
map π∗ acting on the vector fields Bi:

π∗ : TX −→ TX/A
Bi 7−→ π∗Bi.

The first equality of (5.17) implies (see the proof below) that the distributions B̂i =
π∗Bi, where Bi = span {Bi}, are well defined (although the vector fields π∗Bi need
not be). The second equation of (5.17) is the key of our characterisation, it implies
that the distributions B̂k ⊕ B̂j are involutive. Using a generalisation of Frobenius
theorem (that we propose in Appendix A), we conclude that the distributions B̂i,
for 1 ≤ i ≤ m, are simultaneously rectifiable. ◆

Proof. The proof (i)⇒(ii) is immediate by a straightforward calculation.
(ii)⇒(i). Assume that the (p, q)-frame (A,B) of Ξp,q satisfies (5.17). Introduce
local coordinates x̃ = (z, ỹ) = ϕ(x), around x0 ∈ X , such that ϕ∗A = ∂

∂z
, and

set B̃i = ϕ∗Bi = b0i (x̃)
∂
∂z

+
∑m

j=1 b̃
j
i (x̃)

∂
∂ỹj

. By assumption, there exists smooth

functions (ρ1, . . . , ρm) such that ρi
[
A, B̃i

]
= B̃i mod A, implying ρi

∂b̃ji
∂z

= b̃ji for all

j = 1, . . . ,m. By solving those equations, we deduce that b̃ji (x̃) = b̂ji (ỹ) exp(Ri(x̃)).
It follows that the family of involutive distributions

B̂i = π∗span
{
B̃i

}
= span

{
b̂1i (ỹ)

∂

∂ỹ1
+ . . .+ b̂mi (ỹ)

∂

∂ỹm

}
for 1 ≤ i ≤ m,
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is well defined on the manifold Y = X/ ∼ equipped with coordinates (ỹ1, . . . , ỹm).
Here «∼» is defined locally around x0 by the involutive distribution A = span

{
∂
∂z

}
and π : X → Y is the projection attaching to x ∈ X the leaf passing through
x of the foliation generate by A. The second relation of (5.17) implies that the
distributions B̂i satisfy the assumptions of our generalisation of Frobenius theorem
(given by Theorem A.2 of Appendix A), namely B̂i ⊕ B̂j is involutive for any 1 ≤
i, j ≤ m. Therefore, those distributions can be simultaneously rectified, that is there
exists coordinates y = φ(ỹ) such that B̂i = span

{
∂
∂yi

}
. In the coordinate system

x = (z, y), the system Ξp,q takes the form{
ż = wtIp,qw +

∑m
i=1 b

0
iwi + c0

ẏi = qiwi + ci
,

where qi = qi(z, y). The conclusion follows from the application of the feedback
wi = w̃i − 1

2
b0i I

i
i. ■

In the following result, we will characterise the normal form

Ξ′
p,q : ẋ = wtIp,qw

∂

∂z
+

m∑
i=1

wi
∂

∂yi
+ C(x).

For (p, q)-systems Ξp,q, that form corresponds to the existence of a commutative
(p, q)-frame (A,B) and, from the point of view of paraboloid submanifolds SQ, that
form corresponds to the normalisation of Q to the constant matrix Ip,q.

To characterise Ξ′
p,q, we start by observing that for any pseudo-commutative

(p, q)-frame (A,B), recall [A,B] = 0 mod A, the projection π∗ (defined above)
yields well defined vector fields π∗Bi, for 1 ≤ i ≤ m, on the manifold Y =
π(X ) (locally defined around a fixed x0 ∈ X ). In that case, we define on Y a
pseudo-Riemannian metric gB by declaring the frame (π∗B1, . . . , π∗Bm) pseudo-
orthonormal, i.e. for all i, j = 1, . . . ,m we set gB (π∗Bi, π∗Bj) = Iij, implying that
gB = Ip,q in that frame. Notice that any reparametrisation (α, β) that preserves the
pseudo-commutativity of the (p, q)-frame satisfies LA (β) = 0 (as it can be deduced
from relation (5.13) with µ̃ = µ = 0). Under such reparametrisation, for the new
pseudo-commutative (p, q)-frame (Ã, B̃) we have

gB(π∗B̃i, π∗B̃j) = (βtIp,qβ)i,j ⇐⇒ gB̃ = βtgBβ = λ gB,(5.18)

where the function λ satisfy LA (λ) = 0. Thus observe that two feedback equivalent
(p, q)-systems Ξp,q and Ξ̃p,q (for which pseudo-commutative (p, q)-frames exist) have
respective pseudo-Riemannian metrics gB and gB̃ conformally equivalent. A well-
known object in conformal geometry is the Cotton tensor, when m = 3, or the
Weyl tensor, when m ≥ 4, which are invariant under conformal transformations (see
Chapter 1 for a definition of those tensors). In order to avoid unnecessary distinction
between those two cases we call those tensors by the name conformal tensor. The
conformal tensor can be constructed for any pseudo-Riemannian metric gB and its
vanishing is equivalent to the fact that gB is conformally flat; see [Cot99; Wey18].

Theorem 5.5 (Existence of a commutative (p, q)-frame). Consider a (p, q)-paraboloid
nonlinear system Ξp,q = (A,B,C) with its (p, q)-frame (A,B). Then, the following
statements are locally equivalent,
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(i) Ξp,q is feedback equivalent to Ξ′
p,q,

(ii) There exists a reparametrisation (α, β) of (A,B) such that (Ã, B̃) is a com-
mutative (p, q)-frame.

(iii) There exists a reparametrisation (α, β) of (A,B) such that (Ã, B̃) is an almost-
commutative (p, q)-frame.

(iv) There exists a reparametrisation (α, β) of (A,B) such that (Ã, B̃) is a pseudo-
commutative (p, q)-frame and the pseudo-Riemannian metric gB̃ is conformally
flat.

(v) The structure functions µij of the (p, q)-frame (A,B) satisfy

µii = µjj, and µ△ := µ− diag (µ) ∈ Lie(O(p, q)),(5.19)

and the conformal tensor, associated to the pseudo-Riemannian metric gB̃ of
any equivalent pseudo-commutative (p, q)-frame, vanishes.

The above theorem shows that the class of commutative and of almost-commutative
(p, q)-frames are the same, and that the gap between almost- and pseudo-commutative
(p, q)-frames is the metric gB being conformally flat.

Remark. In statement (v), the relations given by (5.19) form algebraic necessary
and sufficient conditions for the existence of a pseudo-commutative (p, q)-frame.
Hence, it is necessary to test (5.19) first and next one need to construct a pseudo-
commutative (p, q)-frame (Ã, B̃), same procedure as in the proof below, on which
the conformal flatness of gB̃ can be tested. The condition on the conformal flatness
of gB̃ cannot be tested on an arbitrary (non necessarily pseudo-commutative) (p, q)-
frame because in order to define gB̃ we need the projections π∗Bi to be well defined.
The construction of a pseudo-commutative (p, q)-frame require solving a differential
equation, thus its construction can not always be explicitly done. In the future,
we plan to look for a condition expressed on any (p, q)-frame (A,B) which would
guarantee that any equivalent pseudo-commutative (p, q)-frame has a conformally
flat pseudo-Riemannian metric. ◆

Proof. We will show (i)⇒(v)⇒(iv)⇒(iii)⇒(ii)⇒(i).
(i)⇒(v). Assume that Ξp,q, given with its (p, q)-frame (A,B), is feedback equivalent
to Ξ′

p,q, given with its (p, q)-frame (Ã, B̃) =
(
∂
∂z̃
, ∂
∂ỹ

)
. From the second equation of

(5.13) with µ̃ = 0, we deduce that the structure functions µ of (A,B) satisfies

µβ + LA (β) = 0 =⇒ µ+ LA (β) β
−1 = 0.

By Lemma 3.3 of Chapter 3, we conclude that µ + 1
2λ
LA (λ) Idm ∈ Lie (O(p, q)).

It is known that any element M ∈ Lie (O(p, q)) satisfies diag (M) = 0, thus we
immediately deduce the conditions of (5.19). Moreover, Ξ′

p,q is given by a commuta-
tive (p, q)-frame (so, in particular, by a pseudo-commutative (p, q)-frame) for which
we have gB̃ = dỹtIp,qdỹ, under any reparametrisation (α, β) that transforms the
pseudo-commutative (p, q)-frame (Ã, B̃) of Ξ′

p,q into a pseudo-commutative (p, q)-
frame (Ā, B̄) of Ξp,q we have gB̄ = λgB̃. Therefore, gB̄ is conformally flat, implying
that its conformal tensor vanishes.
(v)⇒(iv). Consider a (p, q)-frame (A,B) with structure functions µ satisfying (5.19)
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and such that gB has zero conformal tensor. Take any smooth solutions λ and β△

of the following first order partial differential equations

1

2λ
LA (λ) = −µ1

1, and LA (β
△) · (β△)−1 = −µ△.(5.20)

Notice that if λ is a solution of the first equation, so is −λ; therefore we can always
assume that λ > 0. Since µ△ ∈ Lie (O(p, q)), we have β△ ∈ O(p, q) (see Lemma 3.5 of
Chapter 3). Therefore, β =

√
λβ△ belongs to GO(p, q) and satisfies βtIp,qβ = λIp,q.

Now, we apply the reparametrisation (α = 0, β) and construct a new (p, q)-frame
(Ã, B̃). Using relation (5.13) we obtain

1

λ
βµ̃β−1 = µ+ LA (β) β

−1 = µ△ + µ1
1Idm + LA

(√
λβ△

) 1√
λ
(β△)−1 ,

= µ△ + µ1
1Idm +

1

2λ
LA (λ) Idm + LA (β

△) (β△)−1 = 0,

implying that µ̃ = 0. Hence, (Ã, B̃) is actually a pseudo-commutative (p, q)-frame.
Moreover, by assumption the conformal tensor of gB̃ vanishes, therefore the pseudo-
Riemannian metric gB̃ is conformally flat.
(iv)⇒(iii). Assume that (Ã, B̃) is a pseudo-commutative (p, q)-frame (that is, µ̃ =
0) with pseudo-Riemannian metric gB̃ being conformally flat. We show how to
construct a reparametrisation β such that the transformed (p, q)-frame (Ā, B̄) is an
almost-commutative (p, q)-frame (i.e. its structure functions are µ̄ = ν̄k = 0).

First, observe that any reparametrisation (α, β) satisfying LÃ (β) = 0 leaves
invariant µ̃ = 0. Second, notice that due to the last relation of (5.16a’) we have
LÃ (ν̃k) = 0. Therefore, our reasoning can be conducted on the manifold Y = π(X )
(defined locally) and, amounts to show that there exists a reparametrisation β,
satisfying LÃ (β) = 0, such that (Ā, B̄) satisfies ν̄k = 0.

Since gB̃ is conformally flat, there exists coordinates ȳ = φ(ỹ) such that

gB̃ = φ∗

(
ϱ

m∑
i=1

Iii dȳi ⊗ dȳi

)
,

with ϱ = ϱ(ȳ) > 0. We denote ∂
∂ȳ

=
(

∂
∂ȳ1
, . . . , ∂

∂ȳm

)
and B̄∗ = (π∗B̄1, . . . , π∗B̄m),

where B̄i = φ∗B̃i. In those coordinates, both 1√
ϱ
∂
∂ȳ

and B̄∗ are pseudo-orthonormal
frames so they are related by a pseudo-orthonormal rotation: ∂

∂ȳ
=
√
ϱB̄∗β

△,
with β△ ∈ C∞(Y , O(p, q)). Therefore

(
α = 0,

√
ϱβ△

)
is a valid reparametrisation

which transforms (Ã, B̃) into (Ā, B̄) = (ϱφ∗Ã,
∂
∂ȳ

mod Ā) satisfying µ̄ = 0, since
LÃ
(√

ϱβ△
)
= 0, and ν̄k = 0.

(iii)⇒(ii). Assume that (Ā, B̄) is an almost commutative (p, q)-frame (recall that
µ̄ = 0 and ν̄k = 0). Applying the reparametrisation (α, β = Id) to (Ā, B̄), where α
is any smooth solution of the equation

2LA
(
αt
)
= −µ0Ip,q,

we obtain a new (p, q)-frame (Â, B̂) with µ̂ = 0, ν̂k = 0, and µ̂0 = 0. It remains to
normalise the structure functions ν̂0k,j, which using the first equation of (5.16a) satisfy
LÂ
(
ν̂0k,j
)
= 0. In the cotangent bundle of Y = π(X ), we introduce (θ1, . . . , θm) the
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dual frame of
(
π∗B̂1, . . . , π∗B̂m

)
, i.e. θi(π∗B̂j) = δij. We set ν̂0 =

∑
k<j ν̂

0
k,jθ

k ∧ θj,
then the first equation of (5.16b) implies that dν̂0 = 0, thus by Poincaré lemma
(see e.g. [War10, p. 156]) there exist smooth functions α ∈ C∞(Y ,Rm) satisfying
−2d

(∑m
j=1 α

jIjjθ
j
)

= ν̂0. Expending that equation, we deduce that α fulfils the
following set of first order partial differential equation:

LÂ (α) = 0, −2
(
LB̂k

(
αjIjj

)
− LB̂j

(
αkIkk

))
= ν̂0k,j, ∀ 1 ≤ k < j ≤ m.

Applying the reparametrisation given by such α and β = Id, we construct a new
(p, q)-frame (A,B) whose structure functions satisfy µ = ν = µ0 = 0 and, addition-
ally, using (5.14)

ν0kj = ν̂0kj + 2LB̂k

(
αjIjj

)
− 2LB̂j

(
αkIkk

)
= 0,

i.e. (A,B) is a commutative (p, q)-frame.
(ii)⇒(i). Consider a (p, q)-system Ξp,q such that its (p, q)-frame (A,B) is commu-
tative. Apply a diffeomorphism (z, y) = ϕ(x) satisfying ϕ∗A = ∂

∂z
and ϕ∗Bi =

∂
∂yi

.
In those coordinates, Ξp,q takes the form Ξ′

p,q. ■

Observe that the conditions of (5.19) can explicitly be checked via the following
relation

(µ△)tIp,q + Ip,qµ△ = 0,(5.21)

which describes the elements of Lie(O(p, q)). In the following remarks, we give an
interpretation of the conditions of (5.19) and we compare the results of Theorem 5.5
with the ones obtained for lower dimensions in Chapters 2 and 4.

Remark (Summary of the construction of a commutative (p, q)-frame). Under the
conditions of statement (v), the proof (v)⇒(ii), i.e. the construction of a commu-
tative (p, q)-frame, consists of successively building a feedback (α, β), with β(·) ∈
GO(p, q), and solving the following systems of first order partial differential equa-
tions, which can be deduced from equations (5.13) and (5.14), with µ̃ = ν̃k = µ̃0 =
ν̃0k,j = 0, by a straightforward but delicate calculation:

µβ + LA (β) = 0,(5.22a)

LB
(
βij
)
βk − LB

(
βik
)
βj +

m∑
s,r=1

βskν
i
s,rβ

r
j = 0,(5.22b)

2LA
(
αt
)
Ip,q + 2αtµtIp,q + µ0 − 1

λ
LB (λ) = 0,(5.22c)

(5.22d) 4IkkI
j
j

(
αkLA

(
αj
)
− αjLA

(
αk
))

+ 2IjjLBk

(
αj
)
− 2IkkLBj

(
αk
)

+ 2αkIkkµ
0
j − 2αjIjjµ

0
k + 2αtIp,q

(
2αjIjjµk − 2αkIkkµj − νk,j

)
+ ν0k,j = 0.

In order to deduce equation (5.22c), we used the following relation: Ip,q(µ−2µ1
1Idm) =

−µtIp,q, which follows from equation (5.21). The equations defined by (5.22a) can
always be solved, however it is condition (5.19) that guarantees that the solutions
β belongs to C∞(X , GO(p, q)). To solve (5.22a), we actually solve the two systems
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given for λ and β△ by (5.20) and from those solutions we construct β(·) ∈ GO(p, q)
and we build a pseudo-commutative (p, q)-frame. Equation (5.22b) is neither directly
given in the proof nor solved there: to construct an almost-commutative frame, we
use the conformal flatness of gB only. Therefore, the integrability conditions for
system (5.22b) must be guaranteed by vanishing of the conformal tensor. Next, we
solve equation (5.22c) for α and construct a frame satisfying µ0 = 0, that frame
permits the final step to be performed in the manifold Y = π(X ). Finally, we solve
(5.22d) for α whose integrability conditions are guaranteed by equation (5.16a) and
the first equation of (5.16b) and both are satisfied because of the Jacobi identity.

Observe that given an almost commutative (p, q)-frame (A,B), by adopting a
suitable coordinate system, a solution α of (5.22c) and (5.22d) can be chosen explic-
itly. Indeed, introducing coordinates (z, y) such that A = ∂

∂z
and B = b0(x) ∂

∂z
+ ∂

∂y
,

with b0 = (b01, . . . , b
0
m), we choose the reparametrisation

(
α = −1

2
b0Ip,q, β = Id

)
which yields

Ã = A =
∂

∂z
, B̃ = 2A

(
−1

2
b0Ip,q

)
Ip,q +B = −b0A+ b0A+

∂

∂yi
=

∂

∂yi
,

showing that (Ã, B̃) is a commutative (p, q)-frame whose fields are rectified. ◆

Remark (Comparison with the previous results for m = 1 and m = 2.).

• When m = 1, we showed that it is always possible to construct a commutative
frame (Ã, B̃), see Proposition 2.6 of Chapter 2. This is due to the facts that
µ consists of only one element µ1

1 and that Lie(O(1)) = 0, therefore condition
(5.19) is always fulfilled. Moreover, we have only one vector field B, so the
(0, 2)-tensor gB can be defined as follows in coordinates, where A is rectified,
and with a suitable control w. Assume that A = ∂

∂z
and B = b0 ∂

∂z
+ ∂

∂y
then

we have gB = dy2 which, obviously, is always conformally flat.

• When m = 2, the existence of a commutative frame for p-elliptic systems,
corresponding to (p, q) = (2, 0), is described in Theorem 4.6 of Chapter 4. The
conditions expressed there correspond exactly to our condition (5.19) since

Lie (O(2, 0)) = vectR {( 0 a
−a 0 ) , a ∈ R} .

There is no condition on gB̃ since on 2-dimensional manifold all Riemannian
metrics are conformally flat.

The case of p-hyperbolic systems, corresponding to (p, q) = (1, 1), is described
in Proposition 4.9 of Chapter 4. We used a slightly different approach, given
by Ip,q = ( 0 1

1 0 ), so it is not immediate to make a correspondence between the
result of this chapter and the previous conditions. Nevertheless, we see that
condition (4.35) corresponds to µ△ ∈ Lie(O(1, 1)) with

Lie (O(1, 1)) = vectR {( a 0
0 −a ) , a ∈ R} .

Moreover, there is also no condition on gB̃ since on 2-dimensional manifold all
pseudo-Riemannian metrics are conformally flat.

◆
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Observe that any (p, q)-system Ξ′
p,q is feedback equivalent to (notice the new

upper index «‵»)

Ξ‵
p,q :

{
ż = wtIp,qw + b0(x)w + c0(x)
ẏ = w

,

for which (A,B) is an almost commutative (p, q)-frame satisfying, additionally, A∧
C = 0. In the remaining part of this subsection, we will fully characterise the
following normal forms of (p, q)-paraboloid systems (special subclasses of Ξ′

p,q):

Ξ′′
p,q : ẋ = wtIp,qw

∂

∂z
+

m∑
i=1

wi
∂

∂yi
+ c0(x)

∂

∂z
,

Ξ′′′
p,q : ẋ = wtIp,qw

∂

∂z
+

m∑
i=1

wi
∂

∂yi
+ c0

∂

∂z
, c0 ∈ R.

Moreover, we will show that the second form can always be normalised into one of
three canonical forms with either c0 = 0 or c0 = ±1.

The normal form Ξ′′
p,q describes the intersection between the two equivalent forms

Ξ′
p,q and Ξ‵

p,q, that is describes the existence of a commutative (p, q)-frame which,
additionally, satisfies A∧C = 0. This last condition fixes α = 0 in the reparametri-
sations and identifies uniquely C, while A is given up to multiplication by λ, and B
is given up to a transformation B 7→ Bβ with β(·) ∈ GO(p, q); so the equivalence
of Ξp,q to Ξ′′

p,q requires the existence of a reparametrisation (α, β) such that the
transformed (p, q)-frame (A,B) is commutative and satisfies A ∧ C = 0.

The normal form Ξ′′′
p,q describes the subclass of Ξ′′

p,q for which the vector field C
is constant, and thus describes (p, q)-paraboloid systems that do not depend on the
point x ∈ X (called trivial systems in [Ser09]). That class of systems is described
by the existence of a triple (A,B,C) with the following properties: (A,B) is a
commutative (p, q)-frame satisfying A ∧ C = 0 and, additionally, [A,C] = [Bi, C] =
0, for all 1 ≤ i ≤ m.

Our conditions will be expressed for Ξp,q in terms of the structure functions, and
therefore are checkable on any (p, q)-paraboloid system Ξp,q; those conditions will,
however, be quite complicated to interpret, hence it will be convenient to give, as a
corollary, the same conditions for the system Ξ′

p,q, that is in terms of a commutative
(p, q)-frame. Recall that using γ = (γ1, . . . , γm)t we define the function

Γ = γ0 + γtIp,qγ,

on which diffeomorphisms act by composition, furthermore Γ is transformed by
λΓ̃ = Γ under reparametrisations (α, β), as it can be concluded from relation (5.15).
Recall, see Chapter 1, that Riem (gB) stands for the Riemann curvature tensor and
that ⃝∧ stands for the Kulkarni-Nomizu product between symmetric (0, 2)-tensors.

Theorem 5.6 (Classification results of quadratic systems). Consider a (p, q)-system
Ξp,q = (A,B,C) with structure functions {µ0

j , µ
i
j, ν

0
k,j, ν

i
k,j, γ

0, γi} and let (Ā, B̄) be
(if it exists) any pseudo-commutative (p, q)-frame equivalent to (A,B). Then, we
have

(i) Ξp,q is equivalent to Ξ′
p,q = (A′, B′, C ′) if and only if there exists a reparametri-

sation (A′, B′) of (A,B) such that (A′, B′) is a commutative (p, q)-frame; equiv-
alently, we have

µii = µjj, µ△ ∈ Lie (O(p, q)) , and gB̄ is conformally flat.(5.23)
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(ii) Ξp,q is equivalent to Ξ′′
p,q = (A′′, B′′, C ′′) if and only if there exists a reparametri-

sation (A′′, B′′) of (A,B) such that (A′′, B′′) is a commutative (p, q)-frame and,
additionally, A′′∧C ′′ = 0; equivalently, if and only if relation (5.23) holds and,
additionally, we have

(5.24) 4IkkI
j
j

(
γkLA

(
γj
)
− γjLA

(
γk
))

+ 2IkkLBj

(
γk
)
− 2IjjLBk

(
γj
)
=

− ν0k,j + 2γtIp,q
(
2γkIkkµj − 2γjIjjµk − νk,j

)
+ 2γkIkkµ

0
j − 2γjIjjµ

0
k,

(5.25) 2L2
A

(
γt
)
Ip,q = LA

(
µ0 − 2γtµtIp,q

)
+ LB

(
µ1
1

)
− µ0µ

+ 2µ1
1µ

0 + 2
(
LA
(
γt
)
+ γtµt

)
Ip,qµ,

(5.26) 2LBj

(
LA
(
γk
))

Ikk − 2LBk

(
LA
(
γj
))

Ijj = LBj

(
(µ0 − 2γtµtIp,q)k

)
− LBk

(
(µ0 − 2γtµtIp,q)j

)
− 2µ1

1ν
0
k +

(
µ0 − 2LA

(
γt
)
Ip,q − 2γtµtIp,q

)
νk,j,

(5.27) Riem (gB̄) = gB̄⃝∧

(∑
j,k

(
LBj

(Gk)−
m∑
i=1

ΓijkGi

)
θj ⊗ θk −GtG

+
1

2
∥G∥2gB̄

)
,

where G = 1
2
µ0− γtµtIp,q−LA (γ

t) Ip,q, Γijk =
1
2
Iii
(
νkijI

k
k + νjikI

j
j − νijkIii

)
, θj =

π∗(Bj)
♭, and ∥ · ∥2 = gB̄(·, ·).

(iii) Ξp,q is equivalent to Ξ′′′
p,q = (A′′′, B′′′, C ′′′) if and only if there exists a reparametri-

sation (A′′′, B′′′) of (A,B) such that (A′′′, B′′′) is a commutative (p, q)-frame
satisfying A′′′ ∧ C ′′′ = 0 and, additionally, [A′′′, C ′′′] = [B′′′

i , C
′′′] = 0; equiva-

lently, if and only if relations (5.23), (5.24), (5.25), (5.26), (5.27) hold and,
additionally, we have

LA (Γ) + 2Γµ1
1 = 0,

LB (Γ) + 2ΓLA (γ
t) Ip,q − Γ (µ0 − 2γtµtIp,q) = 0.

(5.28)

Remark (Idea behind the theorem). The idea behind statement (ii) of the above
theorem is the following. For Ξ′′

p,q, with structure function {µ̃0
j , µ̃

i
j, ν̃

0
k,j, ν̃

i
k,j, γ̃

0, γ̃i},
we have µ̃0 = µ̃ = ν̃0k,j = ν̃k = 0, i.e. it has a commutative (p, q)-frame, and γ̃i = 0.
To obtain the last condition, relation (5.15) imposes that αi = −γi. Therefore,
α is fixed and the group of reparametrisations now depends arbitrarily on β ∈
C∞(X , GO(p, q)) only. Conditions (5.23), (5.24), (5.25), (5.26), and (5.27) then
describe the existence of a reparametrisation β such that a commutative (p, q)-frame
exists.

The idea behind statement (iii) is generally the same, the additional condition
(5.28) ensures that the resulting function c0 of Ξ′′

p,q is constant. Indeed, for the
system Ξ′′

p,q we have Γ = c0 and the relations of (5.28) imply that ∂c0
∂z

= ∂c0
∂yi

= 0, i.e.
c0 is constant. ◆

Proof.
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(i) It is actually Theorem 5.5.

(ii) Assume that Ξp,q, with structure functions {µ0, µ, ν0k , νk, γ
0, γ}, is feedback

equivalent to Ξ′′
p,q, with structure functions {µ̃0, µ̃, ν̃0k , ν̃k, γ̃

0, γ̃} satisfying µ̃0 =
µ̃ = ν̃0k = ν̃k = γ̃ = 0, and γ̃0 = c0 ∈ C∞(X ). The necessity of (5.23) is
immediate from Theorem 5.5, since the systems Ξ′′

p,q form a subclass of Ξ′
p,q.

Using relation (5.15) with γ̃ = 0, we deduce that α = −γ. Now we rewrite
systems (5.22c) and (5.22d) replacing α by −γ:

1

λ
LB (λ) = µ0 − 2γtµtIp,q − 2LA

(
γt
)
Ip,q,(5.22c’)

(5.22d’) 4IkkI
j
j

(
γkLA

(
γj
)
− γjLA

(
γk
))

+ 2IkkLBj

(
γk
)
− 2IjjLBk

(
γj
)

+ 2γjIjjµ
0
k − 2γkIkkµ

0
j − 2γtIp,q

(
2γkIkkµj − 2γjIjjµk − νk,j

)
+ ν0k,j = 0.

Equation (5.22d’) is exactly condition (5.24). Moreover, the integrability con-
ditions of system (5.22c’) together with the equation 1

λ
LA (λ) = −2µ1

1 give
conditions (5.25) and (5.26). Finally, using that gB̃ is flat (as it can be seen in
a suitable coordinate system) and that gB̃ = λgB̄ we conclude, using relation
(1.3) of Chapter 1 with ϕ = ln

√
λ, that

Riem (gB) = gB⃝∧
(
Hess (ϕ)− dϕ⊗ dϕ+

1

2
∥grad (ϕ) ∥2gB

)
.

Next it is a straightforward but painful calculation to express Hess
(
ln
√
λ
)
,

grad
(
ln
√
λ
)
, and d

(
ln
√
λ
)
, using structure functions. Conversely, assume

that the structure functions {µ0, µ, ν0k , νk, γ
0, γ} of Ξp,q satisfy (5.23), (5.24),

(5.25), (5.26), and (5.27), then by Theorem 5.5 Ξp,q can be transformed into
Ξ′
p,q for which our conditions (5.25) and (5.26) read

L2
A (γ) = 0, and LBj

(
LA
(
γk
))

Ikk − LBk

(
LA
(
γj
))

Ijj = 0.

Those relations are the integrability conditions for the following system of first
order linear partial differential equations:

LA (λ) = 0, LB (λ) = −2λLA
(
γt
)
Ip,q,

which therefore admit a smooth solution λ. Notice that to ensure λ ̸= 0
we may actually solve the above system for ln(λ) instead. We apply the
reparametrisation

(
α = −γ, β =

√
λIdm

)
and in a coordinate system (z̃, ỹ),

where (A,B) is rectified, Ξ′
p,q takes the form{

˙̃z = λw̃tIp,qw̃ − 2
√
λγtIp,qw̃ + Γ

˙̃y =
√
λw̃

.

Condition (5.24) ensures that there exists a function z(z̃, ỹ) satisfying ∂z
∂z̃
λ = 1

and ∂z
∂ỹ

= 2
λ
γtIp,q. Using z as a new coordinate yields{

ż = w̃tIp,qw̃ + Γ
˙̃y =

√
λw̃

.(5.30)
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Finally, condition (5.27) implies that gB = 1
λ
dỹtIp,qdỹ is flat. Therefore, there

exists coordinates y = ψ(ỹ) such that gB = ψ∗(dytIp,qdy). Hence Bi =
√
λ ∂
∂ỹi

and the vector fields ∂
∂yi

form a pseudo-orthonormal frame, so they differ by a
pseudo orthonormal rotation β△. After applying this rotation, we obtain the
form Ξ′′

p,q in the coordinates (z, y).

(iii) Assume that Ξp,q, with structure functions {µ0, µ, ν0k , νk, γ
0, γ}, is feedback

equivalent to Ξ′′′
p,q, with structure functions {µ̃0, µ̃, ν̃0k , ν̃k, γ̃

0, γ̃} satisfying µ̃0 =
µ̃ = ν̃0k = ν̃k = γ̃ = 0, and γ̃0 = c0 ∈ R. The necessity of conditions (5.23),
(5.24), (5.25), (5.26), and (5.27) is clear from the previous item of the proof
and we show that (5.28) is necessary. For Ξ′′′

p,q we have Γ̃ = c0 ∈ R, and under
reparametrisations we have Γ̃ = Γ

λ
, where Γ = γ0 + γtIp,qγ. We differentiate

the last relation along Ã and B̃:

LÃ

(
Γ̃
)
= 0 = λLA

(
Γ

λ

)
=

1

λ
(LA (Γ)λ− ΓLA (λ)) =

1

λ

(
LA (Γ)λ+ 2Γλµ1

1

)
,

LB̃

(
Γ̃
)
= 0 = 2LAαtIp,qβ

(
Γ

λ

)
+ LB

(
Γ

λ

)
β = 0 +

1

λ2
(LB (Γ)λβ − ΓLB (λ) β) ,

⇒ 0 = LB (Γ)λβ − Γ
(
λµ0β + 2λLA

(
−γtIp,qβ

)
+ 2γIp,qβLA (λ)

)
,

0 = LB (Γ)− Γ
(
µ0 − 2LA

(
γt
)
Ip,q + 2γtIp,qµ− 4γtIp,qµ1

1

)
,

where we used the relations (5.22c’) and LA (λ) = −2λµ1
1. Conversely, as-

sume that Ξp,q satisfies (5.23), (5.24), (5.25), (5.26), (5.27), and (5.28). Then,
by statement (ii), Ξp,q can be brought into the form Ξ′′

p,q for which we have

(A,B) =
(
∂
∂z
, ∂
∂y

)
and Γ = c0(x), thus condition (5.28) implies ∂c0

∂z
= ∂c0

∂yi
= 0

and, finally, c0 ∈ R, i.e. we indeed have the normal form Ξ′′′
p,q.

■

Remark (Role of the conditions). Despite the complexity of their expression, the
role of each condition of the above theorem is clear. First, condition (5.23) implies
that there exists a (non-unique) commutative (p, q)-frame. Second, conditions (5.25)
and (5.26) are used to construct a function λ that rescale the (p, q)-frame (but à-
priori we lose commutativity). Third, condition (5.24) implies the existence of a
coordinate system in which A = ∂

∂z
and the fields Bi are expressed by

√
λ ∂
∂yi

.
At this point we get the normal form (5.30). Finally, we can act on this normal
form only with reparametrisation w = βw̃ with β ∈ C∞(Y , O(p, q)). Therefore,
in order to obtain the form Ξ′′

p,q we need to rectify the pseudo-Riemannian metric
gB = 1

λ
dytIp,qdy on the classical pseudo-Euclidean one, which is possible if and only

if its Riemannian curvature tensor vanishes. So condition (5.27) ensures that the
previous rescaling by λ produces a flat metric.

Finally, condition (5.28) implies that the function c0(x) is actually constant and
thus produces the form Ξ′′′

p,q. ◆

As announced, we now give the conditions of the previous theorem in a commu-
tative (p, q)-frame so a lot of coefficients vanish and thus it will be easier to interpret
them.

Corollary 5.1 (Classification of Ξ′
p,q). Consider a (p, q)-system Ξ′

p,q = (A,B,C)
with structure functions (µ, µ0, νk, ν

0
k , γ

0, γ) = (0, 0, 0, 0, γ0, γ), then we have
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(i) Ξ′
p,q is equivalent to Ξ′′

p,q if and only if we have

4IkkI
j
j

(
γkLA

(
γj
)
− γjLA

(
γk
))

+ 2IkkLBj

(
γk
)
− 2IjjLBk

(
γj
)
= 0(5.24’)

L2
A (γ) = 0,(5.25’)

LA
(
LBj

(
γk
)
Ikk − LBk

(
γj
)
Ijj
)
= 0,(5.26’)

(5.27’) gB⃝∧

(
−
∑
j,k

(
LBj

(
LA
(
γk
))

Ikk +
1

2
L2
A

(
γkγj

)
IkkI

j
j

)
θj ⊗ θk

+
1

2
∥LA (γ) ∥2gB

)
= 0.

(ii) Ξ′
p,q is equivalent to Ξ′′′

p,q if and only if (5.24’), (5.25’), (5.26’), (5.27’) hold
and, additionally, we have

LA (Γ) = LB (Γ) + 2ΓLA
(
γt
)
Ip,q = 0.(5.28’)

Our conditions are generalisations of the conditions obtained in the case m = 2,
compare Corollaries 4.1 and 4.3 of Chapter 4. The only difference is that we were
able to work out a simpler form of condition (5.27’).

Remark (Interpretation of the conditions). Consider a (p, q)-system Ξ′
p,q together

with its commutative (p, q)-frame (A,B) =
(
∂
∂z
, ∂
∂y

)
and with structure functions

µ0 = µ = ν0k = νk = 0. Assume that Ξ′
p,q is equivalent to Ξ′′′

p,q. Then condition (5.25)
implies that we have

γi(z, y) = γi0(y)z + γi1(y).

By integrating the equations of (5.28) we deduce that

Γ(y) = G exp

(
−2
∫ m∑

i=1

γi0I
i
i dy

)
, G ∈ R.

Therefore the systems Ξ′
p,q that are equivalent to Ξ′′′

p,q are parametrised by 2m func-
tions of y (which satisfy additional constraints) and a real constant. The sign of
that constant gives rise to canonical forms, see below. ◆

The following proposition gives a canonical from of systems Ξ′′′
p,q depending on

either c0 ̸= 0 of c0 = 0.

Proposition 5.5 (Canonical form of Ξ′′′
p,q). Consider a (p, q)-system Ξp,q with struc-

ture functions {µ0, µ, ν0, ν, γ0, γ} satisfying (5.24), (5.25), (5.26), (5.27), and (5.28).
Then it always admits one of the following canonical form

Ξ0
p,q : ẋ = wtIp,qw

∂

∂z
+

m∑
i=1

wi
∂

∂yi
+ 0, or

Ξεp,q : ẋ = wtIp,qw
∂

∂z
+

m∑
i=1

wi
∂

∂yi
+ εp,q

∂

∂z
,
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with εp,q =
{
±1 if p ̸= q
1 if p = q

. Moreover, Ξp,q is equivalent to the former if and only

if Γ ≡ 0 and to the latter if and only if Γ > 0 or Γ < 0 when p ̸= q, or Γ ̸= 0 when
p = q.

Compare those canonical forms with the ones obtained in the cases m = 1 and
m = 2, see Theorem 2.4 of Chapter 2 and Propositions 4.5 and 4.10 of Chapter 4.

Proof. Assume that Ξp,q satisfies (5.24), (5.25), (5.26), (5.27), and (5.28), then it is
equivalent to Ξ′′′

p,q. If c0 = 0, then we have the canonical form Ξ0
p,q. Otherwise, we

use the following feedback transformation

z̃ =
z

|c0|
, ỹi =

yi√
|c0|

, and w̃i =
wi√
|c0|

to obtain Ξεp,q with εp,q = ±1. If p ̸= q then we can not further normalise. If p = q
then by the coordinate change z̄ = −z̃ we can change εp,p = −1 into εp,p = +1.

Under reparametrisations (α, β) we always have λΓ̃ = Γ, thus clearly Ξp,q (sat-
isfying (5.24), (5.25), (5.26), (5.27), and (5.28)) is equivalent to Ξ0

p,q if and only if
Γ ≡ 0. If Γ ̸= 0, then its sign is an invariant in the case p > q because in that case
feedback transformations β ∈ G0(p, q) satisfy λ > 0. If p = q then λ satisfies λ ̸= 0
and the sign of Γ is not invariant. ■

We terminate this subsection by explaining how to get normal and canonical
forms of (p, q)-paraboloid submanifolds SQ. Recall that those submanifolds are given
by an equation of the form ż = ẏtQ(x)ẏ+b(x)ẏ+c(x), with Q = (Qi

j(x)) a symmetric
matrix of constant signature (p, q) satisfying detQ ̸= 0, and b = (b1, . . . , bm). Hence
a direct parametrisation of SQ, in terms of a control system, is given by

ΞSQ
:

{
ż = wtQ(x)w + b(x)w + c(x)
ẏ = w

.

Observe that the above system ΞSQ
is not of the previously used form Ξp,q but by a

similar argument as the one used for Lemma 3.1 in Chapter 3, we transform ΞSQ
into

a system ΞS
p,q satisfying A = ∂

∂z
, the fields Bi depend on the functions Qi

j and bi, and
C = c(x) ∂

∂z
. The conditions of the previous results Proposition 5.4 and Theorem 5.6

can be tested on ΞS
p,q and the normal forms obtained give normal forms of SQ. More

precisely, we have

Corollary 5.2 (Normal and canonical forms of paraboloid submanifold). Consider
a paraboloid submanifold Sp,q = {ż = ẏtQ(x)ẏ + b(x)ẏ + c(x)} together with its
parametrisation ΞS

p,q. The following statements hold:

(i) If ΞS
p,q is equivalent to Ξdp,q, then SQ is equivalent to

SdQ = {ẏtD(x)ẏ + b(x)ẏ + c(x)},

where D(x) is a diagonal matrix with signature (p, q).

(ii) If ΞS
p,q is equivalent to Ξ′

p,q, then SQ is equivalent to

S ′
Q = {ẏtIp,qẏ + b(x)ẏ + c(x)}.
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(iii) If ΞS
p,q is equivalent to Ξ′′

p,q, then SQ is equivalent to S ′′
Q = {ẏtIp,qẏ + c(x)}.

(iv) If ΞS
p,q is equivalent to Ξ′′′

p,q, then SQ is equivalent to S ′′′
Q = {ẏtIp,qẏ + c}, with

c ∈ R, moreover, c can always be normalised to either c = 0 or c = ±1.

Remark. All items are actually «if and only if» statements but we presented them
as implications that show how equivalence of control systems allows to solve the
original problem of equivalence of paraboloid submanifolds. ◆

The normal form SdQ describes the smooth diagonalisation of Q, therefore our
characterisation can be interpreted as a smooth version of the singular value de-
composition theorem. For the normal form S ′

Q, the matrix Q is fully normalised to
the constant matrix Ip,q, the conditions imply that a certain metric (gB̄ associated
to any pseudo-commutative (p, q)-frame of ΞS

p,q) is conformally flat, justifying to
call this class of paraboloid submanifolds weakly-flat. For S ′′

Q we additionally nor-
malised b; our conditions imply that the Riemannian curvature tensor of the metric
gB fails vanishing by a conformal transformation, which justifies to call this class of
paraboloid submanifold strongly-flat. Finally our characterisation of S ′′′

Q describes
paraboloid submanifolds with no functional parameters, i.e. which do not depend
on the point x ∈ X .

In this subsection, we studied the classification problem of nonlinear (p, q)-
paraboloid systems under the action of the group of feedback transformations. Our
classification includes several normal forms and canonical forms. The conditions that
we introduced are checkable in terms of algebraic and differential relations between
structure functions attached to the (p, q)-paraboloid structure of the system. Our
classification gives an equivalent classification of several normalisation of paraboloid
submanifolds.

3 Conclusion and Perspectives

In this chapter, we presented general results on a characterisation and a classifi-
cation of paraboloid control systems, which equivalently form general results for
characterising and classifying paraboloid submanifolds. Our results generalise those
of Chapter 4 (which is devoted to the special case of X being 3-dimensional), as well
as those of Chapter 2 for parabolic systems on 2-dimensional manifolds.

Our characterisation results introduce a new class of control-affine systems called
(p, q)-systems, which are second prolongations of paraboloid susbmanifolds. We de-
fine the notion of weak and strong quadratic frames of an involutive distribution and
we show that the existence of a strong frame is the key of our characterisation of
(p, q)-systems. Next, our classification results are based on feedback transformations
of control-nonlinear (p, q)-systems (first prolongations of paraboloid submanifolds).
To those systems we attach a frame of the tangent bundle, called a (p, q)-frame, and
we give necessary and sufficient conditions (both in terms of relations between struc-
ture functions attached to (p, q)-frames and also in terms of geometric properties)
for the equivalence of a general (p, q)-frame to some specific subclasses. Different
classes of (p, q)-frames give different normal forms of (p, q)-systems.

In the future, we plan to study more carefully the conditions of Theorems 5.5
and 5.6 and express them for a general (p, q)-frame. We also want to study and
describe more deeply the geometry of our conditions. Afterwards, we would like to
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consider the problem of equivalence of general quadric submanifolds. Then it would
interesting to study the following generalisations. First, one could analyse quadric
submanifolds of codimension k ≥ 2 (i.e. given by the zero level-set of a quadratic
map TX → Rk), second, one could try to generalise our results to submanifolds
given by a polynomial of any degree with respect to the velocities.
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Chapter 6

Characterisation of paraboloid
systems by their Lie algebra of
infinitesimal symmetries

In this chapter, we will study the infinitesimal symmetries of (p, q)-paraboloid control-
affine systems. We will show that isomorphisms of the Lie algebra of symmetries
are reflected in feedback equivalence of the corresponding control-affine systems.
Precisely, we will study the Lie algebra of infinitesimal symmetries of the following
null-form of (p, q)-paraboloid systems given by

Σ0
p,q :


ż = wtIp,qw
ẏ = w
ẇ = u

, (z, y, w) ∈ R2m+1, u ∈ Rm,

and Ip,q =
(

Idp 0
0 −Idq

)
. We will show that this class of control-affine systems is

determined by its Lie algebra of symmetries.
Recall that all relevant definitions and properties about Lie algebras and in-

finitesimal symmetries are given in section 1 of Chapter 1. This chapter is organised
as follows. In the next section, we present the results obtained for the single-input
case, i.e. for parabolic systems. And then, we will give a general result which will
contain all systems of the form Σ0

p,q.

1 Introductory case, single-input paraboloid systems

This section is quoted from the paper [SR21] submitted to Journal of Dynamical
and Control System. Below, we restrict the results obtained in that paper to the
class of parabolic systems only. We also adapt the notation of the paper to that
used in this thesis. The interested reader will find in our paper results generalising
Theorem 6.1 to the class of elliptic and hyperbolic control systems.

In this section, we give checkable necessary and sufficient conditions for a control-
affine system Σ = (f, g) to be feedback equivalent to the form

Σ0
1,0 :


ż = w2

ẏ = w
ẇ = u

, (z, y, w) ∈ R3, u ∈ R.
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This class of systems is called null-form parabolic system because of the absence of
parameters. Our approach is based on the study of the Lie algebra of infinitesimal
symmetries of Σ, which presents the main advantage of being applicable to any
control-affine system whereas the classification approach that we presented in the
previous chapters applies to the class of paraboloid systems only (for this class of
systems see, in particular, Theorem 2.4 of Chapter 2).

Using Proposition 1.4 of Chapter 1, it is an easy computation to find the Lie
algebra of infinitesimal symmetries of the system Σ0

1,0, which is

L0
1,0 = vectR

{
∂

∂z
,
∂

∂y
, 2z

∂

∂z
+ y

∂

∂y
+ w

∂

∂w

}
.

This Lie algebra has an abelian Lie ideal I = vectR

{
∂
∂z
, ∂
∂y

}
, which corresponds to

the fact that the system Σ0
1,0 is invariant under translations of the form (z, y) 7→

(z + c, y + d), with c, d ∈ R. The third vector field of L0
1,0 plays the role of an Euler

vector field: it encodes the relative homogeneity degree of the components of the drift
f = w2 ∂

∂z
+w ∂

∂y
, namely it means that the component of f along the z-coordinate has

twice the homogeneity degree as the component along the y-coordinate. Denoting
v1 = ∂

∂z
, v2 = ∂

∂y
, and v3 = 2z ∂

∂z
+ y ∂

∂y
+ w ∂

∂w
, the commutativity relations of the

(above) generators of L0
1,0 are

[v1, v2] = 0, [v1, v3] = 2v1, and [v2, v3] = v2.(6.1)

Using those relations, we identify L0
1,0 in the classification of 3-dimensional Lie

algebras as presented by Winternitz in [Bow05]. In that classification, we have
L0
1,0
∼= L(3, 2, 2) with no immediate interpretation as the Lie algebra of a remark-

able Lie group. Observe that I is equal to the derived algebra of L, i.e. I = [L,L].
The following proposition gives checkable conditions to identify the Lie algebra L0

1,0

among all 3-dimensional Lie algebras.

Proposition 6.1 (Characterisation of L0
1,0). A 3-dimensional Lie algebra L is iso-

morphic to L0
1,0 if and only if

(i) The ideal I = [L,L] is 2-dimensional and abelian,

(ii) For any element l ∈ L/I, its action adl : I → I is diagonalisable with two
non-zero eigenvalues λ1 and λ2 related by λ1 = 2λ2.

Proof. The proof is adapted from [Bow05, Proposition 5. Case 1]. The necessity of
the conditions is immediate from the explicit form of the generators of L0

1,0 and the
fact that they don’t depend on a particular choice of generators of L0

1,0. Conversely,
assume that L is a 3-dimensional Lie algebra satisfying conditions (i) and (ii). Let
e1, e2, and e3 be three vectors such that L = vectR {e1, e2, e3} and I = vectR {e1, e2}.
The action of e3 on I by ade3 is diagonalisable, i.e. there exists an invertible linear
map P : I → I such that [e3, v1] = λ1v1 and [e3, v2] = λ2v2, where v1 = Pe1 and
v2 = Pe2 form a new frame of I. We now set v3 = − 2

λ1
e3 and, in this new basis, we

obtain the following commutativity relations for L

[v1, v2] = 0, [v1, v3] =

[
v1,
−2
λ1
e3

]
=

2

λ1
[e3, v1] = 2v1,

[v2, v3] =

[
v2,
−2
λ1
e3

]
=

2

λ1
[e3, v2] = v2,
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recall that we have λ1 = 2λ2. Hence, in the frame {v1, v2, v3}, we get that L has the
same commutativity relations as L0

1,0. Therefore, by Proposition 1.3 of Chapter 1,
those two Lie algebras are isomorphic. ■

We now formulate and prove that the Lie algebra L of Σ, being isomorphic to
L0
1,0, characterises those 3-dimensional control-affine systems Σ (with scalar control,

i.e. m = 1) that are feedback equivalent to Σ0
1,0. Recall that we attach to a control

system the distributions D0 = span {g} and D1 = span {g, adfg}. Notice that
the drift f = w2 ∂

∂z
+ w ∂

∂y
of Σ0

1,0 considered locally around (z0, y0, w0) possesses an
equilibrium if w0 = 0 and not if w0 ̸= 0. As a consequence, the system Σ0

1,0 possesses
two non-equivalent local normal forms, which can be represented around w0 = 0 by

Σ0,0
1,0 :


ż = w2

ẏ = w
ẇ = u

and Σ0,1
1,0 :


ż = (w + 1)2

ẏ = w + 1
ẇ = u

, respectively.

Theorem 6.1 (Σ0
1,0 is characterised by L0

1,0). Consider, locally around ξ0, a control-
affine system Σ : ξ̇ = f(ξ)+g(ξ)u on a 3-dimensional smooth manifold with a scalar
control, and let L be its Lie algebra of infinitesimal symmetries.

(i) Σ is locally feedback equivalent to Σ0,1
1,0 around (z0, y0, 0) if and only if

L ∼= L0
1,0, I(ξ0)⊕D0(ξ0) = Tξ0R3, and f(ξ0) /∈ D0(ξ0);

(ii) Σ is locally feedback equivalent to Σ0,0
1,0 around (z0, y0, 0) if and only if

L ∼= L0
1,0, I(ξ0)⊕D0(ξ0) = Tξ0R3, f(ξ0) ∈ D0(ξ0), and dimD1(ξ0) = 2.

In our paper [SR21], we extend the above result to the case of elliptic and hyper-
bolic control systems. Notice that in statement (ii) the condition on the pointwise
rank of the distribution D1 can be replaced by g ∧ adgf(ξ0) ̸= 0 (compare this
assertion with the assumptions of Proposition 6.2 below).

Proof. We show the sufficiency part of the statements only as their necessity follows
immediately from the study of Σ0

1,0, from its Lie algebra of symmetries L0
1,0, and

from the feedback invariance of our conditions. Consider the system Σ = (f, g),
given by vector fields f and g, and let three vector fields v1, v2, v3 generate the
3-dimensional Lie algebra L = vectR {v1, v2, v3} of infinitesimal symmetries, which
by assumption is isomorphic to L0

1,0. We can assume that the abelian ideal of L
is I = vectR {v1, v2} and that v1, v2, v3 satisfy the commutativity relations (6.1).
Since I(ξ0) ⊕ D0(ξ0) = Tξ0R3, it follows that v1, v2, and g are independent, locally
around ξ0. We apply a local diffeomorphism ψ(ξ) = (z̃, ỹ, w̃), ψ(ξ0) = 0 ∈ R3,
such that ṽ1 = ψ∗v1 = ∂

∂z̃
, ṽ2 = ψ∗v2 = ∂

∂ỹ
, and g̃ = ψ∗g = g1 ∂

∂z̃
+ g2 ∂

∂ỹ
+ g3 ∂

∂w̃
,

for some smooth functions gi, satisfying g3(0) ̸= 0. Replacing g̃ by 1
g3
g̃, we may

assume that g̃ = g1 ∂
∂z̃

+ g2 ∂
∂ỹ

+ ∂
∂w̃

. Then, since ṽ1 and ṽ2 are symmetries of D0 =

span
{
g1 ∂

∂z̃
+ g2 ∂

∂ỹ
+ ∂

∂w̃

}
, we have [ṽi, g̃] ∈ D0, for i = 1, 2, which implies g1 = g1(w̃)

and g2 = g2(w̃). Therefore, we in fact have [ṽ1, g̃] = [ṽ2, g̃] = 0 and thus there exists
a local diffeomorphism (z, y, w) = ϕ(z̃, ỹ, w̃) such that ϕ∗ṽ1 = ∂

∂z
, ϕ∗ṽ2 = ∂

∂y
and
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ϕ∗g̃ =
∂
∂w

. Denote v3 = v13
∂
∂z

+ v23
∂
∂y

+ v33
∂
∂w

, the third infinitesimal symmetry, where
v13 = v13(z, y) and v23 = v23(z, y) since v3 is a symmetry of D0 = span

{
∂
∂w

}
.

Using commutativity relations [v1, v3] = 2v1 and [v2, v3] = v2 of (6.1), which has
not been changed by applying diffeomorphisms, we obtain

v3 = (2z + c)
∂

∂z
+ (y + d)

∂

∂y
+ v3(w)

∂

∂w
, c, d ∈ R.

To avoid unnecessary computations, we take v3 ← v3 − cv1 − dv2 ∈ L, so we can
assume that c = d = 0. Since v1 and v2 are symmetries of f = f 0 ∂

∂z
+ f 1 ∂

∂y
, we

deduce that f 0 = f 0(w) and f 1 = f 1(w). Moreover, using the symmetry v3 we
deduce the following system of equations for the functions f 0(w), f 1(w), and v33(w):

(Sys) :

{
v33 (f

0)′ − 2f 0 = 0
v33 (f

1)′ − f 1 = 0
.

We will now distinguish two cases.

(a) Assume that f(0) /∈ D0(0), that is (f 0(0), f 1(0)) ̸= (0, 0) and thus by (Sys) we
have ((f 0)′(0), (f 1)′(0)) ̸= (0, 0). Assume f 1(0) ̸= 0, thus f 1(w) = c + h(w),
where c = f 1(0) and h(0) = 0. Replacing y by y

c
we may assume that f 1(w) =

1 + h(w), where h′(0) ̸= 0, if not the second equation of (Sys) is not satisfied
at 0 ∈ R. Set ŵ = h(w) and denote the transformed vector fields f̂ and v̂3,
for which (Sys) implies v̂33 = 1 + ŵ and(

f̂ 0
)′
(1 + ŵ) = 2f̂ 0.

Solving this equation gives f̂ 0(ŵ) = c(1 + ŵ)2 with c ∈ R. But c can not be
0, otherwise the Lie algebra L of infinitesimal symmetries would be of infinite
dimension, thus not isomorphic to L0

1,0. Finally, introducing ẑ = z
c

we obtain
Σ0,1

1,0. If f 1(0) = 0, then f 0(0) ̸= 0 implying that (f 0)′(0) ̸= 0 and leading to
the normalisation f̂ 0(ŵ) = 1 + ŵ giving v̂33 = 2(1 + ŵ) and f̂ 1 = (1 + ŵ)1/2.
This forms is equivalent to Σ0,1

1,0 by the local diffeomorphism w = (1+ŵ)1/2−1,
sending 0 into 0.

(b) Assume f(0) ∈ D0(0) and g ∧ adgf(0) ̸= 0. If (f 1)′(0) ̸= 0, take (ẑ, ŷ, ŵ) =
(z, y, f 1(w)) as a local diffeomorphism around 0 ∈ R3 that maps f 0, f 1 and v33
into f̂ 0, f̂ 1 and v̂33 respectively. We have f̂ 1 = ŵ, so the system (Sys) implies
v̂33 = ŵ and

ŵ
(
f̂ 0
)′

= 2f̂ 0.

Solving this equation gives f̂ 0(ŵ) = c(ŵ)2 with c ∈ R. But c can not be 0,
otherwise the Lie algebra L of infinitesimal symmetries would be of infinite
dimension. Finally, introducing ẑ = z

c
we obtain Σ0,0

1,0. If (f 1)′(0) = 0, then
(f 0)′(0) ̸= 0 and by applying the local diffeomorphism (ẑ, ŷ, ŵ) = (z, y, f 0(w))
we get f̂ 0 = ŵ yielding v̂33(ŵ) = 2ŵ and 2ŵ(f̂ 1)′ = f̂ 1. Hence, |f̂ 1| = d|ŵ|1/2
and the only smooth solution, around ŵ = 0, is given by d = 0 but then
the Lie algebra L of infinitesimal symmetries would be of infinite dimension
contradicting our assumption.
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■

The symmetry algebra of Σ being isomorphic to L0
1,0 does not completely charac-

terise systems feedback equivalent to Σ0
1,0. Indeed, there is a small class of systems

that are not feedback equivalent to Σ0
1,0 although their symmetry algebra is iso-

morphic to L0
1,0. The following proposition gives such an example by relaxing the

assumption dimD1(ξ0) = 2 in statement (ii) of the previous theorem.

Proposition 6.2. Let Σ : ξ̇ = f(ξ) + g(ξ)u be a control-affine system on a 3-
dimensional smooth manifold with a scalar control, and let L be its Lie algebra
of infinitesimal symmetries. Assume f(ξ0) ∈ D0(ξ0) and, additionally, that there
exists k ≥ 1, the smallest integer such that g ∧ adkgf(ξ0) ̸= 0. Then L ∼= L0

1,0 and
I(ξ0)⊕D0(ξ0) = Tξ0R3 if and only if Σ is feedback equivalent to

Σ0,0,k
1,0 :


ż = w2k

ẏ = wk

ẇ = u

around (z0, y0, 0).

Moreover, it is a classical fact that (under the above assumptions) the integer k
is an invariant of feedback, hence if k ̸= k′, then Σ0,0,k

1,0 and Σ0,0,k′

1,0 are not locally feed-
back equivalent around w0 = 0. Notice that if k ≥ 2, then Σ0,0,k

1,0 is a prolongation

of the control-nonlinear system
{
ż =w2k

ẏ =wk and the latter is not a regular parametri-

sation of the parabolic submanifold S0
1,0 = {ż − ẏ2 = 0} because ∂F

∂w
(z0, y0, 0) = 0,

where F (x,w) = w2k ∂
∂z

+ wk ∂
∂y

. To be consistent with the notation of the above
proposition, the previously considered normal form Σ0,0

1,0 should actually be denoted
Σ0,0,1

1,0 .

Proof. We prove the necessity only, as there are no difficulties to show that the Lie
algebra of infinitesimal symmetries of Σ0,0,k

1,0 is isomorphic to L0
1,0. We adapt the

point (b) of the proof of Theorem 6.1. Assume that f(0) ∈ D0(0) and that k ≥ 1
is the smallest integer such that ((f 0)(k)(0), (f 1)(k)(0)) ̸= (0, 0). If (f 1)(k)(0) ̸= 0,
we can suppose f 1(0) > 0 (if not, replace y by −y), apply the local diffeomorphism,
around 0 ∈ R3, (ẑ, ŷ, ŵ) = (z, y, f 1(w)1/k) that maps f 0, f 1 and v33 into f̂ 0, f̂ 1 and
v̂33, respectively. We have f̂ 1 = ŵk, so the system (Sys) implies v̂33 = ŵ

k
and

ŵ
(
f̂ 0
)′

= 2kf̂ 0.

Solving this equation gives f̂ 0(ŵ) = cŵ2k with c ∈ R. However, the solution passing
through ŵ = 0 is not unique so à priori we may have different values of c for ŵ < 0
and ŵ > 0 but the only C∞ solutions are those given by the same value of c (either
c = 0 or c ̸= 0) for any ŵ. But c can not be 0, otherwise the Lie algebra L of
infinitesimal symmetries would be of infinite dimension. Finally, introducing ẑ = z

c

we obtain the desired form Σ0,0,k
1,0 .

If (f 0)(k)(0) ̸= 0, then normalising f 0 = ŵk and applying an analogous procedure
we deduce that f 1(ŵ) = c|ŵ|k/2. If c = 0 then the Lie algebra of infinitesimal
symmetries would be of infinite dimension contradicting our assumptions. In all
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other cases of k and c the solution is not smooth around ŵ = 0 except for k = 2l
and the same value of c for ŵ < 0 and ŵ > 0. But in the latter case we have
(f 1)(l)(0) ̸= 0, with l < k, contradicting the definition of k. ■

Remark. Theorem 6.1 statement (ii) and Proposition 6.2 describe all systems hav-
ing L0

1,0 as the symmetry algebra for which k exists (in particular, all analytic sys-
tems). In the C∞ category there are, however, systems for which k does not exist
and the symmetry algebra is L0

1,0. For example, consider
ż = f(w)2

ẏ = f(w)
ẇ = u

, with f(w) = exp

(
− 1

w2

)
, f(0) = 0.

By a straightforward calculation, its symmetry algebra is, indeed, L0
1,0 but, obviously,

k does not exist at (z0, y0, 0). ◆

2 Characterisation of null-forms (p, q)-paraboloid sys-
tems by their infinitesimal symmetries

We now extend the theorem of the previous section for general null-form (p, q)-
paraboloid systems given by

Σ0
p,q :


ż =

∑m
i=1 εi(wi)

2

ẏi = wi
ẇi = ui

,

where m = p + q and εi =

{
+1 1 ≤ i ≤ p
−1 p+ 1 ≤ i ≤ m

. Without loss of general-

ity we assume that p ≥ q. When m = 1, then Σ0
1,0 is the form studied in the

previous section; when m = 2, we either have Σ0
2,0 a p-elliptic system, or Σ0

1,1 a
p-hyperbolic system, which were characterised and studied in Chapter 4. The Lie
algebra of infinitesimal symmetries of Σ0

p,q is given by (see a detailed computation
in Appendix 6.A):

(6.2) L0
p,q = vectR

{
∂

∂z
,
∂

∂y1
, . . . ,

∂

∂ym

}
⊕ vectR

{
2z

∂

∂z
+

m∑
i=1

(
yi
∂

∂yi
+ wi

∂

∂wi

)}

⊕ vectR

{
εkyl

∂

∂yk
− εlyk

∂

∂yl
+ εkwl

∂

∂wk
− εlwk

∂

∂wl
, 1 ≤ k < l ≤ m

}
.

The dimension of this Lie algebra is 1
2
(m2 +m+ 4), observe that dimL0

p,q = 2m+1
(dimension of the state space) if and only if m = 1 or m = 2. The elements of the
above basis of L0

p,q will be denoted as follows:

v0 =
∂

∂z
, vi =

∂

∂yi
for 1 ≤ i ≤ m, E = 2z

∂

∂z
+

m∑
i=1

(
yi
∂

∂yi
+ wi

∂

∂wi

)
,

and ∆kl = εkyl
∂

∂yk
− εlyk

∂

∂yl
+ εkwl

∂

∂wk
− εlwk

∂

∂wl
, for 1 ≤ k < l ≤ m.
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Moreover we will adopt the following convention ∆lk = −∆kl so that ∆kl can be
defined for any pair of indices (k, l). The interpretation of each element of this basis
is the following. The vector fields v0 and vi being symmetries of Σ0

p,q = (f, g) implies
that the drift f is invariant under translations of the form z 7→ z+a and yi 7→ yi+bi
(with a, bi ∈ R), which is obvious since f = f(w); E behaves like an Euler vector
field, i.e. it encodes the homogeneity degree (with respect to the variable w) of the
components of f , meaning that the homogeneity degree of the component along ∂

∂z

is twice the degree of the components along ∂
∂yi

. Finally, the expression of vector
fields ∆kl implies that the system is invariant under infinitesimal rotations (either
trigonometric or hyperbolic depending on the signs of the εk’s), which is a less trivial
fact but not surprising. Notice that when m = 1 then the vector fields ∆kl’s do not
exist and when m = 2 there is only one of them, namely ∆12. The Lie algebra
L0
p,q admits the following multiplication table (see Appendix 6.B for details of the

computation):

[v0, vi] = 0, [v0, E] = 2v0, [v0,∆kl] = 0, [E,∆kl] = 0,
[vi, vj] = 0, [vi, E] = vi, [vi,∆kl] = εkδ

l
ivk − εlδki vl,

(6.3)

where δji is the Kronecker symbol, and the only non-zero relations between the ∆kl

are given by

∀ 1 ≤ i < j < l ≤ m, [∆ij,∆il] = −εi∆jl.(6.4)

Therefore, L0
p,q is composed of two abelian ideals, I1 = vectR {v0} and Im =

vectR {v1, . . . , vm}, and of a subalgebra l = E ⊕ ∆, where E = vectR {E} and
∆ = vectR {∆kl}. Moreover, denoting the sum I = I1 ⊕ Im, we see that E ⊕ I
is also an ideal of L (so E is an ideal of the subalgebra l). Using the computation
at the end of Appendix 6.C, we conclude that ∆ is isomorphic to the Lie algebra
so(p, q) (of the indefinite orthogonal group O(p, q)). We tried to give a characteri-
sation of the Lie algebra L0

p,q among all Lie algebras of the same dimension (as we
did for L0

1,0 in Proposition 6.1), we have a result for the case m = 2 (that case is
particular because the Lie algebras L0

2,0 and L0
1,1 are solvable) but we have not yet

succeeded in proposing a characterisation of the general Lie algebra L0
p,q.

We now state our main theorem establishing that L0
p,q determines the null-form

(p, q)-paraboloids systems Σ0
p,q. Recall that we attach to a control-affine system

Σ = (f, g) the following distributions:

D0 = span {g1, . . . , gm} and D1 = D0 +
[
f,D0

]
.

Theorem 6.2 (L0
p,q characterises Σ0

p,q). Let Σ : ξ̇ = f(ξ) + g(ξ)u, locally around
ξ0, be a control-affine system on a (2m+ 1)-dimensional manifold with control u =
(u1, . . . , um) ∈ Rm, and let L be its Lie algebra of infinitesimal symmetries.

(i) Σ is feedback equivalent to Σ0
p,q around (z0, y0, 0) if and only if

L ∼= L0
p,q, D0 is involutive, I(ξ0)⊕D0(ξ0) = Tξ0R2m+1,

dimD1(ξ0) = 2m, and f(ξ0) ∈ D0(ξ0).

(ii) Σ is feedback equivalent to Σ0
p,q around (z0, y0, w0), with w0 ̸= 0, if and only if

L ∼= L0
p,q, D0 is involutive, D0(ξ0)⊕ I(ξ0) = Tξ0R2m+1,

dimD1(ξ0) = 2m, and f(ξ0) /∈ D0(ξ0).
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Remark (Comparison with the case m = 1). Observe that the above theorem ap-
plies for any m ≥ 1, hence it is a generalisation of Theorem 6.1 of the previous
section. However, when m = 1, the assumptions can be simplified. Indeed, in that
case we automatically get that D0 = span {g1} is involutive. Moreover, for statement
(i) we showed that dimD1(0) = 2 is a consequence of the other assumptions. ◆

Remark (Difference between the two cases). The theorem indicates that the points
w0 ̸= 0 and w0 = 0 are distinguished for Σ0

p,q. Clearly, w0 = 0 is an equilibrium point
for Σ0

p,q whereas w0 ̸= 0 is not. As a consequence, Σ0
p,q admits several non-equivalent

local normal forms, around w0 = 0, given by

Σ0,η
p,q :


ż =

∑m
i=1 εi(wi + ηi)

2

ẏi = wi + ηi
ẇi = ui

,

where ηi = 0 for all i = 1, . . . ,m in statement (i) and for the second statement,
there is at least one index 1 ≤ i ≤ m such that ηi ̸= 0. ◆

Proof. We only show the sufficiency part of the theorem as the necessity follows
immediately from the description of the Lie algebra of infinitesimal symmetries
given above and from the fact that all conditions are invariants under feedback
transformations.

The strategy of the proof is the following. We will deal with statements (i) and
(ii) together. First, we will deduce as much facts as possible on the basis of a Lie
algebra of symmetries L of Σ = (f, g) and on the vector fields gi. Second, using all
of those properties we will deduce conditions on the components of the vector field
f . Finally, we will show that there exists a coordinate system in which Σ takes the
form of Σ0,η

p,q .
Consider a system Σ = (f, g) given by vector fields f and g = (g1, . . . , gm) and

let vector fields {v0, vi, E,∆kl} span its 1
2
(m2 +m+ 4)-dimensional Lie algebra L of

infinitesimal symmetries which by assumption is isomorphic to L0
p,q. We can assume

that this basis satisfies the commutativity relations of L0
p,q given by (6.3) and (6.4)

and, in particular, the abelian ideal of L is I = vectR {v0, v1, . . . , vm}.

Since I(ξ0)⊕D0(ξ0) = Tξ0R2m+1, it follows that v0, v1, . . . , vm and g1, . . . , gm are
independent locally around ξ0. We apply a local diffeomorphism ψ(ξ) = (z̃, ỹ, w̃)
such that ψ(ξ0) = 0 ∈ R2m+1, and that

ṽ0 = ψ∗v0 =
∂

∂z̃
, ṽi = ψ∗vi =

∂

∂ỹi
for 1 ≤ i ≤ m,

and g̃i = ψ∗gi = g̃0i
∂

∂z̃
+

m∑
j=1

g̃ji
∂

∂ỹj
+ g̃ji

∂

∂w̃j
for 1 ≤ i ≤ m.

Since ṽ0, ṽ1, . . . , ṽm, g̃1, . . . , g̃m are locally independent around 0 ∈ R2m+1 it follows
that det G̃ ̸= 0, where G̃ is the matrix formed by the functions g̃ji .

Thus, using the feedback ũ = G̃u, we may assume that g̃i = g̃0i
∂
∂z̃
+g̃ji

∂
∂ỹj

+ ∂
∂w̃i

. As
the vector fields ṽ0, ṽ1, . . . , ṽm are symmetries of D0, we conclude from [ṽi, g̃j] ∈ D0

that g̃0i = g̃0i (w̃) and that g̃ji = g̃ji (w̃). Therefore we actually have [ṽi, g̃j] = 0 for
all i, j. Moreover, since D0 is involutive, we have [g̃i, g̃j] ∈ D0 for all i, j, and by a
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straightforward computation we deduce that it actually implies [g̃i, g̃j] = 0. Thus,
locally around 0 ∈ R2m+1, there exists a diffeomorphism (z, y, w) = ϕ(z̃, ỹ, w̃) such
that

v0 = ϕ∗ṽ0 =
∂

∂z
, vi = ϕ∗ṽi =

∂

∂yi
, and gi = ϕ∗g̃i =

∂

∂wi
.(6.5)

Using the commutativity relations of L given by (6.3), which has not been
changed by applying diffeomorphisms, and the fact that E is a symmetry of D0

(meaning that [E, gi] =
[
E, ∂

∂wi

]
∈ D0 holds) we obtain

E = (2z + a0)
∂

∂z
+

m∑
i=1

(yi + ai)
∂

∂y i
+

m∑
i=1

ei(w)
∂

∂wi
, a0, ai ∈ R.

To simplify computations we replace E by E− a0v0−
∑m

i=1 aivi, that remains to be
an element of the symmetry algebra L, so we can remove the constants a0 and ai
without changing commutativity relations (6.3). Denoting

∆kl = δ0kl
∂

∂z
+

m∑
j=1

(
δjkl

∂

∂yj
+ djkl

∂

∂wj

)
we deduce, using multiplication table (6.3), the following facts about functions δ0kl,
δjkl, and djkl:

[v0,∆kl] = 0 ⇒ δ0kl = δ0kl(y, w), δjkl = δjkl(y, w), djkl = djkl(y, w),

[vi,∆kl] = εkδ
l
ivk − εlδki vl ⇒ δ0kl = δ0kl(w), djij = djkl(w),

and δjkl(y, w) =

 δ̄jkl(w) if j ̸= k, and j ̸= l
εkyl + δ̄kkl(w) if j = k
−εlyk + δ̄lkl(w) if j = l

,(6.6)

[E,∆kl] = 0 ⇒ δ0kl = 0.

Consider the vector field f = f 0 ∂
∂z

+
∑m

j=1 f
j ∂
∂yj

, where the components along ∂
∂w

have been removed by a feedback of the form f 7→ f + gα, then by the fact that
v0 =

∂
∂z

and vi =
∂
∂yi

are symmetries of Σ we get that f 0 = f 0(w) and f j = f j(w).
Moreover, using E as a symmetry of f , i.e. [E, f ] = 0 mod D0, we get the following
first order partial differential equations around w = 0:

m∑
i=1

ei(w)
∂f 0

∂wi
= 2f 0, and

m∑
i=1

ei(w)
∂f j

∂wi
= f j for 1 ≤ j ≤ m.(6.7)

Using ∆kl as a symmetry of f , i.e. [∆kl, f ] = 0 mod D0, we get[
m∑
i=1

δikl(yk, yl, w)
∂

∂yi
+ dikl(w)

∂

∂wi
, f 0(w)

∂

∂z
+

m∑
j=1

f j(w)
∂

∂yj

]
= 0 mod D0,

⇒
m∑
i=1

dikl
∂f 0

∂wi

∂

∂z
+

m∑
i=1

m∑
j=1

−f j ∂δ
i
kl

∂yj

∂

∂yi
+ dikl

∂f j

∂wi

∂

∂yj
= 0,

⇒
m∑
i=1

dikl
∂f 0

∂wi
= 0, and

m∑
i=1

m∑
j=1

dikl
∂f j

∂wi

∂

∂yj
− f j ∂δ

i
kl

∂yj

∂

∂yi
= 0,

⇒
m∑
j=1

m∑
i=1

dikl
∂f j

∂wi

∂

∂yj
= εkf

l ∂

∂yk
− εlfk

∂

∂yl
.
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Thus f = f 0(w) ∂
∂z

+
∑m

j=1 f
j(w) ∂

∂yj
together with the functions ei(w) of E and the

functions dikl of ∆kl satisfy (6.7) and for all 1 ≤ k < l ≤ m:

m∑
i=1

dikl
∂f 0

∂wi
= 0, and


∑m

i=1 d
i
kl
∂fj

∂wi
= 0 if j ̸= k, j ̸= l,∑m

i=1 d
i
kl
∂fk

∂wi
= εkf

l if j = k,∑m
i=1 d

i
kl
∂f l

∂wi
= −εlfk if j = l.

(6.8)

We now show that we can construct a local diffeomorphism around 0 ∈ R2m+1

such that Σ takes the form of Σ0,η
p,q in those coordinates. We denote η := f(0) ∈ Rm+1,

i.e. ηj = f j(0) with 0 ≤ j ≤ m. By assumption dimD1(0) = 2m thus rk
(
∂f
∂w

)
= m.

We will show at the end of the proof that our conditions always imply that we have

det


∂f1

∂w1
. . . ∂f1

∂wm...
...

∂fm

∂w1
. . . ∂fm

∂wm

 ̸= 0,(6.9)

so we can take (ẑ, ŷ, ŵ1, . . . , ŵm) = (z, y, f 1(w) − η1, . . . , f
m(w) − ηm) as a lo-

cal diffeomorphism around 0 ∈ R2m+1. In order to simplify the notations, the
coordinates (ẑ, ŷ, ŵ) are simply denoted (z, y, w). In this coordinate system, we
have f j(w) = wj + ηj, for 1 ≤ j ≤ m, and the conditions of (6.7) imply that
ej(w) = wj + ηj, for 1 ≤ j ≤ m, and

2f 0(w) =
m∑
i=1

(wi + ηi)
∂f 0

∂wi
.(6.7’)

The right hand side of this equation is seen as the Lie derivative of f 0(w) along
the Euler vector field

∑m
i=1(wi + ηi)

∂
∂wi

and thus, by Euler’s homogeneous function
theorem, it implies that f 0 is homogeneous of degree 2 with respect to the coordi-
nates (wi+ηi) (see [GS64] for an introduction to homogeneous functions). Inserting
f j(w) = wj + ηj, for 1 ≤ j ≤ m, in the second condition of (6.8), implies

dikl =


0 if i ̸= k and i ̸= l

εk(wl + ηl) if i = k
−εl(wk + ηk) if i = l

.

Therefore, using the first equation of (6.8), we conclude that f 0 is a homogeneous
function of degree 2 satisfying

εk(wl + ηl)
∂f 0

∂wk
− εl(wk + ηk)

∂f 0

∂wl
= 0, for all 1 ≤ k < l ≤ m.(6.10)

We will show that f 0 = F 0 (
∑m

i=1 εi(wi + ηi)
2) for some smooth function F 0. To

this end, we solve (6.10) for k = 1 and for 2 ≤ l ≤ m iteratively:

ε1(w2 + η2)
∂f 0

∂w1

− ε2(w1 + η1)
∂f 0

∂w2

= 0 ⇒ f 0 = F 0
12(W12, w3, . . . , wm),

where W12 = ε1(w1 + η1)
2 + ε2(w2 + η2)

2. Next,

ε1(w3 + η3)
∂f 0

∂w1

− ε3(w1 + η1)
∂f 0

∂w3

= 0 ⇒ 2(w3 + η3)
∂F 0

12

∂W12

− ε3
∂F 0

12

∂w3

= 0,

⇒ F 0
12 = F 0

123(W123, w4, . . . , wm).
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with W123 = ε1(w1 + η1)
2 + ε2(w2 + η2)

2 + ε3(w3 + η3)
2. And so on. Thus we

obtain f 0 = F 0(W ), where F 0 = F 0
1···m is an arbitrary smooth function of the

variable W = W1···m =
∑m

i=1 εi(wi + ηi)
2. By inserting f 0 of that form into (6.7’),

we conclude that

2f 0 =
m∑
i=1

(wi + ηi)
∂f 0

∂wi
⇒ F 0 = W

dF 0

dW
⇒ F 0(W ) = λ ·W,

where λ ∈ R. We necessarily have λ ̸= 0, otherwise we would have f 0 ≡ 0 and the
Lie algebra of symmetries would be of infinite dimension contradicting our assump-
tion. By replacing z by z

λ
, we normalise the z-component and we see that we have

transformed Σ into
ż =

∑m
i=1 εi(wi + ηi)

2

ẏi = wi + ηi
ẇi = ui

, around 0 ∈ R2m+1.

Thus for both statements (i) and (ii) of Theorem 6.2 we showed that Σ is equivalent
to Σ0,η

p,q .

To terminate the proof, it remains to show that (6.9) either always holds or, if
not, that it still leads to an equivalent description of Σ0,η

p,q . By contradiction, assume

that det


∂f1

∂w1
. . . ∂f1

∂wm...
...

∂fm

∂w1
. . . ∂fm

∂wm

 = 0 at w = 0. Since we suppose that dimD1(0) = 2m,

it follows that we necessarily have, around w = 0,

det


∂f0

∂w1
. . . ∂f0

∂wm
∂f2

∂w1
. . . ∂f2

∂wm...
...

∂fm

∂w1
. . . ∂fm

∂wm

 ̸= 0, if needed renumber the y-components of Σ.

We, therefore, introduce around 0 ∈ R2m+1 a local coordinate system defined by
(ẑ, ŷ, ŵ1, ŵ2, . . . , ŵm) = (z, y, f 0(w) − η0, f 2(w) − η2, . . . , fm(w) − ηm). To simplify
notations we denote (ẑ, ŷ, ŵ) again by (z, y, w). Then, the conditions of (6.7) imply
that e1(w) = 2(w1 + η0), ei(w) = wi + ηi for 2 ≤ i ≤ m, and

2(w1 + η0)
∂f 1

∂w1

+
m∑
j=2

(wj + ηj)
∂f 1

∂wj
= f 1.(6.7”)

Condition (6.8) yields d1kl = 0, for all 1 ≤ k < l ≤ m, and djkl = 0 if j ̸= k, j ̸= l
dkkl = εk(wl + ηl) if j = k

dlkl = −εl(wk + ηk) if j = l
for all 2 ≤ k < l ≤ m.(6.11)

We now separate cases by the dimension m.
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(i) Suppose m = 1. In the case η0 ̸= 0, we showed in the proof of Theorem 6.1
of the previous section that equation (6.7”) can smoothly be solved around
w = 0. That solution leaded to a system equivalent to Σ0,1

1,0. On the other
hand, when η0 = 0, we showed that equation (6.7”) does not admit nontrivial
smooth solutions, which is a contradiction with the finite dimension of L.

The arguments for the cases m = 2 and m ≥ 3 are slightly different. The difference
between the two cases is that in the former, the Lie algebras so(2) and so(1, 1) are
one-dimensional Lie algebras. In the case m = 2, we will show that the existence
of smooth solutions of (6.7”) would imply that Σ is linearisable and therefore its
Lie algebra of symmetries would be of infinite dimension, a contradiction. And, in
the case m ≥ 3 we will show that the condition d1kl = 0 contradicts the fact that
∆ ∼= so(p, q).

(ii) Assume that m = 2, so we either have (p, q) = (2, 0) or (p, q) = (1, 1). Our
reasoning up here sums up to the following description of the fields of L and
of Σ:

f 0 = w1 + η0, f 2 = w2 + η2, e1 = 2(w1 + η0), e2 = w2 + η2, d112 = 0,

d212 = −ε2f 1, d212
∂f 1

∂w2

= ε1(w2 + η2), 2(w1 + η0)
∂f 1

∂w1

+ (w2 + η2)
∂f 1

∂w2

= f 1.

Recall also that we have the assumption det

(
∂f1

∂w1

∂f1

∂w2

∂f2

∂w1

∂f2

∂w2

) ∣∣∣∣
w=0

= 0 implying

that ∂f1

∂w1

∣∣∣
w=0

= 0. We show that our assumptions imply that f 1 = λ(w2 + η0)

which would then lead to an infinite dimensional Lie algebra of symmetries,
contradicting our assumption. Solutions of

−ε2f 1 ∂f
1

∂w2

= ε1(w2 + η2), around w = 0,

are given by f 1(w) =
√
−ε1ε2(w2 + η2)2 + F1(w1). Using equation (6.7”) given

by

2(w1 + η0)
∂f 1

∂w1

+ (w2 + η2)
∂f 1

∂w2

= f 1,

we conclude that F1(w1) satisfies (w1 + η0)
∂F1

∂w1
= F1 implying that F1(w1) =

λ(w1 + η0) where λ ∈ R. Since we assume ∂f1
∂w1

(w = 0) = 0, it implies that
∂F1

∂w1
(w1 = 0) = 0, which is possible only if λ = 0. Therefore, we have shown

that we necessarily have f 1 = f 1(w2) =
√
−ε1ε2(w2+ η2). But then, system Σ

would be linear (or even non-existing) and thus its Lie algebra of symmetries
would be of infinite dimension, contradicting our assumption.

(iii) Assume that m ≥ 3. We show that the vector fields (recall that we obtained
d1kl = 0, see the observation just above (6.11))

∆kl =
m∑
j=1

δjkl
∂

∂yj
+

m∑
j=2

djkl
∂

∂wj
,
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with δjkl and djkl defined as in (6.6) and (6.11), cannot generate the Lie algebra
so(p, q). Indeed for any 1 < j < l ≤ m (justifying that we need m ≥ 3), we
have

[∆1j,∆1l] =

[
(ε1yj + δ̄11j)

∂

∂y1
+ (−εjy1 + δ̄j1j)

∂

∂yj
+

m∑
i=2 i ̸=j

δ̄i1j
∂

∂yi
− εj(wj + η1)

∂

∂wj
,

(ε1yl + δ̄11l)
∂

∂y1
+ (−εly1 + δ̄l1l)

∂

∂yl
+

m∑
k=2 k ̸=l

δ̄k1l
∂

∂yk
− εl(wl + η1)

∂

∂wl

]

=

(
εl(w1 + η1)

∂δ̄11j
∂wl
− εj(w1 + η1)

∂δ̄11l
∂wj

+ ε1δ̄
l
1j − ε1δ̄

j
1l

)
∂

∂y1

+

(
εl(w1 + η1)

∂δ̄j1j
∂wl
− εj(w1 + η1)

∂δ̄j1l
∂wj

+ εj(ε1yl + δ̄11l)

)
∂

∂yj

+

(
εl(w1 + η1)

∂δ̄l1j
∂wl
− εj(w1 + η1)

∂δ̄l1l
∂wj
− εl(ε1yj + δ̄11j)

)
∂

∂yl

+
m∑

i=2, i ̸=j, i̸=l

(
εl(w1 + η1)

∂δ̄i1j
∂wl
− εj(w1 + η1)

∂δ̄i1l
∂wj

)
∂

∂yi

Thus we have [∆1j,∆1l] /∈ ∆, since there are no components along ∂
∂w

, a
contradiction.

We have therefore showed that relation (6.9) holds in any case (m = 1, m = 2, and
m ≥ 3) and the proof is complete. ■

The proof is interesting as it is constructive: we have not only transformed
Σ into Σ0,η

p,q but we have also transformed the elements of the basis of L into the
corresponding elements of the basis of L0

p,q given by (6.2).

Remark. In the case m = 1, notice that the proof is shorten as so(1) = {0} thus
the proof stops at equation (6.7’) (in the case f(0) ∈ D0(0)). Indeed this equation is
sufficient to conclude that f 0(w) = λw2 because it is the only scalar function which
is homogeneous of degree 2. ◆

3 Conclusion and Perspectives

In this chapter we studied the characterisation of null-forms of paraboloid systems
Σ0
p,q via their Lie algebra of infinitesimal symmetries. We showed that this class

of control-affine systems is completely determined by its Lie algebra of symmetries
(under some regularity assumption that are necessary as Σ0

p,q satisfies them). We
believe that there are very few results of that kind for control-affine systems existing
in the literature, with a notable exception [DZ14], and more for the control-linear
case, see [AK11; DK14; Kru12]. In view of all those results, it would be very
interesting to study the following generalisation.

Problem. Let L be a finite-dimensional Lie algebra acting transitively on a mani-
fold M. Does this Lie algebra uniquely determine a class of control-affine systems
(around a generic point) by being isomorphic to its algebra of infinitesimal symme-
tries.
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We believe that considering control-affine systems instead of control-linear sys-
tem in that problem matters. A reason is that the existence of the drift f gives
more rigidity on the symmetries and therefore would constraint the structure of a
system possessing those symmetries. To start investigating this problem, we could
begin with the study of all 2- and 3-dimensional Lie algebras (which are well known)
and to characterise the control-affine systems that admit those Lie algebras as sym-
metries. A starting point is Theorem 4.1 in our paper [SR21], where we assert that
3 model of 3-dimensional Lie algebras completely characterise different families of
control-affine systems. It would also be interesting to allow changes in the time
parametrisation of control systems (i.e. add the equation ṫ = 1) and thus to find
analogous results as those presented in [ANN15].

Another research axis would be the study of the possible correspondence between
the symmetries of second prolongations of submanifolds (as used in this chapter)
and the classical symmetries of underdetermined implicit differential equations, see
e.g. [Olv86; Olv95; Ibr93] for an introduction on this topic. Preliminary results
show that a connection should be possible but is complicate to be establish as our
parametrisations are implicit in w. A starting point would be the study for the class
of differential equations of the form {ż − s(x, ẏ) = 0}.
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6.A Lie algebra of symmetries of Σ0
p,q

In this appendix, we show how to compute L0
p,q, the Lie algebra of infinitesimal

symmetries of Σ0
p,q. Consider a null-form (p, q)-paraboloid system Σ0

p,q = (f, g)

given by the vector fields f =
∑m

i=1 εi(wi)
2 ∂
∂z

+
∑m

i=1wi
∂
∂yi

and gi = ∂
∂wi

. Let
v = v0(z, y, w) ∂

∂z
+
∑m

i=1 v
i
1(z, y, w)

∂
∂yi

+ vi2(z, y, w)
∂
∂wi

be an infinitesimal symmetry
of Σ0

p,. Then, using Proposition 1.4 of Chapter 1 we deduce that

[gi, v] ∈ D0 ⇒ v0 = v0(z, y) and vi1 = vi1(z, y), for 1 ≤ i ≤ m.

Moreover, using [f, v] ∈ D0 we obtain that[
m∑
i=1

εi(wi)
2 ∂

∂z
+ wi

∂

∂yi
, v0

∂

∂z
+

m∑
j=1

(
vj1

∂

∂yj
+ vj2

∂

∂wj

)]
= 0 mod D0

m∑
i=1

(
εi(wi)

2∂v
0

∂z
+ wi

∂v0

∂yi
− 2εiwiv

i
2

)
∂

∂z

+
m∑
j=1

[
m∑
i=1

(
εi(wi)

2∂v
j
1

∂z
+ wi

∂vj1
∂yi

)
− vj2

]
∂

∂yj
= 0,

which yields { ∑m
i=1 εi(wi)

2 ∂v0

∂z
+ wi

∂v0

∂yi
= 2

∑m
i=1 εiwiv

i
2,∑m

i=1

(
εi(wi)

2 ∂v
j
1

∂z
+ wi

∂vj1
∂yi

)
= vj2, 1 ≤ j ≤ m.

(6.12)

By inserting the second equation of (6.12) in the first we obtain

m∑
i=1

εi(wi)
2∂v

0

∂z
+ wi

∂v0

∂yi
= 2

m∑
i=1

εiwi

m∑
k=1

(
εk(wk)

2∂v
i
1

∂z
+ wk

∂vi1
∂yk

)
and equating the terms of the same degree in wi we deduce the conditions

∂vi1
∂z

= 0,
∂v0

∂yi
= 0, εi

∂v0

∂z
= 2εi

∂vi1
∂yi

, 2εi
∂vi1
∂yk

+ 2εk
∂vk1
∂yi

= 0, i ̸= k.(6.13)

Solving the first three conditions implies that v0 = v0(z) = 2az + b0 with a, b0 ∈ R,
and vi1 = ayi+ v̂

i
1(y1, . . . ,��yi, . . . , ym). Then, using the last condition of (6.13) we get

for all i ̸= k, εi
∂v̂i1
∂yk

+ εk
∂v̂k1
∂yi

= 0⇒ εi
∂2v̂i1
∂y2k

= 0⇒ v̂i1 =
∑
j ̸=i

bijyj + ci,

where bij, ci ∈ R satisfy εib
i
k + εkb

k
i = 0. And finally, using the second equation of

(6.12), we have

vi2 =
m∑
j=1

wj
∂vi1
∂yj

= awi +
∑
j ̸=i

bijwj.
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So if v ∈ L0
p,q, then it can be written as

(6.14) v = (2a+ b0)
∂

∂z
+

m∑
i=1

(
ayi +

∑
j ̸=i

bijyj + ci

)
∂

∂yi

+
m∑
i=1

(
awi +

∑
j ̸=i

bijwj

)
∂

∂wi
,

where a, b0, ci, bij are real constants satisfying εibij + εjb
j
i = 0 for all i ̸= j. Observe

that we have a sort of skew symmetry of the matrix B := (bij) twisted by the
εi = ±1, so knowing half of the matrix 1 ≤ i < j ≤ m is sufficient to reconstruct
B completely. Therefore, choosing special values of the constant, we obtain the
following basis vectors of L0

p,q:

b0 = 1, a = ci = bij = 0,
∂

∂z
∈ L0

p,q,

ci = 1, a = b0 = bij = 0,
∂

∂yi
∈ L0

p,q, for 1 ≤ i ≤ m,

a = 1, b0 = ci = bij = 0, 2z
∂

∂z
+

m∑
i=1

yi
∂

∂yi
+ wi

∂

∂w i
∈ L0

p,q,

a = b0 = ci = 0, bij = 0 except for bkl = εk implying that blk = −εl,

so εkyl
∂

∂yk
− εlyk

∂

∂yl
+ εkwl

∂

∂wk
− εlwk

∂

∂wl
∈ L0

p,q, for 1 ≤ k < l ≤ m,

and there are no difficulties to show that any v as in (6.14) can be written as a linear
combination of the above vector fields. Therefore,

L0
p,q = vectR

{
∂

∂z
,
∂

∂y 1

, . . . ,
∂

∂ym

}
⊕ vectR

{
2z

∂

∂z
+

m∑
i=1

yi
∂

∂yi
+ wi

∂

∂wi

}

⊕ vectR

{
εkyl

∂

∂yk
− εlyk

∂

∂yl
+ εkwl

∂

∂wk
− εlwk

∂

∂wl
, 1 ≤ k < l ≤ m

}
.

6.B Commutativity relations of L0
pq

In this appendix, we detail the computation of the commutativity relations of L0
p,q.

Recall the following notations:

v0 =
∂

∂z
, vi =

∂

∂yi
for 1 ≤ i= ≤ m, E = 2z

∂

∂z
+

m∑
i=1

yi
∂

∂yi
+ wi

∂

∂wi
,

∆kl = εkyl
∂

∂yk
− εlyk

∂

∂yl
+ εkwl

∂

∂wk
− εlwk

∂

∂wl
, for 1 ≤ k < l ≤ m.

We obviously have [v0, vi] = 0, [vi, vj] = 0, and [v0,∆kl] = 0. By a straightforward
computation, we deduce that [v0, E] = 2v0 and that for all 1 ≤ i ≤ m we have
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[vi, E] = vi. Next, we obtain

[vi,∆kl] =

[
∂

∂yi
, εkyl

∂

∂yk
− εlyk

∂

∂yl

]
=


εk

∂
∂yk

= εkvk if i = l,

−εl ∂∂yl = −εlvl if i = l,

0 otherwise,
= εkδ

l
ivk − εlδki vl,

where δli denotes the Kronecker delta operator.

[E,∆kl] =

[
2z

∂

∂z
+

m∑
i=1

yi
∂

∂yi
+ wi

∂

∂wi
, εkyl

∂

∂yk
− εlyk

∂

∂yl
+ εkwl

∂

∂wk
− εlwk

∂

∂wl

]

=
m∑
i=1

[
yi
∂

∂yi
, εkyl

∂

∂yk
− εlyk

∂

∂yl

]
+

[
wi

∂

∂wi
, εkwl

∂

∂wk
− εlwk

∂

∂wl

]
= εkyl

∂

∂yk
+ εlyk

∂

∂yl︸ ︷︷ ︸
i=l

− εkyl
∂

∂yk
− εlyk

∂

∂yl︸ ︷︷ ︸
i=k

+ εkwl
∂

∂wk
+ εlwk

∂

∂wl︸ ︷︷ ︸
i=l

− εkwl
∂

∂wk
− εlwk

∂

∂wl︸ ︷︷ ︸
i=k

= 0.

And finally, for the brackets between the vector fields ∆kl, we develop the computa-
tions along the ∂

∂yi
components only because it is the same along the ∂

∂wi
components.

Hence, we have

[∆ij,∆kl] =

[
εiyj

∂

∂yi
− εjyi

∂

∂yj
, εkyl

∂

∂yk
− εlyk

∂

∂yl

]
= δki

(
−εiεlyj

∂

∂yl
+ εiεjyl

∂

∂yj

)
+ δli

(
−εiεlyk

∂

∂yj
+ εiεkyj

∂

∂yk

)
+ δkj

(
−εiεjyl

∂

∂yi
+ εjεlyi

∂

∂yj

)
+ δlj

(
−εjεkyi

∂

∂yk
+ εiεjyk

∂

∂yi

)
= −εiδki∆jl + εiδ

l
i∆jk + εjδ

k
j∆il − εjδlj∆ik.

Therefore [∆ij,∆kl] ̸= 0 if and only if either i = k, or i = l, or j = k, or j = l.
In the first case, [∆ij,∆il] = −εi∆jl for 1 ≤ i < j < l ≤ m and all other cases
can be deduced by permutations of the indices in that formula, recall that we define
∆lk = −∆kl.

6.C Description of so(p, q)

In this appendix, we recall some general facts about the Lie algebra so(p, q). We
first recall the definition of the indefinite orthogonal group O(p, q). Let p and q be
positive integers, with p ≥ q, and consider Rm = Rp+q. Define a symmetric bilinear
form (·, ·)p,q on Rm by the formula

(x, y)p,q = x1y1 + . . .+ xpyp − xp+1yp+1 − . . .− xmym.
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The set of real matrices A of dimension m × m which preserve this form, i.e.
(Ax,Ay)p,q = (x, y)p,q for all x, y ∈ Rm, is called the generalised orthogonal group
O(p, q). Let Ip,q denote the m × m diagonal matrix with ones in the first p diag-
onal entries and minus ones in the last q diagonal entries. The,n A is in O(p, q)
if and only if AtIp,qA = Ip,q. Taking the determinant of the last relation gives
(detA)2 det Ip,q = det Ip,q. Thus for any A ∈ O(p, q), we have detA = ±1.

Recall that the elements X of the Lie algebra g (of a Lie group G) are charac-
terised by the property that etX ∈ G for all t ≥ 0. Therefore, if X is a m×m real
matrix, then etX ∈ O(p, q) if and only if

etX
t

Ip,qetX = Ip,q ⇒ Ip,qetX
t

Ip,q = e−tX ⇒ etIp,qX
tIp,q = e−tX .

This condition holds for all real t ≥ 0 if and only if Ip,qX tIp,q = −X or, equivalently,
X tIp,q +XIp,q = 0. Thus the Lie algebra of O(p, q) consists of all m ×m matrices
X satisfying X tIp,q +XIp,q = 0. This Lie algebra is denoted so(p, q).

The Lie algebra so(p, q), see [Ada12] for further details and examples, can be
embedded in glm = Mat(m) as follows. We use the block decomposition X =(
X1 X2
X3 X4

)
, thus applying X tIp,q +XIp,q = 0 we obtain

X t
1 +X1 = 0, X2 −X t

3 = 0, and X t
4 +X4 = 0.

Hence, we get X =
(
X1 X2

Xt
2 X4

)
with X1 and X4 being skew symmetric matrices of

dimension p × p and q × q respectively, and X2 is an arbitrary p × q matrix. So a
basis of so(p, q) is given by

Skl =


Ekl − Elk if 1 ≤ k < l ≤ p,
Ekl + Elk if 1 ≤ k ≤ p and p+ 1 ≤ l ≤ m,
Elk − Ekl if p+ 1 ≤ k < l ≤ m

,

= εkEkl − εlElk, ∀ 1 ≤ k < l ≤ m,

where Ekl is the elementary matrix with all entries being zeroes except for a 1 in the

k-th line and l-th column; and recall that εi =
{

+1 1 ≤ i ≤ p
−1 p+ 1 ≤ i ≤ m

. This basis

of so(p, q) shows that dim so(p, q) = m(m−1)
2

. Finally, we show that the Lie algebra
of vector fields

∆ = vectR

{
∆kl = εkyl

∂

∂yk
− εlyk

∂

∂yl
+ εkwl

∂

∂wk
− εlwk

∂

∂wl
, 1 ≤ k < l ≤ m

}
is isomorphic to so(p, q). First, observe that the two Lie algebras are of the same
dimension. Second, it is clear that the The following map

ρ : yl
∂

∂yk
+ wl

∂

∂wk
7→ Ekl,

is an isomorphism between the basis elements ∆kl of ∆ and the basis elements Skl
of so(p, q).
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Appendix A

An extension of Frobenius theorem

In this appendix, we present a generalisation of the Frobenius theorem on the recti-
fication of constant rank involutive distributions whose usual version can be stated
as

Theorem A.1 (Frobenius theorem). On a smooth n-dimensional manifold X , we
consider a distribution D. There exists local coordinates (x1, . . . , xd, y1, . . . , yn−d)
such that

D = span

{
∂

∂x1
, . . . ,

∂

∂xd

}
,

if and only if D is involutive and of constant rank d.

For a proof see [Lun92]. Our generalisation gives necessary and sufficient conditions
for the simultaneous rectification of m involutive distributions of constant rank. We
consider X a smooth n-dimensional manifold equipped with local coordinates ξ; and
m involutive distributions D1, . . . ,Dm of constant rank rk(Di) = di satisfying

dim (D1(x0)⊕ · · · ⊕ Dm(x0)) = d, where d :=
n∑
i=1

di ≤ N.

The above condition means that the vector spaces Di(x0) are complementary, i.e.
Di(x0)∩Dj(x0) = 0 for all i ̸= j. We denote by Di1,...,ik , for k ≤ m, the distribution
Di1 ⊕ · · · ⊕ Dik , with the convention that Di,i = Di.

Theorem A.2 (Generalisation of Frobenius Theorem). Let D1, . . . ,Dm be m dis-
tributions of constant rank and satisfying Di(x0)∩Dj(x0) = 0 for all i ̸= j. Then, lo-
cally around x0, there exists a coordinate system

(
x11, . . . , x

d1
1 , . . . , x

1
n, . . . , x

dn
n , y

1, . . . , yN−d)
such that

Di = span
{

∂

∂x1i
, . . . ,

∂

∂xdii

}
, for all 1 ≤ i ≤ m,

if and only if for all indices i1, i2 ∈ {1, . . . ,m} the distribution Di1,i2 is involutive.

Clearly our result generalises Frobenius theorem since for m = 1 our necessary
and sufficient condition reads D1 is involutive and of constant rank. We mention
that different (although equivalent) conditions for that result have been obtained in
[Res82, Lemma 3.1]. Our proof will use the following lemma which shows that our
assumptions imply that the sum of any number of distributions Di is involutive.
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Lemma 1.1. Under the above assumptions, if for all indices i1, i2 ∈ {1, . . . , n} the
distributions Di1,i2 are involutive, then for any multi-index i1, . . . , ik, with k ≤ n,
the distribution Di1,...,ik is involutive.

Proof. By a direct computation. For any v, w ∈ Di1,...,ik we have v = vi1 + . . .+ vik
with vij ∈ Dij (similarly for w) and thus

[v, w] =

[
k∑
j=1

vij ,
k∑
l=1

wil

]
=

k∑
j=1

k∑
l=1

[
vij , wil

]
.

Since Dij ,il is involutive for every ij and il, the brackets of the right hand side are
in Dij ,il ⊂ Di1,...,ik and the conclusion follows. ■

We will also need the following lemma that is a special case of our general result
stated for m = 2 distributions.

Lemma 1.2. Consider A and B two involutive distributions of constant rank a
and b, respectively. Suppose that A ∩ B = {0} and that A ⊕ B is involutive. Let
y0 = (y01, . . . , y

0
c ), where c = n−(a+b), be local functions such that A⊕B = ker dy0.

Then, we can complete them to local coordinates (y0, y1, y2), where y1 = (y11, . . . , y
1
a)

and y2 = (y21, . . . , y
2
b ), such that

A = span

{
∂

∂y11
, . . . ,

∂

∂y1a

}
= ker dy0

⋂
ker dy2, and

B = span

{
∂

∂y21
, . . . ,

∂

∂y2b

}
= ker dy0

⋂
ker dy1.

Proof. Choose (locally) vector fields Ai, for 1 ≤ i ≤ a, and Bj, for 1 ≤ j ≤ b,
such that A = span {A1, . . . , Aa} and B = span {B1, . . . , Bb}, and complete them
by Ck, for 1 ≤ k ≤ c, such that the n vector fields Ai, Bj, and Ck are independent.
Given a coordinate system, form the matrices A = (A1, . . . , Aa), B = (B1, . . . , Bb),
C = (C1, . . . , Cc), and for a local Rk-valued function ϕ form the matrix dϕ · A =
⟨dϕ,A⟩ = (dϕi · Aj) and similarly for B and C.

The distribution A ⊕ B is involutive and of constant rank, so we can find local
coordinates y0 = (y01, . . . , y

0
c ) such that dy0·A = 0 and dy0·B = 0. We setD0 = dy0C

and we have rkD0 = c. The distribution A is involutive, so we can complete y0
by ŷ1 = (ŷ11, . . . , ŷ

1
a) and y2 = (y21, . . . , y

2
b ) such that ann (A) = span {dy2}, i.e.

dy2 ·A = 0. Moreover, by dy0∧dŷ1∧dy2 ̸= 0, it follows that rk D̂1 = a and rkD2 = b,
where D̂1 = dŷ1 · A and D2 = dy2 · B. Similarly, the involutivity of B yields the
existence of y1 = (y11, . . . , y

1
a) and ŷ2 = (ŷ21, . . . , ŷ

2
b ) such that ann (B) = span {dy1}.

If follows that rkD1 = a and rk D̂2 = b, where D1 = dy1 · A and D̂2 = dŷ2 · B. To
summarise, we have

C A B C A B
dy0 D0 0 0 dy0 D0 0 0
dŷ1 * D̂1 * , and dy1 * D1 0 .
dy2 * 0 D2 dŷ2 * * D̂2

Now we claim that the functions y0, y1, y2 form a local coordinate system such that
A = ker dy0∩ker dy2 and B = ker dy0∩ker dy1. The former and the latter statement
follow immediately from
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C A B
dy0 D0 0 0
dy1 * D1 0
dy2 * 0 D2

and from rkD1 = a and rkD2 = b. ■

We can now prove our generalisation of Frobenius theorem.

Proof. Assume that n ≥ 2 (otherwise it is just the classical Frobenius theorem),
we proceed by induction. Apply Lemma 1.2 to A = D1 and B = D2,...,m with y0

such that dy0 ∈ ann (D1,...,m); notice that B is involutive by Lemma 1.1. There
thus exists local coordinates (y0, y1, y2), that we rename x0 = y0 and x1 = y1, such
that D1,...,m = ker dx0, D1 = span

{
∂
∂x1

}
, and D2,...,n = ker dx0 ∩ ker dx1. Now, let

k ≥ 2 and assume that we locally have produced functions (x0, . . . , xk−1) such that
Di = span

{
∂
∂xi

}
, for 1 ≤ i ≤ k − 1, and dxj ∈ ann (Dk,...,m) for 0 ≤ j ≤ k − 1.

Apply Lemma 1.2 to A = Dk and B = Dk+1,...,m, where y0 = (x0, . . . , xk−1) to get
(y0, y1, y2), where we set x0 = y0 and xk = y1, such that Dk = span

{
∂
∂xk

}
and

Dk+1,...,m = ker dx0 ∩ ker dxk; so for all 1 ≤ i ≤ k we get Di = span
{

∂
∂xi

}
. After m

applications of Lemma 1.2 we get the desired form of D1, . . . ,Dm. ■

We terminate this appendix with the following corollary that we use several times
in the thesis.

Corollary A.1. Assume that X is 2-dimensional and let A and B be two smooth
vector fields on X satisfying A∧B ̸= 0. Then, there exists a local coordinate system
x = (x1, x2) such that A = a(x) ∂

∂x1
and B = b(x) ∂

∂x2
, where a and b are smooth

functions satisfying ab ̸= 0.
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Part II

Motion planning for control systems





Chapter 7

Controllability and motion planning
review

The second part of this manuscript is devoted to the problem of motion planning
of control systems. This is the problem of finding algorithms that compute con-
trols such that the system is brought into a prescribed target configuration. Motion
planning has obvious applications to robotics, autonomous vehicles, aerospace and,
in general, to any domain where dynamical systems with controls are involved.
Throughout the last thirty years several methods have been proposed, and in this
thesis we are particularly interested in the continuation method that was introduced
by Chitour and Sussmann. That method relies on solving a highly nonlinear dif-
ferential equation in an infinite-dimensional space, which might be ill-posed due to
singularities. We propose a regularisation of this method that overcomes that diffi-
culty. In the next chapter, we will show that when the regularising parameter goes
to zero, we get a solution of the original problem and we will illustrate our method
through several numerical examples.

This chapter is organised as follows. In the next section, we give some definitions
and notations, and we introduce the problem of motion planning. We also review
some properties about the controllability of control systems and about the endpoint
mapping. In section 2, we present several existing algorithms and methodology for
solving the motion planning problem.

1 Preliminaries

Throughout this part of the manuscript, the word smooth will always mean C∞-
smooth, manifolds are «smooth, finite-dimensional, Hausdorff, second countable,
and paracompact», and all objects (vector fields, tensor fields, functions) are con-
sidered smooth. For a manifold X we will denote by TX and T ∗X the tangent
and cotangent bundle, respectively. The space of all smooth vector fields (smooth
sections of TX ) will be denoted V ∞(X ) and the space of all smooth differential
p-forms by Λp(X ), except for smooth functions (0-forms) whose space is denoted
C∞(X ). On a smooth n-dimensional manifold X (or an open subset of Rn), we
consider a control-affine system, with state x ∈ X and m ≥ 1 controls, given in local
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coordinates by

Σ : ẋ = f(x) +
m∑
i=1

uigi(x), and x(0) = x0.

The control u = (u1, . . . , um) takes values in U , an open connected subset of Rm

containing 0, and f, g1, . . . , gm are smooth vector fields on X . Throughout this part
of the manuscript, we assume that the initial state x0 ∈ X and the final time T > 0
are fixed. A trajectory of Σ is a smooth curve γ : [0, T ] → X such that γ(0) = x0
and that there exists a control u(·) ∈ U for which

γ̇(t) = f(γ(t)) +
m∑
i=1

ui(t)gi(γ(t))

holds almost everywhere on [0, T ]. Since we allow for discontinuous controls, the
meaning of the solution of the above differential equation has to be clarified, in fact,
it means that the following integral equation holds:

∀ t ∈ [0, T ], γ̇(t) =

∫ t

0

f(γ(τ)) +
m∑
i=1

ui(τ)gi(γ(τ)) dτ.

To emphasize the dependence of the trajectories on the input u, we denote by γu
the trajectory of Σ generated by u(·) and starting from γ(0) = x0. We denote by U
the class of admissible inputs, that is the set of U -valued functions defined on [0, T ]
such that the associated trajectory γu exists for all t ∈ [0, T ], and we endow it with
the L2-norm topology. The domain U is not the whole L2([0, T ], U) because of the
explosion phenomena. For instance, consider the control-affine system ẋ = x2 + u,
then γu is not defined on [0, T ] for u = 1 if T ≥ π

2
. We now formulate the problem

of motion planning (MPP).

Problem (Motion Planning Problem). Consider a control-affine system Σ. For any
fixed point x⋆ ∈ X , find a control u⋆ ∈ U such that γu⋆(T ) = x⋆.

The MPP can be decomposed into two subproblems, which are both difficult to solve
in their full generality. First is the accessibility/controllability one, i.e. describing
the subset of X that can be reached from x0 in time T using the controls of U .
This question may be answered by studying the structure of the Lie algebra of the
system (we recall some results of this theory in the following paragraph). Second
is the problem of actually finding a control u∗ that realises the transfer from x0 to
x⋆. Many different algorithmic methods have been developed throughout the years,
some of them are presented in section 2. Those two problems are related and they
need to be solved in order. Indeed, given a control system we need first to establish
the existence of a control u⋆ that steers x0 to x⋆, and next we have to implement
a numerical method to compute actually u⋆. The algorithm that we present in the
next chapter is devoted to solving the second subproblem of the MPP only.

Remark (Extension to control-nonlinear systems). Notice that the MPP can also
be considered for general control-nonlinear systems Ξ : ẋ = F (x,w), where F
is a smooth map and w is the control. But for three reasons it is convenient to
consider control-affine systems only. Firstly, as we discussed in the first part of the
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thesis, any control-nonlinear system Ξ can be prolonged to a control-affine system
by augmenting its state space with the controls w and introducing new controls
ui = ẇi, which gives

Ξp :

{
ẋ = F (x,w)
ẇ = u

.

The second reason is that using control-affine systems allows to endow the set of
controls with the L2-norm topology and therefore we benefit from its hilbertian
structure. And, thirdly, for many applications (for instance, in robotics) the con-
trol systems that we consider are control-affine, or even control-linear (see below)
systems. ◆

We call Σ control-linear or driftless if f ≡ 0; those systems are given by

Λ : ẋ =
m∑
i=1

uigi(x).

They can be interpreted as kinematical systems under nonholonomic constraints
(i.e. constraints on the velocities), those constraints are given by differential one-
forms ωi (smooth section of T ∗X ), for i = m+1, . . . , n, spanning the codistribution
ann (span {g1, . . . , gm}). From the point of view of the applications, control-linear
systems model kinematical systems whose state represents the position and we con-
trol the velocities directly. As opposed to systems whose state represents positions
and velocities, and where the controls are forces or torques.

Review of Accessibility and Controllability results. In this paragraph, we
present some results about the controllability of control-linear systems Λ, the in-
terested reader will find more details in [BJR98; Jur96]. Consider a control-linear
system of the form

Λ : ẋ =
m∑
i=1

uigi(x), x ∈ X , u ∈ U.

We define the reachable set from x0 ∈ X in time T > 0 by RT (x0) = {γu(T ), u ∈ U};
this set describes the set of points that can be reached from x0 in time T using the
controls of U . We call the system Λ controllable (from x0) if ∪T≥0RT (x0) = X , and
controllable in time T if RT (x0) = X .

Definition 7.1 (Lie Algebra Rank Condition). We say that the vector fields g1, . . . , gm
satisfy the Lie Algebra Rank Condition (shortly, LARC) if for all x ∈ X we have

Lie (g1, . . . , gm) (x) = TxX ,

where the left hand side denotes the Lie algebra generated by the vector fields
g1, . . . , gm evaluated at x ∈ X .

We can now recall the celebrated Chow-Rashevsky theorem which gives a nec-
essary condition for controllability ([Cho40; Ras38]).

Theorem 7.2 (Rashevsky-Chow). If X is connected and if the vector fields gi of Λ
satisfy the LARC at every x ∈ X , then any two points x0 and x1 of X can be joined
by a trajectory of Λ, i.e. ∃u such that γu(0) = x0 and γu(T ) = x1.
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For a proof see [BJR98]. As a corollary, when the LARC holds then Λ is control-
lable from any point x0. The converse of Rashevsky-Chow theorem, that is if Λ is
controllable then the gi’s and their iterated Lie brackets span the tangent space at
every point of X is true if X and the vector fields gi are analytic and false in the
C∞ case (see [Sus73]).

Endpoint mapping. In this paragraph, we present the main properties of the
input-output map, equivalently the endpoint map, associated with a control-affine
system. All results are quoted from [Tré00] and we only add some comments. We
consider a control affine system Σ of the form

Σ : ẋ = f(x) +
m∑
i=1

uigi(x), x ∈ X , u ∈ U.

Recall that x0 and T > 0 are fixed, we denote by U ⊂ L2([0, T ], U) the set of controls
such that the trajectories γu of Σ, starting form x0, are well defined on [0, T ]. We
endow U with the L2-norm topology.

Definition 7.3 (Endpoint map). The endpoint mapping is

E : U −→ X
u 7−→ γu(T ),

i.e. it associates to each control the terminal point of its corresponding trajectory.

Observe that the problem of controllability is equivalent to the description of the
image of the endpoint mapping. In particular, if a system is controllable then E is
surjective. Let u and (un)n∈N be elements of L2([0, T ], U), we denote by un ⇀ u the
weak convergence of the sequence un to u in L2. We consider the linearised system
along a trajectory γu:

ẏv(t) = Au(t)yv +Bu(t)v, v ∈ L2,(7.1)

where Au = ∂f
∂x
(γu) +

∑m
i=1 ui

∂gi
∂x

(γu), and Bu = (g1(γu), . . . , gm(γu)). Let Mu be the
(n × n)-matrix solution of the equation Ṁu = AuMu, Mu(0) = Idn. We have the
following properties of the endpoint mapping.

Proposition 7.1 (Properties of the endpoint map). The endpoint mapping E of a
smooth control-affine system Σ satisfies the following properties:

(i) The domain U of E is open in L2([0, T ], U);

(ii) If un ⇀ u, then γun is well defined on [0, T ] for a sufficiently large n and,
additionally, γun → γu uniformly on [0, T ];

(iii) The endpoint map is L2-Fréchet differentiable, and we have

∀ v ∈ U , dE(u) · v = yv(T ) =Mu(T )

∫ T

0

Mu(τ)
−1Bu(τ)v(τ) dτ ;(7.2)

(iv) If un ⇀ u, then dE(un)→ dE(u).
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In statement (iii), we claim that E is L2-differentiable, usually, one proves that E
is differentiable on L∞, see [Tré05].

Remark (Singular controls). A control us (or its associated trajectory γus(t)) is said
to be singular on [0, T ] if us is a singular point of the endpoint map, i.e. the Fréchet
differential of E is not surjective at us. Otherwise we say that u is regular. ◆

A control u in the interior of U is singular if and only if the linearised system
(7.1) along the trajectory γu is not controllable (see [BC03]). We will denote by
S ⊂ U the set of singular controls. Moreover, we have the following characterisation
of singular controls.

Proposition 7.2 (Hamiltonian characterisation of singular controls). Let us be a
singular control of Σ on [0, T ], and let γus be the associated singular trajectory. Then
there exists an absolutely continuous map p : [0, T ]→ Rn\{0}, called adjoint vector,
such that the following equations are fulfilled for almost every t ∈ [0, T ]:

γ̇us(t) =
∂H

∂p
(γus(t), p(t), us(t)),

ṗ(t) = −∂H
∂x

(γus(t), p(t), us(t)),

∂H

∂u
(γus(t), p(t), us(t)) = 0,

where H(x, p, u) = ⟨p, f(x) +
∑m

i=1 uigi(x)⟩ is the hamiltonian, and ⟨·, ·⟩ is the du-
ality between one-forms and vector fields on X .

That proposition provides a geometric interpretation of the adjoint vector p(t). If
us is singular on [0, T ], then it is also singular on [0, t], for all t ≤ T , moreover, p(t)
is orthogonal to the image of dEt(us)∗. In particular, im (dEt(us)) is a subspace of
TX of codimension greater or equal than 1.

Having defined the map dE(u) : U → Tγu(T )X , it will be convenient to determine
its adjoint dE(u)∗ : T ∗

γu(T )
X → U explicitly. Using the same notations as for the

linearised system (7.1), we consider pT ∈ T ∗
γu(T )
X and we set p(t) (seen as a time-

varying vector) to be the solution of the following differential equation, called the
adjoint equation,

ṗ(t) = −A∗
u(t)p(t),

with terminal condition p(T ) = pT . Then, we have

(dE(u)∗pT ) (t) = B∗
u(t)p(t).

The map dE(u) is surjective if and only if dE(u)∗ is one-to-one. Moreover, dE(u)∗
fails to be one-to-one if and only if there exists a nontrivial solution p(t) of the
adjoint equation such that ⟨p(t), gi(γu(t))⟩ vanishes identically for i = 1, . . . ,m.

∗Et is the endpoint map at time t > 0.
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2 Review of motion planning methods

We call a motion planning method an algorithm that solves the problem of finding
a control u⋆ ∈ U such that the generated trajectory γu⋆ satisfies γu⋆(0) = x0 and
γu⋆(T ) = x⋆, for a chosen target x⋆ ∈ X . Today, there is no algorithm that guar-
antees any control system to reach an accessible goal exactly. In this section, we
present some existing approaches in the motion planning area and we try to give a
taste of the advantages and drawbacks of each method. In particular, to compare
those methods with each other we will use the criteria introduced by Long in [Lon10].
We will call a motion planning method a complete procedure if all properties of the
following list are fulfilled:

(i) Generality: the method should work for any control system without any re-
strictions on its structure;

(ii) Globality: for every pair of points (x0, x
⋆) ∈ X × X the algorithm should

produce a control that steers the system from x0 to a point x̃⋆ ∈ X arbitrary
close to x⋆;

(iii) Proof: a mathematical proof guaranteeing item (ii) should be given;

(iv) Usability: The algorithm must be implementable regardless of the system:

(a) No restriction on the dimension of the system,
(b) Robust with respect to the dynamics of the system,
(c) Produce regular trajectories,
(d) Generalisable to any domain, in particular, with obstacles.

The following Table 2.1 summarises the main characteristics of the methods pre-
sented below with respect to those four criteria.

Generality Globality Proof Usability
Lafferriere-Sussmann ✗ ✓ ✓ ✗

Murray-Sastry ✗ ✓ ✓ ✓

Liu-Sussmann ✗ ✓ ✓ ✗

Flatness ✗ ✓ ✓ ✗

Optimal control ✓ ✓ ✗ ✓

Continuation ✓ ✓ ✓ ✓

Table 2.1: Summary of the characteristics of existing motion planning methods

Most of the presented techniques apply to control-linear systems only (and some-
times to some subclasses of control-linear systems), only the methods based on
optimal control, and the continuation method can argue to apply to any control-
nonlinear system. We do not go into the details of each method, the interested
reader will find supplementary informations in [Lau98; Sus92], [BL05, Chapter 13],
and references therein.

2.1 Lie bracket based methods

In this subsection, we present three methods based on the study of the Lie algebra
associated with a control-linear system Λ. Throughout the subsection, we assume
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that the vector fields g1, . . . , gm of Λ satisfy the LARC at every x ∈ X . Therefore,
those methods are not applicable to a general control system. The basic idea is that
in Rashevsky-Chow theorem one assumes that the vector fields g1, . . . , gm together
with their iterated Lie brackets span all the directions of the tangent space. So if
one can make the system follow the directions of the Lie brackets, then one can
go in any direction. This is achieved as follows. Assume that f1, . . . , fn are vector
fields locally forming a basis of the tangent space. Denote by etifix0 the flow of
fi passing through x0 at ti = 0. Then there is a small neighbourhood of x0 on
which the maps (t1, . . . , tn) 7→ et1f1+...+tnfnx0 and (t1, . . . , tn) 7→ et1f1 . . . etnfnx0 are
two coordinate systems, called the first and the second normal coordinate system,
respectively. Thanks to the Baker–Campbell–Hausdorff formula [Hal15] a relation
between the two systems is given (for a sufficiently small τ) by

eτfieτfj = eτfi+τfj+
1
2
τ2[fi,fj ]+τ

2ε(τ),

where ε(τ) → 0 when τ → 0. Hence, e−τfie−τfjeτfieτfj ≈ eτ
2[fi,fj ], so following the

flow of fj, then of fi, then of −fj, and finally of −fi, for a small time τ , is the same
as following the flow of [fi, fj] for τ 2.

Lafferriere-Sussmann: Nilpotent approximation. We present one of the first
methods used to solve the MPP. It was developed by Lafferriere and Sussmann in
[LS93], and it gives an exact solution for nilpotent systems and an approximative
solution in the general case. A control-linear system is called nilpotent as soon as
the iterative Lie brackets of the vector fields g1, . . . , gm vanish starting from some
given length. Suppose that B = {g1, . . . , gm, gm+1, . . . , gr}, r might be greater than
n, constitute a P. Hall basis around a point x0, see [Lau93]; notice that due to the
LARC we have B(x) = TxX for any x ∈ X . We define the extended system as

Λe : ẋ =
m∑
i=1

uigi +
r∑

i=m+1

vigi.

Then for any path γ satisfying γ(0) = x0 and γ(T ) = x⋆ we can express γ̇ in
terms of B. The resulting coefficients define a control (u, v) that steers the extended
system along γ. The second step consists in reducing the control (u, v) to a control
u of the original system. Since the system is nilpotent, every Lie bracket can be
exactly expressed by a finite combination of the vector fields g1, . . . , gm (see [Lon10]
for a detailed construction). For a general control-linear system, Lafferriere and
Sussmann propose to use the above method by considering only Lie brackets up to
some length k. This method produces a trajectory ending as close to the goal as
wanted (when k →∞).

The method of Lafferriere-Sussmann is very interesting as it applies to all control-
linear systems and it produces an exact solution in the nilpotent case and an ap-
proximate solution in the general case. Nevertheless, there are some computational
drawbacks. The method requires some change of coordinates that, when numerically
performed, induce instability and quadrature errors. Moreover the P. Hall basis is
defined locally only, thus making the method global appears to be a difficult task in
practice.
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Murray-Sastry method for chained systems. Roughly at the same time as
Lafferriere and Sussmann, Murray and Sastry explored in [MS93] the use of sinu-
soidal inputs with integer frequencies to solve the MPP for the class of chained
systems. We consider a chained system of the form

ẋ = u1


1
0
x2
...

xn−1

+ u2


0
1
0
...
0

 .

The idea is to control the above form component by component. The key point is to
ensure that if the component xi is moving during [0, T ], then no other component
xk, for k < i, changes (i.e. xk(0) = xk(T )). That strategy is possible with sinusoidal
inputs, the authors proposed to use u1 = a sin(ω1t) and u2 = b cos(ω2t), where a
and b are parameters depending on the initial and final state of the system, and
ω1 and ω2 are suitably chosen integer frequencies. See [MLS17, Proposition 8.3]
for a detailed proof of the efficiency of the proposed method. See also [TMS95] for
an application of that method to the n-trailer system. Murray-Sastry’s method is
interesting because it is simple to implement, but its is applicable to a small class
of systems only. The method has been generalised in [CJL13] to be applicable to a
more general form of chained systems, nevertheless that generalisation has not been
implemented yet.

Liu-Sussmann: Oscillatory controls. We finish this subsection by presenting
a method introduced by Liu and Sussmann in [SL91], details can be found in [Liu97]
and a worked out example is in [SL93]. That method combines ideas from the two
above ones. Using the extension Λe (see above) of a control-linear system Λ given
by a P. Hall basis, it is easy to solve the MPP. Indeed, every smooth curve joining
x0 and x⋆ is a trajectory of Λe. Based on this observation, Liu in [Liu97] shows that
we can explicitly construct a sequence of controls (uj) such that the corresponding
generated trajectories γuj of Λ converge uniformly to γ (when j →∞). That result
allows to solve the MPP in an approximate way, indeed it is enough to find a curve γ
such that γ(0) = x0 and γ(T ) = x⋆ and then to construct the sequence uj. Choosing
j⋆ large enough, the control uj⋆ steers the system arbitrarily close to x⋆ (see [Sus91,
Algorithm 4]).

The main advantage of this method is that it applies to any control-linear system,
it depends only on the structure of the Lie algebra generated by the vector fields
g1, . . . , gm. However, this approach seems to be difficult to implement in practice.
Indeed, we need to take sinusoidal control with frequencies tending to infinity (even
for nilpotent systems) in order to obtain the convergence toward the goal.

2.2 Other methods

The three methods that we present in this subsection are applicable to any control-
nonlinear system Ξ : ẋ = F (x, u), where F is a smooth map from X × U → X .
There exists many other approaches to solve the motion planning problem, such as
probabilistic, multi-level, optimisation, etc, see [Lau98] for further details.
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Differential flatness. Differential flatness has been introduced in the early nineties
by Fliess, Lévine, Martin, and Rouchon [Fli+95; Rou+93]. The main idea lies in an
explicit parametrisation of the trajectories of control-nonlinear systems. A flat sys-
tem is a control system for which there exists m of independent variables y, that are
functions of the state, of the controls, and of their successive time-derivative, such
that the controls and the trajectories of the system can be expressed as functions of
y and a finite number of their time-derivatives. Precisely,

Definition 7.4 (Flat system). We say that a control-nonlinear system Ξ : ẋ =
F (x, u) is flat if there exits integers r ≥ −1 and l ≥ 0, and smooth functions
h : X × U × Rrm → Rm, ψ : Rm(l+2) → U , and Ψ : Rm(l+1) → X such that if we
set

y = h(x, u, u̇, . . . , u(r)),

called a flat output of Ξ, then the inputs and the trajectories of Ξ are given by

u = ψ(y, ẏ, . . . , y(l+1)), and x = Ψ(y, ẏ, . . . , y(l))

This definition shows that if a system is flat, then its dynamics is that of a
control-linear system (in an extended state space). Thanks to that property, it is
easy to do the motion planning for a flat system (for which we explicitly know a flat
output). By definition we have,

x0 = Ψ(y(0), ẏ(0), . . . , y(l)(0)), and x⋆ = Ψ(y(T ), ẏ(T ), . . . , y(l)(T )).(7.3)

Thus it is enough to find a curve t 7→ y(t) in the space of the flat outputs satisfying
the conditions of (7.3). This can be done by polynomial interpolation for instance.
Finally, a solution of the MPP is given by u⋆(t) = ψ(y(t), ẏ(t), . . . , y(l+1)(t)).

The main drawback of this method is that there does not exist a general char-
acterisation of flat systems. Moreover, even if a system is flat, then there does not
exist an explicit method to find a flat output. Furthermore, flatness is not a generic
property of control systems. For instance, a control-linear system with two con-
trols is flat if and only if it is static feedback equivalent to the chained form [MR94;
MMR01; LR12] (in the latter all flat outputs are described). A generic control-linear
system with m = 2 controls is flat on an open and dense subset of X , if dimX = 3
or dimX = 4. On the other hand, if dimX ≥ 5, then flat systems form a very tiny
subset of all control-linear systems with two controls. Nevertheless, a big number of
systems met in practice are flat and, when it is the case, flatness methods appear
to be very useful and powerful, see [MMR03].

Optimal control. Optimal control is one of the most important topic in the study
of control-nonlinear systems. Indeed, the idea of associating a cost to each admissible
trajectory and trying to find the trajectory minimising that cost seems to solve two
problems at once. On one hand, if we can solve optimal controls problems, then
we get an admissible trajectory and thus solve the MPP, and on the other hand we
obtain a trajectory minimising some criterion. Formally, optimal control problems
for ẋ = F (x, u) are formulated as

u⋆ = argmin
u∈U , γu(T )=x⋆

∫ T

0

F 0(τ, γu(τ), u(τ)) dτ + g(γu(T ), u(T )).
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Under some regularity assumptions, one can show that an optimal control exists
(see e.g. [HSV95] for a presentation of some general results). Usually, there are two
types of numerical methods used to solve optimal control problems, namely, direct
and indirect methods. Direct methods consist in discretising the cost function,
the state space, and the control space, this procedure reduces the optimal control
problem to a problem of nonlinear optimisation under constraints. In particular,
among direct methods we find an approach via dynamic programming which yields
the resolution of Hamilton-Jacobi-Bellman (HJB) equation. Indirect methods aim
at solving with a shooting method a problem obtained from the application of the
Pontryagin Maximum Principle (see [Tré05, chapter 9] and [Tré12] for a detailed
presentation of those methods with a lot of practical examples).

The main difficulties of optimal control approaches are: in general we will get
local minima, in the case of direct methods this is due to the discretisation while
for indirect methods it is due to the Maximum Principle which is a necessary condi-
tion only. Secondly, those methods are costly as soon as the dimension of the state
increases, moreover, indirect methods may have a small convergence domain (they
rely on Newton’s algorithm). Notice that the approach via HJB’s equation guar-
antees that we find a global minimum, but that approach is numerically expensive.
Nevertheless, using optimal control to solve the MPP is probably the best method
that we have at our disposal.

Homotopy continuation method. The objective of the continuation method is
to solve the MPP step by step from a simpler one by a parameter deformation. That
approach requires first to characterise the singularities of the endpoint mapping and
next to prove the global existence of a highly nonlinear differential equation on the
space of controls, the path lifting equation. We leave a more detailed presenta-
tion of the continuation method and of its characteristics to the next chapter as
our proposed algorithm is a modification of it. We stress that this method has the
advantage that it applies to any kind of control system and that it is easy to imple-
ment, but a proof of its globality amounts to show that the path lifting equation has
a global solution which is hard in general. Theoretical results have been obtained
by Sussmann and Chitour in [Sus93; Chi06] for control-linear systems under some
quite restrictive controllability assumptions.
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Chapter 8

A regularised continuation method

In this chapter, we discuss the application of the continuation method to the mo-
tion planning problem. First, we review its main properties in the case of smooth
control-linear systems, then we propose a regularisation, based on the Tikhonov reg-
ularisation in Moore-Penrose pseudo-inverse theory, of that method and we analyse
its properties. In particular, we study the convergence of a solution of our regu-
larised approach to a solution of the motion planning problem. Finally, we propose
a numerical implementation of our regularised method and we illustrate its potential
through several numerical examples.

1 Introduction

Throughout the chapter, we consider a control-affine system of the form

Σ : ẋ = f(x) +
m∑
i=1

uigi(x), x ∈ Rn, ui ∈ L2([0, T ],R).

The driftless, or control-linear, systems (i.e. Σ with f ≡ 0) will be denoted by Λ. We
suppose that an initial state x0 ∈ Rn is fixed and we set the final time T > 0. The
set U ⊂ L2([0, T ],Rm) consists in the controls u for which the associated trajectory
xu(t) is well-defined for every t ∈ [0, T ]. We denote by

E : U −→ Rn

u 7−→ xu(T ),

the endpoint mapping. Its properties are summarised in Proposition 7.1 of Chap-
ter 7. Throughout the chapter, we assume that Σ (or Λ) is completely controllable
in time T , i.e. the map E is surjective.

Presentation of the continuation method. We now present the continuation
method in a general setting, we will show later how to apply this method to the
motion planning problem. LetH1 andH2 be two Hilbert spaces, satisfying dimH2 <
∞, and let E : H1 → H2 be a smooth surjective map. Fix y⋆ ∈ H2, the purpose of
the continuation method is to determine x⋆ ∈ H1 such that

E(x⋆) = y⋆,(8.1)

183



i.e. to find a preimage of y⋆. This method has been introduced in the context
of numerically solving nonlinear equations, see e.g. [AG90; CL15], and proceeds as
follows. We begin by choosing an arbitrary point x0 ∈ H1 and we denote y0 = E(x0),
then we construct a smooth path π(s) between y0 and y⋆, that is, π : [0, 1] → H2

such that π(0) = y0 and π(1) = y⋆. The key step in the method is the «lifting» of
π into a path Π : [0, 1]→ H1 satisfying

∀ s ∈ [0, 1], E(Π(s)) = π(s).(8.2)

In particular, notice that Π(0) = x0 satisfies that relation at s = 0. If the procedure
of finding Π(s) can be carried out to s = 1 then x⋆ = Π(1) is a solution of equation
(8.1). Since Π is defined implicitly, one usually proceeds by differentiating (8.2) with
respect to s, which yields

dE(Π(s))
dΠ

ds
(s) =

dπ

ds
(s), s ∈ [0, 1], Π(0) = x0.

If this equation admits a global solution on [0, 1], then x⋆ = Π(1) is a solution of
our original problem. Suppose that dE(Π(s)) has full rank for all s ∈ [0, 1], then
dE(Π(s)) admits a right inverse P (Π(s)), for instance one can take the Moore-
Penrose pseudo-inverse defined by

P (Π(s)) = dE(Π(s))∗ (dE(Π(s))dE(Π(s))∗)−1 ,

where ∗ stands for the adjoint operator. Choosing dΠ
ds
(s) as P (Π(s))dπ

ds
(s), leads to

the following ordinary differential equation on H1:

dΠ

ds
(s) = P (Π(s))

dπ

ds
(s), s ∈ [0, 1], Π(0) = x0.(8.3)

We call equation (8.3) the path lifting equation (PLE). If one can find a solution of
(8.3), with the initial condition Π(0) = u0, which is defined on the whole interval
[0, 1], then Π(1) is a solution of our original equation (8.1). Equation (8.3) is a
Ważewski equation see [Waż47] and [Ole98]. The two issues of the continuation
method are the following:

(i) non-degeneracy: it is necessary that dE(Π(s) has full rank at all s ∈ [0, 1],
that is π(s) /∈ E(S), where S is the singular set of E;

(ii) non-explosion: equation (8.3) must have a global solution on [0, 1] with
E(Π(0)) = π(0).

If one of the above conditions fails to hold, then the continuation method may not
work as illustrated by the example below.

Example. From [Sus92, section 7]. Take H1 = H2 = R and the application E :
H1 → H2 given by E(x) = x3 − 3x. From E ′(x) = 3x2 − 3 we obtain the singular
set S = {−1, 1} and E(S) = {−2, 2}. Then the path π(s) = −3 + 6s (connecting
x0 = −3 and x⋆ = 3) crosses E(S) and thus cannot be globally lifted. This can
be seen on its Ważewski equation Π′(s) = 2

Π(s)2−1
, with Π(0) the real solution of

x3 − 3x = −3, which clearly admits a maximal solution Π(s) defined on s ∈ [0, 5/6[
and Π(s) approaches −1 when s→ 5

6
. ●
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Moore-Penrose Pseudo-Inverse. We recall the main properties of the Moore-
Penrose Pseudo-Inverse (MPPI) which plays an important role in the continuation
method (both for the classical and our regularised version). Let H1 and H2 be two
Hilbert spaces, with dimH2 <∞, we denote (·, ·)1 and (·, ·)2 their respective scalar
product. Let A : H1 → H2 be a continuous linear mapping and let A∗ : H2 → H1

be its adjoint, i.e. for all h1 ∈ H1 and h2 ∈ H2 we have (Ah1, h2)2 = (h1, A
∗h2)1.

We set M = AA∗, which is a linear map from H2 → H2 satisfying M ≥ 0. Clearly,
if A is onto then M is invertible (in particular, M > 0). In that case, we define

A+ : H2 −→ H1

h2 7−→ A+h2 = A∗M−1h2.

It follows that we have the identity AA+h2 = h2 for all h2 ∈ H2, so A+ is a right
inverse of A. Hence, A+ fulfils the axioms of the Moore-Penrose pseudo-inverse:

AA+A = A, A+AA+ = A+, AA+ and A+A are self-adjoint,(8.4)

so, by definition, the operator A+ is the MPPI of A (it is unique since A has closed
range). If M = AA∗ is not invertible, there is an alternative procedure to obtain
A+ (i.e. the unique operator satisfying (8.4)). The matrix AA∗+λIdH2 is invertible
for λ small enough. Then, we claim that

A+ = lim
λ→0

A∗ (AA∗ + λIdH2)
−1 .(8.5)

See [BH12, Lemma 4.2 and Theorem 4.3] for a proof. We now review some of the
main properties of the MPPI, for more details see [BT21] for a historical introduc-
tion, [BH12] for the case of matrices, and [Beu65a; Beu65b] for a general setting.

We set the operator P = IdH2 − AA+ from H2 to H2, then P is an orthogonal
projector (i.e. P ∗ = P and P 2 = P ) satisfying

kerP = imA, and imP = kerA+,(8.6)

in particular, if A is onto then P = 0. Consider now the (overdetermined) linear
equation Ah1 = h2, that we treat by a least square problem, i.e. we search the set
of vectors h1 ∈ H1 minimizing the norm ∥Ah1 − h2∥2. Then, the set of vectors of
H1 for which the previous least square problem assumes a minimum is given by the
set

A+h2 + kerA.

Consequently, A+h2 is the vector of smallest length such that Ah1 = h2. In partic-
ular, it shows that the operator A+ does not depend on the inner product of H2.
Finally, the solutions of the regularised least square problem

min
h1∈H1

∥Ah1 − h2∥2 + λ ∥h1∥2 , λ > 0

are given by h1 = A∗ (AA∗ + λIdH2)
−1 h2, it is a straightforward computation from

the so-called normal equation (A∗A+ λIdH2)h1 = A∗h2.
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Continuation method adapted to the MPP. We now explain how the idea of
the continuation method applies to the motion planning problem. In the context of
motion planning, the continuation method has been introduced by Sussmann [Sus92;
Sus93] and developed by Chitour [CS98; Chi06]. See also [ACL10] for a practical
implementation of that method applied to the rolling body problem.

In the context of motion planning, the role of the surjective map above is played
by the endpoint mapping E : U → Rn, that assigns to each control u the terminal
point xu(T ) of the associated generated trajectory (starting from x0 and in time
T > 0). Therefore, the first step of the continuation requires the determination of
the singular set S of E (i.e. the controls u such that rk dE(u) < n) and the choice
of a path π ∈ Rn which avoids the image E(S) of the singular set. Next, we pick a
control u0 and we choose a path π : [0, 1]→ Rn such that π(0) = E(u0), π(1) = x⋆,
and π(s) /∈ E(S). The second step consists in lifting π(s) into a path Π(s) ∈ U
verifying E(Π(s)) = π(s) for all s ∈ [0, 1]. The lift Π(s) should verify equation (8.3)
which is now an ordinary differential equation on U :

dE(Π(s))
dΠ

ds
(s) =

dπ

ds
(s), s ∈ [0, 1], Π(0) = u0.(8.7)

The existence of the global solution of (8.7) must be established. See figure 8.1 for
a visual summary of the method.

Figure 8.1: representation of the continuation method applied to motion planning.
The top, resp. bottom, shape represents the space of controls U , resp. the state
space Rn. The arrows from top to bottom represents the application of the endpoint
map E, the thick solid black line is the path π(s) between x0 = E(u0) and x⋆, and
the dotted black line on U is the constructed path Π(s).

As long as π(s) /∈ E(S), the differential dE(Π(s)) is right invertible, consequently, to
solve equation (8.7), we use its Moore-Penrose pseudo-inverse P (Π(s)) : TE(Π(s))Rn →
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U defined by:

∀u ∈ U\S, P (u) = dE(u)∗G(u)−1,

where the map G(u) : TE(u)Rn → TE(u)Rn defined by G(u) = dE(u)dE(u)∗ is the
controllability Gramian. And we choose Π′(s) equal to

Π′(s) = P (Π(s))π′(s), s ∈ [0, 1], Π(0) = u0,(8.8)

and in this way (8.7) is satisfied. Recall that equation (8.8) is called the path
lifting equation (PLE). We now assume that we work with control-linear systems
Λ. Assuming that Λ is completely controllable implies that the singularities of E
are exactly the controls giving rise to the abnormal extremals. The existence of
nontrivial abnormal extremals (see [Mon93; LS94]) leads to hard problems such as
the precise determination of the singular set. We review the different properties of
the continuation method due to [Chi06]. Recall that we assume that the domain U of
the endpoint map is exactly the set of controls such that xu(T ) exists (therefore the
assumption of Chitour [Chi06] that Λ must be a CC-tempered system is fulfilled).
First, we have

Proposition 8.1 (Local existence and uniqueness). Let π : [0, 1] → Rn\E(S) be
a C1 path. Then, for all pairs (s̄, ū) ∈ [0, 1] × U\S, we have local existence and
uniqueness of the maximal solution Π(s) of (8.8) with initial condition Π(s̄) = ū.

See [Chi06, Proposition 2] for a proof. Before turning to global existence of the PLE,
we have the following proposition that puts forward a finite dimensional version of
the PLE on any compact interval J of the domain of existence I of the maximal
solution Π of the PLE. More precisely, we consider a strictly increasing sequence Uj
of finite dimensional subspaces of U such that ∪j≥0Uj is dense in U . Let Π : I → U
be the maximal solution of PLE with initial solution u0 ∈ U0. Set Ej the endpoint
map associated to Uj The proposition states that for any compact subinterval J =
[0, s0] ⊂ I, the PLE defined by Ej and associated with π has a global solution on
J , for j large enough. In particular, if the PLE has a global solution, i.e. I = [0, 1],
then J can be taken as [0, 1], and thus, the proposition shows that the PLE will
have a global solution in a finite-dimensional subspace of U thus justifying to use
Galerkin procedures to solve numerically the PLE.

Notations. Let Uj be a closed linear subspace of U , we set prj the orthogonal
projection onto Uj. The image of Ej is equal to that of E prj : U → Rn. For u ∈ U ,
let dEj(u) = dE(u) prj and dEj(u)

∗ be its adjoint (relative to the scalar product
on Uj), and Gj(u) = dEj(u)dEj(u)

∗ be the controllability Gramian restricted to
Uj. If dEj(u) is onto, then we set Pj(u) = dEj(u)

∗Gj(u)
−1 the Moore-Penrose

pseudo-inverse of dEj(u).

Proposition 8.2 (Finite dimensional reduction of the PLE). Let π : [0, 1] →
Rn\E(S) be a C1 path and (Uj) be a strictly increasing sequence of finite-dimensional
subspaces of U such that ∪j≥0Uj is dense in U . Assume that u0 ∈ U0, and let I be
the interval of existence of the maximal solution Π of the PLE starting at u0. Then,
for every compact subinterval J = [0, s0] ⊂ I, there exists j so that for every j ≥ j,
the equation

Π′(s) = Pj(Π(s))π
′(s), s ∈ J, Π(0) = u0,

admits a global solution in J .
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See [Chi06, Theorem 1] for a proof. Next, the following proposition relates the
regularity of the controls Π(s) to the one of the initial condition u0. Independently
of the space U of controls, the solution Π of a PLE is as regular as its initial condition
u0. We define the Sobolev spaces Hk, for some integer k ≥ 0, by

Hk([0, T ],Rm) =
{
u ∈ L2([0, T ],Rm), ∀α s.t. |α| ≤ k, Dαu ∈ L2([0, T ],Rm)

}
,

where α is a multi-index, and Dα is a partial derivative of u (in the sense of distri-
butions). Those are Hilbert spaces and, in particular, we have H0 = L2.

Proposition 8.3 (Regularity of the controls Π(s)). Let π : [0, 1]→ Rn\E(S) be a
smooth path.

(i) Assume that U = L2([0, T ],Rm) and that u0 ∈ Hk([0, T ],Rm) for some integer
k ≥ 0. Let I be the interval of existence of the maximal solution Π of the
PLE starting at u0. Then, ∀ s ∈ I, Π(s) can be written as u0 +M(s), with
M(s) ∈ Hk+1([0, T ],Rm).

(ii) The same conclusion holds, when we replace Hk with Ck.

See [Chi06, Theorem 2] for a proof. In particular, if u0 is smooth and if the PLE
has a global solution, then the control u⋆ = Π(1) solving the MPP is also smooth.

Results establishing global existence of the PLE, have been proven by Sussmann
and then extended by Chitour under the additional requirement that Λ satisfies the
strong bracket generating condition.

Definition 8.1 (SBGC). We say that Λ satisfies the strong bracket generating con-
dition (SBGC) if

∀ θ ∈ Rm\{0}, ∀x ∈ Rn, θ · g :=
m∑
i=1

θigi,

the vectors g1(x), . . . , gm(x), [θ · g, g1] (x), . . . , [θ · g, gm] (x) span TxRn.

Under the SBGC, there do not exist any nontrivial abnormal extremals, in other
words, it turns out that S reduces to {0}, see [Str86]. The following proposition
asserts that if the SBGC holds not only the PLE is well-posed for every s ∈ [0, 1],
but also its solution Π(s) exists for all s ∈ [0, 1].

Proposition 8.4 (Global existence for the PLE). Consider a control-linear system
satisfying the LARC and the SBGC, and for which U = Hk([0, T ],Rm), for some
k ≥ 0. Then, for every C1-path π such that x0 /∈ π([0, 1]), the PLE (8.8) admits a
global solution on [0, 1].

That proposition is a combination of [Chi06, Theorems 3 and 4].

2 Regularisation of the continuation method

We now present a regularised version of the continuation method. We present our
approach in the context of the MPP, nevertheless we emphasize that this method
can be carried out on general applications of the continuation method. The ma-
jor difficulty of the classical continuation method arises from the singularities of

188



the endpoint map, our regularisation overcomes this difficulty. Indeed, the proposed
method simultaneously tackles the non-degeneracy and the non-explosion conditions
of the PLE, its cost is, however, the introduction of a family of problems whose solu-
tions may not converge to a solution of the original problem. We present our results
for control-linear systems Λ satisfying the LARC (see Definition 7.1), some of our
results can be extended to other class of completely controllable control systems
without much extra work.

Recall that the path lifting equation is given, when dE(Π(s)) is onto, in terms of
the Moore-Penrose pseudo-inverse P (Π(s)) of dE(Π(s)). Equation (8.5) shows that
the MPPI can be approximated by a family of linear operators, thus it suggests to
introduce the following equation parametrised by λ > 0

dΠλ

ds
(s) = dE(Πλ(s))

∗ (dE(Πλ(s))dE(Πλ(s)) + λIdRn)−1 dπ

ds
(s),(8.9)

with initial condition Πλ(0) = u0. We call this equation the regularised path lifting
equation (R-PLE, shortly). To simplify notations, we will denote dΠλ

ds
by Π′

λ.

Remark (Interpretation of the R-PLE as a regularised least square problem). Us-
ing basic properties of the MPPI, we deduce that the R-PLE can equivalently be
formulated as

Π′
λ(s) = argmin

v∈U
∥dE(Πλ(s))v − π′(s)∥2Rn + λ ∥v∥2U .(8.10)

This formulation is interesting as it shows that we can imagine many other types of
regularisation, via replacing λ ∥v∥2 by any functional ψ(v) with suitable properties.

◆

The following proposition shows that the R-PLE is well posed and that it takes care
of the issues of degeneracy and of explosion of the classical PLE. Our result does
not require that the path π(s) avoids the singularities of E. Hence, our regularised
method avoids the main difficulty of the classical continuation method.

Proposition 8.5 (Existence and global solution of the R-PLE). Assume π(s) is a
C1-curve on Rn. Then, for any λ > 0 and any u0 ∈ U the regularised path lifting
equation, with initial condition Πλ(0) = u0, admits a global solution on [0, 1].

The same conclusion applies to control-nonlinear systems under the additional as-
sumption that 0 ∈ U , i.e. that the trajectory associated with the zero control is well
defined on [0, T ]; for control-affine systems Σ, it means that the trajectory of the
dynamical system ẋ(t) = f(x(t)) exists for all t ∈ [0, T ].

Proof. As outlined in the remark above, the R-PLE can be rewritten as

Π′
λ(s) = argmin

v∈U
∥dE(Πλ(s))v − π′(s)∥2Rn + λ∥v∥2U .

For all v ∈ U we have

∥dE(Πλ(s))Π
′
λ(s)− π′(s)∥2Rn + λ∥Π′

λ(s)∥2U ≤ ∥dE(Πλ(s))v − π′(s)∥2Rn + λ∥v∥2U
λ∥Π′

λ(s)∥2U ≤ ∥dE(Πλ(s))v − π′(s)∥2Rn + λ∥v∥2U ,

In particular, for v = 0 (which obviously is in U for a control-linear system) we get
λ∥Π′

λ(s)∥2U ≤ ∥π′(s)∥2Rn , concluding the proof. ■
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Figure 8.2: Representation of the regularised continuation method applied to motion
planning. In addition to figure 8.1, the dotted black line on Rn represents the image
πλ(s) of the regularised solution Πλ(s) by the endpoint map E.

The process of the regularised continuation method is summarised in figure 8.2. The
natural question that we will answer next is the convergence of the global solution
of the R-PLE to a solution of the PLE as λ → 0. Given the solution Πλ(s) of the
R-PLE, we construct, on the state space Rn, the path

πλ(s) := E(Πλ(s)), ∀ s ∈ [0, 1],

which is different from π(s) except for s = 0 (see figure 8.2). We give a necessary
condition for the path π(s) assuring that limλ→0 πλ(1) = x⋆. To this end, we define
the error due to the regularisation by

eλ(s) = π(s)− πλ(s).

Observe that for all λ, we have eλ(0) = 0, therefore if e′λ(s) is close to zero (or
even vanishes for almost every s), then the error at s = 1 should be small. We
differentiate eλ with respect to s and we get

e′λ(s) = π′(s)− d

ds
(E(Πλ(s))) ,

= π′(s)− dE(Πλ(s))Π
′
λ(s),

=
[
Id− dE(Πλ(s))dE(Πλ(s))

∗ (dE(Πλ(s))dE(Πλ(s))
∗ + λId)−1] π′(s).

For a general linear map A, we have limλ→0AA
∗(AA∗ + λId)−1 = AA+ and recall

from (8.6) that the operator P = Id − AA+ is an orthogonal projector such that
kerP = imA and imP = kerA+. With our analysis, we conclude:
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Proposition 8.6. Suppose that for all s ∈ [0, 1], there exists Π0(s) ∈ U such that
Πλ(s)

λ→0−−−⇀ Π0(s). If

π′(s) ∈ im dE(Π0(s)), for almost every s ∈ [0, 1],(8.11)

then the global solution Πλ(s) of the regularised path lifting equation converges to a
solution of the motion planning problem when λ goes to zero.

Observe that for the classical continuation method, we need that π(s) /∈ E(S) in
order for the PLE to be well-posed. In our regularised setting, condition (8.11) only
restricts the derivative π′(s) of the path. That condition means that the path π can
pass through the image of the singular set if it crosses it transversally. Therefore, we
have replaced a condition formulated on the state space by a condition formulated
on the tangent space.

Proof. Using Proposition 7.1 (iv) we obtain that dE(Πλ) → dE(Π0), so the anal-
ysis performed above the proposition holds and we get limλ→0 e

′
λ(s) = 0. Hence,

limλ→0 eλ(1) = 0 implying that limλ→0 πλ(1) = π(1) = x⋆. ■

Existence of Π0(s) as above does not follow from classical optimisation arguments
because, in the minimisation problem (8.10), the linear operator dE(Πλ(s)) depends
non trivially on λ. Nevertheless, one can prove that if Πλ(s) weakly converges to
Π0(s) for all s, then Π′

0(s) is a solution of the following limit minimisation problem

min
v∈U
∥dE(Π0(s))v − π′(s)∥2 ,

see e.g. [Cla21]. Observe that, under condition (8.11), the above minimum is zero
and we have dE(Π0(s))Π

′
0(s) = π′(s) implying that Π0(s) is a solution of the equa-

tion E(Π(s)) = π(s) for all s ∈ [0, 1].

To summarise, a necessary condition for the convergence of the regularised con-
tinuation method is π′(s) ∈ im dE(Π0(s)), which implies that we have to construct
a path π(s) such that π′(s) is not orthogonal to im dE(Π0(s)). If, for every s, the
control Π0(s) is not singular then dE(Π0(s)) has full rank and condition (8.11) is
automatically fulfilled. However, if for some s̄ the control Π0(s̄) is singular, then
the image of dE(Π0(s̄)) is a subspace of Rn with codimension at least 1. In that
case, condition (8.11) is non-trivial, and π(s) has to be chosen accordingly. This
transversality condition is the crucial point of the method. In the future, we want to
tailor this condition and to find strategies to construct such paths. Moreover, as we
already mentioned, it is difficult to establish the convergence of Πλ(s); in the future
we will try to obtain a convergence result for the regularised path lifting equation.

3 Discretisation and description of the algorithm

In this section, we present some technical algorithmic aspects on the implementation
of our method. Consider a control-nonlinear system of the form

Ξ : ẋ = F (x, u), x ∈ X , u(·) ∈ U.
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Suppose that an initial state x0 ∈ X and a final time T are fixed. Let E be the
endpoint mapping associated to Ξ and assume that x⋆ is reachable from x0.

Algorithm 1 Regularised continuation method for the MPP
Choose λ > 0;
Choose an arbitrary control u0 ∈ U and set x0 = E(u0);
Define a curve π : [0, 1]→ X such that π(0) = x0 and π(1) = x⋆;
Solve numerically the R-PLE

Π′
λ(s) = dE(Πλ(s)) (dE(Πλ(s))dE(Πλ(s))

∗ + λId)−1 π′(s), Πλ(0) = u0;(8.12)

Set u⋆λ = Πλ(1);

Observe that the main difficulty of Algorithm 1 is to solve the R-PLE, which is
an ordinary differential equation defined on the control space U . In the following
paragraphs, we develop some key points for solving (8.12).

Discretizing the control space. We start by approximating the control space U
which is an open set in an infinite dimensional vector space. We divide the interval
[0, T ] into H parts {t1, . . . , tH}, and we approximate the control space U by the
mH-dimensional subspace Û of piecewise linear functions. Then, for 1 ≤ i ≤ m, a
control ui is approximated by ûi, the linear interpolation of (ui,1, . . . , ui,H), where
ui,k = ui (tk), i.e. we have (see figure 8.3)

ûi(t) = ui,k + (t− tk)
ui,k+1 − ui,k
tk+1 − tk

, t ∈ [tk, tk+1].

The regularised path lifting equation (8.12) tells us how we have to modify the
piecewise approximation û0 in order to obtain an approximate control steering our
system from its initial state to a point near the target state x⋆.

t1 tk tH

ui(t)
ûi

Figure 8.3: Discretisation of the control space. Black thick line displays a control
ui(t), the blue dots and the dashed line represent its finite dimensional discretisation
and approximation.
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For all û and v̂ in Û , the L2 scalar product is discretised as follows:

⟨û, v̂⟩Û =
m∑
i=1

∫ T

0

ûi(t)v̂i(t) dt =
m∑
i=1

H−1∑
k=1

∫ tk+1

tk

ûi(t)v̂i(t) dt,

=
m∑
i=1

H−1∑
k=1

∆tk

(
ui,kvi,k +

1

2
ui,k∆vi,k +

1

2
vi,k∆ui,k +

1

3
∆ui,k∆vi,k

)
,(8.13)

where ∆tk = tk+1−tk, ∆ui,k = ui,k+1−ui,k, and ∆vi,k = vi,k+1−vi,k. We have chosen
the space of piecewise linear controls because they are easy to implement, but we
plan to test our method on other Galerkin approximations of the control space.

Computing the differential of the endpoint map. Let û ∈ Û be a piece-
wise linear control and consider xû the trajectory (starting at x0 and defined on
[0, T ]) generated by û. We describe how to compute a matrix representation of
dE(û) : Û → TE(û)X and of dE(û)∗ : T ∗

E(û)X → Û . The space Û is an open
set in a mH-dimensional vector space, therefore it is possible to compute a matrix
representation of the linear map dE(û) using a basis {ei} of Û , this would require
mH numerical integrations of the linearised system around the trajectory xû. But
since dimTE(û)X = n ≪ mH, it is much more efficient to compute a matrix rep-
resentation of dE(û)∗ and then to use the properties of the adjoint operator to get
a matrix representation of dE(û). Precisely, we perform the linearisation of the
control-nonlinear system Ξ along the trajectory xû by setting

Aû(t) =
∂F

∂x
(xû(t), û(t)) and Bû =

∂F

∂u
(xû(t), û(t)).

Let pû : [0, T ] → T ∗X be the field of covectors along xû satisfying the adjoint
equation along xû with terminal condition pT ∈ T ∗

E(û)X , i.e.

ṗû(t) = −A∗
û(t)pz,û(t), pz,û(T ) = pT .(8.14)

Then, dE(û)∗pT ∈ Û is defined by

(dE(û)∗pT ) (t) = B∗
û(t)pû(t).(8.15)

Finally, to obtain an (mH×n)-matrix representation of dE(û)∗ it suffices to integrate
n times equation (8.14) with terminal conditions pT ∈ {z1, . . . , zn} a basis of T ∗

E(û)X
and to evaluate the right hand side of (8.15) at the discrete points {t1, . . . , tH}.

Now, to deduce an (n × mH)-matrix representation of dE(û) from the one of
dE(û)∗, we proceed as follows. By definition, we have

(dE(û)v̂, z) = (v̂, dE(û)∗z)Û , ∀ v̂ ∈ Û , ∀ z ∈ T ∗
E(û)X .(8.16)

Choosing v̂ in a basis of Û and z in {z1, . . . , zn} we can explicitly compute the
coefficients of dE(û). For instance, suppose that the number of controls is m = 1,
let ϕk, for 1 ≤ k ≤ H, be the basis of Û defined by ϕk(tj) = δjk, and let zi = ei be
the canonical basis of Rn. Then denote E and E∗ the matrix representation of dE(û)
and dE(û)∗, respectively. Using (8.16) with v̂ = ϕj and z = zi we obtain

Ei,j =
H∑
k=1

E∗
k,i (ϕj, ϕk)Û =

j+1∑
k=j−1
1≤k≤H

E∗
k,i (ϕj, ϕk)Û ,
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from which we deduce for all 1 ≤ i ≤ n:

Ei,1 =
∆t1
3

(
E∗
1,i +

1

2
E∗
2,i

)
, Ei,H =

∆tH−1

3

(
E∗
H,i +

1

2
E∗
H−1,i

)
,

Ei,j =
∆tj−1

3

(
E∗
j,i +

1

2
E∗
j−1,i

)
+

∆tj
3

(
E∗
j,i +

1

2
E∗
j+1,i

)
, ∀ 1 < j < H.

4 Numerical experiments

In this section, we present the results of several numerical applications of our reg-
ularised continuation method. Our algorithms have been implemented on Matlab
R2021a for a prototype and are freely available, we plan to implement our method
with a more advanced programming language in view of having better computational
performances.

The following parameters are set for all experiments. We fix the terminal time
T = 1, we discretise the time interval [0, 1] with 257 equally spaced points, the inter-
val [0, 1], for the variable s, of the regularised path lifting equation is discretised with
513 equally spaced points, and the space of controls is approximated by continuous
piecewise linear functions on 129 equally spaced points. Finally, we linearly vary λ
from 10−3 to 10−6 with 65 points. Note that the computational time of Algorithm 1
with λ fixed is on average around one minute (using a 1.9 GHz Intel Core i7).

Exp. 1: Monocycle. For the first experiment, we deal with the so-called mono-
cycle system given by ẋ1ẋ2

θ̇

 =

cos(θ)
sin(θ)
0

u1 +

0
0
1

u2.

The state (x, y, θ)t of the system represents the position and the orientation of a
car on a plane. The control u = (u1, u2) is exerted on the linear and angular
velocity. This example is trivial in the sense that it does not possess any non trivial
singularities; so the classical continuation method is applicable. We use this example
to validate our implementation and to present different metrics used to measure the
quality of our results. We use our regularised continuation method to look for a
control generating a trajectory steering the system from

x0 =

1
1
π
4

 to x⋆ =

3
1
π
4

 .

The first control u0 is chosen to be 0 and for the path π(s) we choose a straight
line from x0 = E(u0) to x⋆. Notice that π(s) is not an admissible trajectory of the
system. First, figure 8.4 shows the results of our implementation of Algorithm 1
for λ = 10−3, and second, figure 8.5 illustrates the convergence of the regularised
solution when λ tends to zero.
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0 1
1.00

3.00
xλ(s)
πx(s)

(a) xλ(s)-coordinate.

0 1
1

1.02
yλ(s)
πy(s)

(b) yλ(s)-coordinate.

0 1
0.78

0.79
θλ(s)
πθ(s)

(c) θλ(s)-coordinate.

0 1
0

0.03

∥eλ(s)∥

(d) Error-norm evolution.

Figure 8.4: Monocycle experiment: results of the regularised continuation method
for λ = 10−3. Figures 8.4(a) to 8.4(c) show the evolution for s ∈ [0, 1] of the
coordinates (xλ, yλ, θλ) of E(Πλ(s)), solid line, and the reference path π(s), dashed
line. Figure 8.4(d) shows the evolution of the error norm ∥π(s)−πλ(s)∥ for s ∈ [0, 1].

We observe that figure 8.4 shows that the regularised path lifting equation is,
indeed, well-posed on [0, 1] and admits a global solution, illustrating Proposition 8.5.
In particular, Figures 8.4(a) to 8.4(c), display the coordinates (πx, πy, πθ) of the path
π(s) (dashed line) that join x0 and x⋆, and the solid blue line shows the evolution
of the coordinates of E(Πλ(s)). We see that the procedure follows accurately the
path π(s) for the x coordinate, and that πλ(s) differs slightly from the reference
path π(s) for the y and θ coordinates (error of magnitude 0.01); this behaviour is
expected because of the regularising parameter λ = 10−3 > 0.

Next, figure 8.4(d) displays the norm of the difference π(s) − πλ(s), i.e. the
difference between the reference path π and the actually constructed one πλ. By
definition, we have eλ(0) = 0 and we observe that ∥eλ(s)∥ is strictly increasing
with s. At the end of the procedure, however, the norm of the error is not very high:
the terminal point πλ(1) is in a ball of radius 0.03 around the target configuration
x⋆. This suggests the following improvement of the method: one could use a «warm-
restart» of the method, that is stopping the procedure at s = 0.2 and use the result
of this truncated calculation as a new starting point for our algorithm (we simply
need to compute a new path π).

We now study the convergence of our regularised method when the regularising
parameter λ tends to 0. First, figure 8.5(a) shows that the error converges to 0
as λ → 0, moreover it shows that the controls Πλ converge to controls Π0(s), and,
furthermore, it shows that there is a linear relation between the norm of the error
and the regularising parameter λ. Thus, this figure proves that our regularised
continuation method converges to a solution of the motion planing problem when
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10−6 10−3

0.01

0.03

∥eλ(1)∥ = 35.77λ

(a) Terminal error-norm evolution.

0 1
0

0.03

(b) Error-norm evolution. Solid: λ = 10−3,
Dashed: λ = 710−4, Dotted-Dashed:

λ = 310−4, Dotted: λ = 10−6.

Figure 8.5: Monocycle experiment: convergence λ→ 0 of the regularised continua-
tion method. Figure 8.5(a) shows the evolution of the terminal error-norm ∥eλ(1)∥
against λ, solid line, and the dashed line shows the best linear approximation. Fig-
ure 8.5(b) shows the evolution of the norm ∥eλ(s)∥.

λ tends to zero. Second, figure 8.5(b) illustrates Proposition 8.6, we observe that
when λ → 0, the derivative of the error becomes smaller and thus the error tends
to stay near zero during the whole continuation process. Indeed, since in this case,
there are no nontrivial singularities, condition (8.11) if fulfilled everywhere.

To summarise, this first experiment validates, in a simple setting, our implemen-
tation of Algorithm 1. It shows that the regularised path lifting equation is well
posed on [0, 1] and possesses a global solution. Finally, we show that our regularised
continuation method converges to a solution of the motion planing problem when
the parameter λ tends to zero.

Exp. 2: Martinet case. We now turn to a more challenging example given by
the Martinet system: ẋẏ

ż

 =

0
1
0

u1 +

 1
0
y2

2

u2.

This system possesses nontrivial abnormal extremals, i.e. singularities of the end-
point map E. They are the straight lines z = z0 contained in the plane {y = 0}
called the Martinet plane. We test Algorithm 1 to find a control that steers the
system from x0 =

(
1
−1
1

)
to x⋆ =

(
1
1
−1

)
. We start with the initial control u0 = 0,

thus x0 = E(u0) = x0, and we take π(s) as a straight line. Therefore, observe that
the path π(s) will necessarily cross the Martinet plane.

Figure 8.6 shows the results of our implemtation of Algorithm 1 for λ = 10−3.
First, we observe in Figures 8.6(a) to 8.6(c) that πλ(s) = E(Πλ(s)) follows accu-
rately the path π(s), it deviates from that reference with an error of magnitude
0.01. Moreover observe that no special behaviour occurs when πλ(s) crosses the
singular plane (at s = 0.5). Thus, we observe that, even in the presence of non-
trivial singularities, our regularised path lifting equation is well-posed and possesses
a global solution on [0, 1], illustrating Proposition 8.5. Second, figure 8.6(d) shows
that the error is increasing from eλ(0) = 0 to eλ(1) ≈ 0.04, we observe that eλ(s)

196



grows fast at the beginning of the path lifting equation and quickly stabilizes, which
again justifies the use of a «warm-restart» procedure as described in the previous
experiment.

0 1

0.98

1.00
xλ(s)
πx(s)

(a) xλ(s)-coordinate.

0 1
-1

0

1
yλ(s)
πy(s)
Singular plane

(b) yλ(s)-coordinate.

0 1
-1

0

1
zλ(s)
πz(s)

(c) zλ(s)-coordinate.

0 1
0

0.04

∥eλ(s)∥

(d) Error-norm evolution.

Figure 8.6: Martinet experiment: results of the regularised continuation method for
λ = 10−3. Figures 8.6(a) to 8.6(c) show the evolution for s ∈ [0, 1] of the coordinates
(xλ, yλ, zλ) of E(Πλ(s)), solid line, and the reference path π(s), dashed line; moreover
for the y-component we display the singular plane as a dotted line. Figure 8.6(d)
shows the evolution of the error norm ∥π(s)− πλ(s)∥ for s ∈ [0, 1].

Next, figure 8.7 shows that even when we cross singularity {y = 0}, we get
convergence of the error to 0 when the regularising parameter λ tends to zero. In-
deed, figure 8.7(a) shows that when λ goes to zero, then the terminal error, i.e.
∥π(1) − πλ(1)∥, also tends to zero. We also remark a linear relation between the
error and λ. Next, figure 8.7(b) shows that as λ → 0, the error eλ(s) gets flatter
along s ∈ [0, 1] and does not deviate a lot from 0.

We perform a second experiment with the Martinet system, which is more chal-
lenging on the crossing of the singular plane. We keep the same initial and target con-
figurations and we choose a path π(s) that follows a singular trajectory for s in an in-
terval: first, for s ∈ [0, 0.3], we go straight from x0 = (1,−1, 1)t to x0,1 = (1, 0,−1)t;
second, for s ∈]0.3, 0.6], we go straight from x0,1 to x0,2 = (2, 0,−1)t, i.e. we
follow a singular trajectory; and third, for s ∈]0, 1], we go straight from x0,2 to
x⋆ = (1, 1,−1)t.

In that experiment, notice that π(s) belongs to the singular plane {y = 0} for s
in an interval, so clearly,the classical continuation method would not be applicable
here. Nevertheless, condition (8.11) is fulfilled for all s and thus we still observe
convergence to zero of the terminal endpoint error eλ(1) and of the derivative e′λ(s),
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(a) Terminal error-norm evolution.
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(b) Error-norm evolution. Solid: λ = 10−3,
Dashed: λ = 710−4, Dotted-Dashed:

λ = 310−4, Dotted: λ = 10−6.

Figure 8.7: Martinet experiment: convergence λ → 0 of the regularised continua-
tion method. Figure 8.7(a) shows the evolution of the terminal error norm ∥eλ(1)∥
against λ, solid line, and the dashed line shows the best linear approximation. Fig-
ure 8.7(b) shows the evolution of the norm ∥eλ(s)∥.
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(a) Terminal error-norm evolution.

0 1
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0.04

(b) Error-norm evolution. Solid: λ = 10−3,
Dashed: λ = 710−4, Dotted-Dashed:

λ = 310−4, Dotted: λ = 10−6.

Figure 8.8: Martinet experiment (bis): convergence λ → 0. Same description as
figure 8.7.

see figure 8.8. Therefore, we illustrate that our method can be successfully applied
to cases, where π(s) passes through singularities for s in an interval (provided that
π′(s) is suitably chosen).

Exp. 3: Bryant system. We now turn to a more difficult academic example.
The following control-linear system

(
ẋ
ẇ

)
=


0 −w3 w2

w3 0 −w1

−w2 w1 0
1 0 0
0 1 0
0 0 1


u1u2
u3

 , (x,w) ∈ R6.

have been proposed by Bryant (unpublished) as a system possessing singular trajec-
tories in any direction at any point. Indeed, by a straightforward calculation we get
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that the singular controls are us(t) = v(t)px, where v(t) is a smooth scalar function
and px is a constant non-zero vector of R3. Moreover, for a singular control us we
have

E(us) =

(
x0 + V (T )(w0 ∧ px)

w0 + V (T )px

)
, with V (T ) =

∫ T

0

v(τ) dτ,

and

im dE(us) = vectR {px}⊥ × R3.

In other words, im dE(us) is an hyperplane in R6. For our numerical experiment,
we set (x0, w0) = 0 and we choose (x⋆, w⋆) randomly.

0 1
0

0.6 x1λ(s)
πx1(s)

(a) x1λ(s)-coordinate.

0 1

-0.04

0
x2λ(s)
πx2(s)

(b) x2λ(s)-coordinate.

0 1
-0.8

0
x3λ(s)
πx3(s)

(c) x3λ(s)-coordinate.

0 1
0

0.015

∥eλ(s)∥

(d) Error-norm evolution.

Figure 8.9: Bryant experiment: results of the regularised continuation method for
λ = 10−3. Figures 8.9(a) to 8.9(c) show the evolution for s ∈ [0, 1] of the coordinate
xλ of E(Πλ(s)), solid line, and the reference path π(s), dashed line. Figure 8.9(d)
shows the evolution of the error norm ∥π(s)− πλ(s)∥ for s ∈ [0, 1].

First, as previously, we test our algorithm with λ = 10−3; results are presented in
figure 8.9. That figure shows that our method deals well with this delicate example.
Indeed, we observe on Figures 8.9(a) to 8.9(c) that the solution πλ(s) = E(Πλ(s))
follows accurately the path π(s) (even for λ = 10−3). Moreover, figure 8.9(d) shows
that the regularised path lifting equation quickly converges (with respect to s) to a
solution Πλ(1), which produces a trajectory that ends near (x⋆, w⋆) with an error of
about 0.015. One more time, we note the potential of a «warm-restart» procedure
for our algorithm.

Finally, figure 8.10 illustrates that in this delicate setting, we still get conver-
gence of our algorithm to controls Πλ(s). In particular, figure 8.10(a) shows that
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(a) Terminal error-norm evolution.

0 1
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0.015

(b) Error-norm evolution. Solid: λ = 10−3,
Dashed: λ = 710−4, Dotted-Dashed:
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Figure 8.10: Bryant experiment: convergence λ → 0 of the regularised continua-
tion method. Figure 8.10(a) shows the evolution of the terminal norm error ∥eλ(1)∥
against λ, solid line, and the dashed line shows the best linear approximation. Fig-
ure 8.10(b) shows the evolution of the norm ∥eλ(s)∥.

the terminal error eλ(1) converges (with a linear rate) to 0 when λ → 0. Next,
figure 8.10(b) shows that when λ → 0, the error eλ(s) tends to be flatter and thus
stays closer from 0. The fact that we obtain convergence of the error eλ(s) in that
experiment proves that the chosen path π(s) and the controls Π0(s), to which Πλ(s)
have converged, satisfy condition (8.11). It is encouraging that our method works
well on such system with «many» singularities, when we choose randomly the target
state and a path π(s) as simple as a straight line.

We terminate this subsection with two other numerical experiments with Bryant’s
system, they are designed such that we do not get convergence of the regularised
solution to a solution of the motion planning problem, and thus we illustrate the
necessity of condition (8.11). For both experiments, we set the following parame-
ters: the initial point of the system is (x0, w0) = (0, 0), the target state is (x⋆, w⋆) =
(1, 1, 1, 0, 0, 0)t, and we set the initial condition of the regularised path lifting equa-
tion to be u0 = 0.

For the first experiment, the path π(s) is chosen as a straight line between
(x0, w0) = E(u0) and (x⋆, w⋆); hence, for all s ∈ [0, 1], we have π′(s) = (1, 1, 1, 0, 0, 0)t.
Figure 8.11(a) shows the non-convergence of eλ(1) as λ→ 0. In fact, we observe, in
that case, that the regularised path lifting equation reads Π′

λ(s) = 0 for all λ and s.
Hence, for all s we obtain Πλ(s) = u0 = 0 and thus πλ(1) = (x0, x0) for any λ and
we do not get convergence to the target state (x⋆, w⋆).

Next, for the second experiment we choose a more complicated path between
(x0, w0) and the target configuration, we set π(s) as follows. For s ∈ [0, 0.3], π(s) is
a straight line between (x0, w0) and (x0,1, w0,1) = (0.5, 0.5, 0.5, 0, 0, 0)t; second, for
s ∈ [0.3, 0.6] we go straight from (x0,1, w0,1) to (x0,2, w0,2) = (0.5, 0.5, 0.5, 1, 1, 1)t;
and third, we go straight from (x0,2, w0,2) to the target(x⋆, w⋆). For the first part of
the path, π(s) does not satisfy condition (8.11) hence we expect that the regularised
solution does not admit a limit as λ → 0. Indeed, figure 8.11(b) shows that when
λ→ 0, the terminal error eλ(1) does not converge to 0. We observe that the relation
between the terminal error and λ (while linear as before) is very steep, the fact that
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eλ(1) is still decreasing and the oscillations that we observe are probably due to
numerical instability of the integration algorithm, which make us diverge from the
reference path π(s). To conclude, those two experiments illustrate the fact that the
path π(s) has to be suitably chosen in order to get convergence of our method. If
for s in an interval condition (8.11) fails to hold, then we lose convergence and we
do not get a solution of the motion planning problem. Based on the results of those
two experiments, we will in the future deeper study and analyse condition (8.11),
especially in the case where the singularities are of corank one (as we have here for
Bryant’s system).

10−6 10−3

1.65

1.8

∥eλ(1)∥ = 0.00λ

(a) Terminal error-norm evolution.

10−6 10−3

1

1.4

∥eλ(1)∥ = 519.13λ

(b) Terminal error-norm evolution.

Figure 8.11: Failed Bryant Experiments. Figures 8.11(a) and 8.11(b) show, as a
solid black line, the evolution of the terminal norm error ∥eλ(1)∥ against λ for the
first and second failed experiment, respectively.

To summarise and conclude our numerical experiments, we observe through sev-
eral academic examples that the regularised path lifting equation (8.9) is well-posed
for all s ∈ [0, 1] and that, for any λ > 0, it possesses a global solution Πλ(s). More-
over, when the regularising parameter λ tends to zero, we observe, in all experiments
(except those that were specifically designed to fail), that we have convergence to-
wards zero of the error eλ(s) between the reference path π(s) and the constructed
path πλ(s), which shows that solutions of the regularised path lifting algorithm
converge to a solution of the motion planning algorithm. The different numerical
experiments performed illustrate that our method has all the properties of a com-
plete procedure (as defined in [Lon10]) and thus that its properties should be further
investigated so that the method can be successfully applied to more challenging and
real-world systems.

5 Conclusion and Perspectives

In this chapter, we presented a regularised version of the continuation method. We
showed that our regularised path lifting equation is always well posed and possesses
a global solution on [0, 1]. We gave theoretical results on the convergence of our
regularised solution to a solution of the classical continuation method as the regular-
isation parameter tends to zero. Finally, we illustrated the potential of our approach
via several numerical examples. Our regularised continuation method presents the
advantages of being applicable to any control system and that its implementation
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is straightforward. In the following, we present further developments that we plan
for our method.

Other regularisations. As we shortly outlined in a previous remark, interpreting
our regularisation of the Moore-Penrose pseudo-inverse as a regularised least square
problem suggests adding of other types of regularisations. Supplementary regular-
ising terms should be motivated by additional properties that one would like to get
on the controls steering the control system. The study of this approach would lead
to very interesting generalisations of our results. For instance, if we have a first
approximation ū⋆ of the control u⋆, then we expect that a better approximation
(in the sense that it produces a trajectory ending closer to x⋆ than the trajectory
generated by ū⋆) is located in a small neighbourhood. Thus we could penalise the
total variation of Π′

λ(s) so that we enforce the search of controls in a neighbourhood
of controls that have variation close to ū⋆. We also may penalise the L1 norm of
Π′
λ(s) if we want to parsimoniously change controls along the path Πλ(s), i.e. we

enforce the least possible changes of u0. Such new regularising penalisations brings
new theoretical and numerical challenges as they introduce non convex and non
differential terms.

Obstacle avoidance. From the point of view of the applications, one usually has
to take into account obstacles in the state space. An obstacle is a closed subset C
of the state space Rn such that Rn\C is nonempty. The motion planning problem
with obstacles (MPPO) is the same as the MPP with the additional requirement
that the generated trajectory xu⋆(t) stays in Rn\C for all t ∈ [0, T ]. Consider a
smooth function ψ : Rn → R satisfying ψ > 0 on Rn\C and ψ = 0 on C, then we
set the control system

ΛC : ẋ =
m∑
i=1

uiψgi.

One can show that if Λ satisfy the LARC and the SBGC, then ΛC also satisfies
them. Hence the MPPO reduces to a MPP for each connected component of Rn\C,
and all theoretical results obtained for the continuation method also apply to ΛC
The difficulty of that approach is that the introduction of obstacles twists the scalar
product on Rn, therefore the definition of the adjoint of dE might be complicated
to compute. Alternatively, we can deal with state constraints via the introduction
of penalisation terms in the regularised path lifting equation. Indeed, if for every

x ∈ Rn we set 1C(x) =
{

0 if x /∈ C
+∞ otherwise , then the L∞([0, T ])-penalisation norm

∥1C (Et(Πλ(s)))∥∞ ensures that the controls Πλ(s) produce trajectories that avoid
the constraint set almost everywhere.

Constraints on controls. Also in view of applications, we would like to modify
our algorithm to incorporate constraint on the controls, e.g. ∥u(t)∥ ≤ 1 for all
t. Such constraints model physical limitations on the forces and torques that are
exerted on a system (or on velocities, which are controlled in our examples). A
possibility is to incorporate those constraints in the regularised path lifting equation
via suitable penalisation terms, e.g. max (∥Πλ(s)∥ − 1, 0)2.
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Updated initialisation of the regularised continuation method. From the
efficiency and the practical point of view, it is useless to run the algorithm with
a smaller λ and keeping the initial control to u0. Preliminary results, show that
the following methodology is very efficient. For a coarse λ1 we solve the regularised
continuation method. Then we set u01 = Πλ1(1) as a new starting control (which is
closer to u⋆ than u0), we construct a new path π(s), joining E(u01) to x⋆, and we
warm restart the regularised continuation method with a smaller λ. Iterating this
procedure yields a faster convergence to a control u⋆ as illustrated by figure 8.12. To
generate that figure, we used the same parameters as in the monocycle experiment.

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

10−15

10−12

10−9

10−6

10−3

Figure 8.12: Plot of the terminal error using the update initialisation technique.
Abscissa is 103λ and the y-axis is the log-norm of the endpoint error eλ(1). The
solid black line shows the evolution of the log-norm log (∥eλ(1)∥) against λ with
updated initialisation at every λ.
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